

AECOM 100 Corporate Parkway, Suite 341 Amherst, NY 14226 716.836.4506 tel 716.834.8785 fax

March 8, 2013

Mr. Brian Sadowski New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: 2012 PERIODIC REVIEW REPORT Chem-Trol Site, Registry No. 9-15-015, <u>Blasdell, Erie County</u>

Dear Mr. Sadowski:

AECOM Technical Services, Inc. (AECOM), on behalf of SC Holdings, Inc. (SC Holdings), is submitting this Periodic Review Report (PRR) along with a completed Institutional Controls and Engineering Controls (IC/EC) Certification Form (Attachment A) for the Chem-Trol site. This report is being submitted as requested by the New York State Department of Environmental Conservation (NYSDEC) in its letter dated January 25, 2013 to Mr. Mark Snyder. The letter provides guidance for preparing the PRR and IC/EC forms and requires that they be submitted to NYSDEC no later than March 17, 2013.

I. INTRODUCTION

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972 and operations were moved to a new facility in Model City, New York.

Chem-Trol was acquired by SCA Services, Inc. in 1973. In 1984, a wholly-owned subsidiary of Waste Management, Inc. acquired 100% of the stock of SCA Services, Inc. (since July 1998, Waste Management, Inc. is known as Waste Management Holdings, Inc.). On December 22, 1999, SCA Services, Inc. was liquidated, and the assets of SCA

Services, Inc. were merged into SC Holdings, Inc., a direct subsidiary of Waste Management Holdings, Inc.

As a result of historic waste processing activities, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, and construction of a soil vapor extraction (SVE) system and groundwater collection and treatment system. The SVE system includes a header pipe and eight subsurface laterals installed in a linear array within the area of remediated soils. The groundwater collection and treatment system includes a blast-fractured bedrock trench in which three groundwater collection wells are installed, conveyance piping, and a shallow tray air stripper that removes VOCs from the collected groundwater. The treated groundwater is discharged through a pipe to the South Branch of Smokes Creek.

The SVE system and the groundwater collection system continue to operate. During 2010, McMahon & Mann Consulting Engineers, PC (MMCE) evaluated the effectiveness of passive operation of the SVE system in removing soil vapors. Subsequently, the SVE system was converted from active to passive operation in 2010. A copy of the SVE system evaluation letter report was included as Attachment B in the 2010 PRR.

II. SITE OVERVIEW

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek. Figure 1 shows the Chem-Trol site location and features.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the shallow overburden as well as the deeper bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the South Branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of 2 by NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site,
- Installation of a groundwater collection trench along the western edge of the site,
- Improvement of the existing soil cover over the former chemical processing area, and,
- Installation of a SVE system within the former waste chemical processing area.

Goals for the remedial program were established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site,
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments and groundwaters at the site,
- Prevent migration of contaminants in the on-site soils into the groundwater,
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment, and
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings continues to monitor the performance of the SVE and groundwater collection and treatment system.

SVE System

SC Holdings submitted a work plan to NYSDEC on October 22, 2009 proposing conversion of the active system to a passive venting system and monitoring the performance of the passive system for a year. NYSDEC authorized the conversion to a passive system along with monthly monitoring. The SVE treatment system was converted from active to passive operation in January 2010.

After a year of monitoring, SC Holdings submitted a report describing the monitoring results as indicating that passive operation of the SVE system provides similar and possibly improved effectiveness as active operation of the SVE system in venting soil vapors. Water level data in the passive vent risers indicated that passive venting might also contribute to generally lower water levels in the laterals for a longer period of time over the course of the year and therefore provide a greater opportunity to vent soil vapors.

It was recommended that active operation of the SVE system permanently cease and that passive operation of the SVE system laterals continue. In addition, it was

recommended that continued monitoring of the SVE system laterals be eliminated. NYSDEC agreed with these recommendations in a letter to Mr. Mark Snyder dated May 29, 2011.

During this reporting period, the SVE system continued to operate passively. The lateral riser pipes were visually examined for damage during quarterly site visits by a third party consultant (MMCE). No damage was observed during these site visits.

Groundwater Collection and Treatment System

SC Holdings has the following actions performed by third party consultants in order to monitor the performance of the groundwater collection system as required in the ROD:

- Perform monthly operation and maintenance tasks on the system,
- Perform quarterly acid wash of the air stripper, including a once-per-year dismantling of the air stripper to check seals and remove mineral accumulation in air stripper trays using mechanical means (scrubbing, re-drilling holes to full diameter, etc.),
- Sample and analyze the groundwater collection and treatment system influent and effluent on a monthly basis,
- Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a quarterly basis,
- Obtain annual groundwater samples from groundwater monitoring wells and analyze for organic compounds, and,
- Prepare bedrock groundwater contours based on quarterly water level measurements collected during the year.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Monthly aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations. Analytical test results show that discharge parameter concentrations in the stripper effluent for 2012 were below the concentration and mass loading discharge limits established by NYSDEC 11 of 12 months. O-chlorotoluene exceeded the concentration and mass loading discharge limit in the December 2012 effluent sample due to an air stripper malfunction. In response, AECOM's subcontractor, Matrix Environmental Technologies, Inc., performed a maintenance visit to dismantle and acid wash the system (January 8, 2013); the subsequent effluent sample collected January 11, 2013 showed no exceedance of the concentration or mass loading discharge limits.

Analytical test results for the 2012 monthly aqueous effluent samples are included in the O&M reports submitted by AECOM to NYSDEC on a quarterly basis.

Monthly testing of the air stripper exhaust discharge (vapor phase) samples ceased after April 2011. Monthly testing was eliminated based upon a letter from AI Zylinski,

NYSDEC Division of Air Resources, to MMCE (consultant to SC Holdings) dated April 6, 2011. The letter approved elimination of sampling and testing of the air stripper exhaust.

A summary of groundwater elevations measured in the groundwater monitoring wells and piezometers is included in Table 1 - Summary of Groundwater Elevation Measurements 2012. Quarterly groundwater elevation contours are plotted on Figures 2 through 5.

The contours show that the three extraction wells depress water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates groundwater flow toward the collection trench. The measurements demonstrate that the collection trench is functioning as designed to restrict offsite flow and limit groundwater discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater treatment system influent samples have historically shown o-chlorotoluene levels in higher concentrations than other organic compounds. Therefore, concentrations of o-chlorotoluene detected in groundwater treatment influent samples have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for influent groundwater samples was plotted versus time for the July 2002 through December 2012 sampling events (see Figure 6). The plot shows that the concentration of o-chlorotoluene in the influent groundwater samples has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A comparison of the influent and effluent sample analytical results shows that the air stripper is effectively removing VOCs from the groundwater collected by the treatment system.

A summary of organic compound analytical test detections for the annual 2012 groundwater-sampling event is included as Table 2, Detection Summary. The complete 2012 groundwater sample analytical laboratory report is included as Attachment B.

IV. O&M PLAN COMPLIANCE

SC Holdings performed the following activities as part of the Operation & Maintenance (O&M) Plan requirements:

Soil Vapor Extraction System

Third party consultants (MMCE) performed the following activities in 2012 as part of quarterly visits to the site:

• Visually observed each SVE passive vent riser for damage.

Groundwater Collection and Treatment System

Third party consultants (AECOM) performed the following activities in 2012 as part of monthly O&M visits:

- Verified that each extraction well was running and performing as designed,
- Observed that each pump was operating, documented pumping rates, total gallons pumped and insured that high and low water controls are functioning as designed,
- Performed monthly influent and effluent sample analytical testing,
- Observed that the air stripper was performing as designed,
- Performed monthly inspections and cleaning of stripper trays. Performed acid washes quarterly or more often if necessary to promote optimum removal of volatile organic compounds, and
- Prepared and submitted O&M reports on a quarterly basis to NYSDEC.

The quarterly O&M reports submitted to NYSDEC provide further details on specific activities performed, analytical testing results, and observations made during the monthly O&M visits. With the exception of general maintenance work performed on pumps and sensors, as described in the monthly O&M reports, no significant issues have occurred to the groundwater collection and treatment system. During November 2012, the treated effluent discharge line between the treatment building and South Branch of Smokes Creek was mechanically cleaned to remove mineralogic/biologic growth and obstructions. Results of the treatment system performance are discussed in Section III.

V. CONCLUSIONS AND RECOMMENDATIONS

Groundwater Collection and Treatment

A comparison of the monthly influent vs. effluent analytical test results shows that the groundwater collection and treatment system continues to remove contaminants from groundwater at the Chem-Trol site. A plot of the influent o-chlorotoluene concentration versus time (see Figure 6) indicates that the source contributing to groundwater VOC concentrations has been reduced to where its influence on groundwater has decreased and appears to continue approaching an asymptotic curve.

The quarterly groundwater elevation data show that the groundwater collection system continues to contain groundwater contaminants and creates a gradient toward the groundwater collection wells and away from the South Branch of Smokes Creek.

No changes to the activities currently being performed at the Chem-Trol site are recommended.

Please call the undersigned at AECOM (716-836-4506) or Mr. Mark R. Snyder (585-223-6922) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

James L. Kacyon

James L. Kaczor, P.G. Project Manager james.kaczor@aecom.com

Enclosures (Tables, Figures)

Attachments (IC/EC Form, 2012 Annual Groundwater Data Report)

cc. Mark R. Snyder, P.E. (SC Holdings, Inc.) w/attachments Daniel Servetas, P.E. (AECOM), w/attachments 60164822 Project File

TABLES

Table 1: Summary of Groundwater Elevations - 2012Table 2: Groundwater Sample Detection Summary - 2012

Chem-Trol Site								
	Summary of Groundwater Elevation Measurements - 2012							
	1Q		2Q		3Q		4Q	
Well	3/27/2012		5/30/2012		9/20/2012		12/11/2012	
OW-1FR	608.06		605.97		605.42		609.54	
P97-5	607.92		605.95		605.45		609.24	
MW10S	609.10		609.05	dry	609.15	dry	610.18	dry
MW10R	608.26		606.17		605.57		609.49	
P97-4	607.94		605.80		605.35		609.34	
MW 13R	607.89		605.94		605.44		609.14	
MW 8S	610.76	•	610.28		609.93		610.17	
MW 8R	608.27		606.28		605.73		609.43	
P97 - 3	607.99		605.81		605.26		609.51	
MW 9RD	611.72		611.93		611.93	= j	609.79	
MW 9R	608.08		605.92		605.17		609.62	1
MW 9S	609.74		609.29	dry	609.30	dry	611.05	
P97 - 2	610.71		609.42		608.37		611.26	
P97 - 1	612.23		611.27		609.65		612.37	
MW 12R	613.18		612.64		609.59		615.48	
MW 12S	615.23		613.22		611.57	dry	617.67	
MW14R	612.93		612.60		611.85		612.23	
OW-2FR	608.05		605.84		605.24		609.67	
MW 4S	624.09		622.23		621.48		623.05	
MW 4R	607.82		605.72		605.42		609.31	
P4S	620.54		620.54		620.44		621.03	
MW 3S	620.24		619.44		618.34		619.74	
P - 3R	619.31		619.17		619.17		619.11	
P - 3S	635.46		635.46		634.86		634.86	
OW - 3R	614.87		614.48		613.93		615.06	
P-5S	626.28		624.79		623.84	dry	628.08	x
P-5R	618.34		617.13		616.08		618.04	
MW-5S	624.58		623.38		622.08		624.50	
P-2R	638.45		624.79		630.56		641.74	
P2-S	637.94		617.13		637.44	i.	637.44	
MW-2S	638.25		623.38		631.45		638.04	
					and the second se			

635.51

636.44

636.45

635.86

637.25

635.00

631.49

625.19

619.19

630.65

631.46

631.05

631.35

631.68

1

629.77

620.84

637.04

637.67

639.96

636.74

637.21

/

Table 1 hem-Trol Site

Ground Water Elevations/ Ground Water Data

MW-6S

MW 6R

MW 1R

MW 1S

MW 7S

MW 7R

P-1S

630.26

621.09

637.25

637.86

639.80

638.28

637.31

TABLE 2 Detection Summary

TestAmerica Job ID: 480-26808-1

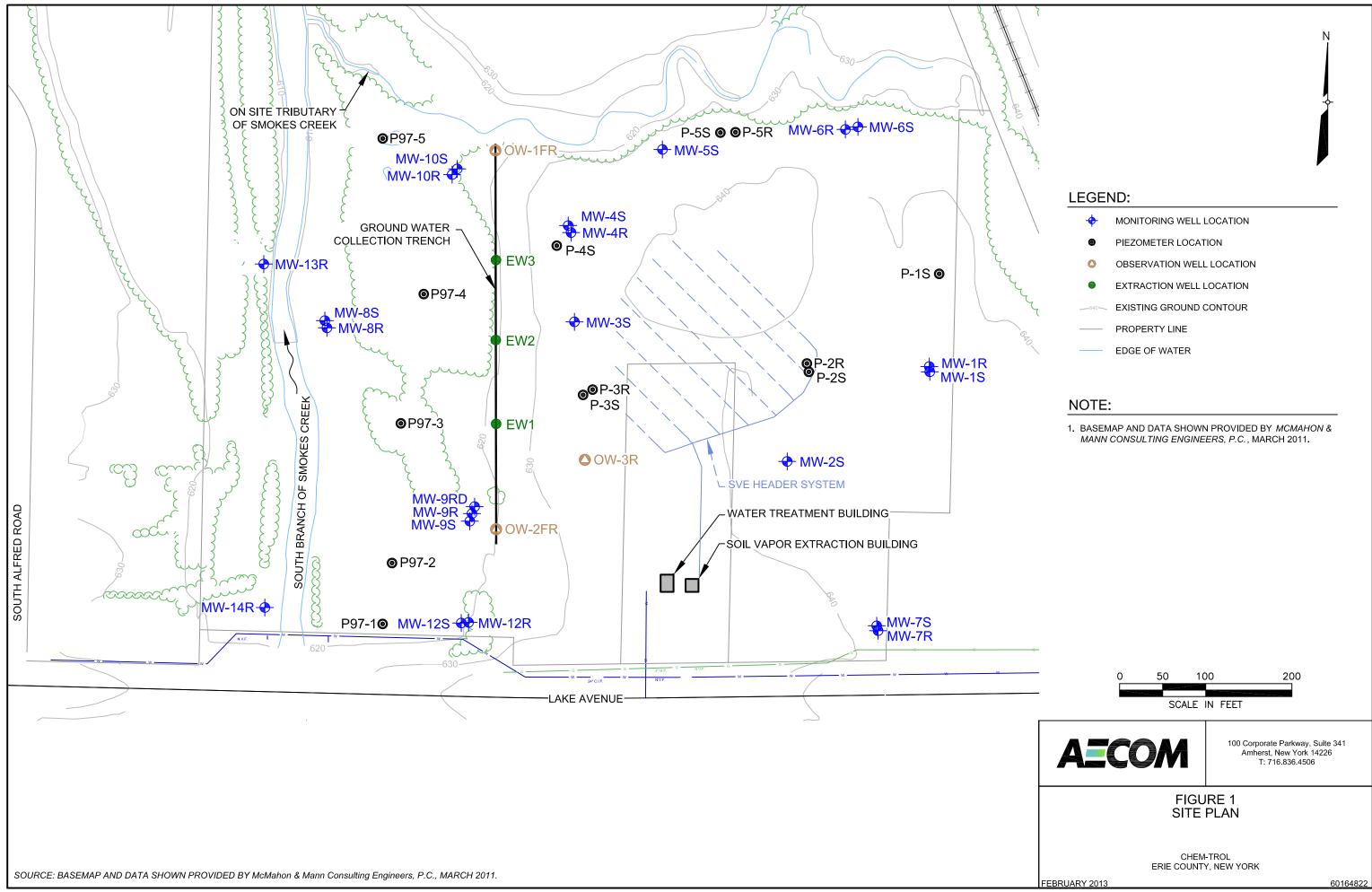
Client: Waste Management Project/Site: ChemTrol Site - Groundwater

Client Sample ID: DUP						La	b Sample I	D: 480-26808-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
o-Chlorotoluene - DL	410		25		ug/L	5	8260B	Total/NA
Client Sample ID: MW-13R						La	b Sample I	D: 480-26808-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
o-Chlorotoluene	410		25		ug/L	5	8260B	Total/NA
Client Sample ID: MW-15R						La	b Sample I	D: 480-26808-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
Benzene	6.0		5.0		ug/L	1	8260B	Total/NA
Cyclohexane	70		5.0		ug/L	1	8260B	Total/NA
Methylcyclohexane	44		5.0		ug/L	1	8260B	Total/NA
Xylenes, Total	27		15		ug/L	1	8260B	Total/NA
Client Sample ID: MW-3S			<u>.</u>	<u>.</u>		La	b Sample I	D: 480-26808-4
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
o-Chlorotoluene - DL	91000		10000		ug/L	2000	8260B	Total/NA
Client Sample ID: MW-7R						La	b Sample I	D: 480-26808-
No Detections								
Client Sample ID: MW-8R						La	b Sample I	D: 480-26808-6
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
o-Chlorotoluene	34		5.0		ug/L	1	8260B	Total/NA
Client Sample ID: MW-9R						La	b Sample I	D: 480-26808-7
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
1,1,1-Trichloroethane	410		25		ug/L	5	8260B	Total/NA
	150		25		ug/L	5	8260B	Total/NA
1,1-Dichloroethane								
o-Chlorotoluene	380		25		ug/L	5	8260B	Total/NA

Client Sample ID: TB

Lab Sample ID: 480-26808-8

/


1

No Detections

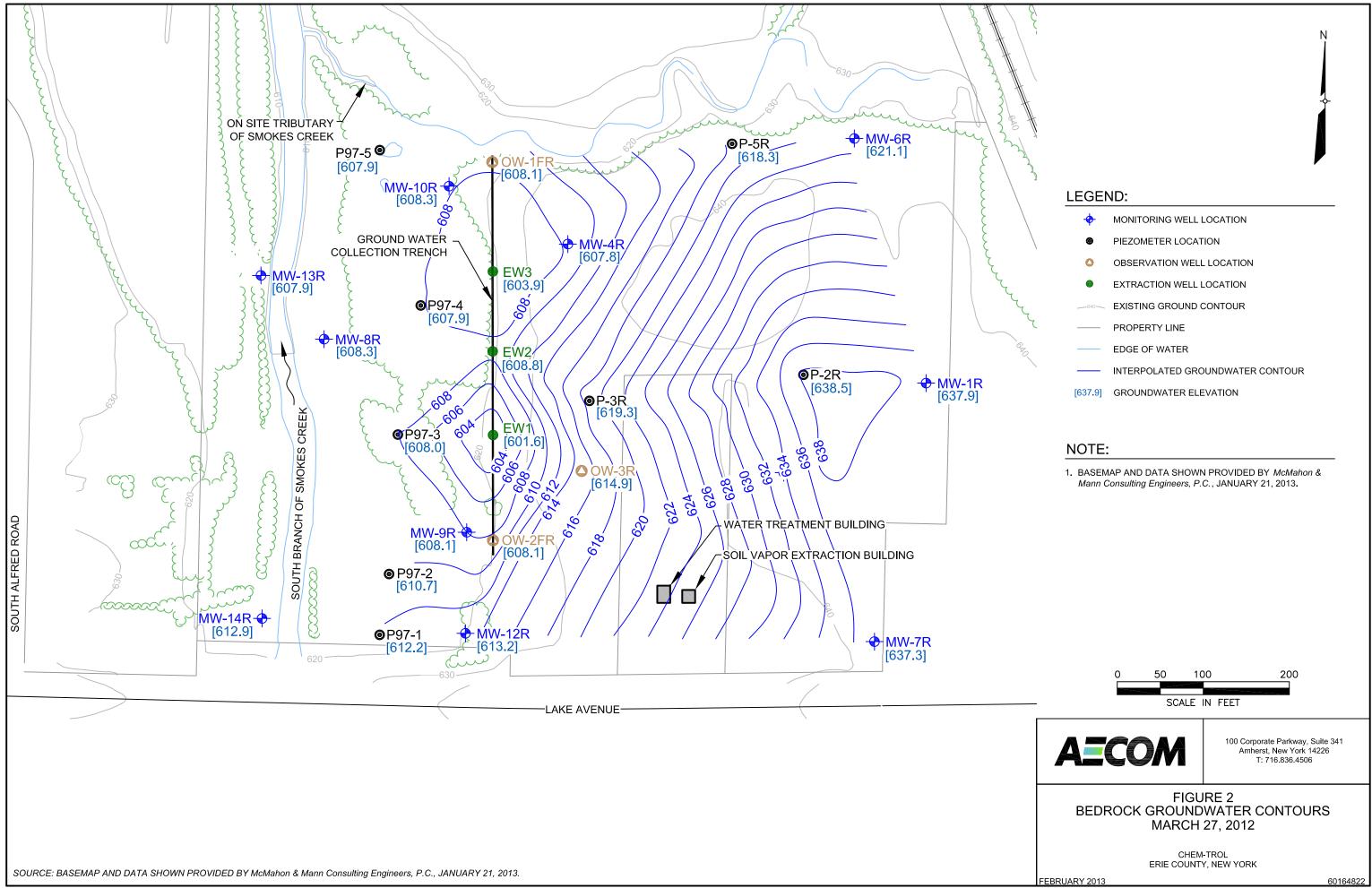
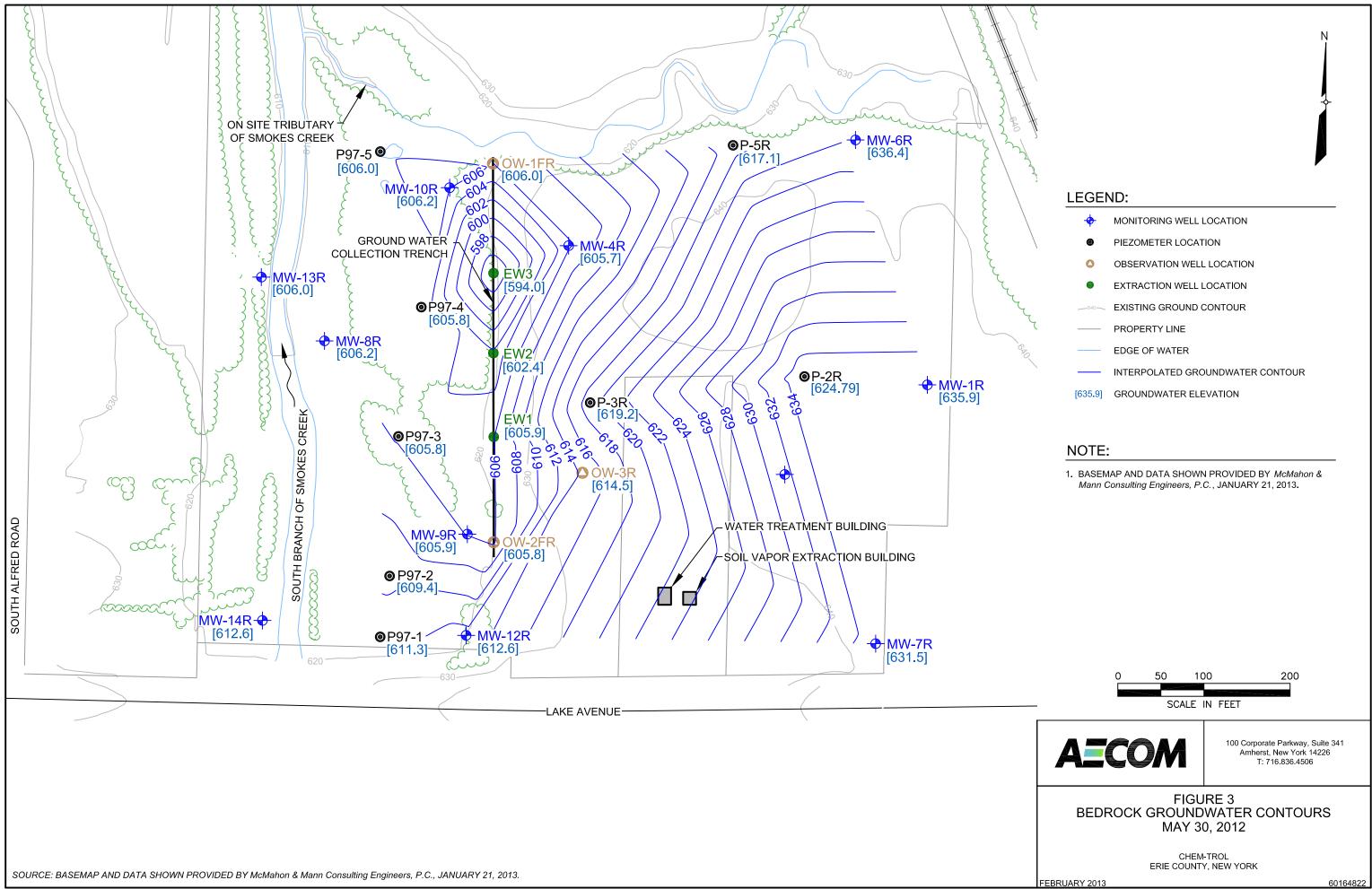
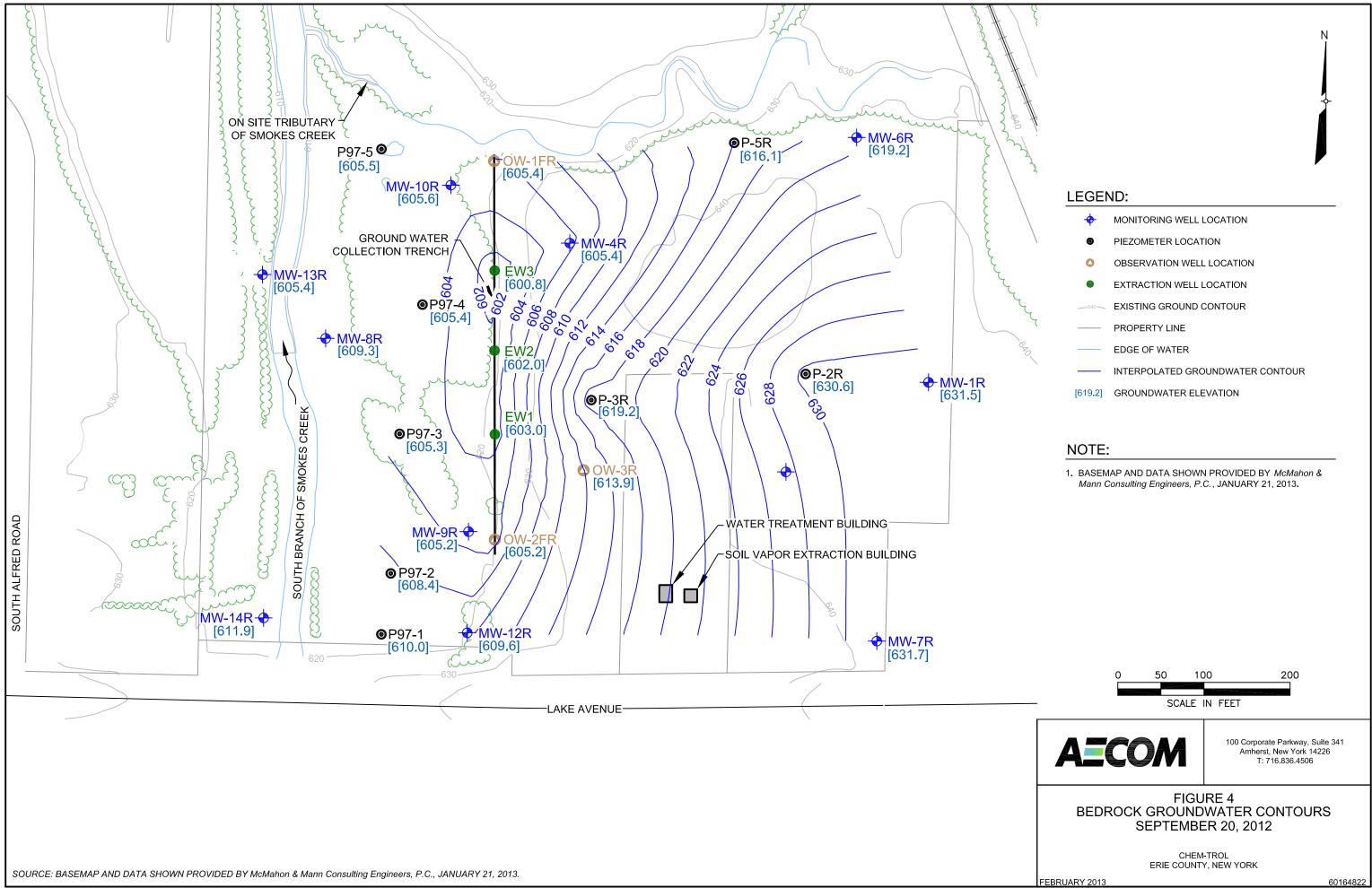

FIGURES

Figure 1: Site Plan

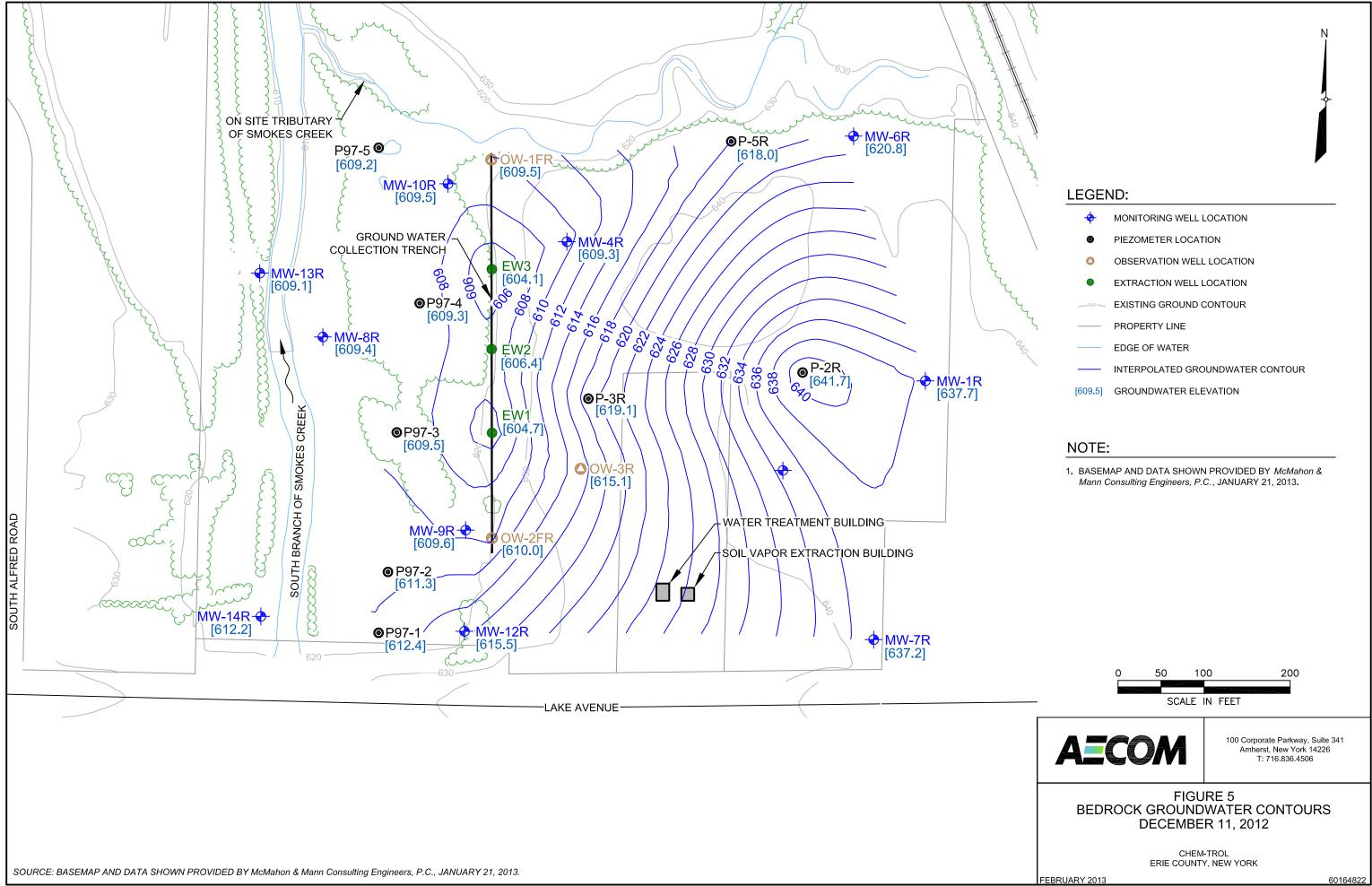
Figure 2: Bedrock Groundwater Contours – March 27, 2012
Figure 3: Bedrock Groundwater Contours – May 30, 2012
Figure 4: Bedrock Groundwater Contours – September 20, 2012
Figure 5: Bedrock Groundwater Contours – December 11, 2012
Figure 6: Influent o-Chlorotoluene Concentration 2002 - 2012



L:\Group\earth\Chem-Trol\60164822_001 Site Plan.dwg, 2/25/2013 11:46:57 AM, Splawnm


+	MONITORING WELL LOCATION

L:\Group\earth\Chem-Trol\60164822_002 Bedrock Contours_March 27 2012.dwg, 2/25/2013 3:14:06 PM, Splawnm


MONITORING WELL LOCATION	٧
--------------------------	---

L:\Group\earth\Chem-Trol\60164822_003 Bedrock Contours_May 30 2012.dwg, 2/25/2013 3:15:24 PM, Splawnm

+	MONITORING WELL LOCATION

L:\Group\earth\Chem-Trol\60164822_004 Bedrock Contours_Sept 20 2012.dwg, 2/25/2013 3:15:00 PM, Splawnm

+	MONITORING WELL LOCATION

L:\Group\earth\Chem-Trol\60164822_005 Bedrock Contours_Dec 11 2012.dwg, 2/25/2013 3:15:50 PM, Splawnm

Chem-Trol Groundwater Treatment System Influent o-Chlorotoluene Concentration 2002-2012

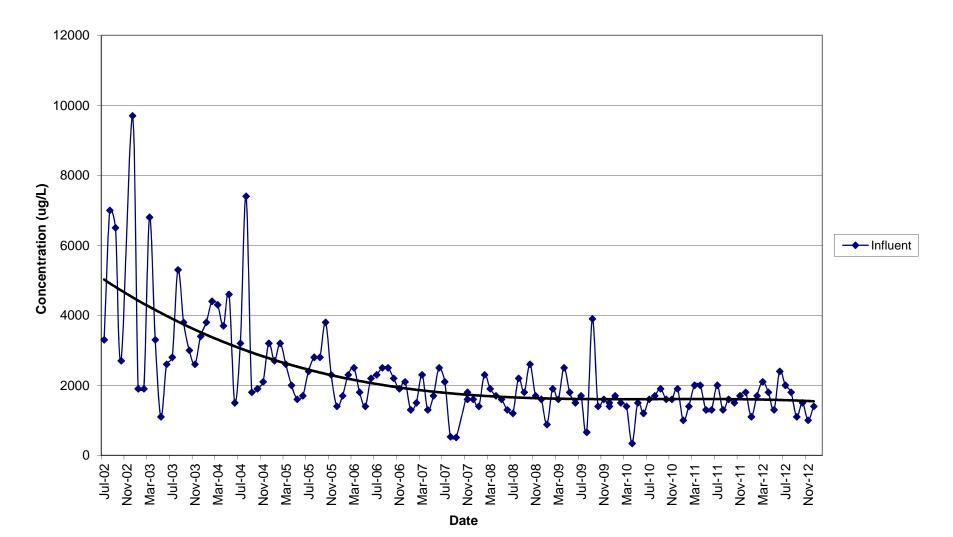


FIGURE 6

ATTACHMENT A

Completed IC/EC Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Т

Site	e No.	915015	Site Details	Box 1	
Site	e Name Cł	nem-Trol			
City Co	e Address: //Town: Ha unty: Erie e Acreage:	-	Zip Code: 14107		
Re	porting Peri	od: February 15	, 2012 to February 15, 2013		
				YES	NO
1.	Is the infor	mation above co	rrect?	X	
	If NO, inclu	ude handwritten a	above or on a separate sheet.		
2.			property been sold, subdivided, merged, or uno this Reporting Period?	dergone a □	X
3.		been any change CRR 375-1.11(d))	e of use at the site during this Reporting Period)?	t	X
4.			d/or local permits (e.g., building, discharge) be this Reporting Period?	een issued □	X
			uestions 2 thru 4, include documentation of been previously submitted with this certification of the service o		
5.	Is the site	currently undergo	ping development?		X
				Box 2	
				YES	NO
6.	Is the curre Closed La		istent with the use(s) listed below?	X	
7.	Are all ICs	/ECs in place an	d functioning as designed?		
	IF T		EITHER QUESTION 6 OR 7 IS NO, sign and da LETE THE REST OF THIS FORM. Otherwise c		
A C	Corrective N	leasures Work P	lan must be submitted along with this form to	address these iss	ues.
Sig	nature of Ov	vner, Remedial Pa	arty or Designated Representative	Date	

SITE NO. 915015 Box 3				
	Description of Inst	tutional Controls		
Parcel		<u>Owner</u>	Institutional Control	
151.02-1-	14.1	Waste Management	Ground Water Use Restriction Landuse Restriction Monitoring Plan O&M Plan	
	Description of Eng	ineering Controls	Box 4	
Parcel		Engineering Control	I	
151.02-1-	14.1	Cover System Fencing/Access Con Groundwater Conta Groundwater Treatm Leachate Collection	inment nent System	
Co	ntrol Description fo	r Site No. 915015		
Remed		d in two phases consisting of "Sou is are summarized as follows:	urce Control Elements" and "Groundwater Control	
Sourc	e Control Elements:			
- Tribi - Site	Spot" Soils Remova utary Sediment Exca Soils Cover; and Vapor Extraction (pa			
Grour	ndwater Control Elem	ents:		
	undwater Extraction, undwater Quality Mor	On-Site Treatment, and Discharg hitoring.	e Compliance Monitoring; and	
		nitoring, groundwater elevations a emains protective of public health	and groundwater quality monitoring are completed and the environment.	
25, 200 the Pro cappin for indu ground industr	04, include but are no operty by maintaining g the Property with a ustrial or commercial lwater underlying the ial purposes, except r contamination level	at limited to the following: the own its grass cover, or after obtaining nother material; the property is pr use, excluding use for day care, of property is prohibited without treat that the groundwater may be reas	Restrictions, recorded with Erie County on March er of the Property shall maintain the cap covering written approval from the Relevant Agency, by ohibited from being used for purposes other than child care and medical care; the use of atment to render it safe for drinking water or sonably used as necessary to conduct tests to trictive covenants are binding and shall run with	

	Box 5
	Periodic Review Report (PRR) Certification Statements
۱.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
1	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
-	Signature of Owner, Remedial Party or Designated Representative Date Date

	IC CERTIFICATIONS SITE NO. 915015			
		Box 6		
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.				
I Mark R. Snyder	_at425 Perinton Parkway, F	· · · · · · · · · · · · · · · · · · ·		
print name	print business address			
am certifying as	Owner	_(Owner or Remedial Party)		
for the Site named in the Site Details Se	ection of this form.			
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative	March 6, 2013 Date		

-

1

IC/EC CERTIFICATIONS

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Daniel Servitas at 40 British American Blvd, Latham, NY print name print business address 12110 am certifying as a Professional Engineer for the Owner Owner or Remedial Party) NEW 3/7/2013 07906 Stamp Date Signature of Professional Engineer, for the Owner or (Required for PE) Remedial Party, Rendering Certification

ATTACHMENT B

2012 Annual Groundwater Sample Laboratory Report

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-26808-1

Client Project/Site: ChemTrol Site - Groundwater Sampling Event: ChemTrol Annual Groundwater

For:

Waste Management 425 Perinton Parkway Fairport, New York 14450

Attn: Mr. Mark Snyder

Eberry

Authorized for release by: 10/26/2012 3:07:08 PM Eve Berry Project Administrator eve.berry@testamericainc.com

Designee for

Ryan VanDette Project Manager I ryan.vandette@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	16
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Field Data Sheets	25

Client: Waste Management Project/Site: ChemTrol Site - Groundwater

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
F	MS or MSD exceeds the control limits

Glossary

Quaimer	Quanner Description	
F	MS or MSD exceeds the control limits	5
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
₿ Ø	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	8
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	9
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 480-26808-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-26808-1

Receipt

The samples were received on 10/17/2012 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.2° C.

GC/MS VOA

Method(s) 8260B: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MW-3S (480-26808-4), MW-9R (480-26808-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: (480-26808-2 MS), (480-26808-2 MSD), DUP (480-26808-1), MW-13R (480-26808-2), MW-3S (480-26808-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The matrix spike (MS) recoveries for batch 86911 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: DUP (480-26808-1), MW-9R (480-26808-7). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Detection Summary

Client: Waste Management Project/Site: ChemTrol Site - Groundwater

TestAmerica Job ID: 480-26808-1

Client Sample ID: DUP						Lab	Sample I	D: 480-26808-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
o-Chlorotoluene - DL	410		25		ug/L	5	8260B	Total/NA
Client Sample ID: MW-13R						Lat	o Sample II	D: 480-26808-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
o-Chlorotoluene	410		25		ug/L	5	8260B	Total/NA
Client Sample ID: MW-15R						Lat	Sample I	D: 480-26808-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Benzene	6.0		5.0		ug/L	1	8260B	Total/NA
Cyclohexane	70		5.0		ug/L	1	8260B	Total/NA
Methylcyclohexane	44		5.0		ug/L	1	8260B	Total/NA
Xylenes, Total	27		15		ug/L	1	8260B	Total/NA
Client Sample ID: MW-3S						Lat	Sample I	D: 480-26808-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
o-Chlorotoluene - DL	91000		10000		ug/L	2000	8260B	Total/NA
Client Sample ID: MW-7R						Lat	Sample I	D: 480-26808-
No Detections								
Client Sample ID: MW-8R						Lat	Sample I	D: 480-26808-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
o-Chlorotoluene	34		5.0		ug/L	1	8260B	Total/NA
Client Sample ID: MW-9R						Lat	o Sample II	D: 480-26808-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Analyte	410		25		ug/L	5	8260B	Total/NA
1,1,1-Trichloroethane						5	8260B	Total/NA
	150		25		ug/L	0	02000	TOtal/NA
1,1,1-Trichloroethane			25 25		ug/L ug/L	5	8260B	Total/NA

Client Sample ID: TB

Lab Sample ID: 480-26808-8

No Detections

Lab Sample ID: 480-26808-1

Matrix: Water

2 3 4 5 6 7 8

8 9 10

Client Sample ID: DUP

Date Collected: 10/17/12 13:15 Date Received: 10/17/12 15:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,1,2-Trichloroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,1-Dichloroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/22/12 12:51	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/22/12 12:51	1
1,2-Dibromoethane	ND	5.0	ug/L		10/22/12 12:51	1
1,2-Dichlorobenzene	ND	5.0	ug/L		10/22/12 12:51	1
1,2-Dichloroethane	ND	5.0	ug/L		10/22/12 12:51	1
1,2-Dichloropropane	ND	5.0	ug/L		10/22/12 12:51	1
1,3-Dichlorobenzene	ND	5.0	ug/L		10/22/12 12:51	1
1,4-Dichlorobenzene	ND	5.0	ug/L		10/22/12 12:51	1
2-Butanone (MEK)	ND	25	ug/L		10/22/12 12:51	1
2-Hexanone	ND	25	ug/L		10/22/12 12:51	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/22/12 12:51	1
Acetone	ND	25	ug/L		10/22/12 12:51	1
Benzene	ND	5.0	ug/L		10/22/12 12:51	1
Bromoform	ND	5.0	ug/L		10/22/12 12:51	1
Bromomethane	ND	5.0	ug/L		10/22/12 12:51	1
Carbon disulfide	ND	5.0				1
			ug/L		10/22/12 12:51	
Carbon tetrachloride	ND	5.0	ug/L		10/22/12 12:51	1
Chlorobenzene	ND	5.0	ug/L		10/22/12 12:51	1
Chlorodibromomethane	ND	5.0	ug/L		10/22/12 12:51	1
Chloroethane	ND	5.0	ug/L		10/22/12 12:51	1
Chloroform	ND	5.0	ug/L		10/22/12 12:51	1
Chloromethane	ND	5.0	ug/L		10/22/12 12:51	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/22/12 12:51	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/22/12 12:51	1
Cyclohexane	ND	5.0	ug/L		10/22/12 12:51	1
Bromodichloromethane	ND	5.0	ug/L		10/22/12 12:51	1
Dichlorofluoromethane	ND	5.0	ug/L		10/22/12 12:51	1
Ethylbenzene	ND	5.0	ug/L		10/22/12 12:51	1
Isopropylbenzene	ND	5.0	ug/L		10/22/12 12:51	1
Methyl acetate	ND	5.0	ug/L		10/22/12 12:51	1
Methyl tert-butyl ether	ND	5.0	ug/L		10/22/12 12:51	1
Methylcyclohexane	ND	5.0	ug/L		10/22/12 12:51	1
Methylene Chloride	ND	5.0	ug/L		10/22/12 12:51	1
Styrene	ND	5.0	ug/L		10/22/12 12:51	1
Tetrachloroethene	ND	5.0	ug/L		10/22/12 12:51	1
Toluene	ND	5.0	ug/L		10/22/12 12:51	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		10/22/12 12:51	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		10/22/12 12:51	1
Trichloroethene	ND	5.0	ug/L		10/22/12 12:51	1
Trichlorofluoromethane	ND	5.0	ug/L		10/22/12 12:51	1
Vinyl chloride	ND	5.0	ug/L		10/22/12 12:51	1
Xylenes, Total	ND	15	ug/L		10/22/12 12:51	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	66 - 137			10/22/12 12:51	1
Toluene-d8 (Surr)	88	71 - 126			10/22/12 12:51	1

Limits

Limits

66 - 137

71 - 126

73 - 120

73 - 120

RL

25

MDL Unit

ug/L

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

%Recovery Qualifier

Result Qualifier

Qualifier

83

410

101

89

84

%Recovery

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Surrogate

Analyte

Surrogate

o-Chlorotoluene

Toluene-d8 (Surr)

Lab Sample ID: 480-26808-1

Analyzed

10/22/12 12:51

Prepared

Prepared

Prepared

D

Analyzed Dil Fac 10/23/12 00:55 5 Analyzed Dil Fac 10/23/12 00:55 5 10/23/12 00:55 5

Matrix: Water

Dil Fac

1

Lab Sample ID: 480-26808-2

10/23/12 00:55

Matrix: Water

5

Client Sample ID: MW-13R Date Collected: 10/17/12 13:15

Date Received: 10/17/12 15:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	25		ug/L			10/23/12 01:20	5
1,1,2,2-Tetrachloroethane	ND	25		ug/L			10/23/12 01:20	5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	25		ug/L			10/23/12 01:20	5
1,1,2-Trichloroethane	ND	25		ug/L			10/23/12 01:20	Ę
1,1-Dichloroethane	ND	25		ug/L			10/23/12 01:20	5
1,2,4-Trichlorobenzene	ND	25		ug/L			10/23/12 01:20	Ę
1,2-Dibromo-3-Chloropropane	ND	25		ug/L			10/23/12 01:20	5
1,2-Dibromoethane	ND	25		ug/L			10/23/12 01:20	5
1,2-Dichlorobenzene	ND	25		ug/L			10/23/12 01:20	5
1,2-Dichloroethane	ND	25		ug/L			10/23/12 01:20	Ę
,2-Dichloropropane	ND	25		ug/L			10/23/12 01:20	5
,3-Dichlorobenzene	ND	25		ug/L			10/23/12 01:20	5
,4-Dichlorobenzene	ND	25		ug/L			10/23/12 01:20	5
-Butanone (MEK)	ND	130		ug/L			10/23/12 01:20	5
-Chlorotoluene	410	25		ug/L			10/23/12 01:20	5
-Hexanone	ND	130		ug/L			10/23/12 01:20	5
-Methyl-2-pentanone (MIBK)	ND	130		ug/L			10/23/12 01:20	5
cetone	ND	130		ug/L			10/23/12 01:20	5
Benzene	ND	25		ug/L			10/23/12 01:20	5
Bromoform	ND	25		ug/L			10/23/12 01:20	5
Bromomethane	ND	25		ug/L			10/23/12 01:20	5
Carbon disulfide	ND	25		ug/L			10/23/12 01:20	Ę
Carbon tetrachloride	ND	25		ug/L			10/23/12 01:20	5
Chlorobenzene	ND	25		ug/L			10/23/12 01:20	5
Chlorodibromomethane	ND	25		ug/L			10/23/12 01:20	5
Chloroethane	ND	25		ug/L			10/23/12 01:20	5
Chloroform	ND	25		ug/L			10/23/12 01:20	5
Chloromethane	ND	25		ug/L			10/23/12 01:20	5
is-1,2-Dichloroethene	ND	25		ug/L			10/23/12 01:20	5
is-1,3-Dichloropropene	ND	25		ug/L			10/23/12 01:20	5
Cyclohexane	ND	25		ug/L			10/23/12 01:20	Ę
Bromodichloromethane	ND	25		ug/L			10/23/12 01:20	5
Dichlorofluoromethane	ND	25		ug/L			10/23/12 01:20	5
Ethylbenzene	ND	25		ug/L			10/23/12 01:20	

RL

25

25

25

25

25

25

25

25

25

25

25

25

25

75

Limits

66 - 137

71 - 126

73 - 120

MDL Unit

ug/L

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

99

86

81

Qualifier

%Recovery

Client Sample ID: MW-13R Date Collected: 10/17/12 13:15

Date Received: 10/17/12 15:30

Analyte

Styrene

Toluene

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Methyl acetate

Lab Sample ID: 480-26808-2 Matrix: Water

Analyzed

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

10/23/12 01:20

Dil Fac

5

5

5

5 5

5

5

5

5

5

	10/23/12 01:20	5
	10/23/12 01:20	5
	10/23/12 01:20	5
	10/23/12 01:20	5
Prepared	Analyzed	Dil Fac
	10/23/12 01:20	5
	10/23/12 01.20	5
	10/23/12 01.20	0

Client Sample ID: MW-15R

Date Collected: 10/17/12 13:25

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Date Received: 10/17/12 15:30

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,1,2,2-Tetrachloroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,1,2-Trichloroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,1-Dichloroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,2,4-Trichlorobenzene	ND	5.0		ug/L			10/22/12 13:42	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			10/22/12 13:42	1
1,2-Dibromoethane	ND	5.0		ug/L			10/22/12 13:42	1
1,2-Dichlorobenzene	ND	5.0		ug/L			10/22/12 13:42	1
1,2-Dichloroethane	ND	5.0		ug/L			10/22/12 13:42	1
1,2-Dichloropropane	ND	5.0		ug/L			10/22/12 13:42	1
1,3-Dichlorobenzene	ND	5.0		ug/L			10/22/12 13:42	1
1,4-Dichlorobenzene	ND	5.0		ug/L			10/22/12 13:42	1
2-Butanone (MEK)	ND	25		ug/L			10/22/12 13:42	1
o-Chlorotoluene	ND	5.0		ug/L			10/22/12 13:42	1
2-Hexanone	ND	25		ug/L			10/22/12 13:42	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/L			10/22/12 13:42	1
Acetone	ND	25		ug/L			10/22/12 13:42	1
Benzene	6.0	5.0		ug/L			10/22/12 13:42	1
Bromoform	ND	5.0		ug/L			10/22/12 13:42	1
Bromomethane	ND	5.0		ug/L			10/22/12 13:42	1
Carbon disulfide	ND	5.0		ug/L			10/22/12 13:42	1
Carbon tetrachloride	ND	5.0		ug/L			10/22/12 13:42	1
Chlorobenzene	ND	5.0		ug/L			10/22/12 13:42	1
Chlorodibromomethane	ND	5.0		ug/L			10/22/12 13:42	1

Lab Sample ID: 480-26808-3 Matrix: Water

TestAmerica Buffalo 10/26/2012 Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: MW-15R Date Collected: 10/17/12 13:25

Date Received: 10/17/12 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		5.0		ug/L			10/22/12 13:42	1
Chloroform	ND		5.0		ug/L			10/22/12 13:42	1
Chloromethane	ND		5.0		ug/L			10/22/12 13:42	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			10/22/12 13:42	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			10/22/12 13:42	1
Cyclohexane	70		5.0		ug/L			10/22/12 13:42	1
Bromodichloromethane	ND		5.0		ug/L			10/22/12 13:42	1
Dichlorofluoromethane	ND		5.0		ug/L			10/22/12 13:42	1
Ethylbenzene	ND		5.0		ug/L			10/22/12 13:42	1
Isopropylbenzene	ND		5.0		ug/L			10/22/12 13:42	1
Methyl acetate	ND		5.0		ug/L			10/22/12 13:42	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/22/12 13:42	1
Methylcyclohexane	44		5.0		ug/L			10/22/12 13:42	1
Methylene Chloride	ND		5.0		ug/L			10/22/12 13:42	1
Styrene	ND		5.0		ug/L			10/22/12 13:42	1
Tetrachloroethene	ND		5.0		ug/L			10/22/12 13:42	1
Toluene	ND		5.0		ug/L			10/22/12 13:42	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/22/12 13:42	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/22/12 13:42	1
Trichloroethene	ND		5.0		ug/L			10/22/12 13:42	1
Trichlorofluoromethane	ND		5.0		ug/L			10/22/12 13:42	1
Vinyl chloride	ND		5.0		ug/L			10/22/12 13:42	1
Xylenes, Total	27		15		ug/L			10/22/12 13:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		66 - 137			-		10/22/12 13:42	1
Toluene-d8 (Surr)	88		71 - 126					10/22/12 13:42	1
4-Bromofluorobenzene (Surr)	84		73 - 120					10/22/12 13:42	1

Client Sample ID: MW-3S

Date Collected: 10/17/12 13:35

Date Received: 10/17/12 15:30

Method: 8260B - Volatile Organic (Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4000	ug/L			10/22/12 14:07	800
1,1,2,2-Tetrachloroethane	ND	4000	ug/L			10/22/12 14:07	800
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4000	ug/L			10/22/12 14:07	800
1,1,2-Trichloroethane	ND	4000	ug/L			10/22/12 14:07	800
1,1-Dichloroethane	ND	4000	ug/L			10/22/12 14:07	800
1,2,4-Trichlorobenzene	ND	4000	ug/L			10/22/12 14:07	800
1,2-Dibromo-3-Chloropropane	ND	4000	ug/L			10/22/12 14:07	800
1,2-Dibromoethane	ND	4000	ug/L			10/22/12 14:07	800
1,2-Dichlorobenzene	ND	4000	ug/L			10/22/12 14:07	800
1,2-Dichloroethane	ND	4000	ug/L			10/22/12 14:07	800
1,2-Dichloropropane	ND	4000	ug/L			10/22/12 14:07	800
1,3-Dichlorobenzene	ND	4000	ug/L			10/22/12 14:07	800
1,4-Dichlorobenzene	ND	4000	ug/L			10/22/12 14:07	800
2-Butanone (MEK)	ND	20000	ug/L			10/22/12 14:07	800
2-Hexanone	ND	20000	ug/L			10/22/12 14:07	800
4-Methyl-2-pentanone (MIBK)	ND	20000	ug/L			10/22/12 14:07	800

Lab Sample ID: 480-26808-3 Matrix: Water

Lab Sample ID: 480-26808-4

Matrix: Water

Client Sample ID: MW-3S Date Collected: 10/17/12 13:35 Date Received: 10/17/12 15:30

TestAmerica Job ID: 480-26808-1

Lab Sample ID: 480-26808-4 Matrix: Water

Date Received. 10/1//12 15.	30	
Method: 8260B - Volatile O	rganic Compounds (GC/MS) (Contin	ued)
Analyte	Result Qualifier	RL

Analyte	Result Qualifie	er RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	ND	20000	ug/L		10/22/12 14:07	800
Benzene	ND	4000	ug/L		10/22/12 14:07	800
Bromoform	ND	4000	ug/L		10/22/12 14:07	800
Bromomethane	ND	4000	ug/L		10/22/12 14:07	800
Carbon disulfide	ND	4000	ug/L		10/22/12 14:07	800
Carbon tetrachloride	ND	4000	ug/L		10/22/12 14:07	800
Chlorobenzene	ND	4000	ug/L		10/22/12 14:07	800
Chlorodibromomethane	ND	4000	ug/L		10/22/12 14:07	800
Chloroethane	ND	4000	ug/L		10/22/12 14:07	800
Chloroform	ND	4000	ug/L		10/22/12 14:07	800
Chloromethane	ND	4000	ug/L		10/22/12 14:07	800
cis-1,2-Dichloroethene	ND	4000	ug/L		10/22/12 14:07	800
cis-1,3-Dichloropropene	ND	4000	ug/L		10/22/12 14:07	800
Cyclohexane	ND	4000	ug/L		10/22/12 14:07	800
Bromodichloromethane	ND	4000	ug/L		10/22/12 14:07	800
Dichlorofluoromethane	ND	4000	ug/L		10/22/12 14:07	800
Ethylbenzene	ND	4000	ug/L		10/22/12 14:07	800
Isopropylbenzene	ND	4000	ug/L		10/22/12 14:07	800
Methyl acetate	ND	4000	ug/L		10/22/12 14:07	800
Methyl tert-butyl ether	ND	4000	ug/L		10/22/12 14:07	800
Methylcyclohexane	ND	4000	ug/L		10/22/12 14:07	800
Methylene Chloride	ND	4000	ug/L		10/22/12 14:07	800
Styrene	ND	4000	ug/L		10/22/12 14:07	800
Tetrachloroethene	ND	4000	ug/L		10/22/12 14:07	800
Toluene	ND	4000	ug/L		10/22/12 14:07	800
trans-1,2-Dichloroethene	ND	4000	ug/L		10/22/12 14:07	800
trans-1,3-Dichloropropene	ND	4000	ug/L		10/22/12 14:07	800
Trichloroethene	ND	4000	ug/L		10/22/12 14:07	800
Trichlorofluoromethane	ND	4000	ug/L		10/22/12 14:07	800
Vinyl chloride	ND	4000	ug/L		10/22/12 14:07	800
Xylenes, Total	ND	12000	ug/L		10/22/12 14:07	800
Surrogate	%Recovery Qualifie	er Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	66 - 137			10/22/12 14:07	800
Toluene-d8 (Surr)	86	71 - 126			10/22/12 14:07	800
4-Bromofluorobenzene (Surr)	81	73 - 120			10/22/12 14:07	800

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Chlorotoluene	91000		10000		ug/L			10/23/12 01:45	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137			-		10/23/12 01:45	2000
Toluene-d8 (Surr)	87		71 _ 126					10/23/12 01:45	2000
4-Bromofluorobenzene (Surr)	84		73 - 120					10/23/12 01:45	2000

Client Sample ID: MW-7R Date Collected: 10/17/12 14:00 Date Received: 10/17/12 15:30

Lab Sample ID: 480-26808-5 Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	ug/L			10/22/12 14:32	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			10/22/12 14:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L			10/22/12 14:32	
1,1,2-Trichloroethane	ND	5.0	ug/L			10/22/12 14:32	
1,1-Dichloroethane	ND	5.0	ug/L			10/22/12 14:32	
1,2,4-Trichlorobenzene	ND	5.0	ug/L			10/22/12 14:32	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			10/22/12 14:32	
I,2-Dibromoethane	ND	5.0	ug/L			10/22/12 14:32	
I,2-Dichlorobenzene	ND	5.0	ug/L			10/22/12 14:32	
I,2-Dichloroethane	ND	5.0	ug/L			10/22/12 14:32	
1,2-Dichloropropane	ND	5.0	ug/L			10/22/12 14:32	
I.3-Dichlorobenzene	ND	5.0	ug/L			10/22/12 14:32	
.4-Dichlorobenzene	ND	5.0	ug/L			10/22/12 14:32	
2-Butanone (MEK)	ND	25	ug/L			10/22/12 14:32	
p-Chlorotoluene	ND	5.0	ug/L			10/22/12 14:32	
2-Hexanone	ND	25	ug/L			10/22/12 14:32	
-Methyl-2-pentanone (MIBK)	ND	25	ug/L			10/22/12 14:32	
Acetone	ND	25	ug/L			10/22/12 14:32	
Benzene	ND	5.0	ug/L			10/22/12 14:32	
Bromoform	ND	5.0	ug/L			10/22/12 14:32	
Bromomethane	ND	5.0	ug/L			10/22/12 14:32	
Carbon disulfide	ND	5.0	ug/L			10/22/12 14:32	
Carbon tetrachloride	ND	5.0	-			10/22/12 14:32	
Chlorobenzene	ND	5.0	ug/L			10/22/12 14:32	
Chlorodibromomethane	ND	5.0	ug/L			10/22/12 14:32	
Chloroethane	ND	5.0	ug/L			10/22/12 14:32	
Chloroform	ND	5.0	ug/L			10/22/12 14:32	
			ug/L				
Chloromethane	ND	5.0	ug/L			10/22/12 14:32	
is-1,2-Dichloroethene	ND	5.0	ug/L			10/22/12 14:32	
is-1,3-Dichloropropene	ND	5.0	ug/L			10/22/12 14:32	
Cyclohexane	ND	5.0	ug/L			10/22/12 14:32	
Bromodichloromethane	ND	5.0	ug/L			10/22/12 14:32	
Dichlorofluoromethane	ND	5.0	ug/L			10/22/12 14:32	
thylbenzene	ND	5.0	ug/L			10/22/12 14:32	
sopropylbenzene	ND	5.0	ug/L			10/22/12 14:32	
lethyl acetate	ND	5.0	ug/L			10/22/12 14:32	
Nethyl tert-butyl ether	ND	5.0	ug/L			10/22/12 14:32	
lethylcyclohexane	ND	5.0	ug/L			10/22/12 14:32	
lethylene Chloride	ND	5.0	ug/L			10/22/12 14:32	
Styrene	ND	5.0	ug/L			10/22/12 14:32	
etrachloroethene	ND	5.0	ug/L			10/22/12 14:32	
oluene	ND	5.0	ug/L			10/22/12 14:32	
rans-1,2-Dichloroethene	ND	5.0	ug/L			10/22/12 14:32	
ans-1,3-Dichloropropene	ND	5.0	ug/L			10/22/12 14:32	
richloroethene	ND	5.0	ug/L			10/22/12 14:32	
richlorofluoromethane	ND	5.0	ug/L			10/22/12 14:32	
/inyl chloride	ND	5.0	ug/L			10/22/12 14:32	
Kylenes, Total	ND	15	ug/L			10/22/12 14:32	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137	· · · · · · · · · · · · · · · · · · ·	10/22/12 14:32	1

Client Sample ID: MW-7R Date Collected: 10/17/12 14:00

Date Received: 10/17/12 15:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)
--

Surrogate	%Recovery	Qualifier	Limits	Prepareo	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		71 - 126		10/22/12 14:32	1
4-Bromofluorobenzene (Surr)	82		73 - 120		10/22/12 14:32	1

Client Sample ID: MW-8R

Date Collected: 10/17/12 13:05 Date Received: 10/17/12 15:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	ug/L		10/22/12 14:57	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/22/12 14:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/22/12 14:57	
1,1,2-Trichloroethane	ND	5.0	ug/L		10/22/12 14:57	
1,1-Dichloroethane	ND	5.0	ug/L		10/22/12 14:57	
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/22/12 14:57	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/22/12 14:57	
1,2-Dibromoethane	ND	5.0	ug/L		10/22/12 14:57	
1,2-Dichlorobenzene	ND	5.0	ug/L		10/22/12 14:57	
1,2-Dichloroethane	ND	5.0	ug/L		10/22/12 14:57	
1,2-Dichloropropane	ND	5.0	ug/L		10/22/12 14:57	
1,3-Dichlorobenzene	ND	5.0	ug/L		10/22/12 14:57	
1,4-Dichlorobenzene	ND	5.0	ug/L		10/22/12 14:57	
2-Butanone (MEK)	ND	25	ug/L		10/22/12 14:57	
o-Chlorotoluene	34	5.0	ug/L		10/22/12 14:57	
2-Hexanone	ND	25	ug/L		10/22/12 14:57	
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/22/12 14:57	
Acetone	ND	25	ug/L		10/22/12 14:57	
Benzene	ND	5.0	ug/L		10/22/12 14:57	
Bromoform	ND	5.0	ug/L		10/22/12 14:57	
Bromomethane	ND	5.0	ug/L		10/22/12 14:57	
Carbon disulfide	ND	5.0	ug/L		10/22/12 14:57	
Carbon tetrachloride	ND	5.0	ug/L		10/22/12 14:57	
Chlorobenzene	ND	5.0	ug/L		10/22/12 14:57	
Chlorodibromomethane	ND	5.0	ug/L		10/22/12 14:57	
Chloroethane	ND	5.0	ug/L		10/22/12 14:57	
Chloroform	ND	5.0	ug/L		10/22/12 14:57	
Chloromethane	ND	5.0	ug/L		10/22/12 14:57	
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/22/12 14:57	
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/22/12 14:57	
Cyclohexane	ND	5.0	ug/L		10/22/12 14:57	
Bromodichloromethane	ND	5.0	ug/L		10/22/12 14:57	
Dichlorofluoromethane	ND	5.0	ug/L		10/22/12 14:57	
Ethylbenzene	ND	5.0	ug/L		10/22/12 14:57	
Isopropylbenzene	ND	5.0	ug/L		10/22/12 14:57	
Methyl acetate	ND	5.0	ug/L		10/22/12 14:57	
Methyl tert-butyl ether	ND	5.0	ug/L		10/22/12 14:57	
Methylcyclohexane	ND	5.0	ug/L		10/22/12 14:57	
Methylene Chloride	ND	5.0	ug/L		10/22/12 14:57	
Styrene	ND	5.0	ug/L		10/22/12 14:57	
Tetrachloroethene	ND	5.0	ug/L		10/22/12 14:57	
Toluene	ND	5.0	ug/L		10/22/12 14:57	

Matrix: Water

Matrix: Water

Lab Sample ID: 480-26808-5

Lab Sample ID: 480-26808-6

Client Sample ID: MW-8R Date Collected: 10/17/12 13:05

Date Received: 10/17/12 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/22/12 14:57	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/22/12 14:57	1
Trichloroethene	ND		5.0		ug/L			10/22/12 14:57	1
Trichlorofluoromethane	ND		5.0		ug/L			10/22/12 14:57	1
Vinyl chloride	ND		5.0		ug/L			10/22/12 14:57	1
Xylenes, Total	ND		15		ug/L			10/22/12 14:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			66 - 137			-		10/22/12 14:57	1
Toluene-d8 (Surr)	84		71 - 126					10/22/12 14:57	1
4-Bromofluorobenzene (Surr)	80		73 - 120					10/22/12 14:57	1

Client Sample ID: MW-9R

Date Collected: 10/17/12 13:45

Date Received: 10/17/12 15:30

Method: 8260B - Volatile Organi Analyte		(GC/MS) Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane			25			Flepaleu	- <u>10/25/12 02:21</u>	5
1,1,2,2-Tetrachloroethane	410 ND		25	ug/L			10/25/12 02:21	5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25	ug/L			10/25/12 02:21	5
1,1,2-Trichloroethane	ND		25	ug/L			10/25/12 02:21	5
1,1-Dichloroethane	150		25	ug/L			10/25/12 02:21	5
1,2,4-Trichlorobenzene	ND		25 25	ug/L			10/25/12 02:21	5
1,2-Dibromo-3-Chloropropane	ND		25				10/25/12 02:21	5
	ND		25	ug/L			10/25/12 02:21	5
1,2-Dibromoethane 1,2-Dichlorobenzene	ND		25 25	ug/L ug/L			10/25/12 02:21	5
1,2-Dichloroethane	ND		25				10/25/12 02:21	5
	ND		25 25	ug/L			10/25/12 02:21	5
1,2-Dichloropropane 1,3-Dichlorobenzene	ND		25 25	ug/L ug/L			10/25/12 02:21	5
	ND		25	· · · · · · · · · · · · · · · · · · ·			10/25/12 02:21	5
1,4-Dichlorobenzene 2-Butanone (MEK)	ND ND		25 130	ug/L			10/25/12 02:21	5
			25	ug/L			10/25/12 02:21	5
o-Chlorotoluene	380			ug/L				5
2-Hexanone	ND ND		130 130	ug/L			10/25/12 02:21 10/25/12 02:21	5
4-Methyl-2-pentanone (MIBK)				ug/L				
Acetone	ND ND		130	ug/L			10/25/12 02:21 10/25/12 02:21	5
Benzene			25	ug/L				5
Bromoform	ND		25	ug/L			10/25/12 02:21	5
Bromomethane	ND		25	ug/L			10/25/12 02:21	5
Carbon disulfide	ND		25	ug/L			10/25/12 02:21	5
Carbon tetrachloride	ND		25	ug/L			10/25/12 02:21	5
Chlorobenzene	ND		25	ug/L			10/25/12 02:21	5
Chlorodibromomethane	ND		25	ug/L			10/25/12 02:21	5
Chloroethane	29		25	ug/L			10/25/12 02:21	5
Chloroform	ND		25	ug/L			10/25/12 02:21	5
Chloromethane	ND		25	ug/L			10/25/12 02:21	5
cis-1,2-Dichloroethene	ND		25	ug/L			10/25/12 02:21	5
cis-1,3-Dichloropropene	ND		25	ug/L			10/25/12 02:21	5
Cyclohexane	ND		25	ug/L			10/25/12 02:21	5
Bromodichloromethane	ND		25	ug/L			10/25/12 02:21	5
Dichlorofluoromethane	ND		25	ug/L			10/25/12 02:21	5

Lab Sample ID: 480-26808-6 Matrix: Water

5 6

Lab Sample ID: 480-26808-7

Matrix: Water

Client Sample ID: MW-9R Date Collected: 10/17/12 13:45

Lab Sample ID: 480-26808-7 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		25		ug/L			10/25/12 02:21	5
Isopropylbenzene	ND		25		ug/L			10/25/12 02:21	5
Methyl acetate	ND		25		ug/L			10/25/12 02:21	5
Methyl tert-butyl ether	ND		25		ug/L			10/25/12 02:21	5
Methylcyclohexane	ND		25		ug/L			10/25/12 02:21	5
Methylene Chloride	ND		25		ug/L			10/25/12 02:21	5
Styrene	ND		25		ug/L			10/25/12 02:21	5
Tetrachloroethene	ND		25		ug/L			10/25/12 02:21	5
Toluene	ND		25		ug/L			10/25/12 02:21	5
trans-1,2-Dichloroethene	ND		25		ug/L			10/25/12 02:21	5
trans-1,3-Dichloropropene	ND		25		ug/L			10/25/12 02:21	5
Trichloroethene	ND		25		ug/L			10/25/12 02:21	5
Trichlorofluoromethane	ND		25		ug/L			10/25/12 02:21	5
Vinyl chloride	ND		25		ug/L			10/25/12 02:21	5
Xylenes, Total	ND		75		ug/L			10/25/12 02:21	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		66 - 137			-		10/25/12 02:21	5
Toluene-d8 (Surr)	96		71 - 126					10/25/12 02:21	5
4-Bromofluorobenzene (Surr)	85		73 - 120					10/25/12 02:21	5

Client Sample ID: TB

Date Collected: 10/17/12 08:00

Date Received: 10/17/12 15:30

Method: 8260B - Volatile Organic	Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,1,2-Trichloroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,1-Dichloroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/22/12 15:47	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/22/12 15:47	1
1,2-Dibromoethane	ND	5.0	ug/L		10/22/12 15:47	1
1,2-Dichlorobenzene	ND	5.0	ug/L		10/22/12 15:47	1
1,2-Dichloroethane	ND	5.0	ug/L		10/22/12 15:47	1
1,2-Dichloropropane	ND	5.0	ug/L		10/22/12 15:47	1
1,3-Dichlorobenzene	ND	5.0	ug/L		10/22/12 15:47	1
1,4-Dichlorobenzene	ND	5.0	ug/L		10/22/12 15:47	1
2-Butanone (MEK)	ND	25	ug/L		10/22/12 15:47	1
o-Chlorotoluene	ND	5.0	ug/L		10/22/12 15:47	1
2-Hexanone	ND	25	ug/L		10/22/12 15:47	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/22/12 15:47	1
Acetone	ND	25	ug/L		10/22/12 15:47	1
Benzene	ND	5.0	ug/L		10/22/12 15:47	1
Bromoform	ND	5.0	ug/L		10/22/12 15:47	1
Bromomethane	ND	5.0	ug/L		10/22/12 15:47	1
Carbon disulfide	ND	5.0	ug/L		10/22/12 15:47	1
Carbon tetrachloride	ND	5.0	ug/L		10/22/12 15:47	1
Chlorobenzene	ND	5.0	ug/L		10/22/12 15:47	1

Lab Sample ID: 480-26808-8 Matrix: Water

Matrix: Water

Lab Sample ID: 480-26808-8

Date Collected: 10/17/12 08:00 Date Received: 10/17/12 15:30

Client Sample ID: TB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorodibromomethane	ND		5.0		ug/L			10/22/12 15:47	1
Chloroethane	ND		5.0		ug/L			10/22/12 15:47	1
Chloroform	ND		5.0		ug/L			10/22/12 15:47	1
Chloromethane	ND		5.0		ug/L			10/22/12 15:47	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			10/22/12 15:47	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			10/22/12 15:47	1
Cyclohexane	ND		5.0		ug/L			10/22/12 15:47	1
Bromodichloromethane	ND		5.0		ug/L			10/22/12 15:47	1
Dichlorofluoromethane	ND		5.0		ug/L			10/22/12 15:47	1
Ethylbenzene	ND		5.0		ug/L			10/22/12 15:47	1
Isopropylbenzene	ND		5.0		ug/L			10/22/12 15:47	1
Methyl acetate	ND		5.0		ug/L			10/22/12 15:47	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/22/12 15:47	1
Methylcyclohexane	ND		5.0		ug/L			10/22/12 15:47	1
Methylene Chloride	ND		5.0		ug/L			10/22/12 15:47	1
Styrene	ND		5.0		ug/L			10/22/12 15:47	1
Tetrachloroethene	ND		5.0		ug/L			10/22/12 15:47	1
Toluene	ND		5.0		ug/L			10/22/12 15:47	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/22/12 15:47	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/22/12 15:47	1
Trichloroethene	ND		5.0		ug/L			10/22/12 15:47	1
Trichlorofluoromethane	ND		5.0		ug/L			10/22/12 15:47	1
Vinyl chloride	ND		5.0		ug/L			10/22/12 15:47	1
Xylenes, Total	ND		15		ug/L			10/22/12 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		66 - 137			-		10/22/12 15:47	1
Toluene-d8 (Surr)	86		71 - 126					10/22/12 15:47	1
4-Bromofluorobenzene (Surr)	79		73 - 120					10/22/12 15:47	1

1 1 1

Client Sample ID: Method Blank

Prep Type: Total/NA

5

Method: 8260B - Volatile Organic Compounds (GC/MS)
--

Lab Sample ID:	MB 480-86757/5
Matrix: Water	

Analysis	Batch:	86757

	МВ	МВ					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,1,2-Trichloroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,1-Dichloroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,2,4-Trichlorobenzene	ND		5.0	ug/L		10/22/12 11:44	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L		10/22/12 11:44	1
1,2-Dibromoethane	ND		5.0	ug/L		10/22/12 11:44	1
1,2-Dichlorobenzene	ND		5.0	ug/L		10/22/12 11:44	1
1,2-Dichloroethane	ND		5.0	ug/L		10/22/12 11:44	1
1,2-Dichloropropane	ND		5.0	ug/L		10/22/12 11:44	1
1,3-Dichlorobenzene	ND		5.0	ug/L		10/22/12 11:44	1
1,4-Dichlorobenzene	ND		5.0	ug/L		10/22/12 11:44	1
2-Butanone (MEK)	ND		25	ug/L		10/22/12 11:44	1
o-Chlorotoluene	ND		5.0	ug/L		10/22/12 11:44	1
2-Hexanone	ND		25	ug/L		10/22/12 11:44	1
4-Methyl-2-pentanone (MIBK)	ND		25	ug/L		10/22/12 11:44	1
Acetone	ND		25	ug/L		10/22/12 11:44	1
Benzene	ND		5.0	ug/L		10/22/12 11:44	1
Bromoform	ND		5.0	ug/L		10/22/12 11:44	1
Bromomethane	ND		5.0	ug/L		10/22/12 11:44	1
Carbon disulfide	ND		5.0	ug/L		10/22/12 11:44	1
Carbon tetrachloride	ND		5.0	ug/L		10/22/12 11:44	1
Chlorobenzene	ND		5.0	ug/L		10/22/12 11:44	1
Chlorodibromomethane	ND		5.0	ug/L		10/22/12 11:44	1
Chloroethane	ND		5.0	ug/L		10/22/12 11:44	1
Chloroform	ND		5.0	ug/L		10/22/12 11:44	1
Chloromethane	ND		5.0	ug/L		10/22/12 11:44	1
cis-1,2-Dichloroethene	ND		5.0	ug/L		10/22/12 11:44	1
cis-1,3-Dichloropropene	ND		5.0	ug/L		10/22/12 11:44	1
Cyclohexane	ND		5.0	ug/L		10/22/12 11:44	1
Bromodichloromethane	ND		5.0	ug/L		10/22/12 11:44	1
Dichlorofluoromethane	ND		5.0	ug/L		10/22/12 11:44	1
Ethylbenzene	ND		5.0	ug/L		10/22/12 11:44	1
Isopropylbenzene	ND		5.0	ug/L		10/22/12 11:44	1
Methyl acetate	ND		5.0	ug/L		10/22/12 11:44	1
Methyl tert-butyl ether	ND		5.0	ug/L		10/22/12 11:44	1
Methylcyclohexane	ND		5.0	ug/L		10/22/12 11:44	1
Methylene Chloride	ND		5.0	ug/L		10/22/12 11:44	1
Styrene	ND		5.0	ug/L		10/22/12 11:44	1
Tetrachloroethene	ND		5.0	ug/L		10/22/12 11:44	1
Toluene	ND		5.0	ug/L		10/22/12 11:44	1
trans-1,2-Dichloroethene	ND		5.0	ug/L		10/22/12 11:44	1
trans-1,3-Dichloropropene	ND		5.0	ug/L		10/22/12 11:44	1
Trichloroethene	ND		5.0	ug/L		10/22/12 11:44	1
Trichlorofluoromethane	ND		5.0	ug/L		10/22/12 11:44	1
Vinyl chloride	ND		5.0	ug/L		10/22/12 11:44	1
Xylenes, Total	ND		15	ug/L		10/22/12 11:44	1

Client Sample ID: Method Blank

Analyzed

10/22/12 11:44

10/22/12 11:44

10/22/12 11:44

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

2 3 4 5 6 7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-86757/5

Matrix: V	ater	
Analysis	Batch:	86757

	MB	MB	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		66 - 137
Toluene-d8 (Surr)	87		71 - 126
4-Bromofluorobenzene (Surr)	80		73 - 120

Lab Sample ID: LCS 480-86757/4 Matrix: Water

Analysis Batch: 86757

	Spike	LCS	LCS				%Rec.
Ausslude	•			1114	-	0/ D	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	25.0	27.4		ug/L		110	71 ₋ 129
1,2-Dichlorobenzene	25.0	25.0		ug/L		100	80 - 124
1,2-Dichloroethane	25.0	30.4		ug/L		122	75 ₋ 127
Benzene	25.0	27.5		ug/L		110	71 - 124
Chlorobenzene	25.0	26.1		ug/L		104	72 _ 120
cis-1,2-Dichloroethene	25.0	26.0		ug/L		104	74 ₋ 124
Ethylbenzene	25.0	24.5		ug/L		98	77 _ 123
Methyl tert-butyl ether	25.0	24.4		ug/L		97	64 - 127
Tetrachloroethene	25.0	26.5		ug/L		106	74 - 122
Toluene	25.0	25.7		ug/L		103	80 - 122
trans-1,2-Dichloroethene	25.0	27.8		ug/L		111	73 _ 127
Trichloroethene	25.0	28.0		ug/L		112	74 - 123

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		66 - 137
Toluene-d8 (Surr)	85		71 - 126
4-Bromofluorobenzene (Surr)	85		73 - 120

--- ---

Lab Sample ID: MB 480-86911/5 Matrix: Water

Analysis Batch: 86911

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,1,2-Trichloroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,1-Dichloroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			10/23/12 00:13	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			10/23/12 00:13	1
1,2-Dibromoethane	ND		5.0		ug/L			10/23/12 00:13	1
1,2-Dichlorobenzene	ND		5.0		ug/L			10/23/12 00:13	1
1,2-Dichloroethane	ND		5.0		ug/L			10/23/12 00:13	1
1,2-Dichloropropane	ND		5.0		ug/L			10/23/12 00:13	1
1,3-Dichlorobenzene	ND		5.0		ug/L			10/23/12 00:13	1
1,4-Dichlorobenzene	ND		5.0		ug/L			10/23/12 00:13	1
2-Butanone (MEK)	ND		25		ug/L			10/23/12 00:13	1
o-Chlorotoluene	ND		5.0		ug/L			10/23/12 00:13	1
2-Hexanone	ND		25		ug/L			10/23/12 00:13	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			10/23/12 00:13	1

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

Method: 8260B - Vola	atile Organic Compou	unds (GC/MS) (Continued)
----------------------	----------------------	--------------------------

Lab Sample ID: MB 480-86911/5 Matrix: Water

Matri	X. VI	aler	
Analy	/sis	Batch:	86911

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		25		ug/L			10/23/12 00:13	1
Benzene	ND		5.0		ug/L			10/23/12 00:13	1
Bromoform	ND		5.0		ug/L			10/23/12 00:13	1
Bromomethane	ND		5.0		ug/L			10/23/12 00:13	1
Carbon disulfide	ND		5.0		ug/L			10/23/12 00:13	1
Carbon tetrachloride	ND		5.0		ug/L			10/23/12 00:13	1
Chlorobenzene	ND		5.0		ug/L			10/23/12 00:13	1
Chlorodibromomethane	ND		5.0		ug/L			10/23/12 00:13	1
Chloroethane	ND		5.0		ug/L			10/23/12 00:13	1
Chloroform	ND		5.0		ug/L			10/23/12 00:13	1
Chloromethane	ND		5.0		ug/L			10/23/12 00:13	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			10/23/12 00:13	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			10/23/12 00:13	1
Cyclohexane	ND		5.0		ug/L			10/23/12 00:13	1
Bromodichloromethane	ND		5.0		ug/L			10/23/12 00:13	1
Dichlorofluoromethane	ND		5.0		ug/L			10/23/12 00:13	1
Ethylbenzene	ND		5.0		ug/L			10/23/12 00:13	1
Isopropylbenzene	ND		5.0		ug/L			10/23/12 00:13	1
Methyl acetate	ND		5.0		ug/L			10/23/12 00:13	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/23/12 00:13	1
Methylcyclohexane	ND		5.0		ug/L			10/23/12 00:13	1
Methylene Chloride	ND		5.0		ug/L			10/23/12 00:13	1
Styrene	ND		5.0		ug/L			10/23/12 00:13	1
Tetrachloroethene	ND		5.0		ug/L			10/23/12 00:13	1
Toluene	ND		5.0		ug/L			10/23/12 00:13	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/23/12 00:13	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/23/12 00:13	1
Trichloroethene	ND		5.0		ug/L			10/23/12 00:13	1
Trichlorofluoromethane	ND		5.0		ug/L			10/23/12 00:13	1
Vinyl chloride	ND		5.0		ug/L			10/23/12 00:13	1
Xylenes, Total	ND		15		ug/L			10/23/12 00:13	1
		МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		66 - 137			-		10/23/12 00:13	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		66 - 137		10/23/12 00:13	1
Toluene-d8 (Surr)	73		71 - 126		10/23/12 00:13	1
4-Bromofluorobenzene (Surr)	81		73 - 120		10/23/12 00:13	1

Lab Sample ID: LCS 480-86911/4 Matrix: Water

Analysis Batch: 86911

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	25.0	27.2		ug/L		109	71 - 129
1,2-Dichlorobenzene	25.0	24.5		ug/L		98	80 - 124
1,2-Dichloroethane	25.0	28.5		ug/L		114	75 _ 127
Benzene	25.0	27.6		ug/L		110	71 _ 124
Chlorobenzene	25.0	26.5		ug/L		106	72 - 120
cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	74 - 124
Ethylbenzene	25.0	25.1		ug/L		100	77 _ 123

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

2 3 4 5 6 7 8

Client Sample ID: MW-13R

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 480-86911/4

Matrix: Water

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether		24.6		ug/L		98	64 - 127	
Tetrachloroethene	25.0	26.4		ug/L		106	74 ₋ 122	
Toluene	25.0	25.8		ug/L		103	80 ₋ 122	
trans-1,2-Dichloroethene	25.0	27.6		ug/L		110	73 - 127	
Trichloroethene	25.0	26.5		ug/L		106	74 ₋ 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		66 - 137
Toluene-d8 (Surr)	85		71 _ 126
4-Bromofluorobenzene (Surr)	87		73 - 120

Lab Sample ID: 480-26808-2 MS Matrix: Water

Analysis Batch: 86911

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	ND		125	143		ug/L		111	71 - 129
1,2-Dichlorobenzene	ND		125	121		ug/L		97	80 - 124
1,2-Dichloroethane	ND		125	161	F	ug/L		129	75 - 127
Benzene	ND		125	138		ug/L		110	71 - 124
Chlorobenzene	ND		125	131		ug/L		105	72 - 120
cis-1,2-Dichloroethene	ND		125	131		ug/L		105	74 - 124
Ethylbenzene	ND		125	122		ug/L		98	77 - 123
Methyl tert-butyl ether	ND		125	124		ug/L		99	64 - 127
Tetrachloroethene	ND		125	128		ug/L		103	74 - 122
Toluene	ND		125	126		ug/L		101	80 - 122
trans-1,2-Dichloroethene	ND		125	142		ug/L		113	73 - 127
Trichloroethene	ND		125	142		ug/L		113	74 - 123

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		66 - 137
Toluene-d8 (Surr)	84		71 - 126
4-Bromofluorobenzene (Surr)	84		73 - 120

Lab Sample ID: 480-26808-2 MSD Matrix: Water Analysis Batch: 86911

Analysis Baton. soo n	<u> </u>	<u> </u>	• "						a/ B		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	ND		125	146		ug/L		114	71 - 129	2	20
1,2-Dichlorobenzene	ND		125	123		ug/L		98	80 - 124	1	20
1,2-Dichloroethane	ND		125	157		ug/L		126	75 ₋ 127	2	20
Benzene	ND		125	140		ug/L		112	71 - 124	2	13
Chlorobenzene	ND		125	131		ug/L		105	72 _ 120	0	25
cis-1,2-Dichloroethene	ND		125	133		ug/L		106	74 ₋ 124	2	15
Ethylbenzene	ND		125	123		ug/L		99	77 _ 123	1	15
Methyl tert-butyl ether	ND		125	125		ug/L		100	64 ₋ 127	0	37
Tetrachloroethene	ND		125	129		ug/L		103	74 - 122	0	20
Toluene	ND		125	126		ug/L		101	80 - 122	0	15

Client Sample ID: MW-13R

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-26808-2 Matrix: Water	MSD							CI	ient Sampl Prep T	e ID: MV ype: Tot	
Analysis Batch: 86911											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
trans-1,2-Dichloroethene	ND		125	142		ug/L		114	73 - 127	0	20
Trichloroethene	ND		125	143		ug/L		114	74 - 123	1	16
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	99		66 - 137								
Toluene-d8 (Surr)	84		71 - 126								
4-Bromofluorobenzene (Surr)	82		73 - 120								

Certification Summary

EPA Region

6

9

4

4

4

4

5

7

4

4

6

1

3

5

5

2

2

8

6

10

3

4

6

3

10

3

5

Certification ID

88-0686

1169CA

PH-0568

E87672

N/A

956

956

374

200003

E-10187

90029

02031

294

9937

2973

2337

NY455

10026

R-176

9421

NY200003

68-00281

TN02970

460185

998310390

C784

252

T104704412-11-2

P330-11-00386

NY00044

M-NY044

036-999-337

30

Client: Waste Management Project/Site: ChemTrol Site - Groundwater

Laboratory: TestAmerica Buffalo

Authority

California

Florida

Georgia

Georgia

Georgia

Illinois

lowa

Kansas

Kentucky

Louisiana

Maryland

Michigan

Minnesota

New Jersey

North Dakota

New York

Oklahoma

Tennessee

Oregon Pennsylvania

Texas

USDA

Virginia

Washington

Wisconsin

West Virginia DEP

Massachusetts

New Hampshire

New Hampshire

Maine

Kentucky (UST)

Connecticut

Arkansas DEQ

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Program

NELAC

Federal

NELAC

State Program

Expiration Date

07-06-13

09-30-13

09-30-14

06-30-13

03-31-13

06-30-13

06-30-13

09-30-13

03-01-13

01-31-13

12-31-12

04-01-13

06-30-13

12-04-12

03-31-13

06-30-13

04-01-13

12-31-12

09-11-13

11-17-12

06-30-13

03-31-13

03-31-13

08-31-13

06-09-13

07-31-13

04-01-13

07-31-13

11-22-14

09-14-13

02-10-13

09-30-13

08-31-13

8
9

-	
	5
	8
	9

Page 21 of 36

Client: Waste Management Project/Site: ChemTrol Site - Groundwater

Mathead Deconduction	Derdenel	l shaméan.	3
Method Description	Protocol	Laboratory	
Volatile Organic Compounds (GC/MS)	SW846	TAL BUF	. 4

Protocol References:

Method 8260B

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: Waste Management Project/Site: ChemTrol Site - Groundwater TestAmerica Job ID: 480-26808-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-26808-1	DUP	Water	10/17/12 13:15	10/17/12 15:30
480-26808-2	MW-13R	Water	10/17/12 13:15	10/17/12 15:30
480-26808-3	MW-15R	Water	10/17/12 13:25	10/17/12 15:30
480-26808-4	MW-3S	Water	10/17/12 13:35	10/17/12 15:30
480-26808-5	MW-7R	Water	10/17/12 14:00	10/17/12 15:30
480-26808-6	MW-8R	Water	10/17/12 13:05	10/17/12 15:30
480-26808-7	MW-9R	Water	10/17/12 13:45	10/17/12 15:30
480-26808-8	ТВ	Water	10/17/12 08:00	10/17/12 15:30

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler	PN, TW			Lab PM VanDette	e. Rvan						Carrier Tracking No(s)				_		COC No. 480-22324-4273.1			
Client Contact Mr. Mark Snyder	Phone				E-Mail							1						- F	Page:		
Company					ryan.vano	16116(G	jtesta	meric				1							Page 1 of 1		
Waste Management	Due Date Request			_		á í í c			Ana	alysi	s Re	que	sted								
425 Perinton Parkway	Due Date Request				張麗								ļ					-	A - HCL W	: I - Hexane	
City. Fairport	TAT Requested (d	ays):				2													B - NaOH N	I - None	
State, Zip:					And Real												2000	- Anna	D - Nitric Acid P) - AsNaO2 P - Na2O4S	
NY, 14450	PO #				-											ļ			F-MeOH R) - Na2SO3 { - Na2S2SO3	
585-223-6922(Tel) 713-286-7554(Fax)	Purchase Orde	r not requir	_		(9)		1						ļ							i - H2SO4 1- TSP Dodecahy	drate
Email msnyder@wm.com	WO #				or N			1					1							i - Acetone / - MCAA	
Project Name	Project #					hod						1						E.		V - ph 4-5 (- other (specify)	
ChemTrol Site/NY22 Event Desc. ChemTrol Annual Groundwate Site	48002447 ssow#	_				Met				ļ	1		1				-	2	Other:		Į
New Hampshire					Sam	Loca										1		3			
			Samp Type	e (w-wai		(IIOM) -												Total Number			
Sample Identification	Sample Date	Sample Time	(C=co	mp, O-watta ab) st-tissue,	vori, 🏽 🐇 🛃	8260B									ļ			-	Secolal Inst	ructions/Note	
	Sample Date	\geq		ervation Coc	te: X	X A			70 F	-			111					첫	Special Inst		
DUP	10-17.12	1315	6	Wate	er	3		No antro			-				-				ON m	w 13R	
MW-13R		1315		Wate	er	3														<u>z</u>	
MW-15R		1325		Wate	er	3															
MW-3S		1335		Wate	er	3															
MW-7R		1400		Wate	er	3															
MW-8R		1305		Wate	er	3															
MW-9R		1345		Wate	er	3															
тв	1	000	¥ Į	Wate	er	3						_									
					_11				_			\perp						~			
				-														A star			
Possible Hazard Identification					5	ample	e Dis	posal	(Af	ee ma	ay be	asse	ssed	if sa	mple	s an	e reta	aine	d longer than 1 m	onth)	
Non-Hazard Flammable Skin Irritant Pois Deliverable Requested I, II, III, IV, Other (specify)	on B Unkr	lown	Radiolo	gical		pecial							osal E	By La	b		A	Irchi	ve For	Months	==+
							11150	uction	5/40			sinta.						_			
Empty Kit Relinquished by		Date:		0	Time			\sim					Meth	od of S							
Relinquished by: A Zno	Date/Time 10 - 17 - 17	15.	30	Company 7 A				Λ	L	0						10.	17	-/2	2 1530	Company JAL	
Reinquished by	Date/Time			Company		Rec	ervedT	бу					_			Time.				Company	
Relinquished by	Date/Time	Date/Time Company					eived I	by		Ŷ					Date/	Time.			0	Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coo	ler Ter	mperatu	re(s) °	C and	Other R	lemark	5.		ļ, ,	٦	¥	1			
										_		_	_		<u> </u>	-	_				

Page 24 of 36

10/26/2012

Facility: CHEM TROLL	Sample Point ID: MW 13A								
Field Personnel: PC, PN	Sample Matrix: 64								
MONITORTING WELLINSPECTION:	LICTING								
Date/Time 10-17-12 1 1126	Cond of seal: () Good () Cracked% () None () Buried								
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (Good () Loose () Flush Mount () Damaged								
If prot.casing; depth to riser below:	· · · · · · · · · · · · · · · · · · ·								
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /								
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/								
PURGE INFORMATION:									
Date / Time Initiated: 10.17-12 / 1130	Date / Time Completed: 1917-12 / 120/								
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0								
Initial Water Level, Feet: 8.55	Elevation. G/W MSL:								
Well Total Depth, Feet: 22, 25	Method of Well Purge: Balla								
One (1) Riser Volume, Gal: 8, 91	Dedicated:								
Total Volume Purged, Gal: _27	Purged To Dryness Y / 🔊								
Purge Observations:	Start <u>Cler</u> Finish <u>Cler</u>								
PURGE DATA (if applicable)									
TimePurge RateCumulativeTemp.(gpm/htz)Volume(C)	pH Conductivity Turb. Other Other (SU) (µmhos/cm) (NTU)								

-

SAMPLING	INFORMAT	ION:	1 e			· .		· . · .
POINT ID	MW	131						
Date/Time	10-17-	12 1	1315		Water Level	i @ Sampling,	Feet:	8.57
Method of Sa	ampling:	BAI	ILFA			Dedicated:	Ø I N	
Multi-phased	/ layered:	() Yes	ANO		If YES:	() light	() heavy	
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other (ORP)	Other	
1315	15.0	6.92	·······	95	2.01	62	/	
13.8			• •					
	······			<u></u>				
			l					
INSTRUME	NICALIBR	ANION/CHE	okidana:					
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmbos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)
Solution ID#				 	 			
						1		
GENERAL	a ka							
Weather con	ditions @ tir	ne of sampli		sin 65) 			<u> </u>
Sample Char	acteristics:		Clear	~				
COMMENTS	S AND OBS	ERVATION	S:	00/				
			<u> </u>				······	
				<u></u>		·		
l certify that s protocals.	sampling pro	ocedures we	re in accorda	ince with all	applicable E	PA, State and	Site-Specific	

Page 26 of 36

ð

M

By:

10 117 1 12

Date:

10/26/2012

TAL

Company:

Facility: CHEM TROLL	Sample Point ID: MW 15/L								
Field Personnel: <u>PL, PN TH</u>	Sample Matrix: <u><u>G</u>w</u>								
MONIFORTING WELL INSPECTION:									
Date/Time 10-17-12 1 1146	Cond of seal: 0 Good () Cracked%								
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked 04 Good () Loose () Flush Mount () Damaged								
If prot.casing; depth to riser below:									
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL /								
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)l								
PURGEINFORMATION									
Date / Time Initiated: 10-17-12 / 1149	Date / Time Completed: $10 + n - n/1155$								
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0								
Initial Water Level, Feet: 6.00	Elevation. G/W MSL:								
Well Total Depth, Feet: 26.25	Method of Well Purge: BAI								
One (1) Riser Volume, Gal: <u>3.29</u>	Dedicated: ON								
Total Volume Purged, Gal: V 4.0 70 Dry	Purged To Dryness 🕖 N								
Purge Observations:	Start <u>Class</u> Finish <u>70181</u>								
PURGE DATA: (if applicable)									

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
-								
				-				
		· · · · · · · · · · · · · · · · · · ·						

_

SAMPLING	SAMPLING INFORMATION:		, en arg	1, 1 mž		· ·		11 Jan
POINT ID	MW15.	<u>r</u>						
Date/Time	10-17-	12 1	1325	-	Water Level	@ Sampling	, Feet:	26.21
Method of Sa	ampling:	BAI	IFA	······		Dedicated:	ØIN	·
Multi-phased	d/ layered:	() Yes	DA NO		If YES:	() light	() heavy	
SAMPLING	DATA:							
Time	Temp. (⁰C)	pH (std units)	ι	uctivity os/cm)	Turb. (NTU)	Other (ORP)	Other ()	
1325	12.9	6-30	20,	470	9.70	54		
INSTRUME	NITICALIBE	ATTION/CHE	CIRCIDATIAN					
		1	I	1		Check.Std		· · · · · · · · · · · · · · · · · · ·
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	1,413 μmhos/cm (± 10%)	Cal.Std 10 NTU	Check Sto 10 NTU (± 10%)
Solution ID#		<u> </u>	<u> </u>		<u> </u>	 		

GENERALINFORMATION

Weather conditions @ time of sampling:	Elony	65
--	-------	----

Sample Characteristics:

Clerr

COMMENTS AND OBSERVATIONS:

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

TAL Date: 10 111 12 By: Company:

Page 28 of 36

Facility: CHEM TROLL	Sample Point ID: <u>MW-35</u>
Field Personnel: <u>PL, PN</u>	Sample Matrix: 6w
MONIFORTING WELL INSPECTION	
Date/Time 10-17-12 1 1052	Cond of seal: A Good () Cracked%
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked & Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/
PURGEINFORMATION	
Date / Time Initiated: 10-D.D. / 1055	Date / Time Completed: 10-17-12/1056
Surf. Meas. Pt: () Prot. Casing (XRiser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:1938	Elevation. G/W MSL:
Well Total Depth, Feet: <u>26.40</u>	Method of Well Purge: BAlver
One (1) Riser Volume, Gat: 017	Dedicated: Dedicated
Total Volume Purged, Gal: , 17 To Dr-7	Purged To Dryness 🕖 N
Purge Observations:	Start <u>Class</u> Finish <u>Class</u>
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conductivity Turb. Other Other

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	рН (SU)	Conductivity (µmhos/cm)	(NTU)	Other	Other
	(9)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1							т њ.
	······				++			
					_			
			+					

SAMPLING	INFORMAT	TIØN:			· · · · ·	an a	
POINT ID	MW 3	5	-				
Date/Time	10-17-	12 1	1335	Water Leve	el @ Sampling	, Feet:	19.47
Method of Sa	ampling:	BA	<u>II rA</u>		_Dedicated:	ØIN	
Multi-phased	d/ layered:	() Yes	(X) No	IF YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (⁰C)	pH (std units)	Conductivity (µmhos/cm)	Turb. (NTU)	Other (ORP)	Other ()	· ·
133J	137	7-06	1662	50.91	-67		

INSTRUMENTICALIBRATION/CHECKDATA-

Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cai.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)
	· · · · · · · · · · · · · · · · · · ·							
Solution ID#	· · · · · · · · · · · · · · · · · · ·		······································		· · · · · · · · · · · · · · · · · · ·			

GENERALINFORMATION

SC TOMM

Weather conditions @ time of sampling:	cloudi	6,
--	--------	----

By:

Sample Characteristics:

ONEN BCAHK

COMMENTS AND OBSERVATIONS:

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

Date: 10 117 / 12

Company:

TAL

Page 30 of 36 Page 2 of 2 Page 2 of 2

	BSERVA CHEM			Sample F	Point I <u>D:</u> ///	W TR		
Field Person	,	PL, PN		Sample I	Matrix:	<u>6w</u>		
MONITORI	ING WELL INK	SPECTION						in an
Contraction of the second s		1 103		Cond of	seal: 🕅 Good (() None () Cracked () Buried		%
Prot. Casing	g/riser height <u>:</u>			Cond of	•	er: () Unio) Loose) Damaged_	() Flush Mo	id unt
If prot.casir	ng; depth to rise	r below:				·		
Gas Meter ((Calibration/ Rea	ading): %	6 Gas:		% LEL:	<u> </u>		
Vol. Organi	ic Meter (Calibra	tion/Reading):		Volatile	s (ppm <u></u> /	<u></u>		
	FORMATION		en ander finsk stor en Sterne stor en s				er an	
Date / Time		10-11-12 /1	035	Date / T	ime Completed	:	101712/ 4.0	1115
Surf. Meas	. Pt: () Prot. Cas	sing (KRiser	Riser D	iameter, Inches	:	4.0	
	er Level, Feet:			Elevatio	on. G/W MSL:			
	Depth, Feet:	30.44	_	Method	l of Well Purge:		Purse .	BAILY-
		: <i>18.8</i>		Dedica	ted:	Y 1 🗭		
	ime Purged, Gal	~~~		Purgeo	I To Dryness	Y 10		
	servations:			Start	C 14	Finish	TURRIE	2
PURGEN	DATA: (If appli	cable)		in and the second				
Time	Purge Rate	Cumulative	Temp.	рН	Conductivity		Other	Other
	(gpm/htz)	Volume	(c)	(SU)	(µmhos/cm)	(NTU)		

•

SAMPLING	INFORMAT	ION:	a an an Ar Ingeragan Taog	ινψ. ι	 	n 1997 - Santa Santa 1997 - Santa Santa Santa 1997 - Santa S		the state and
POINT ID	Mw 7	R						
Date/Time	10-17-	12 1	1400	-	Water Level	@ Sampling	, Feet:	9.21
Method of S	ampling:	BAI	IFA			Dedicated:	PIN	
Multi-phase	d/ layered:	()Yes	NO.		If YES:	() light	() heavy	
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other (ORP)	Other	
1400	14.6	6.85		934	23.9	-176		
INSTRUME	NTICALIBR	ATTRINUES	C direv werden	1 1. S 1.	- 			
การสอบของสีของความสอบความ	สุริมสรณากัน และกับสมอย การ การเจาไม่เ			A CLENGER CHARGE				
	Cal Std	Cal Std	Cal Std	Check Std	Cal.Std	Check.Std 1,4182	Cal.Std	Check Std
Meter ID#	7.0 SU	4.0 SU	10.0 SU	7.0 SU (± 10%)	¹ 8∂ 1,413 · µmhos/cm	umhos/cm (± 10%)	10 NTU	20 N TU (± 10%)
B	7.00	4,00		6.98	1000	1408		
<i>D</i>			·				10	20
Solution ID#	912237	700940		SYTTYZ	542874	928384	823925	927569
GENERAL	NEADMAN		an along a showing a					an a
						and the second		
Weather con	ditions @ tir	ne of samplin	ig: C	couds a	<u> </u>			
Sample Chai	acteristics:		Cle	<i>·</i>				
COMMENT		ERVATIONS	5:					
		-			······································			
· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u>_</u>		· · · · · · · · · · · · · · · · · · ·	·		
<u> </u>								
		<u></u> _						
							· · · · · · · · · · · · · · · · · · ·	
l certify that : protocals.	sampling pro	cedures were	e in accorda	nce with all a	applicable EP	A, State and	Site-Specific	

Page 32 of 36 Page 2 of 2 Page 2 of 2

10 11/12

Date:

By:

10/26/2012

TAL

Company:

Facility: CHEM TROLL	Sample Point I <u>D: MWGN</u> Sample Matrix: <u>GW</u>					
Field Personnel: PL, PN	Sample Matrix: 6w					
MONIFORTING WELLINSPECTION						
Date/Time 10-17-12 1 120	Cond of seal: Cood () Cracked %					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked A Good () Loose () Flush Mount () Damaged					
If prot.casing; depth to riser below:						
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm					
PURGE INFORMATION:						
Date / Time Initiated: 10-17-12/ 1122	Date / Time Completed: $16 - \Omega - 12 / 1157$ Riser Diameter, Inches: $4/r \mathcal{O}$					
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0					
Initial Water Level, Feet:/0.59	Elevation, G/W MSL:					
Well Total Depth, Feet: 22.10	Method of Well Purge: <u>BAle-</u>					
One (1) Riser Volume, Gal: 7, 5	– Dedicated: 🔗 N					
Total Volume Purged, Gal: 23	Purged To Dryness Y /					
Purge Observations:	Start <u>Clerr</u> Finish <u>Clerr</u>					
PURGE DATA: (# applicable)						
TimePurge RateCumulativeTemp.(gpm/htz)Volume(C)	pH Conductivity Turb. Other Other (SU) (µmhos/cm) (NTU)					
e.3						

n nin Ng ng ning

-

SAMPLING	INFORMAT	ION:	a at tat - guad t a			· .	
	MWB	R					
Date/Time	10-17-		1305		Water Level @ Sampling		
Method of Sa	ampling:	Bai	<u>ir</u> A			Dedicated:	
Multi-phased	d/ layered:	()Yes	(M No		If YES:	() light	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other (ORP)	
1305	14.9	6.99	1022		9.97	94	
INSTRUME	NTICALIBR	ANIONVERIE	(FIGDATEAS				
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	, Cal.Std 4, 1,413 - µmhos/cm	Check.Std 1,41 ð µmhos/cm (± 10%)	
B	7.01	4-20		7.00	1000	1411	
Solution ID#	912237	700940		547742	925784	925 384	

GENERALINFORMATION

Weather conditions @ time of sampling: 500 65

Sample Characteristics: C/c_{-}

COMMENTS AND OBSERVATIONS:

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocais.

Date: By: 10 1/2

U 2m

Company:

TAL

Page 34 of 36 BAAA 7 AF 7 Bann 3

10/26/2012

100	12
~-	61

Feet:

RAN

() heavy

Other

Cal.Std

10 NTU

io

823925

1

Check Std

20 NTU

(± 10%)

Zo

9220

Facility: CHEM TROLL	Sample Point ID: MW-91
Field Personnel: PC, PN	Sample Matrix: <u>6</u> w
MONIFORTING WELLINSPECTION	
Date/Time 10-17-12 1 10 45	Cond of seal: () Good Cracked %
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked()Good ()Loose ()Flush Mount 好Damaged <u></u> Cohm
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm <u> </u>
PURGEINFORMATION	a na sana ang sana a Ng sana ang s
Date / Time Initiated: 10-17-12 / 1048	Date / Time Completed: <u>10-17-12 / 1135</u>
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: <u>4.0</u>
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 29.4	Method of Well Purge: BAlle-
One (1) Riser Volume, Gal: 10, 77	Dedicated: DIN
Total Volume Purged, Gal: 33	Purged To Dryness Y
Purge Observations:	Start <u>Class</u> Finish <u>Class</u>
PURGE DATA: (m.applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
								•
		· · · · · · · · · · · · · · · · · · ·						
			+	1		· · ·		

.

SAMPLING	INFORMAT	FIØN:	e a servere	1 - e e			. <u>.</u> 	
	MU	gr						· .
Date/Time	10-17-	12 1	1345	-	Water Level	@ Sampling	l, Feet:	12,69
Method of Sampling:		BA	nn ra			Dedicated:	() IN	
Multi-phased	/ layered:	() Yes	1/ No		IF YES:	() light	() heavy	
SAMPLING	DATA:							
Time	Temp. (⁰C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other (ORP)	Other ()	
1345	13.6	7-15	14	21	9.03	-62		
INSTRUME	NTICALIBE	ATHON/(C)#1	CKDATA.					
(1.1.5.5.8020) March 1.0.0.4						Check.Std	1	
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	1,413 μmhos/cm (± 10%)	Cai.Std 10 NTU	Check Std 10 NTU (± 10%)
Solution ID#			<u> </u>	<u> </u>	1			
GENERAL	RE/DRMAT				a a ann a tha an ina			
hainen hinnen sin her ander som her her som her her som				Clark 6	a			
Weather con	ditions @ ti	me of sampli	ng: Class					
Sample Char	acteristics:		Clair					
COMMENTS	S AND OBS	SERVATION	S:					
		· · · · · · ·						
						-		
<u> </u>		······					<u>.</u>	
							·····	
Loomtific that	compling of	oonduree we	ro in coord	nnoo with all	annlicable E			

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

Date:

10 1171 12 By:

N

Company:

Page 36 of 36

TAL