

Mr. Brian Sadowski New York State Dept. of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2915

August 2, 2019

Revised Periodic Review Report and Institutional Controls Certification - Site No. 915018

Dear Mr. Sadowski,

Please find attached the revised Periodic Review Report (PRR) and Institutional and Engineering Controls (IC/EC) Certification Forms. The PRR and IC/EC Certification Forms were originally submitted on July 24, 2019 in accordance with the Site Management Plan (SMP) for the Dunlop Tire and Rubber Site (Site No. 915018). NYSDEC issued an email response on July 29, 2019 requesting corrections to the PRR. The corrected document is attached.

Please contact Joseph Hinkle if you have any questions or if you need any additional information.

Thank you, Joseph Hinkle

Environmental, Health and Safety Manager (716) 879-8546

Cc: Mr. Glenn May (NYSDEC)

SUMITOMO RUBBER USA, LLC TONAWANDA, NEW YORK LANDFILL CAP MANAGEMENT SITE MANAGEMENT PERIODIC REVIEW REPORT (PRR)

I. Introduction

The former Goodyear Dunlop Tires North America facility (Facility), now owned and operated by Sumitomo Rubber USA, LLC (Sumitomo), is located in Tonawanda, New York (see Figure 1). The Facility is approximately 128 acres in size and consists of two parcels of land addressed as 3333 and 3337 River Road. Sumitomo manages three historical waste disposal areas located on the 3333 River Road parcel, which together consist of approximately 25 acres. These three historical waste disposal areas are individually referred to as Disposal Site A, B, and C, and are hereinafter collectively referred to as the "Site". Figure 1 shows the approximate Site location and boundaries. Dunlop Tire Corporation (Dunlop) entered into an Order on Consent (Consent Order) on April 23, 1991 with the NYSDEC to determine the nature and extent of contamination at the Site resulting from historical disposal of industrial wastes. The Site boundaries coincide with the estimated limits of fill as depicted by URS Consultants, Inc. in their April 1992 report¹¹, and as shown in the March 1993 Record of Decision $(ROD)^{22}$. The Site is currently in the New York State (NYS) State Superfund Program (Site No. 915018), which is administered by the New York State Department of Environmental Conservation (NYSDEC). The Site is listed as a Class 4 site, indicating that it has been properly closed but requires continued Site management consisting of operation, maintenance, and/or monitoring.

A Site Management Plan (SMP) has been prepared for the Site to ensure implementation and management of the institutional controls (ICs) and engineering controls (ECs) in place for the Site. This Periodic Review Report (PRR) is being prepared to certify that site management activities are being conducted in accordance with the SMP.

II. Disposal Site Overview

Disposal Site A

Disposal Site A is located on the northwestern portion of the Facility (Figure 1). The surface of Site A consists of grass, trees, brush, and asphalt parking lot. Site A was reportedly used to dispose of various wastes including fly ash, slag, carbon black, asphalt, foam, tires, coal, and construction and demolition (C/D) debris until 1970, and C/D debris until 1979. The primary area of disposal, consisting of thicker fill, is located within the central and northern portions of Site A.

¹ URS Consultants, Inc., April 1992, Report of Field Investigation and Data Analysis, Inactive Disposal Site Nos. 915018 A, B, C, submitted to the NYSDEC.

² New York State Department of Environmental Conservation, March 1993, Record of Decision, Dunlop Tire and Rubber, Site No. 915018A, Site No. 915018B, Site No. 915018C.

As indicated above, the boundaries of Disposal Site A coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern boundary (lateral extent of fill) was determined through excavation of eight test trenches by URS in 1991. The eastern and western boundaries were defined based on surface topography and configuration of waste piles. The northern extent of the fill could not be determined, as the presence of the parking lot prevented completion of test trenches in this area. As a result, the northern boundary was defined by the northwestern corner of Building 1 and a perimeter fence east of a 10,000-gallon water tank present at that time. Fill materials identified in the trenches included black and brown silt, reworked reddish/brown silty clay, ash, slag, carbon black, C/D debris, asphalt, foam, rubber tires, and coal. Three test holes were completed by Conestoga-Rovers & Associates (CRA) in 1983, and two test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site A.

Disposal Site B

Disposal Site B is located on the southwestern portion of the Facility (Figure 1). The surface of Site B consists of grass and asphalt parking lot and driveway. Site B was reportedly used to dispose of various solid wastes, including scrap rubber (natural and synthetic), golf balls, plastics, carbon black, fly ash, amines, antioxidants, and general refuse until 1970.

The boundaries of Disposal Site B coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern and western boundaries (lateral extent of fill) were determined through excavation of seven test trenches by URS in 1991. The eastern extent of the fill count not be determined, as the presence of the parking lot prevented completion of test trenches in this area. However, aerial photographs reportedly confirm waste disposal eastward into the parking lot. The northern extent of the fill could not be determined due to the presence of the settling pond. Fill materials identified in the trenches included black and brown silt, C/D debris, asphalt, coal, and rubber. Seventeen test holes were completed by CRA in 1983, and five test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site B.

Disposal Site C

Disposal Site C is located on the eastern portion of the Facility (Figure 1). The surface of Site C consists of grass. Site C was reportedly used as a coal ash landfill until 1973. Interviews with several Dunlop retirees in the early 1980s indicated that it was common practice to dispose of all types of waste at this Site, including drums of waste solvents and degreasers.

The boundaries of Disposal Site C coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 3). The southern and eastern boundaries (lateral extent of fill) were determined through excavation of six test trenches by URS in 1991. The northern boundary was defined by a scrap along the outer toe of the fill where it contacted the original surface. The berm-like area between the fence and railroad tracks constituting the western portion of Disposal Site C was defined based on topography. Fill

materials identified in the trenches included black and brown silt, ash, slag, sand and gravel, C/D debris, and rubber. Five test holes were completed by CRA in 1983, and six test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site C.

III. Institutional and Engineering Control Plan

Since remaining contamination exists at the Site, ICs and ECs are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site.

Institutional Controls

A series of ICs are required by the ROD to:

- 1. Implement, maintain and monitor EC systems
- 2. Prevent future exposure to remaining contamination

Adherence to these ICs on the Site is required by the ROD and the Consent Order and will be implemented under the Site's Long-Term Monitoring Plan. ICs may not be discontinued without an amendment to the Consent Order. The IC boundaries are the same as the Site boundaries.

The ICs, as described in the March 1993 ROD, consist of the following:

- Post-closure maintenance and monitoring will be conducted for 30 years, starting in 1995, to ensure the long-term effectiveness of the remedy and provide early detection should failure occur.
- The Order on Consent signed by Dunlop, effective April 23, 1991, is a legally binding agreement that requires the company to inspect the final cover quarterly (the frequency has been reduced to semi-annually) and maintain it for 30 years. This maintenance program, in combination with the post-closure monitoring program, will help ensure the long-term effectiveness of the cap. If during that time the Department concludes that any element of the cover fails to perform as predicted, or otherwise fails to protect human health or the environment, the Department can require Sumitomo to make modifications or repairs as required.
- If Sumitomo closes the Facility, the Order on Consent requires the company to continue its maintenance and monitoring programs.
- If the property is sold, Sumitomo must notify the Department within 60 days of closing and furnish the name(s) of the prospective new owner(s) of the property. In addition, Sumitomo must inform the new owner(s) about the landfills and that an Order on Consent is in effect.

Engineering Controls

The purpose of the ECs is to prevent direct human contact with on-Site waste, prevent the erosion and transport of contaminated soil from the Site into surrounding wetland areas, control the migration of contaminated groundwater form the Site, and reduce environmental risk to wildlife living in the surrounding wetlands. The ECs, as described in the March 1993 ROD, include the following:

- The three landfills were capped with 18 inches of clay compacted to a minimum permeability (hydraulic conductivity) of 1x10⁻⁷ cm/sec. The caps were covered with 6 inches of soil amenable to plant growth, seeded, and mulched. Areas overlying the three landfills associated with vehicle traffic were paved in the fall of 1992.
- Surface water runoff is directed to catch basins that discharge to the plant settling pond. Monitoring of this pond occurs semi-annually as a SPDES permit condition.
- The Site is fenced.

The Site cap is a permanent control and the quality and integrity of the cap is inspected semi annually.

IV. Inspections and Monitoring Activities

Semi-annual Cap Inspection

The cap at the Site is intended to prevent contact between Site visitors and workers and the remaining contamination. The cap consists of low permeability clay covered by soil capable of sustaining vegetation, and by areas of asphalt pavement over portions of the Site subject to vehicle traffic (no confirmed clay cap). An inspection of the cap at all three disposal Sites is performed on a semi-annual basis in accordance with the SMP schedule, regardless of the frequency of the Periodic Review Report (PRR).

Each cap inspection includes a walkover and visual assessment of the cap. The inspection does not include any areas where work is being performed. The following items are evaluated to ascertain the need for corrective action:

- Soil cover system The presence of desiccation cracks, freeze/thaw damage, and the presence of seeps or leachate breakouts.
- Asphalt The quality of the pavement for cracking or other deterioration
- Landscaping The vigor and density of the vegetative cover both on the cap and in grass-lined drainage ways as well as bare, sparse, and undernourished areas
- Erosion The presence of any erosion.
- Settlement Visual evidence of differential settlement and its impact on either the cap integrity or required drainage patterns
- Drainage features Ditches, culverts, piping, and structures for siltation, ponding, or erosion damage.
- Ancillary features The integrity of other remedial action features such as fences and access roads and any items in need of repair.

The semi-annual cap inspections were completed on October 10, 2018 and June 19, 2019. Both inspections showed that the caps on all three disposals areas are in good condition. The inspection forms are provided in Appendix A.

No corrective actions are required at this time.

Groundwater Monitoring

Groundwater monitoring is performed annually to monitor the long-term effectiveness of the Site closure and provide for early detection should failure occur, as outlined in the SMP. Trends in contaminant concentrations in groundwater are evaluated to determine if the ICs and ECs in place at the Site continue to be effective in protecting public health and the environment. Wells downgradient of the capped areas are monitored to evaluate the effectiveness of the closure action. Wells upgradient of the capped areas will be monitored, as needed based on the downgradient results, to determine if upgradient groundwater, rather than the disposal areas, might be a source of downgradient impacts. In this case, the effectiveness of the closure would not be questioned.

The Groundwater monitoring well network includes the following seven wells (Figures 2 and 3):

- Upgradient wells: OMW-A6 and OMW-C1 (could not be located)
- Downgradient wells: OMW-B3, OMW-B4, OMW-A4, OMW-C5, and OMW-C7

Contaminants to be analyzed during each sampling event are defined as Analytical Schedule A analytes and Analytical Schedule B analytes and are listed on Table 1.

If turbidity in a groundwater sample is above 50 nephelometric turbidity unit (NTU), then both filtered and unfiltered samples are analyzed for metals in order to determine if suspended solids are contributing to the reported concentrations and, therefore, potentially giving a false indication of groundwater concentrations.

The wells requiring sampling this year (year 25) were all down gradient wells OMW-A4, OMW-B3, OMW-B4, OMW-C5 and OMW-C7. The samples were analyzed for Schedule B analytes.

Groundwater sampling was completed May 24, 2019. All parameters in all wells were below the action levels identified in Table 2. A summary of the samples results is shown on Table 3. The laboratory data report is provide as Appendix B.

No corrective actions are required at this time.

Visual Inspections of Monitoring Wells

All seven monitoring wells are visually inspected as part of the annual monitoring event, regardless of which wells are to be sampled. The wells are inspected for protective covers, well locks, water-tight locking caps, and cement pads or flush mount conditions.

The monitoring well inspections were completed on October 10, 2018 and June 19, 2019. The inspection forms are provided in Appendix C. Well OMW-C1 could not be located. The inspections show that all other monitoring wells are in good shape. The protective covers, water-tight locking caps, and cement pads for stick-up wells OMW-B4, OMW-B3, OMW-A4, OMW-C5, and OMW-C7 and the flush mount road box for well OMW-A6 are all in good condition. Will inspection forms are provided in Appendix C. No corrective actions are required at this time.

Hydraulic Monitoring

Groundwater measurements are taken at all monitoring wells to assess groundwater flow conditions during the annual monitoring event. Table 4 summarizes the water level measurements taken during the May 24, 2019 sample event. Figure 4 shows the updated groundwater contour map with groundwater flow direction.

V. Compliance and Corrective Actions

Sumitomo is currently in compliance with the Long-Term Monitoring Plan year 24 of the 30-year plan requirements and the SMP. No issues of non-compliance were noted during this reporting year.

There are no recommendations or corrective actions based on the current conditions. The next landfill cap and monitoring well visual inspection will be completed in October 2019. The next groundwater monitoring event is scheduled to be completed in spring 2020.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	te No.	915018	Details	Box 1	
Si	te Name Du	nlop Tire and Rubber			
Si Ci Ci Si	te Address; ty/Town: To bunty: Erie te Acreage:	3333 River Road Zip Code: nawanda 25.000 (Landfill Arcas	14150		
Re	eporting Peri	od: June 30, 2018 to June 30, 2	D19		
				YES	NO
1,	Is the infor	nation above correct?		Х	
	If NO, inclu	de handwritten above or on a se	parate sheet.		
2.	Has some tax map an	or all of the site property been so nendment during this Reporting I	old, subdivided, merged, or undergone a Period?		X
3.	Has there I (see 6NYC	een any change of use at the si RR 375-1.11(d))?	te during this Reporting Period		X
4.	Have any f for or at the	ederal, state, and/or local permit property during this Reporting I	s (e.g., building, discharge) been issued Period?		8
	If you answ that docum	vered YES to questions 2 thru nentation has been previously	4, include documentation or evidence submitted with this certification form.		
5.	Is the site o	urrently undergoing developmer	ıt?		X
				Box 2	
				YES	NO
6.	Is the curre Closed Lan	nt site use consistent with the us dfill	e(s) listed below?	X	
7.	Are all ICs/	ECs in place and functioning as	designed?	8	
	IF TH	E ANSWER TO EITHER QUEST DO NOT COMPLETE THE REST	ION 6 OR 7 IS NO, sign and date below a OF THIS FORM. Otherwise continue.	nd	
AC	Corrective M	easures Work Plan must be sub	mitted along with this form to address th	iese issu	es.
Sig	nature of Ow	ner, Remedial Party or Designated	Representative Date		

		Box 3
Description of	Institutional Controls	
Parcel	Owner	Institutional Control
65.17-2-1.111	Sumitomo Rubber USA, LLC	manufational control
		Monitoring Plan O&M Plan
The March 1993 Rec Post-closure main remedy and provide e and described more Compliance with All Engineering C All Engineering C Groundwater mor Data and Informal defined in this SMP.	ord of Decision contained a general Institutional itenance and monitoring for thirty years to ensi- arly detection should failure occur; specifically as: his SMP by the Grantor and the Grantor's suc- ontrols must be operated and maintained as sp ontrols must be inspected at a frequency and i itoring must be performed as defined in this S tion pertinent to Site Management must be rep	al Control described as follows: ure the long-term effectiveness of the cessors and assigns; pecified in this SMP; in a manner defined in the SMP. MP; and ported at the frequency and in a manner
There are no use res	rictions on this site.	Box A
_		B0X 4
Description of I	Engineering Controls	
<u>Parcel</u>	Engineering Control	
33. 7 <i>7-2-</i> 7,117	Cover System Fencing/Access Control Monitoring Wells	
annually.	s are capped with modified 360 caps. Ground	Iwater quality is monitored
Under the requiremen	ts of the Order on Consent, Dunlop submitted letailed the closure of the three landfills. The l	a Conceptual IRM Closure Plan in andfills were closed in accordance
November 1992 that o with the plan;		
November 1992 that o with the plan; Each landfill was capp 10-7 cm/sec and cove	ed with eighteen inches of clay compacted to red with six inches of soil amenable to plant gr	a minimum permeability of 1 x rowth. Due to the low
November 1992 that o with the plan; Each landfill was capp 10-7 cm/sec and cove concentrations of vola readings above backg any of the landfills. In groundwater/leachate systems ranged from a	ed with eighteen inches of clay compacted to red with six inches of soil amenable to plant gr tile organic compounds detected at the sites, a round levels during intrusive activities, gas ver addition, due to the presence of the impermea collection and treatment was not required. Slo upproximately 4% to 33%.	a minimum permeability of 1 x rowth. Due to the low and the absence of volatile nting systems were not required for able underlying silty clay, opes of the final landfill cover

			Box 5
	Periodic Review Report (PRR) Certification Statements		
I certify by	checking "YES" below that:		
a) ti revie	ne Periodic Review report and all attachments were prepared under the dir wed by, the party making the certification;	ection of,	and
b) to are i engineer	o the best of my knowledge and belief, the work and conclusions described in accordance with the requirements of the site remedial program, and gen ing practices; and the information presented is accurate and compete	l in this ce erally acc	ertificatio epted
5	s processory and the memory precented to accurate and compete.	YES	NO
		X	
2. If this site h or Enginee following st	has an IC/EC Plan (or equivalent as required in the Decision Document), for ring control listed in Boxes 3 and/or 4, I certify by checking "YES" below th atements are true:	or each in Iat all of ti	stitution; he
(a) t since	he Institutional Control and/or Engineering Control(s) employed at this site the date that the Control was put in-place, or was last approved by the De	is unchai epartmeni	nged t;
(b) r the e	othing has occurred that would impair the ability of such Control, to protec nvironment;	t public h	ealth an
(c) a reme	ccess to the site will continue to be provided to the Department, to evaluat dy, including access to evaluate the continued maintenance of this Contro	e the I;	
(d) n Site f	othing has occurred that would constitute a violation or failure to comply w Management Plan for this Control; and	ith the	
(e) if mech	a financial assurance mechanism is required by the oversight document financial assurance mechanism is remained and sufficient for its intended purpose established in the second s	or the site the docur	e, the nent.
		YES	NO
		Х	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue		
A Corrective	Measures Work Plan must be submitted along with this form to address	these iss	ues.
Signature of C	wner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. 915018

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_at <u>IOSheridan Drik Tonawande, NY 14150</u> print business address 1. print name am certifying as Environmental, Health + Safely Manager (Owner or Remedial Party) for the Site named in the Site Details Section of this form. 24/19 Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

8 3 8

0

5 ²⁰ 10 ²⁰ ²⁰ ²⁰ ²⁰ ²⁰

IC/EC CERTIFICATIONS	
Qualified Environmental Professional Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false statemer punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	at made herein is
Richard J. Snyder at Niagara Falls Blud print name at Niagara Falls NY	

am certifying as a Qualified Environmental Professional for the (Owner or Remedial Party) STATE OF NEW **RICHARD** NCEMSED EB 7-24-19 Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Date AND FESSION

Tables

Table 1: Sampling Schedule

- Table 2: Groundwater Action Levels for Downgradient Wells
- Table 3: Summary of Groundwater Analytical Results
- Table 4: Groundwater Elevation

	Table 1											
			S	umitomo R	ubber USA	, LLC						
	Sampling Schedule											
	Inactive Waste Sites 915018 A, B and C											
	Analytical Number of Sampling Events Per Year											
Year	Schodulo	Upgra	adient		D	owngradie	nt		Sampling			
	Schedule	A6	C1	B3	B4	A4	C5	C7	Season			
1	А	2	2	2	2	2	2	2	Spring/Fall			
2, 3	В			2	2	2	2	2	Spring/Fall			
4, 5	В			1	1	1	1	1	Spring			
6-9	В			1	1			1	Spring			
10	В			1	1	1	1	1	Spring			
11-14	В			1	1			1	Spring			
15	В			1	1	1	1	1	Spring			
16-19	В			1	1			1	Spring			
20	В			1	1	1	1	1	Spring			
21-24	В			1	1			1	Spring			
25	В			1	1	1	1	1	Spring			
26-29	В			1	1			1	Spring			
30	В			1	1	1	1	1	Spring			

Notes:

Starting year was 1994. 1st Sampling Year was 1995.

			Table 2							
		Sumit	omo Rubber L	ISA, LLC						
	Groundwater Action Levels for Downgradient Wells									
		NYSDEC								
		Criteria ¹	OMW-B3	OMW-B4 ²	OMW-A4	OMW-C5	OMW-C7			
Parameter	Туре	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)			
2-Butanone (MEK)	VOC	50	50	50	50	50	50			
Benzene	VOC	1	0.7	2	0.7	0.7	0.7			
1,1-Dichloroethane	VOC	5	5	5	5	5	5			
1,2-Dichloroethene (total)	VOC	5	5	5	5	5	5			
1,1,1-Trichloroethane	VOC	5	5	5	5	5	5			
Arsenic	MET	25	25	25	25	25	25			
Cadmium	MET	5	10	28	16	16	10			
Chromium	MET	50	50	178	66	66	50			
Lead	MET	25	32	52	50	50	25			
Total Phenols	SEMI	1	1	1	1	1	1			

Notes:

VOC = Volatile Organic Compounds

MET = Metals

SEMI = Semivolatile Organic Compound

¹ NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998, with addenda through 2004

² Determined using existing data from OMW-B2

	Table 3											
				Sumiton	no Rubber US	A, LLC						
				Annual La	ndfill Well Mo	nitoring						
	Groundwater Analytical Results											
Well ID		B	3	В	4	C	7	A	4	C	5	
Date		Action Levels	5/24/2019	Action Levels	5/24/2019	Action Levels	5/24/2019	Action Levels	5/24/2019	Action Levels	5/24/2019	
Parameters	Units											
Volatile Organic Compounds	ug/l											
1.1-Dichloroethane	ug/L	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	
1,2-Dichloroethane	μg/L	5	ND(0.50)	5	ND(0.50)	5	ND(0.50)	5	ND(0.50)	5	ND(0.50)	
1,1,1-Trichloroethane	µg/L	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)	
Benzene	µg/L	0.7	ND (0.50)	2	ND (0.50)	0.7	ND (0.50)	0.7	ND (0.50)	0.7	ND (0.50)	
2-Butanone	µg/L	50	ND (5.0)	50	ND (5.0)	50	ND (5.0)	50	ND (5.0)	50	ND (5.0)	
T												
I otal Metals	"	05	0.45	05		05		0.5	4 50	05	0.40.1	
Arsenic	µg/L	25	3.15	25	0.6	25	0.53	25	1.52	25	0.42 J	
Cadmium	µg/L	10	0.07	28	0.13 J	10	0.11 J	16	0.08 J	16	0.11	
Chromium	µg/L	50	7.06	178	11.51	50	10.36	66	29	66	39.46	
Lead	µg/L	32	0.82	52	1.61	25	1	50	2.53	50	0.94	
Dissolved Metals												
Dissolved Arsenic	µg/L	-	0.97	-	-	-	-	-	0.29 J	-	-	
Dissolved Cadmium	µg/L	-	ND (5.0)	-	-	-	-	-	ND (0.2)	-	-	
Dissolved Chromium	µg/L	-	0.49	-	-	-	-	-	0.73 J	-	-	
Dissolved Lead	µg/L	-	ND (1.0)	-	-	-	-	-	ND(1.0)	-	-	
Inorganics & Miscellaneous												
Turbidity	NTU	-	140	-	34	-	27	-	120	-	13	
Specific Conductance	umhos/cm	-	1000	-	3200	-	4100	-	4600	-	3200	
Total Phenolics	μg/L	1	ND (3.0)	1	ND (3.0)	1	ND (3.0)	1	ND (3.0)	1	ND (3.0)	

Notes:

ND = Nondetect

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

Yellow highlighted results are above action levels

Table 4 Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring Groundwater Elevations May 2019

	Northing	Easting	Latitude	Longitude	Ground Elevation (FAMSL)	Top Riser Elevation (FAMSL)	Depth to Water (feet)	Groundwater Elevation (FAMSL)
Well ID								
OMW-A4	1081783.969	1056815.907	N 42°58'06.6290"	W 078°55'30.4211"	581.6	587.02	6.61	580.41
OMW-B3	1081634.987	1057041.513	N 42°58'05.1664"	W 078°55'27.3786"	577.0	579.85	5.2	574.65
OMW-B4	1081143.389	1057439.298	N 42°58'00.3265"	W 078°55'22.0014"	585.3	587.37	4.8	582.57
OMW-A6	1082260.545	1057691.331	N 42º58'11.3714"	W 078°55'18.6720"	593.84 (rim)	593.29	6.61	586.68
OMW-C5	1083560.949	1059089.490	N 42º58'24.2716"	W 078°54'59.9349"	602.5	603.87	4.15	599.72
OMW-C7	1083147.785	1059628.405	N 42º58'20.2115"	W 078°54'52.6637"	599.2	602.06	4.25	597.81

Notes:

Coordinate System based on NAD83 (2011) NY West

Elevations shown are referenced to NAVD88 NGS Monument Designation-TOM TTWTP USLS / PID-NC0305

Figures

Figure 1: Site Plan Figure 2: Disposal Sites A and B Figure 3: Disposal Site C Figure 4: Contour Map with Groundwater Direction

Filename: P:\Drawings\10000000\11137137 - Dunlop\2019 PRR\Figures\11137137 - Figure 1.dwg Plot Date: 27 June 2019 - 12:17 PM

LEGEND

SITE MANAGEMENT PLAN SITE PLAN

Project No. 11137137 Report No. 2019 PRR Date JUN 19

FIGURE 1

Filename: P:\Drawings\10000000s\11137137 - Dunlop\2019 PRR\Figures\11137137 - Figure 2.dwg Plot Date: 27 June 2019 - 12:18 PM

Filename: P\Drawings\10000000s\11137137 - Dunlop\2019 PRR\Figures\11137137 - Figure 3.dwg Plot Date: 27 June 2019 - 12:18 PM

Filename: P:\Drawings\10000000s\11137137 - Dunlop\2019 PRR\Figures\11137137 - Figure 4.dwg Plot Date: 27 June 2019 - 12:18 PM

GROUNDWATER CONTOUR MAP

Appendix A Landfill Cap Inspection Forms

Appendix I

Sumitomo Rubber USA, LLC Landfill Condition - Semiannual Inspection Report

.

Site No.: Date of Inspection:	915018 A, B, C									Nan
Management or Mainter	ance Activities Occurring	During Inspection:	None							
ARFA "B"	Topsoil Erosion Occurring?	Clay Cap Erosion Occurring?	Desiccation Cracks or Freeze/Thaw Damage Present?	Any Seeps or Leachate Breakouts Present?	Ditches Free of Obstruction?	Any Siltation, Ponding, or Erosion Damage in Drainage Features*?	Grass Cover Adequate?	Any Bare, Sparse, or Undernourished Areas Present?	Any Settlement Observed in Cover System?	l. Pi
Southeast Area Southern Area Northern Area River Road Ditch Describe any issues with	No No No No ancillary features in this area	No No No a (e.g., fencing, access):	N0 N0 N0 N0	N0 N0 N0	400 400 400 400 400	No No No	990 990 990	N0 N0 N0 N0	N0 N0 N0 N0	
BORROW PIT AREA "A" Central Area Northeast Area Describe any issues with a	NO NO ancillary features in this area	NO NO a (e.g., fencing, access):	No No	No No	Yeo		Yeo		<u>No</u>	
AREA "C" Outlying Area Major Area Ditch at Toe of Slope Sheridan Drive Ditch Stockpile Area Warehouse Ditch Describe any issues with a	No No No No No				Yen Yen Yen Yen Yen Yen		Yes Yes Yes			
Paved Areas Parking Lot Driveway Describe any issues with a	ncillary features in this area	(e.g., fencing, access):								
WEATHER CONDITIONS Temperature Wind Direction Wind Speed Procisitation Amount	13°F south Bmph				Describe Any Corrective	e Action Required:				
Inches of Snow Cover					Describe Any Corrective Action Taken:					
* Includes ditches, culverts	, piping, and other structure	s associated with drainag	je features		Are Site Records Up-To-Date? Check One: YES INO					
				MA						

Page 1 of 2

DEO -00011 / 0-1 Semi-Annual Landfill Cap and Monitoring Well Visual Inspection Form See PPS -00431

						Appendix 1					Page t of t	
					Landiil	Sumitomo Rubber USA, Condition - Semiannual ins	LLC paction Report					
Site No.: Date of Inspection:	915018 A. B. C	9								Name of Inspector:	his Barton	NDEL
Management or Mainte	nance Activities Occurring	g During Inspection:	Filling	Barra) Pit							
AREA "B" Southeast Area Southern Area Northern Area River Roard Dich Describe any issues with	Topsoil Erceion Occurring?	Clay Cap Ercelon Occurring?	Desiccation Cracke or Freezen/Thaw Damage Present?	Any Seeps or Leachate Breakouts Present?	Ditches Free of Obstruction?	Any Siltation, Ponding, or Erosion Damage in Drainage Fealures'?	Grass Cover Adequate?	Any Bare, Sparse, or Undernourlahed Areas Present?	Any Settlement Observed in Cover System?	Paved Areas Intact?	Any Cracking, Deterioration, or Selitement in Pavement? Note Any Damage	-
BORROW PIT AREA "A" Central Area Northeast Area Describe any issues with	ancillary features in this are	a (e.g., foncing, access);	<u>N</u>	<u>H</u>		<u>M</u>		_N	<u>N</u>		y miller	2
AREA "C" Outlying Area Major Area Ditch at Too of Slope Stockpile Area Warehouse Ditch Describe any issues with	ancillary leatures in this are	a (e.g., fencing, access):	N		Y Y Y Y		XXXX	7	N L			
Paved Areas Parking Lot Driveway Describe any issues with a	ancillary features in this are	a (e.g., fencing, access);								<u> </u>	Y-MIKOY.	
WEATHER CONDITIONS Temperature Wind Direction Wind Speed Precipitation Amount Sky Conditions Inches of Snow Cover	75° 	simph			Describe Any Corrective NCNE Describe Any Corrective NA	e Astion Required:				,]
fincludes dilches, culverts	s, piping, and other structure	as associated with drainag	e fealures		Are Site Records Up-To	-Dale? Check One: D Up-To-Dalw, Describe the Dei	S Iglencies:]NO				٦

Page 1 of 1

Appendix B Alpha Analytical Laboratory Report and Groundwater Measurements

ANALYTICAL REPORT

Lab Number:	L1922044
Client:	Sumitomo Rubber USA, LLC PO BOX 1109 Buffalo, NY 14240
ATTN: Phone:	Mark Craft (716) 879-8497
Project Name:	WELL SAMPLING
Project Number:	Not Specified
Report Date:	06/07/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WELL SAMPLINGProject Number:Not Specified

 Lab Number:
 L1922044

 Report Date:
 06/07/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1922044-01	WELL B3	WATER	BUFFALO, NY	05/24/19 10:55	05/24/19
L1922044-02	WELL B4	WATER	BUFFALO, NY	05/24/19 10:40	05/24/19
L1922044-03	WELL C7	WATER	BUFFALO, NY	05/24/19 10:10	05/24/19
L1922044-04	WELL A4	WATER	BUFFALO, NY	05/24/19 11:10	05/24/19
L1922044-05	WELL C5	WATER	BUFFALO, NY	05/24/19 10:25	05/24/19
L1922044-06	TRIP BLANK	WATER	BUFFALO, NY	05/24/19 00:00	05/24/19

Project Name: WELL SAMPLING Project Number: Not Specified Lab Number: L1922044 Report Date: 06/07/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: WELL SAMPLING Project Number: Not Specified
 Lab Number:
 L1922044

 Report Date:
 06/07/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Please note that this report format does not contain typical QC parameters that were performed with these samples. As such, any QC outliers or non-conformances can only be reviewed by accessing your Alpha Customer Center account at www.alphalab.com and building a Data Usability table (format 11) in our Data Merger tool.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 06/07/19

VOLATILES

		Serial_No:06071917:1			
Project Name:	WELL SAMPLING		Lab Number:	L1922044	
Project Number:	Not Specified		Report Date:	06/07/19	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L1922044-01 WELL B3 BUFFALO, NY		Date Collected: Date Received: Field Prep:	05/24/19 10:55 05/24/19 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/04/19 09:00 NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	97	70-130	

			Serial_No:06071917:10			
Project Name:	WELL SAMPLING		Lab Number:	L1922044		
Project Number:	Not Specified		Report Date:	06/07/19		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L1922044-02 WELL B4 BUFFALO, NY		Date Collected: Date Received: Field Prep:	05/24/19 10:40 05/24/19 Not Specified		
Sample Depth:						
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/04/19 09:25 NLK					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Benzene	ND		ug/l	0.50	0.16	1		
2-Butanone	ND		ug/l	5.0	1.9	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	98	70-130	

		Serial_No:06071917:		
Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1922044-03 WELL C7 BUFFALO, NY		Date Collected: Date Received: Field Prep:	05/24/19 10:10 05/24/19 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/04/19 09:51 NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Benzene	ND		ug/l	0.50	0.16	1		
2-Butanone	ND		ug/l	5.0	1.9	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	96	70-130	

			Serial_No:06071917:10		
Project Name:	WELL SAMPLING		Lab Number:	L1922044	
Project Number:	Not Specified		Report Date:	06/07/19	
		SAMPLE RESULTS			
Lab ID:	L1922044-04		Date Collected:	05/24/19 11:10	
Client ID:	WELL A4		Date Received:	05/24/19	
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	06/04/19 10:16				
Analyst:	NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Benzene	ND		ug/l	0.50	0.16	1		
2-Butanone	ND		ug/l	5.0	1.9	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	97	70-130	

			Serial_No:	:06071917:10
Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
		SAMPLE RESULTS		
Lab ID:	L1922044-05		Date Collected:	05/24/19 10:25
Client ID:	WELL C5		Date Received:	05/24/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/04/19 10:42			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Benzene	ND		ug/l	0.50	0.16	1
2-Butanone	ND		ug/l	5.0	1.9	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

)44
19
00:00
ified
C 1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Benzene	ND		ug/l	0.50	0.16	1
2-Butanone	ND		ug/l	5.0	1.9	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

METALS

Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
		SAMPLE RESULTS		
Lab ID:	L1922044-01		Date Collected:	05/24/19 10:55
Client ID:	WELL B3		Date Received:	05/24/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RI	МП	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	quanner	onito		MDL		•	-			Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00315		mg/l	0.00050	0.00016	1	06/05/19 15:50	06/06/19 05:22	EPA 3005A	1,6020B	MG
Cadmium, Total	0.00007	J	mg/l	0.00020	0.00005	1	06/05/19 15:50	06/06/19 05:22	EPA 3005A	1,6020B	MG
Chromium, Total	0.00706		mg/l	0.00100	0.00017	1	06/05/19 15:50	06/06/19 05:22	EPA 3005A	1,6020B	MG
Lead, Total	0.00082	J	mg/l	0.00100	0.00034	1	06/05/19 15:50	06/06/19 05:22	EPA 3005A	1,6020B	MG
Dissolved Metals - N	/lansfield	Lab									
Arsenic, Dissolved	0.00097		mg/l	0.00050	0.00016	1	06/06/19 22:15	06/07/19 14:49	EPA 3005A	1,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	06/06/19 22:15	06/07/19 14:49	EPA 3005A	1,6020B	AM
Chromium, Dissolved	0.00049	J	mg/l	0.00100	0.00017	1	06/06/19 22:15	06/07/19 14:49	EPA 3005A	1,6020B	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	06/06/19 22:15	06/07/19 14:49	EPA 3005A	1,6020B	AM

Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
	5	SAMPLE RESULTS		
Lab ID:	L1922044-02		Date Collected:	05/24/19 10:40
Client ID:	WELL B4		Date Received:	05/24/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00060		mg/l	0.00050	0.00016	1	06/05/19 15:50	06/06/19 05:26	EPA 3005A	1,6020B	MG
Cadmium, Total	0.00013	J	mg/l	0.00020	0.00005	1	06/05/19 15:50	06/06/19 05:26	EPA 3005A	1,6020B	MG
Chromium, Total	0.01151		mg/l	0.00100	0.00017	1	06/05/19 15:50	06/06/19 05:26	EPA 3005A	1,6020B	MG
Lead, Total	0.00161		mg/l	0.00100	0.00034	1	06/05/19 15:50	06/06/19 05:26	EPA 3005A	1,6020B	MG

Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
	S	AMPLE RESULTS		
Lab ID:	L1922044-03		Date Collected:	05/24/19 10:10
Client ID:	WELL C7		Date Received:	05/24/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00053		mg/l	0.00050	0.00016	1	06/05/19 15:50	06/06/19 05:30	EPA 3005A	1,6020B	MG
Cadmium, Total	0.00011	J	mg/l	0.00020	0.00005	1	06/05/19 15:50	06/06/19 05:30	EPA 3005A	1,6020B	MG
Chromium, Total	0.01036		mg/l	0.00100	0.00017	1	06/05/19 15:50	06/06/19 05:30	EPA 3005A	1,6020B	MG
Lead, Total	0.00100		mg/l	0.00100	0.00034	1	06/05/19 15:50	06/06/19 05:30	EPA 3005A	1,6020B	MG

Project Name:	WELL SAMPLING		Lab Number:	L1922044
Project Number:	Not Specified		Report Date:	06/07/19
		SAMPLE RESULTS		
Lab ID:	L1922044-04		Date Collected:	05/24/19 11:10
Client ID:	WELL A4		Date Received:	05/24/19
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified

Sample Depth:

Matrix:

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
field Lob										
0.00152		mg/l	0.00050	0.00016	1	06/05/19 15:50	06/06/19 05:34	EPA 3005A	1,6020B	MG
0.00008	J	mg/l	0.00020	0.00005	1	06/05/19 15:50	06/06/19 05:34	EPA 3005A	1,6020B	MG
0.02900		mg/l	0.00100	0.00017	1	06/05/19 15:50	06/06/19 05:34	EPA 3005A	1,6020B	MG
0.00253		mg/l	0.00100	0.00034	1	06/05/19 15:50	06/06/19 05:34	EPA 3005A	1,6020B	MG
/lansfield	Lab									
0.00029	J	mg/l	0.00050	0.00016	1	06/06/19 22:15	06/07/19 15:06	EPA 3005A	1,6020B	AM
ND		mg/l	0.00020	0.00005	1	06/06/19 22:15	06/07/19 15:06	EPA 3005A	1,6020B	AM
0.00073	J	mg/l	0.00100	0.00017	1	06/06/19 22:15	06/07/19 15:06	EPA 3005A	1,6020B	AM
ND		mg/l	0.00100	0.00034	1	06/06/19 22:15	06/07/19 15:06	EPA 3005A	1,6020B	AM
	Result field Lab 0.00152 0.00008 0.02900 0.00253 Mansfield 0.00029 ND 0.00073 ND	Result Qualifier field Lab - 0.00152 - 0.00008 J 0.02900 - 0.00253 - 0.00029 J 0.00029 J 0.00029 J 0.00029 J ND - 0.00073 J	Result Qualifier Units field Lab mg/l 0.00152 mg/l 0.00008 J mg/l 0.02900 mg/l 0.00253 mg/l 0.00029 mg/l 0.00029 J mg/l 0.00029 J mg/l 0.00029 J mg/l ND mg/l mg/l ND mg/l mg/l	Result Qualifier Units RL field Lab mg/l 0.00050 0.00152 mg/l 0.00050 0.00008 J mg/l 0.00020 0.02900 mg/l 0.00100 0.00253 mg/l 0.00100 0.00029 J mg/l 0.00100 ND mg/l 0.00020 0.00100 ND J mg/l 0.00100 ND mg/l 0.00100 0.00100	Result Qualifier Units RL MDL field Lab mg/l 0.00050 0.00016 0.00152 mg/l 0.00020 0.00005 0.00008 J mg/l 0.00020 0.00005 0.02900 mg/l 0.00100 0.00017 0.00253 mg/l 0.00100 0.00034 Mansfield Lab mg/l 0.00020 0.00016 ND mg/l 0.00100 0.00017 0.00073 J mg/l 0.00100 0.00017 ND mg/l 0.00100 0.00017 ND mg/l 0.00100 0.00017	Result Qualifier Units RL MDL Pictor field Lab mg/l 0.00050 0.00016 1 0.00152 mg/l 0.00020 0.00005 1 0.0008 J mg/l 0.00100 0.00017 1 0.02900 mg/l 0.00100 0.00017 1 0.00253 mg/l 0.00100 0.00034 1 Mansfield Lab mg/l 0.00050 0.00016 1 0.00290 mg/l 0.00100 0.00017 1 0.000253 mg/l 0.00050 0.00016 1 ND mg/l 0.00050 0.00016 1 ND mg/l 0.00100 0.00017 1 ND mg/l 0.00100 0.00017 1	Result Qualifier Units RL MDL Prepared field Lab mg/l 0.00050 0.00016 1 06/05/19 15:50 0.00152 mg/l 0.00020 0.00005 1 06/05/19 15:50 0.002900 mg/l 0.00100 0.00017 1 06/05/19 15:50 0.00253 mg/l 0.00100 0.00034 1 06/05/19 15:50 0.00290 mg/l 0.00100 0.00034 1 06/05/19 15:50 0.00253 mg/l 0.00100 0.00034 1 06/05/19 15:50 0.00029 J mg/l 0.00100 0.00016 1 06/05/19 12:15 ND mg/l 0.00020 0.00016 1 06/06/19 22:15 0.00073 J mg/l 0.00100 0.00017 1 06/06/19 22:15 ND mg/l 0.00100 0.00034 1 06/06/19 22:15	Result Qualifier Units RL MDL Pilution Factor Date Prepared Date Analyzed field Lab 0.00152 mg/l 0.00050 0.00016 1 06/05/19 15:50 06/06/19 05:34 0.00008 J mg/l 0.00020 0.00005 1 06/05/19 15:50 06/06/19 05:34 0.02900 mg/l 0.00100 0.00017 1 06/05/19 15:50 06/06/19 05:34 0.0253 mg/l 0.00100 0.00034 1 06/05/19 15:50 06/06/19 05:34 0.00029 J mg/l 0.00100 0.00034 1 06/05/19 15:50 06/06/19 05:34 0.00029 J mg/l 0.00050 0.00016 1 06/06/19 22:15 06/07/19 15:06 ND mg/l 0.00100 0.00017 1 06/06/19 22:15 06/07/19 15:06 0.00073 J mg/l 0.00100 0.00034 1 06/06/19 22:15 06/07/19 15:06	ResultQualifierUnitsRLMDLDilutionDate PreparedDate AnalyzedPrep MethodImage: Second CondentImage:	ResultQualifierUnitsRLMDLDilution FactorDate PreparedDate AnalyzedPrep MethodAnalytical Method600152mg/l0.000500.00016106/05/19 15:5006/06/19 05:34EPA 3005A1,6020B0.00152mg/l0.000200.00005106/05/19 15:5006/06/19 05:34EPA 3005A1,6020B0.00200mg/l0.001000.00017106/05/19 15:5006/06/19 05:34EPA 3005A1,6020B0.02200mg/l0.001000.00034106/05/19 15:5006/06/19 05:34EPA 3005A1,6020B0.00253mg/l0.001000.00034106/06/19 22:1506/07/19 15:06EPA 3005A1,6020B0.0029Jmg/l0.000500.00015106/06/19 22:1506/07/19 15:06EPA 3005A1,6020BNDmg/l0.001000.00017106/06/19 22:1506/07/19 15:06EPA 3005A1,6020B0.00073Jmg/l0.001000.00017106/06/19 22:1506/07/19 15:06EPA 3005A1,6020BNDmg/l0.001000.00034106/06/19 22:1506/07/19 15:06EPA 3005A1,6020B0.00073Jmg/l0.001000.00034106/06/19 22:1506/07/19 15:06EPA 3005A1,6020B0.00074Mg/l0.001000.00034106/06/19 22:1506/07/19 15:06EPA 3005A1,6020B

Project Name:	WELL SAMPLING	Lab Number:	L1922044
Project Number:	Not Specified	Report Date:	06/07/19
	SAM	PLE RESULTS	
Lab ID:	L1922044-05	Date Collected	: 05/24/19 10:25
Client ID:	WELL C5	Date Received	: 05/24/19
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00042	J	mg/l	0.00050	0.00016	1	06/05/19 15:50	06/06/19 05:39	EPA 3005A	1,6020B	MG
Cadmium, Total	0.00011	J	mg/l	0.00020	0.00005	1	06/05/19 15:50	06/06/19 05:39	EPA 3005A	1,6020B	MG
Chromium, Total	0.03946		mg/l	0.00100	0.00017	1	06/05/19 15:50	06/06/19 05:39	EPA 3005A	1,6020B	MG
Lead, Total	0.00094	J	mg/l	0.00100	0.00034	1	06/05/19 15:50	06/06/19 05:39	EPA 3005A	1,6020B	MG

INORGANICS & MISCELLANEOUS

 Lab Number:
 L1922044

 Report Date:
 06/07/19

Project Name:WELL SAMPLINGProject Number:Not Specified

Lab ID:	L1922044-01	Date Collected:	05/24/19 10:55
Client ID:	WELL B3	Date Received:	05/24/19
Sample Location	: BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	oorough Lat)							
Turbidity	140	NTU	1.0	0.30	5	-	05/25/19 09:53	121,2130B	MA
Specific Conductance @ 25 C	1000	umhos/	cm 10	10.	1	-	05/25/19 08:42	1,9050A	MA
Phenolics, Total	ND	mg/l	0.030	0.006	1	05/30/19 04:30	05/31/19 05:22	4,420.1	GD

 Lab Number:
 L1922044

 Report Date:
 06/07/19

Project Name:WELL SAMPLINGProject Number:Not Specified

Lab ID:	L1922044-02		Date Colle	cted:	05/24/19 10:40	
Client ID:	WELL B4		Date Rece	eived:	05/24/19	
Sample Location:	BUFFALO, NY		Field Prep	:	Not Specified	
Sample Depth:						
Matrix:	Water					
		Dilution	Date	Date	Analytical	

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westh	orough Lat)								
Turbidity	34		NTU	0.20	0.06	1	-	05/25/19 09:53	121,2130B	MA
Specific Conductance @ 25 C	3200	u	mhos/cm	10	10.	1	-	05/25/19 08:42	1,9050A	MA
Phenolics, Total	ND		mg/l	0.030	0.006	1	05/30/19 04:30	05/31/19 05:23	4,420.1	GD

Serial	No:06071917:10
oonar	110.0007 1017.10

Lab Number: L1922044 Report Date: 06/07/19

Project Name:WELL SAMPLINGProject Number:Not Specified

Lab ID:	L1922044-03	Date Collected:	05/24/19 10:10
Client ID:	WELL C7	Date Received:	05/24/19
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:	Water		
Matrix:	vvater		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	oorough Lat)								
Turbidity	27		NTU	0.20	0.06	1	-	05/25/19 09:53	121,2130B	MA
Specific Conductance @ 25 C	4100	u	mhos/cm	10	10.	1	-	05/25/19 08:42	1,9050A	MA
Phenolics, Total	ND		mg/l	0.030	0.006	1	05/30/19 04:30	05/31/19 05:24	4,420.1	GD

Serial	No:06071917:10
oonar	110.0007 1017.10

 Lab Number:
 L1922044

 Report Date:
 06/07/19

Project Name:WELL SAMPLINGProject Number:Not Specified

Lab ID:	L1922044-04	Date Collected:	05/24/19 11:10
Client ID:	WELL A4	Date Received:	05/24/19
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier U	Jnits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	oorough Lat	C								
Turbidity	120	1	NTU	1.0	0.30	5	-	05/25/19 09:53	121,2130B	MA
Specific Conductance @ 25 C	4600	um	hos/cm	10	10.	1	-	05/25/19 08:42	1,9050A	MA
Phenolics, Total	ND		mg/l	0.030	0.006	1	05/30/19 04:30	05/31/19 05:25	4,420.1	GD

 Lab Number:
 L1922044

 Report Date:
 06/07/19

Project Name:WELL SAMPLINGProject Number:Not Specified

Lab ID:	L1922044-05	Date Collected:	05/24/19 10:25
Client ID:	WELL C5	Date Received:	05/24/19
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	oorough Lal	C								
Turbidity	13		NTU	0.20	0.06	1	-	05/25/19 09:53	121,2130B	MA
Specific Conductance @ 25 C	3200	U	mhos/cm	10	10.	1	-	05/25/19 08:42	1,9050A	MA
Phenolics, Total	ND		mg/l	0.030	0.006	1	05/30/19 04:30	05/31/19 05:26	4,420.1	GD

Project Name:WELL SAMPLINGProject Number:Not Specified

Serial_No:06071917:10 *Lab Number:* L1922044 *Report Date:* 06/07/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information				Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1922044-01A	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-01B	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-01C	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-01D	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		TURB-2130(2),COND-9050(28)	
L1922044-01E	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		-	
L1922044-01F	Plastic 250ml HNO3 preserved	А	<2	<2	4.6	Y	Absent		CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180)	
L1922044-01G	Amber 1000ml H2SO4 preserved	А	<2	<2	4.6	Y	Absent		NY-TPHENOL-420(28)	
L1922044-01X	Plastic 250ml HNO3 preserved Filtrates	A	NA		4.6	Y	Absent		CR-6020S(180),PB-6020S(180),AS- 6020S(180),CD-6020S(180)	
L1922044-02A	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-02B	Vial HCl preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-02C	Vial HCl preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-02D	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		TURB-2130(2),COND-9050(28)	
L1922044-02E	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		-	
L1922044-02F	Plastic 250ml HNO3 preserved	A	<2	<2	4.6	Y	Absent		CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180)	
L1922044-02G	Amber 1000ml H2SO4 preserved	А	<2	<2	4.6	Y	Absent		NY-TPHENOL-420(28)	
L1922044-02X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.6	Y	Absent		HOLD-METAL-DISSOLVED(180)	
L1922044-03A	Vial HCl preserved	А	NA		4.6	Υ	Absent		NYTCL-8260(14)	
L1922044-03B	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-03C	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)	
L1922044-03D	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		TURB-2130(2),COND-9050(28)	
L1922044-03E	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		-	
L1922044-03F	Plastic 250ml HNO3 preserved	A	<2	<2	4.6	Y	Absent		CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180)	

Project Name:WELL SAMPLINGProject Number:Not Specified

Serial_No:06071917:10 *Lab Number:* L1922044 *Report Date:* 06/07/19

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1922044-03G	Amber 1000ml H2SO4 preserved	А	<2	<2	4.6	Y	Absent		NY-TPHENOL-420(28)
L1922044-03X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.6	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1922044-04A	Vial HCl preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-04B	Vial HCl preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-04C	Vial HCl preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-04D	Plastic 250ml unpreserved	А	7	7	4.6	Υ	Absent		TURB-2130(2),COND-9050(28)
L1922044-04E	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		-
L1922044-04F	Plastic 250ml HNO3 preserved	А	<2	<2	4.6	Y	Absent		CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180)
L1922044-04G	Amber 1000ml H2SO4 preserved	А	<2	<2	4.6	Y	Absent		NY-TPHENOL-420(28)
L1922044-04X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.6	Y	Absent		CR-6020S(180),PB-6020S(180),AS- 6020S(180),CD-6020S(180)
L1922044-05A	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-05B	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-05C	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-05D	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		TURB-2130(2),COND-9050(28)
L1922044-05E	Plastic 250ml unpreserved	А	7	7	4.6	Y	Absent		-
L1922044-05F	Plastic 250ml HNO3 preserved	А	<2	<2	4.6	Y	Absent		CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180)
L1922044-05G	Amber 1000ml H2SO4 preserved	А	<2	<2	4.6	Y	Absent		NY-TPHENOL-420(28)
L1922044-05X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.6	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1922044-06A	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)
L1922044-06B	Vial HCI preserved	А	NA		4.6	Y	Absent		NYTCL-8260(14)

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number: L1922044

Report Date: 06/07/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report - No QC w/J' Qual

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number:	L1922044
Report Date:	06/07/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (flag only applies to associated field samples that have detectable concentrations of the analyte which was detected above the reporting limit in the associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Lab Number:
 L1922044

 Report Date:
 06/07/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cer	Rd, Suite 5 /ay oper Ave, Suite 10	5	Page	e 1 f 1		Date in	Rec' Lab	ď	5)	24/1	9	ALPHA Job #		
Westborough MA 0158	Mansfield MA 02048		COOLER TO A					226				1 49 22044 Billiog laformation				
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	Well Samplin Buffalo, NY	g			De [ASP	es IS (1	File)		Same as Client Info P0 # 4600032598				
Client Information		Project #					1	Othe	er							
Client: Sumitor	io (GOODYR-ISLE)	(Use Project name as Pr	oject#)				Re	gulatory	Requ	uireme	ent			Disposal Site Information		
Address: PO Box	1109	Project Manager:	Mark Craft				1	NY TOGS NY Part 375 Please identify below location of								
Buffalo, NY 14240		ALPHAQuote #:					1	AWC	Stand	lards		NY CI	P-51	applicable disposal facilities.		
Phone: 716-879-	-8497	Turn-Around Time					1	NYR	lestrict	ed Use		Other		Disposal Facility:		
Fax: 716-879	-8400	Standard	12	Due Date:				NYU	Inrestri	cted Us	90			NJ NY		
Email: mcraft@	sumitomorubber-usa.co	Rush (only if pre approved)		# of Days:	é		1	NYC	Sewer	Discha	arge			Other:		
These samples have	been previously analyz	ed by Alpha					A	ALYSI	S					Sample Filtration	0	
Other project speci Total and Dissolved Volatiles List: MEK, I Please specify Meta	fic requirements/comm Metals List: As,Cd,Cr,Pt Benzene, 1,1-dichloroeti als or TAL.	nents: (Lab to filter dissolved m nane, 1,2-dichloroethane a	netals & Only a nd 1,1,1-trichlo	analyze if turb proethane-	Site Specific - (05< si qu henols hetals difty difty									☐ Done ✓ Lab to do Preservation ✓ Lab to do	ta- Bo	
				2175)-	Total P	Total I	issolve	cific Ce	Turt		(Please Specify below)	1				
ALPHA Lab ID S		ample ID	Colle	ection	Sample	Sample	r's U			Ģ	Spe					
(Lab Use Only)			Date	Time	Matrix	Initials	ž	_	-	-		-		Sample Specific Comments		
22044-01	Well B3		05/21/19	1055	GW	H	X	X	X	x	X	X			7	
-02	Well B4			1040	GW		X	X	X	X	X	X			7	
-03	Well C7			1010	GW		X	X	X	X	X	X			7	
-04	Well A4			1110	GW		X	X	X	X	X	X			7	
-05	Well C5		¥.	1035	GW	*	x	×	×	x	x	x			7	
-06	Trip Blank				DI Water		x	-	-	-	-				12	
							-								-	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N	lo: MA935 lo: MA015		Cor	ntainer Typ Preservati	ve v	A	Р	P	Р	Р		Please print clearly, legit and completely. Sampler not be logged in and turnaround time clock wi	oly s can ill not	
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Patrick by	By: AA	Date/ 05/24/	Time 19 123	0	Re	D ceived E	JC By:	A	A	Date	a/Time	start until any ambiguitie resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALP TERMS & CONDITIONS	s are IG T ES HA'S	
Form No: 01-25 (rev. 30	-Sept-2013)															

ALPHA

275 Cooper Ave Tonawanda, NY 14150 716-427-5225 alphalab.com

	Site Name: Goodyear Dunlop Tire
	Sampling Date: 05/23/19 Purp
	Monitoring Well ID: A4
	Sampling Date: 65/24/19
	Well Structure Data
Evacuation Date: 5/23/19	Water Elevation: ES 6.61ft.
Top of Inner Casing Elevation:	Bottom of Well: 28.30ft 3.5359al
Monitoring Well Diameter: 2.5 incl	Volume of Standing Water: 21.69 7.37/12 gullits
Water Level: 6.61 ft	Volume of Evacuated Water: 10.6 gal
Appearance/Observation:	No Oder
<u></u>	
	Well Field Parameter Data
pH - Standard Units: 7.58	Specific Conductance:
Temperature - deg C/deg F 13.1 0	Turbidity: <u>Moderato</u>
	% Recharge: <u>21.69 - 4.65 = 27%</u>
	Misc. Well Information
Was Well Locked? Yes	Physical Condition of Well: 6000
Was Well ID Easily Visible? Yes	Solids Content: Moderate
Weather on Sampling Day <u>Clear</u>	Purging Method: ISLO pump
Purage name	
Pat	uch bleyedy 25/24/10
Technician	n / () () Date /
	v

Acous			275 Cooper Ave
LLFMM			Tonawanda, NY 14150
			716-427-5225
			aipnaiab.com
	Groundwater Moni	toring Information She	et
	Site I	Name: Goodyear Dunlop	Tire
	Samplin	g Date: 05/23/19 4	ye
	Monitoring V	Vell ID: B3	
	·	······································	
	Samplin	g Date: 05/24/19	
	Well S	Structure Data	
Evacuation Date:	05/23/19	Water Elevation:	5
Top of Inner Casing Elevation:		Bottom of Well:	17.20
Monitoring Well Diameter:	d inch .	Volume of Standing Water:	to 1.956 gallous
Water Level:	5.20ft	Volume of Evacuated Water,	5.8
Appearance/Observation:	(leve / No Od		
	<u>Cicki / 100 041</u>		
	Well Field	Parameter Data	
	1 01		
pH - Standard Units:	<u> </u>	Specific Conductance:	
Temperature - deg C/deg F	11.5	Turbidity:	Claudy ange
		% Recharge:	1200 9.45 780
	Misc. W	/ell Information	
Was Well Locked?	Yes	Physical Condition of Well:	Good
Was Well ID Easily Visible?	Yes	Solids Content:	minienal
Weather on Sampling Day	Purgesain	Puraina Method	Isco Phone
194	Sample Clear		
5	Λ		
	1200	Jahr welle	1 .
-	Technician	i longerg	05/24/14 Data
		v -	

1.

1

275 Cooper Ave Tonawanda, NY 14150 716-427-5225 alphalab.com

Site Name: Goodyear Dunlop Tire
Sampling Date: 05/23/19 Pure
Monitoring Well ID: C-7
Sampling Date: 65 /2+//19
/ Well Structure Date
Evacuation Date: 05/23/19 Water Elevation:
Top of Inner Casing Elevation: Bottom of Well: Calles
Monitoring Well Diameter: 2.5 19.3' Volume of Standing Water: 9.377 Callors
Water Level: <u>4:25</u> Volume of Evacuated Water: 10.09ml/m
Appearance/Observation: Clear/No ODER
Well Field Paramotor Data
pH - Standard Units: 7.35
Temperature - deg C/deg F 12.0°C
Turbidity:
% Recharge: $1.3 - 12.65 = 65\%$
Misc. Well Information
Was Well Locked? Yes Physical Condition of Well: OK
Was Well ID Easily Visible? Yes Solids Content:
Weather on Sampling Day puzz Rain Cler Saupe Purging Method: Purs teltic Purg
Patricky Knycol 65/24/19 Technician Date
Technician Date Date

A 64 Proto State C

275 Cooper Ave Tonawanda, NY 14150 716-427-5225 alphalab.com

Site Name: Goodyear Dunlop Tire
Sampling Date: 05/23/19 Junge
Monitoring Well ID: C-5
Sampling Date: 05/24/19
Well Structure Data
Evacuation Date: 05/23/9 Water Elevation:
Top of Inner Casing Elevation: Bottom of Well:
Monitoring Well Diameter: 2.5 Volume of Standing Water: 4132 Gallins
Water Level: 4.15 Volume of Evacuated Water 10 0 0 1 1 mil
Appearance/Observation:
Well Field Parameter Data
pH - Standard Units: 7.11 Specific Conductance:
Temperature - deg C/deg F 12.0°C Turbidity:
% Recharge: 25.35-22.40 = 85%
Misc. Well Information
Was Well Locked? Physical Condition of Well:
Was Well ID Easily Visible? UPS Solids Content Madauate
Weather on Sampling Day New Click Soupe Purging Method: Pursitelite Pung
Technician Technician Date

275 Cooper Ave Tonawanda, NY 14150 716-427-5225 alphalab.com

Site	Name: Goodyear Dunlop Tire
Sampli	ing Date: 05/23/19 Paye
Monitoring	
Sampli	ing Date: 05/24/19 Souple
Weil	Structure Data
Evacuation Date: 65/23/19	Water Elevation:
Top of Inner Casing Elevation:	Bottom of Well: 22.50
Monitoring Well Diameter: 2. Sinch	Volume of Standing Water: 17.70 2.885 action
Water Level: 4.80	Volume of Evacuated Water: 8.6
Appearance/Observation: <u>Llear No De</u>	der
Well Fig	eld Parameter Data
pH - Standard Units: 7.68	Specific Conductance:
Temperature - deg C/deg F 11-8	Turbidity: <u>Clean</u>
	% Recharge: $17-7-7.95 = 4560$
Misc.	Well Information
Was Well Locked? Yes	Physical Condition of Well:
Was Well ID Easily Visible? Yes	Solids Content: Class
Weather on Sampling Day 10 m Puge	Purging Method: ISLO Dum D
Clear Sample	44
· /	Y. a I
Technician	tury 100gerly 05/24/19
	Uate Date

1000 -----

-

275 Cooper Ave Tonawanda, NY 14150 716-427-5225 alphalab.com

	Sit	e Name: Goodyear Dunlop	Tire
	Sam	pling Date: 05/23/9	Record date only
	Monitorin	ng Well ID: A-G	
	Sam	pling Date:	
	We	ell Structure Data	1 10 10
Evacuation Date: _		Water Elevation:	<u> </u>
Top of Inner Casing Elevation: _	<u>.</u>	Bottom of Well:	
Monitoring Well Diameter:		Volume of Standing Water:	
Water Level: _	6.61'	Volume of Evacuated Water:	
Appearance/Observation:	OK From	CAN MUG	
	Well F	ield Parameter Data	
pH - Standard Units: _		Specific Conductance:	
Temperature - deg C/deg F_		Turbidity:	
		% Recharge:	and the second second
	Min		
		2. Well information	
Was Well Locked?	NO	Physical Condition of Well:	OK
Was Well ID Easily Visible?_	No	Solids Content:	
Weather on Sampling Day_	Kain	Purging Method:	
·	Technician		Date

Appendix C

Well Condition Inspection Forms

Appendix I

Sumitomo Rubber USA, LLC Well Inspection Form

			1								NA	if Stie	k-up	(SU)								·
Well Number	Installation Type	Inspector Initials	Inspection Date	Access	Installed Depth (Ft. BTOR)	Sounded Depth (Ft. BTOR)	Exterior ID	Interior ID	Condition of Well Casing	Flushmount (FM) - Surface Water	FM - Water in Curb Box	Condition of Curb Box	Gasket	Bolts	Lid	Concrete Base or Cement Pad	J-plug or Slip Cap	Locks	NAPL Present	VAPL Thickness (feet)		
OMW-A6	steel	UB	10/10/18	6	(23.5 ft. bgs)	Le.Le'	Ale	Alo	6	Sal	gal	6	0	6	G	6	6	6	N		No lock required. Cover is held	ma
OMW-C1					19.84																This were is not found will loop	re
OMW-B3	steel	UB	10/10/1B	6	17.28	13.5	B 3	B 3	6	5gul	1.63	6	G	G	6	6	6	6	M	-	LOCK CEDIALED SEDI 2012	
OMW-B4	steel	aB	10/10/13	6	(20.5 ft. bgs)	5.7'	84	BY	6	35	2.78	G	G	6	6	(2	G	G	N	-	Loca molace dept. 2018	
OMW-A4	steel	CUB	101018	0	(23.0 ft. bgs)	7.1'	A4	AU	6	aal	3 ad	6	6	6	6	6	6	6	N		LOCK replaced July 2018	
OMW-C5	steel	CUB	BIDIDI	6	28.97	8.3	3	G	6	a	241	6	6	6	6	6	6	6	1A		concrete Base is deteriorating	
OMW-C7	Steel	CUB	10110118	6	(21.0 ft. bgs)	7.11	œ	E	6	gal	3 au	6	6	6	6	6	G	0	N	_	LOCK replaced Them 2019	
										100	-											

Notes:

Ft. BTOR - Feet below top of riser ft. bgs - Feet below ground surface NAPL - Non-aqueous Phase Liquid

Ρ - Poor

G - Good

- Not Applicable

NA N Y - No

- Yes

EW - Extraction Well

List Corrective Actions Required to Repair Deficiencies
500

DEO -00011 / 0-1 Semi-Annual Landfill Cap and Monitoring Well Visual Inspection Form See PPS -00431

Appendix I

Sumitomo Rubber USA, LLC Well Inspection Form

	-	12	_	-			_			1	NA	f Stic	k-up (S	SU)								
Well Number	Installation Type	Inspector Initials	Inspection Date	Access	Installed Depth (Ft. BTOR)	Sounded Depth (FL, BTOR)	Exterior ID	Interior ID	Condition of Well Casing	Flushmount (FM) - Surface Water	FM - Water in Curb Box	Condition of Curb Box	Gasket	Bolts	Lid	Concrele Base or Cement Pad	J-plug ar Slip Cap	Locks	NAPL Present	NAPL Thickness (leel)	Notes	List Corrective Actions Required to Reput Definitions in
DMW-A6	S	CMB	6/19/1	16	(23.5 ft, bgs)	NM	ALO	ALP	G	2	Σ	G	G	G- (5	6	6	6	ΝÛ	NA		and concerne wellows helpine to hepair benchmers
OMW-C1					19.84																NOT Located	
OMW-B3	S	CMB	6/19/19	6	17.28	12.2	BB	63	G	M	N	MA	NA	NA	WA I	G	G	G	NO	NA		
OMW-B4	S	CMB	1		(20.5 ft, bgs)	225	BY	84	G	1	1	1			10	5	G	G	1	1		
DMW-A4	S	CIMB			(23.0 ft, bgs)	28.3	14	AL	6		1		Π		\prod	G	G	G				
OMW-C5	S	CMB			28.97	29.5	cs	5	0		Π	T				G	G	G	T			
OMW-C7	S	CIMB	1	J	(21.0 ft. bos)	23.55	9	07	6	ł	ł	L	1	1	1	6	3	G	Y	L		

....

Notes:

Noiss: Ft. BTOR - Feet below top of riser ft.bgs - Feet below ground surface NAPL - Non-aqueous Phase Liquid P - Poor G - Good NA - Not Applicable N - No Y - Yes EW - Extraction Well

GHD 11137137 (4) APRI Well Inspection Form

Page 1 of 1