REMEDIAL INVESTIGATION REPORT FORMER ROBLIN STEEL SITE

Tonawanda, New York

Prepared for:

Mr. James Idzorek NRG Thermal, LLC Minneapolis, MN

Prepared by:

Natural Resource Group, Inc. 1000 IDS Center 80 South Eighth Street Minneapolis, MN 55402

June 26, 2007 (revised October 5, 2007)

PROJECT NO. NRG2007-044 T248

TABLE OF CONTENTS

1	INT	FRODUCTION	4
	1.1	Previous Site Studies	4
	1.2	Site Setting and Land Use	5
	1.3	Work Plan Objectives	6
2	SA	MPLING AND ANALYSIS	7
	2.1	Test Pits	8
	2.2	Shallow Soil Samples	9
	2.3	Subsurface Soil/Fill Analysis	10
	2.4	Monitoring Wells/Installations	11
3	AN	ALYTICAL LABORATORY	14
4	Ana	alytical RESULTS	15
	4.1	Groundwater	15
	4.1	.1 Groundwater Results Discussion	22
	4.1	.2 Summary of Potential Response Actions - Groundwater	24
	4.2	Soil/Fill	24
	4.2	.1 Surficial Soil/Fill	24
	4.2	.2 Subsurface Soil/Fill	31
	4.2	.3 Soil/Fill Results Discussion	41
	4.2		41
5	CO	NCLUSIONS AND RECOMMENDATIONS	42

LIST OF FIGURES

Figure Title

- 1 Site Location
- 2 Site Map/Test Pit Locations
- 3 Monitoring Well Locations
- 4 Groundwater Quality Monitoring Locations
- 5 Groundwater Elevation Contour Map with Ore Pit Groundwater Mound
- 6 Groundwater Elevation Contour Map-Shallow Aquifer
- 7 Summed Chlorinated Volatile Organic Compound Plume
- 8 Historical and Recent Groundwater Quality Data Exceeding TOGS 1.1.1
- 9 Historical and Recent Soil Quality Data for Soil Less than 1 foot and Exceeding Part 375 Restricted Use Soil Cleanup Standards (Restricted Residential Land Use)
- 10 Historical and Recent Soil Quality Data for Soil Less than 1 foot and Exceeding Part 375 Restricted Use Soil Cleanup Standards (Industrial Land Use)
- 11 Historical and Recent Soil Quality Data for Soil greater than 1 foot and Exceeding Part 375 Restricted Use Soil Cleanup Standards (Restricted Residential Land Use)
- 12 Historical and Recent Soil Quality Data for Soil greater than 1 foot and Exceeding Part 375 Restricted Use Soil Cleanup Standards (Industrial Use)

LIST OF APPENDICIES

Appendix Title

- A Test Pit Logs
- B Soil Quality Chemistry Summary Tables
- C Monitoring Well Logs
- D Water Quality Chemistry Summary Tables
- E NRG Soil and Groundwater Quality Analytical Data Validation Check Lists

LIST OF ATTACHMENTS

- 1 Severn Trent Laboratory Data
- 2 NRG Soil and Groundwater Quality Analytical Data Validation Packages

1 INTRODUCTION

This Remedial Investigation Report (RI) was prepared by Natural Resource Group, LLC. (NRG) for NRG Thermal, LLC and is designed to support NRG Thermal, LLC's potential acquisition and development of the Roblin Steel Site (the "Site") which is currently owned by River World, Inc. The Site is located at 4000 River Road in the Town of Tonawanda, Erie County, New York. The Site is currently listed in the New York State Department of Environmental Conservation (NYSDEC) Registry of Inactive Hazardous Waste Disposal Sites in New York State as a Class 2 Site. This report provides the data necessary for the NYSDEC to consider reclassifying the Site as a Class 4 site for industrial development. The location of the Site is shown on Figure 1.

1.1 Previous Site Studies

Numerous documents relating to the Site, or portions thereof, have been developed by private parties and state and federal agencies. These documents assess or summarize the Site setting, contaminant types and source(s), pathways of contaminant migration, potential human health risks, and engineering methods screened as remediation options. The following is a general overview of three of these reports. Figure 2 provides a general layout of the Site.

- Remedial Investigation/Feasibility Study Envirotek II Site (BBL, March 1999): This document, hereinafter referred to as the "Envirotek RI/FS", defines "Envirotek" as a 2.5-acre portion of the Roblin Steel Site that was used as a chemical waste treatment, storage and disposal facility during the 1980's. Its operation resulted in contamination of underlying fill, soils and groundwater at the Site. This document details the Site history and setting, and includes the Site investigation technologies and objectives utilized to characterize these contaminated media;
- Record of Decision, Envirotek II Portion of the Roblin Steel Site Operable Unit Nos. 1, 2 and 3 Tonawanda, Erie County, New York, Site Number 9-15-056 (NYSDEC, March 2005): This document, hereinafter referred to as the "ROD" presents the Envirotek site history, a summary of historic analytical results and the selected remedies for the three operable units at the Envirotek site; and
- 3. Site Evaluation Report, Roblin Steel Site, Tonawanda, Erie County, New York, Site Number 9-15-056 (NYSDEC, December 2006): This summary report, hereinafter referred to as the "SER", was developed by the lead state regulatory agency (NYSDEC) and provides a comprehensive overview of the Site, and it's history, summarizes work completed to date and recommends that three Site areas; the warehouse area, the boiler house area and the northwestern portion of the Site, be investigated prior to consideration of Site reclassification.

The results of sampling and analyses presented in Site documents completed to date conclude that fill, soil and groundwater at the Site are contaminated largely by predominately

low levels of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), cyanide and metals. Collectively, these contaminants are referred to as contaminants of concern (COCs). NYSDEC (SER, page 2) has concluded that the chlorinated VOCs are likely the result of the Envirotek operations, while the remaining compounds, including nonchlorinated VOCs, appear to be attributable to prior steel making at the Site.

1.2 Site Setting and Land Use

Portions of the Site have undergone extensive investigation. These studies have described a Site stratigraphy of fill overlying glaciolacustrine silty clays, alluvial sands, glacial till and shale. Fill material consists predominantly of slag and cinders. Fill deposits range in thickness to a maximum of approximately 19 feet. The glaciolacustrine unit is found between 14 and 19 feet below the ground surface (bgs); the alluvial sands between 15 and 28.5 feet bgs; the glacial till between 30 to 49.5 feet bgs; and the shale is found at approximately 42 to 54 feet bgs.

The NYSDEC (SER, page 15) notes that the glaciolacustrine deposits effectively prevent migration of surficial contaminants to depth at the Site and that all contaminated groundwater resides in highly heterogeneous fill materials as a shallow groundwater unit. The water table elevation in the shallow groundwater system ranges between 6 and 12 feet bgs. The shallow groundwater system flows generally east to west with discharge to the Niagara River. The mean hydraulic conductivity for the shallow groundwater system was reported in the 10^{-2} to 10^{-3} cm/sec range.

Current land use in the vicinity of the Site is industrial. The Site is bordered by River Road to the east and beyond by Tonawanda Coke and INS Auto, the Niagara River to the west, Tonawanda Coke and Marathon/Ashland Petroleum to the south, and the Lafarge ready mix plant and the River Road Superfund site to the north. The majority of the Site is unused. River World, Inc. operates a warehouse in the southeastern portion of the Site. Groundwater beneath the Site is not used for drinking water supply.

NRG completed a general assessment of the adjoining properties by reviewing the 1994 Record of Decision for the abutting River Road Superfund site (provided by the NYSDEC), the March 2005 ROD and March 1990 Administrative Order on Consent for the Envirotek II Portion of the Roblin Steel Site, and by having Environmental Data Resources, Inc. (EDR) complete an electronic file search on properties adjacent to the Site. Of note from this review were the following regarding the adjacent properties:

- 1. Tonawanda Coke: This property includes parcels on both sides of River Road. It has three landfills used for general landfilling of fly-ash, cinders, coal tar sludge, brick, rubble, demolition material, wood shavings impregnated with iron oxide, and coal tar sludge; a coal storage area; and manufacturing area. A Phase II Investigation has been completed by the responsible party. Analytical results indicate the presence of widespread contamination at the site. Site investigation and data collection/reporting events were noted between 1981 and 2005. Results indicated SVOCs were present in both sediment and water samples. Groundwater contaminants exceeded respective standards for iron, phenols, cyanide, benzene, phenol, naphthalene and benzo (a) pyrene. The report infers that Tonawanda Coke has the potential to impact the Niagara River; and
- 2. INS (noted as INS Scrap and INS Equipment Co.) is a former landfill that closed in 1986. INS Equipment Co. is also noted in the ROD as responsible for disposing of

foundry sands, paint skimmings and other wastes on the River Road Superfund site between 1964 and 1970. Historic aerial photography indicates solids disposal was taking place at the INS, Lafarge and Roblin Steel sites during this same time period.

1.3 Work Plan Objectives

In February 2007, NRG submitted a Site Investigation Work Plan (SIWP) to the NYSDEC that focused on three areas of concern (AOC) at the Site which the NYSDEC had identified as having data gaps: 1) the warehouse area (southeast portion of the Site), 2) the boiler house area (central portion of the Site) and 3) the former surface water pond (northwestern portion of the Site). The collected data would be combined with data collected during previous studies by others. The resulting data set would be utilized to determine if the Site can be reclassified or removed from the state registry. The SIWP was approved by the NYSDEC on February 14, 2007.

Three specific objectives were approved in the SIWP and later modified in the field based on field conditions and sampling results. The objectives, as modified, are summarized below:

1. Determine the presence and extent of COCs in surface soil/fill (less than 1 foot below ground surface) in proximity of the AOCs.

This objective was met by collecting and analyzing four soil/fill samples, at depths at 2-inches (0.17 feet) bgs during the construction of new site monitoring wells and by collecting and analyzing 13 soil/fill samples, at depths between 0 to 1 foot below ground surface during the completion of test pits. The samples were submitted to Severn Trent Laboratories, Inc (STL) and analyzed for one or more of the following: Target Compound List (TCL) VOCs, TCL SVOCs, RCRA metals and cyanide. The location of these sampling points are depicted on Figures 2 and 3; and

2. Determine the presence and extent of COCs in subsurface soil/fill (greater than 1 foot below ground surface) in proximity of the AOCs.

This objective was met by excavating pits to a depth of 10 feet, to the water table, or refusal, whichever was shallower, at select locations. Fourteen (14) test pits were excavated using an excavator so that the underlying stratigraphy could be sampled, field screened and described. Sixteen select subsurface samples were collected and analyzed for one or more of the following: TCL VOCs, TCL SVOCs, RCRA metals and cyanide. The location of these sampling points are depicted on Figure 2; and

3. Obtain samples of the Site groundwater quality.

This objective was addressed by installing, developing, and sampling six new monitoring wells, two in each of the AOCs, and sampling nine existing monitoring wells at the Site. Three other existing wells were dry and therefore not sampled. Stabilization testing was conducted on the monitoring wells before sample collection. The samples were submitted to STL and analyzed for: TCL VOCs, TCL SVOCs, RCRA metals (total and dissolved) and cyanide. Table 1 provides a summary of the wells that were monitored for water quality and groundwater elevation. The locations of these monitoring wells are depicted on Figure 4.

Table 1										
G	Froundwater Sampling/	Elevation Monitoring	Locations							
Monitoring Well #	Status	Groundwater Quality	Groundwater Elevation							
ENV-1	Existing	No	Yes							
ENV-5	Existing	Yes	Yes							
ENV-7	Existing	Yes	Yes							
GW-1	Existing	Yes	Yes							
GW-2	Existing	Yes	Yes							
GW-3	Existing	Yes	Yes							
GW-4	Existing	Yes	Yes							
GW-5	Existing	Yes	Yes							
GW-6	Existing	Yes	Yes							
GW-7	Existing	Dry	Dry							
NRG-1	New	Yes	Yes							
NRG-2	New	Yes	Yes							
NRG-3	New	Yes	Yes							
NRG-4	New	Yes	Yes							
NRG-5	New	Yes	Yes							
NRG-6	New	Yes	Yes							
NW-1	Existing (Repaired)	Yes	Yes							
NW-2	Existing	Dry	Dry							
NW-3	Existing (Repaired)	Dry	Dry							
NW-5	Existing	No	Yes							

2 SAMPLING AND ANALYSIS

A Sampling and Analysis Plan (SAP), containing information concerning the sampling protocol, techniques, data quality objectives, procedures, and equipment to conduct soil/fill and groundwater sampling at the Site was incorporated into the SIWP submitted to and approved by the NYSDEC. The following summarizes the field investigation completed by excavating test pits and collecting surface and subsurface soil/fill samples and collecting groundwater quality samples from Site wells. Any deviations from the SAP are noted in the appropriate section below.

The SAP recommended that:

- A minimum of 10 test pits would be excavated at key locations near the three AOCs, as depicted on Figure 2. It was agreed that up to 20 more pits could be added based on the results of the initial 10 test pits. This would be a field decision based on observations by the NRG Project Manager and state representatives;
- 2. Up to 20 monitoring wells would be sampled at the Site. The well network would consist of existing Site wells, repaired wells and new wells, all finished in the shallow groundwater system (see Figure 4). However, wells could be added or deleted from the sampling program as more Site information became available; and
- 3. Surface water levels would be obtained from a staff gauge previously established in the Niagara River (see Figure 5).

The following summarizes the results of these sampling processes.

2.1 Test Pits

On February 27, 2007, NRG completed eight test pits (NRGTP-1 through NRGTP-8) in accordance with the SAP. Test pits NRGTP-4 through -8 were excavated to groundwater level within the fill. Test pit NRGTP-1 was excavated to 10 feet bgs and was terminated as it met the depth requirement of the investigation. Test pit NRGPT-2 met refusal in metallic slag at 8.5 feet bgs. Test pit NRGPT-3 encountered a 5.5 foot square chase constructed with fire brick that was located 4.5 feet bgs. All test pits encountered fill consisting of foundry sand, castings, fire brick, and slag. Slag was the predominant fill at NRGTP-2 while the remaining pits had a mixture of foundry sand, gravel sized slag, castings, and debris.

A photoionization detector (PID) was used to measure organic vapors present in select soil/fill samples. PID readings above "0" parts per million (ppm) were recorded at NRGTP-2, NRGTP-4 and NRGTP-6. At these test pit locations, the foundry sand at NRGTP-4 and NRGTP-6 had a maximum headspace concentration of 3.4 and 5.8 ppm, respectively. The metallic slag at NRGTP-2 had a headspace concentration of 12 ppm.

On February 28, 2007, NRG staff completed an additional six test pits. These included two of the test pit locations originally sited in the SAP (NRGTP-9 and NRGTP-10) and an additional four locations NYSDEC staff field-requested to supplement existing coverage at the Site. Two of the additional test pits were added just south of the Tonawanda Coke storm water retention pond (NRGTP-12 and NRGTP-13), one additional test pit (NRGTP-11) was added south of NRGTP-6 to further evaluate the 5.8 ppm PID reading noted at NRGTP-6, and one additional test pit (NRGTP-14) was added west of the boiler house.

Observations of the subsurface fill at NRGTP-9 and NRGTP-10 indicated the presence of gravel-sized slag and foundry sand with no elevated PID reading. Test pit NRGTP-11 encountered similar foundry sand as encountered at NRGTP-4 and NRGTP-6 and had a maximum PID reading of 7.5 ppm. The fill at NRGTP-12 and NRGTP-13 consisted of gravel-sized slag, foundry sand, and debris. PID readings at these two test pits were 0 ppm. There was no observable subsurface impact from the Tonawanda Coke storm water pond located in this area. NRGTP-14 encountered solidified slag (refusal) at a depth of 3.5 feet, and excavation was stopped at this depth. Table 2, summarizes all test pits and the test pit logs are attached in Appendix A.

Table 2 Test Pit Excavation Summary											
Location	Depth Completed (feet below ground surface)	Depth to Groundwater (feet below ground surface)	Date	Ground Surface Elevation							
NRGTP-1	10	Not Encountered	2/27/2007	579.3							
NRGTP-2	8.5	Not Encountered	2/27/2007	578.2							
NRGTP-3	9.5	Not Encountered	2/27/2007	580.3							
NRGTP-4	9	8	2/27/2007	580.1							
NRGTP-5	7.5	7.5	2/27/2007	576.8							
NRGTP-6	9	8	2/27/2007	581.4							
NRGTP-7	4	3	2/27/2007	574.8							
NRGTP-8	8	7	2/27/2007	577.0							
NRGTP-9	10	Not Encountered	2/28/2007	580.0							
NRGTP-10	9	8.5	2/28/2007	578.0							

Table 2 Test Pit Excavation Summary										
Location	Depth Completed (feet below ground surface)	Depth to Groundwater (feet below ground surface)	Date	Ground Surface Elevation						
NRGTP-11	11	9	2/28/2007	580.4						
NRGTP-12	7.5	7	2/28/2007	574.1						
NRGTP-13	9	8.5	2/28/2007	577.2						
NRGTP-14	3.5	Not Encountered	2/28/2007	580.0						

Sixteen (16) soil samples were collected from the test pits for analytical analyses as described in Sections 2.2 and 2.3, below.

2.2 Shallow Soil Samples

NRG collected four shallow soil samples (NRG-1, NRG-4, NRG-5, and NRG-6) during the construction of new monitoring wells. These samples were collected at 2-inches (0.17 feet) bgs and supplement the 13 shallow soil/fill samples collected during test pit completion. Table 3 provides the sampling locations and the analytical analyses completed on each sample. The analytical results are provided in Appendix B. Appendix B, Table I, provides results of historical testing for shallow soils ("shallow soils" are defined in this report as less than one foot in depth), and Table II provides testing results for soils sampled in 2007. The shallow soil observed indicates the Site to be mostly covered with top soil (organic silty sand), asphalt, or gravel. The topsoil is typically less than 0.5 feet thick.

Summary	Table 3 Summary of Surface Soil/Fill Samples Collected from Test Pit and Monitoring Well										
	Locations										
	Depth (feet			Laborate	ory Analyses						
Location	below ground surface)	Date Collected	TCL VOCs	TCL SVOCs	RCRA Metals	Cyanide					
NRG-1	0.17	3/7/2007			1	1					
NRG-4	0.17	3/12/2007			1	1					
NRG-5	3/9/2007			1	1						
NRG-6 0.17		3/9/2007			1	1					
NRGTP-4 0-1 2/		2/27/2007	1	1	1	1					
NRGTP-5	0-1	2/27/2007	1	1	1	1					
NRGTP-7	0.5-1	2/27/2007			1	1					
NRGTP-8	0.5-1	2/27/2007	1	1	1	1					
NRGTP-9	0.5-1	2/28/2007	1	1							
NRGTP-10	0.5-1	2/28/2007			1	1					
NRGTP-11	0.5	2/28/2007	1	1							
NRGTP-12	0.5	2/28/2007	1	1	1	1					
NRGTP-13 0.5 2/2		2/28/2007	1	1	1	1					
То	otal Number of San	nples	7	7	11	11					

2.3 Subsurface Soil/Fill Analysis

Fourteen test pits and six monitoring wells were completed during the investigation. All of the test pits encountered either fill and/or slag materials to their completion depth. At the new monitoring well locations, fill and slag materials were present between the land surface and a depth that varied between 10 and 17 feet bgs. Native soils, underlying the fill and/or slag at the wells sites, were found to the termination depth of the well borings. No rock was encountered at either the test pit or well sites. Though the fill materials were variable in composition and grain size, they consisted primarily of slag, sand, cinder, brick and wood. The underlying native soil consisted of glaciolacustrine deposits consisting primarily of organic silt with minor clay and fine-grained sand. These soil/fill deposits are consistent with the SER Site geology description which was based on historic work completed at the Site by others.

Subsurface soil/fill samples were collected for analytical analyses from the test pits and from the new monitoring well locations. Table 3a, below, summarizes where subsurface soil/fill samples were collected and the analyses completed on each soil sample. The analytical results are listed in Appendix B. Appendix B Table III provides historical soil analytical data for soil greater than 1 foot below ground surface and listed in the NYSDEC December 2006 report, and Appendix B Table IV provides analytical data for soil greater than 1-foot below ground surface and surface and collected during this investigation.

Summary o	Table 3a Summary of SubsurfaceSoil/Fill Samples Collected from Test Pit and Monitoring Well Locations										
	Depth (feet			Laboratory Analyses							
Location	below ground surface)	Date Collected	TCL VOCs	TCL SVOCs	RCRA Metals	Cyanide					
NRG-4	15-17	3/12/2007		1							
NRGTP-2	4	2/27/2007			1	1					
NRGTP-4	8	2/27/2007	1	1	1	1					
NRGTP-5	5	2/27/2007	1	1	1	1					
NRGTP-6 6-8		2/27/2007	1	1	1	1					
NRGTP-7 4		2/27/2007			1	1					
NRGTP-8	4	2/27/2007	1	1	1	1					
NRGTP-8	8	2/27/2007		1	1	1					
NRGTP-9	4	2/28/2007			1	1					
NRGTP-9	8	2/28/2007			1	1					
NRGTP-10	4	2/28/2007			1	1					
NRGTP-10	7	2/28/2007	1	1	1	1					
NRGTP-11	4	2/28/2007	1	1							
NRGTP-11	8	2/28/2007	1	1	1	1					
NRGTP-12	4	2/28/2007	1	1							
NRGTP-13	4	2/28/2007	1	1	1	1					
To	tal Number of San	nples	9	11	13	12					

2.4 Monitoring Wells/Installations

Installation of groundwater monitoring wells was completed to characterize the groundwater quality conditions in the shallow aquifer and to evaluate the groundwater flow direction at the Site. The wells were strategically placed in the AOCs to supplement the existing monitoring well array. Each well location consisted of a single well with a ten-foot long screen that straddled the water table. Table 1, above, summarizes the wells that were installed and/or sampled at the Site during the investigation. The monitoring well locations are shown on Figure 3.

Well Elevation Survey

An elevation survey loop was completed using known benchmarks elevations and included all test pits and monitoring wells installed in accordance with the SIWP. A survey loop was also conducted to measure the elevation of the top of a steel channel located above the Niagara River. This river level monitoring location ("Staff") is shown on Figure 3. All measurements were recorded to the nearest one hundredth of one foot.

Installation

Six new wells were installed at the Site between March 7, 2007 and March 19, 2007. The monitoring wells were installed using 4¼-inch inner diameter (ID) hollow stem auger. Soil samples were collected continuously from the ground surface to a depth of 12 feet and at select locations thereafter. Table 4, below, provides a construction summary for the six wells and Appendix C provides lithologic and construction logs for the wells.

	Table 4 New Monitoring Well Construction Summary													
		Elevation	Feet MSL		F	eet	Feet	Feet Below Ground Surface						
Location	Top of 2-inch Riser	Ground Surface Elev.	Ground Water Elev.	Top of Screen	Total Depth	Riser Stickup	Top of Sand Pack	Top of Seal	Top of Screen	Total Depth				
NRG-1	579.31	576.96	568.65	569.44	19.88	2.35	5.00	3.70	7.53	17.53				
NRG-2	577.51	575.13	566.53	568.39	19.13	2.38	5.00	3.50	6.75	16.75				
NRG-3	584.55	581.96	573.71	578.84	15.71	2.59	2.83	2.00	3.12	13.12				
NRG-4	582.31	579.75	573.26	573.56	18.75	2.56	4.00	3.00	6.19	16.19				
NRG-5	580.26	577.73	570.03	570.81	19.45	2.53	5.00	4.00	6.92	16.92				
NRG-6	580.51	578.38	569.21	570.20	20.31	2.13	6.00	4.50	8.18	18.18				

On March 7, 2007, NRG-2 was installed near the Tonawanda Coke storm water retention pond to a depth of 16.75 feet bgs. Fill was encountered from 0 to 11.5 feet and the water table was at 8.6 feet. The fill consisted of a mixture of slag, clay, and silty sand. The underlying native soil varied from thinly bedded silt to sandy silt.

On March 8, 2007, NRG-1 was installed near the Tonawanda Coke storm water retention pond to a depth of 17.5 feet bgs. Fill was encountered from 0 to 11.0 feet and the water table was at 8.3 feet. The fill consisted of a mixture of slag, clay, and silty sand. The underlying native soil varied from thinly bedded silt to sandy silt

On March 9, 2007, NRG-5 and NRG-6 were installed to 16.9 and 18.2 ft bgs, respectively. Both wells are located west of the warehouse. Monitoring wells NRG-5 and NRG-6 encountered native soil, consisting of sandy silt, at 15.5 and 15 feet below the ground surface, respectively. The overlying fill material in this area consisted of gravel sized slag. The bottom of the wells intersected the native soils and the groundwater table occurred in the fill unit at 7.7 and 9.2 ft bgs, respectively.

On March 12, 2007, NRG-3 and NRG-4 were installed. Both wells are located west of the boiler house in an area referred to as the "Ore Pit". The Ore Pit has concrete walls to the south, north and west (and possibly east) of the well installation locations. Of note at these locations was the presence of approximately 0.8 feet of wood planking found during drilling between 12 to 14 feet bgs at NRG-3 and NRG-4. If this is the base of the Ore Pit, it occurs at approximately the same elevation as the surface of the Niagara River measured to be 565.8 ft above mean sea level (MSL) on March 8, 2007. The western edge of the Ore Pit is approximately 125 feet east of the Niagara River. Monitoring wells NRG-3 and NRG-4 are approximately 250 east of the Niagara River. Because the base of the Ore Pit and groundwater level are in close proximity, and due to the fine grained nature of the underlying sediment, it is difficult to determine if the groundwater level in the Ore Pit is in a "perched" condition above the underlying shallow groundwater system.

With prior approval from the NYSDEC, well NGG-4 was completed through the ore pit base and NRG-3 was completed just above the Ore Pit base. A native soil sample(sandy siltlacustrine) was collected beneath the Ore Pit base at NRG-4 from 15 to 17 feet bgs for SVOC analysis. Based upon visual observations and field screening results, soil contaminants appear to be accumulating at the base of the Ore Pit suggesting separation between the contamination and groundwater in the Ore Pit from the underlying aquifer.

Well Development

SJB Empire developed monitoring wells NRG-1 through NRG-6 on March 12 and 13, 2007 using a submersible pump. All wells produced more than 2.5 gallons per minute (the pump's maximum pumping rate). The wells were developed for approximately two hours and produced clear water at the end of development. Well development logs are in Appendix C.

Groundwater Sampling

In accordance with the SAP, groundwater samples were collected from the monitoring well network, consisting of historic and recently constructed wells, on a one-time basis. This data was obtained to augment groundwater quality data collected by others during prior site-wide investigations. Table 5, below, provides well details, water level measurements and sampling details for the Site 2007 groundwater quality sampling event.

(Groundwater	Level and \	Nell Volume	Table ! Data for 2	5 007 Gro	undwate	r Quality S	ampling Ev	ent
Location	Measuring Point Elevation (ft MSL)	Depth to Ground- water (feet)	Ground- water Elevation (ft MSL)	Ground- water Level Date /Time	Riser Pipe Stick- up (feet)	Total Depth (feet)	Depth of Water Column (feet)	Well Volume (gallons)	Ground- water Quality Sample Date
ENV-1	579.46	7.18	572.28	3/8/07 9:08	-0.56	24.17	16.99	Not Sampled	Water level only
ENV-5	581.48	11.27	570.21	3/8/07 10:56	2.21	24.11	12.84	2.05	3/8/2007
ENV-7	582.74	12.68	570.06	3/8/07 11:51	2.63	31.50	18.82	3.01	3/8/2007
GW-1 ¹	575.92	6.25	569.67	3/8/07 9:29	-0.38	22.92	16.67	2.67	3/8/2007
GW-2	582	13.09	568.91	3/8/07 8:34	2.25	31.56	18.47	2.96	3/8/2007
GW-3	579	9.44	569.56	3/8/07 10:47	2.34	20.61	11.17	1.79	3/9/2007
GW-4	575.89	9.93	565.96	3/8/07 10:35	2.29	17.03	7.10	1.14	3/9/2007
GW-5*	571.92	5.68	566.24	3/8/07 10:28	1.58	13.61	7.93	1.27	3/9/2007
GW-6	574.08	6.64	567.44	3/8/07 10:21	2.44	17.64	11.00	1.76	3/9/2007
GW-7	581.96	dry		3/8/07 11:15	2.71	12.14	NA	NA	OK by NYSDEC Not to Sample/No Substitution
Niagara River	569.08	3.28	565.8	3/8/07 14:51	NA	NA	NA	NA	Water level only
Niagara River	569.08	3.88	565.21	3/9/07 14:55	NA	NA	NA	NA	Water level only
NRG-1	579.31	10.60	568.71	3/9/07 14:48	2.35	19.88	9.28	1.48	3/13/2007
NRG-2	577.51	10.90	566.61	3/9/07 14:52	2.38	19.13	8.23	1.32	3/13/2007
NRG-3	584.55	10.84	573.71	3/13/07 7:22	2.59	15.71	4.87	0.78	3/14/2007
NRG-4	582.31	9.05	573.26	3/13/07 7:15	2.56	18.75	9.70	1.55	3/14/2007
NRG-5	580.26	10.23	570.03	3/9/07 15:43	2.53	19.45	9.22	1.48	3/13/2007
NRG-6	580.51	11.30	569.21	3/9/07 14:30	2.13	20.31	9.01	1.44	3/13/2007
NW-1	578.92	9.37	569.55	3/8/07 9:41	-0.38	17.14	7.77	1.24	3/9/2007

C	Table 5 Groundwater Level and Well Volume Data for 2007 Groundwater Quality Sampling Event												
Location	Measuring Point Elevation (ft MSL)	Depth to Ground- water (feet)	Ground- water Elevation (ft MSL)	Ground- water Level Date /Time	Riser Pipe Stick- up (feet)	Total Depth (feet)	Depth of Water Column (feet)	Well Volume (gallons)	Ground- water Quality Sample Date				
NW-2	581.25	dry		3/8/07 10:11		12.00	NA	NA	OK by DEC Not to Sample/No Substitution				
NW-3*	581.3	dry		3/8/07 10:15	1.75	11.88	NA	NA	OK by NYSDEC Not to Sample/No Substitution				
NW-5	581.58	9.08	572.5	3/8/07 9:21	2.04	18.48	9.40	1.50	Water level Only				

Key:

¹ Measuring Point Elevation Surveyed on 3/13/07

* Measuring point elevation updated after 3/2/07 upgrade

Figure 5 provides a groundwater elevation contour map for the data collected on the dates noted in Table 5, above. Generally, groundwater flow is similar to that depicted by others in previous reports for the Site. Flow is from east to west with a radiating pattern (east to northwest and east to southwest) from the central portion of the Site. Due to the low permeable base of the Ore Pit, infiltrating surface water appears to be perched in this area creating a localized mound. Figure 6 depicts the groundwater surface exclusive of groundwater elevations measured in the Ore Pit/perched area.

3 ANALYTICAL LABORATORY

NRG, on behalf of NRG Thermal, LLC, contracted with STL, a laboratory certified under the New York State Department of Health Environmental Laboratory Approval Program to conduct the chemical analysis for the project described above. A copy of STL's New York laboratory certification and Laboratory Quality Manual were provided in the SIWP. STL's data packages were prepared in accordance with USEPA Contract Laboratory Program (CLP) Level IV deliverable protocols. Analytical data were validated by NRG in accordance with applicable USEPA SW-846 analytical method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) criteria. NRG's data validation packages are attached in Appendix E. NRG's data validation shows the data to be sufficient for its intended use. Each data package was reviewed and determined to be complete and in compliance with the project SAP.

Method blanks and calibration blanks were analyzed with each analytical batch. Trip blanks were included with all shipments of samples for analysis of volatile organics with the exception of SDG220-978. Methylene chloride and acetone were present in the method blanks and trip blanks indicating potential laboratory contamination.

4 ANALYTICAL RESULTS

Data collection during the sampling program included groundwater and soil/fill quality sampling at excavation pits and monitoring wells. This data was compared with applicable chemistry data collected during prior Site investigations to determine whether appreciable change has occurred over time and how the current data compares to relevant standards.

4.1 Groundwater

Attachment 1 provides the STL analytical reports and Appendix D provides summary tables for both historic and recent groundwater testing including flagged results for all data.

Appendix D, Table I tabulates groundwater quality data provided by the NYSDEC in the SER for reported contaminants found historically at the Site. Simple descriptive statistics were added to review the frequency for which these analytes were detected, their maximum concentration and their standard deviation (provided that more than one value was historically reported). Appendix D, Table II presents data collected by NRG in 2007, similarly formatted

Table 6, below, compares statistics derived from the historic unflagged groundwater quality data to the unflagged groundwater quality data collected in 2007. For review, chlorinated VOCs, considered to be associated with releases at the Envirotek Superfund site, are shown in red (200). Those cells where the 2007 maximum and/or average concentration reported exceeded the historic data are bolded (**200**). Note that the referenced Environmental Protection Agency (EPA) methods used for analysis refer only to the 2007 analysis. Those groundwater quality values, either historic or recent, that exceed New York State Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations are highlighted with yellow (200). The most stringent TOGS 1.1.1 standard was used when evaluating this data.

G	Table 6 Groundwater Quality Statistical Analysis with TOGS 1.1.1 Standard										
	Historio	Statistical A	analysis	2007	2007 Statistical Analysis						
Analytes	Number of Detected Results	Maximum Detected Conc.	Average of Detected Conc.	Number of Detected Results	Maximum Detected Conc.	Average of Detected Conc.	TOGS 1.1.1				
VOCs (ug/L) by EPA Method 8260B											
1,1-Dichloroethane	1.0	71.0	71.0	1.0	5.4	5.4	5.0				
1,1-Dichloroethene	2.0	93.0	53.5				0.7				
1,2-Dichloroethane	1.0	20.0	20.0				0.6				
1,2-Dichloroethene	2.0	85.0	70.5				5.0*				
cis-1,2-Dichloroethene				3.0	320.0	146.0	5.0				
Benzene				1.0	6.4	6.4	1.0				
Chloroethane	1.0	52.0	52.0				5.0				
Ethylbenzene	2.0	170.0	97.0				5.0				
Methylene Chloride	1.0	180.0	180.0				5.0				
Trichloroethene	1.0	46.0	46.0				5.0				
Vinyl chloride				1.0	250.0	250.0	0.3				
Xylenes, Total	1.0	67.0	67.0	1.0	10.0	10.0	5.0				

G	Table 6 Groundwater Quality Statistical Analysis with TOGS 1.1.1 Standard										
	Historio	Statistical A	nalysis	2007	Statistical An	alysis	Standard				
Analytes	Number of Detected Results	Maximum Detected Conc.	Average of Detected Conc.	Number of Detected Results	Maximum Detected Conc.	Average of Detected Conc.	TOGS 1.1.1				
SVOCs (ug/L) by EPA	Method 8270	C					•				
Naphthalene				1	19.0	19.0	10.0				
2-Methylphenol				2.0	330.0	194.0	NS				
4-Methylphenol				1.0	65.0	65.0	NS				
2,4-Dimethylphenol				2.0	300.0	179.0	50.0				
Dissolved Metals (ug/l	_) by EPA M	ethod 6010 B	and 7174A	(Hg only)							
Aluminum	16.0	52,900.0	15,870.3				NS				
Arsenic	9.0	42.1	20.9				25.0				
Barium	16.0	510.0	196.6	15.0	150.0	51.9	1,000.0				
Beryllium	11.0	4.2	1.4				3.0				
Cadmium	8.0	4.6	2.6				5.0				
Chromium	16.0	165.0	35.8	1.0	44.0	44.0	50.0				
Cobalt	15.0	35.0	11.7				NS				
Copper	15.0	159.0	54.3				200.0				
Iron	16.0	94,500.0	32,813.0				300.0				
Lead	15.0	276.0	67.1	3.0	51.0	21.3	25.0				
Magnesium	16.0	48,800.0	21,916.3				35,000.0				
Manganese	16.0	4,690.0	1,374.5				300.0				
Mercury	8.0	0.3	0.1				0.7				
Nickel	16.0	109.0	33.5				100.0				
Potassium	16.0	39,400.0	16,828.8				NS				
Selenium	14.0	60.5	16.6				10.0				
Sodium	16.0	52,400.0	21,448.1				20,000.0				
Thallium	1.0	8.9	8.9				0.5				
Vanadium	16.0	91.9	36.4				NS				
Zinc	16.0	3,000.0	341.6				2,000.0				
Inorganics (ug/L) by E	PA Method	3012B									
Total Cyanide	2.0	19.6	17.0	2.0	170	74.1	200.0				

Key:

*Assumes all 1,2-Dichloroethene is cis-1,2-Dichloroethene NA: Standard not specified

Review of Table 6 indicates that nine VOCs were found historically at maximum values that exceeded the most restrictive TOGS value. Five VOCs were found in 2007 at maximum levels above the TOGS value. Only two of these VOCs were nonchlorinated and assumed to be not associated with Envirotek (benzene and xylenes). SVOCs were not detected in historical groundwater samples. In 2007, two SVOCs were found with maximum values above their respective TOGS values.

Referring only to those metals analyzed in 2007 (RCRA metals: arsenic, barium cadmium, chromium, lead, mercury, selenium, and silver), all the maximum concentrations of metals in 2007 were lower than maximum levels found historically. It is important to note from this data set that historically the metal results are reported as "total" metals implying these are unfiltered water samples. The NRG 2007 data represents "dissolved" metals which are

filtered.	Table	7	compares	total	and	dissolved	metal	concentrations	for	the	2007
groundwa	ter qua	lity	data.								

							Tabl	e 7							
				To	tal and	d Diss	olved I	Metals	Comp	arison					
	Samples Collected 3/8/2007 - 3/14/2007														
Location	ENV -5	ENV -7	GW -1	GW -2	GW -3	GW -4	GW -5	GW -6	NRG -1	NRG -2	NRG -3	NRG -4	NRG -5	NRG- 6	NW -1
Parameter							Co	ncentra	ntion ug/l	_					
Dissolved Arsenic	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	4.3 J	5.9 J	25 U	25 U	25 U	25 U
Total Arsenic	25 U	25 U	25 U	25 U	17 J	5.1 J	49 J	4.5 J	5.3 J	11 J	10 J	9.3 J	5.7 J	5.8 J	25 U
Dissolved Cadmium	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.98 J	1.7 J	10 U	10 U	10 U	10 U	10 U
Total Cadmium	0.85 J	2.3 J	1.6 J	10 U	5.8 J	0.9 7 J	2.2 J	10 U	0.94 J	2.4 J	8.5 J	6.6 J	3.5 J	10 U	4 J
Dissolved Chromium	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	3.1 J	5.7 J	10 U	10 U	10 U	44	10 U
Total Chromium	4.4 J	10	2.1 J	10 U	67	15	6.7 J	11	13	39	42	44	31	180	12
Dissolved Lead	5 U	5 U	5 U	5 U	5 U	4.2 J	3.8 J	5 U	7.2	51	5 UJ	5 UJ	5 U	5.7	3 J
Total Lead	11	28	18	5 U	88	40	40	9.7	22	130	350 J	210 J	41	17	8.2
Dissolved Selenium	30 UJ	30 UJ	30 UJ	30 UJ	16 J	30 U	30 U	30 U	30 U	30 U	30 UJ	30 UJ	30 U	30 U	30 U
Total Selenium	30 UJ	30 UJ	30 UJ	30 UJ	18 J	30 U	30 U	30 U	30 U	30 U	30 UJ	30 UJ	30 U	30 U	30 U
Dissolved Silver	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Total Silver	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.4 J	0.97 J	5 U	5 U	5 U
Dissolved Barium	27	21	120	70	39	37	150	24	47	59	17	14	32	67	54
Total Barium	72	130	190	200	390	110	440	40	100	260	73	120	130	240	140
Dissolved Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U N	0.2 U N	0.2 U	0.2 U	0.2 U N	0.2 U N	0.2 U
Total Mercury	0.12 J	0.08 7 J	0.2 U	0.2 U	0.2 U	0.2 U	0.21 U	0.2 U	0.22 UJ	0.83 UJ	0.15 J	0.2 U	0.16 UJ	0.093 U J	0.2 U

Key:

U: Analyzed for but not detected

J: Indicates an Estimated Value

N: Indicates Matrix Spike Duplicate recovery outside control limits.

Table 7, provides an overview of the metals analysis for wells sampled in 2007 by NRG. Both the total and dissolved metals results are provided. For review, all unflagged data is

bolded (**200**), and only the unflagged data is discussed in this document. The data indicates that neither dissolved or total arsenic, cadmium, selenium, mercury, or silver were reported during this sampling event. Chromium was reported present as a total metal in eleven wells but present only in one well as a dissolved component. Data for the well with both total and dissolved chromium hits indicates a 76% reduction in concentration when accounting for only the dissolved component compared to the total concentration. Twelve of the 15 wells sampled reported total lead while three had a dissolved component. For the three wells with both total and dissolved lead concentrations, the reduction in concentration due to filtering was between 33% to 39% (an average of 35%). All 15 wells sampled reported total and dissolved barium components. For these wells, the reduction in barium concentration due to filtering was between 10% to 63% with an average of 25%. Overall, filtering the groundwater samples resulted in an average reduction of 26% for all metals in all samples.

Of the eight RCRA metals tested in 2007, historically four had maximum total concentrations that exceeded the TOGS standard: arsenic, lead and selenium. To better understand the implications of the historical total metals data, we assume that the average reduction in concentration found between the total and dissolved concentrations in 2007 can be applied to these metals where only historic total concentrations are reported to obtain an estimated dissolved value for these metals. Applying the average 26% reduction to the historic maximum and average total metals values reported, only the lead (72 mg/L) and the selenium (16 mg/L) maximum values exceeded the TOGS standard. These elevated concentrations were found at wells NW-4 (lead and selenium) and GW-4 (lead). Well GW-4 is near the Tonawanda Coke stormwater discharge pond. This area was resampled for dissolved metals in 2007. That groundwater quality sample did not have elevated lead or selenium. NW-4 is located southwest of Envirotek. It was not resampled in 2007. Neither of these wells indicated elevated lead or selenium levels.

In general, the comparison of the total to dissolved concentrations reported in 2007 indicates that a significant portion of the total metals reported in groundwater is likely associated with suspended solids that are removed by filtering the sample. This suspended component obtained during sampling procedures is generally not mobile in the porous media that comprises the groundwater system at the Site. The historic total metals reported are not considered a significant concern to potential receptors, unless unfiltered water is consumed. The maximum cyanide levels found in 2007 were higher than those found historically; however, they did not exceed the TOGS standard.

To evaluate contaminant loading across the Site, three tables (8 to 11) were compiled from the statistics calculated on the 2007 data. Table 8, below, provides the chemistry for the two upgradient wells tested by NRG (GW-1 and GW-2). The results indicate that two contaminants, benzene and barium, are likely migrating onto the Site via groundwater flow.

Table 8 Groundwater Quality Summary for Upgradient Monitoring Well (GW-1 and GW-2) March 2007									
Analyte Number of Maximum Average of Detected Detected Detected Concentration Concentrations									
VOCs (ug/L) by EPA Method 8260B									
Acetone	0								
Benzene 1 6.4 6.4									
Bromodichloromethane	Bromodichloromethane 0								

Table 8 Groundwater Quality Summary for Upgradient Monitoring Well (GW-1 and GW-2) March 2007						
Analyte	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentrations			
Carbon disulfide	0					
Chloroform	0					
Dibromochloromethane	0					
1,1-Dichloroethane	0					
1,2-Dichloroethane	0					
Ethylbenzene	0					
Methylene Chloride	0					
4-Methyl-2-pentanone (MIBK)	0					
Tetrachloroethene	0					
Toluene	0					
Vinyl chloride	0					
Xylenes, Total	0					
cis-1,2-Dichloroethene	0					
Trans-1,2-Dichloroethene	0					
SVOCs (ug/L) by EPA Method 8270C	0	1	r			
Acenaphinene Dia/2 athulhaurul) abthalata	0					
Bis(2-ethylnexyl) phthalate	0					
Dihanzafuran	0					
	0					
2 Mathylpophthalapa	0					
2-Methylnaphinalene	0					
Dependence	0					
	0					
	0					
	0					
2,4-Dimensiphenoi	0					
Dissolved Metals (ug/L) by EBA Method 60	10 B and 7174A	(Ha only)				
Arconic						
Cadmium	0					
Chromium	0	1				
Lead	0	1				
Selenium	0	1				
Barium	2	120	95			
Inorganics (ug/L) by FPA Method 3012B		120				
Total Cyanide	0					

Table 9, below, summarizes sampling results for all Site wells except the upgradient wells (GW-1 and GW-2) and most downgradient wells located near the river (NRG-1, NRG-2, GW-4, GW-5, GW-6). This data represents the area of the Site where the majority of Site steel making operations (and Envirotek disposal) took place and, therefore, contaminant loading would be highest.

19

Remedial Investigation Report

Table 9								
Groundwater Quality	Summary For Ce	entral Portion of the	he Site					
March 2007								
	Number of	Maximum	Average of					
Analyte	Results	Concentration	Concentrations					
VOCs (ug/L) by EPA Method 8260	B							
Acetone	0							
Benzene	0							
Bromodichloromethane	0							
Carbon disulfide	0							
Chloroform	0							
Dibromochloromethane	0							
1,1-Dichloroethane	1	5.4	5.4					
1,2-Dichloroethane	0							
Ethylbenzene	0							
Methylene Chloride	0							
4-Methyl-2-pentanone (MIBK)	0							
Tetrachloroethene	0							
Toluene	0							
Vinyl chloride	1	250	250.0					
Xylenes, Total	1	10	10.0					
cis-1,2-Dichloroethene	3	320	146.0					
trans-1,2-Dichloroethene	0							
SVOCs (ug/L) by EPA Method 827	70C							
Acenaphthene	0							
Bis(2-ethylhexyl) phthalate	0							
Carbazole	0							
Dibenzofuran	0							
Fluorene	0							
2-Methylnaphthalene	0							
Naphthalene	1	19	19.0					
Phenanthrene	0							
2-Methylphenol	2	330	194.0					
4-Methylphenol	1	65	65.0					
2,4-Dimethylphenol	2	300	179.0					
Phenol	0							
Dissolved Metals (ug/L) by EPA M	lethod 6010 B a	nd 7174A (Hg only	()					
Arsenic	0							
Cadmium	0							
Chromium	1	44	44.0					
Lead	1	5.7	5.7					
Selenium	0							
Barium	8	67	33.9					
Inorganics (ug/L) by EPA Method	3012B	1						
Total Cyanide	0							

The data presented in Table 9 indicates that four VOCs, four SVOCs and three metals were found in the central area of the Site. Of these, three of the VOCs are chlorinated and

considered to be associated with the Envirotek facility. The nonchlorinated VOC, xylenes, has been found at a higher concentration historically at the Site (see Table 6, above).

The metal barium, reported present in the central portion of the Site, was also found in an upgradient well at a higher concentration, inferring off-site influence by this contaminant. The remaining metals, chromium and lead, have been historically found at the Site (see Table 6, above); however, they were reported previously at higher concentrations.

Table 10, compiles the statistics for the wells located farthest downgradient at the Site to determine if the contaminants found upgradient of these locations are potentially migrating off Site.

Table 10									
Groundwater Quality Summary For Site Downgradient Wells									
March 2007									
Analyte	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentrations						
VOCs (ug/L) by EPA Method 8260B									
Acetone	0								
Benzene	0								
Bromodichloromethane	0								
Carbon disulfide	0								
Chloroform	0								
Dibromochloromethane	0								
1,1-Dichloroethane	0								
1,2-Dichloroethane	0								
Ethylbenzene	0								
Methylene Chloride	0								
4-Methyl-2-pentanone (MIBK)	0								
Tetrachloroethene	0								
Toluene	0								
Vinyl chloride	0								
Xylenes, Total	0								
cis-1,2-Dichloroethene	0								
trans-1,2-Dichloroethene	0								
SVOCs (ug/L) by EPA Meth	od 8270C								
Acenaphthene	0								
Bis(2-ethylhexyl) phthalate	0								
Carbazole	0								
Dibenzofuran	0								
Fluorene	0								
2-Methylnaphthalene	0								
Naphthalene	0								
Phenanthrene	0								
2-Methylphenol	0								
4-Methylphenol	0								
2,4-Dimethylphenol	0								
Phenol	0								
Dissolved Metals (ug/L) by EPA Method 6010 B and 7174A (Hg only)									

Table 10 Groundwater Quality Summary For Site Downgradient Wells (GW-4, GW-5, GW-6, NRG-1 and NRG-2) March 2007								
Analyte Number of Detected Maximum Detected Average of Detected Results Concentration Concentration								
Arsenic	0							
Cadmium	0							
Chromium	0							
Lead	2	51	29.1					
Selenium	0							
Barium	5	150	63.4					
Inorganics (ug/L) by EPA Method 3012B								
Total Cyanide	2	170	96.5					

Table 10 indicates that no VOCs, no SVOC, and two metals and cyanide were found in the downgradient wells. Of the two metals found, barium and lead, barium has been found in upgradient wells at the Site. Its presence may be associated in part with off-Site loading; however, it has also been found in Site soil/fill samples. The barium levels detected in the downgradient wells were below their TOGS standard.

The lead level reported exceeded its TOGS standard of 25 ug/L. Monitoring well NRG-2 had the highest concentration found at 51 ug/L. This well point is directly downgradient of the Tonawanda Coke storm water discharge pond. NRG-2 is also the location of the elevated cyanide level (170 ug/L) reported for the Site during this sampling event. However, the cyanide concentration did not exceed its related TOGS standard.

4.1.1 Groundwater Results Discussion

Comparison of the 2007 data to the historic groundwater analytical results in Table 6 infers the groundwater at the Site, contaminated by the Envirotek facility, is improving over time. This data indicates that historically at least seven chlorinated VOCs were associated with Envirotek exceeded the TOGS, while the recent sampling indicates this has been reduced to three. Table 9 of the ROD presents a graphical presentation of the time concentration trend for two wells utilized to monitor the Envirotek plume. This figure indicates that in the early 1990's total VOC concentrations in the Site well ENV-4 were over 1,800 mg/L and by 2004 they had dropped to 8 mg/L. Though, the same well network was not sampled by NRG in 2007, the collective VOC concentration for all Site wells sampled indicates maximum levels in the 0.5 mg/L range, well below the concentrations reported historically. When plotted (see Figure 7), the summed chlorinated VOCs present a dispersed "plume" emanating from the Envirotek area of the Site, likely resulting from the radiating groundwater flow pattern. There is no indication that chlorinated VOCs are leaving the Site via a groundwater pathway and therefore these contaminants are not a concern to off-site receptors.

The historic data evaluated by NRG for nonchlorinated VOCs indicates a sum maximum VOC concentration of 337 ug/L for all Site wells. The 2007 data indicates the concentration of these nonchlorinated compounds has dropped to 16.4 ug/L in the wells sampled by NRG. Of the 16.4 ug/L detected, 6.4 ug/L were found in an upgradient well GW-1 and likely the contaminant (benzene) results from an off-Site source of contamination. The remaining 10 ug/L (xylenes) were found in well NRG-3 which is finished in perched groundwater above the

base of the Ore Pit area. The presence of nonchlorinated VOCs at the Site in 2007 does not reflect a wide-spread contamination issue and there is no indication that these VOCs are leaving the Site via a groundwater pathway and, therefore, these contaminants are not a concern to off-site receptors.

Historic data indicates no unflagged SVOCs were reported for the Site. A number of the wells which were sampled historically were also sampled by NRG in 2007. The 2007 results also indicate no unflagged SVOCs were present at these wells. The unflagged SVOCs reported by NRG in 2007 for Site wells were from two of the wells installed in the Ore Pit area. Groundwater in this area was not assessed in prior investigations. The highest SVOC concentrations were found in the well (NRG-3) finished in perched groundwater above the base of the Ore Pit. Elevated SVOCs were not reported in monitoring wells GW-4 and GW-5 located downgradient of the Ore Pit. SVOCs found in Site groundwater appears to be a localized occurrence and does not indicate a significant threat to human or ecologic groundwater receptors.

Regarding the inorganic compounds found in groundwater at the Site, only the lead concentration exceeded it's respective TOGS standard in the data collected during 2007. As previously noted, that exceedence occurred at NRG-2 located downgradient of the Tonawanda Coke storm water discharge pond. The lead concentration was non-detect in the monitoring well (NRG-1) located upgradient of the storm water discharge pond. This pond may be a point source for groundwater contaminant loading at the Site by processes not associated with Site operations. It is NRG's understanding that Tonawanda Coke has had an easement to operate this pond on the Site and also has an operating permit from the State of New York.

As discussed above, historic elevated metal concentrations are in part due to the results being reported as "total" metal concentrations. NRG's analysis of these historic results indicates that when recalculated as "dissolved" metals, the contaminants found that exceed the TOGS was limited and they do not indicate a significant threat to potential groundwater receptors as groundwater will not be consumed or accessed by operations at the Site

Figure 8 summarizes the groundwater quality analytical results provided in the SER and reported by NRG that exceed their respective TOGS standard. Plotting of these results supports the above discussion in that:

- 1. VOCs found at the Site are predominantly chlorinated, are at their highest concentration immediately downgradient (westerly) of the Envirotek portion of the Site and are not present in monitoring wells adjacent to the Niagara River. These analytes pose a limited risk to on-Site receptors only in areas above the Envirotek plume. They do not present a risk for off-site receptors;
- 2. SVOCs are present in groundwater only at the Ore Pit area of the Site. They were not reported as present in monitoring wells adjacent to the Niagara River. The SVOCs present represent a very localized impact posing a limited risk to on-Site receptors and they do not pose a risk to off-site receptors; and
- 3. Various total metals are found across the Site. Dissolved metals were only detected at one location in 2007, near the Tonawanda Coke stormwater discharge pond. Historic metal results were biased by reporting "total" metals. A comparison of the historic total metal concentrations to 2007 dissolved metals data, suggest that historically dissolved metals that exceeded the evaluated standards were limited in

their geographic location at the Site. Sampling of these areas in 2007 did not indicate these metals exceeded the applied standards. Therefore, metals do not appear to be a risk to receptors on or off Site.

4.1.2 Summary of Potential Response Actions - Groundwater

The groundwater data compiled in this report supports the conclusion that the VOC, SVOC and metal concentrations do not pose a significant risk to either on or off-Site receptors with the exception that chlorinated VOCs may pose a risk to Site workers in the area overlying the Envirotek groundwater plume. The ROD, Sections 5 through 8, review the remediation goals, remedy alternatives considered, and the selected remedy for addressing these groundwater contaminants. No additional actions are necessary for the Roblin Steel Site other than assuring that the requirements of the ROD Section 8 remedy for Envirotek OU3: Groundwater are met during Site redevelopment and operation.

4.2 Soil/Fill

Appendix B provides four summary tables with both historic and recent soils testing including flagged results and detection limits for all data. Appendix B, Table I, tabulates soil quality data provided by the NYSDEC for reported contaminants found historically at the Site in surficial soil/fill (defined as occurring within the top 1 foot of the soil/fill column). Table II tabulates 2007 investigation soil quality data for surficial soil/fill. Table III tabulates data provided by the NYSDEC for reported contaminants found historically at the Site in subsurface soil/fill (defined as soils occurring below 1 foot below the ground surface). Table IV tabulates 2007 investigation soil quality data for subsurface soil/fills. Statistics were added to review the frequency for which these analytes were detected, their maximum concentration and their standard deviation (provided that more than one value was historically reported).

4.2.1 Surficial Soil/Fill

Table 11, below, compares the historic unflagged data to unflagged data collected in 2007 for the surficial soil/fill. Only those analytes detected historically or in 2007 are presented. Those cells where the 2007 maximum and/or average concentration reported exceeded the historic data are highlighted in yellow (200).

Table 11 Historical vs Recent Surface Soil Quality Summary Results (<1.0 feet)								
	Historic Soil Sampling Results – Statistics Number of Maximum Average of Maximum A Detected Detected Detec					Results-		
Analyte						Average Detected Conc.		
SVOCs (ug/kg)								
2-Methylnaphthalene				1	440.0	440.0		
4-Methylphenol				1	530.0	530.0		
Acenaphthene	1	620.0	620.0					

June 26, 2007

Former Roblin Steel Site

Table 11									
Historical vs Recent Surface Soil Quality Summary Results (<1.0 feet)									
	Historic Soil Sampling Results – Statistics			2007 So	2007 Son Sampling Results- Statistics				
	Number		_	Number					
Analuta	of Detected	Maximum Detected	Average Detected	of Detected	Maximum Detected	Average Detected			
Analyte	Results			Results	420.0	420.0			
Ronzo (a) anthracono	1	1500.0	1500.0	2	2100.0	420.0			
	1	1600.0	1600.0	2	2000.0	1450.0			
Benzo (b) fluoranthene	1	1600.0	1600.0	3	2900.0	1525.0			
Benzo (g h i) pervlene	2	2500.0	1525.0	3	2400.0	1506 7			
Benzo (k) fluoranthene	1	2500.0	1600.0	2	2400.0	920.0			
	2	1800.0	1110.0	2	2300.0	1153.3			
Dibenz (a b) anthracene	1	700.0	700.0	1	630.0	630.0			
	2	190.0	1220.0	3	1900.0	10/6 7			
Indepo (1.2.3-cd) pyrepe	2	2200.0	1315.0	3	2500.0	1/90.0			
Nanhthalene	2	2200.0	1010.0	1	480.0	1 4 30.0			
Phenanthrene	1	730.0	730.0	3	550.0	400.0			
Pyrene	3	2600.0	1186.7	2	1500.0	1125.0			
Metals (mg/kg)	5	2000.0	1100.7	2	1300.0	1125.0			
Aluminum	4	19100.0	14622.5						
Antimony	2	37.0	29.5						
Arsenic	6	24.0	11.8	1	11	11			
Barium	10	473.0	215.7	4	332	205			
Bervllium	4	2.4	1.4						
Cadmium	9	21.0	5.6	2	10.0	9,1			
Calcium	4	85800.0	67950.0						
Chromium	11	200.0	86.5	4	335.0	199.0			
Cobalt	9	54.0	12.8						
Copper	6	193.0	91.0						
Lead	8	1210.0	319.2	10	899.0	280.6			
Magnesium	3	957.0	645.7						
Manganese	4	6120.0	2765.0						
Mercury	4	1.0	0.3	5	075	0.3			
Nickel	12	152.0	47.6						
Potassium	4	1470.0	1063.3						
Sodium	4	1020.0	566.5						
Thallium	1	0.6	0.6						
Vanadium	4	69.4	29.8						
Zinc	4	551	314.5						
Inorganics (mg/kg)									
Cvanide				3	340.00.0	173.00.0			

Referring to Appendix B, 25 surficial soil samples have been collected at the Site; 12 historically and 13 in 2007. Table 11 indicates that no VOCs, 16 SVOCs, 20 metals and cyanide have been reported in Site surficial soil/fill over time. Of those compounds analyzed in 2007, five of the SVOCs had higher maximum concentrations than the 16 historically reported. A reduced suite of metals was analyzed in 2007 (RCRA metals arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) compared to the list of metals historically; therefore, only the metals analyzed/detected in 2007 to those found historically, only one had a higher maximum concentration. All analytes found in 2007 had been reported previously. No maximum concentration for a given analyte, reported in 2007, had a implies that there is no appreciable difference in the historic versus recent data sets. It also indicates that there are no other COCs present at elevated levels that have not previously been reported in the surficial soil.

Table 12, below, compares maximum detected concentrations of historic and 2007 unflagged data for Site surficial soils to the 6 NYCRR Part 375 Soil Clean-up Objectives for Restricted Development as a Residential Land Use. Those cells where either the historic or the 2007 maximum concentration exceeded the regulatory standard are highlighted in yellow (200).

Table 12 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Restricted Residential Soil Quality Standards									
	Histor Sampling Stat	ric Soil Results – istics	Standard	2007 Soil Sampling Results-Statistics					
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Restricted Restidential Land Use	Number of Detected Results	Maximum Detected Conc.				
SVOCs (ug/kg)	SVOCs (ug/kg)								
2-Methylnaphthalene			NS	1	440.0				
4-Methylphenol			NS	1	530.0				
Acenaphthene	1	620.0	100,000a						
Anthracene	1	800.0	100,000a	1	420.0				
Benzo (a) anthracene	1	1,500.0	1,000f	2	2,100.0				
Benzo (a) pyrene	1	1,600.0	1,000f	3	2,900.0				
Benzo (b) fluoranthene	1	1,600.0	1,000f	4	3,900.0				
Benzo (g,h,i) perylene	2	2,500.0	100,000a	3	2,400.0				

June 26, 2007

Former Roblin Steel Site

Table 12 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Restricted Residential Soil Quality Standards									
	Histor Sampling Stat	ric Soil Results – istics	Standard	2007 Soil Sampling Results-Statistics					
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Restricted Residential Land Use	Number of Detected Results	Maximum Detected Conc.				
Benzo (k) fluoranthene	1	1,600.0	3,900	2	1,400.0				
Chrysene	2	1,800.0	3,900	3	2,300.0				
Dibenz (a,h) anthracene	1	790.0	330e	1	630.0				
Fluoranthene	2	1,900.0	NS	3	1,900.0				
Indeno (1,2,3-cd) pyrene	2	2,200.0	500f	3	2,500.0				
Naphthalene			100,000a	1	480.0				
Phenanthrene	1	730.0	100,000a	3	550.0				
Pyrene	3	2,600.0	100,000a	2	1,500.0				
Metals (mg/kg)	-								
Aluminum	4	19,100.0	NS						
Antimony	2	37.0	NS						
Arsenic	6	24.0	16f	1	11				
Barium	10	473.0	400	4	332				
Beryllium	4	2.4	72						
Cadmium	9	21.0	4.3	2	10.0				
Calcium	4	85,800.0	NS						
Chromium	11	200.0	NS	4	335.0				
Cobalt	9	54.0	NS						
Copper	6	193.0	270						
Lead	8	1,210.0	400	10	899.0				
Magnesium	3	957.0	NS						
Manganese	4	6,120.0	2,000f						
Mercury	4	1.0	0.81j	5	0.75				
Nickel	12		310						

Table 12 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Restricted Residential Soil Quality Standards								
	Histor Sampling Stati	ric Soil Results – istics	Standard	2007 Soil Sampling Results-Statistics				
Analyte	Number of Maximum Detected Detected Results Conc.		Part 375 Restricted Use Soil Cleanup Standards- Restricted Residential Land Use	Number of Detected Results	Maximum Detected Conc.			
		152.0						
Potassium	4	1,470.0	NS					
Sodium	4	1,020.0	NS					
Thallium	1	0.6	NS					
Vanadium	4	69.4	NS					
Zinc	4	551.0						
Inorganics (mg/kg)								
Cyanide			27h	3	34.0			

Footnotes

d: The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CROL is used as the SCO value

f: For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

h: The SCO for this specific compound (or family of compounds) is considered to be met if the

analysis for the total species of this contaminant is below the specific SCO.

J: This SCO is the lower of the values for mercury (elemental) or mercury (inorganic slats). See TSD Table 5.6-1. NS: Not specified

Table 12 indicates that five SVOCs exceed the Part 375 Restricted Use Soil Cleanup Standard for Restricted Residential Use. Of these compounds, only one was more than an order of magnitude greater than its respective standard (Indeno (1,2,3-cd) pyrene). Appendix B Table I indicates that all the historic SVOCs above the referenced standards were found at either SS-104 or SS-105. Figure 9 shows those locations as west of the Site's warehouse or in the vicinity of Envirotek's cleanup, respectively. Appendix B Table II indicates that the majority of the SVOCs reported in 2007 as above the standard were found in two Site locations: NRGTP-5 and NRGTP-11. NRGTP-5 is located north of the Site Boiler House abutting a concrete pit containing three inches of oil, and NRGTP-11 is in the Ore Pit area (see Figure 9). One additional SVOC, also above the standard, was found at NRGTP-4, also in the Ore Pit area. This data suggests that SVOCs in surficial soil/fill at the Site, at concentrations exceeding this standard, are not a wide-spread concern.

Six inorganics present exceed the Part 375 Restricted Use Soil Cleanup Standard for Restricted Residential Use. The frequency of metals above the standard in surficial soils

indicates precautions should be taken to prevent human exposure if the Site is developed for a residential purpose. See Figure 9 for an aerial plot of the metals exceeding the standard.

Table 13, below, compares maximum detected concentrations of historic unflagged data and the unflagged data for Site surficial soils to the 6 NYCRR Part 375 Soil Clean-up Objectives for Restricted Development as an Industrial Land Use. Those cells where either the historic or the 2007 maximum and/or average concentration exceeded the regulatory standard are highlighted in yellow (200).

Table 13 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Industrial Soil Quality Standards										
	Standard	2007 So	oil Sampling	Results-						
		Statistics		Stanuaru		Statistics				
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Industrial Land use	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.			
SVOCs (ug/kg)	1									
2- Methylnaphthalene				NS	1	440.0	440.0			
4-Methylphenol				NS	1	530.0	530.0			
Acenaphthene	1	620.0	620.0	1,000,000c						
Anthracene	1	800.0	800.0	1,000,000c	1	420.0	420.0			
Benzo (a) anthracene	1	1,500.0	1,500.0	11,000	2	2,100.0	1,370.0			
Benzo (a) pyrene	1	1,600.0	1,600.0	1,100	3	2,900.0	1,450.0			
Benzo (b) fluoranthene	1	1,600.0	1,600.0	11,000.00	4	3,900.0	1,525.0			
Benzo (g,h,i) perylene	2	2,500.0	1,525.0	1,000,000c	3	2,400.0	1,596.7			
Benzo (k) fluoranthene	1	1,600.0	1,600.0	110,000	2	1,400.0	920.0			
Chrysene	2	1,800.0	1,110.0	110,000	3	2,300.0	1,153.3			
Dibenz (a,h) anthracene	1	790.0	790.0	1,100	1	630.0	630.0			
Fluoranthene	2	1,900.0	1,220.0	1,000,000c	3	1,900.0	1,046.7			
Indeno (1,2,3-cd) pyrene	2	2,200.0	1,315.0	11,000	3	2,500.0	1,490.0			
Naphthalene				1,000,000c	1	480.0	480.0			
Phenanthrene	1	730.0	730.0	1,000,000c	3	550.0	453.3			
Pyrene	3	2,600.0	1,186.7	1,000,000c	2	1,500.0	1,125.0			
Metals (mg/kg)										

Remedial Investigation Report

Former Roblin Steel Site

Table 13 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Industrial Soil Quality Standards								
	Historic Soil Sampling Results – Statistics			Standard	2007 Soil Sampling Results- Statistics			
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Industrial Land use	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	
Aluminum	4	19,100.0	14,622.5	NS				
Antimony	2	37.0	29.5	NS				
Arsenic	6	24.0	11.8	16f	1	11	11	
Barium	10	473.0	215.7	10,000d	4	332	205	
Beryllium	4	2.4	1.4	2,700				
Cadmium	9	21.0	5.6	60	2	10.0	9.1	
Calcium	4	85,800.0	67,950.0	NS				
Chromium	11	200.0	86.5	NS	4	335.0	199	
Cobalt	9	54.0	12.8	NS				
Copper	6	193.0	91.0	10,000d				
Lead	8	1,210.0	319.2	3,900	10	899.0	280.6	
Magnesium	3	957.0	645.7	NS				
Manganese	4	6,120.0	2,765.0	10,000d				
Mercury	4	1.0	0.3	5.7j	5	0.75	0.3	
Nickel	12	152.0	47.6	10,000d				
Potassium	4	1,470.0	1,063.3	NS				
Sodium	4	1,020.0	566.5	NS				
Thallium	1	0.6	0.6	NS				
Vanadium	4	69.4	29.8	NS				
Zinc	4	551.0	314.5	10,000d				
Inorganics (mg/kg)								
Cyanide				10,000d	3	34.0	17.3	

Footnotes

c: The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

Table 13 Historical and Recent Surface Soil (<1.0 feet) Quality Summary Compared to Industrial Soil Quality Standards								
	Historic Soil Sampling Results – 2007 Soil Sampling Results- Statistics Standard Statistics						Results-	
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Industrial Land use	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	

d: The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

f: For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1. **NS**: Not Specified

Appendix B data and Table 13 indicate that one SVOC (Benzo (a) pyrene at NRGTP-5 and SS-104) and one metal (arsenic at SS-104 and SS-105) exceeded the Part 375 Restricted Use Soil Cleanup Standard for Industrial Use in soil/fill less than 1 foot below the ground surface. Figure 10 show exceedances of this industrial standard for soil within 1 foot of the ground surface. This data suggests that SVOCs and metals in surficial soil/fill at the Site, at concentrations exceeding the standard, are not a wide-spread concern for industrial development at the Site.

4.2.2 Subsurface Soil/Fill

Table 14, below, compares the historic unflagged data to unflagged data collected in 2007 for the subsurface soil/fill. Only those analytes detected historically or in 2007 are presented. Those cells where the 2007 maximum and/or average concentration reported exceeded the historic data are bolded (**200**). Chlorinated VOCs, considered to be associated with releases at the Envirotek Superfund site, are shown in red (**200**).

Table 14 Historical vs Recent Subsurface (>1.0 feet) Soil Quality, Summary									
	Historic S	oil Sampling R Statistics	esults –	2007 Soil Sampling Results- Statistics					
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.			
VOCs (ug/kg)									
1,1,1-Trichloroethane	9	340.0	108.1	0					
1,1-Dichloroethane	3	110.0	55.0	0					
1,2-Dichloroethene	6	280.0	69.7	0					
1,2-Dichloroethene (total)*	5	180.0	94.2	1	900.0	900.0			
1,2-Dichloropropane	1	760.0	760.0	0					
2-Butanone	2	52.0	32.0	0					

June 26, 2007

Former Roblin Steel Site

Table 14								
Historical vs Recent Subsurface (>1.0 feet) Soil					Quality Summary			
	Statistics			Statistics				
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.		
Acetone	8	2124.0	339.1	1	88.0	88.0		
Benzene	1	34.0	34.0	0				
Ethylbenzene	4	2365.0	703.8	2	2200.0	1135.5		
Methylene Chloride	19	263.0	78.3	0				
Tetrachloroethene	12	8300.0	1110.1	0				
Toluene	3	5506.0	2120.3	1	1700.0	1700.0		
Trichlorofluoromethane	1	2.0	2.0	0				
Trichloroethene	18	780.0	110.4	0				
Xylenes	7	14727.0	3409.3	2	8800.0	4423.5		
SVOCs (ug/kg)								
2,3,4,6-Tetrachlorophenol	1	35968.0	35968.0	0				
2-Methylnaphthalene	5	15865.0	3516.4	0				
2,4-Dimethylphenol				3	1800.0	1400.0		
4,6-Dinitro-2-methylphenol	1	1132.0	1132.0	0				
4-Methyl-2-Pentanone	4	950.0	300.0	0				
2-Methylphenol	1	274.0	274.0	0	2000.0	1365.0		
3-Methylphenol	1	107.0	107.0	0				
4-Methylphenol	2	1495.0	801.0	3	7100.0	3833		
4-Bromophenyl phenyl ether	3	222.0	206.3	0				
Acenaphthene	5	22601.0	5215.2	2	2100.0	1475.0		
Anthracene	8	4200.0	1107.8	2	2900.0	1745.0		
Benzidine	1	185.0	185.0	0				
Benzo (a) anthracene	14	14012.0	1976.4	2	4000.0	2410.0		
Benzo (a) pyrene	7	9500.0	1902.1	2	3200.0	2010.0		
Benzo (b) fluoranthene	9	21632.0	3958.0	3	4300.0	1926.7		
Benzo (g,h,i) perylene	4	18062.0	4933.0	3	3000.0	1446.7		
Bis(2-ethylhexyl)phthalate	12	6607.0	1422.9	3	6700.0	3283.3		
Butlylbenzylphthalate	3	713.0	293.7	0				
Benzo (k) fluoranthene	8	14823.0	3650.4	2	1700.0	1050.0		
Benzoic acid	1	87.0	87.0	0				
Carbazole				2	1600.0	1020.0		
Chrysene	14	13657.0	2224.3	3	4800.0	2053.3		
Dibenzofuran	3	392.0	187.7	2	1800.0	1255.0		
Di-n-butylphthalate	4	633.0	327.5	0				
Di-n-octylphthalate	3	543.0	277.7	0				
Fluoranthene	12	13441.0	1996.4	4	12000.0	3757.5		
Fluorene	8	7634.0	1013.9	2	5200.0	3200.0		
Hexachlorobenzene	1	165.0	165.0	0				

Table 14								
Historical vs Recent Subsurface (>1.0 feet) Soil Quality Summary Historic Soil Sampling Results – 2007 Soil Sampling Results-								
	Statistics			Statistics				
Analyte	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.	Number of Detected Results	Maximum Detected Conc.	Average Detected Conc.		
Indeno (1,2,3-cd) pyrene	5	11415.0	2764.2	2	3100.0	1985.0		
Isophorone	1	254.0	254.0	0				
Naphthalene	4	29658.0	7857.5	3	6400.0	3600.0		
Phenanthrene	14	5210.0	1014.2	3	17000.0	6830.0		
Phenol	1	1398.0	1398.0	3	4700	3433		
Pyrene	14	26651.0	4407.4	4	7900.0	2625.0		
Metals (mg/kg)								
Aluminum	8	34400.0	21887.5	0				
Antimony	2	20.8	13.3	0				
Arsenic	23	60.5	21.6	0				
Barium	25	680.0	212.9	0				
Beryllium	12	4.0	2.2	0				
Cadmium	14	8.9	3.7	1	19.7	19.7		
Calcium	8	152000.0	106850.0	0				
Chromium	18	575.0	74.2	12	535.0	93.9		
Cobalt	16	21.6	7.5	0				
Copper	20	12100.0	709.7	0				
Iron	8	192000.0	67337.5	0				
Lead	21	3570.0	406.8	11	609.0	126.8		
Magnesium	8	30500.0	14497.5	0				
Mercury	16	0.7	0.3	0				
Nickel	20	142.0	26.1	0				
Potassium	28	2940.0	1002.6	0				
Selenium	4	15.5	5.8	0				
Sodium	12	1740.0	660.4	0				
Vanadium	20	280.0	40.2	0				
Zinc	9	367.0	162.4	0				
Inorganics (mg/kg)								
Cyanide				3	48.2	21.5		

* some data was reported as cis-1,2-Dichloroethene.

Table 14 indicates that 15 VOCs, 34 SVOCs, 20 metals and cyanide have been reported in Site subsurface soil/fill over time. Of those analytes present in 2007, only one of the VOCs had a higher maximum concentration then the 15 found previously. Six of the SVOCs had higher maximum concentrations than the 34 historically reported. Comparing the eight metals analyzed in 2007 to those found historically, only one (cadmium) had a higher maximum concentration than what was previously detected.

The 2007 locations for soil/fill sampling were chosen to evaluate areas suspected of having elevated contaminant levels based on historic sampling events and by using field screening

results. This data does indicate that a number of the analytes had maximum concentrations, reported in 2007, at an order of magnitude greater than those historically detected at the Site. Conversely, a number of historic maximum concentrations were also significantly higher than those reported in 2007, which we interpret as simply reflecting the areal variability of the contaminants.

Appendix B, Tables III and IV, indicate that 75 subsurface samples were analyzed historically and 17 were analyzed in 2007; a Site-wide total of 92 samples. It is important to note that not every sample was analyzed consistently for each compound over time. It appears, at a minimum, that VOCs were analyzed 64 times, SVOCs 38 times, and metals 28 times and cyanide two times. In 2007, VOCs were analyzed ten times, SVOCs 12 times, metals and cyanide 17 times.

The majority of the VOCs reported historically at the Site were chlorinated and associated with the Envirotek release. A soil removal action was initiated to address these contaminants. Recent data indicates that with one exception, the VOCs found at the Site are nonchlorinated. Regardless, all VOCs found in 2007 were detected in samples collected from test pits in the Ore Pit area, which represents a localized occurrence.

Numerous SVOCs and metals were reported historically and/or in 2007 in subsurface soil/fill. Table 14 indicates fewer SVOC compounds were detected in 2007 (21) then historically (32); however, all metals detected in 2007 were also found historically. Though a number of specific SVOCs were more prevalent than others and in some instances certain SVOCs were only detected once, in general, the data suggests that at least four SVOCs would be present at any location sampled at the Site at this depth interval.

The historic data indicates a given metals analyte was found 117 times in the 28 samples collected (4.2 per sample) while the 2007 data indicates 47 times in 17 samples collected (2.8 per sample). This data implies that there is little difference in the historic versus recent data sets and that subsurface SVOCs and metals are common across the Site.

Based on the 2007 data, cyanide was detected in 3 of the 17 (18%) soil samples collected from subsurface soil/fill. Though the three locations are not within one area of the Site (test pits NRGTP-5, 7 and 9 - see Figure 2), this data does not indicate wide-spread distribution of this contaminant, but a more localized occurrence.

Table 15, below, compares maximum detected concentrations of historic unflagged data and the unflagged data for Site subsurficial soils to the 6 NYCRR Part 375 Soil Clean-up Objectives for Development as an Restricted Residential Land Use. Those cells where either the historic or the 2007 maximum and/or average concentration exceeded the regulatory standard are highlighted in yellow (200).

		Table15						
Historical and Recent Subsurface (>1.0 feet) Soil Quality Summary Compared to								
Restricted Residential Soil Quality Standards								
	Sampling	Results –		2007 Soil Sampling				
	Stat	istics	Standard	Results-Statistics				
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Restricted Residential Land use	Number of Detected Results	Maximum Detected Conc.			
VOCs (ug/kg)								
1,1,1-Trichloroethane	9	340	100,000a	0				
1,1-Dichloroethane	3	110	26,000	0				
1,2-Dichloroethene	6	280	NS	0				
1,2-Dichloroethene (total)*	5	180	NS	1	900			
1,2-Dichloropropane	1	760	NS	0				
2-Butanone	2	52	NS	0				
Acetone	8	2124	100,000b	1	88			
Benzene	1	34	4,800	0				
Ethylbenzene	4	2365	41,000	2	2200			
Methylene Chloride	19	263	100,000a	0				
Tetrachloroethene	12	8300	19,000	0				
Toluene	3	5506	100,000a	1	1700			
Trichlorofluoromethane	1	2	21,000	0				
Trichloroethene	18	780	NS	0				
Xylenes	7	14727	100,000a	2	8800			
SVOCs (ug/kg)								
2,3,4,6- Tetrachlorophenol	1	35968	NS	0				
2-Methylnaphthalene	5	15865	NS	0				
2,4-Dimethylphenol			NS	3	1800			
4,6-Dinitro-2- methylphenol	1	1132	NS	0				
4-Methyl-2-Pentanone	4	950	NS	0				
2-Methylphenol	1	274	NS	2	2000			
3-Methylphenol	1	107	NS	0				
4-Methylphenol	2	1495	NS	3	7100			
4-Bromophenyl phenyl ether	3	222	NS	0				
Acenaphthene	5	22601	100,000a	2	2100			
Anthracene	8	4200	100,000a	2	2900			
Benzidine	1	185	NS	0				
Benzo (a) anthracene	14	14012	1,000f	2	4000			
Benzo (a) pyrene	7	9500	1,000f	2	3200			
Benzo (b) fluoranthene	9	21632	1,000f	3	4300			
Former Roblin Steel Site

Table15					
Res	tricted Resi	dential Soil (Quality Standa	ands	inpared to
	Histor Sampling Stat	ric Soil Results – stics	Standard	2007 Soil Sampling Results-Statistics	
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Restricted Residential Land use	Number of Detected Results	Maximum Detected Conc.
Benzo (g,h,i) perylene	4	18062	100,000a	3	3000
Bis(2-	12	6607	NS	2	6700
Butlylhonzylphthalate	12	712	NS		6700
Benzo (k) fluoranthene	8	14823	NS	2	1700
Benzoic acid	1	87	NS	0	1700
Carbazole	0	01	NS	2	1600
Chrysene	14	13657	3.900	3	4800
Dibenzofuran	3	392	59.000	2	1800
Di-n-butvlphthalate	4	633	NS	0	
Di-n-octvlphthalate	3	543	NS	0	
Fluoranthene	12	13441	NS	4	12000
Fluorene	8	7634	100,000a	2	5200
Hexachlorobenzene	1	165	NS	0	
Indeno (1,2,3-cd) pyrene	5	11415	500f	2	3100
Isophorone	1	254	NS	0	
Naphthalene	4	29658	100,000a	3	6400
Phenanthrene	14	5210	100,000a	3	17000
Phenol	1	1398	100,000a	3	4700
Pyrene	14	26651	100,000a	4	7900
Metals (mg/kg)					
Aluminum	8	34400	NS	0	
Antimony	2	20.8	NS	0	
Arsenic	23	60.5	16f	0	
Barium	25	680	400	0	
Beryllium	12	4	72	0	
Cadmium	14	8.9	4.3	1	19.7
Calcium	8	152000	NS	0	
Chromium	18	575	NS	12	535
Cobalt	16	21.6	NS	0	
Copper	20	12100	270	0	
Iron	8	192000	NS	0	
Lead	21	3570	400	11	609
Magnesium	8	30500	NS	0	

Former Roblin Steel Site

	Table15					
Historical and Recent	Subsurface	e (>1.0 feet)	Soil Quality Su	ummary Co	mpared to	
Rest	tricted Resi	dential Soil C	Quality Standa	rds		
	Histor	ric Soil				
	Sampling	Results –		2007 Soil	Sampling	
	Stat	istics	Standard	Results-	Statistics	
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards- Restricted Residential Land use	Number of Detected Results	Maximum Detected Conc.	
Mercury	16	0.7	0.81j	0		
Nickel	20	142	310	0		
Potassium	28	2940	NS	0		
Selenium	4	15.5	180	0		
Sodium	12	1740	NS	0		
Vanadium	20	280	NS	0		
Zinc	9	367	10,000 d	0		
Inorganics (mg/kg)						
Cyanide	0		27h	3	48.200	

Footnotes

a: The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.

b: The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

f For constituents where the calculated SCO was lower than the rural soil background concentration as

determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

h: The SCO for this specific compound (or family of compounds) is considered to be met if the analysis

For the total species of this contaminant is below the specific SCO.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

* some data was reported as cis-1,2-Dichloroethene.

Table 15, above, indicates that five SVOCs and two metals exceed the Part 375 Restricted Use Soil Cleanup Standard for Restricted Residential Use, both historically and during the 2007 sampling event, in subsurface soil/fill samples. Appendix B Table III indicates that the SVOC exceedances were found in samples collected in three areas: off-Site in the Bike Path area, in the Ore Pit area and south of the former Boiler House (Area C), and Area E (Figure 11). Data from 2007 indicates elevated SVOCs were only found in the Ore Pit area. This data suggests that SVOCs are present at multiple locations in the subsurface soil/fill at the Site at concentrations exceeding this standard but are not a wide-spread concern.

Relative to the inorganics analyzed for in 2007, four exceed the Part 375 Restricted Use Soil Cleanup Standard for Restricted Residential Use over time. Elevated levels of these inorganics were detected Site-wide and in the Bike Path area. The frequency of metals above the standard in subsurface soil/fill indicates precautions should be taken to prevent human exposure if the Site is developed for a residential purpose. See Figure 11 for an

aerial plot of soil quality data for the SVOCs, metals and cyanide data that exceed the restricted residential standard.

Table 16, below, compares maximum detected concentrations of historic unflagged data and the unflagged data for Site subsurficial soils to the 6 NYCRR Part 375 Soil Clean-up Objectives for Development as an Industrial Land Use. Those cells where either the historic or the 2007 maximum and/or average concentration exceeded the regulatory standard are highlighted in yellow (200).

		Table16				
Historical and Rece	Historical and Recent Subsurface Soil Quality Summary Results Compared to Industrial Soil Quality Standards (>1.0 feet)					
	Histo Sampling Stat	ric Soil g Results – istics	Standard	2007 Soil Sampling Results-Statistics		
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards -Industrial Land use	Number of Detected Results	Maximum Detected Conc.	
VOCs (ug/kg)					-	
1,1,1-Trichloroethane	9	340	1,000,000c	0		
1,1-Dichloroethane	3	110	480,000	0		
1,2-Dichloroethene	6	280	60,000	0		
1,2-Dichloroethene (total)*	5	180	1,000,000c	1	900	
1,2-Dichloropropane	1	760	NS	0		
2-Butanone	2	52	NS	0		
Acetone	8	2124	1,000,000c	1	88	
Benzene	1	34	89,000	0		
Ethylbenzene	4	2365	780,000	2	2200	
Methylene Chloride	19	263	1,000,000c	0		
Tetrachloroethene	12	8300	300,000	0		
Toluene	3	5506	1,000,000c	1	1700	
Trichloroethene	18	780	400,000	0		
Trichlorofluoromethane	1	2	NS	0		
Xylenes	7	14727	1,000,000c	2	8800	
SVOCs (ug/kg)						
2,3,4,6- Tetrachlorophenol	1	35968	NS	0		
2,4-Dimethylphenol			NS	3	1800	
2-Methylnaphthalene	5	15865	NS	0		
2-Methylphenol	1	274	NS	2	2000	
3-Methylphenol	1	107	NS	0		
4,6-Dinitro-2- methylphenol	1	1132	NS	0		
4-Bromophenyl phenyl ether	3	222	NS	0		

Former Roblin Steel Site

Historical and Rece	nt Subsurfa	Table16 ce Soil Quali	tv Summarv F	Results Com	pared to
Industrial Soil Quality Standards (>1.0 feet)					
	Histo Sampling Stat	ric Soil J Results – istics	Standard	2007 Soil Sampling Results-Statistics	
Analyte	Number of Detected Results	Maximum Detected Conc.	Part 375 Restricted Use Soil Cleanup Standards -Industrial Land use	Number of Detected Results	Maximum Detected Conc.
4-Methyl-2-Pentanone	4	950	NS	0	
4-Methylphenol	2	1495	NS	3	7100
Acenaphthene	5	22601	1,000,000c	2	2100
Anthracene	8	4200	1,000,000c	2	2900
Benzidine	1	185	NS	0	
Benzo (a) anthracene	14	14012	11,000	2	4000
Benzo (a) pyrene	7	9500	1,100	2	3200
Benzo (b) fluoranthene	9	21632	11,000.00	3	4300
Benzo (g,h,i) perylene	4	18062	1,000,000c	3	3000
Benzo (k) fluoranthene	8	14823	110,000	2	1700
Benzoic acid	1	87	NS	0	
Bis(2- ethylhexyl)phthalate	12	6607	NS	3	6700
Butlylbenzylphthalate	3	713	NS	0	
Carbazole	0		NS	2	1600
Chrysene	14	13657	110,000	3	4800
Dibenzofuran	3	392	1,000,000c	2	1800
Di-n-butylphthalate	4	633	NS	0	
Di-n-octylphthalate	3	543	NS	0	
Fluoranthene	12	13441	1,000,000c	4	12000
Fluorene	8	7634	1,000,000c	2	5200
Hexachlorobenzene	1	165	NS	0	
Indeno (1,2,3-cd) pyrene	5	11415	11,000	2	3100
Isophorone	1	254	NS	0	
Naphthalene	4	29658	1,000,000c	3	6400
Phenanthrene	14	5210	1,000,000c	3	17000
Phenol	1	1398	1,000,000c	4	5800
Pyrene	14	26651	1,000,000c	3	4700
Metals (mg/kg)					
Aluminum	8	34400	NS	0	
Antimony	2	20.8	NS	0	
Arsenic	23	60.5	16f		
Barium	25	680	10,000d		
Beryllium	12	4	2,700	0	
Cadmium	14	8.9	60	1	19.7

Former Roblin Steel Site

		Table16			
Historical and Rece	nt Subsurfa	ce Soil Quali Quality Stan	ty Summary I dards (>1.0 fr	Results Com	pared to
	Histo Sampling Stat	ric Soil Results – istics	2007 Soil Sampling Results-Statistics		
Analyte	NumberPart RestriofMaximumDetectedDetectedResultsConc.Land		Part 375 Restricted Use Soil Cleanup Standards -Industrial Land use	Number of Detected Results	Maximum Detected Conc.
Calcium	8	152000	NS	0	
Chromium	18	575	NS	12	535
Cobalt	16	21.6	NS	0	
Copper	20	12100	10,000d	0	
Iron	8	192000	NS	0	
Lead	21	3570	3,900	11	609
Magnesium	8	30500	NS	0	
Mercury	16	0.7	5.7j	0	
Nickel	20	142	10,000d	0	
Potassium	28	2940	NS	0	
Selenium	4	15.5	6,800	0	
Sodium	12	1740	NS	0	
Vanadium	20	280	NS	0	
Zinc	9	367	10,000d	0	
Inorganics (mg/kg)					
Cyanide	0		10,000d	3	48.200

* some data was reported as cis-1,2-Dichloroethene.

Footnotes for Part 375 Restricted Use Soil Cleanup Standards-Restricted Residential Land use

c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

f For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1. NS: Not Specified

The data compiled and presented in Table 16, above, indicates that five analytes have exceeded the Part 375 Restricted Use Soil Cleanup Standard for Industrial Use; five historically and one in 2007. These exceedences were limited to SVOCs and metals. Appendix B, Table III, and Figure 12 indicate exceedances in three areas: the Ore Pit area, north of Envirotek, and south of the former Boiler House. Data from Appendix B Table IV indicates that only one SVOC, Benzo (a) pyrene, was reported in 2007 as above the standard. This SVOC was detected in the Ore Pit area. This data suggests that SVOCs are present at multiple locations in subsurface soil/fill at the Site at concentrations exceeding this standard; however, they are not a wide-spread concern.

Relative to the three inorganics detected in 2007, none of the eight RCRA metals exceeded the Part 375 Restricted Use Soil Cleanup Standard for Industrial Use. Historically arsenic has exceeded the standard. The frequency of arsenic above the standard in subsurface soil/fill indicates precautions should be taken to reduce human exposure if the Site is developed for industrial purpose. See Figure 12 for an aerial plot of the SVOCs and metals that exceeded the industrial use standard in subsurface soils.

4.2.3 Soil/Fill Results Discussion

Comparison of the 2007 data to the historic soils/fill analytical results in the previous sections infers that with the exception of the chlorinated VOCs, the COCs at the Site have remained consistent through time. The majority of the chlorinated VOCs detected at the Site historically were not found in the 2007 sampling. This is attributed to the soil removal action completed by Envirotek. Nonchlorinated VOCs were not found in soil/fill at any depth above the reviewed standards.

Numerous SVOCs have been detected at the Site and off Site. Though they are widespread, the majority of the SVOC concentrations are below the applicable standards. The SVOCs above their relevant standards are generally localized to specific areas of the Site. In both the surficial and subsurface soils, these areas are generally the Ore Pit area and around the Boiler House, though a few results indicate the standards were exceeded elsewhere.

Metals were also found both at the Site and in samples off-Site. The metal concentrations which exceed standards are not as prevalent in the surficial samples as in the subsurface samples. This may be due in part to the presence of native soils at the land surface in a number of locations and the predominance of fill containing slag, cinder and foundry sand in the subsurface.

As noted on page 2 of the SER, the SVOCs and metals are likely associated with the former steel making operations at the Site. NRG agrees with this statement, but would add that as a number of these contaminants were found off-Site, they can also be attributed, at least in part, to the fill material at the site.

4.2.4 Summary of Potential Response Actions – Soils/Fill

Based on the soil/fill analytical results, VOCs are not a risk to receptors at the Site. For the other COCs, based on a comparison of the exceedences of residential and industrial standards, the Site poses significantly less risk to humans if used for industrial development. NRG recommends the Site only be considered for industrial development and will limit further discussion to the assumption that only industrial development will take place at the Site.

In relation to the Part 375 Restricted Use Soil Cleanup Standard for Industrial Use, shallow surficial soil/fill has had exceeded the standard at two locations (SS 104 and SS 105) for two compounds (Benzo (a) pyrene and arsenic; see Figure 11). The location of SS 105 was within the Envirotek area, which has been remediated; therefore, exposure to these contaminants Site-wide is considered very low. Based on these results, NRG recommends no response action be considered to address contaminants present in the shallow Site soil and that no specific precautions be taken to limit exposure at the Site to this soil.

At greater depth, the frequency of samples exceeding the industrial standard increases. However, only two contaminants are generally present Site-wide: arsenic and Benzo (a) pyrene (see Figure 12). Based on the ubiquitous nature of these contaminants both on- and off-Site, NRG recommends no response action be taken to reduce the levels of these contaminants or otherwise proactively remove or isolate the impacted areas. The soil, present at depth, poses no risk to employees at the Site. However, potential exposure can occur during construction. Construction activities proposed for the Site will have a relatively short time window for worker exposure. NRG recommends that, where possible, subgrade activities be limited and that Site grading be limited to the upper two feet of the land surface. Above grade construction practices should be encouraged. Where subgrade excavation is required, NRG recommends a Health and Safety Plan be developed and employed during all Site activities to reduce worker exposure and to manage residual soil in a manner acceptable to the NYSDEC.

5 CONCLUSIONS AND RECOMMENDATIONS

Based on review of analytical data compiled from historic and recent sampling events, NRG concludes that:

- Soil/fill analysis for the Site indicate a legacy of contaminants brought to the Site as fill and/or released by Site operations and Envirotek. These COCs are comprised of VOCs, SVOCs, metals and cyanide;
- Based on groundwater chemistry, a number of the soil/fill contaminants are found in Site groundwater near the central portion of the Site where operations took place. Few COCs are above their regulatory standards established to protect groundwater resources;
- Groundwater contaminants decrease as they move downgradient from the central portion of the Site, and they are not generally found in the downgradient wells near the river. The data infers attenuation of the contaminants is taking place on Site and that there is no risk to either ecologic or human receptors providing groundwater is not appropriated at the Site and that soil vapor is managed above the Envirotek plume;
- 4. Over time, the number of contaminants found in Site groundwater has decreased and generally their maximum concentrations have also declined;
- 5. The Envirotek chlorinated VOC plume is generally definable within Site boundaries;
- Organic and inorganic contaminants are likely entering the Site from an upgradient source either by groundwater transport or through discharge to a storm water pond located on Site;
- 7. Based on comparison of the historic and 2007 soil/fill analytical results to applicable standards, the Site is best suited for commercial or industrial development;
- 8. Few soil/fill contaminants are found at a depth less than 1 foot Site-wide in excess of the Part 375 Restricted Use Soil Cleanup Standard for Residential and Industrial Use in shallow Site soil. Due to their limited occurrence on Site and their occurrence off-Site, they are not considered a potential receptor risk.; and
- 9. A limited number of metals and SVOCs are found Site-wide in soil/fill greater than 1 foot deep in excess of the Part 375 Restricted Use Soil Cleanup Standard for Residential and Industrial Use. Due to the isolation of the soil/fill contaminants from Site employees, they are not considered a risk. The potential short term risk to construction workers can be managed.

Based on these conclusions, NRG recommends that the Site be prepared for commercial or industrial development to support energy generation. We recommend the following measures precede the Site redevelopment:

- 1. This report be submitted to the NYSDEC for review, concurrence and approval;
- 2. That no response actions be completed at the Roblin Steel site to address contaminants present in either groundwater or soil/fill; and
- 3. The State of New York be petitioned to reclassify the Roblin Steel site to Class 4 and that a petition to declassify the Roblin Steel also be filed.

Upon completion of the first two of these three regulatory formalities and upon their potential purchase of the Site, NRG Thermal, LLC will take the following measures to reduce potential receptor risk during Site construction and to assure compliance with the Envirotek ROD:

- Develop a Health and Safety Plan (HSP) for Site workers involved in preparing the Site for development to reduce worker exposure to subsurface contaminants. HSP protocols will also be followed if subsurface work is completed after the Site is developed;
- 2. Adhere to a soil management plan that provides the protocols for evaluating, staging and/or disposing of demolition and contaminated soils, if any, generated at the Site during construction or during later Site improvement and maintenance;
- 3. Vent all occupied structures that will be located over the applicable area of the chlorinated VOC groundwater plume per the Vapor Intrusion Plan prepared by the Envirotek PRP group; and
- 4. Maintain and annually sample an approved groundwater monitoring well network relating to the Envirotek site per the approved Groundwater Monitoring Plan, and submit an annual report compiling this groundwater data to the State of New York.

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\River World Remedial Investigation Report_Final.doc

FIGURES

			NOTES:				
Sample Date	_						
1999 3/9/200	07		1. Ba	ase Map	prepared	by Blasland,	Bouck
5 NS			&	Lee, Inc.	Survey d	lated Octobe	r 1999.
4 NS			2. Mo	NITOLING		gnations:	
6 NS			G	/V: NYSL	Monitoring	uning weii	
7 NS			N\	V: Niada	ra River V	Vorld Monitor	ina Well
.2 NS			ES	SI: Empir	e Soils Inv	estigations N	Aonitoring Well
			NF	RG: Natu	ral Resou	rce Group M	onitoring Well
			3. All	results r	eported ir	n ug/L.	
			4. Me	etal conc	entrations	exceeding s	tandards shown
			on	ily for RC	RA metal	s: arsenic, ba	arium, cadmium,
				iomum,	ieau, mei	cury, selerilu	III, allu silver.
				ENV-	5		
			Parameter		Samp	e Date	
				9	/30/1999	3/8/2007	
		<u>1,2-C</u>	Dichloroethene	e 📃	56	ND	
		Lead	i		43.2	ND	
а				ENV-6	6		
			Dorom -1-		Samp	le Date	
			Parameter	9	/30/1999	3/8/2007	
		Chro	mium		53.3	NS	
		Lead			37.1	NS	
		Seler	nium		33.1	NS	
					<u>,</u>		l
				EINV-S) Comm	a Data	
	_		Parameter		Samp		
			Sablaraathaa	1	<u>0/1/1999</u>	3/9/2007	
		1,1-L	Jichioroethane	3	<u>/1</u> 52	NS NC	
					02	NS NC	
		Leau			62	N5	
					1		
					Sampl	o Dato	
		1	Parameter	0	20/1000	3/0/2007	
		Arco	nic	3.	42 1	5/5/2007 NS	
		Lead			38.2	NS	
		Solor	nium		12.7	NS	
		00101	liam				
							1
				-10VV-5	0	- Dete	
			Parameter		Samp		
		Solor		9.	15 1	3/8/2007	
		Selei	num		15.1	N5	
					hitorin	a Wolle	
						ig mens	
				•	Exis	tina Interr	nediate Aquifer
\						J	···· 1· ·
\mathbf{N}				•	Exis	ting Shall	ow Aquifer
						0	
				•	Pha	se II Shal	low Aquifer
V-2 (located i	n Envir	otek S	Site)	_	• •	<i>.</i>	
ramotor	S	Sample	e Date	•	Staf	f	
	10/1/	1999	3/9/2007		0.11	Devente	
proethene	93	3	NS		Site	Boundary	/
proethane	20	<u>)</u>	NS		1. NS	- Not Sam	bled
ene	17	0	NS		2. NA	· - Not Analy	/zed
e Chloride	18	0	NS		3. NE) - Not Dete	cted
					*Wells Up	graded by Replacin	g Protective Casing
					anu Riser	Suck op auring Pr	เอระ 11 ทางธรรญชีนิเปที.
					DATE	10/10/00	
					DATE:	10/12/06	
					REVIS	<u>ED: 06/27/0</u>	7
					SCAL	· 1·3 500	
					JUALE	. 1.0,000	
					DRAW	N BY: JPBC	ENTJE
					M:\Client	s\M-O\NRT\Arc	GIS\
This information is	for envir	ronmen	tal review purpose	es only.	2007\06\	_GW_Quality_ta	ables.mxd

SS-105				
Sample Depth:				
(0.0" - 6.0")				
Concentration				
17.1 mg/kg				
5.7 mg/kg				
1,210 mg/kg				
0.96 mg/kg				

NRG-5			
nple Date: 3/9/2007	Sample Depth: 2"		
Parameter	Concentration		
Lead	899 mg/kg		

-

+	hase II NRG Mo	onitoring Well Location				
+	Phase II Sampling Test Pit Location					
•	Bike Path Sample Location					
•	Surface Soil Sam	ple Location				
•	est Pit Sample L	ocation				
•	JSEPA Soil Sam	ple Location				
	oil Boring (04/20	001 & 06/2001)				
Soil Boring (05/1992)						
 Soil Boring (09/1999) 						
Groundwater Monitoring Wells						
Historic Sampling Areas						
Historic Test Pits						
Metal concentrations exceeding standards shown only for RCRA metals: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.						
		_				
	DATE: 04/23/0	7				
	REVISED: 06/2	27/07				
	SCALE: 1:3,50	00				
DRAWN BY: JPBOENTJE						

..

This information is for environmental review purposes only.

M:\Clients\M-O\NRT\ArcGIS\2007\06\ _Soil_Quality_tables_lessthan1ft.mxd

SS-105				
Date: 9/10/1999	Sample Depth: 0-6"			
Parameter	Concentration			
Arsenic	17.1 mg/kg			

SS-104			
Doto: 0/10/1000	Sample Depth:		
Dale. 9/10/1998	0-6"		
Parameter	Concentration		
zo (a) pyrene	1,600 ug/kg		
Arsenic	17.5 mg/kg		

+	Phase II NF	G Monitoring	Well Location
---	-------------	--------------	---------------

- + Phase II Sampling Test Pit Location
- Bike Path Sample Location
- Surface Soil Sample Location
- Test Pit Sample Location
- USEPA Soil Sample Location
- Soil Boring (04/2001 & 06/2001)
- ▲ Soil Boring (05/1992)
- ▲ Soil Boring (09/1999)
- Groundwater Monitoring Wells
- Historic Sampling Areas

Historic Test Pits

Metal concentrations exceeding standards shown only for RCRA metals: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.

DATE: 04/23/07

REVISED: 06/27/07 SCALE: 1:3,500

DRAWN BY: JPBOENTJE

This information is for environmental review purposes only.

M:\Clients\M-O\NRT\ArcGIS\2007\ 06_Soil_Quality_industrial_lessthan1ft.mxd

nnle Denth 2'		Area E	19	
oncentration	(Sample Da	te 1990)	Sample Depth 2'	
16.1 mg/kg	Parame	eter	Concentration	
<u></u>	Benzo (a) an	thracene	1,373 ug/kg	
	Benzo (a)	pyrene	1,500 ug/kg	
-	Indeno (1,2,3-	cd) pyrene	686 ug/kg	
	Arsen	ic	29.1 mg/kg	
L	Lead		1,360 mg/kg	l
г		DO 01		1
-		BG-01	Sampla Donth	
	(Sample Date	8/11/00)		
-	Parame	eter	Concentration	
-	Bariur	n	549 mg/kg	
			<u> </u>	I
		BG-02	2	
İ			Sample Depth	
mple Depth	(Sample Date	e 8/11/99)	(0.0' - 6.0')	
12.4	Parame	eter	Concentration	
oncentration	Benzo (a) an	thracene	1000 ug/kg	
1.3 mg/kg	Benzo (a)	oyrene	1000 ug/kg	
	Indeno (1,2,3-0	cd) pyrene	800 ug/kg	
mple Depth				
12'				
oncentration				
0.8 mg/kg				
C 11	1			
Sample Depth 2'	1			
Concentration				
14,012 ug/kg				
21,632 ug/kg				
13,657 ug/kg	-			
e 11,415 ug/kg				
50.6 mg/kg	-			
777 Hig/kg	!			
D 13	🕂 Pr	nase II NR	G Monitoring Well	Location
Sample Depth 2'	II 🗕 Pr	nase II Sar	mpling Test Pit Loc	ation
Concentration		ko Dath Sr	ample Location	
1,249 ug/kg] -			
0.40	ן 🔍 Su	urface Soil	Sample Location	
Somela Death Ol	– Те	st Pit Sam	ple Location	
Concentration				
	1 • U	SEPA Soil	Sample Location	
6.933 ua/ka	📔 🔺 So	oil Boring (04/2001 & 06/200	1)
14,823 ua/ka	🔺 er	nil Borina ((05/1992)	
29.1 mg/kg	11 - 30	Doning (33/100L)	
680 mg/kg	🔺 S	oil Boring	(09/1999)	
1,100 mg/kg	ll ● Gi	roundwate	r Monitoring Wells	
	Hi	storic Sam	npling Areas	
	KXXXX ці	storic Tect	Pits	
			113	
	Metal cor	ncentrations	s exceeding standard	ds shown
	only for R	CRA metal	ls: arsenic, barium, c	admium,
	chromium	i, lead, mer	cury, selenium, and	silver.
		DATE: 04	/23/07	
		REVISED	0: 06/27/07	
		SCALE:	1:3,500	
ion is for environmental review	n is for environmental review purposes onlySoil_Quality_tables_greaterthan1ft.mxd			

ample Depth: 2' concentration		
16.1 mg/kg		
ample Depth: 2' oncentration 60.5 mg/kg		
ample Depth: 2' oncentration 1,500 ug/kg 29.1 mg/kg		
ample Depth: 12'.4 oncentration 21.3 mg/kg		
ample Depth: 12' oncentration		
60.5 mg/kg ample Depth: 2' oncentration 4,012 ug/kg 9,500 ug/kg 11,632 ug/kg 50.6 mg/kg	 + Ph + Ph ● Bik ● Su ● Tes ● US ▲ So 	ase II NRG Monitoring Well Location ase II Sampling Test Pit Location & Path Sample Location rface Soil Sample Location st Pit Sample Location & EPA Soil Sample Location il Boring (04/2001 & 06/2001)
]	▲ So ● Gru ■ His ₩ His ₩ His Metal con only for Ru chromium	il Boring (05/1992) bil Boring (09/1999) oundwater Monitoring Wells storic Sampling Areas storic Test Pits centrations exceeding standards shown CRA metals: arsenic, barium, cadmium, , lead, mercury, selenium, and silver.
ation is for environmental review pu	rposes only.	DATE: 04/23/07 REVISED: 06/27/07 SCALE: 1:3,500 DRAWN BY: JPBOENTJE M:\Clients\M-O\NRT\ArcGIS\2007\06\ _Soil_Quality_industrial_greaterthan1ft.mxd

Appendix A Test Pit Logs

	Test Pit NRGTP-1			
Project Name: Niagara River World Reclassification	Location: X-coord <u>667902.98244</u> Y-coord <u>4761134.90401</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/27/07 Finish Depth : 10.0 ft	
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>579.31</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water : >10 ft -Not Determined	Service Rep: Dave Steiner	
Depth (feet)	Descript	tion	PID * (ppm)	
0-2	dark brown to black fine sand, tr	ace silt, moist, no odor (fill).	0.0	
2-4	dark brown to black fine sand, trace silt, moist, no odor (fill).		0.0	
6	golden brown fine to coarse sand, dry, no odor (fill).		0.0	
8	black to white fine to coarse sand, dry, no odor (fill).		0.0	
10	red, weathered red brick- clay to cobbles, moist, no odor (fill).		0.0	
	General Note: Test pit was orientated east to west and conducted			
	parallel and south of a concrete wall	to depth.		

	Test Pit NRGTP-2			
Project Name: Niagara River World Reclassification	Location: X-coord <u>667954.88715</u> Y-coord <u>4761129.1281</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/27/07 Finish Depth : 8.5 ft	
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>578.16</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water : >8.5 ft -Not Determined	Service Rep: Dave Steiner	
Depth (feet)	Descript	tion	PID* (ppm)	
0-1	dark brown fine sand to	p soil, no odor (fill).	0.0	
1-2	dark brown to black sand gravel slag, moist, no odor (fill).		0.0	
2-4	Slag becomes malleable, very hard trenching, dry, no odor (fill).		0.0	
4	malleable slag, very hard trenching, dry, no odor (fill).		12.0	
8	malleable slag, very hard trenching, dry, no odor (fill).		0.0	
General Note: Test pit was completed by alternating digging with				
	hoe and hoe hammer. Vary difficult of	ligging conditions.		
	1			

	Test Pit NRGTP-3			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668059.36747</u> Y-coord <u>4760979.38725</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date: 02/27/07 Finish Depth: 9.5 ft	
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>580.25</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: >9.5 ft	Service Rep: Dave Steiner	
Depth (feet)	Descript	tion	PID * (ppm)	
0-2	dark brown fine sand with fire	e brick, dry, no odor (fill).	0.0	
2.4	dark brown fine sand with fire brick, dry, no odor (fill).		0.0	
	Encountered dry tunnel from 4' to 9.5	' made of fire brick.		

Test Pit NRGTP-4			
Project Name : Niagara River World Reclassification	Location: X-coord <u>667921.08391</u> Y-coord <u>4761031.45262</u> (coords in UTM Zone 17 N [meters NAD 83])	Method : Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/27/07 Finish Depth : 9.0 ft
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>580.09</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 8.0 ft	Service Rep: Dave Steiner
Depth (feet)	Descript	tion	PID * (ppm)
0-2	Black fine sand top s	oil, no odor (fill).	0.0
2-4	dark brown to black sandy gravel (fo no odor (oundry sand and castings), dry, (fill).	0.0
4-6	dark brown to black sandy gravel (foundry sand and castings), dry, no odor (fill).		0.0
8	Black fine sand, phenolic odor, saturated (slight sheen on groundwater table) (fill).		3.4
	General Note: Test pit was complete	d in the former ore pit area. A	
	lot of casting plugs and steel bands in	This materials (mainly foundry	
	Sands).		

Tost Dit NDCTD_5			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668015.45259</u> Y-coord <u>4761062.7584</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/27/07 Finish Depth : 7.5 ft
Project Number: NRT2007-044.00	Ground Surface Elevation: 576.78 (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 7.5 ft	Service Rep: Dave Steiner
Depth (feet)	Descrip	tion	PID * (ppm)
0-2	dark brown fine sand to	p soil, no odor (fill).	0.0
2-2.5	light tan to brown fine to coarse sand, dry, no odor (fill).		0.0
4-7.5	dark brown fine to coarse sand and fine to medium gravel (cinders), dry to saturated at 7.5', no odor - no sheen (fill).		0.0
	General Note: Test pit was complete	d from east to west The	
	eastern most portion abutted the outs	side wall of a concrete pit.	
	There was 3" of oil in pit at 6.5 ft bos.	The concrete pit was 18' (N/S)	
	X 6' (E/W).	, , ,	
	, , ,		

Test Pit NRGTP-6			
Project Name : Niagara River World Reclassification	Location: X-coord <u>667919.63517</u> Y-coord <u>4760929.00492</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date: 02/27/07 Finish Depth: 9.0 ft
Project Number: NRT2007-044.00	Elevation: <u>581.44</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 8.0 ft	Service Rep: Dave Steiner
Depth (feet)	Descrip	tion	PID * (ppm)
0-2	Black fine sand top s	oil, no odor (fill).	0.0
2-4	dark brown to black sandy gravel (foundry sand and castings), dry, no odor (fill).		0.0
4-6	dark brown to black sandy gravel (foundry sand and castings), dry, slight phenolic odor- no sheen (fill).		5.8
6-8	Black fine sand, phenolic odor, saturated @ 8'(slight sheen on groundwater table) (fill).		4.0
9	Black fine sand, phenolic odor, saturated (slight sheen on groundwater table) (fill).		4.2
	General Note: Test pit was complete	ed in the former ore pit area. A	
	lot of casting plugs and steel bands in	n fill materials (mainly foundry	
	sanus).		

Test Pit NRGTP-7			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668004.22856</u> Y-coord <u>4760897.95113</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/27/07 Finish Depth : 4.0 ft
Project Number: NRT2007-044.00	Ground Surface Elevation: 574.82 (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 3.0 ft	Service Rep: Dave Steiner
Depth (feet)	Descrip	tion	PID* (ppm)
0-1	dark brown and white fine sand and	fine to coarse gravel slag, much	0.0
4.0	gray sludge, silt, we	et, no odor (fill).	0.0

	Test Pit NRGTP-8			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668155.22633</u> Y-coord <u>4760806.95105</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date: 02/27/07 Finish Depth: 8.0 ft	
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>577.0</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/27/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 7.0 ft	Service Rep: Dave Steiner	
Depth (feet)	Descrip	tion	PID* (ppm)	
0-2	brown to gray slag mainly fine to co	oarse gravel, dry, no odor (fill).	0.0	
2.4	brown to gray slag mainly fine to coarse gravel, dry, no odor (fill).		0.0	
5-8	rust to red slag mainly fine to coarse gravel, dry to saturated at 7 ft bgs, no odor (fill).		0.0	
	Asphalt at surface.			

Test Pit NRGTP-9			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668134.74125</u> Y-coord <u>4760754.07878</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175) Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/28/07 Finish Depth : 10.0 ft
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>580.0</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/28/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: >10.0 ft	Service Rep: Dave Steiner
Depth (feet)	Descript	tion	PID* (ppm)
0-2	black fine to coarse sand with fir occasional silty clay seams, c	ne to medium gravel (slag) , Iry to moist, no odor (fill).	0.0
2.4	black fine to coarse sand with fine to medium gravel (slag), occasional silty clay seams, dry to moist, no odor (fill).		0.0
4-6	brown slag mainly fine to coarse gravel, dry, no odor (fill).		0.0
6-8	golden brown fine to coarse sand, dry to moist no odor.		0.0
8-10	brown, dark gray, and blue-green sla dry to saturated at 7 ft	ag mainly fine to coarse gravel, bgs, no odor (fill).	0.0
	Difficult excavating below 4'. Began	to alternating between use of	
	hoe and hoe ram.		
	4		
	4		
	ļ		

Test Pit NRGTP-10			
Project Name : Niagara River World Reclassification	Location: X-coord <u>668132.94838</u> Y-coord <u>4760693.56085</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/28/07 Finish Depth : 9.0 ft
Project Number: NRT2007-044.00	Ground Surface Elevation: <u>578.0</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/28/07
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 8.5 ft	Service Rep: Dave Steiner
Depth (feet)	Descrip	tion	PID * (ppm)
0-2	black fine to cobble-sized gravel (s silty clay seams, dry to	lag and fire brick) , occasional moist, no odor (fill).	0.0
2.4	black fine to cobble-sized gravel (slag and fire brick) , occasional silty clay seams, dry to moist, no odor (fill).		0.0
4-6	black fine to medium sand with seams of tan-brown fine to coarse sand, with fine to coarse gravel-size slag, dry, no odor (fill).		0.0
6-8	tan-brown and black fine to medium sand and fine to coarse gravel- size slag, dry, no odor (fill).		0.0
8-9	tan-brown and black fine to medium sand and fine to coarse gravel- size slag, dry to saturated at 8.5', no odor (fill).		0.0

Test Pit NRGTP-11				
Project Name : Niagara River World Reclassification	Location: X-coord <u>667937.36724</u> Y-coord <u>4760896.18665</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/28/07 Finish Depth : 11.0 ft	
Project Number: NRT2007-044.00	Elevation: <u>580.4</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/28/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 9.0 ft	Service Rep: Dave Steiner	
Depth (feet)	Descrip	tion	PID * (ppm)	
0-2	tan-brown and orange fine to medium sand, moist, methane odor (much garbage in sample) (fill).		1.5	
2-4	black fine to medium foundry sand and slag, dry, phenolic odor (fill).		7.0	
4-6	black fine to medium foundry sand and slag, dry, phenolic odor (fill).		7.5	
8	black fine to medium foundry sand and slag, dry, phenolic odor (fill).		7.0	
10-11	Black fine sand, phenolic odor, saturated @ 9' (slight sheen on groundwater table) (fill).		7.5	
	General Note: Test pit was complete	ed in the former ore pit area. A		
	lot of steel bands and garbage (glass			
	plastic) in fill materials (mainly foundr			

Test Pit NRGTP-12					
Project Name : Niagara River World Reclassification	Location: X-coord <u>667904.87403</u> Y-coord <u>4761186.26567</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date: 02/28/07 Finish Depth: 7.5 ft		
Project Number: NRT2007-044.00	Elevation: 574.1 (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/28/07		
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 7.0 ft	Service Rep: Dave Steiner		
Depth (feet)	Descrip	tion	PID* (ppm)		
0-2	dark brown fine to medium sand and fine to coarse gravel slag, moist, no odor (fill).		0.0		
2-4	golden brown fine to coarse sand, dry, no odor (fill)		0.0		
4-6	dark brown fine to coarse sand, occasional slag and fire brick fragments, dry, no odor (fill).		0.0		
7.5	dark brown fine to coarse sand, occasional slag and fire brick fragments, no sheen on water table at 7', no odor (fill).		0.0		

Test Pit NRGTP-13				
Project Name : Niagara River World Reclassification	Location: X-coord <u>667934.57077</u> Y-coord <u>4761182.26692</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date : 02/28/07 Finish Depth : 9.0 ft	
Project Number: NRT2007-044.00	Elevation: 577.2 (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date: 02/28/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: 8.5 ft	Service Rep: Dave Steiner	
Depth (feet)	Descrip	tion	PID * (ppm)	
0-2	dark brown fine to medium sand with some silt and clay seams, moist, no odor (fill).		0.0	
2-4	brown fine to coarse sand to boulder sized slag, dry, no odor (fill)		0.0	
4-6	dark brown fine to coarse gravel slag, occasional fire brick fragments, dry, no odor (fill).		0.0	
6-8	dark brown fine to coarse gravel slag, occasional fire brick fragments, dry, no odor (fill).		0.0	
	Encountered 2' diameter sewer line (concrete?) at 8' below ground			
	surface oriented SE/NW. Pipe was mainly filled with sediment with			
	water in pipe at 8.5'.			
	•			

Test Pit NRGTP-14				
Project Name : Niagara River World Reclassification	Location: X-coord <u>668085.15423</u> Y-coord <u>4761042.17561</u> (coords in UTM Zone 17 N [meters NAD 83])	Method: Backhoe (TB175 Takeuchi with TB135 Takeuchi hoe hammer on-site)	Start Date: 02/28/07 Finish Depth: 3.5 ft	
Project Number: NRT2007-044.00	Elevation: <u>580.0</u> (ft MSL)	Logged by: Stephen Lorentz (NRG)	Finish Date : 02/28/07	
Sample: Grab	Excavator: SJB Empire Operator: Ken Fuller	Depth to Water: >3.5 ft	Service Rep: Dave Steiner	
Depth (feet)	Descrip	tion	PID* (ppm)	
0-3.5	gravel slag, dry, no odor (fill).		0.0	
	Very difficult excavating - Encountered massive slag deposits of			
	varying colors- Used ho ram multiple			
	4			
	1			
	 			
Appendix B Soil Chemistry Summation Tables

1

			Data Sou	rce: Table	e 6-1 of N	SDEC Si	ite Evalua	tion Repo	rt (Decem	ber 2006)		
Sample ID: Sample Date: Sample Depth:	SS-102 9/10/199 9 (0.0" - 6 0")	SS-103 9/10/199 9 (0.0" - 6 0")	SS-104 9/10/199 9 (0.0" - 6 0")	SS-105 9/10/199 9 (0.0" - 6 0")	BB-23 7/28/200 3 (0.0" - 2 0")	AJ-19 7/24/200 3 (0.0" - 2 0")	AF-18 7/24/200 3 (0.0" - 2 0")	AH-17 7/24/200 3 (0.0" - 2 0")	AI-18 7/24/200 3 (0.0" - 2 0")	BC-27 7/28/200 3 (0.0" - 2 0")	AK-12 7/24/200 3 (0.0" - 2 0")	DN-32 8/4/2003 (0.0" - 2 0")
VOCs (ug/kg)	0.0)	0.0 /	0.0 /	0.0 /	2.0)	2.0)	2.0)	2.0)	2.0)	2.0)	2.0 /	2.0)
1,1,1-Trichloroethane												
1,1-Dichloroethane												
1,2-Dichloroethane												
1,2-Dichloroethene												
1,2-Dichloropropane												
2-Butanone												
2-Hexanone												
4-Methyl-2-Pentanone					•							
Acetone												
Carbon Disulfide												
Chloroethane												
Ethylbenzene												
Methylene Chloride	2 J	2 J	3 J	2 J								
Tetrachloroethene				100 J								
l oluene Trichloroethene				61								
Trichlorofluoromethane				00								
Vinyl Chloride												
Xylenes												
SVOCs (ug/kg)												
2,3,4,6-Tetrachlorophenol		70 /										
2-Methylnaphthalene		76 J				-		-				
∠-memyphenol 3-Methylphenol												
4.6-Dinitro-2-methylphenol												
4-Bromophenyl phenyl ether												
4-Methylphenol		38 J										
Acenaphthene	52 J		620	120 J								
Anthracene	71 J		800	240 J								
Benzo (a) anthracene	280 1	53	1500	350 1				-				
Benzo (a) pyrene	200 J	55.5	1600	350 J				-				
Benzo (b) fluoranthene	260 J		1600	260 J								
Benzo (g,h,i) perylene	410 J	120 J	2500	550								
Benzo (k) fluoranthene	290 J		1600	330 J								
Benzoic acid	1100 D			1700 D		-		-				
Bis(2-ethylnexyl)phthalate	ТТОО В			140 J								
Carbazole			130 J	51 J								
Chrysene	380 J	77 J	1800	420								
Dibenz (a,h) anthracene			790	120 J								
Dibenzofuran			00.1	74.1								
Di-n-butyIphthalate			92 J	74 J 73 J				-				
Fluoranthene	460 J	60 J	1900									
Fluorene												
Hexachlorobenzene												
Indeno (1,2,3-cd) pyrene	310 J	85 J	2200	430								
Isophorone		42 1										
Phenanthrene	190 J	94.J	730	270 J								
Phenol	1000	010		2100								
Pyrene	460	66 J	2600	500								
<u>Metals (mg/kg)</u>												
Aluminum	19100	8390	12200	18800								07
Antimony	1 JN 7 0	4.4 JN २ २	∠.5 JN	5 JN 17 1	35	24			22			37
Barium	139	139	223	17.1	5.5	200	473		360	82	230	140
Beryllium	1.2	0.76	1.3	2.4								
Cadmium	1.2	1.9	4.6	5.7	3				21	4.4	4	5
Calcium	85800	47400	70900	67700								
Chromium	40.8	69.5	200	46.2	112 E	16	54	2.4	162	81	118	162
Copper	2.1 122.IN	1.Z 37.IN	3.2 148.IN	3.8 132.IN	40	14 68	54 63	13	1370E	193	12 2330E	9
Iron	29000**	16400**	77300**	58000**	25200 E	87300 E	85600 E	9150 E	85600E	36100E	87300E	87300E
Lead	148	83.5	399	1210	136 E	99	102 E	13	922E	152	449	595E
Magnesium	35300 J	1170 J	13900 J	9930 J	813	1240 E	2980 E	167	5080E	957	6290E	3730E
Manganese	1130	1840	6120	1970								
Mercury	0.06	0.06	0.16	0.96	22	70	20	6.0	400	60	150	20
Potassium	20.5 1200	614	02.3 1470	25 969	23	21	20	0.3	123	03	192	30
Selenium	1.8 JN	2.3 JN	4.3 JN	1.9 JN								
Silver												
Sodium	392	271	583	1020								
Thallium	40.4	0.5	0.58	04.0								
vanadium Zinc	19.1 152 INI	6.5 221 INI	69.4	24.3	250 E	380	180	126	1100⊏	551	∕ 107⊏	6035
Inorganics (mg/kg)	102 011			2000 JIN	009 E	009	102	100	TIVE	551	-t0/E	000Ľ
Cyanide		6.35 JN										

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Table I Historic soils summary1 for soils less than 1 foot.xls

Г

		Statistic	al Analysis ¹		Part 375 Restrict Sta	ed Use Soil Cleanup ndards
Sample ID: Sample Date: Sample Depth:	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentrations	Standard Deviation	Industrial Land Use	Restricted Residential Land use
VOCs (ug/kg)			I		-	r
1,1,1-Trichloroethane	0	0.0			1,000,000c	100,000a
1,1-Dichloroethane	0	0.0			480,000	26,000 NS
1,2-Dichloroethene	0	0.0			1,000,000c	NS
1,2-Dichloroethene (total)	0	0.0			NS	NS
1,2-Dichloropropane	0	0.0			NS	NS
2-Butanone	0	0.0			NS NS	NS NS
4-Methyl-2-Pentanone	0	0.0			NS	NS
Acetone	0	0.0			1,000,000c	100,000b
Benzene	0	0.0			89,000	4,800
Carbon Disulfide	0				NS NS	NS NS
Ethylbenzene	0	0.0			780,000	41,000
Methylene Chloride	0	0.0			1,000,000c	100,000a
Tetrachloroethene	0	0.0			300,000	19,000
Toluene	0	0.0			1,000,000c	100,000a
Trichlorofluoromethane	0	0.0			400,000 NS	21,000 NS
Vinyl Chloride	0	0.0			NS	900
Xylenes	0	0.0			1,000,000c	100,000a
SVOCs (ug/kg)			T			
2,3,4,6-Tetrachlorophenol	0	0.0			NS	NS
2-Methylnaphthalene	0	0.0			NS	NS NS
3-Methylphenol	0	0.0			NS	NS
4,6-Dinitro-2-methylphenol	0	0.0			NS	NS
4-Bromophenyl phenyl ether	0	0.0			NS	NS
4-Methylphenol	0	0.0	620.0	257.057	NS	NS
Acenaphinene	1	800.0	800.0	461 880	1,000,0000	100,000a
Benzidine	0	0.0	000.0	401.000	NS	NS
Benzo (a) anthracene	1	1500.0	1500.0	750.000	11,000	1,000f
Benzo (a) pyrene	1	1600.0	1600.0	923.760	1,100	1,000f
Benzo (b) fluoranthene	1	1600.0	1600.0	923.760	11,000.00	1,000f
Benzo (g,n,i) perviene Benzo (k) fluoranthene	1	2500.0	1600.0	923 760	110,000	3 900
Benzoic acid	0	0.0		0201100	NS	NS
Bis(2-ethylhexyl)phthalate	0	0.0			NS	NS
Butlylbenzylphthalate	0	0.0			NS	NS
Carbazole	0	1800.0	1110.0	853 288	NS 110.000	NS 2 000
Dibenz (a.h) anthracene	1	790.0	790.0	558.614	1.100	330e
Dibenzofuran	0	0.0			1,000,000c	59,000
Di-n-butylphthalate	0	0.0			NS	NS
Di-n-octylphthalate	0	0.0	4000.0	000.000	NS	NS
Fluoranthene	2	1900.0	1220.0	896.883	1,000,000c	NS 100.000a
Hexachlorobenzene	0	0.0			NS	NS
Indeno (1,2,3-cd) pyrene	2	2200.0	1315.0	1048.121	11,000	500f
Isophorone	0	0.0			NS	NS
Naphthalene	0	0.0	720.0	265.000	1,000,000c	100,000a
Phenol	0	0.0	730.0	305.000	1,000,000c	100,000a
Pyrene	3	2600.0	1186.7	1162.354	1,000,000c	100,000a
<u>Metals (mg/kg)</u>				-		
Aluminum	4	19100.0	14622.5	5234.885	NS	NS
Antimony	2	37.0	29.5	15.955	NS 16f	NS 16f
Barium	10	473.0	215.7	117.804	10,000d	400
Beryllium	4	2.4	1.4	0.697	2,700	72
Cadmium	9	21.0	5.6	5.941	60	4.3
	4	85800.0	67950.0	15808.120	NS	NS
Cobalt	9	200.0 54 0	12.8	16.380	NS NS	NS
Copper	6	193.0	91.0	68.310	10,000d	270
Iron	0	0.0		0.000	NS	NS
Lead	8	1210.0	319.2	349.479	3,900	400
Magnesium	3	957.0	645.7 2765 0	342.722	NS 10.000d	NS
Mercury	4	1.0	0.3	0.436	5.7i	2,000i 0.81i
Nickel	12	152.0	47.6	45.657	10,000d	310
Potassium	4	1470.0	1063.3	362.792	NS	NS
Selenium	0	0.0			6,800	180
Silver	0 4	1020.0	566 5	328 484	6,800 NS	180 NS
Thallium	1	0.6	0.6	020.704	NS	NS
Vanadium	4	69.4	29.8	27.421	NS	NS
Zinc	4	551.0	314.5	184.554	10,000d	10,000 d
Inorganics (mg/kg)					40.000 \	<u> </u>
Cyanide	0				10,000d	27h

Table I

Historic Surficial Soil Quality Sampling Results (<1.0 feet) Remedial Investigation Report-Former Roblin Steel Site Tonawanda, New York

Footnotes

J - Compound reported at an estimated concentration below the reporting limit

 $\ensuremath{\mathsf{B}}$ - Analyte was detected in the associated blank as well as the sample

N - Spiked sample recovery not within control limits

 ** - Duplicate analysis not within control limits

 ${\sf E}$ - The reported value is estimated due to the presence of interference

W - Post-digestion spike is out of control limits, while sample absorbance is less than 50% of spike absorbance

D - Compound identified in analysis at a secondary dilution factor

Part 375 Restricted Use Soil Cleanup Standards footnotes

a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum valueof 100 ppm. See TSD section 9.3.

b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

f For constituents where the calculated SCO was lower than the rural soil background concentration asdetermined by the Department and Department of Health rural soil survey, the rural soil backgroundconcentration is used as the Track 2 SCO value for this use of the site.

g This SCO is derived from data on mixed isomers of BHC.

h The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for thetotal species of this contaminant is below the specific SCO.

i This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Table II2007 Surficial Soil Quality Sampling Results (<1.0 feet)</td>Former Roblin Steel SiteTown of Tonawanda, New York

		1	1	1	1	1	1	1			1	1	
Date Sampled	2/27/2007	2/27/2007	2/27/2007	2/27/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007	3/7/2007	3/12/2007	3/9/2007	3/9/2007
							NECTE 11						
Sample Location	1'	0-1'	0.5-1'	0.5-1'	0.5-1'	0.5-1'	0.5'	0.5'	0.5	2"	NRG-4 2"	NRG-5 2"	2"
		-											
VOCs (ug/kg) by EPA Method 8260B													
		1	NIA	1	1	N14	1						
2-Hexanone			NA			NA		400 1		NA	NA	NA	NA
Acetone			NA			NA NA		100 J		NA	NA	NA	NA
Benzene			NA NA			NA NA				NA	NA	NA	NA
										NA	NA NA	NA NA	NA NA
Ethylbonzono			NA NA			NA NA				NA NA		NA NA	NA NA
Methylene Chloride			ΝΔ			ΝΔ		/7 I*B			NA NA		NA NA
Tetrachloroethene			NA			ΝΔ		4730			ΝA	ΝA	NΔ
Toluene			ΝA			ΝΔ					NA		NΔ
Xylenes Total			ΝA			ΝΔ				NΔ	NA	NΔ	NΔ
SVOCs (ug/kg) by EPA Method			11/1							T WA	11/1	10/3	10/1
8270C													
1,2,4-Trichlorobenzene			NA			NA				NA	NA	NA	NA
1,2-Dichlorobenzene			NA			NA				NA	NA	NA	NA
2,4-Dimethylphenol	220 J		NA			NA				NA	NA	NA	NA
2-Methylnaphthalene	440	160 J	NA			NA	200 J			NA	NA	NA	NA
2-Methylphenol	180 J		NA			NA				NA	NA	NA	NA
4-Methylphenol	530		NA			NA				NA	NA	NA	NA
Acenaphthene			NA			NA	220 J			NA	NA	NA	NA
Acenaphthylene		400 J	NA			NA	140 J			NA	NA	NA	NA
Anthracene		420	NA			NA	190 J			NA	NA	NA	NA
Benzo[a]anthracene	350 J	2100	NA	160 J	210 J	NA	640			NA	NA	NA	NA
Benzo[a]pyrene	500	2900	NA	190 J	180 J	NA	950			NA	NA	NA	NA
Benzo[b]fluoranthene	580	3900	NA	310 J	420	NA	1200		90 J	NA	NA	NA	NA
Benzo[g,h,i]perylene	590	2400	NA	240 J	200 J	NA	1800			NA	NA	NA	NA
Benzo[k]nuorantnene	210 J	1400	NA NA		170 J	NA	440			NA	NA	NA	NA
Butyl benzyl obthalate			NA NA			NA NA					NA NA		NA NA
Carbazole		96 1	ΝA			ΝA	71				NA		NΔ
Chrysene	430	2300	NA	200 J	240 J	NA	730			NA	NA	NA	NA
Dibenz(a.h)anthracene	140 J	630	NA	2000	2.00	NA	270 J			NA	NA	NA	NA
Dibenzofuran	98 J	82 J	NA			NA				NA	NA	NA	NA
Di-n-butyl phthalate			NA			NA				NA	NA	NA	NA
Di-n-octyl phthalate			NA			NA				NA	NA	NA	NA
Fluoranthene	280 J	1900	NA	230 J	420	NA	820		79 J	NA	NA	NA	NA
Fluorene			NA		200 J	NA	65 J			NA	NA	NA	NA
Indeno[1,2,3-cd]pyrene	570	2500	NA	240 J	230 J	NA	1400		65 J	NA	NA	NA	NA
Isophorone			NA			NA				NA	NA	NA	NA
Naphthalene	480	160 J	NA			NA	180 J			NA	NA	NA	NA
Phenanthrene	370	550	NA	150 J	210 J	NA	440			NA	NA	NA	NA
Phenol			NA			NA				NA	NA	NA	NA
Pyrene	320 J	1500	NA	250 J	260 J	NA	750		88 J	NA	NA	NA	NA
<u>Metals (mg/kg) by EPA Method</u> 6010B and 7471A (Hg only)													
Arsenic		45.8		8.1		117				10.1	41 I	11	461
Barium	32.9.1	342.1	126 J	811 J		264.1		1190 J	119.1	185	332	165	138
Cadmium	02.00	0.20	18.1	0110		1.7.1		11000		22.1	8.2.1	10.1	1.5.1
Chromium	14,5 J	40.9 J	19 J	47.6 J		172 J		57.5 J	17.1 J	42	107	312	335
Lead	18.8	744	281	131		236		6.4 J	11.6	229	204	899	51.9
Mercury			0.75							0.48	0.073	0.18	0.15
Selenium				2.1 J									
Silver		1	1	1	1	1	1				1.7 J		
Total Cyanide Concentration (ug/Kg)													
by EPA Method 3012B		4100	13800	380 J	1			34000			7000 J	1000 j	

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table II 2007 soil summary for soils less than 1 foot.xls

Table II2007 Surficial Soil Quality Sampling Results (<1.0 feet)</td>Former Roblin Steel SiteTown of Tonawanda, New York

Date Sampled		Statistical A	nalysis ¹		Standard from Part 3	75 Restricted Use Soil Cleanup Standards
Sample Location	Number of Detected	Maximum Detected	Average of Detected	Standard	Industrial Land Use	Restricted Residential Land use
VOCs (ug/kg) by EPA Method 8260B	Roouno	Concontration	Concontrationo	Doviduoli		
2-Hexanone	0				NS	NS
Acetone	0	0.0			1 000 000c	100.000b
Benzene	0	0.0			89 000	48,000
Carbon disulfide	0				NS	NS
cis-1.2-Dichloroethene	0	0.0			NS	100.000a
Ethylbenzene	0	0.0			780.000	41.000
Methylene Chloride	0				1,000,000c	100,000a
Tetrachloroethene	0				300,000	19,000
Toluene	0	0.0			1,000,000c	100,000a
Xylenes, Total	0	0.0			1,000,000c	100,000a
SVOCs (ug/kg) by EPA Method 8270C						
1,2,4-Trichlorobenzene	0				NS	NS
1,2-Dichlorobenzene	0				NS	NS
2,4-Dimethylphenol	0	0.0			NS	NS
2-Methylnaphthalene	1	440.0	440.0	146.7	NS	NS
2-Methylphenol	0	0.0			NS	NS
4-Methylphenol	1	530.0	530.0	200.3	NS	NS
Acenaphthene	0	0.0			1,000,000c	100,000a
Acenaphthylene	0				NS	NS
Anthracene	1	420.0	420.0	148.5	1,000,000c	100,000a
Benzo[a]anthracene	2	2100.0	1370.0	643.2	11,000	1,000f
Benzo[a]pyrene	3	2900.0	1450.0	885.6	1,100	1,000f
Benzo[b]fluoranthene	4	3900.0	1525.0	1130.6	11,000.00	1,000f
Benzo[g,h,i]perylene	3	2400.0	1596.7	852.2	1,000,000c	100,000a
Benzo[k]fluoranthene	2	1400.0	920.0	449.1	110,000	3,900
Bis(2-ethylhexyl) phthalate	0	0.0			NS	NS
Butyl benzyl phthalate	0				NS	NS
Carbazole	0	0.0			NS	NS
	3	2300.0	1153.3	701.4	110,000	3,900
Dibenz(a,h)anthracene	1	630.0	630.0	210.0	1,100	330e
Dibenzofuran	0	0.0			1,000,000c	59,000
Di-n-butyl phthalate	0				NS	NS
DI-II-OCIVI philinalate	0	1000.0	1046 7	E7E 0	NS 1.000.000a	NS NG
Eluorono	0	1900.0	1040.7	575.0	1,000,0000	100,0000
Indeno[1,2,3-cd]pyrene	3	2500.0	1490.0	790.3	11,000,0000	500f
	0	2000.0	1100.0	100.0	NS	NS
Naphthalene	3 1	480.0	480.0	160.0	1.000.000c	100.000a
Phenanthrene	3	550.0	453.3	215.6	1.000.000c	100.000a
Phenol	0	0.0	10010	21010	1.000.000c	100.000a
Pyrene	2	1500.0	1125.0	466.2	1,000,000c	100,000a
Metals (mg/kg) by EPA Method					, ,	,
<u>6010B and 7471A (Hg only)</u>						
Arsenic	1	11.0	11.0	4.2	16f	16f
Barium	4	332.0	205.0	113.8	10,000d	400
Cadmium	0				60	4.3
Chromium	4	335.0	199.0	128.5	NS	NS
Lead	10	899.0	280.6	299.1	3,900	400
Mercury	5	0.8	0.3	0.3	5.7j	0.81j
Selenium	0				6,800	180
Silver	0				6,800	180
by EPA Method 3012B	3	34000.0	17300.0	13522.7	10,000.000d	27,000h

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table II 2007 soil summary for soils less than 1 foot.xls

Table II 2007 Surficial Soil Quality Sampling Results (<1.0 feet) Former Roblin Steel Site Town of Tonawanda, New York

Footnotes

J - Compound reported at an estimated concentration below the reporting limit

B - Analyte was detected in the associated blank as well as the sample

N - Spiked sample recovery not within control limits

** - Duplicate analysis not within control limits

E - The reported value is estimated due to the presence of interference

W - Post-digestion spike is out of control limits, while sample absorbance is less than 50% of spike absorbance

D - Compound identified in analysis at a secondary dilution factor

* LCS or LCSD exceeds the control limit

M Indicates result was obtained via a manual integration (rather than via a calculation from the instrument software)

¹ Does not Include B, *, and J values

Part 375 Restricted Use Soil Cleanup Standards footnotes

a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3. b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

f For constituents where the calculated SCO was lower than the rural soil background concentration asdetermined by the Department and Department of Health rural soil survey, the rural soil backgroundconcentration is used as the Track 2 SCO value for this use of the site.

g This SCO is derived from data on mixed isomers of BHC.

h The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for thetotal species of this contaminant is below the specific SCO.

i This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table II 2007 soil summary for soils less than 1 foot.xls

			Data S	ource: Tabl	e 6-2 of NYS	SDEC Site E	valuation Re	eport (Decen	nber 2006)	1990 USEP	A Data		
Sample ID:	Area A 1	Area A 2	Area A 3	Area A 4	Area A 20	Area B 5	Area B 6	Area B 7	Area B 8	Area C 9	Area C 10	Area C 11	Area D 12
Sample Date:	1990 (2.0')	1990 (2 0')	1990 (2,0')	1990 (2.0')	1990 (2.0')	1990 (2.0')	1990 (2.0')	1990 (2.0')	1990 (2,0')	1990 (2.0')	1990 (2.0')	1990 (2 0')	1990 (2.0')
VOCs (ug/kg)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)
1,1,1-Trichloroethane													
1,1-Dichloroethane													
1,2-Dichloroethane													
1,2-Dichloroethene													
1,2-Dichloroptopane						760							
2-Butanone			1 J		2 J	156 J		1 J		1 J	2 J	1 J	4 J
2-Hexanone													
4-Methyl-2-Pentanone													
Acetone						2124							
Carbon Disulfide						703							
Chloroethane													
Ethylbenzene						2365							
Methylene Chloride	6 J	11	8	33	44	131 J	13	49	33	48	96	110	94
Tetrachloroethene					11	1052				13	20 J	13 J	23 J
Trichloroethene					IJ	5500			3 J	2 J 2 J	4 J	2 J 3 J	I J
Trichlorofluoromethane												2	
Vinyl Chloride													
Xylenes	24					14727					2 J		<u> </u>
<u>SVUUS (ug/kg)</u>							35069						1
∠, 3, 4, o- i etrachiorophenol 2-Methylnaphthalene							35968 15865	276	233	284	924		
2-Methylphenol								274					
3-Methylphenol								107					
4,6-Dinitro-2-methylphenol	1132												
4-Bromophenyl phenyl ether			203	222	194		1405	107					<u> </u>
Acenaphthene	<u> </u>		<u> </u>			97	22601	107		70	112	<u> </u>	3196
Anthracene						211	22001	115	92	609	734	869	2032
Benzidine	185												
Benzo (a) anthracene	242						5741	221	95	458	88	14012	2091
Benzo (a) pyrene							4165	283	82	216		9500	6022
Benzo (d.h.i) pervlene							4100	575	201	310		18062	0933
Benzo (k) fluoranthene							8904	797	278	438			14823
Benzoic acid								87					
Bis(2-ethylhexyl)phthalate	1010	638	129	515	281		6607	1950	1769	2389	362		<u> </u>
Butiyibenzyiphthaiate							713	127	41				
Chrysene	274						7370	253	123	513	94	13657	3341
Dibenz (a,h) anthracene													
Dibenzofuran						68			103		392		[
Di-n-butylphthalate	633			143				205	314	220			
Di-n-octyiphthalate	543					127		334	85 187	122	148	13441	2102
Fluorene		62	56	63	97	82	7634	76	41	122	110	10111	2102
Hexachlorobenzene	165												
Indeno (1,2,3-cd) pyrene	07.1		ļ							ļ		11415	ļ
Isophorone Naphthalene	254 230						29652		505		1037		ļ
Phenanthrene	403		ļ			200	20000	536	459	577	696	5210	749
Phenol							1398						
Pyrene						75	26651	338	162	232	164	20957	5362
<u>Metals (mg/kg)</u>		1					[]						1
Aluminum			5 71								20.8		
Arsenic	46	8.01	4.38		7.66	37.6	7.85	15	10.2	33.5	56.7	50.6	29.1
Barium	374	11.3	5.94	7.48	13.8	291	70.3	96.1	81.6	621	633	167	680
Beryllium											3.66		2.1
Cadmium	L		ļ			6.54	7.56	6.4	8.92	4.98		2.56	3.04
Calcium	11 /	53	ļ			575	35.7	77 6	A1 2	37 /		28.1	36.2
Cobalt	19.3	0.0				21.6	55.7	11.0	71.2	7.45	8.74	7.21	6.57
Copper	15.8				8.28	998	40.5	92.2	43.4	19.1	12100	24.6	259
Iron													ļ
Lead	15.7		6.66	7.29	7.22	197	269	227	275	218	3570	777	1100
wagnesium Manganese													
Mercury										0.72		0.12	0.32
Nickel						142	11.2	34.1	12.8	11.9	15.1	15.5	15.5
Potassium	451	142	128	164	937	187	408	489	506	664	2190	995	981
Selenium	ļ		ļ							ļ		ļ	
Sodium	58 1 I	3801	1251	36 1	56.0.1	176	110 /	172	157	0211	360 1	172	262
Thallium	JU. I J	30.9 J	+∠.0 J	30 0	30.9 J	170 J	1191	172 J	1 <i>31</i> J	32.1J	2021	1733	202
Vanadium						18.9				40.9	9.62	29.8	12.4
Zinc	29.5 J	16.6 J	18.7 J	19.2 J	0 J	264 J	1049 J	902 J	1071 J	977J	309J	486J	322
Inorganics (mg/kg)		1					[]	[[
Cvanide				I	I	I					I		1

Name D None D Noe D Noe D Noe D <th></th> <th>Data Sou</th> <th>rce: Table 6</th> <th>-2 of NYSDI 199</th> <th>EC Site Eval 00 USEPA D</th> <th>uation Repo</th> <th>ort (Decembe</th> <th>er 2006)</th> <th>Data Sourc</th> <th>e: Table 6-3 (Decemb</th> <th>of NYSDEC</th> <th>C Site Evalua Bike Path</th> <th>ation Report</th>		Data Sou	rce: Table 6	-2 of NYSDI 199	EC Site Eval 00 USEPA D	uation Repo	ort (Decembe	er 2006)	Data Sourc	e: Table 6-3 (Decemb	of NYSDEC	C Site Evalua Bike Path	ation Report
BandyaAnd. DAnd.										(2000)			
Dension body.Desc.	Sample ID: Sample Date:	Area D 13	Area D 14	Area D 15	Area E 16	Area E 17 1990	Area E 18	Area E 19	BG-01 8/11/99	BG-02 8/11/99	BG-03 8/11/99	BG-04 8/11/99	BG-05 8/11/99
WOCLONDUIII <thi< th="">III<td>Sample Depth:</td><td>(2.0')</td><td>(2.0')</td><td>(2.0')</td><td>(2.0')</td><td>(2.0')</td><td>(2.0')</td><td>(2.0')</td><td>(0.0' - 6.0')</td><td>(0.0' - 6.0')</td><td>(0.0' - 6.0')</td><td>(0.0' - 6.0')</td><td>(0.0' - 8.0')</td></thi<>	Sample Depth:	(2.0')	(2.0')	(2.0')	(2.0')	(2.0')	(2.0')	(2.0')	(0.0' - 6.0')	(0.0' - 6.0')	(0.0' - 6.0')	(0.0' - 6.0')	(0.0' - 8.0')
1.1 momentanes	<u>VOCs (ug/kg)</u>	-		1							1	1	
CharacterizationCharacterizationConstructionConst	1,1,1-Trichloroethane												
12-0012-0012-0 <th< td=""><td>1,2-Dichloroethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1,2-Dichloroethane												
12.Objecting 13.Objecting 14	1,2-Dichloroethene												
111 <th< td=""><td>1,2-Dichloroethene (total)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1,2-Dichloroethene (total)												
planemoningplanemoni	1,2-Dichloropropane	1 J	1 J	1 J	2 J	3 J	2 J	2 J					
chale <thchale< th="">chalechalechale<thc< td=""><td>2-Hexanone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thchale<>	2-Hexanone												
Addia <th< td=""><td>4-Methyl-2-Pentanone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4-Methyl-2-Pentanone												
Cachon DurativeDescriptionDescr	Acetone Benzene					1.1							8 J
CharacteringChar </td <td>Carbon Disulfide</td> <td></td> <td></td> <td></td> <td></td> <td>2 J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3 J</td>	Carbon Disulfide					2 J							3 J
Bindbarger Description Description Description Description Description Description Description Description Description Tell 3.3 2.3 2.3 2.4	Chloroethane												
Participandian 11/3 20/3 100	Ethylbenzene Mathylana Chlarida	177	50	05	150	262	00	110					
Talone3.12.12.11.12.1 <t< td=""><td>Tetrachloroethene</td><td>114 J</td><td>28 J</td><td>95 6 J</td><td>150</td><td>203</td><td>00</td><td>119</td><td></td><td></td><td></td><td>2 J</td><td></td></t<>	Tetrachloroethene	114 J	28 J	95 6 J	150	203	00	119				2 J	
Trachoolnomm Techoolnomm Techoolnomm SeriesJJJ	Toluene	3 J	2 J	2 J	1 J	2 J		2 J					
Information of the second of the se	Trichloroethene	5 J	4 J	3 J	4 J								
System 2 J In In </td <td>I richlorofluoromethane</td> <td></td>	I richlorofluoromethane												
SiVCA: canadim Sintering and analysis Sintering analysis	Xylenes	2 J											
22.4.6.1 Image	SVOCs (ug/kg)	1											
Adding/sector Dist Dist Dist Dist Dist Dist 60 Denose Arrentyshmuti Image Image<	2,3,4,6-Tetrachlorophenol		ļ				ļ	ļ		61		92 1	ļ
Shefery(phenol N <	2-Methylphenol											32 J	
4.6 Dimonscript allow Image Image<	3-Methylphenol												
Control theory beam in the second s	4,6-Dinitro-2-methylphenol												
Acamagnème Image	4-Methylphenol												
Anthracene Image Image <thimage< th=""> Image Image</thimage<>	Acenaphthene									130 J	39 J		
Calification 124 Image: Calification 1373 150.J 1000 360 180.J 160.J Benzo In Journathiene Image: Calification Imag	Anthracene								43 J	180 J	93 J	42 J	
Bance (a) pyrene Image: a log pyrene	Benzo (a) anthracene	1249						1373	150 J	1000	360	180 J	150
Banca (b) Woranthene Image (b)	Benzo (a) pyrene							1500	150 J	1000	430	170 J	160 J
Benzo (h) pervine International (h) pervine <thinternational (h)="" pervine<="" th=""> Internation</thinternational>	Benzo (b) fluoranthene								150 J	820	560	190 J	150 J
Benzole acid Index	Benzo (g,h,i) perylene Benzo (k) fluoranthene							2303	140 J 110 J	710 1200	480 460	170 J 140 J	83 J 120 J
Bail:Applicacylphthalate 134 1291 Image: Constraint of the second se	Benzoic acid							2000		.200			
BudyBoorg/phihalate characole charac	Bis(2-ethylhexyl)phthalate			134	1291						1400 BJ		
Conserve 1544 406 1515 170 J 970 470 210 J Dibera, (ah) anitracene 1 <t< td=""><td>Butlylbenzylphthalate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>64 </td><td></td><td></td><td></td></t<>	Butlylbenzylphthalate									64			
Debma (a)) anthracene Image: second sec	Chrysene	1544				406		1515	170 J	970	470	210 J	160 J
Diservolution C 66.0 66.0 C	Dibenz (a,h) anthracene												
Difference Difference <thdifferenc< th=""> Differenc Differenc<</thdifferenc<>	Dibenzoturan Di-n-butylobthalate									60 J			
Fluoranthene 1581 Image	Di-n-octylphthalate												
Horené S5 J S5 J S6 J S6 J Indeno (1,2,3-cd) pyrene In	Fluoranthene	1581						2095	240 J	1800	520	320 J	210 J
Indeno (1,2,3-cd) pyrene Image Ima	Fluorene Hexachlorobenzene									55 J	84.1		
Isophorone Image Image <thimage< th=""> Image Image</thimage<>	Indeno (1,2,3-cd) pyrene							686	120 J	800	460	170 J	140 J
Naphnähmen 1 64/3 64/3 64/3 Phenanthrene 713 503 683 1550 180.J 720 290.J 190.J 100.J 100.J </td <td>Isophorone</td> <td></td>	Isophorone												
Dreining	Naphthalene Phenanthrene	713	503			683		1550	180 J	67 J 720	290 J	54 J 190 J	100 J
Pyrene 2741 784 1518 270 J 1300 490 270 J 200 J Metas (mg/kg)	Phenol												
Immersion (Improd) Immersion (Impro) Immersion (Improd) Immersio	Pyrene	2741	784					1518	270 J	1300	490	270 J	200 J
Antimony Image: Constraint of the constraint	<u>Imetais (mg/kg)</u> Aluminum								18000	17000	13900	28000	16700
Arsenic 3.47 4.47 8.45 16.1 60.5 29.1 7.7 6.7 3.1 J 4 J Barium 39.3 32.3 174 30 113 396 135 549 209 123 310 160 Beryllium 2.43 1.3 0.89 1.9 1.3 3.6 0.98 Cadmium 2.09 2.93 1.76 2.1 J** 14.J** 0.92 J** 0.63 0.59 Calcium 2.09 2.93 1.76 2.1 J** 14.4 ** 17.5 ** 13.3 292 Cobalt 6.45 13.4 33.6 98.7 1320 ** 41.6 ** 17.5 ** 13.3 292 Cobalt 6.45 13.4 33.6 98.7 1320 ** 41.6 ** 17.5 ** 13.3 292 Cobalt 16.4 21.1 27.6 21.1 13.1 4.9 30.1 32.1 9.9.1 25.4 J Iton 14.0 14.	Antimony								6 JN		1.8 JN		1.7 JN
Barum 39.3 32.3 1/4 30 113 396 135 549 209 123 310 160 Beryllium 2.43 1.3 0.89 1.3 3.6 0.98 Cadmium 2.09 2.93 1.76 2.1 J** 1.4 J** 0.92 J** 0.63 0.59 Calcium 2.09 2.93 1.76 2.1 J** 14.4 J** 0.92 J** 0.63 0.59 Calcium 6.45 13.4 33.6 98.7 1320 ** 41.6 ** 17.5 ** 13.3 292 Cobalt 6.99 9.3 2.6 5 4.3 3.3 7.5 Copper 16.4 21.1 27.6 21.1 51.1 29.2 289 74.8 30.1 32.1 9.9 J 25.4 J Ion 72600 27200 16000 10800 3800 36.0 IN <td>Arsenic</td> <td>3.47</td> <td>4.47</td> <td>4= 1</td> <td>8.45</td> <td>16.1</td> <td>60.5</td> <td>29.1</td> <td></td> <td>7.7</td> <td>6.7</td> <td>3.1 J</td> <td>4 J</td>	Arsenic	3.47	4.47	4= 1	8.45	16.1	60.5	29.1		7.7	6.7	3.1 J	4 J
Cadmium Image: State	Barium Bervllium	39.3	32.3	174	30	113	396 2.43	135 1.3	549 0.89	209	123 1.3	310 3.6	160 0.98
Calcium 5.76 7.12 16.3 6.45 13.4 33.6 98.7 1320 ** 41.6 ** 17.5 ** 13.3 292 Cobalt 6.99 9.3 2.6 5 4.3 3.3 7.5 Copper 16.4 21.1 27.6 21.1 51.1 29.2 289 74.8 30.1 32.1 9.9 J 25.4 J Iron 72600 27200 16000 10800 33800 Lead 34.3 43.8 52.5 22.8 118 80.1 1360 306.JN 70.7 JN 133.JN 28.5 132 Lead 34.3 43.8 52.5 22.8 118 80.1 1360 306.JN 70.7 JN 133.JN 28.5 132 Magnesium 17500 ** 1390 ** 1360 ** 2550 EJ 7430 EJ Nickel 7.75 9.88	Cadmium					2.09	2.93	1.76	2.1 J**	1.4 J**	0.92 J**	0.63	0.59
Chromum 5.76 7.12 16.3 6.45 13.4 33.6 98.7 1320*** 41.6** 17.5** 13.3 292 Cobalt Copper 16.4 21.1 27.6 21.1 51.1 29.2 289 74.8 30.1 32.1 9.9 J 25.4 J Iron Itoh It	Calcium	_	_		_				143000	60000	59500	152000	93300
Copper 16.4 21.1 27.6 21.1 51.1 29.2 289 74.8 30.1 32.1 9.9 J 25.4 J Iron 72600 27200 1600 00 03800 3800 Lead 34.3 43.8 52.5 22.8 118 80.1 1360 306 JN 70.7 JN 133 JN 28.5 1380 Magnesium 30500 10500 9990 17500 14400 Manganese 30500 10500 9990 17500 14400 Margensium 0.25 0.12 0.33 0.71 0.38 0.17 0.18 0.08 0.1 0.17 Nickel 7.75 9.88 8.59 33.6 18 18.9 12.2 8.2 17.8 Potassium 535 613 699 252 681 147	Chromium Cobalt	5.76	7.12	16.3	6.45	13.4	33.6 6 99	98.7 93	1320 ** 2 6	41.6 ** 5	17.5 ** 4 3	13.3 3.3	292 7 5
Iron <td>Copper</td> <td>16.4</td> <td>21.1</td> <td>27.6</td> <td>21.1</td> <td>51.1</td> <td>29.2</td> <td>289</td> <td>74.8</td> <td>30.1</td> <td>32.1</td> <td>9.9 J</td> <td>25.4 J</td>	Copper	16.4	21.1	27.6	21.1	51.1	29.2	289	74.8	30.1	32.1	9.9 J	25.4 J
Lead 34.3 43.8 52.5 22.8 118 80.1 1360 306 JN 70.7 JN 133 JN 28.5 132 Magnesium 30500 10500 9990 17500 14400 Manganese 17500** 1390** 1360** 2550 EJ 7430 EJ Mercury 0.25 0.12 0.33 0.71 0.38 0.17 0.18 0.08 0.1 0.17 Nickel 7.75 9.88 8.59 33.6 18 18.9 12.2 8.2 17.8 Potassium 535 613 699 252 681 1470 1010 2040 1660 1650 1890 1690 Selenium 15.5 1.5 2.2 4.1 Silver Sodium 120	Iron	_							72600	27200	16000	10800	33800
Manganese Image of the second sec	Lead	34.3	43.8	52.5	22.8	118	80.1	1360	306 JN	70.7 JN	133 JN 9990	28.5 17500	132 14400
Mercury 0.25 0.12 0.33 0.71 0.38 0.17 0.18 0.08 0.1 0.17 0.17 Nickel 7.75 9.88 8.59 33.6 18 18.9 12.2 8.2 17.8 Potassium 535 613 699 252 681 1470 1010 2040 1660 1650 1890 1690 Selenium 15.5 1.5 2.2 4.1 Silver <	Manganese								17500 **	1390 **	1360 **	2550 EJ	7430 EJ
Nickel 7.75 9.88 8.59 33.6 18 18.9 12.2 8.2 17.8 Potassium 535 613 699 252 681 1470 1010 2040 1660 1650 1890 1690 Selenium 15.5 1.5 2.2 4.1 Silver 15.5 1.5 2.2 4.1 Sodium 120 84 236 117 J 213 J 551 J 610 J 372 539 188 1740 1120 Thallium 0.44JW 0.02JW 15.8 90.5 36.7 19.2 15.8 90.5 36.7 19.6 160 38.5 102 6.18 37.5 52	Mercury	0.25	0.12	0.33	0.71	0.38	0.17	0.18	0.08	0.1	0.17		
Selenium 600 600 600 100	Nickel Potassium	525	612	600	7.75	9.88 681	8.59	33.6	18	18.9	12.2	8.2	17.8
Silver Image: Solution of the state of the	Selenium		013	099	232		1470		15.5	1.5	2.2	4.1	1080
Sodium 120 84 236 117 J 213 J 551 J 610 J 372 539 188 1740 1120 Thallium 0.44JW 0.02JW	Silver												
Vanadium 7.58 6.18 27.5 8.16 13.8 48.5 23.2 280 20.2 19.2 15.8 90.5 Zinc 66.6 86.3 123 52.9 J 190 J 184 J 2580 J 367 196 160 38.5 102 Inorganics (mg/kg) Cvanide	Sodium Thallium	120	84	236	117 J	213 J	551 J	610 J	372	539 0.02 M/	188	1740	1120
Zinc 66.6 86.3 123 52.9 J 190 J 184 J 2580 J 367 196 160 38.5 102 Inorganics (mg/kg) Cvanide	Vanadium	7.58	<u>6.</u> 18	27.5	8.16	13.8	48.5	23.2	280	20.2	19.2	15.8	90.5
Inorganics (mg/kg)	Zinc	66.6	86.3	123	52.9 J	190 J	184 J	2580 J	367	196	160	38.5	102
	Inorganics (mg/kg)					[]							

Page 2 of 8

	Data S NYSD	Source: Tabl EC SER T	e 6-6 of est Pits	Data	Source: Ta (Dec	ble 6-4 of N ember 2006	YSDEC Site) Envirotek	Evaluation II Area	Report	Data Source	ce: Table 6-5 2006) Envi	5 of NYSDE	C SER (12- a
Sample ID:	TP-1	TP-2	TP-3	B-8	B-9	B-12	B-15	B-16	B-17	SB-01	SB-01	SB-02	SB-02
Sample Date: Sample Depth:	(12.0')	(12.4')	(1.5' - 3.0')	(8' - 10')	- 10')	- 10')	- 8')	- 8')	- 10')	(2.0' - 4.0')	(4.0' - 6.0')	(2.0' - 4.0')	(6.0' - 8.0')
VOCs (ug/kg)					-								· ·
1,1,1-Trichloroethane				340		270	660 J			41	33		13
1,1-Dichloroethane	2 J	2 J		17 J	390 J	16 J				3 J	2 J		
1,2-Dichloroethane													
1,2-Dichloroethene										74	30	3	5
1,2-Dichloroethene (total)						150							
1,2-Dicnioropropane													
2-Hexanone													
4-Methyl-2-Pentanone													
Acetone				200 B					130 B				5 J
Benzene													
Carbon Disulfide									26 J	7 J	5 J	2 J	4 J
Chloroethane				470			550 1	04.1					
Etnyibenzene Methylene Chloride	11			170	280 1	18	260 B I	91 J	5			21	11
Tetrachloroethene	4 J	4 J	1 J	39	200 3	3600	8300		55	990 D	370 D	9 J	52
Toluene							820			17 J	23 J	1 J	2 J
Trichloroethene		5 J		100		310	780			400 D	130	15	23
Trichlorofluoromethane													
Vinyl Chloride				070			0505						
				270			8500						1 J
2346-Tetrachlorophonol	L			ł – – – –									
2-Methylnaphthalene	L			3100.1			L	L	L			L	
2-Methylphenol				2.000									
3-Methylphenol													
4,6-Dinitro-2-methylphenol				1400 J									
4-Bromophenyl phenyl ether													<u> </u>
4-Methylphenol													
Acenaphinene				4200						ช่ว DJ 150 D I			
Benzidine				4200						130 03			
Benzo (a) anthracene				1400 J						300 DJ	96 J	45 J	
Benzo (a) pyrene													
Benzo (b) fluoranthene								2100 J					
Benzo (g,h,i) perylene								1100 J			170 J		
Benzo (k) fluoranthene													
Benzoic acio Bis(2-ethylbexyl)phthalate	200.1	64					1300 1						
Butlylbenzylphthalate	2003	040					1300 3						
Carbazole													
Chrysene				1600 J	2100 J					370 DJ	120 J	64 J	
Dibenz (a,h) anthracene													
Dibenzofuran				710 J	740 1	500 I		440.1					
Di-n-butyiphthalate				630 J	710 J	530 J		410 J					
Fluoranthene				480 J	1700 J		390 J	560 J		400 DJ	140 J	57 J	
Fluorene				1000 J									
Hexachlorobenzene													
Indeno (1,2,3-cd) pyrene					2100 J			1200 J			130 J	55 J	<u> </u>
Isophorone				1600 J									
Naphinalene				4100 1						390 רו	87	40 1	
Phenol				1000						555 05	0/0	0.01	
Pyrene				420 J	1900 J		490 J	1400 J		400 DJ	130 J	51 J	
Metals (mg/kg)													
Aluminum	27800	19300											
Antimony	1.6 JN	1.2 JN											
Arsenic	20.8	21.3											
Bervllium	۵۵۱ JN ۵	342 JIN 3 1											
Cadmium	1.2	0.1											
Calcium	146000	100000											
Chromium	75.5 JN**	62.3 JN**											
Cobalt	4.5	2.2											
Copper	137 JN	126 JN		 									
l ead	96.5 INI**	192000 73.2 INI**											
Magnesium	16300	9880											
Manganese	5480 **	4580 **											
Mercury	0.04	0.08											
Nickel	38.5	35.3											
Potassium	2940	1850											
Selenium	2.6 J	2.2 J		 			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>
Silver	1560	1000											
Thallium	1000	1000											
Vanadium	44	55.6											
Zinc	303 JN	286 JN											
Inorganics (mg/kg)													
Cvanide	7.47 J	0.617 J											

				Data	Source: Ta	ble 6-5 of N`	YSDEC SER	(12- 2006)-	Envirotek	II Area			
Sample ID: Sample Date:	SB-03 8/8/99	SB-03 8/12/99	SB-03 8/12/99	SB-04 8/12/99	SB-04 8/12/99	SB-05 8/12/99	SB-05 8/12/99	SB-05 8/13/99	SB-05 8/13/99	SB-11 8/12/99	SB-11 8/12/99	SB-11 3/29/01	SB-11 3/29/01
Sample Depth:	(0.0' - 8.0')	(4.0 - 6.0)	('0.8 - '0.0)	(2.0' - 4.0')	(4.0 - 6.0')	(∠.0' - 4.0')	("0.0" - 8.0")	(4.0 - 6.0)	('0.8 - '0.0)	(4.0 - 6.0')	("0.0" - "0.0")	('0.8 - '0.0')	(8.0' - 10.0')
1,1,1-Trichloroethane		3,1	190	10 J	37.1	27	12 J						
1,1-Dichloroethane			110		2 J		14 J						
1,2-Dichloroethane										2 J	2 J		
1,2-Dichloroethene		26	280							<u> </u>			
1,2-Dichloroethene (total)										6 J	9 J		
2-Butanone		3 J		4 J		3 J	40 J						
2-Hexanone													
4-Methyl-2-Pentanone													
Acetone		6 J	30	18	65	9	140						
Carbon Disulfide		3 J	7 J		3 J 11 J	2 J	14 J						
Chloroethane			8 J			_	7 J						
Ethylbenzene			4 J		5 J								
Methylene Chloride		6	750 D	3 J	74 1	1 J	100			440.1	10.1		
Toluene		77 J	750 D	35 J	71 J 7. J	43	120 6.1			110 J	12 J		
Trichloroethene		120	95	44	43 J	50	53 J			7 J	4 J		
Trichlorofluoromethane													
Vinyl Chloride													
Xylenes			7 J		13 J		16 J						
2.3.4.6-Tetrachlorophenol													
2-Methylnaphthalene					160 DJ			39 J					
2-Methylphenol					-								
3-Methylphenol													
4,6-Dinitro-2-methylphenol													
4-bromophenyl phenyl ether													
Acenaphthene								190 J					
Anthracene								250 J					
Benzidine					100 D I			500					
Benzo (a) anthracene					130 DJ			590 520					
Benzo (b) fluoranthene								420					
Benzo (g,h,i) perylene				51 J				480					
Benzo (k) fluoranthene								350 J					
Benzoic acid													
Bis(2-ethylnexyl)phthalate													
Carbazole								130 J					
Chrysene				99 J	360 DJ			610					
Dibenz (a,h) anthracene					01 D I			70.1					
Dipenzoluran Di-n-butylohthalate					91 DJ			70 J					
Di-n-octylphthalate													
Fluoranthene					320 DJ			1500					
Fluorene					150 DJ			87 J					
Hexachlorobenzene				51	02 D I			460					
Isophorone				515	JZ DJ			-00					
Naphthalene													
Phenanthrene					220 DJ			1200	470 DJ				
Phenol				120 1	210 י ח			020	500 L				
Metals (mg/kg)		l	l	120 J	210 DJ	1		330	330 DJ	1	L		
Aluminum	34400												
Antimony	3.1 JN												
Arsenic	12.4												
⊳arium Bervllium	0.8												
Cadmium	2.9												
Calcium	101000												
Chromium	163 JN**												
Copper	4.1												
Iron	67300				ļ				ļ				
Lead	506 JN												
Magnesium	6910												
Manganese	1480 **				ļ				ļ				
wercury Nickel	0.49												
Potassium	850												
Selenium	1.9 J												
Silver													
Sodium Thallium	704												
Vanadium	33												
Zinc	1260 JN												
Inorganics (mg/kg)													
Cyanide													

				Data S	ource: Tabl	e 6-5 of NYS	DEC SER	(12- 2006)	Envirotek II	Area			
					SB-10	SB-10	SB-20	SB-20	SB-21	SB-21	SB-22	SB-22	SR-24
Sample ID:	SB-15	SB-15	SB-18	SB-18	4/5/01	4/5/01	4/4/01	4/4/01	4/4/01	4/4/01	4/2/01	4/2/01	3/30/01
Sample Date:	4/4/01 (6.0' - 8.0')	4/4/01 (8.0' - 10.0')	4/4/01 (6.0' - 8.0')	4/5/01 (8.0' - 10.0')	(6.0' - 8.0')	(8.0' - 10.0')	(6.0' - 8.0')	(8.0' - 10.0')	(2.0' - 4.0')	(8.0' - 10.0')	(6.0' - 8.0')	(8.0' - 10.0')	(6.0' - 8.0')
VOCs (ug/kg)	(0.0 0.0)	,	(0.0 0.0)	(0.0 .0.0)	,	,	,	,	,	,	,	,	,
1,1,1-Trichloroethane				2 J						2 J		10 J	42
1,1-Dichloroethane		4 J	1 J	2 J						1 J			5 J
1,2-Dichloroethane		9.1	2.1	2.1	2.1	2.1							
1,2-Dichloroethene (total)	2 J	91	22	28	6 J	6 J	9 J	5 J		180		6 J	9 J
1,2-Dichloropropane													
2-Butanone		4 J		6 J						19 J			
4-Methyl-2-Pentanone				8 J						200			4 J
Acetone		6 J	22 J	26 J			8 J			16 J		9 J	30 J
Benzene Corte en Disulfida			2.1	1 J						7 1		34	
Carbon Disulide			2 J	61						73			
Ethylbenzene				2 J						3 J			6 J
Methylene Chloride	0.1	2 J	2 J	7 J	2 J	2 J	2 J	5 1	2.1	6 J	20.1	700 D I	10 J
Tetrachioroethene	2 J	54	28	1 40 J	10 J	14 J	8 J	5 J	3 J	10 J	20 J	700 DJ	330 J 7 J
Trichloroethene	2 J	18	14	24	12 J	6 J	16	6 J	19	180	3 J	34	160 J
Trichlorofluoromethane													
Vinyl Chloride Xylenes						ļ				53			50 1
SVOCs (ug/kg)	1	1	1	1	i	<u> </u>	i	1	1		1	1	500
2,3,4,6-Tetrachlorophenol													
2-Methylnaphthalene													
∠-ivietnyiphenol 3-Methylphenol													
4,6-Dinitro-2-methylphenol													
4-Bromophenyl phenyl ether													
4-Methylphenol													
Anthracene													
Benzidine													
Benzo (a) anthracene													
Benzo (a) pyrene Benzo (b) fluoranthene													
Benzo (g,h,i) perylene													
Benzo (k) fluoranthene													
Benzoic acid Bis(2-ethylbexyl)phthalate													
Butlylbenzylphthalate													
Carbazole													
Chrysene													
Dibenzofuran													
Di-n-butylphthalate													
Di-n-octylphthalate													
Fluorene													
Hexachlorobenzene													
Indeno (1,2,3-cd) pyrene						ļ							
isophorone Naphthalene													
Phenanthrene													
Phenol													
Pyrene Metals (mg/kg)		I]										
Aluminum													
Antimony													
Arsenic						ļ							
Beryllium					L	l	ļ						
Cadmium													
Calcium													
Chromium Cobalt					L	ļ	L						
Copper													
Iron													
Lead													l
Manganese					ļ	ļ	ļ						
Mercury													
Nickel													
Potassium Selenium													
Silver													
Sodium													
Thallium Vanadium													
Zinc													
Inorganics (mg/kg)	•	•	•	·	• 	• 	• 	•	·	•	·	•	L
Cyanide													

			Data Sc	ource: Table	6-5 of NYS	DEC SER	(12- 2006)	Envirotek	t II Area		
	SB-24	SB-25	SB-25		SB-26	SB-27	SB-27	SB-28	SB-28		SB-29
Sample ID:	3/30/01	6/14/01	6/14/01	SB-26	6/14/01	6/15/01	6/15/01	6/15/01	6/15/01	SB-29	6/18/01
Sample Date: Sample Depth:	(8.0 ⁻ - 10.0')	(6.0' - 8.0')	(8.0 ⁻ - 10.0')	6/14/01 (6.0' - 8.0')	(8.0 [°] - 10.0')	(2.0' - 4.0')	(4.0' - 6.0')	(6.0' - 8.0')	(8.0 [°] - 10.0')	6/18/01 (6.0' - 8.0')	(8.0' - 10.0')
VOCs (ug/kg)		,		,	,		,	,		. ,	
1,1,1-Trichloroethane		21 J	25 J							17	
1,1-Dichloroethane	33	48 J	21 J	22	2 J		2 J				
1,2-Dichloroethane											
1,2-Dichloroethene (total)		9 J	11 J	6 J	3 J		8 J				
1,2-Dichloropropane											
2-Butanone	52			8 J	8 J		12				
2-Hexanone 4-Methyl-2-Pentanone	36	13 J	9.1	14	950		1.J				
Acetone	260	100					67			5 J	49 J
Benzene							2 J				
Carbon Disulfide	3 J 5 J		7 J	2 J	5 J		10 J				
Ethylbenzene	260			20	4 J						
Methylene Chloride	8 J	7 J		4 J	3 J						
Tetrachloroethene	4 J	61 J	30 J	0.5	2 J		3 J			19	
Trichloroethene	22 J	54 J	32.1	35 11 J	7 J 15		2 J 3 J			4.1	
Trichlorofluoromethane											
Vinyl Chloride				9 J							
Xylenes	243			48	10 J				l		.
2.3.4.6-Tetrachlorophenol											
2-Methylnaphthalene											
2-Methylphenol							-				
3-Methylphenol											
יי,ט-טווווט-∠-metnyipnenol 4-Bromophenvl phenvl ether											
4-Methylphenol											
Acenaphthene											
Anthracene											
Benzo (a) anthracene											
Benzo (a) pyrene											
Benzo (b) fluoranthene											
Benzo (k) fluoranthene											
Benzoic acid											
Bis(2-ethylhexyl)phthalate											
Carbazole											
Chrysene											
Dibenz (a,h) anthracene											
Di-n-butylphthalate			-								
Di-n-octylphthalate											
Fluoranthene											
Huorene Hexachlorobenzene											
Indeno (1,2,3-cd) pyrene											
Isophorone											
Naphthalene Phenanthrene											
Phenol									<u> </u>		
Pyrene											
<u>Metals (mg/kg)</u>					[
Auminum Antimonv											
Arsenic											
Barium											
Beryllium Cadmium											
Calcium											
Chromium											
Cobalt											
Copper Iron											
Lead											
Magnesium											
Manganese Mercury											
Nickel											
Potassium											
Selenium											
Silver							<u> </u>				
Thallium											
Vanadium - -:											
∠inc Inorganics (mg/kg)											
Cyanide											
2 ··· · ·					1						

Page 6 of 8

		Statistica	l Analysis ¹		Part 375 Restri Cleanup S	cted Use Soil tandards
						Restricted
Sample ID:	Number of	Maximum	Average of	Standard	Industrial Land	Residential
Sample Date: Sample Depth:	Results	Concentration	Concentrations	Deviation	Use	Land use
VOCs (ug/kg)						
1,1,1-Trichloroethane	9	340.0	108.1	100.137	1,000,000c	100,000a
1,1-Dichloroethane	3	110.0	55.0	24.876	480,000	26,000
1,2-Dichloroethane	0				60,000	NS
1,2-Dichloroethene	6	280.0	69.7	83.428	1,000,000c	NS
1,2-Dichloroethene (total)	5	180.0	94.2	54.146	NS	NS
1,2-Dicnioropropane	1	760.0	760.0	10.374	NS	NS
2-Butanone	0	52.0	52.0	10.374	NS	NS
4-Methyl-2-Pentanone	4	950.0	300.0	330.366	NS	NS
Acetone	8	2124.0	339.1	451.138	1,000,000c	100,000b
Benzene	1	34.0	34.0	12.851	89,000	4,800
Carbon Disulfide	0				NS	NS
Chloroethane	0				NS	NS
Ethylbenzene	4	2365.0	703.8	676.204	780,000	41,000
Methylene Chloride	19	263.0	78.3	58.628	1,000,000c	100,000a
Tellachioroethene	3	5506.0	2120.3	1028.077	1,000,000	100,000
Trichloroethene	18	780.0	110.4	130.805	400.000	21.000
Trichlorofluoromethane	1	2.0	2.0		NS	NS
Vinyl Chloride	0				NS	900
Xylenes	7	14727.0	3409.3	4236.769	1,000,000c	100,000a
SVOCs (ug/kg)						
2,3,4,6-Tetrachlorophenol	1	35968.0	35968.0		NS	NS
2-Methylnaphthalene	5	15865.0	3516.4	4964.882	NS	NS
2-Methylphenol	1	274.0	274.0		NS	NS
o-ivietnyipnenoi 4 6-Dinitro-2-methylphonol	1	107.0	107.0 1132.0	800 445		NS NG
4-Bromophenvl phenvl ether	3	222.0	206.3	14.295	NS	NS
4-Methylphenol	2	1495.0	801.0	981.464	NS	NS
Acenaphthene	5	22601.0	5215.2	7462.369	1,000,000c	100,000a
Anthracene	8	4200.0	1107.8	1173.108	1,000,000c	100,000a
Benzidine	1	185.0	185.0		NS	NS
Benzo (a) anthracene	14	14012.0	1976.4	3181.888	11,000	1,000f
Benzo (a) pyrene	7	9500.0	1902.1	2911.914	1,100	1,000f
Benzo (b) fluoranthene	9	21632.0	3958.0	6037.250	11,000.00	1,000f
Benzo (g,ii,i) perylene Benzo (k) fluoranthene	8	14823.0	3650.4	4629 887	110,000	3 900
Benzoic acid	1	87.0	87.0	4023.007	NS	NS
Bis(2-ethylhexyl)phthalate	12	6607.0	1422.9	1666.794	NS	NS
Butlylbenzylphthalate	3	713.0	293.7	365.690	NS	NS
Carbazole	0				NS	NS
Chrysene	14	13657.0	2224.3	3081.451	110,000	3,900
Dibenz (a,h) anthracene	0	0.0	407.7	4.40,500	1,100	330e
Dipenzoturan	3	392.0	187.7	143.536	1,000,000C	59,000
Di-n-octylphthalate	3	543.0	277.7	237,490	NS	NS
Fluoranthene	12	13441.0	1996.4	2804.003	1.000.000c	NS
Fluorene	8	7634.0	1013.9	2191.515	1,000,000c	100,000a
Hexachlorobenzene	1	165.0	165.0	116.673	NS	NS
Indeno (1,2,3-cd) pyrene	5	11415.0	2764.2	3015.240	11,000	500f
Isophorone	1	254.0	254.0	179.605	NS	NS
Naphthalene	4	29658.0	7857.5	11969.456	1,000,000c	100,000a
rnenanthrene Phenol	14	5210.0	1014.2	1071.592		100,000a
Pvrene	14	26651.0	4407.4	6356 893	1,000,0000	100,000a
Metals (mg/kg)					,,	,0004
Aluminum	8	34400.0	21887.5	7223.857	NS	NS
Antimony	2	20.8	13.3	7.343	NS	NS
Arsenic	23	60.5	21.6	18.162	16f	16f
Barium	25	680.0	212.9	212.038	10,000d	400
Beryllium	12	4.0	2.2	1.170	2,700	72
Calcium	14	8.9	3.7	2.829	60 NC	4.3
Calcium	8 19	152000.0 575.0	106850.0 74 2	30993.745		NS
Cobalt	16	21.6	7.5	5.482	NS	NS
Copper	20	12100.0	709.7	2411.127	10,000d	270
Iron	8	192000.0	67337.5	61881.521	NS	NS
Lead	21	3570.0	406.8	734.770	3,900	400
Magnesium	8	30500.0	14497.5	7402.148	NS	NS
Manganese	0	0.0	#DIV/0!	0.000	10,000d	2,000f
Mercury	16	0.7	0.3	0.214	5.7j	0.81j
	20	142.0	26.1	30.085	10,000d	310 NG
Selenium	<u>∠o</u> 4	2940.0 15.5	5.8	5.577	6.800	180
Silver	0	10.0	0.0	0.011	6,800	180
Sodium	12	1740.0	660.4	493.596	NS	NS
Thallium	0	0.0			NS	NS
Vanadium	20	280.0	40.2	60.047	NS	NS
Zinc	9	367.0	162.4	99.072	10,000d	10,000 d
Inorganics (mg/kg)				1		
Cyanide	0				10,000d	27h

Page 7 of 8

Footnotes

- J Compound reported at an estimated concentration below the reporting limit
- $\ensuremath{\mathsf{B}}$ Analyte was detected in the associated blank as well as the sample
- N Spiked sample recovery not within control limits
- ** Duplicate analysis not within control limits
- E The reported value is estimated due to the presence of interference
- W Post-digestion spike is out of control limits, while sample absorbance is less than 50% of spike absorbance
- D Compound identified in analysis at a secondary dilution factor

Part 375 Restricted Use Soil Cleanup Standards footnotes

a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.

b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

f For constituents where the calculated SCO was lower than the rural soil background concentration asdetermined by the Department and Department of Health rural soil survey, the rural soil backgroundconcentration is used as the Track 2 SCO value for this use of the site.

g This SCO is derived from data on mixed isomers of BHC.

h The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for thetotal species of this contaminant is below the specific SCO.

i This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Key	Data Source: Tonawanda Coke Letter dated 1/21/94
Sample ID: Sample Date: Sample Depth:	ACTS # 3B- 4893E 12/02/93 Lagoon Dredging
TCLP Volatil	es
2-Butanone Chloroform	16.0 B 2.9 B
TCI D Motolo	
I GEF Metais	
Arsenic	6
Barium	590
Cadmium	10
Chromium	30
	•

B - Analyte was detected in the associated blank as well as the sample

Page 8 of 8

Table IV 2007 Subsurface Soil Quality Sampling Results (>1.0 feet) Former Roblin Steel Site Town of Tonawanda, New York

Dete Comulad	0/07/0007	0/07/0007	2/40/2007	0/07/0007	0/07/0007	0/07/0007	0/07/0007	0/07/0007	0/00/0007	0/00/0007	0/00/0007	0/00/0007	0/00/0007	0/00/0007	0/00/0007
Date Sampled	2/27/2007	2/27/2007	3/12/2007	2/27/2007	2/27/2007	2/27/2007	2/27/2007	2/27/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007	2/28/2007
Sample Logation		NRGTP-4	NRG-4	NRGTP-5	NRGTP-6	NRGTP-7	NRGTP-8	NRGTP-8	NRGTP-9	NRGTP-9	NRGTP-10	NRGTP-10	NRGTP-11	NRGTP-11	NRGTP-12
Sample Location	NKG1F-24	8'	15-17'	5'	6-8'	4'	4'	8'	4'	8'	4'	7'	4'	8'	4'
VOCs (ua/ka) by EPA															
Method 8260B															
2-Hexanone	NA		NA			NA		NA	NA	NA	NA				
Acetone	NA	7.5 J	NA		88	NA		NA	NA	NA	NA	4.7 J		73 J	9.5 J
Benzene	NA		NA			NA		NA	NA	NA	NA		91 J		
Carbon disulfide	NA		NA		1.7 J	NA		NA	NA	NA	NA				
cis-1,2-Dichloroethene	NA		NA			NA		NA	NA	NA	NA		900		
Ethylbenzene	NA		NA		0.98 J	NA		NA	NA	NA	NA		2200	71	
Methylene Chloride	NA		NA			NA		NA	NA	NA	NA			44 J	
Tetrachloroethene	NA		NA			NA		NA	NA	NA	NA		480 J		
Toluene	NA		NA			NA		NA	NA	NA	NA		1700		
Xylenes, Total	NA		NA		4.5 J	NA		NA	NA	NA	NA		8800	47	
<u>SVOCs (ug/kg) by EPA</u> <u>Method 8270C</u>															
1,2,4-Trichlorobenzene	NA				100 J	NA			NA	NA	NA				
1,2-Dichlorobenzene	NA				77 J	NA			NA	NA	NA		240 J	90 J	
2,4-Dimethylphenol	NA	1800	410 M		1200	NA			NA	NA	NA		1200 J	1200	
2-Methylnaphthalene	NA	1900			1800	NA			NA	NA	NA	75 J	6100	310 J	
2-Methylphenol	NA	2000	70 J		730	NA			NA	NA	NA			350 J	
4-Methylphenol	NA	7100	170 J		2700	NA			NA	NA	NA		4900 J	1700	
Acenaphthene	NA				850	NA			NA	NA	NA		2100	110 J	
Acenaphthylene	NA					NA			NA	NA	NA				
Anthracene	NA				590	NA			NA	NA	NA		2900	120 J	
Benzolajanthracene	NA	430 J		98 J	820	NA			NA	NA	NA	110 J	4000	200 J	
Benzo[a]pyrene	NA	670 J		400 1	820	NA			NA	NA	NA	100 J	3200	200 J	
Benzolo hilpondono	NA NA	720 J		130 J	020	NA NA			NA NA		NA NA	160 J 81 J	4300 3000	290 J	
Benzo[k]fluoranthene	NA	750 J		120 J	920	NA NA			NA NA		NA NA	013	1700	200 J	
Bis(2-ethylbexyl) phthalate	NA	660.1			2500	NA			NA	ΝA			6700	650	
Butyl benzyl ohthalate	NA	0000			2000	NA			NA	NA	NA		440 J	100 J	
Carbazole	NA				440	NA			NA	NA	NA		1600		
Chrysene	NA	500 J		100 J	1000	NA			NA	NA	NA	100 J	4800	280 J	
Dibenz(a,h)anthracene	NA				220 J	NA			NA	NA	NA		820 J		
Dibenzofuran	NA				710	NA			NA	NA	NA		1800	88 J	
Di-n-butyl phthalate	NA				120 J	NA			NA	NA	NA		1300 J		
Di-n-octyl phthalate	NA				290 J	NA			NA	NA	NA				
Fluoranthene	NA	480 J			2000	NA			NA	NA	NA	150 J	12000	480	
Fluorene	NA	290 J			1200	NA			NA	NA	NA		5200	150 J	
Indeno[1,2,3-cd]pyrene	NA	680 J		100 J	870	NA			NA	NA	NA	93 J	3100	170 J	
Isophorone	NA					NA			NA	NA	NA				
Naphthalene	NA	2500			1900	NA			NA	NA	NA		6400	390 J	
Phenanthrene	NA	670 J			2900	NA			NA	NA	NA	110 J	17000	590	
Phenol	NA	2600			4700	NA			NA	NA	NA		5800 J	3000	
Pyrene Motolo (mg/kg) by EBA	NA	540 J		110 J		NA			NA	NA	NA		7900	460	
Method 6010B and 7471A															
(Hg only)															
Arsenic	26.5 J									8 J				8 J	
Barium	34.8 J	38 J		951 J	66.8 J	73.9 J	3070 J	348 J	42.7 J	837 J	159 J	16.3 J		49.9 J	
Cadmium					1.6 J										
Chromium	57.1 J	25.4 J		22.2 J	114 J	6.8 J	11.2 J	52.9 J	11.6 J	9.4 J	189 J	2 J		91.7 J	
Lead	7.1	24.4		83.5	93	162	34.7	36.8	12.8	2.6 J	276	2.6 J		55.7	
Mercury															
Selenium							3.5 J								
Silver															
Total Cyanide															
EPA Method 3012B				5400		10900	150 J	150 J		48200					

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table IV 2007 soil summary for greater than 1 foot.xls

Table IV2007 Subsurface Soil Quality Sampling Results (>1.0 feet)Former Roblin Steel SiteTown of Tonawanda, New York

	T	· · · · · ·							
Date Sampled	2/28/2007	2/28/2007		Statistic	al Analysis ¹		Standard from F Use Soil Clea	Part 375 Restricted anup Standards	
Sample Location	NRGTP-13 4'	NRGTP-13 8'	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentrations	Standard Deviation	Industrial Land Use	Restricted Residential Land use	
VOCs (ug/kg) by EPA Method 8260B	<u></u>								
2-Hexanone			0				NS	NS	
Acetone	5 J	13 J	1	88.0	88.0	23.5	1,000,000c	100,000b	
Benzene			0				89,000	48,000	
Carbon disulfide			0				NS	NS	
cis-1,2-Dichloroethene			1	900.0	900.0		NS	100,000a	
Ethylbenzene			2	2200.0	1135.5	693.6	780,000	41,000	
Methylene Chloride			0				1,000,000c	100,000a	
Tetrachloroethene			0				300,000	19,000	
Toluene			1	1700.0	1700.0		1,000,000c	100,000a	
Xylenes, Total			2	8800.0	4423.5	2781.2	1,000,000c	100,000a	
SVOCs (ug/kg) by EPA Method 8270C									
1 2 4-Trichlorobenzene	1		0				NS	NS	
1,2,4 Theniolobenzene			0				NS	NS	
2 4-Dimethylphenol			3	1800.0	1400.0	695 7	NS	NS	
2-Methylnanhthalene			3	6100.0	3266.7	1056.6	NS	NS	
2-Methylnaphthalene			2	2000.0	1365.0	680.5	NS	NS	
4-Methylphenol			3	7100.0	3833.3	229/ 1	NS	NS	
			2	2100.0	1475.0	760.1	1,000,000c	100.0002	
Acenaphthylene	110.1		0	2100.0	1473.0	700.1	1,000,000C	NS	
Anthracene	78.1		2	2900.0	1745.0	962.1	1,000,000c	100.000a	
Benzolalanthracene	320 J	99 J	2	4000.0	2410.0	1113.8	11 000	1 000f	
Benzo[a]ovrene	350.1	140.1	2	3200.0	2010.0	932.5	1 100	1,000f	
Benzo[b]fluoranthene	480	180.1	3	4300.0	1926 7	1195 5	11 000 00	1,000f	
Benzo[a,h,i]pervlene	420	250 J	3	3000.0	1446 7	845.3	1,000,000c	100.000a	
Benzo[k]fluoranthene	180 J		2	1700.0	1050.0	597.5	110 000	3,900	
Bis(2-ethylhexyl) phthalate	120 J		3	6700.0	3283.3	2156.6	NS	NS	
Butyl benzyl phthalate			0	0100.0	0200.0	2100.0	NS	NS	
Carbazole			2	1600.0	1020.0	599.9	NS	NS	
Chrvsene	360	160 J	3	4800.0	2053.3	1330.7	110.000	3.900	
Dibenz(a,h)anthracene	98 J		0	0.0			1.100	330e	
Dibenzofuran			2	1800.0	1255.0	649.9	1.000.000c	59.000	
Di-n-butyl phthalate	 		0				NS	NS	
Di-n-octyl phthalate			0				NS	NS	
Fluoranthene	550	130 J	4	12000.0	3757.5	3433.9	1.000.000c	NS	
Fluorene			2	5200.0	3200.0	1729.5	1,000,000c	100,000a	
Indeno[1,2,3-cd]pyrene	350 J	250 J	2	3100.0	1985.0	873.4	11,000	500f	
Isophorone			0				NS	NS	
Naphthalene	58 J		3	6400.0	3600.0	2085.8	1,000,000c	100,000a	
Phenanthrene	270 J		3	17000.0	6830.0	5095.0	1,000,000c	100,000a	
Phenol			3	4700.0	3433.3	1804.9	1,000,000c	100,000a	
Pyrene	540	140 J	3	7900.0	2966.7	2360.3	1,000,000c	100,000a	
<u>Metals (mg/kg) by EPA</u>									
Method 6010B and 7471A									
(Hg only)			·						
Arsenic	20.9 J		0				16f	16f	
Barium	153 J	├──── ┨	0				10,000d	400	
Cadmium	19.7	├──── ┨	1	19.7	19.7	13.9	60	4.3	
Unromium	535 J		0				NS	NS	
Lead	609	├──── ┨	11	609.0	126.8	169.7	3,900	400	
	 '	┞────┨	0				5.7j	0.81j	
Selenium	 	┟────┨	0				6,800	180	
Silver	 	├──── ┨	U				6,800	180	
Concentration (ug/Kg) by			I						
EPA Method 3012B			3	48200.0	21500.0	20243.3	10,000,000d	27,000h	

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table IV 2007 soil summary for greater than 1 foot.xls Table IV 2007 Subsurface Soil Quality Sampling Results (>1.0 feet) Former Roblin Steel Site Town of Tonawanda, New York

Footnotes

J - Compound reported at an estimated concentration below the reporting limit

B - Analyte was detected in the associated blank as well as the sample

N - Spiked sample recovery not within control limits

** - Duplicate analysis not within control limits

 ${\sf E}$ - The reported value is estimated due to the presence of interference

W - Post-digestion spike is out of control limits, while sample absorbance is less than 50% of spike absorbance

D - Compound identified in analysis at a secondary dilution factor

* LCS or LCSD exceeds the control limit

M Indicates result was obtained via a manual integration (rather than via a calculation from the instrument software)

¹ Does not Include B, *, and J values

Part 375 Restricted Use Soil Cleanup Standards footnotes

a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.

b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

f For constituents where the calculated SCO was lower than the rural soil background concentration asdetermined by the Department and Department of Health rural soil survey, the rural soil backgroundconcentration is used as the Track 2 SCO value for this use of the site.

g This SCO is derived from data on mixed isomers of BHC.

h The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for thetotal species of this contaminant is below the specific SCO.

i This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Q:\M-O\NRT\2006-057.02\Deliv\Remedial Investigation Report\Appendies\Appendix B Soil Quality Chemistry Summary Tables\ Appendix B Table IV 2007 soil summary for greater than 1 foot.xls Appendix C Well Logs

	Monitoring Well Log for NRG-1												
Project Name:LocatNiagara River WorldY-coolReclassificationUTN			n : X-c <u>47612</u> Zone 1	coord <u>667</u> 04.71935 7 N [m. N	929.73833 5 (coords in NAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/08/07 Finish Date: 03/08/07						
Project N NRT2007	Project Number:Ground Surface Elevation (ftNRT2007-044.00576.96				on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth: 19.87						
Sample: 2 Spo	2" dia Split oon	Riser Pipe	Riser Pipe Elevation (ft MSL): 579.31		Croundwater L): <u>579.31</u> Elevation (ft MSL): <u>568.65</u>								
Depth (feet)	Blows/6"	Recovery (inches)	V Cons	Vell truction	I	Description	PID * (ppm)						
0-2	20 49 18 11	13				Frost to 0.5'	0.0						
2-4	13 18 18 25	15					0.0						
4-6	10 6 6 8	9			Fill - Consis reddish bro	ts of gravel sized slag, own to black, dry to 8'	0.0						
6-8	50/.4'	3			and wood,	0.0							
8-10	31 50/.3'						0.0						
10-12	27 7 4 3	9					0.0						
12-14	6 5 5 5	0			Organic Sar slow dilatan clay, 60 % si sand r	dy Silt - Slightly plastic, cy, organic, about 10 % lt, and 30 % fine-grained							
					Alluvium/Lacu	ustrine. Sample intervals							
15-17	8 5 2 2	0			sand bas	appeared to cotain more ed on rapid inflow of water into borehole							

Bentinite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup.

Sand Pack is Filpro # 0 Superior Quartz Filtration Media

	Monitoring Well Log for NRG-2												
Project Name:LocaNiagara River WorldY-cooReclassificationUT			n : X-coord <u>667</u> <u>4761236.20496</u> Zone 17 N [m. N	875.42943 <u>6</u> (coords in NAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/07/07 Finish Date: 03/08/07							
Project N NRT2007	lumber : 7-044.00	Ground S	Surface Elevati <u>575.13</u>	on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth : <u>19.12</u>							
Sample: 2 Spc	Sample: 2" dia Split Spoon Riser Pipe Elevation (ft MSL): 577.51		/ISL) : <u>577.51</u>	Groundwater Elevation (ft MSL): <u>566.53</u>	Driller : Ken Fuller								
Depth (feet)	Blows/6"	Recovery (inches)	Well Construction	I	Description	PID * (ppm)							
0-2	15 19 11 10	12			Frost to 0.5'	0.0							
2-4	8 7 7 9	14		Fill - Consist odd	is of mainly red clay, no or or oil sheen.	0.0							
4-6	4 4 5 5	2				0.0							
6-8	6 14 14 18	10		Fill - Consis	sts of gravel sized slag,	0.0							
8-10	8 15 50/.4'	. 11		and wood,	no odor or oil sheen.	0.0							
10-12	18 12 11 5					0.0							
12-14	4 2 2 1	16		Organic Silt - dilatancy, org 60 % silt_and	Slightly plastic, slow anic, about 10 % clay, 30 % fine-grained sand	0.0							
14-16	4 2 3 4	16		no odor or sh Alluvium/Lacu	een, istrine.	0.0							

Bentinite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup.

Sand Pack is Filpro # 0 Superior Quartz Filtration Media

	Monitoring Well Log for NRG-3											
Project Niagara Ri Reclassi	Name : ver World fication	Locatio Y-coord UTM	n : X-coord <u>667</u> <u>4760925.31879</u> Zone 17 N [m. N	920.05244 0 (coords in NAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/12/07 Finish Date: 03/12/07						
Project Number: NRT2007-044.00		Ground S	Surface Elevation <u>581.96</u>	on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth : <u>15.71</u>						
Sample: 2" dia Split Spoon		Riser Pipe Elevation (ft MSL): <u>584.55</u>			Groundwater Elevation (ft MSL): <u>573.71</u>	Driller : Ken Fuller						
Depth (feet)	Blows/6"	Recovery (inches)	Well Construction	I	Description	PID * (ppm)						
	2				Frost to 0.5'							
0-2	6 31 35	15				0.0						
2-4	5 7 10 9	16				0.0						
4-6	5 4 4 4					5.0						
6-8	3 3 3 4			Fill - Black fi some fire br sheen on	ne sand, phenolic odor, ick and castings (slight groundwater table).	8.0						
8-10	4 2 2 1	0				5.5						
10-12	2 2 1 3	0				7.0						
12-14	13 8 8 6					8.0						

Bentonite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup.

Sand Pack is Filpro # 0 Superior Quartz Filtration Media

	Monitoring Well Log for NRG-4											
Project Niagara Ri Reclassi	Name : ver World ification	Locatio Y-coord UTM	n : X-coord <u>667</u> <u>4761027.76566</u> Zone 17 N [m. N	921.54258 <u>3</u> (coords in NAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/10/07 Finish Date: 03/12/07						
Project Number: NRT2007-044.00		Ground S	Surface Elevati <u>579.75</u>	on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth : <u>18.75</u>						
Sample: 2" dia Split Spoon		Riser Pipe	Elevation (ft N	/ISL) : <u>582.31</u>	Groundwater Elevation (ft MSL): <u>573.26</u>	Driller : Ken Fuller						
Depth (feet)	Blows/6"	Recovery (inches)	Well Construction		Description	PID* (ppm)						
0-2	9 9 32 28	24			Frost to 0.5'	0.0						
2-4	14 16 13 12	15				0.0						
4-6	8 8 6 13	2			3.2							
6-8	19 18 14 6			Fill - Fill - Bl odor, some (slight sheer heavier oil s	5.5							
8-10	1 1 1 1			sample tip f bottom of f	rom 13.5 feet (probably ormer ore storage pit).	6.0						
10-12	8 3 3 3	0				6.2						
12-14	7 25 50/.2'	24				8.1						
15-17	11 5 7 10	19		Organic Sil dilatancy, or 60 % silt, and	t - Slightly plastic, slow ganic, about 10 % clay, I 30 % fine-grained sand,	4.0						
17-19		24		slight Alluv	ordor, no sheen, /ium/Lacustrine.							

Bentonite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup.

Sand Pack is Filpro # 0 Superior Quartz Filtration Media

Monitoring Well Log for NRG-5											
Project Niagara Ri Reclassi	Name: ver World ification	Locatio Y-coord UTM	n : X-coord <u>668</u> <u>4760802.03178</u> Zone 17 N [m. N	135.07214 8 (coords in NAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/09/07 Finish Date: 03/09/07					
Project N NRT2007	lumber : 7-044.00	Ground S	Surface Elevati <u>577.73</u>	on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth: 19.45					
Sample: 2 Spo	2" dia Split oon	Riser Pipe	Elevation (ft N	Groundwater ISL): 580.26 Elevation (ft MSL): 570.03 570.03		Driller : Ken Fuller					
Depth (feet)	Blows/6"	Recovery (inches)	Well Construction	I	Description	PID * (ppm)					
	50/.2'				Frost to 0.5'						
0-2		4.5									
2-4	9 11 13 19	9									
4-6	10 7 10 12	8									
6-8	13 10 8 5	10		Fill - Consis	ts of gravel sized slag,						
8-10	10 7 4 4	5		and wood,	no odor or oil sheen.						
10-12	16 10 21 22	10									
12-14	15 18 19 21	12									
15-17	6 1 2 4	15		Organic Silt - S organic, about 10 grained s All	Slightly plastic, slow dilatancy, % clay, 60 % silt, and 30 % fine- and, no ordor or sheen, uvium/Lacustrine.						

Bentonite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup. Sand Pack is Filpro # 0 Superior Quartz Filtration Media

	Monitoring Well Log for NRG-6											
Project Name:LocNiagara River WorldY-coReclassificationU			n : X-coord <u>668</u> <u>4760735.11142</u> Zone 17 N [m. N	096.80199 (coords in IAD 83])	Method : CME 85 - 4 1/4" dia. Hollow Stem Auger by SJB Empire	Start Date: 03/09/07 Finish Date: 03/09/07						
Project N NRT2007	Number : 7-044.00	Ground S	Surface Elevation <u>578.38</u>	on (ft MSL):	Logged by: Stephen Lorentz (NRG)	Total Depth: 20.31						
Sample: 2 Spo	2" dia Split oon	Diit Riser Pipe Elevation (ft MSL): 580.51		Groundwater Elevation (ft MSL): <u>569.21</u>	Driller : Ken Fuller							
Depth (feet)	Blows/6"	Recovery (inches)	Well Construction	I	Description	PID * (ppm)						
0-2	50/.4'	5			Frost to 0.5'							
2-4	50/.2'	2										
4-6	50/.4'											
6-8	50/.2'	o		Fill - Consis reddish brov								
8-10	50/.4'	5		and wood,								
10-12	50/.3'	6										
12-14	50/.2'	2										
15-17	0 2 2 1	12		Organic Sil dilatancy, or 60 % silt, and no	t - Slightly plastic, slow ganic, about 10 % clay, 30 % fine-grained sand, odor or sheen,							

N

Neat Cement Grout

Bentonite Chips Seal

Screen (# 10 slot) and Riser are threaded PVC - Locking protective casing covers riser stickup.

Sand Pack is Filpro # 0 Superior Quartz Filtration Media

SB		Well Purging an	nd Sample Collection
Project No.: 00-07-018	Well No. ENV-5	Sive: NRG-TON	AWANDA
Purging Method: Pumped	Bailed 🗌 Other: _	and an application	
Pump Type: PERISTALTIC	Bailer	Туре:	
Weather Conditions: OVERCAST,	MID-20's of		
Volume Calculation:			A State State
(D.T.B. – D.T.W. x vol./ft. = Gals./well (Gals./well vol. x 5 = Total Volume to b	vol.) e removed) Gal	s./well vol.: 2.22	3 vol = 6.66 gas $5 vol = 11.1 gas$

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рH	DO Cond.	°F Temp.	Color	Odor Y/N	Turbidity
1056	11.27'	24.36							
1330	START	PURGING							
1340	WATER GRAY-B	BRCOME	2.0						
1346	WATERC	LEARING	3.0						
1415	field pau	pameterr	7.25= 3.5 VOL	9.05	1.01	45.68	ckar	N	0.81
1430	FIELD AS	RAMETERS	9.5= 4.5 VOL	9.07	2.53	47.66	CLEAR	N	0.20
1447	FIELD PD	ROMETERS	11.7 = 5,5 VOL	9.03	1.26	50.07	CLEAR	N	0.85
						12.14			
3		Sample	Readings						

Comments: TNITIAL WATER IS CLEAR W/BLACK SOLIDS ON OCCASION. WATER HAS SLIGHT SULFUR O DOR

Inside Diameter	vol./ft_
1-	0.04 ·
1.25	0.06 ·
2"	0.16
4	0.65

COLLECTED GW SAMPLES @ 1450

Field Blank Taken Time:						
Well Duplicate No:	HNU/PPM	LEL/%	02/%	H2S/PPM	CO/PPM	
Signature: DRS						
Date: 318,07						
				1.000		

F

R						Well	Purging a	nd Sam	ple Collection
SERVICE roject No.	BEN BEN	1-07-018 2 2006-057	Well No.	ENV-T) Si	ue:N[lG		and the second
urging Me rump Type Venther Co	ethod: :: <u>Mas</u> onditions: _	Pumped Arflex E/S overcast	Pump Drive Cold ~ 1 (12 68) + 0.1	$\frac{0}{100} 0 \text{ the } \frac{1}{100} \text{ f}$	er: Bailer Type	: <u> </u>	polypropyler	he bailes	for sampling
Volume Ca D.T.B. − I Gals./well	Uculation: _ D.T.W. x vol. vol. x 5 = To	/ft. = Gals./we	ill vol.) be removed)) (Gals./we	II vol.:	3, 72	(5 w	ell volumes)
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	DO Conc.	Temp.	Color	Odor Y/N	Turbidity
1151	12.68	17.06							
140			2.25	9.12	8,39	44.15	Char	N	7.15
500			3.00	9.08	1.98	46.35	Cliar	N	2.35
210		•	3.75	9.14	1.87	46.10	Clear	N.	5.35
				1		A Star			1. Sec. 1.

 E'al	A ANGELICONAN	t tala a	34	2 has		In	side Dian	neter	vol./ft
	Sample	Readings							
Jeres.									
		4		2					
				-	. <u>2</u>				
 and the second sec	AND INCOME AND						and the second se	and the second se	

COLLECTED GW SAMPLES @ 1503

well volumes purged

Field Blank	Taken Time:
Well Dupli	cate 🗌 No.:
Signature:	- Jul MAT
Date:	3, 8,07

HNW/PPM	LEL/%	02/%	H2S/PPM	CO/PPM	
- 1			1.1.2.1.1.1	187 . IS	
10.00					
		1.5.15		•	

1-

1.25-

2"

4-

. .

0.04

0.06

0.16

0.65

SERVICE	S. INC		-			Well	Purgir	ig an	d Sam	ple C	Collection
Duralizat Ma	BEI	2006 057	W. U.M.	GM-1		NIO	G				
PTOJECT NO.	IVRQ	000-051	Well No.	Gwi	21	LE: <u>IVK</u>	u			-	
Purging Me	thod:	Pumped	Bailed	[] Oth	er	21		1	1.	1	-
Ршпр Туре	: Maler	TOX E/S FI	Ump Drive	10%5	Bailer Type	:: <u>ð</u>	polyprof	yline	tube	ter s	iampling
Weather Co	onditions: _	overast	-/ cold ~	10	*		1				
Volume Ca	deulation: _	(23.99	-6.721.0.1	1 = 1	0.H 3	.88 941	lwell vo	1			
(D.T.B. − I (Gals,/well	D.T.W. x vol. vol. x 5 = To	/ft. = Gals./we otal Volume to	ll vol.) be removed)		Gals./wo	ill vol.:	14.	42	(5 h	vell ve	alumes)
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	DO Cond.	Temp.	Colo	Dr	Odor Y/N	Tu	urbidity
	6.25	23.22									Selection of the
12:15			8.50	8.21	6.28	48,3°F	Clear	r	N	4.	75
1240			11.50	8,24	5.63	49.1°F	Clea	(N	3.	21
1922			14.50	8.16	5.70	48.1°F	Clear		N.	7	.70
1.00								-12			
	·										
		Sample	lReadings	1							
L		<u> </u>									5
Comment	s: <u>till</u>	megsvremen	ts were take	n atte	<u> </u>	and 5		Insid	e Diamo	eter	vol./fr.
	Well	volumes pu	ryed			-		104	1.25		0.06
									2"		0.16
(020	ECTED	gw samp	LES 0 15	35					4" .		0.65
Field Bla	nk Taken	J Time: _		- [H	NUPPM	LEL/%	190 Ho	S/PPM		PPM	
Well Dup		No.:		-							
Signature	:y	al Mon	-	- [
Date: _	318	1 07		E							

.

Initial

J.F.	
SERVICES, INC	

U			_			Well.	Purgin	g an	d Sam	ple C	Collection
SERVICE	ES, INC. BEV-	-07-018 200-057	Well No.	GW-	}		PG				
Project No.	- <u>Jek</u>	Durnard	Well No.		20		NY				
Ршпр Туре	: Mast	erfless E/S	Pump Drive	E	Bailer Type	: <u>}</u> "	polyprop	yliane	tube	fr	sampling
Weather Co	onditions:	overcast	cold ~1	0°F							
Volume Ca	dculation:	(31.56 -	13.09) . 0.17	2 3.1	4 gal/	well vol					
(D.T.B. – I (Gals./well	D.T.W. x vol. vol. x 5 = To	/ft. = Gals./we oual Volume to	ll vol.) be removed)		Gals./we	II vol.:	15.	70	(5 1	vell 1	rolumes)
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	Ds Gond.	Temp.	Colo)r	Odor Y/N	Tu	urbidity
835	13.09'	31.56'									
959			9.50	7.62	8.75	47.4°F	clear		N	4.	.46
1090			12.50	7.70	7.35	48.3°F	clear		N	3,	.13
1040			15:00	7.81	7.11	47.9	clear		N.	.1.	.43
1											
	The second	and the second second			Actes a						
and the second	N.										
and the second		Palses (
		Sample	Readings								
	Cold		Laro takon	offor	24 and	S will		Insid	le Diam	eter	vol./ft.
Comment	S: Maluars	Aurand	mut line.	чца	51 11 000	5 WUI			1-		0.04
The second	VOLVMOS	fulder							1.25		0.06
DALLE	eres Gul	SAMPLES	@ 1520				10110		2"		0.16
Field Bla	nk Taken	Time:			1985				4".	<u>· </u>	0.65
Well Dur		No:		Н	NU/PPM	LEL/% 02	1% H2	S/PPN	1 CO/	PPM	
Signature	. 01	Mat		-							
- Sustaile	2.0	. 07									
Date:	2/9	101		-					_		

Initial

Initial

	K. The		in the second		-	We	ll Pu.	rgin	ig and	I Sam	ple C	ollection
SERVICE	S, INC.	2006-057										
Project No.	:BEV-	-07-018	Well No.	GW-1	S	ite:	NR	G		-		
Purging Me	thod:	Pumped	Bailed	Out	ner:							
Pump Type	: Master	the Els P	ump Drive		Bailer Typ	e: _ 2	poly	progy	lune	hbe fi	55 591	mpling
Weather Co	onditions: _	SUANY /	cold ~15	- 90 °F							-	•]
Volume Ca	lculation: _	(20.86	- 9.44') .	0.17 =	1.94	991/w	ll vol					
(D.T.B. – I (Gals <i>J</i> well	0.T.W. x vol. vol. x 5 = To	/ft. = Gals./we otal Volume to	ill vol.) be removed)		Gals./wo	sil val.:	9	.11	(gal	15 4	all vo)
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	Do Sond.	Temp	n.	Colo	or	Odor Y/N	Tu	rbidity
	9.441	· 20.86'								1		
1045			5.82	12.37	0.88	54.08		cha	r	N	0.	8)
1100			7.75	12:40	1.84	52.5	7	C (09	ſ	N	0	.84
1110			10.00	12.38	1.22	52.5	8	elegi	r	N.	· 0,	.68
									10		1	
										-10-		
							i				1	
											× 1.	
		No. 1										
									-			
		Sample	Readings		1.000							
	[['a]	1 and there	managed @	24	and 5			1	Inside	e Diam	eler	vol/fL
Comment	s:	Lualumes nu	ral	2,7,	4110 -			-		l		0.04
-		I VOIVMOJ YV	iga	(Silke	ST			_		1.25		0.06
COLLE	CTED GW	SAMPLES	@ 1410			all and		_		2"		0.16
Field Bla	nk Taken] Time: _								4 .	<u> </u>	0.65
Well Dup	nlicate	No.:		F	INU/PPM	LEL/%	02/90	H2	S/PPM	CO/	PPM	
Signature	:Qa	1 mite								120		
Date:	8,9	107								1		
				F	1.12. 1.1.1		1993			1.		

NIR 2006 -057 NIR 2006 -057 WELL NO. GW-4 Size: NR 6-TONAWANDA urging Method: Pumped Bailed Other: Other: Gals/Well NO. GW-4 Size: NR 6-TONAWANDA Urging Method: Depth to Source of F Other Calculation: Other Calcon </th <th>S</th> <th>B</th> <th></th> <th>-</th> <th></th> <th></th> <th>Wa</th> <th>ell Pu</th> <th>rging</th> <th>and</th> <th>Samp</th> <th>ole C</th> <th>ollection</th>	S	B		-			Wa	ell Pu	rging	and	Samp	ole C	ollection
arging Method: Pumped Bailed Other: ump Type: PELISTALTIC Bailer Type: feather Conditions: SUNNY; 20's ° F olume Calculation: D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 $3_{VOL} = 5.7$; D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 0.65 Time Depti to Work emoved DO Color V/N Turbidity Sample Readings II.56 2.25 48.27 $CLEOR$ N 0.65 IO23 9.0 II.86 0.87 47.38 $CLEOR$ N 0.46	roject No.:	NRG2 BD-07	-018	Well No. G	w-4	s	ite: NR	·G-	TON	AW	AND	A	
Imp Type: PERLISTALTIC Bailer Type: feither Conditions: SUNNY; 20'S ° F olume Calculation: Olds:/well vol.: 1.25 D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 Depth to Bottom (D.T.W.) Depth to Bottom Bottom (D.T.W.) Volume (D.T.W.) Do (D.T.B.) Premoved (B.T.W.) DO (D.T.W.) Time Depth to Bottom (D.T.W.) Volume (D.T.B.) Removed (gal.) DO Forme. Temp. Color Odor Y.N. 1035 9.93' 17.28' StateT Pursoved Do StateT Color Odor Y.N. Turbidky 1035 9.93' 17.28' StateT Pursoved Do StateT Do StateT Do StateT Do StateT Do StateT 1035 9.93' 17.28' StateT StateT StateT StateT 1035 G.255 11.56 2.25 48.27 CLEDR N 1.622 104 7.5 11.56 2.25 48.27 CLEDR N 0.655 1023 9.0 11.86 0.877 47.38 CLEDR N 0.46 <t< td=""><td>urging Me</td><td>thod:</td><td>Pumped</td><td>Bailed</td><td>Oth</td><td>er</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	urging Me	thod:	Pumped	Bailed	Oth	er							
feather Conditions: SUNNY; 20's $^{\circ}$ F olume Calculation: D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 A vol. = 5.72 Dats./well vol. x 5 = Total Volume to be removed) Volume Tarbo diagonal Tarbo diagonal Yell = 5.72 Time Depth to Depth to Depth to Removed Do State = 6.2 Time Depth to Depth to Volume Temp. Color Yell = 5.62 Time (D.T.B.) Removed Removed Do Color Yell = 5.62 1035 9.93' 17.28' StateT Image: StateT Image: StateT Image: StateT 2.707 StateT StateT Image: StateT Image: StateT Image: StateT Image: StateT 3.707 StateT Image: StateT Image: StateT Image: StateT Image: StateT Image: StateT 1005 C.25 II.56 2.25 48.27 CLEDR N 0.65 1023 9.0 II.86 0.87 47.38 CLEDR N 0.65 IO23 9.0	итр Туре	PERIS	TALTIC		1	Bailer Typ	e:					CAN I	
olume Calculation: D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 1.25 3 vol = 5.72 4 vol = 5.72	eather Co	inditions:	SUNNY;	20's "1	6								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	'olume Ca	Iculation: _									1	1	
Depth to Water (D.T.W.)Depth to Bottom (D.T.B.)Volume Removed (gal.)DO FDO Conet.DO Temp.DO ColorDo Vol $0.7 \circ 0.7$ (D.T.B.) $0.7.8$ (D.T.B.) $0.7.8$ (gal.) $0.7.8$ (gal.) $0.7.8$ (G.T.B.) $0.7.8$ (G.T.B.) $0.7.8$ (gal.) $0.7.8$ (G.T.B.) $0.7.8$ (G.T.B.R.) $0.7.8$ 	D.T.B. – E Gals./well).T.W. x vol. vol. x 5 = To	/ft. = Gals./we otal Volume to	ell vol.) o be removed)		Gals./w	cil vol.:	1.2	5		345	VOL	= 3.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рН	DO	Tem	p.	Calor	0	Ddor	Tu	midity
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-8-07	9.93'	17.28	SEARCY									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-9-07			START PURGING									
1014 7.5 11.85 1.38 47.86 CLEOR N 0.65 1023 9.0 11.86 0.87 47.38 CLEOR N 0.46 1023 9.0 1.0 1.0 1.0 1.0 1.0 1.25 0.06 21 0.4 1.25 0.06 2" 0.16 4" 0.65 1125 0.05 2" 0.16 4" 0.65 1125 0.05 2" 0.16 4" 0.65	1005			6.25	11.56	2.25	48.2	9 (CROK	2,	N	1.0	62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1014	1		7.5	11.85	1-38	47,9	86 C	LEAR	1	N	0.	65
Comments: Watel Delt Glant Super State Delta State State Delta State State Delta State Stat	1023			9.0	11.86	0.87	47.3	8 C	LEAK	2 1	N	6.4	76
Sample Readings Sample Readings Comments: WATEL DOLL GRON- BLOCK AT FIRST: ELEARING AFTER 12-GAL. WATER BECOMES TURBID - ORAQUE WHEN & AGITATED OTTERWISE REMAINS CLEAR DURING PUMPING. CONTRERWISE REMAINS CLEAR DURING PUMPING. COLLECTED GW SAMPLES @ 1440 Field Blank Taken Time:	4												
Sample Readings Sample Readings Comments: WATEL DARK GRAT- BLACK AT FIRST: ELEARING AFTER Inside Diameter vol./ft. 12 - GAL. WATER BECOMES TURBID - ORAQUE UHEN OF AGITATED STITERWISE REMAINS CLEAR DURING PUMPING. 1.25" OLLECTED GW SAMPLES @ 1440 4" Field Blank Taken Time:								1		_			
Sample Readings Comments: WATEL DORK GRON- BLOCK AT FIRST. ELEARING AFTER Inside Diameter vol./ft. 12 - GOL. WATER BECOMES TURBID - ORAQUE WHEN & OGITATED, STATERWISE REMAINS CLEOR DURING PUMPING. 1.25" OLLECTED GW SAMPLES @ 1440 2" Field Blank Taken Time:										-		N.,	
Sample Readings Comments: WATEL DARK GRAT-BLACK AT FIRST: CLEARING AFTER 1/2-GOL. WATER BECOMES TURBID - OPAQUE WHEN & OGITATED, DTHERWISE REMAINS CLEAR DURING PUMPING. 2" 0.16 2" 0.16 4" 0.65 Field Blank Taken Time:	<u> </u>									•		-	
Comments: WATEL DARKGRAT-BLACK AT FIRST: CLEARING AFTER 1/2-GAL. WATER BECOMES TURBID - OPAQUE WHEN OF AGITATED, DTHERWISE REMAINS CLEAR DURING PUMPING. 2" 0.06 2" 0.16 Field Blank Taken Time:			Sample	Readings									
Comments: WAYER DECOMES TURBID - OPAQUE WHEN OF AGITATED, 1" 0.04 1/2 - GAL. WATER BECOMES TURBID - OPAQUE WHEN OF AGITATED, 1" 0.04 OTHERWISE REMAINS CLEAR DURING PUMPING. 1.25" 0.06 OTHERWISE REMAINS CLEAR DURING PUMPING. 2" 0.16 COLLECTED GW SAMPLES @ 1440 4" 0.65		1.4.5.0		1 81004 0	- 1.0	C.C. AL			0 []	nside	Diame	une [vol /fr
Intervise Remains CLEAR DURING UMPING. 1.25" 0.06 Intervise Remains CLEAR DURING UMPING. 2" 0.16 Intervise Remains CLEAR DURING UMPING. 4" 0.65 Intervise Remains CLEAR DURING UMPING. 4" 0.65	Comments	WARE WARE	PARKGRA	TURPED	APAD	s i ell	MICING	BPTR	R	11100	17		0.04 -
OLLECTED GW SAMPLES @ 1440 2" 0.16 Field Blank Taken Time:	THEDI	NCE PER	MALNIC P	I FAR TUR	NGLU	MPINK		21 1,01		1	.25		0.06
Field Blank Taken Time:	61160	TED GU	SAMPLE	(01440	0	in roy	111				2"		0.16
	Field Blar	k Taken] Time:						L		4		0.65
Well Duplicate No.: HNu/PPM LEL/% 02/% H2S/PPM CO/PPM	Well Dup		No.:		H	Nu/PPM	LEL/%	02/%	H2S/	PPM	CO/P	PM	
Signature: DES	Signature	D	RS		-								
3,9,07	Daves	3.9	,07	+						-			

Initial

Light of the second	Signature	:	al not		_							
Description Dury of points reaction Dury of points Paints Paints<	Well Dur		No:		н	NU/PPM	LEL/%	02/%	H2S/PP	M CO	PPM	
Import Num Deg of points Preshol Pres	Field Blan	ected G	Time	5 6124		1				4"		0.65
Deg of points Preshol Preshol<			I canar	1 012A	5			1996	-	2"		0.16
Durg ing Method: Pumped Bailed Other: INKY Pump Type: Mightflicx E/S Pump I VP Bailed Other: 312. 312. Pump Mightflicx E/S Pump I VP Weather Conditions: Sump / old \sim 15-20°F Bailer Type: 31 Pulyingyloct tote for samplin Volume Calculation: (17.86-5.68) 0.17 = 1.39 gal / well vol.: 6.95 gal / 5 well vol. (Gals/well vol. x s of /r. = Gals/well vol. Gals/well vol.: 6.95 gal / 5 well vol. for other Time Depth to Depth to Removed Boilon Removed (gal.) pH Good. Temp. Color Y/N Turbidi 13 ¹⁰ 4.00 8.05 1.89 49.69 browin N 394 13 ³⁵ 7.00 7.95 1.55 50.19 browin N 335 13 ³⁵ 7.00 7.95 1.55 50.19 browin N 335 13 ³⁵ Sample Readings Inside Diameter Inside Diameter Inside Diameter Inside Diameter		W	ell volumes p	unged		-				1.257		0.04
Degring Method: Pumped Normal Bild Other: INKY Pump Type: Maturflex E/S Pump distribution Bailed Other: 312. 312. 2^{11} Pulyingylor tube for samplin Weather Conditions: Sunny / all \sim 15-70°F Bailer Type: 3^{11} Pulyingylor tube for samplin Volume Calculation: (17.86-5.68) $0.17 = 1.3^{12}$ gel / well vol.: 6.95 gel / 5 well vol. (Gals/well vol. x s ol/ft, = Gals/well vol. Gals/well vol.: 6.95 gel / 5 well vol. Time Depth to Depth to Removed Q0 Temp. Color Y/N Time (D.T.W.) Boilon Removed gel / 9.61 Temp. Color Y/N Turbidi 13 ¹⁰ 4.00 8.05 1.89 49.61 brown N 394 13 ³² 7.00 7.55 1.55 50.17 brown N 335 13 ³³ 7.00 7.55 1.55 50.17 brown N 335 13 ³³ Sample Readings	Comment	s: Fie	ld parameters	takin after	3,4,9	nd S	-84		Insi	ide Diar	neter	vol./ft.
Instruct Det of point meditor Difference Purging Method: Pumped [X] Bailed [] Other: Difference Pump Type: Maghtflax E[S Pump difference Bailed [] Other: Difference Weather Conditions: SUMAY [old \sim 15-90°F Bailed Type: Difference Difference Volume Calculation: (17.86 - 5.68) · 0.17 = 1.39 gal / will val Gals/well val. E.95 gal / 5 will values (D.T.B D.T.W. x vol./ft. = Gals/well vol.) Gals/well vol.: E.95 gal / 5 will values (Gals/well vol. x 5 = Total Volume to be removed) Gals/well vol.: E.95 gal / 5 will values Time Depth to Water Depth to Boutom Volume Removed (gal.) pH O0 S.68 ¹ 13.86 ¹ I Import Import N 394 13 ³⁰ 5.50 8.10 3.75 48.60 brown N 394 13 ³⁵ 7.00 7.95 1.55 50.19 brown N 335 I I I Import Import Import Import Import Import I Import Import Import </td <td></td> <td></td> <td>Sample</td> <td>Readings</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Sample	Readings								
Deg v p oral realty. realty. realty. realty. Purging Method: Pumped X Bailed \Box Other:												
Deputition Deputition Product No. Product No. State. INKY Purging Method: Purped Stailed Other:	1			Lands .								
Purging Method: Pumped Bailed Other: Pump Type: Mstruftex C/S Pump Orive Bailed Other: Weather Conditions: SUMN / oble No.17 = 1.39 gal / well vol Site: J ⁴ Polypropyled tole for samplin Weather Conditions: SUMN / oble No.17 = 1.39 gal / well vol Site: J ⁴ Polypropyled tole for samplin Weather Conditions: SUMN / oble N 15-70°F Gals/well vol. 6.95 gal / 5 well vol. (D.T.B D.T.W. x vol./ft. = Gals/well vol.) Gals/well vol.: 6.95 gal / 5 well vol. Depth to Depth to Boutom Removed pH O0 Color Y/N Turbidi Time Depth to Depth to Boutom Removed pH Gond. Temp. Color Y/N Turbidi 1310 4.00 8.05 1.89 49.69 brown N 394 13 ²⁰ 5.50 8.10 3.35 48.60 brown N 335 13 ³⁵ 7.00 7.95							-				~	
Purging Method: Pumped Bailed Other: Pump Type: Mostriflex E/S Pump Office Bailed Other: Pump Type: Mostriflex E/S Pump Office Bailer Type: 2" polyprogram Weather Conditions: SUMAY Oble 15-70°F Volume Calculation: (17.86-5.68) 0.17 = 1.3° gal/well vol.: 6.95 gal/s mult volumes (D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 6.95 gal/s mult volumes (Gals./well vol. x 5 = Total Volume to be removed) Volume O Color Y/N Turbidi Time Depth to Depth to Removed pH Color Color Y/N Turbidi 13 ¹⁰ 4.00 8.05 1.80 49.69 brown N 394 13 ²⁰ 5.50 8.10 3.35 48.60 brown N 335 13 ³³ 7.00 7.95 1.55 50.19 brown N 335								1				1997 - 1997 - 1997 - 1997 - 1997 - 1997
Purging Method: Purped Image: Method:	-							-				- 10
Purging Method:PurpedRBailedOther:Pump Type:Master Conditions:Sthey for the for samplinWeather Conditions:Sthey fold $\sim 15-20^{\circ}F$ Volume Calculation:(17.86 - 5.68) $\cdot 0.17 = 1.3^{\circ}$ gal/well vol.: $= 6.95$ gal/5 well vol.erg(D.T.B D.T.W. x vol./ft. = Gals./well vol.)Gals./well vol.: $= 6.95$ gal/5 well vol.erg(Gals./well vol. x S = Total Volume to be removed)Gals./well vol.: $= 6.95$ gal/5 well vol.ergDepth to WaterDepth to BottomVolume Removed 00 PHTemp.ColorTimeD.T.W., Vol./ft. $= 3.66^{\circ}$ 13.86° $= 4.00$ 8.05 1.80 49.69 $brown$ N 394 1 3^{20} $= 5.50$ 8.10 3.75 48.60 $brown$ N 300 13^{35} $= 7.00$ 7.95 1.55 50.19 $brown$ N 335											V	
Purging Method:PurpedKBailedOther:Purp Type:MastuflexE/SPumpOtherBailer Type: 2^{47} polypropylene tubefor samplinWeather Conditions:SUMNYCold \sim 15-20°FVolume Calculation:(17.86-5.68) \cdot 0.17 = 1.3°gal / wellVol(D.T.B D.T.W. x vol./ft. = Gals./well vol.)Gals./well vol.: 6.95 gal / 5 will volumes(Gals./well vol. x S = Total Volume to be removed)Gals./well vol.: 6.95 gal / 5 will volumesTimeDepth to Water (D.T.W.)Depth to (D.T.B.)Volume (gal.) 00 FTemp. ColorOdor Y/NTimeDepth to Volume (D.T.W.)Depth to (D.T.B.)Volume (gal.) 00 FTemp.ColorY/N 			A DESCRIPTION						10			
Purging Method:Pumped \square BailedOther:Pump Type:Mastuflex E/S Pumg DriveBailer Type: $2"$ Polypropylexe tube for samplinWeather Conditions:SUANY (a)d $\sim 15-30^{\circ}F$ Volume Calculation:(17.86-5.68) · 0.17 = 1.39 gal/well vol.(D.T.B D.T.W. x vol./ft. = Gats./well vol.)Gats./well vol.: 6.95 gal/5 well vol.(Gats./well vol. x S = Total Volume to be removed)Gats./well vol.: 6.95 gal/5 well vol.TimeDepth to Bottom (D.T.W.)Depth to Bottom (D.T.B.)Volume (gal.) 00 pHTemp. Gond.Color Y/NTimeDepth to Bottom (D.T.W.)Volume (D.T.B.) 00 (gal.)Temp. (D.T.B.)Odor Y/NTurbidiI all4.008.051.8049.69brown N394I all5.508.103.3548.60brown N 300	1235		•	7.00	7.95	1.55	50.19	1	nown	N.	.23	5
Purging Method:Pumped \square BailedOther:Pump Type:MashyflexElsPump OriveBailer Type: 2^{H} polypropyledtwle for samplinWeather Conditions:SUMAYOold $\sim 15 - 70^{\circ}F$ Bailer Type: 2^{H} polypropyledtwle for samplinWeather Conditions:SUMAYOold $\sim 15 - 70^{\circ}F$ Gals./well vol. $Gals./well vol.$ $Gals./well vol.$ $Gals./well vol.$: 6.95 gal 5 will volumes(D.T.B D.T.W. x vol./ft. = Gals./well vol.)Gals./well vol.: 6.95 gal 5 will volumes(Gals./well vol. x S = Total Volume to be removed)Gals./well vol.: 6.95 gal 5 will volumesDepth to Water (D.T.W.)Depth to (D.T.B.)Volume (gal.) 00 FHTemp.Color Y/N Y/NTimeDepth to (D.T.W.)Volume (D.T.B.) 4.00 8.05 1.89 49.69 $brown$ N 39.4	13.30		1000	5.50	.8.10	2.35	48.60	1	brown	N	20	0
Purging Method: Pumped X Bailed Other: INKY Pump Type: Mostufflex Els Pump Orive Bailer Type: Pulypopylene tube for samplin Weather Conditions: SUMAY Cold \sim 15-70°F Volume Calculation: (17.86 - 5.68) $0.17 = 1.39$ gal / well Vol (D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 6.95 gal / 5 will volumes (Gals./well vol. x S = Total Volume to be removed) Volume O0 Temp. Color V/N Turbidi Time Depth to Depth to Volume PH God. Temp. Color V/N S.681 13.86/ I I III. III. III. III. III.	1910	341 (D)		4.00	8.05	1.80	49.69		brown	N	39	4
Purging Method: Pumped Bailed Other: Pump Type: Mostuflex Els Pump Drive Bailer Type: J" polypropylene tube for sampline Weather Conditions: SUMAY Old \sim 15-20°F Volume Calculation: (17.86 - 5.68) · 0.17 = 1.39 gal/well vol (D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 6.95 gal/5 well vol.es (Gals./well vol. x S = Total Volume to be removed) Volume O0 Temp. Color Odor Time Depth to Depth to Volume Removed pH Go Temp. Color Y/N Turbidites		5.68'	13.86'		-		105-					
Purging Method: Pumped Bailed Other: Pump Type: Mostuflex Els Pumg Orive Bailer Type: J" polypropylene tube for sampling Weather Conditions: Sunny / cold \sim 15-30°F Volume Calculation: (13.86 - 5.68) · 0.17 = 1.39 gal / well Vol (D.T.B D.T.W. x vol./ft. = Gals./well vol.) Gals./well vol.: 6.95 gal / 5 will volumes	Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pH _j	00 Gond.	Temp		Color	Odor Y/N	Turt	oidicy
Purging Method: Pumped & Bailed Other: Pump Type: <u>Mastuflex Els Pump Orive</u> Bailer Type: <u>2" polypropylere tube for sampline</u> Weather Conditions: <u>Sunny all ~ 15-30°F</u> Volume Calculation: <u>(17.86-5.68).0.17 = 1.39 gal/well vol</u>	(D.I.B. – L (Gals./well	vol. x 5 = Tc	/ft. = Gals./we otal Volume to	ill vol.) be removed)		Gals./wo	II vol.: .	6	.95 99	1/5 w	nll volum	ies
Purging Method: Pumped X Bailed Other: Pump Type:	Volume Ca	Iculation:	(17.86 -	-5.68) . 0.17	= (.39	galli	ell vol			1		
Purging Method: Pumped X Bailed Other: Pump Type: Mastuflex E/S Pump Orive Bailer Type: 2" polypopylene tube for sampline	Weather Co	onditions: _	sunny / cold	~ 15-200	F			1 11	1			1
Purging Method: Pumped X Bailed Other:	Pump Type	. Master	flex els pi	uma Orive	в	ailer Type	: 2"	polypi	ropylene	tube f.	or sam	bling
	Purging Me	thod:	Pumped	X Bailed	□ Othe	ыт.				1	8	
Project No. BEV-07-018 Wall No. GW-5 Since AIDG	Project No.	- BEL	G2006-037	Well No	GW-S	Si	(m-	NIRI	2			
SERVICES, INC. Well Purging and Sample Colle	SERVICE	5, INC.		1			We	ll Pui	rging ai	nd Sam	aple Co	Nectio.

Date: 31 9 107

	1.00 - 0		
		•	
53 I T S	A		**

SERVICE Project No.	BEANNER NEG 2000 (SD-07-	-018	Well No. G	;w-0	Si	We ite: NR	<u>ll Pu</u>	rging an TONAW	d San	aple C	Ollection
Purging Me	thod.	Pumped	Railed		er	·	•	-	-		
Dump Time	PERIST	ALT IC	(All bailed		Dailas T			199			
Washer Co	aditional C	SUNAN 7	D'S OF	100	Darier Type					-	
Wellies Co		11.25'	+0.17=	- 1. "	7	1.1			- Arto		
(D.T.B I (Gals Avell	D.T.W. x vol. vol. x 5 = To	/ft. = Gals./we	til vol.) be removed)		Gals./wo	ell vol.:	1.9	GAL		3= 4=	5.7
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pH	DO Gond.	Temp		Calor	Odor	<u> </u>	roidity
3-8-07	6.64'	17.89	INITIOL								
3-9-07	STA	es Purg	wg ·								
1130			6.0	9,62	1.88	43.10	o c	LEOR	N	l.	64
1142			8.0	8.76	2,06	40,8	7 0	EBR	N	1.	32
1155			10.0	8,55	1.85	40.	70 0	LEAR	M	2.	15
-						1.0					
							i 				
							1				
		Sample	Readings	•							
Comment	S: INITIAL	WATER W	os Turbid	- @ 2	PAQUE	DARK	BROW	M Insid	l de Dian	neter	vol./fr.
CLEARE	D AFTER	0.5-GAL	WATER B	se comb	S TURBI	DWHE	2		17		0.04
AGITAT	ED, BUT 1	S OTHERWI	SE CLEAR T	URING	PURGINE	20			2"		0.06
COLLECT	D BAJEI	E SAMPLE.	s e 1500					-	4-		0.10
Field Blan	nk Taken	Time:				100-1			1		
Well Dup	olicate	No.:	1938 23		INWPPM	LEL/%	02/%	H2S/PP	M CO	PPM	
Signature	DR	5					1				
Date: _	3 1 9.	107		F							

Date: 3, 9,07

Initial

U	K					We	ell Pu	rging	and	Sample	Collection
SERVIC	ES, INC.	2006-057									
Project No.	: <u>GEV</u>	-07-018	Well No.	NW-	l s	ite:	NR	16		har see	
Purging M	ethod:	Pumped	Bailed	Out	er:						
Pump Type	:: <u>Ma</u>	istuflex Els	Flumg Dri	VC E	Bailer Typ	xe: <u>}</u>	poly	propyle	ine t	vbc for	sampling
Weather C	onditions: _	Sunny /	rold. ~ 15-	-30°F			1.				. ,
Volume Ca	ulculation: _	(17.39'-	-9.371).0.	17 =	1.36	gal/we	11 vol	ume			
(D.T.B 1 (Gals./well	D.T.W. x vol. vol. x 5 = To	/ft. = Gals./we otal Volume to	ll vol.) be removed)		Gals./w	ell vol.:		6.81	(5	well vol	mes)
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	Do Conc.	Tem	p.	Color	0	Ddor Y/N	Turbidity
105	9,371	17.391									8.17
914			4,00	9.93	1,45	42.40	0 0	lear		N	2.25
925			5.50	10.98	0.94	48.7	9	clear		N	1.78
935			6.75	11.10	4.41	53.1	8 (ligr		N	0,79
							1				
	• •										
									•		
1.11											
		Sample 1	Readings								
Comment	s: Fie	uld parameters	talan @ 3	4. and	5				Inside	Diameter	vol./fL
	Wel	Volumes	ourged							1"	0.04 ·
								_ +	1	2"	0.00
COLLECT	ed gw s	somples e	2 1530					F		4" .	0.65
Field Bla	nk Taken] Time:		- [1 57 107	0.17	L	(00) (
Well Dup		No.:		- H	NULLW	LEL/%	02190	HZS	IPPM	COLARW	
Signature	. (he Mt	1	-				-			

**

.

SERVICES, IN	C				Well Purging and Sample Collection
Project No.:	BD-07-018	Well No.	NRG-1	Site: _	NRG - Tanswanda
Purging Method:	Pumped	X Bailed	Other:		
Ритр Туре:	Submersible Per	istaltic	Bailer	Туре:	a" poly propylene tube for sampling
Weather Condition	ns: Overcast	~50°F		1. Sec. 1	1
Volume Calculatio	on:(19.83-	10.57) . 0.	17 = 1.57		

(D.T.B. – D.T.W. x vol./ft. = Gals./well vol.) (Gals./well vol. x 5 = Total Volume to be removed)

7.86 gel/5 well vol Gals./well vol.:

.

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рH	ORP/Do Gond.	Temp).	Color		Odor. Y/N	Tu	urbidity
841	10.57	19.82	0									
931			4.75	8.50	44.5/2.45	44.3	2 0	clear		N	(.	16
935			6.35	8.47	38.7/2.40	44.0	1	elear		N	0.	.85
951			8.00	8.47	34.3/8.73	44.0	0 (clear		N .	0.	58
				1			1					
								1.91				
		Sample	Readings									
Comment	s: <u>G</u> W	parameters	measured Q	3,4,	and 5	well		- F	Inside	: Diam		vol./fr.
	Volu	imes purged					-	-	1	.25"		0.06
0-1160	TO GW S	SAMOLES @	1255	199				- [2"		0.16
Field Blar	ak Taken	Time:	10					L	-	4" .		0.65
Well Dup		No.:		I	-INW/PPM	LEL/%	02/%	H2S	PPM	CO/	PPM	
Signature	- Q	1 mit	-							-		
Date:	3113	107		F								

ERVICE	S. INC.		-	1		Well	Purging	and Sc	ample C	Collection
oiect No.	NRGE BD-01	7-018	Well No. N	eg A	2. Site	NR	6- TO	ONAW	ANDI	1
urging Me	thod:	Pumped	Bailed	□ Oth	er.	+			1-1-1-0	
uno Type	PER	STOLT	C	I	Bailer Type:	SAI	MPLED ,	1 BAI	LER	
eather Co	anditions:	OVERCO.	ST. 40's	of				1		1000
olume Ca	Iculation:	8,58' ×	OJ7 GAL	185 :	= 1.4	-6				
).T.B. – I Jals./well	D.T.W. x vol vol. x 5 = T	l./ft. = Gals./we otal Volume to	ell vol.) o be removed)		Gals./well	vol.:	.46	FAL	3 VOL 4 VOL 5 VO	= 4.4 = 5.8 L= 7.3
	Depth to	Depth to	Volume	14	ORP/ma					
Time	(D.T.W.)	(D.T.B.)	(gal.)	pН	Cond.	Temp.	Color	Odd Y/	V Tu	urbidity
0905	10.65	19.2	8 4.5 cm	9.45	19.0/2.51	43.94	CLEAR	N	3	- LAITO
005			*	V	1	1	J.	1		
015			6.0 902	9.70	16.1/2.67	43,73	s clea	e N	1.	4 NTO
025			7.5gpl	9.74	18.4/2.4	43.50	CLEOR	N	0.	SNTU
				1.20						The other
-								-		
	12.2	1.1.1.1.1					i de la			
A.		1000								
					1.1.1.1					
	1000							•		
-				-						
	UN SS	Sample	Readings		1-12					
Ommen	S. WATER	TURBID	PRANE DA	ARK-	alay ar	Fiest.	Γ	Inside Di	ameter	vol/fc
1.6.001	NG AFTER	2 ~ 1 ~ 1	IN THE VIE)		17		0.04
V DIV DI				Sale.	•			1.25		0.06
Co116	CTED G	W SAMPLE	s@ 1410		Sec. 1			2"	22	0.16
LULLE	100 9						1.2.1.2.1	4"		0.65

Date:	3	113	107

				Standard State
			- Andrews	
141-26	12.00	1	2000	
			1999	

Well Purging and Sample Collection

SERVICE	S, INC.	4-057									
Project No .:	BD-07-	018	Well No. NO	1G -:	3 Siu	NI	26-	TONA	WAN	ÞA	
Purging Me	thod:	Pumped	Bailed	Out	ner:						
Pump Type	PERIS	TALTIC			Bailer Type:	SAM	PLED	N/ BAI	LER		
Weather Co	nditions:	OVERCAST,	40's °F	-		-					
Volume Ca	lculation:	5.06'	*0,179	01/8	J=O	86		4	3 = 2	6 501 F	
(D.T.B D (Gals./well).T.W. x vol., vol. x S = To	/ft. = Gals./we oual Volume to	ll vol.) be removed)		Gals./wel	1 vol.: 0	,860	FAL 5	= 41	3	
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	Do Cond.	Temp.	.	olor	Odor Y/N	Tur	bidity
1155	10.84	15.90	-WIJ	JAL	WL-						
1202	- BE	GIN PU	RGING								
1223			3.0	10,52	-136.4	48.49	Still CLI	GHTLY IUD Y	INDUS ODOR	53	MTU
1234			4.0	10.58	-166.1	48,29		u	и.	41	NTU
1244			5.0	10.6	-1.77.1	48.2	2	(1	4	32	NTJ
î.	No.										
							1				
			and a							· ·	
	•					1213					
								4			
		Sample	Readings								t
Commen	S: WOTER	LIS TURB	ID- CLOUD	y DI	ark a	RAY A	T	Ins	ide Dia	meter	vol./fr_
FIRST, O	CLEPRING	SPETER	0.5GAL	-				_	125		0.04
-				8 . A.					2"		0.16
COL	lected s	somples c	1455						4"		0.65
Field Bla	nk Taken	Time:		- r			0-10	LL'S /PE	MC	Madu	
Well Du	plicate	No.:			THUPPEN	LEL/70	01/70	1120/11			
Signatur	: _ DR	5		- [
Date:	3 114	107									

S	B					We	ll Pur	ging and	d San	aple C	ollection
SERVICE	NEGROOG	-057		20							1
Project No.	BD-07-	018	Well No.	169-	4 Si		26-	TONO	WAN	DA	
Purging Me	thod:	Pumped	Bailed	_ OL	her:					-	
Ритр Туре	· VERISO	ALTIC	1.1.	ca's	Bailer Type	:: <u></u>	AMPLI	ed w/	Bail	ER	
Weather Co	onditions: Q	CC. KAIN	, 405-3	505	$\frac{\partial p}{\partial r} = 1$	19		3	= 5	,04	
Volume Ca	Iculation: _	(.88	X UITO	101/	<u>F7 - 1.</u>	60		- 4	= 6.	72	
(D.T.B. – I (Gals /well	vol. x 5 = To	/ft. = Gals./we ptal Volume to	tll vol.) be removed)		Gals./wo	Il vol.:	1.68				
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	ORP DO Cond.	Temp	. (Color	Odor Y/N	Tu	rbidity
0955	8,84	18.72	-INTIAL	. –							
1008	24	ART PUR	GING-			15,20				1	
1045			5.	10.79	187.2	50,30		FOR	Scigt	TODOR	7.8 NTU
1058			7.0	10.99	-185.5	6 48.7	7 0	LEOR	a.		4.6NT
1112			9.0	11.67	-184.5	8 48,6	3 0	LEOR	-		4.3MT
	1.										
				1				•			
		1.4									
		Sample	Readings								
Commen	S WATER	IS TURR	D-CLOUDY.	DAI	ex-GRA	TATE	ipso:	Insid	de Dia	meter	vol/fr
·	CLEAR	NG AF	TER = 10	GAL .			,		ι <u>-</u>		0.04 ·
				125					1.25		0.06
Col	LECTED	SAMPLES	@1435						4-		0.65
Field Bla	nk Taken		1982.1.1	- [HNWPPM	LEL/%	02/%	H2S/PP		D/PPM	100.000
Well Duj		No.:		- [2				
Signature		<u></u>		-	Sales S					•	201266
Date:	3 114	107									
									-		

S	B	٠									
SERVICE	S. INC	1862006-0	57 -			We	ll Pur	ging an	d Sam	ple C	ollection
	B	D-07-018		NOG -	E		NOC	T	1.		
TOJECT NO.			Well No.	NK9-	3 Su	ie:	NKG-	- Ionawa	andq		
urgung Me	thod:	Pumped	X Bailed			21	aluar	aulora t	60 5		J
ump Type	n <u>- y</u>	Averoped	- ~50°F		Bailer Type	: _0	hord his	opyrone n	UN TOI	· syn	pling
Velume Co		(19.60-1	0.18).0.17 =	1.6	0		1 541				
D.T.B. – I Gals√well	D.T.W. x vol. vol. x S = Tc	/ft. = Gals./we	ill vol.) be removed)		Gals./wc	II vol.:	8.	ol gal	ls w	oll vol	umes
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed . (gal.)	ρH	CONC.	Temp	. (Color	Odor Y/N	Tu	rbidity
1035	10.18	19.60'	0								
1055			4.75	10.00	(-110.8)/1.07	51.80	0	luar	N	۰.	91
1117			6.50	.10.07	(-116.3)/	51.6	d c	lear	N	0	.77
1128		•	8.00	10.10	(-114.3)	52.18	C	lear	N.	0.	.54
,					•						
							i	and the second			
-		Sec. 16					1	Sec. 1			
	in make		1								
		Sample	Readings								
L	1	in an ator	un and a	24	and S 1	all		Insi	de Diarr	heicr	vol./fr.
Comment	s: <u>Wall</u>	as auroad	Montride @	,,,	ynu s V	-ui		-	1-		0.04 -
•		to yoigo		1.22	13.1			-	1.25		0.06
COLLE	CTED GW	SAMPLES	e 1435			1.1		-	2"		0.16
Field Bla	nk Taken	Time:							4	· ·	0.65
Well Du	olicate	No.:			-Nu/PPM	LEL/%	02/%	H2S/PP	M CO	/PPM	
Signature	. (he mp			3						
Date:	3,13	107		E					-		
Date: _	- 1 15	101		F		1. 16					

Well Purging and Sample Collection

Project No .:	BD-07-018	Well No.	NRG-6	Site: N	RG - Ton awanda	
Purging Method:	Pumped	Bailed	Other:	2" paly propyline	tube for sampling	
Ршпр Туре:	Subanersible Peri.	staltic	Baile	: Type:		
Weather Condition	s: <u>overnest</u>	~ 50°F		fomping Rate	= 2.5 get/min	
Volume Calculation	n: (20.24-	11.34).0.1	7 = 1.51			

(D.T.B. - D.T.W. x vol./ft. = Gals./well vol.) (Gals well vol. x 5 = Total Volume to be removed)

67

Gals./well vol.: 7.57 gol/5 well vol

.

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	ORP/Do Cond.	Temp.	Colo	or (Ddor MNY	Tu	rbidity
1215	11.34	20.24	0							de la	
1250			4.50	12.17	(-218-3)/1.58	54.72	char		N	0	.42
1303			6.00	12.27	(-22) 1.76	52.72	clea	r	N	0	.62
1313		•	7.50	12.23	(-217.7)	53.04	clear		N	0	.54
				1997							
	1983	1000									
									34	4	
					1.46.37						Transfer
							- 10				
		Sample	Readings								
Comment	s: Wel	l volumes p	jurged and po	irameter	r taken p		1 	Inside	Diamo 17	eter	vol./ft. 0.04
	3,4	I and S 1	Mall volumes	purge				1	.25		0.06 ·
	CARD CH	CANDIES	Q 1505	1					2"		0.16
COLLE	Take D		0 1000						4 .		0.65
Field Bla	nk laken	L lune: _	Sec. 1	- [-NWPPM	LEL/% 0	2/% H2	S/PPM	Сол	PPM	
Simetri		1 ht									
Signature	- 1	a mon								1	
Dare.	51 1 C	101							1	1.512	

Well	Purging	and	Sample	Collection
			the second se	

Project No.:	BD-07-018	Well No.	NR6-1	Sile: NRG - Tongwang
Purging Method:	Pumped	Bailed	Other:	
Ритр Туре:	Submersible	-	Bailer	с Туре:
Weather Conditions	clou	dy ~ 40	°F	Punging Rate = 2.5 gom
Volume Calculation	:(18.75-	10.60)-0.17	= 1.39	WELL DEVELOPMENT

Gals./well vol.: 1.39

(D.T.B. - D.T.W. x vol./ft. = Gals./well vol.) (Gals./well vol. x 5 = Total Volume to be removed)

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рH	ORP/DO Gonet.	oralizer Temp.	Color	Odor Y/N	Turbidity
1228	10.60	18.75	0	4					water black and opaque
1600			2 min						water clearing
1602			4 min	.8.88	(-18-6)/3.58	42.06	ofaque	N	561
1615	12.10	·	17 min						
1638			30 min	8.87	(-42.1)/ 3.53	42.61	cloudy	N	367
1635	12:42		37 min						
1650	13.50		52 min						
1655			57 min	8.73	(-39.0)/3.74	42.78	clone	N	27.6
			57 mix -	= 14	2.5 gal =	= total	purged .		
		Sample	Readings						e

Comments:	water was observe and black at first but soon	Inside Diameter	vol/fc
	become to chose Duran was used to surge well by raising	1-	0.04 -
	and there are there have burble during such a	1.25	0.06
	arno converted formy. Matter because for outer sorting	2"	0.16
		4"	0.65

Well Duplicate . No.:	HNWPPM	LEL/%	02/%	H2S/PPM	CO/PPM	
Signature: Jul (With						
Date: 3/ 12/07						
					•	

tion

1.33

Project No.:	07-018	Well No.	NRG-2	Site:	IRG- Tongwanda	
Purging Method:	Pumped	Bailed	Other:			
Pump Type:	submersible		Bailer	Туре:		
Weather Conditions:	cloudy	~ 40'	F	Pumping	Rate = 2.5 gpm	1.22
Volume Calculation:	(18.69-	· 10.85) · 0.	17 = 1.33	WE.	LL DEVELOPMENT	

Gals./well vol.:

(D.T.B. – D.T.W. x vol./ft. = Gals./well vol.) (Gals./well vol. x 5 = Total Volume to be removed)

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рH	ORP/Do Cond.	Temp	. Col	lor	Odor Y/N	Tu	ırbidity
1441	10.85'	18.69'	0							writer	black grey; ogaqu
			2 min							wate	r
1451			10 min	. 10,0 }	(-118-5)/.7	6 43.21	cloud	4	N	87	7.4
1513			32 min						<u>k</u> .	•	
1516	12.05'		35 min	9.74	(-86.4)	5 42.71	opaye	re	N	38	2
1541			60 min	9.73	(-14.5)/1.7	3 42.41	opaq	ve	N	16	1
1545	12.30/		64 min	= 16	0 gal =	= total	furged				
								•			
		Sample	Readings								e
Comments	existically	er was clear	r after purgi	ny beg	an Pum	ne the	hurbidit.	Inside	Diam	etcr	vol./ft. 0.04
	to increase	sorge of	in by) 100	T		.25		0.06
									4" .		0.16
Field Blan Well Dupl	k Taken	No.: _		H	Nu/PPM	LEL/% (22/% H:	2S/PPM	CON	PPM	
Signature:	¥	100	1	-							1919

HNWPPM	LEL/%	02/%	H25/PPM	CO/PPM	
				•	

Well Purging and Sample Collection

Project No.	- <u>BO-</u>	07-018	Well No.	NRG-	3 Site		<u>G - Tong</u>	wanda	
Purging M	ethod:	Pumped	X Bailed	Out	ner:	1.1.1			1. A. 1997
Pump Type	= Subi	mersible			Bailer Type:				
Weather C	onditions:	overcast	~ 50°F		P	imping Ra	e = 2.5	gom	
Volume Ca	alculation:	4.87';	(0. 17 GAL	FT=C	2.83 Jul	WELL T	EVELOPA	IENT	
(D.T.B. – 1 (Gals./well	D.T.W. x vol. l vol. x 5 = To	/ft. = Gals./we ptal Volume to	ll vol.) be removed)		Gals./well	vol.: 0	. 83 GP	ι.	
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	рН	ORP/Do Cond.	Temp.	Color	Odor Y/N	Turbidity
1513	10.981	157851	0						black; opene
1516	1115		3 min						

15.30 shot off lung 11.22' 15.25 • 10.55 (-153)/0.51 541.48 1541 28 min black N > 1000 clearing 1550 10.61 (-173) 1.09 52.17 1553 black 40 min 145 N 1559 11.151 10.64 (183)/0.69 52.65 1610 57 min brown 153 N 1629 1. Prima Stopped (~ 26 gal ourged) 76 min Sample Readings ~ -...

Comments:	Puma	oeriodically	stops due to the falling head of	Inside Diameter	vol./fr.
	CIN D.	to thread	off mon maximately apply 5 min to al	1-	0.04 -
	GIV. IV	I IVIII	can appressive and a south 10 th	1.25	0.06 .
nen	arge.			2"	0.16
	1. A.			4"	0.65

Field Blank Taken L Time:		
Well Duplicate No.	HNWPPM	LEL/% (
Signature: Onl C ML		
Date: 3 / 13 / 07		
Daw.		

HNUPPM	LEL/%	02/%	H2S/PPM	CO/PPM	A
			1		
				•	

S	B					Well	Purgin	g and Sar	nnle C	лПаріїн
SERVICE	S, INC.	N-057			Level and		1 415.11	5 una Jun	inpre Cl	Dilection
Diect No .:	BD-07	-018	Well No. N	26-0	4 Sit	NRO	G-TO	NAMAA	DO	
urging Me	thod:	Pumped	Bailed	П Oth	ier:			1012 - 81	14/8	
ипр Туре	SUBM	ERSIBLE			Bailer Type					
eather Co	nditions:	DUERCOST	40'5	oF	WE	LDE	EVELO	EMENT	r	1.5
olume Ca	culation:	7.7'×	0.17 GAL/F	·1 =	1.65	P	UMPIN	16 RAJ	E =	2,50
D.T.B. – D Gals /well).T.W. x vol./ vol. x 5 = To	ft. = Gals./we	ill vol.) be removed)		Gals./wei	I vol.:	.65			
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	DE DE	Temp.	Color	r Odor Y/N	Tur	bidity
052	907	1877								
10.58	- ST	DRJ PI	MPING-		SURGI	VG EV	ERY.1	10 min.	APP	Rot.
115	10.3		MMN.							
1150	10.5		52 MIN.	11.03	-206.5	51.70	CLE	or N.	7.	1 NTU
202			62 MIN.	11.15	-199.4	1 49.55	CLEDE	e N	6.0	GNTE
1212			72 MIN.	11.16	-193.2/	49.5	8 CLE	OR N	5,9	FNTU
	-	CUE LOR	MENTC	bal	ISTE					
1.10		revel of		111						
							1		N.	
								•		
						1.000				
121		Sample	Readings							
	L			1		1				
Comments	" WOTER	OPAQUE,	TURBIP, DI	orke	ARAY AT	FIRST		Inside Dian	neter	vol./ft.
CLEORI	IG AFTE	e a 5M	IN, WAS	ter D	ECOME)	TURBI	<u>- (</u>	1.25*		0.06
reque	WHEN .	SURGED.					[2"		0.16
Field Blar	k Taken	Time	Const.					4*	••	0.65
Well Dun		No:		H	INWPPM I	EL/% 0	2/% H2S	S/PPM CO	PPM	
Signature	DR	5								-
	2 12	677								
Date:	2 /13,	101		F	10.00					

1 PAIC	ING & LAINE	CING PU	M. WHICH	Mar	ES WATE	CR OR	DAVE	1.25-		0.06 ·
	S: WOTER	IS CLEAP	DURING	Unfin session	NG, BUT	PERM	LS Insi	de Diar 1"	neter	vol./fr.
		Sample	Readings							
	1. No. 1									
163										
1300	contra	Th	70 MIN =	=17	5 GAL.	= TOT	al fulg	ED.		
254	DEVELA	PMENT	GTMIN	1.73	/1.73	50,32	CLEAR	N	30	ONTU
250			GZMIN	-20	WERED -57,2/	fung	BACK TO	Both	M	
250	-5	or-Ro	ISED YU	nlis	URGED	& SU WELL	KGED			
251	10.24		30 MIN	7.81	/1.29	51.13	C (6 U) Y	N	89	NTU
157	10.00		4.5 MIN .	7.25	-87,5	3	GLAT	N	CLE	AR
100	10.0			9.42	-57.51	53,21			LOWER	ed lump
170	10,00	11.50	3 min.						GRAY VATS	- BLACK R CLEAR
132	10.06	19.20	0				and a set of the set o		WATE	R OPAQ
Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	ORP D,O	Temp.	Color	Odor Y/N	Tu	rbidity
D.T.B. – I Gals./well	D.T.W. x vol./ vol. x 5 = To	ft. = Gals./we tal Volume to	be removed)		Gals./well	vol.: _	1.54			
olume Ca	ulculation:	7.04' 7	LO.17 GP	1/4:	<u>r = 1.1</u>	544	DL			<u>na svě</u>
eather Co	onditions: S	UNNY,	40's	oF		PUM	ING RA.	TE 19	2.	5 gem
uno Type	SUBM	ERSIBC	E Balled		Bailer Type:	NICCC	PRUEC	01/9	ENT	
oject No.	: <u>60'01</u>	-010	Well No.	Ch-	Site	NK ISII	DEILE/	APA	OND,	<u>0</u>
ERVICE	S, INC.	6-657	-	20	6	Well	Purging ar	d San	nple C	ollection
J	BA									*

Field Blank Taken Time				L	+ ·· [10.0
Well Duplicate No:	HINU/PPM	LEL/%	02/%	H2S/PPM	CO/PPM	
Signature:B						
Date: 3 112 107					ALC: N	
	22			2012		

HEALER PARTA	
131	
CERTIFIC AND	
SERVICES, INC.	11-057
NIP 620	06-05 /

Well Purging and Sample Collection

Project No.: BD-07-018	Well No. NRG-6 Site: _	NRG-TONAWANDA
Purging Method: Pumped	Bailed Other:	
Pump Type: SUBMERSIBLE	Bailer Type:	WELL DEVELOPMENT
Weather Conditions:	Y, 40's °F PUMPIN.	6 RAJE = 2. 5 GPM
Volume Calculation: _8,4' ×	0.176 F1 = 1.43	
(D.T.B D.T.W. x vol./fr. = Gals./w(Gals./well vol. x 5 = Total Volume t	ell vol.) Gals./well vo	L: 1.43

(D.T.B. - D.T.W. x vol./ft. = Gals./well vol.) (Gals./well vol. x 5 = Total Volume to be removed)

Time	Depth to Water (D.T.W.)	Depth to Bottom (D.T.B.)	Volume Removed (gal.)	pН	ORP/DO Gond.	Temp.	Color	Odor Y/N	Turbidity
1316	11.33'	19,73	0						water opaque black and gacy
			2 min						water becoming more clear
1321		•	5 min	18.27	(-318:4)/,40	48.72	cloudy	N	95.4
1344			28 min	12.14	(-311.6)/2.43	49.15	clour	N	9.0
1320	11.551				(Pall 9)				
1404	No.		48 min	19.93	(-311.9) 3.45	48.74	clour	N	5.6
1416			60 min	13.33	(-311.0)/252	48.67	clair	N	10.0
1422	11.61	14	66 min	= 1	65 gallon	i = to	tal purged		
		200							
	1.1.1.2.2	Sample	Readings				and the second		•

Comments:	Water lergne clear after 2 min of ounging. Howeve	Inside Diameter	vol./ft.
	the the being build and apple when any	+ [-]	0.04 -
	The water acting these and apply when point is	- 1.25-	0.06
	· lowered and raised (surged)	- 2"	0.16
		4	0.65

Well Duplicate	□ No.:
Signature	al cmm

Date: 3 112, 107

HNu/PPM	LEL/%	02/90	H2S/PPM	CO/PPM	
			No.		
				•	

Appendix D Water Chemistry Summary Tables

Table IHistoric Groundwater QualityFormer Roblin Steel SiteRemedial Investigation Report-Tonawanda, New York

	Data Source: Table 6.7 of NVSDEC Site Evaluation Banart (December 2006), 1000 USEDA Data												
			Data S	Source: Table	e 6-7 of NYS	SDEC Site E	valuation Re	eport (Decen	nber 2006)	-1990 USEP	A Data		
Кеу													
Sample ID:	NW-1	NW-4	NW-5	ESI-8	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	ENV-1	ENV-2	ENV-3
Sample Date:	9/30/99	9/30/99	9/30/99	9/29/99	9/29/99	9/29/99	9/30/99	9/30/99	9/30/99	9/30/99	9/29/99	10/01/99	10/01/99
Volatiles		-	-	-	-	-							
1.1.1-Trichloroethane												2500 D	
1,1,2-Trichloroethane												1 J	
1,1-Dichloroethane		8 J								1 J		910 DJ	71
1.1-Dichloroethene										14		93	
1,2-Dichloroethane												20	
1.2-Dichloroethene		8 J		2 J								26000 D	
Benzene						1 J	1 J					2 J	1 J
Chlorobenzene												3 J	
Chloroethane													52
Ethylbenzene												170	
Methylene Chloride												180	2 J
Tetrachloroethene		2 J								3.J		7700 D	
Toluene		_ •		1 J								2400 D	
Trichloroethene		1.1								1.1		7300 D	
Vinvl chloride		9.1										790 D.I	
Xvlenes Total		00										900 DJ	
Semi-Volatiles												000 20	
Bis(2-ethylbexyl)phthalate	1.1					1.1							
Di-n-butylphthalate	5.1	2.J			2 J	6J		1 J			1 J	5 J	4 J
NSphthalene		20			20	5.J	2.1					00	10
PheNSNSthrene						1.1	20						
Phenol						6J	7 J						
Metals						00							
Aluminum	4540	36500	2690	5560	6590	52900	37300	8470	2640	744	22300	7370	7720
Antimony	39.IN	12.7 JN	2000	0000	0000	02000	13.9.JN	0470	2040	744	7.4.IN	1010	47.IN
Arsenic	0.0 011	33.7				15.1	30.8	40.8	37	4	42.1	84	9.7
Barium	147	447	74 7	113	190	368	510	184	42.8	38.3	225	135	128
Bervllium		2.6		110	100	4.2	22	0.29	12.0	0.32	0.16	0.5	0.29
Cadmium	14	3.4				2.5	2.8	0.20	0.88	0.02	0.92	4.1	0.20
Calcium	56900 FJ	190000 FJ	105000 FJ	172000 FJ	196000 FJ	277000 FJ	230000 FJ	70400 FJ	63000 FJ	254000 F.J	209000 FJ	127000 FJ	35100 FJ
Chromium	165	65.2	7.3	9.1	9.6	62.2	67.7	18.2	7.5	2	38.2	10.8	19.5
Cobalt	4.5	29.1	1.0	37	4.3	35	27.9	9.2	2.4	27	13.7	3.3	7.8
Copper	73.7	132	29	18.9	24.3	102	159	27.6	16.7		53.1	48.3	34.9
Iron	29400	94300	3400	6870	18200	67400	94500	34200	6080	918	57500	8240	39900
Lead	79.5	238	5.9	99	17.3	76.4	276	14.2	5.8	010	38.2	64.5	82
Magnesium	6470	40500	20200	4920	36200	27000	24200	12500	10600	1110	38000	5960	24600
Manganese	2910	2460	115	268	1260	1730	3130	552	213	27.6	4690	573	1290
Mercurv	0.04	0.21				0.17	0.26				0.1	0.1	0.05
Nickel	19.8	109	3.9	12.5	14.1	91	79.5	23.8	6.5	1.6	46.1	10.8	20.6
Potassium	4250	11300	9670	21100	10500	24800	24300	17500	7330	29300	9450	7260	11700
Selenium	5.5	60.5	15.1	10.9	4.8	13.6	13.3	7.5			12.7	15.7	6.5
Sodium	20800	12400	13100	20200	43600	25500	20888	52400	5480	13800	23700	7890	11000
	20000	12700	10100	20200	10000	20000	20000	02 100	0.00	10000	20700		

manum										0.5			
VaNSdium	72.4	91.5	7.1	10.6	15	75.7	91.9	21.6	7.8	21	48.3	8.2	27.3
Zinc	114	682	23.4	53.4	61.4	298	548	87.6	29.7	8.7	143	3000	83.5
Inorganics													
Cyanide				14.4	19.6								

J - Compound reported at an estimated concentration below the reporting limit

N - Spiked sample recovery not within control limits

E - The reported value is estimated due to the presence of interference

D - Compound identified in ansalysis at a secondary dilution factor

¹ Does not Include B, *, and J values

² TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Protection for Source of Drinking Water.

The most stringent standard from Surface Water, Guidance and Groundwater was used.

Table IHistoric Groundwater QualityFormer Roblin Steel SiteRemedial Investigation Report-Tonawanda, New York

Kev	Data S NYSDEC (Decembe	ource: Table Site Evaluat 2006)19 Data	● 6-7 ofion Report● 0 USEPA		Statistica	ıl Analysis ¹		Groundwater Quality Standard
Sample ID: Sample Date:	ENV-4 9/30/99	ENV-5 9/30/99	ENV-6 9/30/99	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentration	Standard Deviation	TOGS 1.1.1
Volatiles								
1,1,1-Trichloroethane				0				
1,1,2-Trichloroethane				0				
1,1-Dichloroethane	2 J	2 J		1	71.0	71.0	29.0	5
1,1-Dichloroethene		<u>г</u>	· · · ·	2	93.0	53.5	55.9	0.7
1,2-Dichloroethane		[]	1	1	20.0	20.0		0.6
1,2-Dichloroethene	85	56	6 J	2	85.0	70.5	37.5	5.0*
Benzene		1		0	[1		1
Chlorobenzene			l – – – – – – – – – – – – – – – – – – –	0	ĺ	· · · · ·		
Chloroethane			1	1	52.0	52.0		5
Ethylbenzene	24		l	2	170.0	97.0	103.2	5
Methylene Chloride			l – – – – – – – – – – – – – – – – – – –	1	180.0	180.0	127.3	5
Tetrachloroethene			l	0	i	† • •		1
Toluene	9 J		l – – – – – – – – – – – – – – – – – – –	0	l	· · · · · ·		1
Trichloroethene	46		l – – – – – – – – – – – – – – – – – – –	1	46.0	46.0	23.0	5
Vinvl chloride	5 J	3 J	2 J	0		+ +		0.3
Xvlenes. Total	67		l	1	67.0	67.0	47.4	5
Semi-Volatiles	'	<u></u>		'	<u>.</u>	·		ł
Ric(2-ethylbexyl)phthalate		ſ		0	[1		
Dist_ outymosy (primerate	1 J	7 J	3.1	0	i'	ł		1
NSnhthalene		, <u>,</u>		0	i'	ł		10
PhoNSNSthrene		i	┢─────╯	0	i'	ł		10
Phenol	├ ────'	·	<u>ب</u> ا	0	i'	ł,	i	ł
Motals					<u> </u>	·	<u> </u>	4
	15000	14000	20600	16	52000.0	15970.2	15152.0	NR
Antimony	10000 61.0 IN	14000	29000 7.3 IN	0	22300.0	10070.0	10400.0	NO NO
Antimony	NIC 6.10	├ ────┦	/.5 JIN		40.1	20.0	15.0	25
Arsenic	166	120	020	9 16	42.1	20.9	10.0	∠⊃ 1.000.00
	100	139	230	10	510.0	190.0	130.3	1,000.00
	1.2	1.2	4.6	 。	4.2	1.4	1.3	১ চ
	225000 E I	404000 E I	4.0	o O	4.0	2.0	1.4	ə
	235000 EJ	124000 EJ	408000 EJ	16	165.0	25.9	44.2	50
Chromium	21.2	10.∠ ファ	53.3	10		35.8	41.3	
	8.4 04.0	C.1	15.4	15	35.0	11.7	10.0	NS
Copper	31.3	31.4	<u>5</u> 8.∠	10	159.0	54.3	44.0	200
Iron	14800	15900	33400	10	94500.0	32813.0	30717.0	300
	18.5 24200	43.2	37.1	15	276.0	07.1	82.0	25
Magnesium	21300 F20	20300	40000	10	40000.0	21910.3	14247.4	35,000.00
Manganese	ეკი	620	1010	0	4690.0	13/4.5	1325.0	300
Mercury	05.7	0.1	40.0	8 10	0.3	0.1	0.1	0.7
NICKEI	25.7	22.5	48.2	10	109.0	33.5	32.7	100
Potassium	19500	21900	39400	16	39400.0	16828.8	9586.6	NS 10
Selenium	25.2	8.3	33.1	14	60.5	16.6	14.8	10
	20000	27200	25300	16	52400.0	21453.6	12330.3	20,000.00

mainum				1	0.5	0.5		0.5
VaNSdium	33	23.2	27.1	16	91.9	36.4	30.0	NS
Zinc	80.1	93.6	159	16	3000.0	341.6	734.1	2,000.00
Inorganics								
Cyanide				2	19.6	17.0	3.7	200

J - Compound reported at an esJ - Compound reported at an estimated concentration below the reporting limit

N - Spiked sample recovery notN - Spiked sample recovery not within control limits

E - The reported value is estimaE - The reported value is estimated due to the presence of interference

D - Compound identified in ansa D - Compound identified in ansalysis at a secondary dilution factor

 1 Does not Include B, *, and J vi^1 Does not Include B, *, and J values

² TOGS 1.1.1 Ambient Water Q² TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Pro-

The most stringent standard from Surface Water, Guidance and Groundwater was used.

Table II 2007 Groundwater Quality Data

Remedial Investigation Report-Former Roblin Steel Site

Tonawanda, New York

Bangk Losin Bang	Date Sampled	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/9/2007	3/9/2007	3/9/2007	3/9/2007	3/13/2007	3/13/2007	3/14/2007	3/14/2007	3/13/2007	3/13/2007	3/9/2007		Statistica	al Analysis ¹		Standards (ug/l)
UNC: analytic PA Method 2003UNC: analytic PA Method 2003 <td>Sample Location</td> <td>ENV-5</td> <td>ENV-7</td> <td>GW-1</td> <td>GW-2</td> <td>GW-3</td> <td>GW-4</td> <td>GW-5</td> <td>GW-6</td> <td>NRG-1</td> <td>NRG-2</td> <td>NRG-3</td> <td>NRG-4</td> <td>NRG-5</td> <td>NRG-6</td> <td>NW-1</td> <td>Number of Detected Results</td> <td>Maximum Detected Concentration</td> <td>Average of Detected Concentrations</td> <td>Standard Deviation</td> <td>TOGS 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES AND GROUNDWATER EFFLUENT LIMITATIONS²</td>	Sample Location	ENV-5	ENV-7	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	NRG-1	NRG-2	NRG-3	NRG-4	NRG-5	NRG-6	NW-1	Number of Detected Results	Maximum Detected Concentration	Average of Detected Concentrations	Standard Deviation	TOGS 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES AND GROUNDWATER EFFLUENT LIMITATIONS ²
11-Decompositive 11-Decompositive 11-Decompositive 12-Decompositive 12-Decompositive </td <td>VOCs (ug/L) by EPA Method 8260B</td> <td></td>	VOCs (ug/L) by EPA Method 8260B																				
12.Dictoroname 14.D 14	1,1-Dichloroethane											2.3 J	5.4	4.2 J			1	5.4	5.4	3.1	5.0
Addenty-Spectratione (MIRIN)Image: Image: Imag	1,2-Dichloroethane													4.4 J			0				0.7
ActionII <td>4-Methyl-2-pentanone (MIBK)</td> <td></td> <td>1.2 J</td> <td>1.3 J</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>NS</td>	4-Methyl-2-pentanone (MIBK)											1.2 J	1.3 J				0				NS
Benzene Image: Problem information of the state of t	Acetone																0				50.0
Cathon shullide I	Benzene			6.4			0.82 J					1.7 J	0.79 J				1	6.4	6.4	3.2	1.0
cish 2.2 belower belower (since)3.3.33.3.33.3.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.43.4.4<	Carbon disulfide					1.4 J											0				NS
Employment Image	cis-1,2-Dichloroethene	3.3J	320											93	25		3	320	146.0	145.7	5.0
Methydenchloride Image Ima Image Image	Ethylbenzene											1.1 J					0				5.0
Tartach Constante Image	Methylene Chloride																0				5.0
Toluene Image <	Tetrachloroethene					0.6 J											0				0.7
trans-1.2-biolingemene k	Toluene											3.1 J	1.8 J				0				5.0
Viny lender 250 k<	trans-1,2-Dichloroethene													6.7 J	1.1 J		0				5.0
Nylenes, TotalNylenes, TotalNylen	Vinyl chloride		250											6.1 J	1.4 J		1	250	250.0	144.3	0.3
StyCe: (ucl.) br EPA Method SZGC <td>Xylenes, Total</td> <td></td> <td>10</td> <td>1.6 J</td> <td></td> <td></td> <td></td> <td>1</td> <td>10</td> <td>10.0</td> <td>7.1</td> <td>5.0</td>	Xylenes, Total											10	1.6 J				1	10	10.0	7.1	5.0
2.4-Dimethylphenol 19.J 19.J 10	SVOCs (ug/L) by EPA Method 8270C																				
2-Metry hopp halate 1.9. </td <td>2,4-Dimethylphenol</td> <td></td> <td>300</td> <td>58</td> <td></td> <td></td> <td></td> <td>2</td> <td>300</td> <td>179.0</td> <td>171.1</td> <td>50.0</td>	2,4-Dimethylphenol											300	58				2	300	179.0	171.1	50.0
2-Methylphenol Image: Methylphenol	2-Methylnaphthalene		1.9 J									5.3 J	5.8 J				0				NS
4-Metrylphenol	2-Methylphenol											330	58				2	330	194.0	192.3	NS
Acenaphhene Image: Marrie Marri Marrie Marri Marrie Marrie Marrie Marri Marrie Marrie Marrie Ma	4-Methylphenol											42 J	65				1	65	65.0	46.0	NS
Bia/C etaylney() phthalate Int <	Acenaphthene											5.5 J	3.9 J				0				20.0
Carbacyle Image: Strate of the strate of t	Bis(2-ethylhexyl) phthalate							2.6 J									0				5.0
Dibenzofuran Image: Constraint of the constraint of th	Carbazole												4.8 J				0				NS
Fluorené Image:	Dibenzofuran												5.1 J				0				NS
Naphthalene 1.3 J Image: constraint of the state	Fluorene											4 J	9.2 J				0				50.0
Phenanthrene Image: constraint of the	Naphthalene		1.3 J				0.68 J					18 J	19				1	19	19.0	9.5	10.0
Phenol Image: Constraint of the constraint o	Phenanthrene											5.5 J	7.7 J				0				50.0
Dissolved Metals (ug/L) by EPA Method <u>6010 B and 7174A (Hg only)</u> Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (D1 B and 7174A (Hg only)) Dissolved Metals (ug/L) by EPA Method (U1 B and 7174A (Hg only)) Dissolved Metals (U1	Phenol											4.6 J	2.1 J				0				1.0
6010 B and 7174 (Hg only] Image: Normal Sector	Dissolved Metals (ug/L) by EPA Method																				
Arsenic Image: Normal system Image: Norma	6010 B and 7174A (Hg only)																				
Barium 27 21 120 70 39 37 150 24 47 59 17 14 32 67 54 15 150 51.9 38.4 1000.0 Cadmium 1 4 4 4 4 4 4 4 4 5.0 5.	Arsenic										4.3 J	5.9 J					0				25.0
Cadmium Cadmiu Cadmiu <td>Barium</td> <td>27</td> <td>21</td> <td>120</td> <td>70</td> <td>39</td> <td>37</td> <td>150</td> <td>24</td> <td>47</td> <td>59</td> <td>17</td> <td>14</td> <td>32</td> <td>67</td> <td>54</td> <td>15</td> <td>150</td> <td>51.9</td> <td>38.4</td> <td>1000.0</td>	Barium	27	21	120	70	39	37	150	24	47	59	17	14	32	67	54	15	150	51.9	38.4	1000.0
Chromium Image:	Cadmium						5.			0.98 J	1.7 J	1	1 .				0		20		5.0
Lead A A A A A A A B	Chromium								1	3.1.J	5.7.1				44		1	44	44.0	25.4	50.0
Selenium 120 120 112 010 01 010 100 100 Total Cyanide Concentration (ug/L) by EPA Method 9012B 44 J 25 J 23 170 010 010 010 010	Lead		1	1	1	1	4.2 J	3.8.J	1	7.2	51	1	1	1	5.7	3.J	3	51	21.3	20.0	25.0
Total Cyanide Concentration (ug/L) by EPA Method 9012B 44 J 25 J 23 170 6 9.2J 2 170 96.5 74.1 200.0	Selenium			1	1	16 J		0.00	1			1	1	1	0.1	~~~	0				10.0
Method 9012B 44 J 25 J 23 170 9.2J 2 170 96.5 74.1 200.0	Total Cvanide Concentration (ug/L) by FPA	1	1	1	1		1	1	1	1		1	1			1	Ť	1	1	1	
	Method 9012B				44 J		25 J			23	170					9.2J	2	170	96.5	74.1	200.0

B The analyte was found in associated blank as well as in the sample

J Indicates an Estimated Value

M Indicates result was obtained via a manual integration (rather than via a calculation from the instrument software)

¹ Does not Include B, *, and J values, or Trip Blank Data

² TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Protection for Source of Drinking Water. The most stringent standard from Surface Water, Guidance and Groundwater was used.

Appendix E NRG Soil and Groundwater Quality Analytical Data Validation Check Lists

DATA VALIDATION CHECKLIST

NATURAL RESOURCE GROUP, INC.

Job Number: 220-978-1

Sample	NRGTP-2 4'	NRGTP-7 4'	NRGTP-10 0.5-1'	NRGTP-12 4'
Identification(s):	NRGTP-4 0-1'	NRGTP-8 0.5-1'	NRGTP-10 4'	NRGTP-13 0.5'
	NRGTP-4 8'	NRGTP-8 4'	NRGTP-107	NRGTP-13 4'
	NRGTP-5 0-1'	NRGTP-8 8'	NRGTP-11 0.5'	NRGTP-13 8'
	NRGTP-5 5'	NRGTP-9 0.5-1'	NRGTP-11 4'	
	NRGTP-6 6-8'	NRGTP-9 4'	NRGTP-11 8'	
	NRGTP-7 0.5-1'	NRGTP-9 8'	NRGTP-12 0.5'	
Sample Date(s):	February 27-28, 20	007		
Sample Team:	Steve Lorentz, NR	G		
Sample Matrix:	Solid			
Analyzing	Severn Trent Labo	oratories, Inc. Connec	ticut	

Analytical data were validated in accordance with applicable USEPA SW-846 analytical method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) criteria.

The data package reviewed includes analytical results and data for all samples associated with this job number. The data package was prepared in accordance with USEPA Contract Laboratory Program (CLP) Level IV deliverable protocols. Only QA/QC results and raw data associated with target analytes were reviewed and / or discussed under this validation.

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Rep	orted	Perfor Acce	mance ptable	Not Required
	No	Yes	No	Yes	Required
1. Sample results		Х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		х	
4. Reporting limits of analysis		Х		Х	
5. Master tracking list		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preparation/extraction date		Х		Х	
9. Sample analysis date		Х		Х	
10. Copy of chain-of-custody form signed by lab sample custodian		х		х	
Narrative summary of QA or sample problems provided		х		х	

QA - quality assurance

INORGANIC ANALYSES – TOTAL METALS

Method 6010B: Arsenic, Cadmium, Chromium, Lead, Selenium, Silver, & Barium Method 7471A: Mercury

			Perfor	mance	
	Repo	orted	Acce	ptable	Not
	No	Yes	No	Yes	Required
1. Holding times		X		х	
2. Reporting limits		Х		Х	
3. Calibration curve standards		Х		Х	
4. Initial calibration verification (ICV) %R		Х		Х	
5. Continuing calibration verification (CCV) % 6. Blanks	R	Х		х	
A. Method blank		Х		Х	
B. Calibration blanks		х	Х		
C. Field blanks	Х				
7. Interference check sample %R		Х		Х	
8. Serial dilution check %D	Х				
9. Laboratory control sample (LCS) %R		Х		Х	
10. Matrix spike (MS) %R		Х	Х		
11. Post-digestion spike (PDS) %R	X				
12. Laboratory duplicate RPD		Х	Х		
13. Field duplicate comparison	Х				
R - percent recovery %D -	percent difference		RPD -	relative pe	rcent difference

NA - not applicable or not analyzed

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

- 6b. CCB 220-4130/21 and CCB 220-4130/57 had arsenic concentrations of 4.0 ug/L and 4.9 ug/L, respectively. Samples NRGTP-5 5', NRGTP-6 6-8', NRGTP-7 0.5-1, NRGTP-7 4', NRGTP-8 0.5-1, NRGTP-8 4', NRGTP-8 8', NRGTP-9 4', NRGTP-9 8', NRGTP-10 4', NRGTP-11 8', NRGTP-12 0.5' and NRGTP-13 0.5' had arsenic concentrations less than 5 times the blank concentration, these results were qualified as non-detect (U). CCB 220-4130//61 had barium concentration of 0.55 ug/L. All associated samples had barium results greater than 5 times the blank concentration. ICB 220-4114/6 and CCB 220-4114/38 had mercury concentrations of 0.087 ug/L and 0.077 ug/L. Samples NRGTP-2 4', NRGTP-5 0-1, NRGTP-5 5', NRGTP-6 6-8', NRGTP-7 4', NRGTP-8 0.5-1, NRGTP-8 4', NRGTP-8 8', NRGTP-9 4', NRGTP-10 0.5-1', NRGTP-10 4', NRGTP-10 7', NRGTP-11 8', NRGTP-13 0.5', and NRGTP-13 4' had a mercury concentration less than 5 times the blank concentration; these results were qualified as non-detect (U).
- 10. The matrix spike %R was above control limits for arsenic at 298%, lead at 349%, selenium at 269%, and barium at 168%. Sample results for arsenic, selenium, and barium were qualified as estimated (J), if detect. The matrix spike %R was below control limits for chromium at 59% and silver at 66%. Sample results for chromium and silver were qualified as estimated (J), if detect, and estimated (UJ) if non-detect.

INORGANIC ANALYSES – TOTAL METALS (cont.)

12. The laboratory duplicate RPD for barium was above the control limit at 42%. Associated sample results for barium were qualified as estimated (J), if detect, and estimated (UJ), if non-detect.

INORGANIC ANALYSES - GENERAL CHEMISTRY METHODS

Method 9012B: Cyanide

			Perfor	rmance		
	Rep	Reported Acceptable				
	No	Yes	No	Yes	Required	
1. Holding times		х		х		
2. Reporting limits		Х		Х		
3. Calibration curve standards		Х		Х		
4. Initial calibration verification (ICV) %R		х		Х		
5. Continuing calibration verification (CCV) %R		Х		Х		
6. Blanks						
A. Method blanks		Х		Х		
B. Calibration blanks		х		Х		
C. Field blanks	Х					
7. Laboratory control sample (LCS) %R		Х		Х		
8. Matrix spike (MS) %R		Х		Х		
9. Post-digestion spike (PDS) %R	Х					
10. Laboratory duplicate RPD		Х		Х		
11. Field duplicate comparison	Х					
R percent recovery RPD - relative percent CS - laboratory control sample NA - not applicable or	t difference not analyzed		MSD - mat	rix spike duplic	cate	

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

All control limits were met. No qualification of the data was necessary.

ORGANIC ANALYSES - VOLATILE ORGANIC COMPOUND

Method 8260B

	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTRO	METRY (GC/MS)			
1. Holding times		X		Х	
2. Reporting limits		Х		Х	
3. Blanks					
A. Method blanks		Х	Х		
B. Field Blanks	Х				
C. Trip blanks	Х				
4. Instrument tune and performance check		Х		Х	
5. Initial calibration RRF's and %RSD's		Х		Х	
6. Continuing calibration RRF's and %D's		Х	Х		
7. Laboratory Control Sample (LCS) %R		Х	Х		
8. Matrix spike (MS) %R	Х				
9. Matrix spike duplicate (MSD) %R	Х				
10. MS/MSD precision (RPD)	Х				
11. Surrogate spike recoveries		Х		Х	
12. Internal standard retention times and areas		Х		Х	
13. Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation reports		Х		Х	
14. Field duplicate comparison	Х				

RPD - relative percent difference %RSD - percent relative standard deviation

Comments:

Performance was acceptable, with the following exception and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

- 3a. The method blank for Batch 220-4078 and Batch 220-4124 had a methylene chloride concentrations of 5.5 ug/kg and 7.1 ug/kg, respectively. Samples with methylene chloride concentrations less than 5 times the blank concentration were qualified as non-detect (U) at the reporting limit. The method blank for Batch 220-4248 had an acetone concentration of 1300 ug/kg. Sample NRGTP-11 4' had a acetone concentration less than 5 times the blank concentration; therefore, this sample was qualified as non-detect (U).
- 3c. A TRIP BLANK was not included with this sample shipment.
- 6. The continuing calibration (3/12/07) %D for 1,2-Dichloroethane was above the control limit at 90.1%. The continuing calibration (3/8/07) %Rs were above the control limit for chloroethane at 26.6%, acetone at 43.8%, and 2-butanone at 32.9%. No qualification of the data was necessary.

ORGANIC ANALYSES - VOLATILE ORGANIC COMPOUND (cont.)

7. The laboratory control sample (Batch 220-4078 %R was above control limits for methylene chloride at 127%. The laboratory control sample (Batch 220-4124) %R was above control limits for chloroform at 141% and methylene chloride at 148%. All associated samples were non-detect for chloroform; therefore no qualification of the chloroform data was necessary. Methylen chloride results for samples NRGTP-11 8' and NRGTP-12 0.5' were qualified as estimated (J), since detect.

ORGANIC ANALYSES - SEMIVOLATILE ORGANIC COMPOUNDS *Method 8270C*

			Perfor	rmance	
	Rep	orted	Acce	ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTRO	METRY	(GC/MS)			
1. Holding times					
A. Extraction holding time		X		Х	
B. Analysis holding time		Х		Х	
2. Reporting limits		Х		Х	
3. Blanks					
A. Method blanks		Х		Х	
B. Field Blanks	х				
4. Instrument tune and performance check		Х		Х	
5. Initial calibration RRF's and %RSD's		Х		Х	
6. Continuing calibration RRF's and %D's		Х	Х		
7. Matrix spike (MS) %R	Х				
8. Matrix spike duplicate (MSD) %R	х				
9. MS/MSD precision (RPD)	Х				
10. Laboratory control sample (LCS) %R		Х	Х		
11. LCS duplicate (LCSD) %R	х				
12. LCS/LCSD precision (RPD)	х				
13. Surrogate spike recoveries		Х	Х		
14. Internal standard retention times and		Х		Х	
areas					
15. Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation reports		Х		Х	
16. Field duplicate comparison	Х		_		

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

- 6. The continuing calibration (3/8/07) %D for Butylbenylphthalate was above the control limit at 21.7%. The butyl benzyl phthalate result for sample NRGTP-11 8' was qualified as estimated (J), since detect.
- 10. The laboratory control samples for Batches 220-4103 and 220-4178 %Rs were above control limits for 2,4-Dinitrophenol at 61% and 85%, respectively. All associated sample results for 2,4-Dinitorphenol were non-detect; therefore, no qualification of the data was necessary.

ORGANIC ANALYSES - SEMIVOLATILE ORGANIC COMPOUNDS (cont.)

13. The surrogate spike recovery was below control limits for 2-fluorophenol at 152% and phenol-d5 at 158% in sample NRGTP-11 4'. The acid fraction compounds in sample NRGTP-11 4' were qualified as estimated (J), if detect.

DATA VALIDATION CHECKLIST SUMMARY OF DATA QUALIFIER CODES

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
NRGTP-2 4'	Arsenic	26.5 mg/kg	J	MS %R above control limits.
	Barium	34.8 mg/kg	J	MS %R above control limits.
	Chromium	57.1 mg/kg	J	MS %R below control limits.
	Silver	3.0 mg/kg	UJ	MS %R below control limits.
	Mercury	<0.05 mg/kg	U	Blank contamination.
NRGTP-4 0-1'	Barium	32.9 mg/kg	J	MS %R above control limits.
	Chromium	14.5 mg/kg	J	MS %R below control limits.
	Silver	2.7 mg/kg	UJ	MS %R below control limits.
	Methylene Chloride	<21 ua/ka	U	Blank contamination.
NBGTP-4 8'	Barium	38.0 ma/ka	J	MS %R above control limits.
intern ro	Chromium	25.4 ma/ka	J	MS %R below control limits.
	Silver	3.6 ma/ka	UJ	MS %R below control limits.
	Methylene Chloride	<24 µa/ka	U	Blank contamination.
NBGTP-5 0-1'	Arsenic	45.8 ma/ka		MS %B above control limits.
	Barium	342 mg/kg	.1	MS %B above control limits.
	Chromium	40.9 mg/kg		MS %B below control limits
	Silver	37 ma/ka	ц.	MS %B below control limits
	Morouny	0.21 ma/kg	11	Blank contamination
	Methylana Chlorida	<25 ug/kg	U U	Blank contamination.
	Areania	<20 ug/kg		Blank contamination
NHGTP-55	Arsenic	16.0 mg/kg	0	MS % D above control limits
	Banum	951 mg/kg	5	MS % P below control limits.
	Chromium	22.2 mg/kg		MS % D below control limits.
	Silver	4.3 mg/kg	05	NIS % A Delow control influs.
	Mercury	0.14 mg/kg	0	Blank contamination.
	Methylene Chloride	<29 ug/kg	0	Blank contamination.
NRG1P-66-8	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	66.8 mg/kg	J	MS %R above control limits.
	Chromium	114 mg/kg	J	MS %R below control limits.
	Silver	3.5 mg/kg	05	MS %R below control limits.
	Mercury	0.15 mg/kg	U	Blank contamination.
And the second second	Methylene Chloride	<22 ug/kg	U	Blank contamination.
NRGTP-7 0.5-1'	Arsenic	9.4 mg/kg	U	Blank contamination.
	Barium	126 mg/kg	J	MS %R above control limits.
	Chromium	19.0 mg/kg	J	MS %R below control limits.
	Silver	3.5 mg/kg	UJ	MS %R below control limits.
NRGTP-74'	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	73.9 mg/kg	J	MS %R above control limits.
	Chromium	6.8 mg/kg	J	MS %R below control limits.
	Silver	6.4 mg/kg	UJ	MS %R below control limits.
	Mercury	0.19 mg/kg	U	Blank contamination.
NRGTP-8 0.5-1	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	811 ma/ka	J	MS %R above control limits.
	Selenium	21 ma/ka	J	MS %R above control limits.
	Chromium	47.6 ma/ka	J	MS %R below control limits.
	Silver	3.0 ma/ka	UJ	MS %R below control limits.
	Mercury	<0.05 ma/ka	U	Blank contamination.
	Methylene Chloride	<24 ua/ka	Ū	Blank contamination.
NRGTP-8 4'	Arsenic	8.3 mg/kg	Ü	Blank contamination.
	Barium	3070 mg/kg	.i	MS %R above control limits.
	Chromium	11.2 ma/ka	.I	MS %B below control limits
	Oniomum	The myrky	0	

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
	Selenium	3.5 mg/kg	J	MS %R above control limits.
	Silver	4.1 mg/kg	UJ	MS %R below control limits.
	Mercury	<0.05 mg/kg	U	Blank contamination.
	Methylene Chloride	<24 ug/kg	U	Blank contamination.
NRGTP-8 8'	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	348 mg/kg	J	MS %R above control limits.
	Chromium	52.9 mg/kg	J	MS %R below control limits.
	Silver	3.6 mg/kg	UJ	MS %R below control limits.
	Mercury	<0.05 mg/kg	U	Blank contamination.
NRGTP-9 0.5-1'	Methylene Chloride	<24 ug/kg	U	Blank contamination.
NRGTP-9 4'	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	42.7 mg/kg	J	MS %R above control limits.
	Chromium	11.6 mg/kg	J	MS %R below control limits.
	Silver	4.3 mg/kg	UJ	MS %R below control limits.
	Mercury	<0.05 mg/kg	U	Blank contamination.
NRGTP-9 8'	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	837 mg/kg	J	MS %R above control limits.
	Chromium	9.4 mg/kg	J	MS %R below control limits.
	Silver	5.1 mg/kg	UJ	MS %R below control limits.
NRGTP-10 0.5-	Arsenic	11.7 mg/kg	J	MS %R above control limits.
1'		0 0		
	Barium	264 mg/kg	J	MS %R above control limits.
	Chromium	172 mg/kg	J	MS %R below control limits.
	Silver	3.4 mg/kg	ŲJ	MS %R below control limits.
	Mercurv	0.38 mg/kg	U	Blank contamination.
NBGTP-10 4'	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	159 ma/ka	J	MS %R above control limits.
	Chromium	189 ma/ka	J	MS %R below control limits.
	Silver	4.1 ma/ka	UJ	MS %R below control limits.
	Mercury	0.19 ma/ka	U	Blank contamination.
NBGTP-10 7'	Barium	16.3 mg/kg	J	MS %R above control limits.
	Chromium	2.0 ma/ka	J	MS %R below control limits.
	Silver	3.6 mg/kg	ŪJ	MS %R below control limits.
	Mercury	0.051 mg/kg	Ŭ	Blank contamination.
	Methylene Chloride	<24 µa/ka	ŬĴ	Blank contamination.
NBGTP-1105'	Methylene Chloride	<23 µg/kg	UJ	Blank contamination.
NRGTP-11 /	Acetone	<3300 ug/kg	<u> </u>	Blank contamination.
		4900 ug/kg	J	Surrogate recovery %R above control
	4-Methyphenol	4000 ug/kg	0	limits.
	2 4-Dimethylphenol	1200 ua/ka	J	Surrogate recovery %R above control
		1200 ug/ng	Ũ	limits.
	Phenol	5800 ua/ka	.1	Surrogate recovery %R above control
	Thenor	0000 ug/ng	Ũ	limits
NPGTP-11.8'	Arconic	<8.0 ma/ka	U	Blank contamination.
Nhati -i i o	Barium	<0.0 mg/kg /10.0 mg/kg	.1	MS %B above control limits.
	Chromium	91 7 mg/kg	.1	MS %R below control limits.
	Silver	3.1 ma/ka	Ŭ.I	MS %R below control limits
	Morouny	0.30 ma/ka	11	Blank contamination
	Mothylana Chlorida			LCS %B above control limits
	Rutul bonzul obtholeto	100 ua/ka	J	Continuing calibration %D above the
	butyi benzyi primalate	i uy/ky	J	control limit
	Arconio	13.8 ma/ka	11	Blank contamination
NHG17-120.5	Arsenic	1100 mg/kg	1	MS %B above control limits
	Odrium	57.5 ma/kg	J	MS % B below control limits
	Chromium	57.5 mg/kg	ט ווו	MS % B below control limite
	Sliver	ъ.з тну/кg	00	

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
	Methylene Chloride	47 ug/kg	J	LCS %R above control limits.
NRGTP-12 4'	Methylene Chloride	<34 ug/kg	U	Blank contamination.
NRGTP-13 0.5	Arsenic	<8.0 mg/kg	U	Blank contamination.
	Barium	119 mg/kg	J	MS %R above control limits.
	Chromium	17.1 mg/kg	J	MS %R below control limits.
	Silver	3.7 mg/kg	UJ	MS %R below control limits.
	Mercury	<0.05 mg/kg	U	Blank contamination.
	Methylene Chloride	<23 ug/kg	U	Blank contamination.
NRGTP-134'	Arsenic	20.9 mg/kg	J	MS %R above control limits.
	Barium	153 mg/kg	J	MS %R above control limits.
	Chromium	535 mg/kg	J	MS %R below control limits.
	Silver	3.3 mg/kg	UJ	MS %R below control limits.
	Mercury	0.15 mg/kg	U	Blank contamination.
	Methylene Chloride	<23 ug/kg	U	Blank contamination.
NBGTP-13 8"	Methylene Chloride	<30 ug/kg	U	Blank contamination.

VALIDATION PERFORMED BY:

VALIDATION PERFORMED BY SIGNATURE:

Anica McAdams 1adams 11/1 107

DATE:

DATA VALIDATION CHECKLIST

NATURAL RESOURCE GROUP, INC.

Job Number: 220-1004-1

Sample ENV-5 Identification(s): ENV-7 GW-2 GW-1 TRIP BLANK

Sample Date(s):	May 8, 2007
Sample Team:	Dave Steiner, SJB Empire
Sample Matrix:	Water
Analyzing Laboratory:	Severn Trent Laboratories, Inc. Connecticut

Analytical data were validated in accordance with applicable USEPA SW-846 analytical method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) criteria.

The data package reviewed includes analytical results and data for all samples associated with this job number. The data package was prepared in accordance with USEPA Contract Laboratory Program (CLP) Level IV deliverable protocols. Only QA/QC results and raw data associated with target analytes were reviewed and / or discussed under this validation.

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Bon	orted	Perfor	mance	Not
	No	Yes	No	Yes	Required
1. Sample results		х		х	
2. Parameters analyzed		х		X	
3. Method of analysis		Х		Х	
4. Reporting limits of analysis		Х		Х	
5. Master tracking list		Х		х	
6. Sample collection date		Х		х	
7. Laboratory sample received date		Х		х	
8. Sample preparation/extraction date		Х		Х	
9. Sample analysis date		Х		Х	
10. Copy of chain-of-custody form signed by lab sample custodian		Х		х	
11. Narrative summary of QA or sample problems provided		Х		Х	

QA - quality assurance

INORGANIC ANALYSES – TOTAL AND DISSOLVED METALS

Method 6010B: Arsenic, Cadmium, Chromium, Lead, Selenium, Silver, & Barium Method 7471A: Mercury

	Performance					
	Reported		Acce	otable	Not	
	No	Yes	No	Yes	Required	
1. Holding times		х		х		
2. Reporting limits		Х		Х		
3. Calibration curve standards		х		Х		
4. Initial calibration verification (ICV) %R		х		Х		
5. Continuing calibration verification (CCV) %R		Х		Х		
6. Blanks						
A. Method blank		Х	Х			
B. Calibration blanks		Х		Х		
C. Field blanks	X				х	
7. Interference check sample %R		х	Х			
8. Serial dilution check %D		Х		Х		
9. Laboratory control sample (LCS) %R		х		Х		
10. Matrix spike (MS) %R		X	Х			
11. Post-digestion spike (PDS) %R		Х		X		
12. Laboratory duplicate RPD		X		Х		
13. Field duplicate comparison	X				Х	
6R - percent recovery %D - perc	ent difference		RPD -	relative per	rcent difference	

NA - not applicable or not analyzed

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

- 6a. The method blank had a barium concentration of 0.49 ug/L. All sample results were greater than 5x the blank concentration; therefore, no qualification of the data was required.
- 7. The interference check sample %R for Selenium was below control limits at 72%. Selenium results were qualified as estimated (UJ), since non-detect
- 10. The matrix spike %R for Selenium was below control limits at 50%. Since the post-digestion spike %R was within control limits, the Selenium results were qualified as estimated (UJ), since non-detect.
- 11. The post-digestion spike %R for Lead was outside control limits. Since the sample result for Lead was greater than 4x the spike amount, no qualification of the data was required.

INORGANIC ANALYSES - GENERAL CHEMISTRY METHODS

Method 9012B: Cyanide

	Bon	orted	Acceptable		Not	
	No	Yes	No	Yes	Required	
1. Holding times		х		х		
2. Reporting limits		Х		Х		
3. Calibration curve standards		Х		Х		
4. Initial calibration verification (ICV) %R		Х		Х		
5. Continuing calibration verification (CCV) %R		Х		Х		
6. Blanks						
A. Method blanks		Х		Х		
B. Calibration blanks		х		Х		
C. Field blanks	Х				Х	
7. Laboratory control sample (LCS) %R		Х		Х		
8. Matrix spike (MS) %R		Х	Х			
9. Post-digestion spike (PDS) %R		X		Х		
10. Laboratory duplicate RPD		Х		Х		
11. Field duplicate comparison	Х				Х	
R percent recovery RPD - relative percent CS - laboratory control sample NA - not applicable or	t difference not analyzed	í	MSD - mat	trix spike duplic	cate	

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

8. The MS %R was below control limits at 74%. Cyanide results were qualified as estimated (J), if detect, and estimated (UJ), if non-detect.

Х

%R - percent recovery

Performance Acceptable Not Reported Required Yes No Yes No GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS) 1. Holding times Х х Х X 2. Reporting limits 3. Blanks A. Method blanks Х Х B. Field Blanks Х X C. Trip blanks X Х 4. Instrument tune and performance check Х Х 5. Initial calibration RRF's and %RSD's Х Х 6. Continuing calibration RRF's and %D's Х X 7. Matrix spike (MS) %R Х 8. Matrix spike duplicate (MSD) %R Х Х 9. MS/MSD precision (RPD) 10. Surrogate spike recoveries Х Х 11. Internal standard retention times and Х Х areas 12. Compound identification and guantitation A. Reconstructed ion chromatograms Х Х Х B. Quantitation reports X

ORGANIC ANALYSES - VOLATILE ORGANIC COMPOUND Method 8260B

%D - percent drift %RSD - percent relative standard deviation

13. Field duplicate comparison

RRF - relative response factor RPD - relative percent difference

х

Comments:

Performance was acceptable, with the following exception and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

- 3c. The TRIP BLANK sample had an acetone concentration of 2.1 ug/L. Samples ENV-7 and GW-2 had acetone concentrations less than 5 times the trip blank concentrations; therefore these results were qualified as non-detect (U) a the reporting limit.
- 5. The initial calibration %RSD for acetone was above the control limit at 43.4%. No samples within this job number were associated with this initial calibration; therefore no qualification of the data was necessary.
- The continuing calibration %D was above control limits for 1,2-Dichloroethane at 90.1%, Chloromethane at 31.2%, Acetone at 49.3%, 2-Butanone at 31.5%, 2-Hexanone at 31.3%. Samples analyzed on 3/14/07 were qualified as estimated (J), if detect, and estimated (UJ), if non-detect for these parameters.

ORGANIC ANALYSES - SEMIVOLATILE ORGANIC COMPOUNDS Method 8270C

			Perfor	mance	Net
	No No	orted Yes	Acce No	Ptable Yes	Not Required
GAS CHROMATOGRAPHY/MASS SPECTRO	METRY	(GC/MS)			
1. Holding times					
A. Extraction holding time		Х		Х	
B. Analysis holding time		Х		Х	
2. Reporting limits		х		Х	
3. Blanks					
A. Method blanks		Х		Х	
B. Field Blanks	х				
4. Instrument tune and performance check		X		Х	
5. Initial calibration RRF's and %RSD's		Х		Х	
6. Continuing calibration RRF's and %D's		Х		Х	
7. Matrix spike (MS) %R	х				
8. Matrix spike duplicate (MSD) %R	х				
9. MS/MSD precision (RPD)	Х				
10. Laboratory control sample (LCS) %R		Х		Х	
11. LCS duplicate (LCSD) %R	Х				X
12. LCS/LCSD precision (RPD)	Х				X
13. Surrogate spike recoveries		Х	Х		
14. Internal standard retention times and		Х		Х	
areas					
15. Compound identification and quantitation				1.5	
A. Reconstructed ion chromatograms		Х		X	
B. Quantitation reports		Х		Х	
16. Field duplicate comparison	Х				X

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

12. The surrogate spike recoveries (%R) for 2-Fluorophenol for samples ENV-5 and the method blank were below control limits at 20% and 6%, respectively. The %R for Phenol-d5 and 2,4,6-Tribromophenol were below control limits for the method blank. Since the surrogate spike recoveries for the samples were within with control limits with the exception of 2-Flurophenol for sample ENV-5. Therefore, no qualification of the data was made.

DATA VALIDATION CHECKLIST SUMMARY OF DATA QUALIFIER CODES

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
ENV-5	Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Dissolved Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Cyanide	<10 ug/L	UJ	MS %R below control limits.
ENV-7	Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Dissolved Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	Acetone	<40 ug/L	UJ	Trip blank contamination and CCV %D above control limits.
	2-Butanone	<40 ug/L	UJ	CCV %D above control limits.
	Chloromethane	<20 ug/L	UJ	CCV %D above control limits.
	1.2-Dichloroethane	<20 ug/L	UJ	CCV %D above control limits.
	2-Hexanone	<40 ug/L	UJ	CCV %D above control limits.
GW-2	Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Dissolved Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Cyanide	44 ug/L	J	MS %R below control limits.
	Acetone	<10 ug/L	UJ	Trip blank contamination and CCV %D
				above control limits.
	2-Butanone	<10 ug/L	UJ	CCV %D above control limits.
	Chloromethane	<5 ug/L	UJ	CCV %D above control limits.
	1,2-Dichloroethane	<5 ug/L	UJ	CCV %D above control limits.
	2-Hexanone	<10 ug/L	UJ	CCV %D above control limits.
GW-1	Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Dissolved Selenium	<30 ug/L	UJ	ICS and MS %Rs below control limits.
	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	Acetone	<10 ug/L	UJ	CCV %D above control limits.
	2-Butanone	<10 ug/L	UJ	CCV %D above control limits.
	Chloromethane	<5 ug/L	UJ	CCV %D above control limits.
	1,2-Dichloroethane	<5 ug/L	UJ	CCV %D above control limits.
	2-Hexanone	<10 ug/L	UJ	CCV %D above control limits.
TRIP BLANK	Acetone	2.1 ug/L	J	CCV %D above control limits.
	2-Butanone	<10 ug/L	UJ	CCV %D above control limits.
	Chloromethane	<5 ug/L	UJ	CCV %D above control limits.
	1,2-Dichloroethane	<5 ug/L	UJ	CCV %D above control limits.
	2-Hexanone	<10 ug/L	UJ	CCV %D above control limits.

VALIDATION PERFORMED BY:

VALIDATION PERFORMED BY SIGNATURE:

Anica McAdams nadams

DATE:

DATA VALIDATION CHECKLIST

NATURAL RESOURCE GROUP, INC.

Job Number: 220-1036-1

Sample	GW-5
Identification(s):	GW-3
	GW-6
	NW-1
	GW-4
	M-2
	TRIP BLANK
Sample Date(s):	May 9, 2007
Sample Team:	Dave Steiner, SJB Empire
Sample Matrix:	Water
Analyzing Laboratory:	Severn Trent Laboratories, Inc. Connecticut

Analytical data were validated in accordance with applicable USEPA SW-846 analytical method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) criteria.

The data package reviewed includes analytical results and data for all samples associated with this job number. The data package was prepared in accordance with USEPA Contract Laboratory Program (CLP) Level IV deliverable protocols. Only QA/QC results and raw data associated with target analytes were reviewed and / or discussed under this validation.

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		Х	
4. Reporting limits of analysis		Х		Х	
5. Master tracking list		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preparation/extraction date		X		Х	
9. Sample analysis date		Х		Х	
10. Copy of chain-of-custody form signed by lab sample custodian		Х		х	
Narrative summary of QA or sample problems provided		Х		Х	

QA - quality assurance

INORGANIC ANALYSES – TOTAL AND DISSOLVED METALS

Method 6010B: Arsenic, Cadmium, Chromium, Lead, Selenium, Silver, & Barium Method 7471A: Mercury

		Performance				
	Repo	orted	Acceptable		Not	
	No	Yes	No	Yes	Required	
1. Holding times		х		х		
2. Reporting limits		Х		Х		
3. Calibration curve standards		Х		Х		
4. Initial calibration verification (ICV) %R		Х		Х		
5. Continuing calibration verification (CCV) %	R	Х		Х		
6. Blanks						
A. Method blank		X	X			
B. Calibration blanks		Х	Х			
C. Field blanks	Х				X	
7. Interference check sample %R		Х		Х		
8. Serial dilution check %D		X		Х		
9. Laboratory control sample (LCS) %R		х		Х		
10. Matrix spike (MS) %R		X		Х		
11. Post-digestion spike (PDS) %R		X	Х			
12. Laboratory duplicate RPD		Х	Х			
13. Field duplicate comparison	Х				Х	
R - percent recovery %D -	%D - percent difference		RPD -	relative per	rcent difference	

NA - not applicable or not analyzed

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

- 6a. The method blank had a barium concentration of 0.43 ug/L. All sample results were greater than 5x the blank concentration; therefore, no qualification of the data was required.
- 6b. The continuing calibration blank had a mercury concentration of 0.089 ug/L. Samples GW-5 and GW-3 had concentrations less than 5x the blank concentration; therefore the mercury data for these samples were qualified as non-detect (U).
- 11. The post-digestion spike %R for Selenium was above control limits at 133%. Since the matrix spike %R was within control limits, no qualification of the data was made.
- 12. The laboratory duplicate RPD for mercury was above the control limit at 60%. Since the original sample and duplicate sample concentrations were less than 5 times the CRQL, no qualification of the data was required.

INORGANIC ANALYSES - GENERAL CHEMISTRY METHODS

Method 9012B: Cyanide

	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
1. Holding times		х		х	
2. Reporting limits		Х		Х	
3. Calibration curve standards		Х		Х	
4. Initial calibration verification (ICV) %R		Х		Х	
5. Continuing calibration verification (CCV) %R		Х		Х	
6. Blanks					
A. Method blanks		Х		Х	
B. Calibration blanks		X		Х	
C. Field blanks	Х				X
7. Laboratory control sample (LCS) %R		х		Х	
8. Matrix spike (MS) %R		Х	Х		
9. Post-digestion spike (PDS) %R		X		Х	
10. Laboratory duplicate RPD		Х		Х	
11. Field duplicate comparison	Х				Х
R percent recovery RPD - relative percent CS - laboratory control sample NA - not applicable or	t difference not analyzed	1	MSD - mat	rix spike dupli	cate

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

8. The MS %R was below control limits at 74%. Cyanide results were qualified as estimated (J), if detect, and estimated (UJ), if non-detect.

ORGANIC ANALYSES - VOLATILE ORGANIC COMPOUND

Method 8260B

Poported		Performance	
Yes	No	Yes	Required
/MS)			
X		Х	
X		Х	
Х	Х		
			Х
Х	Х		
X		Х	
х	Х		
х	Х		
X	х		
х		х	
Х		х	
х		Х	
Х		Х	
			Х
	× × × ×	X X X X X X	X X X X X X X X X X X X

%RSD - percent relative standard deviation RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

- 3a. The method blank for Batch 220-4383 had an acetone concentration of 2.1 ug/L and a methylene chloride concentration of 3.7 ug/L. Sample GW-5 and TRIP BLANK had acetone concentrations less than 5 times the blank concentration; therefore these results were qualified as non-detect (U) at the reporting limit. The TRIP BLANK had a methylene chloride concentration less than 5 times the blank concentration; therefore this result was qualified as non-detect (U). The method balnk for Batch 220-4435 had concentrations of acetone (2.4 ug/L), 2-butanone (1.5 ug/L), and methylene chloride (0.63 ug/L). Sample GW-3 was associated with this method blank but non-detect for the analytes found in the method blank; .no qualification of the data was necessary.
- 3c. The TRIP BLANK sample had an acetone concentration of 3.1 ug/L and a methylene chloride concentration of 5.7 ug/L. These results were qualified as non-detect (U) due to contamination in the method blank.

ORGANIC ANALYSES - VOLATILE ORGANIC COMPOUND (cont.)

- 5. The initial calibration %RSD for acetone was above the control limit at 51.8%. Since no samples had detections of acetone due to qualification from blank contamination, no additional qualification of the data was necessary.
- 6. The continuing calibration %D for bromomethane was above the control limit at 34.6%. Since no samples had detections of bromomethane, no qualification of the data was necessary.
- 7. The laboratory control sample %R in batch 220-4385 for Chloroform and batch 220-4435 for Chloromethane were above control limits at 125% and 168%, respectively. Since the chloroform and chloromethane concentrations were below the reporting limit; no qualification of the data was necessary.

ORGANIC ANALYSES - SEMIVOLATILE ORGANIC COMPOUNDS Method 8270C

	-	Net			
	Rep No	orted Yes	Acce No	Ptable Yes	Not Required
GAS CHROMATOGRAPHY/MASS SPECTRO	METRY	(GC/MS)			
1. Holding times					
A. Extraction holding time		Х		х	
B. Analysis holding time		X		Х	
2. Reporting limits		х		Х	
3. Blanks					
A. Method blanks		Х		Х	
B. Field Blanks	X				
4. Instrument tune and performance check		х		Х	
5. Initial calibration RRF's and %RSD's		х		Х	
6. Continuing calibration RRF's and %D's		х		Х	
7. Matrix spike (MS) %R	х				
8. Matrix spike duplicate (MSD) %R	X				
9. MS/MSD precision (RPD)	X				
10. Laboratory control sample (LCS) %R		х	Х		
11. LCS duplicate (LCSD) %R	х				х
12. LCS/LCSD precision (RPD)	Х				Х
13. Surrogate spike recoveries		Х		Х	
14. Internal standard retention times and		Х		Х	
areas					
15. Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation reports		Х		Х	
16. Field duplicate comparison	Х	_			Х

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999) unless otherwise noted.

11. The laboratory control sample %R for 2,4-Dimetylphenol was below control limits at 29%. Sample results were qualified as estimated (UJ), since non-detect.

DATA VALIDATION CHECKLIST SUMMARY OF DATA QUALIFIER CODES

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
GW-5	Mercury	0.21 ug/L	U	Blank contamination.
	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	Acetone	<10 ug/L	U	Blank contamination.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
GW-3	Mercury	0.20 ug/L	U	Blank contamination.
	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
GW-6	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
NW-1	Cyanide	9.2 ug/L	J	MS % R below control limits.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
GW-4	Cyanide	25 ug/L	J	MS %R below control limits.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
M-2	Cyanide	<10 ug/L	UJ	MS %R below control limits.
	2,4-Dimethylphenol	<10 ug/L	UJ	LCS %R below limits.
TRIP BLANK	Acetone	<10 ug/L	U	Blank contamination.
	Methylene Chloride	5.7	U	Blank contamination.

VALIDATION PERFORMED BY:

VALIDATION PERFORMED BY SIGNATURE:

DATE:

Anica McAdams Madamo ni

Job Number: 220-1044-1

Sample	NRG-4 2"
Identification(s):	NRG-6 2"
	NRG-5 2"
	NRG-1 2"
Sample Date(s):	March 8, 2007
Sample Team:	Stephen Lorentz, NRG
Sample Matrix:	Solid
Analyzing Laboratory:	Severn Trent Laboratories, Inc. Connecticut

Analytical data were validated in accordance with applicable USEPA SW-846 analytical method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) criteria.

The data package reviewed includes analytical results and data for all samples associated with this job number. The data package was prepared in accordance with USEPA Contract Laboratory Program (CLP) Level IV deliverable protocols. Only QA/QC results and raw data associated with target analytes were reviewed and / or discussed under this validation.

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		Х	
4. Reporting limits of analysis		Х		Х	
5. Master tracking list		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preparation/extraction date		Х		Х	
9. Sample analysis date		х		х	
10. Copy of chain-of-custody form signed by lab sample custodian		х		х	
11. Narrative summary of QA or sample problems provided		х		х	

QA - quality assurance

INORGANIC ANALYSES – TOTAL METALS

Method 6010B: Arsenic, Cadmium, Chromium, Lead, Selenium, Silver, & Barium Method 7471A: Mercury

	Performance					
	Rep	Reported		ptable	Not	
	No	Yes	No	Yes	Required	
1. Holding times		х		х		
2. Reporting limits		X		Х		
3. Calibration curve standards		X				
4. Initial calibration verification (ICV) %R		х		Х		
5. Continuing calibration verification (CCV) %R		X		Х		
6. Blanks						
A. Method blank		х		Х		
B. Calibration blanks		X		Х		
C. Field blanks	Х				Х	
7. Interference check sample(ICS) %R		X	Х			
8. Serial dilution check %D		X		Х		
9. Laboratory control sample (LCS) %R		X		Х		
10. Matrix spike (MS) %R		X	Х			
11. Post-digestion spike (PDS) %R		X	Х			
12. Laboratory duplicate RPD		X		Х		
13. Field duplicate comparison	Х				Х	
A - not applicable or not analyzed %D - p	ercent difference		RPD -	relative per	rcent difference	

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

- 7. The interference check sample %R for Selenium was below control limits at 76%. Selenium results were qualified as estimated (J), if detect and estimated (UJ), if non-detect
- 10. The matrix spike %R for Cadmium was above control limits at 129%. Since the post-digestion spike %R was within control limits, the Cadmium results were qualified as estimated (J), if detect. The %R for Chromium and Lead were also outside control limits. Since the sample results for Chromium and Lead were greater than 4x the spike amount, no qualification of the data was required.
- 11. The post-digestion spike %R for Lead was outside control limits. Since the sample result for Lead was greater than 4x the spike amount, no qualification of the data was required.

INORGANIC ANALYSES - GENERAL CHEMISTRY METHODS

Method 9012B: Cyanide

	Por	orted	Performance		Not
	No	Yes	No	Yes	Required
1. Holding times		х		Х	
2. Reporting limits		Х		Х	
3. Calibration curve standards		х		Х	
4. Initial calibration verification (ICV) %R		Х		Х	
5. Continuing calibration verification (CCV) %R		Х		х	
6. Blanks					
A. Method blanks		Х		Х	
B. Calibration blanks		Х		Х	
C. Field blanks	х				Х
7. Laboratory control sample (LCS) %R		Х		Х	
8. Matrix spike (MS) %R		Х	х		
9. Post-digestion spike (PDS) %R					
10. Laboratory duplicate RPD		Х		Х	
11. Field duplicate comparison	Х				Х
R percent recovery RPD - relative perc CS - laboratory control sample NA - not applicable	ent difference or not analyze	d	MSD	- matrix spik	e duplicate

Comments:

Performance was acceptable, with the following exceptions and notes.

Qualification of data was based on "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (February 1994) unless otherwise noted.

8. The MS %R was above control limits at 149%. Cyanide results were qualified as estimated (J), if detect.

DATA VALIDATION CHECKLIST SUMMARY OF DATA QUALIFIER CODES

Sample ID	Analyte(s)	Result	Qualifier	Reason(s)
NRG-4 2"	Cadmium	8.2 mg/kg	J	MS %R above control limits.
	Selenium	<11.7 mg/kg	UJ	ICS %R below control limits.
	Cyanide	7000 ug/kg	J	MS %R above control limit.
NRG-6 2"	Cadmium	1.5 mg/kg	J	MS %R above control limits.
	Selenium	<9.1 mg/kg	UJ	ICS %R below control limits.
NRG-5 2"	Cadmium	10 mg/kg	J	MS %R above control limits.
	Selenium	<13.1 mg/kg	UJ	ICS %R below control limits.
	Cyanide	1000 ug/kg	J	MS %R above control limits.
NRG-1 2"	Cadmium	2.2 mg/kg	J	MS %R above control limits.
	Selenium	<14.4 mg/kg	UJ	ICS %R below control limits.

VALIDATION PERFORMED BY:

VALIDATION PERFORMED BY SIGNATURE:

DATE:

Anica McAdams Madamo Maa 10

Attachments 1. Severn Trent Laboratory Data 2. NRG Soil and Groundwater Quality Analytical Data Validation Packages