

AECOM 257 West Genesee St. Suite 400 Buffalo, NY 14202 www.aecom.com 716 856 5636 tel 716 856 2545 fax

March 14, 2019

Mr. Brian Sadowski New York State Department of Environmental Conservation, Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: 2018 PERIODIC REVIEW REPORT Chem-Trol Site, Registry No. 9-15-015, Blasdell, Erie County

Dear Mr. Sadowski:

AECOM Technical Services, Inc. (AECOM), on behalf of SC Holdings, Inc. (SC Holdings), is submitting this Periodic Review Report (PRR) along with a completed Institutional Controls and Engineering Controls (IC/EC) Certification Form (Attachment A) for the Chem-Trol site. This report is being submitted as requested by the New York State Department of Environmental Conservation (NYSDEC) in its letter dated January 4, 2019 to Mr. Mark DeVine. (Please note effective October 1, 2018, Mr. Chad Moose, P.G., District Manager, Waste Management, 100 Brandywine Boulevard, Suite 300, Newtown, PA 18940, is the responsible official for Waste Management for this site. Future correspondence should be directed to Mr. Moose.) The letter provides guidance for preparing the PRR and IC/EC form and requires that they be submitted to NYSDEC no later than March 17, 2019.

I. INTRODUCTION

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services (Chem-Trol) purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage, and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972.

As a result of historic waste processing activities, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, and construction of a soil vapor extraction (SVE) system and groundwater collection and treatment system. The SVE system includes a header pipe and eight subsurface laterals installed in a linear array within the area of remediated soils. The groundwater collection and treatment system includes a blast-fractured bedrock trench in which three

groundwater collection wells are installed, conveyance piping, and a shallow tray air stripper that removes VOCs from the collected groundwater. The treated groundwater is discharged through a pipe to the South Branch of Smokes Creek.

The SVE system and the groundwater collection and treatment system continue to operate. During 2010, McMahon & Mann Consulting Engineers, PC (MMCE) evaluated the effectiveness of passive operation of the SVE system in removing soil vapors. Subsequently, the SVE system was converted from active to passive operation in 2010. A copy of the SVE system evaluation letter report was included as Attachment B in the 2010 PRR.

II. SITE OVERVIEW

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek. Figure 1 shows the Chem-Trol site location and features.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the overburden as well as the shallow bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the South Branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of 2 by NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site;
- Installation of a groundwater collection trench along the western edge of the site;
- Improvement of the existing soil cover over the former chemical processing area; and,
- Installation of a SVE system within the former waste chemical processing area.

Pre-design investigations and remedial design were completed between 1997 and 2000. Construction of the ROD-required remedial components was completed between 1999 and 2001. Operation, maintenance and monitoring of the remedial components began in 2001. In December 2004, the Chem-Trol site was re-classified to a class 4 site by NYSDEC. This classification indicates that remedial actions taken at the site to eliminate significant threats to public health and the environment have been properly constructed and implemented, and long-term operation, maintenance and monitoring of the in-place remedial systems is necessary to assure remedy effectiveness.

Goals for the remedial program were established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site;
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments, and groundwaters at the site;
- Prevent migration of contaminants in the on-site soils into the groundwater;
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment; and,
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings continues to monitor the performance of the SVE and groundwater collection and treatment system.

SVE System

SC Holdings submitted a work plan to NYSDEC on October 22, 2009 proposing conversion of the active system to a passive venting system and monitoring the performance of the passive system for a year. NYSDEC authorized the conversion to a passive system along with monthly monitoring. The SVE treatment system was converted from active to passive operation in January 2010.

After a year of monitoring, SC Holdings submitted a report describing the monitoring results as indicating that passive operation of the SVE system provides similar and possibly improved effectiveness as active operation of the SVE system in venting soil vapors. Water level data in the passive vent risers indicated that passive venting might also contribute to generally lower water levels in the laterals for a longer period of time over the course of the year and therefore provide a greater opportunity to vent soil vapors.

It was recommended that active operation of the SVE system permanently cease and that passive operation of the SVE system laterals continue. In addition, it was recommended that continued monitoring of the SVE system laterals be eliminated. NYSDEC agreed with these recommendations in a letter to Mr. Mark Snyder dated May 29, 2011.

During this reporting period, the SVE system continued to operate passively. The lateral riser pipes were visually examined for damage during quarterly site visits. No damage was observed during these site visits.

Groundwater Collection and Treatment System

SC Holdings has the following actions performed by AECOM (items 1 through 5) and TestAmerica Laboratories, Inc. (Amherst, NY) (item 6) in order to monitor the performance of the groundwater collection system as required in the ROD:

- 1. Perform monthly operation and maintenance tasks on the system;
- 2. Perform quarterly acid wash of the air stripper, including a once-per-year dismantling of the air stripper to check seals and remove mineral accumulation in air stripper trays using mechanical means (scrubbing, re-drilling holes to full diameter, etc.);
- Sample and analyze the groundwater collection and treatment system influent and effluent on a monthly basis for a site-specific list of 10 VOCs, Total Iron, Total Suspended Solids (TSS), and pH;
- 4. Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a quarterly basis;
- 5. Prepare bedrock groundwater contours based on quarterly water level measurements collected during the year; and,
- 6. Obtain annual groundwater samples for VOCs from six groundwater monitoring wells.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Monthly aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations including VOCs by EPA Method 624.1, Total Iron by EPA Method 200.7, TSS by Standard Method (SM) 2540D, and pH by SM 4500 H+ B. Analytical test results show that discharge parameter concentrations in the air stripper effluent for 2018 were below the concentration and mass loading discharge limits established by NYSDEC for 12 of 12 months.

Analytical test results for the 2018 monthly aqueous effluent samples are included in the Operation and Maintenance (O&M) reports submitted by AECOM to NYSDEC on a quarterly basis.

Monthly testing of the air stripper exhaust discharge (vapor phase) samples ceased after April 2011. Monthly testing was eliminated based upon a letter from AI Zylinski, NYSDEC Division of Air Resources, to MMCE (consultant to SC Holdings) dated April 6, 2011. The letter approved elimination of sampling and testing of the air stripper exhaust.

A summary of groundwater elevations measured in the groundwater monitoring wells and piezometers during 2018 is included in Table 1 - Summary of Groundwater Elevation Measurements. Quarterly groundwater elevation contours for 2018 are plotted on Figures 2 through 5.

The contours show that the three extraction wells depress water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates groundwater flow toward the collection trench. The measurements demonstrate that the collection trench is functioning as designed to restrict offsite flow and limit groundwater discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater treatment system influent samples have historically shown o-chlorotoluene levels in higher concentrations than other organic compounds. Therefore, concentrations of o-chlorotoluene detected in groundwater treatment influent samples have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for influent groundwater samples was plotted versus time for the January 2003 through December 2018 sampling events (see Figure 6). The plot shows that the concentration of o-chlorotoluene in the influent groundwater samples has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A comparison of the influent and effluent sample analytical results shows that the air stripper is effectively removing VOCs from the groundwater collected by the treatment system.

Annual Groundwater Monitoring

Annual groundwater monitoring was conducted by TestAmerica Laboratories, Inc. field services personnel on October 30, 2018. Groundwater samples are typically collected from overburden well MW-3S and bedrock wells MW-7R, MW-8R, MW-9R, MW-13R, and MW-15R; however, MW-3S was dry¹ and MW-15R could not be located² at the time of sampling. Groundwater samples were successfully collected from MW-7R, MW-8R, MW-9R and MW-13R and analyzed by TestAmerica Laboratories, Inc. (Amherst, NY) for VOCs by EPA Method 8260C. A summary of VOC detections for the annual 2018 groundwater-monitoring event is included as Table 2, Detection Summary. The complete 2018 groundwater sample analytical laboratory report is included as Attachment B. Historical concentration versus time trend plots for monitoring wells MW-3S, MW-8R, MW-9R, and MW-13R are included as Attachment C.

IV. <u>O&M PLAN COMPLIANCE</u>

SC Holdings performed the following activities as part of the O&M Plan requirements:

Soil Vapor Extraction System

AECOM performed the following activity in 2018 as part of quarterly visits to the site:

• Visually observed each SVE passive vent riser for damage.

¹ AECOM notified NYSDEC of the condition of MW-3S upon receipt of the analytical data on December 16, 2018. NYSDEC requested that a follow-up effort be made to sample the monitoring well when there was sufficient groundwater present to collect a sample. AECOM will notify TestAmerica Laboratories field services staff following the March 2019 round of water level monitoring if sufficient volume is measured in the well.

² MW-15R is located approximately 950 feet downstream of MW-13R along the west bank of the South Branch of Smokes Creek. AECOM notified NYSDEC of the problem locating MW-15R upon receipt of the analytical data on December 16, 2018. NYSDEC requested that a follow-up effort be made to locate the well and collect a sample after the winter season and before emergence of spring foliage. If the well is again not located, NYSDEC will be contacted regarding an action plan for that location.

2018 Periodic Review Report Chem-Trol Site, Blasdell, NY, Registry No. 9-15-015

Groundwater Collection and Treatment System

AECOM performed the following activities in 2018 as part of routine monthly O&M visits:

- Verified that each extraction well was running and performing as designed;
- Observed that each pump was operating, documented pumping rates, total gallons pumped and insured that high and low water controls are functioning as designed;
- Performed monthly influent and effluent sample analytical testing;
- Observed that the air stripper was performing as designed;
- Performed monthly inspections of air stripper trays;
- Performed acid washes quarterly or more often if necessary to promote optimum removal of VOCs; and,
- Prepared and submitted O&M reports on a quarterly basis to NYSDEC.

The quarterly O&M reports submitted to NYSDEC provide further details on specific activities performed, analytical testing results, and observations made during the routine monthly O&M visits. Routine activities include general inspection and maintenance work performed on pumps, equipment, and sensors, as described in the monthly O&M reports.

In addition, the following non-routine maintenance activities were also performed and reported in the respective quarterly O&M reports this reporting period:

- October 2018 The treated water discharge line from the treatment building to the South Branch of Smokes Creek was cleaned using a high-pressure line jet to remove accumulated iron scaling that was restricting effluent flow.
- October/November 2018 Diagnosed failure of submersible pump in EW-2 (October) and replaced in-kind (November).
- December 2018 Diagnosed failure of EW-2 level transducer; replacement ordered (well remained operational in manual mode); replacement pending at end of reporting period but is anticipated to be completed during the first quarter of 2019.

In a letter dated May 4, 2018, NYSDEC approved the 2017 PRR with no comments.

V. <u>OTHER ITEMS</u>

Emerging Contaminants Groundwater Sampling

Emerging contaminants groundwater sampling was completed at the Chem-Trol site during 2018. The sampling was completed in response to NYSDEC letter request of April 23, 2018, directing emerging contaminants (1,4-dioxane and per- and polyfluoroalkyl substances (PFAS)) groundwater sampling at the Site. A letter work plan for sampling was prepared by AECOM and submitted to NYSDEC on June 21, 2018. NYSDEC approved the letter work plan on August 10, 2018. Groundwater sampling for emerging contaminants was performed on October 30, 2018 by TestAmerica Laboratories, Inc. field services personnel. A letter report summarizing the emerging

2018 Periodic Review Report Chem-Trol Site, Blasdell, NY, Registry No. 9-15-015

contaminants groundwater sampling was submitted to NYSDEC under separate cover on March 14, 2019.

VI. CONCLUSIONS AND RECOMMENDATIONS

Groundwater Collection and Treatment

A comparison of the monthly influent vs. effluent analytical test results shows that the groundwater collection and treatment system continues to remove contaminants from groundwater at the Chem-Trol site. A plot of the influent o-chlorotoluene concentration versus time (see Figure 6) indicates that the source contributing to groundwater VOC concentrations has been reduced to where its influence on groundwater has decreased and appears to continue approaching an asymptotic curve.

The quarterly groundwater elevation data show that the groundwater collection system continues to contain groundwater contaminants and creates a gradient toward the groundwater collection wells and away from the South Branch of Smokes Creek.

No changes to the activities currently being performed at the Chem-Trol site are recommended.

Please call the undersigned at AECOM (716-923-1300) or Mr. Chad Moose (215-269-2114) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

James L. Kaugo

James L. Kaczor, P.G. Project Manager james.kaczor@aecom.com

Enclosures (Tables, Figures)

Attachments (IC/EC Form, 2018 Annual Groundwater Data Report, Historical Trend Plots)

cc: Chad Moose, P.G. (SC Holdings, Inc.), w/attachments Daniel Servetas, P.E. (AECOM), w/attachments 60592091 Project File

TABLES

Table 1: Summary of Groundwater Elevations – 2018Table 2: Groundwater Sample Detection Summary – 2018

Table 1Chem-Trol Site, Blasdell, NYSummary of Groundwater Elevation Measurements 2018

		10	Date	2Q Date		30	Date	4Q Date	
Pumping Wells		3/5	3/5/2018		6/22/2018		9/17/2018		8/2018
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
EW-1	624.07	15.96	608.11	19.60	604.47	19.74	604.33	17.65	606.42
EW-2	622.16	11.51	610.65	13.74	608.42	13.80	608.36	11.79	610.37
EW-3	621.10	17.86	603.24	20.25	600.85	19.15	601.95	17.13	603.97

East of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-6S	638.54	6.70	631.84	10.60	627.94	12.66	625.88	6.91	631.63
MW-6R	638.64	16.78	621.86	17.71	620.93	18.17	620.47	16.82	621.82
P-1S	642.80	4.59	638.21	6.94	635.86	8.61	634.19	4.54	638.26
MW-1R	645.36	6.56	638.80	8.79	636.57	10.35	635.01	6.47	638.89
MW-1S	645.40	5.62	639.78	7.90	637.50	10.43	634.97	4.72	640.68
MW-7S	642.85	3.41	639.44	8.50	634.35	11.17	631.68	3.50	639.35
MW-7R	642.28	3.26	639.02	7.01	635.27	8.30	633.98	4.32	637.96

Center of Cap (North to South)

			/						
	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
P-5S	637.54	7.70	629.84	13.01	624.53	>13.45	<624.09	8.40	629.14
P-5R	637.88	18.71	619.17	19.78	618.10	>20.37	<617.51	18.83	619.05
MW-5S	636.28	10.73	625.55	13.30	622.98	14.10	622.18	10.86	625.42
P-2R	646.96	4.02	642.94	11.98	634.98	14.15	632.81	3.79	643.17
P-2S	646.44	7.94	638.50	10.12	636.32	11.79	634.65	8.04	638.40
MW-2S	644.85	5.72	639.13	8.14	636.71	9.79	635.06	5.67	639.18

West of Cap (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-4S	637.18	12.80	624.38	15.20	621.98	>15.37	<621.81	12.97	624.21
MW-4R	637.02	26.31	610.71	29.00	608.02	29.01	608.01	25.62	611.40
P-4S	636.54	14.56	621.98	15.91	620.63	15.98	620.56	14.26	622.28
MW-3S	637.64	16.58	621.06	17.60	620.04	18.58	619.06	16.20	621.44
P-3R	639.92	20.32	619.60	20.27	619.65	20.25	619.67	20.21	619.71
P-3S	639.46	18.45	621.01	19.24	620.22	19.85	619.61	18.27	621.19
OW-3R	638.78	23.03	615.75	24.16	614.62	24.54	614.24	22.83	615.95

West of Trench (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
OW-1FR	620.42	9.55	610.87	12.21	608.21	12.31	608.11	8.81	611.61
P97-5	613.65	3.30	610.35	5.71	607.94	5.85	607.80	2.57	611.08
MW-10S	615.15*	3.75	611.40*	>5.75	<609.40*	>5.75	<609.40*	3.05	612.10*
MW-10R	615.47	4.64	610.83	7.24	608.23	7.07	608.40	4.21	611.26
P97-4	614.8	4.25	610.55	6.80	608.00	6.91	607.89	3.50	611.30
MW-8S	617.28	5.74	611.54	>7.00	<610.28	>7.00	<610.28	5.85	611.43
MW-8R	617.38	6.58	610.80	9.13	608.25	9.31	608.07	5.83	611.55
P97-3	617.66	7.73	609.93	9.54	608.12	9.62	608.04	5.95	611.71
MW-9RD	619.13	7.80	611.33	7.15	611.98	7.35	611.78	7.45	611.68
MW-9R	619.17	7.98	611.19	11.09	608.08	11.10	608.07	7.10	612.07
MW-9S	619.91	8.16	611.75	>10.40	<609.51	10.14	609.77	7.45	612.46
OW-2FR	624.14	12.84	611.30	15.96	608.18	12.98	611.16	12.00	612.14
P97-2	619.07	7.12	611.95	9.25	609.82	9.19	609.88	6.49	612.58
P97-1	619.97	6.79	613.18	8.79	611.18	8.75	611.22	6.55	613.42
MW-12R	621.59	7.16	614.43	9.61	611.98	11.18	610.41	8.32	613.27
MW-12S	621.17	3.98	617.19	>9.39	<611.78	7.09	614.08	3.56	617.61

West of Smokes Creek (North to South)

	Monitoring	Depth To	1st Quarter	Depth To	2nd Quarter	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)						
MW-13R	615.14	5.10	610.04	7.55	607.59	7.65	607.49	4.33	610.81
MW-14R	618.55	4.86	613.69	5.23	613.32	5.74	612.81	5.04	613.51

* MW-10S reference point and elevations estimated- well replaced in 2016.

Table 2 Detection Summary

TestAmerica Job ID: 480-144453-1

Lab Sample ID: 480-144453-1

Lab Sample ID: 480-144453-4

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Client Sample ID: DUP

No Detections.

Client Sample ID: MW	-13R				Lab San	nple ID: 4	80-144453-2
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	27	15		ug/L	40	8260C	Total/NA
o-Chlorotoluene	2300	34		ug/L	40	8260C	Total/NA
Chloroethane	27	13		ug/L	40	8260C	Total/NA
Methylene Chloride	82	18		ug/L	40	8260C	Total/NA

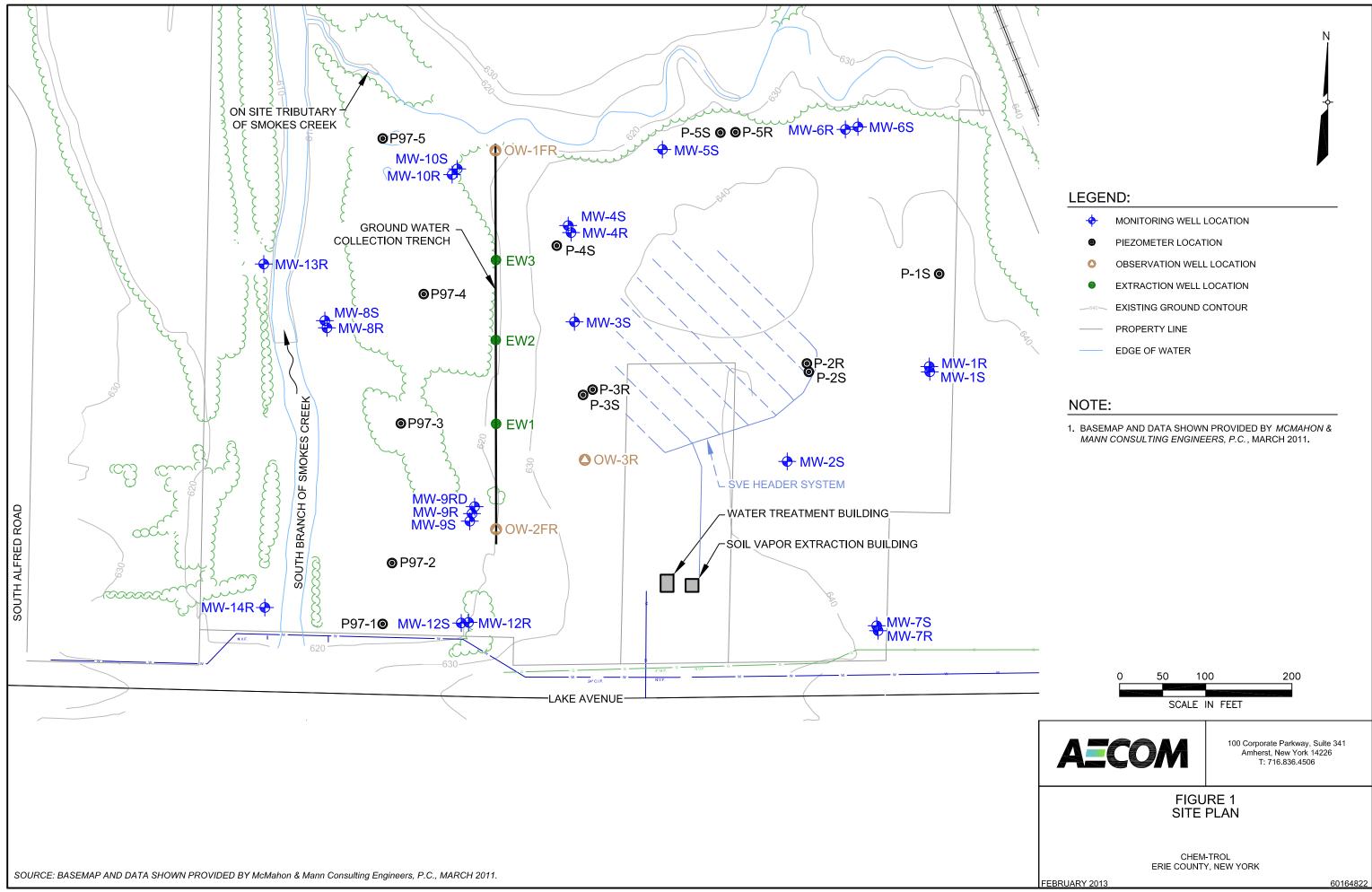
Client Sample ID: MW-7R

No Detections.

Client Sample ID: MW-8R						Lab Sa	am	ple ID: 4	80-144453-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Chlorotoluene	85		5.0		ug/L	1	_	8260C	Total/NA

Client Sample ID: MW-9	२			Lab Sa	mple ID: 4	480-144453-6	
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type	
1,1,1-Trichloroethane	150	5.0	ug/L	4		Total/NA	
1,1-Dichloroethane	130	5.0	ug/L	4	8260C	Total/NA	
o-Chlorotoluene	40	5.0	ug/L	4	8260C	Total/NA	
Chloroethane	25	5.0	ug/L	4	8260C	Total/NA	

Client Sample ID: TB


Lab Sample ID: 480-144453-7

No Detections.

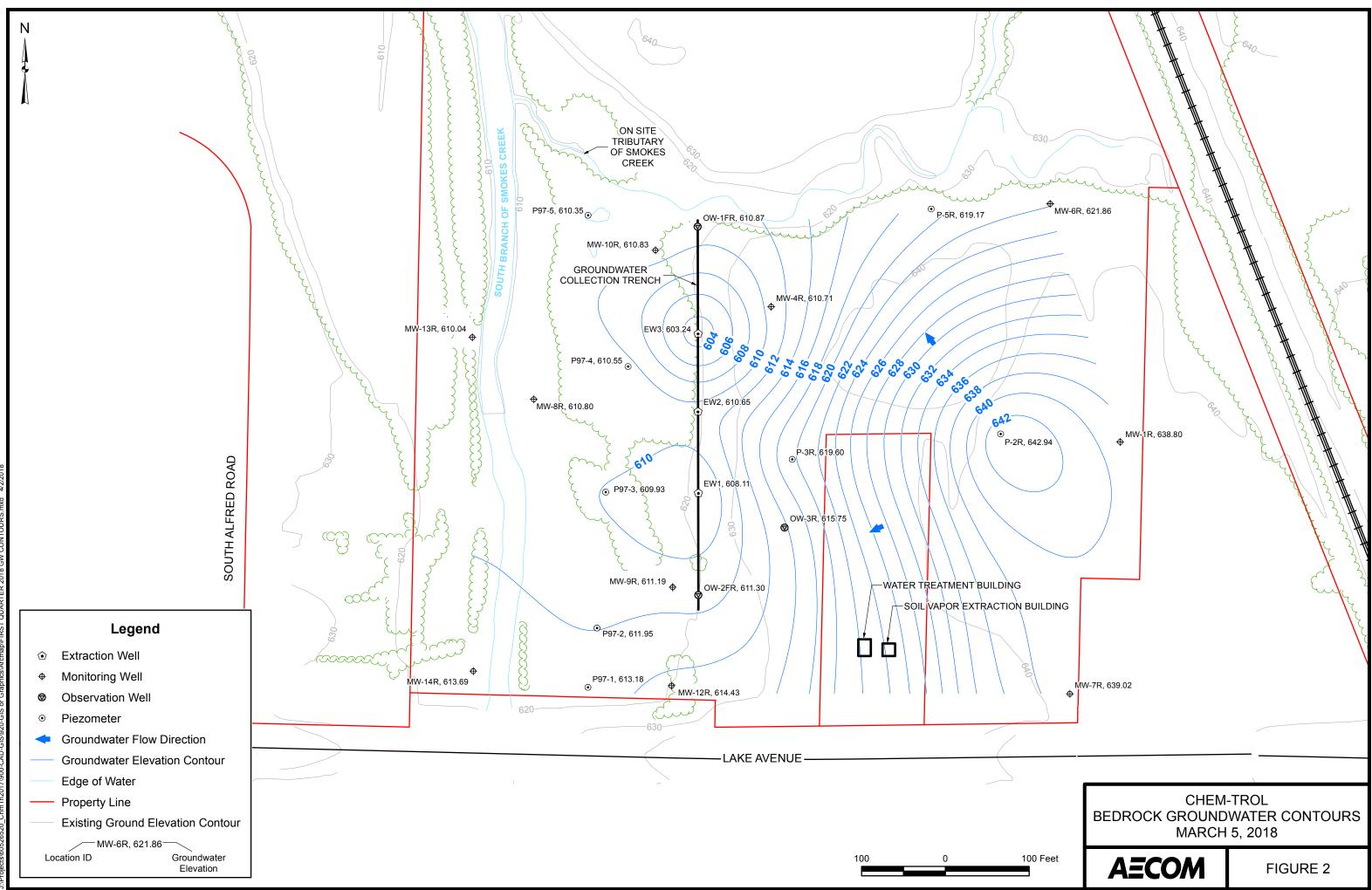
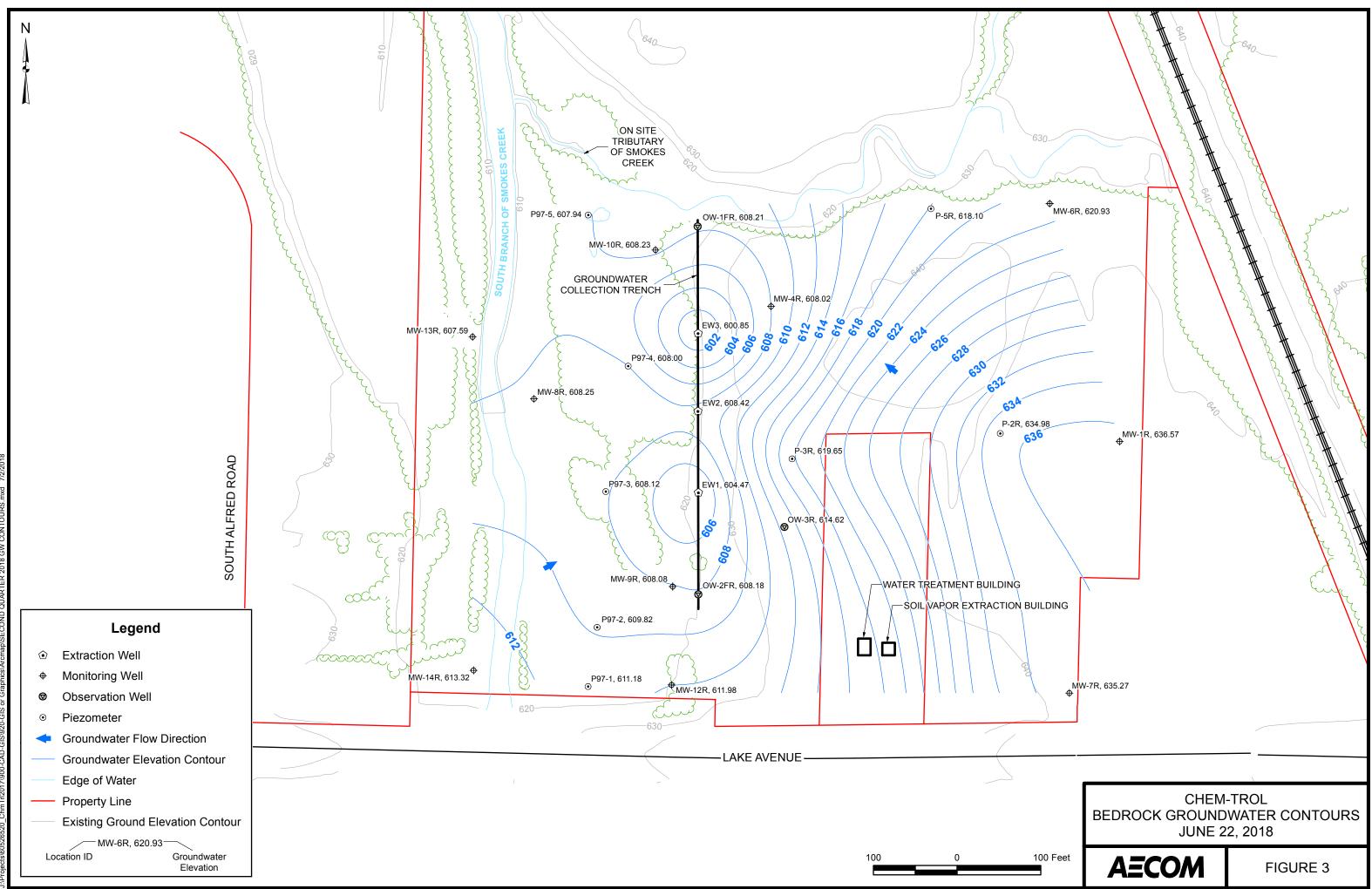
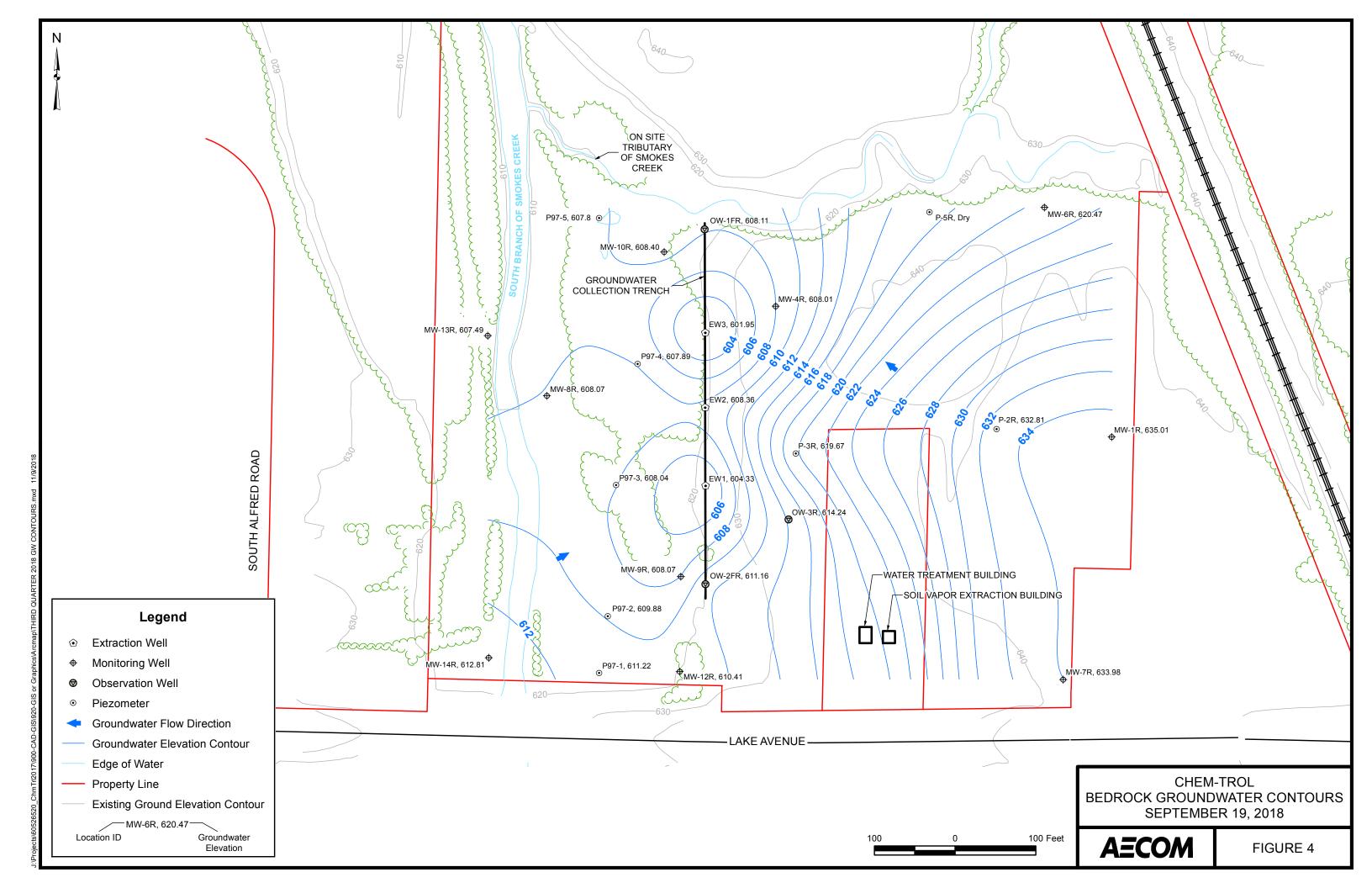
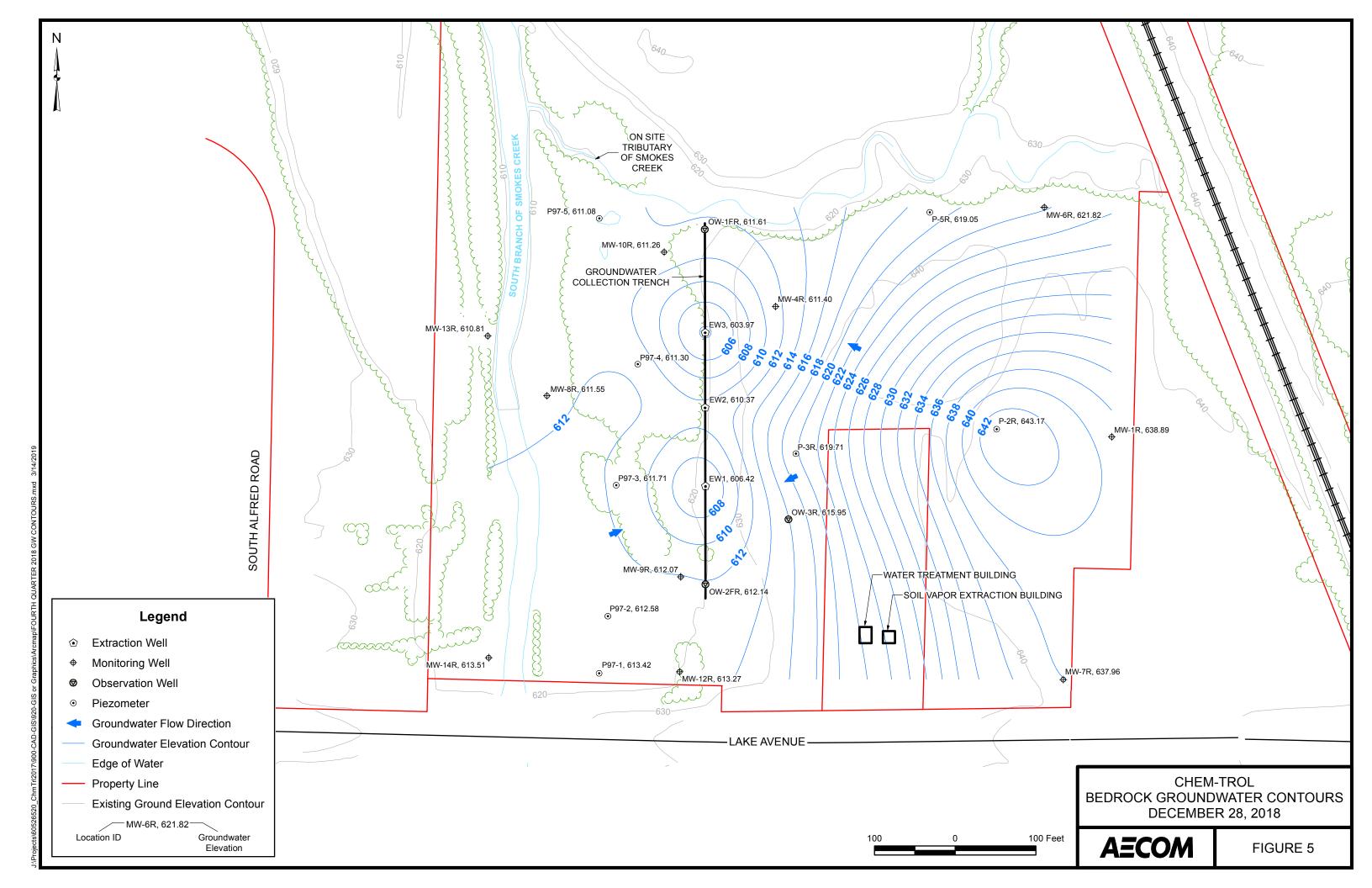

FIGURES

Figure 1: Site Plan


Figure 2: Bedrock Groundwater Contours – March 5, 2018 Figure 3: Bedrock Groundwater Contours – June 22, 2018 Figure 4: Bedrock Groundwater Contours – September 19, 2018 Figure 5: Bedrock Groundwater Contours – December 28, 2018 Figure 6: Influent o-Chlorotoluene Concentration 2003 - 2018




L:\Group\earth\Chem-Trol\60164822_001 Site Plan.dwg, 2/25/2013 11:46:57 AM, Splawnm

J:\Projects\60526520_ChmTrl2017\900-CAD-GIS\920-GIS or Graphics\Arcmap\FIRST QUARTER 2018 GW CONTOURS.

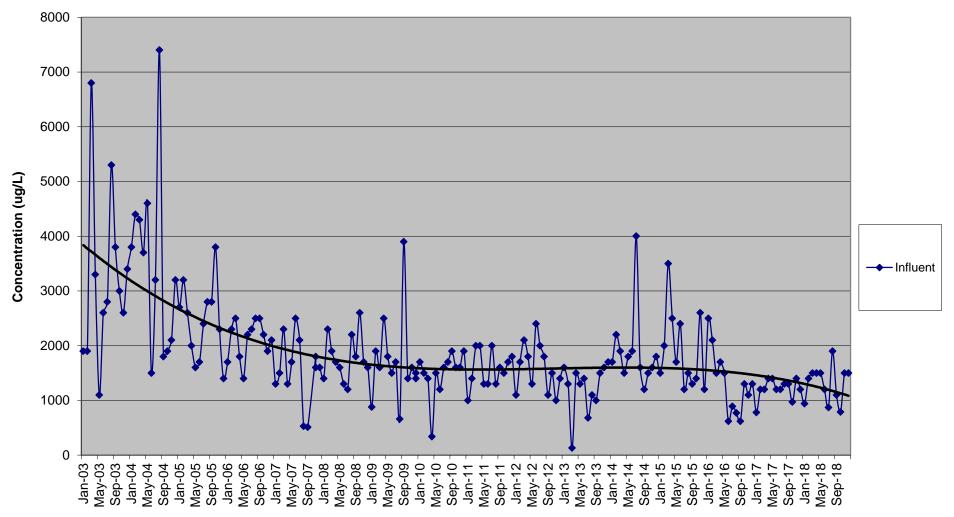


FIGURE 6

Chem-Trol Groundwater Treatment System Influent o-Chlorotoluene Concentration 2003-2018

ATTACHMENT A

Completed IC/EC Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	915015	Site	Details		Box 1	
Sit	e Name Ch	em-Trol					
City Cou	e Address: L y/Town: Hai unty:Erie e Acreage: 2	-	Zip Code: 1410	7			
	-	od: February 18	5, 2018 to Februar 2018 to Decembe	•			
						YES	NO
1.	Is the inforr	mation above co	orrect?				X
	If NO, inclu	de <u>handwritten</u>	<u>above</u> or on a sep	parate sheet.			
2.			property been sol g this Reporting P		rged, or undergone a		X
3.		been any chang RR 375-1.11(d)		e during this Repo	rting Period		X
4.			nd/or local permits g this Reporting P		scharge) been issued		X
					entation or evidence his certification form.		
5.	Is the site c	urrently underg	oing development	t?			X
						Box 2	
						YES	NO
6.	Is the curre Closed Lan		sistent with the use	e(s) listed below?		X	
7.	Are all ICs/	ECs in place an	nd functioning as d	lesigned?		X	
	IF TH				sign and date below a Otherwise continue.	nd	
A C	Corrective M	easures Work F	Plan must be subr	nitted along with t	this form to address th	nese iss	ues.
Sia	nature of Ow	ner. Remedial P	arty or Designated	Representative	Date		

SITE NO. 915015		Box 3
Description of Instit	utional Controls	
Parcel	Owner	Institutional Control
151.02-1-14.1	SC Holdlings Inc./Waste Management	Ground Water Use Restriction
		Monitoring Plan O&M Plan Landuse Restriction
March 25, 2004, include bu cap covering the Property & Relevant Agency, by cappi used for purposes other tha medical care; the use of gre safe for drinking water or in	te Declaration of Covenants and Restrictions, at are not limited to the following: The owner o by maintaining its grass cover, or after obtainin ng the Property with another material. The p an for industrial or commercial use, excluding oundwater underlying the property is prohibite industrial purposes, except that the groundwate to monitor contamination levels of the ground rith the land.	f the Property shall maintain the ng written approval from the roperty is prohibited from being use for day care, child care and id without treatment to render it er may be reasonably used as
		Box 4
Description of Engir	pooring Controls	
Parcel	Engineering Control	
151.02-1-14.1		
	Groundwater Treatment Syster Cover System Groundwater Containment Monitoring Wells Fencing/Access Control Leachate Collection	n
	ed in two phases consisting of Source Control elements are summarized as follows:	Elements and Groundwater
Source Control Elements:		
 Hot Spot Soils Removal Tributary Sediment Exc. Site Soils Cover. Soil Vapor Extraction. F permanently approved on N 	avation/Disposal. Passive state with one year evaluation starting	January 2010. Passive state
Groundwater Control Elem	ents:	
	from three extraction wells. atment with discharge compliance monitoring mitoring.	
measuring of groundwater gradients. Annual groundw	raction, treatment and discharge compliance r levels and plotting to develop groundwater co ater quality monitoring to determine performan above, to confirm that the remedy remains pr	ntours and directional nce of remedy. Completion of

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally approximation procented is accurate and compete		
	engineering practices; and the information presented is accurate and compete.	S	NO
	X		
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all following statements are true:		
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is und since the date that the Control was put in-place, or was last approved by the Departm		
	(b) nothing has occurred that would impair the ability of such Control, to protect publ the environment;	c he	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	9	
	(e) if a financial assurance mechanism is required by the oversight document for the mechanism remains valid and sufficient for its intended purpose established in the do		
	YE	S	NO
	X		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address these	iss	ues.
;	Signature of Owner, Remedial Party or Designated Representative Date	-	

IC CERTIFICATIONS SITE NO. 915015	·····
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand tha statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 2 Penal Law.	
I <u>Chad Moose</u> at <u>100 Brandywine Blvd, Suite 300, Newtown P</u> print name print business address	<u>A 18940 _,</u>
am certifying as <u>Owner</u> (Owner or R	emedial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	' 1

IC/EC CERTIFICATIONS

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Daniel T. Servetas</u> print name		erican Blvd., Latham, siness address	<u>NY 12110</u> ,
am certifying as a Professional En	gineer for the Owner		1.81.304
lailt	CS PIELT. SERVED POP SS PIELT. SERVED POP CONTRACTOR O79068 PROFESSIONAL	(Owner or Rem	
Signature of Professional Enginee Remedial Party, Rendering Certifi		Stamp (Required for PE)	Date

ATTACHMENT B

2018 Annual Groundwater Sample Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-144453-1

Client Project/Site: ChemTrol Site - Annual Groundwater Sampling Event: ChemTrol Annual Groundwater

For:

Waste Management 4 Liberty Lane West Hampton, New Hampshire 03842

Attn: Mark DeVine

Authorized for release by: 11/13/2018 3:16:53 PM Anthony Strollo, Project Management Assistant I anthony.strollo@testamericainc.com

Designee for

..... Links

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask-

The

Expert

Ryan VanDette, Project Manager II (716)504-9830 ryan.vandette@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	18
QC Association	26
Chronicle	27
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31

Definitions/Glossary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	А
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-144453-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-144453-1

Comments

No additional comments.

Receipt

The samples were received on 10/31/2018 9:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-444316 recovered above the upper control limit for Cyclohexane and Methylcyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-13R (480-144453-2), MW-7R (480-144453-4), MW-8R (480-144453-5) and TB (480-144453-7).

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-13R (480-144453-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The analyte Methylene Chloride was detected in the dilution analysis of sample MW-13R (480-144453-2). Additional manipulation of the sample is required to analyze a sample at a dilution, therefore, the sample detection for Methylene Chloride in the analysis may potentially be due to laboratory contamination and should be evaluated accordingly.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-444315 recovered above the upper control limit for Isopropylbenzene, Trichlorofluoromethane, and 2-Butanone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: DUP (480-144453-1).

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-9R (480-144453-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-444527 recovered above the upper control limit for 2-Hexanone, Cyclohexane, and 4-Methyl-2-pentanone (MIBK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: MW-9R (480-144453-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Client Sample ID: DUP

No Detections.

Client Sample ID: MW-		Lab San	80-144453-2				
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	27	15		ug/L	40	8260C	Total/NA
o-Chlorotoluene	2300	34		ug/L	40	8260C	Total/NA
Chloroethane	27	13		ug/L	40	8260C	Total/NA
Methylene Chloride	82	18		ug/L	40	8260C	Total/NA

Client Sample ID: MW-7R

No Detections.

Client Sample ID: MW-8R								Lab Sample ID: 480-144453-5				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type			
o-Chlorotoluene	85		5.0		ug/L	1	_	8260C	Total/NA			

Client Sample ID: MW-		Lab San	Lab Sample ID: 480-144453-6				
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type	
1,1,1-Trichloroethane	150	5.0	ug/L	4	8260C	Total/NA	
1,1-Dichloroethane	130	5.0	ug/L	4	8260C	Total/NA	
o-Chlorotoluene	40	5.0	ug/L	4	8260C	Total/NA	
Chloroethane	25	5.0	ug/L	4	8260C	Total/NA	

Client Sample ID: TB

No Detections.

Lab Sample ID: 480-144453-1

Lab Sample ID: 480-144453-4

5

	quannor			onne	Billiao	_		1100 1300
85		5.0		ug/L	1	_	8260C	Total/NA
					Lab Sa	an	ple ID:	480-144453-0
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
150		5.0		ug/L	4	_	8260C	Total/NA
130		5.0		ug/L	4		8260C	Total/NA
40		5.0		ug/L	4		8260C	Total/NA
25		5.0		ug/L	4		8260C	Total/NA
					Lab Sa	an	ple ID:	480-144453-7

This Detection Summary does not include radiochemical test results.

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: DUP Date Collected: 10/30/18 11:30

Date Received: 10/31/18 09:35

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,1,2-Trichloroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,1-Dichloroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		11/08/18 12:16	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		11/08/18 12:16	1
1,2-Dibromoethane	ND	5.0	ug/L		11/08/18 12:16	1
1,2-Dichlorobenzene	ND	5.0	ug/L		11/08/18 12:16	1
1,2-Dichloroethane	ND	5.0	ug/L		11/08/18 12:16	1
1,2-Dichloropropane	ND	5.0	ug/L		11/08/18 12:16	1
1,3-Dichlorobenzene	ND	5.0	ug/L		11/08/18 12:16	1
1,4-Dichlorobenzene	ND	5.0	ug/L		11/08/18 12:16	1
2-Butanone (MEK)	ND	25	ug/L		11/08/18 12:16	1
o-Chlorotoluene	ND	5.0	ug/L		11/08/18 12:16	1
2-Hexanone	ND	25	ug/L		11/08/18 12:16	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/08/18 12:16	1
Acetone	ND	25	ug/L		11/08/18 12:16	1
Benzene	ND	5.0	ug/L		11/08/18 12:16	1
Bromoform	ND	5.0	ug/L		11/08/18 12:16	1
Bromomethane	ND	5.0	ug/L		11/08/18 12:16	1
Carbon disulfide	ND	5.0	ug/L		11/08/18 12:16	1
Carbon tetrachloride	ND	5.0	ug/L		11/08/18 12:16	1
Chlorobenzene	ND	5.0	ug/L		11/08/18 12:16	1
Chlorodibromomethane	ND	5.0	ug/L		11/08/18 12:16	1
Chloroethane	ND	5.0	ug/L		11/08/18 12:16	1
Chloroform	ND	5.0	ug/L		11/08/18 12:16	1
Chloromethane	ND	5.0	ug/L		11/08/18 12:16	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 12:16	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 12:16	1
Cyclohexane	ND	5.0	ug/L		11/08/18 12:16	1
Bromodichloromethane	ND	5.0	ug/L		11/08/18 12:16	1
Dichlorofluoromethane	ND	5.0	ug/L		11/08/18 12:16	1
Ethylbenzene	ND	5.0	ug/L		11/08/18 12:16	1
Isopropylbenzene	ND	5.0	ug/L		11/08/18 12:16	1
Methyl acetate	ND	5.0	ug/L		11/08/18 12:16	1
Methyl tert-butyl ether	ND	5.0	ug/L		11/08/18 12:16	1
Methylcyclohexane	ND	5.0	ug/L		11/08/18 12:16	1
Methylene Chloride	ND	5.0	ug/L		11/08/18 12:16	1
Styrene	ND	5.0	ug/L		11/08/18 12:16	1
Tetrachloroethene	ND	5.0	ug/L		11/08/18 12:16	1
Toluene	ND	5.0	ug/L		11/08/18 12:16	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 12:16	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 12:16	1
Trichloroethene	ND	5.0	ug/L		11/08/18 12:16	1
Trichlorofluoromethane	ND	5.0	ug/L		11/08/18 12:16	1
Vinyl chloride	ND	5.0	ug/L		11/08/18 12:16	1
Xylenes, Total	ND	15	ug/L		11/08/18 12:16	1

Lab Sample ID: 480-144453-1 Matrix: Water

TestAmerica Job ID: 480-144453-1

Lab Sample ID: 480-144453-1

Matrix: Water

Client Sample ID: DUP Date Collected: 10/30/18 11:30 Date Received: 10/31/18 09:35

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	77 - 120		11/08/18 12:16	1
Toluene-d8 (Surr)	98	80 - 120		11/08/18 12:16	1
4-Bromofluorobenzene (Surr)	104	73 - 120		11/08/18 12:16	1
Dibromofluoromethane (Surr)	100	75 - 123		11/08/18 12:16	1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Lab Sample ID: 480-144453-2

Client Sample ID: MW-13R Date Collected: 10/30/18 14:15

Date Received: 10/30/18 14:15

Method: 8260C - Volatile Organ Analyte	Result Qua		MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	33	ug/L			11/08/18 17:09	40
1,1,2,2-Tetrachloroethane	ND	8.4	ug/L			11/08/18 17:09	40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	12	ug/L			11/08/18 17:09	40
1,1,2-Trichloroethane	ND	9.2	ug/L			11/08/18 17:09	40
1,1-Dichloroethane	27	15	ug/L			11/08/18 17:09	40
1,2,4-Trichlorobenzene	ND	16	ug/L			11/08/18 17:09	40
1,2-Dibromo-3-Chloropropane	ND	16	ug/L			11/08/18 17:09	40
1,2-Dibromoethane	ND	29	ug/L			11/08/18 17:09	40
1,2-Dichlorobenzene	ND	32	ug/L			11/08/18 17:09	40
1,2-Dichloroethane	ND	8.4	ug/L			11/08/18 17:09	40
1,2-Dichloropropane	ND	29	ug/L			11/08/18 17:09	40
1,3-Dichlorobenzene	ND	31	ug/L			11/08/18 17:09	40
1,4-Dichlorobenzene	ND	34	ug/L			11/08/18 17:09	40
2-Butanone (MEK)	ND	53	ug/L			11/08/18 17:09	40
o-Chlorotoluene	2300	34	ug/L			11/08/18 17:09	40
2-Hexanone	ND	50	ug/L			11/08/18 17:09	40
4-Methyl-2-pentanone (MIBK)	ND	84	ug/L			11/08/18 17:09	40
Acetone	ND	120	ug/L			11/08/18 17:09	40
Benzene	ND	16	ug/L			11/08/18 17:09	40
Bromoform	ND	10	ug/L			11/08/18 17:09	40
Bromomethane	ND	28	ug/L			11/08/18 17:09	40
Carbon disulfide	ND	7.6	ug/L			11/08/18 17:09	40
Carbon tetrachloride	ND	11	ug/L			11/08/18 17:09	40
Chlorobenzene	ND	30	ug/L			11/08/18 17:09	40
Chlorodibromomethane	ND	13	ug/L			11/08/18 17:09	40
Chloroethane	27	13	ug/L			11/08/18 17:09	40
Chloroform	ND	14	ug/L			11/08/18 17:09	40
Chloromethane	ND	14	ug/L			11/08/18 17:09	40
cis-1,2-Dichloroethene	ND	32	ug/L			11/08/18 17:09	40
cis-1,3-Dichloropropene	ND	14	ug/L			11/08/18 17:09	40
Cyclohexane	ND	7.2	ug/L			11/08/18 17:09	40
Bromodichloromethane	ND	16	ug/L			11/08/18 17:09	40
Dichlorofluoromethane	ND	14	ug/L			11/08/18 17:09	40
Ethylbenzene	ND	30	ug/L			11/08/18 17:09	40
Isopropylbenzene	ND	32	ug/L			11/08/18 17:09	40
Methyl acetate	ND	52	ug/L			11/08/18 17:09	40
Methyl tert-butyl ether	ND	6.4	ug/L			11/08/18 17:09	40
Methylcyclohexane	ND	6.4	ug/L			11/08/18 17:09	40
Methylene Chloride	82	18	ug/L			11/08/18 17:09	40
Styrene	ND	29	ug/L			11/08/18 17:09	40
Tetrachloroethene	ND	14	ug/L			11/08/18 17:09	40
Toluene	ND	20	ug/L			11/08/18 17:09	40
trans-1,2-Dichloroethene	ND	36	ug/L			11/08/18 17:09	40
trans-1,3-Dichloropropene	ND	15	ug/L			11/08/18 17:09	40
Trichloroethene	ND	18	ug/L			11/08/18 17:09	40
Trichlorofluoromethane	ND	35	ug/L			11/08/18 17:09	40
Vinyl chloride	ND	36	ug/L			11/08/18 17:09	40
Xylenes, Total	ND	26	ug/L			11/08/18 17:09	40

Matrix: Water

TestAmerica Buffalo

11/13/2018

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: MW-13R Date Collected: 10/30/18 14:15 Date Received: 10/31/18 09:35

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	95	77 - 120		11/08/18 17:09	
Toluene-d8 (Surr)	96	80 - 120		11/08/18 17:09	
4-Bromofluorobenzene (Surr)	83	73 - 120		11/08/18 17:09	
Dibromofluoromethane (Surr)	85	75 - 123		11/08/18 17:09	

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Lab Sample ID: 480-144453-4

Matrix: Water

Client Sample ID: MW-7R Date Collected: 10/30/18 11:30

Date Received: 10/31/18 09:35

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,1,2-Trichloroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,1-Dichloroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		11/08/18 17:37	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		11/08/18 17:37	1
1,2-Dibromoethane	ND	5.0	ug/L		11/08/18 17:37	1
1,2-Dichlorobenzene	ND	5.0	ug/L		11/08/18 17:37	1
1,2-Dichloroethane	ND	5.0	ug/L		11/08/18 17:37	1
1,2-Dichloropropane	ND	5.0	ug/L		11/08/18 17:37	1
1,3-Dichlorobenzene	ND	5.0	ug/L		11/08/18 17:37	1
1,4-Dichlorobenzene	ND	5.0	ug/L		11/08/18 17:37	1
2-Butanone (MEK)	ND	25	ug/L		11/08/18 17:37	1
o-Chlorotoluene	ND	5.0	ug/L		11/08/18 17:37	1
2-Hexanone	ND	25	ug/L		11/08/18 17:37	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/08/18 17:37	1
Acetone	ND	25	ug/L		11/08/18 17:37	1
Benzene	ND	5.0	ug/L		11/08/18 17:37	1
Bromoform	ND	5.0	ug/L		11/08/18 17:37	1
Bromomethane	ND	5.0	ug/L		11/08/18 17:37	1
Carbon disulfide	ND	5.0	ug/L		11/08/18 17:37	1
Carbon tetrachloride	ND	5.0	ug/L		11/08/18 17:37	1
Chlorobenzene	ND	5.0	ug/L		11/08/18 17:37	1
Chlorodibromomethane	ND	5.0	ug/L		11/08/18 17:37	1
Chloroethane	ND	5.0	ug/L		11/08/18 17:37	1
Chloroform	ND	5.0	ug/L		11/08/18 17:37	1
Chloromethane	ND	5.0	ug/L		11/08/18 17:37	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 17:37	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 17:37	1
Cyclohexane	ND	5.0	ug/L		11/08/18 17:37	1
Bromodichloromethane	ND	5.0	ug/L		11/08/18 17:37	1
Dichlorofluoromethane	ND	5.0	ug/L		11/08/18 17:37	1
Ethylbenzene	ND	5.0	ug/L		11/08/18 17:37	1
lsopropylbenzene	ND	5.0	ug/L		11/08/18 17:37	1
Methyl acetate	ND	5.0	ug/L		11/08/18 17:37	1
Methyl tert-butyl ether	ND	5.0	ug/L		11/08/18 17:37	1
Methylcyclohexane	ND	5.0	ug/L		11/08/18 17:37	1
Methylene Chloride	ND	5.0	ug/L		11/08/18 17:37	1
Styrene	ND	5.0	ug/L		11/08/18 17:37	1
Tetrachloroethene	ND	5.0	ug/L		11/08/18 17:37	1
Toluene	ND	5.0	ug/L		11/08/18 17:37	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 17:37	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 17:37	1
Trichloroethene	ND	5.0	ug/L		11/08/18 17:37	1
Trichlorofluoromethane	ND	5.0	ug/L		11/08/18 17:37	1
Vinyl chloride	ND	5.0	ug/L		11/08/18 17:37	1
Xylenes, Total	ND	15	ug/L		11/08/18 17:37	1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Lab Sample ID: 480-144453-4

Matrix: Water

Client Sample ID: MW-7R Date Collected: 10/30/18 11:30 Date Received: 10/31/18 09:35

Surrogate	%Recovery G	Qualifier Limi	its	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	97	77 -	120		11/08/18 17:37	1	
Toluene-d8 (Surr)	95	80 -	120		11/08/18 17:37	1	
4-Bromofluorobenzene (Surr)	81	73 -	120		11/08/18 17:37	1	
Dibromofluoromethane (Surr)	87	75 -	123		11/08/18 17:37	1	

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: MW-8R Date Collected: 10/30/18 12:00

Date Received: 10/30/18 12:00

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,1,2-Trichloroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,1-Dichloroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		11/08/18 18:05	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		11/08/18 18:05	1
1,2-Dibromoethane	ND	5.0	ug/L		11/08/18 18:05	1
1,2-Dichlorobenzene	ND	5.0	ug/L		11/08/18 18:05	1
1,2-Dichloroethane	ND	5.0	ug/L		11/08/18 18:05	1
1,2-Dichloropropane	ND	5.0	ug/L		11/08/18 18:05	1
1,3-Dichlorobenzene	ND	5.0	ug/L		11/08/18 18:05	1
1,4-Dichlorobenzene	ND	5.0	ug/L		11/08/18 18:05	1
2-Butanone (MEK)	ND	25	ug/L		11/08/18 18:05	1
o-Chlorotoluene	85	5.0	ug/L		11/08/18 18:05	1
2-Hexanone	ND	25	ug/L		11/08/18 18:05	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/08/18 18:05	1
Acetone	ND	25	ug/L		11/08/18 18:05	1
Benzene	ND	5.0	ug/L		11/08/18 18:05	1
Bromoform	ND	5.0	ug/L		11/08/18 18:05	1
Bromomethane	ND	5.0	ug/L		11/08/18 18:05	1
Carbon disulfide	ND	5.0	ug/L		11/08/18 18:05	1
Carbon tetrachloride	ND	5.0	ug/L		11/08/18 18:05	1
Chlorobenzene	ND	5.0	ug/L		11/08/18 18:05	1
Chlorodibromomethane	ND	5.0	ug/L		11/08/18 18:05	1
Chloroethane	ND	5.0	ug/L		11/08/18 18:05	1
Chloroform	ND	5.0	ug/L		11/08/18 18:05	1
Chloromethane	ND	5.0	ug/L		11/08/18 18:05	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 18:05	1
cis-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 18:05	1
Cyclohexane	ND	5.0	ug/L		11/08/18 18:05	1
Bromodichloromethane	ND	5.0	ug/L		11/08/18 18:05	1
Dichlorofluoromethane	ND	5.0	ug/L		11/08/18 18:05	1
Ethylbenzene	ND	5.0	ug/L		11/08/18 18:05	1
Isopropylbenzene	ND	5.0	ug/L		11/08/18 18:05	1
Methyl acetate	ND	5.0	ug/L		11/08/18 18:05	1
Methyl tert-butyl ether	ND	5.0	ug/L		11/08/18 18:05	1
Methylcyclohexane	ND	5.0	ug/L		11/08/18 18:05	1
Methylene Chloride	ND	5.0	ug/L		11/08/18 18:05	1
Styrene	ND	5.0	ug/L		11/08/18 18:05	1
Tetrachloroethene	ND	5.0	ug/L		11/08/18 18:05	1
Toluene	ND	5.0	ug/L		11/08/18 18:05	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 18:05	1
trans-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 18:05	1
Trichloroethene	ND	5.0	ug/L		11/08/18 18:05	1
Trichlorofluoromethane	ND	5.0	ug/L		11/08/18 18:05	1
Vinyl chloride	ND	5.0	ug/L		11/08/18 18:05	1
Xylenes, Total	ND	15	ug/L		11/08/18 18:05	1

Lab Sample ID: 480-144453-5 Matrix: Water

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: MW-8R Date Collected: 10/30/18 12:00 Date Received: 10/31/18 09:35

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		11/08/18 18:05	1
Toluene-d8 (Surr)	97	80 - 120		11/08/18 18:05	1
4-Bromofluorobenzene (Surr)	85	73 - 120		11/08/18 18:05	1
Dibromofluoromethane (Surr)	87	75 - 123		11/08/18 18:05	1

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: MW-9R

Date Collected: 10/30/18 12:12 Date Received: 10/31/18 09:35

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	150	5.0	ug/L		11/09/18 00:38	4
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		11/09/18 00:38	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		11/09/18 00:38	4
1,1,2-Trichloroethane	ND	5.0	ug/L		11/09/18 00:38	4
1,1-Dichloroethane	130	5.0	ug/L		11/09/18 00:38	4
1,2,4-Trichlorobenzene	ND	5.0	ug/L		11/09/18 00:38	4
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		11/09/18 00:38	4
1,2-Dibromoethane	ND	5.0	ug/L		11/09/18 00:38	4
1,2-Dichlorobenzene	ND	5.0	ug/L		11/09/18 00:38	4
1,2-Dichloroethane	ND	5.0	ug/L		11/09/18 00:38	4
1,2-Dichloropropane	ND	5.0	ug/L		11/09/18 00:38	4
1,3-Dichlorobenzene	ND	5.0	ug/L		11/09/18 00:38	4
1,4-Dichlorobenzene	ND	5.0	ug/L		11/09/18 00:38	4
2-Butanone (MEK)	ND	25	ug/L		11/09/18 00:38	4
o-Chlorotoluene	40	5.0	ug/L		11/09/18 00:38	4
2-Hexanone	ND	25	ug/L		11/09/18 00:38	4
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/09/18 00:38	4
Acetone	ND	25	ug/L		11/09/18 00:38	4
Benzene	ND	5.0	ug/L		11/09/18 00:38	4
Bromoform	ND	5.0	ug/L		11/09/18 00:38	4
Bromomethane	ND	5.0	ug/L		11/09/18 00:38	4
Carbon disulfide	ND	5.0	ug/L		11/09/18 00:38	4
Carbon tetrachloride	ND	5.0	ug/L		11/09/18 00:38	4
Chlorobenzene	ND	5.0	ug/L		11/09/18 00:38	4
Chlorodibromomethane	ND	5.0	ug/L		11/09/18 00:38	4
Chloroethane	25	5.0	ug/L		11/09/18 00:38	4
Chloroform	ND	5.0	ug/L		11/09/18 00:38	4
Chloromethane	ND	5.0	ug/L		11/09/18 00:38	4
cis-1,2-Dichloroethene	ND	5.0	ug/L		11/09/18 00:38	4
cis-1,3-Dichloropropene	ND	5.0	ug/L		11/09/18 00:38	4
Cyclohexane	ND	5.0	ug/L		11/09/18 00:38	4
Bromodichloromethane	ND	5.0	ug/L		11/09/18 00:38	4
Dichlorofluoromethane	ND	5.0	ug/L		11/09/18 00:38	4
Ethylbenzene	ND	5.0	ug/L		11/09/18 00:38	4
Isopropylbenzene	ND	5.0	ug/L		11/09/18 00:38	4
Methyl acetate	ND	5.2	ug/L		11/09/18 00:38	4
Methyl tert-butyl ether	ND	5.0	ug/L		11/09/18 00:38	4
Methylcyclohexane	ND	5.0	ug/L		11/09/18 00:38	4
Methylene Chloride	ND	5.0	ug/L		11/09/18 00:38	4
Styrene	ND	5.0	ug/L		11/09/18 00:38	4
Tetrachloroethene	ND	5.0	ug/L		11/09/18 00:38	4
Toluene	ND	5.0	ug/L		11/09/18 00:38	4
trans-1,2-Dichloroethene	ND	5.0	ug/L		11/09/18 00:38	4
trans-1,3-Dichloropropene	ND	5.0	ug/L		11/09/18 00:38	4
Trichloroethene	ND	5.0	ug/L		11/09/18 00:38	4
Trichlorofluoromethane	ND	5.0	ug/L		11/09/18 00:38	4
Vinyl chloride	ND	5.0	ug/L		11/09/18 00:38	4
Xylenes, Total	ND	15	ug/L		11/09/18 00:38	4

Lab Sample ID: 480-144453-6

5

6

Matrix: Water

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater TestAmerica Job ID: 480-144453-1

Client Sample ID: MW-9R Date Collected: 10/30/18 12:12 Date Received: 10/31/18 09:35

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		11/09/18 00:38	4
Toluene-d8 (Surr)	97	80 - 120		11/09/18 00:38	4
4-Bromofluorobenzene (Surr)	85	73 - 120		11/09/18 00:38	4
Dibromofluoromethane (Surr)	86	75 - 123		11/09/18 00:38	4

Lab Sample ID: 480-144453-7

Matrix: Water

Client Sample ID: TB Date Collected: 10/30/18 09:00

Date Received: 10/31/18 09:35

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	ug/L		11/08/18 19:00	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		11/08/18 19:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		11/08/18 19:00	
1,1,2-Trichloroethane	ND	5.0	ug/L		11/08/18 19:00	
1,1-Dichloroethane	ND	5.0	ug/L		11/08/18 19:00	
1,2,4-Trichlorobenzene	ND	5.0	ug/L		11/08/18 19:00	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		11/08/18 19:00	
1,2-Dibromoethane	ND	5.0	ug/L		11/08/18 19:00	
1,2-Dichlorobenzene	ND	5.0	ug/L		11/08/18 19:00	
1,2-Dichloroethane	ND	5.0	ug/L		11/08/18 19:00	
1,2-Dichloropropane	ND	5.0	ug/L		11/08/18 19:00	
1,3-Dichlorobenzene	ND	5.0	ug/L		11/08/18 19:00	
1,4-Dichlorobenzene	ND	5.0	ug/L		11/08/18 19:00	
2-Butanone (MEK)	ND	25	ug/L		11/08/18 19:00	
p-Chlorotoluene	ND	5.0	ug/L		11/08/18 19:00	
2-Hexanone	ND	25	ug/L		11/08/18 19:00	
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		11/08/18 19:00	
Acetone	ND	25	ug/L		11/08/18 19:00	
Benzene	ND	5.0			11/08/18 19:00	
Bromoform	ND	5.0	ug/L			
			ug/L		11/08/18 19:00	
Bromomethane	ND	5.0	ug/L		11/08/18 19:00	
Carbon disulfide	ND	5.0	ug/L		11/08/18 19:00	
Carbon tetrachloride	ND	5.0	ug/L		11/08/18 19:00	
Chlorobenzene	ND	5.0	ug/L		11/08/18 19:00	
Chlorodibromomethane	ND	5.0	ug/L		11/08/18 19:00	
Chloroethane	ND	5.0	ug/L		11/08/18 19:00	
Chloroform	ND	5.0	ug/L		11/08/18 19:00	
Chloromethane	ND	5.0	ug/L		11/08/18 19:00	
cis-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 19:00	
cis-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 19:00	
Cyclohexane	ND	5.0	ug/L		11/08/18 19:00	
Bromodichloromethane	ND	5.0	ug/L		11/08/18 19:00	
Dichlorofluoromethane	ND	5.0	ug/L		11/08/18 19:00	
Ethylbenzene	ND	5.0	ug/L		11/08/18 19:00	
sopropylbenzene	ND	5.0	ug/L		11/08/18 19:00	
Methyl acetate	ND	5.0	ug/L		11/08/18 19:00	
Methyl tert-butyl ether	ND	5.0	ug/L		11/08/18 19:00	
Methylcyclohexane	ND	5.0	ug/L		11/08/18 19:00	
Methylene Chloride	ND	5.0	ug/L		11/08/18 19:00	
Styrene	ND	5.0	ug/L		11/08/18 19:00	
Fetrachloroethene	ND	5.0	ug/L		11/08/18 19:00	
Toluene	ND	5.0	ug/L		11/08/18 19:00	
rans-1,2-Dichloroethene	ND	5.0	ug/L		11/08/18 19:00	
rans-1,3-Dichloropropene	ND	5.0	ug/L		11/08/18 19:00	
Trichloroethene	ND	5.0	ug/L		11/08/18 19:00	
Trichlorofluoromethane	ND	5.0			11/08/18 19:00	
Vinyl chloride	ND	5.0	ug/L		11/08/18 19:00	
Xylenes, Total	ND	5.0 15	ug/L ug/L		11/08/18 19:00	

Lab Sample ID: 480-144453-7

Matrix: Water

Client Sample ID: TB Date Collected: 10/30/18 09:00 Date Received: 10/31/18 09:35

Summaria	% Decement Outlifier	l imite	Droporod	Amelymod	
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		11/08/18 19:00	1
Toluene-d8 (Surr)	98	80 - 120		11/08/18 19:00	1
4-Bromofluorobenzene (Surr)	82	73 - 120		11/08/18 19:00	1
Dibromofluoromethane (Surr)	89	75 - 123		11/08/18 19:00	1

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: Method Blank Prep Type: Total/NA 5

7

Lab Sample ID: MB 480-444315/8 Matrix: Water

Analy	vsis	Batch:	444315
And	, 515	Button.	444010

	MB	МВ					
Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,1,2-Trichloroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,1-Dichloroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,2,4-Trichlorobenzene	ND		5.0	ug/L		11/08/18 11:35	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L		11/08/18 11:35	1
1,2-Dibromoethane	ND		5.0	ug/L		11/08/18 11:35	1
1,2-Dichlorobenzene	ND		5.0	ug/L		11/08/18 11:35	1
1,2-Dichloroethane	ND		5.0	ug/L		11/08/18 11:35	1
1,2-Dichloropropane	ND		5.0	ug/L		11/08/18 11:35	1
1,3-Dichlorobenzene	ND		5.0	ug/L		11/08/18 11:35	1
1,4-Dichlorobenzene	ND		5.0	ug/L		11/08/18 11:35	1
2-Butanone (MEK)	ND		25	ug/L		11/08/18 11:35	1
o-Chlorotoluene	ND		5.0	ug/L		11/08/18 11:35	1
2-Hexanone	ND		25	ug/L		11/08/18 11:35	1
4-Methyl-2-pentanone (MIBK)	ND		25	ug/L		11/08/18 11:35	1
Acetone	ND		25	ug/L		11/08/18 11:35	1
Benzene	ND		5.0	ug/L		11/08/18 11:35	1
Bromoform	ND		5.0	ug/L		11/08/18 11:35	1
Bromomethane	ND		5.0	ug/L		11/08/18 11:35	1
Carbon disulfide	ND		5.0	ug/L		11/08/18 11:35	1
Carbon tetrachloride	ND		5.0	ug/L		11/08/18 11:35	1
Chlorobenzene	ND		5.0	ug/L		11/08/18 11:35	1
Chlorodibromomethane	ND		5.0	ug/L		11/08/18 11:35	1
Chloroethane	ND		5.0	ug/L		11/08/18 11:35	1
Chloroform	ND		5.0	ug/L		11/08/18 11:35	1
Chloromethane	ND		5.0	ug/L		11/08/18 11:35	1
cis-1,2-Dichloroethene	ND		5.0	ug/L		11/08/18 11:35	1
cis-1,3-Dichloropropene	ND		5.0	ug/L		11/08/18 11:35	1
Cyclohexane	ND		5.0	ug/L		11/08/18 11:35	1
Bromodichloromethane	ND		5.0	ug/L		11/08/18 11:35	1
Dichlorofluoromethane	ND		5.0	ug/L		11/08/18 11:35	1
Ethylbenzene	ND		5.0	ug/L		11/08/18 11:35	1
Isopropylbenzene	ND		5.0	ug/L		11/08/18 11:35	1
Methyl acetate	ND		5.0	ug/L		11/08/18 11:35	1
Methyl tert-butyl ether	ND		5.0	ug/L		11/08/18 11:35	1
Methylcyclohexane	ND		5.0	ug/L		11/08/18 11:35	1
Methylene Chloride	ND		5.0	ug/L		11/08/18 11:35	1
Styrene	ND		5.0	ug/L		11/08/18 11:35	1
Tetrachloroethene	ND		5.0	ug/L		11/08/18 11:35	1
Toluene	ND		5.0	ug/L		11/08/18 11:35	1
trans-1,2-Dichloroethene	ND		5.0	ug/L		11/08/18 11:35	1
trans-1,3-Dichloropropene	ND		5.0	ug/L		11/08/18 11:35	1
Trichloroethene	ND		5.0	ug/L		11/08/18 11:35	1
Trichlorofluoromethane	ND		5.0	ug/L		11/08/18 11:35	1
Vinyl chloride	ND		5.0	ug/L		11/08/18 11:35	1
Xylenes, Total	ND		15	ug/L		11/08/18 11:35	1

Limits

77 - 120

80 - 120

73 - 120

75 - 123

MB MB

102

98

105

103

%Recovery

Qualifier

Client: Waste Management

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Surrogate

Analyte

ne

Toluene-d8 (Surr)

Project/Site: ChemTrol Site - Annual Groundwater

Prepared

 Analyzed
 Dil Fac

 11/08/18 11:35
 1

 11/08/18 11:35
 1

 11/08/18 11:35
 1

 11/08/18 11:35
 1

 11/08/18 11:35
 1

7

Lab Sample ID: LCS 480-444315/10 Matrix: Water

Analysis Batch: 444315

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha

1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone (MEK) o-Chlorotoluene 2-Hexanone

4-Methyl-2-pentanone (MIBK)

Acetone Benzene Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Styrene

Toluene

Isopropylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Bromodichloromethane

Dichlorofluoromethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

trans-1,2-Dichloroethene

Chloroform

						Fiep Type. Total/NA		
Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits		2
 25.0	26.9	Quaimer						8
			ug/L		108	73 - 126		
25.0	23.1		ug/L		92	76 - 120		
25.0	28.3		ug/L		113	61 - 148		
25.0	25.4		ug/L		102	76 - 122		
25.0	25.8		ug/L		103	77 - 120		
25.0	24.7		ug/L		99	79 - 122		
25.0	21.2		ug/L		85	56 ₋ 134		
25.0	25.6		ug/L		102	77 - 120		
25.0	25.4		ug/L		101	80 - 124		
25.0	24.7		ug/L		99	75 ₋ 120		
25.0	26.8		ug/L		107	76 ₋ 120		
25.0	25.7		ug/L		103	77 - 120		
25.0	26.2		ug/L		105	80 - 120		
125	144		ug/L		115	57 - 140		
25.0	25.8		ug/L		103	76 ₋ 121		
125	142		ug/L		114	65 - 127		
125	126		ug/L		101	71 ₋ 125		
125	149		ug/L		119	56 ₋ 142		
25.0	27.0		ug/L		108	71 - 124		
25.0	23.9		ug/L		96	61 - 132		
25.0	22.3		ug/L		89	55 ₋ 144		
25.0	26.4		ug/L		106	59 ₋ 134		
25.0	27.4		ug/L		110	72 - 134		
25.0	26.0		ug/L		104	80 - 120		
25.0	25.0		ug/L		100	75 - 125		

ug/L

91

101

91

101

117

116

110

92

105

109

91

100

118

94

110

114

101

99

69 - 136

73 - 127

68 - 124

74 - 124

74 - 124

59 - 135

80 - 122

76 - 127

77 - 123

77 - 122

74 - 133

77 - 120

68 - 134

75 - 124

80 ₋ 120 74 ₋ 122

80 - 122

73 - 127

Client Sample ID: Lab Control Sample Prep Type: Total/NA

TestAmerica Buffalo

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

22.7

25.2

22.8

25.2

29.3

29.1

27.4

23.0

26.3

27.2

45.6

25.0

29.4

23.5

27.4

28.4

25.3

24.6

LCS LCS

27.3

27.0

27.0

26.1

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

Spike

Added

25.0

25.0

25.0

25.0

Limits

77 - 120

80 - 120

73 - 120

75 - 123

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Lab Sample ID: LCS 480-444315/10

Matrix: Water

Trichloroethene

Vinyl chloride

Surrogate

Toluene-d8 (Surr)

Analyte

Analysis Batch: 444315

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichlorofluoromethane

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCS LCS

%Recovery Qualifier

98

98

102

97

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

74 - 123

62 - 150

65 - 133

Client Sample ID: Method Blank

D %Rec

109

108

108

104

1 2 3 4 5 6 7 8 9

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 480-444316/7 Matrix: Water Analysis Batch: 444316

Analysis Batch: 444316	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,1,2-Trichloroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,1-Dichloroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			11/08/18 11:26	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/08/18 11:26	1
1,2-Dibromoethane	ND		5.0		ug/L			11/08/18 11:26	1
1,2-Dichlorobenzene	ND		5.0		ug/L			11/08/18 11:26	1
1,2-Dichloroethane	ND		5.0		ug/L			11/08/18 11:26	1
1,2-Dichloropropane	ND		5.0		ug/L			11/08/18 11:26	1
1,3-Dichlorobenzene	ND		5.0		ug/L			11/08/18 11:26	1
1,4-Dichlorobenzene	ND		5.0		ug/L			11/08/18 11:26	1
2-Butanone (MEK)	ND		25		ug/L			11/08/18 11:26	1
o-Chlorotoluene	ND		5.0		ug/L			11/08/18 11:26	1
2-Hexanone	ND		25		ug/L			11/08/18 11:26	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			11/08/18 11:26	1
Acetone	ND		25		ug/L			11/08/18 11:26	1
Benzene	ND		5.0		ug/L			11/08/18 11:26	1
Bromoform	ND		5.0		ug/L			11/08/18 11:26	1
Bromomethane	ND		5.0		ug/L			11/08/18 11:26	1
Carbon disulfide	ND		5.0		ug/L			11/08/18 11:26	1
Carbon tetrachloride	ND		5.0		ug/L			11/08/18 11:26	1
Chlorobenzene	ND		5.0		ug/L			11/08/18 11:26	1
Chlorodibromomethane	ND		5.0		ug/L			11/08/18 11:26	1
Chloroethane	ND		5.0		ug/L			11/08/18 11:26	1
Chloroform	ND		5.0		ug/L			11/08/18 11:26	1
Chloromethane	ND		5.0		ug/L			11/08/18 11:26	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/08/18 11:26	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			11/08/18 11:26	1
Cyclohexane	ND		5.0		ug/L			11/08/18 11:26	1
Bromodichloromethane	ND		5.0		ug/L			11/08/18 11:26	1

Lab Sample ID: MB 480-444316/7

Analysis Batch: 444316

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

5
7
8
9

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

81

84

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorofluoromethane	ND		5.0		ug/L			11/08/18 11:26	1
Ethylbenzene	ND		5.0		ug/L			11/08/18 11:26	1
Isopropylbenzene	ND		5.0		ug/L			11/08/18 11:26	1
Methyl acetate	ND		5.0		ug/L			11/08/18 11:26	1
Methyl tert-butyl ether	ND		5.0		ug/L			11/08/18 11:26	1
Methylcyclohexane	ND		5.0		ug/L			11/08/18 11:26	1
Methylene Chloride	ND		5.0		ug/L			11/08/18 11:26	1
Styrene	ND		5.0		ug/L			11/08/18 11:26	1
Tetrachloroethene	ND		5.0		ug/L			11/08/18 11:26	1
Toluene	ND		5.0		ug/L			11/08/18 11:26	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			11/08/18 11:26	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			11/08/18 11:26	1
Trichloroethene	ND		5.0		ug/L			11/08/18 11:26	1
Trichlorofluoromethane	ND		5.0		ug/L			11/08/18 11:26	1
Vinyl chloride	ND		5.0		ug/L			11/08/18 11:26	1
Xylenes, Total	ND		15		ug/L			11/08/18 11:26	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120			-		11/08/18 11:26	1
Toluene-d8 (Surr)	96		80 - 120					11/08/18 11:26	1

73 - 120

75 - 123

Lab Sample ID: LCS 480-444316/5 Matrix: Water Analysis Batch: 444316

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/08/18 11:26

11/08/18 11:26

1

1

Analysis Batch. 444010	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	25.2		ug/L		101	73 - 126
1,1,2,2-Tetrachloroethane	25.0	27.7		ug/L		111	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.6		ug/L		106	61 - 148
ne							
1,1,2-Trichloroethane	25.0	24.6		ug/L		98	76 - 122
1,1-Dichloroethane	25.0	28.6		ug/L		114	77 - 120
1,2,4-Trichlorobenzene	25.0	24.8		ug/L		99	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	25.6		ug/L		103	56 - 134
1,2-Dibromoethane	25.0	22.5		ug/L		90	77 - 120
1,2-Dichlorobenzene	25.0	25.9		ug/L		104	80 - 124
1,2-Dichloroethane	25.0	23.7		ug/L		95	75 - 120
1,2-Dichloropropane	25.0	28.7		ug/L		115	76 - 120
1,3-Dichlorobenzene	25.0	25.6		ug/L		102	77 - 120
1,4-Dichlorobenzene	25.0	25.5		ug/L		102	80 - 120
2-Butanone (MEK)	125	145		ug/L		116	57 - 140
o-Chlorotoluene	25.0	27.4		ug/L		110	76 - 121
2-Hexanone	125	150		ug/L		120	65 - 127
4-Methyl-2-pentanone (MIBK)	125	151		ug/L		121	71 - 125
Acetone	125	146		ug/L		117	56 - 142
Benzene	25.0	27.2		ug/L		109	71 - 124

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-444316/5 Matrix: Water

								- 2
Analysis Batch: 444316								
	Spike	LCS L					%Rec.	
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits	
Bromoform	25.0	21.1		ug/L		84	61 - 132	
Bromomethane	25.0	22.5		ug/L		90	55 - 144	
Carbon disulfide	25.0	27.9		ug/L		112	59 - 134	
Carbon tetrachloride	25.0	23.4		ug/L		93	72 - 134	- 1
Chlorobenzene	25.0	24.3		ug/L		97	80 - 120	
Chlorodibromomethane	25.0	22.7		ug/L		91	75 - 125	- 1
Chloroethane	25.0	27.5		ug/L		110	69 - 136	
Chloroform	25.0	24.2		ug/L		97	73 - 127	
Chloromethane	25.0	25.1		ug/L		101	68 - 124	
cis-1,2-Dichloroethene	25.0	25.4		ug/L		102	74 - 124	
cis-1,3-Dichloropropene	25.0	27.1		ug/L		108	74 - 124	
Cyclohexane	25.0	33.6		ug/L		134	59 - 135	
Bromodichloromethane	25.0	25.0		ug/L		100	80 - 122	
Dichlorofluoromethane	25.0	24.2		ug/L		97	76 - 127	
Ethylbenzene	25.0	27.8		ug/L		111	77 - 123	
Isopropylbenzene	25.0	29.0		ug/L		116	77 - 122	
Methyl acetate	50.0	57.8		ug/L		116	74 - 133	
Methyl tert-butyl ether	25.0	23.9		ug/L		96	77 - 120	
Methylcyclohexane	25.0	28.4		ug/L		114	68 - 134	
Methylene Chloride	25.0	23.6		ug/L		94	75 - 124	
Styrene	25.0	26.2		ug/L		105	80 - 120	
Tetrachloroethene	25.0	23.7		ug/L		95	74 - 122	
Toluene	25.0	27.0		ug/L		108	80 - 122	
trans-1,2-Dichloroethene	25.0	25.4		ug/L		102	73 - 127	
trans-1,3-Dichloropropene	25.0	26.3		ug/L		105	80 - 120	
Trichloroethene	25.0	26.1		ug/L		104	74 - 123	
Trichlorofluoromethane	25.0	21.2		ug/L		85	62 - 150	
Vinyl chloride	25.0	23.0		ug/L		92	65 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		77 - 120
Toluene-d8 (Surr)	97		80 - 120
4-Bromofluorobenzene (Surr)	85		73 - 120
Dibromofluoromethane (Surr)	84		75 - 123

Lab Sample ID: MB 480-444527/6 Matrix: Water Analysis Batch: 444527

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,1,2-Trichloroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,1-Dichloroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			11/08/18 23:03	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/08/18 23:03	1
1,2-Dibromoethane	ND		5.0		ug/L			11/08/18 23:03	1

Lab Sample ID: MB 480-444527/6

Matrix: Water

Analysis Batch: 444527

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Client Sample ID: Method Blank

Prep Type: Total/NA

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		5.0		ug/L		•	11/08/18 23:03	1
1,2-Dichloroethane	ND		5.0		ug/L			11/08/18 23:03	1
1,2-Dichloropropane	ND		5.0		ug/L			11/08/18 23:03	1
1,3-Dichlorobenzene	ND		5.0		ug/L			11/08/18 23:03	1
1,4-Dichlorobenzene	ND		5.0		ug/L			11/08/18 23:03	1
2-Butanone (MEK)	ND		25		ug/L			11/08/18 23:03	1
o-Chlorotoluene	ND		5.0		ug/L			11/08/18 23:03	1
2-Hexanone	ND		25		ug/L			11/08/18 23:03	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			11/08/18 23:03	1
Acetone	ND		25		ug/L			11/08/18 23:03	1
Benzene	ND		5.0		ug/L			11/08/18 23:03	1
Bromoform	ND		5.0		ug/L			11/08/18 23:03	1
Bromomethane	ND		5.0		ug/L			11/08/18 23:03	1
Carbon disulfide	ND		5.0		ug/L			11/08/18 23:03	1
Carbon tetrachloride	ND		5.0		ug/L			11/08/18 23:03	1
Chlorobenzene	ND		5.0		ug/L			11/08/18 23:03	1
Chlorodibromomethane	ND		5.0		ug/L			11/08/18 23:03	1
Chloroethane	ND		5.0		ug/L			11/08/18 23:03	1
Chloroform	ND		5.0		ug/L			11/08/18 23:03	1
Chloromethane	ND		5.0		ug/L			11/08/18 23:03	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/08/18 23:03	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			11/08/18 23:03	1
Cyclohexane	ND		5.0		ug/L			11/08/18 23:03	1
Bromodichloromethane	ND		5.0		ug/L			11/08/18 23:03	1
Dichlorofluoromethane	ND		5.0		ug/L			11/08/18 23:03	1
Ethylbenzene	ND		5.0		ug/L			11/08/18 23:03	1
sopropylbenzene	ND		5.0		ug/L			11/08/18 23:03	1
Methyl acetate	ND		5.0		ug/L			11/08/18 23:03	1
Methyl tert-butyl ether	ND		5.0		ug/L			11/08/18 23:03	1
Methylcyclohexane	ND		5.0		ug/L			11/08/18 23:03	1
Methylene Chloride	ND		5.0		ug/L			11/08/18 23:03	1
Styrene	ND		5.0		ug/L			11/08/18 23:03	1
Tetrachloroethene	ND		5.0		ug/L			11/08/18 23:03	1
Foluene	ND		5.0		ug/L			11/08/18 23:03	1
rans-1,2-Dichloroethene	ND		5.0		ug/L			11/08/18 23:03	1
rans-1,3-Dichloropropene	ND		5.0		ug/L			11/08/18 23:03	1
Trichloroethene	ND		5.0		ug/L			11/08/18 23:03	1
Trichlorofluoromethane	ND		5.0		ug/L			11/08/18 23:03	1
Vinyl chloride	ND		5.0		ug/L			11/08/18 23:03	1
Xylenes, Total	ND		15		ug/L			11/08/18 23:03	1
		МВ							
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		11/08/18 23:03	1
Toluene-d8 (Surr)	95		80 - 120					11/08/18 23:03	1
4-Bromofluorobenzene (Surr)	83		73 - 120					11/08/18 23:03	1

TestAmerica Buffalo

11/08/18 23:03

75 - 123

84

1

5

7

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-444527/4 Matrix: Water

Matrix: Water						Prep Type: Total
Analysis Batch: 444527	• "					~~ -
• • /	Spike	LCS				%Rec.
Analyte	Added		Qualifier	Unit	<u>D%Rec</u>	Limits
1,1,1-Trichloroethane	25.0	24.6		ug/L	98	73 - 126
1,1,2,2-Tetrachloroethane	25.0	28.6		ug/L	114	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	24.7		ug/L	99	61 - 148
1,1,2-Trichloroethane	25.0	25.0		ug/L	100	76 - 122
1,1-Dichloroethane	25.0	27.4		ug/L	110	77 - 120
1,2,4-Trichlorobenzene	25.0	24.2		ug/L	97	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	26.8		ug/L	107	56 - 134
1,2-Dibromoethane	25.0	22.8		ug/L	91	77 - 120
1,2-Dichlorobenzene	25.0	26.0		ug/L	104	80 - 124
1,2-Dichloroethane	25.0	23.5		ug/L	94	75 ₋ 120
1,2-Dichloropropane	25.0	27.9		ug/L	112	76 - 120
1,3-Dichlorobenzene	25.0	26.3		ug/L	105	77 - 120
1,4-Dichlorobenzene	25.0	26.0		ug/L	104	80 - 120
2-Butanone (MEK)	125	149		ug/L	119	57 - 140
o-Chlorotoluene	25.0	27.3		ug/L	109	76 - 121
2-Hexanone	125	152		ug/L	122	65 - 127
4-Methyl-2-pentanone (MIBK)	125	152		ug/L	123	71 - 125
Acetone	125	140		ug/L	112	56 - 142
Benzene	25.0	26.4		ug/L	106	71 - 124
Bromoform	25.0	20.4		ug/L	84	61 - 132
Bromomethane	25.0	20.9		ug/L	84	55 - 144
Carbon disulfide	25.0 25.0	21.0		ug/L	109	59 - 134
Carbon tetrachloride	25.0	27.4		ug/L	90	72 - 134
Chlorobenzene	25.0	22.4		-	90 95	80 - 120
Chlorodibromomethane	25.0	23.6		ug/L	95 90	75 - 125
	25.0	22.0		ug/L		69 - 136
Chloroethane				ug/L	103	
Chloroform	25.0	23.5		ug/L	94	73 - 127
Chloromethane	25.0	23.7		ug/L	95	68 - 124
cis-1,2-Dichloroethene	25.0	24.8		ug/L	99	74 - 124
cis-1,3-Dichloropropene	25.0	25.6		ug/L	102	74 - 124
Cyclohexane	25.0	31.5		ug/L	126	59 - 135
Bromodichloromethane	25.0	24.1		ug/L	96	80 - 122
Dichlorofluoromethane	25.0	22.3		ug/L	89	76 - 127
Ethylbenzene	25.0	27.3		ug/L	109	77 - 123
Isopropylbenzene	25.0	29.0		ug/L	116	77 - 122
Methyl acetate	50.0	58.6		ug/L	117	74 - 133
Methyl tert-butyl ether	25.0	23.4		ug/L	94	77 - 120
Methylcyclohexane	25.0	27.6		ug/L	111	68 - 134
Methylene Chloride	25.0	23.5		ug/L	94	75 - 124
Styrene	25.0	26.1		ug/L	104	80 - 120
Tetrachloroethene	25.0	22.8		ug/L	91	74 - 122
Toluene	25.0	26.8		ug/L	107	80 - 122
trans-1,2-Dichloroethene	25.0	25.3		ug/L	101	73 - 127
trans-1,3-Dichloropropene	25.0	26.0		ug/L	104	80 - 120
Trichloroethene	25.0	25.3		ug/L	101	74 - 123
Trichlorofluoromethane	25.0	19.4		ug/L	78	62 - 150
Vinyl chloride	25.0	20.6		ug/L	82	65 - 133

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480- Matrix: Water Analysis Batch: 444527	444527/4			Client Sample ID: Lab Control Sa Prep Type: Tot
	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	93		77 - 120	
Toluene-d8 (Surr)	99		80 - 120	
4-Bromofluorobenzene (Surr)	88		73 - 120	
Dibromofluoromethane (Surr)	83		75 - 123	

QC Association Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Lab Control Sample

GC/MS VOA

LCS 480-444527/4

Analysis Batch: 444315

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-144453-1	DUP	Total/NA	Water	8260C	
MB 480-444315/8	Method Blank	Total/NA	Water	8260C	
LCS 480-444315/10	Lab Control Sample	Total/NA	Water	8260C	
Analysis Batch: 444	1316				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-144453-2	MW-13R	Total/NA	Water	8260C	
480-144453-4	MW-7R	Total/NA	Water	8260C	
480-144453-5	MW-8R	Total/NA	Water	8260C	
480-144453-7	ТВ	Total/NA	Water	8260C	
MB 480-444316/7	Method Blank	Total/NA	Water	8260C	
LCS 480-444316/5	Lab Control Sample	Total/NA	Water	8260C	
Analysis Batch: 444	1527				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-144453-6	MW-9R	Total/NA	Water	8260C	
MB 480-444527/6	Method Blank	Total/NA	Water	8260C	

Total/NA

Water

8260C

Dilution

Factor

Dilution

Factor

40

1

Run

Run

Batch

Batch

Number

444316

Batch

Number

444316

Number

Prepared

or Analyzed

Prepared

or Analyzed

11/08/18 17:09

Prepared

or Analyzed

11/08/18 17:37

444315 11/08/18 12:16 NMC

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

Batch

8260C

Batch

Method

8260C

Batch

Method

8260C

Method

Client Sample ID: DUP

Prep Type

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Date Collected: 10/30/18 11:30

Date Received: 10/31/18 09:35

Client Sample ID: MW-13R

Date Collected: 10/30/18 14:15

Date Received: 10/31/18 09:35

Client Sample ID: MW-7R

Date Collected: 10/30/18 11:30

Date Received: 10/31/18 09:35

Batch

Туре

Analysis

Batch

Type

Analysis

Batch

Туре

Analysis

Lab Sample ID: 480-144453-1

Lab

Lab TAL BUF

Lab

TAL BUF

Lab Sample ID: 480-144453-5

Lab Sample ID: 480-144453-6

Lab Sample ID: 480-144453-7

Matrix: Water

Matrix: Water

Matrix: Water

TAL BUF

Analyst

Analyst

Analyst

RLB

RLB

Matrix: Water

5
8
9

Lab Sample ID: 480-144453-2 Matrix: Water Lab Sample ID: 480-144453-4 Matrix: Water

Dilution Run Factor

Client Sample ID: MW-8R Date Collected: 10/30/18 12:00

Date Received: 10/31/18 09:35

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	444316	11/08/18 18:05	RLB	TAL BUF

Client Sample ID: MW-9R Date Collected: 10/30/18 12:12 Date Received: 10/31/18 09:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	444527	11/09/18 00:38	RJF	TAL BUF

Client Sample ID: TB Date Collected: 10/30/18 09:00 Date Received: 10/31/18 09:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	444316	11/08/18 19:00	RLB	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

10

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York The following analyte	s are included in this repo	$\frac{\text{EPA Region}}{2}$ s not certified by the	 Identification Number 10026 governing authority. This 	Expiration Date 03-31-19 list may include analytes for
the agency does not	offer certification.			

Method Summary

Client: Waste Management Project/Site: ChemTrol Site - Annual Gr

Project/Site: ChemTrol Site - Annual Groundwater

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

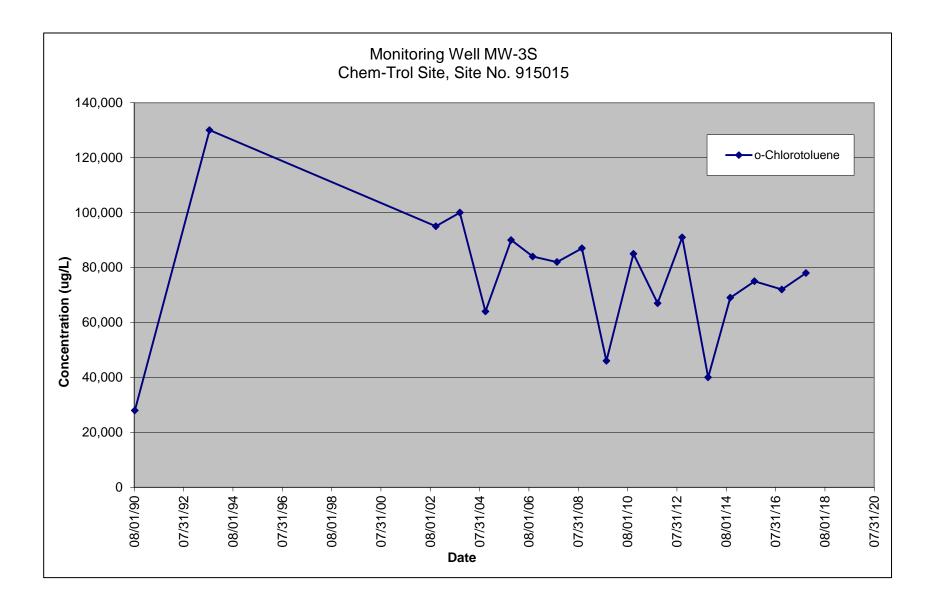
Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: Waste Management Project/Site: ChemTrol Site - Annual Groundwater

TestAmerica Job ID: 480-144453-1

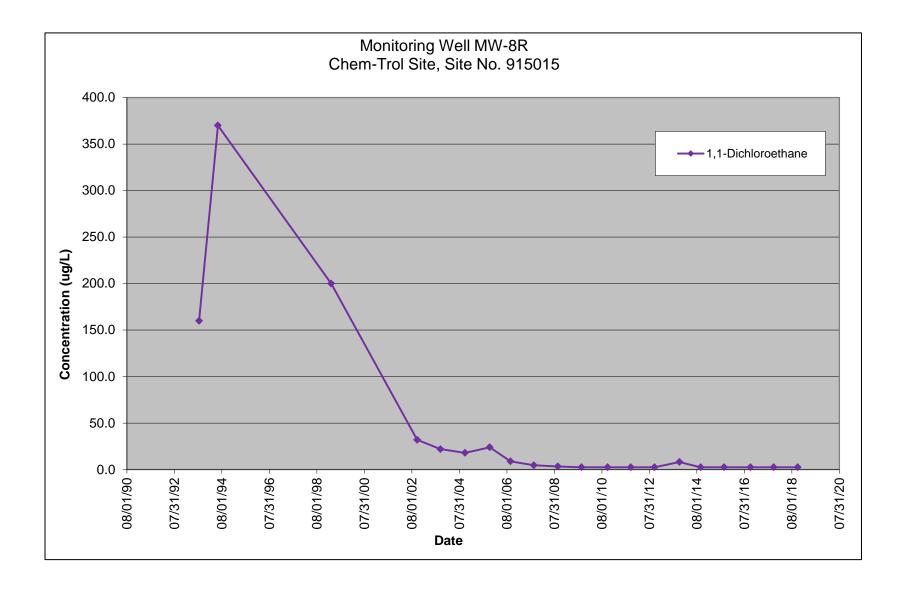
Client: Waste Man			TestAmerica Job ID: 480-144453-1
Project/Site: Chem	Trol Site - Annual Groundwater		
_ab Sample ID	Client Sample ID	Matrix	Collected Received
80-144453-1	DUP	Water	10/30/18 11:30 10/31/18 09:35
80-144453-2	MW-13R	Water	10/30/18 14:15 10/31/18 09:35
80-144453-4	MW-7R	Water	10/30/18 11:30 10/31/18 09:35
80-144453-5	MW-8R	Water	10/30/18 12:00 10/31/18 09:35
180-144453-6	MW-9R	Water	10/30/18 12:12 10/31/18 09:35
80-144453-7	ТВ	Water	10/30/18 09:00 10/31/18 09:35

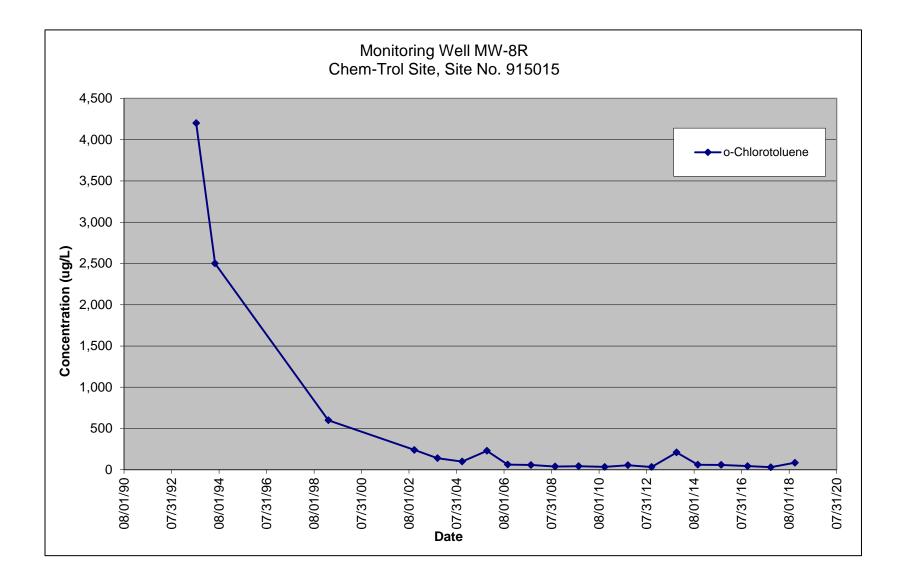

					•			THE LEADER (N ENVIR-
Client Information	Sampler.			Lab P	Lab PM: MonDotto Diroc T	+	Carrier Tracking No(s):	COC No:	Silley . eres
Client Contact	Phone:	L		E-Mai	Jelle, ryan		_	Page:	
Mr. Mark Snyder				ryan	vandette@t	ryan.vandette@testamericainc.com		Page 1 of 1	
Waste Management						Analysis Re	Requested	-# 000	100 144453 COC
Address: 425 Perinton Parkway	Due Date Requested:	:pe						Preservation Codes:	1
City: Fairport	TAT Requested (days):	ays):						B - NaOH C - Zn Acetate	N - None 0 - AsNaO2
State, Zip: NY, 14450					100			D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3 P - Na2SO3
Phone: 603-925-5436(Tel)	PO#: Purchase Order not requir	r not requir		-	(0			G - Amchlor H - Ascorbic Acid	
Email: msnyder@wm.com	*O				(01)				U - Acetone V - MCAA
Project Name: ChemTrol Site/NY22 Event Desc: ChemTrol Annual Groundwate 48002447	Project #: bundwate 48002447				10 50)			ntaine K-EUIA L-EDA	w - pri 4-5 Z - other (specify)
Site: New Hampshire	SSOW				U asi			of Other:	
		Sample	Sample Type (C=comp,	Matrix (www.anter, amotid, Orwanatiol,	benetiiii bid M\ZM mnoh (GOM) - 808			tedmuh ist	
Sample Identification	Sample Date	Time	G=grab) Preserve	S=grab) sr-Traue, A-Air) Preservation Code:	Pd X		100 100 100 100 100 100 100 100 100 100		Special Instructions/Note:
DUP	11-20-18	1130	U	Water	3		State of Contract	3 TAKENO	B NW-7R
MW-13R	()	SIH	-	Water	~				
MW-15R				Water	3			>> Could	NOT LOCATE
SE-MW				Water	2			- YA ORY -	NOT SAMPLED
MW-7R		1130		Water	3			3 DUP TAKE	2
MW-8R		1200		Water	3			3	
MW-9R		1212		Water	2			3	
TB	10-30-8	0400	CS	Water	2			2	
					Sample	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples	are retained longer tha	n 1 month)
V, Other (specify)	LOISON B	Олкломл	Kadiological	ai	Special I	Special Instructions/QC Requirements:	Uisposal by Lab	ALCHIVE FOR	Months
Empty Kit Relinquished by:		Date:			Time:	11	Method of Shipment		
Reinquished by Reinquished by:	Date/Time: 10-30-A/ Date/Time:	OhSI		Company Company	Recei	Received by: Received by:		131/15 09	Company AS
Relinquished by:	Date/Time:			Company	Receiv	Received by:	/ Date/Time:	.9	Company
Custody Seals Intact: Custody Seal No.:		10000	and a state	The state	Cooler	Cooler Temperature(s) °C and Other Remarks	amarks: +	L'21	A CARGE CARGE AND

ATTACHMENT C

Historical Data Trend Plots

Groundwater Analytical Data for Well MW-3S (ug/L)

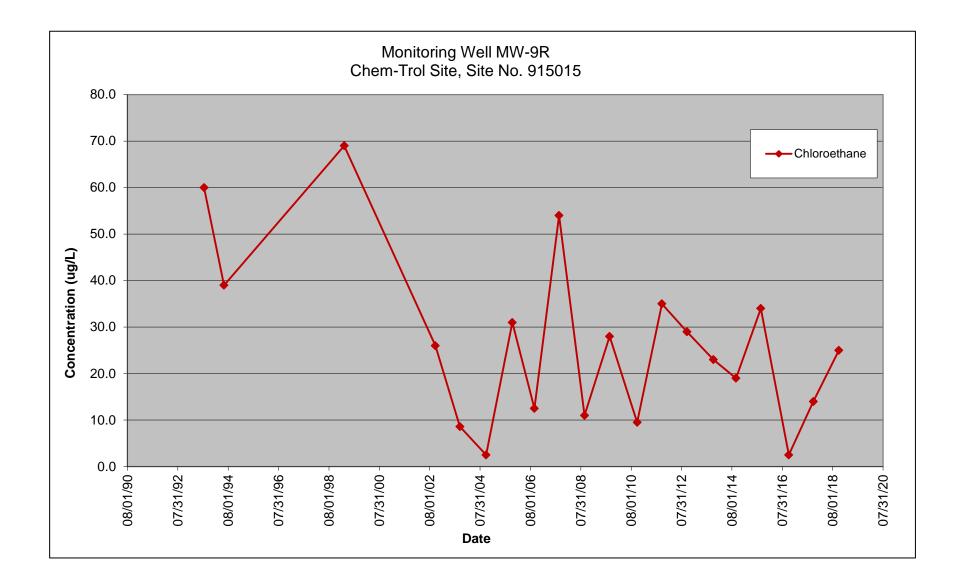

Date	o-Chlorotoluene
08/09/90	28,000
08/19/93	130,000
10/23/02	95,000
10/13/03	100,000
10/26/04	64,000
11/11/05	90,000
09/27/06	84,000
09/20/07	82,000
09/24/08	87,000
09/22/09	46,000
10/27/10	85,000
10/20/11	67,000
10/17/12	91,000
11/05/13	40,000
09/29/14	69,000
09/23/15	75,000
11/02/16	72,000
10/25/17	78,000
10/30/18	Dry

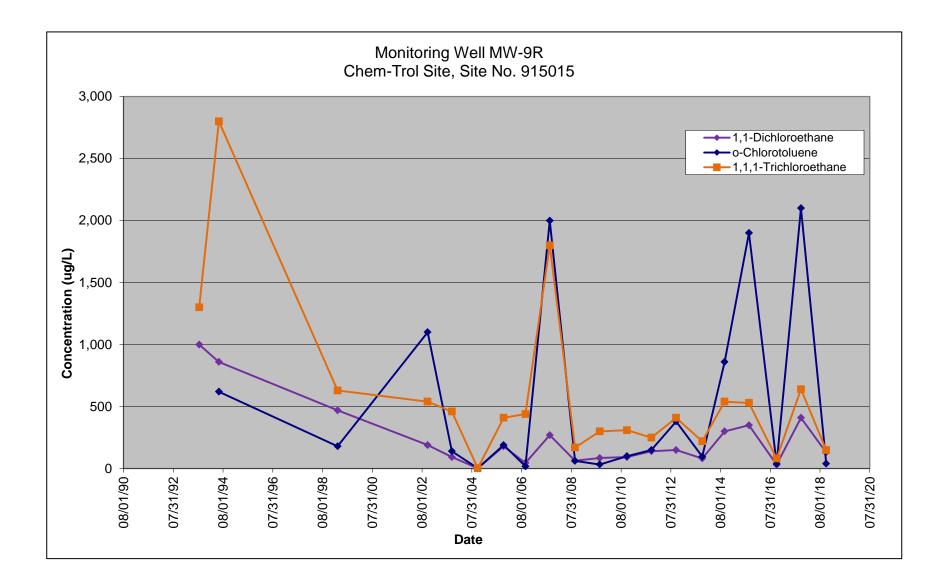


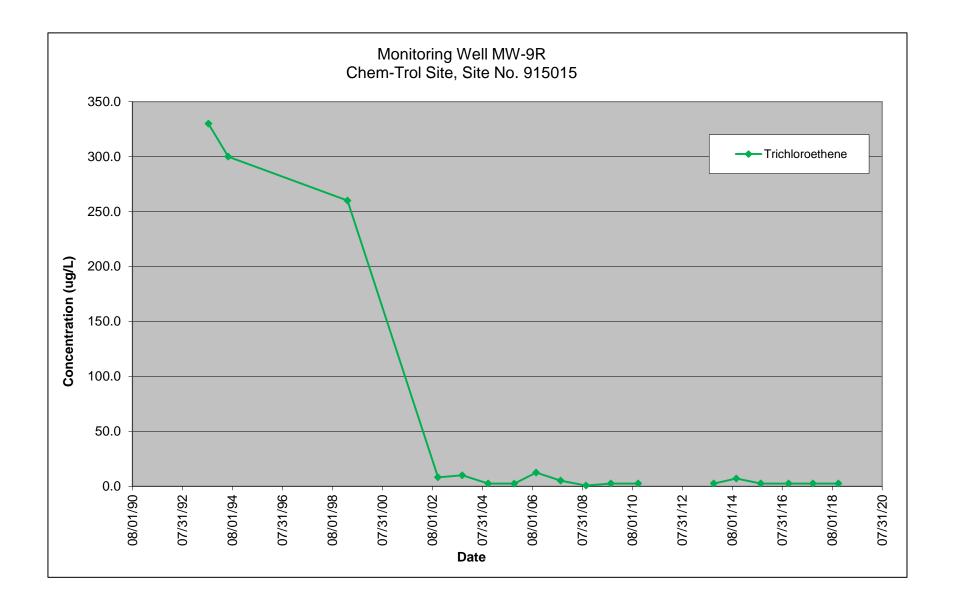
Groundwater Analytical Data for Well MW-8R (ug/L)

Date	1,1-Dichloroethane	o-Chlorotoluene
08/16/93	160.0	4,200
06/01/94	370.0	2,500
03/10/99	200.0	600.0
10/22/02	32.0	240.0
10/13/03	22.0	140.0
10/26/04	18.0	100.0
11/11/05	24.0	230.0
09/27/06	8.9	63.0
09/20/07	4.7	58.0
09/24/08	3.4	40.0
09/22/09	2.5	43.0
10/27/10	2.5	35.0
10/20/11	2.5	55.0
10/17/12	2.5	34.0
11/05/13	8.2	210.0
09/29/14	2.5	61.0
09/23/15	2.5	59.0
11/02/16	2.5	44.0
10/25/17	2.5	31.0
10/30/18	2.5	85.0

Value is equal to 1/2 the detection limit.

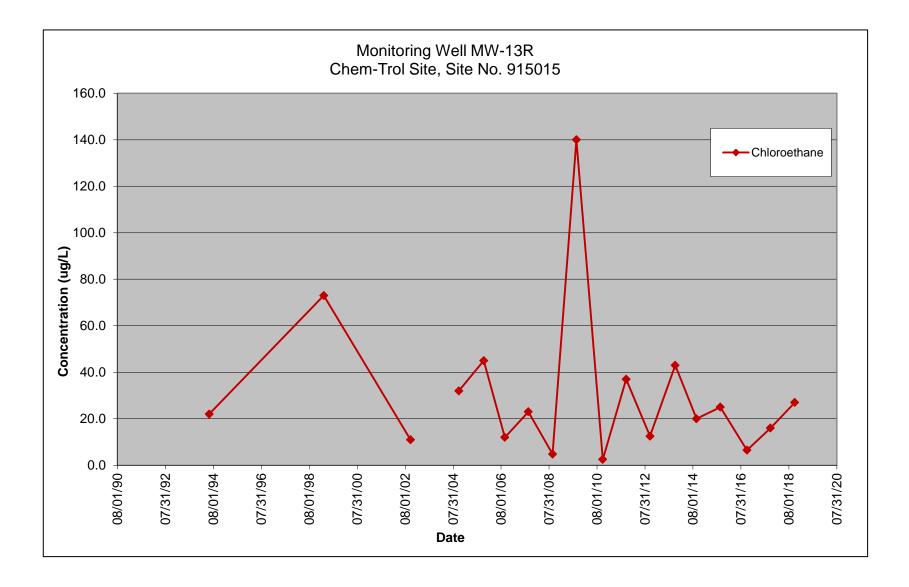


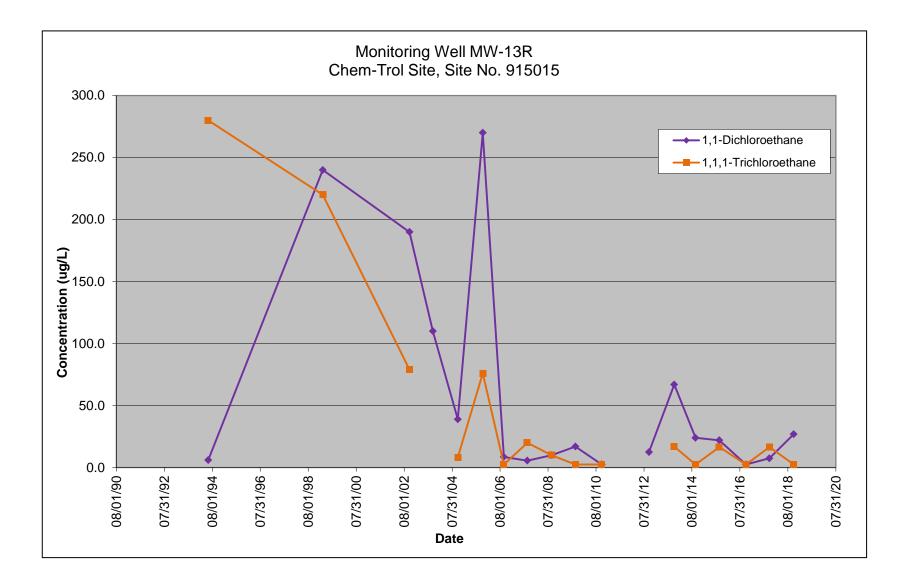

Groundwater Analytical Data for Well MW-9R (ug/L)

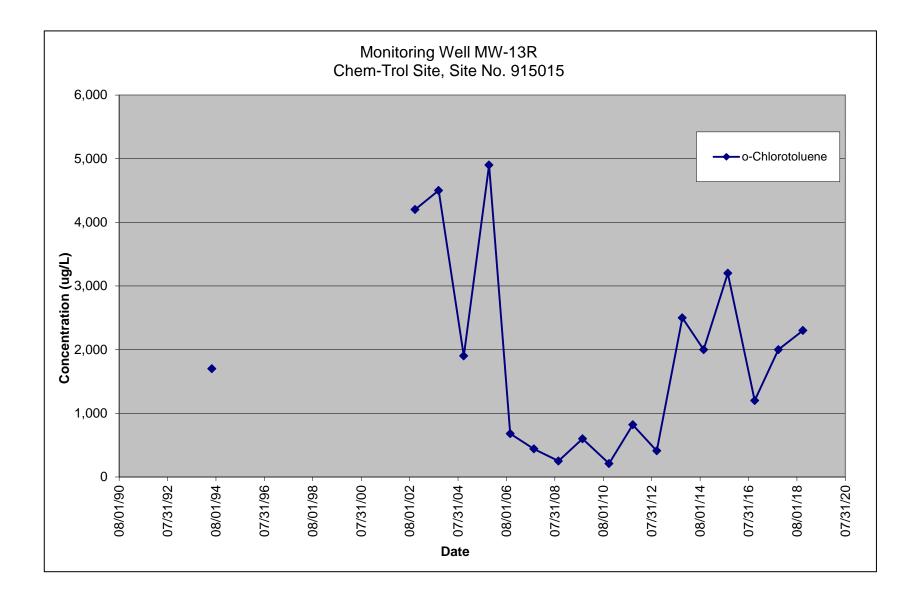

Date	Chloroethane	1,1-Dichloroethane	o-Chlorotoluene	1,1,1-Trichloroethane	Trichloroethene
08/16/93	60.0	1,000		1,300	330.0
06/01/94	39.0	860.0	620.0	2,800	300.0
03/10/99	69.0	470.0	180.0	630.0	260.0
10/22/02	26.0	190.0	1,100	540.0	8.2
10/13/03	8.6	93.0	140.0	460.0	10.0
10/26/04	2.5	2.5	2.5	2.5	2.5
11/11/05	31.0	180.0	190.0	410.0	2.4
09/27/06	12.5	46.0	18.0	440.0	12.5
09/20/07	54.0	270.0	2,000	1,800	5.1
09/24/08	11.0	64.0	62.0	170.0	0.68
09/22/09	28.0	85.0	33.0	300.0	2.5
10/27/10	9.5	93.0	100.0	310.0	2.5
10/20/11	35.0	140.0	150.0	250.0	
10/17/12	29.0	150.0	380.0	410.0	
11/05/13	23.0	82.0	97.0	220.0	2.5
09/29/14	19.0	300.0	860.0	540.0	7.1
09/23/15	34.0	350.0	1900.0	530.0	2.5
11/02/16	2.5	31.0	38.0	82.0	2.5
10/25/17	14.0	410.0	2100.0	640.0	2.5
10/30/18	25.0	130.0	40.0	150.0	2.5

Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results.

Value is equal to 1/2 the detection limit.






Groundwater Analytical Data for Well MW-13R (ug/L)

Date	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane	o-Chlorotoluene
05/31/94	22.0	6.0	280.0	1,700
03/11/99	73.0	240.0	220.0	
10/22/02	11.0	190.0	79.0	4,200
10/13/03		110.0		4,500
10/26/04	32.0	39.0	8.2	1,900
11/11/05	45.0	270.0	76.0	4,900
09/27/06	12.0	8.6	2.5	680.0
09/20/07	23.0	5.6	20.0	440.0
09/24/08	4.8	10.0	10.0	250.0
09/22/09	140.0	17.0	2.5	600.0
10/27/10	2.5	2.5	2.5	210.0
10/20/11	37.0			820.0
10/17/12	12.5	12.5		410.0
11/05/13	43.0	67.0	17.0	2,500
09/24/14	20.0	24.0	2.5	2,000
09/23/15	25.0	22.0	16.5	3200
11/02/16	6.5	2.5	2.5	1200
10/25/17	16.0	7.5	16.5	2000
10/30/18	27.0	27.0	2.5	2300

Data not included due to high detection limits for ND values: (1) 2003 - 200 ug/L except for Total Xylenes, which was 600 ug/L. Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.

