The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp ERP - e VCP - v BCP - c

non-releasable - put .nf.pdf Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf EPA SITE INSPECTION REPORT Whiting Site #915027 Sept 1986

ľ

REMEDIAL RESPONSE ACTIVITIES AT SUBSTANCE FACILITIES—ZONE 1

PROJECT FOR PERFORMANCE OF **UNCONTROLLED HAZARDOUS**

FILE COPY COMPLETED

COA Halliburton Company

02-8603-34A-SI

FINAL DRAFT SITE INSPECTION REPORT AND HAZARD RANKING SYSTEM MODEL WHITING DEVELOPMENT CORPORATION NEWSTEAD, NEW YORK

PREPARED UNDER

TECHNICAL DIRECTIVE DOCUMENT NO. 02-8603-34A CONTRACT NO. 68-01-6699

FOR THE

ENVIRONMENTAL SERVICES DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

SEPTEMBER 11, 1986

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY

ØOSEPH MAYO

REVIEWED/APPROVED BY

D M. NA

REGIONAL PROJECT MANAGER

RARITAN PLAZA III KING GEORGE ROAD EDISON, NEW JERSEY 08837 (201) 225-6160

C-584-09-86-51

September 19, 1986

Ms. Diana Messina U.S Environmental Protection Agency Region II Edison, New Jersey 08817

Dear Diana:

Enclosed are the Site Inspection Report (EPA Form 2070-13) and the MITRE Hazard Ranking System (HRS) documents for Whiting Development Corp., Newstead, New York. The site inspection was authorized under TDD #02-8603-34A.

Very truly yours,

projets Mayo

Joseph Mayo

Reviewed and Approved:

JM/ci

Enclosures

CONTENTS

Section	
1	Site Inspection Report Executive Summary
2	Environmental Protection Agency Form 2070-13
3	Maps and Photographs
4	Documentation Records for Hazard Ranking System
5	Hazard Ranking System Scoring Forms
6	Bibliography of Information Sources
7	Press Release Summary - MITRE Hazard Ranking System
8	Attachments - Cited Documents

the second

NUCLEMEN

Ĵ

4.9

1

1330

Contractor

SECTION 1

SITE INSPECTION REPORT EXECUTIVE SUMMARY

•

A Halliburton Company

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT EXECUTIVE SUMMARY

Whiting Development Corp. Site Name NYD980535579 EPA Site ID Number

13350 Bloomingdale Road Newstead, New York Address

02-8603-34A TDD Number

Date of Site Visit: 6/13/86

SITE DESCRIPTION

Whiting Development Corp. is currently a small industrial park located in Newstead, Erie County, New York. The site was formerly owned by Georgia Pacific Corp. who operated a landfill on the property from 1930 to 1968 for the disposal of gypsum wastes from their wallboard manufacturing process. The landfill is currently inactive.

The landfill is approximately 20-25 ft. high and 3-4 acres in area. It is composed primarily of gypsum wastes with wood, paper, tires and drums as minor components. Some of the landfilled waste has been excavated and used as cover material for the Township of Newstead landfill.

The New York Department of Environmental Conservation (NYDEC) indicated that the landfill had not been closed according to Resource Conservation and Recovery Act (RCRA) standards and reclamation of the landfill material for cover and fill should not exempt the site from compliance with RCRA standards. The NYDEC also indicated that there was a potential for fugitive dust generation associated with the reclamation process.

On 6/13/86 NUS Region II FIT conducted a site inspection at the Whiting Development Corp. Four soil and two sediment samples were collected from the landfill area. Volatile organic compounds and polycyclic aromatic hydrocarbons (PAH's) were detected in a sediment sample collected in a ditch adjacent to the landfill.

SECTION 2

ENVIRONMENTAL PROTECTION AGENCY FORM 2070-13

.

•

	SITE INS	ZARDOUS WASTE SITE PECTION REPORT N AND INSPECTION INFORMATION	01 STATE 02 SITE NUMBER NY D980535579
II. SITE NAME AND LOCATION OI SITE NAME (Legal, common, or desc	riptive name of site)	02 STREET, ROUTE NO., OR SPECI	IC LOCATION IDENTIFIER
Whiting Development Corp. 03 CITY		13350 Bloomingdale Road O4 STATE O5 ZIP CODE O6 COU	
Newstead 09 COORDINATES LATITUDE	LONGITUDE	NY 14001 Erie 10 TYPE OF OWNERSHIP (Check on <u>X</u> A. PRIVATE B. FEDERAL D. COUNTY E. MUNICIP	29 NY38 2) C. STATE
<u>4</u> <u>3</u> ° <u>0</u> <u>2</u> ' <u>0</u> <u>0</u> ". <u>0</u>	<u>78°28'40".W</u>	_ G. UNKNOWN	
III. INSPECTION INFORMATION OI DATE OF INSPECTION O2 SITE ST	ATUS 03 YEARS OF 0	PERATION	· · · · · · · · · · · · · · · · · · ·
X ACTI	VE . TIVE	Early 1900's / Present BEGINNING YEAR ENDING YEA	T UNKNOWN
AGENCY PERFORMING INSPECTION (Check _ A. EPA <u>X</u> B. EPA CONTRACTOR <u>NUS</u> E. STATE F. STATE CONTRACTOR	all that apply) Corporation (Name of firm)	_ C. MUNICIPAL _ D. MUNICIPA _ G. OTHER	CONTRACTOR (Name of firm)
. – – , –	(Name of firm)	(Spe	cify)
	06 TITLE	07 ORGANIZATION	08 TELEPHONE NO.
	Environmental Scientist 10 TITLE	NUS Corporation 11 ORGANIZATION	(201) 225-6160 12 TELEPHONE NO.
Laurie Gneiding	Toxicologist	NUS Corporation	(201) 225-6160
Peter Babich	Toxicologist	NUS Corporation .	(201) 225-6160
Steve Maybury	Environmental Scientist	NUS Corporation	(201) 225-6160
Dennis Sutton	Geologist	NUS Corporation	(201) 225-6160
13 SITE REPRESENTATIVES INTERVIEWED	14 TITLE	15 ADDRESS	16 TELEPHONE NO.
	Unknown	Whiting Roll-Up Door	(716) 542-5427
Patrick Whiting	UNKNOWN	113 Goar St., Akron, N.Y.	(/10) 542-5427
			· · ·
•		· ·	
	· · · · ·	• •	
	· · ·		
			ъ.
		•	· · ·
	• •		· .
17 ACCESS GAINED BY 18 TIME OF (Check one)	INSPECTION	19 WEATHER CONDITIONS	
X PERMISSION 090 WARRANT		Cloudy and cool, temp 60° - 70 on previous night	°F, some rain
IV. INFORMATION AVAILABLE FROM OI CONTACT	02 OF (Agency/Organiz	ration) 03 TELEPHONE NO.	
Diana Messina U.S	5. EPA Region II, Edison,	N.J. (201) 321-6685	
04 PERSON RESPONSIBLE FOR SITE INSPE	CTION FORM	05 AGENCY OG ORGANIZATION	07 TELEPHONE NO. 08 DATE
Joseph Mayo	· .	U.S.EPA NUS FIT II	(201) 225-6160 7/14/86 MONTH DAY YEAR
EPA FORM 2070-13 (7-81)			··· ···

COLOR IN

-

i statistica

- Andrew

Martin

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION

1. IUENIIIICATION OI STATE OZ SITE NUMBER NY D980535579

•

X A. SOLID X B. POWDER, C. SLUDGE	FINES E. SLURRY FINES F. LIQUID G. GAS	(Measures of was quantities must independent)		F. INFECTIOUS J. E G. FLAMMABLE K. F	HIGHLY VOLATILE EXPLOSIVE REACTIVE INCOMPATIBLE
_ D. OTHER _	(Specify)	CUBIC YARDS 96 NO. OF DRUMS *Landfill is com		- <u>-</u> M. I	NOT APPLICABLE
I. WASTE TYPE CATEGORY	SUBSTANCE NAME	01 GROSS AMOUNT		03 COMMENTS	
SLU	SLUDGE				
OLW	OILY WASTE				
SOL	SOLVENTS			Landfill is alleged	Jly
PSD	PESTICIDES			composed of gypsum	•
000	OTHER ORGANIC CHEMICAL	S		wastes. Estimate i	is
IOC	INORGANIC CHEMICALS	96,800	yds ³	based on a 3 acre	
ACD	ACIDS	,	903	landfill with an av	(07300
BAS	BASES				erage
MES	HEAVY METALS			height of 20 ft.	
	JBSTANCES (See Appendix for	most frequently of	tod CAS Numbers		
CATEGORY	02 SUBSTANCE NAME	03 CAS NUMBER	04 STORAGE/DISPOSAL METH		OG MEASURE OF
UNILOONI		US CAS NOFIDER	O4_STONAGE/DISPUSAL_METHU	DD 05 CONCENTRATION	CONCENTRATION
SOL	1,1-Dichloroethane	75-35-4	Unknown	11	ug/kg
SOL	Trichloroethene	79-01-6	Unknown	15	ug/kg
SOL SOL	Tetrachloroethene Toluene	127-18-4	Unknown	30	ug/kg
000	Benzoic Acid	108-88-3 65-85-0	Unknown	6	ug/kg
ÖCC	Naphthalene	91-20-3	Unknown Unknown	6000	ug/kg
ÖCC	2-Methylnaphthalene	999	Unknown	510	ug/kg
000	Phenanthrene	85-01-8	Unknown	760	ug/kg
000	Fluoranthene	206-44-0		1000	ug/kg
000	Pyrene	129-00-0	Unknown	920	ug/kg
000	Benzo(a)Anthracene	56-55-3	Unknown	740	ug/kg
	Chrysene	218-99-2	Unknown	940	ug/kg
000	Benzo(b)Fluoranthene	205-99-2	Unknown Unknown	1000	ug/kg
000 000		203+33-2		1500	ug/kg
000	Benzo(k)Fluoranthene	207_08_0		1500	ug/kg
0CC 0CC	Benzo(k)Fluoranthene	207-08-9 50-32-8	Unknown	1500	
0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene	50-32-8	Unk nown Unk nown	1100	ug/kg
OCC OCC OCC SOL	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone	50-32-8 78-93-3	Unk nown Unk nown .Unk nown	1100 J	ug/kg
OCC OCC SOL OCC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol	50-32-8 78-93-3 87-86-5	Unk nown Unk nown Unk nown Unk nown	1100 J J	ug/kg Not Applicab
0CC 0CC 0CC SOL 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene	50-32-8 78-93-3 87-86-5 120-12-7	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J	uğ/kğ Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g,h,i) Perylene	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J	uğ/kğ Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g.h,i) Perylene Benzyl Alchohol	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J	ug/kg Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g,h,i) Perylene Benzyl Alchohol 4-Methylphenol	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6 106-44-5	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J J J	ug/kg Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g.h.i) Perylene Benzyl Alchohol 4-Methylphenol Acenaphthylene	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6 106-44-5 208-96-8	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J	ug/kg Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g.h.i) Perylene Benzyl Alchohol 4-Methylphenol Acenaphthylene 4-Nitrophenol	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6 106-44-5 208-96-8 100-02-7	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J J J J J	ug/kg Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g.h.i) Perylene Benzyl Alchohol 4-Methylphenol Acenaphthylene	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6 106-44-5 208-96-8 100-02-7 86-73-7	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J J J J J J	
0CC 0CC 0CC SOL 0CC 0CC 0CC 0CC 0CC 0CC 0CC 0CC	Benzo(k)Fluoranthene Benzo(a)Pyrene 2-Butanone Pentachlorophenol Anthracene Benzo (g.h.i) Perylene Benzyl Alchohol 4-Methylphenol Acenaphthylene 4-Nitrophenol	50-32-8 78-93-3 87-86-5 120-12-7 191-24-2 100-51-6 106-44-5 208-96-8 100-02-7 86-73-7	Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown Unk nown	1100 J J J J J J J J J J	ug/kg Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab Not Applicab

	FDS	FDS
	FDS	FDS
	FDS	F DS
	FDS	FDS
117		

VI. SOURCES OF INFORMATION (See specific references. e.g., state files, sample analysis, reports)

Site Inspection of Whiting Development Corp. conducted on 6/15/86 by NUS Corporation U.S. Geological Survey Topographic Maps, Akron and Wolcottsville, NY Quadrangles

.

.....

1

ŝ

ATTACHMENT

CATEGORY	STANCES (See Appendix fo O2 SUBSTANCE NAME	03 CAS NUMBER	04 STORAGE/DISPOSAL	METHOD	05 CONCENTRATION	05 MEASURE OF CONCENTRATION
MES MES	Lead Mercury	7439-92-1 7439-97-6	Unk nown Unk nown		376 0.6	mg/kg mg/kg
•						•
Note: J - Com	pound present below the	specified detection	limit.			• •
	ана. 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 —	• •			•	
· ·		·				
		• • •				
			·	•		
· ·			· * · ·			
	· ·					-
		•			- <i>.</i>	
		·		•		•
		•			•	* **
						· .
					· .	
•	· · ·		. • •			· ·
	·				:	
· .						
	• •	· .	•		· .	
		•	· · ·			
· · ·			•			
	· ·		· · ·		•	
			• • •			
						• • •
		-				· ·
• . •						•
•		· . ·				
·					. · · ·	
		·				
				•		
•			-			
			•			
	•		•			
					· ·	. · ·

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

1. IDENTIFICATION OI STATE O2 SITE NUMBER NY D980535579

II. HAZARDOUS CONDITIONS AND INCIDENTS OI X A. GROUNDWATER CONTAMINATION 02 OBSERVED (DATE: O3 POPULATION POTENTIALLY AFFECTED: 19 04 NARRATIVE DESCRIPTION	X POTENTIAL	ALLEGED
The potential exists. Since the landfill is unlined and uncovered, substances leached from through the soil and enter groundwater. However, it should be noted that gypsum deposits ar of the area around the site. Results of sampling conducted at the facility on 6/13/86 indic polycyclic aromatic hydrocarbons (PAH's) were present in a sediment sample collected from the that these contaminants could migrate to groundwater.	re present in much o	f the geology
01. X B. SURFACE WATER CONTAMINATION 02 OBSERVED (DATE:) 03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION)	X POTENTIAL	_ ALLEGED
There is a small potential that contaminated runoff from the site could reach Ledge Creek, 1 downgradient of the site.	located 0.6 miles no	rtheast and
O1 X C. CONTAMINATION OF AIR O2 OBSERVED (DATE: O3 POPULATION POTENTIALLY AFFECTED: <u>Unknown</u> O4 NARRATIVE DESCRIPTION	X POTENTIAL	_ ALLEGED
There is a small potential for air contamination from wind blown dust. At the time of the s conducted after a wet spring season, the material in the landfill was well compacted and sho dust generation. It is not known if fugitive dust generation is a problem during dry period	wod littla satasti.	which was l for fugitive
O1. X D. FIRE/EXPLOSIVE CONDITIONS O2 OBSERVED (DATE:) O3 POPULATION POTENTIALLY AFFECTED: O4 NARRATIVE DESCRIPTION	X POTENTIAL	_ ALLEGED
There is a small potential for a large woodpile at the base of the landfill to catch fire. appears to be composed of waste gypsum which is not flamable.	However, the bulk of	f the landfill -
01. X E. DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED: 3,522 04 NARRATIVE DESCRIPTION 04 NARRATIVE DESCRIPTION	<u>X</u> POTENTIAL	_ ALLEGED
The potential is small since the site is located in a sparsely populated rural area. Howeve access is not restricted.	r, the site is not f	enced and
O1 X F. CONTAMINATION OF SOIL O3 AREA POTENTIALLY AFFECTED:Unknown O4 NARRATIVE DESCRIPTION (ACRES)	_ POTENTIAL	_ ALLEGED
Volatile organic compounds and PAH's were detected in a sediment sample collected in a ditch	at the base of the	landfill.
VA RARRATIVE DESCRIPTION	X POTENTIAL	_ ALLEGED
The potential exists. There are at least eight wells within a 3 mile radius of the site. Fi domestic purposes, two are agricultural and one is commercial. The Village of Akron draws it reservoir, 15 miles to the east, in Wyoming County. There is a potential for contaminants fo groundwater.	ive of the wells are s drinking water su bund on the site to a	used for oply from a enter
O1 X H. WORKER EXPOSURE/INJURY O2 OBSERVED (DATE:) O3 WORKERS POTENTIALLY AFFECTED:3,522 O4 NARRATIVE DESCRIPTION)	X POTENTIAL	_ ALLEGED
There is a potential for workers near the site to be exposed to fugitive dusts from the landf	i11.	
01 X I. POPULATION EXPOSURE/INJURY 02 OBSERVED (DATE:) 03 POPULATION POTENTIALLY AFFECTED:04 NARRATIVE DESCRIPTION	X POTENTIAL	_ ALLEGED
Major potential for population exposure is via groundwater contamination of domestic wells and landfill.	d by fugitive dusts	from the
EPA FORM 2070-13 (7-81)	•	

SITE	AL INGARDOUG WASTE STIL E INSPECTION REPORT DF HAZARDOUS CONDITIONS AND INCIDENTS	ol STATE O2 SITE NUMBER NY D980535579
THE THE CONDITIONS AND INCIDENTS (C.		·
II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued) OI X J. DAMAGE TO FLORA O4 NARRATIVE DESCRIPTION	O2 _ OBSERVED (DATE:)	X POTENTIAL _ ALLEGED
The disposal area was sparsely vegetated. Potential for toxic and persistent compounds.	damage to surrounding wetlands and fores	ted areas is possible from
01 X K. DAMAGE TO FAUNA O4 NARRATIVE DESCRIPTION (Include name(s) of species)	O2 _ OBSERVED (DATE:) <u>x</u> potential _ Alleged
The potential exists. The site is located near a wetlan site to migrate to the wetland area and damage the fauna	d area. There is potential for toxic and	persistent substances on the
01 X L. CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	O2 _ OBSERVED (DATE:) <u>x</u> potentialalleged
The potential exists. There is agricultural land approx	imately 50 yards from the site.	
01 X M. UNSTABLE CONTAINMENT OF WASTES (Spills/runoff/standing liquids/leaking drums) 03 POPULATION POTENTIALLY AFFECTED: Unknown	O2 X OBSERVED (DATE:6/13/86) _ POTENTIAL _ ALLEGED
The landfill is unlined and uncapped and does not have a		
O1 X N. DAMAGE TO OFFSITE PROPERTY O4 NARRATIVE DESCRIPTION	02 _ OBSERVED (DATE:) <u>x</u> potential Alleged
There is a small potential for damage to off-site drinki	ng water wells.	
01 O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs O4 NARRATIVE DESCRIPTION	O2 _ OBSERVED (DATE:) _ POTENTIAL _ ALLEGED
No potential exists. The area around the landfill is no	t drained by sewers or storm drains.	
01 X P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	O2 _ OBSERVED (DATE:) <u>X</u> POTENTIAL _ ALLEGED
The potential exists. It is not known if the landfill w	as operated legally or if wastes other th	an gypsum were deposited.
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGED	HAZARDS	· · · · · · · · · · · · · · · · · · ·
No other known, potential or alleged hazards.		
TII. TOTAL POPULATION POTENTIALLY AFFECTED:	Unknown	······································
IV. COMMENTS		
V. SOURCES OF INFORMATION (Cite specific references. e ite Inspection of Whiting Development Corp., conducted o S. Geological Survey Topographic Maps, Akron and Woolco N.Y. State Atlas of Community Water System Sources, N.Y. Erie-Niagara Basin Groundwater Resources, N.Y. State Wate Buehler, E.J., and Tesmer, I.H., Geology of Erie County, Vol. 21, No. 3, 1963.	on 6/13/86 by NUS Corp. ottsville Quadrangles. State Department of Health, 1982.	

...

A(1-1)

And a second

- AND AND A

1

-51

1

-

S. Alimita. V

.

Į

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 4 - PERMIT AND DESCRIPTIVE INFORMATION

1. IDENTIFICATION OI STATE 02 SITE NUMBER NY D980535579

(Check all that apply)	02 PERMIT	NUMBER	O3 DATE 1	SSUED	04 EXPIRATION DATE	05 COMMENTS
L A. NPDES				•		
_ B. UIC					-	•
C 810 ·						
_ C. AIR						
_ D. RCRA	•					
-						•
_ E. RCRA INTERIM STATUS						The landfill is
F. SPCC PLAN						
_ F. SPUL FLAN						currently inactive.
_ G. STATE (Specify)						
- · ·						
_ H. LOCAL (Specify)						
I. OTHER (Specify)						
_ I. OTHER (Specify)						
X J. NONE		•				
I. SITE DESCRIPTION					<u> </u>	
Storage/Disposal (Check all that apply)	02 AMOUNT	03 UNIT	OF MEASURE		EATMENT heck all that apply)	05 OTHER
A. SURFACE IMPOUNDMENT						
B. PILES			<u>:</u>	B.	INCINERATION JNDERGROUND INJECTION	<u>X</u> A. BUILDINGS ON SIT
X C. DRUMS, ABOVE GROUND D. TANK, ABOVE GROUND		55 ga	3]	_ C. 9	CHEMICAL/PHYSICAL BIOLOGICAL	
E. TANK, BELOW GROUND X F. LANDFILL	96,800			_ E. I	ASTE OIL PROCESSING	OG AREA OF SITE
G. LANDFARM		yds ^{_3}			SOLVENT RECOVERY DTHER RECYCLING/RECOVER	r 10
H. OPEN DUMP I. OTHER		<u> </u>		_н. (OTHER <u>None</u> (Specify)	(Acres)
(Specify)		·			(opeerig)	
COMMENTS					•	
Whiting Development Corn. ha	is sold some o	f the land	filled mate	rial to	the Town of Newstead for	r use as cover material f
e Whiting Development Corp. ha e Town of Newstead municipal 1	is sold some o andfill. Fou ums appeared	f the land r drums we to be gyps	Ifilled mate re found on	rial to the la	the Town of Newstead fo dfill during the site	or use as cover material f inspection conducted on
e Whiting Development Corp. ha e Town of Newstead municipal 1	as sold some o andfill. Fou ums appeared	f the land r drums we to be gyps	Ifilled mate ere found on um wastes.	rial to the la	the Town of Newstead fo dfill during the site	or use as cover material f inspection conducted on
e Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr	as sold some o andfill. Fou ums appeared	f the lanc r drums we to be gyps	um wastes.	the lat	otill during the site	inspection conducted on
Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr	rums appeared	f the lanc r drums we to be gyps	um wastes.		the Town of Newstead fo	inspection conducted on
Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr	one)	to be gyps	um wastes.			Inspection conducted on
Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr <u>CONTAINMENT</u> CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE	one)	ATE	_ C. INA			Inspection conducted on
Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr <u>CONTAINMENT</u> CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING,	one)BMODER/	ATE	C. INA		, POOR <u>X</u> D. IN	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha Town of Newstead municipal 1 3/86. The contents of the dr <u>CONTAINMENT</u> <u>CONTAINMENT OF WASTES (Check</u> <u>A. ADEQUATE, SECURE</u> <u>DESCRIPTION OF DRUMS, DIKING,</u>	one)BMODER/	ATE	C. INA		, POOR <u>X</u> D. IN	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, a landfill is unlined and unco	one)BMODER/	ATE	C. INA		, POOR <u>X</u> D. IN	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, a landfill is unlined and unco ACCESSIBILITY	one) B. MODER/ LINERS, BARR) vered. Site	ATE IERS, ETC.	C. INA		, POOR <u>X</u> D. IN	SECURE, UNSOUND, DANGEROUS
COMMENTS Whiting Development Corp. ha Town of Newstead municipal 1 13/86. The contents of the dr CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, e landfill is unlined and unco ACCESSIBILITY WASTE EASILY ACCESSIBLE: COMMENTS	one)BMODER/	ATE	C. INA		, POOR <u>X</u> D. IN	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, a landfill is unlined and unco ACCESSIBILITY WASTE EASILY ACCESSIBLE: COMMENTS	one) B. MODER/ LINERS, BARR) vered. Site	ATE IERS, ETC. 	C. INA	ADEQUATE	, POOR <u>X</u> D. IN s on the surface of the	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr . CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, a landfill is unlined and unco ACCESSIBILITY WASTE EASILY ACCESSIBLE: COMMENTS site is not fenced and the ea	one) B. MODER/ LINERS, BARR) vered. Site <u>X</u> YES astern border	ATE IERS, ETC. investigat	C. INA	ADEQUATE	, POOR <u>X</u> D. IN s on the surface of the D ft. from Scotland Roam	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, a landfill is unlined and unco ACCESSIBILITY WASTE EASILY ACCESSIBLE: COMMENTS site is not fenced and the easily accessible of the comments SOURCES OF INFORMATION (Cito of the comments)	one) B. MODER/ LINERS, BARR) vered. Site <u>X</u> YES astern border	ATE IERS, ETC. investigat	_ C. INA	ADEQUATE	, POOR <u>X</u> D. IN s on the surface of the) ft. from Scotland Roa	SECURE, UNSOUND, DANGEROUS
e Whiting Development Corp. ha a Town of Newstead municipal 1 13/86. The contents of the dr . CONTAINMENT CONTAINMENT OF WASTES (Check _ A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, andfill is unlined and unco ACCESSIBILITY WASTE EASILY ACCESSIBLE: COMMENTS	one) B. MODER/ LINERS, BARR) vered. Site X YES astern border	ATE IERS, ETC. investigat NO of the lar ences. e.g	_ C. INA ion found fo	ADEQUATE	, POOR <u>X</u> D. IN s on the surface of the) ft. from Scotland Roam ple analysis, reports)	SECURE, UNSOUND, DANGEROUS

I TYPE OF DRINKING SUPPLY (Check as applicable)		·	02 STATUS				03 DIS	TANCE TO SI	ΤE
	SURFACE	WELL	ENDANGERED	AFFECTED		TORED		15	/
OMMUNITY ION-COMMUNITY	A. <u>x</u> C	в. D. <u>х</u>	A. D	B	C. F.	<u> </u>	А. В. <u>—</u>	<u>15</u> 1.1	(mi)
II. GROUNDWATER I GROUNDWATER USE IN VICI	NITY (Check	one)				·			
X A. ONLY SOURCE FOR DRIN	KING _ B. D	RINKING	_ C. COMMER	CIAL, INDUS	TRIAL,	IRRIGATION	_ D. N	OT USED, UN	USEABLE
<i>x</i>		er sources	(Limited	i other sour	ces av	ailable)			•
	COMM	lable) ERCIAL,			•				
	IRRI	STRIAL, GATION						·	
· .		other water ces available	e)						
· · ·						·····	<u> </u>	·	· <u>-</u> .
2 POPULATION SERVED BY GF	•					EST DRINKING			_ (mi)
4 DEPTH TO GROUNDWATER	05 DIRECTION	OF GROUNDWA	TER FLOW OF	OF CONCERN	QUIFER	07 POTENTI OF AQUIFE		08 SOLE S	OURCE AQUI
<u> 14.9 (ft)</u>	- <u></u>	Northwest		14.9	(ft)	<u>1.7 x 106</u>	(gpd)	_ YES	X NO
9 DESCRIPTION OF WELLS (1	ncluding use	age, depth, a	and location	relative to	popul	ation and bu	- ildings)		
				• .	• •	· .			
eri descriptions are prov			90.						
en descriptions are prov		· · · · · ·	gc.						
en descriptions are prov		· · ·	gc •	•					· ·
eri descriptions are prov			y	•		·			
			· ·	DISCHARGE	AREA				
O RECHARGE AREA YES COMMENTS			11	· ·		FNTS Ground	water disc	hargon to l	odza Creati
ell descriptions are prov O RECHARGE AREA YES COMMENTS X NO			11	• DISCHARGE <u>×</u> YES _ NO	COMM	ENTS. Ground its tributar	water disc ies as wel	harges to L 1 as Murder	edge Creek Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER			11	<u>X</u> YES	COMM	ENTS Ground its tributar	water disc ies as wel	harges to L 1 as Murder	edge Creek Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT	k one) ION _ B. IRI	RIGATION, ECC	11 	<u>X</u> YES NO	COMM and	ENTS. Ground its tributar INDUSTRIAL	ies as wel	harges to L 1 as Murder CURRENTLY	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	<u>X</u> YES NO	COMM and	its tributar	ies as wel	l as Murder	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	X YES NO	COMMI and	its tributar	ies as wel	l as Murder	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME:	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	X YES - NO - C. COMMER AFFEC	COMMI and CIAL, 1 TED	INDUSTRIAL	ies as wel	1 as Murder CURRENTLY	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	X YES NO C. COMMER AFFEC Unkn	COMMI and CIAL, T TED own	INDUSTRIAL DISTANCE TO 0.6	ies as wel	l as Murder	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME:	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	X YES - NO - C. COMMER AFFEC	COMMI and CIAL, T TED own	INDUSTRIAL	ies as wel	1 as Murder CURRENTLY	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek	k one) ION B.IRI E IMPOI	RIGATION, ECO RTANT RESOURC	11 	X YES NO C. COMMER AFFEC Unkn	COMMI and CIAL, T TED own	INDUSTRIAL DISTANCE TO 0.6	ies as wel	1 as Murder CURRENTLY(mi)	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek	k one) ION B. IRI E IMPO FECTED BODIES	RIGATION, ECC RTANT RESOURC S OF WATER	11 	X YES NO C. COMMER AFFEC Unkn	COMMI and CIAL, T TED own	INDUSTRIAL DISTANCE TO 0.6	ies as wel	1 as Murder CURRENTLY (mi)	Creek.
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek	k one) ION B. IRI E IMPO FECTED BODIES	RIGATION, ECC RTANT RESOURC S OF WATER	11 	X YES NO C. COMMER AFFEC Unkn	COMMI and CIAL, T TED own own	INDUSTRIAL DISTANCE TO 0.6 1.6	_ D. NOT	1 as Murder CURRENTLY (mi) (mi) (mi)	USED
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek	k one) ION B. IRI E IMPO FECTED BODIES Y INFORMATION	RIGATION, ECC RTANT RESOURC S OF WATER	11 DNOMICALLY CES	X YES NO C. COMMER AFFEC Unkn	COMMI and CIAL, 1 TED own own	INDUSTRIAL DISTANCE TO 0.6	_ D. NOT	1 as Murder CURRENTLY (mi) (mi) (mi)	USED
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek DEMOGRAPHIC AND PROPERT I TOTAL POPULATION WITHIN	k one) ION _ B. IRI E _ IMPO FECTED BODIE: Y INFORMATION TWO (2) B 35	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT	II DNOMICALLY CES E THREE (3 C. 5	X YES NO C. COMMER AFFEC Unkn Unkn 0 MILES OF S 932	COMMI and CIAL, 1 TED own own	INDUSTRIAL DISTANCE TO 0.6 1.6	D. NOT	1 as Murder CURRENTLY (mi) (mi) (mi)	USED
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek DEMOGRAPHIC AND PROPERT I TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 376	k one) ION B. IRI E IMPO FECTED BODIES Y INFORMATION TWO (2) B35 NO	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT 22 . OF PERSONS	11 DNOMICALLY CES THREE (3 	X YES NO C. COMMER AFFEC Unkn Unkn 932 FPERSONS	COMMI and CIAL, 1 TED own own SITE	INDUSTRIAL DISTANCE TO 0.6 1.6	D. NOT	1 as Murder CURRENTLY (mi) (mi) FOPULATION	USED
O RECHARGE AREA YES X NO Y. SURFACE WATER I SURFACE WATER USE (Check X A. RESERVOIR, RECREAT DRINKING WATER SOURCE 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek DEMOGRAPHIC AND PROPERT TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 376 NO. OF PERSONS	k one) ION B. IRI E IMPO FECTED BODIES Y INFORMATION TWO (2) B35 NO	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT 22 . OF PERSONS	11 DNOMICALLY CES THREE (3 	X YES NO C. COMMER AFFEC Unkn Unkn 932 FPERSONS	COMMI and CIAL, 1 TED own own SITE	INDUSTRIAL DISTANCE TO 0.6 1.6 02 DISTANCE	D. NOT	1 as Murder CURRENTLY (mi) (mi) FOPULATION	Creek. USED
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek DEMOGRAPHIC AND PROPERT I TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 376 NO. OF PERSONS 3 NUMBER OF BUILDINGS WITH 828 5 POPULATION WITHIN VICIN	k one) ION _ B. IRI E _ IMPO FECTED BODIES Y INFORMATION TWO (2) B NO HIN TWO (2) M	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT 22 . OF PERSONS MILES OF SITE	11 DNOMICALLY CES THREE (3 	X YES NO C. COMMER AFFEC Unkn Unkn 932 F PERSONS DISTANCE TO	CIAL, TED own OWN SITE	INDUSTRIAL DISTANCE TO 0.6 1.6 02 DISTANCE ST OFF-SITE 0.1	D. NOT	1 as Murder CURRENTLY (mi) (mi) (mi) (mi) 0.1	Creek. USED N (mi)
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek Murder Creek Murder Site A. 376 NO. OF PERSONS B NUMBER OF BUILDINGS WITH	k one) ION _ B. IRI E _ IMPO FECTED BODIES Y INFORMATION TWO (2) B NO HIN TWO (2) M	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT 22 . OF PERSONS MILES OF SITE	11 DNOMICALLY CES THREE (3 	X YES NO C. COMMER AFFEC Unkn Unkn 932 F PERSONS DISTANCE TO	CIAL, TED own OWN SITE	INDUSTRIAL DISTANCE TO 0.6 1.6 02 DISTANCE ST OFF-SITE 0.1	D. NOT	1 as Murder CURRENTLY (mi) (mi) (mi) (mi) 0.1	Creek. USED N (mi)
O RECHARGE AREA YES COMMENTS X NO V. SURFACE WATER I SURFACE WATER USE (Chec X A. RESERVOIR, RECREAT DRINKING WATER SOURC 2 AFFECTED/POTENTIALLY AF NAME: Ledge Creek Murder Creek Murder Creek DEMOGRAPHIC AND PROPERT I TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 376 NO. OF PERSONS NUMBER OF BUILDINGS WITH 828 POPULATION WITHIN VICIN	k one) ION _ B. IRI E _ IMPO FECTED BODIE: Y INFORMATION TWO (2) B TWO (2) M TY OF SITE (pulated urban parsely popula	RIGATION, ECO RTANT RESOURC S OF WATER MILES OF SIT 22 . OF PERSONS MILES OF SITE Provide narr area) ated rural a	II DNOMICALLY CES E THREE (3 C. 5 NO. 01 04 ative descrip	X YES NO C. COMMER AFFEC Unkn Unkn Unkn Sigger PERSONS DISTANCE TO DISTANCE TO	COMMI and CIAL, 1 TED own own own SITE	INDUSTRIAL DISTANCE TO 0.6 1.6 02 DISTANCE ST OFF-SITE 0.1 population	ies as wel D. NOT D SITE TO NEAREST 	1 as Murder CURRENTLY (mi) (mi) POPULATION 0.1 inity of st	Creek. USED N (mi) te. e.g.,

- AND - AND

STREET, SA

大学の行う

- Succession

States.

Service States

なのないた

anality and

- Sector

1

-

Children

Crimins,

WELLS WITHIN A 3 MILE RADIUS OF WHITING DEVELOPMENT CORP.

Location	Total Depth (ft.)	Depth of Groundwater (Ft)	Well Type	Use	Depth to Bedrock	Water Bearing Material	Owner	Comments
300-826-1	53	16.3	DRL	D		Limestone	E. Vanalstine	
300-826-2	30	9.1	DRL	D		11	A. Bettio	
300-827-1	120	45	DRL	D	· 、	43	L. Weaver	<u> </u>
302-825-1	49	20	DRL	D		Camillus Shale	C. Moses	Yield 20gpm
303-826-1	26.7	20.2	DRL	D ·			J. Patterson	Yield 10gpm
303-828-1	39.4	12.0	DRL	Ag		Sand	J. Laughlin	Used for watering stock.
303-829-1	25.8	14.9	DRL	с		Camillus Shale	Dade Farms Country Club	
303-830-1	18.2	10.3	DRL	F	<u> </u>	Sand and Gravel	G. Cook	

D - Domestic Ag - Agricultural F - Dairy Farm C - Commercial USE CODES:

WELL TYPE:

No. States

DRL - Drilled

POTENTIAL HAZARDOUS WASTE SITE1. IDENTIFICATIONSITE INSPECTION REPORTOI STATE O2 SITE NUMBERPART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATANY D980535579

.

0
VI. ENVIRONMENTAL INFORMATION OI PERMEABILITY OF UNSATURATED ZONE (Check one)
<u>X</u> A. 10 ⁻⁶ - 10 ⁻⁸ cm/sec _ B. 10 ⁻⁴ - 10 ⁻⁶ cm/sec _ C. 10 ⁻⁴ - 10 ⁻³ cm/sec _ D. GREATER THAN 10 ⁻³ cm/sec
O2 PERMEABILITY OF BEDROCK (Check one)
_A. IMPERMEABLEB. RELATIVELY IMPERMEABLE X C. RELATIVELY PERMEABLED. VERY PERMEABLE (Less than 10 ⁻⁶ cm/sec)(10 ⁻⁴ - 10 ⁻⁶ cm/sec)(6reater than 10 ⁻² cm/sec)
O3 DEPTH TO BEDROCK O4 DEPTH OF CONTAMINATED SOIL ZONE O5 SOIL pH
<u>14.9</u> (ft) <u>0* (ft) Unknown</u> *contaminants found in surface sample
06 NET PRECIPITATION 07 ONE YEAR 24 HOUR RAINFALL 08 SLOPE SITE SLOPE DIRECTION OF SITE SLOPE TERRAIN AVERAGE SLO
f (in) 2.8 (in) 7.5 ⁺ Site slopes in
* site slope and terrain slope differ from HRS slopes because the gypsum waste could not be considered in HRS scoring proces
SITE IS INYEAR FLOODPLAINSITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODW
11 DISTANCE TO WETLANDS (5 acre minimum) 12 DISTANCE TO CRITICAL HABITAT (of endangered species
ESTUARINE OTHER
A. >3 (mi) B. 0.2 (m1) ENDANGERED SPECIES: N/A
13 LAND USE IN VICINITY
DISTANCE TO:
COMMERCIAL/INDUSTRIAL RESIDENTIAL AREAS: NATIONAL/STATE PARKS, AGRICULTURAL LANDS
FORESTS, OR WILDLIFE RESERVES PRIME AG LAND AG LAND
A (mi) B 0.6 (mi) C. <u>Unknown</u> (mi) D. <u>adjacent</u> (mi)
14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY
The site is located in the Township of Newstead, 0.5 mi. northeast of the town of Akron and 0.6 mi. west of the Erie-Genesed County Border. The general slope of the topography around the site is from southeast to northwest towards Tonawanda and Murder Creeks. Immediately north of the site is a wetland area which contains a number of small intermittent and perennial streams which are tributary to Murder Creek and Ledge Creek. The site is bordered on the north by the Conrail Railroad trac and on the east by Scotland Road. The landfill is elevated approximately 20-25 ft with respect to the surrounding topograph
**The site is a landfill and slopes in all directions.
VII SOURCES OF INFORMATION (Cite specific poferences a cite file
VII SOURCES OF INFORMATION (Cite specific references e.g., state files, sample analysis, reports)
Site Inspection of Whiting Development Corp. conducted on 6/13/86 by NUS Corp. Bueler, E.J., and Tesmer, I.H., Geology of Erie County, Buffalo Society of Natural Science Bulletin, Vol. 21, No. 3, 1963. Erie-Niagara Basin Groundwater Resources, N.Y. State Water Resources Commision, 1968. New York State Atlas of Community Water System Sources, N.Y. State Department of Health, 1982. S. Geological Survey Topographic Maps, Akron and Wolcottsville, N.Y. Quadrangles. Hazard Ranking System (HRS) Users Manual, MITRE Corporation. Flood Insurance Rate Map (FIRM) for the town of Newstead, National Flood Insurance Program.

Contraction of the local division of the loc

1 and 1

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

1. ILENTIFICATION OI STATE OZ SITE NUMBER NY D980535579

SAMPLE TYPE O1 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	O3 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER	Organic Samples: California Analytical Labs 2544 Industrial Blvd.	Received 8/7/86
SURFACE WATER	W. Sacramento, CA 95691	
WASTE		
AIR	Inorganic Samples: Rocky Mountain Analytical Labs	Received 8/7/86
RUNOFF	5530 Marshall St. Arvada, CO 80002	
SPILL		•
SOIL 4		
VEGETATION		· · · ·
OTHER Sediment 2		
I. FIELD MEASUREMENTS TAKEN TYPE 02 COMMENTS		
r Monitoring Air monitoring reading No readings above backgro	s using an OVA flame ionization detec und were obtained while on-site.	tor and an HNu photoionization detect
r Monitoring Air monitoring reading No readings above backgro	s using an OVA flame ionization detec und were obtained while on-site.	ctor and an HNu photoionization detect
r Monitoring Air monitoring reading No readings above backgro	s using an OVA flame ionization detec und were obtained while on-site.	tor and an HNu photoionization detect
	s using an OVA flame ionization detec und were obtained while on-site.	tor and an HNu photoionization detecto
. PHOTOGRAPHS AND MAPS		
<u>. PHOTOGRAPHS AND MAPS</u> TYPE <u>X</u> GROUND _ AERIAL		itor and an HNu photoionization detects
. PHOTOGRAPHS AND MAPS TYPE X GROUND MAPS 04 LOCATION OF MAPS X YES NUS Corp. Region II FIT.	O2 IN CUSTODY OF <u>NUS Corp. Reg</u> (Name of or	
. PHOTOGRAPHS AND MAPS TYPE X GROUND _ AERIAL MAPS 04 LOCATION OF MAPS X YES _ NUS Corp. Region II FIT, I _ NO	O2 IN CUSTODY OF <u>NUS Corp. Reg</u> (Name of or Edison, NJ	
. PHOTOGRAPHS AND MAPS TYPE X GROUND _ AERIAL MAPS 04 LOCATION OF MAPS X YES _ NUS Corp. Region II FIT, I _ NO _ OTHER FIELD DATA COLLECTED (Provide marrative ptographs of sample collection activities	O2 IN CUSTODY OF <u>NUS Corp. Reg</u> (Name of or Edison, NJ	
PHOTOGRAPHS AND MAPS TYPE X GROUND _ AERIAL MAPS 04 LOCATION OF MAPS X YES _ NUS Corp. Region II FIT, I NO OTHER FIELD DATA COLLECTED (Provide marrative otographs of sample collection activities	O2 IN CUSTODY OF <u>NUS Corp. Reg</u> (Name of or Edison, NJ	
7. PHOTOGRAPHS AND MAPS TYPE X GROUND TMAPS 04 LOCATION OF MAPS X YES NUS Corp. Region II FIT.	O2 IN CUSTODY OF <u>NUS Corp. Reg</u> (Name of or Edison, NJ	

VI. SOURCES OF INFORMATION (Cite specific references. e.g., state files, sample analysis, reports)

.

Site inspection of Whiting Development Corp. conducted on 6/13/86 by NUS Corp.

. . .

1

ŝ

ţ

į

ą

Į

ļ

ł

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 7 - OWNER INFORMATION I. IDENTIFICATION OI STATE O2 SITE NUMBER NY D980535579

				000000000000
II. CURRENT OWNER(S)			PARENT COMPANY (If applicable)	
OI NAME		02 D + B NUMBER	08 NAME	09 D + B NUMBE
Whiting Development Corp. D3 STREET ADDRESS (P.O. Box, R	FD#, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD#, etc.)	11 SIC CODE
13350 Bloomingdale Road D5 CITY	06 STATE	07 ZIP CODE	12 CITY 13 STATE	14 ZIP CODE
lewstead	NY	14001		
D1 NAME	·	02 D + B NUMBER	08 NAME	09 D + B NUMBE
D3 STREET ADDRESS (P.O. Box, R	FD#, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD#, etc.)	11 SIC CODE
D5 CITY	OG STATE	07 ZIP CODE	12 CITY 13 STATE	14 ZIP CODE
DI NAME		02 D + B NUMBER	08 NAME	09 D + B NUMBI
)3 STREET ADDRESS (P.O. Box, R	FD #, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD#, etc.)	11 SIC CODE
D5 CITY	O6 STATE	07 ZIP CODE	12 CITY 13 STATE	14 ZIP CODE
1 NAME			00 NANG	
1 NAME		02 D + B NUMBER	08 NAME	09 D + B NUMB
3 STREET ADDRESS (P.O. Box, R	FD#, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD#, etc.)	11 SIC CODE
5 CITY	06 STATE	07 ZIP CODE	12 CITY 13 STATE	14 ZIP CODE
II. PREVIOUS OWNER(S) (List m	ost recent firs	t)	IV. REALTY OWNER(S) (If applicable; list	most recent firs
1 NAME		02 D + B NUMBER	OI NAME	02 D + B NUMB
hiting Development Corp. 3 STREET ADDRESS (P.O. Box, R	FD#, etc.)	O4 SIC CODE	O3 STREET ADDRESS (P.O. Box, RFD#, etc.)	04 SIC CODE
3350 Bloomingdale Road 5 CITY	06 STATE	07 ZIP CODE	O5 CITY O6 STATE	07 ZIP CODE
ewstead	NY	14001		
1 NAME		02 D + B NUMBER	01 NAME	O2 D + B NUMB
3 STREET ADDRESS (P.O. Box, R	FD #, etc.)	04 SIC CODE	O3 STREET ADDRESS (P.O. Box, RFD#, etc.)	04 SIC CODE
5 CITY	06 STATE	07 ZIP CODE	05 CITY 06 STATE	07 ZIP CODE
1 NAME		02 D + B NUMBER	01 NAME	02 D + B NUMB
3 STREET ADDRESS (P.O. Box, R	FD#, etc.)	04 SIC CODE	O3 STREET ADDRESS (P.O. Box, RFD#, etc.)	04 SIC CODE
5 CITY	06 STATE	07 ZIP CODE	05 CITY 06 STATE	07 ZIP CODE

V. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

Background information supplied by NYDEC.

ł

-

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 8 - OPERATOR INFORMATION

.

1. IDENTIFICATION OI STATE O2 SITE NUMBER NY D980535579

II. CURRENT OPERATOR(S)	· · · · · · · · · · · · · · · · · · ·	02 D + B Number	OPERATOR'S PAR	ENT COMPANY (If applicable)	11 D + B N
01 NAME		, UZ D + B NUMBER	IU NAME		
Same O3 STREET ADDRESS (P.O. Box,	, RFD #, etc.)	04 SIC CODE	12 STREET ADDR	ESS (P.O. Box, RFD#, etc.)	13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
	UU SIAIL		14 0111	TO DIVIC	10 ZIF CODE

08 YEARS OF OPERATION O9 NAME OF OWNER

III. PREVIOUS OPERATOR(S) (List most recent Provide only if	t first: different from owner)	PREVIOUS OPERATOR'S PARENT COMPANIES (IF a	applicable)
O1 NAME	02 D + B Number	10 NAME	11 D + B NUMBER
Georgia Pacific Corp. O3 STREET ADDRESS (P.O. Box, RFD#, etc.)	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD#, etc.)	13 SIC CODE
13350 Bloomingdale Road O5 CITY O6 STATE	07 ZIP CODE	14 CITY 15 STATE	16 ZIP CODE
Newstead NY OB YEARS OF OPERATION O9 NAME OF OWNER	14001		
01 NAME	02 D + B Number	10 NAME	11 D + B NUMBER
O3 STREET ADDRESS (P.O. Box, RFD#, etc.)	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD#, etc.)	13 SIC CODE
05 CITY 06 STATE	07 ZIP CODE	14 CITY 15 STATE	16 ZIP COD
08 YEARS OF OPERATION 09 NAME OF OWNER		· · ·	

O1 NAME		02 D + B Number	10 NAME	· · · · · · · · · · · · · · · · · · ·	11 D + B NUMBER
03 STREET ADDRESS (P.O.	8ox, RFD # , etc.)	04 SIC CODE	12 STREET ADDRES	S (P.O. Box, RFD#, etc.)	13 SIC CODE
05 CITY	UG STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
08 YEARS OF OPERATION	09 NAME OF OWNER				

IV. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

Background information provided by NYDEC:

à

1

1

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 9 - GENERATOR/TRANSPORTER INFORMATION

	<u> </u>			
- 0T	STATE	02	SITE	NUMBER
	NY		D980	535579

		· · · ·			
II ON-SITE GENERATOR					
DI NAME		02 D + B NUMBER			
None D3 STREET ADDRESS (P.O.	Box, RFD#, etc.)	04 SIC CODE		•	• .
	,,,				
· ·					•
D5 CITY	O6 STATE	O7 ZIP CODE		• • •	•
· .					•
III OFF-SITE GENERATOR(S) [.]				
DI NAME		02 D + B NUMBER	01 NAME		02 D + B NUMBER
			•		•
None D3 STREET ADDRESS (P.O.	Rox PED# atc.)	04 SIC CODE	02 STREET ADDRE	SS (P.O. Box, RFD#, etc.)	04 SIC CODE
5 SINELI ADDRESS (1.0.	bur, Kiur, Ellerj	U4 SIC CODE	US SIREEI AUURE	33 (P.U. BOX, RFU#, etc.)	U4 SIL LUDE
		•			
D5 CITY	O6 STATE	07 ZIP CODE	05 CITY	O6 STATE	07 ZIP CODE
	,	,			
· ·				•	•
DI NAME	· · · · · · · · ·	02 D + B NUMBER	OI NAME	· · ·	02 D + B NUMBE
TO STREET ADDRESS (D O	Por DED# oto)	04 510 0005			04 610 0005
D3 STREET ADDRESS (P.O.	bux, Krur, etc.)	04 SIC CODE	US STREET ADURE	SS (P.O. Box, RFD#, etc.)	04 SIC CODE
D5 CITY	O6 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
		•	,		
IV. TRANSPORTER(S)	· · · · · · · · · · · · · · · · · · ·				
DI NAME		02 D + B NUMBER	01 NAME		02 D + B NUMBE
None		04 CTO 0005			
D3 STREET ADDRESS (P.O.	box, Kruf, etc.)	04 SIC CODE	US STREET ADDRE	SS (P.O. Box, RFD#, etc.)	04 SIC CODE
·					
D5 CITY	O6 STATE	07 ZIP CODE	05 CITY	O6 STATE	07 ZIP CODE
				, · · ·	
		•	•		
DI NAME		02 D + B NUMBER	01 NAME		02 D + B NUMBE
•				•	
2 STREET ADDRESS (A. S.		A4 A4A			
D3 STREET ADDRESS (P.O.	Box, RFUF, etc.)	04 SIC CODE	03 STREET ADDRE	SS (P.O. Box, RFD#, etc.)	04 SIC CODE
		· ·			
D5 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE

V. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES 1. IULNIII ICATION OI STATE O2 SITE NUMBER NY D980535579

II. PAST RESPONSE ACTIVITIES		
01 A. WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE:	O3 AGENCY:
No previous history O1 B. TEMPORARY WATER SUPPLY PROVIDED O4 DESCRIPTION	02 DATE:	U3 AGENCY:
No previous history 01 <u>C. PERMANENT WATER SUPPLY PROVIDED</u> 04 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history 01 D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history Ol E. CONTAMINATED SOIL REMOVED O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1F. WASTE REPACKAGED O4 DESCRIPTION	02 DATE:	O3 AGENCY:
No previous history O1 X G. WASTE DISPOSED ELSEWHERE .04 DESCRIPTION	02 DATE: Unknown	Newstead
The Whiting Development Corp. has sold some of the gyps cover material. Ol H. ON SITE BURIAL O4 DESCRIPTION	O2 DATE:	O3 AGENCY:
No previous history O1 I. IN SITU CHEMICAL TREATMENT O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 J. IN SITU BIOLOGICAL TREATMENT O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 K. IN SITU PHYSICAL TREATMENT O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 L. ENCAPSULATION O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1M. EMERGENCY WASTE TREATMENT O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 N. CUTOFF WALLS O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 O. EMERGENCY DIKING/SURFACE WATER DIVERSION O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1 P. CUTOFF TRENCHES/SUMP O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history O1Q. SUBSURFACE CUTOFF WALL O4 DESCRIPTION	02 DATE:	03 AGENCY:
No previous history		

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

1. IDENTIFICATION OI STATE O2 SITE NUMBER NY D980535579

II. PAST RESPONSE ACTIVITIES 01 R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	02 DATE:	O3 AGENCY:
No previous history O1 S. CAPPING/COVERING O4 DESCRIPTION		02 DATE:	O3 AGENCY:
No previous history O1 T. BULK TANKAGE REPAIRED O4 DESCRIPTION		02 DATE:	03 AGENCY:
No previous history O1 U. GROUT CURTAIN CONSTRUCTED O4 DESCRIPTION		02 DATE:	03 AGENCY:
No previous history O1 V. BOTTOM SEALED O4 DESCRIPTION	•	02 DATE:	O3 AGENCY:
No previous history O1 W. GAS CONTROL O4 DESCRIPTION		02 DATE:	O3 AGENCY:
No previous history O1 X. FIRE CONTROL O4 DESCRIPTION	•	02 DATE:	03 AGENCY:
No previous history Ol Y. LEACHATE TREATMENT O4 DESCRIPTION		02 DATE:	O3 AGENCY:
No previous history O1 Z. AREA EVACUATED O4 DESCRIPTION		02 DATE:	03 AGENCY:
No previous history 01 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION		02 DATE:	03 AGENCY:
No previous history O12. POPULATION RELOCATED O4 DESCRIPTION		02 DATE:	03 AGENCY:
No previous history O1 3. OTHER REMEDIAL ACTIVITIES O4 DESCRIPTION		02 DATE:	O3 AGENCY:
No previous history	· ·		

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

Background information provided by NYDEC.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

1. IDENTIFICATION OI STATE O2 SITE NUMBER NY D980535579

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION YES X NO

...

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

No regulatory or enforcement actions have been taken against Whiting Development Corporation in the past.

......

The New York Department of Environmental Conservation (NYDEC) indicated that the landfill had not been closed according to Resource Conservation and Recovery Act (RCRA) standards and reclamation of the landfill material for cover and fill should not exempt the site from compliance with RCRA standards. The NYDEC also indicated that there was a potential for fugitive dust generation associated with the reclamation process.

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, report)

Site Inspection of Whiting Development Corp. conducted on 6/13/86 by NUS Corporation.

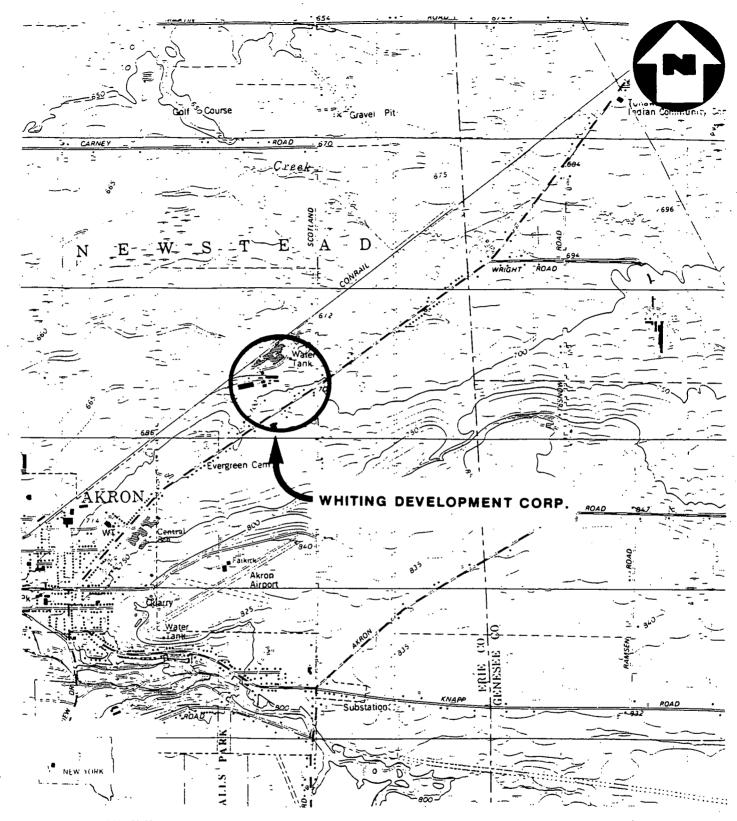
SECTION 3

27

MAPS AND PHOTOGRAPHS

WHITING DEVELOPMENT CORPORATION NEWSTEAD, NEW YORK TDD# 02-8603-34A

ĝ.


5

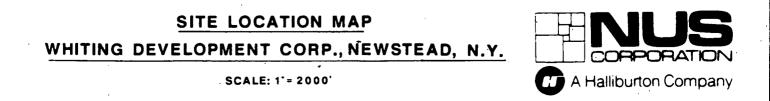
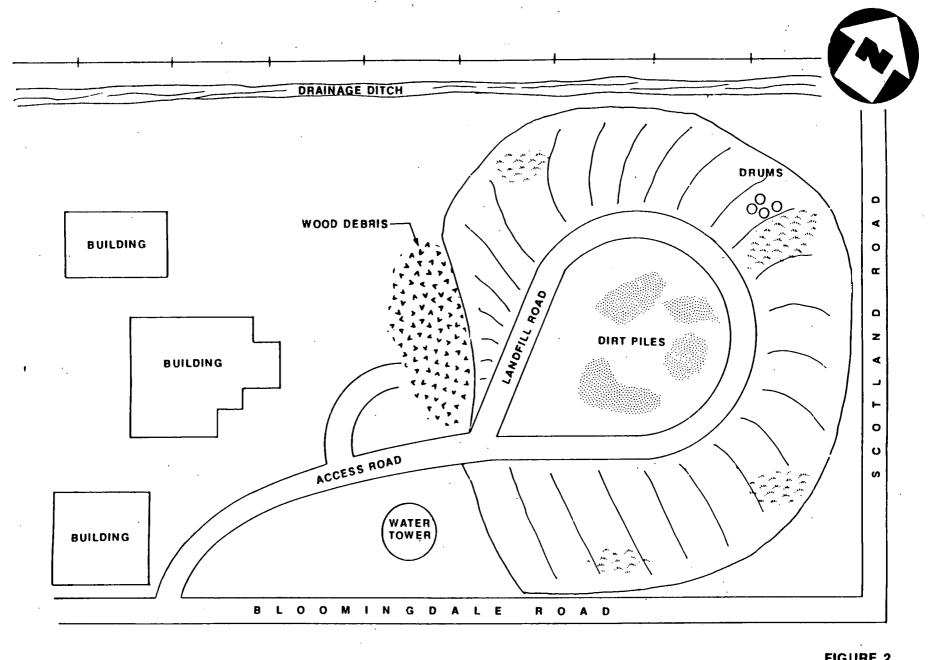
1.15

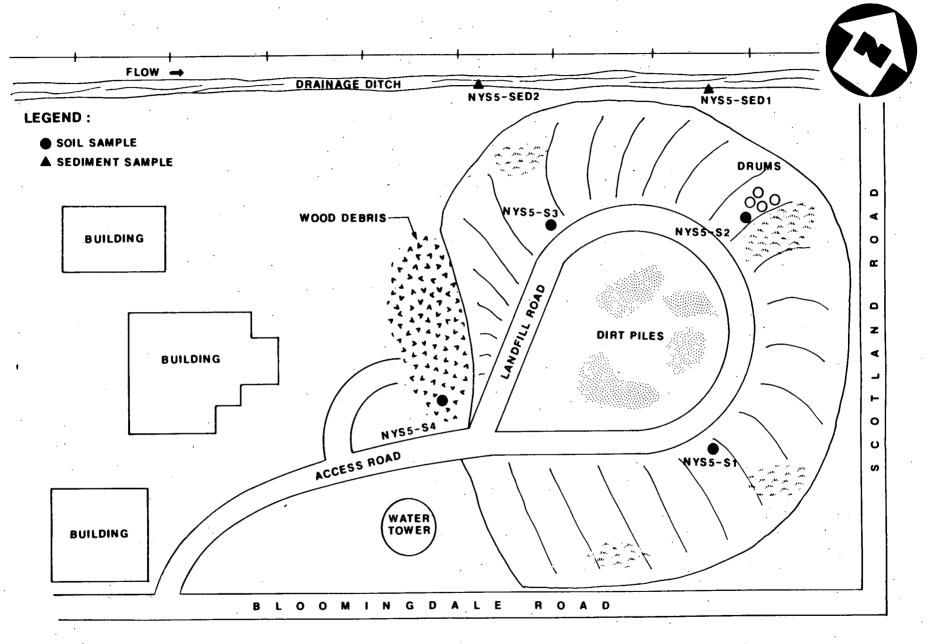
100

225

Figure 1 provides a Site Location Map Figure 2 provides a Site Map Figure 3 provides a Sample Location Map Exhibit A provides Site Photographs

(QUAD) AKRON, N.Y.


FIGURE 1

SITE MAP WHITING DEVELOPMENT CORP., NEWSTEAD, N.Y.

(NOT TO SO

(NOT TO SCALE)

SAMPLE LOCATION MAP

WHITING DEVELOPMENT CORP. NEWSTEAD, NEW YORK TDD# 02-8603-34A JUNE 13, 1986

PHOTOGRAPH INDEX

WHITING DEVELOPMENT CORP. NEWSTEAD, NEW YORK TDD# 02-8603-34A JUNE 13, 1986

PHOTOGRAPH INDEX

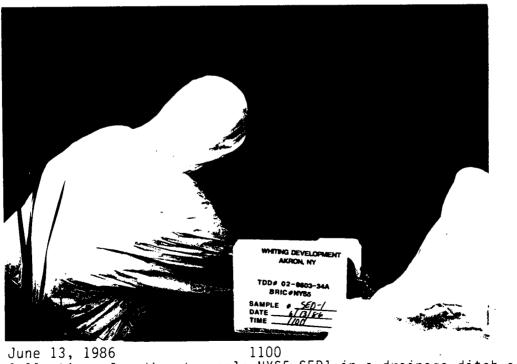
ALL PHOTOGRAPHS TAKEN BY JOE MAYO

	1012
1P-1 Collection of soil sample NYS5-S1 on the east side of the landfill, 20 yards east of the access road. Sampler: Steve Maybury.	
1P-2 East face of the landfill in relation to Scotland Road with farmlands in background.	1019
<pre>1P-3 Collection of soil sample NYS5-S2 on the north end of the landfill near a drum. Sampler: Steve Maybury.</pre>	1032
1P-4 Three drums found on the landfill, 20 feet north of sample location NYS5-S2.	1037
1P-5 Looking northwest from the top of the landfill showing the landfill in relation to the railroad tracks. Wetland area is in background.	1045
1P-6 Collection of sediment sample NYS5-SED1 in a drainage ditch adjacent to the railroad tracks at the base of the north face of the landfill. Sampler: Dennis Sutton.	1100
1P-7 Collection of soil sample NYS5-S3 on the face of a pile on the east side of the landfill, adjacent to the landfill road. Sampler: Dennis Sutton.	1111
1P-9 Collection of sediment sample NYS5-SED2 in drainage ditch near woodpiles, 10 feet east of railroad tracks. Sampler: Steve Maybury.	1125
1P-10 Collection of soil sample NYS5-S4 at the base of the landfill near woodpiles. Sampler: Dennis Sutton.	1137
1P-11 Decontamination operations at the Whiting Development site.	1140

1P-1 June 13, 1986 1012 Collection of soil sample NYS5-S1 on the east side of the landfill, 20 yards east of the access road. Sampler: Steve Maybury. Photographer: Joe Mayo.

1P-2 June 13, 1986 1019 East face of the landfill in relation to Scotland Road with farmlands in background. Photographer: Joe Mayo.


1P-3 June 13, 1960 1032 Collection of soil sample NYS5-S2 on the north end of the landfill near a drum. Sampler: Steve Maybury. Photographer: Joe Mayo.


1P-4

Three drums found on the landfill, 20 feet north of sample location NYS5-S2. Photographer: Joe Mayo.

June 13, 1986 1045 Looking northwest from the top of the landfill showing the landfill in relation to the railroad tracks. Wetland area is in background. Photographer: Joe Mayo.

Collection of sediment sample NYS5-SED1 in a drainage ditch adjacent to the railroad tracks at the base of the north face of the landfill. Sampler: Dennis Sutton. Photographer: Joe Mayo.

1P-5

1P-6

1P-7 June 13, 1986 1111 Collection of soil sample NYS5-S3 on the face of a pile on the east side of the landfill, adjacent to the landfill road. Sampler: Dennis Sutton. Photographer: Joe Mayo.

June 13, 1986 Collection of sediment sample NYS5-SED2 in drainage ditch near woodpiles, 10 feet east of railroad tracks. Sampler: Dennis Sutton. Photographer: Joe Mayo.

1P-9

WHITING DEVELOPMENT CORP., NEWSTEAD, NEW YORK

1P-10 June 13, 1986 1137 Collection of soil sample NYS5-S4 at the base of the landfill near woodpiles. Sampler: Dennis Sutton. Photographer: Joe Mayo.

1P-11 June 13, 1986 Decontamination operations at the Whiting Development site. Photographer: Joe Mayo.

SECTION 4

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

· ·

.

FIT QUALITY ASSURANCE TEAM DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference. Include the location of the document.

FACILITY NAME:	Whiting Development Corp.				
	13350 Bloomingdale Road			· .	
LOCATION:	Newstead, New York				
DATE SCORED:	8/20/86	 			
			•		
PERSON SCORING:	Joseph Mayo				

PRIMARY SOURCE(S) OF INFORMATION (e.g., EPA region, state, FIT, etc.):

FIT Region II Library. NYDEC files EPA Contract laboratory data.

FACTORS NOT SCORED DUE TO INSUFFICIENT INFORMATION:

Air monitoring to detect the presence of specific air contaminants was not conducted at the site. Consequently, the air route of the MITRE model was scored a value of zero.

COMMENTS OR QUALIFICATIONS:

The fire and explosion route was not scored because field observations did not indicate a significant fire and explosion threat.

·**-** 1

GROUNDWATER ROUTE

1 OBSERVED RELEASE

Contaminants detected (5 maximum):

Since groundwater samples were not collected from the site, observed release is scored a value of zero.

Ref: #2, #3

Rationale for attributing the contaminants to the facility:

2 ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

There are 4 surficial bedrock formations within a 3 mile radius of the site. Proceeding from north to south, they are: the Camillus Shale, Bertie Formation, Akron Dolostone and Onondaga Limestone. The Camillus Shale lies above the Lockport Dolomite and crops out south of where the dolomite is exposed. This formation consists primarily of gray shale with considerable amounts of limestone, dolomite and gypsum interbedded with the shale. As a source of water supply, it is the most productive bedrock aquifer in the area. The remaining three formations, the Bertie Formation, Akron Dolostone and Onondaga Limestone, are collectively termed the "limestone unit". These formations are composed of dolomite, dolomite limestone and limestone which are occasionally interbedded with shale. The Akron Dolomite often contains sandy sediments derived from the erosion of stream channels. The yields of wells in these formations are generally less than those in the Camillus Shale.

For purposes of HRS scoring, all the above formations are considered to be part of the same aquifer. There is no evidence available which indicates the presence of confining layers between the formations and since these are bedrock formations in

2

which groundwater flows through bedding planes and solution cavities, these formations are considered to be hydraulically connected.

Ref: #1, #4

Depth(s) from the ground surface to the highest seasonal level of the saturated zone water table(s) of the aquifer of concern:

Depth to groundwater was not available on the site. Depth to water in the nearest well, 1.1 miles to the northeast and drilled in the Camillus Shale, is 14.9 ft. Ref: #3, #4

Depth from the ground surface to the lowest point of waste disposal/storage:

Contaminants were detected in a sediment sample in a ditch adjacent to an on-site gypsum landfill. Since the sample was collected at the surface the depth to the lowest point of waste disposal is 0 feet.

Ref: #2, #3

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal): Mean annual percipitation is 32 inches. Ref: #3

Mean annual lake or seasonal evaporation (list months for seasonal): Mean annual lake evaporation is 26 inches. Ref: #3

Net precipitation (subtract the above figures): 6 inches.

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

The unsaturated zone in the area of the site is glacial till. This material is composed of nonsorted rock material deposited from glacial ice, generally forming a thin mantle over bedrock. The till has a low permeability and will yield only small water supplies from large diameter wells.

Ref: #1

Permeability associated with soil type:

Permeability associated with these deposits is generally less than 10^{-7} cm/sec. Ref: #1

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Contaminants were detected in a sediment sample collected in a ditch adjacent to the on-site landfill. The physical state of the substances at the time of disposal is unknown. Since the hazardous substances were detected in a sediment sample, they are not consolidated or stabilized. Physical state is scored a value of 1, solid, unconsolidated or unstabilized.

Ref: #2, #3

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Uncontained contaminants detected in a sediment sample adjacent to the landfill. Ref: #2

Method with highest score:

Uncontained soil contaminants. Assign a value of 3. Ref: #3

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Naphthalene Phenanthrene

2-Methylnaphthale Benzo(a)Pyrene

Tetrachloroethene Benzo(k)Fluoranthene

Mercury

Ref: #10

Compound with highest score:

Benzo(a)pyrene has a toxicity/persistence value of 18.

Ref: #3

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Uncontained Hazardous Substance List (HSL) constituents were found in a sediment sample from the site. Hazardous waste quantity is unknown. Score a value of 1. Ref: #3, #10

5

Basis of estimating and/or computing waste quantity:

Hazardous waste quantity is unknown.

Ref: #2

5 TARGETS

Groundwater Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility: Groundwater within 3 miles of the facility is used for domestic, agricultural and commercial purposes.

Ref: #1

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer of concern</u> or occupied building not served by a public water supply:

The nearest well is located 1.1 miles from the site.

Ref: #1

Distance to above well or building:

1.1 miles.

Ref: #1, #5

Population Served by Groundwater Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from <u>aquifer(s) of concern</u> within a 3-mile radius and populations served by each:

See the following attachment, "Wells within a 3-mile radius of Whiting Development Corp." Counting only domestic wells, the population severed is: 5 wells x 3.8 persons/well=19 persons.

Ref: #1

Computation of land area irrigated by supply well(s) drawing from <u>aquifer(s) of concern</u> within a 3-mile radius, and conversion to population (1.5 people per acre).

Supply wells within a 3 mile radius of the site are not used for irrigation. Dairy farm and agricultural wells in the area are used for watering livestock. Ref: #1

Total population served by groundwater within a 3-mile radius: Total population served by groundwater is 19. WELLS WITHIN A 3 MILE RADIUS OF WHITING DEVELOPMENT CORP.

Location	Total Depth (ft.)	Depth of Groundwater (Ft)	Well Type	Use	Depth to Bedrock	Water Bearing Material	Owner	Comments
300-826-1	53 ·	16.3	DRL	D	<u> </u>	Limestone	E. Vanalstine	
300-826-2	30	9.1	DRL	D	·	11	A. Bettio	
300-827-1	120	45	DRL	D	<u></u>	11	L. Weaver	
302-825-1	49	20	DRL	D	· .	Camillus Shale	C. Moses	Yield 20gpm
303-826-1	26.7	20.2	DRL	D		ti	J. Patterson	Yield 10gpm
303-828-1	39.4	12.0	DRL	Ag	<u> </u>	Sand	J. Laughlin	Used for watering stock.
303-829-1	25.8	14.9	DRL	C		Camillus Shale	Dade Farms Country Club	· · · ·
303-830-1	18.2	10.3	DRL	F	· <u></u> .	Sand and Gravel	G. Cook	
			•					

đ

USE CODES:

D - Domestic Ag - Agricultural F - Dairy Farm C - Commercial

WELL TYPE: DRL - Drilled

SURFACE WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

The analytical results of samples collected from the drainage ditch were insufficient to document an observed release.

Rationale for attributing the contaminants to the facility:

2 ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Facility slope is 0%. Contaminants were detected in a sediment sample on the site.

Ref: #2, 3, 10

Name/description of nearest downslope surface water:

The nearest downslope surface water is Ledge Creek which is located 0.6 miles northeast of the site.

Ref: #5

2

Average slope of terrain between facility and above-cited surface water body in percent:

Average slope is: <u>670 ft. - 665 ft.</u> X 100 = 0.16% 3168 feet

Ref: #5

Is the facility located either totally or partially in surface water? No. The facility is not in surface water. Ref: #5

7

Is the facility completely surrounded by areas of higher elevation?

No. The general slope of the topography is from southeast to northwest toward Tonawanda Creek.

Ref: #5

1-Year 24-Hour Rainfall in Inches

One-year 24-hour rainfall is 2 inches. Ref: #3

Distance to Nearest Downslope Surface Water

Ledge Creek is 0.6 mi. northeast of the site. Ref: #5

Physical State of Waste

The physical state of the substances at the time of disposal is unknown. Since the hazardous substances were detected in a sediment sample collected in a ditch adjacent to the landfill, they cannot be considered consolidated or stabilized. Physical state is scored a value of 1, solid, unconsolidated or unstabilized.

Ref: #2, 3, 10

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Uncontrolled hazardous substances were detected in a sediment sample adjacent to the landfill.

Ref: #2, 10

Method with highest score:

Uncontrolled soil contaminants. Score a value of 3.

Ref: #3

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Napthalene 2-Methylnaphthalene Tetrachloroethene Mercury Ref: #10 Phenanthrene Benzo(a)Pyrene Benzo(k)Fluoranthene

Compound with highest score:

Benzo(a)Pyrene has a toxicity/persistence value of 18. Ref: #3

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Uncontained Hazardous Substance List (HSL) constituents were found in a sediment sample collected from the site. The hazardous waste quantity is unknown. Score a value of 1.

Ref: #3, 10

Basis of estimating and/or computing waste quantity:

The hazardous waste quantity is unknown.

* * *

5 TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

The New York State Department of Environmental Conservation has classified Ledge Creek as a Class C surface water with a CT designation. Class C waters are suitable for fishing and other uses except as a source of drinking water and primary contact recreation. The CT designation indicates that the stream is known to be a trout spawning stream with specific physical and chemical properties. Ref: #7

-9

Is there tidal influence?

No. The site is well inland. Ref: #5

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less: There are no coastal wetlands within 2 miles of the site. Ref: #5

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less: There is a wetland area 0.2 mi. north of the site. Ref: #5

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

There are no critical habitats or national wildlife refuges within 1 mile of the site. Ref: #8

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

The population served is 0. Ledge Creek is not used as a source of water supply or for irrigation.

Ref: #6,7

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

11

Ledge Creek is not used for irrigation. Ref: #6,7

Total population served:

Total population served is zero.

Name/description of nearest of above water bodies:

Not applicable.

Distance to above-cited intakes, measured in stream miles.

Not applicable.

AIR ROUTE

1 OBSERVED RELEASE

Contaminants detected:

No air contaminants that were attributable to the site were detected during the site investigation.

Ref: #2

Date and location of detection of contaminants Not applicable.

Methods used to detect the contaminants:

Not applicable.

Rationale for attributing the contaminants to the site: Not applicable.

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Not applicable.

Most incompatible pair of compounds:

Not applicable.

Toxicity

Most toxic compound:

Not applicable.

Hazardous Waste Quantity

Total quantity of hazardous waste: Not applicable.

Basis of estimating and/or computing waste quantity: Not applicable.

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:0 to 4 mi0 to 1 mi0 to 1/2 mi0 to 1/4 miNot applicable.

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less: Not applicable.

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less: Not applicable. Distance to critical habitat of an endangered species, if 1 mile or less: Not applicable.

Land Use

Distance to commercial/industrial area, if 1 mile or less: Not applicable.

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less: Not applicable.

Distance to residential area, if 2 miles or less: Not applicable.

Distance to agricultural land in production within past 5 years, if 1 mile or less: Not applicable.

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable.

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

Not applicable.

1 CONTAINMENT

Hazardous substances present:

The fire and explosion route was not scored because field observations did not indicate a significant fire and explosion threat.

Ref: #2

Type of containment, if applicable:

2 WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Ignitability

Compound used:

Reactivity

Most reactive compound:

Incompatibility

Most incompatible pair of compounds:

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

Basis of estimating and/or computing waste quantity:

3 TARGETS

Distance to Nearest Population

Distance to Nearest Building

Distance to Sensitive Environment Distance to wetlands:

Distance to critical habitat:

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

Population Within 2-Mile Radius

Buildings Within 2-Mile Radius

DIRECT CONTACT

1 OBSERVED INCIDENT

Date, location, and pertinent details of incident:

There are no known observed incidents of direct contact. Ref: #2

2 ACCESSIBILITY

Describe type of barrier(s):

There are no barriers. The site is not fenced and the eastern border of the landfill is 10-20 ft. from Scotland Road. Score a value of 3.

Ref: #2, 3

3 CONTAINMENT

Type of containment, if applicable:

Contaminants are present in sediment on the facility property. Score a value of 15.

Phenanthrene

Benzo(a)Pyrene

Benzo(k)Pyrene

Ref: #2, 3, 10

4 WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Naphthalene

2-Methylnaphthalene

Tetrachloroethene

Mercury

Ref: #10

Compound with highest score:

Benzo(a)Pyrene has a toxicity value of 3.

Ref: #3

18

5 TARGETS

Population Within One-Mile Radius

Population within one mile is 376 people. Ref: #9

Distance to Critical Habitat (of Endangered Species)

No critical habitat of endangered species is located within 3 miles of the site. Ref: #2, 8

19

SECTION 5

HAZARD RANKING SYSTEM SCORING FORMS

fenove -

SECTION 6

BIBLIOGRAPHY OF INFORMATION SOURCES

-

BIBLIOGRAPHY OF INFORMATION SOURCES HRS MODEL

SOURCE

LOCATION

1.		NUS Corp. Edison, NJ
2.	Site Inspection of Whiting Development Corp. conducted on 6/13/86 by NUS Corp., Region II FIT.	NUS Corp. Edison, NJ
3.	MITRE Corporation, 1984. <u>Uncontrolled Hazardous Waste</u> Site Ranking System. A User's Manual. Prepared for U.S. Environmental Protection Agency.	NUS Corp. Edison, NJ
4.	Buchler, EJ., and Tesmer, I.H., <u>Geology of Erie County</u> <u>New York</u> . Buffalo Society of Natural Sciences Bulletin, Vol. 21, No. 3, 1963.	NUS Corp. Edison, NJ
5.	U.S. Geological Survey Maps, 7.5 minute series. Akron and Wolcottsville, New York Quadrangles, edited 1981 and 1980 respectively.	NUS Corp. Edison, NJ
6.	Telecon Note: Telephone conservation between Mr. Ed Paolini of the Erie County Health Department and Joseph Mayo of NUS Corp. on 9/2/86.	NUS Corp. Edison, NJ
7.	Telecon Note: Telephone conversation between Tom Wantuck of N.Y. Department of Environmental Conservation and Joseph Mayo of NUS Corp. on 9/4/86.	NUS Corp. Edison, NJ
8.	U.S. Fish and Wildlife Service List of Endangered and Threatened Wildlife and Plants, CFR 17.11, 17.12 10/1/83, Revised 1/9/85.	NUS Corp. Edison, NJ
9. .	General Software Corp., 1984. Graphical Exposure Modeling System (GEMS) Prepared for U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances.	NUS Corp. Edison, NJ
10.	U.S. EPA Contract Laboratory Program, Organic and Inorganic Laboratory analysis data for case# 6062.	NUS Corp. Edison, NJ

SECTION 7

PRESS RELEASE SUMMARY-MITRE HAZARD RANKING SYSTEM

SUMMARY STATEMENT WHITING DEVELOPMENT CORPORATION NEWSTEAD, NEW YORK

Whiting Development Corporation is currently a small industrial park located in Newstead, Erie County, New York. The site was formerly owned by Georgia Pacific Corporation who operated a landfill on the property for the disposal of gypsum wastes from their wallboard manufacturing process. The landfill is currently inactive.

The landfill is approximately 20-25 ft. high and 3-4 acres in area. It is composed primarily of gypsum wastes with wood, paper, tires and drums as minor components. Some of the landfilled waste has been excavated and used as cover material for the Township of Newstead landfill.

The area arround the facility is sparsely populated. Approximately 5900 people live within 3 miles of the facility and most of them are in the Town of Akron, 0.5 miles to the southwest. Major potential for population exposure is via contaminant migration to groundwater and from fugitive dusts from the landfill.

The New York Department of Environmental Conservation (NYDEC) indicated that the landfill had not been closed according to Resource Conservation and Recovery Act (RCRA) standards and reclamation of the landfill material for cover and fill should not exempt the site from compliance with RCRA standards. The NYDEC also indicated there was a potential for fugitive dust generation associated with the reclamation process. No enforcement actions have been taken against Whiting Development Corporation.

8 9

> On 6/13/86 a site inspection was conducted at the Whiting Development Corporation. Four soil and two sediment samples were collected from the landfill area. Volatile organic compounds and polycyclic aromatic hydrocarbons (PAH's) were detected in a sediment sample collected in a ditch adjacent to the landfill.

SECTION 8

ATTACHMENTS-CITED DOCUMENTS

REFERENCE #1

Erie-Niagara Basin Ground-Water Resources

ERIE NIAGARAN BASING REGIONALE WATER RESOURCESS FLANNING BOARD

THE NEW YORK STATE WATER RESOURCES COMMISSIO

CONSERVATION DEPARTMENT

DIVISION OF WATER RESOURCES

GROUND-WATER RESOURCES OF THE ERIE-NIAGARA BASIN, NEW YORK

Prepared for the Erie-Niagara Basin Regional Water Resources Planning Board

by

A. M. La Sala, Jr.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

in cooperation with THE NEW YORK STATE CONSERVATION DEPARTMENT DIVISION OF WATER RESOURCES

STATE OF NEW YORK CONSERVATION DEPARTMENT WATER RESOURCES COMMISSION

Basin Planning Report ENB-3 1968

INTRODUCTION

PURPOSE AND SCOPE

This report presents the results of an investigation by the U.S. Geological Survey conducted for the Erie-Niagara Basin Regional Water Resources Planning Board. The area of study, called "Erie-Niagara basin" in this report, extends from the Cattaraugus Creek basin on the south to the Tonawanda Creek basin on the north, and includes Grand Island as shown in figure 1.

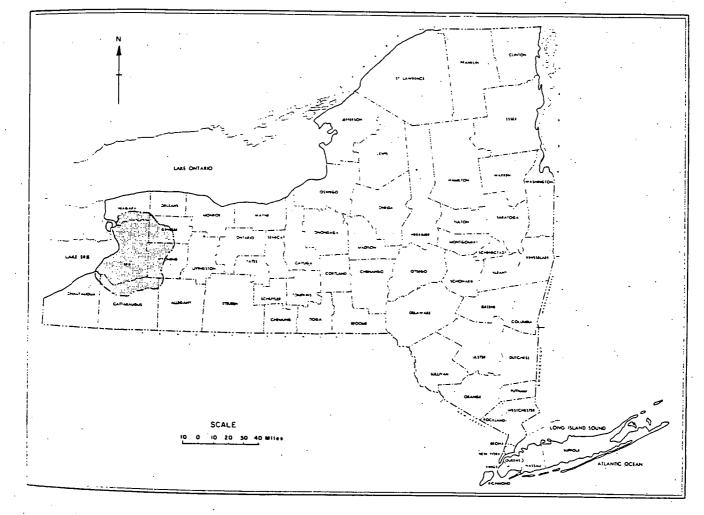


Figure 1.--Location map of the Erie-Niagara basin.

- 3 -

The plan of study called for the Geological Survey to provide the Planning Board with an evaluation of the ground-water resources of the Erie-Niagara basin and a description of the geology to the extent required for broad planning of water-resources development. Evaluation of the groundwater resources included appraising the quantity and quality of water available for development, its areal distribution, and seasonal variations. Existing and potential pollution and their effect on the availability of ground water were also included in the work.

The Geological Survey's investigations followed several lines of attack, and the most important of these are described below.

A major endeavor was to define the areal extent, lithology, thickness, and water-bearing properties of the geologic units. The unconsolidated deposits were mapped during field-reconnaissance studies (pl. 3). A previously published map of unconsolidated deposits (Kindle and Taylor, 1913) was available for a northern segment of the area and this mapping was slightly revised for the present report. Geologic maps and descriptions of the bedrock units were previously published (Broughton and others, 1962) and further bedrock mapping was not required for this report. About 400 wells and several springs distributed through the various geologic units were inventoried in order to define the water-bearing properties of the units. The data for all wells and springs mentioned in this report or indicated on maps are given in tables 6 and 7, respectively. Data on wells collected during previous studies of the Buffalo area (Reck and Simmons, 1952) and of the Western New York Nuclear Service Center site at Ashford were also used. Hydraulic properties of the more productive water-bearing units were studied by means of specific-capacity and pumping-test data.

The quantity of ground water discharging to the streams was estimated from streamflow data and the fluctuations of ground-water levels. The quantity of ground water available for development in the principal unconsolidated aquifers was estimated from data on ground-water discharge, geology, and topography.

Data on the chemical quality of ground water were obtained by sampling wells and streams at base flow. The analytical results for about 270 samples from about 250 wells are given in this report in tables 8 and 9. Chemical analyses of streamflow are given by Archer and others (1968). The New York State Division of Water Resources facilitated the evaluation of ground-water pollution by providing data on sanitary analyses of samples from more than 700 wells that were made by the several County Health Departments of the area.

WELL-NUMBERING AND LOCATION SYSTEM

The wells, springs, and miscellaneous sites of geologic or hydrologic information described in this report are numbered according to a grid system based on latitude and longitude. The Erie-Niagara basin lies between latitude 42°16' and 43°11'N and between longitude 78°06' and 79°03'W. The grid is composed of quadrangles of 1 minute of latitude and and longitude. Each well number consists of three parts: first, the digits of latitude, such as 231 for 42°31' (omitting the digit ''4''); second, the digits of longitude, such as 842 for 78°42' (omitting the digit ''7''); and, third, the number assigned to the well with the 1-minute quadrangle. The complete well number of the first well listed within the 1-minute quadrangle described above is 231-842-1, as illustrated in plate 1. The location of each well is indicated by a circle in the plate. Where two or more wells are close together, a single circle is used to mark their locations and the last digits of the well numbers, set off by commas, are given as illustrated in plate 1 for wells 230-840-1 and -2.

A spring is numbered by the same system used for wells, except that the letters Sp are added, such as with spring 229-842-1Sp (pl.1). A site at which only geologic or miscellaneous observations were made is identified by a letter following the grid numbers, such as 221-840-A. Springs and miscellaneous sites are also distinguished by different location symbols as shown in plate 1.

On the well-location map in this report (pl.1), the three-digit numbers of latitude and longitude designations are shown along the margin of the map, and only the number of the site within each 1-minute quadrangle is shown with the appropriate well, spring, or miscellaneous-site symbol.

ons

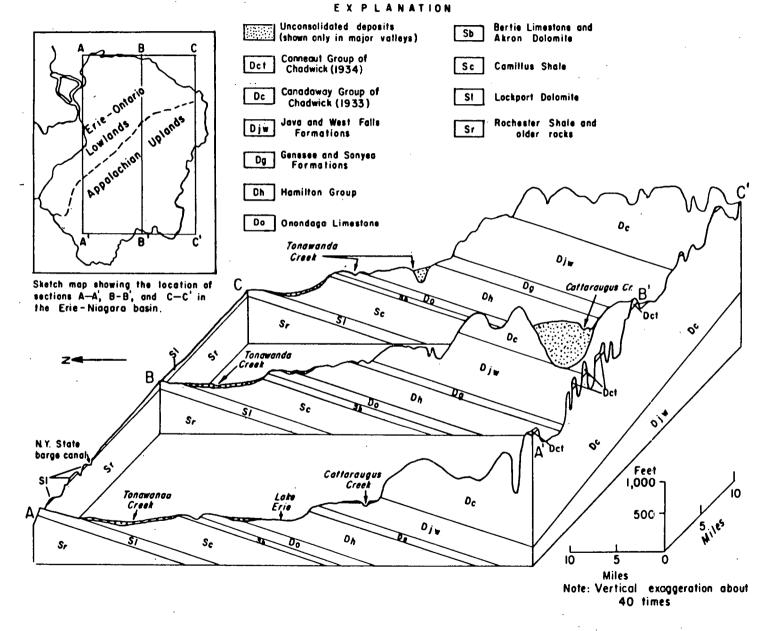
GEOLÓGY AND TOPOGRAPHY

The Erie-Niagara basin is underlain by layers of sedimentary bedrock which are largely covered with unconsolidated deposits. Descriptions of the various bedrock units are given in figure 2. The bedrock consists mainly of shale, limestone, and dolomite; the Camillus Shale contains a large amount of interbedded gypsum. All the bedrock units were built up by fine-grained sediments deposited in ancient seas during the Silurian and Devonian Periods and, therefore, are bedded or layered. The dip of the rocks (inclination of the bedding planes) is gently southward at from 20 to 60 feet per mile, but the average dip is between 30 and 40 feet per mile. The dip is so gentle that it is hardly perceptible in outcrops.

The unconsolidated deposits are mostly glacial deposits formed during Pleistocene time about 10,000-15,000 years ago when an ice sheet covered the area. The glacial deposits consist of: (1) till, which is a nonsorted mixture of clay, silt, sand, and stones deposited directly from the ice sheet; (2) lake deposits, which are bedded clay, silt, and sand that settled out in lakes fed by the melting ice; and (3) sand and gravel deposits, which were laid down in glacial streams. The glacial sand and gravel deposits are of both the ice-contact and outwash types, as will be explained later in the report. The glacial deposits generally are less than 50 feet thick in the northern part of the basin. They are considerably thicker in some valleys in the southern part and reach a maximum known thickness of 600 feet near Chaffee. Other unconsolidated deposits are alluvium formed by streams in Recent times and swamp deposits formed by accumulation of decayed plant matter in poorly drained areas.

Relief of the present land surface is due to preglacial erosion of the bedrock and subsequent topographic modification by glaciation. In contrast to the southward dip of the rocks, the land surface rises to the south largely because preglacial erosion was more vigorous in the northern part of the basin. The shale in the southern part of the basin is somewhat more resistant to erosion than the rocks in the northern part of the basin but not significantly so. Figure 3 shows the relationship of the topography and rock structure and delineates the two topographic provinces of the basin: the Erie-Ontario Lowlands and the Appalachian Uplands. The rocks crop out in belts which trend generally east-west. The bedrock geologic map, plate 2, shows that the outcrop belts bend around to the southwest near Lake Erie. They assume this direction mainly because relatively intense erosion in the Erie-Ontario Lowland near Lake Erie has exposed the rock at lower elevations than farther east. The Lockport Dolomite and the Onondaga Limestone, because they are relatively resistant to erosion, form low ridges in the northern part of the basin. Tonawanda, Murder, and Ellicott Creeks descend the escarpment of the Onondaga at falls and cataracts.

In the hilly southern half of the basin (the Appalachian Uplands), preglacial valleys, deepened by glacial erosion, are cut into the shale. The valleys are partly filled with glacial deposits so that some of the present streams flow 200 to 600 feet above the bedrock floors of the valleys as shown in figure 3.


[_	1	Thickness	5	1
System	Series	Group	Formation	in feet	Section	
Devonian		Conneaut Group of Chadwick (1934)		500		Shale, siltstone, and fine-grained sandstone. Top is missing in area.
		Canadawav Group of Chadwick (1933)	Undivided	600		Gray shale and siltstone, interbedded, (section broken to save space)
	3		Perrysburg	· 400- 450		Gray to black shale and gray siltstone containing many zones of calcareous concretions. Lower 100 feet of formation is olive gray to black shale and interbedded gray shale containing shaly concretions and pyrite.
	Upper		Java	90- 115		Greenish-gray to black shale and some interbedded limestone and zones of calcareous nodules. Small masses of pyrite occur in the lower part.
			West Falls	400- 520		Black and grav shale and light-grav sittstone and sandstone. The lower part is petroliferous. Throughout the formation are numerous zones of calcareous concretions, some of which contain pyrite and marcasite.
			Sonvea	45-85		Olive-grav to black shale.
		Hamilton	Moscow Shale Luotowvitte Shale	12-55 65-130		Dark-gray to black shale and dark-gray limestone. Rens of nodular pyrite are at base. Gray, soft shale. Gray, soft, fissile shale and limestone beds it too and bottom.
	widdle		Skaneateles Shale Marcellus Shale	60-90 30-55		Olive-grav, gray and black, fissile shale and some carcareous betts and pyrifie. Grav limestone, about 10 feet thick is at the bise. Black, dense fissile shale.
I		linear	Onondaga Limestone	108		Grav limestone and cherty limestone.
		Unconformity	Akron Dolomite	8		Greensb-gray and bull fine-grained dotomite.
		Salina	Bertie Limestone	50.60		Gray and brown dolomite and some interbended shale.
Silurian	Сауина		Camillus Shale	400		Grav. red, and green thin-bedded shale and massive mudstone. Gypsum occurs in beds and lenses as much as 5 feet thick. Subsurface information indicates dofomite or perhaps, more correctly, magnesian-imme mudrock is interbedded with the shale ishown schematically in section. South of the outcop a.ea. at depth, the formation contains thick sait beds.
	Niagara		Lockport Dolonute	150		Dark-grav to brown, massive to thim-bedded dolomite, locally containing aigal reef and gypsium nodules. At the base are light-grav limestone (Gasbort Limestone Member) and gray shaly dolomite :DeCew Limestone Member).
	-	Clinton .	Rochester Shale	60		Dark-grav calcareous shale.

3

а,

Figure 2.--Bedrock units of the Erie-Niagara basin.

- 7 -

4

Figure 3.--Fence diagram of part of the Erie-Niagara basin.

ŝ

1

OCCURRENCE OF GROUND WATER

Ground water is commonly thought of as water that comes from wells and springs. This definition makes the essential point and distinguishes ground water from other subsurface water. Water wells provide the most easily obtainable information on ground-water resources, but the information can be misleading. A casual inspection of a body of random data on wells in the area may lead to the notion that ground water occurs in a haphazard fashion. For example, it is apparent from the data in table 6 that wells vary greatly in depth and yield. Depths range from about 10 to 500 feet, and yields from a few gallons per day to more than 1,000 gpm. What is more, wells of large yield are interspersed with wells of low yield. A more careful study of the data shows that some of the variations in well characteristics reflect differences in well construction rather than in the availability of ground water. A carefully planned and constructed publicsupply well gives a more complete picture of water availability than does a driven well constructed for lawn watering. But after accounting for variations in well construction, profound differences in the availability of ground water are still apparent. These differences arise mainly from the geologic and topographic features of the basin.

Ground water occurs in the saturated zone of the earth's crust. The water in the saturated zone (ground water) fills the interconnected openings in the rocks and is under hydrostatic pressure. As shown in figure 4, ground water will flow through the zone of saturation following a course that takes it from a point of higher head to a point of lower head. In this way water entering the ground on a hill may discharge through a spring on the side of the hill, into a nearby stream, or into a river many miles away. When the water standing in a well is pumped out, the head (water level) in the well is lowered. Water from the saturated zone can then move toward the well in the same manner it moves toward points of natural discharge. Where the saturated zone is not overlain by impermeable materials, its upper surface is the water table. The depth to the saturated zone in the area varies from 0 feet in some swamps to possibly more than 75 feet along the edges of some glacial terraces.

igure jo Ferror Jiayim of the truthe Eine Nicyona burn

The unsaturated materials over the saturated zone make up the zone of aeration, the zone in which the openings are partly filled with air (fig. 4). Water in the zone of aeration is held to the walls of the openings by molecular forces. This prevents the free movement of water in the zone of aeration; water in this zone drains slowly downward but not laterally. Wells and springs, therefore, cannot obtain water from the zone of aeration. The zone is important, however, because water must pass through it to reach the saturated zone.

The unconsolidated deposits and the bedrock differ markedly in the types of water-bearing openings they contain (fig. 4). The unconsolidated deposits are composed of grains packed together with open spaces, or pore spaces, between the grains. Water truly permeates the unconsolidated deposits because it can fill the myriad of tiny pore spaces between the grains.

- 9 -

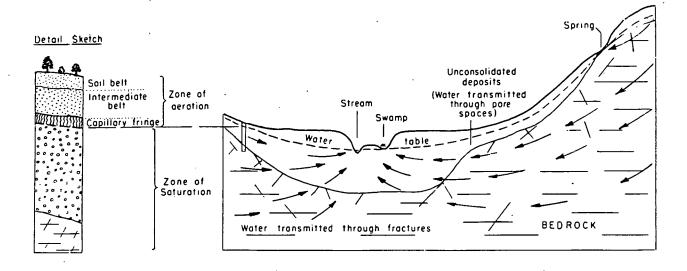


Figure 4.--Occurrence of ground water. Arrows show direction of ground-water movement.

The sediments composing the bedrock initially also contained pore spaces, but these pores were closed when the sediments were compacted and cemented. A solid piece of rock from any of the bedrock units in the area is nearly or completely impermeable. But in each of the units, masses of rock have separated along fractures. These fractures transmit ground water through the bedrock.

OCCURRENCE OF WATER IN BEDROCK

The principal water-bearing fractures in the bedrock are joints which are regularly arranged. They are caused by geologic forces acting through broad areas and occur in sets, all the joints of which are roughly parallel. In the Erie-Niagara basin, the rocks are cut typically by two sets of vertical joints. One set trends northeast and the other northwest, forming diamond-shaped patterns at the surface. These vertical joints are spaced from a few feet to perhaps 30 feet apart and may be 50 feet to a few hundred feet long at the surface. More important joints, however, are the horizontal ones that are parallel to the bedding planes of the rocks. These joints develop along planes of weakness between adjacent layers of rocks. The evidence suggests that bedding-plane joints are the principal waterbearing openings in the bedrock.

Faults, which are fractures along which adjacent masses of rock have been offset, may also provide openings for ground-water circulation. A fault trending south through Batavia is the only major one known in the area (pl. 2). However, other faults may exist but are not recognized because they are covered by the glacial deposits. Still another factor in regard to the water-bearing openings in bedrock must be considered. Some of the rocks are relatively soluble in water; some are essentially insoluble. Ground water circulating through joints removes soluble material by dissolving it, thereby widening the joints and making them still better conduits for ground water. Such solution has enhanced considerably the water-bearing properties of the more soluble rocks.

On the basis of lithology and water-bearing properties, the numerous bedrock units in the Erie-Niagara basin can be divided into two groups: soluble bedrock and shale bedrock. Of the two, the soluble rocks are an important source of water, whereas the shale yields only small supplies.

and

ire

ter

i ch

·ugh

lel.

ming

Ired

1

The Lockport Dolomite, Camillus Shale, Bertie Limestone, Akron Dolomite, and Onondaga Limestone (fig. 2 and pl. 2) are composed of rock materials that are relatively soluble in water. Subsurface water has been relentlessly quarrying the rocks by solution, particularly during the 10,000 years or so since the ice sheet melted from the area. In more extensive and more weathered limestone terranes elsewhere, such as in Kentucky, this process has produced numerous caves and underground streams. In the Erie-Niagara basin, the same process is underway but has advanced only enough to widen considerably many of the water-bearing openings and to enhance the circulation of ground water.

Four of the five formations listed as soluble rocks are either limestone or dolomite. Limestone is composed mainly of the mineral calcite which is a natural form of calcium carbonate. Dolomite is composed of calcium-magnesium carbonate and is less soluble than limestone. Both rocks are attacked by acid. Water that percolates through soil generally dissolves carbon dioxide and, therefore, becomes a weak acid. The initial acidity gives ground water much of its ability to dissolve the carbonate rocks.

The fifth formation, the Camillus Shale, seems out of place listed with dolomite and limestone as a soluble rock. Shale is not by any stretch of the imagination a soluble rock. But the Camillus Shale is unique among the shale formations of the area because it contains a large proportion of gypsum, a calcium-sulfate mineral which is even more soluble than limestone. The gypsum is interbedded with and even diffused through the shale.

Except where removed by erosion, the soluble rocks lie one above another with the Lockport Dolomite on the bottom, the Camillus Shale in the middle, and the Bertie, Akron, and Onondaga on top. For hydrologic purposes the Bertie, Akron, and Onondaga can be considered to form a single aquifer or water-bearing unit, which is called the limestone unit. (These three formations are distinct in a geologic sense but not in a broad hydrologic sense.) All the soluble rocks dip (are inclined) southward at about 40 feet to the mile.

The soluble rocks are bounded top and bottom by shale formations of much lower permeability. The Rochester Shale is at the base of the Lockport Dolomite, and the Marcellus Shale overlies the Onondaga Limestone. The water-bearing properties of the soluble rocks developed to a large degree in response to the composition of the rocks (lithology) and the primary sedimentary structures (bedding). The soluble rocks are composed of dense materials that are innately not water bearing. These rocks transmit water only through fractures and solution openings. The nature of the water-bearing openings can be studied both from exposures of the rocks and from data on wells. How good any unit is as a source of water can be judged from records of wells. All of these hydrologic properties and characteristics for each rock unit will be discussed in the following sections.

LOCKPORT DOLOMITE

Bedding and lithology

The lowest aquifer, the Lockport Dolomite, consists mainly of gray, fine- to coarse-grained dolomite. The Gasport Limestone Member near the base of the formation is a light-gray limestone. The thickness of the Lockport is approximately 150 feet. A general summary of the lithology and thickness of the lithologic units is given in figure 5.

The rock units within the Lockport are bedded and dip southward in the study area at 35 to 40 feet per mile. In the extensive exposures Johnston (1964, p. 22) observed in excavations for the Niagara Power Project at Niagara Falls, the beds ranged generally from 1 inch to 3 feet in thickness. In some zones, beds were only 1/4 inch thick. On the other hand, a few massive beds are as much as 8 feet thick at places. The beds thicken and thin laterally. Approximate positions of some fairly persistent zones of massive and thin beds are shown in figure 5 by the widths of the bands of lithologic symbols. The bedding planes are flat except at the few places where they curve over ancient reefs in the upper part of the formation. These reefs are massive (nonbedded) structures as much as 50 feet across and 20 feet thick. Nodules of gypsum 1/2 to 5 inches across are common in the dolomite. Particles composed of the sulfide minerals of zinc, lead, and iron are disseminated through the rock.

Water-bearing openings

With respect to water-bearing openings in the Lockport Dolomite near Niagara Falls, Johnston's (1964) report may be considered a type study for rocks of this sort. Johnston found that bedding-plane joints are the principal water-bearing openings in the Lockport. Vertical joints and voids from which gypsum nodules were dissolved are minor water-bearing openings.

Water-bearing bedding-plane joints can occur at any stratigraphic horizon in the Lockport Dolomite. However, those that are persistent commonly occur in zones of thin beds overlain by thick or massive beds. Johnston identified seven persistent water-bearing joints or zones (several closely spaced joints) in the Niagara Falls area. (His findings are summarized in figure 5.) These joints are continuous for some miles, but they are not water Many domestic-supply wells penetrate from 1 foot to a few feet into the soluble rocks and produce small but adequate yields. On the other hand, industrial wells that were intended to produce large supplies of water give a truer picture of the water-supply potential of the rocks. Data on industrial wells show that the Camillus Shale will yield as much as 1,200 gpm and the limestone unit as much as 300 gpm and probably more. But the data also show that the rocks produce low yields at places. This is shown by such wells as 301-848-1 which was drilled to obtain a large supply for an industry but which yielded only 30 gpm. The water-bearing zones obviously are unevenly distributed through the rocks. Factors that control the occurrence of the water-bearing zones cannot be evaluated at the present time to the extent necessary to predict exactly where the zones occur.

The Lockport Dolomite is the least productive unit of the soluble rocks. Within the Erie-Niagara basin yields of wells in the Lockport range from about 4 to 90 gpm. Depth of the wells range from 20 to 70 feet. Most of the deeper wells were drilled where the depth to bedrock is greatest. Domestic-supply wells generally are finished in the fracture zone at the rock surface or in a bedding joint within the uppermost 30 feet of the rock. It is usually not necessary to drill deeper into the Lockport if only a small supply is needed.

Drilling deeper in an attempt to intersect additional beddingplane openings at depth would provide higher yields but, generally, at the expense of lower water levels and therefore higher pump lifts. Johnston (1964) collected data on a much larger number of wells along the outcrop belt of the Lockport Dolomite than were inventoried in the Erie-Niagara basin. He found that wells drawing water from the lower 40 feet of the Lockport (the northern part of the outcrop area) yield from 1/2 to 20 gpm and have an average yield of 7 gpm. Wells finished in the upper part of the Lockport (the southern part of the outcrop area) yield from 2 to 110 gpm and have an average yield of 31 gpm. Yields of as much as 50 or 100 gpm are possible from the Lockport in the Erie-Niagara basin but would be exceptional.

CAMILLUS SHALE

Bedding and lithology

The Camillus Shale lies above the Lockport Dolomite and crops out to the south of where the dolomite is exposed. Exposures of the Camillus Shale are rare in the Erie-Niagara basin because of the low relief of the outcrop area and the cover of glacial deposits. Geologists who have studied the Camillus in the study basin agree that it consists mostly of gray shale. (For example, see Buehler and Tesmer, 1963, p. 29-30.) Subsurface data, on the other hand, indicate that a considerable amount of gray limestone and dolomite is interbedded with the shale. Along with these carbonates, gypsum comprises a significant part of the Camillus Shale. Some of the gypsum beds are as much as 5 feet thick. Gypsum also occurs in the Camillus as thin lenses and veins. Table 1,

- 16 -

Table 1.--Log of a gypsum-mine slope near Clarence Center

0.000

(

e g

У

د : د..

j,

ra en c

(Site 300-839-A)

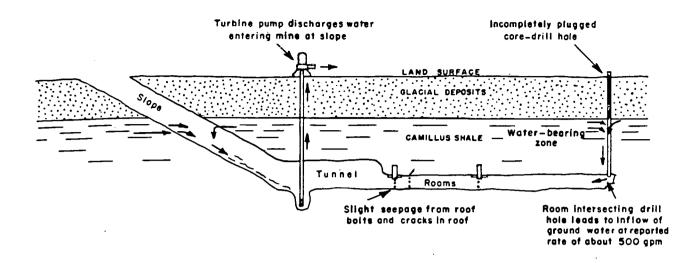
Log	Depth below land surface (feet)
Topsoil, subsoil, gravel and clay	0-25.5
Soft gray limestone mixed with clay	25.5 - 27.5
Soft dark-gray limestone	27.5-29.5
Soft shaly limestone, thin bedded	29.5-38.0
Crushed dark-gray limestone interbedded with 2-inch seams of brown limestone	38.0-40.8
Dark-gray limestone interbedded with seams of gypsum 1 1/2 to 3 inches thick	40.8-43.6
Hard gray limestone interbedded with thin streaks of gypsum 1/8 to 1/2 inch thick	43.6-45.1
Soft gray limestone	45.1-49.1
Hard gray limestone interbedded with thin streaks of gypsum	49.1-52.1
Hard gray limestone	52.1-57.6
Gypsum	57.6-58.3
Brown limestone	58.3-59.3
Gray limestone	59.3-61.3
Soft, crumbly green-gray material (shale)	61.3-64.3
Mottled rock rich in gypsum	64.3-65.1
Soft brown limestone	65.1-65.7
Cap rock hard dark-gray limestone	65.7-66.8
Soft shaly material	66.8-66.9
Gypsum	66.9-71.4

- 17 -

which is a log compiled during construction of a mine slope, illustrates the occurrence of gypsum and the predominance of carbonate rocks in some parts of the Camillus.

Though the Camillus dips southward at approximately 40 feet to the mile, the dip is not uniform. Gypsum miners say the formation "rolls," to describe the gentle folding of its beds. The formation is marked by broad, low folds with amplitudes of a few feet and spacings of a few hundred feet between crests. The fold axes generally are east-west.

Water-bearing openings


The extensive beds of gypsum make the Camillus Shale unique among the shale formations of the basin. The importance of the gypsum lies in its solubility; gypsum is far more soluble than the enclosing rocks, whether shale, dolomite, or limestone. Where gypsum has been dissolved, openings exist for the passage and storage of water.

The effect of the solution of gypsum on the water-bearing properties of the Camillus Shale (and other rocks) can be readily appreciated. Where the topmost beds of the Camillus crop out at the base of the falls of Murder Creek at Akron, the Camillus seems to be an impermeable shale. If one judged the water-bearing properties of the Camillus on the basis of this outcrop alone, he would be wrong. Yields of water wells and drainage into gypsum mines prove that large volumes of water do move through the Camillus.

Clues to the nature of the water-bearing openings in the Camillus can be obtained by considering some of the circumstances where large volumes of water were obtained. About 1885, the Buffalo Cement Company located a 4-foot thick bed of gypsum only 43 feet below land surface by test drilling in Buffalo on Main Street near Williamsville. A shaft was sunk with the intention of beginning a subsurface mining operation, but when the gypsum was struck the shaft was flooded with ground water. The report is that ".... a pump with a capacity of 2,000 gallons per minute failed to make any impression upon it [the water] and the attempt was abandoned" (Newland and Leighton, 1920, 209-210).

In 1964, a gypsum mine near Clarence Center received an unexpected inflow of ground water. Several hundred gallons of water per minute continuously enters the mine at a place about midway down the entry slope. This water is pumped out by a drainage system diagrammatically shown in figure 6. Ordinarily, only small seeps occur in the remainder of the mine from roof bolts and small cracks in the roof. At a distance of more than a mile from the entry slope, the working face intersected an unplugged drill hole. Water poured into the mine at an alarming rate until the hole was plugged with much effort.

Large-yield wells, such as those at Tonawanda and North Tonawanda, obtain water from thin intervals of gypsum-bearing rock. The gypsum in the Camillus Shale obviously is related to the occurrence of large quantities of water. Gypsum is a highly soluble mineral and is

ae

s e

iage

۱e

Figure 6.--Occurrence of ground water in the Camillus Shale at a gypsum mine near Clarence Center.

dissolved by circulating ground water faster than are the enclosing rocks. Very likely the openings in the Camillus that yield copious amounts of water were formed by the solution of gypsum by ground water. The waterbearing zones are mainly horizontal because most of the gypsum occurs in horizontal beds and thin zones of gypsiferous shale and dolomite. Only those gypsum zones actually exposed to circulating ground water can be widened by solution. The gypsum must be in contact with an open fracture through which the water can move. If no open fracture exists, the gypsum cannot be dissolved. The occurrence of ground water at the gypsum mine shown in figure 6 is a further illustration. The 4 1/2-foot thick bed that is mined at a depth of 66.9 feet (table 1) is dry because of the lack of vertical fractures to transmit water to it.

The solution-widened water-bearing zones occur at various depths and stratigraphic horizons in the Camillus. The existence of such zones is borne out by well data. For instance, wells 303-850-1 and -2 are 90 feet apart and obtain water from the same 2- to 3-foot thick zone at a depth of 67 to 68 feet. Such zones may be continuous for as much as 1 or 2 miles but information is not available on the extent of individual zones. The gypsum occurs principally in lenticular beds. The thicker beds may be 3 or 4 miles in lateral extent. The thinner beds can be expected to be much smaller in extent.

A zone of fracturing and solution extending several feet below the rock surface yields relatively small but sufficient water supplies for domestic use. This zone appears to be present throughout the area and is unrelated to stratigraphic position.

Hydrologic and hydraulic characteristics

The Camillus Shale forms a low topographic trough split down the axis by Tonawanda Creek. Ground water that enters the formation discharges mainly to the creek. Little water is discharged to the small, barely incised streams on the Camillus. These streams are dry much of the year.

Coefficients of transmissibility given in table 2 were computed for the Camillus Shale on the basis of specific capacities of wells penetrating a considerable thickness of the aquifer, by the method described by Walton (1962, p. 12-13).

Well number	Pumping rate (gpm)	Duration of pumping (hours) e: estimated	Drawdown (feet)	Specific capacity (gpm/ft)	Coefficient of transmissi- bility (gpd/ft)
<u>a</u> / 258-853-1	1,090	e8	53	21	40,000
-2	90		22	4	7,000
258-855-1	500	e8	17	29	55,000
-2	1,000	e8	26	38	70,000
-3	1,500	. e8	38	39	70;000
303-850-1	700	24	10	70	
-2	660	· e8	8	83	· ·

Table 2.--Specific-capacity tests of wells finished in the Camillus Shale

a/ Well also penetrates water-bearing zone in Lockport Dolomité.

The large specific capacities of wells 303-850-1 and -2 probably result in part from recharge induced from Sawyer Creek. Measurements of recovery of water levels in well 303-850-1 were made when well 303-850-2 was shut down after a year of continuous pumping. From these data, a coefficient of transmissibility of about 80,000 per foot and a coefficient of storage of 0.025 were computed. The computed transmissibility is about half the transmissibility that would have been indicated from specific capacity if recharge were not induced from Sawyer Creek.

Yields of wells

The Camillus Shale is by far the most productive bedrock aquifer in the area. Except in the vicinity of Buffalo and Tonawanda, where industrial wells produce from 300 to 1,200 gpm, no attempt has been made to obtain large supplies from the formation. However, the inflow of water to gypsum mines near Clarence Center and Akron indicate that large supplies are not necessarily restricted to the Buffalo and the Tonawanda area. Two examples of large flows of water encountered in gypsum mining have already been mentioned. Pumpage from gypsum mines near Clarence Center (including the mine mentioned previously) is substantial. The water pumped is discharged to Got Creek. On July 2, 1963, the creek had a flow of 2.1 mgd (million gallons per day) about half a mile downstream from the mines, that was due almost entirely to the pumpage. Water for industrial use is pumped from a flooded, abandoned gypsum mine at Akron. This pumpage, at a rate of 500 to 700 gpm, has had no appreciable effect on the water level in the mine.

Probably the larger solution openings are most common in discharge areas near Tonawanda Creek and its tributaries and near the Niagara River; the flow of ground water becomes concentrated as it approaches the streams to which it discharges. Other discharge areas, such as low-lying swampy areas and headwaters of small streams that have perennial flow, are likely places to drill wells.

LIMESTONE UNIT

Bedding and lithology

The term "limestone unit" in this report is applied to a sequence of limestone and dolomite overlying the Camillus Shale. The limestone unit includes the Bertie Limestone at the base, the Akron Dolomite, and the Onondaga Limestone at the top. The lithology and thickness of these units are shown in figure 7. The Bertie Limestone and the Akron Dolomite are Silurian in age and are separated from the overlying Onondaga Limestone of Devonian age by an unconformity or erosional contact.

The Bertie Limestone is mainly dolomite and dolomitic limestone but contains interbedded shale particularly in the thin-bedded lower part of the formation. The middle part is brown, massive dolomite, and the upper part is gray dolomite and shale whose beds are of variable thickness. The total thickness of the formation is about 55 feet (Buehler and Tesmer, 1963, p. 30-31).

The Akron Dolomite is composed of greenish-gray and buff dolomite beds varying from a few inches to about a foot in thickness. The upper contact of the Akron is erosional and is often marked by remnants of shallow stream channels. Thin lenses of sandy sediments lie in the bottoms of some channels. The thickness of the formation is generally between 7 and 9 feet (Buehler and Tesmer, 1963, p. 33-34).

or ating ,ton

of

·-2

ent

bout

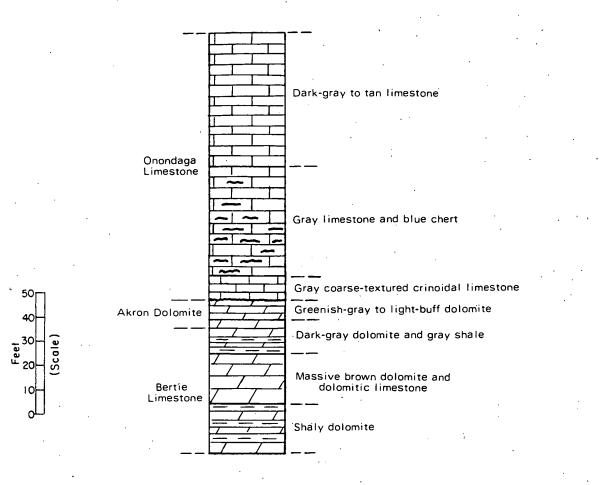


Figure 7.--Lithology of the limestone unit.

The Onondaga Limestone, about 110 feet thick, makes up the greatest thickness of the limestone unit. The formation consists of three members. The lowest member is a gray coarse-grained limestone, generally only a few feet thick. At places this member grades laterally into reef deposits which increases its thickness (Buehler and Tesmer, 1963, p. 35-36).

The middle member of the Onondaga is a cherty limestone. In some zones the chert exceeds the amount of limestone. The unit is probably 40-45 feet thick.

The upper unit is a dark-gray to tan limestone of varying texture and is probably about 50-60 feet thick.

Water-bearing openings

The limestone unit contains water-bearing openings that are similar to those of the Lockport Dolomite. Because the limestone unit is more soluble, however, solution widening of the openings appears to be more pronounced. The types of water-bearing joints in the limestone can be seen at the falls of Murder Creek at Akron. Not all of the flow of Murder Creek plunges over the falls. A considerable part of the flow percolates into the limestone unit upstream from the falls and discharges from bedding joints both at the face and along the sides of the falls. The principal zones of discharge are at the base of the Bertie, and at a contact of a shaly zone and overlying thick-bedded dolomite 20 feet above the base.

The falls at Akron also illustrate in an exaggerated way the role of vertical joints. Water from Murder Creek percolates into the rock through solution-widened vertical joints before reaching the bedding-plane joints. The continuous and concentrated flow of water in the creek has widened the vertical joints to an unusual degree. Vertical joints are ordinarily very narrow. They probably are most effective in aiding the movement of water to the bedding joints where the bedding joints are close to the rock surface.

Locally, solution along bedding joints in the limestone unit has been great enough to cause the rock overlying the solution opening to settle. Settling of this type probably accounts for at least some of the small depressions in the outcrop belt of the Onondaga Limestone. A collapsed solution zone in the Onondaga Limestone discharges a large volume of water into a quarry (257-840-A) near Harris Hill. About 3,000 gpm is pumped from the quarry, and most of the water is reported to come from the solution zone.

The limestone unit is cut by a fault on the east side of Batavia. Faults cutting limestone are likely to cause shattering along the fault and, thus, create a permeable water-bearing zone.

Hydrologic and hydraulic characteristics

st

ers.

its

The limestone unit is similar to the Lockport Dolomite in structure. However, its hydrology is different. The limestone unit is cut transversely by Tonawanda Creek and its major tributaries. Small tributaries flow across it in northerly and westerly directions. The limestone unit receives water in the interstream areas by percolation into joints. The water is discharged laterally to the streams and at places along the north-facing scarp or enters the Camillus Shale at depth.

The coefficient of transmissibility of the limestone unit probably ranges from about 300 to 25,000 gpd per foot. Specific capacity data are given in table 3. Drillers' reports indicate high transmissibilities for the limestone unit in Williamsville which probably arise from relatively intense circulation of ground water near Ellicott Creek. The coefficients of transmissibility given in table 3 were computed from specific capacity data by the method described by Walton (1962, p. 12-13).

- 23 -

Well number	Pumping rate (gpm)	Duration of pumping (hours)	Drawdown (feet)	Specific capacity (gpm/ft)	Coefficient of transmissi- bility (gpd/ft)
252-852-1	85	. 34	• 7	12.1	25,000
-2	30		17	2	4,000
255-848-1	. 130		10	13	25,000
255-850-1	180	6	45	. 4	8,000
259-824-1	100	8	30	3.3	6,000
-2	100	8	12	8.3	15,000
300-824-1	104	8	28	3.7	7,000

Table 3.--Specific-capacity tests of wells finished in the limestone unit

The coefficient of storage of the limestone unit is probably between those of the Lockport Dolomite and the Camillus Shale. The storage coefficients of these three units vary mainly with the volume of the openings in the rocks which, in turn, vary with the solubility of the rocks. Limestone is more soluble than dolomite but less soluble than gypsum. Storage coefficients in the limestone unit should, therefore, be somewhat higher than those of the Lockport Dolomite but somewhat lower than those of the Camillus Shale.

Yields of wells

The limestone unit is more productive than the Lockport. A number of large-yield wells in Buffalo, Cheektowaga, Williamsville, Pembroke, and Batavia are finished in the limestone unit and indicate that yields of 300 gpm and possibly more can be obtained. Like the Lockport Dolomite, the yields of wells in the limestone unit range through a broad spectrum. However, the more productive wells in the limestone unit are relatively abundant when compared to those in the Lockport. Of significance also is that three wells half a mile apart drilled for an industrial firm near Pembroke, each sustained a discharge of about 100 gpm (table 6, wells 259-824-1, -2, and 300-824-1). These three wells indicate that such yields are available in some areas. Table 6.--Records of selected wells in the Erle-Niagara basin

i ster

G

M - manual

all others are electrically powered

ž

d has

Method of Hift: AL - air lift Well number: See 'Well-Numbering and Location System" in text for explanation. Dw - deep well cylinder pump Jet - deep well jet pump Year completed: a - about Sub - submersible pump b - before Sw - shallow-well pump Tur - turbine pump Type of well: Dr1 - drilled Drv - driven Type of power is indicated as -- I - internal combustion engine Depth of well: All depths below land surface. e - about r - reported Estimated pumpage: Average dally pumpage supplied by owner, tenant, or operator, or computed all others measured on basis of per capita consumption of 50 gpd per person or 20 gpd per milk cow. Diameter of well: Diameters of dug wells are approximate. Where two or more sizes of casings were used, they are shown Use: A - abandoned in - institutional In descending order. Ir - Irrigation only Ag - agricultural C - commercial PS - public supply Depth to bedrock: All depths below land surface D - domestic T - test a - about U - unused F - dairy farm m - measured 4 GT - gas test X - destroyed all others reported I - industrial Water-bearing material: Gravel, sand, silt, and till - glacial deposits of Remarks: anal - chemical analysis in this report Pleistocene age. dd - drawdown Camillus Shale - Camillus Shale of Silurian age. est - estimated Limestone - limestone unit consisting of the Onondaga Limestone of gas - flammable gas issues from well Devonian age and the Bertle Limestone and Akron Dolomite of gpd - gallons per day Silurlan age. gpm - gallons per minute Lockport Dolomite - Lockport Dolomite of Silurian age. H2S - hydrogen sulfide gas present in ground water Shale - Hamilton Group and Conneaut Group of Chadwick (1934) and Iron - water has noticeable iron content intervening units, all of Devonian age. LS - land surface OW - observation woll, series of water-level measurements available Altitude above sea level: Estimated from topographic maps to nearest 5 feet. r - reported sul - static water level Water level: All water levels are below land surface except those preceded by a (+) sign, temp - temperature, in degrees Fahrenheit, measured by U.S.G.S. on same day wate which are above land surface. level was measured unless otherwise noted a - about p - pumping effect is probable Flow - water flows above land surface but static head could not be measured.

ssi-

r - reported

all others measured by U.S.G.S. personnel

190 190

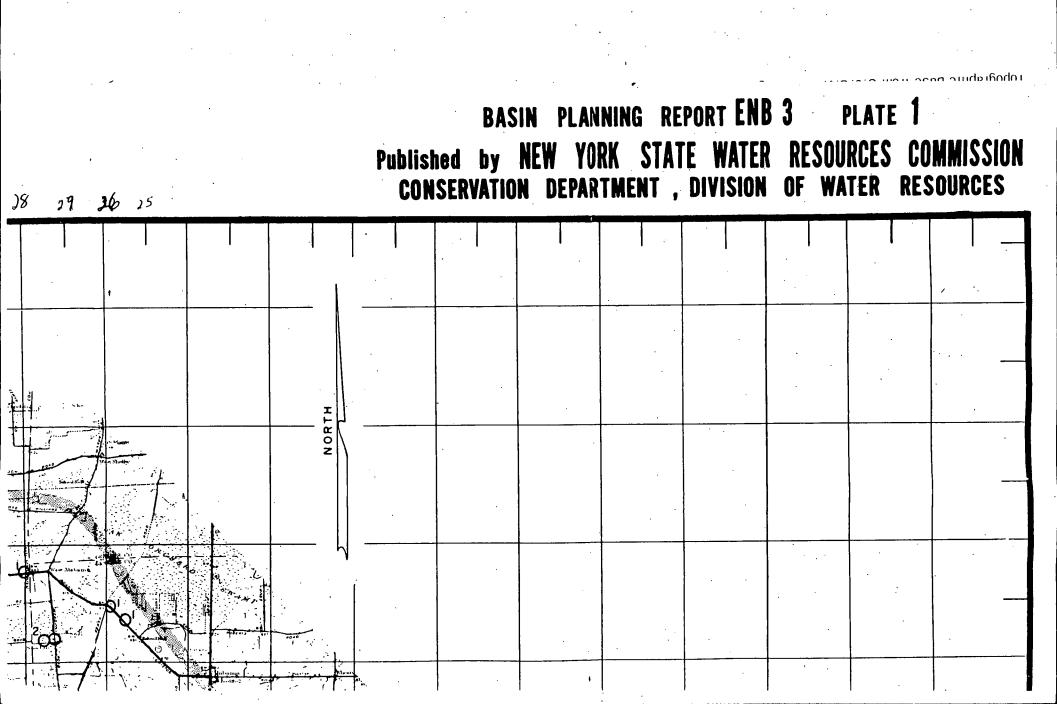
. œ

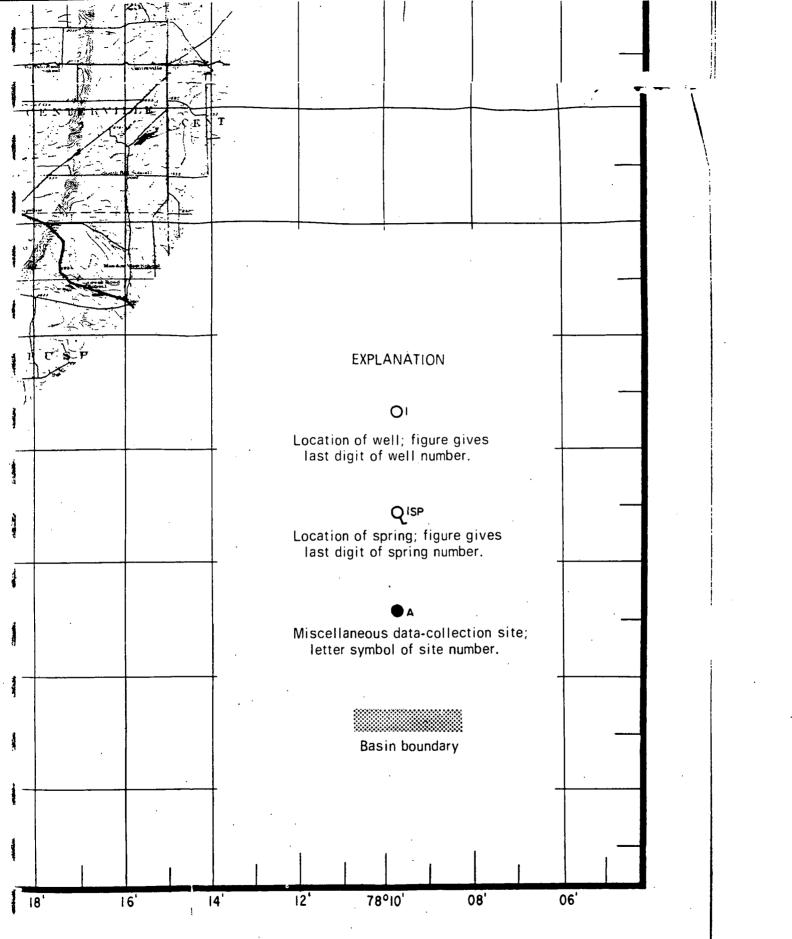
Table 6. -- Records of selected wells in the Erie-Niegers basin (Continued)

			Year com-	Туре	Depth		Depth		Altitude above	Water Below	level	Nethod	Estimated pumpage		·
Well number	County,	Owne r	ple-	of well	of well (feet)	Diameter (Inches)	to	Water-bearing material	sea · level (feet)	land surface (feet)	Date	of llft	or flow (gallons per day)	Use	Remerks
9-823-1	Genesee	R, Rold	a1961	Drl	64.4	6		Sand	885	p36.8	9-17-63	Jet	300	D	Anal; Iron; yield 30 gpm (r); cased to about 69 ft (r)
-824-1	do.	Bell Alrcreft Corp.	1957	Orl	r95	12	41.5	Limestone	870	r 22	6- 3-57			Ţ	Pumping test, 100 gpm, swi 22 ft, dd 30 ft.
-2	do.	do.	1957	Drl	r63.5	12	36	do.	870	r19	6-13-57	•• · ·		T .	Pumping test, 100 gpm, swl 19 ft, dd 12 ft.
9-830-1	Erle	B. Wurthman	1964	Drl	32	6		Sand	795	11.9	8-18-64	Sw	250	D	Anal.
-835-1	do.	R. Cummings	1959	Drl	77.1	6		Camillus Shalo; san	d 675	47.1	8-18-64	Jet		0	Anal; H ₂ S; cased to 88 ft (r).
-2	do.	J. Burns	1957	Drl	88,1	6	68	do.	675	45.2	8-18-64	Jet		D	Anel.
9-841-1	do.	Community Reformed Church	1955	Dr1	51.7	6	a46	Cemillus Shale	620	4.8	8-14-64	Jet	•	D	H ₂ S.
-846-1	do,	A. Adorjan	1954	Drl	42.6	6		do.	595	14.3	8-13-64	Sw		. 0	Iron,
9-847-1	do.	D. Kuss	1954	Dr1	30	6		do.	595	19.7	8-13-64	Jet	 ,	.u. D	Н25.
9-857-1	do.	Mesmer & Sons Dalry, inc.	1953	Drl	r58	6	55	do.	595	r15				•	H ₂ S; yleld 60 gpm (r).
9-900-1	do.	G. Franko		Drl	63.6	6		do,	590	28.5	7- 9-64	Jet		•	H ₂ S; low yield.
)-814-1	Genesee	W, Cox	1957	Drl	26.4	6		Limestone	885	p9,1	6-26-63	Sw	250	D	Anel; H ₂ S; temp 49.0.
-815-1	do.	N. Johnson		Dug	20.9	32		Sand and gravel	900	17.5	9-16-63	. Sw	400	D	Anal ,
-2	do.	Alden Farms Co.	1962	0+1	33.7	6		Limestone	900	21.7	9-16-63	Sw	100	D	Do.
-817-1	do.	V. HcHullen	1961	Orl	r85	6		do.	920			Sub	400	D	Anel; H ₂ S.
D-820-1	do.	R. Gross	1956	Drł	, 60			do.	890			Jet	250	Ð	Anal; Iron.
0-824-1	do.	Bell Aircraft Corp.	1957	Dr1	r100	12	24	do.	860	r33	6-25-57			Ť	Pumping test, 104 gpm, sw1 33 ft, dd 28 ft.
-2	do,	J. Fuller	1955	Drl	42.3	6		Sand	855	12.9	7-23-64	Ser	100	Ρ.	Anal.
0-826-1	do.	E, VanAlstine	1952	Drl	53	. 6		Limestone	830	16.3	7-22-64	Jet	50	D	
-2	do.	A, Bettio	1960	Drì	r30	6		do.	840	9.1	7-23-64	Sw	200	· D	
0-827-1	Erle	L. Weaver		Drl	r120	6		do.	830	45	7-22-64	Jet	150	D .	· · ·
0-831-1	do.	A. Drachanberg	1963	Drl	38.5	6	e35	Camillus Shale	675	11.4	8-18-64	Sw	50	D	Anal; Iron; HzS.
00-833-1	do.	C. Colf	1960	Drl	46.3	6	e35	do,	685	7.6	8-18-64	Jet	200	0	Anal; Iron.
00-839-1) do.	H, Thompson	1964	Orl	26	6.		do.	610	18.1	8-17-64	Sw		U	Anal; H2S.
00-842-1	1 do.	R, Blatter		Drl	41.9	. 6		. do.	595	12,4	7-10-64	Sw	200	D	
00-844-	1 do.	J. Calehan	1948	Dr1	50	6		do.	\$85	2.4	8-14-64	••	••	•	Fron; HgS.
100-848-	-1 do.	R, Lawls	1940	Drl	33.7	8,6		do.	585	10.5	8-13-64	\$w		Ir	N ₂ S.
300-855	-1 do ,	L. Flaishman	1918	Prl	r55	6	55	4 0.	590	r14	••	Dw		Ag .	frans Hg8.
	-1 40.		1952	Bri	I 53	•	-	.	595	18.3	7- 9-44				
301-813	-1 Bunasas	R, and R, Call		9r	1 r74	6	3	Limstere	915	-		546	••	•	Anal; fran; yfold 10-15 gam {r}.
_	-1 -6,	.	1990		i 16.0		-1	⇔.	\$45	30. 0	6-17-63		•• `	٨	tran,
301-01	3-1 68.	J, Baja	••	1 . •	1 /30	•	***	♠.	811		••	••		•	Amel.
-		1. m	1963				elt		- 840		11-41	201	1 90	٠	tigle 6-10 gas fri

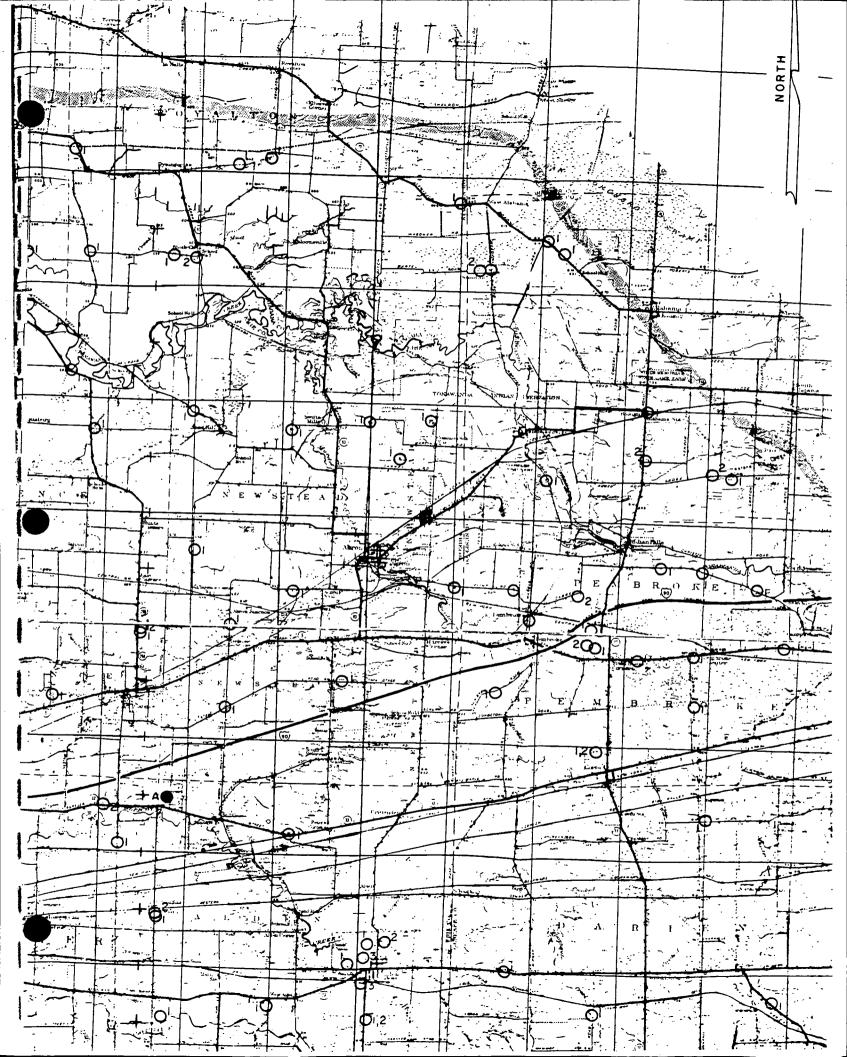
Vet I number	County	Owner	com- ple- ted	Type of well	Depth of well (feet)	Diameter (inches)	Depth to bedrock (feet)	Vater-bearing material	Attituda above sea leval (feet)	Below Jand surface (feet)	Date	Method of 11 ft	failmated pumpage or flow (gallons per day)	Use	Remerks
301-833-1	Erla	C, Jones	1964	Drl	23.6	6	a18	Camillus Shale	645	6.6	8-18-64	••		υ, ο	
301-838-1	do.	H. Frey	1959	Drl	40.6	6	• e 40	do.	630	25.1	8-17-64	Sub	350	D	Anal; Iron.
101-848-1	4		1064	n-1	75.7	••	1.7	da .	e 70	• • • •	10 9.66			Δ Τ	Viald 10 non- watersheering voice at top of rock -

104


The second second


kantidaan deretaridet		ىسى. • ●• •	(a). atta. T	وسند: • •		cuitor L	2421	••			······································	Cathing .		••	. "	منطقی میکنده بیمکنه شک ا
	301-013	-1	8 and 8 [g1]	1 96.1		1 70	•	,	L 1 mars 1 ame	915		••			,	Anali tran, plaid 10-15 gam (r).
		-1 📥	●.	1951			•	*	♣.	985	JA 8	6-17-61	••	••		free.
	361-81	(+1 m	2 Maja	••	\$ 4	i (19		•• '	.	*11	••			-	,	ang),
	30+-4s	\$-1 -		1 (2)		1 i 13		+13			. 29	11-43	A01	110		91040 0-10 gam (+).
	7. Think of the later		والمتحادث والمتحد والمحادث والمتحاد	1000	سخرمان	1999 (1999) 1	الماما وتنتقده	er anga minia	والمتحاصين والمحادث والمحادثين والمحادثين	Lacate Constantial	ter	Attain of the	keen to	Water States		
				Veer				D		ATTT tude above	Below	level	Nethod	Vatinated pumpage		
	Well number	County	0-me r	com- ple- ted	Type of well	Depth of well (feat)	Diameter (inches)	Depth to bedrock (feet)	Water-bearing meterial	sea level (feet)	Fand surface (feet)	Date	of 11ft	or flow (gallons per day)	Use	Remarks
	301-833-1	Erie	C. Jones	1964	Dr1	23.5	6.	∎18 ·	Camillus Shale	645	6.6	8-18-64			U, D	· · ·
	301-838-1	do.	H. Frey	1959	Drl	40.5	6	a40	do.	630	25.1	8-17-64	Sub	350	D	Anal; Iron.
	301-848-1	do.		1964	Drl	75.3	12	43	do.	575	13.2	10- 2-64			А, Т	Yield 30 gpm; water-bearing zones at top of rock and at 65-70 ft interval.
	301-857-1	do.	Grand Island Ready Hix Concrete Corp.	1954	Del	r60	6		do,	595			Jet	6,000	1	H ₂ s.
	302-821-1	Ganesaa	W, Pheips	1959	D×I	67.3	6	e 5	Limestone	895	25.6	8-20-63	Sw	. 1,500	F	Anal.
	-2	do.	B. Knapp	1956	D-I	r102	6		dio,	870	46.5	7-15-64	Sub	1,500	F	
	302-825-1	do.	C, Moses	1959	0-1	r49	6		Camiltus Shele	690	r 20		Sw	50	D	Yleid 20 gpm (r).
	302-841-1	Erle	H. Moretti	1947	0-1	61.4	6		do.	585	10.6	7-10-64	Sw		U	
	302-842-1	do.	R, Wood	1960	Drl	64.6	6	a25	do.	580	2,6	7-10-64	Jet	200	D	
	302-844-1	do.	R, Coleman	1953	Orl	r60	6	48	do.	580			Jet	200	D	H2S; water-bearing zone at 48 ft (r).
	302-846-1	do.	A. Hardy	1953	Drl	46.4	6		do.	580	11.6	7-10-64	Jet		1r	Used only to water garden; Iron.
	302-848-1	do,	E, Czlepinski	1951	Dr1	33.5	6	••	do, [,]	575	11.8	7-10-64	Sw		U	Original dapth 47 ft (r); partly filled in by silt from tila drain emptying into well.
i	302-851-1	Niagara	Durez Div., Hooker Chemical Corp.	1938	De 1	r105.	12	36	do.	575	r28.3	4-23-45	Tur		I	H ₂ S; cased to 42 ft; pumping rate 1,200 gpm (r); infrequently used because quality of water is poor.
105	-2	do,	do.	1947	Drl	r106	10	50	do.	\$75	p60.5	9-10-63	Tur	200,000	1	Anal; H ₂ S; pumping rate 350 gpm (r).
1	-3	do,	do.	1948	0.1	r107	12	•-	do.	576	p.r78	5- 8-58	Tur	1,000,000	1	Anal; H ₂ S; pumping rate 750 gpm (r).
I	302-855-1	Erie	V. Konefel		Dr.1	40.4	5		do.	575	7.5	7- 9-64	Swe		tr	Anal; H2S; used only for watering garden.
	302-858-1	do.	L. Runions	1957	Drl	44.4	5	a 30	do.	575	11.7	7- 9-64	Jet	•-	1 r	iron; used only for watering garden.
	303-823-1	Genesee	R. Long		Dug	27.5	30		TIII	720	20.4	8-20-63	Sw	50	D	Anal,
	-2	do.	H. Wallace	1961	Drl	28.4	6	a20-25	Camillus Shale	760	24.8	8-20-63	Sw	300	D	Anal; temp 49.1.
	303-826-1	do.	J. Patterson	1961	Orl	26.7	6		do.	665	20,2	8-22-63	Sw	50	0	Anal; tamp 49.5; yield 12 gpm (r).
	303-828-1	Erie	J. Laughlin	1942	Dri	39.4	6		Sand	640	12.0	8-22-63	Jet	400	Ag	Drilled and cased to 42 ft (r); used only for watering stock during grazing season.
	303-829-1	do.	Dande Farms Country Club, Inc.	1960	Drl	25.8	. 6		Camillus Shale	665	14.9	8-22-63	Sw	300	C	Anal .
	303-830-1	do.	G. Cook	1941	Orl	18.2	6		Sand and gravel	630	p10.3	8-22-63	Sw	350	F	Do.
	303-831-1	do.	F. Frey	1945	Orl	26.5	6		Camillus Shale	615	5.3	8-22-63	Sw .	350	D	Do.
	303-834-1	do.	M. Logel	1960	Ort	37.7	6		do.	600	13.6	8-22-63	Jet	400	D	Anal; iron; not used for drinking,
	303-836-1	do.	G. Thompson		Drl	33.3	ų.		do.	590	Flow			5,500	Ð	Anal; temp 49.8, 8-23-63; flows 4 gpm 0.3 ft above LS.
	303-840-1	do.	C. Scherer	1963	Drl	61.0	6	58	do.	587	6.2	8-23-63	Jet	200	D	Anal; iron; yield 10 gpm (r); water for laundering is purchased and stored in a cistern.
	303-844-1	do.	W, Gallagher		Dug, Dri	r71	72,6		do.	578	r18	 .			•	
	303-846-1	do.	E. Hirsch	1956	0r3	69.4	6		do,	579	19.7	8-28-63	Jet		lr	Anal; iron; H ₂ S; used only for watering lawn.

I.


15 counterents

.•

.

REFERENCE #4

-

)

GEOLOGY OF ERIE COUNTY New York

Br EDWARD J. BUEHLER Professor of Geology State University of New York at Buffalo AND

IRVING H. TESMER Professor of Geology State University College at Buffalo

BUFFALO SOCIETY OF NATURAL SCIENCES BULLETIN

Vol. 21. No. 3

1

The free

ŝ

5

041520


Buffalo, 1963

BUEHLER TESMER, PLATE 6

BUEHLER AND TESMER: GEOLOGY OF ERIE COUNTY, NEW YORK

at Akron Falls

BERTIE (bottom), AKRON, ONONDAGA NEDROW) (top) from Akron Falls

Detailed Stratigraphy and Paleontology

Silurian System

UPPER SILURIAN (CAYUGAN) SERIES

SALINA GROUP

TYPE REFERENCE: Dana (1863, pp. 246-251).

TYPE LOCALITY: Vicinity of Syracuse, New York, formerly known as Salina.

TERMINOLOGY: Approximately the same as the "Onondaga salt group" of early writers. The Salina Group included three formations: the Vernon Shale (oldest), Syracuse Formation. and Camillus Shale. Only the Camillus is seen in western New York. See Fisher (1960).

AGE: Late Silurian (Cayugan)

THICKNESS: In western New York, the Salina Group is about 400 feet thick, but this unit increases considerably in thickness to the east.

LITHOLOGY: The Salina Group in Erie County is largely shale but considerable amounts of gypsum and anhydrite are also present.

PROMINENT OUTCROPS: Outcrops are rare in Erie County. The uppermost portion can be seen at the base of Akron Falls.

CONTACTS: The lower contact is not exposed near Eric County and the contact with the overlying Bertie Formation is difficult to define precisely.

ECONOMIC GEOLOGY: The Camillus Shale of the Salina Group is a source of gypsum and anhydrite in Erie County. To the east, the Salina Group also includes salt beds.

PALEONTOLOGY: No fossils have been reported from the Salina Group of Eric County.

CAMILLUS SHALE

TYPE REFERENCE: Clarke (1903, pp. 18-19).

TYPE LOCALITY: Village of Camillus. Onondaga County, New York; Baldwinsville quadrangle.

29

BUFFALO SOCIETY OF NATURAL SCIENCES

TERMINOLOGY: See Alling (1928) and Leutze (1954).

AGE AND CORRELATION: Late Silurian (Cayugan). Equivalent to lower part of Brayman Shale in eastern New York.

THICKNESS: Approximately 400 feet.

LITHOLOGY: The Camillus varies from thin-bedded shale to massive mudstone. The color is gray or brownish gray but some beds show a tinge of red or green. According to Alling (1928, pp. 24-26), the Camillus at the type locality is a massive gray magnesian-lime mudrock. Gypsum and anhydrite are present in Eric County.

It is probable that during much of Late Silurian time the northeastern United States was a desert basin. Salt and gypsum were precipitated by evaporation of the shrinking inland Salina Sea.

PROMINENT OUTCROPS: The Camillus Shale extends across Erie County in an cast-west trending belt approximately six to eight miles wide. This belt is largely lowland in which outcrops are rare. The top of the formation is exposed at Akron Falls (pl. 6, upper). A small section can be seen in the valley of Murder Creek north of Akron. Houghton (1914, pp. 7-8), Luther (1906, p. 8) and others report outcrops on Grand Island but these could not be located.

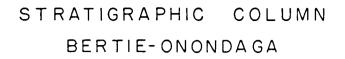
CONTACTS: The lower contact of the Camillus Shale is not exposed near Erie County. The contact with the overlying Bertie Formation is difficult to define.

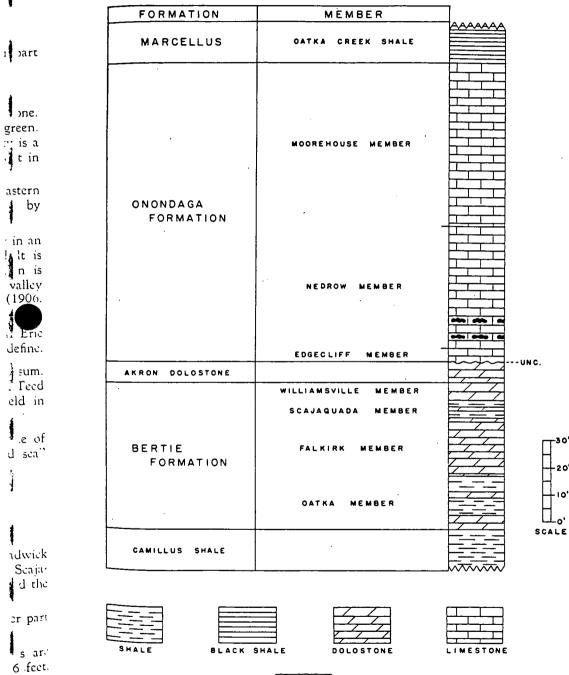
ECONOMIC GEOLOGY: The Camillus Shale is an important source of gypsum. National Gypsum Company has a mine at Clarence Center, Certain Teed Company at Akron, and United States Gypsum Company at Oakfield in neighboring Genesee County.

PALEONTOLOGY: No fossils have been reported from the Camillus Shale of Eric County. Apparently animal life could not survive in the "dead sca" environment of the time.

BERTIE FORMATION

TYPE REFERENCE: Chapman (1864, p. 190).


TYPE LOCALITY: Bertie township, Welland County, Ontario, Canada.


TERMINOLOGY: This unit is commonly called the Bertie Waterlime. Chadwick (1917) divided the Bertie into four units: the Oatka (oldest), Falkirk, Scajaquada, and Williamsville. The Williamsville Member was formerly called the "Buffalo cement bed" (see fig. 4).

AGE AND CORRELATION: Late Silurian (Cayugan). Equivalent to upper part of Brayman Shale in eastern New York.

THICKNESS: 50 - 60 feet total. Approximate figures for the members are Oatka 20 feet, Falkirk 20 feet, Scajaquada 8 feet, and Williamsville 6 feet.

30

LIMESTONE WITH DARK GRAY CHERT

Fig. 5

GEITZENAUER

BUFFALO SOCIETY OF NATURAL SCIENCES

LITHOLOGY: The Bertie Formation consists predominantly of dolostone or dolomitic limestone. The Oatka Member contains shaly dolostone and is difficult to differentiate from the underlying Camillus Shale. The Falkirk Member is a massive brown dolostone. The Scajaquada and Williamsville Members consist of dark gray shale and gray dolostone beds of variable thickness. The dolostone tends to fracture conchoidally. Cross-bedding, salt hopper casts, and a variety of unidentified sedimentary structures are displayed.

It has been argued by O'Connell (1916) that the Bertie Formation represents a deltaic or lagoonal rather than a marine environment. The eurypterids are envisioned as river-dwelling animals whose exoskeletons were washed onto a delta. Ruedemann (1924) and others regard the eurypterids as marine animals although they interpret the Bertie as a lagoonal deposit.

PROMINENT OUTCROPS: In Buffalo, the Bertie may be seen near the Main Street entrance to Forest Lawn cemetery; in the storm sewer on East Amherst Street and in the railroad cut on Amherst Street, a few blocks west of Main Street. There is a good exposure at the falls of Ellicott Creek in Williamsville; in the Louisville Cement Company quarry on the north side of New York route 5 near Clarence; and, at the falls in Akron Falls Park (pl. 6, lower).

CONTACTS: Both the lower and upper contacts are difficult to define.

ECONOMIC GEOLOGY: This rock has been quarried for crushed stone and centranufacture. Near Akron there are several abandoned mine shafts, no longer accessible.

PALEONTOLOGY: The Bertie is famous for its eurypterids, collections of which are housed in the Buffalo Museum of Science and in the New York State Museum at Albany. See Heubusch (1959) for an account of the stratigraphic distribution of these. The eurypterids are found in the Williamsville Member.

The faunal list has been compiled from the following sources: Pohlman (1881; 1886), Clarke and Ruedemann (1903; 1912). Luther (1906. p. 9), O'Connell (1914), Clarke (1919, pp. 531-532). Ruedemann (1925), Bassler (1939), Kilfoyle (1954), Caster and Kjellesvig-Waering (1956), Kjellesvig-Waering (1958), Heubusch (1959 and personal communication), Howell (1959), Kjellesvig-Waering and Heubusch (1962):

	Plants
Callithamnopsis silurica Ruedemann Hostimella silurica Goldring	Sphenophycus (?) sp. Stigmatella sp.
Nematophyton (?) sp.	· ·

COELENTERATES

Ceratopora (?) sp. Metaconularia perglabra (Ruedemann)

Serpulites sp.

nann) Stromatopora sp.

Reptaria cavuga Bassler

Hernodia (?) monahani Bassler

Annelid

BRYOZOANS

Ruedemannella obesa Ruedemann 32

BUFFALO SOCIETY OF NATURAL SCIENCES

AGE AND CORRELATION: Late Silurian (Cayugan). The Akron Dolostone correlates with the Cobleskill Dolomite of eastern New York.

THICKNESS: Approximately 8 feet.

LITHOLOGY: The beds vary from a few inches to over a foot in thickness. The color ranges from greenish-gray to light buff and displays a characteristic mottled and banded appearance. In texture the rock is fine-grained but vuggy and rough-weathering. A pitted surface results from the weathering of fossil corals.

PROMINENT OUTCROPS: Forest Lawn cemetery in Buffalo; storm sewer on Amherst Street; railroad cut on Main Street near Jewett Avenue; Louisville Cement Company quarry on New York route 5 near Clarence; Cummings old cement works one mile north of New York route 5 on Cummings Road; Murder Creek near Akron Falls Park (pl. 6, lower).

CONTACTS: The lower contact is conformable with the top of the Bertie Formation. The upper contact with the Onondaga Limestone is a conspicuous disconformity which has cut out most or all of the Lower Devonian. The top of the Akron Dolostone is broadly undulating and has channels which are commonly ten feet across and three feet deep, containing some sand grains and clay at the bottom. Clastic dikes filled with sand have been described. See Grabau (1900, pp. 355-361) for a thorough description of the contact and the dikes.

ECONOMIC GEOLOGY: The Akron Dolostone has been used as a building stone and in the manufacture of cement.

PALEONTOLOGY: This list has been compiled from Grabau (1900 pp. 363-376), Hartnagel (1903), Ruedemann (1925), Kilfoyle (1954), Kjellsvig-Waering (1958):

PLANTS

Nematophyton crassum Penhallow COELENTERATES

Cyathophyllum hydraulicum Simpson Favosites sp.

Delthyris eriensis (Grabau) Orthotetes interstriatus Hall Rhynchonella sp. Whitfieldella cf. laevis (Whitfield) BRACHIOPODS W. nucleolata (Hall) W. cf. rotundata (Whitfield) W. sulcata (Vanuxem)

Loxonema (?) sp.

Foersteoceras turbinatum (Hall)

Pleurotomaria (?) sp. Cephalopods Mitroceras gebhardi (Hall)

34

MOLLUSKS Gastropods

DI Hamilton Group Ludlowville Formation Tichenor Limestone Member, thin, massive, fossiliferous, resistant limestone occurs at top; Wanakah Shale Member, medium-gray, fossiliferous, calcareous shale with some calcareous concretions; Ledyard Shale Member, dark-gray calcureous shale; Centerfield Limestone Member, thin, Middle Devonian Skaneateles Formation Levanna Shale Member, dark-gray calcareous shale; Stafford Limestone Member, massive, fossil-Dma Marcellus Formation Oatka Creek Shale Member, black calcareous shale with some calcareous concretions. EC. Do Onondaga Limestone Moorehouse Limestone Member, light-gray limestone containing numerous corals and considerable dark-gray chert nodules; Nedrow Member, intermixed light-gray limestone and dark-gray chert; Edgecliff Member, light-gray limestone with some light-gray chert nodules, locally represented by a UNCONFORMITY Akron Dolostone Light-gray dolostone Upper Silurian SЬ SILURIAN Williamsville Member, light-gray argillaceous limestone; Scajaquada Member, interbedded dark-gray shale and argillaceous limestone; Falkirk Member, light-gray dolostone; Oatka Member, dark-gray shale with argillaceous limestone at base containing eurypterids. Bertie Formation Sc Camillus shale Gray shale containing large amounts of gypsum Contact Inferred Contact GEOLOGIC MAP OF ERIE COUNTY, NEW YORK BEDROCK GEOLOGY by Edward J. Buehler and Irving H. Tesmer

<u> </u>	
Dcg	
Dcsw	
Ded	

Canadaway Formation

Arkwright Group

Upper Devonian

Seneca Group

Gowanda Shale Member, and younger beds undifferentiated, Dcg, siltstones and silty shales in the upper part, dark shale and thin siltstones in the lower part, South Wales Shale Member, Dcsw, medium-gray shale containing many siltstones and calcareous nodules; Dunkirk Shale Member, Dcd, massive black shale containing some gray shale and large septaria.

Java Formation

Hanover Shale Member, gray shale containing many calcareous nodules, some black shale and a few thin sillstones; Pipe Creek Shale Member, massive black shale at base.

West Falls Formation

Nunda Sandstone Member, Dwn, massive siltstones with some thin siltstones and silty shales; Angola Shale Member, Dwa, medium light-gray to light-gray shale containing a little black shale, a few thin siltstones and many calcareous nodules of various sizes; Rhinestreet Shale Member, Dwr, black shale containing some gray and dark-gray shale, many large septaria and some small nodules.

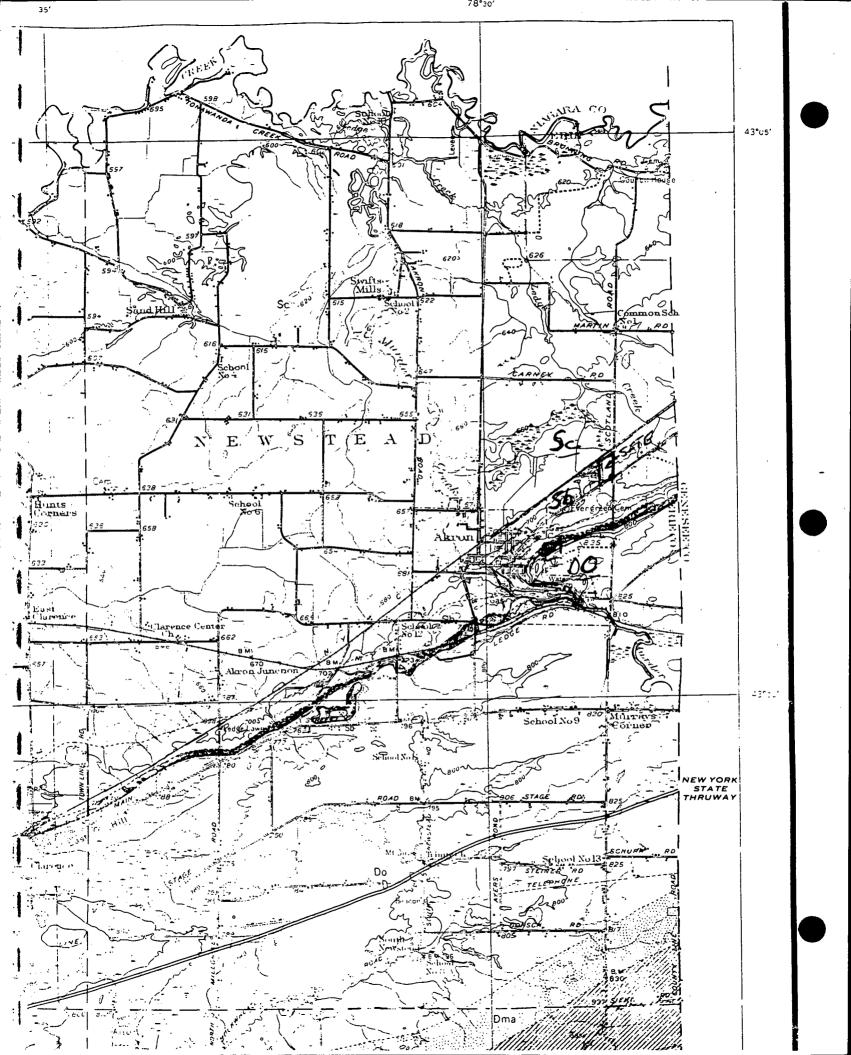
Dso

Sonyea Formation

Cashaqua Shale Member, gray and olive-gray shale containing many discoidal calcareous nodules and septaria; Middlesex Shale Member, black shale at base.

Genesee Formation

West River Shale Member, dark-gray shale with some very thin beds of black shale and siltstones; Genundewa Limestone Member, thin limestone containing Styliolina fissurella; Penn Yan Shale Member, thin unit of dark-gray shale; Geneseo Shale Member, thin unit of black shale at base.



Moscow Formation

Windom Shale Member, medium-gray to olive-gray calcareous shale with many calcareous con-cretions; Kashong Shale Member, thin unit of soft gray shale at base. Thin lenses of Leicester Pyrile sometimes occur between the Moscow and Genesee Formations.

DEVONIAN

note 15

REFERENCE #6

Sec.

Weise

NUS CORPORATION **TELECON NOTE** CONTROL NO: DATE: TIME: Nº 9 9/3/84 1030 DISTRIBUTION: File. BETWEEN: OF: PHONE: Esie county ghalth first (716)846-767 Ed Parlini AND: . Majo (NUS) DISCUSSION: Questionial Mr. Paolini on mater are of Judge treek and Mundler Areck, Trucks are not used for writer supply ingation. Not sure of recreations . . **ACTION ITEMS:** NUS 067 REVISED 0581

•

REFERENCE #7

-

NUS CORPÓRATION **TELECON NOTE** DATE: ` CONTROL NO: TIME: 9/4/86 0950 DISTRIBUTION: File. PHONE: BETWEEN: OF: NYDEC Region 9, Water office Simir Eng. Juck. (716) 8474590 Tom Mantuck L. May (NUS) DISCUSSION Questioned Mar. Wantuck about wes of Ledge Creek in Erie Co. M. Y. Classified as Class C stream with a CT diignation, witchle for pishing and other user except as a source of drinking water and primary contact recreation CT duignotion - trout spawning stuom must have specific chemical + physical proportier. DH 10:5-8,5 TOS < 500 mg/L D.O. A. rong/L ACTION ITEMS:

REFERENCE #9

DRAFT

GRAPHICAL EXPOSURE MODELING SYSTEM

(GEMS)

USER'S GUIDE

Prepared for:

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF PESTICIDES AND TOXIC SUBSTANCES EXPOSURE EVALUATION DIVISION Task No. 4 Contract No. 68016618 William Wood - Project Officer Loren Hall - Task Manager

Prepared by:

GENERAL SOFTWARE CORPORATION 8401 Corporate Drive Landover, Maryland 20785

Ĵ

Submitted: June 25, 1984

MASTER AREA REPERENCE FILE (MARF) OF THE 1980 CENSUS

Source

The Master Area Reference File (MARF) is a proprietary product of Donnelly Marketing, Inc., a subsidiary of Dunn and Bradstreet, and is available only to EPA users and to contractors engaged in EPA projects.

Description

The complete corrected MARF of the 1980 Census, with geographic coordinates for small geographic areas, is installed for GEMS on a separate disk pack. It consists of four subfiles, one for each major census geographic region, and is available to users when that disk pack is mounted. The file has a variety of location identification information, including region, state, county, place, census tracts and enumeration districts or block groups (See Figure C-1 for illustrations). It also contains population count by race, the number of occupied and owneroccupied housing units, group quarters, and number of families for all the enumeration districts/block groups for the continental United States, Hawaii, and Alaska.

CEDPOP, a subset of the MARF of the 1980 Census, is accessible through GEMS. In addition to total population and household counts, the file includes geographic coordinates for the population-weighted centroid of each census block group or enumeration district (BG/ED) in the file.

Use

The complete MARF 80 Census file, installed in GEMS on a separate disk, is expected to be used heavily by GEMS users to identify household and population by racial groups at any required geographic level. County aggregate populations have already been created from this file.

CEDPOP was interfaced with ATM80 in GEMS to provide estimates of population sizes exposed to concentrations of airborne chemicals around a release site and with BOXMOD80 to provide population estimates within area source regions. The population centroids are identified, and populations are accumulated in sectors (typically the sixteen wind direction sectors) surrounding the center point within a user-specified number of radial distances out from the center.

The CEDPOP file also is accessed by CENSUS DATA and RADII-5 procedures under the GEODATA HANDLING operation in GEMS. CENSUS DATA accumulates population and housing counts by up to ten user-specified radial distances and from one-to-sixteen sectors. The RADII-5 program tabulates the same information (except housing counts) and displays the centroid locations for user-specified circular distances around a center point.

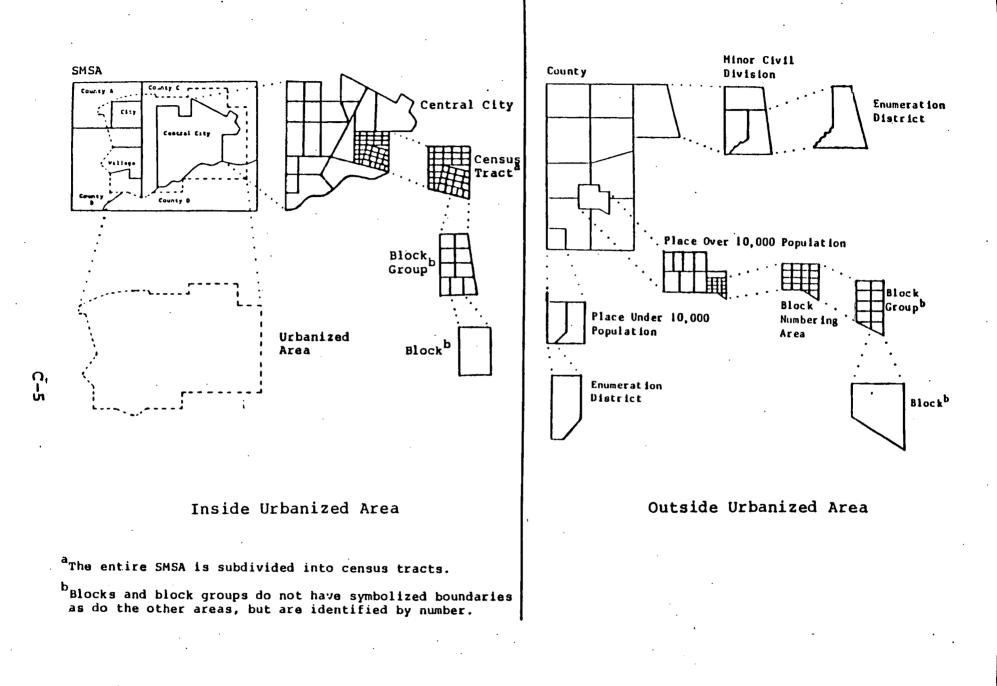


Figure C-l. Geographic Hierarchy Inside and Outside Urbanized Areas (UA's)

2-8603-34A/NYSS 0

MENU: Process Census Data by Latitude and Longitude

ref	par-nome	parameter description	value
1. •	LAT	latitude (DDMMSS or degree)	430200
2	1ON	longitude (DDDMMSS or degree)	782840
3.	RINGDIST	ring distances in Km	5.4
4.	NSECTORS	number of sectors	1
5. e	DATASET	Name of the output dataset	NYS5
6 .	ΤάG	tas field of the output dataset	*

Enter one or more combinations of: reference or parameter name. Erefi valuel, ref2 value2, ...] or a command: HELP,NEXT,BACK,EN \mathbf{P}

Üáta	List	Οf	Dataset:	NYS5	Ì
------	------	----	----------	------	---

Number of Records = 6

;	REC #	L POP		HOUSE	 	DISTANCE		SECTOR	
	1.		0	0		0.400000	1		:1 1
	 	* 1	0 i	Ŏ	:	1.60000	, 1		1
	43.		3782 2150	1429 691	1	3,20000 4,80000	1	·	1.
	5 6		2705 1			4+80000 6+40000	i i		1
			J.	•		· ·	۰,	• •	-

2010

小田町

 \sum

`)

٦ï

٦٩ .

11

11

REFERENCE #10

Į.

SAMPLE DESCRIPTIONS CASE #6062 6/3/86

Sample Number	Sample <u>Type</u>	Traffic <u>Report #</u>	Federal Express Airbill #	Time	Location
NYS5-S1	Soil	BG918 MBG309	495160234 495160245	1012	Collected on the east side of the landfill, 20 yds. east of access road. Sample depth, 1 ft.
NYS5-S2	Soil	BG919 MBG310	495160234 495160245	1032	Collected on the north side of landfill near drums. Sample depth, 0-2 in.
NYS5-SED1	Sediment	BG922 MBG313	495160234 495160245	1100	Collected in drainage - ditch adjacent to railroad at base of north face of the landfill.
NYS5-S3	Soil	BG920 MBG311	495160234 495160245	1111	Collected on north side of the landfill from piles adjacent to the landfill road. Sample depth, 0-2 in.
NYS5-SED2	Sediment	BG923 MBG314	495160234 495160245	1125	Collected in drainage ditch near wood piles, 10 ft. east of railroad tracks.
NYS5-S4	Soil	BG921 MBG312	495160234 495160245	1137	Collected at base of west face of the landfill near the wood piles. Sample depth, 6-8 in.
NYS5-BLI	Blank	BG926	495160234	N/A	EPA Laboratory, Edison, NJ

Sec. 1

A MARINE

1000

(1995)

1000

-

ANNETTICAL DATA HAME: WHI EING DEVELOPMENT CORP. GAMPIERS DATES 6713786 CASE: 6062

1	I					¦
NYS5-S1 SOTL UGZKG	NYSS-S2 SOIL UG/KG			NYS5-SED2: SEDIMENT : UG/KG :	NYS5-84 8011 UGZK0	: NYS5-BE1 : DEANK : UGZEG :
	1	;	-			1
.	ł					1
1			, · · ·			1
	i N TENT	191	R	B	E	1 J 1
••		•		1 10 1	\mathbf{R}_{i}	1 3 4
1 100	1 D.J.	, x.				1 ·
	i 1	1				1
1	1	:	1	1. LL 1		;
1	1		- 			1
	1		1	; ;		1
• !		1	;	1		÷ .
- - 	i BJ	BJ BJ	; BJ	I II	B,J	i J
	1	· ·	;	1		
	1	ł	:	1		1
1	1		:			
	1	1	1	1		1
:	1	1	2 1	1		i 1
1	:	1				1
:	1	1		i	· .	•
:	:	;		(
1.					• •	1
2 •	1	ł		i :	i 1	1
1	1		1		•	1
	1		i 1	4 1		
1	1	1	1 1	1 · · · · · · · · · · · · · · · · · · ·	:	1
•	1	i	i	•	•	
	į	i I			:	:
	i N	1 · · ·	•	30	1	:
	i s	1 1	1	1 6	*	1
i	:	· •	1		1 .	
i	, ,			1	:	1
1	•	1	1		;	1
1		5		1	-	1
	1 SOTL	SOTL SOTL UGZKG UGZKG B BJ BJ BJ	BUL SOIL SEDIMENT UGZKG UGZKG UGZKG BU BU BU BU BU BU	B BJ	SOIL SOIL SEDIMENT COIL SEDIMENT UG/KG UG/KG UG/KG UG/KG UG/KG B BJ BJ B B BJ BJ B B B BJ BJ BJ B B BJ BJ BJ B B BJ BJ BJ B B J BJ BJ B B J BJ BJ B B J BJ B B B B J BJ BJ B B B B J BJ BJ B B B B	MYS5-SI MYS5-SZ MYS5-SZ

MONESE

Blank space compound analyzed for but not detected

E - analysis did not pass QA/QC requirements

1.1.1.1.

 $J \sim$ compound present below the specified detection limit. $B \sim$ compound found in laboratory blank as well as the sample,

indicates possible/probable blank contamination

AGALYTTCAL DATA NAME FROM THE GEVELOPMENT CORP., CAMPING DATE: 5/13/86 FACE: 5052

SAMPLENUMBER MAIREX URITE	NYS5-S1 SOIL U6/K6	NYS5-S2 SOTL UGZEG	INYS5 SED1: ISFDINENT : UG/KC :		IN785-SEUP: ISLDIMENT : I UD/K6 :		
	······]] 	···· ··· ··· ··· ··· ··· ··· ···			: :
d whit resolimethylomine		•					:
Analine t	•	ł .					:
Gis(2 Chloroethyl)Ether − } 2–Ch∂oropheno∣ -						•	•
1,3-Dichlorobenzene		1	1 .1				i
},∛-))ichlorobensene							i 1 1
i,2-Uichloroben≥oné l		1	1				1
e Methylphonol usl(2+Chlocoisopropyl)Etherl							;
4 nethylphenol		1			i J		i 1
Neditroso di neleopylamine : Resechtorosthane		1 . 					• .
Ritrobenzene						-	• •
sophorone P Nitrbeleno)				1			•
2,4 Dimethylphenol		1			1 10.55		4
Benzoic Acio Bis(2 Chloroethoxy)Nethane					6000		
2,4 Dichlorophenol 🧠 👘 🔡		1	1	:			
t,2,3 Trichlorobenzene Nachthalene	L J				510) (/
3-Chlorogniline		1	;	ł	1		1
Hemachlorobusadiene	l	1	1	:	:		;
4 Chioro 3 Methylphenol 4		1 g. 1	1	1			-
?-Hethylnaphthalene	J	1		l J	1 730	J	i 3
Nexachlorocyclopentadiene		5 5	:		- i	1	
2,4,5-Trichlorophenol	i l	4 1	1 1	1	•	,	•
2,3,5-frichtorophenol	1		н 1	· .			
2 Chloronaphthalene 2-Nitroaniline	1					- k t	1
graatsaatiine Brmedhyt Phthalate	1	1		- 8	1	i .	:
Acenaphthytone			}	:	t J	:	:
3-Nitroaniline	:	1	:	t <u>.</u>	1	:	1
Acenophthene .	t ·	1.	:	•		1	
2,4-Dinitrophenol	1	1					;
4-Nitrophenol	, J	1				i ·	1
Nuber cofuran	i 1	1		1 J	t J	1	1
2,3-Dinitrotoluene	; •	i . 1		•	1	1	
2,8 Dinatrotoluene	, ·	•	1	•	1		
Distivlehthalate 3.Chtorophenytehenyl ether	۱ ۱	1 1	1	1			1
Thorence.	:	1		•	J	}	:
Andri Ling Iting							

.

MMALYTICAL DATA NAMES WHITING DEVELOPMENT CORP. GAMPLONG 05 051 52 13/85 0661.1 6062

SUB O MOLATILES	Î 1		·			
SAAPLE NUBBER MATER S UNLES	NYSS-SI SOIL UG/KG	NYS5-S2 SO1L UGZKO	NYSS-SEDI SEDIMENT UG/KO	NY(5-93 501) UG/KO	HYSS-SED21 (SEDIMENT) UGZKG	
4.8-Dinitro-2-Nethylphenol	•					i
d Mitrosodiphenylomine	1	i 1	1	8		·
e-Bromophenylphenyl ether	1 1	•			: :	. t
Hexachiorobonzono Pentachiorophenoi	1	1		1.	1 3 3	
rantochioropochox thananthrene	; J	J	:	L J	1 1000	J
methicae ene	1 J	ł	1	1		- e
n, n-Butylphthalate	t B	1 D	l B	E BU	650 B	
Fluoranthene	t _ J	1		; J.		
Benzadine	: 3		1	i L	740	
lynenc	•	l J		n sat L		
ndy Denzylphthalate	i 1	1 1	1		1	
5,31 Wichlorobenzidine	1 1	1			1 910 1	
.Benzo(a)Anthracene Juis(201thy)hexy))Phthalate		3000	1	1	1300	
Chrysene	l J	1	1 J	1 . J	1000	
he menetyl Phthalato	1	1	1		1500	
henro(h)Fluoranthene	: J	1	1		1500	
Bouzo(K)Fluorenthene	1 J		· · ·	i •	1 1100	
Bonzo(a)Pyrene		i J	* 1			
indomo(1,2,3-cd)Pyrene	i 1	•	1		1	: ;
£5benzo(a₂h)Anthracen©		1		;	1.	: :
Benzo(Shi)Perylene	1 57	•	•			

3. da

4 . . .

NOTEST

GIANK Space compound analyzed for but not detected

E – analysis did not pass QA/QC requirements

 $J < \operatorname{compound}$ present below the specified detection limit

B - compound found in toboratory blank as well as the sample, indicates possible/probable blank contamination

AMALTIICAL UATA NAMEL UNITING DEVELOPHENT CORP. SAMULING DAILI SZI3/86 CASE: 4042

PUSTICI DE SZPOBS						
SAMPLE NUMBER MATRIX UNITS	NYS5-51 SOTL 105-KG	NYSS-S2 SOLL UG.KG	HMYSS SFD1 SEDIMENT • UG/KG		NYSS-SE02 SEDIMENT UG/NC	N785-84 8011 HC4K6
Alpha BHC	1	, }				
cota BHC	l .	1	1 1			
$0 \in 1.10 \times 1010$	¦ ·	1	1			
Gumma-BHC (Lindane)	:	:			i i	
Heptochion	ļ	1	-			
atdran	1				; · ·	
Reptachion Crosside	1				i i	
Endosulfan I	1	P				•
ល័ះខាងកណ្ត	;					
A, A ' ~ 0.0E			i i		י י	
indržu – ¹				1	· ·	
Endosulfan II				1		
4,4' (00))	;	i			•	
Endoeulfon sulfate		1	i (
Endrin Aldehyde				1		
我 , 我不想的好你	i	i			1	
dethosychlor		i	1			
Endrin Ketone		1	i	1		
Chlondane		i 1		· .	1	
loxopheno		1	1 · · ·	1		
Arocior 1016		i • •	1	1		
Aroclor-1221	i ·		1	1	•	
Aroclor-1232			1	1 I		
aroclor 1242			i 1	1		•
aroclor-1248		i 1 .	1	1	1	
Aroclor 1254		1	1	-	1	1
Aroclor-1260	i	i	•	•	1	•

•••

107683

Blank space compound analyzed for but not detected

• .

C - analysis did not pass QA/QC requirements

J - compound present below the specified detection limit

8 compound found in taboratory blank as well as the sample, indicates possible/probable blank contamination ARGYTICH DATA HEART WHETING DEVELOPMENT CORP. SAMPLING DATE: 5713705 CASE: 5052

1.00.0

0400(630103				·	•	
STATES AUGULTE BATES DE DATES	NY85-81 SOIL MGZKG	NYC5 52 SOTU HCZKC	N785-SCUI CEDIMENT MGZKC	NYS5-Š3	HYSSER D2 SCDINCET HC/FG	N (55) 84 (SOT) MC (110
Si COM CHION	2100	6900	6150	2450	250	1356
ກັດປັນຫັວກົງ .	:	1	11		3 · · · · ·	•
úla cola.	1	1 .	1		1	
Go Y Ettan .	: J					•
to o z 10 i um	· ·)
y ordina) um		1	1		1 100500	
Ü (và t-à) (m	: 200000	198000	11700	205-000	1 198000	
Giavomicum .	1 16	24	8.5	18	4 25 4	8.7
Cobart		• • •			i i i	
Copper	1 18	: 57		42		23
1 1 1 1 1 1	4560	3500	1 15400	11300	1 02800 1	7110
two d	53	: 97	22	63	376 1	67 0700
មិតទូតិសេទាំណា	17700	1 17400		18700	1 18000 1	8320
hen jan esa	1 56	92	225	112		30
rich dun y	1 0.6	1.4		. 0.3	0.6	0.3
Hickel		i J	J		i di i	! .
Probassia (un		: J	1 JF 1			
Sectional con		: J		.1	i J i	1
Selver	•	i 	i	·	• •	
Godium		l J		J .)
Hadliaum -		i.		,		
fin		i 			i i	
Vairadium	i J	; J		J		-
Zán(:	1.45.	: 303	1 84 1	113	1 912 1	227

NOTESE

Stonk space : compound analyzed for but not detected

C - analysis did not pass QA/QC requirements

.) compound present below the specified detection limit.

6 compound found in laboratory blank as well as the sample, indicates possible/probable blank contamination

Footnotes:

NR - not required by contract at this time.

Form I:

U

.

E

S

R

÷

- Value If the result is a value greater than or equal to the instrument detection limit but less than the contract required detection limit, report the value in brackets (i.e., [10]. Indicate the analytical method used with P (for ICP/Flame AA) or F (for furnace).
 - Indicates elemant was analyzed for but not detected. Report with the detection limit value (e.g., 10U).
 - Indicates a value estimated or not reported due to the presence of interference. Explanatory note included on cover page.
 - Indicates value determined by Method of Standard Addition.
 - Indicates spike sample recovery is not within control limits.
 - Indicates duplicate analysis in not within control limits.
 - Indicates the correlation coefficient for method of standard addition is less than 0.995

LAB SOW	NAME <u>ROCKY MO</u> NO.					NO. <u>6062</u>	
LAB	SAMPLE ID. NO			~		EPORT NO. 5	8008
Cond	centration:	Low X			<u>nd Measured</u> Medium		
	rix: Water	Soil		-		ther	
				dry w	_	17700	P
1.	ALUMINUM	2100	P	13.	MAGNESIUM	56	 P
2.	ANTIMONY	180	P	14.	MANGANESE	0.6	ĆV
3.	ARSENIC	6.90	F	15.	MERCURY	[12]	 P
4.	BARIUM	[109]	<u> </u>	16.	NICKEL POTASSIUM	[504]	 P
5.	BERYLLIUM	0.690	P	. 17.	SELENIUM	350	F
6.	CADMIUM	3.50	P P	18. 19.	SILVER	2.10	P
7.	CALCIUM	200000	<u>F</u> P	- 19. 20.	SODIUM	[1130]	 P
8.	CHROMIUM	<u> </u>	P_	20.	THALLIUM	6.90	F
9.	COBALT	4.9U 18	P	- 22.	TIN	11U	P
	COPPER	4560	 P	- 22.	VANADIUM	[5.4]	P
11.	· · ·	<u>4500</u>	 P X	- 20. 24.	ZINC	145	P
	LEAD	<u>53</u> NR	<u> </u>	- .	cent Solids (%		
·	head	reporting r	on Cove	- to EPA er Page	, standard res e. Additional raged. Defini	ult qualifi flags or f	otno

induce.

- 3 - 1

ŧ

l.

;

ł

*

00003

Form I

ł

1

Į

1

Sam P.O	S. EPA Contract Laboratory ProgramEPA Sample No.Sample Management OfficeMBG3109.0. Box 818 - Alexandria, VA 2231393/557-2490 FTS: 8-557-2490Date 6-26-86										
		INORGANI	C ANALY	SIS DA	TA SHEET						
	NAME ROCKY MOU		YTICAL		CASE	NO. <u>6062</u>					
	NO. SAMPLE ID. NO.	784			QC R	EPORT NO. 5	6058				
		<u>Elements</u>	Identi	fied a	nd Measured						
	centration: rix: Water	Low X Soil	X	_ Slu	Medium O	ther					
mg/kg dry weight											
1.	ALUMINUM	6900	P	13.	MAGNESIUM	17400	P				
2.	ANTIMONY	180	P	14.	MANGANESE	99	P				
з.	ARSENIC	6.9U	F	15.	MERCURY	1.4					
4.	BARIUM	[64]	P	16.	NICKEL	[14]	Р				
5.	BERYLLIUM	0.69U	P	17.	POTASSIUM	[720]	P				
6.	CADMIUM	3.50	P	18.	SELENIUM	350	F R				
7.	CALCIUM	198000	P	19.	SILVER	2.10	P				
8.	CHROMIUM	24	P	20.	SODIUM	[1400]	P				
9.	COBALT	4.90	P	21.	THALLIUM	6.90	F				
10.	COPPER	57	P	22.	TIN	110	P				
11.	IRON	3500	P	23.	VANADIUM	[11]	P				
12.	LEAD	97	PX	24.	ZINC	303	P				
Cyar	nide	NR		Perc	ent Solids <u>(%)</u>	72					
	used a explai must b	s defined c ning result e explicit	on Cover is are e and cor	r Page encour ntaine	standard resul Additional f aged. Definiti d on Cover Page	lags or foo on of such , however.	otnotes				
Com	ments: <u>Selenu</u>	um val	10.70	porte	ata lax	- delite	Ón)				
			+	······································							
					Lab Manager _	JML					

Form I

ļ

i

ļ

ł

U.S. EPA Contract Sample Management P.O. Box 818 - Al 703/557-2490 FTS	Office exandria, VA	22313		Date	EPA Sample MBG311						
	INORGANIC	ANALYS	SIS DA		<u> </u>						
LAB NAME ROCKY MO		TICAL		CAS	E NO. <u>6062</u>						
SOW NO. LAB SAMPLE ID. NO	SOW NO. 784 LAB SAMPLE ID. NO. - QC REPORT NO. 56058										
Elements Identified and Measured											
Concentration: Low X Medium Matrix: Water Soil X Sludge Other											
		mg/kg	dry w	eight							
1. <u>ALUMINUM</u>	2430	P	13.	MAGNESIUM	18700	P					
2. ANTIMONY	160	<u>P</u>	14.	MANGANESE	112	P					
3. ARSENIC	6.3U	F	15.	MERCURY	0.6	CV					
4. BARIUM	[44]	P	16.	NICKEL	[13]	P					
5. <u>BERYLLIUM</u>	0.63U	P	17.	POTASSIUM	[451]	P					
6. <u>CADMIUM</u>	3.10	P	18.	SELENIUM	310	<u>FR</u>					
7. CALCIUM	205000	<u>P</u>	19.	SILVER	[2.2]	P					
8. CHROMIUM	18	P	20.	SODIUM	[1260]	P					
9. <u>COBALT</u>	[6.3]	P	21.	THALLIUM	6.3U	F					
10. COPPER	42	P	22.	TIN	100	P					
11. <u>IRON</u>	11800	P	23.	VANADIUM	[8]	P					
12. <u>LEAD</u>	63	P X	24.	ZINC	113	P					
Cyanide	NR		Perc	ent Solids <u>(%</u>) 80	·					
 Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however. Comments: Selenum value, reported at a /ox dilution 											
	<u></u>			Lab Manager	JML						
· .											

00005

<u>Form I</u>

Mark

-

ļ

ł

ŝ

į

非事

1

1

ŝ

ole Managemer Box 818 - A	nt Office Alexandria, VA	22313			MBG312	
	INORGANIC	ANALYS	SIS DA	TA SHEET		
	COUNTAIN ANALY	TICAL		CAS	ENO. <u>6062</u>	
			•	କ୍ଟ :	REPORT NO. 5	6058
	Elements	Identif	ied a	nd Measured		
		X			Other	-
		mg/kg	dry w	eight		
ALUMINUM	1350	P	13.	MAGNESIUM	8320	<u>P</u>
ANTIMONY	190	P	14.	MANGANESE	39	P
ARSENIC	7.1U	F	15.	MERCURY	0.4	CV
BARIUM	[25]	P	16.	NICKEL	[5.5]	<u>P</u>
BERYLLIUM	Ø.71U	P	17.	POTASSIUM	3870	Р
CADMIUM	3.6U	P	18.	SELENIUM	360	FR
CALCIUM	203000	P	19.	SILVER	2.1U	P
CHROMIUM	8.7	P	20.	SODIUM	[840]	P
COBALT	50	P	21.	THALLIUM	7.10	F
COPPER	21	P	22.	TIN	11U	P
IRON	7110	P	23.	VANADIUM	3.6U	P
LEAD	47	P X	24.	ZINC	297	P
nide	NR		Perc	ent Solids <u>(%</u>	> 70	
Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.						
comments: <u>Solenning value reportedata los delution</u>						
	· · · · · · · · · · · · · · · · · · ·					
				Lab Manager		
	ple Managemer Box 818 - A S57-2490 F1 NAME ROCKY M NO. SAMPLE ID. N SAMPLE ID. N Centration: rix: Water ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD nide must	ple Management Office Box 818 - Alexandria, VA /557-2490 FTS: 8-557-2490 INORGANIC NAME ROCKY MOUNTAIN ANALY NO. 784 SAMPLE ID. NO. Elements centration: Low X rix: Water Soil ALUMINUM 1350 ANTIMONY 19U ARSENIC 7.1U BARIUM [25] BERYLLIUM 0.71U CADMIUM 3.6U CALCIUM 203000 CHROMIUM 8.7 COPPER 21 IRON 7110 LEAD 47 nide NR tnotes: For reporting result must be explicit must be explicit	ple Management Office Box 818 - Alexandria, VA 22313 /557-2490 FTS: 8-557-2490 INORGANIC ANALYS NAME ROCKY MOUNTAIN ANALYTICAL NO. 784 SAMPLE ID. NO. Elements Identif centration: Low X mg/kg ALUMINUM 1350 ANTIMONY 19U P ARSENIC 7.1U F BARIUM [25] P BARIUM [25] BERYLLIUM 0.71U CADMIUM 3.6U CALCIUM 203000 CHROMIUM 8.7 P COPPER 1RON 7110 P 47 PX nide NR MR trootes: For reporting results to used as defined on Cover explaining results are emust be explicit and cord	. Box 818 - Alexandria, VA 22313 INORGANIC ANALYSIS DA NAME ROCKY MOUNTAIN ANALYTICAL NO. 784 SAMPLE ID. NO Elements Identified an centration: Low X rix: WaterSoil X Slue mg/kg dry w ALUMINUM 1350 P 13. ANTIMONY 19U P 14. ARSENIC 7.1U F 15. BARIUM [25] P 16. BERYLLIUM 0.71U P 17. CADMIUM 3.6U P 18. CALCIUM 203000 P 19. CHROMIUM 8.7 P 20. COBALT 5U P 21. COPPER 21 P 22. IRON 7110 P 23. LEAD 47 P X 24. hide NR Percent tnotes: For reporting results to EPA, used as defined on Cover Page explaining results are encour must be explicit and containe	Die Management Office Box 818 - Alexandria, VA 22313 /557-2490 FTS: 8-557-2490 Date INORGANIC ANALYSIS DATA SHEET NAME ROCKY MOUNTAIN ANALYTICAL CAS NO. 784 CAS SAMPLE ID. NO. - QC Elements Identified and Measured Cas centration: Low X Medium rix: Water Soil X Sludge mg/kg dry weight ALUMINUM 1350 P 13. MAGNESIUM ANTIMONY 19U P 14. MANGANESE ARSENIC 7.1U F 15. MERCURY BARIUM [25] P 16. NICKEL BERYLLIUM 0.71U P 17. POTASSIUM CADMIUM 3.6U P 18. SELENIUM CALCIUM 203000 P 19. SILVER CHROMIUM 8.7 P 20. SODIUM COBALT 5U P 21. THALLIUM COPPER 21 P 2	ble Management Office import Management Office import Management Office Box 818 - Alexandria, VA 22313 import Management Office import Management Office Sox 818 - Alexandria, VA 22313 import Management Office import Management Office Now 818 - Alexandria, VA 22313 import Management Office import Management Office NAME ROCKY MOUNTAIN ANALYTICAL CASE NO. 6062 NO. 784 QC REPORT NO. 5 Elements Identified and Measured case No. 6062 centration: Low X Medium rix: Water Soil X Sludge Other mg/kg dry weight MAGNESE 39 ALUMINUM 1350 P 13. MAGNESE 39 ARSENIC 7.1U F 15. MERCURY 0.4 BARIUM (25) P 16. NICKEL (5.5) BERYLLIUM 0.71U P 17. POTASSIUM 387U CADMIUM 3.6U P 18. SELENIUM 36U CALCIUM 203000 P 19. SILVER 2.1U COBALT

T

1000 march

1

-

1

ļ

-

ALM R

1

i

4.1

ź

		<u>F01</u>	<u> </u>			00006	
U.S. EPA Contract Sample Management P.O. Box 818 - A1 703/557-2490 FTS	Office exandria, V	A 22313		-	CPA Sample MBG313 6-26-8		
· .				Date _ TA SHEET	0-20-0	<u> </u>	
LAB NAME ROCKY MO		_			NO. 6062		
SOW NO.	784				EPORT NO. 5	5058	
LAB SAMPLE ID. NO			fied a	nd Measured			
	<u>.</u>			Medium			
Concentration: Matrix: Water	Soil	X	_ Slu	dge Ot	ther	_	
		mg/kg	dry w	eight		· ·	
1. ALUMINUM	6150	P	13.	MAGNESIUM	[3630]	P	
2. ANTIMONY	210	P	14.	MANGANESE	225	P	
3. ARSENIC	7.90	F	15.	MERCURY	0.2U	CV	
4. BARIUM	[18]	P	16.	NICKEL	[12]	P	
5. <u>BERYLLIUM</u>	0.790	P	17.	POTASSIUM	[494]	P	
6. <u>CADMIUM</u>	4U	P	18.	SELENIUM	4U	FR	
7. CALCIUM	11700	P	19.	SILVER	2.40	P	
8. CHROMIUM	8.5	P	20.	SODIUM	5180	P	
9. <u>COBALT</u>	[7.2]	P	21.	THALLIUM	7.90	F	
10. COPPER	25	P	22.	TIN	130	P	
11. <u>IRON</u>	15400	P	23.	VANADIUM	[15]	P	
12. <u>LEAD</u>	22	F	24.	ZINC	84	P	
Cyanide							
Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.							
Comments:							

Lab Manager _

JML

	<u>Form I</u> 00007						0007
Samp P.O.	le Manage Box 818	cract Laboratory ement Office - Alexandria, VA FTS: 8-557-2490	22313			EFA Sample MBG314 6-26-8	
		INORGANIC	ANALYS	IS DA'	TA SHEET		
LAB	NAME ROCI	KY MOUNTAIN ANALY	TICAL		CASI	E NO. <u>6062</u>	
SOW LAB	NO. SAMPLE II	784 D. NO			QC I	REPORT NO.	56058
		Elements	Identif	ied a	nd Measured		
	centration ix: Wate		<u>X</u>		Medium	Other	
			mg∕kg	dry w	eight		
1.	ALUMINUM	9750	P	13.	MAGNESIUM	18000	P
2.	ANTIMONY	380	P	14.	MANGANESE	281	P
з.	ARSENIC	150	F	15.	MERCURY	0.6	<u> </u>
4.	BARIUM	[118]	P	16.	NICKEL	[38]	<u>P</u>
5.	BERYLLIU	M. 1.5U	P	17.	POTASSIUM	[1600]	P
6.	CADMIUM	7.40	P	18.	SELENIUM	7.40	<u>FR</u>
7.	CALCIUM	98000	P	19.	SILVER	4.4U	P
8.	CHROMIUM	95	P	20.	SODIUM	960U	P
9.	COBALT	100	P	21.	THALLIUM	15V	F
10.	COPPER	115	<u>P</u>	22.	TIN	240	P
11.	IRON	22800	P	23.	VANADIUM	[58]	P
12.	LEAD	376	P X	24.	ZINC	912	P
Cya	nide	NR	<u> </u>	Perc	ent Solids <u>(%</u>	.) 34	·
Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.							
COM	Comments:						

Lab Manager _______

ORGANIC DATA REPORTING QUALIFIERS

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of such flags must be explicit.

J

В

- Value -If the result is a value greater than or equal to the detection limit, report the value.
- U -Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g., 10U) based on necessary concentration/dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U-Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.
 - -Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g., 103)
- C -This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >10 ng/ul in the final extract should be confirmed by GC/MS.
 - -This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- Other -Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report.

Organics Analysis Data Sheet (Page 1)

Laboratory Name: California Analyt	ical Laboratories, inc.	Case No: <u>6062</u>	
Lab Sample ID No: L2081		QC Report No: 146	
Sample Matrix: SOIL		Contract No: 68-01-6958	
Data Release Authorized By:	mo	Date Sample Received: 6/16/86	

Volatile Compounds

Date Extracted/Prepared: 6/25/86

Date Analyzed: 6/25/86

Concentration: Low

pH: 7.8 Conc/Dil Factor: _1____

Percent Moisture: 34

Percent Moisture (Decanted): NR.

CAS

Number		ug/Kg
74-87-3	Chioromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyl Chloride	10 U
75-00-3	Chloroethane	10 U
75-09-2	Methylene Chloride	120 B
67-64-1	Acetone	8 BJ
75-15-0	Carbon Disutfide	5 U
75-35-4	1,1-Dichloroethene	5 U
75-34-3	1,1-Dichloroethane	5 U
156-60-8	Trans-1,2-Dichloroethene	50
87-66-3	Chloroform	5 U
107-06-2	1,2-Dichloroethane	50
78-93-3	2-Butanone	7 BJ
71-55-6	1,1,1-Trichloroethane	ຮບ
56-23-8	Carbon Tetrachioride	5 U
108-05-4	Vinyi Acetate	10 U
75-27-4	Bromodichioromethane	5 U

Number		ug/Kg
78-87-5	1,2-Dichioropropane	5 U
10061-02-6	Trans-1,3-Dichloropropene	SU
79-01-6	Trichloroethene	ទប
124-48-1	Dibromochloromethane	ຣບ
79-00-5	1,1,2-Trichioroethane	5 U
71-43-2	Benzene	5 U
10061-01-5	cis-1,3-Dichloropropene	5 U
110-75-8	2-Chioroethylvinylether	10 U
75-25-2	Bromotorm	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	50
79-34-5	1,1,2,2-Tetrachioroethane	5 U
108-68-3	Toluene	5 U
108-00-7	Chlorobenzene	8 U
100-41-4	Ethylbenzene	6 U
100-42-5	Styrene	ŝŲ
	Total Xylenes	5 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample U the sample
- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). If limit of detection is 10ug/ and a concentration of 3ug/l is calculated, report as 3J J

- This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GC/MS. С
- This flag is used when the analyts is found in the blank as well as a sample. It indicates possible/probable blank contamination and wams the data user to take 8 appropriate action.

Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report.

Ü

- NA Not Analyzed.
- See cover letter. Not Required. Spiked Compound. NR ŝ,

Prepared by: 🛫

CLF: 11/14/85

Form I

10/85

Organics Analysis Data Sheet (Pagè 2)

Semivolatile Compounds

Concentration: Low	GPC Cleanup: NO
Date Extracted/Prepared: 6/20/86	Separatory Funnel Extraction: YES
Date Analyzed: 7/7/86	Continuous Liquid - Liquid Extraction: NO
Conc/Dil Factor: 20G/1ML	

С	Þ	1	S		
			-	1	

Number		ug/Kg
108-95-2	Phenol	530 U
111-44-4	bis(-2-Chloroethyl)Ether	330 U
95-57-8	2-Chlorophenol	530 U.
841-73-1	1,3-Dichlorobenzene	330 U
105-46-7	1,4-Dichlorobenzene	330 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	330 U
95-48-7	2-Methylphenol	330 U
39638-32-9	bis(2-chlorolsopropyl)Ether	330 U
106-44-5	4-Methylphenol	330 U
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachloroethane	330 U
98-95-3	Nitrobenzene	\$30 U
78-59-1	Isophorone	330 U
88-75-5	2-Ntrophenol	330 U
105-67-9	2,4-Dimethylphenol	330 U
65-85-0	Benzoic Acid	1600 U
111-91-1	bis(-2-Chloroethoxy)Methane	\$30 U
120-83-2	2,4-Dichlorophenol	330 U
120-82-1	1,2,4-Trichiorobenzene	330 U
91-20-3	Naphthalene	87 J
106-47-8	4-Chioroaniline	530 U
87-68-3	Hexachiorobutadiene	330 U
59-50-7	4-Chloro-S-Methylphenol	330 U
91-57-6	2-Methylnaphthalene	53 J
77-47-4	Hexachlorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
85-95-4	2,4,5-Trichlorophenol	1600 U
91-58-7	2-Chloronaphthalene	330 U
88-74-4	2-Ntroaniline	1600 U
131-11-3	Dimethyl Phthalate	330 U
208-96-8	Acenaphthylene	330 U
99-09-2	3-Nitroaniline	1600 U -

lumber		ug/Kg
3-32-9	Acenaphthene	330 U
1-28-5	2,4-Dinitrophenol	1600 U
00-02-7	4-Nitrophenol	79 J
32-64-9	Dibenzofuran	530 U
21-14-2	2,4-Dinitrotoluene	330 U
06-20-2	2,6-Dinkrotoluene	330 U
4-66-2	Diethylphthalate	<u>330 U</u>
005-72-3	4-Chlorophenyl-phenylether	330 U
6-73-7	Fluorene	330 U
00-01-6	4-Nitrosniline	1600 U
34-52-1	4,6-Dinttro-2-Methylphenol	1600 U
6-30-6	N-Nitrosodiphenylamine(1)	530 U
01-55-3	4-Bromophenyl-phenylether	330 U
18-74-1	Hexachlorobenzene	33 0 U
7-85-5	Pentachiorophenol	64 J
15-01-8	Phenanthrene	140 J
20-12-7	Anthrácene	250 J
4-74-2	Di-n-Butyiphthalate	610 B
206-44-0	Fluoranthene	190 J
29-00-0	Рутеле	91 J
15-68-7	Butylbenzylphthalate	330 U
91-94-1.	3,3'-Dichlorobenzidine	660 U
56-55-3	Benzo(a)Anthracene	\$30 U
17-81-7	bis(2-Ethylhexyl)Phthalate	530 U
218-01-9	Chrysene	130 J
117-84-0	Di-n-Octyl Phthalate	330 U
205-99-2	Benzo(b)Fluoranthene	69 J
207-08-9	Benzo(k)Fluoranthene	69 J
50-32-8	Benzo(a)Pyrene	110 J
193-39-5	indeno(1,2,3-cd)Pyrene	330 U
53-70-3	Dibenz(a,h)Anthracene	330 U

(1) - Cannot be separated from diphenylamine

CLF: 10/11/85

j

É

Form I

Prepared by:

7/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration: LOW Date Extracted/Prepared: 6/20/86

Date Analyzed: 7/2/86

ł

Conc/Dil Factor: 0.99G/5ML

Separatory Funnel Extraction: YES

GPC Cleanup: NO

Continuous Liquid - Liquid Extraction: NO.

CAS

Number		ug/Kg
319-84-6	Alpha-BHC	8.0 U
319-85-7	Beta-BHC	8.0 U
319-86-8	Delta-BHC	8.0 U
58-89-9	Gemme-BHC (Lindane)	8.0 U
76-44-8	Heptachlor	8.0 U
309-00-2	Aldrin	8.0 U
1024-57-3	Heptachlor Epoxide	8.0 U
959-98-6	Endosultan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4,4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan II	16 U
72-54-8	4,4'-DDD	16 U
1031-07-8	Endosultan Sultate	16 U
50-29-3	4,4'-DDT	16 U
72-43-5	Methoxychior	. 80 U
53494-70-5	Endrin Ketone	16 U
57-74-9	Chlordane	· 80 U
8001-35-2	Tozaphene	160 U
12674-11-2	Arocior-1016	80 U
11104-28-2	Aroclor-1221	80 U
11141-16-5	Aroclor-1232	80 U
53469-21-9	Arocior-1242	80 U
12672-29-8	Arocion-1248	80 U
11097-69-1	Arocior-1254	160 U
11096-82-5	Aroclor-1260	160 U

- V_i = Volume of extract injected (ul)
- Vs= Volume of water extracted (ml)
- Ws= Weight of sample extracted (g)
- Vt = Volume of total extract (ul)

V_s = NR

or W_s =0.99

 $v_1 = 3000$ $V_1 = 5$ Prepared by:

7/85

Organics Analysis Data Sheet (Page 1)

Laboratory Name: <u>California Analytical</u> J Lab Sample ID No: <u>L2082</u>	aboratories, inc.	Case No: <u>6062</u> QC Report No: <u>146</u> Contract No: <u>68-01-6958</u>			
Sample Matrix: SOIL Data Release Authorized By:		Date Sample Received: 6/16/86			
Volatile Compounds					

Concentration: Low Date Extracted/Prepared:6/25/86

Date Analyzed: 6/25/86

Conc/Dil Factor: _____PH: 7.7

Percent Moisture: 32____

Percent Moisture (Decanted): NR

- - -

Number		ug/Kg
74-87-3	Chloromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyi Chioride	10 U
75-00-3	Chloroethane	10 U
75-09-2	Methylene Chioride	5.8J
67-64-1	Acetone	9 BJ
75-15-0	Carbon Disulfide	5 U
75-35-4	1,1-Dichloroethene	5 U
75-34-3	1,1-Dichlorosthane	5 U
156-60-5	Trans-1,2-Dichlorosthene	5 U
67-66-3	Chloroform	5 U
107-06-2	1,2-Dichlorosthane	5 U
78-93-3	2-Butanone	9 BJ
71-55-6	1,1,1-Trichloroethane	6 U
56-23-5	Carbon Tetrachloride	50
108-05-4	Vinyl Acetate	10 U
75-27-4	Bromodichioromethane	<u>5U</u>

CAS		
Number		ug/Kg
78-87-8	1,2-Dichloropropene	<u>ទប</u>
10061-02-6	Trans-1,3-Dichloropropene	5 U
79-01-6	Trichloroethene	5 U
124-48-1	Dibromochloromethane	5 U
79-00-5	1,1,2-Trichloroethans	5 U
71-43-2	Benzene	5 U
10061-01-5	cle-1,3-Dichloropropene	5 U
110-75-8	2-Chioroethylvinylether	10 U
75-25-2	Bromotorm	50
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	5 U
79-34-5	1,1,2,2-Tetrachioroethane	5 U
108-88-3	Toluene	6 U
108-90-7	Chiorobenzene	5 U
100-41-4	Ethylbenzene	ຣບ
100-42-5	Styrene	· 5 U
	Total Xylenes	5 U_

Deta Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

C

Value If the result is a value greater than or equal to the detection limit, report the value.

U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). If limit of detection is 10ug/ and a concentration of 3ug/l is calculated, report as 3J

- This flag applies to pesticide parameters where the identification has been confirmed by GCMS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GCMS
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warms the data user to take appropriate action.

Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data

NA Not Analyzed.

Prepared by:.

	See cover letter.
ŇR	Not Required.
	Spiked Compound.
8	
	ha

L

ł

ł

Form I

112

Organics Analysis Data Sheet (Page 2)

Semivolatile Compounds

CAS

Concentration: Low
Date Extracted/Prepared: 6/20/86
Date Analyzed: 7/3/86
Conc/DiL Factor: 20G/1ML

GPC Cleanup: NO Separatory Funnel Extraction: YES Continuous Liquid - Liquid Extraction: NO_

CAS Number		ug/Kg
108-95-2	Phenol	330 U
111-44-4	bis(-2-Chlorosthyl)Ether	330 U
95-57-8	2-Chlorophenol	330 U
541-73-1	1,3-Dichlorobenzene	330 U
106-46-7	1,4-Dichlorobenzene	330 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichiorobenzene	330 U
95-48-7	2-Methylphenol	330 U
39638-32-9	bis{2-chlorolsopropyl)Ether	33 <u>0 U</u>
106-44-5	4-Methylphenol	330 U
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachioroethane	330 U
98-95-3	Nitrobenzene	330 U
78-59-1	Isophorone	33 0 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	330 U
65-85-0	Benzoic Acid	1600 U
111-91-1	bis(-2-Chloroethoxy)Methane	330 U
120-83-2	2,4-Dichlorophenol	330 U
120-82-1	1,2,4-Trichlorobenzene	330 U
91-20-3	Naphthalene	330 U
106-47-8	4-Chloroaniline	330 U
87-68-3	Hexachiorobutadiene	330 U
59-50-7	4-Chioro-3-Methylphenol	330 U
91-57-6	2-Methylnaphthalene	330 U
77-47-4	Hexachiorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
95-95-4	2,4,5-Trichiorophenol	1600 U
91-58-7	2-Chloronaphthalene	330 U
88-74-4	2-Nitroeniline	1600 U
131-11-3	Dimethyl Phthalate	330 U
208-96-8	Acenaphthylene	\$30 U
99-09-2	3-Nitroaniline	1600 U

Number		ug/Kg
83-32-9	Acenaphthene	330 U
51-28-5	2,4-Dinkrophenol	1600 U
100-02-7	4-Nitrophenol	1600 U
132-64-9	Dibenzofuran	330 U
121-14-2	2,4-Dinitrotoluene	330 U
606-20-2	2,6-Dintrotoluene	330 U
84-66-2	Diethylphthalate	330 U
7005-72-3	4-Chlorophenyl-phenylether	330 U
86-73-7	Fluorene	330 U
100-01-6	4-Nitroeniline	1600 U
534-52-1	4,5-Dinitro-2-Methylphenol	1600 U
86-30-6	N-Nitrosodiphenylamine(1)	330 U
101-85-3	4-Bromophenyl-phenylether	\$30 U
118-74-1	Hexachlorobenzene	330 U
87-86-5	Pentachiorophenol	1600 U
85-01-8	Phenanthrene	63 J
120-12-7	Anthracene	330 U
84-74-2	Di-n-Butyiphthalate	560 B
206-44-0	Fluoranthene	330 U
129-00-0	Pyrene	. <u>81 J</u>
85-68-7	Butylbenzylphthelate	\$30 U
91-94-1	3,3'-Dichlorobenzidine	660 U
56-55-3	Benzo(a)Anthracene	330 U
117-81-7	bis(2-Ethylhexyl)Phthalate	3000
218-01-9	Chrysene	330 U
117-84-0	Di-n-Octyl Phthalate	330 U
205-99-2	Benzo(b)Fluoranthene	330 U
207-08-9	Benzo(k)Fluoranthene	330 U
50-32-8	Benzo(s)Pyrene	270 J
193-39-5	Indeno(1,2,3-cd)Pyrene	330 U
53-70-3	Dibenz(a,h)Anthracene	330 U
191-24-2	Benzo(g,h,l)Perylene	330 U

(1) - Cannot be separated from diphenylamine

Prepared by:

113

CLF: 10/11/85

Form I

7/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs GPC Cleanup: NO Concentration: LOW Separatory Funnel Extraction: YES Date Extracted/Prepared: 6/20/86 Continuous Liquid - Liquid Extraction: NO Date Analyzed: 7/2/86 Conc/Dil Factor: 1.0G/5ML

CAS Number	-	ug/Ks
319-84-6	Alpha-BHC	8.0 U
319-85-7	Beta-BHC	8.0 U
319-86-8	Delta-BHC	8.0 U
58-89-9	Gamma-BHC (Lindane)	8.0 U
76-44-8	Heptachlor	8.0 U
309-00-2	Aldrin	8.0 U
1024-57-3	Heptachlor Epoxide	8.0 U
959-98-8	Endosultan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4,4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan II	16 U
72-54-8	4,4'-DDD	16 U
1031-07-8	Endosultan Sultate	16 U
50-29-3	4,4'-DDT	16 U
72-43-5	Methoxychior	80 U
53494-70-5	Endrin Ketone	16 U
57-74-9	Chlordane	30 U
8001-35-2	Toxaphene	160 U
12674-11-2	Aroctor-1016	80 U
11104-28-2	Aroclor-1221	80 U
11141-16-5	Aroclor-1232	80 U
53469-21-9	Arocior-1242	80 U
12672-29-6	Arocior-1248	\$ 0 ປ
11097-69-1	Arocior-1254	160 U
11096-82-5	Arocior-1260	160 U

V_i = Volume of extract injected (ul)

V_S= Volume of water extracted (ml)

Ws= Weight of sample extracted (g)

V_t = Volume of total extract (ul)

 $V_s = NR$

or W_s =1.0

 $V_{t} = 5000$

 $V_i = 5$ 114 Prepared by: 45 Mm

7/85

Organics Analysis Data Sheet (Page 1)

Laboratory Name: California Analytical Laboratories, Inc.

Lab Sample ID No: L2083

Sample Matrix: SOIL

Data Release Authorized By: .

Case No: 6062	-
QC Report No: 146	
Contract Nu: 68-01-6958	

Date Sample Received: 6/16/86

.

Volatile Compounds

Concentration: Low

Amo

Date Extracted/Prepared:6/25/86

Date Analyzed: 6/25/86

DH: 8.0 Conc/Dil Factor: 1_

Percent Moisture: 27

Percent Moisture (Decanted): NR

~...

CAS	· ·	
Number		ug/l
74-87-3	Chloromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyi Chloride	10 U
75-00-3	Chioroethane	10 U
75-09-2	Methylene Chloride	71 B
67-64-1	Acetone	8 BJ
75-15-0	Carbon Disulfide	5 U
75-35-4	1,1-Dichioroethene	- 5 U
75-34-3	1,1-Dichloroethane	<u>នប</u>
156-60-5	Trans-1,2-Dichloroethene	5 U
67-66-3	Chiorotorm	5 U
107-06-2	1,2-Dichloroethane	50
78-93-3	2-Butanone	9 BJ
71-55-6	1,1,1-Trichloroethane	5 U
56-23-5	Carbon Tetrachloride	5 U
108-05-4	Vinyl Acetate	10 U
75-27-4	Bromodichioromethane	5 U

CAS Number		ug/Kg
78-87-5	1,2-Dichloropropane	5 U
10061-02-6	Trans-1,3-Dichloropropene	6 U
79-01-6	Trichloroethene	5 U
124-48-1	Dibromochloromethane	5 U
79-00-5	1,1,2-Trichloroethane	5 U
71-43-2	Benzene	5 U
10061-01-5	cla-1,3-Dichloropropene	5 U
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromotorm	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hezanone	10 U
127-18-4	Tetrachloroethene	5 U
79-34-5	1,1,2,2-Tetrachloroethane	5 U
108-88-3	Toluene	5 U
108-90-7	Chloroberzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	5 U
	Total Xylenes	5 U

Deta Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample U the sample
- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). It limit of detection is "pug/l and a concentration of Sug/l is calculated, report as J Ъ

- This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GC/MS С
- This flag is used when the analyte is found in the blank Ĥ as well as a sample. It indicates possible/probable blank contamination and warms the data user to take appropriate action.
- Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data

٠ų

- summary report. Not Analyzed. See cover letter. NA

Prepared by:

- NR S Not Required. Spiked Compound.

155

Form I

Organics Analysis Data Sheet (Page 2)

Semivolatile Compounds

Concentration: Low	GPC Cleanup: NO
Date Extracted/Prepared: 6/20/86	Ceparatory Funnel Extraction: YES
Date Analyzed: 7/3/86	Continuous Liquid - Liquid Extraction: NO
Conc/Dil. Factor: 22G/1ML	

CAS Number		ug/Kg
108-95-2	Phenol	330 U
111-44-4	ble(-2-Chloroethyl)Ether	530 U
95-57-8	2-Chlorophenol	330 U
541-73-1	1,3-Dichlorobenzene	530 U
106-46-7	1,4-Dichlorobenzene	330 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	330 U
95-48-7	2-Methylphenol	330 U
39638-32-9	bis(2-chloroisopropyl)Ether	330 U
106-44-5	4-Methylphenol	330 U
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachloroethane	330 U
98-95-3	Nitrobenzene	330 U
78-59-1	Isophorone	13 0 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2;4-Dimethylphenol	330 U
65-85-0	Benzoic Acid	1600 U
111-91-1	bis(-2-Chioroethoxy)Methane	530 U
120-83-2	2,4-Dichlorophenol	\$30 U
120-82-1	1,2,4-Trichlorobenzene	330 U
91-20-3	Naphthelene	130 J
106-47-8	4-Chioroeniline	330 U
87-68-3	Hexachlorobutadiene	330 U
59-50-7	4-Chloro-S-Methylphenol	330 U
91-57-6	2-Methylnaphthalene	200 J
77-47-4	Hexachiorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
95-95-4	2,4,5-Trichlorophenol	1600 U
91-58-7	2-Chloronaphthalane	330 U
88-74-4	2-Nitroaniline	1600 U
131-11-3	Dimethyl Phthalate	530 U
208-96-8	Acenaphthylene	330 U
99-09-2	3-Ntroanlline	1600 U

CAS

Number		ug/Kg
83-32-9	Acenaphthene	\$30 U
51-28-5	2,4-Dinitrophenol	1600 U
100-02-7	4-Nitrophenol	1600 U
132-64-9	Dibenzofuran	42 J
121-14-2	2,4-Dinitrotoluene	330 U
606-20-2	2,6-Dinitrotoluene	530 U
84-66-2	Disthylphthalate	330 U
7005-72-3	4-Chlorophenyl-phenylether	330 U
86-73-7	Fluorene	330 U
100-01-5	4-Nitroenlline	1600 U
534-52-1	4,6-Dinitro-2-Methylphenol	1600 U
86-30-6	N-Nitrosodiphenylamine(1)	330 U
101-55-3	4-Bromophenyl-phenylether	330 U
118-74-1	Hexachlorobenzene	330 U
87-86-5	Pentachiorophenol	1600 U
85-01-8	Phenanthrene	150 J
120-12-7	Anthracene	330 U
84-74-2	Di-n-Butyiphthalate	270 BJ
206-44-0	Fluoranthene	60 J
129-00-0	Pyrene	120 J
85-68-7	Butylbenzylphthalate	330 U
91-94-1	3,3'-Dichiorobenzidine	660 U
56-55-3	Benzo(a)Anthracene	\$30 U
117-81-7	bis(2-Ethylhexyl)Phthelate	330 U
218-01-9	Chrysene	120 J
117-84-0	Di-n-Octyl Phthalate	330 U
205-99-2	Benzo(b)Fluoranthene	330 U
207-08-9	Benzo(k)Fluoranthene	330 U
50-32-8	Benzo(a)Pyrene	\$30 U
193-39-5	Indeno(1,2,3-cd)Pyrene	330 U
53-70-3	Dibenz(s,h)Anthracene	330 U
191-24-2	Benzo(g,h,l)Perylene	

(1) - Cannot be separated from diphenylamine

Prepared by:

Form I

1

ţ

7/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs GPC Cleanup: NO

Concentration: LOW	·····	—
Date Extracted/Prepared: 6/20/86		
Date Analyzed: 7/2/86		
Conc/Dil Factor: 1.1G/5ML		

Separatory Funnel Extraction: YES

Continuous Liquid - Liquid Extraction: NO

Number		
319-84-6	Alpha-BHC	8.0 U
319-85-7	Beta-BHC	E.O U
319-86-8	Delta-BHC	8.0 U
58-89-9	Gamma-BHC (Lindane)	8.0 U
76-44-8	Heptachior	8.0 U
309-00-2	Aidrin	8.0 U
1024-57-3	Heptachlor Epoxide	8.0 U
959-98-6	Endosultan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4,4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan li	16 U
72-54-8	4,4'-DDD	16 U
1031-07-8	Endoeultan Sulfate	16 U
50-29-3	4,4'-DDT	16 U
72-43-8	Methoxychior	80 U
53494-70-5	Endrin Ketone	16 U
57-74-9	Chlordane	80 U
8001-35-2	Tozaphene	160 U
12674-11-2	Arocior-1016	80 U
11104-28-2	Aroclor-1221	80 U
11141-16-5	Arocior-1232	80 U
53469-21-9	Arocior-1242	80 U
12672-29-6	Arocior-1248	80 U
11097-69-1	Aroclor-1254	160 U
11095-82-5	Aracion-1260	160 U

- V_i = Volume of extract injected (ul)
- Vs= Volume of water extracted (ml)
- Ws= Weight of sample extracted (g)
- V_t = Volume of total extract (ul)

 $V_s = NR$

Form I

Sample	Number
BG	921

Organics Analysis Data Sheet (Page 1)

Laboratory Name: California Anal	rtical Laboratories, inc.	Case No: 6062	
Lab Sample ID No: L2084		QC Report No: 145	
Sample Matrix: SOIL		Contract No: 68-01-6958	
Data Release Authorized By: / MM		Date Sample Received: 6/16/86	
	Volatile C	ompounds	-
(Concentration: Low		
_			

Date Extracted/Prepared: 6/25/86 Date Analyzed: 6/25/86

Conc/Dil Factor: 1 DH: 8.1

Percent Moisture: 37

Percent Moisture (Decanted): NR

CAS Number		ug/Kg
74-87-3	Chloromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyi Chioride	10 U
75-00-3	Chioroethane	10 U
75-09-2	Methylene Chloride	68 B
67-64-1	Acetone	9 8J
75-15-0	Carbon Disulfide	5 U
75-35-4	1,1-Dichloroethene	50
75-34-3	1,1-Dichloroethane	5 U
156-60-5	Trans-1,2-Dichloroethene	5 U
67-66-3	Chloroform	5 U
107-06-2	1,2-Dichloroethane	5 U
78-93-3	2-Butanone	9 BJ
71-55-6	1,1,1-Trichloroethane	8 Ū
56-23-5	Carbon Tetrachiorida	5 U
108-05-4	Vinyi Acetate	10 U
75-27-4	Bromodichloromethane	5 U

- - -

CLF: 11/14/85

CAS		
Number		ug/Kg
78-87-5	1,2-Dichloropropane	5 U
10061-02-6	Trans-1,3-Dichloropropene	50
79-01-6	Trichloroethene	5 U
124-48-1	Dibromochloromethane	5 U
79-00-5	1,1,2-Trichloroethane	5 U
71-43-2	Benzene	5 U
10061-01-5	cis-1,3-Dichloropropene	5 U
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromotorm	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	5 U
79-34-5	1,1,2,2-Tetrachioroethane	8 U
108-88-3	Toluene	5 U
108-90-7	Chlorobenzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	5 U
	Total Xylenes	5 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Value If the result is a value greater than or equal to the detection limit, report the value.

U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with nepor: we minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). If limit of detection is 10ug/ and a concentration of 3ug/l is calculated, report as 3J L

- This flag applies to pesticide parameters where the identification has been confirmed by GCMS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GCMS
- This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warms the data user to take appropriate action. B

Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report. Not Analyzed.

260

10/85

NA See cover letter.

С

- . NR Not Required.
 - Spiked Compgund.
- Prepared by: Form I

Organics Analysis Data Sheet (Page 2)

Semivolatile Compounds

Concentration: Low		
Date Extracted/Prepared: 6/20/86		
Date Analyzed: 7/8/86	·	
Conc/Dil Factor: 19G/1ML		

GPC Cleanup: NO Separatory Funnel Extraction: YES Continuous Liquid - Liquid Extraction: NO

С	AS	

1

1

ŧ

a section of the sect

白素

Ì

Number		ug/Kg
108-95-2	Phenol	330 U
111-44-4	bis(-2-Chioroethy1)Ether	330 U
95-57-8	2-Chiorophenol	330 U
541-73-1	1,3-Dichlorobenzene	330 U
106-46-7	1,4-Dichiorobenzene	330 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	330 U
95-48-7	2-Methylphenol	330 U
39638-32-9	bis(2-chiorolsopropyi)Ether	330 U
106-44-5	4-Methylphenol	330 U
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachloroethane	33 0 U
98-95-3	Nitrobenzene	\$30 U
78-59-1	teophorone	33 0 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	33 0 U
65-85-0	Benzoic Acid	1600 U
111-91-1	bis(-2-Chioroethoxy)Methane	330 U
120-83-2	2,4-Dichiorophenol	330 U
120-82-1	1,2,4-Trichlorobenzene	330 U
91-20-3	Naphthelene	54 J
106-47-8	4-Chioroeniline	330 U
87-68-3	Hexachiorobutadiene	330 U
59-50-7	4-Chloro-3-Methylphenol	330 U
91-57-6	2-Methyinaphthalene	87 J
77-47-4	Hexachiorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
95-95-4	2,4,5-Trichlorophenol	1600 U
91-58-7	2-Chioronaphthalene	330 U
88-74-4	2-Nitroaniline	1600 U
131-11-3	Dimethyl Phthalate	330 U
208-96-8	Acenaphthylene	530 U
99-09-2	3-Nitroaniline	1600 U

Number		ug/Kg
83-32-9	Acenaphthene	330 U
51-28-5	2,4-Dinkrophenol	1600 U
100-02-7	4-Nitrophenol	1600 U
132-64-9	Dibenzofuran	\$30 U
121-14-2	2,4-Dintrotoluene	550 U
606-20-2	2,6-Dinitrotoluene	530 U
84-66-2	Diethylphthalate	530 U
7005-72-3	4-Chlorophenyl-phenylether	330 U
86-73-7	Fluorene	330 U
100-01-6	4-Nitroeniline	1600 U
534-52-1	4,6-Dinitro-2-Methylphenol	1600 U
86-30-6	N-Nitrosodiphenylamine(1)	330 U
101-65-3	4-Bromophenyl-phenylether	330 U
118-74-1	Hexachlorobenzene	530 U
87-86-6	Pentachiorophenol	1600 U
85-01-8	Phenanthrene	75 J
120-12-7	Amhracene	330 U
84-74-2	Di-n-Butylphthalate	230 BJ
206-44-0	Ruoranthene	50 J
129-00-0	Pyrene	50 J
85-68-7	Butylbenzylphthelate	330 U
91-94-1	3,3'-Dichlorobenzidine	660 U
56-55-3	Benzo(a)Anthracene	330 U
117-81-7	bis(2-Ethylhexyl)Phthalate	150 J
218-01-9	Chrysene	58 J
117-84-0	Di-n-Octyl Phthalate	330 U
205-99-2	Benzo(b)Fluoranthene	330 U
207-08-9	Benzo(k)Fluoranthene	330 U
50-32-8	Benzo(a)Pyrene	330 U
193-39-5	Indeno(1,2,3-cd)Pyrene	\$30 U
63-70-3	Dibenz(s,h)Anthracene	\$30 U
191-24-2	Benzo(g,h,l)Perylene	330 U

(1) - Cannot be separated from diphenylamine mo.

Prepared by:

261

CLF: 10/11/85

Form I

7/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration: LOW	GPC Cleanup: NO
	Separatory Funnel Extraction: <u>YES</u>
Date Extracted/Prepared: 6/20/86	
Date Analyzed: 7/2/86	Continuous Liquid - Liquid Extraction: NO
Conc/Dil Factor: 0.95G/5ML	
	•

CAS Number	•	ug/Kg
319-84-6	Alpha-BHC	8.0 U
319-85-7	Beta-BHC	8.0 U
319-86-8	Deta-BHC	8.0 U
58-89-9	Gamma-BHC (Lindane)	8.0 U
75-44-8	Heptachlor	8.0 U
309-00-2	Aldrin	8.0 U
1024-57-3	Heptachlor Epoxide	8.0 U
959-98-8	Endosultan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4.4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan li	16 U
72-54-8	4,4'-DDD	16 U
	Endosultan Sultate	16 U
1031-07-8	4,4'-DDT	16 U
50-29-3		80 U
.72-43-5	Methoxychior	16 U
53494-70-5	Endrin Ketone	80 U
87-74-9	Chlordane	160 U
8001-35-2	Toxaphene	80 U
12674-11-2	Aroclor-1016	
11104-28-2	Arocior-1221	U 08
11141-16-5	Arocior-1232	80 U
53459-21-9	Arocior-1242	60 U
12672-29-6	Arocior-1248	80 U
11097-69-1	Aroclor-1254	160 U
11096-82-5	Arocior-1260	160 U

V_i = Volume of extract injected (ul)

Vs= Volume of water extracted (ml)

Ws= Weight of sample extracted (g)

 $V_t = Volume of total extract (ul)$

 $V_s = NR$

or W_S =0.95 -

Form I

Vi=5 262 1/2007/85 V_t = 5000 Prepared by:

CLF: 11/14/85

-

Section of the local distribution of the loc

. .

ł

Organics Analysis Data Sheet (Page 1)

Laboratory Name: California Analytical Laboratories. Inc. Case No: 6062 QC Report No: 145 Lab Sample ID No: L2085 Contract No: 68-01-6958 Sample Matrix: SOIL تعرير Date Sample Received: 6/16/86 Data Release Authorized By: . Volatile Compounds Concentration: Low Date Extracted/Prepared: 6/25/86

Date Analyzed: 6/25/86 pH: 7.4

Conc/Dil Factor: 1____

Percent Moisture: 38

Percent Moisture (Decanted): NR

CAS Number		ug/K
74-87-3	Chioromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyi Chioride	10 U
75-00-3	Chioroethane	10 U
75-09-2	Methylene Chloride	4 BJ
67-64-1	Acetone	10 B
75-15-0	Carbon Disulfide	5 U
75-35-4	1,1-Dichloroethene	ទប
75-34-3	1,1-Dichlorosthane	5 U
156-60-5	Trans-1,2-Dichioroethene	5 U
67-66-3	Chloroform	5 U
107-06-2	1,2-Dichloroethane	5 U
78-93-3	2-Butanone	8 D.
71-55-6	1,1,1-Trichloroethane	5 U
55-23-5	Carbon Tetrachloride	5 U
108-05-4	Vinyl Acetate	10 U
75-27-4	Bromodichioromethane	5 U

CAS Number		_ug/Kg
78-87-8	1,2-Dichioropropene	5 U
10061-02-6	Trans-1,3-Dichloropropene	5 U
79-01-6	Trichioroethene	SU
124-48-1	Dibromochloromethane	5 ប
79-00-5	1,1,2-Trichloroethane	5 U
71-43-2	Benzene	5 U
10061-01-5	cis-1,3-Dichloropropene	5 U
110-75-8	2-Chioroethylvinylether	10 U
75-25-2	Bromotorm	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	5 U
79-34-5	1,1,2,2-Tetrachioroethane	នប
108-88-3	Toluene	BU
108-90-7	Chlorobenzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	8 U
	Total Xylenes	8 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

C

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected. Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample U the sample
- Indicates an estimated value. This flag is used either macates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10.). If limit of detection is 10ug/l and a concentration of 3ug/l is calculated, report as 3J J

CLF: 11/14/85

- This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GC/MS
- This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warms the data user to take 8 appropriate action.

Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data

- summary report. Not Analyzed. NA
- See cover letter. Not Required. Spiked Compound. NR 8

Prepared by:

345

Form I

Organics Analysis Data Sheet (Page 2)

Semivolatile Compounds

Concentration: Low	GPC Cleanup: NO
Date Extracted/Prepared: 5/20/86	Separatory Funnel Extraction: YES
Date Analyzed: 7/8/86	Continuous Liquid - Liquid Extraction: NO
Conc/DiL Factor: 20G/1ML	

CAS

î

1

ł

1

Number		ug/Kg
108-95-2	Phenol	330 U
111-44-4	bis(-2-Chioroethyl)Ether	330 U
95-57-8	2-Chlorophenol	\$30 U
541-73-1	1,3-Dichlorobenzene	\$30 U
106-46-7	1,4-Dichiorobenzene	330 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	330 U
95-48-7	2-Methylphenoi	330 U
39638-32-9	bis(2-chloroisopropyl)Ether	330 U
106-44-5	4-Methylphenol	51 J
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachioroethane	330 U
98-95-3	Nitrobenzene	330 U
78-59-1	Isophorone	330 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	330 U
65-85-0	Benzoic Acid	1600 U
111-91-1	bis(-2-Chloroethoxy)Methane	330 U
120-83-2	2,4-Dichlorophenoi	330 U
120-82-1	1,2,4-Trichlorobenzene	\$30 U
91-20-3	Naphthalene	330 U
106-47-8	4-Chloroaniline	330 U
87-68-3	Hexachlorobutadiene	330 U
59-50-7	4-Chloro-3-Methylphenol	330 U
91-57-6	2-Methyinaphthalene	\$30 U
77-47-4	Hexachlorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
95-95-4	2,4,5-Trichlorophenol	1600 U
91-58-7	2-Chloronaphthalene	330 U
88-74-4	2-Ntroeniline	1600 U
131-11-3	Dimethyl Phthalate	330 U
208-96-8	Acenaphthylene	\$30 U
99-09-2	3-Nitroaniline	1600 U

CAS Number		ug/Kg
83-32-9	Acenaphthene	330 U
61-28-5	2,4-Dinttrophenol	1600 U
100-02-7	4-Nitrophanol	1600 U
132-64-9	Dibenzofuran	330 U
121-14-2	2,4-Dinkrotoluene	330 U
606-20-2	2,6-Dinitrotoluene	330 U
84-66-2	Disthylphthalate	330 U
7005-72-3	4-Chlorophenyl-phenylether	530 U
86-73-7	Fluorene	330 U
100-01-6	4-Nitroaniline	1600 U
534-52-1	4,6-Dinttro-2-Methylphenol	1600.U
86-30-6	N-Nitrosodiphenylamine(1)	330 U
101-65-3	4-Bromophenyl-phenylether	330 U
118-74-1	Hexachlorobenzene	330 U
87-86-5	Pentachlorophenol	1600 U
85-01-8	Phenanthrene	\$30 U
120-12-7	Anthracene	330 U
84-74-2	Di-n-Butyiphthelate	1#2 BJ
206-44-0	Fluoranthene	330 U
129-00-0	Pyrane	330 U
85-68-7	Butylbenzylphthalate	330 U
91-94-1	3,3'-Dichlorobenzidine	660 U
56-55-3	Benzo(a)Anthracene	330 U
117-81-7	bis(2-Ethylhexyl)Phthalate	260 J
218-01-9	Chrysene	57 J
117-84-0	Di-n-Octyl Phthalate	330 U
205-99-2	Benzo(b)Fluoranthene	\$30 U
207-08-9	Benzo(k)Fluoranthene	330 U
50-32-8	Benzo(a)Pyrene	330 U
193-39-5	Indeno(1,2,3-cd)Pyrene	330 U
63-70-3	Dibenz(a,h)Anthracene	330 U
191-24-2	Benzo(g,h,l)Perylene	330 U

(1) - Cannot be separated from diphenylamine

346

CLF: 10/11/85

Form I Prepared by:

7/85

 $V_i = 5$ $M_{7/85}$ 3.4.77/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration: LOW	GPC Cleanup: NO
Date Extracted/Prepared: 6/20/86	Separatory Funnel Extraction: YES
Date Analyzed: 7/2/86	Continuous Liquid - Liquid Extraction: NO
Conc/Dil Factor: 0.93G/5ML	•

CAS Number		ua/Ka
S19-84-6	Alpha-BHC	
319-85-7	Beta-BHC	8.0 U
		E.O.U
319-86-8	Detta-BHC	
58-89-9	Gamma-BHC (Lindane)	8.0 U
76-44-8	Heptachior	8.0 U
309-00-2	Aldrin	8.0 U
1024-57-3	Heptachior Epoxide	8.0 U
959-98-8	Endosulfan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4,4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan II	16 U
72-54-8	4,4'-DDD	16 U
1031-07-8	Endosultan Sulfate	16 U
50-29-3	4,4'-DDT	16 U
72-43-5	Methoxychior	80 U
53494-70-5	Endrin Ketone	16 U
57-74-9	Chiordane	80 U
8001-35-2	Toxaphene	160 U
12674-11-2	Arocior-1015	80 U
11104-28-2	Arocior-1221	80 U
11141-16-5	Arocior-1232	80 U
53459-21-9	Arocior-1242	80 U
12672-29-6	Arocior-1248	80 U
11097-69-1	Arocior-1254	160 U
11096-82-5	Arocior-1260	160 U

V_i = Volume of ext of injected (ul)

 V_s = Volume of water extracted (ml)

Ws= Weight of sample extracted (g)

V_t = Volume of total extract (ul)

 $V_s = NR$

or W_s =0.93

+

V_t = 5000

Prepared by:

Organics Analysis Data Sheet (Page 1)

aboratory Name: California Analytical Laboratories, Inc.	Case No: 6062
ab Sample ID No: L2086	QC Report No: 146
Sample Matrix: SOIL	Contract No: 68-01-6958
Data Release Authorized By:	Date Sample Received: <u>6/16/86</u>
Volatile	ompounds

Volatile Compounds

Concentration: Low

Date Extracted/Prepared:6/25/86

Date Analyzed: 6/25/86

pH: 7.5 Conc/Dil Factor: 1

Percent Moisture: 62

Percent Moisture (Decanted): NR

CAS

Number		ug/Kg
74-87-3	Chloromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyl Chloride	10 U
75-00-3	Chlorosthane	10 U
75-09-2	Methylene Chloride	12 B
67-64-1	Acetone	6# B
75-15-0	Carbon Disulfide	5.0
75-35-4	1,1-Dichlorosthene	8 U
75-34-3	1,1-Dichlorosthane	11
156-60-5	Trans-1,2-Dichloroethene	5 U
67-66-3	Chloroform	5 U
107-06-2	1,2-Dichloroethane	50
78-93-3	2-Butanone	101
71-55-6	1,1,1-Trichloroethane	5 U
56-23-5	Carbon Tetrachloride	5 U
108-05-4	Vinyl Acetate	10 U
75-27-4	Bromodichloromethane	50

Number		ug/K
78-87-5	1,2-Dichloropropane	5 U
10061-02-6	Trans-1,3-Dichloropropene	5 U
79-01-6	Trichloroethene	15
124-48-1	Dibromochloromethane	5 U
79-00-5	1,1,2-Trichloroethane	5 U
71-43-2	Benzene	5 U
10061-01-5	cls-1,3-Dichloropropene	5 U [.]
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromotorm	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hezanone	10 U
127-18-4	Tetrachloroethene	30
79-34-5	1,1,2,2-Tetrachiorosthane	5 U
108-68-3	Toluene	6
108-90-7	Chlorobenzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	5 U
	Total Xylenes	5 U`

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Value If the result is a value greater than or equal to the detection limit, report the value.

Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample u

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). If limit of detection is 10ug/ and a concentration of 3ug/ is calculated, report as 3J

This flag applies to pesticide parameters where the identification has been confirmed by GCMS. Single component pesticides >= 10 mg/ul in the final extract should be confirmed by GCMS С

This flag is used when the analyts is found in the blank as well as a sample. It indicates possible/probable blank contamination and warms the data user to take R appropriate action.

 Other
 Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report.

 NA
 Not Analyzed.

 See cover letter.

 NR
 Not Required.

 Spiked Compound.
 3.9.9

Prepared by:

399

Form I

Organics Analysis Data Sheet (Page 2)

Semivolatile Compounds

Concentration: Low	GPC Cleanup: NO
Date Extracted/Prepared: 6/20/86	Separatory Funnel Extraction: YES
Date Analyzed: 7/8/86	Continuous Liquid - Liquid Extraction: NO
Conc/DiL Factor: 12G/1ML	

CAS

CAS

Number		ug/Kg
108-95-2	Phenol	330 U
111-44-4	bis(-2-Chloroethyl)Ether	330 U
95-57-8	2-Chlorophenol	530 U
541-73-1	1,3-Dichlorobenzene	330 U
106-46-7	1,4-Dichlorobenzene	530 U
100-51-6	Benzyl Alcohol	120 J
95-50-1	1,2-Dichlorobenzene	330 U
95-48-7	2-Methylphenol	330 U
39638-32-9	bis(2-chlorolsopropyl)Ether	330 U
106-44-5	4-Methylphenol	220.J
621-64-7	N-Nitroso-Di-n-Propylamine	330 U
67-72-1	Hexachloroethane	330 U
98-95-3	Nitrobenzene	330 U
78-59-1	teophorone	330 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	330 U
65-85-0	Benzolc Acid	6000
111-91-1	bis(-2-Chloroethoxy)Methane	330 U
120-83-2	2,4-Dichlorophenol	330 U
120-82-1	1,2,4-Trichlorobenzene	330 U
91-20-3	Naphthalene	810
106-47-8	4-Chiorceniline	330 U
87-68-3	Hexachlorobutadiene	530 U
59-50-7	4-Chloro-3-Methylphenol	330 U
91-57-6	2-Methylnaphthalene	760
77-47-4	Hexachlorocyclopentadiene	530 U
88-06-2	2,4,6-Trichiorophenol	330 U
95-95-4	2,4,5-Trichlorophenol	1600 U
91-58-7	2-Chioronaphthalene	530 U
88-74-4	2-Nitroaniline	1600 U
131-11-3	Dimethyl Phthalate	330 U
208-96-8	Acensphthylene	170 J
99-09-2	3-Nitroeniline	1600 U

83-32-0 Acenaphthene 330 U 81-28-5 2,4-Dintrophenol 1600 U 100-02-7 4-Nitrophenol 1600 U 132.64-9 Dibenzofuran 160 J 121-14-2 2,4-Dintrotoluene 330 U 606-20-2 2,6-Dintrotoluene 330 U 84-66-2 Diethyliphthalate 330 U 84-66-2 Diethyliphthalate 330 U 84-66-2 Diethyliphthalate 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitrosodiphenyl-phenylether 330 U 85-73-7 Fluorene 97 J 100-01-6 4-Nitrosodiphenyl-phenylether 1600 U 85-73-7 Fluorene 97 J 100-01-6 4-Nitrosodiphenyl-phenylether 330 U 85-30-6 NNitrosodiphenyl-phenylether 330 U 118-74-1 Hezachlorophenol 120 J 127-12-7 Arthracene 330 U 120-12-7 Arthracene 310 J 44-74-2 Di-n-Butylphthalate 430 B	Number	·	ug/Kg
100-02-7 4-Nitrophenol 1600 U 132-64-9 Dibenzoturan 160 J 121-14-2 2,4-Dinitrotoluene 330 U 606-20-2 2,6-Dinitrotoluene 330 U 84-66-2 Diethylphthalate 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitroaniline 1600 U 85-73-7 Fluorene 97 J 100-01-6 4-Nitroaniline 1600 U 85-73-7 Fluorene 97 J 100-01-6 4-Nitrosodiphenylamine(1) 330 U 101-85-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 120-12-7 Arthracene 310 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2	83-32-9	Acenaphthene	330 U
132-64-9 Dibenzoturan 160 J 121-14-2 2,4-Dinitrotoluene 330 U 606-20-2 2,6-Dinitrotoluene 330 U 84-66-2 Diethyiphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitroanilline 1600 U 534-52-1 4,6-Dinitro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-65-3 4-Bromophenyl-phenylether 330 U 101-65-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hezachlorobenzene 330 U 187-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluorantherne 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-64-1 3,3'-Dichlorobenzidine 660 U	51-28-5	2,4-Dinttrophenol	1600 U
121-14-2 2,4-Dinitrotoluene 330 U 606-20-2 2,6-Dinitrotoluene 330 U 84-66-2 Diethylphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitrosonlline 1600 U 534-52-1 4,6-Dinitro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-65-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-3 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Anthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluoranthere 920 129-00 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 86-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylthexyl)Phthalate 1500 205-99-2 Benzo(b)Fluoranthere 1500 <	100-02-7	4-Nitrophenol	1600 U
606-20-2 2,6-Dinitrotoluene 330 U 84-66-2 Diethylphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitrosniline 1600 U 534-52-1 4,6-Dinitro-2-Methylphenol 1600 U 534-52-1 4,6-Dinitro-2-Methylphenol 1600 U 85-30-6 N-Nitrosodiphenyl-phenylether 330 U 101-65-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorophenyl-phenylether 330 U 118-74-1 Hexachlorophenol 120 J 85-01-8 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Artthracene 310 J 84-74-2 DI-n-Butylphthalate 439 B 206-44-0 Fluorarthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 86-65-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylhexyl)Phthalate </td <td>132-64-9</td> <td>Dibenzoturan</td> <td>160 J</td>	132-64-9	Dibenzoturan	160 J
84-56-2 Diethylphthalate 330 U 7005-72-3 4-Chlorophenyl-phenylether 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitroanlline 1600 U 534-52-1 4,5-Dinttro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 118-74-1 Hexachlorophenol 120 J 85-01-8 Pernachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 44-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluorenthere 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 6560 U 56-85-3 Benzo(a)Arnthracene 940 117-81-7 bis(2-Ethylhexyl)Phthalate 1600 117-84-0 Di-n-Octyl Phthalate 330	121-14-2	2,4-Dinitrotoluene	\$30 U
7005-72-3 4-Chiorophenyl-phenylether 330 U 86-73-7 Fluorene 97 J 100-01-6 4-Nitrosnilline 1600 U 534-52-1 4,6-Dinktro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pertachlorobenzene 330 U 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-76-2 Di-n-Butylpithalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylpithalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 86-85-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethylhexyl)Phthalate 1600 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(k)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene	606-20-2	2,6-Dinitrotoluene	530 U
86-73-7 Fluorene 97 J 100-01-6 4-Nitroeniline 1600 U 534-52-1 4,6-Dinktro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 18-74-1 Hexachlorobenzene 330 U 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluorenthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 66-85-3 Benzo(e)Anthracene 940 117-81-7 bia(2-Ethylbenzylphthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phithalate 330 U 205-99-2 Benzo(k)Fluoranthene 1500 80-32-8 Benzo(k)Fluoranthene 1500 <td>84-66-2</td> <td>Disthylphthelate</td> <td>330 U</td>	84-66-2	Disthylphthelate	330 U
100-01-5 4-Nitroaniline 1600 U 534-52-1 4,6-Dinttro-2-Methylphenol 1600 U 85-30-5 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylamine(1) 330 U 118-74-1 Hexachlorobenzene 330 U 87-85-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluorenthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 86-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylbenzylphthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluorenthene 1500 207-08-9 Benzo(k)Fluoranthene	7005-72-3	4-Chlorophenyl-phenylether	330 U
534-52-1 4,6-Dinktro-2-Methylphenol 1600 U 86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-76-2 Di-n-Butylpithalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylpithalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 665-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylthexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 530 U 205-99-2 Benzo(k)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1	86-73-7	Ruorene	97 J
86-30-6 N-Nitrosodiphenylamine(1) 330 U 101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-85-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethylhesyl)Phthalate 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(b)Fluoranthene 1500 80-32-8 Benzo(c)Pyrene 330 U 80-32-8 Benzo(b)Fluoranthene 1500 80-32-8 Benzo(c)Pyrene 330 U 80-32-8 Benzo(a)Pyrene 330 U <	100-01-6	4-Nitroaniline	1600 U
101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 439 B 206-44-0 Fluorenthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-65-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethylbexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(k)Fluorenthene 1500 207-08-9 Benzo(k)Fluorenthene 1500 80-32-8 Benzo(a)Pyrene 330 U 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	534-52-1	4,6-Dinktro-2-Methylphenol	1600 U
101-55-3 4-Bromophenyl-phenylether 330 U 118-74-1 Hexachlorobenzene 330 U 87-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 439 B 206-44-0 Fluorenthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-65-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethylbexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(k)Fluorenthene 1500 207-08-9 Benzo(k)Fluorenthene 1500 80-32-8 Benzo(a)Pyrene 330 U 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	86-30-6	N-Nitrosodiphenylamine(1)	330 U
87-86-5 Pertachlorophenol 120 J 85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-76-2 Di-n-Butylpithalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylpithalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-68-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylthexyl)Pithalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Pithalate 530 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(c)Fluoranthene 1500 80-32-8 Benzo(c)Pyrene 330 U 80-32-8 Benzo(a)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	101-85-3		330 U
85-01-8 Phenanthrene 1000 120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 205-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylhesyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(c)Prene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	118-74-1	Hexachlorobenzene	330 U
120-12-7 Arthracene 310 J 84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylhexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(b)Fluoranthene 1500 80-32-8 Benzo(a)Pyrene 330 U 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	87-86-5	Pentachlorophanol	120 J
84-74-2 Di-n-Butylphthalate 430 B 206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 66-85-3 Benzo(e)Anthracene 940 117-81-7 bia(2-Ethythexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 80-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	85-01-8	Phenanthrene	1000
206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-65-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylbexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(c)Prene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	120-12-7	Anthracene	310 J
206-44-0 Fluoranthene 920 129-00-0 Pyrene 740 85-68-7 Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylbexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-64-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(b)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 330 U 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	84-74-2	Di-n-Butylphthalate	430 B
Robin Stress Butylbenzylphthalate 330 U 91-94-1 3,3'-Dichlorobenzidine 660 U 56-85-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethylhexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U		Fluoranthene	920
91-94-1 3,3'-Dichlorobenzidine 660 U 66-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethythexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 80-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Oibenz(a,h)Anthracene 330 U	129-00-0	Pyrene	740
91-94-1 3,3'-Dichlorobenzidine 660 U 66-85-3 Benzo(e)Anthracene 940 117-81-7 bis(2-Ethythexyl)Phthelate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthelate 330 U 205-99-2 Benzo(b)Fluorenthene 1500 207-08-9 Benzo(k)Fluorenthene 1500 80-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U	85-68-7	Butvibenzviphthalate	330 U
56-85-3 Benzo(a)Anthracene 940 117-81-7 bis(2-Ethylhesyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-89-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(b)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U			660 U
117-81-7 bis(2-Ethythexyl)Phthalate 1600 218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 80-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Dibenz(a,h)Anthracene 330 U			940
218-01-9 Chrysene 1000 117-84-0 Di-n-Octyl Phthalate \$30 U 205-99-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 63-70-3 Dibenz(a,h)Anthracene \$30 U		——	1600
117-84-0 Di-n-Octyl Phthalate 330 U 205-99-2 Benzo(b)Fluoramhene 1500 207-08-9 Benzo(k)Fluoramhene 1500 80-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 83-70-3 Oibenz(a,h)Anthracene 330 U			1000
205-89-2 Benzo(b)Fluoranthene 1500 207-08-9 Benzo(k)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 53-70-3 Dibenz(a,h)Anthracene 330 U			330 U
207-08-9 Benzo(k)Fluoranthene 1500 50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 53-70-3 Dibenz(a,h)Anthracene 330 U			
50-32-8 Benzo(a)Pyrene 1100 193-39-5 Indeno(1,2,3-cd)Pyrene \$30 U 53-70-3 Dibenz(a,h)Anthracene \$30 U			1500
193-39-5 Indeno(1,2,3-cd)Pyrene 330 U 53-70-3 Dibenz(a,h)Anthracene 330 U			
53-70-3 Dibenz(s,h)Anthracene 330 U			
	191-24-2	Benzo(g,h,i)Perviene	330 U

(1) - Cannot be separated from tiphenylamine

CLF: 10/11/85

Prepared by: Form I

D

4.007/85

Organics Analysis Data Sheet (Page 3)

Pesticide/PCBs

Concentration: LOW

GPC Cleanup: NO

Date Extracted/Prepared: 6/20/86

Date Analyzed: 7/2/86

Conc/Dil Factor: 0.57G/5ML

Separatory Funnel Extraction: YES

Continuous Liquid - Liquid Extraction: NO

C	٩S	
Ni	im	ha

Number		ug/Kg
319-84-6	Alpha-BHC	8.0 U
319-85-7	Beta-BHC	8.0 U
319-86-8	Detta-BHC	8.0 U
68-89-9	Gamma-BHC (Lindane)	8.0 U
76-44-8	Heptachior	8.0 U
309-00-2	Aldrin	8.0 U
1024-57-3	Heptachior Epoxide	8.0 U
959-98-8	Endosultan I	8.0 U
60-57-1	Dieldrin	16 U
72-55-9	4,4'-DDE	16 U
72-20-8	Endrin	16 U
33213-65-9	Endosultan II	16 U
72-54-8	4,4'-DDD	16 U
1031-07-8	Endosultan Sulfate	16 U
50-29-3	4,4'-DDT	16 U
72-43-8	Methozychior	80 U 1
53494-70-5	Endrin Ketone	16 U
57-74-9	Chlordane	80 U
8001-35-2	Toxaphene	160 U
12674-11-2	Aracior-1016	80 U
11104-28-2	Arocior-1221	U 08
11141-16-5	Arocior-1232	80 U
53469-21-9	Aroclor-1242	80 U
12672-29-6	Arocior-1248	80 U
11097-59-1	Arocior-1254	160 U
11096-82-5	Aracior-1260	160 U

- V_i = Volume of extract injected (ul)
- V_s= Volume of water extracted (ml)
- W_s= Weight of sample extracted (g)
- Vt = Volume of total extract (ui)

 $V_s = NR$

 $V_{t} = 5000$

Prepared by: _

V_i = 5 M 47051

CLF: 11/14/85

Form I

Sample	Number
BG	926

Organics Analysis Data Sheet (Page 1)

Laboratory Name: California Analytical Laboratories. Inc.

Lab Sample ID No: L2087

Sample Matrix: WATER

CAS

1110. Data Release Authorized By: .

Case No: 6040

QC Report No: 146

Contract No: 68-01-6958

Date Sample Received: 6/16/86

Volatile Compounds

Concentration: Low

Date Extracted/Prepared:6/27 5

Date Analyzed: 6/23/86

Conc/Dil Factor: 1 DH: NR

Percent Moisture: NR

Percent Moisture (Decanted): NR

Number		
74-87-3	Chloromethane	
74-83-9	Bromomethane	10 U
75-01-4	Vinyi Chloride	10 U
75-00-3	Chloroethane	10 U
75-09-2	Methylene Chloride	10 U
67-64-1	Acetone	1 J
75-15-0		14 8
75-35-4	Carbon Disulfide	5 U
	1,1-Dichloroethene	5 U
75-34-3	1,1-Dichloroethane	50
156-60-5	Trans-1,2-Dichloroethene	<u>.</u>
67-66-3	Chloroform	50
107-06-2	1,2-Dichloroethane	50
78-93-3	2-Butanone	
71-55-6	1,1,1-Trichloroethane	8.80
56-23-5	Carbon Tetrachloride	<u>5U</u>
108-05-4		<u>5U</u>
75-27-4	Vinyl Acetate	10 U
	Bromodichloromethane	513

CAS Number		
78-87-5	1,2-Dichioropropane	Ug/L
10061-02-6		8U
79-01-6	Trans-1,3-Dichioropropene	5 U
124-48-1	Trichlorosthene	5 U
79-00-5	Dibromochloromethene	5U .
71-43-2	1,1,2-Trichloroethane	5 U
	Benzene	5 U
10061-01-5	cis-1,3-Dichloropropene	50
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromotorm	
108-10-1	4-Methyl-2-Pentanone	<u>5U</u>
591-78-6	2-Hexangne	10 U
127-18-4	Tetrachloroethene	10 U
79-34-5		<u> 5 U</u>
108-88-3	1,1,2,2-Tetrachloroethane	<u>5</u> U
108-90-7	Toluene	5 U .
	Chlorobenzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	<u>8U</u>
	Total Xylenes	5 U
		0U (

Deta Reporting Qualifiers

С

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Value if the result is a value greater than or equal to the detection limit, report the value.

Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U-Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample u

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J). If limit of detection is 10ug/ and a concentration of 3ug/l is calculated, report as 3J 1

- This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >= 10ng/ul in the final extract should be confirmed by GC/MS
- This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take 8 appropriate action.
- Other Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report. Not Analyzed. See cover letter. Not Required. NA
- ÑR
 - Spiked Corpound.

Prepared by:

Form I

535

CLF: 11/14/85

ų,

A

RECEIVED JUL 2 4 1992 ENVIRONNENTAL DE DI REGION ONSERVATION