

AECOM

50 Lakefront Boulevard, Suite 111 Buffalo, New York 14202 T: 716-856-5636 aecom.com

June 4, 2024

SUBMITTED VIA ELECTRONIC MAIL

Glenn May New York State Department of Environmental Conservation Region 9 700 Delaware Avenue Buffalo, NY 14209 glenn.may@dec.ny.gov

RE: Soil Vapor Intrusion Investigation Summary Report Former Chemical Leaman Tank Lines Site, Tonawanda, New York NYSDEC Site No. 915014

Dear Mr. May,

On behalf of Quality Carriers, Inc. (QCI), AECOM Technical Services, Inc. (AECOM) herein submits this summary report of the Soil Vapor Intrusion (SVI) investigation and data collected at former Chemical Learnan Tank Lines Site located at 470 Fillmore Avenue, Tonawanda, New York (**Figure 1**). The SVI work was performed within the existing on-Site single-story commercial building, currently occupied by Dr. Trailer Repair Inc. (Dr. Trailer), a maintenance and service garage for commercial trucks, diesel, trailer and tractor trailers.

BACKGROUND

From March to June 2015, AECOM completed the remediation of operable units (OU) 1 through 3 (**Figure 1**) in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Phase II Remedial Design/Remedial Action Work Plan prepared by AECOM in December 2012. The soil and groundwater contamination encountered in all three OUs included volatile organic compounds (VOCs), which were downgradient of the Site building. Details of the remedial action were described in the Draft Final Engineering Report submitted to NYSDEC in April 2016. A Draft Site Management Plan (SMP) was also submitted to NYSDEC in January 2016.

2018 SVI Investigation - In April 2018, AECOM completed an SVI investigation in the Site office building, which consisted of the collection and analysis of two sub-slab vapor samples, two indoor air samples, one duplicate indoor air sample, and one outdoor air sample. Sampling results were compared to the New York State Department of Health (NYSDOH) Soil Vapor/Indoor Air Decision Matrices, which yielded an action of "Identify Source(s) and Resample or Mitigate" due to concentrations of tetrachloroethene (PCE) in sub-slab vapor and indoor air samples (**Table 1**). AECOM submitted the SVI Investigation Summary Report to the NYSDEC on June 14, 2018, with recommendations for further SVI investigation to verify results.

2022 SVI Investigation - AECOM submitted a new SVI Investigation Work Plan to NYSDEC on November 2, 2021, which was approved on January 5, 2022.In March 2022, AECOM performed resampling of the SVI sampling points completed in 2018. A chemical inventory survey was performed for the entire service bay area and other rooms in the truck/trailer service building including the workers' locker room, a paint storage room with a cabinet for flammable materials, and parts storage room. Total VOC screening of the truck/trailer service building indoor air was also performed to identify potential sources of VOCs located in the truck/trailer service building. Numerous containers were identified as containing VOCs, including two types of containers containing chlorinated solvents:

• A total of 16 538-gram containers of brake cleaning fluid containing PCE; and,

• One 11-ounce container of starter fluid containing various VOCs, including chloroethane.

Additional measures to minimize possible indoor air sources of PCE included the following:

- 1) Any items identified during the service building inventory as containing any of the target compounds were removed from the building one day prior to sampling.
- 2) To minimize air flow between the truck/trailer service area and the office area, sampling was performed during non-business hours on a Saturday so that doors between the office building and service building remained closed during the sampling period. As an added precaution, door jams between the office building and service building were sealed to prevent any possible air movement through possibly loosely sealed door jams.
- 3) Because the sampling was performed on a weekend, the truck/trailer bay overhead doors were not able to be left open during sampling.

One potential source, the parts washing station, exhibited elevated photoionization detector (PID) readings of 63.7 parts per million (ppm) total VOCs. The Crystal Clean parts washing station consists of a washing basin for metal parts, that sits atop a 30-gallon drum and is equipped with a cleaning fluid nozzle and recirculating pump. The parts washing station is maintained by Heritage-Crystal Clean, Inc® – a company that provides and maintains solvent parts washers. The service also includes removal and management of the used mineral spirits. Cleaning fluids used in the parts washing station are mineral spirits based and may contain small percentages of VOCs such as 1,2,4-trimethylbenzene, toluene, and ethylbenzene. The parts washing station was not able to be removed from the truck/trailer service area during indoor air sampling.

Although additional steps were taken to identify and isolate possible sources of PCE in indoor air, the March 2022 sampling results were similar to the April 2018 results (**Table 1**). The 2022 sampling results yielded an action of "Identify Source(s) and Resample or Mitigate" due to concentrations of PCE in sub-slab vapor and indoor air samples. The indoor air PCE results were slightly higher in March 2022 than in April 2018, while the sub-slab PCE results were slightly lower in 2022 than in 2018. For both sampling locations collected in March 2022, indoor air PCE concentrations were higher than the sub-slab vapor PCE concentrations detected in their corresponding samples.

The March 2022 sampling results also indicated elevated concentrations of cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC), which are both degradation products of PCE, in both sub-slab vapor and indoor air samples; these degradation compounds were not detected in April 2018. Although the reported results were very low and near the reporting limits, the 2022 sampling results yielded an action of "Identify Source(s) and Resample or Mitigate" due to the presence of VC.

The presence of PCE-containing brake cleaning solvent in the parts washing station could be a potential interfering source of chlorinated solvents identified in indoor air within the site building. Review of a waste shipping label for the spent solvent drum, obtained after the SVI sampling activities, indicated three hazardous waste codes: D001 (ignitable), D039 (PCE), and D040 (TCE).

According to the NYSDOH Decision Matrices, an action of mitigation for PCE and VC in indoor air would be recommended. However, due to the possibility of the parts washing station as a potential source of PCE, and since the sub-slab vapor PCE concentrations were lower than the indoor air PCE concentrations, it was unclear if the sampling results were indicative of a vapor intrusion pathway. As such, AECOM recommended further assessment and removal of the potential interfering source of chlorinated solvents prior to resampling. Recommended actions included the following:

- An evaluation of the ventilation system and air flow patterns between the truck/trailer service bay area and the office building using smoke emitting devices.
- Screening of indoor air quality in the immediate vicinity of the parts washing station to
 evaluate the station as a possible source of PCE that may impact indoor air sampling
 results in the office building.
- Removal of any possible indoor interfering sources for temporary storage in another location.

• Maximizing fresh air ventilation within the service area by opening the service bay garage doors prior to sample collection. This will minimize possible contaminant migration from the service garage area into the office area.

In February 2024, AECOM submitted a work plan to perform additional SVI investigation following the above recommendations. NYSDEC approved the SVI investigation work plan on February 22, 2024.

2024 SVI INVESTIGATION ACTIVITIES

Pre-Sampling Survey

A pre-sampling survey was performed on Friday, March 8, 2024, in accordance with the NYSDEC Structure Sampling Questionnaire and Building Inventory form. The pre-sampling survey included use of a PID capable of detecting parts per billion by volume (ppbv) levels to identify the presence of potential indoor VOC sources prior to collection of indoor air samples. This ensured that potential indoor sources were documented and removed prior to the collection of indoor air samples. AECOM personnel also conducted an inventory of chemicals found in each building. The completed NYSDEC Structure Sampling Questionnaire and Building Inventory forms are provided in **Attachment 2**.

The pre-sampling survey results indicated that the commercial building, which is made of brick, block foundation walls and includes unsealed concrete floors, is not airtight. Some cracks were observed in the floor slab in a storage room. The northern section of the building consists of several small offices, bathrooms, storage areas, a locker room, a utility room, a lounge and a lobby. The southern section of the building consists of a large truck bay service and repair area with nine (9) bay doors along the west wall, a service pit at the center of the floor, and four (4) bay doors along the east wall. Several trucks, repair equipment, chemical drums and lubricants/oils were present throughout the truck bay area. The parts washing station was present along the north wall of the truck bay area near the entrance to the office area. It should be noted that the tenant indicated that the parts washing station had been replaced earlier in the week with a new type of "environmentally friendly hot water" system. The parts washing solution is identified on the label as "ArmaKleenTM M-HP2 Solution", and the following product contents are listed: water, carbonic acid, dipotassium salt, sodium xylene sulfonate, hexanoic acid, 3,5,5-trimethyl-, Alcohols, C6-10, ethoxylated propoxylated. It appeared that the previous parts washing station had been moved to truck bay #9 at the far south end of the service area.

One (1) indoor air sample was collected on Thursday, March 7, 2024, in the truck bay area near the current parts washing station (CL-IA-3) to assess the indoor air quality prior to removing potential indoor air interferences.

The pre-sampling survey also identified numerous chemicals, lubricants, oils and solvents, associated with the regular operation of the existing commercial business. The majority of products and pieces of equipment exhibited PID readings at or around background levels (100-300 ppb); whereas some products exhibited elevated PID readings, ranging from 450 ppb (e.g., lubricating oil) to 815,000 ppb (e.g., organic solvents). The product inventory forms are provided in **Attachment 2**.

Additional steps to identify possible PCE sources for the office indoor air were completed on Friday, March 8, 2024. Any areas that indicated the presence of elevated VOCs using the PID were further screened for PCE using compound-specific Dräger tubes at the 1 to 300 parts per million (ppm) range. The areas with identified levels of PCE using the Dräger tubes included a soiled rag bin in locker room #2 (1.5 ppm), a chemical storage cabinet in storage room #3 (2 ppm), the old parts washing station at Bay #9 (1 ppm), and a surface cleaner in office #6 (1 ppm). Any sources exhibiting any detections of PCE, as well as the parts washing station and any chemicals containing "chloro" compounds, were removed from the Site Building. The field notes of the PCE screening are provided in **Attachment 2**.

Airflow patterns between the service bay area and the office area were also evaluated on March 8, 2024, using smoke emitting devices to evaluate air movement through openings and/or vents between the areas. This information was used to evaluate the possibility of ongoing PCE impacts

from the service area into the office area. The smoke test results indicated that, at the time of measuring, air was flowing from the truck bay area underneath the doors and into the lobby, office #5 and locker room #1; whereas the air from the east hallway and locker room #2 was flowing into the truck bay area. In general, air was observed to be flowing from the outdoors into the office building. Refer to **Figure 2** for a schematic of the observed air flow patterns.

The results of the pre-sampling survey were provided to the property owner, QCI, and a request was made to the tenant, Dr. Trailer, to remove any possible indoor interfering sources, including the parts washing station, for temporary storage in another location. A request was also made to temporarily remove any vehicles located in the service bays to the extent possible.

The service bay garage doors were opened for at least one hour a day prior to the collection of indoor air samples, to maximize fresh air ventilation within the service area. The garage doors were closed during sampling collection. Bay doors #1, 2, 3 and 7 were open throughout the day on Thursday, March 7, 2024.

Weather conditions (i.e., precipitation, outdoor temperature, barometric pressure, wind speed and direction) were noted for the 24-hour period prior to sampling. Weather condition data from the Niagara Falls International Airport Station for Saturday, March 9, 2024, at 7AM to Sunday, March 10, 2024 at 7AM was downloaded from the following web site: https://www.wunderground.com/. Note that only partial data were available for March 10, 2024, between approximately 12AM and 4AM. Pertinent field observations (i.e., odors or readings from field instrumentation, personal materials or other items of concern in the area of the sample [e.g., work bench, aerosols, etc.]) were also noted during sampling. During the 24-hour period prior to sampling, the temperature decreased from 52°F to 40°F (average 45.7°F); humidity fluctuated between 68 and 90% (average 81.4%); wind direction was generally from the south and west with speeds decreasing from 23 to 7 miles per hour (mph) (average 14.4 mph); pressure steadily dropped from 29.1 to 28.94 inches (in) (average 29.0 in); no precipitation had accumulated; and, the weather conditions were cloudy with light rain.

Utility Clearance

Ground Penetrating Radar Systems LLC (GPRS) conducted a geophysical borehole clearance survey on Thursday, March 7, 2024, to identify subsurface utilities prior to the soil vapor pin drilling activities. GPRS utilized a Ground Penetrating Radar (GPR) unit coupled with a 250-megahertz (MHz) antenna and a Radio Detection RD8200 Electromagnetic Induction (EMI) instrument over the proposed vapor pin locations and marked out utilities directly on the building floor. GPRS documented their survey activities in a written report. Copies of utility clearance documents are provided in **Attachment 3**.

Sub-Slab Vapor Sampling Points

Drilling of the sub-slab vapor pins was performed by AECOM staff using a handheld hammer drill on Thursday, March 7, 2024. Two (2) vapor pins were installed (CL-SSV-1 and CL-SSV-2).

Each sub-slab vapor sampling location was initially drilled using a 1.5-inch drill bit to a depth of 1.75 inches. Using a drill guide that was inserted into this hole, a 5/8-inch hole was drilled through the remaining slab and extended several inches into the underlying material. Upon removing the drill bit, the hole was immediately blocked, and the spoils were examined for wetness. All debris was removed using a vacuum cleaner with a HEPA filter to prevent it from re-entering the hole after unblocking. A Vapor Pin[™] was then hammered into place in the hole. Sub-slab vapor samples were collected through a ¹/₈-inch inside diameter by ¹/₄-inch outside diameter pure Teflon tubing which was connected to the Vapor Pin[™] using a short piece of silicone tubing.

Prior to sample collection, each sub-slab vapor sampling location was leak tested using a helium tracer gas to evaluate if indoor (ambient) air was short circuiting into the sample collection tubing. To perform the leak test, a plastic enclosure sealed at the ground surface with a foam gasket was placed over the sealed sub-slab sample location. The sample tubing was run through a hole sealed with Sculpey® brand modeling clay in the enclosure. A tank containing ultra-high purity helium [99.999 percent (%)] was connected to the side port of the enclosure, and enough helium was released to displace any ambient air and to maintain a positive pressure within the enclosure. Following the application of the tracer gas, one liter of soil vapor was purged using a Gillian GilAir-3

air sample pump at a rate of approximately 0.2 L/min and collected into a 1-liter Tedlar bag. The contents of the Tedlar bag were measured for helium using a Radio detection/Dielectric MGD-2002 Multi-gas Detector and for VOCs with a ppbRae. If the helium concentration was less than 10%, the enclosure was removed, and the tubing was connected to the Summa[®] canister via the flow controller and sampling commenced. Following sample collection, the tubing was removed, a rubber cap was placed on the Vapor Pin[™], and a flush-mount stainless steel threaded cap was installed. Leak testing equipment was calibrated and provided by Pine Environmental Services LLC (Pine) of Rochester, NY.

Leak testing logs are part of the Summa Canister Sampling Field Data Sheets provided in **Attachment 4**.

SVI Sample Collection and Analysis

SVI samples were collected during the heating season on Sunday, March 10, 2024, in accordance with the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, dated October 2006, and updates through May 2017) and the SVI Work Plan (AECOM, dated February 21, 2024).

The following SVI sampling program was completed, as shown on **Figure 2**, to evaluate the soil vapor intrusion pathway at the Site:

- One (1) indoor air sample was collected adjacent to the parts washing station in the truck bay portion of the Site buildings (CL-IA-3) prior to the removal of the parts washing station on March 7.
- One (1) indoor air sample (CL-IA-3) was collected adjacent to the parts washing station location following removal from the building and concurrently with the other indoor air and sub-slab samples on March 10.
- Two (2) sub-slab soil vapor samples were collected beneath the office portion of the Site building (CL-SSV-1 and CL-SSV-2).
- Two (2) co-located indoor air samples were collected in the office portion of the Site buildings (CL-IA-1 and CL-IA-2).
- One (1) outdoor air sample was collected from an area located upwind of the Site building. The outdoor air sample was taken at the parking lot west of the Site Building.
- One (1) field duplicate indoor air sample was collected to assess the precision of the sample collection process.

Photographs of the SVI field activities are provided in Attachment 1.

At each location, sample collection was performed using a 6.0-liter stainless steel, laboratoryprovided Summa[®] canister equipped with an 8-hour regulator. Indoor and outdoor air samples were collected at breathing zone height (approximately 4' above ground). For the sub slab vapor samples, the inlet end of the canister was connected to the sub slab vapor pin using a small piece of silicone tubing. Upon opening the canister valve, the initial vacuum pressure reading on the flow controller was recorded. Once the soil vapor or air sample was collected, the final vacuum pressure reading was recorded to ensure residual vacuum remained in the canister.

Soil vapor and air sampling forms are provided in Attachment 4.

The SVI samples were dropped off at Pace Analytical Laboratory (Pace) in Tonawanda, NY. Pace couriered the samples under proper chain-of-custody protocol to the Pace laboratory located in East Longmeadow, MA, a NYSDOH ELAP-certified laboratory. Vapor and air samples were analyzed for VOCs using modified United States Environmental Protection Agency (USEPA) Method TO-15.

ANALYTICAL RESULTS SUMMARY

Upon receipt from the laboratory, the analytical results were validated by an AECOM chemist in accordance with NYSDEC DER-10 and USEPA Region II data validation procedures. A copy of the

Data Usability Summary Report (DUSR) is provided in **Attachment 5**. The validated analytical results are summarized in **Table 1**. The full laboratory results are provided in **Attachment 6**. The soil vapor and indoor air analytical results are compared to the screening levels in the May 2017 NYSDOH update, as provided in **Attachment 7**.

Several VOC parameters were detected in indoor air and sub-slab vapor during the March 2024 SVI sampling event. Comparison of sampling results at locations CL-SSV-1/CL-IA-1 to the NYSDOH Soil Vapor/Indoor Air Matrices recommend "no further action" for all compounds. Comparison of sampling results at locations CL-SSV-2/CL-IA-2 to the NYSDOH Soil Vapor/Indoor Air Matrices yielded a recommended result of "no further action" for all compounds except PCE. Based on the PCE concentrations in samples CL-SSV-2/CL-IA-2, a recommended action of "Monitor" is indicated. PCE was detected in sub-slab vapor at 150 μ g/m³ and indoor air at 5.0 μ g/m³, which may indicate a potential subsurface source. However, the indoor air value is similar to that identified at both CL-IA-1 (7.9 ug/m³) and CL-IA-3 (near the parts washing station) after the indoor interfering sources were removed (7.4 μ g/m³), which may also indicate continued indoor air interference.

Results also indicate that the parts washing station and other activities associated with the maintenance and service garage at the south portion of the building contribute to elevated indoor air concentrations of target compounds. Along with elevated PCE concentrations in indoor air at CL-IA-3 (near the parts washing station) before the indoor interfering sources were removed, several other VOC parameters were also detected in indoor air; but concentrations had reduced significantly once the parts washing station and other identified interfering sources were removed.

FINDINGS

A SVI evaluation was completed in April 2018, March 2022 and March 2024, which included the collection of two (2) sub-slab soil vapor samples, two (2) co-located indoor air samples, one (1) field duplicate air sample and one (1) outdoor air sample during each event, for VOCs analysis using modified USEPA Method TO-15. Two (2) additional indoor air samples were collected in March 2024 to evaluate the parts washing station as a potential indoor air contamination source.

Several VOC parameters were detected in indoor air and sub-slab vapor during the March 2024 SVI sampling event. All parameters detected in indoor air within the northern section of the building had concentrations at levels that did not warrant further action, except for PCE concentrations at CL-SSV-2/CL-IA-2 (office #3), which may warrant additional monitoring.

The indoor air sampling results observed at CL-IA-3 (near the parts washing station), indicate that the activities associated with the maintenance and service garage at the south portion of the building contribute to the presence of PCE in indoor air, particularly since air flows from the garage into the lobby, office #5 and locker room #1. Although all identified sources of PCE were removed prior to sampling, results strongly indicate that PCE use in the truck service area impacts indoor air quality.

RECOMMENDATIONS

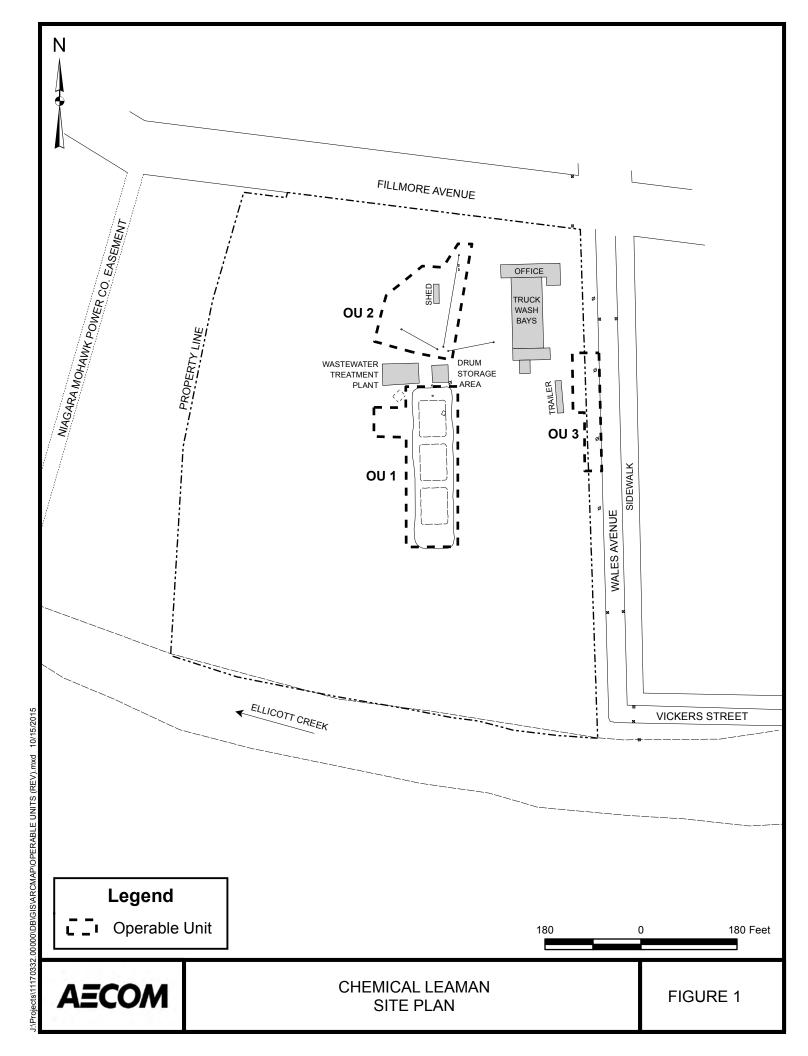
Indoor air quality within office #3 in the north portion of the building may be impacted by subsurface contamination and/or the indoor interfering sources associated with the maintenance and service garage. Alteration to the ventilation system and/or product usage and handling in the facility are recommended, to prevent air flowing from the garage into the northern section of the building, followed by indoor air sampling to ensure that air quality has improved within the office area. In addition, QCI will advise the current building tenant to begin use of a non-PCE solvent.

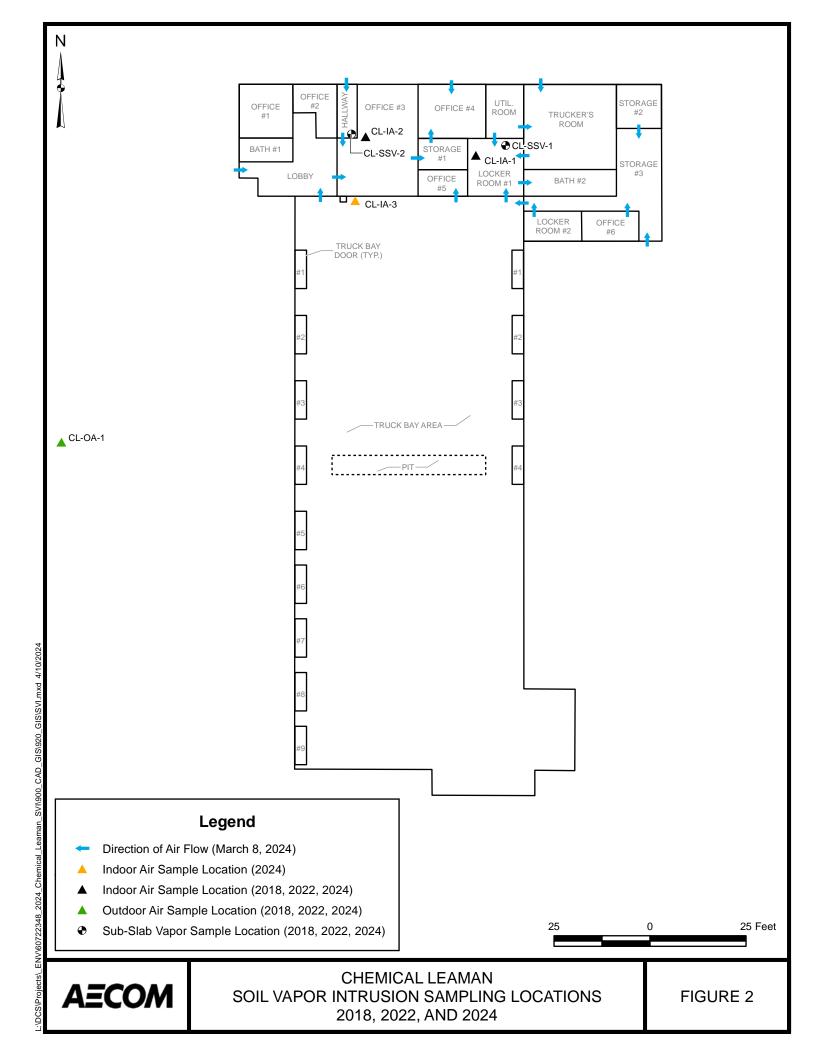
Please feel free to contact me if you have any questions regarding this submittal.

Sincerely yours,

Colin Wasteneye

Colin Wasteneys, PG Project Manager 716-225-4396 colin.wasteneys@aecom.com


Attachments:


Figure 1 – Site Plan
Figure 2 – Soil Vapor Intrusion Sampling Locations
Table 1 – Summary of Analytical Results
Attachment 1 – Photograph Log
Attachment 2 – NYSDEC Structure Sampling Questionnaire, Building Inventory Form, and Field Notes
Attachment 3 – Underground Utility Clearance Report
Attachment 4 – SVI Sampling Logs
Attachment 5 – Data Usability Summary Report
Attachment 6 – Analytical Data Report
Attachment 7 – May 2017 NYSDOH Soil Vapor/Indoor Air Decision Matrices

cc: Project File 60722348

Figures

Table

Table 1 Summary of Analytical Results (2018 - 2024) Soil Vapor Intrusion Investigation Former Chemical Leaman Tank Lines Site Tonawanda, New York

	April 2018																				
NYSDOH Soil Vapor/Indoor Air Decision Matrix		Air Decision		CL-SSV-1	CL-IA-1	NVSDOH Seil Veper/Indeer Air	CL-SSV-2	CL-IA-2	CL-IA-2	NYSDOH Seil Vener/Indeer Air	CL-OA-1										
			Compounds	4/10/2018	4/10/2018	NYSDOH Soil Vapor/Indoor Air Decision Matrix Action	4/10/2018	4/10/2018	4/10/2018	NYSDOH Soil Vapor/Indoor Air Decision Matrix Action	4/10/2018										
Matrices	Sub-Slab	Indoor Air		Sub-Slab	Indoor Air	Decision Matrix Action	Sub-Slab	Indoor Air	Duplicate	Decision Matrix Action	Outdoor										
Matrices	Criteria	Criteria		Vapor Va		Vapor		Indoor Air		Air											
		<0.2 to >1					Carbon tetrachloride	ND (1.3)	0.73	No further action	ND (4.0)	0.66	0.76 J	No further action	0.56						
Matrix A	<6 to >60		1,1-Dichloroethene	ND (0.99)	ND (0.16)	No further action	ND (3.2)	ND (0.79)	ND (0.79)	No further action	ND (0.16)										
	<010 >00		<0.2 10 21	<0.2 10 21	<0.2 10 21	<0.2 10 21	<0.2 10 21	<0.2 10 21	<0.2 10 21	<0.2 (0 >1	<0.2 10 >1	<0.2 10 21	cis-1,2-Dichloroethene	ND (0.99)	ND (1.6)	No further action	ND (3.2)	0.51 J	0.59 J	No further action	ND (0.16)
			Trichloroethene	27	ND (1.9)	No further action	1.6 J	ND (0.97)	ND (0.97)	No further action	ND (0.19)										
						Methylene chloride	ND (4.3)	6.5 J	No further action	ND (14)	3.6	5.1	No further action	1.6							
Matrix B	<100 to >1000	<3 to >10	Tetrachloroethene	67	30	Identify source(s) and resample or mitigate	95	30	34	Identify source(s) and resample or mitigate	ND (0.54)										
			1,1,1-Trichloroethane	ND (2.7)	ND (4.4)	No further action	ND (8.7)	ND (2.2)	ND (2.2)	No further action	ND (0.44)										
Matrix C	<6 to >60	0.2	Vinyl chloride	ND (2.2)	ND (1.0)	No further action	ND (7.0)	ND (0.51)	ND (0.51)	No further action	ND (0.1)										

						March 2022										
NYSDOH So	NYSDOH Soil Vapor/Indoor Air Decision Matrix		CL-SSV		CL-IA-1 NYSDOH Soil Vapor/Indoor Air		CL-SSV-2	CL-IA-2 CL-IA-2		NYSDOH Soil Vapor/Indoor Air	CL-OA-1					
Watrix			Compounds	3/26/2022	22 3/26/2022 Decision Matrix Action		3/26/2022	3/26/2022	3/26/2022	Decision Matrix Action	3/26/2022					
Matrices	Sub-Slab Indoor Air		Decision Matrix Action	Sub-Slab	Indoor Air	Duplicate	Decision Matrix Action	Outdoor								
	Criteria	Criteria		Vapor			Vapor		Indoor Air		Air					
		<0.2 to >1	<0.2 to >1	<0.2 to >1	<0.2 to >1	<0.2 to >1		Carbon tetrachloride	0.64	0.73	No further action	0.43 J	0.66	0.76 J	No further action	0.64
Matrix A	<6 to >60						1,1-Dichloroethene	ND (0.16)	ND (0.16)	No further action	ND (0.79)	ND (0.16)	ND (0.79)	No further action	ND (0.16)	
	<010 >00						<0.2 10 >1	<0.2 10 21	cis-1,2-Dichloroethene	1.1	0.94	No further action	0.37 J	0.52	0.61 J	No further action
			Trichloroethene	21	0.082 J	No further action	0.99	ND (0.19)	ND (0.97)	No further action	ND (0.19)					
			Methylene chloride	1.5	1.9	No further action	ND (6.9)	2.9	ND (6.9)	No further action	1.3 J					
Matrix B	<100 to >1000	<3 to >10	Tetrachloroethene	47	52	Identify source(s) and resample or mitigate	18	41	43	Identify source(s) and resample or mitigate	ND (0.54)					
			1,1,1-Trichloroethane	0.28 J	ND (0.44)	No further action	ND (2.2)	ND (0.44)	ND (2.2)	No further action	ND (0.44)					
Matrix C	<6 to >60	0.2	Vinyl chloride	0.86	0.41	Identify source(s) and resample or mitigate	1.5	0.23	ND (0.51)	Identify source(s) and resample or mitigate	ND (0.10)					

						March 2024																		
NYSDOH Soil Vapor/Indoor Air Decision Matrix		CL-SSV		CL-SSV-1 CL-IA-1 NYSDOH Soil Vapor/Indoor Air CL-SSV-2 CL-IA-2 CL-IA-2 NYSDOH Soil Vapor/Indoor Air		NYSDOH Soil Vapor/Indoor Air	CL-OA-1	CL-IA-3	CL-IA-3															
			Compounds	unds 3/10/2024 3/10/2024 Decision Matrix Action	3/10/2024	3/10/2024	3/10/2024	Decision Matrix Action	3/10/2024	3/7/2024	3/10/2024													
Matrices	Sub-Slab Criteria	Indoor Air Criteria		Sub-Slab Vapor	Indoor Air	Decision Matrix Action	Sub-Slab Vapor	Indoor Air	Duplicate Indoor Air	Decision Matrix Action	Outdoor Air	Indoor Air	Indoor Air											
		<0.2 to >1	<0.2 to >1	<0.2 to >1	<0.2 to >1	<0.2 to >1	Carbon tetrachloride	ND (0.5)	0.18 J	No further action	ND (0.5)	0.48	0.27	No further action	0.44	0.22	0.40							
Matrix A	<6 to >60						<0.2 to >1	1,1-Dichloroethene	ND (0.28)	ND (0.097)	No further action	ND (0.28)			No further action	ND (0.097)	ND (0.097)	ND (0.097)						
	<010>00							<0.2 10 >1	<0.2 10 71	<0.2 10 >1	<0.2 10 71	<0.2 10 71	<0.2 10 21	cis-1,2-Dichloroethene	ND (0.19)	0.094 J	No further action	ND (0.19)	ND (0.067)	ND (0.067)	No further action	ND (0.067)	0.20	0.097 J
																			Trichloroethene	2.4	ND (0.14)	No further action	1.6	ND (0.14)
		0 <3 to >10			Methylene chloride	ND (0.93)	0.45 J	No further action	ND (0.93)	0.35 J	0.41 J	No further action	0.34 J	0.41 J	0.39 J									
Matrix B	<100 to >1000		Tetrachloroethene	65	7.9	No further action	150	4.8	5	Monitor	ND (0.2)	24	7.4											
			1,1,1-Trichloroethane	ND (0.17)	ND (0.059)	No further action	ND (0.17)	ND (0.059)	ND (0.059)	No further action	ND (0.059)	ND (0.059)	ND (0.059)											
Matrix C	<6 to >60	0.2	Vinyl chloride	ND (0.13)	0.059 J	No further action	ND (0.13)	ND (0.045)	ND (0.045)	No further action	ND (0.045)	0.048 J	ND (0.045)											

Notes:

Units - µg/m³ (micrograms per cubic meter)

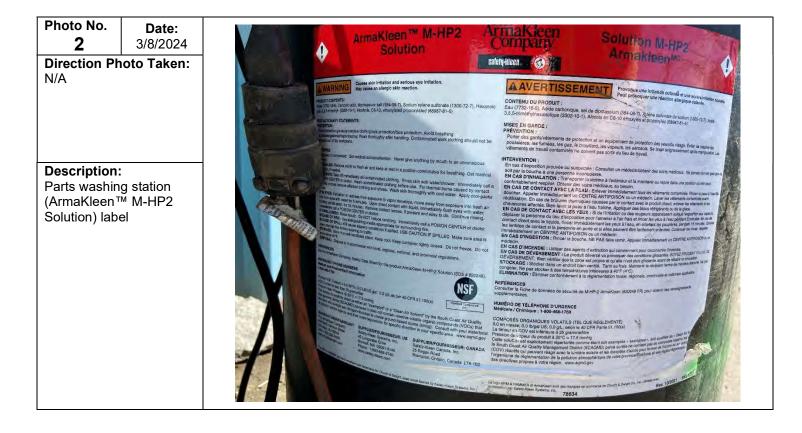
ND (xxx) - Not Detected (reporting limit)

Bold - The combination of subslab vapor and indoor air concentrations triggers the NYSDOH recommended action in the column to the immediate right.

J - result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

NYSDOH May 2017 Soil Vapor/Indoor Air Matrices, accessed at: https://www.health.ny.gov/environmental/indoors/vapor_intrusion/docs/svi_decision_matrices_def.pdf

NYSDOH - New York State Department of Health



Attachment 1

Photograph Log

	AE	COM	PHOTOGRAF	PH LOG	
Client Name	: Quality Distributi	on, Inc.	Site Location: 47 New York	0 Fillmore Ave., Tonawanda ,	Site No. 915014
Photo No. 1 Direction Ph From above	Date: 3/7/2024 noto Taken:				
Description: Sub-slab vap SSV-1 in lock with flush mo	or pin CL- ker room				

Г

	AECOM		PHOTOGRAF	PH LOG	
Client Name	: Quality Distribution, Inc.	Site Location: 47 New York	0 Fillmore Ave., Tonawanda,	' Site No. 915014	
Photo No. 3	Date: 3/9/2024				
Direction PI N/A Description Chemical prostorage	:				

	A	ECOM	PHOTOGRAPH LOG			
Client Name:	Quality Distr	ibution, Inc.	Site Location: 47 New York	0 Fillmore Ave., Tonawanda ,	Site No. 915014	
Photo No. 5 Direction Phot N/A Description: Lubricant stora Truck Bay Area	ge tank in					

Photo No. 6	Date: 3/10/2024	
Direction Ph N/A	ioto Taken:	
Description: Product drun in Truck Bay	ns and totes	

	A	ECOM		PHOTOGRAP	H LOG
Client Name	e: Quality Distr	ibution, Inc.	Site Location: 47 New York	0 Fillmore Ave., Tonawanda,	Site No. 915014
Photo No. 7 Direction Pr N/A Description Indoor air sa 3 in the south the building b parts washin	: mple CL-IA- n portion of peside the		CL-I, 317/2		
Photo No. 8 Direction Ph N/A Description Sub-slab vap CL-SSV-1 in portion of the office #3	oor sample the north			L- 55 V- I 3/10/2.1/	

Attachment 2

NYSDEC Structure Sampling Questionnaire, Building Inventory Form, and Field Notes

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Tom Urban Danielle Van Marter Date/Time Prepared 3/8/24@ 10:00
Preparer's Name Tom Urban Danielle Van Marter Date/Time Prepared 3/8/24@ 10:00 Preparer's Affiliation AECOM Phone No. 716-856-5636
Purpose of Investigation 501 Investigation
1. OCCUPANT:
Interviewed: (Y)N
Last Name: <u>lavid</u> First Name: <u>Texido</u> Address: <u>470</u> Fillmore Ave Tonawanda, NY
County: Erie
Home Phone: Office Phone:716-605-6409
Number of Occupants/persons at this location $\underline{\$}$ Age of Occupants $\underline{19-70}$
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y N
Last Name: Peterson First Name: Ray
Address: Quality Carriers, Inc. 102 Pickering Way, Soite 105
County: Exten, PA
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential School Commercial/Multi-use Industrial Church Other: <u>tractor trailer</u> refair Shop (Mechanical)

Ranch	1	2-Family	3-Family
Raised	d Ranch	Split Level	Colonial
Cape	Cod	Contemporary	Mobile Home
Duple	x	Apartment House	Townhouses/Condos
Modu	lar	Log Home	Other:
If the propert			repair
Business	Type(s) <u>+</u> re		N If yes, how many?
Business	Type(s) <u>+r</u> « clude residence	cial, type?	T

Is the building insulated? Y (N)

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors Lobby Air coming from truck boy underneath door to lobby, outdoor air coming into lobby through door, air flowing from lobby to office #3, hallway air flowing into office #3 (under door of thru window)

How air tight? Tight / Average (Not Tight

Airflow near source

(AF)Air flowing from office # 3 to storage #1, air flow from storage #1 to office # 4, outdoor air flow into office # 4 thru door a window, outdoor air flow into hallway

Outdoor air infiltration-

Truck Day AF in to Office #5, AF from ceiling into duct, outdoor truckers room OFFICE #5 VID AF From TIENT to truckers roon AF From Utility room AF from ceiling vent to truckers room, AF from Infiltration into air ducts + rUCKERS room to locker room #1 LOCKER room #1 AF from Utility room VIO receiving IOCKER room #1, IOCKER room wall vent, celling vent AF FLOOR VENT, AF From truck bay into #1 EXIT AF thru 10 CKEr room #1 via door, Locker room #1 AFinto bathroom, exhaust fan in bath # 20n East wall bathroom #2 vent outside via duct to roof. A continued

2

A continued ...

AF from locker room #2/hallway into truck bay area. AF from office #6 into storage #3 via door & celling. AF from storage #2 into storage #3 via door.

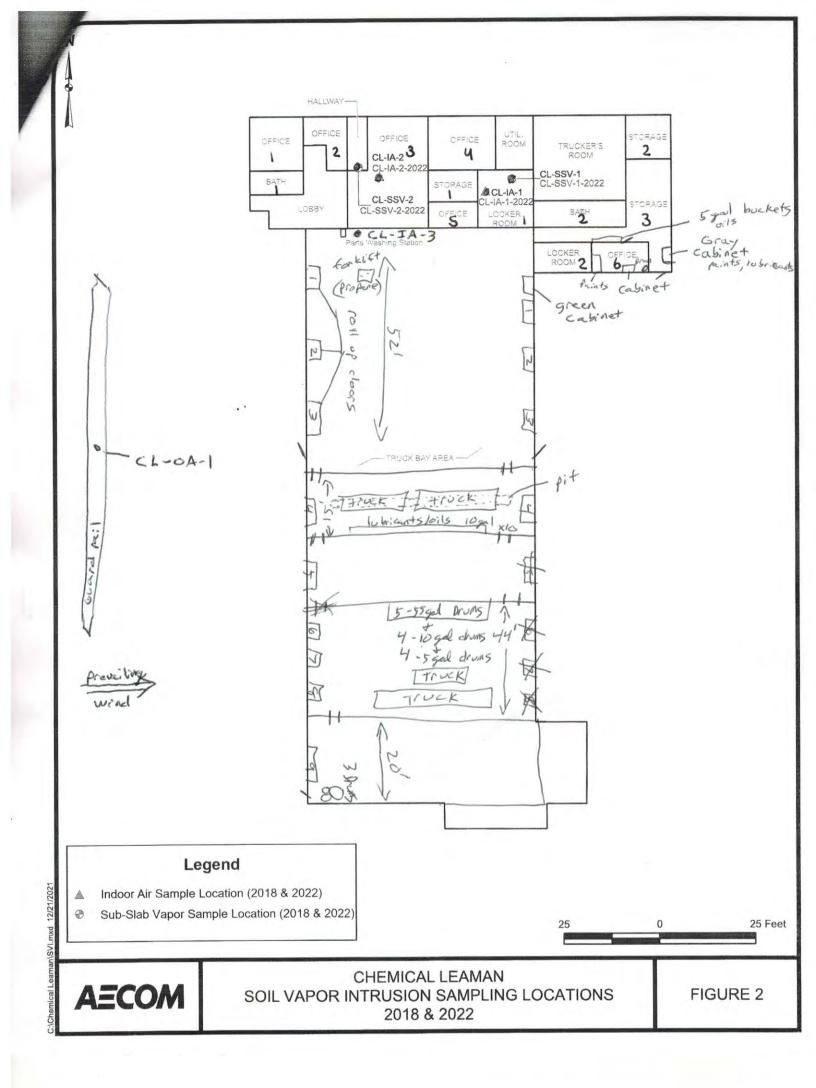
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

					and the second se
a. Above grade const	ruction:	wood frame	concrete	stone	brick
b. Basement type:	NIA	full	crawlspace	slab	other
c. Basement floor:	NIA	concrete	dirt	stone	other
d. Basement floor:	NA	uncovered	covered	covered wi	th
e. Concrete floor:		unsealed	sealed	sealed with	·
f. Foundation walls:		poured _	block	e + truck stone	ther
g. Foundation walls:		unsealed	sealed	sealed with	paint
h. The basement is:	MLA	wet	damp	dry	moldy
i. The basement is:	NA	finished	unfinished	partially fir	nished
j. Sump present?		YN			
k. Water in sump?	Y / N	not applicable	\supset		
Basement/Lowest level de	epth below	grade: 🔿	(feet)		
Identify potential soil vap	por entry p	oints and appro	oximate size (e.g	., cracks, util	ity ports, drains)

crack in middl	le ofstab in	Storage#3;	tiled in	bath, lockert
Crack in middle lounge areas, filed filed in bath + lo	in hallway; carp	neted in office, 1:	iled in 5to	mge#1)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

(Hot air circulation)	Heat pump	Hot water baseboard	Other drack
Space heaters	Steam radiation	Radiant floor	AP-forage
Electric baseboard	Wood stove	Outdoor wood boiler	Other areas
ne primary type of fuel used is			
(Natural Gas)	Fuel Oil	Kerosene	
Electric	Propane	Solar	
Wood	Coal		
omestic hot water tank fueled	by: not 1 gas	, tility	1000
oiler/furnace located in:	Basement Outdoors	Main Floor	Other
r conditioning:	Central Air Window un	its Open Windows	None


Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y)N

ceiling supply docts in both	#1, lobby 3 supply coiling
ducts in office #3; 3 ceilin	g supply ducts in office #4;
ceiling supply duct in office	#5' 2 coiling supply ducts
ceiling Supply ducts in both ducts in office #3; 3 ceilin ceiling supply duct in office in lounge + locker room. cold exhaust can vented outside in pa	air refurn in locker 120m
	hours
Is basement/lowest level occupied? Full-time Occa	asionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyroo	om, bedroom, laundry, workshop, storage)
Basement NG	
1st Floor locker room, loonge, both, a	officos
2 nd Floor	
3 rd Floor	
4 th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	(VN 9 Bays
b. Does the garage have a separate heating unit?	Y)N / NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Ŷ N / NA Please specify
d. Has the building ever had a fire?	Y N When?
e. Is a kerosene or unvented gas space heater present?	Y N Where?
f. Is there a workshop or hobby/craft area?	Where & Type? truck bey
g. Is there smoking in the building?	Y (N) How frequently?
h. Have cleaning products been used recently?	Y N When & Type?
i. Have cosmetic products been used recently?	Y N When & Type?

	5			
j. Has painting/s	taining been done in the last 6 months?	(Ý)/ N	Where & Wh	ien?
k. Is there new c	arpet, drapes or other textiles?	YN	Where & Wh	ien?
l. Have air fresho	eners been used recently?	YN	When & Typ	e?
m. Is there a kitc	hen exhaust fan?			vented?
n. Is there a bat	nroom exhaust fan?	() N	If yes, where	vented? outside
o. Is there a cloth	nes dryer?	~		ented outside? Y / N
p. Has there been	a pesticide application?	YG	When & Typ	e?
Are there odors in If yes, please dea	in the building? scribe: burnt metal pet	Que ro los w	odors,	welding, c. th
(e.g., chemical manu	ing occupants use solvents at work? Ifacturing or laboratory, auto mechanic o sticide application, cosmetologist	YN r auto body	shop, painting	g, fuel oil delivery,
	of solvents are used? See	prod.	ia vecte	on-j
If yes, what types				
If yes, are their cl	othes washed at work?	Y/N		
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry	othes washed at work? ing occupants regularly use or work at y-cleaning regularly (weekly) y-cleaning infrequently (monthly or less)		ning service? No Unknown	
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a	othes washed at work? ing occupants regularly use or work at v-cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure	t a dry-clea	No Unknown	(Circle appropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi	othes washed at work? ing occupants regularly use or work at y-cleaning regularly (weekly) y-cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive	t a dry-clea	No Unknown	(Circle appropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active	othes washed at work? ing occupants regularly use or work at y-cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE	t a dry-clea	No Unknown	(Circle appropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active 9. WATER AND S	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE Public Water Drilled Well Drive	t a dry-clea	No Unknown Date of Insta	(Circle appropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active 9. WATER AND S Water Supply: Sewage Disposal:	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE Public Water Drilled Well Drive	t a dry-clea ure? Y(N ven Well ch Field	No Unknown Date of Insta Dug Well Dry Well	(Circle appropriate Ilation:
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Lea INFORMATION (for oil spill residen	t a dry-clea ure? Y N ven Well ch Field ttial emerg	No Unknown Date of Insta Dug Well Dry Well ency)	(Circle appropriate Ilation:
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reas	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Lea INFORMATION (for oil spill residen	t a dry-clea ure? Y(N ven Well ch Field tial emerg	No Unknown Date of Insta Dug Well Dry Well ency)	(Circle appropriate llation: Other: Other:
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reas b. Residents ch	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service tigation system for the building/structure or passive? Active/Passive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Lea INFORMATION (for oil spill resident ons why relocation is recommended:	t a dry-clea ure? Y (N ven Well ch Field tial emerg	No Unknown Date of Insta Dug Well Dry Well ency) ily reloc	(Circle appropriate Ilation: Other: Other: ate to hotel/motel

191 05 9

8

13. PRODUCT INVENTORY FORM

HAE BODO Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo * <u>Y / N</u>
office #1	No chemicals	BKg	d = 2	50 ppb	1	
Lobby Brgd 600/15	fortable inverter gas run			905	17.5 pm	
heelway Brgd 20196	no chamicals					
octke # 3	no chemicals	BK	gd = 11	O PPS		
office # 3	14501	1902	U	Cthand	BKgd	
Bkad	2 scentet des	1902	U	N.L.	Brzd	
Storage #1	moids milden	3200	U	sodium hypochlorite	Btzel	
#1 BESSI 100pps	14501	3202	00	alky I dimethyl benzyl ammonian chloride	Brand	
	tilex	3202	VO	sodium hypochlorite	Btg	
	forniture polish	16.6	U	Na	Brad	
	Bleach	9602	υ	sodium hypschlorite	Brych	
ollike #4	No chemicals	Bre	Ed 80	pps		
utility	Snowblower	1	U	<i>v</i> ·	4.6ppm	
Brad	over the spor sealer	5 yel	00	N-L-	BEGd.	
- fr	liquid delegent for corpet	signed	00	N.L	\$Fgl	
	floor finish	right		N.C-	Brad	1
truckers	no khemicals	Bto	d = 14	to ppb		
rocker room #1	latex prints	Igal X4	U	zero VOC listed	BEZZL	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

19250

13. PRODUCT INVENTORY FORM

RAE 3000 PG Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo * <u>Y / N</u>
racker rack	Fabricoso cleaner	4502	U	L'lastic reid	Stal	
Brad	comet why beach	2502	6	N.L.	180 115	
	900 gone	1202	U	petr distillates	170 AB	
	17501 Sethroom foguler	3202	U	citile acid	Btyd	
	raid	1502	G	d-phenothisin petilette	160 pt	6
	1450 disentatent Stay	12500	U	ethanol	170 pp	p
	Chrox Geneling	2402	U	sadium hypachlarite	26311	6
	germicidal bleach	lgol	U	Sdivn hypochboite	170 pp	6
	germicidal	Igal	J	sodium hypochionite	1901	1.2
Beth	No chemicula	-	Btal -	- 500 ppb	,,	
Storage #Z	No chemicals	-	Btyd	- 600 ppb N-L- VOC 722gm/L		
stoorage #3	rubber solvent	1gt×4	υ	N-L- VOC 722gm/L	2-1 ppm	
Blegd	tipe repair cement	Yzpt-	υ	VOC 692912	1-9,ppm	
650197	air brate articlese	320x	6 00	N-L-	BEREL	
	joap start fluid	1102×6	00 0	hepterney diethylether ethernol, chloro etherne	1230 ppt	A
carinet	diesel Guel sopplement	3202	00	pet. distillates aromatic nyclio carbons	BEZL	
3	stater fluid	loz	00	diethyl ether, naptha, n-heikow pok. distillates, methyl cyclo-	BAT	
				heplane, botyleded hydroxy- tolvene	1200 145	
L	diesel 911	3202	1200	all platic hypory hydrocarbons pet distallates		5

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

H.L. - Not 15fed A- removed from building BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

8

17 - 01

0

13. PRODUCT INVENTORY FORM

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
storage +3	Diezd Luci treatment	1602	UO	2-Jutoxyethenol, 2. propubli acomputer solvent	990 pp	þ
cayingt	fuel stadilizer	1202	U	pet. distillades	750 pp	
	phize-oot gaslethadladd.	Soz	00	N.C.	Brad	
	poter power	3222	50	N.C.	Brgel	
122/012	oir brede conditioner.	3200	3 00	mayhanol base	Brack	
-	Heet gas line anticreezer	1202	7 00	Methyl alcohol	Brgd	-
and the second s	bottery terminel protector	11.75	00	to were, acetore, butane, properie, per. distillates	1910 pp	6
	PB blaster	110-2		pet. distillates	950 pp	2
calinet	FG Lobe inprivant	120+	2 00	proper e, bothe	290 11.	6
	Backe Pert eleveners	1402	9 60	adetone, reptane,	15300	
	Bracke Eluid	Ist	3 00	N.C-	Brand	
	motor oil	left x2	5 00	N.L-	Btad	
	motor oil	Igal XIC	00	N.L	6 tach	
11	later paint	15 R	U	N.L.	BEZI	
	have pest killer	Igel	U	sadium o- phenylphokede	Btsa	
A.	goar lubricant	light	6	N.L.	brad	
	appliedt conent son roots	5520	U	N-L-	675 p	05
2014	hydradk oil	5Ged X	zU	Nu	BASI	
	later paint	licel	U	N.C-	brad	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

****** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PPDRAE 3000 g

Make & Model of field instrument used: HONEYWEIL MINIRAE 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Homese #3	lithium graces	5gel	U	antimony diamy Hithis carbon liftican hydrowide solate		
	mater ail	39pd	t u	N.C.	Steen	
	unknearn	5 golt	2 V	N-L-	BFzch	
#6	primer paint	Igg X	-	xylone, to luene, pet- distilates	BKgd	
Brgal	Stanlard reducer.	ipel	1	actore	5563	
3700	wash solvent	Juget X.	3 U	tolvene, nethanol, acetone	471ppm	
110	auto finish	Siged	υ	acetore, toldere, xylene	760pp	
. Al	acrylic enabled	1202	20	MEK, ethylbenzen-	Brat	
1	Coprline	1202	6 00	acetetes, Ketones	BFR	
	print thinker	Ipal	U	pet- distillets	47910	06
NEP.	hydraulic oil	jak	20	pet inbricant	16.4 ppa	
	Flex See	izel	U	N-L-	8-5ppm	
-	waste print	55 ged		N.L.	123700	n
	premer	lat		50 julient naptha heptocke, staddard so red	PEZd	
	Enanel	ift	S	perach lerober zotriflavi	· Brzl	A
	indostriel mix	Igel	U	N.L.	BRydo	-
	essential hardeder	let	0	stheres i,	Brgel	
	marking print	1502	0	pet distillates connetic hydrocarbox	Bizel	
	9GIVENIZING Confoord	2002	0	liquefied let gros, fet- distilled another labo	BFge	- 14

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

8750FQ

Make & Model of field instrument used: 195 RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
AG	herdener	lat	UG	n-b-tyl actestate hexamethylene folymer	Brand	
Cay wet	mineral spirits	1 Jel	υ	aliquetic hydrocarbon solvent	20300	m
	Stratard reducer	lopel	00	Acetode	1. Zppn	
	Siber tess	3200	U	Styrene	Bhel	
•	epsty number	1st	U	z-propertal	BFyl	
	arts refinish	Igat	U	2- Propend, Nontal Ketone, X- Jene, acetone	5-0 pp.	n
-	Sprey paints	tor	20	pet. distillates xylong	BFal	
	weather potet	1202	200	Ketmes	Bral	
	Sprind estimel	1202×	5 U/U>	hydrocarbons	Brad	
1101	engine encal	1202	Ö	acetones, tologle	Btal	
1-	Spray Electrite	1207	U	acetere, properly to lou (A-Jutane	1. 21Pa	n
	Fol-Base reducer	1pt	U	Jotyl actory acetale, to were, heftede, etylione	ere 14.2%	own
	0+1653	Int	υ	Fed exempt solvails 4,3% yrol	Bty	
	claur coat	Ist	U	Methyl enyl Ketore Botyl acetate, acetal	Bright	
	charle print	XZ 122	VO	aly hatic hydrocentors Kettones	Brad	
	fibergloss resid	3202		polyester resin	Brad	
	genesisiat	lat	e31U	Att. acetate, n-5-tyl acetate	BKgel	
	genesis addition	ight	J	2-4-Perteredidder	BERD	
	situada.rd nxodener	16	Vo	Kylene, to were,	1-3ppm	-

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

****** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

8

8

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: PPBRQE 3000 & HONEYWEIL MINIRAL 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
U.	ACEtONE	Bregd	
и	ryiene, Ethyibenzene, petroleum distillates,	Brgd	244
U	actions, thy i methy i kitons, propome, xy line, toivene, diocty i onthalate	2.1ppm	
· u	ketone, propone, xyliche, toivene diocty i phthalate n- Buty i acuate, acetone, methyl ethyl ketone, towene, acetaie, ethyl benzene phosphorie acid, chromic	I. Uppm	1
N	actiate	BKgd	
U	petroleum distillates	9.2ppm	
И	nexamethylene diloocyanate polymer, n-Butyl acetate	II. TPPM	
И	HEXametnylene diisocyana	Brgd	
и	2- buto xyethanol	Brgd	
и	acctone, xyiene, ethylbenzen	" Brgd	
ч	KITONES	3.4 ppm	
ч	N.L.	Mqq0.P	
ч	aliphatic hydrocarbon solucnt, 2-butoxy ethanol	Bregd	
ч	Dibuty in dicaurate	Brgd	
И	xy line, toivene, mek, ethyibinzene	Bkgd	
~~		8.2 ppm	
~~~~		40.0 ppm	
~	~		

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

****** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
okke	sealgap	igai	UD	hydrocarbon resin	BKgd	
Bryd	synthetic grease	116.× 2	ИО	N.L.	BKgd	
600	grease	116.	UO	Petroicum hydrocarbon	Biegd	
11-	deaning duster	10 02	И	N.L.	Brgd	
	RUSTSTOP ENAMEL	1502 x2	ч	acetone, aliphatic HCs	13:7ppm	
	BUTANE FUEL	6.4 02	И	BUTANE	BKgd	
	Thread seasant	402	ν	N.L.	720PPb	
	Primer spray	12.8	N	acctone, methy lacetate, tolvene, xylone, ethylbewzer	1903 PPb	
0.11	Propone torch	14	U	propane	Bkgd	
	spray Enames	1202	и	acctate, aliphatic HCs	2 ppm	
LOCKEr 200m#2	propane+ank	gai	И	propane	Brad	
BKgd	soiledrag	10 gai	· · · · · ·		87.7ppm	
450 PP0		-	_			
muok	engine id equer	11 02	λ	acetone, MEK, propane, xylene, isopropyialcohol	1081 220	
Brad Brad	starting fiuld	1102	И	naphta, n-heptane, dimethyl ether	478 996	
680 880	spray paint	1202 X6	И	PETROIEUM distillates, PAHS	260ррр	
440	Electronic	1102.	ч	hexanes, difiuoroethane, n-pentane	535 PPb	
	Diesel fuel supplement	3202	U	Patrolium distillates, PAHS	11.5ppm	1.10
	Batteryteminal	1202	и	toivene, acetone, butane, propane	365 ppb	

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Make & Model of field instrument used: ______ Ppb RAC 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
bay cabinet	Great stuff foam scalant	1602	U	N.L.	Bregd	
Brgd -	acrylic lacquer	1202 X 3	И	actates, ketones	Brgd	
100 ppb	Blackgasket	402	ч	N.L.	185 ppb	
pp 3	boor hardware lubricant	9.3	u	petroicum distillates	Bkgd	
	Stainiess steel cleaner	802	u	petroisum distillates	ISOPPO	
(	Beitdressing	62	ч	hexane, isobutane, polybutane	148000	
C	Battery terminal protector	1302	и	propanc, butanc, propanoi	Bregd	
Truck	Brake life	802	и	siloxants, siliconcs	Brgd	
5003	DIESEL FUEL SUPPIEMENT	32	И	N.L.	BKgd	
	Thread scalant	402	и	Ethanol, Methanol	Bregd	
	Anti-seize lubricant	802	U	distiliates	123 ppb	
	SEA-BLOCK	402	U	organicsolvents	815 ppm	
	LOCTITE	1.2	u	hydroperoxide	Bregd	
	Right stuff gasket maker	7.5 02	ч	2-butanone oxime	208 200	
	DIESCI FUEI SUDDIEMENT	32 02	u	petroicum distinates, PAHS	220 ppb	
Bay 3	thread scalant	4 02	и	ethanol, methanol	Brgd	
Bredg	Thread scalant	802	и	N.L.	158 000	
alo ppb						
Bay 4 Brad IUS	open oil containers	isgai			4200 Ppb	

PPb Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Make & Model of field instrument used: PPBRAE 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Bay(6,7	compressor				166 ppm	
Brgd	gas powered engine				7.9 ppm	
100 PPD	dicstifutitank DEF Fluid)				3.6ppm	
	gaidrum x 3				363ppm	
		16ga1 × 3	U 4	DEtetopiated (D)	Brgd	
	Door nardware lubricant	9.3 02×2	И	N.L.	Bregd	1
	FGLUBE	1202 × 2	и	mineraloil, propane	Brød	
	PB Blaster x2	1102 x2	и	naptha, petroieum distillates	Brgd	
	premium starter fluid	1102	и	diethylether, naptha, n-heptane, petroleum distiliat	203 PPb	
	Air brake antificege	3202	ч	Ethanol	133 990	
Bays	methanoldrum	55 gai	ч	Methanoi	Bred	
Bregd 300	2 uiuknown drums	55 ga1×2	и	unknown	Bregd	
ррю	Lubricatingoil	11 02	ч	petroicum distillates, ethanoi	450	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Location Tonnivanda, NT Date 3/8/24 51 Date 318124 Location Tongwanda, NY Project / Client Chemical Leanan Project / Client Chemical Leaman 0800- D. Vandarter + T. Urban-Atlan IIIS REmoved old parts washing onsite. Tailgate meeting station from bay 9. Putoutside 0517- Cal PID + PPB RAE. of bay gon a pallet. Drager 0330 - begin Orager to be PID location evaluation of high PID areas OFFICE # 6 ord Locker room #2 - soiled rag bin 60.8 PAM oppm automotive thinner 333.0 Ppm PID 67.4 ppm - 1.5 ppm Drager OPPM WASNSOIVENT 15.8 ppm standard reducer Storige room # cabinet Oppm 11.2 ppm surface oleaner 1 ppm PJD 1.7 ppm - O ppm Droger NOTE: Jump start w/ chloro ethane = 2 ppm Drager O pfm proger 12.4 ppm Flet Seel oppm Unknown container PLD Druger 118 ppm Oppm location wippint sticks courted office #6 Bay Green Drum 255 ppm O ppm Cabinet 21-4000 Cabinet ⊘ OPM Stainiessstell O ppm oppm HOLDER PPOP T.C. parts unshing ppm O ppm O ppm Electroniceleaner 1300-removed chanicals 12.4 ppm parts washing 0 ppm containing. oidparts chloro compounds from building 3.11 ppm wasning bay 9 -Oppm S64 ppm drumbayb titens w/ a hit on praeger Oppm Grein tube sampling. 4.3 ppm Oppm COLDIDET DOLL STERIALS GUD DET BaHLry 2.uppm TERM AUTPIOTECTOR 0 ppm OFFICE#6 TUFF Stuff 3.9 ppm foamciedner Oppm standard 3.3 ppm hardinir O ppm wasn solvent 564.9ppm tit - arkan O ppm



Attachment 3

Underground Utility Clearance Report



Order Number: Customer: Work Order #638552 49717 AECOM CORPORATE : AECOM Job Date: Billing Address: Mar 7, 2024 10:24:00 AM AECOM 300 LAKESIDE DR SUITE 400 OAKLAND CA 94612 United States

# JOB DETAILS

Jobsite Location470 Fillmore Avenue, City of Tonawanda, New York, 14150Work Order NumberWork Order #638552Job Number60722348

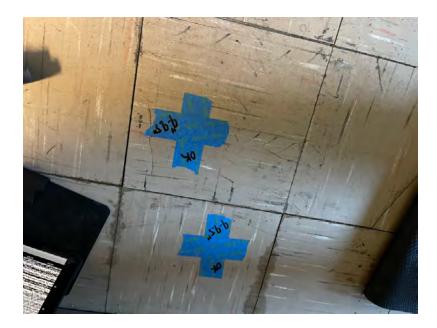
William McCowan

Thank you for using GPRS on your project. We appreciate the opportunity to work with you. If you have questions regarding the results of this scanning, please contact the lead GPRS project manager on this project.

# **EQUIPMENT USED**

**GPRS Project Manager:** 

The following equipment was used on this project:


• **Concrete GPR Antenna:** This GPR Antenna is handheld and rolls over the surface. The device displays scan data on a screen, and the operator marks detected objects on the surface in real-time. The antenna needs a reasonably smooth, unobstructed surface for scanning and cannot scan within 2"-4" of obstructions such as walls and metal tracks. Ideally, the client removes obstacles such as these before our work begins. The total effective scan depth can be as much as 18" or more with this antenna but can vary depending on the concrete conditions, composition, and other factors such as the spacing of the reinforcing. Depth accuracy depends on obtaining a precise depth calibration for the concrete. This device does not emit harmful radiation and can be safely operated while people are in close proximity. For more information, please visit: Link



WORK PERFORMED							
GENERAL CONCRETE SCAN							
<b>Client Provided Drawings</b>	Yes						
Scope of Work	Concrete scan for 2 soil vapor pins						
Quantity of Floor Areas	2						
Approximate Scan Area Size (sq. ft.)	4						
Approximate Slab Thickness (in)	8						
Approximate GPR Effective Depth (in)	12						
Marking Medium	- Marker - Tape						
Results Notes	2 areas cleared for vapor pins.						



# JOBSITE IMAGES



Jobsite Photo #1



Jobsite Photo #2





Jobsite Photo #3

# **CONTACT / SIGNATURE INFORMATION**

**Contact Information** 

Edyta Chorostkowska **Contact Name** 

Email

edyta.chorostkowska@aecom.com

## **TERMS & CONDITIONS**

http://www.gprsinc.com/termsandconditions.html



Attachment 4

SVI Sampling Logs

# Summa Canister Sampling Field Data Sheet

Site:	Chemical Leaman							
Samplers:	T. Urban / D. VanMa	arter						
Date:	3/7/2024							
Sample #	CL-IA-3							
Location	Truck Bay near parts washing station							
Summa Canister ID	1520							
Flow Controller ID	3260							
Additional Tubing Added	NO/YES How much?	NO / YES How much?		YES nuch?		/ YES much?		/ YES much?
Purge Time (Start)	-							
Purge Time (Stop)	-							
Total Purge Time (min)	-							
Purge Volume	-							
Initial Tracer Gas Results (ppm)	-							
PID (ppb)	-							
Pressure Gauge - before sampling	Gauge Regulator -28.5	Gauge Regu	ator Gauge	Regulator	Gauge	Regulator	Gauge	Regulator
Sample Time (Start)	0815							
Sample Time (Stop)	1615							
Total Sample Time (min)	480							
Pressure Gauge - after sampling	Gauge Regulator -9	Gauge Regul	ator Gauge	Regulator	Gauge	Regulator	Gauge	Regulator
Sample Volume	6 Liters							
Canister Pressure Went To Ambient Pressure?	YES/NO	YES / NO	YES	/ NO	YES	S / NO	YES	5 / NO
General Comments:								

## Summa Canister Sampling Field Data Sheet

Site:	Chemical Leaman					
Samplers:	T. Urban					
Date:	3/10/2024					
Sample #	CL-SSV-1	CL-IA-1	CL-SSV-2	CL-IA-2	FD-031024	
Location	Locker room	Locker room	Hallway	Office	Duplicate of CL-IA-2	
Summa Canister ID	1243	3345	3031	1081	2352	
Flow Controller ID	3052	3584	3042	5080	5080	
Additional Tubing Added	NO(YES) How much? 3'	NO/YES How much?	NO(YES) How much? 3'	NO/YES How much?	NO YES How much?	
Purge Time (Start)	0738	-	0817	-	-	
Purge Time (Stop)	0743	-	0822	-	-	
Total Purge Time (min)	5	-	5	-	-	
Purge Volume	1 L	-	1 L	-	-	
Initial Tracer Gas Results (ppm)	0	-	0	-	-	
PID (ppb)	0	-	243	-	-	
Pressure Gauge - before sampling	Gauge Regulator -29	Gauge Regulator -29	Gauge Regulator -29	Gauge Regulator -30	Gauge Regulator -30	
Sample Time (Start)	0748	0749	0829	0830	0830	
Sample Time (Stop)	1518	1549	1629	1630	1630	
Total Sample Time (min)	450	480	480	480	480	
Pressure Gauge - after sampling	Gauge Regulator -4	Gauge Regulator -7	Gauge Regulator	Gauge Regulator -10.5	Gauge Regulator -10.5	
Sample Volume	6 Liters	6 Liters	6 Liters	6 Liters	6 Liters	
Canister Pressure Went To Ambient Pressure?	YESNO	YES	YESNO	YESNO	YES	
General Comments:	Slab 8" thick		Slab 9" thick			

## Summa Canister Sampling Field Data Sheet

Site:	Chemical Leaman				
Samplers:	T. Urban				
Date:	3/10/2024				
Sample #	CL-IA-3	CL-OA-1			
Location	Truck bay near parts washing station	West parking lot on guardrail			
Summa Canister ID	1072	3592			
Flow Controller ID	3267	3749			
Additional Tubing Added	NO)YES How much?	NO YES How much?	NO / YES How much?	NO / YES How much?	NO / YES How much?
Purge Time (Start)	-	-			
Purge Time (Stop)	-	-			
Total Purge Time (min)	-	-			
Purge Volume	-	-			
Initial Tracer Gas Results (ppm)	-	-			
PID (ppb)	-	-			
Pressure Gauge - before sampling	Gauge Regulator -30	Gauge Regulator -28.5	Gauge Regulator	Gauge Regulator	Gauge Regulator
Sample Time (Start)	0838	0840			
Sample Time (Stop)	1638	1640			
Total Sample Time (min)	480	480			
Pressure Gauge - after sampling	Gauge Regulator -8	Gauge Regulator -8.5	Gauge Regulator	Gauge Regulator	Gauge Regulator
Sample Volume	6 Liters	6 Liters	6 Liters	6 Liters	6 Liters
Canister Pressure Went To Ambient Pressure?	YES	YESNO	YES / NO	YES / NO	YES / NO
General Comments:					



Attachment 5

Data Usability Summary Report

## DATA USABILITY SUMMARY REPORT

# SOIL VAPOR INTRUSION INVESTIGATION FORMER CHEMICAL LEAMAN TANK LINES SITE TONAWANDA, NEW YORK

**Analyses Performed by:** 

Pace East Long Meadow, MA

**Prepared for:** 

## **QUALITY DISTRIBUTION, INC.**

4041 Park Oaks Boulevard Tampa, FL 33610

**Prepared by:** 

## AECOM

50 Lakefront Boulevard Suite 111 Buffalo, New York 14202

**APRIL 2024** 

## TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES	1
3.0	DATA DELIVERABLE COMPLETENESS	2
4.0	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES	2
5.0	NONCONFORMANCES	2
6.0	SAMPLE RESULTS AND REPORTING	2
7.0	SUMMARY	2

# TABLES(Following Text)

 Table 1
 Validated Indoor Air, Sub-Slab Vapor, and Outdoor Air Sample Results

## ATTACHMENTS

- Attachment A Validated Form I's
- Attachment B Support Documentation

## **1.0 INTRODUCTION**

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B, Guidance for Data Deliverables and the Development of Data Usability Summary Reports,* May 2010. Discussed in this DUSR are analytical data for 4 indoor air samples plus 1 field duplicate, 2 sub-slab vapor (soil gas) samples, and 1 ambient (outdoor) air sample collected March 7-10, 2024. The samples were collected in support of the soil vapor intrusion investigation at the former Chemical Leaman Tank Lines site located in Tonawanda, New York.

## 2.0 ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES

All samples were sent to Pace (East Long Meadow, MA) for analysis. The samples were analyzed for volatile organic compounds (VOCs) following United States Environmental Protection Agency (USEPA) Compendium Method TO-15, Determination of VOCs in Air Collected in Specially Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), EPA/625/R-96/010b, January 1999.

A limited data validation was performed in accordance with the guidelines in the following USEPA Region II document:

 Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15, SOP HW-31, Rev. 6, June 2014.

The limited data validation included: a completeness review of all required deliverables; holding times; a review of quality control (QC) results [blanks, instrument tunings, calibration standards, duplicate analyses, and laboratory control sample (LCS) recoveries] to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Data qualifiers applied to the results during the validation included 'J' (estimated). Definitions of USEPA Region II data qualifiers are presented at the end of this text. The validated analytical results are presented on Table 1 (indoor air, sub-slab vapor, and outdoor air sample results). Copies of the validated laboratory results (i.e., Form I's) are presented in Attachment A. Documentation supporting the

qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

## **3.0 DATA DELIVERABLE COMPLETENESS**

Full deliverable data packages (i.e., NYSDEC ASP (Category B or equivalent) were provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

## 4.0 SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-ofcustody (COC) with the following exception. Sample canister #s P1520 and P1072 were received with the same sample identification - CL-IA-3. The laboratory was instructed to add -A and -B to differentiate between the samples and a revised COC was provided to them by AECOM. All samples were analyzed within the required holding times.

### 5.0 NONCONFORMANCES

### **Field Duplicate Samples**

The field duplicate was collected at location CL-IA-2. The field duplicate relative percent differences (RPDs) exhibited good analytical precision (i.e., RPD < 50%).

## 6.0 SAMPLE RESULTS AND REPORTING

All quantitation/reporting limits were reported in accordance with method requirements. Due to the presence of elevated levels of target compounds, the samples were analyzed utilizing reduced sample volume/dilutions. The RLs for the non-detect compounds represent the lowest achievable at the reduced sample sizes utilized for the analyses.

The results for acetone and/or ethanol were over the upper calibration level in samples CL-IA-3-A, CL-IA-1, CL-IA-2, and FD-031024 (CL-IA-2). The lab did not analyze these samples at further dilutions. The 'E' qualifier applied by the lab has been changed to 'J' during the validation process.

## 7.0 SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'J' (estimated) are considered conditionally usable. AECOM does not recommend the recollection of any samples at this time.

Prepared By: Ann Marie Kropovitch, Chemist Date: 4/2/2024

Reviewed By: Peter R. Fairbanks, Senior Chemist **F** Date: 4/2/2024

## **DEFINITIONS OF USEPA DATA QUALIFIERS**

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.

Location ID		CL-IA-1	CL-IA-2	CL-IA-2	CL-IA-3A	CL-IA-3B
Sample ID		CL-IA-1	CL-IA-2	FD-031024	CL-IA-3A	CL-IA-3B
Matrix		Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24	03/07/24	03/10/24
Parameter	Units			Field Duplicate (1-1)		
Volatiles						
1,1,1-Trichloroethane	UG/M3	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1,1,2,2-Tetrachloroethane	UG/M3	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	0.53 J	0.52 J	0.55 J	0.49 J	0.51 J
1,1,2-Trichloroethane	UG/M3	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1,1-Dichloroethane	UG/M3	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
1,1-Dichloroethene	UG/M3	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
1,2,4-Trichlorobenzene	UG/M3	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
1,2,4-Trimethylbenzene	UG/M3	3.6	2.4	2.4	12	2.8
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,2-Dichlorobenzene	UG/M3	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/M3	0.18	0.14 J	0.15	0.096 J	0.079 J
1,2-Dichloroethene (cis)	UG/M3	0.094 J	0.14 U	0.14 U	0.20	0.097 J
1,2-Dichloroethene (trans)	UG/M3	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
1,2-Dichloropropane	UG/M3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,2-Dichlorotetrafluoroethane	UG/M3	0.24 U	0.12 J	0.13 J	0.13 J	0.12 J
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	0.97	0.60	0.61	2.6	0.71
1,3-Butadiene	UG/M3	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U
1,3-Dichlorobenzene	UG/M3	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,3-Dichloropropene (cis)	UG/M3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,3-Dichloropropene (trans)	UG/M3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,4-Dichlorobenzene	UG/M3	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,4-Dioxane	UG/M3	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2-Hexanone	UG/M3	0.19	0.17	0.14 U	0.14 U	0.24

Flags assigned during chemistry validation are shown.

Location ID		CL-IA-1	CL-IA-2	CL-IA-2	CL-IA-3A	CL-IA-3B
Sample ID		CL-IA-1	CL-IA-2	FD-031024	CL-IA-3A	CL-IA-3B
Matrix		Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24	03/07/24	03/10/24
Parameter	Units			Field Duplicate (1-1)		
Volatiles						
4-Ethyltoluene	UG/M3	0.49	0.48	0.33	1.7	0.43
4-Methyl-2-pentanone	UG/M3	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Acetone	UG/M3	410 J	42	41	2,600 J	17
Benzene	UG/M3	0.58	0.62	0.59	0.99	0.65
Benzyl chloride	UG/M3	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Bromodichloromethane	UG/M3	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
Bromoform	UG/M3	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
Bromomethane	UG/M3	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Carbon disulfide	UG/M3	1.1 U	1.1	1.1 U	1.1 U	1.1 U
Carbon tetrachloride	UG/M3	0.18 J	0.48	0.27	0.22	0.40
Chlorobenzene	UG/M3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Chloroethane	UG/M3	0.092 U	0.092 U	0.092 U	0.092 U	0.13
Chloroform	UG/M3	0.35	0.14 J	0.11 J	0.12 J	0.089 J
Chloromethane	UG/M3	0.92	0.98	0.87	1.0	1.1
Cyclohexane	UG/M3	0.27	0.30	0.33	5.2	0.21
Dibromochloromethane	UG/M3	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
Dichlorodifluoromethane	UG/M3	3.0	2.5	3.1	2.8	2.5
Ethanol	UG/M3	110 J	82 J	91 J	38	17
Ethyl acetate	UG/M3	0.53 J	0.60 J	1.3 U	0.80 J	2.9
Ethylbenzene	UG/M3	2.7	1.2	1.3	14	1.6
Heptane	UG/M3	2.0	2.0	1.6	320	1.8
Hexachlorobutadiene	UG/M3	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
Hexane	UG/M3	4.9 U	4.9 U	4.9 U	3.6 J	4.9 U

Flags assigned during chemistry validation are shown.

Location ID		CL-IA-1	CL-IA-2	CL-IA-2	CL-IA-3A	CL-IA-3B
Sample ID		CL-IA-1	CL-IA-2	FD-031024	CL-IA-3A	CL-IA-3B
Matrix		Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air
Depth Interval (ft)		-	-	-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24	03/07/24	03/10/24
Parameter	Units			Field Duplicate (1-1)		
Volatiles						
Isopropyl alcohol	UG/M3	3.4 U	3.4 U	3.4 U	4.3	33
m&p-Xylene	UG/M3	11	4.4	4.4	48	5.3
Methyl ethyl ketone (2-Butanone)	UG/M3	4.1 U	4.1 U	4.1 U	9.0	4.1 U
Methyl tert-butyl ether	UG/M3	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
Methylene chloride	UG/M3	0.45 J	0.35 J	0.41 J	0.41 J	0.39 J
Naphthalene	UG/M3	1.4	1.1	1.3	3.4	0.34
o-Xylene	UG/M3	3.3	1.7	1.7	13	2.0
Propylene	UG/M3	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U
Styrene	UG/M3	0.34	0.34	0.36	1.3	0.21
Tetrachloroethene	UG/M3	7.9	4.8	5.0	24	7.4
Tetrahydrofuran	UG/M3	1 U	1 U	1 U	1 U	1 U
Toluene	UG/M3	33	21	21	70	22
Trichloroethene	UG/M3	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
Trichlorofluoromethane	UG/M3	1.6	1.4	1.3	1.6	2.0
Vinyl acetate	UG/M3	2.5 U	2.0 J	2.5 U	2.5 U	2.2 J
Vinyl chloride	UG/M3	0.059 J	0.089 U	0.089 U	0.048 J	0.089 U

Flags assigned during chemistry validation are shown.

Location ID		CL-OA-1	CL-SSV-1	CL-SSV-2
Sample ID		CL-OA-1	CL-SSV-1	CL-SSV-2
Matrix	Ambient Air	Sub-Slab Air	Sub-Slab Air	
Depth Interval (ft)		-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24
Parameter	Units			
Volatiles				
1,1,1-Trichloroethane	UG/M3	0.19 U	0.55 U	0.55 U
1,1,2,2-Tetrachloroethane	UG/M3	0.24 U	0.69 U	0.69 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	0.56 J	0.54 J	0.61 J
1,1,2-Trichloroethane	UG/M3	0.19 U	0.55 U	0.55 U
1,1-Dichloroethane	UG/M3	0.14 U	0.4 U	1.3
1,1-Dichloroethene	UG/M3	0.14 U	0.4 U	0.4 U
1,2,4-Trichlorobenzene	UG/M3	0.26 U	0.74 U	0.74 U
1,2,4-Trimethylbenzene	UG/M3	0.17 U	0.93	1.4
1,2-Dibromoethane (Ethylene dibromide)	UG/M3	0.27 U	0.77 U	0.77 U
1,2-Dichlorobenzene	UG/M3	0.21 U	0.6 U	0.6 U
1,2-Dichloroethane	UG/M3	0.056 J	0.49	0.49
1,2-Dichloroethene (cis)	UG/M3	0.14 U	0.4 U	0.4 U
1,2-Dichloroethene (trans)	UG/M3	0.14 U	0.4 U	0.4 U
1,2-Dichloropropane	UG/M3	0.16 U	0.46 U	0.46 U
1,2-Dichlorotetrafluoroethane	UG/M3	0.12 J	0.7 U	0.7 U
1,3,5-Trimethylbenzene (Mesitylene)	UG/M3	0.17 U	0.45 J	0.70
1,3-Butadiene	UG/M3	0.077 U	0.22 U	0.22 U
1,3-Dichlorobenzene	UG/M3	0.21 U	0.6 U	0.6 U
1,3-Dichloropropene (cis)	UG/M3	0.16 U	0.45 U	0.45 U
1,3-Dichloropropene (trans)	UG/M3	0.16 U	0.45 U	0.45 U
1,4-Dichlorobenzene	UG/M3	0.21 U	0.6 U	0.6 U
1,4-Dioxane	UG/M3	1.3 U	3.6 U	3.6 U
2-Hexanone	UG/M3	0.14 U	0.41 U	0.41 U

Flags assigned during chemistry validation are shown.

Location ID		CL-OA-1	CL-SSV-1	CL-SSV-2
Sample ID		CL-OA-1	CL-SSV-1	CL-SSV-2
Matrix	Ambient Air	Sub-Slab Air	Sub-Slab Air	
Depth Interval (ft)		-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24
Parameter	Units			
Volatiles				
4-Ethyltoluene	UG/M3	0.17 U	0.49 U	0.49 U
4-Methyl-2-pentanone	UG/M3	0.14 U	0.41 U	0.41 U
Acetone	UG/M3	4.0	58	40
Benzene	UG/M3	0.38	0.54	0.75
Benzyl chloride	UG/M3	0.18 U	0.52 U	0.52 U
Bromodichloromethane	UG/M3	0.23 U	0.67 U	0.67 U
Bromoform	UG/M3	0.36 U	1 U	1 U
Bromomethane	UG/M3	0.14 U	0.39 U	0.39 U
Carbon disulfide	UG/M3	1.1 U	3.1 U	1.1 J
Carbon tetrachloride	UG/M3	0.44	0.63 U	0.63 U
Chlorobenzene	UG/M3	0.16 U	0.46 U	0.46 U
Chloroethane	UG/M3	0.088 J	0.26 U	0.26 U
Chloroform	UG/M3	0.17 U	0.49 U	40
Chloromethane	UG/M3	1.1	0.41 U	0.41 U
Cyclohexane	UG/M3	0.12 U	2.0	0.61
Dibromochloromethane	UG/M3	0.3 U	0.85 U	0.85 U
Dichlorodifluoromethane	UG/M3	2.8	2.6	3.5
Ethanol	UG/M3	2.1 J	130	95
Ethyl acetate	UG/M3	1.3 U	3.6 U	22
Ethylbenzene	UG/M3	0.15 U	0.84	1.2
Heptane	UG/M3	0.17	1.1	2.1
Hexachlorobutadiene	UG/M3	0.37 U	1.1 U	1.1 U
Hexane	UG/M3	4.9 U	14 U	14 U

Flags assigned during chemistry validation are shown.

Location ID		CL-OA-1	CL-SSV-1	CL-SSV-2
Sample ID	CL-OA-1	CL-SSV-1	CL-SSV-2	
Matrix		Ambient Air	Sub-Slab Air	Sub-Slab Air
Depth Interval (ft)		-	-	-
Date Sampled		03/10/24	03/10/24	03/10/24
Parameter	Units			
Volatiles				
Isopropyl alcohol	UG/M3	3.4 U	9.8 U	36
m&p-Xylene	UG/M3	0.3 U	2.1	4.4
Methyl ethyl ketone (2-Butanone)	UG/M3	4.1 U	12 U	12 U
Methyl tert-butyl ether	UG/M3	0.13 U	0.36 U	0.36 U
Methylene chloride	UG/M3	0.34 J	3.5 U	3.5 U
Naphthalene	UG/M3	0.18 U	0.56	0.52 U
o-Xylene	UG/M3	0.15 U	0.80	1.6
Propylene	UG/M3	2.4 U	6.9 U	6.9 U
Styrene	UG/M3	0.15 U	1.1	0.43 U
Tetrachloroethene	UG/M3	0.24 U	65	150
Tetrahydrofuran	UG/M3	1 U	2.9 U	2.9 U
Toluene	UG/M3	0.23	5.4	22
Trichloroethene	UG/M3	0.19 U	2.4	1.6
Trichlorofluoromethane	UG/M3	1.1	1.5 J	2.6
Vinyl acetate	UG/M3	2.5 U	7 U	7 U
Vinyl chloride	UG/M3	0.089 U	0.26 U	0.26 U

Flags assigned during chemistry validation are shown.

# ATTACHMENT A VALIDATED FORM I'S



#### ANALYTICAL RESULTS

Project Location: Date Received: 3/12/2024 Field Sample #: CL-IA-3-A Sample ID: 24C1287-01 Sample Matrix: Indoor air Sampled: 3/7/2024 08:15 Sample Description/Location: Sub Description/Location: Canister ID: P1520 Canister Size: 6 liter Flow Controller ID: 3260 Sample Type: 8 hr Work Order: 24C1287 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -9 Receipt Vacuum(in Hg): -6.3 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	CPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	1100	20	10	J	2600	48	24	10	3/20/24 8:00	TPH
Benzene	0.31	0.035	0.011	0	0.99	0.11	0.034	0.698	3/19/24 15:09	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 15:09	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 15:09	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 15:09	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 15:09	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 15:09	TPH
2-Butanone (MEK)	3.0	1.4	0.68		9.0	4.1	2.0	0.698	3/19/24 15:09	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 15:09	TPH
Carbon Tetrachloride	0.035	0.035	0.027		0.22	0.22	0.17	0.698	3/19/24 15:09	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 15:09	TPH
Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 15:09	TPH
Chloroform	0.024	0.035	0.017	J	0.12	0.17	0.083	0.698	3/19/24 15:09	TPH
Chloromethane	0.50	0.070	0.047		1.0	0.14	0.096	0.698	3/19/24 15:09	TPH
Cyclohexane	1.5	0.035	0.027		5.2	0.12	0.093	0.698	3/19/24 15:09	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 15:09	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 15:09	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 15:09	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 15:09	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 15:09	TPH
Dichlorodifluoromethane (Freon 12)	0.56	0.035	0.015		2.8	0.17	0.072	0.698	3/19/24 15:09	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 15:09	TPH
1,2-Dichloroethane	0.024	0.035	0.013	J	0.096	0.14	0.053	0.698	3/19/24 15:09	TPH
1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 15:09	TPH
cis-1,2-Dichloroethylene	0.050	0.035	0.017		0.20	0.14	0.067	0.698	3/19/24 15:09	TPH
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 15:09	TPH
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 15:09	TPH
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 15:09	TPH
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 15:09	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.018	0.035	0.014	J	0.13	0.24	0.098	0.698	3/19/24 15:09	TPH
1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 15:09	TPH
Ethanol	20	1.4	0.93		38	2.6	1.7	0.698	3/19/24 15:09	TPH
Ethyl Acetate	0.22	0.35	0.14	J	0.80	1.3	0.49	0.698	3/19/24 15:09	TPH
Ethylbenzene	3.2	0.035	0.012		14	0.15	0.052	0.698	3/19/24 15:09	TPH
4-Ethyltoluene	0.34	0.035	0.015		1.7	0.17	0.075	0.698	3/19/24 15:09	TPH
Heptane	79	0.50	0.32		320	2.0	1.3	10	3/20/24 8:00	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 15:09	TPH
Hexane	1.0	1.4	0.73	J	3.6	4.9	2.6	0.698	3/19/24 15:09	TPH
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 15:09	TPH
Isopropanol	1.7	1.4	0.73		4.3	3.4	1.8	0.698	3/19/24 15:09	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 15:09	TPH
Methylene Chloride	0.12	0.35	0.094	J	0.41	1.2	0.33	0.698	3/19/24 15:09	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 15:09	TPH
Naphthalene	0.65	0.035	0.028		3.4	0.18	0.15	0.698	3/19/24 15:09	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 15:09	TPH
Styrene	0.31	0.035	0.027		1.3	0.15	0.12	0.698	3/19/24 15:09	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 15:09	TPH
									Page /	

5



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample #: CL-IA-3-A	Canister ID: P1520	Final Vacuum(in Hg): -9
Sample ID: 24C1287-01	Canister Size: 6 liter	Receipt Vacuum(in Hg): -6.3
Sample Matrix: Indoor air	Flow Controller ID: 3260	Flow Controller Type: Fixed-Orifice
Sampled: 3/7/2024 08:15	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	ЕРА ТО-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	3.5	0.035	0.030		24	0.24	0.20	0.698	3/19/24 15:09	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 15:09	TPH
Toluene	18	0.035	0.017		70	0.13	0.066	0.698	3/19/24 15:09	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 15:09	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 15:09	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 15:09	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 15:09	TPH
Trichlorofluoromethane (Freon 11)	0.28	0.14	0.014		1.6	0.78	0.080	0.698	3/19/24 15:09	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.063	0.14	0.0095	J	0.49	1.1	0.073	0.698	3/19/24 15:09	TPH
1,2,4-Trimethylbenzene	2.4	0.035	0.021		12	0.17	0.10	0.698	3/19/24 15:09	TPH
1,3,5-Trimethylbenzene	0.53	0.035	0.027		2.6	0.17	0.13	0.698	3/19/24 15:09	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 15:09	TPH
Vinyl Chloride	0.019	0.035	0.018	J	0.048	0.089	0.045	0.698	3/19/24 15:09	TPH
m&p-Xylene	11	0.070	0.024		48	0.30	0.11	0.698	3/19/24 15:09	TPH
o-Xylene	3.1	0.035	0.013		13	0.15	0.055	0.698	3/19/24 15:09	TPH
Surrogates	% Recov	/ery		% REC	C Limits					
4-Bromofluorobenzene (1)		95.9		70-	130				3/19/24 15:09	
4-Bromofluorobenzene (1)		93.2		70-	130				3/20/24 8:00	

6



## ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-1	Canister ID: P1243	Final Vacuum(in Hg): -4
Sample ID: 24C1287-02	Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.0
Sample Matrix: Sub Slab	Flow Controller ID: 3052	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:48	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		I	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	25	4.0	2.0		58	9.5	4.8	2	3/19/24 18:20	TPH
Benzene	0.17	0.10	0.031		0.54	0.32	0.099	2	3/19/24 18:20	TPH
Benzyl chloride	ND	0.10	0.054		ND	0.52	0.28	2	3/19/24 18:20	TPH
Bromodichloromethane	ND	0.10	0.041		ND	0.67	0.27	2	3/19/24 18:20	TPH
Bromoform	ND	0.10	0.036		ND	1.0	0.37	2	3/19/24 18:20	TPH
Bromomethane	ND	0.10	0.085		ND	0.39	0.33	2	3/19/24 18:20	TPH
1,3-Butadiene	ND	0.10	0.084		ND	0.22	0.19	2	3/19/24 18:20	TPH
2-Butanone (MEK)	ND	4.0	2.0		ND	12	5.8	2	3/19/24 18:20	TPH
Carbon Disulfide	ND	1.0	0.19		ND	3.1	0.60	2	3/19/24 18:20	TPH
Carbon Tetrachloride	ND	0.10	0.079		ND	0.63	0.50	2	3/19/24 18:20	TPH
Chlorobenzene	ND	0.10	0.033		ND	0.46	0.15	2	3/19/24 18:20	TPH
Chloroethane	ND	0.10	0.092		ND	0.26	0.24	2	3/19/24 18:20	TPH
Chloroform	ND	0.10	0.049		ND	0.49	0.24	2	3/19/24 18:20	TPH
Chloromethane	ND	0.20	0.13		ND	0.41	0.28	2	3/19/24 18:20	TPH
Cyclohexane	0.59	0.10	0.078		2.0	0.34	0.27	2	3/19/24 18:20	TPH
Dibromochloromethane	ND	0.10	0.067		ND	0.85	0.57	2	3/19/24 18:20	TPH
1,2-Dibromoethane (EDB)	ND	0.10	0.062		ND	0.77	0.48	2	3/19/24 18:20	TPH
1,2-Dichlorobenzene	ND	0.10	0.035		ND	0.60	0.21	2	3/19/24 18:20	ТРН
1,3-Dichlorobenzene	ND	0.10	0.035		ND	0.60	0.21	2	3/19/24 18:20	ТРН
1.4-Dichlorobenzene	ND	0.10	0.048		ND	0.60	0.22	2	3/19/24 18:20	ТРН
Dichlorodifluoromethane (Freon 12)	0.52	0.10	0.040		2.6	0.49	0.21	2	3/19/24 18:20	TPH
1,1-Dichloroethane	ND	0.10	0.042		ND	0.40	0.20	2	3/19/24 18:20	ТРН
1.2-Dichloroethane	0.12	0.10	0.038		0.49	0.40	0.20	2	3/19/24 18:20	ТРН
1,1-Dichloroethylene	ND	0.10	0.038		0.49 ND	0.40	0.15	2	3/19/24 18:20	ТРН
cis-1,2-Dichloroethylene	ND	0.10	0.070		ND	0.40	0.28	2	3/19/24 18:20	ТРН
trans-1,2-Dichloroethylene	ND	0.10	0.043		ND	0.40	0.19	2	3/19/24 18:20	TPH
1,2-Dichloropropane	ND	0.10	0.047		ND	0.46	0.19	2	3/19/24 18:20	ТРН
cis-1,3-Dichloropropene	ND	0.10	0.074		ND	0.40	0.34	2	3/19/24 18:20 3/19/24 18:20	ТРН
	ND	0.10	0.097		ND	0.45	0.23	2	3/19/24 18:20	ТРН
trans-1,3-Dichloropropene	ND	0.10	0.097		ND	0.43	0.44	2	3/19/24 18:20	ТРН
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND							2		
1,4-Dioxane		1.0	0.49		ND	3.6	1.8		3/19/24 18:20	TPH
Ethanol	68 ND	4.0	2.7		130 ND	7.5	5.0	2	3/19/24 18:20	TPH
Ethyl Acetate	ND 0.19	1.0	0.39		ND	3.6	1.4	2 2	3/19/24 18:20 3/19/24 18:20	TPH TPH
Ethylbenzene 4-Ethyltoluene		0.10	0.034		0.84	0.43	0.15 0.21			
	ND	0.10	0.043		ND	0.49		2	3/19/24 18:20	TPH
Heptane	0.27	0.10	0.063		1.1	0.41	0.26	2	3/19/24 18:20	TPH
Hexachlorobutadiene	ND	0.10	0.058		ND	1.1	0.61	2	3/19/24 18:20	TPH
Hexane	ND	4.0	2.1		ND	14	7.4	2	3/19/24 18:20	TPH
2-Hexanone (MBK)	ND	0.10	0.043		ND	0.41	0.18	2	3/19/24 18:20	TPH
Isopropanol	ND	4.0	2.1		ND	9.8	5.2	2	3/19/24 18:20	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.10	0.049		ND	0.36	0.18	2	3/19/24 18:20	TPH
Methylene Chloride	ND	1.0	0.27		ND	3.5	0.93	2	3/19/24 18:20	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.10	0.053		ND	0.41	0.22	2	3/19/24 18:20	TPH
Naphthalene	0.11	0.10	0.081		0.56	0.52	0.43	2	3/19/24 18:20	TPH
Propene	ND	4.0	2.2		ND	6.9	3.8	2	3/19/24 18:20	TPH
Styrene	0.26	0.10	0.077		1.1	0.43	0.33	2	3/19/24 18:20	TPH
1,1,2,2-Tetrachloroethane	ND	0.10	0.025		ND	0.69	0.17	2	3/19/24 18:20	TPH

Page 6 of 36

7



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-1	Canister ID: P1243	Final Vacuum(in Hg): -4
Sample ID: 24C1287-02	Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.0
Sample Matrix: Sub Slab	Flow Controller ID: 3052	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:48	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	9.5	0.10	0.086		65	0.68	0.58	2	3/19/24 18:20	TPH
Tetrahydrofuran	ND	1.0	0.38		ND	2.9	1.1	2	3/19/24 18:20	TPH
Toluene	1.4	0.10	0.050		5.4	0.38	0.19	2	3/19/24 18:20	TPH
1,2,4-Trichlorobenzene	ND	0.10	0.055		ND	0.74	0.41	2	3/19/24 18:20	TPH
1,1,1-Trichloroethane	ND	0.10	0.031		ND	0.55	0.17	2	3/19/24 18:20	TPH
1,1,2-Trichloroethane	ND	0.10	0.035		ND	0.55	0.19	2	3/19/24 18:20	TPH
Trichloroethylene	0.45	0.10	0.077		2.4	0.54	0.41	2	3/19/24 18:20	TPH
Trichlorofluoromethane (Freon 11)	0.26	0.40	0.041	J	1.5	2.2	0.23	2	3/19/24 18:20	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.070	0.40	0.027	J	0.54	3.1	0.21	2	3/19/24 18:20	TPH
1,2,4-Trimethylbenzene	0.19	0.10	0.060		0.93	0.49	0.29	2	3/19/24 18:20	TPH
1,3,5-Trimethylbenzene	0.092	0.10	0.077	J	0.45	0.49	0.38	2	3/19/24 18:20	TPH
Vinyl Acetate	ND	2.0	0.41		ND	7.0	1.4	2	3/19/24 18:20	TPH
Vinyl Chloride	ND	0.10	0.051		ND	0.26	0.13	2	3/19/24 18:20	TPH
m&p-Xylene	0.49	0.20	0.070		2.1	0.87	0.30	2	3/19/24 18:20	TPH
o-Xylene	0.18	0.10	0.037		0.80	0.43	0.16	2	3/19/24 18:20	TPH

4-Bromofluorobenzene (1)

97.1

70-130

3/19/24 18:20



#### ANALYTICAL RESULTS

Sample Description/Location: Work Order: 24C1287 Project Location: Date Received: 3/12/2024 Sub Description/Location: Initial Vacuum(in Hg): -29 Field Sample #: CL-IA-1 Canister ID: P3345 Final Vacuum(in Hg): -7 Sample ID: 24C1287-03 Canister Size: 6 liter Receipt Vacuum(in Hg): -7.5 Flow Controller ID: 3584 Sample Matrix: Indoor air Flow Controller Type: Fixed-Orifice Sampled: 3/10/2024 07:49 Sample Type: 8 hr Flow Controller Calibration

AnyteRathPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayPlayP			F	PA TO-15							
Actinic         170         1.4         0.11         J         410         3.3         1.7         0.08         9/924         1541         TPI           Benzyl divinide         ND         0.035         0.011         0.58         0.11         0.024         0.064         0.069         3/924         1541         TPI           Bronsform         ND         0.035         0.014         ND         0.23         0.014         ND         0.23         0.014         0.083         3/924         1541         TPI           Bronsform         ND         0.035         0.020         ND         0.077         0.065         0.088         3/924         1541         TPI           2-batadice         ND         0.035         0.027         ND         0.077         0.068         3/924         1541         TPI           2-batadice         ND         0.035         0.027         ND         0.16         0.038         3/924         1541         TPI           2-batadice         0.035         0.027         ND         0.16         0.038         3/924         1541         TPI           2-batadice         0.035         0.017         0.38         0.029         0.088			ppbv				ug/m3			Date/Time	
Benzy closing Benzy closingBenzy closing Benzy closi	Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Banapi chonsisNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td>Acetone</td> <td>170</td> <td>1.4</td> <td>0.71</td> <td>J</td> <td>410</td> <td>3.3</td> <td>1.7</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	Acetone	170	1.4	0.71	J	410	3.3	1.7	0.698	3/19/24 15:41	TPH
BrownediumND0.030.04ND0.230.090.090.1090.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.140.14 <th< td=""><td>Benzene</td><td>0.18</td><td>0.035</td><td>0.011</td><td></td><td>0.58</td><td>0.11</td><td>0.034</td><td>0.698</td><td>3/19/24 15:41</td><td>TPH</td></th<>	Benzene	0.18	0.035	0.011		0.58	0.11	0.034	0.698	3/19/24 15:41	TPH
BrownenchaneND0.ND0.012ND0.0140.100.0200.0140.100.0200.0200.0140.0100.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.	Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 15:41	TPH
InvestmentanceND0.030.030ND0.040.040.085.095.191.191.3-bundingND1.40.80ND1.40.80ND1.40.810.070.800.920.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990	Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 15:41	TPH
i.3-bance Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Catenonization Ca	Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 15:41	TPH
Definition         ND         1.4         0.68         ND         4.1         2.0         0.68         31/924         15.1           Carbon Terrachloride         0.02         0.025         0.027         J         0.18         0.21         0.698         31/924         15.14         TPH           Chorochare         ND         0.025         0.027         J         0.18         0.28         0.088         31/924         15.14         TPH           Chorochare         0.07         0.035         0.027         0.02         0.01         0.088         0.098         31/924         15.14         TPH           Chorochare         0.077         0.035         0.027         0.02         0.12         0.098         0.098         31/924         15.41         TPH           Chorochare         0.07         0.035         0.027         0.12         0.03         0.698         31/924         15.41         TPH           L3-Dichorochare         ND         0.025         0.012         ND         0.21         0.78         0.68         31/924         15.41         TPH           L3-Dichorochare         ND         0.025         0.017         ND         0.21         0.79         0.83<	Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 15:41	TPH
Carbon Disalifié         ND         ND         ND         ND         ND         ND         ND         ND         ND           Carbon Disalifié         0028         0027         ND         0018         0022         ND         0038         0027         ND         0038         0027         ND         0035         0027         ND         0035         0077         0035         0070         0035         0070         0035         0070         0037         0030         0.007         0035         0.007         0.017         0.017         0.018         0.008         310/24         1.541         TPH           Chloromethane         0.05         0.07         0.03         0.02         0.08         310/24         1.541         TPH           1.2-Dichorochane(EDB)         ND         0.03         0.02         ND         0.02         0.08         310/24         1.541         TPH           1.2-Dichorochane(For 12)         ND         0.03         0.012         ND         0.02         0.07         0.08         319/24         1.541         TPH           1.2-Dichorochane         ND         0.03         0.01         ND         0.01         ND         0.01         0.01         0.0	1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 15:41	TPH
Carbon Tetrachloride0.0380.0350.030.130.160.030.0691919211.541TIPIChlorochanceND0.0350.012ND0.0160.0800.09241.541TIPIChlorochance0.070.0350.0170.0250.0170.0250.0170.0800.0881.99241.541TIPIChlorochance0.0770.0350.0270.270.120.0800.0881.99241.541TIPICyclohexance0.0770.0350.02ND0.030.070.100.6881.99241.541TIPI1.2-DichlorochanceND0.0350.02ND0.170.0780.0881.99241.541TIPI1.2-DichlorochanceND0.0350.012ND0.210.0780.0881.99241.541TIPI1.2-DichlorochanceND0.0350.017ND0.170.0780.081.99241.541TIPI1.2-DichlorochanceND0.030.017ND0.180.0881.99241.541TIPI1.2-DichlorochanceND0.030.017ND0.180.0881.99241.541TIPI1.2-DichlorochanceND0.030.017ND0.160.0881.99241.541TIPI1.2-DichlorochanceND0.030.02ND0.160.081.99241.541TIPI1.2-DichlorochanceND0.03 </td <td>2-Butanone (MEK)</td> <td>ND</td> <td>1.4</td> <td>0.68</td> <td></td> <td>ND</td> <td>4.1</td> <td>2.0</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 15:41	TPH
ChlorobenzeneND0.0350.00350.002ND0.0550.0740.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0840.0850.0820.0840.0850.0820.0850.0820.0850.0820.0850.0820.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.0850.085<	Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 15:41	TPH
ChloroethaneND0.0320.0320.0320.0320.0170.0830.6983/92415.41TPHChloroothane0.0720.0350.070.2030.170.0830.6983/92415.41TPHCychoexane0.0770.0350.0230.020.030.020.030.020.030.030.9983/92415.41TPHLychoronechane (EDB)ND0.0350.022ND0.210.070.6883/92415.41TPH1,2-Dichoronechane (EDB)ND0.0350.012ND0.210.070.6883/92415.41TPH1,3-DichoronechaneND0.0350.012ND0.210.070.6883/92415.41TPH1,3-DichoronechaneND0.0350.017ND0.210.070.683/92415.41TPH1,3-DichoronechaneND0.0350.017ND0.140.070.683/92415.41TPH1,3-DichoronechaneND0.0350.017ND0.140.050.683/92415.41TPH1,3-DichoronechaneND0.020.017ND0.140.050.683/92415.41TPH1,3-DichoronechaneND0.0350.017JND0.140.683/92415.41TPH1,3-DichoronechaneND0.0350.017JND0.140.683/92415.41TP	Carbon Tetrachloride	0.028	0.035	0.027	J	0.18	0.22	0.17	0.698	3/19/24 15:41	TPH
Chloroform0.6720.0330.0170.350.170.0830.6983/9241.541THChloromethane0.450.0770.0370.0270.270.120.0883/9241.541THDibromochloromethaneND0.0350.0270.270.270.280.9883/9241.541TH1.2-Dichloromethane (FCD)ND0.0350.02ND0.200.683/9241.541TH1.2-Dichloromethane (FCD)ND0.0350.012ND0.210.0780.9883/9241.541TH1.2-Dichloromethane (FCD)ND0.0350.012ND0.210.0780.9883/9241.541TH1.2-Dichloromethane (FCD)ND0.0350.017ND0.210.0780.9883/9241.541TH1.2-DichloromethaneND0.0350.017ND0.140.0693/9241.541TH1.2-DichloromethaneND0.0350.017ND0.140.0693/9241.541TH1.2-DichloromethaneND0.0350.017ND0.140.0693/9241.541TH1.2-DichloromethaneND0.0350.017ND0.140.0693/9241.541TH1.2-DichloromethaneND0.0350.016ND0.140.0693/9241.541TH1.2-DichloromethaneND0.0350.016ND0.160	Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 15:41	TPH
Chloromethane       0.45       0.070       0.047       0.022       0.12       0.090       0.08       3/19/21       15.1       TPH         Cychkanne       0.077       0.035       0.027       0.07       0.17       0.08       3/19/21       15.1       TPH         1.2-Dichloromethane (EDB)       ND       0.035       0.02       ND       0.27       0.17       0.08       3/19/21       15.4       TPH         1.2-Dichlorobenzene       ND       0.035       0.012       ND       0.21       0.07       0.08       3/19/21       15.4       TPH         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.08       3/19/21       15.4       TPH         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.14       0.069       3/19/21       15.4       TPH         1.4-Dichlorobethene       ND       0.035       0.017       ND       0.14       0.069       3/19/21       15.4       TPH         1.2-Dichlorobethylene       ND       0.035       0.017       ND       0.14       0.067       0.89       3/19/21       15.4       TPH         1.2-Dichlorobethylene       ND       0.0	Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 15:41	TPH
Cyclohexane       0.077       0.035       0.027       0.12       0.12       0.093       0.193       0.191       11         Dibronchloromethane (EDD)       ND       0.035       0.023       ND       0.27       0.17       0.698       3/19/24       15.41       TPH         1.2-Dibronchme (EDD)       ND       0.035       0.012       ND       0.21       0.078       0.698       3/19/24       15.41       TPH         1.3-Dichloroberzene       ND       0.035       0.017       ND       0.21       0.078       0.698       3/19/24       15.41       TPH         1.4-Dichloroberzene       ND       0.035       0.017       ND       0.11       0.068       3/19/24       15.41       TPH         1.4-Dichloroberzene       ND       0.035       0.017       ND       0.14       0.069       0.68       3/19/24       15.41       TPH         1.2-Dichloroberzene       ND       0.035       0.017       ND       0.14       0.069       0.698       3/19/24       15.41       TPH         1.2-Dichloroberzene       ND       0.035       0.017       J       0.044       0.065       0.698       3/19/24       15.41       TPH         1.	Chloroform	0.072	0.035	0.017		0.35	0.17	0.083	0.698	3/19/24 15:41	TPH
Dironacchloromethane         ND         0.035         0.023         ND         0.30         0.20         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70 <td>Chloromethane</td> <td>0.45</td> <td>0.070</td> <td>0.047</td> <td></td> <td>0.92</td> <td>0.14</td> <td>0.096</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	Chloromethane	0.45	0.070	0.047		0.92	0.14	0.096	0.698	3/19/24 15:41	TPH
1.2-Dibromoethane (EDB)       ND       0.035       0.022       ND       0.27       0.17       0.698       3/19/24       15.41         1.2-Dibrhomoethane       ND       0.035       0.012       ND       0.21       0.073       0.698       3/19/24       15.41         1.3-Dibrhomoethane       ND       0.035       0.017       ND       0.21       0.07       0.698       3/19/24       15.41         1.4-Dichlorobethane       ND       0.035       0.017       ND       0.17       0.020       0.698       3/19/24       15.41       PTH         1.1-Dichlorochthane       ND       0.035       0.017       ND       0.14       0.069       0.698       3/19/24       15.41       PTH         1.1-Dichlorochtylene       ND       0.035       0.017       J       0.069       0.698       3/19/24       15.41       PTH         1.2-Dichlorochtylene       ND       0.025       0.024       ND       0.16       0.079       0.698       3/19/24       15.41       PTH         1.2-Dichlorochtylene       ND       0.035       0.014       ND       0.16       0.02       0.698       3/19/24       15.41       PTH         1.2-Dichlorochtylene <td< td=""><td>Cyclohexane</td><td>0.077</td><td>0.035</td><td>0.027</td><td></td><td>0.27</td><td>0.12</td><td>0.093</td><td>0.698</td><td>3/19/24 15:41</td><td>TPH</td></td<>	Cyclohexane	0.077	0.035	0.027		0.27	0.12	0.093	0.698	3/19/24 15:41	TPH
1.2-Dichlorobenzene       ND       0.015       0.012       ND       0.21       0.078       0.698       3/19/24       15.41       TPH         1.3-Dichlorobenzene       ND       0.035       0.013       ND       0.21       0.078       0.698       3/19/24       15.41       TPH         1.4-Dichlorochnzene       ND       0.025       0.015       3.0       0.17       0.072       0.698       3/19/24       15.41       TPH         1.1-Dichlorochlane       ND       0.035       0.017       ND       0.14       0.097       0.698       3/19/24       15.41       TPH         1.1-Dichlorochlyne       ND       0.035       0.017       J       0.04       0.057       0.698       3/19/24       15.41       TPH         1.2-Dichlorochlyne       ND       0.035       0.017       J       0.044       0.057       0.698       3/19/24       15.41       TPH         1.2-Dichlorochlyne       ND       0.035       0.016       ND       0.16       0.698       3/19/24       15.41       TPH         1.2-Dichloroppane       ND       0.035       0.016       ND       0.16       0.08       0.98       3/19/24       15.41       TPH <tr< td=""><td>Dibromochloromethane</td><td>ND</td><td>0.035</td><td>0.023</td><td></td><td>ND</td><td>0.30</td><td>0.20</td><td>0.698</td><td>3/19/24 15:41</td><td>TPH</td></tr<>	Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 15:41	TPH
1.3-Dichlorobenzene       ND       0.035       0.013       ND       0.21       0.078       0.698       3/19/24       15.41       TPH         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.00       0.698       3/19/24       15.41       TPH         1.1-Dichlorodburomethane (Freen 12)       0.60       0.035       0.017       ND       0.14       0.698       3/19/24       15.41       TPH         1.2-Dichlorodburomethane (Freen 12)       0.044       0.035       0.017       ND       0.14       0.069       3/19/24       15.41       TPH         1.2-Dichlorodburomethylene       ND       0.035       0.014       ND       0.14       0.069       3/19/24       15.41       TPH         cis-1.2-Dichlorodburone       ND       0.035       0.014       ND       0.14       0.067       0.698       3/19/24       15.41       TPH         cis-1.2-Dichlorodburone       ND       0.035       0.016       ND       0.16       0.16       0.698       3/19/24       15.41       TPH         cis-1.3-Dichloropropene       ND       0.035       0.014       ND       0.16       0.16       0.698       3/19/24       15.41       TPH <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>0.035</td> <td>0.022</td> <td></td> <td>ND</td> <td>0.27</td> <td>0.17</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 15:41	TPH
1.4-DichlorobenzeneND0.0350.017ND0.210.100.6983/192415.41TPHDichlorodifhuoromethane (Freon 12)0.600.0350.015ND0.170.0720.6983/192415.41TPH1.1-Dichloroethane0.0440.0350.013ND0.140.6056.6983/192415.41TPH1.2-Dichloroethane0.0440.0350.013ND0.140.6983/192415.41TPH1.2-DichloroethyleneND0.0350.017JND0.140.6676.6983/192415.41TPH1.2-DichloroethyleneND0.0350.016ND0.160.6983/192415.41TPH1.2-DichloroethyleneND0.0350.026ND0.160.6983/192415.41TPH1.2-DichloroethyleneND0.0350.026ND0.160.6983/192415.41TPH1.2-Dichloroethanene (Freon 114)ND0.0350.014ND0.240.6983/192415.41TPH1.2-DichloroethaneND0.350.014ND0.260.6983/192415.41TPH1.2-DichloroethaneND0.350.014ND0.260.6983/192415.41TPH1.2-DichloroethaneND0.350.014J0.531.30.490.6983/192415.41TPH1.4-Dichloroe	1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 15:41	TPH
Dichlorodifhuoromethane (Freen 12)         0.60         0.035         0.015         3.0         0.17         0.072         0.698         3/19/24         15.41         TPH           1,1-Dichloroethane         ND         0.035         0.017         ND         0.14         0.069         0.698         3/19/24         15.41         TPH           1,1-Dichloroethylene         ND         0.035         0.017         J         0.094         0.14         0.069         3/19/24         15.41         TPH           cis-1,2-Dichloroethylene         ND         0.035         0.017         J         0.094         0.14         0.069         3/19/24         15.41         TPH           cis-1,2-Dichloroethylene         ND         0.035         0.016         ND         0.14         0.065         0.698         3/19/24         15.41         TPH           1,2-Dichloropropropane         ND         0.035         0.016         ND         0.16         0.15         0.698         3/19/24         15.41         TPH           1,2-Dichloropropene         ND         0.35         0.014         ND         0.16         0.15         0.698         3/19/24         15.41         TPH           1,4-Dioxane         ND	1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 15:41	TPH
I.1-Dichloroethane       ND       0.035       0.017       ND       0.14       0.069       0.698       3/19/24       15.41       TPH         I.2-Dichloroethane       0.044       0.035       0.024       0.18       0.14       0.053       0.698       3/19/24       15.41       TPH         I.1-Dichloroethylene       0.024       0.035       0.024       ND       0.14       0.067       0.698       3/19/24       15.41       TPH         cis1_2-Dichloroethylene       ND       0.035       0.016       ND       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.017       0.016       0.016       0.016       0.016       0.016       0.016       0.017       0.014       1.016       0.016       0.016       0.016       0.016       0.017       ND       0.016       0.016       0.016       0.016       0.017       ND       1.21       0.216       0.116       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016	1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 15:41	TPH
1.2-Dichloroethale0.0440.0350.0130.0180.140.0530.6983/19/2415.41TPH1.1-DichloroethyleneND0.0350.024ND0.040.0970.6983/19/2415.41TPHcis-1.2-DichloroethyleneND0.0350.016ND0.140.0670.6983/19/2415.41TPH1.2-DichloroethyleneND0.0350.016ND0.160.0290.6983/19/2415.41TPH1.2-DichloroethyleneND0.0350.026ND0.160.0800.6983/19/2415.41TPH1.2-DichloroethyleneND0.0350.014ND0.160.0800.6983/19/2415.41TPH1.2-Dichloroethane (Freen 114)ND0.0350.014ND0.160.0800.6983/19/2415.41TPH1.4-DioxaneND0.350.17ND0.240.6983/19/2415.41TPH1.4-DioxaneND0.350.17ND1.30.620.6983/19/2415.41TPH4-Ethylouene0.160.350.17ND1.30.620.6983/19/2415.41TPH4-Ethylouene0.160.350.17ND1.30.620.6983/19/2415.41TPH4-Ethylouene0.160.350.015ND0.430.6983/19/2415.41TPH4-Ethylouene0.060.035	Dichlorodifluoromethane (Freon 12)	0.60	0.035	0.015		3.0	0.17	0.072	0.698	3/19/24 15:41	TPH
I.1-Dichloroethylene       ND       0.035       0.024       ND       0.14       0.077       0.698       3/19/24       15/41       TPH         cis-1,2-Dichloroethylene       0.024       0.035       0.017       J       0.094       0.14       0.067       0.698       3/19/24       15/41       TPH         trans-1,2-Dichloroethylene       ND       0.035       0.016       ND       0.16       0.608       3/19/24       15/41       TPH         1,2-Dichloroethylene       ND       0.035       0.018       ND       0.16       0.089       3/19/24       15/41       TPH         1,2-Dichloroethylene       ND       0.035       0.018       ND       0.16       0.089       3/19/24       15/41       TPH         cis-1,3-Dichloroptopene       ND       0.035       0.014       ND       0.16       0.08       3/19/24       15/41       TPH         1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)       ND       0.035       0.014       ND       0.13       0.68       3/19/24       15/41       TPH         1,4-Dioxane       ND       0.35       0.14       0.35       0.14       J       0.53       1.3       0.49       0.698       3/19/24       15/41	1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 15:41	TPH
cis-1,2-Dichloroethylene       0.024       0.035       0.017       J       0.094       0.14       0.067       0.68       3/19/24       15.41       TPH         trans-1,2-Dichloroethylene       ND       0.035       0.016       ND       0.14       0.065       0.698       3/19/24       15.41       TPH         1,2-Dichloropropane       ND       0.035       0.016       ND       0.16       0.12       0.698       3/19/24       15.41       TPH         cis-1,3-Dichloropropane       ND       0.035       0.014       ND       0.16       0.15       0.698       3/19/24       15.41       TPH         1,2-Dichloropropane       ND       0.035       0.014       ND       0.16       0.15       0.698       3/19/24       15.41       TPH         1,2-Dichloropropane       ND       0.35       0.014       ND       0.24       0.998       0.998       3/19/24       15.41       TPH         1,2-Dichloropropane       ND       0.35       0.17       ND       1.3       0.62       0.698       3/19/24       15.41       TPH         1,4-Dioxane       0.15       0.35       0.012       2.7       0.15       0.608       3/19/24       15.41	1,2-Dichloroethane	0.044	0.035	0.013		0.18	0.14	0.053	0.698	3/19/24 15:41	TPH
trans1,2-DichlorodiyleneND0.0350.016ND0.140.0650.6983/19/2415.41TPH1,2-DichloropropaneND0.0350.026ND0.160.120.6983/19/2415.41TPHeis-1,3-DichloropropeneND0.0350.018ND0.160.160.6983/19/2415.41TPHtrans-1,3-DichloropropeneND0.0350.014ND0.160.150.6983/19/2415.41TPH1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)ND0.350.014ND0.240.6883/19/2415.41TPH1,4-DioxaneND0.350.17ND1.30.620.6983/19/2415.41TPHEthanol561.40.93J1102.61.70.6983/19/2415.41TPHEthylAcetate0.150.350.14J0.531.30.490.6983/19/2415.41TPHEthylAcetate0.610.0350.0122.70.150.5983/19/2415.41TPHHeyane0.690.0350.0222.00.140.6983/19/2415.41TPHHeyane0.690.3550.026ND0.370.210.6983/19/2415.41TPHHeyane0.690.3550.0150.190.140.6983/19/2415.41TPHHeyane0.690.3550.01	1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 15:41	TPH
1.2-Dichloropropene       ND       0.035       0.026       ND       0.16       0.12       0.698       3/19/24       15.41       TPH         cis-1,3-Dichloropropene       ND       0.035       0.018       ND       0.16       0.16       0.698       3/19/24       15.41       TPH         1,2-Dichloropropene       ND       0.035       0.014       ND       0.16       0.15       0.698       3/19/24       15.41       TPH         1,2-Dichloropropene       ND       0.035       0.014       ND       0.24       0.098       0.698       3/19/24       15.41       TPH         1,4-Dioxane       ND       0.35       0.17       ND       1.2       0.698       3/19/24       15.41       TPH         Ethanol       56       1.4       0.93       J       10       2.6       0.698       3/19/24       15.41       TPH         Ethapkenzene       0.15       0.35       0.12       2.7       0.15       0.698       3/19/24       15.41       TPH         Hetane       0.10       0.35       0.012       0.49       0.75       0.698       3/19/24       15.41       TPH         Hetane       0.10       0.35       0.021<	cis-1,2-Dichloroethylene	0.024	0.035	0.017	J	0.094	0.14	0.067	0.698	3/19/24 15:41	TPH
cis-1,3-DichloropropeneND0.0350.018ND0.160.0800.6983/19/2415:41TPHtrans-1,3-DichloropropeneND0.0350.034ND0.160.150.6983/19/2415:41TPH1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)ND0.0350.014ND0.240.0980.6983/19/2415:41TPH1,4-DioxaneND0.350.17ND1.30.620.6983/19/2415:41TPHEthanol561.40.93J1102.61.70.6983/19/2415:41TPHEthyl Acetate0.150.350.14J0.531.30.490.6983/19/2415:41TPHEthyl Acetate0.160.0350.0122.70.150.520.6983/19/2415:41TPH4-Ethyl Houene0.100.0350.0200.140.0900.6983/19/2415:41TPHHexane/InorobutadieneND1.40.730.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl er-Butyl Ether (MTBE)ND0.0350.015ND3.41.80.6983/19/2415:41TPHMethyl er-Butyl E	trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 15:41	TPH
tras.1,3-DichloropopeneND0.0350.034ND0.160.150.6983/19/2415:41TPH1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)ND0.0350.014ND0.240.0980.6983/19/2415:41TPH1,4-DioxaneND0.350.17ND1.30.620.6983/19/2415:41TPHEthanol561.40.93J1102.61.70.6983/19/2415:41TPHEthyl Acetate0.150.350.14J0.531.30.490.6983/19/2415:41TPHEthyl benzene0.610.0350.0122.70.150.0520.6983/19/2415:41TPH4-Ethyl bluene0.100.0350.020.010.0750.6983/19/2415:41TPHHexachlorobutadieneND0.0350.020.010.0750.6983/19/2415:41TPHHexanone (MBK)0.0450.0350.015ND0.490.6983/19/2415:41TPHIsopropanolND1.40.73ND4.92.60.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.130.0350.015ND0.140.0620.6983/19/2415:41TPHNethyl 2-pentanone (MIBK)ND0.0350.017ND0.130.0683/19/2415:41TPHNapthulane	1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 15:41	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)       ND       0.035       0.014       ND       0.24       0.098       0.698       3/19/24       1.541       TPH         1,4-Dioxane       ND       0.35       0.17       ND       1.3       0.62       0.698       3/19/24       1.541       TPH         Ethanol       56       1.4       0.93       J       110       2.6       1.7       0.698       3/19/24       1.541       TPH         Ethyl Acetate       0.15       0.35       0.14       J       0.53       1.3       0.49       0.698       3/19/24       1.541       TPH         Ethyl Acetate       0.16       0.035       0.012       2.7       0.15       0.52       0.698       3/19/24       1.541       TPH         4-Ethyl tolene       0.10       0.035       0.012       2.0       0.14       0.090       0.698       3/19/24       1.541       TPH         Heptane       0.10       0.035       0.022       2.0       0.14       0.098       3/19/24       1.541       TPH         Hexanelorobutadiene       ND       0.43       0.73       ND       0.41       0.602       0.698       3/19/24       1.541       TPH </td <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td>0.035</td> <td>0.018</td> <td></td> <td>ND</td> <td>0.16</td> <td>0.080</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 15:41	TPH
I.4-DioxaneND0.350.17ND1.30.620.6983/19/2415:41TPHEthanol561.40.93J1102.61.70.6983/19/2415:41TPHEthyl Acetate0.150.350.14J0.531.30.490.6983/19/2415:41TPHEthyl Acetate0.610.0350.0122.70.150.0520.6983/19/2415:41TPH4-Ethyl Ioluene0.610.0350.0122.70.150.6983/19/2415:41TPHHeptane0.490.0350.0222.00.140.0900.6983/19/2415:41TPHHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2415:41TPHHexane (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND4.92.60.6983/19/2415:41TPHMethyl ter-Butyl Ether (MTBE)ND0.0350.017ND0.130.6220.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.017ND0.130.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHNaphthalene0.270.0350.02	trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 15:41	TPH
Ethanol561.40.93J1102.61.70.6983/19/2415.41TPHEthyl Acetate0.150.350.14J0.531.30.490.6983/19/2415.41TPHEthyl benzene0.610.0350.0122.70.150.0520.6983/19/2415.41TPH4-Ethyl bluene0.100.0350.0120.490.170.0750.6983/19/2415.41TPHHeptane0.490.0350.0222.00.140.0900.6983/19/2415.41TPHHexachlorobutadieneND0.450.0250.020ND0.370.210.6983/19/2415.41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415.41TPHMethyl tert-Butyl Ether (MTBE)ND1.40.73ND3.41.80.6983/19/2415.41TPH4-Methyl-2-pentanone (MIBK)ND0.350.017ND0.430.6983/19/2415.41TPHNaphtalene0.270.350.018ND0.140.0620.6983/19/2415.41TPHPropeneND0.350.017ND0.451.20.330.6983/19/2415.41TPHMethylene ChlorideND0.350.018ND0.450.120.6983/19/2415.41TPHNaphtal	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.014		ND	0.24	0.098	0.698	3/19/24 15:41	TPH
Ethyl Acetate0.150.350.14J0.531.30.490.6983/19/2415:41TPHEthylbenzene0.610.0350.0122.70.150.0520.6983/19/2415:41TPH4-Ethylbenzene0.100.0350.0150.490.170.0750.6983/19/2415:41TPH4-Ethylbenzene0.490.0350.0222.00.140.0900.6983/19/2415:41TPHHeptaneND0.350.020ND0.370.210.6983/19/2415:41TPHHexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethylere ChlorideND0.350.017ND0.130.0620.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHNaphthalene0.0790.0350.027 <td>1,4-Dioxane</td> <td>ND</td> <td>0.35</td> <td>0.17</td> <td></td> <td>ND</td> <td>1.3</td> <td>0.62</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 15:41	TPH
Ethyl Acetate0.150.350.14J0.531.30.490.6983/19/2415:41TPHEthylbenzene0.610.0350.0122.70.150.0520.6983/19/2415:41TPH4-Ethylbenzene0.100.0350.0150.490.170.0750.6983/19/2415:41TPH4-Ethylbenzene0.490.0350.0222.00.140.0900.6983/19/2415:41TPHHeptaneND0.350.020ND0.370.210.6983/19/2415:41TPHHexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethylere ChlorideND0.350.017ND0.130.0620.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHNaphthalene0.0790.0350.027 <td>Ethanol</td> <td>56</td> <td>1.4</td> <td>0.93</td> <td>J</td> <td>110</td> <td>2.6</td> <td>1.7</td> <td>0.698</td> <td>3/19/24 15:41</td> <td>TPH</td>	Ethanol	56	1.4	0.93	J	110	2.6	1.7	0.698	3/19/24 15:41	TPH
4-Ethyltoluene0.100.0350.0150.490.170.0750.6983/19/2415:41TPHHeptane0.490.0350.0222.00.140.0900.6983/19/2415:41TPHHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2415:41TPHHexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.160.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHNaphthalene0.0790.0350.0281.40.180.150.6983/19/2415:41TPHNaphthalene0.0790.0350.0281.40.180.150.6983/19/2415:41TPHNaphthalene0.0790.	Ethyl Acetate	0.15	0.35	0.14		0.53	1.3	0.49	0.698	3/19/24 15:41	TPH
Her0.490.0350.0222.00.140.0900.6983/19/2415:41TPHHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2415:41TPHHexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPHAmethyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH110.7710.340.150.120.6983/19/2415:41TPH110.790.0350.0270	Ethylbenzene	0.61	0.035	0.012		2.7	0.15	0.052	0.698	3/19/24 15:41	TPH
HexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2415:41TPHHexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH110.77ND2.41.30.6983/19/2415:41TPH110.790.0350.0270.340.150.120.6983/19/2415:41TPH110.77ND2.41.3 <td< td=""><td>4-Ethyltoluene</td><td>0.10</td><td>0.035</td><td>0.015</td><td></td><td>0.49</td><td>0.17</td><td>0.075</td><td>0.698</td><td>3/19/24 15:41</td><td>TPH</td></td<>	4-Ethyltoluene	0.10	0.035	0.015		0.49	0.17	0.075	0.698	3/19/24 15:41	TPH
HexaneND1.40.73ND4.92.60.6983/19/2415:41TPH2-Hexanone (MBK)0.0450.0350.0150.190.140.6620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	Heptane	0.49	0.035	0.022		2.0	0.14	0.090	0.698	3/19/24 15:41	TPH
2-Hexanone (MBK)0.0450.0450.0350.0150.190.140.0620.6983/19/2415:41TPHIsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 15:41	TPH
IsopropanolND1.40.73ND3.41.80.6983/19/2415:41TPHMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 15:41	TPH
Methyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2415:41TPHMethylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	2-Hexanone (MBK)	0.045	0.035	0.015		0.19	0.14	0.062	0.698	3/19/24 15:41	TPH
Methylene Chloride0.130.350.094J0.451.20.330.6983/19/2415:41TPH4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	Isopropanol	ND	1.4	0.73		ND	3.4	1.8	0.698	3/19/24 15:41	TPH
4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2415:41TPHNaphthalene0.270.0350.0281.40.180.150.6983/19/2415:41TPHPropeneND1.40.77ND2.41.30.6983/19/2415:41TPHStyrene0.0790.0350.0270.340.150.120.6983/19/2415:41TPH	Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 15:41	TPH
Naphthalene         0.27         0.035         0.028         1.4         0.18         0.15         0.698         3/19/24         15:41         TPH           Propene         ND         1.4         0.77         ND         2.4         1.3         0.698         3/19/24         15:41         TPH           Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         15:41         TPH	Methylene Chloride	0.13	0.35	0.094	J	0.45	1.2	0.33	0.698	3/19/24 15:41	TPH
Propene         ND         1.4         0.77         ND         2.4         1.3         0.698         3/19/24         15:41         TPH           Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         15:41         TPH	4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 15:41	TPH
Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         15:41         TPH	Naphthalene	0.27	0.035	0.028		1.4	0.18	0.15	0.698	3/19/24 15:41	TPH
	Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 15:41	TPH
1,1,2,2-Tetrachloroethane ND 0.035 0.0086 ND 0.24 0.059 0.698 3/19/24 15:41 TPH	Styrene	0.079	0.035	0.027		0.34	0.15	0.12	0.698	3/19/24 15:41	TPH
	1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 15:41	TPH

9

RPD Pre and Post-Sampling: <20%



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-IA-1	Canister ID: P3345	Final Vacuum(in Hg): -7
Sample ID: 24C1287-03	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.5
Sample Matrix: Indoor air	Flow Controller ID: 3584	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:49	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	CPA TO-15							
4	Descrite	ppbv RL	MDI	Fland (Oracl	Desselfe	ug/m3	MDL	D!!	Date/Time	A <b>I</b> 4
Analyte	Results		MDL	Flag/Qual	Results	RL		Dilution	Analyzed	Analyst
Tetrachloroethylene	1.2	0.035	0.030		7.9	0.24	0.20	0.698	3/19/24 15:41	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 15:41	TPH
Toluene	8.7	0.035	0.017		33	0.13	0.066	0.698	3/19/24 15:41	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 15:41	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 15:41	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 15:41	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 15:41	TPH
Trichlorofluoromethane (Freon 11)	0.29	0.14	0.014		1.6	0.78	0.080	0.698	3/19/24 15:41	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.069	0.14	0.0095	J	0.53	1.1	0.073	0.698	3/19/24 15:41	TPH
1,2,4-Trimethylbenzene	0.73	0.035	0.021		3.6	0.17	0.10	0.698	3/19/24 15:41	TPH
1,3,5-Trimethylbenzene	0.20	0.035	0.027		0.97	0.17	0.13	0.698	3/19/24 15:41	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 15:41	TPH
Vinyl Chloride	0.023	0.035	0.018	J	0.059	0.089	0.045	0.698	3/19/24 15:41	TPH
m&p-Xylene	2.5	0.070	0.024		11	0.30	0.11	0.698	3/19/24 15:41	TPH
o-Xylene	0.76	0.035	0.013		3.3	0.15	0.055	0.698	3/19/24 15:41	TPH
Surrogates	% Recov	ery		% REC	C Limits					

4-Bromofluorobenzene (1)

96.8

. .

70-130

3/19/24 15:41



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-2	Canister ID: P0331	Final Vacuum(in Hg): -7
Sample ID: 24C1287-04	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Sub Slab	Flow Controller ID: 3042	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:29	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	17	4.0	2.0		40	9.5	4.8	2	3/19/24 18:47	TPH
Benzene	0.24	0.10	0.031		0.75	0.32	0.099	2	3/19/24 18:47	TPH
Benzyl chloride	ND	0.10	0.054		ND	0.52	0.28	2	3/19/24 18:47	TPH
Bromodichloromethane	ND	0.10	0.041		ND	0.67	0.27	2	3/19/24 18:47	TPH
Bromoform	ND	0.10	0.036		ND	1.0	0.37	2	3/19/24 18:47	TPH
Bromomethane	ND	0.10	0.085		ND	0.39	0.33	2	3/19/24 18:47	TPH
1,3-Butadiene	ND	0.10	0.084		ND	0.22	0.19	2	3/19/24 18:47	TPH
2-Butanone (MEK)	ND	4.0	2.0		ND	12	5.8	2	3/19/24 18:47	TPH
Carbon Disulfide	0.35	1.0	0.19	J	1.1	3.1	0.60	2	3/19/24 18:47	TPH
Carbon Tetrachloride	ND	0.10	0.079		ND	0.63	0.50	2	3/19/24 18:47	TPH
Chlorobenzene	ND	0.10	0.033		ND	0.46	0.15	2	3/19/24 18:47	TPH
Chloroethane	ND	0.10	0.092		ND	0.26	0.24	2	3/19/24 18:47	TPH
Chloroform	8.3	0.10	0.049		40	0.49	0.24	2	3/19/24 18:47	TPH
Chloromethane	ND	0.20	0.13		ND	0.41	0.28	2	3/19/24 18:47	TPH
Cyclohexane	0.18	0.10	0.078		0.61	0.34	0.27	2	3/19/24 18:47	TPH
Dibromochloromethane	ND	0.10	0.067		ND	0.85	0.57	2	3/19/24 18:47	TPH
1,2-Dibromoethane (EDB)	ND	0.10	0.062		ND	0.77	0.48	2	3/19/24 18:47	TPH
1,2-Dichlorobenzene	ND	0.10	0.035		ND	0.60	0.21	2	3/19/24 18:47	TPH
1,3-Dichlorobenzene	ND	0.10	0.037		ND	0.60	0.22	2	3/19/24 18:47	TPH
1,4-Dichlorobenzene	ND	0.10	0.048		ND	0.60	0.29	2	3/19/24 18:47	TPH
Dichlorodifluoromethane (Freon 12)	0.71	0.10	0.042		3.5	0.49	0.21	2	3/19/24 18:47	TPH
1,1-Dichloroethane	0.32	0.10	0.049		1.3	0.40	0.20	2	3/19/24 18:47	TPH
1,2-Dichloroethane	0.12	0.10	0.038		0.49	0.40	0.15	2	3/19/24 18:47	TPH
1,1-Dichloroethylene	ND	0.10	0.070		ND	0.40	0.28	2	3/19/24 18:47	ТРН
cis-1,2-Dichloroethylene	ND	0.10	0.048		ND	0.40	0.19	2	3/19/24 18:47	TPH
trans-1,2-Dichloroethylene	ND	0.10	0.047		ND	0.40	0.19	2	3/19/24 18:47	TPH
1,2-Dichloropropane	ND	0.10	0.074		ND	0.46	0.34	2	3/19/24 18:47	ТРН
cis-1,3-Dichloropropene	ND	0.10	0.051		ND	0.45	0.23	2	3/19/24 18:47	ТРН
trans-1,3-Dichloropropene	ND	0.10	0.097		ND	0.45	0.44	2	3/19/24 18:47	ТРН
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10	0.040		ND	0.70	0.28	2	3/19/24 18:47	ТРН
1,4-Dioxane	ND	1.0	0.49		ND	3.6	1.8	2	3/19/24 18:47	ТРН
Ethanol	50	4.0	2.7		95	7.5	5.0	2	3/19/24 18:47	ТРН
Ethyl Acetate	6.1	1.0	0.39		22	3.6	1.4	2	3/19/24 18:47	ТРН
Ethylbenzene	0.28	0.10	0.034		1.2	0.43	0.15	2	3/19/24 18:47	ТРН
4-Ethyltoluene	ND	0.10	0.043		ND	0.49	0.15	2	3/19/24 18:47	ТРН
Heptane	0.51	0.10	0.063		2.1	0.49	0.21	2	3/19/24 18:47	ТРН
Hexachlorobutadiene	ND	0.10	0.055		ND	1.1	0.20	2	3/19/24 18:47	ТРН
Hexane	ND	4.0	2.1		ND	1.1	7.4	2	3/19/24 18:47 3/19/24 18:47	ТРН
2-Hexanone (MBK)	ND	0.10	0.043		ND	0.41	0.18	2	3/19/24 18:47	ТРН
Isopropanol	15	4.0	2.1		36	9.8	5.2	2	3/19/24 18:47	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.10	0.049		ND	0.36	0.18	2	3/19/24 18:47	TPH
	ND	1.0	0.049		ND	3.5	0.18		3/19/24 18:47	
Methylene Chloride 4 Methyl 2 pentanone (MIBK)	ND ND	0.10	0.27		ND ND	5.5 0.41	0.93	2 2	3/19/24 18:47	ТРН ТРН
4-Methyl-2-pentanone (MIBK)										
Naphthalene Propene	ND	0.10	0.081		ND ND	0.52	0.43	2	3/19/24 18:47	ТРН три
1	ND	4.0	2.2		ND	6.9 0.42	3.8	2	3/19/24 18:47	TPH
Styrene	ND	0.10	0.077		ND	0.43	0.33	2	3/19/24 18:47	TPH
1,1,2,2-Tetrachloroethane	ND	0.10	0.025		ND	0.69	0.17	2	3/19/24 18:47	TPH

11

Page 10 of 36



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-2	Canister ID: P0331	Final Vacuum(in Hg): -7
Sample ID: 24C1287-04	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Sub Slab	Flow Controller ID: 3042	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:29	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

EPA TO-15											
	D Ka	ppbv	MDI		D K	ug/m3	MDI	<b>D</b> 11 (1	Date/Time		
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst	
Tetrachloroethylene	23	0.10	0.086		150	0.68	0.58	2	3/19/24 18:47	TPH	
Tetrahydrofuran	ND	1.0	0.38		ND	2.9	1.1	2	3/19/24 18:47	TPH	
oluene	5.7	0.10	0.050		22	0.38	0.19	2	3/19/24 18:47	TPH	
,2,4-Trichlorobenzene	ND	0.10	0.055		ND	0.74	0.41	2	3/19/24 18:47	TPH	
,1,1-Trichloroethane	ND	0.10	0.031		ND	0.55	0.17	2	3/19/24 18:47	TPH	
,1,2-Trichloroethane	ND	0.10	0.035		ND	0.55	0.19	2	3/19/24 18:47	TPH	
richloroethylene	0.30	0.10	0.077		1.6	0.54	0.41	2	3/19/24 18:47	TPH	
Frichlorofluoromethane (Freon 11)	0.47	0.40	0.041		2.6	2.2	0.23	2	3/19/24 18:47	TPH	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.080	0.40	0.027	J	0.61	3.1	0.21	2	3/19/24 18:47	TPH	
,2,4-Trimethylbenzene	0.28	0.10	0.060		1.4	0.49	0.29	2	3/19/24 18:47	TPH	
,3,5-Trimethylbenzene	0.14	0.10	0.077		0.70	0.49	0.38	2	3/19/24 18:47	TPH	
/inyl Acetate	ND	2.0	0.41		ND	7.0	1.4	2	3/19/24 18:47	TPH	
/inyl Chloride	ND	0.10	0.051		ND	0.26	0.13	2	3/19/24 18:47	TPH	
n&p-Xylene	1.0	0.20	0.070		4.4	0.87	0.30	2	3/19/24 18:47	TPH	
-Xylene	0.38	0.10	0.037		1.6	0.43	0.16	2	3/19/24 18:47	TPH	

4-Bromofluorobenzene (1)

93.9

70-130

3/19/24 18:47



#### ANALYTICAL RESULTS

Sample Description/Location: Work Order: 24C1287 Project Location: Date Received: 3/12/2024 Sub Description/Location: Initial Vacuum(in Hg): -30+ Field Sample #: CL-IA-2 Canister ID: 1081 Final Vacuum(in Hg): -10.5 Sample ID: 24C1287-05 Canister Size: 6 liter Receipt Vacuum(in Hg): -9.6 Flow Controller ID: 5080 Flow Controller Type: Fixed-Orifice Sample Matrix: Indoor air Sampled: 3/10/2024 08:30 Sample Type: 8 hr Flow Controller Calibration

**EPA TO-15** ppbv Date/Time ug/m3 RL MDL MDL Results Flag/Qual Results RL Dilution Analyzed Analyte Analyst Acetone 18 1.4 0.71 42 3.3 1.7 0.698 3/19/24 16:14 TPH 0.19 0.035 0.011 0.11 0.034 0.698 3/19/24 16:14 Benzene 0.62 TPH 0.035 0.698 3/19/24 16:14 Benzvl chloride ND 0.019 ND 0.18 0.097 TPH ND 0.035 ND 0.698 3/19/24 16:14 Bromodichloromethane 0.014 0.23 0.096 TPH ND 0.035 ND 0.698 3/19/24 16:14 TPH Bromoform 0.012 0.36 0.13 Bromomethane ND 0.035 0.030 ND 0.14 0.12 0.698 3/19/24 16:14 TPH 1,3-Butadiene ND 0.035 0.029 ND 0.077 0.065 0.698 3/19/24 16:14 TPH 2-Butanone (MEK) ND 1.4 0.68 ND 4.1 2.0 0.698 3/19/24 16:14 TPH Carbon Disulfide 0.36 0.35 0.698 3/19/24 16:14 0.067 1.1 1.1 0.21 TPH Carbon Tetrachloride 0.076 0.035 0.027 0.48 0.22 0.17 0.698 3/19/24 16:14 TPH Chlorobenzene ND 0.035 0.012 ND 0.16 0.053 0.698 3/19/24 16:14 TPH Chloroethane ND 0.035 0.032 ND 0.092 0.084 0.698 3/19/24 16:14 TPH Chloroform 0.029 0.035 0.017 0.14 0.698 TPH J 0.17 0.083 3/19/24 16:14 0.48 0.070 0.047 0.98 0.14 0.096 0.698 3/19/24 16:14 TPH Chloromethane 0.087 0.035 0.027 0.30 0.12 0.093 0.698 3/19/24 16:14 ТРН Cvclohexane Dibromochloromethane ND 0.035 0.023 ND 0.30 0.20 0.698 3/19/24 16:14 TPH 1,2-Dibromoethane (EDB) ND 0.035 0.022 ND 0.27 0.17 0.698 3/19/24 16:14 TPH 1,2-Dichlorobenzene ND 0.035 0.012 ND 0.21 0.073 0.698 3/19/24 16:14 TPH 1,3-Dichlorobenzene ND 0.035 0.013 ND 0.21 0.078 0.698 3/19/24 16:14 TPH ND 0.035 0.017 ND 0.21 0.698 3/19/24 16:14 TPH 1.4-Dichlorobenzene 0.10 0.072 3/19/24 16:14 Dichlorodifluoromethane (Freon 12) 0.51 0.035 0.015 2.5 0.17 0.698 TPH 1,1-Dichloroethane ND 0.035 0.017 ND 0.14 0.069 0.698 3/19/24 16:14 TPH 1,2-Dichloroethane 0.033 0.035 0.013 J 0.14 0.14 0.053 0.698 3/19/24 16:14 ТРН ND 0.035 0.024 ND 0.14 0.097 0.698 3/19/24 16:14 TPH 1.1-Dichloroethylene ND 0.035 0.017 ND 0.14 0.067 0.698 3/19/24 16:14 TPH cis-1.2-Dichloroethylene ND 0.035 ND 0.14 0.065 0.698 3/19/24 16.14 трн trans-1,2-Dichloroethylene 0.016 0.698 ND 0.035 ND 0.16 0.12 3/19/24 16:14 трн 1,2-Dichloropropane 0.026 cis-1,3-Dichloropropene ND 0.035 0.018 ND 0.16 0.080 0.698 3/19/24 16:14 TPH trans-1,3-Dichloropropene ND 0.035 0.034 ND 0.16 0.15 0.698 3/19/24 16:14 TPH 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) 0.017 0.035 0.014 J 0.12 0.24 0.098 0.698 3/19/24 16:14 TPH ND 0.35 ND 0.62 3/19/24 16:14 TPH 1.4-Dioxane 0.17 1.3 0.698 Ethanol 44 1.4 0.93 J 82 2.6 1.7 0.698 3/19/24 16:14 TPH Ethyl Acetate 0.17 0.35 0.14 J 0.60 1.3 0.49 0.698 3/19/24 16:14 TPH Ethylbenzene 0.28 0.035 0.012 1.2 0.15 0.052 0.698 3/19/24 16:14 TPH 4-Ethyltoluene 0.097 0.035 0.015 0.48 0.075 0.698 3/19/24 16:14 TPH 0.17 0.49 3/19/24 16:14 0.035 0.022 2.0 0.14 0.090 0.698 TPH Heptane ND 0.035 ND 0.698 3/19/24 16:14 Hexachlorobutadiene 0.020 0.37 0.21 TPH ND 0.698 ND 3/19/24 16.14 TPH Hexane 1.4 0.73 49 2.6 0.035 2-Hexanone (MBK) 0.040 0.015 0.17 0.14 0.062 0.698 3/19/24 16:14 TPH Isopropanol ND 1.4 0.73 ND 3.4 1.80.698 3/19/24 16:14 TPH Methyl tert-Butyl Ether (MTBE) ND 0.035 0.017 ND 0.13 0.062 0.698 3/19/24 16:14 TPH Methylene Chloride 0.10 0.35 0.094 0.35 0.33 0.698 3/19/24 16:14 J 1.2 TPH 0.035 ND 0.698 3/19/24 16:14 4-Methyl-2-pentanone (MIBK) ND 0.018 0.14 0.076 TPH 3/19/24 16:14 Naphthalene 0.22 0.035 0.028 1.1 0.18 0.15 0.698 TPH Propene ND 1.4 0.77 ND 2.4 1.3 0.698 3/19/24 16:14 ТРН 0.079 0.035 0.027 0.34 0.698 3/19/24 16:14 TPH Stvrene 0.15 0.12 1.1.2.2-Tetrachloroethane ND 0.035 0.0086 ND 0.24 0.059 0.698 3/19/24 16:14 TPH

RPD Pre and Post-Sampling: <20%

Page 12 of 36



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -30+
Field Sample #: CL-IA-2	Canister ID: 1081	Final Vacuum(in Hg): -10.5
Sample ID: 24C1287-05	Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.6
Sample Matrix: Indoor air	Flow Controller ID: 5080	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:30	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

EPA TO-15											
		ppbv				ug/m3		Date/Time			
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst	
Tetrachloroethylene	0.70	0.035	0.030		4.8	0.24	0.20	0.698	3/19/24 16:14	TPH	
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 16:14	TPH	
Toluene	5.6	0.035	0.017		21	0.13	0.066	0.698	3/19/24 16:14	TPH	
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 16:14	TPH	
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 16:14	TPH	
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 16:14	TPH	
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 16:14	TPH	
Trichlorofluoromethane (Freon 11)	0.25	0.14	0.014		1.4	0.78	0.080	0.698	3/19/24 16:14	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.068	0.14	0.0095	J	0.52	1.1	0.073	0.698	3/19/24 16:14	TPH	
1,2,4-Trimethylbenzene	0.48	0.035	0.021		2.4	0.17	0.10	0.698	3/19/24 16:14	TPH	
1,3,5-Trimethylbenzene	0.12	0.035	0.027		0.60	0.17	0.13	0.698	3/19/24 16:14	TPH	
Vinyl Acetate	0.58	0.70	0.14	J	2.0	2.5	0.50	0.698	3/19/24 16:14	TPH	
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 16:14	TPH	
m&p-Xylene	1.0	0.070	0.024		4.4	0.30	0.11	0.698	3/19/24 16:14	TPH	
o-Xylene	0.38	0.035	0.013		1.7	0.15	0.055	0.698	3/19/24 16:14	TPH	
Surrogates	% Recov	/ery		% REC	C Limits						

4-Bromofluorobenzene (1)

93.7

-

70-130

3/19/24 16:14



ANALYTICAL RESULTS

#### Project Location: Date Received: 3/12/2024 Field Sample #: FD-031024 Sample ID: 24C1287-06 Sample Matrix: Indoor air Sampled: 3/10/2024 00:00

Sample Description/Location: Sub Description/Location: Canister ID: P2352 Canister Size: 6 liter Flow Controller ID: 5080 Sample Type: 8 hr Work Order: 24C1287

Initial Vacuum(in Hg): -30+ Final Vacuum(in Hg): -10.5 Receipt Vacuum(in Hg): -9.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	17	1.4	0.71		41	3.3	1.7	0.698	3/19/24 16:47	TPH
Benzene	0.19	0.035	0.011		0.59	0.11	0.034	0.698	3/19/24 16:47	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 16:47	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 16:47	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 16:47	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 16:47	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 16:47	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 16:47	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 16:47	TPH
Carbon Tetrachloride	0.043	0.035	0.027		0.27	0.22	0.17	0.698	3/19/24 16:47	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 16:47	TPH
Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 16:47	TPH
Chloroform	0.023	0.035	0.017	J	0.11	0.17	0.083	0.698	3/19/24 16:47	TPH
Chloromethane	0.42	0.070	0.047		0.87	0.14	0.096	0.698	3/19/24 16:47	TPH
Cyclohexane	0.096	0.035	0.027		0.33	0.12	0.093	0.698	3/19/24 16:47	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 16:47	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 16:47	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 16:47	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 16:47	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 16:47	TPH
Dichlorodifluoromethane (Freon 12)	0.63	0.035	0.015		3.1	0.17	0.072	0.698	3/19/24 16:47	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 16:47	TPH
1,2-Dichloroethane	0.038	0.035	0.013		0.15	0.14	0.053	0.698	3/19/24 16:47	TPH
1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 16:47	TPH
cis-1,2-Dichloroethylene	ND	0.035	0.017		ND	0.14	0.067	0.698	3/19/24 16:47	TPH
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 16:47	TPH
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 16:47	TPH
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 16:47	TPH
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 16:47	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.018	0.035	0.014	J	0.13	0.24	0.098	0.698	3/19/24 16:47	TPH
1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 16:47	TPH
Ethanol	49	1.4	0.93	J	91	2.6	1.7	0.698	3/19/24 16:47	TPH
Ethyl Acetate	ND	0.35	0.14	-	ND	1.3	0.49	0.698	3/19/24 16:47	TPH
Ethylbenzene	0.29	0.035	0.012		1.3	0.15	0.052	0.698	3/19/24 16:47	TPH
4-Ethyltoluene	0.067	0.035	0.015		0.33	0.17	0.075	0.698	3/19/24 16:47	TPH
Heptane	0.39	0.035	0.022		1.6	0.14	0.090	0.698	3/19/24 16:47	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 16:47	TPH
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 16:47	TPH
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 16:47	TPH
Isopropanol	ND	1.4	0.73		ND	3.4	1.8	0.698	3/19/24 16:47	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 16:47	TPH
Methylene Chloride	0.12	0.35	0.094	J	0.41	1.2	0.33	0.698	3/19/24 16:47	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 16:47	TPH
Naphthalene	0.25	0.035	0.028		1.3	0.18	0.15	0.698	3/19/24 16:47	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 16:47	TPH
Styrene	0.084	0.035	0.027		0.36	0.15	0.12	0.698	3/19/24 16:47	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 16:47	TPH
									Page 1	1 of 36

Page 14 of 36



### ANALYTICAL RESULTS

Project Location: Date Received: 3/12/2024 Field Sample #: FD-031024 Sample ID: 24C1287-06 Sample Matrix: Indoor air Sampled: 3/10/2024 00:00 Sample Description/Location: Sub Description/Location: Canister ID: P2352 Canister Size: 6 liter Flow Controller ID: 5080 Sample Type: 8 hr

FD of CL-IA-2

Work Order: 24C1287 Initial Vacuum(in Hg): -30+

Final Vacuum(in Hg): -10.5 Receipt Vacuum(in Hg): -9.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

EPA TO-15											
		ppbv				ug/m3		Date/Time			
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst	
Tetrachloroethylene	0.73	0.035	0.030		5.0	0.24	0.20	0.698	3/19/24 16:47	TPH	
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 16:47	TPH	
Toluene	5.6	0.035	0.017		21	0.13	0.066	0.698	3/19/24 16:47	TPH	
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 16:47	TPH	
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 16:47	TPH	
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 16:47	TPH	
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 16:47	TPH	
Trichlorofluoromethane (Freon 11)	0.23	0.14	0.014		1.3	0.78	0.080	0.698	3/19/24 16:47	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.071	0.14	0.0095	J	0.55	1.1	0.073	0.698	3/19/24 16:47	TPH	
1,2,4-Trimethylbenzene	0.49	0.035	0.021		2.4	0.17	0.10	0.698	3/19/24 16:47	TPH	
1,3,5-Trimethylbenzene	0.12	0.035	0.027		0.61	0.17	0.13	0.698	3/19/24 16:47	TPH	
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 16:47	TPH	
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 16:47	TPH	
m&p-Xylene	1.0	0.070	0.024		4.4	0.30	0.11	0.698	3/19/24 16:47	TPH	
o-Xylene	0.38	0.035	0.013		1.7	0.15	0.055	0.698	3/19/24 16:47	TPH	
Surrogates	% Recov	erv		% REC	C Limits						

4-Bromofluorobenzene (1)

94.1

70-130

3/19/24 16:47



#### ANALYTICAL RESULTS

Project Location:Sample Description/Location:Date Received: 3/12/2024Sub Description/Location:Field Sample #: CL-IA-3-BCanister ID: P1072Sample ID: 24C1287-07Canister Size: 6 literSample Matrix: Indoor airFlow Controller ID: 3267Sampled: 3/10/202408:38Sample Type: 8 hr

Work Order: 24C1287 Initial Vacuum(in Hg): -30+ Final Vacuum(in Hg): -8 Receipt Vacuum(in Hg): -8.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	CPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	7.3	1.4	0.71	0.0	17	3.3	1.7	0.698	3/19/24 17:19	TPH
Benzene	0.20	0.035	0.011		0.65	0.11	0.034	0.698	3/19/24 17:19	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 17:19	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 17:19	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 17:19	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 17:19	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 17:19	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 17:19	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 17:19	TPH
Carbon Tetrachloride	0.063	0.035	0.027		0.40	0.22	0.17	0.698	3/19/24 17:19	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 17:19	TPH
Chloroethane	0.048	0.035	0.032		0.13	0.092	0.084	0.698	3/19/24 17:19	TPH
Chloroform	0.018	0.035	0.017	J	0.089	0.17	0.083	0.698	3/19/24 17:19	TPH
Chloromethane	0.55	0.070	0.047		1.1	0.14	0.096	0.698	3/19/24 17:19	TPH
Cyclohexane	0.061	0.035	0.027		0.21	0.12	0.093	0.698	3/19/24 17:19	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 17:19	TPH
1.2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 17:19	ТРН
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 17:19	ТРН
1,3-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.078	0.698	3/19/24 17:19	ТРН
1,4-Dichlorobenzene	ND	0.035	0.015		ND	0.21	0.10	0.698	3/19/24 17:19	ТРН
Dichlorodifluoromethane (Freon 12)	0.52	0.035	0.015		2.5	0.17	0.072	0.698	3/19/24 17:19	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 17:19	ТРН
1,2-Dichloroethane	0.020	0.035	0.013	J	0.079	0.14	0.053	0.698	3/19/24 17:19	ТРН
1,1-Dichloroethylene	ND	0.035	0.024	U U	ND	0.14	0.097	0.698	3/19/24 17:19	ТРН
cis-1,2-Dichloroethylene	0.024	0.035	0.017	J	0.097	0.14	0.067	0.698	3/19/24 17:19	ТРН
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 17:19	TPH
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 17:19	ТРН
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 17:19	ТРН
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 17:19	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.017	0.035	0.014	J	0.12	0.24	0.098	0.698	3/19/24 17:19	TPH
1,4-Dioxane	ND	0.35	0.17	-	ND	1.3	0.62	0.698	3/19/24 17:19	TPH
Ethanol	9.3	1.4	0.93		17	2.6	1.7	0.698	3/19/24 17:19	ТРН
Ethyl Acetate	0.82	0.35	0.14		2.9	1.3	0.49	0.698	3/19/24 17:19	TPH
Ethylbenzene	0.37	0.035	0.012		1.6	0.15	0.052	0.698	3/19/24 17:19	TPH
4-Ethyltoluene	0.087	0.035	0.015		0.43	0.17	0.075	0.698	3/19/24 17:19	TPH
Heptane	0.45	0.035	0.022		1.8	0.14	0.090	0.698	3/19/24 17:19	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 17:19	ТРН
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 17:19	TPH
2-Hexanone (MBK)	0.058	0.035	0.015		0.24	0.14	0.062	0.698	3/19/24 17:19	TPH
Isopropanol	13	1.4	0.73		33	3.4	1.8	0.698	3/19/24 17:19	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 17:19	TPH
Methylene Chloride	0.11	0.35	0.094	J	0.39	1.2	0.33	0.698	3/19/24 17:19	ТРН
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018	2	ND	0.14	0.076	0.698	3/19/24 17:19	ТРН
Naphthalene	0.065	0.035	0.028		0.34	0.11	0.15	0.698	3/19/24 17:19	ТРН
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 17:19	ТРН
Styrene	0.049	0.035	0.027		0.21	0.15	0.12	0.698	3/19/24 17:19	ТРН
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.15	0.059	0.698	3/19/24 17:19	ТРН

Page 16 of 36



### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -30+
Field Sample #: CL-IA-3-B	Canister ID: P1072	Final Vacuum(in Hg): -8
Sample ID: 24C1287-07	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Indoor air	Flow Controller ID: 3267	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:38	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

EPA TO-15												
		ppbv				ug/m3		Date/Time				
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst		
Tetrachloroethylene	1.1	0.035	0.030		7.4	0.24	0.20	0.698	3/19/24 17:19	TPH		
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 17:19	TPH		
Toluene	5.9	0.035	0.017		22	0.13	0.066	0.698	3/19/24 17:19	TPH		
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 17:19	TPH		
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 17:19	TPH		
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 17:19	TPH		
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 17:19	TPH		
Trichlorofluoromethane (Freon 11)	0.35	0.14	0.014		2.0	0.78	0.080	0.698	3/19/24 17:19	TPH		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.067	0.14	0.0095	J	0.51	1.1	0.073	0.698	3/19/24 17:19	TPH		
1,2,4-Trimethylbenzene	0.56	0.035	0.021		2.8	0.17	0.10	0.698	3/19/24 17:19	TPH		
1,3,5-Trimethylbenzene	0.15	0.035	0.027		0.71	0.17	0.13	0.698	3/19/24 17:19	TPH		
Vinyl Acetate	0.63	0.70	0.14	J	2.2	2.5	0.50	0.698	3/19/24 17:19	TPH		
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 17:19	TPH		
m&p-Xylene	1.2	0.070	0.024		5.3	0.30	0.11	0.698	3/19/24 17:19	TPH		
o-Xylene	0.45	0.035	0.013		2.0	0.15	0.055	0.698	3/19/24 17:19	TPH		

4-Bromofluorobenzene (1)

94.5

70-130

3/19/24 17:19



#### ANALYTICAL RESULTS

Project Location:Sample Description/Location:Date Received: 3/12/2024Sub Description/Location:Field Sample #: CL-OA-1Canister ID: P3592Sample ID: 24C1287-08Canister Size: 6 literSample Matrix: Ambient AirFlow Controller ID: 3749Sampled: 3/10/2024 08:40Sample Type: 8 hr

Work Order: 24C1287 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -8.5 Receipt Vacuum(in Hg): -7.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	1.7	1.4	0.71		4.0	3.3	1.7	0.698	3/19/24 17:52	TPH
Benzene	0.12	0.035	0.011		0.38	0.11	0.034	0.698	3/19/24 17:52	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 17:52	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 17:52	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 17:52	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 17:52	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 17:52	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 17:52	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 17:52	TPH
Carbon Tetrachloride	0.070	0.035	0.027		0.44	0.22	0.17	0.698	3/19/24 17:52	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 17:52	TPH
Chloroethane	0.033	0.035	0.032	J	0.088	0.092	0.084	0.698	3/19/24 17:52	TPH
Chloroform	ND	0.035	0.017		ND	0.17	0.083	0.698	3/19/24 17:52	TPH
Chloromethane	0.53	0.070	0.047		1.1	0.14	0.096	0.698	3/19/24 17:52	TPH
Cyclohexane	ND	0.035	0.027		ND	0.12	0.093	0.698	3/19/24 17:52	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 17:52	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 17:52	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 17:52	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 17:52	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 17:52	TPH
Dichlorodifluoromethane (Freon 12)	0.57	0.035	0.015		2.8	0.17	0.072	0.698	3/19/24 17:52	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 17:52	TPH
1,2-Dichloroethane	0.014	0.035	0.013	J	0.056	0.14	0.053	0.698	3/19/24 17:52	TPH
1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 17:52	TPH
cis-1,2-Dichloroethylene	ND	0.035	0.017		ND	0.14	0.067	0.698	3/19/24 17:52	TPH
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 17:52	TPH
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 17:52	TPH
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 17:52	TPH
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 17:52	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.017	0.035	0.014	J	0.12	0.24	0.098	0.698	3/19/24 17:52	TPH
1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 17:52	TPH
Ethanol	1.1	1.4	0.93	J	2.1	2.6	1.7	0.698	3/19/24 17:52	TPH
Ethyl Acetate	ND	0.35	0.14		ND	1.3	0.49	0.698	3/19/24 17:52	TPH
Ethylbenzene	ND	0.035	0.012		ND	0.15	0.052	0.698	3/19/24 17:52	TPH
4-Ethyltoluene	ND	0.035	0.015		ND	0.17	0.075	0.698	3/19/24 17:52	TPH
Heptane	0.042	0.035	0.022		0.17	0.14	0.090	0.698	3/19/24 17:52	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 17:52	TPH
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 17:52	TPH
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 17:52	TPH
Isopropanol	ND	1.4	0.73		ND	3.4	1.8	0.698	3/19/24 17:52	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 17:52	TPH
Methylene Chloride	0.099	0.35	0.094	J	0.34	1.2	0.33	0.698	3/19/24 17:52	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 17:52	TPH
Naphthalene	ND	0.035	0.028		ND	0.18	0.15	0.698	3/19/24 17:52	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 17:52	TPH
Styrene	ND	0.035	0.027		ND	0.15	0.12	0.698	3/19/24 17:52	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 17:52	TPH

19

Page 18 of 36



#### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample #: CL-OA-1	Canister ID: P3592	Final Vacuum(in Hg): -8.5
Sample ID: 24C1287-08	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.7
Sample Matrix: Ambient Air	Flow Controller ID: 3749	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:40	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		H	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.030		ND	0.24	0.20	0.698	3/19/24 17:52	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 17:52	TPH
Toluene	0.062	0.035	0.017		0.23	0.13	0.066	0.698	3/19/24 17:52	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 17:52	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 17:52	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 17:52	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 17:52	TPH
Trichlorofluoromethane (Freon 11)	0.19	0.14	0.014		1.1	0.78	0.080	0.698	3/19/24 17:52	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.073	0.14	0.0095	J	0.56	1.1	0.073	0.698	3/19/24 17:52	TPH
1,2,4-Trimethylbenzene	ND	0.035	0.021		ND	0.17	0.10	0.698	3/19/24 17:52	TPH
1,3,5-Trimethylbenzene	ND	0.035	0.027		ND	0.17	0.13	0.698	3/19/24 17:52	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 17:52	TPH
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 17:52	TPH
m&p-Xylene	ND	0.070	0.024		ND	0.30	0.11	0.698	3/19/24 17:52	TPH
o-Xylene	ND	0.035	0.013		ND	0.15	0.055	0.698	3/19/24 17:52	TPH

Surrogates

4-Bromofluorobenzene (1)

89.7

% Recovery

% REC Limits

70-130

3/19/24 17:52

# ATTACHMENT B

# SUPPORT DOCUMENTATION

AIR SAMPLE	5	1	AECOM	AECOM Jo - Kefend	Blud, suite III	Ш	
	Y RECORD	0	BUFFALO, NY 14202 PHONE: 716-856-5636	STICK TOTAL	AECOM CONTACT:	Č :	E Calin
	SITE NAME		Ī	SAMPLE IN	FORMATION		
らのフマスライデー へ SAMPLERS (PRINT/SIGNATURE)	Charuita Leader	M ~~ /			ON	₽₽	REQUIRED
Urbern / Tean When				LLER ID	RE/		
DELIVERY SERVICE Drop of AIRBILL NO .:	: N/A		ITERS)	CONTRO	PRESSU M ("Hg) PRESSUF M ("Hg) URE/VAC CEIPT ("	2-15	
SAMPLE SAMPLE DATE TIME			SIZE (L	FLOW (	VACUU FINAL F VACUU PRESSI	TC	
01 3/7/24 0815 CL-	IA-3-A	(******)	15	3260	0 9- 25	$\mathbf{X}$	
0748 CL	- 554 - 1	-	124	ğ	1	X	
0	- I-J- 1	-		3584	5× L= bz	×	
04 3/10/24 0829 CL-	SSV-2	-	1	3042		$\times$	
-70 9580 hz/a/2 50	IA-2	-	-	5080	5.9.6	×	
06 3/10/24 - F.D.	1-03/024	AQ 6	-	5080		×	
(1) 3110/24 0838 CL-	TA-3-B UV			3267	5.5	ネ	
		-	6 3592	3749	~5.5 N	×	
					_		
09			0655	- 3631		1 1 1 1	
AA - AMBIENT AIR AI - INDOOR AIR		AQ - FIELD QC	AS -	AS - SUB-SLAB AIR	GS - SOIL GAS		
N# - NORMAL ENVIRONMENTAL SAMPLE FD# - FIELD			QUENTIAL NUMBER (FRO)		AULTIPLE SAMPLES IN A S	INGLE	E DAY)
) DATE	<u>भ</u> ्त			· · · · · · · · · · · · · · · · · · ·	SPECIAL INS	之	ICTIONS
w _n			(SÍGNATURE)	DATE TIME 3/12/24 הסנה			
Distribution: Original accompanies shipment, copy to project file			1				
D BY (SIGNATURE) D BY (SIGNATURE) D BY (SIGNATURE) HOLY (AAC	S shipment, copy t	DATE     TIME     RE: EIVED BY       DATE     TIME     RE: EIVED BY       DATE     TIME     RE: EIVED BY       DATE     TIME     RE: EIVED FO       DATE     TIME     RECEIVED FO       Shipment, copy to project file     IV.ca.	WED FOR LAE	WED FOR LAE	**- MATRIX SPIKE     (# - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODIATE       IVED BY (SIGNATURE)     DATE     TIME       IVED FOR LAB BY (SIGNATURE)     DATE     TIME       A     COLAA     3/12/24     0.20	**- MATRIX SPIKE     (# - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTINE       INED BY (SIGNATURE)     DATE     TIME       IVED FOR LAB BY (SIGNATURE)     DATE     TIME       An     Colan     3/12/24     10.05	WED FOR LAE

CH	CHAIN O	AIR S	IR SAMPLE CUSTODY RECOF	ORD	4300	AECOM 3-C C 287 WEST GENESEE S BUFFALO, NY 14202 PHONE: 716-856-5636	1 32 Lake to ut	+ Blud , Suite 111 AB AECOM CONTACT:	- 11	Colin Wasteneys	
PROJECT NUMBER	BER		ų					SAMPLE INFORMATION		LAB Pace	
SAMPLERS (PRINT/SIGNATURE)	DOTZZSYS	JRE)	Chemical Le	Lecancen	T			NC	REQUIRED	SHIPPING	1
tom n.	Urban /	1722 L	La-			a	רפא ום	UUM UPC		PAGE	of -
DELIVERY SERVICE: Drop and AIRBILL NO	VICE: Pr	sp art			текs) текз)	פאוס	юятио	RESSUR ("Hg) RE/VAC	<u>) танас</u>	DEMADKS	TYPE
LOCATION	SAMPLE	SAMPLE	SAMPLE ID	MATRIX CODE	SIZE (LI	T <b>SINA</b> D	FLOW C				SODE SAMPLE
10	3/7/24	5180	CL-IA-3-A	47 A	و	1520	3260	6-5	×		1
02	310/24	SHLO	C1-55V-1	-	9	1243	3052	-29-4 50	1		2
30	310/24	5440	CL-TA-1	AI	9	3345	3584	5×2-62-	×		11.
ю		6280	CL- SSV-2	AS		3031	3042	-29-7 5.	×		N.
50	3110/24	0830	C1- IA-2	-	9	1081	5080	0			N
90	3 Jichy	I	FD-031024	AQ		2352	5080	34-1050	· · · ·		Ð
5	3110/24	0838	CL-IA-3-B	AI		1072	3267	304-84	×		N
S	H2/9/E	0640	CL-0A-1	AA		3592	3749	NS-8-582	×		N,
00											
50					1	0655	3631			Unused cant regulate	ter
					$\square$		V				-
CODES	AA - AMBIENT AIR	AIR	AI - INDOOR AIR	AQ - FIELD QC		AS - SUE	- SUB-SLAB AIR	GS - SOIL GAS	ĄS		
SAMPLE TYPE CODES	N# - NORMAL ENVI	N# - NORMAL ENVIRONMENTAL SAMPLE	FD# - FIELD DUPLICATE	< SPIKE (# - {	SEQUENTIAL	- NUMBER (FROM 1	TO 9) TO ACCOMMODAT	(#- SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	VA SINGLE DAY)		
RELINQUISHED BY (SIGNATURE) TOM (JUM	BY (SIGNATU		DATE TIME RECEIVED BY (SIGNATURE)	LOCOUN YOUN		AAU	DATE TIME		SPECIAL INSTRUCTIONS		
POLOUISHED BY (SIGNATURE)	BY (SIGNATU		DATE TIME RECEIVED FOR LAB BY (SIGNATURE) 3/11/24 10:55 KAAA COLAA	OR LAB BY	Y (SIGN	Ĺ	DATE         TIME           3/12/24         1/1/2 (h)				
Distribution: Ori	ginal accomp	anies shipi	ge								
JRSF-075K/1 OF 1/CofCR/GCM	GCM							_			



CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Qualifications:

EPA TO-15

E Reported result is estimated. Value reported over verified calibration range.

#### Analyte & Samples(s) Qualified:

#### Acetone, Ethanol

24C1287-01RE1[CL-IA-3-A], 24C1287-03[CL-IA-1], 24C1287-05[CL-IA-2], 24C1287-06[FD-031024]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Pace

# DC#_Title: ENV-FRM-ELON-0009 v04_Air Sample Receiving Checklist

Effective Date: 07/13/2023

# Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False True False

Client_AECOM							True	False
Project Chemical	Leam	ian		Received on	lce			
MCP/RCP Required				Received in	Cooler			X
Deliverable Package R	equirem <b>e</b> i	nt		Custody Sea		МЕ		X
Locati <b>on</b>				COC Relingu	ished		X	
PWSID# (When Applic				A second second second	s Labels Agree		X	
Arrival Method Cour	rier			Marine and Article	in Good Condition		<b>X</b>	П
Received By / Date / T	ime KM	C 3/12/24	1020				X	
Back-Sheet By / Date ,					eived within Holdin	ng Time		
Temperature Method		#	t	<u>Is there eno</u>	ugh Volume			
Temp $\leq 6^{\circ}$ C Ac	tual Temp	eratu <b>re</b>		Proper Med	ia/Container Used		X	
Rush Samples: Yes /	~			Individually	Certified Cans			$\bowtie$
Short Hold: Yes //	$\mathbf{x}$			Trip Blanks				$\mathbb{X}$
				COC Legible			X	
Notes regarding	Samples	/COC outside	e of SOP:		ed: (Check all inc	luded)		
Can P1520	+ P	1072 have	e the	Client	Analysis	Sat	mpler Name	X
Same Sample	ID.			Project 🗹			llection Date/T	ime 🗹
							neotion bate, i	
Container	#	Size	Regulator	Duration		Access	sories	
Summa Cans	q	66	8	Shr	Nut/Ferrule	8	IC Train	
Tedlar Bags					Tubing			
TO-17 Tubes					T-Connector	1	Shipping Ch	arges
Radiello					Syringe			
Pufs/ TO-11					Tedlar	1		

Ca	n#'s	5	1081	10	15	Re	gs #'s	5	5080	10	15
1	P1520	6	P2352	11	16	1	3260	6	5080	11	16
2	P1243	7	P1072	12	17	2	3052	7	3267	12	17
3	P3345	8	P3592	13	18	З	3584	8	3749	13	18
4	P0331	9		14	19	4	364 2	9		14	19
Un	used Media	4		9	14	Puf	s/TO-17's	5		10	15
1	P0655	5		10	15	1		6		11	16
2	3631	6		11	16	2		7		12	17
3		7		12	17	3		8		13	18
4		8		13	18	4		9		14	19

Qualtrax ID: 127034

Page 1 of 1



Attachment 6

Analytical Data Report



March 22, 2024

Colin Wasteneys AECOM Environment - Buffalo, NY 50 Lakefront Boulevard Suite 3 Buffalo, NY 14202

Project Location: Client Job Number: Project Number: 60722348 Laboratory Work Order Number: 24C1287

Enclosed are results of analyses for samples as received by the laboratory on March 12, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle K. Stuckey Project Manager

hatherine 7. allen

QA Officer Katherine Allen

Laboratory Manager Daren Damboragian



REPORT DATE: 3/22/2024

AECOM Environment - Buffalo, NY 50 Lakefront Boulevard Suite 3 Buffalo, NY 14202 ATTN: Colin Wasteneys

PURCHASE ORDER NUMBER: 00156431

PROJECT NUMBER: 60722348

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 24C1287

The results of analyses performed on the following samples submitted to Con-Test, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION:

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
CL-IA-3-A	24C1287-01	Indoor air		-	
				EPA TO-15	
CL-SSV-1	24C1287-02	Sub Slab		-	
				EPA TO-15	
CL-IA-1	24C1287-03	Indoor air		-	
				EPA TO-15	
CL-SSV-2	24C1287-04	Sub Slab		-	
				EPA TO-15	
CL-IA-2	24C1287-05	Indoor air		-	
				EPA TO-15	
FD-031024	24C1287-06	Indoor air		-	
				EPA TO-15	
CL-IA-3-B	24C1287-07	Indoor air		- ED4 TO 15	
	0401005.00			EPA TO-15	
CL-OA-1	24C1287-08	Ambient Air		- EPA TO-15	
	2401207-00				
UNUSED	24C1287-09			-	



CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

**Qualifications:** 

EPA TO-15

E Reported result is estimated. Value reported over verified calibration range.

#### Analyte & Samples(s) Qualified:

#### Acetone, Ethanol

24C1287-01RE1[CL-IA-3-A], 24C1287-03[CL-IA-1], 24C1287-05[CL-IA-2], 24C1287-06[FD-031024]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative



#### ANALYTICAL RESULTS

Project Location: Date Received: 3/12/2024 Field Sample #: CL-IA-3-A Sample ID: 24C1287-01 Sample Matrix: Indoor air Sampled: 3/7/2024 08:15 Sample Description/Location: Sub Description/Location: Canister ID: P1520 Canister Size: 6 liter Flow Controller ID: 3260 Sample Type: 8 hr Work Order: 24C1287 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -9 Receipt Vacuum(in Hg): -6.3 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	CPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	1100	20	10	Е	2600	48	24	10	3/20/24 8:00	TPH
Benzene	0.31	0.035	0.011		0.99	0.11	0.034	0.698	3/19/24 15:09	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 15:09	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 15:09	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 15:09	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 15:09	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 15:09	TPH
2-Butanone (MEK)	3.0	1.4	0.68		9.0	4.1	2.0	0.698	3/19/24 15:09	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 15:09	TPH
Carbon Tetrachloride	0.035	0.035	0.027		0.22	0.22	0.17	0.698	3/19/24 15:09	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 15:09	TPH
Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 15:09	TPH
Chloroform	0.024	0.035	0.017	J	0.12	0.17	0.083	0.698	3/19/24 15:09	TPH
Chloromethane	0.50	0.070	0.047		1.0	0.14	0.096	0.698	3/19/24 15:09	TPH
Cyclohexane	1.5	0.035	0.027		5.2	0.12	0.093	0.698	3/19/24 15:09	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 15:09	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 15:09	ТРН
1.2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 15:09	ТРН
1.3-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.078	0.698	3/19/24 15:09	ТРН
1.4-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.10	0.698	3/19/24 15:09	ТРН
Dichlorodifluoromethane (Freon 12)	0.56	0.035	0.017		2.8	0.21	0.072	0.698	3/19/24 15:09	ТРН
1,1-Dichloroethane	0.50 ND	0.035	0.013		ND	0.17	0.072	0.698	3/19/24 15:09	ТРН
1.2-Dichloroethane	0.024	0.035	0.017	J	0.096	0.14	0.009	0.698	3/19/24 15:09	ТРН
,	0.024 ND	0.035	0.013	J	0.096 ND	0.14	0.033	0.698		ТРН ТРН
1,1-Dichloroethylene cis-1,2-Dichloroethylene	0.050	0.035	0.024		0.20	0.14	0.097	0.698	3/19/24 15:09 3/19/24 15:09	ТРН ТРН
•	0.030 ND	0.035	0.017		0.20 ND	0.14	0.067	0.698		ТРН ТРН
trans-1,2-Dichloroethylene									3/19/24 15:09	ТРН ТРН
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 15:09	
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 15:09	TPH
trans-1,3-Dichloropropene	ND	0.035	0.034	т	ND	0.16	0.15	0.698	3/19/24 15:09	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.018	0.035	0.014	J	0.13	0.24	0.098	0.698	3/19/24 15:09	TPH
1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 15:09	TPH
Ethanol	20	1.4	0.93	-	38	2.6	1.7	0.698	3/19/24 15:09	TPH
Ethyl Acetate	0.22	0.35	0.14	J	0.80	1.3	0.49	0.698	3/19/24 15:09	TPH
Ethylbenzene	3.2	0.035	0.012		14	0.15	0.052	0.698	3/19/24 15:09	TPH
4-Ethyltoluene	0.34	0.035	0.015		1.7	0.17	0.075	0.698	3/19/24 15:09	TPH
Heptane	79	0.50	0.32		320	2.0	1.3	10	3/20/24 8:00	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 15:09	TPH
Hexane	1.0	1.4	0.73	J	3.6	4.9	2.6	0.698	3/19/24 15:09	TPH
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 15:09	TPH
Isopropanol	1.7	1.4	0.73		4.3	3.4	1.8	0.698	3/19/24 15:09	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 15:09	TPH
Methylene Chloride	0.12	0.35	0.094	J	0.41	1.2	0.33	0.698	3/19/24 15:09	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 15:09	TPH
Naphthalene	0.65	0.035	0.028		3.4	0.18	0.15	0.698	3/19/24 15:09	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 15:09	TPH
Styrene	0.31	0.035	0.027		1.3	0.15	0.12	0.698	3/19/24 15:09	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 15:09	TPH



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample #: CL-IA-3-A	Canister ID: P1520	Final Vacuum(in Hg): -9
Sample ID: 24C1287-01	Canister Size: 6 liter	Receipt Vacuum(in Hg): -6.3
Sample Matrix: Indoor air	Flow Controller ID: 3260	Flow Controller Type: Fixed-Orifice
Sampled: 3/7/2024 08:15	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	3.5	0.035	0.030		24	0.24	0.20	0.698	3/19/24 15:09	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 15:09	TPH
Toluene	18	0.035	0.017		70	0.13	0.066	0.698	3/19/24 15:09	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 15:09	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 15:09	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 15:09	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 15:09	TPH
Trichlorofluoromethane (Freon 11)	0.28	0.14	0.014		1.6	0.78	0.080	0.698	3/19/24 15:09	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.063	0.14	0.0095	J	0.49	1.1	0.073	0.698	3/19/24 15:09	TPH
1,2,4-Trimethylbenzene	2.4	0.035	0.021		12	0.17	0.10	0.698	3/19/24 15:09	TPH
1,3,5-Trimethylbenzene	0.53	0.035	0.027		2.6	0.17	0.13	0.698	3/19/24 15:09	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 15:09	TPH
Vinyl Chloride	0.019	0.035	0.018	J	0.048	0.089	0.045	0.698	3/19/24 15:09	TPH
m&p-Xylene	11	0.070	0.024		48	0.30	0.11	0.698	3/19/24 15:09	TPH
o-Xylene	3.1	0.035	0.013		13	0.15	0.055	0.698	3/19/24 15:09	TPH
Surrogates	% Recov	very		% REC	C Limits					
4-Bromofluorobenzene (1)		95.9		70-	-130				3/19/24 15:09	
4-Bromofluorobenzene (1)		93.2		70-	-130				3/20/24 8:00	



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-1	Canister ID: P1243	Final Vacuum(in Hg): -4
Sample ID: 24C1287-02	Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.0
Sample Matrix: Sub Slab	Flow Controller ID: 3052	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:48	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	25	4.0	2.0		58	9.5	4.8	2	3/19/24 18:20	TPH
Benzene	0.17	0.10	0.031		0.54	0.32	0.099	2	3/19/24 18:20	TPH
Benzyl chloride	ND	0.10	0.054		ND	0.52	0.28	2	3/19/24 18:20	TPH
Bromodichloromethane	ND	0.10	0.041		ND	0.67	0.27	2	3/19/24 18:20	TPH
Bromoform	ND	0.10	0.036		ND	1.0	0.37	2	3/19/24 18:20	TPH
Bromomethane	ND	0.10	0.085		ND	0.39	0.33	2	3/19/24 18:20	TPH
1,3-Butadiene	ND	0.10	0.084		ND	0.22	0.19	2	3/19/24 18:20	TPH
2-Butanone (MEK)	ND	4.0	2.0		ND	12	5.8	2	3/19/24 18:20	TPH
Carbon Disulfide	ND	1.0	0.19		ND	3.1	0.60	2	3/19/24 18:20	TPH
Carbon Tetrachloride	ND	0.10	0.079		ND	0.63	0.50	2	3/19/24 18:20	TPH
Chlorobenzene	ND	0.10	0.033		ND	0.46	0.15	2	3/19/24 18:20	TPH
Chloroethane	ND	0.10	0.092		ND	0.26	0.24	2	3/19/24 18:20	TPH
Chloroform	ND	0.10	0.049		ND	0.49	0.24	2	3/19/24 18:20	TPH
Chloromethane	ND	0.20	0.13		ND	0.41	0.28	2	3/19/24 18:20	TPH
Cyclohexane	0.59	0.10	0.078		2.0	0.34	0.27	2	3/19/24 18:20	TPH
Dibromochloromethane	ND	0.10	0.067		ND	0.85	0.57	2	3/19/24 18:20	TPH
1,2-Dibromoethane (EDB)	ND	0.10	0.062		ND	0.77	0.48	2	3/19/24 18:20	TPH
1.2-Dichlorobenzene	ND	0.10	0.035		ND	0.60	0.21	2	3/19/24 18:20	TPH
1.3-Dichlorobenzene	ND	0.10	0.037		ND	0.60	0.21	2	3/19/24 18:20	ТРН
1,4-Dichlorobenzene	ND	0.10	0.048		ND	0.60	0.22	2	3/19/24 18:20	ТРН
Dichlorodifluoromethane (Freon 12)	0.52	0.10	0.042		2.6	0.49	0.21	2	3/19/24 18:20	ТРН
1,1-Dichloroethane	ND	0.10	0.042		ND	0.40	0.20	2	3/19/24 18:20	ТРН
1.2-Dichloroethane	0.12	0.10	0.038		0.49	0.40	0.15	2	3/19/24 18:20	ТРН
1,1-Dichloroethylene	ND	0.10	0.070		ND	0.40	0.15	2	3/19/24 18:20	ТРН
cis-1,2-Dichloroethylene	ND	0.10	0.048		ND	0.40	0.28	2	3/19/24 18:20	ТРН
trans-1,2-Dichloroethylene	ND	0.10	0.043		ND	0.40	0.19	2	3/19/24 18:20	ТРН
1,2-Dichloropropane	ND	0.10	0.047		ND	0.40	0.19	2	3/19/24 18:20	ТРН
	ND	0.10	0.074		ND	0.40	0.34	2	3/19/24 18:20 3/19/24 18:20	ТРН
cis-1,3-Dichloropropene	ND									
trans-1,3-Dichloropropene	ND	0.10	0.097		ND	0.45	0.44	2 2	3/19/24 18:20	TPH TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)		0.10	0.040		ND	0.70	0.28		3/19/24 18:20	
1,4-Dioxane	ND	1.0	0.49		ND	3.6	1.8	2	3/19/24 18:20	TPH
Ethanol	68 ND	4.0	2.7		130	7.5	5.0	2	3/19/24 18:20	TPH
Ethyl Acetate	ND	1.0	0.39		ND	3.6	1.4	2	3/19/24 18:20	TPH
Ethylbenzene	0.19	0.10	0.034		0.84	0.43	0.15	2	3/19/24 18:20	TPH
4-Ethyltoluene	ND	0.10	0.043		ND	0.49	0.21	2	3/19/24 18:20	TPH
Heptane	0.27	0.10	0.063		1.1	0.41	0.26	2	3/19/24 18:20	TPH
Hexachlorobutadiene	ND	0.10	0.058		ND	1.1	0.61	2	3/19/24 18:20	TPH
Hexane	ND	4.0	2.1		ND	14	7.4	2	3/19/24 18:20	TPH
2-Hexanone (MBK)	ND	0.10	0.043		ND	0.41	0.18	2	3/19/24 18:20	TPH
Isopropanol	ND	4.0	2.1		ND	9.8	5.2	2	3/19/24 18:20	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.10	0.049		ND	0.36	0.18	2	3/19/24 18:20	TPH
Methylene Chloride	ND	1.0	0.27		ND	3.5	0.93	2	3/19/24 18:20	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.10	0.053		ND	0.41	0.22	2	3/19/24 18:20	TPH
Naphthalene	0.11	0.10	0.081		0.56	0.52	0.43	2	3/19/24 18:20	TPH
Propene	ND	4.0	2.2		ND	6.9	3.8	2	3/19/24 18:20	TPH
Styrene	0.26	0.10	0.077		1.1	0.43	0.33	2	3/19/24 18:20	TPH
1,1,2,2-Tetrachloroethane	ND	0.10	0.025		ND	0.69	0.17	2	3/19/24 18:20	TPH

Page 6 of 36



#### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-1	Canister ID: P1243	Final Vacuum(in Hg): -4
Sample ID: 24C1287-02	Canister Size: 6 liter	Receipt Vacuum(in Hg): -5.0
Sample Matrix: Sub Slab	Flow Controller ID: 3052	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:48	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	9.5	0.10	0.086		65	0.68	0.58	2	3/19/24 18:20	TPH
Tetrahydrofuran	ND	1.0	0.38		ND	2.9	1.1	2	3/19/24 18:20	TPH
Toluene	1.4	0.10	0.050		5.4	0.38	0.19	2	3/19/24 18:20	TPH
1,2,4-Trichlorobenzene	ND	0.10	0.055		ND	0.74	0.41	2	3/19/24 18:20	TPH
1,1,1-Trichloroethane	ND	0.10	0.031		ND	0.55	0.17	2	3/19/24 18:20	TPH
1,1,2-Trichloroethane	ND	0.10	0.035		ND	0.55	0.19	2	3/19/24 18:20	TPH
Trichloroethylene	0.45	0.10	0.077		2.4	0.54	0.41	2	3/19/24 18:20	TPH
Trichlorofluoromethane (Freon 11)	0.26	0.40	0.041	J	1.5	2.2	0.23	2	3/19/24 18:20	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.070	0.40	0.027	J	0.54	3.1	0.21	2	3/19/24 18:20	TPH
1,2,4-Trimethylbenzene	0.19	0.10	0.060		0.93	0.49	0.29	2	3/19/24 18:20	TPH
1,3,5-Trimethylbenzene	0.092	0.10	0.077	J	0.45	0.49	0.38	2	3/19/24 18:20	TPH
Vinyl Acetate	ND	2.0	0.41		ND	7.0	1.4	2	3/19/24 18:20	TPH
Vinyl Chloride	ND	0.10	0.051		ND	0.26	0.13	2	3/19/24 18:20	TPH
m&p-Xylene	0.49	0.20	0.070		2.1	0.87	0.30	2	3/19/24 18:20	TPH
o-Xylene	0.18	0.10	0.037		0.80	0.43	0.16	2	3/19/24 18:20	TPH
Surrogates	% Recov	ery		% REC	C Limits					

4-Bromofluorobenzene (1)

97.1

70-130

3/19/24 18:20



# ANALYTICAL RESULTS

Work Order: 24C1287 Project Location: Sample Description/Location: Initial Vacuum(in Hg): -29 Date Received: 3/12/2024 Sub Description/Location: Field Sample #: CL-IA-1 Canister ID: P3345 Final Vacuum(in Hg): -7 Sample ID: 24C1287-03 Canister Size: 6 liter Receipt Vacuum(in Hg): -7.5 Sample Matrix: Indoor air Flow Controller ID: 3584 Flow Controller Type: Fixed-Orifice Sampled: 3/10/2024 07:49 Sample Type: 8 hr Flow Controller Calibration

		I	PA TO-15					and i ost-ba	-	
Analyte	Results	ppbv RL	MDL	Flag/Qual	Results	ug/m3 RL	MDL	Dilution	Date/Time Analyzed	Analyst
Acetone	170	1.4	0.71	Е	410	3.3	1.7	0.698	3/19/24 15:41	TPH
Benzene	0.18	0.035	0.011		0.58	0.11	0.034	0.698	3/19/24 15:41	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 15:41	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 15:41	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 15:41	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 15:41	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 15:41	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 15:41	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 15:41	TPH
Carbon Tetrachloride	0.028	0.035	0.027	J	0.18	0.22	0.17	0.698	3/19/24 15:41	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 15:41	TPH
Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 15:41	TPH
Chloroform	0.072	0.035	0.017		0.35	0.17	0.083	0.698	3/19/24 15:41	TPH
Chloromethane	0.45	0.070	0.047		0.92	0.14	0.096	0.698	3/19/24 15:41	TPH
Cyclohexane	0.077	0.035	0.027		0.27	0.12	0.093	0.698	3/19/24 15:41	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 15:41	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 15:41	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 15:41	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 15:41	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 15:41	TPH
Dichlorodifluoromethane (Freon 12)	0.60	0.035	0.015		3.0	0.17	0.072	0.698	3/19/24 15:41	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 15:41	TPH
1,2-Dichloroethane	0.044	0.035	0.013		0.18	0.14	0.053	0.698	3/19/24 15:41	TPH
1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 15:41	TPH
cis-1,2-Dichloroethylene	0.024	0.035	0.017	J	0.094	0.14	0.067	0.698	3/19/24 15:41	TPH
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 15:41	TPH
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 15:41	TPH
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 15:41	TPH
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 15:41	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.014		ND	0.24	0.098	0.698	3/19/24 15:41	TPH
1,4-Dioxane	ND	0.35	0.17		ND	1.3	0.62	0.698	3/19/24 15:41	TPH
Ethanol	56	1.4	0.93	Е	110	2.6	1.7	0.698	3/19/24 15:41	ТРН
Ethyl Acetate	0.15	0.35	0.14	J	0.53	1.3	0.49	0.698	3/19/24 15:41	ТРН
Ethylbenzene	0.61	0.035	0.012	5	2.7	0.15	0.052	0.698	3/19/24 15:41	ТРН
4-Ethyltoluene	0.10	0.035	0.012		0.49	0.17	0.075	0.698	3/19/24 15:41	ТРН
Heptane	0.49	0.035	0.022		2.0	0.14	0.090	0.698	3/19/24 15:41	ТРН
Hexachlorobutadiene	ND	0.035	0.022		ND	0.37	0.21	0.698	3/19/24 15:41	ТРН
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 15:41	ТРН
2-Hexanone (MBK)	0.045	0.035	0.015		0.19	0.14	0.062	0.698	3/19/24 15:41	ТРН
Isopropanol	0.043 ND	1.4	0.013		ND	3.4	1.8	0.698	3/19/24 15:41	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 15:41	TPH
Methylene Chloride	0.13	0.035	0.017	J	0.45	1.2	0.002	0.698	3/19/24 15:41	TPH
-	0.13 ND	0.35	0.094	J	0.45 ND	0.14	0.33	0.698	3/19/24 15:41 3/19/24 15:41	ТРН ТРН
4-Methyl-2-pentanone (MIBK)										
Naphthalene	0.27 ND	0.035	0.028		1.4 ND	0.18	0.15	0.698	3/19/24 15:41	ТРН три
Propene		1.4	0.77		ND	2.4	1.3	0.698	3/19/24 15:41	TPH
Styrene	0.079	0.035	0.027		0.34	0.15	0.12	0.698	3/19/24 15:41	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 15:41	TPH

RPD Pre and Post-Sampling: <20%



#### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-IA-1	Canister ID: P3345	Final Vacuum(in Hg): -7
Sample ID: 24C1287-03	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.5
Sample Matrix: Indoor air	Flow Controller ID: 3584	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 07:49	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	1.2	0.035	0.030		7.9	0.24	0.20	0.698	3/19/24 15:41	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 15:41	TPH
Toluene	8.7	0.035	0.017		33	0.13	0.066	0.698	3/19/24 15:41	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 15:41	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 15:41	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 15:41	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 15:41	TPH
Trichlorofluoromethane (Freon 11)	0.29	0.14	0.014		1.6	0.78	0.080	0.698	3/19/24 15:41	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.069	0.14	0.0095	J	0.53	1.1	0.073	0.698	3/19/24 15:41	TPH
1,2,4-Trimethylbenzene	0.73	0.035	0.021		3.6	0.17	0.10	0.698	3/19/24 15:41	TPH
1,3,5-Trimethylbenzene	0.20	0.035	0.027		0.97	0.17	0.13	0.698	3/19/24 15:41	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 15:41	TPH
Vinyl Chloride	0.023	0.035	0.018	J	0.059	0.089	0.045	0.698	3/19/24 15:41	TPH
m&p-Xylene	2.5	0.070	0.024		11	0.30	0.11	0.698	3/19/24 15:41	TPH
o-Xylene	0.76	0.035	0.013		3.3	0.15	0.055	0.698	3/19/24 15:41	TPH
Surrogates	% Recov	very		% REC	C Limits					

4-Bromofluorobenzene (1)

96.8

70-130

3/19/24 15:41



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-2	Canister ID: P0331	Final Vacuum(in Hg): -7
Sample ID: 24C1287-04	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Sub Slab	Flow Controller ID: 3042	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:29	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	17	4.0	2.0		40	9.5	4.8	2	3/19/24 18:47	TPH
Benzene	0.24	0.10	0.031		0.75	0.32	0.099	2	3/19/24 18:47	TPH
Benzyl chloride	ND	0.10	0.054		ND	0.52	0.28	2	3/19/24 18:47	TPH
Bromodichloromethane	ND	0.10	0.041		ND	0.67	0.27	2	3/19/24 18:47	TPH
Bromoform	ND	0.10	0.036		ND	1.0	0.37	2	3/19/24 18:47	TPH
Bromomethane	ND	0.10	0.085		ND	0.39	0.33	2	3/19/24 18:47	TPH
1,3-Butadiene	ND	0.10	0.084		ND	0.22	0.19	2	3/19/24 18:47	TPH
2-Butanone (MEK)	ND	4.0	2.0		ND	12	5.8	2	3/19/24 18:47	TPH
Carbon Disulfide	0.35	1.0	0.19	J	1.1	3.1	0.60	2	3/19/24 18:47	TPH
Carbon Tetrachloride	ND	0.10	0.079		ND	0.63	0.50	2	3/19/24 18:47	TPH
Chlorobenzene	ND	0.10	0.033		ND	0.46	0.15	2	3/19/24 18:47	TPH
Chloroethane	ND	0.10	0.092		ND	0.26	0.24	2	3/19/24 18:47	TPH
Chloroform	8.3	0.10	0.049		40	0.49	0.24	2	3/19/24 18:47	TPH
Chloromethane	ND	0.20	0.13		ND	0.41	0.28	2	3/19/24 18:47	TPH
Cyclohexane	0.18	0.10	0.078		0.61	0.34	0.27	2	3/19/24 18:47	TPH
Dibromochloromethane	ND	0.10	0.067		ND	0.85	0.57	2	3/19/24 18:47	TPH
1,2-Dibromoethane (EDB)	ND	0.10	0.062		ND	0.77	0.48	2	3/19/24 18:47	TPH
1,2-Dichlorobenzene	ND	0.10	0.035		ND	0.60	0.21	2	3/19/24 18:47	TPH
1,3-Dichlorobenzene	ND	0.10	0.037		ND	0.60	0.22	2	3/19/24 18:47	TPH
1,4-Dichlorobenzene	ND	0.10	0.048		ND	0.60	0.29	2	3/19/24 18:47	TPH
Dichlorodifluoromethane (Freon 12)	0.71	0.10	0.042		3.5	0.49	0.21	2	3/19/24 18:47	TPH
1,1-Dichloroethane	0.32	0.10	0.049		1.3	0.40	0.20	2	3/19/24 18:47	TPH
1,2-Dichloroethane	0.12	0.10	0.038		0.49	0.40	0.15	2	3/19/24 18:47	TPH
1,1-Dichloroethylene	ND	0.10	0.070		ND	0.40	0.28	2	3/19/24 18:47	TPH
cis-1,2-Dichloroethylene	ND	0.10	0.048		ND	0.40	0.19	2	3/19/24 18:47	TPH
trans-1,2-Dichloroethylene	ND	0.10	0.047		ND	0.40	0.19	2	3/19/24 18:47	ТРН
1,2-Dichloropropane	ND	0.10	0.074		ND	0.46	0.34	2	3/19/24 18:47	TPH
cis-1,3-Dichloropropene	ND	0.10	0.051		ND	0.45	0.23	2	3/19/24 18:47	TPH
trans-1,3-Dichloropropene	ND	0.10	0.097		ND	0.45	0.44	2	3/19/24 18:47	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10	0.040		ND	0.70	0.28	2	3/19/24 18:47	ТРН
1,4-Dioxane	ND	1.0	0.49		ND	3.6	1.8	2	3/19/24 18:47	TPH
Ethanol	50	4.0	2.7		95	7.5	5.0	2	3/19/24 18:47	ТРН
Ethyl Acetate	6.1	1.0	0.39		22	3.6	1.4	2	3/19/24 18:47	ТРН
Ethylbenzene	0.28	0.10	0.034		1.2	0.43	0.15	2	3/19/24 18:47	ТРН
4-Ethyltoluene	ND	0.10	0.043		ND	0.49	0.13	2	3/19/24 18:47	TPH
Heptane	0.51	0.10	0.063		2.1	0.41	0.26	2	3/19/24 18:47	TPH
Hexachlorobutadiene	ND	0.10	0.058		ND	1.1	0.61	2	3/19/24 18:47	TPH
Hexane	ND	4.0	2.1		ND	14	7.4	2	3/19/24 18:47	TPH
2-Hexanone (MBK)	ND	0.10	0.043		ND	0.41	0.18	2	3/19/24 18:47	ТРН
Isopropanol	15	4.0	2.1		36	9.8	5.2	2	3/19/24 18:47	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.10	0.049		ND	0.36	0.18	2	3/19/24 18:47	TPH
Methylene Chloride	ND	1.0	0.27		ND	3.5	0.13	2	3/19/24 18:47	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.10	0.053		ND	0.41	0.33	2	3/19/24 18:47	ТРН
Naphthalene	ND	0.10	0.033		ND	0.41	0.22	2	3/19/24 18:47	TPH
Propene	ND	4.0	2.2		ND	0.32 6.9	3.8	2	3/19/24 18:47 3/19/24 18:47	TPH
Styrene	ND	0.10	0.077		ND	0.9	0.33	2	3/19/24 18:47	TPH
1,1,2,2-Tetrachloroethane	ND	0.10	0.025		ND	0.43	0.33	2	3/19/24 18:47	TPH
1,1,2,2-101a011010culanc	ND	0.10	0.025		ND	0.09	0.17	2	5/17/24 10.4/	11.11

Page 10 of 36



#### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -29
Field Sample #: CL-SSV-2	Canister ID: P0331	Final Vacuum(in Hg): -7
Sample ID: 24C1287-04	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Sub Slab	Flow Controller ID: 3042	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:29	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	23	0.10	0.086		150	0.68	0.58	2	3/19/24 18:47	TPH
Tetrahydrofuran	ND	1.0	0.38		ND	2.9	1.1	2	3/19/24 18:47	TPH
Toluene	5.7	0.10	0.050		22	0.38	0.19	2	3/19/24 18:47	TPH
1,2,4-Trichlorobenzene	ND	0.10	0.055		ND	0.74	0.41	2	3/19/24 18:47	TPH
1,1,1-Trichloroethane	ND	0.10	0.031		ND	0.55	0.17	2	3/19/24 18:47	TPH
1,1,2-Trichloroethane	ND	0.10	0.035		ND	0.55	0.19	2	3/19/24 18:47	TPH
Trichloroethylene	0.30	0.10	0.077		1.6	0.54	0.41	2	3/19/24 18:47	TPH
Trichlorofluoromethane (Freon 11)	0.47	0.40	0.041		2.6	2.2	0.23	2	3/19/24 18:47	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.080	0.40	0.027	J	0.61	3.1	0.21	2	3/19/24 18:47	TPH
1,2,4-Trimethylbenzene	0.28	0.10	0.060		1.4	0.49	0.29	2	3/19/24 18:47	TPH
1,3,5-Trimethylbenzene	0.14	0.10	0.077		0.70	0.49	0.38	2	3/19/24 18:47	TPH
Vinyl Acetate	ND	2.0	0.41		ND	7.0	1.4	2	3/19/24 18:47	TPH
Vinyl Chloride	ND	0.10	0.051		ND	0.26	0.13	2	3/19/24 18:47	TPH
m&p-Xylene	1.0	0.20	0.070		4.4	0.87	0.30	2	3/19/24 18:47	TPH
o-Xylene	0.38	0.10	0.037		1.6	0.43	0.16	2	3/19/24 18:47	TPH
Surrogates	% Recov	ery		% REC	C Limits					

4-Bromofluorobenzene (1)

93.9

.......

70-130

3/19/24 18:47



# ANALYTICAL RESULTS

Project Location:Sample DDate Received: 3/12/2024Sub DescField Sample #: CL-IA-2Canister ISample ID: 24C1287-05Canister SSample Matrix: Indoor airFlow ComSampled: 3/10/2024 08:30Sample T

Sample Description/Location: Sub Description/Location: Canister ID: 1081 Canister Size: 6 liter Flow Controller ID: 5080 Sample Type: 8 hr Work Order: 24C1287 Initial Vacuum(in Hg): -30+ Final Vacuum(in Hg): -10.5 Receipt Vacuum(in Hg): -9.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

Accome         18         1.4         0.71         42         3.3         1.7         0.098         31/924         16.14         TT           Benzyl chloride         ND         0.035         0.011         0.042         0.088         31/924         16.14         TT           Benzyl chloride         ND         0.035         0.014         ND         0.023         0.009         0.098         31/924         16.14         TT           Brounofcm         ND         0.035         0.014         ND         0.33         0.096         0.098         31/924         16.14         TT           Brounofcm         ND         0.035         0.039         ND         0.14         0.12         0.098         31/924         16.14         TT           24btandose         ND         0.035         0.027         ND         0.076         0.085         31/924         16.14         TT           24btandose         ND         0.055         0.027         0.48         0.058         31/924         16.14         TT           Cahon Frazhloride         0.057         0.053         0.022         ND         0.16         0.053         0.024         ND         0.054         0.0294         <			F	EPA TO-15							
Accome         18         1.4         0.71         42         3.3         1.7         0.098         31/924         16.14         TT           Benzyl chloride         ND         0.035         0.011         0.042         0.088         31/924         16.14         TT           Benzyl chloride         ND         0.035         0.014         ND         0.023         0.009         0.098         31/924         16.14         TT           Brounofcm         ND         0.035         0.014         ND         0.33         0.096         0.098         31/924         16.14         TT           Brounofcm         ND         0.035         0.039         ND         0.14         0.12         0.098         31/924         16.14         TT           24btandose         ND         0.035         0.027         ND         0.076         0.085         31/924         16.14         TT           24btandose         ND         0.055         0.027         0.48         0.058         31/924         16.14         TT           Cahon Frazhloride         0.057         0.053         0.022         ND         0.16         0.053         0.024         ND         0.054         0.0294         <			ppbv				ug/m3			Date/Time	
BenzerBenzerBund0.010.020.020.020.030.010.030.010.030.010.030.010.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.030.03<	Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Bacy closedND0.030.019ND0.020.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.090.09<	Acetone	18	1.4	0.71		42	3.3	1.7	0.698	3/19/24 16:14	TPH
BeamND0.030.04ND0.050.04ND0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.060.050.060.050.060.050.060.050.060.050.060.050.060.050.060.050.070.080.010.080.020.060.050.070.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.030.020.080.020.080.020.080.020.080.020.080.020.080.020.080.020.030.020.080.020.080.020.030.020.080.020.080.020.030.020.080.020.080.020.030.020.080.020.030.020.030.020.030.020.030.020.030.020.03 <td>Benzene</td> <td>0.19</td> <td>0.035</td> <td>0.011</td> <td></td> <td>0.62</td> <td>0.11</td> <td>0.034</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	Benzene	0.19	0.035	0.011		0.62	0.11	0.034	0.698	3/19/24 16:14	TPH
Beensering BreensendenanceND0.0120.0130.0120.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.0130.013	Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 16:14	TPH
BreenwenkaneND0.030.030.03ND0.140.140.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.040.04<	Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 16:14	TPH
1.3-Datadieme     ND     0.035     0.029     ND     0.077     0.085     0.089     3/1924     16.14     TP       2-batanone (MEK)     0.05     0.057     0.11     1.1     2.0     0.088     3/1924     16.14     TP       Carbon Estafibée     0.076     0.035     0.027     0.08     0.033     0.083     3/1924     16.14     TP       Carbon Estafibée     ND     0.035     0.027     ND     0.028     0.033     0.083     3/1924     16.14     TP       Choronethane     ND     0.035     0.017     J     0.48     0.089     3/1924     16.14     TP       Choronethane     0.029     0.035     0.017     J     0.48     0.079     0.68     3/1924     16.14     TP       Cycloretane     0.087     0.035     0.021     ND     0.21     0.078     0.688     3/1924     16.14     TP       1.2-Dehoronetone     ND     0.035     0.012     ND     0.21     0.078     0.688     3/1924     16.14     TP       1.2-Dehoronetonemetine (Foron 12)     ND     0.035     0.017     ND     0.14     0.075     0.688     3/1924     16.14     TP       1.2-Dehoronetonemetine (Foron 12)	Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 16:14	TPH
2         Dec         1.4         0.8         ND         4.1         2.0         0.89         1924         16.14         10           Carbon Direntholride         0.06         0.057         0.067         0.016         0.017         0.08         0.021         0.08         0.021         0.08         0.021         0.08         0.021         0.016         0.032         0.017         0.08         0.016         0.032         0.017         0.08         0.018         0.018         0.019         0.018         0.019         0.018         0.019         0.018         0.019         0.018         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.011         0.019	Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 16:14	TPH
Carbon Divalifié         0.36         0.36         0.07         0.08         0.02         1.1         1.1         0.21         0.08         0.091         1.14         0.11         0.015         0.021         ND         0.025         0.012         ND         0.025         0.021         ND         0.025         0.021         ND         0.025         0.021         ND         0.025         0.021         ND         0.021         0.080         0.091         0.088         0.092         0.012         0.010         0.012         0.080         0.092         0.012         0.010         0.005         0.012         0.010         0.012         0.010         0.012         0.010         0.012         0.010         0.012         0.010         0.012         0.010         0.012         0.010         0.012         0.010         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011	1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 16:14	TPH
Carbon Tetrachloride         0.076         0.035         0.027         0.48         0.22         0.17         0.58         3/1924         16.14         TT           Chlorochnanca         ND         0.035         0.012         ND         0.16         0.053         0.089         3/1924         16.14         TT           Chlorochnanc         0.029         0.035         0.017         J         0.014         0.078         0.098         3/1924         16.14         TT           Chlorochranc         0.029         0.035         0.027         0.03         0.088         3/1924         16.14         TT           Chlorochranc         0.087         0.035         0.027         0.03         0.088         3/1924         16.14         TT           L'2-bichnochanc         ND         0.035         0.012         ND         0.30         0.20         0.088         3/1924         16.14         TT           L'2-bichorochanc         ND         0.035         0.017         ND         0.30         0.021         0.078         3/1924         16.14         TT           L'2-bichorochanc         ND         0.035         0.017         ND         0.21         0.078         3/1924         16.	2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 16:14	TPH
Chlorobenzene     ND     0.035     0.012     ND     0.16     0.053     0.059     0.161     0.171     0.083     0.084     0.983     0.1924     16.14     TT       Chlorobenzene     0.035     0.017     0.14     0.049     0.084     0.983     319.24     16.14     TT       Chloromethane     0.48     0.070     0.047     0.084     0.085     0.992     16.14     TT       Chloromethane     0.48     0.070     0.047     0.08     0.12     0.098     319.24     16.14     TT       Chloromethane     0.047     0.035     0.022     0.010     0.08     319.24     16.14     TT       1.2-Dichorobenzene     ND     0.035     0.022     ND     0.20     0.98     319.24     16.14     TT       1.2-Dichorobenzene     ND     0.035     0.013     ND     0.21     0.078     319.24     16.14     TT       1.2-Dichorobenzene     ND     0.035     0.017     ND     0.14     0.069     319.24     16.14     TT       1.2-Dichorobenzene     ND     0.035     0.017     ND     0.14     0.069     319.24     16.14     TT       1.2-Dichorobenzene     ND     0.035     0.017	Carbon Disulfide	0.36	0.35	0.067		1.1	1.1	0.21	0.698	3/19/24 16:14	TPH
Chlorosethane     ND     0.035     0.032     ND     0.092     0.084     0.79     3.19.24     16.14     TT       Chloroform     0.029     0.035     0.017     J     0.14     0.07     0.083     0.698     319.24     16.14     TT       Chloromethane     0.087     0.035     0.027     0.08     0.020     0.088     319.24     16.14     TT       Cyclokexane     0.087     0.035     0.022     ND     0.20     0.088     319.24     16.14     TT       1.2-Dichoromethane (TDB)     ND     0.035     0.022     ND     0.21     0.073     0.698     319.24     16.14     TT       1.2-Dichoromethane (TDB)     ND     0.035     0.012     ND     0.21     0.073     0.698     319.24     16.14     TT       1.2-Dichoromethane (Fren 12)     0.51     0.035     0.017     ND     0.12     0.070     0.698     319.24     16.14     TT       1.2-Dichoromethane (Fren 12)     0.51     0.035     0.017     ND     0.14     0.058     319.24     16.14     TT       1.2-Dichoromethane     ND     0.035     0.017     ND     0.14     0.068     319.24     16.14     TT       1.2-Dichorom	Carbon Tetrachloride	0.076	0.035	0.027		0.48	0.22	0.17	0.698	3/19/24 16:14	TPH
Chloroform     0.029     0.035     0.017     J     0.14     0.17     0.083     0.087     3/19/24     16.14     TT       Chloromethane     0.08     0.047     0.088     0.12     0.089     3/19/24     16.14     TT       Cyclohexane     0.08     0.035     0.027     0.08     0.09     0.088     3/19/24     16.14     TT       1/2-Dichlorobenzane     ND     0.035     0.022     ND     0.21     0.078     3/19/24     16.14     TT       1/2-Dichlorobenzane     ND     0.035     0.012     ND     0.21     0.078     3/19/24     16.14     TT       1/2-Dichlorobenzane     ND     0.035     0.017     ND     0.21     0.078     3/19/24     16.14     TT       1/2-Dichlorobenzane     ND     0.035     0.017     ND     0.14     0.068     3/19/24     16.14     TT       1/1-Dichlorobenzane     ND     0.035     0.017     ND     0.14     0.067     0.08     3/19/24     16.14     TT       1/1-Dichlorobenzane     ND     0.035     0.017     ND     0.14     0.067     0.08     3/19/24     16.14     TT       1/1-Dichlorobenzane     ND     0.035     0.017     N	Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 16:14	TPH
Chioromethane       0.48       0.07       0.047       0.98       0.14       0.996       0.998       3/19.24       16.14       TT         Cyclohcane       0.087       0.035       0.027       0.03       0.12       0.998       3/19.24       16.14       TT         1.2-Dibdronochanet (EDB)       ND       0.035       0.021       ND       0.21       0.77       0.68       3/19.24       16.14       TT         1.2-Dichlorobenzene       ND       0.035       0.012       ND       0.21       0.78       0.698       3/19.24       16.14       TT         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.78       3/19.24       16.14       TT         1.1-Dichlorothane       ND       0.035       0.017       ND       0.14       0.069       0.68       3/19.24       16.14       TT         1.1-Dichlorothane       ND       0.035       0.017       ND       0.14       0.067       0.68       3/19.24       16.14       TT         1.1-Dichlorothylene       ND       0.035       0.017       ND       0.14       0.067       0.68       3/19.24       16.14       TT         1.2-Dichlorothylene <td>Chloroethane</td> <td>ND</td> <td>0.035</td> <td>0.032</td> <td></td> <td>ND</td> <td>0.092</td> <td>0.084</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 16:14	TPH
Cyclohexane       0.087       0.035       0.027       0.030       0.12       0.093       0.192       1.14       TP         Dibromochloromethane (EDB)       ND       0.035       0.023       ND       0.21       0.070       0.698       3/1924       16.14       TP         1.2-Dichlorobenzene       ND       0.035       0.012       ND       0.27       0.698       3/1924       16.14       TP         1.2-Dichlorobenzene       ND       0.035       0.013       ND       0.21       0.078       0.698       3/1924       16.14       TP         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.078       0.698       3/1924       16.14       TP         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.14       0.069       0.698       3/1924       16.14       TP         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.14       0.069       0.698       3/1924       16.14       TP         1.2-Dichlorochlylene       ND       0.035       0.024       ND       0.16       0.12       0.698       3/1924       16.14       TP         1.2-Dichloroch	Chloroform	0.029	0.035	0.017	J	0.14	0.17	0.083	0.698	3/19/24 16:14	TPH
Dibromochlare         ND         0.035         0.023         ND         0.30         0.20         0.40         3/19/2         16.14         TT           1,2-Dithoromethane (EDB)         ND         0.035         0.022         ND         0.27         0.17         0.68         3/19/2         16.14         TT           1,2-Dithoromethane (EDB)         ND         0.035         0.013         ND         0.21         0.07         0.68         3/19/2         16.14         TT           1,3-Dichlorobenzene         ND         0.035         0.017         ND         0.21         0.07         0.68         3/19/2         16.14         TT           1,4-Dichlorothenzene         ND         0.035         0.017         ND         0.14         0.069         0.69         3/19/2         16.14         TT           1,1-Dichlorothylene         ND         0.035         0.017         ND         0.14         0.067         0.698         3/19/2         16.14         TT           1,2-Dichlorothylene         ND         0.035         0.016         ND         0.14         0.067         0.698         3/19/2         16.14         TT           1,2-Dichlorothylene         ND         0.035         0.016 <td>Chloromethane</td> <td>0.48</td> <td>0.070</td> <td>0.047</td> <td></td> <td>0.98</td> <td>0.14</td> <td>0.096</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	Chloromethane	0.48	0.070	0.047		0.98	0.14	0.096	0.698	3/19/24 16:14	TPH
1,2-Dibromoethane (EDB)       ND       0.035       0.022       ND       0.27       0.17       0.698       3/1924       16.14       TT         1,2-Dibriomoetnace       ND       0.035       0.012       ND       0.21       0.078       0.698       3/1924       16.14       TT         1,3-Dichiorobenzene       ND       0.035       0.017       ND       0.21       0.078       0.698       3/1924       16.14       TT         1,4-Dichlorobenzene       ND       0.035       0.015       2.5       0.17       0.698       3/1924       16.14       TT         1,1-Dichlorobethane       ND       0.035       0.017       ND       0.14       0.698       3/1924       16.14       TT         1,1-Dichlorobethane       ND       0.035       0.017       ND       0.14       0.698       3/1924       16.14       TT         1,1-Dichlorobethylene       ND       0.035       0.016       ND       0.16       0.059       0.698       3/1924       16.14       TT         1,1-Dichlorobethylene       ND       0.035       0.016       ND       0.16       0.59       3/1924       16.14       TT         1,2-Dichloroptylene       ND	Cyclohexane	0.087	0.035	0.027		0.30	0.12	0.093	0.698	3/19/24 16:14	TPH
ND         0.035         0.012         ND         0.21         0.073         0.698         3/19/24         16.14         TT           1,3-Dichlorobenzne         ND         0.035         0.013         ND         0.21         0.078         0.698         3/19/24         16.14         TT           1,4-Dichlorobenzne         ND         0.035         0.015         2.5         0.17         0.072         0.698         3/19/24         16.14         TT           1,4-Dichlorobenzne         ND         0.035         0.015         2.5         0.17         0.072         0.698         3/19/24         16.14         TT           1,1-Dichloroethylene         ND         0.035         0.017         ND         0.14         0.067         0.698         3/19/24         16.14         TT           1,2-Dichloroethylene         ND         0.035         0.017         ND         0.14         0.067         0.698         3/19/24         16.14         TT           1,2-Dichloroethylene         ND         0.035         0.016         ND         0.16         0.098         3/19/24         16.14         TT           1,2-Dichloroptopane         ND         0.035         0.016         ND         0.16	Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 16:14	TPH
J.3-Dichlorobenzene       ND       0.035       0.013       ND       0.21       0.078       0.698       3/19/24       16:14       TT         1.4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.10       0.698       3/19/24       16:14       TT         Dichlorodifluoromethane (Freon 12)       0.51       0.035       0.017       ND       0.14       0.069       0.698       3/19/24       16:14       TT         1.1-Dichloroethane       0.033       0.035       0.013       J       0.14       0.069       0.698       3/19/24       16:14       TT         1.2-Dichloroethane       ND       0.035       0.017       ND       0.14       0.067       0.698       3/19/24       16:14       TT         1.1-Dichloroethylene       ND       0.035       0.016       ND       0.14       0.067       0.698       3/19/24       16:14       TT         1.2-Dichloroethylene       ND       0.035       0.016       ND       0.16       0.12       0.698       3/19/24       16:14       TT         1.2-Dichloroethane       ND       0.035       0.016       ND       0.16       0.12       0.698       3/19/24       16:14	1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 16:14	TPH
1.4-Dichlorobenzene       ND       0.03       0.017       ND       0.21       0.10       0.698       3/19/24       16.14       TP         Dichlorobdiflooromethane (Freon 12)       0.51       0.035       0.017       ND       0.14       0.092       0.698       3/19/24       16.14       TP         1.1-Dichloroethane       0.033       0.035       0.017       ND       0.14       0.098       3/19/24       16.14       TP         1.1-Dichloroethylene       ND       0.035       0.026       ND       0.14       0.097       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.026       ND       0.14       0.067       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.026       ND       0.16       0.12       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.034       ND       0.16       0.12       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.35       0.034       ND       0.16       0.16       0.89       3/19/24       16.14       TP	1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 16:14	TPH
1,4-Dichlorobenzene       ND       0.035       0.017       ND       0.21       0.10       0.698       3/19/24       16.14       TP         Dichlorobdifluoromethane (Freon 12)       0.51       0.035       0.017       ND       0.14       0.092       0.698       3/19/24       16.14       TP         1.1-Dichloroethane       0.033       0.035       0.013       J       0.14       0.047       0.698       3/19/24       16.14       TP         1.1-Dichloroethylene       ND       0.035       0.026       ND       0.14       0.067       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.026       ND       0.14       0.067       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.026       ND       0.16       0.12       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.035       0.034       ND       0.16       0.12       0.698       3/19/24       16.14       TP         1.2-Dichloroethylene       ND       0.35       0.034       ND       0.16       0.16       0.89       3/19/24       16.14 </td <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>0.035</td> <td>0.013</td> <td></td> <td>ND</td> <td>0.21</td> <td>0.078</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 16:14	TPH
1.1-DichloroethaneND0.0350.017ND0.140.0690.6983/19/2416:14TP1.2-Dichloroethane0.0330.0350.013J0.140.0410.0530.6983/19/2416:14TP1.1-DichloroethyleneND0.0350.017ND0.140.0670.6983/19/2416:14TPcis-1.2-DichloroethyleneND0.0350.016ND0.140.0650.6983/19/2416:14TPtrans-1.2-DichloroethyleneND0.0350.016ND0.140.0650.6983/19/2416:14TPtrans-1.3-DichloropropaneND0.0350.016ND0.160.0280.6983/19/2416:14TP1.2-DichloropropeneND0.0350.014J0.120.240.0980.6983/19/2416:14TP1.2-DichloropropeneND0.350.17ND1.30.620.6983/19/2416:14TP1.2-DichloropropeneND0.350.17ND1.30.620.6983/19/2416:14TP1.2-Dichloropropene0.070.350.17ND1.30.620.6983/19/2416:14TP1.4-Dicxane0.070.350.14J0.601.30.6983/19/2416:14TPEthyl Acetale0.070.350.0150.480.170.0750.6983/19/2416:14T	1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 16:14	TPH
1.1-DichloroethaneND0.0350.017ND0.140.0690.6983/19/2416.14TP1.2-Dichloroethane0.0330.0350.013J0.140.0410.0530.6983/19/2416.14TP1.1-DichloroethyleneND0.0350.017ND0.140.0670.6983/19/2416.14TPcis-1.2-DichloroethyleneND0.0350.016ND0.140.0650.6983/19/2416.14TPtrans-1.2-DichloroethyleneND0.0350.016ND0.160.120.6983/19/2416.14TPtrans-1.3-DichloropropeneND0.0350.016ND0.160.0280.6983/19/2416.14TP1.2-DichloropropeneND0.0350.014J0.120.240.0980.6983/19/2416.14TP1.2-DichloropropeneND0.350.014J0.120.240.0980.6983/19/2416.14TP1.2-DichloropropeneND0.350.014J0.120.240.0980.6983/19/2416.14TP1.2-DichloropropeneND0.350.014J0.120.6983/19/2416.14TP1.4-Dickane0.0770.350.14J0.601.30.6983/19/2416.14TPEthyl Acetale0.070.350.0150.480.170.0750.6983/19/24 <td< td=""><td>Dichlorodifluoromethane (Freon 12)</td><td>0.51</td><td>0.035</td><td>0.015</td><td></td><td>2.5</td><td>0.17</td><td>0.072</td><td>0.698</td><td>3/19/24 16:14</td><td>TPH</td></td<>	Dichlorodifluoromethane (Freon 12)	0.51	0.035	0.015		2.5	0.17	0.072	0.698	3/19/24 16:14	TPH
1.2-Dichloroethylene       0.033       0.035       0.013       J       0.14       0.03       0.08       3/19/24       16:14       TP         1.1-Dichloroethylene       ND       0.035       0.024       ND       0.14       0.007       0.698       3/19/24       16:14       TP         ris-1.2-Dichloroethylene       ND       0.035       0.016       ND       0.14       0.067       0.698       3/19/24       16:14       TP         1.2-Dichloroethylene       ND       0.035       0.016       ND       0.16       0.025       0.698       3/19/24       16:14       TP         1.2-Dichloropropene       ND       0.035       0.016       ND       0.16       0.029       0.698       3/19/24       16:14       TP         1.2-Dichloropropene       ND       0.035       0.014       J       0.16       0.059       0.698       3/19/24       16:14       TP         1.2-Dichloropropene       ND       0.035       0.014       J       0.16       0.059       0.698       3/19/24       16:14       TP         1.2-Dichloropropene       ND       0.35       0.17       ND       1.3       0.62       0.698       3/19/24       16:14       TP	1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 16:14	TPH
I.1-Dichloroethylene       ND       0.035       0.024       ND       0.14       0.097       0.698       3/19/24       16:14       TP         ris-1,2-Dichloroethylene       ND       0.035       0.017       ND       0.14       0.067       0.698       3/19/24       16:14       TP         trans-1,2-Dichloroethylene       ND       0.035       0.016       ND       0.14       0.067       0.698       3/19/24       16:14       TP         1,2-Dichloroethylene       ND       0.035       0.016       ND       0.16       0.12       0.698       3/19/24       16:14       TP         i:1,3-Dichloroethylene       ND       0.035       0.014       ND       0.16       0.15       0.698       3/19/24       16:14       TP         trans-1,3-Dichloroethylene       ND       0.035       0.014       ND       0.12       0.24       0.698       3/19/24       16:14       TP         1,2-Dichloroethylene       ND       0.35       0.017       ND       1.3       0.62       0.698       3/19/24       16:14       TP         1,2-Dichloroethylene       0.077       0.35       0.14       J       0.60       1.3       0.62       0.698       3/19/24 <td>1,2-Dichloroethane</td> <td>0.033</td> <td>0.035</td> <td>0.013</td> <td>J</td> <td>0.14</td> <td>0.14</td> <td>0.053</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	1,2-Dichloroethane	0.033	0.035	0.013	J	0.14	0.14	0.053	0.698	3/19/24 16:14	TPH
trans-1,2-DichloroethyleneND0.0350.016ND0.140.0650.6983/19/2416:14TP1,2-DichloropropaneND0.0350.026ND0.160.120.6983/19/2416:14TPcis-1,3-DichloropropeneND0.0350.018ND0.160.120.6983/19/2416:14TPtrans-1,3-DichloropropeneND0.0350.014J0.120.240.0980.6983/19/2416:14TP1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)ND0.350.17ND1.30.620.6983/19/2416:14TP1,4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.93E8.22.61.70.6983/19/2416:14TPEthylbenzene0.0970.0350.0121.20.140.0970.6983/19/2416:14TPHexachlorobutadieneND0.350.020ND0.370.210.6983/19/2416:14TPHexachlorobutadieneND0.430.0350.017ND0.30.6983/19/2416:14TPHexachlorobutadieneND0.440.73ND0.30.6983/19/2416:14TPHexachlorobutadieneND0.140.73ND0.30.6983/19/2416:14TPMethyler	1,1-Dichloroethylene	ND	0.035	0.024		ND	0.14	0.097	0.698	3/19/24 16:14	TPH
trans-1,2-DichloroethyleneND0.0350.016ND0.140.0650.6983/19/2416:14TP1,2-DichloropropaneND0.0350.026ND0.160.120.6983/19/2416:14TPcis-1,3-DichloropropeneND0.0350.018ND0.160.120.6983/19/2416:14TPtrans-1,3-DichloropropeneND0.0350.014J0.120.240.0980.6983/19/2416:14TP1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)ND0.350.17ND1.30.620.6983/19/2416:14TP1,4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.93E8.22.61.70.6983/19/2416:14TPEthylbenzene0.0970.0350.0121.20.140.0970.6983/19/2416:14TPHexachlorobutadieneND0.350.020ND0.370.210.6983/19/2416:14TPHexachlorobutadieneND0.430.0350.017ND0.30.6983/19/2416:14TPHexachlorobutadieneND0.440.73ND0.30.6983/19/2416:14TPHexachlorobutadieneND0.140.73ND0.30.6983/19/2416:14TPMethyler		ND	0.035	0.017				0.067	0.698		TPH
1.2-DichloropropeneND0.0350.026ND0.160.120.6983/19/2416:14TPcis-1,3-DichloropropeneND0.0350.018ND0.160.0800.6983/19/2416:14TP1,2-Dichloro-1,1,2,2-tertafluoroethane (Freon 114)0.0170.0350.014J0.120.240.0980.6983/19/2416:14TP1,4-DioxaneND0.350.014J0.120.240.0980.6983/19/2416:14TPEthanol441.40.93E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.0121.20.150.0520.6983/19/2416:14TPEthylbenzene0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethylboluene0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHexaneND0.350.0222.00.140.0090.6983/19/2416:14TP2-Hexanone (MBK)ND0.0350.0150.170.140.0620.6983/19/2416:14TPMethyl er-Butyl Ether (MTBE)ND0.350.017ND3.41.80.6983/19/2416:14TPMethyl er-Butyl Ether (MTBE)ND0.350.017ND0.310.0620.6983/19/241	-	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 16:14	TPH
ND0.0350.018ND0.160.0800.6983/19/2416:14TPtrans-1,3-DichloropropeneND0.0350.034ND0.160.150.6983/19/2416:14TP1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)0.0170.0350.014J0.120.240.0980.6983/19/2416:14TP1,4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.93E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthyl Iberzene0.280.0350.0121.20.150.0520.6983/19/2416:14TPHeptane0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHexanore (MBK)0.0400.0350.020ND0.370.210.6983/19/2416:14TPSopropanolND1.40.73ND4.92.60.6983/19/2416:14TPMethylere Chloride0.010.350.017ND0.410.6020.6983/19/2416:14TPMethylene Chloride0.0100.350.017ND0.410.6020.6983/19/2416:14TPMethylene Chloride <td>-</td> <td>ND</td> <td>0.035</td> <td>0.026</td> <td></td> <td>ND</td> <td>0.16</td> <td>0.12</td> <td>0.698</td> <td>3/19/24 16:14</td> <td>TPH</td>	-	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 16:14	TPH
Itana-1,3-DichloropropeneND0.0350.034ND0.160.150.6983/19/2416:14TP1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)0.0170.0350.014J0.120.240.0980.6983/19/2416:14TP1,4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.935E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthyl Acetate0.0970.0350.0121.20.150.6983/19/2416:14TP4-Ethyl Iohuene0.0970.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TPLexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPJopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl enc-Houride0.100.350.094J0.350.170.140.0620.6983/19/2416:14TPJopropanolND1.40.73ND3.41.80.6983/19/2416:14TP<		ND	0.035			ND	0.16	0.080	0.698	3/19/24 16:14	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)0.0170.0350.014J0.120.240.0980.6983/19/2416:14TP1,4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.93E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthylbenzene0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethylboluene0.0970.0350.0120.480.170.0750.6983/19/2416:14TPHexanchlorobutadieneND0.0350.0222.00.140.0900.6983/19/2416:14TPLexanone (MBK)0.0400.0350.0150.170.140.6983/19/2416:14TPJopropanolND1.40.73ND4.92.60.6983/19/2416:14TPMethyler-Butyl Ether (MTBE)ND0.0350.017ND0.130.6620.6983/19/2416:14TPMethylene Chloride0.100.350.017ND0.130.6683/19/2416:14TPMethylene Chloride0.100.350.018ND0.130.6983/19/2416:14TPNaphthalene0.2		ND	0.035					0.15			TPH
1.4-DioxaneND0.350.17ND1.30.620.6983/19/2416:14TPEthanol441.40.93E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthyl Acetate0.170.350.0121.20.150.0520.6983/19/2416:14TPEthyl Benzene0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethyl Ioluene0.0970.0350.0120.480.170.0750.6983/19/2416:14TPHeptane0.490.0350.020ND0.370.210.6983/19/2416:14TPHexachlorobutadieneND0.490.0350.020ND0.370.210.6983/19/2416:14TPHexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPJopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.6620.6983/19/2416:14TPAdethyl-2-pentanone (MIBK)ND0.0350.017ND0.350.6983/19/2416:14TPNaphthalene0.220		0.017	0.035		J			0.098			TPH
Ethanol441.40.93E822.61.70.6983/19/2416:14TPEthyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthyl benzene0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethyl boluene0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHeptane0.490.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TPHexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPSopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TPA-Methyl-2-pentanone (MIBK)ND0.0350.017ND0.130.0620.6983/19/2416:14TPNaphthalene0.220.0350.018ND0.140.0760.6983/19/2416:14TPNopropencND1.40.77ND0.180.150.6983/19/2416:14TPNaphthalene0.079											TPH
Ethyl Acetate0.170.350.14J0.601.30.490.6983/19/2416:14TPEthylbenzene0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethyltoluene0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHeptane0.490.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TP1 HexaneND1.40.73ND4.92.60.6983/19/2416:14TP2 Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TP1 SopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Buryl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TP4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2416:14TPNaphthalene0.220.0350.0281.10.180.150.6983/19/2416:14TPNoptoneMD1.40.77ND2.41.30.6983/19/2416:14TPNaphthalene0.0790.035<		44	1.4		Е						TPH
Number0.280.0350.0121.20.150.0520.6983/19/2416:14TP4-Ethyltoluene0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHeptane0.490.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TPHexaneND1.40.73ND4.92.60.6983/19/2416:14TP2-Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPIsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TP4-Methyl-2-pentanone (MIBK)ND0.0350.017ND0.130.0620.6983/19/2416:14TPNaphthalene0.220.0350.018ND0.140.0760.6983/19/2416:14TPPropeneND1.40.77ND2.41.30.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.120.6983/19/2416:14TP		0.17	0.35				1.3				TPH
4-E Heptane0.0970.0350.0150.480.170.0750.6983/19/2416:14TPHeptane0.490.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TPHexaneND1.40.73ND4.92.60.6983/19/2416:14TP2-Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPIsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TPMethyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2416:14TPNaphthalene0.220.0350.0281.10.180.150.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.6983/19/2416:14TP		0.28	0.035				0.15	0.052	0.698		TPH
Her Hexachlorobutadiene0.490.0350.0222.00.140.0900.6983/19/2416:14TPHexachlorobutadieneND0.0350.020ND0.370.210.6983/19/2416:14TPHexaneND1.40.73ND4.92.60.6983/19/2416:14TP2-Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPIsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TP4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2416:14TPNaphthalene0.220.0350.0281.10.180.150.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.120.6983/19/2416:14TP	5										TPH
NDND0.0350.020ND0.370.210.6983/19/2416:14TPHexaneND1.40.73ND4.92.60.6983/19/2416:14TP2-Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPIsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TPMethyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2416:14TPNaphthalene0.220.0350.0281.10.180.150.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.120.6983/19/2416:14TP	-										TPH
HexaneND1.40.73ND4.92.60.6983/19/2416:14TP2-Hexanone (MBK)0.0400.0350.0150.170.140.0620.6983/19/2416:14TPIsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TPMethyl-2-pentanone (MIBK)ND0.350.094J0.351.20.330.6983/19/2416:14TPNaphthalene0.220.0350.018ND0.140.0760.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.120.6983/19/2416:14TP	•	ND	0.035	0.020			0.37	0.21	0.698		TPH
2-Hexanone (MBK)       0.040       0.035       0.015       0.17       0.14       0.062       0.698       3/19/24       16:14       TP         Isopropanol       ND       1.4       0.73       ND       3.4       1.8       0.698       3/19/24       16:14       TP         Methyl tert-Butyl Ether (MTBE)       ND       0.035       0.017       ND       0.13       0.062       0.698       3/19/24       16:14       TP         Methyl tert-Butyl Ether (MTBE)       ND       0.35       0.017       ND       0.13       0.062       0.698       3/19/24       16:14       TP         Methylene Chloride       0.10       0.35       0.094       J       0.35       1.2       0.33       0.698       3/19/24       16:14       TP         4-Methyl-2-pentanone (MIBK)       ND       0.035       0.018       ND       0.14       0.076       0.698       3/19/24       16:14       TP         Naphthalene       0.22       0.035       0.028       1.1       0.18       0.15       0.698       3/19/24       16:14       TP         Styrene       0.079       0.035       0.027       ND       2.4       1.3       0.698       3/19/24       16:14 <td>Hexane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3/19/24 16:14</td> <td>TPH</td>	Hexane									3/19/24 16:14	TPH
IsopropanolND1.40.73ND3.41.80.6983/19/2416:14TPMethyl tert-Butyl Ether (MTBE)ND0.0350.017ND0.130.0620.6983/19/2416:14TPMethylene Chloride0.100.350.094J0.351.20.330.6983/19/2416:14TP4-Methyl-2-pentanone (MIBK)ND0.0350.018ND0.140.0760.6983/19/2416:14TPNaphthalene0.220.0350.0281.10.180.150.6983/19/2416:14TPPropeneND1.40.77ND2.41.30.6983/19/2416:14TPStyrene0.0790.0350.0270.340.150.120.6983/19/2416:14TP											TPH
Methyl tert-Butyl Ether (MTBE)       ND       0.035       0.017       ND       0.13       0.062       0.698       3/19/24       16:14       TP         Methylene Chloride       0.10       0.35       0.094       J       0.35       1.2       0.33       0.698       3/19/24       16:14       TP         4-Methyl-2-pentanone (MIBK)       ND       0.035       0.018       ND       0.14       0.076       0.698       3/19/24       16:14       TP         Naphthalene       0.22       0.035       0.028       1.1       0.18       0.15       0.698       3/19/24       16:14       TP         Propene       ND       1.4       0.77       ND       2.4       1.3       0.698       3/19/24       16:14       TP         Styrene       0.079       0.035       0.027       0.34       0.15       0.12       0.698       3/19/24       16:14       TP											TPH
Methylene Chloride       0.10       0.35       0.094       J       0.35       1.2       0.33       0.698       3/19/24       16:14       TP         4-Methyl-2-pentanone (MIBK)       ND       0.035       0.018       ND       0.14       0.076       0.698       3/19/24       16:14       TP         Naphthalene       0.22       0.035       0.028       1.1       0.18       0.15       0.698       3/19/24       16:14       TP         Propene       ND       1.4       0.77       ND       2.4       1.3       0.698       3/19/24       16:14       TP         Styrene       0.079       0.035       0.027       0.34       0.15       0.12       0.698       3/19/24       16:14       TP	1 1										TPH
4-Methyl-2-pentanone (MIBK)     ND     0.035     0.018     ND     0.14     0.076     0.698     3/19/24     16:14     TP       Naphthalene     0.22     0.035     0.028     1.1     0.18     0.15     0.698     3/19/24     16:14     TP       Propene     ND     1.4     0.77     ND     2.4     1.3     0.698     3/19/24     16:14     TP       Styrene     0.079     0.035     0.027     0.34     0.15     0.12     0.698     3/19/24     16:14     TP					J						ТРН
Naphthalene         0.22         0.035         0.028         1.1         0.18         0.15         0.698         3/19/24         16:14         TP           Propene         ND         1.4         0.77         ND         2.4         1.3         0.698         3/19/24         16:14         TP           Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         16:14         TP	-				-						ТРН
ND         1.4         0.77         ND         2.4         1.3         0.698         3/19/24         16:14         TP           Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         16:14         TP											ТРН
Styrene         0.079         0.035         0.027         0.34         0.15         0.12         0.698         3/19/24         16:14         TP	•										ТРН
•											ТРН
1122-Letrachloroethane NL $0.035$ $0.0086$ NL $0.74$ $0.059$ $0.698$ $3/19/24$ $16/14$ TP	1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 16:14	ТРН

Page 12 of 36



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -30+
Field Sample #: CL-IA-2	Canister ID: 1081	Final Vacuum(in Hg): -10.5
Sample ID: 24C1287-05	Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.6
Sample Matrix: Indoor air	Flow Controller ID: 5080	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:30	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	0.70	0.035	0.030		4.8	0.24	0.20	0.698	3/19/24 16:14	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 16:14	TPH
Toluene	5.6	0.035	0.017		21	0.13	0.066	0.698	3/19/24 16:14	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 16:14	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 16:14	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 16:14	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 16:14	TPH
Trichlorofluoromethane (Freon 11)	0.25	0.14	0.014		1.4	0.78	0.080	0.698	3/19/24 16:14	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.068	0.14	0.0095	J	0.52	1.1	0.073	0.698	3/19/24 16:14	TPH
1,2,4-Trimethylbenzene	0.48	0.035	0.021		2.4	0.17	0.10	0.698	3/19/24 16:14	TPH
1,3,5-Trimethylbenzene	0.12	0.035	0.027		0.60	0.17	0.13	0.698	3/19/24 16:14	TPH
Vinyl Acetate	0.58	0.70	0.14	J	2.0	2.5	0.50	0.698	3/19/24 16:14	TPH
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 16:14	TPH
m&p-Xylene	1.0	0.070	0.024		4.4	0.30	0.11	0.698	3/19/24 16:14	TPH
o-Xylene	0.38	0.035	0.013		1.7	0.15	0.055	0.698	3/19/24 16:14	TPH
Surrogates	% Recov	/ery		% REC	C Limits					

4-Bromofluorobenzene (1)

93.7

70-130

3/19/24 16:14



# ANALYTICAL RESULTS

Sample Description/Location: Work Order: 24C1287 Project Location: Date Received: 3/12/2024 Sub Description/Location: Field Sample #: FD-031024 Canister ID: P2352 Sample ID: 24C1287-06 Canister Size: 6 liter Flow Controller ID: 5080 Sample Matrix: Indoor air Sampled: 3/10/2024 00:00 Sample Type: 8 hr

Initial Vacuum(in Hg): -30+ Final Vacuum(in Hg): -10.5 Receipt Vacuum(in Hg): -9.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	17	1.4	0.71		41	3.3	1.7	0.698	3/19/24 16:47	TPH
Benzene	0.19	0.035	0.011		0.59	0.11	0.034	0.698	3/19/24 16:47	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 16:47	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 16:47	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 16:47	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 16:47	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 16:47	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 16:47	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 16:47	TPH
Carbon Tetrachloride	0.043	0.035	0.027		0.27	0.22	0.17	0.698	3/19/24 16:47	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 16:47	TPH
Chloroethane	ND	0.035	0.032		ND	0.092	0.084	0.698	3/19/24 16:47	TPH
Chloroform	0.023	0.035	0.017	J	0.11	0.17	0.083	0.698	3/19/24 16:47	TPH
Chloromethane	0.42	0.070	0.047		0.87	0.14	0.096	0.698	3/19/24 16:47	TPH
Cyclohexane	0.096	0.035	0.027		0.33	0.12	0.093	0.698	3/19/24 16:47	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 16:47	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 16:47	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 16:47	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 16:47	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 16:47	TPH
Dichlorodifluoromethane (Freon 12)	0.63	0.035	0.015		3.1	0.17	0.072	0.698	3/19/24 16:47	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 16:47	TPH
1,2-Dichloroethane	0.038	0.035	0.013		0.15	0.14	0.053	0.698	3/19/24 16:47	TPH
1,1-Dichloroethylene	ND	0.035	0.015		ND	0.14	0.097	0.698	3/19/24 16:47	ТРН
cis-1,2-Dichloroethylene	ND	0.035	0.017		ND	0.14	0.067	0.698	3/19/24 16:47	ТРН
trans-1,2-Dichloroethylene	ND	0.035	0.017		ND	0.14	0.065	0.698	3/19/24 16:47	ТРН
1,2-Dichloropropane	ND	0.035	0.016		ND	0.16	0.12	0.698	3/19/24 16:47	ТРН
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 16:47	ТРН
trans-1,3-Dichloropropene	ND	0.035	0.010		ND	0.16	0.15	0.698	3/19/24 16:47	ТРН
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.018	0.035	0.014	J	0.13	0.24	0.098	0.698	3/19/24 16:47	ТРН
1,4-Dioxane	ND	0.35	0.17	5	ND	1.3	0.62	0.698	3/19/24 16:47	ТРН
Ethanol	49	1.4	0.93	Е	91	2.6	1.7	0.698	3/19/24 16:47	ТРН
Ethyl Acetate	ND	0.35	0.14	L	ND	1.3	0.49	0.698	3/19/24 16:47	ТРН
Ethylbenzene	0.29	0.035	0.012		1.3	0.15	0.052	0.698	3/19/24 16:47	ТРН
4-Ethyltoluene	0.067	0.035	0.012		0.33	0.15	0.052	0.698	3/19/24 16:47	ТРН
Heptane	0.39	0.035	0.013		1.6	0.17	0.075	0.698	3/19/24 16:47	ТРН
Hexachlorobutadiene	ND	0.035	0.022		ND	0.14	0.090	0.698	3/19/24 16:47	ТРН
Hexane	ND	1.4	0.020		ND	4.9	2.6	0.698	3/19/24 16:47	ТРН
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 16:47	ТРН
Isopropanol	ND	1.4			ND			0.698		TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.73		ND	3.4	1.8 0.062	0.698	3/19/24 16:47	ТРН ТРН
	ND 0.12		0.017	J		0.13 1.2	0.062		3/19/24 16:47	ТРН ТРН
Methylene Chloride		0.35	0.094	J	0.41 ND			0.698	3/19/24 16:47	
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 16:47	TPH
Naphthalene	0.25	0.035	0.028		1.3 ND	0.18	0.15	0.698	3/19/24 16:47	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 16:47	TPH
Styrene	0.084	0.035	0.027		0.36	0.15	0.12	0.698	3/19/24 16:47	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 16:47	TPH

Page 14 of 36



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -30+
Field Sample #: FD-031024	Canister ID: P2352	Final Vacuum(in Hg): -10.5
Sample ID: 24C1287-06	Canister Size: 6 liter	Receipt Vacuum(in Hg): -9.6
Sample Matrix: Indoor air	Flow Controller ID: 5080	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 00:00	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		E	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	0.73	0.035	0.030		5.0	0.24	0.20	0.698	3/19/24 16:47	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 16:47	TPH
Toluene	5.6	0.035	0.017		21	0.13	0.066	0.698	3/19/24 16:47	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 16:47	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 16:47	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 16:47	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 16:47	TPH
Trichlorofluoromethane (Freon 11)	0.23	0.14	0.014		1.3	0.78	0.080	0.698	3/19/24 16:47	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.071	0.14	0.0095	J	0.55	1.1	0.073	0.698	3/19/24 16:47	TPH
1,2,4-Trimethylbenzene	0.49	0.035	0.021		2.4	0.17	0.10	0.698	3/19/24 16:47	TPH
1,3,5-Trimethylbenzene	0.12	0.035	0.027		0.61	0.17	0.13	0.698	3/19/24 16:47	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 16:47	TPH
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 16:47	TPH
m&p-Xylene	1.0	0.070	0.024		4.4	0.30	0.11	0.698	3/19/24 16:47	TPH
o-Xylene	0.38	0.035	0.013		1.7	0.15	0.055	0.698	3/19/24 16:47	TPH
Surrogates	% Recov	/ery		% REC	C Limits					

4-Bromofluorobenzene (1)

94.1

70-130

3/19/24 16:47



# ANALYTICAL RESULTS

Project Location: Date Received: 3/12/2024 Field Sample #: CL-IA-3-B Sample ID: 24C1287-07 Sample Matrix: Indoor air Sampled: 3/10/2024 08:38 Sample Description/Location: Sub Description/Location: Canister ID: P1072 Canister Size: 6 liter Flow Controller ID: 3267 Sample Type: 8 hr Work Order: 24C1287 Initial Vacuum(in Hg): -30+ Final Vacuum(in Hg): -8 Receipt Vacuum(in Hg): -8.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	7.3	1.4	0.71		17	3.3	1.7	0.698	3/19/24 17:19	TPH
Benzene	0.20	0.035	0.011		0.65	0.11	0.034	0.698	3/19/24 17:19	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 17:19	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 17:19	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 17:19	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 17:19	TPH
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 17:19	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 17:19	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 17:19	TPH
Carbon Tetrachloride	0.063	0.035	0.027		0.40	0.22	0.17	0.698	3/19/24 17:19	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 17:19	TPH
Chloroethane	0.048	0.035	0.032		0.13	0.092	0.084	0.698	3/19/24 17:19	TPH
Chloroform	0.018	0.035	0.017	J	0.089	0.17	0.083	0.698	3/19/24 17:19	TPH
Chloromethane	0.55	0.070	0.047		1.1	0.14	0.096	0.698	3/19/24 17:19	TPH
Cyclohexane	0.061	0.035	0.027		0.21	0.12	0.093	0.698	3/19/24 17:19	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 17:19	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 17:19	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 17:19	TPH
1,3-Dichlorobenzene	ND	0.035	0.013		ND	0.21	0.078	0.698	3/19/24 17:19	TPH
1,4-Dichlorobenzene	ND	0.035	0.017		ND	0.21	0.10	0.698	3/19/24 17:19	TPH
Dichlorodifluoromethane (Freon 12)	0.52	0.035	0.015		2.5	0.17	0.072	0.698	3/19/24 17:19	TPH
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 17:19	TPH
1,2-Dichloroethane	0.020	0.035	0.017	J	0.079	0.14	0.053	0.698	3/19/24 17:19	ТРН
1,1-Dichloroethylene	ND	0.035	0.015	5	ND	0.14	0.097	0.698	3/19/24 17:19	ТРН
cis-1,2-Dichloroethylene	0.024	0.035	0.024	J	0.097	0.14	0.067	0.698	3/19/24 17:19	TPH
trans-1,2-Dichloroethylene	ND	0.035	0.017	5	ND	0.14	0.065	0.698	3/19/24 17:19	ТРН
1,2-Dichloropropane	ND	0.035	0.016		ND	0.16	0.12	0.698	3/19/24 17:19	ТРН
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 17:19	ТРН
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 17:19	ТРН
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.017	0.035	0.014	J	0.12	0.10	0.098	0.698	3/19/24 17:19	ТРН
1,4-Dioxane	ND	0.35	0.17	5	ND	1.3	0.62	0.698	3/19/24 17:19	ТРН
Ethanol	9.3	1.4	0.17		17	2.6	1.7	0.698	3/19/24 17:19	ТРН
	0.82	0.35	0.93		2.9	1.3	0.49	0.698	3/19/24 17:19	ТРН
Ethyl Acetate	0.82									
Ethylbenzene 4. Ethyltelyane		0.035	0.012		1.6	0.15	0.052	0.698	3/19/24 17:19	TPH
4-Ethyltoluene	0.087	0.035	0.015		0.43	0.17	0.075	0.698	3/19/24 17:19	TPH
Heptane	0.45	0.035	0.022		1.8	0.14	0.090	0.698	3/19/24 17:19	TPH
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 17:19	TPH
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 17:19	TPH
2-Hexanone (MBK)	0.058	0.035	0.015		0.24	0.14	0.062	0.698	3/19/24 17:19	TPH
Isopropanol	13	1.4	0.73		33	3.4	1.8	0.698	3/19/24 17:19	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 17:19	TPH
Methylene Chloride	0.11	0.35	0.094	J	0.39	1.2	0.33	0.698	3/19/24 17:19	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018		ND	0.14	0.076	0.698	3/19/24 17:19	TPH
Naphthalene	0.065	0.035	0.028		0.34	0.18	0.15	0.698	3/19/24 17:19	TPH
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 17:19	TPH
Styrene	0.049	0.035	0.027		0.21	0.15	0.12	0.698	3/19/24 17:19	TPH
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.24	0.059	0.698	3/19/24 17:19	TPH
									Page 1	6 of 36



# ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -30+
Field Sample #: CL-IA-3-B	Canister ID: P1072	Final Vacuum(in Hg): -8
Sample ID: 24C1287-07	Canister Size: 6 liter	Receipt Vacuum(in Hg): -8.4
Sample Matrix: Indoor air	Flow Controller ID: 3267	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:38	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	PA TO-15								
		ppbv ug/m3				ug/m3	Date/Time				
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst	
Tetrachloroethylene	1.1	0.035	0.030		7.4	0.24	0.20	0.698	3/19/24 17:19	TPH	
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 17:19	TPH	
Toluene	5.9	0.035	0.017		22	0.13	0.066	0.698	3/19/24 17:19	TPH	
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 17:19	TPH	
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 17:19	TPH	
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 17:19	TPH	
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 17:19	TPH	
Trichlorofluoromethane (Freon 11)	0.35	0.14	0.014		2.0	0.78	0.080	0.698	3/19/24 17:19	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.067	0.14	0.0095	J	0.51	1.1	0.073	0.698	3/19/24 17:19	TPH	
1,2,4-Trimethylbenzene	0.56	0.035	0.021		2.8	0.17	0.10	0.698	3/19/24 17:19	TPH	
1,3,5-Trimethylbenzene	0.15	0.035	0.027		0.71	0.17	0.13	0.698	3/19/24 17:19	TPH	
Vinyl Acetate	0.63	0.70	0.14	J	2.2	2.5	0.50	0.698	3/19/24 17:19	TPH	
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 17:19	TPH	
m&p-Xylene	1.2	0.070	0.024		5.3	0.30	0.11	0.698	3/19/24 17:19	TPH	
o-Xylene	0.45	0.035	0.013		2.0	0.15	0.055	0.698	3/19/24 17:19	TPH	

4-Bromofluorobenzene (1)

94.5

70-130

3/19/24 17:19



# ANALYTICAL RESULTS

Project Location: Date Received: 3/12/2024 Field Sample #: CL-OA-1 Sample ID: 24C1287-08 Sample Matrix: Ambient Air Sampled: 3/10/2024 08:40 Sample Description/Location: Sub Description/Location: Canister ID: P3592 Canister Size: 6 liter Flow Controller ID: 3749 Sample Type: 8 hr Work Order: 24C1287 Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -8.5 Receipt Vacuum(in Hg): -7.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	1.7	1.4	0.71		4.0	3.3	1.7	0.698	3/19/24 17:52	TPH
Benzene	0.12	0.035	0.011		0.38	0.11	0.034	0.698	3/19/24 17:52	TPH
Benzyl chloride	ND	0.035	0.019		ND	0.18	0.097	0.698	3/19/24 17:52	TPH
Bromodichloromethane	ND	0.035	0.014		ND	0.23	0.096	0.698	3/19/24 17:52	TPH
Bromoform	ND	0.035	0.012		ND	0.36	0.13	0.698	3/19/24 17:52	TPH
Bromomethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/19/24 17:52	TPH
1.3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/19/24 17:52	TPH
2-Butanone (MEK)	ND	1.4	0.68		ND	4.1	2.0	0.698	3/19/24 17:52	TPH
Carbon Disulfide	ND	0.35	0.067		ND	1.1	0.21	0.698	3/19/24 17:52	TPH
Carbon Tetrachloride	0.070	0.035	0.027		0.44	0.22	0.17	0.698	3/19/24 17:52	TPH
Chlorobenzene	ND	0.035	0.012		ND	0.16	0.053	0.698	3/19/24 17:52	TPH
Chloroethane	0.033	0.035	0.032	J	0.088	0.092	0.084	0.698	3/19/24 17:52	TPH
Chloroform	ND	0.035	0.017		ND	0.17	0.083	0.698	3/19/24 17:52	TPH
Chloromethane	0.53	0.070	0.047		1.1	0.14	0.096	0.698	3/19/24 17:52	TPH
Cyclohexane	ND	0.035	0.027		ND	0.12	0.093	0.698	3/19/24 17:52	TPH
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/19/24 17:52	TPH
1,2-Dibromoethane (EDB)	ND	0.035	0.022		ND	0.27	0.17	0.698	3/19/24 17:52	TPH
1,2-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.073	0.698	3/19/24 17:52	ТРН
1,3-Dichlorobenzene	ND	0.035	0.012		ND	0.21	0.078	0.698	3/19/24 17:52	ТРН
1,4-Dichlorobenzene	ND	0.035	0.015		ND	0.21	0.10	0.698	3/19/24 17:52	ТРН
Dichlorodifluoromethane (Freon 12)	0.57	0.035	0.015		2.8	0.17	0.072	0.698	3/19/24 17:52	ТРН
1,1-Dichloroethane	ND	0.035	0.017		ND	0.14	0.069	0.698	3/19/24 17:52	ТРН
1,2-Dichloroethane	0.014	0.035	0.013	J	0.056	0.14	0.053	0.698	3/19/24 17:52	ТРН
1,1-Dichloroethylene	ND	0.035	0.024	5	ND	0.14	0.097	0.698	3/19/24 17:52	ТРН
cis-1,2-Dichloroethylene	ND	0.035	0.017		ND	0.14	0.067	0.698	3/19/24 17:52	ТРН
trans-1,2-Dichloroethylene	ND	0.035	0.016		ND	0.14	0.065	0.698	3/19/24 17:52	ТРН
1,2-Dichloropropane	ND	0.035	0.026		ND	0.16	0.12	0.698	3/19/24 17:52	ТРН
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.080	0.698	3/19/24 17:52	ТРН
trans-1,3-Dichloropropene	ND	0.035	0.034		ND	0.16	0.15	0.698	3/19/24 17:52	ТРН
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	0.017	0.035	0.014	J	0.12	0.24	0.098	0.698	3/19/24 17:52	ТРН
1,4-Dioxane	ND	0.35	0.17	Ū.	ND	1.3	0.62	0.698	3/19/24 17:52	ТРН
Ethanol	1.1	1.4	0.93	J	2.1	2.6	1.7	0.698	3/19/24 17:52	ТРН
Ethyl Acetate	ND	0.35	0.14	Ū.	ND	1.3	0.49	0.698	3/19/24 17:52	ТРН
Ethylbenzene	ND	0.035	0.012		ND	0.15	0.052	0.698	3/19/24 17:52	ТРН
4-Ethyltoluene	ND	0.035	0.012		ND	0.15	0.075	0.698	3/19/24 17:52	ТРН
Heptane	0.042	0.035	0.022		0.17	0.14	0.090	0.698	3/19/24 17:52	ТРН
Hexachlorobutadiene	ND	0.035	0.020		ND	0.37	0.21	0.698	3/19/24 17:52	ТРН
Hexane	ND	1.4	0.73		ND	4.9	2.6	0.698	3/19/24 17:52	ТРН
2-Hexanone (MBK)	ND	0.035	0.015		ND	0.14	0.062	0.698	3/19/24 17:52	ТРН
Isopropanol	ND	1.4	0.73		ND	3.4	1.8	0.698	3/19/24 17:52	ТРН
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.017		ND	0.13	0.062	0.698	3/19/24 17:52	ТРН
Methylene Chloride	0.099	0.35	0.094	J	0.34	1.2	0.33	0.698	3/19/24 17:52	ТРН
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.018	5	ND	0.14	0.076	0.698	3/19/24 17:52	ТРН
Naphthalene	ND	0.035	0.028		ND	0.14	0.070	0.698	3/19/24 17:52	ТРН
Propene	ND	1.4	0.77		ND	2.4	1.3	0.698	3/19/24 17:52	ТРН
Styrene	ND	0.035	0.027		ND	0.15	0.12	0.698	3/19/24 17:52	ТРН
1,1,2,2-Tetrachloroethane	ND	0.035	0.0086		ND	0.13	0.059	0.698	3/19/24 17:52	ТРН
.,. <u>.</u>	110	0.000	0.0000		110	0.27	0.057	0.070	D = = = 4	

Page 18 of 36



#### ANALYTICAL RESULTS

Project Location:	Sample Description/Location:	Work Order: 24C1287
Date Received: 3/12/2024	Sub Description/Location:	Initial Vacuum(in Hg): -28.5
Field Sample #: CL-OA-1	Canister ID: P3592	Final Vacuum(in Hg): -8.5
Sample ID: 24C1287-08	Canister Size: 6 liter	Receipt Vacuum(in Hg): -7.7
Sample Matrix: Ambient Air	Flow Controller ID: 3749	Flow Controller Type: Fixed-Orifice
Sampled: 3/10/2024 08:40	Sample Type: 8 hr	Flow Controller Calibration
		RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	ND	0.035	0.030		ND	0.24	0.20	0.698	3/19/24 17:52	TPH
Tetrahydrofuran	ND	0.35	0.13		ND	1.0	0.39	0.698	3/19/24 17:52	TPH
Toluene	0.062	0.035	0.017		0.23	0.13	0.066	0.698	3/19/24 17:52	TPH
1,2,4-Trichlorobenzene	ND	0.035	0.019		ND	0.26	0.14	0.698	3/19/24 17:52	TPH
1,1,1-Trichloroethane	ND	0.035	0.011		ND	0.19	0.059	0.698	3/19/24 17:52	TPH
1,1,2-Trichloroethane	ND	0.035	0.012		ND	0.19	0.066	0.698	3/19/24 17:52	TPH
Trichloroethylene	ND	0.035	0.027		ND	0.19	0.14	0.698	3/19/24 17:52	TPH
Trichlorofluoromethane (Freon 11)	0.19	0.14	0.014		1.1	0.78	0.080	0.698	3/19/24 17:52	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.073	0.14	0.0095	J	0.56	1.1	0.073	0.698	3/19/24 17:52	TPH
1,2,4-Trimethylbenzene	ND	0.035	0.021		ND	0.17	0.10	0.698	3/19/24 17:52	TPH
1,3,5-Trimethylbenzene	ND	0.035	0.027		ND	0.17	0.13	0.698	3/19/24 17:52	TPH
Vinyl Acetate	ND	0.70	0.14		ND	2.5	0.50	0.698	3/19/24 17:52	TPH
Vinyl Chloride	ND	0.035	0.018		ND	0.089	0.045	0.698	3/19/24 17:52	TPH
m&p-Xylene	ND	0.070	0.024		ND	0.30	0.11	0.698	3/19/24 17:52	TPH
o-Xylene	ND	0.035	0.013		ND	0.15	0.055	0.698	3/19/24 17:52	TPH

Surrogates

4-Bromofluorobenzene (1)

89.7

% Recovery

% REC Limits

70-130

3/19/24 17:52



# Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15		Pressure	Pre	Pre-Dil	Pre-Dil	Default	Actual	
Lab Number [Field ID]	Batch	Dilution	Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
24C1287-01 [CL-IA-3-A]	B369212	1.5	1	N/A	1000	200	430	03/19/24
24C1287-01RE1 [CL-IA-3-A]	B369212	1.5	1	N/A	1000	200	30	03/19/24
24C1287-02 [CL-SSV-1]	B369212	1.5	1	N/A	1000	200	150	03/19/24
24C1287-03 [CL-IA-1]	B369212	1.5	1	N/A	1000	200	430	03/19/24
24C1287-04 [CL-SSV-2]	B369212	1.5	1	N/A	1000	200	150	03/19/24
24C1287-05 [CL-IA-2]	B369212	1.5	1	N/A	1000	200	430	03/19/24
24C1287-06 [FD-031024]	B369212	1.5	1	N/A	1000	200	430	03/19/24
24C1287-07 [CL-IA-3-B]	B369212	1.5	1	N/A	1000	200	430	03/19/24
24C1287-08 [CL-OA-1]	B369212	1.5	1	N/A	1000	200	430	03/19/24



# QUALITY CONTROL

#### Air Toxics by EPA Compendium Methods - Quality Control

Analyte	pp Posults		ug/n Poculto		Spike Level	Source Result	0/DEC	%REC	רוסק	RPD Limit	Flac/O-
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B369212 - TO-15 Prep											
Blank (B369212-BLK1)					Prepared & A	Analyzed: 03	/19/24				
Acetone	ND	1.4		_		—	—	—			
Benzene	ND	0.034									
Benzyl chloride	ND	0.034									
Bromodichloromethane	ND	0.034									
Bromoform	ND	0.034									
Bromomethane	ND	0.034									
1,3-Butadiene	ND	0.034									
2-Butanone (MEK)	ND	1.4									
Carbon Disulfide	ND	0.34									
Carbon Tetrachloride	ND	0.034									
Chlorobenzene	ND	0.034									
Chloroethane	ND	0.034									
Chloroform	ND	0.034									
Chloromethane	ND	0.069									
Cyclohexane	ND	0.034									
Dibromochloromethane	ND	0.034									
1,2-Dibromoethane (EDB)	ND	0.034									
1,2-Dichlorobenzene	ND	0.034									
1,3-Dichlorobenzene	ND	0.034									
1,4-Dichlorobenzene	ND	0.034									
Dichlorodifluoromethane (Freon 12)	ND	0.034									
1,1-Dichloroethane	ND	0.034									
1,2-Dichloroethane	ND	0.034									
1,1-Dichloroethylene	ND	0.034									
cis-1,2-Dichloroethylene	ND	0.034									
trans-1,2-Dichloroethylene	ND	0.034									
1,2-Dichloropropane	ND	0.034									
cis-1,3-Dichloropropene	ND	0.034									
trans-1,3-Dichloropropene	ND	0.034									
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.034									
1,4-Dioxane	ND	0.34									
Ethanol	ND	1.4									
Ethyl Acetate	ND	0.34									
Ethylbenzene	ND	0.034									
4-Ethyltoluene	ND	0.034									
Heptane	ND	0.034									
Hexachlorobutadiene	ND	0.034									
Hexane	ND	1.4									
2-Hexanone (MBK)	ND	0.034									
Isopropanol	ND	1.4									
Methyl tert-Butyl Ether (MTBE)	ND	0.034									
Methylene Chloride	ND	0.34									
4-Methyl-2-pentanone (MIBK)	ND	0.034									
Naphthalene	ND	0.034									
Propene	ND	1.4									
Styrene	ND	0.034									



#### QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppl	bv	ug/m	13	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B369212 - TO-15 Prep											
Blank (B369212-BLK1)					Prepared & A	nalyzed: 03/	/19/24				
1,1,2,2-Tetrachloroethane	ND	0.034									
Tetrachloroethylene	ND	0.034									
Tetrahydrofuran	ND	0.34									
Toluene	ND	0.034									
1,2,4-Trichlorobenzene	ND	0.034									
1,1,1-Trichloroethane	ND	0.034									
1,1,2-Trichloroethane	ND	0.034									
Trichloroethylene	ND	0.034									
Trichlorofluoromethane (Freon 11)	ND	0.14									
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14									
1,2,4-Trimethylbenzene	ND	0.034									
1,3,5-Trimethylbenzene	ND	0.034									
Vinyl Acetate	ND	0.69									
Vinyl Chloride	ND	0.034									
m&p-Xylene	ND	0.069									
o-Xylene	ND	0.034									
Surrogate: 4-Bromofluorobenzene (1)	7.22				8.00		90.2	70-130			
LCS (B369212-BS1)					Prepared & A	nalyzed: 03/	/19/24				
Acetone	3.67				5.00		73.4	70-130			
Benzene	5.03				5.00		101	70-130			
Benzyl chloride	4.69				5.00		93.8	70-130			
Bromodichloromethane	4.69				5.00		93.9	70-130			
Bromoform	4.58				5.00		91.6	70-130			
Bromomethane	5.30				5.00		106	70-130			
1,3-Butadiene	4.88				5.00		97.5	70-130			
2-Butanone (MEK)	4.34				5.00		86.7	70-130			
Carbon Disulfide	5.36				5.00		107	70-130			
Carbon Tetrachloride	4.51				5.00		90.3	70-130			
Chlorobenzene	5.17				5.00		103	70-130			
Chloroethane	4.69				5.00		93.8	70-130			
Chloroform	5.26				5.00		105	70-130			
Chloromethane	4.48				5.00		89.5	70-130			
Cyclohexane	4.88				5.00		97.7	70-130			
Dibromochloromethane	5.03				5.00		101	70-130			
1,2-Dibromoethane (EDB)	5.17				5.00		103	70-130			
1,2-Dichlorobenzene	5.34				5.00		107	70-130			
1,3-Dichlorobenzene	5.81				5.00		116	70-130			
1,4-Dichlorobenzene	5.73				5.00		115	70-130			
Dichlorodifluoromethane (Freon 12)	4.92				5.00		98.5	70-130			
1,1-Dichloroethane	4.50				5.00		90.0	70-130			
1,2-Dichloroethane	4.41				5.00		88.1	70-130			
1,1-Dichloroethylene	4.75				5.00		95.0	70-130			
cis-1,2-Dichloroethylene	5.03				5.00		101	70-130			
trans-1,2-Dichloroethylene	4.40				5.00		87.9	70-130			
1,2-Dichloropropane	5.34				2.30						



#### QUALITY CONTROL

#### Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppbv Results RL	ug/m3 Results RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag/Qual
Batch B369212 - TO-15 Prep									
LCS (B369212-BS1)			Prepared & A	Analyzed: 03/1	9/24				
cis-1,3-Dichloropropene	5.05		5.00		101	70-130			
trans-1,3-Dichloropropene	4.86		5.00		97.1	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane	4.88		5.00		97.6	70-130			
(Freon 114)									
1,4-Dioxane	5.35		5.00		107	70-130			
Ethanol	5.02		5.00		100	70-130			
Ethyl Acetate	4.15		5.00		82.9	70-130			
Ethylbenzene	5.24		5.00		105	70-130			
4-Ethyltoluene	5.25		5.00		105	70-130			
Heptane	4.79		5.00		95.8	70-130			
Hexachlorobutadiene	4.36		5.00		87.2	70-130			
Hexane	3.97		5.00		79.4	70-130			
2-Hexanone (MBK)	4.82		5.00		96.5	70-130			
Isopropanol	4.34		5.00		86.7	70-130			
Methyl tert-Butyl Ether (MTBE)	4.40		5.00		88.1	70-130			
Methylene Chloride	4.31		5.00		86.1	70-130			
4-Methyl-2-pentanone (MIBK)	5.27		5.00		105	70-130			
Naphthalene	4.81		5.00		96.2	70-130			
Propene	5.37		5.00		107	70-130			
Styrene	5.39		5.00		108	70-130			
1,1,2,2-Tetrachloroethane	5.87		5.00		117	70-130			
Tetrachloroethylene	4.98		5.00		99.6	70-130			
Tetrahydrofuran	4.48		5.00		89.7	70-130			
Toluene	5.29		5.00		106	70-130			
1,2,4-Trichlorobenzene	4.43		5.00		88.6	70-130			
1,1,1-Trichloroethane	4.44		5.00		88.8	70-130			
1,1,2-Trichloroethane	5.56		5.00		111	70-130			
Trichloroethylene	4.83		5.00		96.5	70-130			
Trichlorofluoromethane (Freon 11)	4.67		5.00		93.3	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5.06		5.00		101	70-130			
1,2,4-Trimethylbenzene	5.07		5.00		101	70-130			
1,3,5-Trimethylbenzene	5.25		5.00		105	70-130			
Vinyl Acetate	4.55		5.00		91.1	70-130			
Vinyl Chloride	5.10		5.00		102	70-130			
m&p-Xylene	10.6		10.0		106	70-130			
o-Xylene	5.21		5.00		104	70-130			
Surrogate: 4-Bromofluorobenzene (1)	7.73		8.00		96.6	70-130			



Note: Blank Subtraction is not performed unless otherwise noted

#### FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
*	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
RL	Reporting Limit
	Method Detection Limit
MDL	
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
LCS Dup MS	Duplicate Laboratory Control Sample Matrix Spike Sample
MS Dup	Duplicate Matrix Spike Sample
REC	Recovery
QC	Quality Control
ppbv	Parts per billion volume
EPA	United States Environmental Protection Agency
% REC	
70 KEC	Percent Recovery Not Detected
N/A	Not Applicable
DL	Detection Limit
NC	Not Calculated
LFB/LCS	Lab Fortified Blank/Lab Control Sample
ORP	Oxidation-Reduction Potential
wet	Not dry weight corrected
% wt	Percent weight
Kg	Kilogram
g	Gram
mg	Milligram
μg	Microgram
ng	Nanogram
L	Liter
mL	Milliliter
μL	Microliter
m3	Cubic Meter
EPH	Extractable Petroleum Hydrocarbons
VPH APH	Volatile Petroleum Hydrocarbons Air Petroleum Hydrocarbons
FID	
PID	Flame Ionization Detector Photo Ionization Detector
PID	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the
	calculation which have not been rounded.
Е	Reported result is estimated. Value reported over verified calibration range.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated
	concentration (CLP J-Flag).

#### ANALYST

TPHThomas P. HniteckiSTATIONReport Queue StationKKSKyle K. StuckeyKMCKristen M CoutureCMRCatherine M. Rouleau



# INTERNAL STANDARD AREA AND RT SUMMARY

#### EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (S091464-ICV1 )			Lab File ID: L23A	214020.D		Analyzed: 08/02	2/23 23:42		
Bromochloromethane (1)	300782	2.867	314027	2.871	96	60 - 140	-0.0040	+/-0.50	
1,4-Difluorobenzene (1)	878479	3.54	895773	3.54	98	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	823159	5.202	837397	5.202	98	60 - 140	0.0000	+/-0.50	

#### INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q		
Calibration Check (S102007-CCV1 ) Lab File ID: L24A079003.D					Analyzed: 03/19/24 09:40						
Bromochloromethane (1)	261211	2.864	314027	2.871	83	60 - 140	-0.0070	+/-0.50			
1,4-Difluorobenzene (1)	791912	3.538	895773	3.54	88	60 - 140	-0.0020	+/-0.50			
Chlorobenzene-d5 (1)	699872	5.196	837397	5.202	84	60 - 140	-0.0060	+/-0.50			
LCS (B369212-BS1 )			Lab File ID: L24A	079004.D		Analyzed: 03/19	9/24 10:06				
Bromochloromethane (1)	264845	2.864	261211	2.864	101	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	810567	3.538	791912	3.538	102	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	713330	5.195	699872	5.196	102	60 - 140	-0.0010	+/-0.50			
Blank (B369212-BLK1 )			Lab File ID: L24A	079007.D		Analyzed: 03/19	9/24 11:33				
Bromochloromethane (1)	262719	2.864	261211	2.864	101	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	749960	3.537	791912	3.538	95	60 - 140	-0.0010	+/-0.50			
Chlorobenzene-d5 (1)	676721	5.194	699872	5.196	97	60 - 140	-0.0020	+/-0.50			
CL-IA-3-A (24C1287-01)			Lab File ID: L24A	079013.D		Analyzed: 03/19/24 15:09					
Bromochloromethane (1)	258534	2.864	261211	2.864	99	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	774679	3.538	791912	3.538	98	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	712997	5.196	699872	5.196	102	60 - 140	0.0000	+/-0.50			
CL-IA-1 (24C1287-03)			Lab File ID: L24A	079014.D		Analyzed: 03/19/24 15:41					
Bromochloromethane (1)	258395	2.864	261211	2.864	99	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	759787	3.538	791912	3.538	96	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	697009	5.196	699872	5.196	100	60 - 140	0.0000	+/-0.50			
CL-IA-2 (24C1287-05)			Lab File ID: L24A	079015.D		Analyzed: 03/19/24 16:14					
Bromochloromethane (1)	259616	2.864	261211	2.864	99	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	742784	3.538	791912	3.538	94	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	691656	5.195	699872	5.196	99	60 - 140	-0.0010	+/-0.50			
FD-031024 (24C1287-06)			Lab File ID: L24A	079016.D		Analyzed: 03/19	9/24 16:47				
Bromochloromethane (1)	262712	2.864	261211	2.864	101	60 - 140	0.0000	+/-0.50			
1,4-Difluorobenzene (1)	755769	3.538	791912	3.538	95	60 - 140	0.0000	+/-0.50			
Chlorobenzene-d5 (1)	685682	5.196	699872	5.196	98	60 - 140	0.0000	+/-0.50			



# INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
CL-IA-3-B (24C1287-07)			Lab File ID: L24A	079017.D		Analyzed: 03/19	9/24 17:19			
Bromochloromethane (1)	258357	2.864	261211	2.864	99	60 - 140	0.0000	+/-0.50		
1,4-Difluorobenzene (1)	768533	3.538	791912	3.538	97	60 - 140	0.0000	+/-0.50		
Chlorobenzene-d5 (1)	696495	5.195	699872	5.196	100	60 - 140	-0.0010	+/-0.50		
CL-OA-1 (24C1287-08)	Letter and the second sec		Lab File ID: L24A	079018.D		Analyzed: 03/1	9/24 17:52			
Bromochloromethane (1)	254074	2.864	261211	2.864	97	60 - 140	0.0000	+/-0.50		
1,4-Difluorobenzene (1)	740256	3.537	791912	3.538	93	60 - 140	-0.0010	+/-0.50		
Chlorobenzene-d5 (1)	667728	5.195	699872	5.196	95	60 - 140	-0.0010	+/-0.50		
CL-SSV-1 (24C1287-02)			Lab File ID: L24A	079019.D	Analyzed: 03/19/24 18:20					
Bromochloromethane (1)	270789	2.875	261211	2.864	104	60 - 140	0.0110	+/-0.50		
1,4-Difluorobenzene (1)	824657	3.543	791912	3.538	104	60 - 140	0.0050	+/-0.50		
Chlorobenzene-d5 (1)	744256	5.196	699872	5.196	106	60 - 140	0.0000	+/-0.50		
CL-SSV-2 (24C1287-04)			Lab File ID: L24A	079020.D		Analyzed: 03/19/24 18:47				
Bromochloromethane (1)	264347	2.874	261211	2.864	101	60 - 140	0.0100	+/-0.50		
1,4-Difluorobenzene (1)	797280	3.543	791912	3.538	101	60 - 140	0.0050	+/-0.50		
Chlorobenzene-d5 (1)	699982	5.195	699872	5.196	100	60 - 140	-0.0010	+/-0.50		
CL-IA-3-A (24C1287-01RE1)			Lab File ID: L24A	079038.D		Analyzed: 03/20/24 08:00				
Bromochloromethane (1)	252424	2.863	261211	2.864	97	60 - 140	-0.0010	+/-0.50		
1,4-Difluorobenzene (1)	688809	3.537	791912	3.538	87	60 - 140	-0.0010	+/-0.50		
Chlorobenzene-d5 (1)	634970	5.195	699872	5.196	91	60 - 140	-0.0010	+/-0.50		



CONTINUING CALIBRATION CHECK

EPA TO-15

S102007-CCV1

		CONC. (ppbv)		RE	SPONSE FACTOR	% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	А	5.00	3.87	1.122255	0.8685882		-22.6	30
Benzene	А	5.00	5.42	0.7254293	0.7860591		8.4	30
Benzyl chloride	А	5.00	4.47	0.65192	0.5822893		-10.7	30
Bromodichloromethane	А	5.00	5.10	0.5567047	0.5676732		2.0	30
Bromoform	А	5.00	5.44	0.4926101	0.5355836		8.7	30
Bromomethane	А	5.00	5.44	0.6308676	0.6869175		8.9	30
1,3-Butadiene	А	5.00	5.11	0.551149	0.5631248		2.2	30
2-Butanone (MEK)	А	5.00	4.51	1.381604	1.246888		-9.8	30
Carbon Disulfide	А	5.00	5.38	2.063757	2.221089		7.6	30
Carbon Tetrachloride	А	5.00	5.02	0.5110368	0.5130025		0.4	30
Chlorobenzene	А	5.00	5.52	0.7219812	0.7975538		10.5	30
Chloroethane	А	5.00	4.84	0.411751	0.3987948		-3.1	30
Chloroform	А	5.00	5.52	1.439332	1.58936		10.4	30
Chloromethane	А	5.00	4.84	0.6101459	0.5900395		-3.3	30
Cyclohexane	А	5.00	5.09	0.3030286	0.3082848		1.7	30
Dibromochloromethane	А	5.00	5.37	0.5644122	0.6062709		7.4	30
1,2-Dibromoethane (EDB)	А	5.00	5.53	0.5076449	0.5615061		10.6	30
1,2-Dichlorobenzene	А	5.00	5.08	0.6234765	0.6330506		1.5	30
1,3-Dichlorobenzene	А	5.00	5.63	0.6267236	0.7052101		12.5	30
1,4-Dichlorobenzene	А	5.00	5.69	0.5801365	0.6598967		13.7	30
Dichlorodifluoromethane (Freon 12)	А	5.00	5.33	1.768079	1.883896		6.6	30
1,1-Dichloroethane	А	5.00	4.70	1.392824	1.309231		-6.0	30
1,2-Dichloroethane	А	5.00	4.60	0.9772927	0.8998273		-7.9	30
1,1-Dichloroethylene	А	5.00	4.98	1.127187	1.123199		-0.4	30
cis-1,2-Dichloroethylene	А	5.00	5.30	0.908952	0.9627221		5.9	30
trans-1,2-Dichloroethylene	А	5.00	4.58	1.128232	1.034345		-8.3	30
1,2-Dichloropropane	А	5.00	5.80	0.2601948	0.3015466		15.9	30
cis-1,3-Dichloropropene	А	5.00	5.69	0.3962271	0.4512259		13.9	30
trans-1,3-Dichloropropene	А	5.00	4.76	0.3522842	0.3354433		-4.8	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	А	5.00	5.46	1.784687	1.949615		9.2	30
1,4-Dioxane	А	5.00	4.99	0.1742852	0.1739547		-0.2	30
Ethanol	А	5.00	4.23	0.1732414	0.1464196		-15.5	30
Ethyl Acetate	А	5.00	4.20	0.2390169	0.2010084		-15.9	30
Ethylbenzene	А	5.00	5.55	1.176902	1.306467		11.0	30
4-Ethyltoluene	А	5.00	5.21	1.247069	1.299561		4.2	30
Heptane	А	5.00	5.16	0.2286847	0.2358989		3.2	30
Hexachlorobutadiene	А	5.00	4.00	0.4755616	0.3801747		-20.1	30
Hexane	А	5.00	4.16	0.7442178	0.6197656		-16.7	30



CONTINUING CALIBRATION CHECK

EPA TO-15

S102007-CCV1

		CONC	. (ppbv)	RE	SPONSE FACTOF	% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
2-Hexanone (MBK)	А	5.00	4.82	0.5993899	0.5783389		-3.5	30
Isopropanol	А	5.00	4.37	1.180699	1.032006		-12.6	30
Methyl tert-Butyl Ether (MTBE)	А	5.00	4.52	2.130891	1.924544		-9.7	30
Methylene Chloride	А	5.00	4.50	0.8716214	0.784604		-10.0	30
4-Methyl-2-pentanone (MIBK)	А	5.00	5.29	0.2414371	0.2552445		5.7	30
Naphthalene	А	5.00	4.16	0.954618	0.7935211		-16.9	30
Propene	А	5.00	5.43	0.4075236	0.4427134		8.6	30
Styrene	А	5.00	5.52	0.6680173	0.7373417		10.4	30
1,1,2,2-Tetrachloroethane	А	5.00	6.14	0.6838293	0.8404668		22.9	30
Tetrachloroethylene	А	5.00	5.36	0.4174566	0.4478533		7.3	30
Tetrahydrofuran	А	5.00	4.16	0.9111963	0.758602		-16.7	30
Toluene	А	5.00	5.54	0.9385805	1.039607		10.8	30
1,2,4-Trichlorobenzene	А	5.00	3.78	0.3693275	0.2791208		-24.4	30
1,1,1-Trichloroethane	А	5.00	4.88	0.5075792	0.4952025		-2.4	30
1,1,2-Trichloroethane	А	5.00	6.14	0.309655	0.3802432		22.8	30
Trichloroethylene	А	5.00	5.10	0.3356598	0.3426057		2.1	30
Trichlorofluoromethane (Freon 11)	А	5.00	4.94	1.816743	1.796102		-1.1	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	А	5.00	5.35	1.436582	1.537418		7.0	30
1,2,4-Trimethylbenzene	А	5.00	5.39	1.021302	1.100258		7.7	30
1,3,5-Trimethylbenzene	А	5.00	5.39	1.055296	1.138279		7.9	30
Vinyl Acetate	А	5.00	4.84	1.463541	1.416559		-3.2	30
Vinyl Chloride	А	5.00	5.48	0.7105757	0.7786931		9.6	30
m&p-Xylene	А	10.0	11.2	0.9711506	1.085444		11.8	30
o-Xylene	А	5.00	5.52	0.9550518	1.053962		10.4	30

# Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits



#### 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

#### Certified Analyses included in this Report

Analyte	Certifications	
A TO-15 in Air		
Acetone	NY,ME,NH	
Benzene	FL,NJ,NY,ME,NH,VA	
Benzyl chloride	FL,NJ,NY,ME,NH,VA	
Bromodichloromethane	NJ,NY,ME,NH,VA	
Bromoform	NJ,NY,ME,NH,VA	
Bromomethane	FL,NJ,NY,ME,NH	
,3-Butadiene	NJ,NY,ME,NH,VA	
2-Butanone (MEK)	FL,NJ,NY,ME,NH,VA	
Carbon Disulfide	NJ,NY,ME,NH,VA	
Carbon Tetrachloride	FL,NJ,NY,ME,NH,VA	
Chlorobenzene	FL,NJ,NY,ME,NH,VA	
Chloroethane	FL,NJ,NY,ME,NH,VA	
Chloroform	FL,NJ,NY,ME,NH,VA	
Chloromethane	FL,NJ,NY,ME,NH,VA	
Cyclohexane	NJ,NY,ME,NH,VA	
Dibromochloromethane	NY,ME,NH	
,2-Dibromoethane (EDB)	NJ,NY,ME,NH	
,2-Dichlorobenzene	FL,NJ,NY,ME,NH,VA	
,3-Dichlorobenzene	NJ,NY,ME,NH	
,4-Dichlorobenzene	FL,NJ,NY,ME,NH,VA	
Dichlorodifluoromethane (Freon 12)	NY,ME,NH	
,1-Dichloroethane	FL,NJ,NY,ME,NH,VA	
,2-Dichloroethane	FL,NJ,NY,ME,NH,VA	
,1-Dichloroethylene	FL,NJ,NY,ME,NH,VA	
is-1,2-Dichloroethylene	FL,NY,ME,NH,VA	
rans-1,2-Dichloroethylene	NJ,NY,ME,NH,VA	
,2-Dichloropropane	FL,NJ,NY,ME,NH,VA	
is-1,3-Dichloropropene	FL,NJ,NY,ME,NH,VA	
rans-1,3-Dichloropropene	NY,ME,NH	
,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	NJ,NY,ME,NH,VA	
,4-Dioxane	NJ,NY,ME,NH,VA	
Ethylbenzene	FL,NJ,NY,ME,NH,VA	
Jeptane	NJ,NY,ME,NH,VA	
Iexachlorobutadiene	NJ,NY,ME,NH,VA	
lexane	FL,NJ,NY,ME,NH,VA	
sopropanol	NY,ME,NH	
Methyl tert-Butyl Ether (MTBE)	FL,NJ,NY,ME,NH,VA	
Methylene Chloride	FL,NJ,NY,ME,NH,VA	
-Methyl-2-pentanone (MIBK)	FL,NJ,NY,ME,NH	
Vaphthalene	NY,ME,NH	
Styrene	FL,NJ,NY,ME,NH,VA	
,1,2,2-Tetrachloroethane	FL,NJ,NY,ME,NH,VA	
Fetrachloroethylene	FL,NJ,NY,ME,NH,VA	
Toluene	FL,NJ,NY,ME,NH,VA	
,2,4-Trichlorobenzene	NJ,NY,ME,NH,VA	
,1,1-Trichloroethane	FL,NJ,NY,ME,NH,VA	
,1,2-Trichloroethane	FL,NJ,NY,ME,NH,VA	



#### 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

#### Certified Analyses included in this Report

eer tineu Analyses meluueu in tins report		
Analyte	Certifications	
EPA TO-15 in Air		
Trichloroethylene	FL,NJ,NY,ME,NH,VA	
Trichlorofluoromethane (Freon 11)	NY,ME,NH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NJ,NY,ME,NH,VA	
1,2,4-Trimethylbenzene	NJ,NY,ME,NH	
1,3,5-Trimethylbenzene	NJ,NY,ME,NH	
Vinyl Acetate	FL,NJ,NY,ME,NH,VA	
Vinyl Chloride	FL,NJ,NY,ME,NH,VA	
m&p-Xylene	FL,NJ,NY,ME,NH,VA	
o-Xylene	FL,NJ,NY,ME,NH,VA	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2025
NJ	New Jersey DEP	MA007 NELAP	06/30/2024
FL	Florida Department of Health	E871027 NELAP	06/30/2024
ME	State of Maine	MA00100	06/9/2025
VA	Commonwealth of Virginia	460217	12/14/2024

СН	CHAIN C	AIR S	R SAMPLE CUSTODY RECORD	ß	AECOM J	AECOM 32 6- Ke fort convest conceste STREET, SUITG 400 BUFFALO, NY 14202 PHONE: 716-856-5636	AECOM CONTACT:	e III TACT: Calin	n Wasteneys
PROJECT NUMBER	BER		NAME			SAMPLE IN	SAMPLE INFORMATION		LAB Pace
SAMPLERS (PRINT/SIGNATURE)	ERS (PRINT/SIGNATI	URE)	Cristila Lt	h ead cel			ON	ANALYSIS	CONTAINER of
TOM U,	Urban /	ton L	Wh-			LLER ID	RE/		PAGE 1 of
DELIVERY SERVICE:		Prop att			ITERS)	CONTRO	. PRESSU M (" Hg) PRESSU M (" Hg) URE/VAC ECEIPT ('	<del>5</del> )-د	REMARKS
LOCATION	SAMPLE	SAMPLE	SAMPLE ID		CANIST	FLOW	VACUU FINAL F VACUU PRESS		
Jø	3/7/24	5180	CL-IA-3-A	A J	15	3260	9-90	×	
02	3/10/24	BHLO	CL- SSV-1	-	6 1243	28	-29 -4 50	1	
0.3	h2/a/E	0749	CL-IA-1	_		3584	_	. 1	
ю	3/ic/zy	6280	CL- SSV-2			3042	-29 -7 55	~	
So	3) No Jzy	9£80				5080	ò.		
90	3 /ichty	1	FD-03/024	1		5080	.15 -10.5 SN-		
(J	Azlone	0838	CL-JA-3-B UV	-	-	3267	á	7	
80	h2/a KE	0840	CL-0A-1	AA I	6 3592	3749	~58 SB	×	
60					0655	- 3631			unused can't regulate
MATRIX CODES	AA - AMBIENT AIR	R	AI - INDOOR AIR	AQ - FIELD QC	AS -	AS - SUB-SLAB AIR	GS - SOIL GAS		
SAMPLE TYPE CODES	N# - NORMAL ENV	N# - NORMAL ENVIRONMENTAL SAMPLE	LE FD# - FIELD DUPLICATE MS# - MATRIX SPIKE		QUENTIAL NUMBER (FRO)	(#- SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	E MULTIPLE SAMPLES IN /	SINGLE DAY)	
TOM UN	BY (SIGNATURE)	JRE)	DATE TIME RECEIVED BY ISIGNATURE	M HOUN	IRE) IN (AAC)	DATE TIME	-11-	SPECIAL INSTRUCTIONS	
RELINQUISHED BY	(SIGN	/	DATE TIME RECEIVED F	OR LAB BY	KECEIVED FOR LAB BY (SIGNATURE)	DATE TIME			
Distribution: Orig	linal accomp	oanies shipn	Distribution: Original accompanies shipment, copy to project file			020 121-12			
JRSF-075K/1 OF 1/CofCR/GCM	IRC.M								

### DC#_Title: ENV-FRM-ELON-0009 v04_Air Sample Receiving Checklist

Effective Date: 07/13/2023

LEQMUN

-sise ∋n⊥ Any False statement will be brought to the attention of the Client – True or False Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy)

1994	K-2	pea	u	202
+009	id ti		м.	

12:03 101000 gace.

MOJJA Insilo

MCP/RCP Required_ Project Chemical

		COC Included: (Check all included)
	X	SOC Legible
X		Trip Blanks
区		Individually Certified Cans
	X	Proper Media/Container Used
	X	is there enough Volume
	X	Samples Received within Holding Time
	X	All Samples in Good Condition
	X	eergA sledeJ selgme2\202
	X	COC Relinquished
X		STAG :les2 ybot22
X		Received in Cooler
X		Seceived on Ice

:902 to abistuc	202/salqme2 an	ik	and and	Notes re
		sa	۶Y	short Hold:
Notify	(N/	5	эҮ :	səldms2 dzuples
	Actual Temperature	́г	_	Temp≤6° C
#	ро	y	эW	Temperature

SAT SUDA STUDY STUDY AND STUDY

	61		14	6 6	C	6	7 h		4	61		14	21001	6	16809	4
-	18		13	5 m		8	- h85		E	31	-	13	2698d	8	Sheed	3
_	27		77	29	38	L	25	98	Z	17		15	ZLOId	L	Shrid	2
	97		ττ	080	20	9	097	32	τ	9T		TT	25829	9	DISSID	τ
	ST		ΟŢ	99	DC	S	S,	# sØ;	ъЯ	ST		το	1801	S	S,# U	50
-			-		-		-	_			-					-
					1.1	1	lelb∋T								TT-O⊥/sin	Ы
						ə:	Svring						1		olleibs	Я
	g Charges	luiddid2		1	) L	necto	r-Con								səduT \1-0	1
			1			g	IniduT								edlar Bags	1
		IC Train	1	8	a	errulo	A\tuN		248	8		つり	b		sne <mark>) e</mark> mmu	IS
		ries	oss	Ассе				uo	Durati	egulator	В	əzi2	#		nenietno	С

Þ

8

2

τ

Project 🖌

Client

X

۶QI

 $\mathbb{X}$ 

SisylenA

s,LT-OL/sind

8T

L٦

9T

Sτ

14

1150

1059

h7.1711E

11111C

l îo l egeq

Sollection Date/Time

Sampler Name

 $\left| \lambda \right|$ 

X

14

13

15

ττ

ΟŢ

6

8

L

9

S

6T

8T

Lτ

9T

sτ

Qualifiex ID: 127034

8

L

9

S

Þ

Same sample ID.

Back-Sheet By / Date / Time KWU Received By / Date / Time K.

Deliverable Package Requirement_

Arrival Method COURIEY (9lds)ilqqA n9dW) #QI2W9

UDD

Location

Þ

ε

z

τ

1898

55900

eibeM bezunU

٤ĩ

77

11

οτ

6



Date Analyzed:	2/23/2	2024	Ba	atch #:	 24CC0180
Certification Type:	Batch Certified	$\checkmark$	Individual Cer	rtified	
Media Type:	Summa Canister	$\checkmark$	Flow Controll	ers	
Media IDs:	P1520				

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

#### Units: PPBv

<0.02Dichlorodifluoromethane $<0.04$ Chloromethane $<0.02$ Freon 114 $<0.02$ Freon 114 $<0.02$ Uinyl chloride $<0.02$ Bromomethane $<0.02$ Chloroethane $<0.02$ Chloroethane $<0.03$ Acrolein $<0.08$ Acetone $<0.80$ Ethanol $<0.02$ I,1-Dichloroethylene $<0.20$ Freon 113 $<0.20$ Carbon disulfide $<0.02$ 1,1-Dichloroethylene $<0.02$ I,1-Dichloroethylene $<0.02$ MTBE $<0.80$ IPA $<0.02$ c-1,2-Dichloroethylene	< 0.80	Propene
< 0.04 $< 0.02$ Freon 114 $< 0.02$ Vinyl chloride $< 0.02$ Bromomethane $< 0.02$ Chloroethane $< 0.02$ Chloroethane $< 0.08$ Acetone $< 0.80$ Acetone $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.20$ I,1-Dichloroethylene $< 0.20$ Freon 113 $< 0.20$ Carbon disulfide $< 0.02$ 1,1-Dichloroethylene $< 0.02$ I,1-Dichloroethylene $< 0.02$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	Dichlorodifluoromethane
< 0.02Vinyl chloride $< 0.02$ Vinyl chloride $< 0.02$ 1.3-Butadiene $< 0.02$ Bromomethane $< 0.02$ Chloroethane $< 0.08$ Acrolein $< 0.80$ Acetone $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Freon 113 $< 0.20$ Freon 113 $< 0.20$ Larbon disulfide $< 0.02$ 1,1-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.04	Chloromethane
< 0.021.3-Butadiene $< 0.02$ Bromomethane $< 0.02$ Bromomethane $< 0.02$ Chloroethane $< 0.08$ Acrolein $< 0.80$ Acetone $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Methylene chloride $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ 1,1-Dichloroethylene $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ MTBE $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	Freon 114
< 0.02International $< 0.02$ Bromomethane $< 0.02$ Chloroethane $< 0.02$ Chloroethane $< 0.08$ Acrolein $< 0.80$ Trichlorofluoromethane $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Freon 113 $< 0.20$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	Vinyl chloride
< 0.02Chloroethane $< 0.02$ Chloroethane $< 0.08$ Acrolein $< 0.80$ Acetone $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Methylene chloride $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	1.3-Butadiene
< 0.02Acrolein $< 0.08$ Acetone $< 0.20$ Trichlorofluoromethane $< 0.20$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Methylene chloride $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ 1,1-Dichloroethylene $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	Bromomethane
< 0.08Acetone $< 0.80$ Trichlorofluoromethane $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ tPA $< 0.20$ 2-Butanone (MEK)	< 0.02	Chloroethane
< 0.30Trichlorofluoromethane $< 0.20$ Trichlorofluoromethane $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Methylene chloride $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.08	Acrolein
< 0.20Ethanol $< 0.80$ Ethanol $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.02$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.80	Acetone
< 0.301,1-Dichloroethylene $< 0.02$ 1,1-Dichloroethylene $< 0.20$ Methylene chloride $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethane $< 0.02$ MTBE $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.20	Trichlorofluoromethane
$\begin{array}{c c} < 0.02 \\ \hline \\ < 0.20 \\ \hline \\ \\ \hline \\ < 0.20 \\ \hline \\ \\ \hline \\ \\ < 0.20 \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ < 0.2 \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ < 0.02 \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ $	< 0.80	Ethanol
< 0.20Freon 113 $< 0.20$ Freon 113 $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethane $< 0.02$ MTBE $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.02	1,1-Dichloroethylene
< 0.20Carbon disulfide $< 0.2$ Carbon disulfide $< 0.02$ t-1,2-Dichloroethylene $< 0.02$ 1,1-Dichloroethane $< 0.02$ MTBE $< 0.80$ IPA $< 0.20$ 2-Butanone (MEK)	< 0.20	Methylene chloride
<0.2	< 0.20	Freon 113
<0.02	< 0.2	Carbon disulfide
<0.02	< 0.02	t-1,2-Dichloroethylene
<0.02	< 0.02	1,1-Dichloroethane
<0.20 2-Butanone (MEK)	< 0.02	MTBE
<0.20	< 0.80	IPA
<0.02 c-1,2-Dichloroethylene	< 0.20	2-Butanone (MEK)
	< 0.02	c-1,2-Dichloroethylene

	_
< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)

< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene



Date Analyzed:	3/1/2	024	I	Batch #:	 24CC0201
Certification Type:	Batch Certified	$\checkmark$	Individual Co	ertified	
Media Type:	Summa Canister	<b>√</b>	Flow Control	llers	
Media IDs:	P2352				 

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

#### Units: PPBv

< 0.80	Propene
< 0.02	Dichlorodifluoromethane
< 0.04	Chloromethane
< 0.02	Freon 114
< 0.02	Vinyl chloride
< 0.02	1.3-Butadiene
< 0.02	Bromomethane
< 0.02	Chloroethane
< 0.08	Acrolein
< 0.80	Acetone
< 0.20	Trichlorofluoromethane
< 0.80	Ethanol
< 0.02	1,1-Dichloroethylene
< 0.20	Methylene chloride
< 0.20	Freon 113
< 0.2	Carbon disulfide
< 0.02	t-1,2-Dichloroethylene
< 0.02	1,1-Dichloroethane
< 0.02	MTBE
< 0.80	IPA
< 0.20	2-Butanone (MEK)
< 0.02	c-1,2-Dichloroethylene

< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)

< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene



Date Analyzed:	3/1/2	2024	Batch #:	 24CC0202
Certification Type:	Batch Certified	$\checkmark$	Individual Certified	
Media Type:	Summa Canister	$\checkmark$	Flow Controllers	
Media IDs:	P1243		P1072	

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

#### Units: PPBv

< 0.80	Propene	< 0.04
< 0.02	Dichlorodifluoromethane	< 0.20
< 0.04	Chloromethane	< 0.02
< 0.02	Freon 114	< 0.02
< 0.02	Vinyl chloride	< 0.02
< 0.02	1.3-Butadiene	< 0.02
< 0.02	Bromomethane	< 0.02
< 0.02	Chloroethane	< 0.02
< 0.08	Acrolein	< 0.02
< 0.80	Acetone	< 0.02
< 0.20	Trichlorofluoromethane	< 0.02
< 0.80	Ethanol	< 0.02
< 0.02	1,1-Dichloroethylene	< 0.02
< 0.20	Methylene chloride	< 0.02
< 0.20	Freon 113	< 0.02
< 0.2	Carbon disulfide	< 0.02
< 0.02	t-1,2-Dichloroethylene	< 0.02
< 0.02	1,1-Dichloroethane	< 0.02
< 0.02	MTBE	< 0.02
< 0.80	IPA	< 0.02
< 0.20	2-Butanone (MEK)	< 0.02
< 0.02	c-1,2-Dichloroethylene	< 0.02

< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)

	_
< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene



Date Analyzed:	3/	1/2024	Batch #:	 24CC0203
Certification Type	: Batch Certified	l I	Individual Certified	
Media Type:	Summa Caniste	er 🗸	Flow Controllers	
	P3345	_	P0331	 BC1081
Media IDs:	P3592	-		
		-		
		_		
		-		

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

#### Units: PPBv

< 0.80	Propene	< 0.04	Vinyl acetate
< 0.02	Dichlorodifluoromethane	< 0.20	Hexane
< 0.04	Chloromethane	< 0.02	Ethyl acetate
< 0.02	Freon 114	< 0.02	Chloroform
< 0.02	Vinyl chloride	< 0.02	Tetrahydrofuran
< 0.02	1.3-Butadiene	< 0.02	1,2-Dichloroethane
< 0.02	Bromomethane	< 0.02	1,1,1-Trichloroethane
< 0.02	Chloroethane	< 0.02	Benzene
< 0.08	Acrolein	< 0.02	Carbon Tetrachloride
< 0.80	Acetone	< 0.02	Cyclohexane
< 0.20	Trichlorofluoromethane	< 0.02	1,2-Dichloropropane
< 0.80	Ethanol	< 0.02	Bromodichloromethane
< 0.02	1,1-Dichloroethylene	< 0.02	Trichloroethylene
< 0.20	Methylene chloride	< 0.02	1,4-Dioxane
< 0.20	Freon 113	< 0.02	Methylmethacrylate
< 0.2	Carbon disulfide	< 0.02	Heptane
< 0.02	t-1,2-Dichloroethylene	< 0.02	MIBK
< 0.02	1,1-Dichloroethane	< 0.02	c-1,3-Dichloropropylene
< 0.02	MTBE	< 0.02	t-1,3-Dichloropropylene
< 0.80	IPA	< 0.02	1,1,2-Trichloroethylene
< 0.20	2-Butanone (MEK)	< 0.02	Toluene
< 0.02	c-1,2-Dichloroethylene	< 0.02	2-Hexanone (MBK)
			•

	_
< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene



Attachment 7

May 2017 NYSDOH Soil Vapor/Indoor Air Decision Matrices

## Soil Vapor/Indoor Air Matrix A May 2017

#### Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c-1,2-DCE), 1,1-Dichloroethene (1,1-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³ )		
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³ )	< 0.2	0.2 to < 1	1 and above
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

 $mcg/m^3 = micrograms per cubic meter$ 

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

**Monitor:** We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

**Mitigate:** We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

## Soil Vapor/Indoor Air Matrix B May 2017

#### Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (1,1,1-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³ )		
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³ )	< 3	3 to < 10	10 and above
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

mcg/m³ = micrograms per cubic meter

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

**Monitor:** We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

**Mitigate:** We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

## Soil Vapor/Indoor Air Matrix C

May 2017

#### Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³ )	
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³ )	< 0.2	0.2 and above
< 6	1. No further action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	4. MONITOR	6. MITIGATE
60 and above	7. MITIGATE	9. MITIGATE

 $mcg/m^3 = micrograms per cubic meter$ 

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

**Monitor:** We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

**Mitigate:** We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.