The electronic version	n of this file/re	eport should have th	e file name:
Type of document.Spill	Number.Year-M	1onth.File <i>Year-Year</i> c	or Report name.pdf
letter		.File spillfile	pdf

Project Site numbers will be proceeded by the following:

Municip**al** Brownfields - b Superfund - hw Spills - s**p** ERP - e VCP - v BCP - c

non-rele**a**sable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

AIR QUALITY SERVICES Stack and Emissions Testing Continuous Emission Menituring Systems Regulatory Services

□ Engineering □ Investyptions □ Modeline

OTHER STERVICES

- □ Munikcijnal Wasiewalier
- □ IndustrisI Waste □ Water Supply
- □ (Consumention Mga
- □ Scormwater □ Solid Waxie
- □ Huzardona Winte
 □ Environment:

 Site Ancument
- Hydrogenhogy & Sourge Tank Mga.
- O Adrision Mgi.
 O Mining
- Untilanda/Ecological
 Similica & Constal Men
 - □ Municipal Engueering □ Caramet Operations
 - Autolytical
 Laboratory Services

9/5066 E-Killam Inc.

WESTINGHOUSE PLANT BUFFALO AIRPORT CENTER SOIL REMEDIATION PROJECT TEST REPORT

Operable Unit #1

Soil Remediation Unit

TPS Technologies Inc. By E₃-Killam, Inc.

Test Date: October 25, 1999

E₃-Killam Project No. 990**23.0001**

December 9, 1999

H:\PROJECTS\TPS_TECH\99023_I\REPORT.DOC

E₃-Killam, Inc. 80 Curtwright **Dr**ive, Suite #1 Buffal**o**, NY 14221-7072

> A subsidiary of Randers - Killam Engineering Group Muskegon, Michigan

> > Other offices

Florida Massachusetts New Jersey Ohio Pennsylvania West Virginia

RECEIVED

DEC 1 6 1999

NYSUEC - REG. 9 FOIL __REL__UNREL

TEST REPORT

EMISSION TESTING WESTINGHOUSE PLANT Buffalo Airport Site SOIL REMEDIATION PROJECT

TPS Technologies Inc.

Cheektowaga, NY

Test Date: October 25, 1999

Project No. 99023.0001

December 9, 1999

PREPARED BY

E₃-KILLAM, INC. 80 CURTWRIGHT DRIVE, SUITE #1 BUFFALO, NY 14221-7072

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1-1
1.1	Test Program Description	
1.2	Objectives	1-1
2.	RESULTS	2-1
2.1	Discussion of Results	
2.2	Summary of Results	2-2
3.	SAMPLING AND ANALYTICAL PROCEDURES	3-1
3.1	EPA Reference Method 1: Sample Location	3-1
3.2	EPA Reference Method 2: Determination of Stack Gas Velocity & Volumetric	
	Flow Rate	3-2
3.3	EPA Reference Method 3A: Gas Analysis for Carbon Dioxide, Oxygen and Dry	2 2
3.4	Molecular Weight	
3.5	EPA Reference Method 5: Determination of Particulate Matter (PM) Emissions	
5.5	from Stationary Sources	3-3
3.6	EPA Reference Method 10: Determination of Carbon Monoxide (CO) Emissions	
	from Stationary Sources	3-3
3.7	EPA Reference Method 18: Determination of Gaseous Organic (Volatiles)	2.4
2	Compounds by Gas Chromatography	
	.7.1 General	
	.7.2 Performance Test	
3.8	EPA Reference Method 25A: Determination of Total Gaseous Organic (Volatiles)	ر-ر
5.0	Compounds by Flame Ionization Analyzer	3-5
3.9	EPA Method 8260B: Soil Sample Collection	
3.10		
3.11	Soil Cleanup Standards	3-7
4.	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	4-1
4.1	EPA Reference Method 5: QA/QC Specifics	4-1
4.2	EPA Reference Method 18: QA/QC Specifics	
4.3	Calculations	
	LIST OF TABLES	
Tah	le 1-1: Summary of Sampling and Analytical Procedures	1-2
	le 2-1: Summary of Results	

LIST OF FIGURES

Figu	re 3-1: Method 18 Sample Train Configuration	3-9
	LIST OF APPENDICES	
A.	FIELD DATA SHEETS	A-1
A.1 A.2	EPA Reference Method 5	
B.	E ₃ -KILLAM FIELD PROCEDURES	B-1
C.	QA/QC SUPPORTING DOCUMENTATION	C-1
C.1 C.2 C.3	CEMS Equipment Calibrations Calibration Gas Certifications	
D.	PROCESS DATA	D-1
E.	LABORATORY REPORTS	E-1
E.1 E.2 E.3 E.4	EPA Reference Method 18	E-7 E-9 E-21
F.	CYCLONIC FLOW DATA	F-1

1. INTRODUCTION

1.1 Test Program Description

TPS Technologies Inc. (TPST) has contracted E₁-Killam, Inc. (E₂-Killam) to conduct emission testing on a Mobile Soil Remediation Unit (MSRU) transported to the Westinghouse Plant located next to the Buffalo Airport in Cheektowaga, New York. Testing was performed October 25, 1999.

The primary contact for TPST is Mr. Blair Dominiak. Mr. Dominiak is the Manager of Regulatory Compliance for TPST, and can be reached at (407) 886-2000, or by fax at (407) 886-8300. The primary contact at E₃-Killam is Mr. Michael D. Hamilton. Mr. Hamilton is a Project Manager with E₃-Killam, and can be reached at (716) 631-5858, or by fax at (716) 631-5864.

1.2 Objectives

The objective of this Demonstration Test was to determine the emissions from the MSRU for particulate matter (PM), carbon monoxide (CO), total gaseous organic compounds (as THC), toluene and trichloroethylene. The exhaust gas was also monitored for percent oxygen (%O₂) and percent carbon dioxide (%CO₂). Samples of both pre-treated and post-treated soil were collected and analyzed for toluene and trichloroethylene (the two constituents of concern), as well as 1,1,1-trichloroethane, xylene and ethylbenzene (the three remaining target compounds).

Emission tests were conducted in accordance with United States Environmental Protection Agency (USEPA) reference methods outlined in the Code of Federal Regulations, Title 40, Part 60 (40 CFR 60) Appendix A. Soil samples were collected in accordance with USEPA Reference Method 8260B as presented in SW846, "Test Methods for Evaluating Solid Waste". A summary of the sampling and analytical methods is presented in Table 1-1.

Table 1-1: Summary of Sampling and Analytical Procedures

Demonstration Testing on MSRU
Westinghouse Plant – Buffalo Airport Site
Soil Remediation Project
TPS Technologies Inc.
Cheektowaga, NY

P A RAMETER	SAMPLING METHOD	ANALYTICAL METHOD
Stack Flow	EPA Methods 1 & 2	Pitot & Manometer
O ₂ /CO ₂	EPA Method 3A	CFM-NDIR ¹ / Magnetopneumatic
Stack Moisture	EPA Method 4	Volumetric/Gravimetric
Pa rt iculate Matter	EPA Method 5	Gravimetric
СО	EPA Method 10	GFC-NDIR ²
Volatiles in Emissions Tichloroethylene And Toluene	EPA Method 18	Gas Chromatography
Total Gaseous Organic Compounds (as THC)	EPA Method 25A	Flame Ionization
Volatiles in Soil trichloroethylene toluene l,l,1-trichloroethane ethylbenzene total xylenes	EPA SW846 Method 8260B	Gas Chromatography/ Mass Spectrometry

¹ Cross-Flow Modulated- Non Dispersive Infrared

² Gas Filter Correlated- Non Dispersive Infrared

2. RESULTS

2.1 **Discussion** of Results

Run 1 of the demonstration test program was stopped and subsequently discarded approximately twenty minutes into it. This was due to erratic Δp readings. The differential pressure readings noted during the test differed greatly from those previously recorded during the equipment setup. Some adjustments were made to the sampling equipment, and testing continued with sample runs 2-4 being completed without incident.

The stack temperatures recorded during the test program were approximately 200°F lower than those being recorded by SoilPure, Inc. The temperature readings recorded during the testing by E₃-Killam were taken in the stack, approximately 7.5 feet from the exit. SoilPure's thermocouple was located in the thermal-oxidizing chamber. There were strong, gusting winds on the day of the test, which may have had a cooling effect on the stack, subsequently affecting the temperatures being recorded at the sample location. To rule out faulty sampling equipment as the cause, the thermocouple used during the test program was checked back at the E₃-Killam laboratory. The thermocouple was heated with a torch at its tip to roughly simulate the temperatures encountered during the test program. After the temperature leveled out, the heat source was slowly moved down the length of the thermocouple. As the heat source moved, the temperature being monitored eventually began to decrease, as expected. This is because a thermocouple measures temperature only at its tip (where the two wires of which it is comprised are touching). Had there been another point along the length of the thermocouple where the wires were touching, an increase in the temperature would have occurred again, and a sort of averaging would have taken affect between the temperature being measured at that point and the temperature at the tip. During this experiment, the only place that an increase in temperature was evident was at its tip. Calibration data for the thermocouple is included in Appendix C.

The sampling system behind the thermocouple (umbilical, and meter-box) was also checked to insure proper operation and each component checked out okay. An electronic signal was sent to the digital display of the metering system with E_3 -Killams CAL-PAL (electronic calibration instrument), through the umbilical (used during the test), and readings were within 1-2 degrees from those temperatures electronically sent.

2.2 Summary of Results

Table 2-1 summarizes the demonstration test program results. The results of the EPA Reference Method 18 tests indicate that the concentrations of trichloroethylene and toluene (the two "constituents of concern") were both less than the detection limit of 10µg for each of the three samples collected. As a result of these "non-detects", a determination of the percent destruction efficiency (%DE) for each "constituent of concern" was not required, and are not included in this report. The recovery study results for the EPA Reference Method 18 sampling were all approximately 100%. Copies of the laboratory reports for the EPA Reference Method 18 samples and recovery study are included in Appendix E-1. It should also be noted that the EPA Reference Method 25A samples for "total gaseous organic compounds", resulted in insignificant concentrations of THC. As a result, continuous monitoring for THC would not be required.

Table 2-1: Summary of Results Westinghouse Plant – Buffalo Airport Site Soil Remediation Project TPS Technologies Inc. Cheektowaga, NY

Test Date 10/25	/99 10/25/99	10/25/99	10/25/99	·
Run No. 1, Abo	rted 2	3	4	Avg.
t _s - Stack Temperature, °F	1489	1470	1469	1476
P _s - Stack Absolute Pressure, in. H g .	29.56	29.53	29.50	29.53
V _s - Stack Velocity, ft/sec.	77.2 9	81.77	85.85	81.64
Q _a - Volumetric Flow Rate/Actual Conditions, ACFM	58275	61653	64730	6 1553
Q _s - Volumetric Flow Rate/Dry Standard Conditions, DSCFM	12150	12853	13858	12954
CO ₂ , % (drift corrected)	8.6	10.1	9.3	9. 3
O ₂ , % (drift corrected)	5.1	3.5	4.7	4.4
CO, %	0.0	0.0	0.0	0.0
N ₂ , %	86.3	86.4	86.0	86.2
M _d - Dry Molecular Weight, lb/lb-mo le	29.58	29.76	29.68	29.67
M _s - Wet Molecular Weight, lb/lb-m ol e	27.02	27.08	27.26	27.12
V _{m(std)} - Sample Volume - Dry Standard Conditions, DSCF	30.871	32.323	35.325	32.848
Stack Moisture Content, %	22.10	22.80	20.70	21.87
Isokinetic, %	93.5	94.3	95.6	94.5
SUMMARY OF PARTICULATE EMISSIONS				
P _{mrf} - Pollutant Mass Rate, Front Half, lb/hr.	0.48	0.56	0.64	0.56
C _{sf} - Conc., Front Half, gr/DSCF	0.0046	0.0051	0.0054	0.0058
C _{sfO2} - Conc., Front Half Corrected to 7% O ₂ , gr/DSCF	0.0040	0.0041	0.0046	0.0042
SUMMARY OF CARBON MONOXIDE (drift corrected)		-		
ppmvd	0.5	1.6	2.2	1.4
ppmvd @ 7% O ₂	0.4	1.3	1.9	1.2
. lb/hr	0.03	0.09	0.13	0.08
SUMMARY OF TOTAL HYDROCARBONS (THC as Methane)	}		···	
ppmvw	1.1	0.4	0.9	8.0
ppmvd	1.4	0 .5	1.2	1.0
ppmvd @ 7% O ₂	1.2	0.4	1.0	0.9
lb/hr	0.04	0.02	0.04	0.03
SUMMARY OF EPA REFERENCE METHOD 18 SAMPLES	•			
Toluene ug	< 10.0	< 10.0	< 10.0	< 10.0
Trichloroethylene ug	< 10.0	< 10.0	< 10.0	< 10.0
Toluene mg/M3	< 0.813	< 0.813	< 0.813	< 0.813
Trichloroethylene mg/M3	< 0.813	< 0.813	< 0.813	< 0.813
SUMMARY OF EPA REFERENCE METHOD 18 RECOVERY	STUDY (100c	g spike e		
Toluene - Front-half (ug)	99	99	99	99
Back-half (ug)	< 1.0	< 1.0	< 1.1	< 1.0
Trichloroethylene - Front-half (ug)	104	109	97	103
Back-half (ug)	< 4.5	< 4.5	< 4.6	< 4.5

3. SAMPLING AND ANALYTICAL PROCEDURES

3.1 EPA Reference Method 1: Sample Location

The stack on the MSRU is a round duct with an inside diameter of 48". The overall stack height (above ground level) is 37.5 feet. Two four-inch test ports are located 90° apart. The ports are located 7.5 feet from the top of the stack. The overall dimensions of the stack do not provide enough straight run to meet the "ideal" 8 and 2 diameter criteria for a sample location. As a result, the maximum number of sample points was used during all "isokinetic" sampling. A total of 24 points was sampled, 12 per traverse. Sampling was performed starting at the furthest sample point in and working outwards towards the test port. The distances from the stack wall (in inches) to each sample point was as follows:

Point #	Distance in inches	Point #	Distance in inches
12	1.0	6	30.9
11	3.2	5	36.0
10	5.7	4	39.5
9	8.5	3	42.3
8	12.0	2	44.8
7	17.1	1	47.0

Representative measurements of pollutant emissions and the volumetric flow rate from a stationary source requires a measurement site where the effluent stream is flowing in a known direction and "cyclonic" flow is not present. A "cyclonic" flow determination was performed prior to the performance test, and is included in Appendix F.

3.2 EPA Reference Method 2: Determination of Stack Gas Velocity & Volumetric Flow Rate

The gas velocity in the stack was determined from the measurement of an average velocity head, gas density, stack temperature and stack pressure following the procedures of EPA Reference Method 2. The average velocity head was determined by using an inclined manometer, and a type S pitot tube with a known coefficient of 0.84 which was determined geometrically by standards set forth in EPA Reference Method 2. Stack temperatures were taken at each traverse point using a type K thermocouple. Static pressure was determined by using a straight tap and an inclined manometer. The E₃-Killam field procedure for Method 2 is included in Appendix B.

3.3 EPA Reference Method 3A: Gas Analysis for Carbon Dioxide, Oxygen and Dry Molecular Weight

A gas sample was continuously extracted from the effluent stream (consistent with Reference Methods 3A). A portion of the sample stream was conveyed to instrumental analyzers for determination of O₂ and CO₂ concentrations. A Horiba MPA-510 magnetopneumatic O₂ analyzer operating on the 0-25% (dry) range was utilized in determining oxygen concentrations. Carbon dioxide concentrations were determined using a Horiba Model VIA510 (CFM-NDIR) analyzer with an operational range of 0-20% volume (dry). Data was recorded on a data acquisition system (DAS) at one-minute intervals. The E₃-Killam field procedure for EPA Reference Method 3A is included in Appendix B.

3.4 EPA Reference Method 4: Moisture Determination

The moisture content at the test location was measured according to the procedures in EPA Reference Method 4. Moisture gain was determined from the EPA Reference Method 5 sample train. The E₃-Killam field procedure for EPA Reference Method 4 is included in Appendix B.

3.5 EPA Reference Method 5: Determination of Particulate Matter (PM) Emissions from Stationary Sources

The PM concentration of the exhaust gas stream was measured "isokinetically" according to the procedures outlined in EPA Reference Method 5. This method incorporates gas velocity and volumetric flow measurements (EPA Reference Method 2), and percent moisture determinations (EPA Reference Method 4). Three 1-hour samples were collected for PM determination. The E₃-Killam field procedure for EPA Reference Method 5 is included in Appendix B.

3.6 EPA Reference Method 10: Determination of Carbon Monoxide (CO) Emissions from Stationary Sources

EPA Reference Method 10 was used to determine the concentration of CO from the exhaust gas. Analysis was performed continuously on a TECO Model 10H gas filter correlation non-dispersive infrared (CFM-NDIR) CO analyzer. The analyzer's output was recorded at 1-minute intervals on a data acquisition system (DAS). The analyzer was set on the 0-100 ppm range.

Instrument calibrations are documented and were performed with certified gases prepared via EPA Protocol #1 at concentrations of zero, approximately 30% and 60% of span, and a known concentration near the span limit. Three 1-hour continuous CO determinations were performed during this performance test program. The E₃-Killam field procedure for EPA Reference Method 10 is included in Appendix B.

3.7 EPA Reference Method 18: Determination of Gaseous Organic (Volatiles) Compounds by Gas Chromatography

3.7.1 General

The concentrations of toluene and trichloroethylene, the "two constituents of concern" for this demonstration test plan, were measured according to the procedures outlined in EPA Reference Method 18. Stack gas was drawn through sorbent tubes and returned to the laboratory. During analysis, the two "constituents of concern" were separated by a gas chromatograph (GC), and individually quantified by flame ionization, photo-ionization, electron capture, or other appropriate detection principle.

3.7.2 Performance Test

The performance test for EPA Reference Method 18 consisted of three 60-minute samples.

3.7.2.1 Sampling Equipment

The collection system used for sampling consisted of a length of "unheated" stainless steel tubing. The probe was not heated for this test program, due to the elevated temperature of the stack (approximately 1450°F). Connected to the probe was a short length of TeflonTM tubing. The tubing connected the probe to three 1040/260 mg silica gel tubes (in series) which in turn were attached to three 800/200 mg charcoal tubes (also in series). Silica gel tubes were used to remove moisture from the exhaust gas. All tubes were kept in a vertical position during sampling. A length of flexible tubing connected the tubes to a calibrated sampling pump. Each pump was calibrated to 0.2 liters/minute. See Figure 3-1 for a diagram of the EPA Reference Method 18 sample train.

3.7.2.2 Sampling

The probe was placed at or near the centroid of the stack. The tubes were connected in series, with the ends of each tube freshly broken. The silica gel tubes preceded the charcoal tubes. As mentioned earlier, the silica gel tubes were placed in-line to prevent moisture from the exhaust gas from entering the charcoal tubes. The sample pumps were turned on, with both start and stop times being recorded. The total duration of the sample was sixty minutes. Barometric pressure and ambient temperature readings were also recorded.

After sampling was complete, the charcoal tubes were labeled and sealed for transport to the laboratory. The silica gel tubes were discarded. Laboratory results for the EPA Reference Method 18 test results are included in Appendix E.1.

3.7.3 EPA Reference Method 18: Recovery Study Requirement

The recovery study discussed in section 7.6.3 of the method was performed. A second sampling train identical to the one described above was placed next to the Method 18 sample train in the stack. This "recovery study" train had 100µg spikes each of toluene and trichloroethylene (TCE) in the first charcoal tube in series. A separate "recovery study" train was sampled during each of the three 60-minute EPA Method 18 test runs. The spiked charcoal tube from each "recovery study" train was analyzed along with the "non-spiked" charcoal tube from the EPA Method 18 sample train. All spiked tubes showed approximately 100% recovery. Laboratory reports for the recovery study are included in Appendix E.1.

3.8 EPA Reference Method 25A: Determination of Total Gaseous Organic (Volatiles) Compounds by Flame Ionization Analyzer

Volatile organic compound (VOC) concentrations were measured according to Reference Method 25A. A J.U.M. Model VE-7 hydrocarbon analyzer was used to measure VOCs as total hydrocarbons (THC). THC analysis was continuous with 1-minute average concentrations

recorded on a data acquisition system (DAS). The analyzer's THC operating range was 0-100 ppm. The E₃-Killam field procedure for RM-25A is included in Appendix B.

A Horiba Gas Divider (GDS) model SGD-710 was used to generate appropriate calibration gas concentrations from zero grade nitrogen and USEPA Protocol gas. The protocol gas had a certified concentration of 90.5-ppm methane in air.

3.9 EPA Method 8260B: Soil Sample Collection

The soil chosen for the demonstration test program, was not contaminated as much as was originally thought. Because of this, it was desired by the New York State DEC that the "pretreated" soil be spiked. Gasoline was chosen as the spiking media and was applied to the test soil at a rate of 1.02 gallons/wet ton of soil. At this rate, the expected concentration of toluene was 70.0 ppm. So as not to exceed the 4.0 lb/hr HCl emission limit, the blended soil to be processed would not contain more than 60 ppm (corresponding to a production rate of 40 TPH) of 1,1,1-trichloroethane and trichloroethylene combined.

During the performance test, discreet sampling of the soil was performed. Soil samples were collected from both pre-processed soil and processed soil. Pre-processed samples were taken as safely as possible before the soil entered the MSRU. Specifically, this sampling occurred on the MSRU weigh belt conveyor just after the weigh scale and prior to entering the MSRU dryer kiln. Processed sampling occurred from within the processed soil pile (a minimum of six inches deep into the side of the pile), as soon as possible after treatment. As soon as possible meant immediately upon sufficient cool down to allow sampling to occur.

A stainless steel scoop was utilized in the collecting of samples. Following each sample, the scoop was rinsed with soapy water, followed by deionized water, followed by isopropanol, followed by air-drying, and finally wrapped in aluminum foil. All samples collected were placed in airtight 40-ml glass sample jars. All jars were filled to the top (no head-space). All samples

collected were then labeled, documented and stored in a cooler maintained at 4°C. The samples remained in the cooler until their arrival at a New York State certified laboratory, Severn Trent Laboratories located in Newburgh, New York, for analysis.

During each 1-hour EPA Reference Method 18 test, three samples of pre-processed soil and three samples of post-processed soil were collected (processed soil was collected 10-minutes following the collection of the pre-processed soil due to a residence time of approximately 7-10 minutes in the MSRU). Samples were analyzed for the compounds listed in Table 1-1. Analysis was in accordance with the procedures stated in EPA Method 8260B, Gas Chromatography/Mass Spectrometry.

3.10 Process Parameters

During the demonstration test, the afterburner was set at 1650°F as indicated in the MSRU Control Room. The processed soil was treated to a minimum temperature of 488°F. The production feed rate ranged from 39.38 tons/hour for Test Run 2, to 41.08 tons/hour for Test Run 4. During the operation of the unit, a Process Data Log Sheet was filled out at fifteen-minute intervals for each Test Run. Additional items that were recorded during the demonstration test included a log of the amount of treated soil (no soil required retreatment), soil sampling events, downtimes and operational any problems. Copies of these process log data sheets are included in Appendix D.

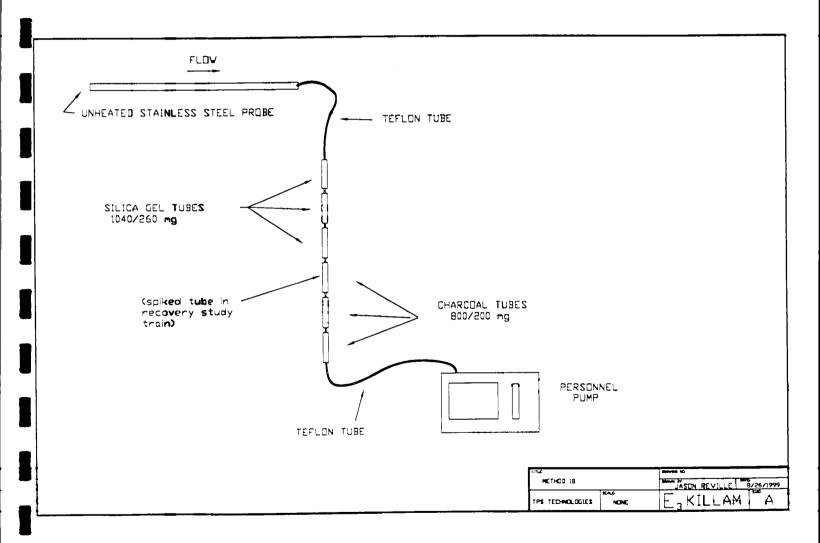
3.11 Soil Cleanup Standards

Each target compound has an associated soil cleanup standard as stated in the Record of Decision (March 1995). They are as follows:

trichloroethylene – 1.05 mg/kg 1,1,1-trichloroethane – 1.14 mg/kg toluene – 2.25 mg/kg ethylbenzene -8.25 mg/kg total xylenes -1.8 mg/kg

All required soil cleanup standards were met during the performance test. Laboratory reports for all soil samples collected are included in Appendix E, and are presented as follows:

Appendix E-1 – Laboratory Reports for the EPA Reference Method 18 samples.


Appendix E-2 - Summary of Soil Sampling Analytical Results (pre-processed and processed).

Appendix E-3 – Laboratory Reports for the Pre-Processed Soil Samples.

Appendix E-4 – Laboratory Reports for the Processed Soil Samples.

Figure 3-1: Method 18 Sample Train Configuration

Demonstration Testing on MSRU
Westinghouse Plant – Buffalo Airport Site
Soil Remediation Project
TPS Technologies Inc.
Cheektowaga, NY

4. QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Sampling equipment was cleaned, checked and calibrated according to the QA/QC procedures outlined in each appropriate reference method and the "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source-Specific Methods" (EPA/600/R-94/038c). This section outlines the QA/QC procedures performed prior to, during and after field sampling activities.

Copies of calibration and certification sheets for all equipment used during the demonstration test program are included in Appendix C.

4.1 EPA Reference Method 5: QA/QC Specifics

Prior to field use and sample recovery, glassware was cleaned according to a five-step procedure. Leak checks were performed before and after each sample run on all train components including vacuum sample trains and pitot lines. The pre-test and post-test leak checks for all tests were within their respective acceptable criteria.

4.2 EPA Reference Method 18: QA/QC Specifics

The recovery efficiency of each target compound was determined. The primary and backup portions of the charcoal tubes were analyzed separately to determine this. According to Section 7.4.4.2 of EPA Reference Method 18. the backup portion cannot exceed 10% of the total amount (primary portion + backup portion). The recovery studies were all within the acceptable limits.

All pumps were calibrated before and after the test series. The pre and post calibrations for each pump were within +/- 5% of the target sample rate. As a result, an average sample rate was

determined from the pre and post calibrations and subsequently used for all sample volume determinations.

4.3 Calculations

Various spreadsheets are used by E₃-Killam in determining emission rates from data collected during the test program. Copies of these spreadsheets are included in Appendix A. Also included in the appendix are copies of the field data sheets.

A. FIELD DATA SHEETS

A.1 EPA Reference Method 5

E₃-Killamine.

GENERAL TEST INFORMATION

Client:	TPS	Stack Dia. or D _{e.} , (in.):	48.00	Area of Stack (ft ²): 12.5	664
Proje ct No.:	99023.0001	No. of Ports:	2	Port Location from	
Site:	Westinghouse Demo	Points/Port:	12	Upstream Disturbance (De): 0.00	+
Ad dr ess:		Runs/Test:	3	Port Location from	
City/ St ate:	Buffalo, NY			Dnstream Disturbance (D _e): 0.00	+
Test Of:	РМ		<u>.</u>		
Source Ty pe:	Soil Remediation Unit	t _{std} (°F) :	68	Rectangular Ducts	
Control Equip.:	+	T _{std} (°R):	528	Length (in.): 0.00	I
Test Location:	Outlet			Width (in.): 0.00	+

SUMMARY OF STACK PARAMETERS

Test Date 10/25/99	10/25/99	10/25/99	10/25/99	
Run No. 1, Aborte	d 2	3	4	Avg.
t _s - Stack Temperature, °F	1489.3	1469.9	1468.5	1475.9
P _s - Stack Absolute Pressure, in. H g.	29.56	29.53	29.50	29.53
V _s - Stack Velocity, ft/sec.	77.29	81.77	85.85	81.64
Q _a - Volumetric Flow Rate/Actual Conditions, ACFM	58275	61653	64730	61553
Q _s - Volumetric Flow Rate/Dry Standard Conditions, DSCFM	12150	12853	13858	12954
CO ₂ ,%	8.60	10.10	9.30	9.33
O ₂ , %	5.10	3.50	4.70	4.43
CO, %	0.00	0.00	0.00	0.00
N ₂ ,%	86.30	86. 40	86.00	86.23
M _d - Dry Molecular Weight, lb/lb-m ole	29.58	29.76	29.68	29.67
M _s - Wet Molecular Weight, lb/lb-m ol e	27.02	27.08	27.26	27.12
V _{m(std)} - Sample Volume - Dry Standard Conditions, DSCF	30.871	32.323	35.325	32.840
Stack Moisture Content, %	22.10	22.80	20.70	21.87
Isokinetic, %	93.5	94.3	95.6	94.5

SUMMARY OF PARTICULATE EMISSIONS

P _{mrf} - Pollutant Mass Rate, Front Half, lb/hr.	0.48	0.56	0.64	0.56
C _{sf} - Conc., Front Half, gr/DSCF	0.0046	0.0051	0.0054	0.0050
C _{sf02} - Conc., Front Half Corrected to 7% O ₂ , gr/DSCF	0.0040	0.0041	0.0046	0.0042

E₃-Killaming. SPECIFIC RUN INFORMATION

Project: 99023.0001

Run: 2

Test Date: 10/25/99

Location: Outlet

Test Of: PM Runs/Test: 3 Operator: MJT

Isokinetic Sampling - Data Summary

Amb. Temp. (°F):	53	Filter I.D. No.:	Q-608A	Meter Box I.D. No.:	E-1	%CO ₂	8.60
Pbar. (in. Hg.):	29.60	Thimble I.D. No.:	n/a	Meter Y:	0.995	%O ₂ :	5.10
Pstatic (in. H ₂ O):	-0.51	Pitot 1.D. No.:	71P-2	∆H @:	1.8549	%CO:	0.00
Dn:	0.3230	T-Couple I.D. No.:	7IT-2	Time/Point:	0:02:30	%N ₂ :	86.30
Cp:	0.84	Nozzle I.D. No.:	TPQ-1	Total Time (⊕):	60		

Leak	Meter Pre:	0	cfm @	15.0	in. Hg.	Pitot(-):	ck	@	5.2	in. H₂O
Checks	Meter Post:	0	cfm @	5.0	in. Hg.	Pitot(+):	ok	@	7.2	in. H₂O

Trvs.	Ti me	ΔP	ΔH	Meter			Tem perat ure:	s(°F)			Vac.
Pt. No.	o. (24 Hr.)	(in. H ₂ O)	(in. H ₂ O)	Vm(cf)	Stack	Meter in	Meter Out	Filter	Probe	Exit	(in. Hg .
A1	1 3:4 5:00	0.54	0.97	406.123	1600	57	57	251	n/a	51	2.0
2	1 3:4 7:30	0.42	0.75	407.500	1608	57	57	248	n/ a	5 0	2.0
3	1 3:5 0:00	0.42	0.75	408.600	1602	57	57	241	n/a	5 0	2.0
4	1 3:5 2:30	0.45	0.82	409.900	1564	57	57	246	n/a	48	2.0
5	1 3:5 5:00	0.60	1.13	411.200	1503	5 8	58	235	n/a	47	3.0
5	1 3:5 7:30	0.50	0.95	412.500	1489	58	58	246	n/a	46	3.0
7	14 :0 0:00	0.45	0.88	413.900	1444	59	57	2 52	n/a	46	3.0
8	14 :0 2:30	0.45	0.88	415.000	1438	60	57	2 34	n/a	47	3.0
9	1 4:0 5:00	0.61	1.23	416.400	1390	60	60	238	n/a	48	3.0
10	14:07:30	0.61	1.21	417.800	1411	61	58	241	n/a	47	3,0
11	1 4:1 0:00	0.56	1.13	419.300	1391	62	58	2 32	n/ a	47	3.0
12	14:12:30	0.52	1.02	420.700	1440	62	58	239	n/ a	47	3.0
	14 :1 5:00			422.030							
B1	1 4:3 2:00	0.30	0.54	422.030	1604	59	59	2 25	n/a	5 6	2.0
2	14 :3 4:30	0.49	0.88	423.100	1616	60	60	237	n/a	5 0	2.0
3	1 4:3 7:00	0.48	0.87	424.200	1601	60	60	2 36	n/ a	5 0	2.0
4	14 :3 9:30	0.55	1.02	425.500	1546	61	60	236	n/a	5 6	2,0
5	14 :4 2:00	0.57	1.08	427.000	1498	61	59	255	n/a	51	3.0
6	14 :4 4:30	0.48	0.91	428.400	1497	62	59	249	n/a	51	3.0
7	14 :4 7:00	0.51	1.01	429.500	1423	63	59	234	n/a	5 2	3.0
8	14 :4 9:30	0.59	1.19	430.800	1384	63	59	2 35	n/a	5 2	3.0
9	14 :5 2:00	0.47	0.94	432.300	1408	64	59	2 25	n/a	5 4	3.0
10	1 4.5 4.30	0 35	0.70	433.800	1404	65	59	2 26	n/a	5 5	3.0
11	1 4:5 7:00	0 34	0.67	434.800	1427	65	59	2 27	n/ a	5 5	3.0
12	1 4:5 9:30	0.25	0.49	436.000	1 455	65	59	219	n/a	5 5	3.0
	15:02:00			436.915							

Avg.	Avg.	Sum	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.
0.48	0.92	30.792	1489.3	60.7	58.5	237.3	#DIV/01	5 0 .0	2.7
Avg. Sqrt.					Avg. Tm				Max.
0.689		_			59.6				3.0

Project: 99023.0001 Run: 2 Test Of: PM Location: Outlet

Analytical Information

Moisture Determination - Data Summary

		Imp. 1	lmp. 2	lmp. 3	Imp. 4	Imp. 5	Imp. 5	Imp. 6	Silica Ge	i or Train
Final	(mi)	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	(g)	3696.0
Initial	(ml)	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	(g)	3510.0
Gain	(ml)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(g)	186.0
	<u> </u>								ts	1489
									SVP	29.9200

Blank Correction - Data Summary

Reagent		Acetone	
Blank Vol ume	(ml)	100.0	
Gross Wt.	(g)	105.6213	
T ar e Wt.	(g)	105.6194	
Blank Weight Gain	(g)	0.0019	
Blank Concen tr ation	(g/ml)	1.90E-05	

Blank Weight Gain = Gross Wt. - Tare Wt.

Blank Concentration = Blank Weight Gain / Blank Volume

Particulate Weight Determination - Data Summary

Front Half

Back Half

		Filter	Acetone	Total	Total
	1.D.	Q-608A	B-705	Gain	Gain
Beaker Vol.	(m1)	n/a	100.0		
Gross Wt.	(g)	0.3576	105.5914		
Tare Wt.	(g)	0.3549	105.5829		
Blank Corr.	(g)	0.0000	0.0019		
Gain	(g)	0.0027	0.0066	0.0093	0.0000

Blank Correction = Beaker Volume x Blank Concentration

Project: 99023.0001

Run: 2

Test Of: PM Location: Outlet

Reference Method No. 2 Calculations				
Average Stack Velocity				
•	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s =	7 7.29	ft/sec.
Averag e St ack Vol um etric Flow Rat e	- F F	J		
5 <u></u>	$Q_a = 60 V_s A_s$	Q _a =	58275.4	ACFM
Average Stack Volumetric Flow Rate		u u		
ge etaen reigniothio hom hate	$Q_s = 60 \ V_s \ A_s \ (1-B_{ws}) \ ((T_{std} \ P_{s}) / (P_{std} \ T_s))$	Q _s =	12149.5	DSCFM
Reference Me thod No. 3 Calculations	-5 15 15 1 M3/ 11 Std 3/ 1 4td 3/			
Molecular Weight, D ry				
Worksdar Weight, Dry	$M_d = 0.44 \%CO_2 + 0.32 \%O_2 + 0.28 (\%CO + N_2)$	M _d =	29.58	I b/lb -mole
Molecular W ei ght, W et		·a	20.00	101.0
Widecular Vielgint, Wet	$M_s = M_d (1-B_{ws}) + 18 B_{ws}$	M _s =	27.02	lb/lb-mole
Defending Mathematical Accelerations	INS - ING (I-DWS) + TO DWS	101 _S -	27.02	10/10-111016
Reference Method No. 4 Calculations				
Sample Vol um e, S ta ndard Conditions				
	$V_{m(std)} = V_{m} Y ((T_{std} P_{m}) / (T_{m} P_{std}))$	$V_{m(std)} =$	30 .871	DSCF
Water Vapor Volu me Collected				3
	$V_{wc(std)} = .04707 (V_f - V_i)$	$V_{wc(std)} =$	0.000	ft ³ /ml
Water Vapo r V olu me Collected				2
	$V_{wsg(std)} = .04715 (W_f - W_i)$	$V_{wsg(std)} =$	8.770	ft ³ /g
Moisture Vo lum e Fre ction of Stack Gas				
Wioistare Volume Prection of Stack Gas	$B_{ws} = (V_{wc(std)} + V_{wsq(std)})/(V_{wc(std)} + V_{wag(std)} + V_{m(std)})$	_{d)}) B _{ws} =	0.221	
	Was = (*wc(std) * *wag(std)/*(*wc(std) * *wag(std) * *m(std	oy, Owa	5.221	
Vapor Pressure of S tack H ₂ O				
	VP=SVP000367 (P _s) (1+(ts-32/1571))	VP=	29 .899	
Bws VP				
DW2 VP	B _{ws} VP=VP / P _s	B _{ws} VP=	1.011	
	-ws	- w 5 - ·		
Min B _{ws} or B _{ws} VP				
	If B _{ws} > B _{ws} VP, then B _{ws} VP	B _{ws} or B _{ws} VP=	0.221	
Reference Me tho d No. 5 Calculations				
Percent Isokinetic	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$	3 %I=	93.5	
	/oi = \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- /24	50.0	
Mass Emiss io ns R at e - Front Half				
	$p_{mrf} = (m_f / V_{m(std)}) Q_s 0.13216$	P _{mrf} =	0.4837	lbs/hr.
Mass Emissions Rate - Total (Front+Back Haif)				
wass cimissions raile - Total (Front -back rail)	$p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$	P _{mrt} =	0.4837	lbs/hr.
	Pmrt = \(\(\frac{111}{2}\) \(\frac{1}{2}\) m(std)/ \(\frac{1}{2}\) 0.13210	F mrt □	0.4007	Danii.
Stack Concentrati on - Front Half				
	$C_{sf} = 15.43 \text{ m}_f / Vm_{(std)}$	C*L=	0.0046	gr/DSCF
Stack Concentration - Total (Front+Back Half)				
The second distriction of the second distric	$C_{st} = 15.43 \text{ m}_t / Vm_{(std)}$	C _{st} =	0.0046	gr/DSCF
Stack Concentration - Front Half Corrected to 7%		31		-
Stack Concentration - Front Half Conected to 178	-	•		vD225
	$C_{sfO2} = C_{sf} (20.9 - 7.0) / (20.9 - \%O_2)$	C _{sfO2} =	0.0040	gr/DSCF
Stack Concentration - Total (Front+Back Half) Co	arrected to 7% O ₂			@7%O ₂
	$C_{\text{SIO2}} = C_{\text{St}} (20.9 - 7.0) / (20.9 - \%O_2)$	C _{stO2} =	0.0040	gr/DSCF
	-5102 -51 (-515), (-515)	-5102	3.50-70	@7%O ₂
				J 2

Project: 99023.0001

Run: 3
Test Date: 10/25/99

Location: Outlet Test Of: PM Runs/Test: 3 Operator: MJT

Isokinetic Sampling - Data Summary

Amb. Tem p. (°F):	5 8	Filter I.D. No.:	Q-6 79A	Meter Box i.D. No.:	E-1	%CO₂:	10.10
Pbar. (i n. Hg.):	29.57	Thimble I.D. No.:	n/a	Meter Y:	0.995	%O ₂ :	3.50
Pstatic (in. H₂O):	-0.51	Pitot I.D. No.:	7IP-2	7H @:	1.8549	%CO:	0.00
Dn :	0.3200	T-Couple I.D. No.:	7IT-2	Time/Point:	0:02:30	%N ₂ :	88.40
Cp :	0.84	Nozzle I.D. No.:	TPQ-3	Total Time (⊕):	60		

Leak	Met er Pre:		0.015	cfm @	15.0	in. Hg.	Pitot(-):	ok	@	6.9	in. H₂O
Checks	Meter Pos	t:	0.018	cfm @	5.0	in. Hg.	Pitot(+):	ok	@	5.7	in. H₂O
Trvs.	Time	ΔΡ	ΔΗ	Meter			Temperature	s (°F)			Vac.

Trvs.	Time	ΔΡ	ΔH	Meter			Tem perat ure:	si(°F)			Vac.
Pt. No.	(24Hr.)	(in. H ₂ O)	(in. H ₂ O)	∨m(cf)	Stack	Meter in	Meter Out	Filter	Probe	Exit	(in. Hg
B 1	15 :52 :00	0.25	0.44	438.085	1573	60	60	224	n/a	5 5	2.0
2	1 5:54 :30	0.64	1.13	439.000	1578	61	61	244	n/a	54	2.0
3	1 5:57 :00	0.49	0.87	440.400	1560	61	61	241	n/a	54	2.0
4	1 5;59 :30	0.48	0.87	441.600	1527	62	61	248	n/ a	54	2.0
5	16 :02 :00	0.52	0.94	443.000	1519	62	60	252	n/ a	54	2.5
6	16 :0 4:30	0.60	1.14	444.300	1440	63	60	2 36	n/a	5 3	2.0
7	16 :07 :00	0.63	1.23	445.400	1383	64	61	234	n/a	53	3.0
8	16: 09 :30	0.52	1.01	447.200	1394	6 5	61	2 35	n/a	5 3	3.0
9	1 6:12 :00	0.52	1.01	448.400	1400	65	61	237	n/a	5 3	3.0
10	1 6:14 :30	0.62	1.19	450.000	1413	66	60	244	n/a	5 5	3.0
11	1 6:1 7:00	0.48	0.93	451.400	1407	66	61	2 25	n/a	5 5	3.0
12	16:19:30	0.55	1.05	452.800	1435	66	61	234	n/a	5 6	3.0
-	16 :2 2:00			454.097							
A1	1 6:38 :00	0.47	0.82	454.097	1602	61	61	247	n/a	54	2.0
2	1 6:40 :30	0.42	0.73	455.200	1604	63	61	243	n/a	52	2.0
3	1 6:4 3:00	0.46	0.82	456.400	1556	63	61	246	n/a	52	2.0
4	16:45:30	0.69	1.26	457.600	1516	63	61	246	n/a	52	3.0
5	1 6:48 :00	0.60	1.09	459.100	1530	64	61	249	n/a	51	3.0
6	16 :50 :30	0.52	0.97	460.700	1479	65	61	2 56	n/a	51	3.0
7	1 6:5 3:00	0.65	1.27	461.900	1392	6 6	61	2 52	n/a	52	3.0
8	1 6:5 5:30	0.59	1.16	463,300	1379	66	61	238	n/a	52	3.0
9	1 6:5 8:00	0.63	1.24	464.900	1382	67	61	249	n/a	54	3.0
10	17 :0 0:30	0.59	1.13	466.300	1427	67	61	251	n/a	54	3.0
11	17: 0 3:00	0.55	1.06	467.700	1412	68	61	248	n/a	5 6	3.0
12	17 :0 5:30	0.55	1.09	469.100	1369	6 8	62	2 48	n/a	57	3.0
	17 :0 8:00			470.536							

Avg.	Avg.	Sum	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.
0.54	1.02	32.451	1469.9	64.3	60.9	242.8	#DIV/0	53.6	2.6
Avg. Sgrt.					_Avg. Tm				Max.
0.733					62.6				3.0

Project: 99023.0001

Run: 3

Test Of: PM - Location: Outlet

Analytical Information

Moisture Determination - Data Summary

		Imp. 1	lmp. 2	Imp. 3	Imp. 4	Imp. 5	lmp. 5	Imp. 6	Silica Ge	or Trai n
Final	(m1)	0.0	0.0	0.0	0.0	0,0	0.0	0.0	(g)	3690.0
Initial	(ml)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(g)	3488.0
Gain	(ml)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(g)	20 2.0
						-			ts	1470
									SVP	29.9200

Blank Correction - Data Summary

Reagent		Acetone	
Blank Vo lume	(ml)	100.0	
Gross Wt.	(g)	105.6213	
T ar e Wt.	(g)	105.6194	
Blank Weight Gain	(g)	0.0019	
Blank Concentration	(g/ml)	1.90E-05	

Blank Weight Gain = Gross Wt. - Tare Wt.

Blank Concentration = Blank Weight Gain / Blank Volume

Particulate Weight Determination - Data Summary

Front Half

Back Half

		Filter	Acetone	Total	Total
	I.D.	Q-679A	B-662	Gain	Gain
Beaker Vol.	(m 1)	n/a	110.0		
Gross Wt.	(g)	0.3731	100.6377		
Tare Wt.	(g)	0.3711	100.6269		
Blank Corr.	(g)	0.0000	0.0021		
Gain	(g)	0.0020	0.0087	0.0107	0.0000

Blank Correction = Beaker Volume x Blank Concentration

E3-Killaming. SPECIFIC RUN INFORMATION

Project: 99023.0001

Run: 3

Test Of: PM Location: Outlet

Average Stack Vel ocit y	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s =	81.77	ft/sec.
Average Stack Volu m etri c F low Rate	$Q_a = 60 V_s A_s$	Q _a =	61653.3	ACFM
Average Stack Volu m etric Flow Rate		- 0		
	$Q_s = 60 V_s A_s (1-B_{ws}) ((T_{std} P_s) / (P_{std} T_s))$	Q _s =	12853.2	DSCFM
Reference Method No. 3 Calculations				
Molecular Weight, Dry	$M_d = 0.44 \text{ %CO}_2 + 0.32 \text{ %O}_2 + 0.28 \text{ (%CO} + N_2)$	M _d ≠	29.76	i b /ł b -mole
Molecular Weight, We t	$M_s = M_d (1-B_{ws}) + 18 B_{ws}$	M _s =	27.08	lb/lb-mole
Reference Method No. 4 Calculations	ms md (1 Dws) 10 Dws		21.00	18/18/11/01/
Sample Volume, St an dard Conditions				
iample volume, Standard Conditions	$V_{m(std)} = V_{m} Y ((T_{std} P_{m}) / (T_{m} P_{std}))$	V _{m(std)} =	3 2.323	DSCF
Nater Vapor Volum e Collected		(3.0)		
	$V_{wc(std)} = .04707 (V_f - V_i)$	$V_{wc(std)} =$	0.000	ft ³ /ml
Vater Vapor Volum e Coll ec ted		. ,		
	$V_{wsg(std)} = .04715 (W_f - W_i)$	V _{wsg(std)} =	9.524	ft ³ /g
Moisture Volume F rac tion of Stack Gas				
noistare volume i raction of Stack Gas	$B_{ws} = (V_{wc(std)} + V_{wsq(std)})/(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$	B _{ws} =	0.228	
/apor Pressure of Sta ck H ₂ O	-ws (we/stu) wag(stu) (we/stu) wag(stu) (m/stu)	- ₩3		
Paper Flessure of Stack 1120	VP=SVP000367 (P _s) (1+(ts-32/1571))	VP=	30 900	
	VF-3VF000307 (F _S) (17(13-32-137 1))	VF-	29 .899	
Bws VP	B _{ws} VP=VP / P _s	B _{ws} VP=	1.012	
Min B _{ws} or B _{ws} VP				
	If $B_{ws} > B_{ws}VP$, then $B_{ws}VP$ MIN B_{ws}	s or B _{ws} VP=	0.228	
Reference Method No. 5 Calculations				
Percent Isokinetic				
5.557. 1551	$%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$	%I=	94.3	
Mana Sanisaina Cata Sanisaina				
Mass Emissions R ate - F ro nt Half	$p_{md} = (m_f / V_{m(std)}) Q_s 0.13216$	P _{md} =	0.5623	lbs/hr.
	P _{mrf} = (111f / ▼m(std))	₹.m.n.T	0.3023	103/111.
Mass Emissions R ate - T ota l (Front +Back Haif)		_		
	$p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$	P _{mrt} =	0.5623	lbs/hr.
Stack Concentratio n - Front Half				
	$C_{sf} = 15.43 \text{ m}_f / Vm_{(std)}$	C _{sf} =	0.0051	gr/DSC
Stack Concentration - Total (Front+Back Half)		•		
Stack Concentratio n - To tal (Front+Ba c k Half)	$C_{st} = 15.43 \text{ m}_t / Vm_{(std)}$	C _{st} =	0.0051	gr/DSCI
		C _{st} =	0.0051	gr/DSC
	02			
Stack Concentratio n - To tal (Front+B ack Half) Stack Concentratio n - Fr ont Half Co rrected to 7%	$C_{sfO2} = C_{sf} (20.9 - 7.0) / (20.9 - \%O_2)$	C _{sfO2} =	0.0051	gr/DSCF gr/DSCF @7%O2
	$C_{sfO2} = C_{sf} (20.9 - 7.0) / (20.9 - \%O_2)$			gr/DSCF

E3-Killaming. SPECIFIC RUN INFORMATION

Project: 99023.0001

Run: 4
Test Date: 10/25/99

Location: Outlet

Test Of: PM

Runs/Test: 3

Operator: MJT

Isokinetic Sampling - Data Summary

Am b. Tem p . (°F):	56	Filter I.D. No.:	Q-745A	Meter Box I.D. No.:	E-1	%CO2:	9.30
Pbar. (i n. Hg.):	29.54	Thimble I.D. No.:	n/a	Meter Y:	0.995	%O ₂ :	4.70
Pstatic (in. H ₂ O):	-0.51	Pitot I.D. No.:	2IP-2	∆H @:	1.8549	%CO:	0.00
Dn:	0.3200	T-Couple I.D. No.:	2IT-2	Time/Paint:	0:02:30	%N ₂ :	86.00
Cp:	0.84	Nozzle I.D. No.:	TPQ-2	Total Time (⊕):	60	ţ.	

Leak	Meter Pre:	0.002	cfm @	10.0	in. H g.	Pitot(-):	ok	@	7.1	in. H₂O
Checks	Me te r Post:	0.001	cfm @	5.0	in. Hg.	Pitot(+):	o k	@	6.4	in. H₂O

Trvs.	Ti me	ΔΡ	ΔН	Meter		-	Tem perat ure	3 (°F)			Vac.
Pt. No.	(24 Hr.)	(in. H ₂ O)	(In. H ₂ O)	Vm(cf)	Stack	Meter in	Meter Out	Fiiter	Probe	Exit	(in. Hg.)
A1	1 8:0 2:00	0.35	0.68	470.769	1612	62	62	248	n/a	53	2.0
2	1 8:0 4:30	0.69	1.36	471.800	1583	61	61	249	n/a	5 2	2.0
3	1 8:0 7:00	0.59	1.15	473,400	1594	61	61	248	n/a	5 2	3.0
4	1 8:0 9:30	0.67	1.36	474.700	1514	62	61	258	n/a	5 2	3.0
5	1 8:1 2:00	0.58	1.19	476.100	1503	62	62	252	n/a	5 2	3.0
6	1 8:1 4:30	0.60	1.27	477.800	1437	63	61	2 53	n/a	54	3.0
7	1 8:1 7:00	0.63	1.40	479.200	1345	64	61	254	n/a	5 5	3.0
8	1 8:1 9:30	0.61	1.33	480.800	1387	64	61	2 53	n/a	5 5	3.0
9	1 8:2 2:00	0.72	1.59	482.200	1366	6 6	61	245	n/a	61	4.0
10	1 8:2 4:30	0.65	1.41	483.900	1397	67	61	253	n/a	6 2	3.0
11	1 8:2 7:00	0.70	1.51	485.500	1406	67	61	249	n/a	6 2	3.0
12	1 8:2 9:30	0.68	1.46	487.100	1423	68	61	249	n/a	6 3	3.0
	18:32:00			488.696							
B1	1 8:4 4:00	0.36	0.72	488.696	1559	63	62	247	n/ a	5 2	2.0
2	1 8:4 6:30	0.44	0.86	489.800	1608	6 5	62	251	n/a	54	2.0
3	18:49:00	0.61	1.20	491.200	1584	65	62	257	n/a	5 6	3.0
4	1 8:5 1:30	0.54	1.10	492,500	1523	65	62	254	n/a	5 6	3.0
5	1 8:5 4:00	0.57	1.17	494.000	1510	6 6	62	255	n/ a	5 7	3.0
6	1 8:5 6:30	0.67	1.47	495.600	1384	67	62	254	n/a	57	3.0
7	1 8:5 9:00	0.65	1.40	497.100	1414	6 8	62	250	n/a	5 9	3.0
8	19:01:30	0.60	1.31	498.600	1401	68	63	261	n/a	6 2	3.0
9	19:04:00	0.66	1.42	500.300	1419	6 9	63	250	n/a	6 3	3.0
10	19:06:30	0.59	1,27	501.800	1422	70	63	251	n/a	6 3	3.0
11	1 9:0 9:00	0.55	1.19	503.300	1421	70	63	257	n/a	64	3.0
12	1 9:1 1:30	0.70	1.50	504.900	1432	71	63	252	n/a	6 5	3.0
-	19:14:00	- · · · -		506.324							

Avg.	Avg.	Sum	Avg.	Avg.	Avg.	Avg	Avg.	Avg.	Avg.
0.60	1.26	35.555	1468.5	65.6	61.8	252.1	#D IV/0i	5 7 .5	2.9
Avg. Sqrt.					Avg. Tm				Max.
0.772			_		63.7				4.0

Project: 99023.0001 Run: 4 Test Of: PM Location: Outlet

Analytical Information

Moisture Determination - Data Summary

		lmp. 1	lmp. 2	Imp. 3	Imp. 4	Imp. 5	lmp. 5	Imp. 6	Silica Ge	l or Train
Final	(m 1)	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	(g)	3746.0
Initial	(m1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(g)	3550.0
Gain	(m 1)	0.0	0.0	0.0	0.0	0.0	0. 0	0. 0	(g)	196.0
						-			ts	1469
									SVP	29.9200

Blank Correction - Data Summary

Re ag ent		Acetone	
Blank Volume	(ml)	100.0	
Gross Wt.	(g)	105.6213	
Tare Wt.	(g)	105.6194	
Blank Weight Gain	(g)	0.0019	
Blank Concentration	(g/ml)	1.90E-05	

Blank Weight Gain = Gross Wt. - Tare Wt.

Blank Concentration = Blank Weight Gain / Blank Volume

Particulate Weight Determination - Data Summary

F	roi	nt	н	a	if

Back Half

		Filter	Acetone	Total	Total
	I.D.	Q-745A	B-671	Gain	Gain
Beaker Vol.	(m1)	n/a	100.0		
Gross Wt.	(g)	0.3863	104.8458		
Tare Wt.	(g)	0.3831	104. 834 8		
Blank Corr.	(g)	0.0000	0.0019		
Gain	(g)	0.0032	0.0091	0.0123	0.0000

Blank Correction = Beaker Volume x Blank Concentration

E3-Killaming. SPECIFIC RUN INFORMATION

Project: 99023.0001

Run: 4

Test Of: PM Location: Outlet

Reference Method No. 2 Calculations				
Average Sta ck Vel oc ity				-
	$V_s = K_p C_p SQRT \Delta P_{avg} SQRT (T_s / (P_s M_s))$	V _s =	85.85	ft/sec.
Average Stack Vol um etric Flow Rat e	•			
	$Q_a = 60 V_s A_s$	Q _a =	64729.5	ACFM
Average Stack Vol um etric Flow Rate				
-	$Q_s = 60 \ V_s \ A_s \ (1-B_{ws}) \ ((T_{std} \ P_s) / (P_{std} \ T_s))$	Q.=	13857.6	DSCFM
Reference Method No. 3 Calculations	3 3 3 1 100 11 11 11 11 11			
Molecular W eig ht, Dr y				
- ·	$M_d = 0.44 \%CO_2 + 0.32 \%O_2 + 0.28 (\%CO + N_2)$	M _d ⊐	29.68	i b/lb- mole
	111d - 0.44 70002 - 0.01 7002 - 0.120 (1000 - 172)	···a	25.00	ID/ID-ITIOIE
Molecular W eig ht, W et	M - M (4 D) 4 4 0 D		07.00	11.40
	$M_s = M_d (1-B_{ws}) + 18 B_{ws}$	M _s =	27.26	lb/lb-mole
Reference Method No. 4 Calculations				
Sample Volu m e, Standard Conditions				
	$V_{m(std)} = V_m Y ((T_{std} P_m) / (T_m P_{std}))$	$V_{m(std)} =$	35 .325	DSCF
Water Vapor Volum e Collected				2
	$V_{wc(std)} = .04707 (V_f - V_i)$	$V_{wc(std)} =$	0.000	ft ³ /ml
Water Vapor V olu me Collected				
	$V_{wsg(std)} = .04715 (W_f - W_i)$	V _{wsg(std)} =	9.241	ft ³ /g
		,		
Moisture Vol um e F ra ction of Stack Gas		_		
	$B_{ws} = (V_{wc(std)} + V_{wsg(std)})/(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$	B _{ws} =	0.207	
Vapor Pressure of St ack H ₂ O				
	VP=SVP000367 (P _s) (1+(ts-32/1571))	VP=	29 .899	
D 1/D				
Bws VP	B _{ws} VP=VP / P _s	B _{ws} VP=		
	DW9 AL - AL 1 LB	D _{ws} v r -	1.013	
Min B _{ws} or B_{ws} VP				
	If $B_{ws} > B_{ws}VP$, then $B_{ws}VP$ Min B_{w}	s or B _{ws} VP=	0.207	
······································	If B _{ws} > B _{ws} VP, then B _{ws} VP MIN B _w	s or B _{ws} VP=	0.207	
Reference Me tho d N o. 5 Calculatio ns	If B _{ws} > B _{ws} VP, then B _{ws} VP MiN B _w	s or B _{ws} VP=	0.207	
Reference Me tho d N o. 5 Calculations Percent Isok ine tic			0.207	
Reference Me tho d N o. 5 Calculations Percent Isok ine tic	If $B_{ws} > B_{ws}VP$, then $B_{ws}VP$ WIN $B_{ws}VP$ % $I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60))$ 100	s or B _{ws} VP=	95.6	
Reference Me tho d N o. 5 Calculatio ns Percent Isok ine tic				
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$	% I =	95.6	lbs/hr
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half			95.6	lbs/hr.
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half)	%I = $((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60))$ 100 $p_{mrf} = (m_f / V_{m(std)}) Q_s 0.13216$	%I= P _{mrf} =	95.6	lbs/hr.
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half)	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$	% I =	95.6	lbs/hr.
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif)	%I = $((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60))$ 100 $p_{mrf} = (m_f / V_{m(std)}) Q_s 0.13216$	%I= P _{mrf} =	95.6 0.6377	
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif) Stack Concentration - Front Half	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$	%I= P _{mrt} = P _{mrt} =	95.6 0.6377	
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif) Stack Concentration - Front Half	%I = $((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60))$ 100 $p_{mrf} = (m_f / V_{m(std)}) Q_s 0.13216$	%I= P _{mrf} =	95.6 0.6377 0.6377	lbs/hr.
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half) Stack Concentration - Front Half	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrl} = (m_f / V_{m(std)}) Q_s 0.13216$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{sf} = 15.43 m_f / V_{m(std)}$	%I= P _{mrf} = P _{mrt} = C _{sr} =	95.6 0.6377 0.6377	lbs/hr. gr/DSCF
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half) Stack Concentration - Front Half	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$	%I= P _{mrt} = P _{mrt} =	95.6 0.6377 0.6377	lbs/hr.
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half) Stack Concentration - Front Half	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$	%I= P _{mrf} = P _{mrt} = C _{sr} =	95.6 0.6377 0.6377	lbs/hr. gr/DSCF
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif) Stack Concentration - Front Half Stack Concentration - Total (Front+Back Half)	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$ $Q_s 0.13216$	%I= P _{mrf} = P _{mrt} = C _{sf} = C _{st} =	95.6 0.6377 0.6377 0.0054	lbs/hr. gr/DSCF
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif) Stack Concentration - Front Half Stack Concentration - Total (Front+Back Half)	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrt} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$	%I= P _{mrf} = P _{mrt} = C _{sr} =	95.6 0.6377 0.6377	lbs/hr. gr/DSCF gr/DSCF
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Haif) Stack Concentration - Front Half Stack Concentration - Total (Front+Back Half)	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$	%I= P _{mrf} = P _{mrt} = C _{sf} = C _{st} =	95.6 0.6377 0.6377 0.0054	lbs/hr. gr/DSCF gr/DSCF
Reference Method No. 5 Calculations Percent Isokinetic Mass Emissions Rate - Front Half Mass Emissions Rate - Total (Front+Back Half) Stack Concentration - Front Half Stack Concentration - Total (Front+Back Half) Stack Concentration - Front Half Corrected to 7% Concentration - Total (Front+Back Half) Stack Concentration - Total (Front+Back Half) Corrected to 7% Concentration - Total (Front+Back Half) Corrected Concentration - Total (Front+Back Half)	$\%I = ((T_s V_{m(std)} P_{std})/(1-B_{ws})/(A_n \odot V_s P_s T_{std} 60)) 100$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $p_{mrl} = (m_t / V_{m(std)}) Q_s 0.13216$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 15.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$ $C_{st} = 25.43 m_t / V_{m(std)}$	%I= P _{mrf} = P _{mrt} = C _{sf} = C _{st} =	95.6 0.6377 0.6377 0.0054	lbs/hr. gr/DSCF gr/DSCF

A.2 EPA Reference Method 18

Client TPS Project Number 99073 Date 25 Oct 99	•
Sample I.D. Run 2, Stited	
Sample Method Meth 18 Sample Media Silica gel/Charcoal tules	
Start Time Initial Sample Flow Rate 208.600 Sugar	os.
Stop Time Final Sample Flow Rate 701.5 ce	<i>,</i> 2.
Sampling Equipment (pump, serial number, regulators, etc.)	
Pump # 2968	
Sout = 13:40 Start- 14:33	
Start - 13:45 Start - 14:33 Star - 14:15 Stop - 15:02	
Field Notes:	
60 min Sample +1 me * . 20512 pm flourate =	

Client TPS	
Project Number 99073	
Date 750C+99	
Sample I.D. Ron Z Non-Spiled	
Sample Method Method B Sample Media Silica gel / Charcos tubes	
Start Time Initial Sample Flow Rate Zo 8.9cc > a v a	205.6
Stop Time Final Sample Flow Rate 702.20	
Sampling Equipment (pump, serial number, regulators, etc.)	
Pump # 2910	
Stat- 13:45 Stat-14:33	
Stop- 14:15 Stop- 15:02	
Field Notes:	ı
60 min Sample time * .2056 lpm Flowrate =	
12.32 sample Volume	

Client TPS Project Number 99023 Date ZS Oc+99	
Sample I.D. R-3 Syined	
Sample Method Method 18 Sample Media Silica gel / charcod tibes	
Start Time Initial Sample Flow Rate 208, 600	3 C
Stop Time Final Sample Flow Rate Zo; Scc > 20	20.1
Sampling Equipment (pump, serial number, regulators, etc.)	
Pump # 2968	
Start-18:52 STAT- 16:38	
Start-18:25 Start-16:38 Start-18:25 Start-17:08	
Field Notes:	
60 min Sample time * . 2051 Rpm flourage =	
12,32 sample volume	

-
Client † PS Project Number 99023 Date 250c+99
Sample I.D. R-3 Non Spiked
Sample Method Method 18 Sample Media Silica Sel/ Charcal tubes
Start Time Initial Sample Flow Rate Z08,9cc
Stop Time Final Sample Flow Rate 202.200 $Av_3 = 205.600$
Sampling Equipment (pump, serial number, regulators, etc.)
Punp # 2910
Start-15:52 Start-16:38
2406-10:55 2404-10:38 2404-12:25 2404-10:38
Field Notes:
60 min Samle +line * . 705 6 lpm Flourage = (12.32) Sample Volume
(12.32) Sample Volume

Client TPS Project Number 99023 Date 250c+99	
Sample I.D. R-4 Sined	
Sample Media Silica Gel Tohoscon Tules	
Start Time Initial Sample Flow Rate 208.9c > Aug=	7056
Stop Time Final Sample Flow Rate Z02.20	200,0
Sampling Equipment (pump. serial number, regulators, etc.)	
Pump # 2910	
Start-18:02 Start-18:44	
Stop-18:35 Stop-19:14	
Field Notes:	
60min Sample +line * . 2056 lpm flourage =	
12,32 sample volume	

01:	
Client TPS Project Number 99023	
Date 250c+99	
Sample I.D. R-4 Non-5piked	
Sample Method Meth 18 Sample Media Silica Golf Charcoal Tubes	
Start Time Initial Sample Flow Rate 208, 600	
Stop Time Final Sample Flow Rate 70150	<i>'</i> S ,
Sampling Equipment (pump, serial number, regulators, etc.)	
Punp# 2908	
Start-18:02 Start-18:44	
Stor-18:32 Stop-19:14	
Field Notes:	
60 min Sample + lone * . 20512 pm flourate =	
(12,31) Sample volume	

PERSONAL PUMP CALIBRATION FORM

Pre-calibration date: 600+99		
Post calibration date: 20 Oc + 91	•	
Pump ID: 2968		
Gilibrator Flow Cell: 8342-S		
Target sample rate: 200 cc		

PRE-TEST CALIBRATION	POST-TEST CALIBRATION
READINGS	READINGS
1) 208.8	1)_ 201,4
2) 208.3	2) 701,7
3)_708.8	3) 201-5
Average: 208, 6	Average: 2015

P re -calibration	within +/- 5% of Target Sample Rate
YES X	
NO	Calibrator's Signature My/MU

Post calibration wit	hin +/- 5% of Target Sample Rate
YES X	
NO	Calibrator's Signature & M//

PERSONAL PUMP CALIBRATION FORM

Pre-calibration date: 60c+99	
Post calibration date: 2600+99	_
Pump ID: 79	
Gilibrator Flow Cell: 8542-5	
Target sample ra	te: <u>700 cc</u>
PRE-TEST CALIBRATION	POST-TEST CALIBRATION
READINGS	READINGS
700	_
1) 208.6	1) 202.3
2) 209.1	2) 202.0
3) 709 1	3) 702.2
Average: 208.9	Average: 2021
Pre-calibration within +/- 5% of Target	Sample Rate
YES ×	1. 1/11/
	brator's Signature

Calibrator's Signature

Post calibration within +/- 5% of Target Sample Rate YES

NO

B. E₃-KILLAM FIELD PROCEDURES

FIELD PROCEDURE - REFERENCE METHOD 2 (FP2) Test Procedures

A. Applicability

The average gas velocity in a stack is determined from the gas density and from the measurement of the average velocity head with a Type S pitot tube. This method is applicable for the measurement of the average velocity of a gas stream and for quantifying gas flow.

B. Preliminary Determinations

- 1. Select the sampling site and the number of sampling points according to USEPA Reference Method 1.
- 2. Set up pitot tube/manometer apparatus.

C. Procedures

1. Setup

- a) Connect positive leg of pitot tube (impact opening) to inclined side of inclined manometer.
- b) Connect negative leg of pitot tube (static pressure side) to straight side of inclined manometer.
- c) Level and zero manometer.

2. Pre-Test Leak Check

- a) Blow through pitot tube impact opening until at least 3 in. H₂O velocity pressure registers on the manometer. Immediately close off the impact opening.
- b) Observe pressure. The pressure shall remain stable for at least 15 seconds.
- c) On static pressure side of pitot tube, use suction until at least 3 in. H₂O vacuum registers on the manometer. Immediately close off the static opening.
- d) Observe pressure. The pressure shall remain stable for at least 15 seconds.

3. Measurement at Each Traverse Point

- a) Record differential pressure (Δp) reading and stack temperature.
- b) Check manometer level and zero.

4. Post-Test Leak Check

- a) Blow through pitot tube impact opening until at least 3 in. H₂O velocity pressure registers on the manometer. Immediately close off the impact opening.
- b) Observe pressure. The pressure shall remain stable for at least 15 seconds.
- c) On static pressure side of the pitot tube, use suction until at least 3 in. H₂O vacuum registers on the manometer. Immediately close off the static opening.
- d) Observe pressure. The pressure shall remain stable for at least 15 seconds.

5. Additional Readings

- a) Rotate pitot tube until both pitot tube openings are perpendicular to the direction of flow.
- b) Detach negative side of pitot tube from manometer, then record the reading on the manometer.
- c) Record the atmospheric pressure from a barometer.

FIELD PROCEDURE - REFERENCE METHOD 3A/10 (1FP3A/10)

Oxygen and Carbon Dioxide/Carbon Monoxide Multi-Point, Integrated Sampling, Instrumentation Analysis

A. Preparation

- 1. Carbon Monoxide (CO)
 - a) Use "Protocol 1" calibration gases (CO in N_2), certified by the manufacturer to be within $\pm 2\%$ of the specified concentration, as follows:
 - (1) Span. < 1.5 times the applicable standard.
 - (2) High-Range. About 90% of span.
 - (3) Mid-Range. About 60% of span.
 - (4) Low-Range. About 30% of span.
 - (5) Zero. Pre-purified grade of N₂.
- 2. Oxygen and Carbon Dioxide (O2 and CO2)
 - a) Use "Protocol 1" calibration gases (O2 and CO2 in N2), certified by the manufacturer to be within ±2% of the specified concentration, as follows:
 - (1) High-Range. 80 to 100% of span.
 - (2) Mid-Range. 40 to 60% of span.
 - (3) Zero. <0.25% of span.
- 3. Setup and calibrate the gas analyzer(s). Adjust system components as necessary.
- 4. Setup the sampling system as shown in Figure F3A/10-1.

B. System Performance Pre-Test Procedures

1. Analyzer Calibration Error

Conduct this test initially and each time the system exceeds the system bias and drift specifications.

- a) Introduce the zero, mid-range and high-range gases to the measurement system at any point upstream of the analyzer. Do not make any adjustments to the system except those necessary to adjust the calibration gas flow to the analyzer.
- Record the analyzer responses to each calibration gas.
- c) Confirm calibration error is within ±/- 2% of span.

D. Sampling Procedures

- 1. Leak-check the flexible bag
 - a) Inflate flexible bag to maximum capacity.
 - b) Allow the bag to stand for 24 hours.
 - A deflated or semi-deflated bag indicates a leak.
 - d) Deflate all acceptable sample bags. Discard any that leak.
- 2. Leak check the train.
 - a) Plug probe inlet.
 - b) Pull a vacuum ≥ 10 in. Hg.
 - c) Turn off sampling pump.
 - d) Note vacuum and monitor for 1-minute. No fluctuation in the initial vacuum reading indicates an acceptable leak check.
 - e) Carefully release the probe inlet.

Page 1 of **3** H:\SOP\1F**P**3A-10.DOC Rev: 10/1**1/**98

FIELD PROCEDURE - REFERENCE METHOD 3A/10 (1FP3A/10)

Oxygen and Carbon Dioxide/Carbon Monoxide
Multi-Point, Integrated Sampling, Instrumentation Analysis

- 3. Locate the probe at the first traverse point.
- 4. Purge the sample system, with the flexible bag disconnected.
- 5. **Connect** the bag, and commence sampling.
- 6. Sample at each traverse point at a constant rate.

E. Analysis

1. Within 8 hr after the sample is taken, analyze for % CO2, % O2, and CO concentration. Introduce the sample into the instruments until a stable reading is obtained for each desired constituent

F. System Performance Post-Test Procedures

- 1. Following the analysis of the "integrated" bag samples, determine the Analytical Bench Drift. Do not make any adjustments to the measurement system until after the drift checks are completed. Record the system responses. Introduce the calibration gases at the calibration valve installed at the inlet to the analyzers.
- 2. Confirm Analytical Bench Drift check is within +/-3% of span.
- 3. If the sampling system does not pass the Analytical Bench Drift check, repeat the calibration error and reanalyze the samples.

Page **2** of 3 H:\SOP\1F**P3**A-10.DOC Rev: **1**0/1**1/9**8

FIELD PROCEDURE - REFERENCE METHOD 3A/10 (1FP3A/10) Oxygen and Carbon Dioxide/Carbon Monoxide

Multi-Point, Integrated Sampling, Instrumentation Analysis

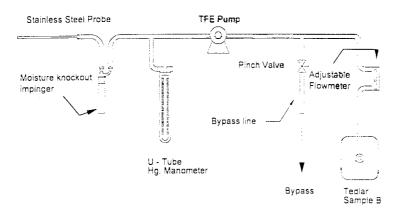


Figure 3A/10-1 Integrated Bag-Sampling System

Page 3 of 3 H:\SOP\1F**P3**A-10.DOC Rev: 10/11**/9**8

FIELD PROCEDURE - REFERENCE METHOD 4 (FP4) Moisture Determination

A. Pretest Preparation

- 1. Weigh several 200- to 300-g portions of silica gel in air-tight containers to ± 0.5g. Record the total weight of the silica gel plus container on each container.
- 2. Check filters visually against light for irregularities and flaws or pinhole leaks. Label the filters on the back side near the edge using numbering machine ink.

B. Preliminary Determinations

- 1. Select the sampling site and the number of sampling points according to USEPA Reference Method 1.
- 2. Set up pitot tube/manometer apparatus.
- 3. Leak-check the pitot tube setup.
 - a. Blow into the pitot impact opening until at least 3 in. H₂O velocity pressure registers on the manometer, and close off impact opening.
 - b. Observe the time (pressure must remain stable for at least 15 seconds).
 - c. Do the same for the static pressure side, except use suction to obtain -3in. H₂O.
- 4. Level and zero the manometer.
- 5. Determine the stack pressure, temperature, and the range of velocity heads by previous test data or follow Steps B.6 B.8
- 6. Measure the velocity head and temperature.
- 7. Measure the static pressure in the stack.
- 8. Determine the atmospheric pressure.
- 9. Determine the moisture content by previous test data or measurement.
- 10. Determine or estimate the dry molecular weight.
- 11. Select a nozzle size based on preliminary stack data. Do NOT change nozzle size during the sampling run.
- 12. Select a suitable probe liner and probe length such that all traverse points can be sampled.
- 13. Select the total sampling time and standard sample volume specified in the test procedures for the specific industry. Select equal sampling times of ≥ 2 min per point.

C. Preparation of Collection Train

- 1. During the preparation and assembly of the sampling train, keep all openings covered to avoid contamination. Use parafilm to close the openings.
- 2. Prepare impingers according to Figure 1.
- 3. Weigh the entire impinger train.
- 4. Using a tweezer or clean disposable surgical gloves, place filter in the filter holder. Check the filter for tears after assembly.
- 5. Mark the probe with heat resistant tape (or other) to denote the proper distance into the stack or duct for each sampling point.
- 6. Set up the train. Turn on and set probe and filter box heaters. Place crushed ice around the impingers.
- 7. Leak-Check the sampling train
 - a. Allow time for train temperatures to stabilize.
 - b. Plug the nozzle. Fully open the bypass valve and close the coarse adjust valve. Then start the pump.
 - Slowly close the bypass valve until the desired vacuum is reached (≥ 15 in. Hg or ≥ maximum vacuum reached during the test run.) Do not reverse direction of bypass valve; this will cause water to back up into the filter holder. If the desired vacuum is exceeded, either leak-check at this higher vacuum or end the leak-check as shown in Step 7e, and start over.
 - d. Allow the flow rate to stabilize, then determine the leakage rate using DGM readings and a watch. Record the leakage rate. Leakage rate must be ≤ 0.02 cfm or $\leq 4\%$ of average sampling rate, whichever is less.
 - e. End the leak-check as follows: first slowly remove the plug from the inlet to the prove, and immediately turn off the vacuum pump. This prevents the water in the impingers from being forced backward into the filter holder and silica gel from being entrained backward into the third impinger.

Page 1 of 3 H:\SOP\FP4.DOC Rev: 03/04/99

FIELD PROCEDURE - REFERENCE METHOD 4 (FP4) Moisture Determination

D. Sampling

- 1. Record data shown on field data sheet. Record the initial dry gas meter (DGM) reading.
- 2. Clean the portholes.
- 3. Remove the nozzle cap, verify that the filter and probe heating systems are up to temperature, and check pitot tube, temperature gauge, and probe alignments and clearances.
- 4. Close the coarse adjust valve. If necessary to overcome high negative stack pressure, turn on the pump. Position the nozzle at the first traverse point. Immediately start the pump, and adjust the flow to isokinetic conditions.
- 5. When the probe is in position, block off the openings around the probe and porthole.
- 6. Traverse the stack cross-section. Do not bump the probe nozzle into the stack walls.
 - a. Keep the temperature around the filter holder (probe outlet or filter outlet, if applicable) at the proper level.
 - b. Add more ice and, if necessary, salt to maintain a temperature of <68°F at the condenser / silica gel outlet.
 - c. Periodically check the level and zero of the manometer.
 - d. Record DGM readings at the beginning and end of each sampling time increment, before and after each leak-check, and when sampling is halted.
 - e. Take other readings shown in field data sheet at least once at each sample point during each time increment and additional readings when significant changes (20% variation in Δp readings) necessitate additional adjustments in flow rate.
 - f. If train components are replaced, conduct leak-check according to Step C.7.
- 7. At the end of the sample run, turn off the coarse adjust valve, remove the probe and nozzle from the stack, turn off the pump, record the final DGM meter reading.
- 8. Leak-check the sampling train (see Step C.7).
- 9. Leak-check the pitot lines (see Step B.3).
- 10. Allow the probe to cool. Then, wipe off all external PM near the tip of the probe nozzle, and place a cap over it.
- 11. Before moving the sampling train to the cleanup site, remove the probe from the sampling train, wipe off the silicone grease, if used, and cap the open outlet of the probe. Do not lose any condensate that might be present. Wipe off the silicone grease from the filter inlet, and cap it.
- 12. Remove the umbilical cord from the last impinger, and cap the impinger. After wiping off the silicone grease, if used, cap off the filter holder outlet and impinger inlet.
- 13. Transfer the probe and filter-impinger assembly to the cleanup area that is clean and protected from the wind.

E. Sample Recovery

- 1. Container No. 3 (Silica Gel)
 - a. Determine whether silica gel has been completely spent, and note on field data sheet its condition.
 - b. Weigh the silica gel impinger with the other impingers to the nearest 0.5 g.
- 2. Impinger Water
 - a. Note on field data sheet any color or film in the liquid catch.
 - b. Weigh Impingers 1, 2, 3 and the silica gel impinger to within $\pm 0.5g$ {or measure the liquid volume in impingers 1, 2 and 3 to within ± 1 mL (with a graduated cylinder)}.
 - c. Discard the liquid, unless analysis of the impinger catch is required. Store as is appropriate.

FIELD PROCEDURE - REFERENCE METHOD 4 (FP4) Moisture Determination

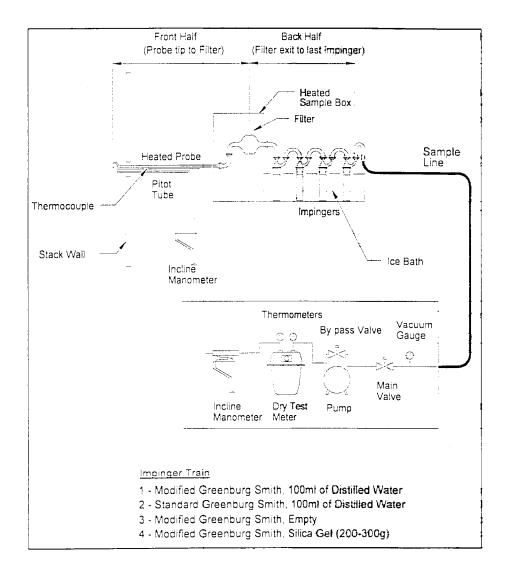


Figure 1. Particulate Sampling Train

Page 3 of 3 H:\SOP\FP4.DOC Rev: 03/04/99

FIELD PROCEDURE - REFERENCE METHOD 5 (FP5) Particulate Matter Isokinetic Sampling

A. Pretest Preparation

- Weigh several 200- to 300-g portions of silica gel in air-tight containers to ± 0.5g. Record the total weight of the silica gel plus container on each container.
- 2. Check filters visually against light for irregularities and flaws or pinhole leaks. Label the filters on the back side near the edge using numbering machine ink.
- 3. Desiccate the filters at 20 ± 5.6 °C and ambient pressure for ≥ 24 hr. and weigh at intervals of ≥ 6 hr to a constant weight, i.e., ≤ 0.5 mg change from previous weighing; record results to ± 0.1 mg. During each weighing, do not expose the filter to the laboratory atmosphere for ≥ 2 min and a relative humidity $\geq 50\%$.

B. Preliminary Determinations

- 1. Select the sampling site and the number of sampling points according to USEPA Reference Method 1.
- 2. Set up pitot tube/manometer apparatus.
- 3. Leak-check the pitot tube setup.
 - a. Blow into the pitot impact opening until at least 3 in. H₂O velocity pressure registers on the manometer, and close off impact opening.
 - b. Observe the time (pressure must remain stable for at least 15 seconds).
 - c. Do the same for the static pressure side, except use suction to obtain -3in. H2O.
- 4. Level and zero the manometer.
- 5. Determine the stack pressure, temperature, and the range of velocity heads by previous test data or follow Steps B.6 B.8
- 6. Measure the velocity head and temperature.
- 7. Measure the static pressure in the stack.
- 8. Determine the atmospheric pressure.
- 9. Determine the moisture content by previous test data or measurement.
- 10. Determine or estimate the dry molecular weight.
- 11. Select a nozzle size based on preliminary stack data. Do NOT change nozzle size during the sampling run.
- 12. Select a suitable probe liner and probe length such that all traverse points can be sampled.
- 13. Select the total sampling time and standard sample volume specified in the test procedures for the specific industry. Select equal sampling times of ≥ 2 min per point.

FIELD PROCEDURE - REFERENCE METHOD 5 (FP5)

Particulate Matter Isokinetic Sampling

C. Preparation of Collection Train

- 1. During the preparation and assembly of the sampling train, keep all openings covered to avoid contamination. Use parafilm to close the openings.
- 2. **Prepare** impingers according to Figure 1.
- 3. Tare the sample train by either
 - a. Weighing the entire impinger train.
 - b. Volumetrically measuring the liquid in each impinger and gravimetrically weighing the silica gel impinger.
- 4. Using a tweezer or clean disposable surgical gloves, place filter in the filter holder. Check the filter for tears after assembly.
- 5. Mark the probe with heat resistant tape (or other) to denote the proper distance into the stack or duct for each sampling point.
- 6. Set up the train. Turn on and set probe and filter box heaters. Place crushed ice around the impingers.
- 7. Leak-Check the sampling train
 - a. Allow time for train temperatures to stabilize.
 - b. Plug the nozzle. Fully open the bypass valve and close the coarse adjust valve. Then start the pump.
 - c. Slowly close the bypass valve until the desired vacuum is reached (≥ 15 in. Hg or ≥ maximum vacuum reached during the test run.) Do not reverse direction of bypass valve; this will cause water to back up into the filter holder. If the desired vacuum is exceeded, either leak-check at this higher vacuum or end the leak-check as shown in Step 7e, and start over.
 - d. Allow the flow rate to stabilize, then determine the leakage rate using DGM readings and a watch. Record the leakage rate. Leakage rate must be ≤ 0.02 cfm or $\leq 4\%$ of average sampling rate, whichever is less.
 - e. End the leak-check as follows: first slowly remove the plug from the inlet to the prove, and immediately turn off the vacuum pump. This prevents the water in the impingers from being forced backward into the filter holder and silica gel from being entrained backward into the third impinger.

D. Sampling

- 1. Record data shown on field data sheet. Record the initial dry gas meter (DGM) reading.
- 2. Clean the portholes.
- Remove the nozzle cap, verify that the filter and probe heating systems are up to temperature, and check pitot tube, temperature gauge, and probe alignments and clearances.
- 4. Close the coarse adjust valve. If necessary to overcome high negative stack pressure, turn on the pump. Position the nozzle at the first traverse point. Immediately start the pump, and adjust the flow to isokinetic conditions.
- 5. When the probe is in position, block off the openings around the probe and porthole.
- 6. Traverse the stack cross-section. Do not bump the probe nozzle into the stack walls.
 - a. Keep the temperature around the filter holder (probe outlet or filter outlet, if applicable) at the proper level.
 - b. Add more ice and, if necessary, salt to maintain a temperature of <68°F at the condenser / silica gel outlet.
 - c. Periodically check the level and zero of the manometer.

Page **2** of 4 H:\SOP\FP**5**.DOC Rev: **1**0/1**3/9**8

FIELD PROCEDURE - REFERENCE METHOD 5 (FP5)

Particulate Matter Isokinetic Sampling

- d. Record DGM readings at the beginning and end of each sampling time increment, before and after each leak-check, and when sampling is halted.
- e. Take other readings shown in field data sheet at least once at each sample point during each time increment and additional readings when significant changes (20% variation in Δp readings) necessitate additional adjustments in flow rate.
- f. If train components are replaced, conduct leak-check according to Step C.7.
- 7. At the end of the sample run, turn off the coarse adjust valve, remove the probe and nozzle from the stack, turn off the pump, record the final DGM meter reading.
- 8. Leak-check the sampling train (see Step C.7).
- 9. Leak-check the pitot lines (see Step B.3).
- 10. Allow the probe to cool. Then, wipe off all external PM near the tip of the probe nozzle, and place a cap over it.
- 11. Before moving the sampling train to the cleanup site, remove the probe from the sampling train, wipe off the silicone grease, if used, and cap the open outlet of the probe. Do not lose any condensate that might be present. Wipe off the silicone grease from the filter inlet, and cap it.
- 12. Remove the umbilical cord from the last impinger, and cap the impinger. After wiping off the silicone grease, if used, cap off the filter holder outlet and impinger inlet.
- 13. Transfer the probe and filter-impinger assembly to the cleanup area that is clean and protected from the wind.

E. Sample Recovery

- 1. Place 200 mL acetone from the wash bottle being used for cleanup in a glass sample container labeled "acetone blank."
- 2. Inspect the train prior to and during disassembly, and note any abnormal conditions.

3. Container No. 1 (Filter)

- a. Using a pair of tweezers and/or clean disposable surgical gloves, carefully remove the filter from the filter holder, and place it in its identified petri dish container. If necessary, fold the filter such that the PM cake is inside the fold.
- b. Using a dry Nylon bristle brush and/or a sharp-edged blade, carefully transfer to the petri dish any PM and/or filter fibers that adhere to the filter holder gasket. Seal the container.

4. Container No. 2 (Acetone Rinses)

Recover particulate matter from the probe nozzle. SwagelokTM fitting, probe liner (use a funnel to aid in transferring liquid washes to the container), front half of the filter holder, and (if applicable) the cyclone, and recover all rinses in a glass container as follows:

- a. Before cleaning the front half of filter holder, wipe clean all joints of silicone grease (if applicable).
- b. Rinse with acetone, brush with a Nylon bristle brush, and rinse with acetone until there are no visible particles. Make a final acetone rinse.
- c. For probe liner, repeat rinse, brush, rinse sequence at least three times for glass liners, and six times for metal liners.
- d. Make a final rinse of the brush with acetone.
- e. After completing the rinse, tighten the lid on the sample container. Mark the height of the fluid level. Label the container.

Page 3 of 4 H:\SOP\FP**5.D**OC Rev: 10/13**/9**8

FIELD PROCEDURE - REFERENCE METHOD 5 (FP5) Particulate Matter Isokinetic Sampling

5. Container No. 3 (Silica Gel)

- a. Determine whether silica gel has been completely spent, and note on field data sheet its condition.
- b. Weigh the silica gel impinger with the other impingers to the nearest 0.5 g.

Impinger Water

- a. Note on field data sheet any color or film in the liquid catch.
- b. Weigh impingers 1, 2, 3 and the silica gel impinger to within ± 0.5 g (or measure the liquid volume in impingers 1, 2 and 3 to within ± 1 mL (with a graduated cylinder)].
- c. Discard the liquid, unless analysis of the impinger catch is required. Store as is appropriate.
- 7. Whenever possible, ship sample containers in an upright position.

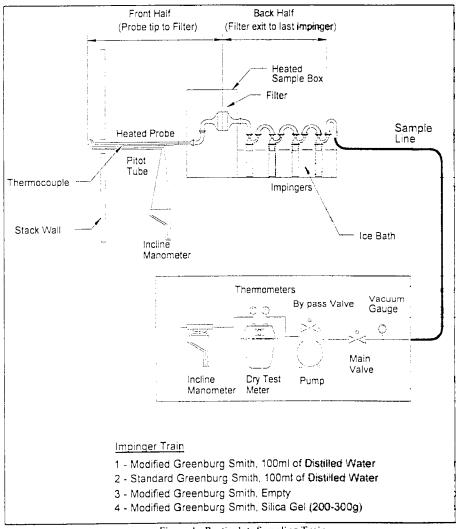


Figure 1. Particulate Sampling Train

FIELD PROCEDURE - REFERENCE METHOD 25A (1FP25A) Total Hydrocarbons

A. Preparations

- 1. Use "Protocol 1" calibration gases (propane or methane in air or N2), certified by the manufacturer to be within ±2% of the specified concentration, as follows:
 - a) High-Range, 80-90% of span.
 - b) Mid-Range. 45-55% of span.
 - c) Low-Range. 25-35% of span.
 - d) Zero. Prepurified grade of air or N2.
- Setup and calibrate the gas analyzer and data recorder. Adjust system components as necessary.
- 3. For "Continuous Sampling", set up the sampling system as shown in Figure F10-1.

B. System Performance Test Procedures

1. Analyzer Calibration Error

Conduct this test initially (within 2 hours of sampling) and each time the system exceeds the system bias and drift specifications. Record the analyzer responses to each calibration gas.

- Introduce the zero, and high-range gases to the measurement system, at the sample probe. Adjust the system to match the calibration values.
- b) Predict the system response for the low- and mid-range calibration gases.
- c) Introduce the low- and mid-range gases to the measurement system. Confirm that the responses meet the calibration error criteria.
- 2. Sampling Response Time Check

Conduct this test initially

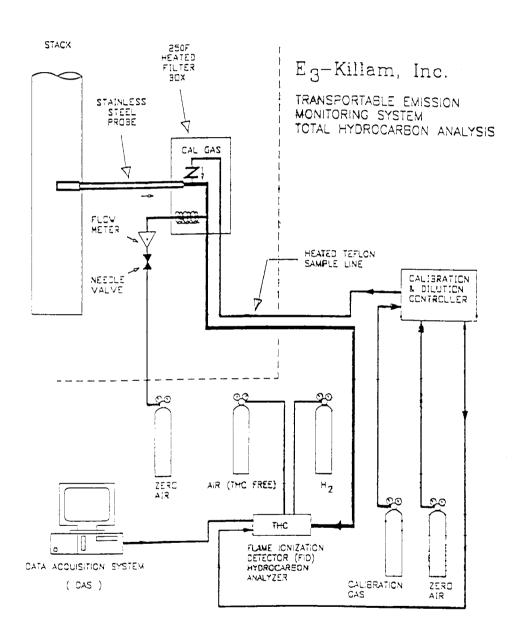
- a) Introduce the zero gas into the measurement system. When the system response is stable quickly switch to the high-level calibration gas. Record the time required for the system to respond to 95% of the step change.
- Property of three times and average the results.

C. Sampling Procedures

- 1. Sample Collection Procedure
 - a) Position the probe at the measurement point.
 - b) Purge the sampling system for a minimum of twice the response time.
 - c) Begin sample collection and data recording.
 - d) Sample using the same sampling rate as that used during the sampling system bias check. Maintain constant sampling rate (±10%) during the entire run.
- 2. Data Collection Requirements
 - a) When determining average concentration, sample a minimum of twice the stable response time for the instrument.
 - b) Determine the average measurements recorded at equally spaced intervals over the entire run:
 - c) Runs less than or equal to 1 hour must have recorded measurements at 1-minute intervals.
 - d) Runs greater than I hour must have measurements at 2-minute intervals or a minimum of 96 measurements.

D. Quality Assurance Procedures

1. Following each "Continuous" sample, determine the sampling system drift. Do not adjust the measurement system until after the drift checks are completed. Record the system responses. Introduce the zero and mid-range calibration gases in the same manner as during the calibration error check. Determine whether the calibration drift is valid


If the sampling system does not pass the bias check void the run and repeat the calibration error test before the next run. If the sampling system does pass the bias check, conduct the next run.

Page 1 of 2 H:\SOP\1FP25A.DOC

Rev: 03/**05/**99

FIELD PROCEDURE - REFERENCE METHOD 25A (1FP25A) Total Hydrocarbons

Method 25A Sample Train

Page 2 of 2 H:\SOP\1F**P**25A.DOC Rev: **0**3/0**5/**99

C. QA/QC SUPPORTING DOCUMENTATION

C.1 CEMS

E₃-Killam Inc.

TPS Technologies SoilPure, Westinghouse Site Cheektowaga, NY 10/25/99 99023.0001

SUMMARY CALCULATIONS

			R	un		
Stack Pa rameter		1	2	3	4	Avg.
Tstd	F	Aborted	68	68	68	
Molar Vol um e	ı	run	24.055	24.055	24.055	
Stack Temperature	F		1489	1470	1469	1476
Moisture	%		22.1	22.8	20.7	21.9
Actual Flow Rate	acfm		58275	61653	64730	61553
Dry Std. Flow Rate	dscfm		12150	12853	13858	12954
O ₂ (drift corrected)	%		5.1	3.5	4.7	4.4
CO ₂ (drift corrected)	%		8.6	10.1	9.3	9.3
CO (drift corrected)	ppmvd		0.5	1.6	2.2	1.4
ppmvd (@ 7 % O ₂		0.4	1.3	1.9	1.2
	l b/hr		0.03	0.09	0.13	0.08
THC (as Methane)		-			-	
	ppmvw		1.1	0.4	0.9	0.8
	ppmvd		1.4	0.5	1.2	1.0
ppmvd (a 7%O2		1.2	0.4	1.0	0.9
	lb/hr		0.04	0.02	0.04	0.03

E₃-Killam Inc.

TPS Technologies
SoilPure, Westinghouse Site
Cheektowaga, NY
Mobile Soil Remediation Unit
10/25/99
99023.0001

RESPONSE TIME

Time:	10/25/99
Operato r:	MTK

E3-Killam TEMS

	Upscale Response			Downscale Response				Response	
			(sec)						
Analyzer	1	2	3	Avg.	1	2	3	Avg.	(sec)
O ₂	91	9 0	94	92	93	89	90	91	92
CO ₂	87	88	90	88	8 8	79	88	85	88
со	115	112	123	117	123	125	122	123	123
NO _x									
SO ₂									
		· · · · · · · · · · · · · · · · · · ·		1		System	Respons	e Time²:	123

Notes:

- 1 Greater value of average upscale response and average downscale response.
- 2 Maximum value of all analyzer response times.

E_3 -Killam Inc.

TPS Technologies
SoilPure, Westinghouse Site
Cheektowaga, NY
Mobile Soil Remediation Unit
10/25/99
99023.0001

		-	Di	lution Ch	eck			**************************************
Comp on e	nt Gas	Dilution (%)	Target	Trial #1	Trial #2	Trial #3	Avg. Response	% Accuracy
concentra tio n	mixture	1000年100日本社	districts	发展性性力力	建砂罐品。	a Harrie	"海水"的水流流的	3 - 72 TH
19.8	O2/CO2/N2	0	0.0	0.1	0.0	0.1	0.1	n/a
Y 124	(in in	10	2.0					
		20	4.0					
a randing the		30	5.9	6.0	6.0	6.0	6.0	1.7
		40	7.9					
		50	9.9					
		60	11.9	12.1	12 .0	12.0	12.0	0.8
		70	13.9					
100		80	15.8			_		
	MAN SA	90	17.8					
		100	19.8	20.1	20.1	20.1	20.1	1.5
System Ch ec k			Accuracy	must be ±	2% at all c	lilution lev	vets	
Certi fie d	Concentra	tion (Target)	12.0		Averag	e Respons	e - Target	
		(**************************************		Accurac	/ = 	Target	×100	†
	F	Response #1	12.0	· •		ranger		
		Response #2	12.0			-		
		Response #3	12.0					
	<u>-</u>				•			
	Avera	ge response	12.0					
		Accuracy	0.0					
Accuracy must b	e + 2% for in		ck	l				
recuracy must b	= ± 270 IOF V	and system the	<u></u>					

TPS Technologies
SoilPure, Westinghouse Site
Cheektowaga, NY
Mobile Soil Remediation Unit
10/25/99
99023.0001

CALIBRATION ERROR AND SYSTEM BIAS

O ₂		Date:	10/25/99	Method:	3A	
		Time:	7:46	Operator:	MTK	-
		Analyzer ID:	0.354166667	Span Value:	25	%
	Gas (Concentration:	12.0, 19.8	Gas Mixture:	O2/CO2/N2	
	[· ·				Initial C	alibration
	Divider	Calibrat i on	Analyzer	Calibration	System	System
Calibration	Setting	Value	Response	Error	Response	Bias
Gas	(%)	(%)	(%)	(%)	(%)	(%)
ZERO GAS	0%	0	0.2	0.8%	0.6	1.6%
LOW GAS	30%	n/a	n/a	n/a	n/a	n/a
MID GAS	100%	12	11.9	0.4%	12	0.4%
HIGH GAS	100%	19.8	20.1	1.2%	20.2	0.4%
Specification:		AND AND A COL		< 2%		< 5%

CALIBRATION DRIFT DETERMINATION

 O_2 (O_2 values in %)

Span Value:	in Value: 25			Run				
Refer. Method: 3A								
% Drift Criteria: <3.0%		1	2	3	4			
<u> </u>	Tim	e of Drift Check	n/a	15:05	17:10	19:15		
	Cert.	Initial		0.6	0.2	0.7		
	Values	Final		0.2	0.7	0.1		
Zero	0.0	Avg. (C ₀)		0.4	0.5	0.4		
		% Drift		-1.6%	2.0%	-2.4%		
		Valid		Yes	Yes	Yes		
	100	Initial		12.0	12.5	12.7		
		Final		12.5	12.7	12.4		
Upscale	12.0	Avg. (C _m)		12.3	12.6	12.6		
(C _{ma})	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% Drift		2 0%	0.8%	-1.2%		
	源本	Valid		Yes	Yes	Yes		
	Run Average (C)			5.42	4.02	5.19		
Drit		d Average (Cgs)		5.06	3.49	4.71		

TPS Technologies
SoilPure, Westinghouse Site
Cheektowaga, NY
Mobile Soil Remediation Unit
10/25/99
99023.0001

CALIBRATION ERROR AND SYSTEM BIAS

CO ₂		Date:	10/25/99	Method:	3A	
		Time:	7:46	Operator:	MTK	
		Analyzer ID:	VIA510	Span Value:	20	%
	Gas (Concentra t ion:	18.2	Gas Mixture:	O2/CO2/N2	-
					Initial C	alibration
	Divider	Calibration	Analyzer	Calibration	System	System
Calibration	Setting	Value	Response	Error	Response	Bia s
Gas	(%)	(%)	(%)	(%)	(%)	(%)
ZERO GAS	0%	0	0	0.0%	0	0.0%
LOW GAS	N/A	N/A	N/A	N/A	N/A	N/A
MID GAS	60%	10.9	11	0.5%	11	0.0%
HI GH GAS	100%	18.2	18.5	1.5%	17.5	-5.0%
Specification:				< 2%		< 5%

CALIBRATION DRIFT DETERMINATION

CO₂ (CO₂ values in %)

pan Value:	20			R	un	
Refer. Method: 3A		3A				
% Dr ift Criter	% Drift Criteria: < 3.0%		1	2	3	4
<u> </u>	Tim	e of Drift Check	n/a	15:05	17:10	19:1 5
	Cert.	Initial	_	0.0	0.0	0.0
	Values	Final		0.0	0.0	0.0
Zero	0	Avg. (C ₀)		0.0	0.0	0.0
		% Drift		0.0%	0.0%	0.0%
		Valid	.,	Yes	Yes	Yes
	2:00:00	Initial		11.00	11.0	10.6
		Final		11.00	10.6	10.1
Upscale	10.9	Avg. (C _m)		11.00	10.8	10.4
(C _{ma})	1	% Drift		0.0%	-2.0%	-2.5%
		Valid		Yes	Yes	Yes
Run Average (C)		Run Average (C)		8.67	10.00	8.83
Drif	t Correcte	d Average (C _{ess})		8.59	10.09	9.30

TPS Technologies
SoilPure, Westinghouse Site
Cheektowaga, NY
Mobile Soil Remediation Unit
10/25/99
99023.0001

CALIBRATION ERROR AND SYSTEM BIAS

CO	CO Date:		[0/25/99	Method:	10	
		Time:	7:46	Operator:	MTK	_
	Analyzer ID:		TECO 10H	Span Value:	100	— ppm
			89.8	Gas Mixture:	CO/N 2	_
					Initial C	Calibration
	Divider	Calibration	Analyzer	Calibration	System	System
Calibration	Setting	Value	Response	Error	Response	Bias
Gas	(%)	(ppm)	(ppm)	(%)	(ppm)	(%)
ZERO GAS	0%	0	ı	1.0%	1.2	0.2%
LOW GAS	30%	26.9	25.6	1.3%	26.6	1.0%
MID GAS	60%	53.9	53.5	0.4%	55	1.5%
HIGH GAS	100%	89.8	88.8	1.0%	89.2	0.4%
Specification:				< 2%		< 5%

CALIBRATION DRIFT DETERMINATION

CO (CO values in ppm)

Span Value:	100	Mark the same		R	un	
Refer. Method:		10				
% Drift Criteria:		< 3.0%	1	2	3	4
	Time of Drift Check		n∕a	15:05	17:10	19:15
	Cert.	Initial		1.2	1.1	0.0
	Values	Final		1.1	0.0	0.0
Zero	0	Avg. (C ₀)		1.2	0.6	0.0
	3 () () () () () ()	% Drift		-0.1%	-1.1%	0.0%
		Valid		Yes	Yes	Yes
	7	Initial		55.0	54.0	53.1
		Final		54 0	53.1	52.0
Upscale	53.9	Avg. (C _m)		54.5	53.6	52.6
(C_{ma})	200	% Drift		-1.0%	-0.9%	-1.1%
		Valid		Yes	Yes	Yes
		Run Average (C)		1.72	2.17	2.11
Drif		ed Average (C ₂₃₅)		0.53	1.60	2.16

TPS SoilPure, Westinghouse Site Cheektowaga, NY Mobile Soil Remediation Unit 10/25/99 99023.0001

CALIBRATION ERROR AND SYSTEM BIAS

THCout		Date:	10/25/99	Method:	25A	
		Time:	8:42	Operator:	MTK	-
		Analyzer ID:	JUM VE7	Span Value:	100	ppmvw
	Gas C	Concentration:	90.5	Gas Mixture:	CH4/air	_
	Divider	Calibration	System	Predicted	System	Calibration
Calibration G as	Setting (%)	Value (%)	Response (ppm)	Response (ppm)	Response (ppm)	Erro r (%)
ZERO GAS	0	0.0	1.1	termine se		-
LOW GAS	0.3	27.2	3	28.1	28.5	1.5%
MID GAS	0.6	54.3		55.1	55.4	0.6%
HIGH GAS	1	90.5	90.0			0.6%
Specificatio	n (of cylind	ler value):				< 5%

CALIBRATION DRIFT DETERMINATION

	-			R	un	
THC (as Methane)		1	2	. 3	4	
	(values in ppmv)	Time:	n/a	15:09	17:08	19:15
	7	Initial		1.1	0.9	1.8
		Final		0.9	1.8	0.9
Zero	0	Avg. (C ₀)		1.0	1.4	1.4
	1000000	% Drift		-0.2%	0.9%	-0.9%
		Valid		Yes	Yes	Yes
		Initial		55.4	5 3.4	53.2
		Final		53.4	5 3.2	53.6
Upscale	54.3	Avg. (C _m)		54.4	5 3.3	53.4
(C _{ms})		% Drift		-2.0%	-0.2%	0.4%
		Valid		Yes	Yes	Yes
Span Value:	100	Sales Sales				
Refer. Method	:	25A				
% Dr ift Criter	ia:	< 3.0%				

C.2 Equipment Calibrations

Meter Box ID E-1

Standard Dry Gas Meter (y) **Correction Factor** 1.00016

Method 5 Pre-Test Calibration

Calibration Date 11/3/98

Pressure (Pb) 29.32

Calibrator **RCS**

Standard Dry Gas Meter Serial Number 954298

			Standard Dry Meter Volum		3		Standard Gas Meter Meter Box Temperature (°F)			Time		
Run#	ΔΗ	Initial	Final	Net (Vw)	Initial	Final	Net (Vm)	Temp (°F)	Inlet	Outlet	Average	(Minutes)
1	0.50	518.328	523.538	5.211	394.672	399.943	5.271	71.0	77.0	74.5	75.8	13.0
2	1.50	511.182	517.929	6.748	387.444	394.265	6.821	71.5	75.5	74.0	74.8	10.0
3	3.00	523.942	533.407	9.467	400.371	409.913	9.542	71.0	80.5	75.5	78.0	10.0

Run#	Ϋ́ı	In Range?	<u>∆ H@</u> ;	In Range?
1	0.996	yes	1.7749	yes
2	0.992	yes	1.8840	yes
3	0.998	yes	1.9057	yes

Average y 0.995 Average Δ H@ 1.8549 $\gamma = (Vw^*Pb^*(Tm+460))/(Vm^*(Pb+DH/13.6)^*(Tw+460))$

 $\Delta H@=[0.0317^*\Delta H/(Pb^*(To+460))^*[((Tw+460)^*O)/Vw]^2$

Where:

γ± Average Ratio of Standard DGM to Meter Box DGM

ΔH@=Orifice Pressure Differential that equates to 0.75 cfm of air at 68 °F and 29.92 in. Hg.

ΔH= Pressure Differntial across orifice (in. H₂O)

Pb = Barometric Pressure (in. Hg)

Tm = Average temperature of Meter Box Dry gas meter (°F)

Tw = Temperature of Standard Dry Gas Meter (°F)

To = Temperature at outlet of meter box dry gas meter (°F)

Vm = Net volume through meter box dry gas meter (ft3)

Vw = Net volume through standard dry gas meter. (ft3)

() = Time of calibration run (minutes)

Acceptable Tolerances:

Each y within +/-2% of average y

Each Delta H@ within +/- 0.15 in. H2O of Average Delta H@

Meter Box ID

E-1

Standard DGM Serial #

954320

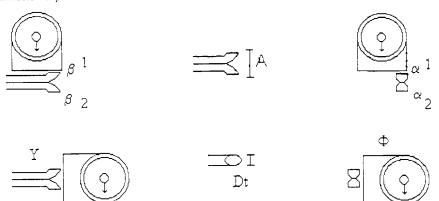
Method 5 Post-Test Calibration

Project	Date	Pressure (Pb)	Standard DGM γ Correction Factor	1.0005
TPS	28-Oct-99	29.47		
Project #	Operator	Maximum Vacuum	γ Posted On Meter Box	0.995
99023.0001	AK	4.0		

Run #	ΔH (in. H ₂ 0	Gas N Initial	Standard Di Meter Volun Fin a l	ne (ft³) Net (Vw)	Gas N Initial	Meter B o x Neter Volur Final		Standard DGM Temp. (°F)	Te Inlet	Meter Box mperature Outlet		Time (Minutes)	Υi
1	1.07	531.711	538.471	6.763	510.269	517.025	6.759	60.5	63.0	62.0	62.5	12.0	1.002
2	1.07	538.471	544.675	6.207	517.025	523.210	6.185	61.0	65.0	63.0	64.0	11.0	1.007
3	1.07	544.675	552.550	7.879	523.210	531.069	7.859	61.5	67.0	64.0	65.5	14.0	1.008
									V -	··············		Average y	1.005

γ_i=Ratio of Reading Standard DGM to Meter Box DGM for each

Acceptable?	Acceptable Criteria	γ _i = (Vw*Pb*(Tm+460))/(Vm*(Pb+ΔH/13.6)*(Tw+460))
		γ≖ Average Ratio of Standard DGM to Meter Box DGM
	Each γ _i within +/- 2% of Average γ	ΔH= Pressure Differntial across orifice (in. H ₂ O)
		Pb = Barometric Pressure (in. Hg)
yes	Run 1	Tm = Average temperature of Meter Box Dry gas meter (°F)
	Run 2	Tw = Temperature of Standard Dry Gas Meter (°F)
yes	Ruii 2	To = Temperature at outlet of meter box dry gas meter (°F)
yes	Run 3	Vm = Net volume through meter box dry gas meter (ft3)
, 00	, tuil o	Vw = Net volume through standard dry gas meter. (ft3)
ves	γ posted on meter box within +/-5% of average γ	O Time of calibration run (minutes)


Pitot Tube Calibration

Client:	TPS
Project #:	99 023.0001
Report:	Particulate Stack Test
Site:	Soil Remediation Unit

Pre-test Report

Measurements										
Pitot I D	Calibration Date	α1 (°)	α2 (°)	β1 (°)	β2 (°)	Y (°)	Φ (°)	A (in.)	Dt (in.)	Calibrator's Initials
7I P-2	11-May-99	2.5	2.0	2.5	1.5	2.0	1.0	0.932	0.387	RCS

The diagram below depicts the various measurements listed above.

The following criteria must be met in order to assume an S-type pitot tube has a pitot coefficient of 0.84.

			Net Results	for Pitot tubes
Parameter .	Criteria	How Determined	Listed abov	e.
α_1	$\alpha_1 > -10^{\circ}, \alpha_1 < +10^{\circ}$	Measurement	X Pas	s Fai
$\alpha_2^{'}$	$\alpha_1 > -10^{\circ}, \alpha_2 < +10^{\circ}$	Measurement	X Pas	s Fai
βι	$\beta_1 > -5^{\circ}, \beta_1 < +5^{\circ}$	Measurement	X Pas	s Fai
β ₂	$\beta_2 > -5^{\circ}, \beta_2 < +5^{\circ}$	Measurement	X Pas	s Fai
P P	1.05 Dt < P < 1.50 Dt	P=A/2	X Pas	5 Fai
W	W < 1/32 in. (0.08 cm)	$W=Asin\Phi$	X Pas	s Fa
Z	Z<1/8 in. (0.32 cm)	Z=Asi n Y	X Pas	s Fa
All S-type pite	ot tubes above may be assumed to h	ave a pitot coefficient of 0.84.	X	
One or more	of the S-type pitot tubes above (in b	old) does not meet the criteria ume a pitot coefficient of 0.84.		

h:\t

E_3 -Killam inc.

environmental services

Thermocouple Calibration

Client:	TPS
Project#:	99023.0001
Report:	Particulate Stack Test
Site:	Soil Remediation Unit

Pre-Test Calibration

Thermo. ID	Date	Thermo. Ambient	Reference Ambi ent	Refe rence ID	Calibrator's Initials
71T-2	11-May-1999	68	68	W BD B	RCS

Post-Test Calibration

Thermo.		Thermo.	Reference	Reference	Calibrator's	
ID	Date	Ambient	Ambient	ID	Initials	
71 T-2	28-Oct-1999	67	67	WBDB	RCS	

Thermocouple calibration: Thermocouples are calibrated as per EMTIC GD-28. Each thermocouple is calibrated against a standard thermocouple. A difference greater than 2 deg. C results in a failed calibration. Thermocouples that fail calibration prior to field use are discarded.

Post-test	calibration	results	2

All thermocouples used have passed the post calibration test. X

One or more thermocouples (bolded) have not passed the post-test calibration:

Nozzle Calibration Report

Client:	TPS
Project #:	99023.0001
Report:	Particulate Stack Test
Site:	Soil Remediation Unit

Nozzle	Measu	red Diamete	ers (in.)	Average	Largest	Calibration	
ID	D1	D2	D3	Diameter	Variance	Date	Catibrator
TPQ-1	0.325	0.320	0.324	0.323	0 .005	10/18/99	MJT
TPQ-2	0.323	0.318	0.320	0.320	0 .005	10/18/99	MJT
TPQ-3	0.321	0.319	0.321	0.320	0 .002	10/1 8 /99	MJT
	:						
				,			
							1
							-
	•						
							j

The Calibration of Nozzles:

All nozzles are calibrated at the time of purchase and again on an annual basis. Furthermore a nozzle that shows damage due to field use is calibrated after repairs. Calibration of a nozzle is accomplished by measuring the width of the nozzle's orifice along three different diameters. The measurements are made to within 0.001 inch. A variance of 0.004 inches or greater requires that the nozzle be repaired or disposed of. The average of the three diameters is used in sampling calculations.

Client:	TPS	
Project#	99023.0001	
Report:	Particulate Stack Test	
Site:	Soil Remediation Unit	

	Site: Soil Remediation Unit	
Barometer Calibration	Barometer ID	3-1
Pre-test Calibration	Barometer Pressure 29.15	in. Hg
Date 9-Aug-99	NWS Pressure 29.22	in. Hg
Time 13:00	Calibrator RCS	_
If t h e ba ro meter differs from the n atio	onal weather service it is set to the correct reading.	
Post-test Calibration	Barometer Pressure 29.1	in. Hg
Da te 9-Sep-99	NWS Pressure 29.03	in. Hg
Time 10:30	Calibrator RCS	_
Post-test Results		
	e post-test calibration. post-test calibration. No correction necessary. post-test calibration. Field data correction require	d.
Notes on barometer calibration:		
Elevation at E ₃ -Killam: 704'	Elevation at National Weather Service	: 714'
	en E_3 -Killam and the National Weather Service (located a in barometric pressure due to altitude is not required.	it the Buffalo
Weather Service. After field work has be Weather Service. A difference of +/- 0.	e E ₃ -Killam barometer is adjusted to the value obtained by sen completed the barometer is again compared to that of 2 in Hg is acceptable. A difference outside this range r s necessary if the field barometer is the lower of the two	the National esults in the

barometer is the higher of the two then the difference is subtracted from the field data readings.

C.3 Calibration Gas Certifications

Air Products and Chemicals, Inc. * Rural Route #1, Tamaqua, PA 18252

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

ROCHESTER-APCI

77 DEEP ROAD RD ROCHESTER

NY 14624-

Order No: CSS-172592-01

Batch No: 255-0311E

PO:

Release:

Cvlinder No:

SG91526 12BAL

Bar Code No:

DEK634

Cylinder Pressure*: 2000 psiq Certification Date: 04/14/1999

Expiration Date:

04/14/2002

CERTIFIED C	oncentration	RE	FERENCE STAND	ARDS	ANALYTICAL INSTRUMENTATION				
Certified Component Consentration		Cylinder Number	Standard Type	Standard Concentration	Instrument Make/Model	Serial Number	Last Calibration	Measurement Principal	
CARBON DIOXIDE	18.2±.05 ¥	SG9183176BAL	NTRM	15.91 ₹	Shimadzu Model	C1049300	04/12/99	GC-TCD	
DXYGEN	19.8±.07	SG9168291BAL	NTRM 82658X	16.04 %	SHIMADZU GC-8A	59405U	04/12/99	GC-TCD	
NTROGEN	Balance Gas /							<u> </u>	

STANDARD SHOULD NOT BE USED BELOW 150 PSIG

Analyst:

Michael Keral

Approved By: Bruse Anderse MK

Air Products and Chemicals, Inc. * Rural Route #1, Tamaqua, PA 18252

ISO CERTIFICATION: 9002

EPA PROTOCOL GAS STANDARD CERTIFICATE OF ANALYSIS:

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

ROCHESTER-APCI

77 DEEP ROAD RD

ROCHESTER

NY 14624-

Order No: SRP-177683-01

Batch No: 255-0306E

PO:

Release:

Cylinder No:

SG9132751BAL

Bar Code No:

BYV466

Cylinder Pressure*: 2000 psig

Certification Date: 04/14/1999 Expiration Date:

04/14/2002

CERTIFIED CO	ncentration	REF	erence stand	ARDS	ANALYTICAL-INSTRUMENTATION					
Component	Certified Concentration		Standard Type	Standard Concentration	Instrument Make/Model	Sorial	Last Calibration	Monsurement Principal		
CARBON DIOXIDE	10.1±.05 %	SG9183176BAL	NTRM	15.91 🕯	Shimadzu Model	C1049300	04/12/99	GC-TCD		
OXYGEN	12.0±.07 %	SG9168291BAL	NTRM 82658X	16.04	SHIMADZU GC-8A	59405U	04/12/99	GC-TCD		

NITROGEN Balance Gas

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

michael Koval

Bruce Anderson

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

EPA PROTOCOL GAS STANDARD CERTIFICATE OF ANALYSIS:

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

ROCHESTER-APCI

77 DEEP ROAD RD

ROCHESTER

NY 14624-

Order No: SRP-168345-05

Batch No: 861-56198

PO:

Release:

Cylinder No:

SG9162584BAL

Bar Code No:

DHD412

Cylinder Pressure*: 2000 psig

Certification Date: 04/15/1999

Expiration Date:

04/15/2002

	CERTIFIED C		REFER	ENCE STAND	ARDS	ANALYTICAL INSTRUMENTATION				
ſ		Certified	cyl I)	nder	Standard	Standard	Instrument	Serial	Last	Measurement
- 1	Component	Concentration	Numb	рег	Туре	Concentration	Make/Model	Number	Calibration	Principal
	CARBON MONOXIDE	89.8 ±.57 PPM	sg9150	0646BAL (GMIS	100.6 PPM	HORIBA VIA-510	405079	03/28/99	NON DISPERSIVE INFRARED

NITROGEN Balance Gas

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

Analyst:

Richard Fry

Pub. No. 320-9702

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Order No: SRP-056948-02

Batch No: 861-50647

Customer:

ROCHESTER-APCI

77 DEEP ROAD RD

Oxygen Concentration

ROCHESTER

PO:

NY 14624- Release:

Cylinder No:

SG9167849BAL

Bar Code No:

DPV538

Cylinder Pressure*: 2000 psig Certification Date: 10/26/1998

Expiration Date:

10/26/2001

CERTIFIED	CONCENTRATION	REI	PERENCE STANI	DARDS	ANALYTICAL INSTRUMENTATION				
Component	Cartified Concentration	Cytinder Number	Standard Type	Stundard Concentration	Instrument Make/Model	sertat Number	Last Calibration	Measurement Principal	
METHANE	90.5 ±.42 PPM	\$G9152505BAL	GMIS	101.0 PPM	Gow-Mac 750	59405U	10/16/98	GC-FID	
AIR	Balance Gas								

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

21.1 %

Analyst:

James Laas

Approved By:

Richard Fry

419 9900000 400 09270443, 0804 TT 0888 9002 9**38**0 FIDHEBTER. 0-1402-TELEPHONE MESSAGE 114-1714

ffelaticinnidifeidifficia. * CERTOFOCATE OF ANALYSIS A

ET-11114Y 111 M45 110 15 5344

50 OURTWRIERT **IR**ENE =:

3495413

%: [4221-7829

71970989 4006147 (1 30083 CUSTOMER CROSS WOLL PROMISED

SUET DAD LINE FEL 1

18088 NO : 1888-140761-04

SHIPPER NUMBER : 014-0-92539

REMARKE :

The information growided on this Centificate of Analysis conforms to

the requirements of the Purchase Order listed above. In accordance with our internal work instruction A-D,

products below are traceable to MIST.

PSCDOOT : NITROBEN SHADE : SEM SHADE

SEM onsce

DYLINGER TH**FE** : ALLMINUM B

	•		-			
				-	_	
í,		-	-		_	

9475+ 4141+819 . 4511545811 _1	_		THE GITY	:: \$551151047101		g erel E erele -	40414771941 			
197_T;T:1		146. 91 5351415548AL)	อิทขอยร	ı	PPMU	٦	4.2	15MU	₹	01
		1	- Potel Hydradenboae	i.i	CZmj	- -).1	pp _m .		÷5
			data:	i	FEMU	Ē	0.10	EPMU	2	97
			Nothacen Ivades	0,1	ECHU	5	0.09	55 % 0	V	17
			เลิมโคเคี่ มีของเอล	0.1	2,5%./	÷ .	ু ুর্না	2 <u>Р</u> мі,	'7	17
			Dampon Dirit≡	1	TIMU	Ξ .),050	PIMU	1	22
			Cardon Mondride	2	PEMŲ	3	0, 1 9	EFM)	¥	22
4 4X41 FRED:] = 10	NI-MINAGE ENDIG	116466: TEBTED - 3 = 12)	MAMINANT BATCH T	ESTED	8 = 80ta	CE AMALYSIS.			

EG917997**5**94L

LIST OF LAS METHODS ESED :

SS TOTAL MYSROCARBON ANALYCER

BATOH TEBO FERFORMED ON CYLINGER:

DI ELECTR**C**LYTIC CELL

POTETURE AMALICES

30-010

SETECTOR TURE

CESTIFICATION

THIS AMALYSIS HAS BEEN PERFORMED UTILIZING ARRECUED ANALYTICAL METHODIS: AND IS CORRECT TO NITHEN THE PARTITICAL FOR PACIES OF THIS THESE, METHODISM.

ATHERISED SIGNATURE

D. PROCESS DATA

TPS Technologies Inc.

Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

Cheektowaga, NY

October 25, 19**99**

BY: Barry Hinton

DEMONSTRATION TEST ACTIVITIES LOG

TIME	COMMENTS
07:0 0	Startup of SRU to warm up
08:10	Start soils into plant (unspiked soils)
09:15	Switch feedstock soils to gasoline spiked soils
09:40	Shutdown SRU to make repairs to baghouse auger
10:42	Restart SRU after repairs, feed with spiked soils
11:56	START Test Run #1
12:35	Test Run #1 aborted due to stack tester's (E3-Killam) equipment problems
12:40	Switch feedstock soils to "non-spiked" soils while waiting on
	E3-Killam to resolve equipment problems
13:20	Switch feedstock soils to spiked soils to stabilize SRU for Test Run #2
13:44	START Test Run #2
15:01	END Test Run #2, Total Test Time=1hr 17 minutes, Total Test Tons= 50.52
	Run #2 Production Rate = 39.38 Tons/Hr
15:01	Switch feedstock soils to unspiked soils
15:36	Switch feedstock soils to spiked test pile to stabilize SRU for Test Run #3
15:52	START Test Run #3
17:07	END Test Run #3, Total Test Time= 1 hr 15 minutes, Total Test Tons= 49.50,
	Run #3 Production Rate = 39.60 Tons/hr
17:10	Switch feedstock soils to unspiked soils
17:40	Switch feedstock soils to spiked test pile to stabilize SRU for Test Run #4
18:00	START Test Run #4
19:12	END Test Run #4, Total Test Time= 1 hr 12 minutes, Total Test Tons= 49.30,
	Run #4 Production Rate = 41.08 Tons/hr
19:12	Finish processing remaining soils in SRU feed hopper for shutdown
19:15	Shutdown SRU. Total Tons Processed today (spiked & unspiked) = 400 tons.

Process Data Log Sheet

Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TOTAL OPERATING

Data Taken Every 15 Minutes

SoilPure, Inc.

HOURS THIS DATE: 10.25 Hrs

TPS Technologies Inc. Cheektowaga, NY TEST RUN NO.

Test Run End Time: N/A**

Test Run Start Time: 11:56

TOTAL Test Run Time: N/A**

Test Run End Tons: N/A**

Test Run Start Tons: 3437.65

TOTAL Test Run Tons: N/A**

PAGE 1 of 2

TONS/HOUR THIS RUN=

=Total Test Run Time/Total Test Run Tons

= N/A**

** Test Run Aborted Due to emission tester's equipment problems (pitot tube plugged)

							Desorber	Baghouse	Baghouse	Oxidizer	Oxidizer	System	
		Soil Exit	Oxidizer		Baghouse		Gas Exit	Inlet	Exit	Stack	Stack	Damper	
		Temp	Stack Temp		l .	Neg. Press.		Temp.	Temp.	CEM O2	CEM CO	Opening	COMPANS
Date	Time	(DegF)	(DegF)	(Tons/Hr)	(in, wc)	(in. wc)	(DegF)	(DegF)	(DegF)	(%)_	(ppm)	(%)	COMMENTS:
10/25/1999	07:00	Start war	mup, safet	/ meeting	grease 8	fuel equip	ment, calil	rate weig	h scale	<u> </u>			
10/25/1999	08:10	Start Soi	into plant					ļ					
10/25/1999	08:30	382	1677	33	3.6	-0.09	426	256	202	CALS	CALS	30	O2 & CO CEM Calibrations by testers
10/25/1999	08.45	350	1664	33	3.6	-0.09	404	259	205	CALS	CALS	30	O2 & CO CEM Calibrations by testers
10/25/1999	09:00	475	1670	39	3.2	-0.07	479	266	213	9.84	0.0	30	
10/25/1999	09:15	392	1652	39	3.1	-0.02	495	286	224	5.03	0.0	32	Start test soil @ 09:15a
10/25/1999	09:30	657	1661	40	3.7	-0.08	448	301	248	3.94	0.0	32	
10/25/1999	09:45	576	1676	No Feed	3.7	-0.14	475	298	236	4.15	0.0	32	Shutdown @ 09:40 for plant auger repa
10/25/1999	10:00	Soil Rem	ediation U	it Off-Lin	for repa	rs					<u> </u>		
10/25/1999	10:15	Soil Rem	ediation U	it Off-Lin	for repa	rs				<u> </u>	<u> </u>		
10/25/1999	10:30	Soil Rem	ediation U	it Off-Lin	for repa	rs			<u></u>	<u> </u>	<u> </u>		
10/25/1999	10:45	Warming	up plant a	ter repair	<u> </u>						<u> </u>		Start soll for warmup @ 10:42a
10/25/1999	11:00	419	1681	40	3.0	-0.10	440	265	203	5.42	0.0	32	
10/25/1999	11:15	540	1673	41	3.5	-0.08	468	294	228	4.42	0.0	33	
10/25/1999	11:30	507	1681	38	3.6	-0.06	455	275	230	3.85	0.0	33	
10/25/1999	11:45	494	1662	39	3.5	-0.11	491	291	230	3.98	0.0	33	
						<u> </u>							

Process Data Log Sheet

TEST RUN NO.

PAGE 2 of 2

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TPS Technologies Inc.

Cheektowaga, NY

est Run End Time: N/A**

Test Run Start Time: 11:56

TOTAL Test Run Time: N/A**

Test Run End Tons: N/A**

Test Run Start Tons: 3437.65

TOTAL Test Run Tons: N/A**

TONS/HOUR THIS RUN=

=Total Test Run Time/Total Test Run Tons

= N/A**

** Test Run Aborted Due to emission tester's equipment problems (pitot tube plugged)

	,,												
							Desorber	Baghouse	Baghouse	Oxldizer	Oxidizer	System	
		Soll Exit	Oxidizer	Belt	Baghouse	Dryer	Gas Exit	Inlet	Exit	Stack	Stack	Damper	
		Temp	Stack Temp	Scale	Diff. Press.	Neg. Press.	Temp.	Temp.	Temp.	CEM O2	CEM CO	Opening	
Date	Time	(DegF)	(DegF)	(Tons/Hr)	(in, wc)	(in. wc)	(DegF)	(DegF)	(DegF)	(%)	(ppm)	(%)	COMMENTS:
10/25/1999	12:00	546	1698	38	3.6	-0.02	493	297	240	4.03	0.0	33	Sample Inlet @ 12:08, Sample 1A-IN
10/25/1999	12:15	533	1680	40	3.8	-0.01	494	294	239	3.16	0.0	33	Sample Outlet @ 12:16, Sample 1A-OUT
10/25/1999	12:30	620	1697	37	3.8	-0.08	505	311	246	4.15	0.0	33	Sample Inlet @ 12:26, Sample 1B-IN
10/25/1999	12:45	494	1694	42	3.8	-0.04	483	293	243	10.16	0.0	33	Sample Outlet @ 12:36, Sample 1B-OUT
10/25/1999	13:00	549	1662	38	3.8	-0.08	488	290	241	3.80	0.0	33	
													TEST RUN ABORTED @ 12:35 due to
				l									stack tester's equipment problems (plugged
													pitot tube)
						~ ~ ~		1					
									723				
			N=1,-,	<u> </u>								<u> </u>	
		ļ ————											
		L		<u> </u>	I	L	L	!	L	<u> </u>			

SoilPure, Inc.

Data Taken Every 15 Minutes

Process Data Log Sheet Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TPS Technologies Inc.

Cheektowaga, NY

TEST RUN NO.	2
--------------	---

PAGE 1 of 1

Test Run End Time: 15:01

Test Run Start Time: 13:44

TOTAL Test Run Time: 01:17 (=1.283 hrs) = (50.52 tons / 1.283 hrs)

Test Run End Tons: 3557.32 tons

Test Run Start Tons: 3506.80 tons TOTAL Test Run Tons: 50.52 tons TONS/HOUR THIS RUN=

=Total Test Run Time/Total Test Run Tons

= 39.38 Tons/Hour

SoilPure, Inc.

Data Taken Every 15 Minutes

Date	Time	Soil Exit	Oxidizer Sta ck Te mp (DegF)		I I	Dryer Neg. Press. (in. wc)	Desorber Gas Exit Temp. (DegF)	Baghouse Inlet Temp. (DegF)	Baghouse Exit Temp. (DegF)	Oxidizer Stack CEM O2 (%)	Oxidizer Stack CEM CO (ppm)	System Damper Opening (%)	COMMENTS:
10/25/1999	13:15	552	1688	41	3.8	-0.11	474	286	238	4.10	0.0	33	13:20-Switch back solls to spiked Test Pile
10/25/1999	13:30	561	1690	39	3.8	-0.02	512	308	243	3.68	0.0	33	START TEST RUN 2 @ 13:44
10/25/1999	13:44	709	1698	40	4.1	-0.01	552	329	252	4.95	0.0	33	Sample Inlet @ 13:54, Sample 2A-IN
10/25/1999	14:00	532	1688	40	4.0	-0.04	502	297	246	3.25	0.0	33	Sample Outlet @ 14:04, Sample 2A-OUT
10/25/1999	14:15	534	1678	38	4.0	-0.02	504	297	243	4.01	0.0	34	Sample Inlet @ 14:14, Sample 2B-IN
10/25/1999	14:30	589	1673	40	4.0	-0.08	492	298	243	5.20	0.0	34	Sample Outlet @ 14:24, Sample 2B-OUT
10/25/1999	14:45	506	1684	40	4.1	-0.04	489	299	243	3.64	0.0	34	Sample Inlet @ 14:34, Sample 2C-IN
10/25/1999	15:00	497	1730	39	4.1	-0.04	469	289	240	2.95	0.0	33	Sample Outlet @ 14:44, Sample 2C-OUT
10/25/1999	15:01	499	1733	40	4.1	-0.02	461	287	239	2.65	0.0	33	END TEST RUN 2 @ 15:01
	End Test I	Run #2 @	15:01, swit	ch back t	feeding :	on-spike	oils						
Averages from 1	est Run S	TART TIM	E (13:44) th	rough Te	st Run EN	D TIME (15	:01)						
AVERAGES==>	3:44-15:01	552	1698	40	4.1	-0.04	496	299	244	3.81	0.00	33	
10/25/1999	15:15	542	1685	36	4.5	-0.02	445	274	235	4.62	0.0	36	
10/25/1999	15:30	535	1685	38	4.3	-0.09	461	279	232	4.61	0.0	36	

Process Data Log Sheet

Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TPS Technologies Inc.

Cheektowaga, NY

TEST	RUN	NO.	3

est Run End Time: 17:07

Test Run Start Time: 15:52

=Total Test Run Time/Total Test Run Tons

TOTAL Test Run Time: 01:15 (=1.25 hrs)

= (49.50 tons / 1.25 hrs)

PAGE 1 of 1

Test Run End Tons: 3639.20

18. <u>01.13 (</u>=1.23 1113

= 39.60 Tons/Hour

TONS/HOUR THIS RUN=

SoilPure, Inc.

Data Taken Every 15 Minutes

Test Run Start Tons: 3589.70

TOTAL **Test** Run **Tons**: 49.50

							Desorber	Baghouse	Baghouse	Oxidizer	Oxidizer	System	
		Soil Exit	Oxidizer	Belt	Baghouse	Dryer	Gas Exit	Inlet	Exit	Stack	Stack	Damper	1
	ļ	Temp	Stack Temp	Scale	Diff. Press.	Neg. Press.	Temp.	Temp.	Temp.	CEM 02	CEM CO	Opening	
Date	Time	(DegF)	(DeqF)	(Tons/Hr)	(ln. wc)	(in. wc)	(DegF)	(DegF)	(DegF)	(%)	(ppm)	(%)	COMMENTS:
10/25/1999	15:36	559	1664	41	4.4	-0.23	467	286	234	4.20	0.0	36	15:36-Switch back solls to spiked Test Pile
10/25/1999	15:45	559	1678	40	4.6	-0.10	470	294	238	3.89	0.0	36	
10/25/1999	15:52	574	1694	39	4.7	-0.04	494	312	241	4.05	0.0	35	START TEST RUN 3 @ 15:32
10/25/1999	16:00	589	1665	40	4.5	-0.08	488	294	241	2.77	0.0	34	Sample inlet @ 16:02, Sample 3A-IN
10/25/1999	16:15	529	1695	42	4.3	-0.05	462	286	236	4.07	0.0	35	Sample Outlet @ 15:12, Sample 3A-OUT
10/25/1999	16:30	503	1686	42	4.4	-0.07	494	297	238	3.36	0.0	35	Sample Inlet @ 16:22, Sample 3B-IN
10/25/1999	16:45	510	1684	41	4.3	-0.09	508	302	240	4.43	0.0	35	Sample Outlet @ 16:32, Sample 3B-OUT
10/25/1999	17:00	494	1687	40	4.4	-0.02	494	295	241	4.10	0.0	35	Sample Inlet @ 16:42, Sample 3C-IN
10/25/1999	17:07	610	1692	40	4.5	-0.01	506	307	249	4.30	0.0	35	Sample Outlet @ 16:52, Sample 3C-OUT
	End Test Ru	n #3 @ 1	:07, switcl	back to	eeding no	n-spike so	ils				<u> </u>		END TEST RUN 3 @ 17:07
Averages from	est Run STA	RT TIME	(15:52) thr	ough Test	Run END	TIME (17:)7)				<u> </u>		
AVERAGES==>	15:52-17:07	544	1686	41	4.4	-0.05	492	299	241	3.87	0.0	35	
				<u>_</u>									
10/25/1999	17:15	536	1670	40	4.4	-0.08	477	287	242	CALS	CALS	35	O2 & CO CEM Calibrations by testers
10/25/1999	17:30	482	1668	40	4.4	-0.04	461	289	241	CALS	CALS	35	O2 & CO CEM Calibrations by testers
10/25/1999	17:45	504	1679	39	4.4	-0.12	466	277	236	CALS	CALS	35	O2 & CO CEM Calibrations by testers
		- 			<u> </u>								

Process Data Log Sheet Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TPS Technologies Inc. Cheektowaga, NY

TEST	RUN	NO.	4

PAGE 1 of 1

Test Run End Time: 19:12

Test Run Start Time: 18:00

TOTAL Test Run Time: 01:12 (=1.20 hrs)

=Total Test Run Time/Total Test Run Tons = (49.30 tons / 1.20 hrs)

TONS/HOUR THIS RUN=

= 41.08 Tons/Hour

Test Run End Tons: 3723.00

Test Run Start Tons: 3673.70

TOTAL Test Run Tons: 49.30

SoilPure, Inc.

Data Taken Every 15 Minutes

		Soil Exit	Oxidizer Stack Temp		Baghouse	Dryer Neg, Press.	Gas Exit	Baghouse Inlet Temp.	Baghouse Exit Temp.	Oxidizer Stack CEM 02	Oxidizer Stack CEM CO	System Damper Opening	
Date	Time	(DegF)	(DegF)	(Tons/Hr)	(in. wc)	(in. wc)	(DegF)	(DegF)	(DegF)	(%)	(ppm)		COMMENTS:
10/25/1999	18:00	520	1678	41	4.6	-0.09	477	292	239	3,93	0.0	35	15:36-Switch back soils to spiked Test Pile
10/25/1999	18:15	528	1674	40	4.3	-0.02	490	293	244	4.13	0.0	35	START TEST RUN 4 @ 18:00
10/25/1999	18:30	488	1687	40	4.4	-0.11	463	287	237	4.18	0.0	35	Sample Inlet @ 18:10, Sample 4A-IN
10/25/1999	18:45	564	1697	41	4.3	-0.08	483	299	245	4.92	0.0	35	Sample Outlet @ 18:20, Sample 4A-OUT
10/25/1999	19:00	550	1675	39	4.4	-0.12	479	299	250	4.54	0.0	35	Sample Inlet @ 18:30, Sample 4B-IN
10/25/1999	19:12	599	1678	39	4.3	-0.07	495	299	248	5.01	0.0	35	Sample Outlet @ 18:40, Sample 4B-OUT
	End Test Ru	n #4 @ 1	:12, run oı	t soils in	eed hopp	er to start	shutdown					·	Sample Inlet @ 18:50, Sample 4C-IN
Averages from	est Run STA	RT TIME	(18:00) thr	ough Test	Run END	TIME (19:	2)						Sample Outlet @ 19:00, Sample 4C-OUT
AVERAGES==>	18:00-19:12	542	1682	40	4.4	-0.08	481	295	244	4.45	0.0	35	END TEST RUN 4 @ 19:12
												·	
10/25/1999	19:15	608	1691	40	4.4	-0.04	483	297	250	9.90	0.0	35	
	SHUTDOWN	PROCES	S FOR TH	DAY @	9:16								
TOTAL TONS P	OCESS FOR	THE EN	TIRE DAY)F 10/25/1	999 = 400	00 TONS						· AP	
													
				·									
								<u> </u>	.,				

TPS TECHNOLOGIES INC. SOIL SPIKING CALCULATION FOR DEMONSTRATION TEST OF SOIL REMEDIATION UNIT NYSDEC INACTIVE HAZARDOUS WASTE SITE NO. 9-15-066 CHEEKTOWAGA, NY

Soil Type	Clay	(F	ine = "Cl	ay", Coarse = "	Sand")
Soil H2O Content	10.90	(F	Percent)		
Fuel Spike Type :	Gasoline(Unleaded)	(0	Basoline,	#2 Fuel Oil, Etc)
Fuel Spike Density	6.11	(L	.bs/Gallor	n)	
(w/ reference to H2O					
= 8.34 lb/gal)					
Desired Spike Level	3,500	(p	pm)		
TPH TOTAL Ta rg et		=	40	Tons/Hr	_
= (Soil + H2O + S pi ke)					
TPH H2O= TPH Total x H2O Con	tent				
		=	4.36	Tons/Hr	
TPH (Soil + Spike) = TPH Total x	(1- H2O Content)	·		:	
: 		=	35.64	Tons/Hr	
TPH (Soil) = (TPH Total) - (TPH H	120) - (TPH Spike)				
		=	35.52	Tons/Hr	<u>_</u>
TPH (Soil + H2O) = TPH (Soil) + 1	ГРН (H2O)				
= PRE-SPIKED WET SOIL		= 39.88 Tons/Hr			<u>.</u>
TPH (Spike) = ((Desired Spike Le	evel ppm)/1,000,000) x (TPH(S	oil + Sp		!	1
		=	0.125	Tons/Hr	
Total Test Time (minutes)=		=	60.0	Minutes	
Total Test Time (hours)=		=	1.000	Hours	
TOTAL TONS "WET" SOIL REQ"	D THIS TEST RUN	=	39.88	TONS	<=NOTE
TOTAL TONS "DRY" SOIL REQ"	THIS TEST RUN	=	35.52	TONS	<=NOTE
Weight of Fuel Used For Spike		=	249.48	Lbs	- .
(=TPH Spike x Test Time Hours :			40.00	0-11	<u>-</u>
# Gallons Fuel Spike For This Te		=	40.83	Gallons	
(= Weight of Fuel / Fuel Density				:	_
# Gallons Fuel Spike PER TON S		_	4.00	Callana/Ta-	1
(= Gallons Fuel S pike This Test /T	OTAL WELTORS THIS TEST)		1.02	Gailons/Ton	ل

Process Soil Sample Log Sheet

Demonstration Test of Soil Remediation Unit

NYSDEC Inactive Hazardous Waste Site No. 9-15-066

TPS Technologies Inc.

Cheektowaga, NY

	PROCESS				PROCESS			
	INLET				OUTLET			
	SAMPLES				SAMPLES			
			LAB				LAB	
	TIME	SAMPLE	ANALYSIS		TIME	SAMPLE	ANALYSIS	
	SAMPLE	ID	TO BE		SAMPLE	ιD	TO BE	•
DATE	TAKEN	(eg. 1A IN)*	PERFORMED	DATE	TAKEN	(eg. 1A OUT)*	PERFORMED	COMMENTS:
TEST RUN #1	·			TEST RUN #1				
10/25/1999	12:06	1A-IN	8260B	10/25/1999	12:16	1A-OUT	8260B & 8270C	** Test Run #1 Aborted @ 12:35 due to emission tester's
10/25/1999	12:26	1B-IN	8260B	10/25/1999	12:36	1B-OUT	8260B & 8270C	equipment problem (plugged pitot tube)
	N/A**	1C-IN	8260B		N/A**	1C-OUT	8260B & 8270C	
					~			
TEST RUN #2		<u> </u>		TEST RUN #2		<u> </u>		
10/25/1999	13:54	2A-IN	8260B	10/25/1999	14:04	2A-OUT	8260B & 8270C	Test Run #2 Completed Successfully
10/25/1999	14:14	2B-IN	8260B	10/25/1999	14:24	2B-OUT	8260B & 8270C	
10/25/1999	14:34	2C-IN	8260B	10/25/1999	14:44	2C-OUT	8260B & 8270C	
·			ļ	·				
TEST RUN #3		<u> </u>		TEST RUN #3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10/25/1999	16:02	3A-IN	8260B	10/25/1999	16:12	3A-OUT	8260B & 8270C	Test Run #3 Completed Successfully
10/25/1999	16:22	3B-IN	8260B	10/25/1999	16:32	3B-OUT	8260B & 8270C	
10/25/1999	16:42	3C-IN	8260B	10/25/1999	16:52	3C-OUT	8260B & 8270C	
TECT DUN #4				TEST RUN #4	<u> </u>			
TEST RUN #4 10/25/1999	18:10	4A-IN	8260B	10/25/1999	18:20	4A-OUT	8260B & 8270C	Test Run #4 Completed Successfully
10/25/1999	18:30	48-IN 48-IN	8260B	10/25/1999	18:40	4B-OUT	8260B & 8270C	TOOL INGILITY COMPRIED COCCUSSION
10/25/1999	18:50	4B-IN 4C-IN	8260B	10/25/1999	19:00	4C-OUT	8260B & 8270C	
10/25/1559	10.50	40-111	02000	10/23/1999	13.00	40-001	0200D W 02700	
	<u> </u>				 			
		I			l	<u> </u>	I	L

NOTES: *= For Sample IDs, example: 1A-IN represents Test Run 1, sample A, Inlet of Process,

1A-OUT represents Test Run 1, Sample A, Outlet of Process collected 10 minutes following sampling of Inlet sample 1A-IN.

E. LABORATORY REPORTS

E.1 EPA Reference Method 18

Certificate of Analysis

CLIENT INFORMATION

LABORATORY INFORMATION

Attention: Mike Hamilton Client Name: E3-Killam Inc.

Project: 99023 Project Desc: TPS

80 Curtwright Drive #1

1422I-7072

Buffalo, NY

Fax Number: 716-631-5864 Phone Number: 716-631-5858 Contact: Ron McLeod

 Project:
 AN991351

 Date Received:
 99/10/29

Date Reported: 99/11/01

Submission No.: 9J1283

Sample No.:

NOTES:

Address:

"-' = not analyzed ' = less than Method Detection Limit (MDL) 'NA' = no data available

LOQ can by determined for all analytes by multiplying the appropriate MDL X 3.33

Solids data is based on dry weight except for blota analyses.

Organic analyses are not corrected for extraction recovery standards except for isotope dilution methods, (i.e. CARB 429 PAH, all PCDD/F and DBD/DBF analyses)

Methods used by PASC are based upon those found in 'Standard Methods for the Examination of Water and Wastewater', Nineteenth Edition. Other methods are based on the principles of MISA or EPA methodologies. New York State: ELAP Identification Number 10756.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies, quality assurance and quality control procedures except where otherwise agreed to by the client and testing company in writing. Any and all use of these test results shall be limited to the actual cost of the pertinent analysis done. There is no other warranty expressed or implied. Your samples will be retained at PASC for a period of three weeks from receipt of data or as per contract.

COMMENTS:

All spiked tubes show approximately 100% recovery. Amount spiked into the front half: 100 ug

Certified by:

Page 1

Received Nov-01-99 05:23pm from 905 332 9169 → E3 KILLAM INC NOU 01 1595 16:33 FR PHILIF ANALYTICAL 905 332 9169 TC 17166315854

page 2 P.02/23

11/1/99

PASC - Certificate of Analysis

Page 2 of 3

		R-2 Spiked	R-2 Spiked	R•3 Spiked	R-3 Spiked	R-4 Spiked	R-4 Spiked
Client ID	:	1st F.H.	1st F.H.	1st F.H.	1st F.H.	1st F.H.	lst F.H.
Lab No.	1	065168 99	065169 99	065169 99	9 65169 99	065170 99	065170 99
Date Sampled	ı	99/10/29	99/10/30	99/10/29	99/10/ 29	99/10/29	99/10/29
Component	Units		Duplicate		Duplicate		Duplicate
Trichloroethylene	ug	104	99	109	98	97	99
Toluene	11	99	98	99	98	99	97

11/1/99

PASC - Certificate of Analysis

Page 3 of 3

C lient [D:	•	R-2 Spiked 1st B.H.	R-2 Spiked Ist B.H.	R-3 Spiked 1st B.H.	R-3 Spiked 1st B.H.	R-4 Spiked Ist B.H.	R-4 Spiked 1st B.H.
Lab No.:	•	06517199	06 5 171 9 9	065172 99	06517 2 9 9	065173 99	065173 99
Da te Sample d:	•	99/10/29	99/10/29	99/10/29	99/10/ 29	99/10/ 29	99/10/29
Component	Units		Duplicate		Duplicate		Duplicate
Trichloroethylene	ug	<4.5	<5.4	<4.5	<4.5	<4.6	<4.8
Toluene	4	<1	<1.2	۲)	<1	<1.1	<1.1

Certificate of Analysis

CLIENT INFORMATION

LABORATORY INFORMATION

Mike Hamilton

E3-Killam Inc.

99023 Project:

Attention:

Client Name:

TPS Project Desc:

80 Curtwright Drive #1 Address:

Buffalo, NY 14221-7072

716-631-5864 Fax Number: Phone Number: 716-631-5858

Ron McLeod Contact: AN991351 Project: 99/10/26 Date Received:

99/10/28 Date Reported:

Submission No.: 9J1053

063795-063812 Sample No.:

NOTES:

 $|U_{n}| = not \ analysed \ |C| = less than Method Detection Limit (MDL) 'NA' = no \ data \ available$

LOQ can by determined for all analytes by multiplying the appropriate MDL X 3.33

Solids data is based on dry weight except for biota analyses.

Organic analyses are not corrected for extraction recovery standards except for isotope dilution methods, (i.e. CARB 429 PAH, all PCDD/F and DBD/D8F analyses)

Methods used by PASC are based upon those found in 'Standard Methods for the Examination of Water and Wastewater', Nineteenth Edition. Other methods are based on the principles of MISA or EPA methodologies. New York State: ELAP Identification Number 10756.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies, quality assurance and quality control procedures except where otherwise agreed to by the client and testing company in writing. Any and all use of these test results shall be limited to the actual cost of the pertinent analysis done. There is no other warranty expressed or implied. Your samples will be retained at PASC for a period of three weeks from receipt of data or as per contract.

COMMENTS:

Certified by:

Page 1

PASC - Certificate of Analysis

	Client ID: Lab No.: Sampled:		Method Blank 063795 99	Media Blank F.H. 063796 99 99/10/26	Nonspiked R2 NS-2 FH 063798 99 99/10/26	Nonspiked R3 NS-3 FH 063800 99 99/10/26	Nanspiked R4 NS-4 FH 063802 99 99/10/26	Media Blank BH 063806 99 99/10/26	Nonspiked R2 NS-2 BH 063808 99 99/10/26	Nonspiked R3 NS-3 BH 063810 99 99/10/26	063812 99 99/10/26
Component Toluene Trichloroethene	MDI.	Units ug ug	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10

E.2 Soil Sampling Summary (preprocessed and processed)

IT CORPORATION/BUFFALO AIRPORT PROJECT-NYSDEC INACTIVE HAZARDOUS WASTE SITE NO. 9-15-066

SOIL TREATMENT SAMPLE LOG FOR THERMORETEC/TPS TECHNOLOGIES INC.

		SOIL	SOIL	SOIL			DATE	DATE	
SOIL		SAMPLE	SAMPLE	SAMPLE	TPS	IT CORP.	SAMPLE	RESULTS	TURN-
SAMPLE	PROCESSING	TONS	TONS	TOTAL	SAMPLE	SAMPLE	SENT TO	BACK	AROUND
DATE	DAY	BEGIN	END	TONS	ID	ID*	LAB	FROM LAB	REQUESTED
10/25/99	14	3300	<u> </u>		TPS-1A OUT	PT-T-14-01	10/25/99	10/28/99	48 Hr
10/25/99	14		 	i	TPS-1B OUT	PT-T-14-02	10/25/99	10/28/99	48 Hr
THE NEXT 9	LEAN SOIL SAM	PLE RESUL	TS ARE FRO	M THE PRO	CESS OUTLE	T DURING T	HE DEMONS	RATION TEST	(10/25/99)
10/25/99	14			-	TPS 2A-OUT	PT-T-14-03	10/25/99	10/28/99	48 Hr
10/25/99	14	<u> </u> 			TPS 2B-OUT	PT-T-14-04	10/25/99	10/28/99	48 Hr
10/25/99	14				TPS 2C-OUT	PT-T-14-05	10/25/99	10/28/99	48 Hr
10/25/99	14				TPS 3A-OUT	PT-T-14-06	10/25/99	10/28/99	48 Hr
10/25/99	14				TPS 3B-OUT	PT-T-14-07	10/25/99	10/28/99	48 Hr
10/25/99	14				TPS 3C-OUT	PT-T-14-08	10/25/99	10/28/99	48 Hr
10/25/99	14			1	TPS 4A-OUT	PT-T-14-09	10/25/99	10/28/99	48 Hr
10/25/99	14		1	1	TPS 4B-OUT	PT-T-14-10	10/25/99	10/28/99	48 Hr
10/25/99	14		3700	400	TPS 4C-OUT	PT-T-14-11	10/25/99	10/28/99	48 Hr
THE NEXT 9 S	OIL SAMPLE RES	SULTS ARE	FROM THE	PROCESS I	NLET DURING	THE DEMO	NSTRATION 1	EST (10/25/99))
10/25/99	14	N/A	N/A	N/A	TPS 2A-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 2B-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 2C-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 3A-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 3B-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 3C-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 4A-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 4B-IN	N/A	10/25/99	10/28/99	48 Hr
10/25/99	14	N/A	N/A	N/A	TPS 4C-IN	N/A	10/25/99	10/28/99	48 Hr

NOTES: *= IT Corporation's Sample ID format of PT-T-XX-YY where PT = Post Treatment, T = Treatment,

XX = Treatment Day Number, and YY = Sample Number on Treatment Day XX

IT CORPORATION/BUFFALO AIRPORT PROJECT-NYSDEC INACTIVE HAZARDOUS WASTE SITE NO. 9-15-066

SOIL TREATMENT SAMPLE RESULTS FOR THERMORETEC/TPS TECHNOLOGIES INC. CLEANUP RESULTS EXPRESSED IN PPB (ug/kg)-Remedial Action Objective shown in Parentheses Below Each Constituent

SOIL SAMPLE DATE	TPS SAMPLE ID	IT CORP.	Ethydbonzo		TCA or 1,1,1-	TCE or	N.C	T ()		C-ii	
	1D		Ethydbones = =		100001,1,1	ICE OI	Vinyl	Total	Cresol or	Soil	
DATE			Ethylbenzene	Toluene	Trichloroethane	Trichloroethene	Chloride	Xylenes	4-Methylphenol	From	
DAIL		ID*	(8,250)	(2,250)	(1,140)	(1,050)	(200)	(1,800)	(1,350)	Area	
10/25/99	TPS-1A OUT	PT-T-14-01	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)_	ND (1.2)	ND (380)	P,Q or I	Composite
10/25/99	TPS-1B OUT	PT-T-14-02	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	ND (380)	P,Q or I	at Lab for
HE NEXT 9 C	LEAN SOIL	SAMPLE RES	ULTS ARE FRO	M THE PROCE	SS OUTLET DU	RING THE DEMO	NSTRATION TE	ST (10/25/99)			8260 & 827
10/25/99	TPS 2A-OUT	PT-T-14-03	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (390)	1&P	Discrete Sample
10/25/99	TPS 2B-OUT	PT-T-14-04	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (380)	1& P	Discrete Sample
10/25/99	TPS 2C-OUT	PT-T-14-05	9.9	ND (1.1)	ND (1.1)	240.0	ND (1.1)	76.0	ND (380)	1&P	Discrete Sample
10/25/99	TPS 3A-OUT	PT-T-14-06	ND (1.1)	2.9	ND (1.1)	1,4	ND (1.1)	ND (1.1)	ND (380)	I&P	Discrete Sample
10/25/99	TPS 3B-OUT	PT-T-14-07	ND (1.2)	1.4	ND (1.2)	1.9	ND (1.2)	ND (1.2)	N D (390)	1&P	Discrete Sample
10/25/99	TPS 3C-OUT	PT-T-14-08	ND (1.2)	1.8	ND (1.2)	5.5	ND (1.2)	1.6	ND (390)	1&P	Discrete Sample
10/25/99	TPS 4A-OUT	PT-T-14-09	ND (1.2)	1.8	ND (1.2)	3.5	ND (1.2)	ND (1.2)	ND (380)	18 P	Discrete Sample
10/25/99	TPS 4B-OUT	PT-T-14-10	ND (1.2)	1.2	ND (1.2)	1.4	ND (1.2)	ND (1.2)	ND (400)	1&P	Discrete Sample
10/25/99	TPS 4C-OUT	PT-T-14-11	ND (1.2)	1.2	ND (1.2)	1.4	ND (1.2)	ND (1.2)	ND (390)	18.5	Discrete Sample
HE NEXT 9 S	OIL SAMPL	E RESULTS A	RE FROM THE			DEMONSTRATION	ON TEST (10/25/	99)			
10/25/99	TPS 2A-IN	N/A	4,000.0	6,100.0	ND (5.5)	600.0	ND (5.5)	27,000.0	N/A	1&P	Discrete Sample
10/25/99	TPS 2B-IN	N/A	260.0	350.0	11.0	400.0	ND (5.6)	1,700.0	N/A	I&P	Discrete Sample
10/25/99	TPS 2C-IN	N/A	5,200.0	4,000.0	ND (280)	700.0	ND (280)	41,000.0	N/A	1&P	Discrete Sample
10/25/99	TPS 3A-IN	N/A	3,400.0	6,100.0	1,100.0	320.0	ND (280)	23,000.0	N/A	1&P	Discrete Sample
10/25/99	TPS 3B-IN	N/A	2,600.0	3,600.0	ND (280)	930.0	ND (280)	19,000.0	N/A	1&P	Discrete Sample
10/25/99	TPS 3C-IN	N/A	6,800.0	8,400.0	ND (280)	1,400.0	ND (280)	48,000.0	N/A	18 P	Discrete Sample
10/25/99	TPS 4A-IN	N/A	1,200.0	1,400.0	ND (141)	0.068	ND (141)	9,800.0	N/A	18 P	Discrete Sample
10/25/99	TPS 4B-IN	N/A	590.0	700.0	ND (140)	850.0	ND (140)	4,800.0	N/A	1&P	Discrete Sample
10/25/99	TPS 4C-IN	N/A	1,100.0	980.0	ND (140)	600.0	ND (140)	9,100.0	N/A	18P	Discrete Sample
		AMPLES===>	2794.4	3514.4	264.2	743.3	172.4	20377.8	N/A	ļ	
PS 2A-IN thr											

E.3 Pre-Processed Soil

ANALYTICAL REPORT

PERFORMANCE TEST PRE-PROCESSED INLET SAMPLE RESULTS

TPS TECHNOLOGIES, INC. HOWARD TURNER PO BOX 415 NY 14225 CHEEKTOWAGA

Report Date:

29.0CT-99

Project:

BUFFALO AIRPORT

Lab Number:

209333

Sample Number(s): 209333-01

ta

209333-09

Cercone Director Lóuys J. Laboratory

PA 68-378

Volatile Organics Analysis Data Sheet Form I VOA ___8260B

Client ID: TPS 2A-IN

Date Collected: 25-00T-99

STL Sample Number: 209333-01

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES, INC.

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 26-0CT-99

% Solid: 90.2

Report Date: 29-0CT-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 1g

COTWINT, DB-024

Lab File Id: W1941.D

Level: LOW

Dilution Factor: 5.00

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100-41-4 108-88-3 71-55-6 79-01-6 75-01-4 1330-20-7	Ethylbenzene Toluene 1.1.1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	5.5 5.5 5.5 5.5 5.5 5.5	4000 6100 600 27000	D D U D U

Date Collected: 25-OCT-99 Client ID: TPS 2B-IN

STL Sample Number: 209333-02

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES, INC.

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 26-CCT-99

Report Date: 29-00T-99

% Solid: 90.0

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 1g

Lab File Id: W1942.D

Level: LOW

Dilution Factor: 5.00

		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/kg	ug/kg	Qualifier	
100- 41 -4 108-88-3 71-55-6 79-01-6 75-01-4 1330-20-7	Ethylbenzene Toluene 1,1,1-Trichlordethane Trichlordethene Vinylochloride Xylenes, total	5.6 5.6 5.6 5.6 5.6	260 350 11 400	U D	

FPA NYMA

82608

Client ID: TPS 2C-IN Date Collected: 25-0CT-99

STL Sample Number: 209333-03 Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES, INC. Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 28-0CT-99

% Solid: 89.6 Report Date: 29-0CT-99

Matrix: 3 Soil/Sldg Column: DB-624

Sample Wt/Vol: 10000ul Lab File Id: W1958.D

Level: MED Dilution Factor: 1.00

CAS NO.	Compound	Detection Limit ug/kg	Conc. ug/kg	Data Qualifier
100-41-4 108-88-3 71-55-6 79-01-6 75-01-4 95-47-6	Ethylbenzene Toluene 1.1,1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	280 280 280 280 280 280 280	5200 4000 700 41000	U U

EPA NY049

Client ID: TPS 3A-IN Date Collected: 25-0CT-99

STL Sample Number: 209333-04 Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES, INC. Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 28-0CT-99

X Solid: 90.5 Report Date: 29-OCT-99

Matrix: 3 Soil/Sldg Column: DB-624

Sample Wt/Vol: 10000ul Lab File Id: W1959.D

Level: MED Dilution Factor: 1.00

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100 41-4	Ethylbenzene	280	3400	
108-88-3	Toluene	280	6100	
71-55-6	1,1,1-Trichloroethane	280	1100	
79-0 1-6	Trichloroethene	280	320	
75-0 1-4	Vinyl chloride	280		υ
95 - 47 - 6	o-Xylene	280		U
1330-20-7	Xylenes, total	2 8 0·	23000	

Client ID: TPS 3B-IN

Date Collected: 25-0CT-99

STL Sample Number: 209333-05

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES, INC.

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 28-CCT-99

X Solid: 89.2

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 10000ul

Lab File Id: W1960.D

Level: MED

			Detection Limit	Conc.	Data	
 CAS NO.		Compound	ug/kg	ug/kg	Qualifier	į
100-41-4	: : ;	Ethylben zen e	280	2600	•	
108-88-3		Toluene	280	3600		
71-55-6		1.1,1-Trichloroethane	280		U	
79-01-6 75-01-4		Trichloroethene	280	930	L.I	
1330-20-7		Vinyl chloride Xylenes, total	280 280	19000	· U.	

Client ID: TPS 3C·IN

Date Collected: 25-0CT-99

STL Sample Number: 209333-06

Date Received: 26.0CT-99

Sample Hamber.

Client Name: TPS TECHNOLOGIES, INC.

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 27-0CT-99

% Solid: 90.0

Report Date: 29-0CT-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 10000ul

Lab File Id: W1961.D

Level: MED

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100-41-4	Ethylben zene	280	6800	
108-88-3 71-55-6	Toluene 1,1,1-Trichloroethane	280 280	8400	U
79-0 1- 6	Trichloroethene	280	1400	•
75-0 1-4 1330 -2 0-7	Vinyl chloride Xylenes, total	280 280	48000	U

Client ID: TPS 4A-IN Date Collected: 25-0CT-99

STL Sample Number: 209333-07 Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES, INC. Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 28-OCT-99

% Solid: 88.5 Report Date: 29-OCT-99

Matrix: 3 Soil/Sldg Column: DB-624

Sample Wt/Vol: 10000ul Lab File Id: W1962.D

Level: MED Dilution Factor: 1.00

		Detection Limit	Conc.	Data
 CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100-41-4	Ethylbenzene	141	1200	
108-88-3	Toluene	141	1400	
71-55 -6	1,1,1-TrichToroethane	141	* *	U
79-01 <i>-6</i>	Trichloroethene	141	890	
75-01-4	Vinyl chlaride	141		U
1330-20-7	Xylenes, t ota l	141	9800	

Client ID: TPS 48-IN

Date Collected: 25-OCT-99

STL Sample Number: 209333-08

Date Received: 26-CCT-99

Client Name: TPS TECHNOLOGIES, INC.

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 27-0CT-99

★ Solid: 90.8

Report Date: 29-OCT-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 10000ul

Lab File Id: W1963.D

Level: MED

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100- 41-4 108-88-3 71-55-6 79-01-6 75-01-4 1330-20-7	Ethylbenzene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	140 140 140 140 140 140	590 700 850 4800	U

Client ID: TPS 4C-IN

Date Collected: 25-0CT-99

STL Sample Number: 209333-09

Date Received: 26-0CT-99

Date Extracted: Client Name: TPS TECHNOLOGIES, INC.

Project Name: BUFFALO AIRPORT

Date Analyzed: 28-OCT-99

% Solid: 89.4

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 10000ul

Lab File Id: W1964.D

Level: MED

Dilution Factor: 1.00

		Detection Limit	Conc.	Oata
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
 100-41-4	Ethylbenz en e	140	1100	the state of the s
108-88-3	Toluene	140	980	
71-55-6	1,1,1-Trichloroethane	140		U
79-01-6	Trichlor oethene	140	600	
75-01-4	Vinyl chloride	140		U .
1330 - 20 - 7	Xylenes, total	140	9100	

315 Fullerton Avenue Newburgh, NY 12550 Tel: (914) 562-0890 Fax: (914) 562-0841

CHAIN OF CUSTODY

315 Fullerton Avenue Newburgh, NY 12550 TEL (914) 562-0890 FAX (914) 562-0841

Committed To 1								-															F	AX (91	(4) 567	2-0841
CUSTOMER	NAME TE	05 -	Tech	hnol	06,62			REPC	RT.	TYP	PΕ			Τl	JRN	AR	OUI	D		l	REP	OR	T # (La			
ADDRESS	P. 0	· e	ba v	41	5		STA	NDAR	DΧ	ISF	RAC]		NC)RM	AL _			- j		1	約	33	72		
CITY, STATE	ZIP CO	1/1	20.3	<u>'</u>	NIV WOOG		NYA	SP A		в	CLF	, <u> </u>	×	ζαι	JICK	4	18-	hn-		SAMP	ENE	MP	被推	17.50	A. C. Y.	White C
NAME OF CO	1 10	w_{∞}	<u>س</u>	Tur	NY 14225 PHONE NO.		OTHER VERBAL								PH CHECK NAME OF THE PROPERTY											
PROJECT NU	CATION	affel), ;	An	mt							امقدا	L.							NY	PUBI	LIC	WAT	ER S	UPPI	IES
PROJECT NU	MBER/PO	NO DO	30 1	(1/4)			4/\4/ \I	DW =			WAT		S =					14 7 CD			•					
NOTE.	CANE) E 1	CE N	IDE	RATURE U	J	 	VASTE	7	n :	o∟ = ;	oLUL	JGE 		· = G	HUU:	ND V	/AIEH 	EL	RP TY	PE.					
NOIE:					ST BE 4°C.		, ž	5) = 0 1 = 0	/ 3/8	70x10	/ˈu) b / 4	/ ا	. /	ر ا ا		FE	DERA	L ID _	-				
	·				31 DE 4°C.		N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 3		3	9 d			1 P C	125mi Plant		§ /	j								
STL#	SAMPLI DATE A	ING TIME O	MA MA	хінт	CLIENT I.	D.	200	\$ 12 G	יין ארון הייני הייני		Sog	1 2 2	Sulfation	250	125.	250m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			AN	ALYS	is i	REQU	IESTI	ED	
01	10/25/		1		IPS ZA-IN		1											83	260				*******			
J.J.	10/25/	11		S	TPS 2B-IN		1		A	14	S	Ar	nP	E	5				360		·········	丁				
03:	10/2517	1:34	X .	5	TPS-2C-IN		1			1 1			119						60			1				
01	10/25 10	6102	Χ	5	TPS - 3A - IN				D		N				Po	517	E		60		7		Ta	L R	20	te
<u> </u>	10/25-11			s -	TPS-3B-IN)	1												60		-	_	A	SAP	, 1	70
06	10/25 1	6:42	X _	5	TPS-3C-IN	<u> </u>	1		1										160				(716) 63)1 - C	1813
07	10/25/1	8:10	<u> </u>	5	TPS-4A- IN	1	1											82	60	В			-	,		IV .1,
) <u>8</u> 09	10/25/	8:30	Χ,	5	TPS-1B-IN	<u></u>	11.1		ļ									80	160	ß		1				
29	10/25/	87.5c	X	5	TPS -4C - IN)	11							_				82	160	B						
				_				_											· • ·			·				
			_	_			1.1													• • • • • • • • • • • • • • • • • • • •						
	<u></u>																		·							
rear lawaye			,			t t	· · · · · ·			· · · · ·																
RELINQUISHE	$30M$ Λ	m		COMP	70	13 Jag		7 ⁴ 30	Am		RECI								OMPAN				DATE		TIME	
				COMP	·	DATE		IME			RECI				<u>c</u> t	عمامت	· ·		AAPMC				DATE		TIME	
RELINQUISHE		 .	 -	COMP	ANY	DATE	· · · · ·	IME			RECI	:IVEC	ΣBY K⊆‱			Tol	\geq	ર્સ	MPAN	Υ			DATE /C/	25/9	TIME	(X)
COMMENTS												/(,							1	١		

E.4 Processed Soil

TPS TECHNOLOGIES, INC. HOWARD TURNER

PO BOX 415 CHEEKTOWAGA

NY 14225

Report Date:

29-0CT-99

Project:

BUFFALO AIRPORT

Lab Number:

209332

Sample Number(s): 209332-01

to

209332 - 09

Logis J. Cercone Laboratory Director

PA 68-378

Client ID: TPS 2A-OUT

Matrix: 3 Soil/Sldg

Date Collected: 25-00T-99

STL Sample Number: 209332-01

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 26-00T-99

% Solid: 84.4

Report Date: 29-00T-99

Column: DB-624

Sample Wt/Vol: 5g

Lab File Id: W1932.D

Level: LOW

Dilution Factor: 1.00

Limit		
ug/kg	ug/kg	Qualifier
1.1 1.1 1.1 1.1 1.1		U U U U
1	1.1 1.1 1.1 1.1	1.1 1.1 1.1 1.1

M-NY049

Client ID: TPS 2A-CUT

STL Sample Number: 209332-01

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

% Solid: 84.4

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 30g

Level: LOW

Date Collected: 25-CCT-99

Date Received: 26-0CT-99

Date Extracted: 28-00T-99

Date Analyzed: 28-0CT-99

Report Date: 29-0CT-99

Column: DB-5

Lab File Id: E17490.D

Dilution Factor: 1.00

1						
[_			Detection	Conc.	Data	
,	CAS NO.	Compound	Limit ug/kg	ug/kg	Qualifier	
	106-44-5	4-Methylphenol	. 390		U.	

PA 68-378

Client ID: TPS 2B-CUT Date Collected: 25-CCT-99

STL Sample Number: 209332-02 Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 26-OCT-99

 \$\frac{1}{2}\$ Solid: 87.0
 Report Date: 29-00T-99

 Matrix: 3 Soil/Sldg
 Column: DB-624

Matrix: 3 Soil/Sldg Column: DB-624
Sample Wt/Vol: 5g Lab File Id: W1933.D

level: IOW Dilution Factor: 1.00

	FBAGI: FOM									
 _			Detection Limit	Conc.	Data					
	CAS NO.	Compound	ug/kg	ug/kg	Qualifier					
	100-41:4 108-88-3 71-55-6 79-01-6 75-01:4 1330-20-7	Ethylbenzene. Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	1.1 1.1 1.1 1.1 1.1		ט ט ט ט	1				

Client ID: TPS 28-OUT

Date Collected: 25-CCT-99

STL Sample Number: 209332-02

Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES

Date Extracted: 28-00T-99

Project Name: BUFFALO AIRPORT

Date Analyzed: 28-007-99

% Solid: 87.0

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: OB-5

Sample Wt/Vol: 30g

Lab File Id: E17491.D

Level: LOW

		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/kg	ug/kg	Qualifier	
 106-44-5	4-Methylpheno:	360		บ	

Client ID: TPS 2C-CUT

Date Collected: 25-0CT-99

STL Sample Number: 209332-03

Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 26-0CT-99

3 Solid: 87.1

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 5g

Lab File Id: W1934.D

Level: LOW

Dilution Factor: 1.00

CAS NO.	Сотроила	Detection Limit ug/kg	Conc. ug/kg	Data Qualifier
100- 4 1-4 108-88-3 71-55-6 79- 01 -6 75- 01 -4 1330-20- 7	Ethylbenzene Toluene 1.1Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	1.1 1.1 1.1 1.1 1.1	9.9 240 76	טטט

315 Fullerion Avenue Newburgh, NY 12550 Tel: (914) 562-0890 | Fax: (914) 562-0841

M-NY049

Client ID: TPS 2C-CUT

Date Collected: 25-00T-99

STL Sample Number: 209332-03

Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES

Date Extracted: 26-00T-99

Project Name: BUFFALO AIRPORT

Date Analyzed: 27-00T-99

% Solid: 87.1

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 30g

Lab File Id: E17480.D

Level: LOW

Dilution Factor: 1.00

CAS NO.

Compound

ug/kg

Limit

Detection

Conc. Data ug/kg

Qualifier

106-44-5

4-Methylphenol

380

315 Fullerton Avenue Newburgh, NY 12550 Tol. (914) 562-0890 Fax. (914) 562-0841

Client ID: TPS 3A-OUT Date Collected: 25-00T-99

STL Sample Number: 209332-04 Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES Date Extracted:

Matrix: 3 Sof1/Slag

Project Name: BUFFALO AIRPORT Date Analyzed: 27-0CT-99

% Solid: **8**7.4 Report Date: 29-00T-99

Column: DB-624 Sample Wt/Vol: 5g Lab File Id: W1945.D

Level: LOW Dilution Factor: 1.00

		Detection Limit	Conc.	Data	
 CAS NO.	Compound	ug/kg	ug/kg	Qualifier	
100- 41 -4 108-88-3 71-5 5- 6 79-0 1- 6 75-0 1- 4 1330-20-7	Ethylbenzene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	1.1 1.1 1.2 1.1 1.1	2.9 1.4	U U U	,

NIVERON 10142

D4 50 370

Client ID: TPS 3A-OUT

Date Collected: 25-00T-99

STL Sample Number: 209332-04

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES

Date Extracted: 26-0CT-99

Project Name: BUFFALO AIRPORT

Date Analyzed: 27-0CT-99

★ Solid: 87.4

Report Date: 29-0CT-99

Matrix: 3 Soil/Sldg

Column: DB-5

Sample Wt/Vol: 30g

Lab File Id: E17481.D

Level: LOW

Dilution Factor: 1.00

Detection Limit

Conc.

Data

CAS NO.

Compound

ug/kg

ug/kg Qualifier

.

106-44-5

4 - Methy Tphenol

NIMED TONIE

380

Ð.

STL.

315 Fullerton Avenue
Newburgh, NY 12550
Tel: (914) 562-0890

**TTYTHIS DHATEA FPE NYMO PE FR.178 M.NYMB FAX: (914) 582-0841

Client ID: TPS 38-CUT Date Collected: 25-OCT-99

STL Sample Number: 209332-05 Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 26-00T-99

ኛ Solid: 85.3 Report Date: 29-00T-99

Sample Wt/Vol: 5g Lab File Id: W1936.D

Dilution Factor: 1.00 Level: LOW

			Detection	Conc.	Data
·	CAS NO.	Compound	Limit ug/kg	ug/kg	Qualifier
	100-41-4	Ethylbenzene	1.2		U
	108-88-3	Toluene	1.2	1.4	
	71- 55 -6	1,1.1-Trichlorgethane	1.2		U
	79- 01 -6	Trichloroethene	1.2	1.9	
	75- 01 -4	Vinyl chlori d e	1.2		U
	1330 - 20 - 7	Xylenes, t otal	1.2		U

PPA NYNAG

Matrix: 3 Soil/Sldg

M.NVC49

Column: DB-624

Client ID: TPS 38-OUT

Date Collected: 25-00T-99

STL Sample Number: 209332-05

Date Received: 26-00T-99

Client Name: TPS TECHNOLOGIES

Date Extracted: 26-00T-99

Project Name: BUFFALO AIRPORT

Date Analyzed: 27-GCT-99

% Solid: 85.3

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: D8-5

Sample Wt/Vol: 30g

Lab File Id: E17482.D

Level: LOW

Dilution Factor: 1.00

Detection Limit ug/kg Compound

Conc. ug/kg Data

CAS NO. 106-44-5

4-Methylphenol

390

Qualifier

U.

315 Fullerton Avenue Newburgh, NY 12550 Tel: (914) 562-0890 Fax: (914) 562-0841

V-NY049 PA 68-376

MINED TONIS

Client ID: TPS 3C-OUT

Date Collected: 25-00T-99

STL Sample Number: 209332-06

Date Received: 26.00T.99

Client Name: TPS TECHNOLOGIES

Date Extracted:

Project Name: BUFFALO AIRPORT

Date Analyzed: 26-0CT-99

% Solid: 85.0

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Column: DB-624

Sample Wt/Vol: 5g

Level: LCW

Lab File Id: W1937.D Dilution Factor: 1.00

		Detection Limit	Conc.	Data
 CAS NO.	Compound	ug/kg	ug/kg	Qualifier
100-41-4	Ethylbenzene	1.2		U
108-88-3 71-55-6	Toluene	1.2	1.8	
71- 55 -6 79- 01 -6	l,l,l-Trichlordethane Trichlordethene	1.2 1.2	5.5	U
75 - 01 - 4	Viny ^a ch loride	1.2	3.3	U
1330-20- 7	Xylenes, total	1.2	1.6	

1: INED 70015

Client ID: TPS 3C-OUT

STL Sample Number: 209332-06

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

% Solid: 85.0

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 30g

Level: LOW

Date Collected: 25-CCT-99

Date Received: 26-00T-99

Date Extracted: 26-CCT-99

Date Analyzed: 27-0CT-99

Report Date: 29-CCT-99

Column: DB-5

Lab File Id: E17483.D

CAS NO.	Comment	Detection Limit	Conc.	Data	_
106-44-5	Compound	ug/kg	ug/kg	Qualifier	
100.44-9.	4-Methylphenol	390			_

Client ID: TPS 4A-OUT

STL Sample Mumber: 209332-07

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

₹ Solid: 86.7

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 5g

Level: LOW

Date Collected: 25-OCT-99

Date Received: 26-007-99

Date Extracted:

Date Analyzed: 26-007-99

Report Date: 29-007-99

Column: 08-624

Lab File Id: W1938.D

CAS NO.	Compound	Detection Limit	Conc.	Data
10 0- 41- 4 108-88- 3 71-55-6 79 -0 1-6 75 -0 1-4 1330-20- 7	Ethylbenzene Toluene 1.1.1-Trichloroethane Trichloroethane Vinyl chloride Xylenes, total	ug/kg 1.2 1.2 1.2 1.2 1.2 1.2	ug/kg 1.8 3.5	Qualifier U U

Client ID: TPS 4A-OUT

STL Sample Number: 209332-07

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

7 Solid: 86.7

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 30g

Level: LOW

Date Collected: 25-007-99

Date Received: 26-0CT-99

Date Extracted: 26-0CT-99

Date Analyzed: 27-0CT-99

Report Date: 29-007-99

Column: DB-5

Lab File Id: E17484.D

Dilution Factor: 1.00

CAS NO. Compound Detection Conc. Data
Limit
ug/kg ug/kg Qualifier

106-44-5: 4-Methylpheno? 380° U

Client ID: TPS 48-OUT

STL Sample Number: 209332-08

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

% Solid: 84.3

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 5g

Level: LOW

Date Collected: 25-OCT-99

Date Received: 26-0CT-99

Date Extracted:

Date Analyzed: 26-0CT-99

Report Date: 29-00T-99

Column: DB-624

Lab File Id: W1939.D

	CAS NO.	Compound	Detection Limit	Conc.	Data	7
	10 0-41-4 108-88-3	Ethylbenzene	ug/kg	ug/kg	Qualifier	
	7 1-55-6 79- 01 -6	Toluene 1.1.1-TrichTordethane Trichloroethene	1.2 1.2 1.2	1.2	U	-
	75- 01 -4 133 0 -20- 7	Vinyl chloride Xylenes, total	1.2 1.2	1.4	. U	ļ
		33, 3332.	1.2		U U	ļ

Client ID: TPS 48-OUT

Date Collected: 25-0CT-99

STL Sample Number: 209332-08

Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES

Date Extracted: 26-0CT-99

Date Analyzed: 27-0CT-99

* Solid: 84.3

Report Date: 29-00T-99

Matrix: 3 Soil/Sldg

Project Name: BUFFALO AIRPORT

Column: DB-5

Sample Wt/Vol: 30g

Lab File Id: E17485.D

Level: LOW

····		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/kg	ug/kg	Qualifier	
106-44-5	4-Methylphenol	400		- · U	

Client ID: TPS 4C-OUT Date Collected: 25-OCT-99

STL Sample Number: 209332-09 Date Received: 26-0CT-99

Client Name: TPS TECHNOLOGIES Date Extracted:

Project Name: BUFFALO AIRPORT Date Analyzed: 26-0CT-99

 ⋨ Solid:
 85.1

 Report Date:
 29.0CT-99

Matrix: 3 Soil/Sldg Column: DB-624

Sample Wt/Vol: 5g Lab File Id: W1940.D

Level: LOW Dilution Factor: 1.00

		Detection Limit	Conc.	Data
CAS NO.	Compound	ug/kg	ug/kg	Qualifier
10 0-4 1- 4 ; 108-88- 3 71- 5 5-6; 79 -0 1-6 75 -0 1-4 1330-20- 7	Ethylbenzene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl chloride Xylenes, total	1.2 1.2 1.2 1.2 1.2 1.2	1.2	U U U

Client ID: TPS 4C-OUT

STL Sample Number: 209332-09

Client Name: TPS TECHNOLOGIES

Project Name: BUFFALO AIRPORT

% Solid: 85.1

Matrix: 3 Soil/Sldg

Sample Wt/Vol: 30g

Level: LOW

Date Collected: 25-OCT-99

Date Received: 26-0CT-99

Date Extracted: 26-0CT-99

Date Analyzed: 28-0CT-99

Report Date: 29-0CT-99

Column: DB-5

Lab File Id: E17486.D

Dilution Factor: 1.00

CEAGL. COM					
 		Detection Limit	Conc.	Data	
CAS NO.	Compound	ug/kg	ug/kg	Qualifier	
 106-44-5	4-Methylphenol	390		U ALA	

315 Fullerton Avenue Newburgh, NY 12550 Tel: (914) 562-0890 Fax: (914) 562-0841

PA 58-378

CHAIN OF CUSTODY

315 Fullerton Avenue Newburgh, NY 12550 TEL (914) 562-0890 FAX (914) 562-0841

Committed To Your Success		· · · · · · · · · · · · · · · · · · ·	7777 (311) 302 0041
CUSTOMER NAME TPS Technologies dre	REPORT TYPE	TURNAROUND	REPORT # (Lab Use Only)
ADDRESS PO BOX 415	STANDARDE ISRA	O NORMAL	201332
CITY, STATE, ZIP	NYASP A B B CLP	Draulck 18 m.	SAMPLE TEMP. C
NAME OF CONTACT PHONE NO.	OTHER	UERBAL	pH CHECK
Award lune			NY PUBLIC WATER SUPPLIES
PROJECT LOCATION BARRIED NO. 18	Matri	(SOURCE ID
PHOJECT NUMBER / PO NO!	DW = DRINKING WATER WW = WASTE WATER SL = SLUC	S = SOIL O = OIL OGE GW = GROUND WATER	ELRP TYPE
NOTE: SAMPLE TEMPERATURE UPON			FEDERAL ID
RECEIPT MUST BE 4°C.	Acid Ander	astic astic	
SAMPLING 5 4	Total Number of Containers One Gless Life Amber Life Amber Life Passe Life P	Later Piloto Parties Piloto Parties Piloto Parties Par	ANALYSIS BESTEEN
STL # DATE TIME O & MATRIX CLIENT I.D.	1. 5 7 6 3 6 3 6 3		ANALYSIS REQUESTED
O) VOLUS MIOY X S TPS 2A- post			1B & 8270 C BNA PS
02 10/25 14:24 X 5 TES 2B-out	1 ALL SAMO		B : 8270 C BNA
C3 10/25 14:44 X 5 175 2C- Out	TADVIDA		B & 8270 C BNA
(1) 10/25 6:12 X 5 TPS 3A - out	DO NOT 9		B & PATO C BNA
(15 Nps/6:32 X 5 TPS 3B-out			B & 8270 C BNA
(16 10/25 16:52 X 5 TPS 3C-ONT			BEBATO C BNA
07 10/25 18:20 X 5 185 4A - Out			B & 8270 C BNA-
C8 10/25/8:40 X 5 TB: 4B - ont			B & 8270 C BNA)
09 10/25 19:00 X 5 TPS 4C -out	 	030	oB: 8270 C BNH
	 		FAX RESMIS ASAP
			(716) 631- 9813
		1 1 1 1	010/07/- 10.7
RELINOUSHED BY COMPANY 1002-9	9 TIME 28 RECEIVE	D 8Y COI	APANY DATE TIME
RESIDEISHED MA COMPANY DATE	TIME SO PO RECEIVE	D BY COI	APANY DATE TIME
MELINOUISHED BY COMPANY DAVE	TIME RECEIVE	DBY Sue CO	18ANY DATE TIME 10/35
			19/2-1-1-1×31
COMMENTS	· · · · · · · · · · · · · · · · · · ·	\	

F. CYCLONIC FLOW DATA

DATA INPUT

Stack / Duct Conditions

stack / Duct Conditions	<u> </u>		
Ambient Temp.:	67.00	.Points / Traverse :	12
Pbar (in. Hg):	29.82	Total No. of Points.:	24
Pstatic (in, H₂O):	-0.51	Nipple Length (in.):	0
Bws:	0.27	1 - For Circular Ducts	
Cp:	0.84	Duct Dia. (in.):	48.00
tstd(°F):	68	Duct Area (ft ²):	12.5664
%CO₂:	10.00	2 - For Rectangular Ducts	
%O ₂ :	7.50	Length (in.):	0.00
%CO :	0.00	Width (in.):	0.00
%N ₂ :	82.50	Equiv. Dia. [D _e (in.)]:	#DIV/0!
Required CFM:	0.70	Duct Area (ft ²):	0.0000
Meter ∆H@:	1.8000	3 - FOR CALCS, USE 1 OR 2	
Meter Temp.:	90.00	Duct Area (ft ²):	12.5664

Time	Traverse	ts			Null
(24Hr.)	Point No.	(°F)	ΔP	Δ P.5	Angle
14:55:00	A1	1658	0.35	0.5916	5
	2	1614	0.49	0.7000	3
	3	1529	0.58	0.7616	9
	4	1439	0.62	0.7874	2
	5	1332	0.62	0.7874	8
	6	1310	0.63	0.7937	4
	7	1222	0.75	0.8660	4
	8	1170	0.80	0.8944	7
	9	1119	0.82	0.9055	5
	10	1084	0.82	0.9055	3
	11	1055	0.74	0.8602	0
	12	990	0.52	0.7211	2
	B1	1603	0.40	0.6325	4
	2	1590	0.67	0.8185	6
	3	1549	0.70	0.8367	3
4 5 6 7 8 9 10 -	1475	0.71	0.8426	0	
	1367	0.72	0.8485	0	
	1295	0.74	0.8602	2	
	1233	0.80	0.8944	2	
	8	1177	0.84	0.9165	4
	1123	0.90	0.9487	7	
	10 -	1074	0.88	0.9381	6
	11	1052	0.89	0.9434	4
	12	1052	0.96	0.9798	3
	Sum	31112	16.95	20.0	82
Avg.	Avg.	1296	0.71	0.8348	3.4

DATA OUTPUT		EQUIPMENT USED	
Area of duct (ft ²)	12.5664	Pitot ID	7IP-3
Vs - ft/sec.	89.11	Thermocouple ID	71 T -3
Qa - ACFM	67189	Barometer ID	B-3
Qs - DSCFM	14677	Meter Box ID	N -2
Md - lb/lb-mole	29.90	Technician	MJT
Ms - lb/lb-mole	26.69		
Tm - °R	550	TEST PROGRAM SPECIFICS	
Ts - °R	1756	Date	10/11/99
Tstd - °R	528	Project Number	99023.0001
Ps - in. Hg.	29.78	Client	TPS
Suggested Nozzle Dia. (in.)	0.3234	Test Location	Outlet