EXCELLENCE THROUGH TEAMWORK

July 28, 1993

Mr. Bruce Wager, NYSDEC New York State Dept. of Environmental Conservation 270 Michigan Ave. Buffalo, N.Y. 14203-1109

Re: Consent Order No. 90-105, Final Report, Wastewater Pond Cleaning

Dear Mr. Wager:

The attached Final Report on our Wastewater Pond Cleaning Project is submitted for your review and records.

Successful completion of this remediation project, together with the Potential Spill Source Projects schedule for completion by September of this year, will conclude those requirements as set forth by Consent Order No. 90-105.

Respectfully;

Daniel T. Parshall

Energy/Environmental Eng.

CC: J. Fox

M. Sieverding

H. Wood

D. Pyanowski

DUNLOP TIRE CORPORATION BUFFALO PLANT

FINAL REPORT WASTEWATER POND CLEANING

AS REQUIRED UNDER CONSENT ORDER NO. 90-105 OF THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACTOR: DAMES & MOORE OF WILLOW GROVE, PA.

OVERSIGHT: URS CONSULTANTS, INC. OF BUFFALO, N.Y.

SUBMITTED BY: DANIEL T. PARSHALL DUNLOP TIRE CORP. JULY 28, 1993

CC: M. Sieverding
D. Pyanowski
G. May, NYSDEC
J. Wokasien, URS

FINAL REPORT WASTEWATER POND CLEANING

I. OBJECTIVE OF WASTEWATER POND CLEANING

The objective of this project was to re-establish the Wastewater Pond to its original dimensions by removing sediment accumulations as recommend in your letter of March 11, 1992 as part of the Order on Consent No. 90-105.

II. RESULTS OF POND CLEANING

The original volume of the pond as calculated from construction drawings was 259,200 cu. ft. (180'x180'x 8'), which equates to 2,016,576 gallons. This effective volume was reduced to 172,789 cu. ft. (eff. depth of 5'4" per ODNY Report of 11/8/91), equivalent to 1,292,463 gallons or 66.6% of the original volume of the pond due to sediment build-up, see attachments A.

Elevations of the bottom taken after cleaning of the pond, as compared to the original design elevations, see attachment "B", show an overall increase in depth. The new average depth is calculated to be 9.37 ft. which equates to an effective volume of 303,588 cu. ft. (2,270,838 gallons). This change in depth was a result of clay removed from the bottom of the pond during remediation operations. Elevations were taken by Dames & Moore to verify completeness of this project, see attachment #04.

During the pond filling operation, after completion of remediation, process water meter reading were recorded which indicated that 2,191,000 gallons were used to fill the pond. However, un-metered city water was also discharge into the pond during this period, which, based on past records, is estimated to be up to 200,000 gallons/day.

It is therefore concluded that the pond was satisfactory cleaned and that its effective volume was, at a minimum, restored to design specifications.

III. GENERAL OPERATIONAL INFORMATION

Dunlop Tire Corporation awarded the Pond Sediment Removal Project to Dames and Moore, Inc. of Willow Grove, Pennsylvania, with project coordination and on-site inspection performed by URS Consultants, Inc. of Buffalo, N.Y.

As scheduled, mobilization for remediation of the pond commenced on May 20, 1993 with the following items in place prior to our plant shut-down on June 28, 1993:

installation of by-pass pipingswaste haul road established w/stone

Two (2) 1.4 MGD pumps in place & tested w/ two (2) additional on stand-by

Light stands and generators in place & tested

- Gabions, silt fences, straw bales, oil absorbent booms, diversion ditches in place to minimize contamination of our outfall.

- Heavy equipment ready

- Stabilization materials set-up

Disposal cell established

By-pass of the pond commenced in the early morning hours of June 28, 1993 with one pump taking suction above the first stage dam. This pump was able to maintain flow around the pond during the entire remediation project. Water usage within the plant averaged approx 1.0 MGD during the plant shut-down period.

Pumping of the pond started during the morning of 6/28/93, and was completed at 4:00 am on 6/29/93. Cleaning of the concrete walls was completed on 7/8/93.

The gabions, silt fences, booms and other devices installed to reduce/minimize contamination of our out-fall water worked extremely well. Additional manpower was used to physically remove any floating algae and slight oil film on top of the water. Plant water flows, and visual out-fall quality were closely monitored with operations running on a 24 hour per day basis.

Initial pumping and working of the sludge to reduce water content proved unsuccessful and the decision was made to use a stabilizer. Analysis of fly ash from Niagara Mohawk had already been reviewed, and additional discussions were held with Mr. Mike Basel, their Environmental Engineer, as to its properties and disposal procedures.

Actual sludge removal commenced on 8/1/93 and continued until completion on 8/5/93. The sludge/fly ash mixture was taken to an on-site clay lined cell within the existing inactive landfill site #915018 A. This mixture will be capped and sealed in accordance with the procedures as established in the Record Of Decision (ROD) of 3/26/93.

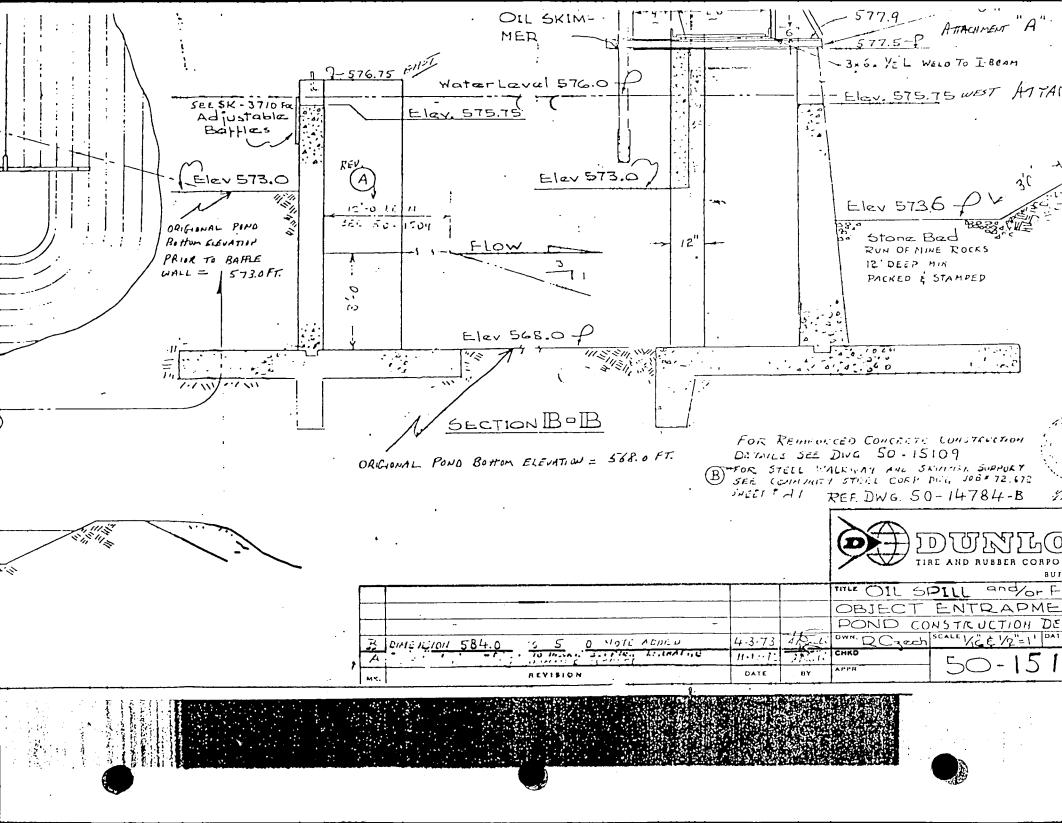
A punch list of action items was submitted to Dames & Moore on 7/7/93, see attachment #01. These items have been completed as acknowledged in our memo of 7/26/93, see attachment #02. Transmittal Sheets from Dames & Moore, see attachments #03 through #08, verify fly ash analyticals, final pond bottom elevations, volume calculations of sludge removed, re-establishment of vegetation around the pond, re-establishment of weir flow baffles, and completion of the punch list, respectfully.

Re-establishment of the weir flow baffles was required due to damage to four of the baffles during the remediation process. Dames & Moore were given the report as compiled by Environmental Products and Services and verify that the baffles are reset to original elevations.

A TCLP test was completed on the sludge/fly ash mixture contained within the disposal cell at the recommendation of Mr. Glenn May, NYSDEC, see attachment #09.

The entire project was documented with photographs for future reference. Attached find selected copies of these photographs with descriptions by each.

The out-fall Parshall Flume was checked for calibration on 7/9/93 and found to be within 3% accurate and the monthly SPDES samples were taken on 7/20 and 7/27/93.


The pond was returned to normal operations for plant start-up on at 7:00 AM on July 5th. The pond site has been seeded and final clean-up is completed.

Review of the Pond Remediation Project, together with our Annual Water Inspection and status of the on-going Potential Spill Source Projects was conducted by your Mr. Robert Smythe of the NYSDEC, on 7/13/93.

Respectfully;

Daniel T. Parshall

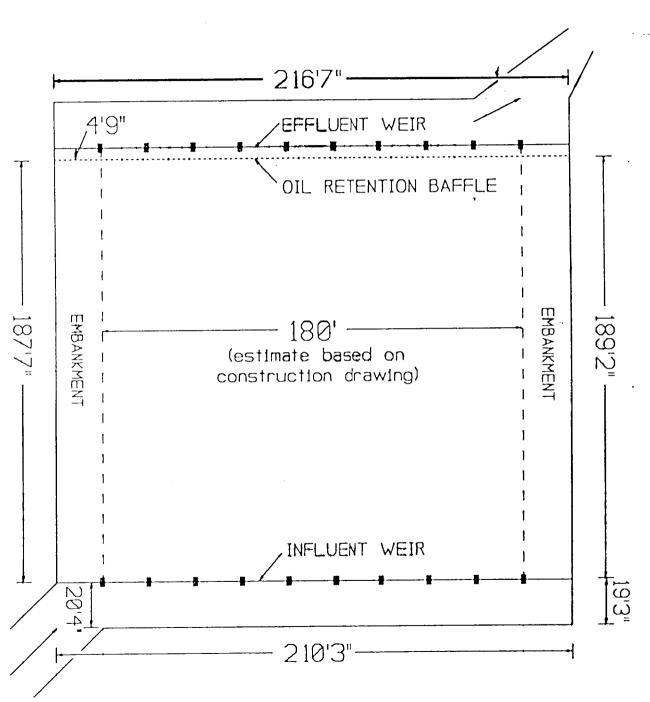
Energy/Environmental Eng.

Approximate Pard Dimensions: /80'0" W x 1800" L x 8'0" Deep Ac = 180'0" x 8'0" = 1,440 ft ² design Ac = 180'0" x 5'4" = 960 ft ² current effectiv * 5'4" is current among depth to pludge blanket. An = 180'0" x 180'0" = 32,400 ft ²	
/80'0" W x 1800" L x 8'0" Deep Ac = 180'0" x 8'0" = 1,440 ft 2 design Ac = 180'0" x 5'4" = 960 ft 2 current effective * 5'4" is current annage depth to sludge blanket.	
/80'0" W x 1800" L x 8'0" Deep Ac = 180'0" x 8'0" = 1,440 ft 2 design Ac = 180'0" x 5'4" = 960 ft 2 current effective * 5'4" is current annage depth to sludge blanket.	
Ac = 180'0" x 8'0" = 1,440 ft ² design Ac = 180'0" x 5'4" = 960 ft ² current effectiv * 5'4" is current arreage depth to sludge blanket.	
$A_{c} = 180'0'' \times 8'0'' = 1,440 \text{ ft}^{2} \text{ design}$ $A_{c} = 180'0'' \times 5'4'' = 960 \text{ ft}^{2} \text{ current}$ $effective$ $4 5'4'' \text{ is current average depth to pludge blanket.}$	
Ac = 180'0" x 5'4" = 960 ft 2 current effectiv * 5'4" is current average depth to sludge blanket.	
Ac = 180'0" x 5'4" = 960 ft 2 current effectiv * 5'4" is current average depth to sludge blanket.	
# 5'4" is current average depth to sludge blanket.	4 1
* 5'4" is current average depth to sludge blanket.	-
	<u> </u>
	-
AH = 180'0" x 180'0" = 32,400 ft2	
H = 1800" x 1800" = 32,400 ++ -	-
	1
⋑ ⋶⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛⋛	
	
	-
┃ ╌╀╌┤╼┼╼╁╼╅╼╉╴╬╍╬┈╬┈┆╌╗┉┆╾╽╺╬╴┆╼╬╵┆╾╣┈╬╸╣╼╗╍╬╼┪╼┪╍╃╍┯╸	
	1
	1-
	.
The design concepts and information contained herein are proprietary to ODNY incorporated, and are submitted in confidence. They are not to be train	and the second second

المراج والمراج

POND DIMENSIONS

6333

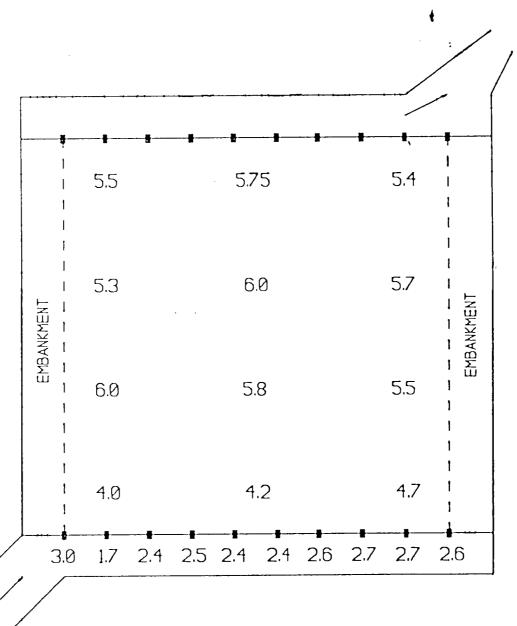

2357

11.19

3852

ESE DESE

1300



19. FAR

1322.5

TO TOP OF SLUDGE BLANKET

July 7, 1993

TO: R. Davis, Dames & Moore, Inc. Fm: D. Parshall, Dunlop Tire Corp.

Subj: Pond Remediation, Final Punch List

As verbalized in our meeting of yesterday, the following items need to be addressed in order to complete the Pond Sludge Removal Project:

- 1. Reinstall Boom in Pond
- 2. Re-establish North Bank to original pre-construction conditions
- Repair 10" PVC Pipe and cover w/fill
- 4. Pull gabion and curtains at the road discharge pipe
- 5. Provide detailed information on:
 - Number of Fly Ash Trucks, weight, cubic yards, w/slips
 - Number of Trucks, cubic yards/truck, total yards to cells of sludge/fly ash
 - Net cubic yards of sludge delivered to cells
- Re-adjust baffles and formally report flow distribution, see attached report for procedure
- 7. Submit final pond bottom elevations formally
- 8. Provide erosion protection fence along East side of pond to control runoff while working on borrow pit
- 9. Repair damaged concrete piers on baffle wall
- 10. Provide final clean-up of area to pre-construction conditions
- 11. Continue to turn-over/disk sludge in cells to reduce level of moisture to conditions that allow for clay capping

Provide written documentation upon completion of above.

Saniel T. Parshall

Energy/Environmental Eng.

CC: M. Sieverding

D. Pyanowski

J. Wokasien, URS

EXCELLENCE THROUGH TEAMWORK

July 26, 1993

Peter Wallace, Dames & Moore

10.00

Dan Parhall, Dunlop Tire Corp. Fm:

Re: P.O.#15060B & #15061B, Job no. 26647-001

Subj: Pond Project Final Punch List, completion of;

In reply to your Transmittal Sheet of July 22, 1993, Dunlop Tire acknowledges that the final punch list is complete contingent upon restablishment of the seed along the NW bank of the sediment pond.

Energy/Environmental Eng.

CC: M. Sieverding
D. Pyanowski
J. Woka**si**en, URS

Dames & Moore

3065 SOUTHWESTERN BLVD., SUITE 202, ORCHARD PARK, NEW YORK 14127-1240 (716) 675-7130 FAX. NOS. (716) 675-7136 (716) 675-713

To:

Dunlop Tire Corporation Central Engineering P.O. Box 1109 Buffalo, NY. 14240 Date June 30, 1993

Your Order No. P.O. #15061b

Our Job No. 26647-001-159

Attention: Mr. Dan Parshall

Subject: Pond Sludge Removal Project

We are sending you via Hand Delivery

the following Information

Analytical results for proposed fly ash solification material from Niagara Mohawk Power Company

This is Your review

No. of copies submitted: 1

Copies to: John Wokasien, URS

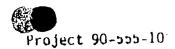
Dames & Moore

By

Robb S. Davis

NYDEC

Table 15


RESULTS OF TCLP LEACHATE ANALYSES FOR HUNTLEY AND DUNKIRK POWER STATION FLY ASH

Substan ce or Chemical	Huntley State Concentrati (mg/l) Trial 1 Tri	on Concent	Station ration [/1] Trial 2	Discharge to Ground Water Standards ²⁰ (mg/l)	King King
Arsenic Barium Boron Cadmium Chromium Copper Lead Mercury Molybdenum Nickel Selenium Silver	0.6" 0.5 5.03 5.0 0.04" 0.0 0.09 0.27 0.1" 0.0014 0.2 0.42 0.004 0.02	.067* 0.067* .6* 0.5* .08 4.52 .04* 0.05* .1 0.07 .28 0.15 .1* 0.1* .0016 0.0018 .2 0.2 .42 0.36 .004 0.003 .02 0.02 .01	0.5 4.33 0.05* 0.07 0.15 0.1	0.1 — 1.0 — 0.05 — 0.004 — 2.0 —	5.11.00 5.2 5.00 1.5.0

^{*}Exceeds Standard -- No specified limit for this substance or chemical.

MAJOR CONSTITUENTS IN FLY ASH¹⁴
HUNTLEY AND DUNKIRK POWER STATIONS

	Trial 1	Station Trial 2	Dunkirk Trial 1	Trial 2
Parameters	(8)	()		(\$)
Silicon Dioxide (SiO ₂)	47.35	47.25	40.24	40.77
Iron Oxide (Fe ₂ O ₃)	19.26	19.39	17.36	17.18
Aluminum Oxide (Al ₂ O ₃)	13.48	13.32	16.17	16.00
Calcium Oxide (CaO)	3.58	3.63	3.81	4.04
Magnesium Oxide (MgO)	0.52	0.52	0.48	0.52
Potassium Oxide (K ₂ O)	2.39	2.45	1.81	1.53
Sodium Oxide (Na ₂ 0)	0.77	0.76	0.76	0.73
Titanium Oxide (TiO ₂)	1.22	1.25	1.17	1.07
Manganese Dioxide (MnO ₂)	0.02	0.02	0.02	0.02
Sulfur Trioxide (SO3)	0.95	0.95	1.31	1.27
Loss-On-Ignition	10.46	10.46	16.87	16.87
Total	100	100	100	100

GAI CONSULTANTS, INC.

Table 16

MONOFILLED SOLID WASTE LEACHATE TESTING (EPA METHOD SW-924) BY GAI CONSULTANTS, INC. HUNTLEY POWER STATION FLY ASH

				Test Resul	ts in mg/l				NYDEC Discharge to Ground Watgr		
		Sampl				Blar Leacha			Standards ²⁰		
		Leachat	e No.			2	3	4	(mg/1)		
Parameter		2		<u> </u>	1						
	0.0*	10.0*	9.8*	9.8*	6.6	5.8	5.8	5.8	6.5 to 8.5		
pH	9.8	280	176	52	<4	<4	<4	<4	-		
TDS	1230	65.8	44.3	35.4	3.85	4.65	3.85	4.55	-		
Alkalinity	84.9		<50	<50	< 50	<50	<50	<50	500		
Chloride	<50	<50 60 4	<25 ·	<25	<25	<25	<25	<25	500		
Sulfate	672	68.4	3.55	2.82	0.25	0.25	0.25	0.25	2.0		
Aluminum	3.92	5.39	0.346	0.481	<0.025	<0.025	<0.025	<0.025	0.05		
Arsenic	0.145	0.132			<0.05	<0.05	<0.05	<0.05	2.0		
Barlum	0.10	<0.05			<0.005	<0.005	<0.005	<0.005	0.02		
Cadmium	0.010	<0.005	17.6	11.5	<5.0	<5.0	<5.0	· <5.0	⊷		
Calcium	281	53.1	17.6	11.5	<0.05	<0.05	<0.05	<0.05	0.1		
Chromium	<0.05				<0.05	<0.05	<0.05	<0.05	1.0		
Copper	<0.05				<0.05	<0.05	<0.05	<0.05	0.6		
Iron	<0.05				<0.025	<0.025	<0.025	<0.025	0.05		
Lead	<0.025	-+		-	<0.050	<0.050	<0.050	<0.050	0.6		
Manganese	<0.050		0.003	0.001	<0.001	<0.001	<0.001	<0.001	0.004		
Mercury	0.002	0.002	0.002		<1.00	<1.00	<1.00	<1.00	2.0		
Hickel	<1.00				<5.00	<5.00	<5.00	<5.00	•		
Potassium	38.3	<5.00 *	0.022	0.022	<0.010	<0.010	<0.010	<0.010	0.04		
Selenium	0.058	0.041	0.033	0.022	<0.025	<0.025	<0.025	<0.025	0.1		
Silver	<0.025	C 0			<25.0	<25.0	<25.0	<25.0	-		
Sodium	50.0	<25.0	 -→	 →	<1.20	<1.20	<1.20	<1.20	5.0		
Zinc	<1.20				******				•		

"[xceeds Standard.

⁻No limit specified for this parameter.

⁻⁻ lust not continued since prior leaching yielded a concentration below the detectable limit.

Table 18

MONOFILLED SOLID WASTE LEACHATE TESTING (EPA METHOD SW-9: FLOWABLE FLY ASH FROM HUNTLEY AND DUNKIRK STATIONS

	Ars	enic Conce	ntration (r	ng/l) .	NYDE(Dischard Ground ? Standard
		For Ars			
Sample		2	3	4	<u>(mg/:</u>
Huntley	0.046	0.047	0.044	0.040	0.05
Dunkirk	0.006	0.038	0.020	0.021	, 0.05

TRANSMITTAL SHEET

Dames & Moore

3065 SOUTHWESTERN BLVD., SUITE 202, ORCHARD PARK, NEW YORK 14127-1240 (716) 675-7130 FAX. NOS. (716) 675-7136 (716) 675-713:

To: URS Consultants, Inc. 282 Delaware Avenue Buffalo, NY 14202

Date July 7, 1993

Your Order No. Dunlop P.O.

#15060B & 15061B

Our Job No. 26647-001

Attention: John C. Wokasien

Subject: Dunlop Tire Corporation

Sedimentation Pond

We are sending you via Hand Delivery bottom of the Sedimentation Pond in Area B.

the following elevations of the clay

This is for for your review

No. of copies submitted: (1)

Copies to: K. Wood

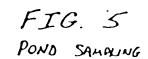
R. Davis

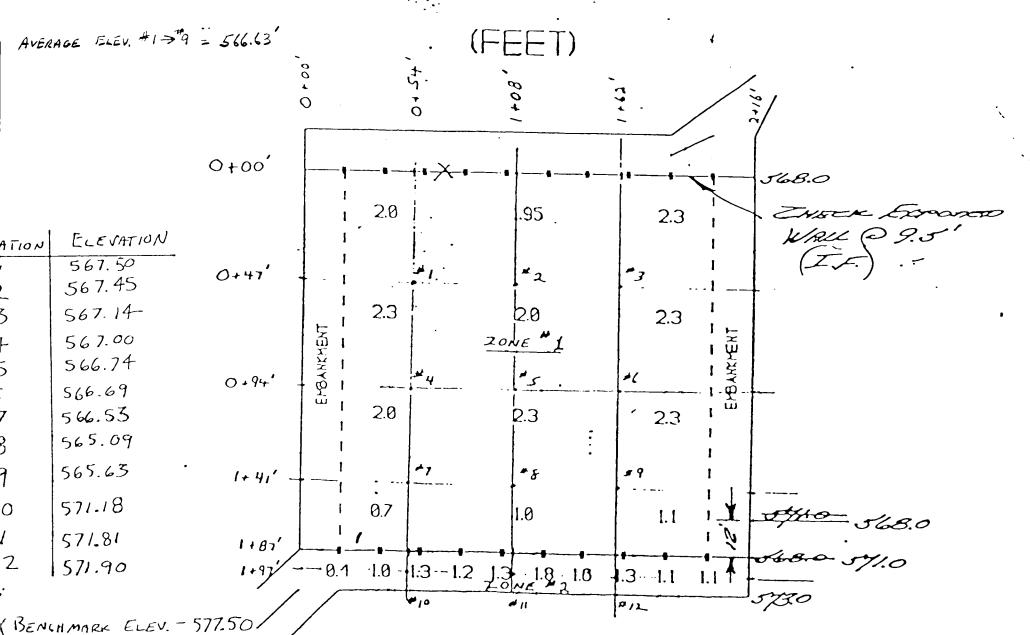
C. Cencetti

R. Dav**is**

Damas & Moore

By Call Wright


Carl Wrigh



(TOP OF CONCRETE OL BAFFLE)

SEUDGE HICKNESS

FIELD MEASUREMENTS

ELEVATIONS TAKEN BY:
(all wright

2325 MARYLAND ROAD, WILLOW GROVE, PENNSYLVANIA 19090 (215) 657-7134 FAX: (215) 657-5406

To: URS Consultants, Inc. 282 Delawate Avenue Buffalo, NY 14202

Date July 12, 1993

Your Order No. Dunlop P.O. #15060B & 15061B Our Job No. 26647-001

Anention: John C. Wokasien

Subject: Dunlop Tire Corporation

Sedimentation Basin: Additive Volume Calculations

Sediment Volume Calculations

We are sending you via Hand Delivery

the following

- Dames & Moore Flyash Logs

- Dames & Moore Flyash Volume Calculations

- Copies of Delivery Tickets (weight slips) for Flyash

- Copies of Operator Notes (i.e., truckload counts) for material removed from the pond

- Calculations for Net Volume of Sediment removed from the pond

These are for review by DTC and URS

No. of copies submitted: 4

Copies to: Dan Pyanowski - Dunlop

D. Parshall - Dunlop

B. Hoffman - URS

DUNLOP TIRE CORPORATION SEDIMENTATION POND PROJECT POND VOLUME CALCULATIONS

SUMMARY OF MATERIAL REMOVED FROM POND

DATE/TI M E	NUMBER OF LOADS	YDS³ VOLUME PER LOAD	YDS³ GROSS VOLUME
7/2/93 - day - 1:30 am	65 🦴	13	845
7/2/93 - 7/ 3/93 - 1:30 am - 6:30 pm	88	13	1,144
7/3/93 - 7/ 4/93 - 6:30 pm = 6:30 am	21 /	13	273
7/3/93 - 7/ 4/93 - 6:30 pm - 6:30 am	34 C	18	612
7/4/93 - 6: 00 am - 6:00 pm	66/	13	858
7/4/93 - 7/ 5/93 - 6:00 pm - 6:00 am	60 \	13	780
7/5/93 - 6:0 0 am - 10:30 pm	121	1,573	
TOTAL NET VOLUME R	6,085		

NOTE: SEE OPERATOR RECORDS ATTACHED

This chart summarizes the total volume of sediment and fly ash removed from the pond during the project. The volume calculations for additive and net sediment removed are also attached.

NUMBER OF TRUCKS	DATE RECEIVED	ORIGIN	NET TONS	TONS/YDS ³ DENSITY	NET YARDS
1	7/2/93	LANDFILL	21.25	· 1.01	21.04
2	7/2/93	LANDFILL	24.06	1.01	23.82
3	7/2/93	LANDFILL	24.26	1.01	24.02
4	7/2/93	LANDFILL	24.39	1.01	24.15
5,	7/2/93	LANDFILL	24.23	1.01	23.99
6	7/2/93 ·	LANDFILL	23.64	1.01	23.41
7	7/2/93	LANDFILL	19.37	1.01	19.18
8	7/2/93	LANDFILL	21.65	1.01	21.44
9	7/2/93	LANDFILL	25.14	1.01	24.89
10	7/2/93	LANDFILL	25.67	1.01	25.42
11	7 /2/93	LANDFILL	23.87	1.01	23.63
12	7/2/93	LANDFILL	22.25	1.01	22.03
13	7/2/93	LANDFILL	18.68	1.01	18.50
14	7/2/93	LANDFILL	19.27	1.01	19.08
15	7/2/93	LANDFILL	21.61	1.01	21.40
16	7/2/93	LANDFILL	23.47	1.01	23.24
17	7/2/93	LANDFILL	21.43	1.01	21.22
18	7/2/93	LANDFILL	21.54	1.01	21.33
19	7/2/93	STACK	30.26	0.96	31.52
20	7/2/93	STACK	31.09	0.96	32.39
21	7/2/93	STACK	29.24	0.96	30.46
22	7/2/93	STACK	27.78	0.96	28.94
23	7/2/93	STACK	27.49	0.96	28.64
24	7/2/93	STACK	27.82	0.96	28.98
25	7 /2/93	STACK	25.74	0.96	26.81
26	7/2/93	STACK	28.44	0.96	29.63
27	7/2/93	STACK	28.71	0.96	2 9 .91

NUM B ER O F TRU C KS	DATE RECEIVED	ORIGIN	NET TONS	TONS/YDS ³ DENSITY	NET YARDS
28	7/2/93	STACK	28.58	0.96	29.77
29	7/2/93	STACK	27.31	0.96	28.45
30	7/2/93	LANDFILL	29.02	1.01	28.73
31	7/2/93	LANDFILL	29.38	1.01	29.09
32	7/2/93	LANDFILL	22.36	1.01	22.19
33	7/2/93	LANDFILL	30.68	1.01	30.38
34	7/3/93	LANDFILL	18.82	1.01	18.63
35	7/3/93	LANDFILL	19.43	1.01	19.24
36	7/3/93	LANDFILL	18.20	1.01	18.02
37	7/3/93	LANDFILL	19.13	1.01	18.94
38	7/3/93	LANDFILL	19.35	1.01	19.16
39	7/3/93	LANDFILL	21.47	1.01	21.26
40	7/3/93	LANDFILL	19.49	1.01	19.30
41	7/3/93	LANDFILL	20.27	1.01	20.07
42	7/3/93	STACK	19.92	0.96	20.75
43	7/3/93	STACK	22.65	0.96	23.59
44	7/3/93	STACK	21.74	0.96	22.65
45	7/3/93	STACK	20.90	0.96	21.77
46	7/3/93	STACK	22.60	0.96	23.54
47	7/3/93	STACK	20.78	0.96	21.65
48	7/3/93	LANDFILL	21.13	1.01	20.92
49	7/3/93	LANDFILL	23.81	1.01	23.57
50	7/3/93	LANDFILL	25.81	1.01	25.55
51	7/3/93	LANDFILL	26.51	1.01	26.25
52	7 /3/93	LANDFILL	20.47	1.01	20.27
53	7/3/93	STACK	22.35	0.96	23.28
54	7/3/93	STACK	22.68	0.96	23.63

NUMBER OF TRUCKS	DATE RECEIVED	ORIGIN	NET TONS	TONS/YDS ³ DENSITY	NET YARDS
5 5	7/3/93	LANDFILL	22.03	1.01	21.81
56	7/3/93	LANDFILL	21.53	1.01	21.32
5 7	7/3/93	LANDFILL	19.44	1.01	19.25
58	7/3/93	LANDFILL	22.06	1.01	21.84
59	7/3/93	LANDFILL	21.61	1.01	21.40
60	7/3/93-	LANDFILL	19.21	1.01	19.02
61	7/3/93	LANDFILL	21.56	1.01	21.35
62	7/3/93	LANDFILL	23.20	1.01	22.97
6 3	7/3/93	LANDFILL	22.63	1.01	22.41
64	7/3/93	LANDFILL	22.61	1.01	22.39
6 5	7/4/93	STACK	19.92	0.96	20.75
6 6	7/4/93	STACK	22.89	0.96	23.84
6 7	7/4/93	STACK	23.56	0.96	24.54
6 8	7/4/93	STACK	24.78	0.96	25.81
69	7/4/93	STACK	25.26	0.96	26.31
70	7/4/93	STACK	24.71	0.96	25.74
71	7/4/93	STACK	24.26	0.96	25.27
72	7/4/93	STACK	25.02	0.96	26.06
73	7/4/93	STACK	21.31	0.96	22.20
74	7/4/93	STACK	22.24	0.96	23.17
75	7/4/93	LANDFILL	21.24	1.01	21.03
76	7/4/93	LANDFILL	22.54	1.01	22.32
77	7/4/93	LANDFILL	22.19	1.01	21.97
78	7/4/93	LANDFILL	21.92	1.01	21.70
79	7 /4/93	LANDFILL	22.37	1.01	22.15
80	7/4/94	STACK	19.26	0.96	20.06
81	7/4/93	STACK	24.19	0.96	25.20

NUMBER OF TRUCKS	DATE RECEIVED	ORIGIN	NET TONS	TONS/YDS ³ DENSITY	NET YARDS
82	7/4/93	STACK	24.98	0.96	26.02
83	7/4/93	STACK	25.53	0.96	26.59
84	7/4/93	S TAC K	24.61	0.96	25.64
85	7/4/93	STACK	25.01	0.96	26.05
86	7/4/93	S tac k	24.51	0.96	25.53
87	7/4/93 -	STACK	22.47	0.96	23.41
88	7/4/93	STACK	22.23	0.96	23.25
89	7/4/93	STACK	21.22	0.96	22.10
90	7/4/93	STACK	20.95	0.96	21.82
91	7/4/93	LANDFILL	22.51	1.01	22.29
92	7/4/93	LANDFILL	21.65	1.01	21.44
93	7/4/93	LANDFILL	23.53	1.01	23.30
94	7/4/93	LANDFILL	23.50	1.01	23.27
95	7/4/93	STACK	22.91	0.96	23.86
		ТОТА	L VOLUME C	F FLYASH =	2,236.20

DUNLOP TIRE CORPORATION SEDIMENTATION POND PROJECT

DENSITY CALCULATIONS

DENSITY OF FLYASH FROM STACK:

MOISTURE CONTENT APPROXIMATELY 15 - 20% USE 17.5% (SEE TELEPHONE RECORD - ATTACHED)

FROM MOISTURE-DENSITY CURVE (ATTACHED) @ 17.5% MOISTURE, DENSITY IS APPROXIMATELY 70.8 LB/FT³

THEREFORE, $(70.8 \text{ LB/FT}^3)(27 \text{ FT}^3/\text{YDS}^3)(1 \text{ TON/2,000 LBS}) = 0.96 \text{ TON/YDS}^3$

DENSITY OF FLYASH FROM LANDFILL:

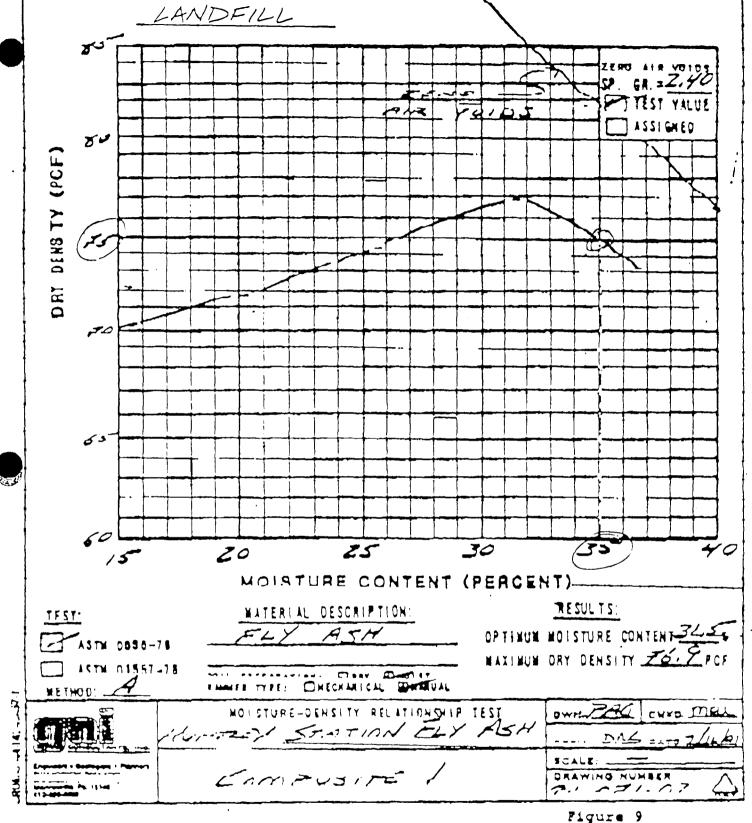
MOISTURE CONTENT APPROXIMATELY 35% (SEE TELEPHONE RECORD - ATTACHED)

FROM MOISTURE - DENSITY CURVE (ATTACHED) @ 35% MOISTURE, DENSITY IS APPROXIMATELY 75 LBS/FT³

THEREFORE, $(75 \text{ LB/FT}^3)(27 \text{ FT}^3/\text{YDS}^3)(1 \text{ TON/2},000 \text{ LBS}) = 1.01 \text{ TON/YDS}^3$

VOLUME CALCULATIONS

FROM SUMMARY SHEETS:


TOTAL VOLUME REMOVED FROM POND = 6,085 YDS³
TOTAL VOLUME OF FLYASH PLACED IN POND = 2,236.2 YDS³

THEREFORE, NET VOLUME OF SEDIMENT = 3,848.8 YDS³

NET YARDS OF SEDIMENT X $20\% = 770 \text{ YDS}^3$

 $770 \text{ YDS}^3 - 600 \text{ YDS}^3 = 170 \text{ YDS}^3 \text{ ADDITIONAL FLYASH}$

The state of the s

and a second of the second of the second

		_		TAC	\angle								•	1								
	ا مع			I	П						I			I		\sum_{i}						7
			-			_	_	-			_				4	_)	1	52	e ca	žŽ	46	
											7	<u>-</u> ت ح≺		1	5,5		<u> </u>	1	TI		ALUE	1
}	80		_					-	ļ			$-\downarrow$				\bot			AS	SICH	10	1
] (H	_			+		-	+	+-					-	•			1		+ -	1		1
(PCF)	1											-									, <u></u>	1
	!					-		-				_		1		\Rightarrow	↲.	-				•
DENS TY	سحمر	-						+						-			4			-		-
DE	1							-						-				<u> </u>				1
ORY		-	-	\ \			_	+	-					+			-	-			-	$\{ \ \ \}$
0	· (5 +		70	7					-					1			1	1			+.	
-	, حصو																					
1		}		 	-		- 	+	-		-	-		+-		-		 			-	
]					-		-	+	-			-+		+	-	-	-	-		-+		1
I I												-	_	+				+		-		1 1
	65			_		<u> </u>	- -	+		1				+								1
				T				1														
		-			-			+						-			-	↓ ;				
			-	-	1-1		-	-	-			-	-	 	-	-	-	-	-	_	-	
	60	سبد سک	17	5%	20	2			Z.	5			3	0	·		3	3			4	0
1	,		,,,	,,,			1.9.7	uя	E (20	NT	EN	T (1	9 E F	RCE	N T	') <u>.</u>			···		
755	7.						ERLAL							7			I E SUL	T S :				
TFS					-			7				•		02:	i i ii ti i	_			דאסנ	EN 7-	34.5	
	ASTM :													MA	K I MŲI	d DR	Y DE	HSI.	ב או	76	ر	CF
_ MF T	#00: <u>-</u> ∠	4	1 - 1 5	ì	ا الجند (יייי זייו	£: 0	.⊒. ⊒∺€0	СТ = 4 IN 4 X.	ָּגע אַג		TAU	AL									
3					M C	LSTU	JR E − (2 43 0	1 TY	REL	471	אח	NIP I	EST		0	₩r/.	298	1	CMX	m	
		~	10	- بردن	·,••Z.,	=>/	کــ '	د مو	17.	101	<u> </u>		-/	نيمر	5/1				_		2/11	
Lamen	*******					-							/				CALE		=			
2	in the				_	n / n	حہ رہ	ر <i>ب</i>	ゴ /	7	=	/	•				RAW!	NO 1	Y/.	~	7 (
,					•												Fla		_			

U - WC . 222

., •;,

Figure !

RECORD OF TELEPHONE CONVERSATION

DATE 7-7-93		JOB NO.: 26647-00/
RECORDED BY: CARC		ER/CLIENT:
TALKED WITH: Tony P.	42,50 on	F Poriso TRucking
NATURE OF CALL:	INCOMING OUTGO	ING 🗆
ROUTE TO:	INFORMATION .	ACTION
MAIN SUBJECT OF CALL:	CYASH MoistuRe.	
ITEMS DISCUSSED: FLY	Ash Coming From	the stacks AT
NYMO is ADD	Roximstelx 15-	20 percent.
Ash From the	Londellis 35	%. This NUMBER
(35%) is who	if is Required	for Miximum
Composition t	ox (And felling	· Tony ALSO SAIL
1 to Moistu	RP CURUPISTA	e Mosil Recent
15SUC. F.	YASh NEVER	changes tiltering
Methods do	DUT NOITHE A	5h. Anyone who
Sys mythic	- CCSP STSOUT	e talking Sport.
(4)E3K/ MO	www.t Thei	K TALKING 18 60UI.

Dames & Moore

2325 MARYLAND ROAD, WILLOW GROVE, PENNSYLVANIA 19090 (215) 657-7134 FAX: (215) 657-5406

To: URS Consultants, Inc. 282 Delaware Avenue Buffalo, NY 14202 Date July 16,1993

Your Order No. Dunlop P.O. #15060B & 15061B Our Job No. 26647-001

Amention: John C. Wokasien

Subject: Dunlop Tire Corporation: POND SEDIMENT REMOVAL PROJECT RE-ESTABLISHMENT OF VEGETATION

We are sending you via Hand Delivery

the following:

Proposed methods for re-establishing the vegetation along the bank and north west fringe areas of the sedimentation pond.

This is
These are for

your review and approval prior to submission to DTC.

No. of copies submitted: One origininal

Copies to: Dan Pyanowski - Dunlop

O Parshall - Dunlop

5. 10.400

By Peter Wallace

PROPOSED METHODS FOR RE-ESTABLISHMENT OF VEGETATION ALONG THE BANK OF SEDIMENTATION POND

Dames & Moore proposes the following methods to re-establish the vegetation along the north western edge of the sedimentation pond:

- -The area will be graded to the preconstruction contours.
- -The area will be hand seeded to re-establish vegetation to prevent soil erosion and wash out from entering the pond.
- -The area will be watered using water from the pond on a daily basis until the seed has taken hold.
- -Areas that do not "take" will be re-seeded and watered until the seed is established.
- -If this method is not successful, the area will be hydroseeded at the completion of the LPS project.

TRANSMITTAL SHEET

Dames & Moore

2325 MARYLAND ROAD, WILLOW GROVE, PENNSYLVANIA 19090 (215) 657-7134 FAX: (215) 657-5406

To: URS Consultants, Inc. 282 Delaware Avenue Buffalo, NY 14202 Date July 21, 1993

Your Order No. Dunlop P.O.

#15060B & 15061B

Our Job No. 26647-001

Attention: John C. Wokasien

Subject: Dunlop Tire Corporation

We are sending you via Hand Delivery

the following

Statement of confirmation regarding the repairs made to the four weir plates knocked out of alignment by Dames & Moore during the Pond Sediment Removal Project.

XTRACKS for your reivew and submission to Dunlop for approval

No. of copies submitted: One copy and One Original

Copies to: Ranx Ryanowatcix xx Donitopx
Dan Parshall - Dunlop

Peter Wallace

DAMES & MOORE

3065 SOUTHWESTERN BOULEVARD. SUITE 202, ORCHARD PARK, NEW YORK 14127-1240 (716) 675-7130 FAX: (716) 675-7136

July 19, 1993

Mr. Dan Parshall Dunlop Tire Corporation P.O. Box 1109 Buffalo, NY 14109

Re: Repair to the Four Weir Plates Knocked
Out of Alignment by Dames & Moore
During the Pond Sludge Removal Project

Dear Mr. Parshall:

I am writing to confirm that Dames & Moore has completed the repair and realignment of the four weir plates that were effected during the above referenced project. The one plate which was bent was removed and repaired by flattening to its original shape. The one plate was reinstalled and all four plates effected were realigned so the water flowing over the sill is maintained at one inch in depth.

If you have any additional questions please feel free to contact me at the site trailer. I will be happy to discuss this matter with you if you need additional information.

Sincerely,

Peter Wallace

Project Manager, Construction & Remediation Services Group

PW:mr

cc: K. Wood

Project File

2325 MARYLAND ROAD, WILLOW GROVE, PENNSYLVANIA 19090 (215) 657-7134 FAX: (215) 657-5406

To: URS Consultants, Inc. 282 Delaware Avenue Buffalo, NY 14202 Date July 22, 1993

Your Order No. Dunlop P.O. #15060B & 15061B Our Job No. 26647-001

Attention: John C. Wokasien

SEDIMENT POND SLUDGE REMOVAL PROJECT

RE: COMPLETION OF PUNCHLIST ITEMS

We are sending you via Hand Delivery

the following;

Letter of completion of final punchlist for the sediment pond project.

This is for your review and submittal to DUNLOP for review and approval.

No. of copies submitted: one original and one copy

Copies to: XDan XF Wanowskik - Dunlop

Dan Parshall

Dames & Moore

y Peter Wallace

1 3 m

DAMES & MOORE CONSTRUCTION SERVICES

ACTION	INFO	FILE
Dan Pars ha ll-DTC John Wo ka sien - URS		26647-001-159
FROM: P ete Wallace		DATE: July 23, 1993
RE: Completion of Final Punch List Items For The Sediment Pond Sludge Removal Project.		

Dames & Moore has completed the Final Punch List items for the above referenced project. A final walk through inspection should be scheduled in order to obtain the approval of DTC. If DTC agrees that the punch list items have been satisfactorily completed, written confirmation is requested for the project files. Dames & Moore understands that the final approval will be contingent upon the establishment of the seed along the north western bank of the sediment pond. Please let me know when you can perform this final walk through inspection. Thank you for your assistance in completing this phase of the project.

EXCELLENCE THROUGH TEAMWORK

July 26, 1993

Mr. Glenn May N. Y. S. Dept. of Environmental Conservation Division of Hazardous/Solid Waste 270 Michigan Ave. Buffalo, New York 14203-1109

Dear Mr. May:

In response to your recommendation to conduct TCLP testing of our landfilled pond sludge/fly ash stabilization wastes in their final disposal cell, the attached analytical results are enclosed for your review and records.

Test results conclude that the waste are non-hazardous, which correspond to the separate testing of the pond sludge and analysis of the fly ash as received from Niagara Mohawk.

Should you have any further questions please contact me at 879-8536.

Respectfully,

Daniel T. Parshall

Energy/Environmental Enq.

cc: J. Fox

M. Siev**erd**ing D. Pyanowski

DUNLOP TIRE

SLUDGE-POND/CELL SAMPLE

Prepared By:

ATHANCED ...

'A Company Dedicated to Honesty, Quality and Service'

QA/QC VERIFICATION FOR PROJECT ID 332C

The following report, as well as the supporting data, have been carefully reviewed for accuracy, acherance to the cited methods, and completeness. All data contained in this report was generated in accordance with the AES Laboratory Quality Assurance/Quality Control Program.

Linda A. Rat**k**a Inorganic Se**n**ior T**echnicia**n

Joseph P. Masaracchia Laboratory Manager

Paul T. McMahon Pality Control Officer

curtis

Joseph J. Curti Project Manager

CLIENT: Dunlop Tire

AMPLE ID: #70893-1 COLLECTION METHOO: Composite COLLECTION DATE(S): 07/08/93

SAMPLE TYPE: Sludge

AES CLIENT ID: DUNLOP

AES SAMPLE 10: 332C-1

PROJECT 10: 332C

Analytical Parameters	Analytical Results	Units	Practical Quantifiable Limit	Hethod
PCB-1016	BoL	mg/kg	0:04	SN 846 8080
PCB-1221	BOL	mg/kg	0.04	SV 846 8080
PC8-1232	BQL	mg/kg	0.04	SN 846 8080
PCB-1242	BOL	mg/kg	0.04	SV 846 8080
PCB-1248	_ 0.12	mg/kg	0.04	SN 846 8080
PCB-1254	801	mg/kg	0.04	SV 846 8080
PCB-1260	Bal	mg/kg	0.04	SV 846 8080

CLIENT: Dunlop Tire SAMPLE ID: #70893-1

COLLECTION METHOD: Composite COLLECTION DATE(S): 07/08/93

SAMPLE TYPE: Sludge

AES CLIENT ID: DUNLOP

AES SAMPLE ID: 332C-1

PROJECT ID: 332C

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP)

Analytical Parameters	Analytical Results (mg/l)	Maximum Allowable Concentration	Practical Quantifiable Limit	Xethod
Arsenic	BOL	5.0	0.05	SW 846 6010
Barium	1.17	100	0.01	SV 846 6010
Cadmium	BOL	1.0	0.02	SV 846 6010
Chromium .	BOL	5.0	0.05	SV 846 6010
Lead	BOL	5.0	0.05	SV 846 6010
Hercury	BOL	0.2	0.001	SV 846 7470
Selenium	BOL	1.0	0.40	SV 846 6010
Silver	BQL	5.0	0.025	SA 849 9010
Total Cresol	BOL	200	0.020	SV 846 8270
2,4,5-Trichloroph en ol	BOF	400	0.020	SV 846 8270
2,4,6-Trichloroph en ol	BOL	2.0	0.020	SV 846 8270
1,4-Dichlorobenze ne	BQL	7.5	0.020	SV 846 8270
2,4-Dinitrotoluen e	801	0.13	0.020	SW 846 8270
Hexachlorobenzene	BQL	0.13	0.020	SW 846 8270
Hexachlorobutadie ne	801	0.5	0.020	SW 846 8270
Hexachloroethane	BOL	3.0	0.020	SV 846 8270
Nitrobenzene	BCL	2.0	0.020	SW 846 8270
Pentachlorophenol	BCL	100	0.020	SW 846 8270
Pyridine	BGL	5.0	0.020	SW 846 8270
Benzene	BCL	0.5	0.10	SV 846 8240
Carbon tetrachlor id e	BOF	0.5	0.10	SW 846 8240
Chlorobenzene	BOL	100	0.10	SV 846 8240
Chloroform	BOL	6.0	0.10	SW 846 8240
1,2-Dichloroethan e	80L	0.5	0.10	SV 846 8240
1,1-Dichloroethen e	BOL	0.7	0.10	SW 846 8240
Methyl Ethyl Keto ne	BOL	200	0.20	SW 846 8240
Tetrachloroethene	BOL	0.7	0.10	SV 846 8240
Trichloroethene	BQL	0.5	0.10	SW 846 8240

CLIENT: Dunlop Tire SAMPLE ID: #70893-1

COLLECTION METHOD: Composite COLLECTION DATE(S): 07/08/93

SAMPLE TYPE: Sludge

AES CLIENT ID: DUNLOP AES SAMPLE ID: 332C-1

PROJECT ID: 332C

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP)

Analytical Parameters	Analytical Results (mg/l)	Maximum Allowable Concentration	Practical Quantifiable Limit	Kethod	•	
Vinyl chloride	BQL	0.2	0.10	SW 846 8240		

ADVANCED ENVIRONMENTAL SERVICES, INC. QUALITY CONTROL REPORT

CLIENT: Dunlop Tire

AES CLIENT ID: DUNLOP PROJECT ID: 332C

ACCURACY

Analytical Parameter(s)	Method	Sample ID Type	Percent · Recovery
Arsenic	SW 846 6010	332C-1 Matrix Spike	90
Barium	SW 846 6010	332C-1 Matrix Spike	87
Cadmium	SW 846 6010	332C-1 Matrix Spike	83
Chromium	SW 846 6010	332C-1 Matrix Spike	86
tead	şw 846 6010	332C-1 Matrix Spike	81
Kercury	SW 846 7470	332C-1 Matrix Spike	110
Selenium	SW 846 6010	332C-1 Matrix Spike	8.8
Silver	SW 846 6010	332C-1 Matrix Spike	79
Total Cresol	SH 846 8270	332C-1 Matrix Spike	57
2,4,5-Trichlorophe no l	SH 846 8270	332C-1 Matrix Spike	65
2,4,6-Trichlorophe no l	SH 846 8270	332C-1 Matrix Spike	63
1,4-Dichlorobenzen e	SU 846 8270	332C-1 Matrix Spike	62
2,4-Dinitrotoluene	SH 846 8270	332C-1 Matrix Spike	66
Mexachlorobenzene	SH 846 8270	332C-1 Matrix Spike	. 64
Mexachlorobutadien e	SH 846 8270	332C-1 Matrix Spike	64
Hexachloroethane	SN 846 8270	332C-1 Matrix Spike	68
Nitrobenzene	SH 846 8270	332C-1 Matrix Spike	65
Pentachlorophenol	SH 846 8270	332C-1 Matrix Spike	47
Pyridine	SW 846 8270	332C-1 Matrix Spike	101
Benzene	SW 846 8240	332C-1 Matrix Spike	90
Carbon tetrachlori de	SH 846 8240	332C-1 Matrix Spike	96
Chlorobenzene	SW 846 8240	332C-1 Matrix Spike	96
Chloroform	SW 846 8240	332C-1 Matrix Spike	92
1,2-Dichloroethane	SW 846 8240	332C-1 Matrix Spike	92
1,1-Dichloroethene	SW 846 8240	332C-1 Matrix Spike	82
Methyl Ethyl Ketone	SH 846 8240	332C-1 Matrix Spike	97
Tetrachloroethene	SH 846 8240	332C-1 Matrix Spike	96
richloroethene	SH 846 8240	332C-1 Matrix Spike	90
Vinyl chloride	SW 846 8240	332C-1 Matrix Spike	76

ADVANCED ENVIRONMENTAL SERVICES, INC.

EXTRACTION TRACEABILITY REPORT

INORGANICS REPORT

A	es	JOB	CODE_	CSN	AES JOB NUMBER	3

TECHNICIAN	ANALYTICAL HETHOD	SAMPLE CODE (S)	DATE OF EXTRACTION
Ω_{i}	1311	CSN 337C-1	7/11-12/93
		<u> </u>	

Advanced Environmental Services

Sample Traceability Report

Organics Analysis

AEB Job Code CSN
AEB Job No. 332C

	<u> </u>	Gamplo Prop		Gample Prep				Vuelkaia	
AEB Bample No.	Bample Date	Hethod Number	Dato	Analyst	Hethod ' Number	Dato	Analyst		
3326-1	7-8-13	3510	7-15-93	M	8270	7-17-93	JF		
3326-1	1	3550 8080	7-16-93	MM	8080	7-19-93	CF		
332C-1	7/8/93				8240	7/14/93	KR		
						:			
			. •						

Advanced Environmental Services

Sample Traceability Report

Inorganics Analysis

AES	Job	Code	CSN
AES	Job	No	3320

		Sample Prep				Analysis	
AES Sample No.	Sample Date	Method Number	Date	Analyst	Method Number	Date	Analyst
3330 \	7/9/3	DE 16	7/11/92	CC	7470	7-14-93	FS
					6010	7/21/93	Cjc
							J
_							
				•			
	·	. ·					

Note: Areas marked using a dash indicate that no sample preparation was required under the applied methodology.

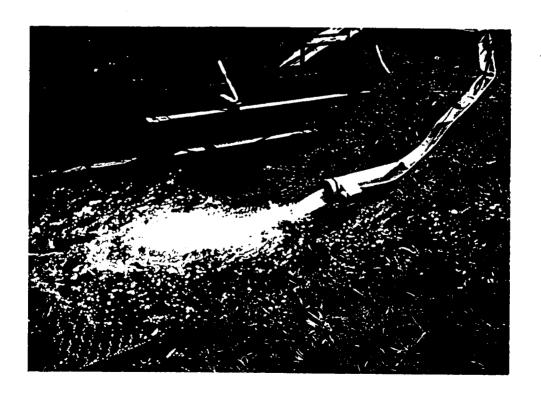
CHAIN OF CUSTODY RECORD

2186 LIBERTY DRIVE Dundas NIAGARA FALLS, NY 14304 • (716) 283-3120

PROJEC	CT NAME:	SLudge - Pond	Cell	SAMPLe	CO	NTAINER CLASSIFICATION	JOB CODE: ARD
	ER'S SIGNA	1)		ll	, ge	ED EST	IDENTIFICATION OF BLIND FIELD DUPLICATE SITE:
DATE	TIME	SAMPLE IDENTIFICATION	CKE COMP	SAMPLE TYPE	JHPRESERY	H.SO, HC. HOOM AR PRIEST	PARAMETERS/REMARKS
7/8/93	0730	# 70893-1	T	lulge	\times		Compesite sample from
				<u> </u>			8 breation of our sludge / Fly Och waste
							in clay coll
				•			
NOTE: P	Please Indi	cate required analysis, and v	vhom we m	av	TOTAL NUMBE	R OF CONTAINERS	
С	ontact with	h questions, if you have not your customer service repre	yet done	•			
1. RELI	MOUISHED B	T. You hall		DATE 7/8/93	71ME 9 35	RECEIVED BY	Ita
2- AEL1	NQUISHED B	Y: D. Dutton		7/8/93	TIME 10 Am	RECEIVED BY:	e Herbat
3. RELII	NOUISHED B	Y:		DATE	TIME	RECEIVED BY:	
				1	!		

1

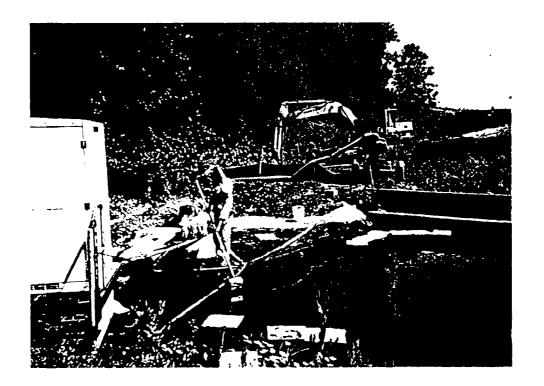
FABIONS +


SILT FENCES

IN PLACE

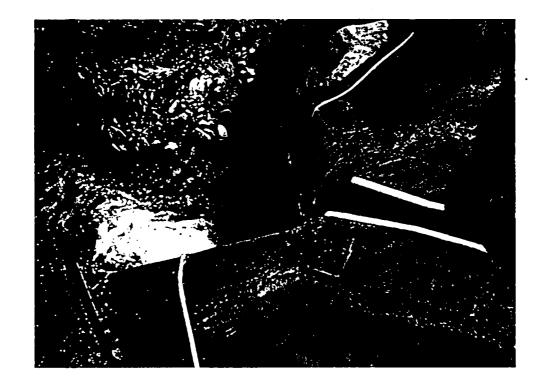

PRIOR TO

BY-MISSING

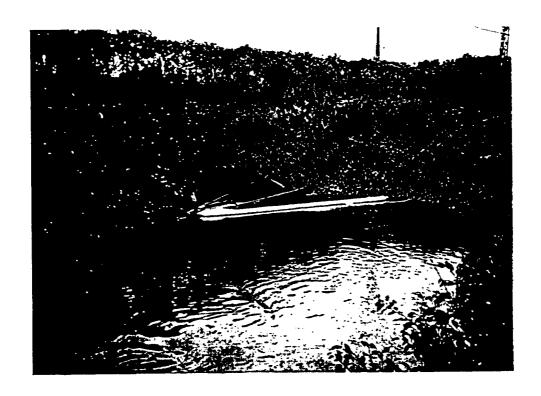

PAND

2
BY-PASSING
PIND FROM
ABOVE 12T
STAGE CAM
USING AUMPS

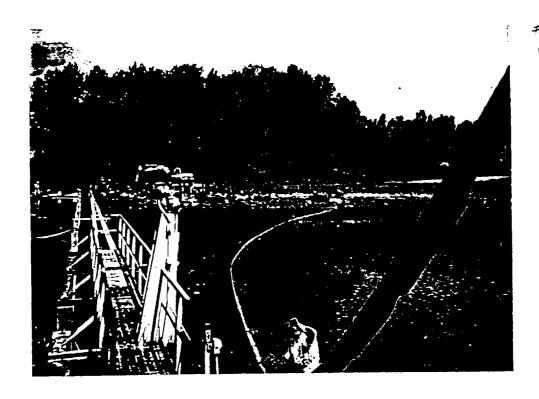
3
STRAW BALES
ABSORBENT BOOM
IN PLACE DURING
PUMPING
OPERATIONS



4

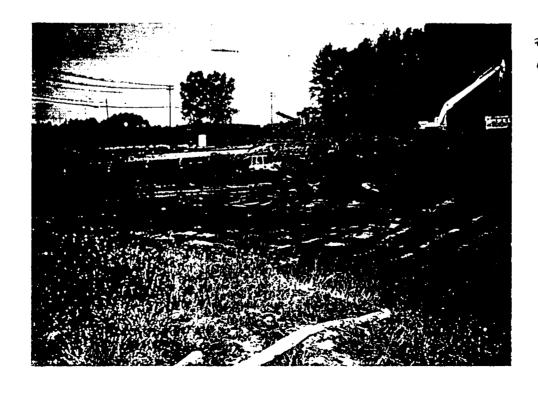

MANUAL CLEANING

OF DISCHARGE


AT OUTFALL

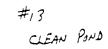
5 WATER QUALITY AT PARSHALL FLUME

#6
FINAL OIL
ABSORBENT BOOM
4 GABION AT
DISCHARGE PIPE
UNDER RIVER Rd.


#7
COMPLETION OF POND
PUMPIAF AND PULLING
OF BOOM. NOTE
FENCE: + HAUL ROAD
IN BACKGROUND

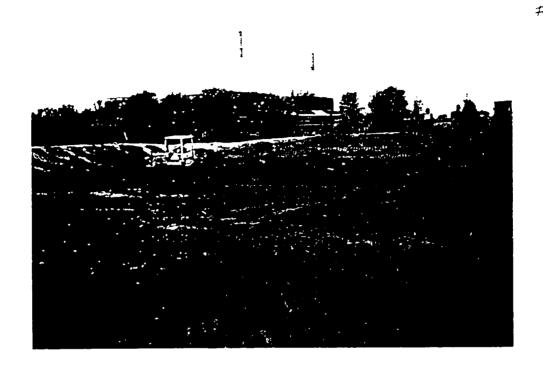
#8
CONSTRUCTION OF
CLAY DISPOSAL
CELL IN CENTER
OF LANDFILL SITE
"A"

#9 START OF MUCKING" OPERATIONS


10
CONTINUATION
OF "MUCKING"
OPERATIONS

#11
" MUTKING" OFERATION
IN FINAL STAGES

#12 VIEW OF BAFFLÉ WALL AFTER CLEANING



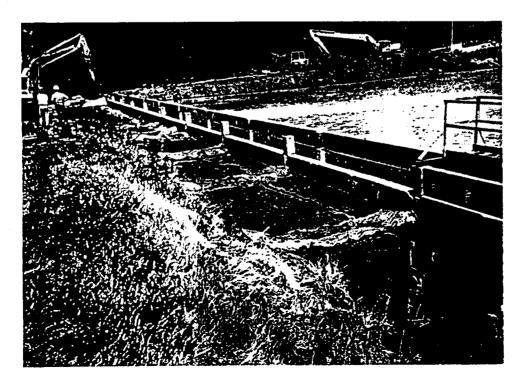
#14

READY TO

RENEW WATER

TO POND

#15


PUSHING SLUDGE—

FLY ASH MIXTURE

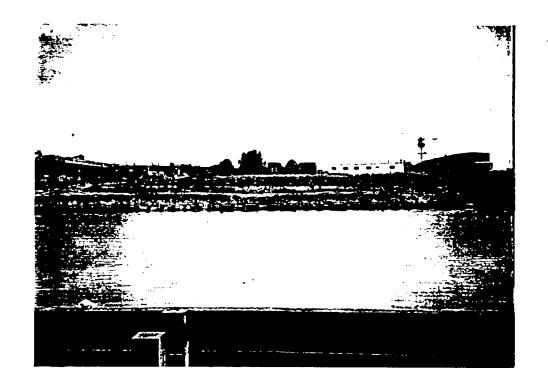
TO CLAY DISPOSAL

CELL—LAND FILL

SITE "A"

#16
Pulling FABIONS
AS POND SLOWLY
FILLS
NOTE BUILD-UP
OF SOLIDS WHILLY
WERE REMOVED
PRIOR TO POND
OVER FLOW

#17


POND FILLING

NOTE SILT FENCH

+ NOATH BANK

PRIOR TO FINAL

GRADING + SEEDING

#18
BALL BACK
IN OPERATION