

July 29, 2025

Mr. Bradley Demo New York State Dept. of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2915

Revised Periodic Review Report and Institutional Controls Certification - Site No. 915018

Dear Mr. Demo,

Please find attached the Periodic Review Report (PRR) and Institutional and Engineering Controls (IC/EC) Certification Forms for the in accordance with the Site Management Plan (SMP) for the Dunlop Tire and Rubber Site (Site No. 915018).

Please contact Christine Barton if you have any questions or if you need any additional information.

Thank you,

Christine Barton

Chistine Barton Environmental Coordinator (716) 879-8497

Cc: Timothy Sprunger (Sumitomo)
Bradley Demo, Project Manager
Ben McPherson, Hazardous Waste Remediation Supervisor, Region 9
Richard Snyder, GHD

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	915018	Site Details		Box 1	
Sit	e Name Du	nlop Tire and Rubb	per			
Cit Co	e Address: 3 y/Town: Tor unty:Erie e Acreage: 2		Zip Code: 14150			
Re	porting Perio	od: June 30, 2024 to	o June 30, 2025			
					YES	NO
1.	Is the inform	mation above correc	t?		X	
	If NO, inclu	de handwritten abov	ve or on a separate sheet.			
2.		or all of the site prop nendment during this	perty been sold, subdivided, merged, o s Reporting Period?	r undergone a		×
3.		peen any change of RR 375-1.11(d))?	use at the site during this Reporting Po	eriod		×
4.		ederal, state, and/or property during this	local permits (e.g., building, discharge s Reporting Period?	e) been issued		×
			tions 2 thru 4, include documentation previously submitted with this cert			
5.	Is the site of	currently undergoing	development?			×
					D 0	
					Box 2 YES	NO
6.	Is the curre		nt with the use(s) listed below?		×	
7.	Are all ICs	in place and function	ning as designed?	X		
	IF TH		HER QUESTION 6 OR 7 IS NO, sign an E THE REST OF THIS FORM. Otherw		nd	
AC	Corrective M	easures Work Plan	must be submitted along with this for	m to address th	iese iss	ues.
		···· <u>·</u> ···				
Sig	nature of Ow	ner, Remedial Party	or Designated Representative	Date		

SITE NO. 915018 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

65.17-2-1.111 Sumitomo Rubber USA, LLC

Monitoring Plan O&M Plan

The March 1993 Record of Decision contained a general Institutional Control described as follows:

• Post-closure maintenance and monitoring for thirty years to ensure the long-term effectiveness of the remedy and provide early detection should failure occur;

and described more specifically as:

- Compliance with this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- · All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- · Groundwater monitoring must be performed as defined in this SMP; and
- Data and information pertinent to Site Management must be reported at the frequency and in a manner defined in this SMP.

There are no use restrictions on this site.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

65.17-2-1.111

Cover System

Fencing/Access Control

Monitoring Wells

Three seperate landfills are capped with modified 360 caps. Groundwater quality is monitored annually.

Under the requirements of the Order on Consent, Dunlop submitted a Conceptual IRM Closure Plan in November 1992 that detailed the closure of the three landfills. The landfills were closed in accordance with the plan;

Each landfill was capped with eighteen inches of clay compacted to a minimum permeability of 1 x 10-7 cm/sec and covered with six inches of soil amenable to plant growth. Due to the low concentrations of volatile organic compounds detected at the sites, and the absence of volatile readings above background levels during intrusive activities, gas venting systems were not required for any of the landfills. In addition, due to the presence of the impermeable underlying silty clay, groundwater/leachate collection and treatment was not required. Slopes of the final landfill cover systems ranged from approximately 4% to 33%.

There are no demarcation layers between the caps and underlying fill material.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	X
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	×
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.

IC CERTIFICATIONS SITE NO. 915018

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy Sprunger at Sunitono Rubber print name print business addr	USA Tonamman NY 14150 ess
am certifying as Sumitono Rubber USA	Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Ourses Remodial Party, or Designated Representative	7/28/2025 Date
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Richard T. Sander at Magara Falls Blood print name at Magara Falls Blood print business address

am certifying as a Qualified Environmental Professional for the Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification (Required for PE)

SUMITOMO RUBBER USA, LLC

TONAWANDA, NEW YORK LANDFILL CAP MANAGEMENT SITE MANAGEMENT PERIODIC REVIEW REPORT (PRR)

I. Introduction

The former Goodyear Dunlop Tires North America facility (Facility), now owned and operated by Sumitomo Rubber USA, LLC (Sumitomo), is located in Tonawanda, New York (see Figure 1). The Facility is approximately 128 acres in size and consists of two parcels of land addressed as 3333 and 3337 River Road. Sumitomo manages three historical waste disposal areas located on the 3333 River Road parcel, which together consist of approximately 25 acres. These three historical waste disposal areas are individually referred to as Disposal Site A, B, and C, and are hereinafter collectively referred to as the "Site". Figure 1 shows the approximate Site location and boundaries. Dunlop Tire Corporation (Dunlop) entered into an Order on Consent (Consent Order) on April 23, 1991, with the NYSDEC to determine the nature and extent of contamination at the Site resulting from historical disposal of industrial wastes. The Site boundaries coincide with the estimated limits of fill as depicted by URS Consultants, Inc. in their April 1992 report¹, and as shown in the March 1993 Record of Decision (ROD)². The Site is currently in the New York State (NYS) State Superfund Program (Site No. 915018), which is administered by the New York State Department of Environmental Conservation (NYSDEC). The Site is listed as a Class 4 site, indicating that it has been properly closed but requires continued Site management consisting of operation, maintenance, and/or monitoring.

A Site Management Plan (SMP) has been prepared for the Site to ensure implementation and management of the institutional controls (ICs) and engineering controls (ECs) in place for the Site. This Periodic Review Report (PRR) is being prepared to certify that site management activities are being conducted in accordance with the SMP.

II. Disposal Site Overview

Disposal Site A

Disposal Site A is located on the northwestern portion of the Facility (Figure 1). The surface of Site A consists of grass, trees, brush, and asphalt parking lot. Site A was reportedly used to dispose of various wastes including fly ash, slag, carbon black, asphalt, foam, tires, coal, and construction and demolition (C/D) debris until 1970, and

¹ URS Consultants, Inc., April 1992, Report of Field Investigation and Data Analysis, Inactive Disposal Site Nos. 915018 A, B, C, submitted to the NYSDEC.

² New York State Department of Environmental Conservation, March 1993, Record of Decision, Dunlop Tire and Rubber, Site No. 915018A, Site No. 915018B, Site No. 915018C.

C/D debris until 1979. The primary area of disposal, consisting of thicker fill, is located within the central and northern portions of Site A.

As indicated above, the boundaries of Disposal Site A coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern boundary (lateral extent of fill) was determined through excavation of eight test trenches by URS in 1991. The eastern and western boundaries were defined based on surface topography and configuration of waste piles. The northern extent of the fill could not be determined, as the presence of the parking lot prevented completion of test trenches in this area. As a result, the northern boundary was defined by the northwestern corner of Building 1 and a perimeter fence east of a 10,000-gallon water tank present at that time. Fill materials identified in the trenches included black and brown silt, reworked reddish/brown silty clay, ash, slag, carbon black, C/D debris, asphalt, foam, rubber tires, and coal. Three test holes were completed by Conestoga-Rovers & Associates (CRA) in 1983, and two test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site A.

Disposal Site B

Disposal Site B is located on the southwestern portion of the Facility (Figure 1). The surface of Site B consists of grass and asphalt parking lot and driveway. Site B was reportedly used to dispose of various solid wastes, including scrap rubber (natural and synthetic), golf balls, plastics, carbon black, fly ash, amines, antioxidants, and general refuse until 1970.

The boundaries of Disposal Site B coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 2). The southern and western boundaries (lateral extent of fill) were determined through excavation of seven test trenches by URS in 1991. The eastern extent of the fill could not be determined, as the presence of the parking lot prevented completion of test trenches in this area. However, aerial photographs reportedly confirm waste disposal eastward into the parking lot. The northern extent of the fill could not be determined due to the presence of the settling pond. Fill materials identified in the trenches included black and brown silt, C/D debris, asphalt, coal, and rubber. Seventeen test holes were completed by CRA in 1983, and five test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site B.

Disposal Site C

Disposal Site C is located on the eastern portion of the Facility (Figure 1). The surface of Site C consists of grass. Site C was reportedly used as a coal ash landfill until 1973. Interviews with several Dunlop retirees in the early 1980s indicated that it was common practice to dispose of all types of waste at this Site, including drums of waste solvents and degreasers.

The boundaries of Disposal Site C coincide with the estimated limits of fill as depicted by URS in their April 1992 report (Figure 3). The southern and eastern boundaries (lateral extent of fill) were determined through excavation of six test trenches by URS in 1991. The northern boundary was defined by a scarp or steep bank along the outer toe of the

fill where it contacted the original surface. The berm-like area between the fence and railroad tracks constituting the western portion of Disposal Site C was defined based on topography. Fill materials identified in the trenches included black and brown silt, ash, slag, sand and gravel, C/D debris, and rubber. Five test holes were completed by CRA in 1983, and six test pits were excavated by URS in 1991, which contributed to the delineation of Disposal Site C.

III. Institutional and Engineering Control Plan

Since remaining contamination exists at the Site, ICs and ECs are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site.

Institutional Controls

A series of ICs are required by the ROD to:

- 1. Implement, maintain and monitor EC systems
- 2. Prevent future exposure to remaining contamination

Adherence to these ICs on the Site is required by the ROD and the Consent Order and will be implemented under the Site's Long-Term Monitoring Plan. ICs may not be discontinued without an amendment to the Consent Order. The IC boundaries are the same as the Site boundaries.

The ICs, as described in the March 1993 ROD, consist of the following:

- Post-closure maintenance and monitoring will be conducted for 30 years, starting in 1995, to ensure the long-term effectiveness of the remedy and provide early detection should failure occur. This 30-year maintenance and monitoring program concluded with the 2024 round of inspections and monitoring.
- The Order on Consent signed by Dunlop, effective April 23, 1991, is a legally binding agreement that requires the company to inspect the final cover quarterly (the frequency has been reduced to annually) and maintain it for 30 years. This maintenance program, in combination with the post-closure monitoring program, will help ensure the long-term effectiveness of the cap. If during that time the Department concludes that any element of the cover fails to perform as predicted or otherwise fails to protect human health or the environment, the Department can require Sumitomo to make modifications or repairs as required.
- If Sumitomo closes the Facility, the Order on Consent requires the company to continue its maintenance and monitoring programs.
- If the property is sold, Sumitomo must notify the Department within 60 days of closing and furnish the name(s) of the prospective new owner(s) of the property. In addition, Sumitomo must inform the new owner(s) about the landfills and that an Order on Consent is in effect.

Engineering Controls

The purpose of the ECs is to prevent direct human contact with on-Site waste, prevent the erosion and transport of contaminated soil from the Site into surrounding wetland areas, control the migration of contaminated groundwater from the Site, and reduce environmental risk to wildlife living in the surrounding wetlands. The ECs, as described in the March 1993 ROD, include the following:

- The three landfills were capped with 18 inches of clay compacted to a minimum permeability (hydraulic conductivity) of 1x10⁻⁷ cm/sec. The caps were covered with 6 inches of soil amenable to plant growth, seeded, and mulched. Areas overlying the three landfills associated with vehicle traffic were paved in the fall of 1992.
- Surface water runoff is directed to catch basins that discharge to the plant settling pond. Monitoring of this pond occurs semi-annually as a SPDES permit condition.
- The Site is fenced.

The Site cap is a permanent control, and the quality and integrity of the cap is inspected semi-annually.

IV. Inspections and Monitoring Activities

Annual Cap Inspection

The cap at the Site is intended to prevent contact between Site visitors and workers and the remaining contamination. The cap consists of low permeability clay covered by soil capable of sustaining vegetation, and by areas of asphalt pavement over portions of the Site subject to vehicle traffic (no confirmed clay cap). An inspection of the cap at all three disposal Sites is performed on an annual basis in accordance with the SMP schedule, regardless of the frequency of the Periodic Review Report (PRR).

Each cap inspection includes a walkover and visual assessment of the cap. The inspection does not include any areas where work is being performed. The following items are evaluated to ascertain the need for corrective action:

- Soil cover system The presence of desiccation cracks, freeze/thaw damage, and the presence of seeps or leachate breakouts.
- Asphalt The quality of the pavement for cracking or other deterioration.
- Landscaping The vigor and density of the vegetative cover both on the cap and in grass-lined drainage ways as well as bare, sparse, and undernourished areas.
- Erosion The presence of any erosion.
- Settlement Visual evidence of differential settlement and its impact on either the cap integrity or required drainage patterns.
- Drainage features Ditches, culverts, piping, and structures for siltation, ponding, or erosion damage.
- Ancillary features The integrity of other remedial action features such as fences and access roads and any items in need of repair.

The annual cap inspections were completed on May 28, 2025. The inspection forms are provided in Attachment 1.

During the inspection, some bare top soil was noted around Area B, specifically the areas along the bank of channel and areas along the road. A request to import soil was submitted to NYSDEC and subsequently approved on July 9, 2025. On July 16, 2025, topsoil was placed to maintain the six-inches of coverage as required by the SMP and then seeded.

No other deterioration or deficiencies were identified in Areas A, B, or C.

Photos from the May 2025 inspection area provided as Attachment 2.

Groundwater Monitoring

Groundwater monitoring is performed triennially to monitor the long-term effectiveness of the Site closure and provide for early detection should failure occur, as outlined in the SMP. Trends in contaminant concentrations in groundwater are evaluated to determine if the ICs and ECs in place at the Site continue to be effective in protecting public health and the environment. Wells downgradient of the capped areas are monitored to evaluate the effectiveness of the closure action. Wells upgradient of the capped areas will be monitored as needed, based on the downgradient results, to determine if upgradient groundwater, rather than the disposal areas, might be a source of downgradient impacts. In this case, the effectiveness of the closure would not be questioned.

The Groundwater monitoring well network includes the following three wells (Figures 2 and 3):

• Downgradient wells: OMW-B3, OMW-B4, and OMW-C7

Contaminants to be analyzed during each sampling event are defined as Analytical Schedule A analytes and Analytical Schedule B analytes and are listed on Table 1.

If turbidity in a groundwater sample is above 50 nephelometric turbidity unit (NTU), then both filtered and unfiltered samples are analyzed for metals to determine if suspended solids are contributing to the reported concentrations and, therefore, potentially giving a false indication of groundwater concentrations.

Groundwater sampling was completed April 24, 2025. The samples were analyzed for Schedule B analytes. All parameters in all wells were below the action levels identified in Table 2.

A summary of the sample results is presented on Table 3a through Table 3g, including all available historical analytical results from sampling events that took place in year 1 through year 30, for all seven monitoring wells. The laboratory data reports are provided in Attachment 3. The field monitoring forms are provided in Attachment 4.

No corrective actions are required at this time.

Visual Inspections of Monitoring Wells

All seven monitoring wells are visually inspected as part of the annual monitoring event, regardless of which wells are to be sampled. The wells are inspected for protective covers, well locks, water-tight locking caps, and cement pads or flush mount conditions.

The monitoring well inspections were completed on May 28, 2025. Well inspection forms are provided in Attachment 5.

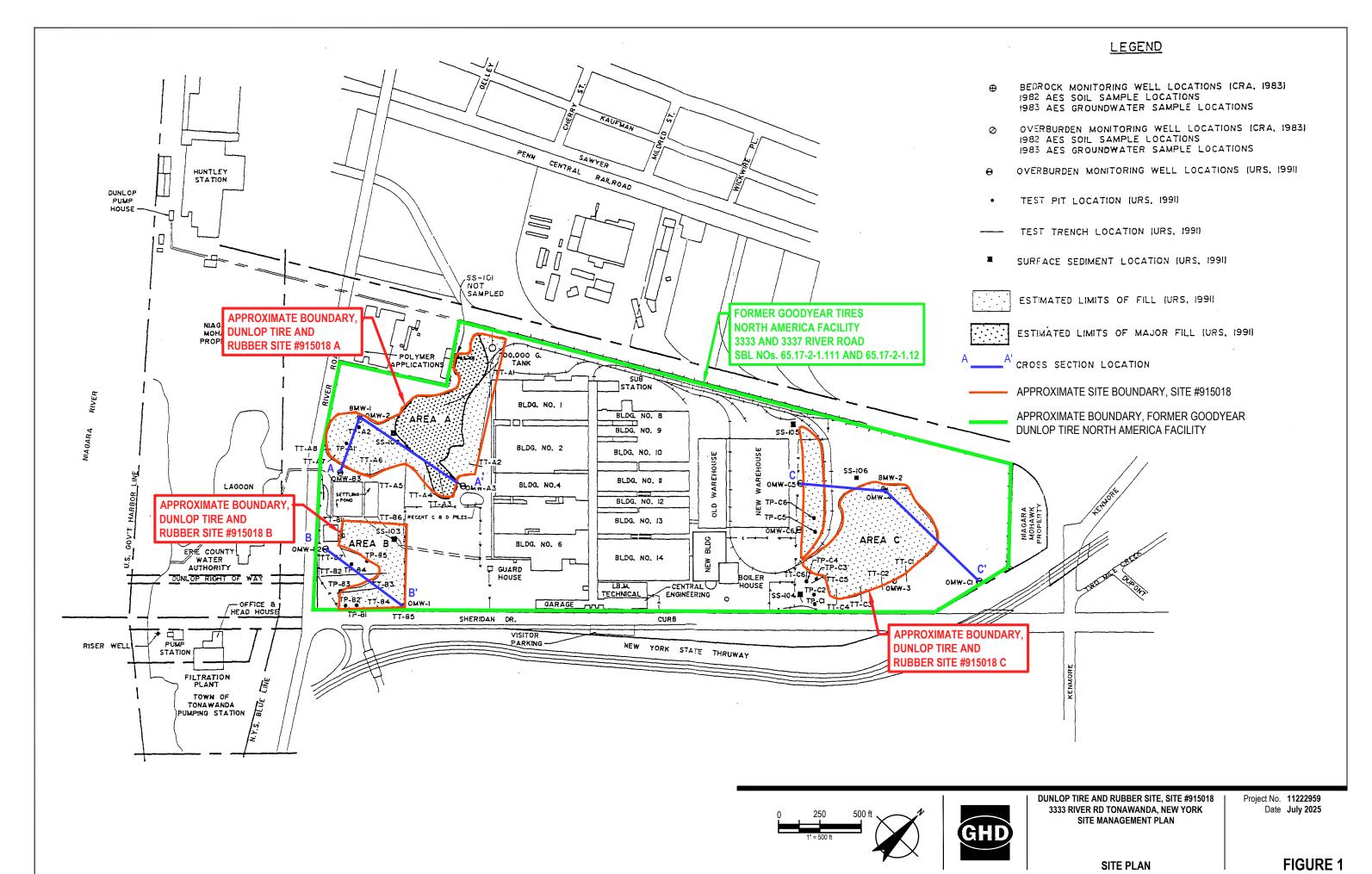
Well OMW-C1 could not be located. Historical records indicate that OMW-C1 was last documented on June 11, 1998, during annual inspections. Attempts to locate the well have occurred yearly during the annual well inspections that are documented in past PRRs. It is believed the well was inadvertently destroyed sometime following the July 1998 inspection. This upgradient well was only scheduled to be sampled during year 1 of the Long-Term Monitoring Plan that was developed in July 1994. Additional phenol samples were taken through year 4 of the sampling plan. The historical sampling results are provided on Table 3e.

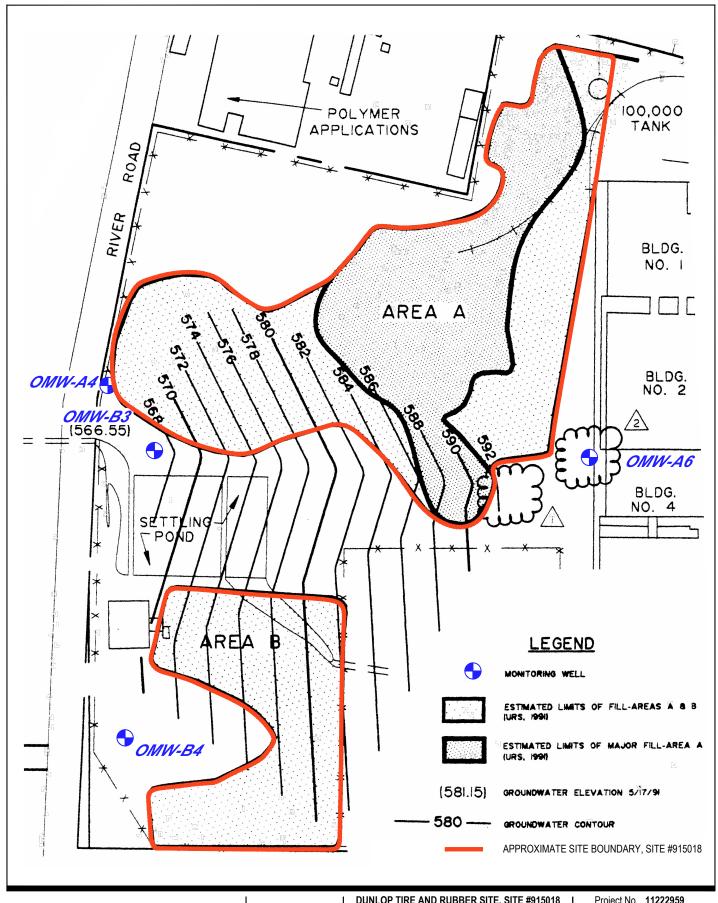
The inspections found all other monitoring wells to be in good condition.

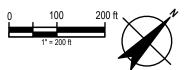
No corrective actions are required.

Hydraulic Monitoring

Groundwater measurements were taken to assess groundwater flow conditions. Table 4 summarizes the water level measurements taken April 24, 2025. Figure 4 shows the updated groundwater contour map with groundwater flow direction.

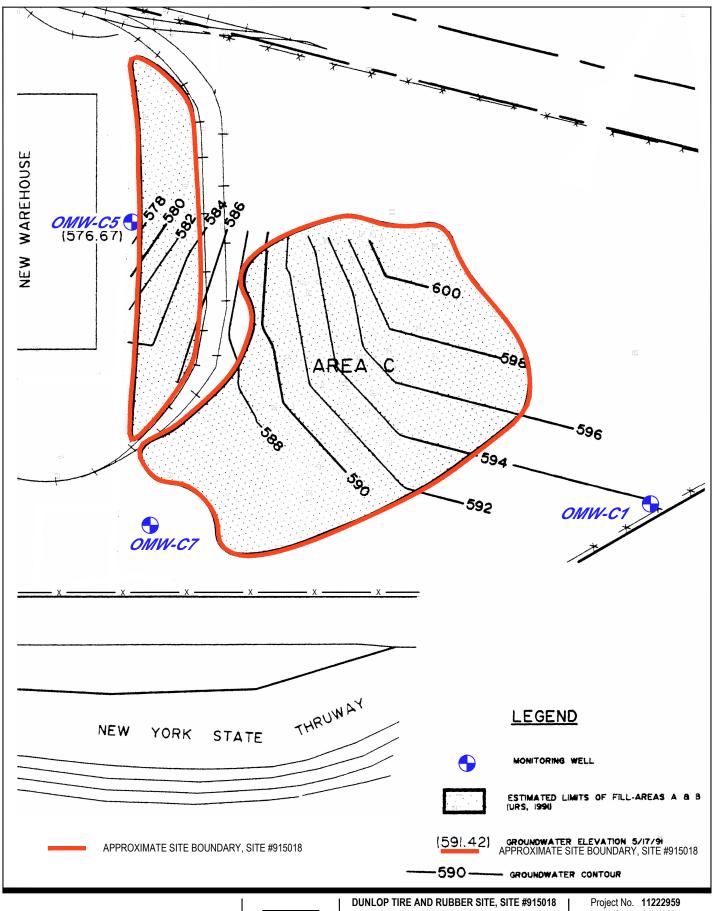

V. Compliance and Corrective Actions

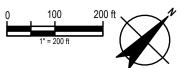

Sumitomo is currently in compliance with the first year of monitoring following the completion of Long-Term Monitoring Plan year 30 of the 30-year plan requirements and the SMP. Portions of Area B requiring landscaping maintenance maintain the soil cover. This corrective action took place on July 16, 2025. No other issues of non-compliance were noted during this reporting year. Routine maintenance of pavement and the soil cover will continue as needed.


There are no corrective actions required based on the current conditions.

The next landfill cap inspection will be completed in Spring 2026, while the next monitoring well inspection, hydraulic monitoring, and groundwater sampling event will be completed in Spring 2027. The NYSDEC will be notified 7 days in advance of future inspections or sampling activities.

Figures

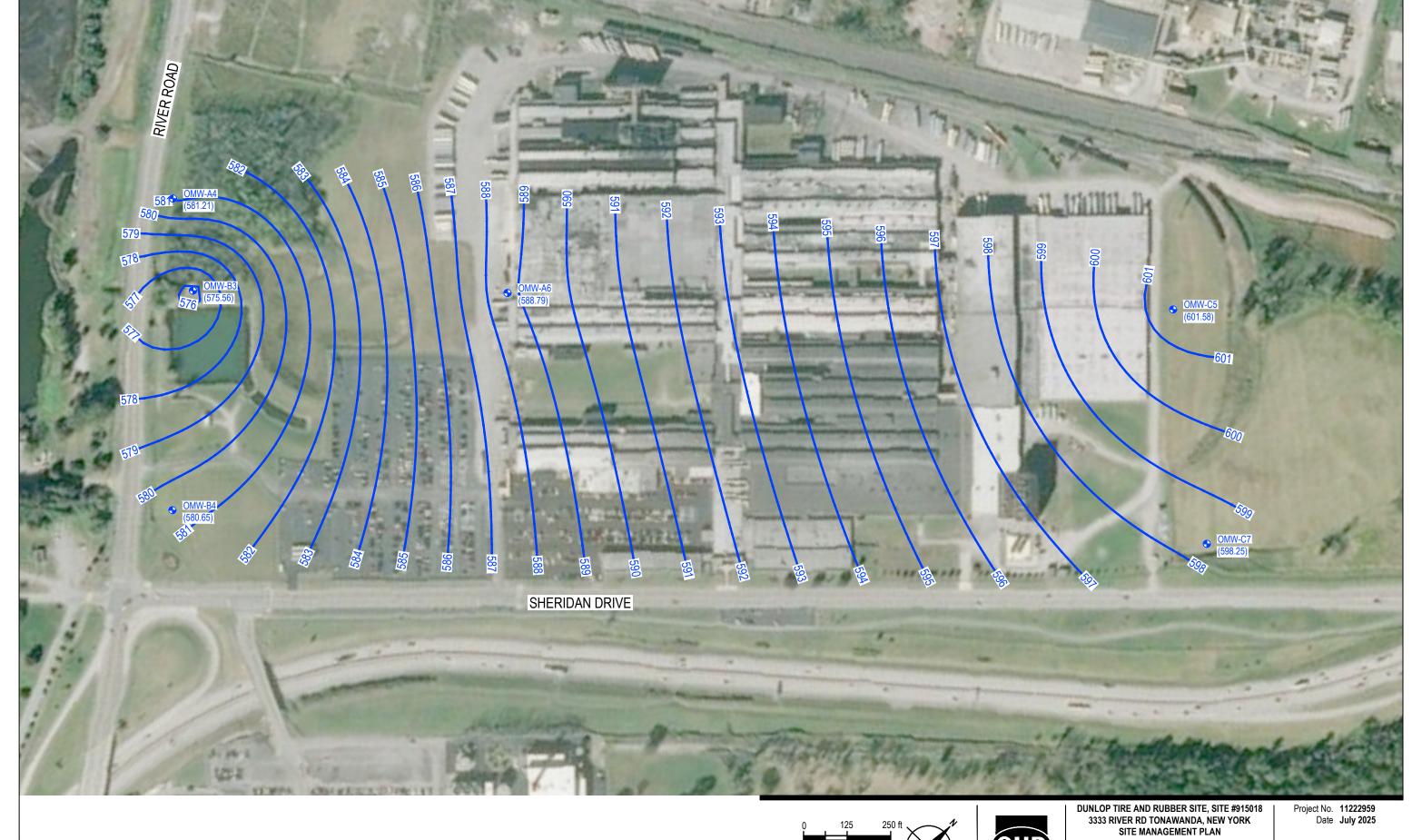



DUNLOP TIRE AND RUBBER SITE, SITE #915018 3333 RIVER RD TONAWANDA, NEW YORK SITE MANAGEMENT PLAN

> LOCATIONS OF WELLS FOR LONG-TERM MONITORING **DISPOSAL SITES A AND B**

Project No. 11222959 Date July 2025

FIGURE 2



3333 RIVER RD TONAWANDA, NEW YORK SITE MANAGEMENT PLAN

> LOCATIONS OF WELLS FOR LONG-TERM MONITORING **DISPOSAL SITE C**

Date July 2025

FIGURE 3

GROUNDWATER CONTOUR MAP APRIL 2025

Tables

Sumitomo Rubber USA, LLC Sampling Schedule Analytical Mumber of Sampling Events Per Year A C C B B4 A4 C5 C7 Sampling Sampling Events Per Year A A C C C C Sampling Schedule A A C C C C Sampling Events Per Year A C C C C C Sampling Events Per Year A C C C C C Sampling Events Per Year A C C C C C Sampling Events Per Year B C C C C C Spring Fall B C C C C C Spring Events Fall B C C C C C C Spring Events Fall B C C C C C C C Spring E					Ta	Table 1				
Number of Sampling Schedule Inactive Waste Sites 915018 A, B and C				J,	Sumitomo R	ubber USA,	CIC			
Number of Sampling Events Per Year					Samplin	g Schedule				
Number of Sampling Events Per Year Upgradient Downgradient A6 C1 B3 B4 A4 C5 C7 2 2 2 2 2 C7 2 2 2 2 2 C7 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ľ		Inactiv	/e Waste Sit	.es 915018 /	a, b and C			
Upgradient Downgradient A6 C1 B3 B4 A4 C5 C7 2 2 2 2 2 2 C7 2	2	legitoric		2	umber of S	ampling Eve	ents Per Yea	ī		Campling
A6 C1 B3 B4 A4 C5 C7 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 4 1<	ر ک	larytical	Upgra	dient		D	owngradier	ıt		Sampling
2 2	ñ	cnedule	A6	C1	B3	84	A4	CS	C 2	Season
1 1		А	2	2	7	7	2	2	7	Spring/Fall
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			7	7	2	2	7	Spring/Fall
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1	1	1	1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1			1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1	1	1	1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1			1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1	1	1	1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1			1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1	1	1	1	Spring
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		В			1	1			1	Spring
1 1 1 1 1 1 1 1 1		В			1	1	1	1	1	Spring
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		В			1	1			1	Spring
		В			1	1	1	1	1	Spring

Notes:

Starting year was 1994. 1st Sampling Year was 1995.

			Table 2				
		Sumi	Sumitomo Rubber USA, LLC	SA, LLC			
	Gro	undwater Act	Groundwater Action Levels for Downgradient Wells	owngradient	Wells		
		NYSDEC					
		Criteria ¹	OMW-A43	OMW-B3	OMW-B4 ²	OMW-C5	OMW-C7
Parameter	Type	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(ppp)
2-Butanone (MEK)	NOC	20	ΝΑ	20	20	20	20
Benzene	00V	1	ΑN	0.7	2	0.7	0.7
1,1-Dichloroethane	00V	2	ΑN	2	2	2	5
1,2-Dichloroethene (total)	00V	2	ΑN	2	2	2	5
1,1,1-Trichloroethane	00V	2	ΑN	2	2	2	5
Arsenic	MET	25	ΑN	25	25	25	25
Cadmium	MET	2	ΑN	10	28	16	10
Chromium	MET	20	ΑN	20	178	99	50
Lead	MET	25	ΑN	32	52	20	25
Total Phenols	SEMI	1	NA	1	1	1	1

VOC = Volatile Organic Compounds

MET = Metals

SEMI = Semivolatile Organic Compound ¹NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998, with addenda through 2004

² Determined using existing data from OMW-B2

³ OMW-A4 monitors the uncapped minor fill Area A, and, therefore does not require any action level as per the Long-Term Monitoring Plan submitted July 1994

Table 3a
Sumitomo Rubber USA, LLC
Annual Landfill Well Monitoring
Groundwater Analytical Results
OMW - A4

			t - MMO	ţ					
Well ID	A4		Year 30	Year 25	Year 20	Year 19	Year 15	Year 11	Year 10
Date			4/19/2024	5/24/2019	6/10/2014	8/13/2013	5/7/2009	6/1/2005	6/22/2004
Parameters	Units	Action Levels							
Volatile Organic Compounds	hg/L								
1,1-Dichloroethane	hg/L	ΝΑ	ND (2.5)	ND (2.5)	ND (2.0)	•	ND (5.0)	ND (2.0)	ND (10.0)
1,2-Dichloroethane	hg/L	NA	(05.0) QN	ND (0:50)	ND (2.0)	-	ND (5.0)	ND (2.0)	ND (10.0)
1,1,1-Trichloroethane	hg/L	ΝΑ	ND (2.5)	ND (2.5)	ND (2.0)		ND (5.0)	ND (2.0)	ND (10.0)
Benzene	hg/L	ΝΑ	(05.0) QN	ND (0:50)	ND (0:50)	•	ND (0.7)	ND (2.0)	ND (10.0)
2-Butanone	hg/L	NA	(0.5) QN	ND (5.0)	ND (10.0)	-	ND (5.0)	ND (2.0)	ND (10.0)
Total Metals									
Arsenic	hg/L	ΑN	0.82	1.52	ND (10.0)	ND (10.0)	ND (10.0)	44.9	81.9
Cadmium	hg/L	ΝΑ	(0.2)	ი.08 ქ	ND (10.0)		12	(10.0) ND	ND (5.0)
Chromium	hg/L	ΑN	4.64	59	ND (10.0)	•	12	ND (20.0)	80
Lead	hg/L	NA	0.82 J	2.53	ND (10.0)	-	ND (10.0)	5.1	35.8
Dissolved Metals*									
Dissolved Arsenic	hg/L	-	-	0.29 J	ND (10.0)	ND (10.0)	ND (10.0)	43.7	49.3
Dissolved Cadmium	T/Brl	-	-	ND (0.2)	ND (10.0)	-	ND (10.0)	ND (10.0)	ND (5.0)
Dissolved Chromium	hg/L	-	-	0.73 J	ND (10.0)	-	ND (10.0)	ND (20.0)	ND (10.0)
Dissolved Lead	hg/L	-	-	ND(1.0)	ND (10.0)	-	ND (10.0)	(0.0E) dN	ND (15.0)
Inorganics & Miscellaneous									
Turbidity	NTU	-	23	120	88.4	-	0.45	8.89	401
Specific Conductance	nmhos/cm	-	0099	4600	6640	-	-	9260	9520
Total Phenolics	hg/L	ΝΑ	ND (30)	ND (3.0)	ND (5.0)	•	ND (5.0)	6.0	ND (5.0)

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

^{* -} Only required if turbidity is above 50 NTU

		Year 1	5/1/1996 10/4/1995 4/28/1995		4		Q L	ND	ND ND ON	ND ND ND		ON ON ON	ND ND ND	ND ND ON	ON ON		ND ND ND	22 ND ND	ND	QN QN QN		-	1	ND 19.0 ND
Table 3a Sumitomo Rubber USA, LLC	Annual Landfill Well Monitoring Groundwater Analytical Results OMW - A4	Year 2	11/13/1996		<u>i</u>		ON I	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	QN		-	-	ND
Table 3a	ual Landfill Well undwater Analyti OMW - A4	r 3	4/25/1997		000	ND (10.0)		ND (5.0)	ND (10.0)	ND (10.0)	ND (5.0)		-	-	-	ı		8.1	ı	ND (4.0)				
าร	Ann Gro	Year 3	10/30/1997			ND (10.0)		ND (2.0)	ND (16.0)	ND (14.0)	ND (2.0)		-	-	-	ı		240	7450	ND (4.0)				
		Year 4	6/10/1998		(0.00)	ND (10.0)		ND (2.0)	ND (16.0)	20.0	ND (2.0)		ND (5.0)	ND (16.0)	ND (14.0)	ND (2.0)		49.1	0089	ND (4.0)				
		Year 5	5/5/1999			_		ND (10.0)	ND (10.0)	ND (10.0)		6	ND (16.0)	ND (14.0)	4		1	-	-			1030	3400	ND (4.0)

			Table 3b	3b					
		Sum Annua	itomo Rubk	Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring	. Bu				
		Groun	dwater Analytic OMW - A6	Groundwater Analytical Results OMW - A6	ıts				
Well ID	A6		Year 4	Year 3	r 3	Year,	- 2	Year	ar 1
Date			6/10/1998	10/30/1997	4/25/1997	11/13/1996	5/1/1996	10/4/1995	4/28/1995
Parameters	Units	Action Levels							
Volatile Organic Compounds									
1,1-Dichloroethane	hg/L	-	-	-	-	-	-	ND	ND
1,2-Dichloroethane	hg/L	-	-	•	-	-	-	ND	ΩN
1,1,1-Trichloroethane	hg/L		1		1	-		ΩN	ΩN
Benzene	J/Brl	ı	1	ı	1		-	ΩN	ΩN
2-Butanone	hg/L	ı						QN	ΩN
Total Metals									
Arsenic	hg/L	-	-	-	-	-	-	ND	ND
Cadmium	hg/L	-	-	-	-	-	-	ND	ND
Chromium	hg/L	-	-	•	-	-	-	1.4	2.3
Lead	hg/L	-	-	-	-	-	-	4.4	3.9
Dissolved Metals*									
Dissolved Arsenic	hg/L	-	-	-	-	-	-	-	1
Dissolved Cadmium	hg/L	-	-	-	-	-	-	-	ı
Dissolved Chromium	T/Brl		-		1		-	-	ı
Dissolved Lead	hg/L	ı	ı		ı			,	1
Inorganics & Miscellaneous									
Turbidity	NTU			120	13.3	-	•	-	
Specific Conductance	mo/soyun			1350	1	-	-	-	ı
Total Phenolics	hg/L	-	ND (4.0)	7.0	4.0	ND (4.0)	ND (4.0)	12.0	8.0

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

^{* -} Only required if turbidity is above 50 NTU

					Toble 20							
				Sumitom Annual La	Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring	SA, LLC						
				Groundwa	Groundwater Analytical Results OMW - B3	al Results						
Well ID	B3		Year 31	Year 30	Year 29	Year 28	Year 27	Year 26	Year 25	Year 24	Year 23	
Date			4/24/2025	4/19/2024	5/18/2023	6/30/2022	5/21/2021	6/19/2020	5/24/2019	6/19/2018	7/6/2017	11/18/2016
												RESAMPLE
Parameters	Units	Action Levels										
Volatile Organic Compounds	hg/L											
1,1-Dichloroethane	µg/L	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	
1,2-Dichloroethane	hg/L	2	ND (0.50)	ND (0.50)	ND (0.50)	ND(0.50)	ND (0.50)	-				
1,1,1-Trichloroethane	hg/L	9	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	-
Benzene	hg/L	2.0	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	-
2-Butanone	hg/L	90	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Total Metals												
Arsenic	hg/L	25	2.91	2.04	5.71	20.86	9.64	4.76	3.15	29.1	28.8	18
Cadmium	hg/L	10	0.10 J	0.06 J	ი 60.0	0.34	0.08 J	0.05	0.07	0.110 J	0.170 J	-
Chromium	hg/L	20	1.48	2.81	2.32	3.9	1.56	3.53	7.06	4.88	4.15	-
Lead	hg/L	32	2.08	1.38	3.7	8.98	2.04	0.62	0.82	1.72	1.4	1
Dissolved Metals*												
Dissolved Arsenic	hg/L	-	-	-	-	-	1.01	2.39	0.97	ND (5.0)	0.94	-
Dissolved Cadmium	hg/L	-	•			-	ND (0.05)	ND (0.2)	ND (5.0)	(0.3) dN	ND (0.2)	
Dissolved Chromium	hg/L	-				-	0.49	0.82	0.49	ND (10.0)	0.330 J	
Dissolved Lead	hg/L	•	•	_	1	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (10)	ND (0.10)	1
Inorganics & Miscellaneous												
Turbidity	NTN	-	13	7.2	11.69	25.47	63	89	140	180	88	-
Specific Conductance	nmhos/cm	-	930	850	086	1337	920	1100	1000	1500	1500	•
Total Phenolics	hg/L	_	ND (6.0)	8.0 J	ND (15)	ND (15)	ND (30)	ND (30)	ND (3.0)	ND (3.0)	7.0	
												Ī

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

Bold data results are above action levels

* - Only required if turbidity is above 50 NTU

	_	35		1	6	6	(0	(0	(0							6	6	6	1			<u>ි</u>
	Year 11	6/1/2005			ND (10.0)	ND (10.0)	ND (10.0)	(10.0) ND	ND (10.0)		18.6	1.1	5.9	3.8	18.6	ND (10.0)	ND (20.0)	ND (30.0)	, C	CZ1	1457	ND (5.0)
	Year 13	8/17/2007			ND (5.0)	ND (5.0)	(9'9) QN	ND (4.6)	ND (10.0)		ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0)	22	ND (10.0) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0)	907	198	1705	ND (5.0)
	Year 15	5/7/2009			ND (5.0)	ND (5.0)	ND (5.0)	ND (0.7)	ND (5.0)		17	ND (10.0)	ND (10.0)	(10.0) AN	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	3	7.7		9.0
	16	5/10/2010			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		26	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)			-	15.0
	Year 16	6/8/2010	RESAMPLE				-	(29'0) QN	-		16	•	-	-	ND (10.0)						-	ND (5.0)
	Year 17	6/2/2011			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		22	ND (10.0)	ND (10.0)	ND (10.0)	18	ND (10.0)	ND (10.0)	ND (10.0)	0 7 7	14.3	1040	ND (5.0)
LC oring sults	Year 18	5/24/2012			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		ND (10.0)	ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0)	ND (10.0)	700	126	1350	ND (5.0)
Table 3c Rubber USA, L dfill Well Monite er Analytical Re MWW - B3		6/6/2013			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		107	ND (10.0)	ND (10.0)	11	09	ND (10.0)	ND (10.0)	ND (10.0)	1	40.7	1002	ND (5.0)
Table 3c Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring Groundwater Analytical Results OMW - B3	Year 19	7/23/2013	RESAMPLE			-			-		44	-	-	-			-				-	•
ੱ ≮ ਹ		10/8/2013	RESAMPLE		1		-		-		12	-	-	-	1	1					-	1
		6/10/2014			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		92	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	2	21.8	1082	ND (5.0)
	Year 20	7/22/2014	RESAMPLE				-	-	-		47	-	-	-							-	
		11/11/2014	RESAMPLE				-	-	-		11	-	-	-							-	
	Year 21	6/19/2015			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.7)	ND (10.0)		12	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	L 1	(2.5	895	ND (5.0)
		5/25/2016			ND (2.5)	ND (0.50)	ND (2.5)	ND (0.50)	ND (5.0)		40	ND (5.0)	ND (10.0)	ND (10.0)		,				20	066	ND (30)
	Year 22	6/28/2016	RESAMPLE						-		32		•	-		,					-	•

Table 3c
Sumitomo Rubber USA, LLC
Annual Landfill Well Monitoring
Groundwater Analytical Results

					OMW - B3	- B3					
Year 10	Year 9	Year 7	Year 6	Year 5	Year 4	Хез	Year 3	Year 2	2	Year '	ır 1
6/22/2004	6/19/2003	5/8/2001	4/19/2000	5/5/1999	6/10/1998	10/30/1997	4/25/1997	11/13/1996 5/1/1996		10/4/1995 5/16/1995	5/16/1995
ND (10.0)	-	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND	ND	-	-
ND (10.0)	-	(10.0) ND	ND (10.0)	ND (10.0) ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND	ND		
ND (10.0)	-	ND (10.0)	ND (10.0)	ND (10.0) ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND	ND	-	-
ND (10.0)	-	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0) ND (10.0)	ND (10.0)	ND (10.0)	ND	ND	-	-
ND (10.0)	-	ND (10.0)	ND (10.0)	ND (10.0) ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND	ND	-	-
23.4	13.3	ND (25.0)	ND (10.0)	10.0	4.0	14.0	14.0	10.0	0.9	8.1	2.2
ND (5.0)	3.7	ND (2.0)	2.0	ND (16.0)	ND (16.0) ND (16.0)	ND (16.0)	ND (10.0)	ND	ND		
31.5	ND (10.0)	ND (5.0)	ND (10.0)	ND (14.0) ND (14.0)	ND (14.0)	ND (14.0)	ND (10.0)	ND	ND	5.0	1.6
34.8	5.1	12.0	(0.2) QN	ND (2.0)	ND (2.0)	ND (2.0)	1.0	ND	ND	15.3	3.1
15.1	-	-	ND (10.0)	ND (5.0)			10.0	-			
ND (5.0)	-	-	ND (2.0)	ND (16.0)			ND (10.0)	-			
ND (10.0)		-	ND (10.0)	ND (14.0)	-	-	ND (10.0)	-	-	-	-
ND (15.0)		-	(0'S) QN	ND (2.0)			ND (5.0)	-			-
647		265	62.2	70.3	27.7	290	62.5	-			-
167800	-	-	-	1520	1650	2030	-	-	-	-	-
ND (5.0)	ND (5.0)	ND (5.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	2.0	4.0	ND	17.0	5.0

	9	Table 3d Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring Groundwater Analytical Results OMW - B4	3d ber USA, LI II Well Moni nalytical Re	-C Itoring sults					
Well ID	B4		Year 31	Year 30	Year 29	Year 28	Year 27		
Date			4/24/25	4/19/24	5/18/23	6/30/22	5/21/21	8/11/20	6/18/20
								RESAMPLE	
Parameters	Units	Action Levels							
Volatile Organic Compounds	/bii								
1,1-Dichloroethane	ng/L	5	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	-	ND (2.5)
1,2-Dichloroethane	hg/L	5	ND (0.50)	ND (0:50)	ND (0:50)	ND(0.50)	ND(0.50)	-	ND(0.50)
1,1,1-Trichloroethane	hg/L	2	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	-	ND (2.5)
Benzene	hg/L	2	(05.0) QN	ND (0.50)	ND (0.50)	ND (0.50)	(05.0) QN	-	ND (0.50)
2-Butanone	hg/L	20	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-	ND (5.0)
Total Metals									
Arsenic	hg/L	25	0.55	0.56	0.3 J	0.41 J	0.35 J	-	0.31
Cadmium	hg/L	28	(20.0) QN	0.06 J	ND (0.2)	ND(0.05)	(20.0) QN	-	ND (0.2)
Chromium	hg/L	178	4.77	5.11	6.97	6.94	6.14	-	7.44
Lead	hg/L	25	0.42 J	0.84	ND (1)	ND (1)	ND (0.34)	-	ND (1.0)
*() () () () () ()									
Dissolved Medals	1/2:-								
Dissolved Albellic	д Д (,	•	1	1	•	1	1		1
Dissolved Chromium	78/L								
Dissolved Lead	ng/L	1						-	
Inorganics & Miscellaneous									
Turbidity	NTN	-	12	8.7	2.42	18.84	10	74	11
Specific Conductance	nmhos/cm	ı	3200	3300	3100	2998	3000	3200	3100
Total Phenolics	µg/L	1	ND (6.0)	ND (30)	ND (15)	ND (15)	ND (6)	12.0	20.0
Notes:									

ND = Nondetect
NA = Not applicable
J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.
Bold data results are above action levels

10.0) ND (10.0)			Year (6/8/10	Year 17 6/2/11 0/2/0) ND (2.0) ND (2.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (10.0)	ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (10.0)		Sumito Annua Groundy Groundy Year 21 6/19/15 ND (2.0) ND (2.0) ND (2.0) ND (10.0)	Year 22 5/25/16 5/25/16 ND (0.50) ND (0.50) ND (5.0) ND (5.0) ND (10.0) ND (10.0) ND (10.0)	Year 23 7/6/17 ND(0.50) ND(0.50) ND (0.50) ND (0.50) ND (0.2) 6.94 ND (1.0)	Year 24 6/19/18 6/19/18 ND (2.5) ND (0.50) ND (0.50) ND (0.50) ND (0.2) 7.39 ND (1.0)	Year 25 5/24/19 5/24/19 ND (2.5) ND (0.50) ND (0.50) ND (0.50) ND (0.50) ND (0.50)
3350 ND (5.0)	- «	- a	- (0.7) CIN	3380 ND (5 0)	3160 ND (5.0)	3170 ND (5.0)	3200 ND (5.0)	3290 ND (5.0)	3100	3000	3100 ND (3.0)	3200 ND (3.0)
3350		1	1	3380	3160	3170	3200	3290	3100	3000	3100	3200
3350				3380	3160	3170	3200	3200	3100	3000	3100	3200
104	0.15	-	•	0.46	1.92	12.8	17.2	64.1	18	2.6	17	34
	ND ((10.0)	•	ND (10.0)	ND (10.0)	ND (10.0)		\sim	1	1	1	-
ND	(10.0)	(10.0)	•		ND (10.0)	ND (10.0)			-	-	-	1
ΩN	ЙN	_	-	_				_	-	-	-	1
17.0		_	-		ND (10.0)	ND (10.0)	ΩN	_	-	-	-	-
ND (10.0)	ND (10.0)	ND (10.0)	ı	ND (10.0)	ND (10.0)				ND (10.0)	ND (1.0)	ND (1.0)	1.61
ND (10.0)	13.0		•	ND (10.0)	ND (10.0)		ON.		ND (10.0)	6.94	68.7	11.51
ND (10.0)	ND	(10.0)	1	ND (10.0)	ND	ND (10.0)		_	ND (5.0)	ND (0.2)	ND (0.2)	0.13 J
	ND (10.0)		-		ND (10.0)	ND (10.0)	N		ND (5.0)	0.270 J	29.0	9.0
		ND (10.0)	•	ND (10.0)	ND (10.0)	ND (10.0)		_	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
	ND (0.7)	ND (0.5)	ND (0.67)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.7)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
ND (6.5)	ND (5.0)	ND (2.0)	-	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)		ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
ND (5.0)	ND (5.0)	ND (2.0)	•	ND (2.0)	ND (2.0)		ND (2.0)		ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
		ND (2.0)	-	ND (2.0)	ND (2.0)				ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
			AESAIVIPLE THE SAIVIPLE									
8/17/07	2/2/09	5/10/10	6/8/10	6/2/11	5/24/12	6/6/13	6/10/14	6/19/15	5/25/16	7/6/17	6/19/18	5/24/19
Year 13	Year 15	16	Year	Year 17	Year 18	Year 19	Year 20	Year 21	Year 22	Year 23	Year 24	Year 25
						+	OMW - B					
					ring Ilts	Vell Monito ytical Resu	ıl Landfill V water Anal	Annua Ground				
						r USA, LLC	Table 3d mo Rubbe	Sumito				
Ī												

						 	_	_	_	_	1	1						- 1			1	1	1			
				Year 1	4/28/95			Q.	QN	Q	Q.	N		ND	ND	ND	ND					,				ND (4.0)
				Ye	10/4/95			QN	QN	ΔN	QN	ND		ND	ND	1.1	ND		-						ı	8.0
				ır 2	5/1/96			QN	QN	QN	QN	ND		ND	ND	20.0	ND		-	-						ND (4.0)
				Year 2	11/13/96			Q.	g	QN	Q	QN		ND	ND	ND	ND		•	ı		,			1	ND (4.0)
				.3	4/25/97			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (5.0)	ND (10.0)	ND (10.0)	ND (5.0)		-		ı	ı		4.5	ı	2.0
		ng	S	Year 3	10/30/97			ND (10.0)	ND (10.0)	ND (10.0)	(10.0)	ND (10.0)		ND (2.0)	ND (16.0)	ND (14.0)	ND (2.0)		-					72	3670	ND (4.0)
	USA, LLC	II Monitori	tical Result I	Year 4	. 86/01/9			ND (10.0) N	ND (10.0) N	ND (10.0) N	ND (10.0) N	(10.0)		ND (2.0)	ND (16.0) N	ND (14.0) N	ND (2.0)		1	•	,	,		60.1	3050	ND (4.0)
Table 3d	Sumitomo Rubber USA, LLC	Annual Landfill Well Monitoring	Groundwater Analytical Results OMW - B4	Year 5	66/5/9			ND (10.0) N	ND (10.0) N	ND (10.0) N	ND (10.0) N			2.0	ND (16.0) N	ND (14.0) N	3.0		1	1	1			411	2600	ND (4.0)
	Sumito	Annual	Groundw	Year 6	4/19/00			ND (10.0) N	ND (10.0) N	ND (10.0) N	ND (10.0) N			ND (10.0)	ND (2.0) N	ND (10.0) N	ND (5.0)		ı	•	1	1		3.9	1	ND (4.0)
				Year 7	5/8/01			ND (10.0)	ND (10.0) N	ND (10.0) N	ND (10.0)	ND (10.0)		(ND (2.0)	ND (5.0) N	13.0		1	-				7.5		ND (5.0)
				Year 9	6/19/03			ND (10.0) N	ND (10.0) N	ND (10.0) N	ND (10.0) N			_	2.5		7.1		24.1	1.8	ND (10.0)	3.9		ı	ı	ND (5.0)
				Year 10	6/22/04			(2.0) ND (10.0)	ND (10.0) N	ND (10.0) N	ND (10.0) N			37.2	ND (5.0)	83.2	34.7		17.6	ND (5.0)		6.4		795	3850	ND (5.0)
				Year 11	6/1/05			ND (2.0)	ND (2.0) N	ND (2.0) N	ND (2.0)	ND (2.0)		15.2	ND (10.0)	8.4	4.8		18.9	ND (10.0)	ND (20.0)ND (10.0)	ND (30.0)		585	3320	ND (5.0)

			Table 3e	3e					
		Sumi Annua Ground	tomo Kubber I Landfill Well dwater Analyti	Sumitomo Kubber USA, LLC Annual Landfill Well Monitoring Groundwater Analytical Results	ig ts				
Well ID	ည		Year 4	Year 3	r3	Year 2	. 2	Year	lr 1
Date			6/11/1998	10/30/1997	4/25/1997	11/13/1996	5/1/1996	10/4/1995	4/28/1995
Parameters	Units	Action Levels							
Melatile Organic Communale									
4 4 Pilling all the compounds	1/							2	2
1,1-Dichloroethane	hg/L	-		-				ON.	ON.
1,2-Dichloroethane	l µg/L	-		-	-	-	1	ND	ND
1,1,1-Trichloroethane	hg/L	-		-	-	-	-	ND	ND
Benzene	hg/L	-		•	-	-	-	ΩN	ND
2-Butanone	hg/L	-				1		ΩN	ΔN
Total Metals									
Arsenic	hg/L	-		-	-	-	-	ND	ND
Cadmium	hg/L	-		-	-	-	-	ND	ND
Chromium	hg/L	-		-	-	-	-	2.1	9.9
Lead	hg/L	•						ΩN	ΔN
Dissolved Metals*									
Dissolved Arsenic	hg/L	-		-	-	-	-	-	-
Dissolved Cadmium	hg/L	-		-	-	-	-	-	1
Dissolved Chromium	hg/L	1		١	ı	ı	ı	1	ı
Dissolved Lead	hg/L	-		-	-	-	-	-	1
Inorganics & Miscellaneous									
Turbidity	NTU	-	193	350	45.5	-	-	-	1
Specific Conductance	nmhos/cm	-	3210	3870	-	-	-	-	•
Total Phenolics	µg/L	-	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	15.0	ND

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

^{* -} Only required if turbidity is above 50 NTU

			Table 3f	3 3f					
		Sur	nitomo Rubl al Landfill V	Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring	ر ug				
		Grour	ndwater Analyti OMW - C5	Groundwater Analytical Results OMW - C5	ılts				
Well ID	C2		Year 30	Year 25	Year 20	. 20	Year 15	Year 11	Year 10
Date			4/19/2024	5/24/2019	7/22/2014	6/10/2014	5/7/2009	6/1/2005	6/22/2004
					RESAMPLE				
Parameters	Units	Action Levels							
Volatile Organic Compounds	7								
4 Dishlarasthan	Д9/L	Ų	(1) (1)	12 07 014		(0,0)	(0.1)	(0,0)	
1, I-Diciliol defination	µg/∟ ∴	C L	(C.2) UNI	(C.2) UNI		ND (2.0)	(0.0) (1.0)	ND (2.0)	ND (10.0)
1,z-Ulchloroethane	hg/L	5	(05.0) UN	(06.0)UN	•	ND (2.0)	(0.6) UN	ND (2.0)	ND (10.0)
1,1,1-Trichloroethane	hg/L	5	ND (2.5)	ND (2.5)	-	ND (2.0)	ND (5.0)	ND (2.0)	ND (10.0)
Benzene	hg/L	0.7	ND (0.50)	ND (0.50)	_	ND (0.50)	ND (0.7)	ND (2.0)	ND (10.0)
2-Butanone	hg/L	09	ND (5.0)	ND (5.0)	-	ND (10.0)	ND (5.0)	ND (2.0)	ND (10.0)
Total Metals									
Arsenic	hg/L	25	2.65	0.42 J	-	ND (10.0)	ND (10.0)	10.7	17.2
Cadmium	hg/L	16	0.2	0.11	-	ND (10.0)	ND (10.0)	ND (10.0)	ND (5.0)
Chromium	hg/L	99	21.17	39.46	-	ND (10.0)	12.0	5.2	50.8
Lead	hg/L	20	2.75	0.94	-	ND (10.0)	ND (10.0)	ND (30.0)	37.8
Dissolved Metals*									
Dissolved Arsenic	hg/L	1	1	-	-	ND (10.0)	ND (10.0)	8.5	15.6
Dissolved Cadmium	hg/L	-	-	-	-	ND (10.0)	ND (10.0)	ND (10.0)	ND (5.0)
Dissolved Chromium	hg/L	-	-	-	-	ND (10.0)	ND (10.0)	ND (20.0)	4.1
Dissolved Lead	hg/L	-	-	-	-	ND (10.0)	ND (10.0)	ND (30.0)	ND (15.0)
Inorganics & Miscellaneous									
Turbidity	NTO	1	21	13	-	4.57	1.98	333	006
Specific Conductance	mb/soyun	-	3300	3200	-	3210	-	2730	2600
Total Phenolics	hg/L	1	(0E) QN	(3.0)	ND (5.0)	6.0	ND (5.0)	0'9	7.0

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

^{* -} Only required if turbidity is above 50 NTU

			OMM	OMW - C5	}		
Year 5	Year 4	Yea	Year 3	Yea	Year 2	Year	ar 1
5/5/1999	6/11/1998	10/30/1997	4/25/1997	11/13/1996	5/1/1996	10/4/1995	4/28/1995
ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	QΝ	ND	QΝ	ND
ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	QΝ	ND	ΩN	ND
ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	QΝ	ND	QΝ	ND
ND (10.0)	(10.0) ND	ND (10.0)	ND (10.0)	ΩN	ND	ΩN	ND
ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	QΝ	ND	ΩN	ND
ND (2.0)	ND (2.0)	ND (2.0)	ND (5.0)	ΩN	ND	ΩN	ND
ND (16.0)	ND (16.0)	ND (16.0)	ND (10.0)	ΩN	ND	ΩN	ND
28.0	39.0	17.0	24.0	ΩN	20.0	2.8	2.0
9.0	ND (2.0)	7.0	2.0	QΝ	ND	8.09	1.2
1	1	1	-	1	-	1	1
-	-	-	_	•	_	1	-
-	-	•	-	-	-	-	-
-	-	-	-	-	-	-	-
228	129.1	220	12.2	-	-	-	-
1810	3330	2610	-	1	-	1	-
ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	16.0	5.0

Table 3g Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring Groundwater Analytical Results OMW - C7

Well ID	C7		Year 31	Year 30	Year 29	Year 28	Year 27	r 27	Yea	Year 26	Year 25
Date			4/24/25	4/19/24	5/18/23	6/30/22	7/27/21	5/21/21	8/11/20	6/18/20	5/24/19
						ш	RESAMPLE		RESAMPLE		
Parameters	Units	Action Levels									
Volatile Organic Compounds	hg/L										
1,1-Dichloroethane	hg/L	2	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)		ND (2.5)		ND (2.5)	ND (2.5)
1,2-Dichloroethane	hg/L	2	ND (0:20)	ND (0:50)	ND (0.50) ND (0.50) ND (0.50) ND(0.50)	ND(0.50)	-	ND(0.50)	-	05.0) UN (05.0) UN	ND(0.50)
1,1,1-Trichloroethane	hg/L	2	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)		ND (2.5)		ND (2.5)	ND (2.5)
Benzene	hg/L	0.7	ND (0.50)	ND (0.50)	ND (0:50) ND (0:50) ND (0:50) ND (0:50)	ND (0.50)		ND (0.50)		ND (0.50) ND (0.50	ND (0.50)
2-Butanone	µg/L	20	ND (5.0)	ND (5.0)	ND (5.0)	25	-	ND (5.0)	-	ND (5.0)	ND (5.0)
Total Metals											
Arsenic	hg/L	25	0.46 J	2.27	89.0	1		9.0		0.44	0.53
Cadmium	hg/L	10	ND (0.05)	0.13 J	ND (0.2)	0.06 J	-	ND 0.0.5	-	80.0	0.11 J
Chromium	hg/L	20	2.5	8.95	1.44	5.06	-	7.61	-	1.26	10.36
Lead	hg/L	25	0.36 J	5.64	ND (1)	0.37 J	-	ND (0.34)	-	ND (1.0)	1
Dissolved Metals*											
Dissolved Arsenic	hg/L	-	-	0.57	-	-	-	-	-	-	-
Dissolved Cadmium	hg/L	-	-	ND (0.2)	-	-	-	-	-	-	-
Dissolved Chromium	hg/L		-	0.25 J						-	ı
Dissolved Lead	hg/L	-	-	ND (1)	-	-	-	-	-	-	•
Inorganics & Miscellaneous											
Turbidity	NTU	-	32	65	8.84	15.11	-	1.6	36	27	27
Specific Conductance	nmhos/cm	-	3500	2900	3000	2498	-	1600	3900	4100	4100
Total Phenolics	µg/L	1	ND (6.0)	21.0 J	ND (15)	ND (15)	17.0	12.0	ND (30)	8.0	ND (3.0)

Notes:

ND = Nondetect

NA = Not applicable

J = Estimated value. The target analyte concentration is below the quantitation limit, but above the method detection limit.

^{* -} Only required if turbidity is above 50 NTU

Table 3g
Sumitomo Rubber USA, LLC
Annual Landfill Well Monitoring
Groundwater Analytical Results
OMW - C7

Year 7	5/8/01			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (25.0)	ND (2.0)	ND (5.0)	ND (10.0)							8.4		ND (5.0)
Year 9	6/19/03			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		16.4	4.3	64.8	3.7		23.6	1.6	ND (10.0)	ND (15.0)		-	-	1
Year 10	6/22/04			QN (0:01) QN (0:01) QN	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		18.9	ND (5.0)	31.9	12.4		18.2	(0.5) dN	ND (10.0)	ND (15.0)		908	3740	ND (5.0)
Year 11	6/1/05			ND (2.0)	ND (2.0) ND (10.0) ND (10.0) ND (10.0	ND (2.0) ND (10.0) ND (10.0) ND (10.0)	ND (2.0) ND (10.0) ND (10.0) ND (10.0)	ND (2.0)		17.9	ND (10.0)	ND (20.0)	ND (30.0)		19.5	ND (10.0)	ND (20.0)	ND (30.0)		57.2	3570	7.0
Year 13	8/17/07			ND (5.0)	ND (5.0)	ND (6.5)	ND (4.6)	ND (10.0) ND (2.0) ND (10.0)ND (10.0)ND (10.0)		ND (10.0)	ND (10.0)	49	ND (10.0)		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		142	3580	ND (5.0)
Year 15	60/2/9			ND (5.0)	ND (5.0)	ND (5.0)	ND (0.7)	ND (10.0) ND (5.0)		ND (10.0) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0) ND (10.0)	27	ND (10.0) ND (10.0) ND (10.0) ND (30.0)		ND (10.0) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0) ND (10.0)	0.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (20.0) ND (10.0)	ND (10.0) ND (10.0) ND (10.0) ND (30.0) ND (15.0) ND (15.0)		0.37	-	6.0
Year 16	5/10/10	111		ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		ND (10.0)	ND (10.0)	102	ND (10.0)		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		-		ND (5.0)
Yea	6/8/10	RESAMPLE		-	-		ND (0.67)	-				ND (10.0)				-	ND (10.0)	-		-	-	ND (5.0)
Year 17	6/2/11	Ľ		ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		ND (10.0)	ND (10.0)	(10.01) UN (10.01) UN	ND (10.0)		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		0.73	3600	ND (5.0)
Year 18	5/24/12			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	0.0) ND (10.0) ND (10.0)		0.0) ND (10.0) ND	0.01) ND (10.0) ND (10.0)	10	0.01) ND (10.0) ND (10.0)		(0.01) ND (10.0) ND (10.0	.0) ND (10.0) ND (10.0)	ND (10.0)	0.01) ND (10.0) ND (10.0)		6.72	3630	ND (5.0)
Year 19	6/6/13			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)				ND (10.0)	ND (10.0)		$\mathbf{-}$	0	ND (10.0)			20.3	3760	ND (5.0)
Year 20	6/10/14			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.5)	ND (10.0)		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		1) an (10.0) an (10.0) an	10.01) ND (10.0) ND (10.0)	ND (10.0) ND (10.0) ND (1	10.01) UN (10.0) ND (10.0)		12.8	3790	ND (5.0)
Year 21	6/19/15			ND (2.0)	ND (2.0)	ND (2.0)	ND (0.7)	ND (5.0) ND (10.0) ND (10.0) ND (10		10.0) ND (10.0) ND (10.0) ND (10.0)	ND (5.0) ND (10.0) ND (10.0) ND (1	ND (10.0) ND (10.0) ND (10.0) ND (10	ND (10.0) ND (10.0) ND (10.0) ND (1		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		5.16	3850	(0.2) UN (5.0)
Year 22	5/25/16			ND (2.5)	ND(0.50)	ND (2.5)	ND (0:50)	ND (5.0)		ND (5.0)	ND (5.0)	ND (10.0)	ND (10.0)			-				32	3700	ND (30)
Year 23	7/6/17			ND (2.5)	ND(0.50) ND(0.50) ND(0.50) ND (2.0)	ND (2.5) ND (2.5) ND (2.5) ND (2.0)	(0.50) AN (0.50) AN (0.50) AN (0.50) AN	ND (5.0)		0.280 J	0.140 J	6.55	0.47					ı		8.8	3600	5.0
Year 24	6/19/18			ND (2.5)	ND(0.50)	ND (2.5)	ND (0.50)	ND (5.0)		0.480 J	0.140 J	3.76	0.61			•	ı	ı		22	4000	(3.0)

	ar 1	5/16/95			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10:0)		ND (25.0)	1.2	1.6	ND (10.0)		-	-	-	-		-	-	ND (4.0)
	Year	10/4/95			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (25.0) ND (25.0) ND (25.0) ND (25.0)	ND (2.0)	1.3	ND (10.0) ND (10.0) ND (10.0) ND (10.0)		-	-	-	-		-	-	18.0
•	Year 2	2/1/96			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (25.0)	ND (2.0)	30	ND (10.0)		-	-	-	-		-	-	ND (4.0)
	Υeε	11/13/96			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (25.0)	ND (2.0)	ND (5.0)	ND (10.0)		-	-	-	-		-	-	ND (4.0)
	Year 3	4/25/97			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (5.0)	(10.0)	7.0	2.0		-	-	-	-		8.5	•	ND (4.0)
	χeς	10/30/97			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		ND (2.0)	ND (16.0) ND (16.0) ND	ND (14.0)	ND (2.0)		-	-	-	-		440	3830	ND (4.0)
	Year 4	6/10/98			4D (10.0) ND (10.0)) DN(0.0) DN(0.0) DN (10.0) DN (10.0) DN (10.0) DN (10.0) DN (10.0) DN (10.0)	ND (10.0)	ND (10.0)	ND (20.0) ND (10.0)		ND (2.0)	ND (16.0)	17.0	ND (2.0)		-	-	-	-		64.4	4200	ND (4.0)
	Year 5	2/5/99			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)		2.0	ND (2.0)	46.0	2.0		-	-	-	-		369	2100	ND (4.0)
	Year 6	4/19/00			ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (20.0)		ND (10.0)	2.0	ND (10.0)	ND (5.0)		-	1	-	-		3.9	-	ND (4.0)

			Sumitom Annual La Groun	Table 4 Sumitomo Rubber USA, LLC Annual Landfill Well Monitoring Groundwater Elevations Apr-25	<u> 6</u>			
	Northing	Easting	Latitude	Longitude	Ground Elevation (FAMSL)	Top Riser Elevation (FAMSL)	Depth to Water (feet)	Groundwa ter Elevation (FAMSL)
Well ID								
OMW-A4	1081784		N 42°58'06.6290"	1056815.907 N 42°58'06.6290" W 078°55'30.4211"	581.6	587.02	5.81	581.21
OMW-A6	1082261		N 42°58'11.3714"	1057691.331 N 42°58'11.3714" W 078°55'18.6720"	593.84 (rim)	593.29	4.5	588.79
OMW-B3	1081635		N 42°58'05.1664"	1057041.503 N 42°58'05.1664" W 078°55'27.3786"	229	28'6/2	4.29	575.56
OMW-B4	1081143		N 42°58'00.3265"	1057439.298 N 42°58'00.3265" W 078°55'22.0014"	6.285	287.37	6.72	580.65
OMW-C5	1083561		N 42°58'24.2716"	1059089.490 N 42°58'24.2716" W 078°54'59.9349"	602.5	28.609	2.29	601.58
OMW-C7	1083148		N 42°58'20.2115"	1059628.405 N 42°58'20.2115" W 078°54'52.6637"	298.2	602.06	3.81	598.25
NI-4								

Notes:

Coordinate System based on NAD83 (2011) NY West Elevations shown are referenced to NAVD88 NGS Monument Designation-TOM TTWTP USLS / PID-NC0305

Attachment 1

Site Inspection Forms

Temperature	15	()	
Temperature	-	-	_
Wind Direction/speed	_	w	_
Precipitation Amount	1	()	1
Sky conditions	1(:	lel	لملك
Inches of Snow Cover	10	()	

APPENDIX I SUMITOMO RUBBER USA, LLC LANDFILL CONDITION — ANNUAL INSPECTION REPORT

Date: 5 28 25

DEO -00011 / 2

	BORROW PIT AREA "A"		AREA "C"	
	Central Area	Northeast Area	Outlying Area	Major Area
Topsoil Erosion Occurring	NO	NO	PO	NO
Clay Cap Erosion Occurring	100	NO	NO	NO
Desiccation Cracks or Freeze/Thaw Damage Present	NO	NC	NO	NO
Any Seeps or Leachate Breakouts Present	NO	NO	100	NO
Ditches Free of Obstruction	Cyc	YLA	YLS	CJLA
Any Siltation, Ponding, or Erosion Damage in Drainage Features	~	NO	NO	100
Grass Cover Adequate	yla	Cold	yls	YLA
Any Bare, Sparse of Undernourished Areas Present	ND	NO	W	NO
Any Settlement Observed in Cover System	NO	NO	いこ	NO
Paved Areas Intact	NA	yes	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	NA	NOCH	NA NA	NA
Note Any Damage	None-			-1

Describe any issues with ancillary features in this area (e.g., fencing, access)

Management or Maintenance Activities Occurring during Inspection:	
Noul	
Describe any corrective actions required:	
None	
Describe any corrective actions taken:	
only Paring mountinanco	
Are site records up-to-date — ves no Describe deficiencies	<u> </u>
Describe deficiences	

Weather Conditi	OHS
Temperature	
Wind Direction/speed	
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	T

APPENDIX I SUMITOMO RUBBER USA, LLC LANDFILL CONDITION — ANNUAL INSPECTION REPORT

Date: 5 35

DEO -00011 / 2

	AREA "C"			
	Ditch at Toe of Slope	Sheridan Dr. Ditch	Stockpile Area	Warehouse Ditch
Topsoil Erosion Occurring	150	NO	NO	NO
Clay Cap Erosion Occurring	NO	NO	NO	NO
Desiccation Cracks or Freeze/Thaw Damage Present	NO	NO	NO	NO
Any Seeps or Leachate Breakouts Present	10	NO	NO	100
Ditches Free of Obstruction	We	yes	yls	yls
Any Siltation, Ponding, or Erosion Damage in Drainage Features	NO	NO	NO	NO
Grass Cover Adequate	Why	Les	yes	yls
Any Bare, Sparse of Undernourished Areas Present	NO	NO	NO	NO
Any Settlement Observed in Cover System	NO	NO	NO	NO
Paved Areas Intact	NA	yes	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	NA	W	NA	NA
Note Any Damage	Nane	NAU	None	nare

Describe any issues with ancillary features in this area (e.g., fencing, access)

Management or Maintenance Activities Occurring during Inspection:	
Nene	
Describe any corrective actions required:	
Nane	Ÿ
Describe any corrective actions taken:	30
rere	

Weather Condit	ions
Temperature	120
Wind Direction/speed	SiD
Precipitation Amount	0
Sky conditions	Crews
Inches of Snow Cover	0

APPENDIX I SUMITOMO RUBBER USA, LLC LANDFILL CONDITION – ANNUAL INSPECTION REPORT

Date: 528 25

DEO -00011 / 2

		AREA B		
	Southeast Area	Southern Area	Northern Area	River Rad Ditch
Topsoil Erosion Occurring	ND	NO	Some spots	NO
Clay Cap Erosion Occurring	N50	ON	pend than ne	NO
Desiccation Cracks or Freeze/Thaw Damage Present	60	NO	NO	NO
Any Seeps or Leachate Breakouts Present		NO	NO	NO
Ditches Free of Obstruction	yls	yls	YLS	YUS
Any Siltation, Ponding, or Erosion Damage in Drainage Features	NO	NO	NO	NO
Grass Cover Adequate	WD	yld	YLL	408
Any Bare, Sparse of Undernourished Areas Present	GU	NO	NO	NO "
Any Settlement Observed in Cover System	NO	NSO	NO	NO
Paved Areas Intact	yo	NA	NA	NA
Any Cracking, Deterioration, or Settlement inn Pavement	100000	NA	NA	NA
Note Any Damage	Damase edgecon	Dames atom	Name	Nane

Describe any issues with ancillary features in this area (e.g., fencing, access)

Describe any issues with ancillary features in this area (e.g., fericing, access)	
Management or Maintenance Activities Occurring during Inspection:	
NENE	
Describe any corrective actions required:	
Describe any corrective actions taken: One sold sold presided to patch areas along padd and some spots along by	,
Describe any corrective actions taken: Out Some Spots along by	ule
None of Channel	4
Are site records up-to-date (yes no Describe deficiencies	

Weather Conditi	ons
Temperature	4
Wind Direction/speed	
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	

APPENDIX I SUMITOMO RUBBER USA, LLC LANDFILL CONDITION — ANNUAL INSPECTION REPORT

Inspector:

DEO -00011 / 2

	Pave Areas			
	Parking Lot	Driveway		
Topsoil Erosion Occurring				
Clay Cap Erosion Occurring				
Desiccation Cracks or Freeze/Thaw Damage Present				
Any Seeps or Leachate Breakouts Present				
Ditches Free of Obstruction				
Any Siltation, Ponding, or Erosion Damage in Drainage Features				
Grass Cover Adequate				
Any Bare, Sparse of Undernourished Areas Present				
Any Settlement Observed in Cover System				
Paved Areas Intact	USD	yes		
Any Cracking, Deterioration, or Settlement inn Pavement	NO	NO .		
Note Any Damage	None	None		

Management or Maintenance Activities Occurring during Inspection:
none
Describe any corrective actions required:
Name
Describe any corrective actions taken: 1000
Much maintenance
Are site records up-to-date (yes) no
Describe deficiencies

Attachment 2

Site Photographs

Photo 1 – Area A looking south

Photo 2 – Area A looking west

Photo 3 – Area B paved area

Photo 4 – Area looking northwest

Photo 5 – Area B looking east

Photo 6 – Area B top soil needed

Photo 7 – Area B top soil needed

Photo 8 – Area B top soil needed

Photo 9 – Area C looking west

Photo 10 – Area C looking east

Photo 11 – Area C

Attachment 3

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2525179

Client: Sumitomo Rubber USA, LLC

PO Box 1109 Buffalo, NY 14240

ATTN: Christine Barton Phone: (716) 879-8497

Project Name: WELL SAMPLING

Project Number: Not Specified

Report Date: 05/13/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: WELL SAMPLING

Project Number: Not Specified

 Lab Number:
 L2525179

 Report Date:
 05/13/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2525179-01	WELL B3	WATER	BUFFALO, NY	04/24/25 10:39	04/24/25
L2525179-02	WELL B4	WATER	BUFFALO, NY	04/24/25 11:44	04/24/25
L2525179-03	WELL C7	WATER	BUFFALO, NY	04/24/25 10:02	04/24/25
L2525179-04	TRIP BLANK	WATER	BUFFALO, NY	04/24/25 00:00	04/24/25

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i icase contact i roject ii	nanagement at 000 02+ 02	20 With any questions.		

Please contact Project Management at 800-624-9220 with any questions

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/13/25

Melissa Sturgis Melissa Sturgis

Pace

ORGANICS

VOLATILES

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

Lab ID: L2525179-01 Date Collected: 04/24/25 10:39

Client ID: WELL B3 Date Received: 04/24/25
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/07/25 15:30

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

Lab ID: L2525179-02 Date Collected: 04/24/25 11:44

Client ID: WELL B4 Date Received: 04/24/25
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/07/25 15:56

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	 1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	99	70-130	

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

Lab ID: L2525179-03 Date Collected: 04/24/25 10:02

Client ID: WELL C7 Date Received: 04/24/25
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/07/25 16:22

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	borough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	100	70-130	

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

Lab ID: L2525179-04 Date Collected: 04/24/25 00:00

Client ID: TRIP BLANK Date Received: 04/24/25
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/09/25 00:41

Analyst: KAB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	 1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Benzene	ND		ug/l	0.50	0.16	1	
2-Butanone	ND		ug/l	5.0	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	118	70-130	

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified **Report Date:** 05/13/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/07/25 10:45

Analyst: MJV

Parameter	Result	Qualifier Ur	nits	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s)): 01-03	Batch:	WG2063602-5
1,1-Dichloroethane	ND	U	ıg/l	2.5	0.70
1,2-Dichloroethane	ND	U	ıg/l	0.50	0.13
1,1,1-Trichloroethane	ND	U	ıg/l	2.5	0.70
Benzene	ND	U	ıg/l	0.50	0.16
2-Butanone	ND	l	ıg/l	5.0	1.9

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	96		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	103		70-130
Dibromofluoromethane	98		70-130

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/08/25 23:20

Analyst: KAB

Parameter	Result Q	ualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab fo	or sample(s):	04 Batch:	WG2064630-5	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Benzene	ND	ug/l	0.50	0.16	
2-Butanone	ND	ug/l	5.0	1.9	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	111		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	86		70-130
Dibromofluoromethane	113		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number:

L2525179

Report Date:

05/13/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	ıh Lab Associat	ed sample(s):	: 01-03 Bate	ch: WG206	63602-3 WG206	3602-4			
1,1-Dichloroethane	100		97		70-130	3		20	
1,2-Dichloroethane	96		93		70-130	3		20	
1,1,1-Trichloroethane	94		90		67-130	4		20	
Benzene	98		95		70-130	3		20	
2-Butanone	130		97		63-138	29	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	96	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	101	103	70-130
Dibromofluoromethane	98	98	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number: L2525179

Report Date: 05/13/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associat	ed sample(s)	: 04 Batch:	WG20646	30-3 WG206463	0-4		
1,1-Dichloroethane	100		100		70-130	0		20
1,2-Dichloroethane	100		110		70-130	10		20
1,1,1-Trichloroethane	90		95		67-130	5		20
Benzene	94		95		70-130	1		20
2-Butanone	110		120		63-138	9		20

_	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	114	115	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	88	85	70-130
Dibromofluoromethane	111	113	70-130

METALS

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

SAMPLE RESULTS

Lab ID:L2525179-01Date Collected:04/24/25 10:39Client ID:WELL B3Date Received:04/24/25Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00291		mg/l	0.00050	0.00016	1	05/04/25 17:17	05/06/25 16:21	EPA 3005A	1,6020B	NTB
Cadmium, Total	0.00010	J	mg/l	0.00020	0.00005	1	05/04/25 17:17	7 05/06/25 16:21	EPA 3005A	1,6020B	NTB
Chromium, Total	0.00148		mg/l	0.00100	0.00017	1	05/04/25 17:17	7 05/06/25 16:21	EPA 3005A	1,6020B	NTB
Lead, Total	0.00308		mg/l	0.00100	0.00034	1	05/04/25 17:17	7 05/06/25 16:21	EPA 3005A	1,6020B	NTB

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

SAMPLE RESULTS

Lab ID:L2525179-02Date Collected:04/24/25 11:44Client ID:WELL B4Date Received:04/24/25Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00055		mg/l	0.00050	0.00016	1	05/04/25 17:17	05/06/25 16:26	EPA 3005A	1,6020B	NTB
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/04/25 17:17	05/06/25 16:26	EPA 3005A	1,6020B	NTB
Chromium, Total	0.00477		mg/l	0.00100	0.00017	1	05/04/25 17:17	05/06/25 16:26	EPA 3005A	1,6020B	NTB
Lead, Total	0.00042	J	mg/l	0.00100	0.00034	1	05/04/25 17:17	05/06/25 16:26	EPA 3005A	1,6020B	NTB

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

SAMPLE RESULTS

Lab ID:L2525179-03Date Collected:04/24/25 10:02Client ID:WELL C7Date Received:04/24/25Sample Location:BUFFALO, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.00046	J	mg/l	0.00050	0.00016	1	05/04/25 17:17	05/06/25 16:30	EPA 3005A	1,6020B	NTB
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/04/25 17:17	7 05/06/25 16:30	EPA 3005A	1,6020B	NTB
Chromium, Total	0.00250		mg/l	0.00100	0.00017	1	05/04/25 17:17	7 05/06/25 16:30	EPA 3005A	1,6020B	NTB
Lead, Total	0.00036	J	mg/l	0.00100	0.00034	1	05/04/25 17:17	7 05/06/25 16:30	EPA 3005A	1,6020B	NTB

Project Name:WELL SAMPLINGLab Number:L2525179Project Number:Not SpecifiedReport Date:05/13/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-03 E	Batch: WC	G20622	05-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	05/04/25 17:17	05/05/25 07:4	1,6020B	NTB
Cadmium, Total	ND	mg/l	0.00020	0.00005	5 1	05/04/25 17:17	05/05/25 07:4	1 1,6020B	NTB
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/04/25 17:17	05/05/25 07:4	1,6020B	NTB
Lead, Total	ND	mg/l	0.00100	0.00034	1	05/04/25 17:17	05/05/25 07:4	1 1,6020B	NTB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number:

L2525179

Report Date:

05/13/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated san	nple(s): 01-03	Batch: Wo	G2062205-2					
Arsenic, Total	106		-		80-120	-		
Cadmium, Total	107		-		80-120	-		
Chromium, Total	105		-		80-120	-		
Lead, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number:

Not Specified

Lab Number:

L2525179

Report Date:

05/13/25

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Γotal Metals - Mansfield L	ab Associated sam	nple(s): 01-03	QC Bate	ch ID: WG206	2205-3	WG2062205	5-4 QC Sam	ple: L2	525812-05	Client	t ID: MS Sample
Arsenic, Total	0.0002J	0.12	0.1263	105		0.1316	110		75-125	4	20
Cadmium, Total	0.00006J	0.053	0.05788	109		0.05972	113		75-125	3	20
Chromium, Total	0.0005J	0.2	0.2108	105		0.2140	107		75-125	2	20
Lead, Total	0.0004J	0.53	0.5530	104		0.5691	107		75-125	3	20
Total Metals - Mansfield L	ab Associated sam	nple(s): 01-03	QC Bate	ch ID: WG206	2205-7	WG2062205	5-8 QC Sam	ple: L2	525844-02	Client	t ID: MS Sample
Arsenic, Total	0.00067	0.12	0.1296	107		0.1325	110		75-125	2	20
Cadmium, Total	0.00090	0.053	0.05556	103		0.05681	105		75-125	2	20
Chromium, Total	0.00023J	0.2	0.1964	98		0.2027	101		75-125	3	20
Lead, Total	0.00198	0.53	0.5348	100		0.5581	105		75-125	4	20

INORGANICS & MISCELLANEOUS

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

Lab ID: L2525179-01 Date Collected: 04/24/25 10:39

Client ID: WELL B3 Date Received: 04/24/25
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab									
Turbidity	13	NTU	0.20	0.06	1	-	04/25/25 06:49	121,2130B	DMO
Specific Conductance @ 25 C	930	umhos/cm	10	10.	1	-	04/25/25 11:05	1,9050A	DMO
Phenolics, Total	ND	mg/l	0.030	0.006	1	05/05/25 09:30	05/05/25 14:30	4,420.1	KEM

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

 Lab ID:
 L2525179-02
 Date Collected:
 04/24/25 11:44

 Client ID:
 WELL B4
 Date Received:
 04/24/25

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough La	b							
Turbidity	12	NTU	0.20	0.06	1	-	04/25/25 06:49	121,2130B	DMO
Specific Conductance @ 25 C	3200	umhos/cm	10	10.	1	-	04/25/25 11:05	1,9050A	DMO
Phenolics, Total	ND	mg/l	0.030	0.006	1	05/05/25 09:30	05/05/25 14:31	4,420.1	KEM

Project Name: WELL SAMPLING Lab Number: L2525179

Project Number: Not Specified Report Date: 05/13/25

SAMPLE RESULTS

 Lab ID:
 L2525179-03
 Date Collected:
 04/24/25 10:02

 Client ID:
 WELL C7
 Date Received:
 04/24/25

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough La	b							
Turbidity	35	NTU	0.20	0.06	1	-	04/25/25 06:49	121,2130B	DMO
Specific Conductance @ 25 C	3500	umhos/cm	10	10.	1	-	04/25/25 11:05	1,9050A	DMO
Phenolics, Total	ND	mg/l	0.030	0.006	1	05/05/25 09:30	05/05/25 14:34	4,420.1	KEM

Project Name: WELL SAMPLING

Lab Number: L2525179 Project Number: Not Specified

Report Date: 05/13/25

Method Blank Analysis Batch Quality Control

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lal	o for sam	ple(s): 01	-03 Ba	tch: WC	G2058499-	1			
Turbidity	0.10	J	NTU	0.20	0.06	1	-	04/25/25 06:49	121,2130B	DMO
General Chemistry - V	Vestborough Lal	o for sam	ple(s): 01	-03 Ba	tch: WC	92062423-	1			
Phenolics, Total	ND		mg/l	0.030	0.006	1	05/05/25 09:30	05/05/25 14:12	4,420.1	KEM

Lab Control Sample Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number: Not Specified

Lab Number:

L2525179

Report Date:

05/13/25

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG2058499-2				
Turbidity	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG2058685-1				
Specific Conductance	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG2062423-2				
Phenolics, Total	93	-	70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WELL SAMPLING

Project Number:

Not Specified

Lab Number:

L2525179

Report Date:

05/13/25

Parameter	Native Sampl		MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits
General Chemistry	- Westborough Lab A	ssociated sar	mple(s): 01-03	QC Batch II	D: WG2062423-4	QC Sample:	L2523486-24	Client ID:	MS Sample
Phenolics, Total	ND	0.4	0.36	91	-	-	70-130	-	20
General Chemistry	- Westborough Lab A	ssociated sar	mple(s): 01-03	QC Batch II	D: WG2062423-6	QC Sample:	L2525246-01	Client ID:	MS Sample
Phenolics, Total	ND	0.4	0.36	89	-	-	70-130) -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WELL SAMPLING
Project Number: Not Specified

 Lab Number:
 L2525179

 Report Date:
 05/13/25

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG2058499-3	QC Sample:	L2525179-03	Client ID:	WELL C7
Turbidity	35		34	NTU	3		13
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG2058685-2	QC Sample:	L2525179-02	Client ID:	WELL B4
Specific Conductance @ 25 C	3200		3200	umhos/cm	0		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG2062423-3	QC Sample:	L2523486-24	Client ID:	DUP Sample
Phenolics, Total	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG2062423-5	QC Sample:	L2525246-01	Client ID:	DUP Sample
Phenolics, Total	ND		ND	mg/l	NC		20

Project Name: WELL SAMPLING **Lab Number:** L2525179 Project Number: Not Specified

Report Date: 05/13/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2525179-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-01D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L2525179-01E	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		TURB-2130(2),COND-9050(28)
L2525179-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)
L2525179-01G	Amber 950ml H2SO4 preserved	Α	<4	<4	4.0	Υ	Absent		NY-TPHENOL-420(28)
L2525179-01X	Plastic 500ml HNO3 preserved Filtrates	Α	NA	NA	4.0	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2525179-02A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-02B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-02D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L2525179-02E	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		TURB-2130(2),COND-9050(28)
L2525179-02F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)
L2525179-02G	Amber 950ml H2SO4 preserved	Α	<4	<4	4.0	Υ	Absent		NY-TPHENOL-420(28)
L2525179-02X	Plastic 500ml HNO3 preserved Filtrates	Α	NA	NA	4.0	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2525179-03A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-03B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-03C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L2525179-03D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L2525179-03E	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		TURB-2130(2),COND-9050(28)
L2525179-03F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180),CD-6020T(180)

Lab Number: L2525179

Report Date: 05/13/25

NYTCL-8260(14)

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2525179-03G	Amber 950ml H2SO4 preserved	Α	<4	<4	4.0	Υ	Absent		NY-TPHENOL-420(28)
L2525179-03X	Plastic 500ml HNO3 preserved Filtrates	Α	NA	NA	4.0	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2525179-04A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)

4.0

Y Absent

NA

Project Name:

L2525179-04B

Project Number: Not Specified

WELL SAMPLING

Vial HCI preserved

GLOSSARY

Acronyms

EDL

EPA

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

noin didutions, concentrations of moisture content, where applicable. (Dod report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid Phase Microsystration (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance Title: Certificate/Approval Program Summary

Revision 27 Published Date: 01/24/2025

Page 2 of 2

ID No.:17873

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

													L2:	52	ial No:05132509:25	
-11	NEW YORK	Service Centers			Pag	ie 1		Place.	0761	10 50		100	GO	OD	YR - ISI F	
ΔLPHA	CHAIN OF	Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walker	Way			of 1	10	Date	Rec	'd	11-	_				
	CUSTODY	Tonawanda, NY 14150: 275 0	Cooper Ave, Suite	105		1		ir	Lab	4/2	110			100000	AND DE CONTRACTOR OF THE CONTR	
Westborough, MA 0156 8 Walkup Dr.	81 Mansfield, MA 02048 320 Forbes Blvd	Project Information					Del	verab	es				65			
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Well Sampl	ling			T	ASI	P-A			ASP	-В		Same as Client Info	
000000000000000000000000000000000000000	1791, 000 022-0200	Project Location:	Buffalo, NY	8			10	EQ	us (1	File)		EQu	IS (4 FI	le)	PO# 4600032598	
Client Information		Project #					1	Oth	er						The second of th	
AND COMPANY OF STREET	no (GOODYR-ISLE)	(Use Project name as I	Project#)				Reg	julator	y Req	uireme	nt			-	Disposal Site Information	
Address: PO Box	1109	Project Manager:	Chris Barton	n				NY.	ogs			NY P	art 375		Please identify below location of	
Buffalo, NY 14240	notificative	ALPHAQuote #:] [AW	Stand	lards		NYC	P-51		applicable disposal facilities.	2
Phone: 716-879		Turn-Around Time						NY	Restrict	ed Use		Other			Disposal Facility:	
Fax: 716-879		Standa		Due Date	3 ;			NY	Inrestri	cted Us	10				□ NJ □ NY	
	THE RESIDENCE IN COLUMN 2 IN C	be Rush (only if pre approve	d)	# of Days	3:			NYC	Sewer	Discha	irge				Other:	
	been previously analy						-	ALYSI	S						Sample Filtration	o
	Motols List As Cd Co.						Specific				0				Done	
Volatiles List: MEK,	Benzene, 1,1-dichloroe	Pb (Lab to filter dissolved thane, 1,2-dichloroethane	metals & Only and 1.1.1-trich	analyze if tur	b is >50)	*	Spec	50	-	100	Conductance			Temp	☑ Lab to do	- 8
Please specify Meta		The state of the s	and Title and	iorocarane-			Site	en o	stak	Met	g	2		- N	Preservation	
rease specify meta	als of IAL.						1	듄	×	pa	ĕ	Turbidity		H	✓ Lab to do	В
							175)	Total Phenois	Total Metals	"Dissolved Metals"	le Le	Ē		-	(Please Specify below)	t
ALPHA Lab ID		Sample ID	Coll	lection	Sample	Sampler's	S	-	1	Öis	Specific		- 1	FIELD -		
(Lab Use Only)		5000 Miles (1900)	Date	Time	Matrix	Initials	V0C				S				Sample Specific Comments	
25/79-01	Well B3		4/24/25	1039	GW	I KN	Х	×	×	x	x	х				7
702	Well B4			1144	GW	K/V	х	х	x	X	х	х				1
23	Well C7		1	1002	GW	K/V	Х	X	×	X	X	х				17
																Ť
																+
																\vdash
704	Trip Blank		4/24/25		DI Water		Х									1,
																+
																\vdash
reservative Code:																\vdash
= None	Container Code P = Plastic	Westboro: Certification I	No: MA935		Cor	ntainer Type										_
= HCI	A = Amber Glass	Mansfield: Certification I	No: MA015		001	namer rype	V	A	P	P	P	Р		- 1	Please print clearly, legible	
= HNO ₃ = H ₂ SO ₄	V = Vial G = Glass													\neg	and completely. Samples not be logged in and	can
= NaOH	B = Bacteria Cup				,	reservative	н	D	c	A	A			- 1	turnaround time clock will	not
= MeOH	C = Cube	Relinquished	Bv	Date/	Time	T .		_		IV	^	IM I	-	\dashv	start until any ambiguities	
= NaHSO ₄ = Na ₂ S ₂ O ₃	O = Other E = Encore	This with	Pace	4/24/25	1215	The second second second	5 (ved B	,	_	11/2	Date/	-	-	resolved. BY EXECUTING	3
E = Zn Ac/NaOH	D = BOD Bottle	Rundl B.B.		40 400	_	DUTT .	-	_		_	4/6	4/25	121	5	THIS COC, THE CLIENT	
- Other			TO BE BOUND BY AL				HAS READ AND AGREES TO BE BOUND BY ALPH									
m No: 01-25 (rev. 30-Sent-2013)									712	013	50	_	TERMS & CONDITIONS.	1		

Attachment 4

Field Monitoring Forms

Sumitomo Dunlop Tire and Rubber Static Water Level Study **Contcat: Chris Barton** Date: April 4/24/2025 **Depth to Water** Well ID Time (24hr) Comments (TOC ft) 5.81 1136 OMW-A4 Bottom 25.581 Bottom 17.16' Bailer replaced 4.50 OMW-B3 1025 Spiders in Casing, no grapea Bottom 22.46' 4.29' 1056 OMW-B4 New rope on bailer 1156 6.72' Bottom 22.51' OMW-A6 Bottom 29.50' wasps nest but no waps 2,29' 0920 OMW-C5 No gripper Bottom 23.481 3.81 OMW-C7 0910 Field Tech:

Field Tech:

			IELD OB	SERVAT	IONS			
Client:	Sumito	mo			Sample Po	int ID:	MW-	7
Facility:	Sumitor	no Tonay	rand q		Sample Ma	ıtrix:	Aque	nus
Field Perso	onnel:	N. Kibby	K. Nicl	hter				
SAMPLING	INFORMAT	TION:						
Date/Time):	4/24/25	100	2		(Circle	One)	
Sampling l	Method:	Bailer			Dedicated:	YES	NO .	
Diameter (of Well:		2"	<u> Mariana iran</u>	-	Multiply by	1	
Well Dept	h (from top	of PVC):	23.48		1" (2) 3"	0.163		
Water De _l	oth (from to	p of PVC):	3.81'		4"	0.367 0.653		
Length of	Water Colur	nn (LWC):	73.481	1.67	, 6 ₄	1.468 2.61		
			9.67.gal 3.21 gal/well v d on Well Diam		Volume Pur	ged:	~ 7.0	<u>gal</u>
SAMPLING	Time	Temp.	pH	Cond.	Turbidity	ORP	DO	
		(°C)	(std units)	(Umhos/cm)	(NTU)	(Mv)	(mg/L)	
	1002.	14.2	7.66	1,598	33.77.	133.0	7.7	
Weather o	onditions at	time of sampl	ing:	Partly	Cloudy	65'€	6 mph x	Evind
COMMEN	TS & OBSER	VATIONS:	Purged to	dry, all	owed tim	e to re	charge	
Samo	led 4/2	4/25 @	1002					
		cloudy,			4.3.3			
Date:	4/24/25	5	Signature:	midal W		Company:	Pare	

			FIELD OB	SERVAT	TIONS			are drawn who
Client:	Sumito	mo			Sample Poi	nt ID:	MW -	B 3
Facility:	Sumito	no Tona	wanda		Sample Ma	trix:	Aqueou	S
Field Perso	onnel:	N. Kibby	K. Nic	hter				
SAMPLING	INFORMA	TION:						
Date/Time	:	4/24/25	1039			(Circle	One)	
Sampling I	Method:	Bailer		 -	Dedicated:	YES	NO	
Diameter o	of Well:		2 "	and the same	Diameter	Multiply by	3	
Well Depti	ı (from top	of PVC):	17.16		1" 6"	0.041 0.163		
,		•	4,50		3" 4"	0.367 0.653		
vater Dep	th (from to	p of PVC):			6"	1.468		
ength of	Water Colu	mn (LWC):	12.66		8"	2.61		
	ee Multiplie	(() ((3)) x 3= 个 er to input base	2.06 gal/well		Volume Pure	gea:	6.3	<u>gar</u>
	Time	Temp. (°C)	pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)	DO (mg/L)	
	1039	11.5	6.98	985	2.52	73.7	3.27	
Veather c	onditions a	t time of sampl	ing:	Clear	68°F			
COMMENT	rs & obser	VATIONS:	Purged :	3 Well	volumes			
Sample	d 4/24	(25 P)	039			to annual profession of		
•		Slight ea	other adoc	Vellow 1	ind mini	mal sol	ids	
-d white	CIOI	- inglif ea	TANA ONO!	, yellow I	1114 111111	11100	103	
				. 1/ 4/1	1			
Date:	4/24/2	5	Signature:	middly Ill	4	Company:	Pace	

1340 .

		F	IELD OB	SERVAT	TIONS		
Client:	Sumite	smo			Sample Poi	nt ID:	MW. B4
Facility:	Sumite	omo Ton	awarda		Sample Ma	trix:	Aqueous
Field Perso	nnel:	N. Kibby	K. Nic	hter			
SAMPLING	INFORMAT	TION:					
Date/Time	:	4/24/25	1144			(Circle	One)
Sampling N	/lethod:	Bailer			Dedicated:	YES	NO
Diameter (of Well:		2"			Multiply by	
Well Depti	n (from top	of PVC):	22.46		1" (2")	0.041 0.163	
Water Dep	th (from to	p of PVC):	4.29'		3" 4"	0.367 0.653	
Length of \	Nater Colu	mn (LWC):	18.17'		6" 8"	1.468 2.61	
Purge Volu	ıme: LWCx	(0.163) x 3=	8.89 gal 2.96 gal/wa		Volume Pur	ged:	~ 6.5 gal
s	ee Multiplie	个 er to input base	ス.96gal/WC d on Well Diam	ll volume leter			
SAMPLING	DATA:						
	Time	Temp. (°C)	pH (std units)	Cond. (Umhos/cm)	Turbidity (NTU)	ORP (Mv)	DO (mg/L)
	1144	15.0	7.76	20	4.20	23.5	7.28
Weather c	onditions at	time of sampl	ing:	Partly clow	dy I	10°F	
COMMENT	rs & obser	VATIONS:	Parged t	odry. A	llowed	time to	recharge
Sample	d 114	y on 4	1/24/25				
Sampl	e Slight	- cloudynes	is, no od	101			
•							C
Date:	4/24/25		Signature:	midd 1ht	1	Company:	Pace

АРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105				Page 1 of 1		Date Rec'd in Lab						ALPHA Job #		
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Well Sampling Project Location: Buffalo, NY					Deliverables ☐ ASP-A ☐ ASP-B ☐ EQuIS (1 File) ☐ EQuIS (4 File)					ile)	Billing Information Same as Client Info Po# 4600032598			
Client Information		Project #						Othe	_						Diagonal City Info	
Client: Sumitomo Address: PO Box 1	(GOODYR-ISLE) 109	(Use Project name as Project #)					Regulatory Requirement NY TOGS NY Part 375						Disposal Site Information Please identify below location of			
Buffalo, NY 14240 Phone: 716-879-8 Fax: 716-879-8 Email: christine_								AWQ Standards NY CP-51 NY Restricted Use Other NY Unrestricted Use NYC Sewer Discharge						applicable disposal facilities. Disposal Facility: NJ NY Other:		
These samples have	been previously analyze	ed by Alpha					ANA	LYSIS	3						Sample Filtration	
Total and Dissolved M	enzene, 1,1-dichloroeth	nents: (Lab to filter dissolved tane, 1,2-dichloroethane			rb is >50)	-	(2175)- Site Specific	Fotal Phenols	Total Metals	*Dissolved Metals*	Specific Conductance	Turbidity		FIELD - pH & Temp	☐ Done ☑ Lab to do Preservation ☑ Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Collection Date		Sample Matrix	Sampler's Initials	VOC (21	۲	-	*Dis	Specif			필	Sample Specific Comments	
	Well B3		4/24/25	1039	GW	KN.	X	х	х	x	х	×				
AND DESCRIPTION	Well B4		111111111111111111111111111111111111111	1144	GW	ΚŃ	x	x	x	х	x	x	1			
	Well C7		L	1002	GW	KN	х	x	х	х	x	х				
	Trip Blank		4/24/25		DI Water		х									
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Cor	v	A	Р	Р	Р	Р			Please print clearly, legibly and completely. Samples of		
$C = HNO_3$ $C = H_2SO_4$ C = NaOH	V = Vial G = Glass B = Bacteria Cup					Preservative			H D C A			A A			not be logged in and turnaround time clock will n start until any ambiguities a	
= MeOH 6 = NaHSO ₄ I = Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH 9 = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquisher	d By: Pace	Date 4/24/24	e/Time [2[5	Received By:				Date/Time 4/24/25 12[5				resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'		
iom No: 01-25 (rev. 30-5	Sept-2013)										5				TERMS & CONDITIONS.	


Courier:

Client: Sum! tomo

Cooler

of

Attachment 5

Well Inspection Forms

Weather Condit	ons
Temperature	
Wind Direction/speed	
Precipitation Amount	
Sky conditions	
Inches of Snow Cover	

APPENDIX I SUMITOMO RUBBER USA, LLC LANDFILL CONDITION – SEMI-ANNUAL INSPECTION **REPORT**

DEO -00011 / 2

Monitoring Well	OMW-A6	OMW-C1	OMW-B3	OMW-B4	0WM-A4	OMW-C5	OMW-C7
Installation Type	DM	1	SU				—, ``
Inspector Initials	CMB		cmb				
Inspection Date	5/24/25		5/2/25				('
Access							
Installed Depth (Ft BTOR)	23.5 ft bgs	19.84	17.28	20.5 ft bgs	23.0 ft bgs	28.97	21.0 ft bgs
Sounded Depth (Ft BTOR)	NM		NM				
Exterior ID	Ale		63	BH	All	C5	C7
Interior ID	Ale		153	64	AU	C5	<u>C7</u>
Condition of Well Casing	6		6	G	6	G	(g)
Flushmount (FM) Surface Water	NO						
FN – Water in Curb Box	ND	0					
Gasket	(>	Je Je			NA		
Bolts	6	d					
Lid	6	7					
Concrete Base or Cement Pad	(9	9	G				1
J-plug or Slip Cap	G		6				1
Locks	G		6				1
NAPL Present	NO	C	NO				1 (
NAPL Thickness (ft)	no	2	NO				1
Notes							
Corrective Actions Required							