

AECOM 257 West Genesee St. Suite 400 Buffalo, NY 14202 www.aecom.com 716 856 5636 tel 716 856 2545 fax

March 17, 2018

Mr. Brian Sadowski
New York State Department of Environmental Conservation, Region 9
Division of Environmental Remediation
270 Michigan Avenue
Buffalo, New York 14203-2999

Subject: 2017 PERIODIC REVIEW REPORT

Chem-Trol Site, Registry No. 9-15-015,

Blasdell, Erie County

Dear Mr. Sadowski:

AECOM Technical Services, Inc. (AECOM), on behalf of SC Holdings, Inc. (SC Holdings), is submitting this Periodic Review Report (PRR) along with a completed Institutional Controls and Engineering Controls (IC/EC) Certification Form (Attachment A) for the Chem-Trol site. This report is being submitted as requested by the New York State Department of Environmental Conservation (NYSDEC) in its letter dated January 4, 2018 to Mr. Mark DeVine. The letter provides guidance for preparing the PRR and IC/EC form and requires that they be submitted to NYSDEC no later than March 17, 2018.

I. INTRODUCTION

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services (Chem-Trol) purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage, and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972.

As a result of historic waste processing activities, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, and construction of a soil vapor extraction (SVE) system and groundwater collection and treatment system. The SVE system includes a header pipe and eight subsurface laterals installed in a linear array within the area of remediated soils. The groundwater collection and treatment system includes a blast-fractured bedrock trench in which three groundwater collection wells are installed, conveyance piping, and a shallow tray air stripper that

removes VOCs from the collected groundwater. The treated groundwater is discharged through a pipe to the South Branch of Smokes Creek.

The SVE system and the groundwater collection and treatment system continue to operate. During 2010, McMahon & Mann Consulting Engineers, PC (MMCE) evaluated the effectiveness of passive operation of the SVE system in removing soil vapors. Subsequently, the SVE system was converted from active to passive operation in 2010. A copy of the SVE system evaluation letter report was included as Attachment B in the 2010 PRR.

II. <u>SITE OVERVIEW</u>

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek. Figure 1 shows the Chem-Trol site location and features.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the overburden as well as the shallow bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the South Branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of 2 by NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site:
- Installation of a groundwater collection trench along the western edge of the site;
- Improvement of the existing soil cover over the former chemical processing area; and,
- Installation of a SVE system within the former waste chemical processing area.

Pre-design investigations and remedial design were completed between 1997 and 2000. Construction of the ROD-required remedial components was completed between 1999 and 2001. Operation, maintenance and monitoring of the remedial components began in 2001. In December 2004, the Chem-Trol site was re-classified to a class 4 site by NYSDEC. This classification indicates that remedial actions taken at the site to eliminate significant threats to public health and the environment have been properly constructed and implemented, and long-term operation, maintenance and monitoring of the in-place remedial systems is necessary to assure remedy effectiveness.

Goals for the remedial program were established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site;
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments, and groundwaters at the site;
- Prevent migration of contaminants in the on-site soils into the groundwater;
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment; and,
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings continues to monitor the performance of the SVE and groundwater collection and treatment system.

SVE System

SC Holdings submitted a work plan to NYSDEC on October 22, 2009 proposing conversion of the active system to a passive venting system and monitoring the performance of the passive system for a year. NYSDEC authorized the conversion to a passive system along with monthly monitoring. The SVE treatment system was converted from active to passive operation in January 2010.

After a year of monitoring, SC Holdings submitted a report describing the monitoring results as indicating that passive operation of the SVE system provides similar and possibly improved effectiveness as active operation of the SVE system in venting soil vapors. Water level data in the passive vent risers indicated that passive venting might also contribute to generally lower water levels in the laterals for a longer period of time over the course of the year and therefore provide a greater opportunity to vent soil vapors.

It was recommended that active operation of the SVE system permanently cease and that passive operation of the SVE system laterals continue. In addition, it was recommended that continued monitoring of the SVE system laterals be eliminated. NYSDEC agreed with these recommendations in a letter to Mr. Mark Snyder dated May 29, 2011.

During this reporting period, the SVE system continued to operate passively. The lateral riser pipes were visually examined for damage during quarterly site visits. No damage was observed during these site visits.

Groundwater Collection and Treatment System

SC Holdings has the following actions performed by AECOM (items 1 through 5) and TestAmerica Laboratories, Inc. (Amherst, NY) (item 6) in order to monitor the performance of the groundwater collection system as required in the ROD:

2017 Periodic Review Report Chem-Trol Site, Blasdell, NY, Registry No. 9-15-015

- 1. Perform monthly operation and maintenance tasks on the system;
- 2. Perform quarterly acid wash of the air stripper, including a once-per-year dismantling of the air stripper to check seals and remove mineral accumulation in air stripper trays using mechanical means (scrubbing, re-drilling holes to full diameter, etc.);
- Sample and analyze the groundwater collection and treatment system influent and effluent on a monthly basis for a site-specific list of 10 VOCs, Total Iron, Total Suspended Solids (TSS), and pH;
- 4. Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a quarterly basis;
- 5. Prepare bedrock groundwater contours based on quarterly water level measurements collected during the year; and,
- 6. Obtain annual groundwater samples for VOCs from six groundwater monitoring wells.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Monthly aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations. Analytical test results show that discharge parameter concentrations in the air stripper effluent for 2017 were below the concentration and mass loading discharge limits established by NYSDEC for 9 of 12 months. O-chlorotoluene (OCT) exceeded the concentration but not the mass loading discharge limit in April, June, and October; 1,1-dichlorethane exceeded the concentration but not the mass loading discharge limit in October. Response actions for each of these events are presented in Section IV. Details for these events are as follows:

- April 28, 2017 effluent sample There was an OCT detection of 71 μg/L (vs. the concentration limit of 10 μg/L).
- June 14, 2017 effluent sample There was an OCT detection of 95 μ g/L (vs. the concentration limit of 10 μ g/L).
- October 31, 2017 effluent sample There was an OCT detection of 120 μ g/L (vs. the concentration limit of 10 μ g/L) and a 1,1-dichloroethane detection of 11 μ g/L (vs. the concentration limit of 10 μ g/L).

Analytical test results for the 2017 monthly aqueous effluent samples are included in the Operation and Maintenance (O&M) reports submitted by AECOM to NYSDEC on a quarterly basis.

Monthly testing of the air stripper exhaust discharge (vapor phase) samples ceased after April 2011. Monthly testing was eliminated based upon a letter from Al Zylinski, NYSDEC Division of Air Resources, to MMCE (consultant to SC Holdings) dated April 6, 2011. The letter approved elimination of sampling and testing of the air stripper exhaust.

A summary of groundwater elevations measured in the groundwater monitoring wells and piezometers is included in Table 1 - Summary of Groundwater Elevation Measurements 2017 Quarterly groundwater elevation contours are plotted on Figures 2 through 5.

The contours show that the three extraction wells depress water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates

groundwater flow toward the collection trench. The measurements demonstrate that the collection trench is functioning as designed to restrict offsite flow and limit groundwater discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater treatment system influent samples have historically shown o-chlorotoluene levels in higher concentrations than other organic compounds. Therefore, concentrations of o-chlorotoluene detected in groundwater treatment influent samples have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for influent groundwater samples was plotted versus time for the January 2003 through December 2017 sampling events (see Figure 6). The plot shows that the concentration of o-chlorotoluene in the influent groundwater samples has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A comparison of the influent and effluent sample analytical results shows that the air stripper is effectively removing VOCs from the groundwater collected by the treatment system.

A summary of VOC detections for the annual 2017 groundwater-sampling event is included as Table 2, Detection Summary. The complete 2017 groundwater sample analytical laboratory report is included as Attachment B. Historical concentration versus time trend plots for monitoring wells MW3S, MW-8R, MW-9R, and MW-13R are included as Attachment C.

IV. O&M PLAN COMPLIANCE

SC Holdings performed the following activities as part of the O&M Plan requirements:

Soil Vapor Extraction System

AECOM performed the following activity in 2017 as part of quarterly visits to the site:

Visually observed each SVE passive vent riser for damage.

Groundwater Collection and Treatment System

AECOM performed the following activities in 2017 as part of routine monthly O&M visits:

- Verified that each extraction well was running and performing as designed;
- Observed that each pump was operating, documented pumping rates, total gallons pumped and insured that high and low water controls are functioning as designed;
- Performed monthly influent and effluent sample analytical testing;
- Observed that the air stripper was performing as designed;
- Performed monthly inspections of air stripper trays;
- Performed acid washes quarterly or more often if necessary to promote optimum removal of VOCs; and,

Prepared and submitted O&M reports on a quarterly basis to NYSDEC.

The quarterly O&M reports submitted to NYSDEC provide further details on specific activities performed, analytical testing results, and observations made during the routine monthly O&M visits. Routine activities include general inspection and maintenance work performed on pumps, equipment, and sensors, as described in the monthly O&M reports.

In addition, the following non-routine maintenance activities were also performed and reported in the respective quarterly O&M reports this reporting period:

- May 2017 Performed system inspection and maintenance of the air stripper in response to the April 2017 OCT result. The May 2017 sample had no exceedances and demonstrated successful response.
- July 2017 Performed system inspection, dismantled transfer piping for cleaning, and cleared restriction between the air stripper and the former iron removal tank in response to the June 2017 OCT result. The July 2017 sample had no exceedances and demonstrated successful response.
- November 2017 Performed system inspection, dismantled transfer piping for cleaning, and cleared restriction between the air stripper and the former iron removal tank. The December 2017 sample had no exceedances and demonstrated successful response.

In a letter dated May 23, 2017, NYSDEC approved the 2016 PRR with no comments.

V. CONCLUSIONS AND RECOMMENDATIONS

Groundwater Collection and Treatment

A comparison of the monthly influent vs. effluent analytical test results shows that the groundwater collection and treatment system continues to remove contaminants from groundwater at the Chem-Trol site. A plot of the influent o-chlorotoluene concentration versus time (see Figure 6) indicates that the source contributing to groundwater VOC concentrations has been reduced to where its influence on groundwater has decreased and appears to continue approaching an asymptotic curve.

The quarterly groundwater elevation data show that the groundwater collection system continues to contain groundwater contaminants and creates a gradient toward the groundwater collection wells and away from the South Branch of Smokes Creek.

No changes to the activities currently being performed at the Chem-Trol site are recommended.

Please call the undersigned at AECOM (716-923-1300) or Mr. Mark DeVine (603-929-5436) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

James L. Kaczor, P.G.

Project Manager

james.kaczor@aecom.com

James 1. Kayon

Enclosures (Tables, Figures)

Attachments (IC/EC Form, 2017 Annual Groundwater Data Report, Historical Trend Plots)

cc: Mark DeVine (SC Holdings, Inc.), w/attachments

Daniel Servetas, P.E. (AECOM), w/attachments

60526520 Project File

TABLES

Table 1: Summary of Groundwater Elevations – 2017

Table 2: Groundwater Sample Detection Summary – 2017

Table 1 Chem-Trol Site, Blasdell, NY Summary of Groundwater Elevation Measurements 2017

		10) Date	20	2 Date	3Q Date		4Q Date	
Pumping Wells		3/9	/2017	6/14	6/14/2017		9/18/2017		5/2017
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
EW-1	624.07	18.40	605.67	20.25	603.82	22.67	601.40	17.43	606.64
EW-2	622.16	13.50	608.66	16.43	605.73	17.59	604.57	13.58	608.58
EW-3	621.10	16.00	605.10	19.13	601.97	22.17	598.93	17.01	604.09

East of Cap (North to South)

	1 \								
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-6S	638.54	6.85	631.69	10.13	628.41	12.35	626.19	8.10	630.44
MW-6R	638.64	17.00	621.64	17.66	620.98	18.63	620.01	17.37	621.27
P-1S	642.80	4.80	638.00	6.72	636.08	9.13	633.67	5.15	637.65
MW-1R	645.36	6.77	638.59	8.61	636.75	10.96	634.40	10.11	635.25
MW-1S	645.40	4.96	640.44	7.26	638.14	10.74	634.66	5.17	640.23
MW-7S	642.85	3.60	639.25	7.65	635.20	11.00	631.85	4.26	638.59
MW-7R	642.28	4.61	637.67	6.68	635.60	8.95	633.33	5.02	637.26

Center of Cap (North to South)

000. 0	. oap (• •,						
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
P-5S	637.54	8.10	629.44	12.64	624.90	>15.45	<622.10	8.61	628.93
P-5R	637.88	18.89	618.99	19.55	618.33	20.03	617.85	19.33	618.55
MW-5S	636.28	10.79	625.49	12.86	623.42	14.02	622.26	11.12	625.16
P-2R	646.96	3.70	643.26	8.97	637.99	13.40	633.56	5.11	641.85
P-2S	646.44	8.05	638.39	9.85	636.59	12.21	634.23	8.52	637.92
MW-2S	644.85	5.85	639.00	7.90	636.95	10.43	634.42	6.32	638.53

West of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-4S	637.18	12.82	624.36	14.65	622.53	>15.37	<621.80	13.19	623.99
MW-4R	637.02	27.00	610.02	29.10	607.92	27.72	609.30	27.72	609.30
P-4S	636.54	14.61	621.93	15.92	620.62	15.99	620.55	14.78	621.76
MW-3S	637.64	16.96	620.68	17.70	619.94	18.90	618.74	16.88	620.76
P-3R	639.92	23.55	616.37	20.34	619.58	20.29	619.63	20.31	619.61
P-3S	639.46	18.76	620.70	19.22	620.24	19.58	619.88	18.47	620.99
OW-3R	638.78	23.55	615.23	24.36	614.42	25.05	613.73	23.74	615.04

West of Trench (North to South)

***********	IT CHOIT (INO		,						
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
OW-1FR	620.42	10.21	610.21	13.14	607.28	14.72	605.70	10.83	609.59
P97-5	613.65	3.87	609.78	6.54	607.11	8.05	605.60	4.42	609.23
MW-10S	615.15*	4.30	610.85*	>5.75	<609.40*	>5.75	<609.40*	4.79	610.36*
MW-10R	615.47	5.25	610.22	7.71	607.76	9.23	606.24	6.12	609.35
P97-4	614.8	4.80	610.00	7.69	607.11	9.22	605.58	5.49	609.31
MW-8S	617.28	5.55	611.73	>6.97	<610.31	7.25	610.03	6.97	610.31
MW-8R	617.38	7.13	610.25	9.98	607.40	11.44	605.94	7.89	609.49
P97-3	617.66	7.35	610.31	10.48	607.18	12.09	605.57	8.16	609.50
MW-9RD	619.13	7.85	611.28	7.89	611.24	7.10	612.03	6.50	612.63
MW-9R	619.17	8.68	610.49	12.01	607.16	13.59	605.58	9.61	609.56
MW-9S	619.91	8.61	611.30	>10.35	<609.56	>10.40	<609.5	10.07	609.84
OW-2FR	624.14	13.54	610.60	16.93	607.21	18.51	605.63	14.44	609.70
P97-2	619.07	7.15	611.92	9.44	609.63	10.26	608.81	7.91	611.16
P97-1	619.97	7.03	612.94	8.83	611.14	9.29	610.68	7.49	612.48
MW-12R	621.59	7.74	613.85	9.29	612.30	11.76	609.83	7.96	613.63
MW-12S	621.17	4.30	616.87	8.85	612.32	>9.38	<611.8	4.92	616.25

West of Smokes Creek (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-13R	615.14	5.43	609.71	8.23	606.91	9.60	605.54	6.10	609.04
MW-14R	618.55	5.25	613.30	4.74	613.81	5.83	612.72	4.81	613.74

^{*} MW-10S reference point and elevations estimated- well replaced in 2016.

AECOM Page 1 of 1

Client: Waste Management

Client Sample ID: DUP

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-1

Lab Sample ID: 480-126506-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	560		33		ug/L	40	_	8260C	Total/NA
1,1-Dichloroethane	360		15		ug/L	40		8260C	Total/NA
o-Chlorotoluene	1800	*	34		ug/L	40		8260C	Total/NA
Client Sample ID: MW-13	R					Lab Sa	am	ple ID: 4	80-126506-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Chlorotoluene	2000	*	34		ug/L	40	_	8260C	Total/NA
Chloroethane	16		13		ug/L	40		8260C	Total/NA
	<u> </u>					L ala O			00.400500
Client Sample ID: MW-15	K					Lab Sa	am	ipie iu: 4	80-126506-
-		Qualifier	RL	MDL	Unit	Dil Fac		Method	
-		Qualifier	RL 5.0	MDL	Unit ug/L			•	
Analyte	Result	Qualifier		MDL		Dil Fac		Method	Prep Type
Analyte Benzene	Result	Qualifier	5.0	MDL	ug/L	Dil Fac		Method 8260C	Prep Type Total/NA
Analyte Benzene Cyclohexane	Result 12 44	Qualifier	5.0 5.0	MDL	ug/L ug/L	Dil Fac		Method 8260C 8260C	Prep Type Total/NA Total/NA
Analyte Benzene Cyclohexane Ethylbenzene	Result 12 44 7.9	Qualifier	5.0 5.0 5.0	MDL	ug/L ug/L ug/L	Dil Fac 2 2 2		Method 8260C 8260C 8260C	Prep Type Total/NA Total/NA Total/NA
Analyte Benzene Cyclohexane Ethylbenzene Methylcyclohexane	Result 12 44 7.9 18 66	Qualifier	5.0 5.0 5.0 5.0	MDL	ug/L ug/L ug/L ug/L	Dil Fac 2 2 2 2 2 2	<u>D</u>	Method 8260C 8260C 8260C 8260C 8260C	Prep Type Total/NA Total/NA Total/NA Total/NA
Analyte Benzene Cyclohexane Ethylbenzene Methylcyclohexane Xylenes, Total	Result 12 44 7.9 18 66	Qualifier Qualifier	5.0 5.0 5.0 5.0	MDL	ug/L ug/L ug/L ug/L ug/L	Dil Fac 2 2 2 2 2 2	<u>D</u>	Method 8260C 8260C 8260C 8260C 8260C	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA

	No	De	ect	ions	

Client Sample ID: MW-7R

Client Sample ID: MW-8R						Lab Sa	an	iple ID: 4	80-126506-6
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Chlorotoluene	31	*	5.0		ug/L		_	8260C	Total/NA

Client Sample ID: MW-9	R			Lab San	nple ID: 4	80-126506-7
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloroethane	14	5.0	ug/L		8260C	Total/NA
1,1,1-Trichloroethane - DL	640	33	ug/L	40	8260C	Total/NA
1,1-Dichloroethane - DL	410	15	ug/L	40	8260C	Total/NA
o-Chlorotoluene - DL	2100	34	ug/L	40	8260C	Total/NA

Client Sample ID: TB	Lab Sample ID: 480-126506-8

No Detections.

This Detection Summary does not include radiochemical test results.

11/14/2017

FIGURES

Fig	ure	1.	Site	Plan
пи	uic		UILE	ııaıı

- Figure 2: Bedrock Groundwater Contours March 9, 2017
- Figure 3: Bedrock Groundwater Contours June 14, 2017
- Figure 4: Bedrock Groundwater Contours September 18, 2017
- Figure 5: Bedrock Groundwater Contours December 15, 2017
- Figure 6: Influent o-Chlorotoluene Concentration 2003 2017

FIGURE 6

Chem-Trol Groundwater Treatment System Influent o-Chlorotoluene Concentration 2003-2017

ATTACHMENT A

Completed IC/EC Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 915015	Box 1	
Sit	e Name Chem-Trol		
Cit	e Address: Lake Avenue Zip Code: 14107 y/Town: Hamburg unty: Erie e Acreage: 17.5		
Re	porting Period: February 15, 2017 to February 15, 2018		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
	4 3 (0) (0) (1) (1)	1	
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Closed Landfill	X	
7.	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	ınd	
A	Corrective Measures Work Plan must be submitted along with this form to address the	nese iss	ues.
Sic	gnature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 915015

Description of Institutional Controls

Parcel

Owner

Institutional Control

151.02-1-14.1

SC Holdlings Inc./Waste Management

Ground Water Use Restriction

Monitoring Plan
O&M Plan
Landuse Restriction

Building Use Restriction

The controls identified in the Declaration of Covenants and Restrictions, recorded with Erie County on March 25, 2004, include but are not limited to the following: the owner of the Property shall maintain the cap covering the Property by maintaining its grass cover, or after obtaining written approval from the Relevant Agency, by capping the Property with another material; the property is prohibited from being used for purposes other than for industrial or commercial use, excluding use for day care, child care and medical care; the use of groundwater underlying the property is prohibited without treatment to render it safe for drinking water or industrial purposes, except that the groundwater may be reasonably used as necessary to conduct tests to monitor contamination levels of the groundwater. These restrictive covenants are binding and shall run with the land.

Box 4

Description of Engineering Controls

Parcel

151.02-1-14.1

Engineering Control

Groundwater Treatment System

Cover System

Groundwater Containment Fencing/Access Control Leachate Collection

Remediation was completed in two phases consisting of Source Control Elements and Groundwater Control Elements. These elements are summarized as follows:

Source Control Elements:

- 1. Hot Spot Soils Removal.
- 2. Tributary Sediment Excavation/Disposal.
- 3. Site Soils Cover.
- 4. Soil Vapor Extraction. Passive state with one year evaluation starting January 2010. Passive state permanently approved on May 29, 2011.

Groundwater Control Elements:

- 1. Groundwater extraction from three extraction wells.
- 2. On-site groundwater treatment with discharge compliance monitoring.
- 2. Groundwater quality monitoring.

Groundwater intercept, extraction and discharge compliance monitoring with groundwater elevations, contouring and groundwater quality monitoring are completed to confirm that the remedy remains protective of public health and the environment.

-		1
ш	ΙЖ.	

Periodic Review Report (PRR) Certification Statements

	Total and the state of the stat		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dir reviewed by, the party making the certification; 	ection of	, and
	 b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gen engineering practices; and the information presented is accurate and compete. 		
	engineering practices, and the information presented is accurate and compete.	YES	NO
		X	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true:		
	(a) the Institutional Control and/or Engineering Control(s) employed at this site since the date that the Control was put in-place, or was last approved by the D		
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	t public	health and
	(c) access to the site will continue to be provided to the Department, to evalua remedy, including access to evaluate the continued maintenance of this Control		
	(d) nothing has occurred that would constitute a violation or failure to comply v Site Management Plan for this Control; and	vith the	
	(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in		
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue).	
1	A Corrective Measures Work Plan must be submitted along with this form to address	these is	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. 915015

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Mark P. DeVine	at_4 Liberty Lane West, Hampton, NH 03842,
print name	print business address
am certifying as Owner	(Owner or Remedial Party)
for the Site named in the Site Details S	
_ Mark P. Der	me 3/12/18
Signature of Owner, Remedial Party, or Rendering Certification	or Designated Representative Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

American Boulevar	d, Latham, NY
business address	
er	
(Owner or Rem	edial Party)
	March 16, 2018
Stamp (Required for PE)	Date
	business address er (Owner or Rem

ATTACHMENT B

2017 Annual Groundwater Sample Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-126506-1

Client Project/Site: ChemTrol Site - Annual Groundwater Sampling Event: ChemTrol Annual Groundwater

For:

Waste Management 4 Liberty Lane West Hampton, New Hampshire 03842

Attn: Mark DeVine

Authorized for release by: 11/14/2017 3:45:39 PM

Ryan VanDette, Project Manager II (716)504-9830

ryan.vandette@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Definitions	3
Case Narrative	
Detection Summary	5
Client Sample Results	6
QC Sample Results	22
QC Association	32
Chronicle	33
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38

3

4

6

0

9

10

12

Definitions/Glossary

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

TestAmerica Job ID: 480-126506-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

These commonly used abbreviations may or may not be present in this report.

Relative Percent Difference, a measure of the relative difference between two points

GlossaryAbbreviation

MDL

ML

NC

ND

PQL

QC

RL

RER

RPD

TEF

TEQ

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

11/14/2017

3

6

8

4 4

12

Case Narrative

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Job ID: 480-126506-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-126506-1

Comments

No additional comments.

Receipt

The samples were received on 10/25/2017 2:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-385710 recovered outside acceptance criteria, low biased, for 2-Hexanone and 2-Butanone. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported. The following samples are impacted: DUP (480-126506-1), MW-13R (480-126506-2), MW-15R (480-126506-3), MW-3S (480-126506-4), MW-7R (480-126506-5), MW-8R (480-126506-6) and MW-9R (480-126506-7).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-385710 recovered outside control limits for the following analytes: 2-Chlorotoluene, 1,1,2,2-Tetrachloroethane, and Isopropylbenzene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: MW-15R (480-126506-3) and MW-7R (480-126506-5)

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-385710 recovered outside control limits for the following analyte: 2-Chlorotoluene. Due to holding time limitations the samples were not reanalyzed. The following samples are impacted: DUP (480-126506-1), MW-13R (480-126506-2), MW-3S (480-126506-4) and MW-8R (480-126506-6)

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-385710 recovered outside control limits for the following analytes: 1,1,2,2-Tetrachloroethane, and Isopropylbenzene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: DUP (480-126506-1), MW-13R (480-126506-2), MW-3S (480-126506-4) and MW-9R (480-126506-7)

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: DUP (480-126506-1), MW-13R (480-126506-2), MW-15R (480-126506-3), MW-3S (480-126506-4), MW-9R (480-126506-7), (480-126506-A-4 MS) and (480-126506-A-4 MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-9R (480-126506-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-385904 recovered outside acceptance criteria, low biased, for Vinyl Chloride and Chloromethane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW-15R (480-126506-3) and TB (480-126506-8).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-385904 recovered above the upper control limit for 2-Chlorotoluene and Isopropylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-15R (480-126506-3) and TB (480-126506-8).

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-15R (480-126506-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following volatile sample was analyzed with significant headspace in the sample Container: TB (480-126506-8). Significant headspace is defined as a bubble greater than 6 mm in diameter.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

8

4.0

11

Client: Waste Management

Client Sample ID: DUP

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1,1-Trichloroethane	560	33	ug/L	40	8260C	Total/NA
1,1-Dichloroethane	360	15	ug/L	40	8260C	Total/NA
o-Chlorotoluene	1800 *	34	ug/L	40	8260C	Total/NA

Client Sample ID: MW-13R Lab Sample ID: 480-126506-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Chlorotoluene	2000	*	34		ug/L	40	_	8260C	Total/NA
Chloroethane	16		13		ug/L	40		8260C	Total/NA

Client Sample ID: MW-15R Lab Sample ID: 480-126506-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	12	5.0	ug/L		8260C	Total/NA
Cyclohexane	44	5.0	ug/L	2	8260C	Total/NA
Ethylbenzene	7.9	5.0	ug/L	2	8260C	Total/NA
Methylcyclohexane	18	5.0	ug/L	2	8260C	Total/NA
Xylenes, Total	66	15	ug/L	2	8260C	Total/NA

Lab Sample ID: 480-126506-4 **Client Sample ID: MW-3S**

Analyte	Result Qualifier	r RL	MDL Unit	Dil Fac D	Method	Prep Type
o-Chlorotoluene	78000 * F1	1700	ug/L	2000	8260C	Total/NA

Client Sample ID: MW-7R Lab Sample ID: 480-126506-5

No Detections.

Client Sample ID: MW-8R Lab Sample ID: 480-126506-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
o-Chlorotoluene	31 *	5.0	ug/L	1 8260C	Total/NA

Client Sample ID: MW-9R Lab Sample ID: 480-126506-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloroethane	14	5.0	ug/L		8260C	Total/NA
1,1,1-Trichloroethane - DL	640	33	ug/L	40	8260C	Total/NA
1,1-Dichloroethane - DL	410	15	ug/L	40	8260C	Total/NA
o-Chlorotoluene - DL	2100	34	ug/L	40	8260C	Total/NA

Client Sample ID: TB Lab Sample ID: 480-126506-8

No Detections.

This Detection Summary does not include radiochemical test results.

11/14/2017

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-1

Matrix: Water

Client Sample ID: DUP Date Collected: 10/25/17 12:54 Date Received: 10/25/17 14:30

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	560	33	ug/L			11/05/17 15:15	4
1,1,2,2-Tetrachloroethane	ND *	8.4	ug/L			11/05/17 15:15	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	12	ug/L			11/05/17 15:15	4
1,1,2-Trichloroethane	ND	9.2	ug/L			11/05/17 15:15	4
1,1-Dichloroethane	360	15	ug/L			11/05/17 15:15	4
1,2,4-Trichlorobenzene	ND	16	ug/L			11/05/17 15:15	4
1,2-Dibromo-3-Chloropropane	ND	16	ug/L			11/05/17 15:15	4
1,2-Dibromoethane	ND	29	ug/L			11/05/17 15:15	4
1,2-Dichlorobenzene	ND	32	ug/L			11/05/17 15:15	4
1,2-Dichloroethane	ND	8.4	ug/L			11/05/17 15:15	4
1,2-Dichloropropane	ND	29	ug/L			11/05/17 15:15	4
1,3-Dichlorobenzene	ND	31	ug/L			11/05/17 15:15	4
1,4-Dichlorobenzene	ND	34	ug/L			11/05/17 15:15	4
2-Butanone (MEK)	ND	53	ug/L			11/05/17 15:15	4
o-Chlorotoluene	1800 *		ug/L			11/05/17 15:15	4
2-Hexanone	ND	50	ug/L			11/05/17 15:15	4
4-Methyl-2-pentanone (MIBK)	ND	84	ug/L			11/05/17 15:15	4
Acetone	ND	120	ug/L			11/05/17 15:15	4
Benzene	ND	16	ug/L			11/05/17 15:15	4
Bromoform	ND	10	ug/L			11/05/17 15:15	4
Bromomethane	ND	28	ug/L			11/05/17 15:15	4
Carbon disulfide	ND	7.6	ug/L			11/05/17 15:15	4
Carbon distillide Carbon tetrachloride	ND ND	11				11/05/17 15:15	
			ug/L				4
Chlorodihramamathana	ND	30	ug/L			11/05/17 15:15 11/05/17 15:15	4
Chlorodibromomethane	ND	13	ug/L				4
Chloroethane	ND	13	ug/L			11/05/17 15:15	4
Chloroform	ND	14	ug/L			11/05/17 15:15	4
Chloromethane	ND	14	ug/L			11/05/17 15:15	4
cis-1,2-Dichloroethene	ND	32	ug/L			11/05/17 15:15	4
cis-1,3-Dichloropropene	ND	14	ug/L			11/05/17 15:15	4
Cyclohexane	ND	7.2	ug/L			11/05/17 15:15	4
Bromodichloromethane	ND	16	ug/L			11/05/17 15:15	4
Dichlorofluoromethane	ND	14	ug/L			11/05/17 15:15	
Ethylbenzene	ND	30	ug/L			11/05/17 15:15	4
Isopropylbenzene	ND *		ug/L			11/05/17 15:15	4
Methyl acetate	ND	52	ug/L			11/05/17 15:15	4
Methyl tert-butyl ether	ND	6.4	ug/L			11/05/17 15:15	4
Methylcyclohexane	ND	6.4	ug/L			11/05/17 15:15	4
Methylene Chloride	ND	18	ug/L			11/05/17 15:15	4
Styrene	ND	29	ug/L			11/05/17 15:15	4
Tetrachloroethene	ND	14	ug/L			11/05/17 15:15	4
Toluene	ND	20	ug/L			11/05/17 15:15	4
trans-1,2-Dichloroethene	ND	36	ug/L			11/05/17 15:15	4
trans-1,3-Dichloropropene	ND	15	ug/L			11/05/17 15:15	4
Trichloroethene	ND	18	ug/L			11/05/17 15:15	4
Trichlorofluoromethane	ND	35	ug/L			11/05/17 15:15	4
Vinyl chloride	ND	36	ug/L			11/05/17 15:15	4
Xylenes, Total	ND	26	ug/L			11/05/17 15:15	4

TestAmerica Buffalo

11/14/2017

Page 6 of 38

2

3

5

8

9

11

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: DUP

Lab Sample ID: 480-126506-1

Matrix: Water

Date Collected: 10/25/17 12:54 Date Received: 10/25/17 14:30

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120	_		11/05/17 15:15	40
Toluene-d8 (Surr)	103		80 - 120			11/05/17 15:15	40
4-Bromofluorobenzene (Surr)	97		73 - 120			11/05/17 15:15	40
Dibromofluoromethane (Surr)	99		75 - 123			11/05/17 15:15	40

4

5

8

3

11

12

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-2

Matrix: Water

Client Sample ID: MW-13R Date Collected: 10/25/17 13:12 Date Received: 10/25/17 14:30

Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	33	ug/L			11/05/17 15:40	4
1,1,2,2-Tetrachloroethane	ND *	8.4	ug/L			11/05/17 15:40	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	12	ug/L			11/05/17 15:40	4
1,1,2-Trichloroethane	ND	9.2	ug/L			11/05/17 15:40	4
1,1-Dichloroethane	ND	15	ug/L			11/05/17 15:40	4
1,2,4-Trichlorobenzene	ND	16	ug/L			11/05/17 15:40	4
1,2-Dibromo-3-Chloropropane	ND	16	ug/L			11/05/17 15:40	4
1,2-Dibromoethane	ND	29	ug/L			11/05/17 15:40	4
1,2-Dichlorobenzene	ND	32	ug/L			11/05/17 15:40	4
1,2-Dichloroethane	ND	8.4	ug/L			11/05/17 15:40	4
1,2-Dichloropropane	ND	29	ug/L			11/05/17 15:40	4
1,3-Dichlorobenzene	ND	31	ug/L			11/05/17 15:40	4
1,4-Dichlorobenzene	ND	34	ug/L			11/05/17 15:40	4
2-Butanone (MEK)	ND	53	ug/L			11/05/17 15:40	4
o-Chlorotoluene	2000 *	34	ug/L			11/05/17 15:40	4
2-Hexanone	ND	50	ug/L			11/05/17 15:40	4
4-Methyl-2-pentanone (MIBK)	ND	84	ug/L			11/05/17 15:40	4
Acetone	ND	120	ug/L			11/05/17 15:40	4
Benzene	ND	16	ug/L			11/05/17 15:40	4
Bromoform	ND	10	ug/L			11/05/17 15:40	4
Bromomethane	ND	28	ug/L			11/05/17 15:40	4
Carbon disulfide	ND	7.6	ug/L			11/05/17 15:40	4
Carbon tetrachloride	ND	11	ug/L			11/05/17 15:40	4
Chlorobenzene	ND	30	ug/L			11/05/17 15:40	4
Chlorodibromomethane	ND	13	ug/L			11/05/17 15:40	4
Chloroethane	16	13	ug/L			11/05/17 15:40	4
Chloroform	ND	14	ug/L			11/05/17 15:40	4
						11/05/17 15:40	4
Chloromethane	ND ND	14	ug/L				
cis-1,2-Dichloroethene	ND ND	32 14	ug/L			11/05/17 15:40	4
cis-1,3-Dichloropropene			ug/L			11/05/17 15:40	4
Cyclohexane	ND	7.2	ug/L			11/05/17 15:40	4
Bromodichloromethane	ND	16	ug/L			11/05/17 15:40	4
Dichlorofluoromethane	ND	14	ug/L			11/05/17 15:40	
Ethylbenzene	ND	30	ug/L			11/05/17 15:40	4
Isopropylbenzene	ND *	32	ug/L			11/05/17 15:40	4
Methyl acetate	ND	52	ug/L			11/05/17 15:40	4
Methyl tert-butyl ether	ND	6.4	ug/L			11/05/17 15:40	4
Methylcyclohexane	ND	6.4	ug/L			11/05/17 15:40	4
Methylene Chloride	ND	18	ug/L			11/05/17 15:40	4
Styrene	ND	29	ug/L			11/05/17 15:40	4
Tetrachloroethene	ND	14	ug/L			11/05/17 15:40	4
Toluene	ND	20	ug/L			11/05/17 15:40	4
trans-1,2-Dichloroethene	ND	36	ug/L			11/05/17 15:40	4
trans-1,3-Dichloropropene	ND	15	ug/L			11/05/17 15:40	4
Trichloroethene	ND	18	ug/L			11/05/17 15:40	4
Trichlorofluoromethane	ND	35	ug/L			11/05/17 15:40	4
Vinyl chloride	ND	36	ug/L			11/05/17 15:40	4
Xylenes, Total	ND	26	ug/L			11/05/17 15:40	4

TestAmerica Buffalo

11/14/2017

Page 8 of 38

2

3

5

9

4 4

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: MW-13R Lab Sam

Lab Sample ID: 480-126506-2

Matrix: Water

Date Collected: 10/25/17 13:12 Date Received: 10/25/17 14:30

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120	_		11/05/17 15:40	40
Toluene-d8 (Surr)	101		80 - 120			11/05/17 15:40	40
4-Bromofluorobenzene (Surr)	97		73 - 120			11/05/17 15:40	40
Dibromofluoromethane (Surr)	99		75 - 123			11/05/17 15:40	40

5

5

7

8

10

11

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-3

Matrix: Water

Client Sample ID: MW-15R Date Collected: 10/25/17 13:25

Date Received: 10/25/17 14:30

ND	5.0	//			11/07/17 05 10	
	5.0	ug/L			11/07/17 05:19	- 2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0	ug/L			11/07/17 05:19	2
ND	5.0				11/07/17 05:19	2
ND	5.0				11/07/17 05:19	2
ND	5.0				11/07/17 05:19	2
ND	25				11/07/17 05:19	2
ND	5.0	_			11/07/17 05:19	2
ND					11/07/17 05:19	2
					11/07/17 05:19	2
		_			11/07/17 05:19	2
		.				2
						2
		-				2
						2
		-				2
		-				2
		.				
						2
						2
						
						2
		•				2
						2
						2
						2
						2
		_				
						2
						2
						2
						2
						2
						2
						2
		-				2
	ND N	ND 5.0 ND 25 ND 25 ND 25 ND 25 ND 5.0 ND<	ND 5.0 ug/L ND 25 ug/L ND 20 ug/L ND 30 ug/L	ND 5.0 ug/L ND 25 ug/L ND 20 ug/L ND 20 ug/L ND 5.0 ug/L	ND 5.0 ug/L ND 25 ug/L ND 3.0 ug/L ND 5.0 ug/L	ND 5.0 ug/L 11/07/17 05:19 ND 25 ug/L 11/07/17 05:19 ND 5.0 ug/L 11/07/17 05:19

TestAmerica Buffalo

11/14/2017

4

6

8

10

10

Client: Waste Management

Date Collected: 10/25/17 13:25

Date Received: 10/25/17 14:30

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: MW-15R Lab Sample ID: 480-126506-3

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		11/07/17 05:19	2
Toluene-d8 (Surr)	101	80 - 120		11/07/17 05:19	2
4-Bromofluorobenzene (Surr)	94	73 - 120		11/07/17 05:19	2
Dibromofluoromethane (Surr)	97	75 - 123		11/07/17 05:19	2

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-4

Matrix: Water

Client Sample ID: MW-3S Date Collected: 10/25/17 12:29 Date Received: 10/25/17 14:30

Method: 8260C - Volatile Orgar ^{Analyte}		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1600	ug/L		-	11/05/17 16:31	200
1,1,2,2-Tetrachloroethane	ND	*	420	ug/L			11/05/17 16:31	200
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		620	ug/L			11/05/17 16:31	200
1,1,2-Trichloroethane	ND		460	ug/L			11/05/17 16:31	200
1,1-Dichloroethane	ND		760	ug/L			11/05/17 16:31	200
1,2,4-Trichlorobenzene	ND		820	ug/L			11/05/17 16:31	200
1,2-Dibromo-3-Chloropropane	ND		780	ug/L			11/05/17 16:31	200
1,2-Dibromoethane	ND		1500	ug/L			11/05/17 16:31	200
1,2-Dichlorobenzene	ND		1600	ug/L			11/05/17 16:31	200
1,2-Dichloroethane	ND		420	ug/L			11/05/17 16:31	200
1,2-Dichloropropane	ND		1400	ug/L			11/05/17 16:31	200
1,3-Dichlorobenzene	ND		1600	ug/L			11/05/17 16:31	200
1,4-Dichlorobenzene	ND		1700	ug/L			11/05/17 16:31	200
2-Butanone (MEK)	ND		2600	ug/L			11/05/17 16:31	200
o-Chlorotoluene	78000	* F1	1700	ug/L			11/05/17 16:31	200
2-Hexanone	ND		2500	ug/L			11/05/17 16:31	200
4-Methyl-2-pentanone (MIBK)	ND		4200	ug/L			11/05/17 16:31	200
Acetone	ND		6000	ug/L			11/05/17 16:31	200
Benzene	ND		820	ug/L			11/05/17 16:31	200
Bromoform	ND		520	ug/L			11/05/17 16:31	200
Bromomethane	ND		1400	ug/L			11/05/17 16:31	200
Carbon disulfide	ND		380	ug/L			11/05/17 16:31	200
Carbon tetrachloride	ND		540	ug/L			11/05/17 16:31	200
Calbon tetrachionde	ND ND		1500	_			11/05/17 16:31	200
Chlorodibromomethane	ND		640	ug/L			11/05/17 16:31	200
Chloroethane		F1 F2	640	ug/L			11/05/17 16:31	200
Chloroform	ND ND	F1 F2	680	ug/L			11/05/17 16:31	200
				ug/L				200
Chloromethane	ND		700	ug/L			11/05/17 16:31	
cis-1,2-Dichloroethene	ND		1600	ug/L			11/05/17 16:31	200
cis-1,3-Dichloropropene	ND		720	ug/L			11/05/17 16:31	200
Cyclohexane	ND		360	ug/L			11/05/17 16:31	200
Bromodichloromethane	ND		780	ug/L			11/05/17 16:31	200
Dichlorofluoromethane	ND		680	ug/L			11/05/17 16:31	200
Ethylbenzene 	ND		1500	ug/L			11/05/17 16:31	200
Isopropylbenzene	ND	•	1600	ug/L			11/05/17 16:31	200
Methyl acetate	ND		2600	ug/L			11/05/17 16:31	200
Methyl tert-butyl ether	ND		320	ug/L			11/05/17 16:31	200
Methylcyclohexane	ND		320	ug/L			11/05/17 16:31	200
Methylene Chloride	ND		880	ug/L			11/05/17 16:31	200
Styrene	ND		1500	ug/L			11/05/17 16:31	200
Tetrachloroethene	ND		720	ug/L			11/05/17 16:31	200
Toluene	ND		1000	ug/L			11/05/17 16:31	200
trans-1,2-Dichloroethene	ND		1800	ug/L			11/05/17 16:31	200
trans-1,3-Dichloropropene	ND		740	ug/L			11/05/17 16:31	200
Trichloroethene	ND		920	ug/L			11/05/17 16:31	200
Trichlorofluoromethane	ND		1800	ug/L			11/05/17 16:31	200
Vinyl chloride	ND	F1	1800	ug/L			11/05/17 16:31	200
Xylenes, Total	ND		1300	ug/L			11/05/17 16:31	200

TestAmerica Buffalo

11/14/2017

Page 12 of 38

2

3

6

8

10

12

L

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-4 **Client Sample ID: MW-3S** Date Collected: 10/25/17 12:29

Matrix: Water

Date Received: 10/25/17 14:30

Surrogate	%Recovery Qualifier	Limits	F	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 120			11/05/17 16:31	2000
Toluene-d8 (Surr)	102	80 - 120			11/05/17 16:31	2000
4-Bromofluorobenzene (Surr)	93	73 - 120			11/05/17 16:31	2000
Dibromofluoromethane (Surr)	98	75 - 123			11/05/17 16:31	2000

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-5

Matrix: Water

Client Sample ID: MW-7R Date Collected: 10/25/17 12:40

Method: 8260C - Volatile Orgar Analyte	nic Compounds by GC Result Qualifier	/MS RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	5.0	ug/L			11/05/17 16:56	1
1,1,2,2-Tetrachloroethane	ND *	5.0	ug/L			11/05/17 16:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L			11/05/17 16:56	•
1,1,2-Trichloroethane	ND	5.0	ug/L			11/05/17 16:56	1
1,1-Dichloroethane	ND	5.0	ug/L			11/05/17 16:56	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L			11/05/17 16:56	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			11/05/17 16:56	
1,2-Dibromoethane	ND	5.0	ug/L			11/05/17 16:56	•
1,2-Dichlorobenzene	ND	5.0	ug/L			11/05/17 16:56	
1,2-Dichloroethane	ND	5.0	ug/L			11/05/17 16:56	
1,2-Dichloropropane	ND	5.0	ug/L			11/05/17 16:56	•
1,3-Dichlorobenzene	ND	5.0	ug/L			11/05/17 16:56	
1,4-Dichlorobenzene	ND	5.0	ug/L			11/05/17 16:56	
2-Butanone (MEK)	ND	25	ug/L			11/05/17 16:56	
o-Chlorotoluene	ND *	5.0	ug/L			11/05/17 16:56	-
2-Hexanone	ND	25	ug/L			11/05/17 16:56	•
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L			11/05/17 16:56	
Acetone	ND	25	ug/L			11/05/17 16:56	•
Benzene	ND	5.0	ug/L			11/05/17 16:56	• • • • • • • • • • • • • • • • • • • •
Bromoform	ND	5.0	ug/L			11/05/17 16:56	
Bromomethane	ND	5.0	ug/L			11/05/17 16:56	
Carbon disulfide	ND	5.0	ug/L			11/05/17 16:56	
Carbon tetrachloride	ND	5.0	ug/L			11/05/17 16:56	•
Chlorohenzene	ND	5.0	ua/l			11/05/17 16:56	

Chlorobenzene ND 5.0 ug/L 11/05/17 16:56 Chlorodibromomethane ND 5.0 ug/L 11/05/17 16:56 ND Chloroethane 5.0 ug/L 11/05/17 16:56 Chloroform ND 5.0 ug/L 11/05/17 16:56 Chloromethane ND 5.0 ug/L 11/05/17 16:56 cis-1,2-Dichloroethene ND 5.0 ug/L 11/05/17 16:56 cis-1,3-Dichloropropene ND 5.0 ug/L 11/05/17 16:56 Cyclohexane ND 5.0 ug/L 11/05/17 16:56 Bromodichloromethane ND 5.0 ug/L 11/05/17 16:56 ND ug/L Dichlorofluoromethane 5.0 11/05/17 16:56 ND 5.0 Ethylbenzene ug/L 11/05/17 16:56 Isopropylbenzene ND 5.0 ug/L 11/05/17 16:56 ND 5.0 ug/L Methyl acetate 11/05/17 16:56 ND 5.0 ug/L Methyl tert-butyl ether 11/05/17 16:56 Methylcyclohexane ND 5.0 ug/L 11/05/17 16:56 ND Methylene Chloride 5.0 ug/L 11/05/17 16:56 Styrene ND 5.0 ug/L 11/05/17 16:56 Tetrachloroethene ND 5.0 ug/L 11/05/17 16:56 Toluene ND 5.0 ug/L 11/05/17 16:56 trans-1,2-Dichloroethene ND 5.0 ug/L 11/05/17 16:56 trans-1,3-Dichloropropene ND 5.0 ug/L 11/05/17 16:56 ND ug/L Trichloroethene 5.0 11/05/17 16:56 ND 5.0 ug/L Trichlorofluoromethane 11/05/17 16:56 Vinyl chloride ND 5.0 ug/L 11/05/17 16:56 Xylenes, Total ND 15 ug/L 11/05/17 16:56

TestAmerica Buffalo

11/14/2017

Client: Waste Management

Date Received: 10/25/17 14:30

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-5 **Client Sample ID: MW-7R** Date Collected: 10/25/17 12:40

Matrix: Water

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120	_		11/05/17 16:56	1
Toluene-d8 (Surr)	98	80 - 120			11/05/17 16:56	1
4-Bromofluorobenzene (Surr)	92	73 - 120			11/05/17 16:56	1
Dibromofluoromethane (Surr)	94	75 - 123			11/05/17 16:56	1

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: MW-8R

Date Collected: 10/25/17 13:05

Lab Sample ID: 480-126506-6

Matrix: Water

Date Received: 10/25/17 14:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	5.0	ug/L			11/05/17 17:21	
1,1,2,2-Tetrachloroethane	ND *	5.0	ug/L			11/05/17 17:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L			11/05/17 17:21	
1,1,2-Trichloroethane	ND	5.0	ug/L			11/05/17 17:21	
1,1-Dichloroethane	ND	5.0	ug/L			11/05/17 17:21	
1,2,4-Trichlorobenzene	ND	5.0	ug/L			11/05/17 17:21	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			11/05/17 17:21	
1,2-Dibromoethane	ND	5.0	ug/L			11/05/17 17:21	
1,2-Dichlorobenzene	ND	5.0	ug/L			11/05/17 17:21	
1,2-Dichloroethane	ND	5.0	ug/L			11/05/17 17:21	
1,2-Dichloropropane	ND	5.0	ug/L			11/05/17 17:21	
I,3-Dichlorobenzene	ND	5.0	ug/L			11/05/17 17:21	
1,4-Dichlorobenzene	ND	5.0	ug/L			11/05/17 17:21	
2-Butanone (MEK)	ND	25	ug/L			11/05/17 17:21	
o-Chlorotoluene	31 *	5.0	ug/L			11/05/17 17:21	
2-Hexanone	ND	25	ug/L			11/05/17 17:21	
I-Methyl-2-pentanone (MIBK)	ND	25	ug/L			11/05/17 17:21	
Acetone	ND	25	ug/L			11/05/17 17:21	
Benzene	ND	5.0	ug/L			11/05/17 17:21	
Bromoform	ND	5.0	ug/L			11/05/17 17:21	
Bromomethane	ND	5.0	ug/L			11/05/17 17:21	
Carbon disulfide	ND	5.0	ug/L			11/05/17 17:21	
Carbon tetrachloride	ND	5.0	ug/L			11/05/17 17:21	
Chlorobenzene	ND	5.0	ug/L			11/05/17 17:21	
Chlorodibromomethane	ND	5.0	ug/L			11/05/17 17:21	
Chloroethane	ND	5.0	ug/L			11/05/17 17:21	
Chloroform	ND	5.0	ug/L			11/05/17 17:21	
Chloromethane	ND	5.0				11/05/17 17:21	
cis-1,2-Dichloroethene	ND ND	5.0	ug/L			11/05/17 17:21	
	ND ND		ug/L				
sis-1,3-Dichloropropene		5.0	ug/L			11/05/17 17:21	
Cyclohexane	ND	5.0	ug/L			11/05/17 17:21	
Bromodichloromethane	ND	5.0	ug/L			11/05/17 17:21	
Dichlorofluoromethane	ND	5.0	ug/L			11/05/17 17:21	
Ethylbenzene	ND	5.0	ug/L			11/05/17 17:21	
sopropylbenzene	ND *	5.0	ug/L			11/05/17 17:21	
Methyl acetate	ND	5.0	ug/L			11/05/17 17:21	
Methyl tert-butyl ether	ND	5.0	ug/L			11/05/17 17:21	
Methylcyclohexane	ND	5.0	ug/L			11/05/17 17:21	
Methylene Chloride	ND	5.0	ug/L			11/05/17 17:21	
Styrene	ND	5.0	ug/L			11/05/17 17:21	
etrachloroethene	ND	5.0	ug/L			11/05/17 17:21	
oluene	ND	5.0	ug/L			11/05/17 17:21	
rans-1,2-Dichloroethene	ND	5.0	ug/L			11/05/17 17:21	
rans-1,3-Dichloropropene	ND	5.0	ug/L			11/05/17 17:21	
Frichloroethene	ND	5.0	ug/L			11/05/17 17:21	
Frichlorofluoromethane	ND	5.0	ug/L			11/05/17 17:21	
/inyl chloride	ND	5.0	ug/L			11/05/17 17:21	
Xylenes, Total	ND	15	ug/L			11/05/17 17:21	

TestAmerica Buffalo

11/14/2017

3

5

6

9

10

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: MW-8R

Lab Sample ID: 480-126506-6

Matrix: Water

Date Collected: 10/25/17 13:05 Date Received: 10/25/17 14:30

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		11/05/17 17:21	1
Toluene-d8 (Surr)	100	80 - 120		11/05/17 17:21	1
4-Bromofluorobenzene (Surr)	94	73 - 120		11/05/17 17:21	1
Dibromofluoromethane (Surr)	96	75 - 123		11/05/17 17:21	1

А

5

6

8

9

11

12

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-7

Matrix: Water

Client Sample ID: MW-9R Date Collected: 10/25/17 12:52 Date Received: 10/25/17 14:30

Analyte		Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fa
1,1,2,2-Tetrachloroethane	ND	*	5.0	u	g/L			11/05/17 17:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	u	g/L			11/05/17 17:46	
1,1,2-Trichloroethane	ND		5.0	u	g/L			11/05/17 17:46	
1,2,4-Trichlorobenzene	ND		5.0	u	g/L			11/05/17 17:46	
1,2-Dibromo-3-Chloropropane	ND		5.0	u	g/L			11/05/17 17:46	
1,2-Dibromoethane	ND		5.0	u	g/L			11/05/17 17:46	
1,2-Dichlorobenzene	ND		5.0	u	g/L			11/05/17 17:46	
1,2-Dichloroethane	ND		5.0	u	g/L			11/05/17 17:46	
1,2-Dichloropropane	ND		5.0	u	g/L			11/05/17 17:46	
1,3-Dichlorobenzene	ND		5.0	u	g/L			11/05/17 17:46	
1,4-Dichlorobenzene	ND		5.0		g/L			11/05/17 17:46	
2-Butanone (MEK)	ND		25		g/L			11/05/17 17:46	
2-Hexanone	ND		25	u	g/L			11/05/17 17:46	
4-Methyl-2-pentanone (MIBK)	ND		25		g/L			11/05/17 17:46	
Acetone	ND		25		g/L			11/05/17 17:46	
Benzene	ND		5.0		g/L			11/05/17 17:46	
Bromoform	ND		5.0		g/L			11/05/17 17:46	
Bromomethane	ND		5.0		g/L			11/05/17 17:46	
Carbon disulfide	ND		5.0		g/L			11/05/17 17:46	
Carbon tetrachloride	ND		5.0		g/L			11/05/17 17:46	
Chlorobenzene	ND		5.0		g/L			11/05/17 17:46	
Chlorodibromomethane	ND		5.0		g/L			11/05/17 17:46	
Chloroethane	14		5.0		g/L			11/05/17 17:46	
Chloroform	ND		5.0		g/L			11/05/17 17:46	
Chloromethane	ND		5.0		g/L			11/05/17 17:46	
cis-1,2-Dichloroethene	ND		5.0		g/L			11/05/17 17:46	
cis-1,3-Dichloropropene	ND		5.0		g/L g/L			11/05/17 17:46	
Cyclohexane	ND		5.0		g/L			11/05/17 17:46	
Bromodichloromethane	ND		5.0		g/L g/L			11/05/17 17:46	
Dichlorofluoromethane	ND		5.0		g/L g/L			11/05/17 17:46	
Ethylbenzene	ND		5.0		g/L			11/05/17 17:46	
Isopropylbenzene	ND	*	5.0		g/L g/L			11/05/17 17:46	
Methyl acetate	ND		5.0		g/L g/L			11/05/17 17:46	
Methyl tert-butyl ether	ND		5.0					11/05/17 17:46	
Methylcyclohexane	ND ND		5.0		g/L			11/05/17 17:46	
, ,					g/L				
Methylene Chloride	ND		5.0		g/L			11/05/17 17:46	
Styrene	ND		5.0 5.0		g/L			11/05/17 17:46	
Tetrachloroethene	ND		5.0		g/L			11/05/17 17:46	
Toluene	ND		5.0		g/L			11/05/17 17:46	
trans-1,2-Dichloroethene	ND		5.0		g/L			11/05/17 17:46	
trans-1,3-Dichloropropene	ND		5.0		g/L			11/05/17 17:46	
Trichloroethene	ND		5.0		g/L			11/05/17 17:46	
Trichlorofluoromethane	ND		5.0		g/L			11/05/17 17:46	
Vinyl chloride	ND		5.0		g/L			11/05/17 17:46	
Xylenes, Total	ND		15	U	g/L			11/05/17 17:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		11/05/17 17:46	
Toluene-d8 (Surr)	95		80 - 120					11/05/17 17:46	

TestAmerica Buffalo

11/14/2017

Page 18 of 38

2

4

6

0

4.0

11

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: MW-9R

Lab Sample ID: 480-126506-7

Matrix: Water

11/06/17 10:41

11/06/17 10:41

Date Collected: 10/25/17 12:52 Date Received: 10/25/17 14:30

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

96

100

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		73 - 120		11/05/17 17:46	2
Dibromofluoromethane (Surr)	106		75 - 123		11/05/17 17:46	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	640		33		ug/L			11/06/17 10:41	40
1,1-Dichloroethane	410		15		ug/L			11/06/17 10:41	40
o-Chlorotoluene	2100		34		ug/L			11/06/17 10:41	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		11/06/17 10:41	40
Toluene-d8 (Surr)	102		80 - 120					11/06/17 10:41	40

73 - 120

75 - 123

40

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: TB

Lab Sample ID: 480-126506-8 Date Collected: 10/25/17 08:00 Matrix: Water

Date Received: 10/25/17 14:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L			11/07/17 05:44	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			11/07/17 05:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L			11/07/17 05:44	
1,1,2-Trichloroethane	ND	5.0	ug/L			11/07/17 05:44	
1,1-Dichloroethane	ND	5.0	ug/L			11/07/17 05:44	
1,2,4-Trichlorobenzene	ND	5.0	ug/L			11/07/17 05:44	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			11/07/17 05:44	· · · · · · · · ·
1,2-Dibromoethane	ND	5.0	ug/L			11/07/17 05:44	
1,2-Dichlorobenzene	ND	5.0	ug/L			11/07/17 05:44	
1,2-Dichloroethane	ND	5.0	ug/L			11/07/17 05:44	
1,2-Dichloropropane	ND	5.0	ug/L			11/07/17 05:44	
1,3-Dichlorobenzene	ND	5.0	ug/L			11/07/17 05:44	
1,4-Dichlorobenzene	ND	5.0	ug/L			11/07/17 05:44	
2-Butanone (MEK)	ND	25	ug/L			11/07/17 05:44	
o-Chlorotoluene	ND	5.0	ug/L			11/07/17 05:44	
2-Hexanone	ND	25	ug/L			11/07/17 05:44	
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L			11/07/17 05:44	
Acetone	ND	25	ug/L			11/07/17 05:44	
Benzene	ND	5.0	ug/L			11/07/17 05:44	
Bromoform	ND	5.0	ug/L			11/07/17 05:44	
Bromomethane	ND	5.0	ug/L			11/07/17 05:44	
Carbon disulfide	ND	5.0				11/07/17 05:44	
	ND ND		ug/L			11/07/17 05:44	
Carbon tetrachloride	ND ND	5.0	ug/L				
Chlorodibuonomathoro		5.0	ug/L			11/07/17 05:44	
Chlorodibromomethane	ND	5.0	ug/L			11/07/17 05:44	
Chloroethane	ND	5.0	ug/L			11/07/17 05:44	
Chloroform	ND	5.0	ug/L			11/07/17 05:44	
Chloromethane	ND	5.0	ug/L			11/07/17 05:44	
cis-1,2-Dichloroethene	ND	5.0	ug/L			11/07/17 05:44	
cis-1,3-Dichloropropene	ND	5.0	ug/L			11/07/17 05:44	
Cyclohexane	ND	5.0	ug/L			11/07/17 05:44	
Bromodichloromethane	ND	5.0	ug/L			11/07/17 05:44	
Dichlorofluoromethane	ND	5.0	ug/L			11/07/17 05:44	
Ethylbenzene	ND	5.0	ug/L			11/07/17 05:44	
Isopropylbenzene	ND	5.0	ug/L			11/07/17 05:44	
Methyl acetate	ND	5.0	ug/L			11/07/17 05:44	
Methyl tert-butyl ether	ND	5.0	ug/L			11/07/17 05:44	
Methylcyclohexane	ND	5.0	ug/L			11/07/17 05:44	
Methylene Chloride	ND	5.0	ug/L			11/07/17 05:44	
Styrene	ND	5.0	ug/L			11/07/17 05:44	
Tetrachloroethene	ND	5.0	ug/L			11/07/17 05:44	
Toluene	ND	5.0	ug/L			11/07/17 05:44	
trans-1,2-Dichloroethene	ND	5.0	ug/L			11/07/17 05:44	
trans-1,3-Dichloropropene	ND	5.0	ug/L			11/07/17 05:44	
Trichloroethene	ND	5.0	ug/L			11/07/17 05:44	
Trichlorofluoromethane	ND	5.0	ug/L			11/07/17 05:44	
Vinyl chloride	ND	5.0	ug/L			11/07/17 05:44	
Xylenes, Total	ND	15	ug/L			11/07/17 05:44	

TestAmerica Buffalo

11/14/2017

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Client Sample ID: TB

Lab Sample ID: 480-126506-8

Date Collected: 10/25/17 08:00 Matrix: Water Date Received: 10/25/17 14:30

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	77 - 120		11/07/17 05:44	1
Toluene-d8 (Surr)	98	80 - 120		11/07/17 05:44	1
4-Bromofluorobenzene (Surr)	92	73 - 120		11/07/17 05:44	1
Dibromofluoromethane (Surr)	96	75 - 123		11/07/17 05:44	1

5

5

7

9

10

12

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-385710/6

Matrix: Water

Analysis Batch: 385710

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,1,2-Trichloroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,1-Dichloroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			11/05/17 14:13	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/05/17 14:13	1
1,2-Dibromoethane	ND		5.0		ug/L			11/05/17 14:13	1
1,2-Dichlorobenzene	ND		5.0		ug/L			11/05/17 14:13	1
1,2-Dichloroethane	ND		5.0		ug/L			11/05/17 14:13	1
1,2-Dichloropropane	ND		5.0		ug/L			11/05/17 14:13	1
1,3-Dichlorobenzene	ND		5.0		ug/L			11/05/17 14:13	1
1,4-Dichlorobenzene	ND		5.0		ug/L			11/05/17 14:13	1
2-Butanone (MEK)	ND		25		ug/L			11/05/17 14:13	1
o-Chlorotoluene	ND		5.0		ug/L			11/05/17 14:13	1
2-Hexanone	ND		25		ug/L			11/05/17 14:13	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			11/05/17 14:13	1
Acetone	ND		25		ug/L			11/05/17 14:13	1
Benzene	ND		5.0		ug/L			11/05/17 14:13	1
Bromoform	ND		5.0		ug/L			11/05/17 14:13	1
Bromomethane	ND		5.0		ug/L			11/05/17 14:13	1
Carbon disulfide	ND		5.0		ug/L			11/05/17 14:13	1
Carbon tetrachloride	ND		5.0		ug/L			11/05/17 14:13	1
Chlorobenzene	ND		5.0		ug/L			11/05/17 14:13	1
Chlorodibromomethane	ND		5.0		ug/L			11/05/17 14:13	1
Chloroethane	ND		5.0		ug/L			11/05/17 14:13	1
Chloroform	ND		5.0		ug/L			11/05/17 14:13	1
Chloromethane	ND		5.0		ug/L			11/05/17 14:13	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/05/17 14:13	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			11/05/17 14:13	1
Cyclohexane	ND		5.0		ug/L			11/05/17 14:13	1
Bromodichloromethane	ND		5.0		ug/L			11/05/17 14:13	1
Dichlorofluoromethane	ND		5.0		ug/L			11/05/17 14:13	1
Ethylbenzene	ND		5.0		ug/L			11/05/17 14:13	1
Isopropylbenzene	ND		5.0		ug/L			11/05/17 14:13	1
Methyl acetate	ND		5.0		ug/L			11/05/17 14:13	1
Methyl tert-butyl ether	ND		5.0		ug/L			11/05/17 14:13	1
Methylcyclohexane	ND		5.0		ug/L			11/05/17 14:13	1
Methylene Chloride	ND		5.0		ug/L			11/05/17 14:13	1
Styrene	ND		5.0		ug/L			11/05/17 14:13	1
Tetrachloroethene	ND		5.0		ug/L			11/05/17 14:13	1
Toluene	ND		5.0		ug/L			11/05/17 14:13	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			11/05/17 14:13	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			11/05/17 14:13	1
Trichloroethene	ND		5.0		ug/L			11/05/17 14:13	1
Trichlorofluoromethane	ND		5.0		ug/L			11/05/17 14:13	1
Vinyl chloride	ND		5.0		ug/L			11/05/17 14:13	1
Xylenes, Total	ND		15		ug/L			11/05/17 14:13	1

TestAmerica Buffalo

11/14/2017

Page 22 of 38

Client: Waste Management

2-Butanone (MEK)

4-Methyl-2-pentanone (MIBK)

o-Chlorotoluene

2-Hexanone

Acetone

Benzene

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Styrene

Toluene

Isopropylbenzene

Chloroform

Carbon tetrachloride

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Bromodichloromethane

Dichlorofluoromethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

trans-1,2-Dichloroethene

Project/Site: ChemTrol Site - Annual Groundwater

Lab Sample ID: LCS 480-385710/9

TestAmerica Job ID: 480-126506-1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		11/05/17 14:13	1
Toluene-d8 (Surr)	99	80 - 120		11/05/17 14:13	1
4-Bromofluorobenzene (Surr)	93	73 - 120		11/05/17 14:13	1
Dibromofluoromethane (Surr)	96	75 - 123		11/05/17 14:13	1

Client Sample ID: Lab Control Sample

94

147

102

109

75

93

98

111

104

109

100

99

104

88

100

112

113

105

103

110

147

98

98

108

99

107

107

108

99

107

57 - 140

76 - 121

65 - 127

71 - 125

56 - 142

71 - 124

61 - 132

55 - 144

59 - 134

72 - 134

80 - 120

75 - 125

69 - 136

73 - 127

68 - 124

74 - 124

74 - 124

59 - 135

80 - 122

76 - 127

77 - 123

77 - 122

74 - 133

77 - 120

68 - 134

75 - 124

80 - 120

74 - 122

80 - 122

73 - 127

			_	-				{
								9

Matrix: Water Analysis Batch: 385710							Prep Type: Total/NA
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	26.7		ug/L		107	73 - 126
1,1,2,2-Tetrachloroethane	25.0	33.3	*	ug/L		133	76 ₋ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.4		ug/L		110	61 - 148
ne							
1,1,2-Trichloroethane	25.0	25.6		ug/L		103	76 - 122
1,1-Dichloroethane	25.0	27.9		ug/L		112	77 - 120
1,2,4-Trichlorobenzene	25.0	28.5		ug/L		114	79 ₋ 122
1,2-Dibromo-3-Chloropropane	25.0	23.0		ug/L		92	56 - 134
1,2-Dibromoethane	25.0	24.7		ug/L		99	77 - 120
1,2-Dichlorobenzene	25.0	26.4		ug/L		106	80 - 124
1,2-Dichloroethane	25.0	24.7		ug/L		99	75 - 120
1,2-Dichloropropane	25.0	26.6		ug/L		106	76 - 120
1,3-Dichlorobenzene	25.0	27.5		ug/L		110	77 - 120
1,4-Dichlorobenzene	25.0	26.6		ug/L		106	80 - 120

125

25.0

125

125

125

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

117

36.8

128

136

93.4

26.8

23.2

24.6

27.8

25.9

27.2

25.0

24.8

26.0

21.9

25.1

27.9

28.4

26.2

25.8

27.5

49.0

24.5

27.0

24.9

26.9

26.7

26.9

24.8

36.8

ug/L

TestAmerica Buffalo

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-385710/9

Matrix: Water

Analysis Batch: 385710

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene	25.0	26.1		ug/L		104	80 - 120	
Trichloroethene	25.0	27.0		ug/L		108	74 - 123	
Trichlorofluoromethane	25.0	28.0		ug/L		112	62 - 150	
Vinyl chloride	25.0	19.8		ug/L		79	65 - 133	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 Toluene-d8 (Surr) 101 80 - 120 4-Bromofluorobenzene (Surr) 96 73 - 120 Dibromofluoromethane (Surr) 98 75 - 123

Lab Sample ID: 480-126506-4 MS

Matrix: Water

Client Sample ID: MW-3S
Prep Type: Total/NA

Analysis Batch: 385710									
•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		50000	50400		ug/L		101	73 - 126
1,1,2,2-Tetrachloroethane	ND	*	50000	53700		ug/L		107	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		50000	46100		ug/L		92	61 - 148
ne 1,1,2-Trichloroethane	ND		50000	51300		ug/L		103	76 - 122
1,1-Dichloroethane	ND		50000	54600		ug/L		109	77 - 120
1,2,4-Trichlorobenzene	ND		50000	53000		ug/L		106	79 - 122
1,2-Dibromo-3-Chloropropane	ND		50000	44600		ug/L		89	56 - 134
1,2-Dibromoethane	ND		50000	50000		ug/L		100	77 - 120
1,2-Dichlorobenzene	ND		50000	53400		ug/L		107	80 - 124
1,2-Dichloroethane	ND		50000	49100		ug/L		98	75 - 120
1,2-Dichloropropane	ND		50000	52300		ug/L		105	76 - 120
1,3-Dichlorobenzene	ND		50000	54400		ug/L		109	77 - 120
1,4-Dichlorobenzene	ND		50000	52900		ug/L		106	78 - 124
2-Butanone (MEK)	ND		250000	254000		ug/L		101	57 ₋ 140
o-Chlorotoluene	78000	* F1	50000	140000	F1	ug/L		124	76 - 121
2-Hexanone	ND		250000	267000		ug/L		107	65 - 127
4-Methyl-2-pentanone (MIBK)	ND		250000	286000		ug/L		115	71 - 125
Acetone	ND		250000	204000		ug/L		82	56 - 142
Benzene	ND		50000	52900		ug/L		106	71 - 124
Bromoform	ND		50000	46900		ug/L		94	61 - 132
Bromomethane	ND		50000	29000		ug/L		58	55 - 144
Carbon disulfide	ND		50000	51500		ug/L		103	59 - 134
Carbon tetrachloride	ND		50000	47800		ug/L		96	72 - 134
Chlorobenzene	ND		50000	53100		ug/L		106	80 - 120
Chlorodibromomethane	ND		50000	50100		ug/L		100	75 - 125
Chloroethane	ND	F1 F2	50000	31600	F1	ug/L		63	69 - 136
Chloroform	ND		50000	51300		ug/L		103	73 - 127
Chloromethane	ND		50000	40800		ug/L		82	68 - 124
cis-1,2-Dichloroethene	ND		50000	49100		ug/L		98	74 - 124
cis-1,3-Dichloropropene	ND		50000	50600		ug/L		101	74 - 124
Cyclohexane	ND		50000	50200		ug/L		100	59 - 135

TestAmerica Buffalo

TestAmerica Job ID: 480-126506-1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-126506-4 MS

Matrix: Water

Analysis Batch: 385710

Client Sample ID: MW-3S Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromodichloromethane	ND		50000	52200	-	ug/L		104	80 - 122	
Dichlorofluoromethane	ND		50000	53000		ug/L		106	76 - 127	
Ethylbenzene	ND		50000	53100		ug/L		106	77 - 123	
Isopropylbenzene	ND	*	50000	57100		ug/L		114	77 - 122	
Methyl acetate	ND		100000	104000		ug/L		104	74 - 133	
Methyl tert-butyl ether	ND		50000	50200		ug/L		100	77 - 120	
Methylcyclohexane	ND		50000	46500		ug/L		93	68 - 134	
Methylene Chloride	ND		50000	50200		ug/L		100	75 - 124	
Styrene	ND		50000	52900		ug/L		106	80 - 120	
Tetrachloroethene	ND		50000	49700		ug/L		99	74 - 122	
Toluene	ND		50000	52700		ug/L		105	80 - 122	
trans-1,2-Dichloroethene	ND		50000	47600		ug/L		95	73 - 127	
trans-1,3-Dichloropropene	ND		50000	51400		ug/L		103	80 - 120	
Trichloroethene	ND		50000	51500		ug/L		103	74 - 123	
Trichlorofluoromethane	ND		50000	52500		ug/L		105	62 - 150	
Vinyl chloride	ND	F1	50000	28200	F1	ug/L		56	65 - 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		77 - 120
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	97		75 - 123

Lab Sample ID: 480-126506-4 MSD

Matrix: Water

Analysis Batch: 385710

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		50000	47400		ug/L		95	73 - 126	6	15
1,1,2,2-Tetrachloroethane	ND	*	50000	52100		ug/L		104	76 - 120	3	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		50000	44300		ug/L		89	61 - 148	4	20
ne											
1,1,2-Trichloroethane	ND		50000	51200		ug/L		102	76 - 122	0	15
1,1-Dichloroethane	ND		50000	52400		ug/L		105	77 - 120	4	20
1,2,4-Trichlorobenzene	ND		50000	51400		ug/L		103	79 - 122	3	20
1,2-Dibromo-3-Chloropropane	ND		50000	42400		ug/L		85	56 - 134	5	15
1,2-Dibromoethane	ND		50000	49000		ug/L		98	77 - 120	2	15
1,2-Dichlorobenzene	ND		50000	50400		ug/L		101	80 - 124	6	20
1,2-Dichloroethane	ND		50000	48300		ug/L		97	75 - 120	2	20
1,2-Dichloropropane	ND		50000	50200		ug/L		100	76 - 120	4	20
1,3-Dichlorobenzene	ND		50000	51100		ug/L		102	77 - 120	6	20
1,4-Dichlorobenzene	ND		50000	50700		ug/L		101	78 - 124	4	20
2-Butanone (MEK)	ND		250000	245000		ug/L		98	57 ₋ 140	4	20
o-Chlorotoluene	78000	* F1	50000	129000		ug/L		103	76 - 121	8	20
2-Hexanone	ND		250000	259000		ug/L		103	65 - 127	3	15
4-Methyl-2-pentanone (MIBK)	ND		250000	276000		ug/L		110	71 - 125	4	35
Acetone	ND		250000	200000		ug/L		80	56 - 142	2	15
Benzene	ND		50000	50500		ug/L		101	71 - 124	5	13

TestAmerica Buffalo

Page 25 of 38

Client Sample ID: MW-3S Prep Type: Total/NA

TestAmerica Job ID: 480-126506-1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-126506-4 MSD

Matrix: Water

Analysis Batch: 385710

Client Sample ID: MW-3S **Prep Type: Total/NA**

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	ND		50000	45000		ug/L		90	61 - 132	4	15
Bromomethane	ND		50000	28600		ug/L		57	55 - 144	1	15
Carbon disulfide	ND		50000	49200		ug/L		98	59 - 134	5	15
Carbon tetrachloride	ND		50000	46600		ug/L		93	72 - 134	2	15
Chlorobenzene	ND		50000	50700		ug/L		101	80 - 120	5	25
Chlorodibromomethane	ND		50000	47600		ug/L		95	75 - 125	5	15
Chloroethane	ND	F1 F2	50000	44500	F2	ug/L		89	69 - 136	34	15
Chloroform	ND		50000	49500		ug/L		99	73 - 127	4	20
Chloromethane	ND		50000	37600		ug/L		75	68 - 124	8	15
cis-1,2-Dichloroethene	ND		50000	47900		ug/L		96	74 - 124	2	15
cis-1,3-Dichloropropene	ND		50000	50300		ug/L		101	74 - 124	1	15
Cyclohexane	ND		50000	48700		ug/L		97	59 - 135	3	20
Bromodichloromethane	ND		50000	50600		ug/L		101	80 - 122	3	15
Dichlorofluoromethane	ND		50000	50000		ug/L		100	76 - 127	6	20
Ethylbenzene	ND		50000	49800		ug/L		100	77 - 123	6	15
Isopropylbenzene	ND	*	50000	53000		ug/L		106	77 - 122	8	20
Methyl acetate	ND		100000	102000		ug/L		102	74 - 133	2	20
Methyl tert-butyl ether	ND		50000	49700		ug/L		99	77 - 120	1	37
Methylcyclohexane	ND		50000	44500		ug/L		89	68 - 134	4	20
Methylene Chloride	ND		50000	48400		ug/L		97	75 - 124	4	15
Styrene	ND		50000	50200		ug/L		100	80 - 120	5	20
Tetrachloroethene	ND		50000	45900		ug/L		92	74 - 122	8	20
Toluene	ND		50000	49400		ug/L		99	80 - 122	6	15
trans-1,2-Dichloroethene	ND		50000	45200		ug/L		90	73 - 127	5	20
trans-1,3-Dichloropropene	ND		50000	49000		ug/L		98	80 - 120	5	15
Trichloroethene	ND		50000	50000		ug/L		100	74 - 123	3	16
Trichlorofluoromethane	ND		50000	50600		ug/L		101	62 - 150	4	20
Vinyl chloride	ND	F1	50000	28600	F1	ug/L		57	65 - 133	1	15

MSD MSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	98		73 - 120
Dibromofluoromethane (Surr)	97		75 - 123

Lab Sample ID: MB 480-385738/7

Matrix: Water

Analysis Batch: 385738

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/06/17 10:05	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/06/17 10:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			11/06/17 10:05	1
1,1,2-Trichloroethane	ND		5.0		ug/L			11/06/17 10:05	1
1,1-Dichloroethane	ND		5.0		ug/L			11/06/17 10:05	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			11/06/17 10:05	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/06/17 10:05	1
1,2-Dibromoethane	ND		5.0		ug/L			11/06/17 10:05	1

TestAmerica Buffalo

Page 26 of 38

11/14/2017

Client: Waste Management

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Lab Sample ID: MB 480-385738/7

Project/Site: ChemTrol Site - Annual Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ND

ND

ND

ND

ND

TestAmerica Job ID: 480-126506-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water	•					
Analysis Batch: 385738					Prep Type: To	
7 maryono Batom Goor Go	MB MB					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND	5.0	ug/L		11/06/17 10:05	1
1,2-Dichloroethane	ND	5.0	ug/L		11/06/17 10:05	1
1,2-Dichloropropane	ND	5.0	ug/L		11/06/17 10:05	1
1,3-Dichlorobenzene	ND	5.0	ug/L		11/06/17 10:05	1
1,4-Dichlorobenzene	ND	5.0	ug/L		11/06/17 10:05	1
2-Butanone (MEK)	ND	25	ug/L		11/06/17 10:05	1
o-Chlorotoluene	ND	5.0	ug/L		11/06/17 10:05	1
2-Hexanone	ND	25	ug/L		11/06/17 10:05	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/06/17 10:05	1
Acetone	ND	25	ug/L		11/06/17 10:05	1
Benzene	ND	5.0	ug/L		11/06/17 10:05	1
Bromoform	ND	5.0	ug/L		11/06/17 10:05	1
Bromomethane	ND	5.0	ug/L		11/06/17 10:05	1
Carbon disulfide	ND	5.0	ug/L		11/06/17 10:05	1
Carbon tetrachloride	ND	5.0	ug/L		11/06/17 10:05	1
Chlorobenzene	ND	5.0	ug/L		11/06/17 10:05	1
Chlorodibromomethane	ND	5.0	ug/L		11/06/17 10:05	1
Chloroothano	ND	5.0	ug/l		11/06/17 10:05	1

Carbon disulfide	ND	5.0	ug/L	11/06/17 10:05	1
Carbon tetrachloride	ND	5.0	ug/L	11/06/17 10:05	1
Chlorobenzene	ND	5.0	ug/L	11/06/17 10:05	1
Chlorodibromomethane	ND	5.0	ug/L	11/06/17 10:05	1
Chloroethane	ND	5.0	ug/L	11/06/17 10:05	1
Chloroform	ND	5.0	ug/L	11/06/17 10:05	1
Chloromethane	ND	5.0	ug/L	11/06/17 10:05	1
cis-1,2-Dichloroethene	ND	5.0	ug/L	11/06/17 10:05	1
cis-1,3-Dichloropropene	ND	5.0	ug/L	11/06/17 10:05	1
Cyclohexane	ND	5.0	ug/L	11/06/17 10:05	1
Bromodichloromethane	ND	5.0	ug/L	11/06/17 10:05	1
Dichlorofluoromethane	ND	5.0	ug/L	11/06/17 10:05	1
Ethylbenzene	ND	5.0	ug/L	11/06/17 10:05	1
Isopropylbenzene	ND	5.0	ug/L	11/06/17 10:05	1
Methyl acetate	ND	5.0	ug/L	11/06/17 10:05	1
Methyl tert-butyl ether	ND	5.0	ug/L	11/06/17 10:05	1
Methylcyclohexane	ND	5.0	ug/L	11/06/17 10:05	1
Methylene Chloride	ND	5.0	ug/L	11/06/17 10:05	1
Styrene	ND	5.0	ug/L	11/06/17 10:05	1
Tetrachloroethene	ND	5.0	ug/L	11/06/17 10:05	1
Toluene	ND	5.0	ug/L	11/06/17 10:05	1
trans-1,2-Dichloroethene	ND	5.0	ug/L	11/06/17 10:05	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		11/06/17 10:05	1
Toluene-d8 (Surr)	99	80 - 120		11/06/17 10:05	1
4-Bromofluorobenzene (Surr)	95	73 - 120		11/06/17 10:05	1
Dibromofluoromethane (Surr)	97	75 - 123		11/06/17 10:05	1

5.0

5.0

5.0

5.0

15

ug/L

ug/L

ug/L

ug/L

ug/L

TestAmerica Buffalo

11/14/2017

11/06/17 10:05

11/06/17 10:05

11/06/17 10:05

11/06/17 10:05

11/06/17 10:05

Page 27 of 38

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-385738/9

Matrix: Water

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 385738	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
1,1,1-Trichloroethane	25.0	24.6		ug/L		73 - 126
1,1,2,2-Tetrachloroethane	25.0	26.0		ug/L	104	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.4		ug/L	98	61 - 148
ne						
1,1,2-Trichloroethane	25.0	24.9		ug/L	100	76 - 122
1,1-Dichloroethane	25.0	26.6		ug/L	106	77 - 120
1,2,4-Trichlorobenzene	25.0	25.8		ug/L	103	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	24.1		ug/L	96	56 - 134
1,2-Dibromoethane	25.0	23.9		ug/L	95	77 - 120
1,2-Dichlorobenzene	25.0	25.3		ug/L	101	80 - 124
1,2-Dichloroethane	25.0	24.4		ug/L	97	75 - 120
1,2-Dichloropropane	25.0	25.9		ug/L	104	76 - 120
1,3-Dichlorobenzene	25.0	26.4		ug/L	105	77 - 120
1,4-Dichlorobenzene	25.0	25.8		ug/L	103	80 - 120
2-Butanone (MEK)	125	124		ug/L	99	57 - 140
o-Chlorotoluene	25.0	27.1		ug/L	108	76 - 121
2-Hexanone	125	130		ug/L	104	65 - 127
4-Methyl-2-pentanone (MIBK)	125	136		ug/L	109	71 - 125
Acetone	125	104		ug/L	83	56 - 142
Benzene	25.0	25.6		ug/L	102	71 - 124
Bromoform	25.0	22.6		ug/L	90	61 - 132
Bromomethane	25.0	24.3		ug/L	97	55 - 144
Carbon disulfide	25.0	25.5		ug/L	102	59 - 134
Carbon tetrachloride	25.0	24.0		ug/L	96	72 - 134
Chlorobenzene	25.0	25.7		ug/L	103	80 - 120
Chlorodibromomethane	25.0	24.3		ug/L	97	75 - 125
Chloroethane	25.0	25.7		ug/L	103	69 - 136
Chloroform	25.0	24.6		ug/L	98	73 - 127
Chloromethane	25.0	20.1		ug/L	80	68 - 124
cis-1,2-Dichloroethene	25.0	23.9		ug/L	96	74 - 124
cis-1,3-Dichloropropene	25.0	25.7		ug/L	103	74 - 124
Cyclohexane	25.0	26.0		ug/L	104	59 - 135
Bromodichloromethane	25.0	25.4		ug/L	102	80 - 122
Dichlorofluoromethane	25.0	26.3		ug/L	105	76 - 127
Ethylbenzene	25.0	25.5		ug/L	102	77 - 123
sopropylbenzene	25.0	27.1		ug/L	108	77 - 122
Methyl acetate	50.0	50.2		ug/L	100	74 - 133
Methyl tert-butyl ether	25.0	24.4		ug/L	98	77 - 120
Methylcyclohexane	25.0	24.6		ug/L	98	68 - 134
Methylene Chloride	25.0	24.3		ug/L	97	75 - 124
Styrene	25.0	25.3		ug/L	101	80 - 120
Tetrachloroethene	25.0	23.9		ug/L	96	74 - 122
Toluene	25.0	25.3		ug/L ug/L	101	80 - 122
rans-1,2-Dichloroethene	25.0	23.0		ug/L	92	73 - 127
rans-1,3-Dichloropropene	25.0	25.5		ug/L ug/L	102	80 ₋ 120
Trichloroethene	25.0	25.1		ug/L ug/L	100	74 ₋ 123
Trichlorofluoromethane	25.0	27.9		ug/L	112	62 - 150
Homoroniumoniemane	20.0	21.9		ug/L	112	02 - 100

TestAmerica Buffalo

11/14/2017

Page 28 of 38

2

3

7

ŏ

10

10

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-385738/9

Matrix: Water

Analysis Batch: 385738

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Lab Sample ID: MB 480-385904/6

Matrix: Water

Analysis Batch: 385904

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,1,2-Trichloroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,1-Dichloroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			11/07/17 00:53	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/07/17 00:53	1
1,2-Dibromoethane	ND		5.0		ug/L			11/07/17 00:53	1
1,2-Dichlorobenzene	ND		5.0		ug/L			11/07/17 00:53	1
1,2-Dichloroethane	ND		5.0		ug/L			11/07/17 00:53	1
1,2-Dichloropropane	ND		5.0		ug/L			11/07/17 00:53	1
1,3-Dichlorobenzene	ND		5.0		ug/L			11/07/17 00:53	1
1,4-Dichlorobenzene	ND		5.0		ug/L			11/07/17 00:53	1
2-Butanone (MEK)	ND		25		ug/L			11/07/17 00:53	1
o-Chlorotoluene	ND		5.0		ug/L			11/07/17 00:53	1
2-Hexanone	ND		25		ug/L			11/07/17 00:53	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			11/07/17 00:53	1
Acetone	ND		25		ug/L			11/07/17 00:53	1
Benzene	ND		5.0		ug/L			11/07/17 00:53	1
Bromoform	ND		5.0		ug/L			11/07/17 00:53	1
Bromomethane	ND		5.0		ug/L			11/07/17 00:53	1
Carbon disulfide	ND		5.0		ug/L			11/07/17 00:53	1
Carbon tetrachloride	ND		5.0		ug/L			11/07/17 00:53	1
Chlorobenzene	ND		5.0		ug/L			11/07/17 00:53	1
Chlorodibromomethane	ND		5.0		ug/L			11/07/17 00:53	1
Chloroethane	ND		5.0		ug/L			11/07/17 00:53	1
Chloroform	ND		5.0		ug/L			11/07/17 00:53	1
Chloromethane	ND		5.0		ug/L			11/07/17 00:53	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/07/17 00:53	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			11/07/17 00:53	1
Cyclohexane	ND		5.0		ug/L			11/07/17 00:53	1
Bromodichloromethane	ND		5.0		ug/L			11/07/17 00:53	1
Dichlorofluoromethane	ND		5.0		ug/L			11/07/17 00:53	1
Ethylbenzene	ND		5.0		ug/L			11/07/17 00:53	1
Isopropylbenzene	ND		5.0		ug/L			11/07/17 00:53	1
Methyl acetate	ND		5.0		ug/L			11/07/17 00:53	1
Methyl tert-butyl ether	ND		5.0		ug/L			11/07/17 00:53	1
Methylcyclohexane	ND		5.0		ug/L			11/07/17 00:53	1

TestAmerica Buffalo

11/14/2017

Page 29 of 38

TestAmerica Job ID: 480-126506-1

Prep Type: Total/NA

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-385904/6 **Client Sample ID: Method Blank** Matrix: Water

Analysis Batch: 385904

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		5.0		ug/L			11/07/17 00:53	1
Styrene	ND		5.0		ug/L			11/07/17 00:53	1
Tetrachloroethene	ND		5.0		ug/L			11/07/17 00:53	1
Toluene	ND		5.0		ug/L			11/07/17 00:53	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			11/07/17 00:53	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			11/07/17 00:53	1
Trichloroethene	ND		5.0		ug/L			11/07/17 00:53	1
Trichlorofluoromethane	ND		5.0		ug/L			11/07/17 00:53	1
Vinyl chloride	ND		5.0		ug/L			11/07/17 00:53	1
Xylenes, Total	ND		15		ug/L			11/07/17 00:53	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		77 - 120		11/07/17 00:53	1
Toluene-d8 (Surr)	101		80 - 120		11/07/17 00:53	1
4-Bromofluorobenzene (Surr)	95		73 - 120		11/07/17 00:53	1
Dibromofluoromethane (Surr)	96		75 - 123		11/07/17 00:53	1

Lab Sample ID: LCS 480-385904/27

Matrix: Water

Analysis Batch: 385904

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analyte Added Result Qualifier Unit D %Rec Limits 1,1,1-Trichloroethane 25.0 22.7 ug/L 91 73-126 1,1,2-Tertachloroethane 25.0 23.9 ug/L 95 76-120 1,1,2-Trichloroethane 25.0 20.9 ug/L 84 61-148 1,1,2-Trichloroethane 25.0 23.8 ug/L 95 76-122 1,1-Dichloroethane 25.0 26.1 ug/L 104 77-120 1,2-Dichloroethane 25.0 25.2 ug/L 101 79-122 1,2-Dibromo-3-Chloropropane 25.0 25.2 ug/L 91 56-134 1,2-Dichloroethane 25.0 22.9 ug/L 91 56-134 1,2-Dichloroethane 25.0 25.0 ug/L 100 80-124 1,2-Dichloroethane 25.0 25.0 ug/L 101 76-120 1,2-Dichloroethane 25.0 25.0 ug/L 105 77-120 </th <th>Analysis Batch: 385904</th> <th>Spike</th> <th>LCS</th> <th>LCS</th> <th></th> <th></th> <th></th> <th>%Rec.</th>	Analysis Batch: 385904	Spike	LCS	LCS				%Rec.
1,1,2,2-Tetrachloroethane 25.0 23.9 ug/L 85 76.120 1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 20.9 ug/L 84 61.148 1,1,2-Trichloroethane 25.0 23.8 ug/L 95 76.122 1,1-Dichloroethane 25.0 23.8 ug/L 104 77.120 1,2-Lichloroethane 25.0 25.2 ug/L 101 79.122 1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56.134 1,2-Dibromoethane 25.0 22.7 ug/L 91 77.120 1,2-Dichlorobenzene 25.0 22.1 ug/L 100 80.124 1,2-Dichlorobenzene 25.0 25.1 ug/L 10 80.124 1,2-Dichloroptopane 25.0 25.2 ug/L 10 77.120 1,2-Dichloroptopane 25.0 25.2 ug/L 10 77.120 1,2-Dichlorobenzene 25.0 25.6 ug/L 105 77.120 1,2-Dichlorobenzene 25.0 25.6 ug/L 105 77.120 <th>Analyte</th> <th>•</th> <th></th> <th></th> <th>Unit</th> <th>D</th> <th>%Rec</th> <th></th>	Analyte	•			Unit	D	%Rec	
1,1,2,2-Tetrachloroethane 25.0 23.9 ug/L 85 76.120 1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 20.9 ug/L 84 61.148 1,1,2-Trichloroethane 25.0 23.8 ug/L 95 76.122 1,1-Dichloroethane 25.0 23.8 ug/L 104 77.120 1,2-Lichloroethane 25.0 25.2 ug/L 101 79.122 1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56.134 1,2-Dibromoethane 25.0 22.7 ug/L 91 77.120 1,2-Dichlorobenzene 25.0 22.1 ug/L 100 80.124 1,2-Dichlorobenzene 25.0 25.1 ug/L 10 80.124 1,2-Dichloroptopane 25.0 25.2 ug/L 10 77.120 1,2-Dichloroptopane 25.0 25.2 ug/L 10 77.120 1,2-Dichlorobenzene 25.0 25.6 ug/L 105 77.120 1,2-Dichlorobenzene 25.0 25.6 ug/L 105 77.120 <td></td> <td>25.0</td> <td>22.7</td> <td></td> <td>ug/L</td> <td></td> <td>91</td> <td>73 - 126</td>		25.0	22.7		ug/L		91	73 - 126
Ne	1,1,2,2-Tetrachloroethane	25.0	23.9		-		95	76 ₋ 120
ne 1,1,2-Trichloroethane 25.0 23.8 ug/L 95 76 - 122 1,1-Dichloroethane 25.0 26.1 ug/L 104 77 - 120 1,2-Hrichlorobenzene 25.0 25.2 ug/L 101 79 - 122 1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56 - 134 1,2-Dibromoethane 25.0 22.9 ug/L 91 77 - 120 1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloroptenane 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloroptenane 25.0 25.2 ug/L 101 77 - 120 1,2-Dichloroptenane 25.0 25.2 ug/L 105 77 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 0-Chlorotoluene 25.0 26.7 ug/L 107 76 -	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.9		ug/L		84	61 - 148
1,1-Dichloroethane 25.0 26.1 ug/L 104 77 - 120 1,2.4-Trichlorobenzene 25.0 25.2 ug/L 101 79 - 122 1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56 - 134 1,2-Dibromoethane 25.0 22.9 ug/L 91 77 - 120 1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloroptane 25.0 25.2 ug/L 101 76 - 120 1,2-Dichloroptane 25.0 25.2 ug/L 101 76 - 120 1,2-Dichlorobenzene 25.0 25.2 ug/L 105 77 - 120 1,3-Dichlorobenzene 25.0 25.6 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 0-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 107 71 - 125								
1,2,4-Trichlorobenzene 25.0 25.2 ug/L 101 79-122 1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56-134 1,2-Dibromoethane 25.0 22.9 ug/L 91 77-120 1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80.124 1,2-Dichloropethane 25.0 23.0 ug/L 92 75.120 1,2-Dichloropenane 25.0 25.2 ug/L 101 76-120 1,3-Dichlorobenzene 25.0 25.6 ug/L 105 77-120 1,4-Dichlorobenzene 25.0 25.6 ug/L 105 77-120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80-120 2-Butanone (MEK) 125 116 ug/L 92 57-140 0-Chlorotoluene 25.0 26.7 ug/L 107 76-121 2-Hexanone 125 120 ug/L 96 65-127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 71-125 Acetone 25.0 <td>1,1,2-Trichloroethane</td> <td>25.0</td> <td>23.8</td> <td></td> <td>ug/L</td> <td></td> <td>95</td> <td>76 - 122</td>	1,1,2-Trichloroethane	25.0	23.8		ug/L		95	76 - 122
1,2-Dibromo-3-Chloropropane 25.0 22.7 ug/L 91 56 - 134 1,2-Dibromoethane 25.0 22.9 ug/L 91 77 - 120 1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloropethane 25.0 23.0 ug/L 92 75 - 120 1,2-Dichloropenane 25.0 25.2 ug/L 101 76 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 0-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 107 76 - 121 2-Hoxetone 125 97.6 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 100 71 - 124 Benzene 25.0 25.0 25.0 ug/L 87 61 - 132 Bromoform	1,1-Dichloroethane	25.0	26.1		ug/L		104	77 - 120
1,2-Dibromoethane 25.0 22.9 ug/L 91 77 - 120 1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloroethane 25.0 23.0 ug/L 92 75 - 120 1,2-Dichloroppopane 25.0 25.2 ug/L 101 76 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 0-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 25.0 ug/L 87 61 - 132 Bromoform 25.0 24.5 ug/L 98 55 - 144 Carbon disulf	1,2,4-Trichlorobenzene	25.0	25.2		ug/L		101	79 - 122
1,2-Dichlorobenzene 25.0 25.1 ug/L 100 80 - 124 1,2-Dichloroethane 25.0 23.0 ug/L 92 75 - 120 1,2-Dichloropropane 25.0 25.2 ug/L 101 76 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 0-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 87 61 - 132 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon tetrachloride 25	1,2-Dibromo-3-Chloropropane	25.0	22.7		ug/L		91	56 - 134
1,2-Dichloroethane 25.0 23.0 ug/L 92 75 - 120 1,2-Dichloropropane 25.0 25.2 ug/L 101 76 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0<	1,2-Dibromoethane	25.0	22.9		ug/L		91	77 - 120
1,2-Dichloropropane 25.0 25.2 ug/L 101 76 - 120 1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon tetrachloride 25.0 23.7 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	1,2-Dichlorobenzene	25.0	25.1		ug/L		100	80 - 124
1,3-Dichlorobenzene 25.0 26.3 ug/L 105 77 - 120 1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 25.0 ug/L 87 61 - 132 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 25.8 ug/L 103 80 - 120	1,2-Dichloroethane	25.0	23.0		ug/L		92	75 - 120
1,4-Dichlorobenzene 25.0 25.6 ug/L 102 80 - 120 2-Butanone (MEK) 125 116 ug/L 92 57 - 140 o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	1,2-Dichloropropane	25.0	25.2		ug/L		101	76 - 120
2-Butanone (MEK) 125 116 ug/L 92 57 - 140 o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	1,3-Dichlorobenzene	25.0	26.3		ug/L		105	77 - 120
o-Chlorotoluene 25.0 26.7 ug/L 107 76 - 121 2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	1,4-Dichlorobenzene	25.0	25.6		ug/L		102	80 - 120
2-Hexanone 125 120 ug/L 96 65 - 127 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	2-Butanone (MEK)	125	116		ug/L		92	57 ₋ 140
4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 71 - 125 Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	o-Chlorotoluene	25.0	26.7		ug/L		107	76 - 121
Acetone 125 97.6 ug/L 78 56 - 142 Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	2-Hexanone	125	120		ug/L		96	65 - 127
Benzene 25.0 25.0 ug/L 100 71 - 124 Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	4-Methyl-2-pentanone (MIBK)	125	127		ug/L		102	71 - 125
Bromoform 25.0 21.8 ug/L 87 61 - 132 Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	Acetone	125	97.6		ug/L		78	56 ₋ 142
Bromomethane 25.0 24.5 ug/L 98 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	Benzene	25.0	25.0		ug/L		100	71 - 124
Carbon disulfide 25.0 23.7 ug/L 95 59 - 134 Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	Bromoform	25.0	21.8		ug/L		87	61 - 132
Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	Bromomethane	25.0	24.5		ug/L		98	55 ₋ 144
Carbon tetrachloride 25.0 21.9 ug/L 88 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120	Carbon disulfide	25.0	23.7		ug/L		95	59 - 134
	Carbon tetrachloride	25.0	21.9		-		88	72 ₋ 134
_	Chlorobenzene	25.0	25.8		ug/L		103	80 - 120
	Chlorodibromomethane	25.0	23.6		ug/L		95	75 - 125

TestAmerica Buffalo

Page 30 of 38

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-385904/27

Matrix: Water

Analysis Batch: 385904

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane	25.0	24.7		ug/L		99	69 - 136	
Chloroform	25.0	24.7		ug/L		99	73 - 127	
Chloromethane	25.0	19.0		ug/L		76	68 - 124	
cis-1,2-Dichloroethene	25.0	24.0		ug/L		96	74 - 124	
cis-1,3-Dichloropropene	25.0	25.0		ug/L		100	74 - 124	
Cyclohexane	25.0	23.0		ug/L		92	59 - 135	
Bromodichloromethane	25.0	24.6		ug/L		98	80 - 122	
Dichlorofluoromethane	25.0	25.9		ug/L		104	76 - 127	
Ethylbenzene	25.0	25.2		ug/L		101	77 - 123	
Isopropylbenzene	25.0	26.1		ug/L		104	77 - 122	
Methyl acetate	50.0	46.3		ug/L		93	74 - 133	
Methyl tert-butyl ether	25.0	22.9		ug/L		92	77 - 120	
Methylcyclohexane	25.0	21.4		ug/L		86	68 - 134	
Methylene Chloride	25.0	23.8		ug/L		95	75 - 124	
Styrene	25.0	25.3		ug/L		101	80 - 120	
Tetrachloroethene	25.0	22.8		ug/L		91	74 - 122	
Toluene	25.0	25.1		ug/L		100	80 - 122	
trans-1,2-Dichloroethene	25.0	22.4		ug/L		90	73 - 127	
trans-1,3-Dichloropropene	25.0	24.8		ug/L		99	80 - 120	
Trichloroethene	25.0	24.0		ug/L		96	74 - 123	
Trichlorofluoromethane	25.0	26.4		ug/L		106	62 - 150	
Vinyl chloride	25.0	17.0		ug/L		68	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		77 - 120
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	97		75 - 123

TestAmerica Buffalo

QC Association Summary

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

GC/MS VOA

Analysis Batch: 385710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-126506-1	DUP	Total/NA	Water	8260C	
480-126506-2	MW-13R	Total/NA	Water	8260C	
480-126506-4	MW-3S	Total/NA	Water	8260C	
480-126506-5	MW-7R	Total/NA	Water	8260C	
480-126506-6	MW-8R	Total/NA	Water	8260C	
480-126506-7	MW-9R	Total/NA	Water	8260C	
MB 480-385710/6	Method Blank	Total/NA	Water	8260C	
LCS 480-385710/9	Lab Control Sample	Total/NA	Water	8260C	
480-126506-4 MS	MW-3S	Total/NA	Water	8260C	
480-126506-4 MSD	MW-3S	Total/NA	Water	8260C	

Analysis Batch: 385738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-126506-7 - DL	MW-9R	Total/NA	Water	8260C	
MB 480-385738/7	Method Blank	Total/NA	Water	8260C	
LCS 480-385738/9	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 385904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-126506-3	MW-15R	Total/NA	Water	8260C	
480-126506-8	ТВ	Total/NA	Water	8260C	
MB 480-385904/6	Method Blank	Total/NA	Water	8260C	
LCS 480-385904/27	Lab Control Sample	Total/NA	Water	8260C	

120300-1

2

- 3

6

8

9

10

12

Client Sample ID: DUP

Lab Sample ID: 480-126506-1

Matrix: Water

Date Collected: 10/25/17 12:54 Date Received: 10/25/17 14:30

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed **Prep Type** Type

Analyst Lab RRS TAL BUF Total/NA Analysis 8260C 40 385710 11/05/17 15:15

Lab Sample ID: 480-126506-2 Client Sample ID: MW-13R

Date Collected: 10/25/17 13:12 **Matrix: Water**

Date Received: 10/25/17 14:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab RRS TAL BUF Total/NA Analysis 8260C 40 385710 11/05/17 15:40

Client Sample ID: MW-15R Lab Sample ID: 480-126506-3

Date Collected: 10/25/17 13:25 **Matrix: Water**

Date Received: 10/25/17 14:30

Dilution Batch Batch Batch **Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA Analysis 8260C 385904 11/07/17 05:19 RRS TAL BUF

Client Sample ID: MW-3S Lab Sample ID: 480-126506-4

Date Collected: 10/25/17 12:29 **Matrix: Water**

Date Received: 10/25/17 14:30

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260C 385710 11/05/17 16:31 RRS TAL BUF Total/NA Analysis 2000

Client Sample ID: MW-7R Lab Sample ID: 480-126506-5

Date Collected: 10/25/17 12:40 **Matrix: Water**

Date Received: 10/25/17 14:30

Dilution Batch **Batch** Batch Prepared Prep Type Method **Factor** Number or Analyzed Type Run Analyst RRS TAL BUF Total/NA Analysis 8260C 385710 11/05/17 16:56

Client Sample ID: MW-8R Lab Sample ID: 480-126506-6

Date Collected: 10/25/17 13:05 **Matrix: Water**

Date Received: 10/25/17 14:30

Batch Batch Dilution Batch Prepared Method **Prep Type** Run Number or Analyzed Type **Factor** Analyst Lab Total/NA 385710 RRS TAL BUF Analysis 8260C 11/05/17 17:21

Lab Chronicle

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID: 480-126506-7

Matrix: Water

Date Collected: 10/25/17 12:52 Date Received: 10/25/17 14:30

Client Sample ID: MW-9R

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	385710	11/05/17 17:46	RRS	TAL BUF
Total/NA	Analysis	8260C	DL	40	385738	11/06/17 10:41	KMN	TAL BUF

Client Sample ID: TB Lab Sample ID: 480-126506-8

Matrix: Water

Date Collected: 10/25/17 08:00

Date Received: 10/25/17 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	385904	11/07/17 05:44	RRS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Waste Management TestAmerica Job ID: 480-126506-1

Project/Site: ChemTrol Site - Annual Groundwater

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Num	ber Expiration Date
New York	NELAP		2	10026	03-31-18
The following analyte	s are included in this repor	t, but accreditation	certification is not off	ered by the governing	authority:
Analysis Method	Prep Method	Matrix	Analyt	e	

R

10

11

12

Method Summary

Client: Waste Management

Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

Ω

9

11

46

Sample Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-126506-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-126506-1	DUP	Water	10/25/17 12:54 1	10/25/17 14:30
480-126506-2	MW-13R	Water	10/25/17 13:12 1	10/25/17 14:30
480-126506-3	MW-15R	Water	10/25/17 13:25 1	10/25/17 14:30
480-126506-4	MW-3S	Water	10/25/17 12:29 1	10/25/17 14:30
480-126506-5	MW-7R	Water	10/25/17 12:40 1	10/25/17 14:30
480-126506-6	MW-8R	Water	10/25/17 13:05 1	10/25/17 14:30
480-126506-7	MW-9R	Water	10/25/17 12:52 1	10/25/17 14:30
480-126506-8	ТВ	Water	10/25/17 08:00 1	10/25/17 14:30

Chain of Custody Record

TestAmerica Buffalo

10 Hazelwood Drive

THE LEADER IN ENVIRONMENTAL TOSTING

480-126506 COC w-pn 4-3 Z-other (specify) Special Instructions/Note: TAKEND MW-9R Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon Preservation Codes: 480-95919-4273.1 Page 1 of 1 A - HCL B - NaOH C - Zn Acetale D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic A J - DI Water K - EDTA L - EDA N Total Number of containers Date/Time: Method of Shipment **Analysis Requested** Cooler Temperature(s) C and Other Remarks: Special Instructions/QC Requirements Lab PM: VanDette, Ryan T E-Mait: ryan.vandette@testamericainc.com Received by: MW 8260B - (MOD) Local Method 3 3 M (oN to seY) GEM/SM miohed BT=Tissue, A=Air Preservation Code: Company Matrix Water Water Water Water Water Water Water Water Company Type (C=comp, G=grab) Radiological Sample 1430 5 6 1240 1325 1252 10-25-17 0800 Sample 1312 1254 1229 Purchase Order not requir 305 Unknown Date TAT Requested (days): Date/Time: Due Date Requested: 11-52-01 Sample Date Project Name: Project Name: ChemTrol Annual Groundwater 48002447 Sites Sites Date/Time: Poison B Skin Imitant Deliverable Requested: I, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 Flammable Possible Hazard Identification Empty Kit Relinquished by: Client Information Sample Identification 425 Perinton Parkway Waste Management msnyder@wm.com 603-925-5436(Tel) Non-Hazard Mr. Mark Snyder New Hampshire linquished by: State, Zip: NY, 14450 Fairport MW-13R MW-15R MW-8R MW-3S MW-7R MW-9R DUP

ATTACHMENT C

Historical Data Trend Plots

CHEM-TROL SITE

Groundwater Analytical Data for Well MW-3S (ug/L)

Date	o-Chlorotoluene
08/09/90	28,000
08/19/93	130,000
10/23/02	95,000
10/13/03	100,000
10/26/04	64,000
11/11/05	90,000
09/27/06	84,000
09/20/07	82,000
09/24/08	87,000
09/22/09	46,000
10/27/10	85,000
10/20/11	67,000
10/17/12	91,000
11/05/13	40,000
09/29/14	69,000
09/23/15	75,000
11/02/16	72,000
10/25/17	78,000

CHEM-TROL SITE

Groundwater Analytical Data for Well MW-8R (ug/L)

Date	1,1-Dichloroethane	o-Chlorotoluene
08/16/93	160.0	4,200
06/01/94	370.0	2,500
03/10/99	200.0	600.0
10/22/02	32.0	240.0
10/13/03	22.0	140.0
10/26/04	18.0	100.0
11/11/05	24.0	230.0
09/27/06	8.9	63.0
09/20/07	4.7	58.0
09/24/08	3.4	40.0
09/22/09	2.5	43.0
10/27/10	2.5	35.0
10/20/11	2.5	55.0
10/17/12	2.5	34.0
11/05/13	8.2	210.0
09/29/14	2.5	61.0
09/23/15	2.5	59.0
11/02/16	2.5	44.0
10/25/17	2.5	31.0

Value is equal to 1/2 the detection limit.

CHEM-TROL SITE

Groundwater Analytical Data for Well MW-9R (ug/L)

Date	Chloroethane	1,1-Dichloroethane	o-Chlorotoluene	1,1,1-Trichloroethane	Trichloroethene
08/16/93	60.0	1,000		1,300	330.0
06/01/94	39.0	860.0	620.0	2,800	300.0
03/10/99	69.0	470.0	180.0	630.0	260.0
10/22/02	26.0	190.0	1,100	540.0	8.2
10/13/03	8.6	93.0	140.0	460.0	10.0
10/26/04	2.5	2.5	2.5	2.5	2.5
11/11/05	31.0	180.0	190.0	410.0	2.4
09/27/06	12.5	46.0	18.0	440.0	12.5
09/20/07	54.0	270.0	2,000	1,800	5.1
09/24/08	11.0	64.0	62.0	170.0	0.68
09/22/09	28.0	85.0	33.0	300.0	2.5
10/27/10	9.5	93.0	100.0	310.0	2.5
10/20/11	35.0	140.0	150.0	250.0	
10/17/12	29.0	150.0	380.0	410.0	
11/05/13	23.0	82.0	97.0	220.0	2.5
09/29/14	19.0	300.0	860.0	540.0	7.1
09/23/15	34.0	350.0	1900.0	530.0	2.5
11/02/16	2.5	31.0	38.0	82.0	2.5
10/25/17	14.0	410.0	2100.0	640.0	2.5

Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.

Groundwater Analytical Data for Well MW-13R (ug/L)

CHEM-TROL SITE

Date	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane	o-Chlorotoluene
05/31/94	22.0	6.0	280.0	1,700
03/11/99	73.0	240.0	220.0	
10/22/02	11.0	190.0	79.0	4,200
10/13/03		110.0		4,500
10/26/04	32.0	39.0	8.2	1,900
11/11/05	45.0	270.0	76.0	4,900
09/27/06	12.0	8.6	2.5	680.0
09/20/07	23.0	5.6	20.0	440.0
09/24/08	4.8	10.0	10.0	250.0
09/22/09	140.0	17.0	2.5	600.0
10/27/10	2.5	2.5	2.5	210.0
10/20/11	37.0			820.0
10/17/12	12.5	12.5		410.0
11/05/13	43.0	67.0	17.0	2,500
09/24/14	20.0	24.0	2.5	2,000
09/23/15	25.0	22.0	16.5	3200
11/02/16	6.5	2.5	2.5	1200
10/25/17	16.0	7.5	16.5	2000

Data not included due to high detection limits for ND values: (1) 2003 - 200 ug/L except for Total Xylenes, which was 600 ug/L. Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.

