2495 Main Street, Suite 432, Buffalo, NY 14214

Donald R. McMahon, P.E. Michael J. Mann, P.E. Kenneth L. Fishman, PhD., P.E. John A. Minichiello, CPESC, CPSWQ James Bojarski, P.E. Shawn W. Logan, P.E. Andrew J. Nichols, P.E. Todd Swackhamer, P.E.

January 14, 2010 File: 94-022

Mr. Brian Sadowski New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: 2009 PERIODIC REVIEW REPORT Chem-Trol Site, Registry No. 9-15-015, Blasdell, Erie County

Dear Mr. Sadowski:

The New York State Department of Environmental Conservation (NYSDEC) provided notice in a letter dated March 25, 2009 that the format for the Annual Site Management Reports submitted in previous years has been modified and is now referred to as the Periodic Review Report (PRR). In a letter dated December 4, 2009, the NYSDEC indicated that the PRR is due January 20, 2010. McMahon & Mann Consulting Engineers, P.C. (MMCE) has prepared this PRR on behalf of SC Holdings, Inc, (SC Holdings) using the suggested guidelines provided by the NYSDEC.

Also, included with this PRR is a completed Institutional and Engineering Control Certification Form.

I. INTRODUCTION

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972 and operations were moved to a new facility in Model City, New York.

Chem-Trol was acquired by SCA Services, Inc in 1973 and SCA Services, Inc. was acquired as a subsidiary of Waste Management, Inc. in 1984.

As the result of the waste processing activities at the Hamburg location, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, construction of a soil vapor extraction (SVE) system and a groundwater collection and treatment system. The groundwater collection and treatment system includes a shallow tray air stripper that removes VOCs from the collected groundwater. The treated groundwater is discharged via pipe to the South Branch of Smokes Creek.

Operation of the SVE system and the groundwater collection and treatment system continued through 2009. Analytical data collected since the systems began operation indicates that both systems are contributing to a reduction of contamination in the soil and groundwater.

Based on the fact that both systems have shown a reduction in soil and groundwater contamination, SC Holdings, in a letter dated October 22, 2009 (see Attachment A), requested approval to change the operation of the SVE system from active to passive operation. An agency response to this request is still forthcoming.

II. SITE OVERVIEW

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek (Smokes Creek), as shown on Figure 1.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the shallow overburden as well as the deeper bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the south branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of 2 by the NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

The NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site,
- Installation of a groundwater collection trench along the western edge of the site,
- Improvement of the existing soil cover over the former chemical processing area, and
- Installation of a soil vapor extraction system within the former waste chemical processing area.

Goals for the remedial program have been established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site,
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments and groundwaters at the site,
- Prevent migration of contaminants in the on-site soils into the groundwater,
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment, and
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings monitors the performance of the groundwater collection and treatment system and the SVE system.

Groundwater Collection and Treatment System

SC Holdings has the following actions performed by third party consultants to ensure that the groundwater collection system intercepts, collects and treats groundwater as required in the ROD,

- Perform monthly operation and maintenance tasks on the system,
- Sample and analyze the groundwater collection and treatment system influent and effluent on a monthly basis,
- Sample and analyze air stripper air discharge on a monthly basis,
- Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a quarterly basis,
- Obtain annual groundwater samples from groundwater monitoring wells and analyze for organic compounds, and
- Prepare bedrock groundwater contours based on quarterly water level measurements collected during the year.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Monthly aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations. Analytical test results show that discharge parameter concentrations in the stripper effluent were below the discharge limits established by the NYSDEC for the majority of 2009. The analytical test results for the effluent samples are included in the monthly O&M reports submitted to the NYSDEC.

During the October 2009 sampling event, o-chlorotoluene concentrations were observed in the stripper effluent in excess of discharge limits established by the NYSDEC. In response to this exceedence, the air stripper was acid washed on November 3, 2009 and the monthly aqueous effluent sampling was performed on Novembers 13, 2009. Analytical test results for the November 2009 aqueous effluent sample again showed concentration and mass loading exceedences for o-chlorotoluene. In response to the November 2009 o-chlorotoluene discharge limit exceedence, the air stripper was recleaned and the December 2009 aqueous effluent sample was obtained on December 8, 2009. Elevated o-chlorotoluene concentrations were again observed in samples obtained during this monthly event. As a result, extensive rework of the air stripper was conducted in December, which culminated in compliant concentrations being observed in a sample obtained on December 28, 2009.

A summary of groundwater elevations measured in the groundwater monitoring wells and piezometers is included in Table 2.

The bedrock groundwater contours developed from the quarterly water level measurements are presented in Figures 2 through 5. The plots show that the three extraction wells located within the groundwater collection trench are depressing the water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates groundwater flow gradients toward the collection trench. The bedrock groundwater elevation contours shown on Figures 2 through 5 demonstrate that the collection trench is functioning as designed to restrict off site flow from beneath the site and limit discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater samples have historically detected ochlorotoluene levels in higher concentrations than other organic compounds found in on site groundwater samples. Therefore, concentrations of o-chlorotoluene detected in groundwater samples collected from the inlet to the groundwater collection and treatment system have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for inlet groundwater samples was plotted versus time for the July 2002 through May 2009 sampling events (see Figure 2 in Attachment A). The plot shows that the concentration of o-chlorotoluene in the inlet groundwater samples from the treatment system has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A summary of all organic compound analytical results for the yearly groundwater sampling event from 1990 through 2009 is included as Table 1. The 2009 groundwater sample analytical laboratory report is included as Attachment B.

Soil Vapor Extraction System

In order to demonstrate that the SVE system collects soil vapors as required in the ROD, SC Holdings has the following actions performed by third party consultants:

- On a monthly basis, check that the SVE system is operating;
- Perform quarterly VOC measurements on exhaust from SVE system blower; and
- Periodically obtain VOC samples from the SVE system and collection laterals for analytical testing.

A field investigation was performed in 2009 to evaluate the performance of the SVE system. Field investigations revealed that the SVE collection pipes are submerged by groundwater at certain times of the year and that modification of system operation may be warranted.

Analytical testing performed on soil vapor samples obtained from three laterals (#0, #1 and #7) that were above the water table at the time of the field investigation showed total VOC concentrations of approximately 4 parts per million by volume (ppmv) with the majority of VOCs being generated within lateral #7 at a total VOC concentration of approximately 3.8 ppmv. VOC concentrations for the 2009 soil vapor samples were compared with the VOC concentrations in soil vapor samples taken during remedial design field studies at the Chem-Trol site in 1997 (see Table 1 in Attachment A). The comparison shows that VOC concentrations in 2009 soil vapor samples were more than 1 order of magnitude lower than samples obtained during remedial design studies in 1997. The observed reduction in VOC concentrations in the soil vapor samples is discussed in Attachment A. Based on the results of this field investigation and discussion with NYSDEC representatives on September 15, 2009, SC Holdings has submitted a proposal to modify the operation of the SVE system by changing it from an active to a passive operation (see Attachment A).

IV. O&M PLAN COMPLIANCE

SC Holdings performs the following activities as part of the O&M Plan requirements:

Groundwater Collection and Treatment System

Third party consultants perform the following activities as part of monthly Operation and Maintenance (O&M) visits:

- Verify that each extraction well is running and performing properly,
- Insure that each pump is pumping, verify pumping rate, document total gallons pumped and insure that high and low water controls are functioning properly,

- Perform monthly influent and effluent analytical testing,
- Insure that air stripper is functioning properly, blower is running,
- Perform monthly inspections and cleaning of stripper trays. Insure Acid washes are performed quarterly or more often if necessary to promote optimum volatilization of volatile organic compounds, and
- Prepare and submit monthly O&M reports to the NYSDEC.

The monthly operation and maintenance reports submitted to the NYSDEC provide further details on specific activities performed, analytical testing results and observations made during the monthly O&M visits. With the exception of general maintenance work performed on pumps and sensors, as described in the monthly O&M reports, no significant issues have occurred to the groundwater collection and treatment system. Results of the treatment system performance are discussed in Section III.

Soil Vapor Extraction System

Third party consultants perform the follow activities as part of periodic O&M visits:

- Verify that the soil vapor extraction system is operating and imposing a vacuum on the soil vapor collection laterals. Remediate any alarm situations displayed on the panel box, inspect above ground components of the soil vapor collection header system for leaks or breaks in the piping,
- Prepare summary forms of monthly visits for submittal in the annual PRR, and
- Compile collected data for inclusion in the annual PRR.

Monthly 2009 site visit summaries are included as Attachment C. The summary sheets indicate the activities that occurred during the site visits.

V. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

The groundwater collection and treatment system continues to function at reducing organic compounds in the groundwater and soil at the Chem-Trol site. As indicated by the o-chlorotoluene plot shown in Figure 2 of Attachment A, the concentrations of o-chlorotoluene in the groundwater have been reduced since initiation of system operation to a point that the plot is asymptotic. This indicates that the source contributing to VOC concentrations observed in groundwater has been reduced to where its influence on groundwater has stabilized. The data also show that the groundwater collection and treatment system is continuing to contain groundwater containnants.

The SVE system also continues to function at reducing organic compounds in the soil at the Chem-Trol site. The results of compiled data presented in Table 1 of Attachment A, indicate that VOC concentrations in soil vapor samples obtained from the SVE system were approximately 1 or more orders of magnitude less than soil vapor samples obtained during remedial design field studies in 1997.

In addition, SC Holdings continues to perform the required monitoring and reporting requirements and operation and maintenance tasks listed above.

In addition, SC Holdings continues to perform the required monitoring and reporting requirements and operation and maintenance tasks listed above.

Based upon the reduction in SVE soil vapor sample VOC concentrations and the effective containment of groundwater VOC constituents by the groundwater collection and treatment system, SC Holdings has recommended converting the SVE system from active to passive operation as described in Attachment A.

Please call MMCE (716-834-8932) or Mr. Mark Snyder (585-223-6132) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

McMAHON & MANN CONSULTING ENGINEERS, PC

James Bojarski, P.E

John A. Minichiello, CPESC, CPSWQ

cc. Mark R. Snyder, P.E. (SC Holdings, Inc.) w/attachments

Enclosures:

Institutional and Engineering Controls Certification Form Figure 1 - Site Map Figure 2 - 1st Quarter Bedrock Groundwater Contours

Figure 3 - 2nd Quarter Bedrock Groundwater Contours

Figure 4 - 3rd Quarter Bedrock Groundwater Contours

Figure 5 - 4th Quarter Bedrock Groundwater Contours

Table 1 - 1990 - 2009 Yearly Analytical Test Results Summary

Table 2 - Summary of Groundwater Elevations - 2009

Attachment A - SVE System Evaluation Work Plan

Attachment B - 2009 Annual Groundwater Sample Analytical Results Report Attachment C - MMCE 2009 Monthly Site Visit Summaries

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

and the second s

CALL HAR

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	Site Details B	Box 1							
Si	te Name Chem-Troi								
Si	e Address: Lake Avenue Zip Code: 14107								
Ci	ty/Town: Hamburg								
Co	punty: Erie								
Ail	owable Use(s) (if applicable, does not address local zoning):		i						
Sit	e Acreage: 17.5								
		Bo)x 2						
	Verification of Site Details	YES	NO						
1.	Are the Site Details above, correct?	¥¢							
	If NO, are changes handwritten above or included on a separate sheet?								
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last certification?		¥						
	If YES, is documentation or evidence that documentation has been previously submitted included with this certification?								
3.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property since the initial/last certification?		X						
	If YES, is documentation (or evidence that documentation has been previously submitted) included with this certification?	D							
4.	If use of the site is restricted, is the curent use of the site consistent with those restrictions?	×							
	If NO, is an explanation included with this certification?								
5.	For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-141 has any new information revealed that assumptions made in the Qualitative Exposu Assessment regarding offsite contamination are no longer valid?	5.7(c), re	\$						
	If YES, is the new information or evidence that new information has been previously submitted included with this Certification?								
6.	For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-141 are the assumptions in the Qualitative Exposure Assessment still valid (must be certified every five years)?	5.7(c), 1x4							
	If NO, are changes in the assessment included with this certification?								

۲

· · ·

SITE NO. 915015		Box 3							
Description of Institutional Controls									
Parcel S. B. I. Image: 151.02-1-14.1	Institutional Control	المعنية المعالم. مناطق المعالم							
	Decision Document Ground Water Use Restriction Landuse Restriction								
		Box 4							
Description of Engineering Cont	rois								
Parcel S B L Image: 151.02-1-14.1	Engineering Control								
	Cover System Fencing/Access Control Groundwater Containment Pump & Treat	,							
Attach documentation if IC/ECs canno (See instructions)	t be certified or why IC/ECs are no longer applicable.								
Contro	D Description for Site No. 915015								
Parcel: 151.02-1-14.1 The controls identified in the Declarati March 25, 2004, Include but are not lin cap covering the Property by maintain Relevant Agency, by capping the Prop used for purposes other than for indus medical care; the use of groundwater safe for drinking water or industriat pu necessary to conduct tests to monitor covenants are binding and shall run w	on of Covenants and Restrictions, recorded with Erie Counited to the following: the owner of the Property shall main ing its grass cover, or after obtaining written approval from perty with another material; the property is prohibited from strial or commercial use, excluding use for day care, child underlying the property is prohibited without treatment to poses, except that the groundwater may be reasonably u contamination levels of the groundwater. These restrictive ith the land.	Inty on Intain the In the Inbeing Care and Care and render it Ised as							

• •

		Box 5
Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification;	ction of,	and
b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and gener	n this ce ally acc	ertification epted
engineering practices, and the miorination presented is accurate and compare.	YES	NO
	X	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true: 	each In t all of ti	stitutional ne
(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Departme	s uncha int;	nged since
(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	public h	ealth and
 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	the rem	iedy,
(d) nothing has occurred that would constitute a violation or failure to comply with Management Plan for this Control; and	h the Si	te
(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in th	the site	e, the nent.
	YES	NO
	R	
 If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in Document); 	the De	cision
I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as requirements (or equivalent as requirements)	uired in	the
	YES	NO
	БÌ	
4. If this site has a Monitoring Plan (or equivalent as required in the remedy selection doc	u ment) ;	
I certify by checking "YES" below that the requirements of the Monitoring Plan (or equival in the Decision Document) is being met	ent as r	equired
	YES	NO
	\$ 4	

	IC CERTIFICATION SITE NO. 9150	ONS 15
	a Bruk kara ara	Box 6
SITE OWN I certify that all information statement made herein is p Penal Law.	IER OR DESIGNATED REPRI and statements in Boxes 2 and punishable as a Class "A" misde	ESENTATIVE SIGNATURE I/or 3 are true. I understand that a false emeanor, pursuant to Section 210.45 of the
Mark R. Snyder	at 425 Peri	nton Parkway, Fairport, NY 14450
print name	print	business address
am certifying as	Owner	(Owner or Remedial Party)
Signature of Owner or Rem	Marchaelering Certifica	ation <u>01/14/10</u> Date
	IC/EC CERTIFICAT	FIONS Box 7
QUALIFIE I certify that all information punishable as a Class "A" r	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE In Boxes 4 and 5 are true. I un misdemeanor, pursuant to Sect March at MMahra	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <i>Mann Consulting Engines</i>
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAEZ</u> J. M print name	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I un misdemeanor, pursuant to Sect Mandar at <u>MMahan</u> print	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Engines</u> business address
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAEZ J. M</u> print name am certifying as a Qualified	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. 1 ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print Environmental Professional fo	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address business address
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICHAEL</u> <u>J. M</u> print name am certifying as a Qualified (Owner or Remedial Party)	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print I Environmental Professional for for the Site named in the Site	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <i>Mann Consulting Enginess</i> business address business address business address business address
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAEL</u> <u>J. M</u> print name am certifying as a Qualified (Owner or Remedial Party)	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print I Environmental Professional for for the Site named in the Site I	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address business address business address Details Section of this form.
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAEL</u> J. M print name am certifying as a Qualified (Owner or Remedial Party)	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print I Environmental Professional for for the Site named in the Site I	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address for the <u>Owner</u> Details Section of this form.
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAER J. M</u> print name am certifying as a Qualified (Owner or Remedial Party)	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print I Environmental Professional for for the Site named in the Site I	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address for the <u>Ownen</u> Details Section of this form.
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICHAEL</u> J. M print name am certifying as a Qualified (Owner or Remedial Party)	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE in Boxes 4 and 5 are true. I ur misdemeanor, pursuant to Sect MMM at <u>MMahon</u> print I Environmental Professional for for the Site named in the Site I	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address for the <u>Ownen</u> Details Section of this form.
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICHAER</u> J. M print name am certifying as a Qualified (Owner or Remedial Party) <u>MuMal</u> J Signature of Qualified Envi the Owner or Remedial Part	IC/EC CERTIFICAT ED ENVIRONMENTAL PROFE In Boxes 4 and 5 are true. 1 ur misdemeanor, pursuant to Sect Markon at <u>MMahan</u> print I Environmental Professional for for the Site named in the Site I for the Site named in the Site I Markon ronmental Professional, for rty, Rendering Certification	Box 7 ESSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address or the <u>Ownen</u> Details Section of this form. <u>Mann (if Required)</u> Date
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICHAEZ</u> J. M print name am certifying as a Qualified (Owner or Remedial Party) <u>MMMMM J</u> Signature of Qualified Envi the Owner or Remedial Part	IC/EC CERTIFICAT	Box 7
QUALIFIE I certify that all information punishable as a Class "A" r I <u>MICLIAEZ</u> J. M print name am certifying as a Qualified (Owner or Remedial Party) <u>MMMMM J</u> Signature of Qualified Envi the Owner or Remedial Part	IC/EC CERTIFICAT	Box 7 SSIONAL (QEP) SIGNATURE Inderstand that a false statement made herein is tion 210.45 of the Penal Law. <u>Mann Consulting Enginess</u> business address or the <u>Ownen</u> Details Section of this form. <u>Mann (if Required)</u> Date

. .

FIGURES

Figure 1 – Site Map Figure 2 – 1st Quarter Bedrock Groundwater Contours Figure 3 – 2nd Quarter Bedrock Groundwater Contours Figure 4 – 3rd Quarter Bedrock Groundwater Contours Figure 5 – 4th Quarter Bedrock Groundwater Contours

TABLES

Table 1 – 1990 - 2009 Yearly Analytical Test Results SummaryTable 2 – Summary of Groundwater Elevations 2009

Table 1 Chem Trol

1990 - 2009 Yearly Analytical Test Results Summary MW-15R

	MW-15R																
	3/11/1999		10/22/2002	10/13/2003		10/26/2004	11/11/200	5	9/2/2006		9/2/2006	9/20/2007	DL	9/24/2008	DL	9/22/2009	RL
1 1,1,1-Trichloroethane	ND		ND	ND		ND	ND (1)		ND (1)		ND (1)	ND	5	ND	5	ND	5
2 1,1,2,2-Tetrachloroethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
3 1,1,2-Trichloroethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
4 1,1,2-Trichloro-1,2,2-trifluororethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
5 1,1-Dichloroethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
6 1,1-Dichloroethene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
7 1,2,4-Trichlorobenzene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
8 1,2-Dibromo-3-Chloropropane DBCP	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
9 1,2-Dibromoethane (EDB)	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
10 1,2-Dichlorobenzene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
11 1,2-Dichloroethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
12 1,2-Dichloropropane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
13 1,3-Dichlorobenzene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
14 1,4-Dichlorobenzene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
15 Methyl Ethyl ketone	ND		ND	ND		ND	50 J (2)		6.4 J (2)		ND (2)	ND	25	ND	25	160	
16 o-Chlorotoluene	ND		ND	ND		2.9 BJ	ND BJ		5		ND	ND		ND		ND	
17 2-Hexanone	ND		ND	ND		ND	ND (2)		ND (2)		ND (2)	ND	25	ND	25	ND	25
18 Methyl Isobutyl Ketone	ND		ND	ND		ND	ND (2)		ND (2)		ND (2)	ND	25	ND	25	ND	25
19 Acetone	20 U (4)		ND	ND		ND	ND (2)		6.8 J (2)		ND (2)	3.3 BJ	25	ND	25	36	
20 Benzene	ND		24	15		14	13 J		12		13 DJ	12		15		ND	
21 Dichlorobromomethane	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
22 Bromoform	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
23 Bromomethane	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
24 Carbon Disulfide	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
25 Carbon Tetrachloride	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
26 Chlorobenzene	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
27 Dibromochloromethane	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
28 Chloroethane	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	
29 Chloroform	ND		ND	ND		ND	ND		ND		ND	ND	<u> </u>	ND		ND	
30 Chloromethane	ND		ND	ND		ND	7.6 J		ND		ND	ND	<u> </u>	9.9		ND	
31 cis-1,2-Dichloroethene	ND		ND	ND		ND	ND		ND		ND	ND	\perp	ND		ND	_
32 cis-1,3-Dichloropropene	ND	_	ND	ND		ND	ND		ND		ND	ND	4	ND	<u> </u>	ND	
33 Cyclohexane	ND		180	170		190	190		240 E		220 D	92		130 E		ND	
34 Dichlorofluoromethane	ND		ND	ND		ND	ND		ND		ND	ND		ND		ND	
35 Ethylbenzene	ND		17	20		17	14 J		16		15 DJ	9.4	—	8.3		ND	
36 Isopropylbenzene	ND		3.1 J	3.3 J		2.5 J	2.5 J		2.6 J		2.6 DJ	1.6 J	<u> </u>	2.9 J		ND	
37 Methyl Acetate	ND		ND	ND		ND	ND	_	ND		ND	ND	<u> </u>	ND		ND	
38 Methyl tert butyl ether	ND	_	ND	ND		ND	ND	-	ND		ND	ND	-	ND		ND	
39 Methylcyclonexane	ND		110	86		99	80		120 E		96 D	26	<u> </u>	/1		ND	
10 Methylene chloride	ND		ND	ND		ND	ND	_	ND		7.6 DJ	ND	่	ND	<u> </u>	ND	
11 Styrene	ND		ND	6.5		ND	ND	_	ND		ND	ND	┥──	ND	──	ND	
	ND	-	ND	ND		ND	ND	_	ND		ND	ND	<u> </u>	ND	<u> </u>	ND	
13 Toluene	ND	-	26	2.4 J		ND	ND		1.1 J		ND	ND	┽──	4.1 J		ND	
14 1,2-Dichloroethene	ND		ND	ND		ND	ND		ND		ND	ND	┽──	ND		ND	
14 trans-1,2-Dichlerence			ND	ND		ND	ND		ND		ND	ND	┽──	ND		ND	
15 trans-1,3-Dichloropropene	ND		ND	ND		ND	ND		ND		ND	ND	+	ND	+	ND	
	ND		ND	ND		ND	ND		ND		ND	ND	┽──	ND		ND	
19 Vinul Chlorida								_					+		—		+-
		_	170	160		ND 49	ND	_	ND		NU (2)	ND 22	15	ND 91	15	ND 22	
1 Chloro 2 mothyl hanzana						4ð	32 J (3)						10				4
1-Chloro 2 methyl bergene	0 J												+		—		+-
1-Gnioro-2-metriyi benzene	Z3 J	1			I	UND							<u> </u>		<u> </u>		
	NUTES:	I)	nai results reporte	su ill uy/L			1-ALL DL 25 UG	LL DL 25 UG/L 1-ALL DL 5 UG/L 1-ALL DL 25 UG/L			NOTED OTHER	33	NOTED OTHER	33 105	NOTED OTHERWISE		
		∠) 2\		orting Limit			UNLESS NOTE	UNLESS NOTED UNLESS NOTED			NOTED OTHERV	IISE	NOTED OTHERW	ISE	NOTED OTHERW	IOE	
		3)		icate detected cor	nnour	ade	2-DL 120 UG/L		2-DL 25 UG/L		2-DL 120 UG/L						
		4)	Chaucu Cells IIIu	care derected COI	npoul	143	3-DE /3 UG/L		5-DE 15 UG/L		3-DE /3 00/L	1		1			

ORGANIC DATA QUALIFIERS

ND compoud analyzed for, but not detected

J indicates an estimated value

B analyte is found in asociated blank and sample

D identifies compound identified in an analysis at

the secondary dilution factor.

Е concentration exceeds calibration range

							1990 - 2009 Year	Table 1 Chem Trol Iv Analytical Tes	t Results Summary								
								MW-13R	,, ,								
									Diluted								
d d d Tricklaus all an a	5/31/1994	3/11/1999	10/22/2002	10/22/2002	10/13/2003	10/26/2004	10/26/2004	11/11/2005	11/11/2005	9/27/2006	9/27/2006	9/20/2007	DL	9/24/2008		9/22/2009	RL
1,1,1-I richloroethane	280 D (4)	220 J	79	ND	ND	ND	8.2	76 (1)	100 DJ DJ	ND (1)	ND (1)	ND	40	ND	20		5
1,1,2,2-Tetrachioroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	──┼		$ \longrightarrow$
1,1,2-Thermore 1,2,2 trifluororothono		ND	291	ND	ND	ND			1	ND					╂───╂		\vdash
1,1,2-mcnoro-1,2,2-mmororemane	61	240 1	2.8 3	ND	110 1	33	30	170 F	270 DI	86		561			<u> </u>	17	
1,1-Dichloroethene	270 D	2400	37.1	ND	ND	ND D		15.1	ND ND	ND	ND	0.0 0 ND		ND			
1,24-Trichlorobenzene	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	++		
1.2-Dibromo-3-Chloropropane DBCP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+	ND	\square
1.2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+	ND	\square
1.2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Methyl Ethyl ketone	ND	ND	ND	ND	ND	ND	ND	ND (25)	ND (2)	ND (2)	ND (2)	ND	200	ND	100	ND	25
o-Chlorotoluene	1700 DJ	ND	3300 E	4200 D	4500	1900 BD	820 E	1700 E	4900 D (3)	600 BE	680 BD	440		250		600	
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (2)	ND (2)	ND (2)	ND	200	ND	100	ND	25
Methyl Isobutyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND (25)	ND (2)	ND (2)	ND (2)	ND	200	ND	100	ND	25
Acetone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (2)	ND (2)	ND (2)	ND	200	ND	100	ND	
Benzene	2 J	ND	7	ND	ND	ND	2.6 J	4.6 J	ND	0.61 J	ND	ND		ND	+	ND	
Dichlorobromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+		
Bromotorm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	┢──┼		
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	──┼		
Carbon Disuilide	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+		
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	┥──┤		
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND		ND					++		+
Chloroethane	22	73	ND	ND	ND	28 D.I	32	45	ND	12	ND	23.1		48.1		140	
Chloroform	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	<u>233</u>			<u>├</u> ──┦		
Chloromethane	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	ND	ND		ND	+		
cis-1.2-Dichloroethene	ND	10	11	ND	ND	ND	1.6 J	3.2 J	ND	1 J	ND	ND		ND		ND	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Cyclohexane	ND	ND	ND	ND	ND	ND	2.5 J	3.9 J	ND	1.2 J	ND	ND		ND		ND	
Dichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Ethylbenzene	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Methyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Methylcyclohexane	ND	ND	13	ND	ND	ND	ND	1.2 J	ND	ND	ND	ND		ND		ND	
Methylene chloride	1 J	ND	ND	ND	ND	ND	ND	0.44 J	ND	ND	18 BJ	15 BJ		ND	$ \rightarrow $	ND	
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+	ND	
l etrachloroethene	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	──┼		
1 oluene	7 J	ND	6.5	ND	ND	ND	2.3 J	3.2 J	ND	ND	ND	ND		ND	──┼		
1,2-Dichloroethene	9 J	ND	ND	ND	ND	ND	ND 121	ND	ND	ND	ND	ND		ND	──┼		
trans-1,2-Dichloroptnene	ND	ND	2.4 J	ND	ND	ND	1.3 J	1.2 J	ND	ND	ND	ND		ND	┥──┤		
Trichloroothono	10	ND 40	ND 6	ND	ND	ND		271		ND					╂───╂		
Trichlorofluoromethane	HD		ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	++		+
Vinyl Chloride	2.1	ND	ND	ND	ND	ND	ND	ND	ND	0.71.1	ND	ND		ND	++		
Total Xylenes	8.1	ND	9.6.1	ND	ND	ND	ND	4,4,1(3)	ND	ND (3)	ND (3)	ND	120	ND	60	ND	15
1-Chloro-2-methyl benzene	ND	1100	ND	ND	ND	ND	ND	ND	ND	ND		ND	.20	ND		ND	
1-Chloro-2-methyl benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
	I	NOTES:	1) All results repo	orted in ug/L		I	I	1-DL 5 UG/L	1-DL 400 UG/L	1-DL 5 UG/L	1-DL 100 UG/L	DL 40 UG/L UN	LESS	DL 20 UG/L UN	ILESS !	RL 5 UG/L UNI	ESS
			2) DL refers to D	etection Limit				2-DL 25 UG/L	2-DL 2000 UG/L	2-DL 25 UG/L	2-DL 500 UG/L	NOTED OTHER	WISE	NOTED OTHER	WISE	NOTED OTHEF	WISE
			3) RL refers to R	eporting Limit				3-DL 15 UG/L	3-DL 1200 UG/L	3-DL 15 UG/L	3-DL 300 UG/L						

4) Shaded cells indicate detected compounds

ORGANIC DATA QUALIFIERS

ND compoud analyzed for, but not detected

J indicates an estimated value

- analyte is found in asociated blank and sample В
- identifies compound identified in an analysis at D
 - the secondary dilution factor.
- Е concentration exceeds calibration range

Table 1 Chem Trol 1990 - 2009 Yearly Analytical Test Results Summary

2-DL 25 UG/L

3-DL 15 UG/L

2-SDL 120 UG/L

3-DL 75 UG/L

2-SDL 25 UG/L

3-DL 15 UG/L

										10- 44 141	x in the second s									
	0/40/4000		0/1/1004	2/10/1000	40/00/0000	10/00/	2002		40/42/2002	10/00/2000	14/44/0005	DILUTED	0/07/00	00	0/00/0007		0/04/0000		0/00/0000	
1 1 1 Triphlaraothana	8/16/1993		6/1/1994	3/10/1999	10/22/2002	10/22/2	2002		10/13/2003	10/26/2004	+ 11/11/2005	11/11/2005	9/27/20	06	9/20/2007	DL	9/24/2008		9/22/2009	RI
1,1,1-1 richloroethane	130 (4)		520	150	ND	ND			ND	ND)	ND	Э	ND	5		5
1,1,2,2-Tetrachioroethane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND	$ \rightarrow$		–
1,1,2-Thenlore 1,2,2 trifluererethene			ND	ND	ND					ND	ND	ND	ND	_	ND			┝──┥		─
1,1,2-1 richloro-1,2,2-trilluororethane	160		ND 270	ND 200	ND 32	ND 26				10	ND 24		ND	_						–
1,1-Dichloroethane	100	-	570	200	32	20		U			24		6.9	_	4.7 J		3.4 J	\vdash		–
1, 1-Dichlorobenzene	30		07 ND	23						ND	ND	ND	ND	_	ND			┝──┥		─
1,2,4-IIICIIIOIODEIIZEIIE				ND	ND						ND		ND	_	ND			┝──┥		─
1,2-Dibromosthano (EDR)				ND	ND						ND		ND	_	ND			┝──┥		─
1,2-Diblomoethane (EDB)			ND	ND	ND					ND	ND	ND	ND	_	ND			┝──┥		─
1,2-Dichloroothana				ND	ND					ND	ND		ND	_	ND			┝──┥		─
1,2-Dichloropropage				ND	ND						ND		ND	_	ND			┝──┥		─
1.3 Dichlorobenzone				ND	ND						ND	ND	ND		ND			┝──┦		├
					ND			_			ND		ND	_	ND			╞──┤		┼──
1,4-Dichloroberizene Mothyl Ethyl kotopo				ND	ND)	ND	25		25		21
o Chlorotoluono	4200 D I		2500 D I	600	200 E	240			140	100	ND (2)	220 PD	ND (2)	ND	20	10	23	12	2
	4200 DJ			ND		2401	,	_	ND)	30	25	40	25	43 ND	21
Z-Rexample Mothyl Isobutyl Kotopo				ND	ND						ND (2)	ND (2))	ND	25		25		20
				ND	ND						ND (2)	ND (2))	ND	25		25		20
Bonzono	ND		ND	ND	ND)	ND	25		25		2.
Diablarabramamathana				ND	ND						ND		ND		ND			┝──┦		├
Bromoform	ND			ND	ND					ND	ND	ND	ND		ND			┝──┦		├
Bromomothano					ND			_			ND		ND	_	ND			╞──┤		┼──
Carbon Disulfido	ND		ND	ND	ND						ND	ND	ND		ND			┝──┦		├
Carbon Totrachlorido			ND	ND	ND					ND	ND	ND	ND		ND			┝──┦		├
Chlorobonzono			ND	ND	ND						ND	ND	ND		ND			┝──┦		├
Dibromochloromethane			ND	ND	ND	ND				ND	ND	ND	ND		ND		ND			├
Chloroethane	26		52	76	13	11 D	1	-	10	5.8	6	4201	321		6		221			├
Chloroform	ND			ND	ND		5	-		0.0 ND	ND				ND			┝──┦		<u>├</u>
Chloromethane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND	_	ND		ND	┝──┦		<u>├</u>
cis-1 2-Dichloroethene	6.1		14	10	36.1	340).]		25.1	22	25.1	2 D.I	120		0.76.1		0.58.1			<u>├</u>
cis-1 3-Dichloropropene										ND		ND			ND					1
Cyclohexane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Dichlorofluoromethane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Ethylbenzene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Isopropylbenzene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Methyl Acetate	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Methyl tert butyl ether	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Methylcyclohexane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Methylene chloride	ND		ND	ND	ND	ND			ND	ND	ND	2.3 DJ	ND		ND		ND		ND	
Styrene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Tetrachloroethene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Toluene	ND		4 J	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
1.2-Dichloroethene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
trans-1.2-Dichloroethene	ND		ND	ND	1 J	ND			ND	ND	0.92 J	ND	ND		ND		ND		ND	
trans-1.3-Dichloropropene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Trichloroethene	39		160	51	1.2 J	ND			ND	ND	ND	ND	ND		ND		ND		ND	
Trichlorofluoromethane	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	i
Vinyl Chloride	ND		ND	ND	ND	ND			2.6 J	1.9	2.8 J	ND	1.2 J		0.92 J		0.63 J		ND	
Total Xylenes	ND		ND	ND	ND	ND			ND	ND	ND (3)	ND (3)	ND (3)	ND	15	ND	15	ND	15
1-Chloro-2-methyl benzene	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND	·	ND		ND		ND	
1-Chloro-2-methyl benzene	ND	1	ND	ND	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND	
•	•		NOTES:	 1) All results re	ported in ug/L						1-DL 5 UG/L	1-DL 25 UG/L	1-DL 5 UG	i/L	DL 5 UG/L UNL	ESS	DL 5 UG/L UNLE	ESS	RL 5 UG/L UNLF	ESS
	NOTES:			2) DL refers to	Detection Limit						UNLESS NOTED	UNLESS NOTED	UNLESS	NOTED	NOTED OTHER	WISE	NOTED OTHER	WISE	NOTED OTHER	WISE

2) **DL** refers to Detection Limit
 3) **RL** refers to Reporting Limit

4) Shaded cells indicate detected compounds

ORGANIC DATA QUALIFIERS

ND compoud analyzed for, but not detected J

indicates an estimated value

analyte is found in asociated blank and sample В

identifies compound identified in an analysis at D

the secondary dilution factor.

Е Concentration exceeds calibration range

	1
	ł
	Į.
٦	I
	I
_	I
	1
1	1
	I
	I
	I
	1
	I
	I
	I
	I
	1
	1
	I
	I
	I
	ų
	l
	l
	l
	1

Table 1
Chem Trol
1990 - 2009 Yearly Analytical Test Results Summary
MIA/ OB

2-DL 120 UG/L 3-DL 75 UG/L

2-DL 25 UG/L

3-DL 15 UG/L

2-DL 120 UG/L 3-DL 75 UG/L

								MW-9R										
	0/404000	014 14 00 4	0/40/4000	4.0.100.100.000	40/00/0000	10/10/0000	40,00,000,0	44440005	DILUTED	0/07/0000	0.00.0007		DILUTED		010410000		0.000.0000	
4.4.4 Tricklass of an a	8/161993	6/1/1994	3/10/1999	10/22/2002	10/22/2002	10/13/2003	10/26/2004	11/11/2005	11/11/2005	9/27/2006	9/20/2007		9/20/2007		9/24/2008		9/22/2009	
1,1,1-I richloroethane	1300 D (4)	2800 D	630 J	850 E	540 D	460	ND	360 E (1)	410 D (1)	440 (1)	1600 E	25	1800 D	120	1/0	10	300	5
1,1,2,2-Tetrachioroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				+		$ \rightarrow $		
1,1,2-Trichloro 1,2,2 trifluororothono	ND	ND	ND	ND 79	ND	ND	ND		ND	ND						\vdash		
1,1,2-111011010-1,2,2-tilliu0101etillaile		960 D	470 1	7.0 240 E	100 D	02	ND	3 J 160 E	190 D	16	270		210 D		6/	⊢ →	95	<u> </u>
1,1-Dichloroothono	1000 D	000 D	470 J	240 E		93		100 E		40	641		12 D I		151	⊢ – +		
1,1-Dicilioroetileile	ND	ND	ND		ND	ND	ND											
1,2,4-Theniotoberizene	ND	ND	ND	ND	ND	ND	ND	ND	ND					+-+		┼──┼		<u> </u>
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				+		\vdash		<u> </u>
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+		\vdash		<u> </u>
1.2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	++		\vdash		<u> </u>
1,2-Dichloropropage	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	++		\vdash		<u> </u>
1.3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	++		\vdash		<u> </u>
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	++		\vdash		<u> </u>
Methyl Ethyl ketone	ND	ND	ND	ND	ND	ND	ND			ND	ND	120	ND	620		50		25
o-Chlorotoluene	ND	620 D.I	180	1600 F	1100 D	ND	ND	170 F	190 BD	18 B.I	1800 F	120	2000 D	020	62		33	20
2-Hexanone	ND	ND	ND		ND	ND	ND		ND (2)	ND (2)		120	ND	620		50		25
Methyl Isobutyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (2)		ND	120	ND	620		50		25
Acetone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (2)	ND (2)	ND	120	ND	620		50		25
Benzene	1.1	ND	ND	ND	ND	ND	ND	0.74.1			ND	120	ND	020	ND			20
Dichlorobromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	++		\vdash		<u> </u>
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	++	ND	<u>├</u> ──┼	ND	
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	┼──┼	ND	├──┼		
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	++	ND	<u>├</u> ──┼	ND	
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+	ND	+ +		<u> </u>
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	+	ND	+ +		<u> </u>
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Chloroethane	60	39	69	26	ND	8.6 J	ND	31	32 D	ND	54		69 DJ		11		28	
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	<u> </u>
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	<u> </u>
cis-1.2-Dichloroethene	2 J	ND	32	1.7 J	ND	ND	ND	2 J	ND	ND	4.7 J		ND		2.7 J		ND	<u> </u>
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	<u> </u>
Cyclohexane	ND	ND	ND	8.2	ND	ND	ND	ND	ND	ND	ND		ND		1.6 J		ND	
Dichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Ethylbenzene	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Methyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND		ND		ND		ND	
Methylcyclohexane	ND	ND	ND	7.4	ND	ND	ND	1.8 J	ND	ND	ND		ND		0.97 J		ND	
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	4 BJ	7.8 BJ		45 BDJ		ND		ND	
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Toluene	1 J	4 J	ND	2.2 J	ND	ND	ND	0.41 J	ND	ND	ND		ND		ND		ND	
1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	0.5 J	ND	ND	ND		ND		ND		ND	
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	1
Trichloroethene	330 D	300D	260 J	8.2	ND	ND	ND	2.4 J	2.7 DJ	ND	5.1 J		ND		0.68 J		ND	
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7 J		ND		2.8 J		ND	
Total Xylenes	ND	ND	ND	5.7 J	ND	ND	ND	1.3 J (3)	ND (3)	ND	ND	75	ND	380	ND	30	ND	15
1-Chloro-2-methyl benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
1-Chloro-2-methyl benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND		ND	
		NOTES:	1) All results re	ported in ug/L				1-DL 5 UG/L	1-DL 25 UG/L	1-DL 25 UG/L	DL 25 UG/L U	NLESS	DL 120 UG/L U	INLESS [DL 10 UG/L UN	ILESS	RL 5 UG/L UNI	ESS
	NOTES:		2) DL refers to	Detection Limit				UNLESS NOTED	UNLESS NOTED	UNLESS NOTE	D NOTED OTHE	RWISE	NOTED OTHE	RWISE N	NOTED OTHER	RWISE	NOTED OTHER	RWISE

2) **DL** refers to Detection Limit 3) **RL** refers to Reporting Limit

4) Shaded cells indicate detected compounds

ORGANIC DATA QUALIFIERS

ND compoud analyzed for, but not detected

indicates an estimated value J

В analyte is found in asociated blank and sample

identifies compound identified in an analysis at D

the secondary dilution factor.

Е concentration exceeds calibration range

of the instrument

Table 1 Chem Trol 1990- 2009 Yearly Analytical Test Results Summary

	MW-7R																
	0/40/4000	40,000,0000	40/40/0000	40/00/0004	0/04/0005	11/11/0005	0/07/0000	Duplicate	0/00/0007		0/04/0000		40/00/0000		0.00.0000		
4 4 4 Trickleye stheye	8/12/1993	10/22/2002	10/13/2003	10/26/2004	3/31/2005	11/11/2005	9/27/2006	9/27/2006	9/20/2007		9/24/2008		10/22/2009		9/22/2009		
1, 1, 1-1 richloroethane	ND	ND	ND	SEE	ND			ND(1)	ND	э		5		5		5	
1,1,2,2-Tetracilloroethana		ND	ND	NOTE 2		ND	ND	ND	ND								
1,1,2-Trichloro 1,2,2 trifluororothono	ND	ND	ND	Balaw		ND	ND	ND									
1,1,2-111011010-1,2,2-tilliu0101ethane	ND	ND	ND	Delow	ND	ND	ND	ND	ND		ND					+	
	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND				
1,1-Dichloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND					+	
1,2,4-1 richlorobenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND						
1,2-Dibromo-3-Chloroproparie DBCP	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND				
1,2-Dibromoetnane (EDB)	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND				
1,2-Dichlorobenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND				
1,2-Dichloroethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
1,2-Dichloropropane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
1,3-Dichlorobenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
1,4-Dichlorobenzene	ND	ND	ND		ND	ND	ND	ND	ND	05	ND	05	ND		ND	0.5	
Methyl Ethyl ketone	ND	ND	ND		ND	ND (2)	ND (2)	ND (2)	ND	25	ND	25	ND		ND	25	
o-Chlorotoluene	ND	3.5 J (4)	ND		ND	ND	3.1 J	2 J	ND	~-	ND		ND		ND		
2-Hexanone	ND	ND	ND		ND	ND (2)	ND (2)	ND (2)	ND	25	ND	25	ND		ND	25	
Methyl Isobutyl Ketone	ND	ND	ND		ND	ND (2)	ND (2)	ND (2)	ND	25	ND	25	ND		ND	25	
Acetone	ND	ND	ND		ND	ND (2)	ND (2)	ND (2)	ND	25	ND	25	ND		ND	25	
Benzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Dichlorobromomethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Bromoform	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Bromomethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Carbon Disulfide	ND	ND	ND		ND	ND	ND	ND	0.58 J		ND		ND		ND		
Carbon Tetrachloride	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Chlorobenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Dibromochloromethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Chloroethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Chloroform	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Chloromethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
cis-1,2-Dichloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
cis-1,3-Dichloropropene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Cyclohexane	ND	ND	ND		ND	ND	1 J	1.1 J	ND		0.56 J		ND		ND		
Dichlorofluoromethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Ethylbenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Isopropylbenzene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Methyl Acetate	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Methyl tert butyl ether	ND	ND	ND		ND	ND	2.2 J	2.2 J	ND		0.77 J		ND		ND		
Methylcyclohexane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Methylene chloride	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Styrene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Tetrachloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Toluene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
1,2-Dichloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
trans-1,2-Dichloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
trans-1,3-Dichloropropene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Trichloroethene	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Trichlorofluoromethane	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Vinyl Chloride	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND		ND		
Total Xylenes	ND	ND	ND		ND	ND (3)	ND (3)	ND (3)	ND	15	ND	15	ND		ND	15	
o-Chlorotoluene	ND	3.5	ND		ND	ND	ND	ND	ND		ND		ND		ND		
NOTES:	1) All results r	reported in ug/L				1-DL 5 UG/L	1-DL 5 UG/L	1-DL 5 UG/L	DL 5 UG/L UNL	ESS	DL 5 UG/L UNI	ESS	DL 5 UG/L UNLE	SS	RL 5 UG/L UNI	LESS	
	2) Inconsister	nt test result, re-san	npled MW-7 on 3	3/31/2005.		UNLESS NOTED	UNLESS NOTED	UNLESS NOTED NOTED OTHERWISE NOTED OTHERWISE NOTED OTHERW			NISE	NOTED OTHE	RWISE				
	3) $\ensuremath{\text{RL}}$ refers to	Reporting Limit				2-DL 25 UG/L	2-DL 25 UG/L	2-DL 25 UG/L							ł		
	4) Shaded cel	lls indicate detected	d compounds			3-DL 15 UG/L	3-DL 15 UG/L	3-DL 15 UG/L									

Data sheets from 10/26/2004 are included in report.

NOTE: Lab reports reports cross contamination of 9/27/2006 Lab Sample. Refer to report for additional documentation.

 All results reported in ug/L
 DL refers to Detection Limit NOTES:

ORGANIC DATA QUALIFIERS

- ND compoud analyzed for, but not detected
- indicates an estimated value J
- analyte is found in asociated blank and sample в
- identifies compound identified in an analysis at D
 - the secondary dilution factor.

Table 1 MW-7R Analyticals

Table 1	
Chem Trol	

1990 - 2009 Yearly Analytical Test Results Summary

	MW-3S																
				Diluted			Diluted		Diluted		Diluted						
	8/9/1990	8/19/1993	10/23/2002	10/23/2002	10/13/2003	10/26/2004	10/26/2004	11/11/2005	11/11/2005	9/27/2006	9/27/2006	9/20/2007	DL	9/24/2008	DL	9/22/2009	RL
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND (1)	ND (1)	ND (1)	ND (1)	ND	5000	ND	5000	ND	500
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,1,2-Trichloro-1,2,2-trifluororethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.3 J	ND	1.5 J	ND	ND	ND	ND		ND		ND	
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dibromo-3-Chloropropane DBCP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (3)	ND (2)	ND (3)	ND	25000	ND	25000	ND	2500
o-Chlorotoluene	28000 (4)	130000 J	43000 E	95000 D	100000	2700 E	64000 BD	12000 E	90000 D	17000 E	84000 BD	82000		87000		46000	
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (2)	ND (2)	ND (2)	ND	25000	ND	25000	ND	2500
Methyl Isobutyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND (2)	ND (3)	ND (2)	ND (3)	ND	25000	ND	25000	ND	2500
Acetone	ND	ND	58 J	ND	ND	ND	ND	2.5 J (2)	ND (2)	ND (2)	ND (2)	ND	25000	ND	25000	ND	2500
Benzene	ND	ND	ND	ND	ND	ND	ND	0.63 J	ND	ND	ND	ND		ND		ND	
Dichlorobromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	2.8 J	ND	5.2 J	ND	ND		ND		ND	
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Chlorobenzene	22 J	ND	ND	ND	ND	9.6	ND	5.9	ND	11 J	ND	ND		ND		ND	
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Chloroform	ND	260 J	ND	ND	ND	7.3	ND	3.2 J	ND	3.1 J	ND	ND		ND		ND	
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	50	ND	93	ND	53	ND	ND		ND		ND	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	4
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	ND	ND		470 J		ND	4
Dichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	
Ethylbenzene	12 J	ND	ND	ND	ND	7.8	ND	4.9 J	ND	8.6 J	ND	ND		ND		ND	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	<u> </u>
Methyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	<u> </u>
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND 270 I	_	ND	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5 J	ND		-	370 J		ND	+
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6 J	520 DJ	2000 BJ		ND		ND	+
Styrene	ND	ND	ND	ND	ND				ND		ND	ND	-	ND		ND	+
Tetrachioroethene	ND	ND	ND 1	ND	ND	3.4 J	2400 DJ	2.8 J	ND	3.4 J	ND	ND	-	ND		ND	+
Toluene	170	120 J	48 J	ND	ND	52	ND	24	ND	64	ND	ND		ND		ND	+
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	30	ND	78	ND	43	ND	ND	-	ND		ND	+
trans-1,3-Dicnioropropene	ND 660	ND	ND 190	ND	ND				ND	ND 200		ND	-	ND		ND	+
	000	470 J	180	ND	ND	380 E	990 DJ	400 E	ND	300	200 DJ	ND		ND		ND	+
Vinyl Chlorido																	+
			ND			9.1		17		15 J			15000		15000		15
1 Chloro 2 mothyl honzono													15000		15000		15
1-Ghioro-z-meunyi penzene					UNU	UN	UN										
		NUTES:	2) DL refere to De	ned in ug/L									UNLESS	NOTED OTHER		NOTED OTUS	DWICE
			2) DL refers to De							D UNLESS NOTEL			RWISE	NUTED OTHER	RWISE	NUTED OTHER	RWISE
4) Shaded cells indicate detected compounds							2-DL 20000 UG/L		2-DL 2000 UG								
4) Shaded cells indicate detected compounds [3]							3-DL 13 UG/L	3-DL 13000 0G/L	3-DL 00 0G/L	10-DE 10000 0G			1		1		

ORGANIC DATA QUALIFIERS

ND compoud analyzed for, but not detected

indicates an estimated value

J В

analyte is found in asociated blank and sample identifies compound identified in an analysis at D

the secondary dilution factor.

Е concentration exceeds the calibration range

Summary of Groundwater Elevation Measurements - 2009											
	1Q		2Q		3Q		4Q				
	2/25/2009		4/29/2009		10/8/2009		11/18/2009				
Well											
OW-1FR	608.27		607.36		609.67		606.55				
P97-5	608.25		607.33		609.27		606.58				
MW10S	610.30	dry	610.30	dry	610.30	dry	610.30	dry			
MW10R	608.29		607.38		609.52		606.69				
P97-4	608.38		607.28		609.48		606.52				
MW 13R	608.39		607.35		609.12		607.74				
MW 8S	610.78		610.13		611.25		610.89				
MW 8R	608.60		606.64		609.52		606.90				
P97 - 3	608.44		607.26		609.64		606.51				
MW 9RD	612.05		611.85		612.13		610.65				
MW 9R	608.47		607.24		609.74		606.49				
MW 9S	610.16		610.20		613.15		610.05				
P97 - 2	611.27		610.37		610.55		609.84				
P97 - 1	612.92		612.18		613.04		611.93				
MW 12R	613.58		612.76		613.09		612.91				
MW 12S	617.32		615.50		617.68		616.07				
MW14R	613.47		613.17		612.17		612.03				
OW-2FR	608.52		607.30		609.80		606.54				
MW 4S	623.33		622.30		622.35		623.17				
MW 4R	608.02		607.06		609.45		606.31				
P4S	621.04		620.60		621.35		620.82				
MW 3S	620.16		619.80		620.65		320.00				
P - 3R	619.63		619.66		619.57		619.60				
P - 3S	620.21		619.98		620.56		620.16				
OW - 3R	615.21		614.46		615.09		615.15				
P-5S	627.24		625.56		629.86		626.00				
P-5R	618.28		617.96		617.52		617.26				
MW-5S	624.68		623.76		627.65		624.67				
P-2R	636.11		637.28		636.09		641.14				
P2-S	633.98		636.98		638.18		637.33				
MW-2S	635.88		637.54		638.66		637.74				
MW-6S	630.44		629.32		630.54		629.82				
MW 6R	620.59		620.52		620.46		619.71				
P-1S	637.20		636.61		637.75		636.89				
MW 1R	634.85		636.96		638.24		637.38				
MW 1S	637.24		638.82		640.42		639.18				
MW 7S	638.35		637.44		637.98		637.51				
MW 7R	637.13		636.56		637.62		636.77				

Table 2 Chem-Trol Site Summary of Groundwater Elevation Measurements - 2009

ATTACHMENT A

SVE System Evaluation Work Plan

RECEIVED

OCT 2 3 2009

YSDEC REG 9 FOIL UNREL REI

Donald R. McMahon, P.E. Michael J. Mann, P.E. Kenneth L. Fishman, PhD., P.E. John A. Minichiello, CPESC, CPSWQ James Bojarski, P.E. Shawn W. Logan, P.E. Andrew J. Nichols, P.E. Todd Swackhamer, P.E.

October 22, 2009 File: 94-022

Mr. Glenn M. May, CPG New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: SVE System Evaluation Work Plan Chem-Trol Site, Registry No. 9-15-015

Dear Mr. May:

McMahon & Mann Consulting Engineers, P.C. (MMCE) has prepared this submittal on behalf of SC Holdings, Inc. (SC Holdings) in response to our meeting on September 15, 2009 regarding the remedial efforts at the Chem-Trol site. During that meeting, data was presented that indicated VOC concentrations in soil vapor samples obtained from the SVE system were approximately 1 to 2 orders of magnitude less than soil vapor samples obtained during remedial design field studies in 1997. In addition, plots of VOC concentrations in the influent to the groundwater collection and treatment system versus time were presented that showed significant reduction in VOC concentrations in the groundwater since startup to where asymptotic condition had been reached. Based upon the significant reduction in SVE soil vapor sample VOC concentrations and the effective containment of groundwater VOC constituents by the groundwater collection and treatment system, it was agreed that conversion of the SVE system from active to passive operation was warranted and that SC Holdings should submit a request to convert the SVE system to a passive operation.

The following information is provided in support of the request to convert the Chem-Trol SVE system from active to passive operation.

BACKGROUND

A work plan was submitted to the New York State Department of Environmental Conservation (NYSDEC) in May 2009 which proposed to evaluate the performance of the SVE system by performing a rebound test on the system. Subsequent field efforts determined that the SVE system collection laterals were under water and that limited vacuum was reaching the perforated sections of the collection laterals. Based on this observation, it was decided to focus the SVE system evaluation on total VOC concentration measurements from functioning laterals using a combination of

photoionization detector (PID) measurements and EPA TO-14a analysis on summa canister soil vapor samples. By mid May 2009 water level data indicated that laterals #0, #1, and #7 were open to soil vapor flow, so soil vapor samples were obtained for EPA Method TO-14a analysis. A summa canister sample was obtained from lateral #1 on May 22, 2009; however, due to weather conditions, laterals #0 and #7 were not sampled. Summa canister samples from laterals #0, #1 and #7 were successfully obtained on July 30, 2009.

The analytical data from the July 2009 samples indicated a combined total VOC concentration of approximately 4 ppmv in laterals #0, #1 and #7 with the majority of VOCs being generated within lateral #7 at a total VOC concentration of approximately 3.8 ppmv. VOC concentrations for the July 2009 soil vapor samples were then compared with the VOC concentrations in soil vapor samples taken during remedial design field studies at the Chem-Trol site in 1997, VOC concentrations from PID measurements of the blower exhaust at the startup of the SVE system in 1999 and VOC concentrations from PID measurements of the SVE blower exhaust over the past three years. The following is a summary of the comparison:

- Soil vapor samples were obtained in 1997 during a soil vapor pump test at locations SVEW-1 and SVEW-2 as shown on Figure 1. The soil vapor analyses indicated that VOC concentrations in samples from SVEW-1 (i.e., SVE-1, SVE-4 and SVE-5) ranged from 48 to 69.7 ppmv and a sample from SVEW-2 (i.e., SVE-2) had a VOC concentration of 660 ppmv (see Table 1). The summa canister sample obtained from lateral #7 on July 30, 2009 yielded the highest concentration of VOCs at approximately 3.8 ppmv (see Table 1). Because lateral #7 intersects the approximate location of SVEW-1 (see Figure 1), it is reasonable to conclude that VOC concentrations in the soil have been reduced by at least an order of magnitude; and
- In a letter to the NYSDEC dated April 21, 1999, MMCE provided organic vapor meter readings for air discharge from the SVE system. Air entering the SVE building from the collection laterals had a VOC concentration ranging from approximately 20 to 60 ppm. Over the past seven years, only three sampling events have detected measurable concentrations of VOCs as follows; 9 ppmv – 6/29/06, 2 ppmv – 10/7/07 and 2 ppmv – 10/1/08. These values approximate the combined VOC concentrations measured in laterals #0, #1 and #7. Therefore, it appears that VOC concentrations in the SVE blower exhaust have decreased by an order of magnitude since the SVE system began start-up in 1999.

In addition to reviewing VOC concentration data from the SVE system, we also reviewed VOC analytical data (o-chlorotoluene) for monthly groundwater samples taken at the inlet of the groundwater treatment system. The VOC concentration data for the groundwater samples was plotted versus time for July 2002 through May 2009 sampling events (see Figure 2). The data plot shows that the concentrations of VOCs in the groundwater have been significantly reduced since initiation of system operation to a point that the plot is asymptotic. This indicates that the source contributing to VOC concentrations observed in groundwater has been reduced to where its influence on groundwater has stabilized. Furthermore, continued operation of the groundwater contaminants, but at a slower rate than observed in the past.

WORK PLAN

The 1996 ROD states on page 32 that VOC levels in the area of the SVE collection system are to be monitored to assess the effectiveness of the remedial effort:

The concentrations of volatile organic compounds in this area will be monitored to assess the effectiveness of this portion of the remedial effort. When this monitoring indicates that the concentrations of the compounds have been reduced to the levels given in the Soil Cleanup Guidelines, or when no additional reduction in soil contaminants is noted, the need for any additional remediation actions will be assessed.

In order to monitor the effectiveness of the SVE system at removing VOCs to the levels given in the Soil Cleanup Guidelines, soil sampling for VOC analysis would be required. Unfortunately, the area of the site that would be sampled in order to obtain soil samples for VOC analysis has a synthetic cap that would need to be penetrated and consequently, compromise the integrity of the cap. As an alternative, we propose to evaluate VOCs remaining in the soil by measuring the concentration of VOCs in soil vapor samples collected from the SVE collection laterals. The measured VOC concentrations will be compared to the VOC concentrations measured in the 1997 soil vapor study and the VOC concentrations at SVE startup in 1999 to determine if additional reduction in soil contaminants is occurring. This approach will not compromise the cap and provides a measure of the system's effectiveness over a wider area versus a discrete area represented by a soil sample.

Given that at least five out of the eight SVE collection laterals are below water during a significant portion of the year and are effectively blocked from the influence of the vacuum from the SVE blower, we are proposing to shut down the SVE blower system and conduct this assessment under passive operating conditions. The objective of the assessment is to determine if the cleanup objectives established in the NYSDEC 1996 ROD for the Chem-Trol site have effectively been met and that the remedial effort will not be compromised when the SVE system collection laterals are allowed to vent passively to the atmosphere.

Shutting down the SVE blower would not impact the effectiveness of the overall remedial system in removing VOCs from the soil and groundwater; VOCs will continue to diffuse out of the soil under passive operations and the groundwater collection system will continue to operate during the assessment period. VOCs intended to be collected in the SVE laterals that are under water will diffuse and dissolve into the water table and be collected in the groundwater collection system for subsequent treatment.

In general, it is proposed to assess the performance of the SVE system over a one year period as follows:

- Place "goose neck" pipe extensions on the SVE lateral risers after the SVE blower is shut down;
- Obtain monthly measurements of VOC concentrations in soil vapors in all laterals using a PID;

- Obtain monthly measurements of water levels in the SVE collection lateral risers; and
- Obtain monthly measurements of water level elevations in MW-3S and P2S.

Data from the above tasks will be combined with VOC concentration data from soil vapor samples collected in May and July 2009. In addition to monitoring VOC concentrations in soil vapors venting from the SVE laterals, monitoring of VOC concentrations in the influent to the groundwater collection and treatment system will continue as required under the current monitoring program.

Once the assessment period has concluded, MMCE will prepare a letter report summarizing the results of the above tasks, including:

- Tabulating monthly VOC concentrations detected in the influent to the groundwater collection and treatment system and from SVE lateral passive vents;
- Demonstrating whether or not VOC concentrations increase significantly from that observed in the May and June 2009 SVE soil vapor sampling; and
- Demonstrating whether or not VOC concentrations in the influent to the groundwater collection and treatment system increase significantly while the SVE system operates passively.

As part of the letter report, an opinion will be provided as to whether or not passive operation of the SVE system provides a similar effectiveness to the overall remedy as active operation of the SVE system. If passive venting of the SVE system provides a similar effectiveness to the overall remedy, then continued passive operation of the SVE system along with continued routine operation and maintenance of the groundwater collection and treatment system is warranted.

If desired, a meeting will be scheduled with the NYSDEC to discuss the results of the assessment upon submittal of the letter report.

Please call MMCE (716-834-8932) or Mark R. Snyder (585-223-6132) if you have any questions or require additional information.

Sincerely yours,

McMAHON & MANN CONSULTING ENGINEERS, P.C.

James Bojarski, P.E.

>ma. Min

John A. Minichiello, CPESC, CPSWQ

cc: Mark R. Snyder, PE (SC Holdings, Inc.) Enc.

TABLE 1

.

•

Soil Vapor VOC Concentrations

Volatile Organic Compounds in Chem-Trol Soil Vapor EPA Method TO-14a

											SVEW -1 (see Note 3)			SVEW-2
	6/2/2009	7/30/2009	7/30/2009	7/30/2009			6/2/2009	7/30/2009	7/30/2009	7/30/2009	8/14/1997	8/14/1997	8/14/1997	8/14/1997
Compound ¹	ug/m ³ - Lateral #1	ug/m ³ - Lateral #0	ug/m ³ - Lateral #1	ug/m ³ - Lateral #7	MW	Ratio - 24.04/MW ²	ppbv ³ - Lateral #1	ppbv - Lateral #0	ppbv - Lateral #1	ppbv - Lateral #7	SVE-1 ³	SVE-4	SVE-5	SVE-2
Acetone					58.08	0.41	0	0	0	0				
Acrolien					56.06	0.43	0	0	0	0				
Acrylonitrile					53.06	0.45	0	0	0	0				
Benzene					78.11	0.31	0	0	0	0				
Benzyl Chloride					126.58	0.19	0	0	0	0				
Bromodichloromethane					163.84	0.15	0	0	0	0				
Bromoform					252.77	0.10	0	0	0	0				
Bromomethane					94.95	0.25	0	0	0	0				
Carbon disulfide					76.13	0.32	0	0	0	0				
Carbon tetrachloride					153.84	0.16	0	0	0	0				
Chlorobenzene					112.56	0.21	0	0	0	0				
Dibromochloromethane					208.28	0.12	0	0	0	0				
Chloroethane					64.52	0.37	0	0	0	0				
2 Chloroethyl vinyl ether					106.55	0.23	0	0	0	0				
Chloroform			140	5,000	191.39	0.13	0	0	18	628				
Chloromethane				,	50.49	0.48	0	0	0	0				
1.2 Dichlorobenzene					147.01	0.16	0	0	0	0				
1.4 Dichlorobenzene					147.01	0.16	0	0	0	0				
Dichlorodifluoromethane					120.92	0.20	0	0	0	0				
1.1 Dichloroethane	34		14		98.97	0.24	8	0	3	0				
1.2 Dichloroethane	• • •				98.97	0.24	0	0	0	0				
1.1 Dichloroethene					96.94	0.25	0	0	0	0				
cis 1.2 Dichloroethene			18	550	96.94	0.25	0	0	4	136				
trans-1.2 Dichloroethene					96.94	0.25	0	0	0	0				
1.2 Dichloropropane					112.99	0.21	0	0	0	0				
cis-1.3 Dichloropropene					110.98	0.22	0	0	0	0				
trans-1.3 Dichloropropene					110.98	0.22	0	0	0	0				
1.2 Dichloro-1.1.2.2 tetrafluoroethane					170.93	0.14	0	0	0	0				
Ethylbenzene					106.16	0.23	0	0	0	0				
Trichlorofluoromethane					137.38	0.17	0	0	0	0				
Hexachlorobutadiene					260.76	0.09	0	0	0	0				
2 Hexanone					100.16	0.24	0	0	0	0				
Methylene chloride					84.94	0.28	0	0	0	0				
Styrene					104.14	0.23	0	0	0	0				
1.1.2.2 Tetrachloroethane					167.86	0.14	0	0	0	0				1
Tetrachloroethene	17		510	16.000	165.85	0.14	2	0	74	2,319	45,000	65,000	64,000	
Toluene					92.13	0.26	0	0	0	0			-	
1.2.4 Trichlorobenzene					181.46	0.13	0	0	0	0				
1.1.1 Trichloroethane	94		18		133.42	0.18	17	0	3	0				
1.1.2 Trichloroethane					133.42	0.18	0	0	0	0				
Trichloroethene	39		180	3,700	131.4	0.18	7	0	33	677	3.000	4,700	4,400	660,000
1.1.2 Trichloro-1.2.2 trifluoroethane				0,100	187.39	0.13	0	0	0	0	.,	,		,
1 2 4 Trimethylbenzene					120.19	0.20	0	0	0	0				
1.3.5 Trimethylbenzene					120.19	0.20	0	0	0	0				
Vinyl acetate					86.09	0.28	0	0	0	0				
Vinyl chloride					62.5	0.38	0	0	0	0				
Xvlenes					106.16	0.23	0	0	0	0				
1.2 Dibromomethane					173.86	0.14	0	0	0	0				
2- Butanone (MEK)					72.1	0.33	Ő	0	0	0				l
4 Methyl-2 pentanone (MIBK)					100 16	0.24	0	0	0	0				
4- Ethyltoluene					120.19	0.20	0	Ő	0	0				
	18/		880	25 250	120.10	0.20	<u>_</u>							
Bolded compounds were detected above the reporting limit						Total VOCs	35	0	136	3,761	48,000	69,700	68,400	660,000

2. EPA in AP-42 recommends converting ug/m³ by multiplying by 24.04/MW

3. MMCE installed 2 soil vapor pumping wells SVEW-1 and SVEW-2 that were used to determine amount of VOCs in the soil vapor and whether or not VOCs could be removed by applying a vacuum to the soil., SVE-1, SVE-4 and SVE-5 were collected from SVEW-1 and SVE-2 was collected from SVEW-2. Lateral #7 intercepts the approximate location of SVEW-1.

FIGURES

•

•

Figure 2 o-chlorotoluene Influent Concentration

ATTACHMENT B

2009 Annual Groundwater Sample Analytical Results Report

Analytical Report

Work Order: RSJ1247

Site ID: ChemTrol Site

Project Description Chem-trol Groundwater

For:

Mark Snyder

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Ryan VanDette Project Manager ryan.vandette@testamericainc.com Friday, October 30, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SD WA, C WA, R CRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana *	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SD WA, C WA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas *	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

DATA QUALIFIERS AND DEFINITIONS

D08 Dilution required due to high concentration of target analyte(s)

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247								
Site ID: ChemTrol Sit	e							
Project: Chem-trol Groundwater								
Project Number:	WMI01778							

Received: 10/22/09 Reported: 10/30/09 18:32

		E	Executive Sur	nmary - Detect	tions				
	Sample	Data			Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ1247-02	2 (MW-9R - Wa	ter)		Sam	_ pled: 10/	22/09 12:35	Recy	vd: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EPA	<u>8260B</u>							
1,1,1-Trichloroethane	300	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
1,1-Dichloroethane	85	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
o-Chlorotoluene	33	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
Chloroethane	28	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
Sample ID: RSJ1247-03	B (DUP - Water)		Sam	pled: 10/	22/09 12:35	Recy	vd: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EPA	8260B							
1,1-Dichloroethane	82		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
o-Chlorotoluene	35		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
Chloroethane	27		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
Sample ID: RSJ1247-03	RE1 (DUP - W	/ater)		Sam	pled: 10/	22/09 12:35	Recvd: 10/22/09 14:50		
Volatile Organic Comp	ounds by EPA	A 8260B							
1,1,1-Trichloroethane	270	D08	5.0	ug/L	4.00	10/29/09 12:25	DHC	9J29005	8260B
Sample ID: RSJ1247-04	l (MW-8R - Wa	ter)		Sam	pled: 10/	22/09 12:50	Recy	vd: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EP/	<u> 8260B</u>							
o-Chlorotoluene	43		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Sample ID: RSJ1247-05	5 (MW-13R - W	ater)		Sampled: 10/22/09 13:10			Recvd: 10/22/09 14:50		
Volatile Organic Comp	ounds by EPA	<u> 8260B</u>							
1,1-Dichloroethane	17	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Chloroethane	140	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Sample ID: RSJ1247-08	5RE1 (MW-13R	- Water)		Sam	pled: 10/	22/09 13:10	Recy	vd: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EPA	<u>8260B</u>							
o-Chlorotoluene	600	D08	10	ug/L	10.0	10/29/09 12:50	DHC	9J29005	8260B
Sample ID: RSJ1247-06	6 (MW-15R - W	ater)		Sam	pled: 10/	22/09 13:30	Recv	/d: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EP/	<u> 8260B</u>							
2-Butanone	160		25	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Acetone	36		25	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Xylenes, total	22		15	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Sample ID: RSJ1247-07	7 (MW-3S - Wa	ter)		Sam	pled: 10/	22/09 13:50	Recv	/d: 10/22/0	9 14:50
Volatile Organic Comp	ounds by EPA	<u> 8260B</u>							
o-Chlorotoluene	46000	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
	RSJ1247-01	Water	10/22/09 12:25	10/22/09 14:50	
MW-9R	RSJ1247-02	Water	10/22/09 12:35	10/22/09 14:50	
DUP	RSJ1247-03	Water	10/22/09 12:35	10/22/09 14:50	
MW-8R	RSJ1247-04	Water	10/22/09 12:50	10/22/09 14:50	
MW-13R	RSJ1247-05	Water	10/22/09 13:10	10/22/09 14:50	
MW-15R	RSJ1247-06	Water	10/22/09 13:30	10/22/09 14:50	
MW-3S	RSJ1247-07	Water	10/22/09 13:50	10/22/09 14:50	
TRIP BLANK	RSJ1247-08	Water	10/22/09 08:00	10/22/09 14:50	

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 10/30/09 18:32 Reported:

			Analytical Repor	t				
	Sample	Data		D	Date	Lab		
Analyte	Result	Qualifiers F	L Un	its Fa	ic Analyzed	Tech	Batch	Method
Sample ID: RSJ1247-01 (M	W-7R - Wa	ter)		Sampled:	10/22/09 12:25	Recv	/d: 10/22/0	9 14:50
Volatile Organic Compour	ds by EPA	8260B						
1,1,1-Trichloroethane	ND	5	.0 ug	/L 1.(0 10/28/09 23:33	NMD	9J28107	8260B
L 1,1,2,2-Tetrachloroethane	ND	5	.0 ug	/L 1.(00 10/28/09 23:33	NMD	9J28107	8260B
ے 1,1,2-Trichloroethane	ND	5	.0 ug	/L 1.0	00 10/28/09 23:33	NMD	9J28107	8260B
↓ 1,1,2-Trichloro-1,2,2-triflu	ND	5	.0 ug	/L 1.(00 10/28/09 23:33	NMD	9J28107	8260B
5 1.1-Dichloroethane	ND	. 5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
1.1-Dichloroethene	ND	5	.0 ua	/L 1.(0 10/28/09 23:33	NMD	9J28107	8260B
7 1.2.4-Trichlorobenzene	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
& 1,2-Dibromo-3-chloroprop	ND	5	.0 ug	/L. 1.0	00 10/28/09 23:33	NMD	9J28107	8260B
ane 9 1,2-Dibromoethane	ND	5	.0 ug	/L 1.(0 10/28/09 23:33	NMD	9J28107	8260B
(01,2-Dichlorobenzene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
1,2-Dichloroethane	ND	5	.0 ug	/L 1.(0 10/28/09 23:33	NMD	9J28107	8260B
1.2-Dichloropropane	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
→ 1.3-Dichlorobenzene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
1.4-Dichlorobenzene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
2-Butanone (MEA)	ND		5 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
o-Chlorotoluene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
7 2-Hexanone	ND	2	5 uq	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
8 4-Methyl-2-pentanone	ND	2	5 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Acetone	ND	2	5 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
∂ Berizene	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
I Bromodichloromethane	ND	5	.0 ug	/L. 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
1. Bromoform	ND	5	.0 uq	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
7 7 Bromomethane	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Carbon disulfide	ND	. 5	0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
25 Carbon Tetrachloride	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
L ^l Chlorobenzene	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Dibromochloromethane	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
2. Chloroethane	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Chloroform	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
© Chloromethane	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
cis-1.2-Dichloroethene	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9,128107	8260B
cis-1.3-Dichloropropene	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Cvclohexane	ND	5	0 ua	/L 1.0	0 10/28/09 23:33	NMD	9.128107	8260B
⊌ ^d Dicblorofluoromethane	ND	5	.0 ua	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
25 Ethylbenzene	ND	5	0 un	/ 1.	0 10/28/09 23:33	NMD	9.128107	8260B
s # Isonropylbenzene	ND	5	ຍມ ກມ 0	/ 1.	0 10/28/09 23:33	NMD	9.128107	8260B
27 Methyl Acetate	ND	с я	0 ug	/⊑ 1.0 /I 1.0	0 10/28/09 23:33	NMD	9.128107	8260B
か Methyl Acetate たた Methyl_t_Butyl Ether	ND	5	0 ug	/⊑ 1.0 /I 1.0	0 10/28/09 23:33	NMD	9.128107	8260B
(MTBE)	ND		ug ug		10/20/00 20:00	NINE	0020107	02000
Methylcyclohexane	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
Methylene Chloride	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
t Styrene	ND	5	.0 ug	/L. 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
12 Tetrachloroethene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
գյ Toluene	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B
ر trans-1;2-Dichloroethene ر	ND	5	.0 ug	/L 1.0	0 10/28/09 23:33	NMD	9J28107	8260B

425 Perinton Pkwy Fairport, NY 14450	5 	Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778				Received: 10/2 Reported: 10/3		0/30/09 18:3	
			Analy	ytical Report					
A	Sample	Data	ы	f I m lán	Dil	Date	Lab	Detah	N.M. 41
Analyte	Result	_Qualifiers_	RL	Units	Fac	Analyzed	Tech	Batch	<u>Me</u>

45	trans-1,3-Dichloropropen	ND	5.0	ug/L	1.00	10/28/09 23:33	NMD	9J28107	8260B
44 41 45 AP	e Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes, total	ND ND ND ND	5.0 5.0 5.0 15	ug/L ug/L ug/L ug/L	1.00 1.00 1.00 1.00	10/28/09 23:33 10/28/09 23:33 10/28/09 23:33 10/28/09 23:33	NMD NMD NMD NMD	9J28107 9J28107 9J28107 9J28107	8260B 8260B 8260B 8260B
Ĩ	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	92 % 5 107 % 5 102 % 5	Surr Limits: (66-137%) Surr Limits: (73-120%) Surr Limits: (71-126%)			10/28/09 23:33 10/28/09 23:33 10/28/09 23:33	NMD NMD NMD	9J28107 9J28107 9J28107	8260B 8260B 8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Sample Data Date Lab Analyte Result Qualifiers RL. Units Fac Analyzed Tech Batch Method Sample ID: RSJ1247-02 (MW-9R - Water) Sampled: 10/22/09 12:35 Recvd: 10/22/09 14:50 Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane 300 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B D08 ug/L 1,1,2,2-Tetrachloroethane ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B 1,1,2-Trichloroethane ug/L ND D08 5.0 10/29/09 11:59 DHC 9J29005 1,1,2-Trichloro-1,2,2-triflu ug/L 4.00 8260B oroethane 85 D08 1.1-Dichloroethane 5.0 ua/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 4.00 1,1-Dichloroethene 5.0 ug/L 10/29/09 11:59 DHC 9J29005 8260B ND 1,2,4-Trichlorobenzene D08 5.0 ug/L 4.00 DHC 9J29005 10/29/09 11:59 8260B 1,2-Dibromo-3-chloroprop ND D08 5.0ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ane ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B 1.2-Dibromoethane ug/L ND D08 5.0 4.00 DHC 9J29005 1.2-Dichlorobenzene ug/L 10/29/09 11:59 8260B ND D08 5.0 4.00 DHC 1,2-Dichloroethane ug/L 10/29/09 11:59 9J29005 8260B 1,2-Dichloropropane ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B 1,3-Dichlorobenzene ND D08 5.0 4.00 10/29/09 11:59 9J29005 8260B ug/L DHC 1,4-Dichlorobenzene ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 25 4.00 10/29/09 11:59 DHC 9J29005 8260B 2-Butanone ug/L 33 D08 5.0 DHC o-Chlorotoluene 4.00 10/29/09 11:59 9J29005 8260B ug/L ND 2-Hexanone D08 25 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B 4-Methyl-2-pentanone ND D08 25 4.00 10/29/09 11:59 DHC 9J29005 8260B ug/L ND 25 Acetone D08 ua/L 4.00 10/29/09 11:59 DHC 9J29005 8260B Benzene ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B ug/L Bromodichloromethane ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 5.0 4.00 DHC Bromoform ug/L 10/29/09 11:59 9J29005 8260B Bromomethane ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B Carbon disulfide ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B Carbon Tetrachloride ND D08 5.0ua/L 4.00 10/29/09 11:59 DHC 9J29005 8260B 10/29/09 11:59 Chlorobenzene ND D08 5.0 ug/L 4.00 DHC 9J29005 8260B ND D08 4.00 10/29/09 11:59 DHC 9J29005 Dibromochloromethane 5.0ug/L 8260B 28 10/29/09 11:59 DHC Chloroethane D08 5.0ug/L 4.00 9J29005 8260B Chloroform ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B ug/L ND Chloromethane D08 5.0ua/L 4.00 10/29/09 11:59 DHC 9J29005 8260B cis-1.2-Dichloroethene ND D08 5.0 4.00 DHC 9.129005 8260B ug/L 10/29/09 11:59 ND D08 cis-1,3-Dichloropropene 5.0 4.00 DHC 9J29005 ug/L 10/29/09 11:59 8260B ND D08 5.0 4.00 DHC 9J29005 Cyclohexane ug/L 10/29/09 11:59 8260B Dichlorofluoromethane ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B Ethylbenzene ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B D08 Isopropylbenzene ND 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 5.0 4.00 10/29/09 11:59 DHC Methyl Acetate 9J29005 8260B ug/L ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B Methyl-t-Butyl Ether ug/L (MTBE) ND D08 5.0 4.00 8260B Methylcyclohexane ug/L 10/29/09 11:59 DHC 9J29005 Methylene Chloride ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B Styrene ND D08 5.0 4.00 10/29/09 11:59 DHC 9J29005 8260B ug/L 9J29005 Tetrachloroethene ND D08 5.0 ug/L 4.00 DHC 10/29/09 11:59 8260B Toluene ND D08 5.0 ug/L 4.00 10/29/09 11:59 DHC 9J29005 8260B trans-1,2-Dichloroethene 4.00 10/29/09 11:59 DHC 9J29005 8260B ND D08 5.0 ug/L

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 10/22/09 Reported: 10/30/09 18:32

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH	Work Order: RSJ1247	Received: 10/22/09
425 Perinton Pkwy	Site ID: ChemTrol Site	Reported: 10/30/09 18:32
Fairport, NY 14450	Project: Chem-trol Groundwater	
	Project Number: WMI01778	

Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-02 (MW-9R - Water) - cont.				Sam	pled: 10/	22/09 12:35	Recv	d: 10/22/09	9 14:50
Volatile Organic Compou	inds by EPA	8260B - co	ont.						
trans-1,3-Dichloropropen	ND	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
е									
Trichloroethene	ND	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
Trichlorofluoromethane	ND	D08	5.0	ug/L	4.00	10/29/09 11:59	DHÇ	9J29005	8260B
Vinyl chloride	ND	D08	5.0	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
Xylenes, total	ND	D08	15	ug/L	4.00	10/29/09 11:59	DHC	9J29005	8260B
1,2-Dichloroethane-d4	93 %	D08	Surr Limits: (66-137%)			10/29/09 11:59	DHC	9J29005	8260B
4-Bromofluorobenzene	110 %	D08	Surr Limits: (73-120%)			10/29/09 11:59	DHC	9J29005	8260B
Toluene-d8	102 %	D08	Surr Limits: (71-126%)			10/29/09 11:59	DHC	9J29005	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

	Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RSJ1247-03 ([OUP - Water)		Sam	Sampled: 10/22/09 12:35			vd: 10/22/0	9 14:50	
Volatile Organic Compou	inds by EPA	8260B								
1.1.2.2-Tetrachloroethane	ND		5.0	ua/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
1,1,2-Trichloroethane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
oroethane										
1,1-Dichloroethane	82		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
1,1-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
1,2,4-Trichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
1,2-Dibromo-3-chloroprop	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
ane			5.0	11 0 /1	1.00	40/20/00 00-24		0 100407	9060B	
1,2-Diptomoetnane			5.0	ug/L	1.00	10/29/09 00.24		9320107	0200D	
1,2-Dichloropenzene			5.0	ug/L	1.00	10/29/09 00.24		9020107	0200B	
1,2-Dichloropronano			5.0 5.0	ug/L	1.00	10/29/09 00.24		9320107	0200D 9260D	
1.2 Dichlorabonzono			5.0	ug/L	1.00	10/29/09 00.24		9320107	82600	
1.4 Dichlorobonzono			5.0 5.0	ug/L	1.00	10/29/09 00.24	NIME	9320107	8260B	
2-Butanone			25	ug/L	1.00	10/29/09 00:24		9020107 0128107	8260B	
o-Chlorotoluene	35		50	ug/L	1.00	10/29/09 00:24	NMD	9128107	8260B	
2-Hexanone	ND		25	ug/L	1.00	10/29/09 00:24	NMD	9.128107	8260B	
4-Methyl-2-peptanope			25	ug/L	1.00	10/29/09 00:24	NMD	9.128107	8260B	
Acetone			25	ua/l	1.00	10/29/09 00:24	NMD	9.128107	8260B	
Benzene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9.128107	8260B	
Bromodichloromethane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9.128107	8260B	
Bromoform	ND		5.0	ua/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Bromomethane	ND		5.0	ua/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Carbon disulfide	ND		5.0	ua/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Carbon Tetrachloride	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Chlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Dibromochloromethane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Chloroethane	27		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Chloroform	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Chloromethane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
cis-1,2-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
cis-1,3-Dichloropropene	ND		5.0	ug/L.	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Cyclohexane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Dichlorofluoromethane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Ethylbenzene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Isopropylbenzene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Methyl Acetate	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Methyl-t-Butyl Ether (MTBE)	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Methylcyclohexane	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Methylene Chloride	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Styrene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Tetrachloroethene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	
Toluene	ND		5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B	

е

TestAmerica Buffalo

trans-1,2-Dichloroethene

trans-1,3-Dichloropropen

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

5.0

5.0

1.00

1.00

ug/L

ug/L

10/29/09 00:24 NMD 9J28107

10/29/09 00:24 NMD 9J28107

ND

ND

www.testamericainc.com

8260B

8260B

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH	Work Order: RSJ1247	Received: 10/22/09
425 Perinton Pkwy	Site ID: ChemTrol Site	Reported: 10/30/09 18:32
Fairport, NY 14450	Project: Chem-trol Groundwater Project Number: WMI01778	

			Analytical	Report					
Analyte	Sample Result	Data Qualifiers I	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-03 (Sam	pled: 10/:	22/09 12:35	Recv	/d: 10/22/09	9 14:50			
Volatile Organic Compo	unds by EPA	8260B - cont.							
Trichloroethene	ND	ę	5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
Trichlorofluoromethane	ND	Į	5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
Vinyl chloride	ND	Ę	5.0	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
Xylenes, total	ND		15	ug/L	1.00	10/29/09 00:24	NMD	9J28107	8260B
1,2-Dichloroethane-d4	91 %	Surr I	imits: (66-137%)			10/29/09 00:24	NMD	9J28107	8260B
4-Bromofluorobenzene	110 %	Surr I	imits: (73-120%)			10/29/09 00:24	NMD	9J28107	8260B
Toluene-d8	102 %	Surr I	.imits: (71-126%)			10/29/09 00:24	NMD	9J28107	8260B

Waste Management - Hampton, 425 Perinton Pkwy Fairport, NY 14450	NH	Work Order: RSJ1: Site ID: ChemTrol Project: Chem-trol Project Number:	Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778			Received: Reported:	10/22/09 10/30/09 18:32
	ample Dof	Analy	rtical Report	ווח	Date	Lab	

Analyte	Result	Data Qualifiers	RL	Units	Fac	Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-03RE1 (DUP - Water)			Sampled: 10/22/09 12:35 Recvd: 10/22/09 14:50					9 14:50	
Volatile Organic Compo	unds by EP/	<u> 8260B</u>							
1,1,1-Trichloroethane	270	D08	5.0	ug/L	4.00	10/29/09 12:25	DHC	9J29005	8260B
1,2-Dichloroethane-d4	94 %	D08	Surr Limits: (66-137%)			10/29/09 12:25	DHC	9J29005	8260B
4-Bromofluorobenzene	110 %	D08	Surr Limits: (73-120%)			10/29/09 12:25	DHC	9J29005	8260B
Toluene-d8	103 %	D08	Surr Limits: (71-126%)			10/29/09 12:25	DHC	9J29005	8260B

. .

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-04 (I	WW-8R - Wa	ter)		Sam	pled: 10	/22/09 12:50	Recv	/d: 10/22/0	9 14:50
Volatile Organic Compou	inds by EPA	8260B							
1.1.1-Trichloroethane	ND		5.0	ua/l	1.00	10/29/09 00:50	NMD	9.128107	8260B
1.1.2.2-Tetrachloroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9,128107	8260B
1.1.2-Trichloroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9,128107	8260B
1,1,2-Trichloro-1,2,2-triflu oroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,1-Dichloroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,1-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2,4-Trichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dibromo-3-chloroprop ane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dibromoethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dichloroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dichloropropane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,3-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,4-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
2-Butanone	ND		25	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
o-Chlorotoluene	43		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
2-Hexanone	ND		25	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
4-Methyl-2-pentanone	ND		25	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Acetone	ND		25	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Benzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Bromodichloromethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Bromoform	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Bromomethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Carbon disulfide	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Carbon Tetrachloride	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Chlorobenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Dibromochloromethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Chloroethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Chloroform	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Chloromethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
cis-1,2-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
cis-1,3-Dichloropropene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Cyclohexane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Dichlorofluoromethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Ethylbenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Isopropylbenzene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Methyl Acetate	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Methylcyclohexane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Methylene Chloride	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Styrene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Tetrachloroethene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Toluene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
trans-1,2-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B

THE LEADER IN ENVIRONMENTAL TESTING

Analytical Report							
	Project Number: WMI01778						
Fairport NY 14450	Project: Chem-trol Groundwater	·					
425 Perinton Pkwy	Site ID: ChemTrol Site	Reported: 10/30/09 18:32					
Waste Management - Hampton, NH	Work Order: RSJ1247	Received: 10/22/09					

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-04 (MW-8R - Water) - cont.				Sampled: 10/22/09 12:50			Recvd: 10/22/09 14:50		
Volatile Organic Compou	unds by EPA	8260B - cont.							
trans-1,3-Dichloropropen e	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Trichloroethene	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Trichlorofluoromethane	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Vinyl chloride	ND		5.0	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
Xylenes, total	ND		15	ug/L	1.00	10/29/09 00:50	NMD	9J28107	8260B
1,2-Dichloroethane-d4	94 %	SL	rr Limits: (66-137%)			10/29/09 00:50	NMD	9J28107	8260B
4-Bromofluorobenzene	108 %	SL	rr Limits: (73-120%)			10/29/09 00:50	NMD	9J28107	8260B
Toluene-d8	103 %	Si	rr Limits: (71-126%)			10/29/09 00:50	NMD	9J28107	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

	_				
Work Order: RSJ1247					
Site ID: ChemTrol Site					
Project: Chem-trol Groundwater					
Project Number: WMI01778					

Received: 10/22/09 Reported: 10/30/09 18:32

	Analytical Report								
	Sample	Data	-	-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ1247-05 (N	/W-13R - W	ater)		Samp	oled: 10/	22/09 13:10	Recy	/d: 10/22/0	9 14:50
Volatile Organic Compou	Inds by EPA	A 8260B							
1,1,1-Trichloroethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,1,2,2-Tetrachloroethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,1,2-Trichloroethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1.1.2-Trichloro-1.2.2-triflu	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
oroethane				Ū					
1,1-Dichloroethane	17	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,1-Dichloroethene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2,4-Trichlorobenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2-Dibromo-3-chloroprop	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
ane									
1,2-Dibromoethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2-Dichlorobenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2-Dichloroethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2-Dichloropropane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,3-Dichlorobenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,4-Dichlorobenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
2-Butanone	ND	D08	25	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
2-Hexanone	ND	D08	25	ʻ ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
4-Methyl-2-pentanone	ND	D08	25	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Acetone	ND	D08	25	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Benzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Bromodichloromethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Bromoform	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Bromomethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Carbon disulfide	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Carbon Tetrachloride	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Chlorobenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Dibromochloromethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Chloroethane	140	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Chloroform	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Chloromethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
cis-1,2-Dichloroethene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
cis-1,3-Dichloropropene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Cyclohexane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Dichlorofluoromethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Ethylbenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Isopropylbenzene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Methyl Acetate	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Methylcyclohexane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Methylene Chloride	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Styrene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Tetrachloroethene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Toluene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
trans-1,2-Dichloroethene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
trans-1,3-Dichloropropen	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B

е

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

425 Perinton Pkwy	Site ID: ChemTrol Site	Received: 10/22/09 Reported: 10/30/09 18:32
Fairport, NY 14450	Project: Chem-trol Groundwater Project Number: WMI01778	·

Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-05 (MW-13R - Water) - cont.			Sampled: 10/22/09 13:10 Recvd: 10/22/09 1					9 14:50	
Volatile Organic Compo	unds by EPA	8260B - co	ont.						
Trichloroethene	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Trichlorofluoromethane	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Vinyl chloride	ND	D08	5.0	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
Xylenes, total	ND	D08	15	ug/L	5.00	10/29/09 01:16	NMD	9J28107	8260B
1,2-Dichloroethane-d4	95 %	D08	Surr Limits: (66-137%)			10/29/09 01:16	NMD	9J28107	8260B
4-Bromofluorobenzene	111 %	D08	Surr Limits: (73-120%)			10/29/09 01:16	NMD	9J28107	8260B
Toluene-d8	105 %	D08	Surr Limits: (71-126%)			10/29/09 01:16	NMD	9J28107	8260B

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-05	RE1 (MW-13R	- Water)		Sam	pled: 10/	22/09 13:10	Recv	/d: 10/22/09	9 14:50
Volatile Organic Compo	ounds by EPA	A 8260B							
o-Chlorotoluene	600	D08	10	ug/L	10.0	10/29/09 12:50	DHC	9J29005	8260B
1,2-Dichloroethane-d4	95 %	D08	Surr Limits: (66-137%)			10/29/09 12:50	DHC	9J29005	8260B
4-Bromofluorobenzene	109 %	D08	Surr Limits: (73-120%)			10/29/09 12:50	DHC	9J29005	8260B
Toluene-d8	103 %	D08	Surr Limits: (71-126%)			10/29/09 12:50	DHC	9J29005	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

	Analytical Report									
	Sample D	ata		Dil	Date	Lab				
Analyte	Result Qua	lifiers RL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ1247-06 (I	WW-15R - Water)		Sam	Sampled: 10/22/09 13:30 Recvd:			/d: 10/22/0	d: 10/22/09 14:50		
Volatile Organic Compo	unds by EPA 8260	B								
1.1.1-Trichloroethane	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1.1.2.2-Tetrachloroethane	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1.1.2-Trichloroethane	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1.1.2-Trichloro-1.2.2-triflu	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
oroethane										
1,1-Dichloroethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,1-Dichloroethene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2,4-Trichlorobenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2-Dibromo-3-chloroprop ane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2-Dibromoethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2-Dichlorobenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2-Dichloroethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,2-Dichloropropane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,3-Dichlorobenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
1,4-Dichlorobenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
2-Butanone	160	25	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
o-Chlorotoluene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
2-Hexanone	ND	25	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
4-Methyl-2-pentanone	ND	25	ug/L	1.00	10/29/09 01:4 1	NMD	9J28107	8260B		
Acetone	36	25	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Benzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Bromodichloromethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Bromoform	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Bromomethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Carbon disulfide	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Carbon Tetrachloride	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Chlorobenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Dibromochloromethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Chloroethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Chloroform	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Chloromethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
cis-1,2-Dichloroethene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
cis-1,3-Dichloropropene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Cyclohexane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Dichlorofluoromethane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Ethylbenzene	ND	5.0	ug/L	1.00	10/29/09 01:4 1	NMD	9J28107	8260B		
Isopropylbenzene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Methyl Acetate	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Methyl-t-Butyl Ether (MTBE)	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Methylcyclohexane	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Methylene Chloride	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Styrene	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Tetrachloroethene	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
Toluene	ND	5.0	ua/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		
trans-1,2-Dichloroethene	ND	5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B		

estAmer

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH	Work Order: RSJ1247	Received:
425 Perinton Pkwy	Site ID: ChemTrol Site	Reported:
Fairport, NY 14450	Project: Chem-trol Groundwater	
	Project Number: WMI01778	

			Analytical I	Report					
	Sample	Data	D.		Dil	Date	Lab	B .()	
Analyte	Result	Qualifiers		Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ1247-06 (MW-15R - W	ater) - cont.		Sam	pled: 10/	22/09 13:30	Recy	/d: 10/22/0	9 14:50
Volatile Organic Compo	unds by EPA	<u> 8260B - cont.</u>							
trans-1,3-Dichloropropen	ND		5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
e									
Trichloroethene	ND		5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Trichlorofluoromethane	ND		5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Vinyl chioride	ND		5.0	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
Xylenes, total	22		15	ug/L	1.00	10/29/09 01:41	NMD	9J28107	8260B
1,2-Dichloroethane-d4	92 %	Sı	ırr Limits: (66-137%)			10/29/09 01:41	NMD	9J28107	8260B
4-Bromofluorobenzene	112 %	Su	ırr Limits: (73-120%)			10/29/09 01:41	NMD	9J28107	8260B
Toluene-d8	100 %	Su	ırr Limits: (71-126%)			10/29/09 01:41	NMD	9J28107	8260B

10/22/09 10/30/09 18:32

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

			Analy	tical Report					
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-07 (I	MW-3S - Wa	ter)		Sam	pled: 10/	/22/09 13:50	Recy	rd: 10/22/0	9 14:50
Volatile Organic Compo	unds by EPA	8260B							
1,1,1-Trichloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,1,2,2-Tetrachloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,1,2-Trichloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
oroethane									
1,1-Dichloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,1-Dichloroethene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2,4-Trichlorobenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2-Dibromo-3-chloroprop	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
ane		5.44							
1,2-Dibromoethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2-Dichlorobenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2-Dichloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2-Dichloropropane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,3-Dichlorobenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,4-Dichlorobenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
2-Butanone	ND	D08	2500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
o-Chlorotoluene	46000	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
2-Hexanone	ND	D08	2500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
4-Methyl-2-pentanone	ND	D08	2500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Acetone	ND	D08	2500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Benzene	UN	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Bromodichloromethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Bromoform	ND	D08	500	ug/L.	500	10/29/09 02:07	NMD	9J28107	8260B
Bromomethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Carbon disulfide	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Carbon Tetrachloride	ND	D08	500	ug/L.	500	10/29/09 02:07	NMD	9J28107	8260B
Chlorobenzene	ND	D08	500	ug/L.	500	10/29/09 02:07	NMD	9J28107	8260B
Dibromochloromethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Chloroethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Chloroform	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Chloromethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
cis-1,2-Dichloroethene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
cis-1,3-Dichloropropene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Cyclohexane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Dichlorofluoromethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Ethylbenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Isopropylbenzene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Methyl Acetate	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Methylcyclohexane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Methylene Chloride	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Styrene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Tetrachloroethene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Toluene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
trans-1,2-Dichloroethene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B

Waste Management - Hampton, NH	Work Order: RSJ1247	Received: 10/22/09
425 Perinton Pkwy	Site ID: ChemTrol Site	Reported: 10/30/09 18:32
Fairport, NY 14450	Project: Chem-trol Groundwater	
	Project Number: WMI01778	

			Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-07 (I	NW-3S - Wat	ter) - cont.		Sam	pled: 10,	/22/09 13:50	Recv	rd: 10/22/09	9 14:50
Volatile Organic Compou	unds by EPA	8260B - co	o <u>nt.</u>						
trans-1,3-Dichloropropen	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
е									
Trichloroethene	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Trichlorofluoromethane	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Vinyl chloride	ND	D08	500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
Xylenes, total	ND	D08	1500	ug/L	500	10/29/09 02:07	NMD	9J28107	8260B
1,2-Dichloroethane-d4	94 %	D08	Surr Limits: (66-137%)			10/29/09 02:07	NMD	9J28107	
4-Bromofluorobenzene	109 %	D08	Surr Limits: (73-120%)			10/29/09 02:07	NMD	9J28107	8260B
Toluene-d8	104 %	D08	Surr Limits: (71-126%)			10/29/09 02:07	NMD	9J28107	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

				Analytical Report					
	Sample	Data			Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ1247-08 (T		(- Water)		Sam	pled: 10/	22/09 08:00	Recv	/d: 10/22/0	9 14:50
Volatile Organic Compou	nds by EPA	8260B							
1.1.1-Trichloroethane	ND		5.0	ua/l_	1.00	10/29/09 02:32	NMD	9,128107	8260B
1.1.2.2-Tetrachloroethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9,128107	8260B
1.1.2-Trichloroethane	ND		5.0	ua/L	1.00	10/29/09 02:32	NMD	9.128107	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1 1-Dichloroethane	ND		5.0	Um/l	1.00	10/29/09 02:32		9.128107	8260B
1 1-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9.128107	8260B
1 2 4-Trichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9.128107	8260B
1.2-Dibromo-3-chloroprop	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9.128107	8260B
ane			0.0	ug/L	1.00	10/20/00 02:02		0020101	02000
1,2-Dibromoethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1,2-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1,2-Dichloroethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1,2-Dichloropropane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1,3-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
1,4-Dichlorobenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
2-Butanone	ND		25	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
o-Chlorotoluene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
2-Hexanone	ND		25	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
4-Methyl-2-pentanone	ND		25	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Acetone	ND		25	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Benzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Bromodichloromethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Bromoform	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Bromomethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Carbon disulfide	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Carbon Tetrachloride	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Chlorobenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Dibromochloromethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Chloroethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Chloroform	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Chloromethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
cis-1,2-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
cis-1,3-Dichloropropene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Cyclohexane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Dichlorofluoromethane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Ethylbenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Isopropylbenzene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Methyl Acetate	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Methylcyclohexane	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Methylene Chloride	ND		5.0	ua/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Styrene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Tetrachloroethene	ND		5.0	ua/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Toluene	ND		5.0	ua/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
trans-1,2-Dichloroethene	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

Analytical Report Dil

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ1247-08 (TRIP BLANK	- Water) - cont		Sam	pled: 10/	22/09 08:00	Recv	d: 10/22/09	14:50
Volatile Organic Compou	unds by EPA	8260B - cont.							
trans-1,3-Dichloropropen	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
e Trichlaroethene	ND		5.0	ua/l	1.00	10/29/09 02:32	NMD	9,128107	8260B
Trichlorofluoromethane	ND		5.0	ug/L ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Vinyl chloride	ND		5.0	ug/L	1.00	10/29/09 02:32	NMD	9J28107	8260B
Xylenes, total	ND		15	ug/L	· 1.00	10/29/09 02:32	NMD	9J28107	8260B
1,2-Dichloroethane-d4	93 %		rr Limits: (66-137%)			10/29/09 02:32	NMD	9J28107	8260B
4-Bromofluorobenzene	109 %	Su	rr Limits: (73-120%)			10/29/09 02:32	NMD	9J28107	8260B
Toluene-d8	102 %	Sı	rr Limits: (71-126%)			10/29/09 02:32	NMD	9J28107	8260B

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Voi Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Volatile Organic Compounds by	EPA 8260B								
8260B	9J29005	RSJ1247-02	5.00	mL	5.00	mL	10/29/09 11:02	DHC	5030B MS
8260B	9J28107	RSJ1247-01	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-03	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J29005	RSJ1247-03RE1	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-04	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-05	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J29005	RSJ1247-05RE1	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-06	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-07	5.00	mL	5.00	mL.	10/28/09 18:56	NMD	5030B MS
8260B	9J28107	RSJ1247-08	5.00	mL	5.00	mL	10/28/09 18:56	NMD	5030B MS

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

			I	LABORATORY QC	DATA					
	Source	Spike					%	% REC	% RP	D Data
Analyte	Result	Level	RL		Units	Result	REC	Limits	RPD Lim	it Qualifiers
Volatile Organic Compour	ds by EP/	<u> 8260B</u>								
Blank Analyzed: 10/28/09	(Lab Num	ber:9J2810	7-BLK1	, Batch: 9J28107)						
1,1,1-Trichloroethane	-		5.0		ug/L	ND				
1,1,2,2-Tetrachloroethane			5.0		ug/L	ND				
1,1,2-Trichloroethane			5.0		ug/L	ND				
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0		ug/L	ND				
1,1-Dichloroethane			5.0		ug/L	ND				
1,1-Dichloroethene			5.0		ug/L	ND				
1,2,4-Trichlorobenzene			5.0		ug/L	ND				
1,2-Dibromo-3-chloroprop ane			5.0		ug/L	ND				
1,2-Dibromoethane			5.0		ug/L	ND				
1,2-Dichlorobenzene			5.0		ug/L	ND				
1,2-Dichloroethane			5.0		ug/L	ND				
1,2-Dichloropropane			5.0		ug/L	ND				
1,3-Dichlorobenzene			5.0		ug/L	ND				
1,4-Dichlorobenzene			5.0		ug/L	ND				
2-Butanone			25		ug/L	ND				
o-Chlorotoluene			5.0		ug/L	ND				
2-Hexanone			25		ug/L	ND				
4-Methyl-2-pentanone			25		ug/L	ND				
Acetone			25		ug/L	ND				
Benzene			5.0		ug/L	ND				
Bromodichloromethane			5.0		ug/L	ND				
Bromoform			5.0		ug/L	ND				
Bromomethane			5.0		ug/L	ND				
Carbon disulfide			5.0		ug/L	ND				
Carbon Tetrachloride			5.0		ug/L	ND				
Chlorobenzene			5.0		ug/L	ND				
Dibromochloromethane			5.0		ug/L	ND				
Chloroethane			5.0		ug/L	ND				
Chloroform			5.0		ug/L	ND				
Chloromethane			5.0		ug/L	ND				
cis-1,2-Dichloroethene			5.0		ug/L	ND				
cis-1,3-Dichloropropene			5.0		ug/L	ND				
Cyclohexane			5.0		ug/L	ND				
Dichlorofluoromethane			5.0		ug/L	ND				
Ethylbenzene			5.0		ug/L	ND				
Isopropylbenzene			5.0		ug/L	ND				

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Waste Management - Hampl 425 Perinton Pkwy Fairport, NY 14450	on, NH		Work Order: RS Site ID: ChemT Project: Chem-tr Project Number:	J1247 rol Site rol Groundwater WMI0177	3			Rece Repo	ved: rted:	10/22/ 10/30/	09 09 18:32
			LABOR	ATORY QC	DATA						
Analyte	Source Result	Spike Level	RL		Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	nds by EP	A 8260B									
Plank Analyzadi 40/28/00	/Lab Num	han0 12011	7 BLK1 Batabu	0 129407)							
Methyl Acetate	(Lan Mulli	IDe1.952010	5.0	55201079	ug/L	ND					
Methyl-t-Butyl Ether			5.0		ug/L	ND					
(MTBE)					-						
Methylcyclohexane			5.0		ug/L	ND					
Methylene Chloride			5.0		ug/L	ND					
Styrene			5.0		ug/L	ND					
Tetrachloroethene			5.0		ug/L	ND					
Toluene			5.0		ug/L	ND					
trans-1,2-Dichloroethene			5.0		ug/L	ND					
trans-1,3-Dichloropropen e			5.0		ug/L	ND					
Trichloroethene			5.0		ug/L	ND					
Trichlorofluoromethane			5.0		ug/L	ND					
Vinyl chloride			5.0		ug/L	ND					
Xylenes, total			15		ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4					ug/L		92	66-137			
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L ug/L		110 101	73-120 71-126			
	1 - I- NI I-	100407		00407)	5						
LCS Analyzed: 10/28/09 (Lab Numb	er:9J28107	-BS1, Batch: 9J	28107)				76 (00			
			5.7		ug/L			70-122			
1,1,1-1 nonioroetnane			5.0		ug/L			73-120			
1,1,2,2-Tetrachioroethane			5.0		ug/L			70-120			
1,1,2-Trichloroethane			5.0		ug/L			70-122			
1,1,2-1 richloro-1,2,2-triffu oroethane			5.0		ug/L	ND		60-140			
1,1-Dichloroethane			5.0		ug/L	ND		71-129			
1,1-Dichloroethene		25.0	5.0		ug/L	20.9	84	65-138			
1,1-Dichloropropene			1.0		ug/L	ND		72-122			
1,1-Dimethoxyethane			25		ug/L	ND					
1,2,3-Trichlorobenzene			1.0		ug/L	ND		64-121			
1,2,3-Trichloropropane			4.1		ug/L	ND		68-131			
1,2,3-Trimethylbenzene			1.0		ug/L	ND					
1,2,4-Trichlorobenzene			5.0		ug/L	ND		70-122			
1,2,4-Trimethylbenzene			1.0		ug/L	ND		76-121			
1,2-Dibromo-3-chloroprop ane			5.0		ug/L	ND		56-134			
1,2-Dibromoethane			5.0		ug/L	ND		77-120			
1,2-Dichlorobenzene			5.0		ug/L	ND		77-120			

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

-

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

				LABORATORY	QC DATA					
A	Source	Spike	e I RI		1 Jan 14 m	D . <i>K</i>	%	% REC	% RPD	Data
Analyte Volatile Organic Compo	nesuit	Leve			Units	Résult	REC	Limits	RPD LIMIT	Qualifiers
volatile Organic Compo		4 0200	B							
LCS Analyzed: 10/28/09	(Lab Numb	er:9J2	8107-BS1	, Batch: 9J28107)						
1,2-Dichloroethane			5.0)	ug/L	ND		75-127		
1,2-Dichloroethene, Total			5.0	1	ug/L	ND		72-124		
1,2-Dichloropropane			5.0)	ug/L	ND		76-120		
1,3,5-Trichlorobenzene			1.0)	ug/L	ND				
1,3,5-Trimethylbenzene			1.0)	ug/L	ND		77-121		
1,3-Dichlorobenzene			5.0	1	ug/L.	ND		77-120		
1,3-Dichloropropane			1.0	1	ug/L	ND		75-120		
1,3-Dichloropropene, Total			2.0	}	ug/L	ND				
1,4-Dichlorobenzene			5.0)	ug/L	ND		75-120		
1,4-Dioxane			40		ug/L	ND				
2,2-Dichloropropane			1.0)	ug/L	ND		63-136		
2-Butanone			25		ug/L	ND		57-140		
2-Chloroethyl vinyl ether			5.0)	ug/L	ND		60-140		
o-Chlorotoluene			5.0)	ug/L	ND		76-121		
2-Hexanone			25		ug/L	ND		65-127		
2-Methylthiophene			1.0)	ug/L	ND				
3-Chlorotoluene			1.0	1	ug/L	ND				
3-Methylthiophene			1.0)	ug/L	ND				
4-Chlorotoluene			1.0	1	ug/L	ND		77-121		
4-Isopropyltoluene			1.0	1	ug/L	ND		73-120		
4-Methyl-2-pentanone			25		ug/L	ND		71-125		
Acetone			25		ug/L	ND		56-142		
Acetonitrile			90	1 1	ug/L	ND		60-140		
Acrolein			20		ug/L	ND		60-140		
Acrylonitrile			70		ug/L	ND		63-138		
Allyl chloride			1.0)	ug/L	ND		60-140		
Benzene		25.0	5.0	1	ug/L	21.4	86	71-124		
Bromobenzene			1.0	1	ug/L	ND		78-120		
Bromochloromethane			3.2	2	ug/L	ND		72-130		
Bromodichloromethane			5.0	I	ug/L	ND		80-122		
Bromoform			5.0	I	ug/L	ND		66-128		
Bromomethane			5.C	l	ug/L	ND		36-150		
Carbon disulfide			5.0	ł	ug/L	ND		59-134		
Carbon Tetrachloride			5.0)	ug/L	ND		72-134		
Chlorobenzene		25.0	5.0)	ug/L	24.6	98	72-120		
Dibromochloromethane			5.0)	ug/L	ND		75-125		
Chlorodifluoromethane			1.0)	ug/L	ND				

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

.

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

				LABORATORY Q	C DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL		Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	inds by EPA	<u> 8260B</u>								
LCS Analyzed: 10/28/09	(Lab Numb	er:9J28107-l	BS1, E	Batch: 9J28107)						
Chloroethane	•		5.0		ug/L	ND		69-136		
Chloroform			5.0		ug/L	ND		73-127		
Chloromethane			5.0		ug/L	ND		49-142		
Chloroprene			1.0		ug/L	ND		60-140		
cis-1,2-Dichloroethene			5.0		ug/L	ND		74-124		
cis-1,3-Dichloropropene			5.0		ug/L	ND		74-124		
Cyclohexane			5.0		ug/L	ND		70-130		
Cyclohexanone			10		ug/L	ND				
Dibromomethane			2.5		ug/L	ND		76-127		
Dichlorodifluoromethane			1.0		ug/L	ND		33-157		
Dichlorofluoromethane			5.0		ug/L	ND				
Dicyclopentadiene			1.0		ug/L	ND				
Diethyl ether			5.0		ug/L	ND				
Epichlorohydrin			20		ug/L	ND				
Ethyl Acetate			15		ug/L	ND				
Ethyl Methacrylate			1.0		ug/L	ND		60-140		
Ethyl tert-Butyl Ether			1.0		ug/L	ND		75-125		
Ethylbenzene			5.0		ug/L	ND		77-123		
Heptane			20		ug/L	ND				
Hexachlorobutadiene			1.0		ug/L	0.840		62-124		
Hexane			10		ug/L	ND				
Iodomethane			10		ug/L	ND		52-151		
Isobutanol			40		ug/L	ND		60-140		
Isopropyl alcohol			20		ug/L	ND				
Isopropyl ether			5.0		ug/L	ND		75-125		
Isopropylbenzene			5.0		ug/L	ND		77-122		
Methacrylonitrile			5.0		ug/L	ND		60-140		
Methyl Acetate			5.0		ug/L	ND		60-140		
Methyl Methacrylate			1.0		ug/L	ND		60-140		
Methyl-t-Butyl Ether (MTBE)			5.0		ug/L	ND		64-127		
Methylcyclohexane			5.0		ug/L	ND		60-140		
Methylene Chloride			5.0		ug/L	ND		57-132		
m-Monochlorobenzotriflu oride			1.0		ug/L	ND				
m-Xylene & p-Xylene			2.0		ug/L	ND		76-122		
Naphthalene			1.0		ug/L	1.57		54-140		
n-Butanol			40		ug/L	ND				
n-Butylbenzene			1.0		ug/L	ND		71-128		

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Ham 425 Perinton Pkwy Fairport, NY 14450	pton, NH		Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Gro Project Number:	e pundwater VMI01778			Rece Repo	ived: orted:	10/22/ 10/30/	09 09 18:32
			LABORATO	RY QC DATA						
Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compo	unds by EP	A 8260B		onto	ncoun		Linito			Quamero
LCS Applyzod: 10/28/00	(Lah Numh	or:0 12940	7 881 Batabi 0 128407	``						
n-Propylbenzene	(במט ואטוונט	er.932010	1.0) 110/1	ND		77-120			
o-Monochlorobenzotrifluo ride			1.0	ug/L	ND		77 140			
o-Xylene			1.0	ug/L	ND		76-122			
Pentachloroethane			1.0	ug/L	ND					
p-Monochlorobenzotrifluo ride			1.0	ug/L	ND					
Propionitrile			10	ug/L	ND		60-140			
Propylene Oxide			5.0	ug/L	ND					
sec-Butylbenzene			1.0	ug/L	ND		74-127			
Styrene			5.0	ug/L	ND		70-130			
t-Amyl alcohol			1.0	ug/L	ND		75-125			
t-Butanol			20	ug/L	ND		75-125			
Tert-Amyl Methyl Ether			1.0	ug/L	ND		75-125			
tert-Butylbenzene			1.0	ug/L	ND		75-123			
Tetrachloroethene			5.0	ug/L	ND		74-122			
Tetrahydrofuran			10	ug/L	ND					
Toluene		25.0	5.0	ug/L	24.4	97	70-122			
trans-1,2-Dichloroethene			5.0	ug/L	ND		73-127			
trans-1,3-Dichloropropen e			5.0	ug/L	ND		72-123			
trans-1,4-Dichloro-2-bute ne			5.0	ug/L	ND		38-155			
Trichloroethene		25.0	5.0	ug/L	21.4	86	74-123			
Trichlorofluoromethane			5.0	ug/L	ND		62-152			
Vinyl acetate			24	ug/L	ND		50-144			
Vinyl chloride			5.0	ug/L	ND		65-133			
Xylenes, total			15	ug/L	ND		76-122			
2-Nitropropane			5.0	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4				ug/L		90	66-137			
Surrogate: 4-Bromofluorobenzene				ug/L		109	73-120			
Surrogate: Toluene-d8				ug/L		102	71-126			
Volatile Organic Compo	unds by EP	<u>A 8260B</u>								
Blank Analyzed: 10/29/0	9 (Lab Num	iber:9J290	05-BLK1, Batch: 9J29	005)						
1,1,1-Trichloroethane			5.0	ug/L	ND					
1,1,2,2-Tetrachloroethane			5.0	ug/L	ND					

ug/L

ND

1,1,2-Trichloroethane 5.0

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

LABORATORY QC DATA									
Analvte	Source Result	Spike Level	RL	Units	% Result REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	nds by EPA	A 8260B							
Blank Analyzed: 10/29/09	(Lab Num	ber:9J290(5-BLK1, Batch: 9J29005)						
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	ug/L	UN				
1,1-Dichloroethane			5.0	ug/L	ND				
1,1-Dichloroethene			5.0	ug/L	ND				
1,2,4-Trichlorobenzene			5.0	ug/L	ND				
1,2-Dibromo-3-chloroprop ane			5.0	ug/L	ND				
1,2-Dibromoethane			5.0	ug/L	ND				
1,2-Dichlorobenzene			5.0	ug/L	ND				
1,2-Dichloroethane			5.0	ug/L	ND				
1,2-Dichloropropane			5.0	ug/L	ND				
1,3-Dichlorobenzene			5.0	ug/L	ND				
1,4-Dichlorobenzene			5.0	ug/L	ND				
2-Butanone			25	ug/L	ND				
o-Chlorotoluene			5.0	ug/L	ND				
2-Hexanone			25	ug/L	ND				
4-Methyl-2-pentanone			25	ug/L	ND				
Acetone			25	ug/L	ND				
Benzene			5.0	ug/L	ND				
Bromodichloromethane			5.0	ug/L	ND				
Bromoform			5.0	ug/L	ND				
Bromomethane			5.0	ug/L	ND				
Carbon disulfide			5.0	ug/L	ND				
Carbon Tetrachloride			5.0	ug/L	ND				
Chlorobenzene			5.0	ug/L	ND				
Dibromochloromethane			5.0	ug/L	ND				
Chloroethane			5.0	ug/L	ND				
Chloroform			5.0	ug/L	ND				
Chloromethane			5.0	ug/L	ND				
cis-1,2-Dichloroethene			5.0	ug/L	ND				
cis-1,3-Dichloropropene			5.0	ug/L	ND				
Cyclohexane			5.0	ug/L	ND				
Dichlorofluoromethane			5.0	ug/L	ND				
Ethylbenzene			5.0	ug/L	ND				
Isopropylbenzene			5.0	ug/L	ND				
Methyl Acetate			5.0	ug/L	ND				
Methyl-t-Butyl Ether			5.0	ug/L	ND				
Methylcyclohexane			5.0	ug/L	ND				

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL		Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	nds by EPA	8260B									
Blank Analyzed: 10/29/09	(Lab Numl	oer:9J290()5-BLM	(1, Batch: 9J29005)							
Methylene Chloride			5.0	-	ug/L	ND					
Styrene			5.0		ug/L	ND					
Tetrachloroethene			5.0		ug/L	ND					
Toluene			5.0		ug/L	ND					
trans-1,2-Dichloroethene			5.0		ug/L	ND					
trans-1,3-Dichloropropen e			5.0		ug/L	ND					
Trichloroethene			5.0		ug/L	ND					
Trichlorofluoromethane			5.0		ug/L	ND					
Vinyl chloride			5.0		ug/L	ND					
Xylenes, total			15		ug/L	ND					
Surrogate:					ug/L		89	66-137			
1,2-Dichloroethane-d4 Surrogate:					ug/L		107	73-120			
Surrogate: Toluene-d8					ug/L		101	71-126			
LCS Analyzed: 10/29/09 (Lab Numbe	r:9J29005	-BS1,	Batch: 9J29005)							
1,1,1,2-Tetrachloroethane			1.0		ug/L	ND		76-122			
1,1,1-Trichloroethane			5.0		ug/L	ND		73-126			
1,1,2,2-Tetrachloroethane			5.0		ug/L	ND		70-126			
1,1,2-Trichloroethane			5.0		ug/L	ND		76-122			
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0		ug/L	ND		60-140			
1,1-Dichloroethane			5.0		ug/L	ND		71-129			
1,1-Dichloroethene		25.0	5.0		ug/L	20.7	83	65-138			
1,1-Dichloropropene			1.0		ug/L	ND		72-122			
1,1-Dimethoxyethane			25		ug/L	ND					
1,2,3-Trichlorobenzene			1.0		ug/L	ND		64-121			
1,2,3-Trichloropropane			1.0		ug/L	ND		68-131			
1,2,3-Trimethylbenzene			1.0		ug/L	ND					
1,2,4-Trichlorobenzene			5.0		ug/L	ND		70-122			
1,2,4-Trimethylbenzene			1.0		ug/L	ND		76-121			
1,2-Dibromo-3-chloroprop ane			2.0		ug/L	ND		56-134			
1,2-Dibromoethane			5.0		ug/L	ND		77-120			
1,2-Dichlorobenzene			5.0		ug/L	ND		77-120			
1,2-Dichloroethane			5.0		ug/L	ND		75-127			
1,2-Dichloroethene, Total			5.0		ug/L	ND		72-124			
1,2-Dichloropropane			5.0		ug/L	ND		76-120			

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

LABORATORY QC DATA									
	Source	Spike				%	% REC	% RPD	Data
Analyte	Result	Level	RL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	inds by EP.	<u>A 8260B</u>							
LCS Analyzed: 10/29/09	(Lab Numb	er:9J290	05-BS1. Batch: 9J29005						
1,3,5-Trichlorobenzene	(1.0	, ug/L	ND				
1,3,5-Trimethylbenzene			1.0	ug/L	ND		77-121		
1,3-Dichlorobenzene			5.0	ug/L	ND		77-120		
1,3-Dichloropropane			1.0	ug/L	ND		75-120		
1,3-Dichloropropene, Total			2.0	ug/L	ND				
1,4-Dichlorobenzene			5.0	ug/L	ND		75-120		
1,4-Dioxane			40	ug/L	ND				
2,2-Dichloropropane			1.0	ug/L	ND		63-136		
2-Butanone			10	ug/L	ND		57-140		
2-Chloroethyl vinyl ether			5.0	ug/L	ND		60-140		
o-Chlorotoluene			5.0	ug/L	ND		76-121		
2-Hexanone			10	ug/L	ND		65-127		
2-Methylthiophene			1.0	ug/L	ND				
3-Chlorotoluene			1.0	ug/L	ND				
3-Methylthiophene			1.0	ug/L	ND				
4-Chlorotoluene			1.0	ug/L	ND		77-121		
4-Isopropyltoluene			1.0	ug/L	ND		73-120		
4-Methyl-2-pentanone			10	ug/L	ND		71-125		
Acetone			10	ug/L	ND		56-142		
Acetonitrile			90	ug/L	ND		60-140		
Acrolein			20	ug/L	ND		60-140		
Acrylonitrile			5.0	ug/L	ND		63-138		
Allyl chloride			1.0	ug/L	ND		60-140		
Benzene		25.0	5.0	ug/L	20.3	81	71-124		
Bromobenzene			1.0	ug/L	ND		78-120		
Bromochloromethane			1.0	ug/L	ND		72-130		
Bromodichloromethane			5.0	ug/L	ND		80-122		
Bromoform			5.0	ug/L	ND		66-128		
Bromomethane			2.0	ug/L	ND		36-150		
Carbon disulfide			5.0	ug/L	ND		59-134		
Carbon Tetrachloride			5.0	ug/L	ND		72-134		
Chlorobenzene		25.0	5.0	ug/L	23.0	92	72-120		
Dibromochloromethane			5.0	ug/L	ND		75-125		
Chlorodifluoromethane			1.0	ug/L	ND				
Chloroethane			2.0	ug/L	ND		69-136		
Chloroform			5.0	ug/L	ND		73-127		
Chloromethane			2.0	ug/L	ND		49-142		

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450

Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778

Received: 10/22/09 Reported: 10/30/09 18:32

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	inds by EP.	A 8260B								
LCS Analyzed: 10/29/09	(I ab Numb	er:9.12900	5-BS1, Batch: 9.12900/	5)						
Chloroprene			1.0	ug/L	ND		60-140			
cis-1,2-Dichloroethene			5.0	ug/L	ND		74-124			
cis-1,3-Dichloropropene			5.0	ug/L	ND		74-124			
Cyclohexane			5.0	ug/L	ND		70-130			
Cyclohexanone			100	ug/L	ND					
Dibromomethane			1.0	ug/L	ND		76-127			
Dichlorodifluoromethane			2.0	ug/L	ND		33-157			
Dichlorofluoromethane			5.0	ug/L	ND					
Dicyclopentadiene			1.0	ug/L	ND					
Diethyl ether			5.0	ug/L	ND					
Epichlorohydrin			20	ug/L	ND					
Ethyl Acetate			15	ug/L	ND					
Ethyl Methacrylate			1.0	ug/L	ND		60-140			
Ethyl tert-Butyl Ether			1.0	ug/L	NÐ		75-125			
Ethylbenzene			5.0	ug/L	ND		77-123			
Heptane			20	ug/L	ND					
Hexachlorobutadiene			1.0	ug/L	ND		62-124			
Hexane			10	ug/L	ND					
lodomethane			1.0	ug/L	ND		52-151			
Isobutanol			40	ug/L	ND		60-140			
Isopropyl alcohol			20	ug/L	ND					
Isopropyl ether			5.0	ug/L	ND		75-125			
Isopropylbenzene			5.0	ug/L	ND		77-122			
Methacrylonitrile			5.0	ug/L	ND		60-140			
Methyl Acetate			5.0	ug/L	ND		60-140			
Methyl Methacrylate			1.0	ug/L	ND		60-140			
Methyl-t-Butyl Ether (MTBE)			5.0	ug/L	ND		64-127			
Methylcyclohexane			5.0	ug/L	ND		60-140			
Methylene Chloride			5.0	ug/L	ND		57-132			
m-Monochlorobenzotriflu oride			1.0	ug/L	ND					
m-Xylene & p-Xylene			2.0	ug/L.	ND		76-122			
Naphthalene			1.0	ug/L	ND		54-140			
n-Butanol			40	ug/L	ND					
n-Butylbenzene			1.0	ug/L	ND		71-128			
n-Propylbenzene			1.0	ug/L	ND		77-120			
o-Monochlorobenzotrifluo			1.0	ug/L	ND					

ride

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Waste Management - Hampton, NH 425 Perinton Pkwy Fairport, NY 14450 Work Order: RSJ1247 Site ID: ChemTrol Site Project: Chem-trol Groundwater Project Number: WMI01778 Received: 10/22/09 Reported: 10/30/09 18:32

LABORATORY QC DATA Source Spike % % % REC RPD Data Result Level RL. RPD Limit Qualifiers Units Result REC Limits Analyte Volatile Organic Compounds by EPA 8260B LCS Analyzed: 10/29/09 (Lab Number:9J29005-BS1, Batch: 9J29005) o-Xylene 1.0 ug/L ND 76-122 1.0 ND Pentachloroethane ug/L p-Monochlorobenzotrifluo 1.0 ug/L ND ride 10 ND 60-140 Propionitrile ug/L 20 ND Propylene Oxide ug/L sec-Butylbenzene 1.0 ug/L ND 74-127 Styrene 5.0 ug/L ND 70-130 t-Amyl alcohol 1.0 ug/L ND 75-125 20 ND 75-125 t-Butanol ug/L Tert-Amyl Methyl Ether 1.0 ND 75-125 ug/L tert-Butylbenzene 1.0 ug/L ND 75-123 5.0 ND 74-122 Tetrachloroethene ug/L ND Tetrahydrofuran 10 ug/L Toluene 5.0 ug/L 23.0 92 70-122 25.0 ND 73-127 trans-1,2-Dichloroethene 5.0 ug/L 5.0 ND 72-123 trans-1,3-Dichloropropen ug/L е 5.0 ND 38-155 ug/L trans-1,4-Dichloro-2-bute ne Trichloroethene 20.4 82 74-123 25.0 5.0 ug/L ND 62-152 Trichlorofiuoromethane 5.0 ug/L 5.0 ND 50-144 Vinyl acetate ug/L Vinyl chloride 5.0 ND 65-133 ug/L 15 ND 76-122 Xylenes, total ug/L. 5.0 ND 2-Nitropropane ug/L 66-137 Surrogate: ug/L 89 1,2-Dichloroethane-d4 ug/L 111 73-120

ug/L

104

71-126

Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8
Chain of	
Custody	Record

Temperature on Receipt _____

Drinking Water? Yes 🗆 No 🗆

THE LEADER IN ENVIRONMENTAL TESTING

TAL 4124 (1007)																										
Ciant		Projec	i Mai	nage	¥		1	?					-				Ľ	lane -		>>~	م ۲,		Cha	n o' Cusiody	Number	
Chin Int							κ	<u>" </u>											11	<u></u>				_159	<u>527</u>	
Address		Telept	фля.	Ngan	¢er (/	17 9 -9 (2008	γ∕Fa⊥	r Myr	7,04/							L L	ao M	sincer	•			1			
				-																			Pag	æ	of	
City State Zio	Code	Sile C	omai	đ				Lad	Cont	laca'						, A	lnaiys Iore c	US (A narie	Hach is ne	NSt II Iorler	∮ 1 1					
Depict of forms and a section (Class)					المسرية ال									╏╌┬		Ť	ĨĨ		1		Ť-	1				
		i F	erez,)t	10.074																			_		
Content Tool Anno 1		<u>_</u>	1											-										Specia C	l Instructions	4
ATT SALOUS IS 7 ACI	46428				Metr	ż			4	.0.75 7ee	unen Vrvat	5 å Wes												LORON	xns oi Hecel	Ω γ
Semple I.D. No. and Description	Cate	Time	+	ani wang] _ _	 }		Anjaves.	NC LO	\$	ç	6 23		62%												
The Alma	10-22-09	0800		Ż					•		X		-	2			-		1						-	—
mw-7k	1	1225	Ī.	Ţ										4												_
MW-9A		235	l	i [ł		4						E	Į					_
Dup		1235	,≁ 	1	-		ہ ۔۔۔ י					1		4					ļ		1	++		gn Mu	9R	-
marea		1250	-	Ţ]]	• •		4												
13R		1310	į	-	ļ							: ;		4	_						1_					
mw-ISR		1330								_i				4												_
<u></u>		1350	<u>_</u>		[_	1	<u> </u>		141	ļ	ļ.										
					1					[_				_[_					
<u> </u>			Į									_	4-		ļ		_				Ļ		🖵			
				ļ	_	-							-		1 				<u> </u>	_	<u>_</u>					
Presidia bis sant hantification			<u> </u>	Same	 								[i				_		[_ <u> </u>			
High Hansed D Flammaelde D Skin britani	🖸 Poison B	🗍 Ильтон	.	<u> </u>		100	- 11:29:	- [<u> </u>	Vigoros	si By	Lab	[]	Aq a ti	ve Fo	×		Man	l Ita i	A New Vitiliti	mey i Nen	be ses I mitti	85590) (h)	र्त इस्टल्फ्लिड झ	e retamed ,	
Tum Around Time Required	_						•		∞	Augu	inenne	nts (S	per h	W						enger		-				—
🗍 24 Hours 📋 48 Hours 📋 7 Days 📋 14 ()	lays 🗌 21 D.	sys [] a	ner,					_																		
1 Rétinquished By		Date 10-,	- 77 -	07	\overline{r}		~	7	1. A	0000	2				2-	~	7					-	$ _{\nu}^{\Omega_{s}}$	12al a	Time 1450	_
2. Reanquished B	<u>.</u>	Date		,	177	me		-	2.8	ecen	ed By	/	~	-		- 1	(· ·	1 ^{Da}	- <u>467</u> 18	Time	<u> </u>
J. Raincustod By		Data				me			3. A	aca/	ed B)	r						-					 ⁷²⁴	16	[
Commenty			-	-		·				·				_		-/-			,					/	<u>}</u>	
DISTRIBUTION: WINTE Religioned to Chart with Report.	CANARY - Ser	s antis the Sa	ngda;	- /9 4	× /	معر	iyy.					_	_	_	((<u> </u>						r-			

ATTACHMENT C

MMCE 2009 Monthly Site Visit Summaries

	Chem-T	rol Site		
	Hamburg,	New York		
C1 20 200	File:	94-022		
Date: Teb ds, 2007				
	<u>SVE S</u>	<u>ystem</u>		
Blower 1		Pl-1 715	in H₂0	Hnu (ppm)
Blower 2		PI-2 7/5	in H₂0	
Alarms	_	FI-1	*F	Make up Valve
	_			0=open
				13=closed
· ·	Water Extrac	tion System	<u>l</u>	
EW-1	EW-2		Ξ.Ε.	N-3
top pvc 624.07	top pvc 622.16	3	top pvo	C 621.1
status FAULT	status	2	status	s <u>513</u>
% speed	% speed	8	% speed	<u> </u>
flow meter collops	flow meter	<u>8</u>	flow mete	r gallone
denth ft	depth	ganons	denth	n ft
Water Elev.	Water Elev.		Water Elev	' '` '`
Level SP 199 in	Level SP	160 in	Level SF	^o <u>170</u> in
High SP <u>O</u> 250¢ in	High SP	<u>250</u> in	High SF	2 <u>50</u> in
Low SP 25 in	Low SP	in	Low SF	2 <u>5</u> in
OW-2 (624.1)		OW-1(62	0.4)	
	Blowe	er Mot <u>or Zø</u>	in H₂0	
Iron Filter			Alarm Histo	rv
appearance:			7 dann 1 dolor	y y
12:18 27.422.600	13400 .			
10:30 27, 421, 200	108			
Totalizer	gallons			
Leaks		Average	Flow: 12-4	. Ibm
Conoral Commonto				
METALIED T.	- Senare Ro	Te rand Serie	E CATERA	< 051.
MIP"BOSCOREd	all Correct	WATER LAN	e15.	

		_		
EN/ 4	Remote Pa	anels		N O
EW-1 Bump	EW-2		EV	¥-3
Head 2:8 m	Head 4	7 in	Pump Hear	
HEAU 200 M	1100 17	<u>r</u> [/]	nedu	<u> </u>

	Chem	-Trol Site		
	Hambu	rg, New York		:
DI MARAUNI	Fil	e: 94-022		
Date: (n/A)	<i>2007</i> ·	a .		
Blower 1 Blower 2	SVE	<u>System</u> PI-1 7/5 PI-2 7/5	in H ₂ 0 Hnu (j in H ₂ 0	opm)
Water Knockout Tank		FI-1 <u>50</u>	Make up Val	ve 11/13
-			— 0=open 13=closed	
	Water Extr	action System		
EW-1 top pvc 624.07 status % speed rate-gpm flow meter depth ft	EW-2 top pvc 622 status % speed rate-gpm allons flow meter depth	2.16 gallons ft	EW-3 top pvc 621.1 status % speed rate-gpm flow meter depthft	allons
Water Elev.	Water Elev.		Water Elev.	
Level SP 199 in High SP 250 in Low SP 25 in	Level SP High SP Low SP	160 in 250 in 25 in	Level SP 170 in High SP 250 in Low SP 25 in	
OW-2 (624.1)		OW-1(620).4)	
	Blo	ower Mot <u>or</u>	_ in H ₂ 0	
Iron Filter			Alarm History	
appearance:			·	
· · · · · · · · · · · · · · · · · · ·				
	gallons	Average	Flow:	
Leaks				
Deneral Comments	D MANNETON 11	I KURE IN I DA	PRAIC 1	
	- PROMITER WATER	- weis in Th	Add 1 21	
		······································	·····	
EW-1 Pump Headin	<u>Remote</u> EW-2 Pump Head	Panels	EW-3 Pump Headin	

	Che Harr	m-Trol Site		
Data Madrid 6.	2009	File: 94-022		
	/ C	VE Svetom		
Ployer 1	<u> </u>		h 11 0	
Blower 2		PI-1	in H₂0	⊓nu (ppm)
		T_1	IN H2V	
		FI-1	I	Make up Valve
				0=open 13=closed
	<u>Water E</u>	<u>xtraction Sys</u>	<u>tem</u>	10 0.0000
EW-1	EV	V-2	E	EW-3
top pvc 624.07	top pvc	622.16	top p	VC 621.1
status	status	:	stati	us
% speed	% speed		% spee	əd
rate-gpm	rate-gpm		rate-gp	m
flow meterg	allons flow meter	gallor	ns flow met	er gallons
depthft	depth	1ft	dep	thft
Water Elev.	Water Elev.		Water Ele	۷.
Level SP 199 in	Level SP	160 in	Level S	P170 in
High SP 250 in	High SP	<u>250</u> in	High S	SP250_in
Low SP <u>25</u> in	Low SP	<u>25</u> in	Low S	SP25_in
OW-2 (624.1)		OW	-1(620.4)	
		Blower Motor	in H ₂ 0	
lron Filter			Alarm Hist	004
appearance:			Alaini Hist	Ul y
Totalizer	callons			
	gallonio	Ave	age Flow:	
Leaks				
General Comments				
MEASUREO	WATER LEVELS	IN LATERALS	& Surveyed	Pie ELEVATIONS.
				· · · · · · · · · · · · · · · · · · ·
P				
	<u>Ren</u>	<u>iote Panels</u>		
EW-1	EV	V-2	E	:W-3
Pump	Pump		Purr	ıp
Headin	Head	in	Hea	adin

	Chem-T	rol Site		
	Hamburg, I	New York		
	File: 9	94-022		
Date: ////////////////////////////////////				
	SVE S	<u>/stem</u>		
Blower 1		PI-1	_in H₂0	Hnu (ppm)
Blower 2		PI-2	in H ₂ 0	
Alarms		-1 		N.N
Water Knockout Tank	_	FI-1		Make up Valve
				0-000
				13=closed
	Water Extrac	tion System		10-010004
EW-1	EW-2		EV	N-3
top pvc 624.07	top pvc 622.16		top pvo	0 621.1
status	status		status	S
% speed	% speed		% speed	±k
rate-gpm	rate-gpm		rate-gpm	۱ <u> </u>
flow meter gallons	flow meter	gallons	flow mete	rgallons
depthft	depth	tt	depth	1ft
Water Elev.	Water Elev.		Water Elev	
Level SP 199 in	Level SP	160 in	Level SF	o 170 in
High SP 250 in	High SP	250 in	High SF	250 in
Low SP 25 in	Low SP	25 in	Low SF	25 in
OW-2 (624.1)		OW-1(620	.4)	
	Blowe	er Motor	in H O	
	Diowe			
Iron Filter			Alarm Histor	rv
appearance:				,
Totalizar	gellene		· · · · · · · · · · · · · · · · · · ·	
	gallons	Average F	Flow:	
Leaks				
General Comments				
STAPPA BY	SITE MINHTOOP	O PJRS	PZS	
ALERTED AEU	M OF VED	Failure .	Ewi	
Received CALL	FROM DEC. K	EPORTING SC	E MANO	are open.
WENT TO SIT	5 & CHECHEO	Bidys & Lo	alleo O	COR.
EW 4	<u>Hemote Pa</u>	anels		N 0
EVV-1 Dump			EV Dumm	v-o
Head	Fump	in	Рипр	/ii
	neau	III	neau	۲ <u></u> ۲۱

	Chem-Tro	I Site		
	Hamburg, Ne	w York		
Data Anton 17 200	File: 94-	022		
Date: ///14/214 / 5, 2009	CV/E Cue	h a 100		
	SVE SVS			
Blower 1	P	1-1	_ in H ₂ 0	Hnu (ppm)
	۲	1-2 		
Alams <u>Ø</u>		i-i		Make un Valve
Water Knockout Tank	I*	-1-049		
Water Knockout Fank	_			0=open
				13=closed
	Water Extraction	on System		
EW-1	EW-2		EW	/-3
top pvc 624.07	top pvc 622.16		top pvc	621.1
status <u>VFO FAI</u> LURE	status <u>/</u>		status	<u></u>
% speed	% speed <u>56</u>		% speed	<u> </u>
flow motor	rate-gpm <u>&</u>		fate-gpm	
depth (Critical gallons	denth (5.3 H	gallons	now meter depth	gailons
Water Elev 409 7	Water Flev / v @	<u> </u>	Water Elev	1270 11
				(70°) · · ·
Level SP 199 in	Level SP 1	60 in	Level SP	170 in
High SP 250 in	High SP 2	.50 in	High SP	250 in
Low SP in	Low SP	<u>25</u> in	Low SP	25_in
OW-2 (624.1) 1285 611.3		OW-1(620	.4) 9.57 ->	610.8
	Blower M	Motor 20	in H ₂ 0	
Iron Filtor			Alarm Histor	
appearance.			Alaministor	y
77677 863 1	2 55			
27 / 27 27 1	155 13000			
Totalizer	gallons			· · · · ·
		Average I	Flow:	
Leaks				
Conoral Commonto				
	INTERNE & F	75EPLR		
		~ 7 7 7	· · ·	
	Remote Pane	<u>els</u>		
EW-1	EW-2		EW	-3
Pump	Pump		Pump	
Head <u> </u>	mead / (10 "	n	Head	<u> </u>
a second and the seco				· · · · · · · · · · · · · · · · · · ·

)

	Cher	n-Trol Site)	
	Hamb	urg, New York		
Data Marcu 75 20	- <i>C</i> 4	-ile: 94-022		
Date:///a/2014 2.5. 200	»7 ••7			
	<u>5v</u>	E System		
Blower 1		PI-1	in H ₂ 0	Hnu (ppm)
Alormo		PI-2	In H₂0 °⊏	
Alaims		FI_1	[_] =F	Make un Valve
Water Knockout Tank		I I ⁻ I		Make up valve
				0=open
				13=closed
	<u>Water Ex</u>	<u>traction Sys</u>	<u>stem</u>	
EW-1	EW-	2	E	EW-3
top pvc 624.07	top pvc 6	22.16	top pv	/C 621.1
status	status		statu	us
% speed	% speed _		% spee	ed
rate-gpm	rate-gpm_		rate-gp	m
flow meter gallons	flow meter	gallo	ons flow met	ergallons
	aeptn	ft	dep:	tnft
vvater Elev.	water Elev.		water Ele	V.
Level SP 199 in	Level SP	160 in	Level S	P 170 in
High SP 250 in	High SP	250 in	High S	P 250 in
Low SP 25 in	Low SP	25 in	Low S	P 25 in
UVV-2 (624.1)		OW	/-1(620.4)	
	F	Blower Motor	in H ₂ 0	
	-	<u></u>		
Iron Filter			Alarm Histo	ory
appearance:				·
				·····
Totolizor			<u></u>	
	gailons	Ave	rade Flow:	
Leaks		7400	age now.	
	····			
General Comments	,	a all	Dar	0.0
CHECKEO	CATERALS, M	MEMSURCO	1,10, GATS E	PZK
	<u>Remo</u>	<u>te Panels</u>		
EW-1	EW-2	2	E	W-3
Pump	Pump_		Pum	p
Headin	Head	in	Hea	.din

v

	Chem-	Frol Site		
	Hamburg	, New York		
	File	94-022		
Date: April 21, 2009				
	<u>SVE S</u>	<u>System</u>		
Blower 1		PI-1 715	in H ₂ 0	Hnu (ppm)
Blower 2		PI-2 <u>715</u>	in H₂0	****
Alarms 🗾 💅		T-1 <u> </u>	<u>″</u> ≌F	
		Fl-1 <u> </u>		Make up Valve
Water Knockout Tank	-			_11/13_
				u=open 12. alapad
	Water Extra	ation System		13=ciosed
EW/ 1		ction System	EV	V 2
	top pyp 200 :	10	top pyr	V-J
status	etatue	10	status	$\mathcal{O}_{\mathcal{A}}$
% speed	% sneed		% sneed	· <u> </u>
rate-gpm 2	rate-gpm		rate-opm	
flow meter gallons	flow meter	gallons	flow meter	gallons
depth 27.13 ft	depth 77	7. 14 ft	depth	1723 ft
Water Elev. 601.9	Water Elev.	25	Water Elev.	603.9
		•		
Level SP 199 in	Level SP	160 in	Level SP	2 <u>170</u> in
High SP 250 in	High SP	250 in	High SP	250 in
Low SP 25_in	Low SP	25_in	Low SF	?25_in
OW 2 (504 1) 11 37 107 B		OW 1/60	011 1756 5	
0 VV-2 (024.1) 7 G J L = GD + 0		000-1(02	0.4) / 6 5 6 -	
	Blov	ver Motor	in H ₂ 0	
Iron Filter			Alarm Histor	'y
appearance:				
28408650 1130	ŧ			
28 408 320 1105		<u></u>		<u></u>
Totalizer	gallons			
		Average	Flow: 73, A.	9 Pm
Leaks				
General Comments				
				· · · · · · · · · · · · · · · · · · ·
	_			
F 11/ 4	<u>Remote l</u>	Panels		V 0
EW-1	EW-2		EV	v-3
Pump	Pump	i	Fump	
	neau	ın	neau	n

Groundwater Control/Forms/ Site Visit Summary

	Chem- Hamburg	Trol Site		
Data: April 29, 2007	File	: 94-022		
Date. / Marte P . Source	SVE (System		
Ployer 1	<u>3VL</u>	DI 1	in LLO	
Blower 2		PL2	III H ₂ 0	rind (ppin)
Alarms		T ₋₁	9F	
		FI-1	<u> </u>	Make up Valve
Water Knockout Tank	-			
	-			0=open 13=closed
	Water Extra	iction System	<u> </u>	
EW-1	EW-2		E	EW-3
top pvc 624.07	top pvc 622.	16	top p	VC 621.1
status	status		stati	US
% speed	% speed		% spee	ea
flow motor	flow motor		flow mot	0r
denth ft	depth	gallons	now met dep	th ft
Water Elev.	Water Elev.		Water Ele	v.
Level SP 199 in	Level SP	160 in	Level S	SP <u>170</u> in
High SP 250 in	High SP	250_in	High S	SP 250 in
LOW SP 25 in	LOW 5P	25_in	LOW S	P25 in
OW-2 (624.1)		OW-1(62	0.4)	
	Blov	wer Motor	in H ₂ 0	
luna Elter				
			Alarm Histo	ory
appearance.	·····			
29 555 420 1012	5		<u></u>	
Totalizer	gallons			
		Average	Flow: 9.7	9pm
Leaks				
General Comments				
2nd Quan	TER WATER	Levels		
mensured L	ATCHALS		<u> </u>	
	Bemote	Panole		
EW-1	FW-2		F	W-3
Pump	Pump		Pum	יייי מו
Head in	Head	in	Hea	in
· · · · · · · · · · · · · · · · · · ·				

	Chem-T	rol Site		
}	Hamburg,	New York		
	File: 9	94-022		
Date: M176, 2009				
	SVE SV	<u>/stem</u>		
Blower 1		PI-1 >"5	in H ₂ 0	Hnu (ppm)
Blower 2		PI-2 7/5	in H₂0	
Alarms On		T-1 5°	_°F	
		FI-1 023	Ma	ke up Valve
Water Knockout Tank 📃 🗸				11/13
			0=0	open
÷			13=	closed=
	Water Extrac	<u>tion System</u>		
EW-1	EW-2		EW-3	
top pvc 624.07	top pvc 622.16		top pvc 621	, 1 -^ar
status 🦯 🦯	status	A	status	<u>k</u>
% speed <u>63_</u>	% speed	58	% speed	65
rate-gpm	rate-gpm		rate-gpm	11
flow metergallo	ns tiow meter	gallons	flow meter	gallons
deptnft		Tt	depin	ft
water Elev.	water Elev.		water Elev.	
Level SP 199 in	Level SP	160 in	Level SP	0 <u>170'</u> in
High SP 🛛 250 in	High SP	250 in	High SP 23	1 250 in
Low SP 25 in	Low SP	25 in	Low SP	74 25 in
OW-2 (624.1)		OW-1(620	.4)	
	Blowe	er Motor 20	in H₀0	
Iron Filter			Alarm History	
appearance:				
Totolizor				
	galions	Average		
Leaks North		Average i	-10w.	
General Comments				
LIATEN 10	vole in largerare			
			-,,	
<u>a. 44.44.44999 yr</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	Remote Pa	anels		
EW-1	EW-2		_ EW-3	
Pump	Pump		Pump	
Headin	Head	in	Head	in
		<u></u>		

		Chem Hambur Fill	• Trol Site g, New York a• 94-022		
Date · M	124, Zex 4	1.10			
Daie. 11		S//E	System		
		<u>376</u>	<u>System</u>		[]m() (mmm)
Blower 1			PI-1	In H ₂ 0	Hnu (ppm)
Blower 2			PI-2	in H ₂ 0	
Alarms			J-1	¥F	
	T =) .		FI-1		Make up valve
water Knockout					0=open
		Water Extra	action System	<u>n</u>	10-00360
EW-1		EW-2		E۱	N-3
top pvc 624.0	7	top pvc 622	.16	top pvo	621.1
status		status		status	3
% speed		% speed		% speed	
rate-gpm		rate-gpm		rate-gpm	
flow meter	gallons	flow meter	gallons	flow mete	rgallons
depth	ft	depth	ft	depth	nft
Water Elev.		Water Elev.		Water Elev	
Level SP	199 in	Level SP	160 in	Level SF	P 170 in
High SP	250 in	High SP	250 in	High SF	250 in
Low SP	25 in	Low SP	25 in	Low SF	25 in
OW-2 (624.1)			OW-1(6	20.4)	
		Blo	ower Motor	in H ₂ 0	
Iron Filter				Alarm Histo	ry
appearance:					
Totalizer		callons			·······
		guilona	Averade	e Flow:	
Leaks	· · · · · · · · · · · · · · · · · · ·				
Conoval Comm	anta				
	<u>CIILS</u>	and the	-		
	ICOAN INST.	TUMOR SAMPLE	14085		
	<u></u>	Remote	Panels		
EW-1		EW-2		E١	V-3
Pump		Pump		Pumr)
		· · · · · · · · · · · · · · · · · · ·			
Head	in	Head	in	Head	l in

	Chem-Trol S	ite	
	Hamburg, New Yo	ork	
	File: 94-022		
Date : M 7/22, 2004			
	<u>SVE System</u>	_	
Blower 1	PI-1_	フ <i>トS</i> in H ₂ 0	Hnu (ppm)
Blower 2 🧹	PI-2_	<u> 2+5</u> in H₂0	- «الانج <u>نبي</u> »
Alarms	T-1 _	<u>l∼o</u> ≌F	
Water Knockout Tank	FI-1	024	Make up Valve
			0=open 13=closed
	Water Extraction S	<u>iystem</u>	
EW-1	EW-2	E١	N-3
top pvc 624.07	top pvc 622.16	top pvo	0 621.1
status <u>k</u>	status <u>(</u> 2.	status	s <u>oft</u>
% speed %	% speed <u>5_ 8</u>	% speed	65
rate-gpm 2	rate-gpm <u></u>	rate-gpm	י <u>ר</u> ו
flow meter gallons	tiow meterg	allons TIOW Mete	rgallons
Weter Elev	deptnr	t deptr	π.
Wale Elev.	water Elev.	water Elev	•
Level SP 199 in	Level SP 160 ir	Level SF	P 170 in
High SP 250 in	High SP 250 ir	n High SF	250 in
Low SP in	Low SP25 ir	Low SF	2 <u>5</u> in
OW-2 (624.1)	C	DW-1(620.4)	
	Blower Moto	r in H ₂ 0	
	_		
Iron Filter		Alarm Histor	ry
appearance:	Parts	Mar 1997	
Totalizer 28,926,332	gallons		
Leaks	ļ.	verage Flow:	
General Comments		and the second s	to set was
MINI MAR, ET	T SAMPLED LATENAL 2	tis Summa	UA WISTERS
CW3 down	(Repaired June	. 19,2009)	· · · · · · · · · · · · · · · · · · ·
	Remote Panels		
EW-1	EW-2	EV	V-3
Pump	Pump	Pump	
Head 121 in	Head <u>197</u> Ir	Heac	1 <u>175</u> in
		· · · · · ·	

	<u> </u>	Chem- Hamburg	Trol Site		
		File	: 94-022		
Date : MAY2	7. 2003				
	are allowing the for	SVF	System		
Blower 1		<u></u>	DI 1	in H O	
Blower 2				III P120	Tinu (ppin)
			T 1		
Alams	<u></u>		□-1 ⊑L1	F	Make up Valve
Water Knockout Ta			I I-I		Make up valve
					0=open 13=closed
		<u>Water Extra</u>	ction System	ļ	
EW-1		EW-2		EV	V-3
top pvc 624.07		top pvc 622.	16	top pvo	621.1
status		status		status	3
% speed		% speed		% speed	l
rate-gpm		rate-gpm		rate-gpm	l
flow meter	gallons	flow meter	gallons	flow meter	gallons
depth	ft	depth	ft	depth	1ft
Water Elev.		Water Elev.		Water Elev.	
Level SP	199 in	Level SP	160 in	Level SP	9 170 in
High SP	250 in	High SP	250 in	High SP	250 in
Low SP	25 in	Low SP	25 in	Low SP	25 in
OVV-2 (624.1)			OVV-1(62	0.4)	
		Blo	wer Motor	in H ₂ 0	
Iron Filter				Alarm Histor	N/
annearance'				Alami Histor	У
		<u> </u>			
Totalizer		dallons			
			Average	Flow:	
Leaks					
General Commen	<u>its</u>				
Rep	luced Guis	JOINTS on A.	· Strupie Te	ibes	
				·····	
·		** • • • * • • •			······································
		<u>Remote</u>	<u>Panels</u>		
EW-1		EW-2		Eγ	V-3
Pump		Pump		Pump	
Head	in	Head	in	Head	in

	Chem-T	rol Site		
	Hamburg, I	New York		
	File: 9	94-022		
Date: June 12, 2009				
	SVE SV	/stem		
Blower 1		PI-1 >/s	in H ₂ 0	Hnu (ppm)
Blower 2		PI-2 7/6	in H ₂ 0	
Alarms 0		T-1 (2)	~~°F	
		FI-1 075	 M	ake up Valve
Water Knockout Tank	-			11/12
	-		0:	=open
			1:	3=closed
	Water Extrac	tion System		0.0000
E\M/_1	EW/ 2	don bystem	E10/ 2	
	EVV-2		top pyg 83	4.4
	top pvc 622.10		top pvc 62	
status	status		Status	
% speed	% speed		% speed	
rate-gpm	rate-gpm		rate-gpm	
flow meter gallons	flow meter	gallons	tiow meter	gallons
depthft	depth	ft	depth_	tt
Water Elev.	Water Elev.		Water Elev.	
		100		470.
Level SP 199 in	Level SP	160 in	Level SP	<u>170</u> in
High SP in	High SP	in	High SP	250 In
Low SP in	Low SP	<u>25</u> in	Low SP	<u>25</u> in
		ON1 1/00	- 4)	
077-2 (624.1)		UVV-1(62)	5.4)	
	Blowe	er Motor	in H₂0	
		<u>.</u>		
Iron Filter			Alarm History	
appearance:			,	
appeara;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		<u> </u>		
		B		
Totalizer	gallons	k m		
<u> </u>		Average	Flow:	
Leaks		Ŭ		
General Comments				
Mossined Lares	ere Waren Lev	els_		
	· · · · · · · · · · · · · · · · · · ·			
	<u>Remote Pa</u>	anels		
EW-1	EW-2		EW-3	
Pump	Pump		Pump	
Head in	Head	in	Head	in
			· · ·	

	Chem-	Trol Site		
	Hamburg	a. New York		
	File	: 94-022		
Date: June 15 2000		· · · · · · ·		
	SVE	System		
Blower 1	<u></u>	DI_1	in W O	Hou (ppm)
Blower 2		PI2	in H_0	rina (ppin)
Alarme		T 1		·
			1'	Make up Velve
Water Knockout Tank		, 1 -1		Make up valve
	*****			0=open
				13=closed
	Wotor Extra	nation System		10-01036u
TW 4		iction System	<u>!</u>	
		40	£	τνγ-J
top pvc 624.07	top pvc 622.	.16	top pv	VC 621.1
	status		statu	
% speed	% speed		% spee	ed
rate-gpm	rate-gpm		rate-gp	m
flow meter gallons	flow meter	gallons	flow met	ergallons
depthft	depth	ft	dep	thft
Water Elev.	Water Elev.		Water Ele	V.
level SP 199 in		160 in	Loval S	D 170 in
High SP 250 in	High SP	250 in	Level S High S	250 in
		250 in	l ov S	200 III 20 25 in
		<u></u>	LOW G	<u>25</u> m
OW-2 (624.1)		OW-1(62	:0.4)	
	Blo	wer Motor	in H-0	
	210			
Iron Filter			Alarm Hist	nrv
appearance:				
			··· · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·
Totalizer	gallons			
		Average	Flow:	
Leaks				
General Comments				
Martine A	TROUNDE LANED E	CHATSINIC IN	SUE CAR	FRI LATERAS
preusenter c	TO WITCH CLUMTER CL	LUTTING X 1/V	47581	en ty they the presentation of
	<u>Remote</u>	Panels		
EW-1	EW-2	_	E	W-3
Pump	Pump		Pum	ιp
Head in	Head	in	Hea	ad in
				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

.

	Chem-1	Frol Site		
	Hamburg	, New York		
Data J all and	File:	94-022		
Dale: The of the coord	eve s	Sucham		
Playing 4	<u>SVE C</u>	DI 4		m., (m.m.m.)
			in H ₂ 0	nu (ppm)
		T_1	IIS ⊟20 ●⊑	
Ald1113		FI-1	'	Make up Valve
Water Knockout Tank				
				0=open 13=closed
	Water Extra	ction System	<u>l</u>	
EW-1	EW-2		L	=W-3
top pvc 624.07	top pvc 622.1	6	top p	VC 621.1
status	status		stat	us
% speed	rate_com		rate-on	eu
flow meter gallons	flow meter		flow met	ter gallons
depth ft	depth	ganoris	der	oth ft
Water Elev.	Water Elev.		Water Ele	ev.
Level SP 199 in	Level SP	160 in	Level S	SP170_in
High SP 250 in	High SP	250 in	High S	SP250_in
Low SP 25 in	Low SP	25_in	Low S	SP25_in
OW-2 (624.1)		OW-1(62	20.4)	
	Blov	ver Motor	in H ₂ 0	
have Eliter			Alexan Elia	
appearance:			Alann rist	lory
appearance.		······		
Totalizer	gallons	A	Flow	
Leaks		Average	Flow:	
Ganaral Commonta				
Beneral Comments	America on Cir	0 75 G.	RE OVER	lunder
1441	FISSD PLAIN	ALL ORY	a star in an	nte Automotial causa de
	p particular and a mapping of			
	**			
	Remote	raneis	т	
	EVV-Z		l Dum	
Head in	Fump Head	in	Ful Ha	۲۲
	neau	111	116	au
L	· · · · ·			

		Chem- Hamburg File	Trol Site g, New York 94-022		
Date : 🗔	1717, 2009				
	-	<u>SVE</u>	<u>System</u>		
Blower 1			PI-1	in H ₂ 0	Hnu (ppm)
Blower 2			PI-2	in H ₂ 0	
Alarms				*F	Maka un Valvo
Water Knockou	Tank				
			ation Conton	_	13=closed
		Water Extra	iction System	<u>ה</u>	14/-2
	07	top pvc 622	16	top py	е 621 1
status	.07	status	10	statu	S
% speed		% speed	······································	% spee	d
rate-gpm		rate-gpm		rate-gpr	n
flow meter	gallons	flow meter	gallons	flow mete	er gallons
depth	ft	depth	ft	dept	hft
Water Elev.	· · · · ·	Water Elev.		Water Elev	/
Level SP	199 in	Level SP	160 in	Level S	P170 in
High SP	250_in	High SP	250 in	High Sl	P250_in
Low SP	25 in	Low SP	<u>25</u> in	Low S	P <u>25</u> in
OW-2 (624.1)	4		OW-1(62	20.4)	
		Blo	wer Motor	in H₂0	
Iron Filter				Alarm Histo	
appearance:				Alarm histo	лу
Totalizer		gallons			
Leaks			Average	e Flow:	
	monto				
	LILENIS LEASUDED	Conduct on tora	planar. And	is int C.	F LATENALS
	CMANAL	and Rimaria	5. HORNOTE	and Mana	in the second
	CTUN 17	AM HEAD R	Cont Com C'	LEET HA	
broat in com-			the second s		
		<u>Remote</u>	Panels		
EW-1		EW-2		E E	W-3
Pump		Pump		Pum	p
Head	in	Head	in	Hea	din

	Chem-Tro	I Site		·
	Hamburg, Ne	w York		
	File: 94-	022		
Date: July 30, 2009				
ò	SVE Sys	tem		
Blower 1	P	1-1 7/5	in H ₂ 0 Hnu (ppm)	
Blower 2	P	1-2 715	in H ₂ 0	
Alarms 0		[-1 64	°F	
Water Knockout Tank	F	1-1 .023	Make up Valve	3
			0=open 13=closed	
	Water Extraction	on System		
EW-1	EW-2		EW-3	
top pvc 624.07	top pvc 622.16		top pvc 621.1	
status	status		status	
% speed	% speed	;	% speed	
rate-gpm	rate-gpm		rate-gpm	
tiow meter gallons	tiow meter	gallons	flow meter gallons	;
Motor Elev	depin	T[deptntt	
	vvaler Elev.		vvaler Elev.	
Level SP 199 in	Level SP 1	60 in	Level SP 170 in	
High SP 10	High SP 2	50 in	High SP 250 in	
Low SP <u>25</u> in	Low SP	<u>25</u> in	Low SP 25 in	
OW-2 (624.1)		OW-1(620.4)	
	Blower I	/lot <u>or</u>	in H ₂ 0	
Iron Filter		1	Alarm History	
appearance:				
Totalizer	gallons			
Leaks		Average Fl	SM:	
General Commonto				
Mary 5 Gamera	Tery A. Obraines	Times C	Converse	
Far Outer	TICHT THO CONTRACT	Trus A. 1 10	d 1	
MEMELINE A	TENALS É Extraction	e lassie		
		- Forting of the barred		
	Remote Pan	els		
EW-1	EW-2		EW-3	
Pump	Pump		Pump	
Head in	Head	in	Head In	

	Chei	m-Trol Site		
	Hamb	ourg, New York		
- C 2	79. or A ¹¹ A	File: 94-022		
Date: Sept 3.	2.112 25 7			
	<u>SV</u>	<u>/E System</u>		
Blower 1		PI-1	in H ₂ 0	Hnu (ppm)
Blower 2		PI-2	in H₂0	
Alarms		T-1	°F	
		FI-1		Make up Valve
Water Knockout Tank				
				0=open
				13=closed
	Water Ex	traction Syste	m	
EW-1	EW	-2	E\	N-3
top pvc 624.07	top pvc	622,16	top pyg	C 621.1
status	status		status	8
% speed	% speed	·	% speed	
rate-gpm	rate-opm		rate-opn	י <u></u> ו
flow meter	gallons flow meter	allons	flow mete	r gallons
depth	ft denth	gallono	depti	n ft
Water Fley.	Water Flev.		Water Elev	· · · ·
Level SP 199	in Level SP	160 in	Level SF	P 170 in
High SP 250	in High SP	250 in	Hiah SF	250 in
Low SP 25	in Low SP		Low SF	25 in
				,
OW-2 (624.1)		OW-1	(620.4)	
,			,	
		Blower Motor	in H₂0	
Iron Filter			Alarm Histo	rv
appearance:				
	· · · · · · · · · · · · · · · · · · ·			
Totalizer	gallons			<u> </u>
		Avera	ge Flow:	
Leaks				
General Comments			*	
ON	SITE TO OPEN 1	GATE FOR	601 .	
Eoi M	10WED ENTIRE	SITE THIS	OA1-	
			/	
	Rem	<u>ote Panels</u>		
EW-1	EW	-2	E\	N-3
Pump	Pump		Pum	0
Head	in Head	in	Head	din
			<u></u>	

	Chem-T	rol Site	
	Hamburg,	New York	
	File: {	94-022	
Date: SEPTEMBER 30	, 2009		
	SVE S	ystem	<i></i>
Blower 1		PI-1	in H₂0 Hnu (ppm)
Blower 2		PI-2 <u>> i S</u>	in H ₂ 0
Alarms6			*F Maka up Valva
Water Knockout Tank	_	FI-1 024	
	_		0=open
			13=closed
	Water Extrac	tion System	
EW-1	EW-2		EW-3
top pvc 624.07	top pvc 622.16	i -	top pvc 621.1
status	status		status
% speed	% speed		% speed
rate-gpm	rate-gpm		rate-gpm
flow meter galions	flow meter	gallons	flow meter gallons
depthft	depth	ft	depthft
Water Elev.	Water Elev.		Water Elev.
Level SP 199 in	Level SP	160 in	Level SP 170 in
High SP 250 in	High SP	250 in	High SP 250 in
Low SP 25 in	Low SP	<u>25</u> in	Low SP 25 in
OW-2 (624 1)		O\W_1(620.4)	١
000-2 (024.1)		011-1(02014)	
	Blowe	er Mot <u>or</u>	in H ₂ 0
Iron Filter			
appearance.		r	arm mistory
		<u> </u>	
l otalizer	gallons	Average Ek	
Leaks		Average Fit	Jw.
<u>General Comments</u>			
	Remote P	anels	
EW-1	EW-2		EW-3
Pump	Pump		Pump
Head in	Head	in	Head in
		·····	······

	Chem-Trol Hamburg, New File: 94-0	Site York	0 40 40	
Date : Octo Ben 8, 2009				
Blower 1 Blower 2	SVE Syste Pl Pl	<u>em</u> -1 -2	in H ₂ 0 in H ₂ 0	Hnu (ppm)
Alarms Water Knockout Tank	– Fi	-1 -1	- - -	Make up Valve
				0=open 13=closed
EW-1 top pvc 624.07 status % speed rate-gpm flow meter gallons depth ft Water Elev.	Water Extraction EW-2 top pvc 622.16 status % speed rate-gpm flow meter depth Water Elev.	n System	EV top pvo status % speed rate-gpn flow mete depti Water Elev	W-3 c 621.1 s d ngallons hft
Level SP 199 in High SP 250 in Low SP 25 in	Level SP 16 High SP 25 Low SP 2	60 in 50 in 25 in	Level SF High SF Low SF	2 <u>170</u> in 250 in 251 in
077-2 (624.1)		000-1(620,2	+)	
	Blower M	lotor	in H ₂ 0	
Iron Filter appearance:			Alarm Histo	ry
Totalizer	_gallons	Average F	ow:	
<u>General Comments</u> <u>3rd</u> Quanten	Writer livels			
EW-1 Pump Headin	<u>Remote Pane</u> EW-2 Pump Head	<u>ls</u> in	EN Pumj Head	W-3 pin

	Chem-Trol Site	
	Hamburg, New York	
Data : Out (a.e. 12	File: 94-022	
Date: $\bigcirc e^{-p} e^{-k} / 5$, $e^{-p} / 5$	SVE Suctom	
Blower 1	<u>SV⊑ System</u> PI-1 <u>>≀</u> PI-2 >≀ 5	∫_in H₂0 Hnu (ppm)
Alarms O	T-1 56	→ °F → Make up Valve
Water Knockout Tank		0=open
	Water Extraction System	13=closed
EW-1	EW-2	EW/-3
top pyc 624.07	fop pyc 622 16	top pyc 621 1
status	status (2	status <ß
% speed 4.5	% speed 5®	% speed 65
rate-gpm 4-	rate-gpm 🔗	rate-gpm o
flow meter <u>3</u> gallons	flow meter gallons	flow meter gallons
depth <u>18.55</u> ft	depth <u>teos</u> ft	depth <u>15.25</u> ft
Water Elev. 605.7	Water Elev. 608	Water Elev. 605-9
Level SP 199 in	Level SP 160 in	Level SP 170 in
High SP <u>0 250</u> in	High SP 250 in	High SP 251 250 in
Low SP 25 in	Low SP 25 in	Low SP <u>24 25</u> in
OW-2 (624.1)	OW-1(6	20.4)
	Blower Motor 24	2in H₂0
Iron Filter		Alarm History
appearance:		, liann motory
21,109,210 1	1:03 000-	
31,108,302 "	9:58	
Totalizer	_gallons ^{©S} Averace	e Flow: 13-9 as
Leaks Nove		61
General Comments		
ANNUE HE	WALK OUER IS DEC	
	Demoks D. J. J.	
EW 1	<u>Kemote Panels</u>	
Pump	Pump	Evv-o Pump
Head 181 in	Head 152- in	Head Las in

	Chem-	Trol Site		
	Hampurg	J, NEW YOFK		
Data: Orange 72	FIIE	94-022		
Date: 00015012 22, 2009	SVE	System		
Pleyer 1	SVE	System DIA		
Blower 2			IN H ₂ U	⊢nu (ppm)
		T_1		
Alams		FI-1	F	Make up Valve
Water Knockout Tank	—	· · · ·		
				0=open 13=closed
	Water Extra	action System	<u>ı</u>	
EW-1	EW-2		EV	N-3
top pvc 624.07	top pvc 622.	16	top pv	C 621.1
status	status		status	s
% speed	% speed		% speed	<u> </u>
flow motor	flow motor		rate-gpn	n collopo
depth ft	depth	galions	now mete	gailons
Water Elev	Water Elev	1	Water Elev	111L
Water Liev,	WALES LIEV.		Water Liev	•
Level SP 199 in	Level SP	160 in	Level SF	⊃ 170 in
High SP 250 in	High SP	250 in	High SF	250 in
Low SP in	Low SP	25 in	Low SF	25 in
OW-2 (624.1)		OW-1(62	:0.4)	
	Blo	wer Motor	in H ₂ 0	
Iron Filter			Alarm Histo	ry
appearance:				
Totolizor	~~!!~~~			
	_ganons	Average	Flow:	
Leaks			1100.	
General Comments				
DRENED GATE	For Test A.	mereica MN.	NERAL ANIA	WTERAL S
	a an a success of the second		· · · · · · · · · · · · · · · · · · ·	ar∦r Merita to en mer
	Remote	Panels		
EW-1	EW-2	<u></u>	EV	N-3
Pump	Pump		Pumr	D
Head in	Head	in	Head	din
L	·····		· · · ·	"

	Chem-Trol Site						
Hamburg, New York							
	File: 94-0	22					
Date: Nou18, 2009							
	<u>SVE Syste</u>	<u>em</u>					
Blower 1	PI-	-1 7 (5 in H ₂ 0	Hnu (ppm)				
Blower 2	PI-	-2>≉≲in H₂0					
Alarms	T-	-1_ <u>\$55</u> _9F					
Water Knockout Tank	- +ŀ	-1	Make up Valve				
			0–open 13=closed				
	Water Extraction	n System	10 010000				
EW-1	EW-2	l	EW-3				
top pvc 624.07	top pvc 622.16	top p	VC 621.1				
status	status	stat	us				
% speed	% speed	% spe	ed				
rate-gpm	rate-gpm	rate-gp	om				
flow meter gallons	flow meter	gallons flow mer	ter gallons				
Water Elev	Water Fley	IL Uep Water Ele	Juli Iu				
	VValer Liev.		5 v .				
Level SP 199 in	Level SP 16	30 in Level S	SP170_in				
High SP250 in	High SP 25	50_in High S	SP in				
Low SP <u>25</u> in	Low SP 2	25 in Low S	SP25_in				
OW-2 (624.1)		OW-1(620.4)					
Blower Motor シン in H₂0							
Iron Filter		Alarm Hist	lory				
appearance:			<u> </u>				
31 790 680 3:	23						
Totalizer 3/ 789 710 2:0	gallons 12-4 a Prot						
		Average Flow:					
Leaks							
General Comments							
4th QUARTER	Waren Levers						
Remote Panele							
EW-1	EW-2	<u></u>	EW-3				
Pump	Pump	Pur	np				
Head in	Head	in He	ad in				
	<u></u>	·	<u>, , , , , , , , , , , , , , , , , , , </u>				
	·	······					

Chem-Trol Site						
Hamburg, New York						
	File: 94-022					
Date : <i>OCC バ</i> チ、えっき 🦻						
	SVE System					
Blower 1	Pi_1	ファノビ in H-0	Hou (opm)			
Blower 2	PI-2					
	T_1	<u>, , , , , , , , , , , , , , , , , , , </u>				
		<u></u> '	Make un Valve			
Water Knockout Tank	- '''-	We that I				
	-		0-onon			
			12-open			
	Water Extraction S	watam	13-closed			
	water Extraction S	oystem				
EW-1	EW-2	EV	V-3			
top pvc 624.07	top pvc 622.16	top pvc	; 621.1			
status 🥂	status 🥂 🥂	status	5/3			
% speed <u>63</u>	% speed <u>58</u>	% speed	65			
rate-gpm	rate-gpm	rate-gpm				
flow meter gallons	flow meterg	alions flow meter	gallons			
depth /?+3_ft	depth <u>/37/</u> f	t depth	1 <i>/306</i> ft			
Water Elev.	Water Elev.	Water Elev	•			
Level SP 199 in	Level SP 160 in	n Level SF	2 <u>170</u> in			
High SP 250 in	High SP 250 ir	n High SP	250 in			
Low SP 25 in	Low SP 25 ir	n Low SP	25 in			
1771	284 ''		188''			
OW-2 (624.1)	(DW-1(620.4)				
	Blower Moto	<u>r 16</u> in H ₂ 0				
Iron Filter		Alarm Histor	Ŋ			
appearance: Scarmany	NIA					
32, 382, 410	1054					
32.381,830	1019					
Totalizer	gallons					
	l l l l l l l l l l l l l l l l l l l	Average Flow: 🖉	16.64041			
Leaks <u>Nowe</u>		\$	d# '			
General Comments			<u> </u>			
CALLED GARTH TE	SOM AECON KCOMMO	ING LOW BLOWE	14 PRESSURE			
É HI TRANSOURER READING É PANEL EWZ NOT LIT						
Durante D						
Remote Panels						
	EW-2	EV	۷-3			
Pump	Pump No Lilard	7 & Pump)			
Head <u>/77</u> in	Head <u>287</u> ii	h Head	1 <i>_188</i> in			