CHERRY FARM/RIVER ROAD SITE GROUNDWATER UPWELLING STUDY

December 2002 Sampling Event Data Report Tonawanda, New York

SUBMITTED TO:

APR 1 6 2003

NYSDEC REG. 9

RELFOIL REG. 9

RELFOIL REG. 9

NEW YORK STATE DEPARTMENT

OF ENVIRONMENTAL CONSERVATION

DIVISION OF HAZARDOUS WASTE REMEDIATION

SUBMITTED BY:

CHERRY FARM/RIVER ROAD SITE Potentially Responsible Parties

PREPARED BY:

PARSONS

180 Lawrence Bell Drive, Suite 104 Williamsville, New York 14221 (716) 633-7074 Fax (716) 633-7195

April 2003

Cherry Farm/River Road Site Groundwater Upwelling Study December 2002 Sampling Event Data Report

Prepared For:

Cherry Farm/River Road PRP Group

Prepared By:

PARSONS

180 Lawrence Bell Drive, Suite 104 Williamsville, New York 14221 Phone: (716) 633-7074 Fax: (716) 633-7195

REVIEWED AND APPROVED BY:

Project Manager:	Man 1. Ruyben	4/15/03
2.10,000.0	7	Date
Technical Manager:	Steph Rosells / Kin)	4/15/03
20011110011120118011		Date

April 2003

TABLE OF CONTENTS

DECEMBER 2002 SAMPLING EVENT DATA REPORT1
Introduction1
Methodology1Sampling Station Locations2Pumping Tests2Sampling Methods2Piezometer Readings3
Results
Conclusions/Schedule5
Responses To NYSDEC Comments On The October 2002 Sampling Event Report5
LIST OF FIGURES
Figure 1. Site Plan7
Figure 2: Piezometer Locations8
Figure 3: December 2002 Trilinear Plots9
Figure 4: October 2002 and December 2002 Trilinear Plots
LIST OF TABLES
Table 1: Sampling and Analysis Summary11
Table 2: Pumping Test Summary Table
Table 3: Laboratory Analytical Results
Table 4: Vertical Hydraulic Gradients14
Table 5: Temperature Summary15
Table 5. Temperature Summary

DECEMBER 2002 SAMPLING EVENT DATA REPORT

INTRODUCTION

The primary objective of this groundwater upwelling study was to determine, through direct sampling and measurements in the Niagara River, whether the deep extraction system at the Cherry Farm/River Road Site can be permanently shut down. This report describes the methods used and presents results of the December 2002 sampling event. This was the second sampling event of the upwelling study. The first event was conducted prior to temporarily shutting down the extraction well system. The extraction system was shut-down on October 14, 2002. This second sampling event (first quarterly post-shutdown event) took place during the week of December 16, 2002.

The Cherry Farm/River Road Site in Tonawanda, New York (Figure 1) currently has an 11-well groundwater extraction system that was designed to prevent migration of impacted groundwater in the deeper aquifer from reaching the Niagara River. The extraction system has been in operation for more than five years, beginning in August 1997. Over this five-year period, the deeper aquifer has shown historical concentrations of organic chemicals of concern typically below or near groundwater quality standards. It is expected that natural attenuation occurring between the site and the river are reducing the observed concentrations prior to discharge to the river.

The specific goals of the field data collection are to quantify the concentration of chemical indicators in groundwater that is expected to be upwelling into the river, and to assess whether concentrations are acceptable to warrant shutdown of the extraction system. The scope of work includes measuring vertical hydraulic gradients and chemical constituent concentrations in upwelling groundwater at multiple locations.

The previous report (January, 2003) detailed the sampling installation methodology and summarized all measurements and analytical data collected prior to November 27th 2002. The results of the initial sampling event, prior to temporarily shutting down the extraction wells, indicated a lack of impact from the site on chemical concentrations in groundwater beneath the river.

METHODOLOGY

The methodology for piezometer installation and groundwater sampling was detailed in the first Cherry Farm Upwelling Report (Parsons, 2002). In accordance with the work plan, the approach proposed for measuring groundwater discharge and quality into and through the riverbottom sediment is as follows:

- Measurement of hydraulic pressures (water levels) with vibrating wire piezometers.
- Initiation sampling of water quality from the eight newly installed sampling stations below the river before shutting down the deep aquifer extraction system.

• Quarterly sampling of water quality from the eight sampling stations after shutting down the deep aquifer extraction system.

A summary of the planned sampling and analysis program from October 2002 through September 2003 is shown on Table 1. Three additional sampling/data collection events at approximately three-month intervals are planned to provide an entire year of groundwater monitoring data. The second quarterly sampling event following the shutdown of the extraction wells is planned for the week of March 31, 2003.

Sampling Station Locations

Groundwater sampling pumps and vibrating wire piezometers were installed in the Niagara River sediments downgradient (west) of monitoring wells MW-4 and MW-5 (see Figure 2). Downgradient from each well, two near shore stations approximately 15 feet from shore and five to seven feet deep (below the sediment surface), and two offshore stations, approximately 40 feet from shore and 10 to 12 feet below the sediment surface, were constructed. These locations were chosen to characterize groundwater concentrations directly downgradient of the areas containing the highest historical chemical constituent concentrations (MW-4 and MW-5).

Pumping Tests

Informal "pumping tests" were conducted in October and December 2002 during the sampling events, using the pumps installed in the sampling stations. The tests were conducted to evaluate the effectiveness of the sand/bentonite seals between the upper and lower piezometers. At each station, readings were recorded in both the shallow and deep piezometer before pumping and during pumping. These readings reflected changes in hydraulic head due to pumping.

Results from the pumping test indicated that the methods used to hydraulically isolate the piezometers and pumps were sufficient. Table 2 summarizes the pumping tests at each station. Pumping in the upper sand pack reduced the hydraulic head of the upper piezometers by a range of 2.6 ft to 0.15 ft. The lower piezometers only changed a negligible amount, ranging from a decline of 0.03 feet to a rise of 0.03 feet. These results indicated an effective seal between the upper and lower piezometers.

Sampling Methods

A round of samples was collected during the week of December 16, 2002. The event took place approximately two months after shutting down the extraction wells. Samples were collected from all eight sampling stations, and two monitoring wells (MW-4 and MW-5, collected by O'Brien and Gere during the routine semi-annual sampling event). These samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, PCBs and anions/cations. One surface water sample was collected directly from the river and analyzed for anions/cations.

The river stations and monitoring wells were purged prior to sampling. Samples from the river stations were collected at low flow rates (less than 200 ml/ min). Monitoring wells were sampled with a stainless steel bailer.

Piezometer Readings

Weekly piezometer readings were used to quantify the vertical hydraulic gradient at each station. The river stage was also monitored weekly using the existing staff gauge. Pressure and temperature readings were recorded from switch boxes housed in the onsite sheds. A hand-held piezometer readout unit displayed the piezometer reading, which was recorded by hand onto field data sheets. The data were then entered into a spreadsheet that used a linear equation to correct for changes from initial conditions and to derive hydraulic head differences. Since the distance between the piezometers in each pair was known, the vertical gradient at each river station was calculated.

RESULTS

Major Anions and Cations

The results of the anion and cation analyses indicate a difference in water quality between the river stations and surface water from the river. Thus, it appears that the river station samples are not being influenced by river water, and that leakage from the surface to the zone in which the sampling pumps were installed does not appear to occurring. Details of the anion/cation analyses are provided below.

Anion/cation analytical results from the second quarter sampling event are provided in Table 3 and graphically displayed in Figure 3. Eleven analyses of major anions and cations were plotted on a Piper trilinear diagram. Two monitoring wells represented groundwater. Eight river station (RS) water analyses represented groundwater below the river. One surface water sample was collected directly from the river. The approximate total dissolved solids (TDS) content was included with cation/anion ratios on the table below the Piper diagram.

The river surface water and monitoring well samples were moderately low in magnesium, chloride, sodium and sulfate, and high in calcium and bicarbonate. River station samples (groundwater samples from below the river) were generally low in magnesium, chloride, and sulfate, had moderate percentages of calcium and sodium, and were high in bicarbonate. Groundwater samples collected from monitoring wells were generally low in chloride, sulfate, and magnesium, had moderate percentages of calcium and sodium, and were high in bicarbonate.

Two separate groupings of data were observed on the diamond portion of the Piper diagram. The river water sample and monitoring wells plot in the upper left side of the diamond. The river stations (RS samples) are grouped in the lower left side of the diamond. This water contained between 10 and 35 percent chloride plus sulfate and 40 to 80 percent sodium.

Anion/cation analytical results from the pre-shutdown (October 2002) and first post-shutdown (December 2002) quarterly sampling events are provided in Table 3 and graphically displayed in Figure 4. The two rounds of samples plot in similar sections of the plot. The river station samples in both events plot in the lower left section of the diamond. The river water samples in both events plot in upper left section of the diamond. Monitoring wells samples had a large variation between sampling events. The October 2002 monitoring well samples plotted

with the river station samples in the lower left side of the diamond. The December 2002 monitoring well samples plotted near the river water samples in the upper left section of the diamond.

The approximate TDS concentration also indicated a chemical differentiation between the river water and the groundwater below the river at each station. In the October 2002 sampling event, the average TDS of the groundwater samples was 688 mg/l. The average TDS of river water samples in October 2002 was 254 mg/l. In the December 2002, the average TDS of the groundwater samples was 744 mg/l and the river water sample was 211 mg/l.

As additional anion and cation data are collected during ensuing sampling events, it will be added to the Piper trilinear plots and evaluated.

Chemical Constituents of Concern

The laboratory analytical results from the first quarterly post-shut down sampling event in December 2002 are provided in Table 2. All eight river station samples were below detection limits for all compounds.

Monitoring well MW-5 contained 52 ug/L benzene and 17 ug/L total xylenes, and MW-4 had no detectable concentrations of any chemicals of concern.

These results indicate that chemical parameters detected at relatively low concentrations in onsite groundwater were not impacting groundwater beneath the river at near shore locations at the time of sampling, two months after shutting down the extraction wells.

Piezometer Readings

Weekly piezometer readings and river levels are summarized in Table 4. Gradients were calculated for hydraulic head by subtracting the shallower piezometer value (head or temperature) from the deeper piezometer value. Positive values represent an upward vertical hydraulic gradient, and negative values represent a downward vertical gradient. Although a range of gradients is shown, the most significant observation from the piezometer readings was the low hydraulic gradients at each station. Hydraulic gradients ranged from -0.079 to 0.097 feet per foot (ft/ft). Piezometers were typically separated by five feet, and head differences between the two piezometers did not exceed 0.39 feet. The low hydraulic gradients suggest low rates of either upward or downward movement of water between the aquifer and the river.

Temperatures, recorded from the river station piezometers, are shown on Table 5. The upper section of the table lists the temperature readings. The lower section of the table lists the difference between piezometers at each station. Positive values represent conditions where water adjacent to the deeper piezometer is colder than adjacent to the shallower piezometer; negative values represent conditions where water near the deeper piezometer is warmer than adjacent to the shallower piezometer. As expected, the temperature from the shallow piezometer in each pair was typically warmer than the deep piezometer in October 2002, as air and surface water temperatures tend to be warmer. In November 2002, the air and river temperatures cooled and the temperature differentials began to reverse. The deeper water was warmer. This trend

continued through March. Although not an integral part of the study, temperature differentials between the deep and shallow piezometers provide further indication of groundwater upwelling, and evidence that the sand/bentonite seals are functioning appropriately.

CONCLUSIONS/SCHEDULE

The results of the October and December 2002 sampling events indicated a lack of impacts from the site on chemical concentrations in groundwater beneath the river. Results from subsequent events will be evaluated and presented to the NYSDEC as the data are collected.

As shown on Table 1, the next event is scheduled for March 2003. The next quarterly report is expected to be submitted in May 2003.

RESPONSES TO NYSDEC COMMENTS ON THE OCTOBER 2002 SAMPLING EVENT REPORT

1. Page 3, Pre-Sampling Quality Assurance/Quality Control Tests – Two analytical samples were collected but only one set of data can be located. It appears that the cation/anion data from the samples collected on 9/19/02 are missing.

Three samples taken on September 19, 2003 were missing from Table 2 (Laboratory Analytical Results). Samples RS-01P, RW-02P and RV-01P were incorporated into Table 2 and included in this report as Table 6 (Revised October 2002 Laboratory Analytical Results). In the Initial Report, the samples were included in the Piper analysis and Figure 4. Therefore, no further revisions were necessary regarding the Piper diagram.

2. Page 4 Results, Major Cations and Anions- This section indicates that seven extraction and monitoring well nine river station water and two surface water samples were collected. However, Table 1 indicates data for only six extraction and monitoring wells, eight river water stations and one surface water sample Again, it appears that the data from samples collected on 9/19/02 may be missing.

See response to Comment No. 1.

3. There should be some discussion as to why the water in RW-02 and RS-03 plot in the location of river water in the Piper Diagram. Also, several of the samples have high cationanion balance errors. This data therefore may be questionable.

As more data are collected, further analysis and discussions regarding the Piper analysis will be presented. Figure 4 (from both rounds of sampling) shows there may be heterogeneous anion/cation ratios beneath the landfill. RW-02 and RS-03 (October, 2002) plotted near the river water. MW-4 and MW-5 plotted near the river stations in October 2002, but near the River water in December 2002. The heterogeneity of anion/cation rations could be due to elevated metal concentrations in the deeper aquifer.

Historically there have been elevated concentrations of metals in the background sample and beneath the landfill. Due to the non-uniform distribution of metals in the area, metal concentrations in groundwater may show spatial and temporal variability. Also, the Piper analysis did not include dissolved iron, which exhibited historically elevated concentrations. These factors may be causing an unpredicted variance in the anion/cation analysis program, as well as the high cation/anion balance error.

Difference in TDS further differentiates River water from groundwater. Future reports will graphically display the TDS variations that are tabulated on Figures 3 and 4. As more data are collected, the variability in data may decrease as effects from the initial conditions diminish.

P:\742539\WP\quart1figs.PPT

CHERRY FARM SITE (2) (NYSDEC SITE NO. 9-15-063) RS-04 MW-5 U.S. HARBOR INC. P:\742539\cad\39187F01.dwg, 12/18/02 at 10:03, MAB, 1=1 No XREFs

<u>LEGEND</u>

-O-OW-5 OBSERVATION WELL

→ MW−1 MONITORING WELL

RW-1 RECOVERY WELL AND VAULT

PROPOSED FINAL GRADE INDEX CONTOUR

RIP-RAP

FIGURE 2

CHERRY FARM/RIVER ROAD SITE ANNUAL GROUNDWATER MONITORING REPORT

SAMPLE LOCATION MAP

PARSONS

180 LAWRENCE BELL DRIVE, SUITE 104, WILLIAMSVILLE, N.Y. 14221, PHONE: 716-633-7074

WELL	CATIONS				ANIONS				CATION-ANION	TDS (approx)
	Ca	Mg	Ca+Mg	Na+K	CI	SO ₄	CI+SO ₄	HCO3+CO3	Balance Error	MG/L
MW-04-2	58%	25%	82%	18%	20%	21%	41%	59%	15%	718
MW-05-2	53%	22%	75%	25%	19%	12%	31%	69%	18%	666
RS-01-2	35%	11%	45%	55%	31%	3%	33%	67%	3%	1023
RS-02-2	25%	10%	35%	65%	15%	2%	18%	82%	13%	903
RS-03-2	47%	11%	57%	43%	21%	2%	23%	77%	6%	900
RS-04-2	31%	13%	44%	56%	16%	7%	23%	77%	0%	826
RS-05-2	33%	9%	42%	58%	13%	4%	17%	83%	12%	515
RS-06-2	18%	5%	24%	76%	19%	0%	19%	81%	1%	616
RS-07-2	29%	4%	33%	67%	12%	12%	25%	75%	14%	733
RS-08-2	39%	7%	47%	53%	14%	0%	14%	86%	52%	539
RV-01-2	60%	23%	83%	17%	23%	16%	39%	61%	29%	211

Cherry Farm/River Road Site, Tonawanda, New York

PARSONS

180 Lawrence Bell Drive · Suite 104 · Williamsville, NY 14221 · (716) 633-7074

FIGURE 3 PIPER DIAGRAM

Monitoring Well, River Stations and River Water Data December Sampling Event

WELL	CATIONS				ANIONS				CATION-ANION	TDS (approx)
	Ca	Mg	Ca+Mg	Na+K	CI	SO₄	CI+SO4	HCO3+CO3	Balance Error	MG/L
RW-02-P	60%	38%	97%	3%	19%	21%	40%	60%	9%	899
MW-05-1	27%	13%	40%	60%	14%	8%	22%	78%	17%	589
MW-04-1	29%	12%	41%	59%	10%	4%	14%	86%	4%	881
RW-02-1	51%	27%	78%	22%	17%	21%	39%	61%	7%	1128
RW-03-1	47%	18%	65%	35%	13%	9%	22%	78%	33%	1117
RW-04-1	39%	14%	53%	47%	14%	12%	26%	74%	4%	475
RW-05-1	42%	19%	61%	39%	13%	16%	29%	71%	5%	688
RS-01-P	32%	11%	43%	57%	29%	9%	38%	62%	10%	816
RS-01-1	47%	12%	58%	42%	32%	4%	36%	64%	16%	946
RS-02-1	17%	10%	26%	74%	11%	27%	38%	62%	12%	570
RS-03-1	72%	20%	92%	8%	21%	5%	27%	73%	47%	737
RS-04-1	35%	14%	49%	51%	15%	13%	28%	72%	13%	474
RS-05-1	33%	10%	42%	58%	15%	15%	29%	71%	28%	413
RS-06-1	27%	7%	35%	65%	18%	21%	39%	61%	153%	264
RS-07-1	44%	7%	51%	49%	13%	12%	25%	75%	2%	604
RS-08-1	38%	10%	49%	51%	15%	13%	28%	72%	30%	417
RV-01-P	62%	23%	85%	15%	23%	23%	45%	55%	42%	178
RV-01-1	61%	23%	84%	16%	18%	14%	32%	68%	(137%)	416
MW-04-2	58%	25%	82%	18%	20%	21%	41%	59%	15%	718
MW-05-2	53%	22%	75%	25%	19%	12%	31%	69%	18%	666
RS-01-2	35%	11%	45%	55%	31%	3%	33%	67%	3%	1023
RS-02-2	25%	10%	35%	65%	15%	2%	18%	82%	13%	903
RS-03-2	47%	11%	57%	43%	21%	2%	23%	77%	6%	900
RS-04-2	31%	13%	44%	56%	16%	7%	23%	77%	0%	826
RS-05-2	33%	9%	42%	58%	13%	4%	17%	83%	12%	515
RS-06-2	18%	5%	24%	76%	19%	0%	19%	81%	1%	616
RS-07-2	29%	4%	33%	67%	12%	12%	25%	75%	14%	733
RS-08-2	39%	7%	47%	53%	14%	0%	14%	86%	52%	539
RV-01-2	60%	23%	83%	17%	23%	16%	39%	61%	29%	211

Cherry Farm/River Road Site, Tonawanda, New York

PARSONS
FIGURE 4
PIPER DIAGRAM
All Samples

Table 1

Sampling and Analysis Summary (Revised from Initial Report- Table 1) Cherry Farm/River Road Groundwater Upwelling Study

Sampling Events						
Event	Date	BTEX	naphthalene	ene PCBs	cat/anion* Comments	Comments
Pre-shutdown	Sept and Oct. 02	15	15	15	15	9 RSs, 5RWs, 2MWs, 1 dupe, 2 riv. Sample for cat/anions (no cat/anion dupe).
Quarter 1	Dec. 02	11	11	11	12	8 RSs, 2MWs, 1 dupe, MWs done by OBG, one riv. Samp. For cat/anions.
Quarter 2	Mar. 03	6	6	6	6	8 RSs, 1 dupe, one riv. sample for cat/ions, no cat/anion dupe.
Quarter 3	June 03	11	11	11	12	Same as Dec. 02.
Quarter 4	Sept. 03	15	15	15	15	Same as Oct. 02
Total		61	61	61	63	

*Ca, Na, Mg, bicarbonate, Cl, Sulfate MWs: MW-4, MW-5 RWs: RW-2, RW-3, RW-4, and RW-5

Samples will go to CES, with the exception of MW-4 and MW-5 samples in Dec. 02 and June 03, which are done by OBG.

Table 2
CHERRY FARM UPWELLING STUDY
SUMMARY: PIEZOMETER RESPONSE TO PUMPING

Date	Station ID	Piezometer ID	Drawdown (ft)
9/21/2002	RS-01D	2351	0.01
9/21/2002	RS-01S	2352	2.64
12/19/2002	RS-02D	2353	-0.03
12/19/2002	RS-02S	2354	0.22
12/18/2002	RS-03D	2355	0.02
12/18/2002	RS-03S	2356	1.78
12/18/2002	RS-04D	2358	0.02
12/18/2002	RS-04S	2357	0.15
12/19/2002	RS-05D	2359	-0.01
12/19/2002	RS-05S	2360	0.21
12/20/2002	RS-06D	2361	0.03
12/20/2002	RS-06S	2362	0.30
12/20/2002	RS-07D	2363	-0.03
12/20/2002	RS-07S	2364	0.63
12/20/2002	RS-08D	2366	-0.01
12/20/2002	RS-08S	2365	0.33

Table 3 Laboratory Analytical Results

Source: Source: A219	Cherry Farm		Sample ID:	Sample ID: MW-04	MW-05 306946/Z7815	RS-01 306923	RS-02 306926	RS-03 306924	RS-04 309625	RS-05 306928	RS-06 307072	RS-07 307082	RS-08 307077	RS-09 306927	RV-01 306950	W.	TRIP BLANK 307087
SDG:	December 2002		Source:	CES/OBG	CES/OBG	CES	CES	CES									
COMPOUND Martin: WATER W	Laboratory Analytical		SDG:	4219	4219	112462	112462	112462	112462	112462	112462	112462	112462	112462	112462	112462	112462 WATER
COMPOUND Voltabels			Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER			WAIEK	WAIEK	WAIEK
COMPOUND CONTINES. COMPOUND CONTINES. COMPOUND CONTINES. COMPOUND CONTINES. COMPOUND CONTINES. CONTINES.			Sampled: Validated:	12/18/2002	12/18/2002	12/16/2002	12/19/2002	12/18/2002	12/18/2002 1	2002/61/21	7007/07/71	7007/07/71			7007161771	7007/61/71	7007077
Modern National Magnetism	CAS NO.		UNITS:														
Benzone ug/L 10 U 52 0.7 U		VOLATILES											;	;		1	:
Tolat Nylenes ug/L 10 U 11 11 11 11 11 11	71-43-2	Benzene	ng/L	D 01		0.7 U	0.7 0	0.7 U	0.7) : :);					
Ethylbenizere ug/L 10 U 4 J 1 U	108-88-3	Toluene	ng/L	10 O	25	_ ∩ _	2	<u> </u>	0.	0 -	_ 	<u> </u>	_) -) : -	o :
Total Xylenes Ug/L 10 U 17 3 U	100-41-4	Ethylbenzene	ng/L	D 01	4 1	n n	חם	חח	חו	ח	ח	<u> </u>	<u> </u>	<u> </u>		D :);
SEMINOCATULESS SEMINOCATULESS SEMINOCATULESS SUPERIOR SU	1330-20-7	Total Xylenes	ng/L	10 O	17	3 U	3 U	3 U	3 U	3 U	3 U	3 C	3 U	3 U		3.0	3 O
Public P	01 20 3	SEMIVOLATILES**	1/211			5 11	11.5	2.0	5 U	5 U	5 U	5 U	5 U	5 U			
PUBLIS Aroclor 1221 ug/L 2 U 20065 U 0.065 U 0.0765 U 0.065 U	21-77-1	200300000000000000000000000000000000000	7,77														
Accolor 1224 UgL	00 70111		1/200	2.11	(ĕ	0.065 11	0.065 11	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U			
Arcolor 1242/1016 ug/L 1 U 1 U 0.065	11141-16-5	Aroclor 1232	Z/An	2 1		0.065 U	0.065 U	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U			
6 Aroclor 1248 ug/L 1 U 1 U 0.065 U <td>51469-21-9/12674-11-2</td> <td>Aroclor 1242/1016</td> <td>ne/L</td> <td>21</td> <td>n</td> <td>0.065 U</td> <td>0.065 U</td> <td>0.065 U</td> <td>0.07 U</td> <td>0.065 U</td> <td>0.065 U</td> <td>0.065 U</td> <td>0.065 U</td> <td>0.065 U</td> <td></td> <td></td> <td></td>	51469-21-9/12674-11-2	Aroclor 1242/1016	ne/L	21	n	0.065 U	0.065 U	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U			
Aroclor 1254 ug/L	12672-29-6	Aroclor 1248	ng/L	2.	n r	0.065 U	0.065 U	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U			
Accelent 1260 ug/L 1 U 1 U 0.065 U	11097-69-1	Aroclor 1254	ng/L	חו	n n	0.065 U	0.065 U	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U			
METALS M	11096-82-5	Aroclor 1260	ng/L	ומ	1 U	0.065 U	0.065 U	0.065 U	0.07 U	0.065 U	0.065 U	0.065 U	0.065 U				
Calcium, Total mg/L 104 84.4 98.3 0.2 100 0.0.3 4.0 26.2 6.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0.7 9.9 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							;	}			0	1	20	903	0 80		
Magnesium, Total myl, 27.2 21.2 18.3 15.6 15.1 16.8 6.71 4.96 5.2 4.53 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7440-70-2	Calcium, Total	mg/L	104	84.4	28.3	70	9	2.00	⊋ :	6.07	30	3 :	2 :	104		
Sodium, Total mg/L 36.6 46.7 178 189 111 139 80.3 137 158 61.1 144 9 OTHER OTHER Bicarbonate Alkalinity mg/L 370 396 561 563 567 568 344 392 416 396 567 Sulfate mg/L 75 62.5 150 60 90 60 32.5 52.5 40 38 62.5	7439-95-4	Magnesium, Total	mg/L	27.2	21.2	18.3	15.6	15.1	8.91	6.71	4.96	5.2	4.53	2	0.70		
OTHERS Second of the control of the contr	7440-23-5	Sodium, Total	mg/L	36.6	46.7	178	189	Ξ	139	80.3	137	158	61.1	144	9.53		
Sulfate may 75 62.5 150 60 90 60 32.5 52.5 40 38 62.5		OTHER SOUND STATE OF		070	306	193	293	295	\$08	344	102	416	396	295	117		
Sulfate mg/L 105 54.9 17.7 13.3 11.1 36.1 11.5 0.5 U 53.1 0.5 U 13.3 Chloride mg/L 75 62.5 150 60 90 60 32.5 52.5 40 38 62.5		Bicarbonate Aikainity	T/Sim	2 .	0.66	100	7	3 ;	3	;	:	: :	11 30	5			
Chloride my 75 62.5 150 60 90 60 32.5 52.5 40 38 62.5	(SULFA)	Sulfate	mg/L	105	54.9	17.7	13.3	-	36.1	2	0.50	23.1	0.5 0	13.3	47		
	(CHLOR)	Chloride	mg/L	75	62.5	150	09	90	09	32.5	52.5	40	38	62.5	25		

Note: OBG analyzed VOCs, SVOCs, and PCBs for MW-04 and MW-05. CES analyzed metals and other parameters for MW-04 and MW-05.

												NS: No measurement	Z
ICE	핑	띨	0.7	-0.40	-0.80	NS	-0.5	9.4	NS	NS	0.4		River Level (ft at staff gauge)
-0.008	-0.013	-0.020	-0.023	-0.010	-0.018	-0.019	-0.012	-0.025	-0.030	-0.013	-0.006	Upward Hydraulic Gradient	
-0.03	-0.05	-0.07	-0.08	-0.03	-0.06	-0.07	-0.04	-0.09	-0.10	-0.04	-0.02	Head difference between pair (ft)	RS-08
0.008	0.020	0.023	0.031	0.032	0.023	0.037	0.045	0.030	0.055	0.042	0.057	Upward Hydraulic Gradient	
0.03	0.08	0.09	0.13	0.13	0.09	0.15	0.18	0.12	0.22	0.17	0.23	Head difference between pair (ft)	RS-07
-0.006	-0.011	-0.007	-0.002	-0.011	-0.001	-0.004	0.001	-0.011	-0.005	-0.001	0.008	Upward Hydraulic Gradient	
-0.02	-0.04	-0.02	-0.01	-0.04	0.00	-0.01	0.00	-0.04	-0:02	0.00	0.03	Head difference between pair (ft)	RS-06
-0.025	-0.014	-0.020	0.005	-0.002	0.000	0.004	0.005	0.009	0.007	0.016	0.022	Upward Hydraulic Gradient	
-0.09	-0.05	-0.07	0.02	-0.01	0.00	0.01	0.02	0.03	0.03	0.05	0.08	Head difference between pair (ft)	RS-05
-0.079	-0.064	-0.059	-0.047	-0.038	-0.038	-0.031	-0.026	-0.022	-0.017	-0.003	0.021	Upward Hydraulic Gradient	
-0.44	-0.35	-0.33	-0.26	-0.21	-0.21	-0.17	-0.14	-0.12	-0.09	-0.01	0.11	pair (ft)	RS-04

1

0.39

0.33

0.25 0.062 0.08

0.20

0.28

0.26

0.24

3/13

5/6

1/15

12/23

12/16

12/13

Vertical Hydraulic Gradients

11/18 0.15 0.038

10/28 0.19

10/10

Date (2002)

RS-01

0.097

0.083 0.04

0.049

0.067 0.27

> 0.071 0.07 0.017

0.065

0.061

0.042 -0.02

0.049

0.037 0.10

0.15

0.17

0.04

0.011

0.011

0.021

-0.001 0.18 0.050 -0.26 -0.047

0.010 0.19

0.004

0.044

0.003 0.01

-0.006

0.018

0.026

Head difference between pair (ft)
Upward Hydraulic Gradient
Head difference between pair (ft)
Upward Hydraulic Gradient
Head difference between pair (ft)
Upward Hydraulic Gradient
Head difference between Gradient

RS-02

0.07

0.02

0.17

0.00

0.04

0.18

0.17 0.049 -0.35 -0.064

0.15

0.042

0.054

0.058

0.057 -0.17 -0.031

0.058 -0.14

0.048 -0.12

0.058 -0.01

0.049

0.20

0.20

0.20

0.17

0.19 0.054

0.20

0.17

RS-03

-0.21

0.051

PARSONS

3/20/20035:30 PM

1

13-Dec-02 13-Dec-02 13-Dec-02 15-Jan-03 G-Feb-03 15.0 16-Dec-02 23-Dec-02 15-Jan-03 G-Feb-03 55.0 54.4 53.4 50.9 49.2 56.0 55.7 55.4 50.4 48.5 56.0 55.7 55.4 50.4 48.5 56.0 54.4 53.4 50.4 48.5 56.0 54.4 53.4 50.4 48.5 56.1 56.0 54.4 53.4 50.4 48.5 56.1 56.0 54.4 53.4 50.4 48.5 56.1 56.7 52.8 51.7 48.5 56.7 54.4 54.1 52.1 48.5 56.7 54.4 54.1 52.8 51.7 56.7 54.7 56.7 52.8 51.7 56.7 54.6 54.2 52.6 49.6 56.7 54.2 52.3 49.6 47.9 5							Tomper	Table 5 Temperature Summary	Ž					
The Continue of the Continue of Temperature of Te			Tomporative				10011001		4.1.y					
10 Col-1/2 25-Col-1/2 25-	Station ID	Plezometer ID	ampalama.	Temperature °F	Temperature °F		Temperature "F	Temperature °F	Temperature °F	Temperature °F	Temperature *F	Temperature °F	re %	Temperature "F
2554			10-Oct-02	28-Oct-02	12-Nov-02	18-Nov-02		4-Dec-02	13-Dec-		23-Dec-02			12-Mar
255	3S-01D	2351)					56.2			53.4			
2353 67 8 57 9 57 6 67 8 57 9 57 6 67 8 57 9 57 6 57 8 57 9 57 9 57 6 57 8 <th< td=""><td>3S-01S</td><td>2352</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48.2</td><td></td><td></td><td></td></th<>	3S-01S	2352									48.2			
1982 1982	3S-02D	2353	-								55.4			
2356 73 B 59 B 57 B 55 B <th< td=""><td>3S-02S</td><td>2354</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53.4</td><td></td><td></td><td></td></th<>	3S-02S	2354									53.4			
1985 1985	\$S-03D	2355									53.1			
2356 64.9 64.1 66.8 66.7 66.8 66.7 66.2 65.5 65.9 65.5 65.0 64.4 62.8 64.7 2360 61.0 60.0 68.3 65.5 65.0 65.5 65.0 64.4 62.4	S-03S	2356									49.2			
2367 64.9 61.9 69.4 58.4 57.0 55.9 54.2 53.6 52.5 49.6 47.5 2369 75.5 57.5 57.5 57.5 57.5 57.6 56.2 55.9 55.0 56.7 56.7 56.7 50.9 2369 61.0 60.0 58.3 57.5 57.5 56.7 56.8 56.7 56.8 56.7<	\$S-04D	2358	2								54.4			
10 10 10 10 10 10 10 10	S-04S	2357									52.5			44.5
2360 61.0 60.0 58.3 57.9 55.0 55.2 53.6 52.0 49.2 47.5 2361 √59.5 58.3 57.9 57.1 56.7 56.7 56.7 56.7 56.7 57.1 52.5 49.8 47.9 2362 56.5 56.8 56.6 56.5 56.7 54.1 52.5 49.8 47.9 2362 56.8 56.8 56.6 56.5 56.0 54.2 52.5 49.8 47.9 2364 60.3 58.8 56.8 56.0 56.7	S-05D	2359	•								54.1			
2361 √59.5 56.9 56.8 57.6 57.1 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7	S-05S	2360									52.0			
2362 61.4 60.3 58.6 57.6 56.5	S-06D	2361	12								56.7			
5 56.5 56.7 56.5 56.0 55.0 55.0 56.0 56.5 56.0 5	S90-S	2362	>								52.5			
3 364 60.3 59.4 57.8 57.1 55.9 55.0 53.7 55.	S-07D	2363									54.2			
2366 59.5 56.8 56.0 56.7 56.8 56.7 56.7 56.7 56.7 56.9 56.9 56.9 56.7 56.7 56.7 56.9 56.9 56.9 56.7 56.7 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 <t< td=""><td>S-07S</td><td>2364</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>52.3</td><td></td><td></td><td></td></t<>	S-07S	2364									52.3			
San Hart San Hart	S-08D	2366									56.7			
atelet 63.32 53.42 53.42 46.76 40.3 NS NS NS 33.9 36 35.2 32 <	S80-S	2365									ດິ			4
1 swale Difference "F Difference "F<	iver water						40.3	NS	SN	33.9				32
ID Difference "F	liver in sw	ale					39.7							32
-4.3 -1.4 1.1 1.6 3.2 3.6 4.8 4.9 5.2 5.8 5.8 1.0 1.3 2.0 2.7 1.0 1.3 2.0 2.7 1.0 1.3 2.0 2.7 1.0 1.3 2.0 2.7 1.0 1.3 2.0 2.7 1.0 1.0 1.3 1.0 2.0 2.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Station ID		Difference "F	Difference °F	Difference "F	Difference "F	Difference "F	Difference °F	Difference °F	Difference °F	Difference °F	Difference °F	Difference °F	Difference °F
1.8 -2.8 -1.5 -0.9 -0.1 0.5 1.0 1.3 2.0 2.7 -3.2 -1.6 0.6 1.0 2.1 2.8 3.2 3.7 3.9 4.4 -3.2 -3.5 -2.6 -1.7 -0.8 0.0 1.0 1.4 1.9 3.2 -3.5 -2.5 -1.2 -0.7 0.2 0.7 1.4 1.8 2.1 2.9 -1.9 -1.4 -0.3 0.3 0.6 0.7 1.4 1.8 2.1 2.9 -3.8 -2.6 -1.4 -0.3 0.3 0.6 0.2 2.6 1.6 4.2 3.9 -3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9 -1.0 -2.9 -0.1 -0.8 1.0 2.1 0.8 3.4 2.8	38-01		-4.3			1.6	3.2							5.9
-3.2 -1.6 0.6 1.0 2.1 2.8 3.2 3.7 3.9 4.4 -3.2 -4.8 -2.6 -1.7 -0.8 0.0 1.0 1.4 1.9 3.2 -3.5 -2.5 -1.2 -0.7 0.2 0.7 1.4 1.8 2.1 2.9 -1.9 -1.9 -0.7 0.2 0.7 1.4 1.8 2.1 2.9 -1.9 -1.9 -1.4 -0.3 0.3 0.6 0.2 2.6 1.6 4.2 3.9 -3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9 NS: No measurement -1.0 -2.9 -0.1 -0.1 -0.8 1.0 2.1 0.8 3.4 2.8	3S-02		1.8				-0.1							3.7
0.0 -4.8 -2.6 -1.7 -0.8 0.0 1.0 1.4 1.9 3.2 1.2 -3.5 -2.5 -1.2 -0.7 0.2 0.7 1.4 1.8 2.1 2.9 1.2 -1.9 -1.4 -0.3 0.3 0.6 0.2 2.6 1.6 4.2 3.9 1.2 -3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9 NS: No measurement 1.0 -2.9 -0.1 -1.0 -0.8 1.0 2.1 0.8 3.4 2.8	SS-03		-3.2				2.1							4.7
-3.5 -2.5 -1.2 -0.7 0.2 0.7 1.4 1.8 2.1 2.9 -1.9 -1.9 -1.4 -0.3 0.3 0.6 0.2 2.6 1.6 4.2 3.9 -3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9 NS: No measurement -1.0 -2.9 -0.1 -1.0 -0.8 1.0 2.1 0.8 3.4 2.8	3S-04		0.0				-0.8 -0.8							4.5
-1.9 -1.4 -0.3 0.3 0.6 0.2 2.6 1.6 4.2 3.9 -3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9 NS: No measurement	3S-05		-3.5				0.2							3.9
-3.8 -2.6 -1.1 -0.6 0.1 0.5 1.3 1.7 1.9 2.9	30-8		-1.9				9.0							5.4
NS: No measurement	3S-07		-3.8			9.0-	0.1							3.8
NS: No measurement	3S-08		-1.0			-1.0	8.0-							4.6
	NS	: No measure	ment											

Table 6
Revised October 2002 Laboratory Analytical Results

Cherry Farm		Sample ID:	MW-04	MW-05	RS-01	RS-02	RS-03	RS-04	RS-05	RS-06	RS-07 301458/69/79/89/98
Opwelling Data Study		Lab Sample 1d:	301457/68/78/88/97	301436/6/1/1/8/1/96 CES	3011///83/88/93/99 CES	3011/8/84/94/200 CES	CES	CES	CES	CES	CES
Revised Lahoratory An	Revised Lahoratory Analytical Results from the	SDG:	301455	301455	301177	301177	301177	301177	301455	301177	301455
Initial Report (Table 2)		Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		Sampled: Validated:	10/11/2002	10/11/2002	10/9/2002	10/9/2002	10/9/2002	10/9/2002	7007/11/01	10/9/2002	10/11/2007
CAS NO.	COMPOUND	UNITS:									
	VOLATILES,			(1	1		;	t
71-43-2	Benzene	ng/L	0.7 U	/ 22 //	0.7 U	0.7 U	0.7 U	0.7.0	0.7 U	0.7 0	0.7.0
108-88-3	Toluene	ng/L	חר	e	2	<u> </u>	<u> </u>); 	o :) : -	- :
100-41-4	Ethylbenzene	ng/L	n n			D :);) : - :) ;
1330-20-7	Total Xylenes	ug/L	3 U	59	3 U	3 U	3.0	3 0	3.0	3.0	3.0
	SEMINOLATILES				;	;	;	:		:	-
91-20-3	Naphthalene	7/gn	2.0	2 0	5 U	S U);) : (
208-96-8	Acenaplithylene	ng/L	20	2 U	5 U	2 C) s) ;); (
83-32-9	Acenaphthene	ng/L	o s	2 U	2 U	s u			5 U) c) s
86-73-7	Fluorene	ng/L	SU	2 0	5 U	2 U	o s			2 U	2 U
85-01-8	Phenanthrene	ug/L	5 U	5 U	S U	5 U	5 U	5 U	s u	s u	5 U
120-12-7	Anthracene	ug/L	5.0	5 U	5 U	5 U	s u	5 U	5 U	s U	5 U
206-44-0	Fluoranthene	1/0/1	2 12 5	11.5						5 U	5 U
120 00 0	Directo	7.6n		2 12						5 U	5 U
56.66.3	Danzo(a)outhmoone	1/00	2.5	2.5							5 U
20-23-3	Changene	ugh Lou	2 .	2 2 2	2 5						5 U
6-10-017	Cili yselie	1/8m		2 5			2 2	2 2	11.5	5 11	5 11
7-66-507	Benzo(b)fluoranthene	ng/L	0 :	2 :						2.5	2 5
207-08-9	Benzo(k)fluoranthene	ng/L) ;);) i) I
50-32-8	Вепzо(а)рутепе	ng/L	20	2.0); () i	0.5	2 2
193-39-5	Indeno(1,2,3-cd)pyrene	ng/L) s) ;) i
53-70-3	Dibenzo(a,h)anthracene	ng/L	s U	5 U	o s	s o		2.0) c); ;); (
191-24-2	Benzo(ghi)perylene	ug/L	5 U	S U	S U	5 U	5 U			0 0	0 0
	PCBs					1			1		
11104-28-2	Aroclor 1221	ng/L	0.065 U	0.065 U	0.065 U	0.0650	0.065 0	0.000	0.000	0.003	0.000,0
11141-16-5	Aroclor 1232	ng/L	0.065 U	0.065 U	0.065 U	0.000	0.065 U	0.005 0	0.000	0.063 0	0 600.0
53469-21-9/12674-11-2	Aroclor 1242/1016	ng/L	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.005 0	0.065 0	0.000	0.005 0
12672-29-6	Aroclor 1248	ng/L	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065	0.000.0
11097-69-1	Aroclor 1254	ng/L	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U
11096-82-5	Aroclor 1260	ug/L	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U	0.065 U
	METALS										
7440-70-2	Calcium, Total	ng/L	67400	36100	135000	26800	107000	48000	33800	34000	00889
7439-95-4	Magnesium, Total	ng/L	16500	11000	20300	9530	18300	11200	5930	2610	6180
7440-23-5	Sodium, Total	ng/L	156000	93800	139000	137000	13300	79700	67800	92700	87700
	OTHER										
	Bicarbonate Alkalinity	T/fin	581000	378000	487000	275000	488000	266000	238000	91000	360000
(CHLOR)	Chloride	T/an	40000	38000	143000	29000	83000	32000	29000	16000	37000
(SIII FA)	Sulfate	1,61	20000	32000	21400	92300	27500	36600	38700	24300	44800
(South fr)	2 mino	7.4	2222	2000							

Table 6 Revised October 2002 Laboratory Analytical Results

<u></u>					
TRIP BLANK 301465 CES 301455 WATER 10/11/2002	0.7.0 U 1 U 1 U 1				
TRIP BLANK 301182 CES 301177 WATER 10/9/2002	0.7 U U I U I 3 U				
RW-05 301462/73/83/93/502 CES 301455 WATER 10/11/2002	42 13 5 22	2 C C C C C C C C C C C C C C C C C C C	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U	74400 20500 78600	400000 44000 70900
RW-04 301461/7282/92/501 CES 301455 WATER 10/11/2002	120 5 U 5 U 15 U	D S C C C C C C C C C C C C C C C C C C	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U	47300 10300 65100	284000 31000 37100
RW-03 30146071/81/91/500 CES 301455 WATER 10/11/2002	0.7 U 1 U 1 U 3 U	0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U	111000 25400 95900	743000 74000 67200
RW-02 3014597/08/80/90/99 CES 301455 WATER 10/11/2002	0.7 U 1 U 1 U 3 U		0.065 U 0.065 U 0.065 U 0.065 U 0.065 U	168000 53100 82600	573000 95000 156000
RW-00 30146377484 CES 301455 WATER 10/11/2002	49 21 7.5 31		0.065 U 0.065 U 0.065 U 0.065 U 0.065 U		
RV-01 301197203 CES 301177 WATER 10/9/2002				34400 7880 10200	276000 43000 44600
RS-08 301464/75885947503 CES 301455 WATER 10/11/2002	0 1 n r	D S D D D S D D D D S D D D D S D D D D S D	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U	34500 5570 53100	256000 32000 35800
Sample ID: Lab Sample Id: Source: SDG: Matrix: Sampled: Validated: UNITS:	ug/L ug/L ug/L ue/L	ught ught	ug/L ug/L ug/L ug/L ug/L	ug/L ug/L ug/L	ug/L ug/L ug/L
		The state of the s	Aroclor 1221 Aroclor 1232 Aroclor 1242/1016 Aroclor 1248 Aroclor 1254 Aroclor 1260	METALS. Calcium, Total Magnesium, Total Sodium, Total	Ol HEK Bicarbonate Alkalinity Chloride Sulfate
Cherry Farm Upwelling Data Study October 2002 Revised Laboratory Analytical Results from the Initial Report (Table 2) CAS NO. COMPOUND			11104-28-2 11141-16-5 3369-21-9/12674-11-2 12672-29-6 11097-69-1	7440-70-2 7439-95-4 7440-23-5	(CHLOR) CSULFA)