LIMITED SITE DATA REPORT

BENGART AND MEMEL SITE NYSDEC SITE NO. 9-15-115 BUFFALO (C), ERIE COUNTY

Prepared By:

NYSDEC REGION 9 DIVISION of ENVIRONMENTAL REMEDIATION 270 Michigan Avenue Buffalo, New York 14203

MARCH 2009

David A. Paterson, Governor

Alexander B. Grannis, Commissioner

This page is intentionally blank.

BENGART AND MEMEL SITE NYSDEC SITE NO. 9-15-115 BUFFALO (C), ERIE COUNTY

This document is NOT part of the contract documents for the remediation of the Bengart and Memel Site. The NYSDEC neither represents that the characteristics of the materials at the site will be the same as in the attached documents nor considers the attached document as being comprehensive and actual listing of contaminants which may be detected at the site. The CONTRACTOR shall be responsible for the accurate and comprehensive characterization of materials to be properly handled, removed, transported and disposed of as part of the remediation work at the site.

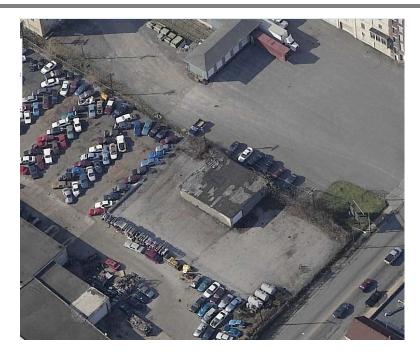
CONTENTS

Attachment 1: Limited Site Investigation, NYSDEC, March 2007

- Attachment 2: Asbestos Evaluation, Empire Geo-Services, Inc. December 2008
- Attachment 3: Condemnation Notice, City of Buffalo, Dept. of Economic Development, Permit and Inspection Services, January 2009
- Attachment 4: Existing Remediation Design Drawings, Malcolm Pirnie, Inc., 1982 to 1984
- Attachment 5: Record Documentation of Installed Remediation Systems, Malcolm Pirnie, Inc., December 1982

This page is intentionally blank.

Attachment 1


Limited Site Investigation

NYSDEC, March 2007

This page is intentionally blank.

SITE INVESTIGATION REPORT

BENGART AND MEMEL SITE NYSDEC SITE NO. 9-15-115 **BUFFALO (C), ERIE COUNTY**

270 Michigan Ave. Buffalo, New York 14207 Phone: (716) 851-7220 Fax: (716) 851-7226

March 2007

This page is intentionally blank.

_

TABLE OF CONTENTS

SECTION 1 I	NTRODUCTION	. 1-1
1.1	Purpose	. 1-1
1.2	Objectives	. 1-1
1.3	Background Information	. 1-1
1.4	Site History	. 1-2
1.5	Report Organization	. 1-4
SECTION 2 S	COPE OF INVESTIGATION	. 2-1
2.1	Subsurface Soil Investigation	. 2-1
2.2	Groundwater Evaluation	. 2-1
2.3	Surficial Investigation	. 2-2
2.4	Analytical Program	. 2-2
SECTION 3 I	NVESTIGATION RESULTS	. 3-1
3.1	Subsurface Soil Investigation	. 3-1
3.1.1	Asphalt Cap Area and Balance of Asphalt Paved Areas	. 3-1
3.1.2	Gras Area Adjacent to the Groundwater Treatment System.	. 3-1
3.1.3	Asphalt Cap Area Subsurface Soil	. 3-1
3.1.5	Asphalt Cap Area Groundwater	
3.1.5	Balance of Asphalt Paved Area Subsurface Soil	. 3-2
3.1.6	Balance of Asphalt Paved Area Groundwater	. 3-3
3.1.7	Building Area	. 3-3
3.2	Surface Investigation	. 3-4
3.2.1	Surface Soil and Sediments	. 3-4
3.2.2	Building Concrete Floor Surface	. 3-4
3.2.3	Surface Waters	. 3-5
SECTION 4	CONCLUSIONS	.4-1

TABLES

Table 1 – PCBs in Soil Table 2 – VOCs in Soil Table 3 – SVOCs in Soil Table 4 – Metals in Soil Table 5 – SVOCs and PCBs in Water Table 6 - VOCs and Metals in Water

APPENDICES

APPENDIX A BORING AND MONITORING WELL LOGS

APPENDIX B LAB DATA RESULTS

LIST OF FIGURES

Figure 1 - Site Location Map	
Figure 2 - Site Plan	1-6
Figure 3 - Detailed Site Plan	1-7
Figure 4 - Site Investigation Plan	2-3
Figure 5 - PCB Results Site Plan	

SECTION 1 INTRODUCTION

1.1 PURPOSE

The following represents a summary of a recent limited site investigation to assess the site for potential residual polychlorinated biphenyls (PCB) levels at the site, and assess the ongoing need to maintain an active groundwater collection and treatment system at the site.

1.2 OBJECTIVES

A focused limited site investigation was performed in mid 2006 at the former Bengart & Memel, Inc. (B&M) site, in the City of Buffalo (see Figure 1), to assess the presence of residual PCBs in soil and groundwater at the site. Additional parameters were evaluated to assess if there are any other chemicals of concern, either residual or from subsequent operations at the site. The investigation was limited to the site as defined as 1079 Clinton St. (99.75 ft by 180 ft. parcel, SBL # 112.77-4-2.1 as indicated on Figures 2 and 3, and herein identified as Lot 2.1). The results of this investigation will be used to assess the need for continued operation and maintenance of the shallow groundwater treatment system or development and implementation of a more comprehensive site remediation so as to eliminate the need for the groundwater collection and treatment system at Lot 2.1.

1.3 BACKGROUND INFORMATION

According to record information for the site, the site (primarily Lot 2.1) was previously remediated by the respondent through a combination of an experimental soil treatment process to treat soil with PCB concentrations in excess of 50 parts per million (ppm) and select removal of soil with PCB concentrations greater than 50 ppm, and installation of a shallow groundwater collection and treatment system to collect and treat groundwater for the removal of PCBs in the shallow groundwater horizon. According to documentation of the PCB cleanup conducted in the mid 1980s, PCB residual levels in site soil and fill are reportedly less than 50 ppm. As part of the planned remediation of the site, the residual PCBs in the soil remain in the soil and groundwater. A groundwater collection and treatment system was installed by the respondent as part of the remediation plan to address the potential migration of residual PCBs in the shallow groundwater. The areas containing the residual PCBs received an asphalt cap system. The remediation of the planned remediation of the submittal of required documentation, the site was reclassified for a Class 2 site to a Class 4 site in 1987.

The area (Lot 2.1) remediated by the respondent under the Order on Consent (Order) consists of the asphalt capped area, stormwater management and treatment, and groundwater treatment system. The elevation of the asphalt capped is sloped to allow drainage of surface water to a stormdrain in the capped area which is connected to an oil/water separator which drains into the Buffalo Sewer Authority (BSA) combined sewer on Clinton Street. The oil/water separator serves as a treatment device for stormwater runoff from the asphalt capped area. The

groundwater water collection and treatment system consists of a shallow groundwater interceptor trench along the northern and western perimeter of Lot 2.1. The interceptor trench extends onto Lot 2.2. The interceptor trench contains a 6-inch PVC drainpipe that directs intercepted groundwater to a sump. The sump originally contained a submersible pump which pumped collected water to a series of two storage tanks for temporary storage. The water in the tanks batch treated by pumping stored water through two carbon adsorption vessels to remove residual PCBs. The treated water was stored in a third tank for sampling prior to discharge to the BSA combined sewer. The treatment system is located on a concrete containment pad that straddles Lots 2.1 and 2.2. The treatment system is exposed to the elements and none of the system piping and pumps are insulated for cold weather operation.

The elevation of the asphalt capped area is above the elevation of the adjoining roadway right-of-way and sidewalk along Clinton Street by approximately 2 to 3 feet. The abrupt change in elevation from the side walk to the asphalt cap area forms an embankment (see Figure 3 for embankment limits). The embankment features varies, and in some sections consists of several courses of railroad ties stacked to form a low retaining wall. The retaining wall is in poor condition. Exposed soils are a the base and above the top of railroad ties retaining wall. There is no protection from or isolation of PCBs that may be present in surface soils or shallow groundwater that could potentially seep from the embankment.

Currently, the shallow ground water treatment system is not functional, and has not been in operation for a number of years. Documentation on the non-functional status dates back as early as 2001. The collection and treatment system requires major repair/replacement to be operational. Because the groundwater collection and treatment system is not operational, it was uncertain if residual PCBs at the site are currently being released to the environment, especially along the embankment adjacent to the public right-of-way and roadway (Clinton Street). Several attempts were made by the NYSDEC Division of Environmental Remediation (DER) to have the respondent repair the collection and treatment system, and place it back into operation.

As a result of the non-responsiveness from both the respondent and current owner of record, the Division of Environmental Enforcement (DEE) issued a referral in 2005 to DER to take required action at the site. DER has undertaken this investigation as part of the referral action. The investigation data will be used to assess residual PCB levels in the soil and groundwater in Lot 2.1, and assess the need for continued operation and maintenance of the shallow groundwater treatment system or development and implementation of a more comprehensive site remediation so as to eliminate the need for the groundwater collection and treatment system.

1.4 SITE HISTORY

A detailed description of the historical operations at the site is contained in the Order on Consent (Order) dated January 13, 1982. The site subject to the order is not explicit. However, review of the Order and reference to the deed contained in the Order implies that the Order only applies to a portion the industrial site solely owned by the respondent. The portion of the industrial site solely owned by the respondent at the time of the Order was executed was Lot 2.1. The Bengart and Memel business operations included the use of Lot 2.1 and a larger adjoining lot (identified as Lot 2.2). Lots 2.1 and 2.2 were part of a single lot which were subsequently subdivided and separately sold by the respondent. Lot 2.2 was sold to 1091 Clinton, Inc. in 1986 after the Order, and has been sold on two occasions since. Lot 2.1 subsequently sold by the

respondent to 1091 Clinton Inc. in 1989 after execution of the Order. The respondent and the current owner of the site (1091 Clinton, Inc.) has not maintained the cap system and groundwater collection and treatment system at the site.

The site is located in an urban commercial area on the south side of Clinton St. in Buffalo (C), Erie Co., NY. approximately 1/4 mile east of the Fillmore Ave. intersection (see Figure 1). The surrounding land use is a mix of commercial and warehousing operations on the southern side of Clinton St. with residential and commercial on the north side of Clinton St. The southern end of the site is bounded by railroad lines.

The Order involved the achieving regulatory compliance for PCB waste management, modifying an existing collection and treatment system, developing and implementing a remediation plan to treat/remove PCB's above 50 ppm. The site was characterized by several previous investigations as one contiguous lot currently identified as lots SBL #112.77-4-2.1 (Lot 2.1) and 112.77-4-2.2 (Lot 2.2)(see Figure 2). According to the investigation performed at that time, PCB contamination was reportedly confined to lot 2.1 (current address of record is 1079 Clinton St.). At the time of the original investigation, the main site features of the single contiguous lot and contained two concrete block buildings. The balance of land was previously used for non-ferrous scrap metal stockpiling and sorting, and employee parking.

Prior to signing of the Order On Consent in 1982, Lot 2.2 (current address of record is 1091 Clinton St.) containing the larger sprawling building was subdivided and sold. Lot 2.2 was sold several times since the issuance of the Order On Consent, and is currently being utilized by an automobile wrecking operation (Clinton Auto Wrecking, Inc.). The remaining portion of the subdivided site (Lot 2.1) containing a smaller concrete block building and remediation measures remains idle. The 1079 Clinton Street address was subsequently assigned to Lot 2.1.

During B&M operations, scrap metal was processed and sorted. B&M periodically received transformers and capacitors containing PCB oils. According to historic file information, these operations were primarily limited to the northwest portion of the site (Lot 2.1) where PCB contamination was principally detected. The PCB containing oils were spilled on this portion of the site contaminating the soil and shallow groundwater. Runoff from spills containing PCB contaminated oils reached the offsite BSA combined sewer system on Clinton Street. PCB contamination of the combined sewer system was discovered by the BSA, which subsequently prompted the investigation of the B&M site, which ultimately culminated in a Order on Consent from the NYSDEC to remediate the PCBs on the site.

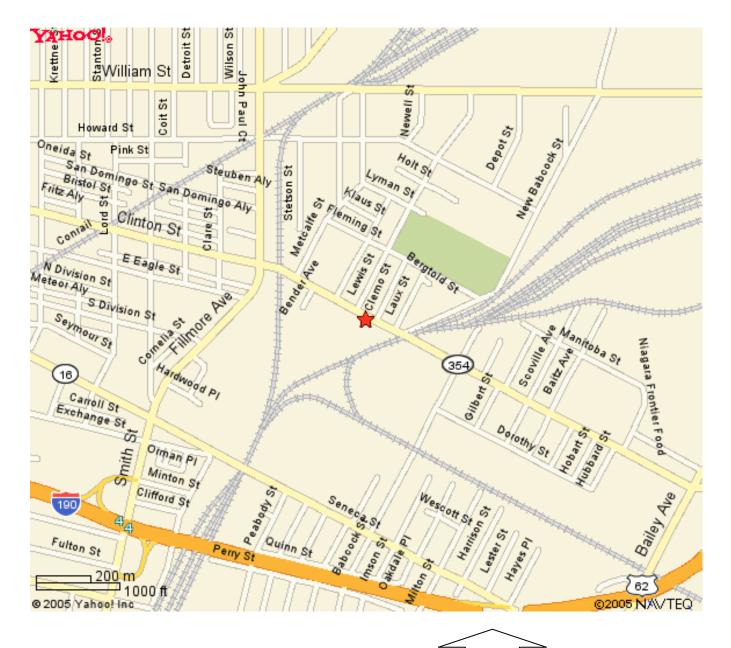
The eventual remediation of Lot 2.1 involved a USEPA demonstration project to reduce PCB contaminant levels in soils at the site to below 50 ppm using a proprietary chemical treatment process. The demonstration remediation project consisted of excavation of PCB contaminated soil characterized in excess of 50 ppm, placement in drums for chemical treatment to reduce PCB levels below 50 ppm, and finally placing treated soils back onto the site. The demonstration project also included in-situ trials in reducing the PCB levels in the soil. The demonstration project was initiated during the summer of 1985 was deemed complete by the consultant in October, 1986.

Since PCB's in soils were not removed, but reportedly reduced to levels below 50 ppm, a shallow groundwater collection system was installed to intercept PCB's that could potentially migrate along the shallow groundwater horizon. Impacted groundwater collected by the

collection system was batch treated by carbon adsorption prior to discharge to the City of Buffalo combined sewer system. The PCB contaminated area was paved with an asphalt cover to preclude contact with soil contaminated with residual PCBs (less than 50 ppm) and reduce infiltration of surface water to limit the generation of PCB contaminated groundwater. The asphalt cover was equipped with surface drains to capture and treat surface water via an oil water separator prior to discharge to the sanitary sewer. Refer to Figure 3 for the features described above.

Following the completion of the soil treatment and installation of the groundwater collection and treatment system, the site subject to the Order was reclassified to a Class 4 site in December, 1987.

The groundwater collection and treatment system was operated by the respondent for a number of years. During a 2001 inspection, the system was found to be non-functional. The current treatment system has major design and operation flaws including a non-automated batch operation system design which requires manual control operation in order for the system to operate and no freeze protection which resulted in operational shutdown during freezing winter months.

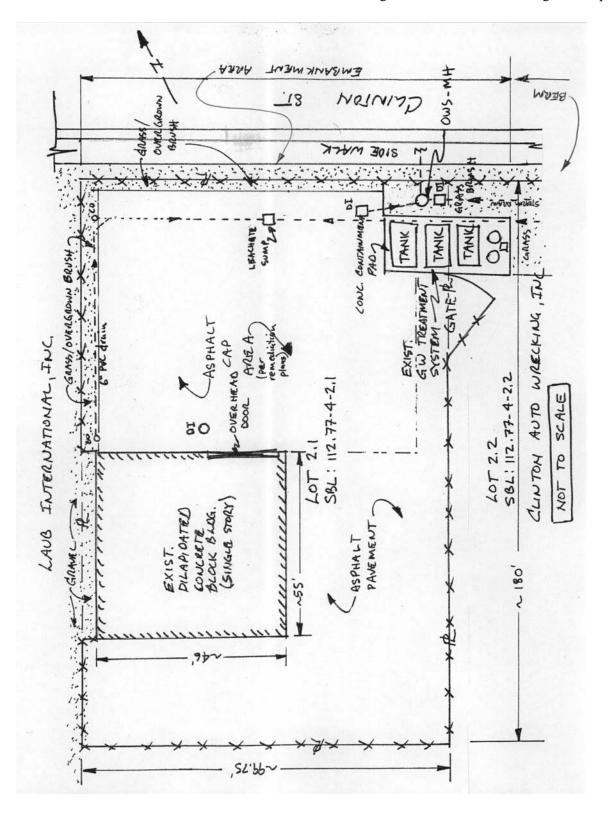

Several attempts were made by the NYSDEC to have the respondent repair the treatment system and place it back in operation. All attempts by the NYSDEC to have the respondent and/or current owner of record place the system back in operation have not been successful. The respondent and current owner of record have both failed to respond to DER requests and inquiries.

1.5 REPORT ORGANIZATION

The report is organized into eight sections and ten appendices:

- Section 1 includes the introduction and project background;
- Section 2 describes the scope of the site investigation;
- Section 3 presents a summary of the site investigation results;
- Section 4 presents conclusions of the site investigation.

Appendices A and B contain field data logs and lab data, respectively.


Site Location Plan

Bengart and Memel Site NYSDEC Site No. 915115 1079-1091 Clinton St. Buffalo (C), Erie Co. NY Ν

Site Plan

Bengart and Memel Site NYSDEC Site No. 915115 1079-1091 Clinton St. Buffalo (C), Erie Co. NY

Detailed Site Plan

Bengart and Memel Site NYSDEC Site No. 915115 1079-1091 Clinton St. Buffalo (C), Erie Co. NY

SECTION 2 SCOPE OF INVESTIGATION

2.1 SUBSURFACE SOIL INVESTIGATION

To assess residual PCBs in the site soils as well as other Target Compound List (TCL) compounds and hazardous waste characteristics, approximately 19 soil borings were advanced inside the site fence limits using direct push boring equipment (Geoprobe) to obtain soil samples of fill and native soils (approximately 4 to 8 feet). The boreholes were spaced to provide representative coverage across the parcel and below the building (see Figure 4). Soil cores were retrieved and examined by NYSDEC DER employees. Visual and/or olfactory evidence of contamination was also screened and recorded. Soil sampling and logging was performed in accordance with NYSDEC investigation Standard Operating Procedures (SOPs). Soil samples were collected at the discrete zone consisting of fill. The native soil zone consists of a dense clay layer. Due to previous investigation results showing little to no contamination in the native soil, and lack of visual indication of contamination, the native soil zone was not sampled or characterized for PCB contamination.

To assess PCB contamination in and below a dilapidated structure on the parcel that was historically used for drum storage containing PCB contaminated fluids, four additional borings were advanced inside the existing building on the site using tripod soil sampling arrangement (see Figure 4). The concrete floor of the building was core drilled to simplify sampling of subsurface soils. Subsurface samples below the structure building slab were subsequently collected. Additionally four wipe samples of the concrete flooring were also collected to assess the presence of PCB contamination in the building slab (see Figure 4). Wipe sampling were performed in accordance with the EPA protocols established for assessing surface contamination.

2.2 GROUNDWATER EVALUATION

To assess groundwater residual levels at the site, two of the borings that revealed the potential to yield groundwater were converted to one-inch diameter micro monitoring wellpoints (see Figure 4). Wellpoints were installed at borings B-5 and B-19. Following the installation of the wellpoints, the wellpoints were developed using appropriate well development methods. The wellpoint installation and well development were performed in accordance with NYSDEC SOPs. Groundwater recovery following purging was slow, and it was difficult to collect the required volume of water for chemical analysis.

Following the construction of the wellpoints, groundwater was allowed to stabilize in the wellpoints. Before purging the wellpoints for groundwater sampling, the depth to ground water was measured. At the time of measurement in May 2006, the static groundwater elevation at each wellpoint was shallow. Approximate depths for groundwater were 0.8 feet below ground surface (BGS) at MW B-19 and 1.4 ft. BGS at MW B-5. The groundwater is likely perched water laying in the fill above the native dense clay layer. With groundwater this shallow at the site, the groundwater levels would be above grade level along the low embankment at the northern perimeter adjacent to Clinton Street. No noticeable seeps along the embankment at the edge of the capped fill area were observed.

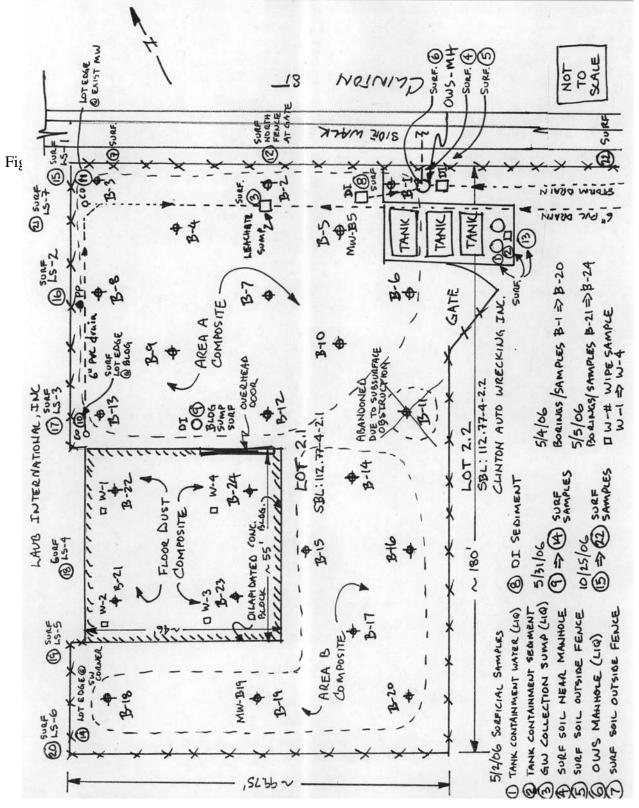
2.3 SURFICIAL INVESTIGATION

Surficial soil and water samples were collected to assess the presence of PCBs in surface soils near the perimeter of the site along Clinton Street and adjoining property to the west, and PCB levels in the accessible groundwater collection and treatment system components. Soil and sediment samples were initially collected from 11 sample locations at the site. Surface water samples were collected at three locations at the site. Surficial sampling locations are indicated on Figure 4.

In response to elevated PCB levels in surficial sample in the initial round of surficial sampling and analysis, an additional round of surficial soil samples were collected at six additional locations at the site to further delineate surficial soil contamination. Following the receipt of the second round of sampling, eight additional surficial sample locations on adjoining properties were sampled. These samples were located to the north of the site (Laub International warehouse) and to the south or the site (Clinton Auto Wrecking). These surficial sampling locations are also indicated on Figure 4.

2.4 ANALYTICAL PROGRAM

Fill and soil samples from each borehole were collected for analysis of TCL PCBs only (EPA Method 8082). Depending on volatile organic vapor screening results, samples exhibiting elevated volatile organic compound (VOC) headspace sampling results and/or odors were analyzed for TCL VOCs (EPA Method 8260) and/or TCL SVOCs (EPA Method 8270). Soil samples were composited by area (see Figure 3) into two composite samples and analyzed for the following:


- TCL Semi-volatile organic compounds (SVOCs) (EPA Method 8270),
- Total RCRA metals (EPA 6000/7000 Method Series),
- Toxic Characteristic Leaching Procedure (TCLP) metals (EPA Method 1311 and 6000/7000 Method Series),
- Corrosivity (EPA Method 9045), and
- Flashpoint (EPA Method 1010).

Soil samples collected for chemical analysis were collected in accordance with NYSDEC SOPs.

Borehole cuttings were used for sampling. Because of the limited amount of soil cuttings that were obtained, nominal surplus soils were generated. The surplus soils were placed onto a tarp and stored inside the building for storage for subsequent appropriate disposition.

Groundwater samples from developed wellpoints were collected and analyzed for TCL VOCs (EPA Method 8260), TCL SVOCs (EPA Method 8270), TCL Metals (EPA Method 6000/7000 series) and TCL PCB's (EPA Method 8082) on unfiltered samples only. The well points did not produce sufficient quantity of water needed for filtered samples. Water collected from the wells was relatively free of turbidity, precluding the need for filtering of the samples.

Purgewater from well development and sampling was placed in a 5 gallon bucket with lid. The buckets was placed in the onsite building for subsequent appropriate disposition.

Bengart and Memel Site Investigation Report

Site Investigation Plan

Bengart and Memel Site NYSDEC Site No. 915115 1079-1091 Clinton St. Buffalo (C), Erie Co. NY

SECTION 3 INVESTIGATION RESULTS

3.1 SUBSURFACE SOIL INVESTIGATION

The results of the subsurface soil investigation are as followed. The area subject to the subsurface investigation consisted mainly of advancing 18 borings (B-2 thru B-18) in paved areas within Lot 2.1, one boring in an unpaved area adjacent to the treatment system containment pad (B-1), and four borings inside the dilapidated structure (B-21 thru B-24). The boring locations are indicated on Figure 4. Sample results in excess of recommended soil cleanup objectives and hazardous waste levels for PCBs are identified on Figure 5. Respective boring logs are contained in Appendix A.

3.1.1 Asphalt Cap Area and Balance of Asphalt Paved Areas

The lithology of the paved areas generally consist of an asphalt layer of varying thickness, a gravel base of varying thickness, fill consisting of various native and fill materials of varying thickness, and finally native soil consisting of a dense, firm brown clay. The borings were generally advanced to the native soil horizon. The asphalt varied by area with two distinct areas. The area generally between the dilapidated building and Clinton St. exhibited a thicker section consisting of a topcourse and base course. This area was, based upon a review of the site records, was subject to the PCB remediation efforts. The remediation measure included asphalt capping as part of the Consent Order agreement. This area is here referred to as the asphalt capped area. The field measured thickness of this material did not conform to the proposed asphalt cap was not as thick as specified in the approved remediation plans. The balance of the paved area not subject to the cleanup action consisted mainly of a binder course and was not as thick as the asphalt capped area of the lot.

3.1.2 Gras Area Adjacent to the Groundwater Treatment System

Boring B-1 was advance in a grassy area adjacent to the Groundwater Treatment System and Asphalt Cap Area. The boring profile included a topsoil layer followed by fill layer consisting of slag over the native stiff, brown clay. The fill extended to 2 feet below the surface. Fill materials from this boring was sampled for PCB analysis. The fill sample from B-1 exceeds the TAGM 4046 total PCB subsurface cleanup level of 10,000 ppb (12,000 ppb for total PCB's). PCB results are presented in Table 1. The sampling location with the elevated level of PCBs is indicated on Figure 5.

3.1.3 Asphalt Cap Area Subsurface Soil

The fill in the respective asphalt areas varied in thickness, material and contamination based upon visual, olfactory and field measurement of volatile organic vapors. The fill in the asphalt cap area (B-2 thru B-13) varied considerably and consisted of varying amounts of imported granular fill, concrete and brick rubble, slag, foundry sand (probable), glass and wood debris. Much of this material exhibited dark, black staining and odors associated with undefined volatile and semi-volatile organic substances. The depth of fill generally varied from two to three feet below ground surface. Several borings exhibited fill up to five feet in depth below ground surface.

Fill materials from each boring were sampled for PCB analysis. Fill samples from B-4, B-5, B-6, B-9, and B-10 exceed the TAGM 4046 total PCB subsurface cleanup level of 10,000 ppb (11,000 to 37,200 ppb for total PCB's). Fill samples from B-7, and B-9 exceed the total PCB hazardous waste characteristic level of 50,000 ppb (70,600 and 69,000 ppb respectively). PCB results are presented in Table 1. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

Additional samples from the asphalt cap area were collected for VOC analysis. Samples were collected from B-6 and B-13 because of odors and headspace readings. None of the soil fill samples from this area exhibited VOC values above TAGM 4046. VOC results are presented in Table 2.

A composite soil sample from the asphalt cap area (Composite Sample A) was collected and analyzed for SVOCS, Metals and Hazardous Waste Characteristics. The composite sample exceeded SVOC TAGM 4046 levels for benzo(a)anthracene(4,600 ppb), benzo(a)pyrene (3,900 ppb), benzo(k)flouranthene (1,600 ppb) and chrysene (4100 ppb). The composite sample also exceeded total metal TAGM 4046 for arsenic (8.6ppm), cadmium(3.4 ppm), chromium (26 ppm), and mercury (1.3 ppm). The composite sample did not exceed hazardous waste characteristics for TCLP metals, pH, and flashpoint. Results for SVOCs are presented in Table 3, and metal and hazardous characteristic results are presented in Table 4.

3.1.5 Asphalt Cap Area Groundwater

Boring B-5 was the only boring in the asphalt cap area that appeared to contain any appreciable amount of water in the boring. Boring B-5 was converted to a one-inch diameter micro-monitoring well. See Appendix B for the monitoring well construction log. Groundwater from wellpoint B-5 was sampled and analyzed for PCBs, and VOCs. The results for PCBs reveal the total PCB level (28 ppb) is above groundwater standards for total PCBs. PCB results for groundwater are presented in Table 5. The results for VOCs reveal 1,3-dichlorobenzene and 1,4-dichlorobenzene are slightly above groundwater standards for these compounds. VOC results are presented in Table 6.

3.1.5 Balance of Asphalt Paved Area Subsurface Soil

The fill in the balance of asphalt paved area (B-14 thru B-20) varied and consisted of varying amounts of concrete and brick rubble, slag, foundry sand (probable), glass and wood debris. Much of this material exhibited dark, black staining and some with odors associated with undefined volatile and semi-volatile organic substances. The depth of fill generally varied from two to three feet below ground surface. Several borings exhibited fill up to five feet in depth below ground surface.

Fill materials from each boring were sampled for PCB analysis. Fill samples from B-18 and B-19 exceed the total PCB TAGM 4046 subsurface cleanup level of 10,000 ppb (26,900 and 19,000 ppb for total PCB's, respectively). Fill sample from B-16 exceeded the total PCB hazardous waste characteristic level of 50,000 ppb (52,000 ppb). PCB results are presented in Table 1. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

Additional samples from the asphalt cap area were collected for VOC analysis. Samples were collected from B-14, B-17 and B-19 because of odors and elevated VOC headspace readings.

Fill from B-19 was saturated with water/liquid and exhibited strong VOC/SVOC odors. The liquid contained a visible sheen. Fill soil sample from this area exhibited values above TAGM 4046. B-14 just exceeded the TAGM level for acetone (likely lab contaminant). B-19 exceeded TAGM 4046 levels for 1,2,4-trichlorobenzene (18,000 ppb), 1,3-dichlorobenzene (25,000 ppb), 1,4-dichlorobenzene (110,000 ppb), benzene (200 ppb), carbon tetrachloride (26,000 ppb) and total VOCs (182,890 ppb). VOC results are presented in Table 2.

A composite soil sample from the balance of the asphalt paved area (Composite Sample B) was collected and analyzed for SVOCS, Metals and Hazardous Waste Characteristics. The composite sample exceeded SVOC TAGM 4046 levels for benzo(a)anthracene (4,900 ppm), benzo(a)pyrene (4,200 ppm), benzo(k)flouranthene (1,600 ppm), chrysene (4100 ppb), and dibenzo(a,h)anthracene (890 ppb). The composite sample also exceeded total metal TAGM 4046 for arsenic (41.6 ppm), barium (388 ppm), cadmium (6.9 ppm), chromium (1090 ppm), lead (1,200 ppm), mercury (1.3 ppm), and selenium (13.2 ppm). The composite sample did not exceed hazardous waste characteristics for TCLP metals, pH, and flashpoint. Results for SVOCs are presented in Table 3, and metal and hazardous characteristic results are presented in Table 4.

3.1.6 Balance of Asphalt Paved Area Groundwater

Boring B-19 was the only boring in the balance of asphalt paved area that appeared to contain any appreciable amount of water in the boring. Boring B-19 was converted to a one-inch diameter micro-monitoring well. See Appendix A for the monitoring well construction log. Development of the wellpoint B-19 yielded a considerable amount of probable non aqueous phase liquid (NAPL) due to its color, viscosity and odor. Groundwater from wellpoint B-19 was sampled and analyzed for PCB's, VOCs, SVOCs, and metals. The results reveal the total PCB level (130 ppb total) is above the groundwater standard for total PCBs. The SVOC results only reveal napthalene (130 ppb) above the groundwater standard. PCB and SVOC results for groundwater are presented in Table 5. The results for VOCs reveal 1,4-dichlorobenzene, benzene and chlorobenzene are slightly above groundwater standards. VOC and metal results are presented in Table 6. The VOC and SVOC results appear to be lower than expected given the amount of probable NAPL that was purged from the wellpoint during well development.

3.1.7 Building Area

The subsurface area of the building was characterized by advancing borings B-21 thru B-24. The lithology of the building area generally consists of a six-inch reinforced concrete floor slab, a subbase of varying thickness consisting of slag and cinder, and finally native soil consisting of a dense, firm brown clay. The borings were generally advanced to the native soil horizon. The depth of fill in this area generally varied from two to three feet below ground surface. Based upon the review of the remediation documentation, no PCB remediation efforts were implemented for this area as part of the Consent Order agreement.

The fill below the building floor area was similar in thickness and composition. The fill material exhibited contamination based upon visual, olfactory and field measurement of volatile organic vapors. Much of this material exhibited dark, black staining and odors associated with undefined volatile or semi-volatile organic substances. Fill materials from each boring were sampled for PCB analysis. Fill samples from B-21 exceeded the total PCB hazardous waste

characteristic level of 50,000 ppb (334,000 ppb). PCB results are presented in Table 1. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

Additional samples were collected for VOC analysis from B-21, B-22, and B-23 because of odors and headspace readings. None of the soil fill samples from this area exhibited VOC values above TAGM 4046. VOC results are presented in Table 2. An additional fill soil sample from B-22 was collected for SVOC and metals analysis, and hazardous waste characterization. The sample results exceeded SVOC TAGM 4046 levels for benzo(a)anthracene(2,100 ppb), benzo(a)pyrene (1,700 ppb), benzo(b)flouranthene (2,700 ppb), benzo(k)flouranthene (2,700 ppb), chrysene (1,900 ppb), and dibenzo(a,h)anthracene (360 ppm). Results for SVOCs are presented in Table 3. The sample only exceeded hazardous waste characteristics for one of TCLP metals (barium at 830 ppm). However, this value is estimated and it appears anomalous to the sample in that this element was below detection limit for the total element. The metal and hazardous characteristic results are presented in Table 4.

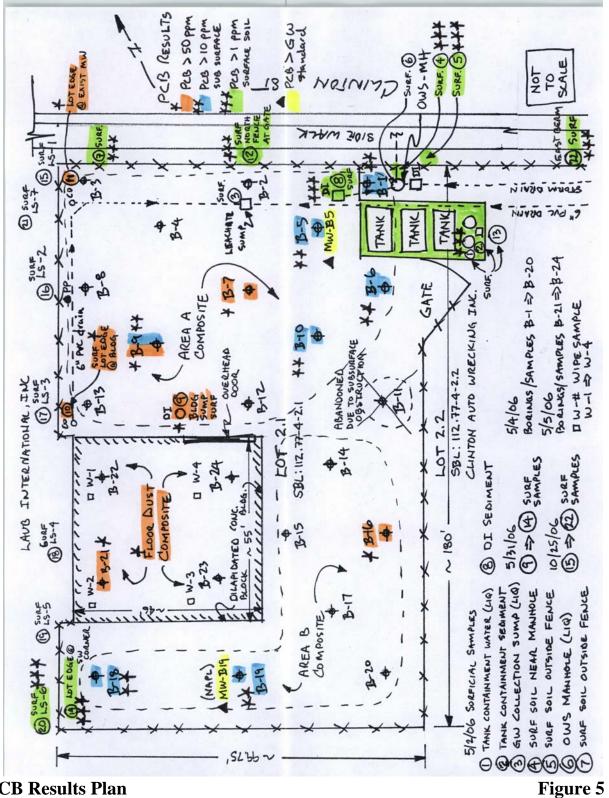
3.2 SURFACE INVESTIGATION

Surface soil, sediment and water samples were collected from a total of 22 sampling points. An initial round of eight sampling points were sampled. Because of some elevated PCB levels found in an initial round of surface and sediment sampling, additional surface samples were collected from Lot 2.1. An additional sample consisting of a composite from floor dust inside the building was collected during this effort. Wipe samples were also collected from the concrete floor in the dilapidated building to assess the presence of PCBs in the floor surface. Following the receipt of the additional surface sampling results, eight additional surface sample points were sampled at offsite locations adjacent to Lot 2.1. Refer to Figure 4 for sampling locations.

3.2.1 Surface Soil and Sediments

The results from surface and sediment sample locations at the asphalt cap area drop inlet (8), outside fence at the northeast section of the lot (5), outside fence at the northwest section of the site (7), near the oil water separator manhole (4), tank containment pad sediment (2), lot edge at southwest corner (14), north fence gate (12), soil east of the tank containment pad (13 and 22), and Laub property (15 and 20) reveal PCB levels at and above TAGM 4046 surface cleanup level of 1000 ppb (1,000 to 37,000 ppb). The results from surface and sediment samples from the building floor dust composite, building sump (9), lot edge at building (10), and lot edge at monitoring well (11) exceeded the total PCB hazardous waste characteristic level of 50,000 ppb (334,000 ppb, 91,000 ppb, 74,000 ppb, and 94,000 ppb, respectively). PCB results are presented in Table 1. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

Metals analysis for a surface sample at the north fence gate (12) reveal some elevated levels for several metal parameters. These results are consistent with past use of the site. The metals results are presented in Table 4.


3.2.2 Building Concrete Floor Surface

Four wipe samples of the concrete floor surface inside the dilapidated building were collected to assess potential PCB contamination of the floor surface (see Figure 4). This was accomplished by taking a cotton swab soaked with a solvent and wiping a 100 cm. sq. surface area.

All four samples reveal PCB contamination of the concrete surface. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

3.2.3 Surface Waters

Surface water samples were collected from three sample location points including the inactive groundwater collection system sump (3), the oil water separator manhole(6) and the treatment system containment pad (1) and analyzed for PCBs. See Figure 4 for sample locations. The results for PCBs reveal the total PCB levels (82 ppb, 18.2 ppb, and 0.38 ppb, respectively) are above all groundwater and surface water standards for total PCBs (0.09 ppb). PCB results for water samples are presented in Table 5. The sampling locations with the elevated levels of PCBs are indicated on Figure 5.

PCB Results Plan

Bengart and Memel Site NYŠDEC Site No. 915115 1079-1091 Clinton St. Buffalo (C), Erie Co. NY

SECTION 4 CONCLUSIONS

Based upon the results of the limited site investigation of former B&M lot 2.1, there is widespread PCB contamination of surface and subsurface soil/fill materials that are above TAGM 4046 surface and subsurface standards for soil and sediment. Refer to Figure 5 for an overview of sampling locations with the elevated levels of PCBs. Water collected at various points also indicated PCB contamination of groundwater and potential surface water discharges above applicable groundwater and surface water standards. Additionally, there are PCB levels in surface soils, sediments and subsurface soil/fill that render the material as characteristically hazardous waste. Refer to Figure 5 for an overview of sampling locations with the elevated levels of PCBs.

The elevated levels of PCBs at the site is a cause of concern for both groundwater and surface exposure and migration. The existing groundwater collection system at the site that is required to capture PCB contaminated groundwater is not functional. Given the shallow groundwater levels at the site, and elevated grade, contaminated groundwater could potentially seep to the surface during prolonged damp periods and migrate offsite.

The elevated levels of PCBs at site surface areas are another cause for concern exposure and migration. There are either elevated levels above the surface standard and above the hazardous waste threshold in several areas around the lot, near the property boundaries, and areas outside fenced limits that are accessible to the general public. The western perimeter inside the fence limits are both above surface cleanup levels and hazardous waste levels. Sampling of surface soil beyond the Lot 2.1 on adjoining properties including the Laub property, the right-of-way area along the Clinton Street sidewalk, and on the Clinton Auto Wrecking property reveal limited PCBs at the. This represents a significant human health hazard to adjoining property owners due to potential dermal contact and respiratory inhalation of PCB laden dust. Surface samples collected outside the fence lot limits along the Clinton Street pedestrian sidewalk are above surface cleanup levels. This represents a significant human health hazard to the general due to potential dermal contact. Inside the site, there are PCB levels above surface cleanup levels and above hazardous waste levels that represent another human health and environment exposure. The surface material are exposed and uncontrolled and can migrate along the surface from wind and water erosion.

There are elevated levels of PCBs in subsurface horizons that are either above subsurface cleanup levels or above hazardous waste levels in both the remediated and non-remediated areas. Because there are no deed restrictions for the lot, there is no legal mechanism that would preclude disturbance, exposure and safe handling of PCB contaminated material at this site. The proximity of these elevated levels near property boundary formerly owned by B&M (now owned and operated by Clinton Auto Wrecking, a car dismantling operation) suggests that there may potentially be PCB contamination in areas formerly implied as free of PCB contamination. This may have been an assumption that was used by the Consent Order respondent to subdivide the former B&M property and sell off the portion of the site presumed to be absent of PCB contamination.

This page is intentionally blank.

TABLES

This page is intentionally blank.

Table 1 Analytical Results - PCBs in Soil Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	B-1	B-2	B-3	B-4	B-5	B-5	B-6	B-7
Depth	Objective	16" - 24"	21" - 27"	31" - 35"	18" - 24"	32" - 37"	48" - 56"	28" - 38"	32" - 37"
Collection Date	(ug/kg)	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006
PCBs (ug/kg) soil						•			
Aroclor 1016		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1248		BDL	390	BDL	2200	BDL	BDL	1700	5600
Aroclor 1254		BDL	2500	BDL	14000	BDL	BDL	6600	BDL
Aroclor 1260	Surf/Sub-Surf	12000	1500	3700	21000	41000	30000	9200	65000
Total PCBs	1000/10000	12000 (2)	4390	3700	37200 (2)	41000 (2)	30000 (2)	17500 (2)	70600 (3)
Analyte	Cleanup	B-8	B-9	B-9	B-10	B-12	B-13	B-14	B-15
Depth	Objective	52" - 57"	5"-9"	23"-28"	24" - 48"	24" - 29"	41" - 48"	35" - 39"	9" - 39"
Collection Date	(ug/kg)	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006
PCBs (ug/kg) soil						•			
Aroclor 1016		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1248		440	BDL	4600	BDL	25	32	BDL	100
Aroclor 1254		BDL	34000	16000	BDL	130	BDL	4800	BDL
Aroclor 1260	Surf/Sub-Surf	3200	25000	7100	11000	340	180	3000	330
Total PCBs	1000/10000	3640	69000 (3)	27700 (2)	11000 (2)	495	212	7800	430
Analyte	Cleanup	B-16	B-17	B-18	B-19	B-20	B-21	B-23	B-24
Depth	Objective	32" - 37"	30" - 38"	5" - 23"	8" - 40"	8" - 35"	6" - 24"	24" -48"	6" - 48"
Collection Date	(ug/kg)	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/5/2006	5/5/2006	5/5/2006	5/5/2006
PCBs (ug/kg) soil									
Aroclor 1016		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1248		BDL	280	9900	BDL	16 J	BDL	BDL	BDL
Aroclor 1254		27000	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1260	Surf/Sub-Surf	25000	1600	17000	19000	BDL	230000	2200	270
Total PCBs	1000/10000	52000 (3)	1880	26900 (2)	19000 (2)	16	230000 (3)	2200	270
Analyte		Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl
	Cleanup	DI (8)	Fence (5)	Fill Near	Soil Near	Tank Cont.	Floor	Bldg	Lot Edge
Depth	Objective	Sediment		Fence (7)	MH (4)	Sediment (2)	Dust	Sump (9)	at Bldg (10)
Collection Date	(ug/kg)	5/4/2006	5/2/2006	5/2/2006	5/2/2006	5/2/2006	5/5/2006	5/31/2006	5/31/2006
PCBs (ug/kg) soil									
Aroclor 1016		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1248		3600	1700 J	BDL	BDL	BDL	54000	BDL	BDL
Aroclor 1254		9600	BDL	BDL	BDL	BDL	190000	46000	38000
Aroclor 1260	Surf/Sub-Surf	19000	15000	32000	7400	14000	100000	45000	36000
Total PCBs	1000/10000	32200 (1)	16700 (1)	32000 (1)	7400 (1)	14000 (1)	334000 (3)	91000 (3)	74000 (3)
Analyte		Surf Smpl	Surf Smpl	Surf Smpl	Surf Smpl				
	Cleanup	Lot Edge	Lot Edge	North Fence	Soil East of]			
Depth	Objective	at MW (11)	SW Crnr (14)	at Gate (12)	Contain (13)]			
Collection Date	(ug/kg)	5/31/2006	5/31/2006	5/31/2006	5/31/2006]			

	Cleanup	Lot Edge	Lot Edge	North Fence	Soil East of
Depth	Objective	at MW (11)	SW Crnr (14)	at Gate (12)	Contain (13)
Collection Date	(ug/kg)	5/31/2006	5/31/2006	5/31/2006	5/31/2006
PCBs (ug/kg) soil					
Aroclor 1016		BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL
Aroclor 1248		DBL	BDL	BDL	BDL
Aroclor 1254		BDL	21000	3700	5200
Aroclor 1260	Surf/Sub-Surf	94000	16000	12000	11000
Total PCBs	1000/10000	94000 (3)	37000 (1)	15700 (1)	16200 (1)

Notes

 Notes

 1) Exceeds Surface Cleanup Objectives of 1000 ppb (TAGM 4046)

 2) Exceeds Sub-Surface Cleanup Objectives of 10,000 ppb (TAGM 4046)

 3) Exceeds Listed Hazardous Waste Limit of 50,000 ppb

 Data Qualifiers: J - Estimated; D - Secondary Dilution; DE - Secondary Dilution, Exceeded Calibration Range; DJ - Secondary Dilution, Estimated;

 Data Qualifiers: BJ - Analyte found in associated blank, Estimated;

 Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 1 Cont'd. Analytical Results - PCBs in Offsite Soil Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	LS-1 (15)	LS-1 (15)	LS-2 (16)	LS-2 (16)	LS-3 (17)	LS-3 (17)	LS-4 (18)	LS-5 (19)
Depth	Objective	2" - 4"	6" - 8"	2" - 4"	12" - 14"	0" - 4"	6" - 8"	10" - 12"	10" - 12"
Collection Date	(ug/kg)	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006
PCBs (ug/kg) soil									
Aroclor 1016		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1221		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1242		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aroclor 1248		BDL	BDL	BDL	BDL	BDL	BDL	5600	BDL
Aroclor 1254		BDL	BDL	BDL	BDL	BDL	BDL	BDL	250
Aroclor 1260	Surf/Sub-Surf	1000	63	540	220	620	440	160	320
Total PCBs	1000/10000	1000	63	540	220	620	440	160	570
Analyte	Cleanup	LS-6 (20)	LS-6 (20)	LS-7 (21)	LS-7 (21)	East Berm			
Depth	Objective	0" - 2"	8" - 10"	0" - 2"	7" - 9"	surface (22)			
Collection Date	(ug/kg)	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006			
PCBs (ug/kg) soil									
Aroclor 1016		BDL	BDL	BDL	BDL	BDL			
Aroclor 1221		BDL	BDL	BDL	BDL	BDL			
Aroclor 1232		BDL	BDL	BDL	BDL	BDL			
Aroclor 1242		BDL	BDL	BDL	BDL	BDL			
Aroclor 1248		BDL	BDL	BDL	BDL	BDL			
Aroclor 1254		340	BDL	BDL	BDL	BDL			
Aroclor 1260	Surf/Sub-Surf	490	1400	490	120	3900			
Total PCBs	1000/10000	830	1400 (1)	490	120	3900 (1)			

Notes

- Exceeds Surface Cleanup Objectives of 1000 ppb (TAGM 4046)
 Exceeds Sub-Surface Cleanup Objectives of 10,000 ppb (TAGM 4046)
 Exceeds Listed Hazardous Waste Limit of 50,000 ppb

Data Qualifiers: J - Estimated; D - Secondary Dilution; DE - Secondary Dilution, Exceeded Calibration Range; DJ - Secondary Dilution, Estimated

Data Qualifiers: BJ - Analyte found in associated blank, Estimated;

Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 2 Analytical Results - VOCs in Soil Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	B-6	B-13	B-14	B-17	B-19	B-19
Depth	Objective	28" - 38"	5" - 43"	4" - 39"	38" - 46"	8" - 36"	replicate
Collection Date	(ug/kg)	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006	5/4/2006
VOCs (ug/kg)	(-3-3/						
1,1,1-Trichloroethane	800	BDL	BDL	BDL	BDL	BDL	BDL
1.1.2.2-Tetrachloroethane	600	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2-Trichloro-1,2,2-trifluoroethane	6000	BDL	BDL	BDL	BDL	BDL	BDL
1.1.2-Trichloroethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	200	BDL	BDL	BDL	BDL	BDL	BDL
1.1-Dichloroethene	400	BDL	BDL	BDL	BDL	BDL	BDL
1,2,4-Trichlorobenzene	3400	2J	5 J	BDL	BDL	BDL	18000 D
1,2-Dibromo-3-chloropropane	NV	BDL	BDL	BDL	BDL	BDL	1000 D
1,2-Dibromoethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	7900	BDL	BDL	BDL	BDL	BDL	2500 D
1,2-Dichloroethane	100	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichloroethene (cis)	NV	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichloroethene (Total)	300	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichloroethene (trans)	300	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichloropropane	400	BDL	BDL	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	1600	BDL	BDL	BDL	BDL	BDL	25000 D
1,3-Dichloropropene (cis)	NV	BDL	BDL	BDL	BDL	BDL	BDL
1,3-Dichloropropene (trans)	NV	BDL	BDL	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	8500	BDL	4 J	BDL	BDL	BDL	110000 DE
2-Butanone	300	11 J	BDL	44	BDL	32	BDL
2-Hexanone	NV	BDL	BDL	BDL	BDL	BDL	BDL
4-Methyl-2-pentanone	100	BDL	BDL	BDL	BDL	BDL	BDL
Acetone	200	75	40	220	26 J	170	BDL
Benzene	60	BDL	BDL	BDL	BDL	10	200 DJ
Bromodichloromethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Bromoform	NV	BDL	BDL	BDL	BDL	BDL	BDL
Bromomethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Carbon Disulfide	2700	2 J	BDL	3 J	3 J	BDL	BDL
Carbon Tetrachloride	600	BDL	BDL	BDL	BDL	BDL	26000 D
Chlorobenzene	1700	BDL	BDL	BDL	BDL	490 E	BDL
Chloroethane	1900	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	300	BDL	BDL	BDL	BDL	BDL	BDL
Chloromethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Cyclohexane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Dibromochloromethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Dichlorodifluoromethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Ethylbenzene	5500	BDL	BDL	BDL	BDL	BDL	BDL
Isopropylbenzene	NV	BDL	BDL	2 J	BDL	BDL	BDL
Methyl acetate	NV	BDL	BDL	BDL	BDL	BDL	BDL
Methylcyclohexane	NV	BDL	3 J	5 J	BDL	BDL	BDL
Methylene chloride	100	8 B	8 B	8 B	4 BJ	2 BJ	BDL
Methyl-t-Butyl Ether (MTBE)	NV	BDL	BDL	BDL	BDL	BDL	190 DJ
Styrene	NV	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	1400	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	1500	BDL	BDL	BDL	BDL	3 J	BDL
Trichloroethene	700	BDL	BDL	BDL	BDL	BDL	BDL
Trichlorofluoromethane	NV	BDL	BDL	BDL	BDL	BDL	BDL
Vinyl chloride	200	BDL	BDL	BDL	BDL	BDL	BDL
Xylenes (Total)	1200	BDL	BDL	5 J	BDL	BDL	BDL
Total VOCs	10000	98	60	287	33	707	182890

Notes

1) Exceeds Recommended Soil Cleanup Objective (TAGM 4046).

Data Qualifiers: J - Estimated; D - Secondary Dilution; DE - Secondary Dilution, Exceeded Calibration Range; DJ - Secondary Dilution, Estimated Data Qualifiers: BJ - Analyte found in associated blank, Estimated;

Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 2 Cont'd. Analytical Results - VOCs in Soil Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	B-21	B-22	B-23
Depth	Objective	24" - 48"	6" - 24"	6" - 24"
Collection Date	(ug/kg)	5/5/2006	5/5/2006	5/5/2006
VOCs (ug/kg)				
1,1,1-Trichloroethane	800	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	600	BDL	BDL	BDL
1,1,2-Trichloroethane	NV	BDL	BDL	BDL
1,1-Dichloroethane	200	BDL	BDL	BDL
1,1-Dichloroethene	400	BDL	BDL	BDL
1,2-Dichloroethane	100	BDL	BDL	BDL
1,2-Dichloroethene (Total)	300	6 J	BDL	BDL
1,2-Dichloropropane	400	BDL	BDL	BDL
1,3-Dichloropropene (cis)	NV	BDL	BDL	BDL
1,3-Dichloropropene (trans)	NV	BDL	BDL	BDL
2-Butanone	300	20 J	BDL	BDL
2-Hexanone	NV	BDL	BDL	BDL
4-Methyl-2-pentanone	1000	BDL	BDL	BDL
Acetone	200	77	6 J	33 J
Benzene	60	BDL	BDL	BDL
Bromodichloromethane	NV	BDL	BDL	BDL
Bromoform	NV	BDL	BDL	BDL
Bromomethane	NV	BDL	BDL	BDL
Carbon Disulfide	2700	4 J	BDL	BDL
Carbon Tetrachloride	600	BDL	BDL	BDL
Chlorobenzene	1700	3 J	BDL	BDL
Chloroethane	1900	BDL	BDL	BDL
Chloroform	300	BDL	BDL	BDL
Chloromethane	NV	BDL	BDL	BDL
Dibromochloromethane	NV	BDL	BDL	BDL
Ethylbenzene	5500	2 J	BDL	BDL
Methylene chloride	100	3 BJ	2 BJ	4 BJ
Styrene	NV	BDL	BDL	BDL
Tetrachloroethene	1400	11	BDL	BDL
Toluene	1500	3 J	BDL	BDL
Trichloroethene	700	3 J	BDL	BDL
Vinyl acetate	NV	BDL	BDL	BDL
Vinyl chloride	200	7 J	BDL	BDL
Xylenes (Total)	1200	11 J	BDL	BDL
Total VOCs	10000	150	8	37

Notes

1) Exceeds Recommended Soil Cleanup Objective (TAGM 4046).

Data Qualifiers: J - Estimated; D - Secondary Dilution; DJ - Secondary Dilution, Estimated

Data Qualifiers: DE - Secondary Dilution, Exceeded Calibration Range

Data Qualifiers: BJ - Analyte found in associated blank, Estimated;

Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 3 Analytical Results - SVOCs in Soil Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Depth Objective 24'-48' sub surf sub surf Collection Date (ug.kg) 57/2006 5/4/2006 5/4/2006 SVOCs (ug/kg) VV BDL BDL BDL BDL BDL 2.4.5 Trichorophenol NV BDL BDL BDL BDL BDL 2.4-Distrophenol 400 BDL BDL BDL BDL 2.4-Distrophenol 2.4-Distrophenol 2.4-Distrophenol 2.00 BDL	Analyte	Cleanup	B-22	COMP A	COMP B
SVOC5 (up/kg) V BDL BDL <th< th=""><th>Depth</th><th></th><th>24" - 48"</th><th>sub surf</th><th>sub surf</th></th<>	Depth		24" - 48"	sub surf	sub surf
22-Oxphisht-Chloropropane NV BDL BDL BDL BDL BDL 2.4.6-Trichlorophenol NV BDL BDL BDL BDL BDL 2.4.0-Introphenol 200 BDL BDL BDL BDL BDL 2.4.0-Introphenol NV BDL BDL BDL BDL BDL 2.4.0-Introphenol NV BDL BDL BDL BDL BDL 2.4.0-Introphenol 800 BDL		(ug.kg)	5/5/2006	5/4/2006	5/4/2006
24.5-Trichlorophenol NV BDL BDL BDL BDL 2.4-Direktlyphenol 200 BDL BDL BDL BDL 2.4-Direktlyphenol 200 BDL BDL BDL BDL 2.4-Direktlyphenol 200 BDL BDL BDL BDL 2.4-Direktlyphenol 1000 BDL BDL BDL BDL 2.4-Direktlyphenol 800 BDL BDL BDL BDL 2.6-Intrinstotuene NV BDL BDL BDL BDL BDL 2.4-Introphenol 100 BDL BDL BDL BDL BDL 3.3-Dichrotoperizidine NV BDL BDL BDL BDL BDL BDL<		1.0.4	221		221
24.6-Tichlorophend NV BDL BDL BDL BDL 24-Dinkrophend 200 BDL BDL BDL BDL 24-Dinkrophend NV BDL BDL BDL BDL 24-Dinkrophend NV BDL BDL BDL BDL 24-Dinkrophend NV BDL BDL BDL BDL 24-Dinkrophend 800 BDL BDL BDL BDL BDL 2-Almitynphralene 36400 BDL					
24-Dictiorophenol 400 BDL BDL BDL BDL 24-Dimitryphenol 200 BDL BDL BDL BDL 24-Dimitryphenol NV BDL BDL BDL BDL 24-Dimitryphenol NV BDL BDL BDL BDL 24-Dimitryphenol NV BDL BDL BDL BDL BDL 2-Chiorophenol 800 BDL BDL <td></td> <td></td> <td></td> <td></td> <td></td>					
24-Dimethylphenol 200 BDL BDL BDL BDL 36000 24-Dimitophenol NV BDL BDL BDL BDL 26-Dimitotoluene NV BDL BDL BDL BDL 26-Dimitotoluene NV BDL BDL BDL BDL 20-Dimitotoluene NV BDL BDL BDL BDL BDL 20-Dimitotoluene NV BDL ACM concarriance NV BDL BDL BDL BDL BDL ACM concarriance NV BDL BDL BDL BDL					
24-Ditrotopluene 1000 BDL BDL BDL 26-Ditrotophenol BOU BDL BDL BDL 2-Chioronaphthalene NV BDL BDL BDL 2-Abethyinaphthalene 86400 BDL BDL BDL 2-Methyinaphthalene 36400 BDL BDL BDL 2-Methyinaphthalene 36400 BDL BDL BDL 2-Mitrophenol NV BDL BDL BDL BDL 3-Nichorobenzidine NV BDL BDL BDL BDL 3-Nitroaniline 4500 BDL BDL BDL BDL 4-Chioro-armethydphenol 220 BDL BDL BDL BDL 4-Chioroaniline NV BDL BDL BDL BDL 4-Altroaniline NV BDL BDL BDL BDL 4-Altroaniline NV BDL BDL BDL BDL 4-Altroaniline NV BDL BDL					
26-Dititization BDL BDL BDL 26-Norosphenol 800 BDL BDL BDL 2-Metryphraphthalene 36400 BDL BDL BDL 2-Metryphraphthalene 36400 BDL BDL BDL 2-Metryphrenol 100 BDL BDL BDL 2-Nitrophenol 330 BDL BDL BDL 3-Nitrosniline 500 BDL BDL BDL 4-Brointhro-2-methyphenol NV BDL BDL BDL 4-Brointhro-2-methyphenol NV BDL BDL BDL 4-Chioro-3-methyphenol 220 BDL BDL BDL 4-Chioro-3-methyphenol 240 BDL BDL BDL 4-Nitrophenol 900 BDL BDL BDL BDL 4-Nitrophenol 900 BDL BDL BDL Advenophthyphenol 4-Nitrophenol 100 BDL 4DU GOI JAcconaphthyphenol 4-Nitrophenol	2,4-Dinitrophenol		BDL		36000
2Chloronaphthalene NV BDL BDL BDL 2-Metryinaphthalene 36400 BDL BDL BDL BDL 2-Metryinaphthalene 36400 BDL BDL BDL BDL 2-Metryinaphthalene 430 BDL BDL BDL BDL 3-Nitroaniline 430 BDL BDL BDL BDL 3-Nitroaniline 500 BDL BDL BDL BDL 4-Chitroz-2methylphenol NV BDL BDL BDL BDL 4-Chitroz-3methylphenol 240 BDL BDL BDL BDL 4-Chitroz-aniline NV BDL BDL BDL BDL 4-Chitroz-aniline NV BDL BDL BDL 4-Nitroaphenol 4-Nitrophenol 100 BDL BDL BDL BDL 4-Nitroaphenol 100 BDL BDL BDL Actroaphthene 4-Nitroaphenol 100 200 30 2200 J					
2-Chorophenol BOL BDL BDL BDL 2-Methylaphnalane 36400 BDL BDL BDL BDL 2-Methylaphnalane 100 BDL BDL BDL BDL 2-Mitrophenol 330 BDL BDL BDL BDL 3.3-Dichlorobenzidine NV BDL BDL BDL BDL 4.6-Dinitro-2-methylphenol NV BDL BDL BDL BDL 4.7-Bronzy-henyl phenyl ether NV BDL BDL BDL BDL 4.7-Choros-amethylphenol 240 BDL BDL BDL BDL 4.7-Choros-amethylphenol 240 BDL BDL BDL BDL 4-Chorosniline 220 BDL BDL BDL BDL AChorosniline Achorosnilin					
2-Methylphenol 36400 BDL BDL BDL BDL 2-Mitryphenol 100 BDL BDL BDL BDL 2-Nitrophenol 330 BDL BDL BDL BDL 3-Shichorobenzidine NV BDL BDL BDL BDL 3-Nitroaniline 500 BDL BDL BDL BDL 4-Chitro2-methylphenol NV BDL BDL BDL BDL 4-Chitro3-methylphenol 240 BDL BDL BDL BDL 4-Chitro3-methylphenol 240 BDL BDL BDL BDL 4-Aktrophenol 900 BDL BDL BDL BDL 4-Aktrophenol 100 BDL BDL BDL Aktrophenol 4-Nitrophenol 100 BDL BDL BDL BDL Acenaphthene 50000 280 J 2200 J 2200 J 2200 J Arraine NV BDL BDL BDL					
2-Methylphenol 100 BDL BDL BDL 2-Nirropenol 330 BDL BDL BDL BDL 3.3-Dichlorobenzidine NV BDL BDL BDL BDL 3.3-Dichlorobenzidine NV BDL BDL BDL BDL 4.6-Dinitro-2-methylphenol NV BDL BDL BDL BDL 4-Chioro-3-methylphenol 240 BDL BDL BDL BDL 4-Chioro-3-methylphenol 240 BDL BDL BDL BDL 4-Chioro-3-methylphenol 240 BDL BDL BDL BDL 4-Nitrophenol NV BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL Acenaphthene 50000 260 J 1200 J 1700 J 3200 J 2300 J Acenaphthene 50000 830 J 2300 J 2300 J 2300 J Artriare NV BDL BDL BDL					
2-Nirophenol 330 BDL BDL BDL BDL 3.3*Dichlorobenzidine NV BDL BDL BDL BDL 3.3*Dichlorobenzidine NV BDL BDL BDL BDL BDL 4.8-Dinthro2-methylphenol 240 BDL BDL BDL BDL BDL 4.Chioro-3-methylphenol 240 BDL BDL BDL BDL BDL BDL BDL AChioro-3-methylphenol 240 BDL AChiorophenyl phenyl ether NV BDL BDL BDL BDL BDL AChiorobin BDL BDL BDL AChiorobin Acenaphthylene 41000 BDL			BDL		
33-Dichlorobenzidne NV BDL BDL BDL BDL 3-Nitroaniline 500 BDL BDL BDL BDL 4-Chintro-2-methylphenol NV BDL BDL BDL BDL 4-Bromophenyl phenyl ether NV BDL BDL BDL BDL 4-Chitoro-3-methylphenol 240 BDL BDL BDL BDL 4-Chitoro-aniline 220 BDL BDL BDL BDL 4-Altroaniline NV BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL BDL A-cenaphtylene 41000 BDL BDL BDL BDL Acetophenone NV BDL BDL BDL BDL Benzolaphthene 50000 830 J 2300 J 2800 J Artrazine NV BDL BDL BDL BDL Benzolaphthene 1100 2700 J 4600 J 4200 J	2-Nitroaniline	430	BDL	BDL	BDL
3-Nironaline 500 BDL BDL BDL BDL 4.6-Dinitro-2-methylphenol NV BDL BDL BDL BDL 4-Romophenyl phenyl ether NV BDL BDL BDL BDL 4-Chioroa-methylphenol 240 BDL BDL BDL BDL 4-Chioroanline 220 BDL BDL BDL BDL 4-Mitrophenol 900 BDL BDL BDL BDL 4-Nitroniline NV BDL BDL BDL BDL Acenaphthene 50000 260 J 1200 J 1700 J Acenaphthylene 41000 BDL BDL BDL BDL Anthracene 50000 830 J 2300 J 2800 J 2800 J Benzoldphylorenthene 1100 2700 J BDL BDL BDL Benzoldphyloranthene 1100 2700 J BDL 5100 J Benzoldphyloranthene 1100 J 800 J 1600 J 1600 J 1600 J					
46-Dinitro-2-methylphenol NV BDL BDL BDL BDL 4-Romophenyl phenyl ether NV BDL BDL BDL BDL 4-Chioro3-methylphenol 240 BDL BDL BDL BDL 4-Chiorophenyl phenyl ether NV BDL BDL BDL BDL 4-Methylphenol 900 BDL BDL BDL BDL 4-Nitropaniline NV BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL BDL Aceraphtylene 41000 BDL BDL BDL BDL Aceraphtylene NV BDL BDL BDL BDL Benzolaphylene NV BDL BDL BDL BDL Benzolaphylene 61 1700 J 3900 J 4800 J 4900 J Benzolaphylene 50000 1000 J BDL 5100 J Benzolaphylenehee 5000 J Benzolaphylenathee NV B					
4-Bromophenyl phenyl ether NV BDL BDL BDL BDL 4-Chioro-3-methylphenol 240 BDL BDL BDL BDL 4-Chioroshnelline 220 BDL BDL BDL BDL 4-Chioroshnelline NV BDL BDL BDL BDL 4-Methylphenol 900 BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL BDL Acenaphthylene 41000 BDL BDL BDL BDL Acetophenone NV BDL BDL BDL BDL Acetophenone NV BDL BDL BDL BDL Benza(alphyde NV BDL BDL BDL BDL Benza(alphyde NV BDL BDL BDL BDL Benza(alphyde 1100 2700 J B00 J 4200 J Benza(blylocranthene 1100 2700 J B0L BDL Bis					
4-Chioro-3-methylphenol 240 BDL BDL BDL BDL 4-Chiorophenyl phenyl ether NV BDL BDL BDL BDL 4-Chiorophenyl phenyl ether NV BDL BDL BDL BDL 4-Mitroanline NV BDL BDL BDL BDL 4-Nitroanline NV BDL BDL BDL BDL 4-Nitroanline 50000 260 J 1200 J 1700 J Acenaphtylene 41000 BDL BDL BDL BDL Anthracene 50000 830 J 2300 J 2800 J Artazine NV BDL BDL BDL BDL Benzo(a)anthracene 224 2100 J 4600 J 4900 J Benzo(a)apyrene 61 1700 J 3900 J 4200 J Benzo(a)prene 50000 1000 J BDL 2800 J Benzo(a)prene 50000 1000 J BDL BDL Benzo(k)fluoranthene 1100					
4-Chioropaniine 220 BDL BDL BDL BDL 4-Chiorophenyl phenyl ether NV BDL BDL BDL BDL 4-Mitrophenol 900 BDL BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL BDL Actaphthylene 41000 BDL BDL BDL Actaphthylene 41000 BDL BDL BDL BDL Actaphthylene 41000 BDL BDL BDL BDL BDL Actaphthylene 50000 830 J 2300 J 2800 J Actaphthylene 50000 B0L BDL					
4-Methylphenol 900 BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL Acenaphthene 50000 260 J 1200 J 1700 J Acenaphthylene 41000 BDL 440 J 610 J Acenaphthylene 1100 BDL BDL BDL BDL Artzine NV BDL BDL BDL BDL BDL Benzaldehyde NV BDL BDL BDL BDL BDL Benzo(a)pryrene 61 1700 J 3900 J 4200 J Benzo(a)pryren 61 1700 J B900 J 4200 J Benzo(a)pryrene 61 1700 J B900 J 4200 J Benzo(a)fluoranthene 1100 2700 J B0L 2800 J Benzo(a)fluoranthene 1100 2700 J B60J 1600 J 1600 J Big2-chloroethoxyl methane NV BDL BDL BDL BDL BDL Bis(2-chloroethoxyl methane NV BDL					
4-Nitroaniline NV BDL BDL BDL BDL 4-Nitrophenol 100 BDL BDL BDL BDL Accenaphthene 50000 260 J 1200 J 1700 J Acenaphthylene 41000 BDL 440 J 610 J Acenaphthylene NV BDL BDL BDL Anthracene 50000 830 J 2300 J 2800 J Anthracene NV BDL BDL BDL Benza(a)anthracene 224 2100 J 4600 J 4900 J Benza(a)anthracene 1100 2700 J BDL 2800 J Benza(h)iperviene 5100 J Benza(h)iperviene 1000 J BDL 2800 J Benza(h)iperviene 1000 J BDL BDL 2800 J 1600 J Benza(k)fluoranthene 1100 2700 J 1600 J 1600 J Bis/2-chloroethyl) methane NV BDL BDL BDL Bis/2-chloroethyliphthalate NV BDL					
4-Nitrophenol 100 BDL BDL BDL Acenaphtylene Acenaphtylene 41000 BDL 440 J 610 J Acenaphtylene NV BDL BDL BDL BDL Acetophenone NV BDL BDL BDL BDL Antracene 50000 830 J 2300 J 2800 J Atrazine NV BDL BDL BDL BDL Benza(a)pyrene 61 1700 J 3900 J 4200 J Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(a)pyrene 61 1700 J 800 J 4800 J Benzo(a)pyrene 61 1700 J 800 J 4800 J Benzo(a)pyrene 61 1700 J 800 J 1600 J Benzo(a)pyrene 61 1700 J 800 J 1600 J Benzo(a)pyrene 50000 100 J 80L 800 J Bis(2-chloroethoxy) methane NV BDL BDL BDL					
Acenaphthene 50000 260 J 1200 J 1700 J Acenaphthylene 41000 BDL 440 J 610 J Acetophenone NV BDL BDL BDL BDL Anthracene 50000 830 J 2300 J 2800 J Artazine NV BDL BDL BDL BDL Benzaldehyde NV BDL BDL BDL BDL Benzo(a)anthracene 224 2100 J 4600 J 4900 J Benzo(a)prene 61 1700 J 3900 J 4200 J Benzo(b)fluoranthene 11100 2700 J BDL 2800 J Benzo(c)(hluoranthene 1100 2700 J BDL BDL BDL Benzo(c)(hluoranthene NV BDL BDL BDL BDL BDL Benzo(c)(hluoranthene NV BDL B					
Acenaphthylene 41000 BDL 440 J 610 J Acetophenone NV BDL BDL BDL BDL Anthracene 50000 633 J 2300 J 2800 J Atrazine NV BDL BDL BDL BDL Benzolajanthracene 224 2100 J 4600 J 4900 J Benzolajanthracene 224 2100 J 4600 J 4900 J Benzolajanthracene 50000 1000 J BDL 5100 J Benzolajnthracene 50000 1000 J BDL 5000 J Benzolajniperviene 50000 1000 J BDL BDL Benzolajniperviene NV BDL BDL BDL Bis(2-chloroethoxy) methane NV BDL BDL BDL Bis(2-chloroethoxy) methane NV BDL BDL BDL Bis(2-chloroethoxy) phthalate NV BDL BDL BDL Bis(2-chloroethoxy) phthalate NV BDL BDL BDL <td></td> <td></td> <td></td> <td></td> <td></td>					
Acetophenone NV BDL BDL BDL BDL Antrazene 50000 830 J 2300 J 2800 J Artazine NV BDL BDL BDL BDL Benzaldehyde NV BDL BDL BDL BDL Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(a)pyrene 61 1700 J BDL 2800 J Benzo(b)fuoranthene 1100 2700 J BDL 2800 J Benzo(b)fuoranthene 1100 2700 J BDL 2800 J Benzo(b)fuoranthene 1100 2700 J BDL BDL 2800 J Bis(2-chloroethyr) methane NV BDL BDL BDL BDL BDL BDL Bis(2-chloroethyr) ether NV BDL					
Anthracene 50000 830 J 2300 J 2800 J Arrazine NV BDL BDL BDL BDL Benzaldehyde NV BDL BDL BDL BDL Benzo(a)anthracene 224 2100 J 4600 J 4900 J Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(b)fuoranthene 1100 2700 J BDL 5100 J Benzo(b)fuoranthene 1100 2700 J 1600 J 1600 J Benzo(b)fuoranthene 1100 2700 J 1600 J 1600 J Benzo(c)(fluoranthene 1100 2700 J 1600 J 1600 J Benzo(c)(fluoranthene NV BDL BDL BDL BDL Bis(2-chloroethoxy) methane NV BDL BDL BDL BDL BDL Bis(2-chloroethy) ether NV BDL BDL BDL BDL BDL Bis(2-chloroethy) ether NV BDL BDL BDL BDL BDL					
Benzaldehyde NV BDL BDL BDL BDL Benzo(a)anthracene 224 2100 J 4600 J 4600 J Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(b)fluoranthene 1100 2700 J BDL 2800 J Benzo(b)fluoranthene 1100 2700 J BDL 2800 J Benzo(b)fluoranthene 1100 2700 J 1600 J 1600 J Bis/2-chloroethoxy) methane NV BDL BDL BDL BDL Bis/2-chloroethyl) ether NV BDL BDL BDL BDL Bis/2-chloroethyl) pthalate NV BDL BDL BDL BDL Bis/2-chloroethyl phthalate 50000 BDL BDL BDL BDL Carbazole NV BDL BDL BDL BDL Dibenzofuran 6200 BDL BDL B0J JBOJ Dibenzofuran 6200 BDL BDL BDL BDL BDL					
Benzo(a)anthracene 224 2100 J 4600 J 4900 J Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(a)pyrene 50000 1000 J BDL 5100 J Benzo(k)fluoranthene 1100 2700 J BDL 2800 J Benzo(k)fluoranthene 1100 2700 J 1600 J 1600 J Biphenyl NV BDL BDL BDL BDL Bis(2-chloroethoxy) methane NV BDL BDL BDL BDL Bis(2-chloroethoxy) phthalate NV BDL BDL BDL BDL Bis(2-chloroethoxy) phthalate NV BDL BDL BDL BDL Carbazole NV BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL BDL BDL BDL BDL BDL DL DL DL<					
Benzo(a)pyrene 61 1700 J 3900 J 4200 J Benzo(a)pyrene 50000 1000 J BDL 5100 J Benzo(b)fluoranthene 1100 2700 J BDL 2800 J Benzo(k)fluoranthene 1100 2700 J 1600 J 1600 J Biphenyl NV BDL BDL BDL BDL Bis(2-chloroethoxy) methane NV BDL BDL BDL BDL Bis(2-chloroethyl) ether NV BDL BDL BDL BDL Bis(2-chloroethyl) phthalate NV BDL BDL BDL BDL Gardazole NV BDL BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL BDL </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Benzo(b)fluoranthene 1100 2700 J BDL 5100 J Benzo(ghi)perylene 50000 1000 J BDL 2800 J Benzo(k)fluoranthene 1100 2700 J 1600 J 1600 J Biphenyl NV BDL BDL BDL BDL Bis/2-chloroethxy) methane NV BDL BDL BDL BDL Bis/2-chloroethxyl) oththalate NV BDL BDL BDL BDL Bis/2-chloroethxyl) phthalate 50000 BDL BDL BDL BDL Carbazole NV BDL BDL BDL BDL Carbazole Chrysene 400 1900 J 4100 J 4100 J J BSQ Dibenzo(a,h)anthracene 14 360 J BDL BDL BSQ J Dimethyl phthalate 7100 BDL BDL BDL BDL BDL Din-noctyl phthalate 50000 320 J 1500 J 2200 J Hexachlorobanzene A100 BDL <td></td> <td></td> <td></td> <td></td> <td></td>					
Benzo(ghi)perylene 50000 1000 J BDL 2800 J Benzo(k)fluoranthene 1100 2700 J 1600 J 1600 J Biphenyl NV BDL BDL BDL Bis(2-chlorcethoxy) methane NV BDL BDL BDL Bis(2-chlorcethoxy) pethane NV BDL BDL BDL Bis(2-chlorcethoxy) phthalate NV BDL BDL BDL Bis(2-chlorcethoxy) phthalate NV BDL BDL BDL Caprolactam NV BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL 890 J Dibenzofuran 6200 BDL BDL BDL BDL Dien-octyl phthalate 7100 BDL BDL BDL BDL Din-noctyl phthalate 50000 320 J 1500 J 2200 J<					
Benzo(k)fluoranthene 1100 2700 J 1600 J 1600 J Biphenyl NV BDL BDL BDL BDL Bis(2-chloroethyl) ether NV BDL BDL BDL BDL Bis(2-chloroethyl) phthalate NV BDL BDL BDL BDL Bis(2-chloroethyl) phthalate NV BDL BDL BDL BDL Caprolactam NV BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL BDL Dibenzofuran 6200 BDL BDL BDL BDL Dientyl phthalate 7100 BDL BDL BDL BDL Din-butyl phthalate 50000 BDL BDL BDL BDL Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobutadiene					
Bis(2-chloroethoxy) methane NV BDL Carolactar NV BDL BDL BDL BDL BDL Carolactar NV BDL BDL BDL BDL Carolactar Alt00 J 4100 J 600 J 200 J <td></td> <td></td> <td></td> <td></td> <td></td>					
Bis(2-chloroethyl) ether NV BDL Carobactam NV BDL BDL BDL BDL BDL BDL Carobactam NV BDL BDL BDL BDL BDL BDL Carobactam NV S00 J 1300 J 970 J Carobactam NV 300 J 1300 J 970 J Carobactam NV 300 J 1300 J 970 J Carobactam S00 J S00	Biphenyl	NV	BDL	BDL	BDL
Bis(2-ethylhexyl) phthalate NV BDL BDL BDL BDL BDL BDL BDL BDL BDL Caprolactarm NV BDL BDL BDL BDL Caprolactarm NV BDL BDL BDL BDL Caprolactarm NV BDL BDL BDL BDL Caprolactarm Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J 4100 J 4100 J 100 J 4100 J 4100 J 100 J 4100 J 4100 J 4100 J 100 J 100 J 100 J 4100 J 4100 J 100 J					
Butyl benzyl phthalate 50000 BDL BDL BDL BDL Caprolactam NV BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL 890 J Dibenzofuran 6200 BDL BDL 1500 J Diethyl phthalate 7100 BDL BDL BDL Din-butyl phthalate 2000 BDL BDL BDL Di-n-butyl phthalate 50000 BDL BDL BDL Fluorente 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobenzene A10 BDL BDL BDL Hexachlorobenzene NV BDL BDL BDL Hexachlorobenzene NV BDL BDL BDL Hexachlorobenzene					
Caprolactam NV BDL BDL BDL BDL Carbazole NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL 890 J Dibenzofuran 6200 BDL BDL B0D BDL Dimethyl phthalate 7100 BDL BDL BDL BDL Dimethyl phthalate 2000 BDL BDL BDL BDL Di-n-butyl phthalate 50000 BDL BDL BDL BDL Fluorente 50000 320 J 1500 J 2200 J Hexachlorobutadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Hexachlorocytlopyrene 3200 970 J BDL BDL Hexachlorocytlopentadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL					
NV 300 J 1300 J 970 J Chrysene 400 1900 J 4100 J 4100 J Dibrozo(a,h)anthracene 14 360 J BDL 890 J Dibenzo(ran 6200 BDL BDL 1500 J Diethyl phthalate 7100 BDL BDL BDL Dimethyl phthalate 2000 BDL BDL BDL Din-octyl phthalate 50000 BDL BDL BDL Di-n-octyl phthalate 50000 320 J 1500 J 2200 J Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Isophorone 4400 BDL BDL BDL BDL Nitrobenzene 200 BDL					
Chrysene 400 1900 J 4100 J 4100 J Dibenzo(a,h)anthracene 14 360 J BDL 890 J Dibenzofuran 6200 BDL BDL 1500 J Dibethyl phthalate 7100 BDL BDL BDL Dimethyl phthalate 2000 BDL 7200 BDL Din-butyl phthalate 8100 BDL BDL BDL Di-n-octyl phthalate 50000 BDL BDL BDL Fluorene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobenzene NV BDL BDL BDL Hexachlorobenzene NV BDL BDL BDL Hexachlorobethane NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Nitrobenzene 4400 BDL BDL BDL No Nitrobenzene 200 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Dibenzofuran 6200 BDL BDL 1500 J Diethyl phthalate 7100 BDL BDL BDL BDL Dimethyl phthalate 2000 BDL 7200 BDL Din-butyl phthalate 8100 BDL BDL BDL BDL Din-octyl phthalate 50000 BDL BDL BDL BDL Fluoranthene 50000 320 J 1500 J 2200 J Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobenzene 410 BDL BDL BDL Hexachlorobenzene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Naph					
Diethyl phthalate 7100 BDL BDL BDL Dimethyl phthalate 2000 BDL 7200 BDL Din-ottyl phthalate 8100 BDL BDL BDL Din-ottyl phthalate 50000 BDL BDL BDL Fluoranthene 50000 4200 10000 9900 Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL BDL Neitroso-Din-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL <td></td> <td></td> <td></td> <td></td> <td></td>					
Dimethyl phthalate 2000 BDL 7200 BDL Di-n-butyl phthalate 8100 BDL BDL BDL BDL Di-n-octyl phthalate 50000 BDL BDL BDL BDL Fluoranthene 50000 4200 10000 9900 Fluorene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Isophorone 4400 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-Nitroso-Di-n-propy					
Di-n-buty phthalate 8100 BDL BDL BDL BDL Di-n-octyl phthalate 50000 BDL BDL BDL BDL Fluoranthene 50000 4200 10000 9900 Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Nv BDL BDL BDL BDL Naphthalene 13000 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-hitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylami					
Di-n-octyl phthalate 50000 BDL BDL BDL Fluoranthene 50000 4200 10000 9900 Fluoranthene 50000 320 J 1500 J 2200 J Fluoranthene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL Hexachlorochtane NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL </td <td>, ,</td> <td></td> <td></td> <td></td> <td></td>	, ,				
Fluoranthene 50000 4200 10000 9900 Fluorene 50000 320 J 1500 J 2200 J Hexachlorobenzene 410 BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL BDL Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Din-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenol 30 BDL BDL BDL					
Hexachlorobenzene 410 BDL BDL BDL BDL Hexachlorobutadiene NV BDL BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Hexachlorobutadiene NV BDL BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL BDL Hexachlorocyclopentadiene NV BDL BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Din-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Hexachlorocyclopentadiene NV BDL BDL BDL BDL Hexachloroethane NV BDL BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL BDL Nitrobenzene 200 BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenonthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Hexachloroethane NV BDL BDL BDL BDL Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL BDL Naphthalene 13000 BDL BDL BDL BDL Nitrobenzene 200 BDL BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenonthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Indeno(1,2,3-cd)pyrene 3200 970 J BDL 2500 J Isophorone 4400 BDL BDL BDL BDL Naphthalene 13000 BDL BDL BDL BDL Nitrobenzene 200 BDL BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Isophorone 4400 BDL BDL BDL Naphthalene 13000 BDL BDL 1800 J Nitrobenzene 200 BDL BDL BDL N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Naphthalene 13000 BDL BDL 1800 J Nitrobenzene 200 BDL BDL BDL Nvitroso-Din-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
N-Nitroso-Di-n-propylamine NV BDL BDL BDL N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
N-nitrosodiphenylamine NV BDL BDL BDL Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Pentachlorophenol 1000 BDL BDL BDL Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Phenanthrene 50000 3100 J 10000 10000 Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Phenol 30 BDL BDL BDL Pyrene 50000 BDL 8200 8000					
Pyrene 50000 BDL 8200 8000					
		500000	17040		

Notes

1) Exceeds Recommended Soil Cleanup Objective (TAGM 4046). Data Qualifiers: J - Estimated; D - Secondary Dilution; DJ - Secondary Dilution, Estimated Data Qualifiers: DE - Secondary Dilution, Exceeded Calibration Range Data Qualifiers: BJ - Analyte found in associated blank, Estimated; Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 4 Analytical Results - Metals in Soil Hazardous Waste Characteristics Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	B-22	COMP A	COMP B
Depth	Objective	24" - 48"	sub surf	sub surf
Collection Date	(mg/kg)	5/5/2006	5/4/2006	5/4/2006
Metals (mg/kg) Soil				
Arsenic - Total	7.5 or SB	BDL	8.6	41.6
Barium - Total	300 or SB	BDL	148	388
Cadmium - Total	1 or SB	BDL	3.4	6.9
Chromium - Total	10 or SB	BDL	26.0	1090
Lead - Total	SB: 200-500 urban	BDL	423	1200
Mercury - Total	0.1	BDL	1.3	1.3
Selenium - Total	2	BDL	BDL	13.2
Silver - Total	SB	BDL	0.62	2.3
	Haz Characteristic	B-22	COMP A	COMP B
	Level	24" - 48"	sub surf	sub surf
Metals (mg/L) Soil TCLP	(mg/L)	5/5/2006	5/4/2006	5/4/2006
Arsenic - Total	5	BDL	BDL	BDL
Barium - Total	100	830 J	BDL	BDL
Cadmium - Total	1	BDL	0.042	0.11
Chromium - Total	5	BDL	BDL	BDL
Lead - Total	5	BDL	0.0074	0.011
Mercury - Total	0.2	BDL	BDL	BDL
Selenium - Total	1	BDL	0.72	0.85
Silver - Total	5	BDL	BDL	BDL
Haz Waste Characteristics				
Flashpoint °F			>200	>200
Corrosivity (pH)	2> pH >12		7.95	9.05

Analyte	Wipe 1	Wipe 2	Wipe 3	Wipe 4
Collection Date	5/5/2006	5/5/2006	5/5/2006	5/5/2006
PCBs Wipe (ug/100 cm sq)				
Aroclor 1016	BDL	BDL	BDL	BDL
Aroclor 1221	BDL	BDL	BDL	BDL
Aroclor 1232	BDL	BDL	BDL	BDL
Aroclor 1242	BDL	BDL	BDL	BDL
Aroclor 1248	BDL	BDL	BDL	BDL
Aroclor 1254	480	300	1400	630
Aroclor 1260	400	380	1900	BDL
Total PCBs	880	680	3300	630

T

Metals (mg/kg) soil	Cleanup	Surf Smpl
Analyte	Objective	North Fence
	(mg/kg)	at Gate (12)
Collection Date		5/31/2006
Aluminum - Total	SB: 33,000	13600
Antimony - Total	SB	BDL
Arsenic - Total	7.5 or SB	8
Barium - Total	300 or SB	118
Beryllium - Total	0.16(HEAST) or SB	1.1
Cadmium - Total	1 or SB	2.6
Calcium - Total	SB: 130-35,000	81700
Chromium - Total	10 or SB	97.8
Cobalt - Total	30 or SB	20.4
Copper - Total	25 or SB	1820
Iron - Total	2000 or SB	36300
Lead - Total	SB: 200-500 urban	309
Magnesium - Total	SB: 100-5000	14900
Manganese - Total	SB: 50-5000	1000
Mercury - Total	0.1	0.92
Nickel - Total	13 or SB	338
Potassium - Total	SB: 8500-43000	2300
Selenium - Total	2 or SB	BDL
Silver - Total	SB	1.4
Sodium - Total	SB: 6000-8000	468
Thallium - Total	SB	BDL
Vanadium - Total	150 or SB	29.1
Zinc - Total	20 or SB	1100

Notes

 Notes
 1) Exceeds Recommended Soil Cleanup Objective TAGM 4046).

 2) Exceeds Listed Hazardous Waste Limit

 Data Qualifiers: J - Estimated; D - Secondary Dilution; DJ - Secondary Dilution, Estimated

 Data Qualifiers: BJ - Analyte found in associated blank, Estimated;

 Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 5 Analytical Results: SVOCs and PCBs in Water Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	MW-B5	MW-B19	Collection	OWS MH	Tank
	Objective			Sump (3)	(6)	Contain (1)
Collection Date	(ug/L)	5/17/2006	5/16/2006	5/2/2006	5/2/2006	5/2/2006
PCBs (ug/L) liquid						
Aroclor 1016 Aroclor 1221		BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL
Aroclor 1221 Aroclor 1232		BDL	BDL	BDL	BDL	BDL
Aroclor 1232		BDL	BDL	BDL	BDL	BDL
Aroclor 1248		BDL	BDL	5.9	4.2	BDL
Aroclor 1254		BDL	76	BDL	BDL	BDL
Aroclor 1260		28	54	82	14	0.38 J
PCBs total	0.09	28	130	87.9	18.2	0.38J
SVOCs (ug/L) 1,2,4-Trichlorobenzene	E		BDL	1 1		1
1,2-Dichlorobenzene	5		BDL	1		
1,3-Dichlorobenzene	3		BDL			
1,4-Dichlorobenzene	3		BDL			
2,2'-Oxybis(1-Chloropropane)	NV		BDL			
2,4,5-Trichlorophenol	1		BDL			
2,4,6-Trichlorophenol	1		BDL			
2,4-Dichlorophenol	1		BDL			
2,4-Dimethylphenol 2,4-Dinitrophenol	1		BDL BDL			
2,4-Dinitrophenol 2,4-Dinitrotoluene	5		BDL			
2,6-Dinitrotoluene	5	ł	BDL	† †		1
2-Chloronaphthalene	10		BDL			
2-Chlorophenol	NV		BDL			
2-Methylnaphthalene	NV		BDL			
2-Methylphenol	NV		50			
2-Nitroaniline	5		BDL	<u> </u>		
2-Nitrophenol 3,3'-Dichlorobenzidine	1 5		BDL BDL			
3-Nitroaniline	5		BDL			
4,6-Dinitro-2-methylphenol	NV		BDL	1		
4-Bromophenyl phenyl ether	NV		BDL			
4-Chloro-3-methylphenol	NV		BDL			
4-Chloroaniline	5		BDL			
4-Chlorophenyl phenyl ether	NV		BDL			
4-Methylphenol 4-Nitroaniline	NV 5		180 BDL			
4-Nitrophenol	1		BDL			
Acenaphthene	20		BDL			
Acenaphthylene	NV		BDL			
Anthracene	50		BDL			
Benzo(a)anthracene	0.002		BDL			
Benzo(a)pyrene	ND		BDL			
Benzo(b)fluoranthene	0.002		BDL			
Benzo(ghi)perylene Benzo(k)fluoranthene	NV 0.002		BDL BDL			
Bis(2-chloroethoxy) methane	NV		BDL			
Bis(2-chloroethyl) ether	1		BDL			
Bis(2-ethylhexyl) phthalate	5		BDL			
Butyl benzyl phthalate	50		BDL			
Carbazole	NV		BDL			
Chrysene	0.002	Į	BDL			
Dibenzo(a,h)anthracene Dibenzofuran	NV NV		53 BDL			
Diethyl phthalate	50		BDL			
Dimethyl phthalate	50	Ì	BDL	† †		1
Di-n-butyl phthalate	NV		BDL			
Di-n-octyl phthalate	50		BDL			
Fluoranthene	50		BDL			
Fluorene	50		BDL			
Hexachlorobenzene	0.04		BDL BDL	<u> </u>		
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5		BDL			
Hexachloroethane	5		BDL			
Indeno(1,2,3-cd)pyrene	0.002	1	BDL			
Isophorone	50		BDL			
Naphthalene	10		130			
Nitrobenzene	0.4		BDL			
N-Nitroso-Di-n-propylamine	NV		BDL			
N-nitrosodiphenylamine	50		BDL	<u> </u>		
Pentachlorophenol Phenanthrene	1 50		BDL BDL			
Phenol	1		BDL			
Pyrene	50	ł	BDL	† †		1
Total	500000	1	413			

Notes

1) Exceeds Recommended Groundwater Standards/Guidelines (DOW Tech Guide 2.1.3). Data Qualifiers: J - Estimated; D - Secondary Dilution; DJ - Secondary Dilution, Estimated Data Qualifiers: DE - Secondary Dilution, Exceeded Calibration Range Data Qualifiers: BJ - Analyte found in associated blank, Estimated; Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

Table 6 Analytical Results: VOCs and Metals in Water Bengart & Memel Site 1091 Clinton St. Buffalo, NY : NYSDEC Site No. 915115

Analyte	Cleanup	MW-B5	MW-B19	MW-B19 R	Trip
Collection Date	Objective (ua/L)	5/17/2006	5/16/2006	5/17/2006	Blank 5/17/2006
VOCs (ug/L)	(ug/L)	5/17/2006	5/16/2006	5/17/2006	5/17/2006
1,1,1-Trichloroethane	5	BDL	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	5	BDL	BDL	BDL	BDL
1,1,2-Trichloro-1,2,2-trifluoroethane	5	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	1	BDL	BDL	BDL	BDL
1,1-Dichloroethane	5	BDL	BDL	BDL	BDL
1,1-Dichloroethene	5	BDL	BDL	BDL	BDL
1,2,4-Trichlorobenzene	5	BDL	BDL	BDL	BDL
1,2-Dibromo-3-chloropropane	0.04	BDL	BDL	BDL	BDL
1,2-Dibromoethane 1,2-Dichlorobenzene	5	BDL BDL	BDL BDL	BDL BDL	BDL BDL
1,2-Dichloroethane	0.6	BDL	BDL	BDL	BDL
1,2-Dichloropropane	1	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	3	4.6 J	2	BDL	BDL
1.4-Dichlorobenzene	3	7.4	6.1	2.5J	BDL
2-Butanone	NV	BDL	3.2 J	BDL	BDL
2-Hexanone	50	BDL	BDL	BDL	BDL
4-Methyl-2-pentanone	NV	BDL	BDL	BDL	BDL
Acetone	50	30	16	25	BDL
Benzene	1	BDL	5.4	3.0 J	BDL
Bromodichloromethane	50	BDL	BDL	BDL	BDL
Bromoform	50	BDL	BDL	BDL	BDL
Bromomethane	5	BDL	BDL	BDL	BDL
Carbon Disulfide	NV	BDL	BDL	BDL	BDL
Carbon Tetrachloride	5	BDL	BDL	BDL	BDL
Chlorobenzene	5	BDL	7.5	3.3 J	BDL
Chloroethane	5	BDL	BDL	BDL	BDL
Chloroform	7	BDL	BDL	BDL	BDL
Chloromethane	NV	BDL	BDL	BDL	BDL
cis-1,2-Dichloroethene	5	BDL	BDL	BDL	BDL
cis-1,3-Dichloropropene	0.4 NV	BDL	BDL	BDL	BDL
Cyclohexane Dibromochloromethane	50	BDL BDL	BDL BDL	BDL BDL	BDL BDL
Dibromocnioromethane	50	BDL	BDL	BDL	BDL
Ethylbenzene	5	BDL	BDL	BDL	BDL
Isopropylbenzene	5	BDL	BDL	BDL	BDL
Methyl acetate	NV	BDL	BDL	BDL	BDL
Methylcyclohexane	NV	BDL	BDL	BDL	BDL
Methylene chloride	5	BDL	BDL	BDL	BDL
Methyl-t-Butyl Ether (MTBE)	NV	BDL	BDL	BDL	BDL
Styrene	5	BDL	BDL	BDL	BDL
Tetrachloroethene	5	BDL	BDL	BDL	BDL
Toluene	5	BDL	2.2	BDL	BDL
Total Xylenes	5	BDL	3.2	BDL	BDL
trans-1,2-Dichloroethene	5	BDL	BDL	BDL	BDL
trans-1,3-Dichloropropene	0.4	BDL	BDL	BDL	BDL
Trichloroethene	5	BDL	BDL	BDL	BDL
Trichlorofluoromethane	5	BDL	BDL	BDL	BDL
Vinyl chloride	2	BDL	BDL	BDL	BDL
Metals (mg/L)	(ug/L)	MW-B5	MW-B19	MW-B19 R	
Aluminum - Total	NV 2		13.7 BDL		
Antimony - Total Arsenic - Total	3 25	ł	0.016		
Arsenic - Total Barium - Total	1000	ł	0.016		
Barlum - Total Beryllium - Total	3		BDL		
Cadmium - Total	5	<u> </u>	BDL		
Calcium - Total	NV	1	124		
Chromium - Total	50	1	0.029		
Cobalt - Total	NV		0.0096	i i	
Copper - Total	200	1	0.069		
Iron - Total	300	1	37.9	i i	
Lead - Total	25		0.14		
Magnesium - Total	35000		36.7		
Manganese - Total	300		1.2		
Mercury - Total	0.7		BDL		
Nickel - Total	100		0.03		
Potassium - Total	NV	ļ	31.3		
Selenium - Total	10	l	BDL		
Silver - Total	50		BDL		
	20000	1	71.1		
			B		
Thallium - Total	0.5		BDL		
Sodium - Total Thallium - Total Vanadium - Total Zinc - Total			BDL 0.032 0.23		

Notes

1) Exceeds Recommended Groundwater Standards/Guidelines (DOW Tech Guide 2.1.3).
 Data Qualifiers: J - Estimated; D - Secondary Dilution; DJ - Secondary Dilution, Estimated
 Data Qualifiers: DE - Secondary Dilution, Exceeded Calibration Range
 Acronyms: BDL - Below Dection Limit; ND - Non-detecatble value; NV - No Value provided

APPENDICES

This page is intentionally blank.

APPENDIX A BORING AND MONITORING WELL LOGS

This page is intentionally blank.

Site No Location	o.: 9 on:	1511 See	15 Site	Pla	n	Memel Site Hole Designation: B-I Date/Time Completed: 5/4 Drilling Method: Vibra Core	/06 1025 🥳	ANN NOIL
Depth		S	amp	le		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U M B E R	N V A U E	P I D	% R E C O V			Detail
1		1		ø		topsoil-sandy, w/metalshavings		
2						-14" Slag- It.grey incolor -24"	Iab sample	
3						clay-stiff, damp 1t. brown in color		·
4					80	-40" 4		
5					· · · · ·			
6								
7								
8						·		
9							 	
10								
11								
12								
13	_							

Site No Location	o.: 9 on:	91511 See	l 5 Site	Pla	n	Ieme! Site Hole Designation: B-2 Date/Time Completed: 5/4/0 Drilling Method: Vibra Core	6 0935	THUON NEW TO ST
Depth		S	amp	le		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U B E R	N V A L U E	P J D PPn	% R C O V			Details
		1		20		6asphalt		
1						6 asphalt 8 crushed stone gravel		
						fill-soil/gravel/orgunic matte	~	
2						fill-dark brown/black sand	lab	
				_		21 fill - dark brown/black sand 27 gravel, glass fragments 28 - wood / peat lense interface clay-stiff, It. brown	sample	
3						clay-stiff, It. brown		
					-	ľ		
4						52		
5				-	-			<u> </u>
6]			
6	-							
7					_			
							<u>. </u>	-
8	-							
9								
							· · · · · · · · · · · · · · · · · · ·	
10								
_		\square						
11		_		\square				
	-+							
12		_	-					
	-+							
13					·			

.

Site N Locati	o.: 9 on:	9151) See	15 Site	e Pla	n	emel Site Hole Designation: Date/Time Completed: Drilling Method: Vibra Co	B-3 5/4/06 0900	Man Noust
Depth		S	amp	ole		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U M B E R	N V A U E	P J D	% R E C O V			Detail
		1	-	38		5" asphalt		
1						5" asphalt 5" crushed stone gravel		
2				73		fill-brown soil w/ gravel	at interface	
3						9" clay-stiff, It. brown w/ s" black staining at interfa	-seil	
						0	~	
4					80			
5		_				·		
6								
	\neg							·····
7	_							
								<u></u> .
8								
	_	_						
9					_			
10								
11								
12			_					
3		T						

.

Projec Site N Locati NYSI	lo.: 9 ion:	9151 See	15 e Sit	e Pla	n		Stratigraphic and Instrumentation Log el Site Hole Designation: B-4 Date/Time Completed: 5/4/c Drilling Method: Vibra Core	06 0915 ¹	Afan t
Depth			Samp				Stratigraphic Description	Remarks	v
(ft.) BGS	C O U N T	N U M B E R	U	P I D	% R E C O V				De
			E	154	-	5"	asphalt		
1						Ŧ	asphalt crushed stone gravel fill-brown soil W/gravel		
				<u> </u>	 	17	fill-brown soil W/gravel		
2				65	 	26	Fill - black sand w/ gravel	lab sample	
							fill - black sand w/ gravel clay - stift, It. brown w/ black staining at interface	lab sample damp	
3							Black staining at interface		
4	-				100	48			·
5									
6						•			
7									
		- +				<u> </u>			
8									
			_						
9									
10	-	- +	-						
		- -	-	\dashv					
11								-	<u> </u>
12	_ _ -				_				
13		_							

ı

Site N Locati	o.: 9 .on:	9151 See	15 Site	e Pla	n	Memel Site Hole Designation: B -S Date/Time Completed: 5/4 Drilling Method: Vibra Core		THE REAL PROPERTY OF THE REAL
Depth		S	amp	le		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U B E R	N V A U E	P I D	% R E C O V		2.72' Ags	Details
1				10		5" asphalt g' crushed stone gravel	bentonite plug	
2				8.1		fill-mixed soil w/ rounded stone 21" and crushed stone fill-black sand/slag	Tabsample	
3					81	clay-moist, stift, It. brown	-	
4	_							
5						56" Clay - moist, brown/grey cky - slamp, stiff, It. brown	labsample	
6							1"\$ sch 40 PVC W/ _	-
7							5' Length	
8					ko	96" V	m 7.47 <u> </u> Bas	et.
9								
10								
11			-+-					
12								
13		-	+					

.

Projec Site N Locati NYSD	o.: ! on:	9151 Se	.15 e Sit	e Pla	n		Hole Designation: B-6 Date/Time Completed: 5/4/ Drilling Method: Vibra Core	06 1 135
Depth (ft.) BGS	C O U N T		Sam N V A L U E	P I D	% R E C O V		Stratigraphic Description	Remarks
				0		<u>z</u> "	asphalt	
1						15	fill-mix brown soi / crushed store	
2				-			fill-mix brown soi / crushed store fill-grey slag/gravel	
3						28" 30"		moist bb sample damp
4		1			94	4s"	clay-stiff, It brown	damp
					•••	-		
5					-			·
6								
								·····
7						i		
8					_			
9								
10	- +		- +					
11						<u>-</u>		
		- -						
12	+	-	_	_	-+			
13	-							

ı

Projec Site N Locati NYSE	o.: 9 on:	9151 See	15 Site	e Pla	n		Hole Designation: B-7 Date/Time Completed: 5/4/ Drilling Method: Vibra Core	06 1100	MAN NOLA
Depth (ft.) BGS	C O U N T	N U M B E R	N N A L U E	P I D	% R E C V		Stratigraphic Description	Remarks	Well Detail
1				6		4 8	asphalt fill- fill-		
2]	fill - gravel/sand/soil, brown fill - black sand (gravel, soil		
3						<u>32</u> " 37"	fill - grey slag/sand/soil fill - black slag/sand	moist lab sample	
4		1			100	48	clay-stiff, It grey w/ black interface		
5									
6									
7									
8						<u> </u>			
9									
10									
11									
12									
13									

Site N Locati	o.: 9 on:	151 See	15 e Site	e Pla	n	Stratigraphic and Instrumentation Log Temel Site Hole Designation: B-8 Date/Time Completed: 5/4/ Drilling Method: Vibra Core D. Szymanski	8 1035	and NON NEW
Depth			lamp		пуқ	Stratigraphic Description		117 11
(ft.) BGS	C O U N T	N U B E R	N V A	Р 1 D Ррм	% R E C O V	Shutgraphic Description	Remarks	Well Details
				0		4" asphalt		
1						fill-gravel, back, soil		
						· · · ·		
2		 				" fill - sand w/ trace gravel		
						21" 4" fill - sand w/ trace gravel 23" fill - silty sand, brown / grey		
3						<u>s</u> <u><u>s</u> <u>s</u> <u>s</u> <u>s</u> <u>s</u> <u>s</u> <u>s</u> <u>s</u> <u>s</u></u>		
4		1			64			
	-+					55" fill- silty sand, brown/grey 58" fill- sand, gravel, black, moist.	petrol odor	
5				_				
6						clay -stift, It. brown, dum	A L	
					-			
7	-+	-	_					
8		2	-		100	16" V		
9								
10	_							<u> </u>
	_							
11		_						
		_		_				
12					_			
			-	_	_			<u> </u>
13								

Site N Locati	o.: 9 on:	9151 See	15 e Site	e Pla	n	Memel Site Hole Designation: B-9 Date/Time Completed: 5/4 / Drilling Method: Vibra Core D. Szymanski	06 1310	Man
Depth			Samp			Stratigraphic Description	Remarks	
(ft.) BGS	C O U N T	N U B E R	N V A L U E	р Г D Р/-	% R E C O V			D
						<u>s</u> " asphalt		
1						11" crushed stone gravel	lab sample	
						fill-crushed stone /soil		
2				4.3		21 fill-black sand, slag moist	lab sample	
3						<u>II</u> " crushed stone gravel <u>All-crushed stone (soil</u> <u>21" fill-black sand, slag moist</u> <u>clay-stiff med grey w/</u> <u>black stuining at interface</u>	lab sample Tab sample damp	
						ouce summy al intrace		
4		I			92	14		
								···_
5								<u>-</u>
					_			
6								
			_					
7	_							
			-					
8								
9	-+	+	- +					
			+					
10	-+							
11		-						
12								<u> </u>
13								

Projec Site N	t Nai o.: 9	me: 9151	Ber 15	ıgar	t &]	Stratigraphic and Instrumentation Lo femel Site Hole Designation: B-(Date/Time Completed: S	C III		
Locati NYSD						Drilling Method: Vibra Core D. Szymanski	4/06 1150	AN NOLLY	
Depth	T		Samp			Stratigraphic Description	Remarks	Well	
(ft.) BGS	C O U N T	N U M B E R	N V A L U E	P I D	% R E C O V			Detail	
1						s" asphalt <u>B</u> " crushed stone gravel	slight petra		
2						fill, slag, gravel, soil, wood plastic	odor-bo sample	<	
3							potential rr siding		
4					54				
5						<u>e" fill - clag, grave</u> , wood <u>clay - It. brown</u> , sfiff black staining at interface	clay laye	wer	
6						black staining at interface	clay layer likely shall than observ in core	red	
7						÷			
8		2			100	18			
9									
10				-+		Obstruction in Initial coring (n required advancing a new cove at an offset location	18")		
11		-				cove at an offset location			
12	_								
13		-		+					

Projec Site N Locati NYSD	o.: 9 on:	9151 See	15 e Site	e Pla	n		Hole Designation: B-12 Date/Time Completed: 5/4/ Drilling Method: Vibra Core	06 1415	A Ma
Depth			Samp	_	<u> </u>		Stratigraphic Description	Remarks	
(ft.) BGS	C O U N T	N U B E R	N V A L U E	Р 1 D РР	% R E C O V			i i i i i i i i i i i i i i i i i i i	
						<u>4</u> "	asphalt crushed stone gravel 211- It. grey skig All - black sand, slag		
1						8	crushed stone gravel		
						16	m grey stry		
2				2.7			fill - black sand, slag	10 h same	
						29		moistador	
3							lay - stiff, It brown		
4		1			9 4	<u>45</u> "			··
				-					
5									
				-			· · · · · · · · · · · · · · · · · · ·	· · · ·	
6								-	
	\neg			_					
7	- +								
				-					
8									
	-+	-+			-				
9		-+	-+		-			ļ	
		-+	-	-	-				
10	-+	+		-				-	
	-		- -	+	- †				
11		_							
12	_	+							
12				_					
	+	_ _							
13									

Projec Site N Locati	o.: !	9151	15			Stratigraphic and Instrumentation Log Hole Designation: B-13 Date/Time Completed: 5/4	5 /06 1335	NENT OF ENVIR
						Drilling Method: Vibra Core D. Szymanski		Man NOLLA
Depth			Samp			Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U M B E R	N V A U E	P J D	% R E C O V			Details
1						5" asphalt - crushed stone gravel 7"9"-fill- clay, it brown		
			<u> </u>		+	- torown		<u> </u>
2		-	<u> </u>			" fill - gravel/soit it brown/g	rey	
<u> </u>						5" fill- black slag, moist	odor	
3						" fill - gravel/soil it brown/gr " fill - black slag, moist " fill - black silty sand, moist " fill - sitty clay, grey/brown	odor	
						I fill - sitty clay, grey/brown	-	
4		1			85		lab sample	
				-		<u>55" ¥</u>		
5						clay - stift, It, brown		
						1		
6								
			_	-				
7			_					
			_			·		
8	<u> </u>	2			00			
	_		_	_				_
9			_					
			_		_			
10				-+	-+			<u> </u>
	_							
11			_					
	-+	_		_	-			
12			_		-			
3	+		_					

.

Site N Locati	o.: 9 on:	9151 See	15 e Site	e Pla	an	Stratigraphic and Instrumentati emel Site Hole Designation: Date/Time Compl Drilling Method: Vi D. Szymanski	Hole Designation: B-14 Date/Time Completed: 5/4/06 1430 Drilling Method: Vibra Core					
Depth (ft.) BGS	C O U	N U M	Samp N V	P I D	% R E	Stratigraphic Description	Remarks	Well Details				
	N T	B E R	A L U E		C O V	- " acabelt						
1						5" asphalt 4" crushed stone gravel fill - black sand /slag moist						
2						till - black sand /slag moist	r odor					
3							labsample					
4		1			100	obstruction - refusal						
5	_											
6			-									
7	_		_		-							
8			-+									
9	-	-										
10		+	+									
11			-+-		— _							
12												
13												

Projec Site N Locati NYSD	o.: 9 on:	9151 See	15 e Site	e Pla	an		el Site Hole Designation: B-JS Date/Time Completed: S/A Drilling Method: Vibra Core	4/06 1505				
Depth		S	Samp	ole			Stratigraphic Description	Remarks	Well			
(ft.) BGS	C O U N T	N U M B E R	N V A L U E	P 1 D	% R E C O V				Detail			
1						4" 4"	asphalt crushed stone gravel					
1					<u> </u>	╞╾┹╸						
2						- 	crushed stone gravel fill-grey/black sand, slag	baor moist l <u>ab sampli</u>	0			
3												
		1			100	39'	•	······				
4		_					obstruction - refusal wood chips, possible rn tie					
5												
6	_	_										
7												
8												
9												
- +		-	-									
10		-+-										
1												
2	_			_								
3												

,

Site N Locati	o.: 9 on:	9151 See	15 e Site	e Pla	เท	Iemel Site Hole Designation: B-I Date/Time Completed: 5/ Drilling Method: Vibra Core	6 14/06 1450	OT MAN NOTAT
Depth		S	Samp	le		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U M B E R	N A L U E	P I D	% R E C O V			Detail
						3° asphalt B" croshed stone gravel		
1	 					fill- Harey slag		
2						21" fill-black sand, brick		
						The brick strid, brick		<u> </u>
3						36	lab sample	
		1			100	42" clay-med grey, damp obstruction - refusal		
4						obstruction - refusal		
5			_					
6								
7	_							
	_							
8		-+	_	-				
9				-				
			_					
10								
11		_	+		-			
2	_		_		_			
3	_	- -		+				

.

Site No Location	o.: 9 on:	1511 See	5 Site	Plai	n	Stratigraphic and Instrumentation Lo emel Site Hole Designation: B- Date/Time Completed: 5 Drilling Method: Vibra Com D. Szymanski	17	Man NOLALA
Depth		S	ampl	e		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U B R R	N V A U E	P I D	% R E C O V			Details
1						g" asphalt g" crushed stone gravel fill- dark grey/black star W/ gravel and glass wood	g-	
2						w/ gravel and glass wood	moist	
3		ł			74	38	lab sample	
4								
5						57" fill- black sand/slag	wet	
6						clay-stiff, It brown		
7						84		
8		2				96		
9								
10								
11								
12								
13								

						C - Region 9 - Division of Environmental R Stratigraphic and Instrumentation Log		ENT OF ENUR
Site N Locati	o.: 9 on:	0151 See	15 Site	e Pla	.n	Iemel SiteHole Designation:B - IDate/Time Completed:5/2Drilling Method:Vibra CoreD. Szymanski	8	THUN NEW
Depth		S	Samp	le		Stratigraphic Description	Remarks	Well
(ft.) BGS	C O U N T	N U B E R	N V A L U E	P I D	% R C O V			Details
						4" asphalt = coushed stone gravel fill - med to it grey slag and gravel 23"		
1						fill - med to it grey slag and	lab sample	
						gravel		
2								
					60	29" clay - 15tiff, It brown		
3								
4		1						
								·····
5								
6								- ··.
		-						<u> </u>
7								·
8								
9								
		-						
10	+	- -						
	_†	+	+					
11								
		+					+	
12								
					- -			
13		_ -						
I .						ons May Change: Refer to Current Elevation Table		

,

Site N Locat	lo.: 9 ion :	9151 See	15 e Site	Pla	n	Memel Site Hole Designation: B -19 Date/Time Completed: 5 /4 Drilling Method: Vibra Core	1 7/06 163	A NON NEW COL
Depth		S	Sampl	le		Stratigraphic Description	Remarks	Wel
(ft.) BGS	C O U N T	N U M B E R	N V A L U E	P I D	% R C O V		3,08 Ags	Detai
1						5° asphalt B" crushed stone gravel	odor asphalt decompos	bentoneth pluc
2						fill - black sund (slag with mood and glass fragmen	moist lab	*a -
3							sumple odor	- saul
4		1			92	40" 44" fill- sand (black)	wet	
5						55" fill - black sand clay - stiff, med grey	wet 1"¢ skh 4	
6						It. brown	PVC W/ 0,20 slot 5' hength	
7	_					bottom	6.97'	
8		2		8	3	<u>88"</u>	13GS Silica Sand	
9								
10								
11		-						
12								
13		_		-	-			

Projec Site No Locatio NYSD	o.: 9 on:	151: See	15 Site	Pla	n			Date/Time	Hole Designation: B-20 Date/Time Completed: 5/4/06 1555 Drilling Method: Vibra Core						
Depth (ft.) BGS	C O U N T	N U M B R	amp N V A L U	le P J D	% R E C O V		Stra	tigraphic Descriptio	n	Re	marks	Well Detail			
1			E			3"	asphalt crushed fill-me	stone grave dgrey slav	21	<u>↓</u>					
2						<u>18</u> "	fill - bla	ick sand	₹	lab:	sample				
3						32" 35	clay lense	e fill - mea	lgrey						
4					100		obstruction	<u>e gravel/sc</u> n-refusal	debis (rrtie)	moi	<u>s</u> † 				
5															
6											 				
7															
8									· .						
9															
.0															
1										· · · · · · · · · · · · · · · · · · ·					
2															
3	+		+-		-										

•

Project Site N Locat NYSI	lo.: 9 ion:	9151 See	15 e Site	e Pla	n		l Site Hole Desig Date/Time Drilling Meth zymanski	gnation: B-21 Completed: 5/5/06 DOS od: Split Spoon via Tripod & Cathea
Depth			Samp				Stratigraphic Description	on Remarks
(ft.) BGS	C O U N T	N U M B E R	N V A L U E	ր 1 D	% R E C O V			
				120		۲.	concrete	
1				244	50	12	concrete fill-cinder/slag	lah suns
	ļ							lab sump odor
2		1					·	
				418		<u>31</u> "	fill - cinder/slag clay-stiff, 1+ brow	odor
3					•	39"	clay - stiff , 1+ brow	n
	<u> </u>				10			
4	 	2			62		······································	
5	<u> </u>							
. <u> </u>							······································	
6								
- <u>-</u>								
7								
							· · · · · · · · · · · · · · · · · · ·	
8								
	_						<u></u>	
9						-		
10					_		······	
	-		-					
11				- +				
12	_				_			
12					-			
13	-+							

Site N Locati	o.: 9 on:	9151 See	15 e Sit	e Pla	n	Date/Time Completed: 5/	Hole Designation: B-22 Date/Time Completed: 5/5/06 0915 Drilling Method: Split Spoon via Tripod & Cathead					
Depth		S	Samp	ole		Stratigraphic Description	Remarks					
(ft.) BGS	C บ ม พ T	N U M B E R	N V A L U E	Р 1 D				I				
				961	•	5" concrete						
1					50	6" concrete fill- slag/cinder (murgiùal, recovery)	odoc					
				30		recovery						
2		ŀ				<u>4</u>	lab sample					
						JII - slag/cinder	odor lab sample odor	-				
3						6						
					75	sclay-stiff, It. brown						
_4		2										
5												
6					<u> </u>							
		-+										
7								-				
						······································						
8							-					
9							-					
					_			<u> </u>				
10								. <u> </u>				
	_			_								
11		+			_							
				_	_							
12												
13												

Site N Locati	o.: 9 on:	9151 See	15 Site	e Pla	ın	Memel	Site ymanski		Hole D Date/Ti Drilling M	esignation: me Completed ethod: Split S	B-23 5/5/	06 19 Fripod & C	45 Cathead	TUON NEW
Depth (ft.) BGS	C O U N T	N U M B E R		P D PP	% R E C O V			Stratig	raphic Descri	ption		Rema	arks	Well Details
			E	30		6"	conc	rete		z (blac				
1							-11.4	cine	<u>ters/sla</u>	s (black	د)	odor	-	
					75	16"		で	et '	0 -	-	odor 1965	ample	
2		1		20%	Þ									
3					5	<u>30</u> "	411	- 10160	cic cina 1. Cr 1+	ers /slag brown	(wet)		-	
					50	<u> 36 "</u>	<u> </u>		<u>, (1</u> ,	brown		<u> </u>		
4		2												
									<u> </u>					
5													F	
6						<u> </u>								
7		\rightarrow											-	
·		-			-				. <u> </u>					
8			-											
								<u></u>	<u> </u>					
9														······
	_													
10	_	_			_ -	<u> </u>								
				-+-									-	
										·····				
2													-	
3														

Site N Locati	o.: 9 on:)151: See	15 Site	e Pla	n	mel Site Hole Date Drilling . Szymanski	e Designation: B-24 e/Time Completed: 5/5/06 1120 Method: Split Spoon via Tripod & Cath	ead 4
Depth		S	amp	le		Stratigraphic Des	scription Remark	3
(ft.) BGS	C O U N T	N U M B E R	N V A L U E	P I D	V			
				6		e concrete		
1		ļ				2" fill - cinder/sla	ig (black) wet	
2						e" concrete 2" fill - cinder/sle clay - stiff, 1 4"	It brown lab samp	
					100		Samp	<u>e</u>
3								
4		2			100	8. 1		
5								
6								_
7								-
8								
		-+						
9	_	-+	-+	-				
10	-							-
11								
	- +							
12								
13	_		\dashv		_			

This page is intentionally blank.

APPENDIX B LAB DATA RESULTS

This page is intentionally blank.

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A06-5702</u>

STL Project#: NY5A946109 Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Bengart & Memel Site: 915115

Eugene Melnyk NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

STL Buffalo

Brian J.) Fischer Project Manager

05/31/2006

STL Buffalo Current Certifications

As of 4/10//2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

			SAMPI	ED	RECEIVI	ED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME_
A6570201	MW-19		05/16/2006			
A6570202	MW-19R		05/17/2006			
A6570203	MW-5		05/17/2006			
A6570204	Trip Blank	WATER	05/17/2006		05/18/2006	15:55

METHODS SUMMARY

Job#: <u>A06-5702</u>

STL Project#:	<u>NY5A946109</u>	
Site Name:	NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRAC	T

PARAMETER	ANALYTICAL METHOD
NYSDEC - AQUEOUS-SW8463 TCL 8260	SW8463 8260
NYDEC AQ- 8270 TCL SEMI-VOLATILE ORGANIC	SW8463 8270
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Aluminum - Total	SW8463 6010
Antimony - Total	SW8463 6010
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Calcium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Cobalt - Total	SW8463 6010
Copper - Total	SW8463 6010
Iron - Total	SW8463 6010
Lead - Total	SW8463 6010
Magnesium - Total	SW8463 6010
Manganese - Total	SW8463 6010
Mercury - Total	SW8463 7470
Nickel - Total	SW8463 6010
Potassium - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Sodium - Total	SW8463 6010
Thallium - Total	SW8463 6010
Vanadium - Total	SW8463 6010
Zinc - Total	SW8463 6010

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-5702</u>

STL Project#: <u>NY5A946109</u> Site Name: NYSDEC - REGION 9 <u>REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-5702

Sample Cooler(s) were received at the following temperature(s); 5.4 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

For method 8082, sample MW-19 required dilution prior to analysis due to the high concentration of target analytes. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10X or greater.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

6-1-D6

Date

Client Sample ID	<u>Lab Sample ID</u>	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	Code
MW-19	A6570201	8082	10.00	800
MW-19	A6570201	8270	5.00	800
MW-19R	A6570202	8260	5.00	003
MW5	A6570203	8082	2.00	008
MW-5	A6570203	8260	5.00	003

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

-

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: MW-19 Lab Sample ID: A6570201 Date Collected: 05/16/2006 Time Collected: 13:15

Date Received:	05/18/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst	
NYSDEC - AQUEOUS-SW8463 TCL 8260								
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,1-Dichloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,1-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2-Dibromoethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2-Dichloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,2-Dichloropropane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,3-Dichlorobenzene	1.5		1.0	UG/L	8260	05/24/2006 16:59	MG	
1,4-Dichlorobenzene	6.1		1.0	UG/L	8260	05/24/2006 16:59	MG	
2-Butanone	3.2	J	5.0	UG/L	8260	05/24/2006 16:59	MG	
2-Hexanone	ND		5.0	UG/L	8260	05/24/2006 16:59		
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	05/24/2006 16:59	MG	
Acetone	16		5.0	UG/L	8260	05/24/2006 16:59		
Benzene	5.4		1.0	UG/L	8260	05/24/2006 16:59		
Bromodichloromethane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Bromoform	ND		1.0	UG/L	8260	05/24/2006 16:59		
Bromomethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
Carbon Disulfide	ND		1.0	UG/L	8260	05/24/2006 16:59		
Carbon Tetrachloride	ND		1.0	UG/L	8260	05/24/2006 16:59		
Chlorobenzene	7.5		1.0	UG/L	8260	05/24/2006 16:59		
Chloroethane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Chloroform	ND		1.0	UG/L	8260	05/24/2006 16:59		
Chloromethane	ND		1.0	UG/L	8260	05/24/2006 16:59		
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 16:59		
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	05/24/2006 16:59		
Cyclohexane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Dibromochloromethane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Dichlorodifluoromethane	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
Ethylbenzene	ND		1.0	UG/L	8260	05/24/2006 16:59	MG	
Isopropylbenzene	ND		1.0	UG∕L	8260	05/24/2006 16:59		
Methyl acetate	ND		1.0	UG/L	8260	05/24/2006 16:59		
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	05/24/2006 16:59		
Methylcyclohexane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Methylene chloride	ND		1.0	UG/L	8260	05/24/2006 16:59		
Styrene	ND		1.0	UG/L	8260	05/24/2006 16:59		
Tetrachloroethene	ND		1.0	UG/L	8260	05/24/2006 16:59		
Toluene	2.2		1.0	UG/L	8260	05/24/2006 16:59		
Total Xylenes	3.2		3.0	UG/L	8260	05/24/2006 16:59		
trans-1,2-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 16:59		
trans-1,3-Dichloropropene	ND		1.0	UG∕L	8260	05/24/2006 16:59		
Trichloroethene	ND		1.0	UG/L	8260	05/24/2006 16:59		
Trichlorofluoromethane	ND		1.0	UG/L	8260	05/24/2006 16:59		
Vinyl chloride	ND		1.0	UG/L	8260	05/24/2006 16:59		

NYSDEC

Rept: AN1178

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: MW-19 Lab Sample ID: A6570201 Date Collected: 05/16/2006 Time Collected: 13:15

			Detection			Date/Time	-
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
1,2,4-Trichlorobenzene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
1,2-Dichlorobenzene	ND		47	UG/L	8270	05/23/2006 17:09) MD
1,3-Dichlorobenzene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
1,4-Dichlorobenzene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
2,2'-Oxybis(1-Chloropropane)	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
2,4,5-Trichlorophenol	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
2,4,6-Trichlorophenol	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
2,4-Dichlorophenol	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
2,4-Dimethylphenol	92		47	UG/L	8270	05/23/2006 17:09	9 MD
2,4-Dinitrophenol	ND		240	UG/L	8270	05/23/2006 17:09	
2,4-Dinitrotoluene	ND		47	UG/L	8270	05/23/2006 17:09	
2,6-Dinitrotoluene	ND		47	UG/L	8270	05/23/2006 17:09	
2-Chloronaphthalene	ND		47	UG/L	8270	05/23/2006 17:09	
2-Chlorophenol	ND		47	UG/L	8270	05/23/2006 17:09	
2-Methylnaphthalene	ND		47	UG/L	8270	05/23/2006 17:09	
2-Methylphenol	50		47	UG/L	8270	05/23/2006 17:09	
2-Nitroaniline	ND		240	UG/L	8270	05/23/2006 17:09	
2-Nitrophenol	ND		47	UG/L	8270	05/23/2006 17:09	
3,3'-Dichlorobenzidine	ND		94	UG/L	8270	05/23/2006 17:09	
3-Nitroaniline	ND		240	UG/L	8270	05/23/2006 17:09	
4,6-Dinitro-2-methylphenol	ND		240	UG/L	8270	05/23/2006 17:09	
4-Bromophenyl phenyl ether	ND		47	UG/L	8270	05/23/2006 17:09	
4-Chloro-3-methylphenol	ND		47	UG/L	8270	05/23/2006 17:09	
4-Chloroaniline	ND		47	UG/L	8270	05/23/2006 17:09	
4-Chlorophenyl phenyl ether	ND		47	UG/L	8270	05/23/2006 17:09	
4-Methylphenol	180		47	UG/L	8270	05/23/2006 17:09	
4-Netroaniline	ND		240	UG/L	8270	05/23/2006 17:09	
4-Nitrophenol	ND		240	UG/L	8270	05/23/2006 17:09	
Acenaphthene	ND		47	UG/L	8270	05/23/2006 17:09	
	ND		47	UG/L	8270	05/23/2006 17:0	
Acenaphthylene	ND		47	UG/L	8270	05/23/2006 17:0	
Anthracene			47	UG/L UG/L	8270	05/23/2006 17:0	
Benzo(a)anthracene	ND		47	UG/L	8270	05/23/2006 17:0	
Benzo(a)pyrene	ND		47	UG/L UG/L	8270	05/23/2006 17:0	
Benzo(b)fluoranthene	ND			UG/L UG/L		05/23/2006 17:0	
Benzo(ghi)perylene	ND		47		8270	05/23/2006 17:0	
Benzo(k)fluoranthene	ND		47	UG/L	8270	05/23/2006 17:0	
Bis(2-chloroethoxy) methane	ND		47	UG/L	8270		
Bis(2-chloroethyl) ether	ND		47	UG/L	8270	05/23/2006 17:0	
Bis(2-ethylhexyl) phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Butyl benzyl phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Carbazole	ND		47	UG/L	8270	05/23/2006 17:0	
Chrysene	ND		47	UG/L	8270	05/23/2006 17:0	
Di-n-butyl phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Di-n-octyl phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Dibenzo(a,h)anthracene	53		47	UG/L	8270	05/23/2006 17:0	
Dibenzofuran	ND		47	UG/L	8270	05/23/2006 17:0	
Diethyl phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Dimethyl phthalate	ND		47	UG/L	8270	05/23/2006 17:0	
Fluoranthene	ND		47	UG/L	8270	05/23/2006 17:0	
						ST	I Buffalo

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: MW-19 Lab Sample ID: A6570201 Date Collected: 05/16/2006 Time Collected: 13:15

			Detection			Date/Time	-
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
Hexachlorobenzene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
Hexachlorobutadiene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
Hexachlorocyclopentadiene	ND		210	UG/L	8270	05/23/2006 17:09	9 MD
Hexachloroethane	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
Indeno(1,2,3-cd)pyrene	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
Isophorone	ND		47	UG/L	8270	05/23/2006 17:09	9 MD
N-Nitroso-Di-n-propylamine	ND		47	UG/L	8270	05/23/2006 17:09	ə md
N-nitrosodiphenylamine	ND		47	UG/L	8270	05/23/2006 17:0	7 MD
Naphthalene	130		47	UG/L	8270	05/23/2006 17:0	9 MD
Nitrobenzene	ND		47	UG/L	8270	05/23/2006 17:0	9 MD
Pentachlorophenol	ND		240	UG/L	8270	05/23/2006 17:0	9 MD
Phenanthrene	ND		47	UG/L	8270	05/23/2006 17:0	9 MD
Phenol	ND		47	UG/L	8270	05/23/2006 17:0	9 MD
Pyrene	ND		47	UG/L	8270	05/23/2006 17:0	
				·			
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		4.7	UG/L	8082	05/25/2006 02:5	6 GFD
Aroclor 1221	ND		4.7	UG/L	8082	05/25/2006 02:5	6 GFD
Aroclor 1232	ND		4.7	UG/L	8082	05/25/2006 02:5	6 GFD
Aroclor 1242	ND		4.7	UG/L	8082	05/25/2006 02:5	6 GFD
Aroclor 1248	ND		4.7	UG/L	8082	05/25/2006 02:5	
Aroclor 1254	76		4.7	UG∕L	8082	05/25/2006 02:5	
Aroclor 1260	54		4.7	UG/L	8082	05/25/2006 02:5	
				,		. ,	
Metals Analysis							
Aluminum - Total	13.7		0.20	MG/L	6010	05/24/2006 22:1	9 TWS
Antimony - Total	ND		0.020	MG/L	6010	05/24/2006 22:1	
Arsenic – Total	0.016		0.010	MG/L	6010	05/24/2006 22:1	
Barium - Total	0.39		0.0020	MG/L	6010	05/24/2006 22:1	
Beryllium - Total	ND		0.0020	MG/L	6010	05/24/2006 22:1	
Cadmium - Total	ND		0.0010	MG/L	6010	05/24/2006 22:1	
Calcium - Total	124		0.50	MG/L	6010	05/24/2006 22:1	
Chromium - Total	0.029		0.0040	MG/L	6010	05/24/2006 22:1	
Cobalt - Total	0.0096	, ,	0.0040	MG/L	6010	05/24/2006 22:1	
Copper - Total	0.069		0.010	MG/∟	6010	05/24/2006 22:1	
Iron - Total	37.9		0.050	MG/L	6010	05/24/2006 22:1	
Lead - Total	0.14		0.0050	MG/L	6010	05/24/2006 22:1	
Magnesium - Total	36.7		0.20	MG/L	6010	05/24/2006 22:1	
Manganese - Total	1.2		0.0030	MG/L	6010	05/24/2006 22:1	
Mercury - Total	ND		0.00020	MG/L	7470	05/22/2006 13:1	
Nickel - Total	0.030		0.010	MG/L	6010	05/24/2006 22:1	
Potassium - Total	31.3		0.50	MG/L	6010	05/24/2006 22:1	
Selenium - Total	ND		0.015	MG/L	6010	05/24/2006 22:1	
Silver - Total	ND		0.0030	MG/L	6010	05/24/2006 22:1	
Sodium - Total	71.1		1.0	MG/L	6010	05/24/2006 22:1	
Thallium - Total	ND		0.020	MG/L	6010	05/24/2006 22:1	
Vanadium - Total	0.032		0.0050	MG/L	6010	05/24/2006 22:1	
Zinc - Total	0.23		0.010	MG/L	6010	05/24/2006 22:1	
				,-			- Puffalo

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Rept: AN1178

Sample ID: MW-19R Lab Sample ID: A6570202 Date Collected: 05/17/2006 Time Collected: 11:45

Date Received:	05/18/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,1,2,2-Tetrachloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,1,2-Trichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,1-Dichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,1-Dichloroethene	ND		5.0	UG/∟	8260	05/24/2006 17:23	MG
1,2,4-Trichlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,2-Dibromo-3-chloropropane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,2-Dibromoethane	ND		5.0	UG/∟	8260	05/24/2006 17:23	MG
1,2-Dichlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,2-Dichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,2-Dichloropropane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,3-Dichlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
1,4-Dichlorobenzene	2.5	J	5.0	UG/L	8260	05/24/2006 17:23	MG
2-Butanone	ND		25	UG/L	8260	05/24/2006 17:23	MG
2-Hexanone	ND		25	UG/L	8260	05/24/2006 17:23	MG
4-Methyl-2-pentanone	ND		25	UG/L	8260	05/24/2006 17:23	MG
Acetone	25		25	UG/L	8260	05/24/2006 17:23	MG
Benzene	3.0	J	5.0	UG/L	8260	05/24/2006 17:23	MG
Bromodichloromethane	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
Bromoform	ND		5.0	UG/L	8260	05/24/2006 17:23	MG
Bromomethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Carbon Disulfide	ND		5.0	UG/L	8260	05/24/2006 17:23	
Carbon Tetrachloride	ND		5.0	UG/L	8260	05/24/2006 17:23	
Chlorobenzene	3.3	J	5.0	UG/L	8260	05/24/2006 17:23	
Chloroethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Chloroform	ND		5.0	UG/L	8260	05/24/2006 17:23	
Chloromethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
cis-1,2-Dichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:23	
cis-1,3-Dichloropropene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Cyclohexane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Dibromochloromethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Dichlorodifluoromethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Ethylbenzene	ND		5.0	UG∕L	8260	05/24/2006 17:23	
Isopropylbenzene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Methyl acetate	ND		5.0	, UG∕L	8260	05/24/2006 17:23	
Methyl-t-Butyl Ether (MTBE)	ND		5.0	, UG∕L	8260	05/24/2006 17:23	
Methylcyclohexane	ND		5.0	, UG∕L	8260	05/24/2006 17:23	
Methylene chloride	ND		5.0	, UG∕L	8260	05/24/2006 17:23	
Styrene	ND		5.0	UG∕L	8260	05/24/2006 17:23	
Tetrachloroethene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Toluene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Total Xylenes	ND		15	UG/L	8260	05/24/2006 17:23	
trans-1,2-Dichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:23	
trans-1,3-Dichloropropene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Trichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:23	
Trichlorofluoromethane	ND		5.0	UG/L	8260	05/24/2006 17:23	
Vinyl chloride	ND		5.0	UG/L	8260	05/24/2006 17:23	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Rept: AN1178

Sample ID: MW-5 Lab Sample ID: A6570203 Date Collected: 05/17/2006 Time Collected: 11:30

			Detection		Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,1,2,2-Tetrachloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,1,2-Trichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,1-Dichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,1-Dichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2,4-Trichlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2-Dibromo-3-chloropropane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2-Dibromoethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2-Dichlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2-Dichloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,2-Dichloropropane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
1,3-Dichlorobenzene	4.6	J	5.0	UG/L	8260	05/24/2006 17:47	MG
1,4-Dichlorobenzene	7.4		5.0	UG/L	8260	05/24/2006 17:47	MG
2-Butanone	ND		25	UG/L	8260	05/24/2006 17:47	MG
2-Hexanone	ND		25	UG/L	8260	05/24/2006 17:47	MG
4-Methyl-2-pentanone	ND		25	UG/L	8260	05/24/2006 17:47	MG
Acetone	30		25	UG/L	8260	05/24/2006 17:47	MG
Benzene	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
Bromodichloromethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
Bromoform	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
Bromomethane	ND		5.0	UG/L	8260	05/24/2006 17:47	MG
Carbon Disulfide	ND		5.0	UG/L	8260	05/24/2006 17:47	
Carbon Tetrachloride	ND		5.0	UG/L	8260	05/24/2006 17:47	
Chlorobenzene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Chloroethane	ND		5.0	UG/L	8260	05/24/2006 17:47	
Chloroform	ND		5.0	UG/L	8260	05/24/2006 17:47	
Chloromethane	ND		5.0	UG/L	8260	05/24/2006 17:47	
cis-1,2-Dichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:47	
cis-1,3-Dichloropropene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Cyclohexane	ND		5.0	UG/L	8260	05/24/2006 17:47	' MG
Dibromochloromethane	ND		5.0	UG/L	8260	05/24/2006 17:47	
Dichlorodifluoromethane	ND		5.0	UG/L	8260	05/24/2006 17:47	
Ethylbenzene	ND		5.0	UG/L	8260	05/24/2006 17:47	' MG
Isopropylbenzene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Methyl acetate	ND		5.0	UG/L	8260	05/24/2006 17:47	
Methyl-t-Butyl Ether (MTBE)	ND		5.0	UG/L	8260	05/24/2006 17:47	
Methylcyclohexane	ND		5.0	UG/L	8260	05/24/2006 17:47	
Methylene chloride	ND		5.0	UG/L	8260	05/24/2006 17:47	
Styrene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Tetrachloroethene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Toluene	ND		5.0	UG∕L	8260	05/24/2006 17:47	
Total Xylenes	ND		15	, UG/L	8260	05/24/2006 17:47	
trans-1,2-Dichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:47	
trans-1,3-Dichloropropene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Trichloroethene	ND		5.0	UG/L	8260	05/24/2006 17:47	
Trichlorofluoromethane	ND		5.0	UG/L	8260	05/24/2006 17:47	
Vinyl chloride	ND		5.0	UG/L	8260	05/24/2006 17:47	

Date: 05/31/2006 Time: 19:54:33

Aroclor 1260

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

GFD

05/25/2006 03:14

Sample ID: MW-5 Lab Sample ID: A6570203 Date Collected: 05/17/2006 Time Collected: 11:30					P	Received: 05/18/20 roject No: NY5A946 Client No: L10190 Site No:	
			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD
Aroclor 1221	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD
Aroclor 1232	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD
Aroclor 1242	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD
Aroclor 1248	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD
Aroclor 1254	ND		0.94	UG/L	8082	05/25/2006 03:14	GFD

28

0.94

UG/L

8082

=

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Rept: AN1178

Sample ID: Trip Blank Lab Sample ID: A6570204 Date Collected: 05/17/2006 Time Collected:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analy
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
1,1,2,2-Tetrachloroethane	ND		1.0	UG/∟	8260	05/24/2006 12:14	MG
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,1-Dichloroethane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,1-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,2,4-Trichlorobenzene	ND		1.0	UG/∟	8260	05/24/2006 12:14	MG
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,2-Dibromoethane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,2-Dichloroethane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,2-Dichloropropane	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	
2-Butanone	ND		5.0	UG/L	8260	05/24/2006 12:14	
2-Hexanone	ND		5.0	UG/L	8260	05/24/2006 12:14	
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	05/24/2006 12:14	
Acetone	ND		5.0	UG/L	8260	05/24/2006 12:14	
Benzene	ND		1.0	UG/L	8260	05/24/2006 12:14	
Bromodichloromethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Bromoform	ND		1.0	UG/L	8260	05/24/2006 12:14	
Bromomethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Carbon Disulfide	ND		1.0	UG/L	8260	05/24/2006 12:14	
Carbon Tetrachloride	ND		1.0	UG/L	8260	05/24/2006 12:14	
Chlorobenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	
			1.0	UG/L	8260	05/24/2006 12:14	
Chloroethane	ND					05/24/2006 12:14	
Chloroform	ND		1.0	UG/L	8260		
Chloromethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 12:14	
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	05/24/2006 12:14	
Cyclohexane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Dibromochloromethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Dichlorodifluoromethane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Ethylbenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	
Isopropylbenzene	ND		1.0	UG/L	8260	05/24/2006 12:14	
Methyl acetate	ND		1.0	UG/L	8260	05/24/2006 12 : 14	
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	05/24/2006 12 : 14	
Methylcyclohexane	ND		1.0	UG/L	8260	05/24/2006 12:14	
Methylene chloride	ND		1.0	UG/L	8260	05/24/2006 12:14	
Styrene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
Tetrachloroethene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
Toluene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
Total Xylenes	ND		3.0	UG/L	8260	05/24/2006 12:14	MG
trans-1,2-Dichloroethene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	05/24/2006 12:14	MG
Trichloroethene	ND		1.0	UG/L	8260	05/24/2006 12:14	
Trichlorofluoromethane	ND		1.0	UG∕L	8260	05/24/2006 12:14	
Vinyl chloride	ND		1.0	UG/L	8260	05/24/2006 12:14	

16\16 Special Instructions/ Conditions of Receipt RELETVID & TENIS あり 1335 ata Sumple to be (A fee may be assessed if samples are retained longer than 1 month) Time Time ime ď 2 Chain of Gustody Number 252294 1557 WED Lelivered ser Page _____ Date 2 Severn Trent Laboratories, Inc. Analysis (Attach list if more space is needed) SEVERN STL Lab Number Months **S** althe 5/7724 141 2018 7015771 2018 54015771 2321 Disposal By Lab Archive For 3 SR B51-7226 808 SS 21 Days Dother De T/A VaAn NOBV Lab Contract 13c Le Containers & Preservatives AND MOUNTK HOP 1. Received By 3. Received By 2. Received By IOH > EONH > 2201 +OSZhone Number (Area Code)/Fax səıdur Date Date 1 Time 55 Unknown Reveal En ra Jer Sample Disposal 4-851lioS Time Matrix Carrier/Waybill Mumber pəs Project Manager snoanb ٦ib 12/05/11/5h Date Time Zip Code 14 203 - 2999 6 /out # 115139 3 Intification Support Voc 5 - PCBS Date q <u>S</u> 🗆 7 Days 👝 🗖 14 Days DI. Sample I.D. No. and Description (Containers for each sample may be combined on one line) HVE State NM MUSDEL LEG. 9 DER Present Name and Location (State) BENGART & MEMEL ZDO MIChigan 1. Relinquished By **Custody Record** 48 Hours Possible Hazard Identification 200302 Turn Around Time Required BUFALO める MW 5 3. Relinquished By 2. Helinquished By q Non-Hazard STL-4124 (0901) -MM -MM 24 Hours Contract/Page Comments

NUSAPHER ON 47

Chain of

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

S. 40c

۷

ANALYTICAL REPORT

Job#: <u>A06-5028, A06-5029, A06-5030, A06-5031</u>

STL Project#: NY5A946109

SDG#: 5029

Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Bengart & Memel Site: 915115

Eugene Melnyk NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

STL Buffalo

Brian J. Fischer Project Manager

05/22/2006

1/67

STL Buffalo Current Certifications

As of 4/10//2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

			SAMPI	LED	RECEIVE	Ð
LAB SAMPLE	ID CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6502806	B1 16-24	SOIL	05/04/2006	10:30	05/05/2006	
A6502811	B10 24-28	SOIL	05/04/2006	13:05	05/05/2006	13:05
A6502817	B12 24-29	SOIL	05/04/2006	14:25	05/05/2006	13:05
A6502814	B13 41-48	SOIL	05/04/2006	13:45	05/05/2006	13:05
A6502813	B13 VOC 5-43	SOIL	05/04/2006	13:40	05/05/2006	13:05
A6502819	B14 35-39	SOIL	05/04/2006	14:50	05/05/2006	13:05
A6502818	B14 VOC 4-39	SOIL	05/04/2006	14:45	05/05/2006	13:05
A6502901	B15 9-39	SOIL	05/04/2006	15:25	05/05/2006	13:05
A6502820	B16 32-37	SOIL	05/04/2006	15:05	05/05/2006	13:05
A6502904	B17 30-38	SOIL	05/04/2006	15:55	05/05/2006	13:05
A6502903	B17 VOC 38-46	SOIL	05/04/2006	15:50	05/05/2006	13:05
A6502906	B18 5-23	SOIL	05/04/2006	16:25	05/05/2006	13:05
A6502908	B19 8-40	SOIL	05/04/2006	16:40	05/05/2006	13:05
A6502907	B19 VOC 8-36	SOIL	05/04/2006	16:35	05/05/2006	13:05
A6502803	B2 21-27	SOIL	05/04/2006	09:40	05/05/2006	13:05
A6502905	B20 8-35	SOIL	05/04/2006	16:05	05/05/2006	13:05
A6502912	B21 0-24	SOIL	05/05/2006	10:10	05/05/2006	13:05
A6502913	B21 VOC 24-48	SOIL	05/05/2006	10:20	05/05/2006	13:05
A6502911	B22 SVOC 24-48	SOIL	05/05/2006	09:35	05/05/2006	13:05
A6502910	B22 VOC 0-24	SOIL	05/05/2006	09:20	05/05/2006	13:05
A6502915	B23 24-48	SOIL	05/05/2006	11:00	05/05/2006	13:05
A6502914	B23 VOC 0-24	SOIL	05/05/2006	10:45	05/05/2006	13:05
A6502916	B24 0-48	SOIL	05/05/2006	11:20	05/05/2006	13:05
A6502801	B3 31-35	SOIL	05/04/2006	09:10	05/05/2006	13:05
A6502802	B4 18-24	SOIL	05/04/2006	09:20	05/05/2006	13:05
A6502804	B5 32-37	SOIL	05/04/2006	09:55	05/05/2006	13:05
A6502805	B5 48-56	SOIL	05/04/2006	10:05	05/05/2006	13:05
A6502810	B6 28-38	SOIL	05/04/2006	11:45	05/05/2006	13:05
A6502809	B6 VOC	SOIL	05/04/2006	11:50	05/05/2006	13:05
A6502808	B7 32-37	SOIL	05/04/2006	11:15	05/05/2006	13:05
A6502807	B8 37-42	SOIL	05/04/2006	11:00	05/05/2006	13:05
A6502815	B9 23-28	SOIL			05/05/2006	
A6502812	B9 5-9	SOIL	05/04/2006	13:25	05/05/2006	13:05
A6503002	COLLECTION SUMP	WATER	05/02/2006	13:45	05/03/2006	12:10
A6502902	COMPOSITE AREA A	SOIL			05/05/2006	
A6502909	COMPOSITE AREA B	SOIL	05/04/2006	16:55	05/05/2006	13:05
A6502816	DI SEDIMENT	SOIL	05/04/2006	14:05	05/05/2006	13:05
A6503101	FLOOR DUST	SOIL	05/05/2006	11:50	05/05/2006	13:05
A6503003	OWS MANHOLE	WATER	05/02/2006	14:30	05/03/2006	12:10
A6503006	SURFACE SAMPLE-FENCE	SOIL	05/02/2006	14:10	05/03/2006	12:10
A6503007	SURFACE SOIL-FILL AR	SOIL	05/02/2006	15:00	05/03/2006	12:10
A6503005	SURFACE SOIL-MH	SOIL			05/03/2006	
A6503001	TANK CONTAINMENT	WATER			05/03/2006	
A6503004	TANK CONTAINMENT SED	SEDIM			05/03/2006	
A6503102	WIPE 1	WIPE			05/05/2006	
A6503103	WIPE 2	WIPE			05/05/2006	
A6503104	WIPE 3	WIPE			05/05/2006	
A6503105	WIPE 4	WIPE	05/05/2006	12:10	05/05/2006	13:05

METHODS SUMMARY

Job#: <u>A06-5028, A06-5029, A06-5030, A06-5031</u>

STL Project#: <u>NY5A946109</u> SDG#: <u>5029</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

PARAMETER	ANALYTICAL METHOD
NYSDEC-SPILLS - METHOD 8260 - TCL VOLATILES - S	SW8463 8260
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082W
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463 8082
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Lead - Total	SW8463 6010
Mercury - Total	SW8463 7470
Mercury - Total	SW8463 7471
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Corrosivity (pH)	SW8463 9045
Flashpoint	SW8463 1010
Toxicity Characteristic Leaching Procedure	ASP00 1311

- ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.
- SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A06-5028, A06-5029, A06-5030, A06-5031

STL Project#: <u>NY5A946109</u> SDG#: <u>5029</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-5028 Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition. A06-5029 Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition. A06-5030 Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition. A06-5031 Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received at the following temperature(s); 2@2.0 °C All sample cooler(s) were received at the following temperature(s); 2@2.0 °C

<u>GC/MS Volatile Data</u>

The analyte Methylene Chloride was detected in the Method Blank A6B1866502 (VBLK52) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

GC/MS Semivolatile Data

The surrogate recoveries for Phenol-D5 and p-Terphenyl-d14 were below the laboratory quality control limits for sample COMPOSITE AREA A. Based on US EPA CLP National Functional Guidelines for Data Review, one surrogate in either fraction (base/neutral or acid fraction) may have a recovery outside of the control limit. All analytes associated with that surrogate should be considered biased low.

GC Extractable Data

For method 8082, many samples required dilution prior to analysis due to the heavy matrix present or high concentration of target analytes. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10X or greater.

For method 8082, the recovery of surrogate Tetrachloro-m-xylene in sample B24 0-48 is outside of established quality control limits due to the sample matrix. The recovery of surrogate Decachlorobiphenyl is within quality control criteria; no corrective action is required.

For method 8082, the recoveries and the relative percent difference for sample B2 21-27 Matrix Spike and the Matrix Spike duplicate are outside quality control limits for several compounds due to matrix effects and dilution, though the Matrix Spike Blank recoveries are compliant, no action necessary.

For method 8082, the recoveries and the relative percent difference for sample B21 0-24 Matrix Spike and the Matrix Spike duplicate are outside quality control limits for several compounds due to dilution and high level positives, though the Matrix Spike Blank recoveries are compliant, no action necessary.

For method 8082, the recovery of surrogate Decachlorobiphenyl in sample B23 24-48 is outside of established quality control limits due to the sample matrix and dilution. The recovery of surrogate Tetrachloro-m-xylene is within quality control limits; no corrective action is required.

<u>Metals Data</u>

The analyte Barium was detected in the TCLP Extractor Blank (A6B1855201) at a level above the project established reporting limit. However, all samples had levels of Barium greater than ten times that of the Extractor Blank value, therefore, no corrective action was necessary.

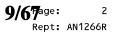
The analyte Lead was detected in the TCLP Extractor Blank (A6B1855201) at a concentration above STL's standard quantitation limit. Sample COMPOSITE AREA A was least five times less than the TCLP Regulatory Limit and COMPOSITE AREA B had concentrations of Lead greater than 10X that of the Extractor Blank (A6B1855201) value. The sample data was therefore accepted and no corrective action was performed.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."


Brian J. Fischer Project Manager

Date

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	<u>Code</u>
B3 31-35	A6502801	8082	10.00	800
B4 18-24	A6502802	8082	100.00	800
B2 21-27	A6502803	8082	10.00	800
B2 21-27	A6502803MS	8082	10.00	800
B2 21-27	A6502803SD	8082	10.00	800
B5 32-37	A6502804	8082	100.00	800
B5 48-56	A6502805	8082	100.00	800
B1 16-24	A6502806	8082	100.00	800
B8 37-42	A6502807	8082	20.00	008
B7 32-37	A6502808	8082	200.00	008
B6 28-38	A6502810	8082	50.00	008
B10 24-28	A6502811	8082	50.00	008
B9 5-9	A6502812	8082	200.00	008
B9 23-28	A6502815	8082	100.00	800
DI SEDIMENT	A6502816	8082	100.00	800
B14 35-39	A6502819	8082	50.00	800
B16 32-37	A6502820	8082	200.00	800
B15 9-39	A6502901	8082	2.00	800
COMPOSITE AREA A	A6502902	8270	20.00	012
COMPOSITE AREA A	A6502902	Mercury – Total	5.00	800
B17 30-38	A6502904	8082	10.00	800
B18 5-23	A6502906	8082	100.00	800
B19 VOC 8-36	A6502907DL	8260	2.00	800
B19 8-40	A6502908	8082	100.00	800
COMPOSITE AREA B	A6502909	8270	20.00	012
COMPOSITE AREA B	A6502909	Mercury - Total	5.00	800
B22 SVOC 24-48	A6502911	8270	10.00	012
B21 0-24	A6502912	8082	1000.00	800
B21 0-24	A6502912MS	8082	1000.00	800
B21 0-24	A6502912SD	8082	1000.00	800
B23 24-48	A6502915	8082	5.00	800
COLLECTION SUMP	A6503002	8082	10.00	800
OWS MANHOLE	A6503003	8082	5.00	800
TANK CONTAINMENT SED	A6503004	8082	50.00	800
SURFACE SOIL-MH	A6503005	8082	50.00	800
SURFACE SAMPLE-FENCE	A6503006	8082	100.00	800
SURFACE SOIL-FILL AR	A6503007	8082	100.00	800
FLOOR DUST	A6503101	8082	1000.00	800
WIPE 1	A6503102	8082W	100.00	800
WIPE 2	A6503103	8082W	200.00	800

Dilution Code Definition:

- 002 sample matrix effects
- 003 excessive foaming
- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- 006 sample matrix resulted in method non-compliance for Surrogate
- 007 nature of the TCLP matrix
- 008 high concentration of target analyte(s)
- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution
- 012 sample viscosity
- 013 other

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	Code
WIPE 3	A6503104	8082W	500.00	800
WIPE 4	A6503105	8082W	500.00	008

Dilution Code Definition:

-	sample	matrix	effects	
	Jampee	merer rx	0110000	

003 - excessive foaming

- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- 006 sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

- 008 high concentration of target analyte(s)
- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution

012 - sample viscosity

013 - other

002

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B1 16-24 Lab Sample ID: A6502806 Date Collected: 05/04/2006 Time Collected: 10:30

			Detection			Date/Time	
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1221	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1232	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1242	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1248	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1254	ND		1800	UG/KG	8082	05/12/2006 18:25	DW
Aroclor 1260	12000		1800	UG/KG	8082	05/12/2006 18:25	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

12/67^{Page: 2} Rept: AN1178

Sample ID: B10 24-28 Lab Sample ID: A6502811 Date Collected: 05/04/2006 Time Collected: 13:05

Parameter			Detection			Date/Time	
	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1221	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1232	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1242	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1248	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1254	ND		1000	UG/KG	8082	05/12/2006 20 : 11	DW
Aroclor 1260	11000		1000	UG/KG	8082	05/12/2006 20 : 11	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

13/67Page: 3 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B12 24-29 Lab Sample ID: A6502817 Date Collected: 05/04/2006 Time Collected: 14:25

Date Receiv	ved:	05/05/2006
Project	No:	NY5A946109
Client	No:	L10190
Site	No:	

			Detection	Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1221	ND		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1232	ND		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1242	ND		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1248	25		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1254	130		22	UG/KG	8082	05/12/2006 21:40	DW
Aroclor 1260	340		22	UG/KG	8082	05/12/2006 21:40	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

14/67Page: 4 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B13 41-48 Lab Sample ID: A6502814 Date Collected: 05/04/2006 Time Collected: 13:45

Parameter			Detection		Date/Time			
	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1221	ND		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1232	ND		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1242	ND		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1248	32		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1254	ND		20	UG/KG	8082	05/12/2006 20:47	DW	
Aroclor 1260	180		20	UG/KG	8082	05/12/2006 20:47	DW	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B13 VOC 5-43 Lab Sample ID: A6502813 Date Collected: 05/04/2006 Time Collected: 13:40

			Detection			—_Date/Time—	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,1,2-Trichloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,1-Dichloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,1-Dichloroethene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,2-Dichloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
1,2-Dichloroethene (Total)	ND		15	UG/KG	8260	05/08/2006 21:55	JLG
1,2-Dichloropropane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
2-Butanone	ND		37	UG/KG	8260	05/08/2006 21:55	JLG
2-Hexanone	ND		37	UG/KG	8260	05/08/2006 21:55	JLG
4-Methyl-2-pentanone	ND		37	UG/KG	8260	05/08/2006 21:55	JLG
Acetone	40		37	UG/KG	8260	05/08/2006 21:55	JLG
Benzene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Bromodichloromethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Bromoform	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Bromomethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Carbon Disulfide	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Carbon Tetrachloride	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Chlorobenzene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Chloroethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Chloroform	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Chloromethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Dibromochloromethane	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Ethylbenzene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Methylene chloride	8	В	7	UG/KG	8260	05/08/2006 21:55	JLG
Styrene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Tetrachloroethene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Toluene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Total Xylenes	ND		22	UG/KG	8260	05/08/2006 21:55	JLG
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Trichloroethene	ND		7	UG/KG	8260	05/08/2006 21:55	JLG
Vinyl acetate	ND		37	UG/KG	8260	05/08/2006 21:55	JLG
Vinyl chloride	ND		15	UG/KG	8260	05/08/2006 21:55	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

16/67Page: 6 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B14 35-39 Lab Sample ID: A6502819 Date Collected: 05/04/2006 Time Collected: 14:50

		Detection		Date/Time			
Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
ND		1000	UG/KG	8082	05/12/2006 21:57	DW	
ND		1000	UG/KG	8082	05/12/2006 21:57	DW	
ND		1000	UG/KG	8082	05/12/2006 21:57	DW	
ND		1000	UG/KG	8082	05/12/2006 21:57	DW	
ND		1000	UG/KG	8082	05/12/2006 21:57	DW	
4800		1000	UG/KG	8082	05/12/2006 21:57	DW	
3000		1000	UG/KG	8082	05/12/2006 21:57	DW	
	ND ND ND ND 4800	ND ND ND ND ND 4800	Result Flag Limit ND 1000 AB00 1000	Result Flag Limit Units ND 1000 UG/KG 4800 1000 UG/KG	Result Flag Limit Units Method ND 1000 UG/KG 8082 4800 1000 UG/KG 8082	Result Flag Limit Units Method Analyzed ND 1000 UG/KG 8082 05/12/2006 21:57 4800 1000 UG/KG 8082 05/12/2006 21:57	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B14 VOC 4-39 Lab Sample ID: A6502818 Date Collected: 05/04/2006 Time Collected: 14:45

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
1,2-Dichloroethene (Total)	ND		12	UG/KG	8260	05/08/2006 22:24	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
2-Butanone	44		31	UG/KG	8260	05/08/2006 22:24	JLG
2-Hexanone	ND		31	UG/KG	8260	05/08/2006 22:24	JLG
4-Methyl-2-pentanone	ND		31	UG/KG	8260	05/08/2006 22:24	JLG
Acetone	220		31	UG/KG	8260	05/08/2006 22:24	JLG
Benzene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Bromoform	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Bromomethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Carbon Disulfide	3	J	6	UG/KG	8260	05/08/2006 22:24	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Chlorobenzene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Chloroethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Chloroform	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Chloromethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Ethylbenzene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Methylene chloride	8	в	6	UG/KG	8260	05/08/2006 22:24	JLG
Styrene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Tetrachloroethene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Toluene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Total Xylenes	5	J	19	UG/KG	8260	05/08/2006 22:24	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Trichloroethene	ND		6	UG/KG	8260	05/08/2006 22:24	JLG
Vinyl acetate	ND		31	UG/KG	8260	05/08/2006 22:24	JLG
Vinyl chloride	ND		12	UG/KG	8260	05/08/2006 22:24	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B15 9-39 Lab Sample ID: A6502901 Date Collected: 05/04/2006 Time Collected: 15:25

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1221	ND		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1232	ND		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1242	ND		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1248	100		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1254	ND		39	UG/KG	8082	05/15/2006 22:37	LMW
Aroclor 1260	330		39	UG/KG	8082	05/15/2006 22:37	LMW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

19/67Page: 9 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B16 32-37 Lab Sample ID: A6502820 Date Collected: 05/04/2006 Time Collected: 15:05

Parameter			Detection			Date/Time				
	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>			
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS										
Aroclor 1016	ND		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1221	ND		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1232	ND		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1242	ND		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1248	ND		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1254	27000		4000	UG/KG	8082	05/12/2006 22:51	DW			
Aroclor 1260	25000		4000	UG/KG	8082	05/12/2006 22:51	DW			

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B17 30-38 Lab Sample ID: A6502904 Date Collected: 05/04/2006 Time Collected: 15:55

			Detection		Date/Time			
Parameter		Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1221	ND		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1232	ND		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1242	ND		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1248	280		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1254	ND		210	UG/KG	8082	05/15/2006 22:55	LMW	
Aroclor 1260	1600		210	UG/KG	8082	05/15/2006 22:55	LMW	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B17 VOC 38-46 Lab Sample ID: A6502903 Date Collected: 05/04/2006 Time Collected: 15:50

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
1,2-Dichloroethene (Total)	ND		12	UG/KG	8260	05/09/2006 04:14	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
2-Butanone	ND		31	UG/KG	8260	05/09/2006 04:14	JLG
2-Hexanone	ND		31	UG/KG	8260	05/09/2006 04:14	JLG
4-Methyl-2-pentanone	ND		31	UG/KG	8260	05/09/2006 04:14	JLG
Acetone	26	J	31	UG/KG	8260	05/09/2006 04:14	JLG
Benzene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Bromoform	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Bromomethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Carbon Disulfide	3	J	6	UG/KG	8260	05/09/2006 04:14	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Chlorobenzene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Chloroethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Chloroform	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Chloromethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Ethylbenzene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Methylene chloride	4	BJ	6	UG/KG	8260	05/09/2006 04:14	JLG
Styrene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Tetrachloroethene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Toluene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Total Xylenes	ND		19	UG/KG	8260	05/09/2006 04:14	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Trichloroethene	ND		6	UG/KG	8260	05/09/2006 04:14	JLG
Vinyl acetate	ND		31	UG/KG	8260	05/09/2006 04:14	JLG
Vinyl chloride	ND		12	UG/KG	8260	05/09/2006 04:14	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B18 5-23 Lab Sample ID: A6502906 Date Collected: 05/04/2006 Time Collected: 16:25

Parameter			Detection		Date/Time			
	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		2000	UG/KG	8082	05/15/2006 23:31	LMW	
Aroclor 1221	ND		2000	UG/KG	8082	05/15/2006 23 : 31	LMW	
Aroclor 1232	ND		2000	UG/KG	8082	05/15/2006 23 : 31	LMW	
Aroclor 1242	ND		2000	UG/KG	8082	05/15/2006 23:31	LMW	
Aroclor 1248	9900		2000	UG/KG	8082	05/15/2006 23:31	LMW	
Aroclor 1254	ND		2000	UG/KG	8082	05/15/2006 23:31	LMW	
Aroclor 1260	17000		2000	UG/KG	8082	05/15/2006 23:31	LMW	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

23/67^{Page:} 13 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B19 8-40 Lab Sample ID: A6502908 Date Collected: 05/04/2006 Time Collected: 16:40

Parameter			Detection			_	
		Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1221	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1232	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1242	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1248	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1254	ND		1900	UG/KG	8082	05/15/2006 23 : 48	LMW
Aroclor 1260	19000		1900	UG/KG	8082	05/15/2006 23 : 48	LMW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B19 VOC 8-36 Lab Sample ID: A6502907 Date Collected: 05/04/2006 Time Collected: 16:35

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
1,2-Dichloroethene (Total)	ND		11	UG/KG	8260	05/09/2006 04:43	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
2-Butanone	32		28	UG/KG	8260	05/09/2006 04:43	JLG
2-Hexanone	ND		28	UG/KG	8260	05/09/2006 04:43	JLG
4-Methyl-2-pentanone	ND		28	UG/KG	8260	05/09/2006 04:43	JLG
Acetone	170		28	UG/KG	8260	05/09/2006 04:43	JLG
Benzene	10		6	UG/KG	8260	05/09/2006 04:43	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Bromoform	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Bromomethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Carbon Disulfide	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Chlorobenzene	490	Е	6	UG/KG	8260	05/09/2006 04:43	JLG
Chloroethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Chloroform	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Chloromethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Ethylbenzene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Methylene chloride	2	BJ	6	UG/KG	8260	05/09/2006 04:43	JLG
Styrene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Tetrachloroethene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Toluene	3	J	6	UG/KG	8260	05/09/2006 04:43	JLG
Total Xylenes	5	J	17	UG/KG	8260	05/09/2006 04:43	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Trichloroethene	ND		6	UG/KG	8260	05/09/2006 04:43	JLG
Vinyl acetate	ND		28	UG/KG	8260	05/09/2006 04:43	JLG
Vinyl chloride	ND		11	UG/KG	8260	05/09/2006 04:43	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

25/67^{Page: 15} Rept: AN1178

Sample ID: B19 VOC 8-36 Lab Sample ID: A6502907DL Date Collected: 05/04/2006 Time Collected: 16:35

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,1,2,2-Tetrachloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,1,2-Trichloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,1-Dichloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,1-Dichloroethene	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,2-Dichloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
1,2-Dichloroethene (Total)	ND		570	UG/KG	8260	05/10/2006 15:30	LH
1,2-Dichloropropane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
2-Butanone	ND		1400	UG/KG	8260	05/10/2006 15:30	LH
2-Hexanone	ND		1400	UG/KG	8260	05/10/2006 15:30	LH
4-Methyl-2-pentanone	ND		1400	UG/KG	8260	05/10/2006 15:30	LH
Acetone	ND		1400	UG/KG	8260	05/10/2006 15:30	LH
Benzene	200	DJ	290	UG/KG	8260	05/10/2006 15:30	LH
Bromodichloromethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Bromoform	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Bromomethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Carbon Disulfide	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Carbon Tetrachloride	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Chlorobenzene	26000	D	290	UG/KG	8260	05/10/2006 15:30	LH
Chloroethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Chloroform	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Chloromethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
cis-1,3-Dichloropropene	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Dibromochloromethane	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Ethylbenzene	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Methylene chloride	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Styrene	ND		290	UG/KG	8260	05/10/2006 15 : 30	LH
Tetrachloroethene	ND		290	UG/KG	8260	05/10/2006 15 : 30	LH
Toluene	ND		290	UG/KG	8260	05/10/2006 15 : 30	LH
Total Xylenes	ND		860	UG/KG	8260	05/10/2006 15:30	
trans-1,3-Dichloropropene	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Trichloroethene	ND		290	UG/KG	8260	05/10/2006 15:30	LH
Vinyl acetate	ND		1400	UG/KG	8260	05/10/2006 15:30	LH
Vinyl chloride	ND		570	UG/KG	8260	05/10/2006 15:30	LH

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B2 21-27 Lab Sample ID: A6502803 Date Collected: 05/04/2006 Time Collected: 09:40

			Detection			Date/Time	
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1221	ND		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1232	ND		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1242	ND		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1248	390		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1254	2500		200	UG/KG	8082	05/12/2006 16:56	DW
Aroclor 1260	1500		200	UG/KG	8082	05/12/2006 16:56	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

27/67^{Page:} 17 Rept: AN1178

Sample ID: B20 8-35 Date Received: 05/05/2006 Lab Sample ID: A6502905 Project No: NY5A946109 Date Collected: 05/04/2006 Client No: L10190 Time Collected: 16:05 Site No: Detection ----Date/Time-Parameter Result <u>Flag</u> Limit Units Method Analyzed <u>Analyst</u> NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS Aroclor 1016 ND 21 UG/KG 8082 05/15/2006 23:13 LMW Aroclor 1221 ND 21 UG/KG 8082 05/15/2006 23:13 LMW UG/KG 05/15/2006 23:13 Aroclor 1232 ND 21 8082 LMW 05/15/2006 23:13 Aroclor 1242 ND 21 UG/KG 8082 LMW Aroclor 1248 16 21 UG/KG 8082 05/15/2006 23:13 LMW J Aroclor 1254 21 UG/KG 8082 05/15/2006 23:13 LMW ND Aroclor 1260 ND 21 UG/KG 8082 05/15/2006 23:13 LMW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B21 0-24 Lab Sample ID: A6502912 Date Collected: 05/05/2006 Time Collected: 10:10

	Detection					Date/Time			
Parameter		Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>		
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		21000	UG/KG	8082	05/16/2006 00:06	LMW		
Aroclor 1221	ND		21000	UG/KG	8082	05/16/2006 00:06	LMW		
Aroclor 1232	ND		21000	UG/KG	8082	05/16/2006 00:06	LMW		
Aroclor 1242	ND		21000	UG/KG	8082	05/16/2006 00 : 06	LMW		
Aroclor 1248	ND		21000	UG/KG	8082	05/16/2006 00 : 06	LMW		
Aroclor 1254	ND		21000	UG/KG	8082	05/16/2006 00 : 06	LMW		
Aroclor 1260	230000		21000	UG/KG	8082	05/16/2006 00:06	LMW		

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B21 VOC 24-48 Lab Sample ID: A6502913 Date Collected: 05/05/2006 Time Collected: 10:20

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
1,2-Dichloroethene (Total)	6	J	13	UG/KG	8260	05/09/2006 05:41	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
2-Butanone	20	J	32	UG/KG	8260	05/09/2006 05:41	JLG
2-Hexanone	ND		32	UG/KG	8260	05/09/2006 05:41	JLG
4-Methyl-2-pentanone	ND		32	UG/KG	8260	05/09/2006 05:41	JLG
Acetone	77		32	UG/KG	8260	05/09/2006 05:41	JLG
Benzene	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Bromoform	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Bromomethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Carbon Disulfide	4	J	6	UG/KG	8260	05/09/2006 05:41	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Chlorobenzene	3	J	6	UG/KG	8260	05/09/2006 05:41	JLG
Chloroethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Chloroform	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Chloromethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Ethylbenzene	2	J	6	UG/KG	8260	05/09/2006 05:41	JLG
Methylene chloride	3	BJ	6	UG/KG	8260	05/09/2006 05:41	JLG
Styrene	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Tetrachloroethene	11		6	UG/KG	8260	05/09/2006 05:41	JLG
Toluene	3	J	6	UG/KG	8260	05/09/2006 05:41	JLG
Total Xylenes	11	J	20	UG/KG	8260	05/09/2006 05:41	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 05:41	JLG
Trichloroethene	3	J	6	UG/KG	8260	05/09/2006 05:41	JLG
Vinyl acetate	ND		32	UG/KG	8260	05/09/2006 05:41	JLG
Vinyl chloride	7	J	13	UG/KG	8260	05/09/2006 05:41	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

30/67Page: 20 Rept: AN1178

Sample ID: B22 SVOC 24-48 Lab Sample ID: A6502911 Date Collected: 05/05/2006 Time Collected: 09:35

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		4200	UG/KG	8270	05/15/2006 18:51	MR F
2,4,5-Trichlorophenol	ND		10000	UG/KG	8270	05/15/2006 18:51	MR F
2,4,6-Trichlorophenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2,4-Dichlorophenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2,4-Dimethylphenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2,4-Dinitrophenol	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
2,4-Dinitrotoluene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2,6-Dinitrotoluene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2-Chloronaphthalene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
2-Chlorophenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MR F
2-Methylnaphthalene	ND		4200	UG/KG	8270	05/15/2006 18:51	MR F
2-Methylphenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MR F
2-Nitroaniline	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
2-Nitrophenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
3,3'-Dichlorobenzidine	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
3-Nitroaniline	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
4,6-Dinitro-2-methylphenol	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
4-Bromophenyl phenyl ether	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
4-Chloro-3-methylphenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
4-Chloroaniline	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
4-Chlorophenyl phenyl ether	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
4-Methylphenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
4-Nitroaniline	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
4-Nitrophenol	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
Acenaphthene	260	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Acenaphthylene	ND	•	4200	UG/KG	8270	05/15/2006 18:51	MRF
Acetophenone	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Anthracene	830	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Atrazine	ND	Ū	4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzaldehyde	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzo(a)anthracene	2100	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzo(a)pyrene	1700	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzo(b)fluoranthene	2700	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzo(ghi)perylene	1000	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Benzo(k)fluoranthene	2700	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Biphenyl	ND	Ū	4200	UG/KG	8270	05/15/2006 18:51	MRF
Bis(2-chloroethoxy) methane	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Bis(2-chloroethyl) ether	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Bis(2-ethylhexyl) phthalate	1200	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Butyl benzyl phthalate	ND	Ū	4200	UG/KG	8270	05/15/2006 18:51	MRF
Caprolactam	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Carbazole	300	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Chrysene	1900	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Di-n-butyl phthalate	ND	0	4200	UG/KG UG/KG	8270	05/15/2006 18:51	MRF
Di-n-octyl phthalate	ND		4200	UG/KG UG/KG	8270	05/15/2006 18:51	MRF
Dibenzo(a,h)anthracene	360	J	4200 4200	UG/KG UG/KG	8270 8270	05/15/2006 18:51	
Dibenzofuran	ND	J	4200 4200	UG/KG UG/KG	8270 8270	05/15/2006 18:51	MRF
Diethyl phthalate	ND		4200 4200	UG/KG UG/KG	8270 8270	05/15/2006 18:51	MRF
Dimethyl phthalate			4200 4200	UG/KG UG/KG	8270 8270	05/15/2006 18:51	MR F MR F
	ND		4200	00/ 60	0270	03/13/2000 10:51	PIK F

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B22 SVOC 24-48 Lab Sample ID: A6502911 Date Collected: 05/05/2006 Time Collected: 09:35

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	4200		4200	UG/KG	8270	05/15/2006 18:51	MRF
Fluorene	320	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Hexachlorobenzene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Hexachlorobutadiene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Hexachlorocyclopentadiene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Hexachloroethane	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Indeno(1,2,3-cd)pyrene	970	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Isophorone	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
N-Nitroso-Di-n-propylamine	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
N-nitrosodiphenylamine	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Naphthalene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Nitrobenzene	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Pentachlorophenol	ND		20000	UG/KG	8270	05/15/2006 18:51	MRF
Phenanthrene	3100	J	4200	UG/KG	8270	05/15/2006 18:51	MRF
Phenol	ND		4200	UG/KG	8270	05/15/2006 18:51	MRF
Pyrene	3500	J	4200	UG/KG	8270	05/15/2006 18 : 51	MRF

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B22 VOC 0-24 Lab Sample ID: A6502910 Date Collected: 05/05/2006 Time Collected: 09:20

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
1,2-Dichloroethene (Total)	ND		12	UG/KG	8260	05/09/2006 05:12	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
2-Butanone	ND		30	UG/KG	8260	05/09/2006 05:12	JLG
2-Hexanone	ND		30	UG/KG	8260	05/09/2006 05:12	JLG
4-Methyl-2-pentanone	ND		30	UG/KG	8260	05/09/2006 05:12	JLG
Acetone	6	J	30	UG/KG	8260	05/09/2006 05:12	JLG
Benzene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Bromoform	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Bromomethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Carbon Disulfide	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Chlorobenzene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Chloroethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Chloroform	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Chloromethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Ethylbenzene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Methylene chloride	2	BJ	6	UG/KG	8260	05/09/2006 05:12	JLG
Styrene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Tetrachloroethene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Toluene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Total Xylenes	ND		18	UG/KG	8260	05/09/2006 05:12	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Trichloroethene	ND		6	UG/KG	8260	05/09/2006 05:12	JLG
Vinyl acetate	ND		30	UG/KG	8260	05/09/2006 05:12	JLG
Vinyl chloride	ND		12	UG/KG	8260	05/09/2006 05:12	JLG

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

33/67Page: 23 Rept: AN1178

Sample ID: B23 24-48 Lab Sample ID: A6502915 Date Collected: 05/05/2006 Time Collected: 11:00

			Detection	Date/Time			
Parameter		Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1221	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1232	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1242	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1248	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1254	ND		120	UG/KG	8082	05/16/2006 01 : 35	LMW
Aroclor 1260	2200		120	UG/KG	8082	05/16/2006 01 : 35	LMW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

34/67Page: 24 Rept: AN1178

Sample ID: B23 VOC 0-24 Lab Sample ID: A6502914 Date Collected: 05/05/2006 Time Collected: 10:45

			Detection			—Date/Time	
Parameter	Result	Flag	Limit	<u> Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,1,2-Trichloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,1-Dichloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,1-Dichloroethene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,2-Dichloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
1,2-Dichloroethene (Total)	ND		14	UG/KG	8260	05/09/2006 06:11	JLG
1,2-Dichloropropane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
2-Butanone	ND		34	UG/KG	8260	05/09/2006 06:11	JLG
2-Hexanone	ND		34	UG/KG	8260	05/09/2006 06:11	JLG
4-Methyl-2-pentanone	ND		34	UG/KG	8260	05/09/2006 06:11	JLG
Acetone	33	J	34	UG/KG	8260	05/09/2006 06:11	JLG
Benzene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Bromodichloromethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Bromoform	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Bromomethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Carbon Disulfide	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Carbon Tetrachloride	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Chlorobenzene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Chloroethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Chloroform	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Chloromethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Dibromochloromethane	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Ethylbenzene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Methylene chloride	4	BJ	7	UG/KG	8260	05/09/2006 06:11	JLG
Styrene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Tetrachloroethene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Toluene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Total Xylenes	ND		20	UG/KG	8260	05/09/2006 06:11	JLG
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Trichloroethene	ND		7	UG/KG	8260	05/09/2006 06:11	JLG
Vinyl acetate	ND		34	UG/KG	8260	05/09/2006 06:11	JLG
Vinyl chloride	ND		14	UG/KG	8260	05/09/2006 06:11	JLG

NYSDEC

35/67Page: 25 Rept: AN1178

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B24 0-48 Lab Sample ID: A6502916 Date Collected: 05/05/2006 Time Collected: 11:20

	Detection					Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>		
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1221	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1232	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1242	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1248	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1254	ND		21	UG/KG	8082	05/16/2006 01 : 53	LMW		
Aroclor 1260	270		21	UG/KG	8082	05/16/2006 01:53	LMW		

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B3 31-35 Lab Sample ID: A6502801 Date Collected: 05/04/2006 Time Collected: 09:10

			Detection			Date/Time	
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1221	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1232	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1242	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1248	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1254	ND		180	UG/KG	8082	05/12/2006 16:20	DW
Aroclor 1260	3700		180	UG/KG	8082	05/12/2006 16:20	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

37/67Page: 27 Rept: AN1178

Sample ID: B4 18-24 Lab Sample ID: A6502802 Date Collected: 05/04/2006 Time Collected: 09:20

		Date/Time					
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1221	ND		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1232	ND		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1242	ND		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1248	2200		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1254	14000		1700	UG/KG	8082	05/12/2006 16:38	DW
Aroclor 1260	21000		1700	UG/KG	8082	05/12/2006 16:38	DW

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B5 32-37 Lab Sample ID: A6502804 Date Collected: 05/04/2006 Time Collected: 09:55

Parameter			Detection			Date/Time	-
	Result	<u>Flag</u>	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1221	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1232	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1242	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1248	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1254	ND		2000	UG/KG	8082	05/12/2006 17:49	DW
Aroclor 1260	41000		2000	UG/KG	8082	05/12/2006 17:49	DW

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B5 48-56 Lab Sample ID: A6502805 Date Collected: 05/04/2006 Time Collected: 10:05

			Detection		Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1221	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1232	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1242	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1248	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1254	ND		2300	UG/KG	8082	05/12/2006 18:07	DW	
Aroclor 1260	30000		2300	UG/KG	8082	05/12/2006 18:07	DW	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B6 28-38 Lab Sample ID: A6502810 Date Collected: 05/04/2006 Time Collected: 11:45

	Detection					Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>		
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1221	ND		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1232	ND		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1242	ND		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1248	1700		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1254	6600		1200	UG/KG	8082	05/12/2006 19:53	DW		
Aroclor 1260	9200		1200	UG/KG	8082	05/12/2006 19:53	DW		

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B6 VOC Lab Sample ID: A6502809 Date Collected: 05/04/2006 Time Collected: 11:50

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8260 - TCL VOLATI							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,1,2-Trichloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,1-Dichloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,1-Dichloroethene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,2-Dichloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
1,2-Dichloroethene (Total)	ND		13	UG/KG	8260	05/08/2006 21:26	JLG
1,2-Dichloropropane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
2-Butanone	11	J	32	UG/KG	8260	05/08/2006 21:26	JLG
2-Hexanone	ND		32	UG/KG	8260	05/08/2006 21:26	JLG
4-Methyl-2-pentanone	ND		32	UG/KG	8260	05/08/2006 21:26	JLG
Acetone	75		32	UG/KG	8260	05/08/2006 21:26	JLG
Benzene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Bromodichloromethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Bromoform	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Bromomethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Carbon Disulfide	2	J	6	UG/KG	8260	05/08/2006 21:26	JLG
Carbon Tetrachloride	ND		6	UG/KG	8260	05/08/2006 21 : 26	JLG
Chlorobenzene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Chloroethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Chloroform	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Chloromethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Dibromochloromethane	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Ethylbenzene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Methylene chloride	8	в	6	UG/KG	8260	05/08/2006 21:26	JLG
Styrene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Tetrachloroethene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Toluene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Total Xylenes	ND		19	UG/KG	8260	05/08/2006 21:26	JLG
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Trichloroethene	ND		6	UG/KG	8260	05/08/2006 21:26	JLG
Vinyl acetate	ND		32	UG/KG	8260	05/08/2006 21:26	JLG
Vinyl chloride	ND		13	UG/KG	8260	05/08/2006 21:26	JLG

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B7 32-37 Lab Sample ID: A6502808 Date Collected: 05/04/2006 Time Collected: 11:15

Parameter			Detection		Date/Time			
	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1221	ND		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1232	ND		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1242	ND		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1248	5600		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1254	ND		4000	UG/KG	8082	05/12/2006 19:36	DW	
Aroclor 1260	65000		4000	UG/KG	8082	05/12/2006 19:36	DW	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B8 37-42 Lab Sample ID: A6502807 Date Collected: 05/04/2006 Time Collected: 11:00

			Detection		Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		390	UG/KG	8082	05/12/2006 19 : 18	DW	
Aroclor 1221	ND		390	UG/KG	8082	05/12/2006 19:18	DW	
Aroclor 1232	ND		390	UG/KG	8082	05/12/2006 19 : 18	DW	
Aroclor 1242	ND		390	UG/KG	8082	05/12/2006 19 : 18	DW	
Aroclor 1248	440		390	UG/KG	8082	05/12/2006 19 : 18	DW	
Aroclor 1254	ND		390	UG/KG	8082	05/12/2006 19 : 18	DW	
Aroclor 1260	3200		390	UG/KG	8082	05/12/2006 19:18	DW	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B9 23-28 Lab Sample ID: A6502815 Date Collected: 05/04/2006 Time Collected: 13:30

			Detection		Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1221	ND		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1232	ND		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1242	ND		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1248	4600		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1254	16000		2100	UG/KG	8082	05/12/2006 21:04	DW	
Aroclor 1260	7100		2100	UG/KG	8082	05/12/2006 21:04	DW	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: B9 5-9 Lab Sample ID: A6502812 Date Collected: 05/04/2006 Time Collected: 13:25

	Detection					Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>		
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1221	ND		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1232	ND		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1242	ND		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1248	ND		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1254	34000		3800	UG/KG	8082	05/12/2006 20:29	DW		
Aroclor 1260	25000		3800	UG/KG	8082	05/12/2006 20:29	DW		

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

46/67Page: 36 Rept: AN1178

Sample ID: COLLECTION SUMP Lab Sample ID: A6503002 Date Collected: 05/02/2006 Time Collected: 13:45

Date Receiv	/ed:	05/03/2006
Project	No:	NY5A946109
Client	No:	L10190
Site	No:	

		Detection				
Parameter	Result Flag_	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-AQ-SW8463 8082 - PCBS						
Aroclor 1016	ND	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1221	ND	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1232	ND	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1242	ND	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1248	5.9	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1254	ND	4.8	UG/L	8082	05/09/2006 11 : 48	DW
Aroclor 1260	82	4.8	UG/L	8082	05/09/2006 11:48	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

47/67^{Page: 37} Rept: AN1178

Sample ID: COMPOSITE AREA A Lab Sample ID: A6502902 Date Collected: 05/04/2006 Time Collected: 15:30

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2,4,5-Trichlorophenol	ND		17000	UG/KG	8270	05/15/2006 18:01	MRF
2,4,6-Trichlorophenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2,4-Dichlorophenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2,4-Dimethylphenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2,4-Dinitrophenol	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
2,4-Dinitrotoluene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2,6-Dinitrotoluene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2-Chloronaphthalene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2-Chlorophenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2-Methylnaphthalene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2-Methylphenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
2-Nitroaniline	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
2-Nitrophenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
3,3'-Dichlorobenzidine	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
3-Nitroaniline	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
4,6-Dinitro-2-methylphenol	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
4-Bromophenyl phenyl ether	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
4-Chloro-3-methylphenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
4-Chloroaniline	ND		7200	UG/KG	8270	05/15/2006 18:01	
4-Chlorophenyl phenyl ether			7200	UG/KG UG/KG	8270	05/15/2006 18:01	MRF
	ND						MRF
4-Methylphenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
4-Nitroaniline	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
4-Nitrophenol	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
Acenaphthene	1200	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Acenaphthylene	440	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Acetophenone	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Anthracene	2300	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Atrazine	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Benzaldehyde	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Benzo(a)anthracene	4600	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Benzo(a)pyrene	3900	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Benzo(b)fluoranthene	5100	J	7200	UG/KG	8270	05/15/2006 18:01	MR F
Benzo(ghi)perylene	2600	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Benzo(k)fluoranthene	1600	J	7200	UG/KG	8270	05/15/2006 18:01	MR F
Biphenyl	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Bis(2-chloroethoxy) methane	ND		7200	UG/KG	8270	05/15/2006 18 : 01	MRF
Bis(2-chloroethyl) ether	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Bis(2-ethylhexyl) phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Butyl benzyl phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Caprolactam	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Carbazole	1300	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Chrysene	4100	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Di-n-butyl phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Di-n-octyl phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Dibenzo(a,h)anthracene	870	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Dibenzofuran	860	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Diethyl phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Dimethyl phthalate	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
							Buffalo

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

48/67Page: 38 Rept: AN1178

Sample ID: COMPOSITE AREA A Lab Sample ID: A6502902 Date Collected: 05/04/2006 Time Collected: 15:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	10000		7200	UG/KG	8270	05/15/2006 18:01	MRF
Fluorene	1500	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Hexachlorobenzene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Hexachlorobutadiene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Hexachlorocyclopentadiene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Hexachloroethane	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Indeno(1,2,3-cd)pyrene	2400	J	7200	UG/KG	8270	05/15/2006 18:01	MRF
Isophorone	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
N-Nitroso-Di-n-propylamine	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
N-nitrosodiphenylamine	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Naphthalene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Nitrobenzene	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Pentachlorophenol	ND		35000	UG/KG	8270	05/15/2006 18:01	MRF
Phenanthrene	10000		7200	UG/KG	8270	05/15/2006 18:01	MRF
Phenol	ND		7200	UG/KG	8270	05/15/2006 18:01	MRF
Pyrene	8200		7200	UG/KG	8270	05/15/2006 18:01	MR F
Metals Analysis							
Arsenic – Total	8.6		2.1	MG/KG	6010	05/10/2006 04:33	TWS
Barium – Total	148		0.52	MG/KG	6010	05/10/2006 04:33	TWS
Cadmium – Total	3.4		0.21	MG/KG	6010	05/10/2006 04:33	TWS
Chromium - Total	26.0		0.52	MG/KG	6010	05/10/2006 04:33	TWS
Lead - Total	423		1.0	MG/KG	6010	05/10/2006 04:33	TWS
Mercury - Total	1.3		0.11	MG/KG	7471	05/13/2006 13:33	LH
Selenium - Total	ND		4.2	MG/KG	6010	05/10/2006 04:33	TWS
Silver – Total	0.62		0.52	MG/KG	6010	05/10/2006 04:33	T₩S
ICLP Metals Analysis							
Arsenic – Total	ND		0.010	MG/∟	6010	05/12/2006 06:26	T₩S
Barium – Total	0.72		0.0020	MG/∟	6010	05/12/2006 06:26	T₩S
Cadmium – Total	0.0074		0.0010	MG/L	6010	05/12/2006 06:26	TWS
Chromium – Total	ND		0.0040	MG/L	6010	05/12/2006 06:26	T₩S
Lead - Total	0.042		0.0050	MG/L	6010	05/12/2006 06:26	T₩S
Mercury – Total	ND		0.00020	MG/L	7470	05/09/2006 11:44	LH
Selenium - Total	ND		0.015	MG/L	6010	05/12/2006 06:26	T₩S
Silver – Total	ND		0.0030	MG/L	6010	05/12/2006 06:26	TWS
Wet Chemistry Analysis							
Corrosivity (pH)	7.95		0	s.U.	9045	05/10/2006 11:55	
Flashpoint	>200		0	°F	1010	05/09/2006 16:00	SM

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

49/67Page: 39 Rept: AN1178

Sample ID: COMPOSITE AREA B Lab Sample ID: A6502909 Date Collected: 05/04/2006 Time Collected: 16:55

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2,4,5-Trichlorophenol	ND		18000	UG/KG	8270	05/15/2006 18:26	MRF
2,4,6-Trichlorophenol	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2,4-Dichlorophenol	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2,4-Dimethylphenol	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2,4-Dinitrophenol	ND		36000	UG/KG	8270	05/15/2006 18:26	MRF
2,4-Dinitrotoluene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2,6-Dinitrotoluene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
2-Chloronaphthalene	ND		7400	UG/KG	8270	05/15/2006 18:26	MR F
2-Chlorophenol	ND		7400	UG/KG	8270	05/15/2006 18:26	MR F
2-Methylnaphthalene	820	J	7400	UG/KG	8270	05/15/2006 18:26	MR F
2-Methylphenol	ND		7400	UG/KG	8270	05/15/2006 18:26	
2-Nitroaniline	ND		36000	UG/KG	8270	05/15/2006 18:26	
2-Nitrophenol	ND		7400	UG/KG	8270	05/15/2006 18:26	
3,3'-Dichlorobenzidine	ND		36000	UG/KG	8270	05/15/2006 18:26	
3-Nitroaniline	ND		36000	UG/KG	8270	05/15/2006 18:26	
4,6-Dinitro-2-methylphenol	ND		36000	, UG/KG	8270	05/15/2006 18:26	
4-Bromophenyl phenyl ether	ND		7400	, UG/KG	8270	05/15/2006 18:26	
4-Chloro-3-methylphenol	ND		7400	UG/KG	8270	05/15/2006 18:26	
4-Chloroaniline	ND		7400	, UG/KG	8270	05/15/2006 18:26	
4-Chlorophenyl phenyl ether	ND		7400	UG/KG	8270	05/15/2006 18:26	
4-Methylphenol	ND		7400	UG/KG	8270	05/15/2006 18:26	
4-Nitroaniline	ND		36000	UG/KG	8270	05/15/2006 18:26	
4-Nitrophenol	ND		36000	UG/KG	8270	05/15/2006 18:26	
Acenaphthene	1700	J	7400	UG/KG	8270	05/15/2006 18:26	
Acenaphthylene	610	J	7400	UG/KG	8270	05/15/2006 18:26	
Acetophenone	ND	·	7400	UG/KG	8270	05/15/2006 18:26	
Anthracene	2800	J	7400	UG/KG	8270	05/15/2006 18:26	
Atrazine	ND	·	7400	UG/KG	8270	05/15/2006 18:26	
Benzaldehyde	ND		7400	UG/KG	8270	05/15/2006 18:26	
Benzo(a)anthracene	4900	J	7400	UG/KG	8270	05/15/2006 18:26	
Benzo(a)pyrene	4200	J	7400	UG/KG	8270	05/15/2006 18:26	
Benzo(b)fluoranthene	5100	J	7400	UG/KG	8270	05/15/2006 18:26	
Benzo(ghi)perylene	2800	J	7400	UG/KG	8270	05/15/2006 18:26	
Benzo(k)fluoranthene	1600	J	7400	UG/KG	8270	05/15/2006 18:26	
Biphenyl	ND	•	7400	UG/KG	8270	05/15/2006 18:26	
Bis(2-chloroethoxy) methane	ND		7400	UG/KG	8270	05/15/2006 18:26	
Bis(2-chloroethyl) ether	ND		7400	UG/KG	8270	05/15/2006 18:26	
Bis(2-ethylhexyl) phthalate	1200	J	7400	UG/KG	8270	05/15/2006 18:26	
Butyl benzyl phthalate	ND	U	7400	UG/KG	8270	05/15/2006 18:26	
Caprolactam	ND		7400	UG/KG	8270	05/15/2006 18:26	
Carbazole	970	J	7400	UG/KG	8270	05/15/2006 18:26	
Chrysene	4100	J	7400	UG/KG	8270	05/15/2006 18:26	
Di-n-butyl phthalate	4186 ND	5	7400	UG/KG	8270	05/15/2006 18:26	
Di-n-octyl phthalate	ND		7400	UG/KG	8270	05/15/2006 18:26	
Dibenzo(a,h)anthracene	890	J	7400	UG/KG	8270	05/15/2006 18:26	
Dibenzofuran	1500	J	7400	UG/KG	8270	05/15/2006 18:26	
Diethyl phthalate	ND	Ū	7400	UG/KG	8270	05/15/2006 18:26	
Dimethyl phthalate	ND		7400	UG/KG	8270	05/15/2006 18:26	
	NU NU		1 400	00/10	0210		Buffalo

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

50/67Page: 40 Rept: AN1178

Sample ID: COMPOSITE AREA B Lab Sample ID: A6502909 Date Collected: 05/04/2006 Time Collected: 16:55

			Detection			——Date/Time——	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	9900		7400	UG/KG	8270	05/15/2006 18:26	MR F
Fluorene	2200	J	7400	UG/KG	8270	05/15/2006 18:26	MRF
Hexachlorobenzene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Hexachlorobutadiene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Hexachlorocyclopentadiene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Hexachloroethane	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Indeno(1,2,3-cd)pyrene	2500	J	7400	UG/KG	8270	05/15/2006 18:26	MRF
Isophorone	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
N-Nitroso-Di-n-propylamine	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
N-nitrosodiphenylamine	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Naphthalene	1800	J	7400	UG/KG	8270	05/15/2006 18:26	MRF
Nitrobenzene	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Pentachlorophenol	ND		36000	UG/KG	8270	05/15/2006 18:26	MRF
Phenanthrene	10000		7400	UG/KG	8270	05/15/2006 18:26	MRF
Phenol	ND		7400	UG/KG	8270	05/15/2006 18:26	MRF
Pyrene	8000		7400	UG/KG	8270	05/15/2006 18:26	MRF
Metals Analysis							
Arsenic – Total	41.6		2.3	MG/KG	6010	05/10/2006 04:59	T₩S
Barium – Total	388		0.57	MG/KG	6010	05/10/2006 04:59	
Cadmium — Total	6.9		0.23	MG/KG	6010	05/10/2006 04:59	
Chromium – Total	1090		0.57	MG/KG	6010	05/10/2006 04:59	
Lead - Total	1200		1.1	MG/KG	6010	05/10/2006 04:59	
Mercury – Total	1.3		0.10	MG/KG	7471	05/13/2006 13:34	
Selenium – Total	13.2		4.6	MG/KG	6010	05/10/2006 04:59	
Silver – Total	2.3		0.57	MG/KG	6010	05/10/2006 04:59	
[CLP Metals Analysis							
Arsenic - Total	ND		0.010	MG/L	6010	05/12/2006 08:09	T₩S
Barium - Total	0.85		0.0020	MG/L	6010	05/12/2006 08:09	TWS
Cadmium – Total	0.011		0.0010	MG/L	6010	05/12/2006 08:09	TWS
Chromium – Total	ND		0.0040	MG/L	6010	05/12/2006 08:09	TWS
Lead - Total	0.11		0.0050	MG/L	6010	05/12/2006 08:09	TWS
Mercury – Total	ND		0.00020	MG/L	7470	05/09/2006 11:27	
Selenium - Total	ND		0.015	MG/L	6010	05/12/2006 08:09	TWS
Silver - Total	ND		0.0030	MG/L	6010	05/12/2006 08:09	
Vet Chemistry Analysis							
	0.05		0	s.U.	9045	05/10/2006 11:55	KD
Corrosivity (pH)	9.05		0	3.0.	7047	00/10/2000 11:00	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

51/67Page: 41 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: DI SEDIMENT Lab Sample ID: A6502816 Date Collected: 05/04/2006 Time Collected: 14:05

			Detection				
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1221	ND		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1232	ND		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1242	ND		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1248	3600		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1254	9600		2000	UG/KG	8082	05/12/2006 21:22	DW
Aroclor 1260	19000		2000	UG/KG	8082	05/12/2006 21:22	DW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

52/67^{Page: 42} Rept: AN1178

Sample ID: FLOOR DUST Lab Sample ID: A6503101 Date Collected: 05/05/2006 Time Collected: 11:50

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1221	ND		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1232	ND		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1242	ND		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1248	54000		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1254	190000		17000	UG/KG	8082	05/16/2006 02 : 11	LMW
Aroclor 1260	100000		17000	UG/KG	8082	05/16/2006 02 : 11	LMW

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

53/67^{Page: 43} Rept: AN1178

Sample ID: OWS MANHOLE Date Received: 05/03/2006 Lab Sample ID: A6503003 Project No: NY5A946109 Date Collected: 05/02/2006 Client No: L10190 Time Collected: 14:30 Site No: Detection -Date/Time-<u>Flag</u> Parameter Result Limit Units Method Analyzed <u>Analyst</u> NYSDEC-AQ-SW8463 8082 - PCBS Aroclor 1016 ND 2.4 UG/L 8082 05/09/2006 12:06 DW 05/09/2006 12:06 Aroclor 1221 ND 2.4 UG/L 8082 D₩ 05/09/2006 12:06 Aroclor 1232 UG/L 8082 ND 2.4 D₩ Aroclor 1242 05/09/2006 12:06 ND 2.4 UG/L 8082 DW Aroclor 1248 4.2 2.4 UG/L 8082 05/09/2006 12:06 DW Aroclor 1254 ND 2.4 UG/L 8082 05/09/2006 12:06 D₩ Aroclor 1260 14 2.4 UG/L 8082 05/09/2006 12:06 D₩

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

54/67^{Page: 44} Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: SURFACE SAMPLE-FENCE Lab Sample ID: A6503006 Date Collected: 05/02/2006 Time Collected: 14:10

Date Received:	05/03/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			—Date/Time—	
Parameter	Result	<u>Flag</u>	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1221	ND		2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1232	ND		2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1242	ND		2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1248	1700	J	2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1254	ND		2000	UG/KG	8082	05/09/2006 16:19	GFD
Aroclor 1260	15000		2000	UG/KG	8082	05/09/2006 16:19	GFD

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: SURFACE SOIL-FILL AR Lab Sample ID: A6503007 Date Collected: 05/02/2006 Time Collected: 15:00

			Detection			—Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1221	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1232	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1242	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1248	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1254	ND		1900	UG/KG	8082	05/09/2006 16:38	GFD
Aroclor 1260	32000		1900	UG/KG	8082	05/09/2006 16:38	GFD

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

56/67Page: 46 Rept: AN1178

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: SURFACE SOIL-MH Lab Sample ID: A6503005 Date Collected: 05/02/2006 Time Collected: 14:00

Date Received:	05/03/2006
Project No:	NY5A946109
Client No:	∟10190
Site No:	

			Detection				
Parameter		Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1000	UG/KG	8082	05/09/2006 16:01	GFD
Aroclor 1221	ND		1000	UG/KG	8082	05/09/2006 16:01	GFD
Aroclor 1232	ND		1000	UG/KG	8082	05/09/2006 16:01	GFD
Aroclor 1242	ND		1000	UG/KG	8082	05/09/2006 16 : 01	GFD
Aroclor 1248	ND		1000	UG/KG	8082	05/09/2006 16 : 01	GFD
Aroclor 1254	ND		1000	UG/KG	8082	05/09/2006 16:01	GFD
Aroclor 1260	7400		1000	UG/KG	8082	05/09/2006 16:01	GFD

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

57/67Page: 47 Rept: AN1178

Sample ID: TANK CONTAINMENT Lab Sample ID: A6503001 Date Collected: 05/02/2006 Time Collected: 13:05

Date Receive	d: 05/03/2006
Project N	o: NY5A946109
Client N	o: L10190
Site N	o:

		Detection				Date/Time			
Parameter	Result Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>			
NYSDEC-AQ-SW8463 8082 - PCBS									
Aroclor 1016	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1221	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1232	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1242	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1248	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1254	ND	0.47	UG/∟	8082	05/09/2006 11 : 30	DW			
Aroclor 1260	0.38 J	0.47	UG/L	8082	05/09/2006 11 : 30	DW			

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

58/67Page: 48 Rept: AN1178

Sample ID: TANK CONTAINMENT SED Lab Sample ID: A6503004 Date Collected: 05/02/2006 Time Collected: 13:25

Date Received:	05/03/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

Parameter		Detection	Date/Time				
	Result	<u>Flag</u>	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1221	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1232	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1242	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1248	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1254	ND		1400	UG/KG	8082	05/11/2006 21:36	GFD
Aroclor 1260	14000		1400	UG/KG	8082	05/11/2006 21:36	GFD

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

59/67Page: 49 Rept: AN1178

Sample ID: WIPE 1 Lab Sample ID: A6503102 Date Collected: 05/05/2006 Time Collected: 11:55

Parameter			Date/Time			
	ResultFlag	<u> Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - WIPE-SW8463 8082 - PCBS						
Aroclor 1016	ND	50	UG/WIPE	8082W	05/08/2006 17 : 27	LD
Aroclor 1221	ND	50	UG/WIPE	8082W	05/08/2006 17:27	LD
Aroclor 1232	ND	50	UG/WIPE	8082W	05/08/2006 17:27	LD
Aroclor 1242	ND	50	UG/WIPE	8082W	05/08/2006 17:27	LD
Aroclor 1248	ND	50	UG/WIPE	8082W	05/08/2006 17:27	LD
Aroclor 1254	480	50	UG/WIPE	8082W	05/08/2006 17:27	LD
Aroclor 1260	400	50	UG/WIPE	8082W	05/08/2006 17:27	LD

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: WIPE 2 Lab Sample ID: A6503103 Date Collected: 05/05/2006 Time Collected: 12:00

Parameter	Detection				Date/Time			
	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC - WIPE-SW8463 8082 - PCBS								
Aroclor 1016	ND		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1221	ND		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1232	ND		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1242	ND		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1248	ND		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1254	300		100	UG/WIPE	8082W	05/08/2006 17:47	LD	
Aroclor 1260	380		100	UG/WIPE	8082W	05/08/2006 17:47	LD	

Date: 05/22/2006 Time: 22:39:56

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: WIPE 3 Lab Sample ID: A6503104 Date Collected: 05/05/2006 Time Collected: 12:05

			Detection			Date/Time	
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - WIPE-SW8463 8082 - PCBS							
Aroclor 1016	ND		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1221	ND		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1232	ND		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1242	ND		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1248	ND		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1254	1400		250	UG/WIPE	8082W	05/08/2006 18:07	LD
Aroclor 1260	1900		250	UG/WIPE	8082W	05/08/2006 18:07	LD

Date: 05/22/2006 Time: 22:39:56

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: WIPE 4 Lab Sample ID: A6503105 Date Collected: 05/05/2006 Time Collected: 12:10

			Detection			Date/Time	
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - WIPE-SW8463 8082 - PCBS							
Aroclor 1016	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1221	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1232	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1242	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1248	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1254	630		250	UG/WIPE	8082W	05/08/2006 18:26	LD
Aroclor 1260	ND		250	UG/WIPE	8082W	05/08/2006 18:26	LD

Chain of Custody Record

	1						,					1							63	/67	
	289 Number	1_ of _/		Special Instructions/	Conditions of Receipt		E -	ASE HOLD	Additma.	res Due	5/06,	EC-				s are retained		1 Ting 106	1 aluge	Time	
	Chain of Custody Number 252289	Page		Spec	Cond		NOT	The	Be	SAMPLES	5/					(A fee may be assessed if samples are retained longer than 1 month)		Date	Date	Date	5
	5/3/06	1-7226 Fast Nomber	Analysis (Attach list if more space is needed)	7508	55	2										Archive For Months Ionger than		STU BUHALO			202.0
	MERNYK	-72.26 Nymber /85	Lappontact Lapbontact		Containers & Preservatives	HO ^E N />VaVZ HO ^R N HO HO FONH SəJdu [!0S		GA	E	Gw	6%	3	/ Prts			ent Disnosal Bv Lab	an oc Requirements (Spe	Va beviewed 1	2. Received By	3. Received By	
	Project Manager	Telephone Number (Area	Sile Contact : /	Carrier/Waybill Nurht	Matrix	Lime Sucesup Lime	\geq	345h V	1430hs. V	13254	1400hr	1 //oya	v Soular V			Sample Disposal	IN Other	Date h	Date 1 Date	Date Time	
STL-4124 (0901)	MORE REGION 9 DER	270 michigan Aver	WHALD 1 State Zip Code	RA MENE (Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	TANK CONTAINMENT 5/2/02/1			rent segment		Ly.	ley			Possible Hazard Identification Reas Com	ie Required 7 Dave 14 Dave 21 Da	3 8 2 C	2. Relinquered B)	3. Relinquished By	Comments

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

	rd
	Record
in of	tody
Chai	Custo

nc.
oratories,
Irent Lab
Severn

														_					_			64/	67	
Chain of Gustody Number	ge 1 or J		Special Instructions/	Conditions of Receipt														l if samples are retained			05/65/03 17me	Date	Date Time	
Date 15 106 Cha	Lab Numbér Page.	Analysis (Attach list if more space is needed)																(A fee may be assessed if samples are retained			20	ă	Ĩ	20,0,0
MERNYK	1-72201/851-7226 /851-7226 FAX	4 Lab Contact	Jer	Matrix Containers &	105 100 100 100 100 100 100 100		2	2										Sample Disposal	 OC Requirements (Spi 	Dec	13 05 1. Received by 13 05 1. Received by	Time 2. Received By O	Time 3. Received By	
	Telephone Numb	Zip Code Sile Contact	- W Carrier/Waybill N		Date Time Aqueous	01/0	0760	0460	C1355	5001	05.01	100	1115	1150	SHI	1305	1325	Lers Withhome		14 Days 21 Days Conner Days	190/s/sol	Date	Date	
Client WSDEC R9 DER	270 Michigan Ave.	ت ا	Project Name and Location (State) OIS/INS-BENGART A MEMEL		Sample I.D. No. and Description (Containers for each sample may be combined on one line)	BS 31"-35"		32 21:17"		BS 48"-56"	B1- 16-24	B8 37"-42"	BT 32"-37"	B6 VOC	B6 -28"-38"		1 L	Possible Hazard Identification PCBS 🗶 So PPM &	le Required	1 48 Hours 7 Days	1. Relinquished By	2. Relinquished By O	3. Relinquished By	Comments

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

Record
Custody

lnc.	
Laboratories,	
Trent	
ivern	

							,												1	1		65/	67	
	Chain of Custody Number 252291	Page 2 of 24		Special Instructions/	Conditions of Receipt														(A fee may be assessed if samples are retained longer than 1 month)		baid lob Time 205	Date	Date	
	5/5/06	Lab Number	Analysis (Attach list if more space is needed)	h2"	20150 2014/5 7017 7017 7017	200) 21-2-2- 511 11-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-													(A fee may be as Months longer than 1 mo		CAL	4		Je J. 0' C
		226 G		51630 070 2.5	y 42 28-561 8-58-5 1	12/12/		<u> </u>	>	>	>	>	2	2.	>	> 114	2	~	Archive For	ity)	And New	2		
	11	tex Number \$71-7	ab Contact		Containers & Preservatives	N ^a OH <u>ZUVC(</u> N ^a OH HCI HNO3 H52O¢													Disposal Bv Lab	lõ.	1. Received by	2. Received By	3. Received By	-
	ger Nern	Vimber (Area Code)	ntact	ill Number	Matrix	ino2 ibo2 suoaupA	>	5	>	>	>	>	~	>	>	>	>		Sample Disposal	Supple Stand	6 12 DS	Time	Time	-
	Project Manager	12 I	Site C	Carrier		Time	1340	SHEI	1330	1405	1425	1445	1450	1505	1525	/530	1550	1555	Unknown	- Other	S/S	Date V	Date	
			Zip Code 14702-2994	MEME - AN		Date	$5/4/\infty$												4		5			
STL-4124 (0901)	NYJDEC R9 DER	270 Michigan Ave.	Provide State Zap	e and Location (State)	20305	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	B13VC 5"-43"	B13 41" -48"	R9 23"-28"	DE Serment	BIZ 24"-29"	BHVOC.4"-39"	B14 354-39"	-Blb 32"-37"	B15 9"-39"	Composite - AREA "A"	BIT VC 38"-46"	BH 30-38"	Possible Hazard Identification アビズム ビ Son Commun Co	0 × [D V	2. Relinquished By	3. Relinquished By	Comments

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

s, Inc	
tories	
borat	
nt La	
ו Trei	
/err	

Т	1		1				1	1	ŀ	ł	1	ł		1	1	1		ł	1	ł	I	1	, 66 /	67	1
istody Nymber	292292	3 or 4		Special Instructions/	Conditions of Receipt														oles are retained		/	/// ^{7 ime} 365	Time	Time	
Chain of Cu	ς .Ζ	Page		S	Š														(A fee may be assessed if samples are retained	(Innuc)		bate bate	Date	Date	
	5 10b	1ber	/sis (Attach list if space is needed)		2015-77	740																Z			J
Date	10	Lab Numbe	Analysis (Attach list if more space is needed	I 1278	2/ H 7 51	417 A 5 DJ					r 1		\checkmark						44001			X			5.00
		26 fax	A M	5742 1444 07250 7.50	-3~1 √ ∀2 ? C/ ? C/	101 102 102 102		/	>			>	X				>	<u> </u>	1 Arabian Fac			A.S.) . -		C QC
	7	1851-72			Containers & Preservatives	IOH NaOH HOEN														ŝ	1 U	HILLAN C	AB pa	ed By	
	NCLA	Code)/Fax Numb é r フマ <i>てゆ</i>	Lab Contact	2	Cont Pres	HNO3 HSCO4 səjdun	i	/		/	20	1	/	1		1	1	ļ		OC Requ		1. Recei	2. Receiv	3. Received By	
		SSI-72	. FJ	Number	Matrix	lios pəs	1	1		>	>`	\ \	>	>	2	7	7	7	Sample Disposal	20 Par Del	Sthelich	1305 VSDS	Time	Time	
Project Manager	しょう	Telephone Number	D. JZYM D. Chi	Carrier/Waybill Number		Time Air suosupA	کر	5	35	0	5	0	5	0	0	S	0			-	D Other St	^{Date} / 5/5/06	Daté V	Date	
4			5	+			6 1605	1625	1635	16 40	1655	6 0920	0935	10/0	1020	Shol	00/1	02/1	Le Britter	1	21 Days		2	7	
			Zip Code 142.33-7971	۲. ۲		Date	5/4/06	e				5/5/06				-		\rightarrow	SUPPRAJ L			hh) P		
		-	State Zip	1 Men		on on one line)													ע איז	יו ווומוו	Days	Mu			
c	DEK	Ave.		Project Name and Location (State)	÷.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	354	3 "	36 4	,-40×	۲ ⁴ 8"	۰ <i>۲</i> "	S.'	41	84	۱۳	YP1'	18mi	S & SZZ		Days	mper			
	F.	chiga		ocation (Stat		e I.D. No. ar h sample may	8:-354	5-223"	- Su-36 4	8"-	- AREA "B"	0'- Z	SV224-45"	0 - 244	24-484	0"-24"	24"-4pri	0-48m	entification	Required	48 Hours	Ph			
STL-4124 (0901) Client	NSDEC	70 Michigan	Buffaco	S115	Contract/Puomase Order/Ducto M	Sample liners for eacl	ଦ୍	20	of Vac	٢	JUNPUSITE	B22 NC 0"-24"			I VOC	3 Vac	~	4	Possible Hazard Identification	Turn Around Time Required	24 Hours	1. Relinquished By	2. Relinquished By	3. Relinquished By	lents
STL-412 Client	3_	Address 277	3.3		U	(Conta	B20	B 18	819	B191	Ŝ	BZ:	B22	B21	3	623	B23	BZY	Possit	Imn		1. Rel	2. Rel	3. Rel	Comments

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

Chain of Custody Record

																		67/	67	
Chain of Custody Number	Page the of H		Special Instructions/	Conditions of Receipt			D WPE SAMPLU	<u> </u>							(A fee may be assessed if samples are retained longer than 1 month)		Batel I I Time 205	Date	Date Time	J.6°C
Date 5-5-06	1¢	Analysis (Attach list if more space is needed)											/	/	Months	6	they are			200
MEINJK	10) FayNumber 20 / 851 - 7226	12 Pristing	302	Containers & Preservatives	HOEN JOH IOH EONH SOJUN				2						nt Disposal Bv Lab Archive For) be OC Requirements (Spe	1. Received By	2. Received By	3. Received By	
Project Manager ME	Telephone Number (Area Code)/Fax	PCA D. Trymy Su	┥	Matrix	Time Balance International Int	6//Sehs	1155	12Ø0 V	1205 1	V 0121					Sample Disposal	Other NJS DU	S/e/0	Date 7 Time	Date	-
Client WySDEC RO DER	high A	BUFFALD VI 14203-739	Dentering AMPM	Contract Runchase DidadQuete No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	FLOOR DUT 5-5-06		WIPE Z	WIPE 3	WIPE 4					Possible Hazard Identification PCAS & SOPPIN of Le SS	Turn Around Time Required 21 Days 21 Days 21 Days 22 Hours 21 Days 21 Days	dey Thomas M. L. M.	2. Relinquished By	3. Relinquished By	Comments

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

This page is intentionally blank.

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-6259

STL Project#: NY5A946109 Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Bengart & Memel Site: 915115

Eugene Melnyk NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

STL Buffalo

 \geq Brian J Fischer Project Manager

Projectomanager

06/19/2006

STL Buffalo Current Certifications

As of 4/10//2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

			SAMPI	ED	RECEIVI	ED
LAB SAMPLE ID	<u>CLIENT SAMPLE ID</u>	MATRIX	DATE	TIME	DATE	TIME
A6625901	BUILDING SUMP	SOIL	05/31/2006	13:05	06/02/2006	15:55
A6625902	LOT EDGE AT BUILDING	SOIL	05/31/2006	13:20	06/02/2006	15:55
A6625903	LOT EDGE AT MW	SOIL	05/31/2006	13:30	06/02/2006	15:55
A6625906	LOT EDGE AT SW CORN.	SOIL	05/31/2006	14:10	06/02/2006	15:55
A6625904	NORTH FENCE AT GATE	SOIL	05/31/2006	13:50	06/02/2006	15:55
A6625905	SURFACE SOIL E.CONT.	SOIL	05/31/2006	14:00	06/02/2006	15:55

METHODS SUMMARY

Job#: A06-6259

STL Project#:	<u>NY5A946109</u>				
Site Name:	NYSDEC - RE	GION 9	REMEDIATION/S	SPILLS	CONTRACT

	ANALYTICAL
PARAMETER	METHOD
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463 8082
Aluminum - Total	SW8463 6010
Antimony - Total	SW8463 6010
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Calcium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Cobalt - Total	SW8463 6010
Copper - Total	SW8463 6010
Iron - Total	SW8463 6010
Lead - Total	SW8463 6010
Magnesium - Total	SW8463 6010
Manganese - Total	SW8463 6010
Mercury - Total	SW8463 7471
Nickel - Total	SW8463 6010
Potassium - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Sodium - Total	SW8463 6010
Thallium - Total	SW8463 6010
Vanadium - Total	SW8463 6010
Zinc - Total	SW8463 6010

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

Job#: A06-6259

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-6259

Sample Cooler(s) were received at the following temperature(s); 7.2 °C Samples were received at a temperature of 7.2° C. These samples were analyzed as per instructions from the client. Based on EPA data validation guidelines, there is no impact on data usability.

GC Extractable Data

For method 8082, manysamples required dilution prior to analysis due to the heavy matrix present or high concentration of target analytes. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10X or greater.

Metals Data

The LCS (Lot D051-540) recoveries for Aluminum, Antimony and Iron fell outside of the quality control limits, however, the LCS values were within the manufacturer's recommended acceptance limits. No corrective action was taken.

The analyte Zinc was detected in a bracketing CCB at a level above the project established reporting limit. However, all samples had levels of Zinc greater than ten times that of the Method Blank value, therefore, no corrective action was necessary.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

6-20-06

Date

Client Sample ID	<u>Lab Sample ID</u>	Parameter	(Inorganic)/Method	(Organic)	Dilution	Code
BUILDING SUMP	A6625901	8082			100.00	008
LOT EDGE AT BUILDING	A6625902	8082			1000.00	008
LOT EDGE AT MW	A6625903	8082			200.00	008
NORTH FENCE AT GATE	A6625904	8082			20.00	008
SURFACE SOIL E.CONT.	A6625905	8082			20.00	008
LOT EDGE AT SW CORN.	A6625906	8082			100.00	008

Dilution Code Definition:

- 002 sample matrix effects
- 003 excessive foaming
- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- 006 sample matrix resulted in method non-compliance for Surrogate
- 007 nature of the TCLP matrix
- 008 high concentration of target analyte(s)
- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution
- 012 sample viscosity
- 013 other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: BUILDING SUMP Lab Sample ID: A6625901 Date Collected: 05/31/2006 Time Collected: 13:05

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1221	ND		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1232	ND		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1242	ND		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1248	ND		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1254	46000		5000	UG/KG	8082	06/08/2006 18:47	MAN
Aroclor 1260	45000		5000	UG/KG	8082	06/08/2006 18:47	MAN

Date: 06/19/2006 Time: 19:25:57

=

NYSDEC NYSDEC - REGION 9 REMEDIATION∕SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LOT EDGE AT BUILDING Lab Sample ID: A6625902 Date Collected: 05/31/2006 Time Collected: 13:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		18000	UG/KG	8082	06/08/2006 19:26	MAN
Aroclor 1221	ND		18000	UG/KG	8082	06/08/2006 19:26	MAN
Aroclor 1232	ND		18000	UG/KG	8082	06/08/2006 19:26	MAN
Aroclor 1242	ND		18000	UG/KG	8082	06/08/2006 19:26	MAN
Aroclor 1248	ND		18000	ug/kg	8082	06/08/2006 19:26	MAN
Aroclor 1254	38000		18000	UG/KG	8082	06/08/2006 19:26	MAN
Aroclor 1260	36000		18000	UG/KG	8082	06/08/2006 19:26	MAN

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LOT EDGE AT MW Lab Sample ID: A6625903 Date Collected: 05/31/2006 Time Collected: 13:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1221	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1232	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1242	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1248	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1254	ND		3600	UG/KG	8082	06/08/2006 19:46	MAN
Aroclor 1260	94000		3600	UG/KG	8082	06/08/2006 19:46	MAN

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LOT EDGE AT SW CORN. Lab Sample ID: A6625906 Date Collected: 05/31/2006 Time Collected: 14:10

		Detection			Date/Time	
Parameter	Result	 Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS						
Aroclor 1016	ND	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1221	ND	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1232	ND	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1242	ND	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1248	ND	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1254	21000	1900	UG/KG	8082	06/08/2006 20:45	MAN
Aroclor 1260	16000	1900	UG/KG	8082	06/08/2006 20:45	MAN

=

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: NORTH FENCE AT GATE Lab Sample ID: A6625904 Date Collected: 05/31/2006 Time Collected: 13:50

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1221	ND		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1232	ND		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1242	ND		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1248	ND		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1254	3700		410	UG/KG	8082	06/08/2006 20:05	MAN
Aroclor 1260	12000		410	UG/KG	8082	06/08/2006 20:05	MAN
Metals Analysis							
Aluminum - Total	13600		12.4	MG/KG	6010	06/06/2006 05:01	TWS
Antimony – Total	ND		18.6	MG/KG	6010	06/06/2006 05:01	TWS
Arsenic – Total	8.0		2.5	MG/KG	6010	06/06/2006 05:01	T₩S
Barium - Total	118		0.62	MG/KG	6010	06/06/2006 05:01	TWS
Beryllium – Total	1.1		0.25	MG/KG	6010	06/06/2006 05:01	TWS
Cadmium - Total	2.6		0.25	MG/KG	6010	06/06/2006 05:01	TWS
Calcium - Total	81700		61.8	MG/KG	6010	06/06/2006 05:01	TWS
Chromium - Total	97.8		0.62	MG/KG	6010	06/06/2006 05:01	T₩S
Cobalt - Total	20.4		0.62	MG/KG	6010	06/06/2006 05:01	TWS
Copper – Total	1820		1.2	MG/KG	6010	06/06/2006 05:01	TWS
Iron - Total	36300		12.4	MG/KG	6010	06/06/2006 05:01	TWS
Lead - Total	309		1.2	MG/KG	6010	06/06/2006 05:01	TWS
Magnesium – Total	14900		24.7	MG/KG	6010	06/06/2006 05:01	T₩S
Manganese – Total	1000		0.25	MG/KG	6010	06/06/2006 05:01	T₩S
Mercury - Total	0.92		0.026	MG/KG	7471	06/06/2006 15:44	MM
Nickel - Total	338		0.62	MG/KG	6010	06/06/2006 05:01	TWS
Potassium – Total	2300		37.1	MG/KG	6010	06/06/2006 05:01	T₩S
Selenium - Total	ND		4.9	MG/KG	6010	06/06/2006 05:01	T₩S
Silver - Total	1.4		0.62	MG/KG	6010	06/06/2006 05:01	T₩S
Sodium – Total	468		173	MG/KG	6010	06/06/2006 05:01	T₩S
Thallium – Total	ND		7.4	MG/KG	6010	06/06/2006 05:01	TWS
Vanadium - Total	29.1		0.62	MG/KG	6010	06/06/2006 05:01	TWS
Zinc - Total	1100		1.2	MG/KG	6010	06/06/2006 05:01	TWS

-

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: SURFACE SOIL E.CONT. Lab Sample ID: A6625905 Date Collected: 05/31/2006 Time Collected: 14:00

	Detection			Date/Time			
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1221	ND		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1232	ND		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1242	ND		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1248	ND		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1254	5200		380	UG/KG	8082	06/08/2006 20:25	MAN
Aroclor 1260	11000		380	UG/KG	8082	06/08/2006 20:25	MAN

İnc.	6 Chain of Custody Number 169271 Page / of /	Special Ins Conditions	Esinche Jack For Poth	(A fee may be assessed if samples are retained longer than 1 month)
SEVERN STL TRENT STL Severn Trent Laboratories, Inc.	Date Date S/ 31/06 51/31/06	PCBS Bace is needed		active For Months longer cetty
SEV TR Sever	ber (Area Code) Fax Number	Unpres HIZOA		Disposal By Lab OC Requirements (Spe 1. Received By 2. Received By 6. Received By
	Project Manager ZENCENE Telephone Number (Area C	Time Can		Days B Other So - DAY T/A Days B Other So - DAY T/A Date 016- So - DAY T/A Date 016- So - DAY T/A Date 150 - DAY Date 151 - Time Date 151 - Time
	9 DER	t 25 Code State Zip Code	1/2/2	PCD5 >50 ppm = 3 Skin Initiant Poison B [2 Days 21 Days 2 Days
Chain of Custody Record	Lection Lection	ALO Me and Location (State) me and Location (State) webee orden Ouste No. Webee Orden Ouste No. D 3 o 5 Sample 1.D. No. and us to stor each sample may be	BUNDING SUMP LOT EDGE AF BUIL WARTH FENLE AT SURPHE LOIL ENST (LOT EDGE AT Sh	Possible Hazard Identification Turn Around Time Required 24 Hours 148 Hours 1. Beinquished By Comments Comments

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

1.20

This page is intentionally blank.

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-C584

STL Project#: NY5A946109 Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Bengart & Memel Site: 915115

> Eugene Melnyk NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

> > STL Buffalo

Brian J) Fischer Project Manager Fischer

11/02/2006

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

			SAMPI	ED	RECEIVI	ED
LAB SAMPLE II	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6C58401	LS-1.2-4	SOIL			10/26/2006	
A6C58402	LS-1.6-8	SOIL	10/25/2006	13:35	10/26/2006	11:56
A6C58404	LS-2.12-14	SOIL	10/25/2006	13:45	10/26/2006	11:56
A6C58403	LS-2.2-4	SOIL	10/25/2006	13:40	10/26/2006	11:56
A6C58405	LS-3.0-4	SOIL	10/25/2006	14:05	10/26/2006	11:56
A6C58406	LS-3.6-8	SOIL	10/25/2006	14:10	10/26/2006	11:56
A6C58407	LS-4.10-12	SOIL	10/25/2006	14:20	10/26/2006	11:56
A6C58408	LS-5.6-8	SOIL	10/25/2006	14:30	10/26/2006	11:56
A6C58409	LS-6.0-2	SOIL	10/25/2006	14:40	10/26/2006	11:56
A6C58410	LS-6.8-10	SOIL	10/25/2006	14:45	10/26/2006	11:56
A6C58411	LS-7.0-2	SOIL	10/25/2006	15:05	10/26/2006	11:56
A6C58412	LS-7.7-9	SOIL	10/25/2006	15:10	10/26/2006	11:56
A6C58413	SURFACE-EAST BERM	SOIL	10/25/2006	15:25	10/26/2006	11:56

Job#: <u>A06-C584</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

			ANALYTICAL
]	PARAMETER	METHOD
NYSDEC-SPILLS-	8082 ·	- POLYCHLORINATED BIPHENYLS-S	SW8463 8082

References:

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A06-C584

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-C584

Sample Cooler(s) were received at the following temperature(s); 4.2 °C All samples were received in good condition.

GC Extractable Data

For method 8082, samples LS-6.8-10 and SURFACE EAST BREM required dilution prior to analysis due to the high concentration of target analytes. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10X or greater.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fisel

Project Manager

11 - 2-DL

Date

<u>Client Sample ID</u>	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	Code
LS-1.2-4	A6C58401	8082	5.00	800
LS-2.2-4	A6C58403	8082	5.00	008
LS-3.0-4	A6C58405	8082	2.00	800
LS-6.0-2	A6C58409	8082	2.00	800
LS-6.8-10	A6C58410	8082	10.00	008
SURFACE-EAST BERM	A6C58413	8082	20.00	800

Dilution Code Definition:

002 - sample matrix effects

- 003 excessive foaming
- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- 006 sample matrix resulted in method non-compliance for Surrogate
- 007 nature of the TCLP matrix
- 008 high concentration of target analyte(s)
- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution
- 012 sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Revision 1, 9/21/2005

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Date Received: 10/26/2006 Sample ID: LS-1.2-4 Project No: NY5A946109 Lab Sample ID: A6C58401 Date Collected: 10/25/2006 Client No: L10190 Site No: Time Collected: 13:30 ----Date/Time----Detection Analyst Result Flag Limit Units Method Analyzed Parameter NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS 10/30/2006 22:22 ND 110 UG/KG 8082 GFD Aroclor 1016 UG/KG 10/30/2006 22:22 8082 GFD 110 Aroclor 1221 ND 110 UG/KG 8082 10/30/2006 22:22 GFD Aroclor 1232 ND UG/KG 10/30/2006 22:22 Aroclor 1242 ND 110 8082 GFD 110 UG/KG 8082 10/30/2006 22:22 GFD Aroclor 1248 ND Aroclor 1254 ND 110 UG/KG 8082 10/30/2006 22:22 GFD 110 UG/KG 8082 10/30/2006 22:22 GFD Aroclor 1260 1000

STL Buffalo

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Date Received:	10/26/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

	Detection				Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1221	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1232	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1242	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1248	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1254	ND		21	UG/KG	8082	10/30/2006 22:41	GFD	
Aroclor 1260	63		21	UG/KG	8082	10/30/2006 22:41	GFD	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

11/23 Page: 3 Rept: AN1178

Sample ID: LS-2.12-14 Lab Sample ID: A6C58404 Date Collected: 10/25/2006 Time Collected: 13:45

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1221	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1232	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1242	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1248	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1254	ND		23	UG/KG	8082	10/30/2006 23:19	GFD	
Aroclor 1260	220		23	UG/KG	8082	10/30/2006 23:19	GFD	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LS-2.2-4 Lab Sample ID: A6C58403 Date Collected: 10/25/2006 Time Collected: 13:40

Date Received:	10/26/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

		Detection		Date/Time			
Parameter		Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1221	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1232	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1242	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1248	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1254	ND		120	UG/KG	8082	10/30/2006 23:00	GFD
Aroclor 1260	540		120	UG/KG	8082	10/30/2006 23:00	GFD

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LS-3.0-4 Lab Sample ID: A6C58405 Date Collected: 10/25/2006 Time Collected: 14:05

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1221	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1232	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1242	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1248	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1254	ND		36	UG/KG	8082	10/30/2006 23:39	GFD
Aroclor 1260	620		36	UG/KG	8082	10/30/2006 23:39	GFD

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LS-3.6-8 Lab Sample ID: A6C58406 Date Collected: 10/25/2006 Time Collected: 14:10

		Detection				Date/Time		
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS								
Aroclor 1016	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1221	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1232	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1242	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1248	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1254	ND		23	UG/KG	8082	10/31/2006 00:36	GFD	
Aroclor 1260	440		23	UG/KG	8082	10/31/2006 00:36	GFD	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: LS-4.10-12 Lab Sample ID: A6C58407 Date Collected: 10/25/2006 Time Collected: 14:20

	Detection			Date/Time			
Parameter	Result	Flag	<u>Limi</u> t	Units	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1221	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1232	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1242	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1248	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1254	ND		23	UG/KG	8082	10/31/2006 00:55	GFD
Aroclor 1260	160		23	UG/KG	8082	10/31/2006 00:55	GFD

Aroclor 1260

NYSDEC

10/31/2006 01:15

GFD

Sample ID: LS-5.6-8 Date Received: 10/26/2006 Project No: NY5A946109 Lab Sample ID: A6C58408 Date Collected: 10/25/2006 Client No: L10190 Site No: Time Collected: 14:30 Detection ----Date/Time-Flag <u>Limit</u> <u>Units</u> Method Analyzed <u>Analyst</u> Result Parameter NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS 18 UG/KG 8082 10/31/2006 01:15 GFD ND Aroclor 1016 Aroclor 1221 ND 18 UG/KG 8082 10/31/2006 01:15 GFD Aroclor 1232 ND 18 UG/KG 8082 10/31/2006 01:15 GFD UG/KG 10/31/2006 01:15 Aroclor 1242 ND 18 8082 GFD UG/KG 8082 10/31/2006 01:15 Aroclor 1248 18 GFD ND Aroclor 1254 250 18 UG/KG 8082 10/31/2006 01:15 GFD

320

UG/KG

8082

18

Aroclor 1260

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

17/23 Page: Rept: AN1178

10/31/2006 01:34 GFD

.

Site No:

UG/KG

8082

41

9

Date Received: 10/26/2006 Sample ID: LS-6.0-2 Lab Sample ID: A6C58409 Project No: NY5A946109 Client No: L10190 Date Collected: 10/25/2006 Time Collected: 14:40 ____ NYSDEC

490

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
YSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		41	UG/KG	8082	10/31/2006 01:34	GFD
Aroclor 1221	ND		41	UG/KG	8082	10/31/2006 01:34	GFD
Aroclor 1232	ND		41	UG/KG	8082	10/31/2006 01:34	GFD
Aroclor 1242	ND		41	UG/KG	8082	10/31/2006 01:34	GFD
Aroclor 1248	ND		41	UG/KG	8082	10/31/2006 01:34	GFD
Aroclor 1254	340		41	UG/KG	8082	10/31/2006 01:34	GFD

Aroclor 1260

NYSDEC

Sample ID: LS-6.8-10 Date Received: 10/26/2006 Project No: NY5A946109 Lab Sample ID: A6C58410 Client No: L10190 Date Collected: 10/25/2006 Time Collected: 14:45 Site No: Detection ----Date/Time-<u>Flag</u> Limit Units Method Analyzed <u>Analyst</u> Result Parameter NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS 190 UG/KG 8082 10/31/2006 01:53 GFD Aroclor 1016 ND UG/KG 10/31/2006 01:53 Aroclor 1221 ND 190 8082 GFD Aroclor 1232 ND 190 UG/KG 8082 10/31/2006 01:53 GFD UG/KG 8082 10/31/2006 01:53 Aroclor 1242 ND 190 GFD UG/KG 10/31/2006 01:53 Aroclor 1248 190 8082 GFD ND UG/KG 10/31/2006 01:53 Aroclor 1254 ND 190 8082 GFD

1400

UG/KG

190

8082

10/31/2006 01:53

GFD

NYSDEC

Sample ID: LS-7.0-2 Lab Sample ID: A6C58411 Date Collected: 10/25/2006 Time Collected: 15:05

	Detection				Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1221	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1232	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1242	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1248	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1254	ND		24	UG/KG	8082	10/31/2006 02:12	GFD
Aroclor 1260	490		24	UG/KG	8082	10/31/2006 02:12	GFD

NYSDEC

Sample ID: LS-7.7-9 Lab Sample ID: A6C58412 Date Collected: 10/25/2006 Time Collected: 15:10

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1221	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1232	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1242	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1248	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1254	ND		21	UG/KG	8082	10/31/2006 02:31	GFD
Aroclor 1260	120		21	UG/KG	8082	10/31/2006 02:31	GFD

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Bengart & Memel Site: 915115

Sample ID: SURFACE-EAST BERM Lab Sample ID: A6C58413 Date Collected: 10/25/2006 Time Collected: 15:25

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
NYSDEC-SPILLS ~ SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1221	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1232	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1242	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1248	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1254	ND		440	UG/KG	8082	10/31/2006 02:50	GFD
Aroclor 1260	3900		440	UG/KG	8082	10/31/2006 02:50	GFD

	ecord
of	dy Re
Chain	Custo

STL-4124 (0901) WSDEC Regg. DER Address L. r.	Project Manager CFX2 / Telephone Number (Au	LEC MV V as Code)/Fek Nymber	Date 25/06	Chain of Custody Number 169283
Mch'sg Are	716-851-5	22d / 851-7226	רמס ואמווספו	Page 2 of 2
M State Zi	14203-2599 Die Donaci	i ladsonad	Analysis (Attach list if more space is needed)	
MEC 910115	CarrierMa	-		Special Instructions/
ContractPunctarse IndentOrope No.	atrix Matrix	Containers &		Conditions of Receipt
No. and Description ple may be combined on one line)	Date Time Aqueous Sed	iios iios hosy hosn hosn hosn hosn		
Supple Supple - East BERM (0/25,	1/d6 1525ho			
	/			
	/			
		7		
			/	
			/	
				_
Possible Hazard Identification USW - LEVE (PCSS)	Disposal Sample Disposal	osal o Client 🗌 Disposal By Lab 🔲 Archive For	Months	(A fee may be assessed if samples are retained longer than 1 month)
e Required 1 Days 14 Days	Day	OC Requirements (Sp		
d by S S S		1. Received By	ll le	Date Time
2. Relinquished By		P 2. Received By		Date
3. Relinquished By	Date	3. Received By		late / Time

DISTRIBUTION: WHITE - Returned to Client with Report. CANARY - Stays with the Sample: PINK - Field Copy

Comments

22/23

Chain of Custody Record

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample: PINK - Field Copy

Comments

23/23

Attachment 2

Asbestos Evaluation

Empire Geo-Services, Inc. December 2008

A SUBSIDIARY OF SJB SERVICES, INC.

December 26, 2008

New York State Department of Environmental Conservation Region 9 Office 270 Michigan Avenue Buffalo, New York 14203

CORPORATE/

Attention: Mr. Eugene Melnyk

BUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Reference: Asbestos Inspection Bengart & Memel, Inc. Site 1079 Clinton Street, Buffalo, New York NYSDEC Site 915115; Call Out ID 115137

Dear Mr. Melnyk:

Empire Geo-Services, Inc. (Empire) inspected the building located at the referenced site for the presence of asbestos-containing materials (ACM) on December 12, 2008 and collected four samples of suspect ACM. A sketch of the building and the sample locations is attached.

The structure consists of a deteriorated concrete floor, steel columns, concrete block walls, and a wood-framed roof. No suspect ACM (insulation, fireproofing, etc.) were found on these interior components of the building. Bulk samples were collected on the exterior of the building of suspect ACM-containing roofing materials. The overlying new roofing materials were cut away at each of the two roof sampling locations to expose the older roofing materials. A third sample was collected from a debris pile inside the building that consisted of older materials from a section of the roof that had previously collapsed from deterioration. A fourth sample was collected from caulking material on the building's single window. The samples were analyzed by PLM and/or TEM, as appropriate, by AmeriSci, 13635 Genito Road, Midlothian, Virginia. The laboratory report is attached and indicates that the samples from the debris pile and the window caulk contain chrysotile asbestos in amounts greater than 1%.

ACM must be removed prior to building demolition. If the roof is determined by a licensed professional engineer or code enforcement official to be structurally unsafe, then a controlled demolition with asbestos in place may be completed in accordance with NYSDOL Industrial Code Rule 56-11.5.

If you have any questions or require further assistance, please contact our office.

Respectfully Submitted, EMPIRE GEO SERVICES INC.

Verdon DRS and

David Verdon NYSDOL Accredited Building Inspector No. 90-03390

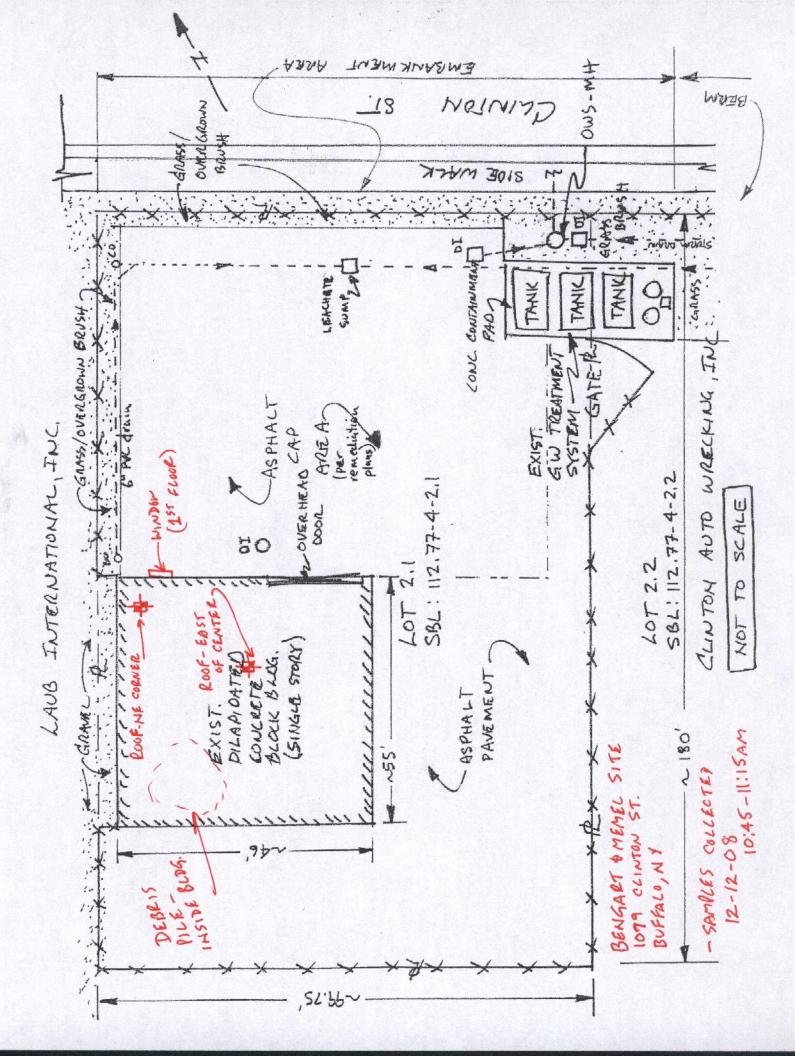
David R.

David R. Steiner Project Manager

EMPIRE GEO-SERVICES, INC.

1

ALBANY OFFICE PO Box 2199 Ballston Spa, NY 12020


5 Knabner Road Mechanlcville, NY 12118 Phone: (518) 899-7491 (518) 899-7496

CORTLAND OFFICE 60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

ROCHESTER OFFICE 535 Summit Point Drive Henrietta, NY 14467 Phone: (585) 359-2730 Fax: (585) 359 9668

MEMBER

	Inc.
108121424	SJB Services,
AmeriSci Job #.	Client Name:

	sis Resu	
Table 1	Summary of Bulk Asbestos Analysis Resul	1079 Clinton St.
Ta	of Bulk Ask	1079 C
	Summary	

Cileni Name: SJB Services, Inc.		Summa	ary of Bulk	Table 1 Summary of Bulk Asbestos Analysis Results 1079 Clinton St.	lysis Results		
AmeriSci Samnla & Cliani Samnle&	HG Area	Sample Weight (gram)	Heat Sensitive Organic %	- Acid Soluble Incrganic %	Insoluble Non-Asbesto s Inovganic %	** Ashertos % by PLM/DS	** Ashastos % by TEM
		1.127	88.5	6.0	5.5	æ	OWN
Location: Easi OI Center; Rool 02 S-2		1.321	72.1	1.4	13.2	NA	Chrysofte 13.3
Location: Debris File; Interior Roofing 03 & S-3	g	2,380	50.5	9.1	40.2	NA	Chrysolila Traca
Location: NE Comer, Roof 04 S-4		2.407	13.8	19.7	53.1	W	Chrysolile 13.3 Anthophylite Trace

Reviewed by:

Date Reviewed:

Date Analyzed: 12/17/2008 e Mm Analyzed By: Jean L. Mayas

Semi-Quantita®ve Anatysis: WAD = no sebestos detected; MA = not analyzed; NAPS = not analyzed due lo positive stop; Trace = <1%; PLM analysis by EPA 600/M4-92-020 per 40 CFR 753 (NVLAP Lab Gode 101904-0) or NY ELAP 138.1 for New York friable samples (198.6 for NOB samples) (NY ELAP Lab # 10984); TEM analysis by EPA 600/R-83/115 (not covered by NVLAP Bulk accreditation); or NY ELAP 198.4 for New York NOB samples (NY ELAP Lab # 10984);

.. Wsming Notes: Consider PLM fiber diameter limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine grained matrix material and may not be representative of non-unformity dispersed debris, solids or other heterogeneous meterials for which a combination PLM/TEM evaluation is recommended; Quantitation for beginning weights of <0.1 grams be representative of non-unformity dispersed debris, solids or other heterogeneous meterials for which a combination PLM/TEM evaluation is recommended; Quantitation for beginning weights of <0.1 grams should be considered as qualitative only.

Attachment 3

Condemnation Notice

City of Buffalo Dept. of Economic Development, Permit and Inspection Services January 2009

CITY OF BUFFALO DEPARTMENT OF ECONOMIC DEVELOPMENT, PERMIT & INSPECTION SERVICES

OFFICE OF THE COMMISSIONER

BYRON W. BROWN Mayor

JAMES COMERFORD, Jr. Deputy Commissioner

January 12, 2009

JAN 1 6 2009 NYSDEC REG 9 VREL UNREL

New York State Department of Labor Division of Safety and Health Engineering Services Unit State Office Building Campus Albany, New York 12240

Re: 1079 Clinton Street, Buffalo, New York

To whom it may concern,

Upon an Inspection performed by Building Inspector Tracy Krug on January 9, 2009, I have had the opportunity to review the conditions referencing the aforementioned property. At that time the following conditions were noted.

- 1. Portions of this building are in the state of structural collapse.
- 2. The building is open to trespass and is subject to convey fire.
- 3 The building is likely to be used for illegal activity.
- The building is attractive to children for trespass.
- 5. The Building is between two active businesses

As this building is in partial structural failure, and entering upon these premises is hazardous, the Department of Economic Development, Permit and Inspection Services has determined that this structure is in violation of the "Unsafe Buildings" Section 113 of the Code and Ordinance of the City of Buffalo. By the powers invested in me by The Charter of the City of Buffalo "Duties and Powers", Section 17-2, I have determined that this building be considered condemned and be demolished as soon as humanly possible.

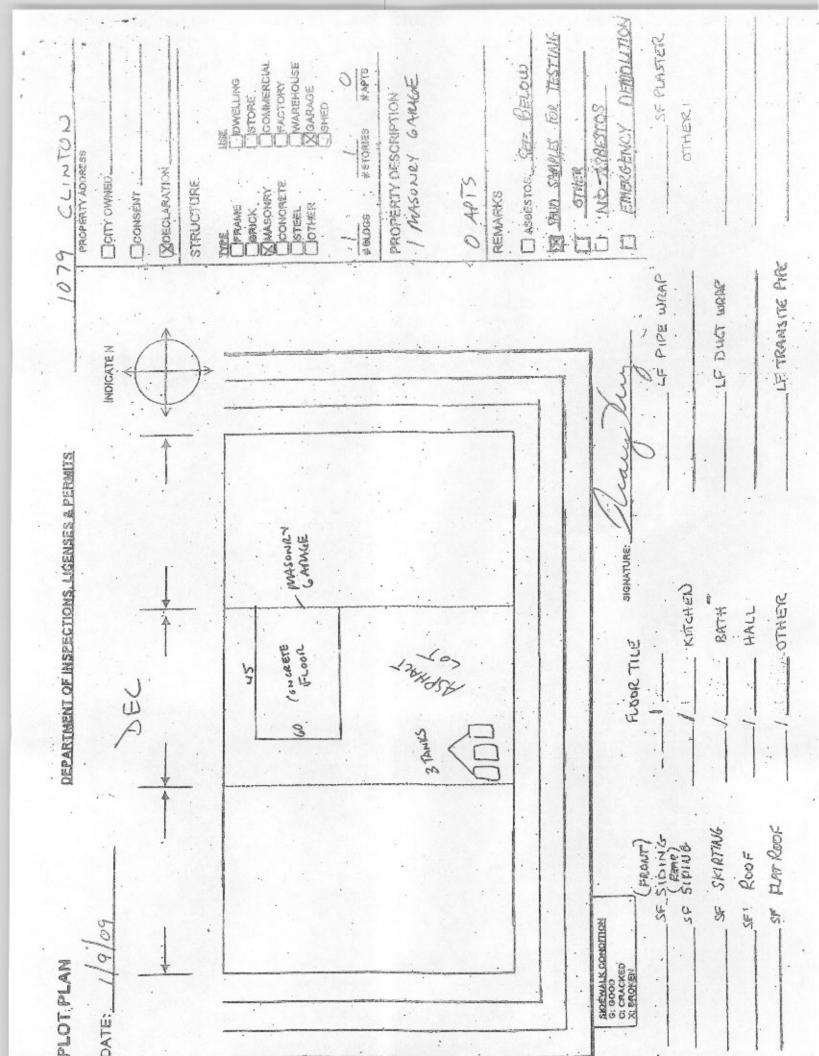
The Department of Economic Development, Permit and Inspection Services is in support of the application for a ICR 56, 11.5, Controlled Demolition / Condemned Buildings, to demolish the structure with the asbestos containing material in place so that it will not place workmen in a dangerous situation.

If you have any questions concerning this matter, please feel free to contact Assistant Director Paul Mielcarek 716-851-4903.

Very truly yours,

amer w. Comerford J.

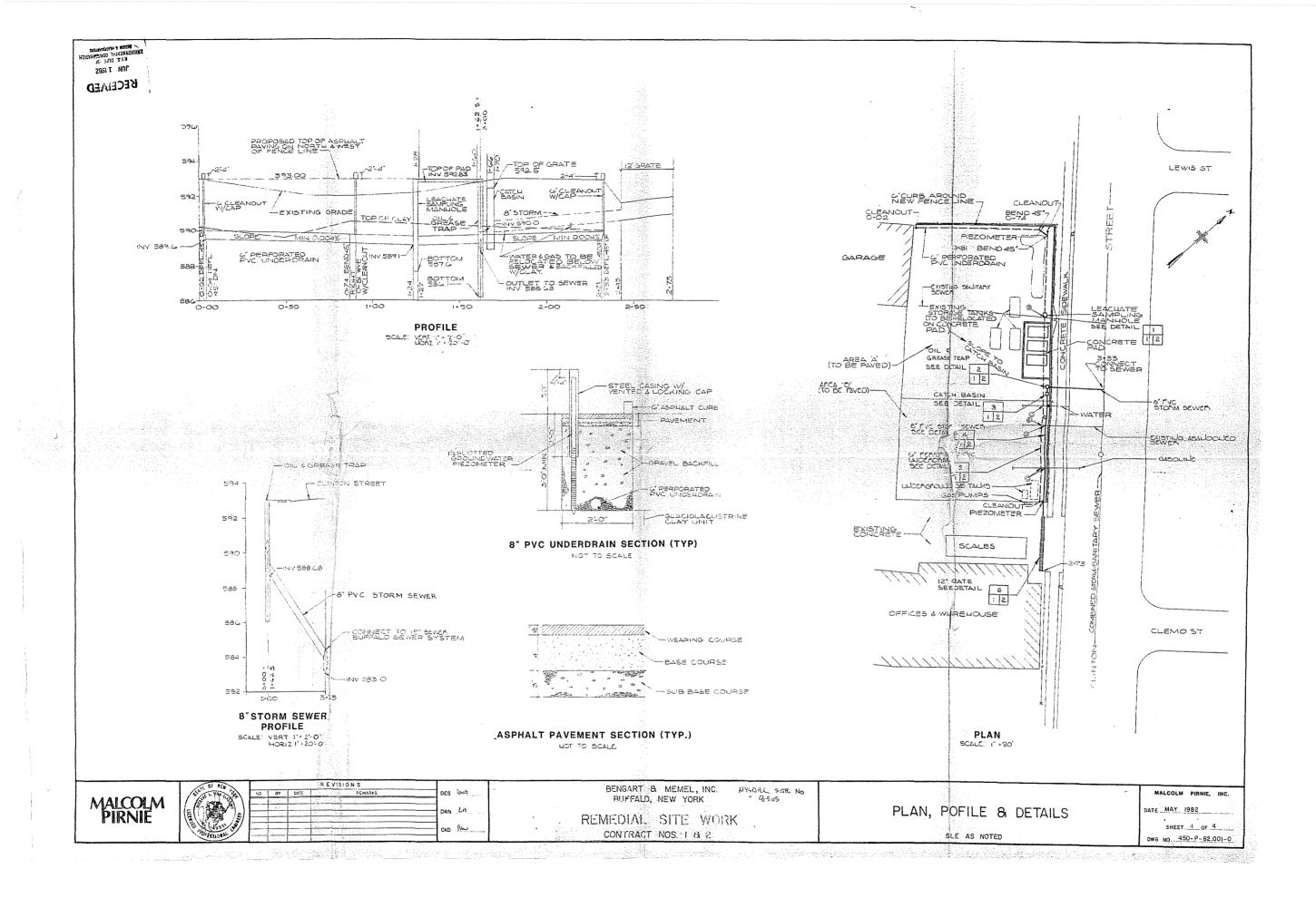
James W. Comerford Jr. Commissioner of Economic Development, Permit and Inspection Services

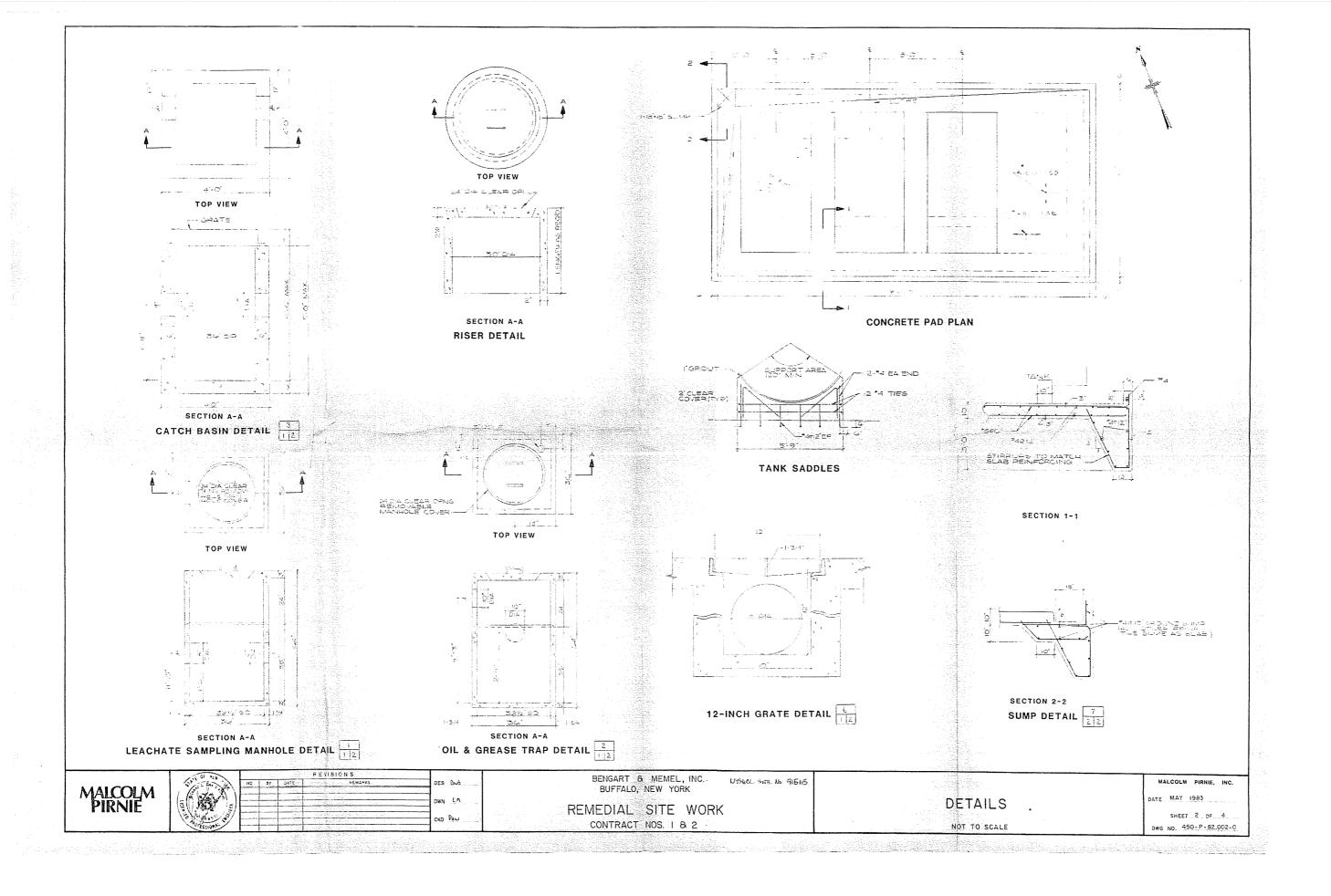

Cc: Tracy Krug, Building Inspector Paul Mielcarek, Assistant Director of Housing and Property Inspections

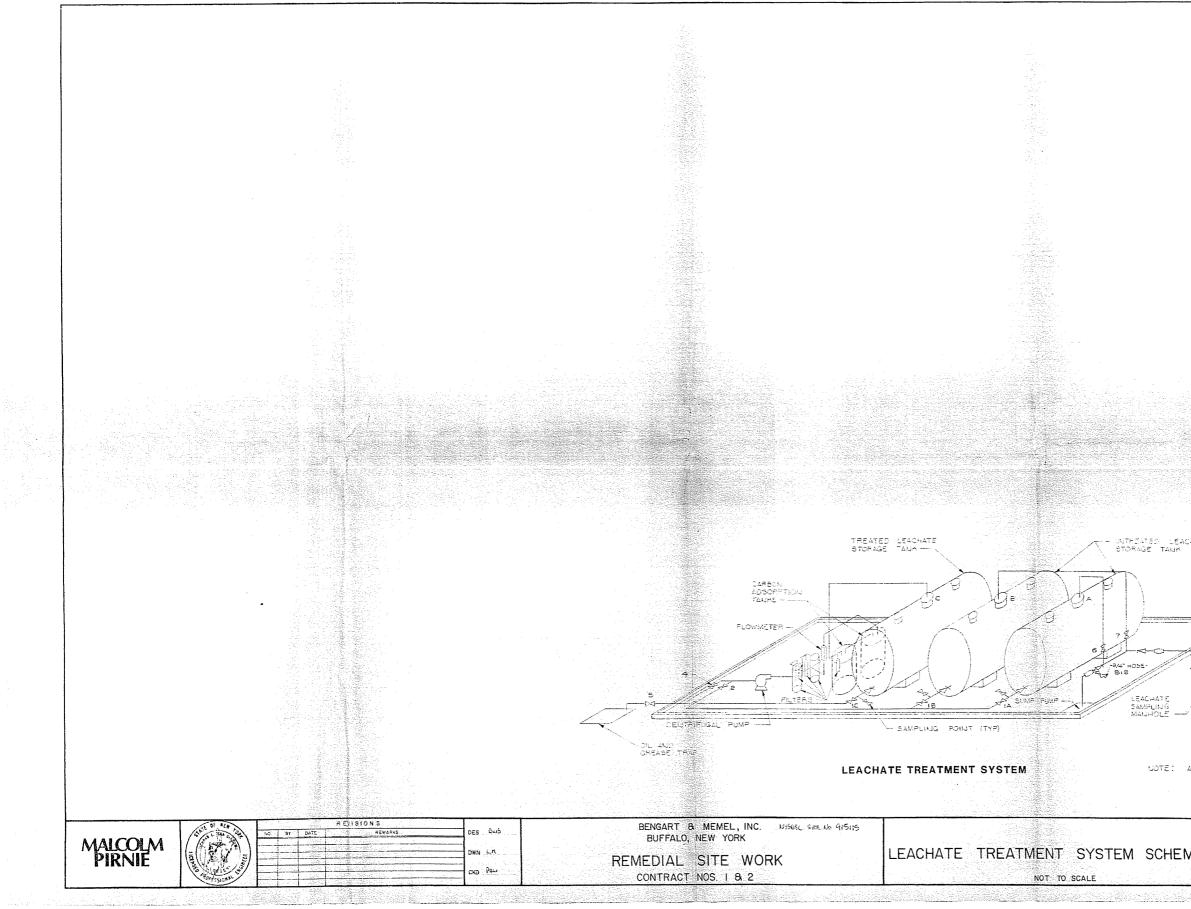
- 19		•
	CITY OF BUFFALO	
Syrce	ARTMENT OF ECONOMIC DEVELOPMENT, PERMIT & INSPECTION SERVICE W. Brown, Mayor ard M. Tobé, Commissioner DECLARATION OF EMERGENCY	LS
DAT	E: 1/9/09	
TO:	Assistant Director of Inspections	
RE:	Property Address: <u>1079</u> <u>(LINTON</u> Necessity for Immediate Emergancy Demolition pursuant to Chapter 113 of the Ordinances of the City of Buffalo	
Plea	se be advised of the following:	
	Pursuant to an inspection of the subject property on $1/9/0.9$ recommend that immediate emergency action is required for the reasons noted in the Ch on file in the Division of Inspections, and that the welfare of all concerned would be be immediate demolition of the structure. Dated: $1/9/0.9$ Signed: $2000000000000000000000000000000000000$	set served by
	Pursuant to my personal review of the inspection report submitted by the Building Inspector above dated, concerning the subject property, I hereby certify with the recommendation for immediate demolition of the structure.	that I concur
	Dated: 1994 Signed: Supervisor of Stury & Blight/Chief Build	ling Inspector

Nacommaios

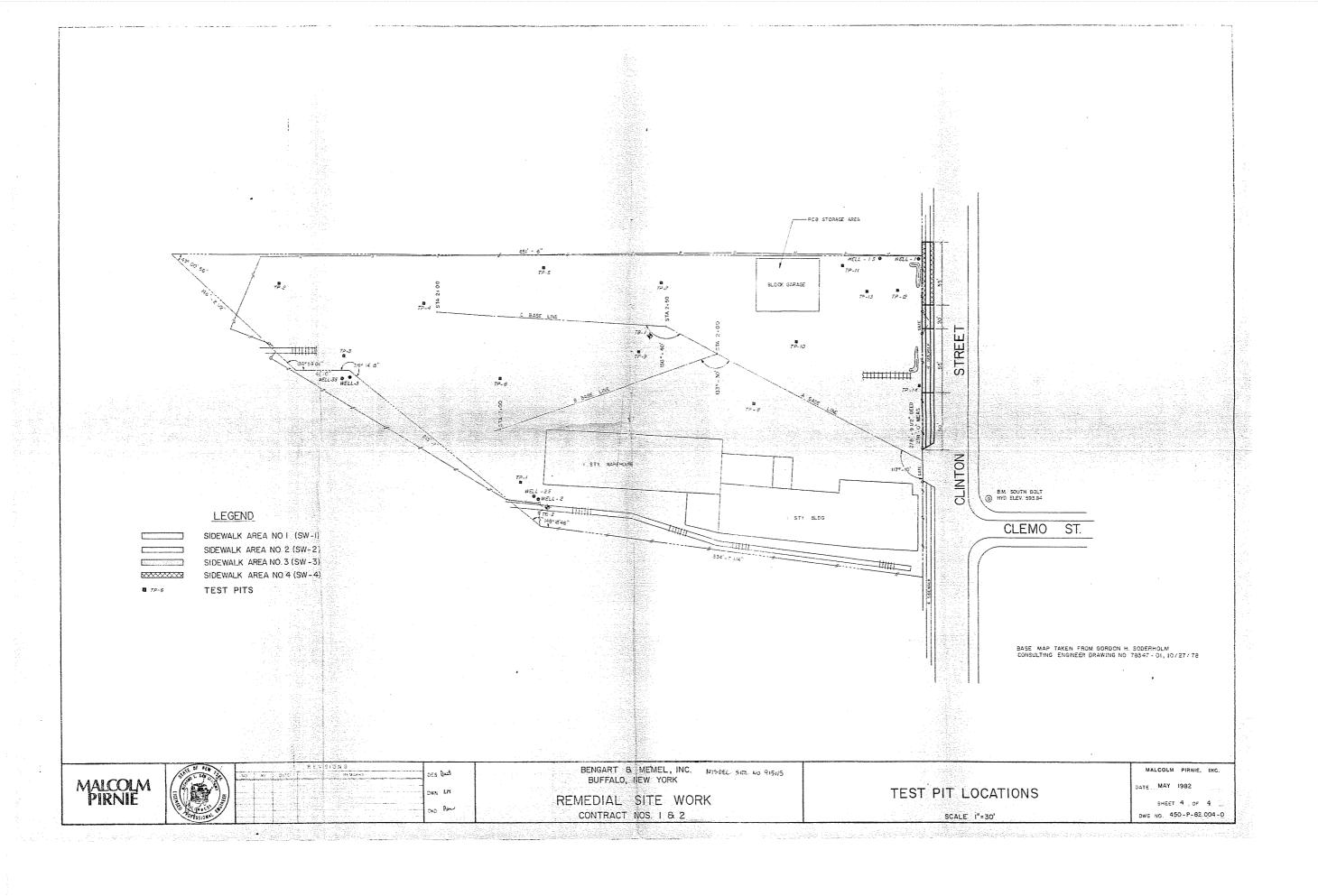
Byron	ARTMENT OF ECONOMIC DE W. Brown, Mayor rd M. Tobs, Commissioner CHECKLIST PRIOR TO RECO			IT & INSPECTION SERVICES
DATE	: 1/9/09			
	In all cases of immediate/emerge the recommendation should revie	ncy action being w the checklist	g recom and mai	mended, the party making ke appropriate notations of checks:
RE:	& of buildings on Property	idered for em	ergénc	y demolition: <u>1 GARAGE</u>
	erenar er edeare a sama frechenik e			BOX. 1011 BELD NY
CON	DITION OF BUILDING:	000300000 8*03303		
KNIM	DITION OF DUILDING.	And a second		
	Vacant and deteriorated			Between two (2) occupied structures
X	Dilapidated & Open	· ·		Situated in heavily residential neighborhood
ent Les			Same	
-	Rotted and/or fire-damaged			Close to Schools, parks, or other public
¥.	Partially collapsed or strong		174	facilities Available to trespassers and/or criminals
-	possibility of collapsing		N N	Strong blighting effect on neighborhood
	Other:			Attractive and dangerous nuisance to
X			1.24	children and others
(i	Pictures taken and on file		-	
18	ban by: TRACY KRUG	allahaman masa masa kumu k	. had	Other
	Sidewalk Damage Report Filed	NO		
lema	SHOW	DEAN	(TE)	DEMO
, ,	TO LLEAN	and the second state of th	TE	
walanatist neprote				
sted	: 1/9/09	Signed:	tha	MAL MAL
ased sted		Cinned.	+	Clition and/or immediate action is necessary.
		5	Supervie	or of Sium & Blight/Chief Building Inspector

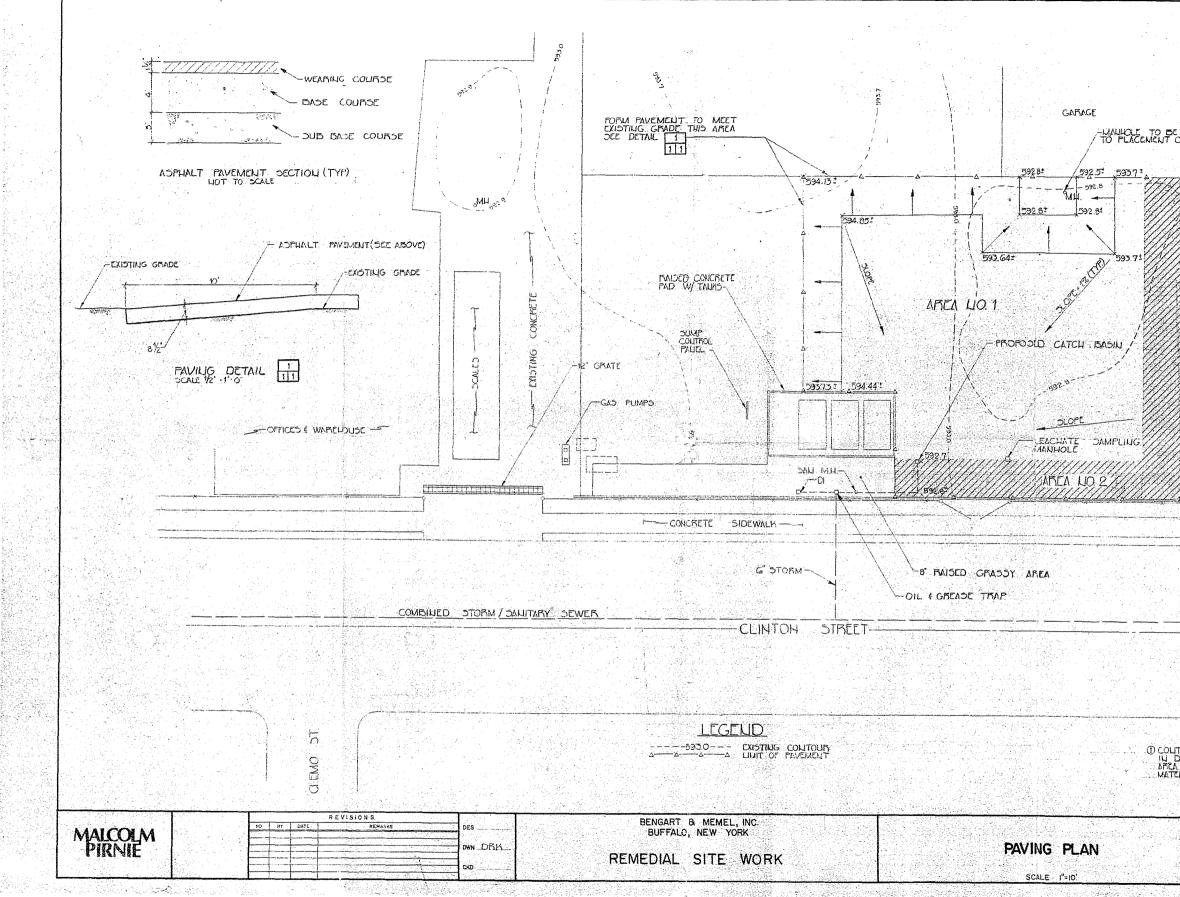

•




Attachment 4

Existing Remediation Design Drawings


Malcolm Pirnie, Inc., 1982 to 1984



		-
	- 1	
	4. A	
		Č÷.
	방법은 관람들은 고객을 가지 않는다. 관계 관계 관	
144TE		
	24 - 1 19 - 1 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
	1	
<u></u>		
1		
. 0	Nirèsi ≫3 dati Valve	
/ т	H CHECK VALVE ST	
r	CT DIARHEAGM VALVE	
ALL PIPING	TO BE HI/4" PVC	
	MALCOLM PIRNIE, INC.	
ATIC	DATE MAY 1982	
MAIIU	SHEET 3 OF 4	
	DWG NO. 450-P-82.003-0	

-MANHOLE TO BE UNPLUGGED PRIOR 593.7¹ Bengart Memel Site 915/15 NOTES O COLTRACTER TO USE FILL STORED IN DRIVING ON SITE FOR GRADING AFEA NO 1: CLEAN GRADINGRE FILL MATERIAL FOR ABEA NO 2: MALCOLM PIRNIE, INC. ATE JULY, 1984 SHEET _ OF _

Attachment 5

Record Documentation of Installed Remediation Systems

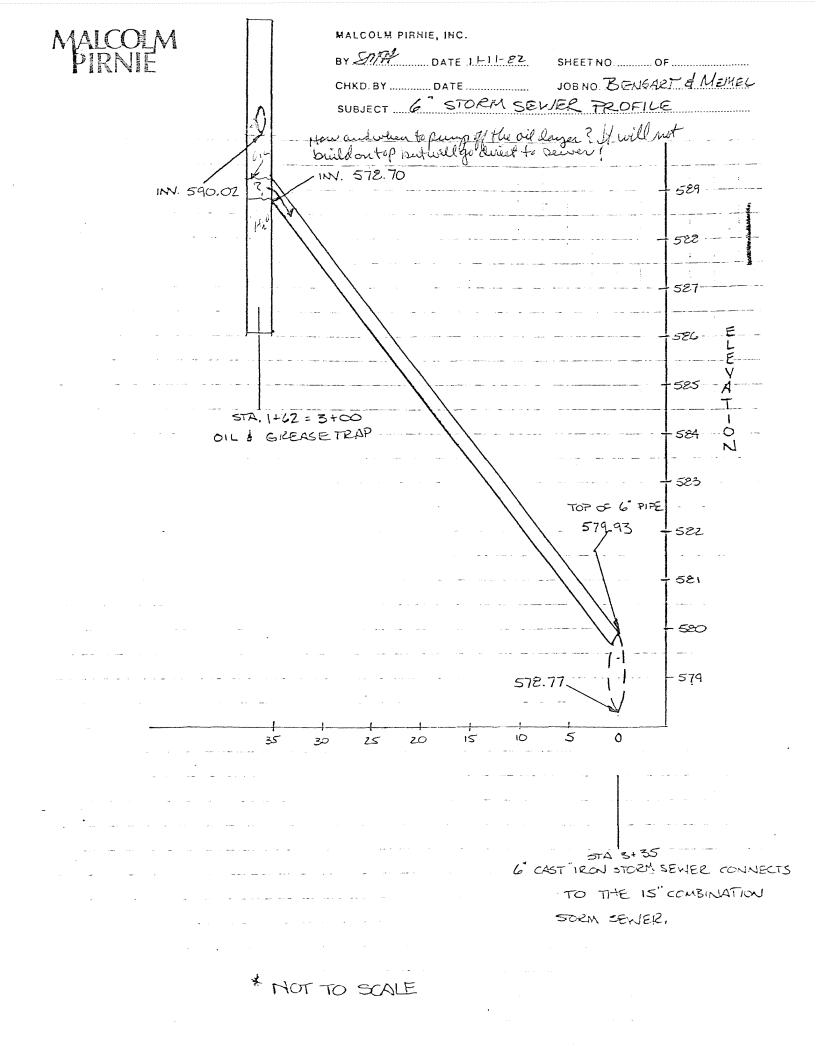
Malcolm Pirnie, Inc., December 1982

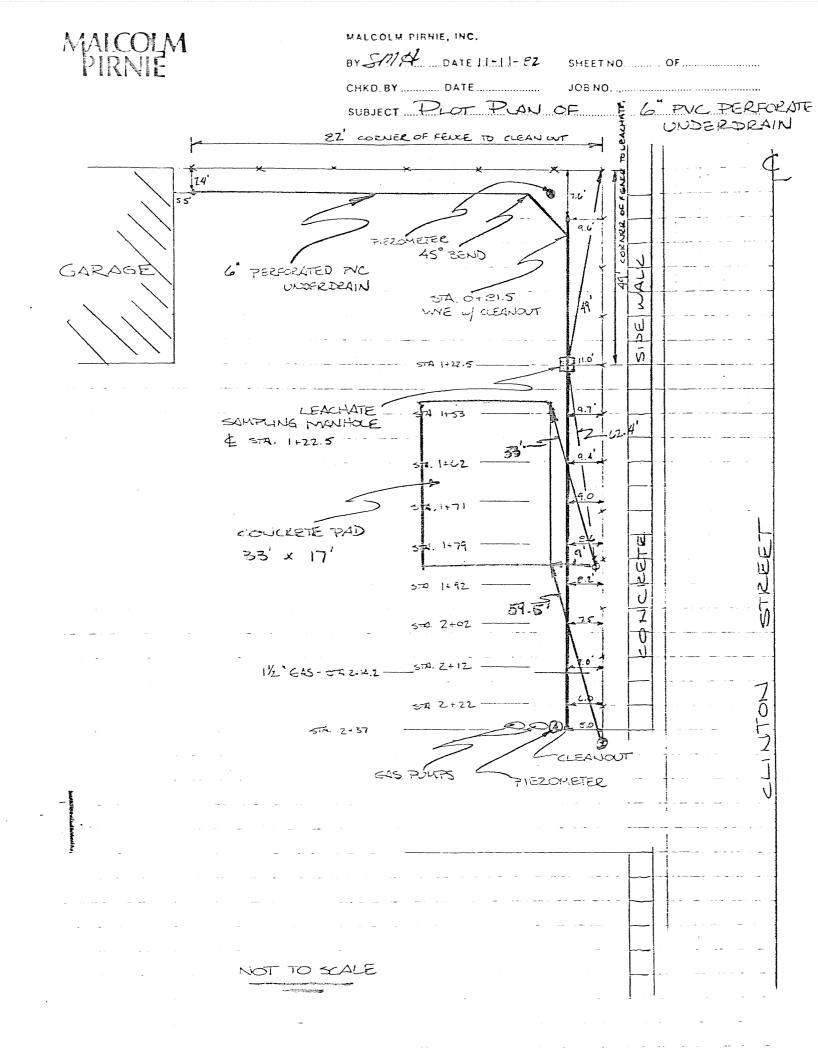
Hotte an 1/5 3026 115 Poter B._

AALCOIM	and the second	· · · · · · · · · · · · · · · · · · ·
December 28, 1982	ENVIRONME	MALCOLM PIRNIE, INC. NTAL ENGINEERS, SCIENTISTS & PLANNERS
Erie County Department of Environment & Planning 95 Franklin Street Buffalo, New York 14202		
Attention: Mr. Ronald A.	Entringer	
Re: Bengart and Memel Rem Contract No. 1	edial Site Work	
Gentlemen:		
Ac now our conversation on	Decombon 22 1092 nor	anding the status of the

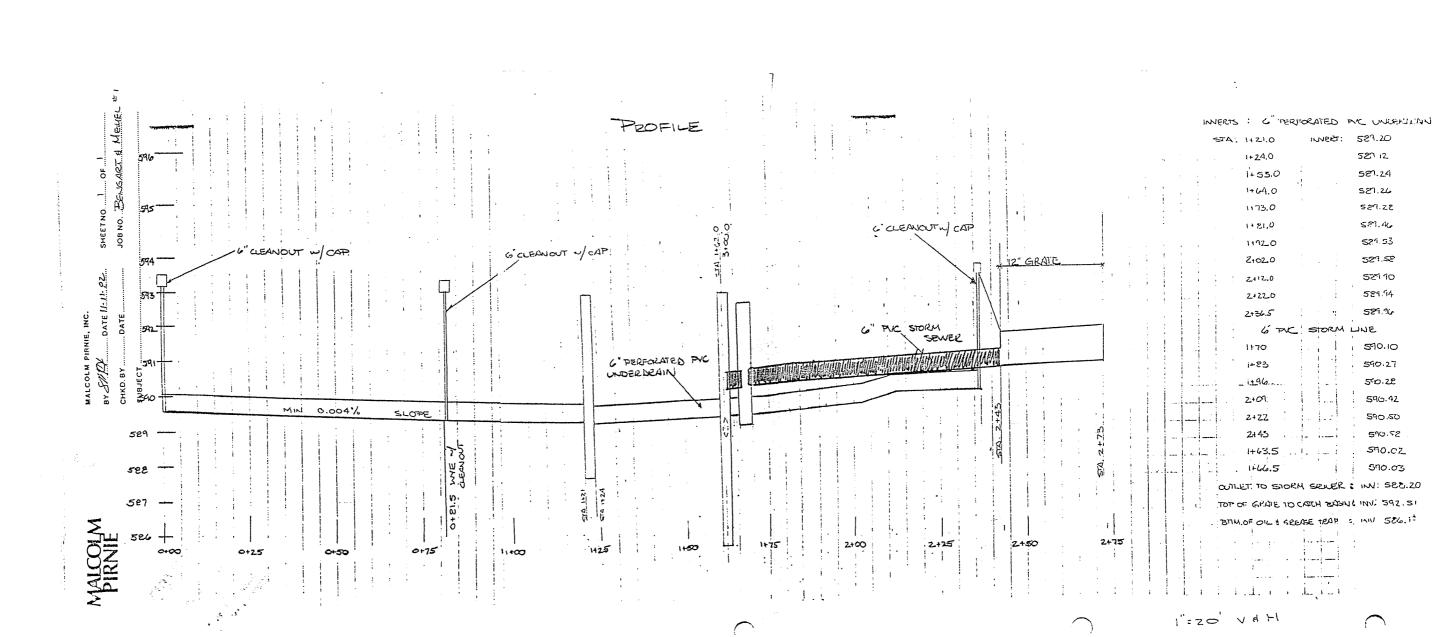
and the second
and the second

As per our conversation on December 22, 1982 regarding the status of the above-referenced project, we offer the following comments:


- Installation of 6-inch Perforated P.V.C. Underdrain 100% complete 1. to date.
- 2. Installation of 6-inch P.V.C. Storm Sewer - 100% complete to date.
- 3. Installation of 12-inch Grate - 100% complete to date.
- Six-inch Cleanout at Stations 0+02, 0+81 and 2+35 100% complete 4. to date.
- Piezometers at Station 0+76 and 2+35 100% complete to date. 5.
- Installation of Leachate Sampling Manhole, Oil and Grease Trap and 6. Catch - 100% complete to date.
- Concrete Pad and Tank Saddles 100% complete to date. 7.
- Relocation of Storage Tanks, Carbon Absorption Tanks, Cartridge 8. Filters and Flowmeter - 100% complete to date.
- Installation of 1 1/4-inch P.V.C. External Pipe Work, including 9. Ball Valves. Check Valves and Diaphram Valves - 85% complete to date.
- Installation of Electrical System including Conduit, Motor Control 10. Panel, Transfer Pump and Motor Starters - 100% complete to date.


The only item remaining to be completed is the installation of the 2-inch submersible pumps. It is our feeling that visual inspection of the external pipe work in this system will be a sufficient means of determining the integrity of the system in lieu of hydrostatic testing.


We trust this meets with your approval.


Very truly yours,

Scott Hackett SMH/mcm Howard Popkin cc: Robert P. McCarty, NYSDEC Remediation Section, Albany Richard Hoffman, NYSDEC Region 9 File: 450-01, C-6 716-828-1300 TELEX 137364 S 3515 ABBOTT ROAD

