APPENDIX E

MANN-KENDALL ANALYSIS DATA SHEETS

valuation Date: 5-Oct-16 Facility Name: Buffalo Airport Conducted By: K.A. Higbee			c	Job ID: Constituent: oncentration Units:	Total VOCs - Al	l Data		
Sam	pling Point ID:	MH-2A	MH-2B	MH-2C	MH-2D	MH-3A		
Sampling Event	Sampling Date			TOTAL VOCS - AL	L DATA CONCEN	RATION (nmol/L)	
1	18-Dec-08	634	1097			1607		
2	16-Apr-09	584	1796	418	751	4128		
3	14-Jul-14	162	604	648	183	3383		
4	24-Nov-14	1161	687	474	1621	1164		
5	1-Apr-15	751	931	942	1085	739		
6	18-Jun-15	687	832	840	10660	1017		
7	10-Sep-15	170	821	750	249	690		
8	10-Dec-15	344	850	966	639	983		
9	17-Mar-16	916	723	536	1249	814		
10	23-Jun-16	133	437	796	194	768		
11	20-Sep-16	201	553	551	283	617		
12								
13								
14								
15								
16								
17								
18								
19								
20								
	nt of Variation:	0.66	0.43	0.28	1.89	0.82		
	II Statistic (S):	-11	-25	9	-5	-37		
Conf	idence Factor:	77.7%	97.0%	75.8%	63.6%	99.8%		
Concer	ntration Trend:	Stable	Decreasing	No Trend	No Trend	Decreasing		

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

cility Name:	5-Oct-16 Buffalo Airpo K.A. Higbee	ort		Job ID: E-2 Constituent: Total VOCs - Pos Concentration Units: nmol			ost-Closure	
Sam	oling Point ID:	MH-2A	MH-2B	MH-2C	MH-2D	MH-3A		
Sampling	Sampling		T	OTAL VOCS - POS	T-CLOSURE CONC	ENTRATION (nm	ol)	
Event 1	Date 14-Jul-14	162	604	648	183	3383		
2	24-Nov-14	1161	687	474	1621	1164		
3	1-Apr-15	751	931	942	1021	739		
4	18-Jun-15	687	832	840	10660	1017		
5	10-Sep-15	170	821	750	249	690		
6	10-Dec-15	344	850	966	639	983		
7	17-Mar-16	916	723	536	1249	814		
8	23-Jun-16	133	437	796	194	768		
9	20-Sep-16	201	553	551	283	617		
10								
11								
12								
13								
14								
15								
16								
17								
18							İ	
19							İ	
20							İ	
Coefficien	t of Variation:	0.76	0.22	0.25	1.87	0.76		
Mann-Kenda	I Statistic (S):	-8	-8	0	-4	-22		
	dence Factor:	76.2%	76.2%	46.0%	61.9%	98.8%		
Concon	tration Trend:	Stable	Stable	Stable	No Trend	Decreasing		

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

valuation Date: <mark>5-Oct-16</mark> Facility Name: <mark>Buffalo Airport</mark> Conducted By: K.A. Higbee				Job ID: E-3 Constituent: Total VOCs - All Data Concentration Units: ug/L				
Sam	pling Point ID:	MH-2A	MH-2B	MH-2C	MH-2D	MH-3A		
Sampling Event	Sampling Date			TOTAL VOCS - A	LL DATA CONCEN	ITRATION (ug/L)		
1	18-Dec-08	73	126			198		
2	16-Apr-09	69	221	52	91	518		
3	14-Jul-14	21	72	78	23	427		
4	24-Nov-14	144	81	56	189	141	l l	
5	1-Apr-15	91	114	113	132	90		
6	18-Jun-15	86	99	100	1374	127		
7	10-Sep-15	21	98	91	31	84		
8	10-Dec-15	41	101	114	76	117		
9	17-Mar-16	113	86	64	155	99		
10	23-Jun-16	16	51	94	24	92		
11	20-Sep-16	24	66	66	35	73		
12								
13								
14								
15								
16								
17								
18								
19								
20								
	nt of Variation:	0.67	0.45	0.28	1.94	0.84		
	all Statistic (S):	-11	-25	9	-5	-37		
Conf	fidence Factor:	77.7%	97.0%	75.8%	63.6%	99.8%		
Concer	ntration Trend:	Stable	Decreasing	No Trend	No Trend	Decreasing		

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

raluation Date: 5-Oct-16 Facility Name: Buffalo Airport Conducted By: K.A. Higbee					Analys Job ID: Constituent: oncentration Units:	E-4 Total VOCs - Po	st-Closure	
-	pling Point ID:	MH-2A	MH-2B	MH-2C	MH-2D	MH-3A		
Sampling Event	Sampling Date		T	OTAL VOCS - POS	T-CLOSURE CON	CENTRATION (ug	'L)	
1	14-Jul-14	21	72	78	23	427		
2	24-Nov-14	144	81	56	189	141		
3	1-Apr-15	91	114	113	132	90		
4	18-Jun-15	86	99	100	1374	127		
5	10-Sep-15	21	98	91	31	84		
6	10-Dec-15	41	101	114	76	117		
7	17-Mar-16	113	86	64	155	99		
8	23-Jun-16	16	51	94	24	92		
9	20-Sep-16	24	66	66	35	73		
10	· · ·							
11	1							
12	1							
13	1							
14	1							
15	1							
16	1							
17								
18								
19								
20	1							
Coefficie	nt of Variation:	0.77	0.23	0.25	1.92	0.79		
Mann-Kenda	all Statistic (S):	-8	-8	0	-4	-22		
	idence Factor:	76.2%	76.2%	46.0%	61.9%	98.8%		
Concor	ntration Trend:	Stable	Stable	Stable	No Trend	Decreasing		

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Sampling Point ID: MH-1A MH-2A MH-2B MH-2C MH-2D Sampling Event Date TCE - ALL DATA CONCENTRATION (ug/L) TCE - ALL DATA CONCENTRATION (ug/L) 1 18-Dec-08 0.20 42 75 2 16-Apr-09 0.20 49 150 34 71 3 14-Jul-14 0.20 18 41 46 20 4 24-Nov-14 0.22 120 44 30 130 5 1-Apr-15 0.25 70 82 66 100 6 18-Jun-15 0.25 74 57 55 1300 7 10-Sep-15 0.20 16 59 56 24 8 10-Dec-15 0.20 25 58 69 46 9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 20 36 36 30 11 <td< th=""><th>MH-3A 160 450</th><th>MH-3B</th></td<>	MH-3A 160 450	MH-3B
Event Date ICE - ALL DATA CONCENTRATION (dg/L) 1 18-Dec-08 0.20 42 75		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+
4 24-Nov-14 0.22 120 44 30 130 5 1-Apr-15 0.25 70 82 66 100 6 18-Jun-15 0.25 74 57 55 1300 7 10-Sep-15 0.20 16 59 56 24 8 10-Dec-15 0.20 25 58 69 46 9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	370	0.95
5 1-Apr-15 0.25 70 82 66 100 6 18-Jun-15 0.25 74 57 55 1300 7 10-Sep-15 0.20 16 59 56 24 8 10-Dec-15 0.20 25 58 69 46 9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	110	0.2
6 18-Jun-15 0.25 74 57 55 1300 7 10-Sep-15 0.20 16 59 56 24 8 10-Dec-15 0.20 25 58 69 46 9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	71	0.5
8 10-Dec-15 0.20 25 58 69 46 9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	110	0.6
9 17-Mar-16 0.17 93 52 37 130 10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	64	1.7
10 23-Jun-16 0.20 11 28 56 19 11 20-Sep-16 0.20 20 36 36 30 12	84	0.2
11 20-Sep-16 0.20 20 36 36 30 12	77	0.2
12 13 14 14 15 1 1	67	1.0
13	51	1.4
14 15		
15		
17		
18		<u> </u>
19		
20		
Coefficient of Variation: 0.11 0.74 0.54 0.28 2.10 Mann-Kendall Statistic (S): -7 -9 -23 7 -6	0.92 -38	0.72

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

	Buffalo Airpo	ort		Job ID: E-6 Constituent: TCE - Post-Closure					
· · · · · ·	: K.A. Higbee	MH-1A	MH-2A	C	oncentration Units: MH-2C	ug/L MH-2D	MH-3A	MH-3B	
Sampling	Sampling			• •			MIT-3A	WIT-5D	
Event	Date			TCE - POST-CL	OSURE CONCENT	RATION (ug/L)			
1	14-Jul-14	0.20	18	41	46	20	370	0.95	
2	24-Nov-14	0.22	120	44	30	130	110	0.20	
3	1-Apr-15	0.25	70	82	66	100	71	0.54	
4	18-Jun-15	0.25	74	57	55	1300	110	0.60	
5	10-Sep-15	0.20	16	59	56	24	64	1.7	
6	10-Dec-15	0.20	25	58	69	46	84	0.22	
7	17-Mar-16	0.17	93	52	37	130	77	0.21	
8	23-Jun-16	0.20	11	28	56	19	67	1.0	
9	20-Sep-16	0.20	20	36	36	30	51	1.4	
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
	nt of Variation:	0.12	0.81	0.31	0.27	2.08	0.89	0.72	
	Il Statistic (S):	-11	-8	-8	0	-5	-23	8	
Conf	idence Factor:	84.6%	76.2%	76.2%	46.0%	65.7%	99.1%	76.2%	
Concer	ntration Trend:	Stable	Stable	Stable	Stable	No Trend	Decreasing	No Trend	

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

cility Name	5-Oct-16 Buffalo Airpo K.A. Higbee	ort		Ca	Job ID: Constituent: Incentration Units:	PCE - All Data	
Sam	pling Point ID:	MH-1A	MH-2A	MH-2B	MH-2C	MH-2D	
ampling	Sampling			PCE - ALL D	ATA CONCENTRA	ATION (ua/L)	
Event 1	Date 18-Dec-08	0.71	0.88	15			
2	16-Apr-09	0.94	0.88	15	5.4	0.2	
3	14-Jul-14	1.9	0.2	5.7	6.6	0.2	
4	24-Nov-14	0.25	0.2	7.9	6.3	1.00	
5	1-Apr-15	1.2	1.0	7.0	15	2.3	
6	18-Jun-15	2.4	1.2	10	12	0.87	
7	10-Sep-15	1.0	0.55	9.4	8.85	0.75	
8	10-Dec-15	1.7	2.7	8.6	9.35	4.4	
9	17-Mar-16	1.3	1.0	7.5	6.7	1.0	
10	23-Jun-16	0.98	1.0	4.7	7	0.2	
11	20-Sep-16	1.7	0.2	6.5	8.3	0.2	
12	20 000 10		0.2	0.0	0.0	0.2	
13							
14	1 1						
15							
16							
17							
18							
19							
20							
Coefficier	nt of Variation:	0.47	0.78	0.46	0.35	1.19	
	Il Statistic (S):	14	13	-23	9	0	

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

luation Date: 5-Oct-16 acility Name: Buffalo Airport onducted By: K.A. Higbee				Job ID: E-8 Constituent: PCE - Post-Closure Concentration Units: ug/L				
Sam	pling Point ID:	MH-1A	MH-2A	MW-2B	MH-2C	MH-2D		
ampling Event	Sampling Date			PCE - POST-CL	OSURE CONCENTI	RATION (ug/L)		
1	14-Jul-14	1.9	0.2	5.7	6.6	0.2		
2	24-Nov-14	0.25	0.98	7.9	6.3	1.00		
3	1-Apr-15	1.2	1.0	7.0	15	2.3		
4	18-Jun-15	2.4	1.2	10	12	0.87		
5	10-Sep-15	1.0	0.55	9.4	8.85	0.75		
6	10-Dec-15	1.7	2.7	8.6	9.35	4.4		
7	17-Mar-16	1.3	1.0	7.5	6.7	1.0		
8	23-Jun-16	0.98	1.0	4.7	7	0.2		
9	20-Sep-16	1.7	0.2	6.5	8.3	0.2		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
	nt of Variation:	0.45	0.76	0.23	0.33	1.12 -6		

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

	6		Job ID		
acility Name: Buffalo anducted By: K.A. Hi			Constituent Concentration Units	MH-1A Cadmium	
-	-			ug/L	
Sampling Poin		All Data			
Sampling Sampli Event Date			MH-1A CADMIUM CONCENTR	ATION (ug/L)	
1 18-Dec					
2 16-Apr		1.3			
3 14-Jul-		0.61			
4 24-Nov 5 1-Apr-		0.54			
5 1-Apr- 6 18-Jun		1.1 2.3			
7 10-Sep		1.3			
8 10-Dec	-15 3.8	3.8			
9 17-Mar		1.5			
10 23-Jun		2.6			
11 20-Sep	-16 2.0	2.0			
12					
14					
15					
16					
17					
18 19					
20					
Coefficient of Varia	ion: 0.60	0.58			
Mann-Kendall Statistic		22			
Confidence Fa	tor: 97.8%	97.1%			
Concentration Tr	end: Increasing	Increasing			

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

valuation Date: 5-Oct-16 Facility Name: Buffalo Airport Conducted By: K.A. Higbee				Job ID: E-10 Constituent: Chromium - All Data Concentration Units: ug/L				
Sam	pling Point ID:	MH-1A	MH-2B	MH-3B	MH-3C			
Sampling Event	Sampling Date			CHROMIUM - AL	L DATA CONCEN	TRATION (ug/L)		
1	18-Dec-08				3.1			
2	16-Apr-09	3.0	5.3	1.4	21			
3	14-Jul-14	1.4	5.7	13	27			
4	24-Nov-14	3.8	7.1	15	31			
5	1-Apr-15	1.9	7.1	13	3.9			
6	18-Jun-15	1.0	5.5	7.5	9.0			
7	10-Sep-15	1.0	5.0	4.6	1.9			
8	10-Dec-15	1.5	5.2	1.6	13			
9	17-Mar-16	0.97	6.6	5.2	16			
10	23-Jun-16	5.7	7.3	17	14			
11	20-Sep-16	0.8	6.45	4.1	1.9			
12								
13								
14								
15								
16								
17								
18								
19								
20								
Coefficier	nt of Variation:	0.76	0.14	0.70	0.79			
	II Statistic (S):	-16	6	-4	-8			
Conf	idence Factor:	90.7%	66.8%	60.3%	70.3%			
Concer	ntration Trend	Prob. Decreasing	No Trend	Stable	Stable			

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

				N-KENDA						
	:: <mark>5-Oct-16</mark> :: Buffalo Airp /: K.A. Higbee			c	Job ID: E-11 Constituent: Chromium - Post-Closure Concentration Units: ug/L					
Sam	pling Point ID:	MH-1A	MH-2B	MH-3B	MH-3C		<u></u>	1		
Sampling Event	Sampling Date			CHROMIUM - POST	-CLOSURE CONC	CENTRATION (ug/	L)			
1	14-Jul-14	1.4	5.7	13	27					
2	24-Nov-14	3.8	7.1	15	31					
3	1-Apr-15	1.9	7.1	13	3.9					
4	18-Jun-15	1.0	5.5	7.5	9.0					
5	10-Sep-15	1.0	5.0	4.6	1.9					
6	10-Dec-15	1.5	5.2	1.6	13					
7	17-Mar-16	0.97	6.6	5.2	16					
8	23-Jun-16	5.7	7.3	17	14					
9	20-Sep-16	0.8	6.45	4.1	1.9					
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
	nt of Variation:	0.83	0.14	0.62	0.80					
	all Statistic (S):	-11	1	-13	-9					
Conf	fidence Factor:	84.6%	50.0%	89.0%	79.2%					
Concer	ntration Trend:	Stable	No Trend	Stable	Stable					

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

acility Name	5-Oct-16 Buffalo Airp K.A. Higbee				Job ID: E-12 Istituent: MH-1A Lead on Units: ug/L			
Sam	pling Point ID:	Monitoring	All Data					
Sampling	Sampling			MH-1A LEAD CONC				
Event	Date							
1	18-Dec-08							
2	16-Apr-09		6.1					
3	14-Jul-14							
4	24-Nov-14	3.1	3.1					
5	1-Apr-15	2.0	2.0					
6	18-Jun-15	2.0	2.0					
8	10-Sep-15	2.2	2.2					
9	10-Dec-15 17-Mar-16	2.0 2.0	2.0 2.0					
10	23-Jun-16	9.2	9.2					
10	20-Sep-16	2.0	2.0					
12	20-3ep-10	2.0	2.0					
13								
14								
15								
16								
17								
18								
19								
20	1		1	1			1	
Coefficier	t of Variation:	0.82	0.75					
	II Statistic (S):	-2	-8					
Confi	dence Factor:	54.8%	76.2%					
Concer	tration Trend:	Stable	Stable					

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.