FINAL REMEDIAL INVESTIGATION REPORT OPERABLE UNITS 1 (SITE 110) AND 2 (SITE 109) TONAWANDA COKE SITE 3875 RIVER ROAD TONAWANDA, NEW YORK

Prepared For:

115 Tabor Road Morris Plains, NJ 09750

Prepared By:

301 Plainfield Road, Suite 350 Syracuse, New York 13212

OCTOBER 2023

TABLE OF CONTENTS

LIST OF ACRONYMS	VII
EXECUTIVE SUMMARY	ES-1
1.0 INTRODUCTION	1-1
1.1 RI Program Objectives	1-2
1.2 RI Report Organization	1-2
2.0 BACKGROUND	2-1
2.1 Site Location and Description	2-1
2.2 Site History	2-2
2.2.1 Former TCC Facility	2-2
2.2.2 Sites 109 and 110	2-2
2.3 Site Investigation History	2-3
2.4 Interim Remedial Measures (IRMs)	2-5
3.0 FOCUSED REMEDIAL INVESTIGATION DATA COLLECTION ACTIVITIES	3-1
3.1 Site 109	3-1
3.1.1 Surface and Subsurface Soil Investigation	3-1
3.1.1.1 Test Pit Excavations	3-2
3.1.1.2 Monitoring Well Installation Soil Logging and Sampling	3-2
3.1.2 Drainage Ditch Surface and Subsurface Soil Investigation	3-3
3.1.3 Groundwater Investigation	3-3
3.1.3.1 Groundwater Monitoring Well Installation	3-3
3.1.3.2 Groundwater Sampling	3-4
3.1.3.2.1 December 2020 Sampling	3-4
3.1.3.2.2 September 2021 Sampling	3-5
3.2 Site 110	3-6
3.2.1 Surface and Subsurface Soil Investigation	
3.2.1.1 Test Pit Excavation	3-6
3.2.1.2 Monitoring Well Installation Soil Logging and Sampling	3-8
3.2.2 Groundwater Monitoring Wells	3-8
3.2.2.1 Groundwater Monitoring Well Installation	3-8
3.2.2.2 Groundwater Sampling	3-9
3.2.2.2.1 December 2020 Sampling	3-9

October 2023

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx i

3.2.2.2.2 September 2021 Sampling	
3.3 Site Survey	
3.4 Groundwater Elevation Survey	
3.5 IDW Management	3-12
3.5.1 Soils / Solid Waste	3-12
3.5.2 Water	3-12
3.5.3 Personal Protective and Disposable Sampling Equipment	3-13
3.6 Community Air Monitoring Plan (CAMP)	3-13
3.7 Data Management and Validation	3-13
4.0 SITE PHYSICAL CHARACTERISTICS	4-1
4.1 Topography	
4.2 Geology	
4.2.1 Site 109 Fill Material	
4.2.2 Site 110 Fill Material	
4.2.3 Site 110 Tar Material	
4.2.3.1 Types of Tar Material	
4.2.3.2 Distribution of Tar Materials at Site 110	
4.3 Surface Water Hydrology	
4.4 Wetlands	
4.5 Hydrogeology	
5.0 FOCUSED RI DATA SUMMARY AND NATURE AND EXTENT OF IMPACTS	5-1
5.1 Waste and Residual Characteristics	
5.2 Standards, Criteria, and Guidance (SCG) Identification	
5.2.1 Soils	5-2
5.2.2 Groundwater	
5.3 Data Validation and Usability Reports (DUSRs)	
5.4 Investigation Results and Nature and Extent of Impacts by Media	
5.4.1 Site 109	
5.4.1.1 Surface And Subsurface Soil	
5.4.1.1.1 Volatile Organic Compounds	
5.4.1.1.2 Semivolatile Organic Compounds	
5.4.1.1.3 PFAS	
5.4.1.1.4 Pesticides and PCBs	
5.4.1.1.5 Metals	

Final RI Report Sites 109 and 110 - Honeywell

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx

October 2023

5.4.1.1.6 Cyanide	5-6
5.4.1.2 Groundwater	
5.4.1.2.1 Volatile Organic Compounds	5-6
5.4.1.2.2 Semivolatile Organic Compounds	5-6
5.4.1.2.3 PFAS	5-6
5.4.1.2.4 Pesticides	5-6
5.4.1.2.5 PCBs	5-7
5.4.1.2.6 Metals	
5.4.1.2.7 Cyanide	
5.4.2 Site 110	
5.4.2.1 Surface and Subsurface Soil	
5.4.2.1.1 Volatile Organic Compounds	5-8
5.4.2.1.2 Semivolatile Organic Compounds	5-9
5.4.2.1.3 PFAS	5-11
5.4.2.1.4 Pesticides and PCBs	5-11
5.4.2.1.5 Metals	5-11
5.4.2.1.6 Cyanide	5-11
5.4.2.2 Groundwater	5-11
5.4.2.2.1 Volatile Organic Compounds	5-12
5.4.2.2.2 Semivolatile Organic Compounds	5-13
5.4.2.2.3 Pesticides	5-15
5.4.2.2.4 Metals	5-15
5.4.2.2.5 Cyanide	5-16
5.4.2.3 Tar Characterization	5-17
6.0 CONCEPTUAL SITE MODEL	6-1
6.1 Site 109	
6.1.1 Sources and Transport Mechanisms	6-1
6.1.2 Nature and Extent of Impacts	6-1
6.1.2.1 Surface and Subsurface Soil	
6.1.2.2 Groundwater	
6.2 Site 110	
6.2.1 Sources and Transport Mechanisms	
6.2.2 Nature and Extent of Impacts	
6.2.2.1 Surface and Subsurface Soil	
6.2.2.2 Groundwater	

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx

October 2023

6.3 Fate and Transport	6-3
7.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT	7-1
8.0 PRELIMINARY REMEDIAL ACTION OBJECTIVES	8-1
9.0 SUMMARY AND CONCLUSIONS	9-1
9.1 Nature and Extent of Impacts	9-1
9.1.1 Surface and Subsurface Soil	9-1
9.1.2 Groundwater	9-1
9.2 Conceptual Site Model	9-2
9.2.1 Site 109	9-2
9.2.2 Site 110	9-2
9.6 Qualitative Human Health Exposure Assessment	9-2
9.7 Next Steps	9-4
10.0 REFERENCES	

LIST OF TABLES

- Table 1 Focused RI Tar Observations
- Table 2 Focused RI Measured Groundwater Elevations
- Table 3 Typical Coal and Coke Analytical Results
- Table 4 Focused RI Site 109 Soil Analytical Summary
- Table 5 Focused RI Site 109 Groundwater Analytical Summary December 2020
- Table 6 Focused RI Site 109 Groundwater Analytical Summary September 2021
- Table 7 Focused RI Site 110 Soil Analytical Summary
- Table 8 Focused RI Site 110 Groundwater Analytical Summary December 2020
- Table 9 Focused RI Site 110 Groundwater Analytical Summary September 2021
- Table 10 Focused RI Site 110 Groundwater Analytical Summary January 2023
- Table 11 Focused RI Site 110 MNA Sample Results
- Table 12 Focused RI Tar Waste Characterization Results

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Locations of Tonawanda Coke Site and RITC Brownfield Site
- Figure 3 Locations of Nearest Residences
- Figure 4 Site 109 Site Plan and Investigation Locations

Final RI Report Sites 109 and 110 - Honeywell

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx

October 2023

- Figure 5 Site 110 Site Plan and Investigation Locations
- Figure 6 Site 109 Cross Section Locations
- Figure 7 Site 110 Cross Section Locations
- Figure 8 Site 109 Cross Sections A through C
- Figure 9 Site 110 Cross Sections D through G
- Figure 10 Site 110 Tar Material locations
- Figure 11a-11c December 2020, January 2021, and September 2021 Site 109 Groundwater Contours
- Figure 12a-12d December 2020, January 2021, September 2021, and January 2023 Site 110 Groundwater Contours
- Figure 13 Site 109 Soil Exceedances of SCGs
- Figure 14 Site 109 Surface Soil Sample Results (PAHs)
- Figure 15 Site 109 Subsurface Soil Sample Results (PAHs)
- Figure 16 Site 109 Total PAH SCG Exceedances
- Figure 17 Site 109 Soil Sample Results (excluding PAHs)
- Figure 18 Site 109 Groundwater Sample Results
- Figure 19 Site 110 Soil Exceedances of SCGs
- Figure 20 Site 110 Historic Surface Soil Sample Results (PAHs)
- Figure 21 Site 110 Focused RI Surface Soil Sample Results (PAHs)
- Figure 22 Site 110 Focused RI Subsurface Soil Sample Results (PAHs)
- Figure 23 Site 110 Total PAH SCG Exceedances
- Figure 24 Site 110 Soil Sample Results (excluding PAHs)
- Figure25Site 110 Focused RI Groundwater Sample Results
- Figure 26 Site 110 Historical Groundwater Sample Results
- Figure 27 Qualitative Human Health Exposure Assessment

LIST OF APPENDICES

- Historical Boring and Test Pit Log Summaries Appendix A
- Appendix B Historical Well Construction Logs
- Appendix C Historical Soil Data
- Appendix D Scope Related Correspondence with NYSDEC
- Appendix E Focused RI Test Pit Logs
- Appendix F Focused RI Soil Boring and Well Construction Logs
- Appendix G Focused RI Groundwater Sampling Logs
- Appendix H Data Usability Summary Report (DUSR)
- U.S. Army Corps of Engineers Correspondence Appendix I

LIST OF ACRONYMS

ACRONYM	Definition	ACRONYM	Definition
ACRONYM BCP BMP C&D CAMP COG CSM DOT DUSR FS ft bgs ft-amsl FWRIA HDPE HRS IDW IRM Koc Kow mg/kg mL/min MNA MS/MSD MW NYCRR NYSDEC	DefinitionBrownfield Cleanup ProgramBest Management PracticesConstruction and DemolitionCommunity Air Monitoring PlanCoke oven gasConceptual Site ModelDepartment of TransportationData Usability Summary ReportFeasibility StudyFeet below ground surfaceFeet above mean sea levelFish and Wildlife Resources ImpactAnalysisHigh-density polyethyleneHazard Ranking SystemInvestigation Derived WasteInterim remedial measureOrganic carbon partition coefficientLog octanol-water partition coefficientmilligrams per kilogramMilliliters/minuteMonitored Natural AttenuationMatrix spike/matrix spike duplicatemonitoring wellNew York Codes, Rules, and RegulationsNew York State Department ofEnvironmental Conservation	PPE PRAP PVC QAPP QC QHHEA RAO RI RITC RIWP ROD RQD SB SCG SCO SGV SPDES SVOC SWPPP TAL TCC SWPPP TAL TCC TCL TCLP	Personal protective equipment Proposed Remedial Action Plan Polyvinyl chloride Quality Assurance Project Plan Quality Control Qualitative human health exposure assessment Remedial Action Objectives Remedial Investigation Riverview Innovation & Technology Campus, Inc. Remedial Investigation Work Plan Record of Decision Rock quality designation soil boring Standards, Criteria, and Guidance Soil Cleanup Objective Standards and Guidance Values State Pollution Discharge Elimination System Semivolatile organic compound Stormwater Pollution Prevention Plan Target Analyte List Tonawanda Coke Corporation Target Compound List Toxicity Characteristic Leaching Procedure
	New York State Department of		Procedure
ORP OU PAH PCB PFAS PID	Oxidation Reduction Potential Operable Unit Polycyclic aromatic hydrocarbon Polychlorinated biphenyls Per- and Polyfluoroalkyl Substances Photoionization detector	TOGS TP USACE USEPA USGS VOC	Technical and Operational Guidance Series test pit U.S. Army Corps of Engineers U.S. Environmental Protection Agency U. S. Geological Survey Volatile organic compound

EXECUTIVE SUMMARY

On behalf of Honeywell International Inc. (Honeywell), Parsons has prepared this Remedial Investigation (RI) Report for Operable Units (OU) 1 and 2 of the Tonawanda Coke State Superfund Site. OU-1 and OU-2, also known as Sites 110 and 109, respectively, are portions of the former Tonawanda Coke Corporation (TCC) facility. Site 110 also includes an adjacent National Grid right-of-way. TCC filed for bankruptcy protection in 2018 and all industrial activity on Sites 109 and 110 ceased at that time.

Legacy environmental conditions at the former TCC facility are being addressed under two separate New York State Department of Environmental Conservation (NYSDEC) remedial programs. Sites 109 and 110, which are the subjects of this report, along with Site 108 (presented in a separate report), represent a portion of the former TCC facility property and two sections of National Grid property, and collectively comprise the Tonawanda Coke State Superfund Site, Site #915055. These three areas are being addressed under the New York State Superfund Program. The RI results for Site 108 are detailed in a separate report submitted by Honeywell to NYSDEC. The remainder of the former TCC facility is being addressed under the New York State Brownfield Cleanup Program.

Site 109 is an approximately 7.5-acre rectangular area oriented perpendicular to the east side of River Road, in the southwestern portion of the former TCC facility property. The western boundary of Site 109 is approximately 0.3 miles east of the Niagara River. Two drainage ditches run through Site 109, one along the southern edge of the Site 109 boundary and one through the north-central portion of Site 109. The eastern section of Site 109 is paved and includes the former truck scale, tarping station and the security office. In 1977, an unknown quantity of brick, rubble, and demolition material was placed within Site 109. A coal conveyor historically ran along the southern site boundary rising from a tunnel under River Road and then elevated adjacent to, and over, the southern drainage ditch on Site 109.

Site 110 is an approximately 6.1-acre irregular-shaped area located in the northeast portion of the former TCC facility property. A 1.8-acre triangular portion of Site 110 is located east of the former TCC property on land owned by National Grid. The western boundary of Site 110 is approximately 1 mile east of the Niagara River. Site 110 was bound by numerous rail tracks. Placement of industrial and construction and demolition (C&D) wastes from plant operations occurred at multiple areas throughout Site 110. Prior to 1978, materials such as tar sludge, fly ash, and cinders were reportedly deposited within Site 110.

No industrial production processes are known to have occurred on Site 109 or Site 110. The final stormwater treatment ponds for Sites 109, 110 and the Brownfield Cleanup Site are located on Site 109. Based on historical test pits as well as test pits and monitoring wells installed during the Focused RI, fill is present across most of Site 109 and all of Site 110.

Riverview Innovation & Technology Campus, Inc. (RITC) owns the former TCC properties and is proposing a commercial/industrial complex on the former TCC facility properties at 3875 River Road and 3800 River Road. The campus will bring high technology, jobs, and environmental stewardship to properties that had been abused for decades. Dramatic progress transforming the former TCC facility from an abandoned coke facility to a property with a viable long-term vision has already occurred. The cleanup and redevelopment will allow Sites 108, 109, 110, and the remainder of the former TCC facility to be restored to productive use. The property can support a number of uses supporting the technology and commercial resources across the approximately 140-acre campus.

Following completion of an earlier Remedial Investigation and Feasibility Study (RI/FS), a Record of Decision (2008 ROD) was issued by NYSDEC on March 31, 2008, which presented the selected remedies for Site 109 and Site 110. The remedies were based on industrial use of the property and required institutional and

engineering controls involving restricting access and filing an environmental easement to control future use. The required easement was never filed by the Tonawanda Coke Corporation

The TCC facility was an active industrial facility at the time of the 2008 ROD. The former TCC facility is now inactive and future site use for Sites 109 and 110 is anticipated to include commercial as well as industrial operations. Therefore, as specified in the February 2020 Order on Consent:

"The supplemental investigation of Sites 109 and 110 will be limited to a Focused RI/FS to determine whether and to what extent additional investigation and/or remedial work may be necessary due to the change in use of the site."

Focused RI Field Activities Summary

There have been historical data gathering events at Sites 109 and 110 focused on on-site soils, groundwater, surface water, and drainage ditch soils. The scope of the Focused Remedial Investigation (RI), completed in 2020 through 2023, was designed to address data gaps identified through review of existing data.

The 2020 through 2023 Focused RI scope included:

- Surface and subsurface soil investigation
- Groundwater investigation
- Drainage ditch soil investigation
- Surveying of all test pits, monitoring wells, and soil sampling locations

Waste and Residual Characteristics

The coke plant at the former TCC facility heated coal in the absence of oxygen to separate the liquids and gasses from the coal and leave the residual carbon. The residual carbon, referred to as coke, was the primary product produced at the former TCC facility. The processes followed to produce coke and its associated by-products are well understood. The materials used and resulting from the production of coke that may have impacted materials disposed of at Sites 109 and 110 are also well understood:

Coal

Three types of metallurgical "met" coal were used to produce coke at the former TCC facility. Coal is a naturally occurring sedimentary material.

Coke/Breeze

Coke is the carbon left after the liquids and gasses have been removed from the met coal. Coke is a relatively inert material. Fine-grained coke, typically resulting from crushing and screening, is referred to as breeze.

Tar

Tar was removed from coal as part of the coke manufacturing process and was processed at the coke plant of the former TCC facility as part of the coke by-products operations. Tar in its production form was sold and used as a component of asphalt, roof shingles, and other commercial and industrial goods.

Oil

Oils containing benzene, toluene and xylenes and other chemicals were by-products of the coking operations. These compounds are similar to the components of gasoline. These liquids were present in containers, pipes, tanks, and process equipment at the main plant. In their pure clean form, they are used to produce other chemicals and plastics. Fuel oil, diesel fuel and lubricating oils were used for power production, heavy equipment, rail operations, and machinery.

The majority of these materials can be identified at Site 109 and 110 either by their physical characteristics or by the presence of their component constituents:

- Volatile organic compounds (VOCs)
 - Found predominately in light oils. The majority of VOCs were conveyed and consumed in the coke plant of the former TCC facility and combustion processes or sold for further refining and use as feedstock for manufacturing. VOCs are also found at low concentrations in coal.
- Semivolatile organic compounds (SVOCs)
 - Prevalent in coal, coke, tar, oils, and ash.
- Polycyclic aromatic hydrocarbons (PAHs)
 - A subset of the SVOCs and present in coal, coke, tar, oils, and ash.
- Naphthalene

A by-product of coke making and prevalent in coke oven gas (COG) residuals and the process equipment from the tar processing area, through the concentrators, and precipitators. Also present in coal and tar.

Cyanide

A constituent of the COG and present in the gas processing equipment. Cyanide was concentrated historically in the purifier boxes on the BCP Site portion of the property before the COG was sold for off-site consumption.

Nature and Extent of Impacts

Historical sample results and analytical data compiled as part of the Focused RI were compared to applicable standards, criteria, and guidance values (SCGs) for soil and groundwater to assess impacts and to develop an understanding of the nature and distribution of environmental impacts.

Site 109

SURFACE AND SUBSURFACE SOIL

Soil analytical results were compared to commercial use soil SCGs, which is consistent with anticipated future site use. Fill material consists of earthen materials mixed with coal, coke, coke manufacturing by-products, construction and demolition debris, and other debris. For convenience, references to soil and comparisons to soil cleanup objectives include fill, underlying native soils, and surface and subsurface materials that are non-soil fill, such as coal, breeze, and ash, as well as mixtures of these materials and soil.

Surface soil and, to a lesser extent, subsurface soil concentrations of constituents exceeding the Commercial SCG are present throughout Site 109. The primary constituents exceeding SCGs are SVOCs (particularly PAHs). Exceedances of SCGs for SVOCs occur primarily within fill from the surface to as deep as 10.6 feet below ground surface (ft bgs). The deeper exceedances are associated with elevated fill in berms, in comparison with the depth below the typical site grade. The highest concentrations of constituents occur in drainage ditch samples, likely due to spills from the former overhead coal conveyor and/or due to erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch.

GROUNDWATER

Groundwater impacts at Site 109 are limited, with most SCG exceedances observed in the upgradient well. Groundwater samples show exceedances of SCGs for one or more constituents in samples from all wells. However, most exceedances are for metals, which are likely primarily due to naturally occurring conditions.

```
PARSONS
```

Groundwater gradients are predominantly to the west-southwest. Groundwater occurs in a perched unit in fill that is likely a series of pocketed saturated areas, some of which are connected, while others are isolated. A thick, low permeability clay layer is present beneath the fill, which prevents significant downward migration of groundwater.

Site 110

SURFACE AND SUBSURFACE SOIL

Soil analytical results were compared to commercial use soil SCGs, which is consistent with anticipated future site use. Fill material consists of earthen materials mixed with coal, coke, coke manufacturing by-products, construction and demolition debris, and other debris. References to soil and comparisons to soil cleanup objectives include fill, underlying native soils, and surface and subsurface materials that are non-soil fill, such as coal, breeze, and ash, as well as mixtures of these materials and soil.

Surface and subsurface soil concentrations of constituents exceeding Commercial SCGs are present throughout Site 110. The primary constituents exceeding SCGs are SVOCs (particularly PAHs). Localized VOC exceedances of SCGs (primarily BTEX compounds) were also noted in samples from one monitoring well boring. Exceedances of SCGs for SVOCs occur primarily within fill from the surface to as deep as 7 ft bgs. The deeper exceedances are associated with the elevated piles of fill on Site 110. Surface and subsurface tar is present in multiple locations on Site 110, but the presence of these materials does not appear to impact soil quality in adjacent intervals.

GROUNDWATER

Groundwater samples exceeded one or more SCGs in samples from all wells at Site 110. Exceedances of SCGs occur primarily for SVOCs (primarily PAHs), metals, and cyanide. Localized VOC exceedances of SCGs (primarily BTEX compounds) were also noted at one monitoring well. Metals exceedances of SCGs at Site 110 are likely primarily due to naturally occurring conditions.

Groundwater gradients across Site 110 are flat and slightly eastward. Groundwater occurs in a perched fill unit that is likely a series of pocketed saturated areas, some of which are connected, while others are isolated. A thick, low permeability clay layer is present beneath the fill, which prevents significant downward migration of shallow groundwater.

Conceptual Site Model

Site 109

Results of the previous investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 109 are historical material disposal practices.

A layer of fill is present across the majority of Site 109, typically ranging in thickness from 0 feet to 16 feet. The fill consists of silt and clay and includes a variety of other materials co-placed with the earthen materials, including C&D debris such as concrete, red brick, yellow fire brick, rock fragments, wood, and common fill materials typical of coking facilities such as breeze, coke, coal, and slag.

Historical spills from the former coal conveyor, which formerly ran along the southern site boundary adjacent to the drainage ditch, and/or erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch may have impacted soil quality within the drainage ditch.

Groundwater impacts at Site 109 are very limited, with most impacts observed in the upgradient well. The data indicates that constituents of fill at Site 109 are not significantly impacting groundwater.

Site 110

Results of both the prior investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 110 are historical material disposal practices. A layer of fill is present across the entirety of Site 110, ranging in thickness from 3.0 feet to 16.5 feet. The fill consists of coke breeze and is often mixed with earthen materials including silt and sand, debris including brick, glass, wood, plastic, rubber, and coke manufacturing by-products including coke, coal, slag, and ash. The fill may contribute to impacts to groundwater through leaching.

Localized areas at Site 110 contain subsurface tar in various forms. Results indicate that tar-impacted materials may be contributing to groundwater impacts; however, results indicate that tar is not contributing significantly to groundwater impacts and are likely confined to locations where tar is in direct contact with groundwater. Results indicate that groundwater impacts are not migrating significantly eastward onto the adjacent National Grid property, aside from potential cyanide impacts.

Qualitative Human Health Exposure Assessment

A QHHEA was completed, consistent with NYSDEC guidance (NYSDEC 2010a), to evaluate how people might be exposed to site-related constituents, and to identify and characterize the potentially exposed population(s) now and under the reasonably anticipated future use of Sites 109 and 110. Potential exposures for current and future site use, which is anticipated to be commercial, are detailed below.

Current Site Worker Under the current use scenario, there is a potentially complete pathway for site workers performing surface or intrusive work, such as site investigation or interim remedial measures (IRM) activities, to come in contact with all identified impacted media. Proper use of personal protective equipment (PPE), decontamination methods, and other protective measures during on-site work, consistent with currently used health and safety measures, minimizes the risk of exposure to impacted media for current site workers.

Future Site Worker: It is anticipated that the primary future use of Sites 109 and 110 will be commercial, which will include landscaping, paving and buildings. This would provide at least a partial cover, which would reduce but not eliminate potential exposure by future site workers to impacted surface soil. There is a potentially complete pathway for site workers performing construction activities during future redevelopment, or subsequent construction or maintenance activities, to come in contact with all identified impacted media. Site remediation and/or proper use of PPE, decontamination methods, and other protective measures during these activities would minimize the risk of exposure to impacted media for future site workers.

Future Office Worker: The only identified, potentially complete exposure pathway for future office workers is via inhalation, specifically inhalation of fugitive dust and inhalation due to vapor intrusion into buildings of VOCs originating from impacted soil and/or groundwater.

There were no exceedances of groundwater SGCs or Commercial Soil SCGs for VOCs at Site 109, therefore, the potential exposure pathway for VOCs is considered incomplete at Site 109.

There was only one VOC exceedance of Commercial SCGs for soil and one localized exceedance of SCGs for groundwater at Site 110. However, relatively high levels of VOCs were detected in the tar samples characterized. Therefore, the potential exposure pathway for VOCs via a future inhalation pathway is considered complete for Site 110.

There is no complete exposure pathway associated with groundwater usage by future office workers. There is a municipal water supply available for Sites 109 and 110 and it is anticipated that institutional controls, such as an environmental easement, will be implemented in the future, preventing use of site groundwater for drinking water purposes.

Given that the areas of the site that future office workers will be interacting with will be paved, landscaped, and otherwise developed, there is no complete exposure pathway associated with direct contact or incidental ingestion of surface or subsurface soil. **Current/Future Off-Site Worker:** Potential exposure pathways for current/future off-site workers only exist for Site 110, as significant groundwater impacts were not observed at downgradient wells at Site 109. Off-site workers at the National Grid property downgradient of Site 110 may encounter groundwater impacted with cyanide while doing intrusive work. Site remediation and/or proper use of PPE, decontamination methods, and other protective measures during these activities would minimize the risk of exposure to impacted groundwater for off-site workers.

Next Steps

A Focused Feasibility Study (FS) was be prepared by Parsons and submitted to NYSDEC in March 2023 using information developed during the site investigation to develop and evaluate the range of technologies appropriate for Sites 109 and 110. Consistent with the February 2020 Order on Consent, alternatives were developed to consider additional actions that may be necessary beyond those identified in the 2008 ROD due to the change in use of the site, which is anticipated to include commercial development.

Based on the results of the FS, NYSDEC will prepare a draft ROD Amendment. The draft ROD Amendment will describe the remedy preferred by NYSDEC and will summarize the basis for the recommendation of the preferred remedy by discussing each alternative and the reasons for choosing or rejecting it. The goal of any cleanup plan is to protect public health and the environment. NYSDEC will present the draft ROD Amendment to the public for its review and comment during a 30-day comment period and at a public meeting. NYSDEC will consider public comments as it selects the remedy to address impacts related to Sites 109 and 110. The selected remedy will be described in the final ROD Amendment, which will explain why the remedy was selected and respond to any public comments.

1.0 INTRODUCTION

On behalf of Honeywell, Parsons has prepared this Remedial Investigation (RI) Report for Operable Units (OU) 1 and 2 of the Tonawanda Coke Site. This RI Report includes the results from the Focused RI completed by Honeywell in 2020 through 2023 as well as the results from several historical investigations completed by others.

OU-1 and OU-2, also known as Sites 110 and 109, respectively, are portions of the former Tonawanda Coke Corporation (TCC) facility located at 3875 River Road in Tonawanda, Erie County, New York (**Figure 1**). TCC filed for bankruptcy protection in 2018 and all industrial activities on the property ceased at that time. On October 10, 2019, the sale of the property was completed to Riverview Innovation & Technology Campus, Inc. (RITC).

Remediation of the property is being completed under two separate New York State Department of Environmental Conservation (NYSDEC) programs: the New York State Superfund Program and the New York State Brownfield Cleanup Program (BCP). The Tonawanda Coke State Superfund Site is listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State as Site Number 915055 with a Site Classification of "2" pursuant to Environmental Conservation Law (ECL) 27-1305. Three areas, representing a portion of the former TCC facility property and two sections of National Grid Corporation property, together make up the Tonawanda Coke State Superfund Site (Figure 2):

- Site 108 is between River Road and the Niagara River at 3800 River Road.
- Site 109, the subject of this report, at 3875 River Road, lies near River Road on the western portion of the 3875 River Road parcel.
- Site 110, the subject of this report, lies partially in the northeast portion of the 3875 River Road parcel, and extends eastward onto National Grid Corporation property.

These three areas are being addressed under the New York State Superfund Program pursuant to the Order on Consent and Administrative Settlement (Index No. B9-85-2-77D) entered into between Honeywell and the NYSDEC on February 24, 2020. The RI results for Site 108 are detailed in a separate report submitted by Honeywell to NYSDEC.

The remainder of the former TCC facility property is being addressed under the New York State Brownfield Cleanup Program (BCP) pursuant to BCP Agreement (Index No. C915353-02-20) between the NYSDEC and RITC, dated February 14, 2020. This portion of the property is referred to as the BCP Site (Site No. C915353).

The goal is to develop and implement cleanup plans that protect public health and the environment and achieve sustainable remedies that will support the future return of the property to beneficial reuse.

The Riverview Innovation & Technology Campus, Inc. (RITC) owns the properties and is proposing a commercial/industrial complex on the former TCC facility properties at 3875 River Road and 3800 River Road. The campus will bring high technology, jobs, and environmental stewardship to properties that had been mismanaged for decades. The brownfield redeveloper has made dramatic progress transforming the former TCC facility from an abandoned coke facility to a property with a viable long-term vision. The cleanup and redevelopment will allow the Superfund and BCP properties to be restored to productive use. The property can serve a number of uses, such as supporting the technology and commercial resources across the approximately 140-acre campus.

1.1 Focused RI Program Objectives

According to DER-10 / Technical Guidance for Site Investigation and Remediation (NYSDEC 2010a) the purpose of an RI is to:

- 1. Delineate the areal and vertical extent of impacts in all media at or emanating from the site.
- 2. Determine the surface and subsurface characteristics of the site, including topography, geology, and hydrogeology, including depth to groundwater.
- 3. Identify the sources of contamination, the migration pathways, and actual or potential receptors of constituents on or through air, soil, bedrock, sediment, groundwater, surface water, utilities, and structures at an impacted site, without regard to property boundaries.
- 4. Collect and evaluate all data necessary for a fish and wildlife resource impact analysis (FWRIA), to determine all actual and potential adverse impact to fish and wildlife resources.
- 5. Collect and evaluate all data necessary to evaluate the actual and potential threats to public health and the environment. This includes evaluating all current and future potential public health exposure pathways as well as potential impacts to biota.
- 6. Collect the data necessary to evaluate any release to an environmental medium and develop remedial alternative(s) to address the release.

Following completion of an earlier Remedial Investigation and Feasibility Study (RI/FS), a Record of Decision (2008 ROD) was issued by NYSDEC on March 31, 2008, which presented the selected remedies for Site 109 and Site 110. The remedies were based on industrial use of the property and required institutional and engineering controls involving restricting access and filing an environmental easement to control future use. The required easement was never filed by the Tonawanda Coke Corporation. The TCC was an active industrial facility at the time of the 2008 ROD. The former TCC facility is now inactive and future site use for Sites 109 and 110 is anticipated to be commercial, rather than industrial. Therefore, as specified in the February 2020 Order on Consent:

"The supplemental investigation of Sites 109 and 110 will be limited to a Focused RI/FS to determine whether and to what extent additional investigation and/or remedial work may be necessary due to the change in use of the site."

Therefore, in developing the Focused Remedial Investigation Work Plan (RIWP), the RI objectives under DER-10 (NYSDEC 2010a) were considered within the framework of a focused RI, with the primary goal of determining if the remedies prescribed in the 2008 ROD remain protective, given the anticipated change of site use from industrial to commercial, and if not, to determine what additional remedial action may be required.

1.2 RI Report Organization

This RI Report is organized as follows:

Section 1 – Introduction

Describes the objectives of the 2020/2021 Focused RI and the RI Report organization.

Section 2 – Background
 Provides information regarding the site location and use, and a summary of relevant site history, including former site operations, previous investigations, and previously implemented interim remedial measures (IRMs).

Section 3 – Focused Remedial Investigation Data Collection Activities

Provides a summary of investigation activities completed as part of the 2020/2021 RI, as well as air monitoring procedures and data management / data validation procedures.

Section 4 – Site Physical Characteristics

Details site characteristics including topography, geology, hydrogeology, surface water hydrology, and wetlands based on historical data and new data collected during the 2020/2021 Focused RI.

- Section 5 Investigation Results and Nature and Extent of Impacts
 Identifies applicable standards, criteria, and guidance Values (SCGs), discusses data validation and
 usability, and presents nature and extent of impacts based on the historical investigation and
 2020/2021 Focused RI results for each environmental media.
- Section 6 Conceptual Site Model (CSM)
 Presents the current conceptual site model including potential sources, nature and extent of impacts, and fate and transport.
- Section 7 Qualitative Human Health Exposure Assessment (QHHEA) Presents the QHHEA results.
- Section 8 Preliminary Remedial Action Objectives (RAOs)
- Presents preliminary RAOs for each impacted environmental media.
- Section 9 Summary and Conclusions
- Section 10 References

2.0 BACKGROUND

2.1 Site Location and Description

The former Tonawanda Coke property at 3875 River Road is located on the east side of River Road in the Town of Tonawanda, Erie County, New York. Sites 109 and 110 occupy about 12 acres of the properties referenced by Tax Map/Parcel Nos. 64.08-1-10 (RITC), 65.052-1 (National Grid), and 65.05-2-2 (National Grid) at 3875 River Road, Tonawanda, New York 14150 (**Figure 2**).

Site 109 is an approximately 7.5-acre rectangular area oriented perpendicular to the east side of River Road, in the southwestern portion of the former TCC facility property at 3875 River Road. There is a large berm along the west side of Site 109, running parallel to River Road, and another large berm in the east portion of Site 109 closer to the BCP Site boundary. Two concrete-lined settling/separation ponds that are part of the stormwater management system are present on Site 109, as discussed in Section 4.3. The western boundary of Site 109 is approximately 0.3 miles east of the Niagara River. The closest residential area to Site 109 is on James Avenue, approximately 0.4 miles south of Site 109 (**Figure 3**).

Site 110 is an approximately 6.1-acre irregular-shaped area located in the northeast portion of the former TCC facility property. A 1.8-acre triangular portion of Site 110 is east of the former TCC property on land owned by National Grid. There are several sets of high voltage overhead powerlines and underground utilities running across Site 110 on the National Grid property. The topography across the site is relatively flat, except for an elevated area in the south-central portion of the site. The western boundary of Site 110 is approximately 1 mile east of the Niagara River. The nearest residences to Site 110 are located on Ritchie Avenue approximately 0.3 miles southeast of Site 110 (**Figure 3**).

Test pit excavation in berm along western side of Site 109

Drilling at Site 110, with power lines visible on National Gridowned portion of Site 110.

Sites 109 and 110 are currently zoned for industrial use. The surrounding area is a combination of the BCP Site, commercial and industrial operations, a landfill, utility rights-of-way, and public water utilities. The Erie County Water Authority Van de Water Treatment Plant is located to the southwest, west of River Road.

In addition to the portion of the former TCC facility being addressed under the BCP program, here are several sites subject to NYSDEC remedial programs in the vicinity (**Figure 1**):

Sites Subject to NYSDEC Remedial Programs	NYSDEC Site Number	Location
The Tonawanda Plastics Site (3821 River Road) – in the BCP	C915003 / 915003	South of Site 109
Roblin Steel	915056	Northwest of Site 109
River Road/Cherry Farm Niagara Mohawk closed landfill	915031 / 915063	North-northwest of Site 109
The C.R. Huntley Fly Ash Landfill (Niagara Mohawk – Huntley Station)	915076	North of Sites 109 and 110
The C.R. Huntley Steam Station part of which is in the BCP as the Huntley Power South Parcel	C915337	Southwest of Site 109

2.2 Site History

The history of Sites 109 and 110 is linked to the remainder of the former TCC facility at 3875 and 3800 River Road. For purposes of the recent RI, a description of the activities that were conducted on Sites 109 and 110 are included. To provide context, a description of the activities at the overall former TCC facility are included as well.

2.2.1 Former TCC Facility

A metallurgical coke manufacturing and by-products plant was operated at the former TCC facility from 1917 through late 2018. The coke-making process involved the removal of gasses, liquids (oils), and tar from coal by heating the coal in the absence of oxygen. The resulting carbon material (coke) was used, among other things, in foundries and for steel production. The by-products were used in the manufacturing process or sold for off-site use. Manufacturing processes used at the plant included by-products coking, light oil distillation, ammonia recovery, and benzene, toluene, and xylene extraction.

The former TCC facility was owned and operated from 1917 through 1947 by Semet-Solvay Company, which was a subsidiary of Allied Chemical and Dye Corporation. In 1947, Semet-Solvay Company was merged into Allied Chemical Corporation, which owned and operated the facility until January 27, 1978, when it was sold to TCC. TCC operated the facility from 1978 until it filed for bankruptcy protection in October 2018, at which time all operations ceased.

Between October 2018 and May 2020, the U.S. Environmental Protection Agency (USEPA) conducted emergency response activities to remove some gases and limited liquids from pipes and tanks, treat wastewater, and manage stormwater.

On October 10, 2019, the property was sold to RITC through a sale ordered by the U.S. Bankruptcy Court. RITC entered the BCP Site into the Brownfield Cleanup Program, and following entry <u>into</u> the program transitioned responsibility for the properties from the USEPA to RITA between March and June 2020.

The former TCC facility, exclusive of Sites 108, 109, and 110, (Figure 2) is the subject of a BCP Agreement.

2.2.2 Sites 109 and 110

No active industrial manufacturing processes are known to have occurred on Site 109 or Site 110; in general, both sites appear to have been used for stormwater management, materials management, and disposal. The

stormwater treatment ponds, truck scale, security office, and underground utilities are located on Site 109. The east end of the River Road Tunnel and the footings for the former elevated coal conveyor are also still present along the southern boundary of the site. Site 110 appears to have been used for logistics and disposal.

Placement of industrial and construction and demolition (C&D) wastes from plant operations occurred at multiple areas throughout Site 110. Numerous abandoned vehicles are located on Site 110. Prior to 1978, materials such as tar sludge, fly ash, and cinders were reportedly deposited in the rear of the plant, within Site 110. Site 110 was bound by numerous rail tracks.

In 1977, an unknown quantity of brick, rubble, and demolition material was placed within Site 109. Reinforced concrete settling ponds are present and in use on Site 109 for the treatment and discharge of surface water under a NYSDEC approved Storm Water Pollution Prevention Plan (SWPPP) for the BCP Site.

2.3 Site Investigation History

Four major investigations and several other sampling events have previously been conducted at the former TCC facility, focusing primarily on Sites 108, 109, and 110. Historical investigation activities and results from these investigations are summarized below. Historical boring and test pit logs are included in **Appendix A**, historical well construction logs are provided in **Appendix B**, and historical soil data from previous investigations are provided in **Appendix C**.

In July 1982 and May 1983, the U.S. Geological Survey (USGS) performed a study investigating toxic chemical entry into the Niagara River (USEPA 1985). The study consisted of sampling several inactive hazardous waste disposal sites within an approximately 3-mile-wide band along the Niagara River. As part of this program, USGS collected two groundwater samples, ten soil samples, and two surface water samples from the former TCC facility property. Data from these samples were qualified as exceeding analytical holding times and having other quality control (QC) issues that may have compromised the data integrity.

Following the USGS investigation, several major investigations were performed at the former TCC facility, including Sites 109 and 110. Investigation activities are presented in previously submitted reports and summarized in the following table. Historical investigation results are incorporated into the discussion of nature and extent of impacts in Section 5.3.

REPORT	ACTIVITIES PERFORMED
New York State Superfund Phase I Summary Report, November 1983, prepared by Recra Research, Inc.	Review of existing data to calculate a USEPA Hazard Ranking System (HRS) Score to assess the relative threat associated with actual or potential release of hazardous substances from the site. As a result of the analysis, Sites 109 and 110 were not ranked or listed under CERCLA.

REPORT	ACTIVITIES PERFORMED
Phase II Site Investigation Tonawanda Coke Site, December 1986 prepared by Malcolm Pirnie, Inc.	 Installation of one overburden groundwater monitoring well at Site 109 and one overburden groundwater monitoring well adjacent to Site 110. Collection of two groundwater samples from Site 109 (two rounds at one well) and two groundwater samples from Site 110 (two rounds at the one well adjacent to the site). Excavation of five test pits at Site 109 and four test pits on/adjacent to Site 110. Collection of one composite soil sample from the four test pits on/adjacent to Site 110 Collection of one surface water sample at Site 109 and one surface water sample adjacent to Site 110.
Supplemental Site Investigation Tonawanda Coke Corporation, Tonawanda, New York, July 1990 prepared by Conestoga- Rovers & Associates	 Installation of one overburden groundwater monitoring well at Site 109, and two overburden groundwater monitoring wells at/adjacent to Site 110. Collection of four groundwater samples from Site 109 (two rounds of sampling at two wells) and six groundwater samples from Site 110 (two rounds of sampling at three wells on/adjacent to Site 110) Excavation of two test pits at Site 110 Collection of one composite soil sample from test pits at Site 110 Collection of six surface water samples at/adjacent to Site 109 and five surface water samples adjacent to Site 110 Collection of one drainage ditch soil sample adjacent to Site 109 and two sediment samples adjacent to Site 110
Additional Site Investigation Tonawanda Coke Corporation, Tonawanda, New York, November 1992 prepared by Conestoga-Rovers & Associates	 Installation of two overburden groundwater monitoring wells off- site of Site 110 Collection of one groundwater sample from a well off-site of Site 110 Collection of five surface water samples adjacent to Site 110 Collection of two sediment samples adjacent to Site 110
Remedial Investigation Summary Report, Tonawanda Coke Corporation, Tonawanda, New York, May 1997 prepared by Conestoga- Rovers and Associates	Summary of available information from the previous investigations pertaining to groundwater, surface water, soils, drainage ditch soils, and sediments and discussed their significance regarding potential impacts to human health and the environment.
Final Supplemental Report Revision 1 and Feasibility Study, Tonawanda Coke Corporation, Tonawanda, New York, January 2008, prepared by Conestoga-Rovers and Associates	 Collection of five surface soil samples from both Site 109 and Site 110, with one of the Site 110 samples being located slightly outside of Site 110 boundaries. Excavation of one test pit at Site 110

2.4 Interim Remedial Measures (IRMs)

In August 2005, an excavation was performed in the area around monitoring well MW-3 adjacent to Site 110 to assess soil conditions and address elevated concentrations of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, and cyanide in groundwater samples from these wells. (Conestoga-Rovers & Associates 2008). A 90-foot-long, 6-foot-deep trench was excavated parallel to the railroad tracks running adjacent to MW-3R. A small amount of "coal tar" was observed in excavated material. Coal tar was separated from other excavated material and taken by TCC for recycling on-site, by reprocessing during coke manufacturing. The IRM was effective in removing the source of groundwater impacts and no further actions were deemed necessary (Conestoga-Rovers & Associates 2008).

Two IRMs/remedial actions were conducted on and adjacent to Site 109. The sediment was removed from the concrete lined settling ponds on Site 109 in 2021. Over 300 tons of residual sediment from the TCC operations was removed, stabilized, and disposed offsite (Inventum 2021a). Also in 2021, accumulated storm and groundwater, the asbestos containing materials (ACMs), coal conveyor, and tar pipelines were removed from the river road tunnel between Site 109 and 108 (Inventum 2021b).

3.0 FOCUSED REMEDIAL INVESTIGATION DATA COLLECTION ACTIVITIES

PARSONS

Data collection activities for the Focused RI were conducted in accordance with the following documents:

- NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation (NYSDEC 2010a)
- NYSDEC-approved Final Work Plan, Focused Remedial Investigation and Feasibility Study for Operable Units 1 (Site 110) and 2 (Site 109), Tonawanda Coke Site (Parsons 2020), including the following appendices:
 - Field Sampling Plan
 - Quality Assurance Project Plan
 - Health and Safety Plan
 - Community Air Monitoring Plan

NYSDEC-approved modifications to the Work Plan during execution of the field work were detailed in correspondence listed below and are included in **Appendix D**.

- Completion of a second round of groundwater sampling with a modified analytical scope, including addition
 of Monitored Natural Attenuation (MNA) parameters, as detailed in *Remedial Investigation Work Plan Addendum, Operable Units 1 (Site 110) and 2 (Site 109), Tonawanda Coke Site (Parsons 2021).*
- Addition of test pits (TP-33-2020 series) adjacent to MW-06-2020 due to the presence of subsurface tar at MW-06-2020 (Verbal discussion with NYSDEC)).
- Addition of one monitoring well (MW-16-2020) installed to address potential impacts downgradient of MW-06-2020. Addition of test pits TP-34-2021 through TP-38-2021 to investigate tar observed on the ground surface along the southern site boundary. Completion of a comprehensive surface inspection at Site 110 to look for tar on the ground surface. Completion of an additional round of groundwater elevation measurements at all Site 109 and Site 110 monitoring wells (04/27/2021 email).

3.1 Site 109

The scope of the Focused RI at Site 109 was designed to fill data gaps identified through review of existing data and determine if the existing remedy was protective in light of the change in use from industrial to commercial. Tasks included in the scope for Site 109 are detailed in the following sections:

- Section 3.1.1 Surface and subsurface soil investigation
- Section 3.1.2 Drainage ditch surface and subsurface soil investigation
- Section 3.1.3 Groundwater investigation
- Section 3.3 Site survey
- Section 3.4 Groundwater elevation survey
- Section 3.5 Investigation-derived waste (IDW) management
- Section 3.6 Community Air Monitoring Plan (CAMP) implementation
- Section 3.7 Data management and validation

3.1.1 Surface and Subsurface Soil Investigation

The surface and subsurface investigation included soil logging and sampling during test pit (TP) excavations, monitoring well installations, and drainage ditch soil borings (SB). Each surface and subsurface soil investigation activity is discussed in detail in the following subsections. Fill material at the site is primarily historically placed

soils but also includes other materials such as ash and breeze. For convenience, references to "soil" throughout this section include fill soils, underlying native soils, and surface and subsurface materials that are non-soil fill, such as ash and breeze, as well as mixtures of these materials and soil.

3.1.1.1 TEST PIT EXCAVATIONS

To visually assess the types of fill present, allow for subsurface soil sample collection, and provide refinement of the understanding of the vertical and lateral extent of fill, test pits were excavated throughout Site 109 in September 2020, as shown on **Figure 4**. Test pits were excavated at six locations, identified as:

- TP-01-2020
- TP-02-2020
- TP-03-2020
- TP-04-2020
- TP-05-2020
- TP-06-2020

At test pit locations TP-03-2020, TP-04-2020, and TP-05-2020, a center point was located, and test pits were excavated to the north, south, east, and west of the center point. TP-01-2020, TP-02-2020, and TP-06-2020 were single linear test pits excavated to determine the composition of berms.

All test pits were excavated to the top of the clay layer, except at TP-01-2020, where refusal was encountered at 10.6 feet below ground surface (ft bgs) on what appeared to be a concrete slab. The excavator was offset, and another pit was dug in an attempt to reach native soil, but refusal was encountered again on what appeared to be a concrete slab, this time at 10.8 ft bgs. A site drawing from 1967 shows an abandoned transformer station in this area. It is likely that the object causing refusal was the concrete slab from the former transformer station.

As test pits were excavated, soil was visually assessed, photographed, screened with a photoionization detector (PID), and documented in a field log. Test pit logs are provided in **Appendix E**. Once the clay layer was identified or, in the case of TP-01-2020, refusal was reached, the test pit was backfilled by replacing the materials in the reverse order in which they were removed. Care was taken to not leave significant amounts of subsurface soil on the ground surface.

Soil samples were collected for chemical analysis from TP-01-2020, TP-05-2020, and TP-04-2020. At TP-01-2020 and TP-05-2020, surface soil samples were collected from 0 to 0.16 and 0.16 to 1.0 ft bgs. At TP-01-2020, two subsurface soil samples (2.0 to 3.0 ft bgs and 10 to 10.6 ft bgs) were collected to characterize the different types of fill observed. Fill was not observed at TP-05-2020, so the subsurface soil sample was collected from the top of native clay instead of from fill. Analytical sampling was not initially planned for TP-04-2020, so surface soil samples were not collected. However, a subsurface sample was collected at this location due to staining on soil around what may be creosote-treated wood poles.

All samples were analyzed for Target Compound List (TCL) VOCs, SVOCs, pesticides, polychlorinated biphenyls (PCBs), Target Analyte List (TAL) metals and cyanide. Samples from TP-01-2020 were also analyzed for per- and polyfluoroalkyl substances (PFAS). PFAS sampling and analysis followed the guidance provided in NYSDEC's *Guidelines for Sampling and Analysis of PFAS* (NYSDEC 2020).

3.1.1.2 MONITORING WELL INSTALLATION SOIL LOGGING AND SAMPLING

During drilling for the three new monitoring wells installed in October 2020, soil was visually assessed, photographed, screened with a PID, and documented in a field log. At each well boring, soil samples were collected for chemical analysis. Surface soil samples were collected from 0 to 0.16 and 0.16 to 1.0 ft bgs. A subsurface sample was also collected at each of the sampled locations, with subsurface sample depths

dependent upon types of fill present as well as the presence of staining, odors, elevated PID reading, etc. All samples were analyzed for TCL VOCs, SVOCs, pesticide/PCBs, TAL metals, cyanide, and PFAS. Monitoring well installation details are provided in Section 3.1.3.1. Boring logs are provided in **Appendix F**.

3.1.2 Drainage Ditch Surface and Subsurface Soil Investigation

To assess the soils within the on-site stormwater drainage ditches, surface and subsurface soil samples were collected in October 2020 at the following locations, as shown on **Figure 4**:

- SB-01-2020 was adjacent to the ditch on the south side of the site.
- SB-02-2020 was located along the ditch on the south side of the site.
- SB-03-2020 was adjacent to the ditch on the north side of the site.
- SB-04-2020 was located in the southwestern corner of the site, where hardened tar had been observed during earlier investigations associated with the Tonawanda Plastics site and adjacent to Outfall-004 (Parsons 2017).

SB-01-2020, SB-03-2020, and SB-04-2020 are considered soil samples because they were collected from the banks of the ditch, or in the case of SB-04-2020, adjacent to the outfall. SB-02-2020 may be considered a sediment sample because it was collected from the bottom of the drainage ditch.

Three of the soil borings were drilled using a drill rig. The fourth boring (SB-02-2020) was too close to possible underground utility locations for drilling with a drill rig; therefore, this sample was collected by hand in December 2020, by hand-pushing a macrocore into the subsurface. Soil boring depths coincide with the depth to the clay layer at each location. During drilling and hand coring, soil was visually assessed, photographed, screened with a PID, and documented in a field log. Boring logs are provided in **Appendix F**.

Soil samples were collected for chemical analysis at each soil boring location. Surface soil samples were collected at 0 to 0.16 ft bgs and 0.16 to 1.0 ft bgs. A subsurface soil sample of the underlying fill was also collected at each soil boring location, except at SB-03-2020, where the subsurface sample was not collected because fill was not encountered. All samples were analyzed for TCL VOCs, SVOCs, pesticide/PCBs, TAL metals and cyanide. Samples from SB-04-2020 were also analyzed for PFAS. PFAS sampling and analysis followed the guidance provided in NYSDEC's *Guidelines for Sampling and Analysis of PFAS* (NYSDEC 2020).

3.1.3 Groundwater Investigation

3.1.3.1 GROUNDWATER MONITORING WELL INSTALLATION

Three new groundwater monitoring wells were installed in October 2020 at Site 109 to assess groundwater quality and gradients within the shallow water-bearing zone in fill, perched on top of the clay layer. Monitoring well locations are shown on **Figure 4**. The three new well borings were drilled using a drilling rig and hollow stem augers. During drilling for monitoring well installation, soils were logged, and analytical samples were collected as described in Section 3.1.1.2.

Well screens at MW-01-2020 and MW-02-2020 are 5 feet long. The well screen at MW-03-2020, which is located on top of a berm, is 10 feet long due to a greater depth to clay, and to maximize the potential water-bearing interval within fill. Well screens were installed at the following depths:

- MW-01-2020: 4 to 9 ft bgs
- MW-02-32020: 5 to 10 ft bgs
- MW-03-2020: 10 to 20 ft bgs

All monitoring wells were constructed using 2-inch diameter polyvinyl chloride (PVC) screens and 2-inch diameter PVC riser, all of which were certified clean from the manufacturer. The annular space around the screen was

filled with filter sand to at least 1 foot above the top of the screen, followed by 1 to 2 feet of bentonite, followed by grout to the surface. Exact monitoring well construction was determined based on the depth of clay and screened interval. Monitoring wells were finished with 3-foot stick-up protective casings and a 2-foot diameter concrete well pads. Boring and monitoring well construction logs are provided in **Appendix F**.

When monitoring wells were installed, no groundwater was present for development. Wells were purged prior to groundwater sampling.

3.1.3.2 GROUNDWATER SAMPLING

Each of the three newly installed wells, along with the existing well MW-17-89, were sampled in December 2020 and again in September 2021. Existing well MW-04 was found not to be in suitable condition for sampling during project scoping, therefore, consistent with the Focused RI Work Plan, was not sampled. An electronic water level meter was used to measure the depth to groundwater in each well on the day of sampling.

3.1.3.2.1 December 2020 Sampling

Low-flow sampling methods were implemented by purging each well using a peristaltic pump and dedicated highdensity polyethylene (HDPE) tubing. Groundwater purging occurred at a rate between 140 milliliters/minute (mL/min) and 500 mL/min. During purging, water quality parameters were monitored at approximately fiveminute intervals until parameters were considered stable. Water quality parameters monitored included depth to water, temperature, pH, conductivity, oxidation reduction potential (ORP), dissolved oxygen, and turbidity.

Three wells (MW-01-2020, MW-02-2020, and MW-03-2020) were sampled prior to stabilization due to poor groundwater yield and low recharge rates. Each of these wells was purged dry and allowed to recharge overnight. The samples were collected immediately upon resuming purging the next day, due to slow overnight recharge. For all wells, water quality parameters and field observations during sampling were recorded on groundwater sampling forms and are included in **Appendix G**.

	MW-01-2020	MW-02-2020	MW-03-2020	MW-17-89
TCL VOCs	Х	Х	Х	Х
TCL SVOCs	Х	Х	Х	Х
Pesticides	Х	Х		Х
PCBs	Х	Х		Х
TAL Metals	Х	Х		Х
Cyanide	Х	Х		Х
PFAS			Х	Х
1,4-Dioxane				Х

Laboratory analytical parameters for each well from the December 2020 samples were as follows:

The sample from MW-03-2020 was analyzed for limited parameters because the well ran dry before all the sample bottles could be filled.

Groundwater samples were collected directly from dedicated sample tubing into laboratory-supplied sample bottles.

During the December 2020 sampling event, groundwater samples from MW-01-2020 turned blue upon being collected into sample bottles for VOCs and metals. These bottles are preserved with hydrochloric acid and nitric acid, respectively, which are both acidic. The reason for the color change is uncertain.

3.1.3.2.2 September 2021 Sampling

Low-flow sampling methods were implemented by purging each well using a peristaltic pump and HDPE tubing. Groundwater purging occurred at a rate between 165 mL/min and 500 mL/min. During purging, water quality parameters were monitored at approximately five-minute intervals until parameters were considered stable. Water quality parameters monitored included depth to water, temperature, pH, conductivity, ORP, dissolved oxygen, and turbidity. Water quality parameters and field observations during sampling were recorded on groundwater sampling forms and are included in **Appendix G**.

Three wells (MW-01-2020, MW-02-2020, and MW-03-2020) were sampled prior to stabilization due to poor groundwater yield and low recharge rates. Each of these wells was purged dry and allowed to recharge. Recharge rates were extremely slow. As a result, the wells were allowed to recharge for three days so that there would be sufficient volume for sampling. Samples were collected immediately upon resuming purging.

Based on the results of the first round of sampling (December 2020) and discussion with NYSDEC, the analytical parameter list for the second round of sampling was revised as detailed in the NYSDEC-approved *Remedial Investigation Work Plan Addendum* (Parsons 2021). Revisions to the analytical parameter list included removal of pesticides, PFAS, and 1,4-dioxane, and addition of dissolved constituents, including SVOCs, PCBs, metals, and cyanide. Laboratory analytical parameters for the September 2021 samples were as follows:

	MW-01-2020	MW-02-2020	MW-03-2020	MW-17-89
TCL VOCs	X	Х	Х	Х
TCL SVOCs	Х	Х	Х	Х
TCL Dissolved SVOCs	Х		Х	Х
PCBs	Х	Х	Х	Х
Dissolved PCBs	Х	Х		Х
TAL Metals	Х	Х	Х	Х
TAL Dissolved Metals	Х	Х	Х	Х
Cyanide	Х	Х	Х	Х
Dissolved Cyanide	X	Х	Х	Х

Samples from MW-02-2020 and MW-03-2020 were not analyzed for the full suite of analytes because the wells ran dry before all sample bottles could be filled. Dissolved PCBs were prioritized at MW-02-2020 due to low level PCB detections in the sample from this well during the first round of sampling.

Most samples were collected directly into the sample container from dedicated sample tubing. For samples to be analyzed for dissolved components, a dedicated 0.45-micron pore size disposable filter was attached to the end of sample tubing. Sample water was run through the filter to collect suspended material and the filtered water sample was collected directly into the sample bottle from the discharge end of the field filter.

3.2 Site 110

The scope of the Focused RI at Site 110 was designed to fill data gaps identified through review of existing data and determine if the existing remedy was protective in light of the change in use from industrial to commercial. Tasks included in the scope are detailed in the following sections:

- Section 3.2.1 Surface and subsurface soil investigation
- Section 3.2.2 Groundwater investigation
- Section 3.3 Site survey
- Section 3.4 Groundwater elevation survey
- Section 3.5 IDW management
- Section 3.6 CAMP implementation
- Section 3.7 Data management and validation

3.2.1 Surface and Subsurface Soil Investigation

The surface and subsurface investigation included soil logging and sampling during test pit excavations and monitoring well installations. Each surface and subsurface soil investigation activity is discussed in detail in the following subsections.

3.2.1.1 TEST PIT EXCAVATION

To visually assess the types of fill present, allow for subsurface soil sample collection, and provide refinement of the understanding of the vertical and lateral extent of fill, test pits were excavated throughout Site 110, as shown on **Figure 5**.

Five test pits were excavated in October 2020. One additional test pit - TP-33-20–0 - was excavated in November 2020 to further assess the subsurface adjacent to monitoring well MW-06-2020. This additional excavation was initiated in response to the presence of subsurface tar-saturated material encountered during monitoring well installation.

Part of Site 110 is located on National Grid property. In May 2021, National Grid granted access and in June 2021, three additional test pits were excavated on National Grid property. A fourth test pit planned for National Grid property was moved to the northwest, off National Grid property, due to the presence of overhead powerlines precluding safe excavation. The National Grid site boundary was not initially clear in the field, so this test pit location was not excavated until access to National Grid property was granted.

Also in June 2021, five additional test pits (TP-34-2021 through TP-38-2021) were excavated at the request of NYSDEC to investigate surficial tar observations on the south side of Site 110.

In November 2022, two additional test pits (TP-51-2022 and TP-52-2022) were excavated on either side of MW-05-2020 to evaluate potential sources of cyanide detected in groundwater samples from the monitoring well. These test pits were excavated in accordance with the Work Plan for the Focused Remedial Investigation Phase II of Operable Unit 1 (Site 110) (Parsons 2022).

In total, 15 test pit locations were excavated on Site 110 and are identified as:

- TP-07-2020
- TP-08-2020
- TP-09-2020
- TP-10-2020
- TP-11-2020

- TP-12-2020
- TP-13-2020
- TP-14-2020
- TP-15-2020
- TP-33-2020
- TP-34-2021
- TP-35-2021
- TP-36-2021
- TP-37-2021
- TP-38-2021
- TP-51-2022
- TP-52-2022

At most test pit locations, a center point was located, and test pits were excavated to the north, south, east, and west of the center point. This was not done at TP-07-2020, TP-33-2020, or TP-34-2021 through TP-38-2021 where instead, several linear test pits were excavated in the general area of the location, as the goal of these test pits was to identify the extent of previously observed tar material. Offsets from original test pit locations (in addition to north, south, east, and west excavations) were excavated at TP-08-2020, TP-10-2020, and TP-11-2020 to identify the extent of observed tar material. TP-51-2022 and TP-21-2022 were single linear test pits excavated to determine potential sources of cyanide in the vicinity of MW-05-2020.

Test pits were excavated to the top of the clay layer, except for at TP-07-2020D, TP-33-2020D, and TP-38-2021. In TP-07-2020D and TP-33-2020D, significant amounts of water inundated the test pits, precluding safe excavation to native material. In TP-38-2021, a significant amount of rubber (presumed discarded conveyor belting) was encountered, and the excavator became tangled. One offset was attempted and again refusal was reached on rubber.

As the test pits were excavated, soil was visually assessed, photographed, screened with a PID, and documented in a field log. Test pit logs are included in **Appendix E**. Once the clay layer was identified or when excavation could not continue due to water infiltration or refusal, the test pit was backfilled by replacing the materials in the reverse order in which they were removed. Care was taken not to leave significant amounts of subsurface soil on the ground surface.

Soil samples were collected for chemical analysis from TP-07-2020 through TP-09-2020, TP-12-2020 through TP-15-2020, TP-34-2021, TP-51-2022, and TP-52-2022. At each location besides TP-34-2021, TP-51-2022, and TP-52-2022, surface soil samples were collected from 0 to 0.16 ft bgs and 0.16 to 1.0 ft bgs. A subsurface soil sample was also collected at each of the sampled locations, with subsurface sample depths dependent upon types of fill present as well as the presence of staining, odors, elevated PID reading, etc. Multiple subsurface soil samples were collected from TP-14-2020 to characterize the different types of fill present. Although analytical samples were not planned for TP-34-2021, a fill sample was also collected at this location to characterize a nodule and breeze-rich pliable tar/fill mixture.

All samples were analyzed for TCL VOCs, SVOCs, pesticide, PCBs, TAL metals and cyanide. Samples from TP-07-2020 and TP-12-2020 were also analyzed for PFAS. PFAS sampling and analysis followed the guidance provided in NYSDEC's *Guidelines for Sampling and Analysis of PFAS* (NYSDEC 2020).

In a subset of test pits that contained tar material, a sample of tar material was collected for chemical analysis. Samples of tar material were collected from TP-07-2020, TP-08-2020, TP-10-2020, and TP-34-2021. Samples from TP-08-2020 and TP-10-2020 were analyzed by the Toxicity Characteristic Leaching Procedure (TCLP) for regulated SVOCs, metals, pesticides, herbicides, and PCBs; and for ignitability, corrosivity, reactivity, and paint filter test. Samples from TP-07-2020 and TP-34-2021 were sampled for the same analytes; however, after

submittal to the analytical laboratory, the analysis was changed to total concentrations for all chemical parameters rather than TCLP due to the consistency of the sample matrix being incompatible with TCLP testing protocols. All four tar samples were analyzed for total VOCs rather than TCLP VOCs due to the potential for damaging the VOC TCLP laboratory equipment due to the sample matrix. Tar samples from TP-08-2020 and TP-20-2020 were of pliable tar/fill mixture only and samples from TP-07-2020 and TP-34-2021 were of pliable tar/fill mixture only and samples from TP-07-2020 and TP-34-2021 were of pliable tar/fill mixture on the tar material encountered on Site 110 is provided in Section 4.2.3 and results of tar analytical sampling are discussed in Section 5.4.2.3.

3.2.1.2 MONITORING WELL INSTALLATION SOIL LOGGING AND SAMPLING

During drilling of soil borings for monitoring well installation, soils were visually assessed, photographed, screened with a PID, and documented in a field log. At each well boring, soil samples were collected for chemical analysis. Surface soil samples were collected at 0 to 0.16 and 0.16 to 1.0 ft bgs at all locations except MW-23-2022. A subsurface soil sample was also collected at each of the sampled locations, with subsurface sample depths dependent upon types of fill present as well as the presence of staining, odors, elevated PID reading, etc. All samples from MW-04-2020 through MW-08-2020 and MW-16-2020 were analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, cyanide, and PFAS. The sample from MW-23-2022 was analyzed for TCL VOCs, SVOCs, TAL metals, and cyanide. Monitoring well installation details are provided in Section 3.2.2.1. Boring logs are provided in **Appendix F**.

3.2.2 Groundwater Monitoring Wells

3.2.2.1 GROUNDWATER MONITORING WELL INSTALLATION

Four new groundwater monitoring wells were installed in October 2020, two in July 2021, and one in December 2022 at Site 110 to assess groundwater quality and gradients within the shallow water-bearing zone on top of the clay layer. MW-23-2022, installed in December 2022, was installed in the area proximate to abandoned vehicles to evaluate whether they may have been a potential source of VOCs in groundwater. The seven well borings were drilled using a drilling rig and hollow stem augers.

All monitoring wells were constructed using 5 to 5.25 feet of 2-inch diameter PVC screen and 2-inch diameter PVC riser, all of which were certified clean from the manufacturer. Well screens were installed at the following depths:

- MW-04-2020: 5 to 10 ft bgs
- MW-05-2020: 4 to 9 ft bgs
- MW-06-2020: 4 to 9 ft bgs
- MW-07-2020: 4 to 9 ft bgs
- MW-08-2020: 1 to 6 ft bgs
- MW-16-2020: 2 to 7 ft bgs
- MW-23-2022: 3.75 to 9 ft bgs

The annular space around the screen was filled with filter sand to at least 1 foot above the top of the screen, followed by 1 to 2 feet of bentonite, followed by grout to the surface. Exact monitoring well construction was determined based on the depth of clay and screened interval. Monitoring wells were finished with 3-foot-high stick-up protective casings and a 2-foot-diameter concrete well pad. Soil boring and monitoring well installation logs are included in **Appendix F**. All wells were developed after installation and purged prior to sampling. All wells were developed by removing 10 well volumes, unless the well went dry, in which case it was purged dry three times., After purging dry, the water level was allowed to recover to 80% before purging again.

3.2.2.2 GROUNDWATER SAMPLING

Each of the four groundwater monitoring wells installed in October 2020 were sampled in December 2020. All six new Site 110 monitoring wells (including the four installed in October 2020 and the two installed in July 2021) were sampled in September 2021. MW-23-2022, installed in December 2022, was sampled in January 2023. No other Site 110 wells were sampled at that time. An electronic water level meter was used to measure the depth to groundwater in each well on the day of sampling.

3.2.2.1 December 2020 Sampling

Low-flow sampling methods were implemented by purging each well using a peristaltic pump and HDPE tubing. Groundwater purging occurred at a rate between 120 mL/min and 500 mL/min. During purging, water quality parameters were monitored at approximately five-minute intervals until parameters were considered stable. Water quality parameters monitored include depth to water, temperature, pH, conductivity, ORP, dissolved oxygen, and turbidity. Water quality parameters and field observations during sampling were recorded on groundwater sampling forms and are included in **Appendix G**.

One well (MW-07-2020) was sampled prior to stabilization due to poor groundwater yield and low recharge rates. The well was purged dry and allowed to recharge overnight. The sample was collected immediately upon resuming purging.

	MW-04-2020	MW-05-2020	MW-06-2020	MW-07-2020
TCL VOCs	Х	Х	Х	Х
TCL SVOCs	Х	Х	Х	Х
Pesticides	х	Х	Х	Х
PCBs	Х	Х	Х	Х
TAL Metals	Х	Х	Х	Х
Cyanide	х	Х	Х	Х
PFAS	х			Х
1,4-Dioxane	х			х

Laboratory analytical parameters for the December 2020 samples were as follows:

Groundwater samples were collected directly from dedicated sample tubing into laboratory-supplied sample bottles.

During the December 2020 sampling event, groundwater samples from MW-04-2020 turned blue upon being collected into sample bottles for VOCs and metals. These bottles are preserved with hydrochloric acid and nitric acid, respectively, which are both acidic.

3.2.2.2.2 September 2021 Sampling

Low-flow sampling methods were implemented by purging each well using a peristaltic pump and HDPE tubing. Groundwater purging occurred at a rate between 100 mL/min and 500 mL/min. During purging, water quality parameters were monitored at approximately five-minute intervals until parameters were considered stable. Water quality parameters monitored include depth to water, temperature, pH, conductivity, ORP, dissolved

oxygen, and turbidity. Water quality parameters and field observations during sampling were recorded on groundwater sampling forms and are included in **Appendix G**.

Two wells (MW-05-2020 and MW-07-2020) were sampled prior to stabilization due to poor groundwater yield and low recharge rates. The wells were purged dry and allowed to recharge for one to two days. Samples were collected immediately upon resuming purging.

Based on the results of the first round of sampling (December 2020) and discussion with NYSDEC, the analytical parameter list for the second round of sampling was revised as detailed in the NYSDEC-approved *Remedial Investigation Work Plan Addendum* (Parsons 2021). Revisions to the analytical parameter list included removal of pesticides, PFAS, and 1,4-dioxane, and addition of dissolved constituents, including SVOCs, PCBs, metals, and cyanide. MNA indicators were also added for a subset of monitoring wells (MW-04-2020, MW-05-2020, MW-06-2020, and MW-08-2020). The results will be used during the Focused FS as part of the evaluation of alternatives.

MNA parameters include nitrate, total nitrogen, sulfate, sulfide, methane, total organic carbon, chloride, and alkalinity. Additionally, a ferrous iron field test was performed using a Hach Iron (Ferrous) Color Disc Test Kit at the subset of MNA wells. Field measurements of pH, ORP, and dissolved oxygen (DO) measured during purging will also be used to evaluate MNA. Lab analytical parameters for the September 2021 samples were as follows:

	MW-04-2020	MW-05-2020	MW-06-2020	MW-07-2020	MW-08-2020	MW-16-2020
TCL VOCs	Х	Х	Х	Х	Х	Х
TCL SVOCs	Х	Х	Х	Х	Х	Х
TCL Dissolved SVOCs	Х	Х	Х	Х	Х	Х
PCBs	Х	Х	Х	Х	Х	Х
Dissolved PCBs	Х	Х	Х	Х	Х	Х
TAL Metals	Х	Х	Х	Х	Х	Х
TAL Dissolved Metals	Х	Х	Х	Х	Х	Х
Cyanide	Х	Х	Х	Х	Х	Х
Dissolved Cyanide	Х	Х	Х	Х	Х	Х
MNA Parameters	х	Х	х		Х	

Most samples were collected directly into the sample container from dedicated sample tubing. For samples to be analyzed for dissolved components, a dedicated 0.45-micron pore size disposable filter was attached to the end of sample tubing. Sample water was run through the filter to collect suspended material and the filtered water sample was collected directly into the sample bottle from the discharge end of the field filter.

During the September 2021 sampling event, the groundwater samples from MW-05-2020 turned blue upon being collected into sample bottles for metals (total and dissolved). These bottles are preserved with sodium hydroxide, which is basic.

3.2.2.3 January 2023 Sampling

Low-flow sampling methods were implemented by purging MW-23-2022 using a peristaltic pump and HDPE tubing. Groundwater purging occurred at a rate between 100 mL/min and 500 mL/min. During purging, water quality parameters were monitored at approximately five-minute intervals until parameters were considered stable. Water quality parameters monitored include depth to water, temperature, pH, conductivity, ORP, dissolved oxygen, and turbidity. Water quality parameters and field observations during sampling were recorded on groundwater sampling forms and are included in **Appendix G**.

Based on the data gaps identified during Phase I of the Focused RI and discussion with NYSDEC, only MW-23-2022 was sampled in January 2023 as detailed in the NYSDEC-approved *Focused Remedial Investigation Phase II Work Plan* (Parsons 2022). The MW-23-2022 sample was analyzed TCL VOCs, TCL SVOCs, TAL metals, cyanide, and TOC, as well as dissolved TCL SVOCs, dissolved TAL metals, and dissolved cyanide.

3.3 Site Survey

After the excavation of test pits and installation of soil borings and monitoring wells, a New York state-licensed land surveyor completed a site survey. The site survey included collecting as-built geographic coordinates and elevations for test pits, newly installed and pre-existing groundwater monitoring wells (including top of inner casing and protective outer casing elevations), soil borings, site boundaries, and other notable site features. Horizontal survey data are based on the North American Datum of 1983 (NAD83) New York State Plane West coordinate system. Elevations are based on the North American Vertical Datum of 1988 (NAVD88).

3.4 Groundwater Elevation Survey

To refine understanding of groundwater gradients, water levels were collected at all three newly installed wells at Site 109, all four newly installed wells at Site 110, and the pre-existing well MW-17-89 at Site 109 in December 2020, prior to groundwater sampling.

Another round of water levels was collected in January 2021. During this gauging event, wells from Sites 108, 109, and 110, as well as the BCP Site and Tonawanda Plastics, were gauged on the same day to provide additional groundwater elevation data around the perimeter of Site 109 and 110.

A third round of water levels were collected in September 2021, prior to groundwater sampling. This gauging event included all Site 109 and 110 wells (including the two wells installed in 2021 at Site 110 subsequent to prior gauging events), Site 108 wells, and a subset of Tonawanda Plastics wells. Water levels were also contemporaneously collected at the BCP Site wells.

A fourth round of water levels were collected in January 2023. Wells from Site 110 and Site 108 were gauged during this event. No Site 109 wells were gauged during this event.

Water levels were measured using an electronic water level meter. Groundwater elevations were calculated based on water level measurements at monitoring wells and surveyed elevations of monitoring wells. Control point (i.e., inner well casing) elevations are presented in Table 2.

3.5 IDW Management

3.5.1 Soils / Solid Waste

Soils excavated from test pits that did not exhibit any gross impacts were placed back in the cavity after completion of the test pit. For this field effort, gross impacts are defined as soils exhibiting the presence of mobile tar and/or free oils. Fill was separated from clay excavated from a test pit and the clay was replaced in the bottom of the cavity.

When significant amounts of tar were encountered, the material was stockpiled and staged on plastic sheeting adjacent to the test pit from which it originated. Stockpiles were covered with plastic sheeting to protect against precipitation. Samples of tar materials were collected and analyzed as described in Section 3.2.1.1. A record was kept of which test pits produced stockpiled tar-impacted material, and which samples (if applicable) were collected from that material. A record was also kept of the nature of removed tar materials (i.e., composition and consistency). Because multiple waste characterization samples were collected for tar materials displaying different characteristics, stockpiled tar material is represented among the waste characterization sample results. Stockpiles of tar-impacted soils remain onsite and are pending removal during remediation. In December 2022, stockpiles were re-covered with UV-resistant tarps to ensure that piles continue to remain protected from the elements.

Soils from borings conducted for monitoring well installation were stockpiled, containerized in labeled Department of Transportation (DOT)-compliant 55-gallon open-top steel drums and stored in the IDW Storage Area at Site 109. One waste characterization sample was collected for every 100 cubic yards of stockpiled or drummed materials. Approximately one cubic yard of soil was generated between Site 109 and Site 110 soil borings. Therefore, one composite waste characterization sample was collected, representing both Site 109 and Site 110 IDW. The waste characterization sample was analyzed for TCLP VOCs, SVOCs, metals, pesticides, herbicides, and PCBs; and for ignitability, corrosivity, reactivity, and paint filter test. Analytical results from the waste characterization sample indicate that the IDW soils are non-hazardous, and waste transportation and offsite disposal efforts are being coordinated to include Site 108 IDW.

3.5.2 Water

For the initial phases of the project, monitoring well purge water and equipment decontamination water was containerized in 55-gallon open-top steel drums and subsequently disposed of in the on-site frac tank. Water from the frac tank was discharged to the Town of Tonawanda wastewater facilities under RITC's Industrial Sewer Connection Permit No. 331, which allows for up to 2,000 gallons per day for equipment decontamination water from investigations on the 3875 River Road property.

Later discussions between Honeywell, RITC, and the Publicly Owned Treatment Works (POTW) permit manager resulted in a change of protocol to water disposal for water generated on Sites 109 and 110. Beginning with the September 2021 groundwater sampling event, all monitoring well purge water and decontamination water was containerized in 55-gallon open-top steel drums. A waste characterization sample was collected and analyzed for VOCs, SVOCs, pesticides, herbicides, metals, mercury, cyanide, PCBs, pH, flashpoint, and reactivity. Additional waste characterization samples were taken from the Phase II drums: one of decontamination water and one of purge water and analyzed for the same analytes just listed. Water drums remain onsite and are pending removal upon receipt of Phase II characterization results.

PARSONS

3.5.3 Personal Protective and Disposable Sampling Equipment

Personal protective equipment (PPE), disposable sampling equipment (e.g., tubing), and general trash that may have come in contact with potentially impacted soils/water generated during completion of the Focused RI were containerized in DOT-compliant 55-gallon open-top steel drums and stored in the IDW Storage Area. Drums were labeled as non-hazardous waste.

3.6 Community Air Monitoring Plan (CAMP)

The CAMP was implemented during all ground-intrusive activities to provide data to verify protection for the downwind community. The CAMP required continuous monitoring for VOCs and particulates, established action level concentrations, and defined responses to action levels. VOC and particulate data were monitored in real time via a mobile application, to allow for rapid response if levels exceeded action levels. A summary of CAMP data was prepared daily and posted on the RITC website (www.riverviewtechcampus.com). There were no exceedances of action levels during Site 109 or Site 110 activities.

3.7 Data Management and Validation

Data validation was performed in accordance with USEPA Region 2 standard operating procedures for organic and inorganic data review and the Quality Assurance Project Plan (QAPP) developed for this project (Parsons 2020). These validation guidelines are regional modifications to the National Functional Guidelines for organic and inorganic data review. Validation included the following:

- Verification of 100 percent of all QC sample results (both qualitative and quantitative)
- Verification of the identification of 100 percent of all sample results (both positive hits and non-detects)
- Recalculation of 10 percent of all investigative sample results
- Preparation of a Data Usability Summary Report (DUSR)

The quality of the data has been assessed and is documented in the DUSRs (Appendix H).

The following Quality Assurance (QA)/QC samples were collected for each type of sample collected:

- One matrix spike/matrix spike duplicate (MS/MSD) per 20 samples
- One field duplicate sample per 20 samples
- One equipment blank for the full suite of analytes per 20 samples per type of sample collection
- One equipment blank for PFAS analysis per day (only on days that PFAS were sampled for)
- One field blank for PFAS analysis per day (only on days that PFAS were sampled for)
- One VOC trip blank per cooler containing aqueous samples

4.0 SITE PHYSICAL CHARACTERISTICS

4.1 Topography

Site 109 is a rectangular area of about 1,000 feet by 250 feet with an undulating surface in some areas. Overall, Site 109 slopes from the east to the west, from elevation 600 feet above mean sea level [ft-amsl] at the boundary with the BCP Site to elevation 576 ft-amsl at River Road.

There are two large berms oriented north-south along the western border of Site 109, with steep slopes extending downward to River Road and to the rest of Site 109. These berms create locally high topography, however in general, the site elevation steadily increases moving east across Site 109. There is another large berm near the east end of Site 109, adjacent to the stormwater settling ponds (**Figure 4**).

Site 110 is an irregularly shaped area about 950 feet long and 500 feet at its widest point on the east side of the BCP Site and on adjacent National Grid property. There is a mounded area about 200 feet by 300 feet in size in the south-central portion of Site 110 where the topography is about 6 feet higher than the surrounding ground (**Figure 5**). Other than this elevated area, topography across Site 110 is relatively flat, varying from approximately 606 ft-amsl to 610 ft-amsl.

4.2 Geology

Fill material is the uppermost stratigraphic unit over most of the former TCC facility property, including Sites 109 and 110, varying in thickness from 0 feet to 16 feet at Site 109 and from 3 feet to 16.5 feet at Site 110 (**Figures 6 through 9**). At Site 109, fill thickness is generally consistent with topography, with the greatest thicknesses of fill in the bermed areas. At Site 110, the thickest layer of fill observed is located in the elevated area in the southern portion of the site. Elsewhere across Site 110, fill thicknesses are relatively consistent, ranging from 3 feet to 9.4 feet, with fill thicknesses thinning eastward.

The fill typically consists of silt and/or clay, gravel, breeze, concrete, brick (yellow and/or red), slag, coke, coal, and ash. Some test pits on both Site 109 and Site 110 contained varying amounts of wood, some of it possibly creosote-treated, which in some cases resembled telephone poles and railroad ties. Several test pits at Site 110 also contained pockets of tar materials, most frequently in the form of a pliable tar/fill mixture (tar and breeze, sometimes with other fill). In many test pits and soil borings, fill material was mixed with blocky, crumbly clay, suggesting that historic activities likely involved using native clay to stabilize and/or cap the fill. Fill materials observed at Site 109 and Site 110 are discussed in further detail in Sections 4.2.1 and 4.2.2, respectively. Types and distribution of tar encountered at Site 110 are discussed in further detail in Section 4.2.3.

Underlying the fill material is a native glaciolacustrine deposit consisting of clay. On the eastern side of Site 109, the clay immediately underlying the fill is soft to stiff and gray to gray-green in color. This gray clay was observed in several test pits and soil borings across Site 110 as well, where it occasionally is a yellow-gray color and contains some black, fibrous organic material. Where encountered, the softer gray clay is only 1 foot to 2 feet thick, and overlies stiffer, reddish-brown clay. Where gray clay was not encountered, the uppermost native material is stiff, reddish-brown clay. Locally, the topography of the top of the clay unit has been modified during historic site uses such as excavations for storage areas, building foundations, surface water management, as well as apparent excavation of clay for use as fill cap material.

Clay underlying fill at TP-11-2020.

No borings were completed through the clay as part of the Focused RI at Sites 109 and 110. However, as part of the BCP Site investigation, four soil borings were drilled through the clay to the top of bedrock and subsequently drilled into bedrock. According to these borings, the clay unit consists of a stiff, dry, silty clay with low to medium plasticity overlying a higher plasticity clay, which overlies bedrock at approximately 50.7 to 54 ft bgs (548.61 to 553.8 ft-amsl). Two borings have also been drilled to the top of rock at the Tonawanda Plastics property, which is directly south of Site 109. These borings primarily consisted of clay or silty clay with some lenses of silty and gravelly clay. Refusal, presumably on bedrock, was encountered in these borings at 44 and 36.4 ft bgs, corresponding to elevations of 550 and 552.4 ft-amsl (Parsons 2017), consistent with the BCP Site data.

Based on regional data, bedrock underlying the site is the Salina Group, specifically the Camillus shale, which is a shale and mudstone. The Camillus shale also contains gypsum, dolomite, and significant thicknesses of salt beds (La Sala 1968). Four borings advanced on the BCP Site included coring approximately 12 feet into bedrock, which consisted of thinly laminated shale with pockets of gypsum. Rock quality designations (RQDs) from these cores ranged from 75 percent at the top of rock (in the 54 to 56 ft bgs interval) to 13 percent in the bottommost (61 to 66 ft bgs) interval and water loss to the formation was noted from 62 to 63 ft bgs.

RQDs from the Huntley Steam Generation Site along the Niagara River one-half mile south of Site 109 described the top of rock as thinly bedded and weathered (Goldberg-Zoino Associates 1983).

4.2.1 Site 109 Fill Material

In general, fill material encountered at Site 109 during the Focused RI was composed of silt, clay, and C&D debris, including concrete, red brick, yellow fire brick, rock fragments, and wood. Several test pits also contained coke and coke manufacturing by-products including silt to gravel sized breeze and coal. Three locations (TP-01-2020, TP-06-2020, and MW-03-2020) also contained varying amounts of what appeared to be slag. TP-01-2020 and MW-03-2020 are both located in the berm on the west side of Site 109, while TP-06-2020 is located in the berm on the east side of the site. Fill from MW-03-2020 also contained finer grained materials that may be fly ash. These results are consistent with data from historical test pits, which generally indicate similar types of fill material at Site 109.

Honeywell

In TP-04-2020, large wooden poles, resembling telephone poles, were uncovered between 0.16 and 3.0 ft bgs. The poles appeared to have been treated with creosote, based on shiny black-gray color and creosote-like odor. These wood poles were embedded in a reworked layer of clay fill, which had black-gray staining and sheen. A sample of this potentially impacted clay was collected for chemical analysis. Results of this sample are discussed in Section 5.4.2.3.

Silt, clay, coke fragments, brick, an d concrete at TP-03-2020.

Breeze-rich fill also containing silt, rock, metal, wood, coal, coke, slag, and brick at TP-06-2020.

Potentially creosote-treated wood poles pulled from TP-04-2020.

Chunks of slag from TP-06-2020.

October 2023

4.2.2 Site 110 Fill Material

The primary component of fill at Site 110 is classified as coke breeze. Most test pits also contained varying amounts of silt, sand, gravel, coke, coal, red brick, and yellow fire brick. Several test pits also contained slag and one test pit (TP-10-2020) contained significant amounts of what was identified in the field as fly ash. Many test pits also contained debris including glass, wood, and plastic sheeting and fragments. These observations are

Final RI Report Sites 109 and 110 - Honeywell

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx 4-3

generally consistent with historical test pits at Site 110, although historical test pits documented several test pits with "cinders", which were not seen during the Focused RI.

Many test pits from the Focused RI also contained "nodules." These are presumed to be a man-made material, potentially associated with a furnace of some sort. Nodules were typically the size of fine to medium gravel, generally smooth on the outside, ranged from deep red to brown to yellow in color, and were somewhat powdery when cracked open. Often, nodules appeared in wet, sandy fill layers and sometimes appeared to be oxidized on the outside.

In TP-14-2020, a blue sandy silt and woody debris fill with a strong sulfur-like odor was encountered overlying native soil in all test pit extents. In TP-51-2022 and TP-52-2022, a layer of red-brown wood chips with a strong chemical odor was encountered in each. There was a hard layer with minimal blue staining above the wood chips, but no blue staining on the wood chips themselves. The red-brown wood chips were not observed elsewhere on Sites 109 or 110 and are consistent with purifier residuals. The different characteristics of the blue and red-brown fill observed in TP-14-2020 and TP-51-2022 and TP-52-2022, respectively, demonstrate the variability in the appearance of purifier residuals.

At TP-07-2020, several large pieces of wood, possibly railroad ties that appeared to be coated with creosote or tar, were pulled from just beneath the surface. Tar materials were also encountered in several test pits throughout Site 110. Tar materials encountered had a variety of compositions and properties and are described in detail in the following section.

Breeze-rich fill also containing nodules and debris at TP-09-2020

Breeze and nodule fill overlying gray with yellow mottling, grading to red native clay at TP-11-2020.

Blue, woody fill at TP-14-2020.

Breeze, silt, and nodule fill at TP-12-2020.

4.2.3 Site 110 Tar Material

Based on test pits completed as part of the Focused RI, surface and subsurface tar is present in several locations within Site 110, however tar saturated material occurred only in relatively small and isolated areas. A summary of tar materials observed, locations, depths, and details are provided in **Table 1**, illustrated on **Figure 10**, and shown on test pit and monitoring well installation logs in **Appendices E and F**.

It appears that tar at Site 110 is the result of historical placement for disposal at the specific locations where tar was encountered, rather than subsurface migration, because tar was nearly always encountered as a pliable tar/fill mixture (i.e., generally mixed with breeze and sometimes other fill materials). These other materials were potentially used as a means of stabilizing tar for disposal based on observations during test pitting. Additionally, tar materials appeared as discontinuous layers and pockets of various types of tar products, rather than as a continuous sitewide layer.

4.2.3.1 TYPES OF TAR MATERIAL

The different varieties of tar material found at Site 110 have been classified into the following categories, which are based on consistency and composition and potential for mobility:

Tar Saturated

Tar saturated consists of relatively low viscosity tar that can drain from the soil matrix under gravity. Low viscosity was classified on the basis that tar was observed dripping from side walls in test pits or could be easily manipulated by hand. While the viscous Tar Saturated classification was based on observations of tar that may drain from a sidewall of an excavation after the adjacent soil has been removed, it is not necessarily indicative of subsurface mobility.

The top of a layer of tar saturated material at TP-34-2021.

Coated Material

Low viscosity tar that does not move independently from the matrix and the matrix is not saturated. Coated material observed included a breeze/soil/nodule mixture coated with low viscosity tar, as well as large railroad ties coated with low viscosity tar.

Coated railroad ties at TP-07-2020.

Pliable Tar and Pliable Tar/Fill Mixture

Does not move freely but can be deformed by hand pressure and will hold the deformed shape. Pliable tar was commonly observed as a tar/fill mixture, with tar and most commonly breeze or nodules, forming a pliable mixture. Pliable tar was also commonly encountered mixed with debris including plastic sheeting, metal cans, and concrete. Pliable tar/fill mixture was observed at Site 110 as both continuous layers and discrete chunks and pockets.

Chunk of pliable tar/fill mixture (mixed with breeze and nodules) at TP-35-2021.

Hardened/Solidified Tar, Hardened Tar/Fill Mixture

Does not move freely and cannot be deformed by hand. Hardened tar was commonly observed as a tar fill mixture, most frequently consisting of a hardened mix of tar, breeze, nodules, and sometimes C&D. Hardened/solidified tar often formed a solid ledge that was strong enough support its own weight when underlying material was removed. Hardened tar was also observed as small, discrete chunks.

Ledge of hardened tar at TP-33-2021.

4.2.3.2 DISTRIBUTION OF TAR MATERIALS AT SITE 110

Tar-saturated material, which is the only form of tar encountered at Site 110 that appears potentially mobile, was found in three very localized areas (**Figure 10**):

- Test pit TP-07-2020, which was previously identified as Tar Seep No. 1
- Test pits TP-34-2021 and TP-35-2021, which are adjacent to each other along the southern boundary of Site 110
- Test pit TP-33-2020 and monitoring well MW-06-2020, which are adjacent to each other

TP-07-2020 was excavated to investigate an area where surficial tar seeps had previously been observed. Pliable tar/fill mixture (mixed with breeze) and little tar-saturated material was observed from 2.5 to 3.5 ft bgs. Multiple additional test pits were excavated to the south, west, and north of TP-07-2020, and while pliable tar/fill mixture was encountered in test pits to the south and west, tar-saturated material was not encountered again.

TP-34-2021 and TP-35-2021 were excavated to investigate areas on the southern boundary of Site 110, along the former rail alignment, where surficial tar seeps had previously been observed. In TP-34-2021, tar-saturated material was encountered at 1.5 ft bgs and graded into pliable tar/fill mixture (mixed with breeze and nodules with some clay towards the bottom of the interval). TP-35-2021, pliable tar fill mixture as well as C&D debris coated with pliable tar was observed just beneath the surface. A mixture with varying amounts of tar, breeze, nodules, coke, gravel, and C&D continued to 7.7 ft bgs, with a discrete layer of tar-saturated material 3.0 to 3.25 ft bgs. Additional test pits were excavated to the east and west of TP-34-2021 and TP-35-2021 to determine the extent of tar, and tar was not observed in either direction. Additional test pits were excavated to the north as well to determine the extent of tar in this direction. Tar was not observed, but test pits did not reach native soil due to refusal on rubber debris.

During installation of monitoring well MW-06-2020, tar-saturated material was encountered from approximately 6 to 6.7 ft bgs, coinciding with a zone of groundwater saturation. To determine the extent of tar-saturated material, five test pits were dug in the vicinity of the well. Tar-saturated material was only encountered in one of these test pits, located directly south of the well. This test pit, TP-33-2020D, had tar-saturated material and hardened tar/fill mixture from 4.5 to 5.0 ft bgs. An additional pit (TP-33-2020F) was excavated to the south to delineate the extent of tar-saturated material. No tar was encountered in test pit TP-33-2020F.

4.3 Surface Water Hydrology

Surface water hydrology for Sites 109 and 110 are considered within the context of the site stormwater management program. At the time of the bankruptcy, the TCC facility discharged stormwater to the Niagara River under State Pollution Discharge Elimination System (SPDES) Permit Number NY0002399 (NYSDEC 2017) through three outfalls (**Figure 4**), identified as 001, 002, and 004. Outfall 003 was not in use at the time of the bankruptcy and there had been no flow from this outfall since 2008 (TCC 2016).

Outfall 001, located on Site 109, served as the historical discharge point for noncontact cooling water, boiler blowdown and stormwater runoff from the former production area after treatment in two concrete-lined settling/skimming ponds/lagoons, also located on Site 109.

Outfall 002, located on the BCP Site, at the southeastern boundary of Site 109, served and still serves as the discharge point for runoff from the coal and coke yards.

Outfall 004 discharges the combined flow from Outfalls 001 and 002 on Site 109 as well as flow from portions of the Tonawanda Plastics property. Outfall 004 discharges to a drainage ditch on the east side of River Road where it combines with flows from other industrial properties north and south of Site 109. The combined flow is conveyed through a culvert under River Road, into a drainage ditch on Site 108, and finally to the Niagara River.

As a condition of their SPDES permit, TCC developed a Best Management Practices Plan (BMP) in September 2016, which described institutional and engineering controls to minimize the potential for release of pollutants to waters of New York state (TCC 2016). Among others, these included maintenance and operation of the two concrete-lined settling/separation ponds at Outfall 001 located on Site 109 and a series of earthen settling/sedimentation basins in the coal and coke yards hydraulically upgradient of Outfall 002.

TCC surrendered their SPDES permit after the 2018 bankruptcy and the USEPA assumed management of stormwater controls on the BCP Site, Site 108, Site 109, and Site 110. The USEPA continued a program of

monthly, quarterly, and semiannual monitoring through May 2020. Currently, stormwater for the property at 3875 River Road is managed under RITC's Stormwater Pollution Prevention Plan (SWPPP) (Inventum 2020a)

A drainage ditch that is part of the stormwater management system runs along the southern border of Site 109 and receives surface flow from Site 109 and the Tonawanda Plastics Site (**Figure 4**). This ditch flows west and drains into the Outfall 004 on the east side of River Road, which directs flow underneath the road onto Site 108. Another drainage ditch flows along the north side of Site 109 and directs surface water under the western berm and combines with flow from Outfall 004 and other discharges along and from River Road. The discharge combines with flow from the west side of River Road and Site 108 and is conveyed in a ditch that traverses Site 108 before flowing west into the Niagara River.

Site 110 is relatively remote from the site stormwater management system. Based on topography, surface water likely flows locally in all directions from the elevated mound near the center of the site. Based on the presence of wetlands (see Section 4.4) along the northeast and southeast site boundaries, some surface water may flow in these directions.

4.4 Wetlands

As part of RI/FS activities for the BCP Site described in the RI Work Plan (Inventum 2020b) prepared on behalf of RITC, a wetland delineation was conducted. The wetland delineation identified a wetland to the north of Site 110 that does not fall within Site 110. A 41-acre, state-regulated freshwater wetland, designated BW-6, borders Site 110 to the south and east, according to the NYSDEC Environmental Resource Mapper. The wetland delineation also identified four additional Palustrine Emergent (PEM) wetlands on Sites 109 and 110, totaling 0.908 acres (Earth Dimensions, Inc. 2021). The wetland delineation identified the wetlands as being non-federally jurisdictional under the Navigable Waters Protection Rule due to apparent lack of connectivity to an intermittent or perennial stream. A letter was submitted to the USACE and NYSDEC requesting Approved Jurisdictional Determination (AJD) for the investigation area. In a letter dated February 1, 2022, the NYSDEC determined that none of the wetlands identified are state regulated. In a letter dated January 6, 2023, the USACE issued a letter confirming that these areas are not waters of the U.S. and are not regulated under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act of 1899. Correspondence with the USACE related to wetlands is included as **Appendix I**.

4.5 Hydrogeology

Fill on top of the clay layer is the uppermost water-bearing unit at the former TCC facility, including Sites 109 and 110. This is a perched fill unit and is likely a series of pocketed saturated areas, some of which are connected while others are isolated. Due to the irregular characteristics of the uppermost water-bearing unit, the fill water-bearing zone at Sites 109 and 110 cannot produce an adequate volume for groundwater use and is not suitable as a source of potable water. After purging, these wells required 24- to 36-hours to produce enough water to fill sample bottles before going dry.

Fill at Site 109 was noted to frequently contain large amounts of clay, likely contributing to low and variable permeability. Groundwater was not encountered during installation of any of the monitoring wells at Site 109. As a result, monitoring wells were installed dry, with the expectation that fill may transmit water seasonally. Water was also not encountered in any test pits at Site 109. Groundwater was present in Site 109 monitoring wells during subsequent gauging and sampling events (December 2020, January 2021, and September 2021);

however, during sampling, wells displayed low productivity and were slow to recharge. Average static water levels in Site 109 wells were:

- 8.11 ft bgs in December 2020
- 8.63 ft bgs in January 2021
- 7.88 ft bgs in September 2021

At Site 110, the fill was more commonly saturated than at Site 109, but the water-bearing unit in fill still appears to be discontinuous and highly dependent upon the nature of fill. During monitoring well installation at Site 110, water was observed at approximately 6 ft bgs in MW-04-2020 through MW-06-2020, 5 ft bgs in MW-07-2020, 2.5 ft bgs in MW-16-2020, 1.5 ft bgs at MW-23-2022, and 0.5 ft bgs in MW-08-2020. Groundwater was also encountered during excavation at 29 out of 50 test pit arms at Site 110. In test pits excavated at TP-07-2020, water was only encountered in two out of five excavations. In one of these excavations (TP-07-2020D), water was not encountered until a wooden pole was pulled from the sidewall, at which point water flowed from the cavity where the pole had been and inundated the test pit. The nature of water within this test pit exemplifies the highly variable nature of groundwater in the fill at Site 110, with the presence and flow of water being highly dependent upon the types of fill material. Average static water levels at Site 110 wells were:

- 3.96 ft bgs in December 2020
- 4.07 ft bgs in January 2021
- 5.13 ft bgs in September 2021
- 3.23 ft bgs in January 2023

Groundwater elevations were calculated for Sites 109 and 110 using static depths to water and top of PVC riser elevations from the site survey. Measured groundwater elevations for all gauging events are included in **Table 2**. Site 109 and 110 groundwater elevation contours from all gauging events are presented in **Figures 11a through 11c** (Site 109) and **12a through 12d** (Site 110). For gauging events that included contemporaneous water level measurements at Site 108, Tonawanda Plastics, and the BCP site (January and September 2021), groundwater elevation data from relevant wells at these sites were also used to develop Sites 109 and 110 modeled groundwater contours.

Although groundwater is likely discontinuous across the site due to the variable thickness and nature of fill, including some low-permeability, clay-rich fill, groundwater elevations from all three gauging events suggest that the groundwater gradient is generally to the west-southwest across Site 109.

Groundwater elevation data indicate that the groundwater gradient is extremely flat across Site 110. Data from all four monitoring events indicate a slight eastward gradient. Historical data from July 1992 also indicate a generally eastward groundwater gradient across Site 110.

The underlying clay unit has a hydraulic conductivity of about 3.3×10^{-8} centimeters per second in the dense, silty upper clay zone and 2.1×10^{-8} centimeters per second in the high plasticity lower clay zone, indicating that this unit serves as an aquitard to vertical groundwater movement (Inventum 2021c). Because the clay unit serves as an aquitard, vertical groundwater flow through clay is restricted. Therefore, groundwater flow primarily occurs horizontally within fill, along the top of the clay unit, and is likely controlled by the permeability of fill and local surface water discharge points.

Based on regional hydrogeology, the upper bedrock, which is at a depth of approximately 54 ft bgs to 50.7 ft-bgs at the BCP Site (Inventum 2021c), is expected to be water-bearing. However, given the aquitard between the water-bearing fill and bedrock, the two units are not hydraulically connected.

5.0 DATA SUMMARY AND NATURE AND EXTENT OF IMPACTS

5.1 Waste and Residual Characteristics

The coke plant at the former TCC facility heated coal in the absence of oxygen to separate the liquids and gasses from the coal and leave the residual carbon. The residual carbon, referred to as coke, was the primary product produced at the former TCC facility. The processes followed to produce coke and its associated by-products are well understood. The materials used and resulting from the production of coke that may have impacted materials disposed of at Sites 109 and 110 are also well understood:

Coal

Three types of metallurgical "met" coal were used to produce coke at the former TCC facility. Coal is a naturally occurring sedimentary material. For reference, **Table 3** includes analysis of a coal sample collected from the main plant site at the former TCC facility.

Coke/Breeze

Coke is the carbon left after the liquids and gasses have been removed from the met coal. Coke is a relatively inert material. Fine grained coke, typically resulting from crushing and screening, is referred to as breeze. For reference, **Table 3** includes analysis of a coke sample collected from the main plant site at the former TCC facility. The analysis indicates the effectiveness of the coking process in removing the VOC and SVOC constituents of coal.

Tar

Tar was removed from coal as part of the coke manufacturing process and was processed at the coke plant of the former TCC facility as part of the coke by-products operations. Tar in its production form was sold and used as a component of asphalt, roof shingles, and other commercial and industrial goods.

Oil

Oils containing benzene, toluene and xylenes and other chemicals were by-products of the coking operations. These compounds are similar to the components of gasoline. These liquids were present in containers, pipes, tanks, and process equipment at the main plant. In their pure clean form, they are used to produce other chemicals and plastics. Fuel oil, diesel fuel and lubricating oils were used for power production, heavy equipment, rail operations, and machinery.

The majority of these materials can be identified at Sites 109 and 110 either by their physical characteristics or by the presence of their component constituents:

VOCs

Found predominately in light oils. The majority of VOCs produced at TCC were conveyed and consumed in the coke oven gas (COG) at former TCC facility or sold for further refining and use as feedstock for manufacturing. VOCs are also found at low concentrations in coal.

SVOCs

Prevalent in coal, coke, tar, oils, and ash.

• Polycyclic aromatic hydrocarbons (PAHs)

A subset of the SVOCs and present in coal, coke, tar, oils, and ash.

Naphthalene

A by-product of coke making and prevalent in coke oven gas (COG) residuals and the process equipment from the tar processing area, through the concentrators, and precipitators. Also present in coal and tar.

Cyanide

A constituent of the COG and present in the gas processing equipment. Cyanide was concentrated historically in the purifier boxes before the COG was sold for off-site consumption.

5.2 Standards, Criteria, and Guidance (SCG) Identification

This RI Report evaluates the extent to which SCGs have been exceeded. This includes consideration of SCGs related to soil and groundwater, as detailed below.

5.2.1 Soils

A soil cleanup level may be derived from one or more of the following:

- New York Codes, Rules, and Regulations 6 NYCRR 375-6.8(a) or (b)
- Modified from the regulatory value based on site-specific characteristics
- Based on other information, including background levels or feasibility

Feasibility means suitable to site conditions, capable of being successfully carried out with available technology, implementable and cost effective (see 6 NYCRR 375-1.2(s)).

Future use of Sites 109 and 110 will be commercial, therefore surface and subsurface soil data are compared to Commercial Use Soil Cleanup Objectives (SCOs), as established in 6 NYCRR Part 375 (NYSDEC 2006). A total PAH concentration of 500 mg/kg may be used as a soil cleanup level in lieu of achieving all of the PAH-specific SCOs in 6 NYCRR 375-6 for non-residential use sites (i.e., commercial or industrial use sites) for all subsurface soil, which is defined for this provision as "soil beneath permanent structures, pavement, or similar cover systems; or at least one foot of soil cover (which must meet the applicable SCOs)" (NYSDEC 2010b).

PFAS soil results are compared to Commercial guidance values included in Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs (NYSDEC 2021).

Fill material at the site is primarily historically placed soils but also includes other materials such as ash and breeze. For convenience, references to soil and comparisons to soil SCOs include fill soils, underlying native soils, and surface and subsurface materials that are non-soil fill, such as ash and breeze, as well as mixtures of these materials and soil.

5.2.2 Groundwater

Groundwater data for VOCs, SVOCs, PCBs, pesticides, cyanide, and metals are compared to Class GA water quality standards and guidance values under Division of Water *Technical and Operational Guidance Series* (TOGS) 1.1.1. (NYSDEC 1998). Groundwater data for PFAS are compared to the screening levels established in 2023 Addendum June 1998 *Division of Water Technical and Operational Guidance No.* 1.1.1 (NYSDEC 2023).

5.3 Data Validation and Usability Reports (DUSRs)

Analytical results from all samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Final Work Plan, Focused Remedial Investigation and Feasibility Study for Operable Units 1 (Site 110) and 2 (Site 109), Tonawanda Coke Site (Parsons 2020), including the QAPP
- USEPA Region II Standard Operating Procedures (SOPs) for organic and inorganic data review
- Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs (NYSDEC 2021)

The analytical laboratory for this project was ALS in Rochester, New York. This laboratory is certified to conduct project analyses through the New York State Department of Health (NYSDOH) and the National Environmental Laboratory Accreditation Program (NELAP).

Certain reported results were qualified as estimated based on various factors. The reported analytical results for all analyses were 100 percent complete (i.e., usable).

5.4 Investigation Results and Nature and Extent of Impacts by Media

Analytical results for samples collected during the Focused RI, organized by site and sample media, are presented in the following subsections. Analytical results are compared to SCGs as described in Section 5.2. Based on analytical results, as well as the results from historic investigations, a discussion of the extent of impacts for each sample media is also provided.

5.4.1 Site 109

5.4.1.1 SURFACE AND SUBSURFACE SOIL

Validated surface (0.0 to 0.16 ft bgs and 0.16 to 1.0 ft bgs) and subsurface (greater than 1.0 ft bgs) soil sample analytical results and exceedances of SCGs from the 2020/2021 Focused RI are shown in **Table 4** and data from historical investigations are included in **Appendix C**. Complete subsurface soil analytical results from the Focused RI are included in the DUSR in **Appendix H**. Soil sample results summarized below are inclusive of historical and Focused RI data collected from test pits, monitoring wells, and soil borings in drainage ditches.

As shown on **Figure 13 through 17**, Commercial SCGs are exceeded for one or more compounds in at least one surface soil sample from 13 of the 14 Focused RI and historical sample locations. Exceedances of SCGs in subsurface soil are less frequent than in surface soils, with at least one compound exceeding Commercial SCGs in five of the nine Focused RI soil sample locations. Concentration of some SVOCs and one metal exceed Commercial SCGs as detailed in the following subsections. These results are consistent with historical data, which indicate SVOC exceedances of Commercial SCGs, but no exceedances for VOCs, metals, or cyanide.

NYSDEC has determined that the Soil SCGs for the Protection of Ecological Resources would also be applicable to the surface soils within the onsite ditch. These criteria are typically lower than the Commercial Use SCGs. Ditch soil results were not compared directly to these criteria, however, given that all ditch surface soil samples exceeded the Commercial Use SCGs, they would also exceed the SCGs for the Protection of Ecological Resources.

5.4.1.1.1 Volatile Organic Compounds

There were no exceedances of Commercial SCGs for any VOCs, indicating VOC impacts to soils at Site 109 are not a concern.

5.4.1.1.2 Semivolatile Organic Compounds

Results indicate SVOC concentrations exceeded the Commercial SCG in at least one sample from 14 of the 15 sampled locations, as shown on **Figures 14 through 16**. All SVOCs that exceed standards are PAHs. The SVOCs that exceed SCGs are:

- benzo(a)anthracene
- benzo(a)pyrene
- benzo(b)fluoranthene
- chrysene
- dibenzo(a,h)anthracene
- indeno(1,2,3-cd)pyrene.

SVOC exceedances and the range of concentrations in surface and subsurface soil are summarized in the following table:

Compound	Frequency of Exceedances (out of 28 collected samples) ¹	Commercial SCG (mg/kg)	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Average Concentration (mg/kg) ²
Benzo(A)Anthracene	7	5.6	0.014	96	9.3
Benzo(A)Pyrene	19	1	0.021	86	9.0
Benzo(B)Fluoranthene	8	5.6	0.023	83	9.1
Chrysene	1	56	0.015	70	6.8
Dibenzo(a,h)Anthracene	8	0.56	0.0042	9	1.1
Indeno(1,2,3-Cd)Pyrene	8	5.6	0.016	40	5.7
Total PAHs	1	500	0.18	940	91

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. For non-detects, half of the detection limit was used for calculating the average.

Surface soil (0.0 to 0.16 ft bgs and 0.16 to 1.0 ft bgs) exceedances for SVOCs are widespread across Site 109, with nine out of nine Focused RI surface soil sample locations showing concentrations exceeding the Commercial SCGs in one or both surface soil sample intervals. These results are consistent with historical investigations, which indicate SVOC exceedances of Commercial SCGs at four out of five sample locations.

The highest SVOC concentrations in surface soil from the 2020 Focused RI occur in samples from SB-01-2020 and SB-02-2020, which are both located within an on-site drainage ditch that runs along the south side of the site. Subsurface soil samples did not exceed Commercial SCGs at these locations, indicating the elevated concentrations in surface soils may be due to spills from the former elevated coal conveyor running through this area and/or due to erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch.

Exceedances of SCGs for SVOCs in subsurface soil are less widespread than for surface soil, with five out of nine sampled locations having concentrations of at least one SVOC exceeding the Commercial SCGs. The highest subsurface SVOC concentrations in subsurface soil were

Hand clearing at drainage ditch soil sample location SB-01-2020.

detected in a sample from TP-01-2020, excavated in the western berm, which contained coal in the sample interval, likely contributing to elevated PAH concentrations. The sample collected from stained clay around potentially creosote-treated poles in TP-04-2020 only contained one low-level SVOC exceedance, indicating that surrounding soil is not significantly impacted by the utility pole.

The maximum total PAH concentrations measured at each sampling location are shown in **Figure 16**. Total PAH concentrations exceeding the Commercial SCG of 500 milligrams per kilogram (mg/kg) only occurred in one sample from one location during the 2020/2021 Focused RI (the 0.0 to 0.16 ft bgs depth interval at SB-02-2020) and one sample during historical investigations (SS-9). Elevated concentrations in the sample from SB-02-2020 may be due to spills from the former elevated coal conveyor running through this area and/or due to erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch. This sample was collected from the area of a road leading from the truck scale area to the settling ponds and "coke dust" was noted in historical sample SS-9, potentially contributing to elevated levels of PAHs in this sample (CRA 2008). Additionally, all samples that yielded the highest concentrations of PAHs, including those within the onsite drainage ditch, contained varying amounts of breeze, coke, and/or coal, based on field examination, while the majority of fill at Site 109 consists of C&D debris (brick, concrete, silt). In general, samples collected from the absence of breeze, coke, and/or coal, yielded lower PAH concentrations than samples collected from breeze, coke, and/or coal. Therefore, it appears that breeze, coke, and/or coal in fill and ditch surface soils are likely the source of PAHs in soil samples from Site 109.

5.4.1.1.3 PFAS

There were no exceedances of Commercial SCGs for PFAS compounds, indicating PFAS impacts to soils at Site 109 are not a concern.

5.4.1.1.4 Pesticides and PCBs

There were no exceedances of Commercial SCGs for pesticides or PCBs, indicating pesticides and PCB impacts to soils at Site 109 are not a concern.

5.4.1.1.5 Metals

Except for arsenic in one sample (0.0 to 0.16 ft bgs at SB-01-2020 (25.7 mg/Kg v a commercial SCG of 16 mg/Kg), no metals concentrations exceed Commercial SCGs, as shown on **Figure 17**. These results indicate that metals impact to soils at Site 109 are not a concern.

5.4.1.1.6 Cyanide

Cyanide concentrations do not exceed SCGs in any samples, indicating that cyanide impacts to soils at Site 109 are not a concern.

5.4.1.2 GROUNDWATER

As discussed in Section 3.1.3.2, each of the three newly installed wells, along with the existing well, were sampled in December 2020 and September 2021. In addition to total (unfiltered) constituents, the September 2021 sampling included collection of samples for dissolved (field filtered) constituents for SVOCs, PCBs, metals, and cyanide. Validated groundwater analytical results for detected compounds are summarized and compared to Class GA SGCs on **Table 5** and **Table 6** and illustrated on **Figure 18**. Complete groundwater analytical results are included in the DUSR in **Appendix H**.

SVOCs, metals, and PCBs were detected in concentrations exceeding SCGs during the December 2020 sampling event. Only metals were detected in concentrations exceeding Class GA SGVs during the September 2021 sampling event. PFAS and pesticides were not detected in concentrations exceeding SGVs during the December 2020 sampling event and were therefore not analyzed for during the September 2021 sampling event.

Exceedances of SCGs are discussed in the following subsections. Based on the groundwater sampling results discussed below, impacts to groundwater are not a significant concern at Site 109.

5.4.1.2.1 Volatile Organic Compounds

There were no exceedances of SCGs for VOCs in Focused RI or historical groundwater samples, indicating that VOC impacts to groundwater at Site 109 are not a concern.

5.4.1.2.2 Semivolatile Organic Compounds

SVOCs were only exceeded at the upgradient well (MW-01-2020) during the 2020 sampling event. SVOCs were not detected above the groundwater SCGs in samples from this well or any other wells during the 2021 sampling event. Groundwater from MW-01-2020 is representative of conditions upgradient of Site 109 or of conditions at the upgradient edge of Site 109 and is not indicative of site-wide impacts to groundwater at Site 109. Historically, chrysene was detected in exceedance of the SCG in one sample from MW-4, which is generally upgradient. Data indicates SVOCs are not migrating through Site 109 in groundwater and Site conditions are not contributing significantly to SVOCs in groundwater, indicating that SVOC impacts to groundwater are not a concern at Site 109.

5.4.1.2.3 PFAS

There were no exceedances of SCGs for PFAS, indicating that PFAS impacts to groundwater at Site 109 are not a concern.

5.4.1.2.4 Pesticides

There were no exceedances of SCGs for pesticides, indicating that pesticide impacts to groundwater at Site 109 are not a concern.

5.4.1.2.5 PCBs

Total PCBs were detected slightly above SCGs (0.091 ug/L versus the SCG of 0.09 ug/L) at monitoring well MW-02-2020 during the 2020 sampling event. PCBs were not detected in samples from any other wells in 2020, were not detected in any samples in 2021, and have historically not been detected in Site 109 groundwater, indicating that PCB impacts to Site 109 groundwater are not a concern

5.4.1.2.6 Metals

Concentrations of at least one metal exceeded SCGs in all wells sampled in 2020 and 2021. Concentrations of six metals exceeded SCGs (iron, magnesium, manganese, sodium, thallium, and antimony) in at least one monitoring well. Metals exceedances and the range of concentrations in unfiltered groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 4 sampled wells) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l)	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
Iron	4	300	100 U	2200	800
Magnesium	4	35000	12600	414000	106000
Manganese	3	300	4.5	823	300
Sodium	7	20000	31900	467000	170000
Thallium	2	0.5	9	9	6

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. For non-detects, half of the detection limit was used for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

The presence and concentration of four of the metals (Iron, Manganese, Magnesium, and Sodium) are considered to be representative of naturally occurring background concentrations. Concentrations of these metals in groundwater are generally elevated throughout the Tonawanda, New York area.

Concentrations of thallium and antimony exceeded their SCGs at the upgradient well (MW-01-2020) during the Focused RI. Groundwater from MW-01-2020 is representative of conditions upgradient of Site 109 or of conditions at the upgradient edge of Site 109. The nearby monitoring wells MW-BCP-15A and MW-BCP-16A at the BCP Site were non-detect for these contaminants in 2021 and 2022. In general, the groundwater sampling events completed at the BCP Site have not identified antimony and thallium in concentrations that could be impacting Site 109. Localized thallium and antimony impacts may be due to leaching of coal combustion byproducts, particularly fly ash, as discussed below.

Thallium also exceeded its SCG at downgradient well MW-03-2020 in 2021. Samples from this well were not analyzed for metals during the 2020 sampling event due to insufficient productivity from the well. Other than at the upgradient well, discussed above, this was the only well at Site 109 where the thallium concentration was detected above its SCG. Thallium is commonly found in coal combustion products, particularly fly ash, which was observed within the screened interval during well installation. Leaching of thallium from this material is a potential cause of thallium observed in the groundwater sample. Given the limited distribution of fly ash at Site 109 and the limited detections of thallium in groundwater, there are not significant site-wide sources or associated thallium impacts to groundwater at Site 109 and offsite migration is unlikely. Monitoring well MW-15-2020 was planned for installation at Site 108. This location is downgradient of MW-03-2020. However,

only two feet of fill, unsaturated, was found overlying the clay layer at this location, therefore no well was installed. These results further indicate offsite migration is unlikely.

Metals concentrations in field filtered samples did not show significant decreases in comparison to unfiltered samples. This indicates that elevated metals concentrations detected are not due to suspended solids in samples. Metals exceedances in dissolved (field filtered) groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 4 sampled wells) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l) ²	Maximum Concentration (ug/l)	Average (ug/l)
Antimony	1	3	10.5	10.5	30
Iron	2	300	61.4	1990	1000
Magnesium	2	35000	15800	514000	180000
Manganese	2	300	10 U	811	400
Sodium	4	20000	81700	264000	156000
Thallium	1	0.5	10 U	13.1	7

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

5.4.1.2.7 Cyanide

Although one historical sample from MW-17-89 contained cyanide that exceeded the SCG, the sample concentrations from this well in 2020 and 2021 were below the cyanide SCG. Given that there is only one historical cyanide exceedance and no samples from the Focused RI resulted in cyanide concentrations exceeding the SCG, cyanide impacts to groundwater at Site 109 are not a concern.

5.4.2 Site 110

5.4.2.1 SURFACE AND SUBSURFACE SOIL

Validated surface (0.0 to 0.16 ft bgs and 0.16 to 1.0 ft bgs) and subsurface (greater than 1.0 ft bgs) soil analytical results and exceedances of SCGs from the 2020/2021 Focused RI are shown in **Table 7** and data from historical investigations are included in **Appendix C**. Complete subsurface soil analytical results are included in the DUSR in **Appendix H**. Soil sample results summarized are inclusive of those collected from test pits and monitoring wells.

As shown on **Figures 19 through 24**, Commercial SCGs are exceeded for one or more compound in at least one surface soil sample from all 17 Focused RI and historical sample locations. Exceedances of SCGs in subsurface soil are slightly less frequent than in surface soil, with at least one compound exceeding Commercial SCGs in 14 out of 17 subsurface soil sample locations. Concentrations of VOCs, SVOCs, metals, and cyanide exceed Commercial SCGs as detailed in the following subsections.

5.4.2.1.1 Volatile Organic Compounds

Benzene exceeds the Commercial SCG in one sample (6.0 to 6.5 ft bgs at TP-34-2021), as shown on **Figure 24**. This sample was collected from an interval containing pliable tar/fill mixture. Samples that were collected from

Honeywell

directly beneath tar samples do not have VOC impacts, indicating that VOCs and tar itself are not significantly migrating into the soil matrix. Historically, VOCs have not been detected exceeding SCGs in surface or subsurface soil samples. Given that there is only one isolated exceedance, VOC impacts to soils at Site 110 are not a significant site-wide concern based on commercial SCG exceedances. However, given that groundwater is impacted by VOCs at one well (MW-06-2020), as discussed in Section 5.4.2.2.1, and VOCs are constituents of tar present at Site 110, tar and tar-impacted soils may be a localized source of VOC impacts to groundwater in the vicinity of monitoring well MW-06-2020.

5.4.2.1.2 Semivolatile Organic Compounds

Results indicate SVOC concentrations exceeded the Commercial SCGs in at least one sample from all sampled locations, except TP-51-2022, as shown on Figures 20 through 22. These results are consistent with historical data, which show exceedances for SVOCs in surface and subsurface soil samples. Nearly all SVOCs that exceed standards are PAHs. The SVOCs that exceed SCGs most frequently are:

- benzo(a)anthracene
- benzo(a)pyrene
- benzo(b)fluoranthene
- chrysene
- dibenzo(a,h)anthracene
- indeno(1,2,3-cd)pyrene

SVOC exceedances in surface and subsurface soil are summarized in the following table:

Compound	Frequency of Exceedances (out of 44 collected samples)	Commercial SCG (mg/kg)	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Average Concentration (mg/kg)
2-Methylphenol	1	500	0.017	1100	28
3&4-Methylphenol	1	500	0.021	2700	61
Phenol	1	500	0.031	1600	38
Acenaphthene	1	500	0.048	750	28
Acenaphthylene	1	500	0.047	6400	160
Anthracene	1	500	0.031	5500	140
Benzo(A)Anthracene	27	5.6	0.04	4700	140
Benzo(A)Pyrene	38	1	0.053	4400	140
Benzo(B)Fluoranthene	30	5.6	0.059	4400	140
Benzo(G,H,I)Perylene	1	500	0.022	1900	72
Benzo(K)Fluoranthene	3	56	0.021	1900	57
Chrysene	9	56	0.042	4300	130
Dibenzo(a,h)Anthracene	34	0.56	0.0069	3400	49
Dibenzofuran	1	350	0.033	4500	110
Fluoranthene	2	500	0.077	13000	370
Fluorene	1	500	0.045	7300	180
Indeno(1,2,3-Cd)Pyrene	27	5.6	0.023	2200	81
Naphthalene	2	500	0.12	25000	770

Final RI Report Sites 109 and 110 - Honeywell

P:\Honeywell\452347 TCC Site 109 - 110 RI\9.0 Reports\9.7 RI Report\Final\R37211 Tonawanda Coke_2023 Sep_RI_Sites 110 & 109_Final Rpt.docx

October 2023

Compound	Frequency of Exceedances (out of 44 collected samples)	Commercial SCG (mg/kg)	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Average Concentration (mg/kg)
Phenanthrene	3	500	0.096	19000	490
Pyrene	2	500	0.069	8300	250
Total PAH	10	500	1.9	110000	3200

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

Surface soil exceedances for SVOCs are widespread across Site 110, with all 13 Focused RI sample locations showing concentrations exceeding Commercial SCGs in one or both surface soil sample intervals. These results are consistent with historical investigations, which indicate SVOC exceedances of Commercial SCGs at all five sampled locations. Because SVOC concentrations in surface soil exceed SCGs at all sampled locations, SVOCs in surface soil appear to be consistent with the widespread presence of coal and coke (Section 4.2.2) throughout Site 110 and are not associated with any specific area or activity.

Exceedance of SCGs for SVOCs in subsurface soil are slightly less widespread than for surface soil, with at least one subsurface soil sample from 13 out of 17 sample locations yielding SVOC concentrations exceeding Commercial SCGs.

The maximum total PAH concentrations measured at each sample location are shown in **Figure 23**. Total PAH concentrations exceeding 500 mg/kg occur in ten samples from seven locations. Exceedances of the total PAH SCG are scattered and intermittent, with no clear spatial trend. The total PAH SCG was exceeded in the surface interval in six samples and was exceeded in a subsurface interval in four samples. MW-04-2020 was the only location where the total PAH SCG was exceeded in both a surface and subsurface interval.

Approximately half of the soil samples with total PAH concentrations exceeding 500 mg/kg contained tar in the sample interval, as either a continuous layer, globs/chunks, or as coated material. The data strongly supports that there are multiple sources of PAHs present, including tar. The other exceedances of the alternate SCG of 500 parts per million total PAHs is likely due to coal, coke, or other industrial wastes present at the location. Additional discussion of tar material encountered at Site 110 is included in Section 4.2.3.2. The highest PAH concentrations occur in the sample from TP-34-2021, which was collected along the former rail lines and from within a thick, continuous layer of pliable tar/fill mixture.

Of the samples that exceed the 500 mg/kg total PAHs that were not impacted by tar, all contained coal either in the sample interval or elsewhere in the test pit, indicating that residual coal present in these is contributing the elevated PAH concentrations.

While samples from intervals containing tar may result in elevated SVOC concentrations, tar does not appear to significantly impact the quality of adjacent soil. The subsurface sample from MW-06-2020 was collected directly beneath tar-saturated material and the subsurface sample from TP-07-2020 was collected 0.5 ft below tar-saturated material and a known tar seep. Individual SVOC concentrations from these samples do not exceed any SCGs and total PAH concentrations also do not exceed the SCG. This suggests that tar-saturated material, which is the least viscous tar product encountered, does not appear to migrate vertically to impact the quality of underlying soil.

Honeywell

Further discussion of the physical properties of the tar products encountered at Site 110 is included in Section 4.2.3.

5.4.2.1.3 PFAS

There were no exceedances of SCGs for PFAS, indicating that PFAS impacts to soil at Site 110 are not a concern.

5.4.2.1.4 Pesticides and PCBs

There were no exceedances of SCGs for pesticides and PCBs, indicating that pesticide and PCB impacts to soil at Site 110 are not a concern.

5.4.2.1.5 Metals

Only three metals, arsenic, mercury, and barium, exceed Commercial SCGs in Site 110 soil samples from the Focused RI. At least one of these metals exceed SCGs in six samples from four locations, as shown in **Table 7**. There is no spatial pattern of locations with metals concentrations exceeding SCGs. Metals exceedances are likely due to the presence of historic fill throughout the site. Historical soil samples did not identify concentrations of metals that exceeded the SCGs. Metals exceedances in soil are summarized in the following table:

Compound	Frequency of Exceedances (out of 44 collected samples) ¹	Commercial SCG (mg/kg)	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Average Concentration (mg/kg)
Arsenic	2	16	2.9	21.9	9.3
Barium	3	400	10.9	505	130
Mercury	1	2.8	0.015	6.5	0.6

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

5.4.2.1.6 Cyanide

Cyanide only exceeded the Commercial SCG in one sample from one location (3.25 to 4.0 ft bgs at TP-14-2020, estimated concentration 123J mg/Kg v SCG of 27 mg/Kg). This sample was collected from a blue sandy silt and woody debris fill with a strong sulfur-like odor. Fill with woodchips was also observed in TP-51-2022 and TP-52-2022, but samples from these locations did not exceed the Commercial SCG for cyanide. This fill was not observed anywhere else on Sites 109 or 110 and is consistent with purifier waste, which would be expected to contain elevated concentrations of cyanide.

However, because this product was only encountered at three locations, and cyanide concentrations are below SCGs at all other sample locations, cyanide impacts to soil at Site 110 are localized to the specific deposit of this by-product and are not of concern for the remainder of the site. Cyanide concentrations have not been detected exceeding the SCG in historical surface or subsurface soil samples at Site 110.

5.4.2.2 GROUNDWATER

As discussed in Section 3.2.2.2, each of the four groundwater monitoring wells installed in October 2020 were sampled in December 2020. All six new Site 110 monitoring wells (including the four installed in October 2020 and the two installed in July 2021) were sampled in September 2021. In addition to total (unfiltered) constituents, the September 2021 sampling included collection of samples for dissolved (field filtered) SVOCs,

PCBs, metals, and cyanide. MW-23-2022 was sampled in January 2023 for total (unfiltered) constituents, and for dissolved (field filtered) SVOCs, PCBs, metals, and cyanide. Validated groundwater analytical results for detected compounds are summarized and compared to Class GA SCGs on **Tables 8, 9 and 10** and shown on **Figure 25**. Historical groundwater sampling results are shown on **Figure 26**.

As discussed in Section 3.2.2.2, MNA parameters were also collected from a subset of Site 110 wells. Results of MNA sampling are summarized in **Table 11** and will be used for remedial alternative evaluation during the FS. Complete groundwater analytical results from the Focused RI are included in the DUSR in **Appendix H**.

VOCs, SVOCs, pesticides, cyanide, and metals were detected in concentrations exceeding SCGs in samples from the December 2020 sampling event. VOCs, SVOCs, cyanide, and metals were also detected in concentrations exceeding SCGs during the September 2021 sampling event; pesticides were not analyzed for during the 2021 event. Metals were detected in concentrations exceeding SCGs in samples from the January 2023 sampling event. Exceedances of SCGs are detailed in the following subsections.

5.4.2.2.1 Volatile Organic Compounds

VOCs were detected in concentrations exceeding SCGs in groundwater samples from one location during the Focused RI. Samples collected from MW-06-2020 exceeded SCGs for seven VOCs in 2020 and nine VOCs in 2021, including BTEX compounds.

Compound	Frequency of Exceedances (out of 12 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l) ³	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
Benzene	2	1	0.5	430	62
Chloroform	1	7	1 U	70	6.3
Chloromethane	1	5	1 U	250	21
Ethylbenzene	2	5	1 U	1700	230
Isopropylbenzene	2	5	1 U	44	6.4
m&p-Xylenes	2	5	2 U	3000	420
o-Xylene	2	5	1 U	1100	150
Styrene	2	5	1 U	260	37
Toluene	2	5	1 U	1700	250

VOC exceedances in total groundwater samples are summarized in the following table:

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit. Results from MW-06-2020 were excluded from maximums and averages because results from MW-06-2020 with U qualifier were one to two orders of magnitude above other results.

Groundwater elevation data indicate that the groundwater gradient is extremely flat across Site 110 but tends to have a slight eastward direction. Monitoring well MW-16-2020 is located approximately 100 feet east (downgradient) of MW-06-2020. The sample collected from this well did not contain VOCs in concentrations exceeding SCGs, indicating that VOC impacts observed at MW-06-2020 are not indicative of a sitewide plume, but rather, are localized impacts, likely related to subsurface tar observed during monitoring well installation, and further evidenced by tar-like odors and sheen observed during purging for groundwater sampling. Historical

data indicate VOC exceedances at MW-3 and its replacement, MW-3R, which are located slightly off-site of Site 110, to the southwest. However, as described in Section 2.3, a 2005 IRM mitigated groundwater impacts through the removal of subsurface tar in this area, (Conestoga-Rovers & Associates 2008), further indicating that VOC impacts to groundwater at Site 110 are limited to localized impacts.

5.4.2.2.2 Semivolatile Organic Compounds

SGCs were exceeded for multiple SVOCs during one or both of sampling events for all monitoring wells except MW-05-2020 and MW-08-2020. SVOC exceedances in total (unfiltered) groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 12 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l) ³	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
',1'-Biphenyl	2	5	0.93 U	67	9.2
2-Methylphenol	1	1	0.93 U	5.4	4.4
3&4-Methylphenol	1	1	0.93 U	4.7	4.3
Acenaphthene	2	20	0.16	120	19
Benzo(A)Anthracene	4	0.002	0.15	0.36	0.19
Benzo(A)Pyrene	4	ND	0.12	0.39	0.18
Benzo(B)Fluoranthene	4	0.002	0.14	0.38	0.18
Benzo(K)Fluoranthene	3	0.002	0.089	0.14	0.13
bis-(2-Ethylhexyl)Phthalate	1	5	4.7 U	6.3	3.6
Chrysene	4	0.002	0.1	0.34	0.16
Fluorene	2	50	0.14	83	12
Indeno(1,2,3-Cd)Pyrene	2	0.002	0.13	0.25	0.15
Naphthalene	2	10	0.078	18000	2300

Notes:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit. Results from MW-06-2020 were excluded from maximums and averages because results from MW-06-2020 with U qualifier were one to two orders of magnitude above other results.

The highest SVOC concentrations were measured in MW-06-2020. As discussed in Section 5.4.2.2.1, subsurface tar was observed during installation of this monitoring well, and tar-like odors and sheen were observed during purging for groundwater sampling, indicating tar is likely contributing to SVOC concentrations at this location. There were no exceedances of SVOC SCGs during any sampling event at MW-05-2020 and at MW-23-2022, both of which are located to the north and east (downgradient) of the mounded area where pliable tar was frequently noted during test pitting, indicating pliable tar is not contributing significantly to SVOCs in groundwater at these locations. The lack of SVOC impacts at MW-05-2020 and MW-23-22 indicates that SVOC impacts to groundwater resulting from tar are relatively localized and/or these wells are not in significant communication with other areas due to the heterogeneous nature and hydrogeology of the fill. As discussed in Section 4.5, this is a perched fill unit and is likely a series of pocketed saturated areas, some of which are connected while others are isolated.

The only SVOC exceeding SCGs at MW-08-2020, which is located on the adjacent National Grid property, was bis(2-ethylhexyl)phthalate, which is a manufactured chemical found in plastics and is not a site-related constituent. It is a common laboratory contaminant. For example, it was detected in various laboratory method blanks for the Focused RI soil/sediment data. Further, the compound was only detected in concentrations exceeding SCGs in the dissolved sample, indicating that it could be due to lab contamination. The lack of SVOC impacts at MW-08-2020 indicates SVOC groundwater impacts are not migrating significantly eastward off Site 110.

The majority of compounds exceeding SCGs are PAHs. Concentrations of the following PAHs exceeded SCGs in at least one sample from MW-04-2020, MW-07-2020, and MW-16-2020:

- benzo(a)anthracene
- benzo(a)pyrene
- benzo(b)fluoranthene
- benzo(k)fluoranthene
- chrysene

The concentration of indeno(1,2,3-cd)pyrene also exceeds the SCG in samples from MW-04-2020 and MW-23-2022. Benzo(a)anthracene and benzo(b)fluoranthene are the only PAHs with concentrations exceeding SCGs in the sample from MW-23-2022.

As described in Section 3.2.2.2, samples were analyzed for both dissolved and total SVOCs during the 2021 and 2023 field sampling events in order to evaluate the impact of suspended solids, which SVOCs tend to sorb to, on total SVOC concentrations. The above compounds were not detected in field filtered samples from MW-04-2020, MW-07-2020, MW-16-2020, and MW-23-2022 wells, aside from one detection for benzo(b)fluoranthene in the duplicate sample from MW-16-2020, indicating that elevated concentrations in total constituent (unfiltered) samples are likely influenced by the presence of suspended solids with sorbed PAHs.

Samples collected from MW-06-2020 resulted in a unique set of SVOCs exceeding SCGs, which were not observed to exceed the SCGs in any other wells at Site 110. Concentrations of the following compounds were uniquely detected in this well at concentrations exceeding SCGs in at least one sampling event:

- 1,1'-biphenyl
- 2-methylphenol
- 3&4-methylphenol
- acenaphthene
- fluorene
- naphthalene

The source of these PAHs is uncertain but may be due to the presence of subsurface tar within the saturated zone observed during well installation and further evidenced by sheen and tar-like odors during purging for groundwater sampling. MW-06-2020 is the only well where subsurface tar-saturated material was observed in the saturated zone during drilling, and these compounds are all commonly found in tar. However, other Site 110 wells that are located proximal to tar do not have detections of the unique set of SVOCs detected in MW-06-2020. SVOC concentrations did not decrease significantly in filtered samples, indicating that elevated SVOC concentrations in the unfiltered sample are likely not due to the presence of suspended solids with sorbed PAHs.

5.4.2.2.3 Pesticides

The concentration of alpha-BHC in the groundwater sample from MW-06-2020 collected in 2020 exceeded its SCG. Pesticides were not detected in concentrations exceeding SCGs in any other samples at Site 110, therefore, this single pesticide exceedance is considered anomalous, and pesticide impacts to Site 110 groundwater are not a concern.

5.4.2.2.4 Metals

Concentrations of at least one metal exceeded SCGs in all wells sampled in 2020, 2021, and 2023. Concentrations of five metals exceeded SCGs (iron, magnesium, manganese, sodium, and thallium) in at least one monitoring well. Metals exceedances in total (unfiltered) groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 11 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l) ³	Maximum Concentration (ug/l) ³	Average Concentration (ug/l) ²
Iron	11	300	1350	277000	39000
Magnesium	6	35000	24000	185000	48000
Manganese	11	300	1120	18400	4600
Sodium	8	20000	16300	151000	46000
Thallium	1	0.5	10 U	12.7	5.6

Note:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit. Results from MW 06 2020 were excluded from maximums and averages because results from MW-06-2020 with U qualifier were one to two orders of magnitude above other results.

The presence and concentration of four of the metals (iron, manganese, magnesium, and sodium) are considered to be representative of naturally occurring background concentrations. Concentrations of these metals in groundwater are generally elevated throughout the Tonawanda, New York area. These results are consistent with historical data, which show exceedances of iron, manganese, and sodium in filtered and unfiltered samples from two wells located adjacent to Site 110.

Thallium exceeded its SCG at downgradient well MW-08-2020 in 2020 and 2021. This was the only well at Site 110 where the thallium concentration was detected above its SGC, which indicates that there are not significant site-wide thallium impacts to groundwater at Site 110.

Metals concentrations in field filtered samples did not show significant decreases in comparison to unfiltered samples. This indicates that elevated metals concentrations are not due to suspended solids in samples. Metals exceedances in dissolved (field filtered) groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 7 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l)	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
Iron	6	300	1470	240000	44000
Magnesium	5	35000	23100	172000	52000
Manganese	6	300	1040	18700	5500
Sodium	5	20000	16000	121000	39000
Thallium	1	0.5	8.2	8.2	5.4

Note:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

5.4.2.2.5 Cyanide

All wells sampled except MW-06-2020 had concentrations exceeding SCGs for cyanide during at least one sampling event. Historical samples from MW-2 and MW-3R-89, located on the BF Site immediately south-west of Site 110, also contained cyanide exceeding SCGs. Cyanide exceedances in total (unfiltered) groundwater samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 11 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l)	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
Cyanide, Total	9	200	179	5710	1200

Note:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

Cyanide concentrations in nearly all wells decreased slightly in dissolved (field filtered) samples. Cyanide exceedances in field filtered samples are summarized in the following table:

Compound	Frequency of Exceedances (out of 7 collected samples) ¹	Class GA SCG (ug/l)	Minimum Concentration (ug/l)	Maximum Concentration (ug/l)	Average Concentration (ug/l) ²
Cyanide, Dissolved	5	200	181	4310	950

Note:

1. Frequency denotes the number of wells where exceedance occurred during at least one sampling event.

2. Values with a U qualifier are halved for calculating the average.

3. U indicates the analyte was not detected at the provided detection limit.

The highest cyanide concentration was detected in the sample from MW-05-2020, which is adjacent to the mounded area near the center of Site 110. In TP-51-2022 and TP-52-2022 directly adjacent to MM-05-2020, a layer of red-brown wood chips with a strong chemical odor was encountered. There was a hard layer with minimal blue staining above the wood chips, but no blue staining on the wood chips themselves. The red-brown wood

chips were not observed elsewhere on Sites 109 or 110 and are consistent with purifier residuals which would be expected to contain elevated cyanide concentrations.

The second highest cyanide concentration was in the sample from MW-08-2020, downgradient of the blue stained soils/residuals indicative of purifier waste at TP-14-2020. This was also the location of the only exceedance of Commercial Soil SCGs for cyanide.

5.4.2.3 TAR CHARACTERIZATION

Samples of the pliable tar/fill mixture and tar-saturated material were collected from test pit TP-07-2020 and TP-34-2021 and samples of pliable tar/fill mixture were collected from TP-08-2020 and—TP--10-2020A. Samples were analyzed for hazardous waste characterization parameters, VOCs, SVOCs, metals, pesticides, herbicides, and PCBs. Due to the sample matrices (i.e., tar), which were not compatible with the laboratory's equipment, TCLP was not run for any analytes on samples from TP-07-2020 and TP-34-2021. TCLP was run for all analytes besides VOCs (SVOCs, metals, pesticides, and herbicides) on samples from TP-08-2020 and TP-10-2020A. For analytes/samples that could not be run for TCLP, total constituent analysis was run instead. Data for analysis of hazardous waste characteristics are presented in **Table 12**.

For samples/analytes which were run for TCLP, results are compared to USEPA's Hazardous Waste Regulatory Levels (40 CFR § 261.24). Concentrations of constituents in TCLP samples do not exceed USEPA's Hazardous Waste Regulatory Levels. However, based on TCLP analysis of tar conducted during other site activities, the pliable tar may be characteristically hazardous for benzene.

The tar samples were also analyzed for reactive cyanide, reactive sulfide, corrosivity, and ignitability. Reactive cyanide was not detected. Reactive sulfide was detected in the sample from TP-34-2021 at a concentration of 3.2 mg/kg. There is no USEPA accepted analytical method for determining reactivity. Generators must use their knowledge of the process generating the waste stream and the waste stream itself and make a determination if the waste is reactive. The pH measurements ranged from 7.72 to 6.96, indicating none of the sampled tar material would be considered hazardous based on corrosivity. Samples did not ignite up to 200 degrees Fahrenheit, indicating that samples would not be considered hazardous based on ignitability.

6.0 CONCEPTUAL SITE MODEL

The conceptual site model for Sites 109 and 110 developed below considers sources, nature and extent of impacts, and constituent fate and transport. This conceptual site model is expanded on in Section 7 to consider potential human health exposures.

6.1 Site 109

6.1.1 Sources and Transport Mechanisms

Results of the previous investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 109 are material management and disposal practices. A layer of fill is present across the majority of Site 109, ranging in thickness from 0 feet to 16 feet. The fill typically consists of silt and clay and includes a variety of other materials co-placed with the earthen materials, including C&D debris such as concrete, red brick, yellow fire brick, rock fragments, and wood, and coke manufacturing by-products such as breeze, coke, coal, fly ash, and slag.

Historical spills from the former coal conveyor, which formerly ran along the southern site boundary directly over the drainage ditch and/or erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch may have impacted soil quality within the drainage ditch.

Groundwater impacts at Site 109 are very limited, with most impacts observed in the upgradient well. The data indicates that conditions at Site 109 are not significantly impacting site groundwater.

6.1.2 Nature and Extent of Impacts

Analytical results of the 2020/2021 Focused RI and prior investigations for Site 109 are discussed in detail in Section 5.4.1 and are summarized in the following subsections:

- Surface and subsurface soil
- Groundwater

6.1.2.1 SURFACE AND SUBSURFACE SOIL

Surface soil, and to a lesser extent subsurface soil, impacts are present throughout Site 109. The primary impacts are due to SVOCs (particularly PAHs). The primary PAHs exceeding SCGs are benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. Exceedances of SCGs for SVOCs occur primarily within fill from the surface to as deep as 10.6 ft bgs. The highest concentrations of PAHs occur in drainage ditch surface soils, likely due to spills from the former coal conveyor and/or due to erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch.

6.1.2.2 GROUNDWATER

Groundwater impacts at Site 109 are very limited, with most impacts observed in the upgradient well (MW-01-2020). Groundwater samples show exceedances of SCGs for one or more constituents in samples from all wells. Exceedances occur for metals, PCBs, and SVOCs. However, most exceedances are for metals, which are likely primarily due to naturally occurring conditions. Metals exceedances of SCGs for iron, magnesium,

manganese, and sodium are likely primarily due to naturally occurring conditions, while limited exceedances for thallium (one sample each from MW-01-2020 and MW-03-2020) and antimony (one sample from MW-01-2020) may be due to the presence of impacted fill and/or result from upgradient conditions. SVOCs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene exceeded SCGs in the sample from upgradient well MW-01-2020during the December 2020 sampling event but were not detected exceeding SCGs in the September 2021 sampling event. Similarly, PCBs were detected slightly above SCGs in one well, MW-02-2020, in the first round of sampling, but not in the second round.

6.2 Site 110

6.2.1 Sources and Transport Mechanisms

Results of the previous investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 110 are material disposal practices. A layer of fill is present across the entirety of Site 110, ranging in thickness from 3.0 feet to 16.5 feet. The fill typically consists of coke breeze and is often mixed with earthen materials including silt and sand, debris including brick, glass, wood, plastic, and rubber, and coke manufacturing by-products including coke, coal, slag, and fly ash. Pockets of material presumed to be purifier waste have also been observed within fill. The constituents within fill may contribute to impacts to groundwater through leaching and direct contact.

Localized areas also contain subsurface tar in various forms, which may be contributing to localized groundwater impacts where tar exists within the saturated zone. The monitoring well most significantly impacted by PAHs was the only location where groundwater is in direct contact with tar-saturated materials, (MW-06-2020). This is also the only well with VOC impacts, indicating that direct groundwater contact with tar may be the primary mechanism of VOC and SVOC groundwater impacts at this well. There were no exceedances of SVOC SCGs during any sampling event at MW-05-2020, which is located to the north and east (downgradient) of the mounded area where pliable tar was frequently noted during test pitting, additional evidence that tar is not contributing significantly to SVOCs in groundwater, aside from in locations where tar is in direct contact to groundwater, which may produce highly localized impacts due to very limited groundwater flow across Site 110.

Groundwater gradients across Site 110 are very low, and slightly eastward. Groundwater within the fill is perched and is likely a series of pocketed saturated areas, some of which are connected while others are isolated. The lack of SVOC impacts at MW-08-2020 located on the eastern end of Site 110 on the adjacent National Grid property indicates SVOC groundwater impacts are not migrating significantly eastward off Site 110. The detection of cyanide in the sample from monitoring well MW-08-2020 may be a result of the blue residuals, typical of purifier waste, noted in upgradient test pit TP-14-2020.

6.2.2 Nature and Extent of Impacts

Analytical results of the 2020/2021 Focused RI, 2022/2023 Focused RI Phase II, and prior investigations for Site 110 are discussed in detail in Section 5.4.2 and are summarized in the following subsections:

- Surface and subsurface soil
- Groundwater

6.2.2.1 SURFACE AND SUBSURFACE SOIL

Surface and subsurface soil impacts are present throughout Site 110. The primary constituents are SVOCs (particularly PAHs). The primary PAHs exceeding SCGs are benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene, Exceedances of SCGs for SVOCs occur primarily within fill from the surface to as deep as 7 ft bgs. Although there were exceedances of SCGs for two metals in soil, these were significantly less frequent than exceedances for PAHs and were almost always co-located with PAH exceedances. The only exceedance for cyanide can be directly attributed to the blue fill that was sampled, which is consistent with purifier waste. Surface and subsurface tar is present in multiple locations throughout Site 110 but does not appear to significantly impact soil quality in adjacent intervals.

6.2.2.2 GROUNDWATER

Groundwater samples show exceedances of one or more SCGs in samples from all wells. Exceedances of SCGs occur primarily for SVOCs (particularly PAHs), cyanide, and metals. PAHs most commonly exceeding SCGs are benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene. Metals exceedances of SCGs for iron, magnesium, manganese, and sodium are likely primarily due to naturally occurring conditions, while thallium impacts only occur in one sample from one well, MW-08-2020 and may be due to the presence of subsurface fill. Localized VOC impacts (primarily BTEX compounds) were also noted at one monitoring well, MW-06-2020.

6.3 Fate and Transport

SVOCs, primarily PAHs, are the most prevalent constituents detected in exceedance of commercial use SCGs in soil at both Sites 109 and 110. VOCs and cyanide were also detected at concentrations exceeding commercial use SCGs at Site 110. Metals exceeded groundwater SCGs at both sites. The following subsections discuss fate and transport for these constituents for both Sites.

6.3.1 SVOCs

In general, PAHs are relatively insoluble in water and solubility decreases as the molecular weight increases. PAHs have a high log octanol-water partition coefficient (Kow) and high organic carbon partition coefficient (Koc). They therefore tend to remain bound to soil particles. As a result, PAHs are not highly mobile. Additionally, PAHs are degraded by microorganisms. The most important factors influencing overall degradation rates are temperature, pH, oxidation-reduction potential, concentration, and the presence of microbial species. PAHs do not tend to biomagnify in food chains because they are rapidly metabolized, especially in fish, where the skin tends to act as a barrier to the migration to body tissues.

At Site 109, SVOCs were only exceeded at the upgradient well (MW-01-2020) during the 2020 sampling event. SVOCs were not detected above the groundwater SCGs in samples from this well or any other wells during the 2021 sampling event, indicating SVOC impacts to groundwater are not a significant concern at Site 109.

The sample from MW-08-2020 on the National Grid portion of Site 110 had an elevated bis-(2ethylhexyl)phthalate concentration in the dissolved sample, which is likely due to lab contamination. Samples from MW-06-2020 at Site 110 had elevated SVOC concentrations, potentially due to the presence of tar in the saturated interval. Sample concentrations decrease significantly directly downgradient, at MW-16-2020, indicating that significant SVOC concentrations in groundwater are not migrating offsite at Site 110. PAH concentrations in samples from Site 110 monitoring wells were typically lower for SVOCs in all dissolved phase (field-filtered) samples, indicating that PAHs are bound to soil particles and that elevated concentrations in total

Honeywell

constituent (unfiltered) samples are likely influenced by the presence of soil particles with sorbed PAHs within the samples.

6.3.2 VOCs

VOCs were not detected in Site 109 soils and groundwater in concentrations exceeding SCGs, so they are not a constituent of concern at Site 109. VOCs were not found in concentrations that exceed the Commercial Use SCGs for soil, which take into consideration potential exposures due to soil vapor intrusion. The maximum concentration in comparison to its criteria was at MW-03, where trichloroethene was measured at approximately 3% of its Commercial Use SCG, indicating potential concerns regarding exposure via soil vapor intrusion are unlikely.

VOCs were only detected in concentrations in excess of SCGs in groundwater from one well at Site 110: MW-06-2020. At this well, tar was observed within the saturated zone during monitoring well installation and sheen and odor were observed in groundwater purged during sampling. Therefore, tar may be impacting groundwater at this location Downgradient monitoring well, MW-16-2020, does not appear to be impacted by VOCs, indicating that VOC impacts at Site 110 are highly localized and do not appear to be migrating offsite.

VOC impacts in soil and groundwater may locally impact potential on-site receptors via soil vapor intrusion. Considerations for future site development and occupancy related to vapor intrusion at Sites 109 and 110 will be included in the FFSs for those sites.

6.3.3 Metals

At Site 109, concentrations of six metals exceeded SCGs (iron, magnesium, manganese, sodium, thallium, and antimony) in at least one monitoring well. The presence and concentration of four of the metals (iron, manganese, magnesium, and sodium) are considered to be representative of naturally occurring background concentrations. Concentrations of thallium and antimony exceeded their SCGs at the upgradient well (MW-01-2020) during the Focused RI. Groundwater from MW-01-2020 is representative of conditions upgradient of Site 109 or of conditions at the upgradient edge of Site 109. Thallium also exceeded its SCG at Site 109 downgradient well MW-03-2020 in 2021. Other than at the upgradient well, discussed above, this was the only well at Site 109 where the thallium concentration was detected above its SCG. Thallium is commonly found in coal combustion products, particularly fly ash, which was observed within the screened interval during well installation. Leaching of thallium from this material is a potential cause of thallium observed in the groundwater sample. Given the limited distribution of fly ash at Site 109 and the limited detections of thallium in groundwater, there are not significant site-wide sources or associated thallium impacts to groundwater at Site 109 and offsite migration is unlikely.

Other than the four naturally-occurring metals, thallium was the only metal that exceeded its SCG at Site 110. Thallium exceeded its SCG at downgradient well MW-08-2020 in 2020 and 2021. This was the only well at Site 110 where the thallium concentration was detected above its SGC, which indicates that there are not significant site-wide thallium impacts to groundwater at Site 110. MW-08-2020 is the most downgradient well at Site 110. As discussed in Section 4.5, groundwater gradients are relatively low, and the perched groundwater within the fill unit and is likely a series of pocketed saturated areas, some of which are connected while others are isolated. Therefore, significant off-site migration of thallium is unlikely.

6.3.4 Cyanide

Cyanide was not detected in Site 109 soils and groundwater in concentrations exceeding SCGs, therefore it is not a constituent of concern at Site 109.

Cyanide was detected in all but one soil samples collected from Site 110, however, it was only detected with a concentration in excess of SCGs in one sample (TP-14-2020). Cyanide was detected at concentrations exceeding SCGs in groundwater samples from all but one (MW-06-2020) monitoring well at Site 110. The highest concentrations in groundwater were detected at MW-05-2020 and MW-08-2020, downgradient of presumed purifier waste, which would be expected to contain elevated levels of cyanide. Cyanide can leach from these materials, causing groundwater contamination. Cyanide in the groundwater typically is primarily in the form of iron-cyanide complexes. These complexes are stable under the conditions of the aquifer and are transported as nonreactive solutes. Dilution is the primary natural attenuation mechanism for iron-cyanide complexes. MW-08-2020 is the most downgradient well at Site 110. As discussed in Section 4.5, groundwater gradients are relatively low, and the perched groundwater within the fill unit and is likely a series of pocketed saturated areas, some of which are connected while others are isolated. Therefore, significant off-site migration of cyanide is unlikely.

6.3.5 Tar

Tar was not encountered on Site 109.

Based on analytical samples and observations during test pit excavations at Site 110, tar does not appear to be significantly migrating vertically or laterally. The only type of tar that appears potentially mobile is in areas characterized as tar saturated, based on the material dripping down the excavation sidewalls at some locations. However, this dripping was due to removal of adjacent soil and is not indicative of the potential mobility under normal conditions. The lack of mobility of tar saturated material is indicated by soil samples taken from beneath tar. The subsurface sample from MW-06-2020 was collected directly beneath tar-saturated material and the subsurface sample from TP-07-2020 was collected 0.5 ft below tar-saturated material and a known tar seep. Individual SVOC concentrations from these samples do not exceed any SCGs and total PAH concentrations also do not exceed the SCG. This suggests that tar-saturated material, which is the least viscous tar product encountered, does not appear to migrate vertically to impact the quality of underlying soil.

Tar and tar-impacted material may locally impact potential on-site receptors via soil vapor intrusion.

7.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

According to Appendix 3B of DER-10:

"The overall purpose of the Qualitative Human Health Exposure Assessment (or the exposure assessment) is to evaluate and document how people might be exposed to site-related contaminants, and to identify and characterize the potentially exposed population(s) now and under the reasonably anticipated future use of the site." (NYSDEC 2010a)

The qualitative human health exposure assessment (QHHEA) must include:

- A description of the constituent source(s) including the location of the release to the environment (any waste disposal area or point of discharge).
- An explanation of the release and transport mechanisms to the exposed population.
- Identification of all potential exposure point(s) where actual or potential human contact may occur.
- Description(s) of the route(s) of exposure (i.e., ingestion, inhalation, dermal absorption).
- A characterization of the receptor populations who may be exposed to constituents at a point of exposure.

An exposure pathway is *complete* when all five elements of an exposure pathway are documented; a *potential* exposure pathway exists when any one or more of the five elements comprising an exposure pathway are unknown. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway has not existed in the past, does not exist in the present, and can reasonably be anticipated to never exist in the future.

Sources and transport mechanisms, nature and extent of impacts, and fate and transport are discussed in Section 6. Potential exposure points/exposure media, potential exposure routes, and potentially impacted populations are discussed in the following subsections. The QHHEA is illustrated on **Figure 27**.

This QHHEA has been developed based on the results of the historical investigations and the 2020/2021 Focused RI. It is consistent with the anticipated future use of Sites 109 and 110, which is commercial. An environmental easement will be placed on the property that, at minimum, will prohibit unpermitted groundwater use and uncontrolled subsurface excavations, and may include other institutional controls to protect commercial and industrial users of the property from potential exposure to environmental impacts related to historical facility operations. A Site Management Plan (SMP) will define the procedures to be followed while redeveloping and maintaining the property. An Excavation Work Plan (EWP) will define the procedures to be followed while excavating on the property for foundations, utilities, and other subgrade construction.

Groundwater ingestion is not considered a potential exposure pathway for any offsite receptors because groundwater is not in use as, or suitable for use as, a potable source in any adjacent offsite areas. Roblin Steel (former Wickwire Plant), which is downgradient of Site 109, has an environmental easement in place prohibiting the use of groundwater as a potable water source. It is anticipated that a similar environmental easement will be established at Site 108, which is also downgradient of Site 109. National Grid property, which is downgradient of Site 110, is vacant and does not contain any water wells, and is under high voltage powerlines which would prevent future site development.

Potential exposure pathways for the four identified potential receptors are discussed in the following table.

- Current site worker (including workers performing work on the portion of Site 110 owned by National Grid)
- Future site worker (including workers performing work on the portion of Site 110 owned by National Grid)

- Future office worker
- Current and future off-site workers

Environmental Media & Exposure Route	Human Exposure Assessment
Direct contact with groundwater (and incidental ingestion)	 Current site workers may come into contact with impacted groundwater while performing intrusive work such as investigation or IRM/remedial activities. Future site workers may encounter contaminated groundwater during intrusive construction activities for future redevelopment or subsequent construction/maintenance activities. Current/future off-site utility workers may encounter impacted groundwater during intrusive work in the off-site National Grid utility corridor (downgradient of Site 110). These workers may not be HAZWOPER trained or aware of the constituents in groundwater. Remediation may minimize the risk of exposure. This potential exposure is only relevant to Site 110, as data do not indicate significant off-site migration of contaminants in groundwater at Site 109. For all of the above potential exposures, proper use of PPE, decontamination methods, and other protective measures would
Inhalation (exposure related to volatilization of contaminants / vapor intrusion)	 minimize the risk of exposure. There were no VOC exceedances in any media in samples from Site 109. Therefore, the following exposures are only applicable to Site 110, where there were limited soil and groundwater VOC exceedances and relatively high levels of VOCs in subsurface tar samples. Current site workers may encounter impacted vapors while performing work at the site. Future site workers may encounter impacted vapors while performing redevelopment or other work at the site. Future office workers may encounter impacted vapors via vapor intrusion into buildings of VOCs originating from subsurface tar and/or impacted soil and/or groundwater. Remediation and/or site management may reduce this risk. A soil vapor intrusion evaluation will be completed for any new occupied construction planned on the site.
Inhalation (exposure related to fugitive dust)	 VOC impacts are not observed in downgradient wells, indicating that VOCs are not travelling off-site. Therefore, offsite exposure to vapors from Site 110 groundwater is not a potential exposure pathway for current/future off-site workers. Current site workers may encounter fugitive dust while performing work at the site. Future site workers may encounter fugitive dust while performing redevelopment work at the site. For both of the above potential exposures, mitigation measures such as spreading water for dust suppression and air monitoring would minimize the risk of exposure. Future office workers will not be exposed to fugitive dust because the anticipated commercial use of the site will include paving, buildings, and landscaping, which will cover impacted soil and prevent mobilization.

Direct contact with surface soil (and incidental ingestion)	 Current site workers may come into contact with impacted surface soil while performing work such as investigation or IRM/remedial activities. Future site workers may encounter impacted surface soil during construction activities for future redevelopment or subsequent construction/maintenance activities. Remediation may minimize the risk of exposure. For all of the above potential exposures, proper use of PPE,
	 decontamination methods, and other protective measures would minimize the risk of exposure. Future office workers will not be exposed to impacted surface soil because the anticipated commercial use of the site will include paving, buildings, and landscaping, which will cover impacted soil.
Direct contact with subsurface soil (and incidental ingestion)	 Current site workers may come into contact with impacted soll. Current site workers may come into contact with impacted surface soil while performing intrusive work such as investigation or IRM/remedial activities. Future site workers may encounter impacted surface soil during intrusive construction activities for future redevelopment or subsequent construction/maintenance activities. Remediation may minimize the risk of exposure. For all of the above potential exposures, proper use of PPE, decontamination methods, and other protective measures would minimize the risk of exposure. Future office workers will not be exposed to impacted subsurface soil because the anticipated commercial use of the site will include paving, buildings, and landscaping, which will cover impacted soil.

8.0 PRELIMINARY REMEDIAL ACTION OBJECTIVES

Remedial action objectives (RAOs) will be developed in the FFSs for Sites 109 and 110.

9.0 SUMMARY AND CONCLUSIONS

The Focused RI, completed in 2020 and 2021, significantly expanded site information on groundwater and soil. Field observations and analytical results verified the presence of materials and constituents that would be expected in materials resulting from the coking operations associated with the former TCC facility.

9.1 Nature and Extent of Impacts

Historical sample results and analytical data compiled as part of the Focused RI were compared to applicable SCGs for soil and groundwater to assess impacts and to develop an understanding of the nature and distribution of environmental impacts at Sites 109 and 110.

9.1.1 Surface and Subsurface Soil

Soil analytical results were compared to commercial use SCGs, which is consistent with anticipated future use. Surface and subsurface soil exceedances of SCGs are present throughout Sites 109 and 110. The primary constituents exceeding SCGs in surface and subsurface soil are PAHs. Exceedances of SCGs occur primarily within fill that is present in varying thicknesses across both sites.

Drainage ditch soils/sediment showed the highest concentrations of SVOCs at Site 109, potentially due to historic spillage from the former elevated coal conveyor that was located over this area and/or due to erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch.

Areas of subsurface tar, primarily viscous or hardened tar, are present at Site 110. At Site 110, SVOC concentrations are often highest in intervals where tar was encountered. Results indicate that coal present within the fill is also contributing to SVOC concentrations in Site 110 soils.

9.1.2 Groundwater

Groundwater occurs as a perched, intermittent surficial aquifer in the fill unit at Sites 109 and 110. Occurrence of groundwater is highly dependent on the nature (permeability) of the fill. A low conductivity glaciolacustrine clay aquitard is present beneath the fill at Sites 109 and 110 that restricts vertical flow of groundwater from fill.

Groundwater impacts at Site 109 are very limited, with most impacts observed in the upgradient well. Groundwater samples show exceedances of SCGs for one or more constituents in samples from all wells at Site 109. However, most exceedances are for metals, which are likely primarily due to naturally occurring conditions. Results indicate that site soils at Site 109 are not significantly impacting Site 109 groundwater.

Groundwater samples exceeded one or more SCG in samples from all wells at Site 110. Exceedances of SCGs occur primarily for SVOCs (particularly PAHs), cyanide, and metals. Localized VOC impacts (primarily BTEX compounds) were also noted at one monitoring well. Metals exceedances of SCGs at Site 110 are likely primarily due to naturally occurring conditions. Localized areas at Site 110 contain subsurface tar in various forms. Laboratory results indicate that tar does not appear to be contributing significantly to groundwater impacts. Groundwater gradients across Site 110 are very low, and slightly eastward. Results indicate that groundwater impacts are not migrating significantly eastward onto the adjacent National Grid property.

Honeywell

DADSOI

Cyanide has been detected in Site 110 groundwater samples both on the RITC property and that portion of the National Grid property. The detection on the National Grid property may be associated with upgradient disposal of purifier wastes noted in three test pits.

9.2 Conceptual Site Model

9.2.1 Site 109

Results of the previous investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 109 are material handling and disposal practices.

A layer of fill is present across the majority of Site 109, ranging in thickness from 0 feet to 16 feet. The fill typically consists of silt and clay and includes a variety of other materials co-placed with the earthen materials, including C&D debris such as concrete, red brick, yellow fire brick, rock fragments, and wood, and coke manufacturing by-products such as breeze, coke, coal, and slag.

Historical spillage from the coal conveyor, which formerly ran along the southern site boundary adjacent to the drainage ditch and/or erosion and transport of soils impacted with coal and coke from areas upgradient of Site 109 into the on-site drainage ditch may have impacted soil quality within the open channel drainage ditch.

Groundwater impacts at Site 109 are very limited, with most impacts observed in the upgradient well. Therefore, investigation results indicate constituents of fill at Site 109 are not significantly impacting groundwater through leaching or direct contact.

9.2.2 Site 110

Results of the previous investigations and the 2020/2021 Focused RI indicate that the primary sources of impacts to Site 110 are material disposal practices.

A layer of fill is present across the entirety of Site 110, ranging in thickness from 3.0 feet to 16.5 feet. The fill typically consists of coke breeze and is often mixed with earthen materials including silt and sand, debris including brick, glass, wood, plastic, and rubber, and coke manufacturing by-products including coke, coal, slag, and fly ash. The constituents within this fill may contribute to impacts to groundwater through leaching and direct contact.

Localized areas at Site 110 contain subsurface tar in various forms. Laboratory results indicate that tar-impacted materials are not contributing significantly to groundwater impacts, except for in localized areas where tar is in direct contact with groundwater.

Groundwater gradients across Site 110 are very low, and slightly eastward. Results indicate that SVOC groundwater impacts are not migrating significantly eastward onto the adjacent National Grid property.

Cyanide has been detected in Site 110 groundwater samples both on the RITC property and the portion of the Site located on National Grid property. The detection on the National Grid property may be associated with disposal of purifier wastes noted in upgradient test pit TP-14-2020.

9.6 Qualitative Human Health Exposure Assessment

A QHHEA was completed, consistent with NYSDEC guidance (NYSDEC 2010a), to evaluate how people might be exposed to site-related constituents, and to identify and characterize the potentially exposed population(s) now

and under the reasonably anticipated future use of Sites 109 and 110. Potential exposures for current and future site use, which is anticipated to be commercial, are detailed below.

Current Site Worker Under the current use scenario, there is a potentially complete pathway for HAZWOPERtrained site workers performing surface or intrusive work, such as site investigation or IRM activities, to come in contact with all identified impacted media. Proper use of PPE, decontamination methods, and other protective measures during on-site work, consistent with currently used health and safety measures, minimizes the risk of exposure to impacted media for current site workers. That portion of Site 110 that lies on National Grid property is assumed to remain industrial for the foreseeable future. The potential for utility worker exposure, who may or may not be HAZWOPER trained or aware of the constituents in soil or groundwater exists on that portion of Site 110.

Future Site Worker: It is anticipated that the primary future use of Sites 109 and 110 will be commercial, which will include landscaping, paving and buildings. This would provide at least a partial cover, which would reduce but not eliminate potential exposure by future site workers to impacted surface soil. There is a potentially complete pathway for site workers performing construction activities during future redevelopment, or subsequent construction or maintenance activities, to come in contact with all identified impacted media. Site remediation and/or proper use of PPE, decontamination methods, and other protective measures during these activities would minimize the risk of exposure to impacted media for future site workers.

It is anticipated that the primary future use of that portion of Site 110 on National Grid property will remain industrial.

Future Office Worker: The only identified, potentially complete exposure pathway for future office workers is via inhalation, specifically inhalation of fugitive dust and inhalation due to vapor intrusion into buildings of VOCs originating from impacted soil and/or groundwater.

There were no exceedances of groundwater or Commercial Soil SCGs for VOCs at Site 109, therefore, the potential exposure pathway for VOCs is considered incomplete at Site 109.

There was only one VOC exceedance of Commercial SCGs for soil and one localized exceedance of SCGs for groundwater at Site 110. However, relatively high levels of VOCs were detected in the two tar samples characterized. Therefore, the potential exposure pathway for VOCs is considered complete for Site 110.

There is no complete exposure pathway associated with groundwater usage by future office workers. There is a municipal water supply available for Sites 109 and 110 and it is anticipated that institutional controls, such as an environmental easement, will be implemented in the future, preventing use of site groundwater for drinking water purposes.

Given that the areas of the site which future office workers will be interacting will be paved, landscaped, and otherwise developed, there is no complete exposure pathway associated with direct contact or incidental ingestion of surface or subsurface soil.

Current/Future Off-Site Worker: Potential exposure pathways for current/future off-site workers only exist for Site 110, as significant groundwater impacts were not observed at downgradient wells at Site 109. Off-site workers at the National Grid property downgradient of Site 110 may encounter groundwater impacted with cyanide while doing intrusive work. Site remediation and/or proper use of PPE, decontamination methods, and other protective measures during these activities would minimize the risk of exposure to impacted groundwater for off-site workers.

9.7 Next Steps

FFSs are being prepared by Parsons for Honeywell for submittal to and approval by NYSDEC using information developed during the site investigation to develop and evaluate the range of technologies and alternatives appropriate for Sites 109 and 110. Consistent with the February 2020 Order on Consent, alternatives were developed to consider additional actions that may be necessary beyond those identified in the 2008 ROD due to the change in use of the site, which is anticipated to include commercial development.

Based on the results of the FS, NYSDEC will prepare a draft ROD Amendment. The draft ROD Amendment will describe the remedy preferred by NYSDEC and will summarize the basis for the recommendation of the preferred remedy by discussing each alternative and the reasons for choosing or rejecting it. The goal of any cleanup plan is to protect public health and the environment. NYSDEC will present the draft ROD Amendment to the public for its review and comment during a 30-day comment period and at a public meeting. NYSDEC will consider public comments as it selects the remedy to address impacts related to Sites 109 and 110. The selected remedy will be described in the final ROD Amendment, which will explain why the remedy was selected and respond to any public comments.

10.0 REFERENCES

Blasland, Bouck & Lee, Inc. 2002. Remedial Investigation Report Envirotek II Site I. Roblin Steel. May.

- Conestoga-Rovers & Associates. 1990. *Final Report Supplementary Site Investigation*. Tonawanda Coke Site. July.
- Conestoga-Rovers & Associates. 1992. Additional Site Investigation. Tonawanda Coke Site. November.
- Conestoga-Rovers & Associates. 1997. Remedial Investigation Summary Report. Tonawanda Coke Site. May.
- Conestoga-Rovers & Associates. 2008. Final Supplemental Report Revision 1 and Feasibility Study. Tonawanda Coke Site. January.
- Dvirka and Bartilucci. 1993. Remedial Investigation and Feasibility Study, Phase I/Phase II Remedial Investigation Report, Qualitative Health Risk Assessment, and Preliminary Feasibility Study, River Road Site, Town of Tonawanda, Erie County, New York. September.
- Earth Dimensions, Inc. 2021. Wetland and Waterbodies Delineation Report for Riverview Innovation & Technology Campus. April.
- Eckhardt, D.A.V., J.E. Reddy, and K.L. Tamulonis. 2008. *Ground-Water Quality in Western New York, 2006*. U.S. Geological Survey.
- Fluor Daniel GTI, Inc. 1998. Phase II Environmental Site Assessment Report. C.R. Huntley Steam Station. August 4.
- Goldberg-Zoino Associates. 1983. Geotechnical Report for Niagara Mohawk Power Corporation C.R. Huntley Steam Station Wastewater Management Systems Project. August.
- Inventum Engineering. 2020a. Stormwater Pollution Prevention Plan, Riverview Innovation & Technology Campus, BCP Site No. C915353. Brownfield Cleanup Program. May 29.
- Inventum Engineering. 2020b. Remedial Investigation Work Plan, Riverview Innovation & Technology Campus, BCP Site No. C915353. Brownfield Cleanup Program. October.
- Inventum Engineering, P.C. 2021a. Surface Water System Maintenance, IRM Work Plan, Concrete-lined Settling Ponds. July 2021.
- Inventum Engineering, P.C. 2021b. Abandoned Tonawanda Coke Pipelines IRM Work Plan. April 2021.
- Inventum Engineering. 2021c. Remedial Investigation Report Draft in progress.
- La Sala, A.M., Jr. 1968. *Ground-Water Resources of the Erie-Niagara Basin, New York*. State of New York Conservation Department Water Resources Commission.
- Malcolm Pirnie. 1986. Tonawanda Coke Corporation Phase II Site Investigation. Tonawanda Coke Site. December.
- NYSDEC. 1998. Technical and Operational Guidance Series (TOGS) 1.1.1. Division of Water.
- NYSDEC. 2006. 6 NYCRR Part 375, Environmental Remediation Programs, Subparts 375-1 to 375-4 &375-6. December 14.
- NYSDEC. 2010a. DER-10/Technical Guidance for Site Investigation and Remediation. May 3.

NYSDEC. 2010b. CP-51/Soil Cleanup Guidance. October 2010.

- NYSDEC. 2017. State Pollutant Discharge Elimination System (SPDES) Permit, Issued to Tonawanda Coke Corporation. Expires May 31, 2022, Issued June 1.
- NYSDEC. 2020. Guidelines for Sampling and Analysis of PFAS. January.
- NYSDEC. 2021. Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs. June.
- O'Brien & Gere. 1989. Remedial Investigation, Cherry Farm Site, Tonawanda, New York. June.
- Parsons. 2002. Post Construction Groundwater Monitoring at the Cherry Farm Site (NYSDEC Site No. 9-15-063) River Road Site (NYSDEC Site No. 9-15-031). March.
- Parsons. 2003. Operations, Maintenance, and Monitoring at the Cherry Farm Site (NYSDEC Site No. 9-15-063) River Road Site (NYSDEC Site No. 9-15-031). March.
- Parsons. 2004. Operations, Maintenance, and Monitoring at the Cherry Farm Site (NYSDEC Site No. 9-15-063) River Road Site (NYSDEC Site No. 9-15-031). April.
- Parsons. 2017. Investigation Summary Report Tonawanda Plastics. October.
- Parsons. 2020. Final Work Plan, Focused Remedial Investigation and Feasibility Study for Operable Units 1 (Site 110) and 2 (Site 109), Tonawanda Coke Site. July.
- Parsons. 2021. Remedial Investigation Work Plan Addendum, Operable Units 1 (Site 110) and 2 (Site 109), Tonawanda Coke Site. August.
- Parsons. 2022. Work Plan, Focused Remedial Investigation Phase II, Operable Unit 1 (Site 110), Tonawanda Coke Site. September.
- Parsons Engineering Science, Inc. 2001. Post Construction Groundwater Monitoring at the Cherry Farm Site (NYSDEC Site No. 9-15-063) River Road Site (NYSDEC Site No. 9-15-031). February.
- Recra Research, Inc. 1983. New York State Superfund Phase I Summary Report. Tonawanda Coke Site. November 18.
- Tonawanda Coke Corporation. 2016. Best Management Practices Plan. September.
- USEPA. 1985. Preliminary Evaluation of Chemical Migration to Groundwater and the Niagara River from Selected Waste Disposal Sites. EPA-905/4-85-001. Prepared by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation for the U.S. Environmental Protection Agency.

TABLES

TABLE 1 FOCUSED RI TAR OBSERVATIONS

Location	Depth (ft bgs)	Tar Type	Details	Occurrence
TP-07-2020	0-2.5; 3.0	Coated material	Tar-coated wooden poles	
TP-07-2020	2.5 - 3.5	Pliable tar/fill mixture	Mixed with breeze	
TP-07-2020	2.5 - 3.5	Tar saturated	Dripping off sidewall	
TP-07-2020A	0 - 2.0	Pliable tar/fill mixture		On east end of excavation
TP-07-2020A	2.0 - 3.0	Pliable tar/fill mixture		Most visible on south wall
TP-07-2020C	2.6 - 3.4	Pliable tar/fill mixture	Mixed with breeze and other fill	On north, south, and west sidewalls
TP-08-2020W	1.5 - 5.0	Pliable tar/fill mixture	Mixed with breeze	Tapers out towards the west beneath the base of adjacent mound
TP-08-2020W	5.0 - 8.0	Globs of pliable tar/fill mixture		
TP-08-2020A	3	Pliable tar/fill mixture		Did not excavate beyond tar
TP-08-2020B	3	Pliable tar/fill mixture		Did not excavate beyond tar
TP-08-2020C	0.8	Pliable tar/fill mixture		
TP-09-2020S	2	Globs of pliable tar/fill mixture		
TP-09-2020S	6.0 - 7.0	Hardened tar/fill mixture	Trace hardened tar/fill mixture	
TP-09-2020W	2.5, 3.75; 5.3	Pliable tar/fill mixture	Mixed with breeze	Seams, at 2.5' and 3.75' bgs on north wall and 5.3 ft bgs on south wall
TP-09-2020W2	4	Pliable tar/fill mixture	Mixed with breeze	
TP-09-2020E	4.3 - 6.5	Hardened tar/fill mixture	Mixed with breeze	
TP-10-2020W	13.5 - 15.0	Coated material	Breeze, some clay, little coke, coated in tar	
TP-10-2020E	13.5	Glob of pliable tar/fill mixture	One glob, 2" in size	
TP-10-2020N	2.5 - 3.8	Pliable tar/fill mixture	Mixed with breeze and coke, plastic wadded up	Pulled from eastern sidewall, 1.5 x 1' pocket
TP-10-2020A	0.5 - 2.5	Pliable tar/fill mixture	Nearly solid, mixed with breeze, fly ash, nodules	2 x 2' pocket fell out of wall
TP-10-2020A	13.5 - 15.5	Pliable tar/fill mixture	Highly viscous, mixed mostly with breeze	
TP-11-2020E	2.0 - 3.0	Pliable tar/fill mixture		
TP-11-2020N	3.4	Pliable tar/fill mixture		
TP-11-2020W	1.0 - 1.5	Pliable tar/fill mixture	Highly viscous, mixed with breeze and concrete	0.5 x 2' pocket
TP-11-2020S	2	Pliable tar/fill mixture		Predominantly on south end, small pocket on north end, gets deeper moving south
TP-12-2020S	0 - 4.5	Pliable tar/fill mixture		Trace discrete, ~1" diameter chunks
TP-12-2020W	0 - 5.5	Pliable tar/fill mixture		One small, discrete chunk observed in soil stockpile; Not possible to determine exact depth of origin
TP-12-2020E	0.0 - 4.0	Pliable tar/fill mixture		One discrete chunk
TP-13-2020S	3.0 - 5.0	Hardened tar/fill mixture	Hardened tar with brick	Observed in interval with strong tar-like odor and heavy sheen on water
TP-15-2020S	2.5	Hardened tar/fill mixture		Trace discrete chunks
TP-33-2020B	2.0 - 3.0	Hardened tar/fill mixture	Mixed with breeze, nodules, and wood	Forms iron stained ledge on west and south walls
TP-33-2020D	4.5 - 5.0	Hardened tar/fill mixture	Mixed with breeze and nodules	
TP-33-2020D	4.5 - 5.0	Tar saturated material		

TABLE 1 FOCUSED RI TAR OBSERVATIONS

Location	Depth (ft bgs)	Tar Type	Details	Occurrence
TP-34-2021	1.5 - 7.5	Tar saturated	Tar saturated towards the top, grades to pliable tar/fill mixture	Continuous layer
TP-34-2021	1.5 - 7.5	Pliable tar/fill mixture	Mixed with breeze and nodules; Very nodule rich 6.5 - 7.5 ft bgs; Some clay mixed in towards bottom of interval	Continuous layer
TP-35-2021	0.0 - 3.0	Pliable tar/fill mixture	Mixed with breeze and nodules	Discrete chunks; Tar also observed on ground surface prior to digging
TP-35-2021	0.0 - 3.0	Coated material	C&D debris coated in pliable tar/fill mixture	
TP-35-2021	3.25 - 5.0	Pliable tar/fill mixture	Mixed with breeze and nodules	Discrete chunks
TP-35-2021	3.0 - 3.25	Tar saturated		
TP-35-2021	5.0 - 6.5; 7.0 - 7.7	Pliable tar/fill mixture	Tar-rich matrix mixed with breeze, nodules, coke, and gravel	
MW-06-2020	4.5 - 5.5	Pliable tar/fill mixture	Mixed with crushed brick and breeze	
MW-06-2020	6.0 - 6.5	Tar saturated		
TP-51-2022	4.5 - 5.0	Pliable tar/fill mixture	8"x6"x2" chunk	One discrete chunk

TABLE 2 FOCUSED RI MEASURED GROUNDWATER ELEVATIONS

	Measuring Point		Water Elevation	on (ft NAVD88)	
Location ID	Elevation (ft NAVD88) ¹	December 2020	January 2021	September 2021	January 2023
		S	ite 109		
MW-01-2020	603.30	599.54	598.05	598.36	NA
MW-02-2020	590.31	581.28	582.37	581.47	NA
MW-03-2020	589.63	572.91	571.52	575.25	NA
MW-17-89	578.79	575.86	575.59	575.43	NA
		S	ite 110		
MW-04-2020	611.35	607.09	606.85	606.17	607.92
MW-05-2020	610.07	605.77	606.01	603.89	606.72
MW-06-2020	609.47	606.01	605.89	604.48	606.54
MW-07-2020	610.67	606.85	605.54	605.54	607.47
MW-08-2020	608.01	NA	NA	603.52	604.58
MW-16-2020	609.24	NA	NA	604.42	606.03
MW-23-2022	610.05	NA	NA	NA	607.00

Notes:

NA: Not Applicable

1. Measuring point is the top of the PVC riser for each well

TABLE 3 FOCUSED RI TYPICAL COAL, COKE AND TAR ANALYTICAL RESULTS

				Field Sample ID Sampled	Coal - 10152021 10/15/2021 Coal	Coke - 101 10/15/2 Coke	021
				Location	Coal Charging Building	Coke Pile West	
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾			
mounou	TSO	Total Solids	%		88.4	98.6	;
		Metals					
SW6010	7429-90-5	Aluminum	mg/kg		5500	686	М
W6010	7440-38-2	Arsenic	mg/kg	16	6.89	1.21	
SW6010	7440-39-3	Barium	mg/kg	400	75.8	12.8	
SW6010	7440-41-7	Beryllium	mg/kg	590	0.441	0.245	
SW6010	7440-43-9	Cadmium	mg/kg	9.3	0.354	0.245	
SW6010	7440-70-2	Calcium	mg/kg		21800	258	DM
SW6010	7440-47-3	Chromium, Total ⁽²⁾	mg/kg	400	9.15	1.35	
SW6010	7440-48-4	Cobalt	mg/kg		4.77	2.45	U
SW6010	7440-50-8	Copper	mg/kg	270	21.3	7.63	D
SW6010	7439-89-6	Iron	mg/kg		9150	1770	
SW6010	7439-92-1	Lead	mg/kg	1000	38.0	1.63	
SW6010	7439-95-4	Magnesium	mg/kg		7330	88.6	
SW6010	7439-96-5	Manganese	mg/kg	10000	311	14.0	
SW6010	7440-02-0	Nickel	mg/kg	310	9.69	1.48	J
SW6010	7440-09-7	Potassium	mg/kg		1100	129	
SW6010	7782-49-2	Selenium	mg/kg	1500	0.917 J	0.980	
SW6010	7440-23-5	Sodium	mg/kg		158	62.4	
SW6010	7440-62-2	Vanadium	mg/kg		11.9	1.42	
SW6010	7440-66-6	Zinc	mg/kg	10000	74.9	5.51	
SW7471	7439-97-6	Mercury	mg/kg	2.8	2.21	0.00548	
		Volatiles					
SW8260C		Benzene	mg/kg	44	0.0782	0.00658	
	100-41-4	Ethylbenzene	mg/kg	390	0.0609	0.00658	
	100-42-5	Styrene	mg/kg		0.106	0.0164	
	108-88-3	Toluene	mg/kg	500	0.181	0.00658	
		m,p-Xylene	mg/kg	500	0.336	0.00658	
SW8260C		0-Xylene (1,2-Dimethylbenzene)	mg/kg	500	0.308	0.00658	1
5W8260C	1330-20-7	Total Xylenes	mg/kg	500	0.644	0.00658	U
000700		Semivolatiles				0.000	
SW8270D SW8270D	01 57 6	1,1-Biphenyl	mg/kg		20 J 73.5	0.286	
SW8270D SW8270D		2-Methylnaphthalene Carbazole	mg/kg		73.5	0.165	
348021UD	00-14-8	PAHs	mg/kg	├	10.9	0.286	0
SW8270D	83-32.0	Acenaphthene	mg/kg	500	39.6	0.286	
	208-96-8	Acenaphthylene	mg/kg	500	90.2	0.286	
	120-12-7	Anthracene	mg/kg	500	154	0.286	
SW8270D		Benzo(A)Anthracene	mg/kg	5.6	208	0.286	
SW8270D		Benzo(A)Pyrene	mg/kg	1	147	0.286	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	134	0.286	
	191-24-2	Benzo(G,H,I)Perylene	mg/kg	500	76.1	0.286	
	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	134	0.286	
	218-01-9	Chrysene	mg/kg	56	184	0.286	
SW8270D		Dibenz(A,H)Anthracene	mg/kg	0.56	24	0.286	
	132-64-9	Dibenzofuran	mg/kg	350	91.4	0.286	
	206-44-0	Fluoranthene	mg/kg	500	539	0.347	
SW8270D		Fluorene	mg/kg	500	140	0.286	
	193-39-5	Indeno(1,2,3-C,D)Pyrene	mg/kg	5.6	79.4	0.286	
SW8270D		Naphthalene	mg/kg	500	213	1.29	
SW8270D		Phenanthrene	mg/kg	500	611	0.432	
SW8270D	129-00-0	Pyrene	mg/kg	500	382	0.260	J
		Total PAHs ⁽³⁾	mg/kg	500	3247	6.05	
		Total PAHs ⁽³⁾	mg/kg	500	3200	6.00	1

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental

Remediation Programs," December 14, 2006.

(2) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(3) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

D: Sample, laboratory Control Sample, or Matric Spike Duplicate results abbove Relative Percent Difference limit.

J: Result estimated between the quantitation limit and half the quantitation limit

TABLE 3 FOCUSED RI TYPICAL COAL, COKE AND TAR ANALYTICAL RESULTS

				Field Sample ID Sampled		Coke - 10152021 10/15/2021 Coke
				Location	Coal Charging Building	Coke Pile West of Battery
Analytical Method	CAS_RN	Chemical Name	Unit	Soil Cleanup Objective (SCO) for Commercial Use ⁽¹⁾		

M: Matrix spike recoveries outside QC limits. Matrix bias indicated.

ND: Analyzed for but not detected at or above the quantitation limit

Only detected compounds are presented

Shaded: Value exceeds Commercial SCOs

No. Normal Normal <th>-10142020 MW-03-2020-0.16-1.0-10142020 0.16 1 0 10/14/2020 2 R2009712</th> <th>MW-03-2020 MW-03-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-007 REG SOIL</th> <th>MW-02-2020 MW-02-2020-5.0-6.0-10142020 5 6 10/14/2020 R2009622 R2009622-011 REG SOIL</th> <th>MW-02-2020 MW-02-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009622 R2009622-010 REG SOIL</th> <th>MW-02-2020 MW-02-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009622 R2009622-009 REG SOIL</th> <th>MW-01-2020 MW-01-2020-3.0-4.0-10132020 3 4 10/13/2020 R2009622 R2009622-005 REG SOIL</th> <th>MW-01-2020 MW-01-2020-0.16-1.0-10132020 0.16 1 10/13/2020 R2009622 R2009622-002 REG SOIL</th> <th>.16-10132020 </th> <th>MW-01-2 MW-01-2020-0.0-0. 0 0.16 10/13/2 R200962 R2009622 REG SOIL</th> <th>Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix</th> <th>S</th> <th></th> <th></th> <th></th>	-10142020 MW-03-2020-0.16-1.0-10142020 0.16 1 0 10/14/2020 2 R2009712	MW-03-2020 MW-03-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-007 REG SOIL	MW-02-2020 MW-02-2020-5.0-6.0-10142020 5 6 10/14/2020 R2009622 R2009622-011 REG SOIL	MW-02-2020 MW-02-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009622 R2009622-010 REG SOIL	MW-02-2020 MW-02-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009622 R2009622-009 REG SOIL	MW-01-2020 MW-01-2020-3.0-4.0-10132020 3 4 10/13/2020 R2009622 R2009622-005 REG SOIL	MW-01-2020 MW-01-2020-0.16-1.0-10132020 0.16 1 10/13/2020 R2009622 R2009622-002 REG SOIL	.16-10132020 	MW-01-2 MW-01-2020-0.0-0. 0 0.16 10/13/2 R200962 R2009622 REG SOIL	Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	S			
BLD BLD Sol Sol </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Objective (SCO) for Commercial</th> <th>11-18</th> <th>Character Manage</th> <th></th> <th>-</th>										Objective (SCO) for Commercial	11-18	Character Manage		-
DDD DDD <th>84.3</th> <th>76.7</th> <th>89.8</th> <th>84.9</th> <th>78.6</th> <th>82.1</th> <th>83.7</th> <th></th> <th>85.2</th> <th>Use"</th> <th>Unit %</th> <th></th> <th>_</th> <th></th>	84.3	76.7	89.8	84.9	78.6	82.1	83.7		85.2	Use"	Unit %		_	
OPAID OPAID <th< th=""><th></th><th>10.1</th><th>00.0</th><th>04.0</th><th>10.0</th><th>02.1</th><th>55.1</th><th></th><th>00.2</th><th></th><th>%</th><th></th><th></th><th></th></th<>		10.1	00.0	04.0	10.0	02.1	55.1		00.2		%			
NNM NNM <td></td>														
NNM N	0.0011 U 0.0011 U													
STOR JP Networksetwarderbit de NOT Main Mark Automation Mark Store JP <	0.0011 U													
Normal Name Annum App A	0.0011 U	0.0012 U	0.001 U	0.00031 J	0.00027 J	0.0012 U	0.00071 J	J	0.00037	0.440 ⁽²⁾		Perfluorooctanesulfonic Acid (PFOS)	1763-23-1	E537M
Norm Manual Angene Norm	0.0011 U									0.500 ⁽²⁾				
Non-20 753 00 min mem <	0.0011 U	0.0012 U	0.001 U	0.0011 U	0.0013 U	0.0012 U	0.0012 U	U	0.0011		mg/kg		2058-94-8	E537M
Second Second<	18000	18100	12600	4970	15500	12600	2420		1870		mg/kg		7429-90-5	SW6010
NMMAD Mark Mode Add-2/ Mode Mode Mode Mode <th< td=""><td>5.4</td><td>5.6</td><td>7.8</td><td>2.3</td><td>5.3</td><td>11.6</td><td>2.3</td><td></td><td>2.8</td><td>16</td><td>mg/kg</td><td></td><td>7440-38-2</td><td>SW6010</td></th<>	5.4	5.6	7.8	2.3	5.3	11.6	2.3		2.8	16	mg/kg		7440-38-2	SW6010
Sintername register 0.227 0.287 0.288 0.488 0.138 0.138 0.337	124					-			-					
Sinter Sinter<	0.821													
NMOD Hole Mode Number Mode Mode Add Mathematic Mode Add Mathematic Mode Add Mathematic Mode M	36600							5						
Symbol Hyde-So Dopy Profile 270 17.4 17.8 13.8 13.6 9.7 13.6 13.3 Symbol 7.439-56.1 Roft 7.20 7.20 7.20 9.70	24.9									400	mg/kg	Chromium ⁽³⁾		
pymode instant mp/s	10.6									070				
SW000 748942 Isad 944 944 944 943 944 944 943 943 943 944 943 943 944 943 943 944 943 943 944 943 943 943 944 943 944 943 943 943 944 943 943 943 943 943 943 943 943 943 943 944 944 943 944 944 943 944 943 944 944 943 944 944 944 944 944 944 944 943 944 944 9	29100			-	-		-			270		a shih s		
Sweed Pagenes Magenes MyS2 Sumple Magenes MyS2	42.8									1000				
Syndip 744020 Nixed mg/s 300 7.7 7.2	10100													
SW0010 7440.97 Puteshum mg/sg	596 21.7											-		
SW030 782-82 Skein/m mg/kg 1500 1.2 0 1.1 0 1.1 0 0.033 3 1.1 1.1 1.1 0 0.033 0 1.2 0 0 0 0 0 <t< td=""><td>2730</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2730													
Name	1.1 U			1.1 U		11.5 U	1.2 U	U	1.2	1500		Selenium		
Name Tabue Name Name <t< td=""><td>1.1 U</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1.1 U		-	-	-	-								
Y440	155 1.1 U													
Syn 47:1 743 97.6 Mercury march march 2.8 0.045 0.056 0.010 0.007 0.073 0.042 0.042 0.068 Syn 02 57:125 Gennde, fotal march 2.8 0.041 0.056 0.010 0.041 0.073 0.042 0.042 0.068 Syn 02 57:125 Gennde, fotal march 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.001 0.005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0010 0.0011 0.011 0.011 0.011 0.001 0.0005 0.0011 0.0011 0.0011 0.011 0.0011	35.6													
Syn012 S7.125 Opende Tool ng/kg 27 0.037 0.045 3.34 0.044 1.37 1.08 0.037 W012 S7.125 Opende Tool No No No No No No No SW021 72.55 4.40DF mg/kg 47 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.005 0 0.005 0 0.005 0 0.011 0.01 </td <td>182</td> <td></td>	182													
Image: Name of the state of the s	0.133 0.23 J											· ·		
Store 3 4.4 DT mg/kg 47 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01		0.0 0	1.00	1.01	0.44	0.04	0.40		0.01	21	1116/116		01 12 0	0110012
SW001 1031078 Endosultan Sultane ⁽ⁱⁱ⁾ mg/kg 200 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.005 U 0.001 U 0.011 U SW001 7421934 Endrin Aldehyde mg/kg 0.01 U 0.01 U 0.011 U 0.011 U 0.011 U 0.011 U 0.005 U 0.011 U SW001 5364-X7 Endrin Aldehyde mg/kg 0.01 U 0.01 U 0.011 U 0.011 U 0.011 U 0.005 U 0.011 U SW001 5564-X7 Gamma-Chlordane mg/kg 0.01 U <	0.011													
SW8081 7421.93.4 Endm Aldehyde mg/rg 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th< td=""><td>0.01 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44</td><td></td><td></td></th<>	0.01 U											44		
SW8081 53494-705 Endrin Metone mg/kg 0.01 U	0.01 U 0.01 U													
SW801 764.8 Heptachor mg/kg 15 0.01 U 0.01 U 0.011 U 0.011 U 0.001 U 0.001U	0.01 U	0.011 U	0.0095 U	0.01 U	0.011 U	0.01 U	0.01 U	U	0.01				53494-70-5	SW8081
SW801 7243-5 Methoxychlor mg/g . 0.01 U 0.01 U 0.010 U 0.001 U 0.0007 J SW802 12672-96 Arcolor-1248 Mg/g 1 0.04 U 0.04 U <t< td=""><td>0.01 U</td><td>0.011 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.01 U	0.011 U												
Image: Normal Sector Personance Image: Normal Sector Image: Normal Secto	0.01 U 0.01 U													
12672-296 Arocior-1248 mg/kg 1 0.04 U		0.0001 5	0.0000	0.01 0	0.011 0	0.010	0.01 0	Ť	0.01		<u>6</u> / Ng		. 2 40 0	0110001
SW802 11096-82-5 Aroclor-1260 mg/kg 1 0.04 U 0.04 U 0.043 U 0.044 U 0.043 U 0.044 U 0.043 U 0.044 U 0.04	0.039 U											Aroclor-1248		
SW802 1100-144 Arcdor-1268 mg/kg 1 0.039 J 0.04 U 0.043 U 0.040 U 0.037 U 0.043 U Image: Comparison of the comparison of	0.039 U													
Image: series of the series	0.039 U 0.039 U													
Volatiles Image: Constraint of the second														
	0.039 U	0.043 U	0.037 U	0.04 U	0.043 U	0.041 U	0.04 U	ļŢ	0.039	1	mg/kg			
ן עטערצעע דעסיפיט דעטפאט דער איז ארא ארא ארא ארא ארא ארא ארא ארא ארא אר	0.0055 11	0.007.00	0.0072.11	0.0050.00	0.7.11	0.0069.11	0.0072.11		0.0000	500	mc/lvc		79 02 2	SW/9260
Sw8260 591.78-6 2-Hexanone mg/kg 0.0089 U 0.0072 U 0.0068 U 0.0059 U 0.0073 U 0.0071	0.0055 U 0.0055 U									500				
SW8260 108-10-1 4-Methyl-2-Pentanone mg/kg 0.0089 U 0.0072 U 0.0068 U 0.0095 U 0.0073 U 0.007 U	0.0055 U	0.007 U	0.0073 U	0.0059 U	0.0095 U	0.0068 U	0.0072 U	U	0.0089				108-10-1	SW8260
SW8260 67-64-1 Acetone mg/kg 500 0.0089 U 0.0072 U 0.0068 U 0.017 U 0.0073 U 0.0071 U 0.0073 U 0.0071 U 0.0073 U 0.0071	0.0055 U													
SW8260 71-43-2 Benzene mg/kg 44 0.008 µ 0.007 µ 0.0068 µ 0.009 µ 0.005 µ 0.007	0.0055 U 0.0055 U													
SW8260 17-13-0 Calobi Distinue Ing/ng 0.008-0 0.0072 0.008-0 0.008-0 0.009-0 0.009-0 0.009-0 0.0073 0.0070 0.0070 SW8260 67-66-3 Chloroform mg/kg 350 0.0089 0.0072 0.0068 0.0095 0 0.0059 0 0.0073 0 0.007 0	0.0055 U													
SW8260 156-59-2 cis-1,2-bickloroethene mg/kg 500 0.0089 0 0.0072 0 0.0068 U 0.0095 U 0.0073 U 0.007 U	0.0055 U									500	mg/kg	cis-1,2-Dichloroethene		
SW8260 110-82-7 Cyclohexane mg/kg 0.0089 U 0.0004 J 0.0068 U 0.0095 U 0.0073 U 0.0071 SW8260 100-41-4 Ethylbenzene mg/kg 390 0.0089 U 0.0072 U 0.0068 U 0.0095 U 0.0073 U 0.0071 U	0.0055 U 0.0055 U													
	0.0055 U	0.007 U 0.007 U												

			S	Location ID eld Sample ID tart Depth (ft) End Depth (ft) Sampled SDG ab Sample ID Sample Type	MW-01-2020 MW-01-2020-0.0-0.16-10132020 0 0.16 10/13/2020 R2009622 R2009622-001 REG	MW-01-2020 MW-01-2020-0.16-1.0-10132020 0.16 1 10/13/2020 R2009622 R2009622-002 REG	MW-01-2020 MW-01-2020-3.0-4.0-10132020 3 4 10/13/2020 R2009622 R2009622-005 REG	MW-02-2020 MW-02-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009622 R2009622-009 REG	MW-02-2020 MW-02-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009622 R2009622-010 REG	MW-02-2020 MW-02-2020-5.0-6.0-10142020 5 6 10/14/2020 R2009622 R2009622-011 REG	MW-03-2020 MW-03-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-007 REG	MW-03-2020 MW-03-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009712 R2009712-008 REG
				Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾								
SW8260	_	4 m&p-Xylenes	mg/kg	500	0.018 UJ	0.014 UJ	0.014 U	0.019 U	0.012 U	0.015 U	0.014 U	0.011 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0089 U	0.0072 U	0.0068 U	0.0048 J	0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0089 U	0.00049 J	0.0068 U	0.0095 U	0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	95-47-6	o-Xylene	mg/kg	500	UJ 0.0089	0.0072 UJ	0.0068 U	0.0095 U	0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	100-42-5	Styrene	mg/kg		0.0089 UJ	0.0072 UJ	0.0068 U	0.0095 U	0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	108-88-3	Toluene	mg/kg	500	0.0089 U	0.0072 U	0.0068 U	0.0095 U	0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.018 U	0.014 U	0.014 U	0.019 U	0.012 U	0.015 U	0.014 U	0.011 U
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.0089 U	0.0072 U 0.0072 U	0.0068 U	0.0095 U	0.0059 U 0.0059 U	0.0073 U	0.007 U	0.0055 U
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.0089 U	0.0072 0	0.0068 U	0.0095 U	0.0059 0	0.0073 U	0.007 U	0.00051 J
0140070	00.50.4	Semivolatiles			0.07	0.00	0.45	0.015	0.000	0.007 !!	0.040	0.011
	92-52-4 105-67-9	1,1'-Biphenyl 2,4-Dimethylphenol	mg/kg		0.27	0.22	0.15 J	0.015 J 0.041 U	0.022 J 0.039 U	0.037 U 0.037 U	0.042 U 0.042 U	0.011 J 0.039 U
SW8270 SW8270	105-67-9 91-57-6	2,4-Dimethylphenol 2-Methylnaphthalene	mg/kg		0.2 U 2.1	0.2 U 1.4	0.2 U 1.1	0.041 0	0.039 0	0.037 0	0.042 0	0.039 0
	91-57-6 95-48-7	2-Methylphenol	mg/kg mg/kg	500	0.2 U	0.2 U	0.2 U	0.088 0.041 U	0.12 0.039 U	0.072 0.037 U	0.022 0.042 U	0.042 0.039 U
	34METPH	3&4-Methylphenol	mg/kg	500	0.2 0 0.071 J	0.255 J	0.2 U	0.011 J	0.011 J	0.037 U	0.042 U	0.039 U
SW8270	100-52-7	Benzaldehyde	mg/kg	500	0.2 U	0.2 U	0.2 U	0.041 U	0.039 U	0.037 U	0.042 UJ	0.039 UJ
	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		3.6 U	3.6 U	3.6 U	0.75 U	0.7 U	0.67 U	0.76 U	0.7 U
	86-74-8	Carbazole	mg/kg		1.8	0.89	0.74	0.075	0.14	0.035 J	0.036 J	0.063
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		3 U	3 U	3 U	0.62 U	0.59 U	0.56 U	0.63 U	0.59 U
SW8270	108-95-2	Phenol	mg/kg	500	0.2 U	0.2 U	0.2 U	0.041 U	0.039 U	0.037 U	0.042 U	0.039 U
		PAHs										
SW8270	83-32-9	Acenaphthene	mg/kg	500	1.3	0.65	0.75	0.09	0.17	0.021	0.024	0.035
SW8270	208-96-8	Acenaphthylene	mg/kg	500	0.55	0.74	0.4	0.11	0.17	0.067	0.08	0.17
SW8270	120-12-7	Anthracene	mg/kg	500	2.7	1.8	1.2	0.14	0.35	0.061	0.15	0.25
	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	11	6.2	5.1	0.74	1.3	0.24	0.4	0.71
SW8270	50-32-8	Benzo(A)Pyrene	mg/kg	1	18	10	9.3	1.5	2.3	0.36	0.58	1.1
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	20	12	9.4	1.6	2.3	0.39	0.71	1.1
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	15	8.8	7.6	1.2	1.8	0.22	0.28	0.72
SW8270	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	6.6	3.8	3.5	0.46	0.62	0.14	0.24	0.38
	218-01-9	Chrysene	mg/kg	56	13	7.5	5.9	0.89	1.4	0.3	0.45	0.77
SW8270	53-70-3 132-64-9	Dibenzo(a,h)Anthracene	mg/kg	0.56	2	1.4	1.3 0.54	0.23 0.05	0.31	0.064	0.067	0.19
SW8270 SW8270	132-64-9 206-44-0	Dibenzofuran	mg/kg	350	1.1	0.81	8.5	1.3	0.1	0.026	0.03	0.04
SW8270 SW8270	206-44-0 86-73-7	Fluoranthene Fluorene	mg/kg mg/kg	500 500	0.97	0.54	0.43	0.042	0.11	0.49	0.8	0.055
SW8270 SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	15	8.9	7.5	1.2	1.8	0.26	0.044	0.055
	91-20-3	Naphthalene	mg/kg	500	2.3	1.8	1.1	0.27	0.41	0.26	0.28	0.14
SW8270	85-01-8	Phenanthrene	mg/kg	500	12	6.2	4.9	0.53	1.1	0.29	0.46	0.56
SW8270	129-00-0	Pyrene	mg/kg	500	19	10	8.5	1.3	2.2	0.48	0.72	1.1
							0.0			0.10	0.12	
		Total PAHs ⁽⁵⁾	mg/kg	500	160	91	76	12	19	3.5	5.4	9.2
L		rotarr/ing		000	100				10	5.0		0.2

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Asssessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented
Shaded: Value exceeds Commercial SCOs

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-03-2 MW-03-2020-8.0-1 8 10 10/14/2 R200971 R200971 REG SOIL	0.0-10142020 020 /12 2-009	SB-01-2020 SB-01-2020-0.0-0.16-10132020 0 0.16 10/13/2020 R2009622 R2009622-003 REG SOIL	SB-01-20 SB-01-2020-0.16-1 0.16 1 10/13/21 R20096 R2009622 REG SOIL	.0-10132020 020 22 2-004	SB-01-2020 SB-01-2020-3.0-4.0-10132020 3 4 10/13/2020 R2009622 R2009622-006 REG SOIL	SB-02-20 SB-02-2020-0.0-0. 0 12/3/20 R201158: R201158: REG SOIL	16-12032020 020 82 2-001	SB-02-2020 SB-02-2020-0.16-1.0-12032020 0.16 1 12/3/2020 R2011582 R2011582-002 REG SOIL	SB-02-2020 SB-02-2020-2-3-120 2 3 12/4/2020 R2011582 R2011582-00 REG SOIL	042020	SB-03-2020 SB-03-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-001 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾												
E160.3	SOLID	Solids	%		90		67	73.7		86.8						77
E160.3	SOLIDS	Total Solids	%								75.1		80.8	85.6		
E537M	2991-50-6	PFAS n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg	5	0.0011						-					
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg		0.0011	U										
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg		0.0011	U										
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	5 0.440 ⁽²⁾	0.0011	U										
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg		0.0011	U	ļ			ļ						
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg	5	0.0011	U										łł
SW6010	7429-90-5	Metals and Cyanide	mg/kg	5	14700		4750	6910		17400	11300		14600	13300		12600
SW6010	7440-38-2	Arsenic	mg/kg		3.1		25.7	10		2.9	10.7		5.2	4.1		10.2
SW6010	7440-39-3	Barium	mg/kg	g 400	132		95	113		85	106		134	107		82.6
SW6010	7440-41-7	Beryllium	mg/kg		1.8		0.962	1.3		0.783	1		0.705	0.639		0.732
SW6010 SW6010	7440-43-9 7440-70-2	Cadmium Calcium	mg/kg mg/kg	g 9.3	0.278	J	0.502 J 3120	0.665 3200	J	0.161 J 10300	2.8 22700		0.359 J 59600	0.364 J 60600		0.744 4540
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	g 400	12.3		14.5	17.5		23.5	22700		20.5	20.3		19.1
SW6010	7440-48-4	Cobalt	mg/kg		2.9	J	9.3	13.8		9	24.6		10.1	9.8		9.3
SW6010	7440-50-8	Copper	mg/kg		42.1		34.1	38.2		19.5	46.5		18.9	18.4		19.6
SW6010	7439-89-6	Iron	mg/kg	1000	12900		14300	20100		26600	42900		27600	27500		24500
SW6010 SW6010	7439-92-1 7439-95-4	Lead Magnesium	mg/kg mg/kg		17.2 24200		58 2430	77.4 2450		10.6 10100	94.2 8790		14.1 14800	8.6 15300		58.2 3070
SW6010	7439-96-5	Manganese	mg/kg		1430		211	2430		300	1000		637	529		826
SW6010	7440-02-0	Nickel	mg/kg	g 310	8.6		24.5	26.7		24.8	49.3		23.1	23.9		23.1
SW6010	7440-09-7	Potassium	mg/kg		1240		1120	1290		2390	1650		3550	2820		1420
SW6010 SW6010	7782-49-2 7440-22-4	Selenium Silver	mg/kg mg/kg		1.1		2.3 1.4 U	13.6 1.4		1.2 U 1.2 U	1.2 1.2		1.2 U 1.2 U	1.1 U 1.1 U		8.9 J 0.094 J
SW6010	7440-22-4	Sodium	mg/kg		626		1.4 U	73.1		330	1.2	0	291	209		80 J
SW6010	7440-28-0	Thallium	mg/kg		0.722	J	1.4 U	1.4	U	1.2 U	12.1	U	1.2 U	1.1 U		1.2 U
SW6010	7440-62-2	Vanadium	mg/kg		13.5		18.6	22		29.1	31.3		30.8	28.1		30.4
SW6010 SW7471	7440-66-6 7439-97-6	Zinc Mercury	mg/kg mg/kg		83.1		172 0.081	225 0.104		77 0.018 J	405 0.278		71.8	67.8 0.038 U		137 0.104
SW9012	57-12-5	Cyanide, Total	mg/kg		0.087		0.85	0.104		0.24 U	0.278		0.23 J	0.038 U 0.25 U		0.45
		Pesticides														
SW8081	72-55-9	4,4'-DDE	mg/kg		0.0095		0.013 U	0.011		0.002 U	0.022		0.021 U	0.002 U		0.011 U
SW8081 SW8081	50-29-3 1031-07-8	4,4'-DDT	mg/kg	47 200	0.0095	U	0.018 0.013 U	0.011 0.011		0.002 U 0.002 U	0.022	U	0.021 U 0.093	0.002 U 0.002 U		0.011 U 0.011 U
SW8081 SW8081	1031-07-8 7421-93-4	Endosulfan Sulfate ⁽⁴⁾ Endrin Aldehyde	mg/kg mg/kg		0.0095	U	0.013 0	0.011		0.002 U 0.002 U	0.042	ر. اا	0.093 0.021 U	0.002 U 0.0012 J		0.011 U 0.011 U
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.0095	U	0.023 0.013 U	0.011		0.002 U	0.022	~	0.022 J	0.0012 J		0.011 U
SW8081	5566-34-7	Gamma-Chlordane	mg/kg	í.	0.0095	U	0.013 U	0.011	U	0.002 U	0.021		0.026	0.002 U		0.011 U
SW8081	76-44-8	Heptachlor	mg/kg		0.0095		0.013 U	0.011		0.002 U	0.022		0.021 U	0.0018 J		0.011 U
SW8081	72-43-5	Methoxychlor PCBs	mg/kg		0.0095	U	0.013 U	0.011	U	0.002 U	0.022	υ	0.021 U	0.0014 J		0.011 U
SW8082	12672-29-6	Aroclor-1248	mg/kg	g 1	0.081		0.051 U	0.045	U	0.039 U	0.043	U	0.042 U	0.026 J		0.043 U
SW8082	11097-69-1	Aroclor-1254	mg/kg		0.037		0.051 U	0.045	U	0.039 U	0.043	U	0.042 U	0.039 U		0.043 U
SW8082	11096-82-5	Aroclor-1260	mg/kg	g 1	0.024		0.032 J	0.045		0.039 U	0.043		0.042 U	0.039 U		0.043 U
SW8082	11100-14-4	Aroclor-1268	mg/kg	g 1	0.037	U	0.051 U	0.045	U	0.039 U	0.043	U	0.042 U	0.039 U		0.043 U
		Total PCBs ⁽⁵⁾	mg/kg	g 1	0.105		0.032	0.045	U	0.039 U	0.043	U	0.042 U	0.026		0.043 U
	1	Volatiles		, -	0.100			0.040			0.040	-		0.020		
SW8260	78-93-3	2-Butanone	mg/kg	g 500	0.14		0.01 U	0.0072	J	0.0047 U	0.0061	U	0.0032 J	0.0032 J		0.0081 U
SW8260	591-78-6	2-Hexanone	mg/kg	í.	0.24		0.01 UJ	0.0015	J	0.0047 U	0.0061		0.0058 U	0.006 U		0.0081 U
SW8260	108-10-1	4-Methyl-2-Pentanone	mg/kg		0.24		0.01 U	0.00071	J	0.0047 U	0.0061		0.0058 U	0.006 U		0.0081 U
SW8260 SW8260	67-64-1 71-43-2	Acetone Benzene	mg/kg mg/kg		0.24		0.01 U 0.01 U	0.058 0.0098	U	0.0044 J 0.0047 U	ND 0.00077	1	0.02 0.0015 J	0.026 0.0011 J		0.021 0.0081 U
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.24		0.01 U	0.0098		0.0047 U	0.0061	- UJ	0.00053 J	0.006 UJ		0.0081 U
SW8260	67-66-3	Chloroform	mg/kg	g 350	0.24	U	0.00061 J	0.001	J	0.0047 U	0.0061		0.0058 U	0.006 U		0.0081 U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg		4.7		0.01 U	0.0098		0.0047 U	0.0061		0.0058 U	0.006 U		0.00081 J
SW8260 SW8260	110-82-7 100-41-4	Cyclohexane Ethylbenzene	mg/kg mg/kg		0.015		0.00063 J 0.01 UJ	0.0019 0.0098		0.0047 U 0.0047 U	0.0061		0.0018 J 0.00034 J	0.021 J 0.00057 J		0.0081 U 0.0081 U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.035		0.01 UJ	0.0098		0.0047 U	0.0008		0.00034 J	0.00037 J		0.0081 U
	+	· · · *		•												

			Fleid Sa Start D End D Sa Lab Sa	cation ID ample ID Depth (ft) Depth (ft) Sampled SDG ample ID ple Type	MW-03-2020 MW-03-2020-8.0-10.0-10142020 8 10 10/14/2020 R2009712 R2009712-009 REG	SB-01-2020 SB-01-2020-0.0-0.16-10132020 0 0.16 10/13/2020 R2009622 R2009622-003 REG	SB-01-2020 SB-01-2020-0.16-1.0-10132020 0.16 1 10/13/2020 R2009622 R2009622-004 REG	SB-01-2020 SB-01-2020-3.0-4.0-10132020 3 4 10/13/2020 R2009622 R2009622-006 REG	SB-02-2020 SB-02-2020-0.0-0.16-12032020 0 0.16 12/3/2020 R2011582 R2011582-001 REG	SB-02-2020 SB-02-2020-0.16-1.0-12032020 0.16 1 12/3/2020 R2011582 R2011582-002 REG	SB-02-2020 SB-02-2020-2-3-12042020 2 3 12/4/2020 R2011582 R2011582-003 REG	SB-03-2020 SB-03-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-001 REG
Analytical			Soll Ob.	Matrix Cleanup Jective CO) for mercial	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Method	CAS_RN	Chemical Name	Unit U	lse ⁽¹⁾								
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.77	0.021 UJ	0.02 UJ	0.0093 U	0.0025 J	0.0011 J	0.0013 J	0.016 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.24 U	0.01 U	0.0098 U	0.0047 U	0.0061 U	0.0058 U	0.0018 J	0.0014 J
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.07 J	0.00081 J	0.0035 J	0.0047 U	0.00067 J	0.0048 J	0.053	0.0081 U
SW8260	95-47-6	o-Xylene		500	0.062 J	0.01 UJ	0.0098 UJ	0.0047 U	0.0024 J	0.00066 J	0.00066 J	0.0081 U
SW8260	100-42-5	Styrene	mg/kg		0.24 U	0.01 UJ	0.0098 UJ	0.0047 U	0.00084 J	0.00029 J	0.00041 J	0.0081 U
SW8260	108-88-3	Toluene	00	500	0.044 J	0.01 U	0.00044 J	0.0047 U	0.0017 J	0.0022 J	0.0027 J	0.0081 U
SW8260	1330-20-7	Total Xylenes	0 0	500	0.83	0.021 U	0.02 U 0.0098 U	0.0093 U	0.0049 J	0.0018 J 0.0058 U	0.0020 J 0.006 U	0.016 U
SW8260 SW8260	156-60-5 79-01-6	trans-1,2-Dichloroethene Trichloroethene	00	500 200	6.3	0.01 U 0.01 U	0.0098 U	0.0047 U 0.0047 U	0.0061 U 0.0061 U	0.0058 U 0.0058 U	0.006 U	0.0011 J 0.00045 J
3W6260	79-01-0		nig/ kg	200	6.5	0.01 0	0.0098 0	0.0047 0	0.0081 0	0.0058 0	0.008 0	0.00045 J
010020	00 50 4	Semivolatiles			0.37 U	4.5	0.78	0.020	0.1 !!	2	0.20 11	0.002
SW8270 SW8270	92-52-4 105-67-9	1,1'-Biphenyl 2,4-Dimethylphenol	mg/kg		0.37 U	1.5 0.37	0.78	0.038 U 0.038 U	2.1 U 2.1 U	2 0	0.38 U 0.38 U	0.023 J 0.043 U
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		0.37 0	2.4 J	8.3	0.038 U 0.0043 J	0.63 J	ND 2 0	0.38 U	0.043 0
SW8270	91-57-6 95-48-7	2-Methylphenol	mg/kg mg/kg	500	0.17 0.37 U	0.37	0.23	0.038 U	2.1 U	ND 211	0.38 U	0.17 0.043 U
SW8270	34METPH	3&4-Methylphenol	0 0	500	0.37 U	3.1	1.9	0.038 U	2.1 U	20	0.38 U	0.043 U
SW8270	100-52-7	Benzaldehyde	mg/kg	500	0.37 U	0.33	0.35	0.038 U	11 U	10 U	1.9 U	0.043 UJ
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		6.7 U	3.3 J	2 J	0.69 U	0.9 J	3.1 U	0.57 U	0.13 J
SW8270	86-74-8	Carbazole	mg/kg		0.2 J	2.2 J	4.6	0.038 U	1.7 J	1.4 J	0.38 U	0.13
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		5.6 U	0.56 J	0.34 J	0.58 U	2.1 U	2	0.38 U	0.66 U
SW8270	108-95-2	Phenol		500	0.37 U	3	1.9	0.038 U	2.1 U	2 U	0.38 U	0.043 U
		PAHs										
SW8270	83-32-9	Acenaphthene	mg/kg	500	0.11	1.2 J	3.3	0.0076 U	6.9	4.9	0.38 U	0.14
SW8270	208-96-8	Acenaphthylene		500	0.36	1.4	1.5	0.0076 U	20	8.5	0.38 U	0.097
SW8270	120-12-7	Anthracene	0 0	500	0.47	4.4 J	6.7	0.0076 U	32	12	0.067 J	0.19
SW8270	56-55-3	Benzo(A)Anthracene		5.6	1.1	96	26	0.014	73	25	0.12 J	0.95
SW8270	50-32-8	Benzo(A)Pyrene	mg/kg	1	1.7	20 J	43	0.021	86	34	0.11 J	1.8
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	2	21 J	43	0.023	83	34	0.11 J	1.8
SW8270	191-24-2	Benzo(G,H,I)perylene	0.0	500	1.1	16 J	32	0.017	38	15	0.38 U	1.3
SW8270	207-08-9	Benzo(K)Fluoranthene	00	56	0.68	6.6 J	15	0.0078	28	13	0.38 U	0.5
SW8270	218-01-9	Chrysene	0 0	56	1.3	16 J	30	0.015	70	25	0.12 J	1.1
SW8270	53-70-3	Dibenzo(a,h)Anthracene		0.56	0.24	3.6 J	7.1	0.0042 J	9	3.6	0.38 U	0.21
SW8270	132-64-9	Dibenzofuran		350	0.19	1.3 J	3.3	0.0076 U	8.1	6.2	0.38 U	0.078
SW8270	206-44-0	Fluoranthene	00	500	2.5	21 J	47	0.022	180	63	0.34 J	1.8
SW8270	86-73-7	Fluorene	0.0	500	0.26	1.2 J	2.7	0.0076 U	19	12	0.38 U	0.066
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene		5.6	0.99	17 J	31	0.016	40	16	0.38 U	1.3
SW8270 SW8270	91-20-3 85-01-8	Naphthalene	00	500	0.39	3.2 J 14 J	9.4	0.0057 J 0.016	4.1	0.97 J 28	0.38 U 0.24 J	0.16 0.94
		Phenanthrene	0 0	500		14 J 20 J	29 46	0.016	150	28		0.94
SW8270	129-00-0	Pyrene	mg/kg	500	2.2	20 3	40	810.0	100	10	0.26 J	1.1
				500	47	200	380	0.10	0.40	350	1.4	11
		Total PAHs ⁽⁵⁾	mg/kg	500	17	260	380	0.18	940	350	1.4	14

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Asssessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented
Shaded: Value exceeds Commercial SCOs

			Field Sta En Lat	Location ID d Sample ID rt Depth (ft) d Depth (ft) Sampled SDG b Sample ID sample Type Matrix	SB-03-2020 SB-03-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009712 R2009712-002 REG SOIL	SB-04-2020 SB-04-2020-0.0-0.16-10142020 0 0.16 10/14/2020 R2009712 R2009712-003 REG SOIL	SB-04-2020 SB-04-2020-0.0-0.16-10142020 FD 0 0.16 10/14/2020 R2009712 R2009712-004 FD SOIL	SB-04-2020 SB-04-2020-0.16-1.0 0.16 1 10/14/202 R2009712 R2009712-0 REG SOIL	20 20	SB-04-2020 SB-04-2020-3.0-4.0-10142020 3 4 10/14/2020 R2009712 R2009712-006 REG SOIL	TP-01-2020 TP-01-2020-0.0-0.16-092920 0 0.16 9/29/2020 R2009023 R2009023-002 REG SOIL	TP-01-2020 20 TP-01-2020-0.16-1.0-09292020 0.16 1 9/29/2020 R2009023 R2009023-003 REG SOIL	TP-01-2020 TP-01-2020-2.0-3.0-09292020 2 3 9/29/2020 R2009023 R2009023-004 REG SOIL
Analytical Method	CAS_RN	Chemical Name		oll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾									
E160.3		Solids	%		87.1	77.1	78.4	85.9		85.6	86.6	90	91
E160.3		Total Solids PFAS	%										
E537M		n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg			0.0013 U	0.0012 U	0.0011 U		0.0003 J	0.0011 U	0.00092 U	0.00085 U
E537M		Perfluoroheptanoic Acid (PFHpA)	mg/kg			0.0013 U	0.0012 U	0.0011 U		0.0011 U	0.00029 J	0.00024 J	0.00085 U
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg			0.0013 U	0.0012 U	0.00037 J		0.0011 U	0.0011 U	0.00092 U	0.00085 U
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾		0.0013 U	0.0012 U	0.0011 U		0.0011 U	0.00082 J	0.00081 J	0.00046 J
E537M		Perfluorooctanoic Acid (PFOA)	_	0.500 ⁽²⁾		0.0013 U	0.0012 U	0.0011 U		0.0011 U	0.0011 U	0.00092 U	0.00014 J
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg			0.0013 U	0.0012 U	0.0011 U		0.0011 U	0.00024 J	0.00092 U	0.00085 U
SW6010	7429-90-5	Metals and Cyanide Aluminum	mg/kg		13000	17900	16900	15500		15100	18300	12200	9920
SW6010		Arsenic	mg/kg	16	8.9	5.8	5.4	4.9 J		8	6.9	6.8	3.9
SW6010	7440-39-3	Barium	mg/kg	400	76.4	104	101	128 J		114	99.3	95.7	76
SW6010		Beryllium	mg/kg	590	0.723	0.802	0.748	0.951		0.865	0.85	0.797	0.56
SW6010 SW6010		Cadmium Calcium	mg/kg mg/kg	9.3	0.597 3350	0.637 7910	0.576 J 10300	1.3 52400 J		0.696 37200	0.359 J 5920	0.629 51600	0.527 J 73500
SW6010		Chromium ⁽³⁾	mg/kg	400	17.8	23.4	22.1	20 J		24.2	23.7	18.1	14.9
SW6010		Cobalt	mg/kg		10	10.5	9.4	10.6		10.1	11.1	6.9	6.1
SW6010	7440-50-8	Copper	mg/kg	270	13.7	68.1	65	262 J		69.4	18.1	130	102
SW6010		Iron	mg/kg		27600	28900	26800	24400		25500	29600	19300	17700
SW6010 SW6010		Lead	mg/kg	1000	41 3060	28.9 5690	28.8 5440	39.3 11500 J		52.4	36.7 4570	60.9 10600	38.7
SW6010		Magnesium Manganese	mg/kg mg/kg	10000	904	534	483	849 J		10700 568	663	586	27300 449
SW6010		Nickel	mg/kg	310	18.4	20.5	19	19.2		24.3	19.9	17.6	14.4
SW6010		Potassium	mg/kg		1110	2940	2790	2780		2350	2090	1710	1750
SW6010		Selenium	mg/kg	1500	11.5 U 1.2 U	1.2 U	1.2 U 1.2 U	1.1 U		1.1 U	0.828 J	1.1 U 1.1 U	1.1 U
SW6010 SW6010	-	Silver Sodium	mg/kg mg/kg	1500	1.2 U 81.8 J	1.2 U 87.1 J	1.2 U 90 J	1.1 U 195		0.09 J 194	1.1 U 78.9 J	1.1 0	1.1 U 178
SW6010		Thallium	mg/kg		1.2 U	1.2 U	1.2 U	1.1 U		1.1 U	1.1 U	1.1 U	11 U
SW6010		Vanadium	mg/kg		33.3	36.3	33.6	28.8		30	37.4	24.6	20.1
SW6010		Zinc	mg/kg	10000	102	142	148	387		166	2.2 U	2.1 U	2.2 U
SW7471 SW9012		Mercury Cyanide, Total	mg/kg mg/kg	2.8 27	0.091 0.35	0.057 0.42	0.062	0.127 J 0.24		0.433	0.072 0.29 J	0.14	0.149 0.31
0110012	01 12 0	Pesticides	ing/ Ng	21	0.00	0.12	0.01	0.24		0.21	0.20 5	0.02	0.01
SW8081	72-55-9	4,4'-DDE	mg/kg	62	0.0099 U	0.011 U	0.0058 J	0.0099 U		0.01 U	0.015 J	0.011 J	0.019 U
SW8081		4,4'-DDT	mg/kg	47	0.0099 U	0.011 U	0.011 U	0.0099 U		0.01 U	0.011 J	0.018 J	0.019 U
SW8081		Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.0099 U	0.011 U	0.011 U	0.0099 U		0.01 U	0.019 U	0.018 U	0.019 U
SW8081 SW8081		Endrin Aldehyde Endrin Ketone	mg/kg mg/kg		0.0099 U 0.0099 U	0.011 U 0.011 U	0.011 U 0.011 U	0.0099 U 0.0099 U		0.01 U 0.01 U	0.019 U 0.019 U	0.018 U 0.018 U	0.019 U 0.019 U
		Gamma-Chlordane	mg/kg		0.0099 U	0.011 U	0.011 U	0.0099 U		0.01 U	0.019 U	0.018 U	0.019 U
SW8081	76-44-8	Heptachlor	mg/kg	15	0.0099 U	0.011 U	0.011 U	0.0099 U		0.01 U	0.019 U	0.018 U	0.019 U
SW8081		Methoxychlor	mg/kg		0.0099 U	0.011 U	0.011 U	0.0099 U		0.01 U	0.019 U	0.018 U	0.019 U
SW8000		PCBs	mallia	1	0.032	0.051	0.042 UJ	0.000		0.020 //	0.000 //	0.000	
SW8082 SW8082		Aroclor-1248 Aroclor-1254	mg/kg mg/kg	1	0.038 U 0.038 U	0.05 J 0.043 U	0.042 UJ 0.042 U	0.039 U 0.039 U		0.039 U 0.039 U	0.038 U 0.038 U	0.036 U 0.036 U	0.036 U 0.036 U
SW8082		Aroclor-1260	mg/kg	1	0.038 U	0.043 U	0.042 U	0.039 U		0.024 J	0.038 U	0.026 J	0.036 U
SW8082	11100-14-4	Aroclor-1268	mg/kg	1	0.038 U	0.043 U	0.042 U	0.039 U		0.039 U	0.038 U	0.036 U	0.036 U
		(E)			0.000								
		Total PCBs ⁽⁵⁾	mg/kg	1	0.038 U	0.05	0.042 U	0.039 U		0.024	0.038 U	0.026	0.036 U
SW8260	78-93-3	Volatiles 2-Butanone	mg/kg	500	0.0061 U	0.0049 J	0.0064 U	0.006 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
		2-Bitanone 2-Hexanone	mg/kg	000	0.0061 U	0.0085 U	0.0064 U	0.006 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	108-10-1	4-Methyl-2-Pentanone	mg/kg		0.0061 U	0.0085 U	0.0064 U	0.006 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260		Acetone	mg/kg	500	0.0061 U	0.025 J	0.0062 J	0.006 U		0.0087 U	0.033	0.0069 U	0.0069 U
SW8260 SW8260	-	Benzene Carbon Disulfide	mg/kg mg/kg	44	0.0061 U 0.0061 U	0.0085 U 0.0085 U	0.0064 U 0.0064 U	0.006 U 0.006 U		0.0087 U 0.0087 U	0.0087 U 0.0087 U	0.0069 U 0.0069 U	0.0069 U 0.0069 U
		Chloroform	mg/kg	350	0.0061 U	0.0085 U	0.0064 U	0.008 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.0061 U	0.0085 U	0.0064 U	0.006 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260		Cyclohexane	mg/kg		0.0061 U	0.0085 U	0.0064 U	0.006 U		0.0087 U	0.0087 U	0.0069 U	0.0069 U
		Ethylbenzene Isopropylbenzene	mg/kg mg/kg	390	0.0061 U 0.0061 U	0.0085 U 0.0085 U	0.0064 U 0.0064 U	0.006 U 0.006 U		0.0087 U 0.0087 U	0.0087 U 0.0087 U	0.0069 U 0.0069 U	0.0069 U 0.0069 U
3110200	30-02-0	100p10p1001120110	····6/ ^8		0.0001 0	0.0000 0	0.0004 0	0.000 0	ł	0.0001 0	0.0007 0	0.0009 0	0.000310

			S	Location ID leid Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type	SB-03-20: SB-03-2020-0.16-1. 0.16 1 10/14/20 R2009712 R2009712 REG	0-10142020 SB-04-2020-0.0-0.1 0 0 0.16 20 10/14/20 12 R20097	16-10142020 020 12 -003	SB-04-2020 SB-04-2020-0.0-0.16-10142020 FD 0 0.16 10/14/2020 R2009712 R2009712-004 FD	SB-04-2020 SB-04-2020-0.16-1.0-10142020 0.16 1 10/14/2020 R2009712 R2009712-005 REG	SB-04-2020 SB-04-2020-3.0-4.0-1014202 3 4 10/14/2020 R2009712 R2009712-006 REG	TP-01-2020 TP-01-2020-0.0-0.16-09292020 0 0.16 9/29/2020 R2009023 R2009023 R2009023-002 REG	TP-01-2020 TP-01-2020-0.16-1.0-09292020 0.16 1 9/29/2020 R2009023 R2009023-003 REG	TP-01-2020 TP-01-2020-2.0-3.0-09292020 2 3 9/29/2020 R2009023 R2009023-004 REG
Analytical Method	CAS_RN	Chemical Name	Unit	Matrix Soil Cleanup Objective (SCO) for Commercial Use ⁽¹⁾	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SW8260		t m&p-Xylenes	mg/kg	500	0.012 l	J 0.017	U	0.013 U	0.012 U	0.017 U	0.017 U	0.014 U	0.014 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0061 l	J 0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0061 l	0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	95-47-6	o-Xylene	mg/kg	500	0.0061 l	J 0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	100-42-5	Styrene	mg/kg		0.0061 l	J 0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	108-88-3	Toluene	mg/kg	500	0.0061 (J 0.0085	U	0.0064 U	0.006 U	0.0087 U	0.00088 J	0.0069 U	0.0069 U
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.012 (0.017	U	0.013 U	0.012 U	0.017 U	0.017 U	0.014 U	0.014 U
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.0061 (0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.0069 U
SW8260	79-01-6	Trichloroethene Semivolatiles	mg/kg	200	0.0061 (J 0.0085	U	0.0064 U	0.006 U	0.0087 U	0.0087 U	0.0069 U	0.00093 J
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.012	0.042	U	0.043 U	0.013 J	0.12 U	0.038 U	0.11 U	0.037 U
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.039 l	J 0.042	U	0.043 U	0.038 U	0.12 U	0.038 U	0.11 U	0.037 U
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		0.1	0.032		0.03	0.048	0.083	0.03	0.11	0.022
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.039 l	J 0.042	U	0.043 U	0.038 U	0.12 U	0.038 U	0.11 U	0.037 U
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.039 l	J 0.042	U	0.043 U	0.038 U	0.12 U	0.038 U	0.11 U	0.037 U
SW8270	100-52-7	Benzaldehyde	mg/kg		0.039 l	JJ 0.042	UJ	0.043 UJ	0.038 UJ	0.12 U	0.038 U	0.11 U	0.037 U
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		0.059	0.77	U	0.78 UJ	0.039 J	2.1 U	0.69 U	2 U	0.67 U
SW8270	86-74-8	Carbazole	mg/kg		0.06	0.036	-	0.048	0.073	0.1 J	0.037 J	0.2	0.036 J
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		0.59 l	J 0.64		0.65 U	0.58 U	1.8 U	0.58 U	1.7 U	0.56 U
SW8270	108-95-2	Phenol	mg/kg	500	0.039 l	J 0.042	U	0.043 U	0.038 U	0.12 U	0.038 U	0.11 U	0.037 U
		PAHs											
SW8270	83-32-9	Acenaphthene	mg/kg	500	0.055	0.022		0.033	0.052	0.097	0.02	0.14	0.024
SW8270	208-96-8	Acenaphthylene	mg/kg	500	0.057	0.095		0.1	0.21	0.24	0.051	0.37	0.11
SW8270	120-12-7	Anthracene	mg/kg	500	0.084	0.11		0.13	0.35	0.46	0.081	0.67	0.17
SW8270	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	0.38	0.44		0.51	1.1	1.5	0.41	3.1	0.53
SW8270	50-32-8	Benzo(A)Pyrene	mg/kg	1	0.69	0.73		0.78	1.5	2.1	0.67	4.9	0.73
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6 500	0.69	0.81		0.84 0.29	1.6 0.53	2.2	0.75	5.1	0.84
SW8270 SW8270	191-24-2 207-08-9	Benzo(G,H,I)perylene Benzo(K)Fluoranthene	mg/kg	500 56	0.39	0.28		0.29	0.53	0.76	0.43	1.9	0.38
SW8270	207-08-9	Chrysene	mg/kg mg/kg	56	0.24	0.27		0.28	1.2	1.4	0.27	3.4	0.28
SW8270	53-70-3	Dibenzo(a.h)Anthracene	mg/kg	0.56	0.48	0.074		0.085	0.15	0.36	0.51	0.51	0.39
SW8270	132-64-9	Dibenzofuran	mg/kg	350	0.035	0.074		0.029	0.063	0.13	0.022	0.14	0.036
SW8270	206-44-0	Fluoranthene	mg/kg	500	0.72	0.023		0.86	2.2	4.2	0.93	5.6	1
SW8270	86-73-7	Fluorene	mg/kg	500	0.032	0.028		0.037	0.087	0.2	0.022	0.21	0.047
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	0.44	0.33		0.35	0.6	1.5	0.48	3.8	0.45
SW8270	91-20-3	Naphthalene	mg/kg	500	0.093	0.087		0.089	0.15	0.18	0.063	0.37	0.073
SW8270	85-01-8	Phenanthrene	mg/kg	500	0.42	0.3		0.38	0.93	2.1	0.34	2.7	0.45
SW8270	129-00-0	Pyrene	mg/kg	500	0.76	0.75		0.83	2	3.7	0.96	5.9	1.1
	1	Total PAHs ⁽⁵⁾	mg/kg	500	5.7	5.7		6.2	13	23	6.1	40	6.9

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Asssessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented
Shaded: Value exceeds Commercial SCOs

			8	Location ID leid Sample ID Start Depth (ft) End Depth (ft) Sampled Sample ID Sample Type Matrix	TP-01-20 TP-01-2020-10.0-1 10 10.6 9/29/20 R200902 R200902 REG SOL	0.6-09292020 020 023 3-005	TP-04-2 TP-04-2020-2.5-3 2.5 3 9/30/2 R200913 R200913 REG SOIL	8.0-09302020 020 132 2-001	TP-05-2020 TP-05-2020-0.0-0.16-09292020 0 0.16 9/29/2020 R2009023 R2009023-006 REG SOIL	TP-05-202 TP-05-2020-0.16-1.0 0.16 1 9/29/202 R2009023-0 R2009023-0 REG SOIL	0 0 3	TP-05-20 TP-05-2020-3.0-4. 3 4 9/29/20 R200902 R200902 R200902 REG SOIL	0-09292020 020 023 3-008
Analytical Method	CAS_RN	Chemical Name	Unit	Soli Cleanup Objective (SCO) for Commercial Use ⁽¹⁾	301		301	-	SUL	3012		301	
E160.3	SOLID	Solids	%		85.6		77.7		73.5	76.2		87	
E160.3	SOLIDS	Total Solids	%										
E537M	2991-50-6	PFAS	ma/ka		0.0011								
E537M	375-85-9	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA) Perfluoroheptanoic Acid (PFHpA)	mg/kg mg/kg		0.0011								
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg		0.0011								
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾	0.00032	1							
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg	0.500 ⁽²⁾	0.0011								
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg		0.0011	U							
SW6010	7400.00 5	Metals and Cyanide	mg /lt		45000		47400		12200	44400		40700	└──── ┃
SW6010 SW6010	7429-90-5 7440-38-2	Aluminum Arsenic	mg/kg mg/kg	16	15200 4.3		17400 8.2		13300 11.4	14400 10.6		13700 3.9	├ ────┤
SW6010	7440-39-3	Barium	mg/kg	400	139		125		84	83.2		113	
SW6010	7440-41-7	Beryllium	mg/kg	590	1.4		0.991		0.844	0.795		0.641	
SW6010	7440-43-9	Cadmium	mg/kg	9.3	0.435	J	0.502		0.617 J	0.58 J		0.133	J
SW6010 SW6010	7440-70-2 7440-47-3	Calcium	mg/kg mg/kg	400	91600 21.5		24700 24.6		6650 20.1	4050 21.1		65500 19.7	1
SW6010	7440-47-3	Chromium ⁽³⁾ Cobalt	mg/kg	400	21.5		13.6		20.1	8.8		19.7	5
SW6010	7440-50-8	Copper	mg/kg	270	45.8		27.5		26.9	21.4		21.1	
SW6010	7439-89-6	Iron	mg/kg	-	20500		34900		25700	26300		26700	
SW6010	7439-92-1	Lead	mg/kg	1000	55.9		53.6	;	51.6	44.3		9.7	
SW6010	7439-95-4	Magnesium	mg/kg	10000	14300		10500		3230	3020		15400	
SW6010 SW6010	7439-96-5 7440-02-0	Manganese Nickel	mg/kg mg/kg	10000 310	<u> </u>		713		773 25.6	733 25.7		531 23.1	J
SW6010	7440-09-7	Potassium	mg/kg	010	2010		2370		1540	1320		2390	
SW6010	7782-49-2	Selenium	mg/kg	1500	1.2		0.772		1.1 J	12.6 U		0.652	
SW6010	7440-22-4	Silver	mg/kg	1500	1.2	U	1.3	U	1.3 U	1.3 U		1.1	U
SW6010 SW6010	7440-23-5 7440-28-0	Sodium Thallium	mg/kg mg/kg		557 0.928	1	227 1.3		238 1.3 U	340 1.3 U	1	524 1.1	
SW6010	7440-62-2	Vanadium	mg/kg		22.4	5	38		31.6	32.8		28	
SW6010	7440-66-6	Zinc	mg/kg	10000	2.3	U	126	;	2.5 U	2.5 U		2.2	U
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.14		0.064		0.105	0.095		0.038	
SW9012	57-12-5	Cyanide, Total	mg/kg	27	0.55		0.28	U	0.74	0.47		0.34	U
SW8081	72-55-9	Pesticides 4,4'-DDE	mg/kg	62	0.02	U	0.011	u	0.012 U	0.011 U		0.002	U
SW8081	50-29-3	4,4'-DDT	mg/kg	47	0.02		0.011		0.002 0 0.0061 J	0.011 U		0.002	
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.02		0.011	. U	0.012 U	0.011 U		0.002	
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.02		0.011		0.012 U	0.011 U		0.002	
SW8081 SW8081	53494-70-5 5566-34-7	Endrin Ketone	mg/kg		0.02		0.011		0.012 U 0.012 U	0.011 U 0.011 U		0.002	
SW8081 SW8081	5566-34-7 76-44-8	Gamma-Chlordane Heptachlor	mg/kg mg/kg	15	0.02		0.011		0.012 U 0.012 U	0.011 0		0.002	
SW8081	72-43-5	Methoxychlor	mg/kg		0.02		0.011		0.012 U	0.011 U		0.002	
		PCBs											
SW8082	12672-29-6	Aroclor-1248	mg/kg	1	0.033		0.044		0.045 U	0.044 U		0.038	
SW8082 SW8082	11097-69-1 11096-82-5	Aroclor-1254 Aroclor-1260	mg/kg mg/kg	1	0.039		0.023		0.045 U 0.045 U	0.044 U 0.044 U		0.038	
SW8082	111096-82-5	Aroclor-1268	mg/kg	1	0.021		0.031		0.045 U	0.044 0		0.038	
		Total PCBs ⁽⁵⁾	mg/kg	1	0.054		0.098	·	0.045 U	0.044 U		0.038	U
		Volatiles											
SW8260 SW8260	78-93-3 591-78-6	2-Butanone	mg/kg	500	0.0046		0.0069		0.0095 U 0.0095 U	0.0067 U 0.0067 U		0.0046	
SW8260 SW8260	108-10-1	2-Hexanone 4-Methyl-2-Pentanone	mg/kg mg/kg		0.0046		0.0069		0.0095 U 0.0095 U	0.0067 U		0.0046	
SW8260	67-64-1	Acetone	mg/kg	500	0.014	-	0.0069		0.0095 U	0.0067 U		0.0046	
SW8260	71-43-2	Benzene	mg/kg	44	0.00029		0.0069		0.0095 U	0.0067 U		0.0046	
SW8260	75-15-0	Carbon Disulfide	mg/kg	050	0.00041		0.0069		0.0095 U	0.0067 U		0.0046	
SW8260 SW8260	67-66-3 156-59-2	Chloroform cis-1,2-Dichloroethene	mg/kg mg/kg	350 500	0.0046		0.0069		0.00041 J 0.0095 U	0.00051 J 0.0067 U		0.0046	
SW8260	110-82-7	Cyclohexane	mg/kg	500	0.00039		0.0069		0.0095 U	0.0067 U		0.0046	
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.0046	U	0.0069	U	0.0095 U	0.0067 U		0.0046	U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.0046	U	0.0069	U	0.0095 U	0.0067 U		0.0046	U

				Location ID	TP-01-2020	TP-04-2020	TP-05-2020	TP-05-2020	TP-05-2020
				eld Sample ID	TP-01-2020-10.0-10.6-09292020	TP-04-2020-2.5-3.0-09302020	TP-05-2020-0.0-0.16-09292020	TP-05-2020-0.16-1.0-09292020	TP-05-2020-3.0-4.0-09292020
			5	Start Depth (ft)	10	2.5	0	0.16	3
				End Depth (ft)	10.6	3	0.16	1	4
				Sampled	9/29/2020	9/30/2020	9/29/2020	9/29/2020	9/29/2020
				SDG	R2009023	R2009132	R2009023	R2009023	R2009023
			1	Lab Sample ID	R2009023-005	R2009132-001	R2009023-006	R2009023-007	R2009023-008
				Sample Type	REG	REG	REG	REG	REG
				Matrix	SOIL	SOIL	SOIL	SOIL	SOIL
Analytical				Soil Cleanup Objective (SCO) for Commercial					
Method	CAS_RN	Chemical Name	Unit	Use ⁽¹⁾					
SW8260	XYLENES1314		mg/kg	500	0.0091 U	0.014 U	0.019 U	0.013 U	0.0092 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.00077 J	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0046 U	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	95-47-6	o-Xylene	mg/kg	500	0.0046 U	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	100-42-5	Styrene	mg/kg		0.0046 U	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	108-88-3	Toluene	mg/kg	500	0.00038 J	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.0091 U	0.014 U	0.019 U	0.013 U	0.0092 U
SW8260	156-60-5	trans-1.2-Dichloroethene	mg/kg	500	0.0046 U	0.0069 U	0.0095 U	0.0067 U	0.0046 U
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.0064	0.0069 U	0.0095 U	0.0067 U	0.0046 U
		Semivolatiles	0.0						
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.089 J	0.1	0.053	0.038 J	0.037 U
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.12 U	0.031 J	0.046 U	0.044 U	0.037 U
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		0.3	0.52	0.44	0.34	0.018
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.12 U	0.033 J	0.046 U	0.044 U	0.037 U
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.044 J	0.15	0.02 J	0.016 J	0.037 U
SW8270	100-52-7	Benzaldehyde	mg/kg		0.12 U	0.043 U	0.025 J	0.02 J	0.037 U
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		2.2 U	0.42 J	0.83 U	0.8 U	0.68 U
SW8270	86-74-8	Carbazole	mg/kg		0.63 J+	0.4	0.22	0.16	0.037 U
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		1.8 UJ	0.052 J	0.69 U	0.66 U	0.56 U
SW8270	108-95-2	Phenol	mg/kg	500	0.033 J	0.047	0.046 U	0.044 U	0.037 U
		PAHs							
SW8270	83-32-9	Acenaphthene	mg/kg	500	0.46	0.59	0.33	0.22	0.007 J
SW8270	208-96-8	Acenaphthylene	mg/kg	500	1.3	0.32	0.14	0.12	0.0088
SW8270	120-12-7	Anthracene	mg/kg	500	4.1	0.81	0.38	0.27	0.025
SW8270	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	7.5	2.4	1.8	1.2	0.075
SW8270	50-32-8	Benzo(A)Pyrene	mg/kg	1	9.2	4.3	3.5	2.4	0.11
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	9.3	4.1	3.4	2.2	0.13
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	5.2	3.2	2.7	1.8	0.088
SW8270	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	3.3	1.4	1.2	0.85	0.046
SW8270	218-01-9	Chrysene	mg/kg	56	7.7	2.8	2.3	1.5	0.092
SW8270	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	0.91	0.52	0.39	0.27	0.019
SW8270	132-64-9	Dibenzofuran	mg/kg	350	0.63	0.41	0.18	0.13	0.013
SW8270	206-44-0	Fluoranthene	mg/kg	500	15	4.9	3.7	2.5	0.13
SW8270	86-73-7	Fluorene	mg/kg	500	0.94	0.47	0.13	0.091	0.0083
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	6.2	3.5	2.7	1.9	0.086
SW8270	91-20-3	Naphthalene	mg/kg	500	0.88	1.2	0.43	0.3	0.033
SW8270	85-01-8	Phenanthrene	mg/kg	500	9	3.3	1.9	1.2	0.073
SW8270	129-00-0	Pyrene	mg/kg	500	14	4.2	3.1	2.1	0.13
		(7)					<u> </u>	ļ	
		Total PAHs ⁽⁵⁾	mg/kg	500	96	38	28	19	1.1

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Asssessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented
Shaded: Value exceeds Commercial SCOs

TABLE 5 FOCUSED RI SITE 109 GROUNDWATER ANALYTICAL SUMMARY DECEMBER 2020

			L	ocation Description Location ID Sample ID Matrix Lab Sample ID Sample Type Code Class GA	MW-01-: MW-01-2020- GW R210000 12/31/: REG	2020 12312020 5-002 2020	MW-02-2 MW-02-2 MW-02-2020-3 GW R210000 12/31/2 REG	2020 12312020 5-003 2020	MW-03-2 MW-03-2020-1 GW R2100005 12/31/2 REG	020 .2312020 5-001 020	MW-17-89 MW-17-89 MW-17-89-12302(GW R2012370-001 12/30/2020 REG	1
Analytical Method	CAS_RN	Chemical Name PFAS	Unit	Groundwater Quality Standard or Guidance Value ⁽¹⁾								
E537M	27619-97-2	6:2 Fluorotelomer Sulfonate (6:2 FTS)	ug/l	NS					0.0047		0.00064 J	
E537M	375-73-5	Perfluorobutanesulfonic Acid (PFBS)	ug/1 ug/1	NS					0.0047	-	0.0004 J	
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	ug/l	NS					0.015	0	0.019	
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	ug/l	NS					0.0029	1	0.015 0.0016 J	
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	ug/l	NS					0.0020	1	0.0016 J	
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	ug/l	0.0027 ⁽²⁾					0.0015	-	0.0027	
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	ug/l	0.0067 ⁽²⁾					0.0051	, ,	0.0029	
			-									
E537M	2706-90-3	Perfluoropentanoic Acid (PFPeA)	ug/l	NS					0.0089		0.002 J	
014/004.0	7400.00 5	Metals		NO	152		370				400 11	
SW6010 SW6010	7429-90-5 7440-38-2	Aluminum Arsenic	ug/l	NS 25	152	11	10				100 U 11	
SW6010 SW6010	7440-38-2	Barium	ug/l ug/l	1000	55.3	U	92.3	U			54.3	
SW6010	7440-39-3	Calcium	ug/1 ug/1	NS	275000		76800				128000	
SW6010	7440-70-2	Chromium	ug/1 ug/1	50	1.2	1	1.5	1			128000 10 U	
SW6010	7440-47-3	Copper	ug/1	200	20	-	4				20 U	
SW6010	7439-89-6	Iron	ug/l	300	187	0	373	5			1020	
SW6010	7439-95-4	Magnesium	ug/1	35000 ⁽²⁾	83300		13900				28700	
SW6010	7439-96-5		ug/l	300	83.5		41.9				632	
SW6010	7439-90-3	Manganese Potassium	ug/1 ug/1	NS	7550		7070				5810	
SW6010	7782-49-2	Selenium	ug/1	10	10	11	8.3	1			10 U	
SW6010	7440-23-5	Sodium	ug/I	20000	467000	0	31900	5			82900	
SW6010	7440-28-0	Thallium	ug/1	0.5 ⁽²⁾	9	1	10	11			10 U	
SW6010	7440-62-2	Vanadium	ug/l	NS	1.5	-	3.3				50 U	
300010	1440-02-2	PESTICIDES	ug/1	Gri	1.5	ر ا	3.3	J			50 0	
		PCBS										
SW8082	12672-29-6	Aroclor-1248	ug/l	0.09 ⁽³⁾	0.05	U	0.091				0.051 UJ	
5		Volatiles	×6/ '	0.09	0.00	-	0.001				5.001 05	
SW8260	75-15-0	Carbon Disulfide	ug/l	60	1	11	1	11	0.42	1	1 U	
SW8260	156-59-2	cis-1.2-Dichloroethene	ug/1 ug/1	5		U	1	-	0.42	,	1 U	
SW8260	156-60-5	trans-1,2-Dichloroethene	ug/l	5	= = = = = = = = = = = = = = = = = = = =	U	1	-	0.97	J	1 U	
SW8260	79-01-6	Trichloroethene	ug/l	5	1		1	-	0.75	-	1 U	
5		Semivolatiles	ч <u>ь/</u> і	, ,	1	-	-	-	0.70	-		
SW8270	56-55-3	Benzo(A)Anthracene	ug/l	0.002 ⁽²⁾	0.27		0.2	U	0.21	U	0.2 U	
SW8270	50-32-8	Benzo(A)Pyrene	ug/l	0.002 ND	0.35		0.2		0.21	-	0.2 U	
SW8270	205-99-2	Benzo(B)Fluoranthene	ug/1	0.002 ⁽²⁾	0.33		0.2		0.21		0.2 0	
SW8270	191-24-2	Benzo(G,H,I)perylene	-	NS	0.30		0.2		0.21	-	0.2 U	
SW8270 SW8270	207-08-9	Benzo(G,H,I)perylene Benzo(K)Fluoranthene	ug/l ug/l	0.002 ⁽²⁾	0.31	1	0.2		0.21		0.2 U	
			-			5						
SW8270	218-01-9	Chrysene	ug/l	0.002 ⁽²⁾	0.24		0.2	U	0.21	U	0.2 U	

TABLE 5 FOCUSED RI SITE 109 GROUNDWATER ANALYTICAL SUMMARY DECEMBER 2020

				Location Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-01-2 MW-01-2 MW-01-2020-1 GW R2100009 12/31/2 REG	020 .2312020 5-002 020	MW-02-2 MW-02-2 MW-02-2020- GW R210000 12/31/2 REG	2020 12312020 5-003 2020	MW-03-2 MW-03-2 MW-03-2020- GW R210000 12/31/2 REG	2020 12312020 5-001 2020	MW-17 MW-17 MW-17-89-1 GW R201237 12/30/2 REG	-89 2302020 0-001 2020
Analytical Method	CAS_RN	Chemical Name	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾								
SW8270	206-44-0	Fluoranthene	ug/l	50 ⁽²⁾	0.33		0.2	U	0.21	U	0.2	U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	ug/l	0.002 ⁽²⁾	0.27		0.2	U	0.21	U	0.2	U
SW8270	85-01-8	Phenanthrene	ug/l	50	0.21		0.2	U	0.21	U	0.2	U
SW8270	129-00-0	Pyrene	ug/l	50 ⁽²⁾	0.34		0.2	U	0.21	U	0.2	U
SW8270-SIM	123-91-1	1,4-Dioxane	ug/l	0.35 ⁽²⁾	0.046		0.04	U			0.04	U
		Cyanide										
SW9012	57-12-5	Cyanide, Total	ug/l	200	11		18				42	

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values and

Groundwater Effluent Limitations," June 1998; Errata Sheet for June 1998 Edition. Criteria listed are standards unless otherwise noted.

(2) Guidance value (from TOGS 1.1.1)

 $\ensuremath{(3)}$ Applies to the sum of these substances.

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 6 FOCUSED RI SITE 109 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					cation Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-01-20 MW-01-20 GW R2110067-005/R2 9/24/20 REG	20 9242021 110067-006	MW-02-2 MW-02-2 MW-02-2020-C GW R2110067-003/R: 9/24/20 REG	2020 09242021 2110067-004 021	MW-03 MW-03-2020 GN R2110067-001/ 9/24/ RE	-2020 -09242021 V R2110067-002 2021	MW-17 MW-17 MW-17-89-0 GW R2109811-001/R 9/21/2 REC	-89 9212021 2109811-002 021
Analytical Method	CAS_RN	Chemical Name Metals - Totals	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾						T		
SW6010	7429-90-5	Aluminum	т	ug/l	NS	95.8 J		29.4	J	809	5	100	U
SW6010	7440-36-0	Antimony	т	ug/l	3	60 U		60		60		60	
SW6010	7440-38-2	Arsenic	T	ug/l	25	10 U		10				23	-
SW6010	7440-39-3	Barium	Т	ug/l	1000	42.1		70.1		39.4	1	74.1	
SW6010	7440-70-2	40-70-2 Calcium T ug/l		NS	105000		96300		32000)	143000		
SW6010	7440-47-3	Chromium	Т	ug/l	50	3 J		10	U	2.	7 J	10	U
SW6010	7440-48-4	Cobalt	Т	ug/l	NS	50 U		50	U	50) U	1	J
SW6010	7440-50-8	Copper	Т	ug/l	200	20 U		20	U	20) U	5.4	J
SW6010	7439-89-6	Iron	Т	ug/l	300	194		100	U	2200		1810	
SW6010	7439-95-4	Magnesium	т	ug/l	35000 ⁽²⁾	12600		159000		414000)	29700	
SW6010	7439-96-5	Manganese	Т	ug/l	300	4.5 J		106		37	7	823	
SW6010	7440-09-7	Potassium	Т	ug/l	NS	2700		5350		3360)	8260	
SW6010	7440-23-5	Sodium	Т	ug/l	20000	245000		87400		193000	D	82600	
SW6010	7440-28-0	Thallium	Т	ug/l	0.5 ⁽²⁾	10 U		10	U	9	9 1	10	U
SW6010	7440-62-2	Vanadium	Т	ug/l	NS	1.9 J		2.3	J	2.3	3 1	1	J
SW6010	7440-66-6	Zinc	Т	ug/l	2000 ⁽²⁾	20 U		20	U	5.3	3 1	4.6	l
		Metals - Dissolved											
SW6010	7429-90-5	Aluminum	D		NS	100 U		100	U	100	υ	100	U
SW6010	7440-36-0	Antimony	D	ug/l	3	10.5 J		60) U	60	
SW6010	7440-38-2	Arsenic	D	ug/l	25	10 U		10	U	10) U	23	
SW6010	7440-39-3	Barium	D	ug/l	1000	47.1		69.8		27.5	5	73	
SW6010	7440-70-2	Calcium	D	ug/l	NS	124000		94500		382000)	140000	
SW6010	7440-47-3	Chromium	D	ug/l	50	2.6 J		10	U	10) U	10	U
SW6010	7440-48-4	Cobalt	D	ug/l	NS	50 U		0.9		1.4		0.9	
SW6010	7440-50-8	Copper	D	ug/l	200	20 U		20		20		20	U
SW6010	7439-89-6	Iron	D	ug/l	300	100 U		61.4	J	1990		1800	
SW6010	7439-95-4	Magnesium	D	ug/l	35000 ⁽²⁾	15800		156000		514000		29000	
SW6010	7439-96-5	Manganese	D	ug/l	300	10 U		176		688		811	
SW6010	7440-09-7	Potassium	D	ug/l	NS	2770		5260		4230		8130	
SW6010	7440-23-5	Sodium	D	ug/l	20000	264000		86500		19100		81700	
SW6010	7440-28-0	Thallium	D	ug/l	0.5 ⁽²⁾	10 U		10		13.:	L	10	
SW6010	7440-62-2	Vanadium	D	ug/l	NS	1.7 J		2.6		0.8		0.9	
SW6010	7440-66-6	Zinc	D	ug/l	2000 ⁽²⁾	20 U		2.7	1	3.0	2 J	20	U
		PCBS - Total											
		PCBS - Dissolved											
		Volatiles											
SW8260	75-15-0	Carbon Disulfide	T	ug/l	60	1 U		1				1	
SW8260	156-59-2	cis-1,2-Dichloroethene	Т	ug/l	5	1 U		1		1.4		1	U
SW8260	156-60-5	trans-1,2-Dichloroethene	Т	ug/l	5	1 U		1	-	0.58	-	1	
SW8260	79-01-6	Trichloroethene	Т	ug/l	5	1 U		1	U	0.70	5 J	1	U

TABLE 6 FOCUSED RI SITE 109 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					cation Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-01-2 MW-01-2 MW-01-2020-4 GW R2110067-005/R 9/24/2 REG	2020 09242021 2110067-006 021	MW-02-2 MW-02-2020-1 GW R2110067-003/R 9/24/2 REG	2020 09242021 2110067-004 021	MW-03- MW-03-2020- GW R2110067-001/F 9/24/2 REC	2020 09242021 7 22110067-002 1021	MW-17 MW-17 MW-17-89-09 GW R2109811-001/R 9/21/2/ REG	-89 9212021 2109811-002 021
Analytical Method	CAS_RN	Chemical Name	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾								
-		Semivolatiles - Total											
SW8270	91-20-3	Naphthalene	Т	ug/l	10 ⁽²⁾	0.2	U	0.2	U	0.064	J	0.21	U
		Semivolatiles - Dissolved											
SW8270	120-83-2	2,4-Dichlorophenol	D	ug/l	NS	1				0.97	U	0.93	U
		Cyanide - Total											
SW9012	57-12-5	Cyanide, Total	Т	ug/l	200	11		38		10	U	40	
		Cyanide - Dissolved											
SW9012	57-12-5	Cyanide	D	ug/l	200	12		36		10	U	38	

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations," June 1998; Errata Sheet for June 1998 Edition. Criteria listed are standards unless otherwise noted.

(2) Guidance value (from TOGS 1.1.1)

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

				Location ID Fleid Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-04-2020-0.0 (0. 10/16 R20097 R1 SC	-0.16-10162020) 16 /2020 9746 46-012 59	MW-04-2020-0.3 0. 10/16 R200 R2009 R	4-2020 18-1.0-10162020 .16 1 3/2020 9746 746-013 EG DIL	MW-04-2020-4. 10/16 R2009 R2009 R	4-2020 0-6.0-10162020 4 6 3/2020 9/746 746-015 EG DIL	MW-05-2020-0.0 0. 10/15 R200 R2009 R	5-2020 0-0.16-10152020 0 16 5/2020 99746 9746-001 EG DIL	MW-05-2020-0. 0 10/1 R20 R2009 F	5-2020 18-1.0-10152020 16 1 5/2020 99746 746-002 EG DIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soli Cleanup Objective (SCO) for Commercial Use ⁽³⁾										
E160.3	SOLID	Solids	%		83.2		84.6		84.1		86.4		84.4	
E160.3	SOLIDS	Total Solids	%											
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg		0.0011	11	0.0012	11	0.0011	11	0.00031	1	0.0011	11
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg		0.0011	U	0.0012	U	0.0011		0.00031	U	0.0011	U
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg		0.0011	U	0.0012	U	0.0011		0.0011	U	0.0011	U
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg		0.0011	U	0.0012	U	0.0011	U	0.0011	U	0.0011	
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg		0.0011	U	0.00074	J	0.0011	U	0.0011	U	0.0011	U
E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg		0.0011	U	0.0012	U	0.0011	U	0.0011	U	0.0011	U
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾	0.00019	J	0.0002		0.00029	J	0.00039	J	0.0003	
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg	0.500 ⁽²⁾	0.0011	U	0.0012		0.0011		0.0011	U	0.0011	
E537M E537M	376-06-7 2058-94-8	Perfluorotetradecanoic Acid (PFTeDA) Perfluoroundecanoic Acid (Pfunda)	mg/kg		0.0011	U	0.0012	U	0.0011		0.0011	U	0.0011	U
E537M	2058-94-8	Metals and Cyanide	mg/kg		0.0011	U	0.0012	U	0.0011	U	0.0011	U	0.0011	U
SW6010	7429-90-5	Aluminum	mg/kg		3020		2870		3830		2750		2870	
SW6010	7440-36-0	Antimony	mg/kg		0.797	J	6.7	U	6.5	U	6.8	UJ	7	U
SW6010	7440-38-2	Arsenic	mg/kg	16	9.1		15.1	-	7.6		8.5		8.3	-
SW6010	7440-39-3	Barium	mg/kg	400	61.9		73		80.7		58.3		74.6	
SW6010	7440-41-7	Beryllium	mg/kg	590	0.451		0.524		0.508		0.726		0.802	
SW6010	7440-43-9	Cadmium	mg/kg	9.3	0.543	J	1.4		0.886		0.669		0.616	
SW6010	7440-70-2	Calcium	mg/kg		6020		4560		13100		3990		5360	
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	400	12.7		22.6		16		16.6		11.5	
SW6010 SW6010	7440-48-4 7440-50-8	Cobalt Copper	mg/kg mg/kg	270	4.2 36.9	J	4.9 49.8	J	4.1 31.5		13.6 103	1	9.6	
SW6010	7439-89-6	Iron	mg/kg	210	16400		45.8		17600		26600	,	20400	
SW6010	7439-92-1	Lead	mg/kg	1000	41.2		130		69.8		20.1		15.6	
SW6010	7439-95-4	Magnesium	mg/kg		1810		1340		2290		444	J	491	
SW6010	7439-96-5	Manganese	mg/kg	10000	172		306		252		362		266	
SW6010	7440-02-0	Nickel	mg/kg	310	13.9		20.7		12.5		30		19.4	
SW6010	7440-09-7	Potassium	mg/kg		462		422		625		358		398	
SW6010	7782-49-2	Selenium	mg/kg	1500	0.878	1	11.2		10.8		0.828	1	0.813	
SW6010	7440-22-4	Silver	mg/kg	1500	1.2	U	1.1		1.1		1.1	-	1.2	
SW6010	7440-23-5 7440-28-0	Sodium Thallium	mg/kg		90.7 1.2	1	109		117		103		90.6	
SW6010 SW6010	7440-28-0 7440-62-2	Thallium Vanadium	mg/kg mg/kg		1.2	U	1.1 38.3	-	1.1	-	1.1	U	1.2	
SW6010 SW6010	7440-62-2	Zinc	mg/kg mg/kg	10000	15.6		38.3		264		44.2		27.5	
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.828		0.63	l	0.216	ĺ	0.137	ĺ	0.097	İ
SW9012	57-12-5	Cyanide, Total	mg/kg	27	2.36		3.18		2.37		2.03		1.44	
		Pesticides												
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.01	U	0.01		0.0052	-	0.0099	U	0.012	U
SW8081	50-29-3	4,4'-DDT	mg/kg	47	0.01	U	0.01		0.0099		0.0099	U	0.012	U
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.01	U	0.01		0.0099		0.0099	U	0.012	
SW8081 SW8081	319-84-6 319-85-7	Alpha-BHC Beta-BHC	mg/kg mg/kg	3.4 3	0.01	U 11	0.01		0.0099		0.0099	0	0.012	
SW8081 SW8081	319-85-7 959-98-8	Endosulfan I ⁽⁴⁾	mg/kg mg/kg	3	0.01	1	0.001		0.0099		0.0099	0	0.012	
SW8081	1031-07-8	Endosulfan N ⁽⁴⁾ Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.0052		0.0087	,	0.0099	0	0.0099	U	0.012	0 11
SW8081	72-20-8	Endosultan Sultate	mg/kg	89	0.008		0.0074	J	0.0099	U	0.0099	Ŭ	0.012	Ŭ
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.011	U	0.01		0.0099		0.0099	U	0.012	
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.01	U	0.01		0.0099		0.0099	U	0.012	
SW8081	5566-34-7	Gamma-Chlordane	mg/kg		0.006	J	0.0056		0.0052		0.0099	U	0.012	
SW8081	1024-57-3	Heptachlor Epoxide	mg/kg		0.01	U	0.01	U	0.0099	U	0.0099	U	0.012	U
SW8081	72-43-5	Methoxychlor	mg/kg		0.01	U	0.01	U	0.0099	U	0.0099	U	0.012	U

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-04-2020-0.4 0 10/16 R200 R2009 R	4-2020 0-0.16-10162020 0 1.16 3/2020 19746 746-012 EG DIL	MW-04-2020-0.: 0. 10/16 R2009 R2009 R	4-2020 16-1.0-10162020 1.16 1 8/2020 99746 746-013 EG OL	MW-04-2020-4 10/10 R2009 R2009 R	4-2020 0-6.0-10162020 4 6 8/2020 99746 746-015 EG OIL	MW-05-2020 MW-05-2020-0.0-0.18-1015 0 0.0.16 10/15/2020 R2009746 R2009746-001 REG SOIL	MW-05-2020 2020 MW-05-2020-0.16-1.0-10152020 0.16 1 10/15/2020 R2009746 R2009746-002 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾	3		3				301	SUL
		PCBs									Iv	
SW8082	12672-29-6	Aroclor-1248	mg/kg		0.13		0.04		0.039		0.039 U	0.046 U
SW8082	11097-69-1	Aroclor-1254	mg/kg		0.068		0.04		0.039		0.039 U	0.046 U
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.11		0.032	1	0.039	U	0.039 U	0.046 U
		18 L	1					l				
		Total PCBs ⁽⁵⁾		1	0.31		0.032	1	0.039	U	0.039 U	0.046 U
		Volatiles										
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg		0.0018	J	0.0046		0.0072		0.011 U	0.013 U
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.0094	U	0.00053	J	0.0072	U	0.011 U	0.013 U
SW8260	78-93-3	2-Butanone	mg/kg	500	0.0094	U	0.0083	U	0.0053	J	0.011 U	0.0059 J
SW8260	67-64-1	Acetone	mg/kg	500	0.0094	U	0.0083	U	0.1	J+	0.015	0.06
SW8260	71-43-2	Benzene	mg/kg	44	0.0015	J	0.0058	J	0.00076	J	0.011 U	0.013 U
SW8260	74-83-9	Bromomethane	mg/kg		0.0094	UJ	0.0083	UJ	0.0072	UJ	0.0079 J	0.013 UJ
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.0094	U	0.0083	U	0.14	J+	0.00077 J	0.00085 J
SW8260	67-66-3	Chloroform	mg/kg	350	0.0094	U	0.0083	U	0.0072	U	0.011 U	0.013 U
SW8260	74-87-3	Chloromethane	mg/kg		0.0094	U	0.0083	U	0.0072	U	0.005 J	0.013 U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.0094	U	0.0083	U	0.0072	U	0.0013 J	0.013 U
SW8260	110-82-7	Cyclohexane	mg/kg		0.0016	J	0.0033	J	0.0088	J+	0.002 J	0.0035 J
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.0094	U	0.0083	U	0.0072	U	0.011 U	0.013 U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.0094	U	0.0083	U	0.0072	U	0.011 U	0.013 U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.019	U	0.0018	i.	0.00077	j	0.022 U	0.0016 J
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0094	U	0.0083		0.0072	U	0.011 U	0.013 U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.0094	11	0.0083	11	0.0072	11	0.011 U	0.013 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0019	1	0.0039	1	0.011	1+	0.0041 J	0.0072 J
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.0094	11	0.0083		0.0072	11	0.011 U	0.013 U
SW8260	95-47-6	o-Xylene	mg/kg		0.0094	11	0.00056		0.00079	1	0.011 U	0.0011 J
SW8260	100-42-5	Styrene	mg/kg	000	0.0094	U	0.0083		0.0072	у Ц	0.011 U	0.013 U
SW8260	108-88-3	Toluene	mg/kg	500	0.0011	1	0.0051	1	0.00072	1	0.0013 J	0.0016 J
SW8260	1330-20-7	Total Xylenes	mg/kg		0.0011	- 11	0.0031	Ľ.	0.0012		0.022 U	0.0027 J
SW8260 SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.0094	о П	0.0024	- U	0.0010	- 11	0.022 0 0.002 J	0.013 U
SW8260	79-01-6	Trichloroethene	mg/kg		0.0094	о П	0.0083	u	0.0072	u	0.002 J	0.013 U
3110200	13-01-0	Semivolatiles	nig/ Kg	200	0.0094	0	0.0083		0.0072		0.000193	0.013 0
SW8270	92-52-4	1,1'-Biphenyl	mg/kg	<u>├</u>	0.41		1.8	ł	0.46	<u> </u>	0.12 J	0.14 J
SW8270 SW8270	92-52-4 105-67-9	2,4-Dimethylphenol	mg/kg	├	0.41		0.2		0.46		0.12 J	0.14 J
SW8270	91-57-6	2-Methylnaphthalene	mg/kg	├	1.6	0	6.8		1.9		0.19 0	0.48
SW8270 SW8270	91-57-6 95-48-7		~ ~		1.6		6.8		1.9		0.75 0.19 U	
SW8270 SW8270	95-48-7 34METPH	2-Methylphenol	mg/kg	500 500	0.2		0.15		0.097		0.19 U 0.19 U	0.04 UJ 0.021 J
SW8270 SW8270	34METPH 100-01-6	3&4-Methylphenol	mg/kg				0.41		0.33		0.19 U 0.19 U	0.021 J 0.04 UJ
		4-Nitroaniline	mg/kg	├	0.2		-	-		-		
SW8270	98-86-2	Acetophenone	mg/kg	┥ ┥	0.2		0.14	-	0.2		0.19 U	0.04 UJ
SW8270	100-52-7	Benzaldehyde	mg/kg	┥───┤	0.2		0.4		0.2		0.22	0.12 J
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		3.7		7.3		3.7		3.4 U	0.73 UJ
SW8270	86-74-8	Carbazole	mg/kg		2.1		36		10		0.34	0.29 J
SW8270	84-66-2	Diethyl Phthalate	mg/kg		1.2		2.4		1.2		1.1 U	0.24 UJ
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		1.1		2.1		1	-	0.98 U	0.21 UJ
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		3.1		6.1		3.1		2.9 U	0.61 UJ
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		0.2		0.4		0.2		0.19 U	0.04 UJ
SW8270	108-95-2	Phenol	mg/kg	500	0.083	J	0.35	1	0.29		0.19 U	0.04 UJ

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

			_	Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-04-2020 MW-04-2020-0.0-0.16 0.16 10/16/2020 R2009746-01 REG SOIL	10162020 MW-04	MW-04 4-2020-0.10 0.1 10/16/ R20097 R20097/ RE S0	8-1.0-10162020 16 /2020 9746 46-013 16	MW-04-2020-4. 10/16 R200 R20091	4-2020 0-6.0-10162020 4 5 1//2020 19746 46-015 EG DIL	MW-05-2020-0.0 0. 10/15 R200 R20097 R10 R10 R10 R10 R10 R10 R10 R10 R10 R10	0 16 5/2020 09746 746-001	MW-05-2020-0. 0 10/11 R2009 R2009 R	5-2020 16-1.0-10152020 16 1 1/2020 19746 146-002 EG DIL
Analytical Method	CAS_RN	Chemical Name	Soli Cleanup Objective (SCO) for Commercial Use ⁽¹⁾			<u> </u>								
		PAHs												
SW8270 SW8270	83-32-9 208-96-8	Acenaphthene	500 500	1.5		9.7 56		2.2		0.26		0.23		
SW8270 SW8270	208-96-8	Acenaphthylene	500	16		56 90		15		3.2		1.1		
SW8270 SW8270	56-55-3	Anthracene Benzo(A)Anthracene	mg/kg		13		340		130		9.5		1.6	
SW8270 SW8270	50-32-8	Benzo(A)Anthracene Benzo(A)Pyrene	mg/kg mg/kg	5.6	55		420		130		9.5		4.9	
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	55		420		170		10		7.1	
SW8270 SW8270	191-24-2	Benzo(G,H,I)pervlene	mg/kg	5.6	42		330		180		8		4.7	
SW8270 SW8270	207-08-9	Benzo(K)Fluoranthene			42		160		38	1.	2.9		4.7	-
SW8270 SW8270	218-01-9	Chrysene	mg/kg mg/kg	56	46		380		170	14	2.9		5.9	
SW8270 SW8270	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	9.7		55	1+	170	1+	1.8		0.88	
SW8270	132-64-9	Dibenzofuran	mg/kg	350	2.4		24	,	5.2		0.35		0.37	
SW8270	206-44-0	Fluoranthene	mg/kg		89		850		340		17		9.6	
	86-73-7	Fluorene	mg/kg	500	4.1		50		13		0.35		0.29	
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	41		330		120		8.1		0.25	
SW8270	91-20-3	Naphthalene	mg/kg	500	6.8		36		14		0.69		0.69	1
SW8270	85-01-8	Phenanthrene	mg/kg	500	37		540		180		2.8		1.5	
SW8270	129-00-0	Pyrene	mg/kg	500	68		780		290		19		12	J
			~ ~ ~											
		Total PAHs ⁽⁵⁾	mg/kg	500	550		4900		1800		110		64	
Notes:	1	Total PAHs ⁽⁵⁾	mg/kg	500	550		4900		1800		110		64	4

Notes

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(4) This See is for the sum of endosunant, endosunant, and endosunan sum (5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Shaded: Value exceeds Commercial SCOs

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-05 MW-05-2020-4.0 4 6 10/15, R2000 R20097 RE S0	0-6.0-10152020 / /2020 9746 46-003 19	MW-06-2020-0.0 0. 10/15 R200 R2009 R	6-2020 0-0-16-10152020 0 1.16 5/2020 09746 746-004 EG DIL	MW-06-2020-0.3 0. 10/15 R2009 R2009 R	3-2020 6-6-1.0-10152020 16 1 1/2020 9746 46-005 56 50	MW-06-2020-7. 10/15 R200 R2009 R	8-2020 0-8.0-10152020 7 8 5/2020 99746 746-006 EG DIL	MW-07-2020-0.0 0 10/15 R2009 R2009 R	7-2020 0.0.16-10152020 0 16 5/2020 19746 746-009 EG DIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾										
E160.3	SOLID	Solids	%		82		78.5		83.5		80.7		88.5	
E160.3	SOLIDS	Total Solids	%											
E537M	2991-50-6	PFAS n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg		0.0012		0.0012	11	0.0012	11	0.0012	11	0.0011	11
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg		0.0012	0 U	0.0012	U U	0.0012	0 11	0.0012	U	0.0011	U
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg		0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0011	U
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg		0.0012	U	0.0012	U	0.0012	U	0.0012	U	0.0011	U
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg		0.0012	U	0.0012	U	0.00043	1	0.0012	U	0.0011	
E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg		0.0012	U	0.0012		0.0012	U	0.0012	U	0.0011	
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾	0.00022	1	0.00096	1	0.00036	1	0.0012	U	0.00047	1
E537M E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg	0.500 ⁽²⁾	0.0012	0	0.0012	U	0.0012	U	0.0012	U	0.0011	U
E537M	376-06-7 2058-94-8	Perfluorotetradecanoic Acid (PFTeDA) Perfluoroundecanoic Acid (Pfunda)	mg/kg mg/kg		0.0012	0	0.0012	U	0.0012	U	0.0012	U	0.0011	0
E337W	2038-94-8	Metals and Cyanide	iiig/ kg		0.0012	0	0.0012	0	0.0012	0	0.0012	0	0.00021	,
SW6010	7429-90-5	Aluminum	mg/kg		21500		4220		2960		20900		1530	
SW6010	7440-36-0	Antimony	mg/kg		6.9	U	7.5	U	6.8	U	7.2	U	6.7	U
SW6010	7440-38-2	Arsenic	mg/kg	16	7		11.8		13.1		3.9		5.1	
SW6010	7440-39-3	Barium	mg/kg	400	276		192		162		156		54.6	
SW6010	7440-41-7	Beryllium	mg/kg	590	3.2		0.749		0.633		1.1		0.366	
SW6010	7440-43-9	Cadmium	mg/kg	9.3	1.2		1.4		1.2		0.405	J	0.222	J
SW6010 SW6010	7440-70-2 7440-47-3	Calcium Chromium ⁽³⁾	mg/kg mg/kg	400	81500 73.6		4950 21.9		3340 22.1		7880		1250 7.5	
SW6010	7440-47-3	Chromium ^(*)	mg/kg	400	5.3	1	5.8	1	6.4		11.4		2.4	1
SW6010	7440-48-4	Copper	mg/kg	270	115	,	63.2		45.9		21.9		16.5	
SW6010	7439-89-6	Iron	mg/kg		27200		29400		635		36100		9280	
SW6010	7439-92-1	Lead	mg/kg	1000	143		60.5		33.1		12.1		15.4	
SW6010	7439-95-4	Magnesium	mg/kg		4390		1110		514		8060		258	
SW6010	7439-96-5	Manganese	mg/kg	10000	2340		308		308		414		78.5	
SW6010	7440-02-0	Nickel	mg/kg	310	30		25.8		66.1		29.8		7.3	
SW6010	7440-09-7	Potassium	mg/kg		1020		466		424		2400		313	
SW6010 SW6010	7782-49-2 7440-22-4	Selenium Silver	mg/kg mg/kg	1500 1500	1.9 1.2		1.2		2.3	11	0.667	J	0.897	
SW6010	7440-22-4 7440-23-5	Solium	mg/кg mg/kg	1000	1.2	0	1.3 99.3		1.1	2	1.2	0	1.1 69.7	
SW6010	7440-23-3	Thallium	mg/kg		1.2	U	1.3		1.1	U	11.9	U	1.1	
SW6010	7440-62-2	Vanadium	mg/kg		56.1		22.3		17.7		36.8		7	
SW6010	7440-66-6	Zinc	mg/kg	10000	346		143	-	63.7		88.2		39.5	
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.44		0.661		0.19		0.031	1	0.362	
SW9012	57-12-5	Cyanide, Total	mg/kg	27	7.99		4.15		1.58		0.34	U	3.85	
SW8081	72-54-8	Pesticides 4.4'-DDD	mg/kg	92	0.01		0.011		0.01	11	0.01		0.0094	
SW8081	50-29-3	4,4-DDT	mg/kg	47	0.01	Ŭ	0.0097		0.01		0.01		0.0094	Ŭ
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.01	U	0.0037		0.01		0.01		0.0094	U
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.01	U	0.011	U	0.01	U	0.01		0.0094	
SW8081	319-85-7	Beta-BHC	mg/kg	3	0.01	U	0.011		0.01	U	0.01		0.0094	U
SW8081	959-98-8	Endosulfan I ⁽⁴⁾	mg/kg	200	0.01	U	0.011	U	0.01	U	0.01		0.0094	U
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.048		0.066		0.01	U	0.01		0.014	
SW8081	72-20-8	Endrin	mg/kg	89	0.01	U	0.011		0.01	U	0.01		0.0094	
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.011		0.011		0.01	U	0.01	-	0.0094	-
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.01	U	0.011		0.01		0.01		0.014	
SW8081 SW8081	5566-34-7 1024-57-3	Gamma-Chlordane Heptachlor Epoxide	mg/kg		0.01	U	0.011		0.01	U	0.01		0.0094	
SW8081 SW8081	1024-57-3 72-43-5	Methoxychlor	mg/kg mg/kg		0.01	U	0.011		0.01	1	0.01		0.0094	
300001	12-43-3	Wethoxychiol	пів/кв		0.01	U	0.011	U	0.01	U	0.01	U	0.0094	U

	Γ			Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-05-2020-4 10/1 R200 R2009 R	5-2020 0-6.0-10152020 4 6 5/2020 09746 746-003 IEG 0IL	MW-06-2020-0.0 0 10/15 R2009 R2009 R	6-2020 D-0.16-10152020 0 1.16 5/2020 19748 746-004 EG DIL	MW-06-2020-0.: 0. 10/15 R200 R2009 R	8-2020 16-1.0-10152020 16 1 1/2020 19746 46-005 EG DIL	MW-06-2020 MW-06-2020-7.0-8.0-101520 7 8 10/15/2020 R2009746 R2009746-006 REG SOIL	MW-07-2020 20 MW-07-2020-0.0-0.18-10152020 0 0.16 10/15/2020 R2009746 R2009746-009 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾		Γ		Γ				
000000	40070.00.0	PCBs		4			0.000				0.01	0.007.11
SW8082	12672-29-6	Aroclor-1248	mg/kg		0.04		0.029		0.04	U	0.04 U	0.037 U
SW8082	11097-69-1	Aroclor-1254	mg/kg		0.04		0.042		0.12		0.04 U	0.037 U
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.04	U	0.039	J	0.062	J	0.04 U	0.019 J
		10)										
		Total PCBs ⁽⁵⁾		1	0.04	U	0.068		0.18		0.04 U	0.019
		Volatiles										
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg		0.0072		0.013		0.0089	U	0.0046 U	0.0098 U
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.0072	UJ	0.013	U	0.0089	U	0.0046 U	0.0098 U
SW8260	78-93-3	2-Butanone	mg/kg	500	0.0094	J-	0.013	U	0.0089	U	0.011	0.0054 J
SW8260	67-64-1	Acetone	mg/kg	500	0.13	J-	0.013	U	0.0089	U	0.11	0.25
SW8260	71-43-2	Benzene	mg/kg	44	0.0021	J	0.00087	1	0.00064	J	0.0028 J	0.0098 U
SW8260	74-83-9	Bromomethane	mg/kg		0.0072	UJ	0.013	UJ	0.0089	UJ	0.0046 UJ	0.0098 UJ
SW8260	75-15-0	Carbon Disulfide	mg/kg	1	0.0026	J	0.013	U	0.0089	U	0.00062 J	0.0098 U
SW8260	67-66-3	Chloroform	mg/kg	350	0.0072	UJ	0.013	U	0.0005	J	0.0046 U	0.0098 U
SW8260	74-87-3	Chloromethane	mg/kg		0.0072	UJ	0.013	U	0.0089	U	0.0046 U	0.0098 U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg		0.0072	UJ	0.013	U	0.0089	U	0.0046 U	0.0098 U
SW8260	110-82-7	Cvclohexane	mg/kg		0.006	J	0.013	U	0.0089	U	0.0046 U	0.0098 U
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.00058		0.0015	1	0.0015	1	0.0022 J	0.0098 U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.00034	-	0.013		0.0089	U	0.0033 J	0.0098 U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.002	-	0.0038	1	0.0034	-	0.0068 J	0.02 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0072	-	0.013	U	0.0089	- U	0.0046 U	0.0098 U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.0072		0.013		0.0089	- 11	0.0046 U	0.0098 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0098	1	0.0013		0.0089	U	0.00053 J	0.00092 J
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.0038		0.0011		0.0089	0	0.0046 U	0.0092 J
SW8260	95-47-6	o-Xylene	mg/kg		0.0012	1	0.0021	1	0.0016	1	0.0046 U	0.0098 U
SW8260	100-42-5	Styrene	mg/kg	500	0.0018		0.0021	J	0.0010	,	0.0024 J	0.0098 U
SW8260	100-42-5			500	0.0012		0.013		0.0089	0	0.0048 U 0.0011 J	0.0098 U
SW8260 SW8260	108-88-3	Toluene Total Vulance	mg/kg		0.0016	*	0.0024		0.0022		0.0011 J	0.0098 U 0.02 U
SW8260 SW8260	1330-20-7 156-60-5	Total Xylenes trans-1,2-Dichloroethene	mg/kg	500	0.0038	1	0.0059	1	0.0050	J	0.0092 J 0.0046 U	0.02 U 0.0098 U
			mg/kg					U		0		
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.0072	U)	0.013	U	0.0089	U	0.0046 U	0.0098 U
01/0070	00.50.4	Semivolatiles		├ ───┤		ł					0.017	0.000
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.65	1.	3.2		0.14		0.017 J	0.082
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg	↓	0.095	1	0.21		0.063	1	0.041 U	0.046 J
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		6.7	l	13		1		0.1	0.5
SW8270	95-48-7	2-Methylphenol	mg/kg		0.072		0.11		0.047	1	0.041 U	0.04 J
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.19		0.39		0.11	1	0.041 U	0.099
SW8270	100-01-6	4-Nitroaniline	mg/kg		0.12	-	0.21	-	0.12	U	0.041 U	0.077 U
SW8270	98-86-2	Acetophenone	mg/kg		0.12	-	0.08		0.051	J	0.041 U	0.077 U
SW8270	100-52-7	Benzaldehyde	mg/kg		0.071		0.21		0.12		0.041 UJ	0.077 U
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		2.1		3.9		2.1	U	0.75 UJ	1.4 U
SW8270	86-74-8	Carbazole	mg/kg		1.9		23		0.54		0.041 U	0.24
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.72	U	1.3	U	0.7	U	0.25 U	0.47 U
SW8270	131-11-3	Dimethyl Phthalate	mg/kg	I I	0.61	U	1.1	U	0.6	U	0.21 U	0.4 U
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg	I I	1.8	U	3.3	U	1.8	U	0.63 U	1.2 U
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg	I I	0.12	U	0.21	U	0.12	U	0.041 U	0.077 U
SW8270	108-95-2	Phenol	mg/kg	500	0.094	J	0.31	İ	0.04	J	0.041 U	0.051 J

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-05-2 MW-05-2020-4.0-4 6 10/15/2 R20097 R20097 R20097 R200974 R200974 SOIL	3.0-10152020 1020 146 5-003	MW-06-2020-0.0 0. 10/15 R200	MW-06-2020-0.1 0. 10/15 R200 R2009	8-2020 18-1.0-10152020 16 1 5/2020 19746 746-005 EG DIL	MW-06-2020-7. MW-06-2020-7. 10/15 R2009 R20097 R S(S(7 8 5/2020 19746 746-006 EG	MW-07-2020-0.1 0 10/11 R2009 R2009 R	7-2020 0-0.16-10152020 0 1.16 5/2020 09746 746-009 EG 0IL
Analytical Method	CAS_RN	Chemical Name	Soli Cleanup Objective (SCO) for Commercial Use ⁽¹⁾									1	
000070	00.00.0	PAHs	500			0.5	0.00		0.040		0.45		
	83-32-9 208-96-8	Acenaphthene	500 500	7.7		8.5	0.26		0.048		0.15		
SW8270 SW8270	208-96-8	Acenaphthylene Anthracene	500	7.8		37 50	1.4		0.06		0.66		
	56-55-3	Benzo(A)Anthracene	mg/kg mg/kg	5.6	23		100	8.4		0.031	14	0.89	
	50-32-8	Benzo(A)Pyrene	mg/kg	1	23		130			0.053		4.7	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	25		130	12		0.059		5.2	
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	17		84	8.5		0.022		2.9	
	207-08-9	Benzo(K)Fluoranthene	mg/kg		11		41	3.9		0.021		1.2	
	218-01-9	Chrysene	mg/kg	56	21		110	9		0.042		3.7	
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	4.8		19	1.4		0.0069		0.58	
	132-64-9	Dibenzofuran	mg/kg	350	5.8		25	0.5		0.033		0.34	
SW8270	206-44-0	Fluoranthene	mg/kg	500	40		250	14		0.077	J+	5.8	
SW8270	86-73-7	Fluorene	mg/kg	500	7.1		37	0.43		0.045		0.22	
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	19		90	8.7		0.023	J+	3.4	
SW8270	91-20-3	Naphthalene	mg/kg	500	79		65	1.9	1	1.8		0.99	
SW8270	85-01-8	Phenanthrene	mg/kg	500	21		210	6.3		0.096		3.1	
SW8270	129-00-0	Pyrene	mg/kg	500	32		200	14		0.069	J+	5.6	
		Total PAHs ⁽⁵⁾	mg/kg	500	360		1600	100		2.5		42	

Notes

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-07 MW-07-2020-0.1 0. 10/15 R200 R20097 R1 SC	8-1.0-10152020 16 /2020 9746 46-010	MW-07-2020-4. 10/1! R2009 R2009 R	7-2020 0-6.0-10152020 4 6 5/2020 99746 746-011 EG OIL	MW-8-2020-0.0 0. 7/13, R210 R2107	16 (2021 (7052 052-005 EG	MW-08- MW-8-2020-0.0-0. 0 0.1. 7/13/2 R2107 R210702 FD S01	16-07132021 FD 6 2021 052 52-006	MW-8-2020-0.1 0. 2 7/13, 7/13, R210 R21070	16 L (2021 7052 952-007 EG
Analytical Method		Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾										
E160.3 E160.3	SOLID	Solids Total Solids	%		91.3		74.4		52.5		49.2		66.7	
E160.3	SULIDS	PEAS	%						52.5		49.2		66.7	
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg		0.001	U	0.0013	U	0.0017	UJ	0.0018 l	IJ	0.0012	UJ
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg		0.001	U	0.0013	U	0.0017	UJ	0.0018 l	IJ	0.0012	UJ
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg		0.001	U	0.0013		0.00056	J	0.00073 J		0.0012	
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg		0.001	U	0.0013	-	0.0004	1	0.0018 L	11	0.0012	
E537M E537M	355-46-4 375-95-1	Perfluorohexanesulfonic Acid (PFHxS) Perfluorononanoic Acid (PFNA)	mg/kg		0.001	U	0.0013		0.0017	UJ	0.0018 U 0.0018 U		0.0012	UJ
E537M	375-95-1 1763-23-1	Perfluorononanoic Acid (PFNA) Perfluorooctanesulfonic Acid (PFOS)	mg/kg mg/kg	0.440 ⁽²⁾	0.0001	1	0.0013	-	0.0007	1	0.0018	11	0.0012	UJ
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg	0.500 ⁽²⁾	0.00033	U	0.0013		0.0018	, 10	0.0018	U	0.00003	- UJ
E537M	376-06-7	Perfluorotetradecanoic Acid (PFTeDA)	mg/kg	0.500	0.001	U	0.0013		0.0017	UJ	0.0018 L	IJ	0.0012	UJ
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg		0.001	U	0.0013	U	0.00058	1	0.00054 J		0.00023	J
		Metals and Cyanide												
SW6010	7429-90-5	Aluminum	mg/kg		1110		6160		3370		3740 J		2840	
SW6010	7440-36-0	Antimony	mg/kg		6.6	U	7.9		11	U	12.2 L	11	8.3	
SW6010	7440-38-2 7440-39-3	Arsenic	mg/kg	16 400	3.8 47.3		11.9 70.6		8.9 91.6		9.7 223		6.3 162	
SW6010 SW6010	7440-39-3	Barium BervIlium	mg/kg mg/kg	590	0.252	1	1.6		0.623		0.752 J		0.569	1
SW6010	7440-43-9	Cadmium	mg/kg	9.3	0.232	1	0.54		0.641	1	0.691 J		0.625	1
SW6010	7440-70-2	Calcium	mg/kg		882	-	5130	-	11100	-	9860 J		7260	-
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	400	18.8		13.2		14		16.3 J		11.7	
SW6010	7440-48-4	Cobalt	mg/kg		2.4	J	3.5		5.9	J	6.2 J		4.6	J
SW6010	7440-50-8	Copper	mg/kg	270	20.7		123		70.8		73.8		62.6	J
SW6010	7439-89-6	Iron	mg/kg		14400		16800		23800		27600 J		28000	
SW6010 SW6010	7439-92-1 7439-95-4	Lead Magnesium	mg/kg	1000	10.8 181		27.9 956		37.9 1680		41.6 J 2060		25.9 1100	1
SW6010	7439-95-4	Magnesium	mg/kg mg/kg	10000	103		956		328		2060 370 J		326	1
SW6010	7440-02-0	Nickel	mg/kg	310	7.3		11.4		17.8		19.6 J		14.2	
SW6010	7440-09-7	Potassium	mg/kg		190	J	792		638		657 J		469	
SW6010	7782-49-2	Selenium	mg/kg	1500	1.1	J	3.5		1.8	U	20.3 l	IJ	1.4	U
SW6010	7440-22-4	Silver	mg/kg	1500	1.1		1.3		1.8		2 l	IJ	1.4	
SW6010	7440-23-5	Sodium	mg/kg		61.2		443		113	J	113 J		102	
SW6010 SW6010	7440-28-0 7440-62-2	Thallium Vanadium	mg/kg		1.1 4.7		1.3 12.9		1.8 15.8	U	2 L 16.7 J	11	1.4 16.1	U
SW6010	7440-62-2	Zinc	mg/kg mg/kg	10000	4.7	J	12.9	-	15.8		90.7		66.7	1
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.378		0.226		0.206		0.207 J		0.044]
SW9012	57-12-5	Cyanide, Total	mg/kg	27	3.04		4.46		3.32		3.3 J		1.61	
		Pesticides										-		
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.0095	U	0.012	-	0.0034	U	0.0035 L	J	0.0025	U
SW8081 SW8081	50-29-3 309-00-2	4,4'-DDT Aldrin	mg/kg mg/kg	47 0.68	0.0095	U 	0.012		0.0034	0 II	0.0035 L 0.0035 L	, I	0.0025	U 11
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.0095	U	0.012		0.0034	U	0.0035 L	, J	0.0025	U
SW8081	319-85-7	Beta-BHC	mg/kg	3	0.0095	U	0.012		0.0034	U	0.0035 L	J	0.0025	U
SW8081	959-98-8	Endosulfan I ⁽⁴⁾	mg/kg	200	0.0095	U	0.012	U	0.0034	U	0.0035 l	J	0.0025	U
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.0095	U	0.0071	J	0.018	J	0.02 J		0.015	J
SW8081	72-20-8	Endrin	mg/kg	89	0.0095	U	0.012		0.0034	U	0.0035 l	J	0.0025	U
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.0095	U	0.012	-	0.0034	U	0.0035 l	J	0.0025	U
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.0062	1	0.012		0.0034	U	0.0035 L	J	0.0025	UJ
SW8081 SW8081	5566-34-7 1024-57-3	Gamma-Chlordane Heptachlor Epoxide	mg/kg		0.0095	U	0.012		0.0034	U	0.0035 U 0.0022 J	J	0.0025	U
SW8081 SW8081	1024-57-3 72-43-5	Heptachlor Epoxide Methoxychlor	mg/kg mg/kg		0.0095		0.012		0.0034	1	0.0022 J	1	0.0025	U
3W0U01	12-43-3	Methoxychior	iiig/Kg		0.0095	U	0.012	U I	0.0034	U	0.0035 l	J	0.0025	U

Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix				MW-07-2020 MW-07-2020-0.16-1.0-10152020 0.16 1 10/15/2020 R2009746 R2009746-010 REG SOIL		MW-07-2020 MW-07-20204.0-8.0-10152020 4 6 10/15/2020 R2009746 R2009746-011 REG SOIL		MW-08-2020 MW-8-2020-0.0.16-07132021 0 0.16 7/13/2021 R2107052 R2107052 R2107052-005 REG SOIL		MW-08-2020 MW-8-2020-0.0-0.16-07132021 FD 0.16 7/13/2021 R2107052 R2107052 FD SOIL		MW-08-2020 MW-8-2020-0.16-1.0-0713202 0.16 1 7/13/2021 R2107052 R2107052 R2107052-007 REG SOIL		
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				1						
		PCBs												
SW8082	12672-29-6	Aroclor-1248	mg/kg	1	0.037		0.046		0.065	0	0.039]	0.049 U	
SW8082	11097-69-1	Aroclor-1254	mg/kg	1	0.037		0.046		0.065	UJ	0.24	J	0.049 U	
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.024	1	0.046	U	0.065	UJ	0.099	J	0.049 U	
	I													
		Total PCBs ⁽⁵⁾		1	0.024		0.046	U	0.065	U	0.38		0.049 U	
		Volatiles						L						
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	0.011	U	0.011	. U	0.012	U	0.011	U	0.012 U	
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.011	U	0.011	U	0.012	U	0.011	U	0.012 U	
SW8260	78-93-3	2-Butanone	mg/kg	500	0.011	U	0.011	U	0.012	U	0.011	U	0.012 U	
SW8260	67-64-1	Acetone	mg/kg	500	0.011	U	0.033		0.058	U	0.055	U	0.06 U	
SW8260	71-43-2	Benzene	mg/kg	44	0.00078	J	0.0029	1	0.012	U	0.00045	J	0.00057 J	
SW8260	74-83-9	Bromomethane	mg/kg		0.011	UJ	0.011	. UJ	0.012	UJ	0.011	UJ	0.012 UJ	
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.011	U	0.00072	: J	0.012	U	0.011	U	0.012 U	
SW8260	67-66-3	Chloroform	mg/kg	350	0.011	U	0.011	U	0.012	U	0.00059	J	0.00078 J	
SW8260	74-87-3	Chloromethane	mg/kg		0.011	U	0.011	U	0.012	U	0.011	U	0.012 U	
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.011		0.011		0.012	U	0.011	U	0.012 U	
SW8260	110-82-7	Cvclohexane	mg/kg		0.0007		0.0079		0.012	U	0.0015	1	0.012 U	
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.011	-	0.00063	-	0.012	- II	0.011	-	0.012 U	
SW8260	98-82-8	Isopropylbenzene	mg/kg	000	0.011	-	0.011		0.012	0 11	0.011	0	0.012 U	
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.021	-	0.0029	-	0.023	0	0.022		0.024 U	
SW8260	79-20-9	Methyl Acetate	mg/kg	500	0.011		0.0023		0.002	1	0.022		0.025 J+	
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.011		0.011		0.002		0.011		0.023 J	
SW8260	1034-04-4	Methylcyclohexane		500	0.0015		0.011		0.012	0	0.0017		0.012 U 0.0021 J	
SW8260	75-09-2	Methylene Chloride	mg/kg mg/kg	500	0.0015		0.011		0.012	U	0.0017	1	0.0021 J	
SW8260	75-09-2 95-47-6	o-Xylene	mg/kg	500	0.011		0.002		0.012	U	0.011	U	0.012 U	
	95-47-6 100-42-5	•		500	0.011		0.002		0.012	0	0.011	U	0.012 U	
SW8260		Styrene	mg/kg	500		-				0		U		
SW8260	108-88-3	Toluene	mg/kg	500	0.00058	*	0.0031		0.012	0	0.011	U	0.012 U	
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.021	U	0.0049		0.023	U	0.022	U	0.024 U	
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.011	U	0.011	-	0.012		0.011	U	0.012 UJ	
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.011	U	0.011	. U	0.012	U	0.011	U	0.012 U	
		Semivolatiles				L								
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.06		0.094		1.3		1.3		0.94 U	
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.074	UJ	0.089		1.3	U	1.3	U	0.94 U	
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		0.37		0.64		0.69	J	0.65	J	0.37 J	
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.074		0.037		1.3		1.3		0.94 U	
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.05	*	0.083		1.3	-	1.3		0.94 U	
SW8270	100-01-6	4-Nitroaniline	mg/kg		0.074	U	0.089	U	6.7	U	6.9	U	4.9 U	
SW8270	98-86-2	Acetophenone	mg/kg		0.074	U	0.089	U	1.3	U	1.3	U	0.94 U	
SW8270	100-52-7	Benzaldehyde	mg/kg		0.056	J	0.089	U	6.7	U	6.9	U	4.9 U	
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		1.3	U	1.6	i U	2	U	2	U	1.4 U	
SW8270	86-74-8	Carbazole	mg/kg		0.17		0.22		0.56	J	0.51	J	0.27 J	
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.45	U	0.54	U	1.3	U	1.3	U	0.94 U	
SW8270	131-11-3	Dimethyl Phthalate	mg/kg	1 1	0.38	U	0.46	U	1.3	U	1.3	U	0.94 U	
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg	1 1	1.1	U	1.4	U	1.3	U	1.3	U	0.94 U	
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		0.074		0.089		1.3		1.3		0.94 U	
SW8270	108-95-2	Phenol	mg/kg	500	0.031		0.05	-	1.3		1.3		0.94 U	
			0.0		,			1						

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

Location ID Field Sample ID Start Depth (R) End Depth (R) Sampled SDG Lab Sample ID Sample Type Matrix						MW-07-2020 MW-07-2020 MW-07-2020-0.16-1.0-10152020 MW-07-2020-4.0-6.0-10152020 0.16 4 1 6 10/15/2020 10/15/2020 R2009746 R2009746 REG REG SOIL SOIL		MW-08-2020 MW-8-2020-0.0-0.18-07132021 0 0.16 7/13/2021 R2107052 R2107052-005 REG SOIL		MW-08-2020 MW-8-2020-0.0-0.16-07132021 FD 0 0.16 7/13/2021 R2107052 R2107052-006 FD SOIL		MW-01 MW-8-2020-0.1 0. 7/13, R210 R21070 R21070 R25070 R S0 S0 S0	8-1.0-07132021 16 1 /2021 7052 952-007 5G	
Analytical Method	CAS_RN	Chemical Name		Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾								1		
SW8270	83-32-9	PAHs Acenaphthene	mg/kg	500	0.11		0.16		0.72		0.32		0.2	1
	208-96-8	Acenaphthylene	mg/kg	500	0.11		0.18		2.2	1	2.2		1.8	J
SW8270	120-12-7	Anthracene	mg/kg	500	0.28		0.76		1.9		1.6		1.8	
	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	1.4		2.1		1.5		9.1		1.4	
	50-32-8	Benzo(A)Pyrene	mg/kg	1	2.2		3		18		15		12	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	2.6		3.2		22		19		15	
SW8270	191-24-2	Benzo(G.H.I)perylene	mg/kg		1.2		1.5		14		11		8.5	
	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	0.78		1		5.8		5		4	
	218-01-9	Chrysene	mg/kg	56	2		2.3		13		11		8.9	
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg		0.35		0.44		2.8		2.5		2.2	
SW8270	132-64-9	Dibenzofuran	mg/kg		0.22		0.33		0.6	1	0.58	1	0.31	J
SW8270	206-44-0	Fluoranthene	mg/kg	500	2.8		4.2		21		17	1	16	
SW8270	86-73-7	Fluorene	mg/kg	500	0.12		0.39		0.53	l	0.44	J	0.34	1
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	1.3		1.8		16		13		10	
SW8270	91-20-3	Naphthalene	mg/kg	500	0.58		18		1.9	J-	2	J-	0.87	J
		Phenanthrene	mg/kg	500	1.9		2.6		6.4		5.4		4.1	
SW8270	129-00-0	Pyrene	mg/kg	500	2.8		4		20		16		14	
		Total PAHs ⁽⁵⁾	mg/kg	500	21		46		160		130		110	

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(4) This SCO is for the sum of endosuran i, endosuran ii, and endosuran suna (5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

(5) Value from NYSDEC "CP-51/Soll Cleanup Guidance", Oc

Only detected compounds are presented

Shaded: Value exceeds Commercial SCOs

			Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sample ID Lab Sample ID Sample Type Matrix	MW-06-2020 MW-8-2020-1.5-2.0-07142021 1.5 2 7/44/2021 R2107052 R2107052-010 REG SOIL	MW-16-2020 MW-16-2020-0-0.16-07132021 0 0.16 7/13/2021 R2107052 R2107052-001 REG SOIL		MW-16-2020 MW-16-2020-0.16-1.0-07132021 0.16 1 7/13/2021 R2107052 R2107052-002 REG SOIL		MW-16-2020 MW-16-2020-2-0-2.5-07132021 2 2.5 7/13/2021 R2107052 R2107052-003 REG SOIL		MW-23-2022 MW-23-2022-5-8-12082022 5 6 12/8/2022 R2211778 R2211778-001 REG SOIL		
Analytical Method	CAS_RN	Chemical Name	Unit	Soli Cleanup Objective (SCO) for Commercial Use ⁽¹⁾									
E160.3	SOLID	Solids	%										
E160.3	SOLIDS	Total Solids PFAS	%		70.6	73.5		79.7		69.1		71.5	
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg		0.0012 UJ	0.0013	IJ	0.001	UJ	0.0013 UJ			
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg		0.0012 UJ	0.0013		0.001	UJ	0.0013 UJ			
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg		0.0012 UJ	0.0013		0.001	UJ	0.0013 UJ			
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg		0.00023 J	0.00039		0.00025	J	0.0013 UJ			
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg		0.0012 UJ	0.0013		0.001	UJ	0.0013 UJ			
E537M E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg	a + + a(2)	0.0012 UJ 0.00019 J	0.0013		0.001	0.1	0.0013 UJ 0.0013 UJ			
E537M	1763-23-1 335-67-1	Perfluorooctanesulfonic Acid (PFOS) Perfluorooctanoic Acid (PFOA)	mg/kg mg/kg	0.440 ⁽²⁾ 0.500 ⁽²⁾	0.0019 J	0.00067			J 	0.0013 UJ			
E537M	376-06-7	Perfluorotetradecanoic Acid (PFA)	mg/kg	0.500	0.0012 UJ	0.0013		0.001		0.0013 UJ			
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg		0.0012 UJ	0.00025		0.0002	J	0.0013 UJ			
		Metals and Cyanide	0.0										
SW6010	7429-90-5	Aluminum	mg/kg		2730	3650		2570		2030		13500	
SW6010	7440-36-0	Antimony	mg/kg		8.5 U	7.7		7.1	U	8.7 U		8.4 U	
SW6010	7440-38-2	Arsenic	mg/kg	16	8.1	6.7		6.3		9.8		9.3	
SW6010	7440-39-3	Barium	mg/kg	400	136	98.7		156		139		143	
SW6010 SW6010	7440-41-7 7440-43-9	Beryllium	mg/kg	590 9.3	0.595 0.368 J	0.539		0.533	1	0.81 0.232 J		0.95 0.63 J	
SW6010 SW6010	7440-43-9	Cadmium Calcium	mg/kg mg/kg	9.3	3090	14900		5740	J	1690		6860	
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	400	7.5	14500		7.4		5		19.5	
SW6010	7440-48-4	Cobalt	mg/kg		2.4 J	4.2		3.4	J	3.1 J		6 J	
SW6010	7440-50-8	Copper	mg/kg	270	53	31.6		28.3		16.8		36.6	
SW6010	7439-89-6	Iron	mg/kg		12400	13300		8990		10000		34900	
SW6010	7439-92-1	Lead	mg/kg	1000	21.8	32.1		23.7		13.5		121 J	
SW6010	7439-95-4	Magnesium	mg/kg		294	6690		869		238		2180 J	
SW6010 SW6010	7439-96-5 7440-02-0	Manganese Nickel	mg/kg mg/kg	10000 310	42 9.9	314		86.4 8.7		75.2		344 21.6	
SW6010	7440-02-0	Potassium	mg/kg	310	329	783		451		246 J		1280	
SW6010	7782-49-2	Selenium	mg/kg	1500	1.1 J	1.2		11.8	U	1.2 J		14 U	
SW6010	7440-22-4	Silver	mg/kg	1500	1.4 U	1.3		1.2	U	1.5 U		U.3 J	
SW6010	7440-23-5	Sodium	mg/kg		76.4 J	79.3		75.7	1	81.7 J		210	
SW6010	7440-28-0	Thallium	mg/kg		1.4 U	1.3		1.2	U	1.5 U		1.4 U	
SW6010	7440-62-2	Vanadium	mg/kg		11.8	12.9		9.9		9.4		23.8	
SW6010 SW7471	7440-66-6 7439-97-6	Zinc Mercury	mg/kg mg/kg	10000 2.8	29.8 0.14	85.4 0.363		36.8 0.172		19.9 0.297		356 0.184 J	
SW9012	57-12-5	Cyanide, Total	mg/kg	27	3.39	1.5		1.22		1.25		0.69	
	1	Pesticides					1						
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.0023 U	0.0023		0.0022	U	0.0026 U			
SW8081	50-29-3	4,4'-DDT	mg/kg	47	0.0023 U	0.0023	-	0.0022	U	0.0026 U			
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.0023 U	0.0023		0.0022	U	0.0026 U			
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.0023 U	0.0023	-	0.0022	U	0.0026 U 0.0026 U			
SW8081 SW8081	319-85-7 959-98-8	Beta-BHC	mg/kg mg/kg	3 200	0.0023 U 0.0023 U	0.0023		0.0022	0	0.0026 U 0.0026 U			
SW8081 SW8081	959-98-8 1031-07-8	Endosulfan I ⁽⁴⁾ Endosulfan Sulfate ⁽⁴⁾	mg/kg mg/kg	200	0.0023 0	0.0023		0.0022	U	0.0026 U			
SW8081	72-20-8	Endosultan Sultate' /	mg/kg	89	0.0031 0.0023 U	0.0023		0.0022	0	0.0026 U			
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.0023 U	0.0023	-	0.0022	- U	0.0026 U			
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.0023 U	0.0023		0.0022	U	0.0026 U			
SW8081	5566-34-7	Gamma-Chlordane	mg/kg		0.0023 U	0.0023		0.0022	U	0.0026 U			
SW8081	1024-57-3	Heptachlor Epoxide	mg/kg		0.0023 U	0.0023	U	0.0022	U	0.0026 U			
SW8081	72-43-5	Methoxychlor	mg/kg		0.0023 U	0.0023	U	0.0022	U	0.0026 U			

Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample ID				MW-08-2020 MW-8-2020-1.5-2.0-07142021 1.5 2 7/14/2021 R2107052 R2107052-010 REG		MW-16-2020 MW-16-2020-0.0-16-07132021 0 0.16 7/13/2021 R2107052 R2107052-001 RE6		MW-16-2020 MW-16-2020-0.16 1.0-07132021 0.16 1 7/13/2021 R2107052 R2107052-002 REG		MW-16-2020 MW-16-2020-2.0-2.5-07132021 2.5 7/13/2021 R2107052 R2107052-003 REG		MW-23-2022 5 6 12/8/2022 R2211778 R2211778-001 REG		
				Sample Type Matrix		EG		EG	REG SOIL		REG SOIL		REG SOIL	
	1		1	Matrix	5	OIL	5	OIL	5	ЛL	SOIL		50	L
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				1						
SW8082	12672-29-6	PCBs	mg /lug	1	0.045		0.045		0.043	11	0.05 U			
SW8082 SW8082	12672-29-6 11097-69-1	Aroclor-1248 Aroclor-1254	mg/kg mg/kg		0.045	U	0.045		0.043	0	0.05 U			
SW8082 SW8082	11097-89-1	Arocior-1254 Arocior-1260	mg/kg	1	0.045	U	0.045		0.032	J	0.05 U			
3₩8082	11090-82-5	A10C101-1200	iiig/ kg	1	0.045	U	0.045	U	0.043	0	0.05 0			
		Total PCBs ⁽⁵⁾	+	1	0.045	u	0.045	u	0.032		0.05 U			
		Volatiles		-	3.043	-	5.045	-	5.032		0.00 0			
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
SW8260	75-34-3	1.1-Dichloroethane	mg/kg	240	0.0079	U	0.0084		0.009	U	0.0099 U		0.0064	 J
SW8260	78-93-3	2-Butanone	mg/kg	500	0.0079	U	0.0084	-	0.009	U	0.0099 U		0.015	
SW8260	67-64-1	Acetone	mg/kg		0.039	U	0.042	U	0.045	U	0.05 U		0.091	
SW8260	71-43-2	Benzene	mg/kg		0.0079	U	0.0084	U	0.009	U	0.0099 U		0.00058	J
SW8260	74-83-9	Bromomethane	mg/kg		0.0079	UJ	0.0084	UJ	0.009	UJ	0.0099 UJ		0.0064	J
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.0015	J	0.0084	U	0.009	U	0.0032 J		0.0011	I
SW8260	67-66-3	Chloroform	mg/kg		0.00053	J	0.0084	U	0.009	U	0.00057 J		0.0064	J
SW8260	74-87-3	Chloromethane	mg/kg		0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
SW8260	110-82-7	Cyclohexane	mg/kg		0.00061	J	0.00081	J	0.0016	J	0.0032 J		0.0064	J
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.016	U	0.017	U	0.018	U	0.02 U		0.013	J
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0079	U	0.0084		0.009	U	0.0099 U		0.0022	I
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.0079	U	0.0084		0.009	U	0.0099 U		0.0064	J
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.00097	J	0.0011		0.0022	J	0.005 J		0.0064	J
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.0079	U	0.0084		0.009	U	0.0099 U		0.0088	
SW8260	95-47-6	o-Xylene	mg/kg	500	0.0079	U	0.0084		0.009	U	0.0099 U		0.0064	J
SW8260	100-42-5	Styrene	mg/kg		0.0079	U	0.0084		0.009	U	0.0099 U		0.0064	J
SW8260	108-88-3	Toluene	mg/kg	500	0.0079	U	0.0084		0.009	U	0.0099 U		0.0064	J
SW8260	1330-20-7	Total Xylenes	mg/kg		0.016	U	0.017		0.018	U	0.02 U		0.013	J
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.0079	UJ	0.0084		0.009	UJ	UJ 000.0		0.0064	J
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.0079	U	0.0084	U	0.009	U	0.0099 U		0.0064	J
01/0070	00 50 4	Semivolatiles			0.47		45		0.04		0.40		0.00	
SW8270 SW8270	92-52-4 105-67-9	1,1'-Biphenyl 2,4-Dimethylphenol	mg/kg		0.47		4.5		0.84	U II	0.48 U 0.48 U		0.89	U I
SW8270 SW8270	105-67-9 91-57-6	2,4-Dimethylphenol 2-Methylnaphthalene	mg/kg mg/kg		0.47	v 11	4.5		0.84	-	0.48 U 0.41 J		0.89	
SW8270 SW8270	91-57-6 95-48-7	2-Methylphenol	mg/kg mg/kg	500	0.47	U	4.5		0.41	1	0.41 J 0.48 U		0.89	U
SW8270 SW8270	95-48-7 34METPH	2-Methylphenol 3&4-Methylphenol	mg/kg mg/kg	500	0.47		4.5		0.84		0.48 U 0.1 J		0.89	I
SW8270	100-01-6	4-Nitroaniline	mg/kg		2.4	-	4.5		4.4	-	2.5 U		4.6	J
SW8270	98-86-2	Acetophenone	mg/kg	 	0.47	-	4.5		0.84		0.48 U		0.89	-
SW8270	100-52-7	Benzaldehyde	mg/kg		2.4	-	4.5		4.4	-	2.5 U		4.6	-
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		0.71		6.8		1.3		0.72 U		1.4	
SW8270	86-74-8	Carbazole	mg/kg		0.47	-	4.7		0.48		0.096 J		0.89	- J
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.47	- U	4.5		0.84		0.48 U		0.89	- J
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		0.47	- U	4.5		0.84	u	0.48 U		0.89	
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		0.47	- U	4.5		0.84	- U	0.48 U		0.89	-
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		0.47	-	4.5		0.84	-	0.48 U		0.89	J
SW8270	108-95-2	Phenol	mg/kg	500	0.47		4.5		0.84	-	0.48 U		0.89	J
			··· 0		0.11	1.1	-1.0	1.1	0.01	-	50		5.00	-

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

Location ID Field Sample ID Start Depth (R) End Depth (R) Sampled SDG Lab Sample ID Sample Type Matrix						MW-08-2020 MW-8-2020-1.5-2.0-07142021 MW-1 1.5 2 7/14/2021 R2107052 R2107052-010 REG SOIL		MW-16-2020 MW-16-2020-0.0-0.16-07132021 0 0.16 7/13/2021 R2107052 R2107052-001 REG SOIL		MW-16-2020 MW-16-2020-0.16-1.0-07132021 0.16 1 7/13/2021 R2107052 R2107052-002 REG SOIL		MW-16-2020 22-20-2.0-2.5-07132021 2 7/13/2021 R2107052 R2107052-003 REG SOIL		3-2022 5-6-12082022 5 6 /2022 11778 778-001 EG 00L
Analytical Method	CAS_RN	Chemical Name		Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾	T									1
SW8270	83-32-9	PAHs		500	0.47 U		4.5		0.84		0.48		0.89	
	83-32-9 208-96-8	Acenaphthene Acenaphthylene	mg/kg		0.47 U 0.25 J		4.5	U	0.84	U	0.48	-	0.89	-
SW8270	208-96-8	Acenaphinylene	mg/kg mg/kg		0.25 J		6.7		0.88		0.25		0.89	
	56-55-3	Benzo(A)Anthracene	mg/kg		0.20 J		26		4.2		0.23		0.83	
	50-32-8	Benzo(A)Antinacene Benzo(A)Pyrene	mg/kg	5.0	1.5		31		4.2		0.9		1.5	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	-	1.8		36		6.8		1.2		2.1	
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg		1.1		20		4.1		0.62		1.2	
	207-08-9	Benzo(K)Fluoranthene	mg/kg		0.53		13		2.1		0.38		0.7	
	218-01-9	Chrysene	mg/kg	56	1.2		29		4.6		0.92		1.3	
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg		0.24 J		4.5		0.86		0.16		0.35	
SW8270	132-64-9	Dibenzofuran	mg/kg		0.47 U		1.8	J	0.29	J	0.17		0.89	
	206-44-0	Fluoranthene	mg/kg		2		71		9.7		1.6		1.1	
	86-73-7	Fluorene	mg/kg		0.1 J		2.8	J	0.21	J	0.48	U	0.89	
	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg		1.3		23		4.9		0.68		1.3	
SW8270	91-20-3	Naphthalene	mg/kg		0.13 J		2.9	J	0.66	J	0.49	J-	0.68	J
SW8270	85-01-8	Phenanthrene	mg/kg	500	0.88		50		4.9		1.1		0.44	1
SW8270	129-00-0	Pyrene	mg/kg	500	1.7		60		8.7		1.4		0.92	
		Total PAHs ⁽⁵⁾	mg/kg	500	14		380		60		11		13	

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

Analytical Method CAS_RN Chemical Name Soli Cleanup Objective (SCO) for Commercial Use ^{GU} Soli Cleanup Objective (SCO) for Commercial Use ^{GU} Soli Cleanup Commercial Use ^{GU} Soli Cleanup Clea		
E160.3 SOLIDS Total Solids % 69.7 <th< th=""> <th< th=""> <t< th=""><th></th><th></th></t<></th<></th<>		
PFAS PFAS <th< th=""><th>84.4</th><th>86.1</th></th<>	84.4	86.1
	0.0011 U	0.0011 U
E537M 375-22-4 Perfluorobutanoic Acid (PFBA) mg/kg 0.001 U 0.001 U	0.0011 U	0.0011 U
E537M 33576-2 Perfluorodecanoic acid (PEDA) mg/kg 0.001 U 0.001 U	0.0011 U	0.0011 U
E537M 375-85-9 Perfluoroheptanoic Acid (PFHpA) mg/kg 0.001 U 0.001 U E537M 355-46-4 Perfluorohexanesulfonic Acid (PFHxS) mg/kg 0.001 U 0.001 U 0.001 U	0.0011 U 0.0011 U	0.0011 U 0.0011 U
LSS/M 355-46-4 Permutomezansumm.zeu (PMs) Img/kg 0.001 0 0.001 0 ESS/M 355-55-1 Perfutoronanaio.ca((PMs) mg/kg 0.001 U 0.001 U	0.0011 U	0.0011 U
Los m 010001 0100010 000010 000010 ES37M 1763231 Perfluorooctanesuffor (MPG) mg/kg 0.440 ⁽²⁾ 0.00110 0.00110	0.00022 J	0.0011 U
E537M 335-67-1 Perfluorooctanoic Acid (PFOA) mg//g 0.500 ⁽²⁾ 0.000 ⁽¹⁾ 0.001 U 0.001 U	0.0011 U	0.0011 U
E537M 376-06-7 Perfluorotetradecanoic Acid (PFTeDA) mg/kg 0.001 U 0.001 U 0.001 U	0.0011 UJ	0.0011 UJ
E537M 2058-94-8 Perfluoroundecanoic Acid (Pfunda) mg/kg 0.001 U 0.001 U	0.0011 U	0.0011 U
Metals and Cyanide		
SW6010 7429-90-5 Aluminum mg/kg 20700 1500 1240 SW6010 7440-36-0 Antimony mg/kg 8 U 6.8 0 6.7	2300 6.8 UJ	11000 6.5 U
SW6010 7440-36-0 Antimony mg/kg 8 U 6.8 U 6.7 U SW6010 7440-38-2 Arsenic mg/kg 16 5.6 2.9 3.6	6.8 UJ 10.2 J	4.1
SW0010 7440-39-2 Atsentic Img/ng 4.0 3.0 2.5 3.0 SW0010 7440-39-3 Barium mg/ng 4.0 1.64 30.3 25	49	4.1
W6010 7440-41-7 Beryllium mg/kg 590 1.28 0.272 J 0.28 J	0.57	0.57
SW6010 7440-43-9 Cadmium mg/kg 9.3 0.2 J 0.112 J 0.112 J	0.194 J	0.333 J
SW6010 7440-70-2 Calcium mg/kg 4830 J 1210 J 637 J	3030 J	52200
SW6010 7440-47-3 Chromium ⁽³⁾ mg/kg 400 26 J 4.7 4.6	8.6	26.1
SW6010 7440-48-4 Cobalt mg/kg 117 1.9 1.8 1.8 Sw6010 100	3.8 J	8.5
SW6010 7440-50-8 Copper mg/kg 270 24.4 13 12.3 SW6010 7439-89-6 Iron mg/kg 38100 4210 4010	20.1 8040 J	22 25500
Jinopio 1/35/95/0 Main Jinopio Jinopio 36:00 4/10 400 SW6010 7/35/92/1 Lead mg/ng 1000 61.7 J 7.9 7.8	10.9	15.2
Bit State Bit State <t< td=""><td>1030 J</td><td>12500</td></t<>	1030 J	12500
SW6010 7439-96-5 Manganese mg/kg 10000 401 J 48.1 42.5	103	1560
SW6010 7440-02-0 Nickel mg/kg 310 27 4 J 3.9 J	9	19.4
SW6010 740-09-7 Potassium mg/kg 1930 228 222 J	443	2210
SW6010 7782-49-2 Selenium mg/ng 1500 1.3 1.1 1.1 1.1 ownered 24.000-4 24.000 4.000 4.000 4.000 4.000 1.0 1.0 1.0 1.0	1.1 U	1.1 U
SW6010 7440-224 Silver mg/kg 1500 1.3 U 1.1 U 1.1 U SW6010 7440-235 Sodium mg/kg 140 62.7 J 61.6 J	1.1 U 71.3 J	1.1 U 161
SW6010 7440/259 Sodium mg/rg 140 62.7 J 61.6 J SW6010 7440/259 Sodium mg/rg 1.3 U 1.1 U 1.1 U	/1.3 J 1.1 UJ	161 1.1 U
SW0010 140/250 Imanuali mg/ng 1.50 1.10 1.10 SW0010 7440-622 Vanadium mg/ng 36.6 41J 4.1J	9	77.5
SW6010 7440-66-6 Zinc mg/kg 10000 191 J 20.3 20.3	30.8	58.1
SW7471 7439-97-6 Mercury mg/kg 2.8 1.21 J 0.091 0.113	0.222 J	0.015
SW9012 57-12-5 Oganda, Total mg/kg 27 0.67 0.82 0.77 Image: Second Seco	0.77	0.37
Pesticides mg/kg 92 0.011 U 0.0098 J	0.013 U	0.0096 U
SW8061 1/254-6 4+-000 Img/ng 3/2 0.011 [0 0.008 [0 SW8061 50/29-3 4.4-0DT mg/ng 3/2 0.011 [U 0.011 [U	0.013 UJ	0.0096 UJ
SW8081 309-00-2 Aldrin mg/kg 0.68 0.011 [U 0.011 [U	0.013 U	0.0096 U
SW8081 319-84-6 Alpha-BHC mg/kg 3.4 0.011 U 0.011 U	0.013 U	0.0096 U
SW8081 319-85-7 Beta-BHC mg/kg 3 0.011	0.013 U	0.0096 U
SW8081 959-98-8 Endosufan (⁴⁾ mg/kg 200 0.011 U 0.011 U	0.013 U	0.0096 U
SW8081 1031-07-8 Endosuftan Sulfate ⁽⁴⁾ mg/ng 200 0.011 U 0.011 U Sw8081 200 0.011 U 0.011 U 0.011 U 0.011 U	0.013 U	0.0096 U
SW8081 72:20.8 Endrin mg/kg 89 0.011 U 0.011 U SW8081 7421:93.4 Endrin Aldehyde mg/kg 0.011	0.013 UJ 0.013 U	0.0096 UJ 0.0096 U
SW8081 7421-93-4 Endrin Aldehyde mg/kg 0.011 U 0.011 J SW8081 53494-70-5 Endrin Ketone mg/kg 0.011 U 0.011 U 0.011 U	0.013 U 0.013 U	0.0096 U 0.0096 U
SW8061 35494-705 Endlin Retolie mg/ng 0.011 0 0.011 0 SW8061 5566-347 Gamma-Chlordane mg/ng 0.011 U 0.011 U	0.013 U	0.0096 U
SW8081 1024-57.3 Heptachir Epoxide mg/ng 0.011 U 0.011 U	0.013 U	0.0096 U
W8081 72.43.5 Methowshior mg/kg 0.011 U 0.011 U	0.013 UJ	0.0096 UJ

Field Sample Start Depth End Depth Samp S Lab Sample Ty Sample Ty				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sample ID Sample ID Sample Type Matrix	MW-23-2022-5-6-12082022FD 5 6 12/8/2022 R2211778 R2211778-002		TP-07-2020 TP-07-2020-0.0-0.16-10062020 0 0.1.6 10/6/2020 R2009343 R2009343-001 REG SOIL		TP-07-2020 TP-07-2020-00.16-10062020 FD 0 0.16 10/6/2020 R2009343 R2009343 R2009343-002 FD SOIL		TP-07-2020 TP-07-2020-0.16-1.0-100620 0.16 1 10/6/2020 R2009343 R2009343-003 REG SOIL	TP-07-2020 20 TP-07-2020-4,0-5,0-10062020 4 5 10/6/2020 R2009343 R2009343-004 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾		Γ		Γ				
0140000	40070.00.0	PCBs		4			0.014		0.043		0.049 U	0.007 !!
SW8082 SW8082	12672-29-6	Aroclor-1248	mg/kg				0.044		0.043	U	0.049 U 0.049 U	0.037 U
	11097-69-1	Aroclor-1254	mg/kg							U		0.037 U
SW8082	11096-82-5	Aroclor-1260	mg/kg	1			0.044	U	0.043	U	0.049 U	0.037 U
	l		-								0.010	0.007 !!
	ł	Total PCBs ⁽⁵⁾	-	1			0.044	U	0.043	U	0.049 U	0.037 U
		Volatiles										
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg		0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	78-93-3	2-Butanone	mg/kg	500	0.015		0.011	U	0.012	U	0.014 U	0.0043 J
SW8260	67-64-1	Acetone	mg/kg		0.1		0.011	U	0.012	U	0.014 U	0.052
SW8260	71-43-2	Benzene	mg/kg	44	0.00056	J	0.00061		0.0034	J	0.0021 J	0.00055 J
SW8260	74-83-9	Bromomethane	mg/kg		0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.0015	J	0.011	U	0.012	U	0.014 U	0.00079 J
SW8260	67-66-3	Chloroform	mg/kg	350	0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	74-87-3	Chloromethane	mg/kg		0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	110-82-7	Cyclohexane	mg/kg		0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.016	U	0.022	U	0.00094	J	0.028 U	0.0093 U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.0017	J	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.0081	U	0.011	U	0.012	U	0.014 U	0.0046 U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0081	U	0.011	U	0.012	U	0.014 U	0.00031 J
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	95-47-6	o-Xylene	mg/kg		0.0081	U	0.011		0.012	U	0.014 U	0.0046 U
SW8260	100-42-5	Styrene	mg/kg		0.0081	11	0.011		0.012		0.014 U	0.0046 U
SW8260	108-88-3	Toluene	mg/kg	500	0.0081	U	0.00045	-	0.0015	1	L 6800.0	0.0046 U
SW8260	1330-20-7	Total Xylenes	mg/kg		0.0001	-	0.00043	*	0.00013		0.028 U	0.0093 U
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.0081	- U	0.022	- U	0.00034	- U	0.028 U	0.0046 U
SW8260	79-01-6	Trichloroethene	mg/kg		0.0081		0.011	u	0.012	й П	0.014 U	0.0046 U
5110200	13-01-0	Semivolatiles	nig/ ng	200	0.0081	0	0.011		0.012	0	0.014 0	0.0040 0
SW8270	92-52-4	1,1'-Biphenyl	mg/kg	 	0.92		1.3	<u> </u>	0.12	1	0.23	0.012 J
SW8270 SW8270	92-52-4 105-67-9	2,4-Dimethylphenol		<u>├</u>	0.92		0.1		0.12	ر ۱۱	0.23 0.12 U	0.012 J
			mg/kg	<u>├</u>		0					0.12 0	
SW8270	91-57-6	2-Methylnaphthalene	mg/kg	500	0.92	U	4.4		0.61	J		0.049
SW8270	95-48-7	2-Methylphenol	mg/kg		0.92		0.12		0.017	J	0.037 J	0.038 U
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.92	-	0.46	-	0.052	J	0.13	0.038 U
SW8270	100-01-6	4-Nitroaniline	mg/kg		4.8	-	1	-	0.036	UJ	0.12 U	0.038 U
SW8270	98-86-2	Acetophenone	mg/kg		0.92		0.11		0.026	1	0.12 U	0.038 U
SW8270	100-52-7	Benzaldehyde	mg/kg		4.8		0.11		0.025	J	0.12 U	0.038 U
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		1.4		2.1		0.66	U	2.2 U	0.69 U
SW8270	86-74-8	Carbazole	mg/kg		0.92		22		0.44	1	2.1	0.031 J
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.92	U	0.69	-	0.22	U	0.73 U	0.23 U
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		0.92	U	0.59	-	0.19	U	0.62 U	0.2 U
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		0.92	U	1.7	U	0.55	U	1.8 U	0.58 U
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		0.92		0.12	-	0.036		0.12 U	0.038 U
SW8270	108-95-2	Phenol	mg/kg	500	0.92	U	0.43	1	0.043	1	0.14	0.038 U

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	MW-23-2022 MW-23-2022-5-8-12082022FD 5 6 12/8/2022 R2211778-002 FD SOIL	TP-07-202 TP-07-2020-0.0-0.1 0 0.16 10/6/202 R2009343- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R200934- R20093- R20093- R20093- R20093- R2009- R200-	6-10062020 TP-07-2020-0.0 20 10/ 13 R2C 001 R2001	77-2020 0.16-10062020 FD 0 3.16 6/2020 009343 39343-002 FD SOIL	TP-07- TP-07-2020-0.16 0.1 1 10/6/: R2009 R20093 R20093 RE S0	-1.0-10062020 16 2020 9343 43-003 16	TP-07-3 TP-07-2020-4.0- 4 5 10/6/3 R20093 R200934 REI S0I	5.0-10062020 2020 9343 43-004 G
Analytical Method	CAS_RN	Chemical Name		Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				1				
SW8270	83-32-9	PAHs Acenaphthene	mg/kg	500	0.92 U	6.6 J	0.1		0.6		0.098	
	208-96-8	Acenaphthene	mg/kg	500	0.92 U	20 J	0.1		2.5		0.098	
SW8270	120-12-7	Anthracene	mg/kg	500	0.92 U	53 J	1.		5.2		0.041	
	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	1.9 J	84 J	5.		14		0.22	
	50-32-8	Benzo(A)Pyrene	mg/kg	1	2.5 J	92 J	7.		16		0.22	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	6.3 J	98 J	8.		19		0.34	
	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	2.1 J	57 J	4.	9 J	11		0.17	
SW8270	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	1.6 J	34 J	2.	6 J	6		0.11	
SW8270	218-01-9	Chrysene	mg/kg	56	2.8 J	90 J	6.	3 J	16		0.21	
SW8270	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	0.94 J	15 J	1.:	2 J	2.6		0.052	
SW8270	132-64-9	Dibenzofuran	mg/kg	350	0.92 U	16 J	0.5	1 J	1.3		0.15	
SW8270	206-44-0	Fluoranthene	mg/kg	500	1.5	250 J	1	1 J	35		0.54	
SW8270	86-73-7	Fluorene	mg/kg	500	0.92 U	32 J	0.3	9 J	1.8		0.27	
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	2.5 J	63 J		5 J	12		0.19	
	91-20-3	Naphthalene	mg/kg	500	0.62 J	16 J		2 J	4.4		0.12	
SW8270	85-01-8	Phenanthrene	mg/kg	500	0.46 J	230 J	4.	7 J	22		0.72	
SW8270	129-00-0	Pyrene	mg/kg	500	1.2	180 J	9.	5 J	27		0.38	
		Total PAHs ⁽⁶⁾	mg/kg	500	24	1300	7:	2	200		4.1	

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample ID Sample Type Matrix	TP-08 TP-08-2020-0.0 (0. 10/1/ R2009 R20092 Ri SC	0.18-10012020) 16 2020 9205 05-001 56	TP-08-2020-0.1 0 10/1 R2009 R2009 R	3-2020 16-1.0-10012020 16 1 /2020 99205 205-002 EG OIL	TP-08-2020-5.0 10/1, R200 R20093	3 /2020 9205 205-003 EG	TP-09 TP-09-2020-0.0 (0.: 10/1/ R2009 R20092 Rit SC	0.18-10012020) 16 2020 9205 05-004 36	1 10/1/ R200 R20092	8-1.0-10012020 16 1 1 2020 9205 205-005 20
Analytical Method		Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				_						
E160.3	SOLID	Solids	%		84		85.4		83.2		85.8		83.9	
E160.3	SOLIDS	Total Solids PFAS	%											
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg											
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg											
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg											
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg											
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg											
E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg	101										
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾										
E537M E537M	335-67-1 376-06-7	Perfluorooctanoic Acid (PFOA) Perfluorotetradecanoic Acid (PFTeDA)	mg/kg	0.500 ⁽²⁾										
E537M	2058-94-8	Perfluoroundecanoic Acid (PfreDA) Perfluoroundecanoic Acid (Pfunda)	mg/kg mg/kg					ł	ł					
233714	2030-34-0	Metals and Cyanide	116/16											
SW6010	7429-90-5	Aluminum	mg/kg		1500		2290		3500		3540		4080	
SW6010	7440-36-0	Antimony	mg/kg		6.6	U	6.9	U	6.7	U	0.745	J	6.9	U
SW6010	7440-38-2	Arsenic	mg/kg	16	5.4		7.8		12.1		14.1		18.1	
SW6010	7440-39-3	Barium	mg/kg	400	45.8		60.6		61.8		92.5		83.3	
SW6010	7440-41-7	Beryllium	mg/kg	590	0.353		0.505		0.668		0.615		0.688	
SW6010	7440-43-9	Cadmium Calcium	mg/kg	9.3	0.176	J	0.207	J	0.289	J	1.2		1.2 5440	
SW6010 SW6010	7440-70-2 7440-47-3	Calcium Chromium ⁽³⁾	mg/kg mg/kg	400	2050 13.3		3330 12.7		5030 74.3		7030 36.3		29.1	
SW6010	7440-48-4	Cobalt	mg/kg	400	2.7	1	3.5	1	5.9		5.3	1	6.3	
SW6010	7440-50-8	Copper	mg/kg	270	57.4	, ,	32.5		73		87.5	, ,	116	
SW6010	7439-89-6	Iron	mg/kg		12500		16000		24200		27900		48900	
SW6010	7439-92-1	Lead	mg/kg	1000	13.9		26.6		27.9		159		208	
SW6010	7439-95-4	Magnesium	mg/kg		307		504		975		1370		1400	
SW6010	7439-96-5	Manganese	mg/kg	10000	120		200		242		376		424	
SW6010	7440-02-0	Nickel	mg/kg	310	13.2		16.6		79.9		25.9		30.6	
SW6010	7440-09-7	Potassium	mg/kg	4500	360		277		298		616		661	
SW6010 SW6010	7782-49-2 7440-22-4	Selenium Silver	mg/kg mg/kg	1500 1500	1.1		11.5		11.1		10.8	U I	2.3	1
SW6010	7440-22-4	Sodium	mg/kg	1000	1.1		73.8		88		100	,]	107	
SW6010	7440-28-0	Thallium	mg/kg		1.1		1.2		1.1		1.1	U	1.2	
SW6010	7440-62-2	Vanadium	mg/kg		10.3		16.4	-	15.1		20.5		24.4	
SW6010	7440-66-6	Zinc	mg/kg	10000	34.1		31.6		45.3		290		405	
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.201		0.132		0.21		1.2		1.5	
SW9012	57-12-5	Cyanide, Total	mg/kg	27	2.41		2.04		2.13		13.9		12.2	
SW8081	72-54-8	Pesticides 4.4'-DDD	mg /ke	92	0.01		0.01		0.011	11	0.0098		0.01	11
SW8081 SW8081	72-54-8 50-29-3	4,4-DDD 4,4-DDT	mg/kg mg/kg	92 47	0.01	1	0.01	-	0.011	1	0.0098	1	0.001	1
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.01	- U	0.01		0.011	- U	0.0013	- U	0.0092	- U
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.01	U	0.01		0.011	U	0.0098	U	0.01	
SW8081	319-85-7	Beta-BHC	mg/kg	3	0.01	U	0.01	U	0.011	U	0.0098	U	0.01	
SW8081	959-98-8	Endosulfan I ⁽⁴⁾	mg/kg	200	0.01	U	0.01		0.011	U	0.0098	U	0.01	
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.01	U	0.01		0.029		0.057		0.01	
SW8081	72-20-8	Endrin	mg/kg	89	0.01	U	0.01		0.011	U	0.0098	U	0.01	
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.01		0.01	-	0.0085	J	0.0098	U	0.01	
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.01		0.01		0.011		0.0098	U	0.01	
SW8081 SW8081	5566-34-7 1024-57-3	Gamma-Chlordane Heptachlor Epoxide	mg/kg		0.01	U	0.01		0.01	LN LI	0.0078	J	0.0091	1
SW8081 SW8081	1024-57-3	Methoxychlor	mg/kg		0.01		0.01		0.011		0.014		0.0066	
SWOUDT	12-43-5	Methoxychior	mg/kg		0.01	U	0.01	U	0.011	U	0.0098	U	0.01	U

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-08-2020-0.0 0 10/1 R200 R2009 R	3-2020 -0.16-10012020 0 16 /2020 99205 205-001 EG OIL	TP-08-2020-0.1 0 10/1 R2009 R2009 R	3-2020 6-1.0-10012020 1.6 1 /2020 99205 205-002 EG OIL	TP-08-2020-5.0 10/1 R2009 R2009: R		TP-09-2020 TP-09-2020-0.0-0.16-1001202 0 0.16 10/1/2020 R2009205 R2009205-004 REG SOIL	0 TP-09-2020-0.10 0.: 10/1/ R2009 RE 50 50 50	3-1.0-10012020 16 2020 9205 05-005 36
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾	3		3		3	л.	301		
000000	10070.00.0	PCBs		4					0.044		0.00	0.47	
SW8082	12672-29-6	Aroclor-1248	mg/kg	1	0.04	U	0.04		0.041	U	0.28	0.17	
SW8082	11097-69-1	Aroclor-1254	mg/kg	1	0.04	U	0.04		0.041	U	0.068 J	0.062	
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.022	1	0.021	1	0.041	U	0.18 J	0.17	
		(5)											
		Total PCBs ⁽⁵⁾	I	1	0.022		0.021		0.041	U	0.53	0.40	
		Volatiles											
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	0.011		0.00048		0.013	U	0.015 U	0.016	U
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.011	U	0.01	-	0.013	U	0.015 U	0.016	U
SW8260	78-93-3	2-Butanone	mg/kg	500	0.011	U	0.01	U	0.038		0.015 U	0.016	U
SW8260	67-64-1	Acetone	mg/kg	500	0.011	U	0.01	U	0.19		0.015 U	0.016	U
SW8260	71-43-2	Benzene	mg/kg	44	0.011	U	0.00067	J	0.095		0.0026 J	0.016	U
SW8260	74-83-9	Bromomethane	mg/kg		0.011	U	0.01	U	0.013	U	0.015 U	0.016	U
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.011	U	0.00076	1	0.0036	J	0.015 U	0.016	U
SW8260	67-66-3	Chloroform	mg/kg	350	0.011	U	0.01	U	0.013	U	0.015 U	0.016	U
SW8260	74-87-3	Chloromethane	mg/kg		0.011	U	0.01	U	0.013	U	0.015 U	0.016	U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.011	U	0.01	U	0.013	U	0.015 U	0.016	U
SW8260	110-82-7	Cyclohexane	mg/kg		0.011	U	0.00095	J	0.013	U	0.015 U	0.016	U
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.011	U	0.01	U	0.045		0.015 U	0.016	U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.011	U	0.01	U	0.0056	J	0.015 U	0.016	U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.023	U	0.021	U	0.049		0.03 U	0.031	U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.011	U	0.01		0.003	J	0.015 U	0.016	U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.011	11	0.01		0.013	11	0.015 U	0.016	
SW8260	108-87-2	Methylcyclohexane	mg/kg	000	0.011	U	0.0016		0.013	U	0.015 U	0.016	U
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.011	U	0.0010		0.013	U	0.015 U	0.016	U
SW8260	95-47-6	o-Xylene	mg/kg	500	0.011	11	0.01		0.037	5	0.015 U	0.016	0
SW8260	100-42-5	Styrene	mg/kg	500	0.011	0	0.01		0.0076	1	0.015 U	0.016	
SW8260	108-88-3	Toluene	mg/kg	500	0.011	0	0.00048	-	0.0076	,	0.013 U 0.0012 J	0.00079	1
SW8260	1330-20-7	Total Xylenes		500	0.011	U	0.00048	*	0.038		0.0012 J	0.0079	,
SW8260 SW8260	1330-20-7	trans-1,2-Dichloroethene	mg/kg	500	0.023	U	0.021		0.0860	11	0.03 U 0.015 U	0.031	0
SW8260	156-60-5 79-01-6	Trichloroethene	mg/kg	200	0.011	v 11	0.01		0.013	-	0.015 U	0.016	
3116200	13-01-0	Semivolatiles	mg/kg	200	0.011	0	0.01	0	0.013	0	0.012 0	0.016	U
SW8270	92-52-4	Semivolatiles 1,1'-Biphenyl	an # /]+ -		0.19		0.13	<u> </u>	1.1		0.72	0.7	
			mg/kg					<u> </u>	1.1				
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.094	L	0.073	1			0.058 J	0.054	J
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		1.3		0.98		3.6		3.3	3	
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.09	J	0.079	1	0.14		0.057 J	0.046	J
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.3		0.26		0.36		0.19	0.13	
SW8270	100-01-6	4-Nitroaniline	mg/kg		0.12	U	0.11	-	0.12	U	0.12 U	0.12	U
SW8270	98-86-2	Acetophenone	mg/kg		0.12	U	0.11	-	0.062	J	0.098 J	0.12	U
SW8270	100-52-7	Benzaldehyde	mg/kg		0.094		0.066		0.12	U	U 90.0	0.087	J
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		2.2	U	2.1	U	2.2	U	2.2 U	2.1	U
SW8270	86-74-8	Carbazole	mg/kg		0.65		0.45		5.2		6.6	9.4	
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.72	U	0.69	-	0.73	U	0.72 U	0.71	
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		0.62	U	0.59	U	0.62	U	0.61 U	0.6	U
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		1.8	U	1.7	U	1.8	U	1.8 U	1.8	U
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		0.12	U	0.11	U	0.12	U	0.12 U	0.12	U
SW8270	108-95-2	Phenol	mg/kg	500	0.13	İ	0.24	l .	0.18		0.15	0.11	J

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	0. 10/1, R200 R20092	0.16-10012020 0 16 72020 9205 205-001 Eg	TP-08-2020-0.1 0. 10/1, R200 R20092	16 1 /2020 99205 205-002 EG	TP-08-2020-5.0 10/1 R2009 R2009 R	3-2020 0-6.0-10012020 5 6 /2020 09205 09205 09205-003 EG 0IL	TP-09-2020-0.0 0. 10/1 R2009: R2009: R2009: R	9-2020 0-0.16-10012020 0 0.16 //2020 09205 205-004 IEG OIL	TP-09-2020-0. 10/ R20 R2009	99-2020 18-1.0-10012020 0.16 1 1/2020 009205 9205-005 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				r		Γ		T		T	
01/0070	83-32-9	PAHs		500	0.50		0.40		5.0					-
	83-32-9 208-96-8	Acenaphthene Acenaphthylene	mg/kg	500 500	0.59		0.48		5.3		3.2		4.	
SW8270	208-96-8	Anthracene	mg/kg	500	2.3		0.8		7.4		10		8.	-
	120-12-7 56-55-3	Benzo(A)Anthracene	mg/kg mg/kg	5.6	2.3		5.3		21		56		2	
	50-55-3	Benzo(A)Pyrene	mg/kg	5.6	8.5 13		5.3		41		81		11	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	13		8.8		41		84		11	
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	14		6.7		36		54		8	
	207-08-9	Benzo(K)Fluoranthene	mg/kg		4.8		3		13		26		3	-
	218-01-9	Chrysene	mg/kg	56	9.9		6.2		28		66		9	
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	2.2		1.1		6.8		13		1	
	132-64-9	Dibenzofuran	mg/kg	350	0.94		0.58		8.4		5		4.	-
	206-44-0	Fluoranthene	mg/kg		17		10		49		140		18	-
	86-73-7	Fluorene	mg/kg	500	0.58		0.37		9.7		7.7		7.	
	193-39-5	Indeno(1.2,3-Cd)Pyrene	mg/kg	5.6	11		7		36		57		9	0
	91-20-3	Naphthalene	mg/kg	500	3.3		1.7		56		12		1	3
SW8270	85-01-8	Phenanthrene	mg/kg	500	8.2		6.2		32		66	;	8	4
SW8270	129-00-0	Pyrene	mg/kg	500	13		8.8		33		97		14	0
		Total PAHs ⁽⁵⁾	mg/kg	500	120		77		430		800		110	0

Notes

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is

considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

 (4) This SCO is for the sum of endosurant, endosurant, and endosurant suma (5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Shaded: Value exceeds Commercial SCOs

Image: series Image: s					Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG	10/1, R200	-7.0-10012020 5 7 72020 9205	TP-12-2020-0.0 0. 6/24 R210	2-2020 -0.16-06242021 0 .16 /2021 06414	TP-12-2020-0.0-0 0. 6/24, R210) 16 /2021 6414	TP-12-2 TP-12-2020-0.16 0.1(1 6/24/2 R2106	1.0-06242021 6 2021 414	TP-12-2020-4.(4 6/25, R210	-2020)-4.5-06252021 4 .5 /2021)6414
International and another line line line and another line and another line and anothe					Sample Type	RI	EG	R	EG	F	D	REG	à	R	EG
Biolo One basis One basis One basis Description Description <th></th> <th></th> <th>Chemical Name</th> <th>Unit</th> <th>Soll Cleanup Objective (SCO) for</th> <th></th> <th>ML</th> <th>S</th> <th>OIL</th> <th>S</th> <th>NL</th> <th>SOI</th> <th>L</th> <th><u> </u></th> <th>DIL</th>			Chemical Name	Unit	Soll Cleanup Objective (SCO) for		ML	S	OIL	S	NL	SOI	L	<u> </u>	DIL
NormN				%		76.5									
B31-24 B42by B42b	E160.3	SOLIDS		%				82.6		83.5		79.6		71.2	
INN INN </td <td>E537M</td> <td>2991-50-6</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td>0.0012</td> <td>UJ</td> <td>0.0011</td> <td>LU</td> <td>0.0011 U</td> <td>IJ</td> <td>0.001</td> <td>IJ</td>	E537M	2991-50-6		mg/kg				0.0012	UJ	0.0011	LU	0.0011 U	IJ	0.001	IJ
B37M B369 Preduced precision: Add Preduced sector Add Add Add Add Add Add Add Add Add Ad									1		1		-		
B374 B544 Priladiassendief. Sci Priladiassendi Sci Priladiassendief. Sci Priladiassendief. Sci Priladiassendie			Perfluorodecanoic acid (PFDA)	mg/kg					J	0.00036	J				
BitM Pinder Pinder <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>LU</td> <td></td> <td>11</td> <td></td> <td></td>									1		LU		11		
ISBASE Section					├				UJ				IJ		
B3574 B3575 Primountanue AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Primeura AngrPhi Prima Prima Prima					0.440 ⁽²⁾				J		1				
B37M 9760° eminorendescole Ale (PPICa) 9/2 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- J</td><td></td><td>, ,</td><td></td><td></td><td></td><td></td></t<>									- J		, ,				
SDS 4.8.4 Pertuburantescone (sol (Pinda) Pertu I					0.000				UJ		J				UJ
SMM010 742-905 Alumina mindia	E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)					0.00044	J	0.00038	J	0.00033 J		0.001	UJ
NMM00 744-040 Admomy mg/g 1.1 1.6 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.1 <th< td=""><td></td><td></td><td>Metals and Cyanide</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			Metals and Cyanide												
NVN000 7440393 Marma myra 440 111 132 132 132 133 133 133 SVN0010 7440393 Brumm myra 500 0.443 0.676 0.677 0.687 0.683 SVN010 7440430 Brumm myra 0.90 0.433 0.638 0.676 0.676 0.677 0.687 0.683 SVN010 7440430 Calumin ¹ myra 0.90 0.446 0.678														4070	
view010 7440 30 relum mg/rg 0.00 0.442 0.01 1.46 77.4 view010 7444.37 regmin mg/rg 0.33 0.648 0.647 0.616 0.617 0.635 view010 7440702 Schum mg/rg 0.93 0.638 0.743			,		10		J		U		U		J	8	U
NNN000 74404.3 Beylum mg/kg B90.9 0.648 0.648 0.671 0.673 0.673 0.671 0.673 SV00200 7440730 Behum mg/kg 4.00 0.418 0.674 0.673 0.688 0.673 0.688 0.673 0.688										-		5			
versel 2404.39 Contrium mg/g 9.3 0.181 0.68 0.74 0.431 0.477 versel 440702 Calcum mg/g 9920 4160 4039 0.4031 0.4031 0.4031 0.4039 versel 740473 Constitut mg/g 6.6 237 18.2 10.6 10.2 versel 740454 Constitut mg/g 270 46 474 63.3 35.6 9.5 versel mg/g 270 46 474 63.3 35.6 9.5 versel mg/g 1000 77.4 42.3 41.1 33.5 43.9 versel mg/g 1000 77.4 210 215 13.3 13.5 versel mg/g 1000 77.1 78 88.4 44.4 30.0 45.9 versel mg/g 1000 77.7 78 33.5 15.9 versel mg/g 1000															
SW010 7440 722 Calcum ref Ad West		-					J								J
WHOLD 1440-84 Count mg/s 1 5.8 1 5.8 1 6.8 4.4 1 5.9 9.5 WHOLD 1439-96 Goper mg/s 2070 2100 2200 1430 22100 1430 22100 1430 22100 1430 22100 1430 22100 1430 22100 1430 22100 1430 140	SW6010	7440-70-2	Calcium			9920		4160		4030		4080		3950	
WHOLD 740-09-bit Copper mark mark Top Add dd					400									10.2	
SW000 7439.894 ion in/fg 2070 2100 2100 13300 13300 2100 SW0010 7439.895.4 Magnetin ng/fg 1000 728 411 335 433 433 SW0010 7439.895.4 Magnetin ng/fg 2000 761 722 411 335 433 113 SW0010 7439.895.4 Manganetin ng/fg 1000 281 319 222 133 161 150 SW0010 744-02.0 Mickel ng/fg 310 144.2 21 21.5 133 163 150 SW0010 744-02.0 Mickel ng/fg 300 384 444 303 633 13 12.0 13.1 12.0 13.1 12.0 13.1 12.0 13.1 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 14.0 14.0 14.0 14.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>J</td></td<>							J							-	J
NMO10 743 99.1 Lead mg/g 100 78.4 44.3 44.1 33.5 43.9 SW6010 7439 94.4 Magnesium mg/g 2000 707 726 587 1130 SW6010 7439 94.5 Magnesium mg/g 10000 281 319 282 137 616 SW6010 7440 90.7 Poissium mg/g 310 14.2 21 21.8 13.3 15.9 SW6010 7440 90.7 Poissium mg/g 390 384 414 303 633 SW6010 7442 92.5 Steinum mg/g 1500 0.797 1.6 0.821 1.0 1.2 0 0.3 0 SW6010 7440 22.5 Sodum mg/g 1.3 0 1.1 0 1.1 0 1.2 0 1.3 0 SW6010 7440 22.5 Sodum mg/g 1.3 0 1.1 0 1.1 0 <td< td=""><td></td><td></td><td></td><td></td><td>270</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					270										
Windom Table Magnetism Magnetism mg/rg 200 707 707 726 937 </td <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td></td>					1000										
SW010 P4399-5 Marganese mg/rg 1000 281 319 282 137 161 SW6010 7440.020 Nickel mg/rg 310 142 21 215 133 159 SW6010 7440.027 Potasium mg/rg 300 142 21 215 133 159 SW6010 7440.027 Potasium mg/rg 1500 131 16 0.821 12 12 0 0.83 SW6010 7440.245 Skirer mg/rg 1500 13 11 11 12 12 0.87 13 0 13 10 13 10 13 10 13 0 13 0 13 10 13 0 13 10 13 0 13 10 13 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15					1000										
SW010 Y440 020 Nickel mg/kg 310 14.2 21 21.5 21.5 21.3 21.3 21.3 21.5					10000										
BW010 778-492 Selenum mg/kg 1500 0.767 J. 1.6 0.821 J. 1.2 U 0.874 J. SW6010 7440224 Silver mg/kg 1.3 U 1.1 U 1.1 U 1.2 U 1.3 U 1.3 U SW6010 7440224 Sadum mg/kg 0.02 J 67.4 J 66.9 J 78.7 J 100 J SW6010 7440280 Tallum mg/kg 1.3 U 1.1 U 1.1 U 1.2 U 1.3 U SW6010 7440280 Tallum mg/kg 1.3 U 1.1 U 1.1 U 1.2 U 1.3 U SW6010 744066 Zoc Vandom mg/kg 1.8 U 1.1 U 1.1 U 1.2 U 0.2 J 1.3 U SW6010 744066 Zoc Namber 0.000 7.1 E 0.656 60.8 E 4.96 9.8 L	SW6010		Nickel		310	14.2						13.3			
SW6010 7440-224 Silver mg/kg 1500 1.3 U 1.1 U 1.1 U 1.1 U 1.2 U 1.3 U SW6010 740-234 Sodum mg/kg 90.2 J 67.4 J 66.9 J 78.7 J 100 J SW6010 740-230 Thalium mg/kg 1.3 U 1.1 U 1.1 U 1.2 U 1.3 U SW6010 740-62.2 Vandum mg/kg 1.2 B 1.6 E 2.1 L 1.5 L 1.3 U SW6010 740-62.2 Vandum mg/kg 1.2 B 1.6 E 0.1 E 0.1 E 1.5 L 1.3 U 1.1 U 1.1 U 1.2 U 1.3 U SW6010 7440-66.4 Zinc mg/kg 1.000 7.1 E 66.6 0.6 E 9.8 4 0.6 E 0.1 E 0.1 E 0.1 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0.2 E 0															
SW6010 7440-235 Sodium mg/kg 90.2 J 67.4 J 66.9 J 78.7 J 100 J SW6010 7440-280 Thallum mg/kg 1.3 U 1.1 U 1.2 U 1.3 U 1.1 U 1.2 U 1.3 U 1.1 U 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.1 U 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.1 U 1.2 1.3 U 1.3 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td>J</td> <td></td> <td></td>							J				J		J		
SW6010 7440-820 Thallium mg/kg 1.3 U 1.1 U 1.2 U 1.3 U SW6010 7440-62-2 Vanadum mg/kg 12.8 19.6 21 11.2 11.2 13 U 13 U 11.1 U 11.2 U 13.3 U 13.4 U 11.4 14.6 <t< td=""><td></td><td></td><td></td><td></td><td>1500</td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td></t<>					1500		U						I		
SW6010 7440.62.2 Vanadium mg/kg 12.8 19.6 21 15.2 13 SW6010 7440.66.6 Zinc mg/kg 10000 71.1 65.6 66.8 49.6 98.4 98.4 SW6010 7440.66.6 Zinc mg/kg 2.8 1.5 0.010 0.0.36 0.159 9.0.215 SW9012 57.12.5 Cyanide, Total mg/kg 2.7 1.78 2.68 1.98 2.48 2.5 SW8011 50.29.3 4,4'DDT mg/kg 92 0.011 0.021 0.021 0.022 0.022 0.024 0.022 SW8081 309-00.2 Adrin mg/kg 0.68 0.011 0.021 0.021 0.022 0.024 0.022 0.024 0.022 0.024 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.024 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022					<u>├</u>		د اا								
SW001 7440666 Zmc mg/mg 10000 71.1 65.6 60.8 49.6 99.4 99.4 SW7471 7439.97.6 Merury mg/mg 2.8 1.5 0.161 0.138 0.159 0.159 0.251 SW9012 57.12 Oynide, Total mg/mg 2.7 1.78 2.68 1.98 2.48 2.48 2.24 0.25 SW8081 72.54.8 4.4°DD mg/mg 92 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U SW8081 309-00.2 Advin mg/mg 0.68 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U SW8081 309-00.2 Advin mg/mg 3.4 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U SW8081 319.85.7 BetaBHC mg/mg 3.4 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.024 U SW8081 319.85.7 BetaBHC mg/mg 3.0 <t< td=""><td></td><td></td><td></td><td></td><td> </td><td></td><td>~</td><td></td><td></td><td></td><td>5</td><td>-</td><td></td><td></td><td>-</td></t<>							~				5	-			-
SW9012 57.12.5 Cyanide, Total mg/kg 27 1.78 2.68 1.98 2.48 2.48 2.5 W0012 Festicides mg/kg 27 1.78 2.68 1.98 2.48 2.48 2.58 SW003 72.5-8 4.4-DD mg/kg 92 0.011 0.021 0.021 0.021 0.022	SW6010	7440-66-6	Zinc	mg/kg		71.1		65.6		69.8		49.6		98.4	
Pesticides C <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<>															
SW8081 72.54.8 4.4'DDD mg/kg 92 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U SW8081 50.29.3 4.4'DT mg/kg 47 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.024 U SW8081 309-02 Adrin mg/kg 0.68 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.024 U SW8081 319-84 Alpha-BHC mg/kg 3.4 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.024 U SW8081 319-857 Beta-BHC mg/kg 3.4 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U SW8081 939-98.8 Endosuffan ⁽⁴⁾ mg/kg 200 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.027 J SW8081 1031-07-8 Endosuffan Sulfate ⁽⁴⁾ mg/kg 200 0.011 U 0.021 U 0.021 U 0.022 U 0.022 U 0.027 J SW8081 72-08 Endmin Sulfate ⁽⁴⁾ mg/kg 200 0.011 U 0.021 U 0.021 U	SW9012	57-12-5	-,,	mg/kg	27	1.78		2.68		1.98		2.48		2.5	
SW8081 50.29.3 4,4-DDT mg/ng 4.7 0.011 U 0.021 U 0.022 U 0.024 U SW8081 309-00 Atrin mg/ng 0.68 0.011 U 0.021 U 0.022 U 0.024 U 0.024 U 0.024 U 0.024 U 0.022 U 0.022 U 0.024 U 0.024 U 0.022 U 0.022 U 0.024 U 0.021 U 0.021<	CW/9091	70 54 9		mg/k=	00	0.011	11	0.001		0.001	11	0.000		0.004	
SW8081 309-02 Aldrin mg/mg 0.68 0.011 U 0.021 U 0.022 U 0.024 U SW8081 319.84-6 Alpha-BHC mg/mg 3.4 0.011 U 0.021 U 0.022 U 0.024 U SW8081 319.85-7 Beta-BHC mg/mg 3 0.011 U 0.021 U 0.022 U 0.024 U SW8081 59.98-8 Endosuffan (4) mg/mg 200 0.011 0.021 U 0.021 U 0.022 U 0.024 U 0.024 U 0.024 U 0.024 U 0.021 U 0.021 U 0.022 U 0.024 U 0.024 U 0.024 U 0.024 U 0.024 U 0.021 U 0.022 U 0.024 U 0.024 U 0.021 U 0.022 U 0.024 U 0.021 U			,		-		U U				u		,		U
SW8081 319-84-6 Alpha-BHC mg/ng 3.4 0.011 U 0.021 U 0.022 U 0.024 U SW8081 319-85-7 Beta-BHC mg/ng 3 0.011 U 0.021 U 0.022 U 0.024 U SW8081 319-85-7 Beta-BHC mg/ng 3 0.011 U 0.021 U 0.022 U 0.024 U SW8081 059-98-8 Endosulfan (^a) mg/ng 200 0.011 0.021 U 0.021 U 0.022 U 0.022 U 0.027 U 0.024 U 0.021 U							U				U		I		U
SW8081 959-98.8 Endosulfan (⁴⁾ mg/kg 200 0.011 U 0.021 U 0.022 U 0.024 U SW8081 1031-07-8 Endosulfan Sulfate ⁴¹ mg/kg 200 0.011 U 0.021 U 0.022 J 0.027 J SW8081 72-05 Endrin mg/kg 89 0.011 0.021 U 0.022 J 0.024 U SW8081 7421-934 Endrin Aldehyde mg/kg 0.011 0.021 U 0.022 U 0.024 U SW8081 5494-705 Endrin Methyde mg/kg 0.011 0.021 0.021 0.022 0.022 0.022 0.024 U SW8081 5566-84-7 Gama-Chlordane mg/kg 0.011 0.021 0.021 0.022 0.022 0.024 0.024 U							U				U		I		
SW8081 1031-07-8 Endosuffan Sulfare ⁽⁴⁾ mg/kg 200 0.011 U 0.021 U 0.022 J 0.027 J SW8081 72-20-8 Endrin mg/kg 89 0.011 U 0.021 U 0.022 U 0.024 U SW8081 721-93-4 Endrin Aldehyde mg/kg 0.011 U 0.021 U 0.022 U 0.024 U SW8081 5494-70-5 Endrin Metone mg/kg 0.011 0.021 U 0.012 0.022 U 0.024 U SW8081 5566-34-7 Gamma-Chlordane mg/kg 0.011 U 0.021 U 0.022 U 0.024 U			Beta-BHC				U				U		1		U
SW8081 72:08 Endm mg/kg 89 0.011 0.021 U 0.021 U 0.022 U 0.024 U SW8081 7421:93-4 Endm Aldehyde mg/kg 0.011 0.021 0.021 U 0.022 U 0.024 U SW8081 53494705 Endm Aldehyde mg/kg 0.011 0.021 0.021 0.022 U 0.024 U SW8081 5566-34-7 Gama-Chlordane mg/kg 0.011 0.021 0.021 0.022 U 0.024 U							U				U				U
SW8081 7421-93-4 Endrin Aldehyde mg/g 0.011 U 0.021 U 0.022 U 0.024 U SW8081 53494-70-5 Endrin Ketone mg/g 0.011 U 0.021 U 0.022 U 0.024 U SW8081 5566-34-7 Gamma-Chlordane mg/g 0.011 U 0.021 U 0.022 U 0.024 U							U				U				1
SW8081 53494-70-5 Endrin Ketone mg/rg 0.011 U 0.021 U 0.016 J 0.022 U 0.024 U SW8081 5566-34-7 Gamma-Chlordane mg/rg 0.011 U 0.021 U 0.022 U 0.024 U					89		U				U				
SW8081 5566-34-7 Gamma-Chlordane mg/kg 0.011 U 0.021 U 0.022 U 0.024 U							U 111				U I				-
											U		, 		
SW8081 1024-57-3 Heptachlor Epoxide mg/kg 0.011 U 0.021 U 0.021 U 0.022 U 0.024 U		1024-57-3	Heptachlor Epoxide			0.011	U			0.021	U	0.022 U	I	0.024	
W8081 72.43.5 Methowychłor mg/kg 0.011 U 0.073 0.017 0.083 0.094							U				J				

			1	Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-09-2020-6. 6 10/1 R200 R2009 R	+2020 5-7.0-10012020 55 7 /2020 99205 205-006 EG DIL	TP-12-2020-0.0 0 6/24 R210 R2106 R	2-2020 0-0.16-06242021 0 .16 //2021 06414 414-005 EG 0IL	TP-12-2020-0.0-0 0. 6/24, R210 R2106- F	-2020 .18-06242021 FD 0 18 /2021 6414 414-007 D DL	TP-12- TP-12-2020-0.16 0.: 1 6/24/ R210 R21064 R21064 R2 S0	3-1.0-06242021 16 2021 6414 14-006 56	TP-12-20; TP-12-2020-4.0-4.5 4 6/25/20; R2106414 R2106414- REG SOIL	5-06252021 21 14
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾		ſ		I						
014/00/00	10070.00.0	PCBs			0.040		0.014		0.041		0.040		0.047.11	
SW8082 SW8082	12672-29-6	Aroclor-1248	mg/kg	1	0.042	0	0.041		0.041	0	0.043	0	0.047 U 0.047 U	
	11097-69-1	Aroclor-1254	mg/kg	1	0.042					J		0		
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.042	U	0.041	U	0.041	U	0.043	U	0.047 U	
<u> </u>		(5)	1											
		Total PCBs ⁽⁵⁾		1	0.042	U	0.022		0.024		0.043	U	0.047 U	
		Volatiles												
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	0.013	U	0.011		0.011	U	0.012	U	0.012 U	
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.013	U	0.011	U	0.011	U	0.012	U	0.012 U	
SW8260	78-93-3	2-Butanone	mg/kg	500	0.02		0.011	U	0.011	U	0.012	U	0.012 U	
SW8260	67-64-1	Acetone	mg/kg	500	0.12		0.057	U	0.055	U	0.059	U	0.058 U	
SW8260	71-43-2	Benzene	mg/kg	44	0.004	1	0.011	U	0.011	U	0.012	U	0.0007 J	
SW8260	74-83-9	Bromomethane	mg/kg		0.013	U	0.011	U	0.011	U	0.012	U	0.012 U	
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.0017	J	0.00079	J	0.0011	J	0.012	U	0.012 U	
SW8260	67-66-3	Chloroform	mg/kg	350	0.013	U	0.011	U	0.011	U	0.012	U	0.012 U	
SW8260	74-87-3	Chloromethane	mg/kg		0.013	U	0.011	U	0.011	U	0.012	U	0.012 U	
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.013	U	0.011		0.011	U	0.012	Ŭ	0.012 U	
SW8260	110-82-7	Cvclohexane	mg/kg		0.00076	1	0.011		0.011	U	0.012	U	0.0012 J	
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.0011	-	0.011	-	0.011	- II	0.012		0.012 U	
SW8260	98-82-8	Isopropylbenzene	mg/kg	000	0.00071	1	0.011	-	0.011	0 11	0.012	U	0.012 U	
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.00071		0.023	-	0.022	U	0.012	0	0.012 U	
SW8260	79-20-9	Methyl Acetate	mg/kg	500	0.013		0.023		0.022	0	0.024	1	0.023 U 0.012 U	
	1634-04-4			500	0.013	0	0.011		0.011	0	0.0024	J	0.012 U	
SW8260		Methyl Tert-Butyl Ether	mg/kg	500		U				0		0		
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.0024		0.011		0.011	UJ	0.012	UJ	0.0022 J	
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.013	U	0.011		0.011	U	0.012	U	0.012 U	
SW8260	95-47-6	o-Xylene	mg/kg	500	0.0071	J	0.011		0.011	U	0.012	U	0.012 U	
SW8260	100-42-5	Styrene	mg/kg		0.0013	J	0.011	-	0.011	U	0.012	U	0.012 U	
SW8260	108-88-3	Toluene	mg/kg	500	0.0047	J	0.011	-	0.011	U	0.012	U	0.012 U	
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.0171	J	0.023		0.022	U	0.024	U	0.023 U	
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.013	U	0.011	-	0.011	U	0.012	U	0.012 U	
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.013	U	0.011	U	0.011	U	0.012	U	0.012 U	
		Semivolatiles												
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.32		2.5		0.97	U	6.2		14 U	
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.33		2.5	U	0.97	U	6.2		14 U	
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		1.2		1.2		0.56	J	6.2		4.1 J	
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.31		2.5	U	0.97	U	6.2	U	14 U	
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	1		2.5	U	0.97	U	6.2	U	14 U	
SW8270	100-01-6	4-Nitroaniline	mg/kg		0.13	U	13	U	5	U	32	U	70 U	
SW8270	98-86-2	Acetophenone	mg/kg		0.13	U	2.5	U	0.97	U	6.2	U	14 U	
SW8270	100-52-7	Benzaldehyde	mg/kg		0.13	U	13	U	5	U	32	U	70 U	
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		2.4	U	3.7	U	1.5	U	9.4	U	21 U	
SW8270	86-74-8	Carbazole	mg/kg	1 1	3.6		2.3		0.82	J	5.2		25	
SW8270	84-66-2	Diethyl Phthalate	mg/kg	† †	0.79		2.5		0.97	U	6.2		14 U	
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		0.67		2.5		0.97	1	6.2		14 U	
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg	 		U	2.5		0.97	с П	6.2		14 U	
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg	 	0.13	-	2.5		0.97	с П	6.2		14 U	
SW8270 SW8270	108-95-2	Phenol		500	0.13		2.5		0.97	U	6.2		14 U	
3002/0	100-90-2	FIICIIUI	mg/kg	500	0.78		2.5	U	0.97	U	6.2	U	14 U	

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-09-2020 TP-09-2020-6.5-7.0-1001202 6.5 7 10/1/2020 R2009205 R2009205-006 REG SOIL	0 TP-12-2020-0.0 (0. 6/24, R210	0 16 /2021 06414 414-005 EG	0. 6/24, R210 R21064	0.16-06242021 FD 0 16 /2021 06414 414-007 FD	TP-12-2020-0.10 TP-12-2020-0.10 3 6/24 8/24 R210 R21064 R1 SC SC	8-1.0-06242021 16 1 /2021 6414 14-006 EG	TP-12 TP-12-2020-4.0 4 4 8/25/ R210 R21064 R1 R1 80 80 80 80 80	-4.5-06252021 5 2021 6414 14-010
Analytical Method	CAS_RN	Chemical Name		Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾									
		PAHs											
SW8270 SW8270	83-32-9 208-96-8	Acenaphthene	mg/kg	500 500	0.68	1.6		0.65		6.2 7.4	-	2.9	J
SW8270 SW8270	208-96-8	Acenaphthylene	mg/kg	500	2.3	3.1		2.2				54	
		Anthracene	mg/kg		8.4	17		2.5		9.1			
SW8270 SW8270	56-55-3 50-32-8	Benzo(A)Anthracene Benzo(A)Pyrene	mg/kg	5.6	18	20	·	8.8		30		66 65	
SW8270 SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	19	20		13		42		68	
SW8270 SW8270	205-99-2 191-24-2	Benzo(G,H,I)perylene	mg/kg mg/kg	5.6	19	10		7.2		42		30	
	207-08-9	Benzo(K)Fluoranthene		500	7.3	8.3		5.8		15		27	
SW8270 SW8270	218-01-9	Chrysene	mg/kg	56	1.5	6.3		5.8		31		62	
SW8270 SW8270	53-70-3	Dibenzo(a,h)Anthracene	mg/kg mg/kg	0.56	3.6	2.8		10		5.3	1	8.9	1
SW8270 SW8270	132-64-9	Dibenzo(a,n)Anthracene	mg/kg		2.2	2.8		0.53	1	1.6		8.9 16	,
SW8270 SW8270	206-44-0	Fluoranthene	mg/kg	500	2.2	34		0.53	-	84		180	
	86-73-7	Fluorene	mg/kg	500	3.5	3.5		0.46		3.2		36	
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	10	12		8.6	-	24		36	
SW8270	91-20-3	Naphthalene	mg/kg	500	2.1	1.5		0.91	1	1.6		11	1
	85-01-8	Phenanthrene	mg/kg	500	19	27		7		56	-	200	-
SW8270	129-00-0	Pyrene	mg/kg	500	21	28		14	- 1	70		130	
			3.18				-		-				
		Total PAHs ⁽⁵⁾	mg/kg	500	190	220		120		440		1000	
Notes:	1	Total Trails	31.8				1		1				

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sample ID Sample ID Sample Type Matrix	TP-13- TP-13-2020-0.0- 0.1 6/23/ R2100 R21063 RE SO	0.16-06232021 6 2021 3353 53-002 G	TP-13-2020-0.1 0. 6/23 R210 R2106 R2106 R	3-2020 6-1.0-06232021 16 1 1/2021 06353 363-003 EG DIL	TP-13-2020-4.0 6/24 R210 R2106	5 /2021 6353 853-004 EG	TP-14 TP-14-2020-0.0 0.: 6/24 R210 R21063 RE S0	0.18-06242021 16 2021 6353 53-005 19	TP-14 TP-14-2020-0.1 3 6/24 R210 R21063 R1 SC	3-1.0-06242021 16 L (2021 6353 (53-006 59
Analytical Method		Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾										
E160.3 E160.3	SOLID	Solids Total Solids	%		73.9		80.4		67.8		73.1		77.5	
E100.5	301103	PFAS	/0		13.5		80.4		01.8		13.1		11.5	
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg											
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg											
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg											
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg											
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg											
E537M E537M	375-95-1 1763-23-1	Perfluorononanoic Acid (PFNA) Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾					<u> </u>					
E537M	1763-23-1 335-67-1	Perfluorooctanesultonic Acid (PFOS) Perfluorooctanoic Acid (PFOA)	mg/kg mg/kg	0.440 ⁽²⁾ 0.500 ⁽²⁾					<u> </u>					
E537M	376-06-7	Perfluorotetradecanoic Acid (PFTeDA)	mg/kg	0.500										
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg											
		Metals and Cyanide												
SW6010	7429-90-5	Aluminum	mg/kg		2880		2530		2740		2240		1920	
SW6010	7440-36-0	Antimony	mg/kg		7.7	J	6.8	U	8.7	U	7.9	U	7.3	U
SW6010	7440-38-2	Arsenic	mg/kg	16	7.9		10.7		13.2		5.2		6.2	
SW6010	7440-39-3	Barium	mg/kg	400	101		75.6		44.1		404		443	
SW6010	7440-41-7	Beryllium	mg/kg	590	0.919		0.927		0.448		0.552		0.596	
SW6010 SW6010	7440-43-9 7440-70-2	Cadmium Calcium	mg/kg mg/kg	9.3	0.574 6460	J	0.452	J	0.593 22800	J	0.342 3110	J	0.207	J
SW6010	7440-70-2	Chromium ⁽³⁾	mg/kg	400	14.4		9.2		14.7		7.6		6.5	
SW6010	7440-48-4	Cobalt	mg/kg	400	8.3		6.8		2.6	1	6.1	1	5.1	1
SW6010	7440-50-8	Copper	mg/kg	270	42		37.8		54.9	5	55.1	, ,	43.8	5
SW6010	7439-89-6	Iron	mg/kg		33900		30500		16800		24300		16200	
SW6010	7439-92-1	Lead	mg/kg	1000	24.5		22.7		219		7.9		3.5	J
SW6010	7439-95-4	Magnesium	mg/kg		1120		519		12100		400		217	
SW6010	7439-96-5	Manganese	mg/kg	10000	406		374		165		51.5		22.5	
SW6010	7440-02-0	Nickel	mg/kg	310	21.2		16.7		7.8		12.8		11.9	
SW6010	7440-09-7	Potassium	mg/kg		495		314		320		327		253	
SW6010	7782-49-2	Selenium	mg/kg	1500	12.8	U	3.1		0.795	1	13.2	U	1.9	
SW6010 SW6010	7440-22-4 7440-23-5	Silver Sodium	mg/kg mg/kg	1500	1.3 184	U	1.1		1.5 96.7		1.3 87.8	U I	1.2	
SW6010	7440-23-5	Thallium	mg/kg		104	J	114		98.7		13.2	U	1.2	U
SW6010	7440-62-2	Vanadium	mg/kg		11.7	-	10.7		9.4	-	17.4	-	14.5	-
SW6010	7440-66-6	Zinc	mg/kg	10000	43.5		30.5		117		17.3		9.4	
SW7471	7439-97-6	Mercury	mg/kg	2.8	0.064		0.07		2.6	-	0.056		0.029	1
SW9012	57-12-5	Cyanide, Total	mg/kg	27	1.24	-	1.3		3.37		1.68		1.41	
		Pesticides												
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.0048	U	0.027		0.08	U	0.047	U	0.0023	U
SW8081 SW8081	50-29-3 309-00-2	4,4'-DDT Aldrin	mg/kg	47 0.68	0.0048	U	0.027		0.08	U	0.047	U II	0.0023	U
SW8081 SW8081	309-00-2	Algha-BHC	mg/kg mg/kg	3.4	0.0044	1	0.027		0.08	1	0.047	0	0.0023	U
SW8081	319-85-7	Beta-BHC	mg/kg	3.4	0.0048	- U	0.027	U	0.08	- U	0.047	- U	0.0023	- U
SW8081	959-98-8	Endosulfan I ⁽⁴⁾	mg/kg	200	0.0048	U	0.027	U	0.08	U	0.047	U	0.0023	U
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.0048	U	0.027	U	0.071	J	0.047	U	0.0023	U
SW8081	72-20-8	Endrin	mg/kg	89	0.0048	U	0.027	U	0.08	U	0.047	U	0.0023	U
SW8081	7421-93-4	Endrin Aldehyde	mg/kg		0.0048	U	0.027	U	0.08	U	0.047	U	0.0017	J
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.038		0.027		0.08	U	0.047	U	0.0023	U
SW8081	5566-34-7	Gamma-Chlordane	mg/kg		0.0048	U	0.027		0.08	U	0.047	U	0.0023	U
SW8081	1024-57-3	Heptachlor Epoxide	mg/kg		0.0048	U	0.027		0.08	U	0.047	U	0.0023	U
SW8081	72-43-5	Methoxychlor	mg/kg		0.0048	U	0.027	U	0.35		0.047	U	0.0023	U

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-13-2020-0.0 0 6/23 R210 R2106 R2106 R	9-2020 -0.16-06232021 0 .16 /2021 06353 353-002 EG DIL	TP-13-2020-0.1 0 6/23 R210 R2106 R2106 R	9-2020 6-1.0-06232021 16 1 /2021 06353 353-003 EG DIL	TP-13-2020-4.(6/24, R210 R2106: R2106: R	5 /2021	TP-14-202 TP-14-2020-0.0-0.10 0.16 6/24/202 R2106353-4 RE10 850L SOIL	3-06242021 11 3	TP-14- TP-14-2020-0.16 0.1 1 6/24/ R2100 R210083 RE S0	+1.0-06242021 L6 2021 5353 53-006 G
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾		I		I						
000000	40070.00.0	PCBs		4	0.004		0.050		0.40		0.092 U		0.044	
SW8082	12672-29-6	Aroclor-1248	mg/kg		0.094	U	0.052		0.16				0.044	0
SW8082	11097-69-1	Aroclor-1254	mg/kg		0.094	U	0.052		0.16	0	0.092 U		0.044	U
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.094	U	0.052	U	0.16	U	0.092 U		0.044	U
	l		-								0.000			
	l	Total PCBs ⁽⁵⁾		1	0.094	U	0.052	U	0.16	U	0.092 U		0.044	U
		Volatiles												
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg		0.013	U	0.013		1.1		0.012 U		0.012	U
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.013	U	0.013	U	1.1		0.012 U		0.012	U
SW8260	78-93-3	2-Butanone	mg/kg	500	0.013	U	0.013	U	1.1		0.012 U		0.012	U
SW8260	67-64-1	Acetone	mg/kg		0.065	U	0.064	U	5.7	U	0.062 U		0.06	U
SW8260	71-43-2	Benzene	mg/kg	44	0.013	U	0.00065	J	2		0.012 U		0.012	U
SW8260	74-83-9	Bromomethane	mg/kg		0.013	U	0.013	U	1.1	UJ	0.012 U		0.012	U
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.013	U	0.013	U	1.1	U	0.012 U		0.0015	J
SW8260	67-66-3	Chloroform	mg/kg	350	0.00058	J	0.0006	J	1.1	U	0.012 U		0.00049	J
SW8260	74-87-3	Chloromethane	mg/kg		0.013	U	0.013	U	1.1	U	0.012 U		0.012	U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.013	U	0.013	U	1.1	U	0.012 U		0.012	U
SW8260	110-82-7	Cyclohexane	mg/kg	1	0.013	U	0.0012	J	1.1	U	0.012 U		0.012	U
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.013	U	0.013	U	18		0.012 U		0.012	U
SW8260	98-82-8	Isopropylbenzene	mg/kg		0.013	U	0.013	U	5.7		0.012 U		0.012	U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	0.026	U	0.026	U	27		0.025 U		0.024	U
SW8260	79-20-9	Methyl Acetate	mg/kg		0.013	U	0.013	U	1.1	UJ	0.012 U		0.012	U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.013	U	0.013		1.1		0.012 U		0.012	U
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.013	ů.	0.002		0.67		0.012 UJ		0.012	01
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.013	U	0.013		1.1		0.012 U		0.012	U
SW8260	95-47-6	o-Xylene	mg/kg		0.013	U U	0.013		12		0.012 U		0.012	U U
SW8260	100-42-5	Styrene	mg/kg		0.013	-	0.013		1.1		0.012 U		0.012	-
SW8260	108-88-3	Toluene	mg/kg	500	0.013	ч П	0.013		5.5	~	0.012 U		0.012	II
SW8260	1330-20-7	Total Xylenes	mg/kg		0.013	ч П	0.013		39		0.012 U		0.012	II
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.028	П	0.028	П	1.1		0.025 U 0.012 U		0.024	
SW8260	79-01-6	Trichloroethene	mg/kg		0.013	о П	0.013	о П	1.1		0.012 U		0.012	
5110200	1 2-01-0	Semivolatiles	mg/ kg	200	0.013		0.013		1.1	0	0.012 0		0.012	0
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0	UI.	2.2		470		0.46 UJ		0.43	
SW8270 SW8270	92-52-4 105-67-9	2,4-Dimethylphenol		<u>├</u>	0.58		2.2		470	0	0.46 UJ		0.43	0
			mg/kg	<u>├</u>						U				0
SW8270	91-57-6 95-48-7	2-Methylnaphthalene	mg/kg	500	3.1		2.3		660		0.14 J		0.43	U
SW8270	95-48-7 34METPH	2-Methylphenol	mg/kg		0.73		2.2		470 470		0.46 UJ 0.46 UJ		0.43	
SW8270	-	3&4-Methylphenol	mg/kg	500						U			0.43	-
SW8270	100-01-6	4-Nitroaniline	mg/kg		10		11		2400	U	2.4 UJ		2.2	U
SW8270	98-86-2	Acetophenone	mg/kg			UJ	2.2		470	U	0.46 UJ		0.43	U
SW8270	100-52-7	Benzaldehyde	mg/kg			UJ	11		2400		2.4 UJ		2.2	U
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		-	UJ	3.3		710		0.7 UJ		0.65	U
SW8270	86-74-8	Carbazole	mg/kg		0.74	J	0.68		470		0.11 J		0.43	U
SW8270	84-66-2	Diethyl Phthalate	mg/kg		=	IJ	2.2		470	U	0.46 UJ		0.43	U
SW8270	131-11-3	Dimethyl Phthalate	mg/kg		2	UJ	2.2		470	U	0.46 UJ		0.43	U
SW8270	84-74-2	Di-n-Butyl Phthalate	mg/kg		2	UJ	2.2	U	470		0.46 UJ		0.43	U
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg		2	UJ	2.2		470		0.46 UJ		0.43	U
SW8270	108-95-2	Phenol	mg/kg	500	1.1	J	2.2	U	470	U	0.46 UJ		0.43	U

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

			-	Location ID Fleid Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-13-2020 TP-13-2020-0.0-0.16-06232021 0 0.16 6/23/2021 R2106353-002 REG SOIL	TP-13-2020 TP-13-2020-0.16-1.0-062320 0.16 1 6/23/2021 R2106353 R2106353-003 REG SOIL	TP-13-2020 221 TP-13-2020-4.0-5.0-06242 4 5 6/24/2021 R2106353 R2106353-004 REG SOIL	TP-14-2020 TP-14-2020-0.0-0.16-06242021 0 0.16 6/24/2021 R2106353 R2106353-005 REG SOIL	TP-14-2020 TP-14-2020-0.16-1.0-06242021 0.16 1 6/24/2021 R2106353 R2106353-006 REG SOIL
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾					
		PAHs			2 UJ		430 J		
SW8270 SW8270	83-32-9 208-96-8	Acenaphthene	mg/kg	500 500		2.2 U	430 J 470 U	0.46 UJ 0.38 J	0.43 U 0.43 U
SW8270 SW8270	208-96-8	Acenaphthylene Anthracene	mg/kg	500	2.6 J 3.5 J	2.6	470 U 150 J	0.38 J	0.43 U 0.43 U
SW8270 SW8270	56-55-3	Benzo(A)Anthracene	mg/kg		3.5 J	9.1	130 J	1.6 J	0.19 J
SW8270	50-32-8	Benzo(A)Anthracene Benzo(A)Pyrene	mg/kg mg/kg	5.6	14 J	9.1	170 J	2.6 J	0.19 J
SW8270 SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	16 J	19	200 J	3.1 J	0.33 J
SW8270 SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	5.6	7.4 J	7.3	470 U	1.6 J	0.13 J
SW8270	207-08-9	Benzo(K)Fluoranthene	mg/kg		5.6 J	5.7	470 U	1.1 J	0.11 J
SW8270	218-01-9	Chrysene	mg/kg	56	5.6 J 11 J	9.7	170 J	1.9 J	0.26 J
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	2.3 J	2.5	470 U	0.42 J	0.23 J
SW8270	132-64-9	Dibenzofuran	mg/kg	350	1.3 J	1.5 J	170 J	0.086 J	0.43 U
SW8270	206-44-0	Fluoranthene	mg/kg		22 J	9.5	490	2.1 J	0.25 J
	86-73-7	Fluorene	mg/kg	500	1.1 J	2.2 U	220 J	0.46 UJ	0.43 U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	8.4 J	8.6	470 U	1.7 J	0.43 U
SW8270	91-20-3	Naphthalene	mg/kg	500	14 J	3.5 J-	8500 J-	0.28 J	0.43 UJ
SW8270	85-01-8	Phenanthrene	mg/kg	500	12 J	6.2	520	0.68 J	0.17 J
SW8270	129-00-0	Pyrene	mg/kg	500	19 J	10	330 J	2.1 J	0.21 J
		Total PAHs ⁽⁵⁾	mg/kg	500	150	110	12000	20	1.9
Notes:	L	Iotal PAHs ^{ee}	тg/кg	500	150	110	12000	20	1.9

Notes

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix,	TP-14 TP-14-2020-2.5 2 3 6/24, R21064 R21064 R1064 S	-3.0-06242021 5 3 2021 6414 14-001 5 6	TP-14-2020-3.2 3. 6/24, R2106 R21063	6353 353-007 EG	TP-15-2020-0.0 0. 6/24, R210 R2106- R2106- R	-2020 -0.16-06242021 0 16 /2021 96414 414-002 EG DL	TP-15-2020-0.10 0. 5/24/ R2100 R21064	16 1 (2021 6414 114-003 EG	TP-15-2020-22 2. 6/24/3 R21064 R21064 RE S00	2.5-06242021 5 2021 3414 14-004 G
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾										-
E160.3 E160.3	SOLID	Solids Total Solids	%		72.1		47.7		43.1		62.8		72.5	
		PFAS												
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg											
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg											
E537M E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg											
E537M E537M	375-85-9 355-46-4	Perfluoroheptanoic Acid (PFHpA) Perfluorohexanesulfonic Acid (PFHxS)	mg/kg mg/kg											
E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg											
E537M	1763-23-1	Perfluorooctanesulfonic Acid (PFOS)	mg/kg	0.440 ⁽²⁾										
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	mg/kg	0.500 ⁽²⁾										
E537M	376-06-7	Perfluorotetradecanoic Acid (PFTeDA)	mg/kg											
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg											
		Metals and Cyanide												
SW6010	7429-90-5	Aluminum	mg/kg		1360		2260		6490	-	4520		2660	
SW6010	7440-36-0	Antimony	mg/kg		7.9	U	3.1		13.4		9		8.3	U
SW6010	7440-38-2	Arsenic	mg/kg	16 400	6.2		21.9		10.3		8.4		9.8	
SW6010 SW6010	7440-39-3 7440-41-7	Barium BervIlium	mg/kg mg/kg	590	66.2 0.196	1	75.1 0.282		128		381 0.856	J	97.8 0.372	1
SW6010	7440-43-9	Cadmium	mg/kg	9.3	0.209	1	0.282		0.669	1	0.361	1	0.345	1
SW6010	7440-70-2	Calcium	mg/kg	3.5	986	,	36500	1	5350	1	1810		3310	,
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	400	10.8		81.1	J	18.2	J	14.7		12.9	
SW6010	7440-48-4	Cobalt	mg/kg		2.2	J	1.9	J	5.2	J	3.8	1	2.9	J
SW6010	7440-50-8	Copper	mg/kg	270	27.1		98.6	J	93.3	J	58.9	J	75.7	
SW6010	7439-89-6	Iron	mg/kg		14000		4730	l	28300	J	20300		21000	
SW6010	7439-92-1	Lead	mg/kg	1000	13.3		204		37.7	J	36.9		102	
SW6010	7439-95-4	Magnesium	mg/kg		147		192		626		541	1	260	
SW6010 SW6010	7439-96-5 7440-02-0	Manganese Nickel	mg/kg mg/kg	10000 310	18.8		29 19.5		242 26.2		57.9 13.3		48.6 13.7	
SW6010	7440-02-0	Potassium	mg/kg	310	421		264		417		404		783	
SW6010	7782-49-2	Selenium	mg/kg	1500	421	11	12.3		2.2		0.946	1	1.4	11
SW6010	7440-22-4	Silver	mg/kg	1500	1.3			IJ	2.2		1.5	U	1.4	U
SW6010	7440-23-5	Sodium	mg/kg		73.1		115	1	170		84.3		225	
SW6010	7440-28-0	Thallium	mg/kg		1.3	U	11.2		2.2		1.5	U	1.4	U
SW6010	7440-62-2	Vanadium	mg/kg		15.5		46.1	J	15.4	J	20.5		18.1	
SW6010	7440-66-6	Zinc	mg/kg	10000	6.9		13.8	J	102	J	35.9		42.7	
SW7471 SW9012	7439-97-6 57-12-5	Mercury Cvanide, Total	mg/kg mg/kg	2.8	0.135		1.8		0.311	1	0.214	1	0.801	
0110012	51"12"5	Pesticides	nig/ ng	21	0.01		123	5	12.5	,	13.3	5	11.0	
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.0025	U	0.0072	U	0.0051	U	0.0028	U	0.0024	U
SW8081	50-29-3	4,4'-DDT	mg/kg	47	0.0025	U	0.0072	U	0.0051	U	0.0028	U	0.016	
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.0025	U	0.0072	U	0.0051		0.0028	U	0.0024	U
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.0022	1	0.0072	U	0.0051		0.0028	U	0.0024	U
SW8081	319-85-7	Beta-BHC	mg/kg	3	0.0025	U	0.034		0.0051		0.0028	U	0.0024	U
SW8081	959-98-8	Endosulfan I ⁽⁴⁾	mg/kg	200	0.0025	U	0.0072	U	0.0051	U	0.0028	U	0.0024	U
SW8081	1031-07-8	Endosulfan Sulfate ⁽⁴⁾	mg/kg	200	0.0025	U	0.0072	U	0.0051	U	0.0028	U	0.0024	U
SW8081	72-20-8	Endrin	mg/kg	89	0.0025	U	0.0072	U	0.0051		0.0028	U	0.0024	U
SW8081	7421-93-4 53494-70-5	Endrin Aldehyde	mg/kg		0.0025	U	0.0072	U	0.0051	0	0.0028	U	0.0024	
SW8081 SW8081	53494-70-5 5566-34-7	Endrin Ketone Gamma-Chlordane	mg/kg mg/kg		0.0025	U II	0.0072	0	0.0051	0	0.0028	0	0.0024	0
SW8081	1024-57-3	Heptachlor Epoxide	mg/kg	├	0.0025	U U	0.0072	U U	0.0051	U	0.0028		0.0024	0
SW8081	72-43-5	Methoxychlor	mg/kg		0.0025	- U	0.034	-	0.0051	- U	0.0028	-	0.0024	-
0110001	12"43"3	Methoxychiol	IIIg/ Kg		0.0025	v	0.034		0.0051	v	0.0028	v	0.0024	0

	1			Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-14-2020-2.) 2 6/24 R210 R2106 R	-2020 5-3.0-06242021 .5 3 /2021 06414 414-001 EG DIL	TP-14-2020-3.2 3 6/24 R210 R2106 R	4-2020 4-5-4.0-06242021 -25 4 /2021 06353 353-007 EG OIL	TP-15-2020-0.0 0. 6/24 R2106 R2106 R	-2020 0.16-06242021 0 16 (2021 6414 14-002 56 01	TP-15-2020-0.16 0.1 1 6/24/ R2100 R21064 R25064 R550 R25064 R550 R550 R550 R550 R550 R550 R550 R55	-1.0-06242021 16 2021 5414 14-003 16	TP-15-2020 TP-15-2020-2.0-2.5-0 2.5 6/24/2021 R2106414 R2106414 R2106414 REG SOIL	6242021
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾				1						
		PCBs												
SW8082	12672-29-6	Aroclor-1248	mg/kg	1	0.048	U	0.14		0.098	U	0.055	U	0.047 U	
SW8082	11097-69-1	Aroclor-1254	mg/kg	1	0.048		0.14		0.098	U	0.055	U	0.047 U	
SW8082	11096-82-5	Aroclor-1260	mg/kg	1	0.048	U	0.14	U	0.098	U	0.055	U	0.047 U	
		40 J						L						
		Total PCBs ⁽⁵⁾		1	0.048	U	0.14	U	0.098	U	0.055	U	0.047 U	
		Volatiles												
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	0.01	U	0.018		0.02	U	0.012	U	0.011 U	
SW8260	75-34-3	1,1-Dichloroethane	mg/kg	240	0.01	U	0.018	U	0.02	U	0.012	U	0.011 U	
SW8260	78-93-3	2-Butanone	mg/kg	500	0.01	U	0.031		0.025		0.012	U	0.011 U	
SW8260	67-64-1	Acetone	mg/kg	500	0.051	U	0.1		0.34		0.075		0.037 J	
SW8260	71-43-2	Benzene	mg/kg	44	0.01	U	0.024		0.02	U	0.012	U	0.00062 J	
SW8260	74-83-9	Bromomethane	mg/kg		0.01	U	0.018	U	0.023		0.012	U	0.011 U	
SW8260	75-15-0	Carbon Disulfide	mg/kg		0.0019	J	98		0.02	U	0.0007	J	0.011 U	
SW8260	67-66-3	Chloroform	mg/kg	350	0.01		0.018		0.0011	1	0.012	U	0.011 U	
SW8260	74-87-3	Chloromethane	mg/kg		0.01		0.018		0.0074	1	0.012	U U	0.011 U	
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	0.01		0.018		0.02	11	0.012		0.011 U	
SW8260	110-82-7	Cvclohexane	mg/kg	000	0.01		0.0019		0.02	U	0.012	0	0.00084 J	
SW8260	100-41-4	Ethylbenzene	mg/kg	390	0.01	-	0.018	-	0.02	U	0.012		0.011 U	
SW8260	98-82-8	Isopropylbenzene	mg/kg	390	0.01	-	0.018	-	0.02	0	0.012		0.011 U	
SW8260 SW8260				500	0.01	-		-	0.02	0	0.012	0	0.011 U	
	XYLENES1314	m&p-Xylenes	mg/kg	500			0.035			U		0		
SW8260	79-20-9	Methyl Acetate	mg/kg		0.01	U	0.018		9.7	J	0.012	U	0.011 U	
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	0.00044	J	0.018		0.02	U	0.012	U	0.011 U	
SW8260	108-87-2	Methylcyclohexane	mg/kg		0.01		0.0044		0.0025	J	0.012	UJ	0.00084 J	
SW8260	75-09-2	Methylene Chloride	mg/kg	500	0.0086		0.018		0.017	1	0.012	U	0.011 U	
SW8260	95-47-6	o-Xylene	mg/kg	500	0.01		0.018		0.02	U	0.012	U	0.011 U	
SW8260	100-42-5	Styrene	mg/kg		0.01	-	0.018	-	0.02	U	0.012	U	0.011 U	
SW8260	108-88-3	Toluene	mg/kg	500	0.01		0.018	-	0.02	U	0.012	U	0.011 U	
SW8260	1330-20-7	Total Xylenes	mg/kg	500	0.021		0.035		0.039	U	0.023	U	0.023 U	
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	0.01		0.018	-	0.02	U	0.012	U	0.011 U	
SW8260	79-01-6	Trichloroethene	mg/kg	200	0.01	U	0.018	U	0.02	U	0.012	U	0.011 U	
		Semivolatiles												
SW8270	92-52-4	1,1'-Biphenyl	mg/kg		0.79	U	0.74		1.6	U	1.3	U	0.95 U	
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		0.79	U	0.52	J	1.6	U	1.3	U	0.95 U	
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		0.17	J	3.6		1.4	1	0.4	J	0.68 J	
SW8270	95-48-7	2-Methylphenol	mg/kg	500	0.79	U	0.39	1	1.6	U	1.3	U	0.95 U	
SW8270	34METPH	3&4-Methylphenol	mg/kg	500	0.79	U	1.3		1.6	U	1.3		0.95 U	
SW8270	100-01-6	4-Nitroaniline	mg/kg		4.1		3.8	U	8.2	U	6.5		4.9 U	
SW8270	98-86-2	Acetophenone	mg/kg		0.79	U	0.73	U	1.6	U	1.3	U	0.95 U	
SW8270	100-52-7	Benzaldehyde	mg/kg	1 1	4.1	-	3.8	-	8.2	-	6.5		4.9 U	
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	mg/kg		1.2		1.1		0.62		1.9		1.4 U	
SW8270	86-74-8	Carbazole	mg/kg	<u>├</u>	0.79		4	1	1.1		0.26	J	0.54 J	
SW8270	84-66-2	Diethyl Phthalate	mg/kg		0.79		0.73	u	1.6		1.3	u	0.95 U	
SW8270	131-11-3	Dimethyl Phthalate	mg/kg	<u>├</u>	0.79		0.73		1.6		1.3		0.95 U	
SW8270	84-74-2	Dinnetriyi Phthalate	mg/kg	├	0.79		0.73	-	1.6	-	1.3	-	0.95 U	
SW8270	86-30-6	n-Nitrosodiphenylamine	mg/kg	├	0.79	-	0.73	-	1.6	-	1.3		0.95 U	
	108-95-2			500	0.79		0.73		1.6		1.3		0.95 U	
SW8270	100-90-2	Phenol	mg/kg	500	0.79	U	0.27	۲. 	1.6	v	1.3	v	0.95 0	

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-14- TP-14-2020-2.5- 2.1 3 6/24/, R2106 R21064 RE SO	3.0-06242021 5 2021 8414 14-001 G	TP-14 TP-14-2020-3.28 3.: 4 6/24/ R2100 R21063 RE S0	5-4.0-06242021 25 4 (2021 6353 153-007 56	TP-15-2020-0.0 0. 6/24 R210 R2106 R2106 R	0 16	R21064	6-1.0-06242021 16 1 /2021 06414 414-003 EG	TP-15-2020-2. 6/24 R21 R2106	5-2020 0-2.5-06242021 2 2.5 4/2021 06414 4/14-004 REG 60IL
Analytical Method	CAS_RN	Chemical Name		Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾										
SW8270	83-32-9	PAHs Acenaphthene		500	0.79		0.63		0.45		0.28		0.35	
	83-32-9 208-96-8	Acenaphthylene	mg/kg mg/kg	500	0.16		0.63	J	0.45	J	0.28		0.3	
SW8270 SW8270	208-96-8	Acenaphinylene	mg/kg		0.18		2.4		3.1		0.56		0.64	
	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	0.86		2.4		12		2.8		2.3	
	50-32-8	Benzo(A)Pyrene	mg/kg	1	0.95		6.1		12		4.6		2.8	
	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	1.2		10		21				3.8	
	191-24-2	Benzo(G,H,I)perylene	mg/kg		0.58	1	3.1		11		3.1		1.8	
	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	0.46	1	3.1		7.1		1.9		1.4	
	218-01-9	Chrysene	mg/kg	56	0.87		7.4		15		3.5		2.6	
	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	0.79	J	1		2.7		0.64		0.54	
SW8270	132-64-9	Dibenzofuran	mg/kg		0.79	J	2.9		0.98	1	0.28	1	0.74	1 J
SW8270	206-44-0	Fluoranthene	mg/kg	500	1.4		12		21		4.6		4.5	5
SW8270	86-73-7	Fluorene	mg/kg	500	0.79	J	3.4		0.59	1	1.3	U	0.77	7 J
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	0.62	1	3.8		13		3.2		2.1	L
SW8270	91-20-3	Naphthalene	mg/kg	500	0.29		20	J-	2.6		0.78	J	4.4	1
SW8270	85-01-8	Phenanthrene	mg/kg	500	0.91		8.1		8.2		2.1		3.6	6
SW8270	129-00-0	Pyrene	mg/kg	500	1.1		8.4		20		4.5		3.6	6
		Total PAHs ⁽⁵⁾	mg/kg	500	9.6		100		160		39		37	7

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

				Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-34-2021-6.0 6 6/23, R210 R21063 R1063 R1063	2021	TP-51 TP-51-2022-5.5 6 11/2/ R22106 R22106 R1 SC	-6.5-11022022 5 5 2022 0631 31-001 5 6	TP-52-2022-3 11/2 R2210 R2210 R2210	-2022 3-4-11022022 3 4 /2022 00631 831-002 EG DIL	TP-52 TP-52-2022-3- 2 11/2/ R22106 F SC	4-11022022FD 3 4 72022 0631 131-003 D
Analytical Method		Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾								
E160.3 E160.3	SOLID	Solids Total Solids	%		92		78		75		77.1	
E100.3	SULIDS	PFAS	70		92		18		/5		11.1	
E537M	2991-50-6	n-Ethyl Perfluorooctanesulfonamidoacetic Acid (n-ETFOSAA)	mg/kg									
E537M	375-22-4	Perfluorobutanoic Acid (PFBA)	mg/kg									
E537M	335-76-2	Perfluorodecanoic acid (PFDA)	mg/kg									
E537M	375-85-9	Perfluoroheptanoic Acid (PFHpA)	mg/kg									
E537M	355-46-4	Perfluorohexanesulfonic Acid (PFHxS)	mg/kg									
E537M	375-95-1	Perfluorononanoic Acid (PFNA)	mg/kg	(2)							-	
E537M E537M	1763-23-1 335-67-1	Perfluorooctanesulfonic Acid (PFOS) Perfluorooctanoic Acid (PFOA)	mg/kg mg/kg	0.440 ⁽²⁾ 0.500 ⁽²⁾								
E537M	376-06-7	Perfluorotetradecanoic Acid (PFTeDA)	mg/kg	0.500								
E537M	2058-94-8	Perfluoroundecanoic Acid (Pfunda)	mg/kg									
200711	2000 04 0	Metals and Cyanide										
SW6010	7429-90-5	Aluminum	mg/kg		1040		23400	J	1080		1130	
SW6010	7440-36-0	Antimony	mg/kg		6.4	U		UJ	2.8	J	10.9	J
SW6010	7440-38-2	Arsenic	mg/kg	16	13.5		4.1	J	14.6		12.9	
SW6010	7440-39-3	Barium	mg/kg	400	10.9		254	J	202		180	
SW6010	7440-41-7	Beryllium	mg/kg	590	0.117	J	1.33		0.14	1	0.15	J
SW6010	7440-43-9	Cadmium	mg/kg	9.3	3		0.63	U	0.21	J	0.14	J
SW6010	7440-70-2	Calcium	mg/kg		837		2750	J	27400		25500	
SW6010	7440-47-3	Chromium ⁽³⁾	mg/kg	400	3.6		30.1	J	20.1		19.5	
SW6010 SW6010	7440-48-4 7440-50-8	Cobalt	mg/kg	270	0.948	J	15.5 26.9		1.9	J	1.4	J
SW6010 SW6010	7439-89-6	Copper Iron	mg/kg mg/kg	270	5840		37500		10900		8270	
SW6010	7439-92-1	Lead	mg/kg	1000	66.4		11.5		247		230	
SW6010	7439-95-4	Magnesium	mg/kg	1000	310		7240	1	120		130	
SW6010	7439-96-5	Manganese	mg/kg	10000	25.6		254]	29.5		26.9	
SW6010	7440-02-0	Nickel	mg/kg	310	4	J	41.9		5.3		4.8	J
SW6010	7440-09-7	Potassium	mg/kg		93.7	J	2370		600		690	
SW6010	7782-49-2	Selenium	mg/kg	1500	5.4		1.3	U	1.1	J	1.2	J
SW6010	7440-22-4	Silver	mg/kg	1500	1.1	U	1.3	U	0.8		0.6	J
SW6010	7440-23-5	Sodium	mg/kg		116		140		70		70	1
SW6010	7440-28-0	Thallium	mg/kg		5.8		1.3	U	9.4		11.8	
SW6010 SW6010	7440-62-2 7440-66-6	Vanadium Zinc	mg/kg	10000	1.6 90.5	J	38.6 81		19.9 51.3		20.2 38.9	
SW6010 SW7471	7440-66-6 7439-97-6	Zinc Mercury	mg/kg mg/kg	2.8	0.082		0.032		51.3	J	38.9	J
SW9012	57-12-5	Cyanide, Total	mg/kg	27	19.2		3.2		22.1		19.1	
	1	Pesticides										
SW8081	72-54-8	4,4'-DDD	mg/kg	92	0.19	U						
SW8081	50-29-3	4,4'-DDT	mg/kg	47	0.19							
SW8081	309-00-2	Aldrin	mg/kg	0.68	0.19							
SW8081	319-84-6	Alpha-BHC	mg/kg	3.4	0.19							
SW8081	319-85-7	Beta-BHC	mg/kg	3	0.19	-						
SW8081 SW8081	959-98-8 1031-07-8	Endosulfan I ⁽⁴⁾	mg/kg	200 200	0.19							
SW8081 SW8081	1031-07-8 72-20-8	Endosulfan Sulfate ⁽⁴⁾ Endrin	mg/kg mg/kg	200 89	0.19	-						
SW8081 SW8081	72-20-8	Endrin Endrin Aldehyde	mg/kg mg/kg	69	0.19							
SW8081	53494-70-5	Endrin Ketone	mg/kg		0.19							
SW8081	5566-34-7	Gamma-Chlordane	mg/kg		0.19							
SW8081	1024-57-3	Heptachlor Epoxide	mg/kg		0.19	-						
SW8081	72-43-5	Methoxychlor	mg/kg		0.19							

				Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type <u>Matrix</u>	TP-34-2021 TP-34-2021-6.0-6.5-06232021 6 6,5 6/23/2021 R 2106353 R2106353-001 REG SOIL	TP-51-2022-5.5-6.5-1102 5.5 6.5 11/2/2022 R2210631 R2210631-001 REG SOIL	11/2 R22 R2210	34-11022022 3 4 //2022 10631 631-002 REG OIL	, 11/2,	3 4 /2022 .0631 331-003 D
Analytical Method	CAS_RN	Chemical Name	Unit	Soli Cleanup Objective (SCO) for Commercial Use ⁽¹⁾						
CW8082	10670.00.6	PCBs	and dut	1	0.27.11					
SW8082 SW8082	12672-29-6 11097-69-1	Aroclor-1248 Aroclor-1254	mg/kg	1	0.37 U 0.37 U					
SW8082 SW8082	11097-69-1 11096-82-5	Aroclor-1254 Aroclor-1260	mg/kg mg/kg	1	0.37 U			<u>├</u> ────		
5110002	11020-07-0	1000-1200	mg/ Kg	1	0.37 0			<u>}</u>		
		Total PCBs ⁽⁵⁾	-	1	0.37 U	<u> </u>		<u>├</u>		
		Volatiles		-	0.01 0					
SW8260	71-55-6	1,1,1-Trichloroethane	mg/kg	500	13 U	0.0051 U	0.0079	U U	0.0094	U
	75-34-3	1.1-Dichloroethane	mg/kg	240	13 U	0.0051 U	0.0079	U U	0.0094	U
SW8260	78-93-3	2-Butanone	mg/kg	500	13 U	0.0064	0.0079	U U	0.0094	U
SW8260	67-64-1	Acetone	mg/kg	500	64 U	0.068	0.04	U	0.047	U
SW8260	71-43-2	Benzene	mg/kg	44	270	0.0051 U	0.00072	: J	0.0012	J
SW8260	74-83-9	Bromomethane	mg/kg		13 UJ	0.0051 U	0.0079	U	0.0094	U
SW8260	75-15-0	Carbon Disulfide	mg/kg		13 U	0.0051 U	0.0079	U	0.00067	J
SW8260	67-66-3	Chloroform	mg/kg	350	13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	74-87-3	Chloromethane	mg/kg		13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	156-59-2	cis-1,2-Dichloroethene	mg/kg	500	13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	110-82-7	Cyclohexane	mg/kg		13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	100-41-4	Ethylbenzene	mg/kg	390	19	0.0051 U	0.0079	U	0.0094	U
SW8260	98-82-8	Isopropylbenzene	mg/kg		1.1 J	0.00026 J	0.0079	U	0.0094	U
SW8260	XYLENES1314	m&p-Xylenes	mg/kg	500	330	0.01 U	0.016	i U	0.019	U
SW8260	79-20-9	Methyl Acetate	mg/kg		13 UJ	0.00091 J	0.0079	U	0.0094	U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	mg/kg	500	13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	108-87-2	Methylcyclohexane	mg/kg		13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	75-09-2	Methylene Chloride	mg/kg	500	13 U	0.0051 U	0.0079	U	0.0095	
SW8260	95-47-6	o-Xylene	mg/kg	500	91	0.0051 U	0.0079	U	0.0094	U
SW8260	100-42-5	Styrene	mg/kg		140	0.0051 U	0.0079	U	0.0094	U
SW8260	108-88-3	Toluene	mg/kg	500	290	0.0051 U	0.0079	U	0.0094	U
SW8260	1330-20-7	Total Xylenes	mg/kg	500	421	0.01 U	0.016	U	0.019	U
SW8260	156-60-5	trans-1,2-Dichloroethene	mg/kg	500	13 U	0.0051 U	0.0079	U	0.0094	U
SW8260	79-01-6	Trichloroethene	mg/kg	200	13 U	0.0051 U	0.0079	U	0.0094	U
J		Semivolatiles								
	92-52-4	1,1'-Biphenyl	mg/kg		1200 J	0.57 U	4.5		4.4	
SW8270	105-67-9	2,4-Dimethylphenol	mg/kg		1300 J	0.57 U	4.5		4.4	
SW8270	91-57-6	2-Methylnaphthalene	mg/kg		5900	0.57 U	3.4		3.1	
SW8270	95-48-7	2-Methylphenol	mg/kg	500	1100 J	0.57 U	4.5		4.4	-
	34METPH	3&4-Methylphenol	mg/kg	500	2700 J	0.57 U	4.5		4.4	
SW8270	100-01-6	4-Nitroaniline	mg/kg		18000 U	2.9 U	23		22	
	98-86-2	Acetophenone	mg/kg		3400 U	0.57 U	4.5		4.4	
SW8270	100-52-7 117-81-7	Benzaldehyde	mg/kg		18000 U 5200 U	2.9 U 0.87 U	6.8		22	
	117-81-7 86-74-8	bis-(2-Ethylhexyl)Phthalate Carbazole	mg/kg		3600	0.87 U 0.57 U	6.8		6.6 3.6	
	86-74-8 84-66-2		mg/kg		30000		4.5		4.4	
		Diethyl Phthalate	mg/kg			0.57 U	4.5		4.4	
	131-11-3 84-74-2	Dimethyl Phthalate	mg/kg		7700 610 J	0.57 U 0.57 U	4.5		4.4	
SW8270 SW8270	84-74-2 86-30-6	Di-n-Butyl Phthalate	mg/kg mg/kg		610 J 3400 U	0.57 U 0.57 U	4.5		4.4	
	00-30-0	n-Nitrosodiphenylamine	mg/kg mg/kg	500	1600 J	0.57 U	4.5		4.4	

TABLE 7 - FOCUSED RI SITE 110 SOIL ANALYTICAL SUMMARY

			Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled SDG Lab Sample ID Sample Type Matrix	TP-34-2021-6.0 6/23 R210 R2106 R2106 R	-2021 0-6.5-06232021 6 5.5 /2021 06353 353-001 EG DIL	TP-51-2022-5.5 5 6 11/2/ R221 R22106	331-001 EG	TP-52-2022- 11/2 R22 R2210 F	2-2022 3-4-11022022 3 4 4 2/2022 10631 1631-002 EG iOIL	TP-52 TP-52-2022-3- 3 11/2, R2210 R22106 F SC	4-11022022FD 3 4 72022 0631 131-003 D	
Analytical Method	CAS_RN	Chemical Name	Unit	Soll Cleanup Objective (SCO) for Commercial Use ⁽¹⁾						I		
SW8270	83-32-9	Acenaphthene	mg/kg	500	750	1	0.57	11	4.5	5.0	4.4	11
	208-96-8	Acenaphthylene	mg/kg	500	6400	, 	0.57	-	4.4		4.5	0
	120-12-7	Anthracene	mg/kg	500	5500		0.57		7.1	L	6.6	
SW8270	56-55-3	Benzo(A)Anthracene	mg/kg	5.6	4700		0.57	U	21	L	26	
SW8270	50-32-8	Benzo(A)Pyrene	mg/kg	1	4400		0.57	U	20)	25	
SW8270	205-99-2	Benzo(B)Fluoranthene	mg/kg	5.6	4400		0.57	U	29)	35	
SW8270	191-24-2	Benzo(G,H,I)perylene	mg/kg	500	1900	1	0.57	U	12	2	15	
SW8270	207-08-9	Benzo(K)Fluoranthene	mg/kg	56	1900	1	0.57	U	10)	13	
SW8270	218-01-9	Chrysene	mg/kg	56	4300		0.57	U	21	L	25	
SW8270	53-70-3	Dibenzo(a,h)Anthracene	mg/kg	0.56	3400	U	0.57	U	4	r 1	4.8	
	132-64-9	Dibenzofuran	mg/kg	350	4500		0.57	-	3.3	3]	3.3	1
SW8270	206-44-0	Fluoranthene	mg/kg	500	13000		0.57	U	33	3	41	
	86-73-7	Fluorene	mg/kg	500	7300		0.57	-	2.4	l J	2.7	J
	193-39-5	Indeno(1,2,3-Cd)Pyrene	mg/kg	5.6	2200		0.57	-	15		18	
	91-20-3	Naphthalene	mg/kg	500	25000	J-	0.57		26		26	
	85-01-8	Phenanthrene	mg/kg	500	19000		0.57		18		23	
SW8270	129-00-0	Pyrene	mg/kg	500	8300		0.57	U	25	i	31	
		Total PAHs ⁽⁵⁾	mg/kg	500	110000		0.57	U	250)	300	

Notes:

(1) Unless otherwise noted, soil cleanup objectives from Table 375-6.8(b) in NYSDEC's "6 NYCRR PART 375 Environmental Remediation Programs," December 14, 2006.

(2) PFAS criteria are guidance levels from the NYSDEC document titled "Sampling, Analysis, and Assessmen of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs," November 2022.

(3) Hexavalent chromium standard is presented. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

(4) This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

(5) Value from NYSDEC "CP-51/Soil Cleanup Guidance", October 21, 2010.

Only detected compounds are presented

Value exceeds Commercial SCOs Shaded:

TABLE 8 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY DECEMBER 2020

				ocation Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-04-3 MW-04-2020- GW R201231 12/29/3 REG	2020 12292020 2-003 2020	MW-05-20 MW-05-20 MW-05-2020-1 GW R2012312 12/29/20 REG	020 2292020 -002	MW-06-2 MW-06-2 MW-06-2020-1 GW R2012312 12/29/2 REG	020 2292020 2-001	MW-07-2 MW-07-2020-3 GW R2012369 12/30/2 REG	2020 12302020 9-001 2020
Analytical Method	CAS_RN	Chemical Name	Unit	Class GA Groundwater Quality Standard or Guldance Value ⁽¹⁾								
550714	075 70 5	PFAS	0	NO	0.0040						0.00050	
E537M E537M	375-73-5 375-22-4	Perfluorobutanesulfonic Acid (PFBS) Perfluorobutanoic Acid (PFBA)	ug/l	NS NS	0.0046	U					0.00059	J
E537M	375-22-4 375-85-9		ug/l	NS	0.011						0.011	
E537M	375-85-9 1763-23-1	Perfluoroheptanoic Acid (PFHpA)	ug/l		0.0046	U					0.0024	1
		Perfluorooctanesulfonic Acid (PFOS)	ug/l	0.0027 ⁽²⁾		J	ĮĮ					J
E537M	335-67-1	Perfluorooctanoic Acid (PFOA)	ug/l	0.0067 ⁽²⁾	0.0035						0.0044	
E537M	2706-90-3	Perfluoropentanoic Acid (PFPeA)	ug/l	NS	0.0027	J					0.0048	
0000010	7400.00.5	Metals		NG							10-5-	
SW6010	7429-90-5	Aluminum	ug/l	NS	526		100 0	J	34.6	J	13500	
SW6010	7440-39-3	Barium	ug/l	1000	165		18.4		141		172	
SW6010	7440-41-7	Beryllium	ug/l	3	-	U	3 (J	3	U	0.7	J
SW6010 SW6010	7440-70-2 7440-47-3	Calcium Chromium	ug/l	NS 50	239000 10		394000 10 l	1	143000 10		120000 15.8	
SW6010 SW6010	7440-47-3		ug/l	NS	2.2			J	50		4.9	1
SW6010 SW6010	7440-48-4	Cobalt Copper	ug/l ug/l	200	2.2		8.1 J 20 l	1	20		4.9	J
SW6010 SW6010	7439-89-6	Iron	ug/l	300	17300	0	15900	5	10800	0	16700	7
SW6010	7439-92-1	Lead	ug/l	25	50		50 0	1	50	11	20.8	1
SW6010	7439-92-1	Magnesium	ug/l	35000 ⁽²⁾	46000	0	53200	J	25300	0	26800	J
SW6010 SW6010	7439-96-5		ug/l	300	2970		3240		12300		1400	
	7439-96-5	Manganese Nickel	-	100	40	11	3240 9.8		40		40	11
SW6010 SW6010	7440-02-0	Potassium	ug/l ug/l	NS	5740	U	5760		40	0	6340	U
SW6010 SW6010	7440-03-7	Sodium	ug/l	20000	19800		151000		73600		27700	
SW6010 SW6010	7440-23-3	Vanadium	ug/l	NS	1.1	1	1.1		50	11	21.4	1
SW6010 SW6010	7440-66-6	Zinc	ug/l	2000	10.7	1	34		20	U	66	5
SW7470	7439-97-6	Mercury	ug/l	0.7	0.2	1	0.2 1	1	0.2		0.246	
011110	1400 01 0	PESTICIDES	ug/ i	0.1	0.2	0	0.2	,	0.2	0	0.240	
SW8081	319-84-6	Alpha-BHC	ug/l	0.01	0.045	U	0.05 (J	0.26	J	0.045	U
SW8081	5103-71-9	cis-Chlordane	ug/l	NS	0.045	U	0.05 (J	0.03	J	0.045	U
		PCBS				-		-				
		Volatiles										
SW8260	71-43-2	Benzene	ug/l	1	1	U	1 (J	370		1	U
SW8260	67-66-3	Chloroform	ug/l	7	1	U	1 (6.	J	1	U
SW8260	100-41-4	Ethylbenzene	ug/l	5		U	1 l		1700		1	U
SW8260	98-82-8	Isopropylbenzene	ug/l	5	1	U	1 (44		1	U
SW8260	XYLENES1314	m&p-Xylenes	ug/l	5 ⁽³⁾	2	U	2 เ	J	3000		2	U
SW8260	95-47-6	o-Xylene	ug/l	5	1	U	1 (J	1100		1	U
SW8260	100-42-5	Styrene	ug/l	5	1	U	1 (J	260		1	U
SW8260	108-88-3	Toluene	ug/l	5	1	U	1 (J	1700		1	U
		Semivolatiles										
SW8270	92-52-4	1,1'-Biphenyl	ug/l	5	0.98		0.99 l		47		1	U
SW8270	105-67-9	2,4-Dimethylphenol	ug/l	50 ⁽²⁾	0.98	U	0.99 (J	17		1	U
SW8270	91-57-6	2-Methylnaphthalene	ug/l	NS	0.26		0.063		710		0.2	U
SW8270	95-48-7	2-Methylphenol	ug/l	1(4)	0.98	U	0.99 (J	5.4		1	U

TABLE 8 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY DECEMBER 2020

		1		ocation Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-04-2020 MW-04-2020 MW-04-2020-12292020 GW R2012312-003 12/29/2020 REG	MW-05-2020 MW-05-2020 GW R2012312-002 12/29/2020 REG	MW-06-2020 MW-06-2020 MW-06-2020 GW R2012312-001 12/29/2020 REG	MW-07-2020 MW-07-2020 MW-07-2020-12302020 GW R2012369-001 12/30/2020 REG
Analytical Method	CAS_RN	Chemical Name	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾				
SW8270	34METPH	3&4-Methylphenol	ug/l	1(4)	0.98 U	0.99 U	4.7 J	1 U
SW8270	83-32-9	Acenaphthene	ug/l	20 ⁽²⁾	0.22	0.2 J	110	0.2 U
SW8270	208-96-8	Acenaphthylene	ug/l	NS	1	0.11 J	310	0.2 U
SW8270	98-86-2	Acetophenone	ug/l	NS	0.98 U	0.99 U	4.7 J	1 U
SW8270	120-12-7	Anthracene	ug/l	50 ⁽²⁾	0.36	0.077 J	7.2	0.2 U
SW8270	56-55-3	Benzo(A)Anthracene	ug/l	0.002 ⁽²⁾	0.36	0.2 U	0.98 U	0.17 J
SW8270	50-32-8	Benzo(A)Pyrene	ug/l	ND	0.39	0.2 U	0.98 U	0.14 J
SW8270	205-99-2	Benzo(B)Fluoranthene	ug/l	0.002 ⁽²⁾	0.38	0.2 U	0.98 U	0.15 J
SW8270	191-24-2	Benzo(G,H,I)perylene	ug/l	NS	0.25	0.2 U	0.98 U	0.2 U
SW8270	207-08-9	Benzo(K)Fluoranthene	ug/l	0.002 ⁽²⁾	0.14 J	0.2 U	0.98 U	0.2 U
SW8270	86-74-8	Carbazole	ug/l	NS	1.1	0.99 U	170	1 U
SW8270	218-01-9	Chrysene	ug/l	0.002 ⁽²⁾	0.34	0.2 U	0.98 U	0.13 J
SW8270	132-64-9	Dibenzofuran	ug/l	NS	0.29	0.083 J	83	0.2 U
SW8270	84-66-2	Diethyl Phthalate	ug/l	50 ⁽²⁾	4.9 U	5 U	25 U	0.35 J
SW8270	206-44-0	Fluoranthene	ug/l	50 ⁽²⁾	0.88	0.2 U	3.9	0.24
SW8270	86-73-7	Fluorene	ug/l	50 ⁽²⁾	0.66	0.14 J	73	0.2 U
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	ug/l	0.002 ⁽²⁾	0.25 J	0.2 UJ	0.98 UJ	0.2 U
SW8270	91-20-3	Naphthalene	ug/l	10 ⁽²⁾	6.9	1.1 U	12000 J	0.69
SW8270	85-01-8	Phenanthrene	ug/l	50	1.5	0.2 U	35	0.2 J
SW8270	108-95-2	Phenol	ug/l	1	0.98 U	0.15 J	4.9 U	1 U
SW8270	129-00-0	Pyrene	ug/l	50 ⁽²⁾	0.69	0.2 U	2.3	0.2 J
SW8270-SIM	123-91-1	1,4-Dioxane	ug/l	0.35 ⁽²⁾	0.29			0.032 J
	1	Cyanide	-			1 1		
SW9012	57-12-5	Cyanide, Total	ug/l	200	473	5710	179	247

Notes:

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations," June 1998; Errata Sheet for June 1998 Edition. Criteria listed are standards unless otherwise noted.

(2) Guidance value (from TOGS 1.1.1)

(3) Applies to the individual isomer.

(4) Applies to the sum of these substances.

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					tion Description Location ID Sample ID Matrix Lab Sample ID Sample Date mple Type Code	MW-04-2 MW-04-2 MW-04-2020-C GW R2109811-004/R: 9/22/20 REG	2020 09222021 2109811-005 021	MW-05-2 MW-05-2 MW-05-2020-6 GW R2110043-005/R 9/23/24 REG	2020 99232021 2110043-006 021	MW-06- MW-06- MW-06-2020 GW R2109811-007/I 9/22/2 REC	2020 -09222021 / R2109811-008 2021	MW-06 MW-06 MW-06-2020 GV R21100- 9/23/1 RE	-2020 -09232021 V 43-009 2021
Analytical Method	CAS_RN	Chemical Name	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾								
Oplaulated	7707 07 0	MNA Parameters	T		NC	2000		10700		3760			
Calculated E351.2	7727-37-9 KN	Nitrogen Total Kjeldahl Nitrogen	1 T	ug/l ug/l	NS NS	3960 3930	1	10700		3760			
E351.2 E353.2	NO3NO2N	Nitrogen, Nitrate-Nitrite	т	ug/I ug/I		3930]	52		50			
E353.2 E353.2		.		-	10000 ⁽²⁾	10		441		10			
E353.2 RSK175	N02N 74-82-8	Nitrogen, Nitrite Methane	T	ug/l ug/l	1000 NS	10 760	U	441		10 5600	U		
SM2320B	74-82-8 ALK	Alkalinity	т	ug/I ug/I	NS	814000		5 117000		561000	+		+
SW9056	16887-00-6	Chloride	T	ug/l	250000	18800		31600		25800			
SW9056	14808-79-8	Sulfate	T	ug/l	250000	108000		2650000		61600			
		Metals - Totals	l'		200000	100000		2000000		01000	1		1
SW6010	7429-90-5	Aluminum	т	ug/l	NS	742		177		26.1	J		
SW6010	7440-38-2	Arsenic	Т	ug/l	25	10	U	10	U	7.5			
SW6010	7440-39-3	Barium	Т	ug/l	1000	199		38.2		138			
SW6010	7440-41-7	Beryllium	Т	ug/l	3 ⁽³⁾	3	U	3	U	3	U		
SW6010	7440-43-9	Cadmium	Т	ug/l	5	5	U	1.9	J	5	U		
SW6010	7440-70-2	Calcium	Т	ug/l	NS	267000		575000		163000			
SW6010	7440-48-4	Cobalt	Т	ug/l	NS	2.7	J	6.2	J	2.9	J		
SW6010	7439-89-6	Iron	Т	ug/l	300	19300		277000		11600			
SW6010	7439-92-1	Lead	Т	ug/l	25	50	U	4.1	J	50	U		
SW6010	7439-95-4	Magnesium	т	ug/l	35000 ⁽³⁾	49400		185000		27900			
SW6010	7439-96-5	Manganese	Т	ug/l	300	3120		18400		1630			
SW6010	7440-02-0	Nickel	Т	ug/l	100	40	U	21.6	J	40	U		
SW6010	7440-09-7	Potassium	Т	ug/l	NS	7020		16700		5170			
SW6010	7440-23-5	Sodium	Т	ug/l	20000	22800		111000		54200			
SW6010	7440-28-0	Thallium	Т	ug/l	0.5 ⁽³⁾	10		10	U	10			
SW6010	7440-62-2	Vanadium	Т	ug/l	NS	1.4	l	7.7	J	2.7			
SW6010	7440-66-6	Zinc	Т	ug/l	2000 ⁽³⁾	12.9	J	140		4.7			
SW7470	7439-97-6	Mercury	Т	ug/l	0.7	0.2	U	0.2	U	0.2	U		
		Metals - Dissolved	_										
SW6010	7429-90-5	Aluminum	D	ug/l	NS	35.1	1	151		100			
SW6010	7440-38-2	Arsenic	D	ug/l	25	6.4	J	10 34.2	U	6	-		_
SW6010 SW6010	7440-39-3 7440-41-7	Barium	D	ug/l	1000	188		34.2	1	146	U		
		Beryllium		ug/l	3 ⁽³⁾	3					-		
SW6010	7440-43-9	Cadmium	D	ug/l	5	5	U	1.8	J	5	U		_
SW6010 SW6010	7440-70-2 7440-48-4	Calcium	D	ug/l	NS NS	258000 1.9	1	577000 14.9	1	159000 2.4			
SW6010 SW6010	7440-48-4 7439-89-6	Cobalt Iron	D	ug/l ug/l	300	1.9	ر 	240000		2.4	د		+
SW6010 SW6010	7439-89-6	Lead	D	ug/I ug/I	25	50	U	50	U	50	U		
SW6010	7439-95-4	Magnesium	D	ug/I ug/I	35000 ⁽³⁾	57300	<u> </u>	172000	~	26600	с —		
SW6010 SW6010	7439-96-5	Magnesian	D	ug/l	300	3180		18700		1570			-
SW6010 SW6010	7439-96-5	Nickel	D	ug/I ug/I	100	40		47.8		40			+
SW6010 SW6010	7440-02-0	Potassium	D	ug/I ug/I	NS	40 5970	0	16000		5180			
SW6010	7440-23-5	Sodium	D	ug/l	20000	25300		121000		59700			

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					tion Description Location ID Sample ID Matrix Lab Sample ID Sample Date nple Type Code Class GA	MW-04-20 MW-04-20 MW-04-2020-09 GW R2109811-004/R2: 9/22/202 REG	20 9222021 109811-005	MW-05-2 MW-05-2020-4 GW R2110043-005/R 9/23/2 REG	2020 09232021 2110043-006 021	MW-06- MW-06- MW-06-2020 GV R2109811-007/ 9/22/3 RE	2020 -09222021 V R2109811-008 2021	MW-06- MW-06-2020- GW R211004 9/23/2 REC	2020 -09232021 / I3-009 2021
Analytical Method	CAS_RN	Chemical Name	FRACTION	Unit	Groundwater Quality Standard or Guidance Value ⁽¹⁾								
SW6010	7440-28-0	Thallium	D	ug/l	0.5 ⁽³⁾	10 U		10	U	10	U		
SW6010	7440-62-2	Vanadium	D	ug/l	NS	0.8 J		6.2		2.5			
SW6010	7440-66-6	Zinc	D	ug/l	2000 ⁽³⁾	5.3 J		195	-	5.1			
SW7470	7439-97-6	Mercury	D	ug/l	0.7	0.2 U		0.2	U	0.2			
		PCBS - Total	ľ	·		012 0		0.2	-	0.2	1		1
		PCBS - Dissolved		1	1								
		Volatiles											
SW8260	78-93-3	2-Butanone	Т	ug/l	50	5 U		2.3	J	500			
SW8260	67-64-1	Acetone	Т	ug/l	50	5 U		14		500			
SW8260	71-43-2	Benzene	Т	ug/l	1	1 U		0.5		430			
SW8260	75-27-4	Bromodichloromethane	Т	ug/l	50 ⁽³⁾	1 U		1	U	31			
SW8260	74-83-9	Bromomethane	Т	ug/l	5	1 U.		1.5		100			
SW8260	67-66-3	Chloroform	Т	ug/l	7	1 U		1	-	70			
SW8260	74-87-3	Chloromethane	Т	ug/l	5	1 J		1.4		250			
SW8260	100-41-4	Ethylbenzene	Т	ug/l	5	1 U		1		1300			
SW8260	98-82-8	Isopropylbenzene	T	ug/l	5	1 U		1	-	34			
SW8260	XYLENES1314	m&p-Xylenes	I	ug/l	5 ⁽⁴⁾	2 U		2		2400			
SW8260	1634-04-4	Methyl Tert-Butyl Ether	T	ug/l	10	1 U		1	-	100	-		
SW8260	95-47-6	o-Xylene	T	ug/l	5	1 U		1	-	830			-
SW8260	100-42-5	Styrene	T	ug/l	5	1 U 1 U		1		210			
SW8260	108-88-3	Toluene Semivolatiles - Total	1	ug/l	5	10		1	U	1600			
SW8270	92-52-4	1,1'-Biphenyl	T	ug/l	5	0.93 U		1		67	1		
SW8270	91-57-6	2-Methylnaphthalene	т	ug/I ug/I	NS	0.93 0		0.093	÷	690			
SW8270	83-32-9	Acenaphthene	Т	ug/l	20 ⁽³⁾	0.52		7.8	J	120			
SW8270	208-96-8	Acenaphthylene	т	ug/l	NS	0.52		2.2		510			+
SW8270	120-12-7	Anthracene	T	ug/I ug/I	50 ⁽³⁾	0.4		0.36		12			
SW8270	56-55-3	Benzo(A)Anthracene	т Т	ug/l	0.002 ⁽³⁾	0.25		0.30		19			+
SW8270 SW8270	50-32-8		' т		0.002 ^(*) ND	0.28		0.2		19			
SW8270 SW8270	205-99-2	Benzo(A)Pyrene Benzo(B)Fluoranthene	т	ug/l ug/l	0.002 ⁽³⁾	0.24		0.2		19		1	+
	205-99-2 191-24-2		т Т					0.2		19			
SW8270 SW8270	207-08-9	Benzo(G,H,I)perylene Benzo(K)Fluoranthene	т Т	ug/l ug/l	NS 0.002 ⁽³⁾	0.14 J 0.089 J		0.2		19			+
SW8270 SW8270	207-08-9 117-81-7		т Т					0.2		470			
SW8270 SW8270	117-81-7 86-74-8	bis-(2-Ethylhexyl)Phthalate Carbazole	т Т	ug/l ug/l	5 NS	6.3 0.79 J		2.5	U	270	-		+
SW8270	218-01-9	Chrysene	T	ug/I ug/I	0.002 ⁽³⁾	0.79 J 0.18 J		2.5					+
SW8270 SW8270	132-64-9	Dibenzofuran	т т	ug/I ug/I		0.18 5		0.2	•	19			+
SW8270 SW8270	206-44-0	Fluoranthene	т	ug/I ug/I	NS 50 ⁽³⁾	0.23		0.73		100		1	+
	206-44-0 86-73-7		т Т			0.85		2.4		83			
SW8270		Fluorene		ug/l	50 ⁽³⁾								
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	1	ug/l	0.002 ⁽³⁾	0.13 J		0.2	U		UJ		
SW8270	91-20-3	Naphthalene	т	ug/l	10 ⁽³⁾	5.5		4.9		18000			1
SW8270	85-01-8	Phenanthrene	Т	ug/l	50	0.77		0.76		47	1		

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					tion Description Location ID Sample ID Matrix Lab Sample ID Sample Date nple Type Code Class GA	MW-04-2020 MW-04-2020 MW-04-2020-09222021 GW R2109811-004/R2109811-005 9/22/2021 REG	MW-05-2020 MW-05-2020 MW-05-2020-09232021 GW R2110043-005/R2110043-006 9/23/2021 REG	MW-06-2020 MW-06-2020 MW-06-2020-09222021 GW R2109811-007/R2109811-008 9/22/2021 REG	MW-06-2020 MW-06-2020 MW-06-2020-09232021 GW R2110043-009 9/23/2021 REG
Analytical Method	129-00-0 Pyrene T ug/l		Unit	Groundwater Quality Standard or Guidance Value ⁽¹⁾					
SW8270	129-00-0		Т	ug/l	50 ⁽³⁾	0.7	0.14 J	19 U	
011/0070	00.50.4	Semivolatiles - Dissolved	-			0.05		50	
SW8270 SW8270	92-52-4 91-57-6	1,1'-Biphenyl	D	ug/l	5 NS	0.95 U 0.22	1 U 0.2 U	58 J 670	
SW8270 SW8270	91-57-6 83-32-9	2-Methylnaphthalene Acenaphthene	D	ug/l	20 ⁽³⁾	0.22	0.2 0	150	
SW8270 SW8270	208-96-8		D	ug/l	20 ^{NN}	0.26	0.92	460	
SW8270 SW8270	120-12-7	Acenaphthylene Anthracene	D	ug/l ug/l	50 ⁽³⁾	0.26 0.089 J	0.4 0.084 J	20 U	
SW8270 SW8270	205-99-2	Benzo(B)Fluoranthene	D	-		0.19 U	0.084 J	20 U	
			5	ug/l	0.002 ⁽³⁾			490 U	
SW8270 SW8270	117-81-7 86-74-8	bis-(2-Ethylhexyl)Phthalate Carbazole	D	ug/l	5 NS	4.8 U 0.95 U	5 U 1 U	490 U 240	
SW8270 SW8270	132-64-9	Dibenzofuran	D	ug/l ug/l	NS	0.95 U	0.2 U	82	
SW8270	84-74-2	Di-n-Butyl Phthalate	D	ug/l	50	4.8 U	0.5 J	490 U	
SW8270	86-73-7	Fluorene	D	ug/l	50 ⁽³⁾	0.19 U	0.07 J	430 0	
SW8270	91-20-3	Naphthalene	D	ug/l	10 ⁽³⁾	6.4	2.1	15000	
SW8270	85-01-8	Phenanthrene	D	ug/l	50	0.19 U	0.2 U	18 J	
		Cyanide - Total	Ē	-a, ·			512 0	105	
SW9012	57-12-5	Cyanide, Total	Т	ug/l	200	382	4530	182	
		Cyanide - Dissolved							
SW9012	57-12-5	Cyanide	D	ug/l	200	529	4310	181	
		TOC							
SW9060	TOC	Total Organic Carbon	Т	ug/l	NS	17100	11100		20600

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water

Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values

(2) Applies to the sum of these substances.

(3) Guidance value (from TOGS 1.1.1)

(4) Applies to the individual isomer.

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					tion Description Location ID Sample ID Matrix Lab Sample ID Sample Date nple Type Code	MW-07-2020 MW-07-2020 MW-07-2020-09242021 GW R2110043-012/R2110043-013 9/24/2021 REG	MW-08- MW-08- MW-08-2020- GW R2110043-003/F 9/23/2 REC	2020 09232021 / R2110043-004 2021	MW-16-2020 MW-16-2020 MW-16-2020-09232021 GW R2110043-001/R2110043-002 9/23/2021 REG	MW-16- MW-16-2020-0 GW R2110043-007/F 9/23/2 FD	2020 99232021FD / 82110043-008 2021
Analytical Method	CAS_RN	Chemical Name MNA Parameters	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾						
Calculated	7727-37-9	Nitrogen	т	ug/l	NS		860				
E351.2	KN	Total Kjeldahl Nitrogen	т	ug/I ug/I	NS		850				
E353.2	N03N02N	Nitrogen, Nitrate-Nitrite	T	ug/l	10000 ⁽²⁾		4				
E353.2	NO2N	Nitrogen, Nitrite	т	ug/l	10000		10				
RSK175	74-82-8	Methane	T	ug/I ug/I	NS		46				
SM2320B	ALK	Alkalinity	T	ug/I ug/I	NS		387000				
SW9056	16887-00-6	Chloride	T	ug/l	250000		22100				
SW9056	14808-79-8	Sulfate	T	ug/l	250000		1260000			1	
		Metals - Totals		· or ·					1	1	
SW6010	7429-90-5	Aluminum	Т	ug/l	NS	1580	24.8	J	407	262	
SW6010	7440-38-2	Arsenic	Т	ug/l	25	10 U	10	U	6 J	7	J
SW6010	7440-39-3	Barium	Т	ug/l	1000	118	53.4		341	362	
SW6010	7440-41-7	Beryllium	Т	ug/l	3 ⁽³⁾	3 U	3	U	3 U	3	U
SW6010	7440-43-9	Cadmium	Т	ug/l	5	5 U	5	U	5 U	5	U
SW6010	7440-70-2	Calcium	Т	ug/l	NS	130000	521000		188000	190000	
SW6010	7440-48-4	Cobalt	Т	ug/l	NS	1.3 J	11.7	J	2.8 J	2.8	J
SW6010	7439-89-6	Iron	Т	ug/l	300	9700	1350		33000	36900	
SW6010	7439-92-1	Lead	Т	ug/l	25	3.9 J	50	U	9.9 J	5.8	J
SW6010	7439-95-4	Magnesium	Т	ug/l	35000 ⁽³⁾	24300	52200		41700	44200	
SW6010	7439-96-5	Manganese	Т	ug/l	300	1490	3780		11800	8980	
SW6010	7440-02-0	Nickel	Т	ug/l	100	40 U	40	U	40 U	40	U
SW6010	7440-09-7	Potassium	Т	ug/l	NS	3580	7680		5700	5710	
SW6010	7440-23-5	Sodium	Т	ug/l	20000	28400	41100		17800	19200	
SW6010	7440-28-0	Thallium	Т	ug/l	0.5(3)	10 U	12.7		10 U	10	U
SW6010	7440-62-2	Vanadium	Т	ug/l	NS	2.5 J	50	U	1.5 J	1.6	J
SW6010	7440-66-6	Zinc	Т	ug/l	2000 ⁽³⁾	16.7 J	20	U	34	24.9	
SW7470	7439-97-6	Mercury	Т	ug/l	0.7	0.2 U	0.2	U	0.101 J	0.089	J
		Metals - Dissolved									
SW6010	7429-90-5	Aluminum	D	ug/l	NS	100 U	100		100 U	100	
SW6010	7440-38-2	Arsenic	D	ug/l	25	10 U	10	U	7.2 J	10	U
SW6010	7440-39-3	Barium	D	ug/l	1000	98.8	51.1		376	365	
SW6010	7440-41-7	Beryllium	D	ug/l	3 ⁽³⁾	3 U		U	3 U	3	U
SW6010	7440-43-9	Cadmium	D	ug/l	5	5 U	5	U	5 U	5	U
SW6010	7440-70-2	Calcium	D	ug/l	NS	129000	526000		193000	192000	
SW6010	7440-48-4	Cobalt	D	ug/l	NS	2.1 J	12.1	J	2.8 J	3.2	J
SW6010	7439-89-6	Iron	D	ug/l	300	5140	1470		37200	36200	
SW6010	7439-92-1	Lead	D	ug/l	25	50 U	50	U	2.2 J	50	U
SW6010	7439-95-4	Magnesium	D	ug/l	35000 ⁽³⁾	23700	51900		45300	44200	
SW6010	7439-96-5	Manganese	D	ug/l	300	1470	3520		9270	9550	
SW6010	7440-02-0	Nickel	D	ug/l	100	40 U	40	U	40 U	40	U
SW6010	7440-09-7	Potassium	D	ug/l	NS	3230	7850		5830	5740	
SW6010	7440-23-5	Sodium	D	ug/l	20000	29800	44100		19700	19200	

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

					ion Description Location ID Sample ID Matrix Lab Sample ID Sample Date nple Type Code	MW-07-2020 MW-07-2020 MW-07-2020-09242021 GW R2110043-012/R2110043-013 9/24/2021 REG	MW-08-2020 MW-08-2020 MW-08-2020-09232021 GW R2110043-003/R2110043-004 9/23/2021 REG	MW-16-2020 MW-16-2020 MW-16-2020-09232021 GW R2110043-001/R2110043-002 9/23/2021 REG	MW-16-2020 MW-16-2020 MW-16-2020-09232021FD GW R2110043-007/R2110043-008 9/23/2021 FD
Analytical Method	CAS_RN	Chemical Name	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾				
SW6010	7440-28-0	Thallium	D	ug/l	0.5 ⁽³⁾	10 U	8.2 J	10 U	10 U
SW6010	7440-62-2	Vanadium	D	ug/l	NS	50 U	50 U	1 J	1.2 J
SW6010	7440-66-6	Zinc	D	ug/l	2000 ⁽³⁾	6.6 J	2.7 J	8.2 J	7.3 J
SW7470	7439-97-6	Mercury	D	ug/l	0.7	0.2 U	0.2 U	0.2 U	0.2 U
		PCBS - Total							
		PCBS - Dissolved							
		Volatiles	_						
SW8260	78-93-3	2-Butanone	T	ug/l	50	5 U	5 U	5 U	5 U
SW8260	67-64-1	Acetone	T	ug/l	50	5 U	5 U	5 U	5 U
SW8260	71-43-2	Benzene	1 T	ug/l	1	1 U	1 U	1 U	1 U
SW8260	75-27-4	Bromodichloromethane	-	ug/l	50 ⁽³⁾	1 U	1 U	1 U	1 U
SW8260	74-83-9	Bromomethane	 	ug/l	5	1.4 J	1 J	1 J	1 J
SW8260 SW8260	67-66-3 74-87-3	Chloroform	1 T	ug/l ug/l	75	1 U 1.5 U	1 U 1 UJ	1 U 1.2 U	1 U 1.3 U
SW8260 SW8260	100-41-4	Chloromethane Ethylbenzene	T	ug/I ug/I	5	1.5 U 1 U	1 U	1.2 U 1 U	1.3 U 1 U
SW8260	98-82-8	Isopropylbenzene	Т	ug/l	5	1 U	1 U	1 U	10
SW8260	XYLENES1314	m&p-Xylenes	T	ug/l	5(4)	2 U	2 U	2 U	2 U
SW8260	1634-04-4	Methyl Tert-Butyl Ether	T	ug/l	10	1 U	0.24 J	1 U	1 U
SW8260	95-47-6	o-Xylene	T	ug/l	5	1 U	1 U	1 U	10
SW8260	100-42-5	Styrene	T	ug/l	5	1 U	1 U	1 U	1 U
SW8260	108-88-3	Toluene	T	ug/l	5	1 U	1 U	1 U	1 U
		Semivolatiles - Total							
SW8270	92-52-4	1,1'-Biphenyl	Т	ug/l	5	1 U	0.93 U	0.98 U	0.93 U
SW8270	91-57-6	2-Methylnaphthalene	Т	ug/l	NS	0.2 U	0.19 U	0.068 J	0.085 J
SW8270	83-32-9	Acenaphthene	Т	ug/l	20 ⁽³⁾	0.2 U	0.16 J	0.76	1.1
SW8270	208-96-8	Acenaphthylene	Т	ug/l	NS	0.2 U	0.079 J	0.4	0.55
SW8270	120-12-7	Anthracene	Т	ug/l	50 ⁽³⁾	0.2 U	0.11 J	0.18 J	0.32
SW8270	56-55-3	Benzo(A)Anthracene	Т	ug/l	0.002 ⁽³⁾	0.2 U	0.19 U	0.15 J	0.2
SW8270	50-32-8	Benzo(A)Pyrene	Т	ug/l	ND	0.2 U	0.19 U	0.12 J	0.17 J
SW8270	205-99-2	Benzo(B)Fluoranthene	Т	ug/l	0.002 ⁽³⁾	0.2 U	0.19 U	0.14 J	0.17 J
SW8270	191-24-2	Benzo(G,H,I)perylene	Т	ug/l	NS	0.2 U	0.19 U	0.2 U	0.19 U
SW8270	207-08-9	Benzo(K)Fluoranthene	Т	ug/l	0.002 ⁽³⁾	0.2 U	0.19 U	0.2 U	0.096 J
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	Т	ug/l	5	5.1 U	4.7 U	4.9 U	4.7 U
SW8270	86-74-8	Carbazole	Т	ug/l	NS	1 U	1.3	0.43 J	0.52 J
SW8270	218-01-9	Chrysene	Т	ug/l	0.002 ⁽³⁾	0.2 U	0.19 U	0.1 J	0.14 J
SW8270	132-64-9	Dibenzofuran	Т	ug/l	NS	0.2 U	0.42	0.24	0.35
SW8270	206-44-0	Fluoranthene	Т	ug/l	50 ⁽³⁾	0.11 J	0.3	0.58	0.84
SW8270	86-73-7	Fluorene	Т	ug/l	50 ⁽³⁾	0.2 U	0.17 J	0.7	1
SW8270	193-39-5	Indeno(1,2,3-Cd)Pyrene	Т	ug/l	0.002 ⁽³⁾	0.2 U	0.19 U	0.2 UJ	0.19 U
SW8270	91-20-3	Naphthalene	т	ug/l	10 ⁽³⁾	0.078 J	0.19 U	1.6	1.9
SW8270	85-01-8	Phenanthrene	Т	ug/l	50	0.2 U	0.19 U	0.99	1.4

TABLE 9 FOCUSED RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY SEPTEMBER 2021

				tion Description Location ID Sample ID Matrix Lab Sample ID Sample Date mple Type Code	MW-07- MW-07-2020 GW R2110043-012/F 9/24/2 REC	2020 09242021 / ?2110043-013 ?021	MW-08- MW-08-2020- GW R2110043-003/F 9/23/2 REC	2020 09232021 22110043-004 021	MW-16 MW-16 MW-16-2020 G\ R2110043-001/ 9/23/ RE	-2020 -09232021 V R2110043-002 2021	MW-16- MW-16- MW-16-2020-0 GW R2110043-007/F 9/23/2 FD	2020 9232021FD 12110043-008 1021	
Analytical Method	CAS_RN	Chemical Name	FRACTION	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾			0.18					
SW8270	129-00-0	Pyrene	Т	ug/l	50 ⁽³⁾	0.2	U	0.18	J	0.39)	0.59	
-		Semivolatiles - Dissolved											
SW8270	92-52-4	1,1'-Biphenyl	D	ug/l	5	0.97		0.98		1.1		0.93	
SW8270	91-57-6	2-Methylnaphthalene	D	ug/l	NS (2)	0.19		0.2	-	0.22	-	0.19	U
SW8270	83-32-9	Acenaphthene	D	ug/l	20 ⁽³⁾	0.19		0.12		0.45		0.77	
SW8270	208-96-8	Acenaphthylene	D	ug/l	NS	0.19	-	0.058	-	0.24		0.39	
SW8270	120-12-7	Anthracene	D	ug/l	50 ⁽³⁾	0.19		0.074		0.22		0.084	
SW8270	205-99-2	Benzo(B)Fluoranthene	D	ug/l	0.002 ⁽³⁾	0.19		0.2	U	0.22	U	0.069	J
SW8270	117-81-7	bis-(2-Ethylhexyl)Phthalate	D	ug/l	5	4.1	-	180		5.6		4.7	
SW8270	86-74-8	Carbazole	D	ug/l	NS	0.97		1.2		1.1	-	0.38	
SW8270	132-64-9	Dibenzofuran	D	ug/l	NS	0.19	-	0.26		0.22	-	0.14	-
SW8270	84-74-2	Di-n-Butyl Phthalate	D	ug/l	50	4.9		4.9		5.6		4.7	U
SW8270	86-73-7	Fluorene	D	ug/l	50 ⁽³⁾	0.19	U	0.18	J	0.11	J	0.57	
SW8270	91-20-3	Naphthalene	D	ug/l	10 ⁽³⁾	0.19	U	0.48		0.91	-	1.2	
SW8270	85-01-8	Phenanthrene	D	ug/l	50	0.19	U	0.2	U	0.22	U	0.23	
		Cyanide - Total											
SW9012	57-12-5	Cyanide, Total	Т	ug/l	200	208		2040		557		494	
		Cyanide - Dissolved											
SW9012	57-12-5	Cyanide	D	ug/l	200	202		1940		489)	457	
L		TOC											
SW9060	TOC	Total Organic Carbon	Т	ug/l	NS			12800					

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water

Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values

(2) Applies to the sum of these substances.

(3) Guidance value (from TOGS 1.1.1)

(4) Applies to the individual isomer.

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 10 PHASE II RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY JANUARY 2023

					Location Description Location ID Sample ID Matrix Lab Sample ID Sample Date Sample Type Code	MW-23-2022 MW-23-2022 MW-23-2022-20230120 GW R2300544-001/ 1/20/2023 REG		MW-2: MW-2: MW-23-2022 G R23005 1/20, F
Analytical Method	CAS_RN	Chemical Name	FRACT	Unit	Class GA Groundwater Quality Standard or Guidance Value ⁽¹⁾			
SM5310B	TOC	TOC Total Organic Carbon	Т	ug/l	NS	5000		5400
OMODIOD	100	Metals - Totals		ug/ 1	NO	0000		0400
SW6010	7429-90-5	Aluminum	т	ug/l	NS	100	U	40
SW6010	7440-39-3	Barium	T	ug/l	1000	341	Ű	339
SW6010	7440-70-2	Calcium	Т	ug/l	NS	151000		149000
SW6010	7440-48-4	Cobalt	Т	ug/l	NS	3	J	3
SW6010	7439-89-6	Iron	Т	ug/l	300	25900	-	25900
SW6010	7439-95-4	Magnesium	Т	ug/l	35000 ⁽²⁾	24200		24000
SW6010	7439-96-5	Manganese	т	ug/l	300	1130		1120
SW6010	7440-09-7	Potassium	T	ug/l	NS	4500		4400
SW6010	7440-23-5	Sodium	Т	ug/l	20000	16300		16300
SW6010	7440-62-2	Vanadium	Т	ug/l	NS	1	J	1
SW6010	7440-66-6	Zinc	Т	ug/l	2000 ⁽²⁾	6	J	4
		Metals - Dissolved		* o /	2000	-	-	
SW6010	7429-90-5	Aluminum	D	ug/l	NS	100	U	100
SW6010	7440-39-3	Barium	D	ug/l	1000	340	-	324
SW6010	7440-70-2	Calcium	D	ug/l	NS	149000		145000
SW6010	7440-48-4	Cobalt	D	ug/l	NS	4	J	2
SW6010	7439-89-6	Iron	D	ug/l	300	25500		24700
SW6010	7439-95-4	Magnesium	D	ug/l	35000 ⁽²⁾	23800		23100
SW6010	7439-96-5	Manganese	D	ug/l	300	1080		1040
SW6010	7440-09-7	Potassium	D	ug/l	NS	4400		4200
SW6010	7440-23-5	Sodium	D	ug/l	20000	16000		16200
SW6010	7440-62-2	Vanadium	D	ug/l	NS	1	J	0.9
SW6010	7440-66-6	Zinc	D	ug/l	2000 ⁽²⁾	3	J	3
		Volatiles		-				
		Semivolatiles - Total						
SW8270	56-55-3	Benzo(A)Anthracene	т	ug/l	0.002 ⁽²⁾	0.093	J	0.19
SW8270	205-99-2	Benzo(B)Fluoranthene	Т	ug/l	0.002 ⁽²⁾	0.086	J	0.19
SW8270	111-44-4	bis-(2-Chloroethyl)Ether	Т	ug/l	1	0.068	J	0.93
SW8270	129-00-0	Pyrene	Т	ug/l	50 ⁽²⁾	0.074	J	0.19
		Semivolatiles - Dissolved		ov ·			-	
	111-44-4	bis-(2-Chloroethyl)Ether	D	ug/l	1	0.93	U	0.057
		Cyanide - Total		ov ·			-	
SW9012	57-12-5	Cyanide	NA	ug/l	200	205		208
		Cyanide - Dissolved		ov ·				
SW9012	57-12-5	Cyanide	D	ug/l	200	201		206

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards a Values and Groundwater Effluent Limitations," June 1998; Errata Sheet for June 1998 Edition. Criteria listed are standards unless otherwise noted.

(2) Guidance value (from TOGS 1.1.1)

Only detected compounds are presented

Shaded: Value exceeds standard or guidance value

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 10 PHASE II RI SITE 110 GROUNDWATER ANALYTICAL SUMMARY JANUARY 2023

					Ld-2022 3-2022 20230120FD W 44-003/ '2023 D
Analytical Method	CAS_RN	Chemical Name	FRACT	Unit	
SM5310B	T00	TOC Total Organia Carbon	Т		
2INID 3 TOR	TOC	Total Organic Carbon		ug/l	
SW6010	7429-90-5	Metals - Totals Aluminum	Т	ug/l	J
SW6010 SW6010	7429-90-5	Barium	Т	ug/I ug/I	L
SW6010	7440-39-3	Calcium	T	ug/l	
SW6010	7440-48-4	Cobalt	T	ug/l	J
SW6010	7439-89-6	Iron	Т	ug/l	
SW6010	7439-95-4	Magnesium	т	ug/l	
SW6010	7439-96-5	Manganese	т	ug/l	
SW6010	7440-09-7	Potassium	Т	ug/l	
SW6010	7440-23-5	Sodium	T	ug/l	
SW6010	7440-62-2	Vanadium	Т	ug/l	J
SW6010	7440-66-6	Zinc	Т	ug/l	J
		Metals - Dissolved			
SW6010	7429-90-5	Aluminum	D	ug/l	U
SW6010	7440-39-3	Barium	D	ug/l	
SW6010	7440-70-2	Calcium	D	ug/l	
SW6010	7440-48-4	Cobalt	D	ug/l	J
SW6010	7439-89-6	Iron	D	ug/l	
SW6010	7439-95-4	Magnesium	D	ug/l	
SW6010	7439-96-5	Manganese	D	ug/l	
SW6010	7440-09-7	Potassium	D	ug/l	
SW6010	7440-23-5	Sodium	D	ug/l	
SW6010	7440-62-2	Vanadium	D	ug/l	J
SW6010	7440-66-6	Zinc	D	ug/l	J
		Volatiles			
0.1/0.0 = 0		Semivolatiles - Total			
SW8270	56-55-3	Benzo(A)Anthracene	T	ug/l	U
SW8270	205-99-2	Benzo(B)Fluoranthene	Т	ug/l	U
SW8270	111-44-4	bis-(2-Chloroethyl)Ether	Т	ug/l	U
SW8270	129-00-0	Pyrene	Т	ug/l	U
		Semivolatiles - Dissolved			
SW8270	111-44-4	bis-(2-Chloroethyl)Ether	D	ug/l	J
		Cyanide - Total		. 0	
SW9012	57-12-5	Cyanide	NA	ug/l	
SW9012	57-12-5	Cyanide - Dissolved Cyanide	D	ug/l	

(1) Unless otherwise noted, groundwater criteria obtained from the NYSDEC document titled, "Division of Water Technical andnd Guidance (2) Guidance value (from TOGS 1.1.1)

Only detected compounds are presented

Value exceeds standard or guidance value Shaded:

U: Compound not detected at provided detection limit

J: Estimated at given value

NS: No standard established

TABLE 11 FOCUSED RI SITE 110 MNA SAMPLE RESULTS

	_		Field Stari Enc Lab	ocation ID Sample ID t Depth (ft) d Depth (ft) Sampled SDG Sample ID Medium ample Type Matrix	MW-04-2020 MW-04-2020-09222021 5 10 9/22/2021 R2109811 R2109811-004 Water REG GW	MW-05-2020 MW-05-2020-0923202: 4 9 9/23/2021 R2110043 R2110043-005 Water REG GW	MW-06-2020 4 9 9/22/2021 R2109811 R2109811-007 Water REG GW	MW-06-2020 ¹ MW-06-2020-09232021 4 9 9/23/2021 R2110043 R2110043-009 Water REG GW	MW-08-2020 MW-08-2020-09232021 1 6 9/23/2021 R2110043 R2110043-003 Water REG GW	
Method	Parameter Code	Parameter Name	Units	Fraction						
Calculated	NO3N	Nitrogen, Nitrate (As N)	mg/L	Т	0.05 U	0.05 U	0.05 U	NA	0.05 U	
Calculated	7727-37-9	Nitrogen	mg/L	Т	3.96	10.7	3.76	NA	0.86	
E351.2	KN	Total Kjeldahl Nitrogen	mg/L	Т	3.93 J	10.7	3.74	NA	0.85	
E353.2	N03N02N	Nitrogen, Nitrate-Nitrite	mg/L	T	0.03 J	0.052	0.05 U	NA	0.004 J	
E353.2	NO2N	Nitrogen, Nitrite	mg/L	Т	0.01 U	0.441	0.01 U	NA	0.01 U	
RSK175	74-82-8	Methane	mg/L	Т	0.76	0.005	5.6	NA	0.046	
SM2320B	ALK	Alkalinity	mg/L	Т	814	117	561	NA	387	
SW9034	18496-25-8	Sulfide	mg/L	Т	1 U	4 U	1 U	NA	1 U	
SW9056	16887-00-6	Chloride	mg/L	Т	18.8	31.6	25.8	NA	22.1	
SW9056	14808-79-8	Sulfate	mg/L	Т	108	2650	61.6	NA	1260	
SW9060	TOC	Total Organic Carbon	mg/L	Т	17.1	11.1	NA	20.6	12.8	

TABLE 12 TAR WASTE CHARACTERIZATION RESULTS

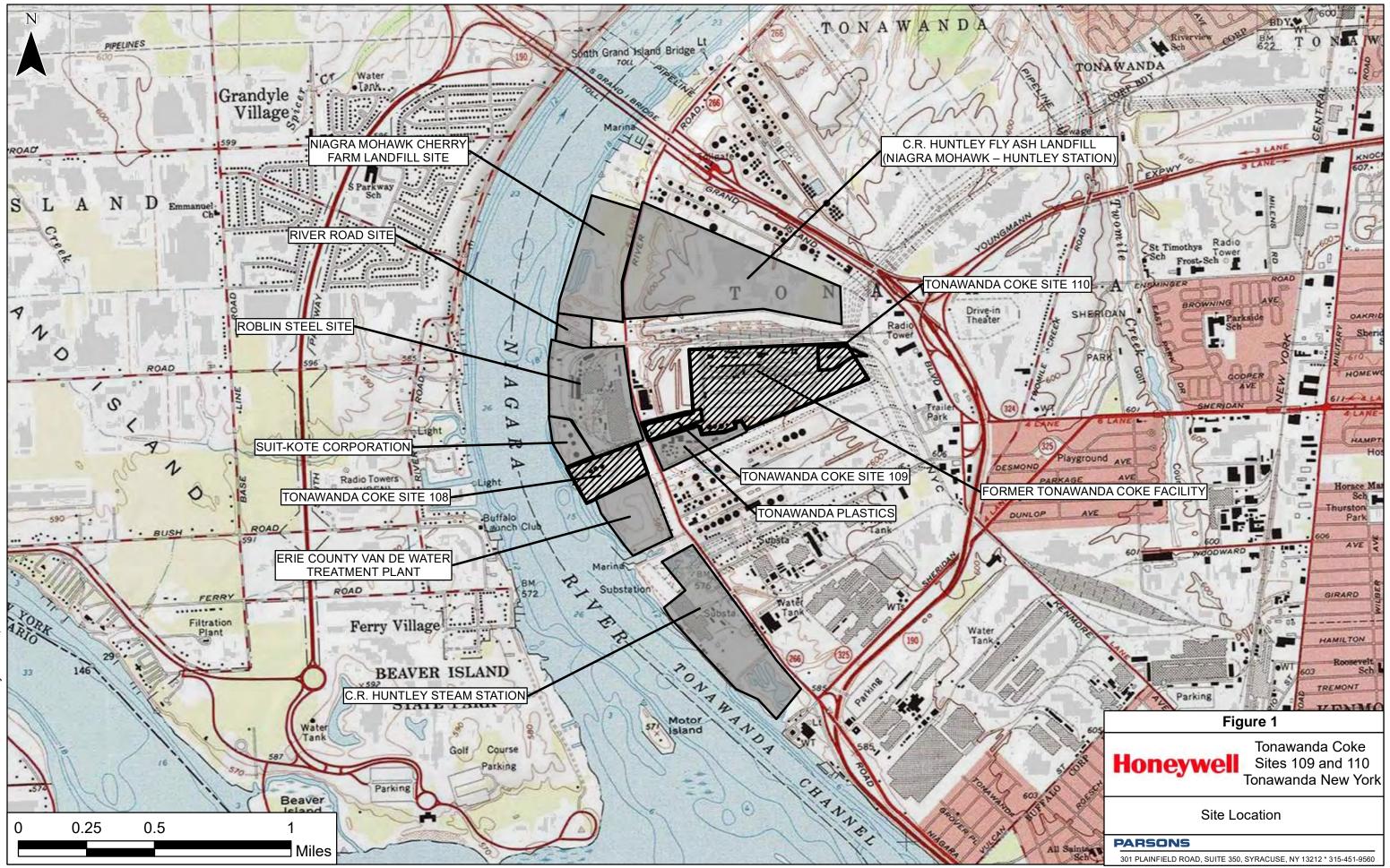
Location ID Field Sample ID Start Depth (ft) End Depth (ft) Sampled Medium Sample Type							TP-07-2020-2.5-3.5-10062020		TP-08-2020 TP-08-2020-1.5-2.0-10012020 1.5 2 10/1/2020 Solid REG S-WASTE		TP-10-2020A TP-10-2020A-13.5-15.5-10052020 13.5 15.5 10/5/2020 Solid REG S-WASTE		TP-34-2021 TP-34-2021-1.5-7.5-06232021 1.5 7.5 6/23/2021 Solid REG S-WASTE	
					EPA Hazardous Waste Regulatory Level									
Method	Parameter Code	Parameter Name	Units	Fraction										
		Metals and Mercury												
SW6010	7440-38-2	Arsenic	mg/kg	Т	NA	6.9		NA		NA		10.6		
SW6010	7440-39-3	Barium	mg/kg	Т	NA	21.5		NA		NA		20.4		
SW6010	7440-43-9	Cadmium	mg/kg	Т	NA	1.3		NA		NA		2.4		
SW6010	7440-47-3	Chromium	mg/kg	Т	NA	2.4		NA		NA		9.3		
SW6010	7439-92-1	Lead	mg/kg	Т	NA	63.6		NA		NA		60.1		
SW6010	7782-49-2	Selenium	mg/kg	Т	NA	2.4		NA		NA		3.9		
SW7471	7439-97-6	Mercury	mg/kg	Т	NA	0.046		NA		NA		0.127		
		TCLP Metals and Mercury												
SW6010	7439-92-1	Lead	mg/L	TCLP	5	NA		0.033	U	0.11		NA		
·'		Pestcides												
·'		TCLP Pestcides												
·'		PCBs												
, 		Herbicides												
ļ		TLCP Herbicides												
·'		Volatiles												
SW8260	71-43-2	Benzene	ug/kg	NA	NA	140000		99800		186000		34000		
SW8260	XYLENES1314	m&p-Xylenes	ug/kg	NA	NA	NA		41900		269000		NA		
SW8260	95-47-6	o-Xylene	ug/kg	NA	NA	NA		10300		76200		NA		
SW8260	100-42-5	Styrene	ug/kg	NA	NA	NA		5000	U	103000		NA		
SW8260	108-88-3	Toluene	ug/kg	NA	NA	NA		66300		227000		NA		
·'		Semivolatiles												
SW8270	95-48-7	2-Methylphenol	ug/kg	NA	NA	320000	J	NA		NA		1100000	J	
SW8270	34METPH	3&4-Methylphenol	ug/kg	NA	NA	800000	J	NA		NA		2700000		
·		TCLP Semivolatiles												
SW8270	95-48-7	2-Methylphenol	ug/l	TCLP	200000	NA		8540		26300		NA		
SW8270	1319-77-3MP	3,4-Methylphenol	ug/l	TCLP	200000	NA		20800		60400		NA		
SW8270	110-86-1	Pyridine	ug/l	TCLP	5000	NA		678		1360		NA		
		Waste Characteristics		L										
846-7.3.4.2		Reactive Sulfide	mg/kg	NA	Generates toxic gasses, etc.	3.1	U	6.2	U	3.1	UJ	3.2	J	
E160.3	SOLID	Solids	%	NA	NA	NA		84.6		80.1		NA		
SM2540G	MOISTURE-%	Percent Moisture	%	NA	NA	NA		NA		19.2		5.6		
SM2540G	SOLIDS	Total Solids	%	NA	NA	NA		NA		80.8		94.4		
SW1010	FLASHPT	Flash Point	deg F	NA	<140	NA		>200		NA		NA		
SW1010	IGNITB	Ignitability	deg F	NA	<140	>200		NA		NA		>200		
SW1030	IGNITB	Ignitability	deg F	NA	<140	NA		NA		>200		NA		
SW9045	pH FLIQUIDS	pH Free Liquids	ph Units none	NA NA	Corrosive	7.12 Absent		7.55 Absent		6.96 Absent		7.72 Absent		
SW9095					Present									

Only detected compounds are presented.

Regulatory levels from 40 CFR § 261.24 Waste characteristics from 40 CFR § 261.21, 261.22. and 261.23.

NA: Not applicable

J: Estimated at given value


U: Compound not detected at provided detection limit

T: Total

TCLP: Toxicity Characteristic Leaching Procedure

FIGURES

Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\Tonawanda Site 109 and 110 Fig 1 EBS.mxd

Evan

Riverview Innovation & Technology Campus Brownfield Site

Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site 109 and 110 Fig 2.mxd

Tonawanda Coke Site OU-1 (Site 110)

Figure 2

Tonawanda Coke Sites 109 and 110 Tonawanda New York

Locations of Sites 108, 109, and 110

PARSONS

Honeywell

301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

Riverview Innovation & Technology Campus Brownfield Site

Tonawanda Coke Site OU-2 (Site 109)

Tonawanda Coke Site OU-3 (Site 108) Nearest Residences to Site 109

0

325

650

Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 3.mxd

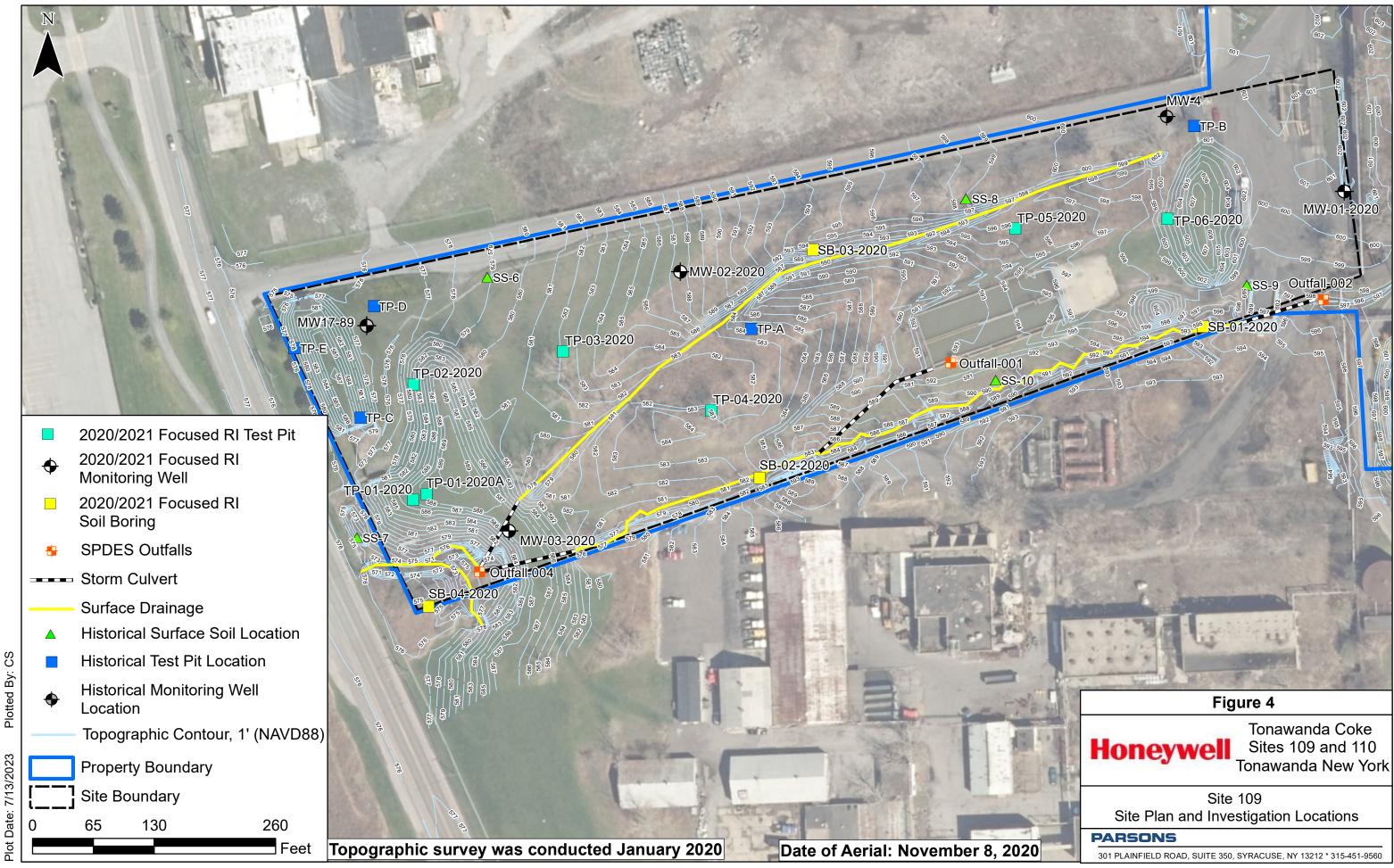
1,300

Feet

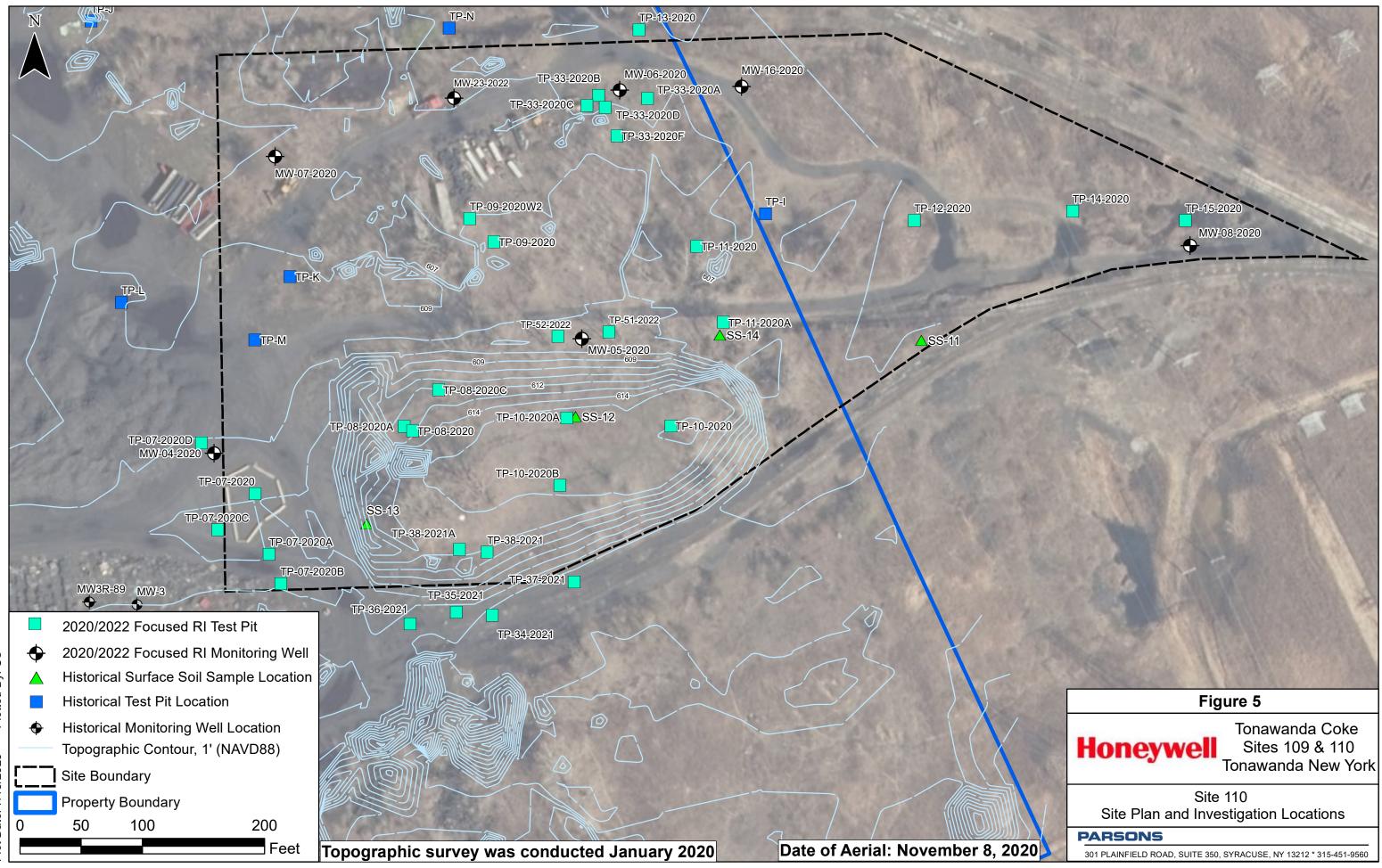
Date of Aerial: November 8, 2020

Nearest Residences to Site 110

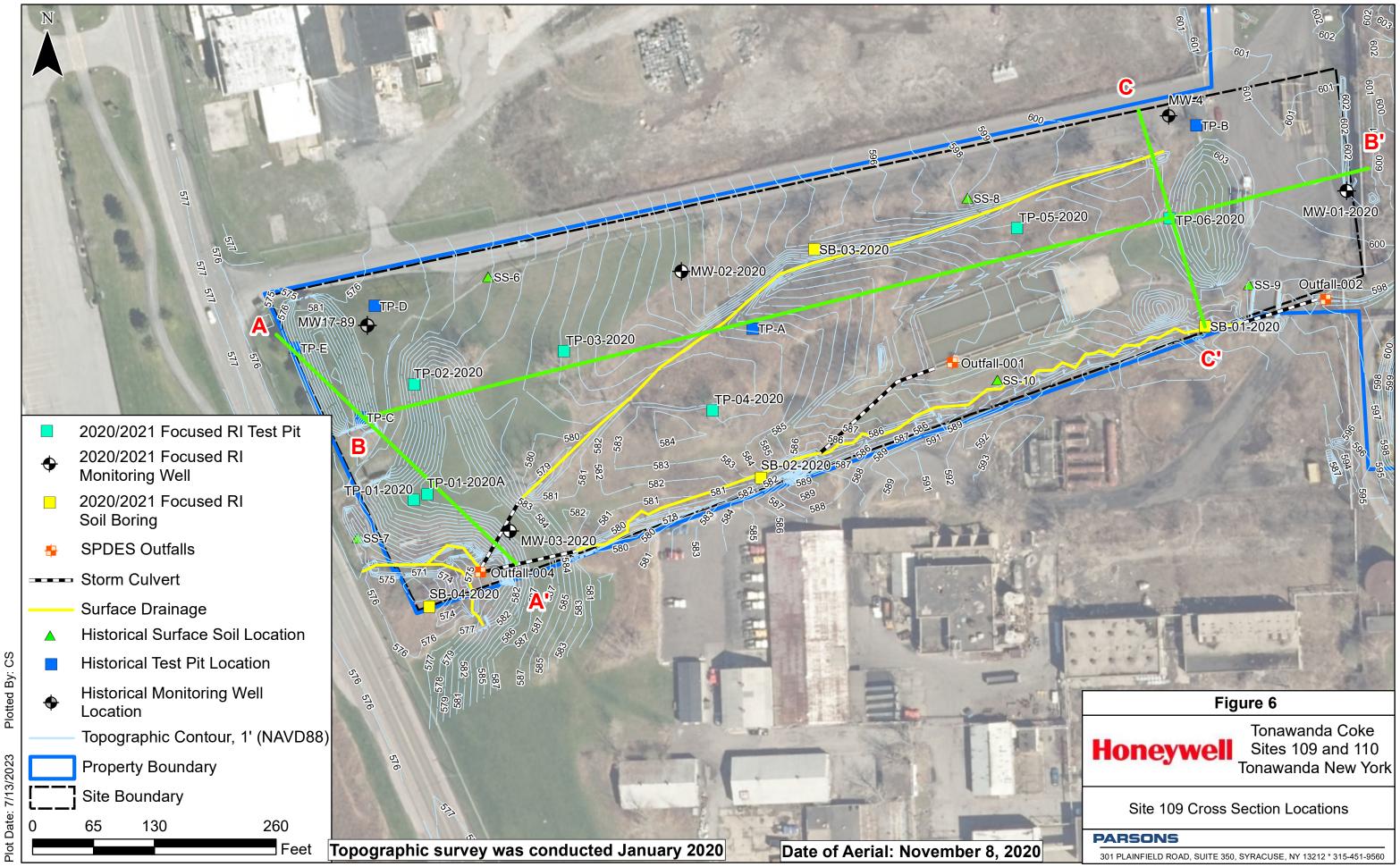
Figure 3

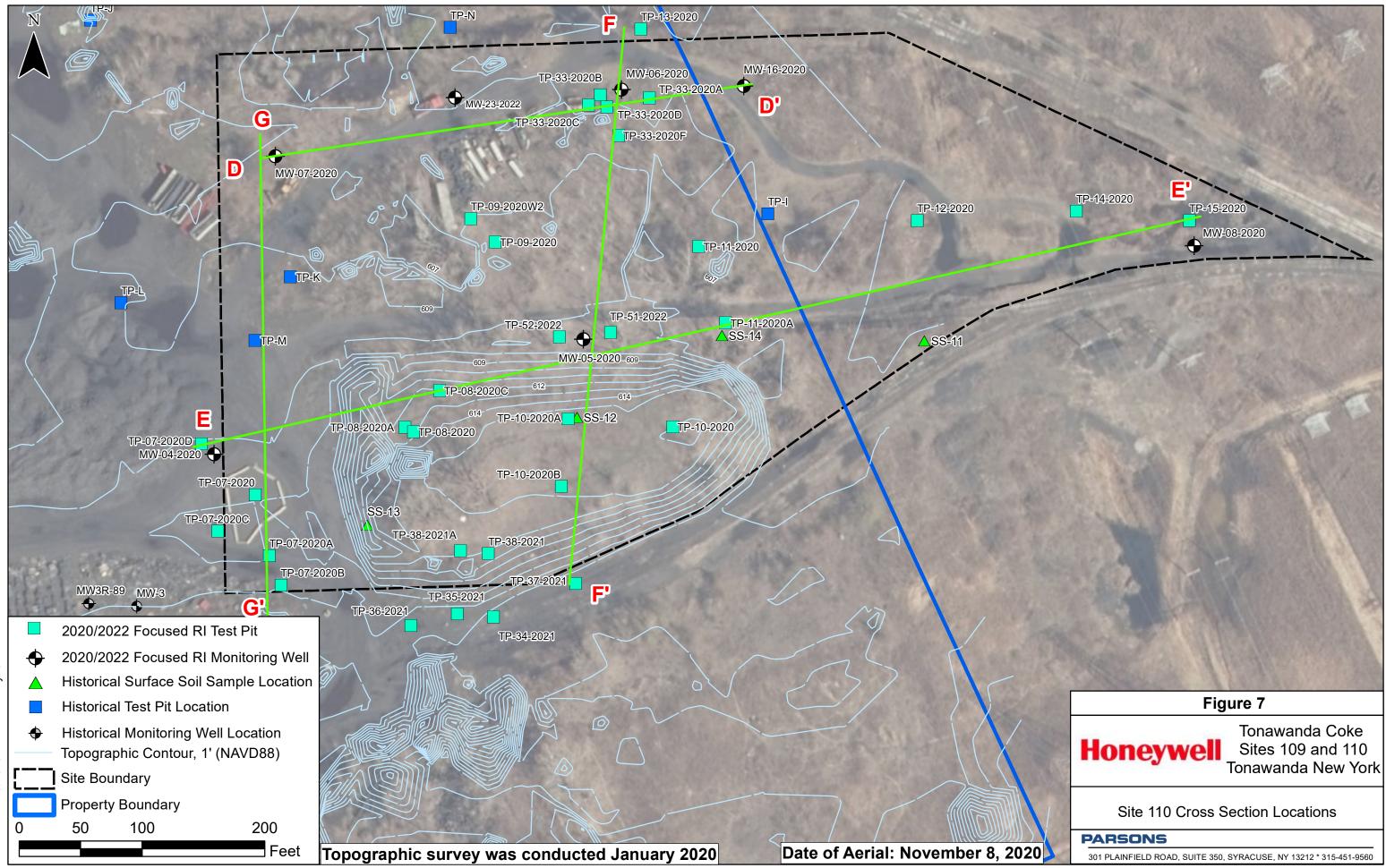

Tonawanda Coke Sites 109 and 110 Tonawanda New York

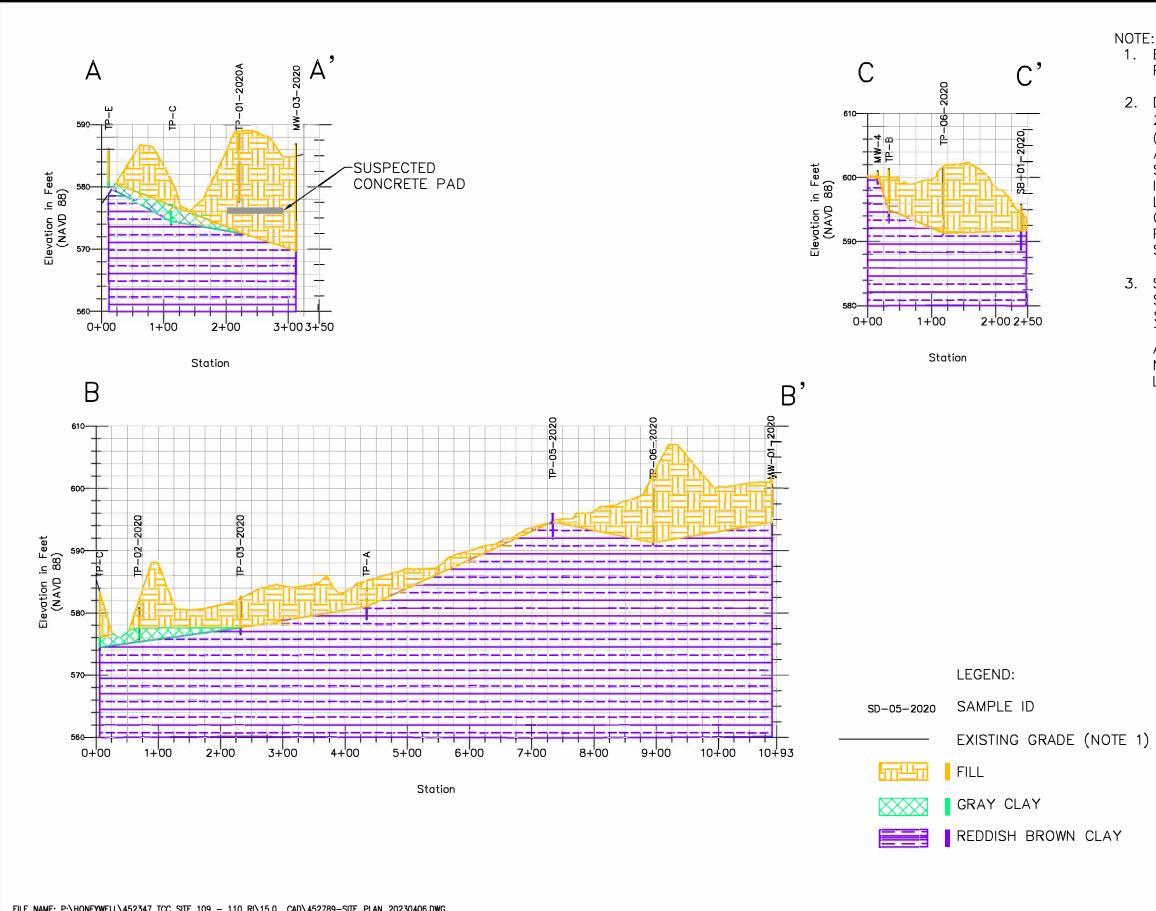
Nearest Residential Areas


PARSONS

Honeywell

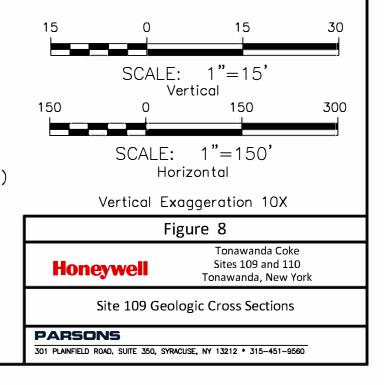

301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

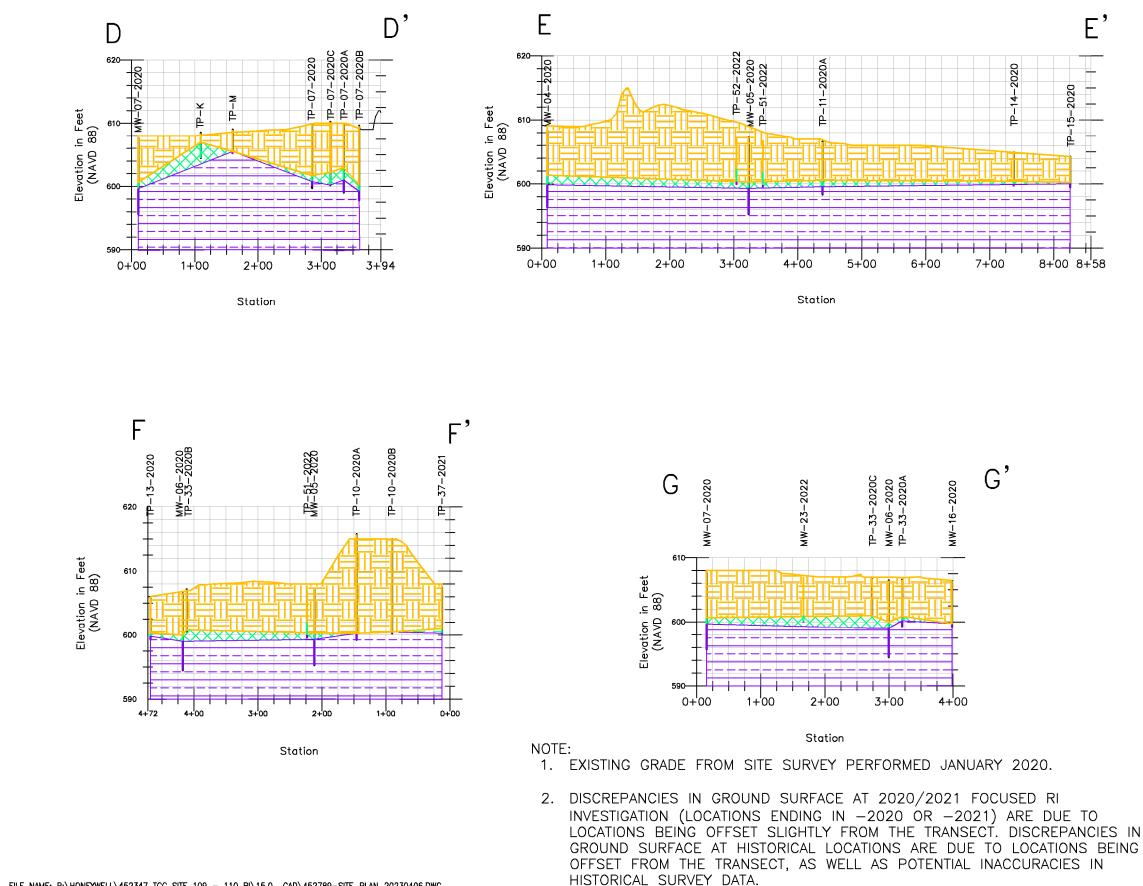

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev02 - RI\Tonawanda RI Report Fig 4 109 Site Plan_Rev2.mxd


Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev02 - RI\Tonawanda RI Report Fig 5 110 Site Plan_Rev2.mxd

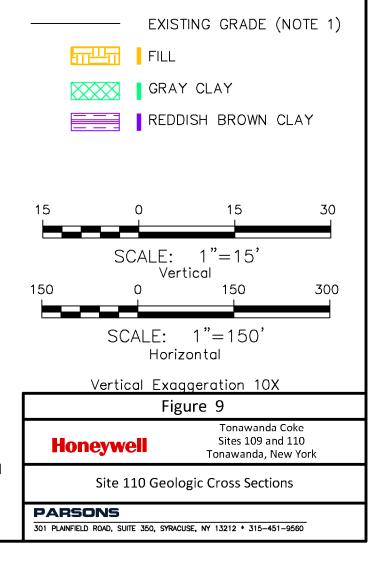
Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev02 - RI\Tonawanda RI Report Fig 6 109 Cross Sections_Rev2.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev02 - RI\Tonawanda RI Report Fig 7 110 Cross Sections_Rev2.mxd

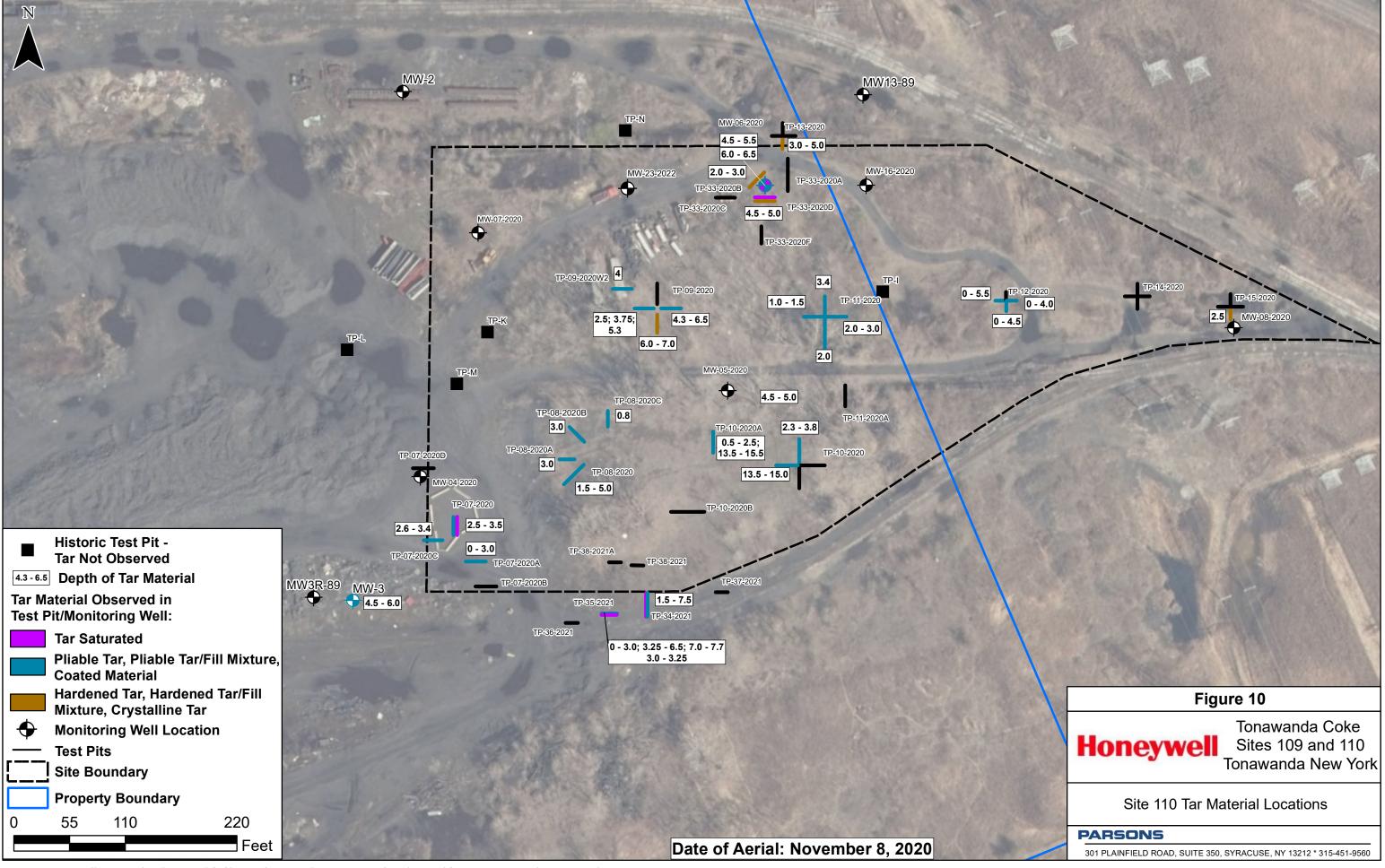


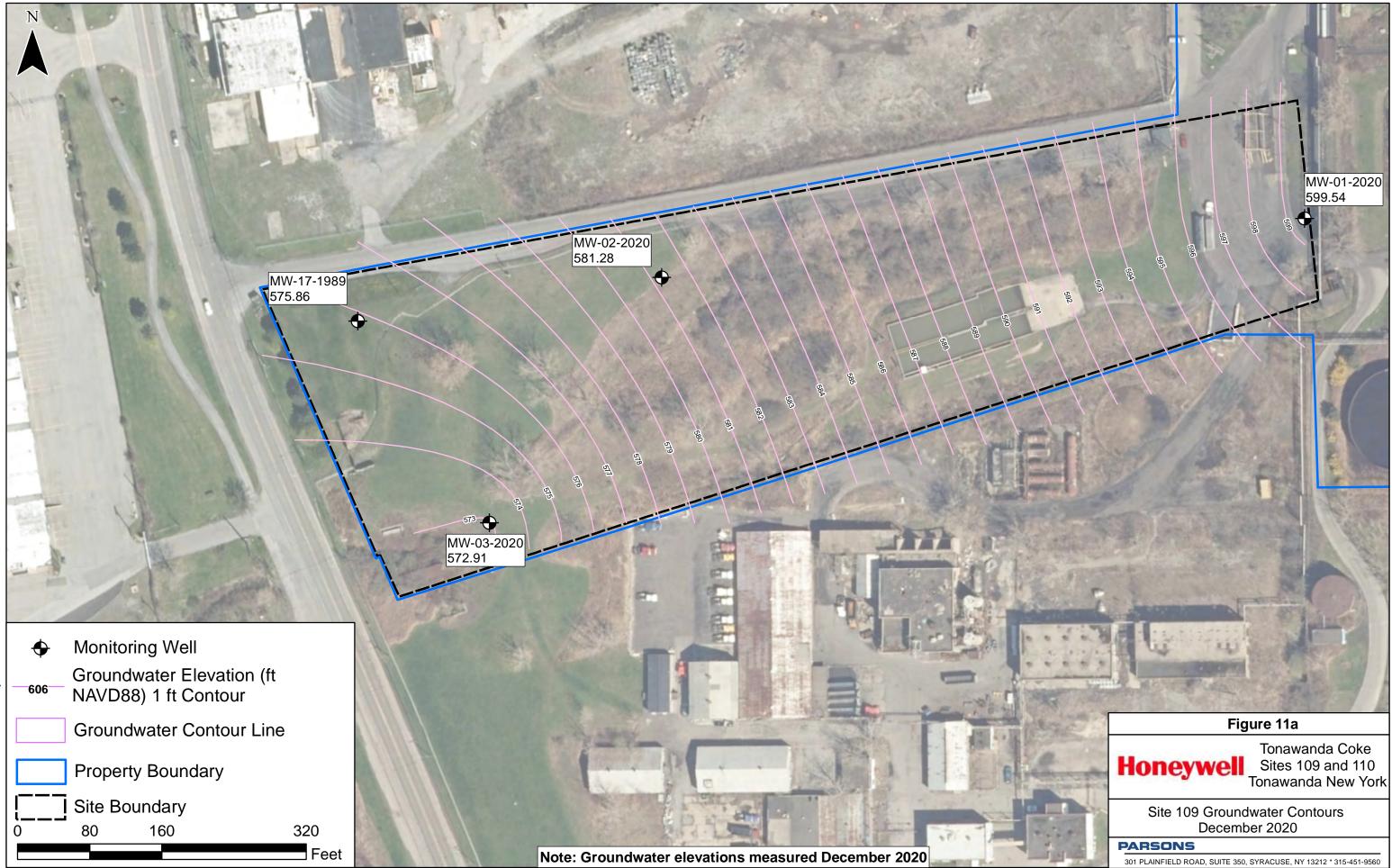

FILE NAME: P:\HONEYWELL\452347 TCC SITE 109 - 110 RI\15.0 CAD\452789-SITE_PLAN_20230406.DWG PLOT DATE: 7/13/2023 9:46 AM PLOTTED BY: RUSSO, JILL [US-US]

1. EXISTING GRADE FROM SITE SURVEY PERFORMED JANUARY 2020.

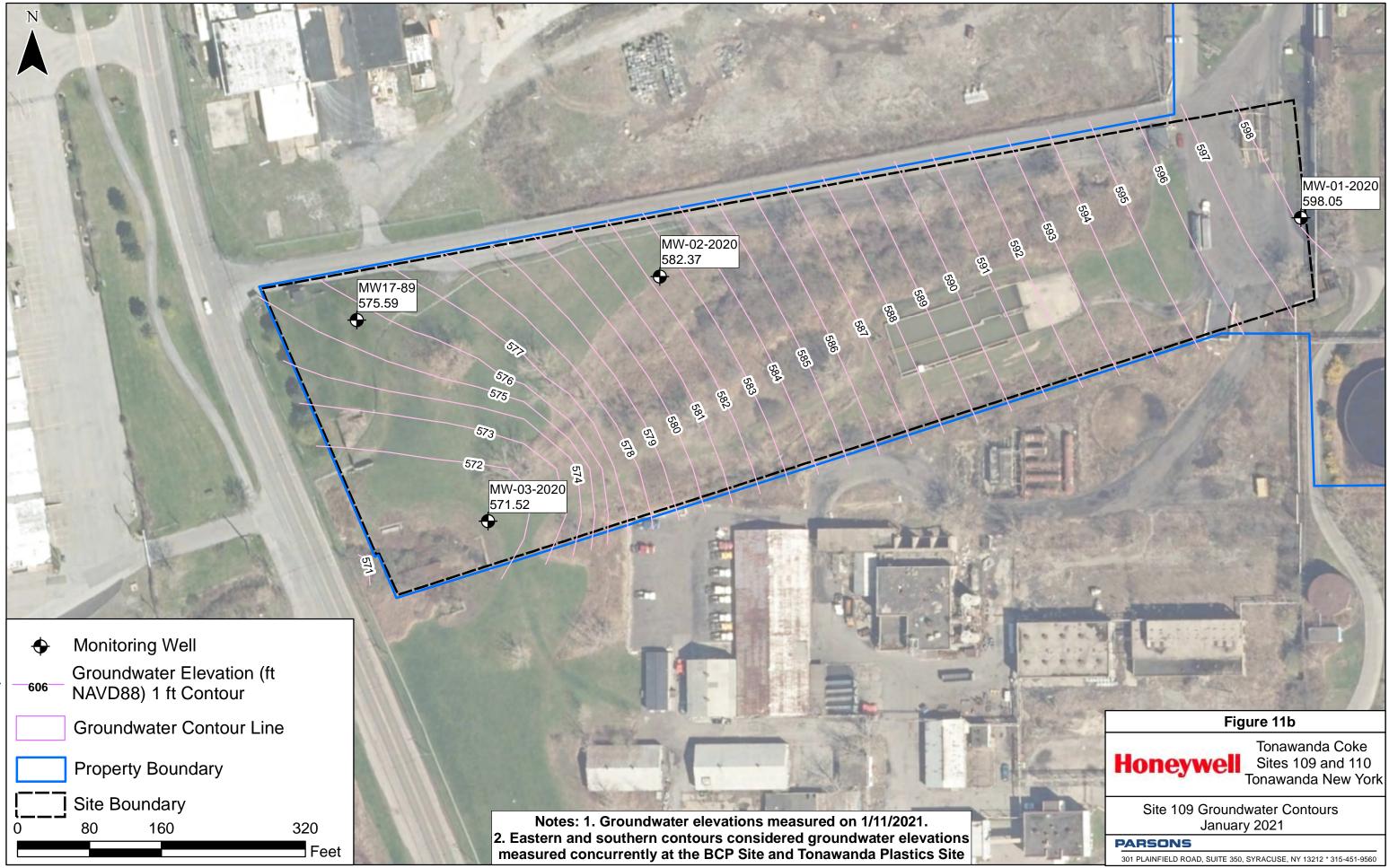

2. DISCREPANCIES IN GROUND SURFACE AT 2020/2021 FOCUSED RI INVESTIGATION (LOCATIONS ENDING IN -2020 OR -2021) ARE DUE TO LOCATIONS BEING OFFSET SLIGHTLY FROM THE TRANSECT. DISCREPANCIES IN GROUND SURFACE AT HISTORICAL LOCATIONS ARE DUE TO LOCATIONS BEING OFFSET FROM THE TRANSECT, AS WELL AS POTENTIAL INACCURACIES IN HISTORICAL SURVEY DATA.

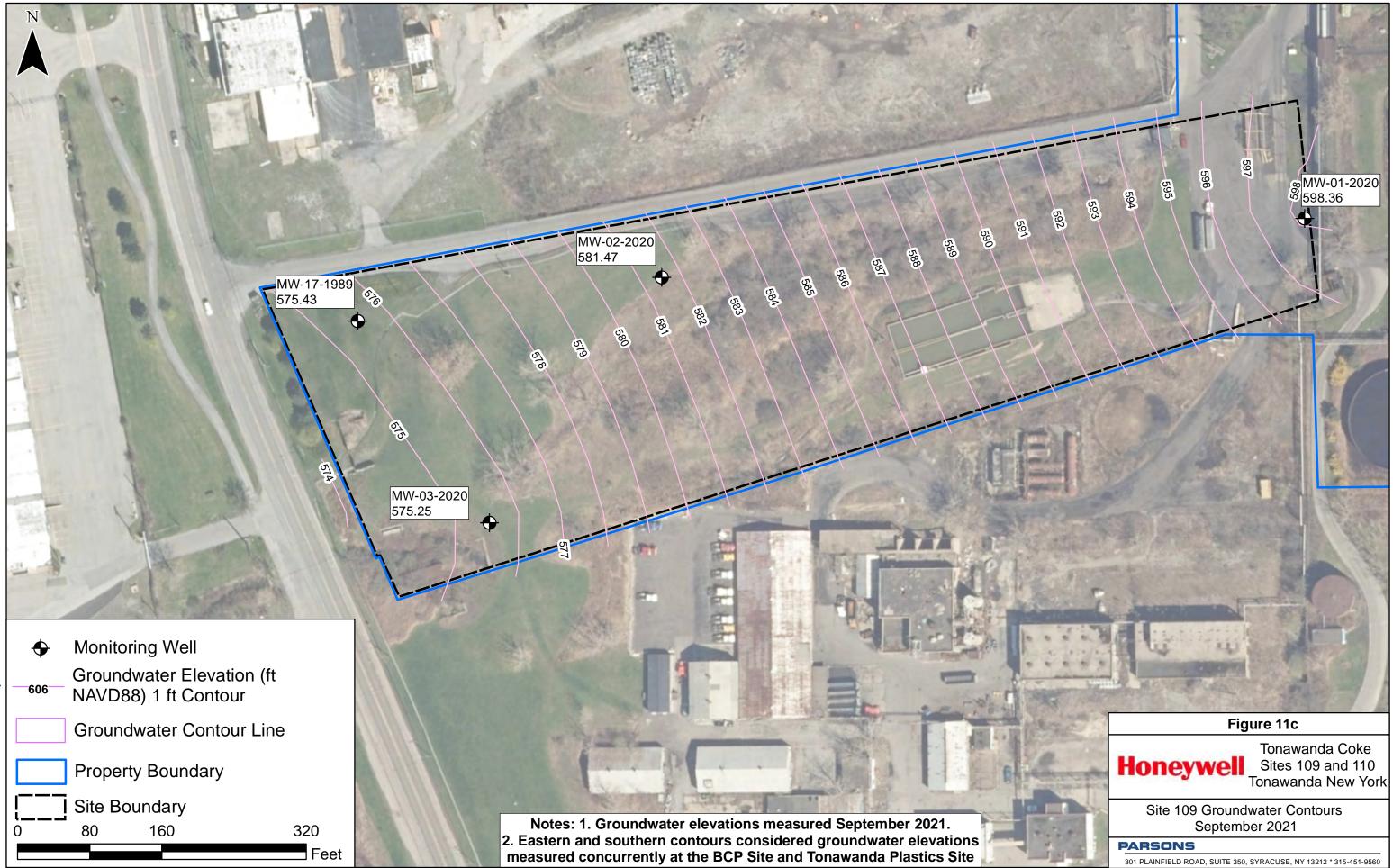
3. SUSPECTED CONCRETE SLAB IN A-A'. TOP OF SUSPECTED CONCRETE SLAB CONCRETE IS SHOWN AT DEPTH OF REFUSAL IN TP-01-2020. SLAB DIMENSIONS ARE APPROXIMATED FROM (1967 DRAWING) AND DO NOT NECESSARILY REPRESENT ACTUAL SLAB LOCATION AND DIMENSIONS.


FILE NAME: P:\HONEYWELL\452347 TCC SITE 109 - 110 RI\15.0 CAD\452789-SITE_PLAN_20230406.DWG PLOT DATE: 4/6/2023 4:51 PM PLOTTED BY: RUSSO, JILL [US-US]

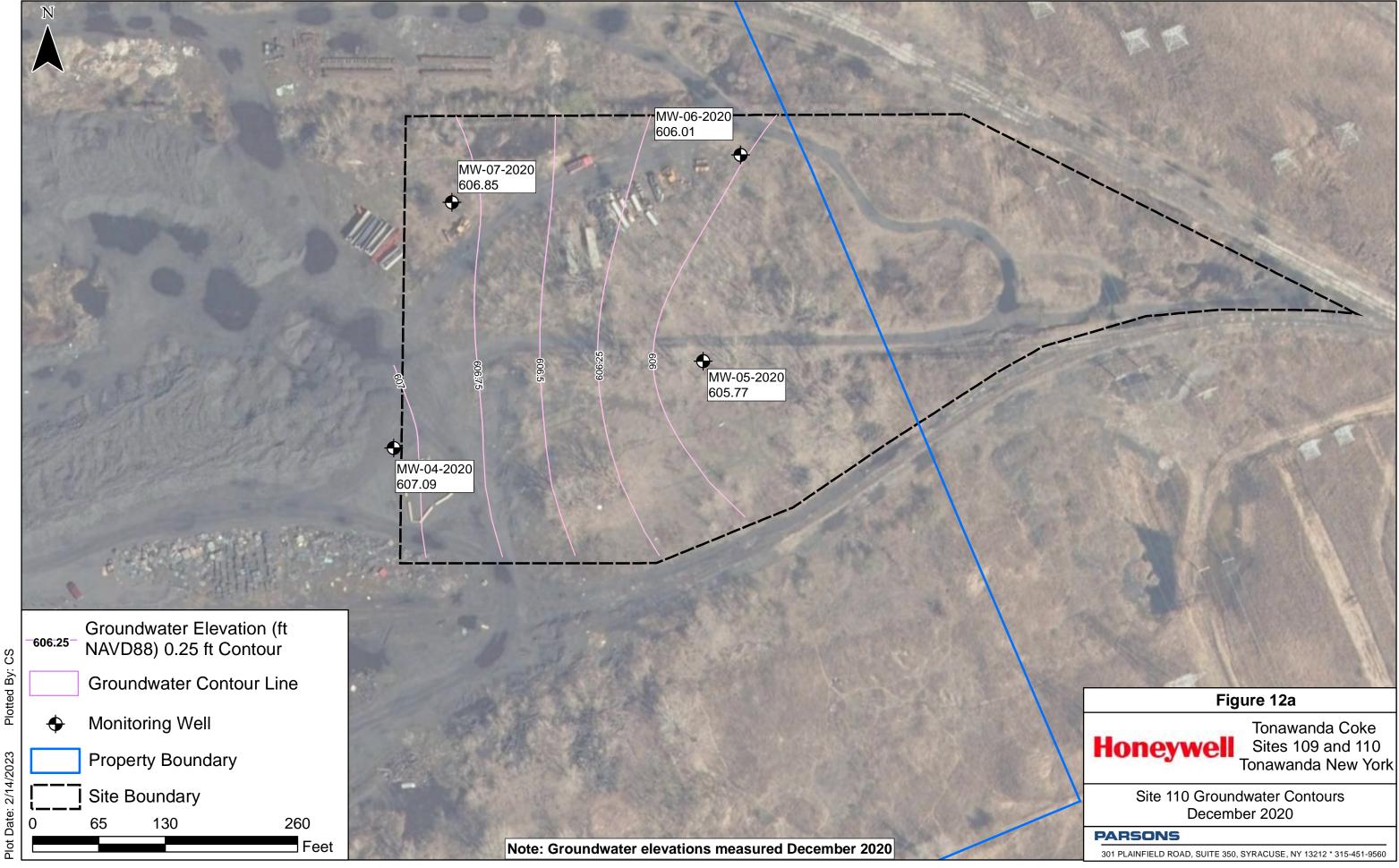

LEGEND:

SD-05-2020

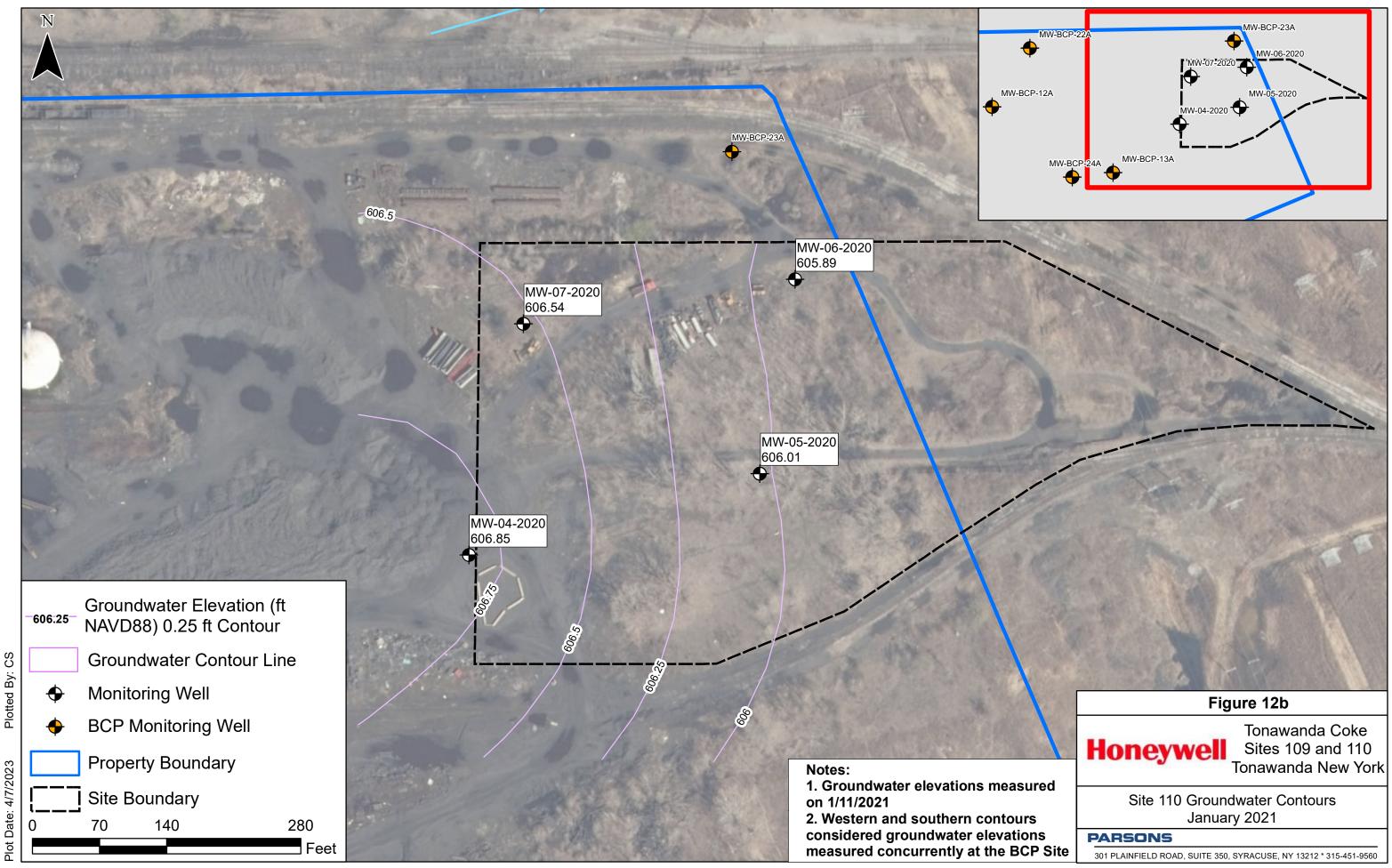

SAMPLE ID



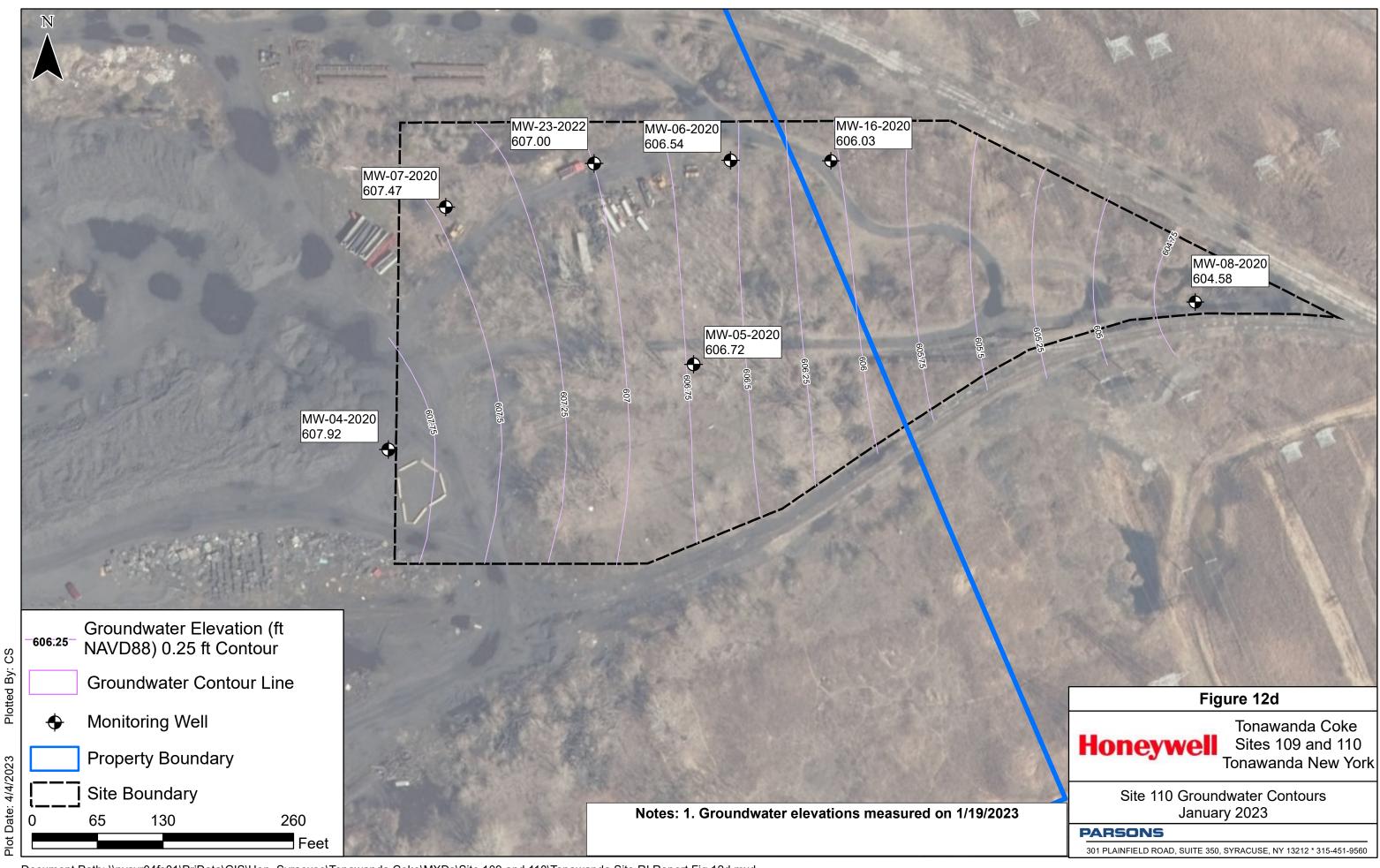
Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev02 - RI\Tonawanda RI Report Fig 10 110 Tar_Rev2.mxd



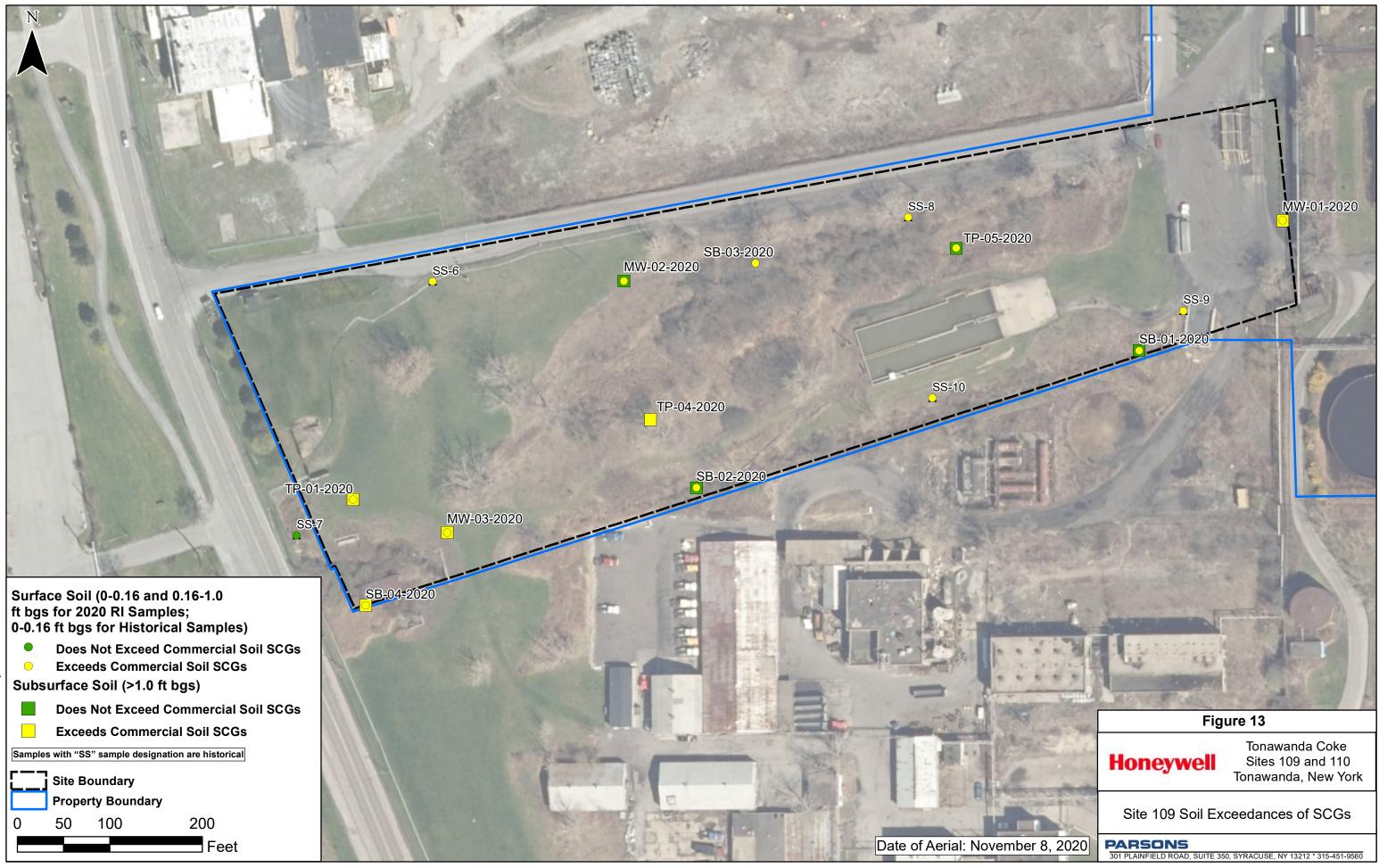
Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 11a.mxd



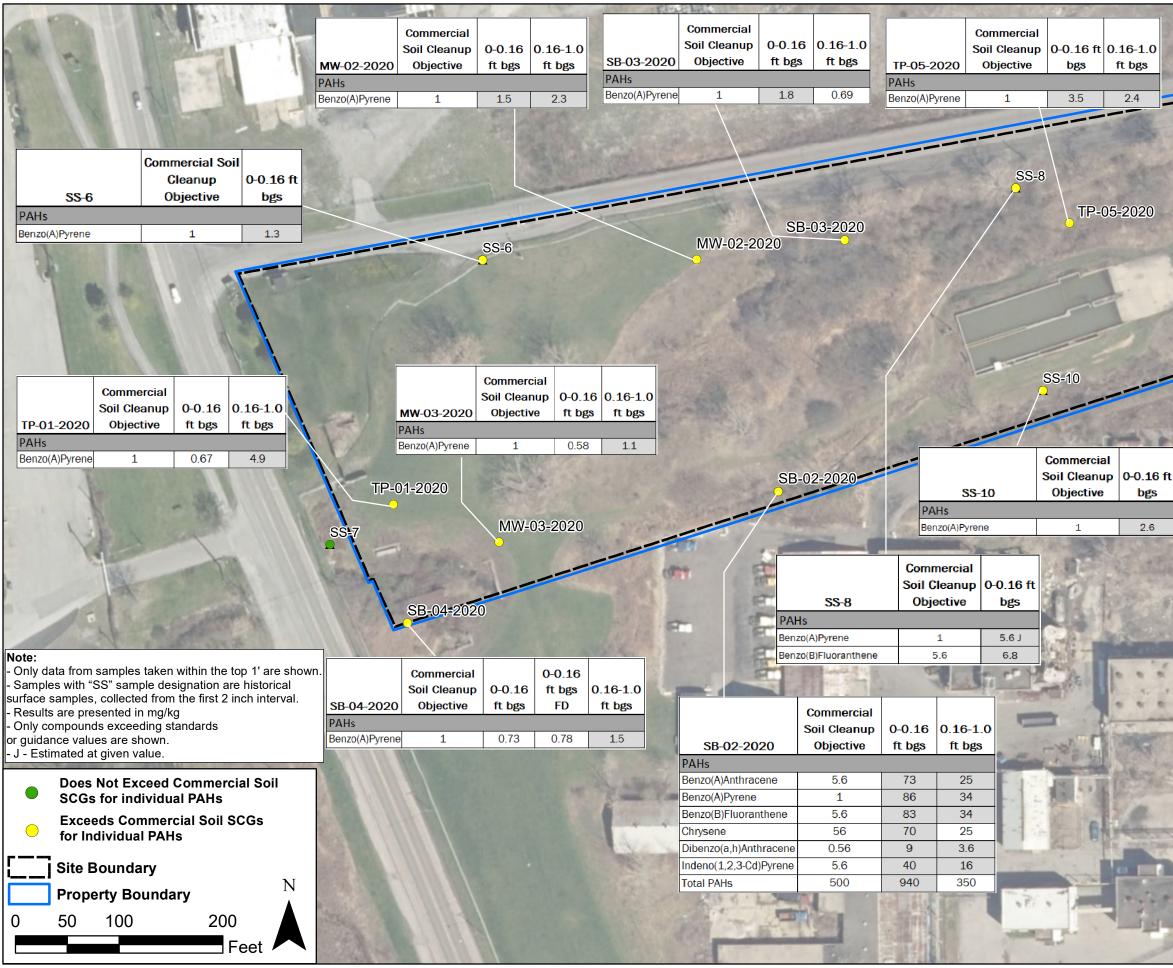

Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 11c.mxd


Document Path: Q:\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 12a.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 12b.mxd



Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 12c.mxd



Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Tonawanda Site RI Report Fig 12d.mxd

Plotted By: CS

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 13 Soil SCGs_Rev3.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 14 Soil PAH_Rev3.mxd

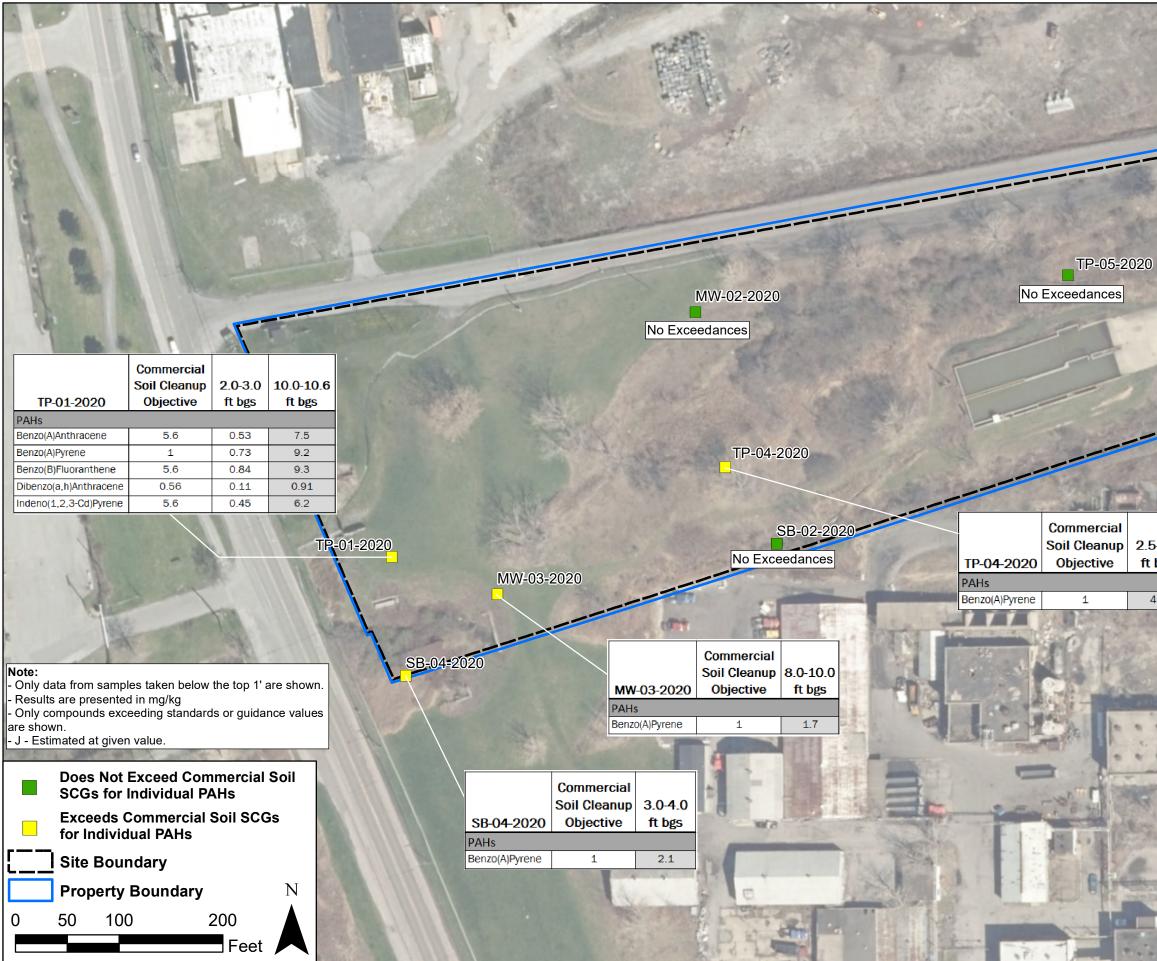
	MW-01-2020	Commercial Soil Cleanup Objective	0-0.16 ft bgs	0.16-1.0 ft bgs
heli	PAHs			
	Benzo(A)Anthracene	5.6	11	6.2
	Benzo(A)Pyrene	1	18	10
2 miles	Benzo(B)Fluoranthene	5.6	20	12
1 50	Dibenzo(a,h)Anthracene	0.56	2	1.4
all the	Indeno(1,2,3-Cd)Pyrene	5.6	15	8.9
			MW-0	1-2020

SS-9	Commercial Soil Cleanup Objective	0-0.16 ft bgs
PAHs		
Benzo(A)Anthracene	5.6	49
Benzo(A)Pyrene	1	53
Benzo(B)Fluoranthene	5.6	71
Dibenz(A,H)Anthracene	0.56	2.9
Indeno(1,2,3-C,D)Pyrene	5.6	23
Total PAHs	500	518.9

	SB-01-2020	Commercial Soil Cleanup Objective	0-0.16 ft bgs	0.16-1.0 ft bgs
	PAHs		-	
-	Benzo(A)Anthracene	5.6	96	26
1	Benzo(A)Pyrene	1	20 J	43
	Benzo(B)Fluoranthene	5.6	21 J	43
1	Dibenzo(a,h)Anthracene	0.56	3.6 J	7.1
	Indeno(1,2,3-Cd)Pyrene	5.6	17 J	31
	AND DATE AND ADDRESS OF THE OWNER	A CONTRACT OF CAR	State State	ALCONOM BY

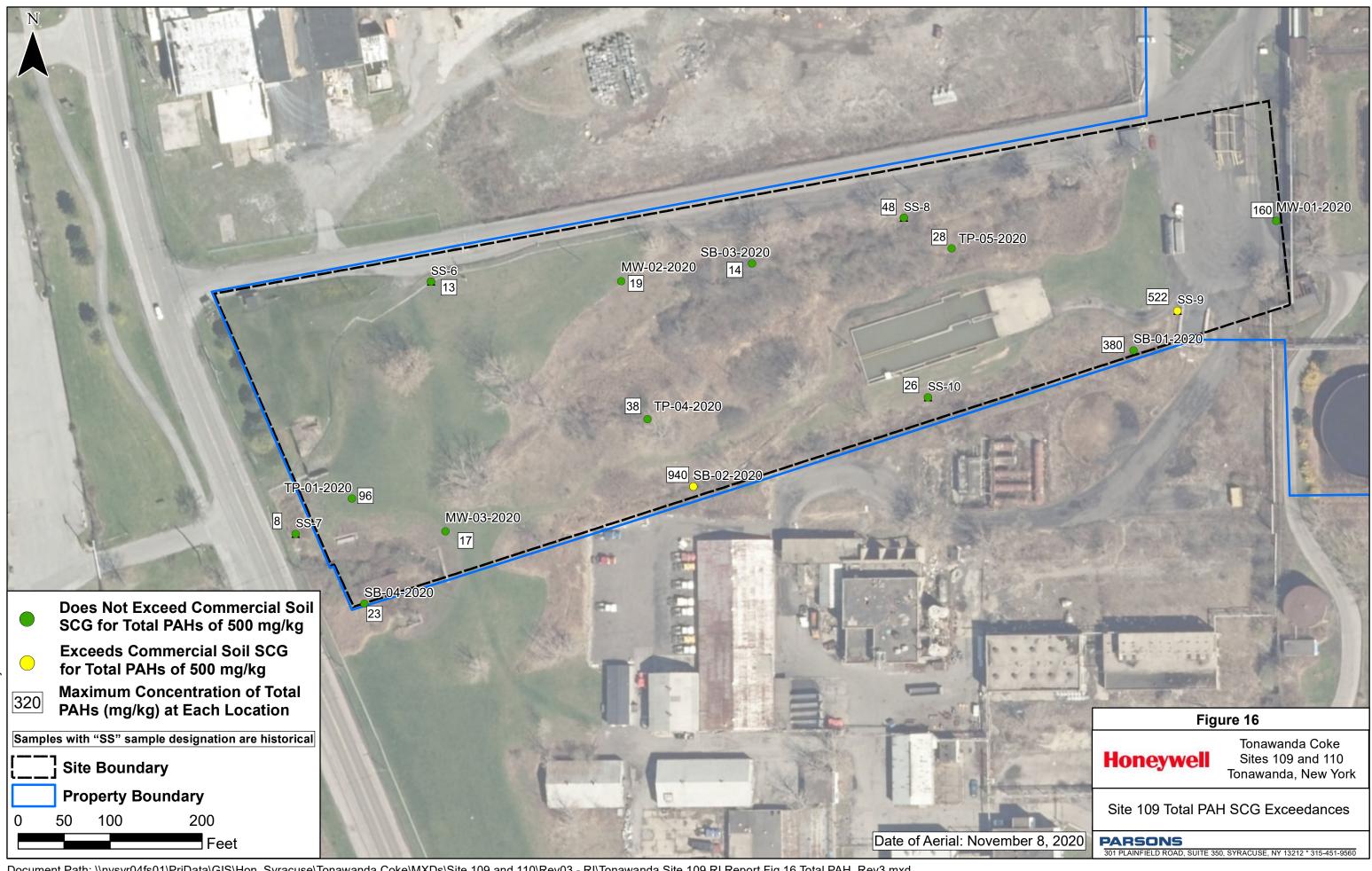
Date of Aerial: November 8, 2020

Figure 14

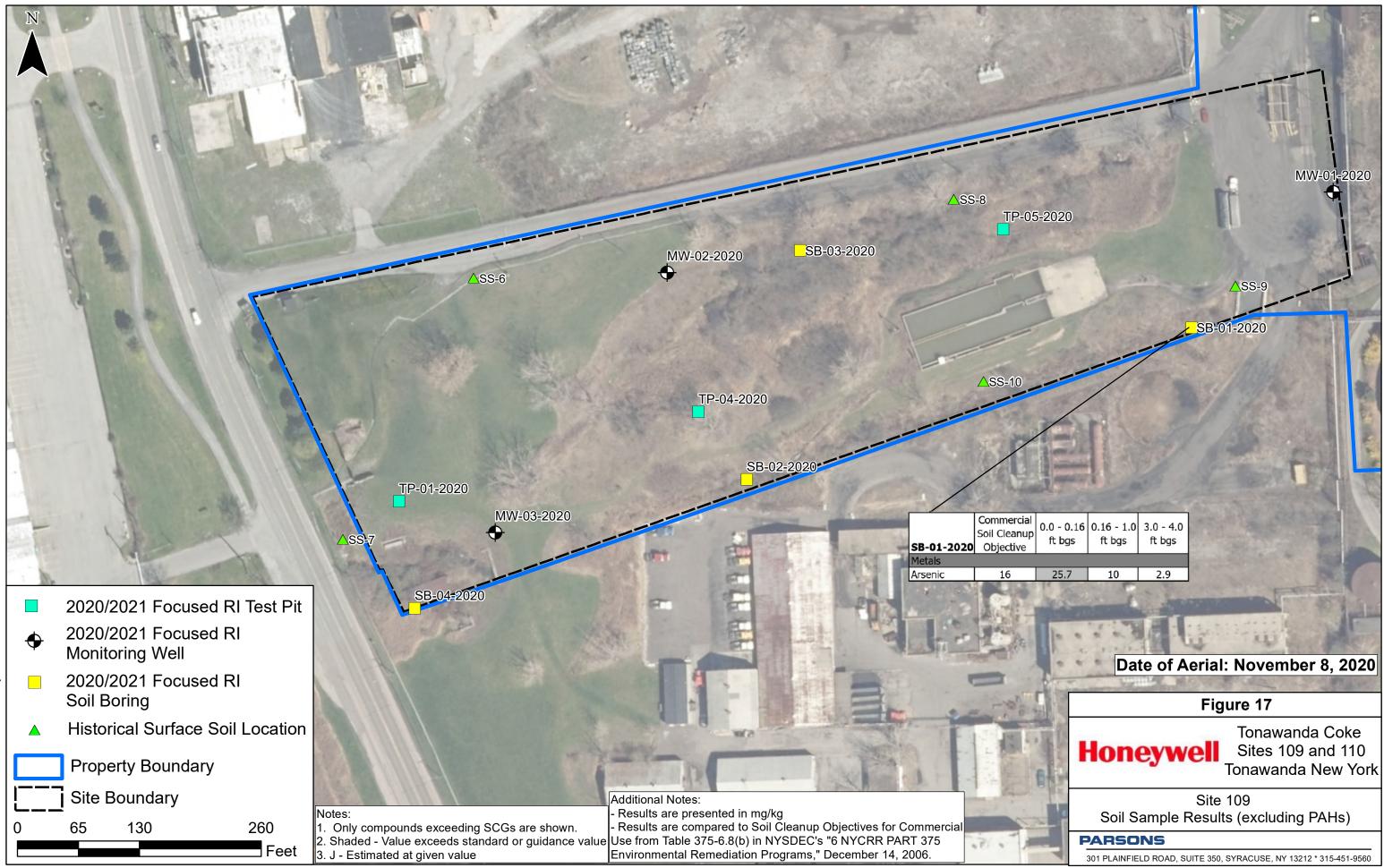

Honeywell

Tonawanda Coke Sites 109 and 110 Tonawanda, New York

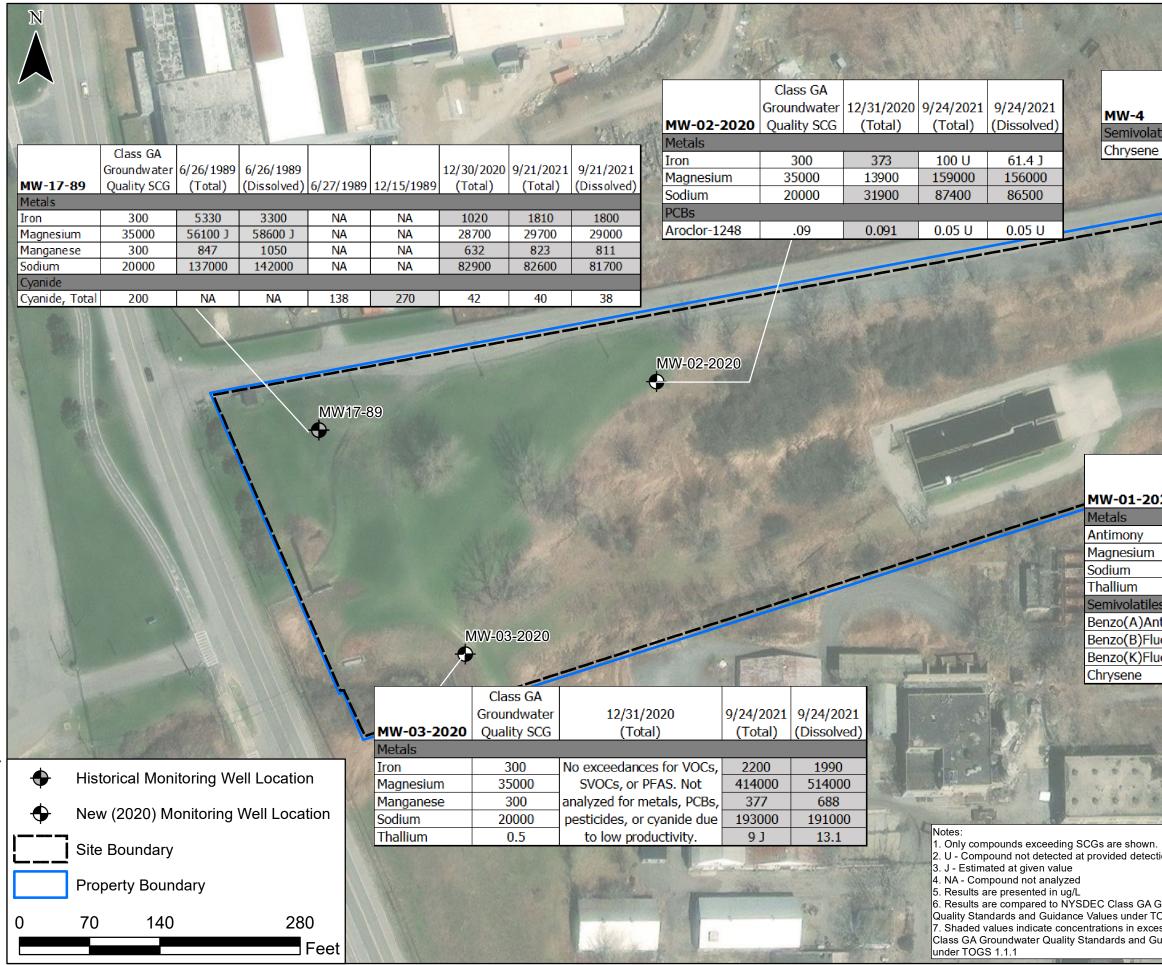
Site 109 Surface Soil Sample Results (PAHs)


PARSONS

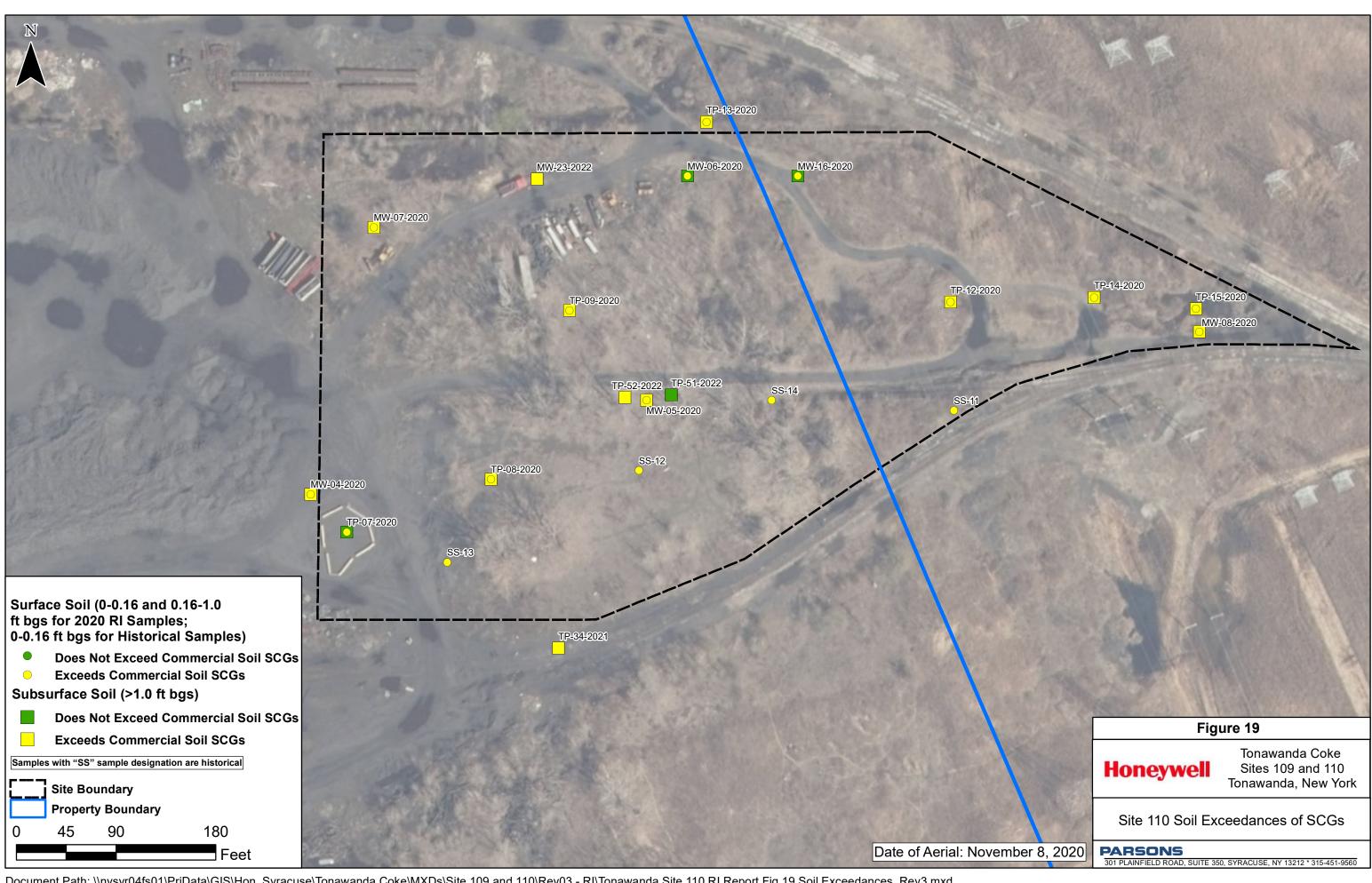
301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560



Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 15 Subsurface PAH_Rev3.mxd


MW-01-2020Objectiveft bgsPAHs9.3Benzo(A)Pyrene1Benzo(B)Fluoranthene5.69.4Dibenzo(a,h)Anthracene0.561.3Indeno(1,2,3-Cd)Pyrene5.67.5	1	CALCULAR CARDO		
MW-01-2020Soil Cleanup Objective3.0-4.0 ft bgsPAHsBenzo(A)Pyrene19.3 8enzo(B)Fluoranthene5.69.4 9.4 10benzo(a,h)AnthraceneDibenzo(a,h)Anthracene0.561.3 1.3 1rdeno(1,2,3-Cd)Pyrene5.67.5MW-01SB-01-2020		The Bar	E.F.	
PAHs Benzo(A)Pyrene 1 9.3 Benzo(B)Fluoranthene 5.6 9.4 Dibenzo(a,h)Anthracene 0.56 1.3 Indeno(1,2,3-Cd)Pyrene 5.6 7.5		MW-01-2020	Soil Cleanup	3.0-4.0 ft bøs
Benzo(A)Pyrene 1 9.3 Benzo(B)Fluoranthene 5.6 9.4 Dibenzo(a,h)Anthracene 0.56 1.3 Indeno(1,2,3-Cd)Pyrene 5.6 7.5			objective	TC DE3
Dibenzo(a,h)Anthracene 0.56 1.3 Indeno(1,2,3-Cd)Pyrene 5.6 7.5			1	9.3
Indeno(1,2,3-Cd)Pyrene 5.6 7.5	and and			
MW-01 SB-01-2020				
		SB-01-2020		MVV-01
		Date of Ae	rial: Novem	ber 8, 2
Date of Aerial: November 8, 2		e	Figure 15	
Date of Aerial: November 8, 2 Figure 15		Honeywe	Sites	109 and
the second second second second second second second second second second second second second second second se				
Figure 15 Tonawanda 0 Sites 109 and		PARSONS		
Figure 15 Tonawanda O Sites 109 and Tonawanda, Ne Site 109 Subsurface Soil Sample Results (PAHs) PARSONS	and the second	301 PLAINFIELD ROAD, SU	ITE 350, SYRACUSE,	NY 13212 * 31

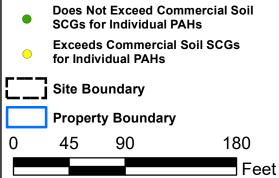
Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 16 Total PAH_Rev3.mxd



Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 17 Soil Samples_Rev3.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 109 RI Report Fig 18 GW Results_Rev3.mxd

	4	e B	1								
Class GA Groundwat Quality SC tiles	ter	8/1/1986	10/11/1989	12/15/1989							
e 0.002	88	NA	3 U	3 U							
MW-4			1W-01-2020								
)20	Class GA Groundwater Quality SCG	12/31/2020 (Total)	9/24/2021 (Total)	9/24/2021 (Dissolved)							
	3	60 U	60 U	10.5 J							
	35000	83300	12600	15800							
	20000	467000	245000	264000							
~	0.5	9 J	10 U	10 U							
es nthracene	.002	0.27	0.2 U	0.19 U							
Joranthene	.002	0.38	0.2 U	0.19 U							
uoranthene	.002	0.16 J	0.2 U	0.19 U							
	.002	0.24	0.2 U	0.19 U							
.002 0.24 0.2 0 0.19 0 Date of Aerial: November 8, 2020											
		Figu	ire 18								
tion limit	Honey	well	Sites 10	nda Coke 9 and 110 a, New York							
Groundwater OGS 1.1.1 ess of NYSDEC auidance Values			ater Samp	le Results							
	PARSUI		, SYRACUSE, NY 13	3212 * 315-451-9560							



Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 19 Soil Exceedances_Rev3.mxd

SS-14	Commercial Soil Cleanup Objective	0-0.16 ft bgs
PAHs		
Benzo(A)Anthracene	5.6	6.4
Benzo(A)Pyrene	1	6
Benzo(B)Fluoranthene	5.6	7.7
Dibenz(A,H)Anthracene	0.56	0.88
NUM OWNERS ON CALIFORNIA	and the second second	

SS-12

SS-13	Commercial Soil Cleanup Objective	0-0.16 ft bgs	
PAHs			10
Benzo(A)Anthracene	5.6	10	
Benzo(A)Pyrene	1	8.5	
Benzo(B)Fluoranthene	5.6	13	
Dibenz(A,H)Anthracene	0.56	1.6	Se m

Note:

Only data from samples taken within the top 1' are shown,
Samples with "SS" sample designation are historical surface samples, collected from the first 2 inch interval. - Results are presented in mg/kg. - Only compounds exceeding standards or guidance values are shown. - J - Estimated at given value.

SS-12	Commercial Soil Cleanup Objective	0-0.16 ft bgs
PAHs		
Benzo(A)Anthracene	5.6	13
Benzo(A)Pyrene	1	13
Benzo(B)Fluoranthene	5.6	17
Dibenz(A,H)Anthracene	0.56	1.3

SS-14

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 20 Historic Soil PAH_Rev3.mxd

SS-11	Commercial Soil Cleanup Objective	0-0.16 ft bgs
PAHs		
Benzo(A)Anthracene	5.6	20
Benzo(A)Pyrene	1	21
Benzo(B)Fluoranthene	5.6	32
Dibenz(A,H)Anthracene	0.56	1.7 J

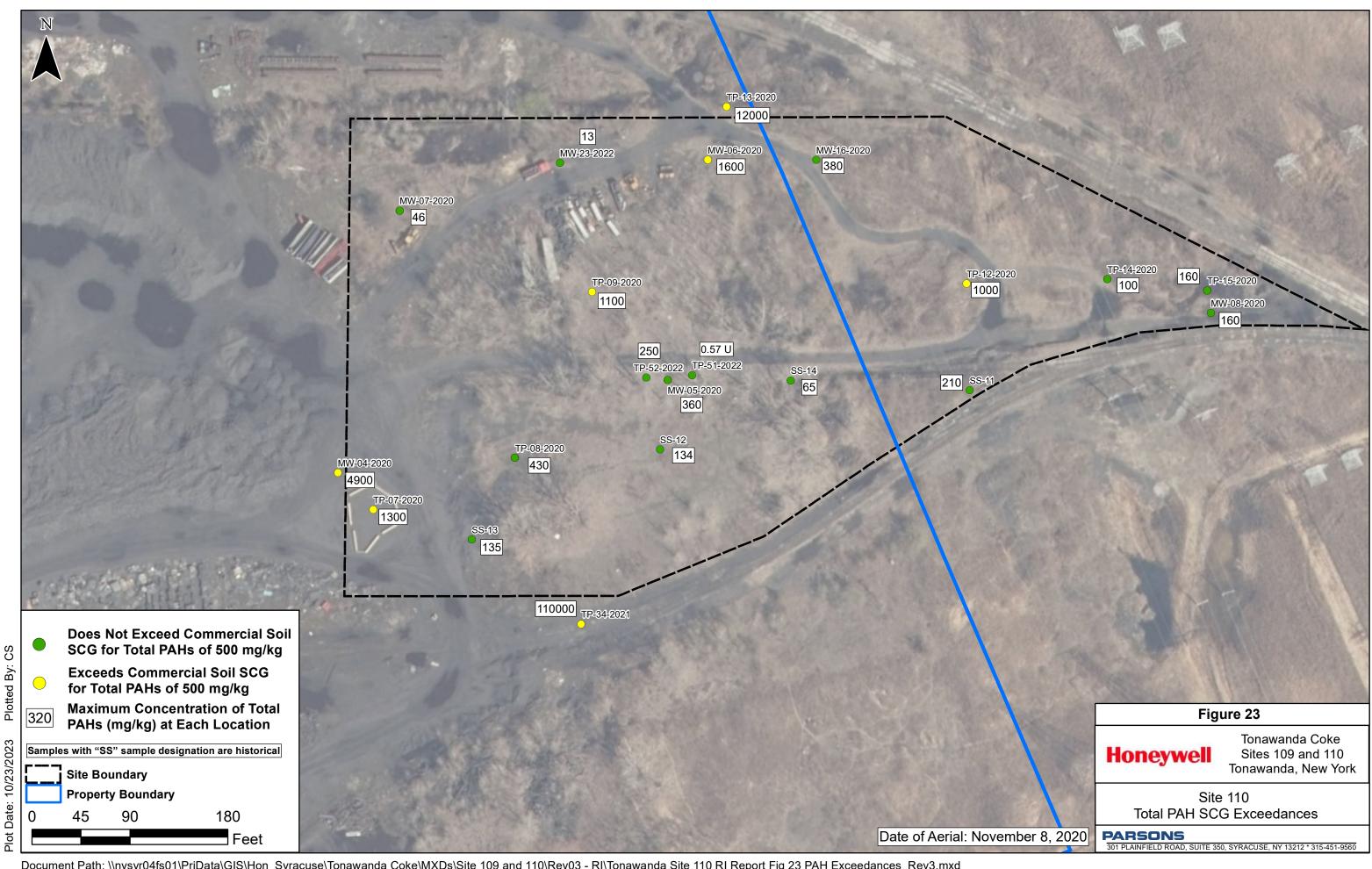
Date of Aerial: November 8, 2020

Figure 20

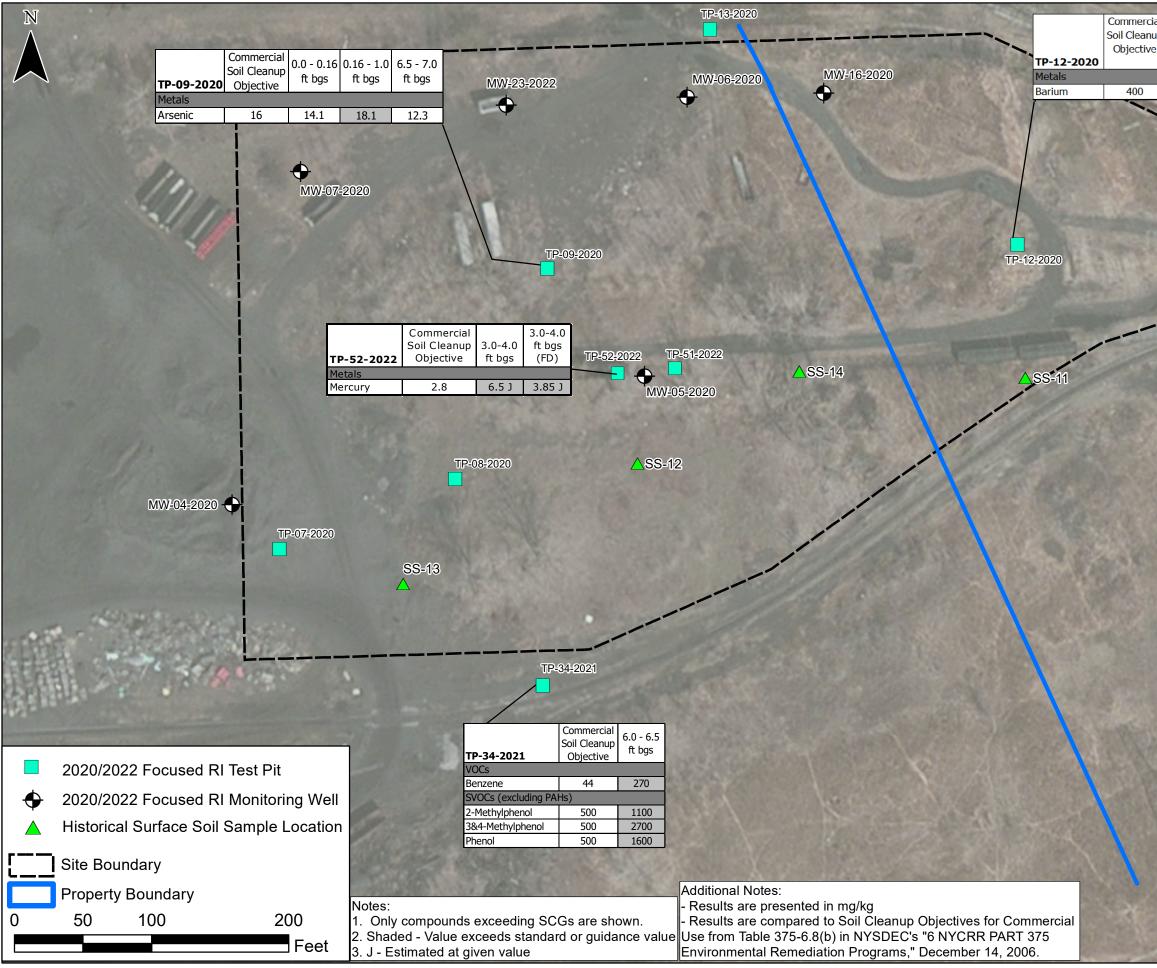
Honeywell

Tonawanda Coke Sites 109 and 110 Tonawanda, New York

Site 110 Historic Surface Soil Sample Results (PAHs)


PARSONS 301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

	Commercial					Commercial		36	and s	and the second second	1		mmercial				And in a	Commercial		
	Soil Cleanup	0-0.16 ft	0.16-1.0				0-0.16 ft 0.16	and the second se		Child States of			l Cleanup		I I	8		oil Cleanup	0-0 16 ft	0 16-1 0
MW-07-2020	Objective	bgs	ft bgs	tribute.		Objective	bgs ft b	gs			MW-16-20	020 01	bjective	bgs	ft bgs	TP-15-20		Objective	bgs	ft bgs
PAHs				and the second se	AHs			1.2			PAHs				1.0	PAHs	520	objective		
Benzo(A)Pyrene	1	4.7	2.2	and the second sec	enzo(A)Anthracene	5.6	12 J 9.:		106	Contraction of the second	Benzo(A)Anthrace	ene	5.6	26	4.2	Benzo(A)Anthra	cene	5.6	12	2.8
Dibenzo(a,h)Anthracene	0.56	0.58	0.35		enzo(A)Pyrene	1	14 J 15	10000		TP-13-2020	Benzo(A)Pyrene	thono	1 5.6	31	5.7	Benzo(A)Pyrene		1	18	4.6
		1000 C 12 C 14	Charles in such		enzo(B)Fluoranthene	5.6	16 J 19				Benzo(B)Fluorant		0.56	36 4.5	6.8 0.86	Benzo(B)Fluora		5.6	21	5
	Commercial				benzo(a,h)Anthracene	0.56	2.3 J 2.			1	Dibenzo(a,h)Anth Indeno(1,2,3-Cd)		5.6	4.5 23	4.9	Dibenzo(a,h)Ant		0.56	2.7	0.64 J
	Soil Cleanup	0-0.16 f	t 0.16-1.0		deno(1,2,3-Cd)Pyrene	5.6	8.4 J 8.	6		MW-06-2020	MW-16-2020	Pyrene	5.0	23	4.9	Indeno(1,2,3-C		5.6	13	3.2
TP-08-2020	Objective	bgs	ft bgs				Service			~	<u> </u>			303	-	Indeno(1,2,3-0	u)ryrene	5.0	10	
PAHs			5			ne start		- las	-					Press B			Commer	sial		SAL SEL
Benzo(A)Anthracene	5.6	8.5	5.3				- and the								1 -			nup 0-0.16 f	t 0.16-1.0	
Benzo(A)Pyrene	1	13	8.7		MW-07-2020		2.9.4	I. Verd		State of the second state						TP-14-2020		-	ft bgs	
Benzo(B)Fluoranthene	5.6	14	8.8	\land				12		Course and a second	A CONTRACTOR					PAHs				
Dibenzo(a,h)Anthracene	0.56	2.2	1.1	1 Acres	14		LARU	61 - 2		STORE STREET						Benzo(A)Pyrene	1	2.6	0.27	
Indeno(1,2,3-Cd)Pyrene	5.6	11	7		10		area .			State State							DE AR	1		C. 200
							ALL NO			19 2 2 2 2 2 2						\TP-14-202	20		Same 1	
	Commercia	1		Sex 1			110 -	FP-09-2020		38.22 × 6.23			TP	-12-2020		0	20	TP-15-2020	-	
	Soil Cleanup	p 0-0.16	6 ft 0.16-1.	0			Sold A)		and the second second	and the states		Y			1 Martin		C	1	
MW-04-2020	Objective	bgs	ft bgs				CT CT			A State of the second second								MW-08-202	0	-
PAHs							Carlot Ber		-	The Carlor Contraction	ALCON TO T									
Benzo(A)Anthracene	5.6	40	340				and the second			and the second s	1912					-		and the second se		
Benzo(A)Pyrene	1	55	420				2 Barton			and and the second second					ale .		Commer			
Benzo(B)Fluoranthene	5.6	59	490	State of the			14. THE PR. P.		MM	-05-2020	Service and Service and Service and Service and Service and Service and Service and Service and Service and Ser							nup 0-0.16 1		
Benzo(K)Fluoranthene	56	18	160	1000	The second second		and the train		ρ	00 2020	8-75 8. 19		1000		M	W-08-2020	Objecti	ve bgs	bgs FD	ft bgs
Chrysene	56	46	380		100 100 100 100 100 100 100 100 100 100		tal 2		1 m	NY OF BURN	the marker of		-	- \	PAHs					4
Dibenzo(a,h)Anthracene	0.56	9.7	55 J	area la			1 m2 25 1		20	5 (1575) A 645			1			A)Anthracene	5.6	11	9.1	8
Fluoranthene	500	89	850				the P. Think		a le	Sal a trate to a	A. ALASSA		1	100	Benzo(A)Pyrene	1	18	15	12
Indeno(1,2,3-Cd)Pyrene	5.6	41	330			a contraction			14	1 2 2 2 2 2 2					Benzo(B)Fluoranthene	5.6	22	19	15
Phenanthrene	500	37	540		4 0000		P-08-2020		and the		mar all all a	1		22.28	Dibenz	o(a,h)Anthracene	0.56	2.8	2.5	2.2
	500	68	780		4-2020		States of the			1 1 1 1 1 1 T	/			All a	Indend	(1,2,3-Cd)Pyrene	5.6	16	13	10
Pyrene	500	-			~		SCHARGE -				1			2.20		100 100 - Car	100 C 200	1 1	Section 1	and the same po
Total PAHs	500	550	4900		TP-07-2020		South .		22.4	8				193/6	1.		Commer	cial		
	0				9		A Carlo Sale		100	5.	Commercial	0.0.40.0	0.40.4.0		200			nup 0-0.16		
	Commercial			0.40.4.0	//	1 200 20	St. April		1000		Soil Cleanup				T	P-12-2020	Objecti	ve bgs	bgs FD) ft bgs
75 07 0000	Soil Cleanup				1				2	MW-06-2020	Objective	bgs	ft bgs	1.000	PAHs					
TP-07-2020	Objective	bgs	bgs FD	ft bgs					Y	PAHs					Benzo(A)Anthracene	5.6	17 J	8.8 J	30
PAHs		_	_			Commo	raial			Benzo(A)Anthracene	5.6	100	8.4	69/22.5	Benzo(A)Pyrene	1	20	13	36
Benzo(A)Anthracene	5.6	84 J	5.4 J	14		Comme Soil Clo	anup 0-0.16	H 0 16 1 (Benzo(A)Pyrene	1	130	11	0.960	Benzo(B)Fluoranthene	5.6	24	17	42
Benzo(A)Pyrene	1	92 J	7.1 J	16	TD 00 0000		-			Benzo(B)Fluoranthene	5.6	130	12	1240	Dibenz	o(a,h)Anthracene	0.56	2.8	2	5.3 J
Benzo(B)Fluoranthene	5.6	98 J	8.8 J	19	TP-09-2020	Object	ive bgs	ft bgs	20	Chrysene	56	110	9	Reading	Indeno	(1,2,3-Cd)Pyrene	5.6	12	8.6	24
Chrysene	56	90 J	6.3 J	16	PAHs				1.00	Dibenzo(a,h)Anthracene		19	1.4	and and a	No.	CARLE TELEV	1 Mars	PLUMBI	Contraction of the second	1313 Q
Dibenzo(a,h)Anthracene	0.56	15 J	1.2 J	2.6	Benzo(A)Anthracene	5.6	56	76	000	Indeno(1,2,3-Cd)Pyrene		90	8.7	Carlos and			" I repaired and			
Indeno(1,2,3-Cd)Pyrene	5.6	63 J	5 J	12	Benzo(A)Pyrene	1	81	110	Nr.	Total PAHs	500	1600	100							
Total PAHs	500	1300	72	200	Benzo(B)Fluoranthen		84	130	Carlos	and the second s	Section and the	NUMBER	10000			A TONING	the second	DIA FERRIA		10000
				-	Chrysene	56	66	96	-	A Part Maria				Sec.		Date	e of Aer	al: Novem	ber 8, 20	J20
	cceed Commer	rcial Soil	and the second		Dibenzo(a,h)Anthrace			18	1		Commercial					Sales and the sales of the sale	State State	ALCONTRACTOR	an ann an an an an an an an an an an an	
	dividual PAHs		1000		Indeno(1,2,3-Cd)Pyre		57	90			Commercial Soil Cleanup 0-	0.16.0.0	1610	Sector 12		2502		Figure 21	J	
	mmercial Soil				Total PAHs	500	800	1100		MW-05-2020	Objective		t bgs					Tor	nawanda	
or Individua 🧧 🧧	II PAHS	N	Note:		0101001	ALC: NO.	10 C 2 E	100.80	P. Kay		objective	ugo II	L Ugo	55 M	and the second	Hon	01/14/0	The second second second second second second second second second second second second second second second se	es 109 an	
Site Bound	larv			data from s	amples taken within	the top 1' are	shown,			PAHs Benzo(A)Anthracene	5.6	0.5	4.0.1			non	eywe	Topo	wanda, N	
	aiy		- Sam	ples with "S	S" sample designatio	n are historica							4.9 J			all a second		iona	vanua, N	
Property B	oundarv		sampl	es, collecte	d from the first 2 inch	interval.	Sec. M.		6	Benzo(A)Pyrene	1		6.4 J			No.	Sito	110 Focu	sed RI	
	-	400			ented in mg/kg.	o or guidance	Volues			Benzo(B)Fluoranthene	5.6		7.1 J			Quef		Sample F		DVHe)
0 45 9	90	180	- Only are sh		s exceeding standard	s or guidance	values			Dibenzo(a,h)Anthracene	0.56		0.88			Sull				
		Fe			given value.		5.10			Indeno(1,2,3-Cd)Pyrene	5.6	8.1	51			PARS				
•				State Line Pro-	and the second sec	A STATE OF THE OWNER	A CONTRACTOR OF THE OWNER	NON SOM	\$217 N	The second second	a serie and the series of	A Str	all a state	1. 2. 19 1. 19	and the second second	301 PLAINFI	ELD ROAD, SI	JITE 350, SYRACU	SE, NY 13212 *	315-451-9560


Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 21 Soil PAH_Rev3.mxd

Commercial Sci Cleanup Berzod/Arthracene 6.57.0 Objective TP-15-2020 Objective Berzod/Althracene TP-15-2020 Objec	and a second sec	-	100 million (1990)						A COMPANY OF THE OWNER	and the second second					and the second second second second second second second second second second second second second second second	CONTRACTOR OF A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	E. C.			A DEST PRES		Commercial			All soll and		and the second		Commerc	ial		Commercia	1	
	and the second s	the life		A		Soil Cleanup	5.0-6.0	5.0-6.0	Set 2 States States	-	1000		Soil Clean	up 4.0-5.0		Soil Cleanup	2.5-3.0	3.25-4.0
		+ + + + + + + + + + + + + + + + + + +		and and a second	MW-23-2020	-					Contraction of the local division of the loc	TP-13-2	020 Objectiv	e ft bgs	TP-14-2020	Objective	ft bgs	ft bgs
	Print and a		Commission of the local division of the loca	PA		-	0	<u> </u>	State 18		PA	AHs			PAHs			
	and the part of the second	and the second	and the second	and the second of the second se		1	1.5 J	2.5 J			The second second second second second second second second second second second second second second second se		acene 5.6	180 J		5.6	0.86	6
	Contraction Section	Commorcial		Contraction of the local division of the		5.6			TP-13-	2020	Be	enzo(A)Pvren			Benzo(A)Pyrene	1	0.95	6.1
	and the second s		40.60	the second of the second second second	1.7					and the second	Contraction of the Owner of the						_	
	MW 07 2020	-			Senze(u,n) antinueene	0.00	0.005	0.045										
	A STALL REPORT OF THE REPORT O	Objective	IT Dgs	1 3 3 4 4 4				and a			and the second se					0.00	0.100	10000000
			-				MW-23-20	122	MW-06-202	0 M\	W-16-2020 🛏				CONTRACTOR OF THE OF	1. 1923 3. 2. 28	S. Margarille	AMARIE
	Benzo(A)Pyrene	1	3			100					the second second second second second second second second second second second second second second second se				ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	Corr	mercial	
μ μ	PARTICIPATION OF THE					S.F. Star		- Cor	and the second se		The second second second second second second second second second second second second second second second se				Contraction of the local division of the loc	Soil	Cleanup	2.0-2.5
		Commercia	1		A A MARY		-in2	ID THE			То	ital PAHs	500	12000	TP-15-	2020 Ob	iective	ft bgs
Image: Property Bundley Banding Property Bandley Banding Propert					MW-07-2020		1000	2 3-						C Phillippi			,	
	TP-09-2020			and the states			84111	R			· Caller					a mono	4	2.0
	the second design of the secon	Objective	it bga	Im	ALC: NO		10100	1							Benzo(A)	yrene	1	2.8
minut/prime 1 0			40		Call Gall	A STAR	Sel								a the second			
				1 100	1 × 1 1 1 1 1 1 1	S. C. C. L. S.	No. 10		1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Contraction of the					C. To B. Stall		and and a	
				ell.		C. Stall Was	14 16			A SHA SUT	C. Section :		TP-12-2020		TP-14-2020	TEACO		
			19	Part and	A LAN	and the second second	TF	P-09-2020		State State	The second second				A STATE OF STATE	IP-15-2020		
International biology Solution biology	Dibenzo(a,h)Anthracene	0.56	3.6	10213			A SUR L									MW-08-202	0	ALC: A
Solid Clearung 3.0.4.0 0.0.4.0	Indeno(1,2,3-Cd)Pyrene	5.6	10	Service of the							a strange						- 5-6	
Solid Clearung 3.0.4.0 0.0.4.0	Ball in the second second second second second second second second second second second second second second s	1 1 1 1 1 1 1 1 1	THE R. LAND						State and	Really Lett				and the second	The second second			
Solid Clearung 3.0.4.0 0.0.4.0	Comme	ercial							March 1 File		11 1 1			Commercia			A CONTRACTOR OF CONTRACTOR	
The second commercial soil soil soil soil soil soil soil soi			30-40									CONTRACT OF						
No. 1 No. 1 <th< td=""><td></td><td>-</td><td></td><td>and the second se</td><td></td><td></td><td></td><td>TP</td><td>-52-2022 TP-51-2022</td><td></td><td>Internation of the</td><td>Contraction of the</td><td>TP 12 2020</td><td>-</td><td>ft here</td><td></td><td>-</td><td></td></th<>		-		and the second se				TP	-52-2022 TP-51-2022		Internation of the	Contraction of the	TP 12 2020	-	ft here		-	
Decode Advancement 5.6 2.4 2.6 2.6 2.6 2.6 2.6 0.6			IC DEST L			the set	AL TOPAL	2.6						objective	MW	-08-2020 0	bjective	ft bgs
Bit Conference 1 202 23 Discretion Justification 5.8 4.1 4.8 90 Discretion Justification 5.8 4.1 4.8 90 Discretion Justification 6.8 4.1 90 1.8 90 Discretion Justification 6.8 4.0 1.8 90 1.8 90 1.8 90 1.8 90 1.8 90 1.8 90 1.8 90 1.8 90 1.8 1.8 90 1.8 <td< td=""><td></td><td></td><td></td><td></td><td>100</td><td>all a contraction</td><td></td><td></td><td>MW-05-2020</td><td></td><td></td><td></td><td></td><td>5.0</td><td></td><td>s</td><td></td><td></td></td<>					100	all a contraction			MW-05-2020					5.0		s		
Bernol Private D <thd< th=""> D <thd< th=""> <t< td=""><td></td><td></td><td></td><td>States of States</td><td></td><td></td><td></td><td></td><td></td><td>al and a star</td><td>MELLES A</td><td>and the second second</td><td></td><td></td><td>Denz</td><td>o(A)Pyrene</td><td>1</td><td>1.5</td></t<></thd<></thd<>				States of States						al and a star	MELLES A	and the second second			Denz	o(A)Pyrene	1	1.5
Descrive NV: Ministere 0.60 4.1 4.8 Descrive NV: Ministere 0.60 60 62 Discrive II: 2.3 Coll Pyres 0.60				2007)) (CC/S2.54)						and the second					65	Car In	State State	160 80.97
Interest 2.3-coll/press 6.6 13 13 Interest 2.3-coll/press 6.6 0.5	Benzo(B)Fluoranthene 5.6	29	35	1000 00000								E	enzo(B)Fluoranthene	5.6	68			
Note Note	Dibenzo(a,h)Anthracene 0.56	6 4 J	4.8	1827 Back 208		TP-08-2	020		210		States 20	C	hrysene	56	62			and the second
No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 04 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 No. 05 2020 Soli Cleanung 10.6.0 Soli Cleanung 10.6.0.0 10.6.0.0 <td>Indeno(1,2,3-Cd)Pyrene 5.6</td> <td>15</td> <td>18</td> <td>MW-04-2020</td> <td></td> <td>· · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ibenzo(a,h)Anthracene</td> <td>0.56</td> <td>8.9 J</td> <td></td> <td></td> <td></td>	Indeno(1,2,3-Cd)Pyrene 5.6	15	18	MW-04-2020		· · · · ·							ibenzo(a,h)Anthracene	0.56	8.9 J			
Notificitizing A 0.6.0 (https://www.mailing Note (addition in the constraint of the constraint	have an instruction	Carl Carry	W Street							Contra Marca	1		ndeno(1,2,3-Cd)Pyrene	5.6	36		LANK C	2000
Notificitizing A 0.6.0 (https://www.mailing Note (addition in the constraint of the constraint	0.000	and a laboration of the second s	a series	11						Cartal K.	1	Т	otal PAHs	500	1000			
Normation Normation			0	TP-0	7-2020		1.199			1			CONTROL THE PLAN	Carlo Carlo	ALL ROOM AND ALL ROOM			
PArts Commercial Soil Cleanup Q. 02.5 BenzodAl/Pyrene 5.6 120 Chysene 5.6 120 Commercial Soil Cleanup 2.02.5 Site Soil Cleanup 4.06.0 Diversity Huisenene 5.6 Site Soil Cleanup 4.06.0 Diversity Huisenene 5.6 Site Soil Cleanup 5.6 Site Soil Cleanup 5.6 Site Boundary Property Boundary Property Boundary Site Boundary Property Boundary -0.1 fator manufest at gross notific at gross no					1 and the second		830			/		And a start of the						
Note Commercial Soil Commercial Soil Socie Commercial Soil S	and an and a second sec	ective π bg	s						Place T. appr	1				Commercial	10.00			
Does Not Exceed Commercial Soil SG6s Commercial Soil SG1 Cleanup Soil Cleanup <td>1. To 1. To</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td> <td>Commercial</td> <td></td> <td></td> <td></td> <td></td> <td>40.60</td> <td></td> <td></td> <td></td>	1. To 1. To						1000			Commercial					40.60			
Betradyleftender Diberzog hylknithragene Diberzog hylknithragene Diberzog hylknithragene Total PAHs TP-3A-2021 Objective Diberzog hylknithragene Soo R bit Hals Does Not Exceed Commercial Soil SCGs for Individual PAHs TP-08-2020 Objective Diberzog hylknithragene Soo R bit Acenaptithree Soo R bit Acenaptithree Soo <td>Benzo(A)Anthracene 5</td> <td>.6 130</td> <td></td> <td></td> <td>and the</td> <td></td> <td></td> <td></td> <td></td> <td>Soil Cleanup</td> <td>2.0-2.5</td> <td></td> <td>MW 05 2020</td> <td></td> <td></td> <td></td> <td></td> <td>1 10 33</td>	Benzo(A)Anthracene 5	.6 130			and the					Soil Cleanup	2.0-2.5		MW 05 2020					1 10 33
Beta Testago Cingene 5.6 400 Diberzo(a, Muttracene 0.56 171 Indeno(1,2,3.3 c)(Pyrene 5.6 0 Total PAHs 500 500 Site Son Mot Exceed Commercial Soil SCGs for Individual PAHs N N N N Site Boundary N Notication for individual PAHs N N Notication for individual PAHs N N Notication for individual PAHs N Notication for individual PAHs N Notication for individual PAHs N N Notication for individual PAHs Notication for indinidual PAHs <t< td=""><td>Benzo(A)Pyrene</td><td>1 170</td><td>The state of</td><td>Street and and</td><td></td><td></td><td></td><td></td><td>TP-34-2021</td><td>Objective</td><td>ft bgs</td><td>A Row</td><td></td><td>Objective</td><td>it bes</td><td></td><td></td><td>1.73 80.5</td></t<>	Benzo(A)Pyrene	1 170	The state of	Street and and					TP-34-2021	Objective	ft bgs	A Row		Objective	it bes			1.73 80.5
Chrysene 56 170 Diversona hjanthracene 5.6 170 Diversona hjanthracene 5.6 170 Des Not Exceed Commercial Soil SCGs for Individual PAHs N 1	Benzo(B)Fluoranthene 5	.6 180		State and	/			1000				And the second second			02			
Deerzo(a,h)Anthracene 0.56 17.1 Inderco(1,2,3-C0P)Yere 5.6 120 Total PAHs 500 1800 Does Not Exceed Commercial Soil SCGs for Individual PAHs N Site Boundary N Property Boundary Noil Of data from samples taken below the top 1' are shown. Results Noil Ada from samples taken below the top 1' are shown. Results Noil Cleanup 5.6 120 Noil Cleanup 0.56 0.56 0.56 0.56 120 Deerzo(A,P)Yerene 1 4400 Enzo(A)Pyrene 5.6 420 Deerzo(A,P)Yerene 5.6 21 Enzo(A)Pyrene 1 4400 Benzo(A)Pyrene 5.6 430 Enzo(A)Pyrene 5.6 4300 Deerzo(A,P)Yerene 5.6 36 1000 Enzo(A)Pyrene 5.6 4300 Dienzo(A)Pyrene 5.6 36 1000 Enzo(A)Pyrene 5.6 4300 Dienzo(A,P)Archarcharcene 5.6 6.6 1000 Enzo(A)Pyrene 5.6 4300 Note Noty data from samples taken below the top 1' are shown. Reshown. Noty compounde exceeding standards o	Chrysene 5	6 170	130%	Carl Internet	/_					500	750 J	the second second second						
Indenci 1.2.3-Cd/Pyrene 5.6 120 1 Soli Cleaning 5.0-6.0 <	le Ve		the second second second second second second second second second second second second second second second s	10000			TP-3	4-2021							CALIFORNIA TELEVISION	N. Contraction		11 635
Intel PAHs Soli Clearly 5.00 Intel PAHs Soli Clearly 5.00 Intel PAHs Soli Clearly 5.00 Intel PAHs Intel PAHs Soli Clearly 5.00 Intel PAHs			A DESCRIPTION OF THE OWNER.									and the second second						
IP-08-2020 Objective It Opsilon Does Not Exceed Commercial Soil SCGs for Individual PAHs Enzo(A)Anthracene 5.6 21 Benzo(A)Anthracene 5.6 21 Benzo(A)Pyrene 1 410 Benzo(A)Pyrene 5.6 4400 Benzo(A)Pyrene 5.6 4400 Benzo(A)Pyrene 5.6 450 Ibenzo(A)Pyrene 5.6 450 Does Not Exceed Commercial Soil SCGs for Individual PAHs N Site Boundary Note: Only data from samples taken below the top 1' are shown, - Results are presented in mg/kg. Naphthalene 500 13000 Note: - Only data from samples taken below the top 1' are shown, - Results are presented in mg/kg. Site 110 Focused RI Subsurface Soil Sample Results (PAHs) Site 110 Focused RI Subsurface Soil Sample Results (PAHs) Prene 500 13000 Prene 500 13000 Prene 500 13000 Prene 500 13000 Indeno(1.2.3-Cd)Pyrene 5.6 2200.1 Naphthalene Site 110 Focused RI Subsurface Soil Sample Results (PAHs) Focu 1.10000 100000 Prene 100000			and the second se		-							and the second second	A 1 4					1200 2
 Does Not Exceed Commercial Soil SCGs for Individual PAHs Exceeds Commercial Soil SCGs for Individual PAHs Exceeds Commercial Soil SCGs for Individual PAHs Site Boundary Property Boundary 45 90 180 Feet 		1000	,	TP-08-2020	Objective	ft bgs						I	ideno(1,2,3-Cd)Pyrene	5.6	19			
Does Not Exceed Commercial Soil SCGs SCGs for Individual PAHs Exceeds Commercial Soil SCGs for Individual PAHs N Site Boundary Property Boundary 45 90 180 Feed benzo(A)Anthracene 5.6 45 90 benzo(A)Anthracene 5.6 45 90 180 benzo(A)Anthracene 5.6 45 90 Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) Desco(A) </td <td>and the second se</td> <td></td> <td></td> <td>PAHs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P 7.96 24</td> <td>and the second sec</td> <td>A NORTHER</td> <td>A CONTRACTOR OF CONTRACT</td> <td></td> <td></td> <td></td>	and the second se			PAHs								P 7.96 24	and the second sec	A NORTHER	A CONTRACTOR OF CONTRACT			
Does Not Exceed Commercial Soil SCGs for Individual PAHs 1 41 Exceeds Commercial Soil SCGs for Individual PAHs N Site Boundary N Property Boundary A 45 90 180 180 Exceeds Commercial soil SCGs for Individual PAHs N Indeno(1,2,3-Cd)Pyrene 5.6 0.01y data from samples taken below the top 1' are shown, Results are presented in mg/kg. Note: 0.01y compounds exceeding standards or guidance values are shown. Site 110 Focused RI Subsurface Soil Sample Results (PAHs) 9.0 180				Benzo(A)Anthracene	5.6	21									No.	A REAL PROPERTY AND	G 9702 1.8	
Does Not Exceed Commercial Soil SCGs for Individual PAHs Exceeds Commercial Soil SCGs for Individual PAHs Site Boundary Property Boundary 45 90 180 Exceeds communication 180 Dividual PAHs Note: 0.11 0.12				Benzo(A)Pyrene	1	41							STARK Kalan		Date of Aer	ial: Novem	ber 8, 2	020
 Scess for individual PARs Exceeds Commercial Soil SCGs for Individual PAHs Site Boundary Property Boundary 45 90 180 Feet Feet Feet Feet 					5.6								S. Contraction		and the second second	AND AND AND AND AND AND AND AND AND AND	Die Bergellingen in	10000
Exceeds Commercial Soil SCGs for Individual PAHs N Site Boundary Note: Property Boundary Only data from samples taken below the top 1' are shown, Results are presented in mg/kg. 45 90 180 Feet Dibenzofuran 350 45 90 Feet Feet Feet Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran 350 Dibenzofuran Site 10 Focused RI Subsurface Soil Sample Results (PAHs) Dibenzofuran Dibenzofuran Site 110 Focused RI Subsurface Soil Sample Results (PAHs) Dibenzofuran Dibenzofuran Site 10000 Prene Site 10000 Dibenzofuran Dibenzofuran Site 10 Focused RI Subsurface Soil Sample Results (PAHs) Dibenzofuran Dibenzofuran Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI Site 10 Focused RI S			1000						Chrysene				C. C. Martine C. Marti			Figure 22	2	
Image: Site Boundary Note: Property Boundary - Only data from samples taken below the top 1' are shown, 45 90 180 - Only compounds exceeding standards or guidance values are shown. - J - Estimated at given value. - Soo									Dibenzofuran	350	4500		No ANDRESS SA			Τ	- ا	Calia
Site Boundary Property Boundary 45 90 180 Note: 0 0 45 180 Note: 0 0 180 Note: 0 0 180 Note: 19000<	for Individual PAHs	N			0.0		5-42 gt		Fluoranthene	500	13000		La Conchine	and the second				
Site Boundary Property Boundary 45 90 180 Note: 0 0 45 180 Note: 0 0 180 Note: 0 0 180 Note: 19000<		A	The						Fluorene	500	7300			Contraction of the	Honeywe	Site		
Note: Only data from samples taken below the top 1' are shown, A5 90 180 Feet Naphthalene 500 25000 J Phenanthrene 500 19000 Pyrene 500 8300 Total PAHs 500 110000	Site Boundary			Print 1	Constant March 1 1	A REPORT	24		Indeno(1,2,3-Cd)Pyrene							Tona	wanda, N	lew York
Property Boundary Site 10 Focused RI 0 45 90 180 - Chily data non samples taken below the top 1 are shown, - Results are presented in mg/kg. Phenanthrene 500 19000 - Only compounds exceeding standards or guidance values are shown. - Only compounds exceeding standards or guidance values are shown. Phenanthrene 500 19000 - J - Estimated at given value. - J - Estimated at given value. - J - Estimated at given value. Total PAHs 500 110000			Note:		4 - 1 1 41 4		8 565											
45 90 180 - Only compounds exceeding standards or guidance values are shown. - J - Estimated at given value. - Only compounds exceeding standards or guidance values are shown. - J - Estimated at given value. - J - Estimated at given value. - Only compounds exceeding standards or guidance values - J - Estimated at given value. - J - Estimated at given val	Property Boundary					op i are showi	1,							and a second	Site	110 Focus	sed RI	
Total PAHs 500 110000 PARSONS	0 15 00	120	- Colv	ans are presented if	ding standards or	quidance value	S							11				(PAHs)
Feet J - Estimated at given value.	40 90	100			any standards of	guidance value								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(17,110)
301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560		Fe	et I-J-E		alue.		The Part		TOTAL PAHS	500	110000			and the second				
			-	5	and the second second second	and the second second			CALCULATION OF THE PARTY OF THE	and the second	A STREET WALL	1 1 K	Contraction of the second	and the second second	301 PLAINFIELD ROAD, S	UITE 350, SYRACU	SE, NY 13212 *	315-451-9560

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 22 Subsurface PAH_Rev3.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 23 PAH Exceedances_Rev3.mxd

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 24 Soil Samples_Rev3.mxd

100	And Distances	The lotter of the	No. of Concession, Name	A LOUGH A	ALC: NAMES OF	ALL DO LOT OF	State of the second	-
ial up ⊇	0.0 - 0.16 ft bgs	0.0 - 0.3 ft bgs (FD)	0.16 - 1.0 ft bac	4.0 - 4.5 ft bgs		. 68	La San	- ATTON
	505	201	145	77.4		3	1201	1
	303	201	145	77.4		the Nor		3
	TP-14	2020	π	P-15-2020 MW-0	8-2020			No. of Assessment of the
				29997	march 1	all all	1	1
	TP-14-	2020	Commercial Soil Cleanup Objective	0.0 - 0.16 ft bgs	0.16 - 1.0 ft bgs	2.5 - 3.0 ft bgs	3.25 - 4.0 ft bgs	Vansed.
	Metals	-	10	E 2	6.0	6.0	21.0.1	-
	Arsenio Barium		16 400	5.2 404	6.2 443	6.2 66.2	21.9 J 75.1	38
	Cyanide		100	TUT	445	00.2	75.1	
	Cyanid	e, total	27	1.68	1.41	6.61	123 J	3
		Da	ate of A	11/11/19-11	and a	mber 8	3, 2020	D
				Figu	ure 24			
	H	lor	leyw	ell.	Sites	wanda 109 ai anda N	Coke nd 110 Iew Yoi	rk
	P		Sample	Site ² Results		ding P	AHs)	
2	3	01 PLAIN	FIELD ROAD, S	SUITE 350, S	YRACUSE,	NY 13212 *	315-451-956	0

Immunolity Current of the second process of the second proces of the second process of the second process of the s		MW-07-2020 Metals Iron Manganese Sodium Cyanide Cyanide, Total Semivolatiles Benzo(A)Anthracene Benzo(A)Pyrene Benzo(B)Fluoranthene Chrysene	Class G Groundwa Quality S 300 20000 2000 200 0.002 ND 0.002 0.002	ater 12/30/20 CG (Total) 16700 1400 27700 247 247 0.17 J 0.14 J 0.15 J 0.13 J	9700 1490 28400 208 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U	(Dissolve 5140 1470 29800 202 0.19 U 0.19 U 0.19 U 0.19 U	d)	the second second second second second second second second second second second second second second second se	MW-16-2020 MW-06-2020	Benzo(/ Benzo(F	ium ese , Total atiles A)Anthracene A)Pyrene 3)Fluoranthen ()Fluoranthen	Quality 5 300 35000 300 200 200 0.002 ND e 0.002	ater 9/23/20 SCG (Total 33000 33000 0 41700 11800 557 2 0.15 J 0 0.12 J 2 0.14 J 2 0.2 U	37200 45300 9270 489 0.22 U 0.22 U 0.22 U 0.22 U			Contraction of the second	
Image: Second Autor State State <td>S.C.</td> <td>Metals - T Iron</td> <td>otals</td> <td>Quality SC 300</td> <td>CG (Total) 25900</td> <td>(Dissolve) 25500</td> <td>ed)</td> <td></td> <td></td> <td>Class GA</td> <td></td> <td>Sec. 1</td> <td></td> <td></td> <td>MW-08-2020</td> <td>Groundwater</td> <td></td> <td></td>	S.C.	Metals - T Iron	otals	Quality SC 300	CG (Total) 25900	(Dissolve) 25500	ed)			Class GA		Sec. 1			MW-08-2020	Groundwater		
Benza (Automaticane) 0.002 0.033 0.13 U WW-95-202 Quilty SC3 Cital (1/24) Decoder Magneticane 300 1230 1420 WW-95-202 WW-95-203				300	1130	1080		05 0000	0		12/29/2020	9/22/2021						
Dranche Transmit 200 201 200 200 2000	and a second	Benzo(A)	Anthracene				and the second second	and the second s										
Cyanole 200 201 201 202 201 200 12	and the			0.002	0.086]	0.19 U	and a start			200	10000	11000	10200					
Sodum 2000 7.800 54200 59700 MW-04-2020 Quality SGG Tr(20) Grandwater 12/29/2001	- A			200	205	201	Ch-jeller h	and a state						E The				
Class (A) Groundwater 12/29/2020 Quality SCG (Total) 0/22/2021 (Total)	and all and		M	ML01-2020												0.5	12.7	8.2 J
Class 6A Groundwater (2)/29/2000 9/22/2021 (2)/29/200 9/22/2021 (Disorder) <	12 tok			N-02020				- The Part								200	2040	1040
Minute Building <	ar all the	and the second	Class CA			1		the the		0.01	0.26 J	NA	NA	y aller	1 1	200	2040	1940
MW-04-2020 Quality SCG (Total)				12/29/2020	9/22/2021	/22/2021				1	370	430	ΝΔ			te 5	4.7 U	180
Metals Convertence S 25 U 2500 NA Magnesium 3500 46000 49400 57200 1300 NA Brance 300 2970 3120 3180 57 1200 1300 NA Conduct 200 2970 3120 3180 57 1000 RA NA Cyandle 200 473 382 529 73 200 1000 NA Semicolabilies 5 200 2100 NA No 2 Additional Strength NA Chicker 5 200 2100 NA NA NA NA NA NA Semicolabilies 5 200 2100 NA NA NA NA NA NA Acachylicher 5 200 210 NA NA NA NA NA NA Chancel Vieles NA NA NA NA NA </td <td>MW-04-2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Nor all</td> <td>1997 2 1 3</td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>A MERCENSE</td> <td>The second second</td> <td>A SUBBLE</td> <td>A ACT OF</td>	MW-04-2						Nor all	1997 2 1 3		7					A MERCENSE	The second second	A SUBBLE	A ACT OF
Magases 3000 4600 4400 57200 Manganese 300 29/0 3120 3180 Sordium 20000 19800 22800 2500 Cyaride, Total 2000 473 382 529 Serva(A)Anthracene 0.002 0.36 0.26 0.191 Benzo(A)Anthracene 0.002 0.36 0.26 0.191 Benzo(A)Anthracene 0.002 0.38 0.26 0.191 Benzo(A)Anthracene 0.002 0.38 0.26 0.191 Benzo(A)Fluenethere 0.002 0.34 0.099 0.191 Benzo(A)Fluenethere 0.002 0.34 0.191 34.44401/ptenol 1 4.7 931 98 U 384-Methylphenol 1 5.4 98 U 98 U 36.7 Rysene 0.002 0.34 0.19 U 36.7 10.10 120 150 Fluenethere 50 73 83 67 11.8 8.8ade Groundwater Quality Standards and Guidance Values under TOGS 1.1.1 Stite Boundary Site Stop Stop Stop Stand 110 10	Metals									5								Marrie .
Marganese 300 2970 3120 3180 Sodium 20000 19800 22800 25300 Oxaride Styrene 5 3000 2400 NA Cyanide 5 1100 630 NA Styrene 5 100 630 NA Semvolatiles	Iron										1700				20 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			and the second
Sodium 2000 19800 22800 25300 Organide Cyanide Construction Styrene 5 1100 830 NA Serror(A)Anthracene 0.02 0.36 0.26 0.19 U Benzo(A)Pyrene ND 0.39 0.24 0.19 U Benzo(K)Fluoranthene 0.002 0.38 0.26 0.19 U Benzo(K)Fluoranthene 0.002 0.34 0.19 U 34.4 Methylphenol 1 4.73 93 U 98 U Chrysne 0.002 0.34 0.19 U 34.4 Methylphenol 1 4.73 93 U 98 U Indenci(1,2,3 Cd)Pyrene 0.002 0.23 U 0.13 U 0.19 U Negatification Negatification Negatification <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F. T. Park</td><td>END DEPENDENCE</td><td></td><td></td><td>the state</td></th<>														F. T. Park	END DEPENDENCE			the state
Grande m m Cyanide, Total 200 473 382 529 Sinvene 5 260 210 NA Cyanide, Total 200 473 382 529 Semicolatiles		se						1000							Natao	State of the second second second second second second second second second second second second second second	11: 12: 137	Contraction in the
Cyande, Total 200 473 382 529 Semivolatiles Induce 5 1700 1600 NA Semivolatiles Induce 5 1700 1600 NA Benzod(A)Prene ND 0.39 0.24 0.19 U 1.5 Highery 5 47 67.3 58 J 2.0 compound not analyzed Benzod(A)Prene 0.002 0.38 0.26 0.19 U 3&4-Methylphenol 1 4.73 98 U 98 U Benzod(A)Prene 0.002 0.14 U 0.069 J 0.19 U 3&4-Methylphenol 1 4.73 93 U 98 U Benzod(A)Prene 0.002 0.34 0.18 U 0.63 4.8 U 0.19 U 3&4-Methylphenol 1 4.73 93 U 98 U Accmaphthene 2.00 101 10 120 U 110 120 U 1500 1.0800U 1.3000I 1.8000I 1.3000I 1.90U 3 3.9 E 5 1.70U 1.0800U 1.300I 1.09U 1.0800U 1.0800U 1.0800U 1.0800U 1.0800U 1.080U 1.080U 1.080U 1.080U 1.080U <td></td> <td></td> <td>20000</td> <td>19000</td> <td>22000</td> <td>23300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>exceedina SCGs</td> <td>are shown.</td> <td></td>			20000	19000	22000	23300										exceedina SCGs	are shown.	
Benzo(A)Anthracene 0.002 0.36 0.26 0.19 U Benzo(A)(Pyrene ND 0.39 0.24 0.19 U Benzo(A)(Pyrene 0.002 0.38 0.26 0.19 U Benzo(B)(Viroanthene 0.002 0.38 0.26 0.19 U Benzo(S)(Fluoranthene 0.002 0.14 J 0.089 J 0.19 U Benzo(S)(Fluoranthene 0.002 0.34 0.81 U 0.19 U Benzo(S)(Fluoranthene 0.002 0.34 0.18 J 0.19 U Acenapthtene 20 110 120 150 Fluorene 50 73 83 67 Naphthalene 10 12000 J 18000 15000 Indeno(1,2,3-Gd)Pyrene 0.002 0.25 U 0.13 J 0.19 U Mw-05-2020 Mathtracene 1/2/29/2020 9/23/2021 9/23/2021 9/23/2021 Class GA Groundwater 1/2/29/2020 9/23/2021 (Total) (Total) (Total) 1/2/29/2020 9/23/2021 (Dissolved)	Cyanide,		200	473	382	529								111111111	2. U - Compound no	t detected at prov		on limit
Betraz(A)Pyrene Nob 0.39 0.24 0.19 U Betraz(A)Pyrene 0.002 0.38 0.24 0.19 U Betraz(A)Pyrene 0.002 0.38 0.26 0.19 U Betraz(A)Pyrene 0.002 0.38 0.26 0.19 U Betraz(A)Pyrene 0.002 0.14 J 0.0089 J 0.19 U Betraz(A)Pyrene 0.002 0.34 0.18 U 0.19 U Acceraphthene 10 12000 J 18000 15000 Indeno(1,2,3-GU)Pyrene 0.002 0.25 U 0.13 U 0.19 U Site Boundary Site Boundary MW-05-2020 Quality ScG (Total) (Total) (Total) (Total) (Dissolved) Tonawanda Coke Marganese 300 5200 11000 121000 1			0.000	0.00	0.00	0.40.11		ALL ST SALES										1
Benzo(B)Fluoranthene 0.002 0.38 0.26 0.19 U Benzo(K)Fluoranthene 0.002 0.14 J 0.089 J 0.19 U Benzo(K)Fluoranthene 0.002 0.34 0.18 J 0.19 U Chrysene 0.002 0.34 0.18 J 0.19 U Acenaphthene 10 12000 J 18000 15000 Indeno(1,2,3-Cd)Pyrene 0.002 0.25 UJ 0.13 J 0.19 U Mw-05-2020 Quality SCG (Total) (Total) (Total) (Total) (Total) (Total) (Total) (Dotsolved) Tonawanda Coke Site 109 and 110 Tonawanda, New York Mw-05-2020 Quality SCG 15900 277000 240000 172000 Site 100 Focused RI Groundwater Sample Results Mw-05-2020 Magnesium						10 mil		a south and									tion limit	9
Benzo(K)Fluoranthene 0.002 0.14 J 0.089 J 0.19 U bis (2-Ethylhexyl)Phthalate 5 4.9 U 6.3 4.8 U Chrysene 0.002 0.34 0.18 J 0.19 U Indeno(1,2,3-Cd)Pyrene 0.002 0.25 UJ 0.13 J 0.19 UJ Metals Class GA Groundwater 10 1200 J 18000 1500 Site Boundary Site Boundary Mw-05-2020 Quality SCG (Total) (Total) (Total) (Dissoled) Tonawanda Coke Magnesium 35000 53200 18000 172000 Zenonpthtee Tonawanda, New York Magnesium 35000 53200 18500 172000 Zenonpthtee Tonawanda, New York Magnesium 35000 53200 18500 172000 Zenonpthtee Tonawanda, New York Solidum 200000 11000 121000 12000 18700 Site 110 Focused RI Groundwater Sample Results							A STELE	a light and							6. Results are prese	nted in ug/L		
bis-(2-Ethylhexyl)Phthalate 5 4.9 U 6.3 4.8 U bis-(2-Ethylhexyl)Phthalate 5 4.9 U 6.3 4.8 U Chrysene 0.002 0.34 0.18 J 0.19 U Indeno(1,2,3-Cd)Pyrene 0.002 0.25 UJ 0.13 J 0.19 UJ Fluorene 50 73 83 67 New (2020) Monitoring Well Location Class GA Groundwater Class GA Groundwater 10 12000 J 18000 15000 Site Boundary Mw-05-2020 Magnesium Output Class GA Groundwater 277000 240000 (Total) 172000 Mw-05-2020 9/23/2021 (Total) 9/23/2021 (Total) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 9/23/2021 (Dissolved) 8/20000 (Dissolved) 8/20000 8/20000 (Dissolved) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.19 U</td> <td>Caller P. C.</td> <td>S Startes</td> <td></td> <td>20</td> <td></td> <td></td> <td></td> <td>- All</td> <td></td> <td></td> <td></td> <td></td>						0.19 U	Caller P. C.	S Startes		20				- All				
Chrysene 0.002 0.34 0.18 J 0.19 U Indeno(1,2,3-Cd)Pyrene 0.002 0.25 UJ 0.13 J 0.19 U Indeno(1,2,3-Cd)Pyrene 10 1200 J 18000 15000 Class GA Groundwater Quality Standards and Guidance Values under TOGS 1.1.1 Mew (2020) Monitoring Well Location Site Boundary Property Boundary Property Boundary Manganese 300 3200 15000 1200 J 18000 15000 Class GA Groundwater Quality Standards and Guidance Values Under TOGS 1.1.1 Mw-05-2020 Quality SCG (Total) (Dissolved) Manganese 300 15000 0 85 170 340 340 11000 11000 112000 12000 12000 15000 12000 16000 12000 15000 12000 16000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000								REAL IN										
Image: New (2020) Monitoring Well Location Class GA Groundwater 12/29/2020 9/23/2021 (Total) 9/23/2021 (Disolved) Figure 25 Site Boundary New (2020) Monitoring Well Location Metals Tonawanda Coke Sites 109 and 110 Tonawanda, New York 0 85 170 340 Site Output 11100 121000							MERCE C	and the second	Naphthalene	10	12000 J	18000	15000	200 41 63	Class GA Groundwa			
 New (2020) Monitoring Weil Location Site Boundary Property Boundary 0 85 170 340 	Indeno(1,	,2,3-Ca)Pyrene	0.002	0.25 UJ	0.13 J	0.19 0)		a se Sta			NO. STAR				under TOGS 1.1.1			
Site Boundary Mw-05-2020 Quality SCG (Total) (Dissolved) Property Boundary 300 15900 277000 240000 Magnesie 300 15900 172000 Magnesie 300 15900 172000 Magnesie 300 15900 121000 Cyanide Cyanide Magnesie Site Stope O 85 170 340		Now (2020)	Monitorin		ocation						a carting	10		1 10 10		Figu	re 25	
Site Boundary Metals	↓ ♥	INCVV (2020)		y well L							1						Topowor	da Coke
Iron 300 15900 277000 240000 Property Boundary Magnesium 35000 53200 185000 172000 0 85 170 340 151000 111000 121000 Cyanide Cyanide Cyanide Iron Iron Iron 151000 111000 121000		Site Boundar	'V			La contra de la co		Quality SCG	(Total) (Total) (Dissolved)				TRANSPORT OF	Hon	ovwoll		
Magnesium 3500 53200 18500 17200 0 85 170 340 300 3240 18400 18700 Cyanide 20000 151000 111000 121000 Site 110 Focused RI Groundwater Sample Results	<u> </u>		J			STATE AND A DESCRIPTION OF		300	15900 27700	0 240000	1.5. 192			- antis				
0 85 170 340 340 300 3240 18400 18700 Sodium 20000 151000 111000 121000 Cyanide Cyanide Comparison Comparison		Property Bou	Indarv			Contract Name and Address of the Owner of th	0		53200 18500	0 172000	State of				AND CALLS			
0 85 170 340 Cyanide			-			the second of the second of the	-				CALCER !!	1			Site 110	Focused RI Grou	undwater Sa	mple Results
	0	85 170)	34	0			20000	131000 11100	0 121000					and the			,
Cyalide, Total 200 3710 4310 Date of Actual: November 0, 2020 301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560					Feet		nide, Total	200	5710 4530	4310			Date of Ae	erial: Novem	ber 8, 2020 PARS			

Document Path: \\nysyr04fs01\PrjData\GIS\Hon_Syracuse\Tonawanda Coke\MXDs\Site 109 and 110\Rev03 - RI\Tonawanda Site 110 RI Report Fig 25 GW Samples_Rev3.mxd

MW-2

	M	W1	3-8
	-	AL D	
har			

	Class GA		
	Groundwater		
MR-3R-89	Quality SCG	10/18/1989	12/13/1989
Volatiles		-	
1,1,1-Trichloroethane	5	11.4	12.2
Benzene	1	2.41	2.08
Methylene Chloride	5	NA	6.96
Semivolatiles			
2-Chloronaphthalene	10	16.7	9.34
Acenaphthene	20	55.5 J	34.2
Anthracene	50	55.0 J	12.9
Benzo(a)anthracene	0.002	52.7 J	3 U
Benzo(a)pyrene	ND	28.8 J	3 U
Benzo(b)fluoranthene	0.002	49.2 J	3 U
Benzo(k)fluoranthene	0.002	49.2 J	3 U
Chrysene	0.002	32.6 J	3 U
Fluoranthene	50	90.9 J	12.9
Fluorene	50	124 J	61.2
Naphthalene	10	459 J	404
Phenanthrene	50	264 J	76.8
Pyrene	50	69.3 J	8.21

MW3R-89

Historical Monitoring Well Location

Site Boundary

85

Property Boundary

170

MW-3

340

Feet

			and the second second	Contraction of the second second second second second second second second second second second second second s	THIS LAND AND A DOWN	AND A REAL PROPERTY OF THE REA	
MW-2	Class GA Groundwater Quality SCG	11/1/1985		6/28/1989 (Total)	6/28/89 (Dissolved)	10/11/1989	
Metals	Quantif 0000	11/1/1900	9, 4, 1988	(Total)	(Discontex)	10/11/1909	
Iron	300	NA	NA	6130	15800	NA	
Manganese	300	NA	NA	801	1510	NA	
Cyanide							
Cyanide, Total	200	740	500	230	NA	620	

		Class GA					
		Groundwater			6/28/1989	6/28/1989	
	MW-3	Quality SCG	11/1/1985	8/1/1986	(Total)	(Dissolved)	10/18/1989
	Metals					-	
	Iron	300	NA	NA	3300	2700	NA
	Manganese	300	NA	NA	1070	1050	NA
	Sodium	20000	NA	NA	29500	28900	NA
1	Cyanide					-	
	Cyanide, Total	200	196	120	79.6	NA	220
	Volatiles					-	
	1,1,1-Trichloroethane	5	NA	NA	7	NA	12.2
	1,4-Dichlorobenzene	3	NA	29	ND	NA	ND
	Benzene	1	84	6.7	5 U	NA	2.71 J
	Chlorobenzene	5	NA	22	ND	NA	ND
	m-xylene	5	62	NA	ND	NA	NA
	o-xylene	5	36	NA	ND	NA	NA
	p-xylene	5	19	NA	ND	NA	NA
	Toluene	5	59	11	5 U	NA	1.0 U
	Semivolatiles						
	Acenaphthene	20	59	41 U	10 U	NA	19.2
	Anthracene	50	173	45 U	10 U	NA	17.1
	Benzo(a)pyrene	ND	95	43 U	10 U	NA	3 U
	Benzo(b)fluoranthene	0.002	660 U	44 U	15	NA	3 U
	Benzo(k)fluoranthene	0.002	990 U	29 U	15	NA	3 U
	Chrysene	0.002	9	43 U	10 U	NA	3 U
	Fluoranthene	50	400	37	34	NA	21.3
	Fluorene	50	99	110	45	NA	112
	Indeno(1,2,3-cd)pyrene	0.002	95	53 U	NA	NA	3 U
	Naphthalene	10	4540	77 U	73	NA	3 U
	Phenanthrene	50	1100	45 U	29	NA	148
	Pyrene	50	302	21 U	21	NA	11.2
	AND SALANS	No. And And And			A THE REAL	11 × 15	AP CATE OF GRAD
		A REAL PROPERTY AND A REAL				A DESCRIPTION OF THE PARTY OF T	

Date of Aerial: November 8, 2020

 \bullet

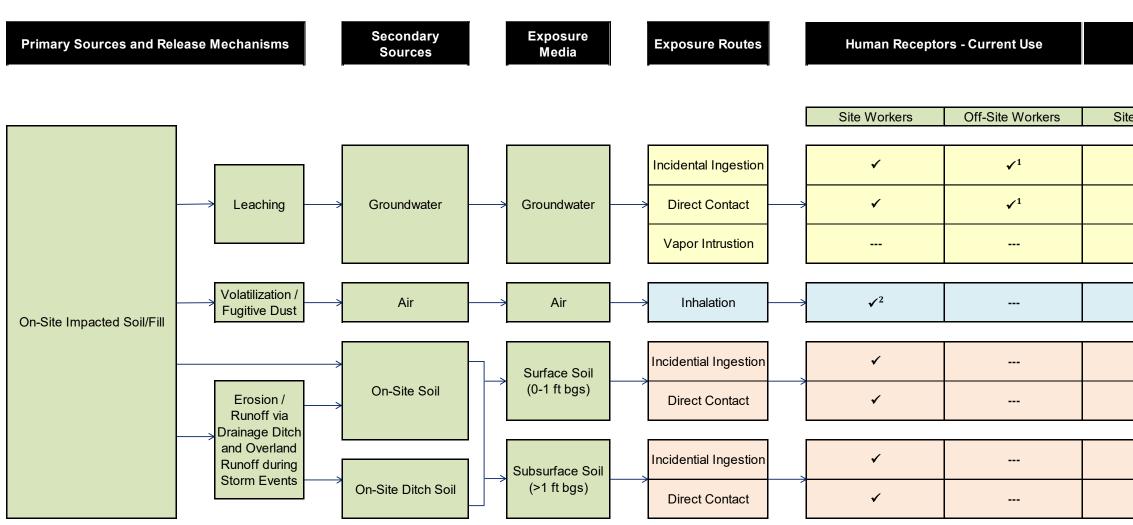
0

Notes:

1. Only compounds exceeding SCGs are shown.

- 2. U Compound not detected at provided detection limit
- 3. J Estimated at given value
- 4. ND Compound not detected, detection limit not available
- 5. NA Compound not analyzed 6. Results are presented in ug/L

7. Results are compared to NYSDEC Class GA Groundwater Quality Standards and Guidance Values under TOGS 1.1.1 8. Shaded values indicate concentrations in excess of NYSDEC Class GA Groundwater Quality Standards and Guidance Values under TOGS 1.1.1


Figure 26

Honeywell

Tonawanda Coke Sites 109 and 110 Tonawanda, New York

Site 110 Historical Groundwater Sample Results

PARSONS 301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

Notes:

bgs - below ground surface

 \rightarrow = Direct Pathway

Groundwater is not currently used at the site or at adjacent offsite areas due to extensive urban development and environmental easements, and is not anticipated to be used in the future. For these reasons, a drinking water pathway was not identified as a current or future exposure pathway.

1 Exposures for off-site workers applicable to Site 110 only

2 Potential exposures due to volatilization applicable to Site 110 only

 \checkmark = Complete or potentially complete human health exposure

--- = Exposure pathway not complete for the indicated receptor

Human Receptors - Future Use

e Workers	Office Employees	Off-Site Workers					
*		✓1					
✓		✓1					
	\checkmark^1						
√ ²	√ ²						
*							
~							
		-					
✓							
~							
pathway or							

Fig	Figure 27					
Honeywell	Tonawanda Coke Sites 109 and 110 Tonawanda, New York					
Qualitative Human Health Exposure Assessment						
PARSONS 301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560						