

AECOM 100 Corporate Parkway, Suite 341 Amherst, NY 14226 716.836.4506 tel 716.834.8785 fax

March 26, 2015

Mr. Brian Sadowski New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: 2014 PERIODIC REVIEW REPORT Chem-Trol Site, Registry No. 9-15-015, <u>Blasdell, Erie County</u>

Dear Mr. Sadowski:

AECOM Technical Services, Inc. (AECOM), on behalf of SC Holdings, Inc. (SC Holdings), is submitting this Periodic Review Report (PRR) along with a completed Institutional Controls and Engineering Controls (IC/EC) Certification Form (Attachment A) for the Chem-Trol site. This report is being submitted as requested by the New York State Department of Environmental Conservation (NYSDEC) in its letter dated February 20, 2015 to Mr. Dave Moreira. The letter provides guidance for preparing the PRR and IC/EC forms and requires that they be submitted to NYSDEC no later than March 31, 2015.

I. INTRODUCTION

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972.

As a result of historic waste processing activities, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, and construction of a soil vapor extraction (SVE) system and groundwater collection and treatment system. The SVE system includes a header pipe and eight subsurface laterals installed in a linear array within the area of remediated soils. The groundwater collection and treatment system includes a blast-fractured bedrock trench in which three groundwater collection wells are installed, conveyance piping, and a shallow tray air stripper that removes VOCs from the collected groundwater. The treated groundwater is discharged through a pipe to the South Branch of Smokes Creek.

The SVE system and the groundwater collection system continue to operate. During 2010, McMahon & Mann Consulting Engineers, PC (MMCE) evaluated the effectiveness of passive operation of the SVE system in removing soil vapors. Subsequently, the SVE system was converted from active to passive operation in 2010. A copy of the SVE system evaluation letter report was included as Attachment B in the 2010 PRR.

II. SITE OVERVIEW

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek. Figure 1 shows the Chem-Trol site location and features.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the shallow overburden as well as the deeper bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the South Branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of 2 by NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site,
- Installation of a groundwater collection trench along the western edge of the site,
- Improvement of the existing soil cover over the former chemical processing area, and,
- Installation of a SVE system within the former waste chemical processing area.

Goals for the remedial program were established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site,
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments and groundwaters at the site,
- Prevent migration of contaminants in the on-site soils into the groundwater,
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment, and
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings continues to monitor the performance of the SVE and groundwater collection and treatment system.

SVE System

SC Holdings submitted a work plan to NYSDEC on October 22, 2009 proposing conversion of the active system to a passive venting system and monitoring the performance of the passive system for a year. NYSDEC authorized the conversion to a passive system along with monthly monitoring. The SVE treatment system was converted from active to passive operation in January 2010.

After a year of monitoring, SC Holdings submitted a report describing the monitoring results as indicating that passive operation of the SVE system provides similar and possibly improved effectiveness as active operation of the SVE system in venting soil vapors. Water level data in the passive vent risers indicated that passive venting might also contribute to generally lower water levels in the laterals for a longer period of time over the course of the year and therefore provide a greater opportunity to vent soil vapors.

It was recommended that active operation of the SVE system permanently cease and that passive operation of the SVE system laterals continue. In addition, it was recommended that continued monitoring of the SVE system laterals be eliminated. NYSDEC agreed with these recommendations in a letter to Mr. Mark Snyder dated May 29, 2011.

During this reporting period, the SVE system continued to operate passively. The lateral riser pipes were visually examined for damage during quarterly site visits. No damage was observed during these site visits.

SC Holdings has the following actions performed by AECOM (items 1 through 5) and TestAmerica Laboratories, Inc. (Amherst, NY) (item 6) in order to monitor the performance of the groundwater collection system as required in the ROD:

- 1. Perform monthly operation and maintenance tasks on the system,
- 2. Perform quarterly acid wash of the air stripper, including a once-per-year dismantling of the air stripper to check seals and remove mineral accumulation in air stripper trays using mechanical means (scrubbing, re-drilling holes to full diameter, etc.),
- 3. Sample and analyze the groundwater collection and treatment system influent and effluent on a monthly basis for a site-specific list of 10 VOCs, Total Iron, Total Suspended Solids (TSS), and pH,
- 4. Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a quarterly basis,
- 5. Prepare bedrock groundwater contours based on quarterly water level measurements collected during the year, and
- 6. Obtain annual groundwater samples for VOCs from six groundwater monitoring wells.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Monthly aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations. Analytical test results show that discharge parameter concentrations in the stripper effluent for 2014 were below the concentration and mass loading discharge limits established by NYSDEC for 10 of 12 months. There were no VOC concentration or mass loading exceedances for any month. Total Iron exceeded the concentration but not the mass loading discharge limit for April and November. TSS exceeded the concentration but not the mass loading discharge limit for November. Details for these events are as follows:

- April 10, 2014 effluent sample, there was a Total Iron detection of 5,890 μg/L (vs. the concentration limit of 3,000 μg/L).
- November 25, 2014 effluent sample, there was a Total Iron detection of 3,270 µg/L (vs. the concentration limit of 3,000 µg/L).
- November 25, 2014 effluent sample, TSS detection of 28 mg/L (vs. the concentration limit of 20 mg/L).

In response to the elevated concentration iron results in the April and November events, AECOM performed an acid wash of the air stripper and discharge piping to remove accumulated iron mineralization in May and December 2014. Samples following the acid wash cleanings showed no exceedance of the concentration or mass loading discharge limits.

Analytical test results for the 2014 monthly aqueous effluent samples are included in the Operation and Maintenance (O&M) reports submitted by AECOM to NYSDEC on a quarterly basis.

Monthly testing of the air stripper exhaust discharge (vapor phase) samples ceased after April 2011. Monthly testing was eliminated based upon a letter from AI Zylinski, NYSDEC Division of Air Resources, to MMCE (consultant to SC Holdings) dated April 6, 2011. The letter approved elimination of sampling and testing of the air stripper exhaust.

A summary of groundwater elevations measured in the groundwater monitoring wells and piezometers is included in Table 1 - Summary of Groundwater Elevation Measurements 2014. Quarterly groundwater elevation contours are plotted on Figures 2 through 5.

The contours show that the three extraction wells depress water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates groundwater flow toward the collection trench. The measurements demonstrate that the collection trench is functioning as designed to restrict offsite flow and limit groundwater discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater treatment system influent samples have historically shown o-chlorotoluene levels in higher concentrations than other organic compounds. Therefore, concentrations of o-chlorotoluene detected in groundwater treatment influent samples have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for influent groundwater samples was plotted versus time for the July 2002 through December 2014 sampling events (see Figure 6). The plot shows that the concentration of o-chlorotoluene in the influent groundwater samples has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A comparison of the influent and effluent sample analytical results shows that the air stripper is effectively removing VOCs from the groundwater collected by the treatment system.

A summary of VOC detections for the annual 2014 groundwater-sampling event is included as Table 2, Detection Summary. The complete 2014 groundwater sample analytical laboratory report is included as Attachment B. Historical concentration versus time trend plots for monitoring wells MW3S, MW-8R, MW-9R, and MW-13R are included as Attachment C.

IV. O&M PLAN COMPLIANCE

SC Holdings performed the following activities as part of the O&M Plan requirements:

Soil Vapor Extraction System

AECOM performed the following activities in 2014 as part of quarterly visits to the site:

• Visually observed each SVE passive vent riser for damage.

Groundwater Collection and Treatment System

AECOM performed the following activities in 2014 as part of monthly O&M visits:

- Verified that each extraction well was running and performing as designed,
- Observed that each pump was operating, documented pumping rates, total gallons pumped and insured that high and low water controls are functioning as designed,
- Performed monthly influent and effluent sample analytical testing,
- Observed that the air stripper was performing as designed,
- Performed monthly inspections and cleaning of stripper trays. Performed acid washes quarterly or more often if necessary to promote optimum removal of VOCs, and
- Prepared and submitted O&M reports on a quarterly basis to NYSDEC.

The quarterly O&M reports submitted to NYSDEC provide further details on specific activities performed, analytical testing results, and observations made during the monthly O&M visits. With the exception of general maintenance work performed on pumps, equipment, and sensors, as described in the monthly O&M reports, no significant issues have occurred to the groundwater collection and treatment system. Results of the treatment system performance are discussed in Section III.

V. CONCLUSIONS AND RECOMMENDATIONS

Groundwater Collection and Treatment

A comparison of the monthly influent vs. effluent analytical test results shows that the groundwater collection and treatment system continues to remove contaminants from groundwater at the Chem-Trol site. A plot of the influent o-chlorotoluene concentration versus time (see Figure 6) indicates that the source contributing to groundwater VOC concentrations has been reduced to where its influence on groundwater has decreased and appears to continue approaching an asymptotic curve.

The quarterly groundwater elevation data show that the groundwater collection system continues to contain groundwater contaminants and creates a gradient toward the groundwater collection wells and away from the South Branch of Smokes Creek.

No changes to the activities currently being performed at the Chem-Trol site are recommended.

Please call the undersigned at AECOM (716-836-4506) or Mr. Dave Moreira (603-929-5446) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

James L. Kacyon

James L. Kaczor, P.G. Project Manager james.kaczor@aecom.com

Enclosures (Tables, Figures)

Attachments (IC/EC Form, 2014 Annual Groundwater Data Report, Historical Trend Plots)

cc. Dave Moreira (SC Holdings, Inc.) w/attachments Daniel Servetas, P.E. (AECOM), w/attachments 60336580 Project File

TABLES

Table 1: Summary of Groundwater Elevations - 2014Table 2: Groundwater Sample Detection Summary - 2014

Table 1Chem-Trol Site, Blasdell, NYSummary of Groundwater Elevation Measurements 2014

		10	Date	20	Q Date	30	Date	40	Date
Pumping	Wells	3/14	4/2014	8/13/2014		9/30/2014		12/17/2014	
Well ID	Monitoring Point (TIC)	Depth To Water (ft)	1st Quarter Elevation (ft)	Depth To Water (ft)	2nd Quarter Elevation (ft)	Depth To Water (ft)	3rd Quarter Elevation (ft)	Depth To Water (ft)	4th Quarter Elevation (ft)
EW-1	624.07	18.40	605.67	21.12	602.95	22.40	601.67	15.99	608.08
EW-2	622.16	13.82	608.34	14.94	607.22	15.90	606.26	13.05	609.11
EW-3	621.10	13.95	607.15	15.09	606.01	16.70	604.40	13.44	607.66

East of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-6S	638.54	7.53	631.01	10.36	628.18	11.95	626.59	7.89	630.65
MW-6R	638.64	17.13	621.51	17.82	620.82	19.11	619.53	17.01	621.63
P-1S	642.80	4.94	637.86	6.21	636.59	8.73	634.07	4.68	638.12
MW-1R	645.36	6.90	638.46	8.12	637.24	10.64	634.72	6.61	638.75
MW-1S	645.40	5.15	640.25	6.86	638.54	10.00	635.40	4.52	640.88
MW-7S	642.85	3.53	639.32	7.30	635.55	10.42	632.43	3.65	639.20
MW-7R	642.28	4.36	637.92	6.22	636.06	8.23	634.05	4.02	638.26

Center of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
P-5S	637.54	9.34	628.20	12.56	624.98	>13.60	DRY	8.52	629.02
P-5R	637.88	18.99	618.89	19.61	618.27	>20.22	DRY	19.01	618.87
MW-5S	636.28	11.32	624.96	12.30	623.98	13.82	622.46	11.14	625.14
P-2R	646.96	9.86	637.10	11.64	635.32	13.00	633.96	10.75	636.21
P-2S	646.44	8.46	637.98	9.46	636.98	11.83	634.61	8.04	638.40
MW-2S	644.85	6.15	638.70	7.35	637.50	10.00	634.85	5.81	639.04

West of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-4S	637.18	14.14	623.04	15.10	622.08	>15.40	DRY	13.75	623.43
MW-4R	637.02	26.33	610.69	28.34	608.68	30.55	606.47	24.46	612.56
P-4S	636.54	15.65	620.89	15.96	620.58	15.95	620.59	14.63	621.91
MW-3S	637.64	17.31	620.33	17.91	619.73	18.45	619.19	16.79	620.85
P-3R	639.92	20.78	619.14	20.51	619.41	20.45	619.47	20.20	619.72
P-3S	639.46	19.20	620.26	19.41	620.05	19.89	619.57	18.80	620.66
OW-3R	638.78	23.68	615.10	24.47	614.31	24.65	614.13	23.78	615.00

West of Trench (North to South)

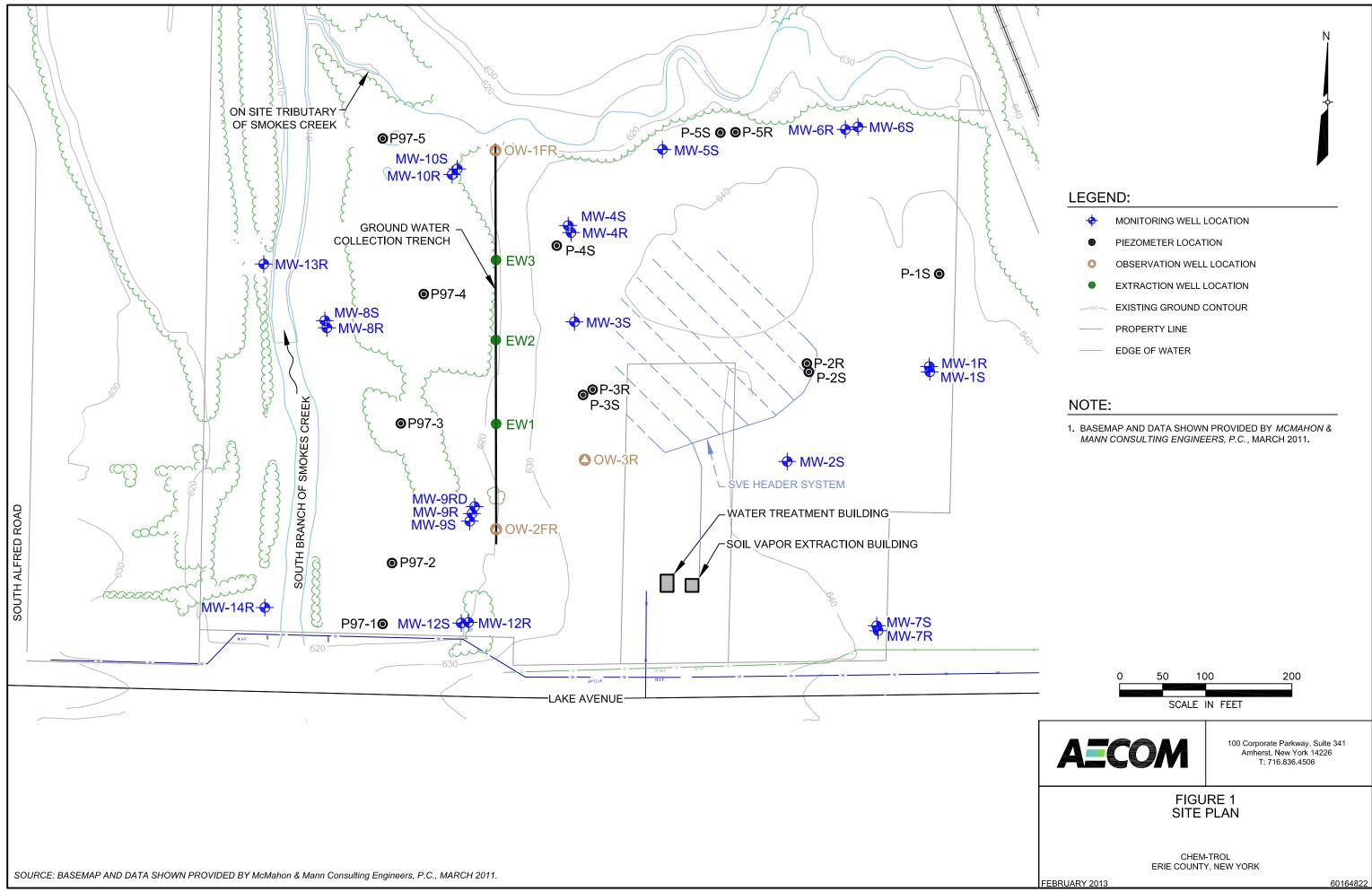
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
OW-1FR	620.42	9.44	610.98	11.47	608.95	13.74	606.68	7.61	612.81
P97-5	613.65	3.14	610.51	5.02	608.63	7.16	606.49	1.50	612.15
MW-10S	615.15	3.83	611.32	5.72	609.43	>5.7	DRY	2.45	612.70
MW-10R	615.47	4.59	610.88	6.52	608.95	8.59	606.88	2.95	612.52
P97-4	614.8	4.05	610.75	6.05	608.75	8.25	606.55	2.20	612.60
MW-8S	617.28	5.99	611.29	7.15	610.13	>7.29	DRY	5.58	611.70
MW-8R	617.38	6.51	610.87	8.56	608.82	10.60	606.78	4.80	612.58
P97-3	617.66	6.64	611.02	8.79	608.87	11.05	606.61	4.54	613.12
MW-9RD	619.13	7.20	611.93	6.86	612.27	6.42	612.71	7.71	611.42
MW-9R	619.17	8.00	611.17	10.29	608.88	12.60	606.57	5.60	613.57
MW-9S	619.91	7.91	612.00	>10.59	DRY	>10.42	DRY	5.05	614.86
OW-2FR	624.14	12.95	611.19	15.21	608.93	17.54	606.60	10.55	613.59
P97-2	619.07	6.98	612.09	8.79	610.28	10.03	609.04	4.85	614.22
P97-1	619.97	7.00	612.97	8.43	611.54	9.20	610.77	5.60	614.37
MW-12R	621.59	9.17	612.42	10.52	611.07	11.24	610.35	8.00	613.59
MW-12S	621.17	3.70	617.47	7.90	613.27	>9.42	DRY	2.85	618.32

West of Smokes Creek (North to South)

Well ID	Monitoring Point (TIC)	Depth To Water (ft)	1st Quarter Elevation (ft)	Depth To Water (ft)	2nd Quarter Elevation (ft)	Depth To Water (ft)	3rd Quarter Elevation (ft)	Depth To Water (ft)	4th Quarter Elevation (ft)
MW-13R	615.14	4.80	610.34	6.83	608.31	8.72	606.42	3.08	612.06
MW-14R	618.55	5.42	613.13	5.92	612.63	6.20	612.35	5.65	612.90

TABLE 2 **Detection Summary**

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater


	Detec	tion Sum	mary				
					Te	stAmerica Job	DID: 480-68237-1
Groundwater							
					Lat	o Sample II): 480-682 37-1
Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Ргер Туре
24		5.0		ug/L	42	8260C	Total/NA
20		8.4		ug/L	42	8260C	Total/NA
2000		5.0		ug/L	42	8260C	Total/NA
					Lat	o Sample II): 480-68237-2
Result	Qualifier	RL	MDL	Unit	Dil Fac [D Method	Prep Type
25		5.0		ug/L	42	8260C	Total/NA
25		8.4		ug/L	42	8260C	Total/NA
2100		5.0		ug/L	42	8260C	Total/NA
					Lat	o Sample II): 480-68237-3
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
23		5.0		ug/L	1	8260C	Total/NA
16		5.0		ug/L	1	8260C	Total/NA
					Lak	o Sample II): 480-68237-4
Result	Qualifier	RL	MDL	Unit	Dil Fac [D Method	Prep Type
69000		210		ug/L	2100	8260C	Total/NA
					Lat	o Sample II): 480-68237-5
					Lat	o Sample II): 480-68237-6
	Qualifier	RL	MDL	Unit	Dil Fac		Prep Type
61		5.0		ug/L	1	8260C	Total/NA
					Lat	o Sample II): 480-68237-7
Result	Qualifier	RL	MDL	Unit			Prep Type
540		5.0		ug/L	21	8260C	Total/NA
300		5.0		ug/L	21	8260C	Total/NA
19		5.0		ug/L	21	8260C	Total/NA
860		5.0		ug/L	21	8260C	Total/NA
		5.0		ua/I	21	8260C	Total/NA
7.1		5.0		ug/L	21	02000	TOTAI/INA
	Result 24 20 2000 Result 25 25 2100 Result 23 16 Result 69000 Result 69000 Result 300 19	Result Qualifier 24 20 2000 2000 Result Qualifier 25 25 2100 - Result Qualifier 23 - 16 - Result Qualifier 69000 - Result Qualifier 69000 - Result Qualifier 63000 - Result Qualifier - - 540 300 19 -	Result Qualifier RL 24 5.0 20 8.4 2000 5.0 Result Qualifier RL 25 8.4 2100 5.0 25 8.4 2100 5.0 Result Qualifier RL 23 5.0 16 5.0 16 5.0 210 210 Result Qualifier RL 69000 210 Result Qualifier RL 500 5.0 210 5.0 210 5.0 210 5.0 210 5.0 210 5.0	$\begin{tabular}{ c c c c c } \hline Result & Qualifier & RL & MDL \\ \hline 24 & 5.0 \\ \hline 20 & 8.4 \\ 2000 & 5.0 \\ \hline \\ \hline 20 & 8.4 \\ 2000 & 5.0 \\ \hline \\ $	GroundwaterResultQualifierRLMDLUnit245.0ug/L208.4ug/L20005.0ug/L20005.0ug/L258.4ug/L258.4ug/L21005.0ug/L165.0ug/LResultQualifierRLMDLUnit235.0ug/L165.0ug/L165.0ug/L165.0ug/L165.0ug/L165.0ug/L179000210185.0ug/L195.0ug/L	Terminological constraints of the second constraints	TestAmerica JotSroundwaterLab Sample ICResultQualifierRLMDLUnitDil FacpMethod245.0ug/L428260C2005.0ug/L428260C20005.0ug/L428260C20005.0ug/L428260C20005.0ug/L428260C258.4ug/L428260C258.4ug/L428260C21005.0ug/L428260CLab Sample ICResult QualifierRLMDLUnitDil FacpMethod235.0ug/L18260C8260CLab Sample ICResult QualifierRLMDLUnitDil FacpMethod89000210210ug/L18260CLab Sample ICMethod89000210UnitDil FacpMethod89000210UnitDil FacpMethod89000210UnitDil FacpMethod89000210UnitDil FacpMethod89000210UnitDil FacpMethod89000210ug/L211Dil FacpMethod89000200200200UnitDil Facp <th< td=""></th<>

No Detections.

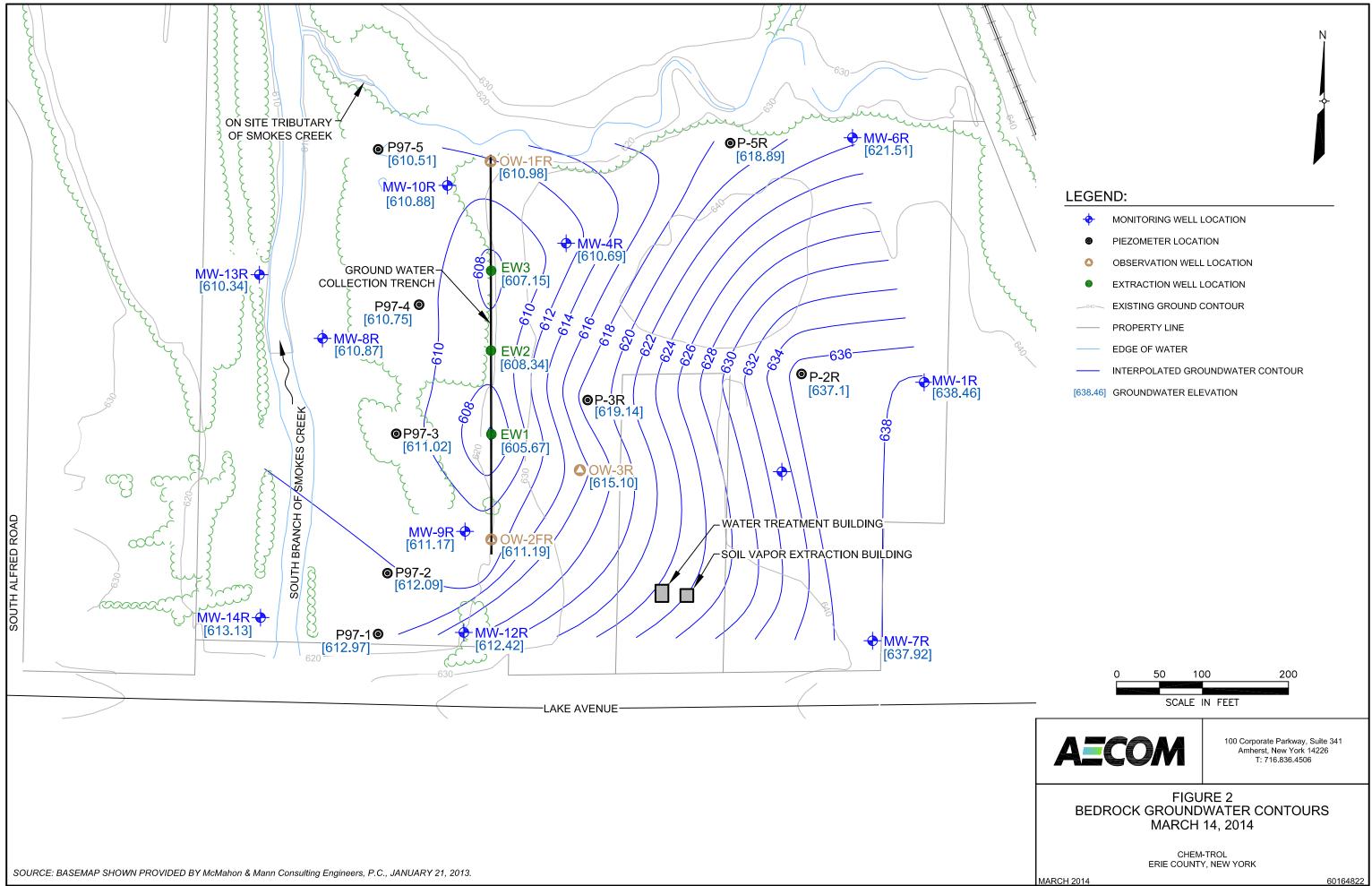
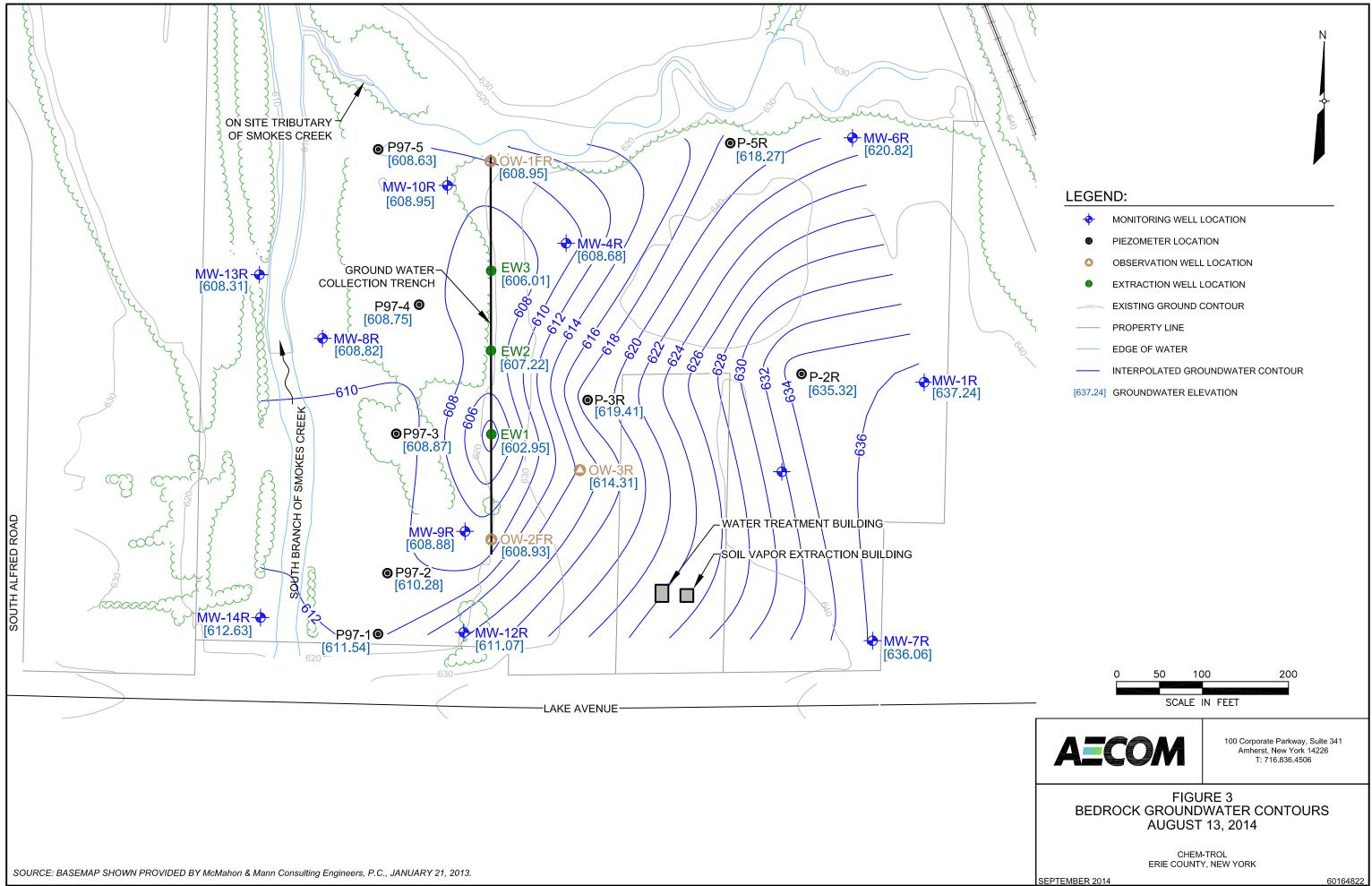
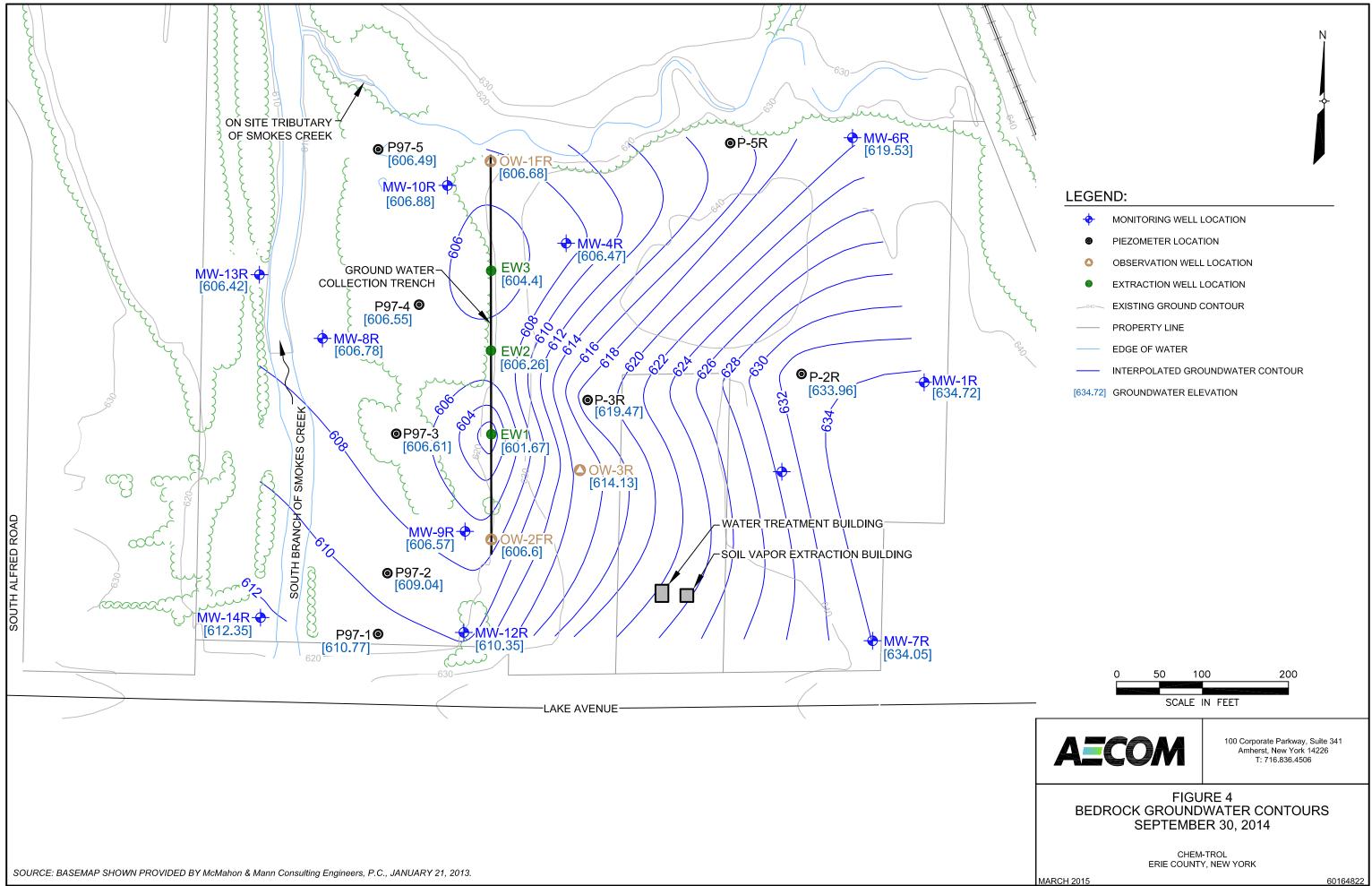

FIGURES

Figure 1: Site Plan

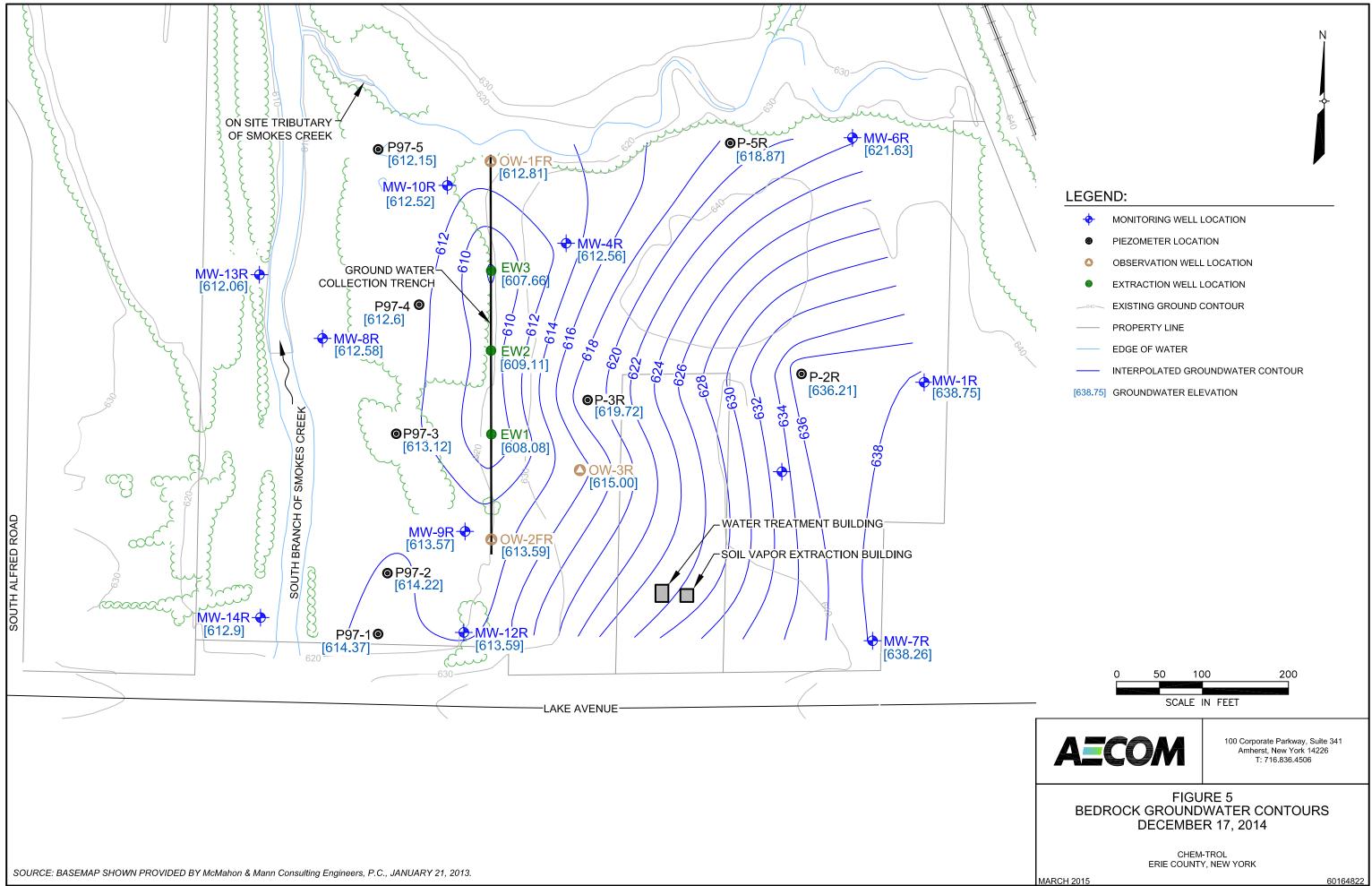
Figure 2: Bedrock Groundwater Contours – March 14, 2014 Figure 3: Bedrock Groundwater Contours – August 13, 2014 Figure 4: Bedrock Groundwater Contours – September 30, 2014 Figure 5: Bedrock Groundwater Contours – December 17, 2014 Figure 6: Influent o-Chlorotoluene Concentration 2003 - 2014



L:\Group\earth\Chem-Trol\60164822_001 Site Plan.dwg, 2/25/2013 11:46:57 AM, Splawnm


	۱ D .
+	MONITORING WELL LOCATION
0	PIEZOMETER LOCATION
٥	OBSERVATION WELL LOCATION
۲	EXTRACTION WELL LOCATION
640	EXISTING GROUND CONTOUR
	PROPERTY LINE
	EDGE OF WATER
	INTERPOLATED GROUNDWATER CONTOUR
[638.46]	GROUNDWATER ELEVATION

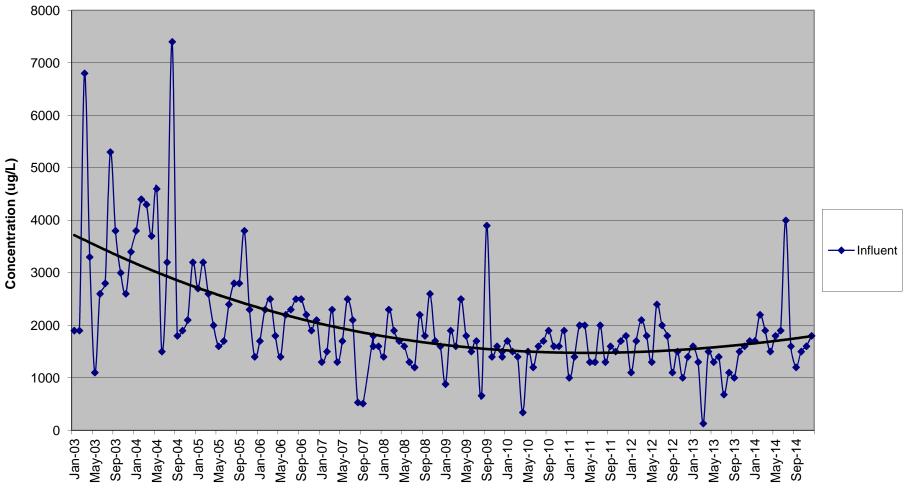
L:\Group\earth\Chem-Trol\60164822_010 Bedrock Contours_Mar 14 2014.dwg, 4/1/2014 10:31:37 AM, Splawnm


+	MONITORING WELL LOCATION	
Ψ	MONITORING WELL LOCATION	

L:\Group\earth\Chem-Trol\60164822_011 Bedrock Contours_Aug 18 2014.dwg, 9/10/2014 11:51:30 AM, Splawnm

+	MONITORING WELL LOCATION
---	--------------------------

L:\Group\earth\Chem-Trol\60164822_012 Bedrock Contours_Sept 30 2014.dwg, 3/10/2015 10:12:53 AM, Splawnm



+	MONITORING WELL LOCATION
0	PIEZOMETER LOCATION
٥	OBSERVATION WELL LOCATION
۲	EXTRACTION WELL LOCATION
640	EXISTING GROUND CONTOUR

L:\Group\earth\Chem-Trol\60164822_013 Bedrock Contours_Dec 17 2014.dwg, 3/10/2015 10:15:19 AM, Splawnm

FIGURE 6

Chem-Trol Groundwater Treatment System Influent o-Chlorotoluene Concentration 2003-2014

ATTACHMENT A

Completed IC/EC Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

CIA	Site Details	Box 1	
	e No. 915015		
Sit	e Name Chem-Trol		
City Co	e Address: Lake Avenue Zip Code: 14107 //Town: Hamburg unty:Erie e Acreage: 17.5		
Re	porting Period: February 15, 2014 to February 15, 2015		
		YES	NO
1.	Is the information above correct?	\boxtimes	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		
		Box 2	
		Box 2 YES	NO
6.	Is the current site use consistent with the use(s) listed below? Closed Landfill		NO □
		YES	_
	Closed Landfill	YES ⊠	
7.	Closed Landfill Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a	YES	
7. A C	Closed Landfill Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	YES	

SITE NO. 915015		Box 3
Description of	Institutional Controls	
Parcel 151.02-1-14.1	<u>Owner</u> Waste Management	Institutional Control Ground Water Use Restriction Monitoring Plan O&M Plan Landuse Restriction
2004, include but are not Property by maintaining it the Property with another or commercial use, exclud property is prohibited with groundwater may be reas	limited to the following: the owner of the s grass cover, or after obtaining writter material; the property is prohibited frow ding use for day care, child care and not treatment to render it safe for drin	strictions, recorded with Erie County on March 25, he Property shall maintain the cap covering the en approval from the Relevant Agency, by capping om being used for purposes other than for industrial nedical care; the use of groundwater underlying the king water or industrial purposes, except that the tests to monitor contamination levels of the ill run with the land.
Description of	Engineering Controls	Box 4
Description of		
<u>Parcel</u> 151.02-1-14.1	Engineering Contro Groundwater Treat Cover System Groundwater Conta Fencing/Access Co Leachate Collectior	ment System ainment ntrol
	ted in two phases consisting of "Sourcents are summarized as follows:	ce Control Elements" and "Groundwater Control
Source Control Elements	S:	
- "Hot Spot" Soils Remov - Tributary Sediment Exc - Site Soils Cover; and - Soil Vapor Extraction (p approved on May 29, 201	avation/Disposal; passive state with one year evaluation	starting January 2010; passive state permanently
Groundwater Control Ele	ements:	
- Groundwater Extractior - Groundwater Quality M	n, On-Site Treatment, and Discharge (onitoring.	Compliance Monitoring; and
	onitoring, groundwater elevations and emains protective of public health and	d groundwater quality monitoring are completed to the environment.

Г

ert (PRR) Certification Statements that: ort and all attachments were prepared under the direction of ng the certification; dge and belief, the work and conclusions described in this of requirements of the site remedial program, and generally ac the information presented is accurate and compete. YES we equivalent as required in the Decision Document), for each le was 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is unchalls put in-place, or was last approved by the Department;	ertification cepted NO □ nstitutional the
event and all attachments were prepared under the direction of ng the certification; edge and belief, the work and conclusions described in this of requirements of the site remedial program, and generally ac the information presented is accurate and compete. YES equivalent as required in the Decision Document), for each I exces 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is uncha	ertification cepted NO □ nstitutional the
ng the certification; dge and belief, the work and conclusions described in this of requirements of the site remedial program, and generally ac the information presented is accurate and compete. YES we requivalent as required in the Decision Document), for each le taxes 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is unchar	ertification cepted NO □ nstitutional the
equivalent as required in the Decision Document), for each I was 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is uncha	cepted NO D nstitutional the anged since
YES equivalent as required in the Decision Document), for each leaves 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is uncha	nstitutional the anged since
equivalent as required in the Decision Document), for each leaves 3 and/or 4, I certify by checking "YES" below that all of and/or Engineering Control(s) employed at this site is uncha	nstitutional the anged since
and/or Engineering Control(s) employed at this site is uncha	the anged since
	-
	health and
at would impair the ability of such Control, to protect public	
ontinue to be provided to the Department, to evaluate the re- e the continued maintenance of this Control;	medy,
at would constitute a violation or failure to comply with the S Control; and	Site
mechanism is required by the oversight document for the si nd sufficient for its intended purpose established in the docu	te, the iment.
YES	NO
	sues.
nust be submitted along with this form to address these is	
	⊠ R TO QUESTION 2 IS NO, sign and date below and ETE THE REST OF THIS FORM. Otherwise continue. nust be submitted along with this form to address these is:

IC CERTIFICATIONS SITE NO. 915015

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>David Moreir</u>	<u>a</u> at <u>4</u>	Liberty Lane print business a	<u>e West, Hampton, NH 0</u> 3842 address
am certifying as	Owner		(Owner or Remedial Party)
for the Site named in the Site Signature of Owner, Remed Rendering Certification		_	3/26/15 Date

IC/EC CERTIFICAT	IONS
Professional Enginee	er Signature
I certify that all information in Boxes 4 and 5 are true. I une punishable as a Class "A" misdemeanor, pursuant to Section	
	sh American Blvd, Latham, NY 121 business address
am certifying as a Professional Engineer for the	Owner (Owner or Remedial Party)
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	Stamp Date (Required for PE)

.*.

ATTACHMENT B

2014 Annual Groundwater Sample Laboratory Report

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-68237-1

Client Project/Site: ChemTrol Site - Annual Groundwater Sampling Event: ChemTrol Annual Groundwater

For:

Waste Management 4 Liberty Lane West Hampton, New Hampshire 03842

Attn: Dave Moreira

rlisting of Ober

Authorized for release by: 10/20/2014 2:20:25 PM Christina Dosier, Project Mgmt. Assistant christina.dosier@testamericainc.com

Designee for Ryan VanDette, Project Manager II (716)504-9830 ryan.vandette@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Field Data Sheets	22

Definitions/Glossary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

GI	os	sa	rv
-			

Glossaly		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

1 2 3 4 5 6 7 8 9 10

Job ID: 480-68237-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-68237-1

Comments

No additional comments.

Receipt

The samples were received on 9/29/2014 3:12 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method(s) 8260C: The following sample(s) was diluted due to the amount of sulfur observed in the sample: MW-7R (480-68237-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

		Detec	tion Sum	mary					
Client: Waste Management Project/Site: ChemTrol Site - Annual	Groundwater					Te	est	America Job	D: 480-68237-1
Client Sample ID: DUP						La	b	Sample IE): 480-68237-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	24		5.0		ug/L	42	_	8260C	Total/NA
Chloroethane	20		8.4		ug/L	42		8260C	Total/NA
o-Chlorotoluene	2000		5.0		ug/L	42		8260C	Total/NA
Client Sample ID: MW-13R						La	b	Sample IE): 480-68237-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	25		5.0		ug/L	42	_	8260C	Total/NA
Chloroethane	25		8.4		ug/L	42		8260C	Total/NA
o-Chlorotoluene	2100		5.0		ug/L	42		8260C	Total/NA
Client Sample ID: MW-15R						La	b	Sample II): 480-68237-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyclohexane	23		5.0		ug/L	1	_	8260C	Total/NA
Methylcyclohexane	16		5.0		ug/L	1		8260C	Total/NA
Client Sample ID: MW-3S						La	b	Sample IE): 480-68237-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Chlorotoluene	69000		210		ug/L	2100	_	8260C	Total/NA
Client Sample ID: MW-7R						La	b	Sample ID): 480-68237-5
No Detections.									
Client Sample ID: MW-8R						La	b	Sample ID): 480-68237-(
Client Sample ID: MW-8R		Qualifier	RL	MDL	Unit	La Dil Fac): 480-68237-6
	Result	Qualifier	RL 5.0	MDL	Unit ug/L				
		Qualifier		MDL	-	Dil Fac 1	D	Method 8260C	Prep Type Total/NA
Analyte o-Chlorotoluene	61	Qualifier		MDL	ug/L	Dil Fac 1	D	Method 8260C Sample IE Method	Prep Type Total/NA
Analyte o-Chlorotoluene Client Sample ID: MW-9R	61		5.0		ug/L	Dil Fac 1 La	D	Method 8260C Sample IE	Prep Type Total/NA 2: 480-68237-7
Analyte o-Chlorotoluene Client Sample ID: MW-9R Analyte	61 Result		5.0 RL		ug/L Unit	Dil Fac 1 La	D	Method 8260C Sample IE Method	Prep Type Total/NA D: 480-68237-7 Prep Type
Analyte o-Chlorotoluene Client Sample ID: MW-9R Analyte 1,1,1-Trichloroethane	61 		5.0 RL 5.0		Unit ug/L	Dil Fac 1 	D	Method 8260C Sample IE Method 8260C	Prep Type Total/NA 0: 480-68237-7 Prep Type Total/NA
Analyte o-Chlorotoluene Client Sample ID: MW-9R Analyte 1,1,1-Trichloroethane 1,1-Dichloroethane	61 		5.0 RL 5.0 5.0		Unit ug/L ug/L ug/L	Dil Fac 1 La Dil Fac 21 21	D	Method 8260C Sample IC Method 8260C 8260C	Prep Type Total/NA 1: 480-68237-7 Prep Type Total/NA Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

RL

MDL Unit

D

Prepared

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

Client Sample ID: DUP

Analyte

Date Collected: 09/29/14 12:52

Date Received: 09/29/14 15:12

TestAmerica Job ID: 480-68237-1

Lab Sample ID: 480-68237-1

Analyzed

Matrix: Water

Dil Fac

11

12

Analyte	Result			D Flepaleu Allalyzeu	Dirrac
1,1,1-Trichloroethane	ND	5.0	ug/L	10/08/14 12:0	1 42
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	10/08/14 12:0	1 42 🤇
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L	10/08/14 12:0	1 42
1,1,2-Trichloroethane	ND	5.0	ug/L	10/08/14 12:0	1 42
1,1-Dichloroethane	24	5.0	ug/L	10/08/14 12:0	1 42
1,2,4-Trichlorobenzene	ND	5.0	ug/L	10/08/14 12:0	1 42
1,2-Dibromo-3-Chloropropane	ND	8.0	ug/L	10/08/14 12:0	1 42
1,2-Dibromoethane	ND	5.9	ug/L	10/08/14 12:0	1 42
1,2-Dichlorobenzene	ND	5.5	ug/L	10/08/14 12:0	1 42
1,2-Dichloroethane	ND	6.7	ug/L	10/08/14 12:0	1 42 🧃
1,2-Dichloropropane	ND	5.0	ug/L	10/08/14 12:0	1 42
1,3-Dichlorobenzene	ND	5.0	ug/L	10/08/14 12:0	1 42
1,4-Dichlorobenzene	ND	6.7	ug/L	10/08/14 12:0	1 42
2-Butanone (MEK)	ND	34	ug/L	10/08/14 12:0	1 42
2-Hexanone	ND	30	ug/L	10/08/14 12:0	1 42
4-Methyl-2-pentanone (MIBK)	ND	27	ug/L	10/08/14 12:0	1 42
Acetone	ND	29	ug/L	10/08/14 12:0	1 42
Benzene	ND	5.0	ug/L	10/08/14 12:0	1 42
Bromodichloromethane	ND	5.0	ug/L	10/08/14 12:0	1 42
Bromoform	ND	5.0	ug/L	10/08/14 12:0	1 42
Bromomethane	ND	9.2	ug/L	10/08/14 12:0	1 42
Carbon disulfide	ND	6.7	ug/L	10/08/14 12:0	1 42
Carbon tetrachloride	ND	5.0	ug/L	10/08/14 12:0	1 42
Chlorobenzene	ND	5.0	ug/L	10/08/14 12:0	1 42
Chlorodibromomethane	ND	5.0	ug/L	10/08/14 12:0	1 42
Chloroethane	20	8.4	ug/L	10/08/14 12:0	1 42
Chloroform	ND	5.0	ug/L	10/08/14 12:0	1 42
Chloromethane	ND	8.0	ug/L	10/08/14 12:0	1 42
cis-1,2-Dichloroethene	ND	5.9	ug/L	10/08/14 12:0	
cis-1,3-Dichloropropene	ND	5.9	ug/L	10/08/14 12:0	1 42
Cyclohexane	ND	5.0	ug/L	10/08/14 12:0	1 42
Dichlorofluoromethane	ND	42	ug/L	10/08/14 12:0	1 42
Ethylbenzene	ND	5.0	ug/L	10/08/14 12:0	1 42
Isopropylbenzene	ND	5.0	ug/L	10/08/14 12:0	1 42
Methyl acetate	ND	8.8	ug/L	10/08/14 12:0	1 42
Methyl tert-butyl ether	ND	5.0	ug/L	10/08/14 12:0	1 42
Methylcyclohexane	ND	5.0	ug/L	10/08/14 12:0	1 42
Methylene Chloride	ND	6.3	ug/L	10/08/14 12:0	
o-Chlorotoluene	2000	5.0	ug/L	10/08/14 12:0	1 42
Styrene	ND	5.0	-	10/08/14 12:0	
Tetrachloroethene	ND	5.0	-	10/08/14 12:0	1 42
Toluene	ND	5.0	ug/L	10/08/14 12:0	1 42
trans-1,2-Dichloroethene	ND	5.9	-	10/08/14 12:0	
trans-1,3-Dichloropropene	ND	8.0	-	10/08/14 12:0	
Trichloroethene	ND	5.5	ug/L	10/08/14 12:0	1 42
Trichlorofluoromethane	ND	8.4	_		
Vinyl chloride	ND	9.7			
Xylenes, Total	ND	15	ug/L	10/08/14 12:0	1 42

TestAmerica Buffalo

Client Sample ID: DUP Date Collected: 09/29/14 12:52 Lab Sample ID: 480-68237-1

Matrix: Water

10 11

12

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	101		50 - 150				10/08/14 12:01	4
Toluene-d8 (Surr)	100		80 - 120				10/08/14 12:01	4
lient Sample ID: MW-13R						Lab Sam	nple ID: 480-6	8237-2
ate Collected: 09/29/14 12:52 ate Received: 09/29/14 15:12							Matrix	k: Wate
Method: 8260C - Volatile Organi	c Compounds I	by GC/MS						
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	ug/L			10/08/14 12:34	4
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L			10/08/14 12:34	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ug/L			10/08/14 12:34	4
1,1,2-Trichloroethane	ND		5.0	ug/L			10/08/14 12:34	4
1,1-Dichloroethane	25		5.0	ug/L			10/08/14 12:34	4
1,2,4-Trichlorobenzene	ND		5.0	ug/L			10/08/14 12:34	4
1,2-Dibromo-3-Chloropropane	ND		8.0	ug/L			10/08/14 12:34	4
1,2-Dibromoethane	ND		5.9	ug/L			10/08/14 12:34	4
1,2-Dichlorobenzene	ND		5.5	ug/L			10/08/14 12:34	4
1,2-Dichloroethane	ND		6.7	ug/L			10/08/14 12:34	4
1,2-Dichloropropane	ND		5.0	ug/L			10/08/14 12:34	4
1,3-Dichlorobenzene	ND		5.0	ug/L			10/08/14 12:34	4
1,4-Dichlorobenzene	ND		6.7	ug/L			10/08/14 12:34	4
2-Butanone (MEK)	ND		34	ug/L			10/08/14 12:34	4
2-Hexanone	ND		30	ug/L			10/08/14 12:34	4
4-Methyl-2-pentanone (MIBK)	ND		27	ug/L			10/08/14 12:34	4
Acetone	ND		29	ug/L			10/08/14 12:34	4
Benzene	ND		5.0	ug/L			10/08/14 12:34	4
Bromodichloromethane	ND		5.0	ug/L			10/08/14 12:34	4
Bromoform	ND		5.0	ug/L			10/08/14 12:34	4
Bromomethane	ND		9.2	ug/L			10/08/14 12:34	4
Carbon disulfide	ND		6.7	ug/L			10/08/14 12:34	4
Carbon tetrachloride	ND		5.0	ug/L			10/08/14 12:34	4
Chlorobenzene	ND		5.0	ug/L			10/08/14 12:34	4
Chlorodibromomethane	ND		5.0	ug/L			10/08/14 12:34	4
Chloroethane	25		8.4	ug/L			10/08/14 12:34	4
Chloroform	ND		5.0	ug/L			10/08/14 12:34	4
Chloromethane	ND		8.0	ug/L			10/08/14 12:34	4
cis-1,2-Dichloroethene	ND		5.9	ug/L			10/08/14 12:34	4
cis-1,3-Dichloropropene	ND		5.9	ug/L			10/08/14 12:34	4
Cyclohexane	ND		5.0	ug/L			10/08/14 12:34	4
Dichlorofluoromethane	ND		42	ug/L			10/08/14 12:34	4
Ethylbenzene	ND		5.0	ug/L			10/08/14 12:34	4
Isopropylbenzene	ND		5.0	ug/L			10/08/14 12:34	4
Methyl acetate	ND		8.8	ug/L			10/08/14 12:34	4
•	ND		5.0				10/08/14 12:34	4
Methyl tert-butyl ether				ug/L				
Methylcyclohexane	ND		5.0	ug/L			10/08/14 12:34	4
Methylene Chloride	ND		6.3	ug/L			10/08/14 12:34	4
o-Chlorotoluene	2100		5.0	ug/L			10/08/14 12:34	4
Styrene	ND		5.0	ug/L			10/08/14 12:34	4

TestAmerica Buffalo

Client Sample ID: MW-13R Date Collected: 09/29/14 12:52

Date Received: 09/29/14 15:12

Method: 8260C - Volatile Organ	nic Compounds	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		5.0		ug/L			10/08/14 12:34	42
trans-1,2-Dichloroethene	ND		5.9		ug/L			10/08/14 12:34	42
trans-1,3-Dichloropropene	ND		8.0		ug/L			10/08/14 12:34	42
Trichloroethene	ND		5.5		ug/L			10/08/14 12:34	42
Trichlorofluoromethane	ND		8.4		ug/L			10/08/14 12:34	42
Vinyl chloride	ND		9.7		ug/L			10/08/14 12:34	42
Xylenes, Total	ND		15		ug/L			10/08/14 12:34	42
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		50 - 150			-		10/08/14 12:34	42
Toluene-d8 (Surr)	101		80 - 120					10/08/14 12:34	42

Client Sample ID: MW-15R

Date Collected: 09/29/14 12:59

Date Received: 09/29/14 15:12

Method: 8260C - Volatile Organi	ic Compounds by GC/MS
---------------------------------	-----------------------

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,1,2-Trichloroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,1-Dichloroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/08/14 13:07	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/08/14 13:07	1
1,2-Dibromoethane	ND	5.0	ug/L		10/08/14 13:07	1
1,2-Dichlorobenzene	ND	5.0	ug/L		10/08/14 13:07	1
1,2-Dichloroethane	ND	5.0	ug/L		10/08/14 13:07	1
1,2-Dichloropropane	ND	5.0	ug/L		10/08/14 13:07	1
1,3-Dichlorobenzene	ND	5.0	ug/L		10/08/14 13:07	1
1,4-Dichlorobenzene	ND	5.0	ug/L		10/08/14 13:07	1
2-Butanone (MEK)	ND	25	ug/L		10/08/14 13:07	1
2-Hexanone	ND	25	ug/L		10/08/14 13:07	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/08/14 13:07	1
Acetone	ND	25	ug/L		10/08/14 13:07	1
Benzene	ND	5.0	ug/L		10/08/14 13:07	1
Bromodichloromethane	ND	5.0	ug/L		10/08/14 13:07	1
Bromoform	ND	5.0	ug/L		10/08/14 13:07	1
Bromomethane	ND	5.0	ug/L		10/08/14 13:07	1
Carbon disulfide	ND	5.0	ug/L		10/08/14 13:07	1
Carbon tetrachloride	ND	5.0	ug/L		10/08/14 13:07	1
Chlorobenzene	ND	5.0	ug/L		10/08/14 13:07	1
Chlorodibromomethane	ND	5.0	ug/L		10/08/14 13:07	1
Chloroethane	ND	5.0	ug/L		10/08/14 13:07	1
Chloroform	ND	5.0	ug/L		10/08/14 13:07	1
Chloromethane	ND	5.0	ug/L		10/08/14 13:07	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 13:07	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 13:07	1
Cyclohexane	23	5.0	ug/L		10/08/14 13:07	1
Dichlorofluoromethane	ND	5.0	ug/L		10/08/14 13:07	1

TestAmerica Buffalo

TestAmerica Job ID: 480-68237-1

Lab Sample ID: 480-68237-2 Matrix: Water

Lab Sample ID: 480-68237-3

Matrix: Water

Client Sample ID: MW-15R Date Collected: 09/29/14 12:59

Date Received: 09/29/14 15:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		5.0		ug/L			10/08/14 13:07	1
Isopropylbenzene	ND		5.0		ug/L			10/08/14 13:07	1
Methyl acetate	ND		5.0		ug/L			10/08/14 13:07	1
Methyl tert-butyl ether	ND		5.0		ug/L			10/08/14 13:07	1
Methylcyclohexane	16		5.0		ug/L			10/08/14 13:07	1
Methylene Chloride	ND		5.0		ug/L			10/08/14 13:07	1
o-Chlorotoluene	ND		5.0		ug/L			10/08/14 13:07	1
Styrene	ND		5.0		ug/L			10/08/14 13:07	1
Tetrachloroethene	ND		5.0		ug/L			10/08/14 13:07	1
Toluene	ND		5.0		ug/L			10/08/14 13:07	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/08/14 13:07	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			10/08/14 13:07	1
Trichloroethene	ND		5.0		ug/L			10/08/14 13:07	1
Trichlorofluoromethane	ND		5.0		ug/L			10/08/14 13:07	1
Vinyl chloride	ND		5.0		ug/L			10/08/14 13:07	1
Xylenes, Total	ND		15		ug/L			10/08/14 13:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		50 - 150			-		10/08/14 13:07	1

80 - 120

99

Client Sample ID: MW-3S

Toluene-d8 (Surr)

Date Collected: 09/29/14 13:22

Date Received: 09/29/14 15:12

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	150	ug/L		10/08/14 13:39	2100
1,1,2,2-Tetrachloroethane	ND	210	ug/L		10/08/14 13:39	2100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	230	ug/L		10/08/14 13:39	2100
1,1,2-Trichloroethane	ND	250	ug/L		10/08/14 13:39	2100
1,1-Dichloroethane	ND	210	ug/L		10/08/14 13:39	2100
1,2,4-Trichlorobenzene	ND	210	ug/L		10/08/14 13:39	2100
1,2-Dibromo-3-Chloropropane	ND	400	ug/L		10/08/14 13:39	2100
1,2-Dibromoethane	ND	290	ug/L		10/08/14 13:39	2100
1,2-Dichlorobenzene	ND	270	ug/L		10/08/14 13:39	2100
1,2-Dichloroethane	ND	340	ug/L		10/08/14 13:39	2100
1,2-Dichloropropane	ND	250	ug/L		10/08/14 13:39	2100
1,3-Dichlorobenzene	ND	230	ug/L		10/08/14 13:39	2100
1,4-Dichlorobenzene	ND	340	ug/L		10/08/14 13:39	2100
2-Butanone (MEK)	ND	1700	ug/L		10/08/14 13:39	2100
2-Hexanone	ND	1500	ug/L		10/08/14 13:39	2100
4-Methyl-2-pentanone (MIBK)	ND	1400	ug/L		10/08/14 13:39	2100
Acetone	ND	1400	ug/L		10/08/14 13:39	2100
Benzene	ND	170	ug/L		10/08/14 13:39	2100
Bromodichloromethane	ND	190	ug/L		10/08/14 13:39	2100
Bromoform	ND	130	ug/L		10/08/14 13:39	2100
Bromomethane	ND	460	ug/L		10/08/14 13:39	2100
Carbon disulfide	ND	340	ug/L		10/08/14 13:39	2100
Carbon tetrachloride	ND	170	ug/L		10/08/14 13:39	2100

TestAmerica Buffalo

Lab Sample ID: 480-68237-3 Matrix: Water

1

Lab Sample ID: 480-68237-4 Matrix: Water

10/08/14 13:07

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-68237-1

Lab Sample ID: 480-68237-4 Matrix: Water

5

6

Date Collected: 09/29/14 13:22 Date Received: 09/29/14 15:12

Client Sample ID: MW-3S

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		190		ug/L			10/08/14 13:39	2100
Chlorodibromomethane	ND		210		ug/L			10/08/14 13:39	2100
Chloroethane	ND		420		ug/L			10/08/14 13:39	2100
Chloroform	ND		230		ug/L			10/08/14 13:39	2100
Chloromethane	ND		400		ug/L			10/08/14 13:39	2100
cis-1,2-Dichloroethene	ND		290		ug/L			10/08/14 13:39	2100
cis-1,3-Dichloropropene	ND		290		ug/L			10/08/14 13:39	2100
Cyclohexane	ND		210		ug/L			10/08/14 13:39	2100
Dichlorofluoromethane	ND		2100		ug/L			10/08/14 13:39	2100
Ethylbenzene	ND		190		ug/L			10/08/14 13:39	2100
Isopropylbenzene	ND		150		ug/L			10/08/14 13:39	2100
Methyl acetate	ND		440		ug/L			10/08/14 13:39	2100
Methyl tert-butyl ether	ND		190		ug/L			10/08/14 13:39	2100
Methylcyclohexane	ND		150		ug/L			10/08/14 13:39	2100
Methylene Chloride	ND		320		ug/L			10/08/14 13:39	2100
o-Chlorotoluene	69000		210		ug/L			10/08/14 13:39	2100
Styrene	ND		210		ug/L			10/08/14 13:39	2100
Tetrachloroethene	ND		230		ug/L			10/08/14 13:39	2100
Toluene	ND		190		ug/L			10/08/14 13:39	2100
trans-1,2-Dichloroethene	ND		290		ug/L			10/08/14 13:39	2100
trans-1,3-Dichloropropene	ND		400		ug/L			10/08/14 13:39	2100
Trichloroethene	ND		270		ug/L			10/08/14 13:39	2100
Trichlorofluoromethane	ND		420		ug/L			10/08/14 13:39	2100
Vinyl chloride	ND		480		ug/L			10/08/14 13:39	2100
Xylenes, Total	ND		550		ug/L			10/08/14 13:39	2100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		50 - 150			-		10/08/14 13:39	2100
Toluene-d8 (Surr)	99		80 - 120					10/08/14 13:39	2100

Client Sample ID: MW-7R

Date Collected: 09/29/14 12:26

Date Received: 09/29/14 15:12

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,1,2,2-Tetrachloroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,1,2-Trichloroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,1-Dichloroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,2,4-Trichlorobenzene	ND	5.0		ug/L			10/08/14 14:12	2
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			10/08/14 14:12	2
1,2-Dibromoethane	ND	5.0		ug/L			10/08/14 14:12	2
1,2-Dichlorobenzene	ND	5.0		ug/L			10/08/14 14:12	2
1,2-Dichloroethane	ND	5.0		ug/L			10/08/14 14:12	2
1,2-Dichloropropane	ND	5.0		ug/L			10/08/14 14:12	2
1,3-Dichlorobenzene	ND	5.0		ug/L			10/08/14 14:12	2
1,4-Dichlorobenzene	ND	5.0		ug/L			10/08/14 14:12	2
2-Butanone (MEK)	ND	25		ug/L			10/08/14 14:12	2

TestAmerica Buffalo

Lab Sample ID: 480-68237-5

Matrix: Water

TestAmerica Job ID: 480-68237-1

Lab Sample ID: 480-68237-5

Matrix: Water

Client Sample ID: MW-7R Date Collected: 09/29/14 12:26

Date Received: 09/29/14 15:12

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
2-Hexanone	ND		25	ug/L		10/08/14 14:12	2
4-Methyl-2-pentanone (MIBK)	ND		25	ug/L		10/08/14 14:12	2
Acetone	ND		25	ug/L		10/08/14 14:12	2
Benzene	ND		5.0	ug/L		10/08/14 14:12	2
Bromodichloromethane	ND		5.0	ug/L		10/08/14 14:12	2
Bromoform	ND		5.0	ug/L		10/08/14 14:12	2
Bromomethane	ND		5.0	ug/L		10/08/14 14:12	2
Carbon disulfide	ND		5.0	ug/L		10/08/14 14:12	2
Carbon tetrachloride	ND		5.0	ug/L		10/08/14 14:12	2
Chlorobenzene	ND		5.0	ug/L		10/08/14 14:12	2
Chlorodibromomethane	ND		5.0	ug/L		10/08/14 14:12	2
Chloroethane	ND		5.0	ug/L		10/08/14 14:12	2
Chloroform	ND		5.0	ug/L		10/08/14 14:12	2
Chloromethane	ND		5.0	ug/L		10/08/14 14:12	2
cis-1,2-Dichloroethene	ND		5.0	ug/L		10/08/14 14:12	2
cis-1,3-Dichloropropene	ND		5.0	ug/L		10/08/14 14:12	2
Cyclohexane	ND		5.0	ug/L		10/08/14 14:12	2
Dichlorofluoromethane	ND		5.0	ug/L		10/08/14 14:12	2
Ethylbenzene	ND		5.0	ug/L		10/08/14 14:12	2
Isopropylbenzene	ND		5.0	ug/L		10/08/14 14:12	2
Methyl acetate	ND		5.0	ug/L		10/08/14 14:12	2
Methyl tert-butyl ether	ND		5.0	ug/L		10/08/14 14:12	2
Methylcyclohexane	ND		5.0	ug/L		10/08/14 14:12	2
Methylene Chloride	ND		5.0	ug/L		10/08/14 14:12	2
o-Chlorotoluene	ND		5.0	ug/L		10/08/14 14:12	2
Styrene	ND		5.0	ug/L		10/08/14 14:12	2
Tetrachloroethene	ND		5.0	ug/L		10/08/14 14:12	2
Toluene	ND		5.0	ug/L		10/08/14 14:12	2
trans-1,2-Dichloroethene	ND		5.0	ug/L		10/08/14 14:12	2
trans-1,3-Dichloropropene	ND		5.0	ug/L		10/08/14 14:12	2
Trichloroethene	ND		5.0	ug/L		10/08/14 14:12	2
Trichlorofluoromethane	ND		5.0	ug/L		10/08/14 14:12	2
Vinyl chloride	ND		5.0	ug/L		10/08/14 14:12	2
Xylenes, Total	ND		15	ug/L		10/08/14 14:12	2
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		50 - 150			10/08/14 14:12	2
Toluene-d8 (Surr)	100		80 - 120			10/08/14 14:12	2

Client Sample ID: MW-8R Date Collected: 09/29/14 12:45

Date Received: 09/29/14 15:12

Method: 8260C - Volatile Organic	Compounds by GC/MS					
Analyte	Result Qualifier	RL	MDL Unit	D Prepa	ared Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		10/08/14 14:45	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/08/14 14:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/08/14 14:45	1
1,1,2-Trichloroethane	ND	5.0	ug/L		10/08/14 14:45	1
1,1-Dichloroethane	ND	5.0	ug/L		10/08/14 14:45	1

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-68237-6

Page 11 of 35

Lab Sample ID: 480-68237-6

Matrix: Water

5

6

Client Sample ID: MW-8R Date Collected: 09/29/14 12:45

Date Received: 09/29/14 15:12

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/08/14 14:45	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/08/14 14:45	1
1,2-Dibromoethane	ND	5.0	ug/L		10/08/14 14:45	1
1,2-Dichlorobenzene	ND	5.0	ug/L		10/08/14 14:45	1
1,2-Dichloroethane	ND	5.0	ug/L		10/08/14 14:45	1
1,2-Dichloropropane	ND	5.0	ug/L		10/08/14 14:45	1
1,3-Dichlorobenzene	ND	5.0	ug/L		10/08/14 14:45	1
1,4-Dichlorobenzene	ND	5.0	ug/L		10/08/14 14:45	1
2-Butanone (MEK)	ND	25	ug/L		10/08/14 14:45	1
2-Hexanone	ND	25	ug/L		10/08/14 14:45	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/08/14 14:45	1
Acetone	ND	25	ug/L		10/08/14 14:45	1
Benzene	ND	5.0	ug/L		10/08/14 14:45	1
Bromodichloromethane	ND	5.0	ug/L		10/08/14 14:45	1
Bromoform	ND	5.0	ug/L		10/08/14 14:45	1
Bromomethane	ND	5.0	ug/L		10/08/14 14:45	1
Carbon disulfide	ND	5.0	ug/L		10/08/14 14:45	1
Carbon tetrachloride	ND	5.0	ug/L		10/08/14 14:45	1
Chlorobenzene	ND	5.0	ug/L		10/08/14 14:45	1
Chlorodibromomethane	ND	5.0	ug/L		10/08/14 14:45	1
Chloroethane	ND	5.0	ug/L		10/08/14 14:45	1
Chloroform	ND	5.0	ug/L		10/08/14 14:45	1
Chloromethane	ND	5.0	ug/L		10/08/14 14:45	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 14:45	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 14:45	1
Cyclohexane	ND	5.0	ug/L		10/08/14 14:45	1
Dichlorofluoromethane	ND	5.0	ug/L		10/08/14 14:45	1
Ethylbenzene	ND	5.0	ug/L		10/08/14 14:45	1
Isopropylbenzene	ND	5.0	ug/L		10/08/14 14:45	1
Methyl acetate	ND	5.0	ug/L		10/08/14 14:45	1
Methyl tert-butyl ether	ND	5.0	ug/L		10/08/14 14:45	1
Methylcyclohexane	ND	5.0	ug/L		10/08/14 14:45	1
Methylene Chloride	ND	5.0	ug/L		10/08/14 14:45	1
o-Chlorotoluene	61	5.0	ug/L		10/08/14 14:45	1
Styrene	ND	5.0	ug/L		10/08/14 14:45	1
Tetrachloroethene	ND	5.0	ug/L		10/08/14 14:45	1
Toluene	ND	5.0	ug/L		10/08/14 14:45	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 14:45	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 14:45	1
Trichloroethene	ND	5.0	ug/L		10/08/14 14:45	1
Trichlorofluoromethane	ND	5.0	ug/L		10/08/14 14:45	1
Vinyl chloride	ND	5.0	ug/L		10/08/14 14:45	1
Xylenes, Total	ND	15	ug/L		10/08/14 14:45	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101	50 - 150			10/08/14 14:45	1
Toluene-d8 (Surr)	100	80 - 120			10/08/14 14:45	1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

5

6

Lab Sample ID: 480-68237-7 Matrix: Water

Date Collected: 09/29/14 12:38 Date Received: 09/29/14 15:12

Client Sample ID: MW-9R

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	540	5.0	ug/L		10/08/14 15:18	2
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/08/14 15:18	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/08/14 15:18	2
1,1,2-Trichloroethane	ND	5.0	ug/L		10/08/14 15:18	2
1,1-Dichloroethane	300	5.0	ug/L		10/08/14 15:18	2
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/08/14 15:18	2
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/08/14 15:18	2
1,2-Dibromoethane	ND	5.0	ug/L		10/08/14 15:18	2
1,2-Dichlorobenzene	ND	5.0	ug/L		10/08/14 15:18	2
1,2-Dichloroethane	ND	5.0	ug/L		10/08/14 15:18	2′
1,2-Dichloropropane	ND	5.0	ug/L		10/08/14 15:18	2
1,3-Dichlorobenzene	ND	5.0	ug/L		10/08/14 15:18	2
1,4-Dichlorobenzene	ND	5.0	ug/L		10/08/14 15:18	2′
2-Butanone (MEK)	ND	25	ug/L		10/08/14 15:18	2
2-Hexanone	ND	25	ug/L		10/08/14 15:18	2
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/08/14 15:18	2
Acetone	ND	25	ug/L		10/08/14 15:18	2
Benzene	ND	5.0	ug/L		10/08/14 15:18	2
Bromodichloromethane	ND	5.0	ug/L		10/08/14 15:18	2′
Bromoform	ND	5.0	ug/L		10/08/14 15:18	2
Bromomethane	ND	5.0	ug/L		10/08/14 15:18	2
Carbon disulfide	ND	5.0	ug/L		10/08/14 15:18	2
Carbon tetrachloride	ND	5.0	ug/L		10/08/14 15:18	2
Chlorobenzene	ND	5.0	ug/L		10/08/14 15:18	2
Chlorodibromomethane	ND	5.0	ug/L		10/08/14 15:18	2
Chloroethane	19	5.0	ug/L		10/08/14 15:18	2
Chloroform	ND	5.0	ug/L		10/08/14 15:18	2
Chloromethane	ND	5.0	ug/L		10/08/14 15:18	2′
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 15:18	2
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 15:18	2
Cyclohexane	ND	5.0	ug/L		10/08/14 15:18	2′
Dichlorofluoromethane	ND	21	ug/L		10/08/14 15:18	2
Ethylbenzene	ND	5.0	ug/L		10/08/14 15:18	2
Isopropylbenzene	ND	5.0	ug/L		10/08/14 15:18	2
Methyl acetate	ND	5.0	ug/L		10/08/14 15:18	2
Methyl tert-butyl ether	ND	5.0	ug/L		10/08/14 15:18	2
Methylcyclohexane	ND	5.0	ug/L		10/08/14 15:18	2′
Methylene Chloride	ND	5.0	ug/L		10/08/14 15:18	2
o-Chlorotoluene	860	5.0	ug/L		10/08/14 15:18	2
Styrene	ND	5.0	ug/L		10/08/14 15:18	2′
Tetrachloroethene	ND	5.0	ug/L		10/08/14 15:18	2
Toluene	ND	5.0	ug/L		10/08/14 15:18	2
trans-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 15:18	2
trans-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 15:18	2
Trichloroethene	7.1	5.0	ug/L		10/08/14 15:18	2
Trichlorofluoromethane	ND	5.0	ug/L		10/08/14 15:18	2
Vinyl chloride	ND	5.0	ug/L		10/08/14 15:18	2
Xylenes, Total	ND	15	ug/L		10/08/14 15:18	2

1,2-Dibromoethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

4-Methyl-2-pentanone (MIBK)

Bromodichloromethane

2-Butanone (MEK)

2-Hexanone

Acetone

Benzene

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

o-Chlorotoluene

Tetrachloroethene

Styrene

Chloroform

Carbon tetrachloride

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorofluoromethane

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

10/08/14 11:28

5 6

Dil Fac	
1	
1	
1	
1	
1	
1	

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Client Sample ID: MW-9R							Lab Sam	nple ID: 480-6	8237-7
Date Collected: 09/29/14 12:38								Matrix	c: Water
Date Received: 09/29/14 15:12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)			50 - 150			-		10/08/14 15:18	21
Toluene-d8 (Surr)	102		80 - 120					10/08/14 15:18	21
							l ah Sam	nple ID: 480-6	8237-8
Client Sample ID: TB							Lab Gan	•	
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12							Lab Gan	•	
Date Collected: 09/29/14 09:30		by GC/MS Qualifier	RL	MDL	Unit	D	Prepared	•	c: Water
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi		-		MDL	Unit ug/L	D		Matrix	c: Water
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi Analyte	Result	-		MDL		D		Analyzed	Dil Fac
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi Analyte 1,1,1-Trichloroethane	Result ND	-	5.0	MDL	ug/L	D		Analyzed 10/08/14 11:28	c: Water
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Result ND ND	-	5.0 5.0	MDL	ug/L ug/L	<u> </u>		Matrix Analyzed 10/08/14 11:28 10/08/14 11:28	c: Water
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	Result ND ND ND ND	-	5.0 5.0 5.0	MDL	ug/L ug/L ug/L	<u> </u>		Matrix Analyzed 10/08/14 11:28 10/08/14 11:28 10/08/14 11:28	c: Water
Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12 Method: 8260C - Volatile Organi Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	Result ND ND ND ND	-	5.0 5.0 5.0 5.0	MDL	ug/L ug/L ug/L ug/L	<u> </u>		Analyzed 10/08/14 11:28 10/08/14 11:28 10/08/14 11:28 10/08/14 11:28	c: Water

5.0

5.0

5.0

5.0

5.0

5.0

25

25

25

25

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

ug/L

ND

TestAmerica Buffalo	TestAmeric	a Buffalo
---------------------	------------	-----------

TestAmerica Job ID: 480-68237-1

Client Sample ID: TB

Date Collected: 09/29/14 09:30 Date Received: 09/29/14 15:12

Lab Sample ID: 480-68237-8 Matrix: Water

6

Dil Fac

1

1

1

1

1

Analyte	Result Qual	fier RL	MDL	Unit	D	Prepared	Analyzed
Toluene	ND	5.0		ug/L			10/08/14 11:28
trans-1,2-Dichloroethene	ND	5.0		ug/L			10/08/14 11:28
trans-1,3-Dichloropropene	ND	5.0		ug/L			10/08/14 11:28
Trichloroethene	ND	5.0		ug/L			10/08/14 11:28
Trichlorofluoromethane	ND	5.0		ug/L			10/08/14 11:28

Vinyl chloride	ND	5.0	ug/L		10/08/14 11:28	1
Xylenes, Total	ND	15	ug/L		10/08/14 11:28	1
Surrogate	%Recovery Qu	ualifier Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99	50 - 150			10/08/14 11:28	1
Toluene-d8 (Surr)	102	80 - 120			10/08/14 11:28	1

TestAmerica Buffalo

Lab Sample ID: MB 200-78372/5

Matrix: Water

Xylenes, Total

Analysis Batch: 78372

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Client Sample ID: Method Blank

Prep Type: Total/NA

7

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,1,2-Trichloroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,1-Dichloroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		10/08/14 10:22	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		10/08/14 10:22	1
1,2-Dibromoethane	ND	5.0	ug/L		10/08/14 10:22	1
1,2-Dichlorobenzene	ND	5.0	ug/L		10/08/14 10:22	1
1,2-Dichloroethane	ND	5.0	ug/L		10/08/14 10:22	1
1,2-Dichloropropane	ND	5.0	ug/L		10/08/14 10:22	1
1,3-Dichlorobenzene	ND	5.0	ug/L		10/08/14 10:22	1
1,4-Dichlorobenzene	ND	5.0	ug/L		10/08/14 10:22	1
2-Butanone (MEK)	ND	25	ug/L		10/08/14 10:22	1
2-Hexanone	ND	25	ug/L		10/08/14 10:22	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		10/08/14 10:22	
Acetone	ND	25	ug/L		10/08/14 10:22	1
Benzene	ND	5.0	ug/L		10/08/14 10:22	1
Bromodichloromethane	ND	5.0	ug/L		10/08/14 10:22	1
Bromoform	ND	5.0	ug/L		10/08/14 10:22	1
Bromomethane	ND	5.0	ug/L		10/08/14 10:22	1
Carbon disulfide	ND	5.0	ug/L		10/08/14 10:22	
Carbon tetrachloride	ND	5.0	ug/L		10/08/14 10:22	1
Chlorobenzene	ND	5.0	ug/L		10/08/14 10:22	1
Chlorodibromomethane	ND	5.0	ug/L		10/08/14 10:22	1
Chloroethane	ND	5.0	ug/L		10/08/14 10:22	1
Chloroform	ND	5.0	ug/L		10/08/14 10:22	1
Chloromethane	ND	5.0	ug/L		10/08/14 10:22	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 10:22	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 10:22	1
Cyclohexane	ND	5.0	ug/L		10/08/14 10:22	1
Dichlorofluoromethane	ND	5.0	ug/L		10/08/14 10:22	1
Ethylbenzene	ND	5.0	ug/L		10/08/14 10:22	1
Isopropylbenzene	ND	5.0	ug/L		10/08/14 10:22	1
Methyl acetate	ND	5.0	ug/L		10/08/14 10:22	1
Methyl tert-butyl ether	ND	5.0	ug/L		10/08/14 10:22	1
Methylcyclohexane	ND	5.0	ug/L		10/08/14 10:22	1
Methylene Chloride	ND	5.0	ug/L		10/08/14 10:22	1
o-Chlorotoluene	ND	5.0	ug/L		10/08/14 10:22	1
Styrene	ND	5.0	ug/L		10/08/14 10:22	1
Tetrachloroethene	ND	5.0	ug/L		10/08/14 10:22	1
Toluene	ND	5.0	ug/L		10/08/14 10:22	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		10/08/14 10:22	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		10/08/14 10:22	1
Trichloroethene	ND	5.0	ug/L		10/08/14 10:22	1
Trichlorofluoromethane	ND	5.0	ug/L		10/08/14 10:22	1
Vinyl chloride	ND	5.0	ug/L		10/08/14 10:22	1
						•

TestAmerica Buffalo

1

10/08/14 10:22

15

ug/L

ND

Limits

50 - 150

80 - 120

Lab Sample ID: MB 200-78372/5

Lab Sample ID: LCS 200-78372/3

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

%Recovery Qualifier

103

103

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

2 3 4 5 6 7

10/08/14 10:22 1 10/08/14 10:22 1 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyzed

Prepared

Matrix: Water Analysis Batch: 78372

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 78372

Dibromofluoromethane (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	24.9		ug/L		100	80 - 120	
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	80 - 125	
1,2-Dichloroethane	25.0	25.2		ug/L		101	70 - 120	
Benzene	25.0	24.8		ug/L		99	80 - 125	
Chlorobenzene	25.0	24.9		ug/L		100	80 - 120	
cis-1,2-Dichloroethene	25.0	24.7		ug/L		99	80 - 125	
Ethylbenzene	25.0	24.8		ug/L		99	80 - 125	
Methyl tert-butyl ether	25.0	24.9		ug/L		100	80 - 120	
Tetrachloroethene	25.0	24.9		ug/L		100	80 - 120	
Toluene	25.0	24.7		ug/L		99	80 - 120	
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	80 - 125	
Trichloroethene	25.0	24.3		ug/L		97	75 ₋ 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		50 - 150
Toluene-d8 (Surr)	102		80 - 120

Certification Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-15

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-15
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15
Florida	NELAP	4	E87467	06-30-15
L-A-B	DoD ELAP		L2336	02-26-17
Maine	State Program	1	VT00008	04-17-15
Minnesota	NELAP	5	050-999-436	12-31-14 *
New Hampshire	NELAP	1	2006	12-18-14
New Jersey	NELAP	2	VT972	06-30-15
New York	NELAP	2	10391	03-31-15
Pennsylvania	NELAP	3	68-00489	04-30-15
Rhode Island	State Program	1	LAO00298	12-30-14
US Fish & Wildlife	Federal		LE-058448-0	02-28-15
USDA	Federal		P330-11-00093	10-28-16
Vermont	State Program	1	VT-4000	12-31-14
Virginia	NELAP	3	460209	12-14-14

* Certification renewal pending - certification considered valid.

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

5
Q
8
9
-

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUR

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Buffalo

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-68237-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received
480-68237-1	DUP	Water	09/29/14 12:52	09/29/14 15:12
180-68237-2	MW-13R	Water	09/29/14 12:52	09/29/14 15:12
480-68237-3	MW-15R	Water	09/29/14 12:59	09/29/14 15:12
480-68237-4	MW-3S	Water	09/29/14 13:22	09/29/14 15:12
480-68237-5	MW-7R	Water	09/29/14 12:26	09/29/14 15:12
480-68237-6	MW-8R	Water	09/29/14 12:45	09/29/14 15:12
480-68237-7	MW-9R	Water	09/29/14 12:38	09/29/14 15:12
480-68237-8	ТВ	Water	09/29/14 09:30	09/29/14 15:12

TestAmerica Buffalo

Client Information Sampler. Client Unformation Sampler. Mr. Mark Snyder Phone: Orimpany: System. Mr. Mark Snyder Phone: Sompany: System. Company: Variation Parkway Chin System. Address: Due Date Requested: Address: Public Address: Parkeract City: TAT Requested: Painort TAT Requested: City: TAT Requested: City: TAT Requested: City: Tate Requested: City: Tate Requested: City: Tat Requested: City: Tat Requested: City: Tate Requested: City: Tate Requested: City: Tate Requested: City: Tate Requested: City: Point No: 14450 Point Fronce: Sooyasse Order not requir Instructure: Point Remain: Point		Lab PNt: VanDette, Ryan T E-Mail: IF-Mail: nyan.vandette@testamericainc.com Analysis Requested (MoD) Local Method (MoD) Local Method MoD) Local Method	ber of containers	
in Phone: SSS-4,SS agement agement agement agement n Parkway n Parkway n TaT Requested: n Parkway n TaT Requested (days): n Po#: n Po#		الفريدية (MOD) Local Method (MOD) Local Method		Page: Page 1 of 1 Job #: A-HCL B-NaOH C-ZrAcetate E-Naticodd E-Nitricodd E-Naticodd E-Naticodd E-Naticodd E-Naticodd F-Acother
agement n Parkway n Parkway TAT Requested (days): FAT Requested (days): FO #: FO		(oV 10 set (Sample (Yes of Vo) MMSD (Yes of Vo) bortieM Isool (DOM)		Job #: Preservation Coc A - HCL B - Nach B - Nach D - Nitric Acid E - MeCH F - MECH
In Parkway In Parkway In Parkway In Tar Requested: In Tar Requested (days): In Trequested (days): In The trequested (days): In The trequested (days): In The trequested (days): In The trequested (days): In Trequested (days): In Trequested (days): In Tar Requested (days): In Tar Requested (days): In Tar Requested (days): In Trequested (days): In Trequested (days): In Tar Requested (days): In Tar		iltered Sample (Yes of No)		Preservation Coo A - HCL B - NaOH C - Zh Acetate C - Zh Acetate D - Nithic Acid F - MeOH F - MeOH F - Ascorbic Acid H - Ascorbic Acid I - Ion
TAT Requested (days): TAT Requested (days): FDC#:		ilfered Sample (Yes of No)	pet ol contenners	B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 E - NaHSO4 G - Amchior H - Ascorbic Acid I - Iou Mater
I6(Tel) 603-929-3115(Fax) PD#: PD#: wm.com Purchase Order not requir w0 #: w0 #: Prichase Order not requir w0 #: Prichase Order not requir w0 #: Prichase Order not requir SSOW#: SSOW#: Sample Date Sample		ilitered Sample (Yes of No)	pet of contents	F - MeOH G - Amchlor H - Ascorbic Acid I - Ice 1 - Dice
W0 # Project # 85002447 SSOV# SSOV# Sample Date Date Time		اللافتخار Sample (کوچ کر ۱۷). (کوچ کر ۷۵) (کوچ کر ۷۵) (کوچ کر ۷۵)	994 OF 6016919	I - Ice
Project #. 45002447 SSOW#: SSOW#: Sample Date Date Time		m WS/WSD ((کو	ອດເອີ້ນຕ່ອງໃດ າອດີ້	K - FDTA
SSOM#: Sample Date Time		Ulfered Samp	ipet o <u>i</u> 60	L - EDA
Sample Date Time		heredii!	iĝe 	Other:
Sample Date Time	Type Second Type Cw-water, Second, O-waster(II)	l ble		
A MANNAKANAN I. C. C. P. MANNAKANAN	C=grab) BT=Thsue, A=AIF) Preservation Code:			Special Instructions/Note:
	*1	5		
	1 Water	<u>60</u>		
MW-15R	Water	6		
MW-3S	Water	3		
MW-7R	Water	m		
MW-8R	Water	m	480-68237 Chain of Custody	Custody
MW49R	Water	r		
TB ~ 0930'	V Water	<u>ک</u>		
				•
Possible Hazard Identification	diological	Sample Disposal (A fee may be assessed if san Return To Client Disposal By Lab	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab	d longer than 1 month) e For Months
		Special Instructions/QC Requirem	nents:	
uished by:		Time:	Method of Shipment	
Relinquished by: Works MURE Date/Time: Relinquished by: Display 151	512 Company Company Company	But Received by:	Date Date Time: Date Time:	141512 Company OWF
Relinquished by: Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) °C and Other Remarks:	r Remarks: 1. W	

5

11

12

FIELD OBSERVATIONS	1				
Facility: Chemtral	Sample Point ID: MW-35 2				
Field Personnel: <i>TW</i> , <i>PN</i>	Sample Matrix: <u>Gu</u>				
MONITORTING WELL INSPECTION					
Date/Time 9-29-14 1 1045	Cond of seal: () Good () Cracked				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged				
If prot.casing; depth to riser below:	% LEL: _/9				
Gas Meter (Calibration/ Reading): % Gas: _					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) <u> </u>				
PURGE-INFORMATION	a za u lique				
Date / Time Initiated: 9-29-14/1047	Date / Time Completed: <u>9-29-14/1048</u> 12				
Surf. Meas. Pt: () Prot. Casing (/ Riser	Riser Diameter, Inches: <u>2.0</u>				
Initial Water Level, Feet: 18.49	Elevation, G/W MSL:				
Well Total Depth, Feet: <u>20.40</u>	Method of Well Purge: <u>Baci Ler</u>				
One (1) Riser Volume, Gal: 0.31	Dedicated: (Y) I N				
Total Volume Purged, Gal: Dry CNO.30	Purged To Dryness ØT N				
Purge Observations:	Start <u>Bluck tut</u> Finish <u>clear</u> Stoder Stoder				
PURGE DATAI (If applicable)	St. Odor Diodor				
Time Purge Rate Cumulative Temp.	pH Conductivity Turb. Other Other (SU) (µmhos/cm) (NTU)				
(gpm/htz) Volume (C)					

_ ...

1

FIELD	OBSERVATIONS
-------	--------------

h

Water Level @ Sampling, Feet: 18-5		DUFODMAT	IN						
Date/Time 9-29-14/1322 Water Level @ Sampling, Feet: 18-5 Method of Sampling: Bour Ler Dedicated: ØIN Multi-phased/ layered: () Yes MNo If YES: () light () heavy SAMPLING DATA: Time Ferne Other (t) heavy SAMPLING DATA: Turb. Other (t) heavy 1322 12.5 7.23 138/6 15.05 -79 1322 12.5 7.23 138/6 15.05 -79 - INSTRUMENTSCALERATION/CHECKED/ETA 10.8 SU 1,413 thoses/micked/takenes/micked/	SAMPLING								
Date/Time 9-29-14 1 SZZ Inter Dedicated: Ø/N Method of Sampling: Bailter Dedicated: Ø/N If YES: () light () heavy Multi-phased/ layered: () Yes //No If YES: () light () heavy SAMPLING DATA: Turb. Other Other () they () heavy SAMPLING DATA: PH Conductivity Turb. Other () they () heavy SAMPLING DATA: PH Conductivity Turb. Other () they () heavy INSTRUMENTCALLERATION/CEEOKDATA: IIII Stat Cal.Std 1.413 (al.Std 10 NTU (cal.Std 10 NTU (cal.Std <td>POINT ID</td> <td></td> <td></td> <td></td> <td></td> <td>Materiato</td> <td>@ Sampling</td> <td>Feet:</td> <td>18-5</td>	POINT ID					Materiato	@ Sampling	Feet:	18-5
Method of Sampling: Isocurrer Multi-phased/ layered: () Yes No If YES: () light () heavy SAMPLING DATA: Time Temp. pH Conductivity Turb. Other Other 1322 12.5 7.23 138/6 .15.05 -29 INSTRUMENT CAUERATION/CHEO/EDATA Instrument of the second of the	Date/Time	9-29	-14 1		1	Water Level			<u></u>
Multi-phased/ layered: () Yes () No In Lot () No SAMPLING DATA: Time formp. pH (conductivity Turb. (other) (ither) 1322 13.5 7.23 138/6 15.05 -29	Method of S	ampling:		Ba	<u>,] e [</u>				
Time Temp. (°C) pH (std units) Conclusivity (NTU) (orp.) (_) 1322 12.5 7.2.3 1386 15.05 -29	Multi-phase	d/ layered:	()Yes	(TNO		If YES:	() light	() heavy	
Time Temp. (°C) pH (std units) Conclusivity (NTU) (<i>arp</i>) (<i>i</i>) 1322 12.5 7.2.3 1386 15.05 -29	SAMPLING	DATA:				Turb	Other	Other	1
INSTRUMENT CALIERATION/CHECK/DATA:		Temp.						()	
INSTRUMENT CALIERATION/CHEOK DATA: Meter ID# Cal Std 7.0 SU Cal Std 4.0 SU Cal Std 10.0 SU Check Std 7.0 SU Cal Std 1,413 µmhos/cm (± 10%) Check Std 1,413 µmhos/cm (± 10%) Check Std 10 NTU Check Std 10 NTU Solution ID#	1377		7.23	13	86	15.05	- 79		
Meter ID# Cal Std T.0 SU Cal Std 4.0 SU Cal Std 10.0 SU Check Std T.0 SU (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Check Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Check Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Check Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10	1700	10.0							
Meter ID# Cal Std T.0 SU Cal Std 4.0 SU Cal Std 10.0 SU Check Std T.0 SU (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10%) Check Std 10 µmhos/cm (± 10%) Cal.Std 10 µmhos/cm (± 10			<u> </u>						
Meter ID# Cal Std T.0 SU Cal Std 4.0 SU Cal Std 10.0 SU Check Std (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 1,413 µmhos/cm (± 10%) Cal.Std 10 NTU Check Std 10 (± 10 NTU Solution ID#									
Meter ID# Cal Std 7.0 SU Cal Std 4.0 SU Cal Std 10.0 SU Cal Std 7.0 SU (± 10%) 1,413 µmhos/cm 1,413 µmhos/cm 10 NTU 10 (± 10 NTU 10 (± Solution ID#	INSTRUME	NTCALIBR	ATION/CHE	ok data:					
GENERALINFORMATION: Weather conditions @ time of sampling: Sanny ~69° Swe Smph Sample Characteristics: CLear + W/SL.odor COMMENTS AND OBSERVATIONS:	Meter ID#				7.0 SU	1,413	1,413 µmhos/cm		10
GENERAL INFORMATION: Weather conditions @ time of sampling: Sunny ~69° Swe Smph Sample Characteristics: CLear + W/SL.odor COMMENTS AND OBSERVATIONS:		-						<u> </u>	
GENERAL INFORMATION: Weather conditions @ time of sampling: Sanny ~69° Swe Smph Sample Characteristics:CLear + W/SL.odor COMMENTS AND OBSERVATIONS:			<u> </u>			 			
GENERAL INFORMATION: Weather conditions @ time of sampling: Sunny ~69°f Swe Smph Sample Characteristics:CLear + W/SL.odor COMMENTS AND OBSERVATIONS:									
Weather conditions @ time of sampling: Sunny ~69°' SW& Smph Sample Characteristics: <u>Clear</u> , W/SL.odor COMMENTS AND OBSERVATIONS:	Solution ID#								
Sample Characteristics: CLear W/SLodor COMMENTS AND OBSERVATIONS:						e e f	S.I. 1	ρ $C_{\rm r}$	<u>al</u>
COMMENTS AND OBSERVATIONS:	Weather co	nditions @ ti	ime of sampli	ng: <u>Sanr</u>	<u>y ~a</u>	9			
COMMENTS AND OBSERVATIONS:	Sample Ch	aracteristics:		CL	ear 1	<u>N/ 51.</u>	o dor		
	COMMEN	TS AND OB	SERVATION	S:				<u></u>	
		·				· · · · · · · · · · · · · · · · · · ·			
	<u> </u>								12
	L								
the tile that compling procedures were in accordance with all applicable EPA, State and Site-Specific					······				
			wooduree w	ere in accord	fance with a	ll applicable	EPA, State a	nd Site-Spec	ific

Date: 09129119 By: Moons Ulter Company: 1AC

Facility: <u>Chem frel</u>	Sample Point ID: MU-7R
Facility: <u>Chem Fre /</u> Field Personnel: <u>TW, PW</u>	Sample Matrix: 6W
MONITORTING WELL INSPECTION	
Date/Time 9-29-14 1 10:23	Cond of seal: (/ Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked分Good ()Loose ()Flush Mount ()Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGEIINFORMATION	
Date / Time Initiated: <u>9-29-14 / 1025</u>	Date / Time Completed: 9-29-14/1105
Surf. Meas. Pt: () Prot. Casing 🏑 Riser	Riser Diameter, Inches: <u>4.0</u>
Initial Water Level, Feet: <u>S.C.O</u>	Elevation. G/W MSL:
Well Total Depth, Feet: <u>37.95</u>	Method of Well Purge: <u>Purse Bailer</u>
One (1) Riser Volume, Gal: /9./	Dedicated: Y /N
Total Volume Purged, Gal: 57.4	Purged To Dryness Y I
Purge Observations:	Start <u>Clear</u> Finish <u>SI. Tu-b</u> , d

PURGENDATAN (If applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
- 								
							1000 10 1000 10 10 10 10 10 10 10 10 10	

12

	NEODMAT							
SAMPLING		~						
POINT ID	_MW.	<u>7R</u>			_		F = = b (8.53
Date/Time	<u> </u>	9-14 11	226	-	Water Level			<u>8.03</u>
Method of S	ampling:		Bailer			Dedicated: -	<i>OP</i> +N	
Multi-phase	d/ layered:	()Yes	() NO		If YES:	() light	()heavy	,
SAMPLING	DATA:		Cond	uctivity	Turb.	Other	Other	1
Time	Temp. (°C)	pH (std units)		os/cm)	(NTU)	(c - f)	()	
122Ce.	13.9	6.65	20	097	7.29	-202		
10000		6.40				1		1
								1
								1
INSTRUME	NT CALIBR	ATION/CHE						
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%
				┼				
				-				
Solution ID#								
GENERAL	INFORMAT	ION:			0			
Weather co	nditions @ ti	ime of sampli	ng: <u>Sur</u>	my ~Gq	, ^{of} (Swee	8mph_	
÷			· · · · · · ·	Lear_	• • •			
COMMENT	IS AND OB	SERVATION	<u>s:</u>			<u> </u>		
						<u></u>		
					. <u></u>			
								
<u> </u>								
l certify tha	t sampling p	procedures w	ere in accord	lance with al	ll applicable I	EPA, State ar	nd Site-Spec	ITIC
protocals.					Decomposition		1-11	

Date:

ə.,

09189114 By: Mons Wills Company: YAL

10/20/2014

FIELD OBSERVATIONS		1
Facility: Chemtrol	Sample Point ID: MW-8R	
	Sample Matrix: C/W	3
Field Personnel: $T\omega, pN$		
MONITORTING WELL INSPECTION	1	5
Date/Time_9-29-19	Cond of sealed Good () Cracked % () None () Buried	6
Prot. Casing/riser height:	Cond of prot. Casing/riser: ①Unlocked @Good () Loose () Flush Mount () Damaged	7
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:	% LEL:/	9
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/	
PURGEINFORMATION		11
Date / Time Initiated: 9-29-4 / 1117	Date / Time Completed: <u>9-29-14 / 1140</u>	12
Surf. Meas. Pt: () Prot. Casing MRiser	Riser Diameter, Inches:	
Initial Water Level, Feet: 10.5	Elevation. G/W MSL:	
Well Total Depth, Feet: 22.10	Method of Well Purge: BAILETZ	
One (1) Riser Volume, Gal: 7.5	Dedicated: 💮 / N	
Total Volume Purged, Gal: ~ ZZ.5	Purged To Dryness Y	
Purge Observations:	Start <u>clean</u> Finish <u>Clear</u>	
RURGE DATA: (if:applicable)		
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conductivity Turb. Other Other (SU) (µmhos/cm) (NTU)	

.

_ _...

. . .

10/20/2014

······

SAMPLING	INFORMAT	ION:						3
POINTID	MW-	8'R						4
Date/Time	9-24-	14 17	245	-		@ Sampling,		<u>10.56</u> 4
Method of Sa	mpling:		Bart	er		Dedicated:	- (97 N	
Multi-phased	/ layered:	()Yes	NO		If YES:	() light	() heavy	
SAMPLING	DATA:				Turb.	Other	Other	
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	(NTU)	(orf)	()	. 8
1245	15.4	7.10	11 Ce	<u>l</u>	4.33	-100		9
					·			10
					<u> </u>			11
		ATION/CHE	SK DATA					<mark>. 12</mark>
					Cal.Std	Check.Std		Check Std
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	umhos/cm	1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	10 NTU (± 10%
								<u> </u>
								<u></u>
	a da se a caracteria de la							
Solution ID#								
GENERALI			c c		e c - f	SING	Cempy	
Weather con	ditions @ tir		ng: Jun	nny nl	<u>e 7</u>	0000	serip 1	<u></u>
Sample Chai	acteristics:	C	bear	·····		. <u></u>		
COMMENT	S AND OBS	ERVATION	<u>S:</u>			<u> </u>		
1				<u> </u>				
						<u></u>		
· · · ·		<u> </u>					······	<u> </u>
								~*

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

Date:

0912914 By: Throng reference Company: TAL

FIELD OBSERVATIONS		1
Facility: Chem+rol	Sample Point ID: MW- 9R	
Field Personnel: <u>TW, PW</u>	Sample Matrix: Gw	
MONITORTING WELL INSPECTION:		4
Date/Time9-29-14 / 1055	Cond of seal: (/ Good () Cracked% () None () Buried	5
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked()Good ()Loose ()Flush Mount	
If prot.casing; depth to riser below:	HDamaged <u>krnge</u> bruken	8
Gas Meter (Calibration/ Reading): % Gas:	<u> </u>	9
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /	
PURGEINFORMATION		
Date / Time Initiated: <u>9-29-14/1057</u>	Date / Time Completed: <u>9-29-14/1145</u>	12
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: <u>4.0</u>	
Initial Water Level, Feet: 12.51	Elevation. G/W MSL:	
Well Total Depth, Feet: <u>29.45</u>	Method of Well Purge: Bailer	
One (1) Riser Volume, Gal: 11.05	Dedicated:	
Total Volume Purged, Gal: ~33.17	Purged To Dryness Y 1 (N)	
Purge Observations:	Start Jurbid/gray Finish Clear	
RURGE DATAN(if/applicable)	-linf	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
			· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·		
				· 		<u></u>		
						<u></u>		

- -

SAMELING							
POINT ID		<u>)-9R</u>				• • • · · · · · · · · · · · ·	5 acts
Date/Time	9-2	9-14 1	1238_	-	Water Level	@ Sampling	
Method of S	ampling:	······	<u> </u>	, ter		Dedicated:-	
Multi-phase	d/ layered:	()Yes	1 TNO		If YES:	() light	() hea [.]
SAMPLING	DATA:				Turb.	Other	Other
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	(NTU)	(orp)	(
1238	12.3	6.84	17	3.7	4.20	-168	
1000							
· · ·	<u> </u>						
	<u> </u>						
INSTRUME	NT GALIBR	ATION/CHE					
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU
							<u> </u>
Solution ID#							
GENERAL	INFORMAT	ION:					l l
Weather co	nditions @ t	ime of sampli	ing: Sann	my ne	9, 0	swe	Cemp.
	the sector of a con-		11 I I I I I I I I I I I I I I I I I I		· •		
		SERVATION				<u> </u>	<u></u>
COMMEN		02					
				. <u></u>			
							_

Date: 09 139114 By: Throng Miller Company: TAL

. . _ _ _

Facility: Chemtrel	Sample Point ID: MW-13R
Field Personnel: <u>TWPN</u>	Sample Matrix:
MONITORTING/WELL/INSPECTION/	
Date/Time 9-29-14 / 1152	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked()Good ()Loose ()Flush Mount ()Damaged
If prot.casing; depth to riser below:	
Gas Meter (Galibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 9-29-14/1154	Date / Time Completed: <u>9-29-14/1220</u>
Surf. Meas. Pt: () Prot. Casing (TRiser	Riser Dlameter, Inches: <u>4.0</u>
Initial Water Level, Feet: 8.63	Elevation. G/W MSL:
Well Total Depth, Feet: 22.2.5	Method of Well Purge: <u>BAICE R</u>
One (1) Riser Volume, Gal: 8,9	Dedicated: Q / N
Total Volume Purged, Gal: 26.5	Purged To Dryness Y
Purge Observations:	Start <u>Clen</u> Finish <u>Clen</u>
PURGE DATA: (if applicable)	Turk (Other (Other)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
			······································					
						• • • • • • • • • • • • • • • • • • •		
		1						Ĺ

- -

SAMPLING	INFORMAT	ION:						<u>्</u>
POINT ID	MW-	13 R						
Date/Time	9-29-16	(252	-		@ Sampling,		8.69
Method of Sa	ampling:		Balle	<u></u>		Dedicated:		
Multi-phased	i/ layered:	()Yes	No		If YES:	() light	() heavy	
SAMPLING			Cond	uctivity	Turb.	Other	Other	
Time	Temp. (°C)	pH (std units)		os/cm)	(NTU)	(OR)	()	8
1252	14.2	6.45	13	1	226	-126-	10 y	
								10
	· · · · · · · · · · · · · · · · · · ·					<u> </u>	l	11
INSTRUME	NTCALIBR	ATION/CHE						<mark>12</mark>
				Check Std	Cal.Std	Check.Std 1,413	Cal.Std	Check Std
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	7.0 SU (± 10%)	1,413 µmhos/cm	umhos/cm (± 10%)	10 NTU	10 NTU (± 10%
						(
Solution ID#			<u> </u>					
GENERAL	INFORMAT	ION:	2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	10	of SI	V Clam	al.	
Weather co	nditions @ ti	me of sampli	ng: San	ny ~69		<u>com</u>		
Sample Cha	aracteristics:		chear					<u></u>
COMMENT	TS AND OB	SERVATION	S:					
		Pupi	taken					
			· · · · · · · · · · · · · · · · · · ·					
				danaa with al	Lannlicable	EPA, State a	nd Site-Spec	ific

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

Date:

____ Company: <u>TAC</u> Thomas Milles 09129114 By:

1

FIELD OBSERVATIONS	
Facility:Chemtrol	Sample Point ID: MW-15R
Field Personnel: TW, PN	Sample Matrix: <u>GW</u>
MONITORTINGWEELINSPECTION	
Date/Time 9-29-14 1 1207	Cond of seal: () Good () Cracked%
Prot. Casing/riser height:	Cond of prot. Casing/riser: (/ Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	<u>-/ % LEL: _ / ~ 9</u>
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) <u> </u>
PURGEINFORMATION	1
Date / Time Initiated: <u>9-29-14/1209</u>	Date / Time Completed: <u>9-29-14/1</u> 214 <mark>1</mark>
Surf. Meas. Pt: () Prot. Casing KRiser	Riser Diameter, Inches:
Initial Water Level, Feet: <u><u>Gell</u></u>	Elevation. G/W MSL:
Well Total Depth, Feet: <u>26-25</u>	Method of Well Purge: Baiter
One (1) Riser Volume, Gal: <u>3-2</u>	Dedicated:
Total Volume Purged, Gal: ~ 3.5 fordry	Purged To Dryness (Y)/ N
Purge Observations:	Start <u>Clear</u> Finish <u>clear</u>
RURGE DATA (If applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
· · · · · · · · · · · · · · · · · · ·				<u></u>	-			
								ļ
								ļ

- --

	SAMPLING								
F		Mu	<u>1-15R</u>		t			F t .	225
E	Date/Time	9-29	-14 1	1259			@ Sampling,	•	
	Method of Sa	mpling:		13-	criter		Dedicated:		5
ř	Multi-phased	/ layered:	()Yes	INO		If YES:	() light	() heavy	
ç	SAMPLING	DATA:			ictivity	Turb.	Other	Other	7
ſ	Time	Temp. (°C)	pH (std units)		os/cm)	(NTU)	(orp)	()	8
ŀ	1259	12.5	7.04	75.	3.2	7.82	-159	a a a a a shikama ya ku ka asa	9
-	1001								10
							 		11
	<u> </u>				 				12
Prover angles	NSTRUME	NTICALIBR	ATION/CHE				Check.Std		<u></u> _
	Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check St 10 N (± 1
							1		
									<u> </u>
		f							
L	Solution ID#								
	GENERAL			C C	. 69	of S	welle	va Al	
	Weather coi	nditions @ ti	me of sampli	ng: Jann	1—·	-		<u>Ind Ind</u>	
	Sample Cha		· · ·	<u>cle</u>	ar				
	COMMENT	S AND OB	SERVATION	S:					<u></u>
		-							
							FPA. State a:		

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals. $\int A$

09129114 By: Thomas Miller Company: 1AC Date:

FIELD OBSERVATIONS	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Facility: Chemtral	Sample Point ID: Dup
Field Personnel: TW, PV	Sample Matrix: <u>GCC</u>
MONITORTINGWELL INSPECTION	4
Date/Time 9-29-19 1 1152	Cond of seal: (/ Good () Cracked %- 5 () None () Buried 6
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() <i>Dania</i> goa 8
Gas Meter (Calibration/ Reading): % Gas:	<u> </u>
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/ 1
PURGEINFORMATION	
Date / Time Initiated: 9-29-14/ 1154	Date / Time Completed: <u>9-2.9-14/12-20</u> 12
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: <u>4.0</u>
Initial Water Level, Feet: 8.63	Elevation. G/W MSL:
Well Total Depth, Feet: 22.25	Method of Well Purge: <u>Bai Ler</u>
One (1) Riser Volume, Gal: 8.9	Dedicated: (Y)/ N
Total Volume Purged, Gal: 26-5	Purged To Dryness Y /
Purge Observations:	Start <u>Cheur</u> Finish <u>Cheur</u>
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conductivity Turb. Other Other (SU) (µmhos/cm) (NTU)

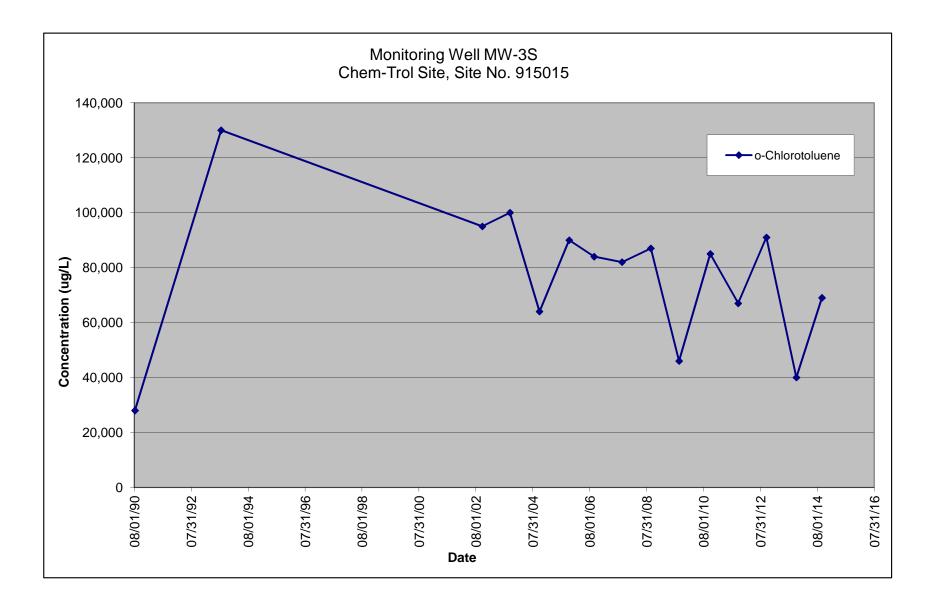
:

-

• ~

......

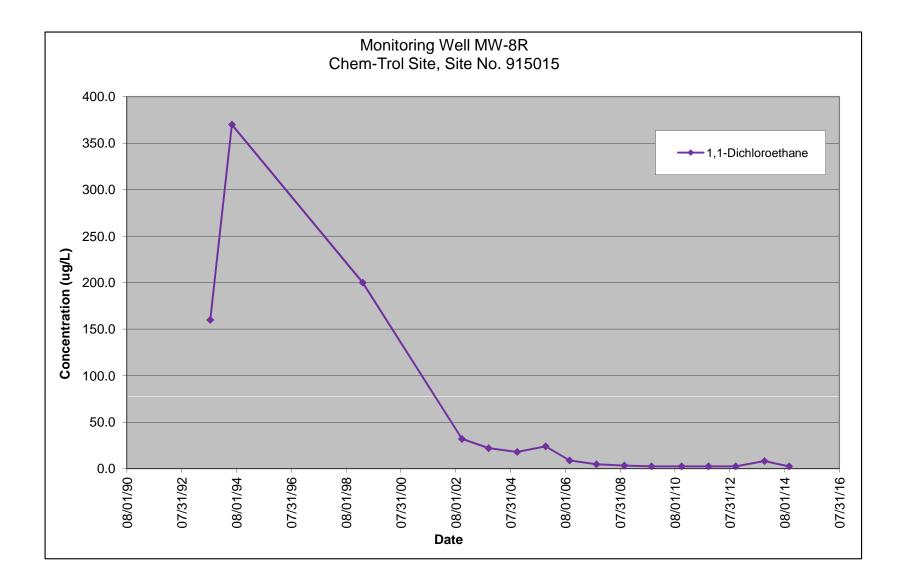
SAMPLING	INFORMAT	<u>10n:2000</u>						3
POINT ID	<i>Du</i>	f					_ /	8.694
Date/Time	9-29-1	<u> </u>	1252	_		@ Sampling,		
Method of S	ampling:	····	Ba	iter		Dedicated:	Ø1 N	5
Multi-phase	d/ layered:	()Yes	()No		If YES:	() light	() heavy	<u>ه</u> 6
SAMPLING					Turb.	Other	Other	7
Time	Temp. (°C)	pH (std units)	Condu (µmhc	ictivity os/cm)	(NTU)	(orP)	()	8
1252	19.2	6-95-	17	341	_2.26	-126		9
1002		<u><u>w</u>: <u>v</u>:</u>						10
								11
								12
INSTRUME	NTIGALIBR	ATION/CHE				Check.Std		
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Str 10 N1 . (± 1
			. e					
Solution ID#								
GENERAL	INFORMAT	ION:		<u>.y ~69</u>	ot	CL.1.0	l s	1
		me of sampli	ng: Scenn	1	/<	SWE	<u>Cempi</u>	<u>n</u>
	aracteristics:		cle	ar		······································		
COMMEN.	TS AND OB	SERVATION	S:					
0011111	•							
<u></u>	D. c) faker	Q 1	UW-13	R			
· · · · · · · · · · · · · · · · · · ·	<i>Vu</i> j.	June -	C. C.	······································				
				······································				
1 . 4	t compling p	rocedures we	ere in accord	ance with all	l applicable l	EPA, State ar	nd Site-Spec	ific
protocals.	ու բգուհույն հ	2000uu00 m					4	


Date: <u>912914</u> By: <u>Thrang Lease</u> Company: <u>The</u>

ATTACHMENT C

Historical Data Trend Plots

Groundwater Analytical Data for Well MW-3S (ug/L)

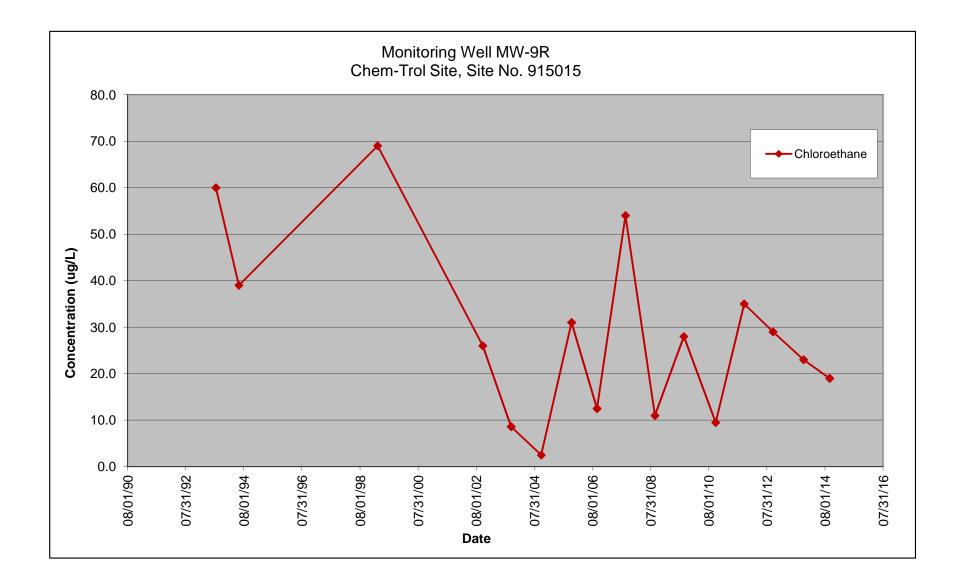

Date	o-Chlorotoluene
08/09/90	28,000
08/19/93	130,000
10/23/02	95,000
10/13/03	100,000
10/26/04	64,000
11/11/05	90,000
09/27/06	84,000
09/20/07	82,000
09/24/08	87,000
09/22/09	46,000
10/27/10	85,000
10/20/11	67,000
10/17/12	91,000
11/05/13	40,000
09/29/14	69,000

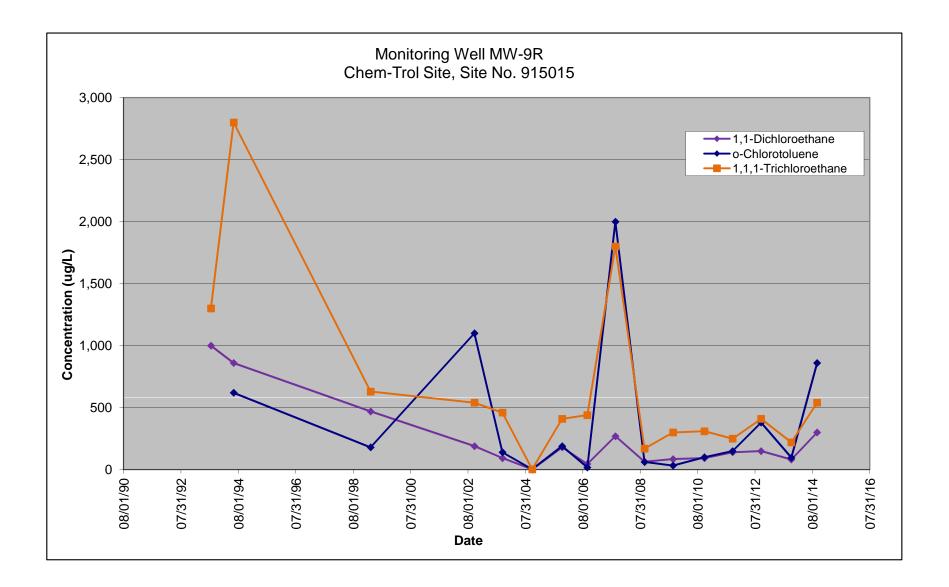


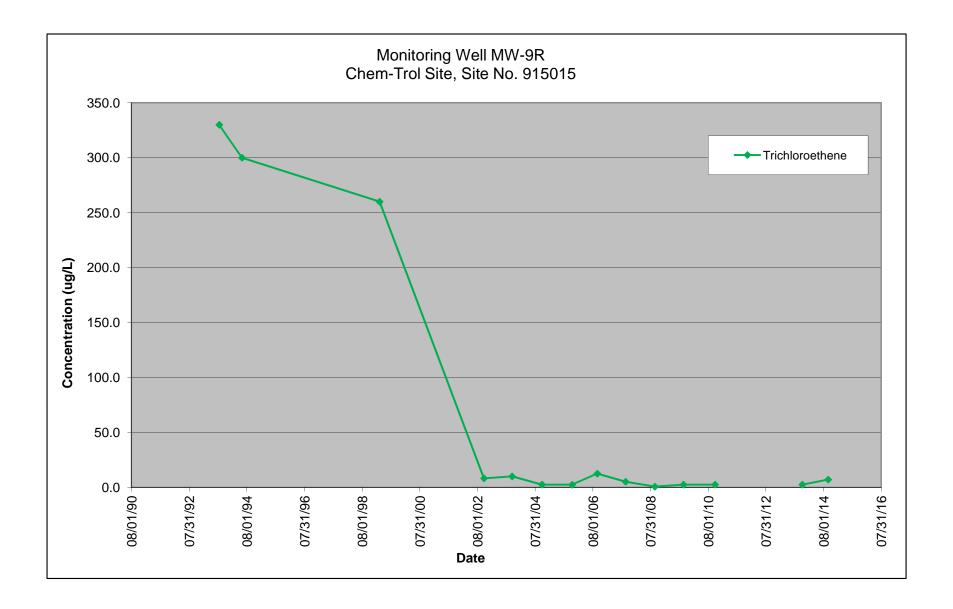
Groundwater Analytical Data for Well MW-8R (ug/L)

Date	1,1-Dichloroethane	o-Chlorotoluene
08/16/93	160.0	4,200
06/01/94	370.0	2,500
03/10/99	200.0	600.0
10/22/02	32.0	240.0
10/13/03	22.0	140.0
10/26/04	18.0	100.0
11/11/05	24.0	230.0
09/27/06	8.9	63.0
09/20/07	4.7	58.0
09/24/08	3.4	40.0
09/22/09	2.5	43.0
10/27/10	2.5	35.0
10/20/11	2.5	55.0
10/17/12	2.5	34.0
11/05/13	8.2	210.0
09/29/14	2.5	61.0

Value is equal to 1/2 the detection limit.

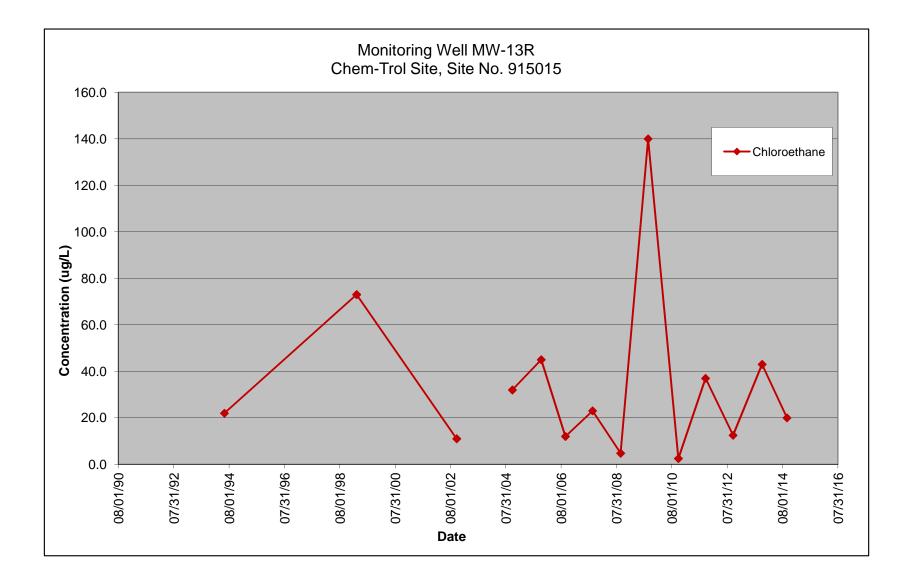


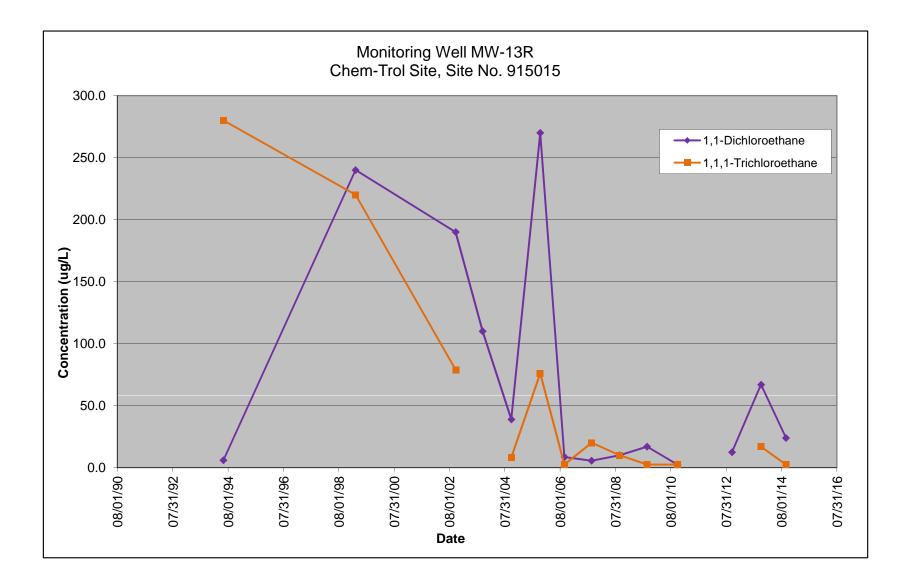

Groundwater Analytical Data for Well MW-9R (ug/L)

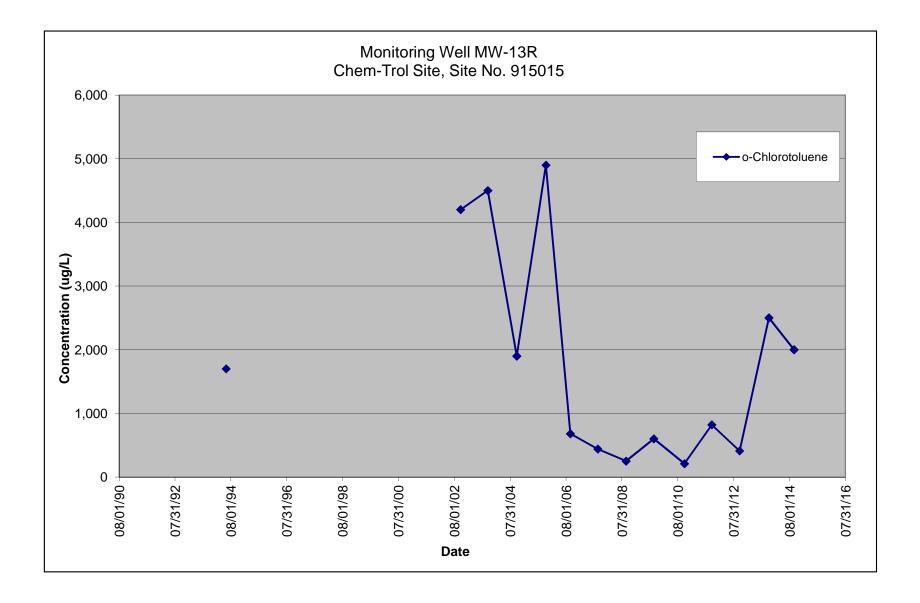

Date	Chloroethane	1,1-Dichloroethane	o-Chlorotoluene	1,1,1-Trichloroethane	Trichloroethene
08/16/93	60.0	1,000		1,300	330.0
06/01/94	39.0	860.0	620.0	2,800	300.0
03/10/99	69.0	470.0	180.0	630.0	260.0
10/22/02	26.0	190.0	1,100	540.0	8.2
10/13/03	8.6	93.0	140.0	460.0	10.0
10/26/04	2.5	2.5	2.5	2.5	2.5
11/11/05	31.0	180.0	190.0	410.0	2.4
09/27/06	12.5	46.0	18.0	440.0	12.5
09/20/07	54.0	270.0	2,000	1,800	5.1
09/24/08	11.0	64.0	62.0	170.0	0.68
09/22/09	28.0	85.0	33.0	300.0	2.5
10/27/10	9.5	93.0	100.0	310.0	2.5
10/20/11	35.0	140.0	150.0	250.0	
10/17/12	29.0	150.0	380.0	410.0	
11/05/13	23.0	82.0	97.0	220.0	2.5
09/29/14	19.0	300.0	860.0	540.0	7.1

D V

Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.






Groundwater Analytical Data for Well MW-13R (ug/L)

Date	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane	o-Chlorotoluene
05/31/94	22.0	6.0	280.0	1,700
03/11/99	73.0	240.0	220.0	
10/22/02	11.0	190.0	79.0	4,200
10/13/03		110.0		4,500
10/26/04	32.0	39.0	8.2	1,900
11/11/05	45.0	270.0	76.0	4,900
09/27/06	12.0	8.6	2.5	680.0
09/20/07	23.0	5.6	20.0	440.0
09/24/08	4.8	10.0	10.0	250.0
09/22/09	140.0	17.0	2.5	600.0
10/27/10	2.5	2.5	2.5	210.0
10/20/11	37.0			820.0
10/17/12	12.5	12.5		410.0
11/05/13	43.0	67.0	17.0	2,500
09/29/14	20.0	24.0	2.5	2000.0

Data not included due to high detection limits for ND values: (1) 2003 - 200 ug/L except for Total Xylenes, which was 600 ug/L. Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.

