POST-CLOSURE MONITORING AND MAINTENANCE PROGRAM 2018 Periodic Review Report

MARILLA STREET LANDFILL
NYSDEC SITE ID No. 915047

Prepared on behalf of:

Nicklaus Olmsted Buffalo, Inc.

369 Franklin Street Buffalo, New York 14202

Prepared by:

February 2019

POST-CLOSURE MONITORING & MAINTENANCE PROGRAM 2018 Periodic Review Report

MARILLA STREET LANDFILL NYSDEC SITE ID No. 915047

Prepared on behalf of:

Nicklaus Olmsted Buffalo, Inc.

369 Franklin Street Buffalo, New York 14202

Prepared by:

February 2019

POST-CLOSURE MONITORING & MAINTENANCE PROGRAM 2018 Periodic Review Report

Nicklaus Olmsted Buffalo, Inc.

TABLE OF CONTENTS

1	INTRODUCTION	1-1
2	MONITORING AND MAINTENANCE PROGRAM	2-1
	2.1 General	2-1
	2.2 Surface Water	2-1
	2.2.1 Surface Water Quality Analysis	2-2
	2.3 Groundwater	2-3
	2.3.1 Groundwater Levels and Site Hydrogeology	2-4
	2.3.2 Groundwater Quality Analysis	2-5
	2.3.2.1 Comparison of Water Quality to Standards and Guidance Values	2-5
	2.3.2.2 Comparison of Water Quality to Background Mean Concentration	2-7
	2.3.2.3 Comparison of Water Quality to Surface Water Quality	2-10
	2.4 Post-Closure Site Inspection and Maintenance	2-13
	2.5 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL	2-13
	2.6 EQUIS DATABASE	2-14
3	SUMMARY AND CONCLUSIONS	3-1
L	ist of Figures	
Fi	igure 1-1: Location Map	1-3
Fi	igure 1-2: Site Plan	1-4
Fi	igure 2-1: Summary of Historical Groundwater Elevations for Shallow Overburden We	lls2-6

POST-CLOSURE MONITORING & MAINTENANCE PROGRAM 2018 Periodic Review Report

Nicklaus Olmsted Buffalo, Inc.

TABLE OF CONTENTS

List of Appendices & Tables

Appendix A	Summary Tables
Table 1	Groundwater and Surface Water Analytical Parameters
Table 2	Summary of Field Measurements
Table 3	Summary of Surface Water Analytical Results
Table 4	Summary of Historical Groundwater Depths of Shallow Overburden Wells
Table 5	Summary of Historical Groundwater Elevations of Shallow Overburden Wells
Table 6	Summary of Shallow Groundwater Analytical Results
Table 7	Parameter Tracking for Moving Average Trend Analysis (MATA)
Appendix B	Field Observations Sheets
Appendix C	Laboratory Reports and Chain of Custody Forms
Appendix D	Historic Data for Shallow Overburden Background Well MW-6B
Appendix E	Moving Average Trend Analysis of Tracked Parameters for Shallow Overburden Wells
Appendix F	Moving Average Trend Analysis of Tracked Parameters for Surface Water
Appendix G	2018 Post-Closure Inspection and Maintenance Reports
Appendix H	Institutional Controls/Engineering Controls (IC/ECs) Certification

1 INTRODUCTION

The Marilla Street Landfill (Site ID No. 915047) is located on a 100-acre parcel of land in the City of Buffalo, Erie County, New York. The landfill itself is approximately 80 acres, situated approximately 1.5 miles east of Lake Erie, and just west of Hopkins Street. A location map is shown in Figure 1-1. Railroad tracks run adjacent to the property along the west and north, and also divide the site into different fill areas.

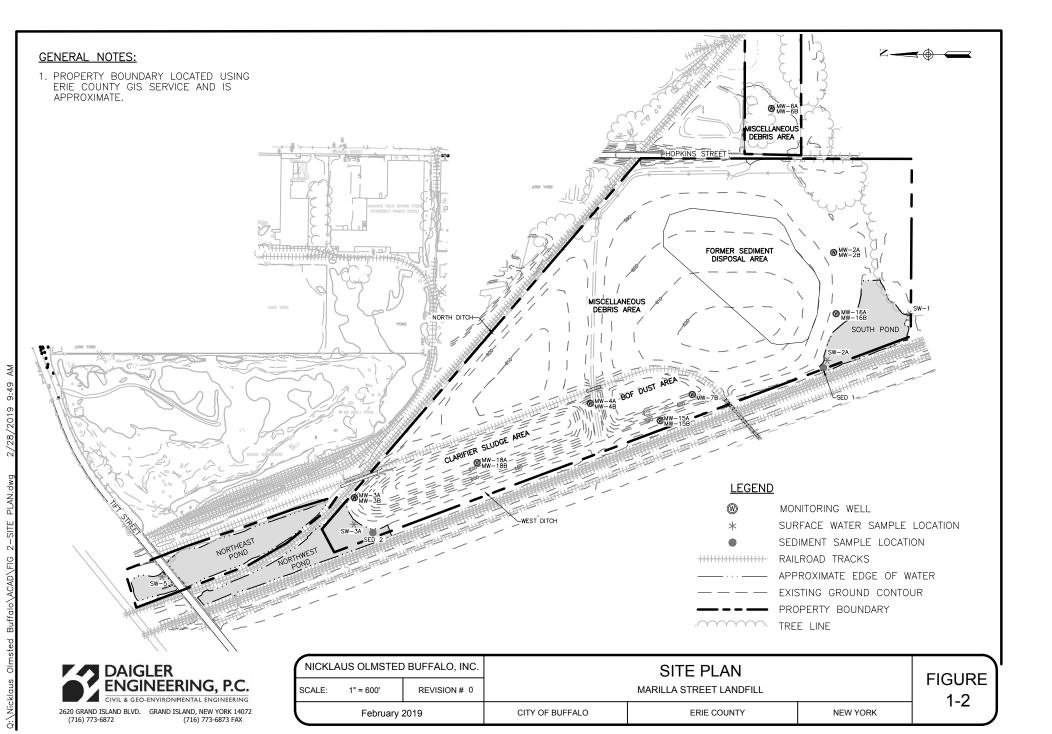
The landfill operated from 1930 through the summer of 1981 when it was owned by LTV Steel Company (formerly Republic Steel) and accepted wastes primarily produced by local steelmaking operations at the Buffalo Plant. Discarded wastes included, among others, construction and demolition debris, blast furnace and basic oxygen furnace (BOF) dust, precipitator dust, clarifier sludge from the steel plant's wastewater treatment system, and railroad ties.

The facility operated as an above-grade fill operation and the waste was divided by type. The landfill consists of the BOF Dust Area, the Clarifier Sludge Area, and several Miscellaneous Debris Areas as shown on the site plan in Figure 1-2. The Former Sediment Disposal Area is also contained within the larger Miscellaneous Debris Area west of Hopkins Street. The five-acre BOF Dust Area was capped in 1990 in accordance with 6 NYCRR Part 373. The latter two areas encompassing the remaining landfill area were capped in 1992 and 1993, respectively, under 6 NYCRR Part 360.

LTV Steel Company entered into an Order on Consent (File No. 89-57 R9-2808-89-05) with the New York State Department of Environmental Conservation (NYSDEC) in October 1992 to perform closure and post-closure maintenance and monitoring of the site. Steelfields, LTD acquired the site from LTV Steel Company and entered into a voluntary cleanup agreement with the NYSDEC in October 2002. To date, five onsite wetlands have been remediated which involved the excavation and removal of contaminated sediments, placement of clay and topsoil, and revegetation. Steelfields, LTD sold the property to Nicklaus Olmsted Buffalo, Inc. (NOB) in 2018. NOB will continue to monitor and maintain the site in accordance with the *Post-Closure Monitoring and Maintenance Plan for Republic Steel/LTV*, Rev October 2010 (hereto referred to

as the Site Management Plan (SMP) and its two adopted modifications dated July 15, 2015 and May 22, 2017.

This report satisfies the requirement for the 2018 annual reporting and assessment of post-closure monitoring and maintenance activities at the Marilla Street Landfill as outlined in the SMP and referenced modifications. Sampling results, analysis, evaluation of the results, and a discussion of statistical trending are included herein. A summary of the post-closure site inspection and maintenance activities performed during 2018 is also provided.


Q:\Nicklaus Olmsted Buffalo\74-0118 Marilla St 2018 PRR\Report\2018 Annual Report.doc Date: $2/6/2019;\ Rev\ 0$

2620 GRAND ISLAND BLVD. GRAND ISLAND, NEW YORK 14072 (716) 773-6872 (716) 773-6873 FAX

LOCATION MAP
MARILLA STREET LANDFILL

	MARILLA STREET LAN	NDFILL	
NI	CKLAUS OLMSTED BUFF	ALO, INC.	
CITY OF BUFFALO	ERIE COUNTY	NEW YORK	FIGURE
February 2019	SCALE: NOT TO SCALE	REVISION # 0	1-1

2 MONITORING AND MAINTENANCE PROGRAM

2.1 GENERAL

Monitoring and maintenance of the Marilla Street Landfill operate under the conditions specified in the SMP and as modified in two adopted modifications dated July 15, 2015 and May 22, 2017. The SMP and accepted modifications specify sampling locations and methodology, analytical requirements, laboratory quality assurance/quality control procedures, and reporting requirements, as well as procedures for routine inspection and maintenance activities. Monitoring of surface water and shallow overburden groundwater is to be conducted annually, in addition to an overall site and final cover inspection. Monitoring of deep overburden groundwater and pond sediments are to be conducted every third year. The next triennial sampling event occurs in 2019. The approximate sampling locations are shown on Figure 1-2.

Sampling procedures, including collection and preservation, were completed in general accordance with the SMP for the 2018 sampling event between December 4th and 5th. Where deviations from the SMP's sampling protocol occurred, the anomalies are noted herein. Decontamination of shared sampling equipment (e.g., stainless steel dipper used for surface water sample collection, and the hand pump used for filtering surface water and groundwater) was performed by washing the equipment with phosphate-free soap and 10% nitric acid with a brush, then rinsing with deionized water.

Laboratory analysis was performed by ALS Environmental (ALS) of Rochester, New York, an ELAP certified laboratory. The analytical methods used (see Table 1) deviate from those required in the SMP. The laboratory reported that the methods specified in the SMP were outdated, and the methods actually used are the most current certified methods equivalent to those in the SMP.

2.2 SURFACE WATER

Four surface water samples are to be collected annually from the remediated wetland areas and analyzed for the set of parameters listed in Table 1 of Appendix A. Should leachate seeps be identified during the site inspection, these breakouts are to be sampled for the same suite of

Q:\Nicklaus Olmsted Buffalo\74-0118 Marilla St 2018 PRR\Report\2018 Annual Report.doc Date: 2/6/2019: Rev 0

parameters as identified in Table 1 for surface water. No seeps were identified during the current monitoring period. The four surface water samples are described as follows:

- SW-1 South Pond Inlet, collected from open drainage channel entering the South Pond, used to establish regional background levels;
- **SW-2A** South Pond near cutoff wall location;
- **SW-3A** Southern end of Northwest Pond; and,
- **SW-5** Northern end of Northeast Pond.

Surface water samples were collected on December 4th and 5th, 2018 at the four locations as described above. A blind duplicate (SW-DUP) was collected at SW-5. Each grab sample was analyzed in the field for temperature, pH, conductivity, and turbidity and recorded on the Field Observation forms as shown in Appendix B. Field measurements are summarized in Table 2 in Appendix A.

As per the requirements of the SMP, surface water is to be field filtered and analyzed for soluble metals if the turbidity is greater than 50 NTU. No surface water samples demonstrated turbidity readings greater than 50 NTU. However, all surface water samples were filtered in the field and analyzed for soluble metals to facilitate a comparison to increasing trends in groundwater wells as suggested in the 2013 Periodic Review Report, December 2013 (Daigler Engineering, PC). A summary of the analytical results is provided in Table 3 of Appendix A. Analytical reports and chain of custody forms are provided in Appendix C.

2.2.1 Surface Water Quality Analysis

Surface water quality analytical results were compared to NYSDEC Class D Surface Water Quality Standards and Guidance Values per 6 NYCRR Part 703 and Technical and Operational Guidance Series (TOGS) 1.1.1 as shown in Table 3 for the current calendar year. With the exception of total iron, all analytical results were below (or in the range for pH) the Class D standards. Total iron exceedances decreased in 2018 compared with historic sampling results. Iron levels at all surface water locations had been greater than the Class D standard for the last six years, with the exception of SW-2A, which was less than the standard in 2015. This year only SW-1 and SW-2A exceeded the Class D standard. The background surface water sampling location, SW-1, is typically high in total iron concentration. This year the concentration was

Date: 2/6/2019: Rev 0

only slightly greater than the Class D standard, yet despite the low concentration, Moving Average Trend Analysis (MATA) as presented in Appendix F still supports an upward trend in iron for SW-1. Downstream concentrations of total iron also decreased this year after having been elevated last year. In contrast total iron continues to exhibit decreasing trends at all downstream locations as can be seen in the MATA for surface water presented in Appendix F. Intra-location minima for total iron were observed at SW-3A and SW-5.

Analytical results for background (SW-1) and downstream sampling locations are generally similar. This suggests that downstream water quality is characteristic of the water quality from upstream of the site. Concentrations of several parameters recorded at SW-2A that were elevated last year decreased this year including conductivity, total organic carbon, total dissolved solids, and total iron. Total and dissolved manganese significantly decreased from intra-location maxima last year at this location, as well. Total manganese observed at SW-3A and SW-5 were intra-location minima in 2018. Total manganese at SW-3A appears to be on a decreasing trend based on the MATA presented in Appendix F. The increasing trend using MATA in pH at SW-5 is not paralleled by an increasing trend at the upstream surface water sampling location. All other surface water results were typical.

2.3 GROUNDWATER

In following with the 2015 and 2017 approved modifications to monitoring requirements, groundwater at the site is monitored on an annual basis for the parameters listed in Table 1 at eight monitoring wells. Every third year (2016, 2019, 2022, etc.), additional monitoring is conducted at seven deep overburden wells to detect downward leachate migration for the same set of parameters as the annual sampling event. Shallow overburden well IDs are succeeded by a "B" and deep overburden well IDs are designated with an "A". The following list identifies the monitoring wells sampled annually and those that are sampled every third year:

- **Annual** MW-2B, MW-3B, MW-4B, MW-6B, MW-7B, MW-15B, MW-16B, MW-18B; and,
- Triennial –MW-2A, MW-3A, MW-4A, MW-6A, MW-15A, MW-16A, MW-18A.

Note that monitoring wells MW-6A and MW-6B represent the background wells for their respective water bearing units.

Groundwater sampling was conducted between December 4th and 5th, 2018. A photoionization detector was used to measure organic vapors from each well once the cover was unlocked and removed. All wells were recorded at zero ppm. Following static groundwater measurement at all shallow wells, the wells were purged and sampled using dedicated polyethylene bailers per the requirements in the SMP. While purging, the groundwater was field tested for temperature, pH, conductivity, and turbidity and recorded on the field observation sheets shown in Appendix B. After purging four well volumes or to dryness (whichever occurs first), a sample was collected, and field parameters were recorded for the sample on the field observation sheets. Field data are summarized in Table 2. Groundwater samples were preserved for analysis in laboratory provided containers.

Samples collected from two wells, MW-2B and MW-3B, measured greater than 50 NTU in turbidity. Subsequently, as mandated by the SMP, dissolved metals analyses were performed in addition to total metals for these samples. Background monitoring well MW-6B was also field filtered and tested for soluble metals for MATA purposes even though the turbidity reading was less than 50 NTU. A blind duplicate (GW-DUP) was collected from MW-18B and the matrix spike/matrix spike duplicate was collected from MW-15B. Analytical reports prepared by ALS and chain of custody forms are provided in Appendix C. A discussion and evaluation of the results are presented herein.

2.3.1 Groundwater Levels and Site Hydrogeology

Groundwater elevation data was gathered from all eight shallow overburden wells as summarized in Tables 4 and 5 of Appendix A. Water levels and the total depth of each well were measured from the top of casing and were recorded on the field observations logs at the time of measurement. All field observations logs are included in Appendix B.

A plot illustrating the groundwater elevations of each shallow monitoring well is presented in Figure 2-1. Groundwater elevations remained near typical levels in 2018. The groundwater level rose slightly for MW-3B, MW-6B, and MW-15B. Intra-well maximum values were

Date: 2/6/2019; Rev 0

observed in MW-6B and MW-15B. These relatively high ground water elevations are expected to be a result of the seasonal timing of this sampling event.

2.3.2 Groundwater Quality Analysis

The SMP requires the comparison of groundwater results to 6 NYCRR Part 703 Class GA Standards and Guidance Values and to background water quality. According to the SMP decision tree, groundwater data which exceeds the background mean concentration (BMC) for a parameter by three standard deviations requires additional MATA to be performed. These evaluations are discussed herein.

2.3.2.1 Comparison of Water Quality to Standards and Guidance Values

Values from the annual samples of 2018 were compared to the 6 NYCRR Part 703 GA standards as shown in Table 6 of Appendix A for the shallow overburden wells. Green, grey, and orange shading in this table signifies exceedances of the Class GA standard; the Class GA standards (where applicable) and the BMC; and the Class GA standards (where applicable), the BMC, and the BMC plus three standard deviations (BMC+3SDs), respectively. Therefore, any shaded parameter is in exceedance of the Part 703 GA standard where one exists. Note that BMC and BMC+3SDs exceedances will be discussed in the next section.

Widespread exceedances of the Class GA standards for pH (upper limit), total dissolved solids (TDS), total iron, and total manganese occurred in wells both up and downgradient of the site. The pH detected at MW-6B returned to more typical level of 7.07 after an unusually acidic pH of 3.41 was observed in 2017. The standard of 5.0 ug/L for total recoverable phenolics (TRP) was also exceeded in many of the wells. It should be noted that the detection limit is greater than the standard for TRP and total lead; therefore, one or more of the wells reported as non-detect have the potential to be in exceedance of the standard for these parameters.

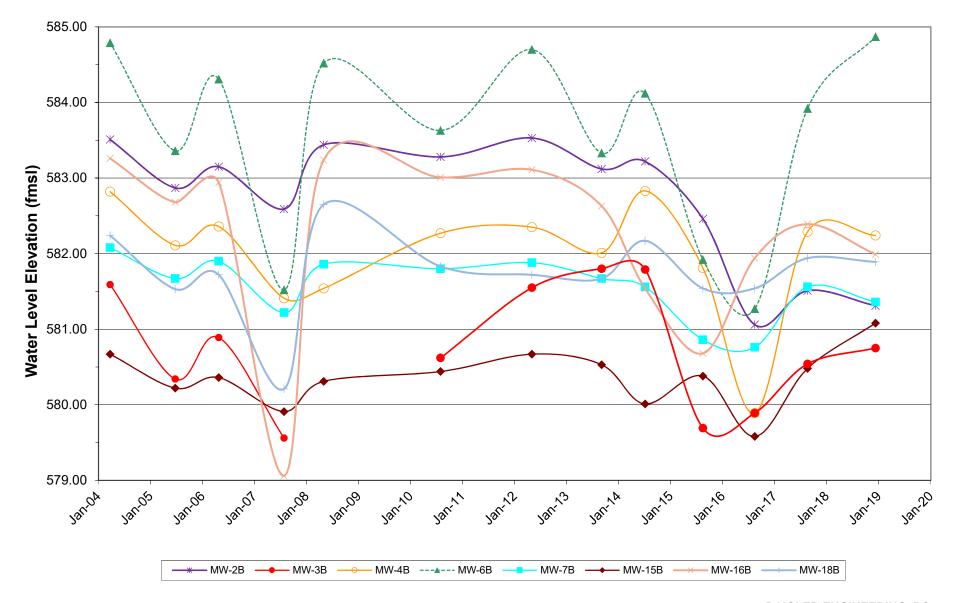

Date: 2/6/2019; Rev 0

FIGURE 2-1

Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of Historical Groundwater Elevations for Shallow Overburden Wells

Exceedances of the Class GA standard for total arsenic, total chromium, total lead, and acetone were measured at MW-3B, as is typically identified at this well. Acetone was again found in MW-15B after being detected in 2017 for the first time since 2012, and was at an intra-well maximum level of 140 ug/L. Concentrations above the standards for total arsenic in MW-15B and trichloroethene in MW-16B are generally consistent with data from previous sampling events. There was no detection of 2-Butanone in 2018, after it was detected in MW-3B in 2017, the first time this compound was detected in any well on site.

2.3.2.2 Comparison of Water Quality to Background Mean Concentration

BMCs and BMC+3SDs were calculated using results from all available events for background monitoring well MW-6B as shown in Appendix D. The results were incorporated into Table 6 and compared to the results from the current monitoring period. The results shaded in orange in the tables indicate the need for MATA which are presented on an individual parameter basis in Appendix E for the shallow overburden wells.

Table 7 summarizes the tracked parameters and groundwater wells which have experienced exceedances of the BMC+3SDs. After five tracked events, trending is evaluated. Increasing linear trends in downgradient shallow wells are compared to trending in the background water quality in the upgradient monitoring well and to surface water quality. All trend analyses utilize moving average data including this sampling event's data and the three preceding sampling events. Linear trend lines were fit to the data using a least squares analysis. Trends were considered not statistically significant if the 95% confidence interval around the slope of the linear regression includes zero. The fit of the data to the trend line was also checked by assessing the R^2 value. Values closer to one indicate more closely fit data.

Apparent increasing trends in downgradient wells which have experienced exceedances of the BMC+3SDs and have five tracked events include the following:

- Total arsenic (MW-3B, and MW-15B);
- pH (MW-7B, and MW-15B);
- TRP (MW-3B);

- TOC (MW-2B, MW-3B, MW-15B, and MW-16B);
- TDS (MW-3B and MW-15B);
- Specific conductance (MW-7B and MW-15B); and,
- Total manganese (MW-3B and MW-18B).

Generally, increasing trends were paralleled by a corresponding increasing trend in upgradient well MW-6B with the exception of total arsenic in MW-3B and MW-15B, and pH in MW-7B and MW-15B. As such, most of the water quality trends found in the downgradient wells are likely the result of changes in water quality upgradient of the site.

The apparent increasing trending in total arsenic in well MW-15B was not statistically significant at the 95% confidence level and had a relatively low R^2 value of 0.14. The increasing trend in total arsenic in well MW-3B continued to weaken as it has over the past several years. Regression analysis on total arsenic for well MW-3B shows that the increasing trend remains statistically significant at the 99% confidence level, as has been the case since 2012. However, the R^2 value has continued to decrease and with the 2018 data is at 0.64 after being at 0.77 last year and averaging around 0.90 over the past five years peaking in 2016 at 0.93. The total arsenic concentration in MW-6B has been lower than the detection limit since 1997, as was the case again this year. Thus, the source of arsenic does not appear to be coming from upgradient of the site. Should increasing trends for a specific parameter be observed downgradient with opposing trends upgradient, a comparison to surface water is the next step as per the SMP decision tree. A discussion of the comparison is provided in the next section.

The apparent increasing trend in pH at MW-7B and MW-15B continued to not be statistically significant in 2018 at the 95% confidence level. An apparent decreasing trend in pH in upgradient groundwater at MW-6B is statistically significant at the 95% confidence level but not at 99%. A comparison to the surface water results is provided in the next section.

With the inclusion of a fourth data point from 2018, the linear trend line for TRP at MW-15B which had been increasing is now shown to be decreasing. The apparent increasing trend in MW-3B was also determined to not be statistically significant at the 95% confidence level with

the inclusion of the 2018 data. TRP levels in MW-3B are essentially stagnant. Upgradient monitoring well MW-6B shows an apparent increasing trend with respect to TRP. However, of the twenty data points only two were detections, one in 1997 and one in 2007. The remaining variability is solely due to the variation of the detection limit.

Evaluation of trending in TOC for MW-2B began this year with the fifth tracked event, however, Section 3.1 of the SMP suggests that trending be evaluated with statistical analyses after a linear trend line has been plotted for *several* sampling events. When there are three data points to plot a linear trend line beginning next year, the statistical significance of the increasing trend will be determined. TOC has decreased slightly from levels last year across the site. The increasing trend at MW-3B continues to not be statistically significant at the 99% confidence level. Conversely, statistically significant trends are evident with 99% confidence for MW-15B and MW-16B. However, TOC decreased for the second straight year at MW-15B and was at an intra-well minimum in 2018. There is an apparent increasing trend at the upgradient monitoring well MW-6B that was determined to be statistically significant at the 95% confidence level, but not at 99%.

TDS has apparent increasing trends found in MW-3B and MW-15B. Trending is not statistically significant at the 95% confidence level at MW-15B. Trending in MW-3B with respect to TDS continued to be statistically significant at a 99% confidence level. Still with a mid-range R^2 value of 0.57 the correlation is not very strong, and the actual concentrations have been decreasing for the past three years. An increasing trend is also statistically significant for shallow upgradient well MW-6B at the 99% confidence level, therefore the increasing TDS may be originating from offsite.

The increasing trend for specific conductance in MW-7B and MW-15B weakened with the inclusion of the 2018 data. The trends were not statistically significant at the 99% confidence level and the data is poorly fit by linear regression with R^2 vales of 0.002 and 0.37, respectively. The increasing trends in the downgradient wells are not a cause for concern at this time. The recent apparent increasing trend in specific conductance at upgradient well MW-6B continued for 2018, although the trend is not statistically significant at the 95% confidence level and is the data is also poorly fit with a relatively low R^2 value of 0.06.

Date: 2/6/2019; Rev 0

The observed positive trending in total manganese at MW-3B and MW-18B continued this year and is paralleled by an increasing trend at upgradient well MW-6B. Now including MW-18B, all trends are statistically significant at the 95% confidence level. However, the trend appears to be weakening in MW-3B as total manganese declined for the third straight year and was at an Intra-well minimum in 2018. The R^2 value for MW-3B also dropped from 0.77 in 2017 to 0.68 in 2018.

Historically, MATA was not conducted for total chromium and soluble chromium at MW-3B since a minimum of five tracked events are necessary to begin MATA. With the results of the 2018 sampling event, MATA is now required for these two parameters. Additionally, the statistical significance of the trending can be determined now that there are at least three moving average data points for the first time for not only total and soluble chromium, but total iron, total lead, and soluble arsenic as well. All five parameters exhibit decreasing trends, however only the trend for total lead was determined to be statistically significant at the 95% confidence level. The total iron observed in 2018 was the lowest observed since 2012. Total iron continued to have a statistically significant increasing trend in upgradient well MW-6B now at the 99% confidence level, and the fit of the data also increased but still only has a mid-range R^2 value of 0.49.

Historically, MATA has also not been conducted for volatile organic compounds as they have not been detected in the background groundwater well MW-6B. Acetone has historically been detected in MW-3B and MW-15B, and TCE has been historically detected in MW-16B. Beginning in 2018 these parameters have been added to Table 7. With more than five tracked events, there is an apparent upward trend for Acetone in MW-3B, however the trend is not statistically significant at the 95% confidence level. TCE in MW-16B has an upward trend that is statistically significant at the 99% confidence level but has a mid-range R^2 value of 0.62. The groundwater trending does not appear to be influencing surface water.

2.3.2.3 Comparison of Water Quality to Surface Water Quality

Moving average trend analysis, as described above, has been performed for all surface water sampling locations for select tracked parameters (those tracked for groundwater quality) as shown by the graphs in Appendix F. The results were incorporated into Table 7, where appropriate, and trending was compared to the results from the current monitoring period.

Date: 2/7/2019: Rev 0

The results at all four surface water sampling locations for total arsenic have been less than the detection limit for the available data set (since May 2012). The MATA tables presented in Appendix F for the surface water sampling locations show a lower moving average concentration for the first year it was calculated than the following three years; however, this is simply the result of a lower detection limit in May 2012 of 0.004 mg/L compared to the detection limit of 0.010 mg/L from the following five years. As such, a graph is not provided for total arsenic as trending cannot be assessed. The situation is noted in Table 7 for the surface water trending with respect to arsenic. It is obvious, given the lack of detectable arsenic in the surface water samples that the trending in total arsenic at MW-3B and MW-15B is not migrating to the onsite surface water at this time.

The surface water sampling locations show an apparent decreasing trend for pH with the exception of SW-5. The decreasing trend for SW-1 was not statistically significant at the 95% confidence level. The decreasing trend for SW-2A was statistically significant at the 99% confidence level but has just a mid-range R^2 value of 0.50 indicating a relatively poor fit of the data to linear regression. An intra-location maximum value for pH was observed at SW-2A in 2018. The decreasing trend for SW-3A was statistically significant at the 95% confidence level, but with a relatively low R^2 value of 0.38. The increasing trend for SW-5A was also statistically significant at the 95% confidence level with a relatively low R^2 value of 0.38. The observed surface water trends do not appear to be related to the groundwater quality trending.

After being detected for two consecutive years, TRP was not detected in any of the surface water samples for 2018, which is more typical for the site. While the TRP levels in the groundwater are essentially stagnant they remain approximately two orders of magnitude higher than what was measured in the surface water. Influence on the surface water from elevated levels of TRP in shallow groundwater is not apparent. As discussed in the previous section, TOC has demonstrated increasing trends in the shallow downgradient wells MW-3B, MW-15B, and MW-16B. Apparent corresponding increasing trends are observed at all surface water sampling locations, as identified in Table 7. The positive trends at upstream surface water location, SW-1, and the most downstream surface water location, SW-5, remain not statistically significant at the 95% confidence level, with relatively low R^2 values of 0.10 and 0.17, respectively. Linear regression on the data from the more interior surface water locations showed that the upward

2-11 O:\Nicklaus Olmsted Buffalo\74-0118 Marilla St 2018 PRR\Report\2018 Annual Report.doc

trends observed at SW-2A and SW-3A continue to be significant at the 99% confidence level and demonstrated relatively high R^2 values of 0.80 and 0.78, respectively. The actual concentrations of TOC in the downgradient groundwater wells are higher (between one and two orders of magnitude higher in some locations) than those found in the upgradient groundwater and surface water.

TDS at all four surface water sampling locations exhibit increasing trends based on four moving averages, corresponding to apparent increasing trends found in MW-3B and MW-15B. The observed upward trending in TDS is not statistically significant at any of the four surface water locations at the 95% confidence level. The TDS concentrations observed in the surface water are generally about half of the concentration observed in the groundwater wells. As previously mentioned, the TDS may originate from offsite.

All surface water sampling locations show a decreasing trend for specific conductance except SW-5. The increasing trend for SW-5 was not statically significant at the 95% confidence level and had a relatively low R^2 value of 0.27. The increasing trend in SW-5 is not a cause for concern at this time.

Apparent increasing trends for total manganese are shown for upgradient sampling location SW-1 and the most downstream surface water sampling point, SW-5. The increasing trend for SW-5 continued to be statistically insignificant at the 95% confidence level with a poor linear fit of the data (R^2 =0.003). The increasing trend for SW-1 was statistically significant at the 99% confidence level, but with a R^2 value of 0.51. Intra-location minima for total manganese were observed at SW-1, SW-3A and SW-5 in 2018. Decreasing trends at the centrally located surface water sampling locations (SW-2A and SW-3A) show the linear fit of the data is relatively strong at SW-3A (R^2 =0.62) with significant trending, but for SW-2A continued to shift from a strong fit in 2016 (R^2 =0.88), to a much weaker R^2 value of 0.054 due to the unusually elevated intra-location maximum concentration observed last year. While the actual concentrations of total manganese at MW-3B are nearly double that of the upgradient groundwater and surface water, the increasing trend in this downgradient well may be supported by the increasing upgradient trend; however, the groundwater trending does not appear to be influencing surface water.

2.4 Post-Closure Site Inspection and Maintenance

The annual post-closure site inspection was conducted on December 4th and 5th, 2018. The site

west of Hopkins street was inspected on December 4, 2018, and the miscellaneous debris area

east of Hopkins street was inspected on December 5, 2018. Annual post-closure site inspections

are conducted in general conformance with Section 7 of the Site Management Plan (SMP). The

NYSDEC agreed in 2013 that the owners' primary responsibility is the maintenance and

monitoring of the landfill cap, and maintenance of the fence around the site is no longer a

required element of the SMP.

As documented in the December 4th and 5th Post-Closure Inspection Reports and photographs

included in Appendix G, the landfill cap, vegetation, and drainage features were observed to be

in very good condition. Mowing of the landfill cap vegetation did not take place in 2018. As

noted in the inspection reports the vegetation in some areas was up to two feet high during the

inspection.

Overall, the cap appears in good repair, with a thick, vigorous, healthy vegetative cover. No

evidence of animal burrowing was observed. Relatively minor erosional rilling was observed on

the cap west of Hopkins street. Some breaches in the site fencing were found and plotted in

the inspection report, however no evidence of unauthorized dumping was observed on the cap.

The inspection reports and photographs are provided in Appendix G. The annual Institutional

Controls/Engineering Controls (IC/ECs) Certification is appended to this report in Appendix H.

2.5 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

All samples were collected with the goal of obtaining representative samples of their respective

media. A case narrative prepared by ALS was included with the laboratory report in Appendix C

and identified any events, such as quality control failures, which may have occurred during

analysis. All data are unqualified or usable estimates. Turbidity, pH, and conductivity meters

were calibrated by Pine Environmental Services, Inc prior to sampling. All calibrations were

successful, and the calibration sheets are at the end of Appendix B.

Percent completeness was calculated at 100% for both groundwater and surface water.

Q:\Nicklaus Olmsted Buffalo\74-0118 Marilla St 2018 PRR\Report\2018 Annual Report.doc Date: 2/6/2019: Rev 0

2.6 EQUIS DATABASE

Laboratory analysis results were provided by ALS in the appropriate electronic data deliverables (EDDs) format to input directly into the EQuIS data processor (EDP) for submission to the NYSDEC's EQuIS database. Sample_v3, TestResultsQC_v3, and Batch_v3 EDDs were provided by ALS for all sampling locations, including blind duplicates, method duplicates, and laboratory control samples. The Initial EDD section will be populated in addition to Well_v3, WaterTable_v3, WaterLevel_v3, and FieldResults_v3.

The requirements in the "Final Checklist for Submissions of EDDs to NYSDEC" will be met and the formatted EDDs will be e-mailed to the EQuIS database administrator and the NYSDEC project manager for the site. Once the data is reviewed, a confirmatory message indicating the completeness of the EDDs will be sent by the NYSDEC.

3 SUMMARY AND CONCLUSIONS

Groundwater and surface water quality for the 2018 annual sampling event appeared typical for

the site. Total iron remained elevated both upgradient and downgradient in groundwater and

surface water. In past years, the source of iron in the surface water has been reported from

upstream of the site and downgradient groundwater monitoring wells have had lower

concentrations compared to upgradient and upstream locations. This remains true again this

year.

Typical exceedances of the Part 703 GA standards were consistent with historic data, except for

acetone in MW-15B which was an intra-well maximum.

Several parameters at surface water location SW-2A decreased back to typical levels from

relatively high levels in 2017, namely conductivity, TOC, TDS, total iron, total manganese, and

dissolved manganese.

Upgradient well MW-6B, downgradient wells MW-15B and MW-16B and surface water

locations SW-2A and SW-3A continued to demonstrate statistically significant increasing trends

in TOC; however, the actual concentrations of TOC in the downgradient groundwater wells are

higher (between one and two orders of magnitude higher in some locations) than those found in

the upgradient groundwater and surface water.

Trending in TDS at MW-3B continued to be statistically significant. However, MW-6B is

observed with a statistically significant increasing trend indicating potential sources of TDS from

upgradient of the site. With the inclusion of 2018 data TRP at MW-15B displayed a decreasing

trend for the first time.

Increasing trends in total arsenic were found to be statistically significant in only MW-3B again

this year. Concentrations of total arsenic in upgradient well MW-6B, as well as, at all surface

water locations continue to be below the detection limit since 1997 and 2012, respectively. The

trending at MW-3B continued to weaken for the second straight year with linear regression again

producing a shallower slope for the data set this year as compared to 2017.

The increasing trend in total manganese was found to be statistically significant in both MW-3B and MW-18B in 2018. The increasing trend in upgradient well MW-6B and upgradient surface water sampling location SW-1 also remained statistically significant, indicating the trend may be originating from off-site. Decreasing trends were statistically significant for pH in upgradient monitoring well MW-6B and surface water sampling locations SW-2A, and SW-3A. A statistically significant increasing trend was observed for the most downgradient surface water sampling location SW-5. The surface water pH trends do not appear to be influenced by the groundwater trends.

The post-closure site inspection noted the landfill cap to be in very good condition again this year. There were no leachate seeps identified during the site investigation and the integrity of the final cover system was certified as acceptable.

Q:\Nicklaus Olmsted Buffalo\74-0118 Marilla St 2018 PRR\Report\2018 Annual Report.doc Date: 2/6/2019; Rev 0

APPENDIX A Summary Tables

Marilla Street Landfill

December 2018 Annual Sampling Event Groundwater and Surface Water Analytical Parameters

	Analysis Method ⁽³⁾	Groundwater	Surface Water ⁽²⁾
FIELD PARAMETERS			
Static Water Level	Field	Х	NA
рН	Field	X	Х
Temperature	Field	X	Х
Specific Conductance	Field	X	Х
Turbidity	Field	Χ	Х
WET CHEMISTRY			
Total Organic Carbon (TOC)	SM 5310 B	Х	Х
Total Dissolved Solids (TDS)	SM 2540 C	X	Х
Total Recoverable Phenolics (TRP)	420.4	Χ	Х
METALS - INORGANIC PARAMETERS ⁽¹⁾			
Arsenic - Total and Soluble	6010C	Х	Х
Chromium - Total and Soluble	6010C	X	Х
Cyanide - Total	335.4	X	Х
Iron - Total and Soluble	6010C	X	Х
Lead - Total and Soluble	6010C	X	Х
Manganese - Total and Soluble	6010C	X	Х
Volatile Organic Compounds (VOCs)			
TCL Method 8260B	8260C	Х	Х

Notes:

- Groundwater and surface water samples collected for inorganic analysis are field-filtered and analyzed for soluble inorganics in addition to total inorganics only if field measured turbidity values exceed 50 NTUs.
- (2) Leachate breakouts/seeps are to be analyzed for the same parameters as Surface Water.
- (3) Represents most current laboratory certified methods equivalent to those in the Site Management Plan.

Marilla Street Landfill December 2018 Annual Sampling Event Summary of Field Measurements

Location	Sampling Date	Sampling Time	Temperature (°F)	pH (units)	Specific Conductance (Umhos/cm)	Turbidity (NTU)
MW-2B ⁽¹⁾	12/4/2018	11:15	47.5	11.19	0.55	60
MW-3B ⁽¹⁾	12/4/2018	15:08	45.1	11.32	1.42	3,198
MW-4B	12/4/2018	12:00	49.9	8.11	0.44	21.4
MW-6B ⁽²⁾	12/5/2018	10:10	51.7	7.07	0.96	9.25
MW-7B	12/5/2018	11:40	50.7	11.31	0.77	41.7
MW-15B	12/5/2018	12:37	48.8	12.42	1.91	14.4
MW-16B	12/4/2018	9:28	47.9	11.90	1.09	6.81
MW-18B	12/4/2018	13:05	49.1	8.07	1.64	8.32
SW-1	12/5/2018	15:05	42.5	8.36	0.68	3.94
SW-2A	12/4/2018	10:10	35.7	9.02	0.64	6.65
SW-3A	12/4/2018	14:10	35.2	8.08	0.51	2.54
SW-5	12/5/2018	8:30	38.0	8.64	1.02	3.98

Notes:

- (1) Sample was field filtered for soluble metals since turbidity measured greater than 50 NTU.
- (2) Sample was field filtered for soluble metals for comparison to other filtered samples as background.

Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of Surface Water Analytical Results

Parameter	SW-1	SW-2A	SW-3A	SW-5	Blind Duplicate #2 ⁽³⁾ (SW DUP)	Class "D" Standard ⁽¹⁾⁽²⁾
WATER QUALITY (mg/L or as indicate	ed)					
pH (units)	8.36	9.02	8.08	8.64	8.64	6.0-9.5
Specific Conductance (Umhos/cm)	0.68	0.64	0.51	1.02	1.02	=
Total Organic Carbon	6.0	6.9	7.4	5.9	5.5	-
Total Dissolved Solids	405	425	355	699	695	-
Total Recoverable Phenolics	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	-
TOTAL METALS - INORGANIC PARAM	IETERS (mg/L)					
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	-
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	-
Cyanide	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.022
Iron	0.34	0.63	0.18	0.20	0.12	0.3
Lead	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
Manganese	0.037	0.104	0.033	0.012	0.012	-
SOLUBLE METALS - INORGANIC PAR	RAMETERS (mg/	L)				
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.34
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	Н
Iron	0.1 U	0.19	0.1 U	0.1 U	0.1 U	-
Lead	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	Н
Manganese	0.03	0.091	0.031	0.01 U	0.01 U	-
VOLATILE ORGANIC COMPOUNDS (A	QUEOUS) (μg/L)				
	All U	All U	All U	All U	All U	Variable

Notes

- (1) Class "D" Surface Water Quality Standards/Guidance Value 6 NYCRR Part 703; revised August 1999 and TOGS 1.1.1; last amended June 2004.
- (2) Some Class "D" Standards/Guidance Values are expressed as a function of hardness. Considering the samples were not analyzed for hardness, those guidance values that require a hardness value to calculate a guidance value are indicated with an H.
- (3) Collected Blind Duplicate #2 from SW-5.
- (4) "U" indicates a non-detect value at the detection level listed.

Exceeds Surface Water Quality Standard/Guidance Value.

Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of Historical Groundwater Depths of Shallow Overburden Wells⁽²⁾⁽⁵⁾

Wall ID		101 y 01 1113t0						MM 40D
Well ID	MW-2B	MW-3B ⁽⁴⁾	MW-4B	MW-6B	MW-7B	MW-15B	MW-16B	MW-18B
Riser Elevation ⁽¹⁾	590.86	588.29	591.89	597.92	615.76	586.78	588.09	627.04
Year ⁽³⁾								
Apr-04	7.35	6.11	9.07	13.13	33.68	6.11	4.83	44.80
Jul-05	7.99	7.36	9.78	14.56	34.09	6.56	5.41	45.51
May-06	7.71	6.81	9.53	13.61	33.86	6.42	5.15	45.32
Aug-07	8.27	8.14	10.48	16.40	34.54	6.87	9.03	46.83
May-08	7.42	Note 4	10.35	13.40	33.90	6.47	4.85	44.39
Aug-10	7.58	7.67	9.62	14.29	33.96	6.34	5.08	45.21
May-12	7.33	6.74	9.54	13.22	33.88	6.11	4.98	45.32
Sep-13	7.74	6.49	9.88	14.59	34.09	6.25	5.46	45.37
Jul-14	7.64	6.50	9.06	13.80	34.20	6.77	6.55	44.87
Aug-15	8.40	8.60	10.08	16.00	34.90	6.40	7.41	45.50
Aug-16	9.80	8.40	12.00	16.65	35.00	7.20	6.15	45.50
Aug-17	9.35	7.75	9.60	14.00	34.20	6.30	5.70	45.10
Dec-18	9.55	7.54	9.65	13.05	34.40	5.70	6.10	45.15

Notes:

- (1) Riser elevations and depths for 2004-2006 measured by others based on information presented in the November 2006 Post-Closure Monitoring & Maintenance Program 2006 Annual report by TurnKey Environmental Restoration, LLC. Elevations and depths for 2007-2012 measured by others based on information presented in the June 2012 Post-Closure Monitoring & Maintenance Program 2012 Annual Report by EnSol, Inc.
- (2) Measured in feet below top of inner casing prior to purging/sampling.
- (3) No sampling or gauging was conducted in 2009 or 2011.
- (4) Well MW-3B damaged and not gauged in 2008. Well MW-3B was repaired with new PVC riser in August 2010. The original top of PVC casing elevation for MW-3B (587.70) was used as the reference elevation for water level measurements taken in 2004-2007. The revised top of PVC casing elevation (as shown in the table) was surveyed after the new PVC riser was installed. The revised 2010 elevation is used for all events from 2010 forward.
- (5) The NYSDEC accepted a Petition to Modify Monitoring Requirements in a letter dated August 21, 2015. This petition modified groundwater elevation measurements to only those wells being sampled beginning in 2015. Therefore, only the eight wells required for this year's sampling event are shown in this table.

Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of Historical Groundwater Elevations of Shallow Overburden Wells⁽⁴⁾

		ary or mistor						
Well ID	MW-2B	MW-3B ⁽³⁾	MW-4B	MW-6B	MW-7B	MW-15B	MW-16B	MW-18B
Riser Elevation ⁽¹⁾	590.86	588.29	591.89	597.92	615.76	586.78	588.09	627.04
Year ⁽²⁾								
Apr-04	583.51	581.59	582.82	584.79	582.08	580.67	583.26	582.24
Jul-05	582.87	580.34	582.11	583.36	581.67	580.22	582.68	581.53
May-06	583.15	580.89	582.36	584.31	581.90	580.36	582.94	581.72
Aug-07	582.59	579.56	581.41	581.52	581.22	579.91	579.06	580.21
May-08	583.44	Note 3	581.54	584.52	581.86	580.31	583.24	582.65
Aug-10	583.28	580.62	582.27	583.63	581.80	580.44	583.01	581.83
May-12	583.53	581.55	582.35	584.70	581.88	580.67	583.11	581.72
Sep-13	583.12	581.80	582.01	583.33	581.67	580.53	582.63	581.67
Jul-14	583.22	581.79	582.83	584.12	581.56	580.01	581.54	582.17
Aug-15	582.46	579.69	581.81	581.92	580.86	580.38	580.68	581.54
Aug-16	581.06	579.89	579.89	581.27	580.76	579.58	581.94	581.54
Aug-17	581.51	580.54	582.29	583.92	581.56	580.48	582.39	581.94
Dec-18	581.31	580.75	582.24	584.87	581.36	581.08	581.99	581.89

Notes:

- (1) Riser elevations and depths for 2004-2006 measured by others based on information presented in the November 2006 Post-Closure Monitoring & Maintenance Program 2006 Annual report by TurnKey Environmental Restoration, LLC. Elevations and depths for 2007-2012 measured by others based on information presented in the June 2012 Post-Closure Monitoring & Maintenance Program 2012 Annual Report by EnSol, Inc.
- (2) No sampling or gauging was conducted in 2009 or 2011.
- (3) Well MW-3B damaged and not gauged in 2008. Well MW-3B was repaired with new PVC riser in August 2010. The original top of PVC casing elevation for MW-3B (587.70) was used as the reference elevation for water level measurements taken in 2004-2007. The revised top of PVC casing elevation (as shown in the table) was surveyed after the new PVC riser was installed. The revised 2010 elevation is used for all events from 2010 forward.
- (4) The NYSDEC accepted a Petition to Modify Monitoring Requirements in a letter dated August 21, 2015. This petition modified groundwater elevation measurements to only those wells being sampled beginning in 2015. Therefore, only the eight wells required for this year's sampling event are shown in this table.

Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of Shallow Groundwater Analytical Results

Parameter	MW-2B	MW-3B	MW-3B MW-4B		MW-7B	MW-15B	MW-16B	MW-18B	Blind Duplicate #1 ⁽⁴⁾ (GW-DUP)	Class "GA" Standard ⁽¹⁾	BMC ⁽²⁾	BMC +3SDs ⁽³⁾
WATER QUALITY (mg/L or as indic	ated)											
pH (standard units)	11.19	11.32	8.11	7.07	11.31	12.42	11.90	8.07	8.11	6.5-8.5	7.13	4.50-9.75
Specific Conductance (Umhos/cm)	0.55	1.42	0.44	0.96	0.77	1.91	1.09	1.64	1.64	-	1.12	2.27
Total Organic Carbon	14.4	105	5.3	7.7	46.6	29.6	14.1	19.2	20.2	-	6.55	14.27
Total Dissolved Solids	453	1,560	491	1,180	890	1,280	653	2,790	2,750	500	945	1,360
Total Recoverable Phenolics	0.019	0.740	0.0050 U	0.0050 U	0.550	0.250	0.0050 U	0.0050 U	0.0050 U	0.001	0.0111	0.0511
TOTAL METALS - INORGANIC PAR	AMETERS (mg	/L)										
Arsenic	0.01 U	0.035	0.01 U	0.01 U	0.01 U	0.029	0.01 U	0.022	0.019	0.025	0.00796	0.0183
Chromium	0.01 U	0.053	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05	0.00845	0.0187
Cyanide	0.010 U	0.06 U	0.010 U	0.010 U	0.025	0.010 U	0.032	0.019	0.024	0.2	0.00970	0.013
Iron	1.53	26.2	1.05	2.18	3.27	0.1 U	0.18	0.32	0.64	0.3	1.667	6.327
Lead	0.05 U	0.442	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.025	0.0132	0.0667
Manganese	0.080	0.438	0.625	0.693	0.051	0.01 U	0.01 U	2.34	2.34	0.3	0.352	1.10
SOLUBLE METALS - INORGANIC P	ARAMETERS (mg/L)										
Arsenic	0.01 U	0.033	NA	0.01 U	NA	NA	NA	NA	NA	-	0.00877	0.0172
Chromium	0.01 U	0.029	NA	0.01 U	NA	NA	NA	NA	NA	-	0.0103	0.0117
Iron	0.1 U	3.22	NA	0.13	NA	NA	NA	NA	NA	-	0.346	2.65
Lead	0.05 U	0.219	NA	0.05 U	NA	NA	NA	NA	NA	-	0.0222	0.0909
Manganese	0.01 U	0.059	NA	0.6	NA	NA	NA	NA	NA	-	0.288	0.996
VOLATILE ORGANIC COMPOUNDS	(AQUEOUS)	u g/L) ⁽⁵⁾										
Acetone	24	650	10 U	10 U	21	140	10 U	10 U	10 U	50	10 U	10 U
2-Butanone (MEK)	10 U	100 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50	10 U	10 U
cis-1,2-Dichloroethene	5.0 U	50 U	5.0 U	5.0 U	5.0 U	5.0 U	8.3	5.0 U	5.0 U	60	5 U	5 U
Trichloroethene	5.0 U 50 U 5.0 U 5.0		5.0 U	5.0 U	5.0 U	22	5.0 U	5.0 U	5	5 U	5 U	

Notes

- (1) Class "GA" Groundwater Quality Standards/Guidance Value 6 NYCRR Part 703; revised August 1999 and TOGS 1.1.1; last amended June 2004.
- (2) Value represents the Background Mean Concentration of Well MW-6B.
- (3) Value represents the Background Mean plus 3 standard deviation concentrations of well MW-6B. Plus 3 and minus 3 standard deviations for pH.
- (4) Blind Duplicate #1 was collected from MW-18B.
- (5) Only those parameters detected at a minimum of one sample location are reported in this table.
- (6) "NA" indicates parameter not analyzed at this location or data is not available.

(7) - "U" indicates an analyte not detected at the given method reporting limit. "J" indicates an estimated value due to the concentration between the method detection limit and the method reporting limit.

Exceeds Groundwater Quality Standard/Guidance Value only.

Exceeds Groundwater Quality Standard/Guidance Value only.

Exceeds Background Mean and Groundwater Quality Standard/Guidance Value or just Background Mean if no Standard/Guidance Value exists.

Exceeds Background Mean plus 3 standard deviations and the Groundwater Quality Standard, where one exists, or just the Background Mean plus 3 standard deviations where no Groundwater Quality Standard is present.

Marilla Street Landfill

December 2018 Annual Sampling Event

Parameter Tracking for Moving Average Trend Analysis (MATA)

l <u> </u>		Sampling Event ⁽⁴⁾																Corresponding Increasing Trend?					
Well I.D.	Tracked Parameters	10	02	03	4 4	, 4	20	80	10	12	13	4	15	16	17	18	No. of Tracked	Increasing Trend? ⁽¹⁾	Upgradient		Surface	Water ⁽²⁾	
		Oct-01	Apr-02	Apr-03	Apr-04	May-06	Aug-07	May-08	Aug-10	May-12	Sep-13	Jul-14	Aug-1	Aug-16	Aug-17	Dec-	Events	irena?	Groundwater ⁽⁶⁾ MW-6B	SW-1	SW-2A	SW-3A	SW-5
Shallow Groundwa	ater Monitoring Wells	Ĺ										Ė											
	pH										X		Х	X	Х	X	5	No					
	Total Organic Carbon										X		Х	X	Х	X	5	Yes	Yes	Yes	Yes	Yes	Yes
MW-2B ⁽⁷⁾	Total Recoverable Phenolics										X		Х				2	TBD ⁽³⁾					
WWV ZD	Total Chromium												Х		Х		2	TBD					
	Total Iron												Х	X			2	TBD					
	Total Manganese												X				1	TBD					
	pH		X	Х	X X	()	()			Х	Х		Х		Х	X	11	No					
	Specific Conductance	Х	X	Х	X X	()	()					X					8	No					
	Total Cyanide			X			>								х		3	TBD					
	Total Dissolved Solids		Х	х	x)	()	()	1	Х	X	Х	X	Х	Х	Х	Х	14	Yes	Yes	Yes	Yes	Yes	Yes
	Total Organic Carbon	Х	Х	х	x x	()	()		Х	X	Х	Х	Х	Х	х	Х	15	Yes	Yes	Yes	Yes	Yes	Yes
	Total Recoverable Phenolics	Х	Х	х	x x	()	()		Х	X	Х	Х	Х	Х	Х	Х	15	No					
	Total Arsenic	х	Х	х	x 2	()	()	1	х	Х	Х	Х	Х	х	Х	Х	15	Yes	No	Note 8	Note 8	Note 8	Note 8
	Total Chromium										Х	Х		х	Х	Х	5	No					
MW-3B ⁽⁵⁾	Total Iron										Х	Х	Х	х	х	х	6	No					
	Total Lead										Х	Х	х	х	х	Х	6	No					
	Total Manganese)		Х	X	Х	х	х	х			7	Yes	Yes	Yes	No	No	Yes
	Soluble Arsenic										Х	Х	х	х	х	Х	6	No					
	Soluble Chromium					T					Х	Х	х		х	Х	5	No					
	Soluble Iron						T				Х				х	Х	3	TBD					
	Soluble Lead						T				х	Х			х	х	4	TBD					
	Acetone				T	T	T	T	T	Х	Х	Х	Х	Х	х	Х	7	Yes	Note 8	Note 8	Note 8	Note 8	Note 8
	pН				X												1	TBD					
	Total Organic Carbon			Ħ)	(Ť			t			H				1	TBD					
	Total Recoverable Phenolics)	(T	T	х						l		2	TBD					
MW-4B	Total Iron)	(T	Х					х			3	TBD					
	Total Manganese					T		T	T		Х	Х					2	TBD					
	Soluble Iron			Ħ)	()	(Х								3	TBD					
	pН	х	Х	х	x)	()	()	X		Х	Х	Х	Х	х	Х	Х	15	Yes	No	No	No	No	Yes
	Specific Conductance	х	х	_	x >	_	_	+	T	T	Х	Х	х	х			10	Yes	Yes	No	No	No	Yes
MW-7B	Total Dissolved Solids			-	x 2	-	(t	1	t	Х						5	No					
	Total Organic Carbon	х	Х	-	x 2		()		Х		Х	Х	Х	х	Х	Х	14	No					
	Total Recoverable Phenolics	х	Х	-+	x 2		()	-	+	-	_	_	х	х	Х	х	16	No					
	pН				T	T	Ť	П		Х	+	Х	Х	х	Х	Х	7	Yes	No	No	No	No	Yes
	Specific Conductance	х	Х	х	x)	()	(t	1	Ť	Х		Х	х	Ė		10	Yes	Yes	No	No	No	Yes
1	Total Dissolved Solids			-+	x 2	_	()	X		t	Х	Х	Х	х			10	Yes	Yes	Yes	Yes	Yes	Yes
1	Total Organic Carbon	х	Х	-	x 2	_	()	_	Х	X			Х	х	Х	Х	15	Yes	Yes	Yes	Yes	Yes	Yes
	Total Recoverable Phenolics	Г			T	Ť				Х	+-	Х	Х	х	Х	Х	7	No					
MW-15B	Total Arsenic	1		H)	(>	X	X		_	Х	Х	х	Х	Х	11	Yes	Note 8	Note 8	Note 8	Note 8	Note 8
	Total Iron	1	Х	х	x)	_	_	_									6	No					
	Soluble Iron			_	x 2	_		Х		\dagger	H		H		H		4	TBD					
	Total Manganese	Х	Х	_	x 2	_	_	_	-	╁	\vdash		H		<u> </u>		8	No					
	Soluble Manganese	Х	Х	-	x 2	_	_			t			H				6	No					
	Acetone	Ť	Ť	H	Ť	Ť		+	\dagger	\dagger	H		H		х	х	2	TBD					
			l								1	<u> </u>		_		^	_	100			l		

Marilla Street Landfill

December 2018 Annual Sampling Event

Parameter Tracking for Moving Average Trend Analysis (MATA)

							S	amp	ling	Eve	ent ⁽⁴⁾)						No. of		Corres	sponding	ncreasing	Trend?	
Well I.D.	Tracked Parameters	Oct-01	Apr-02	Apr-03	Apr-04	-05	May-06	g-07	May-08	g-10	May-12	p-13	1-14	g-15	Aug-16	Aug-17	c-18	No. of Tracked Events	Increasing Trend? ⁽¹⁾	Upgradient Groundwater ⁽⁶⁾		Surface	Water ⁽²⁾	
		ő	Αp	Αp	Αp	3	Ma	Αn	Ma	Ρ'n	Ma	Š	3	Ā	٧n	Αn	Ъe	Lveins		MW-6B	SW-1	SW-2A	SW-3A	SW-5
	рН	х		Х	X	Χ	Χ	Χ	X		Х	Х	Х	X	X	Х	Х	14	No					
	Specific Conductance	х	Х	Х	X	Χ	Х						Ī					6	No					
	Total Organic Carbon	х	Х	Х		Χ							Х		Х			6	Yes	Yes	Yes	Yes	Yes	Yes
	Total Recoverable Phenolics	х														X		2	TBD					
MW-16B	Total Dissolved Solids								X									1	TBD					
	Total Chromium				X													1	TBD					
	Total Iron	Х	Х		Х													3	TBD					
	Total Manganese			х	Х				Х									3	TBD					
	TCE						Х	Х			Х	х	Х	Х	Х	Х	Х	9	Yes	Note 8	Note 8	Note 8	Note 8	Note 8
	pH				Χ													1	TBD					
	Specific Conductance	х	Х	Х	Х	Χ	X				Х	Х	Х	Х	Х			11	No					
	Total Dissolved Solids			х	Х	Χ	Х	X	X	Х	Х	х	х	Х	Х	Х	Х	14	No					
MW-18B	Total Organic Carbon	х	Х	Х	X	X		Х		х			х	Х	Х	х	х	12	No					
	Total Recoverable Phenolics	х											T					1	TBD					
	Total Iron									1		х	T					1	TBD					
	Total Manganese	Х	Х	Х	Χ	Х		Χ	Х		T		Х	Х	Χ	Х	Х	12	Yes	Yes	Yes	No	No	Yes

- Notes:

 (1) In accordance with the Statistical Decision Tree (Figure 3-1 of the SMP); calculated moving average trend evaluation tracked for 5 sampling events.

 (2) In accordance with the Statistical Decision Tree (Figure 3-1 of the SMP); corresponding increasing trend in surface water concentration for that parameter.

 (3) "TBD" = trend to be determined on a minimum of 5 tracked sampling events.

- (3) "1BD" = trend to be determined on a minimum or 5 tracked sampling events.

 (4) The annual sampling event was not conducted in 2009 and 2011.

 (5) MW-3B could not be sampled during the May 2008 event. This well was repaired in August 2010.

 (6) Shallow monitoring wells (designated "B") are compared to upgradient monitoring well MW-6B.

 (7) MW-2B previously biennial, not sampled in 2014.

 (8) All data less than the detection limit or changes in the detection limit obscure true data such that trending cannot be assessed.

X Tracked event where reported concentration exceeds Groundwater Quality Standard (GWQS) (if applicable), background mean, and background mean +3 standard deviations.

A blank box indicates the reported concentration does not exceed GWQS, background mean, and background mean +3 standard deviations.

A value of 5 or greater indicates that the parameter has been tracked for 5 or more sampling events per the Statistical Decision Tree.

Yes Indicates the parameter shows increasing trend.

APPENDIX B Field Observation Sheets

	-
Facility: Marilla Street levolfill	Sample Point ID: MW-ZB
Field Personnel: 500	Sample Matrix: GROUND WATER
MONITORTING WELL INSPECTION:	
Date/Time 12-4-18 18:30-4	Cond of seal: £\$Good () Cracked
Prof. Casing/riser height: 3.1' If prof.casing; depth to riser below: 6.5'	Cond of prot. Casing/riser: () Unlocked (≯Good () Loose () Flush Mount () Damaged
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm, 1 0 0
PURGE INFORMATION:	***
Date / Time Initiated: 12-4-18 /// 2000	Date / Time Completed: [2-4-/8] /1:154
Surf. Meas. Pt: (*Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 9.55	Elevation. G/W MSL:
Well Total Depth, Feet: 12.9	Method of Well Purge:
One (1) Riser Volume, Gal: Z.Zgal	Dedicated: Ø/N
Total Volume Purged, Gai: 1.0 gal	Purged To Dryness 🕢 / N
Purge Observations: BROWN TINT	Start //outs Finish ///5 an

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
11:05m		0	46.0		0.39	36.4		
11:10m	····	19 NO. 5		10.93	0.45	60.0		
11:15mm	<i>;</i>	m1.0	47.5	11.19	0.55			
				•				
						· · · · · · · · · · · · · · · · · · ·		

17.9-9.55 = (3.35) (0.163) = 0.55 × 4 = 2.2 gq1

Field Form Revision 0 03/14/02

Facilit	y: <u>Marilla</u>	Street le	nelfill	San	Sample Point ID: MW-313					
·Field F	Personnel:		>	San	nple Matrix:G	BOUND	WATE	R		
MONI	TORTING WE	L INSPECTIO	N:	,						
Date/Ti	ime <u>12-4-</u>	18 13	2:45 pm	<u>7</u> Con	d of seal:)XGoo	od () Gracke ine () Buriec	d i	%		
Prot. C	asing/riser heig	ht: 2.4	· · · · · ·	Con	d of prot. Casing	() Loose	() Flush	Good Mount		
if prot.c	asing; depth to	riser below:	+ 0.	Z ¹	. ·	() Damage	ea			
Gas Me	ter (Calibration	Reading):			_	<u> </u>		-		
Vol. Org	janic Meter (Cal	libration/Readi	ng):	Volat	iles (ppm)	i 0.0	<u>-</u>	;		
	INFORMATIC							- : :		
Date / Ti	ime Initiated:	12-4-1	3/Z:s	Op, Date	/ Time Complete	ıd:	2-4-18	13:00 0		
	as. Pt: () Prot. (Kiser		Diameter, Inche	es:	<u>. Z.,</u>			
initiai Wa	ater Level, Feet	7.54		_ Eleva	tion. G/W MSL:	5				
Well Tota	al Depth, Feet:	12.45	<u> </u>	Metho	d of Well Purge		BAI	LETC		
One (1) F	Riser Volume, G	al: 0-8		Dedic	ated:	O N				
Total Vol	Riser Volume, G Jume Purged, G	al: 1.5			d To Dryness (•			
Purge Ob	servations:	Brown/ye	can TIN	Start	2:50pm	Finish	3:08	S PV1		
PURGE	DATA: (if app		•		·		04	Other		
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Ottlet		
Z.50.		0	43.4	10.37	130	OUEK RAME				
	·					, 1		: 41		

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
Z.5ap		0	43.4	10.37	1.30	OVEKRANE		·
3:08m	<u> </u>	1.5	45.1	11.32	1.42	31984		; (
-	;		·				.	
				·				
			-					

12A5-7.54=(4,91)(0.163)=(0.8)(4)=3.2

· · · · · · · · · · · · · · · · · · ·	TO ODSEIGNATIONS
Facility: Marilla Street level fill	Sample Point I <u>D: MW-413</u>
Field Personnel:	Sample Matrix: AROUNDWATER
MONITORTING WELL INSPECTION:	
Date/Time 12-4-18 / 11:30	Cond of seal: () Good () Cracked % 6kNone () Buried
Prot. Casing/riser height: 3.3	Cond of prot. Casing/riser: () Unlocked (4 Good * CAP () Loose () Flush Mount () Damaged
if prot.casing; depth to riser below:	.4'
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) 1 0 0
PURGE INFORMATION:	
Date / Time Initiated: $\frac{ Z-4-18 }{ I \cdot 4}$	ZA 4 Date / Time Completed: 12-48/12:05 P
Surf. Meas. Pt: (X Prot. Casing () Rise	
Initial Water Level, Feet: 965	Elevation, G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: BAILEL
One (1) Riser Volume, Gal: 1.59 gal	Dedicated: Y N
Total Volume Purged, Gal: ~Z.Z5	Purged To Dryness (Y) N
Purge Observations: AMMONIA ODOR	Start 11. 424 Finish 12:08 p3
PURGE DATA: (if applicable)	Conduct Turb. Other Other
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU)
11.42m 0 47.5	7.93pH
/!/ 1 """	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
11,42m		0	F		0.42	4.1		7.93 _p
12:00		12.0		8.11	644	21.4		
- "	:							
			-					
					·	ř		

19.4-9.65=(9.75)(0.163)=(1.59)(4)=6.36

Facility	: <u>marilla</u>	Street lev	ndfil	San	Sample Point ID: MW-6B						
	ersonnel:	27 <u>2</u>	•		Sample Matrix: GROUNDWATER						
MONIT	ORTING WE	LL INSPECTIO	· N:								
Date/Ti	me 12-5-18	3 19	1:45 m	<u>∽1</u> Con	d of seal: () God	nd () Cracke ne () Burie	d d		<u>%</u>		
Prot. Ca	ısing <i>ir</i> iser heig	tht: 3.73	· ·	Cone	i of prot. Casing	() Loose	() Flush	Mount			
if prot.c	asing; depth to	riser below:	<u></u>	3'	-	() Damage	şu	-			
Gas Mei	er (Calibration	/ Reading):	% Gas:		_	<u></u>		-			
Vol. Org	anic Meter (Ca	libration/Readir	1g):	Vojat	iles (ppm <u>;</u>	10.0	· .	7			
PURGE	INFORMATIO	ON:			•				; ; ,		
Date / Ti	me initiated:	12-5-18	10:00	An Date	Time Complete	d:	12-5-18	10:1	5A~		
Surf. Me	as. Pt: A Prot.	Casing	() Riser	Riser	Diameter, inche	s:	<u>Z</u>		-		
		13.0		Eleva	tion. G/W MSL:	3.		. <u> </u>	-		
Well Tola	il Depth, Feet:	<u>19.Z</u>		Metho	d of Well Purge	:	BAILE	B			
		al: 0.93		Dedic	ated: (19/ N					
Total Vol	ume Purged, G	ial: ~ 1.5		Purge	d To Dryness (Y) N					
Purge Ob	servations:	SULFUR	ODOR	Start	10:0047	Finish	10:13	>AM			
PURGE I	DATA: (if app	licable)					T Other	Other	T		
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other				
0:20m		Ogai	5 0.	There	0.93	1.62		6.93	PIY		
Ollom	<u> </u>	~1.0gal	51.7	7.07	0.96	9.25					
	;										

(19.2-13.05)=(5.2)(0.163)=(0.93)(4)=3.9 (0.20.8.0) page 1 4.04

Facility: <u>Marilla Street levelfill</u>	Sample Point ID: MW-713
Field Personnel: 500	Sample Matrix: GROUNDWATER
MONITORTING WELL INSPECTION:	
Date/Time 12-5-18 1 11:20A	Cond of seal: () Good () Cracked
Prot. Casing/riser height: Z.9	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount
If prot.casing; depth to riser below: $O.\mathcal{E}$	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Galibration/Reading):	Volatiles (ppm; 10-0
PURGE INFORMATION:	·
Date / Time Initiated: 11:30 /12-5-18	Date / Time Completed: 11.451/2-5-18
Surf. Meas. Pt: Prot. Casing () Riser	Riser Diameter, Inches:
nitial Water Level, Feet: 34,4	Elevation. G/W MSL:
Nell Total Depth, Feet: 41.3	Method of Well Purge: BAILER
One (1) Riser Volume, Gal: 47, 1.12	Dedicated: N
Total Volume Purged, Ga <u>i: ~ 1.25</u>	Purged To Dryness (Y) N
urge Observations:	Start 11.30-4 Finish 11.45
PURGE DATA: (if applicable)	u Conduct Turb. Other Other
Time Purge Rate Cumulative Temp. pl (gpm/htz) Volume (S) F (std	units) (Umhos/cm) (NTU)
152 0 517 9	6 0.36 1.57

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
Il 3am		0	51,	9.6	0.36	1,57		
11:40		N1.0	50.7	11.31	0.77	417		
*	;							
			·					
						**,		

41.3-34.4=(6.9)(0.163)=(1.12)(4)=4.5

CIC: C	VD&ED	VATIONS
FIELL	, CDGER	VM I IUITO

	DEINVALIONO
Facility: Marilla Street levelfill	Sample Point ID: MW-1513
Field Personnel:	Sample Matrix: <u>CAROUNDWATER</u>
MONITORTING WELL INSPECTION:	
Date/Time 2-5-18 1 12:000m	Cond of seal: () Good () Cracked
Prot. Casing/riser height: 085	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damagsu
Gas Meter (Calibration/ Reading): % Gas:	%
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; i O.O
PURGE INFORMATION:	1250 17:37
Date / Time Initiated: 12-5-18/12:05	Date / Time Completed: 12-5-18 12:37 pm
Surf. Meas. Pf: Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level. Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 13.5	Method of Well Purge: BAILER
One (1) Riser Volume, Gal: 1, 77	Dedicated: (Y) N
Total Volume Purged, Ga <u>l: ~ 5, 5</u>	Purged To Dryness Y N
ourge Observations:	Start 12:05/m Finish 12:37m
PURGE DATA: (if applicable)	Conduct Turb. Other Other
Time Purge Rate Cumulative Temp. pH	Conduct Turb. Other Other

PURGE	DAIN: (III	ahhu	[Canrel
Time	Purge R	ale	Cumula

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
12:100	(31-11-11-1				2.14	2.9		
17:26P	n	. Ogal Z.5 gal	47.7	12,46	2.10	14.5		
12:39,	· :	25,5 gas	48.8	12.42	1.91	14.4		

13.5-5.7'=(7.8)(0.13)=(1.77)(4)=5.1
PAGE 1

Facility: <u>Marilla Street levolfill</u>	Sample Point I <u>D: MW-16B</u>
Field Personnel:	Sample Matrix: <u>GROUNDWATER</u>
MONITORTING WELL INSPECTION:	·
Date/Time 12-4-18 1 8:40A	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height: 1.74	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below: 0.75	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) 1 0 · O
PURGE INFORMATION:	
Date / Time Initiated: 12-4-18/8:55	Date / Time Completed: 12-4-8, 9:28
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2"
Initial Water Level, Feet: 6.1	Elevation. G/W MSL:
Well Total Depth, Feet: 154	Method of Well Purge: BAILER
One (1) Riser Volume, Gal: 1.5Z	Dedicated: (Y) N
Fotal Volume Purged, Gali: 17.0	Purged To Dryness Y (N
Purge Observations: CLEAR	Start 8:5547 Finish 9:28 mg
_	•

Time	DATA: (if appl Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
8:55m	(Oqui	46.9	11.40	0.87.5			
9:06m	·	~Z.5gan	48.5	11.5Z	1.04 ms	6.4z		
9:194	:	~5.0 gal		I	1.11 MS	6.49		
9:28		~7.0 gal			1.09 25	6.81		

15.4-6.1=(9.3)(0.163)=1.52 × 4=6.1 gar PAGE 1

Field Form Revision 0

03/14/02

FIELD OB	SERVATIONS
Facility: Marilla Street levelfill	Sample Point ID: MW-1873
Field Personnel:	Sample Matrix: GROUNDWATER
MONITORTING WELL INSPECTION:	
Date/Time 12-4-18 112:30 pm	Cond of seal: (**) Good () Cracked% () None () Buried
Prot. Casing/riser height: 1.4	Cond of prot. Casing/riser: () Unlocked Good () Loose () Flush Mount () Damaged
if prot.casing; depth to riser below: 0.04	() Daniages
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; i O. O
PURGE INFORMATION:	
Date / Time Initiated: 12-4-18 /12:37	Date / Time Completed: 12-4-18 1 Completed:
Surf. Meas. Pt: 🏂 Prot. Casing () Riser	Riser Diameter, Inches: 2'
Initial Water Level, Feet: 45.15	Elevation. G/W MSL:
Well Total Depth, Feet: 52.7	Method of Well Purge: BAILER
One (1) Riser Volume, Gal: 1.23	Dedicated: N
Total Volume Purged, Gal: 15.0	Purged To Dryness Y (N)

Time	OATA: (if appl Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
12:40p		0	5v.0	7.68	1.54	1.4		· ·
12:562			17.3	7.98	1.61	5.43		
1:05m			49.1	8.07	1.64	8.3z		
	, ;			·		·		···

527-45.15 = (7.55) (0.163) = (1.23)(4) = 4.9

Facility:	marilla.	Street leu	nd fill		nple Point I <u>D:</u>			<u> </u>	
	rsonnel:		•	Sam	ple Matrix:_ <u>S</u>	JRFAC	EW	TER	
MONITO	ORTING WEL	L INSPECTIO	N: NA						
Date/Tim	12-5-1	<u>0 13</u>	305 pr	Con	d of seal: () Goo () No	id () Cracke ne () Buried	d .	9	<u>6</u>
Prot. Cas	ing/riser helg	ht <u>:</u>	<u>.</u>	Cond	f of prot. Casing	/riser: () Un () Loose () Damage	() Flush	MORUL	
(f prot.cas	sing; depth to	riser below:			· 		~ 	-	
Gas Meter	r (Calibration/	Reading):	% Gas:		- % LEI				
Vol. Organ	nic Meter (Cal	ibration/Readir	ıg):	Vojat	iles (ppm	<u>i</u>	- -	7.	
PURGE I	NFORMATIO	N: NA					•	.:	:
Date / Tim	e Initiated:			_ Date	Time Complete	d:		<u> </u>	-
Surf. Meas	. Pt: () Prot. (Casing	() Riser	Riser	Diameter, Inche	s :	·		-
initial Wate	er Level, Fest:			_ Eleva	tion. G/W MSL:	3			•
				:_	d of Well Purge	: .			•
One (1) Ris	ser Volume, G	al:		Dedic	ated:	Y/N			
rotal Volui	me Purged, G	al:		Purge	d To Dryness	Y/N	•		
orge Obs	ervations:			Start		finish		•	
PURGE DA	ATA: (if appl	icable)		·		To the second	Other	Other	DAL
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Outer	TEMP	o+F
3:05pm	<u> </u>		A.	8.36	0.60	3.94		42.5	
2.00117									
	÷						·		
				·			·		
	·		,						
							· · · · · · · · · · · · · · · · · · ·		

Facility	: <u>Marilla</u>	Street leu	ndfil		nple Point I <u>D:</u>			
Field P	ersonnel:		>	Sam	ple Matrix: <u></u>	ORFACE	WAT	些尺
MONIT	ORTING WEL	L INSPECTIO	N: MA	,				
Date/Ti	me 12-4-	18 11	0:10A	Con	of seal: () Goo () No	od () Cracke one () Buried	d I	
Prot. Ca	.sing/riser heig	ht <u>:</u>	<u>.</u>	Cond	d of prot. Casing	g/riser: () Un () Loose () Damage	() Flush	Wonut
If prot.c	asing; depth to	riser below:			<u>.</u>			_
Gas Met	er (Calibration/	Reading):	% Gas:		_ % LE	L <u> </u>		-
Vol. Org	anic Meter (Cal	ibration/Readir	1g):	Volat	iles (ppm,	<u>i</u>	-	7
PURGE	INFORMATIO	N: NA					•	4
	me initiated:	· <u></u>		Date	/ Time Complete	ed:		<u>.</u>
Surf. Mea	as. Pt: () Prot. (Casing	() Riser	Riser	Diameter, Inche)S:	•	
	ter Level, Feet:		. •	_ Eleva	tion. G/W MSL:			
	il Depth, Feet:			Metho	od of Well Purge	.		
	iser Volume, G			- Dedic	ated:	Y / N	-	
,,,	ume Purged, G			- Purge	d To Dryness	Y/N		
	servations:		-	-				,
_		icahia)						
Time	DATA: (if appl Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
10:10m		_	35.7	9.02	0.64	6.65		
- "	···							
		-						
	<u> </u>						-	,
	· _							

BLACK TAPETUERED

				ODGE!!	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	والشونيس ومر		·
Facility: <u>M</u>	willa.	street leur	offil	Sam	ple Point I <u>D: </u>	5W-3	A	-
Field Personne	el:	<u> </u>).	Sam	pie Point i <u>b:</u>	>UKPA	ACE	- -
MONITORTIN	G WEL	L INSPECTIO	N: NA	t				
Date/Time 2				•	d of seal; () Goo () No	d () Cracke ne () Buried	i	%
Prot Casing/ris	er heigt	nt <u>:</u>		Conc	f of prot, Casing	/riser: () Un () Loose () Damage	() riusn	Good Mount
If prot.casing; d	lepth to	riser below:	·		<u>.</u>			
Gas Meter (Cali	bration/	Reading):	% Gas:		% LEI	<u> </u>	<u> </u>	-
Vol. Organic Me		•	ng):	Volat	iles (ppm <u>;</u>	<u>i </u>	<u>.</u>	÷
PURGE INFOR	OITAM	n: NA					•	
Date / Time Initia	ated:	· <u> </u>		_ Date	Time Complete	d:		<u> </u>
Surf. Meas. Pt: () Prot. C	asing	() Riser	Riser	Diameter, Inche	::	·	
Initial Water Lev				Eleva	tion. G/W MSL:	۵		
Well Total Depth					d of Well Purge) :		
One (1) Riser Vo	•			Dedic	ated:	Y-/ N		
Total Volume Pu				Purge	d To Dryness	Y / N		
Purge Observati				Start		Finish	<u> </u>	•
PURGE DATA:		icable) Cumulative	Temp.	рН	Conduct	Turb.	Other	Other
(дрп	e Rate n/htz)	Volume	MIF	(std units)	(Umhos/cm)	(NTU)	<u></u>	
2:1021	- a va A Re	- Marine des	35.2	8.08	0.5	2.54		
		·						
		<u>-</u>		·		,		
	•		<u> </u>					
			 	<u> </u>				

	-	_			••••	<u>, </u>	<u> </u>	•			
Facilit	y: <u>Marilla</u>	Street lev	ndfil	Sam	ple Point I <u>D:</u>	Sw-:	5.	_			
Field F	Personnel:	27 <u>5</u>)	Sam	Sample Matrix:						
MONI	TORTING WEL	L INSPECTIO	N: MA					•			
Date/Ti	me 12-5-1	8 18	3:30A	<u>∼₁</u> Con	d of seal: () God () No	od () Cracke one () Buriec	i d	%			
Prot. C	asing/riser heigi	nt <u>:</u>	<u>-</u>	Gond	f of prot. Casing	/riser: () Un () Loose () Damage	() Flush	Good Mount			
lf prot.c	asing; depth to	riser below:			<u>.</u>						
Gas Me	ter (Calibration/	Reading):	% Gas:		_ % LE	L!/		_			
Vol. Org	janic Meter (Cal	bration/Readi	ng):	Volat	iles (ppm;	<u>i</u>	<i>.</i>				
PURGE	INFORMATIO	n: MA						·:			
•	me Initiated:	·		_ Date	Time Complete	d:		<u>.</u>			
Surf. Me	as. Pt: () Prot. (asing	() Riser	Riser	Diameter, inche	15:	· .				
nitial Wa	ater Level, Fest:			Eleva	tion, G/W MSL:						
	al Depth, Feet:				d of Well Purge	.					
)ne (1) F	Riser Volume, G	al:		Dedic	ated:	Y/N					
	ume Purged, G			Purge	d To Dryness	Y/N					
urge Ob	servations:			Start		Finish					
_	DATA: (if appl	icable)	•					- 1			
Time	Purge Rate	Cumulative	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other			
i	(gpm/htz)	Volume	- (2)	lain mine)	Authoriti	\					

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
8:30m			38.0	8.4	1.02	3.98		· ·
		-						

Pine Environmental Services LLC

1057 Fast Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 16555

Description MiniRae 3000

Calibrated 12/3/2018 9:11:04AM

Manufacturer Rae Systems

Model Number PGM-7320

Serial Number/ Lot 592-904043

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 23.4

Humidity % 31

Range Acc % 0.0000

Calibration Specifications

Group# 1

Group Name Isobutylene

In Type

PPM

Stated Accy Pct of Reading

100.00

Out Val

Out Type PPM

Reading Acc % 0.0000 Plus/Minus 5.00

Fnd As

100.00

Lft As 100.00

Dev% 0.00%

Pass/Fail Pass

Test Instruments Used During the Calibration

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number

(As Of Cal Entry Date) Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

ROC - 100PPM 100 PPM ISO 593244 MS

Nom In Val / In Val

100.00 / 100.00

ISOBUTYLENE

593244

Pine

31721

11/30/2019

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Mike Santiago

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

0.00%

Pass

Pine Environmental Services, Inc.

Instrument ID 17994

Description LaMotte 2020WE

Calibrated 12/3/2018 8:56:56AM

Manufacturer LaMotte

Model Number 2020WE

Serial Number/Lot 919-1811

Number

Location Rochester, NY

NTU

Department

State Certified

10.00

Status Pass

10.00

Temp °C 23.2

Humidity % 31

		Calib	ration Specific	ations			
	oup# 1			Range Acc % Reading Acc %			
	Name Turbidity Accy Pct of Re			0.00			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.00 / 1.00	NTU	1.00	NTU	1.00	1.00	0.00%	Pass

NTU

10.00

Test Instruments	Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	Manufacturer	Model Number	Serial Number / Lot Number	Next Cal Date / Last Cal Date/ Expiration Date Opened Date
ROC - 0 NTU -	0 NTU TURBIDITY	AMCOCLEAR	17502171		1/31/2019
17502171 ROC - 1 NTU	SOLUTION I NTU TURBIDITY	AMCOCLEAR	8577		7/31/2019
TURB SOL. ROC - 10 NTU	SOLUTION 10 NTU TURBIDITY	AMCOCLEAR	8578		8/30/2019
TURB SOL.	SOLUTION				

Notes about this calibration

10.00 / 10.00

Calibration Result Calibration Successful Who Calibrated Mike Santiago

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 30241

Description Hanna HI 991301

Calibrated 12/3/2018 8:58:30AM

Manufacturer Hanna

Model Number HI 991301

Serial Number/Lot D0079243

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 23.4

Humidity % 31

		Calib	ration Specifica	ations			
Group !	oup# 1 Name PH Accy Pct of Re	ading		Range Acc % Reading Acc % Plus/Minus	3.0000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.01 / 7.01	PH	7.01	PH	7.01	7.01	0.00%	Pass
4.01 / 4.01	PH	4.01	PH	4.01	4.01	0.00%	Pass
Gr	oup# 2			Range Acc %			
	Name Conduct			Reading Acc %			
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.41 / 1.41	ms/cm	1.41	ms/cm	1.41	1.41	0.00%	Pass

Test Instruments	Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	Serial Number / Lot Number	Next Cal Date / Last Cal Date / Expiration Date Opened Date
ROC - 12.88	12.88	Hanna	12.88	0347	6/30/2021
SOLUTION ROC - 7.00	CONDUCTIVITY SOLUTION PH 7.00 BUFFER	Pine	7GH158		8/30/2019
7GH158 ROC - PH 4.00 -	SOLUTION PH 4.00 BUFFER	Environmental Services, Inc. Pine	7GD788	7GD788	4/30/2019
7GD788 ROC- 0.718	0.718 MS/CM CONDUCTIVITY	Environmental Services, Inc. Pine Environmental	8GB715		2/28/2019
COND, SOL ROC-1413 8GB900	STANDARD ROC - COND 1.413	Services, Inc. AquaPhoenix Scientific	31986	8GB900	2/28/2019

Pine Environmental Services LLC

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 30241
Description Hanna HI 991301
Calibrated 12/3/2018 8:58:30AM

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Mike Santiago

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

APPENDIX C

Laboratory Reports and Chain of Custody Forms

Service Request No:R1811907

Mr. Samuel Daigler Daigler Engineering 2620 Grand Island Blvd. Grand Island, NY 14072

Laboratory Results for: MARILLA STREET LF

Dear Mr.Daigler,

Enclosed are the results of the sample(s) submitted to our laboratory December 07, 2018 For your reference, these analyses have been assigned our service request number **R1811907**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Brady.Kalkman@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Gardy Kullen

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Daigler EngineeringService Request: R1811907Project:MARILLA STREET LFDate Received: 12/07/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty two water samples were received for analysis at ALS Environmental on 12/07/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 0 to 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature. If any samples were received for the analysis of pH, chlorine residual, sulfite, dissolved oxygen, or ferrous iron, the samples were analyzed past their holding time expiration since these analyses are required to be analyzed within 15 minutes of sampling.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

Method 335.4, R1811907-013: The Method Reporting Limit (MRL) was elevated due to reactivity of sample.

Volatiles by GC/MS:

Method 8260C, R1811907-013: Sample(s) required dilution due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

Approved by _____

Date 12/21/2018

CLIENT ID: SW-1		Lab	ID: R1811	907-001					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Carbon, Total Organic (TOC)	6.0		0.05	1.0	mg/L	SM 5310 C-2000 (2011)			
Solids, Total Dissolved (TDS)	405		4	10	mg/L	SM 2540 C-1997 (2011)			
Iron, Total	340		50	100	ug/L	6010C			
Manganese, Total	37		6	10	ug/L	6010C			
CLIENT ID: SW-1 Diss		Lab	ID: R1811	907-002					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Manganese, Dissolved	30		6	10	ug/L	6010C			
CLIENT ID: SW-2A		Lab	ID: R1811	907-003					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Carbon, Total Organic (TOC)	6.9		0.05	1.0	mg/L	SM 5310 C-2000 (2011)			
Solids, Total Dissolved (TDS)	425		4	10	mg/L	SM 2540 C-1997 (2011)			
Iron, Total	630		50	100	ug/L	6010C			
Manganese, Total	104		6	10	ug/L	6010C			
CLIENT ID: SW-2A Diss		Lab	ID: R1811	907-004					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Iron, Dissolved	190		50	100	ug/L	6010C			
Manganese, Dissolved	91		6	10	ug/L	6010C			
CLIENT ID: SW-3A		Lab	ID: R1811	907-005					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Carbon, Total Organic (TOC)	7.4		0.05	1.0	mg/L	SM 5310 C-2000 (2011)			
Solids, Total Dissolved (TDS)	355		4	10	mg/L	SM 2540 C-1997 (2011)			
Iron, Total	180		50	100	ug/L	6010C			
Manganese, Total	33		6	10	ug/L	6010C			
CLIENT ID: SW-3A Diss	Lab ID: R1811907-006								
Analyte	Results	Flag	MDL	MRL	Units	Method			
Manganese, Dissolved	31		6	10	ug/L	6010C			
CLIENT ID: SW-5 Lab ID: R1811907-007									
Analyte	Results	Flag	MDL	MRL	Units	Method			
Carbon, Total Organic (TOC)	5.9		0.05	1.0	mg/L	SM 5310 C-2000 (2011)			
Solids, Total Dissolved (TDS)	699		4	10	mg/L	SM 2540 C-1997 (2011)			
Iron, Total	200		50	100	ug/L	6010C			
Manganese, Total	12		6	10	ug/L	6010C			

CLIENT ID: SW-DUP	Lab ID: R1811907-009						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	5.5		0.05	1.0	mg/L	SM 5310 C-2000 (2011)	
Solids, Total Dissolved (TDS)	695		4	10	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	120		50	100	ug/L	6010C	
Manganese, Total	12		6	10	ug/L	6010C	
CLIENT ID: MW-2B	Lab ID: R1811907-011						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	14.4		0.05	1.0	mg/L	SM 5310 C-2000 (2011)	
Phenolics, Total Recoverable	0.019		0.002	0.010	mg/L	420.4	
Solids, Total Dissolved (TDS)	453		4	10	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	1530		50	100	ug/L	6010C	
Manganese, Total	80		6	10	ug/L	6010C	
Acetone	24		2.1	10	ug/L	8260C	
CLIENT ID: MW-3B		Lab	ID: R1811	907-013			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	105		0.5	10	mg/L	SM 5310 C-2000 (2011)	
Phenolics, Total Recoverable	0.74		0.02	0.10	mg/L	420.4	
Solids, Total Dissolved (TDS)	1560		8	20	mg/L	SM 2540 C-1997 (2011)	
Arsenic, Total	35		4	10	ug/L	6010C	
Chromium, Total	53		2	10	ug/L	6010C	
Iron, Total	26200		50	100	ug/L	6010C	
Lead, Total	442		3	50	ug/L	6010C	
Manganese, Total	438		6	10	ug/L	6010C	
Acetone	650		21	100	ug/L	8260C	
CLIENT ID: MW-3B Diss		Lab	ID: R1811	907-014			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Arsenic, Dissolved	33		4	10	ug/L	6010C	
Chromium, Dissolved	29		2	10	ug/L	6010C	
Iron, Dissolved	3220		50	100	ug/L	6010C	
Lead, Dissolved	219		3	50	ug/L	6010C	
Manganese, Dissolved	59		6	10	ug/L	6010C	
CLIENT ID: MW-4B	Lab ID: R1811907-015						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	5.3		0.05	1.0	mg/L	SM 5310 C-2000 (2011)	
Solids, Total Dissolved (TDS)	491		4	10	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	1050 5 c	of 119	50	100	ug/L	6010C	

CLIENT ID: MW-4B	Lab ID: R1811907-015						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Manganese, Total	625		6	10	ug/L	6010C	
CLIENT ID: MW-6B		Lab	ID: R1811	907-016			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	7.7		0.05	1.0	mg/L	SM 5310 C-2000 (2011)	
Solids, Total Dissolved (TDS)	1180		4	10	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	2180		50	100	ug/L	6010C	
Manganese, Total	693		6	10	ug/L	6010C	
CLIENT ID: MW-6B Diss		Lab	ID: R1811	907-017			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Iron, Dissolved	130		50	100	ug/L	6010C	
Manganese, Dissolved	600		6	10	ug/L	6010C	
CLIENT ID: MW-7B		Lab	ID: R1811	907-018			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	46.6		0.3	5.0	mg/L	SM 5310 C-2000 (2011)	
Cyanide, Total	0.025		0.002	0.010	mg/L	335.4	
Phenolics, Total Recoverable	0.55		0.02	0.10	mg/L	420.4	
Solids, Total Dissolved (TDS)	890		8	20	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	3270		50	100	ug/L	6010C	
Manganese, Total	51		6	10	ug/L	6010C	
Acetone	21		2.1	10	ug/L	8260C	
CLIENT ID: MW-15B		Lab	ID: R1811	907-019			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	29.6		0.3	5.0	mg/L	SM 5310 C-2000 (2011)	
Phenolics, Total Recoverable	0.25		0.02	0.10	mg/L	420.4	
Solids, Total Dissolved (TDS)	1280		11	30	mg/L	SM 2540 C-1997 (2011)	
Arsenic, Total	29		4	10	ug/L	6010C	
Acetone	140		2.1	10	ug/L	8260C	
CLIENT ID: MW-16B			ID: R1811	907-020			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Carbon, Total Organic (TOC)	14.1		0.05	1.0	mg/L	SM 5310 C-2000 (2011)	
Cyanide, Total	0.032		0.002	0.010	mg/L	335.4	
Solids, Total Dissolved (TDS)	653		4	10	mg/L	SM 2540 C-1997 (2011)	
Iron, Total	180		50	100	ug/L	6010C	
Trichloroethene (TCE)	22		0.20	5.0	ug/L	8260C	

CLIENT ID: MW-16B	Lab ID: R1811907-020					
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	8.3		0.26	5.0	ug/L	8260C
CLIENT ID: MW-18B	Lab ID: R1811907-021					
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic (TOC)	19.2		0.05	1.0	mg/L	SM 5310 C-2000 (2011)
Cyanide, Total	0.019		0.002	0.010	mg/L	335.4
Solids, Total Dissolved (TDS)	2790		8	20	mg/L	SM 2540 C-1997 (2011)
Arsenic, Total	22		4	10	ug/L	6010C
Iron, Total	320		50	100	ug/L	6010C
Manganese, Total	2340		6	10	ug/L	6010C

CLIENT ID: GW-DUP						
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic (TOC)	20.2		0.05	1.0	mg/L	SM 5310 C-2000 (2011)
Cyanide, Total	0.024		0.002	0.010	mg/L	335.4
Solids, Total Dissolved (TDS)	2750		8	20	mg/L	SM 2540 C-1997 (2011)
Arsenic, Total	19		4	10	ug/L	6010C
Iron, Total	640		50	100	ug/L	6010C
Manganese, Total	2340		6	10	ug/L	6010C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Daigler Engineering
Project: MARILLA STREET LF

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1811907-001	SW-1	12/5/2018	1505
R1811907-002	SW-1 Diss	12/5/2018	1505
R1811907-003	SW-2A	12/4/2018	1020
R1811907-004	SW-2A Diss	12/4/2018	1020
R1811907-005	SW-3A	12/4/2018	1415
R1811907-006	SW-3A Diss	12/4/2018	1415
R1811907-007	SW-5	12/5/2018	0830
R1811907-008	SW-5 Diss	12/5/2018	0830
R1811907-009	SW-DUP		
R1811907-010	SW-DUP Diss		
R1811907-011	MW-2B	12/4/2018	1615
R1811907-012	MW-2B Diss	12/4/2018	1615
R1811907-013	MW-3B	12/5/2018	1430
R1811907-014	MW-3B Diss	12/5/2018	1430
R1811907-015	MW-4B	12/4/2018	1545
R1811907-016	MW-6B	12/5/2018	1045
R1811907-017	MW-6B Diss	12/6/2018	1000
R1811907-018	MW-7B	12/5/2018	1345
R1811907-019	MW-15B	12/5/2018	1300
R1811907-020	MW-16B	12/4/2018	0935
R1811907-021	MW-18B	12/4/2018	1315
R1811907-022	GW-DUP		

Distribution: White - Lab Copy; Yellow - Return to Originator

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

54511

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE Project Number ANALYSIS REQUESTED (Include Method Number and Container Preservative) MARILLA STREET LE Project Manage Report CC **PRESERVATIVE** BETHANY Acaulsto Preservative Kev 0. NONE 1. HCL ENGINEERING P.L DAIGLER NUMBER OF CONTAINERS 2. HNO₃ 3. H₂SO₄ 4. NaOH 76ZD GRAND ISLAND 5. Zn. Acetate \$0.00 0.00 \$ 6. MeOH 7. NaHSO4 SAMO JADENV EGRLOM 8. Other (716)773-6872 REMARKS/ DAKGLER ALTERNATE DESCRIPTION SAMPLING FOR OFFICE USE ONLY LAB ID **CLIENT SAMPLE ID** DATE TIME MATRIX WATER 3:050M 193 χ 8 1.5- ZA 12-4-18 KO: ZOAM X 8 X Z:1500 8:30AM 8 メ 12-5-18 SU- DUP SPECIAL INSTRUCTIONS/COMMENTS **TURNAROUND REQUIREMENTS** REPORT REQUIREMENTS INVOICE INFORMATION Motals As, Cr, Fe, Pb, Mn RUSH (SURCHARGES APPLY) I. Results Only PO# II. Results + QC Summaries 1 day _____2 day _____3 day (LCS, DUP, MS/MSD as required) 4 day ____5 day BILL TO: Standard (10 business days-No Surcharge) IN. Results + QC and Calibration Summarine REQUESTED REPORT DATE IV. Data Validation Report with Raw Data See QAPP STATE WHERE SAMPLES WERE COLLECTED MARYLA ST LF Yes _ RELINQUISHED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY Signature Signature Signature Signature R1811907 Printed Name Printed Name DAIGKER Daigler Engineering MARILLA STREET LF Firm Flore PARLER ENGINEERING Date/Time Date/Time Date/Time 7:00PM

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE Project Number Project Name ANALYSIS REQUESTED (Include Method Number and Container Preservative) MARILLA STREET LF Project Manager Report CC PRESERVATIVE BETHANY ACQUISTO Company/Address Preservative Key 0. NONE DAIGLER ENGINEERING. P.C. NUMBER OF CONTAINERS HCL 2. HNO₃ 2620 GRAND ISLAND BLUD 3. H₂SO₄ 4. NaOH 5. Zn. Acetate GRAND ISLAND NY 14072 6. MeOH 7. NaHSO4 SAMO JADENVEGR.COM 8. Other R REMARKS/ DAIGLER SAM ALTERNATE DESCRIPTION FOR OFFICE USE SAMPLING ONLY LAB ID **CLIENT SAMPLE ID** DATE TIME **MATRIX** CALCAL В X MW-ZB 4:15pm X X MW-3B Z:300M 3:45 PM X X MW- 4B X mw-6B 12-5-18 10:45 AM 8 MW-7B 12-5-18 1:450m 7 MW-15B 7 1:0000 MU-15B (M.S.) X 1.000m S MW- 15B (M.S.D.) 1:007~ 9:35 AM mw-16B 12-4-18 MIN-18B X 12-4-18 11:1500 GW-DUP SPECIAL INSTRUCTIONS/COMMENTS **TURNAROUND REQUIREMENTS** REPORT REQUIREMENTS INVOICE INFORMATION RUSH (SURCHARGES APPLY) I. Results Only As, Cr. Fe, Pb, Mm PO # II. Results + QC Summaries . 1 day _____2 day _____3 day MWGB - DISSOCUED METALD SAMPLED ON 12-6-18 @ 10:00AM (LCS, DUP, MS/MSD as required) 4 day ____5 day BILL TO: . Standard (10 business days-No Surcharge) III. Results + OC and Calibration Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data See QAPP STATE WHERE SAMPLES WERE COLLECTED MARILLA ST LF ____Yes __ RELINQUISHED BY RECEIVED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY Signature Signature Signature Printed Name Printed Name Printed Name 5 Tregoy O, Esmerian Printed Name

CAM DAIGHEIR R1811907 Firm Fkm BAGLER ENGINEERING

Date/Time

Date/Time

Z':∪∪p∧

Date/Time

19700

Date/Time

A											K	781	1907		E
eso		Cooler	Recei	nt ar	ıd Pre	eserv	atio	n Che	eck F	orm	MAR	er Engin LLA STR	eering EET LF	•	IJ
(AL	S) Databa			-				_			_ IIII				
roject/Clie	ent Daigle	r Engine	er m	ك	_Folder						`				 . ce At 188
Cooler receive	ed on d	8	by: <u>∫V</u>		า	COU	RIER:	ALS	UPS	(FEDE	X VEL	OCITY	CLIENT		
I Were Cu	istody seals on	outside of coole	er?	T(Y	N	5a	Perch	lorate s	amples	have red	uired he	adspac	e? Y	N (N	
2 Custody	papers prope	rly completed (in	ık, signe	d)? (Y	N	5b	Did V	OA via	ls, Alk,	or Sulfid	e have si	g* bub	bles? Y	M, M	A
3 Did all bo	ottles arrive in	good condition	(unbrok	en)? Y	N	6	Where	did the	bottles	originat	e?	(ALS/	ROC CI	LIENT	
4 Circle:	Wet Ice Dry	Ice Gel packs	prese	ent? Y	N	7	Soil V	OA rec	eived a	s: B	ılk E	core	5 <u>0</u> 35set	(NA	
. Temperatur	re Readings	Date: 12-7	18 -	Γime: C	9:20		ID:	IR#7	IR#10		From	Temp	Blank S	ample B	ottle
Observed Te		1.6		7											
Correction F		464	10	.4											
Corrected Te		26	17	<u> </u>											
	Type of bottle	centrul.	Q (0	at full	21									· · · · · · · · · · · · · · · · · · ·	
Within 0-6°		(Y)N		N		Y]	N	Y	N	Y	N	Y	N	Y N	
	e samples froz	ten? Y N		YN			N	Y	N	Y	N	Y	N	Y N	
		note packing/ic	e condi	tion:		Ic	ce melt	ed P	oorly P	acked (d	escribed	below)) Sam	ne Day R	tule
	Approval to R			Standi	ing Appr	oval	Client	aware	at drop	-off C	ient noti	fied by	":		_
			R-00			•	12776		102-27	-					
All samples 5035 sample	held in storag		KUU	by	$-\Pi L$	on on	, .,,	2 at 1	<u>) (</u>						
DOOD DUNNET	es placea in se	orage rocation.													
							165.531.65					7		L. ROYA	25331572
Cooler Bro	eakdown/Prese	ervation Check**	: Date	: <u> </u>	10-18	~	Time:	1113	5	by:		Ž			
Cooler Bre	eakdown/Prese	ervation Check**	: Date (i.e. anal	: <u> 20</u> - lysis, pr	eservatio	on, etc.		W 3	5	by:	NO	Ž			
Cooler Bre 9. V	eakdown/Prese Vere all bottle Did all bottle la	ervation Check** labels complete of the comple	: Date (i.e. anal ree with	: <u> </u>	eservation papers?	on, etc.		101 3	5	by:		2			<u> अक्टोड्</u>
Cooler Bre 9. V 10. D 11. V 12. V	eakdown/Prese Were all bottle Did all bottle la Were correct co Were 5035 vial	ervation Check** labels complete of bels and tags ago ontainers used for s acceptable (no	f: Date (i.e. anal ree with rest the test extra lab	: 0- lysis, pr custody is indica bels, no	eservation y papers? ated? t leaking	on, etc. ? g)?)?		2 2 2	ES ES ES	NO NO NO NO	2		 	
Cooler Bre 9. V 10. D 11. V 12. V	eakdown/Prese Were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C	ervation Check** labels complete obels and tags agreement and tags agreement acceptable (no cassettes / Tubes	f: Date (i.e. anal ree with rest the test extra late Intact v	: O- lysis, pr custody is indica pels, no	eservation y papers? ated? t leaking Car	on, etc. ? g)? nisters)?	ized	2 2 3	ES ES ES Tedlar®	NO NO NO NO Bags Inf			A A	201
Cooler Bre 9. V 10. D 11. V 12. V	eakdown/Prese Were all bottle la Did all bottle la Were correct co Were 5035 vial Air Samples: C	ervation Check** labels complete of bels and tags ago ontainers used for s acceptable (no	f: Date (i.e. anal ree with r the test extra lat Intact w	: O- lysis, pr custody is indica pels, no with MS	eservation y papers? ated? t leaking	on, etc. ? g)? nisters)?		Samp	ES ES ES Tedlar®	NO NO NO NO Bags Inf	L	ot Added	Fin	
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete delbels and tags agreement acceptable (no cassettes / Tubes Reagent	f: Date (i.e. anal ree with rest the test extra late Intact v	: O- lysis, pr custody is indica pels, no	eservation y papers? ated? t leaking Car Lot Reco	on, etc. ? g)? nisters l eived)?	ized Exp	2 2 3	ES ES ES Tedlar®	NO NO NO NO Bags Inf	L	ot Added	Fin	
Cooler Bre 9. V 10. D 11. V 12. V 13. A pH ≥12	eakdown/Prese Were all bottle la Did all bottle la Were correct co Were 5035 vial Air Samples: C	ervation Check** labels complete debels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH	f: Date (i.e. anal ree with r the test extra lat Intact w	lysis, procustody is indicated; no with MS	reservation papers? ated? It leaking Car Lot Reco	on, etc. ? g)? nisters l eived)?	ized Exp	Samp	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf	L.	van Barok	pН	·
Cooler Bre 9. V 10. D 11. V 12. V 13. A pH ≥12 ≤2	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete delbels and tags agreement acceptable (no cassettes / Tubes Reagent	f: Date (i.e. anal ree with r the test extra lat Intact w	:	eservation y papers? ated? t leaking Car Lot Reco	on, etc. ? g)? nisters l)?	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	L.	1	pН	·
Cooler Bre 9. V 10. D 11. V 12. V 13. A pH ≥12	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete debels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3	f: Date (i.e. anal ree with r the test extra lat Intact w	: O- lysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record 17091	on, etc. ? g)? nisters leived)? Pressur	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	L.	van Barok	pН	·
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete of the labels and tags agontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	f: Date (i.e. anal ree with r the test extra lat Intact w	ysis, pr custody is indica pels, no with MS	reservation y papers? ated? t leaking S? Car Lot Rece 93395 117091 193986	on, etc. ? t)? nisters leived fy for 30)? Pressur	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	L.	van Barok	pН	·
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete abels and tags agrontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN,	r: Date (i.e. analaree with r the test extra lab Intact w Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation y papers? ated? t leaking S? Car Lot Rece 93395 117091 19398 No=Notif	on, etc. ? t)? nisters leived fy for 3eact PM t	Pressur	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	L.	van Barok	pН	·
Cooler Bre 9. V 10. E 11. V 12. V 13. A PH ≥12 ≤2 ≤4 5-9 Residual Chlorine	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete dels and tags agrontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625,	f: Date (i.e. anal ree with r the test extra lat Intact w	ysis, pr custody is indicated, no with MS	reservation y papers? ated? t leaking S? Car Lot Rece 93395 117091 193986	on, etc. ? t)? nisters leived fy for 30 act PM t (625, 60	Pressur day to add 8,	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	L.	van Barok	pН	·
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete dels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522	r: Date (i.e. analaree with r the test extra lab Intact w Preserv Yes	ysis, pr custody is indicated, no with MS	reservation reserv	on, etc. ? t)? nisters leived fy for 30 act PM t (625, 60	Pressur day to add 8,	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	B	00 83806 E1210-18	μης 10 Α Δη	·
Cooler Bre 9. V 10. E 11. V 12. V 13. A PH ≥12 ≤2 ≤4 5-9 Residual Chlorine	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete dels and tags agrontainers used for acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625,	r: Date (i.e. analaree with r the test extra lab Intact w Preserv Yes	ysis, pr custody is indicated, no with MS	reservation reserv	on, etc. ? t)? nisters leived fy for 30 act PM t (625, 60	Pressur day to add 8,	ized Exp	Samp Adjus	ES ES ES Tedlar® ole ID sted	NO NO NO NO Bags Inf Vol. Added	B B B B B B B B B B B B B B B B B B B	D BABOO E pa/V-18	pH	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added	e tested samples	BO BOBOG E pa/V-18 before analysis with chemica	pH	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	BO BOBOG E pa/V-18 before analysis with chemica	pH	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥ 12 ≤ 2 ≤ 2 < 4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	BO BOBOG E pa/V-18 before analysis with chemica	pH	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete debels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	before analysis with chemicals).	pH D All is. I preserva	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	before analysis with chemicals).	pH D All is. Il preserva	Z 2
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥ 12 ≤ 2 ≤ 2 < 4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t (625, 60) orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	before analysis with chemicals).	pH D All is. Is. I preserva BULK FLDT	23
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥ 12 ≤ 2 ≤ 2 < 4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t 625, 60 orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	before analysis with chemicals). CLRES DO HPROD	pH DAII Sis. Il preserva BULK FLDT HGFB	tives
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t 625, 60 orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Puth	e tested samples	before analysis with chemical sylvanian before analysis with chemical before analysis before a	BULK FLDT HGFB LL3541	tives
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t 625, 60 orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Pull 4 Not to b ttles of all	e tested samples	before analysis with chemical structure of the chemical structure of t	BULK FLDT HGFB LL3541 SUB	tives
Cooler Bre 9. V 10. E 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	rvation Check** labels complete of the labels and tags agrontainers used for sacceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r: Date (i.e. analy ree with r the test extra lab Intact v Preserv Yes	ysis, pr custody is indica pels, no with MS red? No	reservation papers? ated? t leaking s? Car Lot Record Page 17 19 19 19 19 19 19 19 19 19 19 19 19 19	on, etc.?? g)? nisters leived fy for 3. act PM t 625, 60 orbic (ph	Pressur day to add 8, nenol).	ized Exp ID/19 ID/19 ID/19	Samp Adjus Ol3, O	TES TES TES Tedlar® ole ID sted As and 160 wise, all be ecked (not	NO NO NO NO Bags Inf Vol. Added 5.75#1 Pull 4 Not to b ttles of all	e tested samples	before analysis with chemical sylvanian before analysis with chemical before analysis before a	BULK FLDT HGFB LL3541	tives

PC Secondary Review:

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF

Sample Name: SW-1 Date Collected: 12/5/18

Lab Code: R1811907-001 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

335.4 GNITAJOUPPI GNITAJOUPPI

420.4 BBOWE

6010C KMCLAEN LHERRING

8260C FNAEGLER

SM 2540 C-1997(2011) KWONG

SM 5310 C-2000(2011) CWOODS

Sample Name: SW-1 Diss Date Collected: 12/5/18

Lab Code: R1811907-002 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6010C KMCLAEN LHERRING

Sample Name: SW-2A Date Collected: 12/4/18

Lab Code: R1811907-003 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

335.4 GNITAJOUPPI GNITAJOUPPI

420.4 BBOWE

6010C KMCLAEN LHERRING

8260C FNAEGLER

SM 2540 C-1997(2011) KWONG

SM 5310 C-2000(2011) CWOODS

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Service Request: R1811907 **Daigler Engineering**

Project: MARILLA STREET LF

Sample Name: SW-2A Diss **Date Collected:** 12/4/18

Lab Code: R1811907-004 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

6010C **KMCLAEN LHERRING**

Sample Name: SW-3A **Date Collected:** 12/4/18

Lab Code: R1811907-005 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

335.4 **GNITAJOUPPI GNITAJOUPPI**

420.4 **BBOWE**

6010C **KMCLAEN LHERRING**

8260C **FNAEGLER**

KWONG SM 2540 C-1997(2011)

SM 5310 C-2000(2011) **CWOODS**

Sample Name: SW-3A Diss **Date Collected:** 12/4/18

Lab Code: R1811907-006 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By **Analysis Method Extracted/Digested By**

6010C **KMCLAEN LHERRING**

Sample Name: SW-5 **Date Collected:** 12/5/18

Lab Code: R1811907-007 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

335.4 **GNITAJOUPPI GNITAJOUPPI**

420.4 **BBOWE**

6010C **KMCLAEN LHERRING**

FNAEGLER 8260C

KWONG SM 2540 C-1997(2011)

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF

Sample Name: SW-5 Date Collected: 12/5/18

Lab Code: R1811907-007 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

SM 5310 C-2000(2011) CWOODS

Sample Name: SW-5 Diss Date Collected: 12/5/18

Lab Code: R1811907-008 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6010C KMCLAEN LHERRING

Sample Name: SW-DUP Date Collected: NA

Lab Code: R1811907-009 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

335.4 GNITAJOUPPI GNITAJOUPPI

420.4 BBOWE

6010C KMCLAEN LHERRING

8260C FNAEGLER

SM 2540 C-1997(2011) KWONG

SM 5310 C-2000(2011) CWOODS

Sample Name: SW-DUP Diss Date Collected: NA

Lab Code: R1811907-010 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6010C KMCLAEN LHERRING

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Service Request: R1811907 **Daigler Engineering**

Project: MARILLA STREET LF

Sample Name: MW-2B **Date Collected:** 12/4/18

Lab Code: R1811907-011 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method

335.4 **GNITAJOUPPI GNITAJOUPPI**

420.4 **BBOWE**

6010C **LHERRING KMCLAEN**

8260C **FNAEGLER**

SM 2540 C-1997(2011) **KWONG**

CWOODS SM 5310 C-2000(2011)

Sample Name: MW-2B Diss **Date Collected:** 12/4/18

Lab Code: R1811907-012 **Date Received:** 12/7/18 **Sample Matrix:** Water

Analysis Method Extracted/Digested By 6010C **KMCLAEN LHERRING**

Sample Name: MW-3B **Date Collected:** 12/5/18

Lab Code: R1811907-013 **Date Received:** 12/7/18

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

GNITAJOUPPI 335.4 **GNITAJOUPPI**

420.4 **BBOWE** 6010C **KMCLAEN LHERRING**

8260C **FNAEGLER**

SM 2540 C-1997(2011) **KWONG**

CWOODS SM 5310 C-2000(2011)

Analyzed By

Analyst Summary report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Name: MW-3B Diss Date Collected: 12/5/18

Lab Code: R1811907-014 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6010C KMCLAEN LHERRING

Sample Name: MW-4B Date Collected: 12/4/18

Lab Code: R1811907-015 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

335.4 GNITAJOUPPI GNITAJOUPPI

420.4 BBOWE

6010C KMCLAEN LHERRING

8260C FNAEGLER

SM 2540 C-1997(2011) KWONG

SM 5310 C-2000(2011) CWOODS

Sample Name: MW-6B Date Collected: 12/5/18

Lab Code: R1811907-016 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method

335.4

GNITAJOUPPI

420.4

6010C

KMCLAEN

KMCLAEN

KWONG

KWONG

SM 5310 C-2000(2011) CWOODS

Service Request: R1811907

Analyst Summary report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Name: MW-6B Diss Date Collected: 12/6/18

Lab Code: R1811907-017 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6010C KMCLAEN LHERRING

Sample Name: MW-7B Date Collected: 12/5/18

Lab Code: R1811907-018 **Date Received:** 12/7/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

335.4 GNITAJOUPPI GNITAJOUPPI

420.4 BBOWE

6010C KMCLAEN LHERRING

8260C FNAEGLER

SM 2540 C-1997(2011) KWONG

Sample Name: MW-15B Date Collected: 12/5/18

Lab Code: R1811907-019 **Date Received:** 12/7/18

Sample Matrix: Water

SM 5310 C-2000(2011)

Analysis Method

Extracted/Digested By

GNITAJOUPPI

GNITAJOUPPI

420.4

KMCLAEN

Analyzed By

GNITAJOUPPI

BBOWE

LHERRING

6010C KMCLAEN LHERRING 8260C FNAEGLER

8200C FINAEGLER SM 2540 C-1997(2011) KWONG

SM 5310 C-2000(2011) CWOODS

CWOODS

Service Request: R1811907

Analyst Summary report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF

 Sample Name:
 MW-16B
 Date Collected: 12/4/18

 Lab Code:
 R1811907-020
 Date Received: 12/7/18

Sample Matrix: Water

Analysis Method

Sextracted/Digested By

GNITAJOUPPI

GNITAJOUPPI

BBOWE

6010C

KMCLAEN

KMCLAEN

FNAEGLER

KWONG

CWOODS

SM 5310 C-2000(2011) CWOODS

 Sample Name:
 MW-18B
 Date Collected: 12/4/18

 Lab Code:
 R1811907-021
 Date Received: 12/7/18

Sample Matrix: Water

SM 2540 C-1997(2011)

Analysis MethodExtracted/Digested ByAnalyzed By335.4GNITAJOUPPIGNITAJOUPPI420.4BBOWE6010CKMCLAENNMANSEN8260CFNAEGLERSM 2540 C-1997(2011)KWONG

Sample Name: GW-DUP Date Collected: NA

Lab Code: R1811907-022 **Date Received:** 12/7/18

Sample Matrix: Water

SM 5310 C-2000(2011)

Analyzed By Analysis Method Extracted/Digested By 335.4 **GNITAJOUPPI GNITAJOUPPI** 420.4 **BBOWE** 6010C **KMCLAEN NMANSEN** 8260C **FNAEGLER** SM 2540 C-1997(2011) **KWONG CWOODS** SM 5310 C-2000(2011)

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Daigler Engineering Service Request: R1811907 **Date Collected:** 12/05/18 15:05 **Project:** MARILLA STREET LF

Sample Matrix: Water **Date Received:** 12/07/18 09:00

SW-1 **Sample Name:** Units: ug/L Lab Code: R1811907-001 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 20:35	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 20:35	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 20:35	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 20:35	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 20:35	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 20:35	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 20:35	
2-Butanone (MEK)	ND U	10	1	12/11/18 20:35	
2-Hexanone	ND U	10	1	12/11/18 20:35	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 20:35	
Acetone	ND U	10	1	12/11/18 20:35	
Benzene	ND U	5.0	1	12/11/18 20:35	
Bromodichloromethane	ND U	5.0	1	12/11/18 20:35	
Bromoform	ND U	5.0	1	12/11/18 20:35	
Bromomethane	ND U	5.0	1	12/11/18 20:35	
Carbon Disulfide	ND U	10	1	12/11/18 20:35	_
Carbon Tetrachloride	ND U	5.0	1	12/11/18 20:35	
Chlorobenzene	ND U	5.0	1	12/11/18 20:35	
Chloroethane	ND U	5.0	1	12/11/18 20:35	
Chloroform	ND U	5.0	1	12/11/18 20:35	
Chloromethane	ND U	5.0	1	12/11/18 20:35	
Dibromochloromethane	ND U	5.0	1	12/11/18 20:35	
Dichloromethane	ND U	5.0	1	12/11/18 20:35	
Ethylbenzene	ND U	5.0	1	12/11/18 20:35	
Styrene	ND U	5.0	1	12/11/18 20:35	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 20:35	
Toluene	ND U	5.0	1	12/11/18 20:35	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 20:35	
Vinyl Chloride	ND U	5.0	1	12/11/18 20:35	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 20:35	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 20:35	
m,p-Xylenes	ND U	5.0	1	12/11/18 20:35	
o-Xylene	ND U	5.0	1	12/11/18 20:35	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 20:35	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 20:35	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 15:05

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-1 Units: ug/L

Lab Code: R1811907-001 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	12/11/18 20:35	
Dibromofluoromethane	100	89 - 119	12/11/18 20:35	
Toluene-d8	102	87 - 121	12/11/18 20:35	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF **Date Collected:** 12/04/18 10:20

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 SW-2A
 Units: ug/L

 Lab Code:
 R1811907-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 20:57	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 20:57	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 20:57	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 20:57	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 20:57	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 20:57	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 20:57	
2-Butanone (MEK)	ND U	10	1	12/11/18 20:57	
2-Hexanone	ND U	10	1	12/11/18 20:57	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 20:57	
Acetone	ND U	10	1	12/11/18 20:57	
Benzene	ND U	5.0	1	12/11/18 20:57	
Bromodichloromethane	ND U	5.0	1	12/11/18 20:57	
Bromoform	ND U	5.0	1	12/11/18 20:57	
Bromomethane	ND U	5.0	1	12/11/18 20:57	
Carbon Disulfide	ND U	10	1	12/11/18 20:57	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 20:57	
Chlorobenzene	ND U	5.0	1	12/11/18 20:57	
Chloroethane	ND U	5.0	1	12/11/18 20:57	
Chloroform	ND U	5.0	1	12/11/18 20:57	
Chloromethane	ND U	5.0	1	12/11/18 20:57	
Dibromochloromethane	ND U	5.0	1	12/11/18 20:57	
Dichloromethane	ND U	5.0	1	12/11/18 20:57	
Ethylbenzene	ND U	5.0	1	12/11/18 20:57	
Styrene	ND U	5.0	1	12/11/18 20:57	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 20:57	
Toluene	ND U	5.0	1	12/11/18 20:57	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 20:57	
Vinyl Chloride	ND U	5.0	1	12/11/18 20:57	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 20:57	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 20:57	
m,p-Xylenes	ND U	5.0	1	12/11/18 20:57	
o-Xylene	ND U	5.0	1	12/11/18 20:57	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 20:57	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 20:57	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 10:20

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-2A Units: ug/L

Lab Code: R1811907-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	12/11/18 20:57	
Dibromofluoromethane	100	89 - 119	12/11/18 20:57	
Toluene-d8	101	87 - 121	12/11/18 20:57	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18 14:15

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 SW-3A
 Units: ug/L

 Lab Code:
 R1811907-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 21:19	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 21:19	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 21:19	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 21:19	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 21:19	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 21:19	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 21:19	
2-Butanone (MEK)	ND U	10	1	12/11/18 21:19	
2-Hexanone	ND U	10	1	12/11/18 21:19	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 21:19	
Acetone	ND U	10	1	12/11/18 21:19	
Benzene	ND U	5.0	1	12/11/18 21:19	
Bromodichloromethane	ND U	5.0	1	12/11/18 21:19	
Bromoform	ND U	5.0	1	12/11/18 21:19	
Bromomethane	ND U	5.0	1	12/11/18 21:19	
Carbon Disulfide	ND U	10	1	12/11/18 21:19	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 21:19	
Chlorobenzene	ND U	5.0	1	12/11/18 21:19	
Chloroethane	ND U	5.0	1	12/11/18 21:19	
Chloroform	ND U	5.0	1	12/11/18 21:19	
Chloromethane	ND U	5.0	1	12/11/18 21:19	
Dibromochloromethane	ND U	5.0	1	12/11/18 21:19	
Dichloromethane	ND U	5.0	1	12/11/18 21:19	
Ethylbenzene	ND U	5.0	1	12/11/18 21:19	
Styrene	ND U	5.0	1	12/11/18 21:19	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 21:19	
Toluene	ND U	5.0	1	12/11/18 21:19	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 21:19	
Vinyl Chloride	ND U	5.0	1	12/11/18 21:19	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 21:19	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 21:19	
m,p-Xylenes	ND U	5.0	1	12/11/18 21:19	
o-Xylene	ND U	5.0	1	12/11/18 21:19	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 21:19	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 21:19	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Date Collected: 12/04/18 14:15 **Project:** MARILLA STREET LF

Sample Matrix: Water **Date Received:** 12/07/18 09:00

Sample Name: SW-3A Units: ug/L Lab Code: R1811907-005

Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	12/11/18 21:19	
Dibromofluoromethane	99	89 - 119	12/11/18 21:19	
Toluene-d8	101	87 - 121	12/11/18 21:19	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 08:30

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-5 Units: ug/L

Lab Code: R1811907-007 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 21:41	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 21:41	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 21:41	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 21:41	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 21:41	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 21:41	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 21:41	
2-Butanone (MEK)	ND U	10	1	12/11/18 21:41	
2-Hexanone	ND U	10	1	12/11/18 21:41	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 21:41	
Acetone	ND U	10	1	12/11/18 21:41	
Benzene	ND U	5.0	1	12/11/18 21:41	
Bromodichloromethane	ND U	5.0	1	12/11/18 21:41	
Bromoform	ND U	5.0	1	12/11/18 21:41	
Bromomethane	ND U	5.0	1	12/11/18 21:41	
Carbon Disulfide	ND U	10	1	12/11/18 21:41	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 21:41	
Chlorobenzene	ND U	5.0	1	12/11/18 21:41	
Chloroethane	ND U	5.0	1	12/11/18 21:41	
Chloroform	ND U	5.0	1	12/11/18 21:41	
Chloromethane	ND U	5.0	1	12/11/18 21:41	
Dibromochloromethane	ND U	5.0	1	12/11/18 21:41	
Dichloromethane	ND U	5.0	1	12/11/18 21:41	
Ethylbenzene	ND U	5.0	1	12/11/18 21:41	
Styrene	ND U	5.0	1	12/11/18 21:41	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 21:41	
Toluene	ND U	5.0	1	12/11/18 21:41	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 21:41	
Vinyl Chloride	ND U	5.0	1	12/11/18 21:41	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 21:41	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 21:41	
m,p-Xylenes	ND U	5.0	1	12/11/18 21:41	
o-Xylene	ND U	5.0	1	12/11/18 21:41	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 21:41	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 21:41	

Analytical Report

Client: Daigler Engineering Service Request: R1811907 **Date Collected:** 12/05/18 08:30 **Project:** MARILLA STREET LF

Sample Matrix: Water **Date Received:** 12/07/18 09:00

SW-5 **Sample Name:** Units: ug/L Lab Code:

R1811907-007 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	12/11/18 21:41	
Dibromofluoromethane	99	89 - 119	12/11/18 21:41	
Toluene-d8	102	87 - 121	12/11/18 21:41	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 SW-DUP
 Units: ug/L

 Lab Code:
 R1811907-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 22:03	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 22:03	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 22:03	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 22:03	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 22:03	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 22:03	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 22:03	
2-Butanone (MEK)	ND U	10	1	12/11/18 22:03	
2-Hexanone	ND U	10	1	12/11/18 22:03	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 22:03	
Acetone	ND U	10	1	12/11/18 22:03	
Benzene	ND U	5.0	1	12/11/18 22:03	
Bromodichloromethane	ND U	5.0	1	12/11/18 22:03	
Bromoform	ND U	5.0	1	12/11/18 22:03	
Bromomethane	ND U	5.0	1	12/11/18 22:03	
Carbon Disulfide	ND U	10	1	12/11/18 22:03	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 22:03	
Chlorobenzene	ND U	5.0	1	12/11/18 22:03	
Chloroethane	ND U	5.0	1	12/11/18 22:03	
Chloroform	ND U	5.0	1	12/11/18 22:03	
Chloromethane	ND U	5.0	1	12/11/18 22:03	
Dibromochloromethane	ND U	5.0	1	12/11/18 22:03	
Dichloromethane	ND U	5.0	1	12/11/18 22:03	
Ethylbenzene	ND U	5.0	1	12/11/18 22:03	
Styrene	ND U	5.0	1	12/11/18 22:03	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 22:03	
Toluene	ND U	5.0	1	12/11/18 22:03	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 22:03	
Vinyl Chloride	ND U	5.0	1	12/11/18 22:03	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 22:03	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 22:03	
m,p-Xylenes	ND U	5.0	1	12/11/18 22:03	
o-Xylene	ND U	5.0	1	12/11/18 22:03	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 22:03	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 22:03	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 SW-DUP
 Units: ug/L

 Lab Code:
 R1811907-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	12/11/18 22:03	
Dibromofluoromethane	101	89 - 119	12/11/18 22:03	
Toluene-d8	102	87 - 121	12/11/18 22:03	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18 16:15

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-2B
 Units: ug/L

 Lab Code:
 R1811907-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 22:25	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 22:25	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 22:25	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 22:25	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 22:25	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 22:25	_
1,2-Dichloropropane	ND U	5.0	1	12/11/18 22:25	
2-Butanone (MEK)	ND U	10	1	12/11/18 22:25	
2-Hexanone	ND U	10	1	12/11/18 22:25	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 22:25	
Acetone	24	10	1	12/11/18 22:25	
Benzene	ND U	5.0	1	12/11/18 22:25	
Bromodichloromethane	ND U	5.0	1	12/11/18 22:25	
Bromoform	ND U	5.0	1	12/11/18 22:25	
Bromomethane	ND U	5.0	1	12/11/18 22:25	
Carbon Disulfide	ND U	10	1	12/11/18 22:25	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 22:25	
Chlorobenzene	ND U	5.0	1	12/11/18 22:25	
Chloroethane	ND U	5.0	1	12/11/18 22:25	
Chloroform	ND U	5.0	1	12/11/18 22:25	
Chloromethane	ND U	5.0	1	12/11/18 22:25	
Dibromochloromethane	ND U	5.0	1	12/11/18 22:25	
Dichloromethane	ND U	5.0	1	12/11/18 22:25	
Ethylbenzene	ND U	5.0	1	12/11/18 22:25	
Styrene	ND U	5.0	1	12/11/18 22:25	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 22:25	
Toluene	ND U	5.0	1	12/11/18 22:25	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 22:25	
Vinyl Chloride	ND U	5.0	1	12/11/18 22:25	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 22:25	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 22:25	
m,p-Xylenes	ND U	5.0	1	12/11/18 22:25	
o-Xylene	ND U	5.0	1	12/11/18 22:25	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 22:25	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 22:25	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 16:15

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-2B
 Units: ug/L

 Lab Code:
 R1811907-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	12/11/18 22:25	
Dibromofluoromethane	100	89 - 119	12/11/18 22:25	
Toluene-d8	100	87 - 121	12/11/18 22:25	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/05/18 14:30

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-3B
 Units: ug/L

 Lab Code:
 R1811907-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	50	10	12/11/18 22:47	
1,1,2,2-Tetrachloroethane	ND U	50	10	12/11/18 22:47	
1,1,2-Trichloroethane	ND U	50	10	12/11/18 22:47	
1,1-Dichloroethane (1,1-DCA)	ND U	50	10	12/11/18 22:47	
1,1-Dichloroethene (1,1-DCE)	ND U	50	10	12/11/18 22:47	
1,2-Dichloroethane	ND U	50	10	12/11/18 22:47	
1,2-Dichloropropane	ND U	50	10	12/11/18 22:47	
2-Butanone (MEK)	ND U	100	10	12/11/18 22:47	
2-Hexanone	ND U	100	10	12/11/18 22:47	
4-Methyl-2-pentanone	ND U	100	10	12/11/18 22:47	
Acetone	650	100	10	12/11/18 22:47	
Benzene	ND U	50	10	12/11/18 22:47	
Bromodichloromethane	ND U	50	10	12/11/18 22:47	
Bromoform	ND U	50	10	12/11/18 22:47	
Bromomethane	ND U	50	10	12/11/18 22:47	
Carbon Disulfide	ND U	100	10	12/11/18 22:47	
Carbon Tetrachloride	ND U	50	10	12/11/18 22:47	
Chlorobenzene	ND U	50	10	12/11/18 22:47	
Chloroethane	ND U	50	10	12/11/18 22:47	
Chloroform	ND U	50	10	12/11/18 22:47	
Chloromethane	ND U	50	10	12/11/18 22:47	
Dibromochloromethane	ND U	50	10	12/11/18 22:47	
Dichloromethane	ND U	50	10	12/11/18 22:47	
Ethylbenzene	ND U	50	10	12/11/18 22:47	
Styrene	ND U	50	10	12/11/18 22:47	
Tetrachloroethene (PCE)	ND U	50	10	12/11/18 22:47	
Toluene	ND U	50	10	12/11/18 22:47	
Trichloroethene (TCE)	ND U	50	10	12/11/18 22:47	
Vinyl Chloride	ND U	50	10	12/11/18 22:47	
cis-1,2-Dichloroethene	ND U	50	10	12/11/18 22:47	
cis-1,3-Dichloropropene	ND U	50	10	12/11/18 22:47	
m,p-Xylenes	ND U	50	10	12/11/18 22:47	
o-Xylene	ND U	50	10	12/11/18 22:47	
trans-1,2-Dichloroethene	ND U	50	10	12/11/18 22:47	
trans-1,3-Dichloropropene	ND U	50	10	12/11/18 22:47	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 14:30

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-3B
 Units: ug/L

 Lab Code:
 R1811907-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	12/11/18 22:47	
Dibromofluoromethane	102	89 - 119	12/11/18 22:47	
Toluene-d8	103	87 - 121	12/11/18 22:47	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18 15:45

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-4B
 Units: ug/L

 Lab Code:
 R1811907-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 23:09	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 23:09	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 23:09	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 23:09	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 23:09	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 23:09	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 23:09	
2-Butanone (MEK)	ND U	10	1	12/11/18 23:09	
2-Hexanone	ND U	10	1	12/11/18 23:09	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 23:09	
Acetone	ND U	10	1	12/11/18 23:09	
Benzene	ND U	5.0	1	12/11/18 23:09	
Bromodichloromethane	ND U	5.0	1	12/11/18 23:09	
Bromoform	ND U	5.0	1	12/11/18 23:09	
Bromomethane	ND U	5.0	1	12/11/18 23:09	
Carbon Disulfide	ND U	10	1	12/11/18 23:09	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 23:09	
Chlorobenzene	ND U	5.0	1	12/11/18 23:09	
Chloroethane	ND U	5.0	1	12/11/18 23:09	
Chloroform	ND U	5.0	1	12/11/18 23:09	
Chloromethane	ND U	5.0	1	12/11/18 23:09	
Dibromochloromethane	ND U	5.0	1	12/11/18 23:09	
Dichloromethane	ND U	5.0	1	12/11/18 23:09	
Ethylbenzene	ND U	5.0	1	12/11/18 23:09	
Styrene	ND U	5.0	1	12/11/18 23:09	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 23:09	
Toluene	ND U	5.0	1	12/11/18 23:09	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 23:09	
Vinyl Chloride	ND U	5.0	1	12/11/18 23:09	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:09	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:09	
m,p-Xylenes	ND U	5.0	1	12/11/18 23:09	
o-Xylene	ND U	5.0	1	12/11/18 23:09	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:09	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:09	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 15:45

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-4B
 Units: ug/L

 Lab Code:
 R1811907-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	12/11/18 23:09	
Dibromofluoromethane	99	89 - 119	12/11/18 23:09	
Toluene-d8	102	87 - 121	12/11/18 23:09	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/05/18 10:45

Sample Matrixe Water Date Descrived: 12/07/19 00:00

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-6B
 Units: ug/L

 Lab Code:
 R1811907-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 23:31	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 23:31	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 23:31	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 23:31	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 23:31	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 23:31	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 23:31	
2-Butanone (MEK)	ND U	10	1	12/11/18 23:31	
2-Hexanone	ND U	10	1	12/11/18 23:31	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 23:31	
Acetone	ND U	10	1	12/11/18 23:31	
Benzene	ND U	5.0	1	12/11/18 23:31	
Bromodichloromethane	ND U	5.0	1	12/11/18 23:31	
Bromoform	ND U	5.0	1	12/11/18 23:31	
Bromomethane	ND U	5.0	1	12/11/18 23:31	
Carbon Disulfide	ND U	10	1	12/11/18 23:31	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 23:31	
Chlorobenzene	ND U	5.0	1	12/11/18 23:31	
Chloroethane	ND U	5.0	1	12/11/18 23:31	
Chloroform	ND U	5.0	1	12/11/18 23:31	
Chloromethane	ND U	5.0	1	12/11/18 23:31	
Dibromochloromethane	ND U	5.0	1	12/11/18 23:31	
Dichloromethane	ND U	5.0	1	12/11/18 23:31	
Ethylbenzene	ND U	5.0	1	12/11/18 23:31	
Styrene	ND U	5.0	1	12/11/18 23:31	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 23:31	
Toluene	ND U	5.0	1	12/11/18 23:31	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 23:31	
Vinyl Chloride	ND U	5.0	1	12/11/18 23:31	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:31	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:31	
m,p-Xylenes	ND U	5.0	1	12/11/18 23:31	
o-Xylene	ND U	5.0	1	12/11/18 23:31	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:31	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:31	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 10:45

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-6B
 Units: ug/L

 Lab Code:
 R1811907-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	12/11/18 23:31	
Dibromofluoromethane	98	89 - 119	12/11/18 23:31	
Toluene-d8	101	87 - 121	12/11/18 23:31	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/05/18 13:45

Comple Metrics Water Descrived: 12/07/19 00:00

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-7B
 Units: ug/L

 Lab Code:
 R1811907-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 23:53	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 23:53	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 23:53	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 23:53	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 23:53	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 23:53	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 23:53	
2-Butanone (MEK)	ND U	10	1	12/11/18 23:53	
2-Hexanone	ND U	10	1	12/11/18 23:53	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 23:53	
Acetone	21	10	1	12/11/18 23:53	
Benzene	ND U	5.0	1	12/11/18 23:53	
Bromodichloromethane	ND U	5.0	1	12/11/18 23:53	
Bromoform	ND U	5.0	1	12/11/18 23:53	
Bromomethane	ND U	5.0	1	12/11/18 23:53	
Carbon Disulfide	ND U	10	1	12/11/18 23:53	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 23:53	
Chlorobenzene	ND U	5.0	1	12/11/18 23:53	
Chloroethane	ND U	5.0	1	12/11/18 23:53	
Chloroform	ND U	5.0	1	12/11/18 23:53	
Chloromethane	ND U	5.0	1	12/11/18 23:53	
Dibromochloromethane	ND U	5.0	1	12/11/18 23:53	
Dichloromethane	ND U	5.0	1	12/11/18 23:53	
Ethylbenzene	ND U	5.0	1	12/11/18 23:53	
Styrene	ND U	5.0	1	12/11/18 23:53	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 23:53	
Toluene	ND U	5.0	1	12/11/18 23:53	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 23:53	
Vinyl Chloride	ND U	5.0	1	12/11/18 23:53	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:53	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:53	
m,p-Xylenes	ND U	5.0	1	12/11/18 23:53	
o-Xylene	ND U	5.0	1	12/11/18 23:53	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 23:53	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 23:53	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 13:45

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-7B
 Units: ug/L

 Lab Code:
 R1811907-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	12/11/18 23:53	
Dibromofluoromethane	100	89 - 119	12/11/18 23:53	
Toluene-d8	101	87 - 121	12/11/18 23:53	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/05/18 13:00

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-15B
 Units: ug/L

 Lab Code:
 R1811907-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/12/18 00:15	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/12/18 00:15	
1,1,2-Trichloroethane	ND U	5.0	1	12/12/18 00:15	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/12/18 00:15	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/12/18 00:15	
1,2-Dichloroethane	ND U	5.0	1	12/12/18 00:15	
1,2-Dichloropropane	ND U	5.0	1	12/12/18 00:15	
2-Butanone (MEK)	ND U	10	1	12/12/18 00:15	
2-Hexanone	ND U	10	1	12/12/18 00:15	
4-Methyl-2-pentanone	ND U	10	1	12/12/18 00:15	
Acetone	140	10	1	12/12/18 00:15	
Benzene	ND U	5.0	1	12/12/18 00:15	
Bromodichloromethane	ND U	5.0	1	12/12/18 00:15	
Bromoform	ND U	5.0	1	12/12/18 00:15	
Bromomethane	ND U	5.0	1	12/12/18 00:15	
Carbon Disulfide	ND U	10	1	12/12/18 00:15	_
Carbon Tetrachloride	ND U	5.0	1	12/12/18 00:15	
Chlorobenzene	ND U	5.0	1	12/12/18 00:15	
Chloroethane	ND U	5.0	1	12/12/18 00:15	
Chloroform	ND U	5.0	1	12/12/18 00:15	
Chloromethane	ND U	5.0	1	12/12/18 00:15	_
Dibromochloromethane	ND U	5.0	1	12/12/18 00:15	
Dichloromethane	ND U	5.0	1	12/12/18 00:15	
Ethylbenzene	ND U	5.0	1	12/12/18 00:15	
Styrene	ND U	5.0	1	12/12/18 00:15	
Tetrachloroethene (PCE)	ND U	5.0	1	12/12/18 00:15	_
Toluene	ND U	5.0	1	12/12/18 00:15	
Trichloroethene (TCE)	ND U	5.0	1	12/12/18 00:15	
Vinyl Chloride	ND U	5.0	1	12/12/18 00:15	
cis-1,2-Dichloroethene	ND U	5.0	1	12/12/18 00:15	
cis-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:15	
m,p-Xylenes	ND U	5.0	1	12/12/18 00:15	
o-Xylene	ND U	5.0	1	12/12/18 00:15	
trans-1,2-Dichloroethene	ND U	5.0	1	12/12/18 00:15	
trans-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:15	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 13:00

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-15B
 Units: ug/L

 Lab Code:
 R1811907-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	12/12/18 00:15	
Dibromofluoromethane	101	89 - 119	12/12/18 00:15	
Toluene-d8	101	87 - 121	12/12/18 00:15	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18 09:35

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-16B
 Units: ug/L

 Lab Code:
 R1811907-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/12/18 00:37	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/12/18 00:37	
1,1,2-Trichloroethane	ND U	5.0	1	12/12/18 00:37	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/12/18 00:37	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/12/18 00:37	
1,2-Dichloroethane	ND U	5.0	1	12/12/18 00:37	
1,2-Dichloropropane	ND U	5.0	1	12/12/18 00:37	
2-Butanone (MEK)	ND U	10	1	12/12/18 00:37	
2-Hexanone	ND U	10	1	12/12/18 00:37	
4-Methyl-2-pentanone	ND U	10	1	12/12/18 00:37	
Acetone	ND U	10	1	12/12/18 00:37	
Benzene	ND U	5.0	1	12/12/18 00:37	
Bromodichloromethane	ND U	5.0	1	12/12/18 00:37	
Bromoform	ND U	5.0	1	12/12/18 00:37	
Bromomethane	ND U	5.0	1	12/12/18 00:37	
Carbon Disulfide	ND U	10	1	12/12/18 00:37	
Carbon Tetrachloride	ND U	5.0	1	12/12/18 00:37	
Chlorobenzene	ND U	5.0	1	12/12/18 00:37	
Chloroethane	ND U	5.0	1	12/12/18 00:37	
Chloroform	ND U	5.0	1	12/12/18 00:37	
Chloromethane	ND U	5.0	1	12/12/18 00:37	
Dibromochloromethane	ND U	5.0	1	12/12/18 00:37	
Dichloromethane	ND U	5.0	1	12/12/18 00:37	
Ethylbenzene	ND U	5.0	1	12/12/18 00:37	
Styrene	ND U	5.0	1	12/12/18 00:37	
Tetrachloroethene (PCE)	ND U	5.0	1	12/12/18 00:37	
Toluene	ND U	5.0	1	12/12/18 00:37	
Trichloroethene (TCE)	22	5.0	1	12/12/18 00:37	
Vinyl Chloride	ND U	5.0	1	12/12/18 00:37	
cis-1,2-Dichloroethene	8.3	5.0	1	12/12/18 00:37	
cis-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:37	
m,p-Xylenes	ND U	5.0	1	12/12/18 00:37	
o-Xylene	ND U	5.0	1	12/12/18 00:37	
trans-1,2-Dichloroethene	ND U	5.0	1	12/12/18 00:37	
trans-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:37	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF **Date Collected:** 12/04/18 09:35

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-16B
 Units: ug/L

 Lab Code:
 R1811907-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	12/12/18 00:37	
Dibromofluoromethane	101	89 - 119	12/12/18 00:37	
Toluene-d8	102	87 - 121	12/12/18 00:37	

Analytical Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18 13:15

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-18B
 Units: ug/L

 Lab Code:
 R1811907-021
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/12/18 00:59	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/12/18 00:59	
1,1,2-Trichloroethane	ND U	5.0	1	12/12/18 00:59	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/12/18 00:59	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/12/18 00:59	
1,2-Dichloroethane	ND U	5.0	1	12/12/18 00:59	
1,2-Dichloropropane	ND U	5.0	1	12/12/18 00:59	
2-Butanone (MEK)	ND U	10	1	12/12/18 00:59	
2-Hexanone	ND U	10	1	12/12/18 00:59	
4-Methyl-2-pentanone	ND U	10	1	12/12/18 00:59	
Acetone	ND U	10	1	12/12/18 00:59	
Benzene	ND U	5.0	1	12/12/18 00:59	
Bromodichloromethane	ND U	5.0	1	12/12/18 00:59	
Bromoform	ND U	5.0	1	12/12/18 00:59	
Bromomethane	ND U	5.0	1	12/12/18 00:59	
Carbon Disulfide	ND U	10	1	12/12/18 00:59	
Carbon Tetrachloride	ND U	5.0	1	12/12/18 00:59	
Chlorobenzene	ND U	5.0	1	12/12/18 00:59	
Chloroethane	ND U	5.0	1	12/12/18 00:59	
Chloroform	ND U	5.0	1	12/12/18 00:59	
Chloromethane	ND U	5.0	1	12/12/18 00:59	
Dibromochloromethane	ND U	5.0	1	12/12/18 00:59	
Dichloromethane	ND U	5.0	1	12/12/18 00:59	
Ethylbenzene	ND U	5.0	1	12/12/18 00:59	
Styrene	ND U	5.0	1	12/12/18 00:59	
Tetrachloroethene (PCE)	ND U	5.0	1	12/12/18 00:59	
Toluene	ND U	5.0	1	12/12/18 00:59	
Trichloroethene (TCE)	ND U	5.0	1	12/12/18 00:59	
Vinyl Chloride	ND U	5.0	1	12/12/18 00:59	
cis-1,2-Dichloroethene	ND U	5.0	1	12/12/18 00:59	
cis-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:59	
m,p-Xylenes	ND U	5.0	1	12/12/18 00:59	
o-Xylene	ND U	5.0	1	12/12/18 00:59	
trans-1,2-Dichloroethene	ND U	5.0	1	12/12/18 00:59	
trans-1,3-Dichloropropene	ND U	5.0	1	12/12/18 00:59	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 13:15

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 MW-18B
 Units: ug/L

 Lab Code:
 R1811907-021
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	12/12/18 00:59	
Dibromofluoromethane	99	89 - 119	12/12/18 00:59	
Toluene-d8	101	87 - 121	12/12/18 00:59	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 GW-DUP
 Units: ug/L

 Lab Code:
 R1811907-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/12/18 01:21	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/12/18 01:21	
1,1,2-Trichloroethane	ND U	5.0	1	12/12/18 01:21	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/12/18 01:21	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/12/18 01:21	
1,2-Dichloroethane	ND U	5.0	1	12/12/18 01:21	
1,2-Dichloropropane	ND U	5.0	1	12/12/18 01:21	
2-Butanone (MEK)	ND U	10	1	12/12/18 01:21	
2-Hexanone	ND U	10	1	12/12/18 01:21	
4-Methyl-2-pentanone	ND U	10	1	12/12/18 01:21	
Acetone	ND U	10	1	12/12/18 01:21	
Benzene	ND U	5.0	1	12/12/18 01:21	
Bromodichloromethane	ND U	5.0	1	12/12/18 01:21	
Bromoform	ND U	5.0	1	12/12/18 01:21	
Bromomethane	ND U	5.0	1	12/12/18 01:21	
Carbon Disulfide	ND U	10	1	12/12/18 01:21	
Carbon Tetrachloride	ND U	5.0	1	12/12/18 01:21	
Chlorobenzene	ND U	5.0	1	12/12/18 01:21	
Chloroethane	ND U	5.0	1	12/12/18 01:21	
Chloroform	ND U	5.0	1	12/12/18 01:21	
Chloromethane	ND U	5.0	1	12/12/18 01:21	
Dibromochloromethane	ND U	5.0	1	12/12/18 01:21	
Dichloromethane	ND U	5.0	1	12/12/18 01:21	
Ethylbenzene	ND U	5.0	1	12/12/18 01:21	
Styrene	ND U	5.0	1	12/12/18 01:21	
Tetrachloroethene (PCE)	ND U	5.0	1	12/12/18 01:21	
Toluene	ND U	5.0	1	12/12/18 01:21	
Trichloroethene (TCE)	ND U	5.0	1	12/12/18 01:21	
Vinyl Chloride	ND U	5.0	1	12/12/18 01:21	
cis-1,2-Dichloroethene	ND U	5.0	1	12/12/18 01:21	
cis-1,3-Dichloropropene	ND U	5.0	1	12/12/18 01:21	
m,p-Xylenes	ND U	5.0	1	12/12/18 01:21	
o-Xylene	ND U	5.0	1	12/12/18 01:21	
trans-1,2-Dichloroethene	ND U	5.0	1	12/12/18 01:21	
trans-1,3-Dichloropropene	ND U	5.0	1	12/12/18 01:21	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: 12/07/18 09:00

 Sample Name:
 GW-DUP
 Units: ug/L

 Lab Code:
 R1811907-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	12/12/18 01:21	
Dibromofluoromethane	99	89 - 119	12/12/18 01:21	
Toluene-d8	101	87 - 121	12/12/18 01:21	

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/05/18 15:05 **Project:** MARILLA STREET LF

Sample Matrix: Water **Date Received:** 12/07/18 09:00

SW-1 **Sample Name:** Basis: NA

R1811907-001 Lab Code:

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 21:49 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 21:49 12/11/18 6010C Iron, Total 340 ug/L 100 1 12/12/18 21:49 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 21:49 12/11/18 Manganese, Total 6010C **37** 10 12/12/18 21:49 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

MARILLA STREET LF **Date Collected:** 12/05/18 15:05 **Project:**

Sample Matrix: Water **Date Received:** 12/07/18 09:00

Service Request: R1811907

Sample Name: SW-1 Diss Basis: NA

Lab Code: R1811907-002

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 21:52	12/11/18	
Chromium, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 21:52	12/11/18	
Iron, Dissolved	6010C	ND U	ug/L	100	1	12/12/18 21:52	12/11/18	
Lead, Dissolved	6010C	ND U	ug/L	50	1	12/12/18 21:52	12/11/18	
Manganese, Dissolved	6010C	30	ug/L	10	1	12/12/18 21:52	12/11/18	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 10:20

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-2A Basis: NA

Lab Code: R1811907-003

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 21:55 12/11/18 12/12/18 21:55 Chromium, Total 6010C ND U ug/L 10 1 12/11/18 6010C Iron, Total 630 ug/L 100 1 12/12/18 21:55 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 21:55 12/11/18 Manganese, Total 6010C 104 10 12/12/18 21:55 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

6010C

Project: MARILLA STREET LF Date Collected: 12/04/18 10:20

Sample Matrix: Water

Manganese, Dissolved

Date Received: 12/07/18 09:00

Service Request: R1811907

12/12/18 22:02

12/11/18

Sample Name: SW-2A Diss Basis: NA

91

Lab Code: R1811907-004

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:02	12/11/18	
Chromium, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:02	12/11/18	
Iron, Dissolved	6010C	190	ug/L	100	1	12/12/18 22:02	12/11/18	
Lead, Dissolved	6010C	ND U	ug/L	50	1	12/12/18 22:02	12/11/18	

ug/L

10

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF **Date Collected:** 12/04/18 14:15

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-3A Basis: NA

Lab Code: R1811907-005

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 22:05 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 22:05 12/11/18 Iron, Total 6010C 180 ug/L 100 1 12/12/18 22:05 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 22:05 12/11/18 Manganese, Total 6010C 33 10 12/12/18 22:05 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

6010C

Project: MARILLA STREET LF Date Collected: 12/04/18 14:15

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907

12/12/18 22:08

12/11/18

Sample Name: SW-3A Diss Basis: NA

31

Lab Code: R1811907-006

Manganese, Dissolved

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Extracted Date Analyzed** 6010C Arsenic, Dissolved ND U ug/L 10 12/12/18 22:08 12/11/18 Chromium, Dissolved 6010C ND U ug/L 10 1 12/12/18 22:08 12/11/18 Iron, Dissolved 12/12/18 22:08 6010C ND U ug/L 100 1 12/11/18 Lead, Dissolved 6010C ND U ug/L 50 1 12/12/18 22:08 12/11/18

ug/L

10

1

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/05/18 08:30

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-5 Basis: NA

Lab Code: R1811907-007

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 22:11 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 22:11 12/11/18 6010C Iron, Total 200 ug/L 100 1 12/12/18 22:11 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 22:11 12/11/18 Manganese, Total 6010C 12 10 12/12/18 22:11 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/05/18 08:30

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907

Sample Name: SW-5 Diss Basis: NA

Lab Code: R1811907-008

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:21	12/11/18	
Chromium, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:21	12/11/18	
Iron, Dissolved	6010C	ND U	ug/L	100	1	12/12/18 22:21	12/11/18	
Lead, Dissolved	6010C	ND U	ug/L	50	1	12/12/18 22:21	12/11/18	
Manganese, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:21	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907 **Date Collected:** NA

Sample Name: SW-DUP Basis: NA

Lab Code: R1811907-009

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 22:25 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 22:25 12/11/18 6010C Iron, Total 120 ug/L 100 1 12/12/18 22:25 12/11/18 Lead, Total ND U 6010C ug/L 50 1 12/12/18 22:25 12/11/18 Manganese, Total 6010C 12 10 12/12/18 22:25 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907 **Date Collected:** NA

Sample Name: SW-DUP Diss Basis: NA

Lab Code: R1811907-010

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed Date Extracted** 6010C Arsenic, Dissolved ND U ug/L 10 12/12/18 22:28 12/11/18 Chromium, Dissolved 6010C ND U ug/L 10 1 12/12/18 22:28 12/11/18 Iron, Dissolved 6010C ND U ug/L 100 1 12/12/18 22:28 12/11/18 Lead, Dissolved 6010C ND U ug/L 50 1 12/12/18 22:28 12/11/18 Manganese, Dissolved 6010C ND U ug/L 10 12/12/18 22:28 12/11/18 1

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/04/18 16:15

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-2B Basis: NA

Lab Code: R1811907-011

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	6010C	ND U	ug/L	10	1	12/12/18 22:31	12/11/18	
Chromium, Total	6010C	ND U	ug/L	10	1	12/12/18 22:31	12/11/18	
Iron, Total	6010C	1530	ug/L	100	1	12/12/18 22:31	12/11/18	
Lead, Total	6010C	ND U	ug/L	50	1	12/12/18 22:31	12/11/18	
Manganese Total	6010C	80	11g/L	10	1	12/12/18 22:31	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907

Date Collected: 12/04/18 16:15

Date Received: 12/07/18 09:00

Sample Name: MW-2B Diss Basis: NA

Lab Code: R1811907-012

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:34	12/11/18	
Chromium, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:34	12/11/18	
Iron, Dissolved	6010C	ND U	ug/L	100	1	12/12/18 22:34	12/11/18	
Lead, Dissolved	6010C	ND U	ug/L	50	1	12/12/18 22:34	12/11/18	
Manganese Dissolved	6010C	ND II	110/I	10	1	12/12/18 22:34	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/05/18 14:30

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-3B Basis: NA

Lab Code: R1811907-013

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	6010C	35	ug/L	10	1	12/12/18 22:37	12/11/18	
Chromium, Total	6010C	53	ug/L	10	1	12/12/18 22:37	12/11/18	
Iron, Total	6010C	26200	ug/L	100	1	12/12/18 22:37	12/11/18	
Lead, Total	6010C	442	ug/L	50	1	12/12/18 22:37	12/11/18	
Manganese, Total	6010C	438	ug/L	10	1	12/12/18 22:37	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/05/18 14:30

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907

Sample Name: MW-3B Diss Basis: NA

Lab Code: R1811907-014

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	33	ug/L	10	1	12/12/18 22:41	12/11/18	
Chromium, Dissolved	6010C	29	ug/L	10	1	12/12/18 22:41	12/11/18	
Iron, Dissolved	6010C	3220	ug/L	100	1	12/12/18 22:41	12/11/18	
Lead, Dissolved	6010C	219	ug/L	50	1	12/12/18 22:41	12/11/18	
Manganese, Dissolved	6010C	59	ug/L	10	1	12/12/18 22:41	12/11/18	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 15:45

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-4B Basis: NA

Lab Code: R1811907-015

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 22:44 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 22:44 12/11/18 Iron, Total 12/12/18 22:44 6010C 1050 ug/L 100 1 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 22:44 12/11/18 Manganese, Total 6010C 10 12/12/18 22:44 12/11/18 625 ug/L

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 MARILLA STREET LF **Date Collected:** 12/05/18 10:45 **Project:**

Date Received: 12/07/18 09:00 **Sample Matrix:** Water

Sample Name: MW-6B Basis: NA

Lab Code: R1811907-016

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	6010C	ND U	ug/L	10	1	12/12/18 22:47	12/11/18	
Chromium, Total	6010C	ND U	ug/L	10	1	12/12/18 22:47	12/11/18	
Iron, Total	6010C	2180	ug/L	100	1	12/12/18 22:47	12/11/18	
Lead, Total	6010C	ND U	ug/L	50	1	12/12/18 22:47	12/11/18	
Manganese, Total	6010C	693	ug/L	10	1	12/12/18 22:47	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/06/18 10:00

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907

Sample Name: MW-6B Diss Basis: NA

Lab Code: R1811907-017

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:50	12/11/18	
Chromium, Dissolved	6010C	ND U	ug/L	10	1	12/12/18 22:50	12/11/18	
Iron, Dissolved	6010C	130	ug/L	100	1	12/12/18 22:50	12/11/18	
Lead, Dissolved	6010C	ND U	ug/L	50	1	12/12/18 22:50	12/11/18	
Manganese, Dissolved	6010C	600	ug/L	10	1	12/12/18 22:50	12/11/18	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 13:45

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-7B Basis: NA

Lab Code: R1811907-018

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 23:00 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 23:00 12/11/18 12/12/18 23:00 Iron, Total 6010C 3270 ug/L 100 1 12/11/18 Lead, Total ND U 6010C ug/L 50 1 12/12/18 23:00 12/11/18 Manganese, Total 6010C 10 12/12/18 23:00 12/11/18 51 ug/L

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/05/18 13:00 **Project:** MARILLA STREET LF

Sample Matrix: Water **Date Received:** 12/07/18 09:00

MW-15B **Sample Name:** Basis: NA

ND U

Lab Code: R1811907-019

6010C

Manganese, Total

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q 29 Arsenic, Total 6010C ug/L 10 12/12/18 23:03 12/11/18 12/12/18 23:03 Chromium, Total 6010C ND U ug/L 10 1 12/11/18 6010C Iron, Total ND U ug/L 100 1 12/12/18 23:03 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 23:03 12/11/18

ug/L

10

12/12/18 23:03

12/11/18

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/04/18 09:35

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-16B Basis: NA

Lab Code: R1811907-020

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 23:20 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 23:20 12/11/18 6010C Iron, Total 180 ug/L 100 1 12/12/18 23:20 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 23:20 12/11/18 Manganese, Total 6010C ND U 10 12/12/18 23:20 12/11/18 ug/L

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/04/18 13:15

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-18B Basis: NA

Lab Code: R1811907-021

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	6010C	22	ug/L	10	1	12/12/18 13:39	12/11/18	
Chromium, Total	6010C	ND U	ug/L	10	1	12/12/18 13:39	12/11/18	
Iron, Total	6010C	320	ug/L	100	1	12/12/18 13:39	12/11/18	
Lead, Total	6010C	ND U	ug/L	50	1	12/12/18 13:39	12/11/18	
Manganese, Total	6010C	2340	ug/L	10	1	12/12/18 13:39	12/11/18	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix:

Sample Name:

Manganese, Total

Lab Code:

Water

6010C

Service Request: R1811907

Date Collected: NA

Date Received: 12/07/18 09:00

12/11/18

12/12/18 13:42

Basis: NA

GW-DUP R1811907-022

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Total	6010C	19	ug/L	10	1	12/12/18 13:42	12/11/18	
Chromium, Total	6010C	ND U	ug/L	10	1	12/12/18 13:42	12/11/18	
Iron, Total	6010C	640	ug/L	100	1	12/12/18 13:42	12/11/18	
Lead, Total	6010C	ND U	ug/L	50	1	12/12/18 13:42	12/11/18	

10

ug/L

2340

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: 12/05/18 15:05

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-1 Basis: NA

Lab Code: R1811907-001

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	6.0	mg/L	1.0	1	12/11/18 21:36	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:53	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:06	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	405	mg/L	10	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF **Date Collected:** 12/04/18 10:20

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-2A Basis: NA

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	6.9	mg/L	1.0	1	12/11/18 22:39	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:54	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:10	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	425	mg/L	10	1	12/11/18 10:25	NA	

Lab Code:

R1811907-003

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/04/18 14:15

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-3A Basis: NA

Lab Code: R1811907-005

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	7.4	mg/L	1.0	1	12/11/18 23:00	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:55	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:13	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	355	mg/L	10	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/05/18 08:30

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-5 Basis: NA

Lab Code: R1811907-007

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	5.9	mg/L	1.0	1	12/11/18 23:21	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:55	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:17	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	699	mg/L	10	1	12/12/18 11:20	NA	

Analytical Report

Client: Daigler Engineering

MARILLA STREET LF

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: SW-DUP Basis: NA

Lab Code: R1811907-009

Project:

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	5.5	mg/L	1.0	1	12/12/18 00:23	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:56	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:27	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	695	mg/L	10	1	12/12/18 11:20	NA	

Service Request: R1811907 **Date Collected:** NA

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/04/18 16:15 MARILLA STREET LF **Project:**

Date Received: 12/07/18 09:00 **Sample Matrix:** Water

MW-2B **Sample Name:** Basis: NA

Lab Code: R1811907-011

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	14.4	mg/L	1.0	1	12/12/18 00:44	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:57	12/12/18	
Phenolics, Total Recoverable	420.4	0.019	mg/L	0.010	2	12/18/18 12:31	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	453	mg/L	10	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/05/18 14:30 MARILLA STREET LF **Project:**

Date Received: 12/07/18 09:00 **Sample Matrix:** Water

MW-3B **Sample Name:** Basis: NA

Lab Code: R1811907-013

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	105	mg/L	10	10	12/12/18 01:05	NA	
Cyanide, Total	335.4	ND U	mg/L	0.060	1	12/13/18 09:58	12/12/18	
Phenolics, Total Recoverable	420.4	0.74	mg/L	0.10	20	12/18/18 12:48	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	1560	mg/L	20	1	12/12/18 11:20	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/04/18 15:45

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-4B Basis: NA

Lab Code: R1811907-015

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	5.3	mg/L	1.0	1	12/12/18 01:26	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:59	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:52	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	491	mg/L	10	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF **Date Collected:** 12/05/18 10:45

Sample Matrix: Water Date Received: 12/07/18 09:00

Sample Name: MW-6B Basis: NA

Lab Code: R1811907-016

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	7.7	mg/L	1.0	1	12/12/18 01:47	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 10:01	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 12:55	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	1180	mg/L	10	1	12/12/18 11:20	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907

Date Collected: 12/05/18 13:45

Date Received: 12/07/18 09:00

Sample Name: MW-7B

Lab Code: R1811907-018

Basis: NA

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	46.6	mg/L	5.0	5	12/14/18 01:09	NA	
Cyanide, Total	335.4	0.025	mg/L	0.010	1	12/13/18 10:02	12/12/18	
Phenolics, Total Recoverable	420.4	0.55	mg/L	0.10	20	12/18/18 12:59	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	890	mg/L	20	1	12/12/18 11:20	NA	

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/05/18 13:00 MARILLA STREET LF **Project:**

Date Received: 12/07/18 09:00 **Sample Matrix:** Water

Sample Name: MW-15B Basis: NA

Lab Code: R1811907-019

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	29.6	mg/L	5.0	5	12/14/18 02:53	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 10:03	12/12/18	
Phenolics, Total Recoverable	420.4	0.25	mg/L	0.10	20	12/18/18 13:02	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	1280	mg/L	30	1	12/12/18 11:20	NA	

Analytical Report

Client: Daigler Engineering

Service Request: R1811907 **Date Collected:** 12/04/18 09:35 MARILLA STREET LF **Project:**

Date Received: 12/07/18 09:00 **Sample Matrix:** Water

MW-16B **Sample Name:** Basis: NA

Lab Code: R1811907-020

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	14.1	mg/L	1.0	1	12/12/18 02:49	NA	
Cyanide, Total	335.4	0.032	mg/L	0.010	1	12/13/18 10:05	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 13:06	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	653	mg/L	10	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: 12/04/18 13:15

Sample Matrix: Water

Date Received: 12/07/18 09:00

Service Request: R1811907

Sample Name: MW-18B Basis: NA

Lab Code: R1811907-021

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	19.2	mg/L	1.0	1	12/12/18 04:34	NA	
Cyanide, Total	335.4	0.019	mg/L	0.010	1	12/13/18 10:06	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 13:09	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	2790	mg/L	20	1	12/11/18 10:25	NA	

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Sample Name:

GW-DUP

Lab Code: R1811907-022

Tytical Report

Service Request: R1811907

Date Collected: NA

Date Received: 12/07/18 09:00

Basis: NA

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	20.2	mg/L	1.0	1	12/12/18 04:55	NA	
Cyanide, Total	335.4	0.024	mg/L	0.010	1	12/13/18 10:10	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 13:13	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	2750	mg/L	20	1	12/12/18 11:20	NA	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
SW-1	R1811907-001	98	100	102
SW-2A	R1811907-003	97	100	101
SW-3A	R1811907-005	96	99	101
SW-5	R1811907-007	99	99	102
SW-DUP	R1811907-009	98	101	102
MW-2B	R1811907-011	98	100	100
MW-3B	R1811907-013	99	102	103
MW-4B	R1811907-015	99	99	102
MW-6B	R1811907-016	97	98	101
MW-7B	R1811907-018	96	100	101
MW-15B	R1811907-019	99	101	101
MW-16B	R1811907-020	97	101	102
MW-18B	R1811907-021	96	99	101
GW-DUP	R1811907-022	97	99	101
Method Blank	RQ1813672-04	99	99	102
Lab Control Sample	RQ1813672-03	103	104	104
MW-15B MS	RQ1813672-05	104	104	103
MW-15B DMS	RQ1813672-06	105	106	104

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907 **Date Collected:** 12/05/18

Date Received: 12/07/18 **Date Analyzed:** 12/12/18

Date Extracted: NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: MW-15B

Units: ug/L Basis: NA

Lab Code: R1811907-019 **Analysis Method:** 8260C

Prep Method: EPA 5030C

Matrix SpikeDuplicate Matrix SpikeRQ1813672-05RQ1813672-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	ND U	58.5	50.0	117	62.4	50.0	125	74-127	6	30
1,1,2,2-Tetrachloroethane	ND U	54.4	50.0	109	57.0	50.0	114	72-122	5	30
1,1,2-Trichloroethane	ND U	47.9	50.0	96	49.5	50.0	99	82-121	3	30
1,1-Dichloroethane (1,1-DCA)	ND U	60.5	50.0	121	63.4	50.0	127	74-132	5	30
1,1-Dichloroethene (1,1-DCE)	ND U	57.0	50.0	114	58.0	50.0	116	71-118	2	30
1,2-Dichloroethane	ND U	54.6	50.0	109	57.6	50.0	115	68-130	5	30
1,2-Dichloropropane	ND U	54.0	50.0	108	56.5	50.0	113	79-124	5	30
2-Butanone (MEK)	ND U	53.8	50.0	108	51.5	50.0	103	61-137	4	30
2-Hexanone	ND U	62.3	50.0	125	62.6	50.0	125	56-132	<1	30
4-Methyl-2-pentanone	ND U	61.6	50.0	123	62.9	50.0	126	60-141	2	30
Acetone	140	184	50.0	88	172	50.0	65	35-183	6	30
Benzene	ND U	54.0	50.0	108	56.8	50.0	114	76-129	5	30
Bromodichloromethane	ND U	52.5	50.0	105	56.5	50.0	113	78-133	7	30
Bromoform	ND U	46.8	50.0	94	49.9	50.0	100	58-133	6	30
Bromomethane	ND U	31.0	50.0	62	29.8	50.0	60	10-184	4	30
Carbon Disulfide	ND U	66.2	50.0	132	68.8	50.0	138	59-140	4	30
Carbon Tetrachloride	ND U	54.2	50.0	108	58.6	50.0	117	65-135	8	30
Chlorobenzene	ND U	48.4	50.0	97	50.0	50.0	100	76-125	3	30
Chloroethane	ND U	45.5	50.0	91	47.0	50.0	94	48-146	3	30
Chloroform	ND U	58.6	50.0	117	60.7	50.0	121	75-130	3	30
Chloromethane	ND U	62.6	50.0	125	60.2	50.0	120	55-160	4	30
Dibromochloromethane	ND U	49.6	50.0	99	53.1	50.0	106	72-128	7	30
Dichloromethane	ND U	52.0	50.0	104	53.1	50.0	106	73-122	2	30
Ethylbenzene	ND U	51.9	50.0	104	53.8	50.0	108	72-134	3	30
Styrene	ND U	53.5	50.0	107	55.3	50.0	111	74-136	3	30
Tetrachloroethene (PCE)	ND U	48.0	50.0	96	49.8	50.0	100	72-125	4	30
Toluene	ND U	53.3	50.0	107	55.9	50.0	112	79-119	5	30
Trichloroethene (TCE)	ND U	47.1	50.0	94	49.5	50.0	99	74-122	5	30
Vinyl Chloride	ND U	58.0	50.0	116	59.0	50.0	118	74-159	2	30
cis-1,2-Dichloroethene	ND U	55.0	50.0	110	57.8	50.0	116	77-127	5	30
cis-1,3-Dichloropropene	ND U	53.1	50.0	106	56.6	50.0	113	52-134	6	30
m,p-Xylenes	ND U	106	100	106	108	100	108	80-126	2	30
o-Xylene	ND U	51.5	50.0	103	53.6	50.0	107	79-123	4	30
trans-1,2-Dichloroethene	ND U	57.9	50.0	116	60.5	50.0	121 *	73-118	5	30
trans-1,3-Dichloropropene	ND U	52.5	50.0	105	55.9	50.0	112	71-133	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1813672-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/11/18 18:00	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	12/11/18 18:00	
1,1,2-Trichloroethane	ND U	5.0	1	12/11/18 18:00	
1,1-Dichloroethane (1,1-DCA)	ND U	5.0	1	12/11/18 18:00	
1,1-Dichloroethene (1,1-DCE)	ND U	5.0	1	12/11/18 18:00	
1,2-Dichloroethane	ND U	5.0	1	12/11/18 18:00	
1,2-Dichloropropane	ND U	5.0	1	12/11/18 18:00	
2-Butanone (MEK)	ND U	10	1	12/11/18 18:00	
2-Hexanone	ND U	10	1	12/11/18 18:00	
4-Methyl-2-pentanone	ND U	10	1	12/11/18 18:00	
Acetone	ND U	10	1	12/11/18 18:00	
Benzene	ND U	5.0	1	12/11/18 18:00	
Bromodichloromethane	ND U	5.0	1	12/11/18 18:00	
Bromoform	ND U	5.0	1	12/11/18 18:00	
Bromomethane	ND U	5.0	1	12/11/18 18:00	
Carbon Disulfide	ND U	10	1	12/11/18 18:00	
Carbon Tetrachloride	ND U	5.0	1	12/11/18 18:00	
Chlorobenzene	ND U	5.0	1	12/11/18 18:00	
Chloroethane	ND U	5.0	1	12/11/18 18:00	
Chloroform	ND U	5.0	1	12/11/18 18:00	
Chloromethane	ND U	5.0	1	12/11/18 18:00	
Dibromochloromethane	ND U	5.0	1	12/11/18 18:00	
Dichloromethane	ND U	5.0	1	12/11/18 18:00	
Ethylbenzene	ND U	5.0	1	12/11/18 18:00	
Styrene	ND U	5.0	1	12/11/18 18:00	
Tetrachloroethene (PCE)	ND U	5.0	1	12/11/18 18:00	
Toluene	ND U	5.0	1	12/11/18 18:00	
Trichloroethene (TCE)	ND U	5.0	1	12/11/18 18:00	
Vinyl Chloride	ND U	5.0	1	12/11/18 18:00	
cis-1,2-Dichloroethene	ND U	5.0	1	12/11/18 18:00	
cis-1,3-Dichloropropene	ND U	5.0	1	12/11/18 18:00	
m,p-Xylenes	ND U	5.0	1	12/11/18 18:00	
o-Xylene	ND U	5.0	1	12/11/18 18:00	
trans-1,2-Dichloroethene	ND U	5.0	1	12/11/18 18:00	
trans-1,3-Dichloropropene	ND U	5.0	1	12/11/18 18:00	

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1813672-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	12/11/18 18:00	
Dibromofluoromethane	99	89 - 119	12/11/18 18:00	
Toluene-d8	102	87 - 121	12/11/18 18:00	

QA/QC Report

Client: Daigler Engineering Project: MARILLA STREET LF

Sample Matrix: Water Service Request: R1811907 **Date Analyzed:** 12/11/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1813672-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.7	20.0	98	75-125
1,1,2,2-Tetrachloroethane	8260C	21.5	20.0	107	78-126
1,1,2-Trichloroethane	8260C	18.8	20.0	94	82-121
1,1-Dichloroethane (1,1-DCA)	8260C	21.9	20.0	109	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	19.2	20.0	96	71-118
1,2-Dichloroethane	8260C	21.6	20.0	108	71-127
1,2-Dichloropropane	8260C	20.1	20.0	100	80-119
2-Butanone (MEK)	8260C	20.2	20.0	101	61-137
2-Hexanone	8260C	21.5	20.0	108	63-124
4-Methyl-2-pentanone	8260C	20.9	20.0	105	66-124
Acetone	8260C	19.4	20.0	97	40-161
Benzene	8260C	19.3	20.0	97	79-119
Bromodichloromethane	8260C	19.2	20.0	96	81-123
Bromoform	8260C	18.2	20.0	91	65-146
Bromomethane	8260C	16.6	20.0	83	42-166
Carbon Disulfide	8260C	21.1	20.0	106	66-128
Carbon Tetrachloride	8260C	16.9	20.0	85	70-127
Chlorobenzene	8260C	17.8	20.0	89	80-121
Chloroethane	8260C	16.9	20.0	85	62-131
Chloroform	8260C	21.4	20.0	107	79-120
Chloromethane	8260C	19.9	20.0	100	65-135
Dibromochloromethane	8260C	19.6	20.0	98	72-128
Dichloromethane	8260C	19.8	20.0	99	73-122
Ethylbenzene	8260C	17.7	20.0	89	76-120
Styrene	8260C	18.7	20.0	93	80-124
Tetrachloroethene (PCE)	8260C	15.9	20.0	79	72-125
Toluene	8260C	18.4	20.0	92	79-119
Trichloroethene (TCE)	8260C	16.8	20.0	84	74-122
Vinyl Chloride	8260C	19.7	20.0	99	74-159
cis-1,2-Dichloroethene	8260C	20.4	20.0	102	80-121
cis-1,3-Dichloropropene	8260C	21.2	20.0	106	77-122
m,p-Xylenes	8260C	34.7	40.0	87	80-126
o-Xylene	8260C	17.3	20.0	86	79-123
Printed 12/21/2018 6:35:03 AM			Supers	et Reference:18-000	00491247 rev 00

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix:

Water

Service Request: R1811907

Date Analyzed: 12/11/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1813672-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
trans-1,2-Dichloroethene	8260C	20.7	20.0	103	73-118
trans-1,3-Dichloropropene	8260C	20.9	20.0	105	71-133

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1811907-MB1

Inorganic Parameters

Analysis **Analyte Name** Method MRL Dil. **Date Extracted** Result Units **Date Analyzed** Arsenic, Dissolved 6010C ND U ug/L 10 12/12/18 21:42 12/11/18 Arsenic, Total 6010C ND U ug/L 10 1 12/12/18 12:11 12/11/18 Chromium, Dissolved 6010C ND U ug/L 10 1 12/12/18 21:42 12/11/18 Chromium, Total 6010C ND U ug/L 10 1 12/12/18 12:11 12/11/18 Iron, Dissolved 6010C ND U ug/L 100 1 12/12/18 21:42 12/11/18 Iron, Total 100 6010C ND U ug/L 12/12/18 12:11 12/11/18 1 Lead. Dissolved 6010C ND U ug/L 50 1 12/12/18 21:42 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 12:11 12/11/18 Manganese, Dissolved 6010C ND U ug/L 10 1 12/12/18 21:42 12/11/18 Manganese, Total 6010C ND U ug/L 10 12/12/18 12:11 12/11/18

Analytical Report

Client: Daigler Engineering

> Date Collected: NA MARILLA STREET LF

Project: Sample Matrix: Water Date Received: NA

Method Blank Basis: NA **Sample Name:**

R1811907-MB2 Lab Code:

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Extracted** Units **Date Analyzed** Q Arsenic, Total 6010C ND U ug/L 10 12/12/18 21:42 12/11/18 12/12/18 21:42 Chromium, Total 6010C ND U ug/L 10 1 12/11/18 Iron, Total 6010C ND U ug/L 100 1 12/12/18 21:42 12/11/18 Lead, Total 6010C ND U ug/L 50 1 12/12/18 21:42 12/11/18 Manganese, Total 6010C ND U 10 12/12/18 21:42 12/11/18 ug/L

Service Request: R1811907

QA/QC Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Service Request:R1811907

Date Collected:12/05/18

Date Received:12/07/18

Date Analyzed: 12/12/18

Duplicate Matrix Spike Summary Inorganic Parameters

 Sample Name:
 MW-15B
 Units:ug/L

 Lab Code:
 R1811907-019
 Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1811907-019MS

R1811907-019DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Arsenic, Total	6010C	29	64	40	88	64	40	89	75-125	<1	20
Chromium, Total	6010C	ND U	199	200	100	200	200	100	75-125	<1	20
Iron, Total	6010C	ND U	1090	1000	109	1090	1000	109	75-125	<1	20
Lead, Total	6010C	ND U	505	500	101	507	500	101	75-125	<1	20
Manganese, Total	6010C	ND U	490	500	98	493	500	99	75-125	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907 Date Analyzed: 12/12/18

Lab Control Sample Summary Inorganic Parameters

Units:ug/L Basis:NA

Lab Control Sample

R1811907-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic, Dissolved	6010C	43	40	107	80-120
Arsenic, Total	6010C	43	40	107	80-120
Chromium, Dissolved	6010C	199	200	100	80-120
Chromium, Total	6010C	199	200	100	80-120
Iron, Dissolved	6010C	970	1000	97	80-120
Iron, Total	6010C	970	1000	97	80-120
Lead, Dissolved	6010C	509	500	102	80-120
Lead, Total	6010C	509	500	102	80-120
Manganese, Dissolved	6010C	493	500	99	80-120
Manganese, Total	6010C	493	500	99	80-120

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907 Date Analyzed: 12/12/18

Duplicate Lab Control Sample Summary Inorganic Parameters

> Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

R1811907-LCS1

R1811907-DLCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Arsenic, Total	6010C	38.7	40	97	38.6	40	97	80-120	<1	20
Chromium, Total	6010C	200	200	100	198	200	99	80-120	1	20
Iron, Total	6010C	955	1000	95	942	1000	94	80-120	1	20
Lead, Total	6010C	498	500	100	493	500	99	80-120	<1	20
Manganese, Total	6010C	490	500	98	483	500	97	80-120	1	20

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Daigler Engineering

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1811907-MB1

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	ND U	mg/L	1.0	1	12/11/18 11:29	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 09:42	12/12/18	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	12/18/18 11:49	NA	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	ND U	mg/L	10	1	12/11/18 10:25	NA	

Service Request: R1811907

Analytical Report

Client: Daigler Engineering Service Request: R1811907

Project: MARILLA STREET LF Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1811907-MB2

Inorganic Parameters

							Date	
Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Extracted	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	ND U	mg/L	1.0	1	12/13/18 17:17	NA	
Cyanide, Total	335.4	ND U	mg/L	0.010	1	12/13/18 10:06	12/12/18	
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	ND U	mg/L	10	1	12/12/18 11:20	NA	

QA/QC Report

Client: Daigler Engineering Service Request: R1811907 **Project:** MARILLA STREET LF **Date Collected:** 12/05/18 **Sample Matrix:** Water **Date Received:** 12/07/18 12/11/18

Date Analyzed:

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Sample Name: SW-1 **Units:**

mg/L

Lab Code: R1811907-001 **Basis:**

NA

Analysis Method: SM 5310 C-2000(2011)

Matrix Spike

Duplicate Matrix Spike

R1811907-001MS

R1811907-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	6.0	16.1	10.0	101	17.6	10.0	116	48-135	9	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/21/2018 6:35:17 AM

Superset Reference: 18-0000491247 rev 00

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET I

Daigler EngineeringService Request:MARILLA STREET LFDate Collected:

Sample Matrix: Water Date Received:

Date Received: 12/07/18 **Date Analyzed:** 12/18/18

Duplicate Matrix Spike Summary Phenolics, Total Recoverable

Sample Name: SW-5

R1811907-007

Units: mg/L Basis: NA

R1811907

12/05/18

Analysis Method: 420.4

Lab Code:

Matrix Spike

Duplicate Matrix Spike

R1811907-007MS R1811907-007DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Phenolics, Total Recoverable	ND U	0.0403	0.0400	101	0.0408	0.0400	102	90-110	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/21/2018 6:35:17 AM

QA/QC Report

Client: Daigler Engineering Service Request: R1811907 **Project:** MARILLA STREET LF **Date Collected:** 12/05/18 **Date Received: Sample Matrix:** Water 12/07/18 12/14/18

Date Analyzed:

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Sample Name: MW-7B Lab Code: R1811907-018 **Units: Basis:** mg/LNA

Analysis Method:

SM 5310 C-2000(2011)

Matrix Spike Duplicate Matrix Spike

R1811907-018MS

R1811907-018DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	46.6	99.0	50.0	105	98.8	50.0	104	48-135	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix:

Water

Service Request:R1811907

Date Collected: 12/05/18

Date Received: 12/07/18

Date Analyzed:12/13/18 - 12/14/18

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: Lab Code:

MW-15B

R1811907-019

Units:mg/L

Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1811907-019MS

R1811907-019DMS

		Sample		Spike	%		Spike	%	% Rec		RPD
Analyte Name	Method	Result	Result	Amount	Rec	Result	Amount	Rec	Limits	RPD	Limit
Cyanide, Total	335.4	ND U	0.098	0.100	98	0.097	0.100	97	90-110	<1	20
Carbon, Total Organic	SM 5310 C-2000(2011)	29.6	89.8	50.0	120	75.0	50.0	91	48-135	18	20
(TOC)											

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/21/2018 6:35:16 AM

QA/QC Report

Client:Daigler EngineeringService Request:R1811907Project:MARILLA STREET LFDate Collected:12/04/18Sample Matrix:WaterDate Received:12/07/18Date Analyzed:12/12/18

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

 Sample Name:
 MW-16B
 Units:
 mg/L

 Lab Code:
 R1811907-020
 Basis:
 NA

Analysis Method: SM 5310 C-2000(2011)

Matrix SpikeDuplicate Matrix SpikeR1811907-020MSR1811907-020DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	14.1	23.6	10.0	96	23.9	10.0	99	48-135	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Daigler EngineeringService Request:R1811907ProjectMARILLA STREET LFDate Collected:12/05/18

Sample Matrix: Water Date Received: 12/07/18

Date Analyzed: 12/12/18

Replicate Sample Summary General Chemistry Parameters

Sample Name: MW-7B Units: mg/L

Lab Code: R1811907-018 **Basis:** NA

Duplicate Sample

R1811907-

Sample 018DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSolids, Total Dissolved (TDS)SM 2540 C-1997(2011)20890896893<1</td>10

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: **Daigler Engineering** Service Request: R1811907 **Project** MARILLA STREET LF **Date Collected:** 12/04/18

Sample Matrix: Water **Date Received:** 12/07/18

Date Analyzed: 12/11/18

Replicate Sample Summary General Chemistry Parameters

Sample Name: Units: mg/L MW-18B Lab Code:

R1811907-021 Basis: NA

Duplicate Sample R1811907-

Sample **021DUP**

Analysis Method Result **RPD Limit Analyte Name MRL** Result Average Solids, Total Dissolved (TDS) SM 2540 C-1997(2011) 20 2790 2800 2790 10

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907

Date Analyzed: 12/11/18 - 12/18/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L
Basis:NA

Lab Control Sample

R1811907-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	10.5	10.0	105	80-121
Cyanide, Total	335.4	0.104	0.100	104	90-110
Phenolics, Total Recoverable	420.4	0.0404	0.0400	101	90-110
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	910	914	100	90-110

QA/QC Report

Client: Daigler Engineering

Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907

Date Analyzed: 12/12/18 - 12/13/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

R1811907-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	10.7	10.0	107	80-121
Cyanide, Total	335.4	0.609	0.600	101	90-110
Solids, Total Dissolved (TDS)	SM 2540 C-1997(2011)	894	914	98	90-110

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907 Date Analyzed: 12/13/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R1811907-LCS3

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsCyanide, Total335.40.1050.10010590-110

QA/QC Report

Client: Daigler Engineering
Project: MARILLA STREET LF

Sample Matrix: Water

Service Request: R1811907 Date Analyzed: 12/13/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R1811907-LCS4

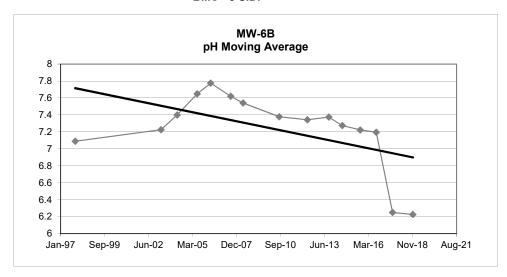
Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsCyanide, Total335.40.6130.60010290-110

APPENDIX D

Historic Data for Shallow Overburden Background Well MW-6B

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

рΗ

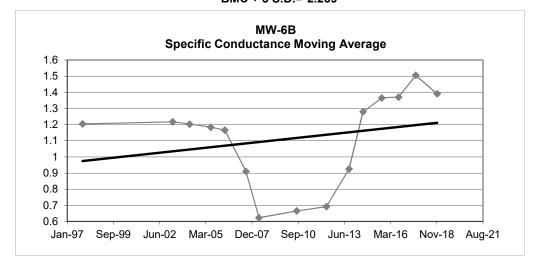

Event No.	Event Date	рН	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.	M.A 3 S.D.
1	Mar-96	7.22					
2	Jun-96	7.24					
3	Oct-96	7.32					
4	Dec-96	6.88					
5	Mar-97	7.14					
6	Jun-97	7.19					
7	Sep-97	7.00					
8	Dec-97	7.03	7.090	0.090	0.269	7.359	6.821
9	Apr-03	7.68	7.225	0.315	0.944	8.169	6.281
10	Apr-04	7.89	7.400	0.453	1.359	8.759	6.041
11	Jul-05	7.99	7.648	0.431	1.294	8.942	6.353
12	May-06	7.54	7.775	0.203	0.609	8.384	7.166
13	Aug-07	7.06	7.620	0.420	1.261	8.881	6.359
14	May-08	7.57	7.540	0.380	1.141	8.681	6.399
15	Aug-10	7.34	7.378	0.235	0.705	8.083	6.673
16	May-12	7.40	7.343	0.212	0.636	7.979	6.706
17	Sep-13	7.19	7.375	0.157	0.471	7.846	6.904
18	Jul-14	7.17	7.275	0.113	0.338	7.613	6.937
19	Aug-15	7.13	7.223	0.121	0.363	7.585	6.860
20	Aug-16	7.29	7.195	0.068	0.204	7.399	6.991
21	Aug-17	3.41	6.250	1.895	5.684	11.934	0.566
22	Dec-18	7.07	6.225	1.879	5.637	11.862	0.588

Background Mean Concentration (BMC)= 7.13

3 S.D.= 2.629

BMC + 3 S.D.= 9.75

BMC - 3 S.D.= 4.50



Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Specific Conductance

Event No.	Event Date	Specific Conductance (mS/cm)	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	1.057				
2	Jun-96	1.106				
3	Oct-96	1.118				
4	Dec-96	1.131				
5	Mar-97	1.102				
6	Jun-97	1.205				
7	Sep-97	1.234				
8	Dec-97	1.275	1.204	0.074	0.221	1.425
9	Apr-03	1.152	1.217	0.052	0.155	1.372
10	Apr-04	1.149	1.203	0.062	0.187	1.390
11	Jul-05	1.158	1.184	0.061	0.183	1.367
12	May-06	1.202	1.165	0.025	0.074	1.240
13	Aug-07	0.130	0.910	0.520	1.561	2.471
14	May-08	0.000	0.623	0.646	1.939	2.561
15	Aug-10	1.326	0.665	0.696	2.088	2.753
16	May-12	1.310	0.692	0.725	2.176	2.868
17	Sep-13	1.060	0.924	0.628	1.884	2.808
18	Jul-14	1.420	1.279	0.154	0.462	1.741
19	Aug-15	1.670	1.365	0.253	0.759	2.124
20	Aug-16	1.330	1.370	0.252	0.755	2.125
21	Aug-17	1.600	1.505	0.157	0.471	1.976
22	Dec-18	0.960	1.390	0.322	0.966	2.356

Background Mean Concentration (BMC)= 1.123 3 S.D.= 1.147 BMC + 3 S.D.= 2.269

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Arsenic

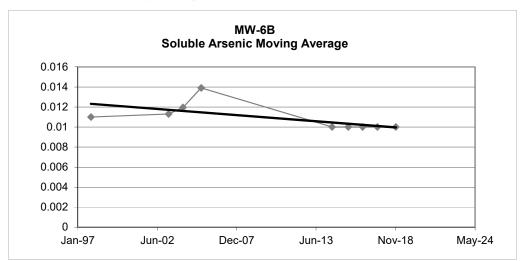

Event No.	Event Date	Arsenic, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.0050	*				
2	Jun-96	0.0070					
3	Oct-96	0.0050	*				
4	Dec-96	0.0050	*				
5	Mar-97	0.0120					
6	Jun-97	0.0100	*				
7	Sep-97	0.0100	*				
8	Dec-97	0.0165		0.0121	0.0031	0.0092	0.0213
9	Apr-03	0.0046	*	0.0103	0.0049	0.0146	0.0249
10	Apr-04	0.0040	*	0.0088	0.0058	0.0174	0.0262
11	Jul-05	0.0040	*	0.0073	0.0062	0.0185	0.0257
12	May-06	0.0040	*	0.0042	0.0003	0.0009	0.0051
13	Aug-07	0.0100	*	0.0055	0.0030	0.0090	0.0145
14	May-08	0.0100	*	0.0070	0.0035	0.0104	0.0174
15	Aug-10	0.0040	*	0.0070	0.0035	0.0104	0.0174
16	May-12	0.0040	*	0.0070	0.0035	0.0104	0.0174
17	Sep-13	0.0100	*	0.0070	0.0035	0.0104	0.0174
18	Jul-14	0.0100	*	0.0070	0.0035	0.0104	0.0174
19	Aug-15	0.0100	*	0.0085	0.0030	0.0090	0.0175
20	Aug-16	0.0100	*	0.0100	0.0000	0.0000	0.0100
21	Aug-17	0.0100	*	0.0100	0.0000	0.0000	0.0100
22	Dec-18	0.0100	*	0.0100	0.0000	0.0000	0.0100

Background Mean Concentration (BMC)= 0.00796 3 S.D.= 0.0103

BMC + 3 S.D.= 0.0183

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.


Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

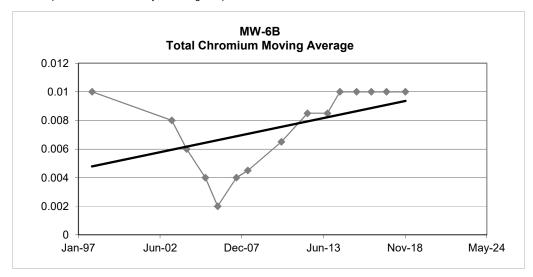
Soluble Arsenic

Event Date	Arsenic, S (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
Mar-96	0.0050	*				
Jun-96	0.0050	*				
Oct-96	0.0050	*				
Dec-96	0.0050	*				
Mar-97	0.0101					
Jun-97	0.0100	*				
Sep-97	0.0100	*				
Dec-97	0.0139		0.0110	0.0019	0.0058	0.0168
Apr-03	NA		0.0113	0.0023	0.0068	0.0181
Apr-04	NA		0.0120	0.0028	0.0083	0.0202
Jul-05	NA		0.0139	NA	NA	NA
May-06	NA		NA	NA	NA	NA
Aug-07	NA		NA	NA	NA	NA
May-08	NA		NA	NA	NA	NA
Aug-10	NA		NA	NA	NA	NA
May-12	NA		NA	NA	NA	NA
Sep-13	NA		NA	NA	NA	NA
Jul-14	0.0100	*	0.0100	NA	NA	NA
Aug-15	0.0100	*	0.0100	0.0000	0.0000	0.0100
Aug-16	0.0100	*	0.0100	0.0000	0.0000	0.0100
Aug-17	0.0100	*	0.0100	0.0000	0.0000	0.0100
Dec-18	0.0100	*	0.0100	0.0000	0.0000	0.0100

Background Mean Concentration (BMC)= 0.00877 3 S.D.= 0.0085 BMC+3 S.D.= 0.0172

NA = The parameter was not analyzed during that particular event or data is not available.

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.


Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Chromium

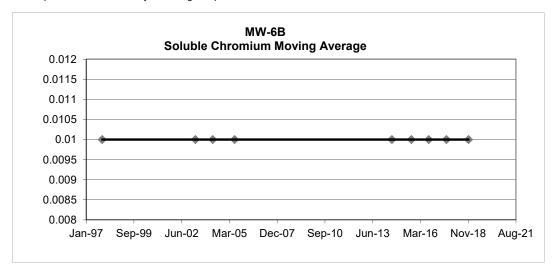
Event Date	Chromium, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
Mar-96	0.0110	*				
Jun-96	0.0110	*				
Oct-96	0.0110	*				
Dec-96	0.0110	*				
Mar-97	0.0100	*				
Jun-97	0.0100	*				
Sep-97	0.0100	*				
Dec-97	0.0100	*	0.0100	0.0000	0.0000	0.0100
Apr-03	0.0020	*	0.0080	0.0040	0.0120	0.0200
Apr-04	0.0020	*	0.0060	0.0046	0.0139	0.0199
Jul-05	0.0020	*	0.0040	0.0040	0.0120	0.0160
May-06	0.0020	*	0.0020	0.0000	0.0000	0.0020
Aug-07	0.0100	*	0.0040	0.0040	0.0120	0.0160
May-08	0.0040	*	0.0045	0.0038	0.0114	0.0159
Aug-10	0.0100	*	0.0065	0.0041	0.0124	0.0189
May-12	0.0100	*	0.0085	0.0030	0.0090	0.0175
Sep-13	0.0100	*	0.0085	0.0030	0.0090	0.0175
Jul-14	0.0100	*	0.0100	0.0000	0.0000	0.0100
Aug-15	0.0100	*	0.0100	0.0000	0.0000	0.0100
Aug-16	0.0100	*	0.0100	0.0000	0.0000	0.0100
Aug-17	0.0100	*	0.0100	0.0000	0.0000	0.0100
Dec-18	0.0100	*	0.0100	0.0000	0.0000	0.0100

Background Mean Concentration (BMC)= 0.00845 3 S.D.= 0.0102 BMC+3 S.D.= 0.0187

NA = The parameter was not analyzed during that particular event or data is not available.

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

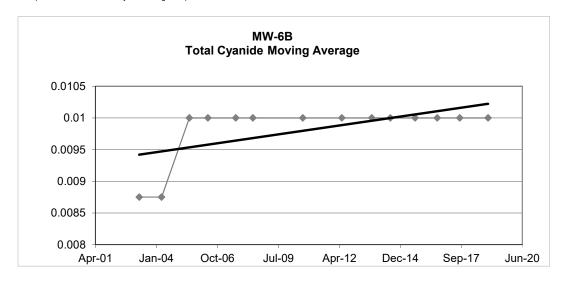

Soluble Chromium

Event No.	Event Date	Chromium, S (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.0110	*				
2	Jun-96	0.0110	*				
3	Oct-96	0.0110	*				
4	Dec-96	0.0110	*				
5	Mar-97	0.0100	*				
6	Jun-97	0.0100	*				
7	Sep-97	0.0100	*				
8	Dec-97	0.0100	*	0.0100	0.0000	0.0000	0.0100
9	Apr-03	NA		0.0100	0.0000	0.0000	0.0100
10	Apr-04	NA		0.0100	0.0000	0.0000	0.0100
11	Jul-05	NA		0.0100	NA	NA	NA
12	May-06	NA		NA	NA	NA	NA
13	Aug-07	NA		NA	NA	NA	NA
14	May-08	NA		NA	NA	NA	NA
15	Aug-10	NA		NA	NA	NA	NA
16	May-12	NA		NA	NA	NA	NA
17	Sep-13	NA		NA	NA	NA	NA
18	Jul-14	0.0100	*	0.0100	NA	NA	NA
19	Aug-15	0.0100	*	0.0100	0.0000	0.0000	0.0100
20	Aug-16	0.0100	*	0.0100	0.0000	0.0000	0.0100
21	Aug-17	0.0100	*	0.0100	0.0000	0.0000	0.0100
22	Dec-18	0.0100	*	0.0100	0.0000	0.0000	0.0100

Background Mean Concentration (BMC)= 0.0103 3 S.D.= 0.00144 BMC+3 S.D.= 0.0117

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.


Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Cyanide

Event No.	Event Date	Cyanide, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Apr-01	0.010	*				
2	Oct-01	0.005					
3	Apr-02	0.010	*				
4	Apr-03	0.010	*	0.009	0.003	0.008	0.016
5	Apr-04	0.010	*	0.009	0.003	0.008	0.016
6	Jul-05	0.010	*	0.010	0.000	0.000	0.010
7	May-06	0.010	*	0.010	0.000	0.000	0.010
8	Aug-07	0.010	*	0.010	0.000	0.000	0.010
9	May-08	0.010	*	0.010	0.000	0.000	0.010
10	Aug-10	0.010	*	0.010	0.000	0.000	0.010
11	May-12	0.010	*	0.010	0.000	0.000	0.010
12	Sep-13	0.010	*	0.010	0.000	0.000	0.010
13	Jul-14	0.010	*	0.010	0.000	0.000	0.010
14	Aug-15	0.010	*	0.010	0.000	0.000	0.010
15	Aug-16	0.010	*	0.010	0.000	0.000	0.010
16	Aug-17	0.010	*	0.010	0.000	0.000	0.010
17	Dec-18	0.010	*	0.010	0.000	0.000	0.010

Background Mean Concentration (BMC)= 0.0097 3 S.D.= 0.0036 BMC+3 S.D.= 0.013

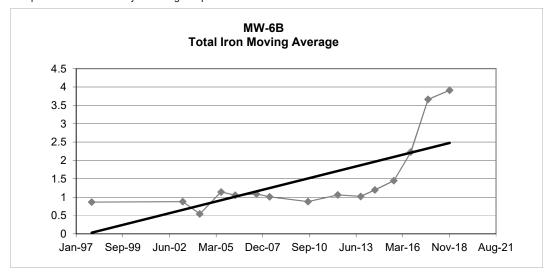
NA = The parameter was not analyzed during that particular event or data is not available.

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Iron

Event No.	Event Date	Iron, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	1.300					
2	Jun-96	3.960					
3	Oct-96	0.693					
4	Dec-96	1.760					
5	Mar-97	0.205					
6	Jun-97	2.130					
7	Sep-97	0.412					
8	Dec-97	0.719		0.867	0.868	2.605	3.472
9	Apr-03	0.250		0.878	0.857	2.572	3.449
10	Apr-04	0.798		0.545	0.258	0.773	1.317
11	Jul-05	2.800		1.142	1.132	3.395	4.537
12	May-06	0.360		1.052	1.189	3.567	4.619
13	Aug-07	0.383		1.085	1.161	3.482	4.568
14	May-08	0.490		1.008	1.196	3.588	4.596
15	Aug-10	2.280		0.878	0.936	2.809	3.687
16	May-12	1.090		1.061	0.870	2.611	3.672
17	Sep-13	0.220		1.020	0.915	2.746	3.766
18	Jul-14	1.190		1.195	0.844	2.533	3.728
19	Aug-15	3.300		1.450	1.308	3.924	5.374
20	Aug-16	4.200		2.228	1.839	5.517	7.745
21	Aug-17	5.950		3.660	1.980	5.941	9.601
22	Dec-18	2.180		3.908	1.593	4.778	8.686


Background Mean Concentration (BMC)= 1.667

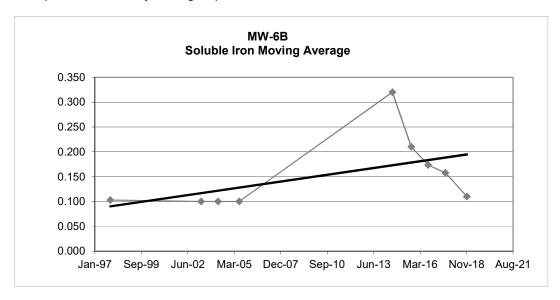
3 S.D.= 4.661

BMC+3 S.D.= 6.327

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B


Soluble Iron

Event No.	Event Date	Iron, S (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.070					
2	Jun-96	0.063	*				
3	Oct-96	0.310					
4	Dec-96	2.890					
5	Mar-97	0.111					
6	Jun-97	0.100	*				
7	Sep-97	0.100	*				
8	Dec-97	0.100	*	0.103	0.006	0.017	0.119
9	Apr-03	NA		0.100	0.000	0.000	0.100
10	Apr-04	NA		0.100	0.000	0.000	0.100
11	Jul-05	NA		0.100	NA	NA	NA
12	May-06	NA		NA	NA	NA	NA
13	Aug-07	NA		NA	NA	NA	NA
14	May-08	NA		NA	NA	NA	NA
15	Aug-10	NA		NA	NA	NA	NA
14	May-12	NA		NA	NA	NA	NA
15	Sep-13	NA		NA	NA	NA	NA
16	Jul-14	0.320		0.320	NA	NA	NA
17	Aug-15	0.100	*	0.210	0.156	0.467	0.677
18	Aug-16	0.100	*	0.173	0.127	0.381	0.554
19	Aug-17	0.110		0.158	0.108	0.325	0.483
20	Dec-18	0.130		0.110	0.014	0.042	0.152

Background Mean Concentration (BMC)= 0.346 3 S.D.= 2.306 BMC+3 S.D.= 2.652

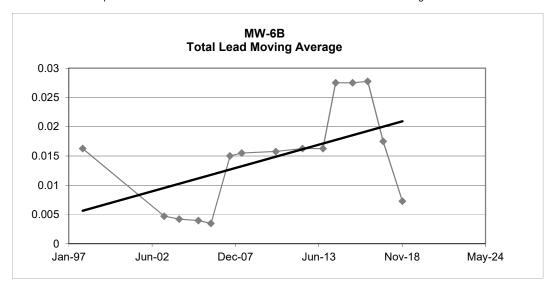
^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Lead

Event No.	Event Date	Lead, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.0050	*				
2	Jun-96	0.0040	*				
3	Oct-96	0.0040	*				
4	Dec-96	0.0040	*				
5	Mar-97	0.0500	*				
6	Jun-97	0.0050					
7	Sep-97	0.0050	*				
8	Dec-97	0.0050	*	0.0163	0.0225	0.0675	0.0838
9	Apr-03	0.0038	*	0.0047	0.0006	0.0018	0.0065
10	Apr-04	0.0030	*	0.0042	0.0010	0.0029	0.0071
11	Jul-05	0.0040	*	0.0040	0.0008	0.0025	0.0064
12	May-06	0.0030	*	0.0035	0.0005	0.0016	0.0050
13	Aug-07	0.0500	*	0.0150	0.0233	0.0700	0.0850
14	May-08	0.0050	*	0.0155	0.0230	0.0690	0.0845
15	Aug-10	0.0050	*	0.0158	0.0229	0.0686	0.0843
16	May-12	0.0050	*	0.0163	0.0225	0.0675	0.0838
17	Sep-13	0.0500	*	0.0163	0.0225	0.0675	0.0838
18	Jul-14	0.0500	*	0.0275	0.0260	0.0779	0.1054
19	Aug-15	0.0050	J	0.0275	0.0260	0.0779	0.1054
20	Aug-16	0.0060	J	0.0278	0.0257	0.0771	0.1048
21	Aug-17	0.0090	J	0.0175	0.0217	0.0652	0.0827
22	Dec-18	0.0090	*	0.0073	0.0021	0.0062	0.0134


Background Mean Concentration (BMC)= 0.0132

3 S.D.= 0.0535

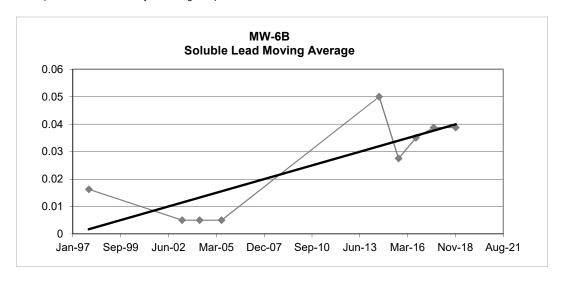
BMC+3 S.D.= 0.0667

NA = The parameter was not analyzed during that particular event or data is not available.

J = Concentration was reported as an estimated value and could not be verified within the linear range of the calibration.

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B


Soluble Lead

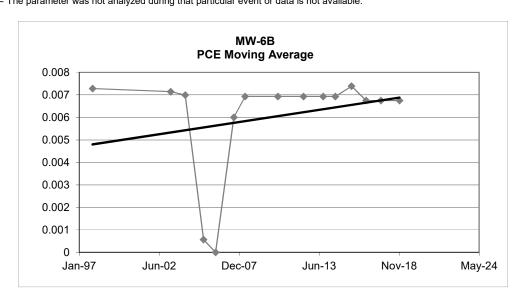
Event No.	Event Date	Lead, S (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.0060	*				
2	Jun-96	0.0040	*				
3	Oct-96	0.0040	*				
4	Dec-96	0.0040	*				
5	Mar-97	0.0500	*				
6	Jun-97	0.0050	*				
7	Sep-97	0.0050	*				
8	Dec-97	0.0050	*	0.0163	0.0225	0.0675	0.0838
9	Apr-03	NA		0.0050	0.0000	0.0000	0.0050
10	Apr-04	NA		0.0050	0.0000	0.0000	0.0050
11	Jul-05	NA		0.0050	NA	NA	NA
12	May-06	NA		NA	NA	NA	NA
13	Aug-07	NA		NA	NA	NA	NA
14	May-08	NA		NA	NA	NA	NA
15	Aug-10	NA		NA	NA	NA	NA
16	May-12	NA		NA	NA	NA	NA
17	Sep-13	NA		NA	NA	NA	NA
18	Jul-14	0.0500	*	0.0500	NA	NA	NA
19	Aug-15	0.0050	*	0.0275	0.0318	0.0955	0.1230
20	Aug-16	0.0500	*	0.0350	0.0260	0.0779	0.1129
21	Aug-17	0.0500	*	0.0388	0.0225	0.0675	0.1063
22	Dec-18	0.0500	*	0.0388	0.0225	0.0675	0.1063

Background Mean Concentration (BMC)= 0.0222 3 S.D.= 0.0688 BMC+3 S.D.= 0.0909

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B


PCE

Event	Event Date	PCE	*	Moving Average	Moving Standard	S.D. x 3	M.A. + 3 S.D.
No.		(mg/L)		(M.A.)	Deviation (S.D.)		
1	Mar-96	0.00090					
2	Jun-96	0.00090					
3	Oct-96	0.00090					
4	Dec-96	0.00090					
5	Mar-97	0.00069					
6	Jun-97	0.00069					
7	Sep-97	0.00552					
8	Dec-97	0.00062		0.00188	0.00243	0.00728	0.00916
9	Apr-03	0.00100	*	0.00196	0.00238	0.00714	0.00910
10	Apr-04	0.00100	*	0.00204	0.00233	0.00699	0.00903
11	Jul-05	0.00100	*	0.00091	0.00019	0.00057	0.00148
12	May-06	0.00100	*	0.00100	0.00000	0.00000	0.00100
13	Aug-07	0.00500	*	0.00200	0.00200	0.00600	0.00800
14	May-08	0.00500	*	0.00300	0.00231	0.00693	0.00993
15	Aug-10	0.00100	*	0.00300	0.00231	0.00693	0.00993
16	May-12	0.00100	*	0.00300	0.00231	0.00693	0.00993
17	Sep-13	0.00500	*	0.00300	0.00231	0.00693	0.00993
18	Jul-14	0.00500	*	0.00300	0.00231	0.00693	0.00993
19	Aug-15	0.00050	*	0.00288	0.00246	0.00739	0.01026
20	Aug-16	0.00500	*	0.00388	0.00225	0.00675	0.01063
21	Aug-17	0.00500	*	0.00388	0.00225	0.00675	0.01063
22	Dec-18	0.00500	*	0.00388	0.00225	0.00675	0.01063

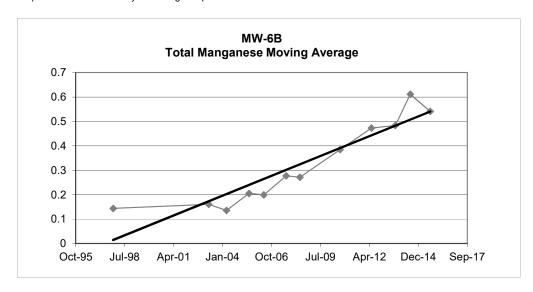
Background Mean Concentration (BMC)= 0.00239 3 S.D.= 0.00623 BMC+3 S.D.= 0.00862

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Manganese


Event No.	Event Date	Manganese, T (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.1070					
2	Jun-96	0.1960					
3	Oct-96	0.1980					
4	Dec-96	0.2620					
5	Mar-97	0.1130					
6	Jun-97	0.1750					
7	Sep-97	0.1410					
8	Dec-97	0.1450		0.1435	0.0254	0.0761	0.2196
9	Apr-03	0.1800		0.1603	0.0201	0.0603	0.2205
10	Apr-04	0.0754		0.1354	0.0436	0.1309	0.2663
11	Jul-05	0.4200		0.2051	0.1497	0.4492	0.6543
12	May-06	0.1200		0.1989	0.1535	0.4606	0.6595
13	Aug-07	0.4910		0.2766	0.2094	0.6282	0.9048
14	May-08	0.0540		0.2713	0.2164	0.6492	0.9205
15	Aug-10	0.8720		0.3843	0.3778	1.1334	1.5176
16	May-12	0.4740		0.4728	0.3342	1.0026	1.4754
17	Sep-13	0.5320		0.4830	0.3356	1.0067	1.4897
18	Jul-14	0.5670		0.6113	0.1780	0.5340	1.1453
19	Aug-15	0.5910		0.5410	0.0508	0.1524	0.6934
20	Aug-16	0.7200		0.6025	0.0820	0.2460	0.8485
21	Aug-17	0.6240		0.6255	0.0672	0.2016	0.8271
22	Dec-18	0.6930		0.6570	0.0597	0.1792	0.8362

Background Mean Concentration (BMC)= 0.3523

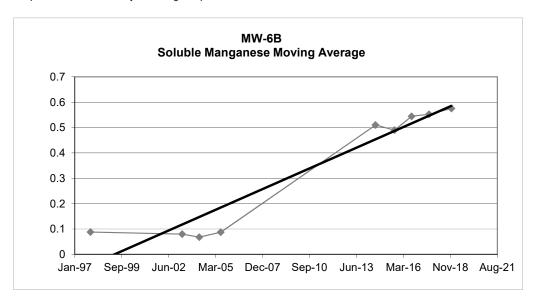
3 S.D.= 0.7497

BMC+3 S.D.= 1.1020

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table. NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Soluble Manganese


Event No.	Event Date	Manganese, S (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.1050					
2	Jun-96	0.0310					
3	Oct-96	0.2000					
4	Dec-96	0.2410					
5	Mar-97	0.1120					
6	Jun-97	0.1030					
7	Sep-97	0.0484					
8	Dec-97	0.0875		0.0877	0.0281	0.0843	0.1720
9	Apr-03	NA		0.0796	0.0281	0.0844	0.1640
10	Apr-04	NA		0.0680	0.0276	0.0829	0.1509
11	Jul-05	NA		0.0875	NA	NA	NA
12	May-06	NA		NA	NA	NA	NA
13	Aug-07	NA		NA	NA	NA	NA
14	May-08	NA		NA	NA	NA	NA
15	Aug-10	NA		NA	NA	NA	NA
16	May-12	NA		NA	NA	NA	NA
17	Sep-13	NA		NA	NA	NA	NA
18	Jul-14	0.51		0.5100	NA	NA	NA
19	Aug-15	0.47		0.4900	0.0283	0.0849	0.5749
20	Aug-16	0.653		0.5443	0.0962	0.2886	0.8330
21	Aug-17	0.577		0.5525	0.0802	0.2407	0.7932
22	Dec-18	0.600		0.5750	0.0769	0.2307	0.8057

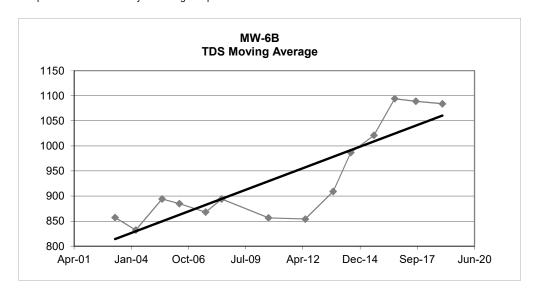
Background Mean Concentration (BMC)= 0.2875 3 S.D.= 0.7082

BMC+3 S.D.= 0.9958

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B


Total Dissolved Solids

Event No.	Event Date	TDS (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Apr-01	885					
2	Oct-01	731					
3	Apr-02	914					
5	Apr-03	898		857	85	254	1111
6	Apr-04	785		832	88	265	1097
7	Jul-05	979		894	81	242	1136
8	May-06	877		885	80	239	1124
9	Aug-07	830		868	83	249	1117
10	May-08	890		894	62	187	1081
11	Aug-10	828		856	32	96	952
12	May-12	868		854	30	91	945
13	Sep-13	1050		909	97	292	1201
14	Jul-14	1200		987	172	516	1503
15	Aug-15	966		1021	141	422	1443
16	Aug-16	1160		1094	106	319	1413
17	Aug-17	1030		1089	110	329	1418
18	Dec-18	1180		1084	103	309	1393

Background Mean Concentration (BMC)= 945 3 S.D.= 414 BMC+3 S.D.= 1360

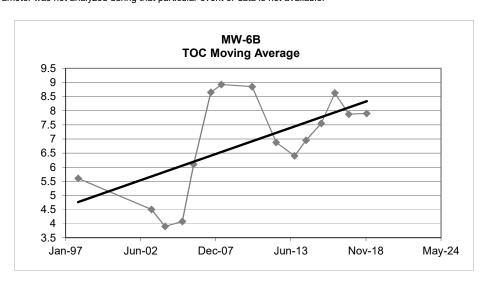
^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.

Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Organic Carbon

Event No.	Event Date	TOC (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	5.10					
2	Jun-96	5.10					
3	Oct-96	5.80					
4	Dec-96	5.40					
5	Mar-97	5.40					
6	Jun-97	6.70					
7	Sep-97	5.20					
8	Dec-97	5.10		5.60	0.74	2.23	7.83
9	Apr-03	1.00	*	4.50	2.45	7.34	11.84
10	Apr-04	4.30		3.90	1.97	5.92	9.82
11	Jul-05	5.90		4.08	2.15	6.45	10.53
12	May-06	13.20		6.10	5.15	15.46	21.56
13	Aug-07	11.20		8.65	4.23	12.69	21.34
14	May-08	5.40		8.93	3.87	11.62	20.55
15	Aug-10	5.60		8.85	3.95	11.86	20.71
16	May-12	5.30		6.88	2.89	8.66	15.53
17	Sep-13	9.30		6.40	1.94	5.81	12.21
18	Jul-14	7.60		6.95	1.87	5.61	12.56
19	Aug-15	8.00		7.55	1.67	5.00	12.55
20	Aug-16	9.60		8.63	0.97	2.92	11.55
21	Aug-17	6.30		7.88	1.36	4.08	11.95
22	Dec-18	7.70		7.90	1.35	4.06	11.96

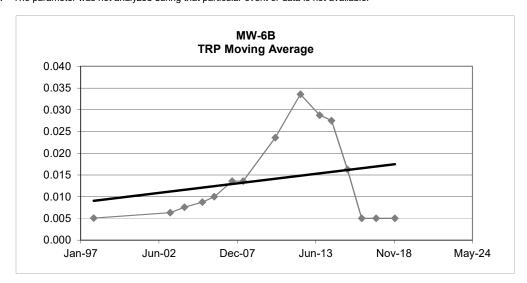

Background Mean Concentration (BMC)= 6.55

3 S.D.= 7.71

BMC+3 S.D.= 14.27

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table.

NA = The parameter was not analyzed during that particular event or data is not available.


Marilla Street Landfill December 2018 Annual Sampling Event Background Shallow Overburden Well MW-6B

Total Recoverable Phenolics

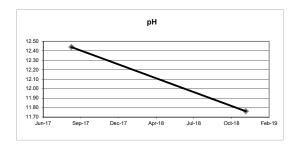
Event No.	Event Date	TRP (mg/L)	*	Moving Average (M.A.)	Moving Standard Deviation (S.D.)	S.D. x 3	M.A. + 3 S.D.
1	Mar-96	0.005	*				
2	Jun-96	0.005	*				
3	Oct-96	0.005	*				
4	Dec-96	0.005	*				
5	Mar-97	0.005	*				
6	Jun-97	0.005					
7	Sep-97	0.00521	*				
8	Dec-97	0.005	*	0.005	0.000	0.000	0.005
9	Apr-03	0.010	*	0.006	0.002	0.007	0.014
10	Apr-04	0.010	*	0.008	0.003	0.008	0.016
11	Jul-05	0.010	*	0.009	0.003	0.008	0.016
12	May-06	0.010	*	0.010	0.000	0.000	0.010
13	Aug-07	0.0243		0.014	0.007	0.021	0.035
14	May-08	0.010	*	0.014	0.007	0.021	0.035
15	Aug-10	0.050	*	0.024	0.019	0.057	0.080
16	May-12	0.050	*	0.034	0.020	0.060	0.093
17	Sep-13	0.005	*	0.029	0.025	0.074	0.103
18	Jul-14	0.005	*	0.028	0.026	0.078	0.105
19	Aug-15	0.005	*	0.016	0.023	0.068	0.084
20	Aug-16	0.005	*	0.005	0.0000	0.000	0.005
21	Aug-17	0.005	*	0.005	0.0000	0.000	0.005
22	Dec-18	0.005	*	0.005	0.0000	0.000	0.005

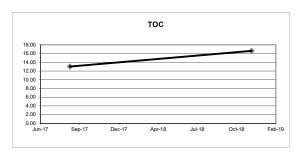
Background Mean Concentration (BMC)= 0.0111 3 S.D.= 0.0400 BMC+3 S.D.= 0.0511

^{* =} Concentration was reported as less than the laboratory detection limit; the laboratory detection limit is presented in this table. NA = The parameter was not analyzed during that particular event or data is not available.

APPENDIX E

Moving Average Trend Analysis of Tracked Parameters for Shallow Overburden Wells


Marilla Street Landfill

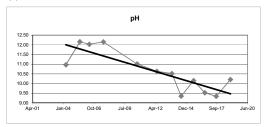

December 2018 Annual Sampling Event

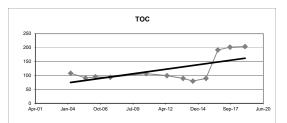
Summary of MATA Tracked Parameters for MW-2B

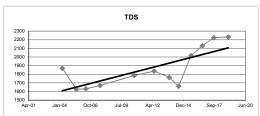
Event Date	рН	Moving Average	TRP	Moving Average	тос	Moving Average	Total Chromium	Moving Average	Total Iron	Moving Average	Total Manganese	Moving Average
Sep-13	13.9	-	0.088	-	0.081	-	-	-	-	-	-	-
Jul-14 ⁽³⁾	-	-	-	-	-	-	-	-	-	-	-	-
Aug-15	12.22	-	0.059	-	18.0	-	0.097	-	31.5	-	2.23	-
Aug-16	12.42	-	0.029	-	16.8	-	0.024	-	10.8	-	0.595	-
Aug-17	11.22	12.44	0.063	0.06	17.3	13.05	0.013	-	4.9	-	0.277	-
Dec-18	11.19	11.76	0.019	0.04	14.4	16.63	0.01	0.04	1.53	12.18	0.08	0.80

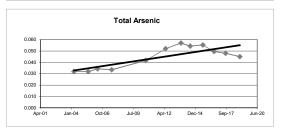
- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) Data prior to September 2013 sampling event was unavailable, and/or MATA was not previously conducted.
- (3) MW-2B previously biennial, not sampled in 2014.
- (4) TOC = Total Organic Carbon
- (5) TRP = Total Recoverable Phenolics

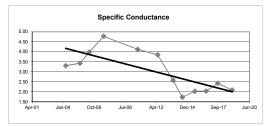
Marilla Street Landfill

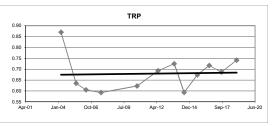

December 2018 Annual Sampling Event

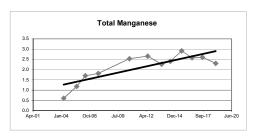

Summary of MATA Tracked Parameters for MW-3B

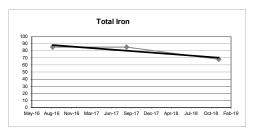

Event Date	рН	Moving Average	тос	Moving Average	TDS	Moving Average	Total Arsenic	Moving Average	Specific Conductance	Moving Average	TRP	Moving Average
Oct-01	6.72	-	163.0	-	2400	-	0.030	-	2.30	-	1.30	-
Apr-02	12.41	-	117.0	-	1640	-	0.027	-	4.44	-	0.84	-
Apr-03	12.01	-	140.0	-	1780	-	0.037	-	2.97	-	1.10	-
Apr-04	12.74	10.97	11.0	107.8	1650	1868	0.034	0.032	3.53	3.31	0.24	0.87
Jul-05	11.48	12.16	96.9	91.2	1430	1625	0.030	0.032	2.77	3.43	0.36	0.64
May-06	11.90	12.03	132.0	95.0	1660	1630	0.037	0.034	6.69	3.99	0.72	0.61
Aug-07	12.49	12.15	134.0	93.5	1940	1670	0.058	0.034	6.13	4.78	1.05	0.59
Aug-10	8.18	11.01	63.7	106.7	2110	1785	0.026	0.042	0.90	4.12	0.36	0.62
May-12	9.95	10.63	66.6	99.1	1640	1838	0.087	0.052	1.70	3.85	0.64	0.69
Sep-13	11.44	10.52	93.6	89.5	1360	1763	0.057	0.057	1.59	2.58	0.851	0.73
Jul-14	7.84	9.35	96.0	80.0	1530	1660	0.047	0.054	2.75	1.73	0.521	0.59
Aug-15	11.38	10.15	101.0	89.3	3540	2018	0.030	0.055	2.08	2.03	0.683	0.67
Aug-16	7.42	9.52	475	191.4	2090	2130	0.064	0.050	1.73	2.04	0.812	0.72
Aug-17	10.71	9.34	134	201.5	1740	2225	0.051	0.048	3.14	2.43	0.730	0.69
Dec-18	11.32	10.21	105	203.8	1560	2233	0.035	0.045	1.42	2.09	0.740	0.74

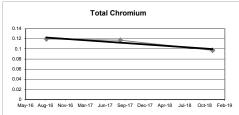

- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.

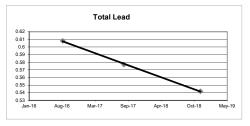

- (2) TOC = Total Organic Carbon (3) TDS = Total Dissolved Solids (4) TRP = Total Recoverable Phenolics



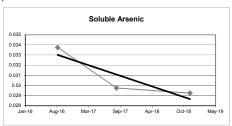

Marilla Street Landfill

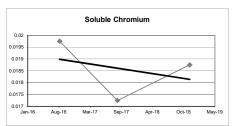

December 2018 Annual Sampling Event

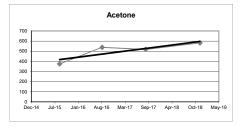

Summary of MATA Tracked Parameters for MW-3B


Event Date	Total Cyanide	Moving Average	Total Manganese	Moving Average	Total Chromium	Moving Average	Total Iron	Moving Average	Total Lead	Moving Average
Oct-01	0.0095	-	0.610	-						
Apr-02	0.0124	-	0.510	-						
Apr-03	0.0183	-	0.560	-						
Apr-04	0.0199	0.0150	0.727	0.602						
Jul-05	0.0262	0.0192	2.900	1.174						
May-06	0.0254	0.0225	2.600	1.697						
Aug-07	0.0174	0.0222	1.020	1.812						
Aug-10	0.0220	0.0228	3.600	2.530						
May-12	0.0100	0.0187	3.380	2.650						
Sep-13	0.0150	0.0161	1.030	2.258	0.129	-	73.3	-	0.763	-
Jun-14	0.0130	0.0150	1.610	2.405	0.133	-	94.4	-	0.582	-
Aug-15	0.0220	0.0150	5.610	2.908	0.037	-	58.3	-	0.105	-
Aug-16	0.1000	0.0375	2.050	2.575	0.179	0.120	115	85.250	0.982	0.608
Aug-17	0.1000	0.0588	1.110	2.595	0.120	0.117	73.0	85.175	0.639	0.577
Dec-18	0.0600	0.0705	0.438	2.302	0.053	0.097	26.2	68.125	0.442	0.542

Notes: (1) - If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.


Marilla Street Landfill


December 2018 Annual Sampling Event


Summary of MATA Tracked Parameters for MW-3B

Event Date	Soluble Arsenic	Moving Average	Soluble Chromium	Moving Average	Soluble Iron	Moving Average	Soluble Lead	Moving Average	Acetone	Moving average
Oct-01										
Apr-02										
Apr-03										
Apr-04										
Jul-05										
May-06										
Aug-07										
Aug-10										
May-12									61.9	
Sep-13	0.041	-	0.0300	-	3.990	-	0.059	-	570	
Jun-14	0.035	-	0.0230	-	3.040	-	0.091	-	390	
Aug-15	0.028	-	0.0160	-	2.910	-	0.050	-	480	375.5
Aug-16	0.031	0.034	0.0100	0.020	1.690	2.908	0.006	0.052	710	537.5
Aug-17	0.025	0.030	0.0200	0.017	2.780	2.605	0.047	0.049	490	517.5
Dec-18	0.033	0.029	0.0290	0.019	3.220	2.650	0.219	0.081	650	582.5

Notes: (1) - If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.

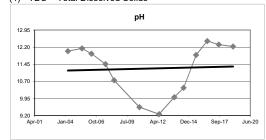
Marilla Street Landfill

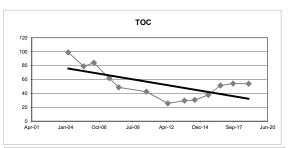
December 2018 Annual Sampling Event

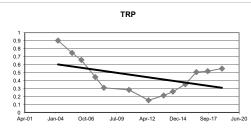
Summary of MATA Tracked Parameters for MW-4B

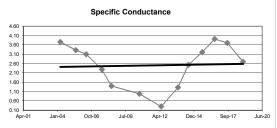
Event Date	рН	Moving Average	тос	Moving Average	TRP	Moving Average	Total Iron	Moving Average	Soluble Iron	Moving Average	Total Manganese	Moving Average
Oct-01	NA	-	NA	-	NA	-	NA	-	NA	-		-
Apr-02	7.90	-	6.5	-	0.005	-	5.60	-	NA	-		-
Apr-03	8.08	-	4.6	=	0.010	•	30.20	-	NA	-		-
Apr-04	8.57	8.18	6.5	5.9	0.010	0.008	1.00	12.27	NA	-		
Jul-05	7.78	8.08	22.2	10.0	0.076	0.025	10.90	11.92	4.00	4.00		-
May-06	7.71	8.04	3.9	9.3	0.010	0.027	6.60	12.17	NA	4.00		-
Aug-07	7.53	7.90	6.0	9.6	0.005	0.025	1.12	4.90	NA	4.00		-
May-08	7.81	7.71	5.0	9.3	0.010	0.025	0.72	4.84	NA	4.00		-
Aug-10	6.86	7.48	3.8	4.7	0.061	0.022	6.67	3.78	0.77	0.77		-
May-12	7.78	7.50	4.9	4.9	0.050	0.032	3.02	2.88	0.49	0.63		-
Sep-13	8.06	7.63	5.0	4.7	0.005	0.032	0.88	2.82	NA	0.63	1.02	-
Jul-14	8.04	7.69	6.8	5.1	0.0254	0.035	2.50	3.27	NA	0.63	1.02	-
Aug-15	7.60	7.87	6.7	5.9	0.0050	0.021	1.75	2.04	NA	0.49	0.89	-
Aug-16	8.44	8.04	7.7	6.6	0.0050	0.010	5.71	2.71	0.53	0.53	0.863	0.95
Aug-17	8.16	8.06	6.0	6.8	0.0050	0.010	3.84	3.45	NA	0.53	0.703	0.87
Dec-18	8.11	8.08	5.3	6.4	0.0050	0.005	1.05	3.09	NA	0.53	0.625	0.77

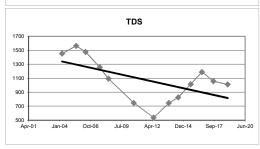
- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) TOC = Total Organic Carbon (3) TRP = Total Recoverable Phenolics
- (4) NA = Parameter not analyzed.

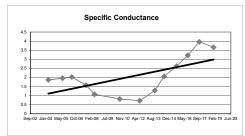

Marilla Street Landfill

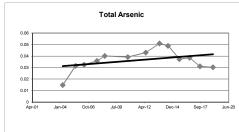

December 2018 Annual Sampling Event

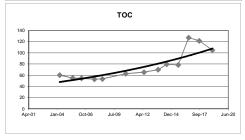

Summary of MATA Tracked Parameters for MW-7B

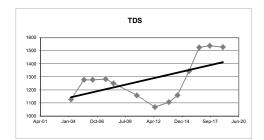

Event Date	рН	Moving Average	тос	Moving Average	TRP	Moving Average	Specific Conductance	Moving Average	TDS	Moving Average
Oct-01	11.18	-	128.0	-	0.940	-	4.40	-	1420	-
Apr-02	12.61	-	61.8	-	0.950	-	3.73	-	1580	-
Apr-03	11.48	-	109.0	-	0.940	-	3.36	-	1410	-
Apr-04	12.83	12.03	97.0	99.0	0.770	0.900	3.53	3.76	1400	1453
Jul-05	11.65	12.14	47.8	78.9	0.320	0.745	2.66	3.32	1860	1563
May-06	11.69	11.91	81.4	83.8	0.600	0.658	2.83	3.10	1230	1475
Aug-07	9.65	11.46	21.0	61.8	0.083	0.443	0.11	2.28	529	1255
May-08	9.99	10.75	43.5	48.4	0.230	0.308	0.00	1.40	747	1092
Aug-10	6.94	9.57	23.0	42.2	0.220	0.283	0.97	0.98	468	744
May-12	10.45	9.26	14.6	25.5	0.080	0.153	0.12	0.30	401	536
Sep-13	12.63	10.00	36.5	29.4	0.321	0.213	4.20	1.32	1360	744
Jul-14	11.65	10.42	47.5	30.4	0.426	0.262	4.83	2.53	1070	825
Aug-15	12.70	11.86	51.8	37.6	0.587	0.354	3.70	3.21	1220	1013
Aug-16	12.90	12.47	69.0	51.2	0.689	0.506	2.94	3.92	1100	1188
Aug-17	12.01	12.32	47.4	53.9	0.370	0.518	3.37	3.71	832	1056
Dec-18	11.31	12.23	46.6	53.7	0.550	0.549	0.77	2.70	890	1011

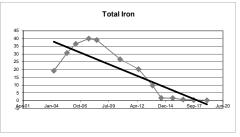

- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) TOC = Total Organic Carbon
- (3) TRP = Total Recoverable Phenolics
- (4) TDS = Total Dissolved Solids

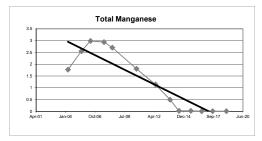

Marilla Street Landfill

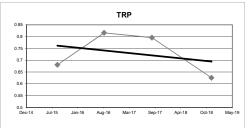

December 2018 Annual Sampling Event

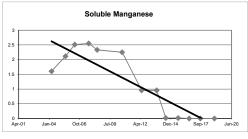

Summary of MATA Tracked Parameters for MW-15B

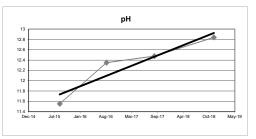

Event Date	Specific Conductance	Moving Average	TDS	Moving Average	тос	Moving Average	Total Arsenic	Moving Average	Total Iron	Moving Average
Oct-01	1.62	-	722	-	70.2	-	0.009	-	4.7	-
Apr-02	1.81	-	1310	-	52.6	-	0.013	-	5.6	-
Apr-03	2.02	-	1240	-	62.9	-	0.014	-	30.2	-
Apr-04	2.02	1.87	1240	1128	54.6	60.1	0.023	0.015	36.5	19.3
Jul-05	2.00	1.96	1320	1278	49.9	55.0	0.076	0.032	50.5	30.7
May-06	2.04	2.02	1310	1278	50.6	54.5	0.017	0.033	29.0	36.6
Aug-07	0.23	1.57	1260	1283	56.3	52.9	0.027	0.036	43.6	39.9
May-08	0.00	1.07	1110	1250	56.8	53.4	0.040	0.040	33.0	39.0
Aug-10	1.00	0.82	951	1158	87.3	62.8	0.073	0.039	1.1	26.7
May-12	1.66	0.72	954	1069	61.3	65.4	0.032	0.043	3.6	20.3
Sep-13	2.45	1.28	1410	1106	73.8	69.8	0.059	0.051	1.4	9.8
Jul-14	3.11	2.05	1320	1159	96.0	79.6	0.032	0.049	0.85	1.7
Aug-15	3.27	2.62	1690	1344	83.0	78.5	0.026	0.037	0.53	1.6
Aug-16	4.06	3.22	1680	1525	256	127.2	0.037	0.039	0.10	0.7
Aug-17	5.41	3.96	1461	1538	51.0	121.5	0.029	0.031	0.15	0.4
Dec-18	1.91	3.66	1280	1528	29.6	104.9	0.029	0.030	0.10	0.2

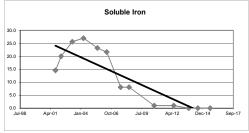

- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) TDS = Total Dissolved Solids
- (3) TOC = Total Organic Carbon

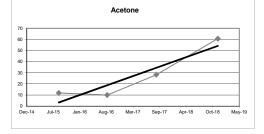

Marilla Street Landfill

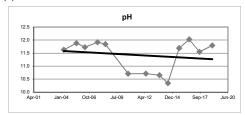

December 2018 Annual Sampling Event

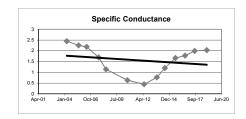

Summary of MATA Tracked Parameters for MW-15B

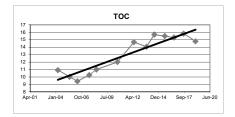

						·			r			
Event	Soluble	Moving	Total	Moving	Soluble	Moving	TRP	Moving	pН	Moving		Moving
Date	Iron	Average	Manganese	Average	Manganese	Average		Average	•	Average	Acetone	Average
Oct-01	4.7	-	0.48	-	0.47	-						
Apr-02	5.6		0.97	-	1.00	-						
Apr-03	21.4		2.80	-	2.40	-						
Apr-04	26.6	14.6	2.85	1.78	2.56	1.61						
Jul-05	26.3	20.0	3.60	2.56	2.50	2.12						
May-06	28.1	25.6	2.70	2.99	2.60	2.52						
Aug-07	NA	27.0	2.61	2.94	NA	2.55						
May-08	15.2	23.2	1.90	2.70	1.90	2.33						
Aug-10	NA	21.7	0.02	1.81	NA	2.25						
May-12	1.0	8.1	0.05	1.15	0.02	0.96	0.14	-	10.37		17.5	
Sep-13	NA	8.1	0.02	0.50	NA	0.96	0.761	-	12.23	-	10	
Jul-14	NA	1.0	0.02	0.03	NA	0.02	0.930	-	10.97	-	10	
Aug-15	NA	1.0	0.01	0.02	NA	0.02	0.893	0.68	12.64	11.55	10	11.875
Aug-16	NA		0.01	0.01	NA	-	0.680	0.82	13.56	12.35	10	10
Aug-17	NA		0.01	0.01	NA	-	0.680	0.80	12.74	12.48	83	28.25
Dec-18	NA		0.01	0.01	NA	-	0.250	0.63	12.42	12.84	140	60.75

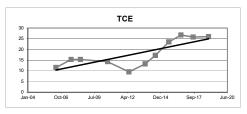

- (1) TRP = Total Recoverable Phenolics (2) NA = Parameter not analyzed



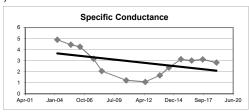

Marilla Street Landfill

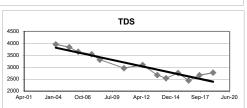

December 2018 Annual Sampling Event

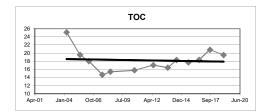

Summary of MATA Tracked Parameters for MW-16B

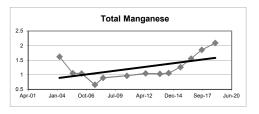

Event Date	рН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	TRP	Moving Average	Total Iron	Moving Average	Total Chromium	Moving Average	Total Manganese	Moving Average	TCE	Moving Average
Oct-01	10.62	- Average	3.00	- Average	14.6	- Average	0.013	-	8.400	-	0.055	- Average	1.200	- Average	5.0	-
Apr-02	12.11	-	2.37	-	9.3	-	0.005	-	0.970	-	0.005	-	0.130	-	5.0	-
Apr-03	11.37	-	2.19	-	11.2	-	0.010	-	1.400	-	0.010	-	0.330	-	5.0	-
Apr-04	12.41	11.63	2.24	2.45	8.6	10.9	0.010	0.010	6.070	4.210	0.055	0.031	2.060	0.930	5.0	-
Jul-05	11.63	11.88	2.22	2.25	11.0	10.0	0.010	0.009	0.090	2.133	0.002	0.018	0.005	0.631	5.0	-
May-06	11.49	11.73	2.10	2.19	6.9	9.4	0.010	0.010	0.130	1.923	0.002	0.017	0.032	0.607	31.0	11.500
Aug-07	12.14	11.92	0.23	1.70	14.5	10.3	0.010	0.010	0.100	1.598	0.010	0.017	0.010	0.527	20.0	15.250
May-08	12.11	11.84	0.00	1.14	11.6	11.0	0.010	0.010	0.051	0.093	0.004	0.005	0.003	0.013	5.0	15.250
Aug-10	7.07	10.70	0.21	0.63	15.1	12.0	0.050	0.020	0.191	0.118	0.010	0.007	0.015	0.015	1.0	14.250
May-12	11.53	10.71	1.33	0.44	17.5	14.7	0.050	0.030	0.116	0.115	0.010	0.009	0.015	0.011	11.9	9.475
Sep-13	11.88	10.65	1.50	0.76	12.0	14.1	0.0073	0.029	0.110	0.117	0.010	0.009	0.011	0.011	35.0	13.225
Jul-14	10.90	10.35	1.75	1.20	18.2	15.7	0.0073	0.029	0.510	0.232	0.010	0.010	0.061	0.026	21.0	17.225
Aug-15	12.45	11.69	2.08	1.67	14.3	15.5	0.0080	0.018	3.620	1.089	0.031	0.015	0.717	0.201	26.0	23.475
Aug-16	12.87	12.03	1.77	1.78	16.7	15.3	0.0118	0.009	0.120	1.090	0.010	0.015	0.017	0.202	25.0	26.750
Aug-17	9.96	11.55	2.38	2.00	14.1	15.8	0.0078	0.009	0.100	1.088	0.010	0.015	0.010	0.201	31.0	25.750
Dec-18	11.90	11.80	1.90	2.03	14.1	14.8	0.0050	0.008	0.180	1.005	0.010	0.015	0.010	0.189	22.0	26.000

- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) TOC = Total Organic Carbon
- (3) TCE = Trichloroethene
- (4) TRP = Total Recoverable Phenolics


Marilla Street Landfill


December 2018 Annual Sampling Event


Summary of MATA Tracked Parameters for MW-18B


Event Date	рН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	TRP	Moving Average	TDS	Moving Average	Total Manganese	Moving Average	Total Iron	Moving Average
Oct-01	7.27	-	5.58	-	40.0	-	0.007	-	3860	-	2.900	-		
Apr-02	7.57	-	4.77	-	16.2	-	0.005	-	4220	-	0.740	-		
Apr-03	7.85	-	4.84	=	30.2	-	0.010	-	3940	-	2.500	-		
Apr-04	8.61	7.83	4.40	4.90	14.0	25.1	0.010	0.008	3820	3960	0.341	1.620		
Jul-05	7.89	7.98	3.79	4.45	17.9	19.6	0.010	0.009	3380	3840	0.630	1.053		
May-06	8.33	8.17	4.05	4.27	10.0	18.0	0.010	0.010	3450	3648	0.710	1.045		
Aug-07	7.56	8.10	0.45	3.17	16.9	14.7	0.005	0.009	3510	3540	0.952	0.658		
May-08	7.92	7.93	0.00	2.07	16.9	15.4	0.011	0.009	2920	3315	1.300	0.898		
Aug-10	7.49	7.83	0.42	1.23	19.3	15.8	0.050	0.019	1950	2958	0.908	0.968		
May-12	7.91	7.72	3.49	1.09	15.1	17.1	0.050	0.029	3990	3093	1.030	1.048		
Sep-13	7.68	7.75	2.81	1.68	14.4	16.4	0.005	0.029	1820	2670	0.896	1.034	7.660	-
Jul-14	7.55	7.66	2.82	2.38	24.4	18.3	0.005	0.028	2380	2535	1.40	1.059	1.09	-
Aug-15	7.84	7.75	3.41	3.13	17.0	17.7	0.005	0.016	2830	2755	1.73	1.264	1.89	-
Aug-16	8.29	7.84	3.03	3.02	17.6	18.4	0.005	0.005	2740	2443	2.19	1.554	0.17	2.703
Aug-17	7.56	7.81	3.25	3.13	24.3	20.8	0.005	0.005	2710	2665	2.10	1.855	0.64	0.948
Dec-18	8.07	7.94	1.64	2.83	19.2	19.5	0.005	0.005	2790	2768	2.34	2.090	0.32	0.755

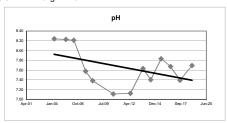
- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) TOC = Total Organic Carbon
- (3) TRP = Total Recoverable Phenolics.
- (4) TDS = Total Dissolved Solids

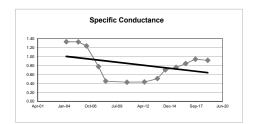
APPENDIX F

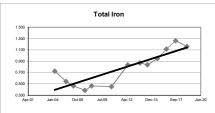
Moving Average Trend Analysis of Tracked Parameters for Surface Water

Marilla Street Landfill

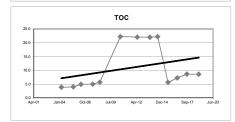
December 2018 Annual Sampling Event

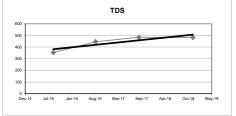

Summary of MATA Tracked Parameters for SW-1


Event Date	pН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	Total Iron	Moving Average	Total Manganese	Moving Average	TDS	Moving Average
Apr-01	7.62	-	1.21	-	6.6	-	0.730	-	0.300	-		
Oct-01	7.53	-	0.77	-	4.9	-	1.200	-	0.045	-		
Apr-02	8.02	-	1.23	-	3.5	-	0.390	-	0.160	-		
Apr-03	8.56	-	2.02	-	4.4	-	0.740	-	0.082	-		
Apr-04	8.85	8.24	1.30	1.33	2.5	3.8	0.564	0.724	0.219	0.127		
Jul-05	7.48	8.23	0.75	1.32	5.4	4.0	0.480	0.544	0.083	0.136		
May-06	7.95	8.21	0.87	1.24	7.3	4.9	0.070	0.464	0.070	0.114		
Aug-07	6.02	7.58	0.18	0.78	4.7	5.0	0.430	0.386	0.178	0.138		
May-08	8.07	7.38	0.00	0.45	5.2	5.7	0.880	0.465	0.140	0.118		
Jul-10	6.40	7.11	0.66	0.43	71.7	22.2	0.428	0.452	0.040	0.107		
May-12	8.00	7.12	0.89	0.43	6.6	22.1	1.600	0.835	0.126	0.121	366	-
Sep-13	8.05	7.63	0.48	0.51	4.5	22.0	0.570	0.870	0.077	0.096	267	-
Jul-14	7.16	7.40	0.79	0.70	6.1	22.2	0.750	0.837	0.279	0.130	414	-
Aug-15	8.12	7.83	0.87	0.76	5.2	5.6	0.870	0.948	0.284	0.192	363	353
Aug-16	7.36	7.67	1.23	0.84	13.2	7.3	2.27	1.115	0.657	0.324	738	446
Aug-17	6.93	7.39	0.87	0.94	9.9	8.6	1.16	1.263	0.482	0.426	422	484
Dec-18	8.36	7.69	0.68	0.91	6.0	8.6	0.34	1.160	0.037	0.365	405	482


Notes


(1) - If the concentration was reported at less than the laboratory detection limit, (3) - TDS = Total Dissolved Solids the detection limit is presented in the table.


(2) - TOC = Total Organic Carbon



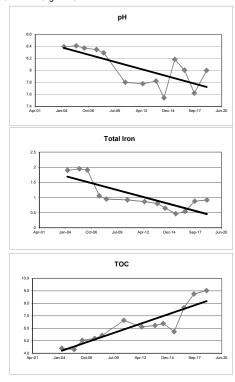
Marilla Street Landfill

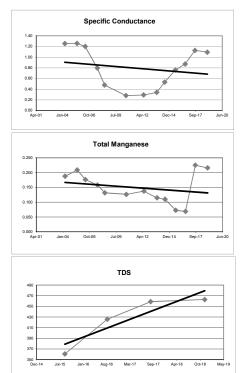
December 2018 Annual Sampling Event

Summary of MATA Tracked Parameters for SW-1

Event Date	TRP	Moving Average	Total Arsenic	Moving Average	Total Chromium	Moving Average	Total Cyanide	Moving Average	Total Lead	Moving Average	Soluble Iron	Moving Average	Soluble Manganese	Moving Average
Apr-01														
Oct-01														
Apr-02														
Apr-03														
Apr-04														
Jul-05														
May-06														
Aug-07														
May-08														
Jul-10														
May-12	0.050	-	0.004	-	0.010	-	0.010	-	0.005	-				
Sep-13	0.005		0.010	-	0.010	-	0.010	-	0.050	-				
Jul-14	0.005	-	0.010		0.010	-	0.010	-	0.050	-	0.100	-	0.188	-
Aug-15	0.005	0.016	0.010	0.009	0.010	0.010	0.010	0.010	0.050	0.039	1.130	-	0.282	-
Aug-16	0.007	0.006	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.110	-	0.635	-
Aug-17	0.0056	0.006	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	0.360	0.464	0.392
Dec-18	0.0050	0.006	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	0.360	0.030	0.353

^{(1) -} Graphs not shown for parameters where all data are reported less than the detection limit or detection limits depict false trending.


Marilla Street Landfill


December 2018 Annual Sampling Event

Summary of MATA Tracked Parameters for SW-2A

Event Date	рН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	Total Iron	Moving Average	Total Manganese	Moving Average	TDS	Moving Average
Apr-01	8.58	-	1.29	-	6.4	-	0.780	-	0.360	-		
Oct-01	8.02	-	0.78	-	5.1	-	0.920	-	0.096	-		
Apr-02	8.45	-	1.12	-	4.0	-	0.950	-	0.180	-		
Apr-03	8.26	-	1.85	-	4.3	-	4.200	-	0.210	-		
Apr-04	8.85	8.40	1.28	1.26	4.2	4.4	1.540	1.903	0.265	0.188		
Jul-05	8.08	8.41	0.79	1.26	4.7	4.3	1.100	1.948	0.180	0.209		
May-06	8.30	8.37	0.89	1.20	6.9	5.0	0.800	1.910	0.051	0.177		
Aug-07	8.17	8.35	0.23	0.80	4.9	5.2	0.794	1.059	0.136	0.158		
May-08	8.62	8.29	0.00	0.48	5.2	5.4	1.100	0.949	0.160	0.132		
Jul-10	6.12	7.80	0.00	0.28	9.5	6.6	0.999	0.923	0.159	0.127		
May-12	8.20	7.78	0.93	0.29	4.8	6.1	0.569	0.866	0.095	0.137	365	-
Sep-13	8.35	7.82	0.43	0.34	5.4	6.2	0.550	0.805	0.045	0.115	293	-
Jul-14	7.50	7.54	0.77	0.53	5.8	6.4	0.480	0.650	0.141	0.110	409	-
Aug-15	8.69	8.19	0.91	0.76	6.9	5.7	0.270	0.467	0.010	0.073	375	361
Aug-16	7.48	8.01	1.38	0.87	12.5	7.7	0.870	0.543	0.080	0.069	626	426
Aug-17	6.81	7.62	1.45	1.13	9.8	8.8	1.910	0.883	0.669	0.225	426	459
Dec-18	9.02	8.00	0.64	1.10	6.9	9.0	0.630	0.920	0.104	0.216	425	463

(1) - If the concentration was reported at less than the laboratory detection limit, (3) - TDS = Total Dissolved Solids the detection limit is presented in the table.
(2) - TOC = Total Organic Carbon

Marilla Street Landfill

December 2018 Annual Sampling Event

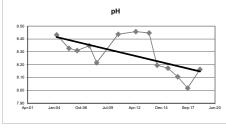
Summary of MATA Tracked Parameters for SW-2A

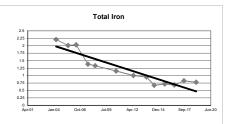
Event Date	TRP	Moving Average	Total Arsenic	Moving Average	Total Chromium	Moving Average	Total Cyanide	Moving Average	Total Lead	Moving Average	Soluble Iron	Moving Average	Soluble Manganese	Moving Average
Apr-01														
Oct-01														ļ
Apr-02														
Apr-03														ļ
Apr-04														
Jul-05														
May-06														
Aug-07														
May-08														
Jul-10														
May-12	0.050	-	0.004	-	0.010	-	0.010	-	0.005	-				ļ
Sep-13	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-				
Jul-14	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-	0.10	-	0.079	-
Aug-15	0.005	0.016	0.010	0.009	0.010	0.010	0.010	0.010	0.050	0.039	0.370	-	0.011	-
Aug-16	0.0061	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	-	0.047	-
Aug-17	0.0062	0.006	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	0.168	0.534	0.168
Dec-18	0.0050	0.006	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.190	0.190	0.091	0.171

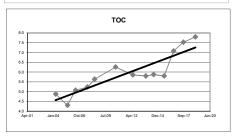
^{(1) -} If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.

(2) - Graphs not shown for parameters where all data are reported less than the detection limit or detection limits depict false trending.

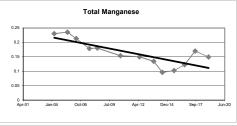
(3) - TRP = Total Recoverable Phenolics

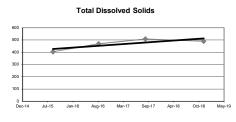

Marilla Street Landfill


December 2018 Annual Sampling Event


Summary of MATA Tracked Parameters for SW-3A


Event Date	pН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	Total Iron	Moving Average	Total Manganese	Moving Average	TDS	Moving Average
Apr-01	8.75	-	1.16	-	8.5	-	1.800	-	0.350	-		
Oct-01	7.97	-	0.80	-	5.9	-	2.300	-	0.200	-		
Apr-02	8.54	-	1.11	-	4.0	-	1.400	-	0.180	-		
Apr-03	8.18	-	1.61	-	5.2	-	3.400	-	0.280	-		
Apr-04	9.04	8.43	1.24	1.19	4.4	4.9	1.730	2.208	0.263	0.231		
Jul-05	7.55	8.33	0.89	1.21	3.6	4.3	1.500	2.008	0.220	0.236		
May-06	8.47	8.31	0.87	1.15	7.1	5.1	1.500	2.033	0.091	0.214		
Aug-07	8.33	8.35	0.17	0.79	5.8	5.2	0.805	1.384	0.142	0.179		
May-08	8.51	8.22	1.46	0.85	6.0	5.6	1.500	1.326	0.270	0.181		
Jul-10	8.44	8.44	0.00	0.63	6.1	6.3	0.800	1.151	0.112	0.154		
May-12	8.55	8.46	0.81	0.61	5.5	5.9	0.897	1.001	0.076	0.150	396	-
Sep-13	8.29	8.45	0.45	0.68	5.6	5.8	0.620	0.954	0.080	0.135	324	-
Jul-14	7.50	8.20	0.77	0.51	6.3	5.9	0.380	0.674	0.116	0.096	427	-
Aug-15	8.35	8.17	1.02	0.76	5.8	5.8	0.970	0.717	0.137	0.102	471	405
Aug-16	8.28	8.11	1.21	0.86	10.6	7.1	0.770	0.685	0.159	0.123	654	469
Aug-17	7.94	8.02	0.94	0.99	7.4	7.5	1.180	0.825	0.268	0.170	480	508
Dec-18	8.08	8.16	0.51	0.92	7.4	7.8	0.180	0.775	0.033	0.149	355	490


(1) - If the concentration was reported at less than the laboratory detection limit, (3) - TDS = Total Dissolved Solids the detection limit is presented in the table.
(2) - TOC = Total Organic Carbon



Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of MATA Tracked Parameters for SW-3A

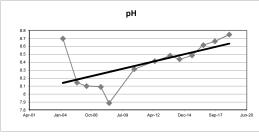
Event Date	TRP	Moving Average	Total Arsenic	Moving Average	Total Chromium	Moving Average	Total Cyanide	Moving Average	Total Lead	Moving Average	Soluble Iron	Moving Average	Soluble Manganese	Moving Average
Apr-01														
Oct-01														
Apr-02														
Apr-03														
Apr-04														
Jul-05														
May-06														
Aug-07														
May-08														
Jul-10														
May-12	0.050	-	0.004	-	0.010	-	0.010	-	0.005	-				
Sep-13	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-				
Jul-14	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-	0.190	-	0.081	-
Aug-15	0.005	0.016	0.010	0.009	0.010	0.010	0.010	0.010	0.050	0.039	0.850	-	0.106	-
Aug-16	0.005	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	-	0.031	-
Aug-17	0.005	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	0.310	0.067	0.071
Dec-18	0.005	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.100	0.288	0.031	0.059

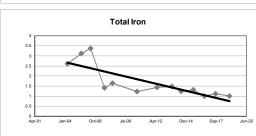
^{(1) -} If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.

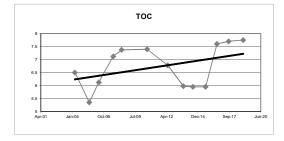
(2) - Graphs not shown for parameters where all data are reported less than the detection limit or detection limits depict false trending.

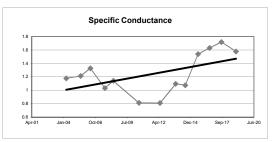
(3) - TRP = Total Recoverable Phenolics

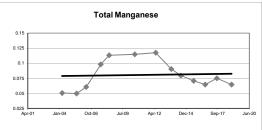
Marilla Street Landfill

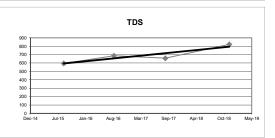

December 2018 Annual Sampling Event


Summary of MATA Tracked Parameters for SW-5


Event Date	рН	Moving Average	Specific Conductance	Moving Average	тос	Moving Average	Total Iron	Moving Average	Total Manganese	Moving Average	TDS	Moving Average
Apr-01	8.75	-	1.10	-	8.4	-	0.560	-	0.086	-		
Oct-01	8.75	-	1.18	-	10.8	-	0.370	-	0.100	-		
Apr-02	8.36	-	0.97	-	5.2	-	0.890	-	0.050	-		
Apr-03	8.38	-	1.33	-	5.2	-	8.500	-	0.016	-		
Apr-04	9.30	8.70	1.22	1.18	4.8	6.5	0.689	2.612	0.036	0.050		
Jul-05	6.53	8.14	1.32	1.21	6.2	5.4	2.400	3.120	0.097	0.050		
May-06	8.19	8.10	1.43	1.33	8.3	6.1	1.900	3.372	0.093	0.060		
Aug-07	8.34	8.09	0.15	1.03	9.2	7.1	0.651	1.410	0.166	0.098		
May-08	8.48	7.89	1.66	1.14	5.8	7.4	1.600	1.638	0.097	0.113		
Jul-10	8.24	8.31	0.00	0.81	6.3	7.4	0.737	1.222	0.103	0.115		
May-12	8.59	8.41	1.43	0.81	5.8	6.8	2.730	1.430	0.104	0.118	646	-
Sep-13	8.62	8.48	1.29	1.10	6.0	6.0	0.840	1.477	0.057	0.090	873	•
Jul-14	8.30	8.44	1.58	1.08	5.7	6.0	0.660	1.242	0.054	0.080	40	-
Aug-15	8.43	8.49	1.86	1.54	6.3	6.0	1.020	1.313	0.068	0.071	826	596
Aug-16	9.11	8.62	1.79	1.63	12.4	7.6	1.480	1.000	0.079	0.065	1010	687
Aug-17	8.81	8.66	1.64	1.72	6.4	7.7	1.310	1.118	0.099	0.075	752	657
Dec-18	8.64	8.75	1.02	1.58	5.9	7.8	0.200	1.003	0.012	0.065	699	822


Notes:


(1) - If the concentration was reported at less than the laboratory detection limit, (3) - TDS = Total Dissolved Solids the detection limit is presented in the table.
(2) - TOC = Total Organic Carbon



Marilla Street Landfill

December 2018 Annual Sampling Event

Summary of MATA Tracked Parameters for SW-5

Event Date	TRP	Moving Average	Total Arsenic	Moving Average	Total Chromium	Moving Average	Total Cyanide	Moving Average	Total Lead	Moving Average	Soluble Iron	Moving Average	Soluble Manganese	Moving Average
Apr-01														
Oct-01														
Apr-02														
Apr-03														
Apr-04														
Jul-05														
May-06														
Aug-07														
May-08														
Jul-10														
May-12	0.050	-	0.004	-	0.010	-	0.010	-	0.005	-				
Sep-13	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-				
Jul-14	0.005	-	0.010	-	0.010	-	0.010	-	0.050	-	0.100	-	0.010	-
Aug-15	0.005	0.016	0.010	0.009	0.010	0.010	0.010	0.010	0.050	0.039	0.790	-	0.058	-
Aug-16	0.006	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.10	-	0.010	-
Aug-17	0.0056	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.10	0.273	0.010	0.022
Dec-18	0.005	0.005	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.10	0.273	0.010	0.022

- (1) If the concentration was reported at less than the laboratory detection limit, the detection limit is presented in the table.
- (2) Graphs not shown for parameters where all data are reported less than the detection limit or detection limits depict false trending.
 (3) TRP = Total Recoverable Phenolics

APPENDIX G

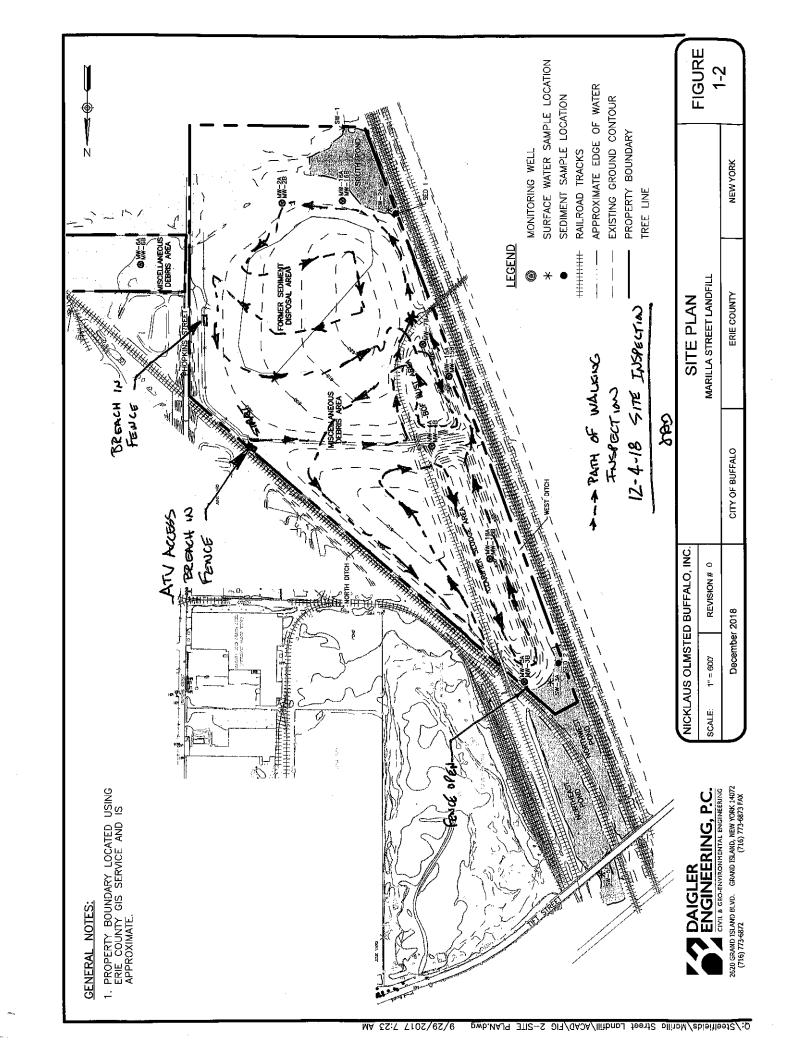
2017 Post-Closure Inspection and Maintenance Reports

DAILY INSPECTION REPORT

PROJECT: MARILLA STRE	ET LANDFILL INSPECTION	DATE: 12-4-18
OWNER: NICKLAUS OF	LMSTED BUFFALO, INC.	
ARRIVE TIME: 10:15 am	DEPART TIME: COOL, ~ 30°F LITE BREEZE ~30°F (OAM) DUSTING FRESH SNOW, WET, F	1:05 pm P.CLODY TURNINGSWAY
TEMPERATURE:	~30F (0AM	~ 35°F 1:00 PM
SITE CONDITIONS: LITE T	DUSTING FRESH SNOW, WET, I	FIRM/HARD VEGETATED (GO
PERSONNEL AND EQUIPM		
SAM DAGLER ON	D-SITE TO BEZIN GW/SW	SAMPLING
SAMPLING	EQUIPMENT & COOLERS	
INSPECTIONS/TESTS/SAMI	PLES/MATERIALS RECEIVED:	
(SEE ABOVE)	ANNUAL SITE TUSPE	TIM
		A
ACTIVITIES: - EN	UI ROUNDEUTAL SAMPLING	ANUUAL TUSPETINO
·		
·		
OBSERVER:	SIGNATURE:	DATE:
	Jana Denolac	12-4-18
JIM DAIGUER	*we dure	

MARILLA STREET LANDFILL POST -CLOSURE INSPECTION REPORT

etches or photographs to further define condit	ions or prootems.	Not	Not		
VISUAL EVALUATION ITEMS 1. Vegetative Cover	<u>Acceptable</u>	<u>Acceptable</u>	<u>Present</u>	Present	Remarks
a. Within Landfill Disposal Area					
b. Around Landfill Perimeter	X				
2. Integrity of Drainage Ditches a. Sediment Build-up			_×		
b. Pooling or Ponding				_X	very minar in pock
c. Slope Integrity	X				
d. Overall Adequacy	X				
. General Conditions of Site					
a. Road Construction	X				
b. Gates/Fences/Locks					BREACHES AS SHOW!
c. Grass Height	X -	missed ma	mind ming	w 5mg	2 areas wy 2+2 that
d. Illegal Dumping	<u></u> .		-X		
e. Wetland Shrub Plantings (1)	<u> </u>			<u></u>	· .
. Integrity of Groundwater	N.V.				
. Integrity of Landfill Cap					
a. Erosion Damage				X	SOME RILLING
b. Leachate Breakthrough					
c. Settlement					
d. Cracking					
e. Slope	X				
f. Undesirable plants			_X_		
g. Benchmark	-W.A.				


A. Erosion and Settlement: 1. Approximate size in feet of cap ended area(s). (List separately) feet _____ feet feet _____feet RILLS on die order of inches feet _____ feet 2. How deep is the most extreme point of erosion when measured from the adjacent surface. (List separately) N.A. 3. Approximate size in feet of eroded areas outside the soil cap area such as drainage ditches, roads or slopes. N.A. 4. Attach a hand sketch or photograph showing the location of the eroded area(s), Identify each area by using the letter a, b, c, etc. from Question 1. 5. Approximate size in feet of leachate breakouts. (List separately) _____ feet _____ feet N.A. _____ feet _____ feet Approximate size in feet of any settlement areas within the soil cap area. (List separately) feet _____ feet feet feet N.A. _____ feet _____ feet 7. Approximate depth of each settlement area when measured from adjacent surface. (List separately) a. _____ feet _____ feet b. _____ feet ____ feet _____ feet ____ feet 8. Attach a hand sketch or photograph showing the location of the settlement area(s). Identify each area by using the letter a, b, c, etc. from Question 6. N.A. B. Corrective Actions: 1. Describe corrective actions taken (write N.A. if not applicable). N.A.

Page 2of 2

A.U.

II. SPECIFIC DATA ITEMS (Write N.A. if not applicable)

2. Date of corrective action:

DAILY INSPECTION REPORT

PROJECT: MARILLA STREET LANDFILL INSPECTION	DATE: 12-5-13
OWNER: NICKLAUS OLMSTED BUFFALD, INC.	
•	
ARRIVE TIME: ~ 12:50 DEPART TIME: ~	1:50
WEATHER CONDITIONS: COLD, CALM, P. SUNUY	
TEMPERATURE:	~ 30° \ PM
SITE CONDITIONS: WET V. LITE SHOW GOVER	
PERSONNEL AND EQUIPMENT: SAM DAIGUE OW-SI	TE GUTINUING
GW/SW SAMPLING SAMPLING EQUIP/GO	L 6/25
	,
	•
TACABLE CETANG (CANADA EGAS A CEDALA) CARACTERIA	
INSPECTIONS/TESTS/SAMPLES/MATERIALS RECEIVED:	
COMPLETE ANNUAL SITE FUSPECTION)
ACTIVITIES: ENVIRONMENTAL SAMPLING/ANNUA	L FNSPECTION
	-
OBSERVER: SIGNATURE:	DATE:
OBSERVER: SIGNATURE: JIM DAGGER GUELDLUGGE	12-5-18

MARILLA STREET LANDFILL POST -CLOSURE INSPECTION REPORT

FOR MISC, DEBRIS AREA EAST OF HOPKINS STREET

DATE: 12-6-18
WEATHER: COOL ~ 30F P. Charley
PERSONNEL: A Day Loc

Instructions: Complete the checklist of visual evaluation items then complete specific data items. Field measurements should be made with a cloth tape, provided instrumentation on equipment or other suitable means. Estimated measurements shall be noted. Attach hand sketches or photographs to further define conditions or problems.

•		Not	Not		
ISUAL EVALUATION ITEMS	<u>Acceptable</u>	<u>Acceptable</u>	Present	Present	<u>Remarks</u>
a. Within Landfill Disposal Area	X				
b. Around Landfill Perimeter		<u> </u>		····	
Integrity of Drainage Ditches a. Sediment Build-up	N.A.				
b. Pooling or Ponding					
c. Slope Integrity					
d. Overall Adequacy					
General Conditions of Site					
a. Road Construction	<u> N.A.</u>				
b. Gates/Fences/Locks	<u> </u>		·		
c. Grass Height	<u> </u>	Missed.	mowing u	sulow-	some higher grand
d. Illegal Dumping			_X_		
e. Wetland Shrub Plantings (1)	U.A.				
Integrity of Groundwater	<u>N.A.</u>				
Integrity of Landfill Cap					
a. Erosion Damage		·			
b. Leachate Breakthrough				·	
c. Settlement					
d. Cracking			<u>X</u>		
e. Slope	X_				
f. Undesirable plants					
g. Benchmark					
h. Animal Burrowing			NONE O	exer/ed	
	vegetative Cover a. Within Landfill Disposal Area b. Around Landfill Perimeter Integrity of Drainage Ditches a. Sediment Build-up b. Pooling or Ponding c. Slope Integrity d. Overall Adequacy General Conditions of Site a. Road Construction b. Gates/Fences/Locks c. Grass Height d. Illegal Dumping e. Wetland Shrub Plantings (1) Integrity of Groundwater Integrity of Landfill Cap a. Erosion Damage b. Leachate Breakthrough c. Settlement d. Cracking e. Slope f. Undesirable plants g. Benchmark	Vegetative Cover a. Within Landfill Disposal Area b. Around Landfill Perimeter Integrity of Drainage Ditches a. Sediment Build-up b. Pooling or Ponding c. Slope Integrity d. Overall Adequacy General Conditions of Site a. Road Construction b. Gates/Fences/Locks c. Grass Height d. Illegal Dumping e. Wetland Shrub Plantings (1) Integrity of Groundwater Integrity of Groundwater Integrity of Landfill Cap a. Erosion Damage b. Leachate Breakthrough c. Settlement d. Cracking e. Slope f. Undesirable plants g. Benchmark	SUAL EVALUATION ITEMS Vegetative Cover a. Within Landfill Disposal Area b. Around Landfill Perimeter Integrity of Drainage Ditches a. Sediment Build-up b. Pooling or Ponding c. Slope Integrity d. Overall Adequacy General Conditions of Site a. Road Construction b. Gates/Fences/Locks c. Grass Height d. Illegal Dumping e. Wetland Shrub Plantings (1) Integrity of Groundwater Integrity of Groundwater Integrity of Landfill Cap a. Erosion Damage b. Leachate Breakthrough c. Settlement d. Cracking e. Slope f. Undesirable plants g. Benchmark	Vegetative Cover a. Within Landfill Disposal Area b. Around Landfill Perimeter Integrity of Drainage Ditches a. Sediment Build-up b. Pooling or Ponding c. Slope Integrity d. Overall Adequacy General Conditions of Site a. Road Construction b. Gates/Fences/Locks c. Grass Height d. Illegal Dumping e. Wetland Shrub Plantings (1) Integrity of Groundwater Integrity of Groundwater Integrity of Landfill Cap a. Erosion Damage b. Leachate Breakthrough c. Settlement d. Cracking e. Slope f. Undesirable plants g. Benchmark	SUAL EVALUATION ITEMS Acceptable Acceptable Present Present

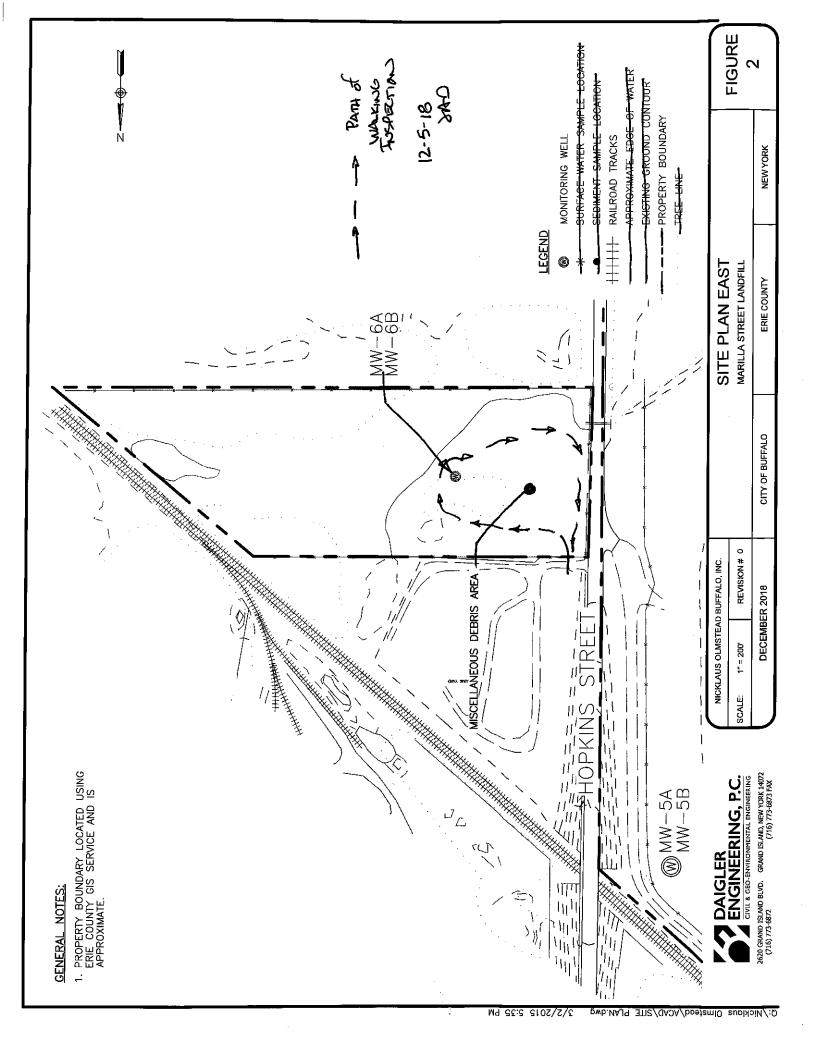


Photo 1 - Typical Ground Conditions

Photo 2 - Clarifier Sludge Area Looking North

Marilla St Landfill Annual Site Inspection 12/04,05/2018 Photograph Page

1

APPENDIX H

Institutional Controls/Engineering Controls (IC/ECs) Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	ite No.	915047	Site De	tails		Box 1	
Si	ite Name R	Republic Steel (LTV) (Mari	lla St. LF)	•			
Ci Ci	te Address: ity/Town: B ounty: Erie te Acreage:		s Street	Zip Code: 1422	0		
Re	eporting Per	riod: September 12, 2017 t	o Septemi	per 12, 2018			
						YES	NO
1.	Is the info	ormation above correct?				t	
	If NO, incl	lude handwritten above or o	on a separ	ate sheet.			
2.		e or all of the site property b mendment during this Rep			ed, or undergone a		
3.		been any change of use a CRR 375-1.11(d))?	t the site d	uring this Reporti	ng Period		
4.		federal, state, and/or local ne property during this Repo			narge) been issued		
	If you ans	swered YES to questions imentation has been prev	2 thru 4, i iously sul	nclude documer bmitted with this	ntation or evidence certification form.	!	
5.	Is the site	currently undergoing devel	lopment?			D .	3
						Box 2	
						YES	NO
6.	Is the curr Closed La	ent site use consistent with	ı the use(s) listed below?			IJ .
7.	Are all ICs	s/ECs in place and function	ing as des	igned?		1	O
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
A	orrective N	Measures Work Plan must	ne anniilli	er aiong mun un	o jojin to audieso ti	1200 199	
	James	1 Dayler			1-31-19		
Sig	nature of Ov	wner, Remedial Party or Des	signated Re	presentative	Date		

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

SITE NO. 915047

Box 3

Description of Institutional Controls

Parcel

Owner

Institutional Control

132.16-1-11.2

- Steelfields LTD

NICKLAUS OLMSTED BUFFALO, INC. (NOBI)

Record of Decision: 3/27/1997

246

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

- 1. Maintenance and Monitoring of the landfill caps.
- 2. Groundwater Monitoring.
- 3. Surface water and sediment sampling.
- 4. Periodic Reporting of Site activities and evaluation of Site data.

132.16-1-13

Steelfields LTD

NOBI

SAP

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

- Maintenance and Monitoring of the landfill caps.
- 2. Groundwater Monitoring.
- 3. Surface water and sediment sampling.
- 4. Periodic Reporting of Site activities and evaluation of Site data.

132.16-1-14

Steelfields LTD

NOBI

XAC

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

- 1. Maintenance and Monitoring of the landfill caps.
- 2. Groundwater Monitoring.
- 3. Surface water and sediment sampling.
- 4. Periodic Reporting of Site activities and evaluation of Site data.

132.16-1-9

Steelfields LTD-

NOBI

YAO

Monitoring Plan

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

- 1. Maintenance and Monitoring of the landfill caps.
- 2. Groundwater Monitoring.
- 3. Surface water and sediment sampling.
- 4. Periodic Reporting of Site activities and evaluation of Site data.

132.20-1-2.2

-Steelfields LTD-

NOBI YAO

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

- 1. Maintenance and Monitoring of the landfill caps.
- 2. Groundwater Monitoring.
- 3. Surface water and sediment sampling.

·

The Final Post-Closure 11/22/2010. The Plan		nance Plan (Revised No	vember 2010)was approved on
 Groundwater Monito Surface water and s 			Monitoring Plan
Record of Decision: 3/2	7/1997		Mornio ing Flan
The Final Post-Closure		ance Plan (Revised No	vember 2010)was approved on
 Groundwater Monito Surface water and se 			
		CAS	Manitoring Plan
Record of Decision: 3/2	7/1997		Monitoring Plan
 11/22/2010. The Plan r Maintenance and Mo Groundwater Monitor Surface water and se 	equires: onitoring of the landfill ca ring.	ps.	vember 2010)was approved on
		JAD JAD	
Record of Decision: 3/27	7/1997		
The Final Post-Closure 11/22/2010. The Plan re		ance Plan (Revised Nov	vember 2010)was approved on
 Groundwater Monitor Surface water and se 	ediment sampling. FSite activities and evalu	ation of Site data	
100.17-1-2		NOBI YAD	Monitoring Plan
Record of Decision: 3/27	7/1997		
The Final Post-Closure 11/22/2010. The Plan re		ance Plan (Revised Nov	ember 2010)was approved on
2. Groundwater Monitor			
 Surface water and se Periodic Reporting of 133.17-1-6 	Site activities and evalu <u>Steelfields-LTD</u>	1147377 */	40

4. Periodic Reporting of Site activities and evaluation of Site data.

132.20-1-9

Record of Decision: 3/27/1997

Steelfields LTD NOBI SAO

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

1. Maintenance and Monitoring of the landfill caps.

2. Groundwater Monitoring.

3. Surface water and sediment sampling.

4. Periodic Reporting of Site activities and evaluation of Site data.

133.17-1-9

-Steelfields LTD

NOBI TRO

Monitoring Plan

Record of Decision: 3/27/1997

The Final Post-Closure Monitoring and Maintenance Plan (Revised November 2010)was approved on 11/22/2010. The Plan requires:

1. Maintenance and Monitoring of the landfill caps.

2. Groundwater Monitoring.

3. Surface water and sediment sampling.

4. Periodic Reporting of Site activities and evaluation of Site data.

Box 4

Description of Engineering Controls				
Parcel 132.16-1-11.2	Engineering Control Cover System			
132.16-1-13	Cover System			
132.16-1-14	Cover System			
132.16-1-9	Cover System			
132.20-1-2.2	Cover System			
132.20-1-9	Cover System			
133.13-1-8	Cover System			
133.17-1-1	Cover System			
133.17-1-10	Cover System			
133.17-1-2				

<u>Parcel</u>	Engineering Control		· ··· <u>-</u>
	Cover System		
133.17-1-6			
	Cover System		
133.17-1-9			
100.11	Cover System		
			Box 5
Periodic Rev	iew Report (PRR) Certification Statements		
. I certify by checking "YE	S" below that:		
a) the Periodic Ro	eview report and all attachments were prepared ur	nder the direction o	f, and
•	party making the certification;		
are in accordance	ny knowledge and belief, the work and conclusions with the requirements of the site remedial program	m, and generally ac	
engineering practices;	and the information presented is accurate and co	mpete. YES	NO
		t/	Π .
or Engineering control list following statements are (a) the Institutional	Plan (or equivalent as required in the Decision Do sted in Boxes 3 and/or 4, I certify by checking "YE: true: al Control and/or Engineering Control(s) employed the Control was put in-place, or was last approve	S" below that all of at this site is unch	the anged
	ccurred that would impair the ability of such Contro		
(c) access to the sremedy, including	site will continue to be provided to the Department access to evaluate the continued maintenance of	, to evaluate the this Control;	
	curred that would constitute a violation or failure to Plan for this Control; and	o comply with the	
(e) if a financial as mechanism remair	ssurance mechanism is required by the oversight ones valid and sufficient for its intended purpose esta	document for the si ablished in the docu	te, the ument.
		YES	NO
		J	
IF THE DO NOT	ANSWER TO QUESTION 2 IS NO, sign and date to COMPLETE THE REST OF THIS FORM. Otherwis	pelow and se continue.	
A Corrective Measures Wo	ork Plan must be submitted along with this form t	o address these is	sues.
Signature of Owner, Remed	al Party or Designated Representative	Date	<u>-</u>

IC CERTIFICATIONS SITE NO. 915047

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I AMES ALGURE at 2620 GRAND ISLAND BUD GRAND ISLAND Print name print business address print business address

Print print punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I AMES ALGURE at 2620 GRAND ISLAND BUD GRAND ISLAND PRINT (RAND ISLAND) For the Site named in the Site Details Section of this form.

, or Designated Representative

Signature of Owner, Remedial

Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

JAMES DAIGUER	at 2620 GRAND ISLAND BLUD, GRAND	ISIAIDNY
print name	print business address	14072
am certifying as a Professional Engineer	for the Owel (Owner or Remedial Party	·
Signature of Professional Engineer, for t Remedial Party, Rendering Certification	The Owner or Date	<u>9</u>

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.

B. Summary of O&M Completed During Reporting Period - Describe the O&M tasks actually completed during this PRR reporting period.

C. Evaluation of Remedial Systems - Based upon the results of the O&M activities completed, evaluated the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

D. O&M Deficiencies - Identify any deficiencies in complying with the O&M plan during this PRR reporting period.

E. Conclusions and Recommendations for Improvements - Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
- C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.