DUNLOP FALKEN

July 24, 2023

Mr. Glenn May New York State Dept. of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2915

Revised Periodic Review Report and Institutional Controls Certification - Site No. 915018

Dear Mr. May,

Please find attached the Periodic Review Report (PRR) and Institutional and Engineering Controls (IC/EC) Certification Forms in accordance with the Site Management Plan (SMP) for the Dunlop Tire and Rubber Site (Site No. 915018).

Please contact Joseph Hinkle if you have any questions or if you need any additional information.

Thank you,

Jøseph Hinkle

Bryironmental, Health and Safety Manager

(716) 879-8546

Cc: Christine Barton (Sumitomo)

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. 915018	Site Details	Box 1	
Site Name Dunlop Tire and Rubb	per		
Site Address: 3333 River Road City/Town: Tonawanda County: Erie Site Acreage: 25.000	Zip Code: 14150		
Reporting Period: June 30, 2022 to	June 30, 2023		
		YES	NO
Is the information above correct	1?	\checkmark	
If NO, include handwritten abov	re or on a separate sheet.		
Has some or all of the site propertax map amendment during this	erty been sold, subdivided, merged, or undergone Reporting Period?	e a	⊘
3. Has there been any change of u (see 6NYCRR 375-1.11(d))?	use at the site during this Reporting Period		✓
Have any federal, state, and/or for or at the property during this	local permits (e.g., building, discharge) been issuse Reporting Period?	ıed	\checkmark
-	tions 2 thru 4, include documentation or evide previously submitted with this certification fo		
5. Is the site currently undergoing	development?		\checkmark
		Box 2	
		YES	NO
Is the current site use consistent Closed Landfill	nt with the use(s) listed below?	\checkmark	
7. Are all ICs in place and function	ning as designed?	✓ □	
	HER QUESTION 6 OR 7 IS NO, sign and date bel E THE REST OF THIS FORM. Otherwise continu		
A Corrective Measures Work Plan	must be submitted along with this form to addre	ss these iss	sues.
Signature of Owner, Remedial Party of	or Designated Representative Da		

SITE NO. 915018 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

65.17-2-1.111 Sumitomo Rubber USA, LLC

Monitoring Plan O&M Plan

The March 1993 Record of Decision contained a general Institutional Control described as follows:

 Post-closure maintenance and monitoring for thirty years to ensure the long-term effectiveness of the remedy and provide early detection should failure occur;

and described more specifically as:

- Compliance with this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- · Groundwater monitoring must be performed as defined in this SMP; and
- Data and information pertinent to Site Management must be reported at the frequency and in a manner defined in this SMP.

There are no use restrictions on this site.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

65.17-2-1.111

Cover System

Fencing/Access Control

Monitoring Wells

Three seperate landfills are capped with modified 360 caps. Groundwater quality is monitored annually.

Under the requirements of the Order on Consent, Dunlop submitted a Conceptual IRM Closure Plan in November 1992 that detailed the closure of the three landfills. The landfills were closed in accordance with the plan;

Each landfill was capped with eighteen inches of clay compacted to a minimum permeability of 1 x 10-7 cm/sec and covered with six inches of soil amenable to plant growth. Due to the low concentrations of volatile organic compounds detected at the sites, and the absence of volatile readings above background levels during intrusive activities, gas venting systems were not required for any of the landfills. In addition, due to the presence of the impermeable underlying silty clay, groundwater/leachate collection and treatment was not required. Slopes of the final landfill cover systems ranged from approximately 4% to 33%.

There are no demarcation layers between the caps and underlying fill material.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted	
	engineering practices; and the information presented is accurate and compete. YES NO	
	\checkmark \Box	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	\checkmark \Box	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. 915018

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Joseph Hinkle	at 10 Sheridan Drive, Ton	awanda, NY 14150
print name	print business ac	idress
am certifying as Environmental, H	Health & Safety Manager	(Owner or Remedial Party)
for the Site named in the Site Detail		7/18/23
Signature of Owner, Remedial Part Rendering Certification	ty, or Designated Representative	Date '

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Richard J. Snyder, P.E.	at 2055 Niagara Falls Blvd., Niagara Falls, NY 14304
print name	print business address
am certifying as a Qualified Environment	ntal Professional for the Owner
	(Owner or Remedial Party)
	STATE OF NEW YORK
	STILLED & SWINGS
0	STRIP I SWADE
() // rH > 1	7-21-23
Thuled & Mayor	
Signature of Qualified Environmental P	Professional, for Date
the Owner or Remedial Party, Renderii	ng Certification (Req ui red for PE)

SUMITOMO RUBBER USA, LLC

TONAWANDA, NEW YORK LANDFILL CAP MANAGEMENT SITE MANAGEMENT PERIODIC REVIEW REPORT (PRR)

I. Introduction

The former Goodyear Dunlop Tires North America facility (Facility), now owned and operated by Sumitomo Rubber USA, LLC (Sumitomo), is located in Tonawanda, New York (see Figure 1). The Facility is approximately 128 acres in size and consists of two parcels of land addressed as 3333 and 3337 River Road. Sumitomo manages three historical waste disposal areas located on the 3333 River Road parcel, which together consist of approximately 25 acres. These three historical waste disposal areas are individually referred to as Disposal Site A, B, and C, and are hereinafter collectively referred to as the "Site". Figure 1 shows the approximate Site location and boundaries. Dunlop Tire Corporation (Dunlop) entered into an Order on Consent (Consent Order) on April 23, 1991 with the NYSDEC to determine the nature and extent of contamination at the Site resulting from historical disposal of industrial wastes. The Site boundaries coincide with the estimated limits of fill as depicted by URS Consultants, Inc. in their April 1992 report¹, and as shown in the March 1993 Record of Decision (ROD)². The Site is currently in the New York State (NYS) State Superfund Program (Site No. 915018), which is administered by the New York State Department of Environmental Conservation (NYSDEC). The Site is listed as a Class 4 site, indicating that it has been properly closed but requires continued Site management consisting of operation, maintenance, and/or monitoring.

A Site Management Plan (SMP) has been prepared for the Site to ensure implementation and management of the institutional controls (ICs) and engineering controls (ECs) in place for the Site. This Periodic Review Report (PRR) is being prepared to certify that site management activities are being conducted in accordance with the SMP.

II. Disposal Site Overview

Disposal Site A

Disposal Site A is located on the northwestern portion of the Facility (Figure 1). The surface of Site A consists of grass, trees, brush, and asphalt parking lot. Site A was reportedly used to dispose of various wastes including fly ash, slag, carbon black, asphalt, foam, tires, coal, and construction and demolition (C/D) debris until 1970, and

¹ URS Consultants, Inc., April 1992, Report of Field Investigation and Data Analysis, Inactive Disposal Site Nos. 915018 A, B, C, submitted to the NYSDEC.

² New York State Department of Environmental Conservation, March 1993, Record of Decision, Dunlop Tire and Rubber, Site No. 915018A, Site No. 915018B, Site No. 915018C.

July 21, 2023

C/D debris until 1979. The primary area of disposal, consisting of thicker fill, is located within the central and northern portions of Site A.

As indicated above, the boundaries of Disposal Site A coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern boundary (lateral extent of fill) was determined through excavation of eight test trenches by URS in 1991. The eastern and western boundaries were defined based on surface topography and configuration of waste piles. The northern extent of the fill could not be determined, as the presence of the parking lot prevented completion of test trenches in this area. As a result, the northern boundary was defined by the northwestern corner of Building 1 and a perimeter fence east of a 10,000-gallon water tank present at that time. Fill materials identified in the trenches included black and brown silt, reworked reddish/brown silty clay, ash, slag, carbon black, C/D debris, asphalt, foam, rubber tires, and coal. Three test holes were completed by Conestoga-Rovers & Associates (CRA) in 1983, and two test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site A.

Disposal Site B

Disposal Site B is located on the southwestern portion of the Facility (Figure 1). The surface of Site B consists of grass and asphalt parking lot and driveway. Site B was reportedly used to dispose of various solid wastes, including scrap rubber (natural and synthetic), golf balls, plastics, carbon black, fly ash, amines, antioxidants, and general refuse until 1970.

The boundaries of Disposal Site B coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern and western boundaries (lateral extent of fill) were determined through excavation of seven test trenches by URS in 1991. The eastern extent of the fill could not be determined, as the presence of the parking lot prevented completion of test trenches in this area. However, aerial photographs reportedly confirm waste disposal eastward into the parking lot. The northern extent of the fill could not be determined due to the presence of the settling pond. Fill materials identified in the trenches included black and brown silt, C/D debris, asphalt, coal, and rubber. Seventeen test holes were completed by CRA in 1983, and five test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site B.

Disposal Site C

Disposal Site C is located on the eastern portion of the Facility (Figure 1). The surface of Site C consists of grass. Site C was reportedly used as a coal ash landfill until 1973. Interviews with several Dunlop retirees in the early 1980s indicated that it was common practice to dispose of all types of waste at this Site, including drums of waste solvents and degreasers.

The boundaries of Disposal Site C coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 3). The southern and eastern boundaries (lateral extent of fill) were determined through excavation of six test trenches by URS in 1991. The northern boundary was defined by a scarp or steep bank along the outer toe of the

July 21, 2023

fill where it contacted the original surface. The berm-like area between the fence and railroad tracks constituting the western portion of Disposal Site C was defined based on topography. Fill materials identified in the trenches included black and brown silt, ash, slag, sand and gravel, C/D debris, and rubber. Five test holes were completed by CRA in 1983, and six test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site C.

III. Institutional and Engineering Control Plan

Since remaining contamination exists at the Site, ICs and ECs are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site.

Institutional Controls

A series of ICs are required by the ROD to:

- Implement, maintain and monitor EC systems
- 2. Prevent future exposure to remaining contamination

Adherence to these ICs on the Site is required by the ROD and the Consent Order and will be implemented under the Site's Long-Term Monitoring Plan. ICs may not be discontinued without an amendment to the Consent Order. The IC boundaries are the same as the Site boundaries.

The ICs, as described in the March 1993 ROD, consist of the following:

- Post-closure maintenance and monitoring will be conducted for 30 years, starting in 1995, to ensure the long-term effectiveness of the remedy and provide early detection should failure occur.
- The Order on Consent signed by Dunlop, effective April 23, 1991, is a legally binding agreement that requires the company to inspect the final cover quarterly (the frequency has been reduced to semi-annually) and maintain it for 30 years. This maintenance program, in combination with the post-closure monitoring program, will help ensure the long-term effectiveness of the cap. If during that time the Department concludes that any element of the cover fails to perform as predicted, or otherwise fails to protect human health or the environment, the Department can require Sumitomo to make modifications or repairs as required.
- If Sumitomo closes the Facility, the Order on Consent requires the company to continue its maintenance and monitoring programs.
- If the property is sold, Sumitomo must notify the Department within 60 days of closing and furnish the name(s) of the prospective new owner(s) of the property. In addition, Sumitomo must inform the new owner(s) about the landfills and that an Order on Consent is in effect.

Engineering Controls

The purpose of the ECs is to prevent direct human contact with on-Site waste, prevent the erosion and transport of contaminated soil from the Site into surrounding wetland

areas, control the migration of contaminated groundwater form the Site, and reduce environmental risk to wildlife living in the surrounding wetlands. The ECs, as described in the March 1993 ROD, include the following:

- The three landfills were capped with 18 inches of clay compacted to a minimum permeability (hydraulic conductivity) of 1x10⁻⁷ cm/sec. The caps were covered with 6 inches of soil amenable to plant growth, seeded, and mulched. Areas overlying the three landfills associated with vehicle traffic were paved in the fall of 1992.
- Surface water runoff is directed to catch basins that discharge to the plant settling pond. Monitoring of this pond occurs semi-annually as a SPDES permit condition.
- The Site is fenced.

The Site cap is a permanent control and the quality and integrity of the cap is inspected semi-annually.

IV. Inspections and Monitoring Activities

Semi-annual Cap Inspection

The cap at the Site is intended to prevent contact between Site visitors and workers and the remaining contamination. The cap consists of low permeability clay covered by soil capable of sustaining vegetation, and by areas of asphalt pavement over portions of the Site subject to vehicle traffic (no confirmed clay cap). An inspection of the cap at all three disposal Sites is performed on a semi-annual basis in accordance with the SMP schedule, regardless of the frequency of the Periodic Review Report (PRR).

Each cap inspection includes a walkover and visual assessment of the cap. The inspection does not include any areas where work is being performed. The following items are evaluated to ascertain the need for corrective action:

- Soil cover system The presence of desiccation cracks, freeze/thaw damage, and the presence of seeps or leachate breakouts.
- Asphalt The quality of the pavement for cracking or other deterioration.
- Landscaping The vigor and density of the vegetative cover both on the cap and in grass-lined drainage ways as well as bare, sparse, and undernourished areas.
- Erosion The presence of any erosion.
- Settlement Visual evidence of differential settlement and its impact on either the cap integrity or required drainage patterns.
- Drainage features Ditches, culverts, piping, and structures for siltation, ponding, or erosion damage.
- Ancillary features The integrity of other remedial action features such as fences and access roads and any items in need of repair.

The semi-annual cap inspections were completed on November 14, 2022, and May 18, 2023. The inspection forms are provided in Appendix A.

No issues were identified in Area C.

As noted on the 2022 PRR, deteriorated pavement was observed In Area A at the northwest corner of the building and in the paved portion of Area B. Paving maintenance was completed in November 2022 and paving was in good condition through the most recent inspection.

Some areas of topsoil erosion and sparse vegetation were identified along the steeper banks of the forebay to the stormwater retention pond which extends into Area B. Soil cover maintenance/repair activities will continue to be conducted as needed in accordance with Section 7.3 of the SMP.

Groundwater Monitoring

Groundwater monitoring is performed annually to monitor the long-term effectiveness of the Site closure and provide for early detection should failure occur, as outlined in the SMP. Trends in contaminant concentrations in groundwater are evaluated to determine if the ICs and ECs in place at the Site continue to be effective in protecting public health and the environment. Wells downgradient of the capped areas are monitored to evaluate the effectiveness of the closure action. Wells upgradient of the capped areas will be monitored, as needed based on the downgradient results, to determine if upgradient groundwater, rather than the disposal areas, might be a source of downgradient impacts. In this case, the effectiveness of the closure would not be questioned.

The Groundwater monitoring well network includes the following seven wells (Figures 2 and 3):

- Upgradient wells: OMW-A6 and OMW-C1 (could not be located)
- Downgradient wells: OMW-B3, OMW-B4, OMW-A4, OMW-C5, and OMW-C7

Contaminants to be analyzed during each sampling event are defined as Analytical Schedule A analytes and Analytical Schedule B analytes and are listed on Table 1.

If turbidity in a groundwater sample is above 50 nephelometric turbidity unit (NTU), then both filtered and unfiltered samples are analyzed for metals in order to determine if suspended solids are contributing to the reported concentrations and, therefore, potentially giving a false indication of groundwater concentrations.

The wells requiring sampling this year (year 29) were all down gradient wells OMW-B3, OMW-B4, and OMW-C7. The samples were analyzed for Schedule B analytes.

Groundwater sampling was completed May 18, 2023. All parameters in all wells were below the action levels identified in Table 2. A summary of the sample results is presented on Table 3. The laboratory data reports are provided in Appendix B.

No corrective actions are required at this time.

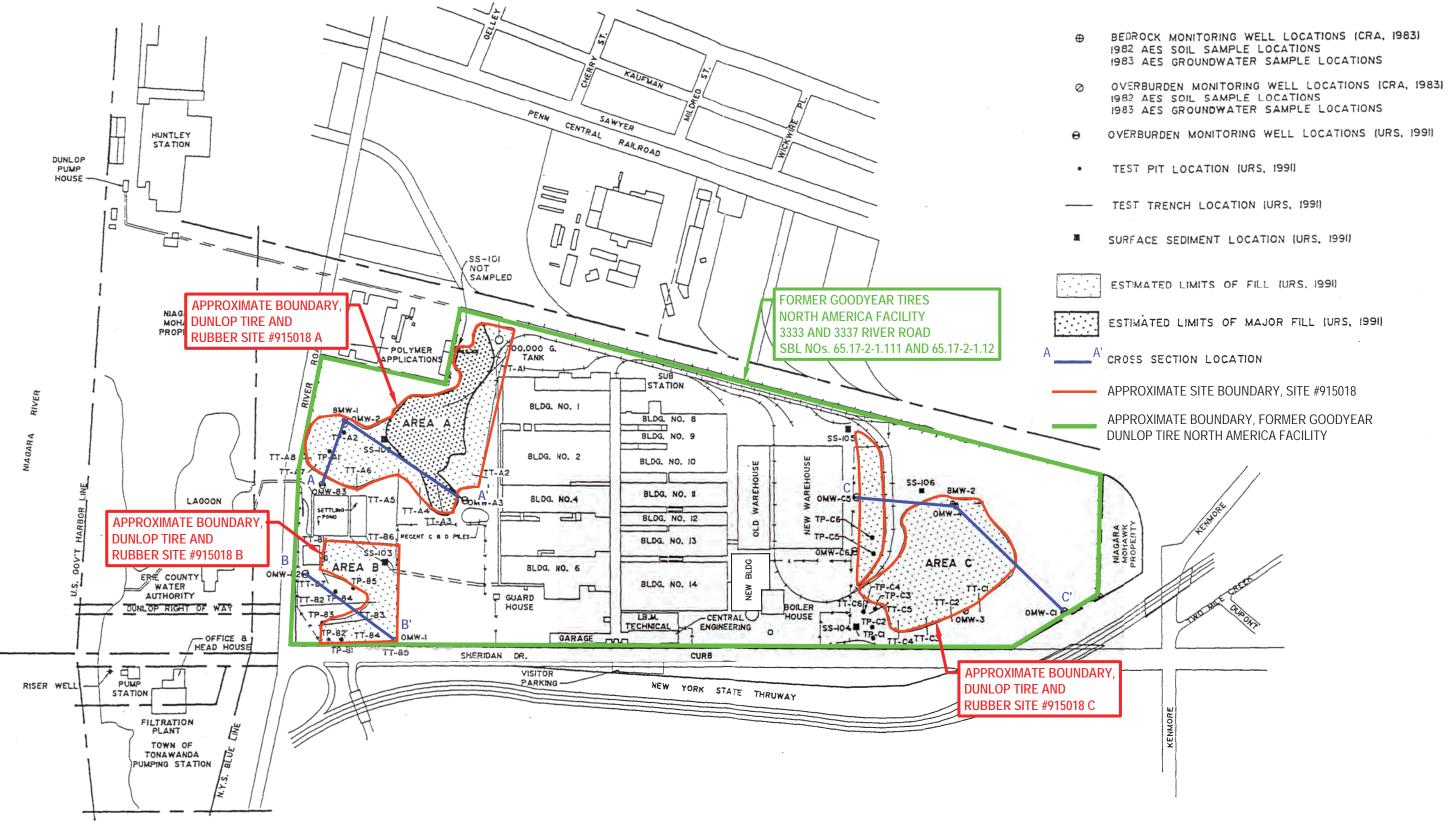
Visual Inspections of Monitoring Wells

All seven monitoring wells are visually inspected as part of the annual monitoring event, regardless of which wells are to be sampled. The wells are inspected for protective covers, well locks, water-tight locking caps, and cement pads or flush mount conditions.

The monitoring well inspections were completed on November 14, 2022 and May 18, 2023. Well inspection forms are provided in Appendix C. Well OMW-C1 could not be located. The inspections found all other wells to be in good condition.

No corrective actions are required.

Hydraulic Monitoring


Groundwater measurements were taken to assess groundwater flow conditions. Table 4 summarizes the water level measurements taken May 18, 2023. Figure 4 shows the updated groundwater contour map with groundwater flow direction.

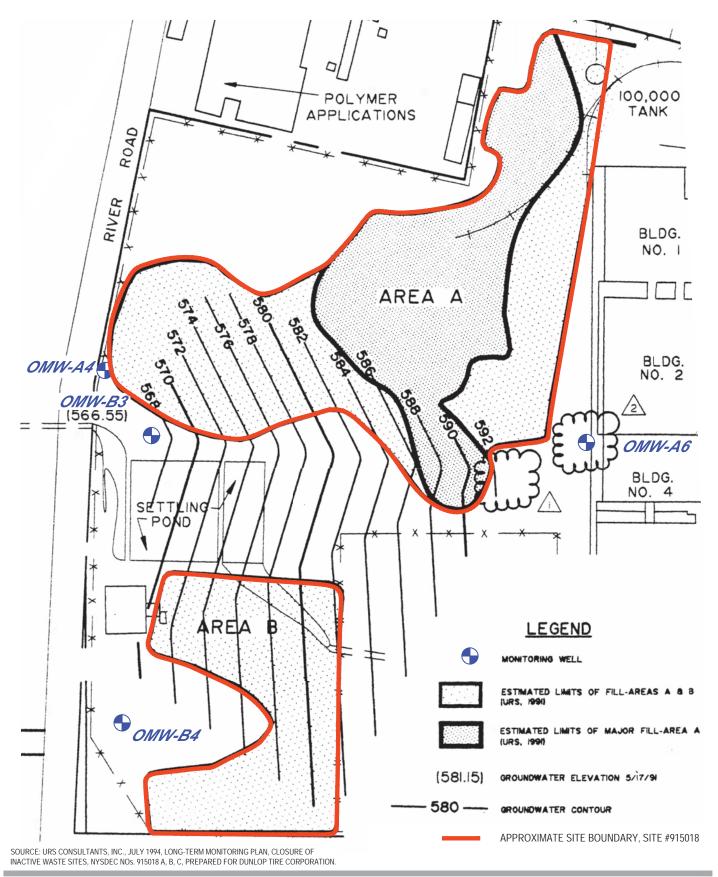
V. Compliance and Corrective Actions

Sumitomo is currently in compliance with the Long-Term Monitoring Plan year 29 of the 30-year plan requirements and the SMP. No issues of non-compliance were noted during this reporting year. Routine maintenance of pavement and the soil cover will continue as needed.

There are no recommendations or corrective actions based on the current conditions. The next landfill cap and monitoring well visual inspection will be completed in October 2023. The next groundwater monitoring event is scheduled to be completed in spring 2024.

LEGEND

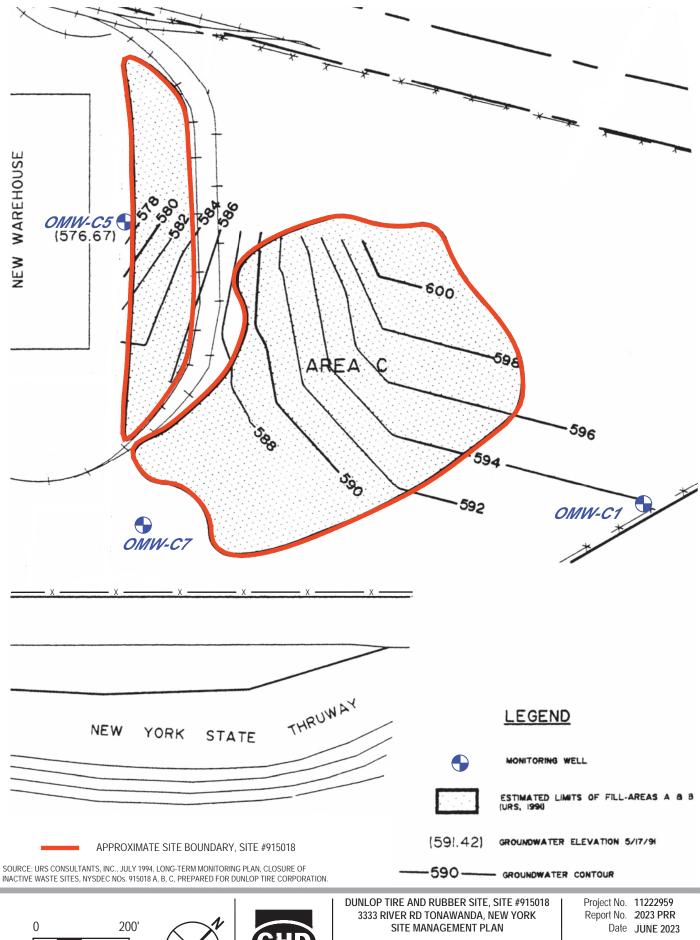
SOURCE: URS CONSULTANTS, INC., APRIL 1992, REPORT OF FIELD INVESTIGATION AND DATA ANALYSIS, INACTIVE DISPOSAL SITES NOS. 915018 A, B, C, SUBMITTED TO THE NYSDEC.



DUNLOP TIRE AND RUBBER SITE, SITE #915018 3333 RIVER RD TONAWANDA, NEW YORK SITE MANAGEMENT PLAN

SITE PLAN

Project No. 11222959 Report No. 2023 PRR Date JUNE 2023



DUNLOP TIRE AND RUBBER SITE, SITE #915018 3333 RIVER RD TONAWANDA, NEW YORK SITE MANAGEMENT PLAN

> LOCATIONS OF WELLS FOR LONG-TERM MONITORING DISPOSAL SITES A AND B

Project No. 11222959 Report No. 2023 PRR Date JÜNE 2023

LOCATIONS OF WELLS FOR LONG-TERM MONITORING DISPOSAL SITE C

DUNLOP TIRE AND RUBBER SITE, SITE #915018 3333 RIVER RD TONAWANDA, NEW YORK SITE MANAGEMENT PLAN

GROUNDWATER CONTOUR MAP MAY 2023 Project No. 11222959 Report No. 2023 PRR Date JUNE 2023

Table 1 Sumitomo Rubber USA, LLC Sampling Schedule Inactive Waste Sites 915018 A, B and C

	Analytical		N	umber of S	ampling Ev	ents Per Ye	ar		Canadia a	
Year	Analytical -	Upgradient		Downgradient					Sampling	
	Schedule	A6	C1	В3	B4	A4	C5	C7	Season	
1	Α	2	2	2	2	2	2	2	Spring/Fall	
2, 3	В			2	2	2	2	2	Spring/Fall	
4, 5	В			1	1	1	1	1	Spring	
6-9	В			1	1			1	Spring	
10	В			1	1	1	1	1	Spring	
11-14	В			1	1			1	Spring	
15	В			1	1	1	1	1	Spring	
16-19	В			1	1			1	Spring	
20	В			1	1	1	1	1	Spring	
21-24	В			1	1			1	Spring	
25	В			1	1	1	1	1	Spring	
26-29	В	_		1	1			1	Spring	
30	В	·		1	1	1	1	1	Spring	

Notes:

Starting year was 1994. 1st Sampling Year was 1995.

Table 2 Sumitomo Rubber USA, LLC Groundwater Action Levels for Downgradient Wells

		NYSDEC		2			
		Criteria ¹	OMW-B3	OMW-B4 ²	OMW-A4	OMW-C5	OMW-C7
Parameter	Type	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
2-Butanone (MEK)	VOC	50	50	50	NS	NS	50
Benzene	VOC	1	0.7	2	NS	NS	0.7
1,1-Dichloroethane	VOC	5	5	5	NS	NS	5
1,2-Dichloroethene (total)	VOC	5	5	5	NS	NS	5
1,1,1-Trichloroethane	VOC	5	5	5	NS	NS	5
Arsenic	MET	25	25	25	NS	NS	25
Cadmium	MET	5	10	28	NS	NS	10
Chromium	MET	50	50	178	NS	NS	50
Lead	MET	25	32	52	NS	NS	25
Total Phenols	SEMI	1	1	1	NS	NS	1

Notes:

VOC = Volatile Organic Compounds

MET = Metals

SEMI = Semivolatile Organic Compound

¹NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998, with addenda through 2004

² Determined using existing data from OMW-B2

Table 3 Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring

Groundwater Analytical Results May 2023

Well ID		B	3	В	4	С	7
Date		Action Levels	5/18/2023	Action Levels	5/18/2023	Action Levels	5/18/2023
Parameters	Units			<u> </u>			
Volatile Organic Compounds	μg/L						
1,1-Dichloroethane	μg/L	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)
1,2-Dichloroethane	µg/L	5	ND (0.50)	5	ND (0.50)	5	ND (0.50)
1,1,1-Trichloroethane	μg/L	5	ND (2.5)	5	ND (2.5)	5	ND (2.5)
Benzene	μg/L	0.7	ND (0.50)	2	ND (0.50)	0.7	ND (0.50)
2-Butanone	μg/L	50	ND (5.0)	50	ND (5.0)	50	ND (5.0)
Total Metals							
Arsenic	μg/L	25	5.71	25	0.3 J	25	0.68
Cadmium	μg/L	10	0.09 J	28	ND (0.2)	10	ND (0.2)
Chromium	μg/L	50	2.32	178	6.97	50	1.44
Lead	μg/L	32	3.7	52	ND (1)	25	ND (1)
Dissolved Metals*							
Dissolved Arsenic	μg/L	-	-	-	-	-	-
Dissolved Cadmium	μg/L	-	-	-	-	-	-
Dissolved Chromium	μg/L	-	-	-	-	-	-
Dissolved Lead	μg/L	-	-	-	-	-	-
Inorganics & Miscellaneous							
Turbidity	NTU	-	11.69	-	2.42	-	8.84
Specific Conductance	umhos/cm	-	980	-	3100	-	3000
Total Phenolics	μg/L	1	ND (15)	1	ND (15)	1	ND (15)

Notes:

ND = Nondetect

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

Bold data results are above action levels

* - Only required if turbidity is above 50 NTU

Table 4
Sumitomo Rubber USA, LLC
Annual Landfill Well Monitoring
Groundwater Elevations
May 2023

	Northing	Easting	Latitude	Longitude	Ground Elevation (FAMSL)	Top Riser Elevation (FAMSL)	Depth to Water (feet)	Groundwater Elevation (FAMSL)
Well ID								
OMW-A4	1081783.969	1056815.907	N 42°58'06.6290"	W 078°55'30.4211"	581.6	587.02	7.09	579.93
OMW-A6	1082260.545	1057691.331	N 42°58'11.3714"	W 078°55'18.6720"	593.84 (rim)	593.29	6.28	587.01
OMW-B3	1081634.987	1057041.503	N 42°58'05.1664"	W 078°55'27.3786"	577	579.85	6.65	573.2
OMW-B4	1081143.389	1057439.298	N 42°58'00.3265"	W 078°55'22.0014"	585.3	587.37	5.59	581.78
OMW-C5	1083560.949	1059089.490	N 42°58'24.2716"	W 078°54'59.9349"	602.5	603.87	3.42	600.45
OMW-C7	1083147.785	1059628.405	N 42°58'20.2115"	W 078°54'52.6637"	599.2	602.06	4.97	597.09

Notes:

Coordinate System based on NAD83 (2011) NY West

Elevations shown are referenced to NAVD88 NGS Monument Designation-TOM TTWTP USLS / PID-NC0305

Weather Condit	OHS
Temperature	
Wind Direction/speed	1
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	T

Date: 11/1/12 Z
Inspector: CMB
DEO -00011/1

		AREA B		
	Southeast Area	Southern Area	Northern Area	River Rad Ditch
Topsoil Erosion Occurring	N	N	aling facebacy	N
Clay Cap Erosion Occurring		W	Minor	N
Desiccation Cracks or Freeze/Thaw Damage Present		\sim	N	N
Any Seeps or Leachate Breakouts Present			N	N
Ditches Free of Obstruction	Y	4	4	4
Any Siltation, Ponding, or Erosion Damage in Drainage Features	N	N	N	N
Grass Cover Adequate	I Y	4	4	4
Any Bare, Sparse of Undernourished Areas Present	N	N	N	2
Any Settlement Observed in Cover System	M	N	W	N
Paved Areas Intact	4	NA	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	Noint 1/2-11/2	NA	NA	NA
Note Any Damage	None	NO	NO	NO

Management or Maintenance Activities Occurring during Inspection:
Pauly Can duted 1/7 -11/9 Describe any corrective actions required:
Describe any corrective actions required:
Nal
Describe any corrective actions taken:
None
Are site records up-to-date – yes no Describe deficiencies
L. L

tions
-
֡

Inspector CMB DEO -00011/1

	BORROW PIT AREA "A"		ARE	AREA "C"	
	Central Area	Northeast Area	Outlying Area	Major Area	
Topsoil Erosion Occurring		N	N	N	
Clay Cap Erosion Occurring	\sim	N	U		
Desiccation Cracks or Freeze/Thaw Damage Present	N	N	2	N	
Any Seeps or Leachate Breakouts Present	N	N	N	N	
Ditches Free of Obstruction	4	y	y	Y	
Any Siltation, Ponding, or Erosion Damage in Drainage Features	N	N	N	N	
Grass Cover Adequate	Y		V	M	
Any Bare, Sparse of Undernourished Areas Present	N	N	N	U'	
Any Settlement Observed in Cover System	N	N	N	N	
Paved Areas Intact	NA		NA	NA	
Any Cracking, Deterioration, or Settlement inn Pavement	NA	N	NA	NA	
Note Any Damage	nane	Kehr	NChe	None	

Management or Maintenance Activities Occurring during Inspection:	
Pared 11/7-11/9	
Describe any corrective actions required:	
Whe	
Describe any corrective actions taken:	
UNL	
Are site records up-to-date – yes, no	
Describe deficiencies	
7	

Weather Condit	ions
Temperature	
Wind Direction/speed	
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	

Inspector: MDDEO -00011/1

		AREA		
	Ditch at Toe of Slope	Sheridan Dr. Ditch	Stockpile Area	Warehouse Ditch
Topsoil Erosion Occurring	V	U	N	W
Clay Cap Erosion Occurring	N	V	N	N
Desiccation Cracks or Freeze/Thaw Damage Present	N	N	V	W
Any Seeps or Leachate Breakouts Present	N	N	N	N
Ditches Free of Obstruction	y	y	4	y
Any Siltation, Ponding, or Erosion Damage in Drainage Features	19	Ň	Ü	N
Grass Cover Adequate	4	4	4	y
Any Bare, Sparse of Undernourished Areas Present	N	2	2	N
Any Settlement Observed in Cover System	N	N	N	N
Paved Areas Intact	NA	NA	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	NA	M	NA	NA
Note Any Damage	None	val	None	None

Nanagement or Maintenance Activities Occurring during inspecti	
Describe any corrective actions required:	
1 On 8	
Describe any corrective actions taken:	
nene	

Weather Condit	ions
Temperature	
Wind Direction/speed	
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	

Inspector: CM3
DEO -00011/1

Are site records up-to-date – yes	no
Describe deficiencies	

		Pave	Areas	
	Parking Lot	Driveway		
Topsoil Erosion Occurring				
Clay Cap Erosion Occurring				
Desiccation Cracks or Freeze/Thaw Damage Present				
Any Seeps or Leachate Breakouts Present				
Ditches Free of Obstruction				
Any Siltation, Ponding, or Erosion Damage in Drainage Features				
Grass Cover Adequate				
Any Bare, Sparse of Undernourished Areas Present				
Any Settlement Observed in Cover System				
Paved Areas Intact	4	4		
Any Cracking, Deterioration, or Settlement inn Pavement	2	N		
Note Any Damage	Nuc	rune		

Management or Maintenance Activities Occurring during Inspection:	
Describe any corrective actions required:	
Describe any corrective actions required:	
nane	
Describe any corrective actions taken:	
Ne	

emperature	T
Vind Direction/speed	\top
recipitation Amount	1
ky conditions	
nches of Snow Cover	T

Date:

Inspector: DEO -00011/1

Are site records up-to-date – yes	no		
Describe deficiencies	yes		

Weather Condit	ions .
Temperature	200
Wind Direction/speed	usur
Precipitation Amount	2
Sky conditions	TUNNU
Inches of Snow Cover	0

Date: 5/18/23
Inspector: CMB
DEO -00011/1

		AREA B		
	Southeast Area	Southern Area	Northern Area	River Rad Ditch
Topsoil Erosion Occurring	NO	NG	NO	NO
Clay Cap Erosion Occurring	NO	NO	100	NO
Desiccation Cracks or Freeze/Thaw Damage Present	NO	NO	150	NO
Any Seeps or Leachate Breakouts Present	NO	NO	NO	NO
Ditches Free of Obstruction	Yes	Ves	405	483
Any Siltation, Ponding, or Erosion Damage in Drainage Features	NO	NO	NO	NO
Grass Cover Adequate	Yes	yes	yes	yes
Any Bare, Sparse of Undernourished Areas Present	NO	NO	NO NO	NO
Any Settlement Observed in Cover System	NO	00	W	LD
Paved Areas Intact	yes	NA	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	W	NA	NA	NA
Note Any Damage	None			_

Management or Maintenance Activities Occurring during Inspection:	
Noil	
Describe any corrective actions required:	
NCAL	
Describe any corrective actions taken:	
None	
Are site records up-to-date – yes no Describe deficiencies	
WA	

Weather Condit	ions
Temperature	1/20
Wind Direction/speed	unt
Precipitation Amount	Ö
Sky conditions	Sinnly
Inches of Snow Cover	0

Date: 5/18/2-3
Inspector: CWB
DEO -00011/1

	BORROW PIT AREA "A"		AREA "C"	
	Central Area	Northeast Area	Outlying Area	Major Area
Topsoil Erosion Occurring	(I)	W	NO	NO
Clay Cap Erosion Occurring	N	N	NO	NO
Desiccation Cracks or Freeze/Thaw Damage Present	NO	UO	NO	50
Any Seeps or Leachate Breakouts Present	N	ND	W	w
Ditches Free of Obstruction	ys	yes	to be p	trask villed act
Any Siltation, Ponding, or Erosion Damage in Drainage Features	i	NO	N	NO
Grass Cover Adequate	Ms	yes	yes	yes
Any Bare, Sparse of Undernourished Areas Present	N	W	Les	no
Any Settlement Observed in Cover System	h0	N	N	40
Paved Areas Intact	NA	yes	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	NA	W	NA	NA
Note Any Damage	une	Whe	line	ware

Describe any issues with ancillary features in	this area (e.g., fencing, access)	
Management or Maintenance Activities Occ	urring during Inspection:	
Nine		
Describe any corrective actions required:		
Whe -	Rathe trash	pickup in duter
Describe any corrective actions taken:		
rone		
Are site records up-to-date — yes no		
Describe deficiencies		

Weather Condit	tions
Temperature	100
Wind Direction/speed	TIGAT
Precipitation Amount	()
Sky conditions	STANL
Inches of Snow Cover	0

Inspector: CNB
DEO -00011/1

	AREA "C"			
	Ditch at Toe of Slope	Sheridan Dr. Ditch	Stockpile Area	Warehouse Ditch
Topsoil Erosion Occurring	No	N	W	NO
Clay Cap Erosion Occurring	NO	NO	NO	NO
Desiccation Cracks or Freeze/Thaw Damage Present	W	NO	NO	M
Any Seeps or Leachate Breakouts Present	NO	NO	NO	00
Ditches Free of Obstruction	WS	Schetrash	yes	yes
Any Siltation, Ponding, or Erosion Damage in Drainage Features	w	N	No	100
Grass Cover Adequate	yes	yes	Yes	425
Any Bare, Sparse of Undernourished Areas Present	NO	N	NO	
Any Settlement Observed in Cover System	NO	1000	NU	NO
Paved Areas Intact	NA	MA	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	NA	NA	NA	NA
Note Any Damage	rene	Whe	Line	Nine

Management or Maintenance Activities Occurring during Inspection:	
rene	
Describe any corrective actions required:	
Nche	
Describe any corrective actions taken:	
Mchl	

Weather Condit	10113
Temperature	U.C.
Wind Direction/speed	1 Luch
Precipitation Amount	0
Sky conditions	SIN
Inches of Snow Cover	13

Date: 51180-5
Inspector CMB
DEO -00011/1

Are site records up-to-date (yes)	no
Describe deficiencies	

	Pave Areas			
	Parking Lot	Driveway		
Topsoil Erosion Occurring				
Clay Cap Erosion Occurring				
Desiccation Cracks or Freeze/Thaw Damage Present				
Any Seeps or Leachate Breakouts Present				
Ditches Free of Obstruction				
Any Siltation, Ponding, or Erosion Damage in Drainage Features				
Grass Cover Adequate				
Any Bare, Sparse of Undernourished Areas Present				
Any Settlement Observed in Cover System				
Paved Areas Intact	ys	y D		
Any Cracking, Deterioration, or Settlement inn Pavement	ws Ne	NO		
Note Any Damage	NU	NO		

Management or Maintenance Activities Occurring during Inspection:
NONE
Describe any corrective actions required:
rene
Describe any corrective actions taken:
nche

Weather Condit	ions and
Temperature	1.00
Wind Direction/speed	Linu
Precipitation Amount	()
Sky conditions	Sim
Inches of Snow Cover	0

Inspector: OND DEO -00011/1

Are site records up-to-date — yes ho
Describe deficiencies

ANALYTICAL REPORT

Lab Number: L2327899

Client: Sumitomo Rubber USA, LLC

PO Box 1109 Buffalo, NY 14240

ATTN: Christine Barton Phone: (716) 879-8497

Project Name: WELL SAMPLING

Project Number: Not Specified Report Date: 06/02/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WELL SAMPLING

Project Number: Not Specified Lab Number: L2327899 Report Date: 06/02/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2327899-01	WELL B3	WATER	BUFFALO, NY	05/18/23 15:50	05/18/23
L2327899-02	WELL B4	WATER	BUFFALO, NY	05/18/23 16:05	05/18/23
L2327899-03	WELL C7	WATER	BUFFALO, NY	05/18/23 15:30	05/18/23
L2327899-04	DUP	WATER	BUFFALO, NY	05/18/23 15:30	05/18/23
L2327899-05	TRIP BLANK	WATER	BUFFALO, NY	05/18/23 00:00	05/18/23

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.						

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Total Phenolics was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Total Metals

The WG1784717-3 MS recoveries, performed on L2327899-02, are outside the acceptance criteria for arsenic (140%), cadmium (133%),chromium (132%), and lead (137%). A post digestion spike was performed and was within acceptance criteria.

The WG1784717-3/-4 MS/MSD RPDs for arsenic (25%), cadmium (25%), chromium (27%), and lead (29%), performed on L2327899-02, are above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whole M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 06/02/23

ORGANICS

VOLATILES

L2327899

Project Name: WELL SAMPLING

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 06/02/23

Lab Number:

Lab ID: L2327899-01 Date Collected: 05/18/23 15:50

Client ID: Date Received: 05/18/23 WELL B3 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/29/23 14:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	90	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	108	70-130	

Project Name: WELL SAMPLING

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2327899

Report Date: 06/02/23

Lab ID: L2327899-02

Client ID: WELL B4 Sample Location: BUFFALO, NY Date Collected: 05/18/23 16:05 Date Received: 05/18/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/29/23 14:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	139	Q	70-130
Toluene-d8	82		70-130
4-Bromofluorobenzene	105		70-130
Dibromofluoromethane	136	Q	70-130

Project Name: WELL SAMPLING

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2327899

Report Date: 06/02/23

Lab ID: L2327899-03 Date Collected: 05/18/23 15:30

Client ID: Date Received: 05/18/23 WELL C7 Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/29/23 14:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	136	Q	70-130
Toluene-d8	90		70-130
4-Bromofluorobenzene	95		70-130
Dibromofluoromethane	134	Q	70-130

Project Name: WELL SAMPLING

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2327899

Report Date: 06/02/23

Lab ID: L2327899-04

Client ID: DUP

Sample Location: BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/29/23 15:20

Date Collected:	05/18/23 15:30
Date Received:	05/18/23
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Benzene	ND		ug/l	0.50	0.16	1		
2-Butanone	ND		ug/l	5.0	1.9	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	135	Q	70-130
Toluene-d8	90		70-130
4-Bromofluorobenzene	95		70-130
Dibromofluoromethane	133	Q	70-130

05/18/23 00:00

Project Name: WELL SAMPLING

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2327899

Report Date: 06/02/23

Lab ID: L2327899-05

Client ID: TRIP BLANK Sample Location: BUFFALO, NY Date Received: 05/18/23 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/29/23 15:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	124	70-130
Toluene-d8	91	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	117	70-130

Project Name: WELL SAMPLING Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/29/23 10:27

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s):	01-05	Batch:	WG1785292-5
1,1-Dichloroethane	ND	ug	/I	2.5	0.70
1,2-Dichloroethane	ND	ug	/I	0.50	0.13
1,1,1-Trichloroethane	ND	ug	/I	2.5	0.70
Benzene	ND	ug	/I	0.50	0.16
2-Butanone	ND	ug	/I	5.0	1.9

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	109		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number:

Not Specified

Lab Number:

L2327899

Report Date:

06/02/23

Parameter	LCS %Recovery	Qual		CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-05	Batch:	WG1785292-3	WG1785292-4				
1,1-Dichloroethane	100			95		70-130	5		20	
1,2-Dichloroethane	110			110		70-130	0		20	
1,1,1-Trichloroethane	110			100		67-130	10		20	
Benzene	95			92		70-130	3		20	
2-Butanone	97			93		63-138	4		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	106	70-130
Toluene-d8	94	90	70-130
4-Bromofluorobenzene	92	94	70-130
Dibromofluoromethane	103	104	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: WELL SAMPLING

Lab Number:

L2327899

Project Number: Not Specified

Report Date: 06/02/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - WELL B4	Westborough	Lab Assoc	iated sample(s): 01-05 QC	Batch ID:	WG17852	92-6 WG1785	5292-7	QC Sample	: L2327	7899-02	Client ID:
1,1-Dichloroethane	ND	10	10	100		10	100		70-130	0		20
1,2-Dichloroethane	ND	10	11	110		10	100		70-130	10		20
1,1,1-Trichloroethane	ND	10	12	120		12	120		67-130	0		20
Benzene	ND	10	10	100		10	100		70-130	0		20
2-Butanone	ND	10	9.0	90		8.3	83		63-138	8		20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifie	er % Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	104	103	70-130	
4-Bromofluorobenzene	89	89	70-130	
Dibromofluoromethane	105	107	70-130	
Toluene-d8	92	89	70-130	

METALS

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

SAMPLE RESULTS

Lab ID:L2327899-01Date Collected:05/18/23 15:50Client ID:WELL B3Date Received:05/18/23Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00571		mg/l	0.00050	0.00016	1	05/30/23 17:25	06/01/23 22:20	EPA 3005A	1,6020B	EGW
Cadmium, Total	0.00009	J	mg/l	0.00020	0.00005	1	05/30/23 17:25	06/01/23 22:20	EPA 3005A	1,6020B	EGW
Chromium, Total	0.00232		mg/l	0.00100	0.00017	1	05/30/23 17:25	06/01/23 22:20	EPA 3005A	1,6020B	EGW
Lead, Total	0.00370		mg/l	0.00100	0.00034	1	05/30/23 17:25	06/01/23 22:20	EPA 3005A	1,6020B	EGW

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

SAMPLE RESULTS

Lab ID:L2327899-02Date Collected:05/18/23 16:05Client ID:WELL B4Date Received:05/18/23Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00030	J	mg/l	0.00050	0.00016	1	05/30/23 17:2	5 05/31/23 13:02	EPA 3005A	1,6020B	EGW
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/30/23 17:2	5 05/31/23 13:02	EPA 3005A	1,6020B	EGW
Chromium, Total	0.00697		mg/l	0.00100	0.00017	1	05/30/23 17:2	5 05/31/23 13:02	EPA 3005A	1,6020B	EGW
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/30/23 17:2	5 05/31/23 13:02	EPA 3005A	1,6020B	EGW

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

SAMPLE RESULTS

Lab ID:L2327899-03Date Collected:05/18/23 15:30Client ID:WELL C7Date Received:05/18/23Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00068		mg/l	0.00050	0.00016	1	05/30/23 17:25	06/01/23 22:25	EPA 3005A	1,6020B	EGW
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/30/23 17:25	06/01/23 22:25	EPA 3005A	1,6020B	EGW
Chromium, Total	0.00144		mg/l	0.00100	0.00017	1	05/30/23 17:25	06/01/23 22:25	EPA 3005A	1,6020B	EGW
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/30/23 17:25	06/01/23 22:25	EPA 3005A	1,6020B	EGW

05/18/23 15:30

Date Collected:

Project Name: Lab Number: WELL SAMPLING L2327899 **Project Number: Report Date:** Not Specified 06/02/23

SAMPLE RESULTS

Lab ID: L2327899-04

Client ID: DUP

Date Received: 05/18/23 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00060		mg/l	0.00050	0.00016	1	05/30/23 17:2	5 06/01/23 23:23	EPA 3005A	1,6020B	EGW
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/30/23 17:2	5 06/01/23 23:23	EPA 3005A	1,6020B	EGW
Chromium, Total	0.00082	J	mg/l	0.00100	0.00017	1	05/30/23 17:2	5 06/01/23 23:23	EPA 3005A	1,6020B	EGW
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/30/23 17:2	5 06/01/23 23:23	EPA 3005A	1,6020B	EGW

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-04 E	Batch: WC	317847 ⁻	17-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	05/30/23 17:25	05/31/23 12:38	3 1,6020B	EGW
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	05/30/23 17:25	05/31/23 12:38	3 1,6020B	EGW
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/30/23 17:25	05/31/23 12:38	3 1,6020B	EGW
Lead, Total	ND	mg/l	0.00100	0.00034	. 1	05/30/23 17:25	05/31/23 12:38	3 1,6020B	EGW

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number:

Not Specified

Lab Number:

L2327899

Report Date:

06/02/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-04 Bate	ch: WG178	34717-2					
Arsenic, Total	105		-		80-120	-		
Cadmium, Total	108		-		80-120	-		
Chromium, Total	101		-		80-120	-		
Lead, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number:

Not Specified

Lab Number: Li

L2327899

Report Date:

06/0	2/23
------	------

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-04	QC Bate	ch ID: WG178	4717-3	WG178471	7-4 QC Sam	ple: L23	327899-02	Client	ID: W	ELL B4
Arsenic, Total	0.00030J	0.12	0.1675	140	Q	0.1298	108		75-125	25	Q	20
Cadmium, Total	ND	0.053	0.07071	133	Q	0.05479	103		75-125	25	Q	20
Chromium, Total	0.00697	0.2	0.2701	132	Q	0.2060	100		75-125	27	Q	20
Lead, Total	ND	0.53	0.7271	137	Q	0.5422	102		75-125	29	Q	20

INORGANICS & MISCELLANEOUS

Project Name: WELL SAMPLING Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

SAMPLE RESULTS

Lab ID:L2327899-01Date Collected:05/18/23 15:50Client ID:WELL B3Date Received:05/18/23Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lal	0							
Specific Conductance @ 25 C	980	umhos/cm	10	10.	1	-	06/01/23 21:41	1,9050A	AAS

Project Name: WELL SAMPLING Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

SAMPLE RESULTS

 Lab ID:
 L2327899-02
 Date Collected:
 05/18/23 16:05

 Client ID:
 WELL B4
 Date Received:
 05/18/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lal)							
Specific Conductance @ 25 C	3100	umhos/cm	10	10.	1	-	06/01/23 21:41	1,9050A	AAS

Project Name: WELL SAMPLING Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

SAMPLE RESULTS

 Lab ID:
 L2327899-03
 Date Collected:
 05/18/23 15:30

 Client ID:
 WELL C7
 Date Received:
 05/18/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lal	0							
Specific Conductance @ 25 C	3000	umhos/cm	10	10.	1	-	06/01/23 21:41	1,9050A	AAS

Project Name: WELL SAMPLING Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

SAMPLE RESULTS

Lab ID: L2327899-04 Date Collected: 05/18/23 15:30

Client ID: DUP Date Received: 05/18/23

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lal	b							
Specific Conductance @ 25 C	3200	umhos/cm	10	10.	1	-	06/01/23 21:41	1,9050A	AAS

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2327899

Project Number: Not Specified Report Date: 06/02/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s)	: 01-04	Batch: WG1786	180-1				
Specific Conductance	99		-		99-101	-		

Project Name:

WELL SAMPLING

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2327899

Report Date:

06/02/23

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ociated sample(s): 01-04 QC Ba	tch ID: WG1786180-2	QC Sample:	L2327899-02	Client ID:	WELL B4
Specific Conductance @ 25 C	3100	3100	umhos/cm	0		20

Project Name:

Project Number:

WELL SAMPLING

Not Specified

Project Name: WELL SAMPLING
Project Number: Not Specified

Lab Number: L2327899 **Report Date:** 06/02/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2327899-01A	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-01D	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Absent		COND-9050(28)
L2327899-01E	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Absent		COND-9050(28)
L2327899-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Y	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)
L2327899-01G	Amber 1000ml H2SO4 preserved	Α	<2	<2	2.8	Υ	Absent		SUB-PHENOL()
L2327899-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-02A1	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02A2	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-02B1	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02B2	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2327899-02C1	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02C2	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)
L2327899-02D	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Absent		COND-9050(28)
L2327899-02D1	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)
L2327899-02D2	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)
L2327899-02E	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Absent		COND-9050(28)
L2327899-02E1	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)
L2327899-02E2	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)

Lab Number: L2327899

Report Date: 06/02/23

Project Name: WELL SAMPLINGProject Number: Not Specified

Container Info	rmation				Temp		Frozen				
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)		
L2327899-02F	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)		
L2327899-02F1	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)		
L2327899-02F2	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)		
L2327899-02G	Amber 1000ml H2SO4 preserved	Α	<2	<2	2.8	Υ	Absent		SUB-PHENOL()		
L2327899-02G1	Amber 1000ml H2SO4 preserved	В	<2	<2	3.2	Υ	Absent		SUB-PHENOL()		
L2327899-02G2	Amber 1000ml H2SO4 preserved	В	<2	<2	3.2	Υ	Absent		SUB-PHENOL()		
L2327899-03A	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-03B	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-03C	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-03D	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)		
L2327899-03E	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)		
L2327899-03F	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)		
L2327899-03G	Amber 1000ml H2SO4 preserved	В	<2	<2	3.2	Υ	Absent		SUB-PHENOL()		
L2327899-04A	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-04B	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-04C	Vial HCl preserved	В	NA		3.2	Υ	Absent		NYTCL-8260(14)		
L2327899-04D	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)		
L2327899-04E	Plastic 250ml unpreserved	В	7	7	3.2	Υ	Absent		COND-9050(28)		
L2327899-04F	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)		
L2327899-04G	Amber 1000ml H2SO4 preserved	В	<2	<2	3.2	Υ	Absent		SUB-PHENOL()		
L2327899-05A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)		
L2327899-05B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260(14)		

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

GLOSSARY

Acronyms

EPA

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:WELL SAMPLINGLab Number:L2327899Project Number:Not SpecifiedReport Date:06/02/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	05	Page	11		Date in	Rec'	9 2	//	1/2	3	ALPHA JOB# 899	
Westborough, MA 016			9-1-1-1	_			Dall	/erable				(1)~	-3	Billing Information	
8 Walkup Dr.	320 Forbes Blvd	Project Information					LEGIN	ASP		-		ASP-	e	Same as Client Info	_
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Well Sampl	ing		_	님		IS (1)	Ella			S (4 File)		
		Project Location:	Buffalo, NY	_		_	- 1		-	rile)		EGU	5 (4 File)	FOR 4000002000	
Client Information		Project #				_	-	Othe	-	U.S. HOLLE		_	_	Disposal Site Information	
	no (GOODYR-ISLE)	(Use Project name as P	roject #)			_	Miles and			uireme	\$1L	NY Pa	0.275		
Address: PO Box	1109	Project Manager:	Chris Bartor	7			1 =	NYT				NY C		Please identify below location of applicable disposal facilities.	of
Buffalo, NY 14240		ALPHAQuote #:	_		_	_	-	AWO						Disposal Facility:	_
Phone: 716-879	-8497	Turn-Around Time		-		-		100		ed Use	L	Other		The second secon	
Fax: 716-879	1 1 1 1	Standar		Due Date			빌			cted Us				□ NJ □ NY	
Email christine	_barton@sumitomorubb	Rush (only if pre approved	1) [# of Day:	S:					Discha	rge	_		Other:	100
These samples hav	been previously analyze	ed by Alpha					-	LYSIS		,				Sample Filtration	G (
Total and Dissolved	Benzene, 1,1-dichloroeth	(Lab to filter dissolved name, 1,2-dichloroethane a			rb is >50)	1.0	(2175)- Site Specific	Total Phenois	Total Metals	*Dissolved Metals*	ific Conductance	Turbidity	FIELD - pH & Temp	□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	a - B a t t
ALPHA Lab ID		1.1.1.16	Coll	ection	Sample	Sampler's	0	-		Dis	Specific	_	191		- 1
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix	Initials	VOC (S			Sample Specific Comments	
27899 -01	Well B3		5-18-20	1550	GW	TOW	х	X	х	х	Х	X		All turb	1 1
02	Well B4			1405	GW	1	X	X	X	X	×	X		Zunder SUNTV	1
0.5	Well C7			1530	GW		Х	x	X	х	X	X			7
04	Rip			1530	1		x	4	+	+	+	*	The H	Taken e C7	
08	MS			1605		1	×	×	4	7	1	+		Tukene B4	
03	MSD			1605	1	4	X	12	+	X	×	X		,	
05	Trip Blank		4		DI Water		x								9
								-	-	-	-	-		1	+
	1														+
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro; Certification Mansfield: Certification M			-	tainer Type	V	A	Р	P	Р	Р		Please print clearly, legil and completely. Sample not be logged in and turnaround time clock wi	es can
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	professional and	n.	Det	(Time		-	D P	0	Α	A	Date	/Time	start until any ambiguitie	
F≡MeOH G=NaHSO₄ H=Na₂S₂O₃ K/E=Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	Relinquished A	AC.	5-18-23	/Time / 1635	u	Kecer	ved B	_	THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS				ES	

Friday, May 26, 2023

Attn: Brenda Pirinelli Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2327899 SDG ID: GCO10775

Sample ID#s: CO10775 - CO10778

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

May 26, 2023

SDG I.D.: GCO10775

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Compounds that are detected above MDL but below RL are qualified with a J flag.

Page 39 of 48 Page 2 of 11

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

May 26, 2023

SDG I.D.: GCO10775

Project ID: L2327899

Client Id	Lab Id	Matrix
WELL B3	CO10775	WATER
WELL B4	CO10776	WATER
WELL C7	CO10777	WATER
DUP	CO10778	WATER

Page 40 of 48 Page 3 of 11

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 26, 2023

FOR: Attn: Brenda Pirinelli

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:05/18/2315:50Location Code:ALPHAReceived by:SR105/22/2312:41

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCO10775

Phoenix ID: CO10775

Project ID: L2327899 Client ID: WELL B3

RL/ LOD/

Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βv **Phenolics** ND 0.015 0.005 mg/L 1 05/25/23 MSF E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 26, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 26, 2023

FOR: Attn: Brenda Pirinelli

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	<u>ation</u>	Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WATER	Collected by:		05/18/23	16:05
Location Code:	ALPHA	Received by:	SR1	05/22/23	12:41
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCO10775

Phoenix ID: CO10776

Project ID: L2327899 Client ID: WELL B4

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Phenolics Client MS/MSD	ND Completed	0.015	0.005	mg/L	1	05/25/23 05/24/23	MSF	E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 26, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 26, 2023

FOR: Attn: Brenda Pirinelli

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WATER	Collected by:		05/18/23	15:30
Location Code:	ALPHA	Received by:	SR1	05/22/23	12:41
Duch Deguest	Ctandard	Analyzad by	and IID. II bala		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCO10775

Phoenix ID: CO10777

Project ID: L2327899 Client ID: WELL C7

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βv **Phenolics** ND 0.015 0.005 mg/L 1 05/25/23 MSF E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 26, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 26, 2023

FOR: Attn: Brenda Pirinelli

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:05/18/2315:30Location Code:ALPHAReceived by:SR105/22/2312:41

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GCO10775

Phoenix ID: CO10778

Project ID: L2327899 Client ID: DUP

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βv **Phenolics** ND 0.015 0.005 mg/L 1 05/25/23 MSF E420.4

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 26, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

May 26, 2023

QA/QC Data

SDG I.D.: GCO10775

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 679292 (mg/L), (2C Sam	ole No:	CO10776	(CO107	75, CO	10776	CO107	77, CO	10778))			
Phenolics	BRL	0.015	< 0.015	0.007 J	NC	97.0			96.0			90 - 110	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 26, 2023

Friday, May 26, 2023

Sample Criteria Exceedances Report GC010775 - ALPHA

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 46 of 48 Page 9 of 11

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

May 26, 2023

SDG I.D.: GCO10775

The samples in this delivery group were received at 5.5°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 47 of 48

A PHA		Su Phoer 587 E Manch	rbcontrae iix Environm ast Middle T nester, CT 0	Subcontract Chain of Custody Phoenix Environmental Laboratories 587 East Middle Turnoike Manchester, CT 06040	tody		5.5 84.00	Alpha Job Number	ıber
Client l	Client Information		Project Information	ormation		Regulat	ory Requiremen	Regulatory Requirements/Report Limits	
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Brive Drive MA 01581-1019	Project Location; N Project Manager: E	Location: NY Manager: Brenda Pirinelli urnaround & Delivera	Location; NY Manager: Brenda Pirinelli urnaround & Deliverables Information	no	State/Federal Program: Regulatory Criteria:	Program: teria:		
Phone: 716.427.5225 Email: bpirinelli@alphalab.com	nalab.com	Due Date: Deliverables:							
		Project Specific F	Requireme	Specific Requirements and/or Report Requirements	t Requiren	nents			
Refere	Reference following Alpha Job Number on final report/deliverables: L2327899	nber on final report/de	ilverables:	L2327899	Repor	t to include Me	Report to include Method Blank, LCS/LCSD:	.CSD:	
Additional Comments:	Additional Comments: Send all results/reports to subreports@alphalab.com Method 420 - REPORT TO THE MDL	ubreports@alphalab.c	com Method	420 - REPORT TO	THE MDL				
						1			
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis			Batch QC	Ę,
2170) 2'170) 8'170)	WELL B3 WELL B4 WELL C7 DUP	05-18-23 15:50 05-18-23 16:05 05-18-23 15:30	WATER WATER WATER	Phenol Phenol Phenol Phenol				MS:MSD	os
	Relinquished B	U.J		Date/Time:		Received By:		11	}
	4	W #W		5. 2223 /2	1727	8pt 12	AN COUNTY	5-22-3 12	
Form No: AL_subcoc				i					

Client:	Sumi	tomo Rul	bber		Sample Poi	nt ID:	OMW-	BE
acility:	Dun	lop tin	e		Sample Ma	trix:	ONW-	,
ield Personn	nel:	Tom w	ebster					
SAMPLING IN	NFORMAT	ION:	start:	1415				
Date/Time:		5-18-23	End: 14	132		(Circle	One)	
Sampling Me	thod:		Baiter		Dedicated:	ES	NO	
N			2.0		D'	na let le le		
Diameter of \	weii:				Diameter 1"	Multiply by 0.041	4	-
Well Depth (1	from ton	of PVC):	17.15		2"	0.163		
wen bepan (nom top	or recj.			3"	0.367		
Nater Depth	(from to	o of PVC):	6-65	- 0	4"	0.653		
					6"	1.468	1	
ength of Wa	ater Colun	nn (LWC):	10.5		8"	2.61		
		1	1.71/wel		Volume Pur	ged:	~6	÷
See	Multiplie	1	1.71/well		Volume Pur	ged:	~6	<u>+ </u>
See	Multiplie	个 er to input base	ed on Well Diar	neter				16/4
	Multiplie	1			Turbidity	ORP (Mv)	DO (mg/L)	wa Lei
See	Multiplie	个 er to input base Temp.	ed on Well Diar	neter Cond.	Turbidity (NTU)	ORP	DO (mg/L)	-
See	Multiplie OATA: Time	Temp. (°C)	pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)	DO (mg/L)	-
See	Multiplie OATA: Time	个 er to input base Temp. (°C)	pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)	DO (mg/L)	1
See	ATA: Time	Temp. (°C) 11.5	pH (std units)	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See	ATA: Time	Temp. (°C) 11.5	pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See SAMPLING D Weather con	Multiplie OATA: Time Additions at	Temp. (°C) Il.5 time of samp	pH (std units) 6.88 Sling:	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See SAMPLING D Weather con	Multiplie OATA: Time Additions at	Temp. (°C) 11.5	pH (std units) 6.88 Sling:	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See SAMPLING D Weather con	Multiplie OATA: Time Additions at	Temp. (°C) Il.5 time of samp	pH (std units) 6.88 Sling:	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See SAMPLING D Weather con	Multiplie OATA: Time Additions at	Temp. (°C) Il.5 time of samp	pH (std units) 6.88 Sling:	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.
See SAMPLING D Weather con	Multiplie OATA: Time Additions at	Temp. (°C) Il.5 time of samp	pH (std units) 6.88 Sling:	Cond. (Umhos/cm) 934 Sunn	Turbidity (NTU)	ORP (Mv) -44.4	DO (mg/L)	6.

EXAMPLE (Minimum Requirements) WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location (S Well Numbe Field Person Sampling Or Identify MP	Well Number OMW – Tield Personnel 7 Sampling Organization Identify MP	15 7 100 A	Well Number OMW - 133 Date 5-18-23 Field Personnel Tem webstwr Sampling Organization Alpha Identify MP To of Rise	5-18-23			(below Pump Purgir Total	Selow MP) top Purging Device; (pum) Purging Device; (pum) Fotal Volume Purged	op bo (ft. belove; (pump	(below MP) top bottom Pump Intake at (ft. below MP) rec Purging Device; (pump type) Bai ler Total Volume Purged	66	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp.	Spec. Cond. ² µS/cm	Hd	ORP ³ mv	DO mg/L	Tur- bidity NTU	Comments	
02/13	9.95	42	Ne	2.1	20	6661	673	-47.2	4.09	100.47		
1427	12.24			hr	1.0	1432	12.3	-44.3	417	879		
1432	13.60	→	->	7	8.6	132		-52.6	2.75	436.4		
			* 3									
						1						
						1						
Stabiliza	Ctolillantica Cuttani											

Pump dial setting (for example: hertz, cycles/min, etc).
 µSiemens per cm(same as µmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

acility:	Dunley	1						
ield Person		plire			Sample Mat	rix:	Gw.	
	nel:	Jan web	ster					
AMPLING I	NFORMA	20.00.000	stort 13	45				~
Date/Time:		51823	start 13 End 141	05		(Circle	One)	
Sampling Me	ethod:	Bai	ler .		Dedicated:	YES	NO	
Diameter of	Well:		20	t _	Diameter	Multiply by	7	
		1.000	77.		1"	0.041	1	-
Well Depth (from top	of PVC):	27.4	3	2"	0.163		
Nater Depti	h (from to	on of PVC)	5.59	~	3" 4"	0.367 0.653		
autor Dept.	. (, p 01 . v 0,.		7.54	6"	1.468		
ength of W	ater Colu	mn (LWC):	16.86		8"	2.61		- 1-
Sec		er to input base	ed on Well Dian	neter			, С ,	
F	Time	Temp.	рН	Cond.	Turbidity	ORP	DO	1
		(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)	(mg/L)	
	1605	11.4	7.54	2,935	2.42	17.7	9.86	18.72
Neather co	nditions a	nt time of samp	ling:	Sur	nny			
COMMENTS	O OBCE	WATIONS.	aurea d	urted Clear	- <1 . 1	7 - 4 - 4		
*OIMINEM 13	& UBSER	WATIONS:	puige- sh	MIRCE DIEM	-1 on an	re vini		-
				м	15/ MSI	D colla	ded	
					1			

EXAMPLE (Minimum Requirements) WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Well N Field P	Well Number 6	JAW-B	Jem webster	52-81-S		ì	(below Pump	/ MP) t	op be	(below MP) top bottom Pump Intake at (ft below MP)	<i>"</i>
Sampling Or Identify MP	Sampling Organization Identify MP	1/2	up of Riser	را			Purgi Total	ng Device Volume	e; (pump Purged	Purging Device; (pump type) Conter	E7.
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp.	Spec. Cond. ² µS/cm	Hď	ORP ³	DO mg/L	Tur- bidity NTU	Comments
1350	12.83	The	of the	275	16.5	2993	582	2.16% 28.2	6.28	6.05	
Mas	20.40			5.00	2-11	3436	726	7.26 212.5 6.76	223	139.05	
1400	2104	>	>	Ore 7	111	3594	71.2	7.16 153.1	5:37	2.618	
						1					
						1					

Stabilization Criteria

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Sumite	ome Rubi	ber		Sample Poir	nt ID:	ONW.	-6
Dinley	Tire	,		Sample Mat	trix:	Gu.	,
nel:	Jam web	ster					
			,				
	5-18-23	Start 149 Eve 1505	· ·		(Circle	e One)	
ethod:				Dedicated:	YES	NO	
Nar-II-		20"				7	
well:						Y	43~
(from top	of PVC):	23.4	5	2"	0.163	-	
· · · · · · · · · · · · · · · · · · ·				3"	0.367		-
h (from to	p of PVC):	4.97	± .	4"	0.653		
		1448		6"	1.468	l I	
ater Colur	nn (LWC):	10-10		8"	2.61	_	
	er to input bas	ed on Well Dian	neter				
DATA:			Cond.	Turbidity	000	DO	Tw.
Time	Temp. (°C)	pH (std units)	(Umhos/cm)		ORP (Mv)	(mg/L)	
The state of the s			(Umhos/cm)	(NTU)	12.547		18
Time 1534	(°C)	(std units)	(Umhos/cm)	(NTU) 8:84	(Mv)		18
Time 1534 Inditions a	(°C) //. 2 t time of samp	(std units) 772 pling:	(Umhos/cm)	(NTU) 8:84	(Mv)	9.32	
Time 1534 Inditions a	(°C)	(std units) 772 pling:	(Umhos/cm) 2,425 5 Cleur - S	(NTU) 8:84	(Mv)	9.32	
() () () () () () () () () ()	nel: NFORMAT ethod: Well: (from top n (from to ater Colum	NFORMATION: S-18-2-3 Bethod: Bethod: Well: (from top of PVC): ater Column (LWC): ne: LWC x () x 3=	nel: Jem webster NFORMATION: S-18-23 Swit 144 S-18-23 Swit 1505 ethod: Beniter Well: 2.0 (from top of PVC): 23.4 n (from top of PVC): 4.97 atter Column (LWC): 18-48 ne: LWC x () x3= 3.01/w	NFORMATION: S-18-23 Shrt 1447 S-18-23 Shrt 1447 Bou Her Well: (from top of PVC): ater Column (LWC): 18-18	## NFORMATION: S-18-23 Byl 1505 Ethod: Bouler Dedicated: Well: Z.0 Diameter	NFORMATION: S-18-23 By2 1505 (Circle thod: Bai Fer 1505 (Circle thod: Tes) (C	NFORMATION: S-18-23 Bx2 1505 (Circle One) Ethod: Bcu'ler Dedicated: VES NO Well:

-

APPENDIX C

EXAMPLE (Minimum Requirements)
WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu	Location (Site/Facility Name) Scmifomo Robber - Ocnbefire Well Number OMW-C7 Date S-18-23	lity Name	e) Scmiter Date	Date 5-18-23	Unlep	7.re	Depth to (below MP)	to MP) to	top bottom	of screen	reen	
Field Pe Samplin	Field Personnel Sampling Organization	3	34			i i i	Pump Purgin	Intake at g Device	Pump Intake at (ft. below MP)_Purging Device; (pump type)(Pump Intake at (ft. below MP) — Purging Device; (pump type) Baulta	主	
Identify MP	MP		up of Rider	4			Total	Volume	Purged	Total Volume Purged Pry e 1.5		
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. "C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO- mg/L	Tur- bidity NTU	Comments	
1451	81.10	m	The	23	6.9	3621		7.8 443 5.15	5.15	25.56		
1457				2.50	115	35,80 7.37 57.3 4.91	7.37	513	13%	377.6		
1505	2245	+	→	Orgents 16.6	क्र	3447	124	51.2	5.08	3447 124 51.2 5.08 8424.3		
			*									
			,									
						1						
Stabilize	Cinciliantian antique				100				,000	,000		

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Client: <u>Sum</u>	itema Rub	ber		Sample Poi	nt ID:	OMW-	C
Facility: Dun	lop Tire	4-0		Sample Ma	trix:	OMW-	
Field Personnel:	Iom web	ster					
Sampling Inforn							
Date/Time:	5-18-23	15	ıl		(Circle	e One)	
Sampling Method:		Bailer		Dedicated:	VES	NO	
Diameter of Well:		2.0				,	
Diameter of Well:					Multiply b	<u>y</u>	_
Well Depth (from t	on of PVC).	29.95		1" 2"	0.041		
	op on the j.			3"	0.163 0.367		
Water Depth (from	top of PVC):	3.42	-	4"	0.653		
			194	6"	1.468		
anath afthing	lumn /I M/C).			8"	2.61		-
Purge Volume: LW	Cx()x3=			Volume Pur		+ -	
Purge Volume: LW See Multi			meter			+ -	
Purge Volume: LW See Multi	Cx()x3= ↑ plier to input base	ed on Well Diar		Volume Pur	ged:	+	
Purge Volume: LW See Multi	Cx()x3= 个 plier to input base		Cond. (Umhos/cm)			DO (mg/L)	
SAMPLING DATA:	Cx()x3= ↑ plier to input base Temp.	ed on Well Diar	Cond.	Volume Pury	ged: ORP	1 2 2 2 2	

		FIELD O	BSERVA 1	IIONS			
Client:	lep Tire Jem wel	ber		Sample Poir	nt ID:	OMW-	49
Facility: <u>Dun</u>	lop Tire			Sample Mat	trix:	GW-	
Field Personnel:	Icm wel	ster					
SAMPLING INFORM							
Date/Time:	5-18-2	3 140	<i>''</i>		(Circle	e One)	
Sampling Method:	Ba	3 140 iler		Dedicated:	(YES)	NO	
Diameter of Well:		2.0		Diameter	Multiply b	y	
Well Depth (from t	op of PVC):	25.6		1" 2" 3"	0.041 0.163 0.367		
Water Depth (from	top of PVC):	7.09	72.3 73.7	4" 6"	0.653		
Length of Water Co	lumn (LWC):	-		8"	1.468 2.61]	- 0
Purge Volume: LW	Cx()x3=			Volume Purg	ged:		
See Multi	个 plier to input base	ed on Well Diar	neter			4	
SAMPLING DATA:		pH	Cond.	Turbidity	ORP	DO	
SAMPLING DATA: Time	Temp. (°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)	(mg/L)	
					(Mv)		
Time	(°C)	(std units)			(Mv)		
Time Weather conditions	(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)		
Time	(°C)	(std units)		(NTU)	(Mv)		
Time Weather conditions	(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)		
Time Weather conditions	(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)		
Time Weather conditions	(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)		

Client:	Simile	mer Rich	ber		Sample Poir	-+ ID.	X a	us A
	201-111-10	1100			Sample Poli	it iD:	A. Or	1W-77
Facility:	Vinley	Tire			Sample Mat	trix:	Gu	
Field Perso	onnel:	Icm web	ster					
SAMPLING	G INFORMAT	ION:						-
Date/Time	e:	5-30	1-23/12	10		(Circle	e One)	
ampling I	Method:				Dedicated:	YES	NO	
Diameter	of Well-		2.00		Diameter	n a let 1 (
rionne ten	or wen.				Diameter 1"	Multiply by 0.041	4 =	~
Well Dept	h (from top	of PVC):	22.40	9	2"	0.163		
					3"	0.367	1	
Water Dep	oth (from top	of PVC):	6.28	2	4"	0.653		
		- Taran		100	6"	1.468		
ength of	Water Colun	nn (LWC):			8"	2.61		H (*)
	u me: LWC x See Multiplie	1	ed on Well Diar		Volume Purg	ged:	1/	
	See Multiplie	1	ed on Well Diar		Volume Purg	ged:	7	
S	See Multiplie	1			Volume Purg	ged:	//	
S	See Multiplie	个 r to input bas	ed on Well Diar	neter			DO (mg/L)	
S	See Multiplie	个 r to input bas Temp.	ed on Well Diar	neter Cond.	Turbidity	ORP		
SAMPLING	See Multiplie DATA: Time	个 r to input bas Temp. (°C)	ed on Well Diar pH (std units)	neter Cond.	Turbidity	ORP		
SAMPLING	See Multiplie DATA: Time	个 r to input bas Temp.	ed on Well Diar pH (std units)	neter Cond.	Turbidity	ORP		
SAMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		
SAMPLING	See Multiplie DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		
SAMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity	ORP (Mv)		
SAMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		
SAMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		
AMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		
AMPLING	DATA: Time	Temp. (°C)	ed on Well Diar pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)		

	ient: Sumitano Rubber				int ID:	ONW-C		
acility: <u>Dunlep Tire</u> ield Personnel: <u>Jam webster</u>				Sample Matrix:		onw-c		
Field Personnel:	eld Personnel: Iom webster							
SAMPLING INFORM								
Date/Time:	/Time:				(Circle One)			
Sampling Method:	npling Method:			Dedicated: YES		NO		
Diameter of Well:				Diameter	Multiply by	7 -		
				1"	0.041			
Well Depth (from to	p of PVC):)		2"	0.163			
			-	3"	0.367			
Water Depth (from t	op of PVC):			4"	0.653			
ength of Water Col	(1116)			6"	1.468			
engui oi water con	imn (LVVC):			8"	2.61			
See Multipl AMPLING DATA:	ier to input bas	ed on Well Diar	meter					
Time	Temp.	рН	Cond.	Turbidity	ORP	DO		
	(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)	(mg/L)		
				V				
Veather conditions	at time of samp	oling:						
Veather conditions			water teal	only				
			water tail	only				
			water tenl + locate	only				
			water tail + locate	only				
			water tenl + locate	only				
			water tenl + locate	only				

APPENDIX I
SUMITOMO RUBBER USA, LLC
MONITORING WELL – SEMI-ANNUAL INSPECTION FORM

Date: 1/1/27 Inspector: CMB DEO-00011/1

Monitoring Well	OMW-A6	OMW-C1	OMW-B3	OMW-B4	0WM-A4	OMW-C5	OMW-C7
Installation Type	PM		50	SU	20	SU	SU
Inspector Initials	cmb		cmes	OMB	CMB	CM2	cmp
Inspection Date	11/14		U				4/14
Access	6		G	(-	G	6	6
Installed Depth (Ft BTOR)	23.5 ft bgs	19 84	17.28	20.5 ft bgs	23.0 ft bgs	28.97	21.0 ft bgs
Sounded Depth (Ft BTOR)	nen		NM	NW	NM	NM	m
Exterior ID	anualo		CMWBS	comuss4		conwes	
Interior ID			4	4	4	4	11
Condition of Well Casing	G	V	6	6	6	6	6
Flushmount (FM) Surface Water							
FN – Water in Curb Box	NU						
Gasket	650	9			NA		
Bolts	6	9					
Lid	G	3					
Concrete Base or Cement Pad	G	J	6	G	6	G	G
J-plug or Slip Cap	6	9	6	G	G	G	B
Locks	6		G	B	G	B	B
NAPL Present	m	+	NW	NW	NM	MM	MM
NAPL Thickness (ft)	nm	Ó	NW	NM	NM	NM	NM
Notes		2					
Corrective Actions Required							

FtBTOG — Feet below top of riser
Ft bgs — Feet below ground surface
NAPL — Non-aqueous phase liquid
P — Poor
G — Good
NA — Not Applicable
N — No
Y — Yes
EW — Extraction Well

APPENDIX I
SUMITOMO RUBBER USA, LLC
MONITORING WELL – SEMI-ANNUAL INSPECTION FORM

Date: 5||8||-3|
Inspector: CMB
DEO -00011/1

Monitoring Well	OMW-A6	OMW-C1	OMW-B3	OMW-B4	0WM-A4	OMW-C5	OMW-C7
Installation Type	PM	80	SU	SU	SU	SU	80
Inspector Initials	CIME						-7
Inspection Date	SIMB						-57
Access	6		G	6	6	6	6
Installed Depth (Ft BTOR)	23.5 ft bgs	19.84	17.28	20.5 ft bgs	23.0 ft bgs	28.97	21.0 ft bgs
Sounded Depth (Ft BTOR)	NM	\wedge	M	m	M	NM	M
Exterior ID	ALO	11	63	84	AL	CF	07
Interior ID	ALO		B3	BU	AU	C5	0
Condition of Well Casing	6		6	6	6	6	6
Flushmount (FM) Surface Water	N						
FN – Water in Curb Box	N	D					
Gasket	6	7			NA		
Bolts	6	3					
Lid	6	9					
Concrete Base or Cement Pad	6	7	G	G	G	G	G
J-plug or Slip Cap	6	1	G	8	G	6	6
Locks	6	×	(5	6	(9	G	6
NAPL Present	N	2	N	N	N	N	N
NAPL Thickness (ft)	N		N	N	N	N	N
Notes							
Corrective Actions Required	NA		NA	NA	NA	M	M

FtBTOG – Feet below top of riser
Ft bgs – Feet below ground surface
NAPL – Non-aqueous phase liquid
P – Poor
G – Good
NA – Not Applicable
N – No
Y – Yes
EW – Extraction Well