

AECOM
50 Lakefront Boulevard
Suite 111
Buffalo, NY 14202

716 856 5636 tel www.aecom.com

March 14, 2025

Mr. Bradley Demo
New York State Department of Environmental Conservation, Region 9
Division of Environmental Remediation
700 Delaware Avenue
Buffalo, New York 14209

Subject: 02/15/24 – 02/15/25 PERIODIC REVIEW REPORT

Chem-Trol Site, Registry No. 9-15-015

Blasdell, Erie County

Dear Mr. Demo:

AECOM USA, Inc. (AECOM), on behalf of SC Holdings, Inc. (SC Holdings), is submitting this Periodic Review Report (PRR) along with a completed Institutional Controls and Engineering Controls (IC/EC) Certification Form (Attachment A) for the Chem-Trol site for the reporting period of February 15, 2024 to February 15, 2025. This report is being submitted as requested by the New York State Department of Environmental Conservation (NYSDEC) in its letter dated February 11, 2025 to Mr. Ryan Donovan. The letter directs the next PRR and IC/EC form be submitted to NYSDEC no later than March 15, 2025.

I. <u>INTRODUCTION</u>

The Chem-Trol site is located at 4818 Lake Avenue, Town of Hamburg, in Erie County, New York. Chem-Trol Pollution Services (Chem-Trol) purchased the property in 1969 and operated the site as a waste chemical processing facility that included chemical recovery, storage, and neutralization. Wastes, including capacitors, pesticides, oil sludges, paint sludges, spent solvents and pickle liquors, were accepted at the facility for processing. The facility ceased operations in 1972.

As a result of historic waste processing activities, on-site soil and groundwater were impacted with heavy metals and volatile organic compounds (VOCs). In 1977, as part of the facility closure activities, Chem-Trol removed approximately 95 cubic yards of contaminated soils, placed clean soil cover and established vegetative cover over the area.

Investigative studies led to a Record of Decision (ROD) in 1996 that specified additional remedial activities. These included removal of additional soils, and construction of a soil vapor extraction (SVE) system and groundwater collection and treatment system. The SVE system includes a header pipe and eight subsurface laterals installed in a linear array within the area of remediated soils. The groundwater collection and treatment system includes a blast-fractured bedrock trench in which three groundwater collection wells are installed, conveyance piping, and a shallow tray air stripper that

removes VOCs from the collected groundwater. The treated groundwater is discharged through a pipe to the South Branch of Smokes Creek.

The SVE system and the groundwater collection and treatment system continue to operate. During 2010, McMahon & Mann Consulting Engineers, PC (MMCE) evaluated the effectiveness of passive operation of the SVE system in removing soil vapors. Subsequently, the SVE system was converted from active to passive operation in 2010. A copy of the SVE system evaluation letter report was included as Attachment B in the 2010 PRR (see Attachment B).

II. <u>SITE OVERVIEW</u>

The Chem-Trol site is situated in an urban setting with industrial/commercial areas to the north and east, commercial development along Lake Avenue to the south, and residential areas to the west, across the South Branch of Smokes Creek. Figure 1 shows the Chem-Trol site location and features.

Investigations completed between 1991 and 1994 showed contaminated soils generally located in the former operations and surface lagoon areas. Additional soil contamination was found in the on-site tributary of Smokes Creek as well as the flood plain along the western edge of the site. Contaminated groundwater was found in the overburden as well as the shallow bedrock beneath the site. Groundwater contours developed as part of the investigations show that groundwater flows in a northwesterly direction beneath the site toward the South Branch of Smokes Creek.

Because of the on-site contamination, the Chem-Trol site was assigned a hazardous waste site classification of "Class 2" by NYSDEC. This classification indicates that the site poses a significant threat to public health and/or the environment and that action in the form of further investigations and remediation is required.

NYSDEC selected a remedial design based upon the results of the Remedial Investigation/Feasibility Study (RI/FS) for the Chem-Trol site. The March 1996 ROD selected a remedy that included:

- Excavation of soils and sediments from selected areas of the site:
- Installation of a groundwater collection trench along the western edge of the site;
- Improvement of the existing soil cover over the former chemical processing area; and
- Installation of a SVE system within the former waste chemical processing area.

Pre-design investigations and remedial design were completed between 1997 and 2000. Construction of the ROD-required remedial components was completed between 1999 and 2001. Operation, maintenance and monitoring of the remedial components began in 2001. In December 2004, the Chem-Trol site was re-classified to a "Class 4" site by NYSDEC. This classification indicates that remedial actions taken at the site to eliminate significant threats to public health and the environment have been properly constructed and implemented, and long-term operation, maintenance and monitoring of the in-place remedial systems is necessary to assure remedy effectiveness.

Goals for the remedial program were established through the remediation selection process given in 6 NYCRR 375-1.10. The remediation goals established for this site include:

- Reduce and remove chemical contamination in the soils, sediments and groundwater at the site;
- Eliminate the potential for direct human or animal contact with the contaminated soils, sediments, and groundwaters at the site;
- Prevent migration of contaminants in the on-site soils into the groundwater;
- Prevent off-site migration of contaminated groundwater and mitigate the impacts of contaminated groundwater to the environment; and
- Provide for attainment of Soil Cleanup Guidelines (SCG) for groundwater quality to the extent practical.

In the 2022 PRR approval letter from the NYSDEC to Mr. Ryan Donovan (SC Holdings, Inc.) dated May 4, 2023, NYSDEC approved a reduction in periodic monitoring requirements that were requested in the Conclusions and Recommendations section of the 2022 PRR. Beginning as of the date of that letter, groundwater treatment system sampling migrated from a monthly schedule to an every-othermonth schedule (odd-numbered months), and system cleanings were maintained on an every-othermonth schedule being performed on non-sample months (i.e., even-numbered months). Additionally, it was approved that water level gauging events would be reduced from quarterly to semi-annual, and annual groundwater monitoring would be reduced from annual to biennial on an even-numbered year schedule.

III. REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

SC Holdings continues to monitor the performance of the SVE and groundwater collection and treatment system.

SVE System

SC Holdings submitted a work plan to NYSDEC on October 22, 2009, proposing conversion of the active system to a passive venting system and monitoring the performance of the passive system for a year. NYSDEC authorized the conversion to a passive system along with monthly monitoring. The SVE treatment system was converted from active to passive operation in January 2010.

After a year of monitoring, SC Holdings submitted a report describing the monitoring results as indicating that passive operation of the SVE system provides similar and possibly improved effectiveness as active operation of the SVE system in venting soil vapors. Water level data in the passive vent risers indicated that passive venting might also contribute to generally lower water levels in the laterals for a longer period of time over the course of the year and therefore provide a greater opportunity to vent soil vapors.

It was recommended that active operation of the SVE system permanently cease and that passive operation of the SVE system laterals continue. In addition, it was recommended that continued monitoring of the SVE system laterals be eliminated. NYSDEC agreed with these recommendations in a letter to Mr. Mark Snyder dated March 29, 2011 (see Appendix B).

During this reporting period, the SVE system continued to operate passively. The lateral riser pipes were visually examined for damage during quarterly site visits. No damage was observed during these site visits.

Groundwater Collection and Treatment System

SC Holdings has the following actions performed by AECOM to monitor the performance of the groundwater collection system as required in the ROD:

- 1. Perform monthly operation and maintenance tasks on the system;
- 2. Perform periodic cleaning of the air stripper on an every-other-month schedule, including visual check of seals and removal of mineral accumulation in air stripper trays using mechanical means (scrubbing, re-drilling holes to full diameter, etc.);
- Sample and analyze the groundwater collection and treatment system influent and effluent on an every-other-month basis for a site-specific list of 10 VOCs, Total Iron, Total Suspended Solids (TSS), and pH;
- 4. Measure and record water levels in groundwater extraction wells and groundwater monitoring wells on a semi-annual basis thereafter;
- 5. Prepare bedrock groundwater contours based on water level measurements collected during the year; and,
- 6. Obtain groundwater samples on a biennial even-numbered year schedule for VOCs from six groundwater monitoring wells.

Effluent from the groundwater collection and treatment system (air stripper) discharges into the South Branch of Smokes Creek. Aqueous effluent samples taken from the air stripper surface water discharge pipe are analyzed for surface water discharge parameter limit concentrations including VOCs by EPA Method 624.1, Total Iron by EPA Method 200.7, TSS by Standard Method (SM) 2540D, and pH by SM 4500 H+B. Analytical test results show that discharge parameter concentrations in the air stripper effluent for samples collected from March 2024 through February 2025 were below the concentration and mass loading discharge limits established by NYSDEC for each of the 6 required monitoring events (March, May, July, September, November 2024 and January 2025).

Treated water discharge effluent criteria for flow volume, pH, Total Dissolved Solids (TDS), TSS, ten VOCs (chloroethane, 1,1-dichloroethane, 1,1-dichloroethene, 1,1,1,trichloroethane, trichloroethane, benzene, toluene, o-chlorotoluene, chlorobenzene, and cis-1,2-dichloroethene), and six total metals (aluminum, boron, iron, lead, manganese, and zinc) were established in March 2001 (see Attachment B). A request to modify effluent criteria based on initial operating data was submitted to NYSDEC by MMCE (consultant to SC Holdings) in December 2004. NYSDEC responded to the request in July 2007 approving a modification of effluent criteria for iron (increased from 700 micrograms per liter to 3 milligrams per liter), and discontinuation of monitoring for TDS, aluminum, boron, lead, manganese, and zinc (see Attachment B).

Pursuant to the May 2023 NYSDEC-approved revisions to sampling and reporting requirements, analytical test results for the aqueous effluent samples are to be submitted semi-annually, with the

first 6 months of the year being submitted to NYSDEC in a dedicated semi-annual Operation and Maintenance (O&M) Report and the second six-months of the year to be submitted to NYSDEC with the annual PRR. Results for the March, May, and July 2024 sampling events were submitted to NYSDEC in a semi-annual report dated July 31, 2024. The results for September and November 2024 and January 2025 are included with this report (see Attachment C). Photographs to be collected per the NYSDEC February 11, 2025 letter have begun and will be presented in future semi-annual O&M and annual PRR reports.

Total system flow is monitored via a total influent system flow meter located within the groundwater treatment building. Total system flow is recorded during each sampling or service visit. Total system flow is presented on the site visit summary sheets contained in Attachment C. Individual extraction well flow meters are also installed. However, the low flow rates from the individual wells does not produce reliable data for the individual wells on a consistent basis. Individual flow meters are periodically dismantled and cleaned to optimize performance; however, at the low flow rates, the flow meters are often unable to transmit a flow rate to the master control panel. To verify individual wells are pumping, the service team isolates individual wells and monitors the total flow meter to estimate each individual well flow.

As noted above, the air stripper is serviced on a periodic schedule (even-numbered months) to remove mineral accumulation (iron fouling) from the air stripper trays. The trays are removed from the system and the mineral deposits are removed using mechanical means (scrubbing, re-drilling holes to full diameter, etc.). The naturally occurring mineral deposits are dispersed to the ground surface within the secure limits of site within the fence line in areas not prone to surface water runoff. The trays are returned to the air stripper unit, and the system is restarted and checked for proper operation prior to service crew leaving site.

Monthly testing of the air stripper exhaust discharge (vapor phase) samples ceased after April 2011. Monthly testing was eliminated based upon a letter from Al Zylinski, NYSDEC Division of Air Resources, to MMCE (consultant to SC Holdings) dated April 6, 2011 (see Appendix B). The letter approved elimination of sampling and testing of the air stripper exhaust.

In October 2020, a Sensaphone remote monitoring system was installed for the groundwater treatment system. The Sensaphone system automatically sends the AECOM Project Manager and SC Holdings Project Manager electronic mail notification when power to the site is lost, or when pumps or the blower become non-operational. The AECOM Project Manager confirms receipt of the notification with the SC Holdings Project Manager and a service visit is scheduled promptly to address the notification and minimize downtime of the system.

A summary of semi-annual groundwater elevations measured in the groundwater monitoring wells and piezometers during 2024 is included in Table 1 - Summary of Groundwater Elevation Measurements. Semi-annual groundwater elevation contours for 2024 are plotted on Figures 2 and 3. Groundwater elevation data are next scheduled to be collected in April 2025 and will be included in the 2025/2026 PRR.

The contours show that the three extraction wells depress water levels in the trench below natural groundwater levels in that area of the site. The resulting depression in the groundwater table creates groundwater flow toward the collection trench. The measurements demonstrate that the collection trench is functioning as designed to restrict offsite flow and limit groundwater discharge to the South Branch of Smokes Creek.

VOC analytical test results of groundwater treatment system influent samples have historically shown o-chlorotoluene levels in higher concentrations than other organic compounds. Therefore, concentrations of o-chlorotoluene detected in groundwater treatment influent samples have been used to assess the performance of the treatment system in reducing organic compound concentrations in the groundwater. The o-chlorotoluene concentration data for influent groundwater samples was plotted versus time for the January 2003 through January 2025 sampling events (see Figure 4). The plot shows that the concentration of o-chlorotoluene in the influent groundwater samples has been reduced since initiation of treatment system operation. This indicates that the treatment system is meeting the remedial goal of reducing organic compound concentrations in the groundwater.

A comparison of the influent and effluent sample analytical results shows that the air stripper is effectively removing VOCs from the groundwater collected by the treatment system.

Annual Groundwater Monitoring

Pursuant to the May 2023 NYSDEC-approved revisions to sampling and reporting requirements, annual groundwater monitoring was not required in 2023. Groundwater samples were collected on an annual basis through 2022 and again most recently on September 25, 2024. Groundwater samples were collected from monitoring wells MW-3S, MW-7R, MW-8R, MW-9R, MW-13R, and MW-15R and analyzed by Eurofins Environment Testing (Amherst, NY) for the standard list of VOCs by EPA Method SW846 8260C. A summary of VOC detections for the annual 2024 groundwater-monitoring event is included as Table 2, Detection Summary. The complete 2024 groundwater sample analytical laboratory report is included as Attachment D. Historical concentration versus time trend plots for monitoring wells MW-3S, MW-8R, MW-9R, and MW-13R are included as Attachment E.

IV. O&M PLAN COMPLIANCE

The following activities were performed as part of the O&M Plan requirements:

Soil Vapor Extraction System

AECOM performed the following activity from February 16, 2024 through February 15, 2025 as part of monthly visits to the site:

Visually observed each SVE passive vent riser for damage.

Groundwater Collection and Treatment System

AECOM performed the following activities from February 16, 2024 through February 15, 2025 as part of monthly O&M visits:

- Verified that each extraction well was running and performing as designed;
- Observed that each pump was operating, documented pumping rates, total gallons pumped and insured that high and low water controls are functioning as designed;
- As required by the sampling schedule, performed influent and effluent sample analytical testing;
- Observed that the air stripper was performing as designed;
- Performed monthly inspections of air stripper trays;
- Performed cleaning of air stripper trays on an every-other-month schedule to remove accumulated iron precipitate to promote optimum removal of VOCs; and,
- Prepared and submitted to NYSDEC on July 31. 2024, the 2024 semi-annual O&M report for the period March 2024 through July 2024 as required by the 2023 updated reporting schedule to NYSDEC.

The semi-annual O&M report submitted to NYSDEC provided further details on specific activities performed, analytical testing results, and observations made during the routine monthly O&M visits. Routine activities included general inspection and maintenance work performed on pumps, equipment, and sensors, as described in the monthly O&M inspection reports, during that period.

In addition, the following non-routine maintenance activities were also performed during this PRR reporting period:

- AECOM subcontractor Matrix Environmental Technologies, Inc. (Orchard Park, NY) (Matrix) performed routine periodic line jetting cleaning of the treated groundwater effluent discharge line from the treatment building to Smokes Creek outlet on April 23, 2024. This cleaning is conducted on an every-other-year schedule to remove iron fouling in the discharge line. Sediment generated during the line cleaning process was collected and placed on the onsite soil cap.
- During the AECOM site visit on February 4, 2025, system notifications for high water level in EW-1 and EW-2 were noted upon arrival for system cleaning. The team cleared the alarms and notified AECOM PM. AECOM PM scheduled a service visit for Matrix.
- On February 12, 2025, Matrix made a service visit to troubleshoot the notifications observed on February 4, 2025. Matrix evaluated extraction well EW-2 and determined the transducer was likely faulty and removed the transducer. EW-2 was left "OFF." Matrix inspected extraction well EW-1 and EW-3 well head control panels and found nothing faulty.
- On February 13, 2025, Matrix informs AECOM that testing of EW-2 transducer was completed and the transducer was confirmed to be faulty. A replacement transducer is ordered.

In a letter dated February 11, 2025, NYSDEC provided acceptance of the 02/15/23 - 02/15/24 PRR and associated IC/EC Certification and provided additional comments to be addressed in future PRRs. Those additional comments are addressed in this PRR.

V. CONCLUSIONS AND RECOMMENDATIONS

Groundwater Collection and Treatment

A comparison of the monthly influent vs. effluent analytical test results indicates that the groundwater collection and treatment system continues to remove VOC contaminants from groundwater at the Chem-Trol site. A plot of the influent o-chlorotoluene concentration versus time (see Figure 4) indicates that the source contributing to groundwater VOC concentrations has been reduced to where the source influence on groundwater has decreased over time. While remaining well below initial / early operation concentrations, a relatively gradual increase from May 2016 through November 2022 had been observed, with concentrations since then returning to approximately the same range as 2016 through 2019 levels. This trend will continue to be monitored.

The semi-annual groundwater elevation data show that the groundwater collection system continues to contain groundwater contaminants and creates a gradient toward the groundwater collection wells and away from the South Branch of Smokes Creek.

Please call the undersigned at AECOM (716-856-5636) or Mr. Ryan Donovan (413-275-1522) if you have any questions or require any additional information after reviewing this report.

Sincerely yours,

James L. Kaczor, P.G. (NY, IN)

James L. Kayon

Project Manager

james.kaczor@aecom.com

Enclosures (Tables 1 and 2, Figures 1 through 4)

Attachment A - 2024/2025 IC/EC Form

Attachment B - NYSDEC Approval Correspondence

Attachment C – August 2024 through February 2025 Inspection Logs and Monitoring Data

Attachment D – September 2024 Bi-Annual Groundwater Monitoring Analytical Report

Attachment E - Historical Trend Plots

cc: Ryan Donovan (SC Holdings, Inc.), electronic copy w/attachments

Megan Rivera (NYSDOH), electronic copy w/attachments

Edward M. Murphy, P.E. (AECOM), electronic copy w/attachments

60746785 Project File

TABLES

Table 1: Summary of Groundwater Elevations – 2024

Table 2 – Bi-Annual Groundwater Monitoring Results (Sep. 2024) (Detections Only)

TABLE 1

Chem-Trol 2024 Semi-Annual Water Levels

			30	Date	4Q Date		
Pumping Wells			7/29	9/2024	9/25/2024		
		Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter	
Well	ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)	
EW-	V-1	624.07	23.34	600.73	25.18	598.89	
EW-	2	622.16	14.86	607.30	13.58	608.58	
EW-	3	621.10	22.08	599.02	20.00	601.10	

East of Cap (North to South)

	Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
MW-6S	638.54	11.63	626.91	12.86	625.68
MW-6R	638.64	19.22	619.42	18.15	620.49
P-1S	642.80	8.16	634.64	10.20	632.60
MW-1R	645.36	10.01	635.35	11.70	633.66
MW-1S	645.40	9.60	635.80	11.94	633.46
MW-7S	642.85	11.10	631.75	10.53	632.32
MW-7R	642.28	8.13	634.15	9.61	632.67

Center of Cap (North to South)

	Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
P-5S	637.54	11.10	<624.05	13.49	624.05
P-5R	637.88	Dry	<617.48	Dry	<617.48
MW-5S	636.28	13.54	622.74	14.02	622.26
P-2R	646.96	NM	N/A	13.91	633.05
P-2S	646.44	NM	N/A	12.88	633.56
MW-2S	644.85	9.46	635.39	11.29	633.56

West of Cap (North to South)

	Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
MW-4S	637.18	15.28	621.90	Dry	<621.58
MW-4R	637.02	29.82	607.20 Dry		<615.67
P-4S	636.54	15.94	620.60	Dry	<620.54
MW-3S	637.64	17.96	619.68	18.32	619.32
P-3R	639.92	19.68	620.24	19.60	620.32
P-3S	639.46	Blocked	N/A	19.84	619.62
OW-3R	638.78	23.92	9 614.86 24.07		614.71

West of Trench (North to South)

	Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
OW-1FR	620.42	12.98	607.44	12.21	608.21
P97-5	613.65	6.51	607.14	5.79	607.86
MW-10S	615.15	Dry	<609.08	Dry	<609.08
MW-10R	615.47	7.85	607.62	7.44	608.03
P97-4	614.8	7.60	607.20	6.83	607.97
MW-8S	617.28	7.23	610.05	Blocked	N/A
MW-8R	617.38	9.77	607.61	9.29	608.09
P97-3	617.66	10.39	607.27	9.54	608.12
MW-9RD	619.13	6.02	613.11	5.92	613.21
MW-9R	619.17	11.86	607.31	10.99	608.18
MW-9S	619.91	Dry	<609.15	Dry	<609.15
OW-2FR	624.14	16.79	607.35	Dry	<610.9
P97-2	619.07	9.97	609.10	9.56	609.51
P97-1	619.97	9.31	610.66	9.22	610.75
MW-12R	621.59	9.17	612.42 10.79		610.80
MW-12S	621.17	Dry	<610.49	Dry	<611.67

West of Smokes Creek (North to South)

	Monitoring	Depth To	3rd Quarter	Depth To	4th Quarter
Well ID	Point (TIC)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
MW-13R	615.14	8.28	606.86	7.70	607.44
MW-14R	618.55	5.42	613.13	5.78	612.77

NM - Not measured (diameter of water level probe > well ID)

N/A - Not available

TABLE 2

Detection Summary

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: TB-092524 Lab Sample ID: 480-223722-1

No Detections.

Client Sample ID: FD-092524	Lab Sample ID: 480-223722-2
-----------------------------	-----------------------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
o-Chlorotoluene - DL	1100	34	ug/L	40	8260C	Total/NA

Client Sample ID: MW-13R Lab Sample ID: 480-223722-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
o-Chlorotoluene	1400	34	ug/L	40 8260C	Total/NA

Client Sample ID: MW-15R Lab Sample ID: 480-223722-4

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyclohexane	31		5.0		ug/L	2	_	8260C	Total/NA
Methylcyclohexane	8.8		5.0		ug/L	2		8260C	Total/NA

Client Sample ID: MW-3S Lab Sample ID: 480-223722-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
o-Chlorotoluene	77000	860	ug/L	1000	8260C	Total/NA

Client Sample ID: MW-7R Lab Sample ID: 480-223722-6

No Detections.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
o-Chlorotoluene	100	5.0	ug/L	4 8260C	Total/NA

Client Sample ID: MW-9R Lab Sample ID: 480-223722-8

Analyte	Result Qualit	ifier RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	160	5.0	u	ıg/L	4	_	8260C	Total/NA
1,1-Dichloroethane	71	5.0	u	ıg/L	4		8260C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

10/2/2024

Page 6 of 36

-

4

5

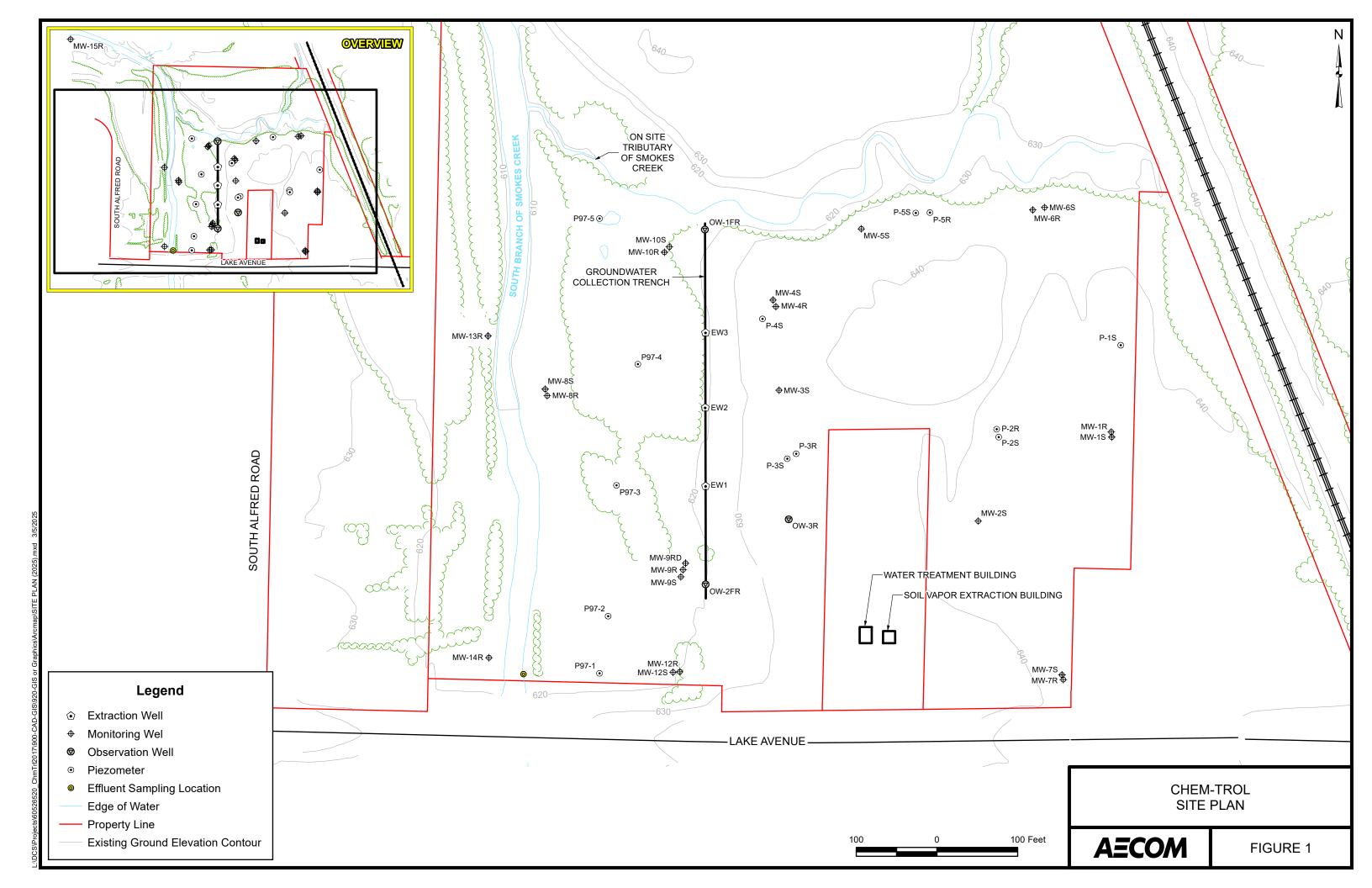
7

ŏ

11

11

12


FIGURES

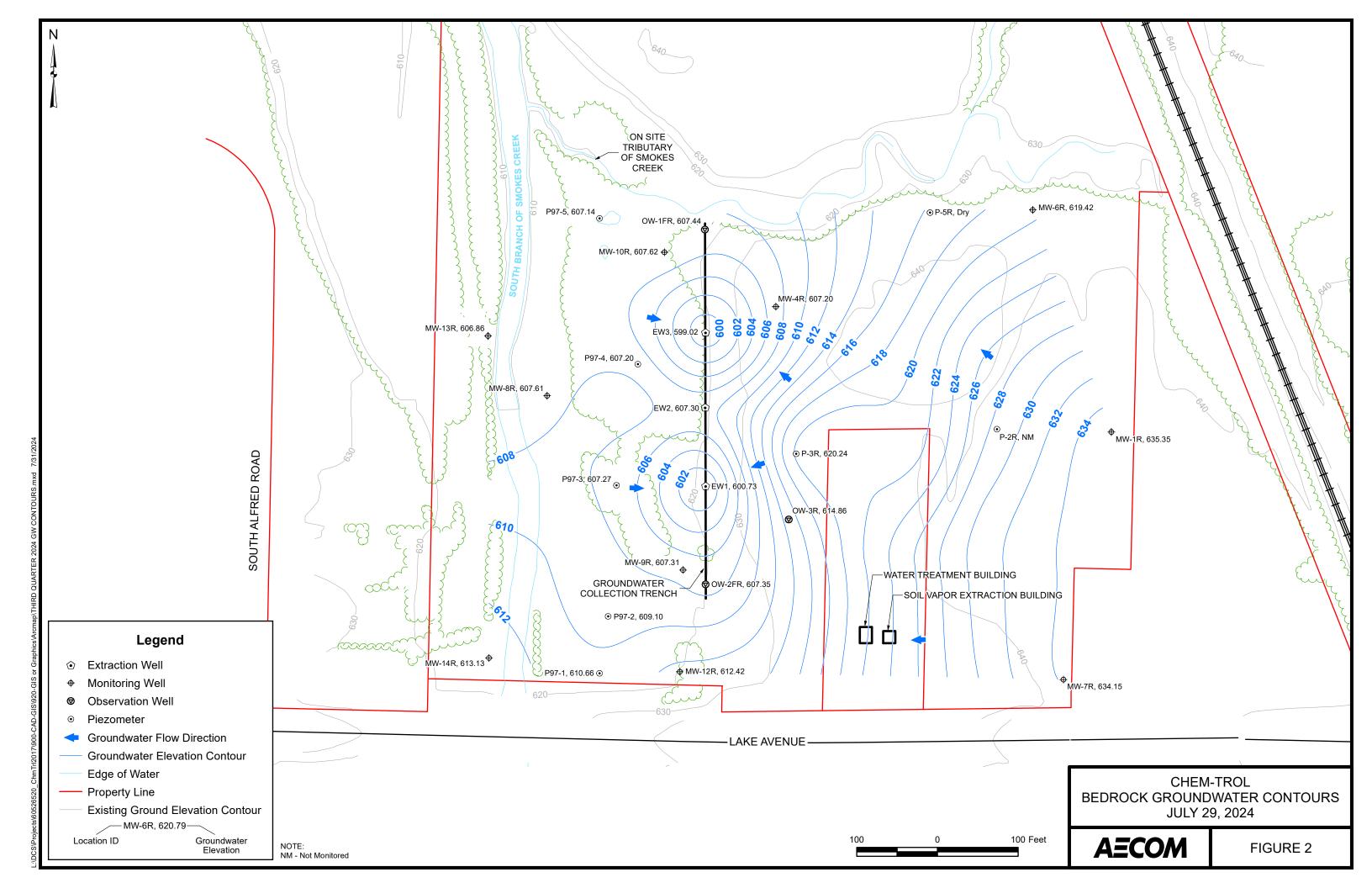

Figure 1: Site Plan

Figure 2: Bedrock Groundwater Contours – July 29, 2024

Figure 3: Bedrock Groundwater Contours – September 25, 2024

Figure 4: Influent o-Chlorotoluene Concentration 01/2003 – 01/2025

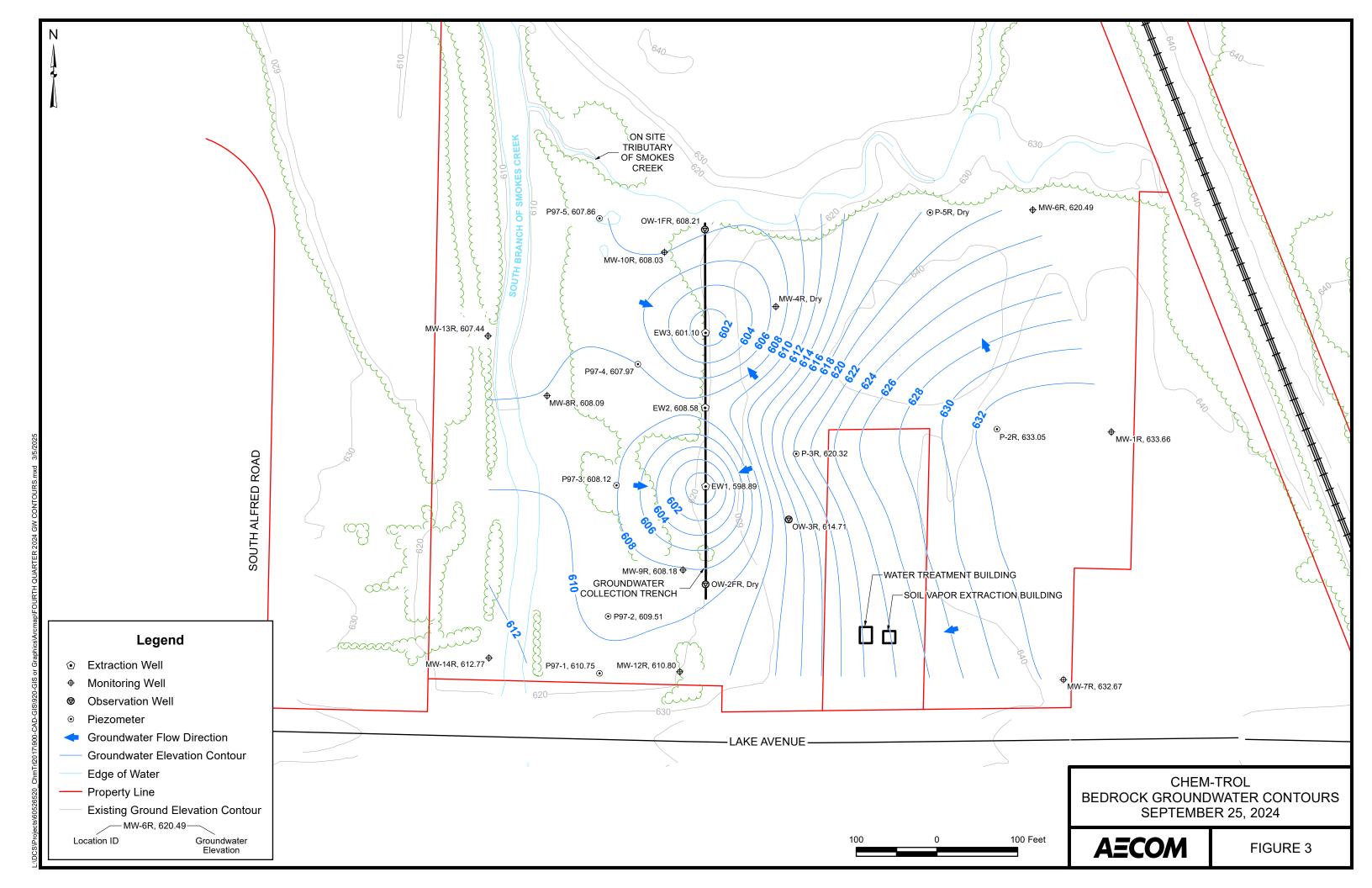
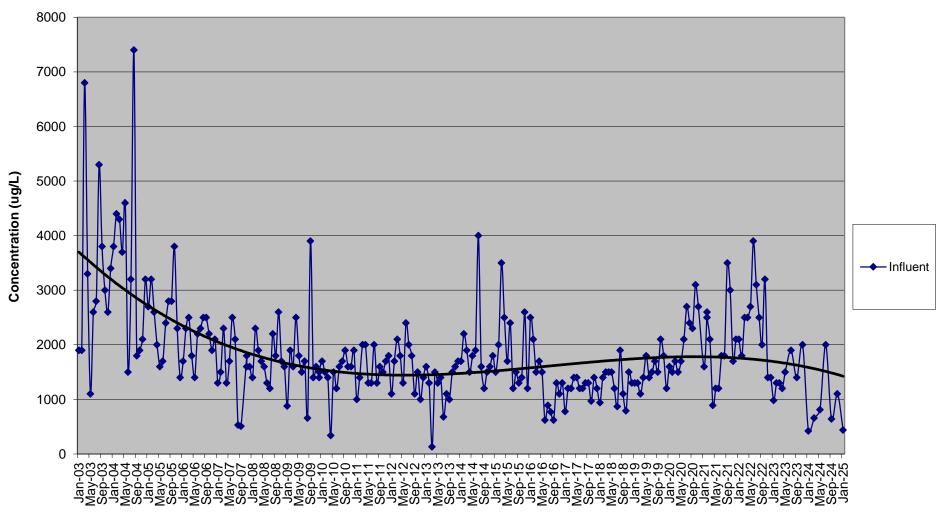



FIGURE 4
rol Groundwater Treatment System

Chem-Trol Groundwater Treatment System Influent o-Chlorotoluene Concentration January 2003 - January 2025

Date

ATTACHMENT A

Completed IC/EC Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. 918	5015	Site Details		Box 1				
Sit	e Name Chem-	Trol							
City Co	e Address: Lake y/Town: Hambu unty:Erie e Acreage: 17.5	ırg	Zip Code: 14107						
Re	porting Period: F	February 15,	2024 to February 15, 202	25					
					YES	NO			
1.	Is the information	on above cor	rect?		X				
	If NO, include h	nandwritten a	bove or on a separate sh	eet.					
2.		•	roperty been sold, subdiv this Reporting Period?	rided, merged, or under	rgone a	X			
3.	Has there been (see 6NYCRR	, ,	of use at the site during t	this Reporting Period		X			
4.	•		l/or local permits (e.g., buthis Reporting Period?	ilding, discharge) been	issued	X			
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.								
5.	Is the site curre	ently undergo	ing development?			X			
					Box 2				
					YES	NO			
6.	Is the current si Closed Landfill	ite use consi	stent with the use(s) listed	d below?	X				
7.	Are all ICs in pl	ace and fund	tioning as designed?		X				
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
AC	Corrective Measu	ures Work Pl	an must be submitted ald	ong with this form to ac	ddress these iss	sues.			
 Sig	nature of Owner,	Remedial Pa	rty or Designated Represe	ntative	 Date				

SITE NO. 915015 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

151.02-1-14.1 SC Holdlings Inc./Waste Management

Ground Water Use Restriction

Monitoring Plan O&M Plan

Landuse Restriction

Building Use Restriction

The controls identified in the Declaration of Covenants and Restrictions, recorded with Erie County on March 25, 2004, include but are not limited to the following: The owner of the Property shall maintain the cap covering the Property by maintaining its grass cover, or after obtaining written approval from the Relevant Agency, by capping the Property with another material. The property is prohibited from being used for purposes other than for industrial or commercial use, excluding use for day care, child care and medical care; the use of groundwater underlying the property is prohibited without treatment to render it safe for drinking water or industrial purposes, except that the groundwater may be reasonably used as necessary to conduct tests to monitor contamination levels of the groundwater. These restrictive covenants are binding and shall run with the land.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

151.02-1-14.1

Groundwater Treatment System

Cover System

Groundwater Containment

Monitoring Wells Fencing/Access Control Leachate Collection

Remediation was completed in two phases consisting of Source Control Elements and Groundwater Control Elements. These elements are summarized as follows:

Source Control Elements:

- 1. Hot Spot Soils Removal.
- 2. Tributary Sediment Excavation/Disposal.
- 3. Site Soils Cover.
- 4. Soil Vapor Extraction. Passive state with one year evaluation starting January 2010. Passive state permanently approved on May 29, 2011.

Groundwater Control Elements:

- 1. Groundwater extraction from three extraction wells.
- 2. On-site groundwater treatment with discharge compliance monitoring.
- 2. Groundwater quality monitoring.

Groundwater intercept, extraction, treatment and discharge compliance monitoring. Periodic measuring of groundwater levels and plotting to develop groundwater contours and directional gradients. Annual groundwater quality monitoring to determine performance of remedy. Ongoing site management activities to continue with remedy and protection of public health and the environment.

1. I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X □ 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		Periodic Review Report (PRR) Certification Statements							
reviewed by, the party making the Engineering Control certification; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	1.	I certify by checking "YES" below that:							
are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	are in accordance with the requirements of the site remedial program, and generally accep								
2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.)						
following statements are true: (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X □ IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		\mathbf{X}							
since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	2.								
the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.			h and						
Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		, ,							
mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		YES NO)						
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		\mathbf{X}							
		A Corrective Measures Work Plan must be submitted along with this form to address these issues							
Signature of Owner, Remedial Party or Designated Representative Date		Signature of Owner, Remedial Party or Designated Representative Date							

IC CERTIFICATIONS SITE NO. 915015

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I Ryan Donovan	at 600 New Ludlow Road, South Hadley, MA 01175							
print name	print business address							
am certifying asOwner	(Owner or Remedial Party)							
for the Site named in the Site Details Section of this form.								
ERyan Donovan	03/14/25							
Signature of Owner, Remedial Party, or Rendering Certification	or Designated Representative Date							

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, Edward M. Murphy, PE, at AECOM, 50 Lakefront Blvd., Suite 111, Buffalo, NY 14202, print name print business address

am certifying as a Professional Engineer for the Remedial Party.

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE) 3/13/25

Date

ATTACHMENT B

NYSDEC Approval Correspondence

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York, 12233-3505

MEMORANDUM

TO:

John Hyden, NYSDEC Region 9, DER

FROM:

Sudhir Mahatma, CSS, BWP, DOW

SUBJECT:

Chem-Trol Site #9-15-015

DRAINAGE BASIN:

01-04

DATE:

March 2, 2001

RECEIVED

MAR 0 6 2001

NYSDEC - REG. 9

In response to your request received on May 26,1999 by Angus Eaton and a letter of Jan. 29,2001 from Thomas R. Heins of McMahon & Mann to John W. Hyden of NYSDEC, Buffalo, attached please find revised effluent criteria for the above noted groundwater remediation discharge.

The DOW does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. DER will be responsible for ensuring compliance with the attached effluent criteria and approval of all engineering submissions. Footnote 1 identifies the Bureau of Site Control as the place to send all effluent results, engineering submissions and modification requests. The Regional Water Engineer should be kept appraised of the status of this discharge and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call me at 518-457-9602.

Attachments (Effluent Criteria, General Conditions)

cc:

John McMahon, Regional Water Engineer, R-9(w/Effluent Criteria)

A. Eaton, DOW (w/Effluent Critcria)

Terry Olmsted, DOW (w/Effluent Criteria)

Craig Jackson, DER, Rm: 348

Post-it* Fax Note 7671	Derge 23 N I pages 3
To Tom Heins	co. Deck byden
Phone #	P110/19:/ 851-72-20
Fex # 834-8934	Fax # 1 851-7276

91-20-2a (1/89)

Site No.:9-15-015 Part 1, Page 1 of 2

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning

August 1999

and lasting until

August 2004

the discharges from the treatment facility to Smokes Creek, water index number E-2-1 . Class C , RECEIVING WATER shall be limited and monitored by the operator as specified below:

	Discharge Limitations			Minimum Monitoring Requirements		
utfall Number and Parameter Daily Avg.		Daily Max	Units	Measurement Frequency		Sample Type
Outfall 001 - Treated Groundwater R	emediation Discha	rge:				p
Flow	72000	144000	GPD	Continuous		Meter
pH (range)	6.5 to	8.5	SU	Weekly		Grab
Total Dissolved Solids	Monitor	2500	mg/l	Weekly	(7)	Grab
Total Suspended Solids	Monitor	20	mg/l	Weekly	(7)	Grab
Chloroethane	Monitor	10	μg/l	Weekly	(7)	Grab
1,1 Dichloroethane	Monitor	10	μg/l	Weekly	(7)	Grab
1.1 Dichloroethene	Monitor	10	µg/l	Weekly	(7)	Grab
1,1,1 Trichloroethane	Monitor	10	µg/l	Weekly	(7)	Grab
Trichloroethene	Monitor	10	µg/l	Weekly	(7)	Grab
Benzene	Monitor	5	μg/l	Weekly	(7)	Grab
Toluene	Monitor	5	μg/l	Weekly	(7)	Grab
o-Chlorotoluene	Monitor	10	µg/l	Weekly	(7)	Grab
Chlorobenzene	Monitor	10	µg/l	Weekly	(7)	Grab
cis- 1,2 Dichloroethene	Monitor	10	μg/l	Weekly	(7)	Grab
Aluminum	Monitor	4000	μg/l	Weekly	(7)	Grab
Boron	Monitor	1800	μg/l	Weekly	(7)	Grab
Iron	Monitor	700	µg/I	Weekly	(7)	Grab
Lead	Monitor	5.6	µg/l	Weekly	(7)	Grab
Manganese	Monitor	2000	µg/l	Weekly	(7)	Grab
Zinc	Monitor	110	µg/l	Weekly	(7)	Grab

91-29-2a (1/89)

Site No.:9-15-015 Part 1, Page 2 of 2

Additional Conditions:

(1) Discharge is not authorized until such time as an engineering submission showing the method of treatment is approved by the Department. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Chief - Operation Maintenance and Support Section Bureau of Hazardous Site Control Division of Environmental Remediation NYSDEC 50 Wolf Road Albany, N.Y. 12233-7010

With a copy sent to:

John McMahon, RWE, R-9 NYS Dept. of Env. Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

- (2) Only site generated wastewater is authorized for treatment and discharge.
- (3) Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- (4) Both concentration (mg/l or μg/l) and mass loadings (lbs/day) must be reported to the Department for all parameters except flow and pH.
- (5) Any use of corrosion/scale inhibitors or blocidal-type compounds used in the treatment process must be approved by the department prior to use.
- (6) This discharge and adminstration of this discharge must comply with the attached General Conditions.
- The minimum measurement frequency for all parameters except flow and pH shall be MONTHLY following a period of 24 consecutive weekly sampling events showing no exceedances of stated discharge limitations. If discharge limitation of any parameter is exceeded, the measurement frequency for all parameters shall again be WEEKLY, until a period of 8 (eight) consecutive sampling events showing no exceedances at which point MONTHLY monitoring may resume.

82705/ Chem Wol / Tech 4.1

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2999 **Phone:** (716) 851-7220 • **FAX:** (716) 851-7226

Website: www.dec.ny.gov

July 27, 2007

Mr. David M. Moreira Project Manager, Northeast Group S.C. Holdings, Inc. 4 Liberty Lane West Hampton, New Hampshire 03842

Dear Mr. Moreira:

December 2005 Discharge Evaluation Report Chem-Trol Site, Registry No. 915015 Hamburg, Erie County

The Department has completed a detailed review of the December 2005 Discharge Evaluation Report submitted by McMahon & Mann Consulting Engineers, P.C. (MMCE) on behalf of S.C. Holdings, Inc. This report was submitted at the request of the Department (letter dated February 27, 2004, from Glenn M. May to David M. Moreira) to present the results of MMCE's evaluation of the Chem-Trol wastewater treatment system's ability to remove orthochlorotoluene (OCT) and iron to acceptable discharge levels. Based upon this evaluation, MMCE requested modification to the discharge limits for OCT, iron, aluminum, boron, lead, manganese, zinc, and total dissolved solids. The rational for these requests, along with the Department's responses, are summarized as follows:

<u>OCT</u>: The treatment system effectively reduces OCT to levels consistent with the discharge limits when the air stripper is cleaned with HCl every three to four months, although OCT effluent concentrations occasionally exceed the 10 μ g/l discharge limit. MMCE requests a modification of the discharge limit for OCT to 25 μ g/l.

The air stripper, when periodically cleaned with HCl, is capable of consistently achieving the current discharge limit. As a result, the Department denies MMCE's request to modify the discharge limit for OCT to $25~\mu g/l$.

<u>Iron:</u> The iron removal filter is not capable of treating wastewater to the discharge limit of 0.7 mg/l. MMCE requests a modification of the discharge limit for iron to 3.0 mg/l based upon iron concentrations in ambient groundwater and surface water samples, and the presence of ferric iron in the discharged water.

Mr. David M. Moreira July 27, 2007 Page 2

The groundwater monitoring well data provided in the Discharge Evaluation Report indicates that the concentration of iron in ambient groundwater ranges from 1.73 to 11.7 mg/l. Ambient surface water samples collected from an on-site tributary to the South Branch of Smokes Creek also contain iron at concentrations (3.13 to 4.48 mg/l) that exceed the current discharge limit. Further, as the form of iron in the discharge water (ferric) is already oxidized, there would be limited reduction in oxygen levels in the creek. In addition, iron staining at the discharge pipe has not been observed since the discharge water was diverted to the South Branch of Smokes Creek in February 2004. As a result, the Department agrees with the request to increase the iron discharge limit to 3.0 mg/l, recognizing that the need to treat groundwater captured by the site's extraction system to less than ambient conditions is not necessary. This modification will need to be reviewed, however, if iron staining is observed in the future.

Aluminum, Boron, Lead, Manganese, Zinc and Total Dissolved Solids: These parameters were generally not detected, or were detected at concentrations below the discharge limits. MMCE requests that these compounds be removed from the list of parameters analyzed in the influent and effluent samples.

Aluminum, boron, lead, manganese, zinc, and total dissolved solids are not indicators of treatment system performance. As a result, the Department agrees with the request to eliminate these compounds from the compliance monitoring program.

Should you have any questions, please feel free to contact me at (716) 851-7220.

Sincerely yours,

Glenn M. May, CPG Environmental Geologist II

Henn M. May

GMM:lg

cc: Mr. Gregory Sutton, NYSDEC, Region 9

Mr. Brian Sadowski, NYSDEC, Region 9

Mr. James Bojarski, McMahon & Mann Consulting Engineers, P.C.

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York 14203-2915 **Phone:** (716) 851-7220 • Fax: (716) 851-7226

Website: www.dec.ny.gov

RECEIVED MAR 3 1 2011

March 29, 2011

Mark Snyder, P.E. Waste Management 425 Perinton Parkway Fairport, New York 14450-9104

Dear Mr. Snyder:

2010 Periodic Review Report Chem-Trol Site, Registry No. 915015 Blasdell, Erie County

The New York State Department of Environmental Conservation (NYSDEC) is in receipt of the 2010 Periodic Review Report (PRR) submitted on February 10, 2011 by McMahon & Mann Consulting Engineers, P.C. (McMahon & Mann), on behalf of SC Holdings, Inc. This report: (1) describes the operation and maintenance activities completed during 2010 on the groundwater collection and treatment system; (2) describes the activities completed during 2010 to evaluate the passive operation of the SVE system; (3) presents the analytical results of groundwater samples collected in October 2010; (4) evaluates the SVE and groundwater collection and treatment systems for compliance with the 1996 ROD; (5) contains a signed Institutional and Engineering Controls (IC/EC) Certification Form; and (6) makes recommendations regarding the future operation of the SVE and groundwater collection and treatment systems. Specifically, McMahon & Mann recommends that: (1) monthly sampling of the groundwater treatment air stripper exhaust be eliminated; and (2) that active operation of the SVE system permanently cease.

Information contained in the 2010 PRR indicates that the SVE and groundwater collection and treatment systems are operating effectively and remain protective of public health and the environment. This letter, therefore, transmits formal NYSDEC approval of the 2010 PRR for the Chem-Trol Site. With this approval, please send us an electronic copy of the 2010 PRR.

Regarding McMahon & Mann's recommendations, I understand that McMahon & Mann has contacted the NYSDEC's Division of Air in Region 9 concerning the elimination of the monthly air stripper sampling. Please copy me on all correspondence to the Division of Air regarding this issue and the outcome of said correspondence.

Mark Snyder, P.E. March 29, 2011 Page 2

The NYSDEC concurs with McMahon & Mann's recommendations to permanently cease the active operation of the SVE system. It is our understanding that passive venting of the SVE system laterals will continue in the future.

Should you have any questions, please feel free to contact me at (716) 851-7220.

Sincerely yours,

Glenn M. May, CPG

Environmental Geologist II

GMM:sz

ecc: Mr. Gregory Sutton, NYSDEC, Region 9

Mr. Alfred Carlacci, NYSDEC, Region 9

Mr. Brian Sadowski, NYSDEC, Region 9

Mr. Alan Zylinski, NYSDEC, Region 9

Mr. James Bojarski, McMahon & Mann

New York State Department of Environmental Conservation Division of Air Resources, Region 9

270 Michigan Avenue, Buffalo, New York 14203-2915

Phone: (716) 851-7130 • Fax: (716) 851-7009

Website: www.dec.ny.gov

April 26, 2011

Mr. John A. Minichiello, CPESC, CPSWQ McMahon & Mann Consulting Engineers, P.C. 2495 Main Street, Suite 432 Buffalo, New York 14214

Dear Mr. Minichiello:

Chem-Trol Site, Registry No. 9-15-015 Blasdell, Erie County Request to Eliminate Air Stripper Emissions Testing

The New York State Department of Environmental Conservation (Department) received a report requesting the elimination of the sampling and analytical testing of the air stripper exhaust associated with the groundwater collection and treatment system at the Chem-Trol Site. This report was submitted on April 6, 2011 by McMahon & Mann Consulting Engineers, P.C. (MMCE), on behalf of SC Holdings, Inc. After review of the report, the Department approves the request because the analytical data indicates that concentrations of o-chlorotoluene in the influent to the groundwater treatment system have stabilized.

Should you have any questions, please feel free to contact me at (716) 851-7130.

Sincerely yours,

Alan J. **Z**ylinski, P.E.

Environmental Engineer II

AJZ:ed

ecc: Mr. Gregory Sutton, NYSDEC, Region 9

Mr. Alfred Carlacci, NYSDEC, Region 9 Mr. Brian Sadowski, NYSDEC, Region 9 Mr. Glenn May, NYSDEC, Region 9

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7275 www.dec.ny.gov

May 4, 2023

Mr. Ryan Donovan, District Manager SC Holdings, Inc. 600 New Ludlow Road South Hadley, MA 01075

> 2021 Periodic Review Report Chem-Trol, Site No. 915015 Blasdell, Erie County

Dear Mr. Donovan:

The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Periodic Review Report (PRR) and IC/EC Certification for the period from February 15, 2022, to February 15, 2023. This PRR proposes a reduction in periodic monitoring requirements, which are summarized as follows:

- <u>Treated groundwater influent and effluent sampling</u>: Reduce the required monitoring from monthly to every other month. System cleanings would be performed on non-sample months to ensure a site visit is made and to monitor the operation of the system.
- Annual groundwater monitoring: Reduce long-term groundwater monitoring of the six wells from annual to bi-annual (every other year). Given the stability of these parameters, bi-annual sampling would continue to provide an adequate assessment of the stability of the groundwater recovery and treatment system.
- Groundwater level gauging: Reduce from quarterly to semi-annually in April and October. Groundwater contour figures would be prepared and submitted with the monitoring reports.
- **<u>Periodic reporting</u>**: A change to semi-annual reporting is proposed, to include system sampling, inspections, and groundwater contours for the reporting period.

The Department hereby accepts the PRR and associated Certification, and approves the proposed reduction in periodic monitoring requirements.

The frequency of Periodic Reviews for this site is one year, so your next PRR is due in March 2024. You will receive a reminder letter and updated certification form prior to that due date. Please note that if you do not receive the reminder notice, the next PRR including the signed certification form is still due on the date specified above.

Should you have any questions, please contact me at 716-851-7220 or via e-mail at: glenn.may@dec.ny.gov.

Sincerely,

Glenn M. May, PG

Glenn M. May

Professional Geologist I

ec: Stanley Radon, NYSDEC, Buffalo Andrea Caprio, NYSDEC, Buffalo James Kaczor, AECOM, Buffalo

ATTACHMENT C

August 2024 – February 2025 Treatment System Influent/Effluent Monitoring Data Tables, Site Inspection Checklists, and Laboratory Reports

Table 1
September 24, 2024 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

		Conce	Mass Loading				
Parameters	Influent	Effluent	Discharge Limitations	Units	Effluent	Discharge Limitations	Units
Flow [*] pH	2,970 6.7	2,970 7.7	144,000 6.5 to 8.5	gpd standard units	NA NA	NA NA	NA NA
Toluene Chlorobenzene cis-1,2-Dichloroethene Benzene 1,1,1-Trichloroethane Chloroethane 1,1-Dichloroethane 1,1-Dichloroethene Trichloroethene o-Chlorotoluene	< 9.1 < 9.5 < 11 < 12 < 7.7 26 23 < 17 < 12 640	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	5 10 10 5 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001	0.006 0.012 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012	lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day
Iron - Total TSS	1,270	218	3,000 20	ug/L mg/L	0.01 < 0.10	3.61	lbs/day

Notes:

- 1) **Bold** typeface denotes exceedance of treatment requirements in the effluent sample.
- 2) < indicates Not Detected at or above the laboratory reporting limit.
- 3) NA indicates Not Applicable.
- 4) "J" indicates an estimated concentration below the method detection limit.
- 5) E Estimated Value, result above calibration curve
- 6) D Dilution
- 7) Revision of monitoring parameters (inorganics and TSS) and discharge limitation (iron) approved by NYSDEC letter dated July 27, 2007.

^{*} Average daily flow as measured July 23, 2024 through September 24, 2024.

Table 2 September 24, 2024 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

Instrumen	tation/Readings:	Current Report 9/24/2024	units	Prior Report 7/23/2024
	Pumping Rate	1.70	GPM	2.40
	Water Level Above Transducer	153	Inches	181
	Flow Meter Reading	NW	gallons	NW
EW-2				
	Pumping Rate	0.0	GPM	0.4
	Water Level Above Transducer	168	Inches	173
	Flow Meter Reading	28,543,853	gallons	28,543,853
EW-3				
	Pumping Rate	0.0	GPM	0.2
	Water Level Above Transducer	118	Inches	201
	Flow Meter Reading	NW	gallons	NW
Air Strippe	r			
	Stripper Blower Pressure	NW	inches H ₂ O	NW
Effluent F	low			
<i>33</i>	Total System Meter Reading	77,560,690	gallons	77,379,490
	Average System Flow Since Prior Report	2,970	gpd	
		123.8	gph	
		2.1	gpm	
	Influent o-Chlorotoluene concentration	640	ug/L	
	Current month mass removal	0.4	kilograms	

 $Note: NA\ indicates\ Not\ Available.$

NW - Not working

ug/L - $micrograms\ per\ liter$

Table 1
November 12, 2024 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

		Conce	entration	Mass Loading			
Parameters	Influent Effluent		Discharge Units Limitations		Effluent	Discharge Limitations	Units
Flow [*] pH	2,752 7.0	2,752 7.8	144,000 6.5 to 8.5	gpd standard units	NA NA	NA NA	NA NA
Toluene Chlorobenzene cis-1,2-Dichloroethene Benzene 1,1,1-Trichloroethane Chloroethane 1,1-Dichloroethane 1,1-Dichloroethene Trichloroethene o-Chlorotoluene	< 9.1 < 9.5 < 11 < 12 < 7.7 < 17 19 < 17 < 12 1,100	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	5 10 10 5 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001	0.006 0.012 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012	lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day
Iron - Total TSS	1,150	1,050	3,000	ug/L mg/L	0.02	3.61	lbs/day

Notes:

- 1) **Bold** typeface denotes exceedance of treatment requirements in the effluent sample.
- 2) < indicates Not Detected at or above the laboratory reporting limit.
- 3) NA indicates Not Applicable.
- 4) "J" indicates an estimated concentration below the method detection limit.
- 5) E Estimated Value, result above calibration curve
- 6) D Dilution
- 7) Revision of monitoring parameters (inorganics and TSS) and discharge limitation (iron) approved by NYSDEC letter dated July 27, 2007.

^{*} Average daily flow as measured September 24, 2024 through November 12, 2024.

Table 2 November 12, 2024 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

Instrumen EW-1	tation/Readings:	Current Report 11/12/2024	units	Prior Report 9/24/2024
	Pumping Rate	1.80	GPM	1.70
	Water Level Above Transducer	186	Inches	153
	Flow Meter Reading	NW	gallons	NW
EW-2				
	Pumping Rate	0.3	GPM	0.0
	Water Level Above Transducer	182	Inches	168
	Flow Meter Reading	28,543,853	gallons	28,543,853
EW-3				
	Pumping Rate	0.5	GPM	0.0
	Water Level Above Transducer	113	Inches	118
	Flow Meter Reading	NW	gallons	NW
Air Strippe	r			
	Stripper Blower Pressure	NW	inches H ₂ O	NW
Effluent F	low			
33	Total System Meter Reading	77,692,765	gallons	77,560,690
	Average System Flow Since Prior Report	2,752	gpd	
		114.6	gph	
		1.9	gpm	
	Influent o-Chlorotoluene concentration	1,100	ug/L	
	Current month mass removal	0.5	kilograms	

 $Note: NA\ indicates\ Not\ Available.$

NW - Not working

ug/L - $micrograms\ per\ liter$

Table 1
January 8, 2025 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

		Conce	ntration	Mass Loading			
Parameters	Influent	Effluent	Discharge Limitations	Units	Effluent	Discharge Limitations	Units
Flow [*] pH	4,225 7.7	4,225 7.77	144,000 6.5 to 8.5	gpd standard units	NA NA	NA NA	NA NA
Toluene Chlorobenzene cis-1,2-Dichloroethene Benzene 1,1,1-Trichloroethane Chloroethane 1,1-Dichloroethane 1,1-Dichloroethene Trichloroethene o-Chlorotoluene	< 5 < 5 3.1 0.87 J 4.8 27 44 2.2 3.1 440	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	5 10 10 5 10 10 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	< 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 0.0001 < 0.0002 < 0.0002 0.0000	0.006 0.012 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012	lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day lbs/day
Iron - Total TSS	2,960 5	708 10	3,000 20	ug/L mg/L	0.0250 0.3530	3.61	lbs/day

Notes:

- 1) **Bold** typeface denotes exceedance of treatment requirements in the effluent sample.
- 2) < indicates Not Detected at or above the laboratory reporting limit.
- 3) NA indicates Not Applicable.
- 4) "J" indicates an estimated concentration below the method detection limit.
- 5) E Estimated Value, result above calibration curve
- 6) D Dilution
- 7) Revision of monitoring parameters (inorganics and TSS) and discharge limitation (iron) approved by NYSDEC letter dated July 27, 2007.

^{*} Average daily flow as measured November 12, 2024 through January 8, 2025.

Table 2 January 8, 2025 Summary of Influent and Effluent Data

Chem-Trol Site Town of Hamburg, New York

Instrumen	atation/Readings:	Current Report 1/8/2025	units	Prior Report 11/12/2024
	Pumping Rate	2.20	GPM	1.80
	Water Level Above Transducer	220	Inches	186
	Flow Meter Reading	NW	gallons	NW
EW-2				
	Pumping Rate	0.8	GPM	0.3
	Water Level Above Transducer	203	Inches	182
	Flow Meter Reading	28,543,853	gallons	28,543,853
EW-3				
	Pumping Rate	0.0	GPM	0.5
	Water Level Above Transducer	163	Inches	113
	Flow Meter Reading	NW	gallons	NW
Air Strippe	er e			
	Stripper Blower Pressure	NW	inches H ₂ O	NW
Effluent F	low			
•	Total System Meter Reading	77,929,350	gallons	77,692,765
	Average System Flow Since Prior Report	4,225	gpd	
		176.0	gph	
		2.934	gpm	
	Influent o-Chlorotoluene concentration	440	ug/L	
	Current month mass removal	0.394	kilograms	

Note: NA indicates Not Available.

NW - Not working

ug/L - micrograms per liter

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: C. Horrocks, C. Finn and	d D. VanMarter	Weather/Temperature: Partly Cloudy, 72°F
Date: <u>8/7/2024</u> Arrival Time: <u>0</u>	800 Departure	e Time: <u>13:00</u>
Reason for Service: <u>Inspect syst</u>	em, clean syste	<u>m</u>
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	<u>X</u>	See Notes/Explanations section.
Building Exterior		
Overhead Door	<u>X</u>	Wood lintel and metal trim repaired.
Siding	<u>X</u>	Metal trim repaired.
Roof and Discharge Pipe	<u>X</u>	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned On
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>UNK</u> GPM (see Notes section) Water Level Above Transducer 173 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** UNK GPM (see Notes section) Water Level Above Transducer 179 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** <u>UNK</u> GPM (see Notes section) Water Level Above Transducer 126 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 77,429,796 Gallons

No Sampling was performed.

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival. Shut down the system and turned the main breaker off to reboot the computer. Upon restarting the system, the main computer screen reset and was functioning properly.

Upon the completion of the cleaning of the system and shed, the system was successfully turned back on. Total system flow was timed at 3.2 gpm on the system totalizer flow meter.

The most recent round of water levels (3Q2024) was collected July 29, 2023.

The air stripper trays were last mechanically cleaned today, August 7, 2024.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: C. Horrocks, T. Urban and D. VanMarter Weather/Temperature: Sunny, 80°F

Date: <u>9/13/2024</u> Arrival Time: <u>0730</u>	Departure	Time: <u>13:30</u>
Reason for Service: <u>Inspect system, c</u>	lean system	
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	<u>X</u>	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	Wood lintel and metal trim repaired.
Siding	X	Metal trim repaired.
Roof and Discharge Pipe	X	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned Off
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.6</u> GPM (see Notes section) Water Level Above Transducer 160 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.3 GPM (see Notes section) Water Level Above Transducer 175 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 125 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** <u>77,530,814</u> Gallons

No Sampling was performed.

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival. Shut down the system and turned the main breaker off for cleaning.

Upon the completion of the cleaning of the system and shed, the system was successfully turned back on. Total system flow was timed at 4.0 gpm on the system totalizer flow meter.

The most recent round of water levels (3Q2024) was collected July 29, 2024.

The air stripper trays were last mechanically cleaned today, September 13, 2024.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: <u>Tom Urban</u> Weath Date: <u>9/24/2024</u> Arrival Time: <u>8:</u> Reason for Service: <u>Inspect system, properties of the properties of th</u>	<u>00</u> Depa	arture Time: 9:00
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	X	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	
Siding	X	
Roof and Discharge Pipe	X	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned Off
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.7</u> GPM (see Notes section) Water Level Above Transducer 153 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 168 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer ____118 __Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 77,560,690 Gallons

AQUEOUS:

Monthly monitoring samples of aqueous phase system influent and effluent were collected and submitted for the following analyses:

- VOCs by EPA Method 624 (CFR136 624)
- Iron by MCAWW 200.7
- TSS by MCAWW SM18-20 2540 D
- pH by MCAWW SM18-20 4500-H+B

pH measurements must be made in the field:

Influent pH 7.0 (field test strip) Effluent pH 7.0 (field test strip)

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival.

Total system flow was timed at 1.7 gpm on system totalizer flow meter. Timed each EW gpm by shutting off flow from other 2 EWs.

The SVE building overhead door flashing has wind and header damage.

The most recent round of water levels (3Q2024) was collected July 29, 2024.

The air stripper trays were last mechanically cleaned September 13, 2024.

The monthly influent/effluent samples were collected today September 24, 2024.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: R. Murphy, C. Finn Weather/Temperature: Cloudy, rain, 62°F

Date: <u>10/29/2024</u> Arrival Time: <u>07/</u>	30 Depart	ure Time: <u>15:30</u>
Reason for Service: <u>Inspect system</u> ,	clean system	<u>m</u>
Inspection Items:	OK:	Comments:
Site Appearance/Condition	<u> </u>	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	Wood lintel and metal trim repaired.
Siding	X	Metal trim repaired.
Roof and Discharge Pipe	<u>X</u>	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned Off
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.8</u> GPM (see Notes section) Water Level Above Transducer 157 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.3 GPM (see Notes section) Water Level Above Transducer 177 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 99 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** <u>77,649,540</u> Gallons

No Sampling was performed.

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival. Shut down the system and turned the main breaker off for cleaning.

Upon the completion of the cleaning of the system and shed, the system was successfully turned back on. Total system flow was timed at 2.5 gpm on the system totalizer flow meter. Timed each EW gpm by shutting off flow from other 2 EWs. EW-3 was flowing, but at too low of rate by itself to register on the flow meter.

The most recent round of water levels (4Q2024) was collected September 25, 2024.

The air stripper trays were last mechanically cleaned today, October 29, 2024.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: <u>C. Finn</u> Weather/Temperature: <u>Partly cloudy, mid-40s °F</u> Date: <u>11/12/2024</u> Arrival Time: <u>08:45</u> Departure Time: <u>10:15</u> Reason for Service: <u>Inspect system, perform monthly sampling</u>

Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	<u>X</u>	See Notes/Explanations section.
Building Exterior		
Overhead Door	<u>X</u>	Wood lintel and metal trim repaired.
Siding	X	Metal trim repaired.
Roof and Discharge Pipe	X	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned Off
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.8</u> GPM (see Notes section) Water Level Above Transducer 186 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.3 GPM (see Notes section) Water Level Above Transducer 182 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** 0.5 GPM (see Notes section) Water Level Above Transducer ____113 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 77,692,765 Gallons

AQUEOUS:

Monthly monitoring samples of aqueous phase system influent and effluent were collected and submitted for the following analyses:

- VOCs by EPA Method 624 (CFR136 624)
- Iron by MCAWW 200.7
- TSS by MCAWW SM18-20 2540 D
- pH by MCAWW SM18-20 4500-H+B

pH measurements must be made in the field:

Influent pH 7.0 (field test strip) Effluent pH 7.0 (field test strip)

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival. Shut down the system and turned the main breaker off for cleaning.

Total system flow was timed at 2.5 gpm on the system totalizer flow meter. Timed each EW gpm by shutting off flow from other 2 EWs. EW-3 was flowing, but at too low of rate by itself to register on the flow meter.

The most recent round of water levels (3Q2024) was collected September 25, 2024.

The air stripper trays were last mechanically cleaned October 29, 2024.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: Tom Urban Weath	er/Temperature:	Cloudy, calm, 20°F
Date: <u>01/08/2025</u> Arrival Time:	<u>09:00</u> Depart	ture Time: <u>10:30</u>
Reason for Service: <u>Inspect syst</u>	tem, influent/eff	luent sampling
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	X	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	
Siding	X	
Roof and Discharge Pipe	<u>X</u>	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned On
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	<u>X</u>	
First Aid & Eye Wash	<u>X</u>	
		· · · · · · · · · · · · · · · · · · ·

Groundwater Treatment System		
Air Stripper	X	
Iron Removal Filter	NA	As of June 2021, there is no longer an iron removal filter tank.
Flow Meters	X	See Notes/Explanations section.
Gauges	X	
Stripper Blower	X	
Indication of Alarm	X	
Groundwater Treatment Wells		
EW-1 Pump	X	
EW-1 Transducer	X	
EW-1 Flow Meter		EW-1 flow meter/totalizer screen no longer functioning.
EW-2 Pump	X	
EW-2 Transducer	X	
EW- 2 Flow Meter	X	
EW-3 Pump	X	
EW-3 Transducer	X	
EW-3 Flow Meter		EW-3 flow meter/totalizer screen no longer functioning.

 \mathbf{X}

X

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>2.2</u> GPM (see Notes section) Water Level Above Transducer 220 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.8 GPM (see Notes section) Water Level Above Transducer 203 Inches Flow Meter Reading 28,543,853 Gallons *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 163 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 77,929,350 Gallons

AQUEOUS:

Monthly monitoring samples of aqueous phase system influent and effluent were collected and submitted for the following analyses:

- VOCs by EPA Method 624.1 (CFR136 624)
- Iron by MCAWW 200.7
- TSS by MCAWW SM18-20 2540 D

pH measurements and temperature must be made in the field:

```
Influent pH 7.70 Temperature (°C) 7.1 (Oakton pHTestr 30 s/n T311487089)
Effluent pH 7.77 Temperature (°C) 7.6 (Oakton pHTestr 30 s/n T311487089)
```

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival.

System alarm "E-STOP PRESSED" display on control panel was acknowledged and cleared (2/13/99 at 6:18:57 PM). Two other alarms were cleared: "WELL #1 HIGH LEVEL" (1/8/99 at 2:15:14 PM) and "AIR STRIPPER OFF" (1/7/99 at 7:23:25 PM).

Total system flow was timed at 3.0 gpm on the system totalizer flow meter. Timed each EW gpm by shutting off flow from other 2 EWs. EW-3 was not flowing.

The most recent round of water levels (3Q2024) was collected September 25, 2024.

The air stripper trays were last mechanically cleaned on October 29, 2024.

The bi-monthly influent/effluent samples were collected today, January 8, 2025.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: T. Urban, E. Smith, C. H	orrocks Weat	her/Temperature: <u>Partly cloudy, calm, 25°F</u>
Date: <u>02/04/2025</u> Arrival Time: <u>0</u>	08:00 Depar	ture Time: <u>13:30</u>
Reason for Service: <u>Inspect syste</u>	m, clean syste	<u>m</u>
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	X	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	
Siding	X	
Roof and Discharge Pipe	X	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned On
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	X	

Groundwater Treatment System \mathbf{X} Air Stripper NA As of June 2021, there is no longer an iron Iron Removal Filter removal filter tank. \mathbf{X} See Notes/Explanations section. Flow Meters \mathbf{X} Gauges \mathbf{X} Stripper Blower \mathbf{X} Indication of Alarm **Groundwater Treatment Wells** EW-1 Pump \mathbf{X} \mathbf{X} EW-1 Transducer EW-1 Flow Meter EW-1 flow meter/totalizer screen no longer functioning. EW-2 Pump \mathbf{X} **EW-2** Transducer X EW-2 flow meter/totalizer screen no longer EW-2 Flow Meter X functioning. Frozen on 28,543,853 gallons. EW-3 Pump X EW-3 Transducer X EW-3 Flow Meter EW-3 flow meter/totalizer screen no longer functioning.

Page 2 of 4

X

 \mathbf{X}

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.8</u> GPM (see Notes section) Water Level Above Transducer ____250 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.0 GPM (see Notes section) "***" Inches Water Level Above Transducer Flow Meter Reading <u>28,543,853</u> Gallons (frozen) *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 160 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 78,012,748 Gallons

No Sampling was performed.

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival.

Three system alarms: "WELL #1 HIGH LEVEL" (4/15/99 at 9:05:32 PM), "WELL #2 LOW LEVEL" (4/8/99 at 1:24:40 PM), and "WELL #2 HIGH LEVEL" (4/8/99 at 12:14:02 AM) on the control panel display were acknowledged and cleared.

Shut down the system and turned the main breaker off for cleaning.

Upon completion of cleaning the system, the system was turned back on. Total system flow was timed at 2.2 gpm on the system totalizer flow meter after cleaning.

The most recent round of water levels was collected September 25, 2024.

The bi-monthly influent/effluent samples were collected on January 8, 2025.

The air stripper trays were last mechanically cleaned today February 4, 2025.

Groundwater Treatment System CHEM-TROL Site Town of Hamburg, New York

This summary inspection checklist is to be completed during each site inspection. Note all items, which require repair or maintenance. Use the last page to note any additional comments or unusual events.

Service by: T. Urban, E. Murphy, P. B	Bliek (Matrix)	Weather/Temperature: cloudy, calm, 25°F
Date: <u>02/12/2025</u> Arrival Time: <u>0</u>	7:45 Depar	ture Time: <u>09:45</u>
Reason for Service: <u>Inspect system</u>	n, Troublesho	oot system
Inspection Items:	<u>OK:</u>	Comments:
Site Appearance/Condition	<u>X</u>	See Notes/Explanations section.
Building Exterior		
Overhead Door	X	
Siding	X	
Roof and Discharge Pipe	X	
Building Interior		
Indication of Spills or Leaks	X	
Building Heater	X	Turned On
Phone System	X	Disconnected
Exhaust Fan		Could not get fan to work.
Fire Extinguisher	X	
First Aid & Eye Wash	<u>X</u>	
		· · · · · · · · · · · · · · · · · · ·

Groundwater Treatment System \mathbf{X} Air Stripper NA As of June 2021, there is no longer an iron Iron Removal Filter removal filter tank. \mathbf{X} See Notes/Explanations section. Flow Meters \mathbf{X} Gauges \mathbf{X} Stripper Blower \mathbf{X} Indication of Alarm **Groundwater Treatment Wells** EW-1 Pump \mathbf{X} \mathbf{X} EW-1 Transducer EW-1 Flow Meter EW-1 flow meter/totalizer screen no longer functioning. EW-2 Pump \mathbf{X} **EW-2** Transducer X EW-2 flow meter/totalizer screen no longer EW-2 Flow Meter X functioning. Frozen on 28,543,853 gallons. EW-3 Pump X EW-3 Transducer X EW-3 Flow Meter EW-3 flow meter/totalizer screen no longer functioning.

Page 2 of 4

X

 \mathbf{X}

Flowing

Effluent Discharge

Outfall

Instrumentation/Readings: **EW-1 Pumping Rate** <u>1.5</u> GPM (see Notes section) Water Level Above Transducer 249 Inches Flow Meter Reading Not Working Gallons *EW-2* **Pumping Rate** 0.0 GPM (see Notes section) "***" Inches Water Level Above Transducer Flow Meter Reading <u>28,543,853</u> Gallons (frozen) *EW-3* **Pumping Rate** 0.0 GPM (see Notes section) Water Level Above Transducer 156 Inches Flow Meter Reading Not Working Gallons Air Stripper Stripper Blower Pressure (Panel) Broken Inches H2O Stripper Blower Pressure (Stripper) Broken Inches H2O Effluent Flow **Total System Meter Reading** 78,031,665 Gallons

No Sampling was performed.

Notes/Explanations

(Please include any additional information on those items that require attention as indicated above.)

The system was on upon arrival.

System alarm: "WELL #1 HIGH LEVEL" (4/20/99 at 4:08:48 AM) on the control panel display.

Total system flow was timed at 1.5 gpm on the system totalizer flow meter.

Matrix adjusts the settings for the Sensaphone via smartphone app. Matrix troubleshoots EW-2 and believes the transducer is faulty and removes the transducer. EW-2 is left "OFF". Matrix looks at EW-1 and EW-3 well head control panels and finds nothing faulty.

The most recent round of water levels was collected September 25, 2024.

The bi-monthly influent/effluent samples were collected on January 8, 2025.

The air stripper trays were last mechanically cleaned on February 4, 2025.

ANALYTICAL REPORT

PREPARED FOR

Attn: Ryan Donovan Waste Management 600 New Ludlow Road South Hadley, Massachusetts 01075

Generated 10/1/2024 2:36:08 PM

JOB DESCRIPTION

ChemTrol Site - Monthly ChemTrol Monthly Groundwater

JOB NUMBER

480-223658-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Joshu Vely

Generated 10/1/2024 2:36:08 PM

Authorized for release by Joshua Velez, Project Management Assistant I Joshua.Velez@et.eurofinsus.com Designee for Ryan VanDette, Project Manager II Ryan.VanDette@et.eurofinsus.com (716)504-9830 2

4

6

8

1 1

12

Client: Waste Management Project/Site: ChemTrol Site - Monthly Laboratory Job ID: 480-223658-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	10
QC Association	13
Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18

6

8

9

1 U

12

Definitions/Glossary

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Qualifiers

General Chemistry

Qualifier Description

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

3

5

Page 4 of 18 10/1/2024

Case Narrative

Client: Waste Management Project: ChemTrol Site - Monthly

Job ID: 480-223658-1 Eurofins Buffalo

Job Narrative 480-223658-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/24/2024 12:54 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.1°C.

GC/MS VOA

Method 624.1_PREC: The following sample was diluted to bring the concentration of target analytes within the calibration range: Influent (480-223658-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: Effluent (480-223658-1) and Influent (480-223658-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 18 10/1/2024

2

Job ID: 480-223658-1

3

4

5

7

1 0

11

Detection Summary

Client: Waste Management

Project/Site: ChemTrol Site - Monthly

Client Sample ID: Effluent

Lab Sample ID: 480-223658-1

Lab Sample ID: 480-223658-3

Job ID: 480-223658-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Iron	218	50.0	ug/L	1 _	200.7 Rev 4.4	Total
						Recoverable
pH	7.7 HF	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	16.1 HF	0.001	Degrees C	1	SM 4500 H+ B	Total/NA

Client Sample ID: Influent Lab Sample ID: 480-223658-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	23	12	ug/L	20	624.1	Total/NA
Chloroethane	26	17	ug/L	20	624.1	Total/NA
o-Chlorotoluene	640	6.6	ug/L	20	624.1	Total/NA
Iron	1270	50.0	ug/L	1	200.7 Rev 4.4	Total Recoverable
рН	6.7 HF	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	16.0 HF	0.001	Degrees C	1	SM 4500 H+ B	Total/NA

Client Sample ID: Trip Blank

No Detections.

1:

This Detection Summary does not include radiochemical test results.

10/1/2024

3

4

5

9

11

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Lab Sample ID: 480-223658-1 **Client Sample ID: Effluent**

Date Collected: 09/24/24 08:30 **Matrix: Water** Date Received: 09/24/24 12:54

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			09/24/24 22:26	1
1,1-Dichloroethane	ND		5.0		ug/L			09/24/24 22:26	1
1,1-Dichloroethene	ND		5.0		ug/L			09/24/24 22:26	1
Benzene	ND		5.0		ug/L			09/24/24 22:26	1
Chlorobenzene	ND		5.0		ug/L			09/24/24 22:26	1
Chloroethane	ND		5.0		ug/L			09/24/24 22:26	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/24/24 22:26	1
Toluene	ND		5.0		ug/L			09/24/24 22:26	1
Trichloroethene	ND		5.0		ug/L			09/24/24 22:26	1
o-Chlorotoluene	ND		5.0		ug/L			09/24/24 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		68 - 130					09/24/24 22:26	1
Dibromofluoromethane (Surr)	110		75 - 123					09/24/24 22:26	1
4-Bromofluorobenzene (Surr)	97		76 - 123					09/24/24 22:26	1
Toluene-d8 (Surr)	107		77 - 120					09/24/24 22:26	1
Method: EPA 200.7 Rev 4.4	- Metals (ICP)	- Total Red	coverable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	218		50.0		ug/L		09/25/24 08:15	09/26/24 12:34	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (SM 2540D)	ND		4.0		mg/L			09/26/24 10:19	1
pH (SM 4500 H+ B)	7.7	HF	0.1		SU			09/26/24 13:37	1
Temperature (SM 4500 H+ B)	16.1	HF	0.001		Degrees C			09/26/24 13:37	1

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Lab Sample ID: 480-223658-2 **Client Sample ID: Influent**

Date Collected: 09/24/24 08:45 **Matrix: Water** Date Received: 09/24/24 12:54

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		7.7		ug/L			09/26/24 21:10	20
1,1-Dichloroethane	23		12		ug/L			09/26/24 21:10	20
1,1-Dichloroethene	ND		17		ug/L			09/26/24 21:10	20
Benzene	ND		12		ug/L			09/26/24 21:10	20
Chlorobenzene	ND		9.5		ug/L			09/26/24 21:10	20
Chloroethane	26		17		ug/L			09/26/24 21:10	20
cis-1,2-Dichloroethene	ND		11		ug/L			09/26/24 21:10	20
Toluene	ND		9.1		ug/L			09/26/24 21:10	20
Trichloroethene	ND		12		ug/L			09/26/24 21:10	20
o-Chlorotoluene	640		6.6		ug/L			09/26/24 21:10	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		68 - 130					09/26/24 21:10	20
Dibromofluoromethane (Surr)	102		75 - 123					09/26/24 21:10	20
4-Bromofluorobenzene (Surr)	97		76 - 123					09/26/24 21:10	20
Toluene-d8 (Surr)	104		77 - 120					09/26/24 21:10	20
Method: EPA 200.7 Rev 4.4	- Metals (ICP)	- Total Red	coverable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1270		50.0		ug/L		09/25/24 08:15	09/26/24 12:41	1
General Chemistry									
Analyte	Rosult	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac

ı	General Chemistry									
	Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total Suspended Solids (SM 2540D)	ND		4.0		mg/L			09/26/24 10:19	1
	pH (SM 4500 H+ B)	6.7	HF	0.1		SU			09/26/24 13:40	1
	Temperature (SM 4500 H+ B)	16.0	HF	0.001		Degrees C			09/26/24 13:40	1

10/1/2024

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Client Sample ID: Trip Blank Date Collected: 09/24/24 00:00

Date Received: 09/24/24 12:54

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-223658-3

09/24/24 23:15

09/24/24 23:15

09/24/24 23:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			09/24/24 23:15	1
1,1-Dichloroethane	ND		5.0		ug/L			09/24/24 23:15	1
1,1-Dichloroethene	ND		5.0		ug/L			09/24/24 23:15	1
Benzene	ND		5.0		ug/L			09/24/24 23:15	1
Chlorobenzene	ND		5.0		ug/L			09/24/24 23:15	1
Chloroethane	ND		5.0		ug/L			09/24/24 23:15	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/24/24 23:15	1
Toluene	ND		5.0		ug/L			09/24/24 23:15	1
Trichloroethene	ND		5.0		ug/L			09/24/24 23:15	1
o-Chlorotoluene	ND		5.0		ug/L			09/24/24 23:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		68 - 130					09/24/24 23:15	1

75 - 123

76 - 123

77 - 120

107

98

Client: Waste Management Job ID: 480-223658-1 Project/Site: ChemTrol Site - Monthly

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-726076/8

Matrix: Water

Analysis Batch: 726076

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte 1,1,1-Trichloroethane ND 5.0 ug/L 09/24/24 20:26 1,1-Dichloroethane ND 5.0 ug/L 09/24/24 20:26 ND 1,1-Dichloroethene 5.0 ug/L 09/24/24 20:26 Benzene ND 5.0 09/24/24 20:26 ug/L Chlorobenzene ND 5.0 ug/L 09/24/24 20:26 Chloroethane ND 5.0 ug/L 09/24/24 20:26 cis-1,2-Dichloroethene ND 5.0 ug/L 09/24/24 20:26 Toluene ND 5.0 ug/L 09/24/24 20:26 Trichloroethene ND 5.0 ug/L 09/24/24 20:26 o-Chlorotoluene ND 5.0 ug/L 09/24/24 20:26

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130		09/24/24 20:26	1
Dibromofluoromethane (Surr)	110		75 - 123		09/24/24 20:26	1
4-Bromofluorobenzene (Surr)	99		76 - 123		09/24/24 20:26	1
Toluene-d8 (Surr)	106		77 - 120		09/24/24 20:26	1

Lab Sample ID: LCS 480-726076/6

Matrix: Water

Analysis Batch: 726076

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	23.1		ug/L		116	52 - 162	
1,1-Dichloroethane	20.0	21.4		ug/L		107	59 - 155	
1,1-Dichloroethene	20.0	22.8		ug/L		114	1 - 234	
Benzene	20.0	20.5		ug/L		102	37 - 151	
Chlorobenzene	20.0	20.6		ug/L		103	37 - 160	
Chloroethane	20.0	20.7		ug/L		103	14 - 230	
Toluene	20.0	21.4		ug/L		107	47 - 150	
Trichloroethene	20.0	21.1		ug/L		106	71 - 157	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		68 - 130
Dibromofluoromethane (Surr)	105		75 - 123
4-Bromofluorobenzene (Surr)	99		76 - 123
Toluene-d8 (Surr)	106		77 - 120

Lab Sample ID: MB 480-726353/8

Matrix: Water

Analysis Batch: 726353

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND		5.0		ug/L			09/26/24 20:22	1
1,1-Dichloroethane	ND		5.0		ug/L			09/26/24 20:22	1
1,1-Dichloroethene	ND		5.0		ug/L			09/26/24 20:22	1
Benzene	ND		5.0		ug/L			09/26/24 20:22	1
Chlorobenzene	ND		5.0		ug/L			09/26/24 20:22	1
Chloroethane	ND		5.0		ug/L			09/26/24 20:22	1

Eurofins Buffalo

Page 10 of 18

10/1/2024

Client: Waste Management

Job ID: 480-223658-1 Project/Site: ChemTrol Site - Monthly

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-726353/8

Matrix: Water

Analysis Batch: 726353

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	MD		5.0		ug/L			09/26/24 20:22	1
Toluene	ND		5.0		ug/L			09/26/24 20:22	1
Trichloroethene	ND		5.0		ug/L			09/26/24 20:22	1
o-Chlorotoluene	ND		5.0		ug/L			09/26/24 20:22	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 68 - 130 09/26/24 20:22 1,2-Dichloroethane-d4 (Surr) 106 Dibromofluoromethane (Surr) 103 75 - 123 09/26/24 20:22 4-Bromofluorobenzene (Surr) 97 76 - 123 09/26/24 20:22 77 - 120 Toluene-d8 (Surr) 104 09/26/24 20:22

Lab Sample ID: LCS 480-726353/26

Matrix: Water

Analysis Batch: 726353

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec 1,1,1-Trichloroethane 20.0 20.7 103 52 - 162 ug/L 20.0 1.1-Dichloroethane 197 ug/L 99 59 - 155 1,1-Dichloroethene 20.0 20.6 ug/L 103 1 - 234 Benzene 20.0 19.3 ug/L 96 37 - 151 Chlorobenzene 20.0 19.3 ug/L 97 37 - 160 Chloroethane 20.0 21.3 ug/L 107 14 - 230 Toluene 20.0 20.1 ug/L 100 47 - 150 Trichloroethene 20.0 19.6 98 71 - 157 ug/L

LCS LCS

MB MB

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		68 - 130
Dibromofluoromethane (Surr)	103		75 - 123
4-Bromofluorobenzene (Surr)	99		76 - 123
Toluene-d8 (Surr)	105		77 - 120

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-726052/1-A

Matrix: Water

Analysis Batch: 726313

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 726052

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 50.0 09/25/24 08:15 09/26/24 11:56 Iron ND ug/L

Lab Sample ID: LCS 480-726052/2-A

Matrix: Water

Analysis Batch: 726313

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 726052

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 5100 85 - 115 Iron 5683 ug/L 111

Eurofins Buffalo

10/1/2024

QC Sample Results

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-726278/1 **Matrix: Water**

Analysis Batch: 726278

MB MB

Analyte **Result Qualifier** RL **RL** Unit Analyzed Dil Fac Prepared 4.0 09/26/24 10:19 Total Suspended Solids ND mg/L

Lab Sample ID: LCS 480-726278/2

Matrix: Water

Analysis Batch: 726278

Spike

Analyte **Total Suspended Solids**

Added 247

244.8

LCS LCS

LCS LCS

7.0

Result Qualifier

Unit mg/L

SU

D %Rec 99

Lab Sample ID: LCS 480-726318/1 **Matrix: Water**

Method: SM 4500 H+ B - pH

Analysis Batch: 726318

Spike Analyte Added рН 7.00 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec

Limits

88 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

%Rec Result Qualifier Unit Limits D %Rec 100 99 - 101

QC Association Summary

Client: Waste Management

Project/Site: ChemTrol Site - Monthly

GC/MS VOA

Analysis Batch: 726076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223658-1	Effluent	Total/NA	Water	624.1	
480-223658-3	Trip Blank	Total/NA	Water	624.1	
MB 480-726076/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726076/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 726353

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223658-2	Influent	Total/NA	Water	624.1	
MB 480-726353/8	Method Blank	Total/NA	Water	624.1	
LCS 480-726353/26	Lab Control Sample	Total/NA	Water	624.1	

Metals

Prep Batch: 726052

Lab Sample ID 480-223658-1	Client Sample ID Effluent	Prep Type Total Recoverable	Matrix Water	Method 200.7	Prep Batch
480-223658-2	Influent	Total Recoverable	Water	200.7	
MB 480-726052/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 480-726052/2-A	Lab Control Sample	Total Recoverable	Water	200.7	

Analysis Batch: 726313

Lab Sample ID 480-223658-1	Client Sample ID Effluent	Prep Type Total Recoverable	Matrix Water	Method 200.7 Rev 4.4	Prep Batch 726052
480-223658-2	Influent	Total Recoverable	Water	200.7 Rev 4.4	726052
MB 480-726052/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	726052
LCS 480-726052/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	726052

General Chemistry

Analysis Batch: 726278

Lab Sample ID 480-223658-1	Client Sample ID Effluent	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
480-223658-2	Influent	Total/NA	Water	SM 2540D	
MB 480-726278/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-726278/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 726318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223658-1	Effluent	Total/NA	Water	SM 4500 H+ B	
480-223658-2	Influent	Total/NA	Water	SM 4500 H+ B	
LCS 480-726318/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Eurofins Buffalo

Page 13 of 18

Job ID: 480-223658-1

10/1/2024

Lab Chronicle

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Client Sample ID: Effluent

Date Received: 09/24/24 12:54

Lab Sample ID: 480-223658-1 Date Collected: 09/24/24 08:30

Matrix: Water

Batch Batch Dilution Batch Prepared Method **Factor** Number Analyst or Analyzed **Prep Type** Type Run Lab Total/NA Analysis 624.1 726076 AXK EET BUF 09/24/24 22:26 200.7 Total Recoverable Prep 726052 EMO **EET BUF** 09/25/24 08:15 Total Recoverable Analysis 200.7 Rev 4.4 1 726313 BMB **EET BUF** 09/26/24 12:34 Total/NA SM 2540D **EET BUF** Analysis 1 726278 AB 09/26/24 10:19 SM 4500 H+ B 726318 KB EET BUF 09/26/24 13:37 Total/NA Analysis 1

Client Sample ID: Influent Lab Sample ID: 480-223658-2

Date Collected: 09/24/24 08:45 **Matrix: Water**

Date Received: 09/24/24 12:54

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1			726353	AXK	EET BUF	09/26/24 21:10
Total Recoverable	Prep	200.7			726052	EMO	EET BUF	09/25/24 08:15
Total Recoverable	Analysis	200.7 Rev 4.4		1	726313	BMB	EET BUF	09/26/24 12:41
Total/NA	Analysis	SM 2540D		1	726278	AB	EET BUF	09/26/24 10:19
Total/NA	Analysis	SM 4500 H+ B		1	726318	KB	EET BUF	09/26/24 13:40

Client Sample ID: Trip Blank Lab Sample ID: 480-223658-3

Date Collected: 09/24/24 00:00 **Matrix: Water**

Date Received: 09/24/24 12:54

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	726076	AXK	EET BUF	09/24/24 23:15

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-223658-1

Project/Site: ChemTrol Site - Monthly

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
New York	NELAF	ס	10026	03-31-25
The following analyte	s are included in this repor	rt, but the laboratory is r	not certified by the governing authori	ty. This list may include analyte
• ,	does not offer certification Prep Method		Analyte	
for which the agency Analysis Method 624.1	does not offer certification Prep Method	. Matrix Water	Analyte o-Chlorotoluene	
Analysis Method		Matrix		

Eurofins Buffalo

Method Summary

Client: Waste Management

Project/Site: ChemTrol Site - Monthly

Job ID: 480-223658-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 H+ B	рН	SM	EET BUF
200.7	Preparation, Total Recoverable Metals	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

0

10

11

Sample Summary

Client: Waste Management Project/Site: ChemTrol Site - Monthly

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223658-1	Effluent	Water	09/24/24 08:30	09/24/24 12:54
480-223658-2	Influent	Water	09/24/24 08:45	09/24/24 12:54
480-223658-3	Trip Blank	Water	09/24/24 00:00	09/24/24 12:54

Job ID: 480-223658-1

10 Hazelwood Drive Amherst, NY 14228-2298	Chai	n of Cus	Chain of Custody Record	cord							💸 eurofins	15 Environment Testir
Phone: 716-691-2600 Fax: 716-691-7991			Lab PM	Lab PM				Carrier Tr	Carrier Tracking No(s)		COC No	
Client Information	_	01221	VanD	ette, Ryar	١						480-192452-28522	28522.1
Chad Moose	716-85C	7575-	Ryan.	E-Mail: Ryan.VanDette@et.eurofinsus.com	@et.eu	rofinsus	com	State of Origin	Origin >	٨	Page 1 of 1	
Company: Waste Management		PWSID				Ā	nalysis I	Analysis Requested			# qor	
Address. Tullytown Landfill 444 Oxford Valley Road	Due Date Requested:					\vdash	E			E	Preservation D - HN03	Codes:
City Morrisville	TAT Requested (days):			100							A - HCL N - None	
State, Zip: PA, 19067	Compliance Project: A Yes	oN ∆ No		18							24	
Phone: 215-269-2114(Tel) 215-699-8315(Fax)											iv.	
	**OM					*F					- 1	
Project Name Project Name Chem Trol Monthly Groundwate 48002447	Project # dwafe 48002447					oilo2 b					menis	
Site New York	*MOSS										feont	
			Matrix (Wwwster, Secold, Owwesterfolf,	B benettiii ble BNSM mnohi noni - 7.0	4.1_PREC - 62	u2 lssoT - 004 Hq - +H_00246					o redmult lat	
Sample Identification	Sample Date Time		S=grab) BT=Theue, A=Air) id Preservation Code:	W X	-	C7 -						Special Instructions/Note:
Effluent	9/24/24 0830	-		1 2	M							
Influent	0	1	Water		W						ی د	
Trip Blank	_		Water	3	_							
				\Box								
										480	480-223658 Chain of Custody	Custody
Possible Hazard Identification				Sampl	e Dispo	Sal (A	fee may t	e assesser	if samp	les are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)
V, Other (specify)	TOSOL D	Kadiological		Specia	Instruc	ctions/Q	Special Instructions/QC Requirements:	Disposal nents:	ву сао		Archive For	Months
Empty Kit Relinquished by:	Date			Time				Met	Method of Shipment	nent	drop of	t
Reknquished by Religious to the company of the com	Q124/24@	1259	Company		Received by	5			Date	Date/Time	25	CI Company
Relinquished by	Date/Time:		Company	8	Received by				Dago	Date/Time		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				8	er Temp	erature(s)	Cooler Temperature(s) °C and Other Remarks	r Remarks		78	ンサ	
				1			1	1			7	Ver: 05/06/2024

seurofins Environment Tosting

Eurofins Buffalo

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Ryan Donovan Waste Management 600 New Ludlow Road South Hadley, Massachusetts 01075

Generated 11/18/2024 3:36:31 PM

JOB DESCRIPTION

ChemTrol Site - Monthly Groundwater ChemTrol Monthly Groundwater

JOB NUMBER

480-225375-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 11/18/2024 3:36:31 PM

Authorized for release by Joshua Velez, Project Management Assistant I Joshua.Velez@et.eurofinsus.com Designee for Ryan VanDette, Project Manager II Ryan.VanDette@et.eurofinsus.com (716)504-9830

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	9
QC Association	11
Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16

4

6

9

10

12

Definitions/Glossary

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Qualifiers

General Chemistry

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
‡	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 16

Í

3

4

Ę

7

10

11

12

Case Narrative

Client: Waste Management

Project: ChemTrol Site - Monthly Groundwater

Job ID: 480-225375-1 Eurofins Buffalo

Job Narrative 480-225375-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/12/2024 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.9°C.

Receipt Exceptions

The following sample(s) was listed on the Chain of Custody (COC); however, no sample(s) was received: Lab did not receive trip blank.

GC/MS VOA

Method 624.1_PREC: The following sample was diluted to bring the concentration of target analytes within the calibration range: Influent (480-225375-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method SM4500_H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: Effluent (480-225375-1) and Influent (480-225375-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 16

G

Job ID: 480-225375-1

3

4

5

8

9

1 1

12

ы

Detection Summary

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Client Sample ID: Effluent Lab Sample ID: 480-225375-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	1050		50.0		ug/L	1	_	200.7 Rev 4.4	Total
									Recoverable
Total Suspended Solids	18.8		4.0		mg/L	1		SM 2540D	Total/NA
pН	7.8	HF	0.1		SU	1		SM 4500 H+ B	Total/NA
Temperature	18.2	HF	0.001		Degrees C	1		SM 4500 H+ B	Total/NA

Client Sample ID: Influent Lab Sample ID: 480-225375-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
1,1-Dichloroethane	19		ug/L		624.1	Total/NA
o-Chlorotoluene	1100	6.6	ug/L	20	624.1	Total/NA
Iron	1150	50.0	ug/L	1	200.7 Rev 4.4	Total Recoverable
pH	7.0 HF	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.1 HF	0.001	Degrees	C 1	SM 4500 H+ B	Total/NA

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Method: EPA 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable

Result Qualifier

1050

Client Sample ID: Effluent

Date Collected: 11/12/24 09:30 Date Received: 11/12/24 10:45

Analyte

Iron

Lab Sample ID: 480-225375-1

Prepared

Analyzed

11/14/24 09:04 11/14/24 16:24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			11/13/24 16:29	1
1,1-Dichloroethane	ND		5.0		ug/L			11/13/24 16:29	1
1,1-Dichloroethene	ND		5.0		ug/L			11/13/24 16:29	1
Benzene	ND		5.0		ug/L			11/13/24 16:29	1
Chlorobenzene	ND		5.0		ug/L			11/13/24 16:29	1
Chloroethane	ND		5.0		ug/L			11/13/24 16:29	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/13/24 16:29	1
Toluene	ND		5.0		ug/L			11/13/24 16:29	1
Trichloroethene	ND		5.0		ug/L			11/13/24 16:29	1
o-Chlorotoluene	ND		5.0		ug/L			11/13/24 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130					11/13/24 16:29	1
Dibromofluoromethane (Surr)	105		75 - 123					11/13/24 16:29	1
4-Bromofluorobenzene (Surr)	98		76 - 123					11/13/24 16:29	1
Toluene-d8 (Surr)	99		77 - 120					11/13/24 16:29	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (SM 2540D)	18.8		4.0		mg/L		•	11/14/24 16:22	1
pH (SM 4500 H+ B)	7.8	HF	0.1		SU			11/18/24 11:02	1
Temperature (SM 4500 H+ B)	18.2	HE	0.001		Degrees C			11/18/24 11:02	1

50.0

MDL Unit

ug/L

Dil Fac

11/18/2024

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Client Sample ID: Influent

Lab Sample ID: 480-225375-2

Matrix: Water

Date Collected: 11/12/24 09:45 Date Received: 11/12/24 10:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		7.7		ug/L			11/13/24 16:54	20
1,1-Dichloroethane	19		12		ug/L			11/13/24 16:54	20
1,1-Dichloroethene	ND		17		ug/L			11/13/24 16:54	20
Benzene	ND		12		ug/L			11/13/24 16:54	20
Chlorobenzene	ND		9.5		ug/L			11/13/24 16:54	20
Chloroethane	ND		17		ug/L			11/13/24 16:54	20
cis-1,2-Dichloroethene	ND		11		ug/L			11/13/24 16:54	20
Toluene	ND		9.1		ug/L			11/13/24 16:54	20
Trichloroethene	ND		12		ug/L			11/13/24 16:54	20
o-Chlorotoluene	1100		6.6		ug/L			11/13/24 16:54	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 130					11/13/24 16:54	20
Dibromofluoromethane (Surr)	103		75 - 123					11/13/24 16:54	20
4-Bromofluorobenzene (Surr)	99		76 - 123					11/13/24 16:54	20
Toluene-d8 (Surr)	98		77 - 120					11/13/24 16:54	20
Method: EPA 200.7 Rev 4.4	- Metals (ICP)	- Total Red	coverable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1150		50.0		ug/L		11/14/24 09:04	11/14/24 16:33	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (SM 2540D)	ND		4.0		mg/L			11/14/24 16:22	1
pH (SM 4500 H+ B)	7.0	HF	0.1		SU			11/18/24 11:08	1
Temperature (SM 4500 H+ B)	19.1	HF	0.001		Degrees C			11/18/24 11:08	1

11/18/2024

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-732253/8

Matrix: Water

Analyte

Analysis Batch: 732253

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ND 5.0 ug/L 11/13/24 12:53 ND 5.0 ug/L 11/13/24 12:53 ND 5.0 11/13/24 12:53

1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene ug/L Benzene ND 5.0 11/13/24 12:53 ug/L Chlorobenzene ND 5.0 ug/L 11/13/24 12:53 Chloroethane ND 5.0 ug/L 11/13/24 12:53 cis-1,2-Dichloroethene ND 5.0 ug/L 11/13/24 12:53 Toluene ND 5.0 ug/L 11/13/24 12:53 Trichloroethene ND 5.0 ug/L 11/13/24 12:53 o-Chlorotoluene ND 5.0 ug/L 11/13/24 12:53

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130		11/13/24 12:53	1
Dibromofluoromethane (Surr)	104		75 - 123		11/13/24 12:53	1
4-Bromofluorobenzene (Surr)	99		76 - 123		11/13/24 12:53	1
Toluene-d8 (Surr)	99		77 - 120		11/13/24 12:53	1

Lab Sample ID: LCS 480-732253/6

Matrix: Water

Analysis Batch: 732253

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	22.1		ug/L		111	52 - 162	
1,1-Dichloroethane	20.0	17.8		ug/L		89	59 ₋ 155	
1,1-Dichloroethene	20.0	18.6		ug/L		93	1 - 234	
Benzene	20.0	19.1		ug/L		95	37 - 151	
Chlorobenzene	20.0	20.1		ug/L		100	37 - 160	
Chloroethane	20.0	16.1		ug/L		81	14 - 230	
Toluene	20.0	19.5		ug/L		98	47 - 150	
Trichloroethene	20.0	19.8		ug/L		99	71 - 157	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		68 - 130
Dibromofluoromethane (Surr)	103		75 - 123
4-Bromofluorobenzene (Surr)	100		76 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-732306/1-A

Matrix: Water

Analysis Batch: 732509

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 732306

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		50.0		ug/L		11/14/24 09:04	11/14/24 16:18	1

Eurofins Buffalo

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-732306/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 732509

Prep Type: Total Recoverable Prep Batch: 732306 Spike LCS LCS %Rec

ug/L

70 - 130

100

Result Qualifier Added Unit Limits Analyte %Rec Iron 5100 5199 ug/L 102 85 - 115

5100

Lab Sample ID: 480-225375-1 MS Client Sample ID: Effluent **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 732509 Prep Batch: 732306** Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte

6139

Lab Sample ID: 480-225375-1 MSD Client Sample ID: Effluent **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 732509** Prep Batch: 732306 Spike MSD MSD %Rec **RPD** Sample Sample Result Qualifier Added Result Qualifier Limits RPD Limit **Analyte** Unit %Rec Iron 1050 5100 6093 99 70 - 130 20 ug/L

Method: SM 2540D - Solids, Total Suspended (TSS)

1050

Lab Sample ID: MB 480-732478/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Iron

Analysis Batch: 732478

MB MB

Analyte Result Qualifier RL **RL Unit** Prepared Analyzed Dil Fac Total Suspended Solids $\overline{\mathsf{ND}}$ 4.0 mg/L 11/14/24 16:22

Lab Sample ID: LCS 480-732478/2 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 732478

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 246 240.8 mg/L 98 88 - 110

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 480-732782/23 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 732782

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits pН 7.00 7.0 SU 100 99 - 101

Eurofins Buffalo

11/18/2024

QC Association Summary

Client: Waste Management

Project/Site: ChemTrol Site - Monthly Groundwater

GC/MS VOA

Analysis Batch: 732253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-225375-1	Effluent	Total/NA	Water	624.1	
480-225375-2	Influent	Total/NA	Water	624.1	
MB 480-732253/8	Method Blank	Total/NA	Water	624.1	
LCS 480-732253/6	Lab Control Sample	Total/NA	Water	624.1	

Metals

Prep Batch: 732306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-225375-1	Effluent	Total Recoverable	Water	200.7	
480-225375-2	Influent	Total Recoverable	Water	200.7	
MB 480-732306/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 480-732306/2-A	Lab Control Sample	Total Recoverable	Water	200.7	
480-225375-1 MS	Effluent	Total Recoverable	Water	200.7	
480-225375-1 MSD	Effluent	Total Recoverable	Water	200.7	

Analysis Batch: 732509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-225375-1	Effluent	Total Recoverable	Water	200.7 Rev 4.4	732306
480-225375-2	Influent	Total Recoverable	Water	200.7 Rev 4.4	732306
MB 480-732306/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	732306
LCS 480-732306/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	732306
480-225375-1 MS	Effluent	Total Recoverable	Water	200.7 Rev 4.4	732306
480-225375-1 MSD	Effluent	Total Recoverable	Water	200.7 Rev 4.4	732306

General Chemistry

Analysis Batch: 732478

Lab Sample ID 480-225375-1	Client Sample ID Effluent	Prep Type Total/NA	Matrix Water	Method SM 2540D	Prep Batch
480-225375-2	Influent	Total/NA	Water	SM 2540D	
MB 480-732478/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-732478/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 732782

Lab Sample ID 480-225375-1	Client Sample ID Effluent	Prep Type Total/NA	Matrix Water	Method SM 4500 H+ B	Prep Batch
480-225375-2	Influent	Total/NA	Water	SM 4500 H+ B	
LCS 480-732782/23	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Job ID: 480-225375-1

Lab Chronicle

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Client Sample ID: Effluent

Date Received: 11/12/24 10:45

Lab Sample ID: 480-225375-1 Date Collected: 11/12/24 09:30

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		1	732253	AXK	EET BUF	11/13/24 16:29
Total Recoverable	Prep	200.7			732306	ET	EET BUF	11/14/24 09:04
Total Recoverable	Analysis	200.7 Rev 4.4		1	732509	BMB	EET BUF	11/14/24 16:24
Total/NA	Analysis	SM 2540D		1	732478	KO	EET BUF	11/14/24 16:22
Total/NA	Analysis	SM 4500 H+ B		1	732782	KB	EET BUF	11/18/24 11:02

Client Sample ID: Influent Lab Sample ID: 480-225375-2

Date Collected: 11/12/24 09:45 **Matrix: Water**

Date Received: 11/12/24 10:45

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1			732253	AXK	EET BUF	11/13/24 16:54
Total Recoverable	Prep	200.7			732306	ET	EET BUF	11/14/24 09:04
Total Recoverable	Analysis	200.7 Rev 4.4		1	732509	BMB	EET BUF	11/14/24 16:33
Total/NA	Analysis	SM 2540D		1	732478	KO	EET BUF	11/14/24 16:22
Total/NA	Analysis	SM 4500 H+ B		1	732782	KB	EET BUF	11/18/24 11:08

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-225375-1

Project/Site: ChemTrol Site - Monthly Groundwater

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
New York	NELAF	ס	10026	03-31-25
The following analyte	s are included in this repor	rt, but the laboratory is r	not certified by the governing authori	ty. This list may include analyte
for which the agency	does not offer certification			
for which the agency Analysis Method	does not offer certification Prep Method	Matrix	Analyte	
0 ,			Analyte o-Chlorotoluene	
Analysis Method		Matrix		

4

5

7

8

10

11

12

Method Summary

Client: Waste Management

Project/Site: ChemTrol Site - Monthly Groundwater

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
SM 4500 H+ B	рН	SM	EET BUF
200.7	Preparation, Total Recoverable Metals	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Job ID: 480-225375-1

3

4

5

6

0

9

111

Sample Summary

Client: Waste Management Project/Site: ChemTrol Site - Monthly Groundwater

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-225375-1	Effluent	Water	11/12/24 09:30	11/12/24 10:45
480-225375-2	Influent	Water	11/12/24 09:45	11/12/24 10:45

Job ID: 480-225375-1

Chain of Custody Record

Eurofins Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Enviorment Pesting

💸 eurofins

Client Information	Sampler.	Lab PM	Lab PM:		Carrier T	Carrier Tracking No(s):	200	COC No:
Client Contact:	6	r. 0 / E-Mail	פווכי ויאמוו ו			- 1	480-	192453-28522.1
Company:	10-404-01+	7	Ryan.VanDette@et.eurofinsus.com	eurofinsus.cc	State of Origin:	Ongin: M	Page: Page 1 of	1 of 1
Waste Management		PWSID:		Ana	Analysis Requested	D	# doc	
Tullytown Landfill 444 Oxford Valley Road	Due Date Requested:		- Total				Prese	rvation Codes:
City: Morrieville	TAT Requested (days):						D-HN	D - HNO3 A - HCI
State, Zip:	Stamore						N-N	Je J
PA, 19067	Compliance Project: A Yes A No							
Prone: 215-269-2114(Tel) 215-699-8315(Fax)	PO#: 13453950							
Email: cmoose@wm.com	#OM							
Project Name:	Project #:			spilo			816	
Chem I fol Site/NY22 Event Desc: Chem Trol Monthly Groundwate 48002447	48002447		CONTRACTOR OF THE PARTY OF THE	S pə			oule	
New York	SSOW#:		A) as				f cont	
Sample Identification	Sample	Matrix (w=water, S=solid, O=waste/oil,	eid Filterad 9 Month MS/MS 10.7 - Iron 1.1_PREC - 624	- Total Sus Hq - +H_002ÞI			si Number of	
	Sample Date	G=grab) BT=Tissue, A=Air) Preservation Code:	oz c	52			ют	Special Instruction
Effluent	11/12/12/19	Water	* M	z			X	
Influent		+	2 2				Q \	
Trip Blank	2	+	2				ی	
	1 HZ 121 11	G Water	N				ci-min	
				+		+		
			+			1		
				+				
Possible Hazard Identification							2537E O:	
Non-Hazard Flammable Skin Irritant Poison	B Unknown	Radiological	Sample Di:	sposal (A fee	Sample Disposal (A fee may be assessed if san.	1	100 C 100 C	Custody
			Special Inst	tructions/QC	Special Instructions/QC Requirements:		Archive For	Jr.
Empty Kit Relinquished by:	Date		Timo:	-	П			
Relinquished by:		7	Received by	-	Me	Method of Shipment:		
Relinquished by:	11/2/24 1045	AECOM		NA V	(8) XO	Date/Time	12.00	Compar
Dollawin to all to	Date/Time:	Сотрапу	Received by	by:		Date/Time:		Compar
	Date/Time:	Company	Received by	by:		Date/Time:		Compar
Custody Seal No.: △ Yes △ No			Cooler Te	emperature(s) °C	Cooler Temperature(s) °C and Other Remarks.	7	0 10	2,9 ID 46 , +1
							-	140 040

ANALYTICAL REPORT

Lab Number: L2500908

Client: Waste Management - Chem Trol

600 New Ludlow Rd South Hadley, MA 01075

ATTN: Ryan Donavan Phone: (413) 275-1522

Project Name: CHEMTROL MONTHLY

Project Number: GROUNDWATER

Report Date: WM CHEMTROL MONTH GW

01/23/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

L2500908

01/23/25

Lab Number:

Report Date:

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2500908-01	EFFLUENT	WATER	TOWN OF HAMBURG, NY	01/08/25 09:50	01/08/25
L2500908-02	INFLUENT	WATER	TOWN OF HAMBURG, NY	01/08/25 10:10	01/08/25
L2500908-03	TRIP BLANK	WATER	TOWN OF HAMBURG, NY	01/08/25 00:00	01/08/25

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GWReport Date:01/23/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GWReport Date:01/23/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Solids, Total Suspended

The Effluent (L2500908-02) result is greater than the Influent (L2500908-01) result.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/23/25

Melissa Sturgis Melissa Sturgis

Pace

ORGANICS

VOLATILES

L2500908

01/23/25

Project Name: CHEMTROL MONTHLY GROUNDWATER

L2500908-01

Project Number: WM CHEMTROL MONTH

SAMPLE RESULTS

Date Collected: 01/08/25 09:50

Lab Number:

Report Date:

Date Received: 01/08/25 **EFFLUENT** Field Prep: Sample Location: TOWN OF HAMBURG, NY Not Specified

Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/11/25 15:52

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
4.4 Dishlamathana	4.0			5.0	0.40					
1,1-Dichloroethane	1.6		ug/l	5.0	0.40	1				
Chlorobenzene	ND		ug/l	5.0	0.30	1				
1,1,1-Trichloroethane	ND		ug/l	5.0	0.29	1				
Benzene	ND		ug/l	5.0	0.38	1				
Toluene	ND		ug/l	5.0	0.31	1				
Chloroethane	ND		ug/l	5.0	0.37	1				
1,1-Dichloroethene	ND		ug/l	5.0	0.31	1				
cis-1,2-Dichloroethene	ND		ug/l	5.0	0.17	1				
Trichloroethene	ND		ug/l	5.0	0.33	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	92		60-140	
4-Bromofluorobenzene	94		60-140	

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

SAMPLE RESULTS

01/23/25

Report Date:

Lab ID: L2500908-01 Client ID: **EFFLUENT**

Sample Location: TOWN OF HAMBURG, NY Date Received: 01/08/25 Field Prep: Not Specified

Lab Number:

Date Collected:

01/08/25 09:50

L2500908

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/11/25 15:52

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
o-Chlorotoluene	0.99	J	ug/l	5.0	0.28	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	92		60-140
Fluorobenzene	102		60-140
4-Bromofluorobenzene	85		60-140

L2500908

01/08/25 10:10

Not Specified

01/08/25

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

SAMPLE RESULTS

Report Date: 01/23/25

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2500908-02

Client ID: INFLUENT

Sample Location: TOWN OF HAMBURG, NY

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 01/11/25 16:56

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,1-Dichloroethane	44		ug/l	5.0	0.40	1				
Chlorobenzene	ND		ug/l	5.0	0.30	1				
1,1,1-Trichloroethane	4.8		ug/l	5.0	0.29	1				
Benzene	0.87	J	ug/l	5.0	0.38	1				
Toluene	ND		ug/l	5.0	0.31	1				
Chloroethane	27		ug/l	5.0	0.37	1				
1,1-Dichloroethene	2.2		ug/l	5.0	0.31	1				
cis-1,2-Dichloroethene	3.1		ug/l	5.0	0.17	1				
Trichloroethene	3.1		ug/l	5.0	0.33	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	104		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	97		60-140	

L2500908

01/23/25

Project Name: Lab Number: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

SAMPLE RESULTS

Date Collected: 01/08/25 10:10

Report Date:

Lab ID: L2500908-02 D

Client ID: Date Received: 01/08/25 **INFLUENT** Sample Location: TOWN OF HAMBURG, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/13/25 13:19

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
o-Chlorotoluene	440		ug/l	10	2.8	10
Surrogate			% Recovery	Qualifier		otance teria
Pentafluorobenzene			94		6	0-140
Fluorobenzene			99		6	0-140
4-Bromofluorobenzene			92		6	0-140

L2500908

01/23/25

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L2500908-03 Date Collected: 01/08/25 00:00

Date Received: 01/08/25 Client ID: TRIP BLANK Field Prep: Sample Location: TOWN OF HAMBURG, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/11/25 16:24

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
4.4 Dishlamathana	ND			5.0	0.40	_				
1,1-Dichloroethane	ND		ug/l	5.0	0.40	1				
Chlorobenzene	ND		ug/l	5.0	0.30	1				
1,1,1-Trichloroethane	ND		ug/l	5.0	0.29	1				
Benzene	ND		ug/l	5.0	0.38	1				
Toluene	ND		ug/l	5.0	0.31	1				
Chloroethane	ND		ug/l	5.0	0.37	1				
1,1-Dichloroethene	ND		ug/l	5.0	0.31	1				
cis-1,2-Dichloroethene	ND		ug/l	5.0	0.17	1				
Trichloroethene	ND		ug/l	5.0	0.33	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	106		60-140	
Fluorobenzene	97		60-140	
4-Bromofluorobenzene	95		60-140	

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

SAMPLE RESULTS

01/23/25

Report Date:

Lab ID: L2500908-03 Client ID: TRIP BLANK

Sample Location: TOWN OF HAMBURG, NY Date Collected: Date Received:

Lab Number:

01/08/25 00:00

L2500908

Field Prep:

01/08/25 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/11/25 16:24

Analyst:

AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
o-Chlorotoluene	ND		ug/l	5.0	0.28	1
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	86		60-140	

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date: 01/23/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/11/25 11:37

Analyst: LAC

Parameter	Result Qua	lifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab for s	sample(s): 01-03	Batch:	WG2019176-4
1,1-Dichloroethane	ND	ug/l	5.0	0.40
Chlorobenzene	ND	ug/l	5.0	0.30
1,1,1-Trichloroethane	ND	ug/l	5.0	0.29
Benzene	ND	ug/l	5.0	0.38
Toluene	ND	ug/l	5.0	0.31
Chloroethane	ND	ug/l	5.0	0.37
1,1-Dichloroethene	ND	ug/l	5.0	0.31
cis-1,2-Dichloroethene	ND	ug/l	5.0	0.17
Trichloroethene	ND	ug/l	5.0	0.33

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
Pentafluorobenzene	100	60-140
Fluorobenzene	96	60-140
4-Bromofluorobenzene	92	60-140

L2500908

Project Name: CHEMTROL MONTHLY GROUNDWATER Lab Number:

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/13/25 11:11

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough Lab	for sample	e(s): 02	Batch:	WG2019688-4	
o-Chlorotoluene	ND		ug/l	5.0	0.28	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	90	60-140
Fluorobenzene	96	60-140
4-Bromofluorobenzene	104	60-140

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date: 01/23/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/11/25 11:37

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample	e(s): 01,03	Batch:	WG2019689-4
o-Chlorotoluene	ND		ug/l	5.0	0.28

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	91	60-140
Fluorobenzene	102	60-140
4-Bromofluorobenzene	83	60-140

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborou	gh Lab Associat	ed sample(s)	: 01-03 Batch	: WG20	19176-3				
1,1-Dichloroethane	110		-		50-150	-		49	
Chlorobenzene	85		-		65-135	-		53	
1,1,1-Trichloroethane	110		-		70-130	-		36	
Benzene	105		-		65-135	-		61	
Toluene	95		-		70-130	-		41	
Chloroethane	130		-		40-160	-		78	
1,1-Dichloroethene	110		-		50-150	-		32	
cis-1,2-Dichloroethene	100		-		60-140	-		30	
Trichloroethene	105		-		65-135	-		48	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Pentafluorobenzene	103			60-140	
Fluorobenzene	102			60-140	
4-Bromofluorobenzene	99			60-140	

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associate	ed sample(s)	: 02 Batch:	WG20196	88-3				
o-Chlorotoluene	110		-		60-140	-		30	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	105				60-140
Fluorobenzene	93				60-140
4-Bromofluorobenzene	103				60-140

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associate	d sample(s)	: 01,03 Batch:	WG2019	9689-3				
o-Chlorotoluene	90		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	_
Pentafluorobenzene	98		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	91		60-140	

METALS

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GWReport Date:01/23/25

SAMPLE RESULTS

Lab ID:L2500908-01Date Collected:01/08/25 09:50Client ID:EFFLUENTDate Received:01/08/25Sample Location:TOWN OF HAMBURG, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Iron, Total Recoverable	708.		ug/l	50.0	9.00	1	01/10/25 02:02	2 01/10/25 17:08	EPA 3005A	19,200.7	EFM

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GWReport Date:01/23/25

SAMPLE RESULTS

Lab ID:L2500908-02Date Collected:01/08/25 10:10Client ID:INFLUENTDate Received:01/08/25Sample Location:TOWN OF HAMBURG, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Iron, Total Recoverable	2960		ug/l	50.0	9.00	1	01/10/25 02:02	2 01/10/25 17:54	EPA 3005A	19,200.7	EFM

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH

Lab Number:

L2500908

Report Date: 01/23/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: W	G20209	04-1				
Iron, Total	ND	ug/l	50.0	9.00	1	01/10/25 02:02	01/10/25 16:50	19,200.7	EFM

Prep Information

Digestion Method: EPA 3005A

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sa	ample(s): 01-02 E	Batch: Wo	G2020904-2					
Iron, Total	97		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD Qua	RPD Limits
Total Metals - Mansfield L	ab Associated sam	nple(s): 01-02	QC Ba	tch ID: WG2020	0904-3	QC Sam	nple: L2500778	-06 Client ID: N	/IS Sample	
Iron, Total	6820	1000	7780	96		-	-	75-125	-	20

Lab Duplicate Analysis

Batch Quality Control

Project Name: CHEMTROL MONTHLY GROUNDWATER

Lab Number: L2500908

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

Parameter	Native Sample		ample	Units	RPD	Qual F	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG2020904-4 QC	Sample:	L2500778-06	Client ID:	DUP Sample	9
Iron, Total	6820	7110		ug/l	4		20

INORGANICS & MISCELLANEOUS

Project Name: CHEMTROL MONTHLY GROUNDWATER

Lab Number: L2500908

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

SAMPLE RESULTS

Lab ID: L2500908-01 Date Collected: 01/08/25 09:50

Client ID: EFFLUENT Date Received: 01/08/25
Sample Location: TOWN OF HAMBURG, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Suspended Solids	10.		mg/l	4.0	NA	1	-	01/11/25 18:27	121,2540D	REM

Project Name: CHEMTROL MONTHLY GROUNDWATER Lab Number: L2500908

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

SAMPLE RESULTS

Lab ID: L2500908-02 Date Collected: 01/08/25 10:10

Client ID: INFLUENT Date Received: 01/08/25
Sample Location: TOWN OF HAMBURG, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Total Suspended Solids	5.0		mg/l	4.0	NA	1	-	01/11/25 18:27	121,2540D	REM

01/11/25 18:27

L2500908

121,2540D

REM

Lab Number:

Project Name: CHEMTROL MONTHLY GROUNDWAT

ND

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

1.0

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	thorough Lab for sam	nle(s)· (11-02 Ra	tch: \//(32018892-1	1			

NA

1

Solids, Total Suspended

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW

Lab Number:

L2500908

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01-02	Batch: WG20188	92-2				
Solids, Total Suspended	103	-		80-120	-		

Lab Duplicate Analysis

Batch Quality Control

CHEMTROL MONTHLY GROUNDWATER Batch Quality

Project Number: WM CHEMTROL MONTH GW

Project Name:

Lab Number:

L2500908

Report Date:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s): 01-02	QC Batch ID:	WG2018892-3	QC Sample:	L2501361-01	Client ID:	DUP Sample
Solids, Total Suspended	270		270	mg/l	0		32
General Chemistry - Westborough Lab Ass	sociated sample(s): 01-02	QC Batch ID:	WG2018892-4	QC Sample:	L2501371-01	Client ID:	DUP Sample
Solids, Total Suspended	620		660	mg/l	6		32

Field Data Summary

Field Data Summary

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MC

Lab Number:

L2500908

Report Date:

Parameter	Result	Units
Sample: L2500908-01 Client ID: EFFLUENT		
Field, pH	7.77	std
Field, Temperature	7.6	С
Sample: L2500908-02 Client ID: INFLUENT		
Field, pH	7.70	std
Field, Temperature	7.1	С
Sample: L2500908-02 Client ID: INFLUENT Field, pH	7.70	std

Serial_No:01232514:36 *Lab Number:* L2500908

Project Name: CHEMTROL MONTHLY GROUNDWATER

Project Number: WM CHEMTROL MONTH GW Report Date: 01/23/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2500908-01A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-01B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-01C	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		FE-UI-PPB(180)
L2500908-01E	Plastic 950ml unpreserved	Α	7	7	3.4	Υ	Absent		TSS-2540-LOW(7)
L2500908-02A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-02B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-02C	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		-
L2500908-02E	Plastic 950ml unpreserved	Α	7	7	3.4	Υ	Absent		TSS-2540-LOW(7)
L2500908-03A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)
L2500908-03B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1(7)

Project Name: Lab Number: CHEMTROL MONTHLY GROUNDWATER L2500908 WM CHEMTROL MONTH G **Report Date: Project Number:** 01/23/25

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GReport Date:01/23/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GReport Date:01/23/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:CHEMTROL MONTHLY GROUNDWATERLab Number:L2500908Project Number:WM CHEMTROL MONTH GWReport Date:01/23/25

REFERENCES

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01232514:36

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 01/08/2025

Page 1 of 1

ID No.:17873

Revision 25

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Alpha SOP 23528

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Pace Pace Location R	equested (C	ity/St	tate):	CHAIN-OF-C	Custody is a LEGA	Analyt	ical R	equest D	ocur	nent			回北	MRCS/	870		LAB USE ONLY-		1052525313	
Company Name: Waste Management				Contact/Report To: R	yan Donovan						_		100	A L	SSI.		125	200	NX	
Street Address:				Phone #: 413-427-44										200			200	001	0.0	
600 New Ludlow Road				f-Mail: edonovan@									746	14.4	200		120000000000000000000000000000000000000			
South Hadley, MA 01075				Cr E-Mail:	WIII.GGIII									Mar.			Scan QR Cod	e for instru	ctions	
Customer Project #: Chemitrol Monthly GW (1,3,5	7011				AV. 191															
Project Name:	aram, ray			invoice to: Ryan Don	ovan															
WM Chemtrol Month GW				Invoice E-mail:		d t- 0-									- Spe	rcify Con	tainer Size **		-	**Container Size: (1) 11, (2) 550ml, (8) 250erL,
Site Collection Info/Facility (D (as applicable):				edonovan@wr	n.com (loa	a to Co	upa)					6	3							(4) 125mi., (5) 100ml., (6) 40ml. visl, (7) EnCore., (8) TerraCore. (9) 90ml., (10) Other
				applicable):								-	-	М	ientify Co	ntainer	Preservative Type**	+		*** Preservative Types: (3) None, (2) HNOA, (2) H
				Quote #: WM acci	ar out							8	2							(4) HCl, (5) NaCH, (6) Zn Acetate, (7) NaHSO4, (8)
Sura Victor Collected 1 1 1 1 1 1 1 1 1	V												_			letalysis i	Requested			Thresulfate, (R) Ascerbic Acid, (30) MeCH, (11) OH
Fine Zone Collected: [] AK [] PT [] MT		_	-	County / State origin of	sample(s): MA	8														Proj Mgr
Data Deliverables: Level II Level II Level IV	Regulatory Program (I Permit		Art Williams	applicable:				Report	table]	Ves [] No		for list	(e)							Canace Fox AcctNum / Client ID:
	Rush (Pre-approval)					DW PWS	W to a Oil	V Permit # as a	pplicable				(F			63				g WM-Chemtrol
Xequis .	[] Same Day [] 11	Day []:	Day []	3 Day Other								Ë	1.00			O.				Table #:
L lother upload to WM	Date Results 10	BD						d (If applicable)	1 1%	[]No		permit)	S			emp				Profile / Template:
			market Pro-			Analysis							to		핆	o.				CHEMTROL-M
Matrix Codes (Insert in Matrix box helow): Drinking Water (D. Skudge (SL), Casife (CK), Leacharte (LL), Biosolid (BS), Othe	vrg, Gebund Water (GW), W er (OT)	autowater	DAVAY), Prod	max (P1), Soll/Soller (SS), Clir (O	L Wipe (WF). Time	ue (ES), Bimass	ay (H), Vapo	r (V), Surface W	iter (SW),	Sediment (S	ED),	see)	Metal		0	-	1 1 1		1	Preiog / Bottle Ord. ID:
Customer Sample ID	S11222	Matrix *	Comp /	Composite St	21-	Collecte	ed or Com	posite End	# Cont.	Residual C	nterine	624.1		TSS	Field	Field				
Effluent	1	Ν	6	119/25	0950	118		0950	5	Result	Units	9 V	$\dot{\neg}$	÷	4	4	-	-	+-	Sample Comment
Influent	· V	N	G	49/25	7.0	1/8	125	1010	5			\Diamond	\Diamond	0	0	\odot	\vdash	+	-	
Trip Blank		N	G	Valor	T.U	1/8		_	2	\vdash	-	\Diamond	$^{\wedge}$	\triangle	\triangle	\triangle			-	
•				17112)	100	119	1-2	-				$^{\wedge}$	-	_	_	_	\rightarrow	-	-	
											-	-	-				-	-		
						_					-	-						-	-	
										-	-					_	\rightarrow	+	\vdash	
											-		-	-			\rightarrow	+	\vdash	
																		-	-	
										_								-		
dditional Instructions from Pace*:					Collected By:		_				-	Contac	one flor	arks /	Sparit	Fords	nes / Dec. (1)			
Report metal: As total r	ecoverable	0			Printed Name	TOM	019	41									ons / Possible H AEMCOM: jan			
report metall / to total /	COOVEIGDI	0.			Sancatore			1. 12				# Cooler			oneter ID		arrection Factor (*C)			- Committee - Comm
fingshhed by/Company: Signature) a						om	- 4	~		1							100	3.11/4	410	Correctment Territor, (*C2) [] Clan incom
	ECOM		1/	8/25 €/	1.13	termined by/C	1	bades	0	de	1				Oute/Tip	-9	25 /	1:13	Tracking	Nursier:
Chen (e) In the	pace		Date	8-250	11:18	teceived by/C	Del	Hale		SE					Civil a Illian		25 //		Delivere	od by: In-Person Counter
Firepathed by/Conguny Biensteins	2		Euro	825 15	38	eseized tilyt	-	protova)	-					n	Oute/fire	0.0	100			[] FedEX
and the same of th				inceofthePace* Ten	0 3		13/8			_	-1	2		11.1	TARGET AND	91 4	111 5	011	I II no	ge:) of /

FIELD INFORMATION FORM

Surface Water, Stormwater and Leachate

Site Name: Chem	Trol	1		Labo	ratory Use Only / Lab I.D.:
Sample I.D. INF				_	
Purge and Sample Equipmen		pling Method	d & Equipment		
Sampling Method:	D - Direct Sampling Equipm I - Indirect V - Visual Grab / Composite (circ		D - Dipper T - Transfer Vessel	S - Sample B O - Other	lottie
		Field Measu	rements		
Sample Date MM/DD/YYYY	Sample pH Time (std. Units)	CONDUCTI (umhos/cn 25"C)	VITY Tomo	TURBIDITY (NTUs)	DO eH/ORP mg/L - (std. Units
Record final stabilized field rea	[1010] [7.70] adings.		7.		
		Field Obse	vations		
Sample Appearance:	Odor: 51,94+ -dece	y Color: el	ecer Othe	r	
	Sheen Present Y or N) Foam Presen	: Y on N Float	ting Solids: Y or	ND .
Weather Conditions: (required	daily, or as conditions change):				
		10 mgh	Prec	ipitation: Y or	NT)
Specific Comments:		Î.			
	-				
118 125	TOM UISAN		Tom Ul	-	AECOM
Date	Name	1	Signature		Company

FIELD INFORMATION FORM

Surface Water, Stormwater and Leachate

Site Name: Chem Trol
Sample I.D. EFF
Sampling Method & Equipment Purge and Sample Equipment:
Sampling Method: D - Direct Sampling Equipment: I - Indirect V - Visual Sample Type: Grab / Composite (circle one)
Field Measurements
Sample Date Sample PH CONDUCTIVITY Temp TURBIDITY DO mg/L - (std. Units) 25"C) Temp TURBIDITY ppm (std. Units)
01/08/2025 0950 7.77 — 7.6 — — Record final stabilized field readings.
Field Observations
Sample Appearance: Odor: _none Color: _clear Other:
Sheen Present Y or N Foam Present: Y or N Floating Solids: Y or N
Weather Conditions: (required daily, or as conditions change):
Direction/Speed: NW/10 my h Precipitation: Y of N
Specific Comments:
118 25 Tom Urban Tom When AECOM
Date Name Signature Company

ATTACHMENT D

September 2024 Bi-Annual Groundwater Monitoring Analytical Report

ANALYTICAL REPORT

PREPARED FOR

Attn: Ryan Donovan Waste Management 600 New Ludlow Road South Hadley, Massachusetts 01075

Generated 10/2/2024 2:51:32 PM

JOB DESCRIPTION

ChemTrol Site - Groundwater ChemTrol Annual Groundwater (9-Even yrs)

JOB NUMBER

480-223722-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 10/2/2024 2:51:32 PM

Authorized for release by Gale Prinster, Project Mgmt. Assistant gale.prinster@et.eurofinsus.com Designee for Ryan VanDette, Project Manager II Ryan.VanDette@et.eurofinsus.com (716)504-9830

Client: Waste Management Project/Site: ChemTrol Site - Groundwater

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	
QC Association	30
Chronicle	31
Certification Summary	33
Method Summary	34
Sample Summary	35
Chain of Custody	36

4

0

9

10

12

Definitions/Glossary

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 36 10/2/2024

Case Narrative

Client: Waste Management

Project: ChemTrol Site - Groundwater

Job ID: 480-223722-1 Eurofins Buffalo

Job Narrative 480-223722-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/25/2024 3:22 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C.

GC/MS VOA

Method 8260C: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): TB-092524 (480-223722-1).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-726431 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: TB-092524 (480-223722-1), FD-092524 (480-223722-2), MW-13R (480-223722-3), MW-15R (480-223722-4), MW-3S (480-223722-5), MW-7R (480-223722-6), MW-8R (480-223722-7) and MW-9R (480-223722-8).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-13R (480-223722-3), MW-3S (480-223722-5), MW-8R (480-223722-7) and MW-9R (480-223722-8). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW-15R (480-223722-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: FD-092524 (480-223722-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

10/2/2024

Page 5 of 36

2

Job ID: 480-223722-1

3

4

_

10

11

12

1,

Detection Summary

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: TB-092524 Lab Sample ID: 480-223722-1

No Detections.

Client Sample ID: FD-092524 Lab Sample ID: 480-223722-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
o-Chlorotoluene - DL	1100	34	ug/L	40	8260C	Total/NA

Client Sample ID: MW-13R Lab Sample ID: 480-223722-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
o-Chlorotoluene	1400	34	ug/L	40 8260C	Total/NA

Client Sample ID: MW-15R Lab Sample ID: 480-223722-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Cyclohexane	31	5.0	ug/L		8260C	Total/NA
Methylcyclohexane	8.8	5.0	ug/L	2	8260C	Total/NA

Client Sample ID: MW-3S Lab Sample ID: 480-223722-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
o-Chlorotoluene	77000	860	ug/L	1000	8260C	Total/NA

Client Sample ID: MW-7R Lab Sample ID: 480-223722-6

No Detections.

Client Sample ID: MW-8R Lab Sample ID: 480-223722-7

Analyte	Result (Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
o-Chlorotoluene	100		5.0	ug/L	4	8260C	Total/NA

Client Sample ID: MW-9R Lab Sample ID: 480-223722-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1,1-Trichloroethane	160	5.0	ug/L	4	8260C	Total/NA
1,1-Dichloroethane	71	5.0	ug/L	4	8260C	Total/NA

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: TB-092524

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Styrene

Toluene

Isopropylbenzene

Chloroform

Carbon tetrachloride

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Bromodichloromethane

Dichlorofluoromethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Lab Sample ID: 480-223722-1 Date Collected: 09/25/24 00:00

Matrix: Water

Date Received: 09/25/24 15:22 Method: SW846 8260C - Volatile Organic Compounds by GC/MS Result Qualifier **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane ND 5.0 ug/L 09/28/24 05:48 ND 5.0 1,1,2,2-Tetrachloroethane ug/L 09/28/24 05:48 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.0 ug/L 09/28/24 05:48 ND 5.0 1,1,2-Trichloroethane ug/L 09/28/24 05:48 1.1-Dichloroethane ND 5.0 ug/L 09/28/24 05:48 1,2,4-Trichlorobenzene ND 5.0 ug/L 09/28/24 05:48 1,2-Dibromo-3-Chloropropane ND 5.0 ug/L 09/28/24 05:48 1.2-Dibromoethane ND 5.0 ug/L 09/28/24 05:48 1,2-Dichlorobenzene ND 5.0 ug/L 09/28/24 05:48 1,2-Dichloroethane ND 5.0 ug/L 09/28/24 05:48 1,2-Dichloropropane ND 5.0 ug/L 09/28/24 05:48 1.3-Dichlorobenzene ND 5.0 ug/L 09/28/24 05:48 1,4-Dichlorobenzene ND 5.0 ug/L 09/28/24 05:48 2-Butanone (MEK) ND 25 ug/L 09/28/24 05:48 ND o-Chlorotoluene 5.0 ug/L 09/28/24 05:48 25 2-Hexanone ND ug/L 09/28/24 05:48 4-Methyl-2-pentanone (MIBK) ND 25 ug/L 09/28/24 05:48 Acetone ND 25 ug/L 09/28/24 05:48 Benzene ND 5.0 ug/L 09/28/24 05:48 Bromoform ND 5.0 ug/L 09/28/24 05:48

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

15

ug/L

ND

6

09/28/24 05:48 09/28/24 05:48 09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

09/28/24 05:48

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Lab Sample ID: 480-223722-1 Client Sample ID: TB-092524

Matrix: Water

Date Collected: 09/25/24 00:00 Date Received: 09/25/24 15:22

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120		09/28/24 05:48	1
Toluene-d8 (Surr)	102		80 - 120		09/28/24 05:48	1
4-Bromofluorobenzene (Surr)	94		73 - 120		09/28/24 05:48	1
Dibromofluoromethane (Surr)	101		75 - 123		09/28/24 05:48	1

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: FD-092524

Lab Sample ID: 480-223722-2 Date Collected: 09/25/24 00:00

Matrix: Water

Date Received: 09/25/24 15:22 Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	ī	ıg/L			09/28/24 06:10	1
1,1,2,2-Tetrachloroethane	ND		5.0	ι	ıg/L			09/28/24 06:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ι	ıg/L			09/28/24 06:10	1
1,1,2-Trichloroethane	ND		5.0		ıg/L			09/28/24 06:10	1
1,1-Dichloroethane	ND		5.0	ι	ıg/L			09/28/24 06:10	1
1,2,4-Trichlorobenzene	ND		5.0		ıg/L			09/28/24 06:10	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ıg/L			09/28/24 06:10	1
1,2-Dibromoethane	ND		5.0		ıg/L			09/28/24 06:10	1
1,2-Dichlorobenzene	ND		5.0		ıg/L			09/28/24 06:10	1
1,2-Dichloroethane	ND		5.0		ig/L			09/28/24 06:10	1
1,2-Dichloropropane	ND		5.0		ıg/L			09/28/24 06:10	1
1,3-Dichlorobenzene	ND		5.0		ıg/L			09/28/24 06:10	1
1,4-Dichlorobenzene	ND		5.0		ig/L			09/28/24 06:10	1
2-Butanone (MEK)	ND		25		ıg/L			09/28/24 06:10	1
2-Hexanone	ND		25		ıg/L			09/28/24 06:10	1
4-Methyl-2-pentanone (MIBK)	ND		25		ig/L			09/28/24 06:10	· · · · · · · · · · · · · · · · · · ·
Acetone (IIII)	ND		25		ıg/L			09/28/24 06:10	1
Benzene	ND		5.0		ıg/L			09/28/24 06:10	1
Bromoform	ND		5.0		ig/L			09/28/24 06:10	· · · · · · · · · · · · · · · · · · ·
Bromomethane	ND		5.0		ıg/L ıg/L			09/28/24 06:10	1
Carbon disulfide	ND		5.0		ig/L ig/L			09/28/24 06:10	1
Carbon tetrachloride	ND		5.0					09/28/24 06:10	
Chlorobenzene	ND		5.0		ıg/L			09/28/24 06:10	
Chlorodibromomethane	ND ND		5.0		ıg/L			09/28/24 06:10	1
					ıg/L				
Chloroethane	ND		5.0		ıg/L			09/28/24 06:10	1
Chloroform	ND		5.0		ıg/L			09/28/24 06:10	1
Chloromethane	ND		5.0		ıg/L			09/28/24 06:10	
cis-1,2-Dichloroethene	ND		5.0		ıg/L			09/28/24 06:10	1
cis-1,3-Dichloropropene	ND		5.0		ıg/L			09/28/24 06:10	1
Cyclohexane	ND		5.0		ıg/L			09/28/24 06:10	1
Bromodichloromethane	ND		5.0		ıg/L			09/28/24 06:10	1
Dichlorofluoromethane	ND		5.0		ıg/L			09/28/24 06:10	1
Ethylbenzene	ND		5.0		ıg/L			09/28/24 06:10	1
Isopropylbenzene	ND		5.0		ıg/L			09/28/24 06:10	1
Methyl acetate	ND		5.0		ıg/L			09/28/24 06:10	1
Methyl tert-butyl ether	ND		5.0		ıg/L			09/28/24 06:10	1
Methylcyclohexane	ND		5.0		ıg/L			09/28/24 06:10	1
Methylene Chloride	ND		5.0		ıg/L			09/28/24 06:10	1
Styrene	ND		5.0	L	ıg/L			09/28/24 06:10	1
Tetrachloroethene	ND		5.0	ι	ıg/L			09/28/24 06:10	1
Toluene	ND		5.0	ι	ıg/L			09/28/24 06:10	1
trans-1,2-Dichloroethene	ND		5.0	ι	ıg/L			09/28/24 06:10	1
trans-1,3-Dichloropropene	ND		5.0	ι	ıg/L			09/28/24 06:10	1
Trichloroethene	ND		5.0	ι	ıg/L			09/28/24 06:10	1
Trichlorofluoromethane	ND		5.0	ι	ıg/L			09/28/24 06:10	1
Vinyl chloride	ND		5.0	L	ıg/L			09/28/24 06:10	1
Xylenes, Total	ND		15	ι	ıg/L			09/28/24 06:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Buffalo

10/2/2024

Page 9 of 36

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: FD-092524 Lab Sample ID: 480-223722-2

Date Collected: 09/25/24 00:00 Matrix: Water

Date Received: 09/25/24 15:22

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120	_		09/28/24 06:10	1
4-Bromofluorobenzene (Surr)	94		73 - 120			09/28/24 06:10	1
Dibromofluoromethane (Surr)	99		75 - 123			09/28/24 06:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Chlorotoluene	1100		34		ug/L			09/30/24 15:01	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					09/30/24 15:01	40
Toluene-d8 (Surr)	102		80 - 120					09/30/24 15:01	40
4-Bromofluorobenzene (Surr)	103		73 - 120					09/30/24 15:01	40
Dibromofluoromethane (Surr)	102		75 - 123					09/30/24 15:01	40

3

5

6

8

9

10

12

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-13R

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

Lab Sample ID: 480-223722-3 Date Collected: 09/25/24 10:20

Matrix: Water

Method: SW846 8260C - Volatile		•	MDL II.	_	D	Amelian 1	B" F
Analyte	Result Qualifier	RL	MDL Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	33	ug/L			09/28/24 06:33	40
1,1,2,2-Tetrachloroethane	ND	8.4	ug/L			09/28/24 06:33	40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	12	ug/L			09/28/24 06:33	40
1,1,2-Trichloroethane	ND	9.2	ug/L			09/28/24 06:33	40
1,1-Dichloroethane	ND	15	ug/L			09/28/24 06:33	40
1,2,4-Trichlorobenzene	ND	16	ug/L			09/28/24 06:33	40
1,2-Dibromo-3-Chloropropane	ND	16	ug/L			09/28/24 06:33	40
1,2-Dibromoethane	ND	29	ug/L			09/28/24 06:33	40
1,2-Dichlorobenzene	ND	32	ug/L			09/28/24 06:33	40
1,2-Dichloroethane	ND	8.4	ug/L			09/28/24 06:33	40
1,2-Dichloropropane	ND	29	ug/L			09/28/24 06:33	40
1,3-Dichlorobenzene	ND	31	ug/L			09/28/24 06:33	40
1,4-Dichlorobenzene	ND	34	ug/L			09/28/24 06:33	40
2-Butanone (MEK)	ND	53	ug/L			09/28/24 06:33	40
o-Chlorotoluene	1400	34	ug/L			09/28/24 06:33	40
2-Hexanone	ND	50	ug/L			09/28/24 06:33	40
4-Methyl-2-pentanone (MIBK)	ND	84	ug/L			09/28/24 06:33	40
Acetone	ND	120	ug/L			09/28/24 06:33	40
Benzene	ND	16	ug/L			09/28/24 06:33	40
Bromoform	ND	10	ug/L			09/28/24 06:33	40
Bromomethane	ND	28	ug/L			09/28/24 06:33	40
Carbon disulfide	ND	7.6	ug/L			09/28/24 06:33	4(
Carbon tetrachloride	ND	11	ug/L			09/28/24 06:33	40
Chlorobenzene	ND	30	ug/L			09/28/24 06:33	40
Chlorodibromomethane	ND	13	ug/L			09/28/24 06:33	40
Chloroethane	ND	13	ug/L			09/28/24 06:33	40
Chloroform	ND	14	ug/L			09/28/24 06:33	40
Chloromethane	ND	14	ug/L			09/28/24 06:33	40
cis-1,2-Dichloroethene	ND	32	ug/L			09/28/24 06:33	40
cis-1,3-Dichloropropene	ND	14	ug/L			09/28/24 06:33	40
Cyclohexane	ND	7.2	ug/L			09/28/24 06:33	40
Bromodichloromethane	ND	16	ug/L			09/28/24 06:33	40
Dichlorofluoromethane	ND	14	ug/L			09/28/24 06:33	40
Ethylbenzene	ND	30	ug/L			09/28/24 06:33	4(
Isopropylbenzene	ND	32	ug/L			09/28/24 06:33	40
Methyl acetate	ND	52	ug/L			09/28/24 06:33	40
Methyl tert-butyl ether	ND	6.4	ug/L			09/28/24 06:33	4(
weary terr-butyr ether	IND	0.4	ug/L			03120124 00.33	40

Eurofins Buffalo

6.4

18

29

14

20

36

15

18

35

36

26

ug/L

ND

40

40

40

40

40

40

40

40

40

40

40

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

09/28/24 06:33

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-13R Lab Sample ID: 480-223722-3

Date Collected: 09/25/24 10:20 Matrix: Water

Date Received: 09/25/24 15:22

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120	09/28/24 06:33	40
Toluene-d8 (Surr)	101		80 - 120	09/28/24 06:33	40
4-Bromofluorobenzene (Surr)	92		73 - 120	09/28/24 06:33	40
Dibromofluoromethane (Surr)	103		75 - 123	09/28/24 06:33	40

4

5

7

9

10

12

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-15R

Lab Sample ID: 480-223722-4 Date Collected: 09/25/24 09:25

Matrix: Water

Date Received: 09/25/24 15:22

Analyte	Result	Qualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0)	ug/L			09/28/24 06:55	
1,1,2,2-Tetrachloroethane	ND	5.0)	ug/L			09/28/24 06:55	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0)	ug/L			09/28/24 06:55	2
1,1,2-Trichloroethane	ND	5.0)	ug/L			09/28/24 06:55	2
1,1-Dichloroethane	ND	5.0)	ug/L			09/28/24 06:55	2
1,2,4-Trichlorobenzene	ND	5.0)	ug/L			09/28/24 06:55	2
1,2-Dibromo-3-Chloropropane	ND	5.0)	ug/L			09/28/24 06:55	
1,2-Dibromoethane	ND	5.0)	ug/L			09/28/24 06:55	2
1,2-Dichlorobenzene	ND	5.0)	ug/L			09/28/24 06:55	:
1,2-Dichloroethane	ND	5.0		ug/L			09/28/24 06:55	
1,2-Dichloropropane	ND	5.0		ug/L			09/28/24 06:55	:
1,3-Dichlorobenzene	ND	5.0		ug/L			09/28/24 06:55	2
1,4-Dichlorobenzene	ND	5.0		ug/L			09/28/24 06:55	
2-Butanone (MEK)	ND	25		ug/L			09/28/24 06:55	:
o-Chlorotoluene	ND	5.0		ug/L			09/28/24 06:55	
2-Hexanone	ND	25		ug/L			09/28/24 06:55	
4-Methyl-2-pentanone (MIBK)	ND	25		ug/L			09/28/24 06:55	:
Acetone	ND	25		ug/L			09/28/24 06:55	
Benzene	ND	5.0		ug/L			09/28/24 06:55	
Bromoform	ND	5.0		ug/L ug/L			09/28/24 06:55	:
Bromomethane	ND	5.0		_			09/28/24 06:55	:
Carbon disulfide	ND	5.0		ug/L			09/28/24 06:55	:
Carbon tetrachloride	ND ND	5.0		ug/L			09/28/24 06:55	:
	ND ND			ug/L				:
Chlorodibromomathana		5.0		ug/L			09/28/24 06:55	:
Chlorodibromomethane	ND	5.0		ug/L			09/28/24 06:55	
Chloroform	ND	5.0		ug/L			09/28/24 06:55	
Chloroform	ND	5.0		ug/L			09/28/24 06:55	
Chloromethane	ND	5.0		ug/L			09/28/24 06:55	
cis-1,2-Dichloroethene	ND	5.0		ug/L			09/28/24 06:55	
cis-1,3-Dichloropropene	ND	5.0		ug/L			09/28/24 06:55	
Cyclohexane	31	5.0		ug/L			09/28/24 06:55	2
Bromodichloromethane	ND	5.0		ug/L			09/28/24 06:55	2
Dichlorofluoromethane	ND	5.0		ug/L			09/28/24 06:55	
Ethylbenzene	ND	5.0		ug/L			09/28/24 06:55	:
Isopropylbenzene	ND	5.0		ug/L			09/28/24 06:55	2
Methyl acetate	ND	5.0		ug/L			09/28/24 06:55	
Methyl tert-butyl ether	ND	5.0		ug/L			09/28/24 06:55	:
Methylcyclohexane	8.8	5.0		ug/L			09/28/24 06:55	:
Methylene Chloride	ND	5.0		ug/L			09/28/24 06:55	
Styrene	ND	5.0		ug/L			09/28/24 06:55	:
Tetrachloroethene	ND	5.0)	ug/L			09/28/24 06:55	:
Toluene	ND	5.0)	ug/L			09/28/24 06:55	:
trans-1,2-Dichloroethene	ND	5.0)	ug/L			09/28/24 06:55	
trans-1,3-Dichloropropene	ND	5.0)	ug/L			09/28/24 06:55	:
Trichloroethene	ND	5.0)	ug/L			09/28/24 06:55	:
Trichlorofluoromethane	ND	5.0)	ug/L			09/28/24 06:55	
Vinyl chloride	ND	5.0)	ug/L			09/28/24 06:55	2
Xylenes, Total	ND	15	5	ug/L			09/28/24 06:55	:

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-15R Lab Sample ID: 480-223722-4

Matrix: Water

Date Collected: 09/25/24 09:25
Date Received: 09/25/24 15:22

Surrogate	%Recovery Q	Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	77 - 120	09/28/24 06:3	55 2
Toluene-d8 (Surr)	101	80 - 120	09/28/24 06:3	55 2
4-Bromofluorobenzene (Surr)	96	73 - 120	09/28/24 06:3	55 2
Dibromofluoromethane (Surr)	101	75 - 123	09/28/24 06:	55 2

6

8

10

11

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Date Received: 09/25/24 15:22

Client Sample ID: MW-3S Lab Sample ID: 480-223722-5 Date Collected: 09/25/24 12:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		820		ug/L			09/28/24 07:18	1000
1,1,2,2-Tetrachloroethane	ND		210		ug/L			09/28/24 07:18	1000
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		310		ug/L			09/28/24 07:18	1000
1,1,2-Trichloroethane	ND		230		ug/L			09/28/24 07:18	1000
1,1-Dichloroethane	ND		380		ug/L			09/28/24 07:18	1000
1,2,4-Trichlorobenzene	ND		410		ug/L			09/28/24 07:18	1000
1,2-Dibromo-3-Chloropropane	ND		390		ug/L			09/28/24 07:18	1000
1,2-Dibromoethane	ND		730		ug/L			09/28/24 07:18	1000
1,2-Dichlorobenzene	ND		790		ug/L			09/28/24 07:18	1000
1,2-Dichloroethane	ND		210		ug/L			09/28/24 07:18	1000
1,2-Dichloropropane	ND		720		ug/L			09/28/24 07:18	1000
1,3-Dichlorobenzene	ND		780		ug/L			09/28/24 07:18	1000
1,4-Dichlorobenzene	ND		840		ug/L			09/28/24 07:18	1000
2-Butanone (MEK)	ND		1300		ug/L			09/28/24 07:18	1000
o-Chlorotoluene	77000		860		ug/L			09/28/24 07:18	1000
2-Hexanone	ND		1200		ug/L			09/28/24 07:18	1000
4-Methyl-2-pentanone (MIBK)	ND		2100		ug/L			09/28/24 07:18	1000
Acetone	ND		3000		ug/L			09/28/24 07:18	1000
Benzene	ND		410		ug/L			09/28/24 07:18	1000
Bromoform	ND		260		ug/L			09/28/24 07:18	1000
Bromomethane	ND		690		ug/L			09/28/24 07:18	1000
Carbon disulfide	ND		190		ug/L			09/28/24 07:18	1000
Carbon tetrachloride	ND		270		ug/L			09/28/24 07:18	1000
Chlorobenzene	ND		750		ug/L			09/28/24 07:18	1000
Chlorodibromomethane	ND		320		ug/L			09/28/24 07:18	1000
Chloroethane	ND		320		ug/L			09/28/24 07:18	1000
Chloroform	ND		340		ug/L			09/28/24 07:18	1000
Chloromethane	ND		350		ug/L			09/28/24 07:18	1000
cis-1,2-Dichloroethene	ND		810		ug/L			09/28/24 07:18	1000
cis-1,3-Dichloropropene	ND		360		ug/L			09/28/24 07:18	1000
Cyclohexane	ND		180		ug/L			09/28/24 07:18	1000
Bromodichloromethane	ND		390		ug/L			09/28/24 07:18	1000
Dichlorofluoromethane	ND		340		ug/L			09/28/24 07:18	1000
Ethylbenzene	ND		740		ug/L			09/28/24 07:18	1000
Isopropylbenzene	ND		790		ug/L			09/28/24 07:18	1000
Methyl acetate	ND		1300		ug/L			09/28/24 07:18	1000
Methyl tert-butyl ether	ND		160		ug/L			09/28/24 07:18	1000
Methylcyclohexane	ND		160		ug/L			09/28/24 07:18	1000
Methylene Chloride	ND		440		ug/L ug/L			09/28/24 07:18	1000
Styrene	ND		730					09/28/24 07:18	1000
Tetrachloroethene	ND		360		ug/L			09/28/24 07:18	1000
					ug/L				
Toluene	ND		510		ug/L			09/28/24 07:18	1000
trans-1,2-Dichloroethene	ND		900		ug/L			09/28/24 07:18	1000
trans-1,3-Dichloropropene	ND		370		ug/L			09/28/24 07:18	1000
Trichlorethene	ND		460		ug/L			09/28/24 07:18	1000
Trichlorofluoromethane	ND		880		ug/L			09/28/24 07:18	1000
Vinyl chloride Xylenes, Total	ND ND		900 660		ug/L ug/L			09/28/24 07:18 09/28/24 07:18	1000 1000

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-3S Lab Sample ID: 480-223722-5

Matrix: Water

Date Collected: 09/25/24 12:15 Date Received: 09/25/24 15:22

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		09/28/24 07:18	1000
Toluene-d8 (Surr)	101	80 - 120		09/28/24 07:18	1000
4-Bromofluorobenzene (Surr)	95	73 - 120		09/28/24 07:18	1000
Dibromofluoromethane (Surr)	102	75 - 123		09/28/24 07:18	1000

5

9

11

12

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-7R

Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-6 Date Collected: 09/25/24 08:20

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	ug/L		09/28/24 07:41	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		09/28/24 07:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		09/28/24 07:41	1
1,1,2-Trichloroethane	ND	5.0	ug/L		09/28/24 07:41	1
1,1-Dichloroethane	ND	5.0	ug/L		09/28/24 07:41	1
1,2,4-Trichlorobenzene	ND	5.0	ug/L		09/28/24 07:41	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		09/28/24 07:41	1
1,2-Dibromoethane	ND	5.0	ug/L		09/28/24 07:41	1
1,2-Dichlorobenzene	ND	5.0	ug/L		09/28/24 07:41	1
1,2-Dichloroethane	ND	5.0	ug/L		09/28/24 07:41	1
1,2-Dichloropropane	ND	5.0	ug/L		09/28/24 07:41	1
1,3-Dichlorobenzene	ND	5.0	ug/L		09/28/24 07:41	1
1,4-Dichlorobenzene	ND	5.0	ug/L		09/28/24 07:41	1
2-Butanone (MEK)	ND	25	ug/L		09/28/24 07:41	1
o-Chlorotoluene	ND	5.0	ug/L		09/28/24 07:41	1
2-Hexanone	ND	25	ug/L		09/28/24 07:41	1
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		09/28/24 07:41	1
Acetone	ND	25	ug/L		09/28/24 07:41	1
Benzene	ND	5.0	ug/L		09/28/24 07:41	1
Bromoform	ND	5.0	ug/L		09/28/24 07:41	1
Bromomethane	ND	5.0	ug/L		09/28/24 07:41	1
Carbon disulfide	ND	5.0	ug/L		09/28/24 07:41	1
Carbon tetrachloride	ND	5.0	ug/L		09/28/24 07:41	1
Chlorobenzene	ND	5.0	ug/L		09/28/24 07:41	1
Chlorodibromomethane	ND	5.0	ug/L		09/28/24 07:41	
Chloroethane	ND	5.0	ug/L		09/28/24 07:41	1
Chloroform	ND	5.0	ug/L		09/28/24 07:41	1
Chloromethane	ND	5.0	ug/L		09/28/24 07:41	1
cis-1,2-Dichloroethene	ND	5.0	ug/L		09/28/24 07:41	
cis-1,3-Dichloropropene	ND	5.0	ug/L		09/28/24 07:41	1
Cyclohexane	ND	5.0	ug/L		09/28/24 07:41	1
Bromodichloromethane	ND	5.0	ug/L		09/28/24 07:41	
Dichlorofluoromethane	ND	5.0	ug/L		09/28/24 07:41	1
Ethylbenzene	ND	5.0	ug/L		09/28/24 07:41	
Isopropylbenzene	ND	5.0	ug/L		09/28/24 07:41	1
Methyl acetate	ND	5.0	ug/L		09/28/24 07:41	1
Methyl tert-butyl ether	ND	5.0	ug/L		09/28/24 07:41	
Methylcyclohexane	ND	5.0	ug/L		09/28/24 07:41	1
Methylene Chloride	ND	5.0	ug/L		09/28/24 07:41	1
Styrene	ND	5.0	ug/L		09/28/24 07:41	1
Tetrachloroethene	ND	5.0	ug/L		09/28/24 07:41	1
Toluene	ND	5.0	ug/L		09/28/24 07:41	1
trans-1,2-Dichloroethene	ND	5.0	ug/L		09/28/24 07:41	
trans-1,3-Dichloropropene	ND ND	5.0 5.0	ug/L		09/28/24 07:41	,
Trichloroethene	ND ND	5.0 5.0	ug/L		09/28/24 07:41	,
Trichlorofluoromethane	ND	5.0	ug/L ug/L		09/28/24 07:41	
Vinyl chloride	ND ND	5.0 5.0	ug/L		09/28/24 07:41	,
Xylenes, Total	ND	15	ug/L		09/28/24 07:41	4

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-7R Lab Sample ID: 480-223722-6

Date Collected: 09/25/24 08:20 Matrix: Water Date Received: 09/25/24 15:22

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	_		09/28/24 07:41	1
Toluene-d8 (Surr)	100	80 - 120			09/28/24 07:41	1
4-Bromofluorobenzene (Surr)	95	73 - 120			09/28/24 07:41	1
Dibromofluoromethane (Surr)	103	75 - 123			09/28/24 07:41	1

5

6

8

9

44

12

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-8R Date Collected: 09/25/24 11:15

Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-7

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	5.0	ug/L		09/28/24 08:03	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L		09/28/24 08:03	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	ug/L		09/28/24 08:03	4
1,1,2-Trichloroethane	ND	5.0	ug/L		09/28/24 08:03	
1,1-Dichloroethane	ND	5.0	ug/L		09/28/24 08:03	4
1,2,4-Trichlorobenzene	ND	5.0	ug/L		09/28/24 08:03	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		09/28/24 08:03	
1,2-Dibromoethane	ND	5.0	ug/L		09/28/24 08:03	4
1,2-Dichlorobenzene	ND	5.0	ug/L		09/28/24 08:03	4
1,2-Dichloroethane	ND	5.0	ug/L		09/28/24 08:03	
1,2-Dichloropropane	ND	5.0	ug/L		09/28/24 08:03	4
1,3-Dichlorobenzene	ND	5.0	ug/L		09/28/24 08:03	4
1,4-Dichlorobenzene	ND	5.0	ug/L		09/28/24 08:03	
2-Butanone (MEK)	ND	25	ug/L		09/28/24 08:03	
o-Chlorotoluene	100	5.0	ug/L		09/28/24 08:03	4
2-Hexanone	ND	25	ug/L		09/28/24 08:03	
4-Methyl-2-pentanone (MIBK)	ND	25	ug/L		09/28/24 08:03	
Acetone	ND	25	ug/L		09/28/24 08:03	4
Benzene	ND	5.0	ug/L		09/28/24 08:03	
Bromoform	ND	5.0	ug/L		09/28/24 08:03	
Bromomethane	ND	5.0	ug/L		09/28/24 08:03	
Carbon disulfide	ND	5.0	ug/L		09/28/24 08:03	
Carbon tetrachloride	ND	5.0	ug/L		09/28/24 08:03	
Chlorobenzene	ND	5.0	ug/L		09/28/24 08:03	
Chlorodibromomethane	ND	5.0	ug/L		09/28/24 08:03	
Chloroethane	ND	5.0	ug/L		09/28/24 08:03	
Chloroform	ND	5.0	ug/L		09/28/24 08:03	
Chloromethane	ND	5.0	ug/L		09/28/24 08:03	
cis-1,2-Dichloroethene	ND	5.0	ug/L		09/28/24 08:03	
cis-1,3-Dichloropropene	ND	5.0	ug/L		09/28/24 08:03	
Cyclohexane	ND	5.0	ug/L		09/28/24 08:03	
Bromodichloromethane	ND	5.0	ug/L		09/28/24 08:03	
Dichlorofluoromethane	ND	5.0	ug/L		09/28/24 08:03	
Ethylbenzene	ND	5.0	ug/L		09/28/24 08:03	
sopropylbenzene	ND	5.0	ug/L		09/28/24 08:03	
Methyl acetate	ND	5.2	ug/L		09/28/24 08:03	
Methyl tert-butyl ether	ND	5.0	ug/L		09/28/24 08:03	
Methylcyclohexane	ND	5.0	ug/L		09/28/24 08:03	4
Methylene Chloride	ND	5.0	ug/L		09/28/24 08:03	4
Styrene	ND	5.0	ug/L		09/28/24 08:03	
Tetrachloroethene	ND	5.0	ug/L		09/28/24 08:03	
Toluene	ND	5.0	ug/L		09/28/24 08:03	
rans-1,2-Dichloroethene	ND	5.0	ug/L		09/28/24 08:03	
trans-1,3-Dichloropropene	ND	5.0	ug/L		09/28/24 08:03	4
Trichloroethene	ND	5.0	ug/L		09/28/24 08:03	4
Trichlorofluoromethane	ND	5.0	ug/L		09/28/24 08:03	
Vinyl chloride	ND	5.0	ug/L		09/28/24 08:03	
Xylenes, Total	ND	15	ug/L		09/28/24 08:03	4

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-8R Lab Sample ID: 480-223722-7

Date Collected: 09/25/24 11:15

Date Received: 09/25/24 15:22

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		09/28/24 08:03	4
Toluene-d8 (Surr)	103	80 - 120		09/28/24 08:03	4
4-Bromofluorobenzene (Surr)	93	73 - 120		09/28/24 08:03	4
Dibromofluoromethane (Surr)	103	75 - 123		09/28/24 08:03	4

5

6

8

10

111

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-9R

Lab Sample ID: 480-223722-8

Matrix: Water

Date Collected: 09/25/24 13:20 Date Received: 09/25/24 15:22

Analyte	Result	Qualifier RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	160	5.0)	ug/L			09/28/24 08:26	
1,1,2,2-Tetrachloroethane	ND	5.0)	ug/L			09/28/24 08:26	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0)	ug/L			09/28/24 08:26	4
1,1,2-Trichloroethane	ND	5.0)	ug/L			09/28/24 08:26	
1,1-Dichloroethane	71	5.0)	ug/L			09/28/24 08:26	
1,2,4-Trichlorobenzene	ND	5.0)	ug/L			09/28/24 08:26	
1,2-Dibromo-3-Chloropropane	ND	5.0)	ug/L			09/28/24 08:26	
1,2-Dibromoethane	ND	5.0)	ug/L			09/28/24 08:26	
1,2-Dichlorobenzene	ND	5.0)	ug/L			09/28/24 08:26	
1,2-Dichloroethane	ND	5.0)	ug/L			09/28/24 08:26	
1,2-Dichloropropane	ND	5.0		ug/L			09/28/24 08:26	
1,3-Dichlorobenzene	ND	5.0		ug/L			09/28/24 08:26	
1,4-Dichlorobenzene	ND	5.0		ug/L			09/28/24 08:26	
2-Butanone (MEK)	ND	25		ug/L			09/28/24 08:26	
o-Chlorotoluene	ND	5.0		ug/L			09/28/24 08:26	
2-Hexanone	ND	25		ug/L			09/28/24 08:26	
4-Methyl-2-pentanone (MIBK)	ND	25		ug/L			09/28/24 08:26	
Acetone	ND	25		ug/L			09/28/24 08:26	
Benzene	ND	5.0		ug/L			09/28/24 08:26	
Bromoform	ND	5.0		ug/L			09/28/24 08:26	
Bromomethane	ND	5.0		ug/L			09/28/24 08:26	
Carbon disulfide	ND	5.0		ug/L			09/28/24 08:26	
Carbon tetrachloride	ND	5.0					09/28/24 08:26	
Chlorobenzene	ND	5.0		ug/L ug/L			09/28/24 08:26	
Chlorodibromomethane	ND	5.0		ug/L ug/L			09/28/24 08:26	
Chloroethane	ND	5.0		_			09/28/24 08:26	
	ND ND	5.0		ug/L				
Chloroform				ug/L			09/28/24 08:26	
Chloromethane	ND	5.0		ug/L			09/28/24 08:26	
cis-1,2-Dichloroethene	ND	5.0		ug/L			09/28/24 08:26	
cis-1,3-Dichloropropene	ND	5.0		ug/L			09/28/24 08:26	
Cyclohexane	ND	5.0		ug/L			09/28/24 08:26	
Bromodichloromethane	ND	5.0		ug/L			09/28/24 08:26	,
Dichlorofluoromethane	ND .	5.0		ug/L			09/28/24 08:26	
Ethylbenzene	ND	5.0		ug/L			09/28/24 08:26	,
sopropylbenzene	ND	5.0		ug/L			09/28/24 08:26	,
Methyl acetate	ND	5.2		ug/L			09/28/24 08:26	
Methyl tert-butyl ether	ND	5.0		ug/L			09/28/24 08:26	
Methylcyclohexane	ND	5.0		ug/L			09/28/24 08:26	
Methylene Chloride	ND	5.0		ug/L			09/28/24 08:26	
Styrene	ND	5.0		ug/L			09/28/24 08:26	•
Tetrachloroethene	ND	5.0		ug/L			09/28/24 08:26	
l'oluene	ND	5.0)	ug/L			09/28/24 08:26	
rans-1,2-Dichloroethene	ND	5.0		ug/L			09/28/24 08:26	
rans-1,3-Dichloropropene	ND	5.0)	ug/L			09/28/24 08:26	
Trichloroethene	ND	5.0)	ug/L			09/28/24 08:26	
Trichlorofluoromethane	ND	5.0		ug/L			09/28/24 08:26	
Vinyl chloride	ND	5.0)	ug/L			09/28/24 08:26	
Xylenes, Total	ND	15	;	ug/L			09/28/24 08:26	

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-9R Lab Sample ID: 480-223722-8

Date Collected: 09/25/24 13:20 Matrix: Water Date Received: 09/25/24 15:22

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	77 - 120		09/28/24 08:26	4
Toluene-d8 (Surr)	99	80 - 120		09/28/24 08:26	4
4-Bromofluorobenzene (Surr)	93	73 - 120		09/28/24 08:26	4
Dibromofluoromethane (Surr)	107	75 - 123		09/28/24 08:26	4

2

_

5

7

0

10

15

1:

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-726431/8

Matrix: Water

Analysis Batch: 726431

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,1,2-Trichloroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,1-Dichloroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			09/28/24 00:55	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			09/28/24 00:55	1
1,2-Dibromoethane	ND		5.0		ug/L			09/28/24 00:55	1
1,2-Dichlorobenzene	ND		5.0		ug/L			09/28/24 00:55	1
1,2-Dichloroethane	ND		5.0		ug/L			09/28/24 00:55	1
1,2-Dichloropropane	ND		5.0		ug/L			09/28/24 00:55	1
1,3-Dichlorobenzene	ND		5.0		ug/L			09/28/24 00:55	1
1,4-Dichlorobenzene	ND		5.0		ug/L			09/28/24 00:55	1
2-Butanone (MEK)	ND		25		ug/L			09/28/24 00:55	1
o-Chlorotoluene	ND		5.0		ug/L			09/28/24 00:55	1
2-Hexanone	ND		25		ug/L			09/28/24 00:55	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			09/28/24 00:55	1
Acetone	ND		25		ug/L			09/28/24 00:55	1
Benzene	ND		5.0		ug/L			09/28/24 00:55	1
Bromoform	ND		5.0		ug/L			09/28/24 00:55	1
Bromomethane	ND		5.0		ug/L			09/28/24 00:55	1
Carbon disulfide	ND		5.0		ug/L			09/28/24 00:55	1
Carbon tetrachloride	ND		5.0		ug/L			09/28/24 00:55	1
Chlorobenzene	ND		5.0		ug/L			09/28/24 00:55	1
Chlorodibromomethane	ND		5.0		ug/L			09/28/24 00:55	1
Chloroethane	ND		5.0		ug/L			09/28/24 00:55	1
Chloroform	ND		5.0		ug/L			09/28/24 00:55	1
Chloromethane	ND		5.0		ug/L			09/28/24 00:55	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/28/24 00:55	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/28/24 00:55	1
Cyclohexane	ND		5.0		ug/L			09/28/24 00:55	1
Bromodichloromethane	ND		5.0		ug/L			09/28/24 00:55	1
Dichlorofluoromethane	ND		5.0		ug/L			09/28/24 00:55	1
Ethylbenzene	ND		5.0		ug/L			09/28/24 00:55	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene	ND		5.0		ug/L			09/28/24 00:55	1
Methyl acetate	ND		5.0		ug/L			09/28/24 00:55	
Methyl tert-butyl ether	ND		5.0		ug/L			09/28/24 00:55	
Methylcyclohexane	ND		5.0		ug/L			09/28/24 00:55	1
Methylene Chloride	ND		5.0		ug/L			09/28/24 00:55	1
Styrene	ND		5.0		ug/L			09/28/24 00:55	· · · · · · · · · · · 1
Tetrachloroethene	ND		5.0		ug/L			09/28/24 00:55	1
Toluene	ND		5.0		ug/L ug/L			09/28/24 00:55	1
trans-1,2-Dichloroethene	ND		5.0					09/28/24 00:55	
trans-1,3-Dichloropropene	ND ND		5.0 5.0		ug/L			09/28/24 00:55	1
trans-1,3-Dichloropropene Trichloroethene	ND ND		5.0 5.0		ug/L			09/28/24 00:55	1
					ug/L				
Trichlorofluoromethane	ND		5.0 5.0		ug/L			09/28/24 00:55	1
Vinyl chloride Xylenes, Total	ND ND		5.0 15		ug/L ug/L			09/28/24 00:55 09/28/24 00:55	1

Eurofins Buffalo

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

Job ID: 480-223722-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-726431/8

Matrix: Water

Analysis Batch: 726431

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		09/28/24 00:55	1
Toluene-d8 (Surr)	101	80 - 120		09/28/24 00:55	1
4-Bromofluorobenzene (Surr)	94	73 - 120		09/28/24 00:55	1
Dibromofluoromethane (Surr)	101	75 - 123		09/28/24 00:55	1

Lab Sample ID: LCS 480-726431/6

Matrix: Water

Analysis Batch: 726431

Client Sample	ID: Lab Control Sample
	Prop Type: Total/NA

	Prep Type: Total/NA	Ĝ
LCS LCS	%Rec	

Analtyle Added Result Qualifier Unit D %Rec Limite 1.1.1-Trichloroethane 25.0 25.5 ug/L 10.2 73.126 1.1.2-Tetrachloroethane 25.0 28.1 ug/L 112 61.148 1.1.2-Trichloroethane 25.0 28.0 ug/L 114 76.122 1.1.1-Dichloroethane 25.0 28.0 ug/L 114 77.120 1.2.4-Trichlorobenzene 25.0 28.0 ug/L 19.2 57.9122 1.2-Dichloroethane 25.0 28.0 ug/L 19.2 77.120 1.2-Dichloroethane 25.0 24.5 ug/L 19.0 77.120 1.2-Dichloroethane 25.0 24.5 ug/L 101 75.120 1.2-Dichloroethane 25.0 25.3 ug/L 101 77.120 1.2-Dichloroethane 25.0 28.0 ug/L 101 77.120 1.2-Dichloroethane 25.0 28.0 ug/L 101 77.120	Analysis Batch. 720431	Spike	LCS	LCS				%Rec	
1,1,2,2-Tetrachloroethane 25.0 24.4 ug/L 19.8 76.120 1,1,2-Tinchloro-1,2,2-trifluoroethane 25.0 26.0 ug/L 104 76.120 1,1-Dichloroethane 25.0 26.0 ug/L 104 76.122 1,1-Dichloroethane 25.0 28.4 ug/L 114 77.7120 1,2-Dichloroethane 25.0 28.0 ug/L 112 56.134 1,2-Dichloroptopane 25.0 24.9 ug/L 99 77.7120 1,2-Dichloroptopane 25.0 24.5 ug/L 101 75.120 1,2-Dichloroptopane 25.0 24.5 ug/L 101 75.120 1,2-Dichloroptopane 25.0 25.3 ug/L 101 77.120 1,2-Dichloroptopane 25.0 25.2 ug/L 101 77.120 1,2-Dichloroptopane 25.0 25.2 ug/L 101 77.120 1,3-Dichlorobenzene 25.0 25.8 ug/L 101 77.120	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 28.1 ug/L 112 61-148 ne 1,1,2-Trichloroethane 25.0 26.0 ug/L 1104 76.122 1,1-Dichloroethane 25.0 28.4 ug/L 114 77.120 1,2-Dichlorobenzene 25.0 28.8 ug/L 95 79.122 1,2-Dibromo-3-Chloropropane 25.0 28.0 ug/L 98 80.124 1,2-Dichlorobenzene 25.0 24.5 ug/L 98 80.124 1,2-Dichlorobenzene 25.0 25.3 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.3 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 <	1,1,1-Trichloroethane	25.0	25.5		ug/L		102	73 - 126	
1,12-Trichioro-1,2,2-trifluoroethan e 25.0 28.1 ug/L 11.2 61.148 1,1,2-Trichioroethane 25.0 26.0 ug/L 11.4 76.122 1,1-Dichioroethane 25.0 28.4 ug/L 11.4 77.120 1,2-Dichioroethane 25.0 28.0 ug/L 19.5 99.122 1,2-Dichioroethane 25.0 28.0 ug/L 19.2 56.134 1,2-Dichioroethane 25.0 24.5 ug/L 98 80.124 1,2-Dichioroethane 25.0 25.3 ug/L 101 75.120 1,2-Dichioroethane 25.0 25.3 ug/L 101 75.120 1,2-Dichioroethane 25.0 25.2 ug/L 101 77.120 1,2-Dichioroethane 25.0 25.3 ug/L 101 77.120 1,2-Dichioroethane 25.0 28.0 ug/L 101 77.120 1,2-Dichioroethane 25.0 28.6 ug/L 101 77.120 1,2-D	1,1,2,2-Tetrachloroethane	25.0	24.4		ug/L		98	76 - 120	
1,12-Trichioroethane 25.0 26.0 ug/L 104 76.122 1,1-Dichioroethane 25.0 28.4 ug/L 195 77.120 1,2-Dibromo-3-Chloropropane 25.0 28.0 ug/L 192 56.134 1,2-Dibromoethane 25.0 28.0 ug/L 98 80.124 1,2-Dichlorobenzene 25.0 24.5 ug/L 198 80.124 1,2-Dichlorobenzene 25.0 25.3 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.0 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.0 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.8 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.8 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 25.8 ug/L 101 75.140 1,2-Dichlorobenzene 25.0 25.8 ug/L 113 65.127 1,4-Dichlorobe	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.1		_		112	61 - 148	
1,1-Dichloroethane 25.0 28.4 ug/L 114 77 · 120 1,2-L'Trichlorobenzene 25.0 23.8 ug/L 112 56 · 134 1,2-Dibromos-Chloropropane 25.0 28.0 ug/L 192 56 · 134 1,2-Dichlorobenzene 25.0 24.9 ug/L 99 77 · 120 1,2-Dichlorobenzene 25.0 25.5 ug/L 101 75 · 120 1,2-Dichlorobenzene 25.0 28.0 ug/L 112 76 · 120 1,3-Dichlorobenzene 25.0 28.0 ug/L 101 75 · 120 1,3-Dichlorobenzene 25.0 28.2 ug/L 101 75 · 120 1,3-Dichlorobenzene 25.0 28.4 ug/L 109 77 · 120 1,3-Dichlorobenzene 25.0 28.4 ug/L 109 77 · 120 2-Butanone (MEK) 125 137 ug/L 109 75 · 140 2-Hexanone 125 144 ug/L 115 76 · 121 4-H	ne								
1,2,4-Trichlorobenzene 25.0 23.8 ug/L 95 79.122 1,2-Dibromo-3-Chloropropane 25.0 28.0 ug/L 99 77.120 1,2-Dibromo-3-Chloropropane 25.0 24.9 ug/L 98 80.124 1,2-Dichlorobenzene 25.0 24.5 ug/L 112 76.120 1,2-Dichloropropane 25.0 28.0 ug/L 112 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.8 ug/L 103 76.121 4-Methyl-2-pentane (MEK) 125 147 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 4-Methyl-2-pentanone (MIBK) 25.0 27.2 ug/L 109 71.124 <tr< td=""><td>1,1,2-Trichloroethane</td><td></td><td>26.0</td><td></td><td>ug/L</td><td></td><td>104</td><td>76 - 122</td><td></td></tr<>	1,1,2-Trichloroethane		26.0		ug/L		104	76 - 122	
1,2-Dibromo-3-Chloropropane 25.0 28.0 ug/L 112 56.134 1,2-Dibromoethane 25.0 24.9 ug/L 99 77.120 1,2-Dichlorobenzene 25.0 24.5 ug/L 98 80.124 1,2-Dichlorobertane 25.0 25.3 ug/L 101 75.120 1,3-Dichlorobenzene 25.0 25.0 28.0 ug/L 112 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.8 ug/L 198 80.120 2-Butanone (MEK) 125 137 ug/L 109 57.140 2-Hexanone 125 147 ug/L 118 66.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 117 56.142 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 117 56.142	1,1-Dichloroethane		28.4		ug/L		114	77 - 120	
1,2-Dibromoethane 25.0 24.9 ug/L 99 77.120 1,2-Dichlorobenzene 25.0 24.5 ug/L 98 80.124 1,2-Dichlorobethane 25.0 25.3 ug/L 101 75.120 1,2-Dichlorobenzene 25.0 25.0 ug/L 112 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.8 ug/L 109 57.140 0-Chlorotoluene 25.0 25.8 ug/L 103 76.121 2-Hexanone 125 147 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 Acetone 125 146 ug/L 115 71.125 Acetone 125 146 ug/L 115 71.125 Benzene 25.0 27.2 ug/L 109 71.124 Bromomethane 25.0 28.6 <t< td=""><td>1,2,4-Trichlorobenzene</td><td>25.0</td><td>23.8</td><td></td><td>ug/L</td><td></td><td>95</td><td>79 - 122</td><td></td></t<>	1,2,4-Trichlorobenzene	25.0	23.8		ug/L		95	79 - 122	
1,2-Dichlorobenzene 25.0 24.5 ug/L 98 80.124 1,2-Dichloroethane 25.0 25.3 ug/L 101 75.120 1,2-Dichloroppropane 25.0 28.0 ug/L 112 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.8 ug/L 198 80.120 2-Butanone (MEK) 125 137 ug/L 103 76.121 2-Butanone (MIBK) 125 147 ug/L 118 65.127 2-Hexanone 125 144 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 117 65.142 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 117 65.142 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 110 71.126 A-cetone	1,2-Dibromo-3-Chloropropane		28.0		ug/L		112	56 - 134	
1,2-Dichloroethane 25.0 25.3 ug/L 101 75.120 1,2-Dichloropropane 25.0 28.0 ug/L 112 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 24.6 ug/L 98 80.120 2-Butanone (MEK) 125 137 ug/L 109 57.140 o-Chlorotoluene 25.0 25.8 ug/L 103 76.121 2-Hexanone 125 147 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 Acetone 125 146 ug/L 117 56.142 Benzene 25.0 27.2 ug/L 109 71.124 Bromoform 25.0 27.2 ug/L 109 71.124 Carbon disulfide 25.0 27.2 ug/L 115 59.134 Carbon tetrachloride 25.0 27.2	1,2-Dibromoethane	25.0	24.9		ug/L		99	77 - 120	
1,2-Dichloropropane 25.0 28.0 ug/L 112 76-120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 24.6 ug/L 98 80-120 2-Butanone (MEK) 125 137 ug/L 103 76-121 2-Hexanone 125 147 ug/L 118 65-127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-125 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 115 71-125 4-Methyl-2-pentanone (MIBK) 125 146 ug/L 115 71-125 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-125 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-126 4-Methyl-2-pentanone (MIBK) 25.0 27.2 ug/L 119 71-124 4-Methyl-2-pentanone (MIBK) 25.0 27.2 ug/L 119 75-124	1,2-Dichlorobenzene	25.0	24.5		ug/L		98	80 - 124	
1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 24.6 ug/L 98 80.120 2-Butanone (MEK) 125 137 ug/L 109 57.140 o-Chlorotoluene 25.0 25.8 ug/L 103 76-121 2-Hexanone 125 147 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 Acetone 125 146 ug/L 117 66.142 Benzene 25.0 27.2 ug/L 109 71.124 Bromoform 25.0 28.6 ug/L 114 61.132 Bromomethane 25.0 28.7 ug/L 109 55.144 Carbon disulfide 25.0 28.7 ug/L 115 59.134 Chiorobenzene 25.0 27.2 ug/L 109 75.125 Chlorodibromomethane 25.0 27.2 ug/L 109 75.125 Chloroform 25.0 24.5	1,2-Dichloroethane	25.0	25.3		ug/L		101	75 - 120	
1,4-Dichlorobenzene 25.0 24.6 ug/L 98 80.120 2-Butanone (MEK) 125 137 ug/L 109 57.140 o-Chlorofoluene 25.0 25.8 ug/L 103 76.121 2-Hexanone 125 147 ug/L 118 65.127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71.125 Acetone 125 146 ug/L 117 56.142 Benzene 25.0 27.2 ug/L 109 71.124 Bromoform 25.0 28.6 ug/L 119 55.144 Carbon disulfide 25.0 27.2 ug/L 109 55.144 Carbon disulfide 25.0 28.7 ug/L 115 59.134 Carbon tetrachloride 25.0 28.7 ug/L 116 80.120 Chlorobenzene 25.0 27.2 ug/L 109 75.125 Chlorobenzene 25.0 28.5 ug/L 109 75.125 Chlorodibromethane 25.0 28.8	1,2-Dichloropropane	25.0	28.0		ug/L		112	76 - 120	
2-Butanone (MEK) 125 137 ug/L 109 57-140 o-Chlorotoluene 25.0 25.8 ug/L 103 76-121 2-Hexanone 125 147 ug/L 118 65-127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-125 Acetone 125 146 ug/L 117 56-142 Benzene 25.0 27.2 ug/L 109 71-124 Bromoform 25.0 28.6 ug/L 114 61-132 Bromofethane 25.0 28.7 ug/L 109 71-124 Carbon disulfide 25.0 27.2 ug/L 115 59-134 Carbon tetrachloride 25.0 28.7 ug/L 115 72-134 Chlorodibromenethane 25.0 28.5 ug/L 106 80-120 Chlorodibromenethane 25.0 24.5 ug/L 19 75-125 Chlorodethane 25.0 28.8 ug	1,3-Dichlorobenzene	25.0	25.2		ug/L		101	77 - 120	
o-Chlorotoluene 25.0 25.8 ug/L 103 76-121 2-Hexanone 125 147 ug/L 118 65-127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-125 Acetone 125 146 ug/L 117 56-142 Benzene 25.0 27.2 ug/L 109 71-124 Bromoform 25.0 28.6 ug/L 114 61-132 Bromothane 25.0 27.2 ug/L 109 75-144 Carbon disulfide 25.0 28.7 ug/L 115 59-134 Carbon tetrachloride 25.0 28.7 ug/L 115 59-134 Chlorodenzene 25.0 27.9 ug/L 110 80-132 Chlorodibromomethane 25.0 27.9 ug/L 109 75-125 Chlorodethane 25.0 27.2 ug/L 109 75-125 Chlorodethane 25.0 28.8 ug/L	1,4-Dichlorobenzene	25.0	24.6		ug/L		98	80 - 120	
2-Hexanone 125 147 ug/L 118 65-127 4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71-125 Acetone 125 146 ug/L 117 56-142 Benzene 25.0 27.2 ug/L 109 71-124 Bromoform 25.0 27.2 ug/L 114 61-132 Bromomethane 25.0 27.2 ug/L 109 55-144 Carbon disulfide 25.0 28.7 ug/L 115 59-134 Carbon tetrachloride 25.0 27.9 ug/L 112 72-134 Chlorobenzene 25.0 26.5 ug/L 106 80-120 Chlorodibromomethane 25.0 26.5 ug/L 106 80-120 Chloroform 25.0 24.5 ug/L 109 75-125 Chloroform 25.0 24.5 ug/L 98 73-127 Chloroform 25.0 28.8 ug/L 115 68.124 cis-1,2-Dichloroptopene 25.0 25.5 ug/L	2-Butanone (MEK)	125	137		ug/L		109	57 - 140	
4-Methyl-2-pentanone (MIBK) 125 144 ug/L 115 71 - 125 Acetone 125 146 ug/L 117 56 - 142 Benzene 25.0 27.2 ug/L 109 71 - 124 Bromonform 25.0 28.6 ug/L 114 61 - 132 Bromomethane 25.0 27.2 ug/L 109 55 - 144 Carbon disulfide 25.0 28.7 ug/L 115 59 - 134 Carbon tetrachloride 25.0 27.9 ug/L 112 72 - 134 Chlorobenzene 25.0 26.5 ug/L 106 80 - 120 Chlorodibromomethane 25.0 27.2 ug/L 109 75 - 125 Chloroform 25.0 24.5 ug/L 132 69 - 136 Chlorofethane 25.0 24.5 ug/L 18 68 - 124 cis-1,2-Dichlorothene 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloropropene 25.0 28.2 ug/L 19 74 - 124 Cyclohexane 2	o-Chlorotoluene	25.0	25.8		ug/L		103	76 - 121	
Acetone 125 146 ug/L 117 56-142 Benzene 25.0 27.2 ug/L 109 71-124 Bromoform 25.0 28.6 ug/L 114 61-132 Bromomethane 25.0 27.2 ug/L 109 55-144 Carbon disulfide 25.0 28.7 ug/L 115 59-134 Carbon tetrachloride 25.0 27.9 ug/L 112 72-134 Chlorobenzene 25.0 26.5 ug/L 112 72-134 Chlorobenzene 25.0 26.5 ug/L 112 72-134 Chlorobenzene 25.0 26.5 ug/L 119 75-125 Chlorodibromomethane 25.0 27.2 ug/L 109 75-125 Chlorodibromomethane 25.0 24.5 ug/L 198 73-127 Chlorodhexane 25.0 28.8 ug/L 115 68-124 cis-1,3-Dichloropropene 25.0 28.2 ug/L 113 59-135 Bromodichloromethane 25.0 28.2 <td>2-Hexanone</td> <td>125</td> <td>147</td> <td></td> <td>ug/L</td> <td></td> <td>118</td> <td>65 - 127</td> <td></td>	2-Hexanone	125	147		ug/L		118	65 - 127	
Benzene 25.0 27.2 ug/L 109 71.124 Bromoform 25.0 28.6 ug/L 114 61.132 Bromomethane 25.0 27.2 ug/L 109 55.144 Carbon disulfide 25.0 28.7 ug/L 115 59.134 Carbon tetrachloride 25.0 27.9 ug/L 112 72.134 Chlorobenzene 25.0 26.5 ug/L 106 80.120 Chlorodibromomethane 25.0 27.2 ug/L 109 75.125 Chloroform 25.0 33.1 ug/L 132 69.136 Chloroform 25.0 24.5 ug/L 198 73.127 Chloromethane 25.0 28.8 ug/L 115 68.124 cis-1,2-Dichloroptene 25.0 25.5 ug/L 199 74.124 cis-1,3-Dichloropropene 25.0 28.2 ug/L 113 59.135 Bromodichloromethane 25.0 28.2	4-Methyl-2-pentanone (MIBK)	125	144		ug/L		115	71 - 125	
Bromoform 25.0 28.6 ug/L 114 61-132 Bromomethane 25.0 27.2 ug/L 109 55-144 Carbon disulfide 25.0 28.7 ug/L 115 59-134 Carbon tetrachloride 25.0 27.9 ug/L 112 72-134 Chlorobenzene 25.0 26.5 ug/L 106 80-120 Chlorodibromomethane 25.0 27.2 ug/L 109 75-125 Chloroform 25.0 33.1 ug/L 132 69-136 Chloroformethane 25.0 24.5 ug/L 98 73-127 Chloromethane 25.0 28.8 ug/L 115 68-124 cis-1,2-Dichloroptehene 25.0 24.6 ug/L 102 74-124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 19 74-124 Cyclohexane 25.0 28.2 ug/L 113 59-135 Bromodichloromethane 25.0 26.	Acetone	125	146		ug/L		117	56 - 142	
Bromomethane 25.0 27.2 ug/L 109 55 - 144 Carbon disulfide 25.0 28.7 ug/L 115 59 - 134 Carbon tetrachloride 25.0 27.9 ug/L 112 72 - 134 Chlorobenzene 25.0 26.5 ug/L 106 80 - 120 Chlorodibromomethane 25.0 27.2 ug/L 109 75 - 125 Chloroethane 25.0 33.1 ug/L 132 69 - 136 Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,2-Dichloropropene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 28.2 ug/L 113 59 - 136 Cyclohexane 25.0 28.2 ug/L 113 59 - 136 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Ethylbe	Benzene	25.0	27.2		ug/L		109	71 - 124	
Carbon disulfide 25.0 28.7 ug/L 115 59 - 134 Carbon tetrachloride 25.0 27.9 ug/L 112 72 - 134 Chlorobenzene 25.0 26.5 ug/L 106 80 - 120 Chlorodibromomethane 25.0 27.2 ug/L 109 75 - 125 Chlorothane 25.0 33.1 ug/L 132 69 - 136 Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 28.4 ug/L 12 76 - 127 Ethylbenzene	Bromoform	25.0	28.6		ug/L		114	61 - 132	
Carbon tetrachloride 25.0 27.9 ug/L 112 72 - 134 Chlorobenzene 25.0 26.5 ug/L 106 80 - 120 Chlorodibromomethane 25.0 27.2 ug/L 109 75 - 125 Chlorothane 25.0 33.1 ug/L 132 69 - 136 Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acet	Bromomethane	25.0	27.2		ug/L		109	55 - 144	
Chlorobenzene 25.0 26.5 ug/L 106 80 - 120 Chlorodibromomethane 25.0 27.2 ug/L 109 75 - 125 Chloroethane 25.0 33.1 ug/L 132 69 - 136 Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 19 74 - 133 Methyl tert-butyl	Carbon disulfide	25.0	28.7		ug/L		115	59 - 134	
Chlorodibromomethane 25.0 27.2 ug/L 109 75-125 Chloroethane 25.0 33.1 ug/L 132 69-136 Chloroform 25.0 24.5 ug/L 98 73-127 Chloromethane 25.0 28.8 ug/L 115 68-124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74-124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74-124 Cyclohexane 25.0 28.2 ug/L 113 59-135 Bromodichloromethane 25.0 26.1 ug/L 104 80-122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76-127 Ethylbenzene 25.0 28.4 ug/L 114 77-123 Isopropylbenzene 25.0 27.0 ug/L 108 77-122 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77-120	Carbon tetrachloride	25.0	27.9		ug/L		112	72 - 134	
Chloroethane 25.0 33.1 ug/L 132 69 - 136 Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Chlorobenzene	25.0	26.5		ug/L		106	80 - 120	
Chloroform 25.0 24.5 ug/L 98 73 - 127 Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Chlorodibromomethane	25.0	27.2		ug/L		109	75 - 125	
Chloromethane 25.0 28.8 ug/L 115 68 - 124 cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Chloroethane	25.0	33.1		ug/L		132	69 - 136	
cis-1,2-Dichloroethene 25.0 25.5 ug/L 102 74 - 124 cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Chloroform	25.0	24.5		ug/L		98	73 - 127	
cis-1,3-Dichloropropene 25.0 24.6 ug/L 99 74 - 124 Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Chloromethane	25.0	28.8		ug/L		115	68 - 124	
Cyclohexane 25.0 28.2 ug/L 113 59 - 135 Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	74 - 124	
Bromodichloromethane 25.0 26.1 ug/L 104 80 - 122 Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	cis-1,3-Dichloropropene	25.0	24.6		ug/L		99	74 - 124	
Dichlorofluoromethane 25.0 30.4 ug/L 122 76 - 127 Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Cyclohexane	25.0	28.2		ug/L		113	59 - 135	
Ethylbenzene 25.0 28.4 ug/L 114 77 - 123 Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Bromodichloromethane	25.0	26.1		ug/L		104	80 - 122	
Isopropylbenzene 25.0 27.0 ug/L 108 77 - 122 Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Dichlorofluoromethane	25.0	30.4		ug/L		122	76 - 127	
Methyl acetate 50.0 59.5 ug/L 119 74 - 133 Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Ethylbenzene	25.0	28.4		ug/L		114	77 - 123	
Methyl tert-butyl ether 25.0 24.4 ug/L 98 77 - 120	Isopropylbenzene	25.0	27.0		ug/L		108	77 - 122	
· · · · · · · · · · · · · · · · · · ·	Methyl acetate	50.0	59.5		ug/L		119	74 - 133	
	Methyl tert-butyl ether	25.0	24.4		ug/L		98	77 - 120	
	Methylcyclohexane	25.0	25.2		ug/L		101	68 - 134	

Eurofins Buffalo

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-726431/6

Matrix: Water

Analysis Batch: 726431

Client Sample ID: Lab Control Sample

Job ID: 480-223722-1

Prep Type: Total/NA

	Spike	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	25.1		ug/L		100	75 - 124	
Styrene	25.0	26.4		ug/L		105	80 - 120	
Tetrachloroethene	25.0	27.8		ug/L		111	74 - 122	
Toluene	25.0	28.2		ug/L		113	80 - 122	
trans-1,2-Dichloroethene	25.0	27.7		ug/L		111	73 - 127	
trans-1,3-Dichloropropene	25.0	25.1		ug/L		100	80 - 120	
Trichloroethene	25.0	27.1		ug/L		108	74 - 123	
Trichlorofluoromethane	25.0	31.6		ug/L		126	62 - 150	
Vinyl chloride	25.0	30.0		ug/L		120	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		77 - 120
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	96		75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 726582

Lab Sample ID: MB 480-726582/9

MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,1,2-Trichloroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,1-Dichloroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,2,4-Trichlorobenzene	ND		5.0		ug/L			09/30/24 13:34	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			09/30/24 13:34	1
1,2-Dibromoethane	ND		5.0		ug/L			09/30/24 13:34	1
1,2-Dichlorobenzene	ND		5.0		ug/L			09/30/24 13:34	1
1,2-Dichloroethane	ND		5.0		ug/L			09/30/24 13:34	1
1,2-Dichloropropane	ND		5.0		ug/L			09/30/24 13:34	1
1,3-Dichlorobenzene	ND		5.0		ug/L			09/30/24 13:34	1
1,4-Dichlorobenzene	ND		5.0		ug/L			09/30/24 13:34	1
2-Butanone (MEK)	ND		25		ug/L			09/30/24 13:34	1
o-Chlorotoluene	ND		5.0		ug/L			09/30/24 13:34	1
2-Hexanone	ND		25		ug/L			09/30/24 13:34	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			09/30/24 13:34	1
Acetone	ND		25		ug/L			09/30/24 13:34	1
Benzene	ND		5.0		ug/L			09/30/24 13:34	1
Bromoform	ND		5.0		ug/L			09/30/24 13:34	1
Bromomethane	ND		5.0		ug/L			09/30/24 13:34	1
Carbon disulfide	ND		5.0		ug/L			09/30/24 13:34	1
Carbon tetrachloride	ND		5.0		ug/L			09/30/24 13:34	1
Chlorobenzene	ND		5.0		ug/L			09/30/24 13:34	1
Chlorodibromomethane	ND		5.0		ug/L			09/30/24 13:34	1
Chloroethane	ND		5.0		ug/L			09/30/24 13:34	1
Chloroform	ND		5.0		ug/L			09/30/24 13:34	1

Eurofins Buffalo

10/2/2024

Page 25 of 36

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

Job ID: 480-223722-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-726582/9

Matrix: Water

Analysis Batch: 726582

Client Sample ID: Method Blank

Prep Type: Total/NA

7 , 0.0 1 _ 0.00_	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		5.0		ug/L			09/30/24 13:34	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/30/24 13:34	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/30/24 13:34	1
Cyclohexane	ND		5.0		ug/L			09/30/24 13:34	1
Bromodichloromethane	ND		5.0		ug/L			09/30/24 13:34	1
Dichlorofluoromethane	ND		5.0		ug/L			09/30/24 13:34	1
Ethylbenzene	ND		5.0		ug/L			09/30/24 13:34	1
Isopropylbenzene	ND		5.0		ug/L			09/30/24 13:34	1
Methyl acetate	ND		5.0		ug/L			09/30/24 13:34	1
Methyl tert-butyl ether	ND		5.0		ug/L			09/30/24 13:34	1
Methylcyclohexane	ND		5.0		ug/L			09/30/24 13:34	1
Methylene Chloride	ND		5.0		ug/L			09/30/24 13:34	1
Styrene	ND		5.0		ug/L			09/30/24 13:34	1
Tetrachloroethene	ND		5.0		ug/L			09/30/24 13:34	1
Toluene	ND		5.0		ug/L			09/30/24 13:34	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			09/30/24 13:34	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/30/24 13:34	1
Trichloroethene	ND		5.0		ug/L			09/30/24 13:34	1
Trichlorofluoromethane	ND		5.0		ug/L			09/30/24 13:34	1
Vinyl chloride	ND		5.0		ug/L			09/30/24 13:34	1
Xylenes, Total	ND		15		ug/L			09/30/24 13:34	1

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		09/30/24 13:34	1
Toluene-d8 (Surr)	103	80 - 120		09/30/24 13:34	1
4-Bromofluorobenzene (Surr)	108	73 - 120		09/30/24 13:34	1
Dibromofluoromethane (Surr)	103	75 - 123		09/30/24 13:34	1

Lab Sample ID: LCS 480-726582/6

Matrix: Water

Analysis Batch: 726582

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	23.5		ug/L		94	73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.8		ug/L		103	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.2		ug/L		105	61 - 148
ne							
1,1,2-Trichloroethane	25.0	26.0		ug/L		104	76 - 122
1,1-Dichloroethane	25.0	25.0		ug/L		100	77 - 120
1,2,4-Trichlorobenzene	25.0	26.5		ug/L		106	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	23.9		ug/L		96	56 - 134
1,2-Dibromoethane	25.0	26.2		ug/L		105	77 - 120
1,2-Dichlorobenzene	25.0	25.1		ug/L		100	80 - 124
1,2-Dichloroethane	25.0	24.7		ug/L		99	75 - 120
1,2-Dichloropropane	25.0	25.2		ug/L		101	76 - 120
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	77 - 120
1,4-Dichlorobenzene	25.0	24.6		ug/L		98	80 - 120
2-Butanone (MEK)	125	205	*+	ug/L		164	57 - 140
o-Chlorotoluene	25.0	25.4		ug/L		102	76 - 121

Eurofins Buffalo

Page 26 of 36

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

Job ID: 480-223722-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-726582/6

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 726582 LCS LCS Spike %Rec

	Spike	LUS	LUS			/orec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
2-Hexanone	125	124		ug/L	99	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	122		ug/L	98	71 - 125	
Acetone	125	116		ug/L	92	56 - 142	
Benzene	25.0	25.0		ug/L	100	71 - 124	
Bromoform	25.0	28.8		ug/L	115	61 - 132	
Bromomethane	25.0	22.0		ug/L	88	55 - 144	
Carbon disulfide	25.0	24.1		ug/L	97	59 - 134	
Carbon tetrachloride	25.0	24.8		ug/L	99	72 - 134	
Chlorobenzene	25.0	24.9		ug/L	99	80 - 120	
Chlorodibromomethane	25.0	27.2		ug/L	109	75 - 125	
Chloroethane	25.0	22.5		ug/L	90	69 - 136	
Chloroform	25.0	24.5		ug/L	98	73 - 127	
Chloromethane	25.0	21.4		ug/L	86	68 - 124	
cis-1,2-Dichloroethene	25.0	24.9		ug/L	100	74 - 124	
cis-1,3-Dichloropropene	25.0	25.9		ug/L	104	74 - 124	
Cyclohexane	25.0	23.4		ug/L	94	59 - 135	
Bromodichloromethane	25.0	25.7		ug/L	103	80 - 122	
Dichlorofluoromethane	25.0	24.3		ug/L	97	76 - 127	
Ethylbenzene	25.0	25.3		ug/L	101	77 - 123	
Isopropylbenzene	25.0	24.4		ug/L	97	77 - 122	
Methyl acetate	50.0	47.0		ug/L	94	74 - 133	
Methyl tert-butyl ether	25.0	25.0		ug/L	100	77 - 120	
Methylcyclohexane	25.0	24.3		ug/L	97	68 - 134	
Methylene Chloride	25.0	24.3		ug/L	97	75 - 124	
Styrene	25.0	25.3		ug/L	101	80 - 120	
Tetrachloroethene	25.0	26.6		ug/L	107	74 - 122	
Toluene	25.0	25.2		ug/L	101	80 - 122	
trans-1,2-Dichloroethene	25.0	24.4		ug/L	98	73 - 127	
trans-1,3-Dichloropropene	25.0	27.5		ug/L	110	80 - 120	
Trichloroethene	25.0	24.8		ug/L	99	74 - 123	
Trichlorofluoromethane	25.0	25.8		ug/L	103	62 - 150	
Vinyl chloride	25.0	22.8		ug/L	91	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	103		73 - 120
Dibromofluoromethane (Surr)	103		75 - 123

Lab Sample ID: LCSD 480-726582/7

Matrix: Water

Analysis Batch: 726582

Client Sample	ID: Lab Control Sample Dup
	Prep Type: Total/NA

	•	Spike	LCSD	LCSD				%Rec		RPD
1	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
-	1,1,1-Trichloroethane	25.0	24.5		ug/L		98	73 - 126	4	15
	1,1,2,2-Tetrachloroethane	25.0	26.2		ug/L		105	76 - 120	1	15
	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.7		ug/L		107	61 - 148	2	20
	ne 1,1,2-Trichloroethane	25.0	26.4		ug/L		106	76 - 122	1	15

Eurofins Buffalo

10/2/2024

Page 27 of 36

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

Job ID: 480-223722-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-726582/7

Matrix: Water

Analysis Batch: 726582

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
1,1-Dichloroethane	25.0	25.8		ug/L	— <u>-</u>	103	77 - 120	3	20
1,2,4-Trichlorobenzene	25.0	27.1		ug/L		108	79 - 122	2	20
1,2-Dibromo-3-Chloropropane	25.0	25.2		ug/L		101	56 - 134	5	15
1,2-Dibromoethane	25.0	26.4		ug/L		106	77 - 120	1	15
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	80 - 124	1	20
1,2-Dichloroethane	25.0	25.1		ug/L		100	75 - 120	2	20
1,2-Dichloropropane	25.0	25.3		ug/L		101	76 - 120	1	20
1,3-Dichlorobenzene	25.0	25.1		ug/L		101	77 - 120	1	20
1,4-Dichlorobenzene	25.0	24.7		ug/L		99	80 - 120	0	20
2-Butanone (MEK)	125	214	*+	ug/L		171	57 - 140	4	20
o-Chlorotoluene	25.0	25.7		ug/L		103	76 - 121	1	20
2-Hexanone	125	129		ug/L		103	65 - 127	4	15
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		103	71 - 125	5	35
Acetone	125	120		ug/L		96	56 - 142	4	15
Benzene	25.0	25.0		ug/L		100	71 - 124		13
Bromoform	25.0	28.8		ug/L		115	61 - 132	0	15
Bromomethane	25.0	21.5		ug/L		86	55 - 144	2	15
Carbon disulfide	25.0	25.3		ug/L		101	59 - 134	. 5	15
Carbon tetrachloride	25.0	25.3		ug/L		101	72 - 134	2	15
Chlorobenzene	25.0	25.2		ug/L		101	80 - 120	2	25
Chlorodibromomethane	25.0	27.5		ug/L		110	75 - 125	<u>.</u> . 1	15
Chloroethane	25.0	22.0		ug/L		88	69 - 136	2	15
Chloroform	25.0	24.4		ug/L		98	73 - 127	0	20
Chloromethane	25.0	22.2		ug/L		89	68 - 124	4	15
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	74 - 124	2	15
cis-1,3-Dichloropropene	25.0	26.0		ug/L		104	74 - 124	0	15
Cyclohexane	25.0	23.0		ug/L		92	59 - 135	2	20
Bromodichloromethane	25.0	26.0		ug/L		104	80 - 122	1	15
Dichlorofluoromethane	25.0	23.7		ug/L		95	76 - 127	3	20
Ethylbenzene	25.0	25.7		ug/L		103	77 - 123		15
Isopropylbenzene	25.0	24.8		ug/L		99	77 - 122	2	20
Methyl acetate	50.0	49.6		ug/L		99	74 - 133	5	20
Methyl tert-butyl ether	25.0	25.3		ug/L		101	77 - 120		37
Methylcyclohexane	25.0	24.5		ug/L		98	68 - 134	1	20
Methylene Chloride	25.0	24.4		ug/L		98	75 - 124	0	15
Styrene	25.0	25.5		ug/L		102	80 - 120	<u>.</u> .	20
Tetrachloroethene	25.0	27.3		ug/L		109	74 - 122	3	20
Toluene	25.0	25.6		ug/L		102	80 - 122	2	15
trans-1,2-Dichloroethene	25.0	24.9		ug/L		99	73 - 127	2	20
trans-1,3-Dichloropropene	25.0	27.8		ug/L		111	80 - 120	1	15
Trichloroethene	25.0	25.3		ug/L		101	74 - 123	2	16
Trichlorofluoromethane	25.0	25.6		ug/L		102	62 - 150	. . 1	20
Vinyl chloride	25.0	23.2		ug/L ug/L		93	65 - 133	2	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	106		73 - 120

Eurofins Buffalo

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-726582/7

Matrix: Water

Analysis Batch: 726582

LCSD LCSD

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 100 75 - 123

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

QC Association Summary

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

GC/MS VOA

Analysis Batch: 726431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223722-1	TB-092524	Total/NA	Water	8260C	_
480-223722-2	FD-092524	Total/NA	Water	8260C	
480-223722-3	MW-13R	Total/NA	Water	8260C	
480-223722-4	MW-15R	Total/NA	Water	8260C	
480-223722-5	MW-3S	Total/NA	Water	8260C	
480-223722-6	MW-7R	Total/NA	Water	8260C	
480-223722-7	MW-8R	Total/NA	Water	8260C	
480-223722-8	MW-9R	Total/NA	Water	8260C	
MB 480-726431/8	Method Blank	Total/NA	Water	8260C	
LCS 480-726431/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 726582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-223722-2 - DL	FD-092524	Total/NA	Water	8260C	
MB 480-726582/9	Method Blank	Total/NA	Water	8260C	
LCS 480-726582/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-726582/7	Lab Control Sample Dup	Total/NA	Water	8260C	

Job ID: 480-223722-1

6

4

6

0

9

10

11

14

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: TB-092524

Date Collected: 09/25/24 00:00 Date Received: 09/25/24 15:22 Lab Sample ID: 480-223722-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	726431	LCH	EET BUF	09/28/24 05:48

Client Sample ID: FD-092524

Date Collected: 09/25/24 00:00 Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	726431	LCH	EET BUF	09/28/24 06:10
Total/NA	Analysis	8260C	DL	40	726582	ERS	EET BUF	09/30/24 15:01

Client Sample ID: MW-13R

Date Collected: 09/25/24 10:20

Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number A	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		40	726431 L	.CH	EET BUF	09/28/24 06:33

Client Sample ID: MW-15R

Date Collected: 09/25/24 09:25

Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	726431	LCH	EET BUF	09/28/24 06:55

Client Sample ID: MW-3S

Date Collected: 09/25/24 12:15

Date Received: 09/25/24 15:22

Lab Sample ID: 480-223722-5

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1000	726431	LCH	EET BUF	09/28/24 07:18

Date Received: 09/25/24 15:22

Client Sample ID: MW-7R	Lab Sample ID: 480-223722-6
Date Collected: 09/25/24 08:20	Matrix: Water

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analy	st Lab	or Analyzed
Total/NA	Analysis	8260C			726431 LCH	EET BUF	09/28/24 07:41

Client Sample ID: MW-8R Lab Sample ID: 480-223722-7

Date Collected: 09/25/24 11:15 Date Received: 09/25/24 15:22

> Batch Batch Dilution Batch Prepared

Prep Type Type Method Run **Factor Number Analyst** or Analyzed Lab 09/28/24 08:03 Total/NA Analysis 8260C 726431 LCH EET BUF

Eurofins Buffalo

Matrix: Water

Lab Chronicle

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Client Sample ID: MW-9R Lab Sample ID: 480-223722-8

Date Collected: 09/25/24 13:20 Matrix: Water Date Received: 09/25/24 15:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	726431	LCH	EET BUF	09/28/24 08:26

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

6

0

9

10

12

1

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-223722-1

Project/Site: ChemTrol Site - Groundwater

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
New York	NELAF)	10026	03-31-25
0 ,	•	•	not certified by the governing author	ity. This list may include analy
0 ,	s are included in this repo does not offer certification	•	not certified by the governing author	ity. This list may include analy
0 ,	•	•	not certified by the governing author Analyte	ity. This list may include analy

Eurofins Buffalo

Method Summary

Client: Waste Management

Project/Site: ChemTrol Site - Groundwater

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846EET BUF5030CPurge and TrapSW846EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Job ID: 480-223722-1

3

4

Ę

6

0

9

11

13

Sample Summary

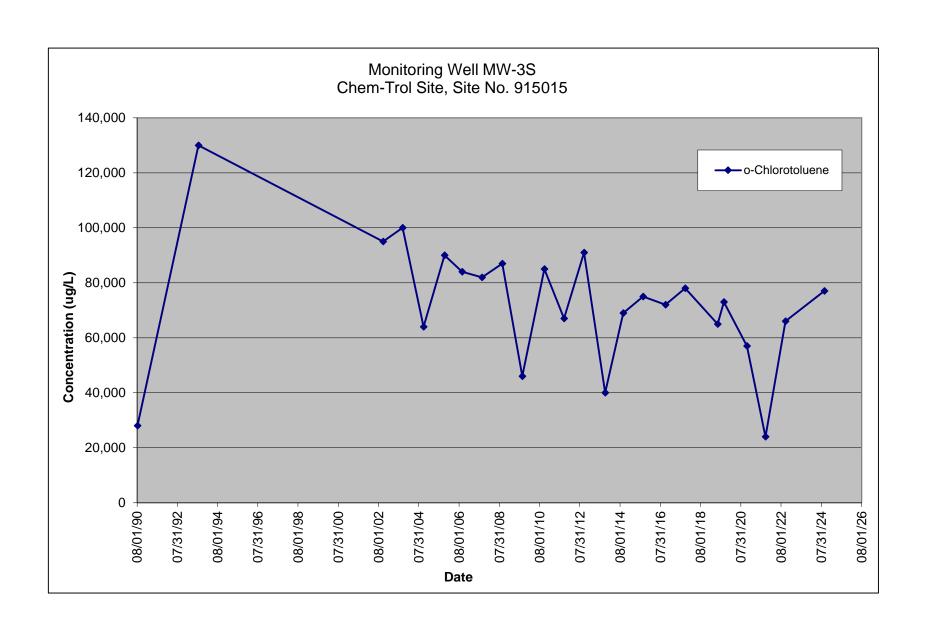
Client: Waste Management Project/Site: ChemTrol Site - Groundwater

_			_	
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-223722-1	TB-092524	Water	09/25/24 00:00	09/25/24 15:22
480-223722-2	FD-092524	Water	09/25/24 00:00	09/25/24 15:22
480-223722-3	MW-13R	Water	09/25/24 10:20	09/25/24 15:22
480-223722-4	MW-15R	Water	09/25/24 09:25	09/25/24 15:22
480-223722-5	MW-3S	Water	09/25/24 12:15	09/25/24 15:22
480-223722-6	MW-7R	Water	09/25/24 08:20	09/25/24 15:22
480-223722-7	MW-8R	Water	09/25/24 11:15	09/25/24 15:22
480-223722-8	MW-9R	Water	09/25/24 13:20	09/25/24 15:22

Job ID: 480-223722-1

Section Control Cont	Committee Com	10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Chain of C	ain of Custody Record	cord		🔆 eurofins Environment Testing
Property	Project Proj	Client Information	1Chris		ette, Rvan T	Carrier Tracking No(s):	COC No:
Preserved Pres	March Analysis Requested	Jilent Contact: Chad Moose	5-563		VanDette@et eurofinsus com	1 -	Page:
Marcol	Heat 216-688-6315 Fax) The Recent of Harris The Recent of Ha	ompany. Naste Management			Analysis Re		rage Lori
14(Teb) 215-6698-8315(Fab) 1545289 154	14(Te) 219-569-8119[Fax) 134-529-90	Ndress: [ullytown Landfill 444 Oxford Valley Road	Due Date Requested:		N CIC ADDITION OF THE PROPERTY	nesenha	Preservation Codes:
Sample Constituted Propert a Yea b to	Second Computers Compute	ity Aorrisville	TAT Requested (days):				721 - 4
1982-114(Te) 21-6-69-6-61-15(Fa) 190-59	1962-14(TeV) 219-609-621-5(FaV) 1969-621-5(FaV) 1969-621-5	late, ∠lp. 2A, 19067	Project: A Yes				
Third Standward Event Desc. Chemital Annual Groundward adoctors and the stand Standberg Event Desc. Chemital Annual Groundward adoctors and the standberg Event Desc. Chemital Annual Groundward adoctors and the standberg Event Desc. Chemital Annual Groundward adoctors and the standberg Event Desc. Chemital Annual Groundward adoctors and the standberg Event Desc. Chemital Annual Groundward adoctors and the standberg Event Desc. Chemital Annual Groundward Ann	The control of the						
Sample Data Sample Circles Cir	Sample Date Chem	mail: moose@wm.com	**OM				
Sample Care Sample Care Sample Care C	Sample Data Sample Data Sample Data Sample Data Sample Coccess	ect Name: emTrol Site/NY22	Project # Wate; 48002447		N (0.9	ain of Custody	
Sample One Sam	Sample Date Sample Date Sample Caccep. Sample Date Time Caccep. Caccep	v York	SSOW#:		eV) de		
1	1	ample Identification	Sample	Matrix (w=water, S=solid. O=wasteroil,	M&M mohe		o Tedmuki İst
1	1	V	X	ation Code:			
1	10	18-09252	1	Water			4
1/2/24 1/2 2 2 2 3 3 3 3 3 3	1/25/24 1026 C Water M M 3	= D-0925	1	Water	2		C
9 25/24 12.15 5 Water 1/2 3	9 25/24 0925	W-13R	1 1020	Water	2		7 2
9/25/24 72.15 C. Water N N 3	1/25/24 12.15 2 Water 1/4 3	W-15R	0925	Water	>		2 2
9/25/24 1 5 5 5 5 5 5 5 5 5	175/24 GS26 G Water	W-3S	1215	Water	5		7
125/24 1720 2 2 2 2 2 2 2 2 2	9 25/24 175 5 5 5 5 5 5 5 5 5	W-7R	0830	Water	, 72		1 4
Plazard Identification 1-Hazard Identificatio	Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Poison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Received by Sample (A fee may be assessed if samples are retained longer than 1 m Received by Sample (A fee may be assessed if samples are retained longer than 1 m Received by Sample (A fee may be assessed if samples are retained longer than 1 m Received by Sample (A fee may be assessed if samples are retained longer than 1 m Received by Sample (A fee may be assessed if samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer than 1 m Received by Samples are retained longer	W-8R	11.15	Water	7		1 0
Auchine Skin Irrilant Date: Poison B	Authorities and the specified by the second	W-9R	1320 (Water	2		1 %
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo mable Skin Irritant Poison B Unknown Radiological Secial Instructions/QC Requirements: Irine: Time: Irine: Date/Time: Date/Time: Company Received by	ation Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Archive For						
Sample Disposal (A fee may be assessed if samples are retained longer than 1 moments) International Company Shipment Shipmen	Sample Disposal (A fee may be assessed if samples are retained longer than 1 m meable	necible Hasned Identification					
Time Date	Time Date: Date: Time Date: Date: Time Date: Time Date:	Soline nazard identification Non-Hazard		Jooise	Sample Disposal (A fee may be	assessed if samples are re	tained longer than 1 month)
Date: Time: Date: Time: Method of Shipment: October 1 October	Date: Time: Method of Shipment: Up of the Company Received by Date/Time: Date	I, III, IV, Othe		Alcai.	Special Instructions/QC Requirem	-Disposal By Lab	Archive For Months
Chr.s-Ign. Fig. Company Received by Date/Time: Company Received by Date/Time: A No A No Cooler Temperature(s) °C and Other Remarks:	Date/Time: Company Received by: Date/Time: Company Received by: Date/Time: Da	mpty Kit Relinquished by:	Date:		ime:	Method of Shipment:	0
Date/Time: Company Received by: Date/Time: Company Received by Date/Time: Dat	Sals Intact: Custody Seal No.: Date/Time: Company Received by: Company Received by: Cooler Temperature(s) °C and Other Remarks: 4 (6 17 15 15 15 15 15 15 15 15 15 15 15 15 15	Cheston.	152	Company	Received by:	Date/Time:	(1)
Date/Time: Company Received by The Cooler Temperature(s) C and Other Remarks: 1 15 14 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15	Sals Intact: Custody Seal No.: Date/Time: Company Received by Seal No.: Cooler Temperature(s) °C and Other Remarks: 4 (6 T T # SC T (elinquished by:		Company	Received by:	Date/Time:	Company
Custody Seal No∴	Custody Seal No.: Cooler Temperature(s) °C and Other Remarks: (10 11 11 11 11 11 11 11 11 11 11 11 11 1		Date/Time:	Company	Received by 7	DateCline	COMpany CC)
	217 、 クキンナ・11				Cooler Temperature(s) °C and Other F	Remarks:	ノーシャーンドの

ATTACHMENT E

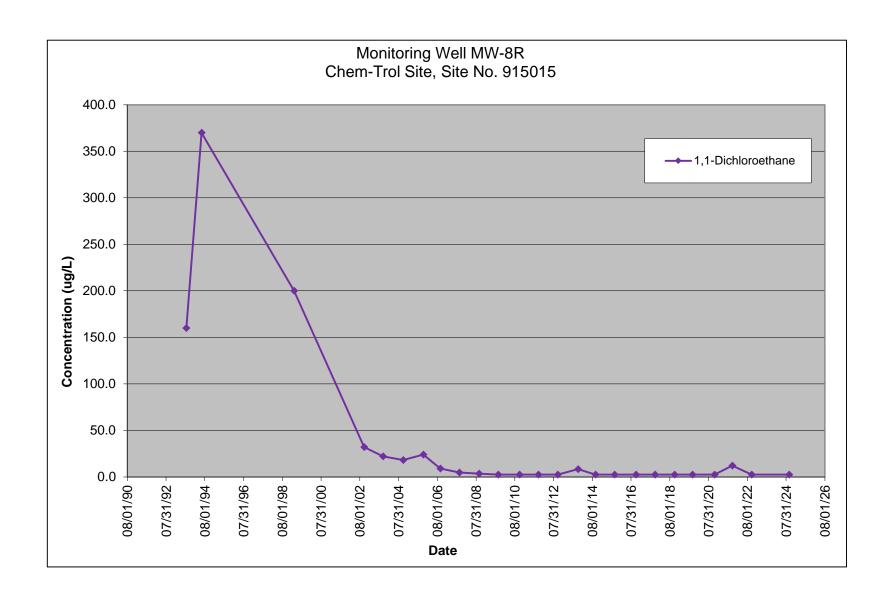

Historical Groundwater Monitoring Data Trend Plots

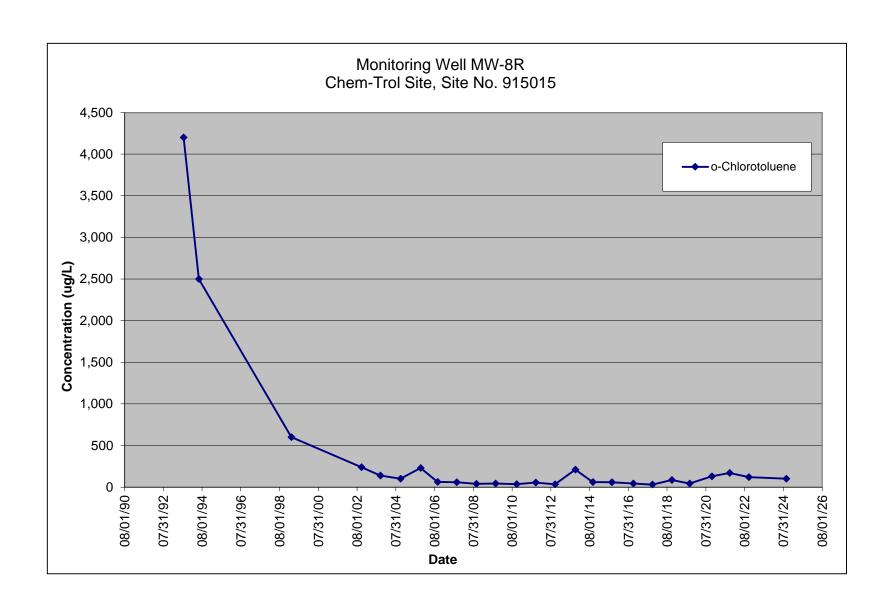
CHEM-TROL SITE

Groundwater Analytical Data for Well MW-3S (ug/L)

Date	o-Chlorotoluene
08/09/90	28,000
08/19/93	130,000
10/23/02	95,000
10/13/03	100,000
10/26/04	64,000
11/11/05	90,000
09/27/06	84,000
09/20/07	82,000
09/24/08	87,000
09/22/09	46,000
10/27/10	85,000
10/20/11	67,000
10/17/12	91,000
11/05/13	40,000
09/29/14	69,000
09/23/15	75,000
11/02/16	72,000
10/25/17	78,000
06/07/19	65,000
09/30/19	73,000
11/20/20	57,000
10/22/21	24,000
10/20/22	66,000
09/25/24	77,000

Note: Data not collected 10/30/18 due to the well being dry; as a result, 2018 annual sample collected 06/07/19.

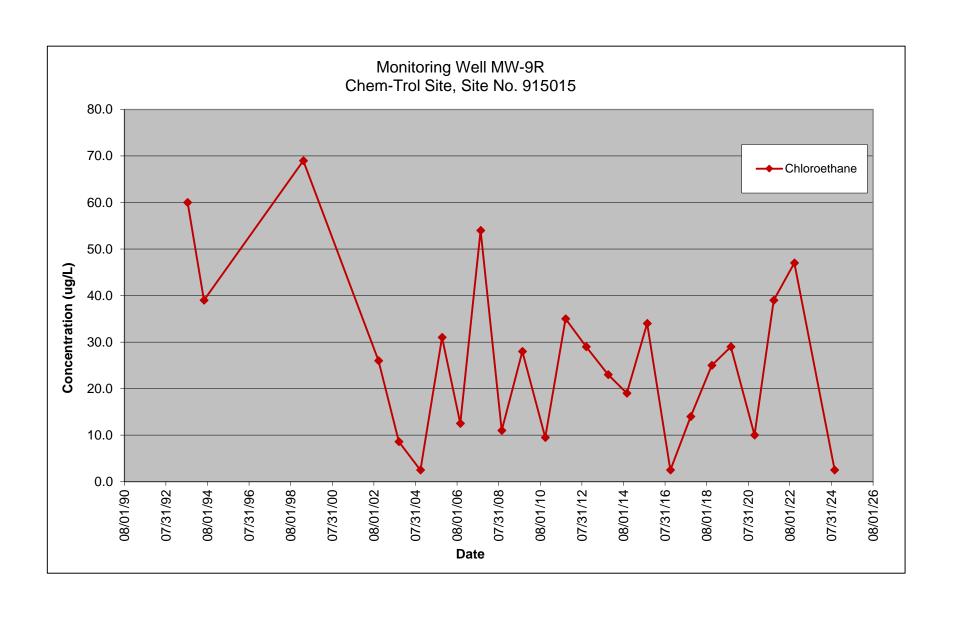


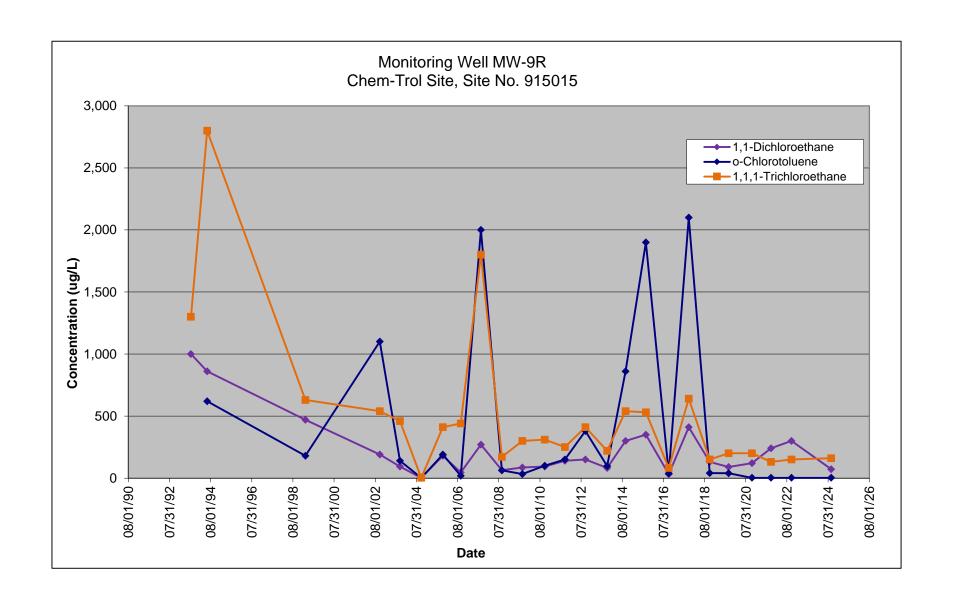

CHEM-TROL SITE

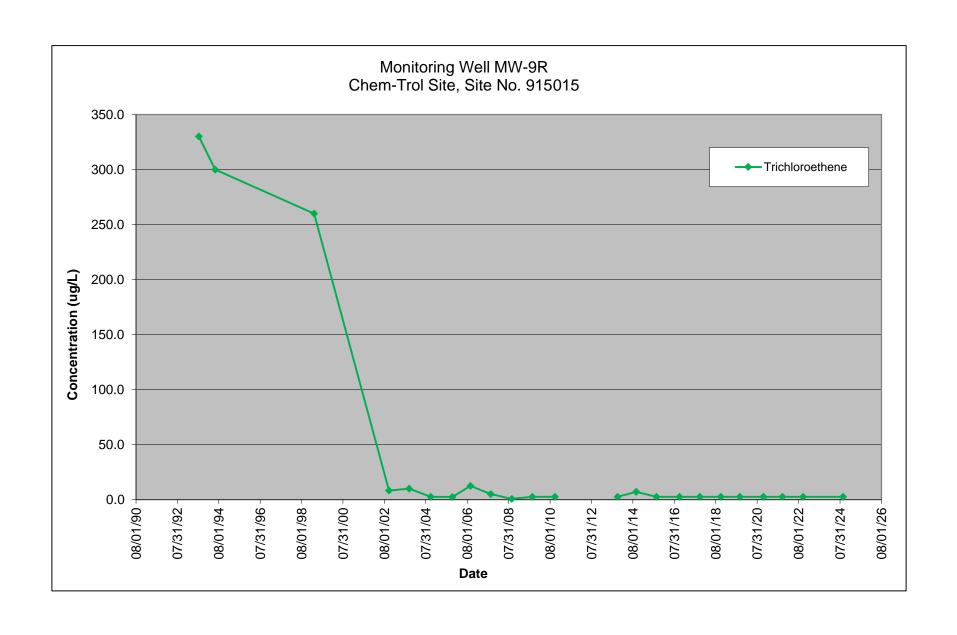
Groundwater Analytical Data for Well MW-8R (ug/L)

Date	1,1-Dichloroethane	o-Chlorotoluene
08/16/93	160.0	4,200
06/01/94	370.0	2,500
03/10/99	200.0	600.0
10/22/02	32.0	240.0
10/13/03	22.0	140.0
10/26/04	18.0	100.0
11/11/05	24.0	230.0
09/27/06	8.9	63.0
09/20/07	4.7	58.0
09/24/08	3.4	40.0
09/22/09	2.5	43.0
10/27/10	2.5	35.0
10/20/11	2.5	55.0
10/17/12	2.5	34.0
11/05/13	8.2	210.0
09/29/14	2.5	61.0
09/23/15	2.5	59.0
11/02/16	2.5	44.0
10/25/17	2.5	31.0
10/30/18	2.5	85.0
09/30/19	2.5	44.0
11/20/20	2.5	130.0
10/22/21	12.0	170.0
10/20/22	2.5	120.0
09/25/24	2.5	100.0

Value is equal to 1/2 the detection limit.

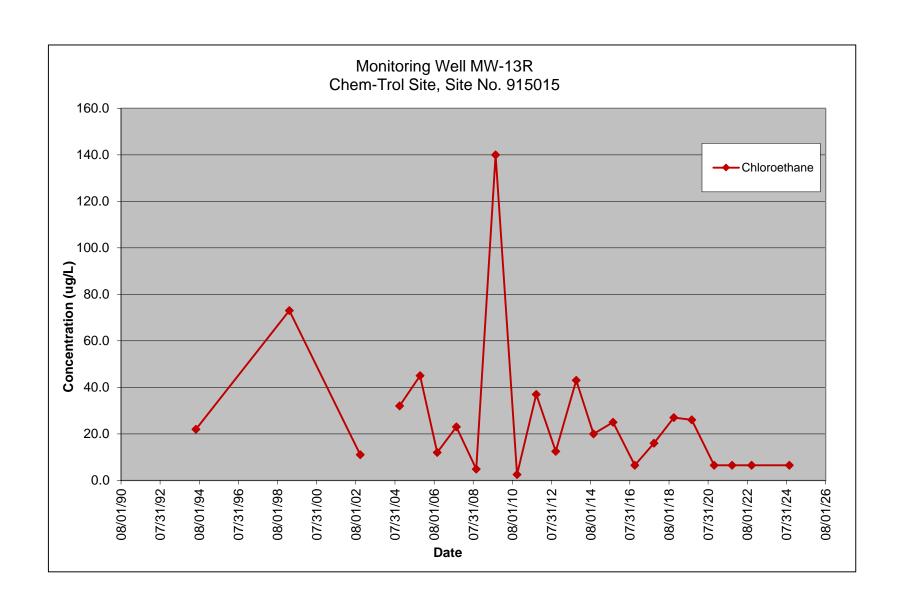


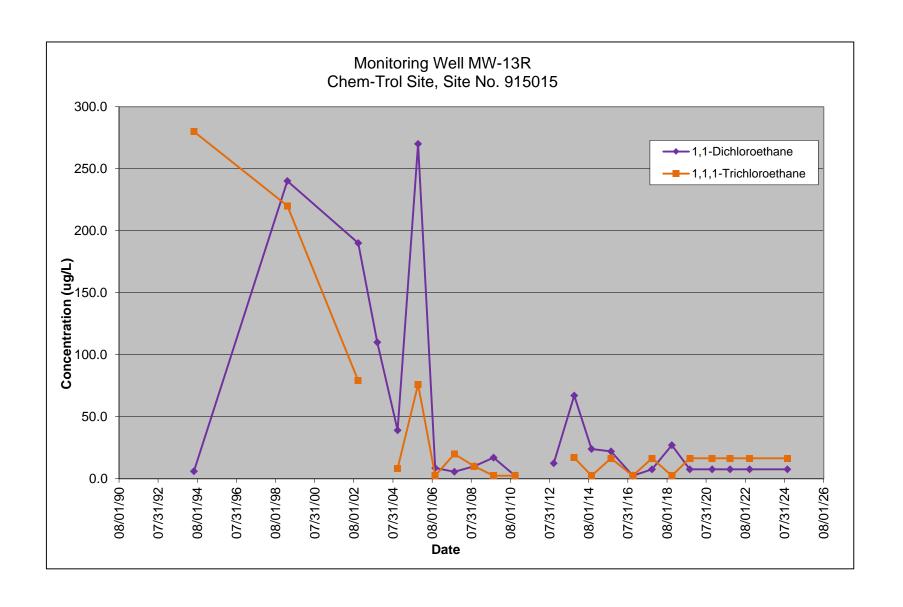

CHEM-TROL SITE

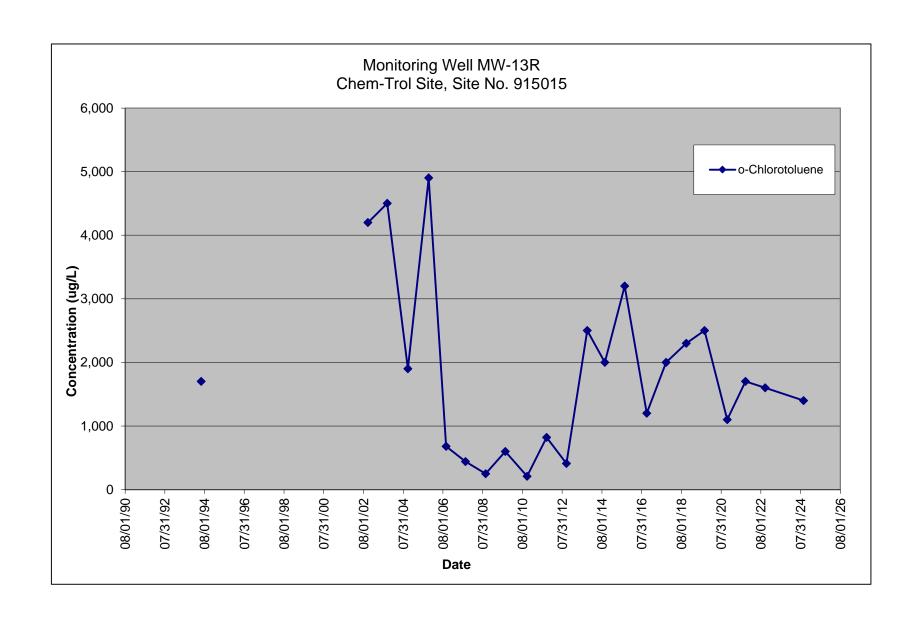

Groundwater Analytical Data for Well MW-9R (ug/L)

Date	Chloroethane	1,1-Dichloroethane	o-Chlorotoluene	1,1,1-Trichloroethane	Trichloroethene
08/16/93	60.0	1,000		1,300	330.0
06/01/94	39.0	860.0	620.0	2,800	300.0
03/10/99	69.0	470.0	180.0	630.0	260.0
10/22/02	26.0	190.0	1,100	540.0	8.2
10/13/03	8.6	93.0	140.0	460.0	10.0
10/26/04	2.5	2.5	2.5	2.5	2.5
11/11/05	31.0	180.0	190.0	410.0	2.4
09/27/06	12.5	46.0	18.0	440.0	12.5
09/20/07	54.0	270.0	2,000	1,800	5.1
09/24/08	11.0	64.0	62.0	170.0	0.68
09/22/09	28.0	85.0	33.0	300.0	2.5
10/27/10	9.5	93.0	100.0	310.0	2.5
10/20/11	35.0	140.0	150.0	250.0	
10/17/12	29.0	150.0	380.0	410.0	
11/05/13	23.0	82.0	97.0	220.0	2.5
09/29/14	19.0	300.0	860.0	540.0	7.1
09/23/15	34.0	350.0	1900.0	530.0	2.5
11/02/16	2.5	31.0	38.0	82.0	2.5
10/25/17	14.0	410.0	2100.0	640.0	2.5
10/30/18	25.0	130.0	40.0	150.0	2.5
09/30/19	29.0	89.0	39.0	200.0	2.5
11/20/20	10.0	120.0	2.5	200.0	2.5
10/22/21	39.0	240.0	2.5	130.0	2.5
10/20/22	47.0	300.0	2.5	150.0	2.5
09/25/24	2.5	71.0	2.5	160.0	2.5

Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results. Value is equal to 1/2 the detection limit.




 $\label{eq:chem-trol} CHEM\text{-}TROL\ SITE$ Groundwater Analytical Data for Well MW-13R (ug/L)


Date	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane	o-Chlorotoluene
05/31/94	22.0	6.0	280.0	1,700
03/11/99	73.0	240.0	220.0	
10/22/02	11.0	190.0	79.0	4,200
10/13/03		110.0		4,500
10/26/04	32.0	39.0	8.2	1,900
11/11/05	45.0	270.0	76.0	4,900
09/27/06	12.0	8.6	2.5	680.0
09/20/07	23.0	5.6	20.0	440.0
09/24/08	4.8	10.0	10.0	250.0
09/22/09	140.0	17.0	2.5	600.0
10/27/10	2.5	2.5	2.5	210.0
10/20/11	37.0			820.0
10/17/12	12.5	12.5		410.0
11/05/13	43.0	67.0	17.0	2,500
09/24/14	20.0	24.0	2.5	2,000
09/23/15	25.0	22.0	16.5	3200
11/02/16	6.5	2.5	2.5	1200
10/25/17	16.0	7.5	16.5	2000
10/30/18	27.0	27.0	2.5	2300
09/30/19	26.0	7.5	16.5	2500
11/20/20	6.5	7.5	16.5	1100
10/22/21	6.5	7.5	16.5	1700
10/20/22	6.5	7.5	16.5	1600
09/25/24	6.5	7.5	16.5	1400

Data not included due to high detection limits for ND values: (1) 2003 - 200 ug/L except for Total Xylenes, which was 600 ug/L. Data not included due to 1/2 the detection limit being higher than the previous 3 years of positive results.

Value is equal to 1/2 the detection limit.

