

_.pdf

The electronic version of this file/report should have the file name:

Type of document . Site Number . Year-Month . File Year-Year or Report name . pdf

. File

example: letter . Year-Month . File Year-Year . pdf

Report HW, 915043'. 2014-03 -26 PRR_and-IC-EC_CERT .pdf

example: report . Site Number . Year-Month . Report Name . pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

March 24, 2014

RECEIVED NYSDEC - REGION 9

MAR 26 2014

FOIL REL UNŘEL

Mr. David Szymanski New York State Department of Environmental Conservation 270 Michigan Ave. Buffalo, NY 14203

Re: 2013 Periodic Review Report Pfohl Brothers Landfill, Town of Cheektowaga, New York Site 915043

Dear Mr. Szymanski:

Enclosed is the 2013 Periodic Review Report for the Pfohl Brothers Landfill in Cheektowaga, New York. URS has prepared this report on the behalf of the Town of Cheektowaga in accordance with your correspondence to Mr. William Pugh, Town of Cheektowaga Engineer, received January 4, 2010.

If you have any questions on this report, please feel free to contact me.

Sincerely,

URS CORPORATION

Jon Sundquist, Ph.D. Project Manager

Enclosures

cc:

William Pugh, P.E. – Town of Cheektowaga (w/attachments) File 11172700 (C-1)

URS Corporation 77 Goodell St. Buffalo, NY 14203 Tel: 716.856.5636 Fax: 716.856.2545 N:\11172700.00000\WORD\DRAFT\PRR2013\PRR-cover-1.dod

PERIODIC REVIEW REPORT 2013 PFOHL BROTHERS LANDFILL CHEEKTOWAGA, NY

Submitted to:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 270 MICHIGAN AVENUE BUFFALO, NEW YORK 14203

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203

Prepared for:

TOWN OF CHEEKTOWAGA ENGINEERING DEPARTMENT 275 ALEXANDER AVE CHEEKTOWAGA, NEW YORK 14211

MARCH 2014

RECEIVED NYSDEC - REGION 9

MAR **26** 2014

FOIL _____REL ____UNREL

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Background	1
1.2	Effectiveness of Remedial Program	1
1.3	Compliance	1
1.4	Recommendations	2
2.0	Site Overview	2
2.1	Site Description	2
2.2	Chronology	2
3.0	Remedy Performance, Effectiveness and Protectiveness	2
3.1	Groundwater Monitoring	3
3.2	Surface Water/Sediment Sampling	4
3.3	Effluent Monitoring	4
3.4	Hydraulic Monitoring	4
3.5	Wetlands Monitoring	4
3.6	General Physical and Mechanical Maintenance	5
4.0	IC/EC Plan Compliance	5
4.1	Institutional Controls	5
4.2	Engineering Controls	5
5.0	Operation & Maintenance and Monitoring Plan Compliance	5
6.0	Conclusions and Recommendations	6

FIGURES

Figure 2-1 Site Plan

ATTACHMENTS

i

	Attachment A	January 2013 –	June 2013 Sem	i Annual Repor
--	--------------	----------------	---------------	----------------

- Attachment B July 2013 December 2013 Semi Annual Report
- Attachment C IC/EC Certification

• •

1.0 INTRODUCTION

1.1 Background

This Pfohl Brothers Landfill Site (No. 915043) is a 130 acre landfill located on the north and south sides of Aero Drive in the Town of Cheektowaga, Erie County. The site is located in a commercial area just west of Transit Road. The landfill was operated between 1940 and 1969 receiving household and industrial wastes. The industrial waste materials included paints, waste solvents, thinners, pine tar pitch, cellulose, rubber, scrap metal and phenolic tars. A Remedial Investigation and Feasibility Study was completed in 1991. The data showed that on-site soils, groundwater, seeps, and sediments were contaminated with Volatile and Semi-Volatile Organic Compounds, and metals at various concentrations. The data did not show any significant off-site impact. A Record of Decision (ROD) was issued in 1992 requiring the landfill to be consolidated and closed. A second ROD was issued in 1994 which removed the northern portion of the site (located immediately south of Interstate 90) from the site description. The ROD also stated that there will be no action in regard to off-site groundwater. The final remedial design for the site was completed in 2000. The remedial construction consisted of waste consolidation; capping of landfills on either side of Aero Drive; providing leachate collection around these areas; restoring wetlands; and fencing the landfill. Work commenced in 2001 and was completed in 2002. The consolidated landfill was reduced to 94 acres. Deed restrictions have been filed by the Potentially Responsible Parties (PRPs). The Operation, Maintenance and Monitoring (OM&M) Plan was approved in March 2006 and is being implemented by the Town of Cheektowaga.

1.2 Effectiveness of Remedial Program

During 2013, the capping and remedial action remedy continued to successfully prevent exposure of buried waste to human health or environmental receptors. Effectiveness has been demonstrated through maintenance of the landfill cap, effective hydraulic control of groundwater beneath the cap, and regular semi-annual groundwater sampling.

1.3 <u>Compliance</u>

The management of the site is in compliance with the OM&M Plan. Institutional controls in the form of deed restrictions remain in place.

1.4 <u>Recommendations</u>

No changes to the operation, maintenance, and monitoring of the site are recommended.

2.0 SITE OVERVIEW

2.1 <u>Site Description</u>

The boundaries of the site are shown on Figure 2-1. The site is located immediately southwest of the intersection of Interstate 90 and Transit Road in the Town of Cheektowaga. The site is bisected by the east/west Aero Drive. Each of the two portions of the landfill are covered with a cap comprising a gas venting layer, a low permeability synthetic membrane, and a barrier protection fill layer. Surrounding the entire site is a groundwater/leachate collection system consisting of a collection trench that drains into six wetwells. Leachate and groundwater collected in the wetwells is pumped via submersible pumps in the wetwells to a fifteen-inch sanitary sewer line on the south side of Aero Drive. This sanitary sewer, installed as part of the remedy, connects to the existing fifteen-inch sanitary sewer on Rein Road south of Aero Drive. The collected groundwater/leachate discharges to the sanitary sewer under a permit from the Buffalo Sewer Authority (BSA).

2.2 <u>Chronology</u>

The principal elements of the remedy were consolidation of waste materials, construction of a landfill cap and construction of a perimeter leachate collection system. Construction of the remedy was completed in 2002.

OM&M commenced in 2002 upon completion of construction. These efforts are performed in accordance with the OM&M plan issued as draft in 2002 and approved as final in 2006. Based upon the results of the first three years of surface water, sediment and monitoring results, the surface water/sediment sampling was discontinued in 2008, and the list of parameters evaluated during groundwater sampling was reduced in 2006 (limiting the list of VOC and SVOC parameters and metals) and 2007 (discontinuing dioxin and radionuclide analyses).

3.0 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The principal elements of the OM&M are:

Groundwater Monitoring

- Surface Water/Sediment Sampling
- Effluent Monitoring
- Hydraulic Monitoring
- Wetlands Monitoring
- General physical and mechanical maintenance.

The Town of Cheektowaga submits OM&M reports to NYSDEC twice per year reporting on the performance, effectiveness, and protectiveness of each of these elements. The two reports covering the calendar year of 2013 are attached to this Periodic Review Report. A summary of the findings of performance, effectiveness, and protectiveness for 2013 is presented in the sections below.

3.1 Groundwater Monitoring

As the OM&M contractor for the Town of Cheektowaga, URS Corporation (URS) has performed twenty rounds of semi-annual groundwater sampling. The most recent sampling was conducted in May and November 2013. Results of this sampling continue to show no impacts to groundwater from the landfill. In brief, no VOCs were detected above Class GA water quality standards except vinyl chloride at location GW-30S in May 2013. This is the second time vinyl chloride has been detected in this well since O&M sampling began in 2004. The first time it was detected was in May 2012. No SVOCs were detected at concentrations above the Class GA water quality standards at any location during either sampling event.

Among the metals, iron, magnesium, manganese, and sodium routinely exceed Class GA standards in most site wells. Chromium and nickel were detected at concentrations exceeding their Class A standards at well GW-03S. Antimony, chromium, lead, and nickel were detected at concentrations exceeding Class GA standards in well GW-07D. It is noted that GW-07D is located upgradient of the site. Arsenic was detected at a concentration exceeding its Class GA standard at well GW-29S in the first sampling event. No significant changes in metals concentrations were observed when compared to previous sampling event analytical results and were within the historical range of concentrations observed for these compounds at these wells. The attached semi-annual reports present the data from this sampling in tables, graphs, and charts.

3.2 Surface Water/Sediment Sampling

Surface water and sediment sampling was discontinued in 2008 after three years of sampling showed that no site-related contaminants were present in these media. This sampling was eliminated in accordance with the approved OM&M plan and as approved by NYSDEC.

3.3 Effluent Monitoring

URS performed effluent monitoring on a quarterly basis during 2013. The results of the sampling are reported in the attached semi-annual reports. The parameter values in the effluent have always been well below the discharge criteria for all quarterly sampling events conducted since the start of the OM&M.

3.4 <u>Hydraulic Monitoring</u>

URS performed hydraulic monitoring on a quarterly basis during 2013. Hydraulic monitoring is performed through measuring the water elevation in each of the six wetwells and in nine manholes associated with the perimeter collection system, and comparing each of these elevations with the groundwater elevations in paired monitoring wells adjacent to each wetwell or manhole. Hydraulic control is demonstrated by an inward hydraulic gradient from the monitoring wells to the collection system. The hydraulic gradient has been towards the groundwater collection system for every quarterly measurement taken during 2013 with the exception of the water elevation in WW-6 was slightly higher (0.07') than the nearest monitoring well GW-34S on September 10, 2013.

3.5 Wetlands Monitoring

The monitoring of wetlands mitigation has not gone as originally planned in the OM&M manual. Initially, the wetlands species planted for mitigation faired poorly due to trampling from geese and deer. Fences were erected in 2004 to keep this wildlife out. Some wetland vegetation was also lost during landfill cap mowing in 2005 when the mowing contractor mowed a greater area than had been specified. The wetland vegetation species were replanted in 2005. However, in the time since construction ended in 2002, the *Phragmites sp.* vegetation that is quite abundant in this area has spread and established itself throughout the areas formerly disturbed during construction. *Phragmites sp.* does not provide robust food source for wildlife, but does act to stabilize soil in the interface zone between the landfill and the existing pond and wetland.

4

3.6 General Physical and Mechanical Maintenance

The Town of Cheektowaga performs the necessary general physical and mechanical maintenance as needed. Example maintenance items are routine maintenance and replacement of pumps and instrumentation used for groundwater/leachate collection, annual cap mowing, snow plowing, etc. A summary of the general maintenance activities performed during 2013 is provided in the attached semi-annual reports.

4.0 IC/EC PLAN COMPLIANCE

There is no formal Institutional Control/Engineering Control (IC/EC) plan for this site. However, there are institutional and engineering controls in place and they are functioning as intended. These are discussed below.

4.1 Institutional Controls

Institutional controls (ICs) consist of restrictions on land use for the various parcels that comprise this site. The parcels subject and their restrictions are listed on the attached Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form. The restrictions address building use, groundwater use, and land use. Compliance with these ICs is evaluated by observation to see if any infringing activities are occurring on these parcels. These ICs remain in effect, as certified in Attachment C.

4.2 Engineering Controls

Engineering controls (ECs) consist of the landfill cap, fencing and access control, collection of the groundwater/leachate, and vapor mitigation. Compliance with these ECs is evaluated at a minimum through inspection of these elements during each semi-annual monitoring event. In most cases, inspection is more frequent. For example, collection of the groundwater/leachate is monitored continuously by Town of Cheektowaga personnel and effluent compliance reports are submitted quarterly. These ECs remain in effect, as certified in Attachment C.

5.0 OPERATION & MAINTENANCE AND MONITORING PLAN COMPLIANCE

The components of the OM&M Plan are discussed above in Section 3.0. Summaries of OM&M activities performed during 2013 are provided in the attached semi-annual reports. The

5

OM&M activities show that the landfill and its groundwater/leachate collection system are operating as intended, and receive repairs and maintenance as needed in a timely fashion. Sampling of the groundwater in monitoring wells and the effluent generated by the groundwater/leachate collection system show that no landfill contamination is migrating to these media, and therefore the wastes remain effectively contained. No changes to the OM&M for this site are recommended.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The remedy at the Pfohl Brothers Site Landfill is operating as designed and remains protective of human health and the environment. No changes to the OM&M for this site are recommended.

FIGURES

ATTACHMENTS

.

J

ATTACHMENT A

January 2013 – June 2013

Semi Annual Report

SEMI ANNUAL REPORT OPERATION AND MAINTENANCE JANUARY 2013 TO JUNE 2013 PFOHL BROTHERS LANDFILL CHEEKTOWAGA, NY

Submitted to:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 270 MICHIGAN AVENUE BUFFALO, NEW YORK 14203

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203

Prepared for:

TOWN OF CHEEKTOWAGA ENGINEERING DEPARTMENT 275 ALEXANDER AVE CHEEKTOWAGA, NEW YORK 14211

> FEBRUARY 2014

February 12, 2014

Mr. Jaspal Singh Walia, P.E. New York State Department of Environmental Conservation 270 Michigan Ave. Buffalo, NY 14203

Re: Semi-Annual Report Pfohl Brothers Landfill, Town of Cheektowaga, New York

Dear Mr. Walia:

Enclosed is one copy of the nineteenth Semi-Annual Report for the Pfohl Brothers Landfill in Cheektowaga, New York. A copy has also been sent to Ms. Pamela Tames, P.E. of the United States Environmental Protection Agency. Also enclosed is the Data Applicability Report for laboratory analyses associated with the Semi-Annual Report. PDF copies of the reports are also enclosed.

If you have any questions on this report, please feel free to contact me.

Sincerely,

URS CORPORATION

Jon Sundquist, Ph.D. Project Manager

Enclosures

İ

cc: Pamela Tames, P.E. - USEPA (w/attachments) William Pugh, P.E. – Town of Cheektowaga (w/attachments) File 11172700 (C-1)

URS Corporation 77 Goodell St. Buffalo, NY 14203 Tel: 716.856.5636 Fax: 716.856.2545 N:\11172700.0000\WORD\DRAFT\semi-annual-cover-19.doc

h

TABLE OF CONTENTS

Page No.

1-1
1-1
1-1
2-1
3-1
3-1
3-1
3-5
3-5
4-1

TABLES

Table 3-1	Groundwater Sample Analytical Results
Table 3-2	Approved Revision Of Table 3.2 From The O&M Plan

FIGURES

Figure 1-1Site Location MapFigure 3-1Monitoring Locations

APPENDICES

Appendix A Example Daily Inspection Sheets

Appendix B Monthly Flow Summaries (January 2013 – June 2013)

Appendix C Hydraulic Monitoring Tables

Appendix D Groundwater Purge and Sample Collection Logs

- Appendix E Groundwater Trend Analysis
- Appendix F BSA Permit No. 13-04-CH016
- Appendix G Discharge Report Summary Tables
- Appendix H Monitoring Well Inspection Logs

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

1.0 INTRODUCTION

1.1 Background

The Pfohl Brothers Landfill is located on Aero Drive in the Town of Cheektowaga, New York (Figure 1-1). The site is listed as site No. 915043 on the New York State Department of Environmental Conservation's (NYSDEC's) Registry of Inactive Hazardous Waste Disposal Sites. A Consent Order between NYSDEC and potentially responsible parties (PRPs) for closure of the site was signed in 2001 and remedial construction commenced in 2001. The remedy included consolidation of waste material, capping of the waste disposal and consolidation areas, and encircling the landfill areas with a groundwater collection system to prevent off-site migration. The remedial action was completed in 2002.

Responsibility for implementing the remedy was divided between a "steering committee" of industrial PRPs and the Town of Cheektowaga. The steering committee responsibilities lay generally with the capital construction activities of the remedy including waste consolidation, cap and drainage system installation, etc. The Town of Cheektowaga, which was named as a PRP for disposal of municipal waste at the Pfohl Brothers Landfill when it was operating, is performing the operation and maintenance (O&M) activities at the landfill, pursuant to a settlement agreement between the Town and the steering committee.

1.2 **Operation and Maintenance Activities**

While construction of the remedy was substantially complete by late 2002, the final O&M manual was not approved by the NYSDEC until March 10, 2006. However, the Town of Cheektowaga and its consultant (URS Corporation – New York) assumed most of the operational responsibilities since 2002. This includes a variety of general maintenance activities as outlined in Section 2 and sampling and other monitoring activities outlined in Section 3.

1-1

İ

Beginning in 2004, the Town and URS assumed all of the O&M activities described in the O&M plan. This report is the nineteenth semi-annual report as called for by Section 3.6 of the O&M plan.

ŧ

h

2.0 GENERAL MAINTENANCE ACTIVITIES

Since completion of construction activities in 2002, personnel from the Town of Cheektowaga Engineering Department have performed general activities to ensure the physical operation of the landfill as intended by the design. The various O&M activities performed by the Town from January 2013 through June 2013 include the following actions.

- The amount of groundwater discharged through the collection system was recorded on a daily basis. The flow rate displayed by each wet well pump at the time of daily inspection and the total cumulative volume of flow was recorded for each wet well on daily inspection sheets. Examples of the daily inspection sheet are attached in Appendix A.
- Total cumulative effluent flow rates and volumes were summarized on a monthly basis starting in February 2003. The monthly totals for the period of January 2013 through June 2013, including graphs showing daily total discharge (gallons) as a function of calendar day, are presented in Appendix B.
- The wet well pumps were shutdown during wet weather flow conditions throughout the year to reduce hydraulic loading to the sewer. Such actions were only taken upon request of the Buffalo Sewer Authority during heavy storm events in order to reduce the hydraulic load on the BSA treatment system during such events. Shutdown events are recorded and included with the monthly flow data as previously requested by NYSDEC.
- Plowed snow to access the Control Building when necessary.
- Cleaned/replaced check valves as necessary at all wet wells.
- Replaced surge suppressors and fuses as needed for pump station instrumentation equipment.
- Engaged contractor to apply Roundup herbicide to control vegetation growth through the stone access road. Applied herbicide on both Area B and C (i.e., along the

perimeter access road around the landfill areas north and south of Aero Drive) in June 2013.

• Replaced defective level transmitter equipment at WW-3 (April 2013).

• Replaced discharge hose at WW-1 (June 2013).

2-2

Ì

3.0 MONITORING ACTIVITIES

The Town of Cheektowaga retained URS Corporation to perform monitoring activities as outlined in Section 3.1 of the O&M plan. During the period of January 2004 through the present, URS performed groundwater hydraulic monitoring (Section 3.1.1.2 of the O&M plan) and effluent monitoring (Section 3.1.4 of the O&M plan) on a quarterly basis. URS also performed the nineteenth semi-annual groundwater quality monitoring event (Section 3.1.1.3 of the O&M plan). A summary of the monitoring activities is presented in the following subsections. Hydraulic and groundwater sampling locations are shown on Figure 3-1.

3.1 Groundwater Hydraulic Monitoring

Groundwater and surface water elevations were monitored on a quarterly basis at all locations listed in Table 3.1 of the O&M Plan. The hydraulic monitoring data tables showing groundwater elevations are presented in Appendix C. Table 1 of this appendix lists the measured elevations. Table 2 provides a comparison of the measured levels in the wells and corresponding manholes/wet wells.

The data presented in Appendix C indicate that groundwater levels outside the collection system were higher than the levels measured in the corresponding wet well or manhole for each measurement date. Therefore, these data demonstrate that the collection system is operating as designed.

į,

3.2 Groundwater Quality Monitoring

The nineteenth semi-annual round of groundwater sampling was conducted between May 8, 2013 and May 10, 2013. All wells listed in Table 3.2 of the O&M plan were purged and sampled using dedicated/disposable equipment. Figure 3-1 shows the well locations. Low flow sampling techniques were used at most monitoring well locations.

Passive diffusion bags (PDBs) were placed in three monitoring wells with low recharge rates (GW-4S, GW-7S, and GW-7D) on March 27, 2013. The PDBs were removed from the wells during the sampling event and their contents were analyzed for VOCs. Following removal of the PDBs the three wells were purged dry. These wells were sampled for the other required parameters after their water levels recovered.

Purge logs and sampling summary sheets are provided in Appendix D. Measurements of pH, specific conductivity, temperature, dissolved oxygen, oxidation reduction potential, and turbidity taken during purging are provided in Appendix D. The samples were packed with ice in coolers and transported under chain-of-custody (CoC) control to Test America Laboratories of Amherst, New York.

Table 3-1 of this report presents the groundwater sample results compared with NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA water quality standards. Groundwater samples were analyzed for the parameters listed in Table 3.2 of the O&M plan as revised in accordance with Table 3-6 in the Semi Annual Report dated September 2007 (January through June 2007) and as approved by the December 6, 2006 and November 29, 2007 correspondence from the NYSDEC authorizing a reduction in the parameters list (this table is included in this report as Table 3-2).

Results

The VOC vinyl chloride was detected in one sample (from GW-30S) at a concentration of 2.2 micrograms per liter ($\mu g/L$), slightly exceeding its Class GÅ water quality standard of 2.0 $\mu g/L$. This is the second time vinyl chloride has been detected in this well since sampling began in 2004. It was detected in May 2012 at a concentration of 5.3 $\mu g/L$. No SVOCs were detected at concentrations above the Class GA water quality standards at any location.

Among the metals, iron, magnesium, manganese, and sodium routinely exceed Class GA standards in most site wells. Nickel was detected at a concentration exceeding its Class A standard at well GW-03S. Antimony, chromium, lead, and nickel were detected at concentrations exceeding Class GA standards in well GW-07D. It is noted that GW-07D is located upgradient

of the site. Arsenic was detected at a concentration exceeding its Class GA standard at well GW-29S.

Comparison to Historical Results

No significant changes in metals concentrations were observed when compared to previous sampling event analytical results. The concentration of iron, magnesium, manganese, and sodium in most site wells was similar to the concentrations found during previous sampling events.

The concentrations of chromium and nickel at GW-03S, nickel at GW-07D, and lead at GW-07D were within the historical range of concentrations observed for these compounds at these wells. The concentration of chromium at GW-07D was the highest it has been since sampling began.

Sodium concentrations were generally higher in bedrock wells (GW-01D, GW-03D, GW-08D and GW-26D) and shallow wells adjacent to roads (GW-01S and GW-30S). The sodium concentration was also elevated in GW-08SR. The higher sodium concentrations in the bedrock wells may be attributed to the local bedrock composition and the elevated concentration in the shallow wells may be the result of seasonal road de-icing activities.

Trend Analysis

A trend analysis of groundwater parameters that routinely exceed Class GA groundwater standards was performed and is presented in Figures E-1 through E-19 of Appendix E. A review of the trend analysis indicated that no significant changes or trends in concentrations of any of the parameters exceeding groundwater standards have occurred over the nineteen semi-annual sampling events except as described below. Figure E-2 for GW-01S, indicates an upward trend in iron over the last four sampling events, a recent upward trend in manganese concentrations, and a downward trend in sodium concentration over the nineteen sampling events. Figure E-3 for GW-03D indicates seasonal variations and a slight downward trend for manganese over the last nine sample events. Figure E-4 indicates a slight upward trend for magnesium in GW-03S since

3-3

monitoring began. Figure E-5 for GW-04D, indicates a slight increasing trend for magnesium. Figure E-6 for GW-04S shows a slight upward trend for magnesium over the last 12 events. Figure E-7 for GW-07D shows an upward trend for chromium. Figure E-9 for GW-08D shows a decreasing trend for both iron and manganese since monitoring began. Figures E-10 and E-11 for GW-08SR and GW-26D, respectively, show an upward trend in sodium concentrations since monitoring began. Figure E-10 for GW-08SR also indicates an upward trend for manganese. Figures E-12 for GW-28S indicates a decreasing trend for sodium since monitoring began. Figure E-13 for GW-29S shows a slight increasing trend for magnesium over the last 16 events. Figure E-14 for GW-30S indicates a downward trend for magnesium, manganese, and sodium. Figure E-16 shows there is a seasonal variation in sodium concentration in monitoring well GW-32S. Figures E-17 and E-18 for GW-33S and GW-34S indicate a seasonal fluctuation in manganese concentration.

Laboratory Report

The groundwater analytical data package was prepared by Test America in accordance with NYSDEC Category A deliverable requirements. It was reviewed for compliance with analytical method requirements and the following guidelines: USEPA *Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, EPA-540-R-99-008, October 1999; USEPA *CLP National Functional Guidelines for Inorganic Data Review*, EPA-540-R-99-008, October 1999; USEPA *CLP National Functional Guidelines for Inorganic Data Review*, EPA-540-R-01-008, July 2002; and USEPA *Region II Data Validation SOP for SW-846 Method 8290, PCDDs and PCDFs by High Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS*), SOP No. HW-19, Revision 1, October 1994. Qualifications applied to the data include "J/UJ" (estimated concentration/estimated quantitation limit), "J+" (estimated concentration with possible high bias), "J-" (estimated concentration with possible low bias), and "U" (not detected).

A Data Applicability Report (DAR) was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation (DER-10) *Technical Guidance for Site Investigation and Remediation, Appendix 2B,* dated May 2010. The DAR dated June 2013 is submitted separately from this report.

3.3 Groundwater Discharge Monitoring

URS completed two quarterly sampling events (March 2013 and June 2013) of the groundwater collection system discharge since the previous semi-annual report. The sampling was performed in accordance with the requirements of Discharge Permit No. 13-04-CH016 between the Buffalo Sewer Authority and the Town of Cheektowaga. A copy of Permit No. 13-04-CH016 is included as Appendix F.

During the sampling events in March 2013 and June 2013, each regulated parameter was below the limits set by the permit. Copies of the data summary tables that were included with the monitoring reports are included as Appendix G.

3.4 Monitoring Well Inspections

į

During the May 2013 groundwater sampling event, a well inspection was performed. All wells appeared to be in good condition with the exception of previously existing damage to the risers on GW-07D, GW-01S, and GW-01D. The monitoring well inspection logs may be found in Appendix H.

h

3-5

4.0 SUMMARY AND RECOMMENDATIONS

General Maintenance: The Town will continue to maintain mechanical equipment at the landfill on an as-needed basis and operate the groundwater collection and discharge system as designed. The Town will also continue regular inspections, mow the cap once per year, and plow access to the control building during winter months as necessary.

Groundwater Hydraulic Monitoring: Hydraulic monitoring has been performed on a quarterly basis in conjunction with the discharge monitoring. Water level measurement data demonstrates that the hydraulic gradient is from outside the landfill towards the collection trench. Continued quarterly monitoring is recommended.

Groundwater Quality Monitoring: Groundwater sample results indicate that only low levels of organic compounds and metals are present. Similar concentrations of most parameters were found during previous sampling events. The twentieth round of groundwater sampling will be conducted in November 2013. Low flow sampling techniques will be used. Passive diffusion bags will be used again for VOC analyses at the three wells (GW-4S, GW-7S, and GW-7D) that go dry even using low flow sampling techniques.

Groundwater Discharge Monitoring: Groundwater discharges remain within permit limits. Continued quarterly monitoring is recommended.

h

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

}

1

İ h

TABLES

Location ID	GW-01D	GW-01S	GW-03D	GW-03S	GW-04D		
Sample ID	GW-1D	GW-1S	GW-3D	GW-3S	GW-4D		
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (fr	t)		-	-	-	-	-
Date Sampled			05/10/13	05/10/13	05/08/13	05/08/13	05/09/13
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5					
Vinyl chloride	UG/L	2					
Semivolatile Organic Compounds							
bis(2-Ethylhexyl)phthalate	UG/L	5					
Metals							
Antimony	MG/L	0.003					
Arsenic	MG/L	0.025		0.0098 J		0.0065 J	
Barium	MG/L	1	0.076	0.18	0.079	0.18	0.078
Cadmium	, MG/L	0.005				0.00064 J	
Chromium	MG/L	0.05	0.016	0.0040		0.027	0.0014 J
Copper	MG/L	0.2				0.0026 J	
Iron	MG/L	0.3		23.3		0.29	0.10
Lead	MG/L	0.025					
Magnesium	MG/L	35	35.6	17.6	16.1		
Manganese	MG/L	0.3	0.025		0.48	0.13	0.019
Nickel	MG/L	0.1			0.0034 J	0.18	
Sodium	MG/L	20	101	86.3			83.4
Zinc	MG/L	2	0.011	0.0065 J		0.017 ,	0.0042 J

*- NYSDEC TOGS (1,1,1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998 (includes 4/2000 Addendum). Class GA. * - PCB Criteria based on sum of the aroclors.

1

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J - The analyte was positively identified, the quantitation is an estimation.

Blank - not detected. - = No criteria.

Only Detected Results Reported.

N:\11172700.00000/GIS/2BI/Program/EDMS.md Printed: 11/8/2013 2:00:21 Pk [LOGDATE] 8ETWEEN #5/8/2013# AND #5/10/2013# AND ([SACODE] = FD' OR (SACODE] = 'N

I

ł

Location ID	GW-04S	GW-07D	GW-07D	GW-07S	GW-075		
Sampte ID			GW-4S	GW-7D	GW-7D	GW-7S	GW-7S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			05/09/13	05/08/13	05/09/13	05/08/13	05/09/13
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5			NA		NA
Vinyl chloride	UG/L	2			NA		NA
Semivolatile Organic Compounds							
bis(2-Ethylhexyl)phthalate	UG/L	5		NA	4.2 J	NA	4.8
Metals						_	
Antimony	MG/L	0.003		NA	0.0075 J	NA	
Arsenic	MG/L	0.025		NA		NA	
Barium	MG/L	1	0.12	NA	0.090	NA	0.28
Cadmium	MG/L	0.005		NA	0.0028	NA	0.0035
Chromium	MG/L	0.05	0.0068	NA	0.53	. NA	0.0042
Copper	MG/L	0.2	0.0034 J	NA	0.051	NA	·
Iron	MG/L	0.3	2.9	NA		NA	0.21
Lead	MG/L	0.025		NA		NA	
Magnesium	MG/L	35	27.8	NA	32.2	NA	35.0
Manganese	MG/L	0.3	0.20	NA	0.13	NA	0.043
Nickel	MG/L	0.1	0.0095 J	NA	0.27	NA	0.0088 J
Sodium	MG/L	20	29.6	NA	80.6	NA	56.1
Zinc	MG/L	2	0.019	NA	0.11	NA	0.0061 J

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. *- PCB Criteria based on sum of the aroclors.

÷

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J - The analyte was positively identified, the quantitation is an estimation.

İ

Blank - not detected. - = No criteria.

Only Detected Results Reported.

N:111172700.00000(CIS'uBIYProgram\EDMS.md Primted: 11/8/2013 2:00:23 Ph [LOGDATE] BETWEEN #5/8/2013# AND #5/10/2013# AND ([SACODE] = 'FD' OR (SACODE] = 'N

ļ

Location ID	GW-08D	GW-08D	GW-08SR	GW-26D	GW-28S		
Sample ID	FD-050813	GW-8D	GW8SR	GW-26D	GW-28S		
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (ff	t)		-	-	-	-	-
Date Sampled			05/08/13	05/08/13	05/08/13	05/09/13	05/09/13
Parameter	Units	*	Field Duplicate (1-1)				
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5				1.4 J	
Vinyl chloride	UG/L	2		/			
Semivolatile Organic Compounds				-			
bis(2-Ethylhexyl)phthalate	UG/L	5					
Metals							
Antimony	MG/L	0.003					
Arsenic	MG/L	0.025			0.018		
Barium	MG/L	1	0.090	0.092	0.52	0.14	0.081
Cadmium	MG/L	0.005			0.00051 J		
Chromium	MG/L	0.05	0.0094 J	0.0063 J	0.0045		0.0011 J
Соррег	MG/L	0.2	0.0039 J	0.0036 J	0.0021 J		
Iron	MG/L	0.3	0.18	0.22			0.13
Lead	MG/L	0.025			0.0038 J		
Magnesium	MG/L	35	16.3	16.4	53.6	18.7	29.9
Manganese	MG/L	0.3	0.19	0.20		0.66	
Nickel	MG/L	0.1	0.0067 J	0.0070 J	0.0069 J	0.0017 J	0.0016 J
Sodium	MG/L	20		204			15.1
Zinc	MG/L	2	0.0061 J	0.0070 J	0.0043 J	0.0017 J	0.0059 J

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. * - PCB Criteria based on sum of the aroclors.

İ

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J - The analyte was positively identified, the quantitation is an estimation.

į

Blank - not detected. - = No criteria.

Only Detected Results Reported.

N:11172700.00000(GIS\dBIProgram\EDMS.md Primed: 11/6/2013 2:00:23 PM (LOGDATE) BETWEEN #5/8/2013# AND #5/10/2013# AND ([SACODE] = 'D' OR [SACODE] = 'N

Ì

Location ID	GW-29S	GW-30S	GW-31S	GW-32S	GW-33S		
Sample ID	GW-29S	GW-30S	GW-31S	GW-32S	GW-33S		
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (ff	-	-	-	-	-		
Date Sampled			05/09/13	05/10/13	05/10/13	05/10/13	05/10/13
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5					
Vinyl chloride	UG/L	2					
Semivolatile Organic Compounds							
bis(2-Ethylhexyl)phthalate	UG/L	5					
Metals							
Antimony	MG/L	0.003					
Arsenic	MG/L	0.025	0.027				
Barium	MG/L	1	0.20	0.14	0.057	0.056	0.019
Cadmium	MG/L	0.005					
Chromium	MG/L	0.05					
Copper	MG/L	0.2					
iron	MG/L	0.3			0.51		0.036 J
Lead	MG/L	0.025					
Magnesium	MG/L	35	91.7	38.1	27.1	32.4	
Manganese	MG/L	0.3	0.76		0.86	0.39	0.081
Nickel	MG/L	0.1			0.0050 J		
Sodium	MG/L	20	9.3	56.1	3.9	4.1	3.1
Zinc	MG/L	2	0.0036 J		0.012	0.0035 J	0.0032 J

ij

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. *- PCB Criteria based on sum of the aroclors.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J - The analyte was positively identified, the quantitation is an estimation.

İ

Blank - not detected. - = No criteria.

1

Location ID	GW-34S	GW-35S		
Sample ID	GW-34S	GW-35S		
Matrix	Groundwater	Groundwater		
Depth Interval (f	-	-		
Date Sampled		_	05/09/13	05/09/13
Parameter	Units	*		
Volatile Organic Compounds				
1,2-Dichloroethene (total)	UG/L	5		
Vinyl chloride	UG/L	2		
Semivolatile Organic Compounds				
bis(2-Ethylhexyl)phthalate	UG/L	5		
Metais				
Antimony	MG/L	0.003		
Arsenic	MG/L	0.025	_	
Barium	MG/L	1	0.12	0.080
Cadmium	MG/L	0.005		
Chromium	MG/L	0.05		
Copper	MG/L	0.2		
Iron	MG/L	0.3	0.22	0.065
Lead	MG/L	0.025		
Magnesium	MG/L	. 35	39.9	23.9
Manganese	MG/L	0.3	0.23	0.16
Nickel	MG/L	0.1	0.0051 J	0.0013 J
Sodium	MG/L	20	26.3	2.9
Zinc	MG/L	2	0.0062 J	0.0044 J

ļ

Ì

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. * - PCB Criteria based on sum of the aroclors.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J - The analyte was positively identified, the quantitation is an estimation.

Blank - not detected. - = No criteria. ,

Only Detected Results Reported.

ĺ

TABLE 3-2

APPROVED REVISION OF TABLE 3.2 FROM THE O&M PLAN

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE PLAN PFOHL BROTHERS LANDFILL SITE, CHEEKTOWAGA, NEW YORK

j

LOCATIONS

GW-1D/1S GW- 3D/3S GW- 4D/4S GW- 7D/7S GW- 8D/8S(R) GW- 26D/35S GW- 26D/35S GW- 28S GW- 29S GW- 29S GW- 30S GW- 31S GW- 31S GW- 32S GW- 33S GW- 34S

FREQUENCY

semi-annually for overburden and bedrock groundwater

PARAMETERS

İ

Field

VOCs

pH conductivity temperature turbidity

Acetone Benzene 1,2-Dichloroethene (total) 1,1,2-Trichloroethane

SVOCs Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene bis(2-Ethylhexyl)phthalate

Vinyl chloride

N:\\\\\72700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec08\Table 3-2 (final).doc

TABLE 3-2 (continued)

APPROVED REVISION OF TABLE 3.2 FROM THE O&M PLAN

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE PLAN PFOHL BROTHERS LANDFILL SITE, CHEEKTOWAGA, NEW YORK

PARAMETERS (cont'd)

Metals

Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel Silver Sodium Zinc

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec08\Table 3-2 (final).doc

FIGURES

ji I

N:\11172700.00000\WORD\DRAFT\Scmi Annual Report Jan-Jun13\Scmi Annual Report Jan-Jun13.doc

APPENDIX A

EXAMPLE DAILY INSPECTION SHEETS

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc.

Daily Log	j sheet		Town of Cheektowa	ga
ate	3813		Weather conditions	SUNNY 41
Time	2 55	-	Read by:	B. PUSH
	Level of Water	Flow	Flow Totals	Pump Run Time
	from bottom (ft.)	gallons / minute	gailons	Hrs.
WW-3	6.3	30.5	683,826	2434
WW-2	4.6	0	12,821	131
WW-1	3.9	0	826,536	2447
WW-6	5,9	53.1	4,519,157	8981
WW-4	6.9	0	360935	5416
WW-5	6.7	0	2,789,571	10,396
Flow Tota	lizer at Meter chamber		9 184, 307	-
	Ourient - C.C			
Irge Sup	pressor events	415,299		
irge Sup Motor Con	pressor events trol Center <u>Votts 480</u> Amps 10	<u>415,299</u> volts amps	Which WW was running?	
ırge Sup Motor Con Filter	pressor events trol Center <u>Volts 480</u> <u>Amps 10</u> Checked D	<u>415,299</u> volts amps Changed D	Which WW was running? 1 2 3 2 4 5 6 6	
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts</u> <u>480</u> <u>Amps</u> <u>10</u> Checked D s and/or Current Condition	<u>415,299</u> volts amps Changed D	Which WW was running? 1 2 3 2 4 5 6 6	
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts</u> <u>480</u> <u>Amps</u> <u>10</u> Checked [] s and/or Current Condition <i>RESET</i> <u>LEV</u>	<u>415,299</u> volts amps Changed □ rs £		
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts</u> <u>480</u> <u>Amps</u> <u>10</u> Checked [] s and/or Current Condition <u>RESET</u> <u>LEV</u> <u>RAN</u> <u>WW</u>	$\frac{415,299}{\text{volts}}$ $\frac{\text{volts}}{\text{amps}}$ $\frac{\text{Changed } \Box}{\text{Changed } \Box}$ $\frac{62}{3} 0 MA$	Which WW was running? 102032405062 ALARM WW3 ND Z 20M	IN. AND
Irge Sup Motor Con Filter Comments	pressor events trol Center Volts 480 <u>Amps 10</u> Checked D s and/or Current Condition <u>RESET LEV</u> <u>RAN WW3</u> <u>RETURNED 7</u>	 volts amps Changed □ S & I~VALID 3 0~J HA D AUTD .	Which WW was running? 102032405062 ALARM WW3 ND 2 20M	и. Алд 1
Irge Sup Motor Con Filter Comments	pressor events trol Center Volts 480 Amps 10 Checked 0 checked $\frac{415,299}{\text{volts}}$ volts amps Changed Cha	Which WW was running? 10203\$40506\$ ALARM WW3 ND 2 20M	IN. AND	
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts 480</u> <u>Amps 10</u> Checked D Checked D s and/or Current Condition <u>RESET LEV</u> <u>RAN WW</u> <u>RETURNED 7</u> <u>DROVE PER</u>	$\frac{415,299}{\text{volts}}$ volts amps Changed Cha	Which WW was running? 102032405062 ALARM WW3 ND X 20M	IN. AND OK
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts 480</u> <u>Amps 10</u> Checked I checked I s and/or Current Condition <u>RESET LEV</u> <u>RAN WW</u> <u>RETURNED 7</u> <u>DROVE PER</u>	415,299 volts amps Changed	Which WW was running? 10203\$240506\$2 ALARM WW3 ND X 20M AD - AREA B	IN. AND OK
Irge Sup Motor Con Filter Comments	pressor events trol Center <u>Volts 480</u> <u>Amps 10</u> Checked I checked I s and/or Current Condition <u>RESET LEV</u> <u>RAN WW:</u> <u>RETURNED 7</u> <u>DROVE PER</u>	415,299 volts amps Changed	Which WW was running? 102032405062 ALARM WW3 NA 2 20M ALAR B	IN. AND

;

.

Pfohl Brothers Landfill Site

Daily Logsheet

.

Town of Cheektowaga

)ate Time	5-16-13 3:20	-	Weather conditions Read by:	SUNNY 73° BILL PUGH
<u></u>	Level of Water from bottom (ft.)	Flow gallons / minute	Flow Totals gallons	Pump Run Time Hrs. 2672
WW-3	99.0	0	165,160	131
WW-2	4.7	0	12,050	2560
WW-1	4.0	0	910,050	9312
WW-6	6.2	0	3.67500-	5611
WW-4	6.7	0	865680	10.587
WW-5	99		3334932	10/301
Flow Tot	alizer at Meter chamber		11,586,400	
Heat Trac	$\frac{\text{Outside temp T} = 73}{\text{Current A} = 0}$	-	Set point SP = 40	
irge Su	opressor events	415,320		
Motor Co	ntrol Center Volts 480 Amps 2	_volts _amps	Which WW was running 1 0 20 38 40 50 60	?
Filter	Checked 🛛	Changed D	<u> </u>	
Commen	ts and/or Current Conditio	ns	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
	W/W 3 1	LEVEL INVA	LID ALARMS -	
	WW5		WILL NOT	RESET.
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
<u></u>		· · · · · · · · · · · · · · · · · · ·		
				•

Pfohl Brothers Landfill Site

Daily Logsheet

Town of Cheektowaga

æ

)ate Time	6-18-13 2:10		Weather conditions Read by:	BILL PUGH-
	Level of Water from bottom (ft.)	Flow gallons / minute	Flow Totals gallons	Pump Run Time Hrs.
WW-3	99 (DEFAUT)	Ø	813,919	2347
WW-2	4.4-	Ø	37 023	144
WW-1	4, 1	0	1,036,2476	2516
WW-6	6.8	0	6,200,144	7414
WW-4	7,0	0	471,937	5630
WW-5	6.7	0	3,608,418	1 1 6 7 6
Flow To	talizer at Meter chamber			
Heat Tra	ce Outside temp T = 70 Current A = 0	· · · · · · · · · · · · · · · · · · ·	Set point SP = .40°	
rge St	appressor events	415, 328	·	
Irge St	Amps 3	415, 328 volts amps	Which WW was running 1 2 2 3 2 4 5 6)? /
Irge St Motor Co Filter	checked D	4.15, 328 volts amps Changed D	Which WW was running 1 0 2 0 3 0 4 0 5 0 6 0)? /
Filter	Ippressor events Introl Center Voits Amps 3 Checked Ints and/or Current Condition	4.15, 328 volts amps Changed D s	Which WW was running 1 2 2 3 2 4 5 6 6)? /
Filter	Amps 3	4.15, 328 volts amps Changed D s ALARM	Which WW was running 1 2 3 3 4 5 6 6)?
Filter	Ippressor events	4.15, 328 volts amps Changed D s ALARM INSTRUM	Which WW was running 102030405060 mode +	л° САВЪ ≅
Irge St Motor Co Filter	uppressor events uppressor events volts Volts Amps 3 Checked Checked Ints and/or Current Condition WW 3 REPAIR REPAIR	4.15, 328 volts amps Changed D s ALARM INSTRUM	Which WW was running 102030405060 MODE	1? CABL ≦
Irge St Motor Co Filter	Ippressor events	4.15, 328 volts amps Changed D s ALARM INSTRUM HEDULCD	Which WW was running 102030405060 MODE	1?
Irge St Motor Co Filter	Ippressor events Introl Center <u>480</u> <u>Amps 3</u> Checked I Ints and/or Current Condition <u>WW 3 M</u> <u>REPAIR</u> TO <u>BEING</u> <u>5C</u>	4.15, 328 volts amps Changed D s ALARM INSTRUM HEDULCD	Which WW was running 102030405060 MODE CNMMMON V.G.	1?
Irge St Motor Co Filter	Ippressor events	4.15, 328 volts amps Changed D s ALARM INSTRUM HEDULCD	Which WW was running 102030405060 mode ENTRITION U.G.	1 ² ∕ CABL ≦
irge St Motor Co Filter	Ippressor events	415, 328 volts amps Changed D s ALARM INSTRUM HEDULCD	Which WW was running 102030405060 mode Ennov U.G.	n° CABL€
Irge St Motor Co Filter	Ippressor events	415, 328 volts amps Changed D s ALARM 1 INSTRUM HEDULCD	Which WW was running 102030405060 mode Ennov U.G.	р? СЛВЦЕ
Irge St Motor Co Filter	Amps 3 Checked D MW 3 M REPAIR TO BEING SC	4.15, 328 volts amps Changed D s ALARM INSTRUM HEDULCD	Which WW was running 102030405060 MODE ENDITION U.G.	1 ² ↓ CABLE

APPENDIX B

MONTHLY FLOW SUMMARIES JANUARY 2013 – JUNE 2013

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

July 5, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the June 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

> Jon W. Nichy Superintendent Main Pump Station

> > ĥ

Yours truly.

Direct Discharge Flow Data

I

٠

5/31/2013		11907271	0	11,907,291	
June-13	June-13		Daily Total lizer Reading Discharge (Gallons) (Gallons)		Notes
1		11944155	36.884	11,944,175	21:35 inhibit
2		11949896	5,741	11,949,916	12:20 enable
3		12042056	92,160	12,042,076	
4		12133928	91,872	12,133,948	
5		12153048	19,120	12,153,068	12:47 inhibit
6		12153048	0	12,153,068	
7		12241242	88,194	12,241,262	06:00 enable
8		12334952	93,710	12,334,972	
9		12376712	41,760	12,376,732	23:57 inhibit
10		12393427	16,715	12,393,447	18:45 enable
11		12432442	39,015	12,432,462	07:41inhibit 13:18enable
12		12432442	0	12,432,462	
13		12436632	4,190	12,436,652	02:56 inhibit
14		12531343	94,711	12,531,363	12:06 enable
15		12702128	170,785	12,702,148	
16		12720546	18,418	12,720,566	
17		12753438	32,892	12,753,458	
18		12765075	11,637	12,765,095	
19		12808043	42,968	12,808,063	
20		12823076	15,033	12,823,096	
21		12844799	21,723	12,844,819	
22		12862824	18,025	12,862,844	
23		12876855	14,031	12,876,875	
24	ļ	12881115	4,260	12,881,135	
25		12904061	22,946	12,904,081	
26		12919101	15,040	12,919,121	23:52 inhibit
27	ļ	12925710	6,609	12,925,730	07:26 enable
28	ļ	12941822	16,112	12,941,842	00:00 inhibit
29	ļ	13061954	120,132	13,061,974	07:54 enable
30	ļ	13212773	150,819	13,212,793	
31	<u> </u>	1 305 502	1.305.502	1.305.502	

İ

|

June 2013

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

June 11, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the May 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly. IJ Jon W. Nichy Superintendent Main Pump Station

		Data				
•	4/30/201	3	11086044	0	11,086,064	
	May-13		Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
	1		11086044	0	11,086,064	
	2		11086044	0	11,086,064	
	3		11086044	0	11,086,064	
	4		11210512	124,468	11,210,532	
	5		11250293	39,781	11,250,313	
	6		11250293	0	11,250,313	
	7		11250293	0	11,250,313	
	8		11250293	0	11,250,313	
	9		11250293	0	11,250,313	
	10		11295581	45,288	11,295,601	1909 inhibit
	11		11309766	14,185	11,309,786	1752 enable
	12		11329400	19,634	11,329,420	
	13		11329400	0	11,329,420	
	14		11393389	63,989	11,393,409	
	15		11573481	180,092	11,573,501	
	16		11586400	12,919	11,586,420	
	17		11586981	581	11,587,001	
	18		11586981	0	11,587,001	· · · · · · · · · · · · · · · · · · ·
	19		11588255	1,274	11,588,275	
	20		11588255	0	11,588,275	
	21		11588255	0	11,588,275	
	22		11588255	0	11,588,275	
	23		11588255	0	11,588,275	
	24		11618686	30,431	11,618,706	
	25		11623744	5,058	11,623,764	
	26		11625639	1,895	11,625,659	
	27		11629335	3,696	11,629,355	
	28		11664183	34,848	11,664,203	1000 inhibit
	29		11752800	88,617	11,752,820	1241 enable
	30		11907271	154,471	11,907,291	
	31		11907271	0	11,907,291	
			821 227	821,227	821.227	

I

Ξ

ļ

May 2013

. . /

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

May 10, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the April 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours/truly,

Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

3/31/2013		10125301	10,678	10,125,321	· · · · · · · · · · · · · · · · · · ·
April-13	11:58pm 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
. 1		10137941	12,640	10,137,961	
2		10140740	2,799	10,140,760	
3		10168687	27,947	10,168,707	
4		10177279	8,592	10,177,299	
5		10264851	87,572	10,264,871	
6		10301001	36,150	10,301,021	
7		10314595	13,594	10,314,615	
8		10326345	11,750	10,326,365	
9		10327138	793	10,327,158	
10		10327138	0	10,327,158	
11		[^] 10327138	0	10,327,158	
12		10327138	0	10,327,158	
13		10445112	117,974	10,445,132	
14		10623672	178,560	10,623,692	
15		10763522	139,850	10,763,542	
16		10826882	63,360	10,826,902	
17		10837552	10,670	10,837,572	·
18		10837552	0	10,837,572	
19		10837552	0	10,837,572	
20		10896365	58,813	10,896,385	
21		10903726	7,361	10,903,746	
22		10988479	84,753	10,988,499	
23		11024712	36,233	11,024,732	
24		11024712	0	11,024,732	
25		11024712	0	11,024,732	,; <u></u> _, , ,,
26		11024712	0	11,024,732	
27		11055860	31,148	11,055,880	
28		11086044	30,184	11,086,064	
29		11086044	0	11,086,064	
30		11086044	0	11,086,064	
31		060 742	960 743	960 743	

1

¥

,

<u>ر</u>،

14 13

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

April 6, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the March 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly, Jøn W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

.

2/28/20	13	8640522	89,397	8,640,542	
March-13	11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
1		8831345	190,823	8,831,365	
2		8930939	99,594	8,930,959	
3		8941559	10,620	8,941,579	
.4		8960042	18,483	8,960,062	
5		8966305	6,263	8,966,325	
6		8996035	29,730	8,996,055	
7		9106819	110,784	9,106,839	
8		9212639	105,820	9,212,659	
9		9254291	41,652	9,254,311	
10		9269683	15,392	9,269,703	
11		9334325	64,642	9,334,345	
12		9448599	114,274	9,448,619	
13		9511369	62,770	9,511,389	
14		9522788	11,419	9,522,808	
15		9537706	14,918	9,537,726	
16		9554257	16,551	9,554,277	
17		9590195	35,938	9,590,215	
18		9673969	83,774	9,673,989	· _ · _ · _ ·
19		9688722	14,753	9,688,742	
20		9707448	18,726	9,707,468	
21		9717600	10,152	9,717,620	
22		9733545	15,945	9,733,565	
23		9761730	28,185	9,761,750	
24		9854298	92,568	9,854,318	
25		9884883	30,585	9,884,903	
26		9894064	9,181	9,894,084	
27		9912606	18,542	9,912,626	
28		9954785	42,179	9,954,805	· · · · · · · · · · · · · · · · · · ·
29		10063784	108,999	10,063,804	
30		10114623	50,839	10,114,643	
31		10125301	10,678	10,125,321	
	L	1,707,713		סוודטרוי	

b

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

March 2, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the February 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly,

Jon W. Nichy / Superintendent Main Pump Station

Direct Discharge Flow Data

٠

.

|

.

1/31/2013		7291492	70,179	7,291,508	
February-13	-ebruary-13		Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
1		7502867	211,376	7,502,884	
2		7639962	137,095	7,639,979	
3		7647382	7,420	7,647,399	
4		7658224	10,842	7,658,241	
5		7668603	10,379	7,668,620	
6		7685567	16,964	7,685,584	
7		7696931	11,364	7,696,948	
8		7696931	0	7,696,948	· · · · · · · · · · · · · · · · · · ·
9		7751867	54,936	7,751,884	
10		7826311	74,444	7,826,328	
11		7835360	9,049	7,835,377	0302 inhibit
12		7915635	80,276	7,915,653	0615 enable
13		8025641	110,006	8,025,659	
14		8119925	94,284	8,119,943	2128 inhibit
15		8181107	61,183	8,181,126	1328 enable
16		8283363	102,256	8,283,382	
17		8320912	37,549	8,320,931	
18		8331137	10,225	8,331,156	
19		8374551	43,414	8,374,570	0841inhibit 1832enable
20		8471802	. 97,252	8,471,822	
21		8480745	8,943	8,480,765	
22		8496742	15,997	8,496,762	
23		8510014	13,272	8,510,034	
24		8513684	3,670	8,513,704	
25		8538612	24,928	8,538,632	<u> </u>
26	ļ	8551125	12,513	8,551,145	2002 inhibit
27		8551125	0	8,551,145	
28		8640522	89,397	8,640,542	1159 enable
29					······································
30			· · · · · · · · · · · · · · · · · · ·		
31	<u> </u>	4 9 4 9 6 9 9	4 0 40 00 4	4 240 024	
		1,349,030	1,349,034	1,349,034	

İ

.

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

February 7, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the January 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy. Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

> Yours truly, Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

1

12/31/2012		5760787	30,294	5,760,799	
January-13	11me; 11:58pm unless otherwise stated	Daily Total Totalizer Reading Discharge (Gallons) (Gallons)		Total Direct Discharge (Gallons)	Notes
1		5767997	7,210	5,768,009	
2		5835467	67,470	5,835,479	· ·
3		5932350	96,884	5,932,363	
4		5951536	19,186	5,951,549	
5		5955797	4,262	5,955,811	
6		6020989	65,192	6,021,003	
7		6122854	101,866	6,122,869	
8		6129908	7,054	6,129,923	
9		6139683	9,776	6,139,699	1555inhibit
10		6240327	100,644	6,240,343	
11		6261606	21,279	6,261,622	1306enable1504inhibit
12		6364392	102,786	6,364,408	1047enable
13		6447080	82,688	6,447,096	0439inhibit 1902enable
14		6654571	207,491	6,654,587	
15		6804376	149,806	. 6,804,393	
16		6855853	51,477	6,855,870	
17		6859536	3,683	6,859,553	
18		6885671	26,136	6,885,689	
19		6927658	41,987	6,927,676	
20		6927658	0	6,927,676	······
21		6927658	0	6,927,676	
22		6927658	0	6,927,676	
23		6927658	191,160	7,118,836	· · · · · · · · · · · · · · · · ·
24		6927658	0	7,118,836	ii .
25		[#] 6927658	0	7,118,836	y
26		7144353	25,532	7,144,368	
27		7149298	4,946	7,149,314	
28		7181516	32,218	7,181,532	1358inhibit
29		7181516	0	7,181,532	
		7221313	39,797	7,221,329	0724enable 1221inhibit
31		7291492	70,179 1,530.709	7,291,508 1.530.709	1446enable

.

APPENDIX C

HYDRAULIC MONITORING TABLES

N:\11172700.00000\WORD\DRAFT\Scmi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

TABLE 1 PFOHL BROTHERS LANDFILL SITE GROUNDWATER ELEVATIONS

JANUARY - JUNE 2013

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
GW-01D	1073088.634	1117968.213	694.41	NM	696.12	D	1						
MNW								3/27/2013 1421	2.80	693.32	0.00	693.32	
MNW		···						5/8/2013 0947	3.48	692.64	0.00	692.64	
MNW						1		6/24/2013 1621	3.17	692.95	0.00	692.95	
GW-01S	1073087.779	1117961.500	694.53	NM	696.19	S	1						
MNW								3/27/2013 1421	3.75	692.44	0.00	692.44	
MNW				[5/8/2013 0949	4.29	691.90	0.00	691.90	
MNW	1							6/24/2013 1621	4.42	691.77	0.00	691.77	
GW-03D	1073819.106	1114602.426	692.35	NM	693.88	D	1						
MNW	r							3/27/2013 1258	2.15	691.73	0.00	691.73	
MNW	1							5/8/2013 0843	2.35	691.53	0.00	691.53	
MNW	/					1		6/24/2013 1524	2.20	691.68	0.00	691.68	
GW-03S	1073812.622	1114605.762	692.61	NM	693.80	S	1						
MNW	/							3/27/2013 1257	2.52	691.28	0.00	691.28	
MNW	/	-•						5/8/2013 0842	2.99	690.81	0.00	690.81	
MNW	1							6/24/2013 1524	6.89	686.91	0.00	686.91	
GW-04D	1072289.432	1114685.625	690.89	NM	692.75	D	1						
MNW	/							3/27/2013 1432	12.95	679.80	0.00	679.80	
MNW	/							5/8/2013 0957	12.88	679.87	0.00	679.87	
MNW	/							6/24/2013 1628	12.91	679.84	0.00	679.84	· · · · · · · · ·
GW-04S	1072284.456	1114685.127	690.76	NM	692.72	s	1		1				
. MNW	/					1		3/27/2013 1423	4.58	688.14	0.00	688.14	
MNW	/			1	1	<u> </u>	1	5/8/2013 0958	4.90	687.82	0.00	687.82	
MNW	/	<u> </u>			1		1	6/24/2013 1628	4.69	688.03	0.00	688.03	· · · ·

NM - No Measurement

•

......

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Manhole Monitoring Point Monitoring Well Staff Gauge

Type:

MNW

ΜН

SG

Page 1 of 7

Fitter = ((tblGWD).[LOGDATE] In (#3/27/2013#,#5/8/2013#,#6/24/2013#))

TABLE 1								
PFOHL BROTHERS LANDFILL SITE								
GROUNDWATER ELEVATIONS								
JANUARY - JUNE 2013								

Location ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
GW-07D	1071242.458	1117669.925	697.15	NM	699.94	D	1						
MNW	/							3/27/2013 1350	48.08	651.86	0.00	651.86	
MNW	/					Î.		5/8/2013 1005	45.33	654.61	0.00	654.61	
MNW	/							6/24/2013 1611	55.57	644.37	0.00	644.37	
GW-07S	1071238.157	1117666.265	697.47	NM	699.51	S	1						
MNW	/							3/27/2013 1350	4.93	694.58	0.00	694.58	
MNW	/							5/8/2013 1005	5.3	694.21	0.00	694.21	
MNW	/							6/24/2013 1611	4.87	694.64	0.00	694.64	
GW-08D	1073713.617	1116795.328	695.28	NM	697.79	D	1						
MNW								3/27/2013 1315	6.12	691.67	0.00	691.67	,
MNW	/							5/8/2013 0902	6.36	691.43	0.00	691.43	
MNW	/			1			1.	6/24/2013 1535	6.20	691.59	0.00	691.59	
GW-08SR	1073714.172	1116786.343	695.08	NM	697.50	S	1						•
MNW								3/27/2013 1315	5.31	692.19	0.00	692.19	
MNW	1							5/8/2013 0902	5.48	692.02	0.00	692.02	
MNW	1							6/24/2013 1535	5.35	692.15	0.00	692.15	
GW-26D	1071698.573	1115997.470	696.01	NM	698.50	D	1						
MNW	/							3/27/2013 1341	6.96	691.54	0.00	691.54	
MNW	/							5/8/2013 0935	7.19	691.31	0.00	691.31	
MNW	/							6/24/2013 1600	7.03	691.47	0.00	691.47	
GW-28S	1073129.479	1117648.927	698.60	NM	700.95	s	1				Ī		
MNW	/						1	3/27/2013 1322	9.08	691.87	0.00	691.87	
MNW	/					1		5/8/2013 0910	9.68	691.27	0.00	691.27	1
MNW	/						1	6/24/2013 1542	9.23	691.72	0.00	691.72	

.

NM - No Measurement

1

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

 Type:

 MH
 Manhole Monitoring Point

 MNW
 Monitoring Well

 SG
 Staff Gauge

Fitter = ([tblGWD].[LOGDATE] In (#3/27/2013#,#5/8/2013#,#6/24/2013#))

Page 2 of 7

Page 3 of 7

TABLE 1 PFOHL BROTHERS LANDFILL SITE GROUNDWATER ELEVATIONS JANUARY - JUNE 2013

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
GW-29S	1072552.638	1117761.993	697.50	NM	699.63	s	1						
MNW	/							3/27/2013 1331	8.21	691.42	0.00	691.42	
MNW	/		· · · · ·					5/8/2013 0917	9.00	690.63	0.00	690.63	
MNW	/							6/24/2013 1550	8.43	691.20	0.00	691.20	
GW-30S	1072096.109	1117743.563	693.67	NM	696.58	s	1						
MNW	n							3/27/2013 1334	7.93	688.65	0.00	688.65	
MNW	/							5/8/2013 0919	8.10	688.48	0.00	688.48	
MNW	/			1				6/24/2013 1551	8.04	688.54	0.00	688.54	
GW-31S	1071786.280	1117191.441	695.84	NM	698.62	s	1						
MNW	/							3/27/2013 1336	3.02	695.60	0.00	695.60	
MNW	/	· · · ·						5/8/2013 0924	4.65	693.97	0.00	693.97	<u></u>
MNW	/					1		6/24/2013 1555	3.72	694.90	0.00	694.90	
GW-32S	1071613.793	1116364.200	696.19	NM	698.37	s	1						
MNW	/							3/27/2013 1338	3.07	695.30	0.00	695.30	
MNW				[5/8/2013 0927	4.51	693.86	0.00	693.86	
MNW								6/24/2013 1558	3.89	694.48	0.00	694.48	
GW-33S	1072165.625	1115561.866	695.94	NM	698.24	S	1						
MNW	/							3/27/2013 1345	4.50	693.74	0.00	693.74	
MNW	/						-	5/8/2013 0939	6.30	691.94	0.00	691.94	· · · · ·
MNW	/							6/24/2013 1603	5.47	692.77	0.00	692.77	
GW-34S	1072979.205	1114730.200	692.51	NM	694.77	s	1						
MNW	/							3/27/2013 1250	2.62	692.15	0.00	692.15	
MNW	/		1			1	1	5/8/2013 0836	3.21	691.56	0.00	691.56	
MNW	1	1		-				6/24/2013 1518	3.33	691.44	0.00	691.44	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Monitoring Well Staff Gauge

Type:

MNW

SG

мн

Manhole Monitoring Point 1

Page 4 of 7

TABLE 1 PFOHL BROTHERS LANDFILL SITE **GROUNDWATER ELEVATIONS JANUARY - JUNE 2013**

Location ID / Type	Northing	Easting	Ground 🦻 Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
GW-355	1071701.925	1115985.585	696.19	NM	697.39	S	1						
MNW	r							3/27/2013 1342	3.54	693.85	0.00	693.85	
MNM	/							5/8/2013 0935	4.16	693.23	0.00	693.23	
MNW	/					1		6/24/2013 1600	4.26	693.13	0.00	693.13	
MH-01	1073806.665	1114810.501	698.62	NM	698.62	NA	1						
MH	{							3/27/2013 1306	10.35	688.27	0.00	688.27	
MF	4			-				5/8/2013 0839	10.47	688.15	0.00	688.15	
MF	1						1	6/24/2013 1521	9.95	688.67	0.00	688.67	
MH-03	1073736.789	1115259.334	699.40	NM	699.40	NA	1						
MH	1							3/27/2013 1302	11.22	688.18	0.00	688.18	
MF	1							5/8/2013 0848	11.23	688.17	0.00	688.17	
MH	1			· · · · · · · · · · · · · · · · · · ·				6/24/2013 1528	10.82	688.58	0.00	688.58	
MH-07	1073838.229	1116243.757	696.82	NM	696.82	NA	1						
MH	4							3/27/2013 1309	9.41	687.41	0.00	687.41	
MH	1				· · · ·			5/8/2013 0859	9.46	687.36	0.00	687.36	
MH	1							6/24/2013 1530	9.03	687.79	0.00	687.79	
MH-10	1073540.729	1117381.524	703.01	NM	703.01	NA	1						
MF	4							3/27/2013 1317	14.47	688.54	0.00	688.54	
M	4		1.				1	5/8/2013 0907	14.46	688.55	0.00	688.55	
MH	1					-	1	6/24/2013 1538	14.55	688.46	0.00	688.46	
MH-15	1072531.567	1117761.125	699.02	NM	699.02	NA	1		1		1		
MH	4							3/27/2013 1331	14.70	684.32	0.00	684.32	
MH	1		1	1		1		5/8/2013 0917	14.29	684.73	0.00	684.73	
MI			1	1			1	6/24/2013 1550	14.70	684.32	0.00	684.32	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Manhole Monitoring Point MNW Monitoring Well Staff Gauge

Type: мн

SG

Page 5 of 7

TABLE 1 PFOHL BROTHERS LANDFILL SITE GROUNDWATER ELEVATIONS JANUARY - JUNE 2013

Location Type	n ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MH-16		1072133.714	1117748.238	698.57	NM	698.57	NA	1						
	мн								3/27/2013 1333	[.] 14.49	684.08	0.00	684.08	
	мн			<u> </u>				-	5/8/2013 0919	13.87	684.70	0.00	684.70	
	MH				i				6/24/2013 1551	14.47	684.10	0.00	684.10	
MH-17		1071813.137	1117180.019	702.16	NM	702.16	NA	1						
	мн								3/27/2013 1335	18.10	684.06	0.00	684.06	
,	мн								5/8/2013 0924	17.47	684.69	0.00	684.69	
	мн						1		6/24/2013 1555	18.12	684.04	0.00	684.04	
MH-20		1071756.395	1115997.024	706.20	NM	706.20	NA	1			1	1	· · · · · · · · · · · · · · · · · · ·	
	мн								3/27/2013 1340	19.75	686.45	0.00	686.45	
	мн						1		5/8/2013 0935	19.72	686.48	0.00	686.48	
	мн							1	6/24/2013 1600	19.74	686.46	0.00	686.46	·····
MH-22		1072158.023	1115589.309	698.05	NM	698.05	NA	1						
	мн								3/27/2013 1344	9.00	689.05	0.00	689.05	
	мн								5/8/2013 0939	9.05	689.00	0.00	689.00	
	мн		<u> </u>						6/24/2013 1603	9.04	689.01	0.00	689.01	
MH-25		1072483.928	1114820.313	698.17	- NM	698.17	NA	1		1			1	
	мн								3/27/2013 1234	9.98	688,19	0.00	688.19	
	мн								5/8/2013 0830	10.10	688.07	0.00	688.07	
	мн					 			6/24/2013 1514	9.54	688.63	0.00	688.63	
SG-01		1073882.887	1114813.101	NM	NM	690.00	NA	1		<u> </u>	<u> ···-</u>	<u> </u>		
									3/27/2013 1255	-0.94	690.94	0.00	690.94	
	30							ł	5/8/2013 0830	-0.94 NM		NM		DRY
 								+	6/24/2013 1521	NM	-	NM		DRY
	SG SG								5/8/2013 0830 6/24/2013 1521	NM NM	-	NM NM	-	DRY DRY

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Туре: МН

MNW

SG

Manhole Monitoring Point Monitoring Well Staff Gauge

Page 6 of 7

TABLE 1 PFOHL BROTHERS LANDFILL SITE GROUNDWATER ELEVATIONS JANUARY - JUNE 2013

Location ID Type	/ Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SG-02	1073738.27	1116805.85	NM	NM	690.00	NA	1						
s	G							3/27/2013 1313	-3.98	693.98	0.00	693.98	
s	G							5/8/2013 0901	-2.90	692.90	0.00	692.90	
S	G							6/24/2013 1534	-3.00	693.00	0.00	693.00	
WW-01	1073676.903	1115710.476	NM	NM	684.02	NA	1						
м	н							3/27/2013 1145	-4.0	688.02	0.00	688.02	
M	Н	-	· ·	-				5/8/2013 0730	-3.9	687.92	0.00	687.92	
M	н							6/24/2013 1440	-4.4	688.42	0.00	[•] 688.42	
WW-02	1073684.724	1116792.311	NM	NM	684.18	NA	1				ĺ		
М м	н							3/27/2013 1145	-4.70 [·]	688.88	0.00	688.88	
м	н	<u> </u>						5/8/2013 0730	-4.7	688.88	0.00	688.88	
M	Ĥ						1	6/24/2013 1440	-4.6	688.78	0.00	688.78	
WW-03	1073140.339	1117618.499	NM	NM	683.80	NA	1						
M N	н							3/27/2013 1145	-4.75	688.55	0.00	688.55	
M	н					i.		5/8/2013 0852	-4.13	687.93	0.00	687.93	
M	н	- X					1	6/24/2013 1440	-4.58	688.38	0.00	688.38	
WW-04	1072057.563	1117610.508	NM	NM	676.62	NA	1						
. M	н							3/27/2013 1145	-7.0	683.62	0.00	683.62	
Ň	н							5/8/2013 0730	-7.6	684.22	0.00	684.22	
N	IH	· ·						6/24/2013 1440	-7.0	683.62	0.00	683.62	
WW-05	1071661.368	1116370.876	NM	NM	676.14	NA	1		1		[
N	н							3/27/2013 1145	-6.6	682.74	0.00	682.74	
N	IH III				· · ·		1	5/8/2013 0931	-8.58	684.72	0.00	684.72	
N	Н	1	1			1		6/24/2013 1440	-6.8	682.94	0.00	682.94	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

.

_

.

Type: MH MNW

SG

Manhole Monitoring Point Monitoring Well Staff Gauge

Filter = ([tblGWD].[LOGDATE] In (#3/27/2013#,#5/8/2013#,#6/24/2013#))

TABLE 1 **PFOHL BROTHERS LANDFILL SITE GROUNDWATER ELEVATIONS JANUARY - JUNE 2013**

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
WW-06	1072988.420	1114811.518	NM	NM	681.89	NA	1				1		
мн								3/27/2013 1145	-6.9	688.79	0.00	688.79	
мн								5/8/2013 0730	-6.5	688.39	0.00	688.39	_
МН								6/24/2013 1440	-7.0	688.89	0.00	688.89	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

.

Filter = ([tblGWD].(LOGDATE) In (#3/27/2013#,#5/8/2013#,#6/24/2013#))

Туре: мн Manhole Monitoring Point MNW Monitoring Well Staff Gauge

SG

Page 7 of 7

Printed: 12/11/2013 4:22:47 PM N:\11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

١

TABLE 2 PFOHL BROTHERS LANDFILL SITE OVERBURDEN HYDRAULIC GRADIENT

WELL PAIR:	WW-1	*	Level	WW-2	GW-8SR	Level	SG-02	Level
	Water Level	Water Level	Difference	Water Level	Water Level	Difference	Water Level	Difference
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft)
3/27/2013	688.02			688.88	692.19	3.31	693.98	5.10
5/8/2013	687.92			688.88	692.02	3.14	692.90	4.02
6/24/2013	688.42			688.78	692.15	3.37	693.00	4.22
							_	
WELL PAIR:	WW-3	GW-28S	Level	WW-4	*	Level]	
,	Water Level	Water Level	Difference	Water Level	Water Level	Difference	J	
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)	I	
3/27/2013	688.55	691.87	3.32	683.62				
5/8/2013	687.93	691.27	3.34	684.22			1	
6/24/2013	688.38	691.72	3.34	683.62			I	
WELL PAIR:	WW-5	GW-32S	Level	WW-6	GW-34S	Level		
	Water Level	Water Level	Difference	Water Level	Water Level	Difference		
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)		
3/27/2013	682.74	695.30	12.56	688.79	692.15	3.36		
5/8/2013	684.72	693.86	9.14	688.39	691.56	3.17		
6/24/2013	682.94	694.48	11.54	688.89	691.44	2.55		
								-
WELL PAIR:	MH-1	SG-1	Level	MH-15	GW-29S	Level		1
	Water Level	Water Level	Difference	Water Level	Water Level	Difference		
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)		
3/27/2013	688.27	690.94	2.67	684.32	691.42	7.10		
5/8/2013	688.15	DRY	NA	684.73	690.63	5.90		
6/24/2013	688.67	DRY	NA	684.32	691.20	6.88		
WELL PAIR:	MH-16	GW-30S	Level	MH-17	GW-31S	Level		
	Water Level	Water Level	Difference	Water Level	Water Level	Difference		
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)		
3/27/2013	684.08	688.65	4.57	684.06	695.60	11.54	-	
5/8/2013	684.70	688.48	3.78	684.69	693.97	9.28		
6/24/2013	684.10	688.54	4.44	684.04	694.90	10.86		
								1
WELL PAIR:	MH-20	GW-35S	Level	MH-22	GW-33S	Level		•
	Water Level	Water Level	Difference	Water Level	Water Level	Difference		
DATE	(ft amsl)	(ft amsl)	(ft)	(ft amsl)	(ft amsl)	(ft)		
3/27/2013	686.45	693.85	7.40	689.05	693.74	4.69		
5/8/2013	686.48	693.23	6.75	689.00	691.94	2.94		
6/24/2013	686.46	693.13	6.67	689.01	692.77	3.76		

ļ

Notes:

1

ļ

* = No corresponding monitoring well.

NA = Not applicable

APPENDIX D

GROUNDWATER PURGE AND SAMPLE COLLECTION LOGS

l

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

,

Project:	Project: 11175616.00000				Site: Pfohl Brothers			GW-1S
Date:	5/10/2013	Sampling	Personnel:	Rob Mu	urphy, Tim li	fkovich	_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet _ Location: _	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	3.88'	Depth to Well Bottom:	14.94'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	6.8	-	Estimated Purge Volume - (liters): _	8.6
Sample ID:		GW-1S		Sample Time:	14	1:42	QA/QC:	None
Sample Othe	e Parameters: er Information:	VOCs, SVOCs, Riser pipe is bu Orange stain in	and TAL Meta lged inwards, water initially.	als could not remov	e stainless s	steel bailer fro	m within well, sa	mpled around it.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:06	7.07	13.83	0.978	0.00	517	-211	240	3.88
14:11	7.11	13.14	0.805	0.00	>800	-191	240	4.28
14:16	7.07	13.13	0.796	0.00	>800	-187	240	4.92
14:21	6.98	13.98	0.915	0.00	459	-182 \	240	4.82
14:26	6.96	13.82	0.945	0.00	364	-182	240	4.82
14:31	6.96	13.91	0.953	0.00	372	-178	240	4.82
14:36	6.95	13.66	0.963	0.00	312	-176	240	4.82
14:39	6.94	13.54	0.984	0.00	290	-175	240	4.82
14:42	6.88	13.46	0.992	0.00	286	-167	240	4.82
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
				10%	10%			

Q

į .

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vq)_n = πr^2h)
Project:	11	175616.00000		Site:	Pfohl B	Irothers	_ Well I.D.: _	GW-1D
Date:	5/10/2013	Sampling Pe	rsonnel:	Rob Mu	rphy, Tim Ifi	kovich	_ Company:_	URS Corporation
Purging/ Sampling Device:	···	Geopump 2		Tubing Type:	LDPE/S	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of I	nitial Depth to Water:2	2.85'	Depth to Well Bottom:	39.65'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainless	Steel		Volume in 1 Well Casing (liters):	90.9		Estimated Purge Volume (liters):	66.0
Sample ID:		GW-1D		Sample Time:	13	:59	QA/QC:	None
Sampl Othe	le Parameters: V er Information: S	OCs, SVOCs, and ulfur odor	TAL Meta	lls				

PURGE PARAMETERS

TIME	pH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:53	7 12	12.93	1.13	0.00	1.4	-116	1000	2.85
12:58	7 15	11.70	1.14	0.00	0.0	-129	1000	2.91
13:03	6.95	11.45	1.14	0.00	0.0	-122	1000	2.91
13:08	6.90	11.35	1.14	0.00	0.0	-120	1000	2.91
13:13	6.83	11.25	1.14	0.00	0.0	-119	1000	2.91
13:18	6.74	11.23	1.14	0.00	0.0	-122	1000	2.91
13:23	6.86	11.17	1.14	0.00	0.0	-154	1000	2.91
13:28	6.97	11.16	1.14	0.00	0.0	-167	1000	2.91
13:33	7.07	11.26	1.14	0.00	0.0	-185	1000	2.91
13:38	7.10	11.14	1.13	0.00	0.0	-197	1000	2.91
13:43	7.10	11.18	1.14	0.00	0.0	-207	1000	2.91
13:48	7.16	11.09	1.13	0.00	0.0	-216	1000	2.91
13:53	7.13	11.12	1.13	0.00	0.0	-222	1000	2.91
13:56	7.12	11.13	1.13	0.00	0.0	-225	1000	2.91
13:59	7.12	11.17	1.14	0.00	0.0	-228	1000	2.91
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{lg} = \pi r^2h$)

İ

Project:		11175616.00000		Site:	Pfohl E	Brothers	_ Well I.D.: _	GW-3S
Date:	5/8/2013	Sampling	Personnel:	. Rob Murphy, Tim Ifkovich			_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	2.99'	Depth to Well Bottom:	13.22'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	6.3		Estimated Purge Volume (liters): _	7.4
Sample ID:		GW-3S		Sample Time:	12	:50	QA/QC:	None
Sample Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

4

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:15	7.47	11.72	1.75	0.00 ·	49.9	25	315	2.99
12:20	7.10	10.88	1.69	0.00	15.8	9	250	6.11
12:25	6.94	10.99	1.70	0.00	11.3	14	250	6.88
12:30	6.83	11.00	1.70	0.00	16.0	23	190	7.66
12:35	6.80	11.27	1.70	0.00	16.7	27	190	8.31
12:40	6.76	11.52	1.70	0.00	16.9	33	145	8.66
12:45	6.75	11.86	1.68	0.00	13.6	37	145	8.73
12:50	6.75	12.15	1.68	0.00	11.1	42	145	8.72
		j.					ļi	
Toterance:	0.1		3%	10%	10%	+ or - 10		

 Information:
 WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vqd_e = \pi r^2h$)

Project: Site: Well I.D.: GW-3D 11175616.00000 Pfohl Brothers Date: 5/8/2013 Sampling Personnel: Rob Murphy, Tim Ifkovich Company: **URS** Corporation Pump/Tubing Purging/ Sampling Inlet Location: Screen midpoint Device: Tubing Type: LDPE/Silicone Geopump 2 Well Screen Measuring Below Top of Initial Depth Depth to 35.70' 4" Length: Point: Riser to Water: 2.35' Well Bottom: Diameter: Estimated Purge Volume in 1 Casing Well Casing Volume 82.4 (liters): 60.0 (liters): Type: Stainless Steel Sample MS/MSD QA/QC: GW-3D 14:15 Sample ID: Time: Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

тіме	pН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:15	6.93	11.01	1.39	0.00	1.6	-32	1000	2.35
13:20	6.99	10.72	1.39	0.00	0.0	-68	1000	2.37
13:25	6.78	10.66	1.39	0.00	0.0	-62	1000	2.37
13:30	6.72	10.71	1.39	0.00	11.8	-62	1000	2.37
13:35	6.68	10.73	1.39	0.00	3.7	-62	1000	2.37
13:40	6.67	10.67	1.39	0.00	3.4	-62	1000	2.37
13:45	6.61	10.67	1.39	0.00	0.7	-60	1000	2.37
13:50	6.59	10.63	1.39	0.00	0.1	-59	1000	2.37
13:55	6.56	10.57	1.39	0.00	0.0	-59	1000	2.37
14:00	6.54	10.59	1.39	0.00	0.0	-58	1000	2.37
14:05	6.53	10.59	1.39	0.00	0.0	-58	1000	2.37
14:10	6.52	10.59	1.39	0.00	0.0	-58	1000	2.37
14:15	6.51	10.60	1.39	0.00	0.0	-58	1000	2.37
							ļ	
								•
							+	
Talaranaa	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{ij} = \pi r^2h$)

Project:		11175616.00000		Site:	Pfohl Brothers		Well I.D.:	GW-4S
Date:	5/9/2013	Sampling	Personnel:	Rob M	Rob Murphy, Tim Ifkóvich		_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	4.90'	Depth to Well Bottom:	16.23'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters): _	7.0		Estimated Purge Volume (liters): _	
Sample ID:		GW-4S		Sample Time:	11:45 13:30 SVO	VOCs/ Cs & Metals	QA/QC:、	None
Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information: Placed passive diffusion bag (PDB) in well 3/27/13, sampled VOCs from PDB at 11:45 on 5/9/13. Well historically goes dry at very low purge rates (<75ml/min). Bailed dry and sampled for SVOCs and Metals after recovery at 13:30.								

PURGE PARAMETERS

тіме	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11:47	7.79	13.69	0.497	2.76	29.1	99	Initial	4.90
11:50	7.68	11.25	0.490	1.67	212	94	2 Gal. Purged	-
11:53	7.51	10.68	0.490	1.45	642	39	4 Gal. Purged	Dry
		•						
			•					
			<u>.</u>					
	1					i i		
								· · · · · · · · · · · · · · · · · · ·
			*				/	
					•			
Toterance:	0.1		3%	10%	10%	+ or - 10		

• ,

i.

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vqd_a = \pi c^2h$)

Project:	11175616.00000			Site:	Site: Pfohl Brothers		Well I.D.:	GW-4D
Date:	5/9/2013	Sampling F	Personnel:	Tim lfkovi	ch, Kevin Mc	Govern	_ Company: _	URS Corporation
Purging/ Sampling Device:	Ge	eopump 2		Tubing Type:	LDPE/S	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Initia Riser to	al Depth Water:	12.79'	Depth to Well Bottom:	45.57'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainless St	eel		Volume in 1 Well Casing (liters):	81.0		Estimated Purge Volume (liters): _	10.8
Sample ID:	(GW-4D		Sample Time:	13:	09	QA/QC:	None
Sample Othe	e Parameters: <u>VOC</u> er Information:	Cs, SVOCs, a	nd TAL Meta	lls				

PURGE PARAMETERS

TIME			COND.	DISS. O ₂	TURB.		FLOW RATE	DEPTH TO WATER (btor)
	<u> </u>	12.04	1.61	(188	-57	180	12 79
12:09	7.20	12.94	1.01	3.32	46.0	-104	180	13.14
12.14	7.17	12.30	1.04	2.66	18.6		180	13.36
12:19	7.10	12.27	1.62	2.00	14.1	-152	180	13.50
12:24	7.14	12.14	1.02	2.07	83	-133	180	13.77
12:29	7.12	12.15	1.00	0.00	7.0	-107	180	13.87
12:34	7.12	12.31	1.00	0.00	7.5	-137	180	13.96
12.39	7.13	12.40	1.07	0.00	1.0	-225	180	14.05
12:44	7.12	12.41	1.68	0.00	93	-237	180	14.00
12.49	7.13	12.37	1.00	0.00		-247	180	14.14
12:54	7.14	12.34	1.00	0.00	0.0	-252	180	14.20
12:59	7.15	12.09	1.05	0.00	0.0	-255	180	14.00
13.04	7.14	12.23	1.07	0.00	0.0	-257	180	14.35
13:09	7.11	12.47	1.00	0.00	0.0	-201	100	14.00
		┟─────					T	
	<u> </u>							
		<u> </u>						
		<u></u>						
Tolerance:	0.1		3%	10%	10%	+ or - 10		

i

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{l_f} = \pi r^2 h$)

WELL PURGING LOG

URS Corporation

SITE NAME:	Pfohl Bro	thers Lar	ndfill					WELL NO.:	G		
PROJECT NO	11175616	6.00000		<u> </u>							
STAFF:	Rob Murr	ohy, Tim	lfkovich	··						· · ·	
- DATE(S):	5/8/13. 5/	/9/13									
							25	04	WELL ID.	VOL. (GAL/	'FT)
						=		.04		0.04	+0
2. WATER LEVEL	BELOW TO	P OF CAS	ING (F1.)			=	<u> </u>	30	2"	0.1	
3. NUMBER OF F	EET STAND	ING WATE	:R (#1 - #2)		=	29	./4	3"	0.3	,8
4. VOLUME OF W	VATER/FOOT	F OF CASI	NG (GAL.)			=	0.	17	4"	0.6	<i>'</i> 6
5. VOLUME OF V	VATER IN CA	SING (GA	L.)(#3 x #4	+)		=	5	.1	5"	1.0	4
6. VOLUME OF V	VATER TO R	EMOVE (G	GAL.)(#5 x ∶	3)		= ,			6"	1.5	0
7. VOLUME OF V	/IOVED (G	AL.)		=	7	.5	8"	2.6	0		
								V=0	.0408 x (CASING	DIAMETER [INC	HES]) ²
					ACCUN	ULATED		PURGED (GAL	LONS)		
PARAMETERS		Initial	2	3	4	5	7			-	
pН		8.66	8.31	7.89	7.46	7.25	7.47			_	
SPEC. COND. (mS	/cm)	0.626	0.599	0.600	0.601	0.603	0.584				
DO (mg/l)		6.02	4.62	4.60	6.55	2.39	2.74				
TEMPERATURE (C)	13.11	12.27	11.89	12.41	12.82	14.12				
TURBIDITY (NTU)		20.6	18.9	21.4	37.8	131	225				
ORP (millivolts)		68	57	56	69	56	36				
тімЁ		10:29	10:33	10:35	10:37	10:39	10:43				
COMMENTS: 5/9/2013	10:15 - Fill 10:29 - Be 10:43 - We 11:00 - Re 11:05 - Co	I VOCs fro gin handt ell dry afte turn to we illect samp	om passiv pailing we er removin ell, depth t ple for SV	e diffusion II. Ig 7 gallor to water = OCs and	n bag (PD ns. 5.35 feet Metals.	9B), PDB y	was instal	led on 3/27/1	3		

2/12/2014

İ

Ì

WELL DURCING LOG

IIRS Cornoration

WELL FUR	GINGL	UG							
SITE NAME: Pfol	hl Brothers Lar	ndfill					WELL NO.:	G	W-7D
PROJECT NO.:111	75616.00000								
STAFF: Rot	Murphy, Tim	lfkovich							
DATE(S):5/8/	/13, 5/9/13								
,									
1. TOTAL CASING AND	SCREEN LENG	TH (FT.)			=	60	.45	WELL ID. 1"	VOL. (GAL/FT) 0.040
2. WATER LEVEL BELC	OW TOP OF CAS	ING (FT.)			=	45	.33	2"	0.17
3. NUMBER OF FEET S	R (#1 - #2	15	.12	3"	0.38				
4: VOLUME OF WATER			=	0.	66	(4 "	0.66		
5. VOLUME OF WATER)		=	10).0	5"	1.04		
6. VOLUME OF WATER	R TO REMOVE (G	iAL.)(#5 x	3)		=	•		6"	1.50
7. VOLUME OF WATER	7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)							8"	2.60
							V=	=0.0408 x (CASING	DIAMETER [INCHES]) ²
				ACCUM	ULATED		PURGED (G/	ALLONS)	
PARAMETERS	Init	2	4	6	8	10			
рН	7.24	7.33	7.30	7.35	7.30	7.68			
SPEC. COND. (mS/cm)	0.820	0.690	0.738	0.770	0.810	0.826			
DO (mg/l)	0.00	1.46	1.93	2.22	1 <i>.</i> 80 .	3.55			
TEMPERATURE ([®] C)	14.74	14.26	' 14.20	14.29	14.07	[.] 14.61			
TURBIDITY (NTU)	11.5	13.8	15.0	17.7	20.2	56.3			-
ORP (millivolts)	-84	-77	-75	-79	-94	-93			
TIME	11:00	11:07	11:13	11:19	11:24	11:31			
COMMENTS: 10:2 11:0 11:5 5/9/2013 10:5 10:5	25 - Fill VOCs fro 00 - Begin handb 31 - Well dry afte 50 - return to we 55 - Collect sam container.	om passiv bailing we er removir II, depth to ple for SV	re diffusion II. ng 10 gallo o water = /OCs and	n bag (PD ons 59.13 fee Metals, o	t. nly enoug	was∍instal h volume	led on 3/27/ to fill <u>1</u> met	als container and	d 1-1 liter Amber

h

Project:	oject:11175616.00000			Site:	Pfohl E	Brothers	_ Well I.D.: _	GW-8SR
Date:	5/8/2013	Sampling	Personnel:	Rob Mu	rphy, Tim If	kovich	_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	5.48'	Depth to Well Bottom:	13.02'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	4.7		Estimated Purge Volume (liters):	5.6
Sample ID:		GW-8SR		Sample Time:	. 16	:33	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
16:03	6.56	12.81	3.22	0.00	110	-26	200	5.48
16:08	6.32	11.77	3.31	0.00	90.8	48	200	6.77
16:13	6.28	11.79	3.31	0.00	75.9	-54	200	7.23
16:18	6.26	11.82	3.32	0.00	66.6	-57	170	7.48
16:23	6.26	12.30	3.33	0.00	63.9	-59	170	7.45
16:28	6.25	12.38	3.34	0.00	62.0	-61	170	7.42
16:33	6.24	12.47	3.34	0.00	61.2	-61	170	7.42
								-
Toterance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{y1}^{l} = \pi r^{2}h$)

Project:	11175616.00000		D	Site:	Site: Pfohl Brothers		_ Well I.D.:	GW-8D
Date:	5/8/2013	Sampling	Personnel:	Rob M	urphy, Tim I	fkovich	_ Company:	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	6.36'	Depth to Well Bottom:	36.54'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	74.5	-	Estimated Purge Volume (liters):	57.0
Sample ID:		GW-8D		Sample Time:	1	5:50	QA/QC:	Duplicate (FD-050813)
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:50	6.80	11.72	2.40	0.00	77.1	54	950	6.36
14:55	6.89	11.31	1.76	0.00	10.0	29	950	6.37
15:00	6.87	11.12	1.55	0.00	3.1	34	950	6.37
15:05	6.76	11.05	1.54	0.00	3.1	41	950	6.37
15:10	6.67	10.99	1.53	0.00	1.8	49	950	6.37
15:15	6.67	10.98	1.54	0.00	0.8	52	950	6.37
15:20	6.68	10.96	1.54	0.00	0.9	53	950	6.37
15:25	6.67	10.95	1.54	0.00	0.8	56	950	6.37
15:30	6.67	10.95	1.54	0.00	0.7	58	950	6.37
15:35	6.76	10.95	1.54	0.00	0.0	55	950	6.37
15:40	6.82	10.95	1.54	0.00	0.0	53	950	6.37
15:45	6.82	10.94	1.54	0.00	0.0	54	950	6.37
15:50	6.82	10.98	1.54	0.00	0.0	55	950	6.37
Toloropoor	0.1		30/	10%	10%	+ or - 10		

į

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vql_{a} = \pi r^{2}h$)

Project:		11175616.00000)	Site:	Pfohl	Brothers	Well I.D.:	GW-26D
Date:	5/9/2013	Sampling	Personnel:	Rob Mi	Rob Murphy, Tim Ifkovich		_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	6.92'	Depth to Well Bottom: _	40.70'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	83.4		Estimated Purge Volume (liters):	56.4
Sample ID:		GW-26D		Sample Time:	14	4:58	QA/QC:	None
Sample Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				,

Occasional pulses of iron stained particulates in purge water.

.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:58	7.24	13.11	2.41	0.53	588	-85	940	6.92
14:03	6.88	12.77	2.43	0.00	242	-78	940	6.92
14:08	6.69	12.46	2.44	0.00	76.4	-70	940	6.92
14:13	6.62	12.47	2.44	0.00	27.2	-68	940 ·	6.92
14:18	6.50	12.47	2.44	0.00	0.0	-62	940	6.92
14:23	6.35	12.43	2.44	0.00	0.0	-57	940	6.92
14:28	6.33	12.43	2.44	0.00	0.0	-57	940	6.92
14:33	6.31	12.44	2.44	0.00	0.0	-56	940	6.92
14:38	6.28	12.45	2.44	0.00	0.0	-55	940	6.92
14:43	6.31	12.45	2.44	0.00	0.0	-58	940	6.92
14:48	6.40	12.44	2.44	0.00	0.0	-62	940	6.92
14:53	6.45	12.43	2.44	0.00	0.0	-65	940	6.92
14:58	6.46	12.51	2.44	0.00	0.0	-66	940	6.92
			i)					it.
						T		
		1	s.			1		
		1	•					
Tolerance:	0.1		3%	10%	10%	+ or - 10		

:

 Information:
 WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

 4 inch diameter well = 2470 ml/ft; (vqJ_n = πr^2 h)

Project:		11175616.00000			Site: Pfohl Brothers		_ Well I.D.: _	GW-28S
Date:	5/9/2013	Sampling	Personnel:	Rob Mu	urphy, Tim If	Rovich	_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2	_	Tubing Type: _	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	9.67'	Depth to Well Bottom:	15.52'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	3.6	-	Estimated Purge Volume (liters): _	8.8
Sample ID:		GW-28S	_	Sample Time:	9	:14	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				,

PURGE PARAMETERS

TIME	-		COND.	DISS. O ₂	TURB. (NTU)		FLOW RATE	DEPTH TO WATER (btor)
TIVE	<u>pn</u>		0.000	(00.7	121	280	0.67
8:29	8.13	11.53	0.629	0.34	23.7	131	200	9.07
8:34	7.11	10.41	0.590	0.00	18.0	142	185	11.04
8:39	7.11	10.43	0.585	0.00	12.7	131	185	11.07
8:44	6.92	10.41	0.598	0.00	10.5	134	185	11.08
8:49	6.79	10.41	0.606	0.00	8.5	134	185	11.11
8:54	6.68	10.37	0.613	0.00	7.6	132	185	11.11
8:59	6.61	10.35	0.617	0.00	6.8	130	185	11.14
9:04	6.55	10.35	0.621	0.00	5.8	125	185	11.17
9:09	6.50	10.39	0.625	0.00	4.8	119	185	11.21
9:14	6.48	10.38	0.626	0.00	4.7	116	185	11.24
					· · · · ·	ł		
				·			ii ii	
	-							
							 	
						 		
						<u> </u>		
		<u> </u>					<u> </u>	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vql_y = $\pi r^2 h$)

I

Project:		11175616.00000		Site: _	Pfohl I	Brothers	Well I.D.: _	GW-29S
Date:	5/9/2013	Sampling	Personnel:	Rob M	urphy, Tim <u>li</u>	fkovich	_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	8.89'	Depth to Well Bottom:	20.04'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters): _	6.9	-	Estimated Purge Volume (liters): _	8.0
Sample ID:		GW-29S		Sample Time:		6:51	QA/QC:	None
Sampi Othe	e Parameters:	VOCs, SVOCs, Orange iron par	and TAL Meta	als art of purge				·

PURGE PARAMETERS

TIME	ρН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
16:06	6.84	12.47	1.19	0.00	401	-54	200	8.89
16:11	6.51	11.74	1.21	0.00	217	-43	200	10.43
16:16	6.47	11.66	1.22	0.00	173	-45	200	10.84
16:21	6.46	11.60	1.23	0.00	118	-48	200	11.22
16:26	6.38	12.09	1.25	0.00	77.1	-52	160	11.40
16:31	6.36	12.03	1.26	0.00	57.3	-54	160	11.45
16:36	6.36	12.12	1.26	0.00	52.1	-57	160	11.49
16:41	6.36	12.16	1.26	0.00	43.9	-57	160	11.52
16:46	6.39	11.99	1.26	0.00	41.6	-60	160	11.60
16:51	6.43	12.04	1.26	0.00	40.8	-63	160	11.63
_								
						L		
			·					
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vql_n = πr^2h)

Site: Pfohl Brothers Well I.D.: GW-30S Project: 11175616.00000 Sampling Personnel: Rob Murphy, Tim Ifkovich Company: URS Corporation Date: 5/10/2013 Pump/Tubing Purging/ Inlet Sampling Screen midpoint Device: Geopump 2 Tubing Type: LDPE/Silicone Location: Screen Measuring Below Top of Initial Depth Depth to Well Well Bottom: 2" 8.05' 17.97' Diameter: Length: Riser to Water: Point: Estimated Volume in 1 Purge Volume Well Casing Casing Stainless Steel Type: (liters): 6.1 (liters): 21.0 Sample 8:46 QA/QC: GW-30S Time: None Sample ID: Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

ТІМЕ	pH_	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8:16	6.86	11.19	2.17	0.00	>800	-66	700	8.05
8:21	6.56	9.71	1.09	0.00	65.6	-54	700	8.17
8:26	6.43	9.65	1.09	0.00	20.2	-52	700	8.17
8:31	6.33	9.61	1.09	0.00	16.8	-51	700	8.17
8:36	6.28	9.55	1.09	0.00	23.4	-51	700 .	8.17
8:41	6.25	9.54	1.08	0.00	13.4	-51	700	8.17
8:46	6.21	9.52	1.09	0.00	12.5	-51	700	8.17
		4				<u> </u>		
							· ·	
						L		
						L		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information:WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;
4 inch diameter well = 2470 ml/ft ($vql_n = \pi r^2h$)

Project:		11175616.00000		Site:	Pfohl E	Brothers	_ Well I.D.: _	GW-31S
Date:	5/10/2013	Sampling	Personnel:	Rob Murphy, Tim Ifkovich		_ Company:_	URS Corporation	
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	4.21'	Depth to Well Bottom:	9.57'	Well Diameter:	 2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	3.3	-	Estimated Purge Volume (liters):	3.7
Sample ID:		GW-31S		Sample Time:	9	:31	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
9:01	7.16	12.73	0.736	0.00	39.3	-30	230	4.21
9:06	6.74	11.94	0.724	0.00	20.7	12	100	5.94
9:11	6.58	12.51	0.709	0.00	18.9	22	100	6.17
9:16	6.81	12.53	0.701	0.00	10.9	10	100	6.35
9:21	6.79	12.54	0.695	0.00	8.0	7	100	6.50
9:26	6.78	12.42	0.689	0.00	8.3	5	100	6.62
9:31	6.78	12.33	0.674	0.00	8.1	4	100	6.75
1								
)		
						1		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{\mu} = \pi r^2h$)

Project:	11175616.00000		Site:	Pfohl	Brothers	_ Well I.D.: _	GW-32S		
Date:	5/10/2013	Sampling	Personnel:	N Rob Mu	ırphy, Tim I	fkovich	_ Company:_	URS Corporation	
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint	
Measuring Point:	Below Top of Riser	Initial Depth to Water:	4.11'	Depth to Well Bottom:	9.93'	Well Diameter:	2"	Screen Length:	
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	3.6		Estimated Purge Volume (liters):	6.9	
Sample ID:		GW-325		Sample Time:	1	0:39	QA/QC:	None	
Sample Parameters: VOCs, SVOCs, and TAL Metals									

PURGE PARAMETERS

۰

İ

TIME	pН	TEMP (°C)	ĊOND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:09	7.29	13.14	0.556	0.00	25.7	85	230	4.11
10:14	7.18	13.20	0.546	0.00	12.1	81	230	4.42
10:19	7.07	13.27	0.536	0.00	0.7	74	230	4.78
10:24	7.04	13.03	0.536	0.00	0.0	72	230	4.84
10:29	7.02	12.97	0.537	0.00	0.0	71	230	4.85
10:34	7.00	12.91	0.538	0.00	0.0	70	230	4.86
10:39	6.96	12.84	0.538	0.00	0.0	71	230	4.87
					N			
						L		
]			L		ļ		
				L		L		
				L				
				L			L	
]		
Tolerance:	0.1		3%	10%	10%	+ or - 10	I	

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{y_1} = \pi r^2h$)

i

Project:	11175616.00000			Site: Pfohl Brothers		_ Well I.D.: _	GW-33S				
Date:	5/10/2013	Sampling	Personnel:	. Rob Mu	ırphy, Tim If	kovich	_ Company:_	URS Corporation			
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint			
Measuring Point:	Below Top of Riser	Initial Depth to Water:	5.52'	Depth to Well Bottom:	8.21'	Well Diameter:	2"	Screen Length:			
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	1.7		Estimated Purge Volume (liters):	6.9			
Sample ID:		GW-33S		Sample Time:	11	:59	QA/QC:	None			
Sampl Othe	Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:										

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11:04	6.84	12.74	0.714	0.00	0.8	110	220	5.52
11:09	6.82	12.36	0.680	0.00	2.0	107	115	6.48
11:14	6.66	12:84	0.712	0.00	0.6	119	115	6.58
11:19	6.63	13.19	0.683	0.00	0.0	118	115	6.67
11:24	6.65	13.32	0.659	0.00	0.0	113	115	6.76
11:29	6.67	13.62	0.676	0.00	0.0	107	115	6.84
11:34	6.68	13.98	0.715	0.00	0.0	100	115	6.91
11:39	6.74	14.05	0.668	0.00	0.0	92	115	6.98
11:44	6.79	14.27	0.662	0.00	0.0	85	115	7.04
11:49	6.83	14.67	0.661	0.00	0.0	79	115	7.12
11:54	6.84	14.81	0.672	0.00	0.0	74	115	7.18
11:59	6.84	15.11	0.671	0.00	0.0	72	115	7.24
						1		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{r} = \pi r^2 h$)

i

Well I.D.: Project: 11175616.00000 Site: Pfohl Brothers **GW-34S** Sampling Personnel: Date: 5/9/2013 Rob Murphy, Tim Ifkovich Company: **URS** Corporation Pump/Tubing Purging/ Sampling Inlet Screen midpoint Device: Geopump 2 Tubing Type: LDPE/Silicone Location: Measuring Below Top of Initial Depth Depth to Well Screen Point: Riser to Water: 2.70' Well Bottom: 10.01' Diameter: 2" Length: Estimated Volume in 1 Purge Casing Well Casing Volume Stainless Steel (liters): 4.5 (liters): 5.4 Type: Sample Sample ID: GW-34S Time: 10:24 QA/QC: None Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
9:49	6.88	13.15	1.050	0.00	34.9	111	155	2.70
9:54	6.84	12.63	0.974	0.00	17.7	29	155	4.20
9:59	6.81	12.42	0.961	0.00	12.1	27	155	4.40
10:04	6.79	12.35	0.960	0.00	8.6	24	155	4.48
10:09	6.76	12.27	0.957	0.00	2.4	23	155	4.58
10:14	6.76	12.31	0.951	0.00	1.0	25	155	4.63
10:19	6.76	12.31	0.940	0.00	1.6	24	155	4.63
10:24	6.75	12.31	0.940	0.00	1.3	25	155	4.67
		•				[
						I		
Telesense	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft; ($vq_n = \pi r^2h$)

Project:	11175616.00000			Site: Pfohl Brothers		_ Well I.D.: _	GW-35S			
Date:	5/9/2013	Sampling Personnel:		Rob Murphy, Tim Ifkovich			_ Company:_	URS Corporation		
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint		
Measuring Point:	Below Top of Riser	Initial Depth to Water:	4.16'	Depth to Well Bottom:	7.46'	Well Diameter:	2"	Screen Length:		
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	2.0	_	Estimated Purge Volume (liters):	6.4		
Sample ID:		GW-35S		Sample Time:	1	5:39	QA/QC:	None		
Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:										

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
15:09	7.53	14.54	0.561	0.00	45.3	-42	260	4.16
15:14	7.02	14.41	0.524	0.00	11.4	-21	205	4.30
15:19	6.96	14.48	0.526	0.00	4.8	-18	205	4.40
15:24	6.94	14.23	0.525	0.00	3.5	-15	205	4.41
15:29	6.93	14.07	0.524	0.00	2.2	-12	205	4.42
15:34	6.92	14.02	0.525	0.00	1.2	-10	205	4.42
15:39	6.90	14.12	0.525	0.00	0.8	-8	205	4.42
	· · · · · · · · · · · · · · · · · · ·		, 					
			· · · · · · · · · · · · · · · · · · ·	·				
Tolerance			3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vql_n = πr^2 h)

APPENDIX E

GROUNDWATER TREND ANALYSIS

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

| .

۰.,

FIGURE E-1 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-1D

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

1 **.** 1

FIGURE E-2 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-1S

İ

FIGURE E-3 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3D

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

FIGURE E-4 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3S

FIGURE E-4 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3S

FIGURE E-5 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-4D

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

İ

FIGURE E-6 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-4S

FIGURE E-7 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-7D

FIGURE E-8 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-7S

į

FIGURE E-9 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-8D

FIGURE E-10 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-8SR

FIGURE E-11 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-26D

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

.....

FIGURE E-12 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-28S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

ļ

FIGURE E-13 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-29S

FIGURE E-13 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-29S

, İ

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

•

h

FIGURE E-14 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-30S

FIGURE E-15 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-31S

į
FIGURE E-16 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-32S

١

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

FIGURE E-17 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-33S

*1

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

FIGURE E-18 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-34S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

FIGURE E-19 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-35S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends May2013.xls

٠

i

APPENDIX F

BSA PERMIT NO. 13-04-CH016

ļ

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

į

AUTHORIZATION TO DISCHARGE UNDER THE BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 13-04-CH016 USEPA Category 40 CFR Part 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

THE TOWN OF CHEEKTOWAGA

to discharge wastewater from a facility located at:

PFOHL BROTHERS LANDFILL REMEDIATION SITE 1000 AERO DRIVE

CHEEKTOWAGA, NEW YORK 14225

The wastewater permitted herein shall be discharged to the Town of Cheektowaga sewer system, which is connected to the Buffalo Municipal Sewer System and Treatment facilities, and which wastewater will be treated at the Buffalo Sewer Authority's Treatment Plant.

Issuance of this permit is based upon a permit application filed on **February 11, 2013** analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this 1st day of April, 2013

To Expire the 31st day of March, 2016

General Manager Signed this 12th day of March .2013

PAGE 1 OF 6

Permit No. 13-04-CH016 Part I Page 2 of 6

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored **quarterly** by the permittee as specified below.

G		Discharge Limitations ⁽¹⁾	Sampling Requirement		
Sample Point	Parameter	Daily Max	Period	Type	
001	pH Total Cadmium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Total Barium Total Suspended Solids ⁵	5.0 – 12.0 S.U. 1.17 lbs. 1.17 lbs. 3.74 lbs. 1.17 lbs. 3.27 lbs. 5.84 lbs.	1 day 1 day 1 day 1 day 1 day 1 day 1 day 1 day 1 day 1 day	Composite ² Composite ² Composite ² Composite ² Composite ² Composite ²	
		2.34 lbs. 250 mg/l		Composite ² Composite ²	
	Total Flow	140,100 gallons ⁶	1 day	Discharge meter reading	

Footnotes are explained on page 5.

Permit No. 13-04-CH016 Part I Page 3 of 6

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored **once** by the permittee as specified below.

Sample		Discharge Limitations ⁽¹⁾	Sampling Requirements		
Point	Parameter	Daily Max	Period	Туре	
001	Total Mercury	0.001 lbs.	1 day	Composite ²	
	USEPA Test			- 1 ³	
	Method 608 ⁴	To be monitored	1 day	Grab	
	USEPA Test		_	~ .3	
	Method 624 ⁴	To be monitored	1 day	Grab	
	USEPA Test			- · · ·	
	Method 625 ⁴	To be monitored	l day	Grab	

Footnotes are explained on page 5.

· /

Permit No. 13-04-CH016 Part I Page 4 of 6

h

PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported **quarterly** by the permittee on the days specified below:

Sample		Reporting Requirements			
Point 001	Parameter All except USEPA Test Methods 608, 624, 625 & T Mercury	Initial Report March 31, 2011	Subsequent Reports Every March 31 st , June 30 th , September 30 th and December 31 st		
	USEPA Test Methods 608, 624 and 625 & T Mercury	March 31, 2011			

Permit No. 13-04-CH016 Part I Page 5 of 6

į

PART I: SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- 1. Mass limits based on an average discharge of 140,100 gpd.
- 2. Composite samples may be time proportioned.
- 3. Four grab samples must be collected at equally spaced intervals throughout the sample day. The four (4) grab samples must be composited by a NYSDOH certified laboratory prior to analysis.
- 4. The permittee must report any compound whose concentration is equal to or greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards or harm the sewerage system. Any parameter detected may, at the discretion of the BSA, be specifically limited and incorporated in this permit.
- 5. Surchargeable over 250 mg/L.
- 6. Flow is an action level only. If the permittee consistently exceeds this level, the BSA must be notified so that this permit can be modified.

TOWN OF CHEEKTOWAGA/BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

PART II GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes of the Clean Water Act

2. Definitions

Definitions of terms contained in this permit are as defined in the Town of Cheektowaga Local Law No. 2 and the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet."

4. **Recording of Results**

For each measurement or sample taken pursuant to the requirements of the permit, the Permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet."

5. Additional Monitoring by Permittee

1

If the Permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

İ.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Mr. William Pugh, P.E. Town Engineer 275 Alexander Ave. Cheektowaga, New York, 14211

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet." These reporting requirements shall not relieve the Permittee of any other reports, which may be required by the N.Y.S.D.E.C. or the U.S.E.P.A.

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the TC/BPDES Permit Application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new TC/BPDES Permit Application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager and/or Town Engineer.

3. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the Permittee to immediately notify the B.S.A. Treatment Plant at 883-1820 of the quantity and character of such discharge. If requested by the B.S.A., within five (5) days following all such discharges, the Permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

4. Noncompliance Notification

If, for any reason, the Permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the Permittee or their assigns must verbally notify the Industrial Waste Section at 883-1820 within twenty-four (24) hours of becoming aware of the violation. The Permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Rev. 811/26/2012 9:00:00 AM

5. Adverse Impact

The Permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo and Town Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

6. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo or Town Sewer System.

7. **Power Failures**

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the Permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the Permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

8. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status.
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the noncompliance is continuing, the time by which compliance is reasonably expected to be restored
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.

b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section/Town Engineer for any noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

Rev. 811/26/2012 9:00:00 AM

9. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon delivery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a. above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

h

The Permittee shall allow the representatives of the Buffalo Sewer Authority or Town of Cheektowaga upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Town of Cheektowaga/ Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

Nothing in this permit shall relieve the Permittee from any requirements, liabilities, or penalties under provisions of the Town of Cheektowaga Local Law No. 2, the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

4. Penalties for Violations of Permit Conditions

The "Sewer Regulations of the Buffalo Sewer Authority" and Town of Cheektowaga Local Law No. 2, provide that any person who violates a B.P.D.E.S. permit condition is liable to the Authority and/or the Town for a civil penalty of up to \$10,000 per day for each violation. Any person who willfully or negligently violates permit conditions will be referred to the New York State Attorney General.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

h

In the event of plant closure, the Permittee is required to notify the Industrial Waste Section/Town Engineer in writing as soon as an anticipated closure date is determined, but in no case later than five (5) days of the actual closure.

G. CONFIDENTIALITY

Rev. 811/26/2012.9:00:00 AM

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority or Town Engineer of the Town of Cheektowaga. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

APPENDIX G

DISCHARGE REPORT SUMMARY TABLES

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

SAMPLING FIELD SHEET

Í

	o Drive Cheektow	aga NY	
	Durb D C		716 907 7288
Contact: Bill	Pugn, P.E.	Phone:	/10-09/-/200
Installation:			
Sample Point: <u>SP</u>	-001		· · · ·
Sample Location:	Meter Chamb	er - ball valve on 6" HDP	E forcemain
Date:	6/24/13 Crew:	R. Murphy, S. Moeller	T. Ifkovich
Weather: 85 ⁶	F, Clear	<u> </u>	
Sampling Device:	NA		
Time of Installation:	15:05	Type of Sample:	Composite
Sample Interval:	NA	Sample Volume:	_NA
WW-04 (972,03	1 gals), WW-05 (3	,696,970 gals), WW-06 (6,288,144 gals) & MH-25 (12,880,882 gals).
Date:	6/25/13Crew:	R. Murphy, S. Moeller	, K. McGovern
Date: Weather:80' Time of Collection:	6/25/13 Crew: F, Cloudy 15:05	R. Murphy, S. Moeller	, K. McGovern
Date: Weather:80' Time of Collection: Field Measurements	6/25/13 Crew: F, Cloudy 15:05	R. Murphy, S. Moeller	, K. McGovern
Date: Weather: <u>80</u> Time of Collection: Field Measurements 15:05/R	6/25/13 Crew: PF, Cloudy 15:05	R. Murphy, S. Moeller	, K. McGovern 7Buffer 44Buffer 1010
Date: Weather: <u>80</u> Time of Collection: Field Measurements <u>15:05/R</u> (time/initi	6/25/13 Crew: ¹ F, Cloudy <u>15:05</u> : JM	R. Murphy, S. Moeller	, K. McGovern 7Buffer 44Buffer 1010 7.7
Date: Weather: <u>80</u> Time of Collection: Field Measurements <u>15:05/R</u> (time/initi	6/25/13 Crew: ⁹ F, Cloudy 15:05 ¹⁰ ¹¹	R. Murphy, S. Moeller	, K. McGovern 7 Buffer 4- <u>4</u> Buffer 10- <u>10</u> 7.7 19.2°C
Date: Weather: Time of Collection: Field Measurements 15:05/R (time/initi	6/25/13 Crew: ⁹ F, Cloudy <u>15:05</u> JM JM ¹⁾ F-062513	R. Murphy, S. Moeller pH Calibration: Buffer 7- pH Measurement: Temperature:	, K. McGovern 7Buffer 44Buffer 1010 7.7 19.2°C
Date: Weather:80 Time of Collection: Field Measurements 15:05/R (time/initi Identification:EF	6/25/13Crew: P. Cloudy	R. Murphy, S. Moeller	, K. McGovern 7Buffer 44Buffer 1010 7.7 19.2°C
Date: Weather: Time of Collection: Field Measurements 15:05/R (time/initi Identification:EF Physical Observatio Laboratory:Tes	6/25/13Crew: ² F, Cloudy 15:05 JM JM F-062513 F-062513 America, Buffalo, M	R. Murphy, S. Moeller PH Calibration: Buffer 7- pH Measurement: Temperature: NY	, K. McGovern 7Buffer 44Buffer 1010 7.7 19.2°C
Date: Weather: Time of Collection: Field Measurements 15:05/R (time/initi Identification:EF Physical Observation Laboratory:Tes Comments:No	6/25/13Crew: ² F, Cloudy 15:05 JM JM F-062513 ii ns: America, Buffalo, M vells were running	R. Murphy, S. Moeller PH Calibration: Buffer 7- pH Measurement: Temperature: NY at the time of sample coli	, K. McGovern 7 Buffer 4- <u>4</u> Buffer 10- <u>10</u> 7.7 <u>19.2°C</u>
Date: Weather: Time of Collection: Field Measurements 15:05/R (time/initi Identification:EF Physical Observation Laboratory: Laboratory: Comments: PLC display vol WW-04 (972.03	6/25/13Crew: ¹ F, Cloudy 15:05 JM JM F-062513 America, Buffalo, I vells were running umes: WW-01 (1,) 	R. Murphy, S. Moeller PH Calibration: Buffer 7- pH Measurement: Temperature: NY at the time of sample coli 062,839 gals), WW-02 (3 6,698,226 gals), WW-06 (3)	, K. McGovern 7Buffer 44Buffer 10107.7 19.2°C lection. 37,022 gals), WW-03 (818,919 gals), 6,288,144 gals) & MH-25 (12,882,176 gals).
Date: Weather: Time of Collection: Field Measurements 15:05/R (time/initi Identification:EF Physical Observation Laboratory:Tes Comments:Nov PLC display vol WW-04 (972,03)	6/25/13Crew: ² F, Cloudy <u>15:05</u> JM JM F-062513 ¹ ns: America, Buffalo, M vells were running umes: WW-01 (1, ¹) (1 gals), WW-05 (3)	R. Murphy, S. Moeller pH Calibration: Buffer 7- pH Measurement: Temperature: NY at the time of sample coll 062,839 gals), WW-02 (3 8,698,226 gals), WW-06 (, K. McGovern 7 Buffer 4- <u>4</u> Buffer 10- <u>10</u> 7.7 <u>19.2°C</u> lection. <u>37,022 gals), WW-03 (818,919 gals),</u> <u>6,288,144 gals) & MH-25 (12,882,176 gals).</u>

i

.

١

TABLE 1

PFOHL BROTHERS LANDFILL - EFFLUENT MONITORING ANALYTICAL RESULTS, TOTAL FLOW, AND MASS LOADINGS JUNE 2013

Sample ID	EFF-062513 Effluent Water							
Matrix								
Date Sampled	6/25/2013							
Parameter	Result	Mass Loading	Discharge Limitation	Violations				
	(mg/L)	(lbs/day)	(lbs/day)	(Y/N)				
Total Barium	0.25	0.003	2.34	No				
Total Cadmuim	<(1) 0.0005	5 < 0.000005	1.17 .	No				
Total Chromium	< 0.001	< 0.00001	1.17	No				
Total Copper	0.0048	3 0.0001	3.74	No				
Total Lead	< 0.003	< 0.00003	1.17	No				
Total Nickel	0.004	0.00004	3.27	No 🛝				
Total Zinc	0.012	0.0001	5.84	No				
Total Suspended Solids	12.0	NA	250 ⁽³⁾	No				
рН (4) ·	7.7	NA	5.0 - 12.0	No				
Total Flow ⁽⁵⁾	1	1,294	140,100	No				

Notes:

(1) < = Compound not detected, method detection limit shown

(2) NA = Not Applicable

(3) Discharge Limitation in units of mg/L

(4) pH measurement and Discharge Limitation in Standard Units

(5) Total Flow reported in gallons, sample was collected over a 24 hour period

Calculation: $\left(\frac{x \text{ mg}}{L}\right)\left(\frac{y \text{ gal}}{\text{day}}\right)\left(\frac{1 \text{ lb}}{453,600 \text{ mg}}\right)\left(\frac{3.785 \text{ L}}{\text{gal}}\right) = \frac{x \times y}{119,841} \frac{\text{lb}}{\text{day}}$

N:\11172700.00000\EXCEL\Effluent Monitoring Report Table\June 2013

SAMPLING FIELD SHEET

URS

1

Client Name: Pfohl Brothers Landfill						
Address:Aero Drive, Cheektowaga, NY						
Contact: Bill Pugh, P.E. Phone: 716-897-7288						
Installation:						
Sample Point: SP-001						
Sample Location: Meter Chamber - ball valve on 6" HDPE forcemain						
Date:9/10/13 Crew: R. Murphy, K. McGovern, T. Ifkovich						
Weather: 89° F, Partly Cloudy						
Sampling Device: NA						
Time of Installation: 13:55 Type of Sample: Composite						
Sample Interval: NA Sample Volume: NA						
Comments and Observations: WW-4 was running at the time of sample set-up. PLC display volumes: WW-01 (271,783 gals), WW-02 (-900 gals), WW-03 (24,193 gals), WW-04 (49,097 gals), WW-05 (829,770 gals), WW-06 (293,406 gals) & MH-25 (1,512,843 gals).						
Date: <u>9/11/13</u> Crew: <u>R. Murphy, S. Moeller, T. Ifkovich</u> Weather: <u>90° F, Clear</u>						
Time of Collection: 14:30						
Field Measurements:						
14:35/RJM pH Calibration: Buffer 7- 7 Buffer 4- 4 Buffer 10- 10						
pH Measurement: 7.5						
Temperature: 23.4°C						
Identification: EFF-091113						
Physical Observations:						
Laboratory: TestAmerica, Buffalo, NY						
Comments:No wells were running at the time of sample collection.PLC display volumes:WW-01 (271,783 gals), WW-02 (-901 gals), WW-03 (24,193 gals),WW-04 (49,204 gals), WW-05 (829,770 gals), WW-06 (293,590 gals) & MH-25 (1,513,063 gals).						
Reviewed By: Date: Date:						

N:\11172700.00000\Excet\Data and Calcs\Field Sampling Form (9-11-13)

TABLE 1

PFOHL BROTHERS LANDFILL - EFFLUENT MONITORING ANALYTICAL RESULTS, TOTAL FLOW, AND MASS LOADINGS SEPTEMBER 2013

Sample ID	EFF-091113 Effluent Water 9/11/2013						
Matrix							
Date Sampled							
Parameter	Result	Mass Loading	Discharge Limitation	Violations			
	(mg/L)	(lbs/day)	(Ibs/day)	(Y/N)			
Total Barium	0.58	0.001	2.34	No			
Total Cadmuim	< ⁽¹⁾ 0.0005	< 0.000001	1.17	No			
Total Chromium	0.0018	0.000003	1.17	No			
Total Copper	0.069	0.0001	3.74	No			
Total Lead	0.0083	0.00002	1.17	No			
Total Nickel	0.0082	0.00002	3.27	No			
Total Zinc	0.11	0.0002	5.84	No			
Total Suspended Solids	68.9	NA	250 ⁽³⁾	No			
pH ⁽⁴⁾	7.5	NA	5.0 - 12.0	No			
Total Flow ⁽⁵⁾		220	140,100	No			

Notes:

(1) < = Compound not detected, method detection limit shown

(2) NA = Not Applicable

(3) Discharge Limitation in units of mg/L

(4) pH measurement and Discharge Limitation in Standard Units

(5) Total Flow reported in gallons, sample was collected over a 24 hour period

Calculation:
$$\left(\frac{x \text{ mg}}{L}\right)\left(\frac{y \text{ gal}}{\text{day}}\right)\left(\frac{1 \text{ lb}}{453,600 \text{ mg}}\right)\left(\frac{3.785 \text{ L}}{\text{gal}}\right) = \frac{x \times y}{119,841} \frac{\text{lb}}{\text{day}}$$

N:\11172700.00000\EXCEL\Effluent Monitoring Report Table\September 2013

APPENDIX H

MONITORING WELL INSPECTION LOGS

İ.

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun13\Semi Annual Report Jan-Jun13.doc

roj	ect Name:			Pfohl Brothers Lan	<u>ıdfill</u>	Project Number:	11175616.00000	
nspection Crew Members:				<u>R. Murphy, T. Ifkovich</u>		Supervisor:	<u>J. Sundquist</u>	
)ate	Date(s) of Inspection:			<u>May 8, 2013</u>				
	Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
	GW-1S	ок	ОК	ОК	Bulged	4.29	14.94	
	GW-1D	ОК	ОК	ОК	Bulged	3.48	39.65	
	GW-3S	ОК	ОК	ОК	ОК	2.99	13.22	
	GW-3D	ОК	ОК	ОК	ОК	2.35	35.70	
	GW-4S	ок	ОК	ОК	ОК	4.9	16.23	
	GW-4D	ОК	ОК	ОК	ОК	12.88	45.57	
	GW-7S	ОК	ОК	ОК	ОК	5.30	35.04	
	GW-7D	. ок	ОК	ок	Damaged	45.33	60.45	

.

.

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (May_13).xls\Form 3 (MAY_2013)

:-

۰.

,

ject Name:			Pfohl Brothers Lar	<u>ndfill</u>	Project Number:	11175616.00000	-
spection Crew Members:			<u>R. Murphy, T. Ifkovich</u>		Supervisor:	<u>J. Sundquist</u>	
ate(s) of Inspection:			<u>May 8, 2013</u>				
Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
GW-8SR	ОК	ОК	ОК	ОК	5.48	13.02	
GW-8D	O <u>K</u>	ок	ОК	ОК	6.36	36.54	
GW-26D	ОК	ОК	ОК	ОК	7.19	40.70	
GW-28S	ОК	ОК	ОК	ОК	9.68	15.52	
GW-29S	ОК	ок	ОК	ок	9.00	20.04	
GW-30S	ОК	ОК	ОК	ОК	8.10	17.97	
GW-31S	ОК	ОК	ОК	ок	4.65	9.57	
	ОК	ОК	ОК	ОК	4.51	9.93	

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (May_13).xls\Form 3 (MAY_2013) (2)

WELL INSPECTION SUMMARY							
oject Name:			Pfohl Brothers Lan	<u>dfill</u>	Project Number:	11175616.00000	
spection Crew Members:		<u>R. Murphy, T. Ifkovich</u>			Supervisor:	<u>J. Sundquist</u>	
te(s) of Inspection:			<u>May 8, 2013</u>				
Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
GW-33S	OK	ок	ОК	ОК	6.30	8.21	
GW-34S	ок	ОК	ОК	ОК	3.21	10.01	
GW-35S	ок	ок	ОК	ОК	4.16	7.46	
					-		
L	J		<u></u> `	I			I
Additional Comments:							

				:			·

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (May_13).xls\Form 3 (MAY_2013) (3)

.

-

ATTACHMENT B

.

July 2013 – December 2013

Semi Annual Report

(

SEMI ANNUAL REPORT OPERATION AND MAINTENANCE JULY 2013 TO DECEMBER 2013 PFOHL BROTHERS LANDFILL CHEEKTOWAGA, NY

Submitted to:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 270 MICHIGAN AVENUE BUFFALO, NEW YORK 14203

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203

Prepared for:

TOWN OF CHEEKTOWAGA ENGINEERING DEPARTMENT 275 ALEXANDER AVE CHEEKTOWAGA, NEW YORK 14211

MARCH

2014

March 24, 2014

Mr. Jaspal Singh Walia, P.E. New York State Department of Environmental Conservation 270 Michigan Ave. Buffalo, NY 14203

)

Re: Semi-Annual Report July 2013 – December 2013 Pfohl Brothers Landfill, Town of Cheektowaga, New York

Dear Mr. Walia:

Enclosed is one copy of the twentieth Semi-Annual Report for the Pfohl Brothers Landfill in Cheektowaga, New York. A copy has also been sent to Ms. Pamela Tames, P.E. of the United States Environmental Protection Agency. Also enclosed is the Data Applicability Report for laboratory analyses associated with the Semi-Annual Report. PDF copies of the reports are also enclosed.

If you have any questions on this report, please feel free to contact me.

Sincerely,

URS CORPORATION

Jon Sundquist, Ph.D. Project Manager

Enclosures

cc:

Pamela Tames, P.E. - USEPA (w/attachments) William Pugh, P.E. – Town of Cheektowaga (w/attachments) File 11172700 (C-1)

URS Corporation 77 Goodell St. Buffalo, NY 14203 Tel: 716.856.5636 Fax: 716.856.2545

TABLE OF CONTENTS

Page No.

1.0	INTRO	DDUCTION	1-1
	1.1	Background	1-1
	1.2	Operation and Maintenance Activities	1-1
2.0	GENE	RAL MAINTENANCE ACTIVITIES	2-1
3.0	MONI	TORING ACTIVITIES	3-1
	3.1	Groundwater Hydraulic Monitoring	3-1
	3.2	Groundwater Quality Monitoring	3-1
	3.3	Groundwater Discharge Monitoring	3-5
	3.4	Monitoring Well Inspections	3-5
4.0	SUMM	IARY AND RECOMMENDATIONS	4-1

TABLES

Table 3-1	Groundwater Sample Analytical Results
Table 3-2	Approved Revision Of Table 3.2 From The O&M Plan

FIGURES

Figure 1-1	Site Location Map
Figure 3-1	Monitoring Locations

APPENDIÇES

ii

Appendix A Example Daily Inspection Sheets
Appendix B Monthly Flow Summaries (July 2013 – December 2013)
Appendix C Hydraulic Monitoring Tables
Appendix D Groundwater Purge and Sample Collection Logs

Appendix E Groundwater Trend Analysis

Appendix F BSA Permit No. 13-04-CH016

Appendix G Discharge Report Summary Tables

Appendix H Monitoring Well Inspection Logs

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

1.0 INTRODUCTION

1.1 Background

The Pfohl Brothers Landfill is located on Aero Drive in the Town of Cheektowaga, New York (Figure 1-1). The site is listed as site No. 915043 on the New York State Department of Environmental Conservation's (NYSDEC's) Registry of Inactive Hazardous Waste Disposal Sites. A Consent Order between NYSDEC and potentially responsible parties (PRPs) for closure of the site was signed in 2001 and remedial construction commenced in 2001. The remedy included consolidation of waste material, capping of the waste disposal and consolidation areas, and encircling the landfill areas with a groundwater collection system to prevent off-site migration. The remedial action was completed in 2002.

Responsibility for implementing the remedy was divided between a "steering committee" of industrial PRPs and the Town of Cheektowaga. The steering committee responsibilities lay generally with the capital construction activities of the remedy including waste consolidation, cap and drainage system installation, etc. The Town of Cheektowaga, which was named as a PRP for disposal of municipal waste at the Pfohl Brothers Landfill when it was operating, is performing the operation and maintenance (O&M) activities at the landfill, pursuant to a settlement agreement between the Town and the steering committee.

1.2 **Operation and Maintenance Activities**

While construction of the remedy was substantially complete by late 2002, the final O&M manual was not approved by the NYSDEC until March 10, 2006. However, the Town of Cheektowaga and its consultant (URS Corporation – New York) assumed most of the operational responsibilities since 2002. This includes a variety of general maintenance activities as outlined in Section 2 and sampling and other monitoring activities outlined in Section 3.

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

Beginning in 2004, the Town and URS assumed all of the O&M activities described in the O&M plan. This report is the twentieth semi-annual report as called for by Section 3.6 of the .O&M plan.

1-2 N.\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

2.0 GENERAL MAINTENANCE ACTIVITIES

Since completion of construction activities in 2002, personnel from the Town of Cheektowaga Engineering Department have performed general activities to ensure the physical operation of the landfill as intended by the design. The various O&M activities performed by the Town from July 2013 through December 2013 include the following actions.

- The amount of groundwater discharged through the collection system was recorded on a daily basis. The flow rate displayed by each wet well pump at the time of daily inspection and the total cumulative volume of flow was recorded for each wet well on daily inspection sheets. Examples of the daily inspection sheet are attached in Appendix A.
- Total cumulative effluent flow rates and volumes were summarized on a monthly basis starting in February 2003. The monthly totals for the period of July 2013 through December 2013, including graphs showing daily total discharge (gallons) as a function of calendar day, are presented in Appendix B.
- The wet well pumps were shutdown during wet weather flow conditions throughout the year to reduce hydraulic loading to the sewer. Such actions were only taken upon request of the Buffalo Sewer Authority during heavy storm events in order to reduce the hydraulic load on the BSA treatment system during such events. Shutdown events are recorded and included with the monthly flow data as previously requested by NYSDEC.
- Plowed snow to access the Control Building when necessary.
- Cleaned/replaced check valves as necessary at all wet wells.
- Replaced surge suppressors and fuses as needed for pump station instrumentation equipment.
- Contractor mowed entire cap and perimeter areas and trimmed along fence (September 2013).

- Engaged wildlife control trapper and trapped six (6) woodchucks in area south of stone access road between WW-4 and WW-5 (October 2013).
- Purchased supply of surge suppression devices for inventory (October 2013).
- Engaged electrical contractor to repair and re-splice electrical cable connections for WW-3 instrumentation (October 2013).
- Replaced discharge hose at WW-3 (December 2013).

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

3.0 MONITORING ACTIVITIES

The Town of Cheektowaga retained URS Corporation to perform monitoring activities as outlined in Section 3.1 of the O&M plan. During the period of January 2004 through the present, URS performed groundwater hydraulic monitoring (Section 3.1.1.2 of the O&M plan) and effluent monitoring (Section 3.1.4 of the O&M plan) on a quarterly basis. URS also performed the twentieth semi-annual groundwater quality monitoring event (Section 3.1.1.3 of the O&M plan). A summary of the monitoring activities is presented in the following subsections. Hydraulic and groundwater sampling locations are shown on Figure 3-1.

3.1 Groundwater Hydraulic Monitoring

Groundwater and surface water elevations were monitored on a quarterly basis at all locations listed in Table 3.1 of the O&M Plan. The hydraulic monitoring data tables showing groundwater elevations are presented in Appendix C. Table 1 of this appendix lists the measured elevations. Table 2 provides a comparison of the measured levels in the wells and corresponding manholes/wet wells.

The data presented in Appendix C indicate that groundwater levels outside the collection system were higher than the levels measured in the corresponding wet well or manhole for each measurement date with only one exception. The water elevation in WW-6 was slightly higher (0.07') than the nearest monitoring well GW-34S on September 10, 2013. Therefore, these data demonstrate that the collection system is generally operating as designed.

3.2 Groundwater Quality Monitoring

The twentieth semi-annual round of groundwater sampling was conducted between November 13, 2013 and November 15, 2013. All wells listed in Table 3.2 of the O&M plan were purged and sampled using dedicated/disposable equipment. Figure 3-1 shows the well locations. Low flow sampling techniques were used at most monitoring well locations.

Passive diffusion bags (PDBs) were placed in three monitoring wells with low recharge rates (GW-4S, GW-7S, and GW-7D) on October 12, 2013. The PDBs were removed from the wells during the sampling event and their contents were analyzed for VOCs. Following removal of the PDBs the three wells were purged dry. These wells were sampled for the other required parameters after their water levels recovered.

Purge logs and sampling summary sheets are provided in Appendix D. Measurements of pH, specific conductivity, temperature, dissolved oxygen, oxidation reduction potential, and turbidity taken during purging are provided in Appendix D. The samples were packed with ice in coolers and transported under chain-of-custody (CoC) control to Test America Laboratories of Amherst, New York.

Table 3-1 of this report presents the groundwater sample results compared with NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class GA water quality standards. Groundwater samples were analyzed for the parameters listed in Table 3.2 of the O&M plan as revised in accordance with Table 3-6 in the Semi Annual Report dated September 2007 (January through June 2007) and as approved by the December 6, 2006 and November 29, 2007 correspondence from the NYSDEC authorizing a reduction in the parameters list (this table is included in this report as Table 3-2).

<u>Results</u>

No VOCs or SVOCs were detected at concentrations above the Class GA water quality standards at any location.

Among the metals, iron, magnesium, manganese, and sodium routinely exceed Class GA standards in most site wells. Chromium and nickel were detected at concentrations exceeding their Class A standards at well GW-03S. Antimony, chromium, lead, and nickel were detected at concentrations exceeding Class GA standards in well GW-07D. It is noted that GW-07D is located upgradient of the site.

3-2
Comparison to Historical Results

No significant changes in metals concentrations were observed when compared to previous sampling event analytical results. The concentration of iron, magnesium, manganese, and sodium in most site wells was similar to the concentrations found during previous sampling events.

The concentrations of chromium and nickel at GW-03S and GW-07D, and concentrations of antimony, lead, and nickel at GW-07D, were within the historical range of concentrations observed for these compounds at these wells. The concentration of chromium at GW-07D was the highest it has been since sampling began.

Sodium concentrations were generally higher in bedrock wells (GW-01D, GW-03D, GW-08D and GW-26D) and shallow wells adjacent to roads (GW-01S and GW-30S). The sodium concentration was also elevated in GW-08SR. The higher sodium concentrations in the bedrock wells may be attributed to the local bedrock composition and the elevated concentration in the shallow wells may be the result of seasonal road de-icing activities.

Trend Analysis

A trend analysis of groundwater parameters that routinely exceed Class GA groundwater standards was performed and is presented in Figures E-1 through E-19 of Appendix E. A review of the trend analysis indicated that no significant changes or trends in concentrations of any of the parameters exceeding groundwater standards have occurred over the twenty semi-annual sampling events except as described below. Figure E-2 for GW-01S, indicates an upward trend in iron over the last five sampling events, a recent upward trend in manganese concentrations, and a downward trend in sodium concentration over the twenty sampling events. Figure E-3 for GW-03D indicates a downward trend for manganese. Figure E-4 indicates a slight upward trend for magnesium in GW-03S since monitoring began and magnesium and manganese were detected at their highest concentrations since monitoring began during this event. Figure E-5 for GW-04D, indicates a slight increasing trend for magnesium. Figure E-6 for GW-04S shows a slight upward trends for magnesium over the last 12 events. Figure E-7 for GW-07D shows upward trends for

chromium, iron, and lead over the last eleven events. Figure E-9 for GW-08D shows a decreasing trend for both iron and manganese since monitoring began. Figures E-10 and E-11 for GW-08SR and GW-26D, respectively, show an upward trend in sodium concentrations since monitoring began. Figure E-10 for GW-08SR also indicates a slight upward trend for manganese. Figure E-11 for GW-26D indicates a downward trend for manganese. Figures E-12 for GW-28S indicates a decreasing trend for sodium since monitoring began. Figure E-13 for GW-29S shows a slight increasing trend for magnesium over the last 17 events and a downward trend for sodium since monitoring began. Figure E-14 for GW-30S indicates a downward trend for iron, magnesium, manganese, and sodium. Figure E-16 shows there is a seasonal variation in sodium concentration in monitoring well GW-32S. Figures E-17 and E-18 for GW-33S and GW-34S indicate a seasonal fluctuation in manganese concentration.

Laboratory Report

The groundwater analytical data package was prepared by Test America in accordance with NYSDEC Category A deliverable requirements. It was reviewed for compliance with analytical method requirements and the following guidelines: USEPA *Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, EPA-540-R-99-008, October 1999; USEPA *CLP National Functional Guidelines for Inorganic Data Review*, EPA-540-R-99-008, October 1999; USEPA *CLP National Functional Guidelines for Inorganic Data Review*, EPA-540-R-99-008, October 1999; USEPA *CLP National Functional Guidelines for Inorganic Data Review*, EPA-540-R-01-008, July 2002; and USEPA *Region II Data Validation SOP for SW-846 Method 8290, PCDDs and PCDFs by High Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS)*, SOP No. HW-19, Revision 1, October 1994. Qualifications applied to the data include "J/UJ" (estimated concentration/estimated quantitation limit), "J+" (estimated concentration with possible high bias), "J-" (estimated concentration with possible low bias), and "U" (not detected).

A Data Applicability Report (DAR) was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation (DER-10) *Technical Guidance for Site Investigation and Remediation, Appendix 2B*, dated May 2010. The DAR dated June 2013 is submitted separately from this report.

3-4

3.3 Groundwater Discharge Monitoring

URS completed two quarterly sampling events (September 2013 and December 2013) of the groundwater collection system discharge since the previous semi-annual report. The sampling was performed in accordance with the requirements of Discharge Permit No. 13-04-CH016 between the Buffalo Sewer Authority and the Town of Cheektowaga. A copy of Permit No. 13-04-CH016 is included as Appendix F.

During the sampling events in September 2013 and December 2013, each regulated parameter was below the limits set by the permit. Copies of the data summary tables that were included with the monitoring reports are included as Appendix G.

3.4 <u>Monitoring Well Inspections</u>

During the November 2013 groundwater sampling event, a well inspection was performed. All wells appeared to be in good condition with the exception of previously existing damage to the risers on GW-07D, GW-01S, and GW-01D. The monitoring well inspection logs may be found in Appendix H.

3-5

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

4.0 SUMMARY AND RECOMMENDATIONS

General Maintenance: The Town will continue to maintain mechanical equipment at the landfill on an as-needed basis and operate the groundwater collection and discharge system as designed. The Town will also continue regular inspections, mow the cap once per year, and plow access to the control building during winter months as necessary.

Groundwater Hydraulic Monitoring: Hydraulic monitoring has been performed on a quarterly basis in conjunction with the discharge monitoring. Water level measurement data demonstrates that the hydraulic gradient is from outside the landfill towards the collection trench. Continued quarterly monitoring is recommended.

Groundwater Quality Monitoring: Groundwater sample results indicate that only low levels of organic compounds and metals are present. Similar concentrations of most parameters were found during previous sampling events. The twenty-first round of groundwater sampling will be conducted in May 2014. Low flow sampling techniques will be used. Passive diffusion bags will be used again for VOC analyses at the three wells (GW-4S, GW-7S, and GW-7D) that go dry even using low flow sampling techniques.

Groundwater Discharge Monitoring: Groundwater discharges remain within permit limits. Continued quarterly monitoring is recommended.

4-1

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

TABLES

1

...

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

1

Location ID	GW-01D	GW-01S	GW-03D	GW-03S	GW-04D		
Sample ID			GW-01D	GW-01S	GW-03D	GW-03S	GW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	-	•	-	-
Date Sampled			11/15/13	11/15/13	11/13/13	11/13/13	11/14/13
Parameter	Units	*					
Volatile Organic Compounds						1	
1,2-Dichloroethene (total)	UG/L	5					
Acetone	UG/L	50					
Semivolatile Organic Compounds							
1,3-Dichlorobenzene	UG/L	3			1.2 J		
1,4-Dichlorobenzene	UG/L	3			1.7 J		
bis(2-Ethylhexyl)phthalate	UG/L	5					
Metals							
Antimony	MG/L	0.003				·	
Arsenic	MG/Ľ	0.025		0.0062 J			
Barium	MG/L	1	0.072	0.17	0.066	0.16	0.082
Cadmium	MG/L	0.005				0.00096 J	
Chromium	MG/L	0.05	0.015	0.0039 J	0.0088	0.085	0.0017 J
Copper	MG/L	0.2		0.0020 J	0.0016 J	0.0083 J	
Iron	MG/L	0.3	0.21			2.0	0.23
Lead	MG/L	0.025					0.0041 J
Magnesium	MG/L	35	34.0	16.0	14.3		77.9
Manganese	MG/L	0.3	0.017		0.38	0.60	0.021
Nickel	MG/L	0.1	0.013	0.0024 J	0.0036 J	0.19	
Sodium	MG/L	20	97.3	84.6	138	69.0	82.0
Zinc	MG/L	2	∥ 0.0021 J	0.0046 J	0.0024 J	0.033	0.0038 J

*• NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. *• PCB Criteria based on sum of the aroclors.

i

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J- - The analyte was positively identified, the quantitation is an estimation with possible low bias.

NA - Not Analyzed

l

Only Detected Results Reported.

Advanced Selection: amk-tem N-11172700.00000G/SUBBProgram/EDMS.md-Printer: 2527014 9:00:53 A [LOGDATE] BETWEEN \$11/01/13# AND \$11/30/13# AND { [SACODE] = 'N' OR [SACODE] = 'FD'

İ

							0111 070
Location ID	Location ID				GW-07D	GW-07D	GW-07S
Sample ID			GW-04S	GW-04S	GW-07D	GW-07D	GW-07S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	•	- '	-	-
Date Sampled			11/14/13	11/14/13	11/13/13	11/14/13	11/13/13
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5		NA		NA	
Acetone	UG/L	50		NA		NA	
Semivolatile Organic Compounds							
1,3-Dichlorobenzene	UG/L	3	NA		NA		NA
1,4-Dichlorobenzene	UG/L	3	NA		NA		NA
bis(2-Ethylhexyl)phthalate	UG/L	5	NA		NA	2.7 J	NA
Metals							
Antimony	MG/L	0.003	NA		NA	0.0086 J	NA
Arsenic	MG/L	0.025	NA		NA	0.0095 J	· NA
Barium	MG/L	1	NA	0.092	NA	0.14	NA
Cadmium	MG/L	0.005	NA		NA	0.0050	NA
Chromium	MG/L	0.05	NA	0.0041	NA		NA .
Соррег	MG/L	0.2	NA	0.0019 J	NA	0.15	NA
Iron	MG/L	0.3	NA		NA		NA
Lead	MG/L	0.025	NA	_	NA	0.65	NA
Magnesium	MG/L	35	NA	27.5	NA		NA
Manganese	MG/L	0.3	NA	0.11	NA	0.32	NA
Nickel	MG/L	0.1	NA	0.0039 J	NA	0.52	NA
Sodium	MG/L	20	NA	28.0	NA		NA
Zinc	MG/L	<u> </u> 2	NA	0.0094 J	NA	0.39	NA

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. * - PCB Criteria based on sum of the aroctors.

İ

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J- - The analyte was positively identified, the quantitation is an estimation with possible low bias.

NA - Not Analyzed

Only Detected Results Reported.

Advanced Selection: arhk-tem N،۱۱۱72700,0000055588ProgramED|45.ma Printes: 22520149.0058 Ab (LOGDATE) BETWEEN #11/01/13# AND #11/30/13# AND ([SACODE] = "ਮ" OR [SACODE] = "FD"

.

		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					· · · · · · · · · · · · · · · · · · ·	
Location ID			. GW-07S	GW-08D	GW-08D	GW-08SR	GW-26D	
Sample ID			GW-07S	FD-111313	GW-08D	GW-08SR	GW-26D	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (f	it)		•	-	-	-	•	
Date Sampled			11/14/13	11/13/13	11/13/13	11/13/13	11/14/13	
Parameter	Units	*		Field Duplicate (1-1)				
Volatile Organic Compounds								
1,2-Dichloroethene (total)	UG/L	5	NA				1.4 J	
Acetone	UG/L	50	NA				4.0 J	
Semivolatile Organic Compounds								
1,3-Dichlorobenzene	UG/L	3			,			
1,4-Dichlorobenzene	UG/L	3						
bis(2-Ethylhexyl)phthalate	UG/L	5						
Metals								
Antimony	MG/L	0.003						
Arsenic	MG/L	0.025				0.0093 J		
Barium	MG/L	1	0.26	0.090	0.094	0.41	. 0.15	
Cadmium	MG/L	0.005	0.00080 J					
Chromium	MG/L	0.05	0.014	0.0066	0.0066	0.0034 J		
Copper	MG/L	0.2	0.0024 J	0.0037 J	0.0042 J	0.0018 J		
iron	MG/L	0.3	0.34	0.17	0.19	25.9		
Lead	MG/L	0.025				0.0044 J		
Magnesium	MG/L	35	36.1) 17.4	18.1	48.2	23.1	
Manganese	MG/L	0.3	0.072	0.096	0.092		0.65	
Nickel	MG/L	0.1	0.015	0.0046 J	0.0051 J	0.0039 J	0.0049 J	
Sodium	MG/L	20	52.3			363	307	
Zinc	MG/L	2	0.011	0.0064 J	0.0081 J	· 0 0066 J	0.0028 J	

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. * - PCB Criteria based on sum of the aroctors.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J- - The analyte was positively identified, the quantitation is an estimation with possible low bias. NA - Not Analyzed

Only Detected Results Reported.

Advanced Selection: amk-tem N:11172700.000006[5]dsBPogramEDMS.md-Pintiez: 2222014 90:058 Adv (LOGDATE] BETWEEN #11/01/13# AND #11/30/13# AND { [SACODE] + 'H' OR [SACODE] + 'FD'

			0141 000	011/ 000	014/ 200	C101 245	CW 225
Location ID			GW-28S	GW-295	GW-305	GW-315	GW-323
Sample ID			GW-285	GW-295	GW-303	GW-313	011-525
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	-	-	-	
Date Sampled	Date Sampled			11/14/13	11/15/13	11/15/13	11/15/13
Parameter	Units	*					
Volatile Organic Compounds							
1,2-Dichloroethene (total)	UG/L	5					
Acetone	UG/L	50					
Semivolatile Organic Compounds							
1,3-Dichlorobenzene	UG/L	3					
1,4-Dichlorobenzene	UG/L	3					
bis(2-Ethylhexyl)phthalate	UG/L	5					
Metals							
Antimony	MG/L	0.003					
Arsenic	MG/L	0.025		0.022			
Barium -	MG/L	. 1	0.086	0.19	0.14	0.068	0.064
Cadmium	MG/L	0.005					
Chromium	MG/L	0.05 ,				0.0016 J	`
Copper	MG/L	0.2			0.0022 J	0.0023 J	
Iron	. MG/L	0.3	0.25			0.25	0.11
Lead	MG/L	0.025					
Magnesium	MG/L	35	28.4	72.8		33.1	33.7
Manganese	MG/L	0.3		0.65		0.86	0.35
Nickel	MG/L	0.1	0.0023 J	0.0015 J	0.0030 J	0.0069 J	0.0032 J
Sodium	MG/L	20	13.8	8.7	59.5	5.3	5.2
Zinc	MG/L	2	0.0045 J	0.0026 J	0.0015 J	0.006 <u>8</u> 1	0.0055 J

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. *- PCB Criteria based on sum of the arcolors.

.

i

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J- - The analyte was positively identified, the quantitation is an estimation with possible low bias.

,

NA - Not Analyzed

.

Only Detected Results Reported.

Advanced Seljection: amk-tem , N:111172700.00000(SSIGBProgramEUMS-SE Printes: 22527014 9:00:56 A. [LOGDATE] BETWEEN #11/0/1/3# AND #11/20/13# AND ([SACODE] = 'N' OR [SACODE] = 'FD'

Location ID		-	GW-33S	GW-34S	GW-35S
Sample ID			GW-33S	GW-34S	GW-35S
Matrix			Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	•	-
Date Sampled			11/15/13	11/14/13	11/14/13
Parameter	Units	*			
Volatile Organic Compounds					
1,2-Dichloroethene (total)	UG/L	5			
Acetone	UG/L	50			
Semivolatile Organic Compounds					
1,3-Dichlorobenzene	UG/L	3			
1,4-Dichlorobenzene	UG/L	3			
bis(2-Ethylhexyl)phthalate	UG/L	5	2.9 J		
Metals					
Antimony	MG/L	0.003			
Arsenic	MG/L	0.025			
Barium	MG/L	1	0.039	0.14	0.082
Cadmium	MG/L	0.005			
Chromium	MG/L	0.05	0.0016 J	0.0029 J	
Copper	MG/L	0.2	0.0017 J	0.0021 J	
Iron	MG/L	0.3		0.12	0.067
Lead	MG/L	0.025			
Magnesium	MG/L	35	38.8	52.4	24.6
Manganese	MG/L	0.3	0.013	0.12	0.13
Nickel	MG/L	0.1	0.0019 J	0.0054 J	0.0018 J
Sodium	MG/L	20	4.3	23.7	2.6
Zinc	MG/L	2	0.0032 J	0.0022 J	0.0042 J

*- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. *- PCB Criteria based on sum of the aroclors.

Flags assigned during chemistry validation are shown.

Concentration Exceeds

J- - The analyte was positively identified, the quantitation is an estimation with possible low bias. NA - Not Analyzed

Only Detected Results Reported.

Advanced Selection: amk-tem .: N.11172700.00000GISUBUProgramEUMS.md Printae: 22527014 9:0656 Adv [LOGDATE] BETWEEN #11/01/13# AND #11/30/13# AND ([SACODE] = 'W OR [SACODE] = 'FD'

(

TABLE 3-2

APPROVED REVISION OF TABLE 3.2 FROM THE O&M PLAN

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE PLAN PFOHL BROTHERS LANDFILL SITE, CHEEKTOWAGA, NEW YORK

LOCATIONS

GW-1D/1S GW- 3D/3S GW- 4D/4S GW- 7D/7S GW- 8D/8S(R) GW- 26D/35S GW- 28S GW- 28S GW- 29S GW- 29S GW- 30S GW- 31S GW- 31S GW- 32S GW- 33S GW- 34S

FREQUENCY

semi-annually for overburden and bedrock groundwater

PARAMETERS

Field

pH conductivity temperature turbidity

VOCs Acetone

Benzene 1,2-Dichloroethene (total) 1,1,2-Trichloroethane Vinyl chloride

SVOCs Phenol

1,3-Dichlorobenzene 1,4-Dichlorobenzene bis(2-Ethylhexyl)phthalate

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Table 3-2 (final).doc

TABLE 3-2 (continued)

APPROVED REVISION OF TABLE 3.2 FROM THE O&M PLAN

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE PLAN PFOHL BROTHERS LANDFILL SITE, CHEEKTOWAGA, NEW YORK

PARAMETERS (cont'd)

Metals

Antimony Arsenic Barium Cadmium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel Silver Sodium Zinc

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Table 3-2 (final).doc

FIGURES

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

APPENDIX A

EXAMPLE DAILY INSPECTION SHEETS

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

Daily Log	gsheet		Town of Cheektow	/aga
Date	7 23 13	_	Weather conditions	B. Pugh
Time	2:06	-	Read by:	80° JUNNY, N
	Level of Water	Flow	Flow Totals	Pump Run Time
	from bottom (ft.)	gallons / minute	gallons	Hrs.
WW-3	1.7	0	23000	2561
WW-2	4.1	0	-855	144
WW-1	4,1	0	666,111	P 95.1
WW-6	6.6		19 - 5-	7314
WW-4	1.0	0	19,181	10 001
WW-5	5.0	<u> </u>	611,646	. 14,846
Flow Total	lizer at Meter chambe	ſ		
	Outside temp $T = \delta^{-1}$ Current $A = 0$		Set point SP = 40	- , ·
Surge Supp	pressor events	415,572	-	
Motor Conti	rol Center Alex		<u> </u>	
	Valla 900	volto	Millioh M/Mi waa mungin	~?
	Volts 980	volts	Which WW was runnin	g?
· · · ·	Volts 780 Amps 9	volts amps	Which WW was runnin 1 2 3 3 4 5 6 6	g?
Filter	Volts 90 Amps 9 Checked D	volts amps Changed 🛛	Which WW was runnin 1 2 3 3 4 5 6 6	g?
Filter	Volts 90 Amps 9 Checked D	volts amps Changed 🛛	Which WW was runnin 10 20 30 40 50 60	g?
Filter Comments a	Volts 90 Amps 9 Checked D and/or Current Condition	volts amps Changed 🛛	Which WW was runnin 10 20 30 40 50 60	g?
Filter Comments a	Volts 980 Amps 9 Checked D and/or Current Condition	volts amps Changed D ns	Which WW was runnin 10 20 30 40 50 60	g?
Filter Comments a	Volts 780 Amps 9 Checked \Box and/or Current Condition $\xi S E T$ $F L O M$	volts amps Changed 🛛 ns ງ ງ ເປ v A ເປ ໂຊ A	Which WW was runnin 10 20 30 40 50 60 ALARHMS	g?
Filter Comments a	Volts 780 Amps 9 Checked \Box and/or Current Condition ξSET $FLOW$ W $3, 2, 6$	volts amps Changed ns J J N V A L 1 A	Which WW was runnin 10 20 30 40 50 60 ALARHMS	g?
Filter Comments a	Volts 780 Amps 9 Checked 1 and/or Current Condition $\xi S E T$ $F LOW$ W $3, 2, 6$ W $3, 2, 6$	volts amps Changed D ns J JNVALIN 4	Which WW was runnin $1 \square 2 \square 3 \square 4 \square 5 \square 6 \square$ $A \cup A \cap_{\mathbb{H}} M S$	g?
Filter Comments a	Volts 9 Amps 9 Checked \square and/or Current Condition ESET FLOW W 3, 2, 6 INCREASE IN INCREASE IN	volts amps Changed D ns J JNVALIN 4 <u>NEG. FLON</u> RAJ	Which WW was runnin $1 \square 2 \square 3 \square 4 \square 5 \square 6 \square$ $A \land A \land R_{H} M S$ $T \supset M M Z$	g? - NECO TO
Filter Comments a	Volts 780 Amps 9 Checked \square and/or Current Condition ESET $FLOWW$ $3, 2, 6INCRCASE IN IN INSPECTOENERGE N$	volts amps Changed \Box ns I I N VA U N A NEG. ELONBAU CHS	Which WW was runnin 102030405060 ALARIMS TOWNZ CK VALVE. SHERE	g? - NECO TO
Filter Comments a	Volts 9 Amps 9 Checked and/or Current Condition ESET FLOW W 3, 2, 6 INCREASE IN INSPECT REMOVED D ENTER	volts amps Changed \Box ns $I = I \land \lor \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land$	Which WW was runnin 102030405060 ALARIMS TOWNZ TOWNZ SHEETS	g? - NECD TO JAN - JUNE :
Filter Comments a W	Volts 9 Amps 9 Checked D and/or Current Condition ESET FLOW W 3, 2, 6 INCREASE IN INSPECT REMOVED D ENG. OF	volts amps Changed ns I INVALIN 4 NEG. FLOW BAU CH SINC LOG ACE	Which WW was runnin 102030405060 ALARIMS TOWNZ TOWNZ SHEETS	g? - <u>NECD</u> TO JAN - JUNE

1000

Pfohl Brothers Landfill Site

23

	Daily Lo	gsheet		Town of Cheektow	aga 🧋
	Date	8/29/13		Weather conditions	CLEAR 82°
	Time •	2:45		Read by:	BILL PUGH
		Level of Water	Flow	Flow Totals	Pump Run Time
		from bottom (ft.)	gallons / minute	gallons	Hrs
	WW-3	99.0	0	23,339	2561
	WW-2	4,7	0	-893	144
	WW-1	4.7	0	201, 358	2702
	WW-6	7,3	6	293,353	9588
	WW-4	7.0	ð	54,452	5680
	WW-5	7.2	0	682,310	10,954
	Flow Tota	alizer at Meter chambe	r	1,276,342	-
	Heat Trace	e Outside temp T = 82 Current A =	· · · · · · · · · · · · · · · · · · ·	Set point SP = 40	• •
<u>, ,)</u>	Surge Sup Motor Con	trol Center Volts 460 Amps 3	415,605 volts amps)? \$
	Filter		Changed 🛛		
	Comments	and/or Current Condition	-(4) Ne	w 2" ball /c	heck values
	<u> </u>	°	40	Cabinet in	control blog.
		·····	. <u></u>	·	<u>+ /</u>
					· · ·
				,	· · · · · · · · · · · · · · · · · · ·
		. <i>5</i>			
,			••••••••••••••••••••••••••••••••••••••		
1					
					1
				·	
		i	· · ·	·	· · · ·
• ^ب ر م				·	· · · ·

۰,

Pfohl Brothers Landfill Site

.

:

Daily Lo	ogsheet		Town of Cheektow	aga
vate Time	9-17-13 2:05	-	Weather conditions Read by:	BILL PUGH
	Level of Water from bottom (ft.)	Flow gallons / minute	Flow Totals gallons	Pump Run Time Hrs.
ww-3	6.3	0	24,193	2.562
WW-2	4.7	0	-903	144
WW-1	4.0	51.7	342, 830	2,750
WW-6	99,0	0	293,590	9,588
ww.4	6.9	0	49,204	5,688
M/W-5	7.1	0	875,331	11,018
Flow Tot	alizer at Meter chamber	· · · · · · · · · · · · · · · · · · ·	1,629,791	
Heat Trac	Current A = 0	<i>•</i>	Set point SP = 40°	
Motor Co	ntrol Center Volts <u>480</u> Amps <u>5</u>	_volts amps	Which WW was running 1 2 2 3 2 4 2 5 6 2	g?
Filter	Checked D	Changed []		
Commen	ts and/or Current Condition	ns SVG INVALI	A ALARM-	WILL NOT
		U		RESET.
	MOWCON IN AREA	0N SITE - C - 5.5	FINISHING IDE AERO	moning
	WILL BE ETC. TON	HAND TT	RIMMING FEN	JELINES
	ETC. TON	nornow.		

Daily Lo	ogsheet		Town of Cheektow	aga
Date	10-15-13		Weather conditions	CLEAR, COO
Time '	8,`45	• •	Read by:	BILL PUGH
•	Level of Water	Flow	Flow Totals	Pump Run Tim
	from bottom (ft.)	gallons / minute	gallons	Hrs. $2 C_{42}$
WW-3	3.0		24,578	2300
WW-2	4.6		-11,231	144
WW-1	<u> </u>	0	691,146	2813
WW-6	-1.0	á	129 000	1663
WW-4	<u> </u>	0	1 202 333	1164
WW-5	6.4		2,762,426	
-low Tot	alizer at Meter chambe			_
Heat Trac				
	Outside temp T = 48 Current A = 0	3	Set point SP = 4 o	-
Surge Su	$\frac{\text{Outside temp T} = 48}{\text{Current A} = 0}$ ppressor events $\frac{\text{Volts} 480}{\text{Amps} 3}$	3 4 / 5, 6 5 / volts amps	Set point SP = 4 5 Which WW was running 10 20 30 40 50 60	- 1?
Surge Su Motor Cor	$\frac{\text{Outside temp T} = 48}{\text{Current A} = 0}$ $\frac{\text{Portson Pressor events}}{\text{Current A} = 0}$ $\frac{\text{Volts} + 480}{\text{Amps} + 3}$ $\frac{\text{Checked } \Box}{\text{Checked } \Box}$	₹ 415,651 volts amps Changed	Set point SP = 4 5 Which WW was running 10 20 30 40 50 60	3 [?] Ø
Surge Su Votor Cor Filter	Outside temp $T = 48$ <u>Current A = 0</u> ppressor events ntrol Center <u>Volts 480</u> <u>Amps 3</u> Checked \Box s and/or Current Conditio Tom PHST	415,651 volts amps Changed KA AT	Set point $SP = 4 \circ$ Which WW was running 10 20 30 40 50 60 STR. MVEST	- 3? J 16 A TING
Surge Su Votor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center Volts 480 Amps 3 Checked D s and/or Current Condition Tom PEST WW 4 AL	$\frac{415,651}{\sqrt{15,651}}$ volts amps Changed KA AT ARMS	Set point $SP = 40$ Which WW was running 102030405060 SUTTE, INVEST	3? Д 16 Д Таляц
Surge Su Votor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center Volts 480 Amps 3 Checked \Box s and/or Current Condition Tom PEST WW 4 AL	$\frac{415,651}{0}$ volts amps Changed KA AT ACMS	Set point $SP = 40$ Which WW was running 102030405060 $SXTE \int NVEST$	3? J 16 A TING
Surge Su Motor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center <u>Volts</u> 480 Amps 3 Checked \Box s and/or Current Conditio Tom PEST WW 4 AL	$\frac{415,651}{0}$ volts amps Changed KA AT ARMS	Set point $SP = 40$ Which WW was running 102030405060 S = M VEST	- 16 A TING
Surge Su Motor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center Volts 480 Amps 3 Checked \Box s and/or Current Conditio Tom PLST WW4 AL	$\frac{415,651}{0}$ volts amps Changed KA AT ARMS	Set point $SP = 40$ Which WW was running 102030405060 $SITE \int NVEST$	3? J 16ATING
Surge Su Motor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center Volts 480 Amps 3 Checked \Box s and/or Current Conditio Tom PLST, WW4 AL	$\frac{415,651}{\sqrt{15,651}}$ volts amps Changed $\frac{1}{\sqrt{15}}$ $\frac{1}{\sqrt{15}}$	Set point $SP = 40$ Which WW was running 102030405060 SRTE PROVEST	- 16 A TING
Surge Su Motor Cor Filter	Outside temp $T = 48$ <u>Current A = 0</u> ppressor events ntrol Center <u>Volts 430</u> <u>Amps 3</u> Checked \Box s and/or Current Conditio Tom PEST WW4 AL	$\frac{415,651}{\sqrt{100}}$ volts amps Changed KA AT ARMS	Set point $SP = 40$ Which WW was running 102030405060 $SUTTE \int NVEST$	- 1? 16 A T I N SQ
Surge Su Motor Cor Filter	Outside temp T = 48 Current A = 0 ppressor events atrol Center Volts 480 Amps 3 Checked \Box s and/or Current Condition Tom PLST WW 4 AL	$\frac{415,651}{\sqrt{15,651}}$ volts amps Changed KA AT ARMS	Set point SP = $4 \circ$ Which WW was running 10 20 30 40 50 60 SUTTE $\int MVEST$	- 1° J 76 A T 7 N S G
Surge Su Motor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events atrol Center Volts 480 Amps 3 Checked D s and/or Current Condition Tom PEST WW 4 AL	$\frac{415,651}{\sqrt{2}}$ volts amps Changed KA AT ARMS	Set point $SP = 40$ Which WW was running 102030405060 $SUTE \int NVEST$	- 16 A T7 NG
Surge Su Votor Cor Filter	Outside temp $T = 48$ Current $A = 0$ ppressor events ntrol Center <u>Volts</u> 480 <u>Amps</u> 3 Checked \Box s and/or Current Condition Tom PEST WW 4 AL	$\frac{415,651}{\sqrt{2}}$ volts amps Changed KAAT ARMS	Set point $SP = 40$ Which WW was running 10 20 30 40 50 60 SUTE $\int MVEST$	- 17 16 A TING

-

1

APPENDIX B

MONTHLY FLOW SUMMARIES JULY 2013 – DECEMBER 2013

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

The TOWN OF CHEEKTOWAGA

Main Pump Station

171 Central Blvd.

Cheektowaga, NY 14225

Phone: 716-896-1777 Fax: 716-896-6437

Ţ

Jon W. Nichy Superintendent Joseph Glab Asst: Superintendent

August 3, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the July 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

On July 1, 2013 the Flow Totalizers were reset to zero.

Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly.

Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

÷.,

Î

-	6/30/20)13	13212773	150,819	13,212,793	· · · · · ·
	July-13	11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
	1		0	0	0	
Γ	2		30269	30,269	30,269	
	3		63562	33,293	63,562	2307 inhibit
Γ	4		71315	7,753	71,315	1307 enable
Γ	5		91622	20,307	91,622	
	6		125867	34,245	125,867	· · · · · · · · · · · · · · · · · · ·
	7		144004	18,137	144,004	·
	8		158657	14,653	158,657	·
Γ	9		159222	564	159,221	······································
Γ	10		178840	19,618	178,839	
Γ	11		198180	19,340	198,179	
F	12		208319	10,138	208,317	· · · · · · · · · · · · · · · · · · ·
	13		241958	33,639	241,956	
	14		328012	86,055	328,011	
,	15		353050	25,038	353,049	· · · · · · · · · · · · · · · · · · ·
	16		372883	19,833	372,882	
	17		392855	19,972	392,854	·
	18		410697	17,842	410,696	
	19		424226	13,529	424,225	2142 inhibit
	20		426109	1,883	426,108	0902 enable
	21		469271	43,162	469,270	
	22		531445	62,174	531,444	
	23		563541	32,096	563,540	2206 inhibit
	. 24		565953	2,411	565,951	1246 enable
	25		572238	6,286	572,237	<u> </u>
	26		584050	11,812	584,049	
	27		584050	0	584,049	2138 inhibit
	28		584050	0	584,049	1809 enable
	29		593065	9,015	593,064	
	30	_	629387	36,322	629,386	
	31		635107	5,720	635,106	· · · · · · · · · · · · · · · · · · ·

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

September 4, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Ĵ

)

Enclosed for your review, please find a copy of the August 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly, Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

7/31/201	3	635107	5,720	635,106	
August-13	Time; 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Galions)	Total Direct Discharge (Gallons)	Notes
1		643629	8.522	643.628	· · · · · ·
2		700043	56,414	700.042	
3		719758	19,715	719.757	
4		730142	10,384	730,141	
5		828053	97,911	828,052	
6		877545	49,492	877,544	
7.		899807	22,262	899,806	
8		909519	9,711	909,517	0216 inhibit 1156 enable
9		922667	13,148	922,665	0430 inhibit 1241 enable
10		922667	0	922,665	· · · · · · · · · · · · · · · · · · ·
11		941294	18,627	941,292	
12		960433	19,139	960,431	
13		969666	9,233	969,664	
14		988257	18,592	988,256	
15		1001326	13,069	1,001,325	
16		1084862	83,537	1,084,862	
17		1144813	59,950	1,144,812	
18		1153217	8,404	1,153,216	
19	· .	1164939	11,723	1,164,939	
20		1184835	19,896	1,184,835	
21		1191087	6,252	1,191,087	
22		1201187	10,100	1,201,187	1639 inhibit 2348 enable
23		1220773	19,586	1,220,773	
.24		1220773	0	1,220,773	
25		1242227	21,454	1,242,227	í.
26		1243662	1,435	1,243,662	1515 inhibit 2351 enable
27		1260398	16,736	1,260,398	0826 inhibit
28		1276342	15,945	1,276,343	0726 enable
29		1300333	23,991	1,300,334	
30		1346857	46,524	1,346,858	
31	10	1383122 748,015	36,265 748,017	1,383,123 748,017	10 12 1 10 1

i

.

İ

August 2013 120000 -100000 80000 60000 40000 20000 0 + 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6

7

្រ

The TOWN OF CHEEKTOWAGA

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

į

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

October 1, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the September 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly, Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

i

	8/31/2013	L	1383122	36,265	1,383,123	ç ; A
<i>)</i>	Sep-13	Time; 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gailons)	Total Direct Discharge (Gallons)	Notes
	1		1383122	0	1,383,123	
2	2		1383122	0	1,383,123	
	3		1399304	16,182	1,399,305	
	4		14233405	24,101	1,423,406	
	5		1434967	11,563	1,434,969	
	6		1445525	10,558	1,445,527	
	7		1455720	10,194	1,455,721	
	8		1467213	11,493	1,467,214	
	9		1468491	1,278	1,468,492	
	10		1513063	44,572	1,513,064	
	11		1513063	0	1,513,064	2317 inhibit
	12		1521395	8,332	1,521,396	0626 enable
	13		1521395	0	1,521,396	
1	14		1521395	0	1,521,396	
•. •	15		1521395	0	1,521,396	
	16		1584102	62,707	1,584,103	
	17		1666196	82,094	1,666,197	
	18		1685046	18,849	1,685,046	
	19		1697873	12,827	1,697,873	
, i	20		1709126	11,253	1,709,126	2146 inhibit
	21		1709126	0	1,709,126	
	22		1709126	· 0	1,709,126	
-	23		1709126	0	1,709,126	
	24		1806618	97,492	1,806,618	0749 enable
	25		1914529	107,911	1,914,529	
	26		1942802	28,273	1,942,802	·
	27		1972632	29,830	1,972,632	
	28		1972632	0	1,972,632	
	29		1975302	2,671	1,975,303	and the state of the second second
i	30		2023045	47,743	2,023,046	
J	31	L	620 022	830 033	630 023	
			039,923	033,323	035,523	

İ

2.

and a second

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

ę.

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

November 6, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the October 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

ې چې

	9/30/2013		2023045	47,743	2,023,046	3
	Oct-13	Time; 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
	1		2023186	141	2,023,187	,
	. 2		2028219	5,033	2,028,220	
	3		2138849	110,630	2,138,850	
	4		2141790	2,941	2,141,791	
	5		2234008	92,218	2,234,009	
	6		2244865	10,857	2,244,866	
	7		2263529	18,664	2,263,530	0111 inhibit
	8		2483378	219,849	2,483,379	2141 enable
	9		2617650	134,272	2,617,651	
L	10		2661449	43,800	2,661,451	
	11		2661449	0	2,661,451	
	12		2666955	5,505	2,666,956	
	13		2701787	34,832	2,701,788	
	14		2737300	35,513	2,737,301	0106 inhibit 1345 enable
	15		2769663	32,364	2,769,665	
Ļ	16		2769663	0	2,769,665	1931 inhibit
	17		2877335	107,672	2,877,337	0030 enable 1937 inhibit
	18		2877335	0	2,877,337	
-	19		2877335	0	2,877,337	
	20		3015534	138,199	3,015,536	0909 enable
	21		3244561	229,027	3,244,563	
	22		3249258	4,697	3,249,260	0016 inhibit 2353 enable
	23		3436757	187,499	3,436,759	
	24		3512590	75,833	3,512,592	
	25		3513740	1,151	3,513,743	``````````````````````````````````````
	26		3544392	30,652	3,544,395	2219 inhibit
	27		3544392	0	3,544,395	
	28		3544392	0	3,544,395	
	29		3544392	0	3,544,395	
	30		3544392	0	3,544,395	
	31		3544392	0	3,544,395	
		٤	1,021,04/	1,021,049	1,521,549	

·

The Following Image(s) are the Best Copy Available

BIEL'S

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

December 6, 2013

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

Enclosed for your review, please find a copy of the November 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

Should you have any other questions or comments regarding this submittal please contact this office @ 896-1777.

Yourstru Jon W. Nichy Superintendent/ Main Pump Station

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

Direct Discharge Flow Data

. a. e. ⊕. ≇. ____

i

•	Direct Discharge Flow Data						
	10/31/2013		3544392	0	3,544,395		
	Nov-13	Time; 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes	
	1		3544392	0	3,544,395		
	2		3681180	136,788	3,681 183	0724 enable	
	3	·	3882521	201,341	3,882,524		
	4		4072506	189,985	4,072,509		
	5		4184974	112,468	4,184,977	· · · · · · · · · · · · · · · · · · ·	
	6		4253072	68,098	4,253,075	2135 inhibit	
	7		4253072	0	4,253,075		
	8		4253072	0	4,253,075		
	9		4253072	0	4,253,075		
	10		4253072	0	4,253,075		
Ĩ	11		4253072	0	4,253,075		
ſ	12		425307 <u>2</u>	0	4,253,075		
	13		4386958	133,886	4,386,961	0804 enable	
	14		4605186	218,228	4,605,189		
γ	15		4793020	187,834	4,793,023		
	16		4826668	32,648	4,825,671		
	17		4825668	0	4,825,671	1425 inhibit	
ſ	18 .		4862784	37,116	4,862,787	1054 enable	
	19		4991282	128,499	4,991,286		
Ī	20		5026235	34,953	5,026,239		
ſ	21		5043507	17,272	5,043,511		
	22		5060964	17,457	5,060,968		
	23		5142806	81,842	5,142,810	·	
	24		4269603	126,797	5,269,607		
	25		4271356	1,753	5,271,360		
	26		5305835	34,480	5,305,840		
	27		5305835	0	5,305,840		
	28		5310576	4,741	5,310,581		
ſ	29		5391484	80,909	5,391,490		
ľ	30		5472104	80,620	5,472,110		
Ī	31						
÷			1,927,712	1,927,715	1,927,715		

Ì

57

Main Pump Station 171 Central Blvd. Cheektowaga, NY 14225 Phone: 716-896-1777 Fax: 716-896-6437

1

!

Jon W. Nichy Superintendent Joseph Glab Asst. Superintendent

January 15, 2014

Mr. William R. Pugh, P.E. Town Engineer Town of Cheektowaga

Re: Pfohl Bros. Flow Data

Dear Mr. Pugh,

÷

Enclosed for your review, please find a copy of the December 2013 Direct Discharge Flow Data Report, prepared by Jon W. Nichy.

Should you have any other questions or comments regarding this submittal, please contact this office @ 896-1777.

Yours truly, Jon W. Nichy Superintendent Main Pump Station

Direct Discharge Flow Data

<u>. </u>	11/30/201	3	5472104	80,620	5,472,110	
	Dec-13	Time; 11:58pm unless otherwise stated	Totalizer Reading (Gallons)	Daily Total Discharge (Gallons)	Total Direct Discharge (Gallons)	Notes
	1		5505986	33,883	5,505,993	
	2		5515736	9,750	5,515,743	
	3		5540000	24,264	5,540,007	
	4		5650942	110,942	5,650,949	
•	5		5799873	148,931	5,799,880	
	6		5913448	113,575	5,913,455	
	7		5980014	66,567	5,980,022	
	8		5993089	13,075	5,993,097	
	9		5998775	5,687	5,998,784	
	10		6016842	18,067	6,016,851	
	11		6020776	3,934	6,020,785	
	12		6080881	60,106	6,080,891	
	13		6150515	69,634	6,150,525	
\neg	14		6160822	10,307	6,160,832	
/	15		6161852	1,030	6,161,862	
	16		6187713	25,861	6,187,723	
·	17		6201428	13,716	6,201,439	
	18		6249716	48,288	6,249,727	· · · · · · · · · · · · · · · · · · ·
	19		6308530	58,814	6,308,541	
	20		6330058	21,528	6,330,069	1219 inhibit
	21		6330058	0	6,330,069	
	22		6330058	0	6,330,069	
	23		6425432	95,374	6,42 <u>5,</u> 443	1108 enable
	24		6624120	198,689	6, <u>624,13</u> 2	<u> </u>
	25		6808354	184,234	6,808,366	
	26		6880219	71,866	6,880,232	····
	27		6880219	00	6,880,232	
	28		6947708	67,489	6,947,721	
	_ 29		7051362	103,654	7,051,375	
	30		7163054	111,692	7,163,067	
J	31		7198832 1,726,728	35,778 1,726,735	7,198,845 1,726,735	

İ

·· 🍾

Ĩ

I

İ

I

APPENDIX C

HYDRAULIC MONITORING TABLES

İ

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

 $\{e_i\}$

• ...

Location ID /	Northing	Easting	Ground	Casing	Meas.point	Geol.	Specific	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick, (ft)	Corrected Water Elev. (ft)	Remark
Туре			Elevation (ft)	Elevation (ft)	(Riser)Elev.(π)	Zone	Gravity						·
GW-01D	1073088.634	1117968.213	694.41	NM	696.12	D	1						
MNW			•					9/10/2013 1518	4.00	692.12	0.00	692.12	
MNW	·							11/13/2013 0935	2.07	694.05	0.00	694.05	
MNW								12/10/2013 1222	2.64	693.48	0.00	693.48	
GW-01S	1073087.779	1117961.500	694.53	NM	696.19	s	1						
MNIM								9/10/2013 1518	4.70	691.49	0.00	691.49	
MNIM	 	<u> </u>	<u> </u>				<u> </u>	11/13/2013 0935	3.24	692.95	0.00	692.95	
MNW				<u>├───</u>			<u> </u>	12/10/2013 1223	3.84	692.35	0.00	692.35	
GW-03D	1073819.106	1114602.426	692.35	NM	693.88	D	1		<u> </u>				
MNIM								9/10/2013 1421	2.38	691.50	0.00	691.50	
		├ ────	<u> </u>					11/13/2013 0848	1.71	692.17	0.00	692.17	
MNW	/		<u> </u>				1	12/10/2013 1127	1.85	692.03	0.00	692.03	
GW-035	1073812.622	1114605.762	692.61	NM	693.80	s	1						
	/							9/10/2013 1421	7.45	686.35	0.00	686.35	
MNW	/					†	<u> </u>	11/13/2013 0848	2.68	691.12	0.00	691.12	
MNW	/						1	12/10/2013 1126	2.75	691.05	0.00	691.05	
GW-04D	1072289.432	1114685.625	690.89	NM	692.75	D	1						
MNIA								9/10/2013 1528	13.39	679.36	0.00	679.36	
MNVA					<u> </u>	<u> </u>	1	11/13/2013 0945	13.10	679.65	0.00	679.65	
MNW	/				<u>∤</u>	1	<u> </u>	12/10/2013 1150	12.70	680.05	0.00	680.05	
GW-04S	1072284.456	1114685.127	690.76	NM	692.72	s	1		1				
AANIA			· ·					9/10/2013 1528	5.85	686.87	0.00	686.87	
	v	╂────	┨───					11/13/2013 0944	4.16	688.56	0.00	688.56	
MNV	v			+		1		12/10/2013 1149	4.27	688.45	0.00	688.45	

----- •

NM - No Measurement

The value noted in the column labeled Specific Gravity Is an assumed value for free product, if found.

Type: ΜН Manhole Monitoring Point MNW Monitoring Well SG

Staff Gauge

Filter = ([tblGWD].[LOGDATE] Between #7/1/2013# And #12/31/2013#)

Printed: 3/17/2014 2:21:38 PM N:\11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
GW-07D	1071242.458	1117669.925	697.15	NM	699.94	D	1						
MNW						•		9/10/2013 1514	49.48	650.46	0.00	650.46	
MNW					· · · · · · · · ·			11/13/2013 0930	45.45	654.49	0.00	654.49	
MNW								12/10/2013 1218	57.82	642.12	0.00	642.12	
GW-07S	1071238.157	1117666.265	697.47	NM	699.51	s	1						
MNW								9/10/2013 1514	6.89	692.62	0.00	692.62	
MNW					· · · · · · · · · · · · · · · · · · ·			11/13/2013 0931	4.13	695.38	0.00	695.38	
MNW								12/10/2013 1217	4.65	694.86	0.00	694.86	
GW-08D	1073713.617	1116795.328	695.28	NM	697.79	D	1		1				
MNW								9/10/2013 1439	6.43	691.36	0.00	691.36	
MNW							†	11/13/2013 0900	5.65	692.14	0.00	692.14	
MNW	,							12/10/2013 1135	5.81	691.98	0.00	691.98	
GW-08SR	1073714.172	1116786.343	695.08	NM	697.50	s	1						
MNW								9/10/2013 1439	5.73	691.77	0.00	691.77	
MNW	/			<u> </u>				11/13/2013 0859	5.17	692.33	0.00	692.33	
MNW	/		-					12/10/2013 1136	5.22	692.28	0.00	692.28	
GW-26D	1071698.573	1115997.470	696.01	NM	698.50	D	1						
	/			= ·				9/10/2013 1503	7.25	691.25	0.00	691.25	
MNW	/	<u> </u>					<u> </u>	11/13/2013 0923	6.52	691.98	0.00	691.98	
MNW	/			·		+		12/10/2013 1201	6.67	691.83	0.00	691.83	
GW-28S	1073129.479	1117648.927	698.60	NM	700.95	s	1						
			•					9/10/2013 1443	10.63	690.32	0.00	690.32	
MNW								11/13/2013 0904	8.30	692.65	0.00	692.65	
MNV	v					1		12/10/2013 1139	8.72	692.23	0.00	692.23	

NM - No Measurement

.

:. .

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Page 2 of 7

Printed: 3/17/2014 2:21:40 PM N:\11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Manhole Monitoring Point

Monitoring Well

Staff Gauge

Type:

MH MNW

SG

Filter = ([tblGWD].[LOGDATE] Between #7/1/2013# And #12/31/2013#)

Location ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
1700						-						· · · · · ·	
GW-295	1072552.638	1117761.993	697.50	NM	699.63	8							
MNW								9/10/2013 1451	9.91	689.72	0.00	689.72	
MNW								11/13/2013 0913	6.08	693.55	0.00	693.55	······
MNW								12/10/2013 1211	7.43	692.20	0.00	692.20	
GW-30S	1072096.109	1117743.563	693.67	NM	696.58	S	1						
MNW								9/10/2013 1453	8.35	688.23	0.00	688.23	
MNW								11/13/2013 0915	7.30	689.28	0.00	689.28	
MNW					· · · · ·			12/10/2013 1208	7.92	688.66	0.00	688.66	
GW-31S	1071786.280	1117191.441	695.84	NM	698.62	s	1	· · · · · · · · · · · · · · · · · · ·		1			
MANDA								9/10/2013 1456	6.52	692.10	0.00	692.10	
				·			+	11/13/2013 0917	2.42	696.20	0.00	696.20	
MNW				<u> </u>			ł	12/10/2013 1206	2.65	695.97	0.00	695.97	
CW 225	1071613 793	1116364 200	696 19	NM	698.37	s				t			<u> </u>
GW- 325		1110004.200	000.10					0/10/2012 1501	6.09	602.20	0.00	692.29	
MNW	<u> </u>	· · · · · · · · · · · · · · · · · · ·	L		┨─────			9/10/2013 1501	2 30	696.07	0.00	696.07	
- MNW	·							11/13/2013 0919	2.30	090.07	0.00	605.76	
MNW				ļ	_			12/10/2013 1203	2.01	095.70	0.00	095.70	
GW-33S	1072165.625	1115561.866	695.94	NM	698.24	S	1						
MNW	ł							9/10/2013 1509	7.43	690.81	0.00	690.81	
MNW	/							11/13/2013 0925	3.45	694.79	0.00	694.79	
MNW	/			1	[12/10/2013 1159	3.83	694.41	0.00	694.41	
GW-34S	1072979.205	1114730.200	692.51	NM	694.77	s	1	~					
	/		1					9/10/2013 1414	5.95	688.82	0.00	688.82	
MNIA	/	·				+		11/13/2013 0838	2.61	692.16	0.00	692.16	
MNV	/		┨─────	1	1	+		12/10/2013 1115	2.61	692.16	0.00	692.16	

NM - No Measurement

. .

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Type: MH MNW

Manhole Monitoring Point Monitoring Well Staff Gauge

SG

Page 3 of 7

Filter = ([tbtGWD].[LOGDATE] Between #7/1/2013# And #12/31/2013#)

Printed: 3/17/2014 2:21:40 PM N:\11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Location ID /	Northing	Easting	Ground	Casing	Meas.point	Geol.	Specific	Date / Time	Depth to	Water Elev (ft)	Product	Corrected Water	Remark
Туре			Elevation (III)	Elevation (ft)	(Riser)Elev.(n)	2011e	Gravity		Water (It)	LIOV. (11)		2.07. (11)	
GW-35S	1071701.925	1115985.585	696.19	NM	697.39	s	1						
MNW								9/10/2013 1503	6.20	691.19	0.00	691.19	
MNW								11/13/2013 0922	2.88	694.51	0.00	694.51	
MNW								12/10/2013 1202	3.15	694.24	0.00	694.24	
MH-01	1073806.665	1114810.501	698.62	NM	698.62	NA	1						
мн								9/10/2013 1415	9.66	688.96	0.00	688.96	
мн						· ·		11/13/2013 0845	9.03	689.59	0.00	689.59	
МН	i							12/10/2013 1122	10.12	688.50	0.00	688.50	
MH-03	1073736.789	1115259.334	699.40	NM	699.40	NA	1						
МН								9/10/2013 1424	10.51	688.89	0.00	688.89	
Мн						1		11/13/2013 0852	9.90	689.50	0.00	689.50	
MH	1						1	12/10/2013 1130	11.02	688.38	0.00	688.38	
MH-07.	1073838.229	1116243.757	696.82	NM	696.82	NA	1		· · · ·				
MF	4							9/10/2013 1433	8.73	688.09	0.00	688.09	
MH	1		-					11/13/2013 0855	8.13	688.69	0.00	688.69	
MF	1							12/10/2013 1132	9.23	687.59	0.00	687.59	
MH-10	1073540.729	1117381.524	703.01	NM	703.01	NA	1						
MF	4							9/10/2013 1440	14.50	688.51	0.00	688.51	
MH	1		· · · · ·					11/13/2013 0902	14.47	688.54	0.00	688.54	
MH	1							12/10/2013 1137	14.46	688.55	0.00	688.55	
MH-15	1072531.567	1117761.125	699.02	NM	699.02	NA	1						
MH	4							9/10/2013 1451	15.10	683.92	0.00	683.92	
Mł	1		,					11/13/2013 0913	11.42	687.60	0.00	687.60	
MH	1							12/10/2013 1210	14.92	684.10	0.00	684.10	

NM - No Measurement

:-

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Type: ΜΗ Manhole Monitoring Point Monitoring Well MNW SG

Staff Gauge

Printed: 3/17/2014 2:21:40 PM

Page 4 of 7

N:11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Filter = ((tblGWD).[LOGDATE] Between #7/1/2013# And #12/31/2013#)

.

Location ID Type	/ Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MH-16	1072133.714	1117748.238	698.57	NM	698.57	NA	1						
м	н							9/10/2013 1453	15.48	683.09	0.00	683.09	
M	н							11/13/2013 0915	11.15	687.42	0.00	687.42	
M	н							12/10/2013_1207	14.50	684.07	0.00	684.07	
MH-17	1071813.137	1117180.019	702.16	NM	702.16	NA	1						
M	н							9/10/2013 1456	18.33	683.83	0.00	683.83	
M								11/13/2013 0917	14.69	687.47	0.00	687.47	
. M.	H							12/10/2013 1205	18.16	684.00	0.00	684.00	
MH-20	1071756.395	1115997.024	706.20	NM	706.20	NA	1						
M	н							9/10/2013 .1503	19.72	686.48	0.00	686.48	
N	н						<u> </u>	11/13/2013 0922	18.61	687.59	0.00	687.59	
N	н	·	<u> </u>					12/10/2013 1200	19.76	686.44	0.00	686.44	
MH-22	1072158.023	1115589.309	698.05	. NM	698.05	NA	1						
	н							9/10/2013 1509	9.04	689.01	0.00	689.01	
N	н				· · · · · · · · · · · · · · · · · · ·			11/13/2013 0925	8.45	689.60	0.00	689.60	
N	н							12/10/2013 1158	8.97	689.08	0.00	689.08	
MH-25	1072483.928	1114820.313	698.17	NM	698.17	NA	1	1	1				
	н							9/10/2013 1408	9.23	688.94	0.00	688.94	
	н							11/13/2013 0834	8.57	689.60	0.00	689.60	
N	н						ł	12/10/2013 1112	9.73	688.44	0.00	688.44	
SG-01	1073882.887	1114813.101	NM	NM	690.00	NA	1			Ī	· ·		
. .	G						1	9/10/2013 1420	NM	-	NM	.	DRY
	G			<u> </u>	<u> </u>	+	+	11/13/2013 0845	-0.82	690.82	0.00	690.82	
	G							12/10/2013 1122	-0.80	690.80	0.00	690.80	

NM - No Measurement

:.

ं *ज*

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

.....

Type: мн MNW

SG

Manhole Monitoring Point Monitoring Well

Staff Gauge

Page 5 of 7

Printed: 3/17/2014 2:21:40 PM N:\11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Filter = ([IbiGWD].[LOGDATE] Between #7/1/2013# And #12/31/2013#)

\$

Location ID Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SG-02	1073738.27	1116805.85	NM	NM	690.00 "	NA	1						
) so								9/10/2013 1439	NM	- 1	NM	-	DRY
			I	·		1	1.	11/13/2013 0858	-3.20	693.20	0.00	693.20	
S								12/10/2013 1134	-3.14	693.14	0.00	693.14	
WW-01	1073676.903	1115710.476	NM	NM	684.02	NA	1						
				1				9/10/2013 1335	-4,7	688.72	0.00	688.72	
	·······							11/13/2013 0800	-5.3	689.32	0.00	689.32	
	ין י			·		+	<u> </u>	12/10/2013 1035	-4.2	688.22	0.00	688.22	
WW-02	1073684 724	1116792.311		NM	684.18	NA	1	,		1			
MI-01								9/10/2013 1335	-4.7	688.88	0.00	688.88	
NI	· ·	<u> </u>						11/13/2013 0800	-4.7	688.88	0.00	688.88	
M			<u> </u>			1		12/10/2013 1035	-4.7	688.88	0.00	688.88	
1454/ 02	1073140 339	1117618 499	NM	NM	683.80	NA	1			1			
WWW-0 <u>5</u>	10/0140.000	1111010.100						9/10/2013 1335	-6.3	690.10	0.00	690.10	
M	H							11/13/2013 0800	-6.5	690.30	0.00	690.30	
M	M							12/10/2013 1035	-5.1	688.90	0.00	688.90	
	4070057 503	1117610 509	NM	NIM	676.62	NA	1		+				· · · · · · · · · · · · · · · · · · ·
VVVV-U4	1072057.565	1117010.300		1404	010.02		-	0/10/2012 1225	5.5	682 12	0.00	682 12	
M	н				ł			9/10/2013 1333	-10.5	687 12	0.00	687.12	
M	н							12/10/2013 1035	-10.0	683.52	0.00	683.52	
	H				070.44			12/10/2013 1033	-0.0	000.02	0.00		
WW-05	1071661.368	1116370.876	5 NM	NM	070.14		'			000.04		602.24	
N N	н							9/10/2013 1335	-6.1	682.24	0.00	682.24	<u> </u>
N	н							11/13/2013 0800	-11.3	687.44	0.00	687.44	
N	н		1					12/10/2013 1035	-6.9	683.04	0.00	683.04	

NM - No Measurement

÷.,

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Type: MH Mani MNW Moni SG Staff

Manhole Monitoring Point Monitoring Well Staff Gauge

Filter = ([IbIGWD].[LOGDATE] Between #7/1/2013# And #12/31/2013#)

Printed: 3/17/2014 2:21:40 PV N/11172700.00000\GIS\dB\Program\EDMS.mde/Groundwater Lev

Page 6 of 7

.

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
WW-06	1072988.420	1114811.518	NM	NM	681.89	NA	1						
MF	1							9/10/2013 1427	-7.0	688.89	0.00	688.89	
MH								11/13/2013 0800	-8.3	690.19	0.00	690.19	
Mł	I							12/10/2013 1119	-6.42	688.31	0.00	688.31	

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

--------Filter = ((biGWD),(LOGDATE) Between #7/1/2013# And #12/31/2013#)
 Type:

 MH
 Manhole Monitoring Point

 MNW
 Monitoring Well

 SG
 Staff Gauge

Printed: 3/17/2014 2:21:40 PM N:\11172700.000001GIS\dB\Program\EDMS.mde/Groundwater Lev

Page 7 of 7

TABLE 2 PFOHL BROTHERS LANDFILL SITE OVERBURDEN HYDRAULIC GRADIENT

ļ

h

	1404/ 1	*	Level	\M/\/-2	GW-8SR	Level	SG-02	Level
WELL PAIR:	Water Level	Water Level	Difference	Water Level	Water Level	Difference	Water Level	Difference
	(ft amel)	(ft amsl)	(ff)	(ft amsl)	(ft amsl)	(ft)	(ft amsi)	(ft)
0/10/2012	(11 a(1)51) 688 72			688.88	691.77	2.89	DRY	ŇÁ
9/10/2013	680.22			688.88	692 33	3 45	693.20	4.32
11/13/2013	609.32			688.88	692.28	3 40	693.14	4.26
12/10/2013	000.22			000.00				
	10/01/2	GW 285		\\\\\-4	*	level	1	
WELL PAIR:	Water Lovel	Water Level	Difference	Water Level	Water Level	Difference	1	
	(ft amel)	(ft amel)	/ft)	(ft amsl)	(ft amsl)	(ft)		
			0.22	682 12				
9/10/2013	690.10	602.65	2 35	687.12			1	
11/13/2013	690.30	692.03	2.33	683.52			1	
12/10/2013	088.90	092.23	3.33	000.02			1	
	1000/ 5	CW 226		10/10/-6	GW-345	levei	1	
WELL PAIR:	C-VVVV	GVV-323	Difference	Water Level	Water Level	Difference	1	
	vvater Level	water Level	Dillerence	(ft amal)	(ft amel)	(#)	1	
DATE	(ft amsi)	$(\pi \text{ amsi})$	(11)		(11 a1131)	-0.07	· .	
9/10/2013	682.24	692.29	10.05	600.09	602.16	1 97	1	
11/13/2013	687.44	696.07	8.03	690.19	602.10	3.85		
12/10/2013	683.04	695.76	12.12	000.31	092.10	3.00	1	
		<u> </u>		MH-15	GW-295	l evel	1	
WELL PAIR:		SG-I	Difference	Water Level	Water Level	Difference		
	Water Level	(ft amal)	Unierence (#)	(ft amel)	(ft amsl)	(ff)	-	
				683.02	689.72	5.80		
9/10/2013	666.96		1.22	687.60	693.55	5.00	-	
11/13/2013	689.59	690.82	2 30	684.10	692.20	8 10	-	
12/10/2013	060.00	090.00		004.10	002.20	0.10	J	
	ML 16	GW 205	اميرم ا	MH-17	GW-315	Level	ר	
WELL PAIR:		Water Loval	Difference	Water Loval	Water Level	Difference	1	
	(ft amel)	(ft amel)	(ff)	(ft amel)	(ft amsl)	(ff)	1	
		688.22	5 14	683.83	692.10	8 27	1	
9/10/2013	697.42	680.23	1.86	687.47	696 20	8.73	1	
11/13/2013	694.07	688.66	4 59	684.00	695.97	11.97	1	
12/10/2013	004.07	000.00	4.55		1 000.07		4	
		GW 359		MH-22	GW-335	Level	1	
WELL PAIR:	Water Level	Water Level	Difference	Water Level	Water Level	Difference	1	
	(ft omel)	(ft amei)	(ff)	(ft amel)	(ft amsl)	(ft)	1	
UATE			4 71	689.01	690.81	1.80	1	
9/10/2013	697.50	604.51	6.02	689.60	694 79	5 19	1	
11/13/2013	007.09	604.01	7 90	680.00	694 41	5.33	1	
12/10/2013	000.44	094.24	1.00	009.00	1 004.41	0.00	·	

İ

Notes:

ł

* = No corresponding monitoring well.

NA = Not applicable

APPENDIX D

GROUNDWATER PURGE AND SAMPLE COLLECTION LOGS

İ

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

÷

Site: Pfohl Brothers Well I.D.: GW-1S Project: 11175616.00000 Company: **URS** Corporation Sampling Personnel: Rob Murphy, Tom Urban 11/15/2013 Date: Pump/Tubing Purging/ Inlet Sampling Screen midpoint Location: Tubing Type: LDPE/Silicone Geopump 2 Device: Screen Well Measuring Below Top of Initial Depth Depth to Diameter: Well Bottom: 14.94' 2" Length: 3.44' Riser to Water: Point: Estimated Purge Volume in 1 Volume Well Casing Casing (liters): 11.3 (liters): 7.1 Stainless Steel Type: Sample None 13:10 QA/QC: Sample ID: GW-01S Time: Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information: Riser pipe is bulged inwards, could not remove stainless steel bailer from within well, sampled around it. Orange stain in water initially.

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

тіме		TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12.25	7.61	12.14	0.774	2.07	>800	-98	250	3.44
12:20	7 25	12.03	0,769	0.00	>800	-67	250	4.40
12:35	7.23	11.99	0.764	0.00	>800	-65	250	4.52
12:40	7.13	11.95	0.770	0.00	701	-55	250	4.55
12:45	7.09	11.99	0.785	0.00	508	-61	250	4.55
12:50	7.08	12.03	0.781	0.00	256	-65	250	4.56
12:55	7.08	12.08	0.782	0.00	233	-67	250	4.56
13:00	7.09	12.05	0.779	0.00	201	-67	250	4.57
13:05	7.07	12.04	0.783	0.00	215	-68	250	4.57
13:10	7.06	12.05	0.785	0.00	196	-71	250	4.58
				<u> </u>				<u> </u>
	0.1			10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{rf}^{l} = \pi r^{2}h$)

Project:		11175616.00000		Site: Pfohl Brothers		Brothers	_ Well I.D.: _	GW-1D
Date:	11/15/2013	Sampling	Personnel:	Rob M	urphy, Tom	Urban	_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	2.43'	Depth to Well Bottom: _	39.65'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	91.9	_	Estimated Purge Volume (liters): _	66.0
Sample ID:		GW-01D		Sample Time:	1,	4:31	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs, Sulfur odor	and TAL Met	als				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (m!/min.)	DEPTH TO WATER (btor)
13:25	7.30	12.14	1.04	0.00	12.1	-18	1000	2.43
13:30	7.29	12.20	1.04	0.00	10.0	-92	1000	2.50
13:35	7.27	12.22	1.03	0.00	2.6	-137	1000	2.50
13:40	7.37	12.22	1.03	0.00	2.3	-151	1000	2.50
13:45	7.31	12.21	1.03	0.00	1.3	-161	1000	2.50
13:50	7.30	12.19	1.03	0.00	3.3	-174	1000	2.50
13:55	7.32	12.17	1.03	0.00	3.0	-186	1000	2.50
14:00	7.30	12.17	1.03	0.00	3.1	-199	1000	2.50
14:05	7.30	12.16	1.03	0.00	2.4	-214	1000	2.50
14:10	7.30	12.16	1.03	0.00	3.6	-228	1000	2.50
14:15	7.30	12.16	1.03	0.00	1.5	-239	1000	2.50
14:20	7.30	12.17	1.03	0.00	2.7	-245	1000	2.50
14:25	7.30	12.19	1.03	0.00	3.1	-253	1000	2.50
14:28	7.29	12.20	1.03	0.00	2.4	-254	1000	2.50
14:31	7.29	12.19	1.03	0.00	2.0	-256	1000	2.50
						,		
· · · · ·								
Tolerance:	0.1		3%	10%	10%	+ or - 10		

i

.:

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol_n = π ²h)

Site: Pfohl Brothers Well I.D.: GW-3S 11175616.00000 Project: Company: URS Corporation Sampling Personnel: Rob Murphy, Tom Urban Date: 11/13/2013 Pump/Tubing Purging/ Inlet Sampling Screen midpoint Location: Tubing Type: LDPE/Silicone Device: Geopump 2 Screen Measuring Below Top of Initial Depth Well Depth to 2.68' Well Bottom: 13.22' Diameter: 2" Length: to Water: Point: Riser Estimated Purge Volume in 1 Volume Well Casing Casing (liters): 6.6 (liters): 6.5 Stainless Steel Type: Sample QA/QC: None 10:57 Time: Sample ID: GW-03S Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information: Turbidity was visibly <50 NTUs.

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

١

ТІМЕ		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTÚ)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10.12	7 23	11 49	1.98	2.07	494	47	210	2.68
10:12	7.04	11.35	1.95	1.85	295	73	130	4.82
10.22	7 00	11.15	1.94	1.87	285	87	140	5.45
10:27	6.99	11.19	1.93	1.78	284	89	140	5.96
10:32	6.97	11.05	1.95	1.42	232	87	140	6.30
10:37	6.95	10.97	1.98	1.31	211	84	140	6.70
10:42	6.93	10.87	2.00	0.89	190	78	140	7.25
10:47	6.92	10.76	2.00	0.73	170	77	140	7.66
10:52	6.91	10.66	2.01	0.69	160	73	140	8.00
10:57	6.92	10.62	2.01	0.72	155	71	140	8.37
								<u> </u>
<u> </u>								
· ·								
								L
<u> </u>	<u> </u>							
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; $\sqrt{4 \text{ inch diameter well}} = 2470 ml/ft$ (vQ₁ = π^2 h)

.:

Project:	11175616.00000			Site: Pfohl Brothers			_ Well I.D.: _	GW-3D
Date:	11/13/2013	Sampling	Personnel:	Rob Murphy, Tom Urban		_ Company: _	URS Corporation	
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	1.71'	Depth to _ Well Bottom:	35.7 <u>0'</u>	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	84.0	-	Estimated Purge Volume (liters): _	55.2
Sample ID:		GW-03D	·	Sample Time:	12	2:18	QA/QC:	MS/MSD
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Met	als	×			

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11.18	7.24		1.10	0.92	5.0	-64	920	1.71
11.73	7 18	10.98	1.09	0.00	1.3	-74	920	1.71
11.23	7 17	11.23	1.08	0.00	1.4	-78	920	1.71
11:33	7 16	11.38	1.08	0.00	1.5	-50	920	1.71
11:38	7.16	11.52	1.08	0.00	1.7	-82	920	1.71
11:43	7 16	11.56	1.07	0.00	1.6	-82	920	1.71
11:48	7.16	11.59	1.07	0.00	1.1	-83	920	1.71
11:53	7.16	11.56	1.07	0.00	1.5	-84	920	1.71
11:58	7.15	11.54	1.07	0.00	1.7	-85	920	1.71
12:03	7.15	11.53	1.08	0.00	1.3	-85	920	1.71
12:08	7.14	11.53	1.09	0.00	1.2	-85	920	1.71
12:13	7.13	11.47	1.08	0.00	1.3	-85	920	1.71
12:18	7.20	12.03	1.06	0.00	0.9	-91	920	1.71
		1						
								L
				L	L		<u></u>	L
				Į	ļ	<u> </u>	<u>↓</u> i	
		<u> </u>	Ļ	ļ			↓ i	
				L	ļ	<u> </u>	╉────┪	ļ
	L				 	┢	↓	├ ────
Tolerance:	0.1	<u> </u>	3%	10%	10%	+ or - 10		

-

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vql_p = $\pi r^2 h$)

·

.

Project:	11175616.00000			Site:	Pfohl E	Brothers	Well I.D.:	GW-4	<u>s</u>
Date:	11/14/2013	Samplin	g Personnel:	Rob M	lurphy, Tom	Urban	Company:	URS Corp	oration
Purging/ Sampling Device:		Geopump 2		Tubing Type:LDPE/Silicone			Pump/Tubing Inlet Location:	Screen mi	dpoint
Measuring Point:	Below Top of Initial Depth Riser to Water: 4.03'		Depth to Well Bottom:	Well 16.23' Diameter:		2"	Screen Length:		
Casing Type:	Stainles	ss Steel	۰. 	Volume in 1 Well Casing (liters):	7.5	-	Estimated Purge Volume (liters):	15.1	,
Sample ID:		GW-04S		Sample Time:	10:45 12:15 SVO	VOCs/ Cs & Metals	QA/QC:	Non	e
Sampl Othe	le Parameters: er Information:	VOCs, SVOCs Placed passiv	s, and TAL Met	als (PDB) in well 10	0/12/13, sam	pled VOCs from	m PDB at 10:45 y and sampled	on 11/14/13. for SVOCs and	
		Metals after re	covery at 12:15	5.					· · · · ·
			PURG	E PARAM	ETERS	. <u> </u>			<u></u> =
TIME	рНа	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)	
10:50	8.63	10.37	0.493	3.66	16.0	83	Intial	4.03	
10:54	8.66	11.10	0.499	4.70	192	52	2 Gal. Purged	- Da:	
10:57	8.38	11.94	0.496	3.51				Oiy	

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{pl} = \pi r^2h$)

Т

10%

Т

3%

Τ

ì

••••

0.1

Tolerance:

+ or - 10

· ...

i

10%

-

•.. •

Project:	11175616.00000			Site: Pfohl Brothers		Well I.D.:	GW-4D	
Date:	11/14/2013	2013 Sampling Personnel		Rob Murphy, Tom Urban			_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	_LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	12.77'	Depth to Well Bottom:	45.57'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	81.0		Estimated Purge Volume (liters):	9.3
Sample ID:		GW-04D		Sample _ · Time: _	12	2:10	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Met	als				

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11.10	7.69	11.01	1.68	0.27	57.7	-120	155	12.77
11:15	7.39	11.08	1.69	0.00	28.3	-192	155	13.06
11 20	7.37	11.05	1.70	0.00	27.6	-212	155	13.17
11:25	7.35	11.03	1.70	0.00	26.4	-234	155	13.32
11:30	7.33	11.01	1.71	0.00	30.8	-252	155	13.45
11:35	7.32	11.00	1.71	0.00	31.4	-268	155	13.61
11:40	7.10	11.08	1.72	0.00	34.7	-272	155	13.70
11:45	7.30	11.04	1.71	0.00	32.3	-279	155	13.78
11:50	7.29	11.00	1.71	0.00	29.4	-283	155	13.88
11:55	7.28	10.99	1.72	0.00	28.2	-289	155	13.95
12:00	7.28	10.97	1.73	0.00	27.1	-295	155	14.00
12:05	7.28	10.99	1.72	0.00	28.8	-299	155	14.03
12:10	7.27	11.01	1.72	0.00	29.1	-305	155	14.06
							`	
			,					
				· ·				
		1						
		1						
Tolerance:	0.1		3%	10%	10%	+ or - 10	T	

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft; (vol_n = π ²h)

WELL PURGING LOG

URS Corporation

SITE NAME:	Pfohl Brot	hers Lan	dfill				WELL NO.:			W-7S	
PROJECT NO.:	11175616	00000							. <u></u>		
STAFF:	Rob Murp	hy, <u>Tom</u>	Urban								
DATE(S):	11/13/13,	11/14/13	3								
1. TOTAL CASIN	G AND SCRE	EN LENG	ГН (F⊺.)			=	35	.04	WELL ID. 1"		JFT) 040
2. WATER LEVE	L BELOW TO	P OF CASI	NG (FT.)	,		=	4.	13	2" 、	0.	17
3. NUMBER OF I	EET STAND	NG WATE	R (#1 - #2)		=	30	.91	3"	0.	38
4. VOLUME OF V	VATER/FOOT	OF CASI	NG (GAL.)			=	0.	17	4"	0.	66
5. VOLUME OF V	VATER IN CA	SING (GAI	∟.)(#3 x #4)		=	5	.3	5"	1.	.04
6. VOLUME OF V		EMOVE (G	AL.)(#5 x 3	3)		=			6"	1.	50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)							8.0		8'' 2.60 .		.60
									V=0.0408 x (CASING		CHES]Ĵ
					400111						
PARAMETERS		Initial	2	4	6	8					
рН		8.14	8.08	8.07	8.06	8.03					
SPEC. COND. (mS	S/cm)	0.637	0.628	0.626	0.622	0.613	7				
DO (mg/l)	•	5.19	4.05	3.67	5.63	5.95					
TEMPERATURE (, C)	10.22	11.25	11.40	11.22	10.89					
TURBIDITY (NTU)		31.7	23.0	26.5	91.3	360					
ORP ⁻ (millivolts)		101		· -71	-53	-32					
тіме		÷16:47	16:50	16:52	16:55	17:01	l				
COMMENTS: 11/14/2013	15:50 - Fill 16:47 - Be 17:01 - We 16:25 - Re 16:30 - Co	I VOCs fro gin hand ell dry afte turn to we illect samp	om passiv bailing we er removir ell, depth ole for SV	e diffusion ell. ng 8 gallor to water = 'OCs and	n bag (PD ns. : 4.15 feet Metals.	0B), PDB t.	was insta	lled on 10.	/12/13		

WELL PURGING LOG

URS Corporation

SITE NAME: Pfohl Br	others Lar	dfill				w	ELL NO.:	G	W-7D
PROJECT NO.: 111756	6.00000								
STAFF: Rob Mu	rphy, Tom	Urban							
DATE(S):	3, 11/14/13	3 .							
					<u> </u>				<u></u>
1. TOTAL CASING AND SCF	EEN LENG	TH (FT.)			=	60.45	5	WELL ID. 1"	VOL. (GAL/FT) 0.040
2. WATER LEVEL BELOW T	OP OF CAS	ING (FT.)			=	45.45	5	2"	0.17
3. NUMBER OF FEET STAN	DING WATE	R (#1 - #2)		=	15.00		3"	0.38
4. VOLUME OF WATER/FOO	OT OF CASI	NG (GAL.)			=	0.66		4"	0.66
5. VOLUME OF WATER IN C	ASING (GA	L.)(#3 x #4)		=	9.9		5"	1.04
6. VOLUME OF WATER TO	REMOVE (G	iAL.)(#5 x	3)		=			6"	1.50
7. VOLUME OF WATER ACT		IOVED (G	AL.)		=	9.9		8"	2.60
							V=0	0.0408 x (CASING	DIAMETER [INCHES]) ²
				ACCUM	IULATED	VOLUME PU	RGED (GA	LONS)	
PARAMETERS	Init	2	4	6	8	9.9			· .
рН	7.68	7.71	7.70	7.78	7.87	8.19			
SPEC. COND. (mS/cm)	0.949	0.751	0.795	0.821	0.847	0.834		X	
DO (mg/l)	1.03	5.01	3.64	4.09	3.14	4.49			
TEMPERATURE (°C)	9.81	10.30	9.75	9.79	10.05	9.69			
TURBIDITY (NTU)	40.5	30.0	26.7	45.3	105	315			
ORP (millivolts)	-193	-133	-129	•	-147	-127			
тіме	16:15	16:24	16:28	16:34	16:39	16:45			
COMMENTS: 15:45 - F 16:15 - E 16:45 - V 11/14/2013 16:10 - r 16:10 - C	ill VOCs fro Begin hand Vell dry afte eturn to we Collect sam container.	om passiv bailing we er removir II, depth te ple for SV	e diffusio ell. ng 9.9 gal o water = /OCs and	n bag (PC lons 59.48 fee Metals, o	bB), PDB t. nly enoug	was installed	d on 10/12 o fill 1 meta	/13 Is container an	ld 1-1 liter Amber

3/19/2014

Project:	11175616.00000			Site: Pfohl Brothers			Well I.D.:	GW-8SR
Date:	11/13/2013	3 Sampling Personnel		Rob Murphy, Tom Urban			_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	5.17'	Depth to _Well Bottom: _	13.02'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	4.8	-	Estimated Purge Volume (liters):	8.1
Sample ID:		GW-08SR		Sample Time:	14	4:55	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs, a	Ind TAL Met	als				

PURGE PARAMETERS

тіме	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14.10	6.82	10.28	3.05	0.00	372	-61	180	5.17
14.15	6.63	9.86	3.06	0.00	285	-66	180	6.80
14:20	6.61	9.72	3.06	0.00	252	-66	180	6.96
14:25	6.60	9.81	3.07	0.00	210	-67	180	7.07
14:30	6.59	9.91	3.07	0.00	185	-69	180	7.17
14:35	6.62	10.02	3.07	0.00	124	-60	180	7.33
14:40	6.60	10.10	3.07	0.00	112	-62	180	7.35
14:45	6.60	10.03	3.06	0.00	30	-66	180	7.41
14:50	6.60	10.01	3.05	0.00	26	-68	180	7.46
14:55	6.59	9.94	3.05	0.00	22	70	180	7.49
	1						•	
·							L	
	1							
	1							
Tolerance:	0.1		3%	10%	10%	+ or - 10		

. ..

i

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vql_{yl} = $\pi r^2 h$)

.

Project:	1 <u>117</u>	5616.00000		Site:	Pfohl	Brothers	Well I.D.:	GW-8D
Date:	11/13/2013	Sampling Personnel		Rob Murphy, Tom Urban			Company:	URS Corporation
Purging/ Sampling Device:	G	eopump 2		Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Initi Riser to	ial Depth Water:	5.65'	Depth to Well Bottom:	36.54'	Well _ Diameter:	4"	Screen Length:
Casing Type:	Stainless Si	teel		Volume in 1 Well Casing (liters):	76.3	-	Estimated Purge Volume (liters):	57.0
Sample ID:		GW-08D		Sample Time:	1	3:55		Duplicate (FD-111313)
Sampi Othe	e Parameters: <u>VO</u> er Information:	Cs, SVOCs, a	nd TAL Meta	als				

PURGE PARAMETERS

.

İ

.

İ

TIME		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12.55	7 17	1101	2.05	0.00	71.9	-42	950	5.65
12:00	7.00	11 13	2.06	0.00	14.4	-43	950	5.65
13:05	6.98	11.20	2.06	0.00	10.4	-45	950	5.65
13:10	7.00	11.22	1.89	0.00	9.6	-49	950	5.65
13:15	7.01	11.24	1.78	0.00	8.0	-53	950	5.65
13:20	7.03	11.29	1.58	0.00	6.2	-20	950	5.65
13:25	7.04	11.37	1.43	0.00	4.4	6	950	5.65
13:30	7.03	11.39	1.43	0.00	3.5	15	950	5.65
13:35	7.02	11.40	1.43	0.00	3.1	26	950	5.65
13:40	7.01	11.41	1.43	0.00	2.5	31	950	5.65
13:45	7.02	11.40	1.42	0.00	2.3	36	950	5.65
13:50	7.03	11.39	1.42	0.00	2.1	42	950	5.65
13:55	7.03	11.44	1.42	0.00	0.9	45	950	5.65
							ļ	
								<u> </u>
	<u>-</u>							
Tolerance:	0.1		3%	10%	10%	+ or - 10		1

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{el} = \pi r^2h$)

Project:	1	1175616.00000		Site: _	Pfohl E	Brothers	Well I.D.:	GW-26D
Date:	11/14/2013	Sampling I	Personnel:	Rob Murphy, Tom Urban			_ Company:	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	6.61'	Depth to Well Bottom: _	40.70'	Well Diameter:	4"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	84.2	-	Estimated Purge Volume (liters):	60.0
Sample ID:		GW-26D	,	Sample Time:	14	1:35	QA/QC:	None
Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information: Occasional pulses of iron stained particulates in purge water.								

PURGE PARAMETERS

TIME		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:35	7.04	11.85	2.41	0.00	3.4	-199	1000	6.61
13:40	7.04	11.82	2.43	0.00	1.0	-207	1000	6.61
13:45	6.96	11.80	2.46	0.00	0.0	-214	1000	6.61
13:50	6.95	11.81	2.46	0.00	0.0	-215	1000	6.61
13:55	6.96	11.82	2.46	0.00	0.0	-215	1000	6.61
14:00	6.95	11.82	2.46	0.00	0.0	-215	1000	6.61
14:05	6 96	11.83	2.45	0.00	0.0	-216	1000	6.61
14.10	6.94	11.85	2.45	0.00	0.0	-216	1000	6.61
14:15	6.93	11.86	2.45	0.00	0.0	-215	1000	6.61
14.20	6.92	11.86	2.45	0.00	0.0	-215	1000	6.61
14.25	6.95	11.82	2.45	0.00	0.0	-216	1000	6.61
14:30	6.95	11.86	2.45	0.00	0.0	-216	1000	6.61
14:35	6.95	11.82	2.44	0.00	0.0	-216	1000	6.61
				/				
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{H} = \pi r^2h$)

Project:	1	11175616.00000		Site:	Pfohl E	Brothers	_ Well I.D.: _	GW-28S
Date:	11/14/2013 Sampling Personnel		Personnel:	Rob Murphy, Tom Urban			_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	8.27'	Depth to Well Bottom:	15.52'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	4.5	-	Estimated Purge Volume (liters):	5.1
Sample ID:		GW-28S		Sample Time:	10):13	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs, a	and TAL Met	als				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
9.48	7.32	10.89	0.611	0.00	25.7	108	250	8.27
9:53	7.22	10.99	0.604	0.00	34.7	82	190	9.48
9:58	7.23	11.08	0.607	0.00	26.0	73	190	9.54
10.03	7.21	11.27	0.613	0.00	24.8	69	190	9.61
10:08	7.21	11.28	0.614	0.00	22.2	66	190	9.68
10:13	7.20	11.31	0.616	0.00	21.7	63	190	9.70
								_ ·
							L	
							L	
							<u> </u>	
					·		L	
						L		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_n = \pi r^2h$)

1.00

Project:	1	1175616.00000		Site: _	Pfohl E	Brothers	_ Well I.D.: _	GW-29S
Date:	11/14/2013	Sampling	Personnel:	Rob Murphy, Tom Urban			_ Company: _	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	6.45'	Depth to Well Bottom: _	20.04'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters): _	8.4	-	Estimated Purge Volume (liters):	8.4
Sample ID:		GW-29S		Sample Time:	1	5:40	QA/QC:	None
Sampl Oth	e Parameters: er Information:	VOCs, SVOCs, Orange iron par	and TAL Met	als art of purge				

PURGE PARAMETERS

TIME	рН	, ТЕМР (°С)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14.50	6 93	12.63	1.03	0.00	212	-162	240	6.45
14:55	6,89	12.73	0.99	0.16	251	-165	160	8.14
15:00	6.95	12.57	0.98	0.71	155	-161	160	8.40
15:05	6.99	12.47	0.99	0.64	128	-161	160	8.61
15:10	6.97	12.48	1.01	0.03	87.9	-163	160	8.80
15:15	6.95	12.40	1.01	0.12	76.8	-163	160	8.85
15:20	6.94	12.42	1.02	0.00	66.7	-160	160	8.91
15:25	6.89	12.42	1.02	0.00	58.1	-164	160	8.97
15:30	6.87	12.37	1.03	0.00	49.7	-159	160	9.00
15:35	6.90	12.40	1.03	0.00	38.0	-159	160	9.02
15:40	6.92	12.40	1.03	0.00	39.3	-164	160	9.04
					·			l
								L
⊢i			h					
				t				
				t				
	<u> </u>	+		1				
	<u> </u>	1	t	1				
		+	l					
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol_n = $\pi r^2 h$)

Project:	1	1175616.00000		Site:	Pfohl I	Brothers	Well I.D.:	GW-30S	
Date:	11/15/2013	Sampling	Personnel:	Rob Murphy, Tom Urban		_ Company: _	URS Corporation		
Purging/ Sampling Device:		Geopump 2		_Tubing Type: _	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint	
Measuring Point:	Below Top of Riser	Initial Depth to Water:	7.89'	Depth to _Well Bottom: _	17.97'	Well Diameter:	2"	Screen Length:	
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	6.2	-	Estimated Purge Volume (liters):	18.3	
Sample ID:		GW-30S		Sample Time:		:38	QA/QC:	None	
Sampl Oth	Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:								

١

PURGE PARAMETERS

тіме	рH	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8.13	7 16	12.17	1.05	0.00	13	-79	730	7.89
8.18	7.06	12.16	1.06	0.00	8.2	-83	730	7.95
8:23	6.96	12.15	1.07	0.00	6.4	-87	730	7.99
8:28	6.96	12.14	1.08	0.00	3.6	-92	730	7.99
8:33	6.95	12.17	1.08	0.00	5.0	-96	730	7.99
8:38	6.94	12.24	1.07	0.00	3.5	-98	730	7.99
					·			•
							ļ	
							ļ	
				<u> </u>		Ļ	<u> </u>	L
				<u> </u>		L	<u> </u>	
					<u> </u>	L	<u> </u>	
						<u> </u>	l	
				ļ	L		<u> </u>	
				L			<u> </u>	
				<u> </u>		L	<u> </u>	
				L		<u> </u>		
				ļ		<u> </u>	<u> </u>	<u>├</u> ────
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{n} = \pi r^2h$)

i

ł

Site: Pfohl Brothers Well I.D.: GW-31S 11175616.00000 Project: Rob Murphy, Tom Urban Company: URS Corporation Sampling Personnel: Date: 11/15/2013 Pump/Tubing Purging/ Inlet Sampling Location: Screen midpoint Tubing Type: LDPE/Silicone Device: Geopump 2 Well Screen Measuring Below Top of Initial Depth Depth to Diameter: 2.55' Well Bottom: 9.57' 2" Length: to Water: Point: Riser Estimated Purge Volume in 1 Volume Well Casing Casing (liters): 5.3 Stainless Steel (liters): 4.3 Type: Sample QA/QC: None 9:33 Time: Sample ID: GW-31S Sample Parameters: VOCs, SVOCs, and TAL Metals Other Information:

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

PURGE PARAMETERS

.

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8:52	7.32	11.18	0.754	3.72	. 5.9	19	190	2.55
8:57	7.22	10.59	0.754	0.00	15.7	40	120	4.20
9:02	7.26	10.67	0.761	0.00	18.5	46	120	4.56
9:07	7.25	10.66	0.767	0.00	24.7	49	120	4.94
9:12	7.24	10.83	0.766	0.00	17.1	39	120	5.01
9:17	7.22	10.94	0.774	0.00	19.2	36	120	5.20
9:22	7.21	11.08	0.772	0.00	24.2	29	120	5.30
9:27	7.21	11.12	0.769	0.00	19.6	19	120	5.50
9:30	7.20	11.08	0.773	0.00	18.4	20	120	5.58
9:33	7.20	11.20	0.772	0.00	16.3	14	120	5.65
						•		
							L	
			•					
· · · · · · · · · · · · · · · · · · ·								
							1	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{y_1} = \pi r^2h$)

Project:	11175616.00000			Site: _	Pfohl I	Brothers	Well I.D.:	GW-32S
Date:	11/15/2013	Sampling	Personnel:	Rob Mu	Rob Murphy, Tom Urban			URS Corporation
Purging/ Sampling Device:		Geopump 2	ŝ	Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	2.50'	Depth to Well Bottom:	Well n: <u>9.93'</u> Diameter:		2"	Screen Length:
Casing Type:	Stainles	s Steel		Volume in 1 Well Casing (liters):	4.6		Estimated Purge Volume (liters):	9.0
Sample ID:		GW-32S		Sample Time:	1	0:35	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs, a	and TAL Met	als				

PURGE PARAMETERS

тіме		TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:05	7.69	11 12	0.574	2.26	122.0	96	300	2.50
10:00	7.37	11 21	0.568	0.00	38.2	92	300	3.27
10:15	7.34	11.32	0.565	0.00	34.6	85	300	3.30
10:10	7 33	11.45	0.560	0.00	17.1	82	300	3.33
10:25	7.32	11.50	0.555	0.00	10.2	79	300	3.35
10:30	7.35	11.71	0.552	0.00	5.4	76	300	3.37
10:35	7.35	11.74	0.552	0.00	7.1	77	300	3.39
			×					
							<u> </u>	
li li								
							ļ	•
						<u> </u>	<u> </u>	
					L		<u> </u>	
					L	<u> </u>		└────
					`			↓
								L
Tolerance:	0.1		3%	10%	10%	+ or - 10		1

i

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{y1} = \pi r^2h$)

i

...

Project:		11175616.00000			Pfohl	Brothers	_ Well I.D.: _	GW-33S
Date:	11/15/2013	Sampling	Personnel:	Rob Mu	ırphy, Tom	Urban	_ Company:	URS Corporation
Purging/ Sampling Device:		Geopump 2		_Tubing Type:	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Initial Depth Riserto Water:4.01'		Depth to Well Bottom:	8.21'	Well Diameter:	2"	Screen · Length:	
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	2.6	-	Estimated Purge Volume (liters):	5.1
Sample ID:		- GW- <u>3</u> 3S		Sample Time:	1	1:35	QA/QC:	None
Sampl Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

PURGE PARAMETERS

.

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:53	7.45	11.87	0.722	3.37	8.0	120	125	4.01
10:58	7.23	11.56	0.734	1.35	8.4	125	125	4.92
11:03	7.18	11.94	0.722	1.18	7.6	125	125	5.11
11:08	7.18	11.88	0.721	0.87	5.7	123	120	5.30
11:13	7.17	11.83	0.725	0.72	5.2	123	120	5.38
11:18	7.16	11.87	0.720	0.48	2.6	122	120	5.45
11:23	7.18	11.88	0.716	0.31	2.2	120	120	5.48
11:26	7.15	11.95	0.709	0.20	1.9	120	120	5.55
11:29	7.15	11.98	0.706	0.05	1.4	120	120	5.57
11:32	7.15	11.95	0.702	0.00	1.3	120	120	5.60
11:35	7.15	11.92	0.700	0.00	1.2	120	120	5.63
			•					
			•					
Tolerance:	0.1	·	3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vqJ_a = \pi r^2h$)

1

į

Project:	1	1175616.00000		Site:	Pfohl E	Brothers	Well 1.D.:	GW-34S
Date:	11/14/2013	Sampling	Personnel:	Rob M	urphy, Tom	Urban	_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		Tubing Type:	LDPE/	Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	2.60'	Depth to Well Bottom: _	10.01'	Well ⁽ Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	4.6	-	Estimated Purge Volume (liters):	8.9
Sample ID:		GW-34S		Sample Time:	9	:14	QA/QC:	None
Sampl Oth	e Parameters: er Information:	VOCs, SVOCs,	and TAL Met	als				

PURGE PARAMETERS

тіме		TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8.25	7.28	9,38	1.19	2.22	256	100	230	2.60
8:30	7.05	9.03	1.15	2.31	134	109	175	4.11
8:35	7.02	8.78	1.15	2.08	112	113	175	4.15
8:40	7.01	8.84	1.16	1.64	86.8	115	175	4.17
8:45	6,98	8.98	1.16	1.31	77.0	109	175	4.20
8:50	6.96	9.02	1.15	1.10	58.4	103	175	4.22
8:55	6.94	9.03	1.14	0.92	38.7	94	175	4.22
9:00	6.94	9.04	1.13	0.76	35.4	90	175	4.22
9:05	6.92	9.00	1.11	0.60	22.5	88	175	4.22
9:08	6.91	9.04	1.11	0.48	20.6	87	175	4.22
9:11	6.90	9.08	1.11	0.46	15.6	86	175	4.22
9:14	6.90	9.11	1.10	0.45	13.6	86	175	4.22
							L	L
		ti					L	
						L	L	L
							<u> </u>	L
	<u> </u>					L	<u> </u>	L
	<u> </u>					Ļ	<u></u>	L
							<u> </u>	l
							<u></u>	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vq_{\mu} = \pi r^2h$)

Project:	1	1175616.00000		Site:	Pfohl	Brothers	_ Weli I.D.: _	GW-35S
Date:	11/14/2013	Sampling	Personnel:	Rob M	urphy, Tom	Urban	_ Company:_	URS Corporation
Purging/ Sampling Device:		Geopump 2		 	LDPE	/Silicone	Pump/Tubing Inlet Location:	Screen midpoint
Measuring Point:	Below Top of Riser	Initial Depth to Water:	2.86'	Depth to Well Bottom:	7.46'	Well Diameter:	2"	Screen Length:
Casing Type:	Stainles	ss Steel		Volume in 1 Well Casing (liters):	2.8		Estimated Purge Volume (liters):	7.4
Sample ID:		GW-35S		Sample [·] Time:	1	3:22	QA/QC:	None
Sample Othe	e Parameters: er Information:	VOCs, SVOCs,	and TAL Meta	als				

PURGE PARAMETERS

TIME	ρH	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12.47	7 69	10.91	0.519	0.71	11.8	-189	210	2.86
12:52	7 44	10.96	0.511	0.00	5.9	-196	210	3.38
12:57	7.36	11.13	0.510	0.00	7.3	-203	210	3.41
13:02	7.34	11.25	0.510	0.00	5.7	-209	210	3.42
13:07	7.33	11.39	0.514	0.00	7.0	-217	210	3.54
13:12	7.32	11.44	0.515	0.00	6.6	-219	210	3.55
13:17	7.31	11.50	0.514	0.00	6.3	-224	210	3.55
13:22	7.31	11.53	0.516	0.00	6.7	-225	210	3.55
Tolerance:	0.1		3%	10%	10%	+ or - 10		

i

İ.

1

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vql_i = $\pi r^2 h$)

İ

oject Name:			Pfohl Brothers Lan	dfill -	Project Number:	11175616.00000	-
mpling Crew Men	ibers:	i	<u>R. Murphy, T. Urban</u>		Supervisor: <u>J. Sundquist</u>		
ate of Sampling:			<u>November 13, 201</u>	<u>3</u>			
Sample I.D. Number	Well Number	Well Volume (liters)	Volume Purged (liters)	Sample Time	Sample Description	Analysis Required	Chain-of- Custody Number
GW-03S	GW-3S	6.5	6.6	10:57	Groundwater	VOCs/SVOCs/ Metals	Not Applicable
GW-03D	GW-3D	84.0	55.2	12:18	Groundwater		Not Applicable
GW-03D-MS	GW-3D	84.0	55.2	12:18	Matrix Spike		Not Applicable
GW-03D-MSD	GW-3D	84.0	55.2	12:18	Matrix Spike Duplicate		Not Applicable
GW-08D	GW-8D	76.3	57.0	13:55	Groundwater		Not Applicable
FD-111313	GW-8D	76.3	57.0	13:55	Duplicate		Not Applicable
GW-08SR	GW-8SR	4.8	8.1	14:55	Groundwater		Not Applicable

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 5 (11_13_2013)

1

roject Name:				Pfohl Brothers Landfill		Project Number:	11175616.00000	_
ampling Crew Members:				<u>R. Murphy, T. Urban</u>		Supervisor:	<u>J. Sundquist</u>	
ate	of Sampling:			<u>November 13, 201</u>	3			
	Sample I.D. Number	Well Number	Well Volume (liters)	Volume Purged (liters)	Sample Time	Sample Description	Analysis Required	Chain-of- Custody Number
	GW-07D	GW-7D	37.5	PDB	15:45	Groundwater	VOCs	Not Applicable
	GW-07S	GW-7S	20.1	PDB	15:50	Groundwater		Not Applicable
	TB-111313	'				Trip Blank	VOCs	Not Applicable
				·				
L				L				

-

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 5 (11_13_2013) (2)

Project Name:				Pfohl Brothers Landfill		Project Number:	11175616.00000	• ·
Sampling Crew Members:			<u>R. Murphy, T. Urban</u>		Supervisor:	<u>J. Sundquist</u>		
Date of Sampling:				<u>November 14, 201</u>	<u>3</u>			
	Sample I.D. Number	Well Number	Well Volume (liters)	Volume Purged (liters)	Sample Time	Sample Description	Analysis Required	Chain-of- Custody Number
	GW-34S	GW-34S	4.6	8.9	9:14	Groundwater	VOCs/SVOCs/ Metals	Not Applicable
	GW-28S	GW-28S	4.5	5.1	10:13	Groundwater	7	Not Applicable
	GW-04S	GW-4S	7.5	15.1	10:45 & 12:15	Groundwater		Not Applicable
	GW-04D	GW-4D	81.0	9.3	12:10	Groundwater	- ·	Not Applicable
	GW-35S	GW-35S	2.8	7.4	· 13:22	Groundwater		Not Applicable
	GW-26D	GW-26D	84.2	60.0	14:35	Groundwater		Not Applicable
	GW-29S	GW-29S	8.4	8.4	15:40	Groundwater		Not Applicable

7

~

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 5 (11_14_2013)

÷.,

*
roject Name: ampling Crew Members:			Pfohl Brothers Landfill <u>R. Murphy, T. Urban</u>		Project Number: <u>11175616.00000</u>		-	
					Supervisor:	<u>J. Sundquist</u>		
ate o	f Sampling:			<u>November 14, 201</u>	<u>3</u>	· .		
	Sample I.D. Number	Well Number	Well Volume (liters)	Volume Purged (liters)	Sample Time	Sample Description	Analysis Required	Chain-of- Custody Number
	GW-07D	GW-7D	37.5	37.5	16:10	Groundwater	SVOCs/ Metals	Not Applicable
	GW-07S	GW-7S	20.1	30.3 ·	16:30	Groundwater		Not Applicable
	TB-111413			[*]		Trip Blank	VOCs	Not Applicable
					•			
	-							

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 5 (11_14_2013) (2)

.

 \mathbf{i}

GROUNDWATER SAMPLING - SAMPLE COLLECTION DATA SHEET Project Name: Pfohl Brothers Landfill Project Number: 11175616.00000 Supervisor: Sampling Crew Members: R. Murphy, T. Urban J. Sundquist Date of Sampling: November 15, 2013 Chain-of-Well Sample Analysis Sample I.D. Volume Purged Well Volume Custody Sample Time Required Description Number Number (liters) Number (liters) VOCs/SVOCs/ Not Applicable Groundwater **GW-30S GW-30S** 6.2 18.3 8:38 Metals Not Applicable **GW-31S** GW-31S 4.3 5.3 9:33 Groundwater GW-32S 9.0 Not Applicable 10:35 Groundwater **GW-32S** 4.6 GW-33S 2.6 5.1 Not Applicable 11:35 Groundwater GW-33S 7.1 11.3 Not Applicable 13:10 Groundwater **GW-01S** GW-1S 66.0 Not Applicable GW-1D 91.9 14:31 Groundwater **GW-01D** VOCs Not Applicable TB-111513 Trip Blank ------------Additional Comments: All wells were purged using low flow methods until parameter stabilization.

N:11172700.0000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 5 (11_15_2013)

APPENDIX E

GROUNDWATER TREND ANALYSIS

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

FIGURE E-1 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-1D

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

ί

FIGURE E-2 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-1S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

÷

FIGURE E-3 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3D

ĥ

Ļ

١

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

İ

...

FIGURE E-4 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3S

1

ł

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

,

•

FIGURE E-4 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-3S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

111

FIGURE E-5 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-4D

÷

FIGURE E-6 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-4S

· -- -- -

ł

;

1

<u>,</u> 1

FIGURE E-7 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-7D

FIGURE E-8 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-7S

ĺ

FIGURE E-9 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-8D

÷

ł

5

FIGURE E-10 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-8SR

FIGURE E-11 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-26D

Í

Ł

t

1

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

İ

FIGURE E-12 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-28S

ł

FIGURE E-13 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-29S

FIGURE E-13 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-29S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

7.

. .

FIGURE E-14 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-30S

FIGURE E-15 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-31S

ļ

1

ŧ

1

11111

FIGURE E-16 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-32S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

1

•

FIGURE E-17 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-33S

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

FIGURE E-19 TRENDS OF PARAMETERS ROUTINELY EXCEEDING GROUNDWATER STANDARDS IN MONITORING WELL GW-35S

h

N:\11172700.00000\WORD\DRAFT\Semi Annual ReportJan-Jun08\Pfohl Trends Nov2013.xls

İ

APPENDIX F

BSA PERMIT NO. 13-04-CH016

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

The Town of Cheektowaga 275 Alexander Street Cheektowaga NY 14211

Engineering Department Office: 716-897-7288 Fax: 716-897-7299

WILLIAM R. PUGH, P.E. TOWN ENGINEER

October 8, 2013

Mr. Jon Sundquist, PhD Project Manager URS Corporation 77 Goodell Street Buffalo, New York 14203

> Re: Pfohl Bros. Landfill Site Discharge Permit

Dear Mr. Sundquist:

Enclosed please find a copy of the Buffalo Sewer Authority Discharge, Permit, BPDES 13-04-0CH16, for your file for the referenced site which was renewed earlier this year having an expiration date of March 31, 2016. All discharge limitations and sampling requirements remain the same as the most recent expired permit.

Should you have any questions, please contact this office at 897-7288.

Very truly yours,

TOWN OF CHEEKTOWAGA

W-n.

William R. Pugh, P.E. Town Engineer

WRP/mj

enc.

AUTHORIZATION TO DISCHARGE UNDER THE BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 13-04-CH016 USEPA Category 40 CFR Part 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

THE TOWN OF CHEEKTOWAGA

to discharge wastewater from a facility located at:

PFOHL BROTHERS LANDFILL REMEDIATION SITE 1000 AERO DRIVE

CHEEKTOWAGA, NEW YORK 14225

The wastewater permitted herein shall be discharged to the Town of Cheektowaga sewer system, which is connected to the Buffalo Municipal Sewer System and Treatment facilities, and which wastewater will be treated at the Buffalo Sewer Authority's Treatment Plant.

Issuance of this permit is based upon a permit application filed on **February 11, 2013** analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this 1st day of April, 2013

To Expire the 31st day of March, 2016

General Manager Signed this 12th day of March 2013

PAGE 1 OF 6

Permit No. 13-04-CH016 Part I Page 2 of 6

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored **quarterly** by the permittee as specified below.

a sta		Discharge Limitations ⁽¹⁾	Sampling Requirements	
Sample	Parameter	Daily Max	Period	Туре
001	pH Tatal Codmium	5.0 – 12.0 S.U. 1 17 lbs	1 day 1 day	Composite Composite ²
	Total Chromium Total Copper	1.17 lbs. 3.74 lbs. 1.17 lbs.	1 day 1 day 1 day	Composite ² Composite ² Composite ²
	Total Nickel Total Zinc Total Barium Total Suspended	3.27 lbs. 5.84 lbs. 2.34 lbs. 250 mg/l	1 day 1 day 1 day 1 day	Composite ² Composite ² Composite ² Composite ²
	Solids ⁵ Total Flow	140,100 gallons ⁶	1 day	Discharge meter reading

Footnotes are explained on page 5.

Permit No. 13-04-CH016 Part I Page 3 of 6

PART I: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored once by the permittee as specified below.

Sample		Discharge Limitations ⁽¹⁾	Sampling Requirements	
Point 001	Parameter Total Mercury	Daily Max 0.001 lbs.	Period 1 day	Type Composite ²
	USEPA Test Method 608 ⁴	To be monitored	1 day	Grab ³
	USEPA Test Method 624 ⁴	To be monitored	1 day	Grab ³
	Method 625 ⁴	To be monitored	1 day	Grab ³

Footnotes are explained on page 5.

Permit No. 13-04-CH016 Part I Page 4 of 6

PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported **quarterly** by the permittee on the days specified below:

a 1.		Reporting Requirements			
Sample Point 001	Parameter All except USEPA Test Methods 608, 624, 625 & T Mercury	Initial Report March 31, 2011	Subsequent Reports Every March 31 st , June 30 th , September 30 th and December 31 st		
• •	USEPA Test Methods 608, 624 and 625 & T Mercury	March 31, 2011	•		

Permit No. 13-04-CH016 Part I Page 5 of 6

PART I: SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- 1. Mass limits based on an average discharge of 140,100 gpd.
- 2. Composite samples may be time proportioned.
- 3. Four grab samples must be collected at equally spaced intervals throughout the sample day. The four (4) grab samples must be composited by a NYSDOH certified laboratory prior to analysis.

4. The permittee must report any compound whose concentration is equal to or greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by these test procedures which may cause or contribute to a violation of water quality standards or harm the sewerage system. Any parameter detected may, at the discretion of the BSA, be specifically limited and incorporated in this permit.

5. Surchargeable over 250 mg/L.

6. Flow is an action level only. If the permittee consistently exceeds this level, the BSA must be notified so that this permit can be modified.

TOWN OF CHEEKTOWAGA/BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

PART II GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes of the Clean Water Act

2. Definitions

Definitions of terms contained in this permit are as defined in the Town of Cheektowaga Local Law No. 2 and the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform^{*} to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines" Sheet."

Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the Permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet."

Add

5.

Additional Monitoring by Permittee

If the Permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Mr. William Pugh, P.E. Town Engineer 275 Alexander Ave. Cheektowaga, New York, 14211

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet." These reporting requirements shall not relieve the Permittee of any other reports, which may be required by the

h.

N.Y.S.D.E.C. or the U.S.E.P.A.

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the TC/BPDES Permit Application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new TC/BPDES Permit Application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager and/or Town Engineer.

3. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the Permittee to immediately notify the B.S.A. Treatment Plant at 883-1820 of the quantity and character of such discharge. If requested by the B.S.A., within five (5) days following all such discharges, the Permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

4. Noncompliance Notification

If, for any reason, the Permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the Permittee or their assigns must verbally notify the Industrial Waste Section at 883-1820 within twenty-four (24) hours of becoming aware of the violation. The Permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Rev. 811/26/2012 9:00:00 AM

5. Adverse Impact

The Permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo and Town Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

6. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo or Town Sewer System.

7. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the Permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the Permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

8. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status.
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the noncompliance is continuing, the time by which compliance is reasonably expected to be restored
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section/Town Engineer for any noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

9. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.

Industrial users must provide immediate notice to the Industrial Waste Section upon delivery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.

c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a. above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

b.

The Permittee shall allow the representatives of the Buffalo Sewer Authority or Town of Cheektowaga upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Town of Cheektowaga/ Buffalo Sewer Authority permit application prior to discharge to the sewer system.
D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

Nothing in this permit shall relieve the Permittee from any requirements, liabilities, or penalties under provisions of the Town of Cheektowaga Local Law No. 2, the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

4. Penalties for Violations of Permit Conditions

The "Sewer Regulations of the Buffalo Sewer Authority" and Town of Cheektowaga Local Law No. 2, provide that any person who violates a B.P.D.E.S. permit condition is liable to the Authority and/or the Town for a civil penalty of up to \$10,000 per day for each violation. Any person who willfully or negligently violates permit conditions will be referred to the New York State Attorney General.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the Permittee is required to notify the Industrial Waste Section/Town Engineer in writing as soon as an anticipated closure date is determined, but in no case later than five (5) days of the actual closure.

G. CONFIDENTIALITY

Rev. 811/26/2012.9:00:00 AM

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority or Town Engineer of the Town of Cheektowaga. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

APPENDIX G

DISCHARGE REPORT SUMMARY TABLES

۱

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

÷ .;

SAMPLING FIELD SHEET

t	J		

		adfill	
Client Name:	Pfohl Brothers La		
Address:	Aero Drive, Cheel	ktowaga, NY	
Contact:	Bill Pugh, P.E.	Phone:	716-897-7288
Installation:			
Sample Point:	SP-001	<u></u>	
Sample Location	: Meter Cha	amber - ball valve on 6" HDF	PE forcemain
Date: _	<u>9/10/13</u> Cre	ew: R. Murphy, K. McGov	vern, T. Ifkovich
Weather:	89° F, Partly Clou	dy .	
Sampling Device	e: <u>NA</u>		
Time of Installati	ion: <u>13:55</u>	Type of Sample:	Composite
Sample Interval:	NA	Sample Volume:	ΝΑ
PLC display	volumes: WW-01	(271,783 gals), WW-02 (-9	00 gals) WW-03 (24 193 gals)
04 (49,1	097 gals), WW-05 9/11/13 Crd 90° F. Clear	(829,770 gals), WW-06 (29 ew: <u>R. Murphy; S. Moelle</u>	93,406 gals) & MH-25 (1,512,843 gals).
 Date: Weather: Time of Collectio Field Measurem	097 gals), WW-05 9/11/13 Cro 90° F, Clear on: 14:30 ents:	(829,770 gals), WW-06 (29 ew:R. Murphy; S. Moelle	93,406 gals) & MH-25 (1,512,843 gals).
 Date: Weather: Time of Collection Field Measurem	097 gals), WW-05 9/11/13 Cro 90° F, Clear on: 14:30 ents: 5/RJM	ew: <u>R. Murphy; S. Moelle</u> pH Calibration: Buffer	93,406 gals) & MH-25 (1,512,843 gals). er, T. Ifkovich 77 Buffer 44 Buffer 1010
 Date: Weather: Time of Collectio Field Measurem 14:35 	097 gals), WW-05 9/11/13 Cro 90° F, Clear on: 14:30 ents: 5/RJM	ew: <u>R. Murphy; S. Moelle</u> pH Calibration: Buffer	7- <u>7</u> Buffer 4- <u>4</u> Buffer 10- <u>10</u> 7.5
 Date: Weather: Time of Collection Field Measurem 14:33 (time	097 gals), WW-05 9/11/13 Cro 90° F, Clear on: 14:30 ents: 5/RJM j(initial)	ew: <u>R. Murphy; S. Moelle</u> pH Calibration: Buffer pH Measurement: Temperature:	33,406 gals) & MH-25 (1,512,843 gals). er, T. Ifkovich 7- 7 Buffer 4- 4 Buffer 10- 10 7.5 23.4°C
 Date: Weather: Time of Collectio Field Measurem 14:33 (time	097 gals), WW-05 9/11/13 Cro 90° F, Clear on: 14:30 ents: 5/RJM 2/initial)	ew: <u>R. Murphy; S. Moelle</u> pH Calibration: Buffer pH Measurement: Temperature:	7- 7 Buffer 4- 4 Buffer 10- 10 7.5 23.4°C
VVV-04 (49, Date: Weather: Time of Collectio Field Measurem 14:34 (time Identification: Physical Observ	097 gals), WW-05 9/11/13 Crophone 90° F, Clear	ew:	7- 7 Buffer 4- 4 Buffer 10- 10 7.5 23.4°C 1 1 1
VVV-04 (49, Date: Weather: Time of Collectio Field Measurem 14:33 (time Identification: Physical Observ Laboratory: _]	097 gals), WW-05 9/11/13 Crophone 90° F, Clear Crophone 50n: 14:30 ents: 5/RJM 5/RJM Crophone 2/initial) 14:30 rations: Crophone FestAmerica, Buffa Crophone	ew:	7. 7 Buffer 4- 4 Buffer 10- 10 7.5 23.4°C 1 1 1
VWV-04 (49,) Date: Weather: Time of Collectio Field Measurem14:33 (time Identification: Physical Observ Laboratory: Comments:	097 gals), WW-05 9/11/13 Crophone 90° F, Clear	ew:	000 gals), WV 00 (21,100 gals). 93,406 gals) & MH-25 (1,512,843 gals). er, T. Ifkovich 77Buffer 44Buffer 1010
WW-04 (49, Date: Weather: Time of Collection Field Measurem 14:33 (time Identification: Physical Observ Laboratory: Comments: PLC display WW-04 (49,	097 gals), WW-05 9/11/13 Cra 90° F, Clear	ew:	000 galo), WW 00 (21,100 galo). 93,406 gals) & MH-25 (1,512,843 gals). er, T. Ifkovich 77Buffer 44Buffer 1010
WW-04 (49, Date: Weather: Time of Collection Field Measurem 14:33 (time Identification: Physical Observ Laboratory: Comments: PLC display WW-04 (49,	097 gals), WW-05 9/11/13 Crophysical 90° F, Clear 00° F, Clear 0n: 14:30 ents: 5/RJM 5/RJM 00° y/initial) 10° FestAmerica, Buffa 10° No wells were runr 100° yolumes: WW-05°	ew:	33,406 gals) & MH-25 (1,512,843 gals). 93,406 gals) & MH-25 (1,512,843 gals). er, T. Ifkovich 77Buffer 44Buffer 1010

N:\11172700.00000\ExcelData and Calcs\Field Sampling Form (9-11-13)

TABLE 1

PFOHL BROTHERS LANDFILL - EFFLUENT MONITORING ANALYTICAL RESULTS, TOTAL FLOW, AND MASS LOADINGS SEPTEMBER 2013

Sample ID	EFF-091113							
Matrix	Effluent Water							
Date Sampled		9/11/2013						
Parameter	Result	Mass Loading	Discharge Limitation	Violations				
	(mg/L)	(lbs/day)	(lbs/day)	(Y/N)				
Total Barium	0.58	0.001	2.34	No				
Total Cadmuim	< ⁽¹⁾ 0.0005	< 0.000001	1.17	No				
Total Chromium	0.0018	0.000003	1.17	No				
Total Copper	0.069	0.0001	3.74	No				
Total Lead	0.0083	0.00002	1.17	No				
Total Nickel	0.0082	0.00002	3.27	No				
Total Zinc	0.11	0.0002	5.84	No				
Total Suspended Solids	68.9	NA	250 ⁽³⁾	No				
pH ⁽⁴⁾	7.5	NA	5.0 - 12.0	No				
Total Flow ⁽⁵⁾		220	140,100	No				

Notes:

(1) < = Compound not detected, method detection limit shown

(2) NA = Not Applicable

h

(3) Discharge Limitation in units of mg/L

(4) pH measurement and Discharge Limitation in Standard Units

¢\$

(5) Total Flow reported in gallons, sample was collected over a 24 hour period

Calculation:
$$\left(\frac{x \text{ mg}}{L}\right) \left(\frac{y \text{ gal}}{\text{day}}\right) \left(\frac{1 \text{ lb}}{453,600 \text{ mg}}\right) \left(\frac{3.785 \text{ L}}{\text{gal}}\right) = \frac{x \times y}{119,841} \frac{\text{lb}}{\text{day}}$$

ł

N:\11172700.00000\EXCEL\Effluent Monitoring Report Table\September 2013

SAMPLING FIELD SHEET

.

Į	Л	RS	

i

	Drive Cheektow	NY		
Address: <u>Aero</u>	Drive, Cheeklov	waya, wi		
Contact:Bill Pi	ugh, P.E	Phone:	/16-89/-/288	
Installation:				
Sample Point: <u>SP-00</u>	01			
Sample Location:	Meter Chamb	per - ball valve on 6" HDP	E forcemain	
Date: <u>12/1</u>	10/13 Crew:	, R. Murphy, T. Urban,	J. Boyd	
Weather: 26° F	, Partly Cloudy			
Sampling Device:	NA	•		
Time of Installation:	11:00	Type of Sample:	Composite	
Sample Interval:	NA	Sample Volume:	NA	
Date:12/*	11/13 Crew:	R. Murphy, T. Urban,	2,078,821 gais) & MH J. Boyd	25 (6,006,529 gais).
Date: <u>12/</u> Weather: <u>28° F</u> Time of Collection: Field Measurements:	11/13 Crew: , Cloudy 11:00	R. Murphy, T. Urban,	2,078,821 gais) & MH J. Boyd	25 (6,006,529 gais).
Date: <u>12/</u> Weather: <u>28° F</u> Time of Collection: Field Measurements: <u>11:05/RJM</u>	<u>11/13</u> Crew: , Cloudy 11:00		2,078,821 gais) & MH J. Boyd 7Buffer 44	Buffer 1010
Date: <u>12/</u> Weather: <u>28° F</u> Time of Collection: Field Measurements: <u>11:05/RJM</u> (time/initial)	<u>11/13</u> Crew: , Cloudy 11:00	R. Murphy, T. Urban, — pH Calibration: Buffer 7- pH Measurement:	2,078,821 gais) & MH J. Boyd 7Buffer 44 7.67	Buffer 1010
Date:	<u>11/13</u> Crew: , Cloudy 11:00	R. Murphy, T. Urban, — pH Calibration: Buffer 7- pH Measurement: — Temperature:	2,078,821 gais) & MH J. Boyd 7Buffer 44 7.67 10.5°C	Buffer 1010
Date:	<u>11/13</u> Crew: , Cloudy 11:00	R. Murphy, T. Urban, pH Calibration: Buffer 7- pH Measurement: Temperature:	2,078,821 gais) & MH J. Boyd 7Buffer 44 7.67 10.5°C	Buffer 1010
Date:	11/13 Crew: , Cloudy 11:00	R. Murphy, T. Urban, pH Calibration: Buffer 7- pH Measurement: Temperature:	2,078,821 gais) & MH J. Boyd 7 Buffer 4- 4 7.67 10.5°C	Buffer 1010
Date:	11/13 Crew: , Cloudy 11:00 121113 nerica, Buffalo, N	R. Murphy, T. Urban, PH Calibration: Buffer 7- pH Measurement: Temperature:	2,078,821 gais) & MH J. Boyd 7Buffer 44 7.67 10.5°C	Buffer 1010
Date: <u>12/</u> Weather: <u>28° F</u> Time of Collection: Field Measurements: <u>11:05/RJM</u> (time/initial) Identification: <u>EFF-</u> Physical Observations: Laboratory: <u>TestAm</u> Comments: <u>No well</u> PLC display volum	11/13 Crew: , Cloudy 	R. Murphy, T. Urban, pH Calibration: Buffer 7- pH Measurement: Temperature: NY at the time of sample colle 79,172 gals), WW-02 (-20	2,078,821 gais) & MH J. Boyd 7 Buffer 4- 4 7.67 10.5°C 10.5°C 4 9 9 9 9 0 10.5°C 10.	Buffer 1010
Date:	11/13 Crew: , Cloudy 	R. Murphy, T. Urban, — PH Calibration: Buffer 7- pH Measurement: Temperature: NY at the time of sample collection 79,172 gals), WW-02 (-20 1,969,785 gals), WW-06 (1)	7Buffer 44 7Buffer 44 7.67 1 1 ection. 625 gals), WW-03 (23 2,078,821 gals) & MH-	Buffer 1010

N:\11172700.00000\ExcelData and Catcs\Field Sampling Form (12-11-13).xlsx

.:

TABLE 1

PFOHL BROTHERS LANDFILL - EFFLUENT MONITORING ANALYTICAL RESULTS, TOTAL FLOW, AND MASS LOADINGS DECEMBER 2013

Sample ID	EFF-121113							
Matrix		Eff	luent Water	4				
Date Sampled	12/11/2013							
Parameter	Result	Mass Loading	Discharge Limitation	Violations				
	(mg/L)	(lbs/day)	(lbs/day)	(Y/N)				
Total Barium	0.17	0.02	2.34	No				
Total Cadmuim	< ⁽¹⁾ 0.0005	< 0.00005	1.17	No				
Total Chromium	< 0.0010	< 0.0001	1.17	No				
Total Copper	0.016	0.002	3.74	No				
Total Lead	< 0.003	< 0.0003	1.17	No				
Total Nickel	0.0045	0.0005	3.27	No				
Total Zinc	0.15	0.02	5.84	No				
Total Suspended Solids	4.4	NA ⁽²⁾	250 (3)	No				
pH ^{_(4)}	7.67	NA	5.0 - 12.0	No				
Total Flow ⁽⁵⁾		13,115	140,100	No				

Notes:

(1) < = Compound not detected, method detection limit shown

 \checkmark (2) NA = Not Applicable

(3) Discharge Limitation in units of mg/L

(4) pH measurement and Discharge Limitation in Standard Units

(5) Total Flow reported in gallons, sample was collected over a 24 hour period

Calculation:
$$\left(\frac{x \text{ mg}}{L}\right) \left(\frac{y \text{ gal}}{\text{day}}\right) \left(\frac{1 \text{ lb}}{453,600 \text{ mg}}\right) \left(\frac{3.785 \text{ L}}{\text{gal}}\right) = \frac{x \times y}{119,841} \frac{\text{lb}}{\text{day}}$$

N:\11172700.00000\EXCEL\Effluent Monitoring Report Table\December 2013.xlsx

APPENDIX H

MONITORING WELL INSPECTION LOGS

N:\11172700.00000\WORD\DRAFT\Semi Annual Report Jul-Dec13\Semi Annual Report Jul-Dec13.doc

ject Name:			Pfohl Brothers Lar	<u>ndfill</u>	Project Number:	11175616.00000	-
spection Crew Member	'S:		R. Murphy, T. Urb	an	Supervisor:	<u>J. Sundquist</u>	
ate(s) of Inspection:			November 13, 201	<u>3</u>			
Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
GW-1S	ОК	ОК	ОК	Bulged	3.24	14.94	
GW-1D	ОК	ОК	ОК	Bulged	2.07	39.65	
GW-3S	ОК	ок	ок	ОК	2.68	13.22	
GW-3D	ОК	ОК	ОК	ОК	1.71	35.70	
GW-4S	ОК	ОК	ОК	ОК	4.16	16.23	
GW-4D	ок	ОК	ОК	ОК	13.10	45.57	
GW-7S	ОК	ОК	ОК	ОК	4.13	35.04	
	ок	ОК	ок	Damaged	45.45	60.45	

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 3 (NOV_2013)

.

oject	Name:			Pfohl Brothers Lan	dfill	Project Number:	11175616.00000	-
spec	tion Crew Members	:		<u>R. Murphy, T. Urba</u>	an	Supervisor:	<u>J. Sundquist</u>	
ate(s) of Inspection:			<u>November 13, 2013</u>	<u>}</u>			
	Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
	GW-8SR	ОК	ок	ОК	ок	5.17	13.02	
	GW-8D	ОК	ок	ОК	ОК	5.65	36.54	
	GW-26D	· OK	ОК	ОК	ОК	6.52	40.70	
	GW-28S	ОK	_ ОК	ОК	ОК	8.30	15.52	
	GW-29S	ок	ок	ОК	ОК	6.08	20.04	
	GW-30S	ОК	ОК	ОК	ОК	7.30	17.97	
	GW-31S	ок	ОК	ОК	ОК	2.42	9.57	
	GW-325	ок	ОК	ОК	ОК	2.30	9.93	

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13).xls\Form 3 (NOV_2013) (2)

roject Name:			Pfohl Brothers Lan	<u>ndfill</u>	Project Number:	11175616.00000	
spection Crew Members:			<u>R. Murphy, T. Urba</u>	<u>an</u>	Supervisor:	<u>J. Sundquist</u>	
ate(s) of Inspection:		<u>I</u>	<u>November 13, 2013</u>	3			
Well I.D. Number	Lock	Surface Seal	Protective Casing	Riser	Water Level (ft. BTOC)	Well Depth (ft. BTOC)	Other Comments
GW-33S	OK	ОК	ОК	ОК	3.45	8.21	
GW-34S	ОК	ОК	ОК	ОК	2.61	10.01	
GW-35S	ОК	ок	ОК	ОК	2.88	7.46	•
							-
						· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		······································		
		•		A. 2000 - 201 - 20		<u>.</u>	•

4

ł 4 x

٩

ŧ

N:11172700.00000\WORD\DRAFT\Semi Annual Report Jan-Jun08\Field Forms 3_5 (Nov_13) xls\Form 3 (NOV_2013) (3)

•

· . .

ATTACHMENT C

IC/EC CERTIFICATION

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	Site Details	Box 1	
SI	e Name Pfohl Brothers Landfill		
Sit Cit Co Sit	e Address: Aero Drive and Transit Road Zip Code: 14225 ty/Town: Cheektowaga ounty:Erie e Acreage: 94.0		•
Re	porting Period: February 12, 2013 to February 12, 2014		
		YES	NO
1.	Is the information above correct?)M	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	D .	X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?	α.	b
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	۵	×
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form		
5.	Is the site currently undergoing development?		X
		Box 2	<u> </u>
	i ·	YES	ŅO
6 .	Is the current site use consistent with the use(s) listed below? Closed Landfill	X	
7.	Are all ICs/ECs in place and functioning as designed?	X	۵
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A	Corrective Measures Work Plan must be submitted along with this form to address t	hese is	SUES.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 915043		Box
Description of	f Institutional Controls	
	Owner	Institutional Control
<u>arcer</u> 1.04-1-26	William A. Pfohl	Ground Water Use Restriction Soll Management Plan Landuse Restriction Building Use Restriction Surface Water Use Restriction
accordance with t office on 4/25/03 an office on 4/25/03 an office on 4/25/03 an office on the state of the state office of the state of the state office of the state of the state office of the state o	he Declaration of Covenants and Res d included as Appendix P in the Rem re in place: bundwater use prohibition, ii) Surface Fencing, ii) No Excavation, iii) Plantin within the Perimeter Barrier System: i in restrictions.	strictions filed with the Erie County Clerk's edial Action Construction Report, Vol. II, the water use prohibition. g trees/shrubs prohibited.) Only Commercial/Industrial Development is
1.04-1-27	Paul Pfohl	
	• •	Ground Water Use Restriction Landuse Restriction
		Building Use Restriction
ffice on 4/25/03 an Nowing Controls at Lentire Site: I) Gro Capped Area: I) C Cleared Portion V lowed. Constructio	d Included as Appendix P in the Rem re in place: bundwater use prohibition, ii) Surface Fencing, Ii) No Excavation, iii) Plantin within the Perimeter Barrier System: i in restrictions. Paul Pfobl	edial Action Construction Report, Vol. II, the water use prohibition. g trees/shrubs prohibited.) Only Commercial/Industrial Development is
1.04-1-20.1		Ground Water Use Restriction Landuse Restriction Building Use Restriction
	ì	
accordance with t ffice on 4/25/03 an lowing Controls an A. Entire Site: I) Gro B. Capped Area: I) C. Cleared Portion lowed. Construction	he Declaration of Covenants and Res of included as Appendix P in the Rem re in place: bundwater use prohibition, ii) Surface Fencing, II) No Excavation, iii) Plantin within the Perimeter Barrier System: I on restrictions.	strictions filed with the Erie County Clerk's dedial Action Construction Report, Vol. II, the water use prohibition. g trees/shrubs prohibited.) Only Commercial/Industrial Development is
1.04-2-10.1	Paul Pioni	Ground Water Use Restriction
		Landuse Réstriction Building Use Restriction
l	· .:	.

į

•.

ſ

I

ĺ

••

Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place: A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area; i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed. Construction restrictions. Paul Pfohl 81.04-2-11 Ground Water Use Restriction Landuse Restriction **Building Use Restriction** In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place: A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area: i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed. Construction restrictions. 81.04-2-9.1 Paul Pfohl Ground Water Use Restriction. Landuse Restriction **Building Use Restriction** In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place: A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area: i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed, Construction restrictions. Elizabeth L. McBride 82.03-4-10 Ground Water Use Restriction Landuse Restriction **Building Use Restriction** In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place: A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area: i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed, Construction restrictions. Paul Pfohl 82.03-4-11 Ground Water Use Restriction Landuse Restriction **Building Use Restriction** In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the

	_
following Controls are in place: A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area: I) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Partice within the Parimeter Barrier System: i) Only Commercial/Industrial Development is	
allowed. Construction restrictions.	
82.03-4-5 Paul Pfohl Ground Water Use Restriction	
Landuse Restriction	
Building Use Restriction	
In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place:	
A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition.	
 C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed. Construction restrictions. 	
82.03-4-6 Paul Pfohl	
Cround Water Use Restriction	
Building Use Restriction	
· · ·	
In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place:	
 A. Entire Site: i) Groundwater use prohibition, ii) Surface water use prohibition. B. Capped Area: i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. 	
C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is allowed. Construction restrictions.	
82.03-4-8 Paul Ptoni Ground Water Use Restriction	
Landuse Restriction Building Use Restriction	
In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place:	
 B. Capped Area: i) Fencing, ii) No Excavation, iii) Planting trees/shrubs prohibited. C. Cleared Portion within the Perimeter Barrier System: i) Only Commercial/Industrial Development is 	
allowed. Construction restrictions.	
Ground Water Use Restriction	•
- Landuse Restriction Building Use Restriction	
· ·	
In accordance with the Declaration of Covenants and Restrictions filed with the Erie County Clerk's Office on 4/25/03 and included as Appendix P in the Remedial Action Construction Report, Vol. II, the following Controls are in place:	

•• •

i

A. Entire Site: i) Groundwate B. Capped Area: i) Fencing, C. Cleared Portion within the allowed Construction restrict	r use prohibition, ii) Surf	
B. Capped Area: I) Fencing, C. Cleared Portion within the allowed Construction restrict	Its Alls Constantiant IIIN Par-	
 Uneared Portion within the allowed Construction restrict 	II) NO Excavation, III) Pla	nting trees/snrups prohibited.
AND MARTER AND STREET PROPERTY PROPERTY AND	Perimeter barner Syste	m. If Only Commercial/Industrial Development is
	ions.	
82.03-4-9.12	Stuart Jenkins	Crowned Minter Man Rostriction
		Ground Water Use Restriction
		Building Use Restriction
n da		
•	•	
-		
In accordance with the Decla Office on 4/25/03 and include following Controls are in place	ration of Covenants and d as Appendix P in the I e:	Restrictions filed with the Erie County Clerk's Remedial Action Construction Report, Vol. II, the
A. Entire Site: i) Groundwate	r use prohibition, ii) Surf	ace water use prohibition.
B. Capped Area: i) Fencing,	i) No Excavation, iii) Pla	nting trees/shrubs prohibited.
C. Cleared Portion within the	Perimeter Barrier Syste	m: i) Only Commercial/Industrial Development is
allowed. Construction restrict	ions.	
82.03-4-9.2	Aero Land, Inc. c/o Jer	ome Hirsh
		Ground Water Use Restriction
		Building Use Restriction
-		
B. Capped Area: i) Fencing, C. Cleared Portion within the allowed. Construction restrict	 No Excavation, iii) Pla Perimeter Barrier System ons. 	nting trees/shrubs prohibited. m: i) Only Commercial/Industrial Development is
		Box 4
		Box 4
Description of Engine	ering Controls	Box 4
Description of Engine	ering Controls	Box 4
Description of Engine	ering Controls <u>Engineering</u>	Box 4
Description of Engine Parcel 81.04-1-26	ering Controls Engineering	Box 4
Description of Engine Parcel 81.04-1-26	ering Controls <u>Engineering</u> Vapor Mitig	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26	ering Controls <u>Engineering</u> Vapor Mitig Fencing/Act Cover Syste	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26	ering Controls Engineering Vapor Mitig Fencing/Ac Cover Syste	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C	Box 4
Description of Engine Parcel 81.04-1-26	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26 81.04-1-27	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26 81.04-1-27	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26 81.04-1-27	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26 81.04-1-27	ering Controls Engineering Vapor Mitig Fencing/Ac Cover Syste Leachate C Cover Syste Leachate C Fencing/Ac	Box 4
Description of Engine Parcel 81.04-1-26 81.04-1-27	ering Controls Engineering Vapor Mitig Fencing/Ac Cover Syste Leachate C Cover Syste Leachate C Fencing/Ac Vapor Mitig	Box 4
Description of Engine Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A	Box 4
Description of Engine <u>Parcel</u> 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H P4.04.4.28.4	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A	Box 4
Description of Engine <u>Parcel</u> 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig	Box 4
Description of Engine <u>Parcel</u> 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A Vapor Mitig	Box 4
Description of Engined Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A Vapor Mitig Cover Syste Leachate C	Box 4
Description of Engined <u>Parcel</u> 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Fencing/Act Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act	Box 4
Description of Engine <u>Parcel</u> 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Fencing/Act Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig	Box 4
Description of Engined Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1 For Declaration of Covenants	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A Vapor Mitig Cover Syste Leachate C Fencing/Act Fencing/Act Fencing/Act	Box 4
Description of Engined Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1 For Declaration of Covenants Vol. II P1.04-2-10.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Fencing/Act Vapor Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act	Box 4
Description of Engined Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1 For Declaration of Covenants Vol. II 81.04-2-10.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig and Restrictions, see A Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig	Box 4
Description of Engined Parcel 81.04-1-26 81.04-1-27 For Declaration of Covenants Vol. H 81.04-1-28.1 For Declaration of Covenants Vol. Ii 81.04-2-10.1	ering Controls Engineering Vapor Mitig Fencing/Act Cover Syste Leachate C Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste Leachate C Fencing/Act Vapor Mitig Cover Syste	Box 4

Ì

•

·· *

•

I

I

I

I

•

•

,

÷

.

Dorool	Engineering Control
	Leachate Collection
l	Eansing/Access Control
	renong/success control
For Declaration of Covenants and Rest	inctions, see Appendix P in the Remedial Action Construction Report,
81.04-2-11	Vanas Miliaatian
	Vapor Milugation
	Cover System
	Fencing/Access Control
For Declaration of Covenants and Rest	nctions, see Appendix P in the Remedial Action Construction Report,
81.04-2-9.1	Vanar Mili-tan
	Vapor Willigation
	Cover System
	Leachale Conection Eonging/Access Control
	Fencing/Access Control
For Declaration of Covenants and Rest	ncuons, see Appendix P in the Remedial Action Construction Report,
82.03-4-10	Vapor Mitigation
	Vapor Milligation
	Leachate Collection
	Fencina/Access Control
82.03-4-11	
•	Vapor Mitigation
	Cover System
*	
For Declaration of Covenants and Rest	rictions, see Appendix P in the Remedial Action Construction Report,
Vol. II	
82.03-4-5	
	Vapor Miligation
	Loophate Collection
•	Leachate Collection
	Fencing/Access Control
For Declaration of Covenants and Rest	nctions, see Appendix P in the Remedial Action Construction Report,
	٨
82.03-4-6	Manage Million
	Vapor Willgauon
	Leachate Collection
	Leagnale Collection
	renung/rucess control
	ncuons, see Appendix P in the Remedial Action Construction Report,
ĕ∠.U3-4-8	Vanor Mitigation
	Vapor Millyallon
	Leashate Collection
	Fencing/Access Control
	renung/200635 Control
	actions, see Appendix F in the Remedial Action Construction Report,
	· · · · · · · · · · · · · · · · · · ·
82.03-4-9.11	Vapor Mittaation
	Vapor Willyallon Cover System
,	Leachate Collection
	Ecoliale Collection
For Declaration of October and Decl	renuing/Aucess Control
	inquons, see Appendix P in the Remedial Action Construction Report
82.03-4-9.12	Vanar Milliantian

1

.

. . .

I

٠

.

Parcel Engineering Control Cover System Leachate Collection Fencing/Access Control For Declaration of Covenants and Restrictions, see Appendix P in the Remedial Action Construction Report, Vol. II 82.03-4-9.2 Vapor Mitigation Cover System Leachate Collection Fencing/Access Control

For Declaration of Covenants and Restrictions, see Appendix P in the Remedial Action Construction Report, Vol. II

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification;	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener	n this co ally acc	ertification cepted
	engineering practices, and the information presented is accurate and compete.	YES	NO
		X	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below tha following statements are true:	each Ir t all of t	nstitutional he
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Department	s uncha ent;	inged sinc
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	nealth and
	(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;	the ren	nedy,
	(d) nothing has occurred that would constitute a violation or failure to comply wit Management Plan for this Control; and	th the S	ite
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the second se	r the sit ne docu	e, the ment.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
1	A Corrective Measures Work Plan must be submitted along with this form to address ti	hese iss	sues.
Ī	Signature of Owner, Remedial Party or Designated Representative Date		

1

•

İ

.

1

1

Ì

•• ,

a

E

OSM Manager	Box 6
OSM Manager	
Of Manager	· •
SITE OWNER OR DESIGNATED REPRESENT/	ATIVE SIGNATURE
certify that all information and statements in Boxes 1,2, and 3 and	e true. I understand that a false
tatement made herein is punishable as a Class "A" misdemeano	or, pursuant to Section 210.45 of the
enal Law.	•
Town of Cheekto	waga
William R. Pugh, P.E. at 275 Alexander A	ve, Cheektowaga, NY 14211
print name print busines	ss address
Site OsM Manager	/ /Ourses on Demodial Partyl
m certifying as	(Owner or Kemedian Pany)
•	•
r the Site named in the Site Details Section of this form	
	•
	4
he of A	
$\mu = r = r \gamma =$	2/10/14
ignature of Owner, Remedial Party, or Designated Representativ	ve Date
endering Certification Site O&M Manager	•

•

j....

•••

i

, ·

•

- 1.

٠

1

:: .

l

ignature stand that a false statement ma 210.45 of the Penal Law.	Box 7 de herein i
stand that a false statement ma 210.45 of the Penal Law.	de herein i
stand that a false statement ma 210.45 of the Penal Law.	de herein i
ktowaga ,	
r Ave, Cheektowaga, NY	14211
iness address	
Cheektowaga	
(Owner or Remedial Party) M Provider /Manager	
11 I IOVIGOI/ 110110901	
· · ·	
-1.	1
2/10	<u>'</u>
<i>ی</i> رد	<u>, </u> 4
	Stamp Date

•

• •

•

.

· ...

i .

.

·

.

•

.

.

•

i

:

-

.