2009 Periodic Review Report

Groundwater Monitoring and Sampling Results

Envirotek II/Roblin Steel Site

January 2010

Amherst, New York

Copyright © 01/10, Stearns & Wheler, LLC

2009 PERIODIC REVIEW REPORT

GROUNDWATER MONITORING AND SAMPLING RESULTS ENVIROTEK II / ROBLIN STEEL SITE

Prepared by:

STEARNS & WHELER, LLC

Environmental Engineers and Scientists University Centre, Suite 100 415 North French Road Amherst, New York 14228

January 2010

S&W Project No. 81193

TABLE OF CONTENTS

		<u>Page</u>
SECTION 1.1 1.2	1 – SITE BACKGROUND Site Location Site History	1 1 1
SECTION	2 – GROUNDWATER MONITORING ACTIVITIES	5
SECTION	3 – SOIL MANAGEMENT PLAN	6
SECTION 4.1 4.2 4.3	4 – GROUNWATER MONITORING RESULTS	7 7 8 10
SECTION	5 – CONCLUSIONS	11
	LIST OF FIGURES	
Figure No.	<u>.</u>	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Site Location Map Site Plan Groundwater Elevation Contour Map Groundwater Total VOC Concentration Map - October 27, 2009 Groundwater VOC Concentrations at ENV-1 Groundwater VOC Concentrations at ENV-3R Groundwater VOC Concentrations at ENV-4 Groundwater VOC Concentrations at ENV-7 Groundwater VOC Concentrations at ENV-8 Groundwater VOC Concentrations at ENV-9 Groundwater VOC Concentrations at ENV-11 Groundwater VOC Concentrations at GW-3 Groundwater VOC Concentrations at NRG-3 Groundwater VOC Concentrations at NRG-4 Groundwater VOC Concentrations at NRG-5 Groundwater VOC Concentrations at NRG-5 Groundwater VOC Concentrations at NRG-6	
	LIST OF TABLES	

Table No.

- Inventory of Shallow Groundwater Monitoring Wells Field Measured Parameters 1
- 2
- 3 Groundwater Analytical Results

LIST OF APPENDICES

<u>Appendix</u>

- Analytical Results of On-Site Soil Piles in 2009 A
- В
- Soil Management Plan
 Institutional & Engineering Controls Certification Form
 Laboratory Analytical Results
 Historical Groundwater Total VOC Concentration Figures
 Groundwater Field Sampling Records C
- D
- E
- F

SECTION 1 - SITE BACKGROUND

1.1 SITE LOCATION

The site consists of a 2.5-acre parcel of land located within the 50-acre Roblin Steel complex (NYSDEC Site #915056) at 4000 River Road in the Town of Tonawanda, Erie County, New York. A site location map is presented on Figure 1. Figure 2 presents a site plan of the Roblin Steel complex that includes the Envirotek II site. The Roblin Steel complex, which is presently owned by Niagara River World, Inc. (NRW), is bounded on the west by the Niagara River, on the east by River Road, on the south by Marathon Oil, and on the north by a facility that was investigated and remediated by the NYSDEC (i.e., the River Road Site, NYSDEC Site #915031).

1.2 SITE HISTORY

The history of the site is interrelated with the history of the Roblin Steel complex, as the site was formerly leased by Envirotek Ltd. Company (Envirotek) from Roblin Steel for industrial use. Between August 1981 and June 1989, Envirotek operated a solvent recovery operation at the site located within the Roblin Steel property.

A review of the property history indicates that the Roblin Steel site was the location of industrial steel production operations beginning in the early 1900s. The property was developed in the early 1900s for the production of steel by the Wickwire Spencer Steel Company (Wickwire). In 1945, the property was sold to the Colorado Fuel and Iron Corporation (Colorado F&l), which subsequently merged with Wickwire, and was operated by Colorado F&l until it went bankrupt in 1963. In the mid to late 1960s, Roblin Steel purchased the property and used it primarily for storage. Roblin Steel also subleased portions of the property to a number of other companies, including, but not limited to, Ascension Chemical, Rupp Rental, Freightways Transportation, Envirotek, and Booth Oil.

In 1984, the NYSDEC issued a Resource Conservation and Recovery Act (RCRA) Part B Permit to Envirotek to operate the site as a hazardous waste treatment, storage, and disposal facility. After violations of this permit in 1985, including improper waste characterization, RCRA drum handling violations, and lack of insurance and financial

assurance, Envirotek entered into an Administrative Order of Consent (AOC) with the NYSDEC that required a reduction of Envirotek's hazardous waste inventory.

In 1988, Envirotek submitted a Facility Closure Plan (Envirotek, 1988) to the NYSDEC to remove and dispose of all materials remaining onsite and to take measures to decontaminate the property. The NYSDEC denied approval of the Facility Closure Plan after its review and determined this plan was unacceptable. NYSDEC believed that it contained inaccurate closure costs and proposed the use of unqualified personnel to implement the site closure.

On February 2, 1989, Envirotek filed a petition under Chapter 11 of the Bankruptcy Code in the United States Bankruptcy Court of the Western District of New York. The current owner of the property, NRW, evicted Envirotek in June 1989, at which time Envirotek abandoned the facility. On November 16, 1989, the NYSDEC formally revoked Envirotek's RCRA Part B Permit to operate on the basis of Envirotek's inability to develop an acceptable Facility Closure Plan.

Following abandonment of the site, the United States Environmental Protection Agency (USEPA) inspected the site and confirmed the presence of abandoned and unsecured drums and containers, pits containing hazardous substances, and contaminated process vessels and tanks. As a result, the USEPA notified former Envirotek customers of their potential liability at the site and requested a removal action. In May of 1990, the USEPA entered into an AOC with site respondents to perform a removal action at the site (Removal Action AOC).

In November 1990, implementation of a Remedial Action Sampling Plan (RASP) was completed at the site to identify areas onsite, other than the Still Discharge Area (SDA), at which spills or releases of chemical compounds may have occurred. The results of this investigation indicated the following:

- The soil gas survey indicated elevated levels of VOCs in the area of the SDA and in an area to the west of Building 153.
- The analytical results for the groundwater sampling indicated the presence of VOC-impacted groundwater associated with the site.

• The analytical results for the soil sampling indicated that there were elevated levels of chlorinated and aromatic VOCs and that the soils containing the highest level of VOCs were located in the vicinity of the SDA.

In May 1993, implementation of a removal action that consisted of the removal of approximately 175 tons of impacted soil from the SDA was completed.

The NYSDEC and the Envirotek II/Roblin Steel Site PRP Group entered into a Consent Order on September 2, 1997 and on August 20, 1998. The Consent Order, and its amendment, obligated the responsible parties to implement a remedial investigation/feasibility study (RI/FS) remedial program.

The Envirotek II/Roblin Steel Site PRP Group conducted an RI at the site to assess the onsite surface and subsurface soil quality, offsite subsurface soil quality, site groundwater quality, and site geologic and hydrogeologic characteristics. The results of the RI for the site are presented in the RI Report. Based on the results of the RI report, the Envirotek II/Roblin Steel Site PRP Group submitted the following three recommendations to the NYSDEC.

- Defined as OU-1, the implementation of an Interim Remedial Measure (IRM) to remove the Boiler House ink waste for offsite disposal; removing soils containing elevated levels of VOCs from Waste Pit No. 6, decontaminating the pit, and backfilling the pit with clean backfill; and disposing of all solid, liquid, and personal protection equipment generated during this IRM to an approved offsite disposal facility.
- Defined as OU-2, the reduction of the potential for migration of VOC constituents of concern (COCs) from source-area soils to the shallow overburden groundwater.
- Defined as OU-3, the reduction of the concentration of VOC COCs in shallow overburden groundwater associated with elevated VOC concentrations in source area soils.

The implementation of the OU-2 IRM had an expected significant beneficial effect on OU-3 due to the removal of 7,100 tons of impacted soil as a potential future groundwater source of VOC COCs. The IRM Final Report for OU-3 presented an evaluation of

groundwater gauging and sampling data and the historical occurrence and future viability of natural attenuation and supported the selection of an MNA (Monitored Natural Attenuation) remedy.

The NYSDEC approved the IRM Final Report for OU-3 in March 2005. On March 11, 2005, the Envirotek Il/Roblin Steel Site PRP Group submitted the Focused Feasibility Study Report (FFS) that identified MNA as the best remedial option for OU-3, which was approved by the NYSDEC. The NYSDEC then issued the Record of Decision (ROD) for the site on March 31, 2005, which selects MNA as the proposed remedy to compete the final remedial action of OU-3.

The Monitoring Plan for OU-3 proposed to implement an annual MNA groundwater sampling program utilizing the existing monitoring well network. The objective of the Monitoring Plan for OU-3 is to obtain additional groundwater monitoring data, to supplement the existing data, and to evaluate whether MNA continues to be an effective remedy for OU-3.

SECTION 2 - GROUNDWATER MONITORING ACTIVITIES

The 2009 monitoring program at the Envirotek II/Roblin Steel site consisted of one annual sampling event completed on October 27, 2009. Groundwater elevation data were collected from all site monitoring wells, with the exception of monitoring wells GW-5 and NW-3, due to lack of accessibility or an obstruction found in the well. Groundwater samples were collected from the seven (7) monitoring wells that define the OU-3 monitoring well network (ENV-1, ENV-3, ENV-4, ENV-7, ENV-8, ENV-9, and GW-3), along with four (4) additional monitoring wells (NRG-3, NRG-4, NRG-5 and NRG-6). Monitoring wells NRG-5 and NRG-6, previously sampled in 2007, were added this year as requested by the NYSDEC. A summary of the wells that were monitored for water quality and/or groundwater elevation is presented on Table 1.

Groundwater samples were collected using low-flow purging and sampling techniques. Prior to sampling, each monitoring well was purged using a peristaltic pump and dedicated tubing until parameters of pH, conductance, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP) stabilized, which provided an indication that water drawn from the well is representative of the groundwater in the surrounding formation. The results of these field parameters are presented on Table 2. After the field parameters stabilized, samples were collected with a disposable bailer into sample containers provided by the laboratory.

Purge water generated during the groundwater sampling activities was emptied on-site away from the sampled well. Quality control samples, including a trip blank, a field blank, a matrix spike and matrix spike duplicate, and a field duplicate were collected during the sampling event. Samples were delivered under a chain of custody to Upstate Laboratories, Inc. of Syracuse, New York for analysis of VOCs by USEPA SW-846 Method 8260.

SECTION 3 - SOIL MANAGEMENT PLAN

No excavation took place on-site during groundwater monitoring activities or throughout the past twelve months. However, an approximate volume of 25,000 CY of excavated soil was delivered in the Fall of 2009 to the site from the proposed Buffalo General Hospital building expansion site located at Goodrich Street and Ellicott Street. This soil was characterize and sample to determine their suitability for reuse and/or disposal off-site. Analytical soil sample results are summarized in Appendix A with the NYSDEC's guidance values for the acceptance of fill under unrestricted, residential and commercial use scenarios based on Part 375 Soil Cleanup Objectives regulations. The analytical results show the delivered soils are environmentally clean with no detected compounds within the NYSDEC unrestricted use criteria for acceptance as borrow fill.

The Soil Management Plan is required to set guidelines for the management of soil materials during any future excavation activities at the site. This SMP addresses the environmental concerns related to soil management which has been approved by the NYSDEC. The SMP is presented in Appendix B.

The Record of Decision for the site included the implementation of a Site Management Plan. The Site Management Plan requires, in part, an Institutional Control/Engineering Control (IC/EC) certification submitted annually which certifies that the IC/EC in place is unchanged from the previous certification and that nothing has occurred that will impair the ability of the control to protect public health or the environment, or constitute a violation to comply with any operation and maintenance of the Soil Management Plan. There are no engineering controls on the site as there is no active remedial system. The IC/EC for the site will be in the form of an environmental easement that will include the following:

- Require compliance wit the approved Site Management Plan
- Limit the use and development of property to commercial or industrial uses only
- Restrict use of groundwater as a source of potable water unless treated
- Require the site owner to complete and submit an IC/EC certification

The site owner as required by the NYSDEC has included the signed IC/ECF certification as presented in Appendix C.

SECTION 4 – GROUNDWATER MONITORING RESULTS

This section includes the results of the 2009 annual groundwater sampling event. Included are descriptions of site-specific hydrogeology, the identification and distribution of constitutes present in groundwater, and a comparison of historical data. Constitutes were compared to the applicable NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Groundwater Standards and Guidance Values.

4.1 SITE HYDROGEOLOGY

Groundwater elevation data collected during the sampling events are presented on Table 1. Figure 3 illustrates the groundwater elevation contours within the upper fill material based on the groundwater levels measured on October 27, 2009.

The groundwater elevation contours are consistent with historical interpretations. The groundwater flow has a unidirectional flow throughout the site due to the proximity of the Niagara River. Monitoring wells NRG-3 and NRG-4 are located west of the boiler house in an area referred to as the "Ore Pit". The Ore Pit has concrete walls to the south, north and west (and possibly east) of the well locations which provide a barrier to groundwater movement, thus creating an elevated groundwater level in the area. As presented on the table below, the groundwater gradient calculated between monitoring wells ENV-1 and GW-3 and between ENV-1 and ENV-7 decreased from 2008 reported groundwater gradient. Variation in groundwater levels and gradients are seasonal dependent upon the amount of precipitation received.

Groundwater Gradient Comparison

Canadina Data	Groundwater Gradient						
Sampling Date	ENV-1 to GW-3	ENV-1 to ENV-7 0.0046					
10/05/06	0.0033						
10/09/08	0.0046	0.0068					
10/27/09	0.0028	0.0040					

4.2 GROUNDWATER ANALYTICAL RESULTS

A summary of the compounds detected in groundwater during the 2009 Groundwater Sampling Event is presented on Table 3. Figure 4 illustrates the distribution of total VOC concentrations detected in each of the twelve wells during the 2009 sampling event. Laboratory analytical data reports are provided in Appendix D. Historical groundwater analytical data is presented in Table 3. Historical groundwater total VOC concentration Figures displaying the lateral extent of the total VOC concentration plume from the sampling events of October 2008, October 2006, October 2005, September 2004, May 2004, September 1999 are provided in Appendix E.

The concentrations of cis-1,2-dichloroethene (ENV-3R, ENV-7, ENV-8, NRG-5 and NRG-6), vinyl chloride (ENV-3R, ENV-7, and ENV-8), trichloroethene (ENV-3R and ENV-8), 1,2-dichloroethane (NRG-5) and trans-1.2-dichloroethene (NRG-5) were equal to or exceeded the NYSDEC TOGS. The concentrations of 1,1-dichloroethane (ENV-3 and NRG-5), cis-1,2-dichloroethene (ENV-4), tetrachloroethane (ENV-3R) and were detected, but did not exceed the standard limit. As illustrated on Figure 4, there is an elevated total VOC concentration in groundwater within the shallow overburden zone in the central portion of the property at monitoring well ENV-7. Monitoring well ENV-7 contains the highest total VOC concentration on-site of 0.191 mg/L.

As presented in the historical groundwater total VOC concentration plume figures in Appendix E, the lateral extent of the total VOC plume has decreased over time. The figure from September 1999 shows a total VOC plume that laterally extends over the majority of the site, with a total VOC concentration detected at nearly 50 mg/L at well ENV-2. The total VOC plumes from sampling events in 2004 indicate significantly smaller total VOC plumes. Total VOC concentrations detected in groundwater at all monitoring wells in 2004 were less than 1 mg/L. Sampling events in 2005, 2006, and 2008 continue to decrease the total VOC concentrations and plume limits, with no VOCs detected in groundwater sampled from monitoring wells ENV-1 and GW-3. The total VOC plume in 2009 was expanded due to the sampling of additional monitoring wells NRG-5 and NRG-6, as requested by NYSDEC. The total VOC concentration in NRG-5 and NRG-6, installed and analyzed in 2007, decreased by 40 and 20 percent respectively. The VOC plume continued to decrease in its lateral extent as the VOC concentrations detected at ENV-8 and ENV-3 decreased. As shown on Figure 4 and Appendix E, the

OU-3 MNA remedy has been shown to be sufficiently effective by decreasing the VOC plume over time and improving the site groundwater quality.

At monitoring well NRG-3, the laboratory attempted to analyze the compounds using the standard detection limit, but was unable due to the sample foaming during purging procedure. The presence of unknown non-volatile organics caused a matrix interference to occur. The reporting limits were raised as a minimum dilution factor of twenty (20) was used to analyze the samples. The laboratory was made aware of the importance of these wells based on proximity to the Niagara River and previous analytical results and will attempt to analyze these samples at the standard detection limit for future events.

The following table provides a descriptive analysis of groundwater analytical data collected from the OU-3 monitoring well network and monitoring wells NRG-3 and NRG-4, NRG-5 and NRG-6. Long term trends on the following table have been evaluated to include the most recent sampling event of October 27, 2009. Concentration trend plots for selected compounds are presented on Figures 5 through 16.

Descriptive Analysis of Groundwater Quality Data

Monitoring	Long Term Trend Analysis	Additional Comments
Well		
ENV-1	No VOCs have been detected since 1990, with the exception of methylene chloride, which was detected at a low concentration in 2004.	No VOCs were detected during the 2009 groundwater sampling event.
ENV-3R	Variable, but generally low and decreasing VOC concentrations.	Cis-1,2-DCE, TC, and VC were detected at concentrations equal to or exceeding the NYSDEC TOGS. 1,1-DCA decreased below the NYSDEC TOGS.
ENV-4	Steady, low VOC concentrations	No VOCs were detected at concentrations equal to or exceeding NYSDEC TOGS during the 2009 groundwater sampling event. Cis-1,2-DCE decreased below the NYSDEC TOGS.
ENV-7	Variable, but generally decreasing VOC concentrations.	Cis-1,2-DCE and VC increased and were detected at concentrations exceeding the NYSDEC TOGS.
ENV-8	Variable, but generally low VOC concentrations.	Cis-1,2-DCE, TC and VC were detected at concentrations exceeding NYSDEC TOGS. TC increased from the 2008 sampling event.
ENV-9	No VOCs detected	No VOCs were detected during the 2009 groundwater sampling event.

Descriptive Analysis of Groundwater Quality Data Table (Continued)

Monitoring	Long Term Trend Analysis	Additional Comments
Well		
ENV-11	Variable, but generally decreasing VOC concentrations.	No VOCs were detected during the 2009 groundwater sampling event.
GW-3	No VOCs detected	No VOCs were detected during the 2009 groundwater sampling event.
NRG-3	VOCs detected in 2007 at low concentrations. Not enough historical data to evaluate long-term trends.	No VOCs were detected during the 2009 groundwater sampling event.
NRG-4	VOCs detected in 2007 at low concentrations. Not enough historical data to evaluate long-term trends.	No VOCs were detected during the 2009 groundwater sampling event.
NRG-5	VOCs detected in 2007 at low concentrations. Not enough historical data to evaluate long-term trends.	Cis-1,2-DCE, 1,1-DCA, Trans-1,2-DCE were detected at concentrations equal to or exceeding NYSDEC TOGS. 1,1-DCA and VC decreased from the 2007 sampling event.
NRG-6	VOCs detected in 2007 at moderate concentrations. Not enough historical data to evaluate long-term trends.	Cis-1,2-DCE was detected at concentrations equal to or exceeding NYSDEC TOGS.

Notes:

Cis-1,2-DCE – cis-1,2-dichloroethene
1,1-DCA – 1,1-dichloroethane
1,2-DCA – 1,2-dichloroethane
TC – Trichloroethane
Trans-1.2-DCE – trans-1,2-dichloroethene
VC – vinyl chloride

NYSDEC TOGS - New York State Department of Environmental Conservation Technical and Operational Guidance Series

4.3 QUALITY ASSURANCE/QUALITY CONTROL ANALYTICAL RESULTS

Groundwater samples were analyzed for VOCs by USEPA SW-846 Method 8260 volatiles at Upstate Laboratories in Syracuse, New York. The laboratory data were independently reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The associated laboratory analytical reports of the field duplicate, equipment blank, and other quality assurance/quality control (QA/QC) samples collected during the October 2009 sampling event are presented in Appendix D. The QA/QC measurements examined for the data were within method-specified or laboratory-derived limits. No data were rejected as a result of the data validation.

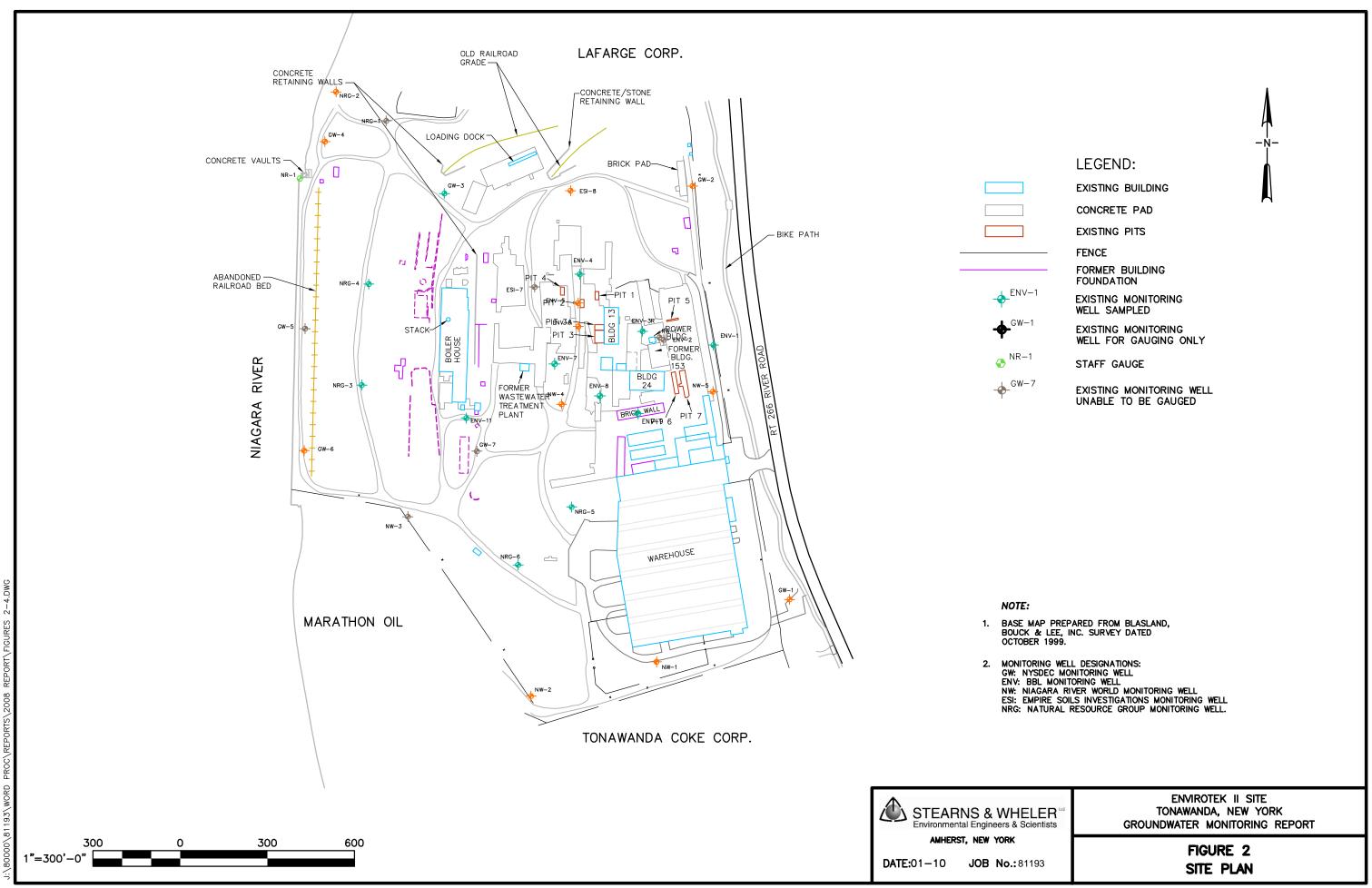
SECTION 5 - CONCLUSIONS

Analytical testing from the 2009 sampling event detected cis-1,2-dichloroethene (ENV-3R, ENV-7, ENV-8, NRG-5 and NRG-6), vinyl chloride (ENV-3R, ENV-7, and ENV-8), trichloroethene (ENV-3R and ENV-8), 1,2-dichloroethane (NRG-5) and trans-1.2-dichloroethene (NRG-5) at concentrations that were equal to or exceed the groundwater standards.

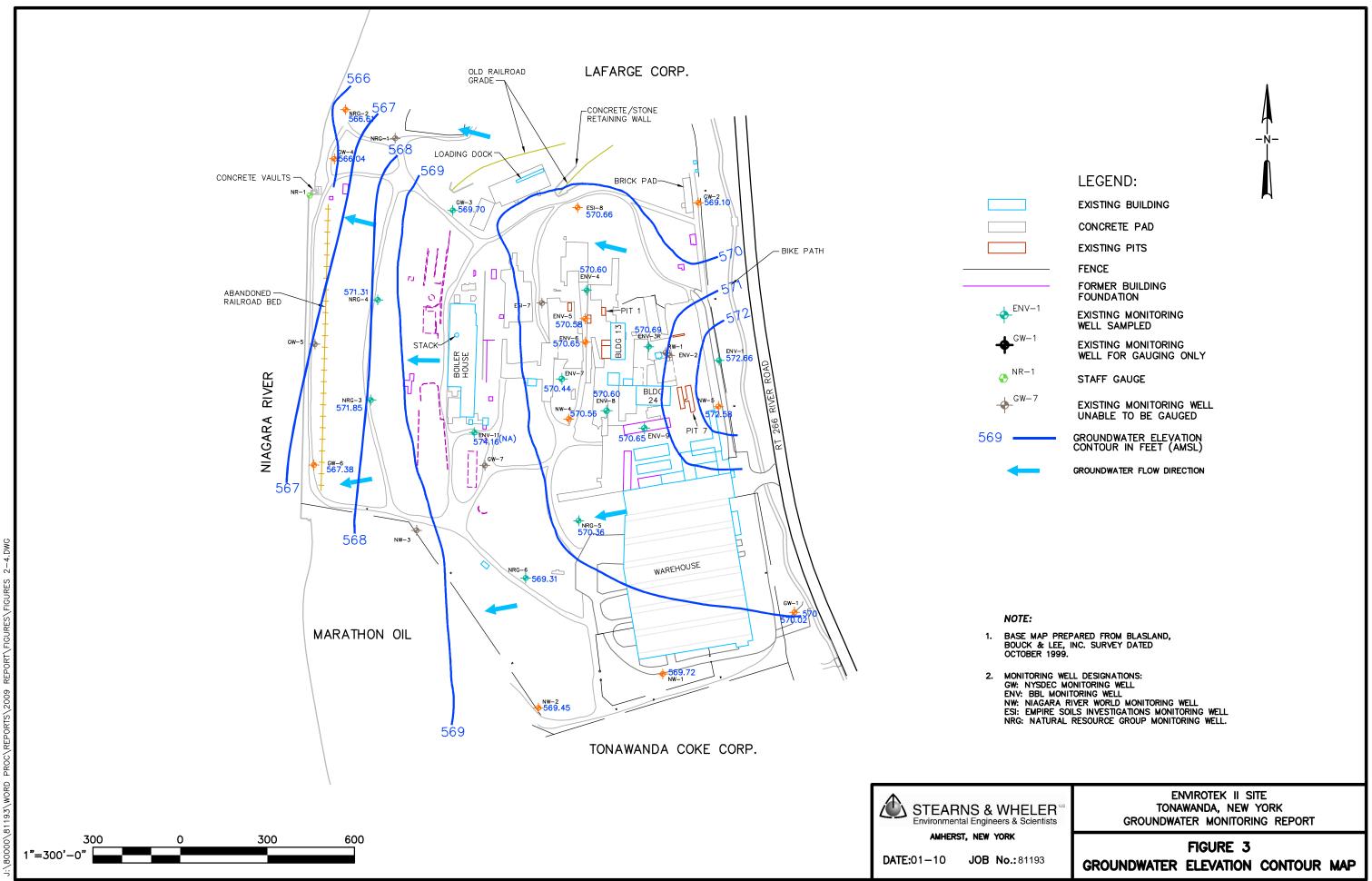
Trend analysis of volatile compounds from the comparison of historical data and Figures 5 through 16 indicates that all compound concentrations are decreasing or remaining the same in groundwater at all monitoring wells except for cis-1,2-dichloroethene (ENV-7), trichloroethene (ENV-3R and ENV-8) and vinyl chloride (ENV-7).

Concentrations of cis-1,2-dichloroethene and vinyl chloride at ENV-7 have fluctuated historically. The test results from the most recent sampling event detected the concentration of cis-1,2-dichloroethene at 93 ug/l (ppb), which represents a 13 percent increase from the 2008 sampling event. The 2009 sampling event detected the concentration of vinyl chloride at 98 ug/l (ppb), which represents a 100 percent increase from the previous sampling event. However, the concentration of vinyl choride has decreased since 2005 and showed a decreasing trend when a concentration of 200 ug/l (ppb) was detected. The highest concentrations of cis-1,2-dichloroethene and vinyl chloride were 430 ug/l and 250 ug/l (ppb) in 2001 and 2007 respectively. The long term trend for cis-1,2-dichloroethene and vinyl chloride indicates a decrease in both concentrations at this location.

Concentration of trichloroethene at ENV-3R has fluctuated historically. The test results from the most recent sampling event detected 5.4 ug/l (ppb), which represents a 35 percent increase from the 2008 sampling event. The highest concentration of trichloroethene was 22 ug/l in May 2004. The long term trend for trichloroethene indicates a decrease in concentration at this location.


Concentration of trichloroethene at ENV-8 has fluctuated historically. The test results from the most recent sampling event detected an estimated concentration of 5 ug/l (ppb) The concentration of trichloroethene was not detected for the 2008 sampling event. The highest concentration of trichloroethene was 14 ug/l in May 2004. The long term trend for trichloroethene indicates a decrease in concentration at this location.

The total VOC concentration plume for the 2009 sampling event is shown to be larger in area from the 2008 Monitoring Report due to the addition of monitoring wells NRG-5 and NRG-6 being analyzed this year at the request of the NYSDEC. Since previously sampled in 2007, the total VOC concentration at NRG-5 and NRG-6 has decreased by 40 and 20 percent respectively. The total VOC concentration at all sampled wells, with the exception of ENV-7, have decreased or remained at non-detectable levels for the 2009 sampling event. Therefore, the OU-3 MNA remedy has been shown to be sufficiently effective by decreasing the VOC plume over time and improving the site groundwater quality.


FIGURES

29.12.2008 BRIAN DOYLE

16.12.2009 BRIAN DOYLE

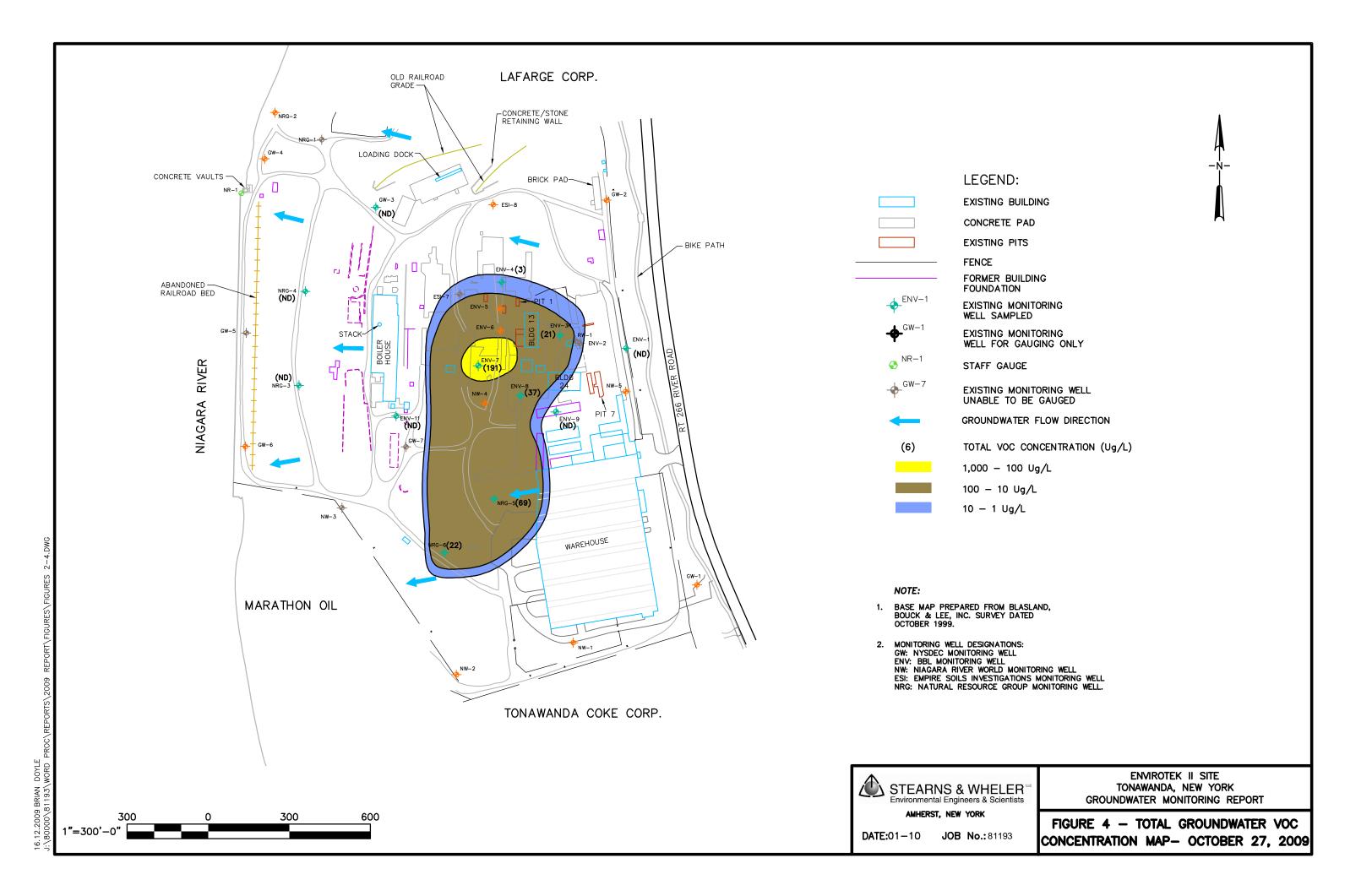


FIGURE 5
Groundwater VOC Concentrations in ENV-1 vs. Time

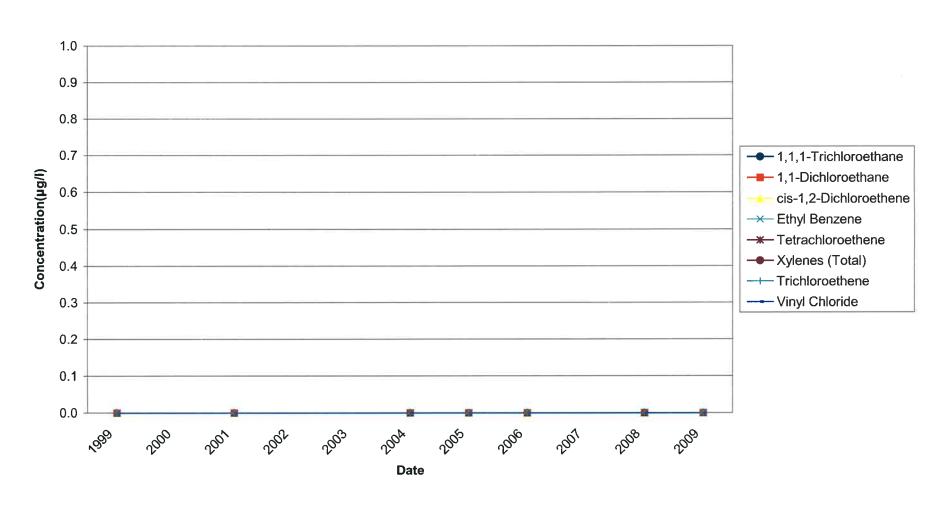


FIGURE 6
Groundwater VOC Concentrations in ENV-3 vs. Time

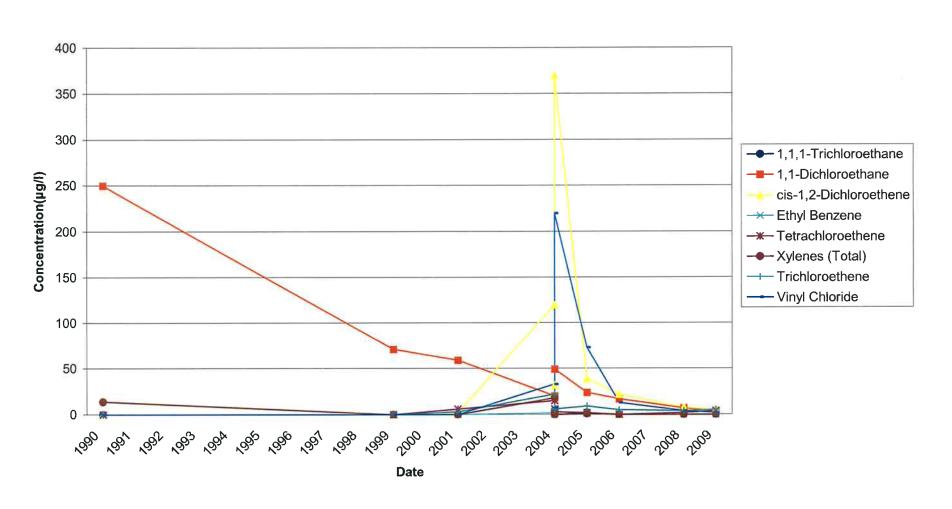


FIGURE 7
Groundwater VOC Concentrations in ENV-4 vs. Time

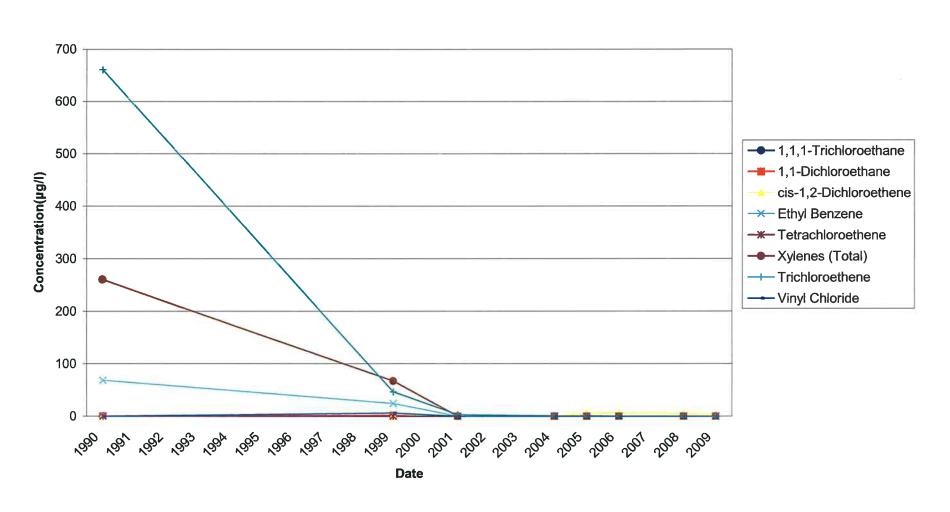


FIGURE 8
Groundwater VOC Concentrations in ENV-7 vs. Time

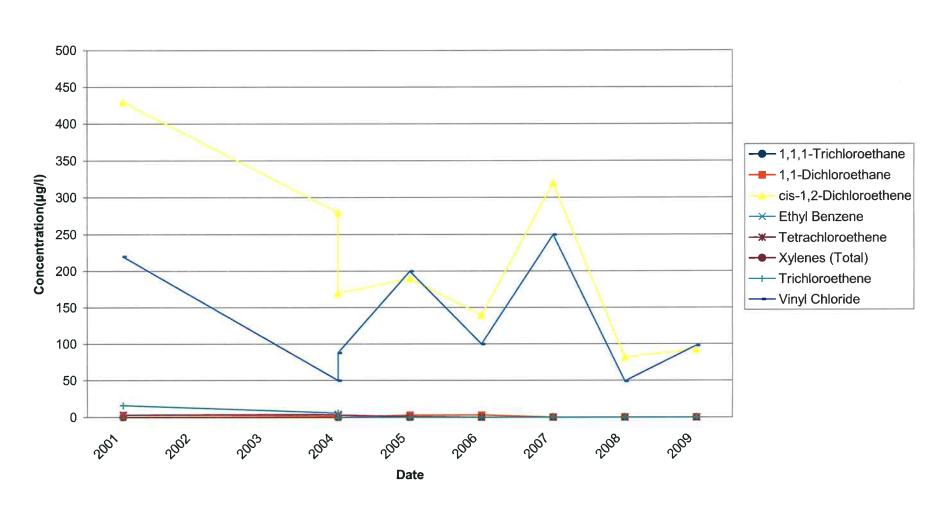


FIGURE 9
Groundwater VOC Concentrations in ENV-8 vs. Time

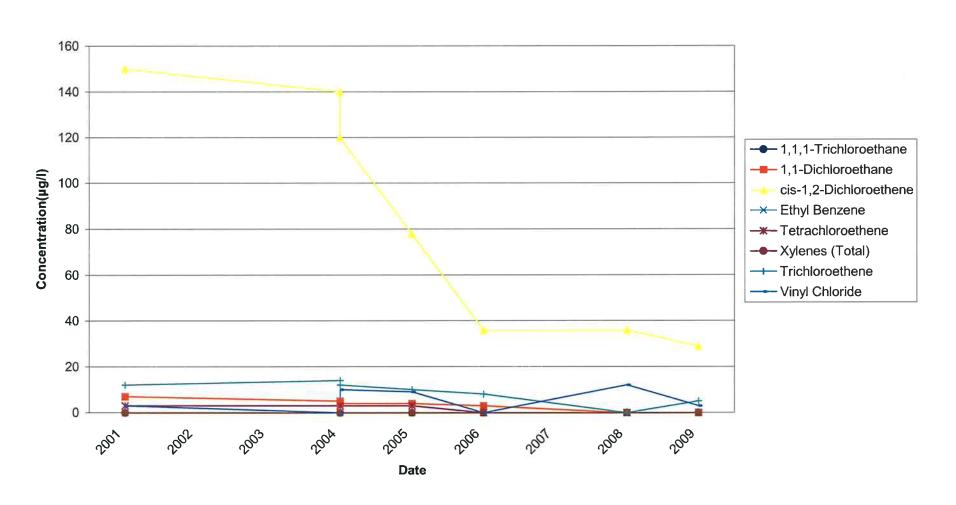


FIGURE 10
Groundwater VOC Concentrations in ENV-9 vs. Time

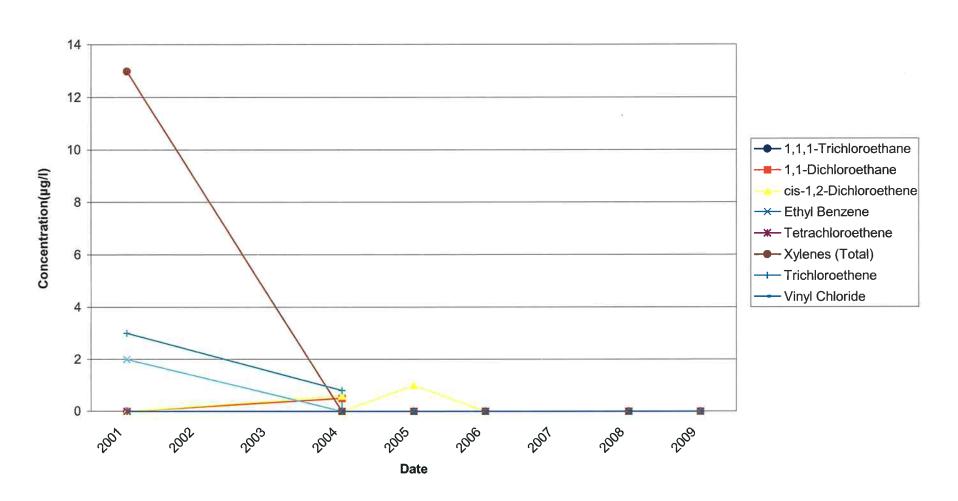


FIGURE 11
Groundwater VOC Concentrations in GW-7 vs. Time

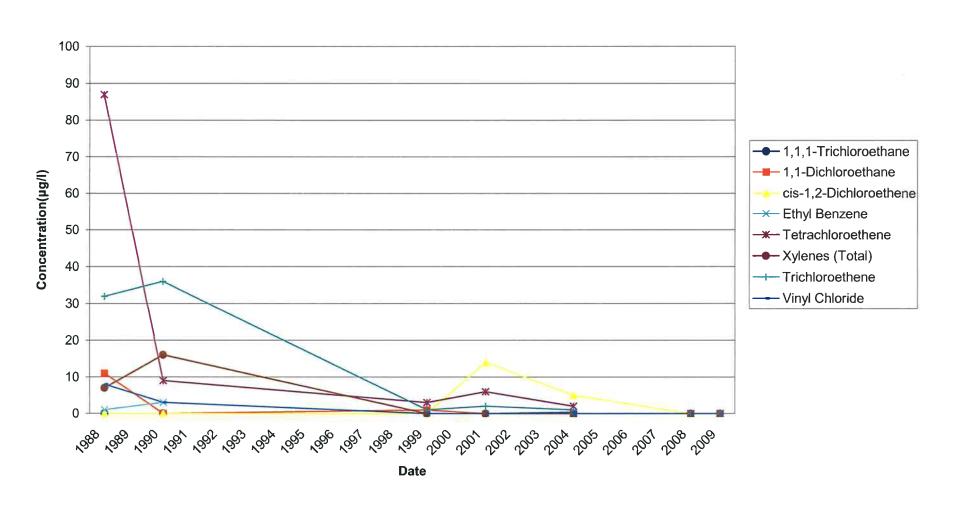


FIGURE 12
Groundwater VOC Concentrations in GW-3 vs. Time

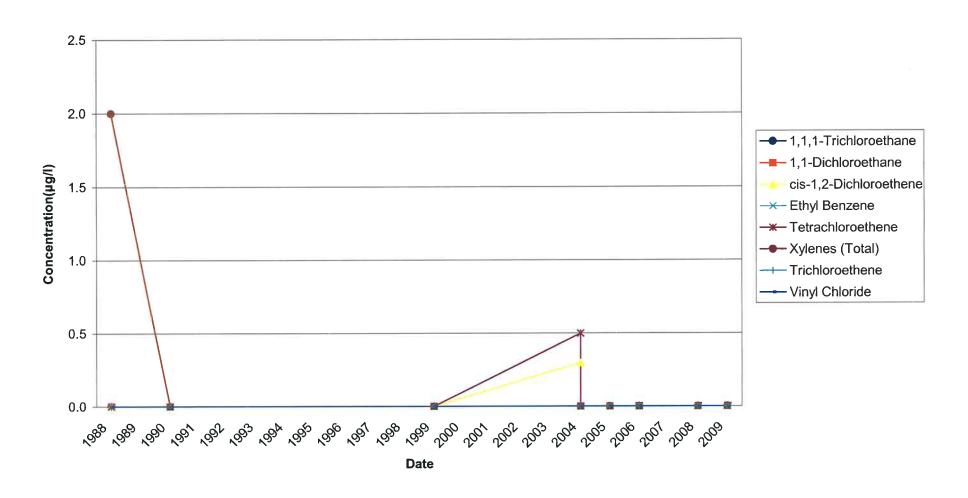


FIGURE 13
Groundwater VOC Concentrations in NRG-3 vs. Time

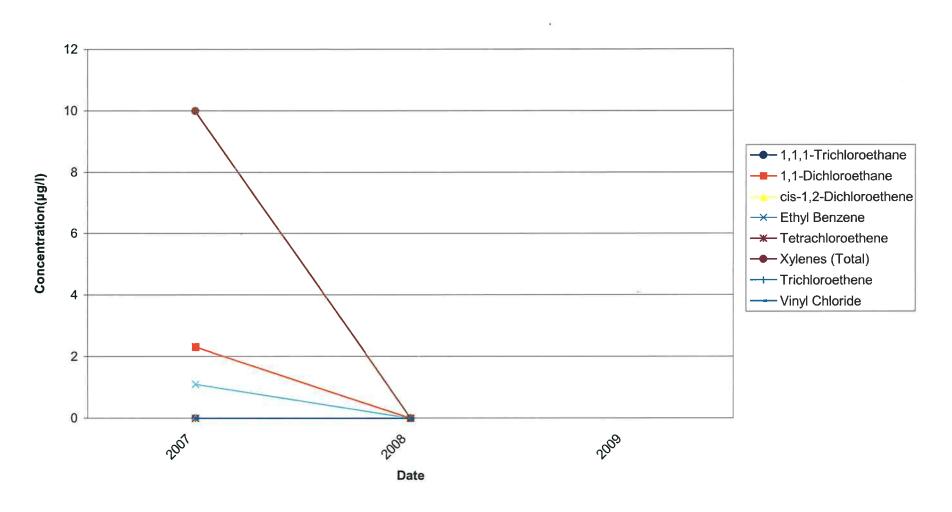


FIGURE 14
Groundwater VOC Concentrations in NRG-4 vs. Time

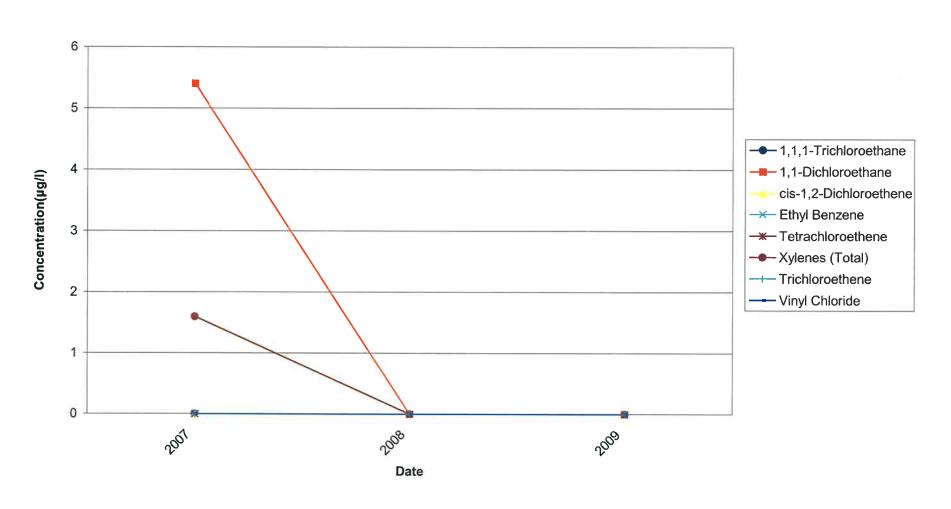


FIGURE 15
Groundwater VOC Concentrations in NRG-5 vs. Time

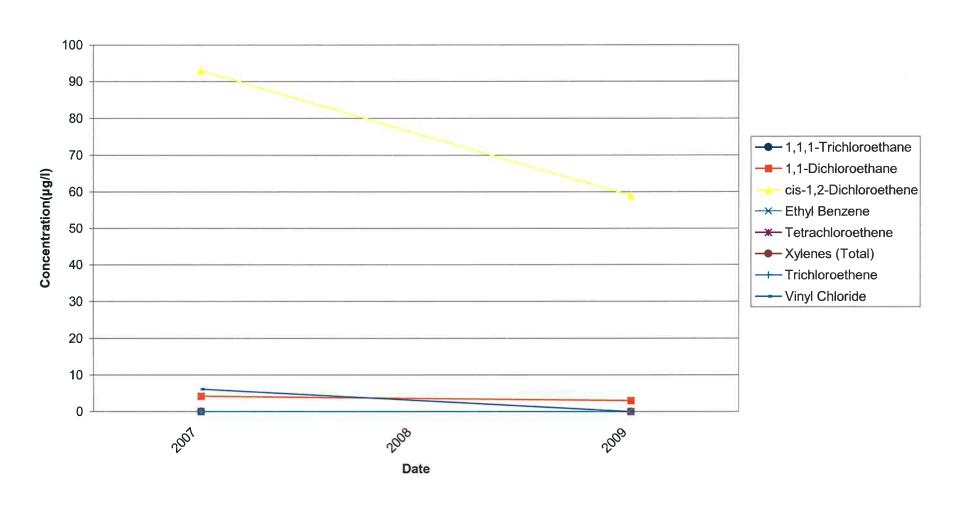


FIGURE 16
Groundwater VOC Concentrations in NRG-6 vs. Time

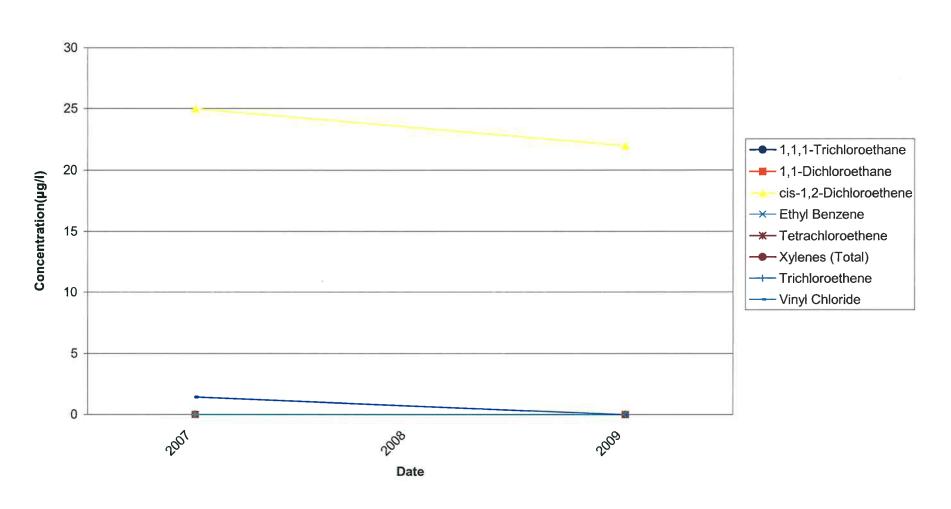


TABLE 1
Inventory of Shallow Groundwater Monitoring Wells

Monitoring Well #	2009 Status	Well Sampled	Groundwater Elevation (ft.)	Comments
ENV-1	Existing	YES	572.66	Flush mount
ENV-3R	Existing	YES	570.69	Flush mount
ENV-4	Existing	NO	570.6	Protective casing bent
ENV-5	Existing	NO	570.58	
ENV-6	Existing	NO	570.65	
ENV-7	Existing	YES	570.44	
ENV-8	Existing	YES	570.61	
ENV-9	Existing	YES	570.65	
ENV-11	Existing	YES	574.16	Flush mount
ESI-7	Existing	NO	12.8	No ground surface elevation data available.
ESI-8	Existing	NO	570.66	
GW-1	Existing	NO	570.02	Flush mount
GW-2	Existing	NO	569.1	Not painted
GW-3	Existing	YES	569.7	
GW-4	Existing	NO	566.04	
GW-5	Existing	NO	NA	Not accessible to gauge well.
GW-6	Existing	NO	567.38	
GW-7	Existing	NO	569.96	Well plugged; replaced by ENV-11
NR-1	Existing	NO	NA	Staff Gauge - painted notch on sheet pile wall
NRG-1	Destroyed	NO	NA	Protective case bent to ground
NRG-2	Existing	NO	566.61	
NRG-3	Existing	YES	571.85	
NRG-4	Existing	YES	571.31	
NRG-5	Existing	YES	570.36	
NRG-6	Existing	YES	569.31	
NW-1	Existing	NO	569.72	Flush mount
NW-2	Existing	NO	569.45	
NW-3	Existing	NO	NA	Obstruction in well at 12.2'.
NW-4	Existing	NO	570.56	
NW-5	Existing	NO	572.58	

Notes:

NA - Data Not Available

TABLE 2
Field Measured Parameters

Parameter	Temperature (°C)				pH (standard units)				Conductivity (mS/cm)			
Date Collected	10/17/05	10/05/06	10/07/08	10/27/09	10/17/05	10/05/06	10/07/08	10/27/09	10/17/05	10/05/06	10/07/08	10/27/09
ENV-I	14.55	14.70	14.70	14.50	6.32	6.96	6.91	6.84	0.702	0.866	1.120	0.837
ENV-3R	16.04	15.60	15.10	17.20	7.95	8.39	7.64	7.15	0.834	0.984	1.140	0.878
ENV-4	14.16	13.90	13.40	14.50	7.96	9.09	8.75	8.83	0.971	0.983	0.749	0.884
ENV-7	13.89	13.10	13.80	14.20	7.74	8.50	7.65	7.56	0.567	0.911	0.945	0.771
ENV-8	16.09	15.40	14.30	16.50	7.49	8.27	7.97	7.36	0.989	1.290	1.250	1.140
ENV-9	14.76	13.90	13.90	16.40	7.90	8.17	6.50	7.27	1.708	2.170	2.440	2.380
ENV-11	-		ŷ	13.00	-		- 4	11.50	-		12	2.210
GW-3	13.44	13.10	14.20	14.40	10.11	11.71	11.39	10.40	1.116	1.360	1.830	1.940
NRG-3	142	-	15.50	16.10		-	8.42	8.38	- 1	-	0.661	0.355
NRG-4			15.00	16.10	- 12	189	10.02	9.87		-	0.472	0.466
NRG-5	-	: €	â	15.20	(a)		н.	9.13	-	-	341	1.880
NRG-6	-		=	15.40	-		2	10.55	-		3,41	1.800

Parameter	Dissolved Oxygen (mg/L)				Turbidity (NTUs)				ORP (mV)			
Date Collected	10/17/05	10/05/06	10/07/08	10/27/09	10/17/05	10/05/06	10/07/08	10/27/09	10/17/05	10/05/06	10/07/08	10/27/09
ENV-1	0.30	9.28	2.78	4.24	5.2	2.0	101	11	-121.7	-169.0	-150.0	-121.0
ENV-3R	0.36	9.49	1.85	4.16	0.9	1.2	316	7	-159.9	-248.0	-19.0	20.0
ENV-4	0.00	9.60	1.96	3.47	9.7	2.0	136	349	-206.9	-330.0	-223.0	-107.0
ENV-7	0.54	4.72	2.80	6.02	0.0	0.0	71	183	58.7	-141.0	-49.0	121.0
ENV-8	0.37	0.49	1.26	3.62	1.5	5.0	N/A	72	233.8	-162.0	22.0	13.0
ENV-9	0.57	9.21	1.30	5.89	7.7	6.3	N/A	96	-208.1	-253.0	-45.0	47.0
ENV-11		•	2	4.27			16	24.30			- 12	-136.0
GW-3	0.17	0.00	1.83	3.92	3.7	0.4	44.20	78.00	-110.7	-296.0	-258.0	-110.0
NRG-3	-	-	2.02	2.52	-	34	250	230		(#).	-183.0	-4.0
NRG-4		14:	2.74	3.68	747		78	27.5	-	(#\	-217.0	-15.0
NRG-5	191	5%:		2.94	(a)	-	14.	NA	-	(4)	(*)	57.0
NRG-6	3 4 3	: (#)	-	3.56	940	-	-	NA	-	:=0	() + 3	-125.0

Notes:

°C - degrees Celsius

mS/cm - millisemens/centimeter

mV - millivolts

mg/L - milligrams per liter

NTU - nephelometric turbidity units

NA - Field equipment unable to record a turbidity reading due to very murky water.

TABLE 3 Monitoring Well ENV-1 Groundwater Analytical Results Envirotek II Site

	NYSDEC TOGS 1.1.1 Water Quality									
Volatile Compounds	Standards ¹	Units	09/29/99	04/18/01	05/05/04	09/28/04	10/17/05	10/06/06	10/07/08	10/27/09
I,I,I-Trichloroethane	5	μg/L	10 U	10 U	ΙU	5 U	10 U	I U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L		*		*	10 U	ΙŪ	5 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L		*	100		10 U	1 U	5 U	5 U
1,1,2-Trichloroethane	1	μg/L	U 01	10 U	ΙU	5 U	10 U	ΙU	5 U	5 U
1,1-Dichloroethane	5	μg/L	U 01	10 U	UU	5 U	10 U	ΙU	5 U	5 U
1,1-Dichloroethene	5	μg/L	10 U	10 U	1 U	5 U	10 U	ΙU	5 U	5 U
1,2,4-Trichlorobenzene	5	μg/L		*		*	10 U	ΙÜ	5 U	5 U
1,2,4 -Trimethylbenzene	5	μg/L		*		*	*:	ŧ:	5 U	5 U
1,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L		146		*	10 U	ΙÜ	5 U	5 U
1,2-Dibromoethane (EDB)	NE	μg/L			*	*	10 U	ΙU	5 U	5 U
1,2-Dichlorobenzene	3	μg/L					10 U	ΙU	5 U	5 U
1,2-Dichloroethane	0,6	μg/L	10 U *	10 U	1 U	5 U	10 U	ΙU	5 U	5 U
1,2-Dichloropropane	5	μg/L			*	*	10 U	ΙU	5 U	5 U
1,3-Dichlorobenzene	3	μg/L				*	U 01	ΙU	5 U	5 U
1,3,5-Trimethylbenzene	5	μg/L	2.			*	**	*1	5 U	5 U
1,4-Dichlorobenzene	3	μg/L		*	*		10 U	1 U	5 U	5 U
1,4-Dioxane	5	μg/L	*	1.5		*	*	*0	100 U	100 U
2-Hexanone	50	μg/L	10 U	U 01	5 U	25 U	10 U	5U	10 U	10 U
Acetone	50	μg/L	10 U	10 U	5 U	25 U	10 U	5 UJ	10 U	10 U
Benzene	1	μg/L	10 U	10 U	1	5 U	10 U	ΙU	5 U	5 U
Bromoform	50	μg/L	25			*	10 U	ΙU	5 U	5 U
Bromomethane	5	μg/L	- 25			. *	10 U	LUJ	5 U	5 U
Carbon disulfide	60	μg/L	10 U	10 U	1 U	5 U	10 U	เบ	5 U	5 U
Carbon tetrachloride	5	μg/L				*	10 U	UI	5 U	5 U
Chlorobenzene	5	μg/L	10 U	10 U	1 U	5 U	10 U	1 U	5 U	5 U
Chloroethane	5	μg/L	10 U	10 U	1 U	5 U	10 U	R	5 U	5 U
Chloroform	7	μg/L	10 U	10 U	10	5 U	10 U	IU	5 U	5 U
Chloromethane	NE	μg/L				*	10 U	ΙU	5 U	5 U
cis-1,2-Dichloroethene	5	μg/L		10 U	1 U	5 U	10 U	1 U	5 U	5 U
cis-1.3-Dichloropropene	0,40	μg/L	- 12	:0	- 2	100	10 U	ΙŪ	5 U	5 U
Cyclohexane	NE	μg/L	9			*	10 U	IU	5 U	5 U
Dibromochloromethane	50	μg/L	÷	20	~	18	10 U	10	5 U	5 U
Dichlorobromoethane	NE	μg/L		35		×	10 U	ΙÜ	5U	5U
Dichlorodifluoromethane	5	μg/L		~	2006		10 U	ΙÜ	5 U	5 U
Ethylbenzene	5	μg/L	10 U	10 U	1.0	5 U	10 U	ΙÜ	5 U	5 U
Isopropylbenzene	5	μg/L	:*	18	2		10 U	ΙÜ	5 U	5 U
Methyl acetate	NE	μg/L		100		-	10 U	I UJ	5 U	5 U
Methyl Ethyl Ketone	50	μg/L	10 U	10 U	ΙU	25 U	10 U	5 U	10 U	10 U
Methyl Isobutyl Ketone	NE	μg/L	10 U	10 U	5 U	25 U	10 U	5 U	10 U	10 U
Methylcyclohexane	NE	μg/L				l :. '	10 U	10	5 U	5 U
Methylene chloride	5	μg/L	10 U	10 U	2 U	3 J	10 U	ΙÜ	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L					10 U	10	5 U	5 U
m.p-Xylene	5	μg/L			-		10 U	10	5 U	5 U
n-Butylbenzene	5	μg/L			•			2	5 U	5 U
n-Propylbenzene	5	μg/L			-		10.11	. 5	5 U	5 U
o-Xylene	5	μg L	2.5		-		10 U	10	5 U	5 U
sec-Butylbenzene	5	μg/L		- 7	,	-	- 1	5	5 U	5 U
Styrene	5	μg L	: 2				2	5	5 U	5 U
tert-Butylbenzene	5	μg/L	10.77	10.71		25.11	10.11	20	5 U	5 U
Tetrachloroethene	, v	μg/L	10 U	10 U	IU	25 U	10 U	10	5 U	5 U
Toluene	5	μg L	10 U	10 U	10	25 U	10 U	10	5 U	
Total Xylenes	5	μg/L	IO U	10 U	3 U	15 U	10 U	3 U	5 U	5 U
trans-1, 2-Dichloroethene	5	μg/L	NA	10 U	TU	5 U	10 U	IU	5 U	5 U
trans-1,3-Dichloropropene	0,4	μg/L	10.17	10.0	: :	5.11	10 U	IU	5 U	5 U
Trichloroethene	5	μg/L	10 U	10 U	LU	5 U	10 U	IU	5 U	5 U
Trichlorofluoromethane	5	μg/L	:* 10.11	10.0	1.0	5.00	10 U	U	5 U	5 U
Vinyl chloride	2	μg/L μg/L	ND ND	ND ND	ND ND	.5 U	ND ND	ND ND	5.U ND	5.U ND
Total VOCs										

1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1:

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1.1 criteria.

- Botted and shaded concentrations indicate equal to or exceedance or TOVS 1.1.1 enterna.

 NE = NYSDEC TOGS 1.1.1 water quality standard not established.

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

 J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

 R = The sample results are rejected.

 D = Compound identified in analysis at a secondary dilution factor.

- = The analyte was not sampled for.

Ambient Water Quality Standards and Guidance Values (µg/L)

TABLE 3 Monitoring Well ENV-3R Groundwater Analytical Results Envirotek II Site

	NYSDEC TOGS 1.1.1											
Volatile Compounds	Water Quality Standards	Units	11/19/90	10/01/99	04/18/01	05/05/04	07/15/04	09/28/04	10/17/05	10/05/06	10/07/08	10/27/09
1,1,1-Trichloroethane	5	µg/L	:*	10 U	10 U	2.00	4 J	10 U	2 J	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	9	- 83	:e	-			10 U	5 U	5 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	27				- 12		10 U	5 U	5 U	5 U
1,1,2-Trichloroethane		μg/L		10 U	10 U	LU		10 U	10 U	5 U	5 U	5 U
1,1-Dichloroethane	5	μg/L	250	71	59	20	18	49	24	17	7	4 J
1,1-Dichloroethene	5	μg/L		10 U	10 U	1	-	10 U	10 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	μg/L	4	-	14		14.		10 U	5 U	5 U	5 U
1,2,4 -Trimethylbenzene	5	μg/L	- 64		- 12				121		5 U	5 U
1,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L	्	27	12	2			10 U	5 U	5 U	5 U
1,2-Dibromoethane (EDB)	NE	μgL	- 4	2	14	- 20			10 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	μg/L							10 U	5 U	5 U	5 U
1,2-Dichloroethane	0,6	μg/L	54	10 U	10 U	1 1	a l	3 J	10 U	5 U	5 U	5 U
1,2-Dichloropropane	5	μg/L μg/L	74	100	100	1 3	190	30	10 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	μg/L μg/L							10 U	5 U	5 U	5 U
	5											
1,3,5-Trimethylbenzene		μg/L	1.						10.11	5.11	5 U	5 U
1,4-Dichlorobenzene	3	μg/L	.79	- 8	18	*:	(3)	*	10 U	5 U	5 U	5 U
1,4-Dioxane	5	μg/L	1.0	1011	1011		:*?	*	10.71		100 U	100 U
2-Hexanone	50	μg/L	- 2	10 U	10 U	5 U	35	50 U	10 U	25 U	10 U	10 U
Acetone	50	μg/L	- 1	10 U	10 U	5 U		50 U	10 U	25 UJ	10 U	10 U
Benzene	1 1	μg/L	12	1 J	10 U	1	27	10 U	10 U	5 U	5 U	5 U
Bromoform	50	μg/L		100	120		3.		10 U	5 U	5 U	5 U
Bromomethane	5	μg/L	9						10 U	5 U J	5 U	5 U
Carbon disulfide	60	μg/L		10 U	10 U	וט		10 U	10 U	5 U	5 U	5 U
Carbon tetrachloride	5	μg/L		2	141				10 U	5 U	5 U	5 U
Chlorobenzene	5	μg/L		10 U	10 U	ΙU	3.	10 U	10 U	5 U	5 U	5 U
Chloroethane	5	μg/L	79	52	25	וט	- 12	10 U	10 U	R	5 U	5 U
Chloroform	7	μg/L		10 U	10 U	10	1.21	10 U	10 U	5 U	5 U	5 U
Chloromethane	NE	μg/L		*	3.0		942		10 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	μg/L	NA.	NA	2 J	120 D	32	370 D	39	22	8	5.3
cis-1,3-Dichloropropene	0.40	μg/L		2					10 U	5 U	5 U	5 U
Cyclohexane	NE	μg/L							10 U	5 U	5 U	5 U
Dibromochloromethane	50	μg/L							10 U	5 U	5 U	5 U
Dichlorobromoethane	NE NE	μg/L							10 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	μg/L							10 U	5 U	5 U	5 U
Ethylbenzene	5	μg/L		10 U	10 U	2		10 U	ij	5 U	5 U	5 U
Isopropylbenzene	5	μg/L μg/L		100				100	10 U	5 U	5 U	5 U
Methyl acetate	NE NE	μg/L μg/L					320		10 U	5 UJ	5 U	5 U
Methyl Ethyl Ketone	50			100	100	1 U	- 0	50 U	10 U	25 U	10 U	10 U
	NE NE	μg/L			2 J			50 U	U 01	25 U	10 U	10 U
Methyl Isobutyl Ketone		μg/L	82	10 U	4 J	14		30.0				
Methylcyclohexane	NE	μg/L	-		10.51			0.01	10 U	5 U	5 U	5 U
Methylene chloride	5	μg/L	-	2 J	10 U	0.8 J	63	9 DJ	10 U	5 U	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L							10 U	5 U	5 U	5 U
m,p-Xylene	5	μg/L			-	-		*	-	*	5 U	5 U
n-Butylbenzene	5	μg/L	34.0	*	- 40		5.0	-		-	5 U	5 U
n-Propylbenzene	5	μg/L	34.5	*	90.		3.40		190	*	5 U	5 U
o-Xylene	5	μg/L	:90	*						*	5 U	5 U
sec-Butylbenzene	5	μg/L	- 30	*							5 U	5 U
Styrene	5	μg/L	9,				1000		10 U	5 U	5 U	5 U
tert-Butylbenzene	5	μg/L						*	29.5	*	5 U	5 U
Tetrachloroethene	5	μg/L	200	10 U	6 J	15	6	3 J	2 J	3 J	2 J	4 J
Toluene	5	μg/L	11	10 U	10 U	3		10 U	10 U	5 U	5 U	5 U
Total Xylenes	5	μg/L	14	10 U	10 U	18	3 J	30 U	[]	15 U	5 U	5 U
trans-1, 2-Dichloroethene	5	μg/L	NA	NA	10 U	0.7 J		10 U	10 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	μg/L	19	"	100				10 U	5 U	5 U	5 U
Trichloroethene	5	μgL	- 1	10 U	3 J	22	7	6 J	9.1	5	4 J	5.4
Trichlorofluoromethane	5	μg/L		1	""		-	0.0	10 U	5 U	5 U	5 U
Vinyl chloride	2	μg L μg/L	s.	10 U	10 U	33 D	8	220 J	73	13	41	2 J
Total VOCs		µg/L	436	126	97	253.5	84	660	151	60	25	21
												41

1.1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values (μg/L) Bolded concentrations indicated the analyte was detected.

- Bolded concentrations indicated the analyte was detected,

 Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1.1 criteria,

 NE = NYSDEC TOGS 1.1.1 water quality standard not established.

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

 J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

 R = The sample results are rejected.

 D = Compound identified in analysis at a secondary dilution factor.

 = The analyte was not sampled for.

TABLE 3 Monitoring Well ENV-4 Groundwater Analytical Results Envirotek II Site

1.1.1-Tickhorkonemen	Volatile Compounds	NYSDEC TOGS 1.1.1 Water Quality Standards	Units	11/19/90	09/30/99	04/18/01	05/05/04	09/28/04	10/17/05	10/05/06	10/07/08	10/27/09
1.1.2-Particularenchame												
1.1.2.Trie/lose-base					100					1		1
11.4.2Friedwoorthame					7.2	2	0 1					
1,1-Dickborenhame					10.11	10.11	1.11					ı
1.1.Dischorachemene												
12.4-Trienforberoreme												l
12.4-1 Frenchylbearcen						100		100		1		l
12-Dilaron-2-Chionyproproper DRCP			ng/L		23	27			100			l
1.2-Disconsechance (EDB) NE				- 9	2	0	9	0	10.11	100		
1.2-Dichlorochemene				123	, E/	8		- 5		1		1
1.2.Dishborreprome					- 57		1					1
1,2,3,10,10,10,10,10,10,10,10,10,10,10,10,10,				. =	10.11	11.01	L III	150		1		
1,3-Dichirobenzenee 3	117				100	100	1.0	10.0		1		
1.3.5-Trinschylobrozene				1.5	20	8				1		
J.4-Dichrobeneme				1,750	E	5	0	0.0		I		
J.4-Discaname		1 1				- ÷						1
2-Hesanone	I I '									I		
Acetone	1	· ·	μg/L μg/I		10.11	_	5.11	1.2				
Benzene												
Bromeform 50										ı		
Bommethane										ı		1
Carbon datalified 60	I .									1		
Carbon tetrachloride	l .							10.11				1
Chlorobenzene					100	100	10	100		ı		
Chlorochane					11.01	10.11	in l	10.11				
Chloroform	l e			-								
Chloromethane				7								
Seign 1		The state of the s			100							
Company Comp	l control of the cont				72		55	7.5		Contract to the second second		
NE	l'			1 0	1 2	3 0	10	1				1
Dibromochloromethane S0		1										1
Dichlorobromoethane		1			77			~		I C		
Dichlorodifthoromethane	I .	1										
Ethylbenzene		1				-						
Isopropylbenzene S	l .			50	24	10.11						
Methyl acetate NE µg/L by L by	· · ·			58	24							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										ı		
Methyl Isobutyl Ketone NE					10.11	10.17						
Methyleyclohexane NE	1			110						1		1
Methylene chloride 5 µg/L - 10 U 10 U 2 U 8 J 10 U 5 U	1			110	100		3.0			1		1
Methyl-t-Butyl Ether (MTBE) 10				5	10.71		211					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10	10.0	10 0	20	0.0				
n-Butylbenzene n-Propylenzene n-Prop				- 2	72	· .			100	3.0		1
n-Propylbenzene				=:	÷ .		*	1 1		35		
0-Xylene		-			20		ै		1.0	- 2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17			5	5	- 5	2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				*1	*	*	*		19			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					*	1-5	-		10.11	5.11		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					*		*		1	I		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·		- 5	10.17	10.11		1011				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				760						ı		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1								ı		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				260	07				1	ı		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1								ı		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				200	*					ı		1
Vinyl chloride 2 μg/L - 5,1 10 U 1 U 10 U 10 U 5 U 5 U 5 U 5 U 5 U 10 U V Cos U μg/L 1748 154 6 1,3 8 9 6 6 3				560	46					ı		1
Total VOCs μg/L 1748 154 6 1.3 8 9 6 6 3		1			-		3.			ı		1
		2										
	Total VOCs Total VOCs	-	μg/L mg/L	1.748	0_154	0.006	0.001	0,008	0.009	0.006	0,006	0.003

Notes:

I, New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1,1,1; Ambient Water Quality Standards and Guidance Values (µg/L)

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1,1,1 criteria.

NE = NYSDEC TOGS 1,1,1 water quality standard not established.

U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

R = The sample results are rejected.

- = The analyte was not sampled for...

J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

D = Compound identified in analysis at a secondary dilution factor.

TABLE 3 Monitoring Well ENV-7 Groundwater Analytical Results Envirotek II Site

	NYSDEC TOGS 1.1.1									
Volatile Compounds	Water Quality Standards ¹	Units	04/19/01	05/05/04	09/28/04	10/17/05	10/05/06	03/08/07	10/07/08	10/27/09
1,1,1-Trichloroethane	5	μg/L	25 U	10	5 U	10 U	5 U	U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	94	191	**	10 U	5 U	U	5 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	34			10 U	5 U	U	5 U	5 U
1,1,2-Trichloroethane	1	μg/L	25 U	ΙÜ	5 U	10 U	5 U	U	5 U	5 U
I,I-Dichloroethane	5	μg/L	3 J	2.00	5 U	3 J	3 J	U	5 U	5 U
l, I-Dichloroethene	5	μg/L	25 U	1,00	5 U	10 U	5 U	U	5 U	5 U
1,2,4-Trichlorobenzene	5	μg/L		- 4	(\$)	10 U	5 U	U	5 U	5 U
1,2,4 -Trimethylbenzene	5	μg/L	-	-			127	U	5 U	5 U
1,2-Dibromo-3-Chloropropane DBCP	0,04	μg/L	-			10 U	5 U	U	5 U	5 U
I,2-Dibromoethane (EDB)	NE	μg/L				10 U	5 U	U	5 U	5 U
1,2-Dichlorobenzene	3	μg/L				10 U	5 U	U	5 U	5 U
1,2-Dichloroethane	0.6	μg/L	25 U	เบ	5 U	10 U	5 U	U	5 U	5 U
1,2-Dichloropropane	5	μg/L	195	.*3	1.70	10 U	5 U	U	5 U	5 U
1,3-Dichlorobenzene	3	μg/L		5.53		10 U	5 U	υ	5 U	5 U
1,3,5-Trimethylbenzene	5	μg/L		(%)	1.5	9€3	- 10	U	5 U	5 U
1,4-Dichlorobenzene	3	μg/L		***	1383	10 U	5 U	U	5 U	5 U
1,4-Dioxane	5	μg/L	-				•	U	100 U	100 U
2-Hexanone	50	μg/L	25 U	5 U	25 U	10 U	25 U	U	10 U	10 U
Acetone	50	μg/L	16 U	5 U	25 U	10 U	25 UJ	U	10 U	10 U
Benzene	1	μg/L	25 U	IU	5 U	10 U	5 U	U	5 U	5 U
Bromoform	50	μg/L		923	-	10 U	5 U	U	5 U	5 U
Bromomethane	5	μg/L		345	-	บอบ	5 UJ	U	5 U	5 U
Carbon disulfide	60	μg/L	25 U	10	5 U	10 U	5 U	U	5 U	5 U
Carbon tetrachloride	5	μg/L	-		727	10 U	5 U	U	5 U	5 U
Chlorobenzene	5	μg/L	25 U	IU	5 U	10 U	5 U	U	5 U	5 U
Chloroethane	5	μg/L	25 U	1 U	5 U	10 U	R	υ	5 U	5 U
Chloroform	7	μg/L	25 U	1 U	5 U	10 U	5 U	l υ 🛚	5 U	5 U
Chloromethane	NE	μg/L				10 U	5 U	U	5 U	5 U
cis-1,2-Dichloroethene	5	μg/L	430	280 D	170	190	140	320	82	93
cis-1,3-Dichloropropene	0.40	μg/L				10 U	5 U	U	5 U	5 U
Cyclohexane	NE.	μg/L				10 U	5 U	Ū	5 U	5 U
Dibromochloromethane	50	μg/L				10 U	5 U	U	5 U	5 U
Dichlorobromoethane	NE NE	μg/L			20	10 U	5 U	U	5 U	5 U
Dichlorodifluoromethane	5	μg/L			-	10 U	5 U	Ū	5 U	5 U
Ethylbenzene	5	μg/L	25 U	ΙU	5 U	10 U	5 U	l ŭ	5 U	5 U
Isopropylbenzene	5	μg/L	250	10	1 20	10 U	5 U	υ	5 U	5 U
Methyl acetate	NE	μg/L	22		2	100	5 UJ	U	5 U	5 U
Methyl Ethyl Ketone	50	μg/L	25 U	ΙŪ	5 U	10 U	25 U	U	10 U	10 U
	NE NE		25 U	5 U	25 U	10 U	25 U	U	10 U	10 U
Methyl Isobutyl Ketone	NE NE	μg/L	23 0	30	250	10 U	5 U	Ü	5 U	5 U
Methylcyclohexane Methylene chloride	5 NE	μg/L μg/L	25 U	2 U	3 J	10 U	5 U	U	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L μg/L	23 0	20	3 0	10 U	S U	U	5 U	5 U
	5			1 5	55	100	30	บ	5 U	5 U
m.p-Xylene		μg/L	. 1	1 3	~	[: 1	l 3	U	5 U	5 U
n-Butylbenzene	5 5	μg/L	1.0	- E	75	[5	5	U	5 U	5 U
n-Propylbenzene		μg/L	(39,0	*		•		U	5 U	5 U
o-Xylene	5	μg/L	- 15	*		5	*	U	5 U	5 U
sec-Butylbenzene	5	μg/L	(*)	*1		10 U	5 U	U	5 U	5 U
Styrene	5	μg/L		- 57	*	1	3.0	υ	5 U	5 U
tert-Butylbenzene	5	μg/L	180	*	3.7	*	5.11			5 U
Tetrachloroethene	5	μg/L	3 J	4	3 J	1 J	5 U	U	5 U	
Toluene	5	μg/L	25 U	1 U	5 U	10 U	5 U	U	5 U	5 U
Total Xylenes	5	μg/L	28 UJ	3 U	15 U	10 U	15 U	U	5 U	5 U
trans-1, 2-Dichloroethene	5	μg/L	4 J	3	5 U	10 U	5 U	U	5 U	5 U
trans-1,3-Dichloropropene	0.4	μg/L		-		10 U	5 U	U	5 U	5 U
Trichloroethene	5	μg/L	16 J	6	5 U	10 U	5 U	U	5 U	5 U
Trichlorofluoromethane	5	μg/L			-	10 U	5 U	U	5 U	5 U
Vinyl chloride	2	µg/L	220	50 D	88	200	100	250	49	98
Total VOCs		μg/L	720	346	264	394	243	570	131	191

Notes:

1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1:
Ambient Water Quality Standards and Guidance Values (μg/L)

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicated the analyte was detected.

NE = NYSDEC TOGS 1.1.1 water quality standard not established.

U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

R = The sample results are rejected.

D = Compound identified in analysis at a secondary dilution factor.

TABLE 3 Monitoring Well ENV-8 Groundwater Analytical Results Envirotek II Site

<u></u>	i e								
	NYSDEC TOGS 1.1.1								
Volatile Compounds	Water Quality Standards	Units	04/19/01	05/05/04	09/28/04	10/17/05	10/05/06	10/07/08	10/27/09
1,1,1-Trichloroethane	5	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	100		\$	10 U	5 U	5 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	2	<u> </u>	Q.	10 U	5 U	5 U	5 U
1,1,2-Trichloroethane		μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
1,1-Dichloroethane	5	μg/L	7 J	5	4 J	4 J	5 U	3 J	5 U
1,1-Dichloroethene	5	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
1.2.4-Trichlorobenzene	5	μg/L	100		100	10 U	5 U	5 U	5 U
1,2,4 - Trimethylbenzene	5	μg/L μg/L	3	3	9 1	100	1 3	5 U	5 U
1,2-Dibromo-3-Chloropropane DBCP	0,04	μg/L μg/L	8 1	<u> </u>	Ş.	10 U	5 U	5 U	5 U
1,2-Dibromoethane (EDB)	NE NE	μg/L μg/L	9	<u> </u>		100	5 U	5 U	5 U
1,2-Dichlorobenzene	3	μg/L μg/L	-	8 1	0.0	10 U	5 U	5 U	5 U
1,2-Dichloroethane	0,6	μg/L μg/L	10 U	5 U	10 U	100	5 U	5 U	5 U
1,2-Dichloropropane	5		100	30	10.0	100	5 U	5 U	5 U
1	3	μg/L	1	: 1	\$	10 U	5 U	5 U	5 U
1,3-Dichlorobenzene	5	μg/L		्र	· •	10.0		5 U	5 U
1,3,5-Trimethylbenzene	3	μg/L	[i 1	10 U	5 U	5 U	5 U
1,4-Dichlorobenzene	1	µg L			- 1	10.0	3.0		
1,4-Dioxane	5	μg/L	1	25.71	5071	10.73	20.7	100 U	100 U
2-Hexanone	50	μg/Ľ	10 U	25 U	50 U	10 U	25 U	10 U	10 U
Acetone	50	μg/L	31	25 U	50 U	10 U	25 UJ	10 U	10 U
Benzene	1	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Bromoform	50	μg/L				10 U	5 U	5 U	5 U
Bromomethane	5	μg/L				10 U	5 UJ	5 U	5 U
Carbon disulfide	60	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Carbon tetrachloride	5	μg/L				10 U	5 U	5 U	5 U
Chlorobenzene	5	μg L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Chloroethane	5	μg/L	10 U	5 U	10 U	10 U	R	5 U	5 U
Chloroform	7	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Chloromethane	NE	μg/L				10 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	μg/L	150	140	120	78	36	36	29
cis-1,3-Dichloropropene	0.40	μg/L	-	- 2	-	10 U	5 U	5 U	5 U
Cyclohexane	NE	μg/L			-	10 U	5 U	5 U	5 U
Dibromochloromethane	50	μg/L		2		10 U	5 U	5 U	5 U
Dichlorobromoethane	NE	μg/L		2		10 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	μg/L	-	9 "	-	10 U	5 U	5 U	5 U
Ethylbenzene	5	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Isopropylbenzene	5	μg/L	9	9	-	10 U	5 U	5 U	5 U
Methyl acetate	NE	μg/L			-	10 U	5 UJ	5 U	5 U
Methyl Ethyl Ketone	50	μg/L	10 U	5 U	10 U	10 U	25 U	10 U	10 U
Methyl Isobutyl Ketone	NE	μg/L	- 11	25 U	50 U	10 U	25 U	10 U	10 U
Methylcyclohexane	NE	μg/L		2	-	10 U	5 U	5 U	5 U
Methylene chloride	5	μg/L	10 U	10 U	4 J	10 U	5 U	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L		2		10 U	5 U	5 U	5 U
m,p-Xylene	5	μg/L		-		- 2	2	5 U	5 U
n-Butylbenzene	5	μg L		2	2	\$	2	5 U	5 U
n-Propylbenzene	5	μg/L		-	-		5	5 U	5 U
o-Xylene	5	μg/L	2	-	2	្	2	5 U	5 U
sec-Butylbenzene	5	μg/L			2	Ş	1.	5 U	5 U
Styrene	5	μg/L		-		10 U	5 U	5 U	5 U
tert-Butylbenzene	5	μg/L		1 2	2	1000	200	5 U	5 U
Tetrachloroethene	5	μg/L	3 J	3 J	3 J	3 J	5 U	5 U	5 U
Toluene	5	μg/L	10 U	5 U	10 U	10 U	5 U	5 U	5 U
Total Xylenes	5	μg/L	1 8	15 U	30 U	10 U	15 U	5 U	5 U
trans-1, 2-Dichloroethene	5	μg/L	4 J	3 J	10 U	2 J	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	μg/L	1	1 2	1 2	10 U	5 U	5 U	5 U
Trichloroethene	5	μg/L	12	14 J	12	10	8	5 U	5 J
Trichlorofluoromethane	5	μg/L μg/L	12	.,,,	1	10 U	5 U	5 U	5 U
Vinyl chloride	2	μg/L μg/L	3 J	5 U	10	9 J	s u	12	3.J
Total VOCs		pg/L	233	165	153	106	44	51	37
Total VOCs		mg/L	0.233	0.165	0.153	0.106	0.044	0.051	0.037
Little 1575		mg to	Winds.	0.102	0.100	0.100	0.044	0.051	4.42.1

Notes:

I. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1.

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1-1 criteria-

- Bolded and shaded concentrations indicate equal to or exceedance of TOOS 1.1.1 enteria.

 NE = NYSDEC TOGS 1.1.1 water quality standard not established.

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

 J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only. R = The sample results are rejected.
- D = Compound identified in analysis at a secondary dilution factor.

 = The analyte was not sampled for.

Ambient Water Quality Standards and Guidance Values (µg/L)

TABLE 3 Monitoring Well ENV-9 Groundwater Analytical Results Envirotek II Site

	NYSDEC TOGS 1.1.1		0.414-11-1	0.00-1	00/0-7-	4044-10-	40/0	1010	
Volatile Compounds	Water Quality Standards	Units	04/19/01	05/05/04	09/28/04	10/17/05	10/05/06	10/07/08	10/27/09
,1,1-Trichloroethane	5	μg·L	10 U	TU	5 U	10 U	5 U	5 U	5 U
,1,2,2-Tetrachloroethane	5	μg/L	*:	80	31	10 U	5 U	5 U	5 U
.1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	•	*	*	10 U	5 U	5 U	5 U
,1,2-Trichloroethane	1	μg/L	10 U	ΙU	5 U	10 U	5 U	5 U	5 U
.1-Dichloroethane	5	μg/L	10 U	0.5 J	5 U	10 U	5 U	5 U	5 U
, I-Dichloroethene	5	μg/L	10 U	LU	5 U	10 U	5 U	5 U	5 U
,2,4-Trichlorobenzene	5	μg/L	28	ş.	2	10 U	5 U	5 U	5 U
,2,4 -Trimethylbenzene	5	μg/L	27					5 U	5 U
,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L	2	2		10 U	5 U	5 U	5 U
,2-Dibromoethane (EDB)	NE	μg/L	20		<u> </u>	10 U	5 U	5 U	5 U
,2-Dichlorobenzene	3	μg/L				10 U	5 U	5 U	5 U
,2-Dichloroethane	0.6	μg/L	10 U	ΙU	5 U	10 U	5 U	5 U	5 U
.2-Dichloropropane	5	μg/L	100			10 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	μg/L	- 5			10 U	5 U	5 U	5 U
	5					100	-	5 U	5 U
1,3,5-Trimethylbenzene	3	μg/L	7	- 5	2	10 U	5 U	5 U	5 U
,4-Dichlorobenzene		μg/L		*	*				
,4-Dioxane	5	μg/L		[8]	[#]	10.71	3577	100 U	100 U
2-Hexanone	50	μg/L	2 J	5 U	25 U	10 U	25 U	10 U	10 U
Acetone	50	μg/L	1,200 DJ	5 U	25 U	10 U	25 UJ	10 U	10 U
Benzene	1	μg/L	10 U	1 U	5 U	10 U	5 U	5 U	5 U
Bromoform	50	μg/L	2	*		10 U	5 U	5 U	5 U
Bromomethane	5	μg/L	- *		*	10 U	5 UJ	5 U	5 U
Carbon disulfide	60	μg/L	10 U	IŪ	5 U	10 U	5 U	5 U	5 U
Carbon tetrachloride	5	μg/L	· ·	¥	*	เดบ	5 U	5 U	5 U
Chlorobenzene	5	μg/L	10 U	10	5 U	10 U	5 U	5 U	5 U
Chloroethane	5	μg/L	10 U	1 U	5 U	10 U	R	5 U	5 U
Chloroform	7	μg/L	3 J	iŭ	5 U	10 U	5 U	5 U	5 U
Chloromethane	NE	μg/L	"		, ,	10 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5		10 U	0.6J	5 U	1 J	5 U	5 U	5 U
	1	μg/L	100	0.03			l .		
cis-1,3-Dichloropropene	0,40	μg/L	*			10 U	5 U	5 U	5 U
Cyclohexane	NE	μg/L	2	-		10 U	5 U	5 U	5 U
Dibromochloromethane	50	μg/L	-			10 U	5 U	5 U	5 U
Dichlorobromoethane	NE	μg/L	*	Η Η		10 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	μg/L	*:		*	10 U	5 U	5 U	5 U
Ethylbenzene	5	μg/L	2 J	1 U	5 U	10 U	5 U	5 U	5 U
Isopropylbenzene	5	μg/L	*		*	10 U	5 U	5 U	5 U
Methyl acetate	NE	μg/L	- ×		- 4	10 U	5 UJ	5 U	5 U
Methyl Ethyl Ketone	50	μg/L	5 J	ΙU	5 U	10 U	25 U	U 01	10 U
Methyl Isobutyl Ketone	NE	μg/L	10	5 U	25 U	10 U	25 U	10 U	10 U
Methylcyclohexane	NE	μg/L				U 01	5 U	5 U	5 U
Methylene chloride	5	μg/L	10 U	2 U	3 J	10 U	5 U	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L	100	[3 9	10 U	5 U	5 U	5 U
m,p-Xylene	5		3		1 2	100	1 2	5 U	5 U
	5	µg/L	i i	ै		•	1 1	5 U	5 U
n-Butylbenzene	1	μg/L	ं			ं	1 1		
n-Propylbenzene	5	μg/L		2	- 2	7.	- 27	5 U	5 U
-Xylene	5	μg/L		*			- 15	5 U	5 U
sec-Butylbenzene	5	µg/L	-	100	(a			5 U	5 U
Styrene	5	μg/L	*			10 U	5 U	5 U	5 U
ert-Butylbenzene	5	μg L	(+)		25			5 U	5 U
l'etrachloroethene	5	μg/L	10 U	ΙŪ	5 U	10 U	5 U	5 U	5 U
Гoluene	5	μg/L	10 U	IU	5 U	10 U	5 U	5 U	5 U
Total Xylenes	5	μg/L	13 J	3 U	15 U	10 U	15 U	5 U	5 U
rans-1, 2-Dichloroethene	5	μg·L	10 U	ΙŪ	5 U	10 U	5 U	5 U	5 U
rans-1,3-Dichloropropene	0.4	μg/L	100		12	10 U	5 U	5 U	5 U
Frichloroethene	5	μg/L	3 J	0.8J	5 U	10 U	5 U	5 U	5 U
Frichlorofluoromethane	5		30	0.00	3.0	100	5 U	5 U	5 U
	2	µg/L	10 U	ייו	5 U	10 U	5 U	5 U	5 U
Vinyl chloride		μg/L						ND	
Fotal VOCs		µg/L	1238	L.9 0.0019	0.003	0.001	ND ND	ND ND	ND ND

Notes:

1, New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1,1,1: Ambient Water Quality Standards and Guidance Values (µg/L)

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1,1,1 criteria, NE = NYSDEC TOGS 1,1,1 water quality standard not established.

- = The analyte was not sampled for.

U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

R = The sample results are rejected.

D = Compound identified in analysis at a secondary dilution factor.

TABLE 3 Monitoring Well ENV-11 **Groundwater Analytical Results** Envirotek II Site

	NYSDEC TOGS 1.1.1									
Volatile Compounds	Water Quality Standards ¹	Units	09/28/88	12/05/90	09/30/99	04/19/01	05/05/04	09/28/04	10/07/08	10/27/09
1,1,1-Trichloroethane	5	μg/L	-	-	10 U	10 U	1 U	10 U	-	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	-	-	-	-	-	-	-	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	-	-	-	-	-	-		5 U
1,1,2-Trichloroethane	1	μg/L	-	-	10 U	10 U	1 U	10 U	-	5 U
1,1-Dichloroethane	5	μg/L	11	-	1 J	10 U	1 U	10 U	-	5 U
1,1-Dichloroethene	5	μg/L	-	-	10 U	10 U	1 U	10 U	-	5 U
1,2,4-Trichlorobenzene	5	μg/L	-	-	-	-	-	-	-	5 U
1,2,4 -Trimethylbenzene	5	μg/L	-	-	-	-	-	-	-	5 U
1,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L	-	-	-	-	-	-	-	5 U
1,2-Dibromoethane (EDB)	NE	μg/L	-	-	-	-	-	-	-	5 U
1,2-Dichlorobenzene	3	μg/L		-	-	-	-	-	-	5 U
1,2-Dichloroethane	0.6	μg/L	-	4 J	10 U	10 U	1 U	10 U	-	5 U
1,2-Dichloropropane	5	μg/L	-	-	-	-		-	-	5 U
1,3-Dichlorobenzene	3	μg/L			-	-	-	-	-	5 U
1,3,5-Trimethylbenzene	5	μg/L	-	-	-	-	-	-	-	5 U
1,4-Dichlorobenzene	3	μg/L			_	_	_	_	_	5 U
1,4-Dioxane	5	μg/L	-	_	-	-	-	_	_	100 U
2-Hexanone	50	μg/L	_	_	10 U	10 U	5 U	50 U	_	10 U
Acetone	50	μg/L	210 D	60	10 U	12	5 U	50 U	_	10 U
Benzene	1	μg/L μg/L	2 J	0.9 J	10 U	10 U	1 U	10 U	_	5 U
Bromoform	50	μg/L	-	-	-	-	_	-	_	5 U
Bromomethane	5	μg/L	_	_	_	_	_	_	_	5 U
Carbon disulfide	60	μg/L	_	_	10 U	10 U	1 U	10 U	_	5 U
Carbon tetrachloride	5	μg/L	_	_	-	-	-	-	_	5 U
Chlorobenzene	5	μg/L	_	_	10 U	10 U	1 U	10 U	_	5 U
Chloroethane	5	μg/L	_	_	10 U	10 U	1 U	10 U	_	5 U
Chloroform	7	μg/L μg/L	_	_	10 U	10 U	1 U	10 U	_	5 U
Chloromethane	NE	μg/L μg/L	_	_	100	-	-	-	_	5 U
cis-1,2-Dichloroethene	5	μg/L μg/L	_	_	_	14	5	5 J	_	5 U
cis-1,3-Dichloropropene	0.40	μg/L μg/L	_	_	_	-	_	_	_	5 U
Cyclohexane	NE	μg/L μg/L	_	_	_	_	_	_	_	5 U
Dibromochloromethane	50	μg/L μg/L	_	_	_	_	_	_	_	5 U
Dichlorobromoethane	NE	μg/L μg/L	_	_	_	_	_	_		5 U
Dichlorodifluoromethane	5	μg/L μg/L		_	_	_				5 U
Ethylbenzene	5	μg/L μg/L	1 J	3 J	10 U	10 U	1 U	10 U	_	5 U
Isopropylbenzene	5	μg/L μg/L	13	33	100	-	10	10 0	_	5 U
Methyl acetate	NE	μg/L μg/L	-	-	-	-	-	-	-	5 U
Methyl Ethyl Ketone	50	μg/L μg/L	61	_	10 U	10 U	1 U	10 U	_	10 U
Methyl Isobutyl Ketone	NE	μg/L μg/L	40	20	10 U	10 U	5 U	50 U	_	10 U
Methylcyclohexane	NE NE	μg/L μg/L	-	20	100	-	-	30 0	_	5 U
Methylene chloride	5	μg/L μg/L	41 B	_	10 U	10 U	2 U	20 U	_	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L μg/L	71.0	_	10.0	-	2.0	200	_	5 U
m,p-Xylene	5	μg/L μg/L	_	-	_	_	_	_	_	5 U
n-Butylbenzene	5	μg/L μg/L	_	_	_		_	_	_	5 U
n-Propylbenzene	5	μg/L μg/L]	-]	1 -]]	_	5 U
o-Xylene	5	μg/L μg/L	_	_	_	_	_	_	_	5 U
sec-Butylbenzene	5	μg/L μg/L	_	_	_	_	_	_	_	5 U
Styrene	5	μg/L μg/L	_	_	_	_	_	_	_	5 U
tert-Butylbenzene	5	μg/L μg/L	_	_	_	_	_	_	_	5 U
Tetrachloroethene	5	μg/L μg/L	87	9 J	3 J	6 J	2	10 U	_	5 U
Toluene	5		30 B	59 59	10 U	1 J	1	10 U	_	5 U
Total Xylenes	5	μg/L	30 B	59 16	10 U	1 J 10 U	3 U	30 U	l -	5 U
*	5	μg/L	-		10 0	10 U	1 U	10 U	_	5 U
trans-1, 2-Dichloroethene	0.4	μg/L	_	-	_	10 0	10	10 0	_	5 U
trans-1,3-Dichloropropene Trichloroethene	0.4 5	μg/L	32	36	- 1 J	2 J	1	10 U	· -	5 U
	5	μg/L			1.0	2 J	1	10 0	-	5 U
Trichlorofluoromethane	2	μg/L	- 0	2 1	- 10 U	10 U	0.4 J	10 U	-	
Vinyl chloride		μg/L	8 530	3 J 210.9	5	35	9.4		- ND	5 U ND
Total VOCs		μg/L						5		
Total VOCs		mg/L	0.530	0.2109	0.005	0.035	0.0094	0.005	ND	ND

Notes:

1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (µg/L)

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1.1 criteria.

NE = NYSDEC TOGS 1.1.1 water quality standard not established.

- U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.
- J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- R =The sample results are rejected.
- D = Compound identified in analysis at a secondary dilution factor.
- = The analyte was not sampled for.

TABLE 3 Monitoring Well GW-3 Groundwater Analytical Results Envirotek II Site

A CONTRACTOR OF THE CONTRACTOR	NYSDEC TOGS 1.1.1			40.50	00.000.00			40450-			
Volatile Compounds	Water Quality Standards	Units	09/28/88	12/05/90	09/29/99	05/05/04	09/28/04	10/17/05	10/05/06	10/07/08	10/27/09
1,1,1-Trichloroethane	5	μg/L	5	8 1	10 U	ΙÜ	2 U	10 U	4 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	*	*	1.5	- 2		10 U	4 U	5 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L		8	77.		19	10 U	4 U	5 U	5 U
1,1,2-Trichloroethane	1	μg/L	*		10 U	ΙŪ	2 U	10 U	4 U	5 U	5 U
1,1-Dichloroethane	5	μg/L	*	*	10 U	IU	2 U	10 U	4 U	5 U	5 U
1.1-Dichloroethene	5	μg/L	*		10 U	1 U	2 U	10 U	4 U	5 U	5 U
1,2,4-Trichlorobenzene	5	μg/L	-	*		- 14		10 U	4 U	5 U	5 U
1,2,4 -Trimethylbenzene	5	μg/L	*	· ·	- 14		14	14.		5 U	5 U
1,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L,	2	:=:	- 2	- 2	-	10 U	4 U	5 U	5 U
1,2-Dibromoethane (EDB)	NE	μg/L			- 1	- 12	14	10 U	4 U	5 U	5 U
1,2-Dichlorobenzene	3	μg/L						10 U	4 U	5 U	5 U
1,2-Dichloroethane	0.6	μg/L	2	-	10 U	ΙÜ	2 U	10 U	4 U	5 U	5 U
1,2-Dichloropropane	5	μg L	-	-			1 3	10 U	4 U	5 U	5 U
1,3-Dichlorobenzene	3	µg/L				2		10 U	4 U	5 U	5 U
1,3,5-Trimethylbenzene	5	μg/L	-				2.5	1-1		5 U	5 U
1,4-Dichlorobenzene	3	μg/L						10 U	4 U	5 U	5 U
1,4-Dioxane	5	μg/L	-	-	-			-	1,000	100 U	100 U
2-Hexanone	50	μg/L			10 U	5 U	10 U	10 U	20 U	10 U	10 U
Acetone	50	μg/L		20	10 U	5 U	10 U	10 U	20 UJ	10 U	10 U
Benzene	1	μg/L	6	2 J	1.5	ΙŪ	2 U	10 U	4 U	5 U	5 U
Broinoform	50	μg/L	The state of the s	20			34	10 U	4 U	5 U	5 U
Bromomethane	5	μg/L	0					10 U	4 UJ	5 U	5 U
Carbon disulfide	60	μg/L μg/L			10 U	ΙŪ	2 U	10 U	4 U	5 U	5 U
Carbon tetrachloride	5		0			10	20	10 U	4 U	5 U	5 U
Chlorobenzene	5	μg/L	<u> </u>		10 U	1.0	2 U	10.0	4 U	5 U	5 U
l .	-	μg/L									
Chloroethane	5	μg/L			10 U	I U	2 U	10 U	R	5 U	5 U
Chloroform	7	µg/L	÷		10 U	ΙU	2 U	10 U	4 U	5 U	5 U
Chloromethane	NE	μg/L						10 U	4 U	5 U	5 U
cis-1,2-Dichloroethene	5	μg/L				0.3 J	2 U	10 U	4 U	5 U	5 U
cis-1,3-Dichloropropene	0.40	μg/L	8				* .	10 U	4 U	5 U	5 U
Cyclohexane	NE	μg/L	2					10 U	4 U	5 U	5 U
Dibromochloromethane	50	μg/L	*		:	::	1.5	10 U	4 U	5 U	5 U
Dichlorobromoethane	NE	μg/L	7	17		9	9.	10 U	4 U	5 U	5 U
Dichlorodifluoromethane	5	μg/L				1.0	34	10 U	4 U	5 U	5 U
Ethylbenzene '	5	μg/L	*	-	10 U	ΙU	2 U	10 U	4 U	5 U	5 U
Isopropylbenzene	5	μg/L	141	*		1.0	3.0	10 U	4 U	5 U	5 U
Methyl acetate	NE	μg/L	8	*		*	39.0	10 U	4 UJ	5 U	5 U
Methyl Ethyl Ketone	50	μg/L	*	29	10 U	LU	2 U	10 U	20 U	10 U	10 U
Methyl Isobutyl Ketone	NE	μg/L			10 U	5 U	10 U	10 U	20 U	10 U	10 U
Methylcyclohexane	NE	μg/L	12	12	34	12	54.5	10 U	4 U	5 U	5 U
Methylene chloride	5	μg/L	2		10 U	2 U	1.1	10 U	4 U	5 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L	~	- 4	- 3	12	14.1	10 U	4 U	5 U	5 U
m,p-Xylene	5	μg/L	8	ु	- 2	12	12.1	- 4		5 U	5 U
n-Butylbenzene	5	µg/L	2	2		12	127	- 2	0.20	5 U	5 U
n-Propylbenzene	3	μg/L					122	Ç.	- Car	5 U	5 U
o-Xylene	5	μg/L	3	-		1				5 U	5 U
sec-Butylbenzene	5	μg/L								5 U	5 U
Styrene	3	μg/L	2			2.0	100	10 U	4 U	5 U	5 U
tert-Butylbenzene	5	μg/L μg/L				3	137	1	"-"	5 U	5 U
Tetrachloroethene	5	μg/L		0	10 U	0.5 J	2 U	10 U	4 U	5 U	5 U
Toluene	5		ıJ	0.6 J	10 U	1 U	2 U	10 U	4 U	5 U	5 U
l .	5	μg/L	2 J	0.0 3	10 U	3 U	6 U	10 U	12 U	5 U	5 U
Total Xylenes	1	μg/L	1				1				5 U
trans-1, 2-Dichloroethene	5	μg/L	*			ΙÜ	2 U	10 U	4 U	5 U	
trans-1,3-Dichloropropene	0.4	μg/L	- 3	*	10.17	3	2.11	10 U	4 U	5 U	5 U
Trichloroethene	5	μg/L			10 U	1 U	2 U	10 U	4 U	5 U	5 U
Trichlorofluoromethane	5	µg/L		*		6		10 U	4 U	5 U	5 U
Vinyl chloride	2	µg/L	-		10 U	4.0	2 U	10 U	4 U	5 U	5 U
Total VOCs		µg/L	9	51.6	11	0.8	1	ND	ND	ND	ND
Total VOCs		mg/L	0.009	0.0516	0.001	0.0008	0.001	ND	ND	ND	ND

1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1,1,1 Ambient Water Quality Standards and Guidance Values ($\mu g/L$)

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1-1.1 criteria.

NE = NYSDEC TOGS 1,1,1 water quality standard not established.

- U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.
- J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only. R = The sample results are rejected.
- $D \approx Compound$ identified in analysis at a secondary dilution factor,
- = The analyte was not sampled for.

TABLE 3 Monitoring Well NRG-3 Groundwater Analytical Results Envirotek II Site

NYSDEC TOGS Water Quality Stan		3/14/07 ² U U U U U 2.3 J U U U U U U U U U U U U U U U U U U U	10/07/08 25 U 25	10/27/09 100 U
Volatile Compounds Water Quality Stan 1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 5 1,1,2,2-Tirchlor-1,2,2-trifluoroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2,4-Trichloroetnee 5 1,2,4-Trichlorobenzene 5 1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0,04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0,6 1,2-Dichloropropane 5	Mards Units	U U U 2.3 J U U U U U	25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U
1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 5 1,1,2-Trichlo-1,2,2-trifluoroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-4-Trichlorobenzene 5 1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0,04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0,6 1,2-Dichloropropane 5	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	U U U 2.3 J U U U U U	25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U
1,1,2-Trichlo-1,2,2-trifluoroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-4-Trichlorobenzene 5 1,2-4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0.04 1,2-Dichlorobenzene 3 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5		U U 2.3 J U U U U U U U	25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U 100 U 100 U
1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2,4-Trichlorobenzene 5 1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0,04 1,2-Dichloroethane (EDB) NE 1,2-Dichloroethane 3 1,2-Dichloroethane 0,6 1,2-Dichloropropane 5	µg·L µg·L µg·L µg·L µg·L µg·L µg·L µg·L	U 2.3 J U U U U U U U U U U	25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U 100 U
1,1-Dichloroethane 5 1,1-Dichloroethene 5 1,2,4-Trichlorobenzene 5 1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0.04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	µg·L µg·L µg·L µg·L µg·L µg·L µg·L µg·L	2.3 J U U U U U U U	25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U
1,1-Dichloroethene 5 1,2,4-Trichlorobenzene 5 1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0,04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0,6 1,2-Dichloropropane 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	บ บ บ บ บ บ	25 U 25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U 100 U
1.2.4-Trichlorobenzene 5 1.2.4-Trimethylbenzene 5 1.2-Dibromo-3-Chloropropane DBCP 0.04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichlorobethane 0.6 1,2-Dichloropropane 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	บ บ บ บ บ	25 U 25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U 100 U
1,2.4 - Trimethylbenzene 5 1,2-Dibromo-3-Chloropropane DBCP 0.04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	րց/L րց/L րց/L րց/L րց/L րց/L	บ บ บ บ	25 U 25 U 25 U 25 U 25 U	100 U 100 U 100 U
1,2-Dibromo-3-Chloropropane DBCP 0.04 1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	րց/L րց/L րց/L րց/L րց/L րց/L	บ บ บ	25 U 25 U 25 U	100 U 100 U
1,2-Dibromoethane (EDB) NE 1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	µg/L µg/L µg/L µg/L	U U U	25 U 25 U	100 U
1,2-Dichlorobenzene 3 1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	μg/L μg/L μg/L	U U	25 U	
1,2-Dichloroethane 0.6 1,2-Dichloropropane 5	µg/L µg/L	Ū		100.11
1,2-Dichloropropane 5	μg/L	1	25.11	1 100 0
	μg/L	111	23 U	100 U
liancia i i	1		25 U	100 U
1,3-Dichlorobenzene 3		U	25 U	100 U
1,3,5-Trimethylbenzene 5	μg/L	U	25 U	100 U
1,4-Dichlorobenzene 3	μg/L	U	25 U	100 U
1,4-Dioxane 5	μg/L	U	500 U	2000 U
2-Hexanone 50	μg/L	U	50 U	200 U
Acetone 50	μg/L	U	50 U	200 U
Benzene	μg/L	1.7 J	25 U	100 U
Bromoform 50	μg/L	U	25 U	100 U
Bromomethane 5	μg/L	U	25 U	100 U
Carbon disulfide 60	μg/L	U	25 U	100 U
Carbon tetrachloride 5	μg/L	υ	25 U	100 U
Chlorobenzene 5	μg/L	U	25 U	100 U
Chloroethane 5	μg/L	Ū	25 U	100 U
Chloroform 7	μg/L	U	25 U	100 U
Chloromethane	μg/L	U	25 U	100 U
cis-1,2-Dichloroethene 5	μg/L	U	25 U	100 U
cis-1,3-Dichloropropene 0,40	μg/L	U	25 U	100 U
Cyclohexane NE	μg/L	U	25 U	100 U
Dibromochloromethane 50	μg/L	U	25 U	100 U
Dichlorobromoethane NE	μg/L	U	25 U	100 U
Dichlorodifluoromethane 5	μg/L	U	25 U	100 U
Ethylbenzene 5	μg/L	1.1 J	25 U	100 U
Isopropylbenzene 5	μg/L	U	25 U	100 U
Methyl acetate NE	μg/L	U	25 U	100 U
Methyl Ethyl Ketone 50	μg/L	U	50 U	200 U
Methyl Isobutyl Ketone NE	μg/L	U	50 U	200 U
Methylcyclohexane NE	μg/L	U	25 U	100 U
Methylene chloride 5	μg/L	U	25 U	100 U
Methyl-t-Butyl Ether (MTBE)	μg/L	Ū	25 U	100 U
m,p-Xylene 5	μg/L	U	25 U	100 U
n-Butylbenzene 5	μg/L	Ü	25 U	100 U
n-Propylbenzene 5	μg/L	U	25 U	100 U
o-Xylene 5	μg/L	U	25 U	100 U
sec-Butylbenzene 5	μg/L	U	25 U	100 U
Styrene 5	μg/L	U	25 U	100 U
tert-Butylbenzene 5	μg/L	U	25 U	100 U
Tetrachloroethene 5	μg/L	U	25 U	100 U
Toluene 5	μg/L	3.1 J	25 U	100 U
Total Xylenes 5	μg/L	10	25 U	100 U
trans-1, 2-Dichloroethene 5	μg/L	U	25 U	100 U
trans-1,3-Dichloropropene 0,4	μg/L	U	25 U	100 U
Trichloroethene 5	μg/L μg/L	U	25 U	100 U
Trichlorofluoromethane 5	μg/L	U	25 U	100 U
Vinyl chloride 2	μg L	U	25 U	U 001
Total VOCs	μg/L	19.4	ND	ND -
Total VOCs	mg/L	0.0194	ND	ND

Notes:

- Notes:

 1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1:

 Ambient Water Quality Standards and Guidance Values (µg/L)

 2. The reporting limits were raised due to matrix interference. Sample foamed during laboratory purging procedure.

 Bolded concentrations indicated the analyte was detected.

 Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1.1 criteria.

 NE = NYSDEC TOGS 1.1.1 water quality standard not established.

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

- J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.<math>R = The sample results are rejected.
- D = Compound identified in analysis at a secondary dilution factor.
- = The analyte was not sampled for.

TABLE 3 Monitoring Well NRG-4 Groundwater Analytical Results **Envirotek II Site**

	NYSDEC TOGS 1.1.1				
Volatile Compounds	Water Quality Standards	Units	3/14/07 ²	10/07/08	10/27/09
I,I,I-Trichloroethane	5	μg/L	U	25 U	5 U
1,1,2,2-Tetrachloroethane	5	μg/L	U	25 U	5 U
1,1,2-Trichlo-1,2,2-trifluoroethane	15	μg/L	U	25 U	5 U
,1,2-Trichloroethane		μg/L	U	25 U	5 U
,1-Dichloroethane	5	μg/L	5.4	25 U	5 U
,1-Dichloroethene	5	μg/L	U	25 U	5 U
,2,4-Trichlorobenzene	5	μg/L	U	25 U	5 U
,2,4 -Trimethylbenzene	5	μg/L	U	25 U	5 U
,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L	U	25 U	5 U
,2-Dibromoethane (EDB)	NE	μg/L	U	25 U	5 U
,2-Dichlorobenzene	3	μg/L	U	25 U	5 U
,2-Dichloroethane	0,6	μg/L	U	25 U	5 U
,2-Dichloropropane	5	μg/L	υ	25 U	5 U
,3-Dichlorobenzene	3	μg/L	υ	25 U	5 U
,3,5-Trimethylbenzene	5	μg/L	υ	25 U	5 U
,4-Dichlorobenzene	3	μg/L	U	25 U	5 U
,4-Dioxane	5	μg/L	U	500 U	100 U
2-Hexanone	50	μg/L	U	50 U	10 U
Acetone	50	μg/L	U	50 U	10 U
Benzene	1	μg/L	0.79 J	25 U	5 U
Bromoform	50	μg/L	U	25 U	5 U
Bromomethane	5	μg/L	U	25 U	5 U
Carbon disulfide	60	µg/L	U	25 U	5 U
Carbon tetrachloride	5	μg/L	U	25 U	5 U
Chlorobenzene	5	μg/L	U	25 U	5 U
Chloroethane	5	μg/L	U	25 U	5 U
Chloroform	7	μg/L	U	25 U	5 U
Chloromethane	NE	μg/L	U	25 U	5 U
is-1,2-Dichloroethene	5	μg/L,	U	25 U	5 U
is-1,3-Dichloropropene	0.40	μg/L	U	25 U	5 U
Cyclohexane	NE	μg/L	U	25 U	5 U
Dibromochloromethane	50	μg/L	U	25 U	5 U
Dichlorobromoethane	NE	μg/L	U	25 U	5 U
Dichlorodifluoromethane	5	μg/L	υ	25 U	5 U
Ethylbenzene	5	μg/L	U	25 U	5 U
sopropylbenzene	5	μg/L	υ	25 U	5 U
Methyl acetate	NE	μg/L	U	25 U	5 U
Methyl Ethyl Ketone	50	μg/L	U	50 U	10 U
Methyl Isobutyl Ketone	NE	μg/L	U	50 U	10 U
Methylcyclohexane	NE	μg/L	U	25 U	5 U
Methylene chloride	5	μg/L	U	25 U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L	U	25 U	5 U
n,p-Xylene	5	μg/L	U	25 U	5 U
n-Butylbenzene	5	µg/L	U	25 U	5 U
-Propylbenzene	5	μg/L	U	25 U	5 U
-Xylene	5	μg/L	Ū	25 U	5 U
ec-Butylbenzene	5	μg/L	Ū	25 U	5 U
Styrene	5	μg/L	U	25 U	5 U
ert-Butylbenzene	5	μg/L	U	25 U	5 U
Tetrachloroethene	5	μg/L	U	25 U	5 U
Toluene	5	μg/L	1.8 J	25 U	5 U
Total Xylenes	5	μg/L	1.6 J	25 U	5 U
rans-1, 2-Dichloroethene	5	μg/L	U	25 U	5 U
rans-1,3-Dichloropropene	0,4	μg/L	Ü	25 U	5 U
richloroethene	5	μg/L	l ü	25 U	5 U
Trichlorofluoromethane	5	μg/L μg/L	l ű	25 U	5 U
Vinyl chloride	2	μg/L	u	25 U	5 U
Total VOCs	-	µg L	12.19	ND	ND
Total VOCs		mg/L	0.01219	ND	ND

Notes:

- 1, New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1,1,1: Ambient Water Quality Standards and Guidance Values (µg/L)
- 2. The reporting limits were raised due to matrix interference. Sample foamed during laboratory purging procedure,

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1.1.1 criteria.

- bolded and shaded concentrations indicate equal to be exceedance of 1905 1.1.1 Citteria.

 NE = NYSDEC TOGS 1.1.1 water quality standard not established.

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.

 J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only.

 R = The sample results are rejected.
- D = Compound identified in analysis at a secondary dilution factor.
- = The analyte was not sampled for.

TABLE 3 Monitoring Well NRG-5 Groundwater Analytical Results Envirotek II Site

	NYSDEC TOGS 1.1.1			
Volatile Compounds	Water Quality Standards	Units	3/13/07 ²	10/27/09
.1.1-Trichloroethane	5	μg/L	U	5 U
,1,2,2-Tetrachloroethane	5	μg/L	Ū	5 U
,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	Ū	5 U
,1,2-Trichloroethane		μg/L	υ	5 U
,1-Dichloroethane	5	μg/L	4.2 J	3 J
.1-Dichloroethene	5	μg/L	บ	5 U
.2.4-Trichlorobenzene	5	μg/L	Ū	5 U
,2,4 -Trimethylbenzene	5	μg/L	Ü	5 U
,2-Dibromo-3-Chloropropane DBCP	0.04	μg/L	Ü	5 U
,2-Dibromoethane (EDB)	NE	μg/L	Ü	5 U
,2-Dichlorobenzene	3	μg/L	υ	5 U
,2-Dichloroethane	0.6	μg/L	4.4 J	2 J
,2-Dichloropropane	5	μg/L	U	5 U
,3-Dichlorobenzene	3	μg/L	υ	5 U
,3,5-Trimethylbenzene	5	μg/L	Ŭ Ü	5 U
.4-Dichlorobenzene	3	μg/L μg/L	tı	5 U
.4-Dioxane	5	μg/L	U	100 U
2-Hexanone	50	μg/L μg/L	U	1000
Acetone	50	μg/L μg/L	U	10.11
Benzene	l i	μg/L	υ	5 U
Bromoform	50	μg/L	υ	5 U
Bromomethane	5	μg/L	U	5 U
Carbon disulfide	60	μg/L	Ü	5 U
Carbon tetrachloride	5	μg/L	Ŭ U	5 U
Chlorobenzene	5	μg/L	l ü	5 U
Chloroethane	5	μg/L	l ü	5 U
Chloroform	7	μg/L	U	5 U
Chloromethane	NE NE	μg/L	Ū	5 U
cis-1,2-Dichloroethene	5	μg/L	93	59
cis-1,3-Dichloropropene	0,40	μg/L μg/L	U	5 U
Cyclohexane	NE NE	μg/L	บั	5 U
Dibromochloromethane	50	μg/L	U	5 U
Dichlorobromoethane	NE.	μg/L μg/L	l ü	5 U
Dichlorodifluoromethane	5	μg/L	l ŭ	5 U
Ethylbenzene	5	μg/L	υ	5 U
lsopropylbenzene	5	μg/L μg/L	l ü	5 11
Methyl acetate	NE NE	μg/L μg/L	บ	5 U
Methyl Ethyl Ketone	50	μg/L μg/L	U	10 U
Methyl Isobutyl Ketone	NE.	μg/L μg/L	U	10 U
Methylcyclohexane	NE.	μg/L μg/L	U	5 U
Methylene chloride	5	μg/L μg/L	U	5 U
Methylete Chloride Methyl-t-Butyl Ether (MTBE)	10	μg/L μg/L	U	5 U
m,p-Xylene	5	μg/L μg/Ĺ	II II	511
n.p-Aylene n-Butylbenzene	5		U	5 U
n-Butylbenzene n-Propylbenzene	5	μg/L μg/L	U	5 U
	5		U	5 U
o-Xylene sec-Butylbenzene	5	μg/L	U	5 U
	5	μg/L	U	5 U
Styrene :ert-Butylbenzene	5	μg/L	U	5 U
rert-Butylbenzene Tetrachloroethene	5	μg/L	T!	5 U
	5	μg/L	U	5 U
Toluene		μg/L	1	
Total Xylenes	5	μg/L	U	5 U
trans-1, 2-Dichloroethene	5	μg/L	6.7 J	5 J
trans-1,3-Dichloropropene	0.4	μg/L	U	5 U
Trichloroethene	5	μg/L	U	5 U
Trichlorofluoromethane	5	μg/L	U	5 U
Vinyl chloride Total VOCs	2	μg/L μg/L	6.1 J	5 U 69.00

- 1. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values (µg/L)
- 2. The reporting limits were raised due to matrix interference. Sample foamed during laboratory purging procedure.

Bolded concentrations indicated the analyte was detected.

Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1,1.1 criteria.

NE = NYSDEC TOGS 1.1.1 water quality standard not established.

- U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit.
- $\label{eq:Jacobs} J = \mbox{The analyte was positively identified; however, the associated numerical value is an estimated concentration only.} \\ R = \mbox{The sample results are rejected.}$
- D = Compound identified in analysis at a secondary dilution factor.
- = The analyte was not sampled for.

TABLE 3 Monitoring Well NRG-6 Groundwater Analytical Results Envirotek II Site

Volatile Compounds	NYSDEC TOGS 1.1.1 Water Quality Standards	Units	3/13/07²	10/27/09
1,1,1-Trichloroethane	5	μg/L	U	5 U
.1,2,2-Tetrachloroethane	5	μg/L	υ	5 U
,1,2-Trichlo-1,2,2-trifluoroethane	5	μg/L	U	5 U
,1,2-Trichloroethane	1 1	μg/L	U	5 U
,1-Dichloroethane	5	µg/L	U	5 U
,1-Dichloroethene	5	μg/L	บ	5 U
,2,4-Trichlorobenzene	5	μg L	U	5 U
1,2,4 -Trimethylbenzene	5	μg/L	บ	5 U
,2-Dibromo-3-Chloropropane DBCP	0,04	μg/L	บ	5 U
1,2-Dibromoethane (EDB)	NE	μg/L	ี บ	5 U
1,2-Dichlorobenzene	3	μg/L	U	5 U
,2-Dichloroethane	0,6	μg/L	U	5 U
1,2-Dichloropropane	5	μg/L	U	5 U
1,3-Dichlorobenzene	3	μg/L	U	5 U
1,3,5-Trimethylbenzene	5	μg/L	U	5 U
1,4-Dichlorobenzene	3	μg/L	ט	5 U
1,4-Dioxane	5	μg/L	บ	100 U
2-Hexanone	50	μg/L	U	10 U
Acetone	50	μg/L	U	10 U
Benzene	t t	μg/L	U	5 U
Bromoform	50	μg/L	υ	5 U
Bromomethane	5	μg/L	U	5 U
Carbon disulfide	60	μg/L	υ	5 U
Carbon tetrachloride	5	μg/L	U	5 U
Chlorobenzene	5	μg/L	U	5 U
Chloroethane	5	μg/L	U	5 U
Chloroform	7	μg/L	U	5 U
Chloromethane	NE	րց/ե	U	5 U
cis-1,2-Dichloroethene	5	μg/L	25	22
cis-1,3-Dichloropropene	0.40	μg·L	U	5 U
Cyclohexane	NE	μg/L	U	5 U
Dibromochloromethane	50	μg/L	U	5 U
Dichlorobromoethane	NE	μg/L	U	5 U
Dichlorodifluoromethane	5	μg/L	υ	5 U
Ethylbenzene	5	μg/L	U	5 U
Isopropylbenzene	5	μg/L	U	5 U
Methyl acetate	NE	μg/L	U	5 U
Methyl Ethyl Ketone	50	μg/L	U	10 U
Methyl Isobutyl Ketone	NE	μg/L	ប	10 U
Methylcyclohexane	NE	μg/L	ប	5 U
Methylene chloride	5	μg/L	U	5 U
Methyl-t-Butyl Ether (MTBE)	10	μg/L	U	5 U
m,p-Xylene	5	μg/L	U	5 U
n-Butylbenzene	5	μg/L	U	5 U
n-Propylbenzene	5	μg/L	υ	5 U
o-Xylene	5	μg/L	U	5 U
sec-Butylbenzene	5	μg/L	U	5 U
Styrene	3	μg/L	U	5 U
ert-Butylbenzene	5	μg/L	U	5 U
Tetrachloroethene	5	μg [,] L	U	5 U
Toluene	5	μg/L	U	5 U
Total Xylenes	5	μg/L	U	5 U
trans-1, 2-Dichloroethene	5	μg/L	1.1 J	5 U
trans-1,3-Dichloropropene	0.4	μg/L	1.4 J	5 U
Trichloroethene	5	μg/L	U	5 U
Trichlorofluoromethane	5	μg·L	U	5 U
Vinyl chloride	2	μg/L	U	5 U
Total VOCs		µg L	27.50	22.00
Total VOCs		mg/L	0.02750	0.02200

Notes:

- I. New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1; Ambient Water Quality Standards and Guidance Values (µg/L)
- 2. The reporting limits were raised due to matrix interference. Sample foamed during laboratory purging procedure,

Bolded concentrations indicated the analyte was detected.

- Bolded and shaded concentrations indicate equal to or exceedance of TOGS 1,1.1 criteria,

 NE = NYSDEC TOGS 1,1,1 water quality standard not established,

 U = The analyte was analyzed for but not detected. The associated value is the analyte quantitation limit,

 J = The analyte was positively identified; however, the associated numerical value is an estimated concentration only,

 R = The sample results are rejected.
- D = Compound identified in analysis at a secondary dilution factor.
- = The analyte was not sampled for.

APPENDICES

APPENDIX A

ANALYTICAL RESULTS OF ON-SITE SOIL PILES IN 2009

MEMORANDUM

TO:	Jim Panepinto, Pinto Construction
FROM:	Dharma Iyer (IEG)
DATE:	September 4, 2009
RE:	BGH Excavation – soil sampling

Pinto Construction is in the process of excavating an estimated 40,000 cubic yards of soil from the site of the proposed Buffalo General Hospital building expansion north of the existing building. This area straddled by the Goodrich Street to the south, Ellicott Street to the west, East North St. to the north, and Hospital's power supply transformers to the east. IEG is retained by Pinto Construction to characterize and sample the excavation area soils to determine their suitability for reuse and/or disposal off-site.

On 8/31/09, Dharma lyer and Rick Allen of IEG worked with Paul and Ed Sullivan of Pinto Construction in completing a total of 17 test pits. The locations of these test pits are shown on the attached Figure 1. The test pits were dug to a depth of up to 12 feet below ground surface, and composite soil samples were collected across the excavation depth. Samples from sixteen of these locations were further composited in groups of four (see Figure 1) to obtain four composites which were sent to Test America (Amherst, NY) for the following analyses: volatile organics (TCLP), semivolatiles (total and TCLP), metals (total and TCLP), PCBs (total), pH, Reactivity and ignitability. Instead of phasing the analyses between total and TCLP, all parameters were included together due to time constraints from scheduled construction activities.

This Memo presents preliminary results from the field sampling and laboratory analysis. A full report will be made available next week after all the analytical results are in.

The soils varied from silty clay, to clayey silt to clay. Several locations had these natural soils mixed in with bricks, pieces of concrete and similar materials in the top two to four feet from prior demolition and backfill at the site. A table with soil descriptions by depth will be included in the full report.

Preliminary results from the laboratory are summarized in the attached Table 1 along with the NYSDEC's guidance values for the acceptance of fill under unrestricted, residential and commercial use scenarios based on the Part 375 Brownfields regulations. The analytical results obtained so far show the soils across the excavation area environmentally clean with any detected compounds well within the NYSDEC unrestricted use criteria for acceptance as borrow fill.

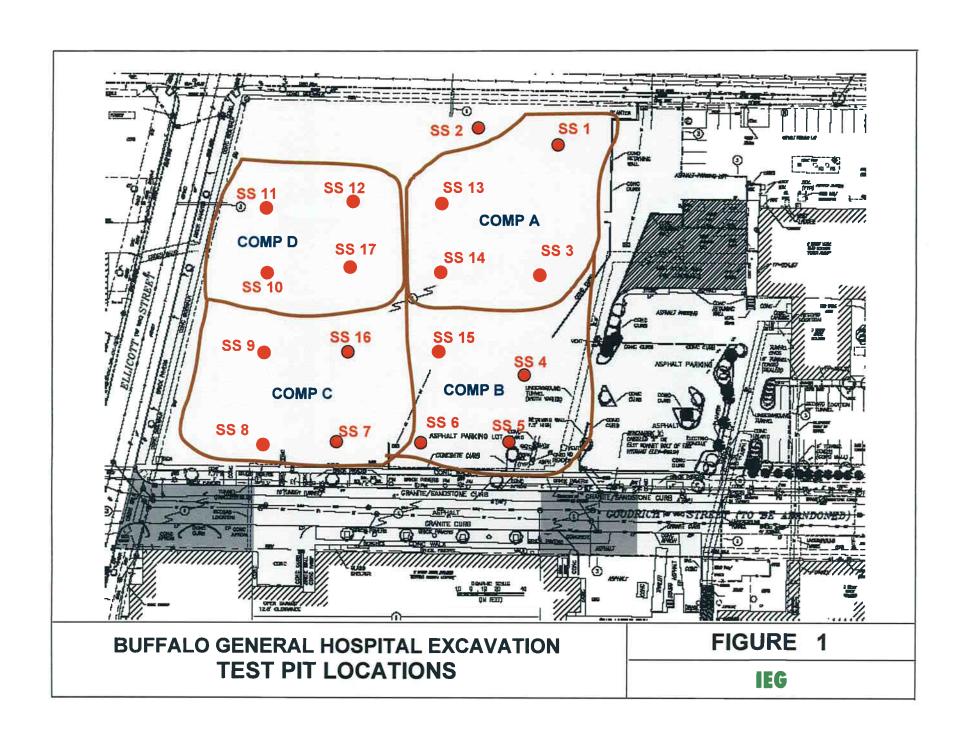

Based on the soil sampling, field characterization and laboratory analyses, the soils from the area of excavation within the limits of this sampling can be considered as suitable for unrestricted reuse. However, I would recommend that the larger man-made materials (bricks, concrete, rebar, etc.) be screened and separated out for disposal. Alternately, as a matter of practical application, you could place these materials deeper while using as fill and cover them with finer grained soils.

TABLE 1 BGH PRE-EXCAVATION SOIL SAMPLING SAMPLES COLLECTED ON 8/31/09

SAMPLE LOCATION/	PART 375 S	PART 375 SCOs / ALLOWABLE FOR FILL			COMP B (#s 4, 5, 6, 15)	COMP C (#s 7, 8, 9, 16)	COMP D (#s 10, 11, 12, 17)	TP 1 10'-12'
	UNRESTRICTED	RESIDENTIAL	COMMERCIAL	(#s 1, 3, 13, 14)	(#3 1, 5, 5, 15)	(#3 1, 0, 0, 10)	(#3 10, 11, 12, 11)	10-12
Percent Solids (%)								
VOLATILE ORGANICS (VOCs	, ug/Kg)							
Methylene chloride	50	50	50			V - 0 - 1-40		7.4 B
SEMIVOLATILE ORGANICS (S	SVOCs, ug/Kg)							18"0.71
Benzo(a)anthracene	1000	1000	5600 / 1000	ND	29	ND	ND	
Chrysene	1000	1000	56000 / 1000	ND	36	ND	ND	
Fluoranthene	100000	100000	500000	ND	59	ND	ND	17/1/16
Phenanthrene	100000	100000	500000	ND	53	ND	ND	
PCBs (ug/Kg)								
Arocior 1248	400	4000	4000	13 J	27	41	47	8 28
Arocior 1254	100	1000	1000	16 J	ND	ND	21	20.10
METALS (mg/Kg)								
Aluminum		:e:		5490	5930	4600	4250	I Section
Arsenic	13	16	16	2.1	2,1	2.7	2.2	
Barlum	350	350	400	43.2	38.9	48.7	29	FUS
Beryllium	7.2	14	590 / 47	0.282	0.262	0.212	0.231	TANK.
Cadmium	2,5	2.5	9.3 / 7.5	0.11	0.124	0.128	0.127	
Calcium	::		144	51800	20400	51300	83500	
Chromium (Hex & Tri)	1 ⁽⁺⁶⁾ /30 ⁽⁺³⁾	19 ⁽⁺⁶⁾ /36 ⁽⁺³⁾	19 ⁽⁺⁶⁾ /1500 ⁽⁺³⁾	7.56	7.62	6.16	5.12	eun re
Cobalt				3.93	3.62	3.33	3.07	
Copper	50	270	270	11.6	10.1	12.5	10.5	
Iron				8950	9480	7600	7780	dest on
Lead	63	400	1000 / 450					
Magnesium			**	21800	10000	18400	23000	E S
Manganese	1600	2000	10000 / 15000	299	299	272	345	
Mercury	0.18	0.73	2.8 / 0.73	0.113	0.71	0.16	0.07	HE XV
Nickel	30	140 / 130	310 / 130	9.52	7.79	7.43	9.23	
Potassium	-			1250	696	1110	897	
Sodium		346		200	519	316	230	
Vanadium	-			12	13.4	10.1	9.27	
Zinc	109	2200	10000 / 2480	70.8	63	82.1	78.8	Trada.
pH (s.u.)		< 2 or >12.5		9.64	8.13	9.94	10.1	BY A Y
Flashpoint (°F)		<140		>176	>176	>176	>176	
Reactive Sulfide (mg/Kg)		200		40.1	10	10	ND	
TCLP VOLATILES (mg/L)				ND	ND	ND	ND	
TCLP SEMIVOLATILES (mg/L)			ND	ND	ND	ND	
CLP METALS (mg/L)								
Arsenic		5		0.0059	0.0098	ND	0.0056	1
Barium		100		0.5600	0.3960	0.4860	0.5520	1000
Cadmium		1		0.0056	0.0035	0.0030	0.0031	
Chromium		5		0.0165	0.0046	ND	0.0023	
Lead		5		0.4140	0.0428	0.0462	0.0146	

Note: 1. ND - Not detected; shaded = not analyzed; Only detected volatiles and semivolatiles are listed

- 2. Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed
- 3. SCOs based on 6 NYCRR Part 375 Regulations and DER-10 guidelines for acceptance of fill

APPENDIX B

SOIL MANAGEMENT PLAN

Soils Management Plan Roblin Steel parcel/Envirotek II Facility Site No. 915056 Tonawanda, Erie County

1. Overview and objectives

The Roblin Steel parcel is a 62 acre, commercial/vacant industrial property currently owned by Niagara River World, Inc. The location of the property is shown on Figure 1 of the Final Engineering Report. The Envirotek II facility was a chemical waste treatment and disposal facility that was operated during the 1980's by Envirotek, Ltd. This facility occupied a 2.5 acre parcel within the former Roblin Steel Plant and is referred to as the Envirotek II parcel. Both the Roblin Steel portion of the site and the Envirotek II portion of the site have been characterized during several previous investigations. Collectively, these two parcels are hereinafter referred to as the "Site". The user should refer to the following reports for more detail, as needed:

Envirotek II Parcel

- 1. "Evaluation of Interim Remedial Alternatives, Still Discharge Area", March 1991, prepared by Blasland, Bouck & Lee, Inc.
- 2. "Results of Sampling Plan, Envirotek II Superfund Site", June 1991, prepared by Blasland, Bouck & Lee, Inc.
- 3. "Supplemental Investigation Results, Still Discharge Area", November 1992, prepared by Blasland, Bouck & Lee, Inc.
- 4. "Remedial Investigation Report", May 2002, prepared by Blasland, Bouck & Lee, Inc.
- 5. "Interim Remedial Measures Final Report for Operable Unit 1", June 2003, prepared by Blasland, Bouck & Lee, Inc.
- 6. "Interim Remedial Measures Final Report for Operable Unit 2", January 2004, prepared by Blasland, Bouck & Lee, Inc.
- 7. "Interim Remedial Measures Final Report for Operable Unit 3", March 2005, prepared by Blasland, Bouck & Lee, Inc.
- 8. "Focused Feasibility Study", March 2005, prepared by Blasland, Bouck & Lee, Inc.

Roblin Steel Parcel

- 1. "Phase II Investigation", June 1990, prepared by Recra Environmental, Inc.
- 2. "Site Evaluation Report", December 2006, prepared by the NYSDEC.
- 3. "Remedial Investigation Report", June 2007, prepared by the Natural Resource Group, Inc.

The objective of this Soils Management Plan is to set guidelines for the management of soil material during any future excavation activities at the Site. This Soils Management Plan addresses environmental concerns related to soil management and has been reviewed and approved by the New York State Department of Environmental Conservation (NYSDEC).

2. Nature and extent of contamination

Roblin Steel Parcel

Based upon data obtained from previous investigations and the Remedial Investigation completed at the Roblin Steel parcel in 2007, the compounds of concern (COC) at this parcel for soil consist primarily of semivolatile organic compounds (SVOCs) and metals. The primary SVOC contaminants of concern in soil include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and naphthalene. These contaminants belong to a class of SVOCs known as polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of over 100 different chemicals that are common in the environment. Sources of PAHs include incomplete combustion of coal, oil, gasoline, garbage and wood from stoves, automobiles and incinerators. Phenolic compounds (phenol, 2-methylphenol and 4-methylphenol) were also detected in soil at elevated concentrations. The primary metals of concern in soil include arsenic, barium, cadmium, chromium, copper, lead, mercury and nickel.

Results of groundwater sampling during previous investigations and the June 2007 Remedial Investigation indicate that shallow overburden groundwater is contaminated with COC including benzene (4 wells), ethylbenzene (1 well), toluene (2 wells), xylenes (2 wells), naphthalene (1 well), phenols (2 wells), chromium (1 well) and lead (1 well) at levels above NYS ground standards. Wells adjacent to the Niagara River meet groundwater standards with the exception of lead in one well.

Envirotek II Parcel

Based upon data obtained from previous investigations and the Interim Remedial Measures (IRMs) completed at the Envirotek II parcel, a Record of Decision was issued by the NYSDEC in March 2005. The COC at the parcel for both soil and groundwater consist primarily of chlorinated VOCs, including tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene and vinyl chloride. Contaminated soil was removed from the Envirotek II parcel during an IRM in October 2003. Slightly contaminated soil, however, may still be present at the parcel.

Results of groundwater sampling indicate that shallow overburden groundwater is impacted with COC. The contaminant concentrations generally decrease downgradient (west) of the former Envirotek treatment facility. Because the COC are volatile, contaminant vapors from the groundwater plume can potentially migrate upwards and create an exposure risk during excavation activities and in new buildings that may be constructed over the footprint of the contaminated groundwater plume. The potential for vapor intrusion (VI) and VI mitigation techniques for new building construction are discussed in Section 6.

3. Contemplated use

As part of the remedy selected in the March 2005 Record of Decision for the Envirotek II parcel, an environmental easement will be required that in part limits the use and development of this site to commercial or industrial uses only. This easement has been expanded to include the entire Site. A portion of the Site is currently being utilized for warehousing operations, while the remainder of the Site is vacant.

4. Purpose and description of surface cover system

Because there is no significant residual soil contamination, no specific surface cover system was required by the Record of Decision for the Envirotek II parcel. Most of the Envirotek II parcel is covered with gravel, so maintenance of this surface is not necessary for safe use of the Site and protection of the environment. Future development of the Site may include buildings, support structures, roadways and parking lots. Under such development, a vegetative cover should be provided beyond the building foot print and paved areas.

5. Management of soils/fill

The purpose of this section is to provide environmental guidelines for the management of subsurface soils/fill during any future intrusive work that generates excavated soil and/or fill at the Site.

The Soils Management Plan includes the following condition:

- Site soil/fill that is excavated and is intended to be removed from the Site must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives.
- Soil/fill excavated at the Site may be reused as backfill material on-site provided it contains no visual, olfactory or evidence of gross chemical contamination.
- Any off-site fill material brought to the Site for filling and grading purposes shall be from an
 acceptable borrow source free of industrial and/or other potential sources of chemical or
 petroleum contamination. Off-site borrow sources should be subject to collection of one

representative composite sample per source. The sample should be analyzed for TCL VOCs, SVOCs, pesticides, PCBs, and TAL metals plus cyanide. The soil will be acceptable for use as cover material provided that all parameters meet the NYSDEC recommended Commercial soil cleanup objectives included in Part 375-6.7 (d) for Imported Backfill.

- Prior to any excavation or construction activities, workers are to be notified of the Site conditions with clear instructions regarding how the work is to proceed. Invasive work performed at the property will be performed in accordance with all applicable local, state, and federal regulations to protect worker health and safety.
- The Site Owner shall complete and submit to the NYSDEC an annual report by January 15th of each year. Such annual report shall contain certification that the institutional controls put in place, pursuant to the environmental easement, are still in place, have not been altered and are still effective; and that the conditions at the Site are fully protective of public health and the environment. If excavation work has been performed during the year covered by said annual report, the owner shall include in the report a certification that all excavation work was performed in conformance with this Soils Management Plan.

In addition, an environmental easement has been placed on the Site in accordance with the requirements of Order on Consent Number B9-0407-92-05, requiring compliance with the approved Site Management Plan, restricting groundwater use, limiting the future use of the property to commercial or industrial uses, and requiring the property owner to complete and submit to the NYSDEC the Institutional Control/Engineering Control certification.

5.1. Excavated and stockpiled soil/fill disposal

Soil/fill that is excavated as part of Site development that can not be used as fill on Site will be further characterized prior to transportation off Site for disposal at a permitted facility. For excavated soil/fill with visual evidence of contamination (i.e., staining or elevated PID measurements), one composite sample and a duplicate sample will be collected for each 100 cubic yards of stockpiled soil/fill. For excavated soil/fill that does not exhibit visual evidence of contamination but must be sent for off-site disposal, one composite sample and a duplicate sample will be collected for 2000 cubic yards of stockpiled soil, and a minimum of 1 sample will be collected for volumes less than 2000 cubic yards.

The composite sample will be collected from five locations within each stockpile. A duplicate composite sample will also be collected. PID measurements will be recorded for each of the five individual locations. One grab sample will be collected from the individual location with the highest PID measurement. If none of the five individual sample locations exhibit PID readings, one location will be selected at random. The composite sample will be analyzed by a NYSDOH ELAP-certified laboratory for pH (EPA Method 9045C), Target Compound List (TCL) SVOCs, pesticides, and PCBs, and TAL metals, and cyanide. The grab sample will be analyzed for TCL VOCs.

Soil/fill samples will be composited by placing equal portions of soil/fill from each of the five composite sample locations into a pre-cleaned, stainless steel (or Pyrex glass) mixing bowl. The soil/fill will be thoroughly homogenized using a stainless steel scope or trowel and transferred to pre-cleaned jars provided by the laboratory. Sample jars will then be labeled and a chain-of-custody form will be prepared.

Additional characterization sampling for off-site disposal may be required by the disposal facility. To potentially reduce off-Site disposal requirements/costs, the owner or Site developer may also choose to characterize each stockpile individually. If the analytical results indicate that concentrations exceed the standards for RCRA characteristics, the material will be considered a hazardous waste and must be properly disposed off-Site at a permitted disposal facility within 90 days of excavation. If the analytical results indicate that the soil/fill is not a hazardous waste, the material will be properly disposed off-Site at a non-hazardous waste facility. Stockpiled soil/fill cannot be transported on or off Site until the analytical results are received.

5.2. Subgrade material

Subgrade material used to backfill excavations or placed to increase Site grades or elevation shall meet the following criteria.

- Excavated on-site soil/fill which appears to be visually impacted shall be sampled and analyzed. If analytical results indicate that the contaminants, if any, are present at concentrations below the appropriate restricted soil cleanup objectives of Part 375, the soil/fill can be used as backfill on Site.
- Any off-site fill material brought to the Site for filling and grading purposes shall be from an acceptable borrow source free of industrial and/or other potential sources of chemical or petroleum contamination.
- Off-site soils intended for use as Site backfill cannot otherwise be defined as a solid waste in accordance with 6 NYCRR Part 360-1.2(a).
- If the contractor designates a source as "virgin" soil, it shall be further documented in writing to be native soil material from areas not having supported any known prior industrial or commercial development or agricultural use.
- Virgin soils should be subject to collection of one representative composite sample per source. The sample should be analyzed for TCL VOCs, SVOCs, pesticides, PCBs, arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, and cyanide. The soil will be acceptable for use as backfill provided that all parameters meet the appropriate restricted soil cleanup objectives of Part 375.

Non-virgin soils will be tested via collection of one composite sample per 500 cubic yards of material from each source area. If more than 1,000 cubic yards of soil are borrowed from a given off-site non-virgin soil source area and both samples of the first 1,000 cubic yards meet the appropriate restricted soil cleanup objectives of Part 375, the sample collection frequency will be reduced to one composite for every 2,500 cubic yards of additional soils from the same source, up to 5,000 cubic yards. For borrow sources greater than 5,000 cubic yards, sampling frequency may be reduced to one sample per 5,000 cubic yards, provided all earlier samples met the appropriate restricted soil cleanup objectives of Part 375.

6. Vapor Intrusion

The purpose of this section is to provide environmental guidelines for dealing with the potential for vapor intrusion into new buildings constructed on the Site.

6.1. New Building Construction

Vapor intrusion (VI) mitigation techniques will be designed for new buildings constructed on the Site. These techniques will include the use of sub-slab vapor mitigation systems, designed into the foundation of the buildings, and installation of a vapor barrier between the building foundation and the lowest concrete slab flooring. The NYSDEC and NYSDOH will be provided with vapor intrusion mitigation design drawings for comment and approval prior to construction. After the building construction is complete, an indoor air sample will be collected to verify the effectiveness of the VI mitigation. Results of the sampling will be provided to the NYSDEC and NYSDOH.

APPENDIX C

INSTITUTIONAL & ENGINEERING CONTROLS
CERTIFICATION FORM

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	ite No.	No. 915056		
Si	ite Name	Roblin Steel (formerly Wickwire Spencer)		
Ci Co All Si	ity/Town: ounty: Erie lowable U te Acreag wner: Nia	lse(s) (if applicable, does not address local zoning): Industrial e: 62.0 agara River World, Inc.		
Re	*	20 River Road, Tonawanda, NY 14150 Period: June 02, 2008 to January 15, 2010		
		Verification of Site Details	Вс	ox 2
			YES	NO
1.	Is the in	formation in Box 1 correct?	X	
	If NO, a	re changes handwritten above or included on a separate sheet?		
2.	Has son tax map	ne or all of the site property been sold, subdivided, merged, or undergone a amendment during this Reporting Period?		×
	Submitte	is documentation or evidence that documentation has been previously ed included with this certification?		
3.	Have an for or at	ny federal, state, and/or local permits (e.g., building, discharge) been issued the property during this Reporting Period?	& *	×
	If YES, i submitte	is documentation (or evidence that documentation has been previously ed) included with this certification?		
4.	If use of restriction	the site is restricted, is the current use of the site consistent with those ons?	¥	
	If NO, is	an explanation included with this certification?		
5.	nas any	significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415.7(c), new information revealed that assumptions made in the Qualitative Exposure nent regarding offsite contamination are no longer valid?	. N/A	
	If YES, is submitte	s the new information or evidence that new information has been previously ed included with this Certification?		
6.	are the a	significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415.7(c), assumptions in the Qualitative Exposure Assessment still valid (must be	NI	A
	certified	every five years)?		
	If NO, ar	e changes in the assessment included with this certification?		

SITE NO. 915056

Description of Institutional Controls

Parcel

Institutional Control

S_B_L Image: 64.08-1-1.1

Ground Water Use Restriction

Landuse Restriction Site Management Plan

S_B_L Image: 64.08-1-1.2

Ground Water Use Restriction

Landuse Restriction Site Management Plan

Description of Engineering Controls

Parcel

Engineering Control

S B L Image: 64.08-1-1.1

Fencing/Access Control

S_B_L Image: 64.08-1-1.2

Fencing/Access Control

Attach documentation if IC/ECs cannot be certified or why IC/ECs are no longer applicable. (See instructions)

Control Description for Site No. 915056

Parcel: 64.08-1-1.1

An Environmental Easement was filed with the Erie County Clerk's Office on November 26, 2007. The Controlled Property may be used for restricted commercial and industrial use as long as the following long-term engineering controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the Erie County Department of Health; (2) any proposed soil excavation on the property requires prior notification and prior approval of NYSDEC in accordance with the Site Management Plan approved by NYSDEC for this Controlled Property. The excavated soil must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives; and (3) evaluate the potential for vapor intrusion for any buildings developed on the site. Provision for mitigation, such as installation of a vapor barrier and sub-slab vapor system or other engineering controls shall be implemented on all structures, prior to occupancy.

Post-closure groundwater monitoring is required to ensure the long term effectiveness of the remedy.

Parcel: 64.08-1-1.2

An Environmental Easement was filed with the Erie County Clerk's Office on November 26, 2007. The Controlled Property may be used for restricted commercial and industrial use as long as the following long-term engineering controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the Erie County Department of Health; (2) any proposed soil excavation on the property requires prior notification and prior approval of NYSDEC in accordance with the Site Management Plan approved by NYSDEC for this Controlled Property. The excavated soil must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives; and (3) evaluate the potential for vapor intrusion for any buildings developed on the site. Provision for mitigation, such as installation of a vapor barrier and sub-slab vapor system or other engineering controls shall be implemented on all structures, prior to occupancy.

Post-closure groundwater monitoring is required to ensure the long term effectiveness of the remedy.

Periodic Review Report (PRR) Certification Statements

1				
1.	I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the directi reviewed by, the party making the certification; 	on of, an	ıd	
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generally	this certif accepte YES	fication ed NO	
		×		
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for earn Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:	ach Insti all of the	itutional	
(a) Cor	the Institutional Control and/or Engineering Control(s) employed at this site is unchange ntrol was put in-place, or was last approved by the Department;	d since t	the date that the	Э
(b) the	nothing has occurred that would impair the ability of such Control, to protect public healt environment;	h and		
(c) eva	access to the site will continue to be provided to the Department, to evaluate the remedulate the continued maintenance of this Control;	, includi	ng access to	
(d) Cor	nothing has occurred that would constitute a violation or failure to comply with the Site ${\tt N}$	/lanagem	nent Plan for thi	S
(e) and	if a financial assurance mechanism is required by the oversight document for the site, the sufficient for its intended purpose established in the document.			/alid
		い YES	A NO	
			NO	
3.	If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in the	ne Decisi	ion Documen	ıt);
	I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as requestion Document) are being met.	uired in t	he ∾/A	
1.	If this site has a Monitoring Plan (or equivalent as required in the remedy selection docur	nent);		
	I certify by checking "YES" below that the requirements of the Monitoring Plan (or equivalent the Decision Document) is being met.	ent as re	equired	
		YES	NO	
		×		

IC CERTIFICATIONS SITE NO. 915056

Box 6

I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.
Bonnie M Leto at 4000 River Rd. Ionawarda, NY print name print business address
am certifying as(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.
Signature of Owner or Remedial Party Rendering Certification Date
IC/EC CERTIFICATIONS
QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.
print name print business address.
print name print business address
am certifying as a Qualified Environmental Professional for the
(Owner or Remedial Party) for the Site named in the Site Details Section of this form.
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Stamp (if Required) Date

APPENDIX D

LABORATORY ANALYTICAL RESULTS

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 972-0371 Rochester (866) 437-0255 * New Jersey (908) 581-4285

Mr. David Rowlinson Stearns & Wheler GHD 415 N. French Rd. Amherst, NY 14228

November 13, 2009

RE:

Analytical Report:

Envirotek II

Order No.: U0910566

Dear Mr. Rowlinson:

Upstate Laboratories, Inc. received 14 samples on 10/28/09 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony Scala
President/CEO

resident/CEO

Enclosures: ASP-B Pkg., report, invoice

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

NY Lab ID 10170 NJ Lab ID NY750 PA Lab ID 68-01096

Analytical Report

CLIENT: Stearns & Wheler GHD

Lab Order: U0910566 **Collection Date:** 10/27/2009 10:15:00 AM

Project: Envirotek II Lab ID: U0910566-00

U0910566-001 Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		820	60ASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 11:18:00 AM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Freon-113	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Acetone	ND	10	μg/L	1	11/6/2009 11:18:00 AM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
2-Butanone	ND	10	μg/L	1	11/6/2009 11:18:00 AM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Chloroform	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Benzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Dec-09

Client Sample ID: ENV-1

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 1 of 28

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-1

U0910566 Lab Order:

Collection Date: 10/27/2009 10:15:00 AM

Date: 21-Dec-09

Project: Envirotek II Lab ID: U0910566-001

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260ASP05_W			Analyst: LEF
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 11:18:00 AM
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Toluene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
2-Hexanone	ND	10	μg/L	1	11/6/2009 11:18:00 AM
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
o-Xylene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Styrene	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
Bromoform	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 11:18:00 AM
			· -		

NOTES:

TICS: No compounds were detected.

Approved By: Date: Page 2 of 28 Qualifiers: Low Level Value exceeds Maximum Contaminant Value

> В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Analytical Report

Lab Order:

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-3R U0910566

Project: Envirotek II Collection Date: 10/27/2009 11:00:00 AM

Date: 21-Dec-09

Lab ID: U0910566-002 Matrix: AQUEOUS Analyses Result Limit Qual Units DF **Date Analyzed ASP/CLP TCL VOLATILE WATER** 8260ASP05 W Analyst: LEF 1,2,4-Trichlorobenzene ND 5.0 μg/L 1 11/6/2009 11:56:00 AM 1,2,4-Trimethylbenzene ND 5.0 µg/L 1 11/6/2009 11:56:00 AM 1,2-Dibromo-3-chloropropane ND 5.0 1 11/6/2009 11:56:00 AM µg/L 1,2-Dibromoethane ND 5.0 µg/L 1 11/6/2009 11:56:00 AM ND 5.0 μg/L 1 11/6/2009 11:56:00 AM 1,2-Dichlorobenzene 1,3,5-Trimethylbenzene ND 5.0 µg/L 1 11/6/2009 11:56:00 AM ND 5.0 1,3-Dichlorobenzene 1 11/6/2009 11:56:00 AM μg/L 5.0 11/6/2009 11:56:00 AM 1,4-Dichlorobenzene ND µg/L 1 ND 1,4-Dioxane 100 1 11/6/2009 11:56:00 AM μg/L Cyclohexane ND 5.0 µg/L 1 11/6/2009 11:56:00 AM Dichlorodifluoromethane ND 5.0 µg/L 1 11/6/2009 11:56:00 AM Freon-113 ND 5.0 1 11/6/2009 11:56:00 AM µg/L Isopropylbenzene ND 5.0 µg/L 1 11/6/2009 11:56:00 AM ND 5.0 Methyl Acetate µg/L 1 11/6/2009 11:56:00 AM Methyl tert-butyl ether ND 5.0 µg/L 1 11/6/2009 11:56:00 AM Methylcyclohexane ND 5.0 μg/L 1 11/6/2009 11:56:00 AM n-Butylbenzene ND 5.0 1 11/6/2009 11:56:00 AM µg/L ND 5.0 n-Propylbenzene μg/L 1 11/6/2009 11:56:00 AM ND 5.0 sec-Butylbenzene µg/L 1 11/6/2009 11:56:00 AM ND 5.0 tert-Butylbenzene μg/L 1 11/6/2009 11:56:00 AM Trichlorofluoromethane ND 5.0 µg/L 11/6/2009 11:56:00 AM ND 5.0 Chloromethane µg/L 1 11/6/2009 11:56:00 AM Vinyl chloride 2 5.0 J 1 11/6/2009 11:56:00 AM μg/L Bromomethane ND 5.0 µg/L 1 11/6/2009 11:56:00 AM Chloroethane ND 5.0 1 11/6/2009 11:56:00 AM µg/L Acetone ND 10 μg/L 1 11/6/2009 11:56:00 AM 1.1-Dichloroethene ND 5.0 µg/L 1 11/6/2009 11:56:00 AM ND 5.0 Carbon disulfide µg/L 1 11/6/2009 11:56:00 AM Methylene chloride ND 5.0 11/6/2009 11:56:00 AM μg/L 1 trans-1,2-Dichloroethene ND 5.0 µg/L 1 11/6/2009 11:56:00 AM 1.1-Dichloroethane 5.0 11/6/2009 11:56:00 AM 4 J μg/L 1 2-Butanone ND 10 1 11/6/2009 11:56:00 AM μg/L cis-1.2-Dichloroethene 5.0 11/6/2009 11:56:00 AM 5.3 μg/L 1 ND 11/6/2009 11:56:00 AM Chloroform 5.0 µg/L 1,1,1-Trichloroethane ND 5.0 μg/L 11/6/2009 11:56:00 AM 1 Carbon tetrachloride ND 5.0 µg/L 11/6/2009 11:56:00 AM ND 5.0 Benzene µg/L 1 11/6/2009 11:56:00 AM 1.2-Dichloroethane ND 5.0 μg/L 1 11/6/2009 11:56:00 AM 11/6/2009 11:56:00 AM Trichloroethene 5.4 5.0 µg/L 1

Approved By:

Oualifiers: Low Level

> В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Е Value above quantitation range

J Analyte detected below quantitation limits

Date:

Spike Recovery outside accepted recovery limits

Page 3 of 28

Analytical Report

CLIENT:

Stearns & Wheler GHD

Client Sample ID: ENV-3R

Lab Order: U0910566

Collection Date: 10/27/2009 11:00:00 AM

Date: 21-Dec-09

Project: Envirotek II
Lab ID: U0910566-002

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260ASP05 W			Analyst: LEF
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 11:56:00 AM
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Toluene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
2-Hexanone	ND	10	μg/L	1	11/6/2009 11:56:00 AM
Tetrachloroethene	4	5.0	J μg/L	1	11/6/2009 11:56:00 AM
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
o-Xylene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Styrene	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
Bromoform	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 11:56:00 AM
NOTES.					

NOTES:

TICS: No compounds were detected.

 Approved By:
 Date:
 Page 4 of 28

 Qualifiers:
 * Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis exec

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Analytical Report

Stearns & Wheler GHD **Client Sample ID:** ENV-9 **CLIENT:**

U0910566 **Collection Date:** 10/27/2009 11:30:00 AM Lab Order:

Project: Envirotek II Lab ID: U0910566-003

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260/	ASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 12:34:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 12:34:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 12:34:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM

Approved By	7	:
-------------	---	---

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 28

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Stearns & Wheler GHD

Client Sample ID: ENV-9

Lab Order: U0910566

Collection Date: 10/27/2009 11:30:00 AM

Date: 21-Dec-09

Project: Envirotek II
Lab ID: U0910566-003

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		8260ASP05 W			Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 12:34:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 12:34:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 12:34:00 PM	
NOTES						

NOTES:

TICS: No compounds were detected.

 Approved By:
 Date:
 Page 6 of 28

 Qualifiers:
 * Value exceeds Maximum Contaminant Value

Е

J

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-8

U0910566 **Collection Date:** 10/27/2009 12:00:00 PM Lab Order:

Project: Envirotek II Lab ID: U0910566-004

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8:	260AS	SP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,2,4-Trimethylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,2-Dibromoethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,2-Dichlorobenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,3,5-Trimethylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,3-Dichlorobenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,4-Dichlorobenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,4-Dioxane	ND	100		μg/L	1	11/6/2009 1:12:00 PM
Cyclohexane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Freon-113	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Isopropylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Methyl Acetate	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Methyl tert-butyl ether	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Methylcyclohexane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
n-Butylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
n-Propylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
sec-Butylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
tert-Butylbenzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Trichlorofluoromethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Chloromethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Vinyl chloride	3	5.0		μg/L	1	11/6/2009 1:12:00 PM
Bromomethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Chloroethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Acetone	ND	10		μg/L	1	11/6/2009 1:12:00 PM
1,1-Dichloroethene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Carbon disulfide	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Methylene chloride	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
trans-1,2-Dichloroethene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,1-Dichloroethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
2-Butanone	ND	10		μg/L	1	11/6/2009 1:12:00 PM
cis-1,2-Dichloroethene	29	5.0		μg/L	1	11/6/2009 1:12:00 PM
Chloroform	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,1,1-Trichloroethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Carbon tetrachloride	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Benzene	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
1,2-Dichloroethane	ND	5.0		μg/L	1	11/6/2009 1:12:00 PM
Trichloroethene	5	5.0	J	μg/L	1	11/6/2009 1:12:00 PM

Approved By

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

Page 7 of 28

Е Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-8 U0910566

Lab Order: Envirotek II **Project:** Lab ID: U0910566-004 **Collection Date:** 10/27/2009 12:00:00 PM

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		8260ASP05 W			Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 1:12:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 1:12:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 1:12:00 PM	
NOTES						

NOTES:

TICS: No compounds were detected.

Approved B	By: _		Date:	Page 8 of 28
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Stearns & Wheler GHD

GHD Client Sample ID: ENV-7

Date: 21-Dec-09

Lab Order: U0910566 **Collection Date:** 10/27/2009 12:45:00 PM

Project: Envirotek II
Lab ID: U0910566-0

U0910566-005 **Matrix:** AQUEOUS

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260		Analyst: LEF	
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 1:51:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Vinyl chloride	98	5.0	μg/L	1	11/6/2009 1:51:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 1:51:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 1:51:00 PM
cis-1,2-Dichloroethene	93	5.0	μg/L	1	11/6/2009 1:51:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 9 of 28

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-7 Lab Order: U0910566 **Collection Date:** 10/27/2009 12:45:00 PM

Envirotek II **Project:** Lab ID: U0910566-005

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		8260AS			Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 1:51:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 1:51:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 1:51:00 PM	
NOTES:						

NOTES:

TICS: No compounds were detected.

Approved By:	Date:	Page 10 of 28
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT: Stearns & Wheler GHD

Client Sample ID: GW-3

Date: 21-Dec-09

Lab Order: U0910566 **Collection Date:** 10/27/2009 3:00:00 PM

Project: Envirotek II

Lab ID: U0910566-006 Matrix: AQUEOUS

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260/		Analyst: LEF	
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 2:48:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 2:48:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 2:48:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM

Approved By	7	:
-------------	---	---

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 11 of 28

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

Lab Order:

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: GW-3 U0910566 Collection Date: 10/27/2009 3:00:00 PM

Project: Envirotek II Lab ID: U0910566-006

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		8260AS			Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 2:48:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 2:48:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 2:48:00 PM	
NOTES:						

NOTES:

TICS: No compounds were detected.

Page 12 of 28 Approved By: Date: Qualifiers: Low Level Value exceeds Maximum Contaminant Value

> В Analyte detected in the associated Method Blank Н

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Е Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: NRG-4 U0910566 Collection Date: 10/27/2009 4:00:00 PM Lab Order:

Project: Envirotek II

Lab ID: U0910566-007 Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826		Analyst: LEF	
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 3:26:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 3:26:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 3:26:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM

Approved By

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Page 13 of 28

Date: 21-Dec-09

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Stearns & Wheler GHD

Client Sample ID: NRG-4

Lab Order: U0910566

Collection Date: 10/27/2009 4:00:00 PM

Date: 21-Dec-09

Project: Envirotek II
Lab ID: U0910566-007

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		826	0ASP05_W		Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 3:26:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 3:26:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 3:26:00 PM	
NOTES						

NOTES:

TICS: No compounds were detected.

Approved By:		Date:	Page 14 of 28	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Stearns & Wheler GHD

er GHD Client Sample ID: NRG-3

Lab Order: U0910566 **Collection Date:** 10/27/2009 5:00:00 PM

Project: Envirotek II
Lab ID: U0910566-008

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260	DASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,2,4-Trimethylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,2-Dibromo-3-chloropropane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,2-Dibromoethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,2-Dichlorobenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,3,5-Trimethylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,3-Dichlorobenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,4-Dichlorobenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,4-Dioxane	ND	2000	μg/L	20	11/6/2009 4:04:00 PM
Cyclohexane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Dichlorodifluoromethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Freon-113	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Isopropylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Methyl Acetate	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Methyl tert-butyl ether	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Methylcyclohexane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
n-Butylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
n-Propylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
sec-Butylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
tert-Butylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Trichlorofluoromethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Chloromethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Vinyl chloride	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Bromomethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Chloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Acetone	ND	200	μg/L	20	11/6/2009 4:04:00 PM
1,1-Dichloroethene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Carbon disulfide	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Methylene chloride	ND	100	μg/L	20	11/6/2009 4:04:00 PM
trans-1,2-Dichloroethene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,1-Dichloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
2-Butanone	ND	200	μg/L	20	11/6/2009 4:04:00 PM
cis-1,2-Dichloroethene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Chloroform	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,1,1-Trichloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Carbon tetrachloride	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Benzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,2-Dichloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Trichloroethene	ND	100	μg/L	20	11/6/2009 4:04:00 PM

Approved By

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 15 of 28

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Stearns & Wheler GHD

Client Sample ID: NRG-3

Lab Order: U0910566

Collection Date: 10/27/2009 5:00:00 PM

Date: 21-Dec-09

Project: Envirotek II
Lab ID: U0910566-008

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER	8260ASP05_W				Analyst: LEF
1,2-Dichloropropane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Bromodichloromethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
4-Methyl-2-pentanone	ND	200	μg/L	20	11/6/2009 4:04:00 PM
cis-1,3-Dichloropropene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Toluene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
trans-1,3-Dichloropropene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,1,2-Trichloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
2-Hexanone	ND	200	μg/L	20	11/6/2009 4:04:00 PM
Tetrachloroethene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Dibromochloromethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Chlorobenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Ethylbenzene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
m,p-Xylene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
o-Xylene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Styrene	ND	100	μg/L	20	11/6/2009 4:04:00 PM
Bromoform	ND	100	μg/L	20	11/6/2009 4:04:00 PM
1,1,2,2-Tetrachloroethane	ND	100	μg/L	20	11/6/2009 4:04:00 PM

NOTES:

TICS: No compounds were detected.

Sample foamed during purging procedure.

Approved By:	Date:	Page 16 of 28
Oualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

The reporting limits were raised due to matrix interference.

Analytical Report

CLIENT: Stearns & Wheler GHD

Lab Order: U0910566 **Collection Date:** 10/27/2009 4:45:00 PM

Project: Envirotek II
Lab ID: U0910566-009

Client Sample ID: ENV-4

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826	60ASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 4:43:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 4:43:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 4:43:00 PM
cis-1,2-Dichloroethene	3	5.0	J μg/L	1	11/6/2009 4:43:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM

Approvea By	:
-------------	---

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Page 17 of 28

Analytical Report

Lab Order:

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-4 U0910566 **Collection Date:** 10/27/2009 4:45:00 PM

Envirotek II **Project:** Lab ID: U0910566-009

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		826	3260ASP05 W		Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 4:43:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 4:43:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 4:43:00 PM	
NOTES:						

NOTES:

TICS: No compounds were detected.

Approved By:		Date:	Page 18 of 28	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Analytical Report

Lab Order:

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: NRG-6 U0910566 **Collection Date:** 10/27/2009 5:45:00 PM

Project: Envirotek II

Lab ID: U0910566-010 Matrix: AQUEOUS

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER	ATILE WATER 8260ASP05_W					
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 5:21:00 PM	
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Freon-113	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Chloromethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Bromomethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Chloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Acetone	ND	10	μg/L	1	11/6/2009 5:21:00 PM	
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
2-Butanone	ND	10	μg/L	1	11/6/2009 5:21:00 PM	
cis-1,2-Dichloroethene	22	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Chloroform	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Benzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Page 19 of 28

Date: 21-Dec-09

Е Value above quantitation range

Date:

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: NRG-6 U0910566 Lab Order:

Envirotek II **Project:** Lab ID: U0910566-010 **Collection Date:** 10/27/2009 5:45:00 PM

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		826	0ASP05_W		Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 5:21:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 5:21:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 5:21:00 PM	
NOTEO						

NOTES:

TICS: No compounds were detected.

Approved By:		Date:	Page 20 of 28
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Value above quantitation range

Analyte detected below quantitation limits J

Analytical Report

Lab Order:

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: NRG-5 U0910566 **Collection Date:** 10/27/2009 6:15:00 PM

Project: Envirotek II Lab ID: U0910566-011

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		82	:60ASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 7:16:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 7:16:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
trans-1,2-Dichloroethene	5	5.0	J μg/L	1	11/6/2009 7:16:00 PM
1,1-Dichloroethane	3	5.0	J μg/L	1	11/6/2009 7:16:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 7:16:00 PM
cis-1,2-Dichloroethene	59	5.0	μg/L	1	11/6/2009 7:16:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,2-Dichloroethane	2	5.0	J μg/L	1	11/6/2009 7:16:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Page 21 of 28

Е Value above quantitation range

Date:

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: NRG-5 U0910566 **Collection Date:** 10/27/2009 6:15:00 PM Lab Order:

Project: Envirotek II Lab ID: U0910566-011

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826	0ASP05_W		Analyst: LEF
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 7:16:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Toluene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
2-Hexanone	ND	10	μg/L	1	11/6/2009 7:16:00 PM
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
o-Xylene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Styrene	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
Bromoform	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 7:16:00 PM
NOTES:					

TICS: No compounds were detected.

Page 22 of 28 Approved By: Date: Qualifiers: Low Level Value exceeds Maximum Contaminant Value

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Е Value above quantitation range

J Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Analytical Report

Lab Order:

CLIENT: Stearns & Wheler GHD

U0910566 Collection Date: 10/27/2009 6:45:00 PM

Project: Envirotek II

Lab ID: U0910566-012 Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826	0ASP05 W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 10:29:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 10:29:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 10:29:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM

Aı	gg	rov	ved	B	v :

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Dec-09

Client Sample ID: ENV-11

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 23 of 28

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: ENV-11 U0910566

Lab Order: Envirotek II **Project:** Lab ID: U0910566-012 **Collection Date:** 10/27/2009 6:45:00 PM

Date: 21-Dec-09

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		826	0ASP05_W		Analyst: LEF	
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 10:29:00 PM	
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Toluene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
2-Hexanone	ND	10	μg/L	1	11/6/2009 10:29:00 PM	
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
o-Xylene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Styrene	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
Bromoform	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 10:29:00 PM	
NOTES						

NOTES:

TICS: No compounds were detected.

Approved By:	Date:	Page 24 of 28
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: Trip Blank U0910566 **Collection Date:** 10/27/2009 Lab Order:

Project: Envirotek II Lab ID: U0910566-013

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		8260	ASP05_W		Analyst: LEF
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 11:07:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 11:07:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 11:07:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Page 25 of 28

Е Value above quantitation range

Date:

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: Trip Blank U0910566 Collection Date: 10/27/2009 Lab Order:

Envirotek II **Project:** Lab ID: U0910566-013

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826	60ASP05_W		Analyst: LEF
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 11:07:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Toluene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
2-Hexanone	ND	10	μg/L	1	11/6/2009 11:07:00 PM
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
o-Xylene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Styrene	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
Bromoform	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 11:07:00 PM
NOTES:					

NOTES:

TICS: No compounds were detected.

Approved By:	Date:	Page 26 of 28
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Stearns & Wheler GHD Client Sample ID: Holding Blank

Lab Order: U0910566 **Collection Date:** 10/28/2009 3:15:00 PM

Project: Envirotek II
Lab ID: U0910566-014

Matrix: AQUEOUS

Date: 21-Dec-09

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		Analyst: LEF			
1,2,4-Trichlorobenzene	ND	5.0	0ASP05_W μg/L	1	11/6/2009 11:46:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,4-Dioxane	ND	100	μg/L	1	11/6/2009 11:46:00 PM
Cyclohexane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Freon-113	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Isopropylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Methyl Acetate	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Methyl tert-butyl ether	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Methylcyclohexane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
n-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
n-Propylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
sec-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
tert-Butylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Chloromethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Vinyl chloride	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Bromomethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Chloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Acetone	ND	10	μg/L	1	11/6/2009 11:46:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Carbon disulfide	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Methylene chloride	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
2-Butanone	ND	10	μg/L	1	11/6/2009 11:46:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Chloroform	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Carbon tetrachloride	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Benzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Trichloroethene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM

Approved By

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 27 of 28

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

Analytical Report

Stearns & Wheler GHD **CLIENT:**

Client Sample ID: Holding Blank

U0910566 **Collection Date:** 10/28/2009 3:15:00 PM Lab Order:

Project: Envirotek II Lab ID: U0910566-014 Matrix: AQUEOUS

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		826	0ASP05_W		Analyst: LEF
1,2-Dichloropropane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Bromodichloromethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/6/2009 11:46:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Toluene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
2-Hexanone	ND	10	μg/L	1	11/6/2009 11:46:00 PM
Tetrachloroethene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Dibromochloromethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Chlorobenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Ethylbenzene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
m,p-Xylene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
o-Xylene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Styrene	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
Bromoform	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	1	11/6/2009 11:46:00 PM
NOTES					

NOTES:

TICS: No compounds were detected.

Page 28 of 28 Approved By: Date: Qualifiers: Low Level Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 21-Dec-09

Е Value above quantitation range

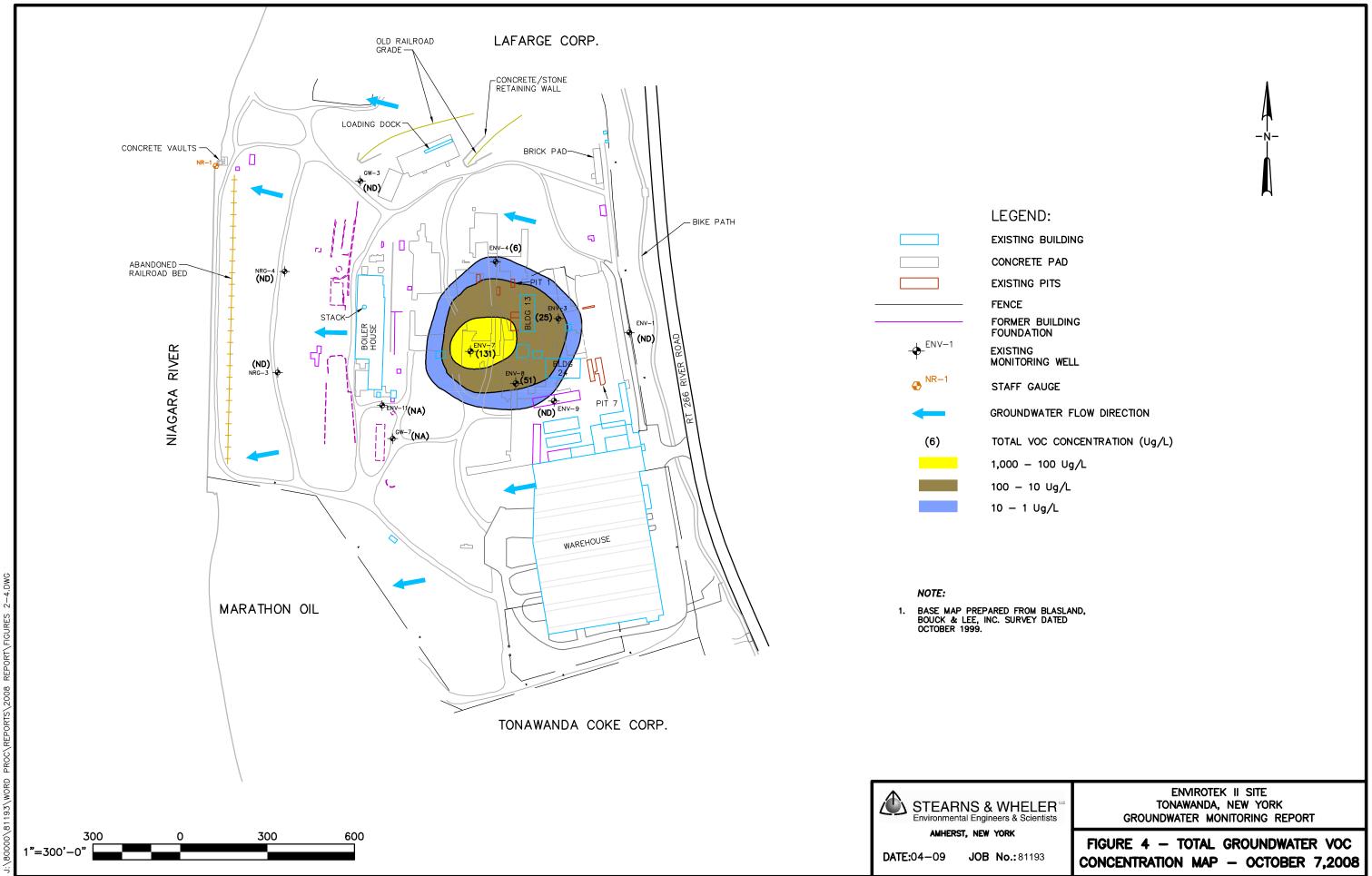
J Analyte detected below quantitation limits

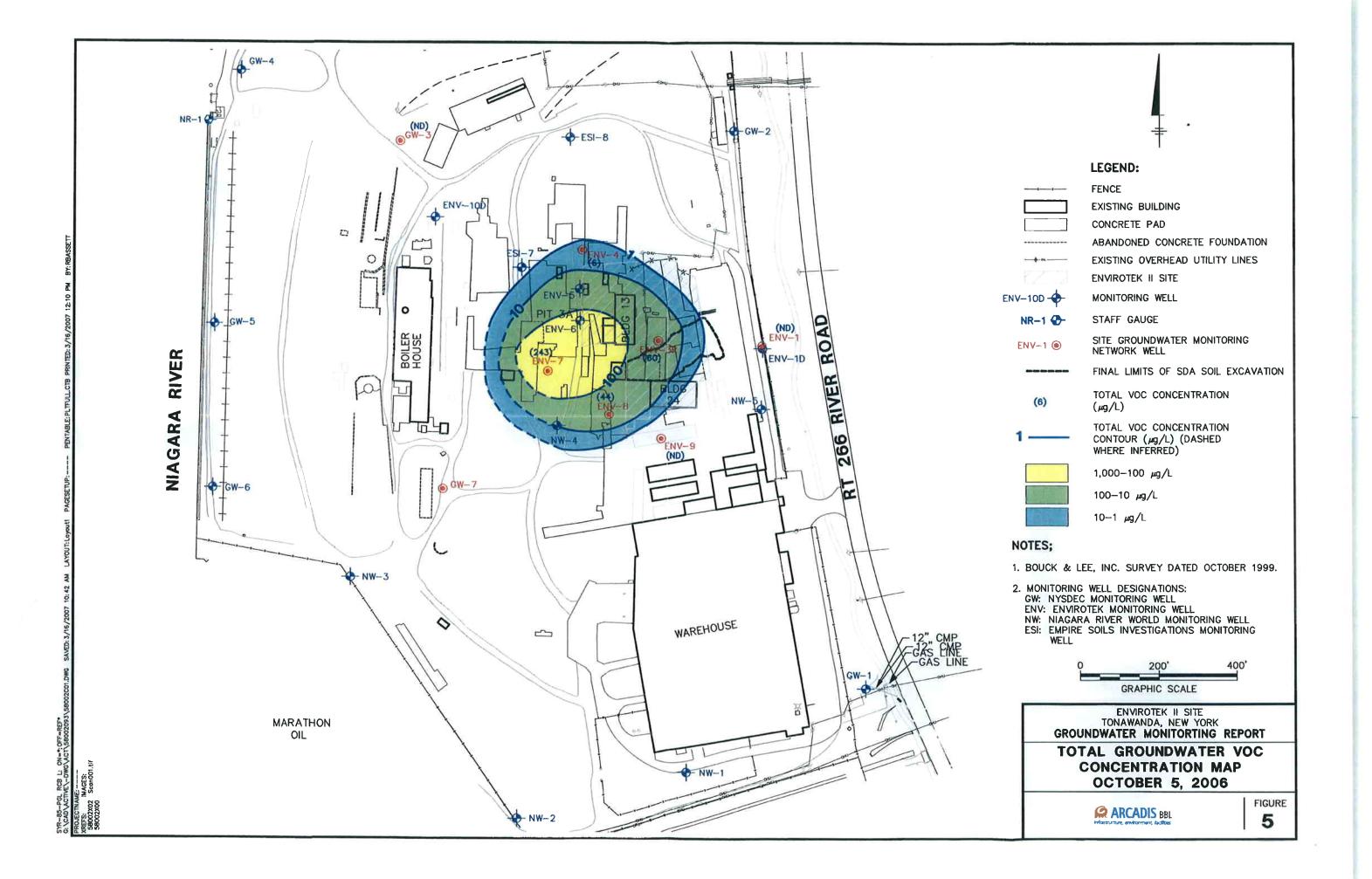
Upstate Laboratories, Inc. 6034 Corporate Drive • E. Syracuse, NY 13057-1017

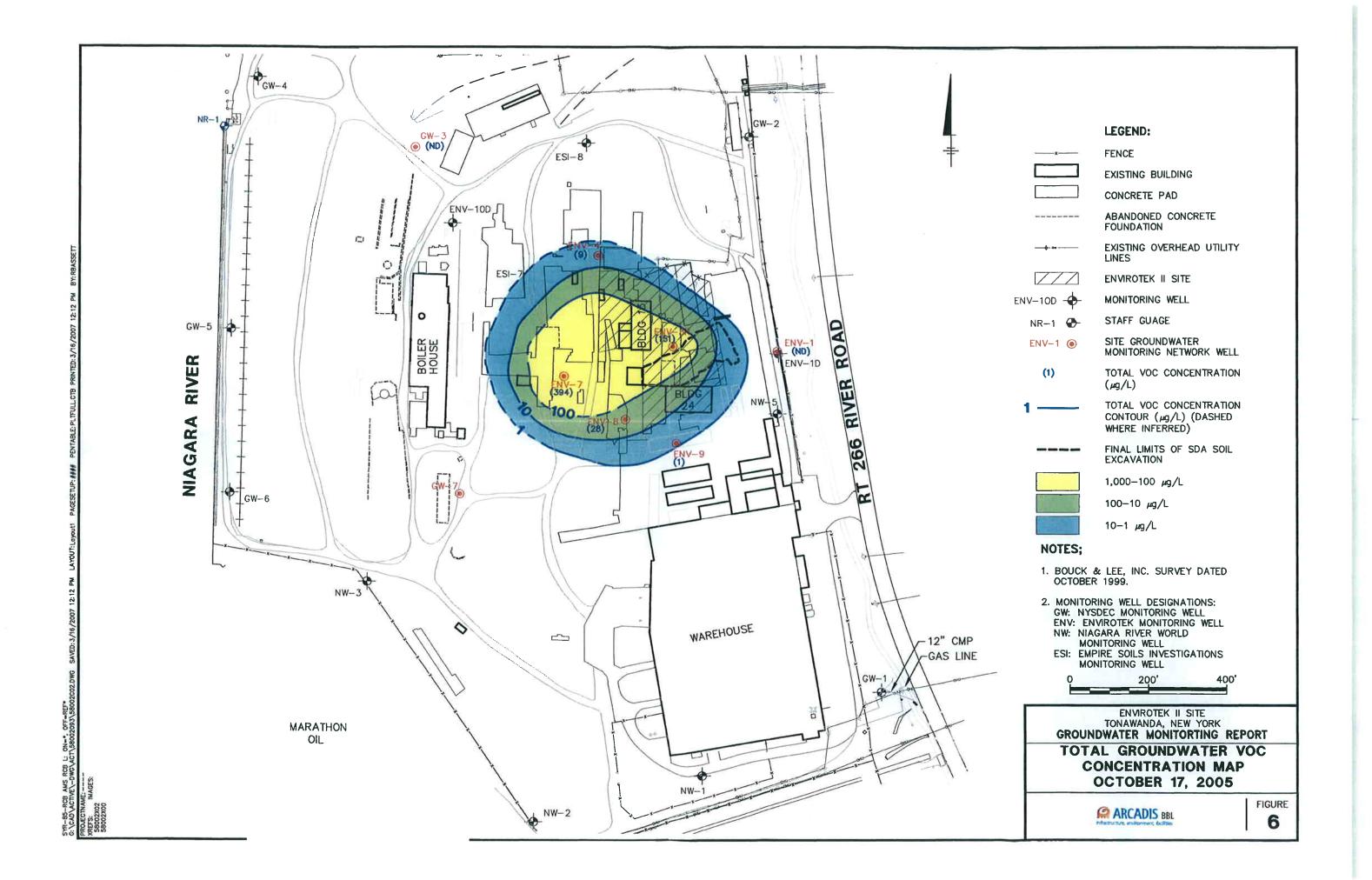
(315) 437 0255 Fay 437 1200

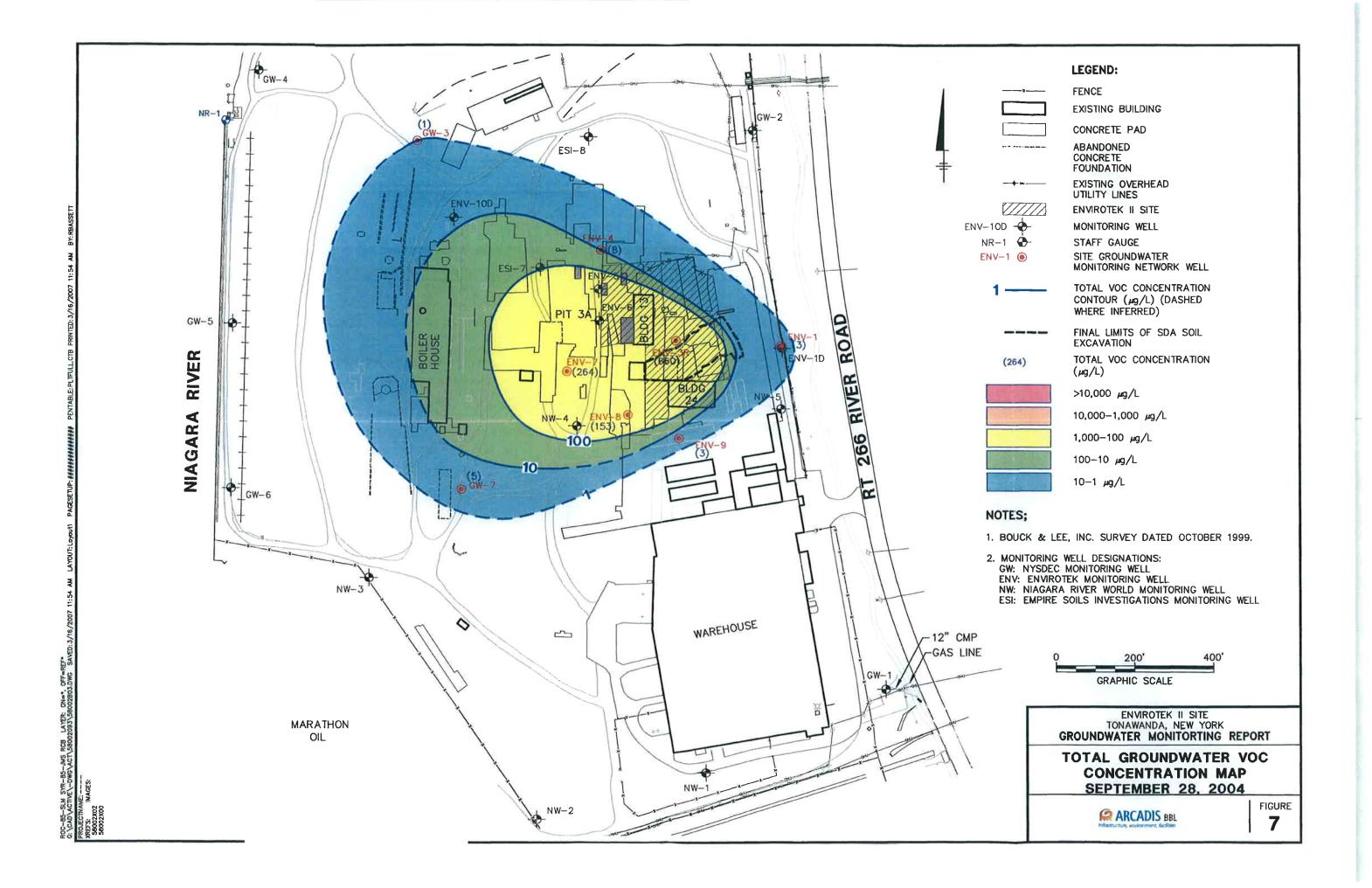
Chain Of Custody Record

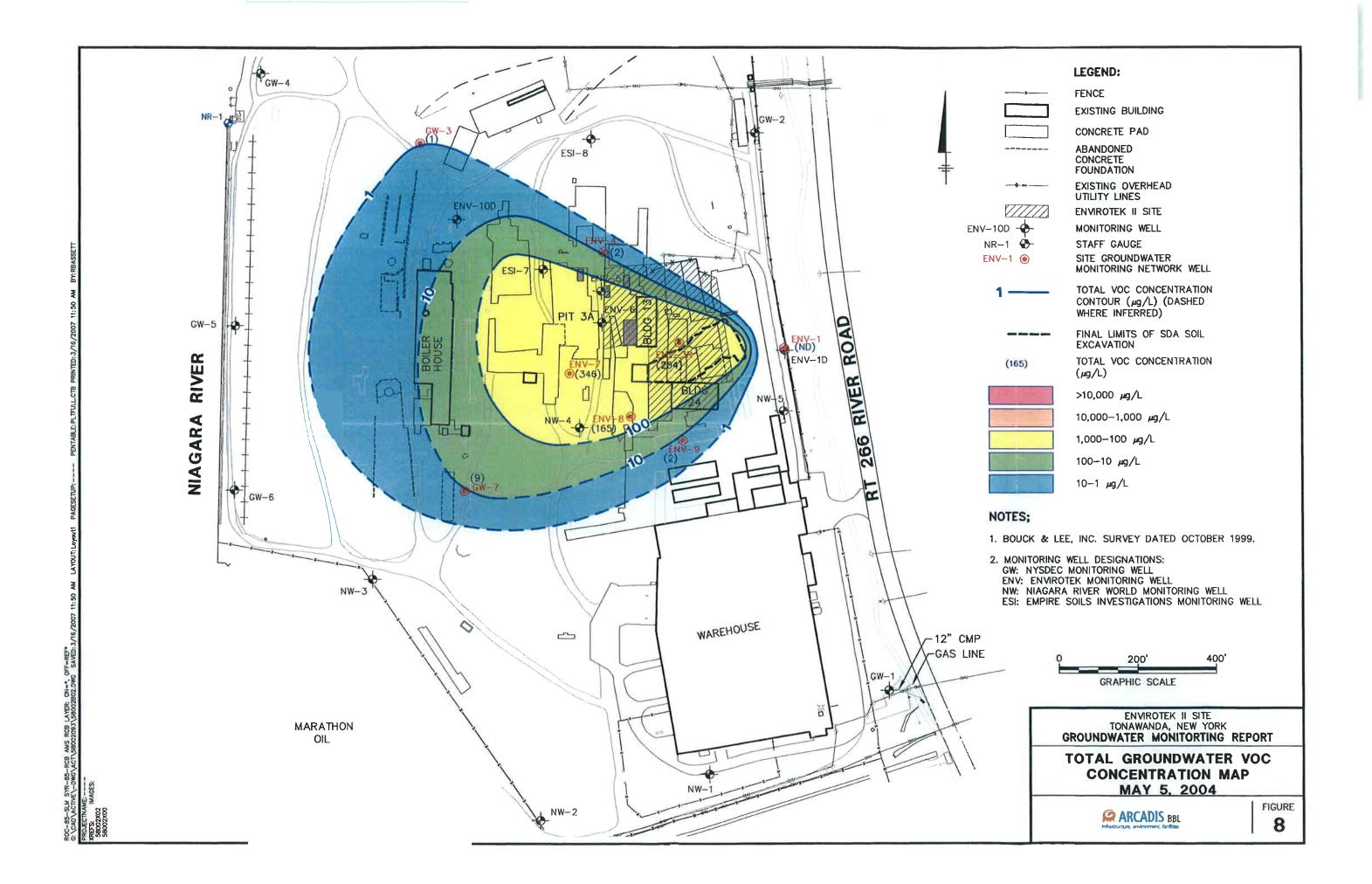
ULL Computer Input Form

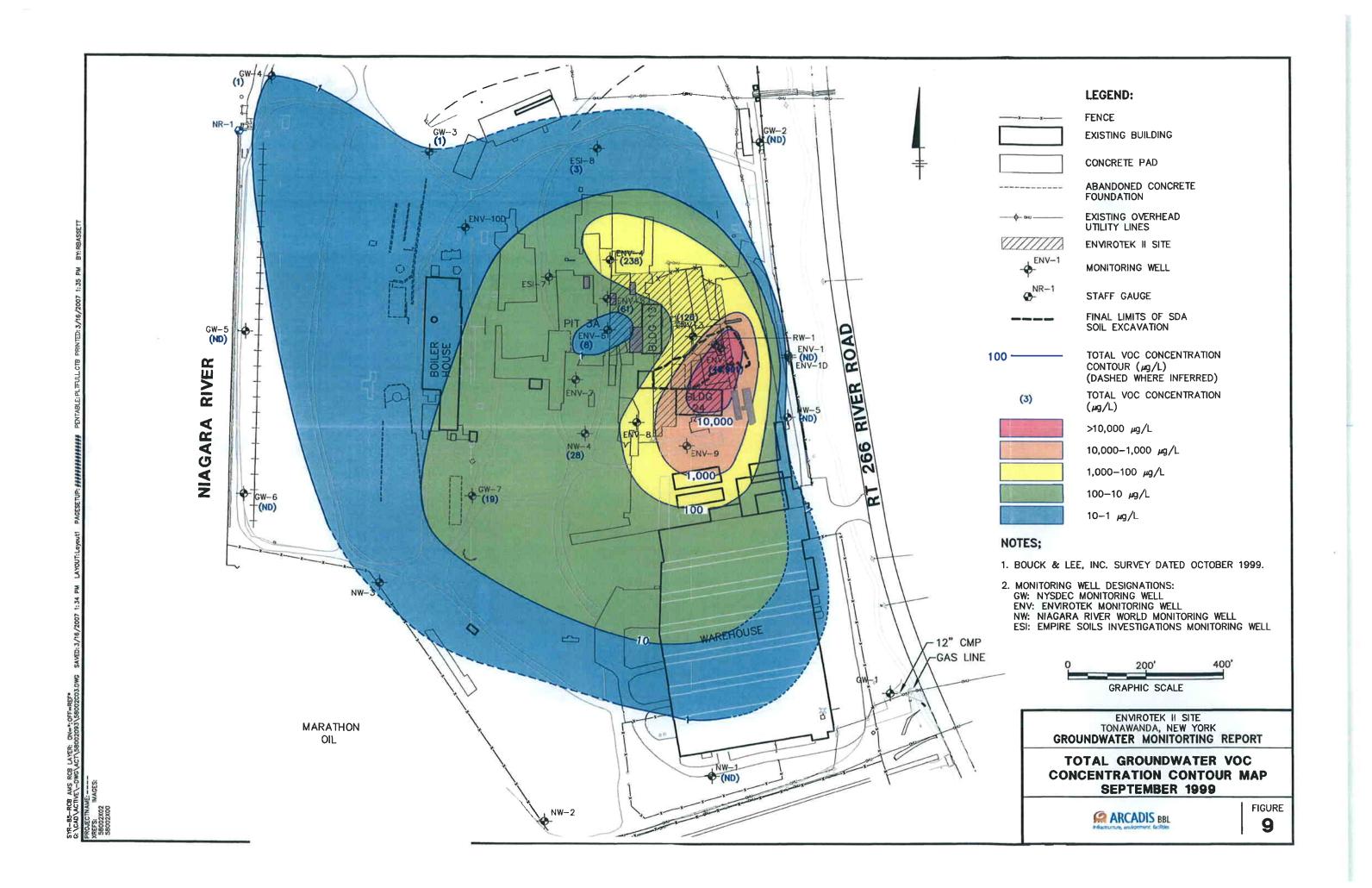

Client: Steams of Wheler Gt	DInc.		ect # / Project	Name			No.								_	_	
-1		Envir		Stearns + Wheler GHD Inc. Client Project # / Project Name Environmek II				"									Special Turnaround
Client Contact:	Phone #(716	Site Locati	ion (city/state)				of Con-										(Lab Notification
Dave Rowlinson	691-8503	1 -	Tonawardo	2NX			tain-										required)
Sample Location:	Date	Time	Matrix	Grab or	1. No. 2011 Contract	mal Use Only						- L	_		,		Remarks
EW-1	10/27/09	10:15	Aqueous	Comp.	1004	105lele 	2	1)	2)	3)	4)	5) 6)	7)	8)	9)	10)	ASP-CAT B
EW-3R	10/27/09	11:08	Aqueous	Comp		à	2	(X)				+				\vdash	INP CATE
FNV-9	10/27/09	11-30	Aqueous	Comp		3	2	X									ASP-CATB
EW-8	10/27/09	12:00	Aqueous	Comp		+4	2	X									ASP-CATB
ENV-7	10/27/09	12:45	Aqueous	Comp		5	2	X									ASP-CATB
GW-3	10/27/09	15:00	Aqueous	Comp		Ų	2	X									ASP.CATB
NRG-4	10/27/09	16:00	Aqueous	Comp		2	2	X			_ _	_ _					ASP-CATB
NRG-3	10/27/09	17:00	Aqueous	Comp		8	2	X			_			-			ASP-CATB
EW-4	16/27/09	16:45	Aqueous	Comp		9	2	X									ASP-CATB
NRG-6 (MS/MSD) parameter and method	10/27/09	17:45	Aqueous	Comp		DJ	6	X									ASP_CATB
1) TCL:8260 WH] 5		sample bottle:	typé	size	pres.	Sampl 7	Sria	y: (Pli anŦ	ease (Print)	2				Deliv	nternal Use Only /ery (check one): LI Sampled
2)							Compa	any:	slea	rns4	Who	ler G	HD_	Inc		□ P	ickup Dropoff C
3)						1 1	Relinq	7.6						Time			eived by: (Signature)
4)							R	3	1	Va	2	NZ	7/09	20:	∞		
5)							Reling	uishe	ed by	(Sign	nature	Date		Time		Rece	ived by: (Signature)
6)										. (O.g.	101010					. 1000	, rea by: (dignature)
7)							Polinge	uicho	d bu	/Ciar		Doto		Tima	-	Dana	had be (Classical)
3)-							Relinqu	uisiie	u by.	(Sigi	lature	Date		Time		nece	ived by: (Signature)
<u>))</u>							n. "			<u></u>			-		-		
0) Note: The numbered columns above cross-reference with the numbered columns in							Relinqu	ushe	d by:	(Sign	ature		280	Time	20.0	Rec'd	for (Ab by: (Signature)
Note: The numbered columns above c	ross-reference	with the num	bered columns ir	the upper r	ight-hand	corner.						10,		ON	الار	1	Muy J


6034 Corporate Drive • E. Syracuse, NY 13057-1017 (315) 437 0255 Fax 437 1300 Chain Of Custody Record


Client	- T ax	Client Pro	ject # / Projec	Name			1	10	т—	_					1111	Cor	nnut	ter Input Form
Client Stams+Weder GHD	Inc.	FAVIO	tek //	rvame			No.	"							0.5	00.	1	Special Turnaround
Olient Contact.	Phone #(7/6	Site Locati	on (city/state)				of Con-											Time
Dave Rowlinson	691-8503		nawarda, 1															(Lab Notification
Sample Location:	Date	Time	Matrix	Grab or	ULI Inti	ernal Use Onl	tain-											required)
105			0.0000000000000000000000000000000000000	Comp.	40.00	10566	y ers	1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	Remarks
NRG-5	10/27/09	18:15	Aqueous	Comp		11	2.	X			,	-	-/	+	-/	٠,	10)	ASD CATE
ENV-11	10/27/09	16:45	Aqueous	Comp		12		X				\dashv	\top	+	\dashv		-	ASD CATD
Trip Blank	10/27/09	-	Agurous	Comp	\$ 10 m	13	1	\checkmark				\dashv	+	+	\dashv			ASD CATED
(Holding Blant)	(0-2809)	(1515)	Witer	Tarih	William I	一件	1	X			\dashv	+	+	+	+			115 -CH/B
(100	(= 0, 3	110137	Lane	ginn			15	X			+	\dashv	+	+	+	\dashv	-	
					475.73			^			+	-	+	+	+	-	-	
					- H54.0	iko kuning. Kawa uningg			-	-+		+	+	-	+	-		
					With:	CONTRACTOR OF THE SECOND		-	-	-	-	+	+	+	-	-		
						2000年 東京教育		\dashv		\dashv	+	+	+	+	-	4	_	
							\vdash	-	\dashv	+	-	+	-	_	_	_	_	
parameter and method		 s	ample bottle:	type	size	pres.	Compl		(DI									44.198 v. (20. 7. 19.42) V. (19.55 V. 19.42)
1 TCL: 8260 VOAs			pres.	Sampl	ea by	\mathcal{Z}_{\sim}	ease	Print)	nde	,				Deliv	nternal Use Only rery (check one):			
							ULI Sampled □				LI Sampled							
2)							Skarns + Wholer GHD Inc. 3 cc				ckup Dropoff							
3)						1 1	100 TO 10				ived by: (Signature)							
4)							D	, _	, 5	A	0	- 1	1 1	1				(olghature)
3							1	1	. ~	X	1	- 119	127/0	9/10).(L	기		
5)							Relinqu	icho	d bur	/Sim		100		-		+		
5)							rioiiiq	113116	u by.	(Sigi	iature) Da	le	Tin	ne	H	ecei	ved by: (Signature)
)																		
1)							Relinqu	ished	d by:	(Sign	ature) Dat	e	Tim	ne	R	eceiv	ved by: (Signature)
7									•	-				1	WFK			-7. (o.g.iature)
)																		
0)						F	Relinqu	ished	by:	(Sign	ature	Dat	е	Tim	e	Re	ec'd/	for Lab by: (Signature)
Note: The numbered columns above cross-reference with the numbered columns in the upper right						corner.						10	2806	71	RVÌ		L	X(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
												10	U	1	10-		4	


APPENDIX E


HISTORICAL GROUNDWATER TOTAL VOC CONCENTRATION FIGURES



APPENDIX F

GROUNDWATER FIELD SAMPLING RECORDS

SITE	Envirotek II Sampling	DATE 10/27/09
Samplers:	Brian Doyle	SAMPLE ID ENV-I
	Depth of well (from reference point) Initial static water level (from top of casing) Top of PVC Casing Elevation	24.2 ft EL 555.26 6.8 ft EL 572.66 579.46
Evacuatio	n Method:	Well Volume Calculation
Subm	ersible Centrifugal	2in. casing: 17.4 ft. of water x .16 = 2.78 gallons
Airlif	Pos, Displ.	3in. casing:ft, of water x ,36 =gallons
Bailer	X >>> No. of bails	4in. casing: ft. of water x .65 = gallons
Volun	> 3 volumes: yes no dry: yes no	
Field Test	pH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	14.5 °C 6.84 837 mS/cm 4.24 mg/l 10.7 NTUs 121 mV
Sampling		Time: 10:15 AM
Sampling M	ethod: Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyses: Baseline Routine X
Observati	ons:	
	Weather/Temperature: Partly Overcast, 58°F	
	Physical Appearance and Odor of Sample: <u>Light</u>	at brown with some sediment, then clear. No odor
Comment	s: 9/16" socket needed to open cover. Well is flush with pavement.	

SITE	Enviro	tek II Sampling			DATE	10/27/09	
Samplers:	Brian I	Doyle			SAMPLE ID	ENV-3	
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation		15.8 9.5 580.14		564.34 570.69	
Evacuation	n Metho	od:			Well Volume	e Calculation	
Subme	ersible	Centrifugal		2in, casing:	6.4	ft, of water x $.16 = 1.0$	2 gallons
Airlift	t	Pos. Displ.		3 in. casing:		ft. of water x .36 =	gallons
Bailer	•	X >>> No. of bails		4in. casing:		ft. of water x .65 =	gallons
Volum	ne of wate	er removed 3.05 gals. > 3 volumes: yes no dry: yes no					
Field Tests	s:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	4.16	-			
Sampling:	:					Time: 11:00 AM	
Sampling Mo	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X		Analyses:	Baseline Routine	X	
Observation	ons:						
	Weathe	er/Temperature: Partly Overcast, 60°F					
	Physica	al Appearance and Odor of Sample:	Clear, n	o odor.			
Comments	s:	9/16" socket needed to open cover. Well is flush with pavement.					

SITE	Enviro	tek II Sampling	i.		DATE	10/27/09		
Samplers:	Brian I	Doyle			SAMPLE ID	ENV-4		
		Depth of well (from top of casing) Initial static water level (from top of casing Top of PVC Casing Elevation		23.3 12.0 582.60		559.3 570.60		
Evacuatio	n Metho	od:			Well Volume	e Calculation		
Subm	ersible	Centrifugal		2in. casing:	11.3	ft, of water x 16 =		1,81 gallons
Airlif	ì	Pos. Displ.		3in. casing:	*	ft, of water x .36 =		gallons
Bailer	г	X >>> No. of bails		4in. casing:	til	ft. of water x .65 =	-	gallons
Volur	me of wate	er removed 5.42 gals. > 3 volumes: yes no dry: yes no	ĺ					
Field Test	ts:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	3.47					
Sampling	:					Time:	4:45 PM	
Sampling M	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	•	Analyses:	Baseline Routine	X		
Observati	ons:							
	Weathe	er/Temperature: Partly Overcast, 60°F						
	Physica	al Appearance and Odor of Sample:	Clear, se	ome sulfur o	dor.			
Comment	ts <u>:</u>	Well outside cap rusted and almost det There is an obstruction in the well at 7		1.				

SITE	Enviro	tek II Sampling			DATE	_10/27/09		
Samplers:	Brian l	Doyle			SAMPLE ID	ENV-7		
		Depth of well (from top of casing) Initial static water level (from top of casing Top of PVC Casing Elevation		7.2 2.3		565.54 570.44		
Evacuation	n Metho	od:			Well Volume	e Calculation		
Subm	ersible	Centrifugal	2in, casin	g:	4.9	ft, of water x .16 =		0.78 gallons
Airlift	t	Pos. Displ.	3in. casin	g:	0	ft. of water x $.36 =$		gallons
Bailer	г	X >>> No. of bails	4in. casin	ıg:		ft. of water x .65 =	-	gallons
Volun	ne of wate	er removed 2.35 gals. > 3 volumes: yes no dry; yes no	Î					
Field Test	rs:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	14.2 °C 7.56 0.771 mS/cm 6.02 mg/l 183 NTUs 121 mV					
Sampling:	:					Time: 12	:45 PM	
Sampling M	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyse	s:	Baseline Routine	X		
Observation	ons:							
	Weathe	er/Temperature: Overcast, 60°F						
	Physica	al Appearance and Odor of Sample:	No odor, dark br	owi	n initally, ther	clear.		
Comment	:s:	Well pad is intact and the stickup proto	ective cover is in	goo	d condition.			

SITE	Enviro	tek II Sampling		DATE	10/27/09
Samplers:	Brian l	Doyle		SAMPLE ID	ENV-8
		Depth of well (from top of casing)			565.31 570.6
Evacuation	n Metho	od:		Well Volume	e Calculation
Subme	ersible	Centrifugal	2in. casing:	5.3	ft. of water $x_*16 = 0.85$ gallons
Airlist	t	Pos. Displ.	3in. casing:		ft, of water x .36 = gallons
Bailer	•	X >>> No. of bails	4in. casing:	·	ft. of water x .65 =gallons
Volun	ne of wate	or removed 2.54 gals. > 3 volumes: yes no dry: yes no			
Field Tests	s:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	16.5 °C 7.36 1.14 mS/cm 3.62 mg/l 71.5 NTUs 13 mV		
Sampling:					Time: 12:00 PM
Sampling Me	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyses:	Baseline Routine	X
Observation	ons:				
	Weathe	r/Temperature: Overcast, 60°F			
	Physica	1 Appearance and Odor of Sample:	Clear, some odor		
Comments	s:	Well pad is intact and the stickup protect	ctive cover is in go	od condition.	

SITE	Enviro	tek II Sampling		DATE	10/27/09
Samplers:	Brian I	Doyle		SAMPLE ID	ENV-9
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation			565.35 570.65
Evacuation	n Metho	od:		Well Volume	e Calculation
Subme	ersible	Centrifugal	2in. casing:	5.3	ft. of water x .16 = 0.85 gallons
Airlift	ì	Pos. Displ.	3in, casing:	-	ft. of water x .36 = gallons
Bailer	r	X >>> No. of bails	4in. casing:		ft. of water x .65 = gallons
Volun	ne of wate	r removed 2.54 gals. > 3 volumes: yes no dry: yes no			
Field Tests	es:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	16.4 °C 7.27 2.38 mS/cm 5.89 mg/l 95.8 NTUs -47 mV		
Sampling:	:				Time: 11:30 AM
Sampling Me	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyses:	Baseline Routine	x
Observation	ons:				
	Weathe	r/Temperature: Partly Overcast, 60°F			
	Physica	1 Appearance and Odor of Sample:	Some odor, dark gra	yish color	
Comments	s:	Well pad is intact and the stickup protection	ctive cover is in goo	d condition.	

SITE	Enviro	tek II Sampling			DATE	10/27/09	
Samplers:	Brian I	Doyle			SAMPLE ID	ENV-11	
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation		19.8 7.8 581.96		562.16	
Evacuatio	n Metho	od:			Well Volume	e Calculation	
Subm	ersible	Centrifugal		2in. casing:	12.0	ft. of water x .16 =	1.92 gallons
Airlift	ì	Pos. Displ.		3in. casing:	**	ft. of water x .36 =	gallons
Bailer	г	X >>> No. of bails		4in. casing:		ft. of water x .65 =	gallons
Volun	ne of wate	er removed 5.76 gals. > 3 volumes: yes no dry: yes no					
Field Test	es:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	4.27	mS/cm mg/l NTUs			
Sampling:	:					Time: 5:15 PM	
Sampling Mo	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X		Analyses:	Baseline Routine	x	
Observation	ons:						
	Weathe	or/Temperature: Overcast, 60°F					
	Physica	al Appearance and Odor of Sample:	Some od	or, clear			
Comments	s:	9/16" socket needed to open cover. Well is flush with brush.					

SITE Envirotek II Sampling	DATE 10/27/09
Samplers: Brian Doyle	SAMPLE ID GW-3
Depth of well (from top of casing) Initial static water level (from top of casing Top of PVC Casing Elevation	
Evacuation Method:	Well Volume Calculation
Submersible Centrifugal	2 in. casing: 11.8 ft. of water x .16 = 1.89 gallons
Airlift Pos. Displ.	3 in. casing: ft. of water x .36 = gallons
Bailer X >>> No. of bails	4in. casing: ft. of water x .65 = gallons
Volume of water removed 5.66 gals. > 3 volumes: yes no dry: yes no	
Field Tests: Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	14.4 °C 10.4 1.94 mS/cm 3.92 mg/l 78 NTUs -110 mV
Sampling:	Time: 3:05 PM
Sampling Method: Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyses: Baseline Routine X
Observations:	
Weather/Temperature: Overcast, 60°F	
Physical Appearance and Odor of Sample:	No odor, clear
1 Aystean Appearation and Odor of Sample.	The back, bleat
Comments: Well pad is intact and the stickup prot	tective cover is in good condition.

SITE	Enviro	ek II Sampling		DATE	10/27/09			
Samplers:	Brian I	Doyle		SAMPLE ID	NRG-3			
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation	15.7 12.7 584.55		<u>568.85</u> <u>571.85</u>			
Evacuation	n Metho	d:		Well Volume	e Calculation			
Subme	ersible	Centrifugal	2in. casing:	3.0	ft. of water x .16 = 0.48 gallons			
Airlift	:	Pos. Displ.	3in. casing:		ft. of water x .36 = gallons			
Bailer		X >>> No. of bails	4in. casing:		ft, of water x .65 = gallons			
Volun	ne of wate	r removed 0.50 gals. > 3 volumes: yes no dry: yes no						
Field Test	s:	pH Conductivity 0	16.1 °C 8.38 .355 mS/cm 2.52 mg/l 230 NTUs -4 mV					
Sampling:	:				Time: 5:00 PM			
Sampling Mo	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Analyses:	Baseline Routine	X			
Observation	ons:							
	Weathe	r/Temperature: Overcast, 60°F						
Physical Appearance and Odor of Sample:			ne petroleum odo	or, dark grayis	h color			
Comments: Well pad is intact and the stickup protective cover is in good condition.								

SITE	Enviro	tek II Sampling			DATE	10/27/09			
Samplers:	Brian l	Doyle			SAMPLE ID	NRG-4			
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation	-	18.4		563.91 571.31			
Evacuatio	n Metho	od:			Well Volume	e Calculation			
Subm	ersible	Centrifugal	2in.	casing:	7.4	ft. of water $x . 16 =$		1.18 gallons	
Airlift	ì	Pos. Displ.	3in.	casing:		ft. of water x .36 =		gallons	
Bailer	r	X >>> No. of bails	4in.	casing:		ft. of water x $.65 =$::-	gallons	
Volun	ne of wate	er removed 3.55 gals. > 3 volumes: yes no dry: yes no							
Field Test	ts:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	16.1 °C 9.87 0.466 mS 3.68 mg 27.5 NT -15 mV	/l Us					
Sampling:	:					Time:	4:00 PM		
Sampling M	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump X	Ana	ilyses:	Baseline Routine	X			
Observation	ons:								
	Weathe	or/Temperature: Overcast, 60°F							
	Physica	al Appearance and Odor of Sample:	Sulfur odor,	clear					
Comments: Well pad is intact and the stickup protective cover is in good condition.									

SITE	Enviro	tek II Sampling	•	DATE	10/27/09	
Samplers:	Brian I	Doyle		SAMPLE ID	NRG-5	
		Depth of well (from top of casing) Initial static water level (from top of casing Top of PVC Casing Elevation			570.36	
Evacuatio	n Metho	od:		Well Volum	e Calculation	
Subm	ersible	Centrifugal	2in. casing:	9.6	5 ft. of water x .16 =	1.53 gallons
Airlif	f	Pos. Displ.	3in. casing:		ft. of water x $.36 =$	gallons
Bailer	r	X >>> No. of bails	4in. casing:	e	ft. of water x .65 =	gallons
Volun	ne of wate	or removed 4.58 gals. > 3 volumes: yes no dry: yes no	I			
Field Test	es:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	15.2 °C 9.13 1.88 mS/cm 2.94 mg/l N/A NTUs 57 mV			
Sampling:	:				Time: 6:15	PM
Sampling M	ethod:	Stainless Steel Bailer Disposable Bailer Peristalic Pump	Analyses:	Baseline Routine	X	
Observation	ons:					
	Weathe	r/Temperature: Overcast, 55°F				
	Physica	l Appearance and Odor of Sample:	Sulfur odor, dark bi	rown initally, t	then clear	
Comment	s <u>:</u>	Field equipment unable to record a turl Well pad is intact and the stickup prote			vater.	

SITE	Enviro	tek II Sampling			DATE	10/27/09		
Samplers:	Brian l	Doyle			SAMPLE ID	NRG-6; MS/MS	SD	
		Depth of well (from top of casing) Initial static water level (from top of casing) Top of PVC Casing Elevation		20.31 11.20 580.51		560.20 569.31		
Evacuatio	n Metho	od:			Well Volume	Calculation		
Subm	iersible	Centrifugal		2in. casing:	9.1	ft, of water x .16 =	1.46	gallons
Airlif	ñ	Pos. Díspl.		3in. casing:		ft. of water x .36 =		gallons
Bailer	г	X >>> No. of bails		4in, casing:		ft. of water x $.65 =$	-	gallons
Volur	me of wate	er removed 4.37 gals. > 3 volumes: yes no dry: yes no						
Field Test	ts:	Temp: pH Conductivity DO Turbidity Oxidation Reduction Potential(ORP)	3.56 N/A	_				
Sampling	:					Time:	5:45 PM	
Sampling M	lethod;	Stainless Steel Bailer Disposable Bailer Peristalic Pump		Analyses:	Baseline Routine	X		
Observati	ions:							
	Weath	er/Temperature: Overcast, 55°F				1		
	Physica	al Appearance and Odor of Sample:	Sulfur o	dor, dark bro	own initally, t	nen clear		
Comment	ts <u>:</u>	Field equipment unable to record a turb Well pad is intact and the stickup prote				vater.		