The	electronic	version	of this	file/report	should	have	the	file	name:
-----	------------	---------	---------	-------------	--------	------	-----	------	-------

Type of document. Spill Number. Year-Month. File Year-Year or Report name.pdf

letter.______. <u>-___.File__spillfile__.pdf</u>

report. hw915056 . 2005 -03-01 . INTELIM REMEDIAL pdf
MEASURES FINAL REPORT FOR OPERABLE
UNIT 3

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b

Superfund - hw

Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

REPORT

Interim Remedial Measures Final Report for Operable Unit 3 Envirotek II Site

Technical Committee Participating Potentially Responsible Parties

Tonawanda, New York

January 2005 (Revised March 2005)

Interim Remedial Measures Final Report for Operable Unit 3 Envirotek II Site

Technical Committee Participating Potentially Responsible Parties

Tonawanda, New York

January 2005 (Revised March 2005)

Table of Contents

Acronym	ıs aı	nd Un	its of Measurement	1
Section	1.	Intro	oductio n	1-1
		1.1 1.2 1.3 1.4 1.5	General Site Location Site History Roles and Responsibilities Report Organization	1-2 1-2 1-5
Section	2.	OU-	3 IRM Field Activities	2-1
		2.1 2.2 2.3 2.4	Monitoring Well Installation and Development Surveying Groundwater Sampling Investigation-Derived Wastes	2-1 2-1
Section	3.	OU-	3 IRM Field Results	3-1
		3. 1 3.2	Groundwater Gauging and Assessment of Groundwater Flow	3-1 3-1
S ection	4.	Natu	ıral Attenuation Evaluation	4-1
		4.1 4.2 4.3 4.4	Objective and Overview. Site Conceptual Model	4-1 4-2 4-3 4-3 4-4 4-5 4-6 4-7 4-7 4-10 4-14
Section	5.	Con	clusion s	5-1
Section	6.	Refe	rences	6-1

Tables

3-1	Groundwater	اميروا	Measurements
J-1	Giouniuwatei	Level	ivieasuremenis

- 3-2 Groundwater Analytical Data Organics
- 3-3 Groundwater Analytical Data Inorganics
- 4-1 Geochemical Indicator Parameters in Groundwater
- 4-2 Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes

 Natural Attenuation Screening Evaluation
- 4-3 Natural Groundwater Remediation Rate Analysis Summary Table
- 4-4 Groundwater Sampling Field Parameters

Figures

- 1-1 Site Location Map
- 1-2 Roblin Steel Complex Site Plan
- 3-1 Groundwater Elevation Contour Map May 5, 2004
- 3-2 Groundwater Elevation Contour Map September 28, 2004
- 3-3 Total Groundwater VOC Concentration Map May 5, 2004 and July 15, 2004
- 3-4 Total Groundwater VOC Concentration Map September 28, 2004
- 4-1 Total Groundwater VOC Concentration Map (Color Coded) September 1999
- 4-2 Total Groundwater VOC Concentration Map (Color Coded) May 5, 2004
- 4-3 Total Groundwater VOC Concentration Map (Color Coded) September 28, 2004

Appendices

- A NYSDEC March 24, 2004 Approval Letter for IRM Work Plan for Operable Unit 3
- B Boring/Well Construction Log ENV-3R
- C Surveyor's Report
- D Groundwater Sampling Logs
- E Laboratory Reports and Data Review Reports
- F VOC Trend Graphs
- G Natural Groundwater Remediation Rate Analysis

Acronyms and Units of Measurement

1,1,1-TCA 1,1,1-tetrachloroethane

AOC Administrative Order by Consent Blasland, Bouck & Lee, Inc. BBL below ground surface bgs

BTEX benzene, toluene, ethylbenzene, and xylene

C Celsius CA chloroethane

COC constituent of concern

chlorinated volatile organic compounds CVOC

DCA dichloroethane **DCE** dichloroethene DO dissolved oxygen DOC dissolved organic carbon HAS hollow-stem auger

IDWinvestigation-derived waste **IRM** Interim Remedial Measures

milligrams per liter mg/L MMO methane-monooxygenase

MS matrix spike

MSD matrix spike duplicate

mV millivolts

natural attenuation NA

ND non-detect NFA no further action

NRW Niagara River World, Inc.

New York State Department of Environmental Conservation **NYSDEC**

NYSDOH New York State Department of Health

ORP oxidation-reduction potential

OU-3 Operable Unit 3. PCE tetrachloroethene

PPE personal protective equipment PRP Potentially Responsible Parties

PVC polyvinyl chloride OC quality control

RASP Remedial Action Sampling Plan

RCRA Resource Conservation and Recovery Act

redox oxidation-reduction RI remedial investigation SDA Still Discharge Area

STL Severn Trent Laboratories, Inc. **SVOC** semivolatile organic compounds

TCE trichloroethene

Technical and Operational Guidance Series TOGS

TKN total Kjeldahl nitrogen

treatment, storage, and disposal facility **TSDF**

μg/L micrograms per liter

U.S. Environmental Protection Agency **USEPA**

VC VOC

vinyl chloride volatile organic compound Waste Technology Services, Inc. WTS

1. Introduction

1.1 General

Blasland, Bouck & Lee, Inc. (BBL) has prepared this Interim Remedial Measures Natural Attenuation Evaluation Report for Operable Unit 3 (Report) to summarize the interim remedial measure (IRM) activities conducted for groundwater at Operable Unit 3 (OU-3) at the Envirotek II Superfund Site (site) located at 4000 River Road in the Town of Tonawanda, Erie County, New York (Figure 1-1 and 1-2). This report has been prepared on behalf of the Envirotek II Site Potentially Responsible Parties (PRP) Group implementing the Administrative Order by Consent (AOC), Index #B9-0407-92-05, that was issued by the New York State Department of Environmental Conservation (NYSDEC) on August 20, 1998. The OU-3 IRM-related activities were performed in accordance with the NYSDEC-approved IRM Work Plan for OU-3 (Work Plan) (BBL, 2004b), which was approved by the NYSDEC in a letter dated March 24, 2004 (Appendix A). The objectives for the work in OU-3 were to:

- assess the current groundwater quality; and
- evaluate the viability of natural attenuation (NA) as an IRM for OU-3.

The IRM Work Plan for OU-3 included the following elements.

- Installation of a new monitoring well (ENV-3R) between existing Buildings 13 and 24, immediately downgradient of the former source area (Figure 1-2) and near the former location of monitoring well ENV-3.
- Sampling of groundwater from the monitoring well network at least once.
- Evaluation of NA data. BBL performed a review of historical groundwater data, as well as the more recent groundwater data to provide a detailed assessment of the remedial progress made by NA processes. The NA assessment included:
 - updating the United States Environmental Protection Agency's (USEPA's) scoring for evaluation of the potential for in situ biodegradation;
 - preparing groundwater concentration trend graphs;
 - evaluating the concentration trend of ratios of parent to daughter compounds;
 - comparing concentration data with NYSDEC Technical and Operational Guidance Series (TOGS);
 - evaluating concentration reduction trends along projected groundwater flow paths; and
 - assessing the potential applicability of the BIOCHLOR screening model for evaluation of potential biodegradation rates and NA life.
- Meeting with the NYSDEC and New York State Department of Health (NYSDOH) to discuss the
 preliminary findings of the OU-3 investigation and NA data and to determine the need for a second
 round of groundwater sampling.

Preparation of a Groundwater Assessment and NA Evaluation Report for OU-3.

1.2 Site Location

The site consists of a 2.5-acre parcel of land located within the 50-acre Roblin Steel complex (NYSDEC Site #915056) at 4000 River Road in the Town of Tonawanda, Erie County, New York. A map identifying the approximate location of the Roblin Steel complex is presented on Figure 1-1. Figure 1-2 presents a site plan of the Roblin Steel complex, showing that it is in an industrialized area along River Road, and identifies the 2.5acre Envirotek II site. The Roblin Steel complex (Figure 1-2), which is presently owned by Niagara River World, Inc. (NRW), is bounded on the west by the Niagara River, on the east by River Road, on the south by Marathon Oil, and on the north by a facility that was investigated and remediated by the NYSDEC (i.e., the River Road Site [NYSDEC Site #915031]).

1.3 Site History

The history of the site is interrelated with the history of the Roblin Steel complex, as the site was formerly leased from Roblin Steel for industrial use. Between August 1981 and June 1989, Envirotek Ltd. (Envirotek) operated a solvent recovery operation at the site located within the Roblin Steel property.

A review of the Roblin Steel property history indicates that industrial steel production activities have been associated with the property since the early 1900s. Prior to development of the property, a section of the Erie Canal along River Road was filled with unspecified materials. In addition, Rattlesnake Creek, which formerly ran through the Roblin Steel property, was backfilled with slag and other materials to bridge Rattlesnake Island with the main property. Because areas of the Roblin Steel property were located in seasonal floodplains, those low areas were filled with slag and other industrial debris to raise the site grade. The property was developed in the early 1900s for the production of steel by the Wickwire Spencer Steel Company (Wickwire). In 1945, the property was sold to the Colorado Fuel and Iron Corporation (Colorado F&I), which subsequently merged with Wickwire and was operated by Colorado F&I until it went bankrupt in 1963. In the mid- to late 1960s, Roblin Steel purchased the property and used it primarily for storage. Roblin Steel also subleased portions of the property to a number of other companies, including, but not limited to, Ascension Chemical, Rupp Rental, Freightways Transportation, Envirotek, and Booth Oil.

In 1984, the NYSDEC issued a Resource Conservation and Recovery Act (RCRA) Part B Permit to Envirotek to operate the site as a hazardous waste treatment, storage, and disposal facility (TSDF). After violations of this permit in 1985, including improper waste characterization, RCRA drum handling violations, and tack of insurance and financial assurance, Envirotek entered into an AOC with the NYSDEC that required a reduction of Envirotek's hazardous waste inventory.

In 1988, Envirotek submitted a Facility Closure Plan (Envirotek, 1988) to the NYSDEC to remove and dispose of all materials remaining onsite and to take measures to decontaminate the property. The NYSDEC's review determined that the Facility Closure Plan was unacceptable, citing inaccurate closure costs and the use of unqualified personnel to implement the closure as reasons for rejecting the Facility Closure Plan.

On February 2, 1989, Envirotek filed a petition under Chapter 11 of the Bankruptcy Code in the United States Bankruptcy Court of the Western District of New York. The current owner of the property, NRW, evicted Envirotek in June 1989, at which time Envirotek abandoned the facility. The NYSDEC formally revoked

Envirotek's RCRA Part B Permit to operate on November 16, 1989, on the basis of Envirotek's inability to develop an acceptable Facility Closure Plan.

Following abandonment of the site, the USEPA inspected the site and confirmed the presence of abandoned and unsecured drums and containers, pits containing hazardous substances, and contaminated process vessels and tanks. Preliminary analysis of some of the materials suggested that corrosive, air-reactive, and metalcontaminated wastes, as well as oils and waste solvents, were present onsite. Many of the materials located onsite were flammable, with some known to be either acutely or chronically toxic.

As a result, the USEPA notified former Envirotek customers of their potential liability at the site and requested the performance of a removal action to control site conditions. As a result, on May 14, 1990, the USEPA entered into an AOC with site respondents to perform a removal action at the site (Removal Action AOC). The site boundaries, as defined in this Removal Action AOC, included the property once leased by Envirotek and the southeast portion of the hangar-like building that contained the aforementioned pits, which was located adjacent to the property once leased by Envirotek.

Under the Removal Action AOC, several tasks were completed by the site PRP Group, including the following:

- Between June 1990 and November 1990, a removal action was implemented at the site that consisted of the characterization, removal, transportation, and offsite disposal of approximately 980 drums; 3,500 gallons of liquid wastes; 363 tons of solid wastes; and 146 tab pack containers, all of which had been stored in Buildings 13, 24, and 153.
- Between July 1990 and October 1990, a removal action was implemented at the site that consisted of the characterization, removal, transportation, and offsite disposal of waste materials that were formerly stored in Pits 1, 2, 3, 3A, 4, and 5; decontamination of the former pits; offsite transportation and disposal of decontamination water; and backfilling of the pits.
- Between June 1990 and January 1991, decontamination activities were performed at the site for a number of process vessels, tanks, buildings, and equipment.
- Between September 1990 and November 1990, BBL implemented a Remedial Action Sampling Plan (RASP) (BBL, 1990) at the site to identify areas onsite, other than the Still Discharge Area (SDA), at which spills or releases of chemical compounds may have occurred. The RASP also estimated the direction and rate of groundwater flow in the shallow overburden aquifer underlying the site, evaluated the nature of chemical compounds in groundwater that were associated with the former activities at the site, and provided a preliminary characterization of site conditions that would be the basis for evaluating whether further investigation and/or remediation of the site would be warranted. To accomplish these objectives, BBL performed a soil gas survey, installed and sampled site groundwater monitoring wells, analyzed groundwater samples for volatile organic compounds (VOCs), and collected soil samples from the **S**DA.

The results of this investigation indicated the following:

- The soil gas survey indicated elevated levels of VOCs in the area of the SDA and in an area to the west of Building 153.
- The analytical results for the groundwater sampling indicated the presence of VOC-impacted groundwater associated with the site.

1-3

- The analytical results for the soil sampling indicated that there were elevated levels of chlorinated and aromatic VOCs and that the soils containing the highest level of VOCs were located in the vicinity of the SDA.
- Following implementation of the Remedial Action Sampling Plan (RASP) in 1990, BBL performed an evaluation of potential interim remedial alternatives for the SDA in March 1991.
- As a result of this evaluation, in May 1993, a removal action was implemented at the site that consisted of the removal of approximately 175 tons of impacted soil from the SDA. Soils with field headspace screening results greater than 1,000 units of total volatile organic vapors were removed from this area. A polyethylene sheet was placed over the remaining soils in the excavation, and clean fill was placed over the polyethylene sheet. A 12-inch-diameter production well located near the Power Building was also abandoned during this field activity.

Additionally, from 1999 to 2001, BBL conducted a remedial investigation (RI) at the site to assess the onsite surface and subsurface soil quality, offsite subsurface soil quality, site groundwater quality, and site geologic and hydrogeologic characteristics. The results of the RI for the site are presented in the *Remedial Investigation Report* (RI Report) (BBL, 2002). Based on the results of the RI, the Envirotek II Site PRP Group submitted recommendations to the NYSDEC including:

- implementing an IRM to remove the Boiler House ink waste for offsite disposal; removing soils containing elevated levels of VOCs from Waste Pit No. 6, decontaminating the pit, and backfilling the pit with clean backfill; and disposing of all solid, liquid, and personal protection equipment (PPE) generated during this IRM to an approved offsite disposal facility(ies);
- reducing the potential for migration of VOC constituents of concern (COCs) from source-area soils to the shallow overburden groundwater; and
- reducing the concentration of VOC COCs in shallow overburden groundwater associated with elevated VOC concentrations in source-area soils.

The first recommendation, which is defined as OU-1 and is related to the removal of ink waste in the Boiler House and VOC-impacted soil in Waste Pit No. 6, was implemented in April 2003 and is summarized in the Interim Remedial Measures Final Report for OU-1 (IRM Final Report for OU-1) (BBL, June 2003). The IRM Final Report for OU-1 was reviewed and approved by the NYSDEC in No Further Action (NFA) letters dated November 5 and 19, 2003. The second recommendation, which is defined as OU-2 and is related to reducing the potential for migration of VOC COCs from source-area soils to the shallow overburden groundwater, was implemented in October 2003 and is summarized in the Interim Remedial Measures Final Report for OU-2 (IRM Final Report for OU-2) (BBL, 2004a). Following review of the IRM Final Report for OU-2, the NYSDEC issued a NFA letter for OU-2 dated February 9, 2004. The third recommendation, which is defined as OU-3 and is related to reducing the concentration of VOC COCs in shallow overburden groundwater associated with elevated VOC concentrations in source-area soils, is addressed in detail in this report. One should note that implementation of the OU-2 IRM had an expected significant beneficial effect on OU-3 because more than 7,100 tons of impacted soil were removed as a potential future source of VOC COCs to groundwater.

1.4 Roles and Responsibilities

The OU-3 IRM activities were implemented at the site between April 14 and September 28, 2004. The Envirotek II Site PRP Group retained BBL to implement the Work Plan (BBL, 2004b). The subcontractors that were retained by BBL during the OU-3 IRM included the following:

- Nothnagle Drilling, Inc. (Nothnagle) of Scottsville, New York was used to install replacement monitoring well ENV-3R.
- Waste Technology Services, Inc. (WTS) of Niagara Falls, New York was used to provide transportation and offsite disposal services for solid waste materials-generated during well installation and groundwater sampling during implementation of the Work Plan.
- Severn Trent Laboratories, Inc. (STL) of Amherst, New York was used to perform offsite analytical testing for groundwater and waste disposal characterization samples.
- McIntosh and McIntosh, P.C. of Lockport, New York was used to perform the survey of newly installed monitoring well ENV-3R.

The OU-3 IRM activities for the site were managed and documented by BBL, with BBL providing representatives onsite for the duration of the project.

1.5 Report Organization

This report summarizes and documents the OU-3 IRM activities implemented by the Envirotek II Site PRP Group and has been organized into the following sections:

- Section 1 Introduction: Provides a brief overview of the OU-3 IRM scope of work and site background.
- Section 2 Summary of OU-3 IRM Field Activities: Summarizes the investigative activities performed at the site in 2004.
- Section 3 Summary of OU-3 IRM Results: Summarizes the results of the field investigative activities.
- Section 4 Natural Attenuation Evaluation: Summarizes the methods and results used to assess whether NA has occurred and whether NA is a viable alternative for completion of the IRM for OU-3.
- Section 5 Conclusions: Provides overall conclusions of work described within this report.
- Section 6 References: Provides references cited in this report.

2. OU-3 IRM Field Activities

2.1 Monitoring Well Installation and Development

On April 14, 2004, Nothnagle installed groundwater monitoring well ENV-3R under the supervision of a BBL field geologist. Monitoring well ENV-3R was installed to replace monitoring well ENV-3, which was removed on September 25, 2003 during the excavation performed during implementation of the IRM for OU-2.

The boring for ENV-3R was advanced to a depth of 18 feet below ground surface (bgs) using the hollow-stem auger (HSA) drilling technique. Soil samples were collected at 2-foot intervals during the boring process using a split spoon-sampler driven ahead of the augers. These samples were lithogically characterized. The boring log for the soil encountered during drilling for monitoring well ENV-3R is included as Appendix B.

Monitoring well ENV-3R was installed at the interface between fill material and underlying native clay, approximately 16 feet bgs. The well was constructed of 10 feet of Schedule 40, 0.01-inch slotted polyvinyl chloride (PVC) screen, and Schedule 40, flush-threaded PVC riser. The open borehole space below the well screen was backfilled with bentonite chips and capped with 0.5 feet of filter pack sand. The annular space between the borehole and the screen was filled through the HSAs with filter pack sand. Sand was placed to approximately 2 feet above the top of the screened interval, followed by a 2-foot-thick hydrated bentonite seal, capped with a concrete surface seal. At the surface, the well was completed as a flush-mounted well, secured by a locked expanding well plug, and surrounded by a road box within a 2- by 2-foot concrete pad. Monitoring well construction information is presented in the boring log for monitoring well ENV-3R (Appendix B).

Following installation, monitoring well ENV-3R was developed by pumping and surging, using a Waterra pump and surge block. Development continued until the well was observed to produce relatively clear, sediment-free water. Approximately 20 gallons of water were generated during the development process.

The drilling subcontractor constructed a decontamination pad and used a pressure washer to decontaminate the HSAs and all other down-hole equipment. Decontamination water was contained within the decontamination pad constructed at the site for this purpose.

2.2 Surveying 5 1

On September 28, 2004, the relative horizontal location and elevation of the top of monitoring well ENV-3R was surveyed by McIntosh & McIntosh, P.C., a New York State-licensed surveyor. The surveyor's report is presented as Appendix C.

2.3 Groundwater Sampling

On May 5, 2004, a BBL field geologist collected groundwater samples from eight monitoring wells (ENV-1, ENV-3R, ENV-4, ENV-7, ENV-8, ENV-9, GW-3, and GW-7) that define the OU-3 monitoring well network. On July 15, 2004, an additional, sample was collected from monitoring well ENV-3R. Based on discussions with NYSDEC representatives, and on behalf of the PRP Group, BBL agreed to sample groundwater from the monitoring well network a second time. The second full round of sampling was performed on September 28, 2004.

Groundwater samples were collected using the low-flow purging and sampling technique. Prior to sampling, each monitoring well was purged using a peristaltic pump and dedicated tubing until parameters of pH, conductance, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP) had stabilized. Stabilization of these parameters provided an indication that water drawn from the well was representative of the groundwater in the surrounding formation. After the monitored parameters had stabilized, samples were collected with a disposable bailer. During both sampling events, BBL's field geologist collected several quality control (QC) samples including a trip blank, a field blank, a matrix spike (MS) and matrix spike duplicate (MSD), and a field duplicate. The MS/MSD samples were collected from monitoring well ENV-8 during the May 5, 2004 event and from monitoring well ENV-9 during the September 28, 2004 event. Field duplicate samples FD050504 and FD092804 were collected from monitoring well ENV-3R. Copies of groundwater sampling logs are presented in Appendix D.

Groundwater samples were sent to the STL facility in Amherst, New York, where they were analyzed for VOCs by USEPA Method 8260. The analytical results of these groundwater samples are presented and discussed in Section 3.

2.4 Investigation-Derived Wastes

Soil cuttings generated during the installation of ENV-3R were collected and placed in one 55-gallon drum. Monitoring well development water and decontamination water were contained within a second 55-gallon drum. Purge water generated during the May 5, 2004, July 17, 2004, and September 28, 2004 groundwater sampling events was placed into an additional 55-gallon drum.

Disposal characterization samples of drummed investigation derived waste (IDW) were analyzed on October 6, 2004 with results reported on October 20, 2004. On November 30, 2004, three drums of non-regulated IDW (two drums of water and one drum of soil) were transported offsite by Hazmat Environmental Group and disposed on December 1, 2004 at the CWM Chemical Services Facility located in Model City, New York.

3. OU-3 IRM Field Results

3.1 Groundwater Gauging and Assessment of Groundwater Flow

Table 3-1 presents groundwater gauging data for site monitoring wells from 1990 through the most recent gauging event (performed on September 28, 2004). Figures 3-1 and 3-2 illustrate groundwater elevation contours within the upper fill material based on data from the last two gauging events on May 5, 2004 and September 28, 2004, respectively. The interpreted direction of groundwater flow in May and September 2004 is consistent with interpretations from previous groundwater gauging events reported in the RI Report (BBL, 2002). That is, the groundwater flow has a radial component of flow, particularly on the eastern side of the site and a more unidirectional flow on the western side of the site when nearing the Niagara River. The radial component of flow on May 5, 2004 (Figure 3-1) was more pronounced than that observed on September 8, 2004. This variability is also consistent with previous observations in 1999 and 2001, as presented in the RI Report (BBL, 2002).

The groundwater gradients calculated between monitoring well ENV-1 and GW-5 was 0.042-feet/foot (ft/ft) on both May 5 and September 28, 2004. This represents a gradient slightly over 20% higher than that reported in the RI Report (BBL, 2002). However, gradient fluctuations of this magnitude are expected for sites like this one, which is near a river and, therefore, likely to be significantly influenced by river stage.

3.2 Groundwater Quality

Table 3-2 summarizes VOC and semivolatile organic compound (SVOC) data collected at the site from 1988 through the groundwater sampling event performed on September 28, 2004. Figures 3-3 and 3-4 provide isoconcentration plots illustrating the total VOC concentrations detected at each of the eight wells from the May 5 and September 28, 2004 sampling events, respectively. Figure 3-3 also presents the concentration data for the sample collected on July 15, 2004 from monitoring well ENV-3R. Laboratory reports and data review reports are presented in Appendix E.

Total VOC concentrations in groundwater have decreased significantly since the previous groundwater sampling event in 2001 as reported in the RI Report (BBL, 2002). The concentrations of total VOCs in groundwater in ENV-3R showed some variability, with concentrations ranging from a low of 0.084 milligrams per liter (mg/L) on July 15, 2004 to a high of 0.660 mg/L on September 28, 2004. VOC concentrations in groundwater from the other monitoring network wells were low and consistent between the two 2004 sampling events. Additional discussions of VOC concentration trends are presented in Section 4 of this report.

4. Natural Attenuation Evaluation

4.1 Objective and Overview

The objective of this NA evaluation was to assess the relative contributions of naturally occurring fate and transport processes associated with decreasing concentrations of principal COCs at several site groundwater monitoring locations and to determine whether NA is a viable method of remediation for OU-3. Fate and transport processes known to attenuate peak concentrations of COCs in groundwater include dispersion, dilution, sorption, abiotic degradation, and biodegradation. These NA processes result in decreasing COC mass or concentrations in groundwater with time and distance. NA is a significant process that reduces the concentration of COCs in groundwater at sites that have been impacted by VOCs.

The NA evaluation for the Envirotek site was based on appropriate USEPA guidance documents (USEPA, 1998; USEPA, 1999) that are based on a "multiple lines of evidence" approach, in which several different data types are used to independently determine the effectiveness of natural groundwater remediation. Three lines of evidence were considered for this evaluation:

- decreasing principal COC concentration trends with time and distance;
- changes in principal COC concentration ratios with time and distance; and
- geochemical conditions that indicate the presence of in situ biodegradation of site principal COCs.

Groundwater data collected during RI activities that focused on determining the nature, extent, and transport of dissolved VOC concentrations in site groundwater were used to support the first two lines of evidence. Site-specific groundwater geochemical data were collected, including measurements of dissolved gas concentrations, to support the third line of evidence. In situ biodegradation is an important NA process because it destroys COC mass.

The analytical database for the site includes groundwater monitoring data collected at site monitoring wells between 1990 and 2004, as well as groundwater samples collected at temporary monitoring locations hydraulically downgradient from the SDA/Source Area in 1999.

The remainder of this section consists of the following components:

- site conceptual model:
- NA evaluation methods and results; and
- conclusions.

4.2 Site Conceptual Model

The site conceptual model was thoroughly discussed in Sections 1 and 3 of the NYSDEC-approved RI Report (BBL, 2002). The site conceptual model is summarized below.

4.2.1 Sources and Chemicals of Concern

Envirotek operations occurred on only a limited portion of the Roblin Steel property, a facility historically used in steel-making operations. Generally, the Roblin Steel property appears to have been impacted by COCs associated with former operations associated with making steel, including inorganic chemicals and SVOCs. In the immediate site vicinity, residual hydrocarbons identified in vadose and saturated-zone soils are considered to be associated with former Roblin Steel operations. However, these residual hydrocarbons have appeared to commingle with the principal COCs at the site.

The SDA is considered to be the main source area associated with former Envirotek operations. Impacted media associated with releases at the SDA include soil and groundwater. A limited soil removal action performed at the SDA in 1992 resulted in the removal of approximately 175 tons of soil containing elevated levels of VOCs. Lower levels of VOC-impacted soil were identified in the Source Area adjacent to the SDA. In 2003, an additional 7,100 tons of soil were removed as part of the OU-2 IRM. This was expected to enhance any remedy chosen for OU-3.

As previously discussed, the principal COCs associated with Envirotek operations are VOCs, including chlorinated ethenes and ethanes, as well as some of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. As mentioned above, residual petroleum hydrocarbons are also present within the SDA and Source Area, but these are considered to be associated with Roblin Steel operations. Principal COCs detected in soils associated with Envirotek operations include tetrachloroethene (PCE), trichloroethene (TCE), 1,1,1-tetrachloroethane (1,1,1-TCA), toluene, ethylbenzene, and xylene. Principal COCs detected in groundwater near the site include PCE, TCE, and 1,1,1-TCA and their associated degradation byproducts, including isomers of dichloroethene (DCE) and dichloroethane (DCA), vinyl chloride (VC), and chloroethane (CA).

4.2.2 Fate and Transport Processes for PCOCs in Groundwater

Fate and transport processes known to attenuate peak VOC concentrations in groundwater include a variety of physical, chemical, and biological processes. Physical fate and transport processes known to attenuate VOC concentrations in groundwater include mixing, dispersion, and sorption. Chemical (abiotic) fate and transport processes that destroy VOC mass in groundwater and result in decreasing VOC concentrations may include hydrolysis and dehydrohalogenation. Biological fate and transport processes that destroy VOC mass in groundwater and result in decreasing VOC concentrations include aerobic and anaerobic biodegradation reactions. Of all the fate and transport processes known to attenuate peak VOC concentrations in groundwater, abiotic and biologic degradation processes are of particular interest because they destroy VOC mass in situ.

BTEX compounds and chlorinated VOCs (CVOCs) can be biodegraded in situ in groundwater by naturally occurring aerobic and anaerobic microorganisms. BTEX compounds and certain CVOCs, such as DCE, DCA, VC, and CA, can be oxidized by certain aerobic and anaerobic microorganisms that directly use these chemicals as a source of organic carbon. During this process, innocuous byproducts such as carbon dioxide and chloride ions are formed. These metabolic processes require proper microorganisms, water, circum-neutral pH conditions, adequate temperature, a supply of electron acceptors or alternate electron acceptors, and nutrients. Degradation can occur under oxidizing or reducing geochemical conditions, via aerobic respiration, nitrate reduction, iron reduction, sulfate reduction, or methanogenesis. Degradation half-lives of organic chemicals subject to biological oxidation can range from days to years, depending on site-specific conditions.

CVOCs containing higher amounts of chlorine, including PCE, TCE, and 1,1,1-TCA, are biodegraded in situ in groundwater by naturally occurring anaerobic microorganisms that use these chemicals as electron acceptors in

a reaction called reductive dechlorination. During reductive dechlorination reactions, anaerobic microorganisms sequentially remove chloride ions from these chemicals and transfer electrons during other metabolic processes. The result is that intermediate byproducts such as DCE and DCA can be formed, which can be further biodegraded by reductive dechlorination or via aerobic or anaerobic oxidation. Reductive dechlorination of PCE and 1,1,1-TCA can be represented by the reactions:

$$PCE \rightarrow TCE \rightarrow 1,2-DCE \rightarrow VC \rightarrow Ethene and Ethane$$

$$1,1,1-TCA \rightarrow 1,1-DCA \rightarrow Ethane$$

Reductive dechlorination requires proper microorganisms, water, circum-neutral pH conditions, adequate temperature, reducing geochemical conditions, an alternative source of organic carbon such as natural organic matter, and nutrients. Reductive dechlorination occurs under reducing geochemical conditions and can be associated with oxidation-reduction (redox) processes such as iron reduction, sulfate reduction, and methanogenesis. Degradation half-lives of organic chemicals subject to reductive dechlorination can range from weeks to years, depending on site-specific conditions.

In addition, some chemicals such as PCE and TCE can be cometabolically biodegraded in situ in groundwater by naturally occurring microorganisms that metabolize other organic carbon sources and fortuitously degrade these COCs. For example, methanotrophic organisms express the methane-monooxygenase (MMO) enzyme to metabolize methane for food and growth. MMO quickly oxidizes PCE, TCE, and some other COCs, producing carbon dioxide and chloride ions as byproducts. Degradation half-lives of organic chemicals subject to cometabolic degradation can range from days to months.

Some principal COCs (1,1,1-TCA in particular) can be abiotically degraded in situ in groundwater by means of hydrolysis reactions. Hydrolysis is a naturally occurring reaction that can destroy organic chemicals by means of splitting water molecules. Hydrolysis of 1,1,1-TCA is a well-characterized reaction in groundwater, occurs fastest under reducing geochemical conditions, and has a half-life of approximately 2 years.

4.3 Methods

Multiple lines of evidence were evaluated as part of this NA evaluation, including:

- preliminary screening;
- time-series analysis of COC concentrations;
- evaluation of geochemical conditions; and
- evaluation of COC concentration ratios.

The following subsections describe the methods and results of these evaluations.

4.3.1 Preliminary Screening

A screening method adopted by the USEPA (1998) was used to preliminarily evaluate the potential for in situ biodegradation of dissolved CVOCs in site groundwater. The USEPA screening method is a scoring process in which points are assigned for various groundwater analytical data results, and is based on the fact that in situ biodegradation processes manifest themselves as changes in groundwater geochemistry. Using the USEPA scoring interpretation guidelines, scores less than 5 suggest inadequate evidence for in situ biodegradation of

CVOCs, scores from 6 to 14 suggest limited evidence for in situ biodegradation of CVOCs, scores from 15 to 20 indicate adequate evidence for in situ biodegradation of CVOCs, and scores greater than 20 indicate strong evidence for in situ biodegradation of CVOCs. This screening-level evaluation is useful because it is relatively straightforward, and, more importantly, it is objective and provides reproducible results. Potential drawbacks of the USEPA (1998) method are that it focuses on biodegradation reactions and ignores other NA processes, it attempts to simplify naturally complex phenomena, and it can lead to falsely negative conclusions (i.e., no NA potential). Where applicable, BBL has qualified these aspects of the screening method analysis.

During the April 2001 sampling event, groundwater samples were collected at five monitoring wells and analyzed for concentrations of in situ degradation indicator parameters in addition to principal COC concentrations (Table 4-1). As shown, the indicator parameters analyzed included total and dissolved iron, total and dissolved manganese, nitrate, nitrite, sulfate, sulfate, total Kjeldahl nitrogen (TKN), ammonia (as nitrogen), alkalinity, dissolved organic carbon, chloride, ethane, ethene, methane, oxygen, carbon dioxide, and nitrogen. The data were preliminarily screened using methods adopted by the USEPA (1998) and evaluated in detail for the presence of specific naturally occurring degradation processes.

Using the site-specific groundwater analytical data shown in Table 3-2 and Table 3-3, this scoring process was applied at those sampling locations where geochemical indicator parameters were measured (Table 4-1). These included monitoring well ENV-2, located within the SDA, and monitoring wells located hydraulically downgradient from the SDA/Source Area (ENV-3, ENV-4, and GW-7). Geochemical indicator parameters were also measured at upgradient well ENV-1, which exhibited evidence of reducing geochemical conditions (i.e., low DO, ORP, nondetectable nitrate, and elevated dissolved iron. As shown, the USEPA (1998) scoring system produced results ranging from 9 to 28, indicating strong evidence of in situ biodegradation of CVOCs in groundwater at some locations during the April 2001 sampling event (Table 4-2). All of the sampling locations evaluated showed at least limited evidence of in situ biodegradation in groundwater, with monitoring wells ENV-2 and ENV-3 indicating adequate and strong evidence for in situ biodegradation of CVOCs, respectively. The lower scores observed at hydraulically downgradient monitoring wells ENV-4 and GW-7 do not indicate a lack of in situ biodegradation of CVOCs, only a lack of current activity. The data are discussed in greater detail below.

4.3.2 Time-Series Analysis of COC Concentrations

Stability of the VOC plume in site groundwater was evaluated based on time-series analysis of COC concentrations. Groundwater VOC plumes can be shrinking, stable, or expanding with time; therefore, understanding plume stability is important from both a health-risk perspective and a remedial action perspective. Some shrinking or stable plumes may not pose a significant threat to receptors and would require only long-term monitoring with contingencies to be protective of human health and the environment, thus justifying an NA remedy. Conversely, some growing plumes may threaten potential receptors and warrant the use of engineering controls to mitigate risk. Therefore, evaluating the stability of the groundwater COC plume at this site is important when determining appropriate remedial strategies.

Figures 4-1, 4-2, and 4-3 provide a striking visual depiction of how the total VOC plume has been shrinking over time. This has been done by coloring the areas between index concentration contours to better visualize how those areas have either changed shape or disappeared. The contrast can be most easily seen when comparing Figure 4-1 with Figure 4-2. These two figures depict VOC concentrations in groundwater from September 1999 and May 5, 2004, respectively. The most notable contrast in these two figures is the relative shrinking of the green area (between the 0.1 and 0.01 mg/L concentration contours) on Figure 4-2 (May 5, 2004). In addition, the pink and beige, higher concentration areas (more than 10 mg/L and between 10 and 1

mg/L total VOCs, respectively) have disappeared on Figure 4-2. Figure 4-3 took the same presentation concept and applied it to the most recent data from September 28, 2004. The plume from May 5, 2004 and September 28, 2004 appear virtually identical, as would be expected for two sampling events so closely spaced in time. Appendix F also depicts graphical, qualitatively COC trends. Quantitative assessment of COC trends is discussed in subsequent sections of this report.

Plume stability was also evaluated using time series analyses (linear regression) of COC concentrations measured in groundwater samples collected at site monitoring wells. Generally, decreasing concentrations with time and distance from a source area are a good indicator of plume shrinkage, stable VOC concentrations with time and distance indicate plume stability, and increasing VOC concentrations with time and distance can indicate plume expansions. For sequentially decaying chemicals such as PCE, TCE, and 1,1,1-TCA, plume stability must be evaluated not only for these "parent" compounds, but also for their intermediate byproducts.

Although the database available for the site was deemed adequate to assess using models like BIOCHLOR, BBL concluded that a more straight-forward quantitative trend analysis was more appropriate as described in the following sections.

4.3.2.1 Linear Regression Analyses Methods

COC concentration trends were evaluated at select monitoring locations using graphical time-series plots and linear regression analyses of historical groundwater data. Use of linear regression analyses to evaluate timeseries concentration trends is consistent with appropriate regulatory guidance documents (USEPA, 1998; USEPA, 1999). Site groundwater sampling events occurred in 1990, 1999, 2001, and 2004. This 14-year database of groundwater analytical results provides a reasonable basis for interpreting COC concentration trends

COCs and monitoring locations for linear regression analyses was selected as follows:

- The site groundwater analytical database was queried to identify all samples that had a COC that exceeded its regulatory criteria. Based on these criteria, 54 COC regulatory exceedances were identified at 14 monitoring locations.
- For the 54 identified exceedances, datasets of COC concentrations with time were assembled. From these datasets, a visual (qualitative) assessment was made to determine:
 - whether there were sufficient data to perform linear regression analyses:
 - whether the COC had already reached its remediation goal (i.e., cleanup criteria);
 - datasets showing a decreasing trend with time; and
 - datasets showing an increasing trend with time.
- Datasets for COCs with sufficient data that showed a qualitative decreasing trend with time were then selected for linear regression analysis.

Linear regression methods were used to estimate correlation coefficients (R2) and NA rate constants (k) for COCs at select monitoring locations. This involved plotting the natural logarithm of COC concentrations over time. Standard statistical formulas were then used to estimate correlation coefficients and NA rate constants. In all cases where nondetect (ND) concentrations were used in computations, the concentration was assumed to be one-half the detection limit.

The correlation coefficient, or \mathbb{R}^2 , is a measure of how well a linear regression formula fits empirical data. \mathbb{R}^2 values close to 1.0 are considered to be a good fit, while \mathbb{R}^2 values below 0.6 are considered to be a poor fit. NA rate constants are defined as the slope of the linear regression line that best fits the empirical data. The NA rate constant includes the influence of all NA processes, including both biotic (i.e., biodegradation) and abiotic (i.e., hydrolysis, dilution, and dispersion) processes. COC half-lives in groundwater ($t_{1/2}$) were determined from the NA rate constant (k) as follows:

$$t_{1/2} = 0.693/k$$

4.3.2.2 Results

Results of the linear regression are presented in Appendix G and summarized in Table 4-3. As shown, 54 datasets were potentially available for linear regression analysis. Of these:

- 17 datasets (31%) showed decreasing COC trends with time;
- 1 dataset (2%) showed an increasing COC trend with time:
- 8 datasets (15%) had data that had an unacceptably low correlation coefficient. Because the correlation was poor, no conclusion could be drawn regarding data trends;
- 1 dataset (2%) had insufficient data to determine trend direction; and
- 27 datasets (50%) showed COCs had already met the remediation goals.

Based on these results, the 18 datasets that showed COC trends with time (i.e., datasets with acceptably high correlation coefficients) were selected for linear regression analyses. Correlation coefficients were estimated for 18 concentration time-series data sets using linear regression methods (Table 4-3). As shown, correlation coefficients for these datasets ranged from 0.60 to 1.00. This information indicates that all of these data sets displayed statistically significant trend with time. COC NA rates ranged from approximately 1.0E-03 to 1.0E-04 day⁻¹, with corresponding COC half-lives ranging from approximately 650 to 4,500 days.

4.3.2.3 Summary

Results of this analysis revealed the following:

- Fifty percent of historical COC detections above regulatory criteria have already been naturally remediated to below regulatory criteria.
- Thirty-one percent of historical COC detections show statistically significant decreasing trends with time, with half-lives ranging from about 650 to 4,500 days.
- Two percent of historical COC detections had insufficient data for trend analysis.
- Fifteen percent of historical COC detections had poor correlation coefficients and therefore no conclusions regarding trend directions could be made.

Only one COC (1,2-dichloroethylene [1,2-DCE]) appeared to be increasing at only one monitoring location (ENV-3/3R). Care must be taken when interpreting these data because they are from two distinctly different monitoring wells, ENV-3 and its replacement, ENV-3R and, therefore, do not represent the same exact location.

4.4 Evaluation of Geochemical Conditions Conducive for Destruction of COCs in Groundwater

This section discusses the geochemical analytical results for site groundwater samples and their implications for NA of principal COCs. The dataset used for the evaluation of geochemical conditions was collected in April 2001. The indicator parameters are discussed in the context of oxidation-reduction redox reactions known to consume dissolved COCs in site groundwater, and include aerobic respiration, denitrification, iron reduction. manganese reduction, sulfate reduction, and methanogenesis. These redox reactions are mediated by naturally occurring microorganisms that require a sufficient supply of electron acceptors and electron donors, and generate metabolic byproducts during in situ biodegradation reactions. The geochemical data, which include indicator parameters of these conditions, are provided in Tables 4-1 and 4-4.

4.4.1 General Environmental Conditions

General environmental conditions include groundwater pH, temperature, and buffering capacity. These conditions are indicated by site-specific measurements of pH, temperature, alkalinity, and redox potential, as discussed below.

Groundwater pH

The pH of site groundwater samples ranged from 6 to 12 standard units during the April 2001 sampling event (Table 4-4). Groundwater pH between 7 and 9 standard units is considered favorable for microbiologic growth. A pH value of 6 standard units is not of concern given the adequate buffering capacity of site groundwater indicated by alkalinity concentrations greater than 40 milligrams per liter (mg/L) (discussed below). A pH value of 6 likely indicates the presence of inorganic acids produced as intermediate byproducts during some of the oxidative biodegradation reactions. The high pH values (more than 9 standard units) observed in some site groundwater samples during the April 2001 sampling event are probably associated with elevated alkalinity.

Groundwater Temperature

Temperature of groundwater samples ranged from about 9 to 12 degrees Celsius (°C) across the site during the April 2001 sampling event (Table 4-4). Groundwater temperatures greater than 10°C are considered favorable for microbiologic growth. Seasonal fluctuations in groundwater temperature may influence the rate of NA processes.

Oxidation-**Re**duction Potential

ORP readings of site groundwater samples ranged from about -290 millivolts (mV) to 40 mV during the April 2001 sampling event (Table 4-4). This information indicates the presence of strongly reducing geochemical conditions in site groundwater at some sampling locations during this sampling event. This is important because it supports the presence of the anaerobic redox reactions discussed above. In particular, methanogenesis is typically associated with ORP readings less than approximately -50 mV. Furthermore, reducing conditions are favorable for the hydrolysis reactions associated with the abiotic degradation of 1,1,1-TCA.

Alkalinity

Alkalinity can serve three roles in NA processes:

- It can be used as an alternate electron acceptor during methanogenesis, which is an anaerobic redox reaction associated with reductive dechlorination of CVOCs, as discussed below.
- It can indicate the presence of elevated carbon dioxide concentrations; carbon dioxide is a metabolic byproduct of a variety of redox reactions.
- It can provide buffering capacity to neutralize acids that may be produced as intermediate byproducts of in situ biodegradation of COCs in site groundwater.

Alkalinity of groundwater samples ranged from 40 mg/L to 430 mg/L (as calcium carbonate) during the April 2001 sampling event (Table 4-1). The alkalinity of groundwater sampled at SDA monitoring well ENV-2 (40 mg/L) was significantly lower than the alkalinity observed in the sample collected at upgradient monitoring well ENV-1 (430 mg/L). This observation suggests that alkalinity was being consumed in the SDA at the time of sampling, and it may indicate the presence of in situ biodegradation of principal COCs in site groundwater. Alkalinity concentrations across the site indicate that groundwater was sufficiently buffered at the time of sampling.

4.4.2 Electron Acceptor Availability

Microorganisms require electron acceptors to perform metabolic functions for cell growth. During redox reactions in which organic matter (e.g., benzene, DCE, VC) is oxidized, naturally occurring electron acceptors in groundwater may include oxygen, nitrate, ferric iron, manganic manganese (Mn+4), sulfate, and carbon dioxide. During reductive dechlorination reactions, naturally occurring microorganisms use chlorinated COCs as electron acceptors. This section evaluates the availability of oxygen, nitrate, and sulfate. The electron acceptors ferric iron and Mn+4 are relatively insoluble in groundwater, typically occur as solids, and are abundant in most soil types in New York, and are therefore assumed to be generally available in site groundwater for iron and manganese redox processes.

Dissolved Oxygen

Aerobic respiration is a biologically mediated redox reaction known to destroy organic chemicals in groundwater. During aerobic respiration, aerobic microorganisms use DO as an electron acceptor and dissolved organic chemicals as a source of carbon. Aerobes reduce molecular oxygen (O2) and oxidize dissolved organic chemicals, resulting in the production of carbon dioxide and chloride ions. Because rain can contain DO concentrations up to 10 mg/L and is a primary source of DO in groundwater, DO concentrations measured at groundwater monitoring wells can be used to evaluate the presence and magnitude of aerobic respiration.

DO concentrations in site groundwater samples ranged from 0.28 mg/L to about 10 mg/L during the April 2001 The highest DO concentrations were observed in samples collected at sampling event (Table 4-4). downgradient monitoring wells. This observation indicates that DO may have been absent in background groundwater due to a hydraulically upgradient source of organic carbon, and it also was likely consumed in the

SDA/Source Area at the time of sampling. Given the widespread distribution of hydrocarbons at the Roblin Steel facility, low DO concentrations in upgradient groundwater are not surprising. This information suggests that oxygen is probably not a significant electron acceptor in site groundwater.

Nitrate

Nitrate is an indicator parameter for nitrate reduction, which is a biologically mediated redox reaction known to destroy organic chemicals in groundwater. During nitrate reduction reactions, denitrifying microorganisms use nitrate as an alternate electron acceptor and dissolved organic chemicals as a source of carbon. The denitrifiers reduce nitrate, forming ammonia and other reduced nitrogen species, and oxidize dissolved organic chemicals, resulting in the production of carbon dioxide and chloride ions (in the case of CVOCs). Based on this reaction, analysis of nitrate concentrations in groundwater samples can be used to evaluate the presence and magnitude of nitrate reduction in groundwater. This is accomplished using a background-comparison approach, whereby sample results collected at hydraulically downgradient areas are compared with background conditions. For example, if downgradient groundwater samples contain low or ND nitrate concentrations while upgradient, or background samples contain higher nitrate concentrations, this is evidence that nitrate reduction is occurring in site groundwater.

Nitrate concentrations in site groundwater samples were ND at all locations, except for 8.6 mg/L detected at sampling location ENV-4 during the April 2001 sampling event (Table 4-1). These data suggest that nitrate was available in groundwater for use as an alternate electron acceptor at the ENV-4 sampling location, but was generally not available elsewhere. This information suggests that nitrate is probably not a significant electron acceptor in site groundwater.

Sulfate

Sulfate reduction is a biologically mediated redox reaction known to destroy organic chemicals in groundwater. During sulfate reduction, sulfate-reducing microorganisms use sulfate as an alternate electron acceptor and dissolved organic chemicals as a source of carbon. Sulfate reducers reduce sulfate to sulfide species and oxidize dissolved organic chemicals, resulting in the production of carbon dioxide, chloride ions, and (possibly) sulfide gas. However, sulfide, the metabolic byproduct of sulfate reduction, may participate in a variety of geochemical precipitation reactions. Based on this information, analysis of groundwater samples for sulfate concentrations can be used, in some instances, to evaluate the presence of sulfate reduction using the background-comparison approach discussed above.

The sulfate data at the site were difficult to interpret because the background sulfate concentration was lower than site sulfate concentrations. This could be due to the presence of reductants upgradient of the site such as naturally occurring organic carbon (e.g., peat), pyrite, zero-valent iron, or other anthropogenic sources of carbon. This altering of the background geochemical conditions complicates interpreting some, but not necessarily all of the site-specific geochemical data.

An important point to note with regard to sulfate is that it is present in site groundwater at concentrations (from 19 mg/L to 560 mg/L during the April 2001 sampling event [Table 4-1]) that would allow it to be used by indigenous sulfate reducing bacteria as an alternate electron acceptor during oxidation-reduction reactions associated with in situ biodegradation of some site COCs. This information, therefore, suggests that sulfate is probably a significant electron acceptor in site groundwater.

4.4.3 Electron Donor Availability

Microorganisms known to reductively dechlorinate chlorinated COCs require an alternate supply of electron donors, such as naturally occurring or anthropogenic organic carbon, to perform metabolic functions for cell growth. During reductive dechlorination reactions, naturally occurring electron donors in groundwater can be indicated by concentrations of dissolved organic carbon and COCs such as the BTEX compounds, acetone, DCE and DCA isomers, VC, chloroethane, methane, ethane, and ethene.

Dissolved (or Soluble) Organic Carbon

Dissolved organic carbon (DOC) is a measure of the total organic carbon concentration in a sample, including COCs and naturally occurring organic matter. Some portion of the DOC in groundwater can be used as a source of carbon by most naturally occurring microorganisms, particularly those that reductively dechlorinate chlorinated COCs. This is important because sufficient DOC in groundwater is necessary to develop and maintain reducing geochemical conditions that are required for reductive dechlorination of CVOCs. Therefore, DOC is a "catch-all" indicator parameter for a variety of redox conditions. Metabolic byproducts of DOC oxidation include carbon dioxide and the various inorganic byproducts discussed above. DOC can also be converted to methane during methanogenesis, another important redox reaction for site principal COCs, as discussed below.

DOC concentrations in site groundwater samples ranged from about 7 mg/L to 22 mg/L during the April 2001 sampling event (Table 4-1), suggesting that there is a sufficient supply of DOC present at the locations sampled. The highest DOC concentration observed in the April 2001 data set was detected in a groundwater sample collected from downgradient monitoring well ENV-3 (60 mg/L).

Other Potential Electron Donors

We note that COCs such as BTEX, DCE, DCA, VC, and chloroethane, and other chemicals such as methane, ethane, and ethene were present at detectable concentrations in some groundwater samples collected at the site, and, therefore, these chemicals could potentially serve as electron donors in site groundwater during oxidation-reduction reactions associated with in situ biodegradation of some other site COCs.

4.4.4 Metabolic Byproducts

Naturally occurring microorganisms known to biodegrade COCs in situ in groundwater produce metabolic byproducts that can be detected using standard analytical techniques. The presence and distribution of such metabolic byproducts in groundwater can provide further evidence for in situ natural remediation of COCs in site groundwater.

Ammonia

Ammonia is a metabolic byproduct of nitrate reduction; therefore, by employing a background-comparison approach, it is possible to evaluate the presence and magnitude of nitrate reduction in site groundwater. Elevated ammonia concentrations measured at hydraulically downgradient groundwater samples (compared with upgradient samples) can be construed as evidence that nitrate reduction was occurring in site groundwater during the April 2001 sampling event.

Ammonia concentrations in site groundwater samples ranged from ND to 2.8 mg/L during the April 2001 sampling event (Table 4-1). The highest ammonia concentration was detected at downgradient monitoring well GW-7 (2.8 mg/L), where VOC concentrations were low or ND at the time of sampling, suggesting an inverse correlation at that time. This information indicates that nitrate reduction was occurring in site groundwater to some extent, and may have been associated with the low VOC concentrations in downgradient groundwater at that time.

Dissolved Iron

Iron reduction is a biologically mediated redox reaction known to destroy organic chemicals in groundwater. During iron reduction, iron-reducing microorganisms use ferric iron (Fe+3) as an alternate electron acceptor and dissolved organic chemicals as a source of carbon. Iron reducers reduce Fe+3, forming Fe+2, and oxidize dissolved organic chemicals, resulting in the production of carbon dioxide and chloride ions (in the case of CVOCs). Fe+3 species are relatively insoluble in groundwater and occur mainly as precipitates, or filterable particulates, while most Fe+2 species are soluble to some extent. Based on this information, analysis of filtered groundwater samples for iron concentrations can be used to evaluate the presence of dissolved iron and, therefore, the relative magnitude of iron reduction in groundwater. This is accomplished using the background-comparison approach discussed above.

Dissolved iron concentrations in site groundwater samples ranged from ND to 1.8 mg/L during the April 2001 sampling event (Table 4-1). The presence of dissolved iron in the groundwater sample collected at upgradient monitoring well ENV-1 (1.7 mg/L) indicates that iron reduction was occurring in background groundwater and that a source of organic carbon was available in background groundwater at the time of sampling. Since groundwater from monitoring well ENV-3 contained 1.8 mg/L of dissolved iron, iron reduction is likely an important in situ biodegradation process in groundwater at the site.

Dissolved Manganese

Similar to iron reduction, manganese reduction is a biologically mediated redox reaction known to destroy organic chemicals in groundwater. During manganese reduction, manganese-reducing microorganisms use Mn+4 as an alternate electron acceptor and dissolved organic chemicals as a source of carbon. Manganese reducers reduce Mn+4, forming Mn+2, and oxidize dissolved organic chemicals, resulting in the production of carbon dioxide and chloride ions (in the case of CVOCs). Mn+4 species are relatively insoluble in groundwater and occur as precipitates, or filterable particulates, while Mn+2 species are more readily dissolved. Based on this information, analysis of filtered groundwater samples for manganese concentrations can be used to evaluate the presence of dissolved manganese and, therefore, the magnitude of manganese reduction in groundwater. This is accomplished using the background-comparison approach discussed above.

Dissolved manganese concentrations in site groundwater samples ranged from ND to 2.8 mg/L during the April 2001 sampling event (Table 4-1). The presence of dissolved manganese in the groundwater sample collected at upgradient monitoring well ENV-1 (2.8 mg/L) indicates that manganese reduction was occurring in background groundwater at the time of sampling and that a source of organic carbon was available in background groundwater at that time. Since groundwater from monitoring well ENV-3 contained 0.25 mg/L of dissolved manganese, manganese reduction is likely an important in situ biodegradation process in groundwater at the site.

Sulfide

Sulfide (and related chemicals) is a metabolic byproduct of sulfate reduction; therefore, it is possible, at times, to evaluate the presence and magnitude of sulfate reduction in site groundwater using the background-comparison approach.

Sulfide concentrations were ND across the site groundwater samples collected in April 2001 (Table 4-1). It should be noted that dissolved sulfide readily participates in a variety of naturally occurring geochemical reactions which could render its concentration to be ND, including, but not limited to volatilization from groundwater into soil gas present within the vadose zone, reactions with metals that precipitate sulfide minerals (e.g., pyrite), and oxidation to produce oxidized sulfur species such as sulfate.

Because sulfide concentrations were ND, the occurrence or magnitude of sulfate reduction could not be determined.

Chloride

Chloride ions are a direct byproduct of the in situ biodegradation of CVOCs by both oxidative and reductive metabolic processes in groundwater. Therefore, if the background-comparison approach indicates increased chloride concentrations in groundwater hydraulically downgradient from an SDA/Source Area, and there are no other sources of chloride, this can be a direct indication for in situ biodegradation of CVOCs in site groundwater.

Chloride concentrations in site groundwater samples ranged from 6.6 mg/L to 59 mg/L during the April 2001 sampling event (Table 4-1). Chloride concentrations were highest in groundwater sampled at monitoring wells ENV-2 (59 mg/L) and ENV-3 (51 mg/L), which are located within and downgradient from the SDA/Source Area, respectively. Chloride concentrations were lowest in groundwater sampled at upgradient monitoring well ENV-1 (16 mg/L) and downgradient monitoring wells ENV-4 (6.6 mg/L) and GW-7 (9.5 mg/L).

Because the mass of chloride is conserved in groundwater (i.e., it does not volatilize, biodegrade, or form solid precipitates), the only possible transport processes that could account for this magnitude of concentration reduction are dispersion and/or dilution. This information is a clear indication that CVOCs were being destroyed in site groundwater at the time of sampling and also that peak PCOC concentrations were being attenuated by means of dispersion and dilution.

Dissolved Carbon Dioxide

As discussed above, dissolved carbon dioxide (DCO₂) is a metabolic byproduct of a variety of redox reactions known to consume dissolved organic chemicals in groundwater; therefore, elevated DCO2 concentrations in downgradient groundwater samples can verify the presence of in situ biodegradation reactions at the site. In other words, DCO2 is another "catch-all" indicator parameter for metabolic activity in groundwater. DCO2 can also serve as an electron acceptor during methanogenesis, which is an important redox reaction that consumes organic carbon and is associated with reductive dechlorination of CVOCs. Therefore, depleted DCO2 concentrations in downgradient groundwater samples (compared with upgradient samples) can indicate the presence of methanogenesis at the site.

DCO₂ concentrations in groundwater samples ranged from ND to 44 mg/L during the April 2001 sampling event (Table 4-1). The DCO₂ concentration in groundwater sampled in the SDA (ENV-2) (less than 0.60 mg/L) was two orders of magnitude or more lower than the background DCO₂ concentration measured in one sample from upgradient monitoring well ENV-1 (44 mg/L). This information indicates that carbon dioxide was being consumed in situ in groundwater in the SDA at the time of sampling and indicates that methanogenesis was occurring at that time.

Dissolved **Nit**rogen

Dissolved nitrogen (DN₂) is a byproduct of nitrate reduction; therefore, increased DN₂ concentrations in downgradient groundwater can indicate the presence of nitrate reduction in groundwater. DN₂ concentrations in groundwater at the site ranged from 19 mg/L to 21 mg/L during the April 2001 sampling event (Table 4-1). Because there was no discernable spatial trend in the DN₂ measurements, the occurrence and magnitude of nitrate reduction in site groundwater could not be determined.

Dissolved Methane

Methanogenesis is a biologically mediated redox reaction known to destroy organic chemicals in groundwater, and, importantly, it is strongly associated with reductive dechlorination of CVOCs. During methanogenesis, methanogenic microorganisms use carbon dioxide as an alternate electron acceptor and dissolved organic chemicals as a source of carbon. Methanogens reduce carbon dioxide to methane and oxidize dissolved organic chemicals, resulting in the production of methane and chloride ions. Based on this information, analysis of groundwater samples for methane concentrations can be used to evaluate the presence of methanogenesis using the background-comparison approach discussed above. Methane can be consumed by naturally occurring methanotrophic microorganisms.

Concentrations of dissolved methane in site groundwater samples ranged from 5.6 micrograms per liter ($\mu g/L$) to 850 $\mu g/L$ during the April 2001 sampling event (Table 4-1). The highest dissolved methane concentration was observed in groundwater sampled at monitoring well ENV-3 (850 $\mu g/L$), which is hydraulically downgradient from the SDA. This trend indicates that methanogenesis was occurring in site groundwater at the ENV-3 sampling location at the time of sampling. It is also likely that naturally occurring methanotrophs were consuming some of the methane in groundwater near the SDA, which is important because methanotrophs can cometabolically degrade CVOCs in groundwater. Based on this information, it appears that methanogenesis is an important in situ biodegradation reaction occurring in site groundwater.

Dissolved Ethane and Ethene

Ethene and ethane are direct byproducts of the complete reductive dechlorination of CVOCs. In other words, in the absence of other ethene and ethane sources, elevated concentrations of ethene and ethane are direct evidence that naturally occurring microorganisms are completely stripping chloride ions off PCE, TCE, and 1,1,1-TCA molecules in site groundwater.

Dissolved ethane concentrations in site groundwater samples ranged from 0.1 μ g/L to 48 μ g/L during the April 2001 sampling event (Table 4-1). The highest dissolved ethane concentrations were observed in site groundwater sampled at downgradient monitoring wells (including ENV-2 [20 μ g/L] and ENV-3 [48 μ g/L]) and were approximately two orders of magnitude higher than dissolved ethane concentrations observed in background groundwater samples (ENV-1 [0.1 μ g/L]). This observation is considered to be direct evidence that complete reductive dechlorination of CVOCs was occurring in site groundwater at some sampling locations at the time of sampling.

Dissolved ethene concentrations in site groundwater samples ranged from 0.1 μ g/L to 94 μ g/L during the April 2001 sampling event (Table 4-1). Similar to dissolved ethane concentrations, the highest dissolved ethene concentrations were observed in site groundwater sampled at downgradient monitoring wells (including ENV-2 [94 μ g/L] and ENV-3 [4.5 μ g/L]) and were also approximately two orders of magnitude higher than dissolved ethene concentrations observed in background groundwater samples (ENV-1 [0.1 μ g/L]). This observation is also direct evidence for the complete reductive dechlorination of CVOCs in site groundwater at some sampling locations at the time of sampling.

4.4.5 Summary

In summary, the geochemical data revealed that:

- General environmental conditions were favorable for in situ biodegradation reactions in site groundwater at most locations.
- The likely primary electron acceptors available for in situ biodegradation reactions included Fe+3, Mn+4, sulfate, and/or carbon dioxide at most locations.
- Electron donors appear to have been sufficiently abundant to support reductive dechlorination reactions.
- The presence of elevated concentrations of metabolic byproducts including dissolved iron, dissolved manganese, and methane, confirms that iron reduction, manganese reduction, and methanogenesis were occurring.
- The presence of elevated concentrations of metabolic byproducts, including chloride, ethane, and ethene, confirms that reductive dechlorination of some chlorinated COCs was occurring.

4.5 Conclusions of the NA Assessment

The CVOCs PCE, TCE, and 1,1,1-TCA, are being reductively dechlorinated in situ in site groundwater by naturally occurring processes capable of complete dechlorination, and have already been remediated to regulatory guidance values at some sampling locations. This is demonstrated by the presence of strongly reducing conditions in site groundwater at some locations during the April 2001 sampling event, as well as elevated concentrations of intermediate and final byproducts, including methane, ethane, ethene, chloride, and carbon dioxide near and hydraulically downgradient from the SDA. In addition, the following conclusions can be drawn from the site data:

- Fifty percent of historical COC detections above regulatory criteria have already been naturally remediated to below regulatory criteria.
- Thirty-one percent of historical COC detections show statistically significant decreasing trends with time, with COC half-lives ranging from about 650 to 4,500 days.
- Only one COC (1,2-DCE) appeared to be increasing at only one monitoring location (ENV-3/3R). Care must be taken when interpreting these data because data are from two distinctly different monitoring wells, ENV-3 and its replacement, ENV-3R, and, therefore, do not represent the same exact location.
- Intermediate CVOC byproducts, including isomers of DCE, DCA, and VC, are present in groundwater samples. These compounds are readily biodegraded in groundwater by naturally occurring aerobic and anaerobic microorganisms.
- Plumes of CVOCs in groundwater at the site appear to be shrinking with time, as shown by these additional observations:

- Cis-1,2-dichloroethylene (cis-1,2-DCE) concentrations are decreasing with time and distance at monitoring wells located hydraulically downgradient from ENV-2, indicating that peak cis-1,2-DCE concentrations are attenuating with time and distance.
- Key groundwater CVOC concentrations decrease with distance hydraulically downgradient from the SDA.
- The occurrence of CA in groundwater sampled from ENV-3 provides strong evidence that reductive dechlorination of 1,1,1-TCA and 1,1-DCA is occurring in groundwater in the vicinity of ENV-3.

Based on this evaluation, NA appears to have been a significant process in degrading the principal COCs in groundwater at the site.

5. Conclusions

Based on the results of the groundwater gauging and sampling program and the evaluation of the historical occurrence and future viability of NA, the following can be concluded:

- Groundwater gradients and flow patterns observed on May 5 and September 28, 2004 were similar to those observed during previous assessments, including those described in the RI Report (BBL, 2002).
- The area of the total VOC plume has shrunk significantly over the period between September 1999 and May 2004.
- Evaluation of NA indicator parameters provides strong evidence that NA has been occurring at the site.
- The VOC plume will continue to shrink because:
 - o a large percentage of CVOC source material has been removed during implementation of the OU-2 IRM. This includes removal of more than 7,000 cubic yards of soil from the SDA/Source area including 265 cubic yards of soil from the saturated zone above the clay confining layer; and
 - conditions are favorable for continued NA of the groundwater VOCs.
- The plume has not reached the Niagara River and, based on the implementation of the OU-2 IRM, as well as the evidence of a "shrinking plume" discussed in this report, the plume is not expected to reach the river in the future.
- Because the groundwater VOC plume has been shrinking, and it is expected that the plume will continue to shrink through NA mechanisms, NA is the logical remedy for the current OU-3 groundwater VOC plume.

6. References

Blasland, Bouck & Lee, Inc. 1990. Remedial Action Sampling Plan. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York.

Blasland, Bouck & Lee, Inc. 2002. Remedial Investigation Report. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York. May 2002.

Blasland, Bouck & Lee, Inc. 2003. Interim Remedial Measures Report for OU-1. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York. June 2003.

Blasland, Bouck & Lee, Inc. 2004a. Interim Remedial Measures Final Report for OU-2. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York. January 2004.

Blasland, Bouck & Lee, Inc. 2004b. IRM Work Plan for OU-3. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York. March 2004.

Envirotek. 1988. Facility Closure Plan. Prepared for the Envirotek II Superfund Site in the Town of Tonawanda, Erie County, New York.

U.S. Environmental Protection Agency. 1998. Technical Protocol for Evaluating Natural Attenuation of **Chlorinated** Solvents in Ground Water. EPA/600/R-98/128. September 1998. http://www.epa.gov/ada/reports.html.

U.S. Environmental Protection Agency. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action and Underground Storage Tank Sites. OSWER Directive 9200.4-17P, April 21, 1999. http://www.epa.gove:80/ordntrnt/ORD/WebPubs/biorem/D9200417.pdf.

Tables

BLASLAND, BOUCK & LEE, INC.
engineers & scientists

GROUNDWATER LEVEL MEASUREMENTS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Monitoring Point I.D.	Reference Point (RP)		/1990 ³ Groundwater				5/11/1992 ³ Depth to Groundwater		/1999	4/18/2001		7/16/2001		5/5/2004		9/28/2004	
	Elevation	Water from	Elevation	Water from	Elevation	Water from	Elevation	Depth to Water from	Groundwater Elevation	Depth to Water from	Groundwater Elevation		Groundwater	Depth to	Groundwater	Depth to	Groundwater
	(ft.)	RP (ft.)	(ft.)	RP (ft.)	(ft.)	RP (ft.)	(ft.)	RP (fL)	(ft.)	RP (ft.)	(ft.)	Water from RP (ft.)	Elevation	Water from	Elevation	Water from	
,								L	(,,,,	()	(10)	KF (IL)	(ft.)	RP (ft.)	(ft.)	RP (ft.)	(ft.)
GW-1 ²	575.77	6.63	570.17	6.15	570.65	6.26	570.54		_	7.05	568.72	7.47	568.30	6.15	500.00		
GW-2	582.00	13.11	568.90	12.24	569.77	12.24	569.77	14.09	567.91	-	-	14.17	567.83	1	569.62	6.37	569.4
GW-3	579.00	9.86	568.59	8.72	569.73	8.87	569.58	11.17	567.83	_		10.69	568.31	12.85	569.15	13.01	568.99
GW-4	575.89	10.32	566.12	9.68	566.76	9.92	566.52	10.04	5 65.85	~		10.39	565.50	8.62	570.38	8. 79	570.21
GW-5	573.39	8.43	565.79	7.86	566.36	8.18	566.04	6.93	566.46	_		7.6	565.79	9.72	566.17	9. 87	566.02
GW-6	574.08	6.80	567.16	6.24	567.72	6.20	567.76	6.98	567.10			7.90		6.93	566.46	7.16	566.23
GW-7	581.96	12.35	569.61	11.48	570.48	11.58	570.38	13.32	568.64	12.19	569.77	13.07	566.18	6.35	567.73	6.49	567.59
ENV-1	579.46	6.58	572.91	5.96	573.53	6.41	573.08	8.92	570.54	7.17	572.29	8.95	568.89	11.78	570.18	11.93	570.03
ENV-2	582.94	11.89	571.05	11.19	571.75	11.26	571.68	12.95	569.99	11.99	570.95	12.84	570.51	7.1	572.36	7.29	572.17
ENV-3	582.62	11.38	571.21	10.40	572.19	10.64	571.95	12.82	569.80	11.64	570.95		570.10	Remov	ed During Imp	lementation	of OU-2
ENV-3R	580.14			•	•	•	Installed		100.00	11.04	370.56	12.51	570.11	Remov	ed During Imp		of OU-2
ENV-4	582.60	12.14	570.41	10.61	571.94	10.67	571.88	14.11	568.49	12.23	570.37	1 42.50 1	F00.00	8.98	571.16	9.12	571.02
ENV-5	581.48	10.95	570.43	9.50	571.88	9.48	571.90	12.97	568.51	11.07	570.41	13.68	568.92	11.21	571.39	11.39	571.21
ENV-6	582,05	13.40	568,63	10.21	571.82	10.19	571.84	13.96	568.09	11.65	570.41	12.51	568.97	10.05	571.43	10.31	571.17
ENV-7	582.74						-	15.50	500,05	12.38		13.53	568,52	10.62	571.43	10.84	571,21
ENV-8	583.11	- 1	- #	-	_ fi	†	#			11.53	570.36	13.24	569.50	12.1	570.84	12.26	570.48
ENV-9	583.65				- I		-		_	13.00	571.58	13.40	569.71	12.15	570.96	12.37	570.74
ESI-7			- 1				li		-	13.00	570.65	13.89	569.76	12.7	570.95	12.93	570.72
ESI-8	580.06				II	~-		11.77	568.29		1		l	12.42		12.56	
NVV-1	578.92	-						9.35	589.57	-		11.21	568.85	8.82	571.24	8.97	571.09
NW-2	581.25	~	~-	I		<u>. </u>		9.00		40.07		9.60	569.32	Could ne		Could n	ot locate
NW-4	581 18		[~-	[11.90	569.26	12.07	569.18	12.50	588.75	11.95	569.3	12.08	589.17
NW-5	581.58	•	~	.	~		- 1	10.40	571.18	10.58	570.58	11.43	589.73	10.28	570.88	10.36	570.8
ENV-1D	579 63	~	-					10.40		10.77	~	10.82	570.76	9.01	572.57	9.32	572.26
ENV-10D	579.20				II		_ [•	~	12.77	566.86	13.85	565.78	12.65	566.98	12.79	566.84
NR-11	571 07				_	1	- 1		500.04	13.56	565.64	13.63	565.57	13.08	566.12	13.29	565.91
- EMA-3D - H	520 14	<u></u>					Installed	7.13	563.94			5.46	565.61	5.35	565.72	5.61	565.46

Notes:

- 1 : Staff Gauge on sheet piling along Niagara River.
- 2 GW-1 was repaired and retrofitted as a flush-mount well in April 2001.
- 3 Data based upon site survey prior to October 1999.

Ground surface and reference point elevations based upon October 1999 and June 2000 site survey.

Monitoring wells GW-1 and €SI-7 were damaged and not useable during the 9/29/99 water-level measurement event.

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample 1.D.	NYSDEC	L		ENV-1			ENV-1D	ľ	ENV-2	ENV-3				
Sample Date	TOGS 1.1.1 Water Quality Standards ¹	11/19/1990	9/29/1999	4/18/2001	5/5/2004	9/28/2004	4/20/2001	11/19/1990	10/1/1999	4/18/2001	11/19/1990	10/1/1999	4/18/200	
Volatijes	-	<u> </u>								<u> </u>	ļ		ļ	
Acetone	II 50		< 10	< 10	<5	< 25		l i		1	ı	ĺ	1	
Benzene	1 7	1 - 1	< 10	< 10	<1 <1		710 DJ	1,600	22 BJ	< 500	-	< 10	< 10	
2-Butanone	50		< 10	< 10	<1	< 5	< 10	- 1	2 J	< 500	-	1.1	< 10	
Carbon Disulfide	NE / 60		< 10			< 25	2 J	- 1	< 10	< 500	-	< 10	< 10	
Chlorobenzene	5	-	< 10	< 10	< 1	< 5	< 10	- [< 10	< 500	-	< 10	< 10	
Chloroethane	5			< 10	< 1	< 5	< 10		3 J	< 500	-	< 10	< 10	
Chloroform	7		< 10 < 10	< 10	<1	< 5	< 10	-	< 10	< 500	79	52	25	
1,1-Dichloroethane	5	I ,	< 10	< 10	<1	< 5	< 10		< 10	< 500	-	< 10	< 10	
1.2-Dichloroettiane	5/0.6		< 10	< 10 < 10	<1 <1	< 5	< 10	4,800	910 DJ	950	250	71	59	
1.1-Dichloroethene	5	-	< 10	< 10	<1	< 5	< 10	750	20	< 500	-	< 10	< 10	
cts-1,2-Dichloroethene	5	NA NA	NA NA	< 10	41	13	< 10	300	93	160 J	-	< 10	< 10	
trans-1,2-Dichloroethene	5	NA NA	NA NA	< 10	<1	* 5	< 10	NA	NA :	54,000 D	NA	NA	2 J	
1,2-Dichloroethene (total)	5	''``	< 10	NA NA	NA	< 5	< 10	NA	NA	< 500	NA.	NA .	< 10	
Ethyl Benzene	5		< 10	< 10 ·	NOA	NA 1.5	NA	45,000	26,000 D	NA] -	< 10	NA.	
2-Hexanone	50	i i	< 10	< 10	< 5	< 5 < 25	< 10	840	170	280 J		< 10	< 10	
Methylena Chloride	5	1 - 1	< 10	< 10	₹2	3.3	< 10 < 10	-	< 10	< 500	i - 1	< 10	< 10	
4-Methyl-2-Pentanone	NE.	_ [< 10	< 10	< 5	< 25		6,100	180	140 .	1 - 1	2.3	< 10	
Tetrachloroethene	5	_	< 10	< 10	<1	< 5	< 10 < 10	-	< 10	< 500	82	< 10	2 J	
Toluene	5		< 10	< 10	< 1	< 5	< 10	40,000	7,700 D	13,000 D	-	< 10	6 J	
1,1,1-Trichtoroethane	f 5	ł ł	< 10	< 10	1	< 5	<10	8,600 21,000	2,400 D	2,300	11	< 10	< 10	
1,1,2 Trichloroethane	1 1		< 10	< 10	<1	< 5	< 10	27,000	2,500 D	4,000	- 1	< 10	< 10	
Trichtoroethene	5		< 10	< 10	< 1	< 5	< 10	29,000	7,300 0	< 500 6.500	-	< 10	< 10	
Vinyl Chloride	2		< 10	< 10	<1	< 5	< 10	3,400	7,300 DJ	6,500 680	- 1	< 10	3.1	
Kylesses (total)	5	[-	< 10	< 10	< 3	< 15	< 10	5,100	900 DJ	1,470 J	-	< 10	< 10	
Total VOCs	NE			_	_ [3	712	167,490	48,991		14	< 10	< 10	
Semiyolatileş		-						107,490	40,991	83,480	436	125	97	
Acenaphthene	20	_		NA	NA.	NA.	NA		- 1]		
Acenaphthylene	NÉ		_	NA.	NA.	NA.	NA NA	-]	N/A	- 1	- 1	NA	
Benzoic Acid	NE	_	_	NA NA	NA .	NA NA			- i	NA		-	NA	
3:s (2-ethylhexyl) Phthalate	5	_	- 1	NA I	NA I		NA	13		N/A	-		NA	
Suly(benzy) Phthalate	50			NA		NA	NA .	25	-	NA I		-	NA	
Dibenzoluran	NE NE		-	NA NA	NA	NA	NA		-	NA			NA	
,2 Dichlorobenzene	4.7/3	_		NA NA	NA	NA .	NA	- 1		NA			NA	
Nethyl Phthalate	50		- 1		NA	NA	NA		-	NA			NA.	
4-Dimethytphenol	NE I			NA	NA.	NA	NA.	[}	NA		- 1	NA	
Pro-Butyl Phthalate	50		- 1	NA	NA	NA	NA	15	- 1	NA :			NA	
N-n-Octyl Phthalato	50		1.1	NA	NA.	NA.	NA	-	5./	NA	- 1	4 J	NA	
hunrena	50			NA	N/A	NA.	NA		-	NA	-		N/A	
Sophorone	50		-	NA	NA	NA	NA	**	~	NA .	-	-	NA	
-Methylnaphthalene	NE NE			NA	NA I	NA	NA	10		NA	-	-	NA	
-Methylphenol	NE			NA	NA	NA	NA		- i	A/A		-	NA	
-Mathylphenoi	NE NE	-	.	NA	NA	NA.	NA	21	- 1	NA.		-	NA	
aphthalens	10]		NA	NA	NA.	NA	30		NA	-	•	NA.	
thenol	1/NE	-	-	NA I	NA	NA.	NA	19		NA.		•	NA	
hannityere	50	_	-	NA NA	NA.	NA	NA			NA	-		NA	
	<u></u>			NA	NA .	NA	NA.	-		NA			NA	

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Colatiles Acetone Benzene Butzene Butzene Butzene	TOGS 1.1.1 Water Quality Standards ¹	5/5	5/2004 Duplicate FD050504	7/15/2004	9/28	72004	11/19/1990	9/30/1999	ENV-4	T C/C POOL	T			ENV-5			L			ļ	ENV-7	
Acetone Benzene 2-Butanone	Standards ¹								4/18/2001 5/5/2004 9/		9/28/2004	11/1	9/1990	9/30/1999			11/19/1990	ENV-6 9/30/1999 4/19/2001		01 4/19/2001		9/28/2004
Acetone Benzene 2-Butanone		[[FD050504			Duplicate							Duplicate	,		Duplicate		3/30/1999	4/13/2001	4/19/2001	5/5/2004	9/28/200
Acetone Benzene 2-Butanone	50	li '		L		FD092804					ļ	1		1		FD41901		1				
Benzene 2-Butanone	50	ll l		I		T		Î		<u> </u>	i –	i	i	Ì		i	<u>.</u>	1	1		ļ	<u>!</u>
?-Butanone	1 1	< 5	4.3	-	< 50	< 25	_	< 10	< 10	<5	<50		1	1 < 10		l		l	I	1		l
		1	< 1		< 10	< 5		< 10	< 10	<1	< 10	i -	-	1	0 J	< 10	i -	< 10	< 10	16 J	< 5	< 25
James Dirulada	50	< 1	< 1	_	< 50	< 25	_	< 10	< 10	31	< 10	-	_	< 10	< 10	< 10	-	< 10	< 10	< 25	< 1	< 5
	NE / 60	< 1	< 1	_	< 10	< 5	_	< 10	< 10	<1				< 10	< 10	< 10	-	< 10	< 10	< 25	< 1	< 5
Chlorobenzene	5	< 1	1 41		< 10	< 5	_	< 10	< 10	<1	< 10		-	< 10	< 10	< 10		< 10	< 10	< 25	< 1	< 5
Chloroethane	5	< 1	< i		< 10	< 5	_	< 10	< 10	<1	< 10	-	_	< 10	< 10	< 10	-	< 10	< 10	< 25	<1	< 5
Chloroform	7	< 1	< 1	_	< 10	< 5	_	< 10	< 10		< 10	-	-	< 10	< 10	< 10		< 10	< 10	< 25	<1	< 5
,1 Dichloroethane	5	20	19	18	49	48		2 J	< 10	<1	< 10	_	-	< 10	< 10	< 10	-	< 10	< 10	< 25	<1	< 5
,2-Dichloroethane	5/0.6	1	1	_	3.7	3 J	_	410	« 10		< 10	8	9	2 J	< 10	< 10	-	< 10	< 10	3 J	2	< 5
,1-Dichloroethene	5	1	l i		< 10	3 3	_	< 10	< 10	<1	<10	٠ ا	-	< 10	< 10	< 10	-	< 10	< 10	< 25	< 1	< 5
us-1,2-Dichloroethene	5	120 D	140 D	32	370 D	580 D	NA.	NA NA	31	41 <1	< 10 < 10			< 10	< 10	< 10	-	< 10	< 10	< 25	1	< 5
ans-1,2-Dichtoroethene	5	0.7 J	0.9 J		< 10	3 J	NA NA	NA NA	< 10	<1		NA NA	NA NA	NA	10	10	NA	NA	< 10	430	280 D	170
2-Dichloroethene (total)	5	NA.	NA.	_	NA.	NA NA	110	85	NA.	NA NA	< 10 NA	NA	NA .	NA	4 J	4 J	NA	NA	< 10	4 J	3	< 5
thyl Benzene	5	2	2	_ :	< 10	2)	58	24	< 10	< 1		36	37	56	NA	NA NA		6 J	NA NA	NA NA	NA	NA.
-Hexanone	50	< 5	₹5	_	< 50	< 25	-	< 10	< 10	< 5	< 10 < 50	_	-	< 10	< 10	< 10		< 10	< 10	< 25	< 1	< 5
Methylene Chloride	5	0.83	0.83	6.j	903	3.5	-	< 10	< 10			-	\-	< 10	< 10	< 10		< 10	< 10	< 25	< 5	< 25
-Methyl-2-Pentanone	NE.	14	16		< 50	< 25	110	< 10	< 10	< 2 < 5	<i>0 J</i> < 50	-	- '	< 10	< 10	< 10	-	< 10	< 10	< 25	< 2	3 J
etrachloroethene	5	15	14	6	3 J	4.5		< 10	< 10	0.3 J		_	1 - 1	< 10	< 10	< 10	,	< 10	< 10	< 25	< 5	< 25
oluene	5	3	3		< 10	2.1	760	ا رو	< 10		< 10	-	-	< 10	< 10	< 10		< 10	2 J	3 J	4	3 J
.1.1-Trichtoroethane	5	,	2	4.3	< 10	<5	- 1	< 10	< 10	<1 <1	< 10	-		< 10	< 10	< 10		< 10	< 10	< 25	<1	< 5
1,2-Trichloroethane	1	<1	<1		< 10	< 5		< 10			< 10	-	1 - 1	< 10	< 10	< 10		j < 10	< 10	< 25	<1	< 5
richtgroethene		22	22	7	6.5	6	560	46	< 10 3 J	< 1	< 10	-	- 1	< 10	< 10	< 10		< 10	< 10	< 25	< 1	< 5
finyt Chtoride	2	33 D	39.0	å	220 J	190	500	5 J		1.	< 10		-	< 10	< 10	< 10	**	< 10	< 10	16 J	6	< 5
(denes (total)		18	16	3,1	< 30	83	260	5.J 5.7	< 10	< 1	< 10	-	_	3.1	2 J	1.1	-	2 J	< 10	220	50 D	88
otal VOCs	NE	253.5	274.7		1 .	i I			< 10	< 3	< 30	-	- 1	< 10	< 10	< 10		< 10	< 10	< 28 J	< 3	< 15
emlyolattles	NE.	253.5	2/4/	84	660	852	1,858	238	- 6	13		44	45	61	22	15	L	8	2	720	346	264
cenaphthene	~~		l I				ĺ			ŀ								•				
,	20	NIA.	NA	NA	NA.	NA			NA	NA	NA	-		-	NA .	NA		_	NA .	NA	NA.	NA.
cenaphthylene	NE I	NA.	NA	NA	NA.	NA		- 1	NA	NA	NA.	-	-	- 1	NA	NA			NA .	NA.	NA.	NA.
enzaic Add	NĒ	NΑ	NA	NA	ŊΑ	NA.		-	N.A	NA.	NA				NA	NA	_	_	NA	NA	NA NA	
is (2-ethylhexyl) Phthalate	5	NA	NA	NA	NA	NA.	- :		NA	NA	NA	**	-		NA .	NA			NA I	NA NA	NA NA	NA.
utylbenzyl Phthalate	50	NA.	NA	NA.	NA.	NA.	- 1	~	N/A	NA	NA.				NA.	NA NA			NA.	NA NA		NA.
ibenzofuran	ΝE	NA	NA	NA	NA	ŊA.			NA	NA	NA	••		., [NA.	NA I	.,		NA NA		NA	NA
.2-Dichlorobenzene	4.7 / 3	NA.	NA	N A	NA	NA.		.	NA	NA	NA NA	-	_		NA.	NA I	"	• •		NA .	NA 	NA.
iethyl Phthalate	5 Q	NA.	NA	NA.	NA.	NA.			NA.	NA .	NA		_		NA i	NA NA		-	NA .	NA	NA.	NA.
4-Dimethylphenol	NE 3H	NA.	NA	NA.	NA	NA .	-	-	NA	NA	NA I		-		NA NA		-	-	NA	NA	NA	NA
i-m-Butyl Phthalate	50	NA	NA .	N/A	NA	NA.		1.	NA I	NA I	NA NA	~	-	7.1		NA NA	~	-	NA	NA	NA	NA
i-n-Octyl Phthalate	50	NA.	NA .	NA.	NA	NA.			NA	NA.	NA NA	-	1	"	NA NA	NA S	-	3.1	NA	NA	NA.	NA.
luorene	50	NA.	NA	NA	NA.	NA.	-		NA	NA NA	NA I	-	~		NA NA	NA NA	-		NA	NA	NA.	NA
ophorone .	50	NA.	NA	NA.	NA	N/A		-	NA	NA NA	NA NA	-	-	-	NA NA	NA Na	-	-	NA.	NA.	NA.	NA
Methylosphthalene	N€	N,A	AM	NA.	NA .	NA.	-		NA.	NA.	NA.	-	- 1	~	NA NA	NA NA	-	-	NA	NA	N/A	NA
Methylphenoi	NE	NA.	NA	NA	NA.	NA	-		NA.	NA.	NA NA	-				NA	-		NA	NA	N/A	NA.
Methylphanol	ΝE	NA.	NA .	NA.	NA	NA		-	NA.	NA NA	NA NA	-	-	-	NA	NA VA	-	-	NA	NA	N/A	NA
aphthalene	10	NA	NA	NA.	NA	NA.	_	-	NA.	NA	NA I	-	-		NA	NA		[NA	NA.	NA.	NA
henot	1/NE	NA.	NA.	NA.	NA	NA.			NA.	NA	NA I	~	-	*	NA I	NA.	-	- 1	NA	NA	NA	NA
henanthrene	50	NA	NA.	NA.	NA	NA I		-	NA NA	NA NA	NA NA	- 1	-		NA NA	NA NA	-]	•-	NA NA	NA NA	NA.	NA

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample I.D.	NYSDEC	1	ENV-8			ENV-9		END/ 100	T		
Sample Date	TOGS 1.1.1	4/19/2001	5/5/2004	9/28/2004	4/19/2001	5/5/2004	9/28/2004	ENV-10D 4/20/2001	Oppurent	GW-1	1
	Water Quality Standards					33,2004	3/20/2004	4720/2001	9/28/1988	12/5/1990	4/19/200
Volatijes		i	i i	†	i ·	 	+	1	-	 	
Acetone	50	31	< 25	< 50	1,200 DJ	< 5	< 25		1		1
Benzene	1 1	< 10	< 5	< 10	< 10	< 1		29 J	T -	12	< 10
2-Butanone	50	< 10	< 5	< 10	5.1	1	< 5	< 10	34	42	4.7
Carbon Disulfide	NE / 60	< 10	< 5	< 10		< 1	< 5	< 10	-		< 10
Chlorobenzene	5	< 10	< 5	< 10	< 10	< 1	< 5	< 10		-	< 10
Chloroethane	5	< 10	< 5	1 -	< 10	< 1	< 5	< 10	-	-	< 10
Chloroform	7	< 10	< 5	< 10	< 10	< 1	< 5	< 10	i -	-	< 10
1,1-Dichloroethane	5	7.3	5	< 10	3 J	<1	< 5	< 10	-	-	< 10
1,2 Dichloroethane	5/0.6	< 10	4.5	4 J	< 10	0.5 J	< 5	< 10	_	-	< 10
1,1 Dichloroethene	5	< 10	4.5	< 10 < 10	< 10	*1	< 5	< 10	1 -		< 10
cis 1,2-Dichloroethene	5 1	150	140		< 10	*1	< 5	< 10	-		< 10
trans-1,2-Dichloroethene	5	4 J	3 J	120	< 10	0.6 J	< 5	< 10	NA	NA NA	< 10
1.2-Dictiloroethene (total)	5	NA.	NA AN	< 10	< 10	< 1	< 5	< 10	NA	NA.	< 10
Ethyl Benzens	5	< 10		NA NA	NA.	NA.	NA.	NA	-	-	NA.
2-Hexanone	50	< 10	< 5 < 25	< 10	2.J	< 1	< 5	< 10	-		< 10
Methylene Chloride	5	< 10	< 10	< 50	2 J	< 5	< 25	< 10	-	_	< 10
4-Methyl-2-Pentanone	NE I	11	< 25	< 50	< 10	<2	3.3	< 10	68		< 10
Tetrachloroethene	5	1 1	3 J		10	< 5	< 25	< 10			< 10
Toluene	5 1	< 10	\ <5	3 J < 10	< 10	< 1	< 5	< 10	-		< 10
1.1.1-Trichtoroethane	1 5	< 10	< 5	1	< 10	< 1	< 5	< 10	0.9 J	0.8 J	< 10
1,1,2-Trichloroethane	1 1	< 10	< 5	< 10	< 10	1 1	< 5	< 10	1	-	< 10
Trichloraethena	5	12	14.3	< 10 12	< 10	< 1	< 5	< 10	-	-	< 10
Vinvi Chloride	2	1 2	< 5	10	33	0.8 7	< 5	< 10	-	-	< 10
Xylenes (total)	1 5 1		< 15	< 30	< 10	< 1	< 5	< 10	-	-	< 10
Total VOCs	NE		1	1	13 J	< 3	< 15	< 10	-	-	< 10
Semivolatiles	- NE	. 221	165	153	1,238	1.9	3	29	40.9	54.8	4
	1]				ľ		I	· -	
Acenaphthene	20	NA	NA.	NA NA	NA.	NA.	NA.	NA NA			N.A
Acenaphthylene	NĒ (NA	NA NA	NA NA	NA.	NA.	NA.	NA	_		NA.
Benzoic Acid	NÉ	NA	NA.	NA NA	NA	NA.	NA	NA.	1	_	NA.
Bis (2-ethylhexyl) Phthalate	5	NA.	NA.	NA .	NA.	NA NA	NA.	NA.	6 BJ		NA NA
Butyfbenzyl Phthalate	50	NA	NA.	NA I	NA.	NA.	NA.	NA NA			
Dibenzofuran	N£	NA.	NA.	NA NA	NA .	NA.	NA .	NA NA	-	-	NA.
1,2-Dichlorobenzene	4.7/3	NA.	NA.	NA	NA NA	NA.			l -	-	NA
Disthyl Phthalate	50	NA	NA.	NA I	NA.	NA NA	NA NA	NA.	-		NA
2,4-Dimethylphenol	NE.	NA.	NA NA	NA NA	NA.		NA	NA.	i - I		NA
Di-n-Butyl Phthwiste	50	NA.	NA NA	NA I	NA.	NA 	NA NA	NA NA			NA
Di-o-Octyl Phthalate	50	NA.	NA NA	NA NA		NA NA	NA.	NA NA	189		NA
Ftuorene	50	NA.	NA NA	NA (NA NA	N/A	NA	NA.	-	-	NA
Izophorane	50	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA	-	-	NA
2-Methylnaphthalene	NE N	NA .	NA.	NA NA	NA NA	NA NA	NA.	NA		**	NA
2-Methylphanol	NE	NA.	NA NA	NA NA		NA NA	NA NA	NA NA	-	- 1	NA
4-Methylatenoi	NE NE	NA NA	NA NA		NA.	NA .	NA.	NA.	-	-	NA
Naphthaigne	10	NA NA		NA I	NA.	NA	NA.	NA NA	-		NA
Phenot	1 / NE	NA NA	NA.	NA.	NA.	NA.	NA	NA			NA
Phenanthrene	50	NA NA	NA.	NA NA	NA.	NA .	NA	NA.		-	NA
	30	ing.x.	NA NA	NA.	NA	NA	NA NA	NA NA			NA

See end of table for notes

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample I.D.	NYSDEC	L	G'	W-2				GW-3	-			GW-4			CIME				
Sample Date	TOGS 1.1.1 Water Quality	9/28/1988	12/5	Duplicate	9/29/1999	9/28/1988	12/5/1990	9/29/1999	5/5/2004	9/28/2004	9/28/1988	12/5/1990	9/30/1999	9/28/1988	GW-5 12/5/1990	9/30/1999	9/28/1988	GW-6 12/5/1990	9/30/1999
	Standards			1		1												Į	
Volatiles		K I		Î	·				i		i					<u> </u>		<u></u>	ļ
Acetone	50	1 - 1	12 J	26	< 10	_	20	< 10	<5		ŀ			i 1		l	i i		!
Benzene	1 7	[_]	-		< 10	5				< 10		13	< 10	I - I	9 J	< 10	46 B	20	< 10
2-Butanone	50	_			< 10		2 J	1 J	< 1	≺ 2	3.7	0.9 J	1 J	3.7	-	< 10	2 J	0.7 J	< 10
Carbon Disulfide	NE / 60		5 J	-	< 10		29	< 10	< 1	< 2			< 10	- 1		< 10		_	< 10
Chlorobenzene	5	1 - 1		ĺ		~		< 10	< 1	< 2	-	- 1	< 10		- ,	< 10	,	_	< 10
Chloroethane	1 5				< 10		-	< 10	<1	< 2	-	- 1	< 10	- 1	**	< 10	- 1		< 10
Chloroform	3 7	-		-	< 10	-	- 1	< 10	<1	< 2	-	-	< 10	1		< 10	8.1	_	< 10
1,1-Dichloroethane	5	- [-	< 10	-		< 10	<1	< 2	-	-	< 10	l i		< 10	_		< 10
1.2-Dichtoroethane	5/0.6	-	-	- i	< 10		-	< 10	<1	< 2	-		< 10]	-	< 10	_		< 10
1.1 Dichloroethene	5	1 1			< 10	-	- 1	< 10	< 1	€2	-	-	< 10	~	-	≺ 10	- 1		< 10
cis-1,2-Dichloroethene	5	NA	-		< 10	- '		<10	<1	<2	-	-	< 10		-	< 10	~		< 10
trans-1,2-Dichloroethene	5	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	t, 2,0	< 2	NA.	NA	NA :	NA	NA	NA.	NA.	NA	NA.
1,2-Dichloroethene (total)	5	NA	NA	NA	NA . 40	NA	NA	NA	< 1	< 2	NA	NA	NA.	NA	NA	NA.	NA	NA.	NA.
Ethyl Benzene	5	1 1	-		< 10	-	-	< 10	NA	NA		-	< 10	-	-	< 10	-	**	< 10
2-Hexanone	50	# " #	-	-	< 10	- 1	- 1	< 10	<1	<2	- 1	-	< 10		- 1	< 10	. – i	_	₹10
Methylene Chloride	5	284	_ :		< 10	-	-	< 10	< 5	< 10	-	-	< 10	1	- 1	< 10	_		< 10
4-Methyl-2-Pentanone	NE	155	-		< 10	- 1	- 1	< 10	₹2	1.3	18 🖯	- +	< 10	- +	-	< 10	318		< 10
Tetrachloroethene	5	n - 1	-		< 10	-	1	< 10	< 5	< 1D	-	-]	< 10	- 1	-	< 10	-		< 10
Toluene	1 3			-	< 10			< 10	0.5 J	< 2	- 1	-	< 10	- 1	-	< 10	_		< 10
1.1.1-Trichloroethane	i š			- 1	< 10	1 J	0.6 J	< 10	<1	< 2	18J	- 1	< 10		-	< 10	3 BJ		< 10
1,1,2-Trichloroethane	1 7	y - 1		- 1	< 10	- 1	- 1	< 10	<1	< 2 j	1	1	< 10	- 1		< 10	- 1	_ :	< 10
Trichlaraethene	1 3	_			< 10		- 1	< 10	<1	< 2			< 10	-		< 10	-	_	< 10
Vinyt Chloride	2	- 1			< 10			< 10	<1	< 2		- 1	< 10	- [-	< 10	- 1	-	< 10
Xylenes (total)	4		_		< 10	<u> </u>		< 10	<1	< 2	- [< 10		-	< 10	-	**	< 10
Total VOCs	1 -	1 - 1			< 10	2 J	-	< 10	< 3	< 6	-	- 1	< 10	4.3	1 J	< 10	- !		< 10
Semivolatiles	NE.	. 2	17	26		9	51.6	1	0.8	1_	22	13.9	1	7	10		90	20.7	-
Acenaphthene																		- 20.7	
•	20	1		-	< 11	17	-	< 10	NA.	NA.	2 J	- 1	< 10	_ 1	_	< 11	0.7 J		< 10
Acenaphthylene	NE			- 1	< 11	0.5 J	-	< 10	NA	NA	0.6 J	_	< 10			< 11	-		< 10
Benzoic Acid	NE.	ł - I			NA	- 1	- 1	NA	NA	NA			NA.			NA		_ [NA.
Bis (2-ethylhexyl) Phthalate	5	- 1	-		< 11			1.3	NA	NA.	7.1		< 10	8 BJ	_	< 11	1 BJ		
Butylbenzyl Phthalate	50				< 11			< 10	NA	NA	13		< 10			< 11	I	- 1	< 10
Dibenzofuran	NE	} [**		< 11	0.2 J		< 10	NA.	NA	0,4 J		< 10		i i			••	< 10
1,2-Dichlorobenzane	4.7/3	i I		- !	< 11		_	< 10	NA	NA.	0,40	_	< 10	"	"	< 11	0,4 J	••	< 10
Distinyl Phthalate	50	- 1	-	-	< 11	0.1.1	٦	< 10	NA	NA.	0.2 BJ	i i				< 11	0.5 J	- 1	< 10
2,4-Dimothylphenol	NiE	!	-	_	< 11		_	< 10	NA NA	NA NA	0.2 83		< 1Q	-	-	< 11	~		< 10
Dern-Butys Phinalate	50	1 - 1	-		2,1	0.7 BJ	-	6.1	NA.	NA NA	2 BJ	~	< 10	-	-	< 11	-		< 10
Di-tr-Octyl Phtmlate	50	1 - 1	- 1	-	< 11	0.2 BJ	_	< 10	NA.	NA NA	4 64	-	< 10	2 BJ	-	1.1	- 1	~	< 10
Fluorene	50	-	- 1		< 11	0.3 J	-	< 10	NA NA	NA NA	0.9 J	- 1	< 10		-	< 11	-	-	< 10
Sophorone	50	-	- 1	-	< 11		-	< 10	NA NA	NA NA	0.9.0	-	< 10	-		< 11	0.3 J	-	< 10
Z-Methyinaphthalene	NE	- 1	-	-	< 11	0.6 J	-	< 10	NA	NA.	043	-	₹ 10		- 1	< 11		-	< 10
2-Mathytphenol	NE !	- 1	- 1	- i	< 11		- 1	< 10	NA	NA NA	1	- 1	< 10		-	< 11	0.2 J	-	< 10
-Methylphenol	NΕ	_]		_	< 11			< 10	NA NA		-	-	< 10	-	-	< 11	D.4 J		< 10
Vaphthalene	10	-	3.1	- 1	< 11	51	3.1	5.1	NA NA	NA NA	I	-	< 10		-	< 11	0.5 J	-	< 10
Phenot	1/NE	-	-	- 1	< 11	.	3.3	91	NA NA	NA NA	6.1	-	2 J	-	-	< 11	0.5 J	-	< 10
henanthrone	50	-			< 11	0.3 J		1.7	NA NA	NA NA	0.5 J	- [7.1	-	+	< 11	-	-	< 10
iee end of table for notes								. ' '		INA	U.D.J		< 10		-	< 11			< 10

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEWYORK

Sample 1.D.	NYSDEC				GW-7				NW-1	NW-2	N7	N-4	NW-5	ESI-8	Trip Blank 1	Trip Blank 2	7 0			T
Sample Date	TOGS 1.1.1	9/28/1988	12/5/1990	9/30	/1999	4/19/2001	5/5/2004	9/28/2004	9/30/1999	4/19/2001	9/30/1999		9/3/1999	9/29/1999	9/30/1999	10/1/1999	Trip Blank 4/18/2001	Trip Blank	Trip Blank	Trip Blan
	Water Quality		İ	1	FD093099			ŀ	Í			111372231	0,0,,,,,,,	3/23/1303	3,30,1333	10/1/1999	4/18/2001	4/20/2001	5/5/2004	9/28/200
	Standards ¹				1	l]		I				1				1		
Volatiles		1	†					<u> </u>	 		Ļ—	1	<u>ļ</u> _					ł	_	ļ
Acetone	ii				i					•	t .	1 1	1	i i				1		ī — —
	50	210 D	50	< 10	< 10	12	< 5	< 50	< 10	7.3	< 10	< 10	< 10	< 10	18J	2 BJ	< 10	< 10	< 5	< 5
Benzene	1	2.3	0.9 J	< 10	< 10	< 10	≺ 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
2-Butanone	50	61		< 10	< 10	< 10	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		1 1	< 1	< 1
Carbon Disulfide	NE / 60	}		< 10	< 10	< 10	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 1	< 1
Chlor obenz ene	5	-		< 10	< 10	< 10	< 1	< 10	< 10	< 10	< 10	< 10	< 10			2 J	< 10	< 10	< 1	< 1
Chloroethane	5	-		< 10	< 10	< 10	< 1	< 10	< 10	< 10	< 10			< 10	< 10	< 10	< 10	< 10	< 1	< 1
Chloroform	7	_	1 i	< 10	< 10	< 10	< 1	< 10	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
1,1-Dichloroethane	5	11		1 J	1 J	< 10	<1	< 10	< 10	2 J		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
1,2 Dichloroethane	5 / 0.6		43	< 10	< 10	< 10	<1	< 10	< 10		8.1	3 J	< 10	< 10	< 10	< 10	≺ 10	< 10	< 1	< 1
1,1-Dichloroethene	5	ii		< 10	< 10	< 10	<1	₹10	< 10 < 10	2.J < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
cis-1,2-Dichloroethene	5	N.A	NA I	NA.	NA	14	5	51	NA.		< 10	< 10	< 10	< 10	< 10	< 10	≺ 10	< 10	< 1	< 1
trans-1,2 Dichloroethene	5	NA.	NA	NA.	NA NA	< 10	<1	< 10	NA NA	16	NA	5 J	NA .	NA	NA	NA	< 10	< 10	< 1	< 1
1,2-Dichloroethene (total)	5	290 D	62	14	14	NA.	NA.	NA NA	< 10	< 10	NA	< 10	NA	NA	NA	NA.	< 10	< 10	< 1	< 1
Ethyl Benzene	5 .	1.	3.	< 10	< 10	< 10	- i	< 10		NA .	8 .	NA	< 10	2 J	< 10	< 10	NA.	NA.	NA.	NA.
2-Hexanone	50	í i	"	< 10	< 10	< 10	< 5	< 50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
Methylene Chloride	5	418		< 10	< 10	< 10	<2		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 5	< 5
4-Methyl 2-Pentanone	NE.	40	20	< 10	< 10	< 10	< 5	< 20	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2	< 2
Tetrachloroethene	5	87	ايّوا	3 J	43	6.1	2	< 50 < 10	< 10	< 10	< 10	< 10	≺ 10	< 10	< 10	< 10	< 10	< 10	< 5	< 5
Toluene	5	30 B	59	< 10	< 10	13	- 1	< 10	< 10	< 10	2 J	4 J	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
1,1,1-Trichtoroethane	5			< 10	< 10	< 10	<1		< 10	< 10	< 10	< 10	< 10	1 J	< 10	< 10	< 10	< 10	< 1	< 1
1,1,2-Trichlorgethane	1 1		.,	< 10	< 10	< 10	<1	< 10 < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<1	< 1
Trichtoroethene	1 5	32	38	1.0	1.1	2.	`.'	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
Vinyi Chloride	2		3.1	< 10	< 10	< 10	0.4 J	< 10	< 10	< 10	1.3	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1
Xylenes (total)	5	7 1	16	₹ 10	< 10	< 10	< 3	< 30	< 10	< 10	93	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<1	< 1
Total VOCs	NE NE	820	272.9	19	1				< 10	< 10	< 10	< 10	< 10	-	< 10	< 10	< 10	< 10	< 3	< 3
Semiyolatiles	INE.	- °20	2/2.9	19	20	35	9.4	5		27	28	12		3 [1	4 1	_			
Acenuphthene	20	1		< 10					' I									• • • •		
Acenaphthylene	NE I	1 1	1		< 10	NA	NA.	NA	< 10	NA	< 11	NA NA	< 11	NA .	NA	NA .	NA	NA .	NA	NA.
Benzolc Acid				< 10	< 10	NA	NA	NA	< 10	NA NA	< 11	NA	< 11	NA	NA I	NA	NA	NA	N/A	NA.
	NE			NΑ	NA.	NA	NA	NA .	< 10	NA .	NA	NA.	NA	NA .	NA	NA	NA .	NA	NA	NA NA
Bis (Z-ethylhexyl) Phthalate	5	6 BJ		< 10	< 10	NA	NA	NA.	1.3	NA.	< 11	NA	< 11	< 10	NA	NA.	NA	NA		
Butylbenzyl Phthalate	50	0,6 J		< 10	< 10	NA	NA .	NA.	< 10	NA	< 11	NA.	< 11	NA.	NA	NA.	NA	NA NA	NA	NA
Dibenzofuran	NE.			< 10	< 10	NA	NA I	NA.	< 10	NA .	< 11	NA	< 11	NA.	NA.	NA			NA	NA
1,2-Dichlorobenzene	4.7 / 3	L8,0	- 1	< 10	< 10	NA	NA	NA	< 10	NA.	< 11	NA.	< 11	NA			NA	NA	NA	NA.
Dethyl Phthalate	50	0.2 BJ	-	< 10	< 10	NA	NA	NA	< 10	NA.	< 11	NA.	< 11		NA	NA	NA	NA .	NA.	NA
2,4 Oimethylphenol	NÆ.	0.\$ J		< 10	< 10	NA	NA.	NA .	< 10	NA.	< 11	NA NA		NA	NA	NA.	NA	NA	NA.	NA.
Dra-Butyl Phtholate	50	287	-	< 10	< 10	NA	NA.	NA F	5 1	NA.	24	NA NA	< 11	NA 110	NA	NA I	NA	NA	NA	NA.
Di-n-Octyl Phthalate	50	02J	-	< 10	< 10	NA	NA.	NA I	₹10	NA.	< 11	NA NA	< 11	< 10	NA	NA	NA	NA	NA.	NA
Huorena	50	-	~	< 10	< 10	N/A	NA.	NA I	< 10	NA.	< 11		< 11	< 10	NA	NA	NA	NA	NA	NA
sophorane	50	-	-	< 10	< 10	NA	NA .	NA I	< 10	NA NA	< 11	NA NA	< 11	< 10	NA .	NA	NA	NA	NA .	NA.
-Methyinaphthalene	NĘ	0 2 J	- i	< 10	< 10	NA	NA.	NA NA	< 10	NA	< 11	NA NA	< 11	N/A	NA	NA	NA	NA	NA	NA.
-Methylphenol	NE	1 J		< 10	< 10	NA I	NA	NA NA	< 10				< 11	NA	NA	NA	NA	NA	NA.	NA.
Methylphenol	NE.	-	- 1	< 10	< 10	NA	NA I	NA NA	<10	NA.	< 11	NA	< 11	NA	NA	NA	NA	NA	NA.	NA.
laphthalene	10		2 J	< 10	< 10	NA NA	NA NA	NA NA	< 10 < 10	NA.	< 11	NA	< 11	NA	NA	NA	NA .	NA	NA	N/A
tienol	1/NE		- 1	< 10	< 10	NA NA	NA.	NA NA		NA.	< 11	NA	< 11	NA	NA	NA	NA.	NA	NA.	NA.
heninthiene	50	0.4 J	- 1	< 10	< 10	NA.	NA.		< 10	NA.	< 11	NA	< 11	NA	NA	NA	NA	NA	NA	NA
	المستقسس والس				_ : : : .	174	INA	NA	< 10	NA	< 11	NA.	< 11	< 25	NA I	NA	NA I	NA	NA I	NA.

TABLE 3-2

GROUNDWATER ANALYTICAL DATA - ORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Notes:

Only compounds with detectable concentrations reported in table.

Volatile organic compound (VOC) and semivolatile organic compound (SVOC) concentrations reported in micrograms per liter (µg/L) or parts per billion (ppb).

1: New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values (µg/L). Where two values are provided, the first represents pre-2004 values and the second represents revised values used for the 2004 data.

NE: NYSDEC TOGS 1.1.1 water quality standard not established.

Bolded and italicized concentration indicate exceedance of TOGS 1.1.1 criteria. Results qualified with a B indicating blank contamination, are not used for characterization purposes, and not marked as exceedances.

- --: Not detected.
- B : Analyte detected in associated blank, as well as in sample.
- D : Compound identified in analysis at a secondary dilution factor.
- J : Estimated concentration.

NA: Not analyzed.

GROUNDWATER ANALYTICAL DATA - INORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample I.D.	NYSDEC		√V-1	EN	/-2	EN	/-3	EN\	J-4		ENV-5		FI	₩6
Sample Date	TOGS 1.1.1 Water Quality Standards ¹	11/19/1990	9/29/1999	11/19/1990	10/1/1999	11/19/1990	10/1/1999	11/19/1990	9/30/1999	11/19	9/1990	9/30/1999	11/19/1990	
Metals												<u> </u>	<u> </u>	
Aluminum	NE	20,900	22,300	84,500	7,370	29,20 0	7.720	133,000	15,000	77.000	70,700	14,000	24.200	00.000
Antimony .	3		7.4 JN	5.4 B	< 2.9	15.1 BN	4.7 JN	14.2 BN	61.9 JN	16.9 B	70,700	< 2.9	31,300	29,60 0
Arsenic	25	12.8 N	42.1	27.8 NS	8.4	15.6 N	9.7	41 BN	< 3.4	35.6	33.1 N	< 3.4	12.9 B 20 N	7.3 JN
Barium	1,000	195 B	225	1,120	135	355	128	1,590	166	1,010	921	139		< 3.4
Beryllium	3	21	0.16	43	0.5	56	0.29	71	1.2	1,010	18	1.2	284 8.0	238
Cadmium	5		0.92	9	4.1	3 B	< 0.84	8	< 0.84	2 B	''	< 0.84	1	2.0
Calcium	NE	233,000	209,000 EJ	445,000	127,000 EJ	91,100	35,100 EJ	701,000	235,000 EJ	281.000	263,000	124,000 EJ	254.000	4.6
Chromium	50	52	38 2	71	10.8	70	19.5	105	21.2	120	87	16.2	251,000	408,000 E
Cobatt	NE	27 B	13.7	35 B	3.3	30 B	7.8	66	8.4	55	50	7.5	63 05 D	53.3
Copper	200	73 *	53.1	119 *	48.3	173 *	34.9	178 *	31.3	193 *	148 *	31.4	25 B 90 *	15.4
Iron	300	54,800	57,500	101,000	8,240	159,000	39,900	127,000	14,800	98,100	95,300	15,900		58.2
Lead	25	53.1 NS	38.2	8,400 N	64.5	460 N	82.0	220 BN	18.5	89.6 N	90.2 N	43.2	58,500	33,400
Magnesium	35,000	41,900	38,000	54,600	5,960	40,200	24,600	145,000	21,300	89.300	83,700	28,300	52.4 N 29.100	37.1
Manganese	300	4,520	4,690	6,680	573	3,960	1,290	5,930	538	4,160	3,860	626		48,800
Mercury	0.7		0.1		0.1		0.05		< 0.04	0.47	0.28	0.1	1,320 0.3	1,610
Nickel	100	94	46.1	97	10.8	90	20.6	203	25.7	171	141	22.5	90	48.2
Potassium	NE	7,750	9,450	10.100	7,260	17,200	11,700	24,500	19,500	20,900	21,400	21,900	32,500	
Selenium	10	1 BNW	12.7	7.6 N+	15.7	1 BNW	6.5	13.5 BN	25.2	14 N+	9.9 NS	8.3	17.5 NS	39,400
Silver	50		< 13		< 1.3		< 1.3		< 1.3		3.5 143	< 1.3	17.5 NS	33.1
Sodium	20,000	21,200	23,700	7,860	7,890	12,600	11,000	19,500	20,000	11,200	11,900	27,200	24.000	< 1.3
Thallium	0.5		< 5.1		< 5.1		< 5.1		< 5.1			< 5.1	,	25,300
Vanadium	NÉ	139	48.3	247	8.2	155	27.3	422	33.0	239	224	23.2	144	< 5.1 27.1
Zinc	2,000	249	143	1,360	3,000	401	83.5	743	80.1	501	486	93.6	280	27.1 159
<u>Inorganics</u>		ľ	ĺ									30.0		103
Cyanide	200		< 10		< 10		< 10	10.8 N	< 10	23.4 N		< 10	1	< 10

GROUNDWATER ANALYTICAL DATA - INORGANICS ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample I.D.	NYSDEC	GV	V-1		G	W-2		ł	GW-3			GW-4			GW-5	// // AVVV
Sample Date	TOGS 1.1.1	9/28/1988	12/5/1990	9/28/1988	12/5	/1990	9/29/1999	9/28/1988	12/5/1990	9/29/1999	9/28/1988	12/5/1990	9/30/1999	9/28/1988	12/5/1990	9/30/199
	Water Quality Standards ¹					Duplicate] 				0,23,1535	120/1000	0.00,1550	3/20/1900	12/3/1990	9/30/1999
Metals														İ		
Alumin um	NE	9,190 *	1,990 J	930 *	719 J	131 B	6.590	1.060 *	1.020 J	52,900	1,520 *	13.400 J	37.300	304 *	700.4	0.476
Antim ony	3						< 2.9	_	16.5 B	< 2.9	1,520		13.9 JN		799 J	8,470
Arsenic	25					_	< 3.4	_	-	15.1		7.7 B	30.8	 8.1		< 2.9
Barium	1,000	205	128 B	90	109 BJ	389	190		53 6 B	368		7.7 B	510	180	48.8	40.8
Beryllium	3						< 0.12			4.2		403 1.8 B	2.2		275	184
Cadmium	5						< 0.84	l <u></u> i	_	2.5		4.1 B	2.2	_		0.29
Calcium	NE	145,000	104,000	137,000	118.000	122.000	196,000 EJ	192,000	186.000	277,000 EJ	105.000	142,000				< 0.84
Chromium	50					4.3 B	96			62.2		77.1	230,000 EJ 67.7	119,000	103,000	70,400 EJ
Cobalt	NE	1					4.3			35.0		13.9 B				18.2
Copper	200	20	66.3	8	5.9 B	26.4	24.3	آیا	8.8.8	102		109	27.9			9.2
Iron	300	17,400	6,100	7.700	10,200 J	67.700	18,200	120	1.090	67.400	889	40.100	159		7.9 B	27.6
Lead	25	16.1	4.6 J		10.8 J	22.4 J	17.3		6.6 B	76.4	5.8	•	94,500	19,800	33,300	34,200
Magnesium	35,000	62,400	42,000	25,500	20.000	18,600	36,200		389 B	27.000	300	424	276		3.5 J	14.2
Manganese	300	862	531	757	638	759	1.260		25.2	1.730	36	12,600	24,200	17,400	14,500	12,500
Mercury	0.7	0.2					< 0.04		20.2	0.17	1	1,910	3,130	997	437	552
Nickel	100		11.4 B	_			14.1			91		0.22 31.9 B	0.26]		< 0,04
Potassium	NE	7.860	6,290	6.000	9.210 J	15,100	10,500	18,700	16.700	24.800	12.700		79.5			23.8
Selenium	10						4.8	10,700	4.0 BJ	13.6	13,700	20,400	24,300	18,400	15,600	17,500
Silver	50		[< 1.3	[4.0 DJ 	< 1.3			13.3	- 1	-	7.5
Şodfum	20,000	87,300	89,100	34,800	22,700	18,600	43,600	15.400	15,000	25,500	17.400	40.400	< 1.3			< 1.3
Thallium	0.5						< 5.1	13,400	15,000		17,400	19,100	20,800	33,300	47,000	52,400
Vanadium	NE	21	7.2 B		2.4 B	2.4 B	15.0		90.8	< 5.1 75.7			< 5.1			< 5.1
Zinc	2,000	97	32.8		26.1	43.7	61.4	15 *	20.7	75.7 298	18 *	149 459	91.9 548	21 *	4.3 B 22.6	21.6
Inorganics]	İ		,				.5	103	340	21	22.6	87.6
Cyanide	200		10	18	44	38	19.6	11	10	< 10	28	69	< 10	_		< 10

GROUNDWATER ANALYTICAL DATA - INORGANICS **ENVIROTEK II SITE - OU-3 ASSESSMENT** TONAWANDA, NEW YORK

Sample I.D.	NYSDEC		GW-6			G	W-7		NW-1	NW-4	NW-5	ESI-8
Sample Date	TOGS 1.1.1	9/28/1988	12/5/1990	9/30/1999	9/28/1988	12/5/1990	9/30	/1999	9/30/1999	9/30/1999	9/3/1999	9/29/199
	Water Quality							FD093099		0.007,000	3,0,1333	3/23/133
	Standards ³											ļ '
Metals												
Aluminu m	NE NE	600 *	373 J	2,640	720 *	5.790 J	744	1,240	4.540	36,500	2.690	5,560
Antimon y	3	-	_	< 2.9		-	< 2.9	< 2.9	3.9 JN	12.7 JN	< 2.9	< 2.9
Arsenic	25	5.0	3.5 B	3.7			4.0	< 3.4	< 3.4	33.7	< 3.4	< 3.4
Barium	1,000	36	24.5 B	42.8		96 B	38.3	44.4	147	447	74.7	113
Beryllium	3			< 0.12			0.32	< 0.12	< 0.12	2.6	< 0.12	< 0.12
Cadmium	5			0.88			< 0.84	< 0.84	1.4	3.4	< 0.12	< 0.12
Calcium	NE NE	28,300	38,100	63,000 EJ	305,000	247,000	254.000 EJ	274,000 EJ	56,900 EJ	190,000 EJ	105,000 EJ	
Chromium	50			7.5			2.0	2.2	165	65.2	7.3	9.1
Cobatt	NE			2.4		3.7 B	2.7	< 1.7	4.5	29.1	< 1.7	3.7
Copper	200		35.8	16.7		23.2 B	< 2.8	3.1	73.7	132	2.9	18.9
Iron	300	691	997	6.080	391	6,300	918	1.040	29,400	94,300	3,400	6,870
Lead	25			5.8		17.6 J	< 2.9	3.0	79.5	238	5, 4 00	9.9
Magnesium	35,000	9,700	8,770	10,600	200	5,960	1,110	1,330	6,470	40.500	20,200	4,920
Manganese	300	49	108	213	13	256	27.6	34.0	2,910	2,460	115	268
Mercury	0.7			< 0.04			< 0.04	< 0.04	0.04	0.21	< 0.04	< 0.04
Nickel	100			6.5		16.1 B	1.6	1.9	19.8	109	3.9	12.5
Potassium	NE NE	17,900	10,100	7,330	26,700	31,600	29,300	28,600	4,250	11.300	9,670	21,100
Selenium	10	9.1		< 4.2		R	< 4.2	5.9	5.5	60.5	15.1	10.9
Silver	50			< 1.3			< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Sodium	20,000	28,300	15,700	5,480	19,300	20,500	13,800	13,600	20,800	12,400	13,100	20,200
Thallium	0.5	1		< 5.1]		8.9	< 5.1	< 5.1	< 5.1	< 5.1	< 5.1
Vanadium	NE		2.4 B	7.8	[8.9 B	21	2.9	72.4	91.5	7.1	10.6
Zinc	2,000	10	17.1 B	29.7		41.9	8.7	8.4	114	682	23.4	53.4
In orga nics					ľ						}	
Cyanide	200		10 J	< 10	12		< 10	< 10	< 10	< 10	< 10	14.4

Notes:

Only compounds with detectable concentrations reported in table. Inorganic concentrations reported in micrograms per liter (µg/L).

1: NYSDEC TOGS 1.1.1: Water Quality Standards and Guidence Values expressed in µg/L.

NE: NYSDEC TOGS 1.1.1 water quality standard not established.

Bolded and italicized concentration indicated exceedance of TOGS 1.1.1 criteria.

Results qualified with a B, indicating blank contamination, are not used for characterization purposes, and are not shown as exceeding TOGS 1.1.1 criteria.

- : Not detected.
- B: Analyte detected in associated blank, as well as in sample.
- E: The reported value is estimated due to interference.

- J : Estimated concentration.
- N : Spiked sample recovery not within control limits.
- R: Result rejected
- S: The reported value was determined by the Method of Standard Additions (M\$A).
- W: Post-digestion spike out of control limits.
- * : Duplicate analysis not within control limits
- +: Correlation coefficient for the MSA is less than 0.995.

TABLE 4-1

GEOCHEMICAL INDICATOR PARAMETERS IN GROUNDWATER ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Sample I.D. Sample Date	ENV-1 4/18/2001	ENV-2 4/18/2001	ENV-3 4/18/2001	ENV-4 4/18/2001	GW-7 4/19/2001
Geochemical					† :
Alkalinity as CaCO ₃	430	40	190	46	260
Ammonia as N	2.1	1.4	2.1	< 1.0	2.8
Chloride	16	59	51	6.6	9.5
Nitrate	< 0.10	< 0.10	< 0.10	8.6	< 0.10
Soluble Organic Carbon	7.2	8.8	31	22	7.0
Sulfate	19	250	60	560	430
Sulfide TKN as N	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
	< 10	< 10	< 10	< 10	< 10
<u>Metals</u>	<u>l</u>				
Iron - Total	2.4	< 0.050	1.8	0.14	< 0.050
Iron - Dissolved	1.7	< 0.050	1.8	0.075	< 0.050 < 0.050
Manganese - T ot al	2.9	0.020	0.26	0.041	< 0.010
Manganese - D is solved	2.8	0.027	0.25	0.040	< 0.010
<u>Dissolved Gases</u>					-
Carbon Dioxide	44	< 0.60	5.7	0.99	< 0.60
Ethane ²	100	20,000	48,000	350	730
Ethene ²	100	94,000	4,500	180	510
Methane ¹	640	110	8 50	5.6	83
Nitrogen	19	20	21	19	19
Oxygen	0.86	0.87	0 .98	6.0	1.6

Notes:

Concentrations are reported in milligrams per fiter (mg/L) or parts per million (ppm).

- (1) Concentrations reported in micrograms per liter (µg/L).
- (2) Concentrations reported in nanograms per liter (ng/L).

ANALYTICAL PARAMETERS AND WEIGHTING FOR PRELIMINARY SCREENING FOR ANAEROBIC BIODEGRADATION PROCESSES NATURAL ATTENUATION SCREENING EVALUATION **ENVIROTEK II SITE - OU-3 ASSESSMENT** TONAWANDA, NEW YORK

ENV-3

ENV-4

ENV-2

Concentration/Point Awarded

Analysis	Concentration/	Point Awarded	Concentration	n/Point Awarded	Concentration	n/Point Awarded	Concentration/F	Point Awarded	Concentrati	on/Point Awarded
	mg/L		mg/L		mg/L		mg/L		mg/L	VIIII AWarded
Dissolved Oxygen (Field)	0.4	3	0.28	3	0.4	3	0.88	 		
Nitrate	< 0.10	2	<0.10	2	<0.10	2	8.6	0	0.71	0
Iron II	2.4	3	< 0.05	0	1.8	3		0	<0.10	2
Sulfate	19	2	250	0	60	- 3	0.14	0	<0.050	0
Sulfide	<2.0	0	<2.0	3	<2.0	3	560	0	430	0
Methane	0.64	3	0.11	·····	0.85		<2.0	3	<2.0	3
ORP	-93	2	-292	····· · ·	-182		0.0056	0	0.0083	0
pH	Between 5 & 9	0	Between 5 & 9		Between 5 & 9		-218	2	-322	2
			Detricen 5 d 5		Detween 5 & 9	0	Between 5 & 9	0	Between 5 &	9 0
тос	7.2	0	8.8	0	31					
Temp	<20 degrees C	0	<20 degrees C		<20 degrees C	2	22	2	7	0
Carbon Dioxide	44	0	<0.60	0	5.7		<20 degrees C	0	<20 degrees	C 0
Alkalinity	430	0	40	0	190	0	0.99	0	<0.60	0
Chloride	16	0	59	2	51	0	46	0	260	0
BTEX	nd	0	4.05	2		2	6.6	0	9.5	0
PCE	nd	0	13	0	nd	0	nd	0	0.001	2
TCE	nd	- 0		0(2)	0.006	0	nd	0	0.006	0
DCE	nd		6.5	0,	0.003	0 ⁽²⁾	0.003	0(2)	0.002	0(2)
VC .	nd	<u>v</u>	54	2	0.002	2	0.003	2	0.014	2
1,1,1-TCA	nd	<u> </u>	0.68	2	nd	2	nd	Ō	0.25	0
DCA	nd	<u> </u>	4	0	nd	0	nd	0	nd	0
Ethene/Ethane	1	0	0.95	2	0.059	2	nd	0	nd	0
Etherie/Ethane	0.0001	0	0.114	3	0.0525	2	0.00053	0	0.00124	0
TOTAL POINTS										<u> </u>
		(3)		23		28		9		11
Screening Results		N/A		Strong Evidence		Strong Evidence	Lin	nited Evidence ⁽⁴⁾		Limited Evidence ⁽⁴⁾
										LITTINGU LAIGETTE

^{1 :} Table taken from Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, United States Environmental Protection Agency (USEPA), Office of Research & Development, September 1998.

ENV-1

Concentration/Point Awarded

Analysis

GW-7

² Conservatively assumes trichloroethene (TCE) present as parent compound only. Based on presence of 1,2-dichlorothene (1,2-DCE), a fraction of TCE is present as a daughter product of tetrachloroethene (PCE) degradation. Presence of TCE as a daughter product would increase each score by two points.

^{3 :} Scoring is not applicable since volatile organic compounds (VOCs) have not been detected (nd) in this well.

^{4 :} Wells are located at the downgradient extent of the contaminant plume and, therefore, contain nondetectable levels of several constituents. No points are scored for vinyl chloride or dichloroethane (DCA) even though these constituents were detected upgradient and are, therefore, probably effectively degraded. Some low VOC levels may have impacted groundwater geochemistry to the extent that degradation via reductive dechlorination may not be the predominant process occurring. For example, D.O. levels in ENV-4 and GW7 are more than 0.5 milligrams per liter (mg/L) and, therefore, may be high enough to support aerobic degradation processes for vinyl chloride.

TABLE 4-3

NATURAL GROUNDWATER REMEDIATION RATE ANALYSIS SUMMARY TABLE ENVIROTEK II SITE - OU-3 ASSESSMENT TONAWANDA, NEW YORK

Monitoring	1		Correlation	Half-Life
Well ID	Compound	Frend	Coefficient (R2)	(days)
ENV-7	DCA total	Decreasing	0.60	3039
	1,2 DCE total	Decreasing	0.80	1138
	TCE	Decreasing	0.86	554
	VC	Decreasing	0.78	724
GW-7	Acetone	Remediated		744
	Benzene	Remediated		-
	DCA total	Remediated		
	1.2 DCE total	Decreasing	0.95	1405
	PCE	Remediated	1	1125
	Toluene	Remediated	- 1	
	TCE	Remediated	- [-
	VC		- i	
		Remediated	-	~
	Xylenes total	Remediated] -]	
ENV-2	2-butanone	Remediated		
ENV-Z	Acetone	Remediated	-	
	DCA total	Decreasing	0.98	1403
	Ethylbenzene	Decreasing	0.81 €	1930
	PCE	Decreasing	0.81	1878
	Toluene	Decreasing	0.99	1909
	1,1,1 TCA	Decreasing	0.88	1354
	TCE	Decreasing	1.00	1715
	VC	Decreasing	1.00	1600
	Xylenes total	Decreasing	0.84	1737
	1,1 DCE	Decreasing	0.66	2974
E NV-3/3R	DCA total	Decreasing	0.83	1540
	1,2 DCE total	Increasing	0.70	
	PCE	ID	-	
	TCE	ID	-	
	VC	ID		
	Xylenes total		_	
ENV-4	TCE	Remediated		
	1,2 DEC	Remediated	4 1	
	Ethylbenzene	Remediated	- 1	
	Toluene	Remediated	+ +	
	Xylenes total	Remediated	<u> </u>	
	VC	Remediated	_ ;	
ENV-5	DCA total	ID	1	
	1,2 DCE total	ID		
	VC	ID		_
ENV-8	DCA total	Remediated	 	
	1,2 DCE total	Decreasing	0.64	4651
	TCE	ID	5:54	4051
	VC	iD		-
ENV-9	Acetone	Remediated		
	Xylenes total	Remediated		-
GW-1	Benzene	Decreasing	0.94	1246
GW-3	Benzene	Remediated	0.84	1346
GW-4	Benzene	Remediated		
GW-5	Benzene	Remediated	 	
- GW-6	Benzene	Remediated	-	
	Chloroethane	Remediated	- 1	-
NW-4			 	
/ T V V = = 7	I		1 - 1	
			1 - 1	
NW-4	DCA total 1,2 DCE total VC	Remediated Remediated Remediated	-	

Notes

DCA total = Sum of 1,1-dicholorethane and 1,2-dichloroethane isomers

1,2 DCE total = Sum of cis- and trans-1,2-dichloroethene isomers

TCE = Trichloroethene

VC = Vinyl Chloride

PCE = Tetrachloroethene

1,1,1-TCA = 1,1,1-trichloroethane

1,1-DCE = 1,1-dichloroethene

ID = Insufficient Data

"-- " = not applicable

 R^2 values are only shown for compounds with statistically signifigant trends (i.e. $R^2 > 0.6$).

Half-life values were only computed for compounds with values of $\mathbb{R}^2 > 0.6$,

and decreasing concnetrations

Sample I.D.	<u> </u>	EN	IV-1		ENV-1D	En	NV-2	E1	√V-3
Sample Date	9/29/1999	4/18/2001	5/5/2004_	9/28/2004	4/20/2001	10/1/1999	4/18/2001	10/1/1999	4/18/2001
Parameter			-					7,51,17,1000	
рН	6.67	7.13	7.06	7.29	12.11		10.06	8.16	7.82
Temperature (°C)	14.4	10.06	8.18	7.19	12.6	14.8	10.3	14.2	10.1
Specific Conductivity (mS/cm)	0.892	0.77	0.789	Q.789	3,24	0.602	0.649	0.532	1.13
ORP (mV)		-93	67	77	-101		-292	-	-182
DO (mg/L)		0.44	9.65	0	3.91		0.28		0.4
Turbitity (NTU)	120	12.6	21.9	43.9	48.9	142	6.3	488	5.9
Purge Volume (Gallons)	7.5	-	3.5	3.5	9.42	4.2		4	
Calculated Well Volume (Gallons)	2.48		2.77	2.74	3.13	1.37		1 33	
		Master Flex	Master Flex	Master Flex		· · · · · ·	Master Flex		Master Flex
Purge Method	Bailer	Pump	Pump	Pump	Not Identified	Bailer	Pump	Bailer	Pump

- = Data Not Available
- (1) Assumed purging method not recorded on well sampling log.

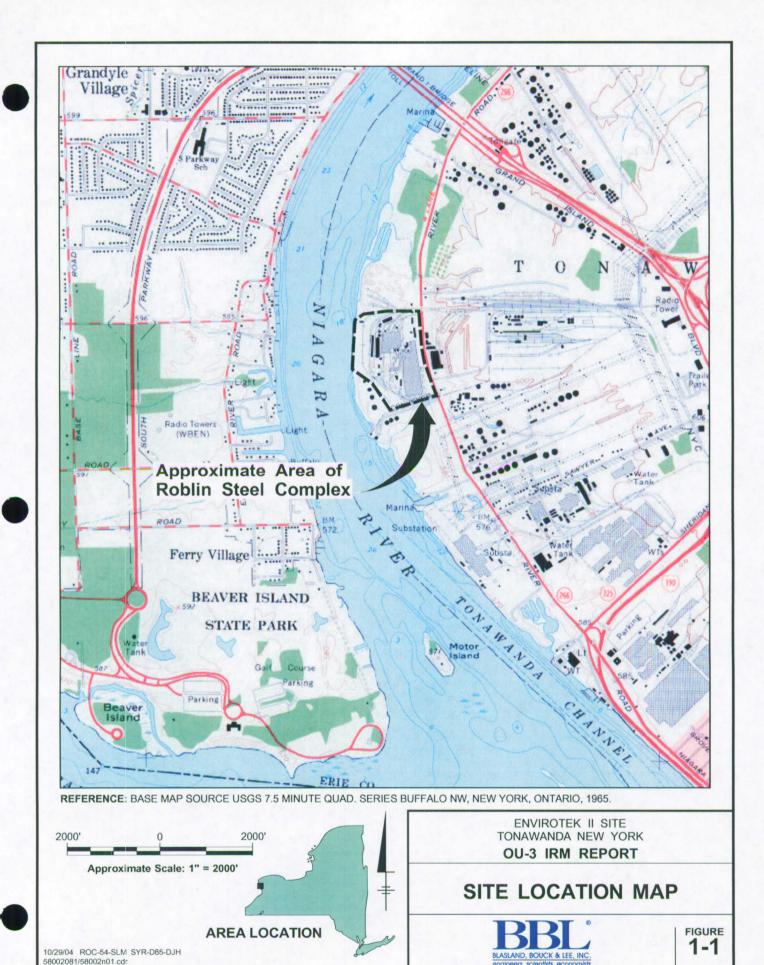
Sample I.D.	FN'	V-3R	1	E	NV-4		- EN	V-5	ENV.C
			 		140-4		EIN	V-5	ENV-6
Sample Date	5/5/2004	9/28/2004	9/30/1999	4/18/2001	5/5/2004	9/28/2004	9/30/1999	3/11/2001	4/19/2001
Parameter Parame							1		
рН	6.31	6.3	9.52	8.89	6.13	6.2	8.84	8.31	8.38
Temperature (°C)	8.2	7.16	1.37	9.6	9.26	7.15	12.9	9.8	9.7
Specific Conductivity (mS/cm)	0.671	0.761	1.22	1.53	0.605	0.786	1.06	0.97	0.891
ORP (mV)	90	75		-218	0.46	131		-148	39
DO (mg/L)	1.81	0		0.88	0	0		8.94	7.95
Turbitity (NTU)	39.3	42.3	>1000	12.3	8.2	18.3	564	999	21.9
Purge Volume (Gallons)	3.5	3.5	4.2		3.5	3.5	5.55	6.5	5.56
Calculated Well Volume (Gallons)	1.11	1.09	1.41		1.87	1.85	1.85	2.17	1.85
	Master Flex	Master Flex		Master Flex	Master Flex	Master Flex		~.!!	Master Flex
Purge Method	Pump	Pump	Bailer	Pump	Pump	Pump	Bailer	Bailer	Pump

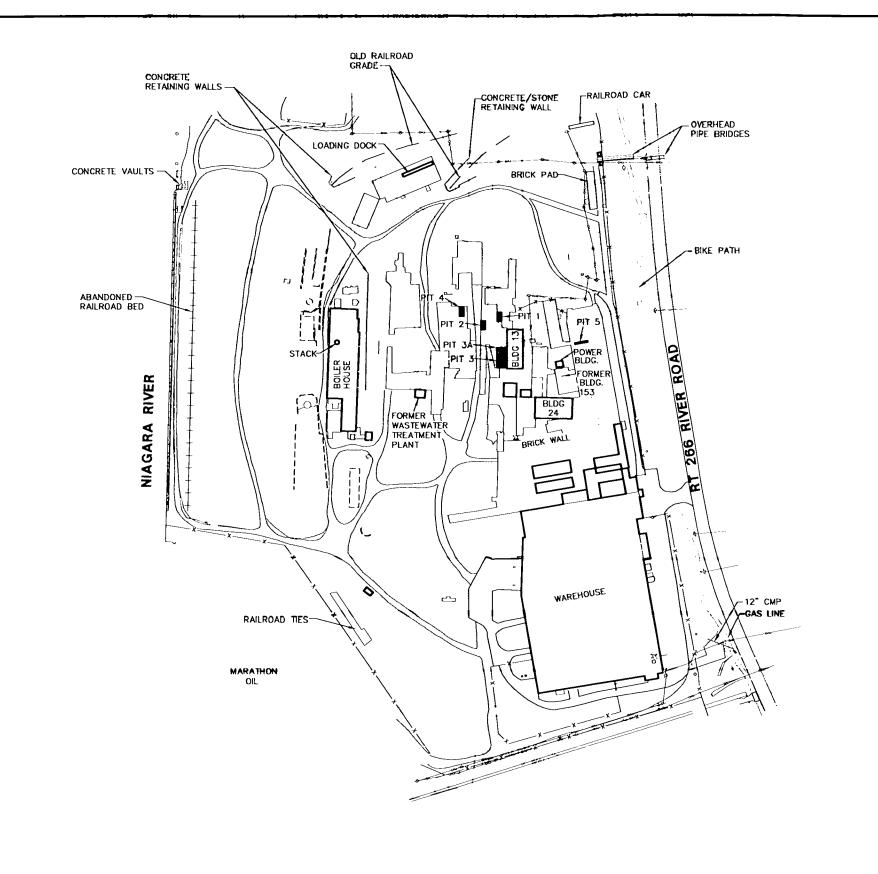
- -- = Data Not Available
- (1) Assumed purging method not recorded on well sampling log.

Sample I.D.	<u></u>	ENV-7			ENV-8			ENV-9	
Sample Date	4/19/2001	5/5/2004	9/28/2004	4/1 9/2001	5/5/2004	9/28/2004	4/19/2001	5/5/2004	9/28/2004
<u>Parameter</u>								0.0.200	DIZOIZOO.
рН	9.35	7.39	7.45	9.1	8.74	7.92	7.23	7.31	7.96
Temperature (°C)	9.4	8.51	7.19	10.2	8.63	7.21	10.5	8.03	7.19
Specific Conductivity (mS/cm)	109	0.978	0.747	1.27	1	0.839	2.45	0.941	0.96
ORP (mV)	-182	-51	117	-24	21	112	19		69
DO (mg/L)	10	0	0	8.66	0	0	9.15	0	0
Turbitity (NTU)	14.7	11.9	47.8	999	48.9	42.9	999	21.6	48.9
Purge Volume (Gallons)	2.17	2.37	3.5	2.8	2.37	3.5	2.35	2.37	3.5
Calculated Well Volume (Gallons)	0.726	0.803	0.777	0.935	0.857	0.822	0.785	0.856	0.869
		Master Flex	Master Flex		Master Flex	Master Flex		Master Flex	Master Flex
Purge Method	Pump	Pump	Pump	Bailer	Pump	Pump	Not Identified	Pump	Pump

- -- = Data Not Available
- (1) Assumed purging method not recorded on well sampling log.

Sample I.D.	ENV-10D	GW-1	GW-2		OW 2		0)4/4	0.44.5	
Campie I.B.	LIV-10D	GVV-1	GVV-2		GW-3	T	GW-4	GW-5	GW-6
Sample Date	4/20/2001	4/19/2001	9/29/1 999	9/29/1999	5/5/2004	9/28/2004	9/30/1999	9/30/1999	9/30/1999
Parameter									
рН	7.07	6.25	6.85	11.24	7.15	7.31	10.89	7.06	7.67
Temperature (°C)	12.4	11.4	13.5	15	8.01	7.1	14.8	14.6	17.7
Specific Conductivity (mS/cm)	1.79	1.59	1,31	1.51	0.871	0.978	0.912	0.953	0.478
ORP (mV)	-88	-179				211	_		
DO (mg/L)	7.46	10.47			0	0	_		
Turbitity (NTU)	33.5	51.9	689	120	50.6	48.8	>1000	>1000	85
Purge Volume (Gallons)	20.06	7.84	9	4.8	3.5	3.5	3.6	6	6
Calculated Well Volume (Gallons)	6.68	2.615	2.82	1.54	1.95	1.92	1.15	1.8	1.74
	Centrifugal	Master Flex			Master Flex	Master Flex			
Purge Method	Pump	Pump	Baiter	Bailer	Pump	Pump	Bailer	Bailer	Bailer


- -- = Data Not Available
- (1) Assumed purging method not recorded on well sampling log.


	1				ī —				1	1
Sample I.D.	ļ	G	W-7		NW-1	NW-2		1W-4	NW-5	ESI-8
Sample Date	9/30/1999	4/19/2001	5/5/2004	9/28/2004	4/19/2001	4/19/2001	9/30/1999	4/19/2001	9/29/1999	9/29/1999
Parameter Parame									5.20000	0/20/1000
рН	11.57	12.05	8.11	7.12	9.42	10.81	7.32	6.76	7.2	10.9
Temperature (°C)	13.5	9.6	8.01	7.23	23.3	9.7	13.9	9.1	16.3	15.6
Specific Conductivity (mS/cm)	2.333	2.18	2.01	0.982	0,384	0.926	1.08	0.795	0.806	1,17
ORP (mV)		3.21	-	101		-256		98		
DO (mg/L)		0.7	0	o		5.59		8.56		
Turbitity (NTU)	14	5.4	27.3	29.3	301	602	>1000	999	402	124
Purge Volume (Gallons)	3.75		2.37	3.5	3.75	4.14	4.5	4.7	3	3
Calculated Well Volume (Gallons)	1.01		1.25	1.22	1.27	1.38	1.32	1.57	0.55	0.8
		Master Flex	Master Flex	Master Flex					2.00	- 5.0
Purge Method	Bailer	Pump	Pump	Pump	Bailer	Bailer	Bailer	Not Idenitifed	Bailer	Bailer (1)

- = Data Not Available
- (1) Assumed purging method not recorded on well sampling log.

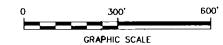
Figures

BLASLAND, BOUCK & LEE, INC. engineers & scientists

LEGEND

FENCE

EXISTING BUILDING

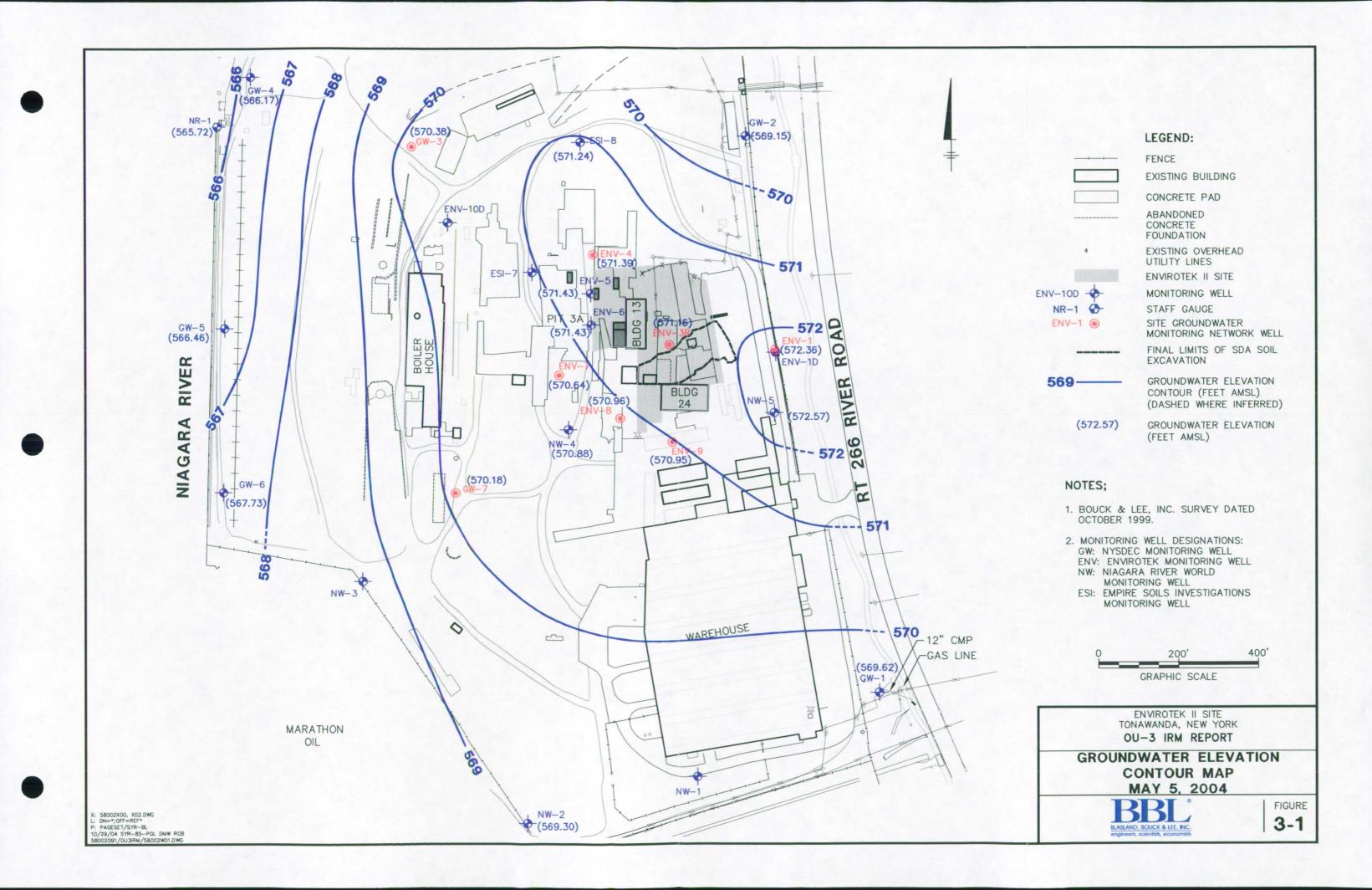

CONCRETE PAD

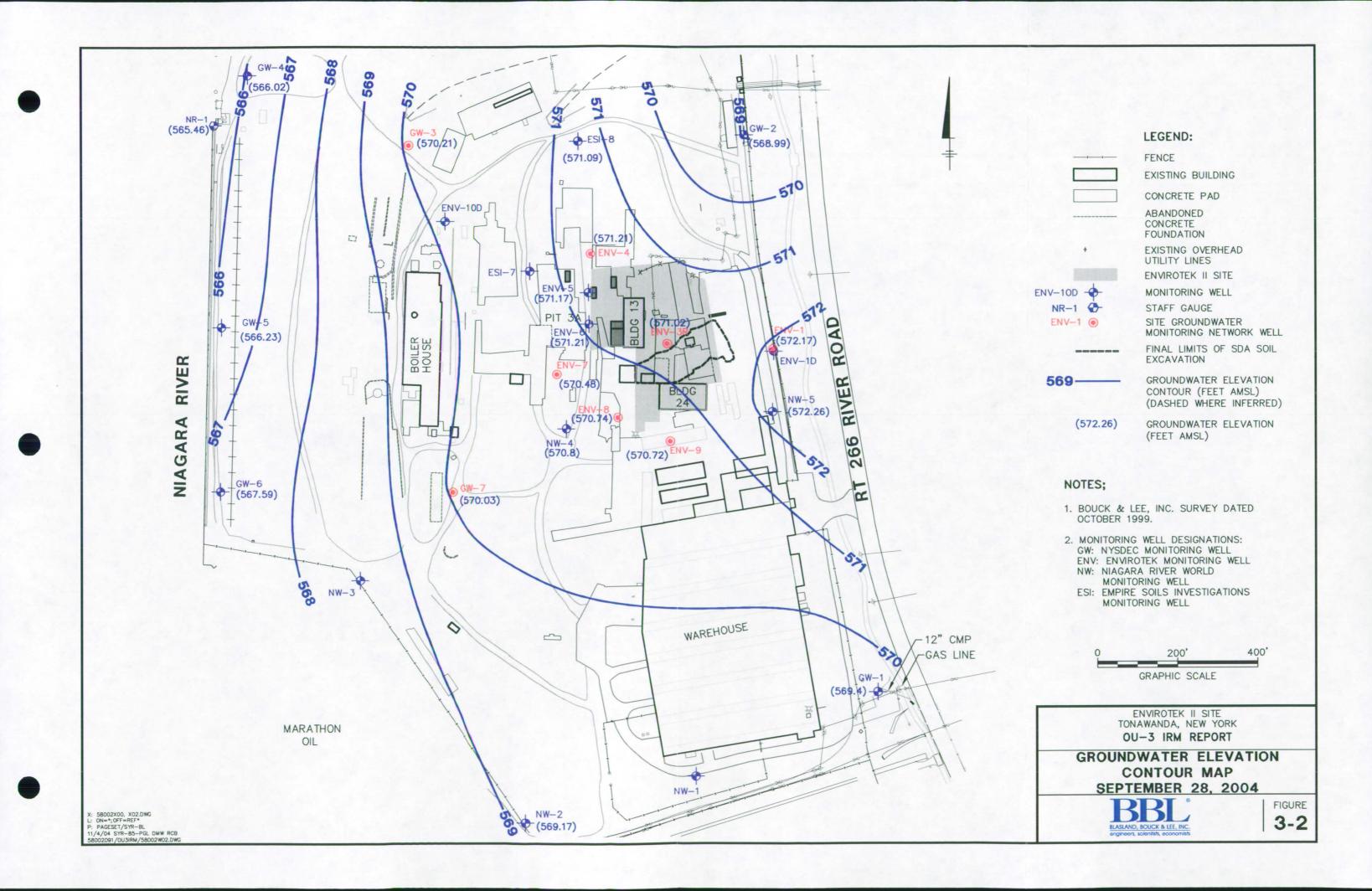
ABANDONED CONCRETE FOUNDATION

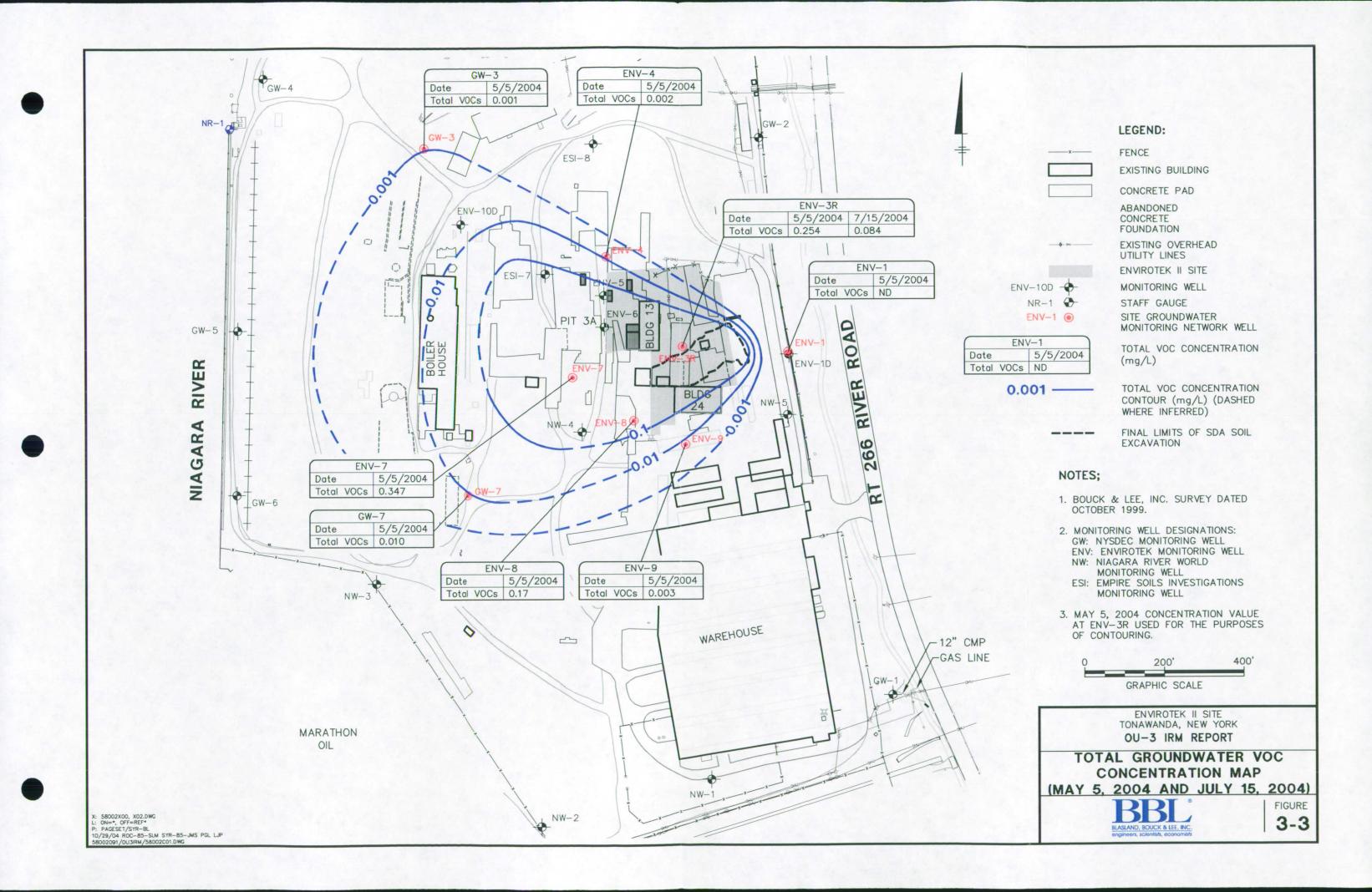
EXISTING OVERHEAD UTILITY LINES

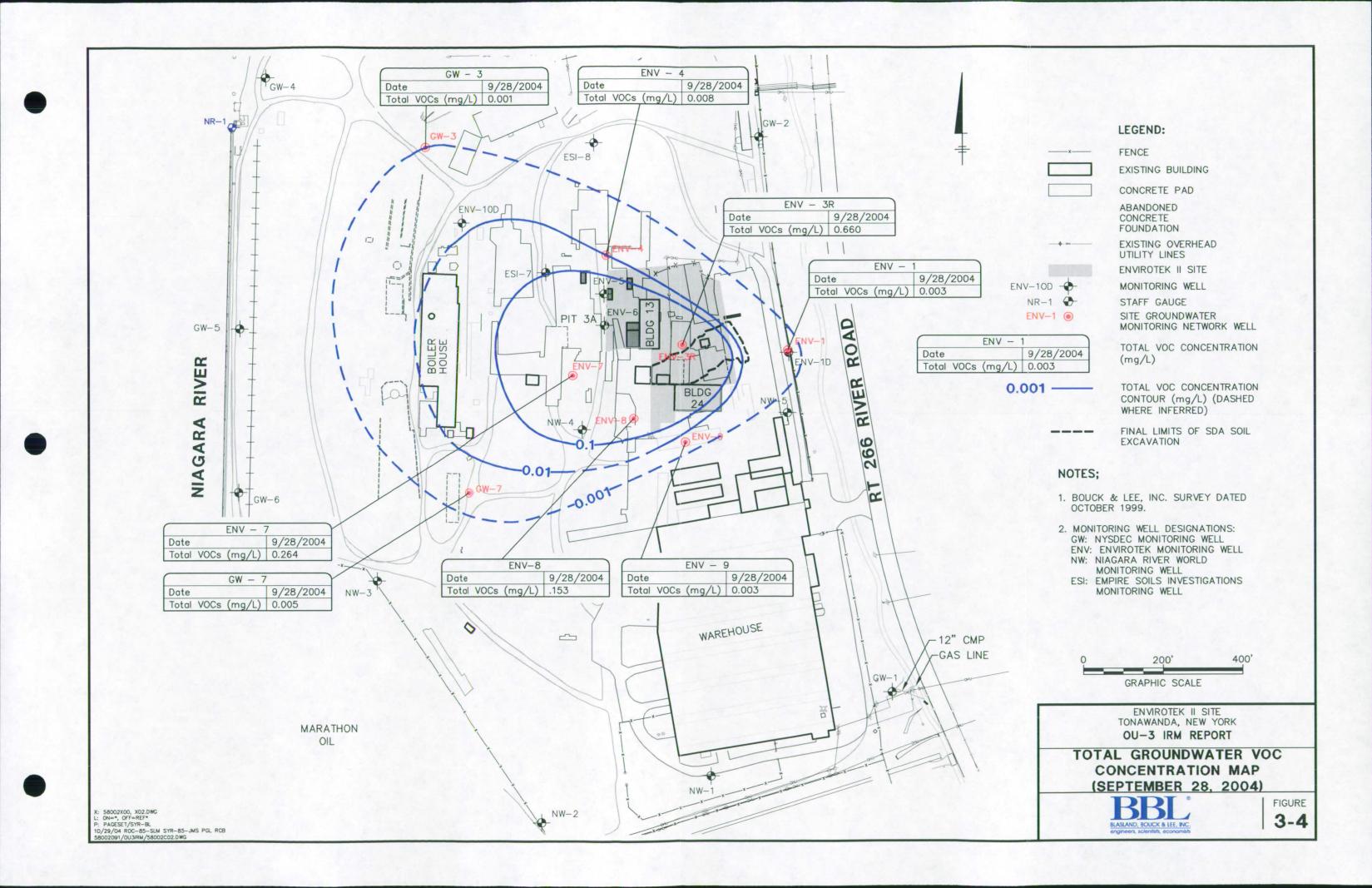
NOTE:

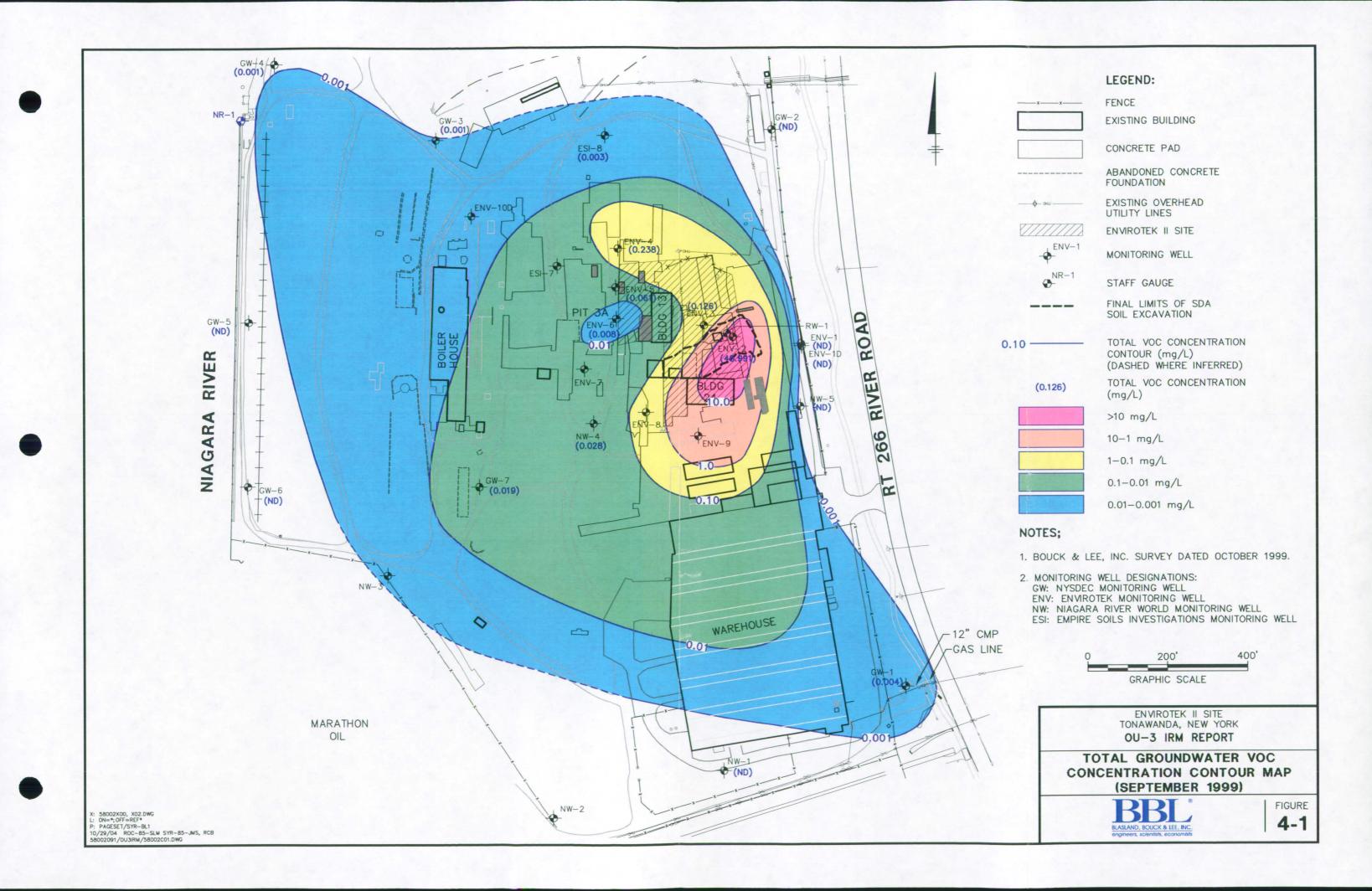
BASE MAP PREPARED FROM BLASLAND, BOUCK & LEE, INC. SURVEY DATED OCTOBER 1999.

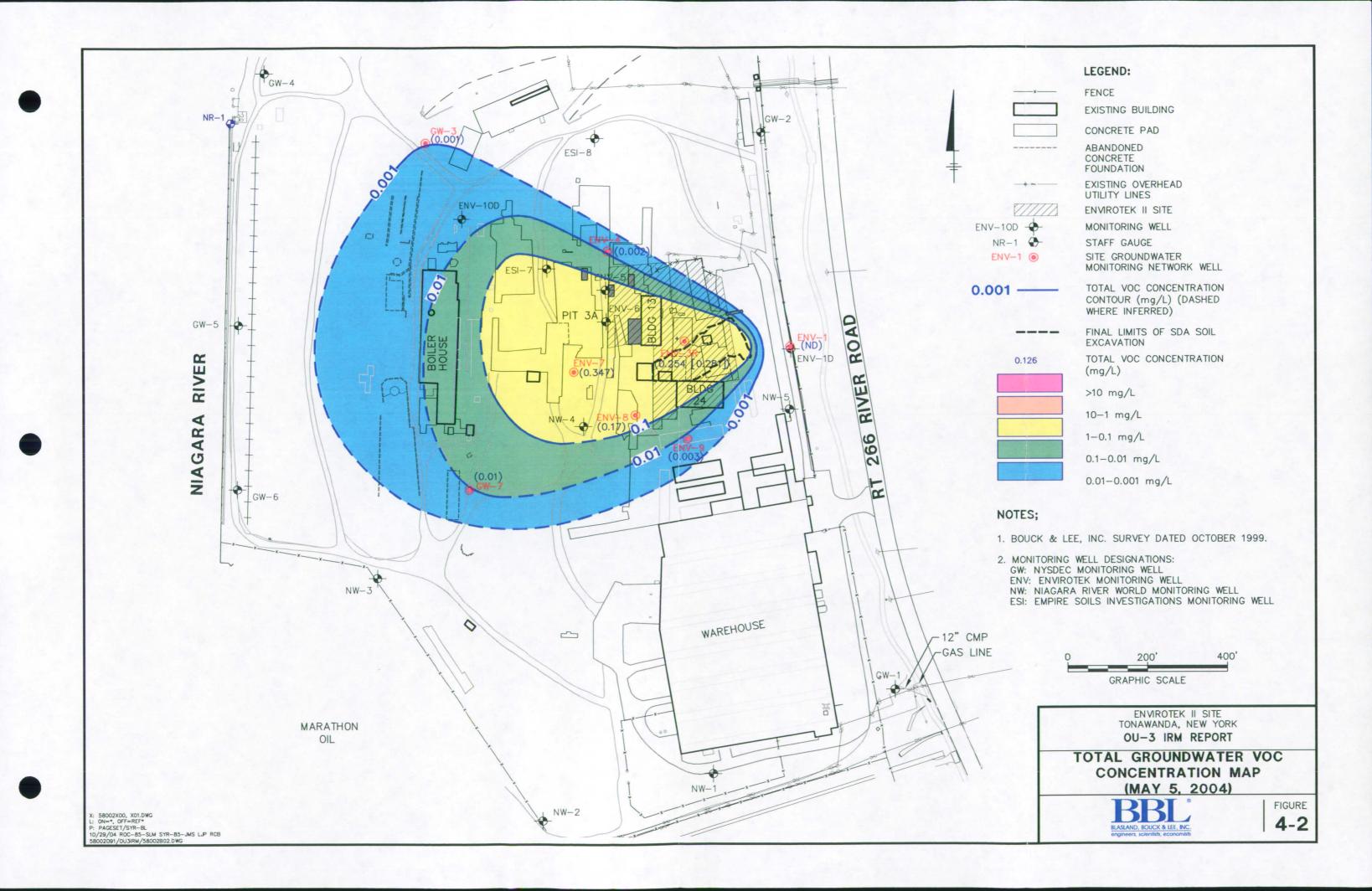

ENVIROTEK II SITE TONAWANDA, NEW YORK OU-3 IRM REPORT

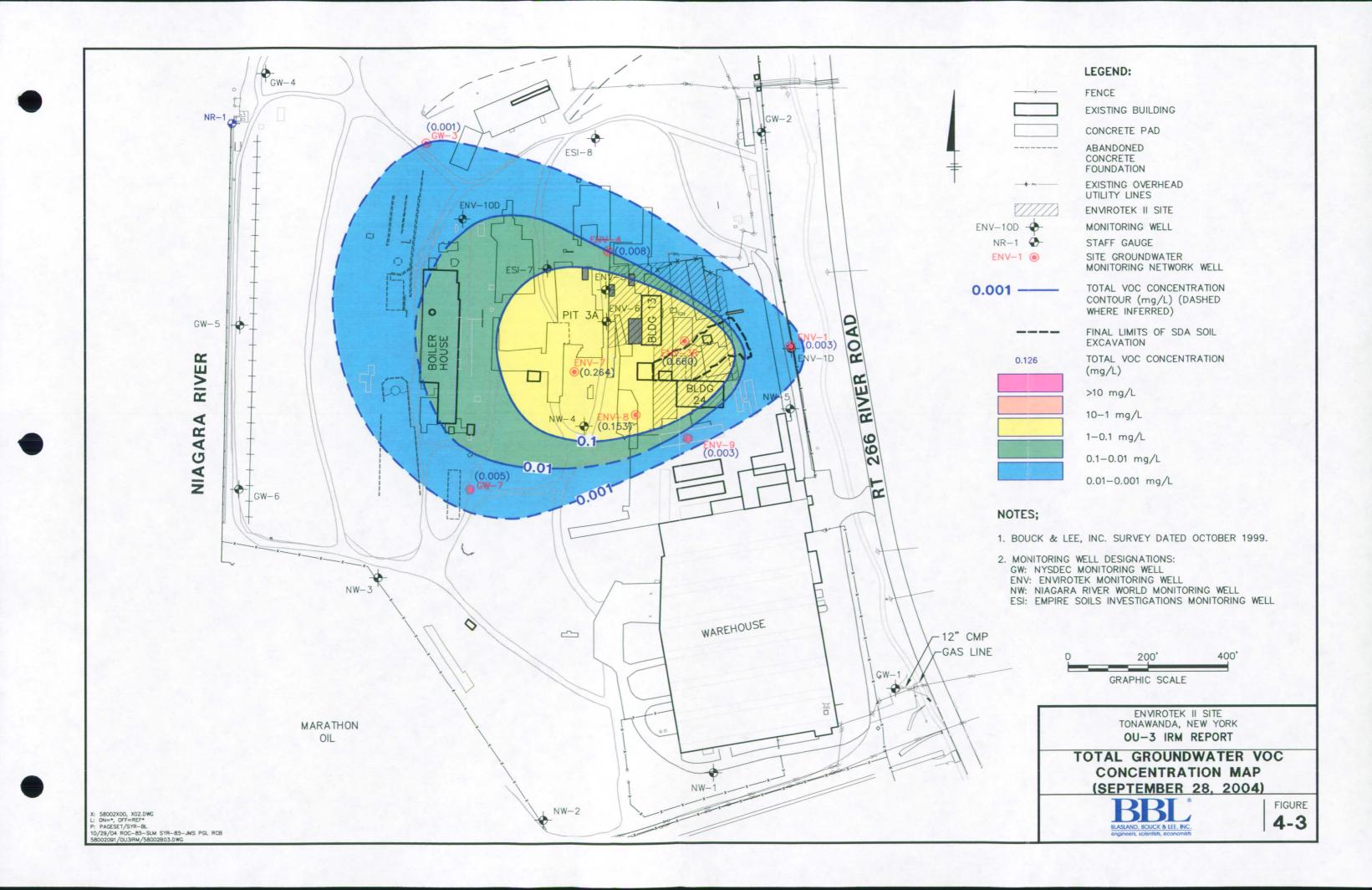

ROBLIN STEEL COMPLEX SITE PLAN


BBI


FIGURE


X: 58002X03.DWC L: 0N=*:0FF=REF*,0, P: PAGESET,/PLT—BL 10/79/04 SYR— RCB 58002081/OU3IRM/58002B01.DWG





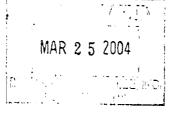
Appendices

BLASLAND, BOUCK & LEE, INC.

engineers & scientists

Appendix A

NYSDEC March 24, 2004 Approval Letter for IRM Work Plan for Operable Unit 3



New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2999

Phone: (716) 851-7220 • FAX: (716) 851-7226

Website: www.dec.state.ny.us

March 24, 2004

Mr. William B. Popham, Vice President Blasland, Bouck & Lee, Inc. 155 Corporate Woods, Suite 150 Rochester, New York 14623-1465

Dear Mr. Popham:

IRM Work Plan for Operable Unit 3 Envirotek II - Roblin Steel Property DEC Hazardous Waste Site No. 915056 Tonawanda (T), Erie Co.

The New York State Departments of Health (DOH) and Environmental Conservation (DEC) have completed a detailed review of the IRM Work Plan for Operable 3 and find it acceptable. This letter, therefore, transmits formal Department approval of the IRM Work Plan for Operable Unit 3 dated March 16, 2004.

Since the Department would like to provide oversight during the proposed well installation and sampling program, please provide at least 10 days notice prior to initiating this work. Should you have any comments or questions concerning this letter, please feel free to contact me at (716) 851-7220.

Sincerely yours,

Glenn M. May

Engineering Geologist I

Elen M May

GMM/uni

cc: Mr. Daniel King, NYSDEC, Region 9

Mr. Matthew Forcucci, NYSDOH, Buffalo

letter.hw.915056.2004-03-24.0U3WorkPlanApproval.pdf

Appendix B

Boring/Well Construction Log – ENV-3R

Date Start/Finish: 04/14/04 - 04/14/04 Drilling Company: Northnagle Drilling
Driller's Name: Kevin Bush
Drilling Method: HSA

Bit Size: Sampler Size: Rig Type:

Northing: N - 1,087,032.0 Easting: E - 1,053,660.4 Casing Elevation: 580.44

Riser Elevation: 580.14 Borehole Depth: 18 feet Surface Elevation: 580.44

Geologist: Michael Arlaukas

Well/Boring ID: ENV-3R

Client: Envirotek

Location: Tonawanda, New York

DEPTH		Sample Run Number	Sample Run Number	Sample Run Number	Sample Run Number	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
0	0				1 -0			Concrete					
		S-1		0.9'			1	FILL, consisting of dark brown to black f-m sand, some rock fragments, little black cinders gray slag; dry	24" diameter concrete surface pad (0.0' - 1.8' bgs)				
		S-2		0.7'			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FILL, consisting of gray rock fragments and little red and white brick fragments; dry	Hydrated bentonite seal (1.8' - 3.9' bgs)				
-5	-5-	S-3		1.7'			11.	FILL, consisting of dark brown m-c sand, some gray/black slag, little broken rock fragments; dry	2" diameter, Schedule 40, flush thread PVC riser (0.2' - 6.0' bgs)				
								/ FILL, black vf sand and silt; dry					
		S-4		1.6'			41. \	FILL, consisting of dark brown m-c sand, some gray/black slag, little broken rock fragments; dry FILL, consisting of dark brown f-m sand, some slag and concrete fragments, trace orange silt sized material, most; suflur odor present					
		S-5					Y1.	FILL, consisting of brown to dark gray m-c slag, trace rock fragments; moist 8'-9' bgs, wet 9'-10' bgs	ØØN Sand (3.9' - 16.6' bgs)				
- 10- -	10 -	S-6		1.7'			Y11.	FILL, consisting of dark brown m-c sand sized slag, some f-m sand sized slag, trace coarse gravel sized slag; wet; sheen present on water	2" diameter, Schedule 40, 0.01- inch slotted PVC				
-		S-7		1.6'			- -	Same as above	screen (6.0' - 16.0' - bgs)				
- - 15-	15 -	S-8		1.5'			N= 1-	FILL, consisting of dark m-c sand sized slag, some f-m sized slag, trace coarse gravel sized slag; wet; brown silty clay with faint organic odor present at tip of spoon					
		S-9		2.0'				Brown; SILTY CLAY; wet	Bentonite chips (16.6' - 18.0' bgs)				

BLASLAND, BOUCK & LEE, INC. engineers & scientists Remarks: NA: Not Applicable / WH: Weight of Hammer

Appendix C

Surveyor's Report

McINTOSH & McINTOSH, P.C.
CONSULTING ENGINEERS, LAND SURVEYORS, PLANNERS

NEW YORK • MAINE • PENNSYLVANIA • VERMONT • CONNECTICUT
NEW HAMPSHIRE • KENTUCKY • OHIO • SOUTH CAROLINA • ARIZONA
NORTH CAROLINA • WEST VIRGINIA • RHOOE ISLAND
MASSACHUSETTS • NEW JERSEY

Principal Office: 429 Pine Street, P.O. Box 490 Lockport, New York 14095

718 - 433-2535

BUFFALO, N.Y.

716 - 434-9138

625-8360

FAX # 716-433-2827

September 29, 2004

Mr. Mark B. Hanish, P.G. Sr. Geologist/Project Manger Blasland, Bouck & Lee, Inc. 600 Waterfront Drive Pittsburgh, PA 15222-4741

Re:

Surveying Services for Well at Envirotek Site

Tonawanda, New York

Dear Mark:

Pursuant to our letter of agreement dated September 29, 2004 regarding the above referenced site, please see the following for well (ENV-3R).

N. -1,087,032.0 E. -1,053,660.4 Top of 3" PVC casing 580.14 Top of 8" casing - 580.44 Ground Elevation - 580.44

If you have any questions or require any additional information, please do not hesitate to contact me.

Yours truly.

John E. McIntosh III, L.S. Director of Operations

JEMIII:hen

BBLENVI. WPD

Appendix D

Groundwater Sampling Logs

Low-Flow Sampling Program

Site			CD0111151						Evant
			GROUNDY	VATER SAI	APLING PR	OGRAM			
Bempiling Personnel:	Michael R. Arle	uckse			Well	a EN	d-1		
Job Number:	13048.002				- Dete		5,200	Ŧ	
Westher: 6	SF SU	MILL			Time	04.0		ou: 0920	
ug i jugaguana	· · · · · · · · · · · · · · · · · · ·					<u> </u>	O Yime	Out: 0 -121	<u>J</u>
WELL INFORMATION	(record)	from top of inner o	asing at minimul	טז	sheci	etetroproses a acto			
Well Depth		7:1 (1)	TOC	BGS.	Well	Type: F	Pushmount 🖄	Ston-	
Writer Table Dopth	(रिकार)	24.44			Well	Locked:	Ves 🔀	7	No 🗍
Andrea Lagre Cobes	(fecs)	7-4/10	<u> </u>	<u></u>	Mean	HIND Point Mar	kod: Yca 🔀	1	×.
·					14/-01	01		2 JX	_
WELL WATER IMPORT						Diameter;	<u>* </u>		Other:
		1 2 2	ti ca		Conversion Red	tors	BAMD	LINC INFORMAT	ION
Length of Water Column Volume of Water to We		777	* * * *	gadona per feci	1.0 24	4-10 81			
Pumping Rate of Pump	- W-V	2.77		of water column	4004 016	ace 1.5	vocs	(3-40 rot visit)	玄
Pumping Rate of Pump		300	mi/sha	194-3	765 L -5786 me -	0.1337 cubic A	_	,	
Minutes of Pumping	(GPM)	118		Γ		· · · · · · · · · · · · · · · · · · ·	_		aaaa
Total Votume Removed		-	ا دم به	-	Unit Stability		-		
	(psŋ	1 7:0 5	386	pH Cond	Turo, DO	Tema ORP			
				** **	- 4 ×	* -t	_		7.43
				0.1 3.00%	NTUs 10%	10 m	4	Sample (D:	
EVACUATION INFORMA	MON						3 a	трю Тіте:	<u>0930</u>
							ļ	MS/MSD. Ye	No 🔯
Evacuation Methods	Baita.	. 🗀 💍	tos Pump		\boxtimes	_		Dupilicate: Ye	<u>,□ ~ ⊠</u>
Tubing Used:	Oodicated	(7)	econned	MasterFlex	W		1		
Sampling Method	Ba ile	167	Sas Pumo	MasterFlex			1	upricate (D:	
Did well go dry?	Yes	F-5		merater mich	<u> </u>	U		Kai Bottles	3
		_	Water Quality &	Salme There:	Hariba II 77	,			
_	1 66//5		· · · · · · · · · · · · · · · · · · ·		Horiba U-22				
lime Parameter	० १५८	0850	0855	090	0905	0910	0915	0920	0925
	inkisi	1570>	<u> </u>	12000					1 - 100
atume Purgee (gail)	9	1200	3000	4500	6000	7500	9000	10500	12000
runge Rate (mil/min)	300	<i>3</i> ∞	300	300	300	300	500	300	300
Pepth to Water (IT. TIC)	7.26	7.26	7.2%	7.26	7.2%	7.26	7.26	7.26	7.26
н	7.35	7.31	7.24	7.06	7.05	703	 		
	6.793	6.792	0.791				7.06	4.0.3	7.06
onductance (mS/cm)				0.789	6.789	0.789	0.789	0.789	0.78%
umbiny (N(Up)	76.3	71.2	69.3	74.5	S1.2	639	76.3	22,3	21,9
O (mg/L)	9.61	9.62	१,७३	9.64	4.65	9.64	9.65	9.65	9.65
emp (°C)	8.23	8.23	8.19	819	8.19	8.19	8.18	8.18	8.18
RP (mV)	+ 31	+ 360	+ 38	+41	+46	456	+61		
			~~~	. 11	70	(30)	1 (2)	+63	467

Commente/Notes

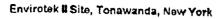
USEPA SW464 Method 62608 - Volatile Organic Compounds (VOCs)

Laboratory: Severin Therit Laboratoritée - Buthato, New York Sample was Shipped Vis: Fodoral Express Other, Bissiand, Bouck & Lee, Inc.	shippod day of eachpling sent on 416/04 (Machine) Chan of Class Sylphony:

		***************************************	GROUNDW	ATER SAM	PLING PR	OGRAM			Event
Sampling Personnett	Michael R. Aria						- 3R		<del></del>
lob Number:	13049.002			<del></del>	<del>Well</del>	11 1 0	5 200	07	
Westher: @65	F SUNI	MY		·				1556	
						C773c	) Time	out: 1022	
<u>WELL INFORMATION</u>	(record t		seing at minimum	•	onesk	What's appropriate		·	
Well Depth	(Teet)	15.99		BGS_	i		insumonuta [X	Sikka	الله ود
Water Yanio Dogen	(Toet)	8.98				Locked: uring Point Man	rad: Yes	1	*
						-		_	<b>≈</b> □
						Diameter.	<u></u>	2 X	Other
VELL WATER INFORM		1 61	77		Conversion Fact	one .	SAMP	LING INFORMAT	ON
ength of Water Colum.		6.96		godona per taet	10 21	e 10 8-10	Analye	PEA:	
Pumping Rate of Pump		<del></del>	<del>ulum</del>	of water powers			- VOCs	(3 - 40 mL violo)	Ø
Sumpling Rate of Pumps		300	<del>DUM</del>	i nei = 3.	785 L =3785 mL = 1	1.1337 male ft.	J ∤		
dinutes of Pumping:	(min.)	45	لمنط		Unit Stability	<del> </del>	¬		<u></u>
otal Volume Removed:	(221)	3.5	<u>α</u> Δκ.	al Cond			<del> </del>		
			- <del>(-222-)</del>		- 100 A	Temp. ORP	-		
				01 2.00%		10 mV	<del> </del>	65	1042 M-35
					,	1 10 114	- 1	Sampla (D: C	1045
VACUATION INFORMA	TION						33		128 ™ Ds
		<u></u>	_		_				
Secusion Method:	B≥ko	Grund	tos Pump	MaaterFlex			ļ		<b>س</b>
ubing Used: Ampling Method	Codicated	527ì	Decannea 📙		(m)		0	uplicate ID: FX	150504
eid weit go dry?	Gale	7	fas Pvmp	MagterFlex	<u> </u>		<u></u>	DI Bones	6
na mai go ciy i	Y 66	السا	Na LEA						
<del></del>	T	<del>,</del>	Water Quality M	ater Typer	Horiba U-22		•		
ime	0290	0382	1000	1005	1010	1015	1020	1025	1030
2 rameter	Initial		ļ			<u> </u>			(0.~
dume Purged (g <b>el)</b>	Ø	1300	3000	4500	6000	7500	QUOP	10,500	12000
urge Rate (mL/mlm)	300	300	300	300	300	300	300	300	300
opth to Water (R. TIC)	9,03	9.15	9,15	9.15	9.15	9.15	9.15	9.15	9.15
1	6.23	6.31	6.33	6.33	6.31	6.29	6.31	6.31	6.31
onductance (m.S/em)	0.715	0.639	0.645	0.651	0.658	0.661	0.663	0.669	0.67
(ביינוא (אדעים)	169.0	60 <i>B</i>	62.3	51,9	46.3	52.3	47.3	41.9	34.3
O (mg/L)	<b>५</b> ३९	7.22	6-86	5.36	2,92	3.56	(.89	1.87	1.81
	8.20	9.20	8.19	8,19	8.20	8.20	8.20		8.20
mp (°C)					<u> </u>	$\underline{}$	0,-0	3.20	D.20
mp (°C) RP (mV)	1160	113	105	100	100	97	95	93	90

USEPA SW-864 Method 8280B - Volatile Organic Compounds (VOCs)

* Now were Reprocoment or 9746 Pormen ENV-3 - FIGUR DUPLICARE = FOOSPSP4


į		
1	Laboratory: Sever Trent Laboratories - Buttate, New York Sample was shipped day of sampling sent on 10004	tribbyee
٠		
		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

	<del></del>		GROUNDW	ATER SAM	IPLING PR	OGRAM			Event
Sampiting Personner:	Michael R. Arta	•			Wali		1-4		
Job Number:	18049,002		·				g 7/M	<b>X</b>	
Weather P65	F SUN	Jim	<del></del>	<del></del>		(200.0)			
					Iine	ia: 1-40C	- 1055 Time	ous 1210	
WELL INFORMATION	(record t	rom top of inner o	numinim le çalzer	(ר	check	where oppropriess			<del></del>
		TIC	700	803		Type: F	iushmouni [	5 Sterio	。 図 <b>*</b>
Well Depth	[T64T]	22,95	- <del> </del> -		well	Lookes:	Yes []	8	
Water Table Depth		11.21		<u> </u>	Meas	uring Point Man	red; Yec 📝	<b>Σ</b> ν	. 🗖
					וויימי	Clamater.	🗀	(D)	
NET I WAYER IMPARA						OLUMBER,	<u></u>	2 12	Omer.
WELL WATER INFORM		11.34	4		Conversion Fact	one .	SAME	LING INFORMATI	ON
Langth of Water Colum Volume of Water in Wes		<del></del>	TOAC	galtone per leet	1.0 5.0	4.12 2.10	Analys	ics:	
Pumping Rate of Pump		-	white	of water dominate			10000	(3 - 40 mL visus)	<b>প্ৰ</b>
Pumping Rate of Pump			mrialing	1 ga= 1	785 ( =3765 ML = (	1337 avbio 8.	_		
Minutes of Pumping:	(min.)	77	MIN		Und Coathing	<del></del>	¬ †		
Total Volume Removed			AC.	-11 0	<del></del>		-		
		73.7	1a2	pH Cond	-	Temp. ORP.	4 1		
				0.1 2.00%	160 -4		- 1	-	<b>-</b>
				VI ( 240%	NTUS 10%	10 mV	~		EN2-4
EVACUATION INFORMA	TION						Sa	mple Time:	(508
Byscustion Methad!	Baile	√ 🔲 Gruna	Tos Pump	MasterFlex	$\mathbf{x}$			Ouplicate: Yes	i → ₩ ₩
Yuping Used	Decleated		Deconned					upikata (O:	
Sampling Method	Balle	Grun	tos Pump 🔲	MasterFlex	<u> </u>		L L	Cal Porties	3
Did well go ety?	Yes	· 🖵	No DAT				<u></u>		
			Water Quality N	leter Type:	Horiba U-22		_		
	11125	1110	1115				<del></del>		1000
l'ima	1105	1110	1 1112	11120	1125	1130	1120-	11110	
	Ingal	,,,,	1,,,2	1120	1125	1130	1135	1140	1145
Parameter	i .		3020						
Parameter /alume Purged (pal)	intial	(500	SOZO	4500	6000	7500	9000	10,500	Isoso
Parameter  Advine Purged (gal)  Purge Rate (mUmin)	inrial Ø 300	(90) 300	300 3020	4500 360	6000	7500 300	9000 300	10,500	340 15000
Parameter  Adjume Purged (gall)  Purge Rate (mUmin)  Repth to Water (ff. Tic)	17.79	1300 300 13.15	300	4500 300 13.21	6000 300 13.21	7500 300 13.21	9000 300 (3.2)	10,500	Isoso
Parameter  Adume Purged (gal)  Purge Rate (mUmin)  Depth to Weter (m. Tic)	360 12,79 5.88	130 300 1315 6.33	300  3.21  6.25	4500 300 13.21 619	6000	7500 300	9000 300	10,500	340 15000
Parameter  rolume Purged (gal)  Purge Rate (mUnain)  septin to vvertex (ff, Thc)	17.79 5.88 0.734	130 300 1315 6.33 0.642	300 13,21 6.25 0.631	4500 300 13.21 619 0615	6000 300 13.21	7500 300 13.21	9000 300 (3.2)	10,500 300	(2000) 300 (3,2) (6,13
Parameter  returne Purged (gal)  Purge Rate (mUmin)  Peptin to Wetter (m, fic)  H  Donductance (mSicm)	17.79 5.88 0.734 85.6	130 300 1315 6.33	300  3.21  6.25	4500 300 13.21 619	6.10 (6.10	7500 300 (3,2) 6:(0 0.603	9000 300 13.21 6.21 0.605	0.603 300 13.21 6.11	(2005) 300 (3,2) 6.13 200.0
Parameter  Actiume Purged (gall)  Purge Rate (m/Umin)  Acepta to Watter (ff. ff.c)  In Activities (m Sken)  unbidby (NTUe)	17.79 5.88 0.734	1300 300 1315 6.33 0.642 33.5	300 13,21 6.25 0.631	4500 360 13.21 619 0615 74.6	6050 300 13.21 6.10 0.61 74.3	7500 300 13.21 6:10 0.603 19.2	15.6 0.602 (3.51 3.00 3.00	0.603 (13,21 6.11 (0,500	(2000) 300 (3,21) 6.13 0.605 9.2
Parameter  Adume Purged (gal)  Auge Rate (m/Umin)  Depth to Watte (ff. Thc)  Water (m Sign)  unbidby (NTUs)	12.79 5.88 0.734 85.6	190 300 13.15 6.33 0.642 33.5 9.35	300 300 13.21 6.25 0.631 31.6 85.26	4500 360 13.21 619 0615 79.6 3.11	6000 300 13.21 6.10 0.61 74.3	7500 300 (3.21 6:10 0.603 (9.2 0.0	9000 300 (3.2) (6.2) (0.605 (2.6	10,500 300 13,21 6.11 0.603 (1.3	(2000) 300 (3,2) 6.13 0.605 9.2 0.00
Parameter  Parameter  Aniume Purged (gal)  Purge Rate (mUmin)  Pepth to Wetter (fr. frc)  Sonductance (mS(cm))  Sold (mg/L)  Emp (°C)  SPP (my/)	17.79 5.88 0.734 85.6	1300 300 1315 6.33 0.642 33.5	300 300 13,21 6.25 0.631 31.6	4500 360 13.21 619 0615 74.6	6050 300 13.21 6.10 0.61 74.3	7500 300 13.21 6:10 0.603 19.2	15.6 0.602 (3.51 3.00 3.00	0.603 (13,21 6.11 (0,500	(2000) 300 (3,21) 6.13 0.605 9.2

USEPA SW-S64 Method 82608 - Volatile Organic Comprounds (VOCs)

& CLEANER FLOW THRU COLL @ 1125 (TURBIBLITY INCREASE)

Leboratory. Shipped Via:	Sevem Trent Laboratines - Buffato New York Sample was shapped day of manpling Federal Express Other: Blastand Bouck Associate	Spain of disappy Parketay
	Federal Express Other: Biastang Bouck & Lee, Inc. South on Sto Off	Vice of the





Site	· · · · · · · · · · · · · · · · · · ·		GROUNDY	ATER SAM	MPLING PR	OGRAM			Event
Sampling Personnel:	Michael R. Arts				Wall	C 1.	٦, ٦	<del></del>	
Job Number	13049.002					_ MAY		AT/	
Weather:									
WELL INFORM <b>ATION</b>	- Change of	form the set leaves					Time	out.	
	U SCORT I	from top <b>of inner c</b> TIC	rasing at minimun TOC			where appropriate		7	~~
Well Dupth	(1000)	17.12		BGS			instruonus E	Sticke	), <u> </u>
Water Table Depth	(feet)	12.12	5		7	Looked: uring Point Man	Yes X	Ϋ́	*
							(88: 140	٠	vo [_]
					Well	Diameter:	1	- X	Other:
WELL WATER INFORM.		1 6 2			Conversion Feet	ers	SAMP	LING INFORMAT	ioni
Longth of Water Column Volume of Water in Wel	1,43,1	5.0		galans per feet	1.10 5.10	14.0 6.0			<del></del>
Pumping Rate of Pump:	78-7	200	<del></del>	of major corver.			voca	(3-40 mL visus)	$\bowtie$
Pumping Rate of Pump:		700	milim	1 gai = 2.7	735 L -6785 mL = 0	1337 outris B.	_		
Minutes of Pumping:	(min.)	45			Unit Stability	<del></del>	¬		
Total Volume Removed:		2.35	7 car	DH Cond	<del></del>	1	-		$\Box$
				•/- *	< 50	Temp. ORP.	1		Ö
				0.1 3.00%	NTU's 1054	10 mV		Bampia ID:	をかって
					<del></del>	1.15.00	<b>-</b>	mplo Time:	1310
EVACUATION INFORMA	IION							MS/NSD: Yo	
					~**			Dupilicate: Ye	
Evacuation Method:	Pator	NOV.	fos Pump	MastorFlex	<b>/4</b>	U	+		
Publing Used: ⊋empling Method	Dodrated Ballet	ं च्रिक	tos Pump		m		i	nbikcape 10:	3
Dia well go dry?	Yes			MasterFlox	<u></u>		ŧ*	tol Bottles	9
			Water Quality M	loter Type:	Horiba U-22	ı			
lme .	1225	1220	<del></del>		·			T	Υ
aramotei aric	intial	1230	1336	1240	12.45	1520	1255	1300	1302
ошто Ригрод (д <b>эй</b>	Ø.	1000	2000	3000	4000	Sono	6000	7000	2000
lurge Rato (mL/min)	200	200	200	260	260	200	200	200	<del> </del>
reprin to Washiv (fi TIC)	12.68	12.79	13.01	13:05	13.05	13.05	13,05	·	200
	7.38	त.या	7.41	7,45				70,5	13.05
<del> </del>	1.031		.967		7,39	7.39	7.39	7.39	7.39
onductance (mS/am)	229	130		.976	.97%	,११८	. १ नर	,978	.978
urbiday (MTUs)		139	76.9	53.1	23.6	21.1	(2.2	12.3	11.9
O(ma/L)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u> ආදේප</u>	7.37	8-61	8-53	8-25	8.52	8.52	8.51	8.50	8.57
	-53	~51	- 56	- 52	-51	-48	-57	<i>48</i>	- 51

U6EPA SW-884 Method 82608 - Volatile Organic Compounds (NOCs)

@ 1835 CLEANTS FLOW THIN COLL

Le boratory Screen Trent Laboratories - Surrato New York Sampto was pripped day of sampling ceretion 5/0/0 4 Chair of Custory Dig Assertion - Surration  Support via Products Explose Codes Gildsham Society (18 Inc. Section 51010)	-	T	<del></del>	entipped day of applies	gram obserf for April	
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------	---	---	-------------	-------------------------	-----------------------

Site									
			GROUNDW	ATER SAM	IPLING PRO	OGRAM			Event
Sampling Parsonnel:	Michael R. Arizi					×5.1.1	- 82		<del></del>
Job Number:	13046,002	-			Well	Mari	<del>-</del>		·
Westher: @65	OF SUNA	4		····	Onto:	) i Do		1116-	
						ia: 1100	Yamo	our 1455	
WELL INFORMATION	(record t	rom top <b>af inner</b> e	esing at minimum	7	Check	where appropriate			
Well Depth	(Yeer)	12.51	TOC	BGS	- Wett 1	•	iuchmount [	Stoke	J. 🔯
Water Table Depth	(feet)	12:15	<del>                                     </del>	+	7	.ackes:	Y‱ \	ļ,	。 U
	(1681)	12110	-I	<u> </u>		uring Point Mari	(ed; Yea (Z	<b>≯</b> ,	fo U
	<del> </del>		<del></del>		Well C	l'ameter:	_ r 🔲	2 <b>\(\)</b>	Other:
WELL WATER INFORMA	ATION				Conversion Facto	r's	EAMO	LING INFORMATI	· · · · · · · · · · · · · · · · · · ·
Langth of Water Column	n: (feet)		o <del>+</del> ₹	galons per fect	1740 2740	10 810	7		
Valume of Water in Well	18-32	0.85		of water column.	0.094 0.18	0,62 1.5	7 1 7	189: (3 - 40 mL visia)	ত্র
Pumping Rate of Pump:		200	when	1 ga( = 3.7	85 L =3788 mL a Q		7 [	1~ * TO THE MAILE)	ğooo
Pumping Rate of Pump:	(GPM)						<b>-</b> [		<b>)</b>
Minutes of Pumping:	(min.)		210		Unit Statistics		7		<b>)</b> [
Tatal Volume Removed:	(531)	2-37	9AC	DH Cons	Turb. DO	Temp. ORP	1		)[
EVACUATION (NEOR MA*  Evacuation Method: Tubing Used: Sampling Method	TION Bakor Codicated Balite		ros Pump	Master Flex	<b>X</b>		\$ 3 <i>x</i>	Опріся <b>ю</b> : Уев	[USD 
Did well go dry?	Yes	<u></u>	No.	61 asterFlox	<u> </u>		<u>† To</u>	tal Bottles.	9
			Water Quality M	eta liika	Horiba U-22		_		
nne -	1405	1410	14.5	1420	1425	1430	1435	1440	1485
Peremeter	Initiat								
/aiume Purged (gal)	Ø	1000	2000	3000	Yavo	८०००	6000	निराध	8000
Purge Rate (mu/min)	200	200	200	200	200	200	200	SCO	200
Dopth to Water (R. TIC)	12,63	18.25	14.01	(4.08	14.88	14.08	(4.08	14:08	14,095
Н	8.67	8.71	\$.69	8.71	8.81	8,73	8.74	8.73	8.74
	1.301	1.291	1.291	1,000	(.कळ	1,000	(1000)	1,000	1.000
Canductance (mS/cm)				7 2 7		7/5	224		
Canductance (mS/cm)	35.6	71.9	69.9	72.3	56.1	43.6	37.4	46.7	1 48.31
		74.9 0.00	69.9	72.5	0.00	0.00	0.00	0.00	48.3
withidity (NTUs)	35.6		<del></del>					<del></del>	

USEPA SW-864 Method 62608 - Volatile Organic Compounds (VOCs)

MS/MSD TAKEN AT THIS LIEUC

Laboratory: Shipped Vis:	Severn Trans Laboratorios - Federal Express	Bulleto Now York Other Blassand Boul	_Sampte was cx & Lee, inc	shipped day of selfpling	Journal and Andrew

3/10			GROUNDY	VATER SAI	APLING PR	OGRAM			Event
Sampling Personnel;	Michael R. Arts					ا د دسو	.0		
Job Number	13049.002			<del></del>	<u>Wot</u>			8 %	
Weather: @6		Jny			Octo		5,200	4	
West Interest					Time	i in:	Time	Out:	
WELL INFORMATION	(record	from top <del>of inner t</del>	casing et minimu	(מי	o/tec	where epproprists		<del></del>	
Wall Depth	(foot)	18.09	TOC	965	— ₩oft	Type: F	iushmount	stick.	u, 💢
Water Table Depair	(7887)	12.50		<del></del>	Well	Locked:	Y∞ 🔯	Į.	No 🔲
	(1001)	120,70	<u> </u>	!	<del>ل</del> Mea	luring Point Mar	Red: Yes A	<b>k</b>	No 🔲
WELL WATER INCOME			<del></del>		Well	Diameter:	<u> </u>	<u> </u>	Other
WELL WATER INFORM		5 27	-		Conversion Fac	ors	5AMP	LING INFORMAT	(ion
Volume of Water in Wo		5.35 0.85		gastarus per teet	TID 24	410 510	i 1		<del></del>
Pumping Rate of Pump			ac luna	O7 Willer Constitution			vocs	(3 · 40 mt valo)	₽
Pumping Rate of Pump			=====================================	104-5	786 L = 3785 mL =	0.1337 outle B	<b>」</b>		$\Box$
Minutes of Pumping:	(m/n.)		مريم		Vint Chables	·	¬ †		
Total Volume Removed			2940	pH Cond	<del>-,</del>	Temp ORP	-		<u> </u>
				44 4/	< 50 -/-				0
				0.1 8.00%			,	Sample ID:	ENJ-4
							- !	mple Time:	1835
EVACUATION INFORMA	TION								
Samuel and the second					M	_		Duplitate: Ye	= =
Evacuation Methods Fubling Used:	Baile	1071	foe Pump	MasterFlox	<b>K</b>		1		
Sampling Method	Dedicatek Salie	1 <del>5</del> 21	Pump	Marmar ^{Tla}	<u></u>	_	1	IPROSESID:	<del></del>
od well go dry*	Yes			MagrenFlox	<u> </u>		<u></u>	tel Bottles:	3
		_	Water Quality is	lete/ Type.	Horiba U-2	2			
то	1220	1555	1600	1605	0101	1615	1620	1/200	1630
arameter	tnittal				(0,0	10.3	(620	1625	1000
diume Purges (gpl)	Ø	(000	2000	3000	YOU	2000	6000	7000	8000
Purgo Rate (mL/mia)	200	200	200	200	200	200	200	200	200
topin to Water (ft. TIC)	13:61	14.52	15.01	15. 21	15.11	15.11	15,11	18,11	<del> </del>
H	7.21	7.23	7.25	7.31	7.31	7.31	7.31		12:11
Conductance (mS/on)	0.869	0.931	0.937	0.931		0.941		7.31	7.31
	35.6	41.6	41.6	,	,		0.941	0.941	0.941
urbidity (NTU e)		·		567	49.6	48.1	41.5	39.7	21.60
O (mg/L)	2.63	4.31	000	0.00	0.00	0.00	0.00	0,0	0.00
mp (C)	7.69	ক্∂∙03	8.03	8.03	8.03	8.03	8.03	8.03	8,03
RP (mV)									
								······································	·
ರಷಾಂಗ್ರವಗರಗಾದ									
	usepa sv	V-864 Method 826	08 - Volatře Org	inic Compounds	(vc=)				
_		_							
- AR	o Blow	k f	365	2004	WAS	S CAPE	inted 8	JURINE	1
THE O	CALMILA	1. 00	Gard	- 5/- 1 - 1,		CANA	ביבא מש	, work	! -
4.10	Samplia	a w	4-117	wou	~ ~~	DX1VO!	ous Ma	1 7 TW	=
ATR									
- DR.P	(mu)	NOT	UN14	ver pa	ιορολι	4			
						•			
boratory	Soupen Years! - b	rtndad . Samuel	Va:	 Namata =:	$\Box$	. [.		1-011-46	2 /
	Severn Tears Labora	water - buffleto, N	www York	Sample was	>uppea	and reprosen	i licitor at a	Strampy Alfanded By	<i>t.</i> ( )

### Envirotek II Site, Tonawanda, New York

### Low-Flow Sampling Program

<del></del>			GROUNDY	VATER SAI	MPLING PR	OGRAM			Gven
Sampling Persennel:  Job Number:	Michael R. Arts				Well		ハーろ		· · · · · · · · · · · · · · · · · · ·
Weather:	TO C 9	10141			<u>Ozre</u>	May	5 20	30	
HOMING, C	101 0	UNNY				in:	Time	Out:	~
WELL INFORMATION	(record)	from top of inner	cosino al mmanu	7)					
		710	TOC	"' 6G9		where appropriate		٦	بحص
Well Depth	(Teer)	20.8	•	1	]	Type: F	incumount _	Sick	v» 🔼
Water Teble Depth	(feet)	8.62	-			Lockeo: Kiring Point Mar	Yes L	<b>ት</b>	₩ ∐
					, , , , , , , , , , , , , , , , , , ,	rannil acoust serv	<u></u>	<b>t</b> 1	No
<del></del>					Well	Diametor:	,· 🕕	z 🔀	Olhor
WELL WATER INFORM					Conversion Fact	ors	٦		
Longth of Water Colum			344	gallong par feet	17:0 2:10	P10 510	1 1	LING INFORMAT	<u> </u>
Volume of Wider in Wo	<u> </u>	1.95		of white column			J	sea: f3 - 40 (nt. <del>visio)</del>	ਲਵੰ
Pumping Rate of Pump		u 300	mr with	1 201 = 3	TRS L =STES mt o		٠	(a- au ME Visio)	A A
Pumping Rate of Pump	: (GPM)	-					- I		7
Minutes of Pumping;	(min )		Min		Chair Stripped				J.C
Total Volume Removed	(221)	3,50	AL.	at Conc	Turb. DO	Temp ORP	.]		<u> </u>
				44 =1,	₹ 80 +/-	44. 44.			\$100000m
				0.1 3.039	NTU 8 10%	10 ml	<u>/</u>	Sample ID:	GW-3
EVACUATION INFORMA	TION						8ei	nplo Time:	1935
	THE N							MS/MSD: Ye	= No O
Evacuation Method:	<b>9</b> a∄ <b>•</b>	. 🗆			CΛ			Duplicate: Ye	s No 🗀
Nibling Used:	Dedicated		Deconned	MasterF)ex	× —		1		
bertred grilding	Saile	· .	no Pumo	MasterFlex	$\Box$	$\Box$	1	Talkesse 1D:	
Dat well go any?	Yea	<b>√</b>	,	ind sacreta			<u></u>	tal Bottles	
			Water Quality N	teter Type:	Horiba U-22	<b>)</b>			
ime	1655	1900					- <del>-</del>	·	
arametar 	initiau	1 100	1905	1910	1915	1920	19:15	1920	1925
oturos Purosa (gat)	Ø	15000	300	4500	1000	300	0.53	-	
	300	<del></del>	<del> </del>		6000	SERO	9000	10,500	15,000
urge Rate (mumin)	0 ( 8	300	300	300	300	300	300	300	300
apth to Water (R. TIC)	8.68	8.71	8.72.	8.73	8.69	වී.69	8.69	8.69	8.69
<u> </u>	7.35	7.2(	7.19	7.03	7.11	7.16	7.15	3.12	215
onducting (mS/cm)	0.861	0.861	0.862	6.894	0.876	0.869	6.869	0.894	
urbidity (NTU2)	121	119.0	81.3	79.6	76.1	50.2	49,9		<u>०</u> ८म
O (mg/L)	0.00	0.00	0.00					20.1	20.6
	8.01			0.00	0.00	0.00	0.00	0.00	0,00
mp (*C)	8.00	00.B	8-01	\$.02	8.01	B.CI	8.01	8.01	8.01
RP (mV)									

CommenterNotes

USEPA SW-564 Method 82608 - Volatilo Organic Compounds (MOCe)

* REMOUTO @ 2.5 GALLONS PRIOR DO INITIAL ROADING - VARY TURBID

oup these Priso not working

ſ	<del></del>				
1	Laboratory: Snipped Vis	Severn Trent Laboratorice - Buffato N Pederal Express Other:	Vew York Sample was Bussiand, Souck & Lee Inc.	controlled to the second	Intercontestible A
_	<del></del>				

		-							
Site			GROUNDY	VATER SAL	APLING PR	OGRAM			Event
Sampling Personnel:	Michael R. Aris						い- 子	<del></del>	-
Jab Number:	12048,002			<del></del>	<del>Wall</del>		O- 4		
Weather, @ 90		Will			Oetro	·	_S_20X	<u> </u>	
					Time	in:	Time	Out:	
WELL INFORMATION	(/ecord )	from top <b>of inner</b> c	tesing et minimu	<del>v</del> )	check	Appropriate arena		·	
Well Depth		19,61	TOC	ÐG&	Well	Type: F	iushmount [	) Star-	u, 🕱
Water Table Depth	(foot)	11.78	$\overline{}$	<del></del>	→ <del>Wes</del>	Locked:	Y44 🔀	<del>*</del>	No 🔲
	[44,]				Meas	iuring Point Mad	rod, Yee	λ,	Não 📗
					Well	Diameter.	D	z 🖎	/ Other
YELL WATER INFORMA	ATION				Conversion Fact		7		
ongth of Weter Column	n: (Teer)	7.83	587	gators par feet		<del></del>	1 1	LING INFORMAT	ION
diume of Wator in Well	t: (gaf)	1.25	ger .	of water column	9000 Q16	<del></del>	- 1		_
umping Rate of Pump!	(mt/mm	200	arthur		725 L =3706 mt = 0		- voc	(3 - 40 ML Mais)	80000
umping Rate of Pump:	(GPM)	*****			22 4 2 3 7 4 0 H Z. 2 7	AT 337 CUDIZ 4.	۱ ۱		<u></u>
linutes of Pumping:	(min-)		who		Lint Stability		7		
otal Volume Removed:	(021)	2-35	rape	pH Cond	Ture DO	Temp. ORP.	1		Ų
			,	T-L 84-	< 50 -L	77 44	1 1		7
				0.1 1.00%	אינו צינווא	10 mV		Semple IO:	Sw.7
							۰ ۱	noic Time:	(820
VACUATION INFORMAT	TION							•	=
		$\overline{}$			<b>/</b> `		ļ		
vacuation Method:								undirector Ag	s□ No [X
A Part of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control	Baller	177	OS PUITO 📙	MastorFlex			1	Duptiene. Ye	5□ No <b>□</b> X
-	Decicated		becomment		<u> </u>		D	upitosts (D:	
ampling Method	Dedicated Baller	Grum	oconned	MasterFlex MasterFlex	<u></u>	0	j		5□ NO □X  -3
ampling Method	Decicated	Grum	ose Pump	MasterFlex		0	j	uplicate (D:	
ubing Used Ampling Method (d woll go dry?	Dédicated Baller Yes	Cum	ose Pump	MasterFlex	Horiba U-22		j	uplicate (D:	
ampling Method (d well go dry?	Dedicated Baller	Grum	ose Pump	MasterFlex			j	uplicate (D:	3
ampling Method d well go dry7	Dedicated Bailer Yes	1735	occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occ	MasterFlex letter Typo.	Horiba U-22	·	То	uplicats (D)ts: Bodies:	
ampling Method d well go dry? me	Dedicated Baller Yes	Cum	ose Pump	MasterFlex	Horiba U-22	·	То	uplicats (D)ts: Bodies:	3
ampling Method d well go dry7 me hamerer hame Punged (990)	Dedicated Bailer Yes	1735	occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occanned occ	MasterFlex letter Typo.	Horiba U-22	1755	(8:00 60:00	iplicate (D	3 1810 8050
ampling Method d well go dry7 me ne nemener itume Purged (def)	Decidented Bailer Yes  17730 Instal	1735 (000	ose Pump   ose Pump   water quality is	Masterflex eetor Type. 1745	Horiba U-22 [750	1755 200	(8:00)	iplicate ID to Booker:	3 1810 8000 200
impling Method d well go dry7  me ne numerer hime Purged (ast) rge Rate (mUmin) pon to water (nt. Tic.)	Decidated Bailer Yes	1735 (000 7.00	ose Pump   ose Pump   waser Guality N	MasterFlex letter Type 1745 3000 200	Horiba U-22 [1750 [1750 [200 200	1755 CUU2	(800 200 (800	iplicate ID to Booker:  1805  7000  200  12.3%	3 (810 800 200 (2.38
ampling Method d well go dry7 me me inamener isame Purged (ast) irge Rate (mUmin) pen to warrar (n. The)	Decirated Baller Yes 1730 instal 47 ZCO	1735 (000 7.00 12.05	ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump   ose Pump	MasterFies eter Type. 1745 3000 200 12.41	Horiba U-22 [750 -(20) -20) -[2,42	1755 5000 200 12-31 9:13	(800 6000 200 (2.33 8.11	1805 1805 1805 1805 1805 1805 1805 1805	3 1810 8000 12.38 8:11
empling Method id well go dry?	Decidented Baller Yes  1730 Instal P  700  11.96  8.11	1735 1000 7.00 12.05 8.13	1740   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000	MasterFlox  1745  3000  200  12.41  8.11	Horiba U-22 1750 400 200 12.42 8.11 1.996	1755 5000 200 12-31 8:13 2:003	(800 200 (2.33 8.11 2.011	1805 1805 7000 200 12.3% 8.11 2.013	3 800 200 12,38 8,11 2,010
ampling Method d well go dry7  me inamener  itame Purged (ast)  ige Rate (mUmin)  pen to water (ft. Tito)  inductorice (mS/em)  roldity (MM/s)	1730 insai  700 11.96 8.11 2.113	1735 1000 7.00 12.05 8.13	1740   2000   2000   2.21   2.013	MasterFlex  1745  3000  2000  12.41  8:11  7.001	Horiba U-22  [750  [750  200  [2.42  8.1]  1.996  34.1	1755 5000 200 12-31 9:13	(800 200 12.28 8.11 2.011 27.6	1805 9000 200 12.3% 8.11 2.013	(810   800   200   (2.38   8:11   2:010   27.3
ampling Method d well go dry7  me trameter stame Purged (call) trge Rate (mUmin) tree to Worter (ft. The)	Decirated Bailer Year 1730 instal P 200   11.96   8.11   2.113   221	1735 1000 7.00 12.05 8.13 1.299	1740   2000   12.21   2.013   61.9	MasterFies  otto: Typo.  1745  3000  2000  12.41  8.11  7.001  35.2	Horiba U-22 1750 400 200 12.42 8.11 1.996	1755 5000 200 12.31 8.13 2.003 27.6	(800 200 (2.33 8.11 2.011	1805 1805 7000 200 12.3% 8.11 2.013	3   1810   8000   12,38   8,11   2,010

USEPA SW-864 Method 82608 - Volatila Organic Compounde (VCOs)

of DRP PROBE NOT WARKING

Laboratory. Shipped Via	Severn Trent Laboratories - Buffato, Now York Sample was Federal Express Other Biseland, Bouck & Lee, Inc.	shipped day to set to income	me a strate thought



				BY	DATE 5/5	104 SH
CALCS. BY; DATE			CHECKE	) BY	; DAT	·
WATER COVERS					- RISAL	
	water Lois	t (Toe)		MAZE	II I	+
ENV-1	7-10	7.0				
ENU-10	12-65	24.4		+	+	
ENV- 3R	8.78	31.0	·	+ + -	+	<del>                                     </del>
ENU-9	2.30	12.9		+-+-+-		<del>                                     </del>
ENU-B	12.15	18.0		+	+	-
dm-3	8.62	17.51				-
6W-4	9.72	20.8			+	
ENU-10D	13.08	17.29 54.25				
GW-5	6.93	18-21				
GW-6	6.35	17.90		+++-		
NR-I	5.35	17 20		5,00		
EST 8	8.82	17.0	AL FOR	SALE:	ב דיים	570.4
ENU-4	11.21	22.95				-+
EST - 2	2.42	183				
ENV-7	12.10	17.12			+++	
ENV-5	20.01	المصاف مصا			++++	
ENV-6	10.62 10.28 GDNE 61.15 DID NOT U.95 U.78 17.85	23.26 19.78 23.19 ENDS 12.30	3	1 1 1		+
NW-4	10.28	19.79	3			++
NW-4 NW-3 GW-1 NW-1 NW-2 GW-7 GW-2 NW-5	GONE	Broke	N AT	GRADE	-	-
GW-1	645	23.19			-	
NNS-I	DID NOT	FIND		1 1		++
NW 2	U.95	12.30				+++
6W-7	1178	19.61				++
90,2	15.82	32.0			1	++
NOTS	9.01	18.80				+
						+
++++++++-1-+-+-1						-
<del>                                     </del>						++
++					+++	++-
				<del></del>	<del></del>	<del></del>

Site		G	ROUNDWA	TER SAME	LING PRO	GRAM			Eveni
					Weill	o. ENV-	se		
Sampling Personnel:	Michael R. Artsuc 18048 002	131		····	Date:	JULY 152			<del></del>
Wedner UGS F		esins (	7842 Nils			n: 6750		ut 0900	
Weather 65	ught 1		LONCUPAT		<u> गुल्ला</u>	u: 0120	TIMA C	- CO 100	
WELL INFORMATION	(record tro	ou rob of piller, or		200		Acre appropriate	ahmount 🗵	Chian the	. 🗀
		15.94	TOC	869	Well Ti	osked:	Yes 🔯	Stick-Uş Na	
Well Dopth	(1041)	9.01			1	iring Point Marko		No	· 🖂
Water Table Depth	(हेट्डी			<u> </u>	2 mese v	mig rom marke	···		بحب
		······································			Well 0	lameter:	1.	<u> </u>	Other
WELL WATER INFORMA	TION				Consension Fedo	(a)	SAMPL	NG INFORMATIO	2H
Length of Water Column:	(feet)	6,93	7-	axions per feet	סוק סויו	#10 F10	Anstyle	iek	
Volume of Water in Well;	(162)	1.119	Me	of mater ocuration	0.094 0.16	0.08 1.5	voce	8 - 40 mL 4210]	赵
Pumping Rate of Pump:	(mL/min)	300	Much	1791=370	5 L =3785 THL = 0.	.1337 tuble #	]		
Pumping RMs of Pump;	(GPU)						,		
Minutes of Pumping:	(mirj.)	<del></del>	42		UNI STANSIN		<u> </u>		
Total Volume Removed:	(166)	3.59	W.	pH Cand.	Turb. ⊠	Temp, ORP.	1 1		
EVACUATION INFORMAT Evacuation Mathod; Tubing Used: Eampling Method	Baijer Oedinated Baijer	XX Orum	os Pump Os Pump Os Pump Os Pump	0.1 3.004  MasterFlex  MasterFlex	MTU's 10%		Sar D:	nonple 10: CRA  nonple Time:  MAPMADO; Yes  Cuplicate; Yes  Iplicate ID.  Cal Bottles;	$=$ $\Xi$
টো ৺লা ৫০ বন্γ?	Yes	<u></u>	Matel Chelph W	erar Type:	Horiba U-22	2 .	-		
Time Parameter	COCCO INDIA	ිකා	0810	०६५६	08ක	0825	0280	0835	0540
Volume Purged (gaf)	Ø	azı	3200	4500	6000	7520	9000	10,500	12000
Purge Rate (ml/min)	300	300	300	300	300	300	3co	300	300
Depth to Water (R. TIC)	9.16	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.72
면	6.35	6.38	6.36	6.31	6.34	6.34	6.34	6.34	6.34
Conductance (m. B <b>lem</b> )	0.754	0.739	0.721	205.0	0.711	0.763	0.707	0.703	0.705
TUDKKY (NTV9)	210	176	98,2	78.3	69.1	54.3	50.1	49.3	48.6
DO (mg/L)	6.35	4.79	3.64	2.21	٥٠٠٥	0.60	1.36	1.31	1.29
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·	,		<del>,</del>
Temp (C)	8.10	8.11	8.11	8.11	8.11	8.11	8.10	811	8.11

IJSEPA SW-864 Method 6280B - Volatile Organic Compounds (VOCs)

									+	1 2 2 2 1 / 1	٦
	Laboratory:	Seven	Trent Laboratores	Buffalo,	New York	Sample was		shipped day of earnsling	1	math of custody statements.	
	блюресі VIII;		Federal Express	Other	21astand, Bou	cy & Lee Inc.	$\Box$	sent on 3/15/04	\Z	methy.	t
į								•	•		

Envirotek II Site, T	onawanda,	NEW TOTA							
									Eveni
a.c.		GF	ROUNDWA	TER SAMP	LING PRO	GRAM			
					WellD	EVV.	-8	/L	
	Michael R. Ariquici	-	······································		Date	SOTON	3UN 28	<del>-</del> 20094	
Wasther: @ 75	F SUN	Nu	JINDY (	2 [D MOH	Time in		Time Or	<u>*</u>	
wegther: 2 10									
WELL INFORMATION	present from	න සහ ජ කුලේ සම		0.50	shock W Well Ty	pere approprieté	ingrount	56ca+U6	<u> </u>
		710	TOC	BC8	Welling		√ <b>,</b> ∑	NO NO	. 🗖
Well Depth	(Net) (19et)	12.37			1	ing Point Marks	a: Yes 🔯	Na	. 🔲
Water Table Geath	(194-1)		<del></del>	*			- r □`	z 🛛	Other:
					Well Di	SW4ME	)		
WELL WATER INFORMAT	ION	····			Conversion Fedion		1	NO INFORMATIO	<del>N</del>
Length of Water Column:	[feet)	5.14 4		gustanx per feel	1.0 20	410 610	Analyse	<b>18</b> ;	121
Volume of Water in Wells	(940	0.822	-	of water columns	0.000 1 0.16	as Is	voced	3 - 40 mL viats)	
Pumping Respet Pumpt	(mUma)	Swm	- mm	169 = 1.71	5 L =3725 ML = C.	1237 Q.O.C. M.	<b>,</b>		<u> </u>
Pumping Rate of Pump:	(GPN)	45 m	<del></del>		Una Stability		1		$\bar{\Box}$
Minutes of Pumping	(mm.)	3,5 %	<del></del>	pH Cond.	Tura. 00	Temp. ORP,	1 1		
Total Valume Removed:	(091)	<u> </u>			- 54	·} •*			
				0.1 3,00%	NTU'e 1794	19.77		jempie ID;	N.0 - B
							Sen	ple Time;	1 <u>822</u>
EVACUATION INFORMAT	NO								
		<del></del>	_		52P			Quplicator Yes	.□ _™ Ø
Evacuation Method;	Detar	TO	× Pumb	Masterfillox	/KL		1	alast Di	-
Tubing Used,	Ded kinted Balan	K-3/~	DE PURP	MasterFlex			į.	iplicate ID: to 1 Bottion:	2
Sampling Method	791						-		
ರಜ <del>ಇತ್ಯ</del> 50 ರ <b>್ಷಿ</b>			Washi Gualify M	Ictor Type:	Horiba U-22	· 	•		
	1.105	1435	1440	1445	1450	1515	1520	1525	1530
Time	1430	دده	(1.0	111.5	111	_			
Parq merer	05	18280	300a	980	6000	350	900	0220	15000
Volume Punced forth	300	300	300	300	300	300	300	300	300
Purge Rate (mumin)	12.41	12.42	12.41	1241	12.41	12.41	12.41	12.41	12.41
Depth to Water (R. TIG)	8.31	8.09	8.02	7.96	7.92	7.51	7.92	7.43	7,92
8t1	0.661	0.836	0.849	0.83(	0.835	0,836	0.851	0.846	0.839
Conductance (mS/nm)	<del></del>	82.1	71.3	36.3	69.3	57.2	48.6	41.3	42.9
Turbide (NTUE)	96.3		0,60	0.60	0,00	0.0	0.00	0.00	0.60
∞ (man)	0.00	0.00						7.21	3.21
Terra CO	7.21	7.19	7.21	7.19	7-19	7.32	7.12	103	112
ORP (my)	36	91	102	105	111	105	107	10 (	(14-

USEPA BY-864 Method 82008 - Volatile Organic Compounds (VOCa)

of BOTTOMY WONT DEAD - PANGE THE PERSTACUTE. - WILL USE THE OTHER

Laboratory: Shipped Vis.	Severn Front Laboratores Fed Mil Express	Buffalo New York Bench & Li	Tagle was	enipped esolat eningling sont on 2 2 0	Janes and although Orl

SM		G	ROUNDWA	TER SAME	LING PRO	GRAM			Every
Bampiling Personnel:	Michael R. Arlays	-Kap			Well in	AC 1 1 1 1 .		. rogy	
Westher: C 75	£ 22N	m 1	र कि देश		Time !	n:	Time O	vc:	<del></del>
WELL INFORMATION	(record fro	18.05 Inc	ang et querreum) YOC	BÇS	West to	ocked:	muomner se Y	State U	. 📙
Water Table Depth	(reet)	12.43	<u> </u>	<del> </del>	Measu	ang Point Marki	vd: ^{Yes} ∠21		• •
					Well D	lander.	1.	- 2 X	Qther;
WELL WATER INFORMA	7101				Conversion Fedio	7	SAMPL	ING INFORMATE	)N
Length of Water Column		5.12	84	gallione par fees	1.0 210	4"10 \$"10	Anelyse		
Volume of Water in Well:	(091)	0.80	an	of weter ectume:	0.004 0.16	066 15	VOC» (	3 - 40 CML HAIS)	<b>X</b>
Pumping Rate at Pump.	(mŲmin)	SiD m	JAIN	7.4-نور ۱	81 =785 mL ≥0	1597 curic 8			) 
Pumping Rate of Pump:	(GPM)	56			······		,		
Minutes of Pumping	(min.)	43 M			US BURRY	<del>,</del>	.   .		<u> </u>
Tatal Volume Removed:	(6-21)	و کرد	Au.	⇒H Cond.	Turb. 🛇	Temp, ORP.	↓ ↓		<u>_</u>
EYA CUATION INFORMAT	ion			0.1 207%	160 -L NTU-9 104	10	Sen	spie Time;	800-4 1945 184 0 184 0
Evacuation Method:	89199	Grunde	ma Pump 🔲	MASTERFIEL	図				
Tubing Used:	Dedicated	. XI ∘	bennese		_		م م	picate ID:	
Sampling <b>Hetha</b> d	Bater	Cuna Cuna	os Pump	MosterFlex	<u> </u>		Yo	tol Settles:	
Did well go day?	Y ••		Water Guality H	etor Tyse:	Hariba U-22		-		
Tyne	1410	1412	1420	1435	1440	1445	1450	1453	1500
Parameter	intal d	1520	3,000	400	600	200	9000	10520	12000
Ruma Peta (mt/min)	300	300	300	300	300	360	3-20	300	300
Purpe Rate (ML/min)	13.02	13.03	13,03	13,03	13.02	13.03	13,03	13,02	1363
Depth to Water (A. TiC)	8.56	8.57	8.39	8.02	7.96	7.93	7.95	7.95	7.96
рн	0.98	0.951	0.958	0.961	0.962	0.963	4961	0.962	0.768
Conquerance (mS/cm)	83.2	79.6	61.3	56.9	52.3	48.9	46.9	47.3	48.9
TUIDERY (NTUE)	1.21	<del></del>	0:75	0.32	0.20	90.1	0.00	0.00	0.90
DO (WB/)		0.36							
Temp (C)	7.23	₹21	7.19	7.18	7.19	719	7.1B	7.19	7.19
ORP (MV)	So	59	\$1	63	60	63	65	71	69

Commente/Hotel

USEPA SVH-864 Method 32608 - Vowthe Organic Compounds (VOCs

* FUSE BLUW ON Pup 1420-1435

Laboratory: Shipped Vis;	Severn Trend Laboratories -	- Barriero, Now York Semple was Other Barriand Bouck & Lee Inc.	shipped and or ording series	e bushings
Ĺ				

Site		GI	ROUNDWA	TER SAMP	LING PRO	SRAM			Event
Sampling Personnel:	Michael R. Arrauc	kes			Wali ID				
	13046,002	······			Date:	SOMETAR	sh 28,	2004	
Joh Number: C 70	F SUNI	ul S	uater 1	305326	Time in		71mc O	л;	
Wasther: C 70					. <del></del>				
WELL INFORMATION	(record fro	n kap od onner del TiC	TOC	BGS	check w Well Ty	<b>yere approprisio</b> T <b>pe:</b> Fluc	mmoum []	Seconito	<u> </u>
Well Daput	(fect)	19.61	1		Wett Lo	cked:	_v∞ \⊠	No	
Water Table Death	(feet)	11.93			Measur	ing Point Marke	a: Y≅ 🔀	~ No	
Willer Face Separation					Well Di	e/heter:	,- 🗀	z 🔀	Other:
WELL WATER WFORMA	nov				Conversion Factor	•	<b>SAMPL</b>	ING INFORMATIO	N.
Length of Water Column:	(foet)	7.68		gallone per feet	11/10 210	110 610	Anatyse		
Volume of Water in Well:	(241)	1,22		of Hotel octame.	900 0.10	o.sa 15	vocs	3 - 40 mL VE(S)	, 1000000
Pumping Rate of Pump:	(mL/min)	300 M	Taum	1 921 = 3.71	13 L = 2785 mil = 0.1	337 odie 4.			
Pumping Rate of Pump:	(GPM)_						. I		
Minutes of Pumping:	(min.)	43 M	(12)		Uni Saupita		I		
Total Valums Removed:	(041)	3.5 94		pH Dond	Turo, DO	Temp. ORP.			
EVACUATION INFORMAT  EVACUATION METHOD: Tubing Used:	Bailet Dedicanes	177E	30 Pursp	MasterFl#x	<b>Z</b> I			Duplies to: You	_
Sampling Mathed	Baller	ST Grum	as Pump	Mastel Flox			172	al Bottes:	2
Dia wall go any?	. Y**		Water Chally is	Setor Type:	Horiba U-22				
Time Perameter	1205	1210	1215	1220	1225	130	1235	1300	1367
	_0_	Jan	3000	4500	6000	300	PKDZD	1000	12000
Vature-Parced (02f)	300	300	340	300	300	300	300	300	<b>500</b>
Purge Rate (mL/mm)				12.0°	12.10	12,10		12. (0	15.40
Depth to Water (R. TIC)	1211	12,10	12.17	<del></del>			15.10	<del></del>	
ен	7.21	7.06	<del>元</del> 11	7.11	712	7.11	7.(1	7.(2	7.12
Сапачерпо (тв/ст)	0.976	0971	0.977	0.981	0.983	0.982	0.484	0.984	0.982
Turbiday (NTUR)	न्।	50.9	51.3	48.1	39.3	26.9	27.5	31.5	29.3
00 (mg/L)	හ.ග	0.00	0,00	0.00	ଦ•ଡ	ර	۵.۵	0.00	0.40
Tamp (°C)	7.23	7.23	7.23	7.21	7.2/	7.56	7.21	7,23	7.23
			<del></del>						
ORF (mV)	7-2-2	121	119	1112	107	106	163	104	(63

Соттелз/№0

USEPA 9W-864 Hemod 82008 - Volatile Organic Compounds (MOCs)

* HOUBA BOTTOMES - WENT ZEED @ 25 MINUTES AFTER
POUPING / PUREING

Laboratory: Shipped Vie:	Severa Treat Laborations -	Buttajo New York Semple was Other Program Bouch \$1 as Inc.	ehipped cases sampless encon 225167	Mount of Stand Honor by
( '				

· · · · · · · · · · · · · · · · · · ·									Eveni
\$/ie		GR	SOUNDWA.	TER SAMP	UNG PROG				
N P	Michael R. Arlauck	195			Well 10.	ENV.		19.60	
	18046 002				Date:	Epison/B	Q 20,	24404	
Wanther: @ 70 F		\$1	SHOT B	Ets_	Yime in:		Time Ou	<u> </u>	
Wighhar ( 70									
WELL INFORMATION	(resort fro	TIC	р <b>ç si</b> miniməm) тос	BG\$	Well Ty	r	hmaunt 🛱	SSCK-Up	R
Well Depth	(teet)	17.12				ckėd; \	Yes X	, No	Ħ
water Table Depth	(4640)	12.26			Messett	ing Point Merked	, <u> </u>		-
					Well Die	ornator:	<u> </u>	≥ 🗵	Other:
					Conversion Factors		SAMPLE	NO INFORMATIO	N
WELL WATER INFORMAT		4.86		pallory par feet	110 210	4"ID 8"IO	Analyse	r <del>.</del>	
Length of Water Column	(feet)	0.77	<del></del>	of water course.	1.094 0.10	Q84 1,5	VOC:0 (3	-40 mL wais)	Q
Volume of Water in Well:	(gel)		NINA		51-0785 ms + 0.1	337 a,ale 8			
Pumping Rate of Dumpr	( <u>m∪min)</u> ( <b>GPM</b> )								<b>S</b> coooc
Pumping Rase of Pump:	(min.)	45 M	ル		Unit Shroggy		İ		
Minutes of Pumping. Total Volume Removed:	(64)	3,54	are.	pH Cond.	Yuro. DO	Temp ORP			<u></u>
Total Volument				0,4	· 50	*		t-	N3-4
				0.1 200%	NTUE 10%	.10 mv	' <b>1</b>		1320
							3973	ple Time:	
EVACUATION INFORMAT	10W								
					ra-			Duplicate: Yes	u ma
Evacuation Method;	Ba ser	annak	المل فساء =	MaggarFlex	<b>A</b>		1		
Tubing Used:	Dedicated	F3-	econned 🕌		$\Box$			pikabe ID; ai Bottles;	2
Sampling Method	Bayer	<b>₹</b> `	= Parting ==	Made Flex			<u></u>		
Did well go diy?	Yes	: U	Water Quality M	erat Type	Horiba U-22				
			West Chairy in	,					1 .2.7
Time	1500	1502	1210	1512	1220	1225	1230	1532	1540
Perameter	intel		ļ	1/200		7-0-		10500	12000
Volume Porced (gail)	ø	-951	3000	1200	6000	700	9000		300
Putge Reis (mlumin)	300	300	300	300	300	300	300	300	
Depth to Weller IT TICL	12-33	12.35	12,41	15.41	1239	12.39	12.39	12,39	12.39
Ма	7.50	7.57	7.86	753	न्यु	7.46	7.45	7.45	7.45
Conquerince (m5/cm)	0.759	0.761	0748	6.743	0.741	0.746	0.741	0.746	0.747
Tyribidity (NTVI)	56.3	51.9	42.6	48.7	469	47.3	45.6	46.3	438
	0.00	0.00	0.00	0.00	0.00	00.00	0.0	0.00	0.00
DQ (mg/L)	7.19	7.21	719	719	7.19	म् ।8	त्राप	म्राप्	2713
Temp (C)	97	102	105	109	111	112	115	114	117
ORP (mV)		1	<u> </u>			A	<del></del>	·	

USEPA SWLEGA Method 82508 - volatile Organic Compositions (VOGs)

<del></del>					
Laboratory: Shipped Vie;	Severn Trant Laboratories	Suprato, New York Other Biostand, Bou	Sample was	snipped day of sampling sent on 773 Oct	Man or him As he

Silio						25414			Event
		G	ROUNDWA	TER SAMP	LING PRO				
	Michael R. Arigue	***			Wellin	GW	- 3		
Sampling Personnel:	13046.002	<u> </u>			Date:				
Weather CAOF	SUUM	@ Sci	ant E	inge 28	Time in		Time O	U.	
WERHER CALL									
WELL INFORMATION	(record tro	ui tob a, rèna, ses				ana abbiobiese	П		<b>⊠</b>
		20.85	₹0C	BGS .	Well Ty		Yes X	Statex-Up	i A
Well Depth	(feet)	8.79		<del> </del>	Weil Lo	ickou; ing Point Marke	· · · · · · · · · · · · · · · · · · ·	. Ma	
Water Table Depth	तस्क्र	<b>D.</b> T.	L		Measur	ing Point mense	ب <del>د</del>		-
					Well DI	amerer:	_ 1	2	Other:
WATER BEOGMAN	7904		•		Conversion Factors		SAMPL	NG IMPORMATIC	wi
WELL WATER INFORMAT	(19 <del>41)</del>	12.06	,	palone per fest	110 710	ria ro	Analyee		
Length of Water Column: Volume of Water in Well:	(93)]	1.92		of weter coupen.	0,034 016	7.60 15	VOC:0 F	3 - 40 ML VOKS	Ø
Pumping Rine of Pump!	(mL/m/n)	300 m	مايعال	1 gel = 3,76	16 L <2789 mL = 1.1	337 84840 8			
Pumping Reseaf Pumps	(GPM)	~					. ]		00000
Minutes of Pumping:	(min.)	95 M	1		Unit Stationy	<del>,</del>			0
Tetal Volume Removed:	(021)	3,5 GA	<u>.</u>	EH Cond	Ture, 00	Temp. ORP.			
		•		-4 04	130	** -*-			[W~3]
				01 3.00%	NTUS 1014	10 mV	' t		135
							Sen	spie Time; - MS/MSD; - Yes	
EVACUATION INFORMAT	<u>'108</u>							MS/MSD: Yes  Dupikate: Yes	5 5
		$\Box$			$\Delta$			Ovpikater Yes	- No Ca
Evaporation stathed:	Ded Kated	J 77	se Pump	Ma ster Floor	·		۵,	plicate IO:	
Tubing Used. Sampling Method	Bailer	<b>K</b> 3	o Pump	MasterFlex			1	IN BOTOBE	2-
Did wall go dry?	YES		~ <b>∑</b>						
C g. 6.37			Water Quality N	teer Type:	Horipa U-22				
	1040	1245	Loso	1055	1160.	1105	1110	1115	1120
∏m•	' '	(0.0)	(0,0	1000			(.,•	1113	' '
Porameter	inflat Ø	180	3000	4,000	6000	7500	9000	10500	12000
Volume Purget (DS)	300	-300	300	300	300	300	300	300	300
Purpe Rate (martin)	<del></del>	8.86		<del> </del>		8.85	8.85	8-85	28.8
Pepin in Walter (R. Tic)	8.84		8.8%	8,86	8.86			<del></del>	
он	7.46	7.45	17.39	<b>7.35</b>	7.35	7.31	7.31	7.34	731
Conductance (mg/cm)	1.01	1.016	0,976	0.981	0.973	0.975	0.976	0.977	0.978
Turpiday (NTUN)	126,0	112.0	96.9	83.1	41.6	54.9	49.9	476	48.8
oo (ma/L)	0.00	0.40	8-80	0.00	a. 0D	0.0	۵.۵	0.00	0.00
Temp (°C)	7.09	7.05	7,05	7.10	7.11	7.11	7,09	7,10	310
	235	227	219	207	709	211	208	709	211
GRP (mV)								L	لحبين

USEPA 5W-564 Method 82808 - Volatile Organic Compounds (VOCs)

USEPA EW-884 Method 82608 - Volume Organic Compounds (VOCs)

Laboratory. Shipped Visi	Severn Trans Leporatores - Butt	Semple was ser. Blassand Boust & Lee Inc.	open copie polaro	the total fight
		Name and Address of the Owner, where the Publisher, which were the Publisher with the Publisher was the Publisher with the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was the Publisher was	 	

ite.		GR	OUNDWAT	ER SAMPL	ING PROG	RAM			· · · · · · · · · · · · · · · · · · ·
						ENV-	50		
ampling Personnel:	Michael R. Anguer	21			Well ID.	SENTEM B	0 78	2004	
op Number	13044 002			624		360100-110	Time Out		
veginer C 70 F	- SUNNA	- 52.11	AMI DILL	5685°	Time to:		Spine CO.		
WELL INFORMATION	precord from	TIC	og at minimum) TOC	e <b>c.\$</b>	Well Typ	••	nmount 📈	3ick-Up No	
Veti Depth	(foat)	15.94			Well Loc		. Y. 🛱	No.	$\Box$
Noter Yable Bepin	(test)	9.12			huzset4	ng Point Marked			-
					Well DIS	meter:	<u> </u>	7 X	Other:
·					onversion Factors		SAMPLII	G INFORMATIO	N
WELL WATER INFORMAT		6.82			110 210	4.10 6.10	Analyses		
Length of World Column:	(164)			gallons per feet	0.054 0.16	n es 1.5	, ,	- 40 mL visis)	X
Volume of Water in Welt:	(02)	1.09 300 ml	المريدا		L -2705 ms r Q s		1		
Pumping Rate of Pump	(mi/min)	SU M	477	1,42,20,700			†		
Pumping Rate of Pump	(дри)	45 MI	5		UM SIDEREY				
Minutes of Pumping:	(mln.)	3,5 48		ph Cona,	Turb. DO	Temp, GRP.			
Total Valume Removed:	(32)	10 40		12. 03.	< 500 - 6	** +	1		<u> </u>
EVACUATION INFORMAT EVECUTION MINIOC: TUBING USEA.	Bojar Dedicated	<u>⊠</u> ∝	Fump	MasterFlex	<b>₫</b>		Du		0 №0 87 %0 92804 4
Sampling Method	82827 Y <b>e</b> 3	$\overline{\Box}$		INCOME INCOME					
Old well go day?	762		Water Challey M	eter Type:	Horiba U-22	·			
	0855	0900	2090	0910	02:2	0950	0925	<b>6930</b>	0935
Tone	1	i '				I :			1200
Parameter	(FRA)	1800	3000	USD	FCAD	7500	9000	10200	بيدي
	inta)	120	3000	480 300		7600 300	9000 300	300	300
Parameter	intal g 3cD	300	300	300	300	300			
Parametor volumo Purged (28)	300 9.26	300 9.27	300 9.28	300 9.28	300 9.28	300 9.26	300 9.28	300 9.26	300 9.28
Parameto:  votumo Purpes (281)  Purpe Role (mL/min)	300 9.26 6.37	300 9.27 6.35	300 9.28 6.31	300 9.28 6.29	300 9.28 6.30	300 9.26 6.31	300 9.28 6.30	300 9.26 6.30	300 9.28 6.30
Parametal  Wolumin Purpod (201)  Purpos Rave (mlymin)  Ougsto to Waterste, Tic)	300 9.26	300 9.27 6.35 0.784	300 9.28 6.31 0.779	300 9.28 6.29 0.764	300 9.28 6.30 6.761	300 9.26 6.31 0.764	300 9.28 6.30 0.761	300 9.26 6.30 0.761	300 9.28 6.30 0.76
Parametor  working Durace (281)  Purose Rake (mbrinh)  Outto to Water (th. Tic.)  pti	300 9.26 6.37 0.796 201.0	300 9.27 6.35 0.784 327.0	300 9.28 6.31 0.779 139.0	300 9.28 6.29 0.764 101.0	300 9.28 6.30 6.761 64.2	300 9.26 6.31 0.764 46.9	300 9.28 6.30 0.761 37.2	300 9.26 6.30 0.761 39.6	300 9.28 6.30 0.76 42.2
Parameter  Weitumin Perpedi(201)  Purce Rose (mismin)  Ceptin to Weiter th Tic)  ph  Conductance (misticm)  Turpory (NTVs)	300 9.26 6.37 0.796	300 9.27 6.35 0.784	300 9.28 6.31 0.779 139.0	300 9.28 6.29 0.764 101.0 0.76	300 9.28 6.30 6.761	300 9.28 6.31 0.764 46.9 0.00	300 9.28 6.30 0.761 37.2 0.00	300 9.26 6.30 0.761 39.6	300 9.28 6.30 0.76 42.3
Parametor  Portog Role (mirrole)  Depth to Water (ft. TIC)  pH  Conductoring (mister)	300 9.26 6.37 0.796 201.0	300 9.27 6.35 0.784 327.0	300 9.28 6.31 0.779 139.0	300 9.28 6.29 0.764 101.0	300 9.28 6.30 6.761 64.2	300 9.26 6.31 0.764 46.9	300 9.28 6.30 0.761 37.2	300 9.26 6.30 0.761 39.6	30 9.28 6.30 0.76 42.3

net o**utlike in de beland de belande** de belande de belande de belande beste beste beste beste beste beste beste be

USEDA SALSKI METIOD 82508 - VINETILE OLGANIK COMPONINTE (VOCO)

- FIGUS DYLICHTE TAKEN - FD092804

	oratory: oped Vis;	Sevem Trent Laborationes  Pederal Express	- Burraio New York - Coher Biggiand Ro	Sample was	.B	sens an Thomas	Aucht Property
<u>t</u>							

Salata de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la c

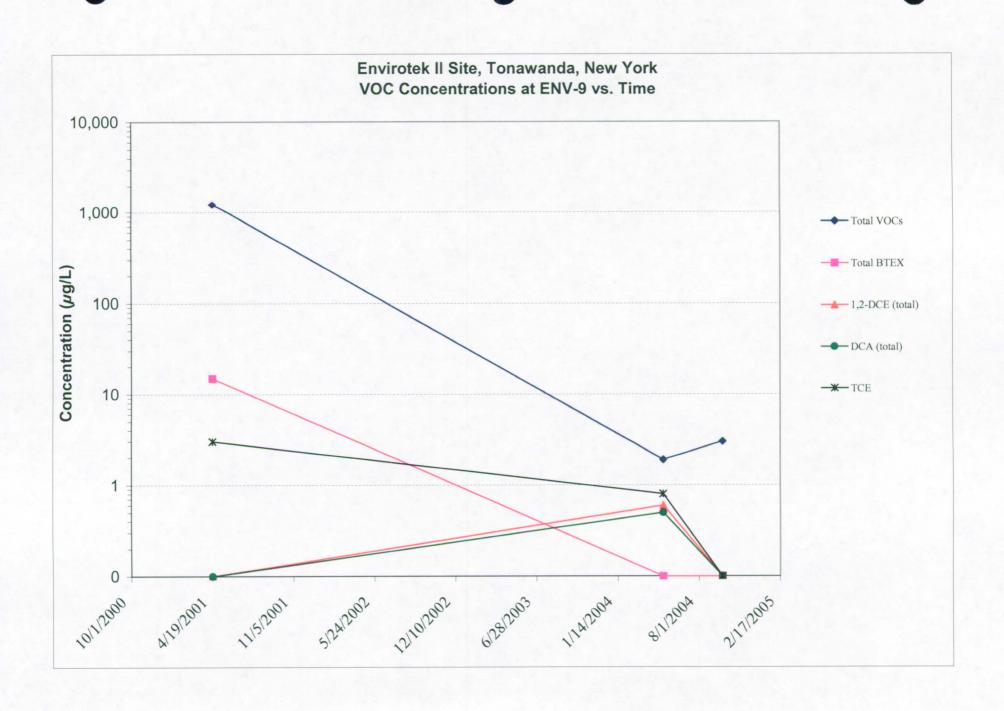
Laboratory: Shipped Visit	Severn Trent Laboratories	Buttelo, NEW York Semple w	<u>. 8</u>	anappea day to sand one, perit on 7/21/00	Variable Robert
<u> </u>					

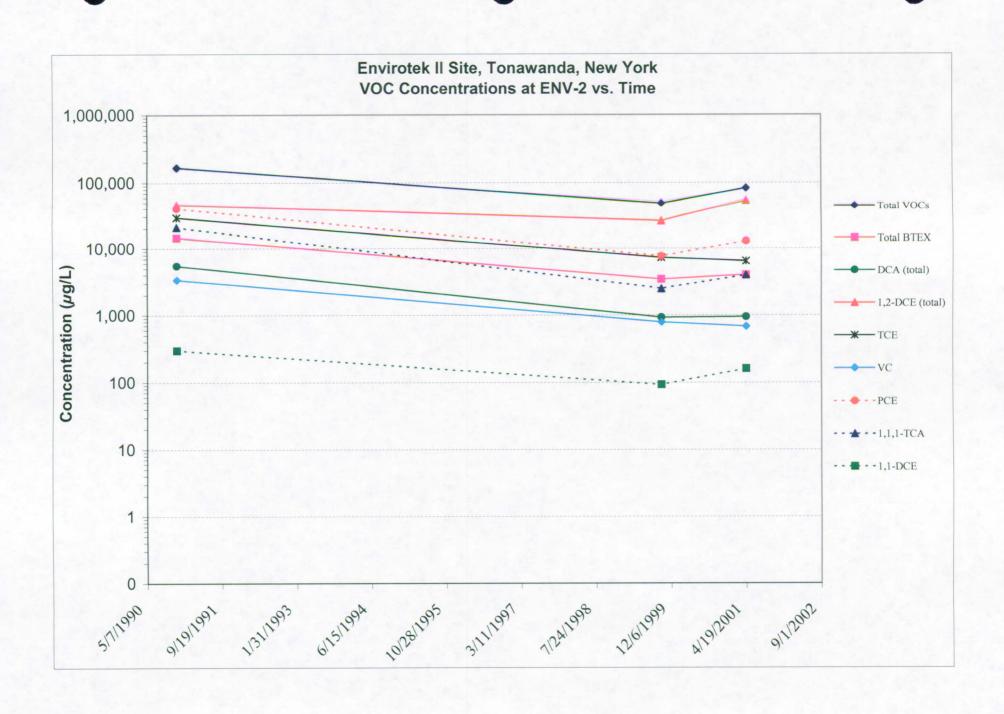


PROJ. NO. **58002**— BY WA-DATE SHEET SUBJECT ENUMOTER I SITE CALCS BY _____; DATE ____ CHECKED BY _____ : DATE . FTOA WATER LOVELS ( TOP UK PUC PUSEN) 7.29 1-Mg N 12,79 VENN-1D VENU-3R 9.12 JENU-9 2.93 VENU-8 GW-3 क्ष.मेश V 6W-4 9,89 VENU-103 13.29 Jaw.5 7.16 4 gw-6 6.49 NR-1 5.61 -(570,43) 8.97 ESI-8 JENU-4 11.39 /E\$I +7 12.56 JENU-7 12/26 10 31 4 KMV - 5 YENU-6 10,84 VNW-4 10.36 V NW-3 GONE # V 6W-1 6,37 A DID NOT FIND # 12.08 11.93 13,01 VNW-S 9.32

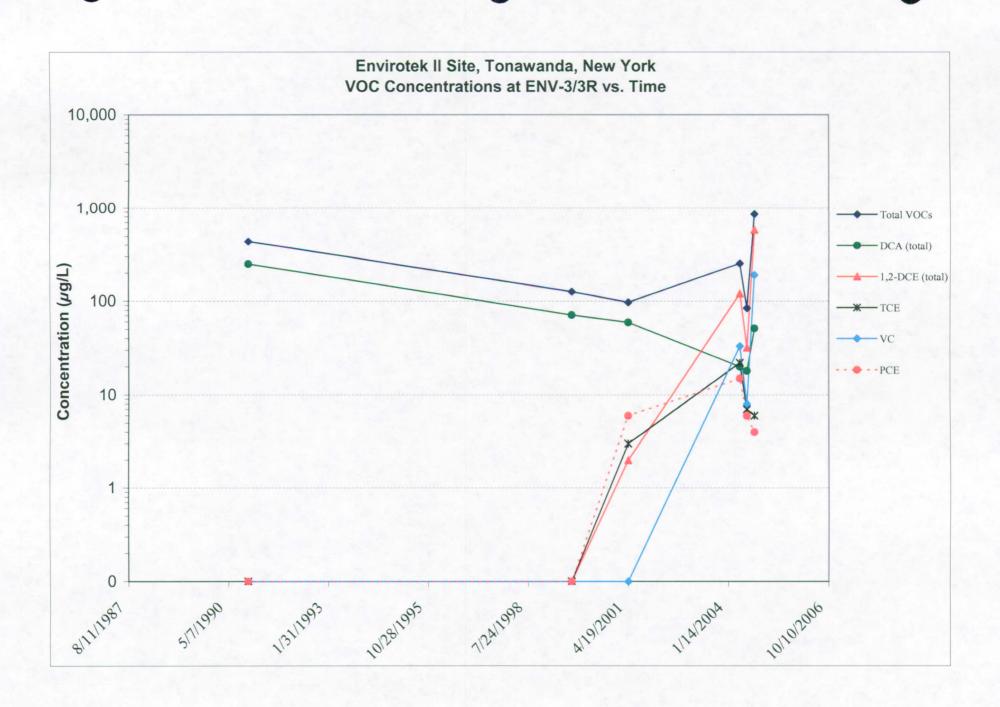
### Appendix E

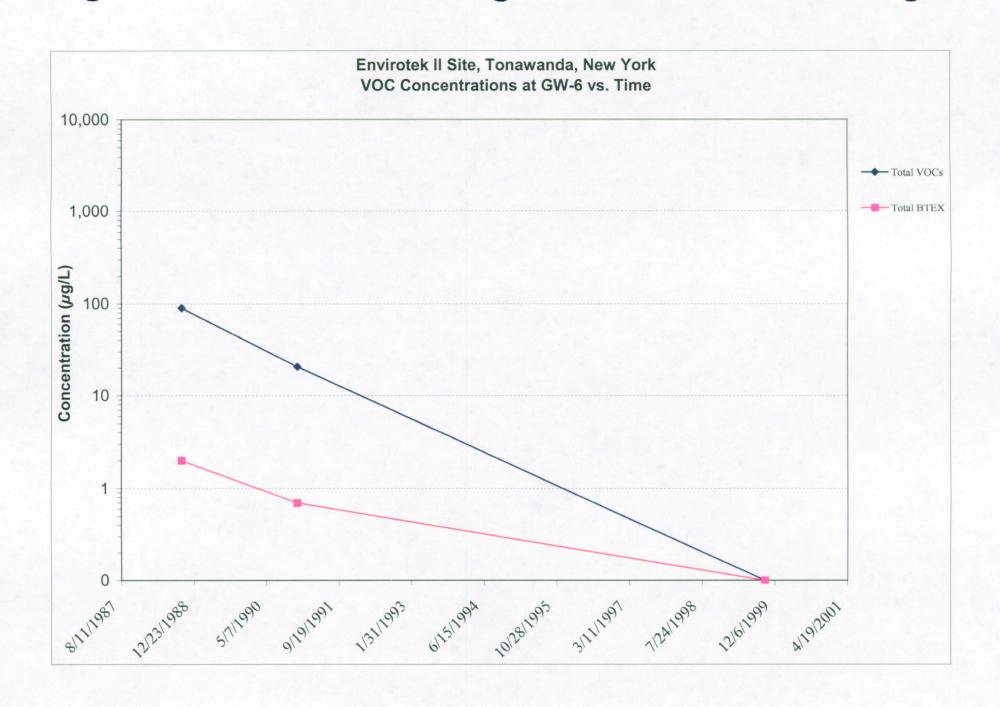

# Laboratory Reports and Data Review Reports

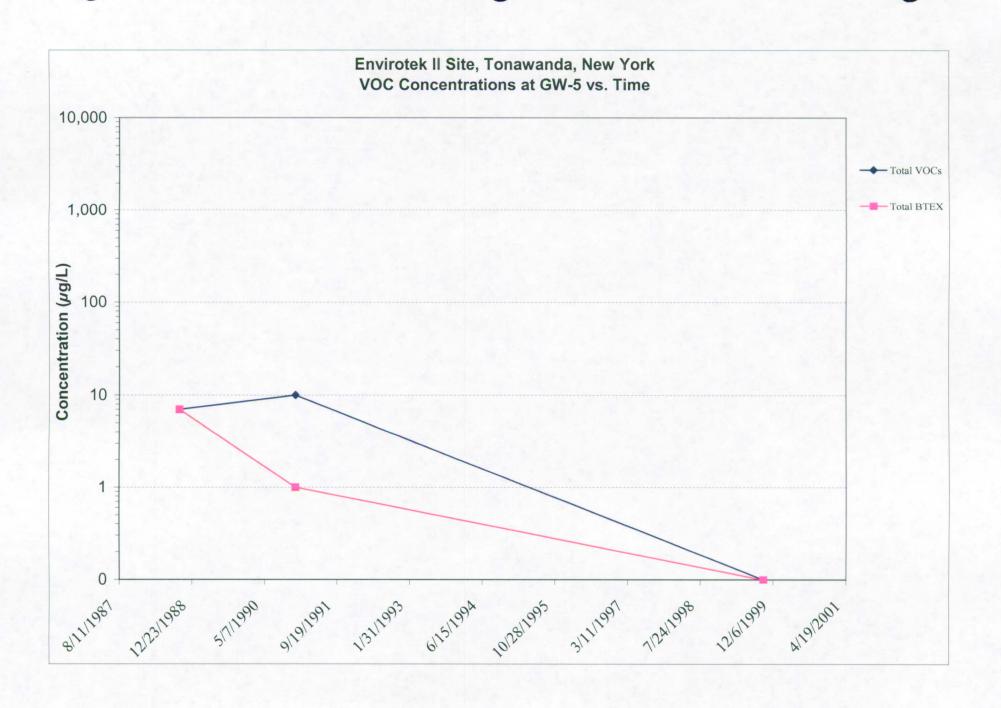


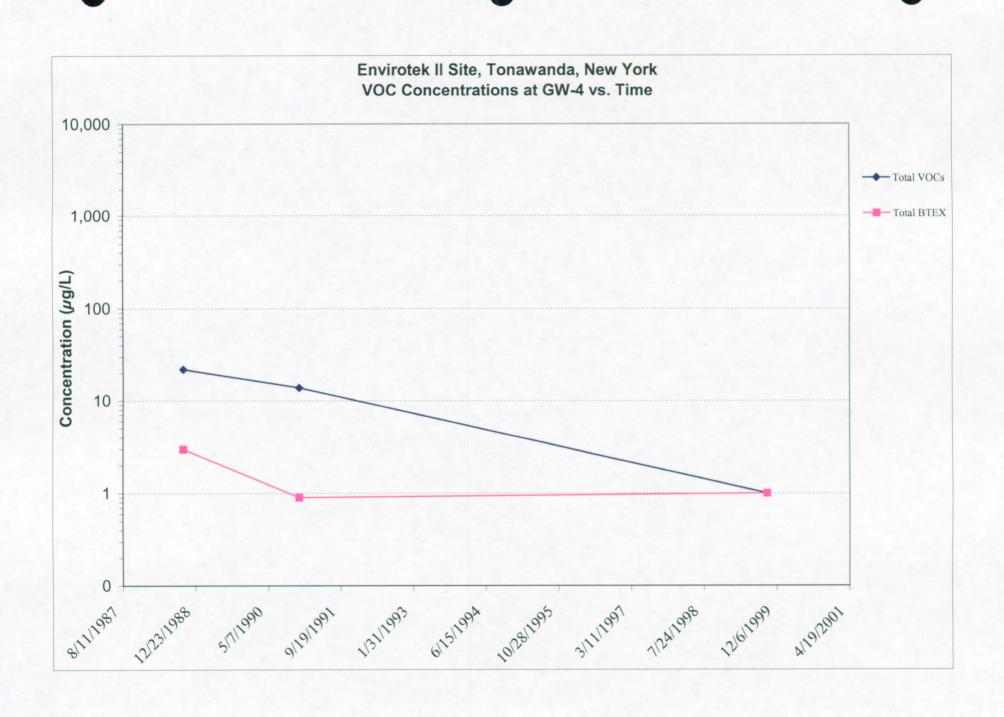


## Appendix F

**VOC Trend Graphs** 

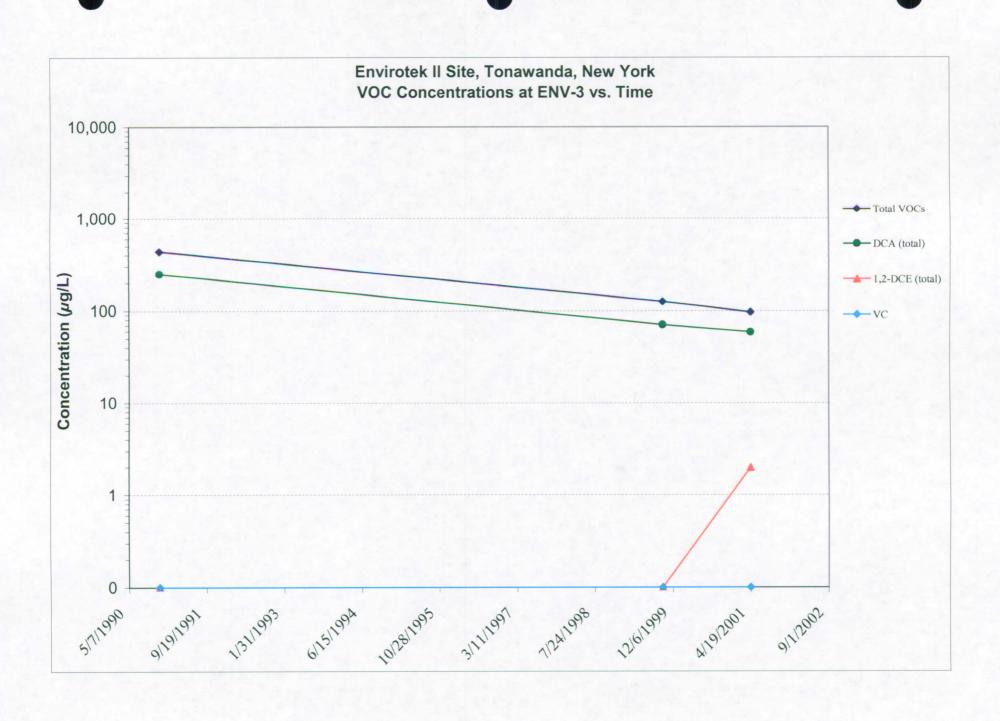


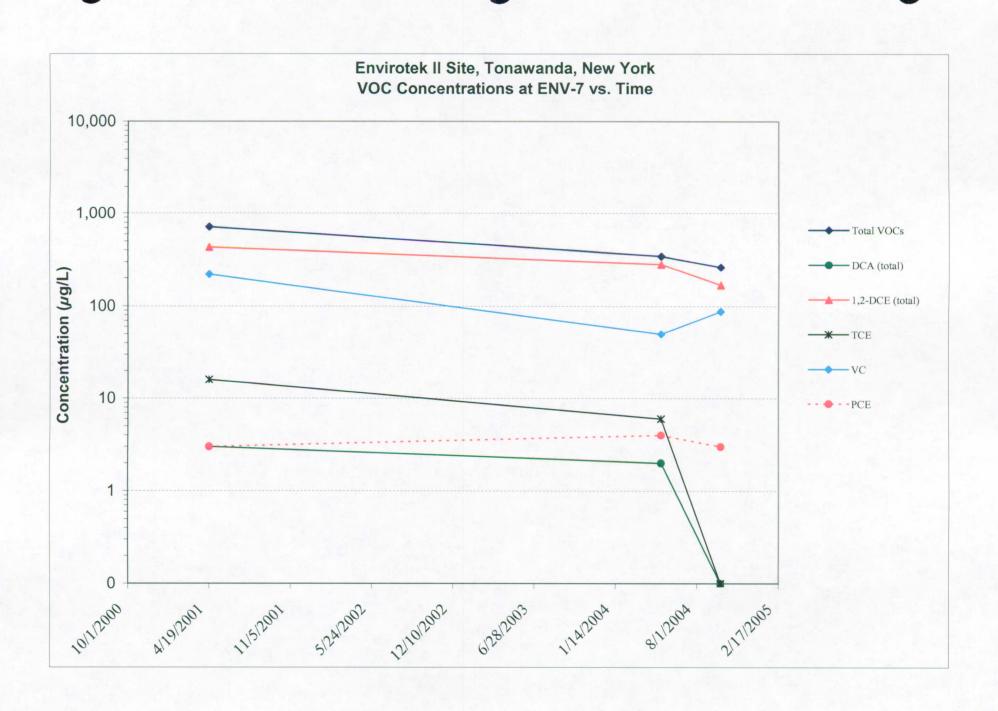



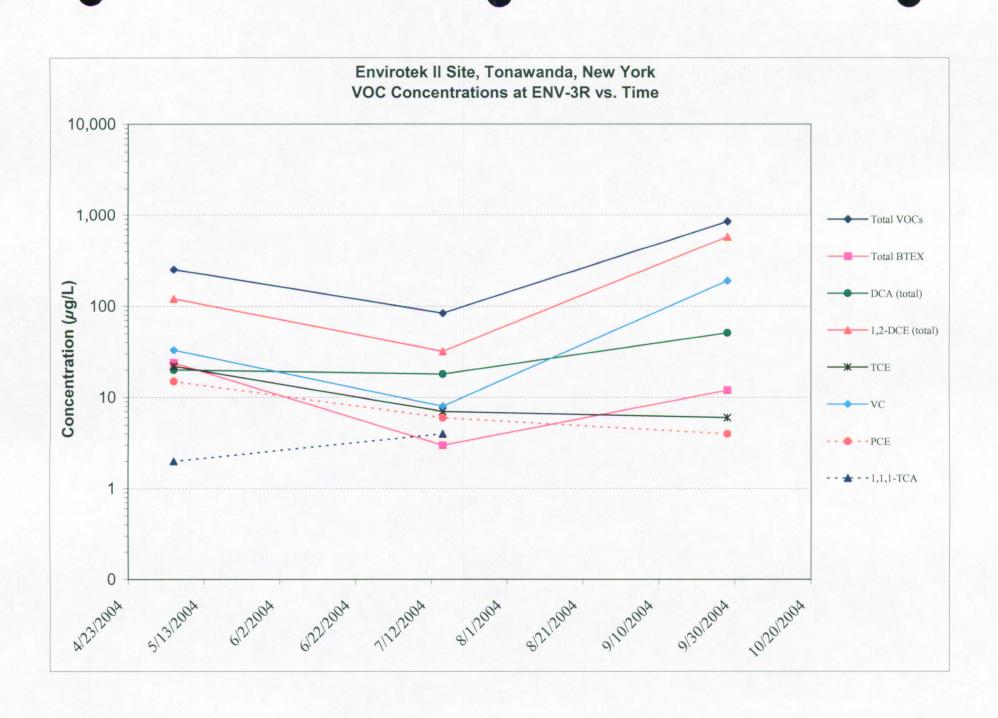



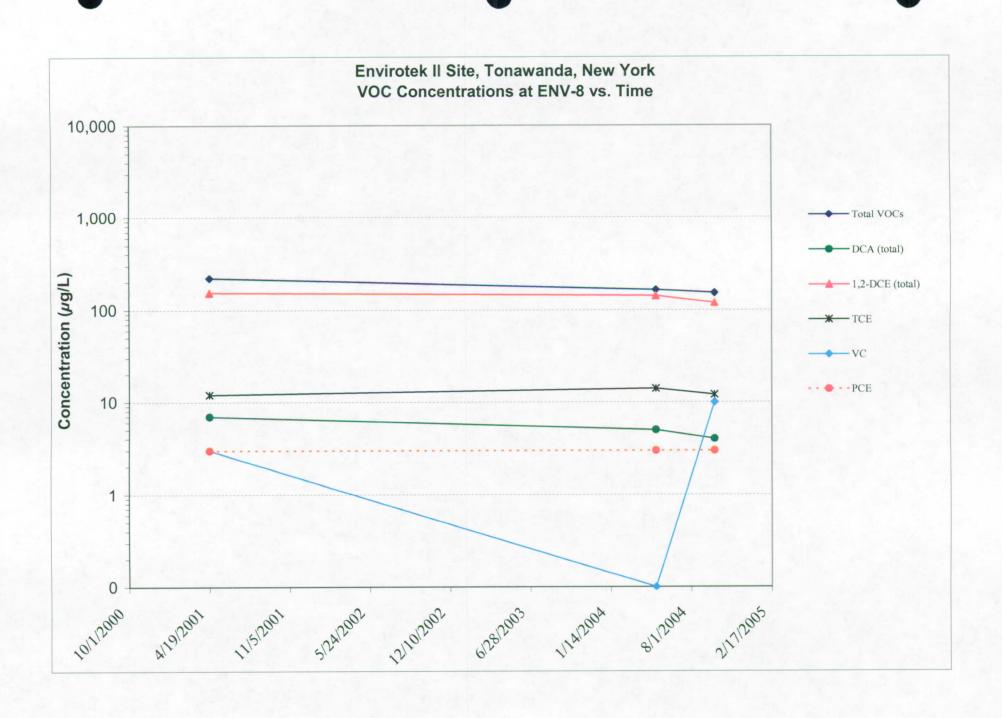


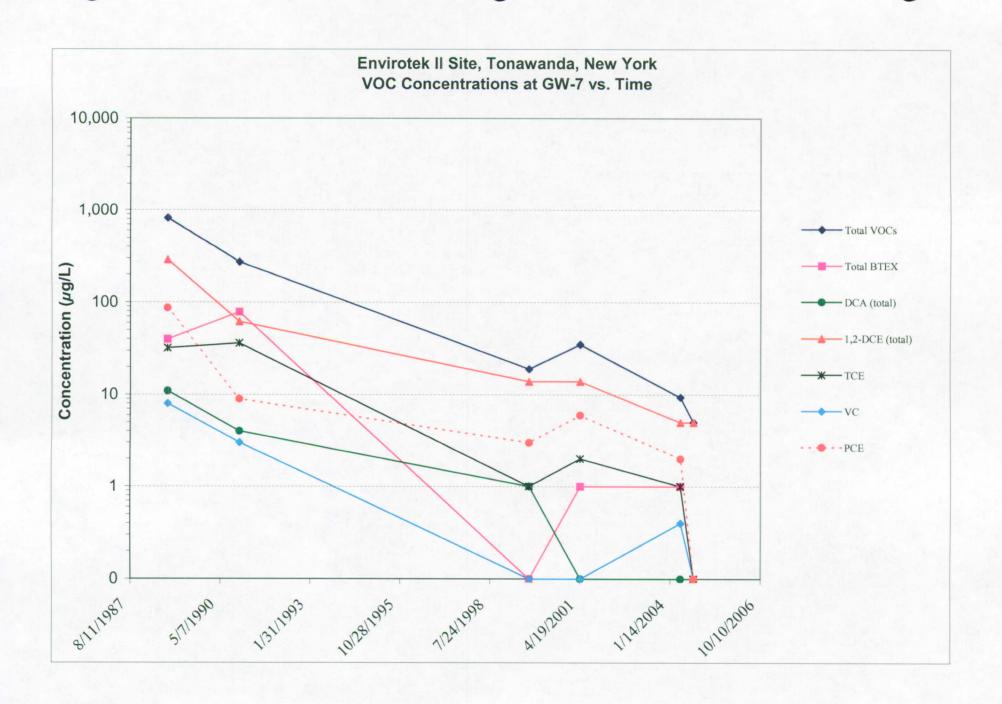



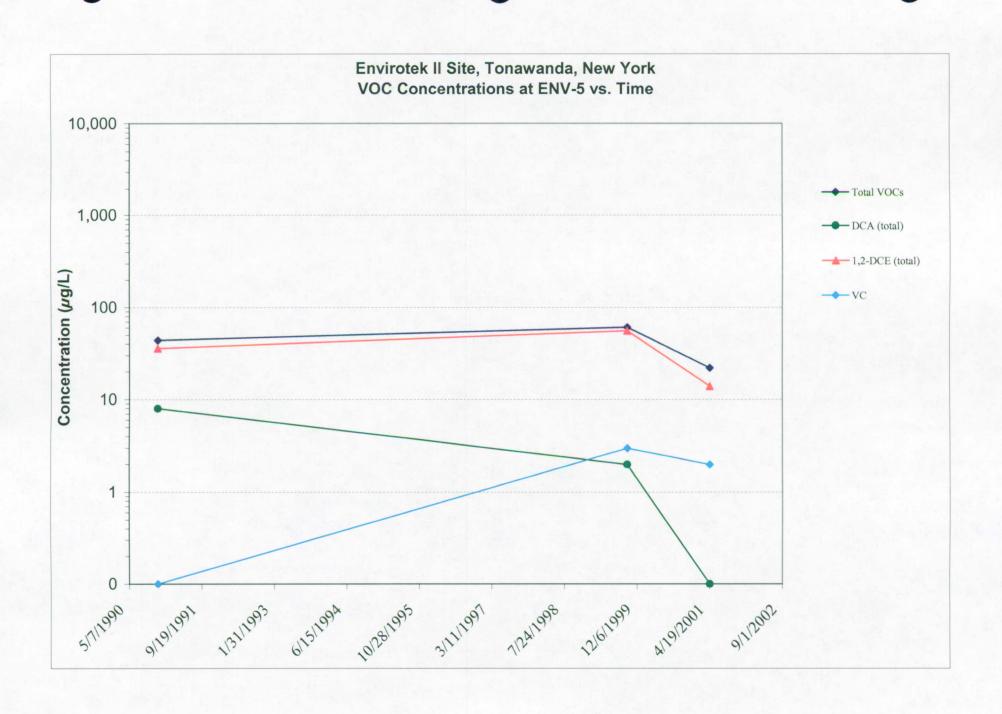


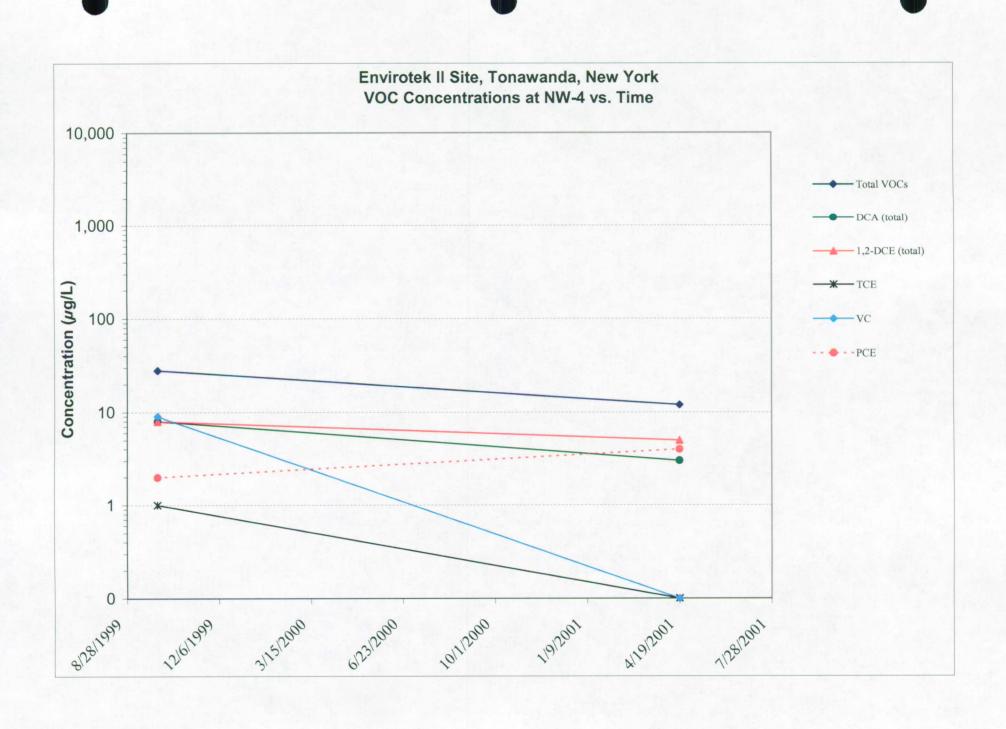











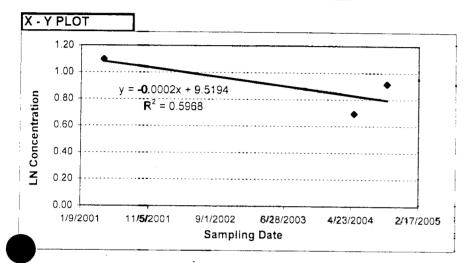



### Appendix G

## Natural Groundwater Remediation Rate Analysis



#### ample Information


Sample Location

ENV-7

Chemical

Dichloroethane (total)

DATA		
Sampling Date	Concentration (µg/L)	LN Concentration
4/19/2001	3	1.10
5/5/2004	2	0.69
9/28/2004	ND (5)	0.92



#### RESULTS

Natural Attenuation Rate Constant (k) =	2.28E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value ≖	0.60	0.44
Half-Life in Groundwater (t _{1/2} ) =	3039	days

#### NOTES

Nondetected values taken at one-half the detection limit.

NYSDEC TOGS 1,1-DCA =  $5 \mu g/L$ , 1,2-DCA =  $0.6 \mu g/L$ , no standard for DCA total

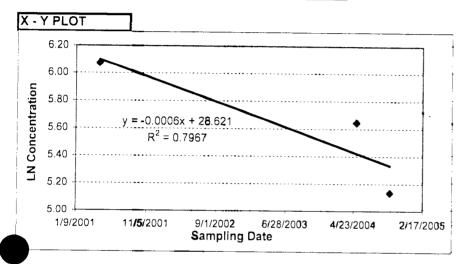
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

ample Information


Sample Location

ENV-7

Chemical

1,2 Dichloroethene (total)

DATA		
Sampling Date	Concentration (µg/L)	LN Concentration
4/19/2001	434	6.07
5/5/2004	283	5.65
9/28/2004	170	5.14



#### RESULTS

Natural Attenuation Rate Constant (k) =	6.09E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.80	0.3
Half-Life in Groundwater (t₁/2) ≠	1138	days

#### NOTES

Nondetected values taken at one-half the detection limit.

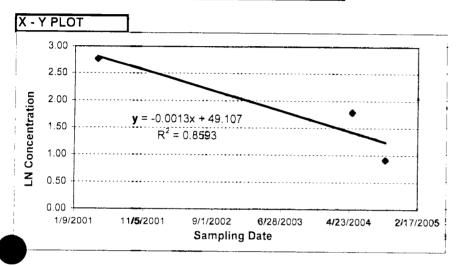
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and


#### cample Information

Sample Location ENV-7

Chemical

Trichloroethene

DATA		
Sampling	Concentration	LN Concentration
Date	(μg/L)	
4/19/2001	16	2.77
5/5/2004	6	1.79
9/28/2004	ND (5)	0.92



#### RESULTS

Natural Attenuation Rate Constant (k) =	1.25E-03	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.86	0.24
Half-Life in Groundwater (t _{1/2} ) =	554	days

#### NOTES

Nondetected values taken at one-half the detection limit.

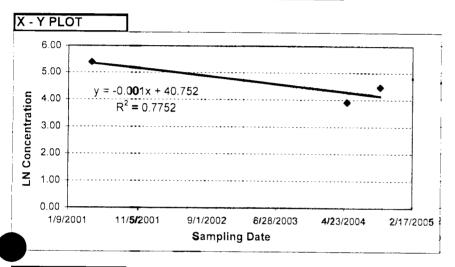
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information


Sample Location

ENV-7

Chemical

Vinyl Chloride

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
4/19/2001	220	5.39
5/5/2004	50	3.91
9/28/2004	88	4.48



#### RESULTS

Natural Attenuation Rate Constant (k) =	9.57E-04	days ⁻¹
Correlation Coefficie <b>nt</b> (R²) an <b>d p-Value</b> ≠	0.78	0.31
Half-Life in Groundw <b>at</b> er (t _{1/2} ) =	724	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### Sample Information

Sample Location

n **G**W-7

Chemical

1,2,-Dichloroethene (total)

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
9/28/1988	290	5.67
12/5/1990	62	4.13
9/30/1999	14	2.64
4/19/2001	14	2.64
5/5/2004	5	1.61
9/28/2004	5	1.61

#### X - Y PLOT 6.00 5.00 LN Concentration 4.00 = -0.**00**06x + 25.15**1** 3.00 $R^2 = 0.9487$ 2.00 0.00 3/29/1986 5/7/1990 6/15/1994 7/24/1998 9/1/2002 10/10/2006 Sampling Date

#### RESULTS

Natural Attenuation Rate Constant (k) =	6.16E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.95	0.001
Half-Life in Groundwater (t _{1/2} ) =	1125	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information

Sample Location

ENV-2

Chemical

Dichloroethane (total)

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	5550	8.62
10/1/1999	930	6.84
4/18/2001	950	6.86

#### X - Y PLOT 10.00 8.00 LN Concentration y = -0.0005x + 256.00 $R^2 = 0.9781$ 0.00 5/7/1990 1/31/1993 10/28/1995 7/24/1998 4/19/2001 1/14/2004 Sampling Date

#### RESULTS

Natural Attenuation Rate Constant (k) =	4.94E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.98	0.09
Half-Life in Groundw <b>at</b> er (t₁/₂) ≠	1403	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and

#### Sample Information

Sample Location

ENV-2

Chemical

Ethylbenzene

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	840	6.73
10/1/1999	170	5.14
4/18/2001	280	5.63

## X - Y PLOT 8.00 7.00 6.00 y = -0.0004x + 18.592 R² = 0.8121

10/28/1995

Sampling Date

#### RESULTS

Natural Attenuation Rate Constant (k) =	3.59E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.81	0.29
Half-Life in Groundwater (t₁/2) =	1930	days

7/24/1998

4/19/2001

1/14/2004

#### NOTES

Nondetected values taken at one-half the detection limit.

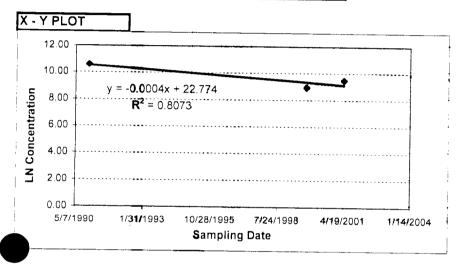
1/31/1993

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.


#### ample Information

Sample Location ENV-2

Chemical

Tetrachloroethene

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	40000	10.60
10/1/1999	7700	8.95
4/18/2001	13000	9.47



#### RESULTS

Natural Attenuation Rate Constant (k) =	3.69E-04	days ⁻¹
Correlation Coefficie <b>nt</b> (R²) and <b>p-Value</b> ≠	0.81	0.29
Half-Life in Groundwater (t₁/2) ≠	1878	days

#### NOTES

Nondetected values taken at one-half the detection limit.

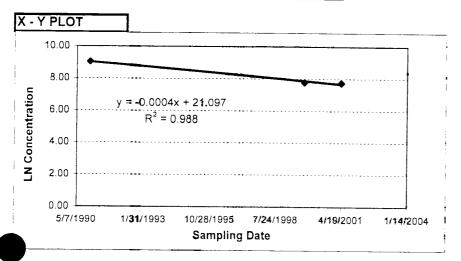
#### ABBREVIATIONS

µg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### sample Information


Sample Location

ENV-2

Chemical

Toluene

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	8600	<b>9</b> .06
10/1/1999	2400	7.78
4/18/2001	2300	7.74



#### RESULTS

Natural Attenuation Rate Constant (k) =	3.63E-04	days ⁻¹
Correlation Coefficie <b>nt</b> (R²) and p-Value ≖	0.99	0.07
Half-Life in Groundwater (t _{1/2} ) =	1909	days

#### NOTES

Nondetected values taken at one-half the detection limit.

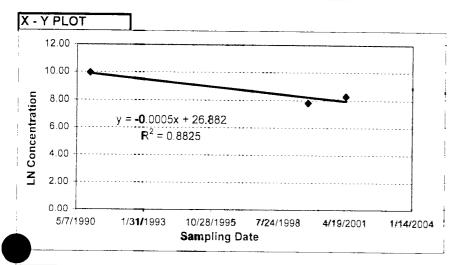
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and


#### ample Information

Sample Location ENV-2

Chemical

1,1,1-Trichloroethane

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	21000	9.95
10/1/1999	2500	7.82
4/18/2001	4000	8.29



#### RESULTS

Natural Attenuation Rate Constant (k) =	5.12E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.88	0.22
Half-Life in Groundwater (t _{1/2} ) =	1354	days

#### NOTES

Nondetected values taken at one-half the detection limit.

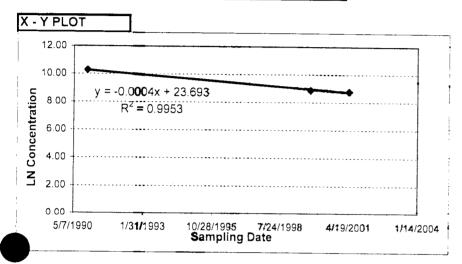
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information


Sample Location

on **EN**V-2

Chemical

Trichloroethene

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	29000	10.28
10/1/1999	7300	8.90
4/18/2001	6500	8.78



#### RESULTS

Natural Attenuation Rate Constant (k) =	4.04E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value ≖	1.00	0.04
Half-Life in Groundwater $(t_{1/2}) =$	1715	days

#### NOTES

Nondetected values taken at one-half the detection limit.

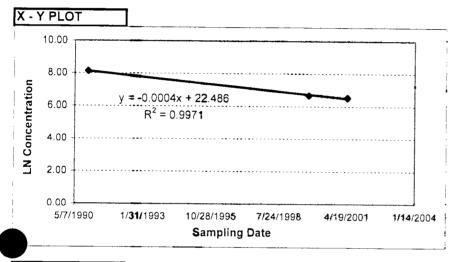
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information


Sample Location

ion **EN**V-2

Chemical

Vinyl Chloride

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	3400	8.13
10/1/1999	790	6.67
4/18/2001	680	6.52



#### RESULTS

Natural Attenuation Rate Constant (k) =	4.33E-04	days ⁻¹
Correlation Coefficie <b>nt</b> (R²) and p-Value =	1.00	0.03
Half-Life in Groundw <b>at</b> er (t _{1/2} ) =	1600	days

#### NOTES

Nondetected values taken at one-half the detection limit.

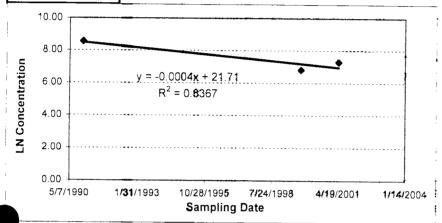
#### ABBREVIATIONS

µg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information


Sample Location ENV-2

Chemical

Xylenes (total)

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	5100	8.54
10/1/1999	900	<b>6</b> .80
4/18/2001	1470	7.29

#### X - Y PLOT



#### RESULTS

Natural Attenuation Rate Constant (k) =	3.99E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.84	0.26
Half-Life in Groundw <b>at</b> er (t _{1/2} ) =	1737	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

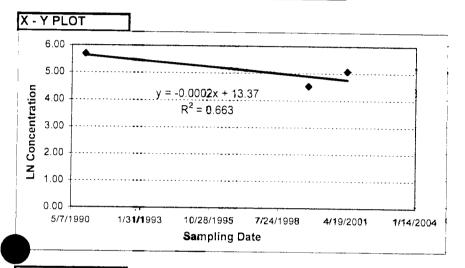
μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and

#### ample Information


Sample Location E

ENV-2

Chemical

1,1-Dichloroethene

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	300	5.70
10/1/1999	93	4.53
4/18/2001	160	5.08



#### RESULTS

Natural Attenuation Rate Constant (k) =	2.33E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.66	0.39
Half-Life in Groundwater $(t_{1/2}) =$	2974	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information

Sample Location ENV-3/3R

Chemical Dichloroethane (total)

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	250	5.52
10/1/1999	71	4.26
4/18/2001	59	4.08
5/5/2004	20	3.00
7/15/2004	18	2.89
9/28/2004	51	3.93

#### X - Y PLOT 6.00 5.00 LN Concentration 4.00 y = -0.0004x + 20.5183.00 $R^2 = 0.8271$ 2.00 0.00 3/29/1986 5/7**/1**990 6/15/1994 7/24/1998 9/1/2002 10/10/2006 Sampling Date

RESULIS		
Natural Attenuation Rate Constant (k) =	4.50E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.83	0.01
Half-Life in Groundwater $(t_{1/2}) =$	1540	days

#### NOTES

Nondetected values taken at one-half the detection limit.

NYSDEC TOGS 1,1-DCA = 5  $\mu$ g/L, 1,2-DCA = 0.6  $\mu$ g/L, no standard for DCA total

#### ABBREVIATIONS

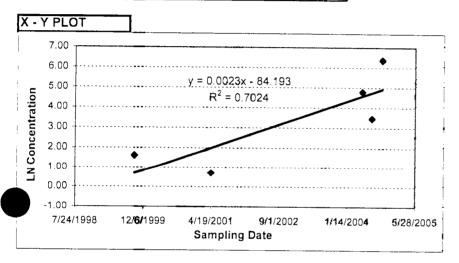
μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and

#### ample Information


Sample Location

n **E**NV-3/3R

Chemical

1,2-Dichloroethene (total)

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	ND*	NA
10/1/1999	ND (10)	1.61
4/18/2001	2	0.69
5/5/2004	120.7	4.79
7/15/2004	32	3.47
9/28/2004	583	6.37



RES	ULTS	

٦

Natural Attenuation Rate Constant (k) =	NA	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.70	0.08
Half-Life in Groundwater (t _{1/2} ) =	NA	days

#### NOTES

Non-detected values taken at one-half the detection limit.

ND* = Data point not used in analysis because detection limit not available

#### ABBREVIATIONS

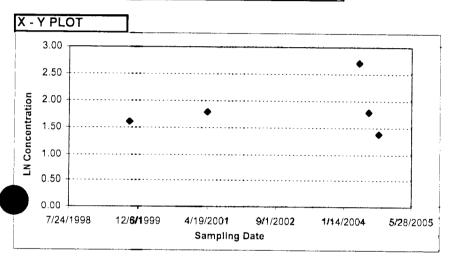
μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### ample Information


Sample Location

n **EN**V-3/3R

Chemical

**Te**trachloroethene

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	ND*	NA
10/1/1999	ND (10)	1.61
4/18/2001	6	1.79
5/5/2004	15	2.71
7/15/2004	6	1.79
9/28/2004	4	1.39



RESULTS		
Natural Attenuation Rate Constant (k) =	1.51E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.06	0.69
Half-Life in Groundwater $(t_{1/2}) =$	NA	davs

#### NOTES

Nondetected values taken at one-half the detection limit.

ND* = Data point not used in analysis because detection limit not available

#### ABBREVIATIONS

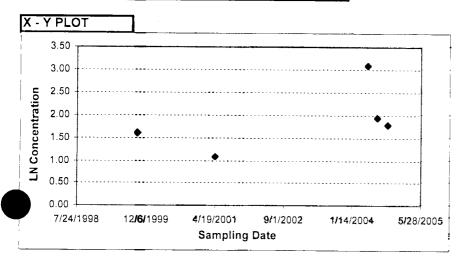
μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### Sample Information


Sample Location

**E**NV-3/3R

Chemical

Trichloroethene

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	ND*	NA
10/1/1999	ND (10)	1.61
4/18/2001	3	1.10
5/5/2004	22	3.09
7/15/2004	7	1.95
9/28/2004	6	1.79



R	F	S	1	П	ד ו	-0	:	
	_	v	•		_	•	,	

Natural Attenuation Rate Constant (k) =	5.03E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.32	0.32
Half-Life in Groundwater (t _{1/2} ) =	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

ND* = Data point not used in analysis because detection limit not available

#### ABBREVIATIONS

μg/L = micrograms per liter

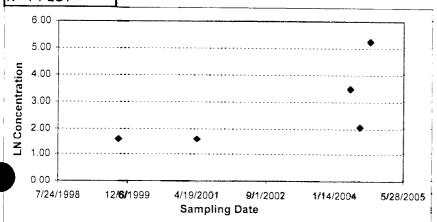
LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### Sample Information

Sample Location


**E**NV-3/3R

Chemical

Vinyl Chloride

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	ND*	NA
10/1/1999	ND (10)	1.61
4/18/2001	ND (10)	1.61
5/5/2004	33	3.50
7/15/2004	8	2.08
9/28/2004	190	5.25

#### X - Y PLOT



#### RESULTS

Natural Attenuation Rate Constant (k) =	1.32E-03	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.49	0.19
Half-Life in Groundwater (t₁/2) ≠	NA	days

#### NOTES

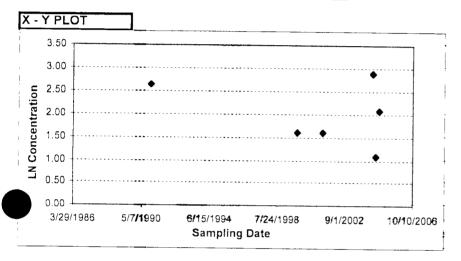
Nondetected values taken at one-half the detection limit.

ND* = Data point not used in analysis because detection limit not available

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithm


ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### sample Information

Sample Location ENV-3/3R Chemical Xylenes

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	14	2.64
10/1/1999	ND (10)	1.61
4/18/2001	ND (10)	1.61
5/5/2004	18	2.89
7/15/2004	3	1.10
9/28/2004	8	2.08



#### RESULTS

Natural Attenuation Rate Constant (k) =	1.16E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.11	0.52
Half-Life in Groundw <b>at</b> er (t _{1/2} ) =	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

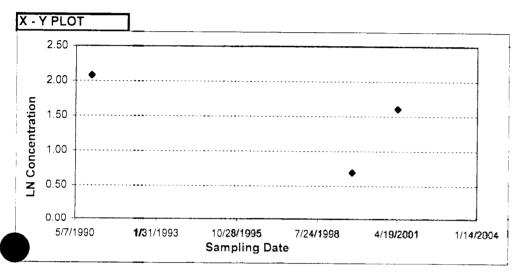
#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information


Sample Location

n **EN**V-5

Chemical

Dichloroethane (total)

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	8	2.08
9/30/1999	2	0.69
4/20/2001	ND (10)	1.61



#### RESULTS

Natural Attenuation Rate Constant (k) =	2.28E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.44	0.54
Half-Life in Groundw <b>at</b> er (t₁/₂) ≠	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

NYSDEC TOGS 1,1-DCA = 5 ug/L, 1,2-DCA = 0.6 ug/L, no standard for DCA total

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and

#### ample Information

Sample Location

**EN**V-5

Chemical

1,2-Dichloroethene (total)

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	36	<b>3</b> .58
9/30/1999	56	4.03
4/20/2001	14	2.64

#### X - Y PLOT 5.00 4.00 LN Concentration 3.00 2.00 1.00 0.00 5/7/199 9/19/19 1/31/19 6/15/19 10/28/1 3/11/19 7/24/19 12/6/19 4/19/20 9/1/200 93 995 98 99 01 2 Sampling Date

#### RESULTS

Natural Attenuation Rate Constant (k) =	1.17E-04	days ⁻¹
Correlation Coefficie <b>nt</b> (R²) an <b>d p-Value ≖</b>	0.11	0.78
Half-Life in Groundw <b>at</b> er (t _{1/2} ) ≠	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

#### ample Information

Sample Location

1 **EN**V-5

Chemical

Vinyl Chloride

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
11/19/1990	ND*	NA
9/30/1999	3	1.10
4/20/2001	2	0.69

# 1.50 1.00 0.50 0.50 0.7/199 9/19/19 1/31/19 6/15/19 10/28/1 3/11/19 7/24/19 12/6/19 4/19/20 9/1/200 0 91 93 94 995 97 98 99 01 2 Sampling Date

#### RESULTS

Natural Attenuation Rate Constant (k) =	NA	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	NA*	NA
Half-Life in Groundw <b>at</b> er (t _{1/2} ) =	NA	days

*Insufficient number of data points to complete analysis

#### NOTES

Nondetected values taken at one-half the detection limit.

ND* = Data point not used in analysis because detection limit not available

#### ABBREVIATIONS

µg/L = micrograms per liter

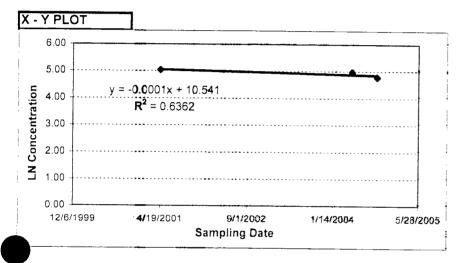
LN = Natural Logarithum

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

NYSDEC TOGS = New York State Department of Environmental Conservation Technical and

#### ample Information


Sample Location

ENV-8

Chemical

1,2 Dichlorothene (total)

DATA		
Sampling	Concentration	LN Concentration
Date	(µg/L)	
4/19/2001	154	5.04
5/5/2004	143	4.96
9/28/2004	120	4.79



#### RESULTS

Natural Attenuation Rate Constant (k) =	1.49E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.64	0.41
Half-Life in Groundwater (t _{1/2} ) =	4651	days

#### NOTES

Nondetected values taken at one-half the detection limit.

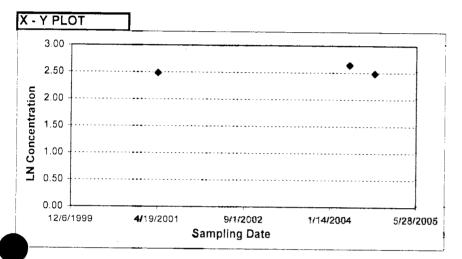
#### ABBREVIATIONS

μg/L = micrograms p**er** liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

#### Cample Information


Sample Location

ENV-8

Chemical

Trichloroethene

DATA	7		
Sampling Date	Concentration (µg/L)	LN Concentration	
4/19/2001	12	2.48	
5/5/2004	14	2.64	
9/28/2004	12	2.48	



#### RESULTS

Natural Attenuation Rate Constant (k) =	5.24E-05	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.16	0.73
Half-Life in Groundwater (t _{1/2} ) =	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

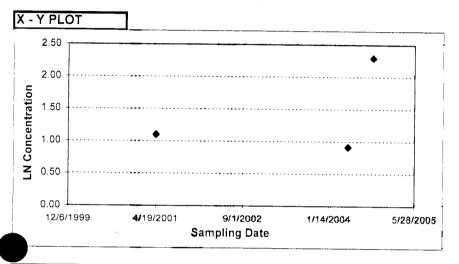
μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### ample Information


Sample Location

ENV-8

Chemical

Vinyl Chloride

DATA	7	
Sampling Date	Concentration (µg/L)	LN Concentration
4/19/2001	3	1.10
5/5/2004	ND (5)	0.92
9/28/2004	10	2.30



#### RESULTS

Natural Attenuation Rate Constant (k) =	5.33E-04	days ⁻¹
Correlation Coefficient (R ² ) and p-Value =	0.24	0.68
Half-Life in Groundw <b>at</b> er (t₁/₂) ≠	NA	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

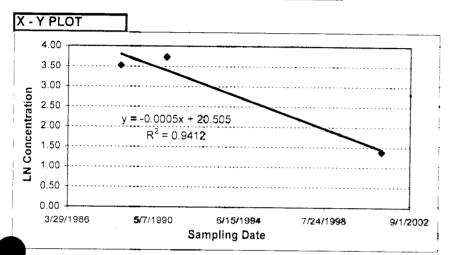
μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.

NA = Not Applicable

#### ample Information


Sample Location

GW-1

Chemical

Benzene

DATA	7	
Sampling	Concentration	LN Concentration
Date	(µg/L)	
9/28/1988	34	3.53
12/5/1990	42	3.74
4/19/2001	4	1.39



#### RESULTS

Natural Attenuation Rate Constant (k) =	5.15E-04	days ⁻¹
Correlation Coefficient (R²) and p-Value =	0.94	0.16
Half-Life in Groundwater (t₁/2) =	1346	days

#### NOTES

Nondetected values taken at one-half the detection limit.

#### ABBREVIATIONS

μg/L = micrograms per liter

LN = Natural Logarithm

ND = Analyte was not detected. Detection limit in parentheses.