The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

letter	<u>File</u> .pdf
report. <u>hw,915018</u>	1994 - 09 - ON CONSTRUCTION .pdf MONITORING REPORT (SUPPLEMENT 1)

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp ERP - e VCP - v BCP - c

non-releasable - put .nf.pdf Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

Entral

DUNLOP TIRE CORPORATION TONAWANDA, NEW YORK

CONSTRUCTION MONITORING REPORT

CLOSURE PLAN

INACTIVE WASTE SITES NYSDEC NO's 915018 A, B, C

SUPPLEMENT 1 SOUTHEAST AREA "A" ========

SEPTEMBER 1994.

Submitted to:

- 1

DUNLOP TIRE CORPORATION Tonawanda, New York

Prepared By:

URS CONSULTANTS, INC. 282 Delaware Avenue Buffalo, New York 14202

G1860

DUNLOP TIRE CORPORATION

TONAWANDA, NEW YORK

CONSTRUCTION MONITORING REPORT

CLOSURE PLAN FOR

INACTIVE WASTE SITE NYSDEC NOS. 915018 A, B, C

SUPPLEMENT 1

SOUTHEAST AREA "A"

PREPARED FOR:

DUNLOP TIRE CORPORATION TONAWANDA, NEW YORK SEPTEMBER 1994

PREPARED BY:

URS CONSULTANTS, INC. 282 DELAWARE AVENUE BUFFALO, NEW YORK 14202

TABLE OF CONTENTS

DESC	RIPTION	PAGE NO.
1.0	INTRODUCTION	
2.0	DESCRIPTION OF CLOSURE PLAN	2-1
3.0	QA/QC PROJECT MANAGEMENT AND ORGANIZATION	3-1
	 3.1 NYSDEC 3.2 Dunlop Tire Corporation 3.3 URS Consultants, Inc. 3.4 Site Contractors, Inc. 3.5 Empire Soils Investigations, Inc. 	3-1 3-1 3-3
4.0	CHANGES FROM DESIGN DOCUMENTS	4-1
	 4.1 Revised Landfill Slope Adjacent to Pavement	4-1
5.0	MAJOR CONSTRUCTION COMPONENTS AND EQUIPMENT	5-1
6.0	SUBGRADE PREPARATION AND CONSTRUCTION	6-1
7.0	COVER MATERIALS	7-1
	7.1 LPS	
8.0	CONSTRUCTION OF LPS LAYER	8-1
	 8.1 Borrow Source Testing 8.2 Test Pad 8.3 Placement Methods 8.3.1 18-Inch Layer 8.3.2 Keyway Trench 8.4 Construction QA/QC 8.4.1 QA Test Requirements 8.4.2 QA Test Results 8.4.3 Minimum Thickness Verification 8.4.4 Slope Verification 	8-1 8-2 8-2 8-2 8-3 8-3 8-3 8-4
9.0	PLACEMENT OF SOIL LAYER FOR VEGETATIVE COVER	9-1

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

.

i

TABLE OF CONTENTS (Cont'd)

DESCRIPTION

PAGE NO.

10.0	LONG-TERM MONITORING WELLS	
	10.1 Monitoring Well Abandonment 10.2 Monitoring Well Construction	

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

ii

LIST OF TABLES

.

<u>Table No.</u>

PAGE NO.

.

5-1	Equipment Listing	5-2
8-1	Summary of In-Place Permeability Test Results	8-4

LIST OF FIGURES

Figure 1	<u>No</u> .	Following <u>Page</u>
1-1	Site Location Map	1-1
3-1	QA/QC Organization	3-1
8-1	QA Test Locations	
10-1	Long Term Monitoring Well Locations	

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

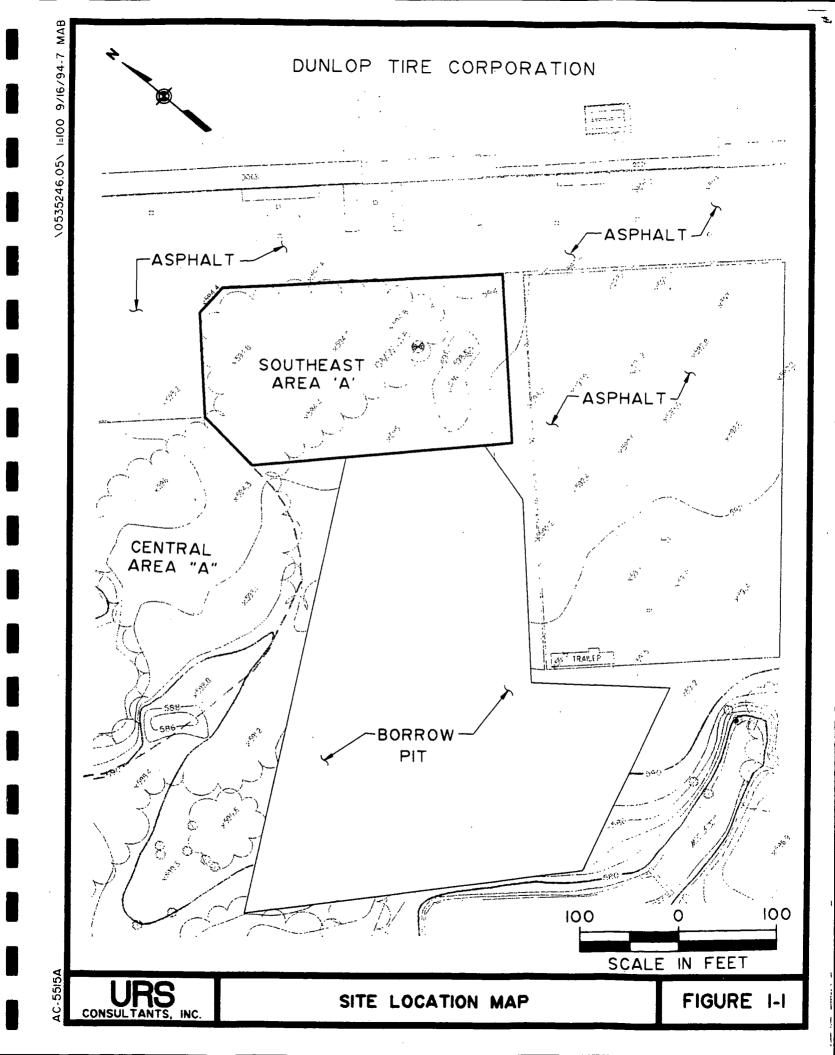
iii

LIST OF APPENDICES

APPENDIX A	Southeast Area A Perimeter Slope Revision Approval (Diary Entry)			
APPENDIX B	Request and Approval Letters for Vegetative Cover Specification Variance			
APPENDIX C	Low Permeable Soil Layer In-Place Density Test Reports			
APPENDIX D	Low Permeable Soil In-Place Permeability Test Reports			
APPENDIX E	OMW-A5 Well Decommissioning Report			
APPENDIX F	OMW-A6 Well Construction Details and Boring Log OMW-A6 Well Development Log			

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

iv


1.0 INTRODUCTION

This report is a supplement to the February 1994 report issued by URS Consultants, Inc., entitled "Construction Monitoring Report - Closure Plan for Inactive Waste Sites NYSDEC Nos. 915018 A, B, C" (CMR). Section 11 of the CMR discussed the need to extend the completed closure system over the area of the project designated Southeast Area A (SEA). Appendix M of the CMR presented the "Southeast Area A Investigation Report" that provided the data upon which the decision to extend the closure limits was based.

The reader is referred to Section 1.0 of the CMR for background information on the project. Subsequent to issuance of the CMR, a closure design was developed for SEA. Construction was performed in the summer of 1994.

The closure of SEA completes the remediation of the three (3) inactive waste sites located on the Dunlop Tire Corporation (DTC) property in Tonawanda, New York. As a result, the requirements of the Record of Decision, dated March 1993, as issued by the New York State Department of Environmental Conservation, have been satisfied.

This CMR Supplement finalizes the documentation required by Section 4.7 of the NYSDEC approved Quality Assurance/Quality Control Plan dated March 1993. It presents the observations made and the data collected during the construction of the closure system of SEA. In addition, this report provides a comprehensive overview of the project tasks performed during the site remediation. The area of construction is presented in Figure 1-1.

Also included is a discussion of the methods and equipment employed in construction, quality control requirements, testing (with results), and procedures and criteria used in observation of the work. Specifically, this report includes the following:

- Description of the 18-inch Low-Permeability Soil (LPS) cover and 6-inch vegetative cover layer
- Construction material requirements
- Construction methods and equipment
- Discussion of changes from NYSDEC-approved engineering plans
- Quality assurance/quality control requirements and test results
- Record drawings

The closure system was constructed by Site Contractors, Inc., under contract to Dunlop. URS Consultants, Inc. provided technical monitoring and construction observation for Dunlop.

Empire Soils Investigations, Inc. (ESI) of Hamburg, New York provided both on-site and laboratory materials testing services.

Survey control for grade, slope, and thickness verification of the LPS cover system was performed by Site Contractor's subcontractor, Douglas C. Myers, P.L.S, P.C. of Arcade, New York.

1.1 <u>Schedule</u>

A preconstruction meeting for the site closure project was held on May 17, 1994. Site Contractors, Inc. began submitting shop drawings shortly thereafter, with project mobilization commencing on May 23, 1994. Mobilization consisted of setting up the field office trailer and moving equipment onsite. On May 31, 1994, long term monitoring well OMW-A5 was decommissioned by SJB Services, Inc., subcontractor to Site Contractors, Inc. Subsequently, replacement well OMW-A6 was installed by Buffalo Drilling, also subcontractor to Site Contractors, on July 13, 1994. The long term monitoring wells are discussed further in Section 10.0 of this report.

Earthwork operations commenced on June 7, 1994 with the construction of subgrade from clay excavated from the onsite borrow pit. After subgrade was constructed, test pad installation occured on June 9, 1994. Subsequently, the 18-inch LPS cap and 6-inch vegetative cover were constructed with earthwork operations being completed on July 14, 1994. The 18-inch LPS layer for the 1.2 acre landfill was placed in two days (June 15 and June 16, 1994). In-place density (IPD) testing and Shelby tube sampling were performed on June 16, 1994 at the end of the placement operations. Subsequent record survey of the LPS layer for cover thickness and slope verification took place on June 20, 1994 by Douglas C. Myers, P.L.S., P.C. No earthwork operations were performed the week of June 27, 1994 due to daily rains that resulted in wet field conditions. Vegetative cover placement resumed July 5, 1994 and was completed on July 14, 1994. Seeding of the cap was completed on July 18, 1994.

During the landfill seeding operations, concurrent grading operations were being performed in the borrow pit. Seeding and mulching operations on the borrow pit floor and side slopes were completed on July 20, 1994. Demobilization was completed on July 25, 1994.

2.0 DESCRIPTION OF CLOSURE PLAN

The closure plan for SEA consisted of construction of an LPS cap with the following components:

- <u>Subgrade</u> Subgrade was constructed from on-site clay and graded in accordance within the specified scopes.
- <u>Low-Permeability Soil Layer</u> a minimum 18-inch thick layer having a maximum permeability of 1x10⁻⁷ cm/sec. Material to construct this layer was obtained from an onsite source (Section 7.1). This layer was placed over the waste areas on top of a prepared subgrade.
- <u>Low-Permeability Soil Keyway</u> minimum 2-foot wide trenches excavated around the perimeter of the waste and at least 12 inches into the existing clay layer. The trenches are backfilled with LPS and tied into the 18-inch LPS layer. The keyways surround the waste areas except where the sites are bounded by asphalt pavement. They serve as cutoff walls to minimize groundwater flow into or out of the closure area.
- <u>Vegetative Cover Layer</u> a minimum 6-inch thick soil layer of sufficient quality to support vegetative growth. The purpose of the vegetative layer is to help prevent erosion and desiccation of the cover system. The material used for this layer was clay obtained from the onsite borrow pit with 2 inches of topsoil from an offsite source incorporated into the upper portion of the layer.
- <u>Site Drainage</u> slopes of the final cover system ranged from a minimum of 3% to a maximum of 33% to promote surface water drainage. A series of swales and ditches located around the perimeter of the final cover system carries surface water away from the waste areas. Final contours of the cover areas are included in the project record drawings.

<u>Monitoring Wells</u> - upgradient monitoring well OMW-A5, located in an area to be capped, was decommissioned and replaced by monitoring well OMW-A6.

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

2-2

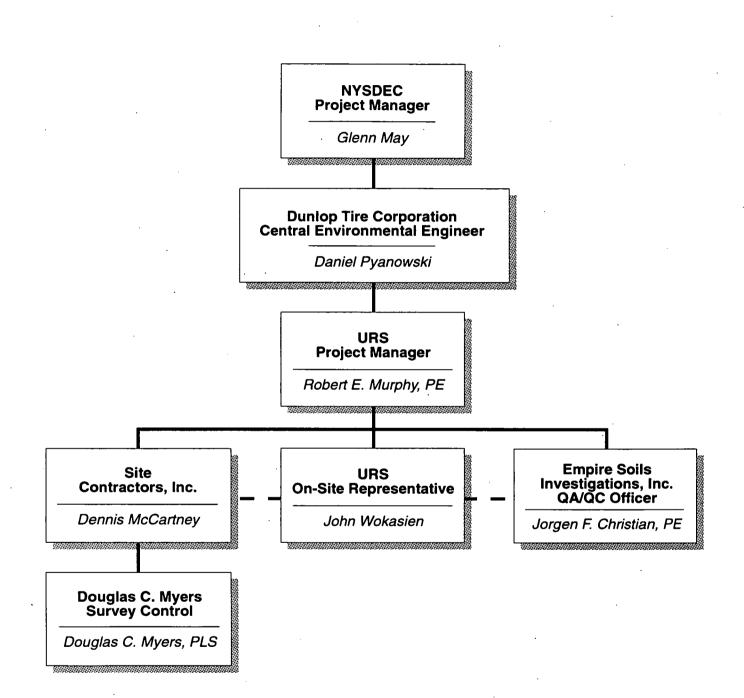
3.0 QA/QC PROJECT MANAGEMENT AND ORGANIZATION

The closure of SEA involved the participation and services of the New York State Department of Environmental Conservation (NYSDEC), Dunlop Tire Corporation, URS Consultants, Inc., Empire Soils Investigations, Site Contractors, Inc., and their surveying subcontractor Douglas C. Myers, P.L.S., P.C. Figure 3-1 presents an organization chart of the principal QA/QC personnel for the project. The responsibilities of each project participant and of that participant's QA/QC staff are discussed in the following subsections.

3.1 <u>NYSDEC</u>

SEA was closed under the direction of NYSDEC. Upon completion, Dunlop Tire Corporation will obtain confirmation from NYSDEC that the work was completed in conformance with the approved design. The NYSDEC Project Manager, Mr. Glenn May, was the agency's representative for day-to-day operations and Dunlop's contact for obtaining final approval following submittal and review of this Construction Monitoring Report Supplement and the Record Drawings.

3.2 <u>Dunlop Tire Corporation</u>


Dunlop Tire Corporation (DTC) as the Owner, performed the site closures under direction of NYSDEC. DTC's Central Environmental Engineer, Mr. Daniel Pyanowski, represented DTC in administration of the closures, and served as its contact with NYSDEC. In addition, he directly supervised the activities of URS Consultants, Inc., Site Contractors, and Empire Soils Investigations.

3.3 URS Consultants, Inc.

DTC retained the services of URS Consultants, Inc. (URS), a New York State-licensed professional engineering firm with extensive experience in solid and hazardous waste sites and in particular, with closure of inactive waste sites. URS provided both design and construction

QA/QC ORGANIZATION

Dunlop Tire Corporation Closure of Sites No. 915018 A, B, C

oversight services on this project, and was responsible for implementation of the QA/QC Plan. The QA/QC responsibilities of key engineering staff members are presented below:

<u>URS Project Manager</u> - The Project Manager was responsible for implementation of and ensuring compliance with the QA/QC plan through his subordinates. He acted as the interface with Dunlop and, through Dunlop, with NYSDEC. The Project Manager for this project is a licensed New York State Professional Engineer with more than 10 years experience, including experience in closure of solid waste and hazardous waste landfills.

Specific responsibilities of the Project Manager included:

- Review of design criteria, plans, and specifications for clarity and completeness of QA/QC requirements;
- Supporting DTC in meetings with NYSDEC and the Contractor as necessary;
- Consulting with the Construction Manager on field problems and corrective measures;
- Review of required QA/QC and other documentation;
- Review of Record Drawings and Construction Monitoring Report;
- Providing technical support as necessary to the URS Onsite Representative;
- Working with the Contractor to correct deficiencies;
- Making periodic site visits to ensure adequacy of construction methods;
- Inspecting QA/QC-related methods, procedures, and documentation;
- Reviewing daily construction reports prepared by the URS Onsite Representative
- Assisting the URS Onsite Representative with implementation of contract requirements and resolution of disputes with the Contractor.

<u>URS Onsite Representative</u> - The URS Onsite Representative, who was responsible to the URS Project Manager, is a civil engineering technician with experience in construction projects similar to the DTC project. The URS Onsite Representative was responsible for inspecting construction activities to ensure conformance with plans and specifications.

He also was responsible for obtaining and organizing the field QA/QC data, as well as for supplying regular photographic documentation of construction progress.

The URS Onsite Representative was responsible for informing the Project Manager of any deficiencies and for documenting the corrective action taken. He also was responsible for writing the Construction Monitoring Report Supplement, maintaining project files, documenting revisions to the contract, and reviewing the Contractor's monthly payment estimates prior to submittal to DTC for payment.

3.4 <u>Site Contractors, Inc.</u>

Site Contractors, Inc. is a site remediation contractor with specialized experience in LPS placement projects. Site Contractors, Inc. was responsible for constructing the work in accordance with the design plans, specifications and QA/QC requirements; and, was solely responsible for the techniques and sequence of construction. The firm was responsible for furnishing all labor, materials, equipment, tools, and other facilities and incidentals necessary for completion of the work. QA/QC requirements affecting the Contractor's work were included in the contract documents (namely, the plans and specifications). The Contractor was required to coordinate his activities with the URS Onsite Representative.

The Contractor subcontracted Douglas C. Myers, P.L.S., P.C., a land surveying firm licensed in the State of New York, to perform survey work required for construction layout, cover system layer elevations, and documentation of final conditions.

3.5 <u>Empire Soils Investigations, Inc.</u>

Empire Soils Investigations (ESI), an independent testing laboratory, performed the geotechnical analysis specified in the QA/QC plan. The Laboratory Project Manager, who had six years experience in the testing methods being employed on this project, was responsible for certifying the accuracy of reported results. He responded to inquiries, directions, and requests

of the URS Onsite Representative. He also was responsible for tracking of samples and for reporting test results promptly.

4.0 CHANGES FROM DESIGN DOCUMENTS

The LPS cover system was constructed in accordance with the approved design documents, with minimal revision. As discussed below, there were three minor changes from the design.

4.1 <u>Revised Landfill Slope Adjacent to Pavement</u>

The landfill slope adjacent to the asphalt concrete pavement was revised from a 1 on 2 slope to a 1 on 4 slope as shown on the record drawings. The slope was changed to reduce the possibility of slope erosion and to facilitate mowing operations on the cap. This revision was approved by Mr. Glenn May, NYSDEC onsite representative on June 15, 1994, as presented in Appendix A.

4.2 <u>Revised Vegetative Cover</u>

The placement of the 6-inch vegetative cover layer was revised at the request of Site Contractors, Inc. and this revision was approved by DTC. The request and approval letter are presented in Appendix B. The contract specifications called for a manufactured vegetative cover consisting of clay from the borrow pit mixed with compost. The revision consisted of mixing offsite topsoil into the upper 2-inches of the previously placed 6-inch clay layer and the placement of an additional application of a dry seed mix prior to mulching and hydroseeding. At the discretion of the Contractor, the vegetative cover was mulched prior to hydroseeding.

The Contractor requested these changes due to the hot and dry season in which seeding would occur. Under these conditions, topsoil would retain moisture and support growth after seed germination better than the compost/clay mixture.

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

4-1

4.3 Keyway Trench Revision

The perimeter keyways were constructed $4 \pm$ feet wider than detailed on the contract drawings. This revision allowed the use of the compaction equipment used on the LPS cap with no adverse impact to the project.

5.0 MAJOR CONSTRUCTION COMPONENTS AND EQUIPMENT

The major components of construction for the closure of the SEA were as follows:

- Clearing and grubbing
- Subgrade preparation
- LPS layer construction
- Stormwater drainage controls
- Vegetative cover

These operations were carried out by the Contractor using the equipment listed on Table

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

5-1.

TABLE 5-1

EQUIPMENT LISTING

DOZERS AND COMPACTORS

Terex TS-14B Pans (2 ea.) Terex 82-30 Dozer International TD-15E Dozers (2 ea.) International TD-8G/ST Dozer Bomag BW 213 PD Vibratory Compactor Dynapac CA25 Vibratory Roller Sheepsfoot Roller (tow-behind)

Others

Ford 750 Backhoe Disc Pulverizer White Tractor w/Rototiller Water Truck Fiat-Allis 65 Grader Finn Hydroseeder Finn Mulcher John Deere Tractor w/seeder John Deere Tractor w/crimper

6.0 SUBGRADE PREPARATION AND CONSTRUCTION

After SEA was cleared and grubbed, subgrade was constructed to receive the LPS cover system. Cleared and grubbed trees and other vegetation was taken offsite for disposal. Subgrade slopes were constructed with grades ranging from 3% to 33%.

Prior to the placement of grading fill surface, debris was removed and deposited in Dunlop's roll off containers. These containers were hauled to an offsite disposal facility, Modern Landfill. The type and nature of the surface debris encountered in SEA was similar in type to the debris encountered and tested during last year's landfill closure operations (miscellaneous wood and tire fragments). The analytical test results for the tire fragments are presented in Appendix E.3 of the CMR.

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:11:11/ta(ko)

6-1

7.0 COVER MATERIALS

Onsite materials were used for the construction of the LPS layer and the vegetative cover layer. Topsoil for the vegetative layer was brought in from off-site in small quantities. The following sections summarize the characteristics of each material.

7.1 <u>LPS</u>

The existing onsite borrow pit was the source for the LPS. Its location is shown on the project record drawings. The bulk of the material excavated was used as LPS, with the remainder used to support vegetative cover or to create the subgrade fill. The LPS is classified by the soils testing laboratory as silty clay (CL) in the Unified Soil Classification System.

7.2 <u>Vegetative Cover</u>

The 6-inch vegetative cover consisted of clay obtained from the onsite borrow pit amended with offsite topsoil as discussed in Section 9.0.

J:\35246.06/wp/Rev-Cert.RPT 10-14-94:10:03/ta(ko)

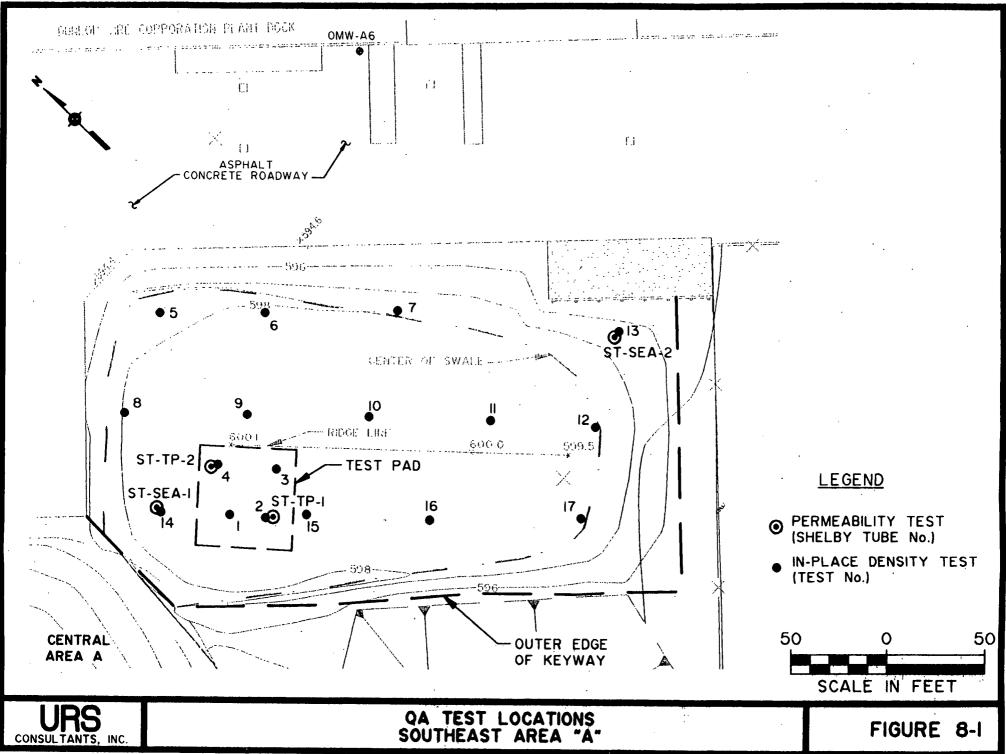
7-1

8.0 CONSTRUCTION OF LPS LAYER

8.1 Borrow Source Testing

The 18-inch LPS layer was constructed from material obtained from Zone 5 of the onsite borrow pit. This material previously was characterized and tested as low permeability soil for the closure operations performed in 1993. All required materials quality testing was performed. Refer to Section 8.0 of the CMR for further discussions.

8.2 <u>Test Pad</u>


A test pad was constructed in accordance with Item 5.3, Section 3.1.3 of the contract specifications and was placed as an integral part of the LPS cover system for SEA. The approximate dimensions of the test pad were 50 by 50 feet.

The source of material for the test pad was Zone 5 of the onsite borrow pit. The material was placed in a loose, 20-inch lift prior to being rough-graded with a TD-15E dozer. The test ⁵ pad then was compacted with a sheepsfoot roller with 10-inch tines. This was a static compactive effort. The clay was then compacted until the tine penetration was less than 5 inches. The test pad was compacted dynamically using a Bomag BW 213 PD Vibratory Padfoot Compactor and a Dynapac CA 25 Vibratory Steel Wheel Roller. Dynamic compaction consisted of four passes with the Bomag compactor, followed by four perpendicular passes with the Dynapac roller.

QA for the test pad was represented by a total of four (4) IPD tests and two (2) Shelby tube (permeability) samples. IPD and permeability test results are presented in Appendices A and B respectively. The test pad location and the locations of the QA tests are presented in Figure 8-1.

AC-6097

\35246\ I=50 9/16/94-3 RAL

The QA tests of the test pad produced acceptable density results. Shelby tube samples for permeability testing were obtained from the entire 18-inch LPS depth. Two (2) samples were taken from each tube; one from the bottom 6 inches, and one from the middle 6 inches. All four samples were tested, and all showed permeability results less than the specified 1.0×10^{-7} cm/sec.

The test pad QA test results demonstrated that, using the Contractor's equipment, methods, and construction procedures, placement of an LPS cover system having a minimum inplace density of 95% and a maximum permeability of 1×10^{-7} cm/sec could be achieved.

8.3 Placement Methods

The following sections discuss the placement of LPS used in the closure for SEA.

8.3.1 <u>18-Inch Layer</u>

The general methods and procedures employed in the successful completion of the test pad also were used for the placement of the 18-inch LPS layer.

During placement, the natural moisture content of the LPS usually was adjusted by adding water. The water was hauled via water truck to the location of placement and applied with spray bars located at the front and rear of the truck. The water was mixed into the soil during grading and compacting operations.

8.3.2 Keyway Trench

LPS was placed in the keyway trenches in a single compacted lift. The material was compacted with the same method utilized for the 18-inch LPS layer.

8.4 <u>Construction QA/QC</u>

Construction monitoring during placement of the LPS cover system was performed in accordance with the approved QA/QC plan found in Appendix I.1 of the CMR. The following sections discuss the main requirements of the QA/QC plan, the actual IPD and permeability test results, and the method utilized for thickness verification.

8.4.1 **OA Test Requirements**

The main QA test requirements for this project were IPD testing and constant-head triaxial permeability tests on undisturbed samples (Shelby tubes). The minimum testing frequency for the IPD and permeability tests were nine (9) per acre and one (1) per acre, respectively.

IPD testing was performed with a Nuclear Densitometer (Troxler Model 3440). IPD tests were taken on a smooth LPS surface, following grading and compaction of the LPS layer. The voids left from the Nuclear Densitometer rod were filled with bentonite pellets and rodded to a compact state in order to maintain the integrity of the cover system.

The 3-inch diameter Shelby tubes were pushed through the compacted LPS surface with a dozer blade, allowed to rest, then twisted by hand and carefully extracted. The tubes were sealed with wax, and shipped in a upright position to the laboratory for testing. The voids left from the Shelby tubes were filled with bentonite pellets and rodded to a compact state in order to maintain the integrity of the cover system. In the laboratory the samples were extruded, transferred to the testing equipment, saturated using back-pressure, and tested for permeability under constant head in accordance with U.S. Army Corps of Engineers test method EM 111-2-1906.

8.4.2 OA Test Results

The following sections discuss and summarize the results of the IPD and permeability testing. Permeability test results are summarized on Table 8-1. Copies of the IPD and permeability test results are presented in Appendix C and D respectively.

TABLE 8-1

SAMPLE NUMBER	IPD REF NUMBER	DATE SAMPLED	IN-PLACE PERMEABILITY (CM/SEC)	TUBE PORTION TESTED	COMMENTS
ST-TP-1	· 2	6/9/94	8.77 x 10 ⁻⁹ 7.10 x 10 ⁻⁹	Bottom Midpoint	Pass Pass
ST-TP-2	4	6/9/94	7.32 x 10 ⁻⁹ 7.78 x 10 ⁻⁹	Bottom Midpoint	Pass Pass
ST-SEA-1	14	6/16/94	6.87 x 10 ⁻⁹ 7.66 x 10 ⁻⁹	Bottom Midpoint	Pass Pass
ST-SEA-2	13	6/16/94	1.41 x 10 ⁻⁸ 7.75 x 10 ⁻⁹	Bottom Midpoint	Pass Pass

SUMMARY OF IN-PLACE PERMEABILITY TEST RESULTS

QA for the LPS layer placed in this area was represented by a total of 17 IPD tests. The locations of IPD tests for the LPS layer are presented in Figure 8-1. Since the surface area of the LPS layer is 1.2 acres, the actual IPD test frequency for the layer was fourteen (14) per acre, exceeding the minimum required frequency of nine (9) IPD tests per acre.

Four (4) Shelby tube samples were taken in this area, exceeding the minimum required frequency of one Shelby tube per acre. Two (2) samples were obtained from each tube. The locations of Shelby tube samples are presented in Figure 8-1. The average in-place permeability for the eight (8) samples was 8.4×10^{-9} cm/sec.

8.4.3 Minimum Thickness Verification

In each area, prior to LPS placement, the Contractor's surveyor Douglas C. Myers, P.L.S., P.C. shot top-of-subgrade elevations. After LPS placement, they shot top-of-LPS elevations in the same locations as the previous shots. From these elevations, the thickness of the LPS could be derived by subtracting the top-of-subgrade elevation from the top-of-LPS elevation in each respective location. These thicknesses were reviewed to determine if the 18inch layer was at least 17 inches (1.41 feet) thick (the approved tolerance being 1 inch).

Survey data sometimes conflicted with field-thickness verification data. For example, the survey data might show less than 18 inches minus the specified 1-inch tolerance and the corresponding field-measured thickness would be 17 inches or more. This occurred at five (5) locations on the LPS layer. Hand augers were used by Site Contractors to obtain the actual depth verification and this was observed by URS. The actual field measured depths are recorded on the record LPS thickness drawings. A possible explanation for the discrepancy is that although the surface of subgrade was usually smooth, some surface irregularities existed due to grading and compaction procedures carried out for subgrade preparation. After the depth verification was complete, the hand auger holes were filled with bentonite pellets and rodded to a dense state.

Included with this report are project record drawings showing top-of-LPS elevations for all the waste areas that received the cover system. These drawings verify that the LPS layer was constructed with a 17-inch minimum thickness as derived by the associated survey and field thickness verification data.

8.4.4 <u>Slope Verification</u>

Prior to LPS placement, the Contractor submitted contour maps of the prepared subgrade. This allowed the Engineer to check that as-built slopes were within the specified range. Where corrective grading was required, the affected area was resurveyed and revised subgrade contour maps were submitted.

J:\35246.06/wp/Rov-Cert.RPT 10-14-94:10:03/ta(ko)

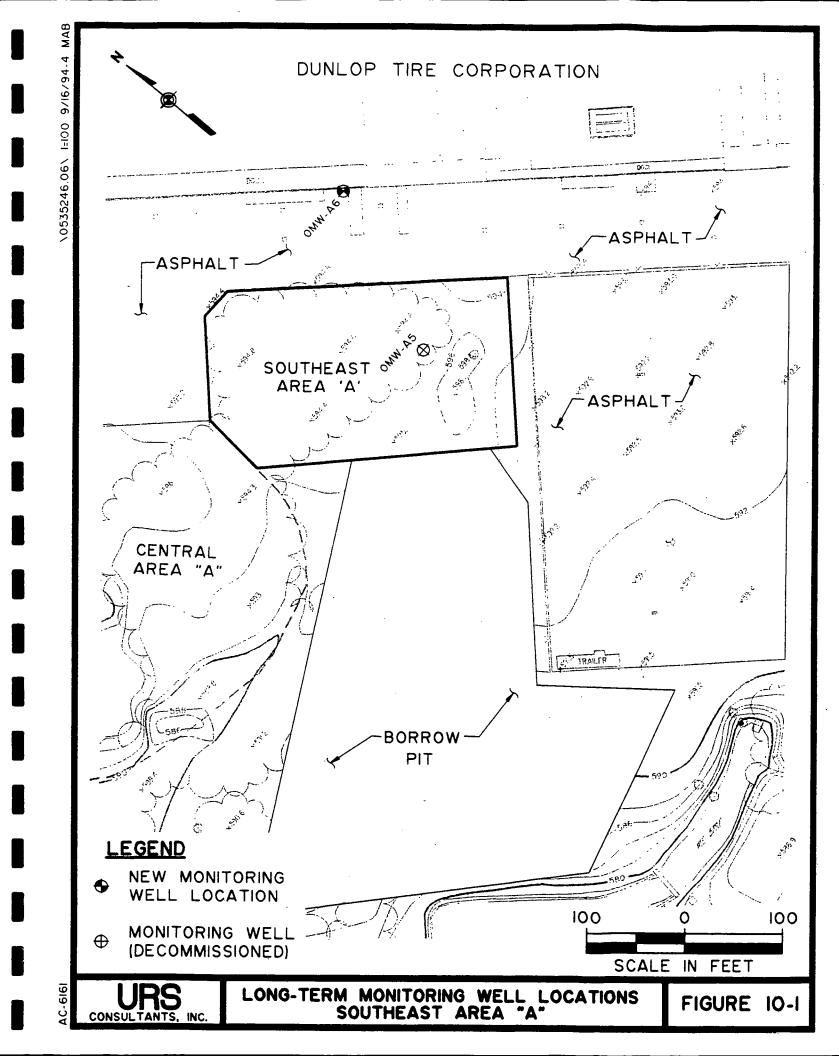
8-5

9.0 PLACEMENT OF SOIL LAYER FOR VEGETATIVE COVER

The soil layer for vegetative cover was placed above the LPS layer to complete the cover system. Onsite material from the borrow pit was used to construct this layer. In addition, two inches of topsoil was incorporated into the upper portion of the 6-inch soil layer. The area subsequently was dry seeded, followed by mulching and hydroseeding. Construction details and approvals for this specification variance are presented in Appendix A.

This variance from the specifications produced the desired results as the establishment of turf was recognized after approximately three weeks.

10.0 LONG-TERM MONITORING WELLS


10.1 Monitoring Well Abandonment

Monitoring well OMW-A5 was decommissioned prior to SEA closure operations due to the discovery of existing waste surrounding the well. Therefore, it was not suitable for its intended use as an upgradient monitoring well.

Monitoring well OMW-A5 was abandoned in-place by overdrilling and sealing with Bentonite grout. The locations of the monitoring wells and the decommissioning report for OMW-A5 are presented in Figure 10-1 and Appendix E, respectively.

10.2 Monitoring Well Construction

Upgradient monitoring well OMW-A6 was installed in place of decommissioned monitoring well OMW-A5. The well construction details, boring log, and well development log are presented in Appendix F.

APPENDIX A SOUTHEAST AREA A PERIMETER SLOPE REVISION APPROVAL (DIARY ENTRY)

J:\35246.06/wp/Rev-Cert.RPT 09-16-94:15:14/ta

× 14.94 61 y chap Qua dle alge nam 1 ug rece and Rez nara tre ZM2. ma Auge - 6 - 7 ~ em tota an office. R lacu

APPENDIX B REQUEST AND APPROVAL LETTERS FOR VEGETATIVE COVER SPECIFICATION VARIANCE

J:\35246.06/wp/Rev-Cert.RPT 09-16-94:15:14/ta

SITE CONTRACTORS, Inc.

JUN 2 2 1994

Die Development

3-3480 BENZING ROAD, ORCHARD PARK, NEW YORK 14127 Telephone (716) 826-1819

June 20, 1994

Mr. Robert Murphy URS Consultants Inc. 282 Delaware Avenue Buffalo, New York

Re: Colsure Plan Inactive Waste Site Dunlop Tire Corp.

Dear Mr. Murphy

With your permission we would like to make the following changes to our contract with regard to the six inch vegative cover on the above referenced project.

We feel because of the time of year (hot and dry) it is not favorable to the growing of grass.

We propose after placing 6 inches of vegative cover as per plans and specs, we would add 2 inches of top soil in lieu of compost.

The top soil would be obtained from either of two abandoned farms in the Town of Hamburg. The topsoil is of good quaility and we have had experience using it in the past.

The topsoil placing, fine grading and preperation would also be in accordance with the plans and specs.

Although this is of substantially greater cost to perform than the compost we will elect to do this at no extra charge to the owner.

Hoping this meets with your approval. We will await your decision.

/ery ly your

Raymond Zylinski / Pres.

 فالمد	
Rey	
FILE	1000

BOSTON BUFFALO

BUFFALO CLEWELAND COLUMBUS DENVER NEW YORK FIRAMUS NU NEW ORLEANS SAN FRANCISCO FIN WATEO

IN MATEO

SEATTLE AGINIA BEACH ASHINGTON D.C.

URS CONSULTANTS, INC. 282 DELAWARE AVENUE BUFFALO, NEW YORK 14202-1805 (716) 856-5636 FAX: (716) 856-2545

June 30, 1994

Mr. R. Zylinski, President Site Contractors, Inc. S-3480 Benzing Road Orchard Park, New York 14127

RE: **DUNLOP INACTIVE WASTE SITE CLOSURES** SOUTHEAST AREA A

Dear Mr. Zylinski:

In response to your letter dated June 20, 1994 and as discussed in Weekly Job Progress Meeting No. 4, June 27, 1994, your request for a specification variance concerning vegetative cover is approved as itemized below:

- Placement of a 6-inch lift of clay (from the onsite borrow pit) over the 18-inches of low permeability soil previously placed.
- Placement of a 2-inch lift of topsoil over the 6-inch lift of clay. The topsoil will be supplied from an offsite source (to be approved). The clay surface shall be loosened to a depth of $3"\pm$ and the topsoil mixed in to this depth.
- A dry seed mixture (Seed Mix 1) shall be applied and covered using hay/straw mulch. Coverage will be at the discretion of Site Contractors.
- A second application of Seed Mix 1 shall be applied by hydroseeding and maintained in accordance with Specification Item 5.6, paragraphs 3.1 through 3.10, inclusive.

The above work shall be performed in lieu of the manufactured vegetative soil specified in Specification Item 5.3, paragraphs 2.2.1 through 2.2.4.

This variance shall be performed at no additional cost to the Dunlop Tire Corporation.

Should any questions arise, please contact the undersigned.

Very truly yours,

URS CONSULTANTS, INC

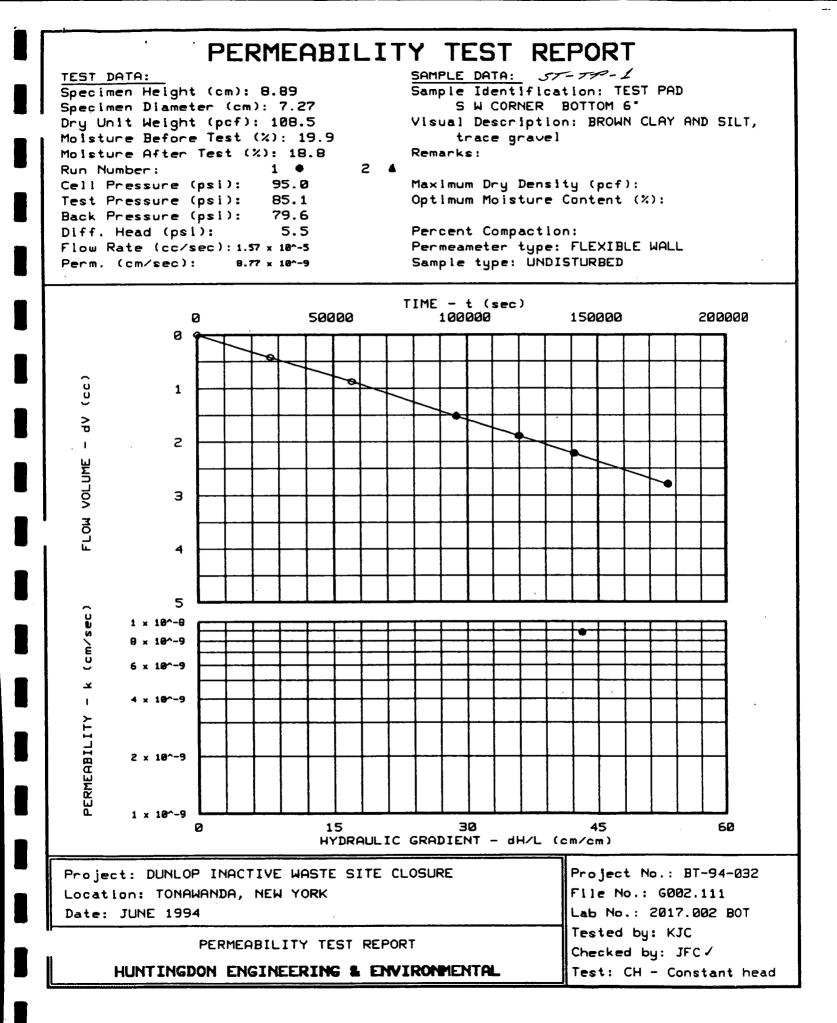
Robert E. Murphy, P.E. Project Manager

D. Pyanowski/DTC cc: File: 35246.06

J:/35246/WP/COR/6-30-94.RZ/lt 6/30/94 3:01

APPENDIX C LOW PERMEABILITY SOIL LAYER IN-PLACE DENSITY (IPD) TEST REPORTS

J:\35246.06/wp/Rev-Cert.RPT 09-16-94:15:14/ta


	INT NTR		Dunlo OR:	re of p Tir	Inac e Corr	p.	waste	51te	s	JOB			₩ <u>₹-</u> ?, <u>↓</u> ???4 55??%	
		DEPTH	DC	MC	WD	DD	W	7 M	7 Comp	PROCT CODE	Pass	LOCATH	ON AND REMARKS	에 밝혔다.
5	gl.U	12"	2981	719	131.7	112.7	19	16.8	1945	5	P	TEST	PENER T PAD	
5	al.1	12"	41	(5	134.6	116.4	18:2	15.6	107.9	5	P	TES	RNER SHE	57/
	A8.9	12"	N'	4	31.8	112.6	P.Z	17.1	1044	5	P	TES	RNETZ TPAD	
	AB.1	12"	1	1		1			104.1		C	NE C	ORNER SAME	52
													•	
												IPZ		
												5	7-790-1	
												IP	T-790-1 0 ≠4	
											-	5	T-79P-2	
		Ì						T						
							Ī							
DCT DE	DEN		OPTN. OISTUR (%)	E		ATERIA			PRO	DE D	AX ENSITY ocf)	OPTM. MOISTURE (%)	MATERIAL TYPE AND S	
;;e /	107	1.8 . ,	16.0	Ci Ch T	ry <u>fire</u> ir	FEC FSC	NAS XEXE	ra						
				+										

				E	av	TEL	9672		JOB	NC).:	PORT I. 2 - 15, 19 - 24/6.0	6
ELEV.	DEPTH	DC	MC	WD	DD	M	Z M	Z COMP			LOCÁTION	AND REMARKS	RPT. 1 BETLET Date
591.5	12"-	5/0 238	238	128.7	116.2	18.4	16.7	102.2	_ى	P			
g1.6	12"	485	225	130.3	112.9	17.3	15,3	104.7	5	P			
-q1.1	12"	481	239	/30.5	111.9	18.5	Ko.5	103.8	5	P			
	12"	453	239	/32.3	113.8	18.5	16.3	105.6	5	P		····	
599.6	12"	430	235	134.0	115.8	18.2	15.7	107.4	رى ا	P			
									<u> </u>				
									<u> </u>				-
							ļ		<u> </u>		ļ		-
				ļ			ļ						-
				ļ	<u> </u>			ļ					
<u>.</u>		ļ			ļ				<u> </u>	<u> </u>	ļ		-
		 	<u> </u>	 				 	ļ				
				 				 	_				-
DEN	SITY M								DED	ENSITY	OPTM. MOISTURE (%)	MATERIAL TYPE AND SC	
107	8	8.0		ay	_>_	<u>ov</u>	112	┨┝──					
			-		200		-						
	д91. ⁵ д1. ⁶ д1. ¹ д1. ¹ з91. ⁵ з99. ⁶	AP1.5 12" AP1.6 12" AP1.7 12" AP1.7 12" AP1.7 12" AP1.7 12" AP1.7 12" AP1.7 12" AP1.7 AP1.	A1. ¹ 12" 485 A1. ¹ 12" 481 A1. ³ 12" 453 A9. ¹⁰ 12" 430 A9. ¹⁰ 12" 430 A9. ¹⁰ 12" 430 DENSITY (pcf) OPTM.	MAX OPTM. MAX OPTM. MAX OPTM. MAX OPTM. MAX OPTM. MAX OPTM. MAX OPTM.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAX OPTM. VI 12 V	M1.5 12" 238 128.7 110.2 18.4 16.7 M1.6 12" 485 225 30.3 142.9 17.3 15.3 M1.7 12" 481 239 130.5 111.9 18.5 16.5 M1.7 12" 481 239 130.5 111.9 18.5 16.5 M1.7 12" 481 239 132.3 113.8 18.5 16.3 M1.7 12" 430 235 134.0 115.8 18.2 15.7 M1.7 12" 430 235 134.0 115.8 18.2 15.7 M1.7 12" 430 235 134.0 115.8 18.2 15.7 M1.7 13 14 14 14 14 14 14 15.7 M1.7 12" 430 235 134.0 115.8 18.2 15.7 M1.7 13 14 14 14 14 14 14 15.7 M1.7 14 15 15	MAX OPTM. MOSTURE MATERIAL COMP MAX 0PTM. 0PTM. MATERIAL 100.2 18.4 16.7 102.2 MAX 0PTM. 0PTM. 0PTM. 130.5 110.2 18.4 16.7 102.2 MAX 0PTM. 12" 4485 22.5 130.3 142.9 17.3 15.3 104.7 MAX 12" 4481 23.9 130.5 111.9 18.5 16.5 103.8 MAX 12" 4481 23.9 132.3 113.8 18.5 16.3 105.6 MAX 12" 430 23.5 134.0 115.8 18.2 15.7 107.4 10 12" 430 23.5 134.0 115.8 18.2 15.7 107.4 10 12" 430 23.5 134.0 115.8 18.2 15.7 107.4 10 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MAX OPTM. MATERIAL PROCT MAX OPTM. MATERIAL MAX OPTM. MATERIAL Image: construction of the start of the s

CLIE CON	DJE ENT NTR	CT: <u>.</u> : ACT	Dunlop OR:	re of p Tire	Inact Corr	tive 1 0. -Oc	Waste	Sites	s	REP DAT JOB	ORT E: NC	NO).:	3 16, 1994 246.06	/
ST D.	ELEV.	DEPTH	DC	NC	WD	DD	М	7M	Z COMP	PROCT. CODE	Phasa Fail	LOCATION A	AND REMARKS	RPT.
0	49. ⁸	12"	462	222	131.3	1/3.8	17.4	15.3	105.6	_ى	P			
1	~~		461	217	131,4	114.4	17.0	14.9_	106.1	_ى	70			
12	59B.M	12"	425	221	133.9	116.6	17.3	14.9	108.1	_ى	P			
3	glo B		435	197	133.3	118.0	15.3	12.9	109.4	5	P	SHERBY ST-SER	9-2	\downarrow
4	5.98.0	12"	486	238	129.6	1/0.8	18.8	17.0	102-8	5	P	57-52A	9-4	
5	дв. ¹		429	249	133.5	113.7	19.7	17.4	105.5	5	P			
2	AB.5	12"	446	214	132.4	115.7	16.7	14.5	107.3	5	P		<u></u>	
7	5 got	12"	1	1	130.5						P			
·														
ROCT	MA DEN (pc	SITY M	OPTN. OISTUR (%)	ε		AND	NL SOURCE	:	PRO	DE DE		OPTM. MOISTURE (%)	MATERIAL TYPE AND SC	OURCE
ح	107	8.	8.0	2	ing Bac		OU	7/72	┥	_				
				50	det et e	men		?,				_		

APPENDIX D LOW PERMEABILITY SOIL IN-PLACE PERMEABILITY TEST REPORTS

J:\35246.06/wp/Rev-Cert.RPT .09-16-94:15:14/ta

PERMEABILITY TEST DATA

E 1

F

PROJECT DATA

<pre>F ject Name: File No.: Project Locat Project No.: Sample Identi Lab No.: Description:</pre>	ion:	G002.111 TONAWANDA, BT-94-032 TEST PAD S W CORNER 2017.002 BC BROWN CLAY trace grave	BOTTOM 6" OT AND SILT, 21			
Sample Type:	_	UNDISTURBED)			
Max. Dry Dens						
Method (D1557						
Opt. Water Co	ntent:					
Date:		JUNE 1994				
Remarks:						
Permeameter T	ype:	FLEXIBLE WA	ALL			
_Tested by:		KJC				
Checked by:		JFC				
T est type:		CH - Consta	ant head		•	
	Pļ	SRMEABILITY	TEST SPECIM	en data		
1	•					
	1	Before test:		A :	fter test:	
D iameter:			•			
	1	2	:	1	2	
Top:	1 2.855 in	2 2.856 in	:	1 2.822 in	2 2.817 in	
Top: Middle:	1 2.855 in 2.872 in	2 2.856 in 2.865 in	8	1 2.822 in 2.842 in	2 2.817 in 2.831 in	
Top: Middle: Bottom:	1 2.855 in 2.872 in 2.856 in	2 2.856 in 2.865 in 2.869 in	5	1 2.822 in 2.842 in 2.838 in	2 2.817 in 2.831 in 2.851 in	
Top: Middle:	1 2.855 in 2.872 in 2.856 in	2 2.856 in 2.865 in 2.869 in	5	1 2.822 in 2.842 in	2 2.817 in 2.831 in 2.851 in	
Top: Middle: Bottom: Average:	1 2.855 in 2.872 in 2.856 in 2.86 in	2 2.856 in 2.865 in 2.869 in 7.27 cm		1 2.822 in 2.842 in 2.838 in 2.83 in	2 2.817 in 2.831 in 2.851 in 7.20 cm	3
Top: Middle: Bottom:	1 2.855 in 2.872 in 2.856 in 2.86 in 1	2 2.856 in 2.865 in 2.869 in 7.27 cm 2	3	1 2.822 in 2.842 in 2.838 in 2.83 in 1	2 2.817 in 2.831 in 2.851 in 7.20 cm 2	3 3 461 in
Top: Middle: Bottom: Average: Length:	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in	3	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in	3 3.461 in
Top: Middle: Bottom: Average:	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in	3	1 2.822 in 2.842 in 2.838 in 2.83 in 1	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in	-
Top: Middle: Bottom: Average: Length: Average:	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in 3.50 in	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in 3.50 in	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm Sample Param	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G	1 2.855 in 2.855 in 2.856 in 2.86 in 1 3.450 in 3.50 in snsity and stravity:	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm Sample Param 2.75	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. &	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in 3.50 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm Sample Paran 2.75 998.91	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. &	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in 3.50 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm Sample Paran 2.75 998.91 871.20	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. & Tare Wt.:	1 2.855 in 2.872 in 2.856 in 2.86 in 1 3.450 in 3.50 in sity and s ravity: Tare: Tare:	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm 5ample Paran 2.75 998.91 871.20 229.28	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20 229.28	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. & Tare Wt.: Moisture C	1 2.855 in 2.872 in 2.856 in 2.86 in 3.450 in 3.50 in 5.50 in 5.50 in 5.51 and 5.55 5.55 and 5.55 and 5.55 5.55 and 5.55	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm 5ample Paran 2.75 998.91 871.20 229.28 19.9 %	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20 229.28 18.8 %	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. & Tare Wt.: Moisture C Dry Unit W	1 2.855 in 2.872 in 2.856 in 2.86 in 3.450 in 3.50 in 5.50 in 5.50 in 5.51 and 5.55 5.55 and 5.55 and 5.55 5.55 and 5.55	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm 3ample Paran 2.75 998.91 871.20 229.28 19.9 % 108.5 pcf	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20 229.28 18.8 % 112.9 pcf	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. & Tare Wt.: Moisture C Dry Unit W Porosity:	1 2.855 in 2.872 in 2.856 in 2.86 in 3.450 in 3.50 in ensity and s ravity: Tare: Tare: Tare: content: eight:	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm 3.506 in 2.75 998.91 871.20 229.28 19.9 % 108.5 pcf 0.3682	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20 229.28 18.8 % 112.9 pcf 0.3425	-
Top: Middle: Bottom: Average: Length: Average: Moisture, De Specific G Wet Wt. & Dry Wt. & Tare Wt.: Moisture C Dry Unit W	1 2.855 in 2.872 in 2.856 in 2.86 in 3.450 in 3.50 in ensity and s ravity: Tare: Tare: Tare: content: eight:	2 2.856 in 2.865 in 2.869 in 7.27 cm 2 3.506 in 8.89 cm 3ample Paran 2.75 998.91 871.20 229.28 19.9 % 108.5 pcf	3 3.545 in	1 2.822 in 2.842 in 2.838 in 2.83 in 1 3.401 in	2 2.817 in 2.831 in 2.851 in 7.20 cm 2 3.439 in 8.72 cm 992.20 871.20 229.28 18.8 % 112.9 pcf	-

HUNTINGDON ENGINEERING & ENVIRONMENTAL

DATA SET 42 ;

-

in a second s

CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP-27	Panel No.: 3	Positions: 645
Run Number:	1	2
Cell Pressure: Saturation Press Inflow Corr. Fac Outflow Corr. Fa Test Temperature	tor: 1.00 ctor: 1.00	0.0 psi 0.0 psi 1.00 1.00 0.0 °C

PERMEABILITY TEST READINGS DATA

	CASE D X	DATE	TIME (24 hr)	ELAPSED TIME-sec		RE-psi	BURET READING	G-cc	FLOW Volume-cc
	SR	.:			IN	OUT	IN	OUT	AVERAGE
_	рх	6/10/94	7:48:00	0	85.1	80.2	0.05	24.80	0.00
	Х	6/10/94	15:18:00	27,000	85.0	80.0	0.40	24.30	0.43
	Х	6/10/94	23:38:00	57,000	85.0	80.0	0.75	23.75	0.88
		6/11/94	10:28:00	96,000	85.1	80.0	1.50	23.20	1.53
		6/11/94	17:08:00	120,000	85.1	80.0	1.85	22.80	1.90
		6/11/94	22:58:00	141,000	85.1	80.0	2.20	22.50	2.23
-	-	6/12/94	8:58:00	177,000	85.2	80.0	2.80	21.95	2.80

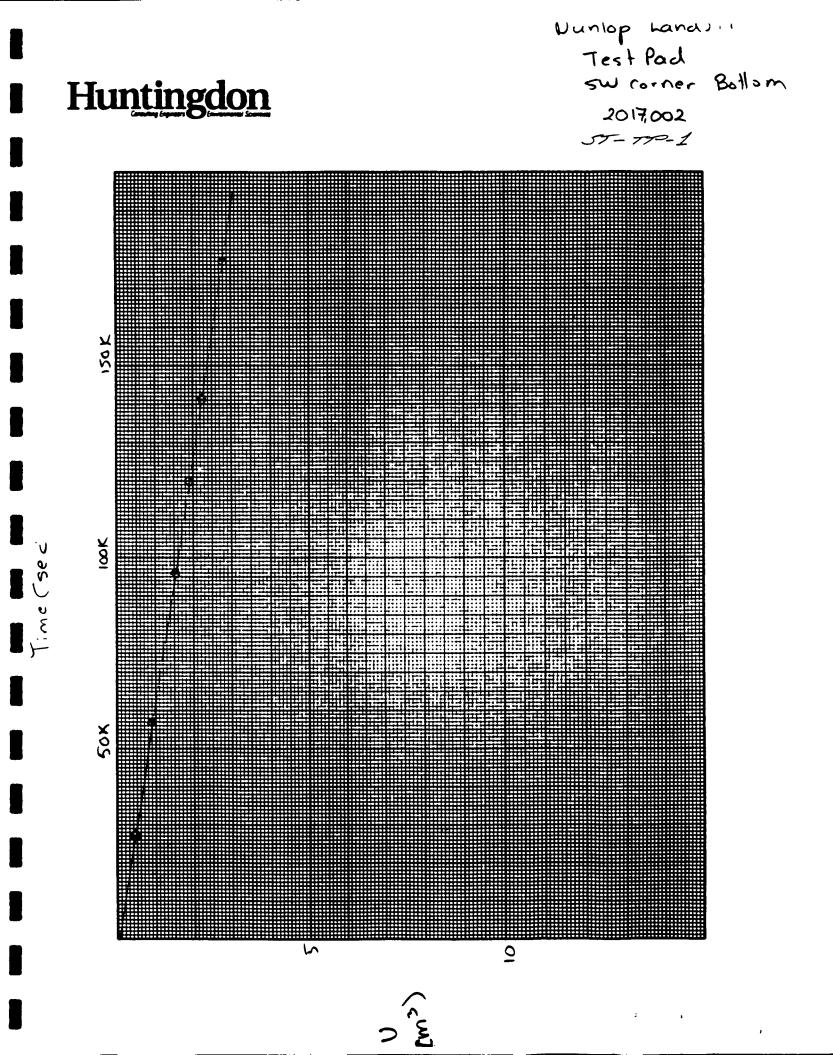
 Γ Pressure = 85.1 psi Differential Head = 5.5 psi, 383.6 cm H2O Gradient = 4.315E 01 Flow rate = 1.573E-05 cc/sec R squared = 0.99995 Permeability, K20.0° = 8.774E-09 cm/sec, K20° = 8.774E-09 cm/sec

HUNTINGDON ENGINEERING & ENVIRONMENTAL

2

Huntingdon

LARNO 2017,002 50T


÷

LABORATORY	PERMEABILITY TEST

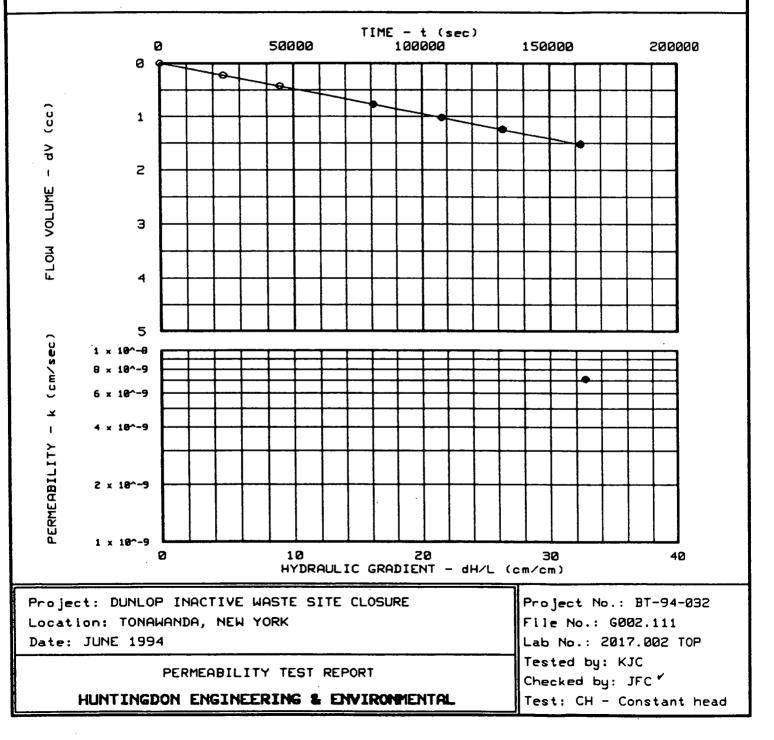
PROLNO

			_								r	KULNO_	
rR 00	OJECT	: Dunl	op L	-and	<u>}:11 -3</u>	: Te	st	Pad		ICIAN	R	HDATE:DATE:	6/9/94
		····				20	, Co	om				DATE.	
		MPLE					_	MOIST	JRE CO	NTENT		BEFORE	AFTER
	_											TEST	TEST
		SAMPLE, I	-		84 8.89					TARE		769.63	505·A
		F SAMPLE			54.727				F SOIL B		0	101.07	992.2 C 158
	_	8540*		in 16.4			_		WATER	IARE	0		871.2
	JME:V=			116.39*			_	RE WEIG			•		229.28
		SAMPLE,							T OF SOI				0(21.26
		AMPLE, W							CONTEN		•/.		
		T., 8d= (W		٤.٩ :		<u></u>						d	
		VOIDS, Vy		<u> </u>		دس،	CE	LL PRE	SSURE.				Ibs/in ²
		++++++++++++++++++++++++++++++++++++++							SURE, HA	-Δ λ		85.13	Ibs/in!
		RIN SAME,				-	_				:	80.00	162/m.2
		ATURATION		and the owner where the party of the party o								/nº 1703 = 36	0.29 cm.H ₂ O
						ł.							
PAN	EL NO	. 3	PANEL P	S S	CALIBR.	-	~					CELL	NO. FP-27
		ELAPSED		: Ples. si)	BUCET &	EADIN のり	¥6	FL	W YOLU	ME Y	-	ALUATION	
DATZ	TIME	TIME T (sec)	HEAD				202					relude	
61.0	ે.પછ			50.2	0.05	24.9	~	0	Ø	-	GR	NDIENT: I.	
_	15:19	ک <u>ا</u> رهه	85.0		0.40			0.35	0.50	0.43		T CONSTAN	r: 43.15
	23.36	57,000				23.7	75	0.70	1.05	0.88	TC.	TAN A	
slu	10:28	96,000		80.0		232	0	1.45	1.60	1.53		W RATE:	
	17:08	120,000	85,1	80.0	1.85	22.80	0	1.80	2.00		COR	RELATION,	0.99997
	22.58				2.20	22.5	5 C	2,15	2.30		{		*
1:	8 58	177,000	85.2	800	2.80	21.99	5	2.75	2.85	280	PER	MEABILITY:	8.78,10-9
						 					K _T	• & V/1 1 C •	V · V ·
			 			 			·			s K_ x 11-/11-	•
			 	 							{(\$ KT x }T/22	U I
						 					1		
			L	L		I			L		l		
	APYS				¢								

REMARKS:

PERMEABILITY TEST REPORT

2



Specimen Height (cm): 11.48
Specimen Diameter (cm): 7.13
Dry Unit Weight (pcf): 113.5
Moisture Before Test (%): 19.1
Moisture After Test (%): 17.9
Run Number: 1 •
Cell Pressure (psi): 95.0
Test Pressure (psi): 85.0
Back Pressure (psi): 79.7
Diff. Head (psl): 5.3
Flow Rate (cc/sec):9.27 x 18^-6
Perm. (cm/sec): 7.18 x 18^-9

SAMPLE DATA: Sample Identification: TEST PAD S W CORNER TOP 12" Visual Description: BROWN CLAY AND SILT, trace gravel Remarks:

Maximum Dry Density (pcf): Optimum Moisture Content (%):

Percent Compaction: Permeameter type: FLEXIBLE WALL Sample type: UNDISTURBED

PERNEABILITY TEST DATA

•

.

PROJECT DATA

F jet Name: DUNLOP INACTIVE WASTE SITE CLOSURE File No.: GO2.11 Project Location: TONAWANDA, NEW YORK Broject No.: BT-94-032 Sample Identification: TEST PAD Sample Identification: BROWN CLAY AND SILT, trace gravel UNDISTUREED Max. Dry Dens.: BROWN CLAY AND SILT, trace gravel UNDISTUREED Max. Dry Dens.: MCONTORE TOP 12" J-77-7 Max. Dry Dens.: UNDISTUREED Max. Dry Dens.: MCONTORE TOP 12" Max. Dry Dens.: UNDISTUREED Max. Dry Dens.: MCONTORE TOP 12" Permeameter Content: Date: Date: JUNE 1994 Remarks: Permeameter Type: Permeameter Type: FLEXIBLE WALL Tested by: JPC Rest type: CH - Constant head Diameter: 1 2 1 2 Top: 2.810 in 2.789 in 2.764 in Bottom: 2.826 in 1.827 in 4.516 in 2.793 in 2.805 in Middle: 2.817 in 2.773 in 2.805 in Mottore, Density and Sample Parameters: Specific Gravity: 2.75							
File No.: Froject Location: Project No.: Project No.: Sample Identification: TEST PAD S W CORWER TOP 12" Sample Identification: TEST PAD S W CORWER TOP 12" Sample Jobs 12 Description: ERKOWN CLAY AND SILT, trace gravel Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: Date: Remarks: Permeameter Type: FLEXIBLE WALL Tested by: Lecked by: JUNE 1994 Remarks: Permeameter: Diameter: 1 2 Top: 2.810 in Before test: Diameter: 1 2 Top: 2.810 in Before test: Diameter: 1 2 Top: 2.810 in Middle: 2.791 in Average: 2.811 in 4.527 in A.511 in A.527 in Moisture, Density and Sample Parameters: Specific Gravity: Specific Grav	F ject Name	:	DUNLOP INA	CTIVE WASTE	STTE CLOSUE	P	
Project Location: TONNAWNDA, NEW YORK Project No.: BT-94-032 Sample Identification: TEST PAD S W CORKER TOP 12" ST-TR-1 Lab No.: 2017.002 TOP Description: BROWN CLAY AND SILT, trace gravel Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: Date: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Tested by: KJC Checked by: JFC Test type: CH - Constant head Diameter: 1 2 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.793 in 2.764 in Bottom: 2.826 in 2.819 in 2.793 in 2.764 in Bottom: 2.826 in 2.819 in 2.793 in 2.764 in Bottom: 2.826 in 2.819 in 2.773 in 7.08 cm Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.400 in 4.483 in Average: 4.52 in 11.48 cm 4.477 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 3 17.9 8 Dry Unit Weight: 113.5 pcf 116.3 pcf Proventy: 0.3386			G002.111				
Project No.: BT-94-032 Sample Identification: TEST PAD Sample Identification: TEST PAD Sample Identification: SW CORNER TOP 12" ST-770-1 Lab No.: 2017.002 TOP Description: BROWN CLAY AND SILT, Sample Type: UNDISTURBED Max. Dry Dens.: MEMOWN CLAY AND SILT, Max. Dry Dens.: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: JUNE 1994 Remarks: JUNE 1994 Remarks: Fermeameter Type: Permeameter Type: FLEXIBLE WALL Tested by: KIC Checked by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: Diameter: 1 2 1 2 1 2 Top: 2.810 in 2.793 in 2.805 in Middle: 2.791 in 2.764 in 3 Average: 2.811 in 7.13 cm 2.79 in 7.08 cm Average: 1		tion:	- ·	NEW YORK			
Sample Identification: TEST PAD S W CORNER TOP 12" Jr							
S W CORNER TOP 12" $37-77-4$ Lab No.: 2017.002 TOP Description: BROWN CLAY AND SILT, trace gravel Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: Date: JUNE 1994 Remarks: Permeameter Type: PLEXIBLE WALL Tested by: KJC Thecked by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Length: 1 2 3 1 2 3 Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1058.30 Tare Wt.: 224.65 124.65 Moisture Content: 19.1 4 Dry Unit Weight: 113.5 pcf 116.3 pcf Provesity: 0.3386 0		ification:					
Lab No.: 2017.002 TOP Description: BROWN CLAY AND SILT, trace gravel Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Opt. Water Content: JUNE 1994 Remarks: Permeameter Type: Permeameter Type: FLEXIBLE WALL Tested by: JFC Checked by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: Diameter: 1 1 2 Top: 2.810 in 2.810 in 2.793 in Middle: 2.791 in 2.81 in 7.13 cm Average: 2.81 in 4.511 in 4.527 in 4.511 in 4.527 in 4.511 in 4.527 in 4.511 in 4.527 in Average: 4.511 in Average: 1.27.90 Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1058.30 1207.90 <td></td> <td></td> <td></td> <td>TOP 12#</td> <td></td> <td></td> <td></td>				TOP 12#			
Description: BROWN CLAY AND SILT, trace gravel Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D598): Dpt. Water Content: Date: JUNE 1994 Remarks: Permeameter Type: PLEXIBLE WALL Tested by: KJC Checked by: JFC Test type: CH - Constant head	Tab No. :				5/=//=-1		
trace gravel UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: Date: Tested by: Dreameter Type:JUNE 1994 FLEXIBLE WALL KTC Drecked by: JFCPermeameter Type: FLEXIBLE WALL Tested by: Dreameter: Drecked by: JFCPERMEABILITY TEST SPECIMEN DATADiameter: Diameter: 1212Diameter: 1212Top: 2.810 in Middle: 2.799 in 2.861 in 2.866 in 2.810 in 2.865 in 2.810 in 2.865 in 2.810 in 2.799 in 2.799 in 2.799 in 2.764 in 2.773 in 2.773 in 2.773 in 7.08 cmLength: 4.511 in Average: 2.861 in 2.811 in 4.527 in 4.516 in 4.496 in 4.430 in 4.430 in 4.483 in 4.471 in 11.35 cmMoisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1224.65 Moisture Content: 19.1 % Dry Unit Weight: 11.5 pcf Dry Unit Weight: 11.5 pcf 116.3 pcf 0.3227							
Sample Type: UNDISTURBED Max. Dry Dens.: Method (D1557/D698): Dpt: Water Content: Date: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Permeameter Type: FLEXIBLE WALL Tested by: JFC Permeameter Type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 1 2 1 2 Top: 2.810 in 2.789 in 2.805 in Middle: 2.791 in 2.805 in 2.817 in Bottom: 2.826 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.817 in 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Moisture, Density and Sample Parameters: Specific Gravity: 2.75							
Max. Dry Dens.: Method (D1557/D698): Dpt. Water Content: Date: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Tested by: JFC Thecked by: JFC Thecked by: JFC Test type: CH - Constant head	Sample Turner						
Method (D1557/D598): ppt. Water Content: Date: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Tested by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.779 in 7.08 cm Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 13.5 pcf 16.3 pcf Porosity: 0.3386 0.3227		~ •	UNDISTURBE.	D			
pt. Water Content: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Tested by: KJC Checked by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: Diameter: 1 1 2 Top: 2.810 in 2.810 in 2.789 in Middle: 2.791 in 2.817 in 2.793 in Bottom: 2.826 in 2.811 in 7.13 cm Average: 2.81 in 4.511 in 4.527 in 4.511 in 4.527 in 4.511 in 4.527 in Average: 2.81 in 7.13 cm 2.79 in 4.511 in 4.527 in 4.511 in 4.527 in 4.512 in 1.48 cm Average: 4.52 in Specific Gravity: 2.75 Wet Wt. & Tare: 1027.90 Dry Wt. & Tare: 1058.30 Tare Wt.: 224.65 Dry Unit Weight: <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>							•
Date: JUNE 1994 Remarks: JUNE 1994 Remarks: Permeameter Type: FLEXIBLE WALL Tested by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Defore test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.527 in 4.516 in 4.496 in 4.483 in Average: 4.527 in 4.516 in 4.496 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Dry Wit & Tare: 1058.30 1058.30 1058.30 1058.30 Tare Wt.:							
Remarks: Permeameter Type: FLEXIBLE WALL KJC Drecked by: Tested by: JFC Fest type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Defore test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.793 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.799 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.811 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1007.90 107.90 Dry Wit & Tare: 1058.30 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 Moisture Content: 19.1 % 17.9 % 116.3 pcf <td< td=""><td></td><td>ontent:</td><td></td><td></td><td></td><td></td><td></td></td<>		ontent:					
Permeameter Type: FLEXIBLE WALL KJC Tested by: JFC Fest type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.810 in 7.817 in 2.799 in 7.764 in Average: 2.811 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.521 in 1.48 cm 4.47 in 11.35 cm 4.483 in Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 1058.30 Tare Wt.: 224.65 224.65 224.65 16.3 pcf Moisture Content: 19.1 % 17.9 % 116.3 pcf 16.3 pcf Porosity: 0.3386 0.3227 1207.90 124.65			JUNE 1994				
Tested by: KJC Checked by: JFC Fest type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 Top: 2.810 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in Middle: 2.819 in 2.817 in 2.793 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.52 in 11.48 cm 4.47 in 11.35 cm 3 Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 1058.30 Tare Wt.: 224.65 224.65 224.65 1058.30 Moisture Content: 19.1 % 17.9 % 10.3286 0.3227	Remarks:			•			
Tested by: KJC Checked by: JFC Fest type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 Top: 2.810 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in Middle: 2.819 in 2.817 in 2.793 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.52 in 11.48 cm 4.47 in 11.35 cm 3 Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 1058.30 Tare Wt.: 224.65 224.65 224.65 1058.30 Moisture Content: 19.1 % 17.9 % 10.3286 0.3227							
Checked by: JFC Test type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 1 2 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.52 in 11.48 cm 4.47 in 11.35 cm 4.483 in Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 1058.30 Wet W.t & Tare: 1058.30 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 17.9 % Moisture Content: 19.1 % 17.9 % 16.3 pcf 0.3227		rype:		ALL			
West type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.799 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.811 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Wet Wt. & Tare: 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 Moisture Content: 19.1 % 17.9 % 16.3 pcf Dry Unit Weight: 113.5 pcf 116.3 pcf 0.3227	Tested by:						
West type: CH - Constant head PERMEABILITY TEST SPECIMEN DATA Before test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.799 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.811 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Wet Wt. & Tare: 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 Moisture Content: 19.1 % 17.9 % 16.3 pcf Dry Unit Weight: 113.5 pcf 116.3 pcf 0.3227	checked by:						
Before test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.817 in 2.773 in Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Dry Wt. & Tare: 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 Moisture Content: 19.1 % 17.9 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf 0.3227	rest type:		CH - Consta	ant head			
Before test: After test: Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.817 in 2.773 in Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Dry Wt. & Tare: 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 224.65 Moisture Content: 19.1 % 17.9 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf 0.3227							
Diameter: 1 2 Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227		P	ERMEABILITY	test speci)	MEN DATA		
Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227			Before test	•	A	fter test:	
Top: 2.810 in 2.789 in 2.793 in 2.805 in Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	Diameter:	1	2			•	
Middle: 2.791 in 2.817 in 2.799 in 2.764 in Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 A.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	-						
Bottom: 2.826 in 2.819 in 2.817 in 2.773 in Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 Average: 1 1 2 3 1 2 3 Average: 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm 4.47 Moisture, Density and Sample Parameters: Specific Gravity: 2.75 1207.90 Wet Wt. & Tare: 127.27 1207.90 1058.30 Dry Wt. & Tare: 1058.30 1058.30 1058.30 Tare Wt.: 224.65 224.65 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf 116.3 pcf Porosity: 0.3386 0.3227 0.3227		2.010 in	2.703 111				
Average: 2.81 in 7.13 cm 2.79 in 7.08 cm Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227		2.826 in	2.017 In				
Length: 1 2 3 1 2 3 4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227							
4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	nveruge.	2.01 11	7.15 CM		2./9 in	7.08 Cm	
4.511 in 4.527 in 4.516 in 4.496 in 4.430 in 4.483 in Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	Length.	1	2	2	-	•	
Average: 4.52 in 11.48 cm 4.47 in 11.35 cm Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 Moisture Content: 19.1 % Dry Unit Weight: 113.5 pcf 0.3386 0.3227	Dengeni						
Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	Average			4.516 ln			4.483 in
Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 Dry Wt. & Tare: 1058.30 Tare Wt.: 224.65 Moisture Content: 19.1 % Dry Unit Weight: 113.5 pcf Porosity: 0.3386 Octuation 0.3227	nverage.	4.52 IN	11.48 Cm		4.47 in	11.35 cm	
Specific Gravity: 2.75 Wet Wt. & Tare: 1217.27 Dry Wt. & Tare: 1058.30 Tare Wt.: 224.65 Moisture Content: 19.1 % Dry Unit Weight: 113.5 pcf Porosity: 0.3386 Octuation 0.3227	Moisture, De	ensity and	Sample Para	meters:			
Wet Wt. & Tare: 1217.27 1207.90 Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	Specific (Gravity:					
Dry Wt. & Tare: 1058.30 1058.30 Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227			_			1207.90	
Tare Wt.: 224.65 224.65 Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227							
Moisture Content: 19.1 % 17.9 % Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227							
Dry Unit Weight: 113.5 pcf 116.3 pcf Porosity: 0.3386 0.3227	Moisture (Content:					
Porosity: 0.3386 0.3227							
Cohung have a second		-				-	
		n:					
	8		,			703.0 9	
, 	í i						
	; ====================================						

HUNTINGDON ENGINEERING & ENVIRONMENTAL

DATA SET 43

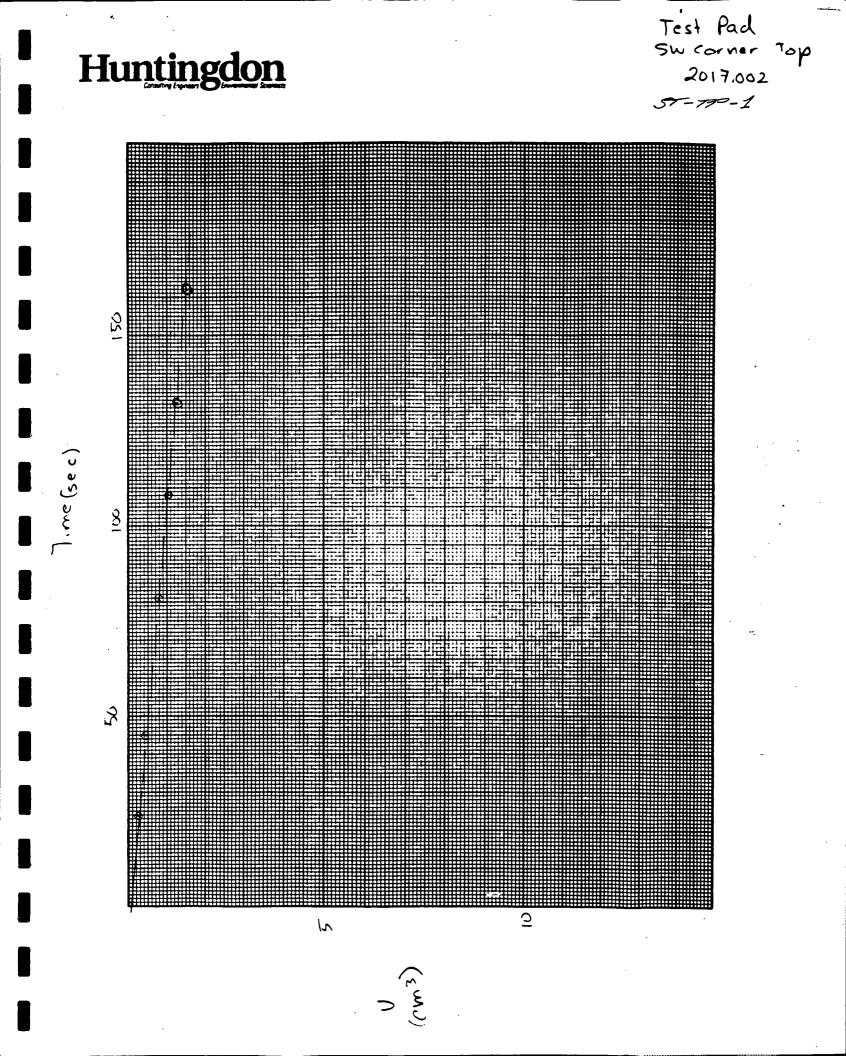
CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP-26	Panel No.: 9	Positions: 2&1
Run Number:	1	2
Cell Pressure: Saturation Pressu Inflow Corr. Factor		0.0 psi 0.0 psi 1.00
Outflow Corr. Fac Test Temperature:		1.00 0.0 °C

PERMEABILITY TEST READINGS DATA

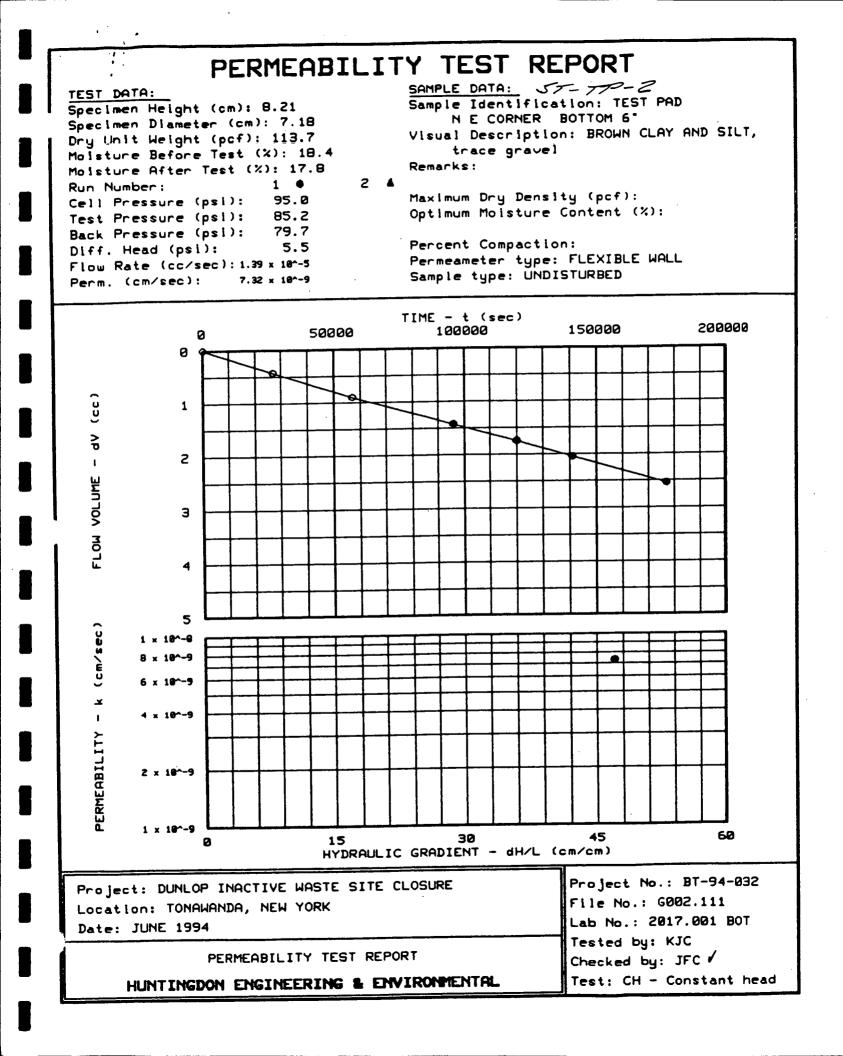
	CASE D X	DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSU	RE-psi	BURET READIN	G-cc	FLOW VOLUME-CC
	SR				IN	OUT	IN	OUT	AVERAGE
_	DX	6/11/94	10:29:00	0	85.1	80.0	0.00	24.65	0.00
	X	6/11/94	17:09:00	24,000	85.1	80.0	0.20	24.40	0.23
	X	6/11/94	22:59:00	45,000	85.1	80.0	0.40	24.20	0.43
		6/12/94	8:59:00	81,000	85.0	80.0	0.70	23.80	0.78
		6/12/94	16:29:00	108,000	85.0	80.0	0.90	23.50	1.03
		6/12/94	23:09:00	132,000	84.9	80.0	1.10	23.25	1.25
-		6/13/94	7:29:00	162,000	85.0	80.0	1.40	23.00	1.53

T t Pressure = 85.0 psi Differential Head = 5.3 psi, 375.2 cm H2O G.adient = 3.269E 01 Flow rate = 9.268E-06 cc/sec R squared = 0.99998Permeability, K20.0° = 7.098E-09 cm/sec, K20° = 7.098E-09 cm/sec


HUNTINGDON ENGINEERING & ENVIRONMENTAL

Huntingdon

LARNO 2017.002 TOP


LABORATORY PERMEABILITY TEST PROJNO PROJECT: Dunlop Lands, 11 57-750-1 TECHNICIAN RH DATE: 6/9/44 BORING NO: ______SAMPLE NO: _____Pad DATE: CALCULATED sw corner DATE CHECKED DEPTH:_____ft to _____ft Jop MOISTURE CONTENT BEFORE AFTER SAMPLE DATA DETERMINATION TEST TEST CF-9 TARE NUMBER n:254. 11.48 cm LENGTH OF SAMPLE, L: 992.62 WET WI OF SOIL & TARE n.1254.7.13 cm 1207.9 DIAMETER OF SAMPLE, D: DRY WT. OF SOIL & TARE 0 1057.3 in" 16.45= cm² AREA: 4+0.78540". WEIGHT OF WATER Q in3 116.39 + cw, VOLUME:V=LIA= TARE WEIGHT Q 224.65 WET WT. OF SAMPLE.W: DRY WEIGHT OF SOIL Q DRY WE OF SAMPLE, W, W/(I+w). % 124/L3 MOISTURE CONTENT, W DRY UNIT WT., 8 d+ (W,/V) x62.4+ SPECIFIC GRAVITY, G. Ibs/in2 cm.3 CELL PRESSURE, VOLUME OF VOIDS, Vy + V-Wy/G+ 84.98 lbs/in! VOID RATIO, a= (VyzG)/Wa= TEST PRESSURE H+AN 101/10.2 SATURATION PRESSURE, H: 80.00 0 T. OF WATER IN SAMP, W_ IW DIFFERENTIAL HEAD, Ans 4.98105/11 2703 : 349.74 cm.H.O DEGREE OF SATURATION, Sa W X, 200 PANEL POSITION CALIBR. FACTOR CELL NO FP-26 PANEL NO. 9 FLOW YOLUME GAUGE PRES. BUCET READING ELAPSED TIM**E** AV, (cm) (cm) (psi) DATZ TIME EVALUATION OUTFIC AVER. A Exclude MELON HEAD TAIL WELOW OUTFLOW (sec) - 0 GRADIENT: 1.4N/L . 610 80.2 0.05--24.4 D-7.49 85.0 a TEST CONSTANT: 32.69 Ф ሰ ø 6/11 10:29 85.1 80.0 0.00 24.65 C. ANA 0.20 0.25 0.23 24.40 80.0 0.20 17:09 24,000 85.1 FLOW RATE: 9.27.10-6 0.42 0.45 24.20 0.40 22:59 45 000 85.1 SD.0 D.YU Δ Y/1 · -----0.70 23.80 0.70 0.85 0.78 85.0 CORRELATION, r = 199919 81.000 80.0 112 8.59 1.03 D.9 1.15 0.9 23.50 85.O a 0% 16.29 108,000 PERMEABILITY: 1.25 23.25 1.40 1.10 7.10×10-9 23:07 34.5 80.0 1.10 137.000 K. + & V/1 + C + 61.5 1.53 1.65 1.40 23.0 1.4 7.39 95.0 300 162,000 K20" KT = HT/H20" NU Forward Slaw REMARKS: 0/20 ★ 1.120 Roset 1.

PRJECT: DUNLOR LA	MOGIL	ATORY NORK	ORDER			<u></u>
	MPHIL					-94-037
LIENT:	<u> </u>					OF _ [
SSUED BY: KTC DA	re: <u>6-7-</u> 4	<u>-i</u> sample	D BY:		DATE:	
SAMPLE TYPE &	Test PAO NE	57-70-1 SW				
LABORATORY NO.	Co2NER 2017.001	Corren 2017.002				
Atterberg Limits						
latural Water Content		· ·			· · ·	
lydrometer Analysis						
Sieve Analysis Sizes Required:						
Proctor Test: ASTM D 698 (Standard) STM D1557 (Modified)						
ermeability Test: Undisturbed Remolded%	1 GA THO TA	Láston				
······					······	
· · · · · · · · · · · · · · · · · · ·						
nconfined Compression						
pecific Gravity						
		· · ·	·····			
sample Classifications						
pecifications:	_ Job (li	lst)	NYS	5DOT		ASTM
MARKS:				003	5 300 3524	N0
356-5636 - 866-507	2 530 5.00	6. S	5E -2545	Uokecia		

-

-

IN HERE THE REPORT OF THE PERSON OF THE PERS

PROJECT DATA

oject Name: File No.: Project Location: oject No.: mple Identificat Lob No.: Scription: Sample Type: N.X. Dry Dens.: Nethod (D1557/D698 Opt. Water Content	BT-94-032 ion: TEST PAD N E CORNER BOTTOM 6 2017.001 BOT BROWN CLAY AND SILT, trace gravel UNDISTURBED): :	5 " - 77-2
Thte: Emarks:	JUNE 1994	
Permeameter Type: Tested by: Checked by: Test type:	FLEXIBLE WALL KJC JFC CH - Constant head	
· · · · · · · · · · · · · · · · · · ·	PERMEABILITY TEST SPEC	CIMEN DATA
	Before test:	After test:
Middle: 2.84	6 in 2.805 in 3 in 2.797 in 66 in 2.839 in	1 2 2.802 in 2.784 in 2.827 in 2.794 in 2.835 in 2.833 in 2.81 in 7.14 cm
Length: 1 3.22 Average: 3.23		1 2 3 n 3.176 in 3.194 in 3.219 in 3.20 in 8.12 cm
Yoisture, Density Specific Gravit Wet Wt. & Tares Dry Wt. & Tares Tare Wt.: Moisture Conter Dry Unit Weight Porosity: Saturation:	941.20 829.70 224.79 nt: 18.4 %	937.60 829.70 224.79 17.8 % 116.1 pcf 0.3238 102.4 %
	HUNTINGDON ENGINEERING	E ENVIRONMENTAL DATA SET 40
AGE 1	HUNTINGDON ENGINEERING	E ENVIRONMENTAL DATA SET 40

CONSTANT HEAD PERNEABILITY TEST CONDITIONS DATA

Cell No.: FP-29	Panel No.: 3	Positions:	2&1
Run Number:	1	2	
Cell Pressure: Saturation Press	95.0 psi sure: 80.0 psi	0.0 psi 0.0 psi	
Inflow Corr. Fac Outflow Corr. Fa	ctor: 1.00 actor: 1.00	1.00 1.00	
Test Temperatur	e: 20.0 °C	0.0 °C	

PERMEABILITY TEST READINGS DATA

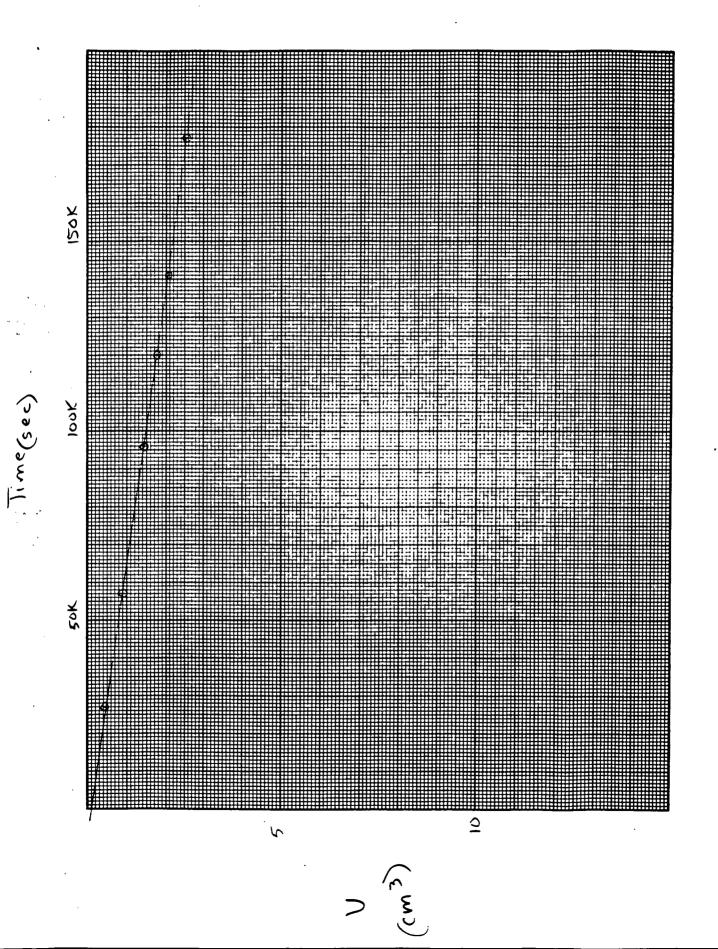
	ASE X R	DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSU IN	RE-psi OUT	BURET READING IN	G-cc OUT	FLOW VOLUME-CC AVERAGE
P	X X	6/10/94 6/10/94	7:46:00 15:16:00	0 27,000	85.2 85.1	80.1 80.0	0.00	24.90 24.50	0.00 0.43
_	X ·	6/10/94	23:36:00	57,000	85.1 85.2	80.0 80.1	0.95		0.90 1.43
		6/11/94 6/11/94	10:26:00 17:06:00	120,000	85.2	80.0	1.80	23.20	1.75
-		6/11/94 6/12/94	22:56:00 8:56:00	141,000 177,000	85.2 85.1	80.0	2.60		2.55

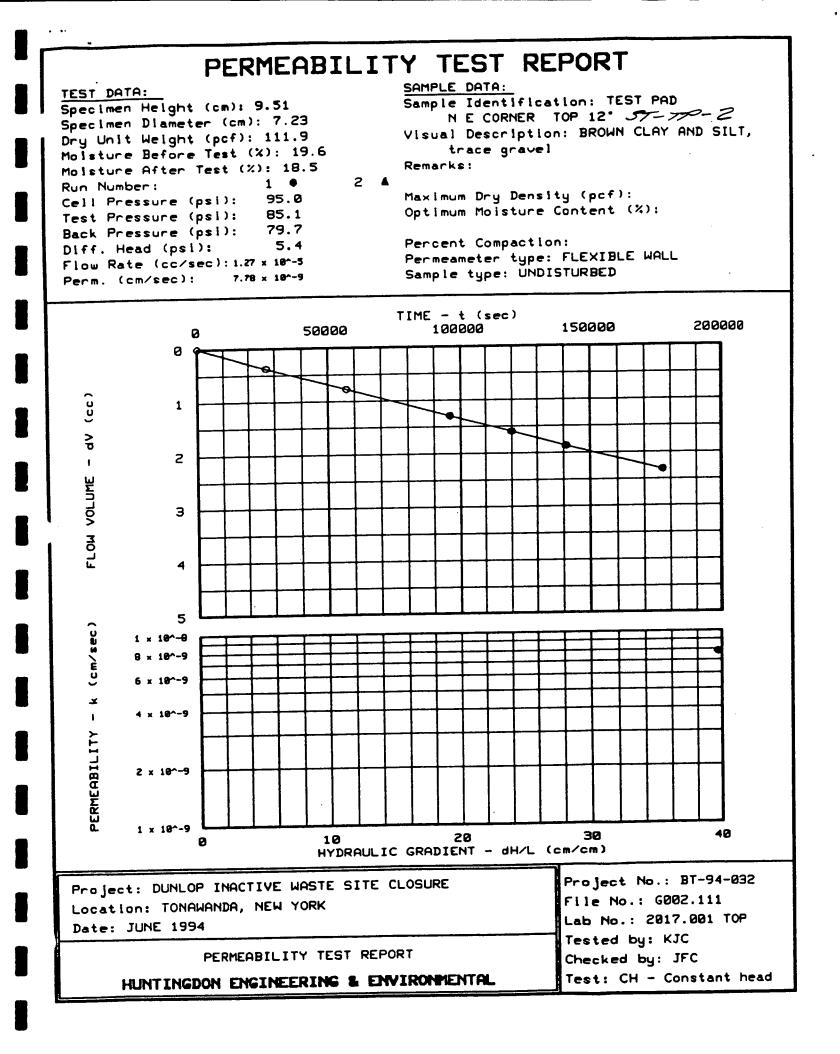
Test Pressure = 85.2 psi Differential Head = 5.5 psi, 386.0 cm H2O Gradient = 4.700E 01 Flow rate = 1.392E-05 cc/sec R squared = 0.99993Permeability, K20.0° = 7.320E-09 cm/sec, K20° = 7.320E-09 cm/sec

HUNTINGDON ENGINEERING & ENVIRONMENTAL

Huntingdon

LARNO 2017.001 BOT


LABORATORY PERMEABILITY TEST


PROJ.NO_

r —		~	1		Cil					01	1	. []									
PRO	PROJECT: Dunlop Land S.II TECHNICIAN: RH DATE: 64/94 BORING NO:SAMPLE NO: I calculated: DATE:																				
BOR	RING	10.:		_SAM	PLE NO	I:Trst	Pad_				-										
୦ଫ	TH: _		ft. 10_		_ft		tom	CHEC	XED:		DATE.										
	SA	MPLE	TA		T	MOIST	URE CO	NTENT		BEFORE TEST	AFTER TEST										
LENGT	N OF	SAMPLE,	n:2	54.8.21	cm. TA	RE NUM	8ER				25										
DIAME	TER O	F SAMPLE	D:	N.12.	54. 7.19	cm W	ET WI O	F SOIL B	TARE	9	716.41										
AREA	: A+0.7	854 D*:		in ² 1 6.4	5=	cm² DF	RY WT. O	F SOIL B	TARE	0		829.7									
VOLUN	HE:V=	L 1 A =	ins	116.39		cm ³ W	EIGHT OF	WATER		9											
WETY	NT. OF	SAMPLE,	N:			9 TA	ARE WER	ыт		9		237.20									
		AMPLE, W		w)=		9 DF	RY WEIGH	T OF SOI	L	0											
					lb	s/IL ³ M	NSTURE	CONTEN	T, w	%											
DRY UNIT WT., &d+(W,/V)x62.4+ Ibs/12 MOISTURE CONTENT, W %																					
VOLUN	ME OF	VOIDS, Vy	× ۷-₩,	'G+		cm ³ Cl	ELL PRE	SSURE,				lbs/in ²									
VOID	RATIO,	e= (VyzG).	/W, 1			TE	ST PRES	SURE, HI	+An		85.18	lbs/in!									
WLOF	WATE	R IN SAMP,	K ₂ W ₄ XW	1				N PRESS			80.03	lbs/in. ²									
DEGRE	E OF S	ATURATION	.S= W X,	200		Ø	FFERENT	AL HEAL	D, Ahes.	1501	in ^e x703=36	2.05cmH20									
			PANEL	POSITION	CALIBR.	FACTOR]				~~~	10 FD.29									
PANE	L NO	3	2	1	/																
									TIME	Ture	ELAPSED		E PRES.		EADING mD		W YOLU				
DATE 7	TIME		HEAD	si) TAIL				OUTFLON		EVALUATION A Exclude											
1/10 -	1:46	*	85.L	30.1	0.0	24.9	0	0			DIENT: I .	-									
	5:16	27,000	85.1		0.45	24,5	0.45	0,40	0.43		CONSTANT	-: 47.00									
		57,000	85.1	80.0	0.95	24.05	0.95	0.85	0,90	µ c •.'	TAN A	1,39×10-5									
		96,000			1.50	23.55	1.50	1.35	1.43												
		120,000		I	1.90	23.20	1.80	1.70	1.75	CORI	RELATION, I	0.99996									
2	2:56	141,000	85.2	80.0	2.10	22.90	2.10	2.00	2.05	ł		1									
		177,000			2.60		2.60	2.50	2.55		MEABILITY:										
										K7'	∆v/t x C+	7.23×10									
								•			. W										
										 20	r KT x 341/345	0~									
								·		1											
					L	L				L											
DCUA	ARKS:	16.00	0/20																		

Hunting Engineers descenting

DunlopLand>.)) Test Pad NE corner Bottom 2017.001

PROBALLY CONTRACTOR CO

PROJECT DATA

The No.: Project Location: Hoject No.: Sample Identification: Sample Type: N.X. Dry Dens.: Method (D1557/D698): Opt. Water Content: Hemarks:	BT-94-032 TEST PAD N E CORNER TOP 12" 2017.001 TOP BROWN CLAY AND SILT, trace gravel UNDISTURBED JUNE 1994									
Permeameter Type:	FLEXIBLE WALL									
ested by:										
Checked by:	JFC									
Test type: Test type:	CH - Constant head									
.	PERMEABILITY TEST SPECI	MEN DATA								
	·									
	Before test:	A	fter test:							
Diameter: 1	2	1	2							
Top: 2.848 in	n 2.832 in	2.814 in								
Middle: 2.844 i	n 2.849 in	2.837 in								
Pottom: 2.856 il	n 2.859 in	2.829 in								
Average: 2.85 in	7.23 Cm	2.83 in	7.19 cm							
		1	2	3						
Length: 1	2 3 n 3.747 in 3.741 in	3.707 in	3.723 in	3.736 in						
3.750 1		3.72 in	9.45 cm							
Average: 3.75 in	9.51 Cm	••••								
Moisture, Density and	d Sample Parameters: 2.75									
Specific Gravity:	2.75		1067.80							
Wet Wt. & Tare:	938.40		938.40							
Dry Wt. & Tare:	237.72		237.72							
Tare Wt.: Moisture Content:	19.6 \$		18.5 \$							
Dry Unit Weight:	111.9 pcf		113.9 pcf							
Porosity:	0.3483		0.3363							
Saturation:	100.8 %		100.2 %							
	HUNTINGDON BNGINEBRING	environment	al DA	TA SET 41						
			· · · ·							

CONSTANT HEAD PERNEABILITY TEST CONDITIONS DATA

Cell No.: FP-19	Panel No.: 3	Positions: 4&3
Run Number:	1	2
Cell Pressure: Saturation Pressu Inflow Corr. Fact Outflow Corr. Fac Test Temperature:	cor: 1.00 ctor: 1.00	0.0 psi 0.0 psi 1.00 1.00 0.0 °C

PERMEABILITY TEST READINGS DATA

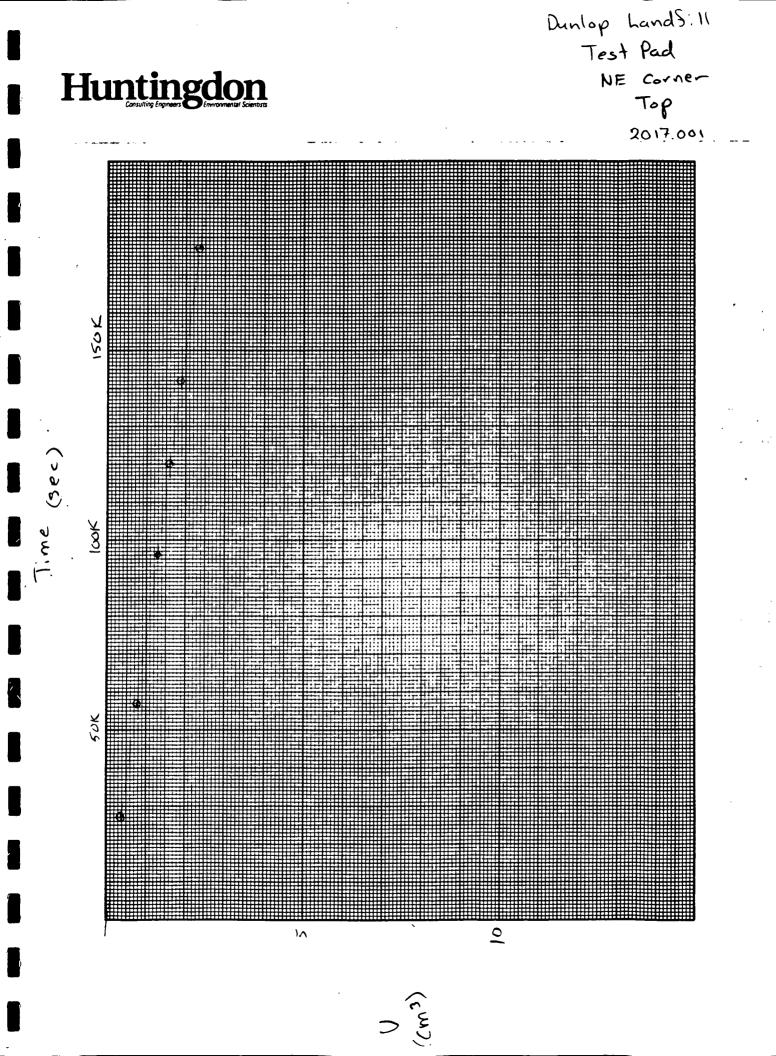
CASE D X	DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSURE-psi		BURET READING-CC		FLOW Volume-cc	
SR				IN	OUT	IN	OUT	AVERAGE	
B x	6/10/94	7:47:00	0	85.2	80.3	0.10	24.80	0.00	
x x	6/10/94	15:17:00		85.0	80.0	0.30	24.25	0.38	
x	6/10/94	23:37:00		85.1	80.1	0.50	23.65	0.78	
	6/11/94	10:27:00	96,000	85.1	80.0	1.10	23.20	1.30	
	6/11/94	17:07:00	120,000	85.1	80.1	1.40	22.90	1.60	
— .	6/11/94	22:57:00		85.1	80.1	1.70	22.65	1.88	
	6/12/94	8:57:00		85.1	80.1	2.15	22.20	2.33	

Test Pressure = 85.1 psi Differential Head = 5.4 psi, 377.3 cm H2O Gradient = 3.966E O1 Flow rate = 1.268E-05 cc/sec R squared = 0.99993ermeability, K2O.O' = 7.782E-09 cm/sec, K2O' = 7.782E-09 cm/sec

HUNTINGDON ENGINEERING & ENVIRONMENTAL

\GE

Huntingdon


LARNO 2017.001 700

LABORATORY PERMEABILITY TEST

PROINO____

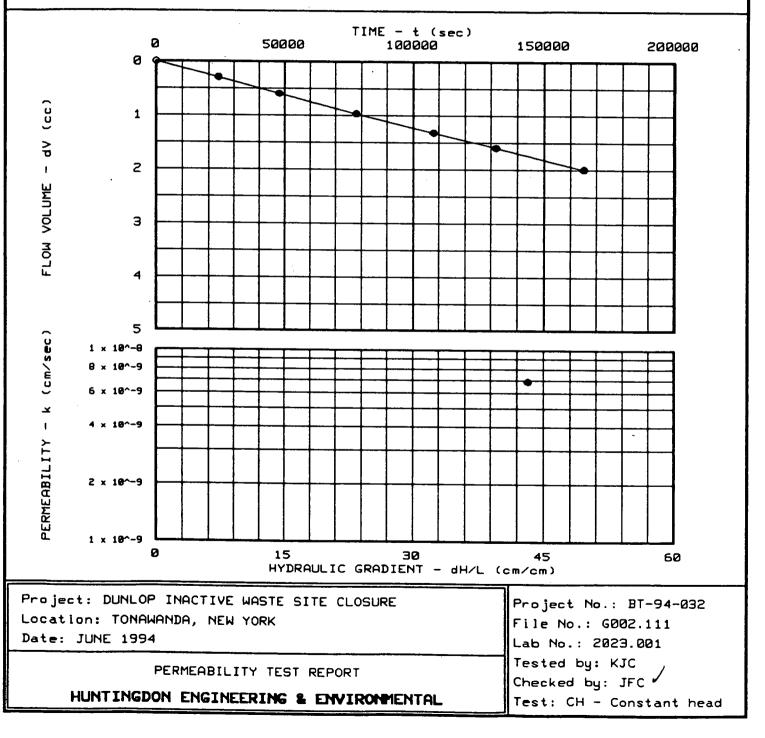
	=													
PR	OJECT	: Punla	sp	and	: 11			TECHN		RH	DATE:_	6/9/94		
80	RING	10:		_SAM	PLE NO	1: Test	Pad	_CALCU	LATE):	DATE:_			
						NEC	orner op	CHEC	KED:_		DATE.			
	SA	MPLE	DA	TA			MOIST	JRE CO	NTENT		FORE	AFTER TEST		
LEN	TH OF	SAMPLE,	 L:	n:2	54-9.51	cm. T	ARE NUM	BER				7		
		F SAMPLE	the state of the s				TET WE O		TARE	0 83	7.89	<u> </u>		
		854 D*=		in ^t z 6.4	5=	cm² D	RY WT. O	F SOIL &	TARE	0		<u> 138.4</u>		
VOLUME:V=LIA= in316.39= cm							EIGHT OF	WATER		9				
WET WT. OF SAMPLE, W:							ARE WEIG	ыт		0				
and the later of the		SAMPLE, W		w):		9 D	RY WEIGH	T OF SOI	L	9				
	-	T., 8d=(W			 ال	sAL ³ N	OISTURE	CONTEN	T, w	4.				
		RAVITY, G												
		VOIDS, V.		G:		cm.3 (ELL PRE	ELL PRESSURE, Ibs						
		e= (V, 1G).			, 	T	EST PRES	SURE, HI	Ah	85	10	Ibs/in*		
		R IN SAMP,				9 S	ATURATION	N PRESS	URE, H	: ह0	.08	lbs/n²		
			والمتحد المتحد المتحد			C	MARTER	AL HEAD	0, Ah=5	305/nº 17	103:35	3.26cm H 20		
DEGREE OF SATURATION, S. W S. DOB PANEL POSITION CALIBR. FACT							 ה					50.16		
PAN	IEL NO	. 3	PANEL I	2	CALIOR.		CELL NO.EP					NO.FP-17		
		ELAPSED		PRES.	BUCET A	LADING mわ								
DATE	TIME	TIME t	(P HEAD	si)	WFLON		INFLOW			EVALUA Exclu				
121		(sec)			0.1	24.8	_	0	-	GRADIE		AN/L .		
6/10	7,47		35.2		0.30			0.55	0.38	TEST CO				
	15:17	27,000	85.0		0.50	23.65			0,78	C. An	a •			
. 1.		57,000		801	1.10	23.20		1.60	1.30	FLOW RA		1.27×10-5		
<u> </u>		,	1	80,U	1.40	22.90		1.90	1.60	۵V/1 •		• • • • • • • • • • • • • • • • • • •		
		120,000		80.1	1.70	22.65		2.15	1.88	CORRELA	TION, I	• 0.99196		
		141,000		80.1	2.15	22.20		2.60	2.33	PERMEAL	BILITY:	יו סר ח		
5/12	8:57	177.000	05.1	80,1	1.12					κ ₁ • ΔV/		7.78×10		
~								· ·						
			<u> </u>			 				K20 KT	****	0*		
_						<u> </u>								
						 								
	ARKS	L	لبحب	I		1								

REMARKS: 16.00 0/2

PERMEABILITY TEST REPORT

TEST DATA:

Specimen Height (cm): 8.84
Specimen Diameter (cm): 7.18
Dry Unit Weight (pcf): 112.1
Moisture Before Test (%): 17.0
Molšturë After Test (%): 17.9
Run Number: 1 •
Cell Pressure (psi): 95.0
Test Pressure (psi): 85.2
Back Pressure (psi): 79.8
Diff. Head (psi): 5.4
Flow Rate (cc/sec): 1.20 x 18-5
Perm. (cm/sec): 6.87 x 18~-9


SAMPLE DATA:

Sample Identification: ST-SEA-1 BOTTOM 6" Visual Description: BROWN CLAY, Little Gravel Remarks:

2

Maximum Dry Density (pcf): Optimum Moisture Content (%):

Percent Compaction: Permeameter type: FLEXIBLE WALL Sample type: UNDISTURBED

PERMEABILITY TEST DATA

.....

.

====

1

- .

PROJECT DATA

P. Ject Name:		DUNIOP INA	CTIVE WASTE	SITE CLOSUR	2	•
File No.:	-	G002.111			ن ا	
Project Locat	tion:	TONAWANDA,	NEW VODE	×		
Project No.:		BT-94-032	NEW IORK			
Sample Identi	figstion					
sample identi	lifeaction:	ST-SEA-1				
		••••	BOTTOM 6"			
Lab No.:		2023.001		•		
Description:		BROWN CLAY				
		Little Grav	vel			
Sample Type:		UNDISTURBE	D			
Max. Dry Dens	5.:					
Method (D1557	7/D698):					
Opt. Water Co	ontent:					
Date:		JUNE 1994				
_Remarks:		•				
Permeameter 7	l'vpe:	FLEXIBLE W	AT.T.	•		
Tested by:	-1F	KJC				
Checked by:		JFC				
Test type:		CH - Consta				
mest type.	,	ch = consta	ant neau			
e						
	P	ERMEABILITY	TEST SPECIM	IEN DATA		
-			`			
		Before test:		A1	ter test:	
•			•			
Diameter:	1	2		1	2	
Top:	2.869 in	2.812 in		2.813 in	2.766 in	
Middle:	2.831 in	2.796 in		2.773 in	2.808 in	
Bottom:		2.828 in		2.837 in	2.822 in	
Average:	2.83 in			2.80 in		
inverager	2.05 11			2.00 11		
Length:	1	2	3	1	2	· · ·
10119 vil 1	3.482 in	2 3.504 in	3.460 in	1 2 465 in	2	J 2 404 4
Average.			3.400 IN	3.465 in	3.441 in	3.484 in
Average:	3.48 in	8.84 cm		3.46 in	8.80 cm	
Moisture, De	ensity and	Sample Para	neters:			
Specific (Gravity:	2.75				
Wet Wt. &		971.31			077 10	
Dry Wt. &		861.80		•	977.10	
Tare Wt.:	Iale.				861.80	
	Tontont.	219.41			219.41	
Moisture (17.0 %			17.9 %	
Dry Unit V	velght:	112.1 pcf			114.8 pcf	
Porosity:		0.3470			0.3316	
Saturation	1:	88.2 %			99.5 %	

HUNTINGDON ENGINEERING & ENVIRONMENTAL DATA SET 49

CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP - 29 Panel No.: 3 Positions: 2 & 1 Run Number: 1 2 Cell Pressure: 95.0 psi 95.0 psi Saturation Pressure: 80.0 psi 80.0 psi Inflow Corr. Factor: 1.00 1.00 Outflow Corr. Factor: 1.00 1.00 Test Temperature: 20.0 °C 20.0 °C

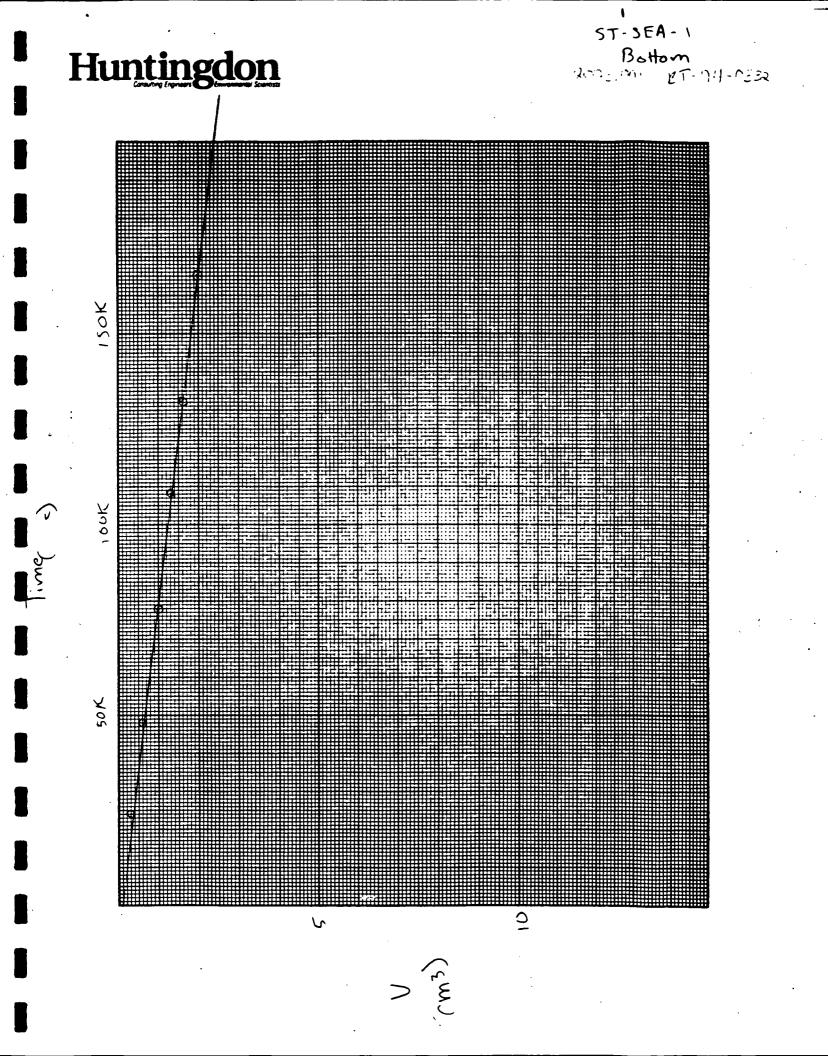
PERMEABILITY TEST READINGS DATA

D X		DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSURE-psi		BURET READING-CC		FLOW VOLUME-CC	
	SR				IN	OUT	IN	OUT	AVERAGE	
	DX	6/19/94	9:53:00	0	85.1	80.0	0.00	24.20	0.00	
	H	6/19/94	16:33:00	24,000	85.1	80.0	0.30	23.90	0.30	
	,	6/19/94	23:13:00	48,000	85.1	80.0	0.60	23.60	0.60	
		6/20/94	7:33:00	78,000	85.3	80.2	0.95	23.20	0.98	
		6/20/94	15:53:00	108,000	85.1	80.1	1.30	22.85	1.33	
		6/20/94	22:33:00	132,000	85.2	80.1	1.60	22.60	1.60	
	r	6/21/94	7:43:00	165,000	85.2	80.1	2.00	22.20	2.00	

Pressure = 85.2 psi Differential Head = 5.4 psi, 382.3 cm H2O Gradient = 4.323E 01 Flow rate = 1.201E-05 cc/sec R squared = 0.99977Permeability, K20.0° = 6.866E-09 cm/sec, K20° = 6.866E-09 cm/sec

2

Huntingdon


LARNO 2023.001

LABORATORY PERMEABILITY TEST

PROINO ET - 94-02

ROJECT: Durlog Louis I							TECHNICIAN KSC DATES 6-17 94						
L 7						Frith	A - CALCULATED DATE:						
DEPTH: It 10 It 6										_	BEFORE		
	SAMPLE DATA							MOISTURE CONTENT DETERMINATION				AFTER TEST	
LENC	TH OF	SAMPLE,	L:				TARE NUNBER				_	302	
DIAM	हास ०	F SAMPLE	, D:	n12	54.7.18		WET WE OF SOIL & TARE				751.9	977,1	
ARE	A: A+0.7	854 0*:		in ² 2 6.4	51								
VOL	UME:Y	LIA:	in	116.39+									
WET	WT. OF	SAMPLE,	N:				ARE WEIC					219.41	
-		AMPLE,W	_				RY WEIGH						
DRY	UNIT W	T., 8d=(W	•/V)x6	2.4 =	lb	NIS W	DISTURE	CONTEN	Τ, Ψ	%			
		RAVITY, G										lbs/in ²	
		VOIDS, Vy		G:									
		(Vy1G)					TEST PRESSURE, H+AN IbL/M!						
		R IN SAME,Y	البيدان فالشبي									cmH ₂ O	
vete	EE OF S	ATURATION	LS= X										
	ICI NA	3	PANEL I	OSITION	CALIBR.	FACTOR	4				CELL	NO FP-29	
PANEL NO. 3		GAUGE PEES. BUEET READ.			ING FLOW YOLUME								
DATE	TIME	ELAPSED TIME		si)	(0	のり	4	V, (cm ¹)		EVALUATION			
		t (sec)	HEAD	TAK	WFLON	OUTRO	WELOW	COTPLON	AVER.				
6 18	3:05	A	35.1	30.1	0.0	24.3	0	R			DIENT: I		
	15/33	127,000	\$5.1	80.1	0.a	24.18	6	0	4	,	T CONSTAN	/•	
		Ford	INFI	azar	, O r f	e CEI					An A		
6/19	9:53	¢	85,1	800	000	24.20		ø	-	1 I A 4	W RATE:	. 1	
	16:33	24,000			0.30	23.90		0.30	0.30		RELATION,	r=	
	23:13	48,000	85,1	80,0	0,60	2360			0.60			A.com	
6120	<u>גריר</u>	<u>19.000</u>	85.3	80.2	0,95	23,20		1.50			MEABILITY		
 	15:53	103.000	26.1	<u>Sc. 1</u>	1.30	22.85		1.35	1.33	^K T	∆V/I x C+	7.114.10-11	
	27:22	152,000	<u>م</u> درک	1.08	1.6	22.6	1.60	1.60 2.00	1.60 2.00	K	s K _T x H _T /H	o*	
ا نورک	7:43	16 200	85.2	80.1	2.00	22.20	2.00	2.00	9,00	20			
										1			
			-	-									

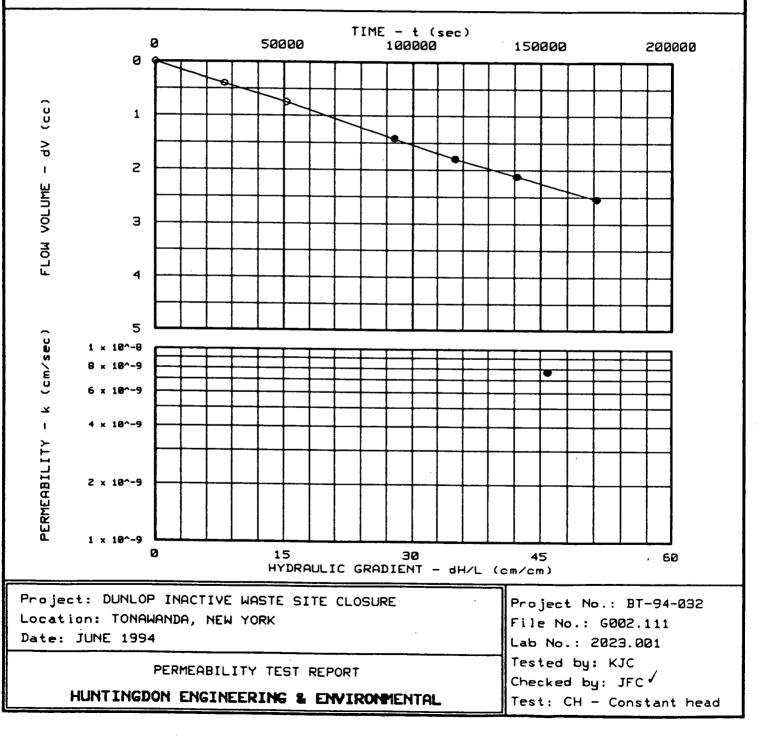
REMARKS:

PERMEABILITY TEST REPORT

.

.

Specimen Height (cm): 8.19
Specimen Diameter (cm): 7.21
Dry Unit Weight (pcf): 112.9
Moisture Before Test (%): 18.8
Molsture After Test (%): 18.2
Run Number: 1 •
Cell Pressure (psi): 95.0
Test Pressure (psi): 85.2
Back Pressure (psi): 79.9
Diff. Head (psi): 5.3
Flow Rate (cc/sec): 1.43 x 10^-5
Perm. (cm/sec): 7.66 x 10^-9


SAMPLE DATA:

Sample Identification: ST-SEA-1 TOP 12" Visual Description: BROWN CLAY, Little Gravel

Remarks: 2 **4**

Maximum Dry Density (pcf): Optimum Moisture Content (%):

Percent Compaction: Permeameter type: FLEXIBLE WALL Sample type: UNDISTURBED

PERMEABILITY TEST DATA

PROJECT DATA

I ject Name: File No.: Project Location: Project No.: Sample Identification: Lab No.: Description: Sample Type:	G002.111 TONAWANDA, BT-94-032	NEW YORK TOP 12" , vel	SITE CLOSUR	Ε			
Max. Dry Dens.:	UNDISTURBL						
Method (D1557/D698):							
Opt. Water Content:		а.		•			
Date:	JUNE 1994						
_Remarks:							
Permeameter Type:	FLEXIBLE WALL						
Tested by:	KJC						
Checked by:	JFC						
Test type:	CH - Constant head						
	PERMEABILITY		IEN DATA				
	Before test:	:	L.	fter test:			
Diameter: 1	2		1	2			
	2.853 in		2.824 in	2.855 in			
	2.826 in		2.809 in				
Bottom: 2.859 in Average: 2.84 in			2.841 in				
Average: 2.84 in	7.21 cm	<u>.</u>	2.83 in	7.18 cm			
Length: 1	2	3	1	2			

•

3

Deng chi.	1	2	3	1	2	
Average:	3.231 in 3.23 in	3.213 in 8.19 cm	3.231 in	3.219 in 3.20 in		

Moisture, Density and Sample Parameters: Specific Gravity: 2.75 Wet Wt. & Tare: Dry Wt. & Tare: 951.82 838.40 Tare Wt.: 233.92 Moisture Content: 18.8 % Dry Unit Weight: 112.9 pcf Porosity: 0.3424 Saturation: 99.1 %

> 1 HUNTINGDON ENGINEERING & ENVIRONMENTAL DATA SET 50

948.20

838.40

233.92

18.2 %

0.3319

100.6 %

114.7 pcf

3 3.189 in

CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP - 19 Panel No.: 3 Positions: 4 & 3 Run Number: 1 2 Cell Pressure: 95.0 psi 95.0 psi Saturation Pressure: 80.0 psi 80.0 psi Inflow Corr. Factor: 1.00 1.00 Outflow Corr. Factor: 1.00 1.00 Test Temperature: 20.0 °C 20.0 °C

PERMEABILITY TEST READINGS DATA

SR IN OUT IN OUT AVER	AGE
D X 6/18/94 8:04:00 0 85.2 80.4 0.00 24.90 0	.00
	40
	.75
	.43
	80
	13
	55

Pressure = 85.2 psi Differential Head = 5.3 psi, 375.3 cm H2O Gradient = 4.582E 01 Flow rate = 1.433E-05 cc/sec R squared = 0.99923Permeability, K20.0° = 7.665E-09 cm/sec, K20° = 7.665E-09 cm/sec

HUNTINGDON ENGINEERING & ENVIRONMENTAL

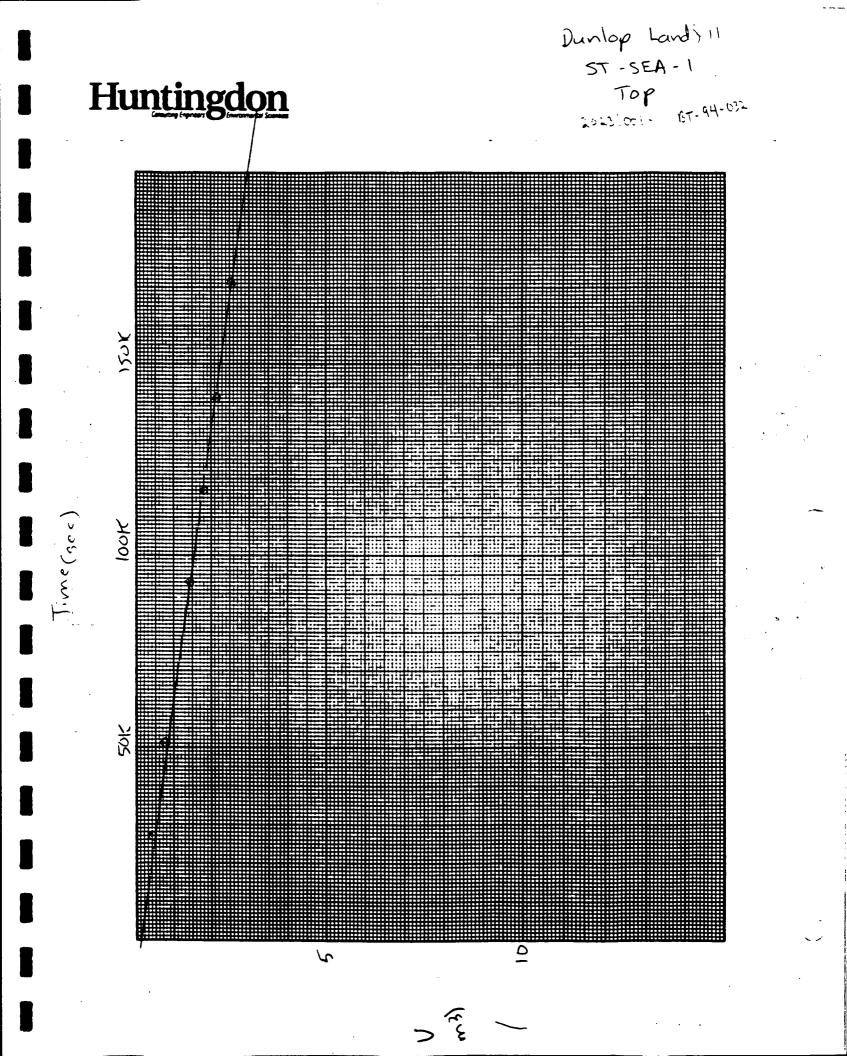
DATA SET 50

<u>P7.</u>

2

Huntingdon

LAL NO 2023.001


LABORATORY PERMEABILITY TEST

PROJ. NO 15T-94-032

		Δ ·		·								
T <	ROJECT	: Dunlar	· har	14.11				TECHN	ICIAN	- <u>-</u> K	SC DATE.	6-17-94
8	RING	NO:		_SAM	PLE NO	1: <u>51-</u>	Stt-1	_CALCU	JLATE	D:	DATE:	
DEPTH:ft toft							p :- ,	CHEC	KED-		DATE.	
SAMPLE DATA								URE CO		r	BEFORE	AFTER TEST
LEN	LENGTH OF SAMPLE, L: A 1254 9.19 CM							BER			-	A
DUN	ETER O	F SAMPLE	, D:	n12.	54: n.V	cn i	NET WE O	FSOIL	TARE	9	717.9	948.2
ARE	A: A+0.	1854 D*:		in ² 1 6.4	51	cm² (DRY WT. O	F SOIL B	TARE	9		838.4
VOL	UNE:V.	LIA:	in ³	116.39		cm ³ Y	NEIGHT OF	WATER		9		
WEI	WT. OF	SAMPLE,	N:			•	TARE WEK	SHT		9	-	233.72
DRY	WE OF	SAMPLE, W	* W/(I+	w)=		9 0	RY WEIGH	t of sol	L	0		
DRY	UNIT W	T., 8d= (W	(,/V)16	2.4 +	lb	s/IL ³ A	ADISTURE	CONTEN	T, w	4.		
SPE		RAVITY, G	8									
val	UME OF	VOIDS, Vy	• V-W./	'G+		cn.3 (CELL PRE	SSURE.				lbs/in ²
VOID	RATIO	(VyzG)	/W,=			1	TEST PRESSURE, H+AN 35.27 Ibs/in!					
WEC	OF WATE	R IN SAME	K, W, 1W	,			SATURATION PRESSURE, H: 00.27 Ibu/n.2					
In	EE OF S	ATURATION	.S. WX.			0	MARAN	AL HEAL	δ, Δh =5	∞ b £∕	m ² 1703= 7	SI SOCMH20
			PANEL	OSTION	CALIBR.	FACTO	ก					nr
PAN	IEL NO	<u>, 3</u>	4	3	-	-	1				CELL	NO. FP-19
	<u> </u>	ELAPSED		GE PLES. BUCET REA				W YOLU				
CATZ	TIME	TIME		si)		のり		V, (CM		EVALUATION		
		(sec)	KEAD				MELON		AVER.			
61.2	3.4	22.1.1	95.2	80.4		24.9		045	<u>с и</u>		DIENT: i · [T CONSTANT	
	15:34	27,000	85.2		0.35	24.4		0.45 0.8	<u>C.40</u> 0.75	21	L An A	
lia	22.14	51,000	95.2	80.3	0.70	24.10		1.45	1,43	(W RATE:	1.45+10-5
6/19		93,000			1.40	23.45		1.85			/1 •	8
	16:34			802		23.05		2.15	180 2.13	CORI	RELATION, P	0.97561
61	23:14			80.2		22.75		2.60		050		
6/20	אציר	مد ال	85.3	90.3	2.50	22,30	5 2. 50	A. EU	<u>a.</u> ,			767.10'
								•		~ T	₩ 17 1 8 ♥ *	
		·								Kan	r KT x Jtl/75	·
											· · · · · ·	-
										1		
	ADKS	J				la	اسمي ميار			L		

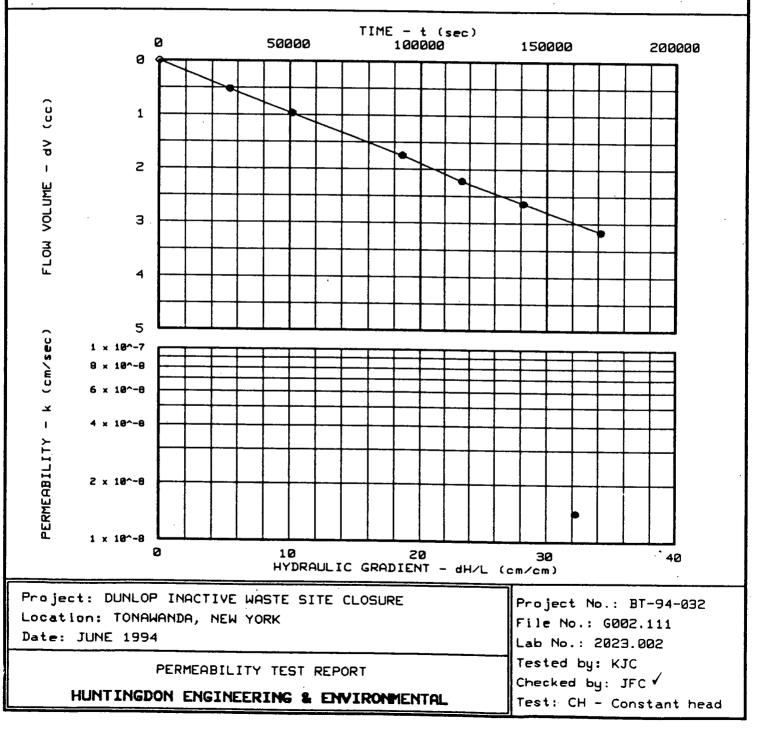
REMARKS:

120

PERMEABILITY TEST REPORT

TEST DATA:

Specimen Height (cm): 11.35
Specimen Diameter (cm): 7.19
Dry Unit Weight (pcf): 110.0
Moisture Before Test (%): 19.2
Moisture After Test (%): 19.2
Run Number: 1 •
Cell Pressure (psi): 95.0
Test Pressure (psi): 85.0
Back Pressure (psi): 79.8
Diff. Head (psi): 5.2
Flow Rate (cc/sec): 1.85 x 18^-5
Perm. (cm/sec): 1.41 x 18^-8


SAMPLE DATA:

Sample Identification: ST-SEA-2 BOTTOM 6' Visual Description: BROWN CLAY, Little Gravel

Remarks: 2 **4**

Maximum Dry Density (pcf): Optimum Moisture Content (%):

Percent Compaction: Permeameter type: FLEXIBLE WALL Sample type: UNDISTURBED

PERMEABILITY TEST DATA

===========

PROJECT DATA

		•									
F ject Name	:	DUNLOP INAC	TTVE WASTE	SITE CLOSU	P						
File No.:		G002.111									
Project Loca	tion:	TONAWANDA,	NEW YORK								
Project No.:		BT-94-032									
Sample Ident	ification:	ST-SEA-2									
			BOTTOM 6"								
Lab No.:		2023.002	Derrom U								
Description:			BROWN CLAY, Little Gravel								
ample Type:		UNDISTURBED									
Max. Dry Den	c. •	UNDISIUKDED	•								
Method (D155				•							
opt. Water C											
Date:	oncent.	TINE 1004									
Remarks:		JUNE 1994									
Pormosmotor (Time.	DIDVIDID									
Permeameter '	TAbe:	FLEXIBLE WA	تليل								
Tested by:		KJC									
Checked by:		JFC				4					
lest type:		CH - Consta	nt head		•						
	I	PERMEABILITY	TEST SPECIM	IEN DATA							
		Before test:		· A	fter test:						
Diameter:	1	2		1	2						
Top:	2.820 in			2.797 in	2 2.827 in						
Middle:	2.839 in			2.802 in							
Bottom:		2.848 in									
Average:		7.19 cm		2.824 in							
	2.05 11			2.81 in	7.15 cm						
Length:	1	2	3	1	2	2					
-	4.511 in	4.480 in	4.419 in	4.483 in		3					
Average:	4.47 in	11.35 cm	4.413 III	4.46 in	4.432 in	4.450 ir					
j				4.40 11	11.32 cm						
Moisture, De	ensity and	Sample Param	eters:								
Specific (Gravity:	2.75									
Wet Wt. &		1199.53			1100 00						
Dry Wt. &		1043.60			1199.80						
Tare Wt.:		231.13			1043.60						
Moisture (Content:	19.2 %			231.13						
Dry Unit W		110.0 pcf	19.2 %								
Porosity:		0.3592			111.8 pcf						
Saturation	. .				0.3489						
Sacuración	1.	94.2 %			98.6 %						
F											
•											

HUNTINGDON ENGINEERING & ENVIRONMENTAL DATA SET 51

P/ 1

CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP - 27Panel No.: 3 Positions: 6 & 5 Run Number: 1 2 Cell Pressure: 95.0 psi 95.0 psi Saturation Pressure: 80.0 psi 80.0 psi Inflow Corr. Factor: 1.00 1.00 Outflow Corr. Factor: 1.00 1.00 Test Temperature: 20.0 °C 20.0 °C

PERMEABILITY TEST READINGS DATA

CASE D X S R	DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSU IN	RE-psi OUT	BURET READING IN	-cc OUT	FLOW VOLUME-cc Average
DХ	6/18/94 6/18/94 6/18/94 6/19/94 6/19/94 6/19/94	8:05:00 15:35:00 22:15:00 9:55:00 16:35:00 23:15:00	0 27,000 51,000 93,000 117,000 141,000	85.0 85.0 85.0 85.0 85.0 85.0	80.3 80.2 80.2 80.1 80.1 80.1	0.00 0.60 1.15 2.00 2.50 3.00	24.85 24.40 24.05 23.35 22.90 22.55	0.00 0.53 0.98 1.75 2.23 2.65
	6/20/94	7:35:00	171,000	85.1	80.2	3.50	22.00	3.18

T t Pressure = 85.0 psi Differential Head = 5.2 psi, 366.1 cm H2O G_udient = 3.225E 01 Flow rate = 1.850E-05 cc/sec R squared = 0.99973Permeability, K20.0° = 1.413E-08 cm/sec, K20° = 1.413E-08 cm/sec

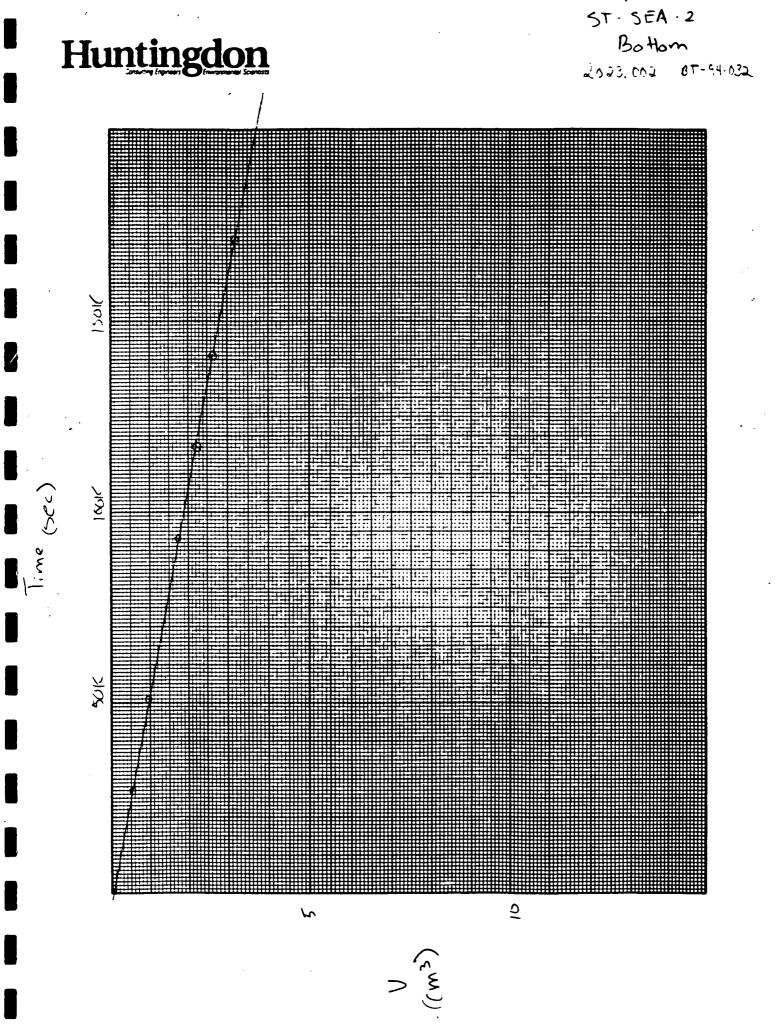
HUNTINGDON ENGINEERING & ENVIRONMENTAL

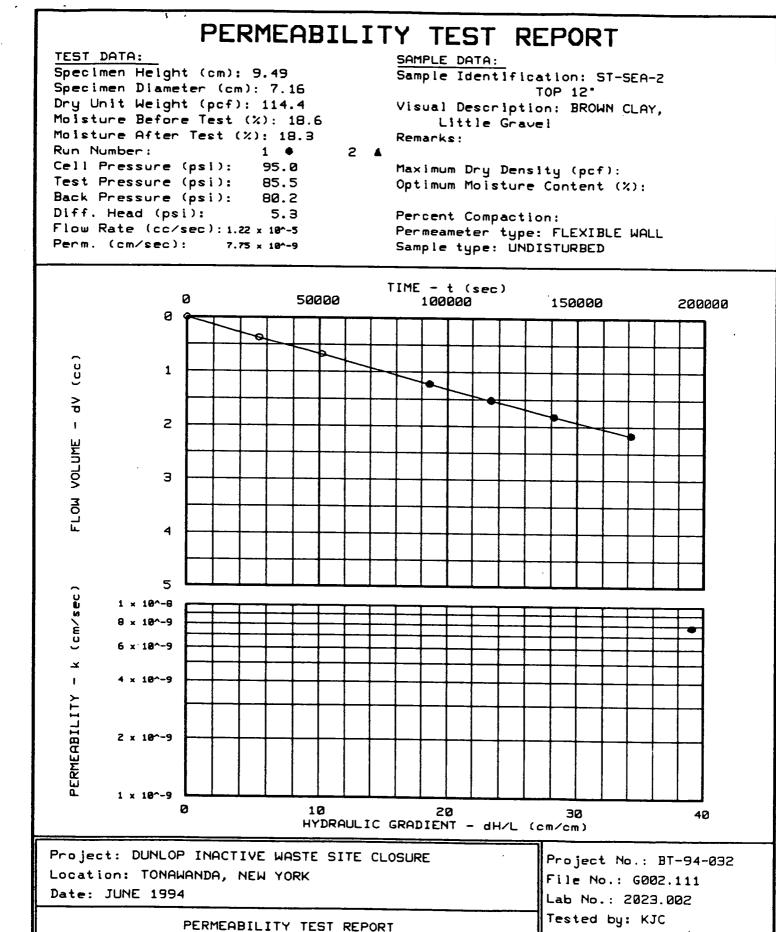
P

E 2

Huntingdon

LAL NO 2073.002


LABORATORY PERMEABILITY TEST


PROINOBT -94-032

l y	NOJECT	Durlee	Lari	IFi'l				TECHN		<u> </u>	JC DATE:	6-17-94
80	DRING	NO.:		SAM	PLE NO	: <u>ST-5</u>	E.1 - 2	CALCU	LATE	D:	DATE:	
DE	-:HTP		ft 10		_n	Eet.	m le mes	CHEC	XED		DATE	
							T 21011			_		
	SAMPLE DATA							URE CO			BEFORE	AFTER TEST
LEN	LENGTH OF SAMPLE, L: N.2.54+ 11.35 cm						TARE NUM	BER			~	CP-4
DIAN	DIAMETER OF SAMPLE, D: A.12.54+ 7.9 cm						NET WE O	FSOIL	TARE	•	968.4	1197.8
ARE	A: A+0.7	1854 D*=		in ^e z 6.4	5=	cm² C	DRY WT. O	F SOIL B	TARE	9		1:43.6
VOL	UNE:V.	LIA:	in	116.39	1	cm ³ V	VEIGHT OF	WATER		9		
WET	WT. OF	SAMPLE,	N:			9 1	TARE WEIG	ыт		9	-	231.13
DRY	WE OF	SAMPLE, W	• W/(1+	w)=		0 0	RY WEIGH	t of soi	L	9		
DRY	UNIT W	T., 8d=(W	,/V)16	2.4 =	· Ib	AL ³ N	OISTURE	CONTEN	T, w	%		
SPE	CIFIC G	RAVITY, G	8									
		VOIDS, V.		G:		cm.3 (CELL PRE	SSURE,				lbs/in ²
VOID	RATIO	(VyzG).	/W, *			1	TEST PRESSURE H+AN 850 Ibs/in?					
WIC	OF WATE	R IN SAMP,	K. W. XW	,		8- S	ATURATION	N PRESS	URE, H	:	go .^	5 101/m ²
		ATURATION				C	MORATIK	AL HEAT	D. Ane 4	07.B2	m ² 1703= 34	1.17 cm.H_30
								<u>رون او متعمی این این او</u>				
PAN	IEL NO)	PANEL I	S	CALIBR.	MACTOR	4				CELL	NO. FP.27
	T		GAUG	Plas.	BUCET &	EADING	s FU	W YOLU	ME			
DATE	TIME	ELAPSED TIME		si)	(0	のり	AV, (cm)		(cm) EY			
		(sec)	HEAD	TAIL						EY/	ALUATION	
41.3	I . I				WFLOW	OUTRO	INFLOW	OUTFION	AVER.	EV.	ALUATION	
	3.05	ø	85.0	80.3	0.0	24.8		DUTT FLOW		GRA	DIENT: I+	
	3.05	27.755	85.0 85.0	80.3 80.2			९ ०			GRA GRA TES	DIENT: 1. T CONSTANT	
		27 703			0.0 0.60	24.9	5 o 0 0.60	D	-	GRA GRA TES C•	DIENT: i · T CONSTANT L An A	r: 31.44
		27 703	85.0 85.0	80.2 90.2	0.0 0.60	24.84 24.40 24.05 23.35	5 0 0 0.60 5 1.15 7 2.00	0 5.45	- .53	GRA TES C. FLO	DIENT: I + T CONSTANT L An A W RATE:	
6/19	12012 22:15	27 755 51,000	85.0 85.0	80.2 98.2 80.1	0.0	24.8	5 0 0 0.60 5 1.15 7 2.00	0.8 1.50 1.95	- .53 058	GRA TES C. FLO	DIENT: i • T CONSTANT L Ah A W RATE: /1 •	1.05«10 ⁻⁵
6/19	22.45 9.55	27 393 51,000 13,000 117,000	85.0 85.0 85.0 85.0	80.2 98.2 80.1	0.0 0.60 1.15 2.00	24.84 24.40 24.05 23.35	5 0 0 0.60 5 1.15 7 2.00 0 2.50	0.8 1.50 1.95	- .53 098 1.75	GRA TES C. FLO	DIENT: I + T CONSTANT L An A W RATE:	1.85010-T
6/19	22.15 9.55 16.35	27 393 51,000 13,000 117,000	85.0 85.0 85.0 85.0	80.2 98.2 80.1 80.1	0.0 0.60 1.15 2.00 2.50	24.94 24.40 24.95 23.35 22.90	5 0 0 0.60 5 1.15 2.00 0 2.50 3.00	0.8 1.50 1.95	- - - - - - - - - - - - - - - - - - -	GRA TES C. FLO A V COR	DIENT: I + T CONSTANT L Ah A W RATE: /1 + RELATION, T MEABILITY:	1.854107
6/19	22:15 9:55 16:35 23:15	27 393 51,000 13,000 117,000 141,000	85.0 85.0 85.0 85.0 85.0	80.2 98.2 80.1 80.1 80.1	0.0 0.60 1.15 2.00 2.50 3.00	24.9 24.40 24.95 23.35 22.90 22.35	5 0 0 0.60 5 1.15 2.00 0 2.50 3.00	0.8 1.50 1.95 2.30 2.85	- - - - - - - - - - - - - -	GRA TES C. FLO A V COR	DIENT: i • T CONSTANT L Ah A W RATE: /1 • RELATION, I	1.854107
6/19	22:15 9:55 16:35 23:15	27 393 51,000 13,000 117,000 141,000	85.0 85.0 85.0 85.0 85.0	80.2 98.2 80.1 80.1 80.1	0.0 0.60 1.15 2.00 2.50 3.00	24.9 24.40 24.95 23.35 22.90 22.35	5 0 0 0.60 5 1.15 2.00 0 2.50 3.00	0.8 1.50 1.95 2.30	- - - - - - - - - - - - - -	GRA TES C. FLO A V COR PER	DIENT: I + T CONSTANT L Ah A W RATE: /1 + RELATION, T MEABILITY:	1.850000 1.850000 1.91010 1.41010

REMARKS:

16.00 0/20

HUNTINGDON ENGINEERING & ENVIRONMENTAL

MENTAL Checked by: JFC ✓ Test: CH - Constant head

PERMEABILITY TEST DATA

.

PROJECT DATA

I ject Name:	DUNLOP INACTIVE WASTE	STTF CLOSID	F	
File No.:	G002.111	SILE CLUSUR		
Project Location:	TONAWANDA, NEW YORK			
Project No.:	BT-94-032			
Sample Identification:	ST-SEA-2			
	TOP 12"			
Lab No.:	2023.002			
Description:	BROWN CLAY,			
	Little Gravel			
Sample Type:	UNDISTURBED			
Max. Dry Dens.:	ONDISTORBED			
Method (D1557/D698):				
Opt. Water Content:				
Date:	JUNE 1994			
Remarks:				
D				
Permeameter Type:	FLEXIBLE WALL			
Tested by:	KJC			
Checked by:	JFC			
Test type:	CH - Constant head			
1	PERMEABILITY TEST SPECI	 Men Data		
	Before test:		fter test.	
	Before test:		fter test:	
Diameter: 1	Before test: 2	A		
Diameter: 1 Top: 2.810 in	2 2.830 in	A 1	2	
Diameter: 1 Top: 2.810 in Middle: 2.812 in	2 2.830 in	A 1 2.819 in	2 2.823 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in	2 2.830 in 2.827 in	A 1 2.819 in 2.810 in	2 2.823 in 2.809 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in	2 2.830 in 2.827 in 2.828 in	A 1 2.819 in 2.810 in 2.807 in	2 2.823 in 2.809 in 2.824 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in	2 2.830 in 2.827 in 2.828 in	A 1 2.819 in 2.810 in	2 2.823 in 2.809 in 2.824 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in	2 2.830 in 2.827 in 2.828 in 7.16 cm	A 1 2.819 in 2.810 in 2.807 in 2.81 in	2 2.823 in 2.809 in 2.824 in 7.15 cm	3
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1	2 2.823 in 2.809 in 2.824 in 7.15 cm 2	3
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3 3.748 in 3.708 in	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1	2 2.823 in 2.809 in 2.824 in 7.15 cm 2	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3 3.748 in 3.708 in 9.49 cm	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters:	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare: Dry Wt. & Tare:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08 920.50	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare: Dry Wt. & Tare: Tare Wt.:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08 920.50 220.08	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm 1048.70 920.50 220.08	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare: Dry Wt. & Tare: Tare Wt.: Moisture Content:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08 920.50 220.08 18.6 %	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm 1048.70 920.50 220.08 18.3 %	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare: Dry Wt. & Tare: Tare Wt.: Moisture Content: Dry Unit Weight:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08 920.50 220.08 18.6 % 114.4 pcf	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm 1048.70 920.50 220.08 18.3 % 114.8 pcf	
Diameter: 1 Top: 2.810 in Middle: 2.812 in Bottom: 2.809 in Average: 2.82 in Length: 1 3.753 in Average: 3.74 in Moisture, Density and Specific Gravity: Wet Wt. & Tare: Dry Wt. & Tare: Tare Wt.: Moisture Content:	2 2.830 in 2.827 in 2.828 in 7.16 cm 2 3.748 in 3.708 in 9.49 cm Sample Parameters: 2.75 1051.08 920.50 220.08 18.6 %	A 1 2.819 in 2.810 in 2.807 in 2.81 in 1 3.739 in	2 2.823 in 2.809 in 2.824 in 7.15 cm 2 3.748 in 9.49 cm 1048.70 920.50 220.08 18.3 %	3 3.723 in

P 3 1 HUNTINGDON ENGINEERING & ENVIRONMENTAL DATA SET 52

Ċ

CONSTANT HEAD PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP - 26	Panel No.: 9	Positions: 2 & 1
Run Number:	1	2
Cell Pressure: Saturation Press Inflow Corr. Fac Outflow Corr. Fac Test Temperature	ctor: 1.00 actor: 1.00	95.0 psi 80.0 psi 1.00 1.00 20.0 °C

PERMEABILITY TEST READINGS DATA

CASE D X	DATE	TIME (24 hr)	ELAPSED TIME-sec	GAUGE PRESSU	RE-psi	BURET READING	G-cc	FLOW VOLUME-CC
SR				IN	OUT	IN	OUT	AVERAGE
DX	6/18/94	8:06:00	0	85.5	80.6	0.05	24.90	0.00
X	6/18/94	15:36:00	27,000	85.5	80.6	0.40	24.50	0.38
X .	6/18/94	22:16:00	51,000	85.5	80.6	0.70		0.68
	6/19/94	9:56:00	93,000	85.5	80.6	1.30	23.70	1.23
	6/19/94	16:36:00		85.5	80.6	1.60	23.40	1.53
	6/19/94	23:16:00	141,000	85.5	80.6	1.95	23.15	1.83
	6/20/94	7:36:00	171,000	85.5	80.5	2.25	22.75	2.18

T t Pressure = 85.5 psi Differential Head = 5.3 psi, 370.7 cm H2O G. dient = 3.906E 01 Flow rate = 1.220E-05 cc/sec R squared = 0.99967Permeability, K20.0° = 7.753E-09 cm/sec, K20° = 7.753E-09 cm/sec

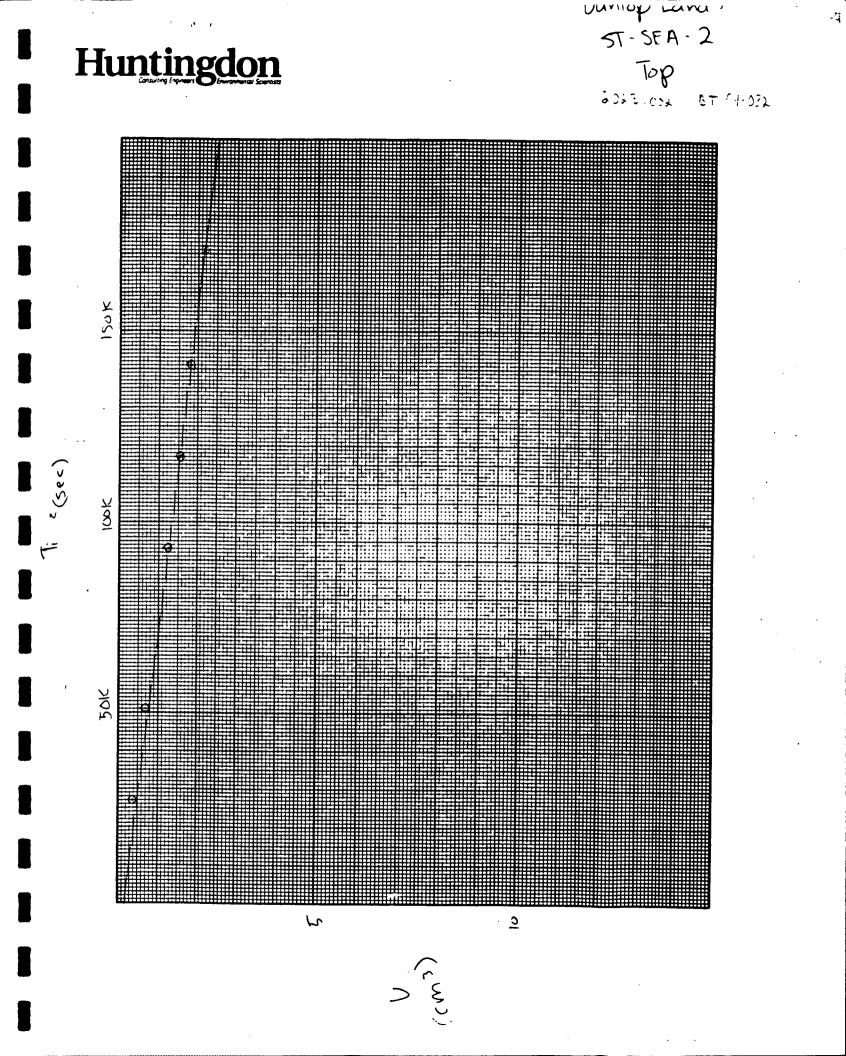
HUNTINGDON ENGINEERING & ENVIRONMENTAL

DATA SET 52

32

P

Huntingdon


LARNO 3023.002

LABORATORY PERMEABILITY TEST

PROJ.NO 6T-94-032

											1.00.110_	51 - 49 - 002
1 `	ROJEC	T: Dinle	p La		L			_ TECH		K K	SC DATE:	6-17-74
8	ORING	NO:	·	SAN	APLE N	a: <u>57-</u>	SEA-		ULAT	DF	DATE:	
0	EPTH:		_ft 10		n	lop	I. ichos	CHE	CKED.		DATE	
SAMPLE DATA							MOIST		ONTEN	Π	BEFORE	AFTER TEST
LENGTH OF SAMPLE, L: n:254 a.49 cm							ARE NUI	IBER			-	25
DIAMETER OF SAMPLE, D: A1254.7.16 cm							ET WT	of soil e	TARE	•	7.31.0	1048.7
AR	A: 4+0	.7854 D*+		int 16.4	15:	cm ² D	RY WT.	of soil e	S TARE	0		920.5
100	UME:V	LIA	in	3116.39	•	cm ³ W	EIGHT O	F WATE	۹	0		
		F SAMPLE,					ARE WE			- 9		220.08
		SAMPLE,					RY WEIG	ht of sc	AL	- 9		
		VT., 8d=()		52.4+	12	×Arg W	OISTURE	CONTE	NT, W	%		
		RAVITY, G										
		VOIDS, V		/6:				ESSURE,				lbs/in ²
		, e= (V _y ±G					TEST PRESSURE, H+AN65.49Ibs/in.8SATURATION PRESSURE, H:40.58Ibs/in.8					
·		R IN SAMP,						ويتجرب فببت القائب	_			<8 102/n."
l.	REE OF S	SATURATION	<u>ر ۶۰ " % (</u>			0	IFFERENT	TAL HEA	D, Ah= 4	A7105/	n ^e 1703 · 34	6.27 cm.H20
PAN	IEL NO) . <u> </u>	PANEL	POSITION	CALIBR.	FACTOR]				CELL	NO F4-26
ATTE	TIME	ELAPSED TIME		E Plas. Si)	-	CLADING ふつう	FLOW YOLUME AV, (CM ³)		FVA			
		(sec)	HEAD	TAIL	WFLON	DOTRON	MELON	COTPLON	AZER.	1 cm		
119	8:06	ø	85.5	80.6	0.05	24.9	0	О	-		DIENT: I .	
	15:36	2 ⁷ 00	85.5	80.6	5.40	24.5	0.35	0.40	5.37	21	CONSTANT	-31
·	22:16	51.000	85.5		0.70	24.2	0.65	0.70	0.68	4	ATA ·	
<u>=/19</u>	9.56	93,000		1 1	1.30	23.70		1.20	1.23	ł	RATE:	1.22-10-5
		117,000			1.60	23,40		1.50	1.55	ΔV/ CORR	ELATION, r	•
		141,000			195	23.15		1.75	1.83		-	. 0.999EY
41,2	7.76	171,500	85 2	805	2.25	22.75	2.20	2.15	2.18		EABILITY:	
				 						κ _γ ,	6 V/1 z C +	J.JS+10.9
								•			W	
										.50	KT x h1/h50)~
										1		
المسا										L		J

REMARKS:

nuninguo				orate Offices equips Road			
	LABOR	ATORY NOR	K ORDER		Bnz 297 1-1-1-1-105		
ROJECT: Divisor Landin	ــــــــــــــــــــــــــــــــــــــ			_ JOB NO. :	87-9		
LIENT: URS Comment	MT5				OF		
SSUED BY: KJC DA	TE: 6-17.9	SAMPLI	ED BY:				
AMPLE TYPE & Ource:	St - SEA \	ST-SEA Z					
LABORATORY NO.	2023.001	2027.002					
tterberg Limits	1						
atural Water Content							
lydrometer Analysis							
ieve Analysis Sizes Required:							
roctor Test: ASTM D 698 (Standard) ASTM D1557 (Modified)				·		<u> </u>	
ermeability Test: y Undisturbed Remolded3	\sum_{2}	\sum_{i}				<u></u>	
specific Gravity							
ample Classifications							
pecifications:	Job (1	ist)	NY	SDOT	A	STM	
EMARKS: TEST - BOTTON		• <i>·</i>					

APPENDIX E OMW-A5 WELL DECOMMISSIONING REPORT

J:\35246.06/wp/Rev-Cort.RPT 09-16-94:15:14/ta

Contract Drilling and Testing

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

WELL DECOMMISSIONING REPORT OMW-A5 DUNLOP TIRE FACILITY

PREPARED FOR:

SITE CONTRACTORS, INC. S-3480 BENZING ROAD ORCHARD PARK, NEW YORK 14127

PREPARED BY:

SJB SERVICES, INC. JUNE 1994

SJB-D372

JUN 8 1994

JOB - 35246.06

DIP-1 PEN-1 JW-1-1 FRE 35246.06 1000

"QUALITY & SERVICE THE WAY IT USED TO BE"

Contract Drilling and Testing

1951-1 Hamburg Turnpike Buffalo, NY 14218 Phone: (716) 821-5911 Fax: (716) 821-0163

P.O. BOX 515 New Holland, PA 17557 Phone: (717) 354-7389 Fax: (717) 354-7619

June 2, 1994

Site Contractors, Inc. S-3480 Benzing Road Orchard Park, New York 14127

Attention:

Dennis McCartney

Reference:

Documentation Related to the Decommissioning of Well OMW-A5 at the Dunlop Tire Facility SJB-D372

Dear Mr. McCartney,

Pursuant to your request and authorization, SJB Services, Inc. performed and documented the decommissioning of one (1) groundwater monitoring well at the Dunlop Tire Facility in Tonawanda, New York. The decommissioning activities included removal of the existing monitoring well, redrilling and grouting of the borehole, and documentation of the well abandonment.

On May 31, 1994, a SJB Service Drill Rig and Crew was present at the Dunlop Tire Facility on Sheridan Drive and River Road in Tonawanda, New York. Well OMW-A5 was located adjacent to a retention pond under construction in the southwest portion of the facility.

The following well information was noted by the drill foreman prior to abandonment,

Well Size -	2" Diameter Stainless Steel
Depth to Water -	3.5 Feet Below Grade
Total Depth of Well-	22.6 Feet Below Grade
Riser Stick-Up-	2.5 Feet Above Grade

Initially, the stainless steel well and steel procasing was removed by the drill crew. The stainless well materials were recovered intact. The existing borehole was then overdrilled using rotary drilling methods/4-1/4" hollow stem augers to a depth of 24.0 feet below grade. A cement/bentonite slurry was tremied into the hollow stem augers, and the augers removed. All drilling equipment introduced into the borehole as well as the recovered stainless well materials was cleaned on site at the completion.

Site Contractors, Inc. June 2, 1994 Page 2

Attached as part of this report is a completed well abandonment form provided to SJB Services by John Wokasien of URS Consultants, Inc.

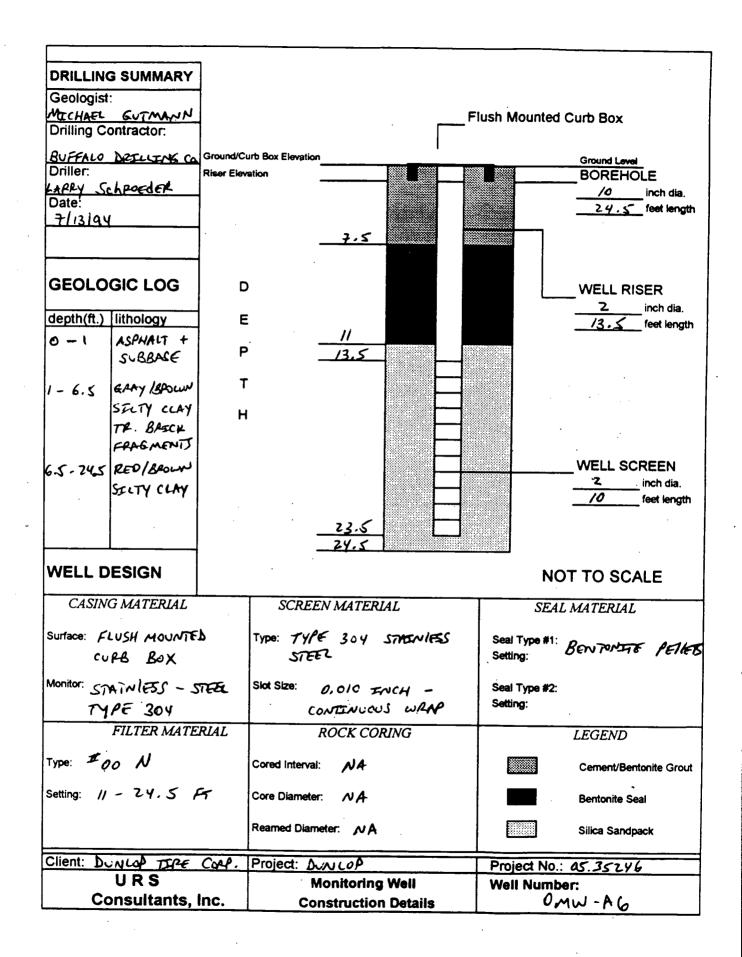
We trust this report satisfied your requirements. We appreciate the opportunity to be of service on this project. If you have any questions, or require further services, please feel free to contact the undersigned.

Sincerely, SJB Services, Inc.

Frank R. Minnolera, Jr. Staff Geologist

mrm Attachment

SUMMERY OF WELL ABANDONMENT


DATE <u>5-31-94</u> PROJECT <u>D372</u>	CLIENT	Site Contractors,	Inc
DRILLERS			
LEVEL RIG CME-550	WELL ID #_	OMW-A5	
DEPTH OF WELL CASING 22.6'			
DIAMETER OF WELL 2" Stainless Steel Rise	r		
TYPE OF PROTECTIVE CASING Lockable Steel			
AUGER SIZE USED TO OVER DRILL 4-1/4" I.D.	_		
DEPTH OVER DRILLED 1.4' (To 24.0' BGS)	、 ———		
TOTAL LENGTH OF WELL RECOVERED 25.1'			
TYPE OF BACK FILL Cement/Bentonite Grout			
AMOUNT OF CEMENT USED 5 Bags	_		
AMOUNT OF BENTONITE USED 1 Bag			
TYPE OF BENTONITE USED Granular			

Notes: <u>2" Stainless Well was extracted and recovered in one intact section.</u> 5.0' of screen was noted at the bottom of the well.

SIGNATURE GullM

APPENDIX F OMW-A6 WELL CONSTRUCTION DETAILS AND BORING LOG OMW-A6 WELL DEVELOPMENT LOG

J:\35246.06/wp/Rev-Cert.RPT 09-16-94:15:14/ta

URS CONSULTANTS	TEST BORING LOG						
	BORING NO. OMW - AL						
ROJECT: DUNLOP	SHEET NO. / OF						
CLIENT DUNLOP TIPE COP	JOB NO. : 05. 3524	16					
BORING CONTRACTOR: BUFFALO	BORING LOCATION:						
GROUND WATER:		E GROUND ELEVATION:					
DATE TIME LEV TYPE	TYPE		DATE STARTED: 7/13/44				
7/3/94 4:30A DRy -	DIA. WT.		DATE FINISHED: 7	14/44	<u> </u>		
	FALL		DRILLER: LARRY	SCHPO	EDER		
			GEOLOGIST: MECH	MEL (SUTMANN		
CEPTH STRATA SAMPLE	· POCKET PENETRO		REVIEWED DI.		REMARKO		
FT NO. TYPE BLOWS	RECOVERY COLOR	CONSISTENCY		CEADO			
PER 6"	RCD 3	HARDNESS		ucas (A	em)		
	- BLACK		IT COVER - 4"	GW,	5		
<u> </u>	GRAY/	ovē	& GRAVEL SUBBLE				
	BADIUN	70	IFT /				
				ML			
5 9/ 9		SILT	Y CLAY - TRACE BRICK FRAGMENTS		2		
		OF	BRICK FRAGMENTS	α[
- 5 5	0/11				YERY SLOW		
	- REd/ BROWN	- 514	Y CLAY	CL	HSA DATUT		
	BAOUN		i		YERY STIFF		
10 5 5					CLAY		
				-	,		
				4	BLEGHTLY		
					MOIST, MEL		
15 5				-	PLASEC		
					2		
				-	HSA BECOM		
				-	EASTER		
				-	MOTSTER		
20 9 5					J CLAY		
				-	MAO - HIG		
				-	PINTECTTY		
				-			
25 25			¥		2		
		BOR	THE COMPLETE	-			
				1			
		AT	24.5 PT	1			
]			
30]			
				_			
				4			
				-			
35							
35							
COMMENTS BOREHOLE LO		A ANO DA O		I	<u> </u>		

BORING NO.

	e		WE		DEVE		AENT	BUR	GING	LOG	
PROJECT TITLE PROJECT NO.: STAFF: DATE:	CA	350 25×	46	>							
WELL NO : (1) TOTAL CASIN (2) CASING INTE (3) WATER LEVE (4) VOLUME OF V=0.0	IG AND RNAL L BELC WATER	SCRE	EN LE TER (i P OF CA SING ((NGTH n.): Asing GAL.)	- (FT.)_	2 2.4 2.3	2		L I.D.	GA 0.1	56 04 50
PARAMETERS	Δ	CCUMU	LATED	VOLU	ME PU	RGED	Geeet	RIS) LI	TERS		
	0	2.25	2.5								
рH	7,50	7,80	7.7								
Spec. Cond. (ymho)	600	;450	1500								
T	163	367	210								

A - 2347

COMMENTS

٥F

62.2

Turbidity (NTU)

Temperature (°6)

065.

.

Slow recharge.

So turbid s. Kusid Furbid tan tan tint tint tint

60.3 64.0