The electronic version of this file/report should have the file name:

Type of document. Spill Number. Year-Month. File Year-Year or Report name.pdf

letter. - .<u>File spillfile</u>.pdf

report. hu915056 . 1992 -11-01. SUPPLEMENTAL .pdf
INVESTIGATION RESULTS

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw

Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

SUPPLEMENTAL INVESTIGATION RESULTS STILL DISCHARGE AREA

Envirotek II Site

Tonawanda, New York

November 1992

BLASLAND & BOUCK ENGINEERS, P.C.
BLASLAND, BOUCK & LEE

ENGINEERS & GEOSCIENTISTS

Ēu.

REPORT

SUPPLEMENTAL INVESTIGATION RESULTS STILL DISCHARGE AREA

ENVIROTEK II SITE TONAWANDA, NEW YORK

NOVEMBER 1992

BLASLAND & BOUCK ENGINEERS, P.C. 6723 TOWPATH ROAD SYRACUSE, NEW YORK 13214

TABLE OF CONTENTS

		<u>Page</u>
EXECUTIV	E SUMMARY	i
SECTION	1 - INTRODUCTION	
1.2	General Background I n vestigation Objectives	1-1 1-1 1-5
SECTION	2 - INVESTIGATION ACTIVITIES	
2.1 2.2 2.3 2.4 2.5	Soil Boring Program Recovery Well Installation and Development	2-1 2-1 2-4 2-6 2-7
SECTION	3 - INVESTIGATION FINDINGS	
3.3 3.4	ı	3-1 3-1 3-3 3-4 3-5
SECTION	4 - CONCLUSIONS	
4.1	Ge neral	4-1
TABLES		
2 Sum 3 Sum 4 Sum 5 Sum	imary of Ground-Water Elevation Measurements imary of Volatile Organic Analytical Results - Soil Samples imary of Semivolatile Organic Analytical Results - Soil Samples imary of Volatile Organic Analytical Results - Ground-Water Sar imary of Semivolatile Organic Analytical Results - Ground-Water S imary of Field Parameters and Inorganic Analytical Results	mples
FIGURES		
 2 Geo 3 Ground 4 Dist 5 Tota 6 Tota 	Map logic Cross Section A - A' und-Water Elevation Contour Map - May 11, 1992 ribution of Total VOCs in Soil - May 1992 al VOCs Distribution with Depth (0 - 2 feet) al VOCs Distribution with Depth (2 - 4 feet) al VOCs Distribution with Depth (4 - 6 feet)	
APPENDIC	ES	
	ng Logs and Well Construction Details ifer Test Data Summaries	

Laboratory Analytical Reports

EXECUTIVE SUMMARY

The supplemental investigation program was implemented to obtain the information necessary to support an interim Remedial Program for addressing the soil in the still discharge area (SDA) at the Envirotek II Site. Specifically, the components of this investigation were designed to:

- Define horizontal extent of soil requiring remediation;
- Characterize the hydraulic properties of the shallow water bearing materials; and
- Evaluate ground-water and soil conditions below the water table which could effect the implementation of an interim remedial program.

Previous investigation activities in the SDA have included a soil gas survey, a soil boring program, and the installation and testing of a number of monitoring wells in the vicinity of the SDA. The results of the previous investigation activities were presented in the reports "Evaluation of Interim Remedial Alternatives, Still Discharge Area," dated March 1991, and "Results of Sampling Plan, Envirotek II Superfund Site," dated June 1991.

The scope of work for the implementation of these activities included the following components:

- Collection and analysis of soil samples from 14 soil borings to complete the delineation of residual soil contamination in the SDA;
- Installation and development of a recovery well in the SDA;
- Performance of a pump test of the recovery well in the SDA to characterize the hydraulic properties of the shallow water-bearing materials in this area; and

11/13/92

i

 Collection and analysis of ground-water samples from two existing monitoring wells in the SDA (ENV-2 and ENV-3) and from the new recovery well.

The conclusions which may be drawn from the results of the supplemental investigation in conjunction with the results of the previous investigations, include the following:

- The horizontal extent of the soil which has been impacted by the SDA within the water table fluctuation zone appears to be limited based on the progressive attenuation of volatile organic concentrations in the soil samples collected from this area.
- The horizontal extent of observed impacts to the soil within the
 unsaturated zone appear to be even more limited, based on the field
 screening results and the descriptions of materials encountered.
- The extent of residual hydrocarbons in the subsurface were found to extend beyond the limits of the SDA, both upgradient and downgradient of this area. These residual hydrocarbons have been observed to extend vertically from the water table fluctuation zone to the top of the first confining unit in the saturated overburden materials. The identification of residual hydrocarbons within the saturated soil, upgradient as well as downgradient of the SDA, indicates these residual hydrocarbons are part of a wide-spread problem associated with the surrounding Roblin Steel site. These wide-spread residual hydrocarbons do not appear to be related to former Envirotek operations.
- The vertical extent of impacts associated with the SDA were observed to extend below the water table to the top of a silty clay unit identified as forming the base of the snallow water-bearing unit.

- The silty clay confining unit appears to be continuous under the SDA
 and separates a shallow overburden water bearing zone from a deep
 overburden water bearing zone.
- Actions implemented under the interim remedial program to remediate
 the soil within the water table fluctuation zone would be ineffective,
 as the impacted soil within the underlying saturated zone would
 recontaminate this zone.
- As the water table fluctuation zone would not be effectively addressed through the interim remedial program, the purpose of the ground-water recovery system would be limited to counteracting the upwelling of ground water anticipated in association with the possible operation of a vapor extraction system.
- Several important hydrogeologic characteristics of the shallow water-bearing zone of the overburden aquifer have been estimated based on the pump test results including: transmissivity of 8.08 x 10⁻²; storativity of 0.038; and hydraulic conductivity of 3.1 x 10⁻².
- Results of the 2D analytical ground-water flow model confirmed that the anticipated upwelling associated with the operation of a vapor extraction system may be counteracted by pumping from four new 10-inch-diameter wells at 2 gpm each in conjunction with pumping from the existing 6-inch diameter well at 1 gpm.

SECTION 1 - INTRODUCTION

1.1 General

This report presents the results of the supplemental investigation implemented by Blasland & Bouck Engineers, P.C., at the Envirotek II Site located in Tonawanda, New York. This supplemental investigation program was implemented to obtain the information necessary to support an interim Remedial Program for addressing the soil in the still discharge area (SDA) at the Envirotek II Site.

1.2 Background

Previous investigation activities in the SDA have included a soil gas survey, a soil boring program, and the installation and testing of a number of monitoring wells in the vicinity of the SDA. The results of the previous investigation activities were presented in the reports "Evaluation of Interim Remedial Alternatives, Still Discharge Area," dated March 1991, and "Results of Sampling Plan, Envirotek II Superfund Site," dated June 1991.

The results of the soil gas samples collected from the SDA in September 1990 confirmed the presence of volatile organic constituents in the soil vapor. These results were used to assist in designing the subsequent soil boring program.

To further characterize the existing conditions of the soil in the SDA, a soil boring program was performed in October 1990 involving a total of six soil borings (Figure 1). Each boring was continuously sampled from the ground surface to the water table and each sample was screened for relative concentrations of volatile organic constituents. Based on the results of the field observations and Organic Vapor Analyzer (OVA) screening, selected samples were

11/13/92 01926411 analyzed for volatile organics, semivolatile organics, total petroleum hydrocarbons, PCBs, metals, and cyanide.

Four of the six soil samples collected from the zone immediately above the water table (approximately 6 to 8 feet) in the SDA were observed to contain residual hydrocarbons. The samples from this zone also exhibited the highest OVA readings, indicating that volatile compounds are present in association with these residual hydrocarbons.

The results of the volatile organic analyses (USEPA Method 8240) indicate the presence of a number of both chlorinated and aromatic hydrocarbon compounds, including tetrachloroethene, trichloroethene, 1,1,1-trichloroethane, toluene, and xylenes. The dramatic decrease in OVA readings, as well as the laboratory analytical results for boring B-3, suggest that this boring is near the northern horizontal extent of the area impacted by the former still discharge. The analytical results of the samples collected on the western side of the concrete walkway (B-4, B-5, and B-6), as shown on Figure 1, indicate the presence of volatile organics at considerably lower concentrations than the area on the eastern side of the walkway (B-1, B-2, and B-3).

Although no soil borings were performed directly adjacent to the building foundations in this area, the levels of VOCs observed in the samples from borings B-1, B-2, B-3, and B-4 indicated that the soil impacted by VOCs and residual hydrocarbons probably extends beneath the building foundations to the south and east of this area.

Although a number of semivolatile organic compounds were identified at concentrations below their quantitation limits, only one sample from boring B-2 was found to contain semivolatile compounds at concentrations in excess of the quantitation limits of the analytical method. The semivolatile compounds observed with the highest concentrations in this soit sample include pyrene, phenanthrene, bis(2-ethylhexyl)phthalate, and fluoranthene. These base neutral

compounds probably are constituents of the residual hydrocarbons observed in this sample. The results of the PCB analyses indicated no detectable PCBs in any of the samples analyzed. The results of the metals, cyanide, and petroleum hydrocarbon analyses indicate the presence of some metals, including iron, magnesium, and calcium, at slightly higher concentrations than would be typical of naturally occurring levels. However, no background data exists with which to compare these results. There is no indication that these inorganics are related to Envirotek's past solvent recovery operations. The petroleum hydrocarbon analyses indicate the soil in this area contains concentrations of total recoverable petroleum hydrocarbons ranging from 230 mg/kg to 16,800 mg/kg. The highest concentrations of hydrocarbons were detected in the soil samples collected within the zone immediately above the water table. The source of these hydrocarbons has yet to be determined.

The previous investigations to evaluate potential impacts to ground-water quality in the vicinity of the site involved the installation and sampling of six monitoring wells (ENV-1 through ENV-6) in November of 1990, at the locations indicated on Figure 1. These wells include two monitoring wells located in the immediate vicinity of the SDA (ENV-2 and ENV-3). The ground-water samples collected from each of these wells were submitted for Target Compound List (TCL) volatile organics, TCL semivolatile organics, TCL pesticides and polychlorinated biphenyl (PCBs), and Target Analyte List (TAL) metals. The analyses for the inorganics included the analysis of unfiltered and filtered samples from each well to determine total metals and dissolved metals concentrations in the ground water. The presence of a layer of floating separate phase hydrocarbons (SPH) was observed in the well ENV-3 shortly after its installation. In addition, an oity sheen was also observed on the water surface in ENV-2. However, further monitoring of these wells indicated no continuous presence of SPH layer on the water table in this area.

1-3

The results of the volatile organic analyses indicate the presence of a number of VOCs dissolved in the ground water at the site. The observed concentrations of total volatile organics ranged from not detected in both ENV-1 and ENV-6, up to approximately 167 mg/L in ENV-2. This well is located in the immediate vicinity of the former SDA. The volatile constituents present in the highest concentrations in this ground-water sample include tetrachioroethene, trichloroethene, 1,1,1-trichloroethane, and 1,2-dichloroethane. The concentrations of volatile compounds observed in ENV-3, located immediately downgradient of the SDA, were several orders of magnitude lower than those observed in the center of the SDA (ENV-2).

Although the results of the OVA screening performed on the soil samples collected during the dritting of the upgradient monitoring well (ENV-1) suggests the presence of volatile organic constituents in the subsurface soils upgradient of the site, the analytical results of the ground-water sample collected from this well showed no detectable levels of volatile or semivolatile compounds. The results of the semivolatile organic analyses performed on the ground-water samples indicate no detectable levels of semivolatile organics above the Method Quantification Limit in any of the ground-water samples, except the one from ENV-2. The results of the ENV-2 sample show the presence of a number of semivolatiles, including 2-methylphenol, 4-methylphenol, bis(2-ethylhexyl)phthalate, and naphthalene. However, the concentrations of the semivolatiles observed in this sample were limited to the relatively low part per billion concentrations.

A vapor extraction pilot test was also performed in the SDA during October of 1990 to provide data necessary to evaluate the potential effectiveness of a vapor extraction system in remediating the soil in this area. A detailed discussion of the activities performed in connection with this pitot test and the results of this test were originally presented in the Report "Evaluation of Interim Remedial Alternatives, SDA," dated March 1991.

1.3 Investigation Objectives

The overall objective of the supplemental investigation program was to provide the information needed to support the design of an interim remedial program for the SDA. The specific objectives of each component of this investigation include the following:

- To adequately define horizontal extent of soil requiring remediation
 under an interim remedial program;
- To characterize the hydraulic properties of the shallow water bearing materials in this area sufficiently to evaluate the potential for addressing the soil within the water table fluctuation zone with an interim remedial program; and
- To further evaluate ground-water and soil conditions below the water table which could effect the implementation of an interim remediat program.

SECTION 2 - INVESTIGATION ACTIVITIES

2.1 General

This section of the report presents a detailed discussion of the activities performed as part of the supplemental investigation. The scope of activities performed was in accordance with the Conceptual Interim Remedial Program Work Plan, dated December 1991. The scope of work for the implementation of these activities included the following components:

- Implementation of a soil boring program to complete the defineation

 of residual soil contamination in the SDA:
- Installation and development of a recovery well in the SDA;
- Performance of a pump test of the recovery well in the SDA to characterize the hydraulic properties of the shallow water-bearing materials in this area; and
- Collection and analysis of ground-water samples from two existing monitoring wells in the SDA (ENV-2 and ENV-3) and from the new recovery well.

The work performed for each of these tasks are detailed below.

2.2 Soil Boring Program

A total of 14 new soil borings (B-7 through B-20) were completed at the Envirotek II site between May 12 and 14, 1992. The location of each new boring is indicated on Figure 1. The figure also indicates the locations of six existing soil borings in the SDA and six previously drilled monitoring wells. The soil borings were drilled by Empire Soils Investigations, Inc. The borehote at each location was advanced using a Mobile CME-55 truck-mounted drill rig, equipped with 2 1/2-inch-I.D. hollow-stem augers.

2-1

Each boring was continuously sampled from the ground surface to the bottom of the borehole, except B-18, B-19, and B-20. In boring B-18, continuous samples were taken for the first 10 feet and then increased to 5-foot intervals to the bottom of the borehole. Borings B-19 and B-20 were sampled at 5-foot intervals from the ground surface to the bottom of the borehole. All soil samples were obtained with standard 2-inch O.D., 2-foot-long split-spoon samplers driven with a 140-lb. hammer falling 30-inches in accordance with ASTM D-1586. To insure sample integrity, the split-spoon samplers were decontaminated prior to each use by washing with a detergent solution, then rinsing sequentially with distilled water, 10 percent methanol solution, 10 percent nitric acid solution and triple rinsing with distilled water. Each sampler was allowed to air dry prior to use.

Upon retrieval of each sptit-spoon sampler, a representative sample was placed directly into two separate laboratory-provided sample containers for possible laboratory analysis (a small container for VOCs and a larger for semivolatile organic compounds). No soil sample was submitted for analysis from B-18, B-19, and B-20. A second representative portion of each sample was placed into a clean jar covered with aluminum foil and left standing for at least five minutes to allow volatile organics present in the soil to volatilize into the head space of the jar. A Photovac MicroTip meter equipped with a 11.7 eV probe (MicroTip) calibrated using a 1:1 ratio of 99.7 parts per million isobutylene at span setting 2.90 was then used to screen each sample for relative concentrations of volatile organic constituents by inserting the probe of the MicroTip through the aluminum foil and directly reading the maximum concentration from the field instrument. Each sample collected was also visually inspected in the field to determine the color, grain size, classification, and moisture content of the materials encountered. This information was recorded on logs that were maintained for each borehole. Any evidence of contamination (i.e., staining, odor, etc.) was also recorded on the boring log. The boring logs are presented in Appendix A.

All downhole equipment and associated drilling equipment, including augers, drill rods, auger plugs, and other equipment, were decontaminated prior to the start of each borehole. The equipment was decontaminated by high pressure hot water (i.e., steam cleaning).

The boring program involved the drilling of four lines of boring radiating out from the SDA. In an effort to expeditiously delineate the extent of residual soil contamination, the first boring performed in each line of borings was drilled approximately 40 feet from the center of the SDA. Additional borings were performed if evidence of impacts associated with the SDA (i.e. staining or electrical organic vapor concentrations) were found at the previous boring location.

Based on the results of the field observations and MicroTip screening, one sample was selected from each borehole for laboratory analysis. The samples that were selected were analyzed for VOCs and semivolatile organic compounds. The samples selected for laboratory analysis include five samples that were obtained at or above the water table and six samples that were obtained below the water table. Residual hydrocarbons were observed within the water table fluctuation zone in seven of the eight borings to the east and all of the borings to the east. None of the borings to the south were observed to contain residual hydrocarbons. The residual hydrocarbons observed in the borings located east of the SDA (B-7, B-8, B-9, B-10, B-11, B-12, and B-17) appeared brown to black. However, only the borings located close to the SDA exhibited the high MicroTip readings, indicating that concentrations of volatile compounds are dissolved in the residual hydrocarbons in the immediate vicinity of the SDA. The residual hydrocarbons in the west borings (B-15 and B-16) were black and only B-15 had high MicroTip readings. There were no evidence of residual hydrocarbons observed in the two borings (B-13 and B-14) dritted in building 53, but these locations did exhibit MicroTip readings during field screening.

The **findings** from the shallow borings are generally consistent with the past investigations. However, to classify the deeper soils and determine the depth to bedrock, borehole B-18 was extended vertically to the top of bedrock. At a depth of approximately 20 feet, a confining layer of very dense clay and silt was encountered and the MicroTip readings dropped to zero. This tayer extended to a depth of 26 feet where this tayer started grading into a coarser material. In response to this finding, soil borings B-19 and B-20 were drilled to the northwest of the SDA to determine whether this confining layer extends beneath the SDA. The clay layer was observed in both B-19 and B-20 at approximately 15 feet below ground surface. Evidence of a dense oily material was observed in the water column on top of the clay layer in both soil borings. Because of the concern of possibly creating a downward pathway for the dense oil to follow, the clay layer was not penetrated. It was observed that the oily materials at the top of the clay saturated the top inch or so of the clay.

To illustrate the approximate thickness and sequence of the various materials encountered in the subsurface in the vicinity of the still discharge area a geologic cross section was prepared (Figure 2). This cross section was based on the available boring logs and extends from the southeast (B-18) to the northwest (B-19).

2.3 Recovery Well Installation and Development

A recovery well (RW-1) was completed in the SDA on May 15, 1992. The location of the recovery well is indicated on Figure 1. The recovery well was completed by Empire Soils Investigations, Inc., with a CME-55 truck-mounted drill rig equipped with 8 1/4-inch-I.D. hollow-stem augers. The boring was continuously sampled from the ground surface to the top of the clay confining

layer also encountered in 8-18, 8-19, and 8-20. The soil samples were obtained with standard 2-inch-I.D., 2-foot long split-spoon samplers driven with a 140-lb. hammer with a 30-inch fall in accordance with ASTM D-1586. The split-spoon samplers were decontaminated prior to each use by washing with detergent solution, then rinsed sequentially with distilled water, 10 percent methanol solution, 10 percent nitric acid solution, and triple rinsing with distilled water. A representative portion of each sample was placed into a clean jar, covered with aluminum foil, and left standing for at teast five minutes to allow volatile organics present in the soil to volatilize into the head space of the jar. An MicroTip reading was taken by inserting the probe of the MicroTip through the foil and directly monitoring the head space in the jar. Each sample was also visually inspected in the field to determine the color, grain size, classification, and moisture content of the materials encountered. The boring tog for recovery well RW-1 is presented in Appendix A.

The original scope of the supplemental investigation anticipated installation of the recovery well such that the screened interval would extend from above the water table to the top of the glacial till, which was believed to form the base of the overburden in this vicinity. However, due to the presence of a sitty clay unit that appears to separate the overburden into shallow and deep zones and the apparent presence of a dense oily material at the top of this shallow confining unit, the recovery well was screened only to the top of the first apparent confining unit. Care was taken not to penetrate the confining layer.

The borehole was completed as an overburden recovery well through the installation of 15 feet of 0.010 slot. 6-inch, stainless steel, wire-wound, threaded, flush joint well screen. The well column was completed with 5 feet of solid, stainless steel-threaded, flush joint riser pipe to above grade. A #0 graded sand pack was installed from the bottom of the well column to 2 feet below ground surface. A one-foot hydrated seal was placed from 1 to 2 feet below

ground surface. The remaining foot was filled with grout consisting of two 94lb. bags of Type I Portland cement and approximately 12 gallons of water.

Upon completion, the recovery well (RW-1) was developed to improve hydraulic communication between the well and the surrounding aquifer formation. The development methodology involved the use of the mud pump on the rig owned by Empire Soils Investigations, Inc., and a steel block used to surge the water in and out of the screened interval. Well development continued until five well volumes of water were extracted from the well and the turbidity levels of the ground water showed no noticeable improvement. The water removed from the well during development was contained in 55-gallon drums and stored on site for future disposal.

2.4 Aquifer Testing Activities

A pump test was conducted on the new recovery well (RW-1) on May 19 and 20, 1992, to further characterize the hydrogeologic properties of the water table aquifer.

A brief step-test was conducted to determine an appropriate rate of ground-water withdrawal at which a constant rate pump test may be preformed. It was determined that a rate of approximately 0.80 gallons per minute would accomplish the appropriate drawdown results. Therefore, the eight hour pump test was performed at a pumping rate of 0.83 gallons per minute. Prior to initiating the test, a round of static water level measurements were recorded for each of the existing wells at the site. Pressure transducers and a data logger were used to automatically record water level changes within the test well (RW-1) and the nearest observation well (ENV-2) throughout the duration of the pump test. The recovery of water levels in these wells were also recorded following the end of the pump test. Water levels were also manually measured in each of the on-site monitoring wells periodically through the test. However, no

drawdown of the water table was observed in any of the other monitoring wells at the site.

2.5 Ground-Water Sampling Activities

To further evaluate the characteristics of the water that would be handled by any ground-water treatment system, two samples were collected from the recovery well (RW-1) during the pump test. One sample was collected directly from the well, and the other was collected from the pump discharge hose. A water sample was also collected from the two previously installed monitoring wells in the SDA (ENV-2 and ENV-3). All the samples were analyzed for VOCs, semivolatile organic compounds, calcium, iron, magnesium, manganese, total dissolved solids, total suspended solids, and pH.

To confirm our previous understanding regarding the direction of ground-water flow under static conditions, a complete round of water levels was measured in the existing wells at this site. These water level measurements are summarized on Table 1. This table also presents two previous rounds of water level data for this site. A comparison of these data suggest that ground-water elevations appear to vary less than one foot seasonally at this site. A ground-water elevation contour map based on the latest water level data is presented as Figure 3. This figure shows the direction of ground-water flow in the vicinity of the SDA is generally toward the west, in the direction of the Niagara River.

SECTION 3 - INVESTIGATION FINDINGS

3.1 General

This section presents the results of the supplemental investigation activities. The data generated through the performance of the supplemental investigation activities includes: visual observations and field screening results of the soil samples collected during the soil boring program; analytical data of the selected soil samples submitted for laboratory analysis; data regarding the geologic conditions in the subsurface in the vicinity of the SDA; data related to the hydrogeologic characteristics of the shallow aquifer in the SDA; and water quality data relevant to the ground water which may be recovered as part of the interim remedial program. The data obtained through the implementation of each component of the supplemental investigation are presented below.

3.2 Results of the Soil Boring Program

The soil boring program implemented in connection with this investigation involved the drilling of 14 borings (B-7 through B-20). The primary purpose of these borings was to further define the extent of impacted soil associated with the SDA. In addition, these boring have provided further insight into the subsurface conditions in the site vicinity.

The visual observations of the materials encountered in each soil boring are described in detail within the boring logs presented in Appendix A. These boring logs also include the results of the field screening performed for each soil sample collected during the boring program. The visual observations of dark staining and oily sheens within the soil samples collected from the water table fluctuation zone at all but three of the boring locations (B-13, B-14, and B-18) indicate the presence of residual hydrocarbons that are present beyond the limits of the SDA. The two porings which extended vertically through the

11/13/92 0192641U saturated zone to the top of the first apparent confining unit downgradient of the SDA (B-19 and B-20) were observed to have dark staining and oily sheens associated with the soil from the water table to the top of this apparent confining unit. The cross section, presented as Figure 2, also illustrates our revised understanding as to the extent of residual hydrocarbons in the subsurface based on these supplemental investigation results.

One soil sample was selected from each of the soil borings to be submitted for analysis of volatile and semivolatile organic compounds. results of the volatile organic analyses are summarized on Table 2. A complete set of the laboratory analytical reports are presented in Appendix C. The results of the volatile organic analyses confirm the limited horizontal extent of the VOCs within the soil in the vicinity of the SDA. The analytical results of the soil samples collected furthest away from the SDA toward the northeast (B-17), southeast (B-12), south (B-13), and west (B-16) all show that VOCs are being This attenuation of VOC concentrations is illustrated toward the northeast by the decrease in total VOC concentrations from 1144 ug/kg in B-8 to 161 ug/kg in B-17. Similarly, the total concentration of VQCs decreased toward the southeast from 14,420 ug/kg in B-11 to 4364 ug/kg in B-12. Comparable decreases in VOC concentrations were also observed toward the south and west. The attenuation of VOCs, as indicated by the soil sample analytical results are illustrated on Figure 4. The results of the field screening of soil samples for their relative concentrations of VOCs also indicate the attenuation of VOCs horizontally away from the center of the SDA. The lack of significant VOC concentrations associated with the more wide spread residual hydrocarbons observed at the site suggest that these residual hydrocarbons are not associated with the SDA. A review of the VOC field screening results and the description of the soil encountered in each boring indicate that the extent of soil that has been impacted by the SDA above the water table fluctuation

zone is even more limited. The apparent distribution of VOCs, based on this field screening data, in the unsaturated soil zones from 0 to 2, 2 to 4, and 4 to 6 feet below the ground surface is illustrated on Figures 5, 6, and 7 respectively.

The results of the semivolatile organic analyses performed on the soil samples submitted to the laboratory from the soil boring program are summarized on Table 3. The analytical results indicate the presence of a number of semivolatile organic compounds in the soil at several locations. The compounds with the highest concentrations include naphthalene, phenanthrene, anthracene, and di-n-butylphthalate. However, none of these compounds were detected at concentrations exceeding the sample quantification limit, with the exception of 4.2 ppm of anthracene detected in the sample from boring B-8.

3.3 Evaluation of Pump Test Results

The data generated through the performance of the constant rate pump test on RW-1 includes ground-water drawdown measurements recorded for the pumped well. Drawdown measurements were also obtained for monitoring well ENV-2, which is located within 25 feet of the pumped well. Although water level measurements were recorded for each of the other monitoring wells at this site, no measurable drawdown was observed in any of these wells. Tables summarizing the drawdown data from RW-1 and ENV-2 are presented in Appendix B. A graph of the drawdown measurements verses time is also presented in the this appendix.

A review of the drawdown data from the pumped well indicates that a barrier boundary resulted in a significantly increased rate of drawdown after several hundred minutes of pumping. The data from the pumped well also appear to have been impacted by slight variations in pumping rate over the course of the test. To avoid concerns regarding the influence of minor pumping

rate variations and/or inefficiencies of the pumped well, the drawdown data from the observation well ENV-2 were used with Jacob's straight-line method to calculate estimates of the transmissivity and storativity of the shallow water-bearing unit at the site. In time-drawdown analysis, time is plotted semilogarithmically with respect to the drawdown observed at a single observation well. The data should ideally define a straight line whose slope is proportional to transmissivity, according to the following equation:

T = 264 Q / delta s.

where:

T = Transmissivity

Q = Pumping Rate

Delta s = drawdown of water level over one log cycle.

The time-drawdown plot using the data from ENV-2 indicate an increased rate of drawdown beginning several hundred minutes into the test. This effect is probably caused by a barrier boundary of some kind in the site vicinity. A best-fit line through the data points was selected and the resulting delta s value of 0.038 was obtained from the plot.

The transmissivity of the shallow water-bearing unit is estimated to be approximately 8.08×10^{-2} cm²/sec and the storativity was estimated to be approximately 0.038. Given a saturated thickness for the shallow water-bearing unit of about 8.5 feet, the hydraulic conductivity of this unit is approximately 3.1×10^{-2} cm/sec.

3.4 Analysis of Ground-Water Depression Requirements

The aquifer parameters calculated above were used as the basis for developing the preliminary design parameters for a ground-water recovery system capable of counteracting the ground-water upwelling anticipated in connection

with the use of a vapor extraction system. The design parameters that need to be defined include the number, location, and size of the recovery wells, as well as the pumping rate at which each must be operated to accomplish the above stated objective.

As approximately 18 inches of upwelling would be anticipated, the maximum drawdown capability of the recovery wells must sufficiently exceed this to allow the average drawdown achieved across the area of concern to be approximately 18 inches. The maximum theoretical drawdown of recovery wells of various diameters was calculated using Kozeny's Equation. This indicated that a 10-inch-diameter well would be required to produce a drawdown of approximately 2.5 feet, whereas, the newty installed 6-inch-diameter recovery well has a maximum theoretical drawdown of 1.7 feet. The estimated pumping rates that would be anticipated based on Kozeny's equation then had to be adjusted to account for interference effects of multiple pumping wells.

An analytical 2D ground-water flow model ("Quickflow," Geraghty & Miller, 1991) was then used to confirm that the pumping of four new 10-inch-diameter recovery wells at a rate of 2 gpm in conjunction with the pumping of the existing 6-inch-diameter recovery well at a rate of 1 gpm would achieve the desired effect of depressing the water table across the area of interest by approximately 1.5 feet.

3.5 Ground-Water Quality Results

Ground-water samples were collected from the recovery well during the pump test to provide information regarding the possible constituent loading anticipated for any ground-water treatment system. Ground-water samples were also collected from the monitoring wells in the SDA (ENV-2 and ENV-3) to confirm our understanding of ground-water quality in this vicinity. Each of these water samples was analyzed for volatile organic and semivolatile organic

compounds as well as for selected inorganics. The analytical results of the ground-water samples collected during the supplemental investigation are summarized on Tables 4, 5, and 6. A complete set of the laboratory analytical reports is presented in Appendix C.

The results of the volatile organic analyses (Table 4) indicate the presence of several volatile compounds in each of the ground-water samples. The concentrations of the volatile compounds detected in the two samples collected from the recovery well RW-1 at two different times during the pump test are very similar. Therefore, an average of these concentrations may be used to anticipate the likely loading for the ground-water treatment system. The results of the semivolatile organic analyses (Table 5) indicate that only trace concentrations of a few compounds are present in the ground water. This would suggest that the semivolatile compounds detected in the soil samples are not significantly leachable to the ground water. The results of the inorganic analyses are summarized on Table 6. These results would also be used to assist in the design of any ground-water treatment system, should it be necessary.

SECTION 4 - CONCLUSIONS

4.1 General

This section of the report presents the conclusions drawn from the results of this supplemental investigation.

- The horizontal extent of the soil which has been impacted by the SDA within the water table fluctuation zone appears to be limited based on the progressive attenuation of volatile organic concentrations in the soil samples collected from this area.
- The horizontal extent of observed impacts to the soil within the
 unsaturated zone appear to be even more limited, based on the field
 screening results and the descriptions of materials encountered.
- The extent of residual hydrocarbons in the subsurface were found to extend beyond the limits of the SDA, both upgradient and downgradient of this area. These residual hydrocarbons have been observed to extend vertically from the water table fluctuation zone to the top of the first confining unit in the saturated overburden materials. The identification of residual hydrocarbons within the saturated soil, upgradient as well as downgradient of the SDA indicates these residual hydrocarbons are part of a wide-spread problem associated with the surrounding Roblin Steel site. These wide-spread residual hydrocarbons do not appear to be related to former Envirotek operations.
- The vertical extent of impacts associated with the SDA were observed to extend from the water table to the top of a silty clay unit identified as forming the base of the shallow water-bearing unit.
- The silty clay confining unit appears to be continuous under the SDA
 and separates a shallow overburden water bearing zone from a deep

11/13/92 0192641J overburden water bearing zone. It should be noted necessary precautions (i.e., reducing the depth of the proposed recovery well) have been taken as not to compromise the integrity of this unit.

- Actions implemented under the interim remedial program to remediate
 the soil within the water table fluctuation zone would be ineffective,
 as the impacted soil within the underlying saturated zone would
 recontaminate this zone.
- As the water table fluctuation zone would not be effectively addressed
 through the interim remedial program, the purpose of the ground-water
 recovery system would be limited to counteracting the upwelling of
 ground water anticipated in association with the possible operation of
 a vapor extraction system.
- Several important hydrogeologic characteristics of the shallow water-bearing zone of the overburden aquifer have been estimated based on the pump test results including: transmissivity of 8.08 x 10⁻²; storativity of 0.038; and hydraulic conductivity of 3.1 x 10⁻².
- Results of the 2D analytical ground-water flow model confirmed that the anticipated upwelling associated with the proposed operation of the vapor extraction system may be counteracted by pumping from four new 10-inch-diameter wells at 2 gpm each in conjunction with pumping from the existing 6-inch diameter well at 1 gpm.

Tables

ENVIROTEK II SITE TONAWANDA, NEW YORK

SUMMARY OF GROUND-WATER ELEVATION MEASUREMENTS

WellID	Reference Elevation*	Novemb Depth to Ground Water	er 19, 1990 Ground-Water Elevation in Feet	Januar Depth to Ground Water	y 21, 1991 Ground—Water Elevation in Feet	May Depth to Ground Water	11, 1992 Ground-Water Elevation in Feet
ENV-1	579.49	6. 58	572.91	5.96	57 3.53	6.41	57 3.08
ENV-2	582.94	11. 89	57 1.05	11.19	57 1.75	1 1.26	57 1. 6 8
ENV-3	582.59	11.38	571.21	10.40	57 2.19	10.64	57 1.95
ENV-4	581.55	12.14	570.41	10.61	<i>5</i> 71.94	10.67	57 1.88
ENV-5	581.38	10.95	57 0.43	9.50	57 1.88	9.48	57 1.90
ENV-6	582,03	13.40	568.63	10.21	57 1.82	10.19	57 1.84
 GW-1	576.80	6. 63	570.17	6.15	57 0.65	6.26	57 0.54
GW-2	582.01	13.11	568.90	12.24	56 9.77	12.24	569.77
с w−з	578.45 **	9.86	568.59	8.72	569.73	8.87	56 9.58
GW-4	576.44 **	10.32	586.12	9 .68	566 .76	9.92	56 6.52
GW-5	574.22 **	8.43	565.79	7.86	566 .36	8.18	56 6.04
,GW-6	573.96 **	6.80	567 .16	6.24	567,72	6.20	56 7.76
GW-7	581.96 **	12.35	569,61	11.48	57 0.48	11.58	57 0.38

^{* =} Measuring point elevation. Measuring point is top of inner easing (PVC).

** = Reference elevations of these existing wells were adjusted based on difference in previous and current elevation measurements for GW-1 and GW-2.

ENVIROTEK II SITE TONAWANDA, NEW YORK

SUMMARY OF VOLATILE ORGANIC ANALYTICAL RESULTS SOIL SAMPLES

MAY 1992

				ELTISEL					unica:					
0 1.15		B~8	RTHEAST B-9	B 17	B 10	SOUTHEAST B-11	⊇n 1n -	B-13	HWEST B-14	₩E B~15	SI B−16	FIELD	TRIP	TRIP
Sample I.D.: Soil Depth: Date:	B-7 (6-8)	(8-10)	(8-10)	(8-10)	(6-8)	(8 - 10)	(8-10)	(6-8)	(6-8)	(6-8)	(8 – 10)	BLANK	BLANK (5-13)	BLANK (5-13)
Date.					11		3	Ш		L			(0)	<u> </u>
Compound:														
Chloromethane														
Bromomethane				144.44	*·-		~							
Vinyl Chloride														
Chloroethane	ł													
Methylene Chloride	16 J	8 J	280 J	5 J	330 BJ	250 BJ	18 J		300 BJ	260 JB			2 J	1
Acetone	120 B	200 B		130 B	140 B	·• ·					- -		7 J	
Carbon Disulfide				26 J							— —			
1,1 - Dichloroethene														
1.1 – Dichloroethane		17 J	390 J		28 J		16 J			- -				
1,2Dichloroethene(total)	12 J				53	370 J	150	370 J	320 J					-
Chiloroform			***	pre					•• ••			** ***		
1.2 - Dichlorethane	***	~	46 m.	-	44.44	***	-				·= -	*** ***	94 . Av.	
-Butinone		***	***	***		***	***		670 J		***	** ***	-	
1,1,1-Trichlorethane	140	340	***		1600	600 J	270			660 J				
Carbon Tetrachloride														
Bromodichloromethane														
1,2 - Dichloropropane									Ann. No.					
cis~1,3~Dichloropropene					***									
Trichloroethene	54	100			740 J	1200	310	550 J	740 J	780		~ -		
Dibromochloromethane	54	100			740 0	1200	310		7400	700				
1,1,2~Trichloroethane					~~									
r, r,2= i richioroginane Benzene	1				6 J									
	~~													
rans⊸1,3⊶Dichtoropropene Bromoform														

l → Methyl → 2 → Pent anone 2 → Hexanone	li .													
					 740 l	40000	7500	2000	5000 	8300				
etrachloroethene	230	39			740 J	12000	3600	2800	6000					
I,1,2,2 - Tetrachloroethane														
oluene									•• ••	820				
Chlorobenzene		***			***	* **	→ ₩			***				
Ethylbenzene	11 J	170								550 J	91 J		-	
Styrene								-					**	
Total Xylenes	29 J	270								8500		**		
Total VOCs	612	1144	670	161	3637	14420	4364	3720	8030	19870	91		9	

1 of 1

Notes:

All concentrations reported in ug/kg (ppb)

- J Compound determined to be present at an estimated value less than the minimum detection limit.
- B Compound determined to be present in the blanks as well as in the sample.
- D Compounds identified in an analysis at a secondary dilution factor.

ENVIROTEKII TONAWANDA, NEW YORK

SUMMARY OF SEMIVOLATILE ORGANIC **ANALYTICAL RESULTS**SOIL SAMPLES

MAY 1992

	······································	NORTREAST					SOUTHEAST						
BORING LD.	B-7 ·		B-8	B-8	B-8	8-9	8-17	B-10	··· 8-10	B-11	B-11	B-12	B-12 RE
DEPTH SAMPLED	(6-8)	AE (6-8)	(8-10)	RE {8-10}	(8-10)	RE (8-10)	(8-10)	(6+8)	RE (6-8)	(810)	FÆ (810)	(8-10)	(8-10)
Compounds											-		
Phenol							!						
bis(2-Chloroethyl) ether													
2-Chlorophenol							1						
1,3-Dichlorobenzene / 1,4-Dichlorobenzene													
Benzyl alcohol													
1,2-Dichlorobenzene													
2-Methylphenol													
bis(2-Chloroisopropyl) ethe													
4-Methylphenol													
N-Nitroso-di-n-propylar Haxachloroethane													
Nitrobenzene													
Isophomne				1600 J									
2-Nitrophenal													
2.4-Dimethylphenol													
Benzoic acid							- -						
 bis(2-Chloroethoxy) methat 2,4-Dichlorophenol 	- <u>-</u>												
1,2,4-Dichiorophenoi													
Naphthalene													
4-Chioroaniline										- -			
Hexachlorobutadiene													
4-Chloro-3-methylpheno													
2-Methylnaphthalene				3100 J									
Hexachlorocyclopentadiens 2,4,6—Trichlorophenol			~-										
2,4,5—Trichlorophenol	- -												
2-Chloronaphthalene													
2-Nitroanilina													
Dimethylphthalate													
Acenaphthylene 3-Nitroaniline													
Acanaphthene													
2,4-Dinitrophenol													
4-Nitrophenal													
Dibenzofuran			+-	710 J									
2,4-Dinitrotoluene													
2,6 - Dinitrotoluene Diethylphthalate													
4-chlorophenyl-phenyleth			~-										
Fluorene				1000 J									
4-Nitroaniline													
4.6-Dinitro-2-methylpher				140 0 J									
N-Ntrosodiphenylamine (1 : 4-Bromophenyl-phenylet)													
: 4-Bromophenyl-phenylet : Haxachlorobenzene													
Pentachlorophenoi													
Phenanthrene		→	500 0 J	4100 J									
Anthracene				4200									
Di-n-butylphthalate				630 J	6000 J	710 J		53 0 J		500 J	840 BJ		
Flouranthene Pyrene	- -			480 J 420 J		1700 J 1900 J							
Butylbenzylphhtalate	- -			420 J		19 0 0 J							
Benzo(a)anthracene				1400 J									
bis(2-Ethylhexyl)phthalate	~-												
Chrysene				1600 J		2100 J							
DI-n-octylphthalate		~-											
Benzo(b)flouranthene Benzo(k)flouranthene													
Benzo(a)pyrene	- -												
indeno(1,2,3-cd) pyrene						2100 J							
Dibenzo(a,h)anthracene													
Benzo(g,h,) perylene													

TABLE 3 (Cont'd.) ENVIROTEKII TONAWANDA, NEW YORK

SUMMARY OF SEMIVOLATILE ORGANIC ANALYTICAL RESULTS SOIL SAMPLES

MAY 1992

S OU THWEST WEST T										
	SQUIF	MED!		WEST						
BORING I.D.	8-13	8-14	B-15	B15 . RE	B-16	FIELD BLANK	TRIP BLANK	TRIP BLANK		
DEPTH SAMPLED	(6-8)	(6- 8)	(6-8)	(6-8)	(8-10)		55411	CLA		
0										
Compounds Phenol						:				
bls(2-Chioroethyl) ether						i				
2-Chlorophenol										
1,3-Dichlorobenzene										
1,4-Dichioroberzene	- -					·				
Benzyl alcohol 1.2-Dichlorobenzana						 				
2-Methylphenol							==			
bis(2-Chloroisopropyi) ethe	- -									
4-Methylphenol										
N-Nitroso-di-n-propylar			·							
Hexachloroethane	- -									
Nitrobenzene Isophorone			!							
2-Nitrophenol							==			
2.4-Dimethylphenol	- -		,			<u> </u>				
Benzoic acid			I							
bis (2-Chloroethoxy) methal	- -									
2,4-Dichtorophenol			i							
1,2,4-Trichlorobenzene		- ↔								
Naphthalene 4-Chloroaniline	350 0 J		!							
Hexachlorobutadiene						<u> </u>				
4-Chioro-3-methylpheno										
2-Methylnaphthalene	43 0 J									
Hexachlorocyclopentadiene			l							
2,4,8-Trichlorophenol										
2,4,5-Trichlorophenoi 2-Chloronaphthaiene						†				
2-Nitroanline						<u> </u>				
Dimethylphthalate										
Acenaphthylene										
3-Nitroaniline			 -							
Acenaphthene 2,4-Dintrophenol						† - -				
4-Nitrophenol						<u> </u>				
Dibenzofuran		- -] [[==			
2,4-Dinitrotoluene										
2,6-Dinitrotoluene										
Diethylphthalate										
4-striorophenyl-phenyleth Fluorene	- -									
4-Nitroaniline			! - -							
4.6-Dinitro-2-methylpher	- -					† +				
N-Nitrosodiphenyamine (1			l							
4-Bromophenyi-phenylett	- -									
Hexachiorobenzene										
Pentachiorophenoi Phenanthrene	110 0 J									
Anthracene						<u> </u>				
Di-n-butylphthalate	48 0 B J	530 BJ			410 J					
Flouranthene	210 0 J		390 J		560 J					
Pyrene	180 0 J		480 J	510 J	1400 J					
Butylbenzylphhtalate	1200.4									
Benzo(a)anthracene bis(2-Ethylhaxyl)phthalate	120 0 J		1300 J							
Chrysene	130 0 J		1300 3							
Di-n-octylphthalate										
Benzo(b) flouranthene	170 0 J				2100 J					
Benzo(k)flouranthene	53 0 J									
Benzo(a)pyrene indeno(1,2,3-cd)pyrene	440 J				4000	 				
Dibenzo(a,h)anthracene	55 0 J		 !		1200 J	<u></u>				
Benzo(g,h,) perylene					1100 J	:				
			 _		1100 J					

Notes:

All concentrations in ug/kg (ppb).

No concentrations were detected in **an**y of the field or trip blanks, therefore, they have not been included in this table.

B = Compound detected in the associated blank as well as in the sample.

J = Estimated value; concentration less than the sample quantitation limit but greater than zero.

^{-- =} Not detected.

ENVIROTEK II SITE TONAWANDA, NEW YORK

SUMMARY OF VOLATILE ORGANIC ANALYTICAL RESULTS GROUND-WATER SAMPLES

MAY 1992

								,		 	
Sample I. D.:	RW-1	RW-1	EN	V-2		ENV-3		FIELD BLANK		TRIP BLANK	-
Time:	10:00	13:40								<u> </u>	
Compound			•								
Compound											ļ
Chloromethane											i.
Bromomethane											li
Vinyl Chloride	700	780	;	2700							ļ
Chloroethane			•			53					
Methylene Chloride	23	J 100	J	600	В		ВJ	1	J	0.9	J
Acetone			-	240	J				-		
Carbon Disulfide					-						i
1,1-Dichloroethene				120	J						ļ
1,1-Dichloroethane	460	510		1700		120					i
1,2-Dichloroethene(total)	1900	2500	18	8000	D	8					
Chloroform											
1,2-Dichlorethane				170							()
2-Butanone											- #
1,1,1—Trichlorethane	280	270		430 0		9					- 1
Carbon Tetrachloride											ij
Bromodichlorometha n e	·										
1,2-Dichloropropane											i i
cis-1,3-Dichloropropene											
Trichloroethene	81	81	J	5700	D	12					i Ii
Dibromochlorometha n e											
1,1,2-Trichloroethan e											
Benzene						2	J				i
trans-1,3-Dichlorop r opene											
Bromoform											
4-Methyl-2-Pentanone						13					
2-Hexanone											
Tetrachloroethene	270	260	1:	2000	D	8					
1,1,2,2-Tetrachloroethane											
Toluene	520	590	:	290 0		1	J				
Chlorobenzene											
Ethylbenzene	240	250		380							
Styrene											
Total Xylenes	1300	1400		<u> 2500</u>		5					

Notes:
All concentrations reported in ug/L (ppb)

- J Compound determined to be present at an estimated value tess than the minimum detection limit. B Compound determined to be present in the blanks as well as in the sample.
- D Compounds identified in an analysis at a secondary dilution factor.

ENVIROTEK II TONAWANDA, NEW YORK

SUMMARY OF SEMIVOLATILE ORGANIC ANALYTICAL RESULTS GROUND-WATER SAMPLES

MAY 1992

	·				 	
WELL I.D.	RW-1	RW-1	ENV-2	ENV-3	FI ELD BLANK	TRIP BLANK
SAMPLE TIME	10:00	13 :40	-			,,,,,
Compounds						
Phenol						- -
bis(2-Chloroethyl) ether						
2-Chlorophenol						
1,3-Dichlorobenze n e	***					
1,4-Dichlorobenze n e						
Benzyl alcohol						
1,2-Dichlorobenze n e	***					
2-Methylphenol	8 J	9 J	9 J	3 J		
bis(2-Chloroisopropyl)ether						
4-Methylphenol	3 J	3 J				
N-Nitroso-di-n-propylamine						
Hexachloroethane	-					
Nitrobenzene						
Isophorone		- -	4 J			
2-Nitrophenol						
2,4-Dimethylphenol			10			
Benzoic acid						
bis(2-Chloroethoxy)methane						
2,4-Dichlorophenol	***					
1,2,4-Trichloroben ze ne						
Naphthalene	1 J	1 J	8 J			
4-Chloroaniline						
Hexachlorobutadiene						
4-Chloro-3-methylphenol	-					
2-Methylnaphthalene						
Hexachlorocyclopentadiene	\$000 MAN					
2,4,6-Trichlorophenol						
2,4,5-Trichlorophenol						
2-Chloronaphthalene						
2-Nitroaniline						
Dimethylphthalate	***					
Acenaphthylene						
3-Nitroaniline						
Acenaphthene						
2,4-Dinitrophenol						
4-Nitrophenol						
Dibenzofuran						
2,4-Dinitrotoluene	***					
2,6-Dinitrotoluene	pta pp.					
Diethylphthalate						

TABLE 5 (Cont'd.) ENVIROTEK II TONAWANDA, NEW YORK

SUMMARY OF SEMIVOLATILE ORGANIC ANALYTICAL RESULTS GROUND-WATER SAMPLES

MAY 1992

WELL I.D.	RW-1	RW-1	ENV-2	ENV-3	FIELD	TRIP
SAMPLE TIME	10:00	13:40		s synan,	BLANK	BLANK
Compounds						
4-chlorophenyl-phenylether						
Fluorene						
4-Nitroaniline						
4,6-Dinitro-2-methylphenol						
N-Nitrosodiphenylamine (1)						
4-Bromophenyl-phenylether						
Hexachlorobenzene	Alter east					
Pentachlorophenol						
Phenanthrene			2 J			
Anthracene						 -
Di-n-butylphthalate	1 J	4 J	 4 J	2 J	2 J	
Flouranthene	, ,	4 0	4 0	2 J 2 J	2 J	
Pyrene			2 J	2 J 1 J		
Butylbenzylphhtala te	***					
Benzo(a)anthracene						
bis(2-Ethylhexyl)phthalate	11	17	30	12	8 J	
Chrysene				12	J	
Di-n-octylphthala te	***					
Benzo(b)flouranthe n e						
Benzo(k)flouranthe ne						
Benzo(a)pyrene						
Indeno(1,2,3-cd)p yr ene		 -				
Dibenzo(a,h)anthracene		-				
Benzo(g,h,i)perylen e	***					

Notes:

All concentrations in ug/L (ppb).

No concentrations were detected in any of the field or trip blanks, therefore, they have not been included in this table.

B = Compound detected in the associated blank as well as in the sample.

J = Estimated value; concentration less than the sample quantitation limit but greater than zero.

-- = Not detected.

ENVIROTEK II SITE TONAWANDA, NEW YORK

SUMMARY OF FIELD PARAMETERS AND INORGANIC ANALYTICAL RESULTS GROUND-WATER SAMPLES

MAY 1992

« S ample ID:	RW+1	∴eanw⊷1	ENV+2	Field :::	
Sample Ti me:	10:00	13:40	1000	17,46	
Fiel d Parameters					
pH Std Units	7.7	7.7	9.4	7.8	6.6
T D S	600	600	530	550	15
T S S	6	13	1,400	2,700	<1
inor g ani cs					
C al ciu m	110	110	210	180	< 1
i Ir on	0.94	1.4	45	380	< 0.05
Ma gnesium	33	32	28	84	< 1
M a ng an ese	0.16	0.17	7.2	7.2	< 0.05

Note:

All concentrations measured in mg/L (ppm).

Figures

FIGURE 2

LEGEND

ESTIMATED RESIDUAL HYDROCARBON EXTENT OCTOBER 1990

APPARENT EXTENT OF FLOATING SEPARATE PHASE HYDROCARBONS—MARCH 199

ADDITIONAL EXTENT OF RESIDUAL HYDROCARBON SEPTEMBER 1992

NOTE: ABSENCE OF FLOATING SEPARATE PHASE HYDROCARBONS CONFIRMED IN JUNE 1991.

ENVIROTEK II SITE TONAWANDA, NEW YORK

GEOLOGIC
CROSS SECTION
A-A'

- (

FIGURE 4

- MONITORING WELL
- RECOVERY WELL
- ▲ SOIL BORING (10/90)
- \triangle SOIL BORING (5/92)
- 4.364 TOTAL VOC'S CONCENTRATION (ppm)
- —1.0— TOTAL VOC'S CONCENTRATION CONTOUR LINE (ppm),
 DASHED WHERE INFERRED

ENVIROTEK II SITE TONAWANDA, NEW YORK

DISTRIBUTION OF TOTAL VOC'S IN SOIL MAY 1992

B-20 CNA

BLDG. 13

△ B-19 (NA)

Δ

CONCRETE

PAD

EDGE L OF ROOF

LEGEND

0

(

A

Δ

(18)

11/12/92 DMW 60 VOC2 5800140\580VOCP

MONITORING WELL

SOIL BORING (10/90)

SOIL BORING (5/92)

100 − <1,000 ppm 1,000 - <10,000 ppm

RECOVERY WELL

Appendices

APPENDIX A BORING LOGS AND WELL CONSTRUCTION DETAILS

	ОЕРТН (FT.)	SAMPLES	SAMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC	WELL	SUBSURFACE LOG RW-1
		Ů,	/\$	α	<u>ā</u>	-	<u> </u>	0		DESCRIPTION
	- -									_
_ }	-									
	- — ი									-
_ {	-		1	1.0	4	25	0 p pm	57	7 7	Brown to gray, fine GRAVEL, some fine to medium sand, Loose, dry, Fill.
	- 1 -				31 14	1		次	ž. Š	loose, dry, FILL.
•	- 2		-		12	}) J., (, ,)		
	·		2	1.2	12	60	ppm	\mathcal{X}		Black staining and chemical odor at 2.0 feet to 7.0 feet.
	- 3	/			14			()		
	- 4		3	0.2	1 <u>5</u>	, ا) ppm'	$\langle \rangle \langle \rangle$		· _
	- 5				6	0.0	, bbu	LXI	. . .	
	_				6 10			<i>)</i> ,	-	
	- 6 -		4	0.8	5	6.5	p pm)/)		
	- 7	1			5			. ;.		
	- - 8				8	1		1) 1/.		Wet at 7.0 feet.
-	-		5	1.0	6	95	ppm '	33	•	Oily film at 8.0 feet, some slag at 8.0 feet.
	- 9 -	/			<u>6</u> . 9					-
	 10		6	0.6	7			(X)		
	- - 11		6	0.6	4 6	90	p p m	XY		-
	- ''		-		4]		1, 4		Black at 10.0 feet.
	- 1/2		7	1.1	6 <u>-</u> 5	20	ppm.	1		Black SLAC and CINDERS, little fine sand, loose, wet,
	- 13				6					hydrocarbon odor and film.
	-	/	•	_	7	ł		<i>/</i> \1		_
	- 14 -		8	1.1	3	100	p pm			
_	- 15	//			2	ł)		Black staining SILTY CLAY with sand stringers, MOIST.
	- - 16	<u>/_</u>			2			Z		Stack Staffing Stell CEAR With Sand Stringers, MUISI.
_	_		91	1.2	2	20	p p m (Brown at 16.0 feet, ALLUVIUM.
	- 17 -	<u> </u>			3	1		7		
	<u>–</u> 18		19		3 -	}				
	- - 10								<u>. 4 </u>	Bottom of boring at 18.5 feet.
	- 19 -					1				1
	- 20					<u> </u>				-
	_									
	_									_
	0==	<u> </u>								
			ELEV. Arted		 5/92				DJECT En	580.01
			MPLET					l .	RW-1	BLASLAND & BOUCK
-			ED B					i		OF 2 ENGINEERS, P.C.
				-	 -					

тн (FT.)	AMPLES	AMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	ADSPACE)	GEOLOGIC	WELL COLUMN	SUBSURFACE LOG RW-1
ОЕРТН	SA	SAN	REC	PER (PER		(HE,	e G	≯ 0	DESCRIPTION
}			-	 					_
F									
L									Well Completion Details
									6-inch diameter 0.010 continuous wire -
-									wound stainless steel screen; screen: 18.1 feet to 8.5 feet
-			- -	ļ					joint: 8.5 feet to 8.1 feet screen: 8.1 feet to 3.5 feet
									3.5 feet to 1.9 feet above grade.
-		-							#0 Grade Quartz sand 18.5 feet to 2.0 feet. Hydrated bentonite pellets 2.0 feet to 1.0 feet Type 1 Portland cement 1.0 feet to grade.
									Well was completed with a 6-inch diameter
									pressure fitted locking cap.
									Note:
-				-					1. Borehole created with 8½ I.D. hollow item augers. — 2. HNU readings were taken directly from soil
								•	sample jars within 4 hours of collection.
-			 - -	ļ					_
F			ļ <u>.</u>	-					
								,	-
-									-
<u> -</u>		-							<u>-</u>
-		_						1	_
-		-	!						_
<u> -</u>								•	-
-				-	}				
<u> -</u>				-					-
-			 -	-	 			•	-
								•	
_				<u></u>	}				· -
									_
			-						
F			1-						_
									_
SURFA							1	OJECT E	
i	ATE STARTED <u>5-15-92</u> ATE COMPLETED <u>5-15-92</u>					1	OJECT NO	I I I I I I I I I I I I I I I I I I I	
1	LASSIFIED BY TRO					1	. <u>RW-1</u> EET <u>2</u>	OF 2 ENGINEERS, P.C.	
							<u> </u>		

	тн (ғт.)	AMPLES	SAMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC	WELL COLUMN	SUBSURFACE LOG B-7
	DEPTH	SA	SAA	RE.	(PEF		(HE	GE	* ŏ	DESCRIPTION
-					 	ł				_
	0									
			1	1.0	3	20	ppm	2 : T	~	Concrete to 0.5 feet.
	1								-	Brown, fine to coarse SAND, some medium to coarse gravel, concrete fragments, trace cinders, loose, dry, slight chemical odor, black staining 0.3 to 5 feet
-	2		2	1.5	20	14	ppm			FILL.
-	3				2 2	<u> </u>		1, 1		4.0 - 4.2 feet black staining. Some slag at 5.5 to 6.0 feet.
	· 4 ·	7	3	1.6	46 10 27	18	ppm			Moist to wet at 7.0 feet. Black oily sheen at 7.5 feet, wet at 8.0 feet.
					13			1		
-	· 6		4	1.7	18 27	100	p p m			
	· 7 ••				27 2 0					_
-	8	· /	5	1 7	1 9	7.0	ppm			
	· 9			-	12	70	ppm	,		
t	→ 10				- 2 7			1 ,		_
										Bottom of boring at 10.0 feet.
										-
-				 						Notes:
	- -									 Upon completion, borehole was backfilled with cuttings.
	-									
}	-									augers.
F										-
	-									_
}	-									-
	- -									-
	-									- -
-	-									- -
	- -			-						_
-										- -
	-		-							
-	SURFA	CF	ELEV	ATI O N				p 2	OJECT F	nvirotek
,			RTED					ł		580.01
					-12- 92			1	B-7	RIASIAND & ROLLOW
	CLASS	SIFI	ED BY	Y <u>[R</u>]				SH	EET <u>1</u>	OF 1

	тн (FT.)	MPLES	AMPLE NO.	ECOVERY (FEET)	BLOW S (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC COLUMN	WELL Column	SUBSURFACE LOG B-8
	рертн	SA	SAM	REC C	в (РЕЯ		(HE,	GE GE	≯ 00	DESCRIPTION
	- - - - o		1	0.8	/-	1 (5 - 4		
		1		0.8	3	1.2	ppm	3 2		Concrete to 0.4 feet. Brown-black, fine to coarse SAND, some silt and medium to
	- - - 2	/ -	2	1.8	6 18 4	15	ppm			coarse gravel, trace cinders, loose, dry, FILL. Chemical odor at 2.0 feet.
	- - 3	7		1.0	62	ر ا	ppm			Grades to brown-gray at 2.0 feet.
}	-		ļ		27				· / /	Slag at 4.0 to 7.0 feet.
	4 - 5		3	1.7	16 38 18	20	ppm) i) 1 1 1		
,	-	//			18).		
	- 6		4	1.3	18 8	50	ppm		` `	
}	- 7		<u>. </u>	 	12			ا ا ا		Wet at 7.0 feet. Black staining, fine to medium SAND and angular GRAVEL,
	 - ₋	/_			14			6.5		trace cinders and slag, loose, wet.
'	- -		5	1.0	5	75	ppm	0 0		-
	- 9 -	/			- 8			C _z c		-
,	 10	<u> </u>			10			0.0		Bottom of borings at 10.0 feet.
	- -									bottom of borings at 10.0 reet.
,	-			-						
	- -									Notes:
	-									1. Upon completion, borehole was back filled with cuttings.
	 									2. Borehole was created with 2½" I.D. hollow-stem augers.
1										
	 									-
,	-		—							-
	- -									<u> </u>
,	-				-			}		- -
	- 									_
,	-			-		 				
	-									
				-						_
				l <u>.</u>						
•			ELEV Arted						OJECT _E	· · · · · · · · · · · · · · · · · · ·
			MPLET						OJECT NO B-8	BLASLAND & BOUCK
•			ED B					i		OF 1
1	<u> </u>									

тн (FT.)	MPLES	IPLE NO.	COVERY FEET)	LOWS (0.5 FT.)	HNO	HEADSPACE)	GEOLOGIC	WELL	SUBSURFACE LOG B-9
DEP	SA	SAN	REG (F	B (PER		(HE,	GE C	≯ 0	DESCRIPTION
H1d30 0 1 2 3 4 5 6 7 8 9 10	SAMPL	1 1 2 3 4 5 5	1.2 1.4 0.9	7 12 4 8 7 3 1 15 11 13 15 12 17 8 17 14 32 -22 14	7. ú 45 30	mdd C HEADSP		ODEN!	
SURFA DATE DATE CLASS	STA	ARTED MPLET	5- 1	2 -9 2 5 -1 2-9			PR NO	OJECT NO	augers.

TH (FT.)	MPLES	AMPLE NO	ECOVERY (FEET)	BLOWS (PER 0.5 FT	HNU	НЕАО ЅРАСЕ)	GEOLOGIC	WELL	SUBSURFACE LOG B-10
рертн	SA	SAN	REC	B (PER		(не,	GE CC	≯ 0	DESCRIPTION
-						-			_
									_
-			-	-	1				
0	7	1	1.0	1	25	ppm	42.5	X 7.5	Concrete to 0.4 feet.
1				1	1).)		Dark brown to brown fine to coarse SAND, some medium gravel, trace brick fragments, loose, moist to dry; FILE.
<u> </u>	\angle			12 15				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
- '	1	2	1.4	30 2 6	40	ppm	(). j.		Light gray to brown, medium to coarse SAND, some fine gravel, trace cinders and silt, crumbly, dry, slight
3	/			30),))	chemical odor, loose, FILL.
-4	Κ.,	3	1.1	19 1 1	55	ppm)().	, ,	
- '5	/		<u> </u>	2 6		рып		2 2 2	-
		<u> </u>		15	}).).	1	
- 6	7	4	1.3	_5 _ 1 1	70	ppm	7		-
7	/			12 15	1	F F			
8	<u>/</u>			5 2					Black oily sheen, strong hydrocarbon odor at 7.5 feet.
		5	1. 7	15.	50	ppm	(), ()	. /	7.5 Teet.
9	/		<u> </u>	27 3 6			$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	· -/ \	Black at 9.0 feet.
10	Υ_			38	_		Ω		
									Bottom of boring at 10.0 feet.
-			 -		<u> </u>				Notes:
									Upon completion, borehole was backfilled with
-	1		 						cuttings. —
									2. Borehole was created with 2½ 4.D. hollow-stem augers.
-									_
F									<u>-</u>
		<u> </u>	 - 	-	ļ .				_
F]				
-									_
F									- -
-									-
-			 		•			, 	
									-
-			-		ļ				
					<u> </u>				
1			ATION	-			Į.	OJECT En	
1			5-12 5_5 5_5		,		l .	OJECT NO	PLACE AND A ROUGE
1			YDLO				1	B-10 EET 1	OF 1 ENGINEERS, P.C.

TH (FT)	. 1	AMPLES	AMPLE NO	COVERY FEET)	BLOWS ER 0.5 FT	HNU	HEAD SPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-11
DEBTH	3	SA	SAN	REC (F	(PE		HE	GE C	≯	DESCRIPTION
-			-		 					
										-
-				-	-	•				
			1	1.0	5	18	p p m	2 Z		Concrete to 0.4 feet.
1		/		 	5 4					Brown to gray, fine to coarse SAND and fine to medium GRAVEL, trace cinders, loose, dry, FILL.
- 2		<u>_</u>	-		7.					
-			2	0. 8	13 13					<u> </u>
– 3					8			 		<u></u>
- 4		_	3	0.4	<u>5</u> 7	32	р р т	6.0.0		Brown to light gray, medium SAND and medium angular GRAVEL,
5					3		F F	0.0	. 7	trace silt, trace slag, loose, moist, slight chemical odor.
+				 -	8			0		
- 6			<u> 4</u>	0.4	10	40	p p m	- 5 - 5	; 	
7				-	9 8			:		Wet at 7.0 feet.
8		_			8	1		e e		
+			5	0.7	4	58	р р m	60		Brown, medium SAND and CRAVEL, trace silt, brown staining, slight hydrocarbon odor, wet, oily sheen on water.
- 9 -				_	- 5			0,0	×	
1	0	<u>/</u>		 	8	 		200		Bottom of boring at 10.0 feet.
-				-	_	1				
F				1-		1				-
_]			<u> </u>	
				 -						Notes:
-				 -	<u> </u>	}				Upon completion, borehole was backfilled with cuttings.
						1				2. Borehole was created with 2½" i.D. hollow-stem
-			<u> </u>	-	 	1				augers.
						1				_
}				-	 	1				_
				1		1			ļ	
-				-	 	1				_
F									ļ	-
				 	 	1			<u> </u>	_
-										
										_
			l			1		-		
1				/ATION				1		<u> </u>
- 1				TED_				i	B-11	TICH BLASLAND & BOUCK
Cı	_ASS	SIF	IED B	Y_DLO		•		1	_	_ OF

тн (FT.)	MPLES	IPLE NO.	ECOVERY (FEET)	LOWS (0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC	WELL	SUBSURFACE LOG B-12
DEP	SA	SAN	REC	B (PEF		(HE.	GE C	≯ 55	DESCRIPTION
H1d30 0 1 2 3 4 5 6 7 8 9 0	SAMPL	3 3 4	0.7 0.6 0.4	3 3 3 4 5 3 3 5 7 8 11 17 12 5 4 4 5 13 7	14	mdd and define the thousand an	MOTOD STORES CONTRACTOR OF CON	MELL	
SURFA	CE	ELEV	ATION				PR PR	OJES~ <u>E</u>	nvirotek
DATE	ST/	ARTED	5-1 TE D	2- 92 5- 12-9			PR NC	OJECT NO . <u>B+12</u>	580.01 PLASIAND & POUGY

тн (FT.)	AMPLES	AMPLE NO	ECOVERY (FEET)	BLOWS (PER 0.5 FT.	HNU	HEADSPACE)	GEOLOGIC	WELL COLUMN	SUBSURFACE LOG B-13
DEPTH	SA	SAM	REC (F	PER (PER		/Зн.)	GE CC	≯ 00	DESCRIPTION
}		· · · · · · · · · · · · · · · · · · ·							
				<u> </u>					
]	
0	\vdash		0.8	1.0	100	· · · · ·	# 4 E 4		Concrete to 0.3 feet.
<u> </u>			0.0	10 2 9	100) ppm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Brown to gray, fine to coarse SAND, some fine to medium
	/			2 9					gravel, some slag, loose, dry, FILL.
_ 2		2	0	100/3 100/3			10		_
- 3	/						13	<u> </u>	-
-			-				()(. >. / .	
<u> </u> #		3	1.2	2 9	50	opm,	1777	~!\	Septic odor at 4.0 feet.
5				6 9			$\mathcal{V}()$		
-			-	82			\mathbb{N}		
6	\Box	. 4	1.7	5 0 3 0	50	ppan	() (Red to brown at 6 .0 feet.
F 7				19)		
-				1 9			1. 1		
- 8		5	1.5	24	25	ppm	00		-
- 9				20		P P III			⊣ Wet at 9.0 feet.
10		-	-	.1 8			ß	1, 1	-
							<u> </u>	·	Bottom of boring at 10.0 feet.
-		· · · · · ·		 -			1		
-									Notes:
-			 -						1. Upon completion, borehole was backfilled with
_									cuttings.
-									2. Borehole was created with 2½" i.D. hollow-stem augers.
									auger 3.
-			-						
									_
_									
-			-						· -
									-
-			-	ļ					
			 	 					 -
									-
-			-						_
			<u> </u>						_
							PR	OJECT <u>E</u>	nvirotek
			_ .5- 13						580.01 BLASLAND & BOUCK
1			TED_5- YTR	· 13- 92 :0			NO). <u>B-13</u>	ENGINEEDS D.C
CLAS	J!	B	' 				SH	€€₹ <u>1</u>	OF

Description	ОЕРТН (FT.)	SAMPLES	SAMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	(HEADSPACE)	GEOLOGIC	WELL COLUMN	SUBSURFACE LOG B-14
1	DE	S	8	α	<u>a</u>		3	9		DESCRIPTION
1				<u> </u>						-
1										: -
1	}			 - -						1
Brown, retium to doerse SAND, trace gravel, trace slag, loose, cry, FILL.			1	0.5	8	11	0 p pm	454		Concrete to 0.3 feet.
Dark staining 2.5 feet to 3.0 feet.	1				 			();		Brown, medium to coarse SAND, trace gravel, trace slag,
2	-			-		-				
10	2		2	1.1		50	ppm	17.7		Dark staining 2.5 feet to 3.0 feet.
Surface Elevation Surface	- 3	/		 -		-),(7		
SURFACE ELEVATION	-	$V \mid$		 -		†),)		,
Surface Elevation	F *		3	1.0	5	40	ppm)'1		Brown to gray at 4.0 feet, strong chemical odor.
1.8 51 120 ppm / 1 1.8 51 120 ppm / 1 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.8 51 1.7 1.7 40 ppm / 1.3	- 5	/				-		$\left \cdot \right\rangle \left\langle \cdot \right $	·/ ·/	
1.8 51 120 ppm 21 22 25 21 27 27 28 27 29 29 29 29 29 29 29				 				<i>[K,]</i> ;		_
Brown to red 8.0 feet to 8.5 feet. Solution Superact Elevation Date Started S		\Box	4	1.8	5 1	12	0 ppn	15.1		
Brown to red 8.0 feet to 8.5 feet. Solution Soluti	7	/		 -	58 2 1	1				
Wet at 8.5 feet. Surface Ele Vation	8	V		 	L			17.		Brown to red 8 0 feet to 8 5 feet
Notes: 1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" I.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtex OATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 PROJECT NO 580.01 BLASLAND & BOUCK ENGINEERS, P.C.	F		.5	1.7		40	ppm	认	// ·	Wet at 8.5 feet.
Notes: 1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" I.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtex DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 PROJECT NO 580.01 BLASLAND & BOUCK ENGINEERS, P.C.	- 9	/		 		-				
Notes: 1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" I.D. hollow-stem augers. SURFACE ELE VATION DATE STARTED 5-13-92 PROJECT Environtek PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14		\angle			T — —			$) \gamma$	\ \sum_{\curn_{\sum_\sum_\senm_\sing\sin_\sin_\sin_\sing_\sinm_\sing\sin_\sin_\sin_\sin_\sin_\sin_\sin_\sin_	<u> </u>
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELEVATION PROJECT Environtek DATE STARTED 5-13-92 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	- 10									Bottom of boring at 10.0 feet.
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELEVATION PROJECT Environtek DATE STARTED 5-13-92 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	-		-	 - -	 	}				-
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtek DATE STARTED 5-13-92 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.						1				· -
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtek DATE STARTED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: NO 8-14 BOUCK ENGINEERS, P.C.	-				ļ — —	1			· •	
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtek DATE STARTED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: NO 8-14 BOUCK ENGINEERS, P.C.				 -		ł				
1. Upon completion, borehole was bacfilled with cuttings. 2. Borehole was created with 2½" i.D. hollow-stem augers. SURFACE ELE VATION PROJECT Environtek DATE STARTED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: DATE COMPLETED 5-13-92 PROJECT NO 580.0: NO 8-14 BOUCK ENGINEERS, P.C.										Notes
SURFACE ELEVATION PROJECT Environtex DATE STARTED 5-13-92 DATE COMPLETED 5-13-92 NO B-14 ROUGHT I.D. hollow-stem augers. BLASLAND & BOUCK ENGINEERS, P.C.	-				-	1				<u> </u>
SURFACE ELEVATION PROJECT _Environtek PROJECT NO										 Upon completion, borehole was bacfilled with cuttings.
SURFACE ELE VATION PROJECT _Environtek DATE STARTED5-13-92	-]]				2. Borehole was created with 2½ 1.D. hollow-stem
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	}			 -	 	1				auge r s.
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.						1				-
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	-		 -	-		-			•	
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.				 -	 	1				_
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.				- -		}				
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	-			 -	 	 				
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.						1				-
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	-			-	-	1				
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.			<u> </u>	 	 	1				
DATE STARTED 5-13-92 PROJECT NO 580.01 DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	SURFA	CE	ELEV	'ATION				PR	OJĒCT E	nvirontek
DATE COMPLETED 5-13-92 NO B-14 BLASLAND & BOUCK ENGINEERS, P.C.	1							1		580.01
CLASSIFICA BY TOO	ł							i		BLASLAND & BOUCK
CLASSIFIED BY IRO SHEET 1 OF 1	CLASS	SIFI	ED B	Y_ I RO				SH	EET <u>1</u>	OF

тн (FT.)	AMPLES	AMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-15
DEP	SA	SAN	RE	(PEF		(HE	GE	> ŏ	DESCRIPTION
H1d30 0 1 2 3 4 5 6 7 8 9 0	SAM	1 2 3 3 4 4 5 5	1.0 0.5 1.1	7 7 7 10 7 8 10 7 8 9 8 9 10 7 8 9 - 7 4	10	mqq mqqq mqqq		ME COL	Brown to dark brown fine to coarse SAND, trace medium gravel, trace clay, loose, moist, Fill. Brown, fine to medium CRAVEL, some sand, little slag, loose, moist. Red to brown fine to medium SAND, some medium gravel, some slag, loose, moist to we. Het at 7.0 feet. SLAC, black oily film. Bottom of boring at 10.0 feet. Notes: 1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½" 1.0. hollow-stem augers.
-									- -
1			'ATION 5-				1	OJECT E	580.01
DATE	co	MPLE1	TE D_ 5	-13- 92			NC NC	B-15	BLASLAND & BOUCK ENGINEERS, P.C.
CLAS	SIF	ED B	Y <u>IR</u> :	0			1		of 1

1	DEPTH (FT.)	AMPLES	AMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC	WELL	SUBSURFACE LOG B-16
34 22 2 2 2 2 2 2 2 2	DEP	SA	SAN	RE.	B (PEF		(HE.	GE C	≯ 33	DESCRIPTION
34 22 2 1.0 15 15 19 15 10 10 10 10 10 10 10	-									
34			-		-					_
34										
34	- 0			1				2 10	·	
2	-			1-4		٥	ppm			
2								\(\frac{1}{2} \cdot \frac{1}{		dry, Fill.
15	_ 2	-	2	1.0		2				Brown to red at 1.5 feet to 2.0 feet.
18	-	/		1.0)	bbu			Stained dark brown 3.0 feet to 5.0 feet.
3	— 3							$[T_{N}]$		
Some to black SLAG loose, dry. Shown to black SLAG loose, dry.	- 4	ν,	7	1 1		_) ,').	```	
10	-					3	рÞш	1)();		_
1	- 5	//						77		Brown to black SLAG loose, dry.
12	6		4	1 2		Я				Chemical odor at 6.0 feet.
8 15 15 15 15 15 15 15 1	7	1	_	<u>'••</u>			ppm			Wet at 8.0 feet.
Black, fine to medium SAND, some large slag, loose, wet oily film. 10		l,			18				`	
Black, fine to medium SAND, some large slag, loose, wet oily film. 20 Bottom of boring at 10.0 feet. Notes: 1. Upon completion, borenole was backfilled with cuttings. 2. Borenole was created with 2½ 1.D. hollow-stem augers.	– 8	Ĺ.,		ļ- <u></u> -						-
Notes: 1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 25 1. D. hollow-stem augers.	+ 4	/:	5	1.5_		9	ppm			Black, fine to medium SAND, some large slag, logse, wet
Notes: 1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ 1.D. hollow-stem augers.		/			-1 8					oily film.
Notes: 1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ t.D. hollow-stem augers.	10	-		 	2 0			\$537		
1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ t.D. hollow-stem augers.	È			-						Bottom of boring at 10.0 feet.
1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ t.D. hollow-stem augers.										
1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ t.D. hollow-stem augers.	-					}				-
1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½ t.D. hollow-stem augers.						İ			,	-
2. Borehole was created with 2½ t.D. hollow-stem augers.	F									Notes:
2. Borehole was created with 2½ 1.D. hollow-stem augers.	-		<u> </u>	- -						Upon completion, borehole was backfilled with
augers.										-
	-									augers.
				 		·				_
	F									_
	-			 -		ļ			,	
	L					ł				· -
	F					Į			,	
	-		 -	 						-
					·				•	_
	-			<u> </u>						
				<u> </u>						
								<u> </u>	<u> </u>	
SURFACE ELEVATION PROJECT Envirotek	1				_			1		
DATE STARTED 5-13-92 PROJECT NO 580.01 BLASLAND & BOUG	i									
DATE COMPLETED 5-13-92 NO. B-16 CLASSIFIED BY TRO SHEET 1 OF 1 ENGINEERS, P.C.	ì									ENGINEEDS P.C
SHEET UF	CLAS			· —				5H		_ UF

ОЕРТН (FT.)	SAMPLES	AMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	(HEADSPACE)	GEOLOGIC COLUMN	WELL COLUMN	SUBSURFACE LOG B-17
DEP	SA	SAN	RE.	PE P		(HE	9 0	* ö	DESCRIPTION
		1	1.0	5	0	ppm		۲	Concrete to 0.3 feet. Brown to red brown medium to coarse SAND come
2 - 3 - 4 - 5 - 6		-3	1.1	7 13 10 13 11 18 10 10 6 13 11 6 6		pm ppm			Brown to red brown, medium to coarse SAND, some medium gravel loose, dry, Fill. Chemical odor at 4.0 feet. Brown to gray at 6.0 feet.
8 - 9 - 10		5	0. 8		6	opm '	0 0 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Gray, fine to medium GRAVEL, loose wet septic odor, slight oily film.
	CE	ELÉV	ATION				ga ga	OJECT_E	Notes: 1. Upon completion, borehole was backfilled with cuttings. 2. Borehole was created with 2½" I.D. hollow-stem augers.
DATE	DATE STARTED 5-13-92 DATE COMPLETED 5-13-92 CLASSIFIED BY TRO						PR-	OJECT NO B-17	580.01

TH (FT.)	AMPLES	IPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNC	HEADSPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-18
ОЕРТН	SA	SAMPL	REC	PER (PER	_	(HE,	GE C(≯	DESCRIPTION
<u> </u>									-
-			-						- -
	-	1	0.8	5	7		2.12		Congrete to 0.3 feet.
<u>-</u> 1			0.0	3	'	ppm			Black, fine to medium CRAVEL, some medium to coarse sand.
			<u> </u>	3 4			7 ·		loose dry, FILL.
■		2	1.1	5	4	ppm			Brown to gray, medium to coarse SAND and fine to medium
3			—	4			0 0		FILL.
- 4		3	0.8	22	4.	5 ppm	0 0		Brown to gray, fine to medium GRAVEL, some sand and slzg,
5			-	20			0,00		loose, dry.
6	-		0.8	11] _		راث با		F1LL -
- 7		4	V-8	10	'	ppm) o' (<u>-</u>
				7 7			1630		Wet at 8.0 feet.
8		5	0.8	7 23	3	ррт	00		
9				10					Brown, medium to coarse SAND, trace medium gravel, loose, wet.
10		-			•				FILL
11									_
_ 12									
13									
■									
15									-
		6	N/C	3	-				- -
16				2	•				-
17						,			
18									· -
- 19									- -
20	-	7	1.5	1	0	ppmı			C
21				1		pp.ii	 		Gray to brown SILTY CLAY, sand stringers, moist, very plastic, ALLUVIUM.
_ 22			-	1 1	ļ				
SUR	FACE	ELEV	1 ATI O N				PR	DJECT	- Environtek
DATI	DATE STARTED 5-13-92 PROJECT			PR	OJECT NO				
•	DATE COMPLETED 5-14-92 NO			МО	8-19 EET	BLASLAND & BOUCK			
							300		

TH (FT.)	SAMPLES	AMPLE NO	ECOVERY (FEET)	BLOWS (PER 0.5 FT	HNU	HEADSPACE)	COLUMN	WELL	SUBSURFACE LOG B-18
рертн	SA	SAM	REC ()	B (PER		(אפּע	3	≯ 00	DESCRIPTION
- 23 - 24 - 25 - 26 - 27 - 28		8	1.5	4 5 7 10	Оррп	-	<u> </u>		Grades to fine to medium SAND, several lenses of silty CLAY.
29 - 30 - 31 - 32 - 33		9	1.7	4 9 12 15	O ppr]	-		Lenses of fine to medium gravel.
34 35 36 37		10	1.2	9 11 16 19	0 ppr		/ / / /		Brown, SILT and Fine SAND, little medium gravel, some clay, slightly plastic moist, compact, TILL.
38 39 40 41 41		11	1.8	5 0 5 3 5 3 5 7	0 ppr	<u> </u>			
- 43 - 44 - 45 - 46		12	.2	10 0/33	0 p:	pm =			Auger refusal at 45.7 feet. (Weathered rock in end of spoon).
SURFA DATE DATE	STA	RTED MPL e t	5-13 FED5	8-92 5-13-93		_	PRO NO	DJECT NO	BLASLAND & BOUCK ENGINEERS, P.C.

тн (FT.)	SAMPLES	SAMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	HEAD SPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-18
DЕРТН	SA	SAM	REC (F	BI (PER		(нед	GE S	≯ 0	DESCRIPTION
48									Notes: 1. Grouted to the surface with 15 gallons of water and two 94 lb bags of Type I Portland cement. 2. Borehole created with 2½" I.D. holion-stem augers.
SURFA DATE DATE CLASS	STA	ARTED Mple	5- TED	13 - 92 5 -14- 91			PR(DJECT NO B-18	BLASLAND & BOUCK ENGINEERS, P.C.

тн (FT.)	SAMPLES	AMPLE NO.	ECOVERY (FEET)	BLOWS (PER 0.5 FT.)	HNU	нЕАВ SPACE)	GEOLOGIC	WELL	SUBSURFACE LOG B-19
ОЕРТН	SA	SAM	REC	(PER		(не7	GE S	≯ 0	DESCRIPTION
}				 					_
		-							- -
			 						-
F°							:,)	•	Brown, fine to medium GRAVEL, some sand, loose, dry, FILL.
_ 1									-
_ 2					}		· / \		-
- 3									_
-					}		$\left(\right) $		-
4							$\left[\right) $		-
- 5	 ,	1	1.0	41	1 ,	opm	2		
- 6			-	4		a þin	1 / f.		Stained black at 6. 0 feet.
-			-	3 5			/ /		7.0.5
7									Wet at 7.0 feet.
8			-				1		-
- 9							()		
10				-			$\left(\frac{1}{2} \right)$		
-	1/	2	1.1	5 6	3	op m			Black SLAG, trace sand, loose, wet.
1 1			—	13			1)()		Water is black and has hydrocarbon odor.
12	-		 	_13)()		_
<u> </u>)(')		-
-			 - 						-
14									
15	1	3	1.0	3	5	ppm	- 2		Dark brown Silty-CLAY, sand stringers, loose, moist,
L 16			-	2 2					ALLUVIUM Hydrocarbon odor
17	_			3			<u></u>		-
-	[]	4	0.6	1	5	opm,	7		
18			—	4			7		
19				3			-7		-
20	\vdash	5	1. 1	1	5	opm		\ ,	
21				1		וימנו			Grades to dank brown to black, the Shmu and Stei, some clay, moist to wet. Black staining with
-			-	2			-		hydrocarbon odor.
22									Bottom of Boring at 22.0 feet.
1					OJECT	Envirotek 580.01			
1	PROJ				OJECT NO 	BLASLAND & BOUCK			
CLAS									OF 2 ENGINEERS, P.C.
<u> </u>									

тн (FT.)	SAMPLES	SAMPLE NO.	ECOVERY (FEET)	BLOW S (PER 0.5 FT.)	HNU	HEADSPACE)	GEOLOGIC	WELL	SUBSURFACE LOG B-19
ОЕРТН	SA	SAM	REC (1	B (PER		(HE7	GE CC	≯ 00	DESCRIPTION
									Notes: 1. Borehole grouted to the surface with 20 gallons of water, two 94 lb. bags of Type ! Portland cement and 5 lbs. bentonite, using tremie pipe. 2. Borehole created with 2½" I.D. hollow-stem augers.
									_
i			ATI O N 5 -1 4					OJECT <u>E</u>	
DATE	COM	PLET	TED_5 YTRO	-14= 92			NO	B-19	BLASLAND & BOUCK ENGINEERS, P.C.

	TH (FT.)	AMPLES	SAMPLE NO	ECOVERY (FEET)	BLOWS (PER 0.5 FT	NN	НЕАВ SPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-20
.	рертн	SA	SAM	REC (F	B (PER		(HE 2	GE CC	≯ 0	DESCRIPTION
'	- -									
				-						
'	 0 -							$Y_{\gamma}Y$		Brown to dark gray, fine to medium GRAVEL,
}	- 1			 				$\langle \cdot \rangle$		some medium to coarse sand, loose, dry, Fill.
	₂					1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			_		ļ			34		
	- 3				<u> </u>			()()		
	- ·4							γ'		
	 5	_					,			
,	- -	/	1	0.3	48 12	.5	ppm ()]		
	- 6 -				12					
,	- 7	 	-	-	10					Wet at 7.0 feet.
	- 8									
	-			-	-			34		
	− ĝ −			1	-					
•	 10	 	2	0.3	100/6	16	Dom	人		Oil beads on gravel at 10.0 feet.
	- - 11	/		<u> </u>	-55/5		PP"	$\left \right\rangle _{3}^{3}$		
'	- - 12	V		-				(f, f)		-
	- 12									
'	13		-							
	⊢ ⊢ 14									
1	⊢ 15				<u> </u>			<u> </u>		_
1	- 13	/	3	0.3	6	.75	ppm ;		The same	Gray to black SILT and CLAY some fine sand, lenses of black and gray fine sand, loose,
	16	/			2					wet, ALLUVIUM.
	17	\vdash	-		4			Z		Black staining at top of material, lenses or stringers of sand stained black. Hydrocarbon odor.
	–							-2		
	- 18 -		-	-						· -
	- 19 -			+ -						-
	_ 20	-	4	1.3	3	75	mqc			
	- 21			-	1		~P''			
	-			-	2 2				***	-
	22						Bottom of Boring at 22.0 feet.			
•	SURFACE ELEVATION					,	DJECT E			
	DATE STARTED						DJECT NO B-20	BLASLAND & BOUCK		
•	CLASSIFIED BY TRO					}	-	OF 2 ENGINEERS, P.C.		

TH (FT.	SAMPLES	SAMPLE NO	RECOVERY (FEET)	BLOWS (PER 0.5 FT	HNU	(HEADSPACE)	GEOLOGIC COLUMN	WELL	SUBSURFACE LOG B-20
ОЕРТН	SA	SAN	RE(B (PER		(HE/	GE C	>	DESCRIPTION
									Notes: 1. Crouted borehole to the surface with 30 gal of water, 2-94 lb. bags of Type I Portland cement and 5 lbs. bentonite, using tremie pipe. 2. Borehole created with 2½" I.D. hollow-stem augers.
DAT	E ST	ELEVARTED WPLET	5-1 TED_5	4-92 5 -14- 92			PR NO	OJECT_E OJECT_NO	580.01

Ŧ

APPENDIX B AQUIFER TEST DATA SUMMARIES

TABLE B-1

ENVIROTEK II SITE TONAWANDA, NEW YORK

AQUIFER TEST DATA-RECOVERY WELL 1

ELAPSED MINUTES	DRAWDOWN (FEET)	WATER LEVEL
0.00	0.00	11.04
0.43	0.06	11.10
0.53	0.29	11.33
0.67	0.46	11.50
1.23	0.56	11.60
1.67	0.66	11.70
1.97	0.71	11.75
2.53	0.78	11.82
3.00	0.86	11.90
3.83	0.95	11.99
4.33	1.00	12.04
4.90	1.06	12.10
5.28	1.10	12.14
5.78 6.15	1.14 1.16	12.18 12.20
6.68	1.16	12.25
7.28	1.25	12.29
8.18	1.31	12.35
9.27	1.36	12.40
9.67	1,38	12.42
13.50	1.40	12.44
14.35	1.46	12.50
14.90	1.49	12.53
15.33	1.51	12.55
16.32	1.54	12.58
16.73	1.56	12.60
17.17	1.59	12.63
17.67 18.50	1.61	12.65
19.32	1.64 1.67	12.68 12.71
19.32 1 20.48	1.70	12.74
21.33	1.72	12.76
22.25	1.74	12.78
23.28	1.76	12.80
24.13	1.79	12.83
25.58	1.82	12.86
26.87	1.84	12.88
28.25	1.86	12.90
29.48	1.88	12.92
31.00	1.90	12.94
32.83	1.92	12.96
36.08	1.94	12.98
38.67	1.96	13.00
41.25 44.38	1.98 2.01	13.02
47.17	2.03	13.05 13.07
50.03	2.06	13.10
52.03	2.08	13.12

TABLE B-1 (Cont'd) ENVIROTEK II SITE TONAWANDA, NEW YORK

AQUIFER TEST DATA-RECOVERY WELL 1

ELAPSED	DRAWDOWN	WATER
MINUTES	(FEET)	LEVEL
57.60	2.10	13.14
63.22 66.52	2.12	13.16
	2.15	13.19
69.57	2.17	13.21
69.57 75.58	2.22	13.14 13.16 13.19 13.21 13.26 13.29
82.72	2.25	13.29
91.48	2.56	13.60
97.70	2.47	13.51
102.67	2.45	13,49
109.30	2.45	13.49
118.50	2.47	13.51
129.05	2.50	13.54
144.33	2.54	13.58
154.85	2.64	13.68
§161.03	2.63	13.67
165.30	2.63	13.67
172.42	2.64	13.68
∥180.10	2.63	13.67
189.00	2.64	13.68
208.50	2.71	13.75
221.68	2.71	13.75
231.02	2.72	13.76
243.50	3.09	14.13
246.28	3.03	14.07
248.72	3.01	14.05
266.83	2.95	13.99
259.00	2.87	13.91
7267.05	2.80	13.84
282.63	2.77	13.81
295.35	2.79	13.83
326.42	2.93	13.97
344.42	2.93	13.97
365.30	3.17	14.21
379.70	3.16	14.20
398.13	3.31	14.35
414.17	3.51	14.55
420.33	3.56	14.60
430.00	3.60	14.64
440.45	3.59	14.63
451.60	3.63	14.67
460.55	3.78	14.82
478.02	3.92	14.96
486.30	3.97	15.01
1493.42	3.99	15.03
499.77	3.99	15.03
504.17	4.00	15.04
506.80	4.01	15.05

TABLE B-1 (Cont'd) ENVIROTEK II SITE TONAWANDA, NEW YORK

AQUIFER TEST DATA-RECOVERY WELL 1

ELAPSED	DRAWDOWN	WATER
MINUTES	(FEET)	LEVEL
PUMP OFF		
507.32	2.01	14.05
507.58	3.91 3.76	14.95 14.80
507.77	3.68	14.72
507.93	3.61	14.65
508.18	3.56	14.60
508.43	3.41	14.45
508.63	3.36	14.40
508.82 509.00	3.26 3.11	14.30
509.47	2.96	14.15 14.00
509.58	2.76	13.80
:510.12	2.61	13.65
:510.28	2.51	13.55
510.38 510.53	2.46	13.50
510.65	2.41 2.36	13.45 13.40
510.75	2.31	13.35
510.93	2.26	13.30
511.05	2.21	13.25
511.15 511.27	2.18 2.16	13.22 13.20
511.42	2.11	13.20
511.63	2.06	13.10
511.70	2.01	13.05
511.85	1.96	13.00
511.92 512.10	1.91 1.86	12.95 12.90
512.30	1.81	12.85
512.45	1.76	12.80
512.67	1.71	12.75
512.80 512.92	1.66 1.61	12.70
513.12	1.56	12.65 12.60
513.35	1.51	12.55
513.50	1.46	12.50
513.70	1.41	12.45
513.95 514.17	1.36 1.31	12.40 12.35
∄514.40	1.26	
514.92	1.16	12.20
515.52	1.06	12.30 12.20 12.10 12.00
515.93 516.37	0.96 0.86	
. 517.47	0.76	11.90 ; 11.80 ;
518.27	0.66	11.70
519.65	0.56	11.60
521.72	0.46	11.50
525.75	0.36	11.40

TABLE B-2

ENVIROTEK II SITE TONAWANDA, NEW YORK

AQUIFER TEST DATA-MONITORING WELL ENV-2

ELAPSED MINUTES	DRAWD OWN (FEET)
0 19 29 40 50 60 66 74 102 117 128 154 175 198 227 241 267 283 300 313 345 417 461 497 505 513 519 522	0 0.01 0.02 0.025 0.03 0.035 0.035 0.04 0.04 0.04 0.045 0.05 0.05 0.05 0.
PUMP OFF	:
525 526 534 549 555 570 601 618	0.08 0.08 0.07 0.07 0.06 0.05 0.04

OBSERVATION WELL ENV-2 DRAWDOWN vs. TIME 8 HOUR PUMPING TEST AT ENVIROTEK SITE TONAWANDA, NEW YORK

APPENDIX C LABORATORY ANALYTICAL REPORTS

(Submitted Under Separate Cover)

R - 6 - 1 - 1 - 1 D

NOV 1 9 1992

ENUMERATION SERVATION