

ANNUAL GROUNDWATER MONITORING REPORT CLOSURE YEAR 25 (2021)

UNION ROAD SITE TOWN OF CHEEKTOWAGA ERIE COUNTY, NEW YORK (SITE REGISTRY NO. 9-15-128)

Prepared for:

AMERICAN PREMIER UNDERWRITERS, INC. (FORMERLY THE PENN CENTRAL CORPORATION) ONE EAST FOURTH STREET CINCINNATI, OHIO 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

February 23, 2022

Document Authorization Form

Annual Groundwater Monitoring Report Closure Year 25 (2021)

> Union Road Site Town of Cheektowaga Erie County, New York (Site Registry No. 9-15-128)

> > Prepared for:

American Premier Underwriters, Inc. (Formerly The Penn Central Corporation) One East Fourth Street Cincinnati, Ohio 45202

Prepared by:

UNICORN MANAGEMENT CONSULTANTS, LLC 52 FEDERAL ROAD, SUITE 2C DANBURY, CT 06810

February 23, 2022

AUTHORIZATIONS:

Michael J. O'Connor, LEP, PG.

Manager of Environmental Projects

Date

Responsiveness • Solutions • Quality

Period: Annual 2021

Appendix C Laboratory Report

TABLE OF CONTENTS

Page 1. Introduction	
LIST OF FIGURES	
Figure 1-1: Figure 1-2: Figure 2-1: Figures 3-1a r Figure 4-1: Figure 4-2: Figure 4-3:	Location Map Site Location Groundwater Monitoring Well Locations o 3-11e: Summary of Post-Closure Groundwater Monitoring Data Shallow Groundwater Flow Map; September 19, 2021 Medium Well Groundwater Flow Map; September 19, 2021 Bedrock Groundwater Flow Map; September 19, 2021
LIST OF TABLES	
Table 3-1: Table 3-2: Table 3-3: Table 3-4: Table 3-5: Table 3-6: Table 3-7: Table 3-8: Table 3-9: Table 3-10: Table 4-1:	Pre-Construction Sampling of Shallow Wells (June - August, 1991) Well Purging Summary Annual Groundwater Monitoring 2021: Shallow Well SVOCs Annual Groundwater Monitoring 2021: Shallow Well VOCs, TPH, and Metals Annual Groundwater Monitoring 2021: Medium Well SVOCs Annual Groundwater Monitoring 2021: Medium Well VOCs, TPH, and Metals Annual Groundwater Monitoring 2021: Deep Well SVOCs Annual Groundwater Monitoring 2021: Deep Well VOCs, TPH, and Metals Summary of Post-Closure Groundwater Monitoring Data - SVOCs Summary of Post-Closure Groundwater Monitoring Data - VOCs, TPH, and Metals Groundwater Well Measurements; September 19, 2021
LIST OF APPENDICES	
Appendix A Appendix B	Boring Logs and Well Construction Drawings Field Notes

Period: Annual 2021

1 INTRODUCTION

This Groundwater Monitoring Report has been prepared by Unicorn Management Consultants, LLC (UMC) on behalf of American Premier Underwriters, Inc (APU). The purpose of this document is to demonstrate compliance with Section 12.4.1 of the Union Road Site Remedial Design Report (Design Report), approved by the New York State Department of Environmental Conservation (NYSDEC) in May, 1995. Section 12.4.1 of the Design Report discusses the Groundwater Monitoring Plan (GMP).

The purpose of GMP is as follows:

- To evaluate the groundwater quality to assess the effectiveness of the remedial action performed in accordance with 1995 Design Report, and
- To monitor the groundwater gradient of the three hydrogeologic units in and around the closure area.

The GMP consists of these elements:

- The installation of groundwater monitoring wells inside and outside the slurry wall around the landfill closure;
- The collection and analyses of groundwater samples; and
- The determination of groundwater elevations.

Please note that pursuant to a letter dated October 18, 2001, from Blank Rome Comisky and McCauley, LLP (APU's legal counsel), effective October 19, 2001, APU designated UMC as their environmental consultants.

The Union Road site ("the Site") is a Class 4 Site as defined by the NYSDEC. The Site registry number is 915128. The Site is located at 333 Losson Road in Cheektowaga, New York (see Figure 1-1). A Record of Decision (ROD) for the Site was signed on March 9, 1992. Order on Consent Index No. B9-0148-92-03 was signed by The Penn Central Corporation (currently, APU) and the NYSDEC; the effective date of the Order is April 12, 1994. Appendix "B" of the Order is the Final Remedial Action Work Plan (the "Work Plan"), dated June 18, 1993.

As required in Section 4.2 of the Work Plan, the design documents, including the Union Road Site Remedial Design Report, were submitted in May 1995 to the NYSDEC and were subsequently approved. After approval, work commenced and the landfill closure was completed in December 1996. Figure 1-2 illustrates a plan view of the Site closure.

The GMP, and Operation and Maintenance (O&M) activities for the Site went into effect following the landfill closure. This report presents and summarizes the activities conducted and analytical data for groundwater samples collected on Site during Closure Year 25 (2021). The 2021 Annual Sampling Event is the 28th sampling event since the landfill closure.

Period: Annual 2021

2 WELL INSTALLATION

As proposed in the GMP, five well clusters were installed along the outside perimeter of the slurry wall. These exterior wells are identified as MW-10S/M/D, MW-11S/M, MW-12S/M/D, MW-13S/M, and MW-14S. Adjacent to these wells, along the inside perimeter of the slurry wall, five shallow wells identified as MW-15, MW-16, MW-17, MW-18, and MW-19 were installed.

Three additional shallow wells (not originally proposed) were also installed. These wells (MW-20, MW-21, and MW-22) were installed in the center of the landfill to monitor the elevation of groundwater inside the landfill closure. Proposed well MW-20S adjacent to the outfall of the new wetland was installed; however, the identification of this well was changed from MW-20S to MW-23S. As discussed in the Groundwater Monitoring Report for the Second Quarter 1997, the original Monitoring Well 14S (MW-14S) was decommissioned and the replacement was reinstalled nine feet southwest (along the fence line). The MW-14S replacement was installed, surveyed and developed on August 19, 1997. Well designations and locations are shown on Figure 2-1.

Installation of monitoring wells proceeded according to Section 02170 of the Technical Specifications. Installation of the interior wells occurred from February 19-23, 1996. Installation of the exterior wells took place from December 10, 1996 through January 6, 1997 and August 19, 1997. Copies of the Boring Logs and Well Construction Drawings are included as Appendix A.

Period: Annual 2021

3 GROUNDWATER SAMPLING AND ANALYSES

3.1 GROUNDWATER SAMPLING

The purpose of groundwater sampling and analyses is to assess the effectiveness of the remedial action by evaluating the groundwater quality.

According to the GMP, groundwater samples will be collected from the outside perimeter monitoring wells by the following schedule:

- Quarterly the first year (1997);
- Semi-annually the second year (1998);
- Annually, during the dry season (1999 to 2019); and
- Bienially thereafter.

The parameters and applicable methods for the analyses are as follows:

- Total petroleum hydrocarbons (TPH) by EPA Method 1664B;
- Volatile organic compounds (VOCs) by EPA Method 8260C;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270D; and
- Soluble metals (lead and arsenic) by EPA Method 6010C, respectively.

The sampling frequency, analytical parameters, and/or sampling of specific wells will be modified based on the results of previous sampling events (since the landfill closure) and with written approval from the NYSDEC. In letters dated November 22, 2019 and January 24, 2020, NYSDEC concurred with UMC's assessment that historical analytical data for the Site supported a change in the frequency of the groundwater sampling events from annual to biennial.

To evaluate the immediate effects of remedial activities on the groundwater around the landfill closure, the results of this sampling event are compared to results gathered from previous investigation reports performed by Dvirka and Bartilucci prior to the landfill closure. The data from the reports dated June, 1991 and August, 1991 are summarized in Table 3-1. Comparison between the averages prior to closure with post closure in the shallow wells shows significant decreases in all of the contaminants analyzed. To determine the continued effectiveness of the containment system, future sampling will be compared to the pre-closure concentrations.

3.2 2021 ANNUAL SAMPLING EVENT

On September 19-20, 2021, UMC conducted the 2021 Annual Sampling Event. UMC collected groundwater samples from a total of eleven groundwater monitoring wells on Site. UMC then submitted the groundwater samples to ALS Environmental Laboratories in Rochester, NY (ALS) to be analyzed for the parameters listed in Section 3.1 above. Copies of the field notes are included in Appendix B.

Table 3-2 summarizes the water depth measurements and well purging operations completed on the wells along the outside perimeter of the slurry wall during the 2021 Annual Sampling Event. Tables 3-3 through 3-8 present the analytical results from this sampling event. An electronic copy of the analytical data report is included in Appendix C.

Period: Annual 2021

3.3 SUMMARY OF ANALYTICAL DATA

No TPH, SVOC, lead, or arsenic were detected in any of the groundwater samples collected during this year's annual sampling event.

Acetone was detected in groundwater samples collected from MW-10D (13 μ g/L); which is below the NYSDEC groundwater standard of 50 μ g/L. Acetone was not detected in any other groundwater samples collected during this year's annual sampling event. No other VOCs were detected.

Acetone is a common laboratory artifact and has not been observed consistently in groundwater samples collected on Site.

3.4 SUMMARY OF HISTORICAL ANALYTICAL DATA

Since the landfill closure in 1997, groundwater sampling has been conducted a total of 28 times. The data from these 28 events is presented in Tables 3-9 and 3-10 of this report. Total values for SVOCs, VOCs, TPH, souluble arsenic, and soluble lead are presented in Figures 3-1a to 3-11e of this report. In the majority of wells on Site, the total concentrations of these compounds have either declined or remained below detection levels since 1997. Upward trends for VOCs and SVOCs are observed in three wells on Site; MW-12M (Figure 3-7a), MW-13S (Figures 3-9a and 3-9b), and MW-14S (Figure 3-11b).

The upward trends in VOCs in MW-13S and MW-14S are due to singular detections of acetone ($12 \mu g/L$ and $14 \mu g/L$ respectively) in 2019. The laboratory analytical report for these samples notes that the Continuing Calibration Verification (CCV) exceeded control limits for acetone, and that all concentrations of acetone should be considered estimated. The upward trend in SVOCs in MW-12M and MW-13S are due to singular detections of bis(2-ethylhexyl)phthalate in 2018 ($14 \mu g/L$ in MW-13S) and 2019 ($120 \mu g/L$ in MW-12M).

Both acetone and Bis(2-ethylhexyl)phthalate are common laboratory artifacts and have not been observed consistently in groundwater samples collected on Site.

Period: Annual 2021

4 GROUNDWATER ELEVATION MONITORING

The purpose of groundwater elevation monitoring is to determine the groundwater gradient of the three hydrogeologic units in and around the closure area. The three hydrogeologic units (layers) are:

- The overburden layer (shallow), which is above the clay layer;
- The till layer (medium), which is beneath the clay layer; and
- Bedrock (deep), which is beneath the till layer.

As stated in the NYSDEC approved Design Report, the frequency of groundwater elevation measurements are as follows:

- Monthly for the first six months after closure (Jan June 1997);
- Quarterly thereafter until the end of year two (July 1997 December 1998); and
- Annually (during the dry season) thereafter.

The objective for collecting groundwater elevation measurements is to gain knowledge of the groundwater flows and hydraulic gradients in and around the closure. This information is used to generate groundwater flow maps and demonstrate an inward gradient of groundwater around the closure.

On September 19-20, 2021, UMC measured the depth to groundwater in the monitoring wells. Table 4-1 summarizes the results of these measurements. Both MW-20 and MW-22 had thick tar like product measured from the surface, but a total depth of product was not determined due to potential damage to the waterlevel meter. It is assumed that the free product is present through the water column in both wells. The data from Table 4-1 were used to create groundwater contour maps (Figures 4-1 through 4-3), which depict groundwater elevations and inferred groundwater flow directions in the three hydrogeologic units. Figure 4-1 shows an inward gradient of shallow (overburden) groundwater across the slurry wall and towards the dewatering trench at the east corner of the closure.

Figures 4-2 and 4-3 depict groundwater elevations in the medium and deep units. The inferred groundwater flow direction for the medium unit is toward the southeast. The inferred groundwater flow direction for the deep unit is easterly. However, since only two monitoring wells intercept the deep unit, a groundwater contour map cannot be produced. Flow is generally toward the southeast and east respectfully and has not been affected by the placement of the landfill closure.

Period: Annual 2021

5 SITE INSPECTION AND MAINTENANCE

UMC performed the 2021 Site Inspection on May 18, 2021. UMC was accompianed by Ms. Megan Kuczka of the NYSDEC Division of Environmental Remediation. The 2021 Site Inspection consisted of walking the site and documenting any observations. Below is a summary of observations made during the 2021 Site Inspection, as well as any maintenance activities that have been conducted in 2021:

5.1 ROUNDHOUSE AREA

The area is well vegetated and stabilized. During the 2021 Site Inspection, several large holes were observed where the concrete of the former roundhouse has collapsed. These holes are large enough for a person to fall into. However, this land is not owned by APU. Numerous property owners adjacent to this area have encroached on it and are maintaining it with the rest of their properties. No action is needed.

5.2 LANDFILL CLOSURE

There are no signs of erosion, no areas of distressed vegetation, and no evidence of any outbreak of any substance (slurry wall material or oil) on the landfill. Erie County Water Company has previously been notified that a small quantity of contaminated soil is located northeast of the new wetland area and beneath the existing water pipe. UMC has an account with Dig Safely New York so when someone needs to dig in the area and calls Dig Safely, UMC will be notified. Except for periodic grass cutting, annual groundwater monitoring, and quarterly groundwater discharge monitoring required by the Buffalo Sewer Authority, no action is needed.

During the 2021 Site Inspection, UMC observed some erosion due to a small number of animal burrows located on the sloped area between the landfill and the northern wetlands. These burrows were previously filled in with soil purchased at Home Depot in April 2019. On September 19, 2021, UMC filled the erosion located on the slope between the landfill and the wetlands to the north of the landfill with topsoil purchased from Home Depot and reseeded the affected area with a local ryegrass grass seed blend. UMC continues to monitor the erosion and will replace eroded soils as necessary.

Some rutting attributed to vehicular traffic was observed along the southwestern side of the site near Slate Bottom Creek. This rutting does not affect the integrity of the capped landfill.

UMC and NYSDEC also observed multiple beaver dams on both Deer Lik and Slate Bottom Creeks.

No soil disturbances were noted in the enclosed landfill and the observed disturbances noted above can be attributed to animals or vechicles outside the enclosure.

As requested by the NYSDEC, grass on the landfill area is mowed annually. Annual Mowing was performed on September 19, 2021.

Period: Annual 2021

5.3 WETLAND RESTORATION

The wetlands north of the landfill closure, which was created during the remediation activities has continued to reestablish itself. The wetlands have completely revegetated itself and wildlife (e.g., ducks, geese and deer) have returned to the area.

5.4 STREAM RESTORATION

A letter to the Town of Cheektowaga (Town) was sent by APU's Legal Counsel on October 7, 2005. This letter informs the Town that it must notify the NYSDEC prior to any activity in those creeks where the reno mattresses are located (see Figure 1-2).

The reno mattresses installed in 1995/1996 and repaired in 2006 on the creek channel have stabilized and vegetation has established itself through the reno mattresses. There is some sediment accumulation within the creek channels, but at some locations the reno mattress wire mesh was visible at the base of the channel.

At the time of the 2021 Site Inspection, the gabion basket wing-walls were stable and the reno mattresses installed along the creek were in overall good condition. Since the last repair on May 15-16, 2019 of the reno-mattress no new ATV damage was observed and were in overall good condition. UMC will continue to monitor this area for ATV damage and make repairs as needed.

5.5 DOWNSTREAM AREA

Though some of the trees planted in this area have died, there are no signs of erosion in this area. Grass has established itself in this area. No action is needed.

UMC will continue to inspect and repair all closure areas to ensure that the closure remains intact and successful.

5.6 DEWATERING SYSTEM

Around November 2020, the Site's ultrasonic flowmeter stopped measuring the flow rate and total amount of water discharged to the sanitary sewer. UMC attempted a repair during the 25th Annual Site inspection. UMC cleaned the ultrasonic tranducers and replaced the sonic coupling compound in an attempt to improve the signal strength and flowmeter performance. The maintaince activities performed did not resolve the issue. UMC determined that a replacement for the flowmeter with an in-line turbine flowmeter should suffice.

On August 18, 2021, UMC invited Matthew Kandefer Plumbing, Inc. to the Site to evaluate the broken ultrasonic flowmeter and to quote a replacement. Throughout the remainder of the year, UMC had attemped to ascertain pricing and manufacturer information from the plumber prior to installation of a new flowmeter. UMC tried on multiple occasions to contact the company directly, but was met with difficulites and never received the requested information . UMC plans seek additional bids for the installation of a new flowmeter in early 2022.

It should be noted that the flowmeter's operational status does not interfere with the operation of the dewatering system. In order to comply with the reporting requirements outlined in the current

Period: Annual 2021

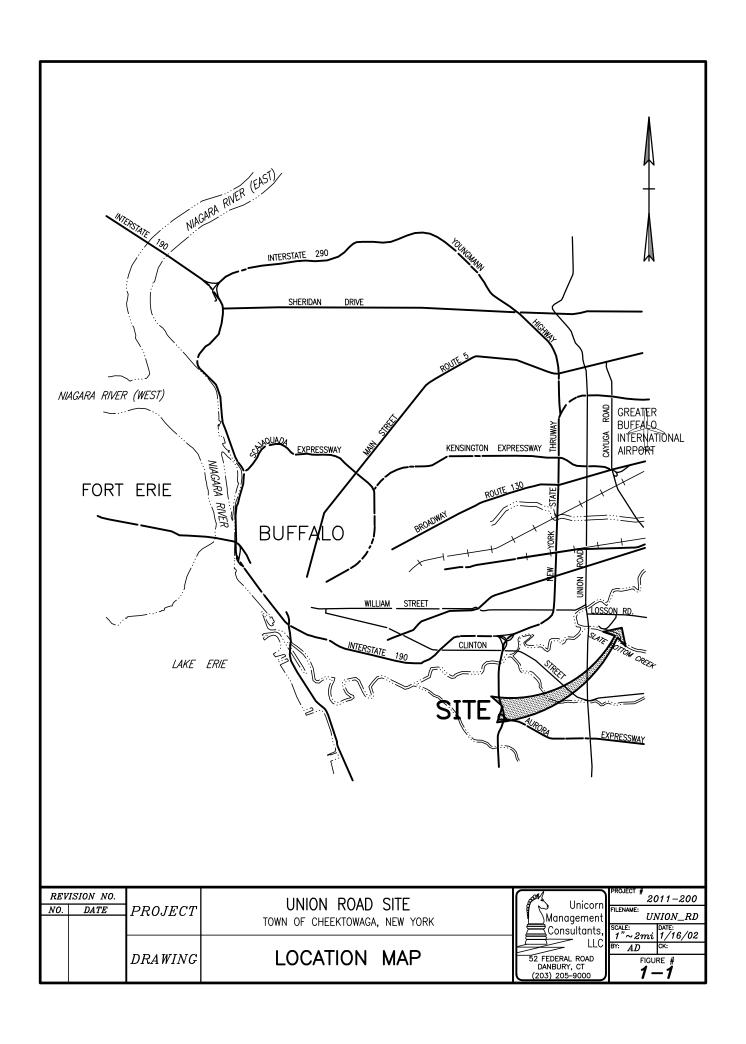
Buffalo Sewer Authority (BSA) discharge permit issued for the Site, UMC has submitted discharge estimates based on the telemetry system notifications. To date, the BSA has found these estimates satisfactory.

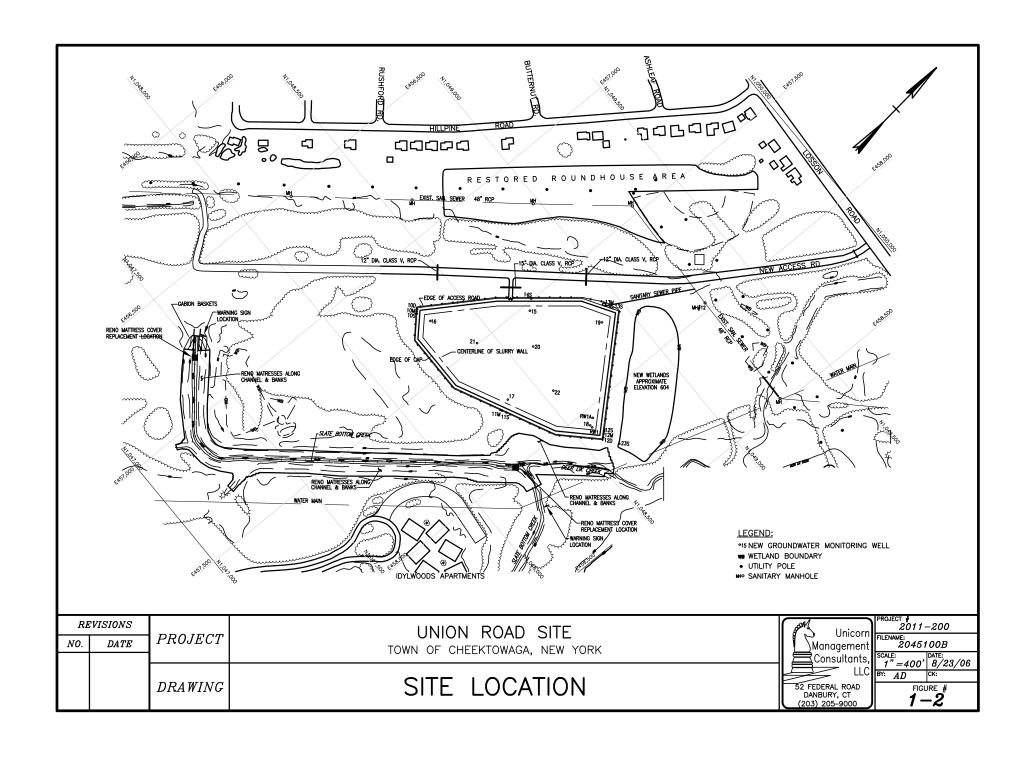
The dewatering system is currently operating without issue.

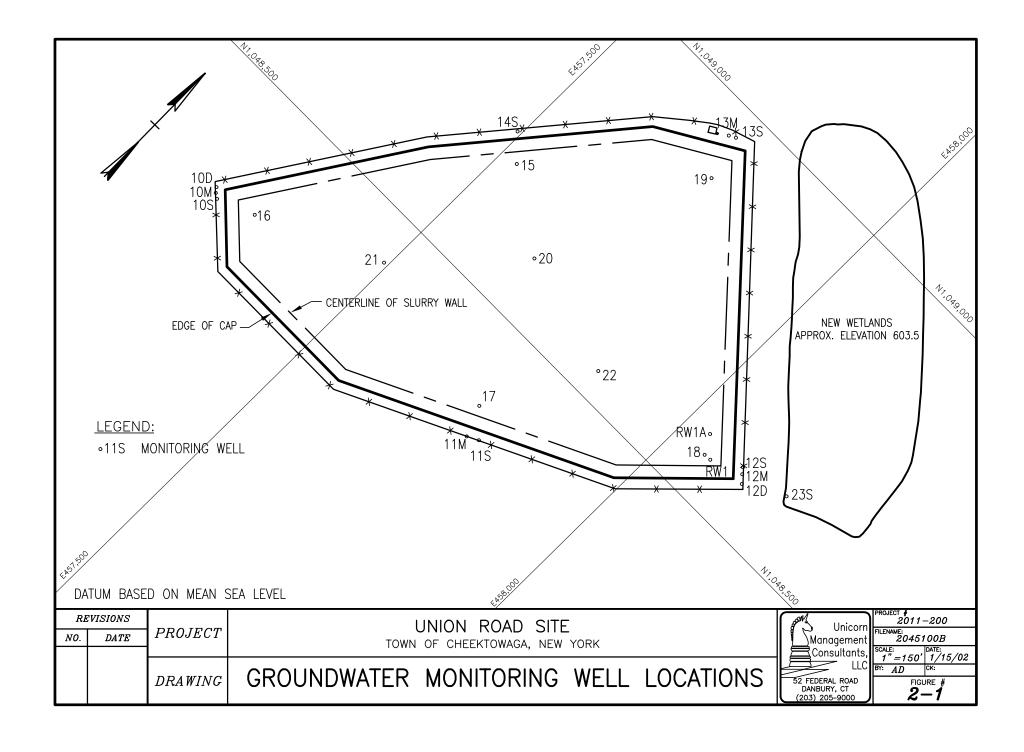
Period: Annual 2021

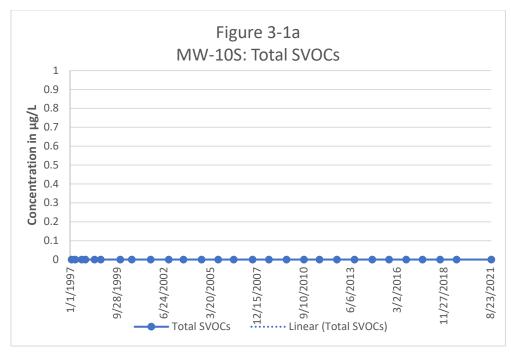
6 CONCLUSION

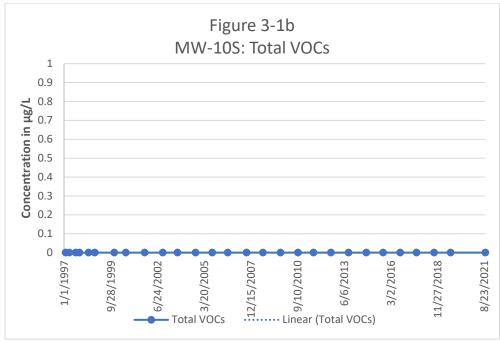
The groundwater quality within the exterior wells and the groundwater elevation measurements during the 2021 annual monitoring event demonstrate that remedial activities at the Union Road Site are successful. The groundwater quality outside the landfill closure is better than groundwater quality in the interior of the closure.

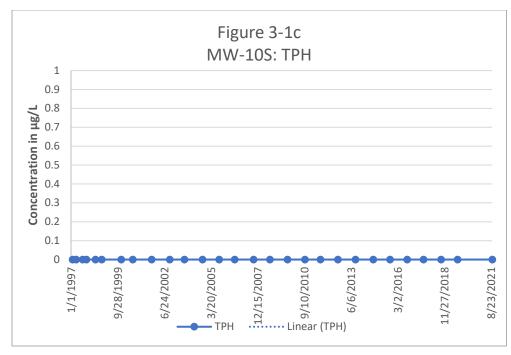

No TPH, SVOCs,lead, or arsenic were detected in any of the groundwater samples collected during this year's annual sampling event. No VOCs were detected with the exception of acetone which was detected in groundwater samples collected from MW-10D (13 μ g/L) which was below the NYSDEC groundwater standard of 50 μ g/L. Acetone is a common laboratory artifact and has not been observed consistently in groundwater samples collected on Site.

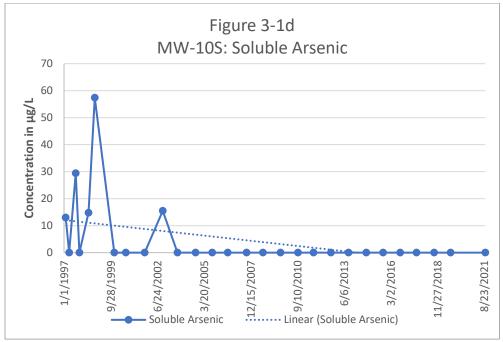

The groundwater elevation measurements indicate that an inward gradient of shallow groundwater flow has been established across the slurry wall. This inward gradient in combination with the groundwater quality outside the closure demonstrates that the contamination is contained within the slurry wall.

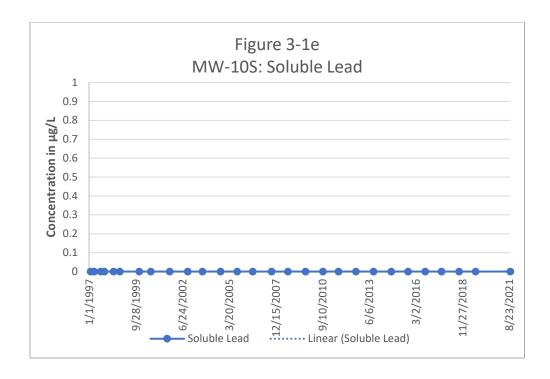

UMC will continue to monitor and evaluate the groundwater surrounding the landfill in accordance with the GMP.

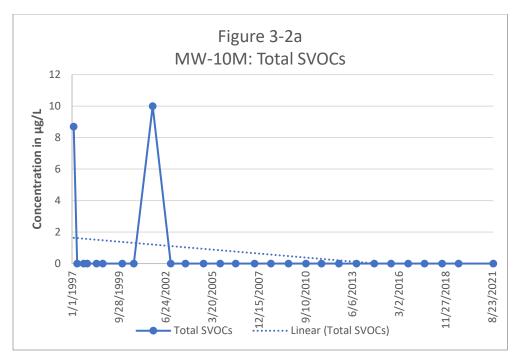

FIGURES

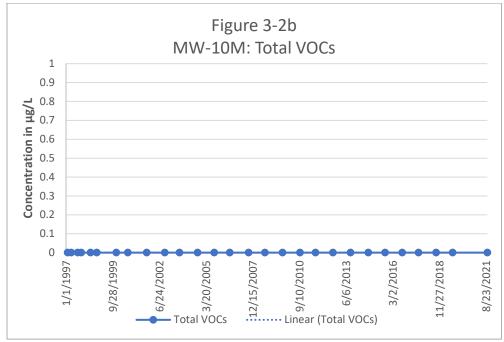


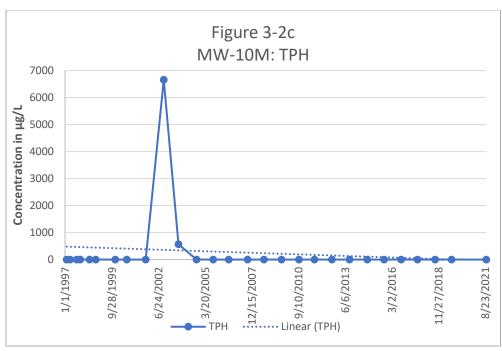


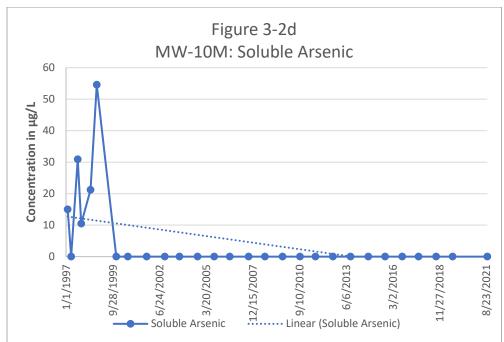


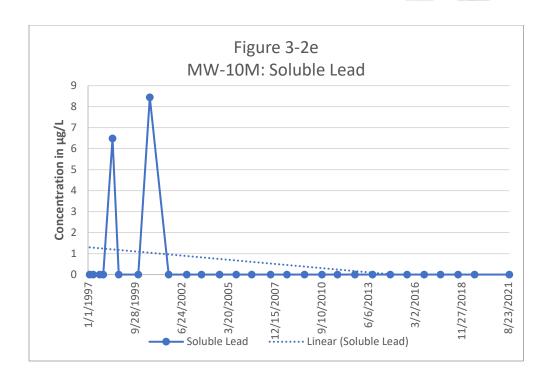


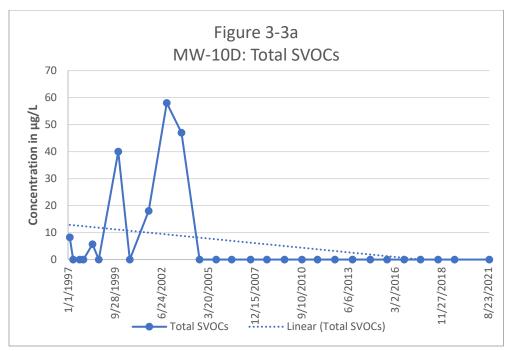


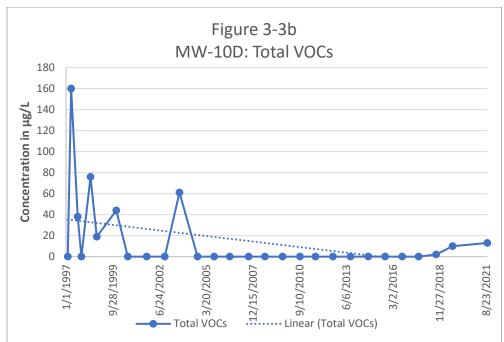


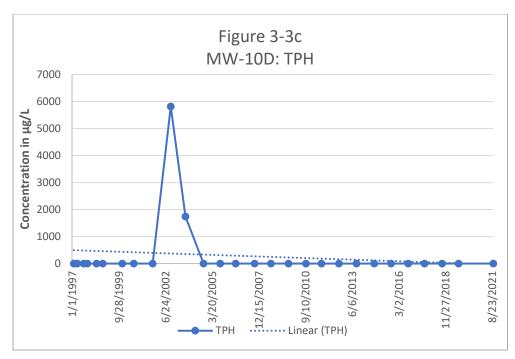


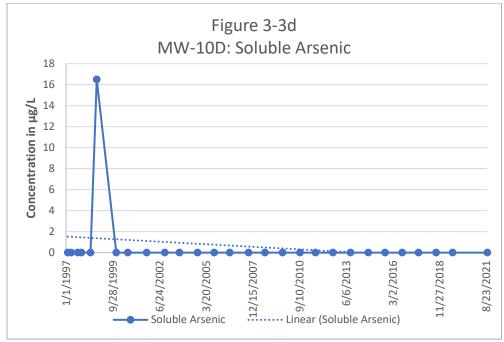


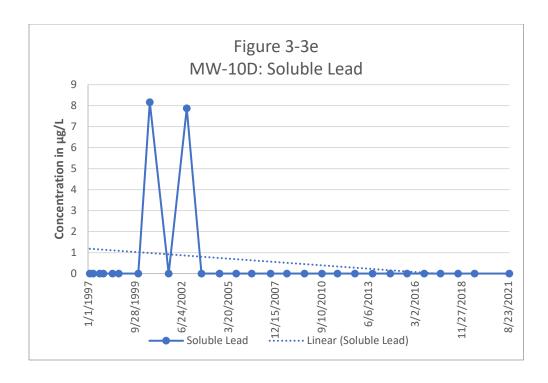


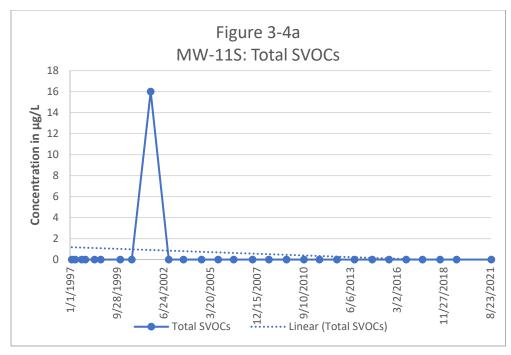


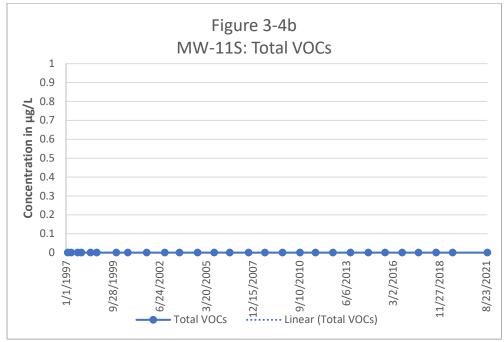


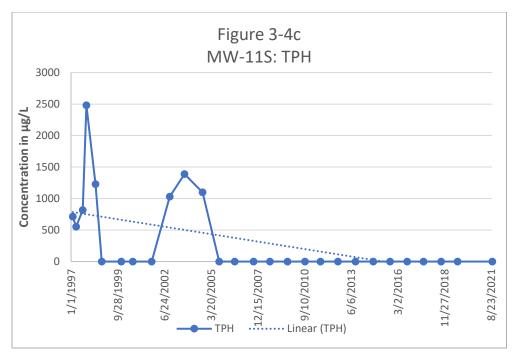


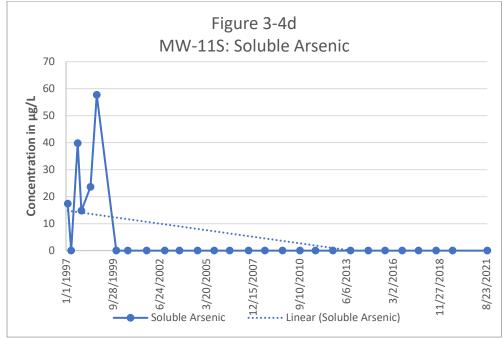


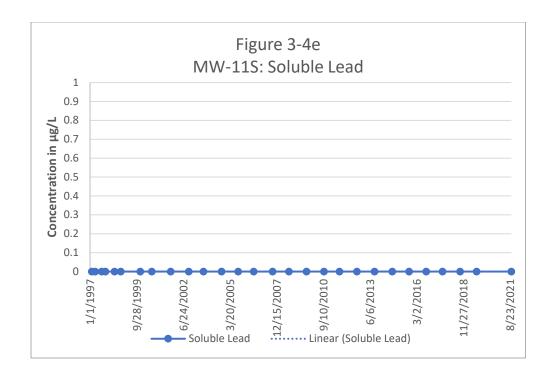


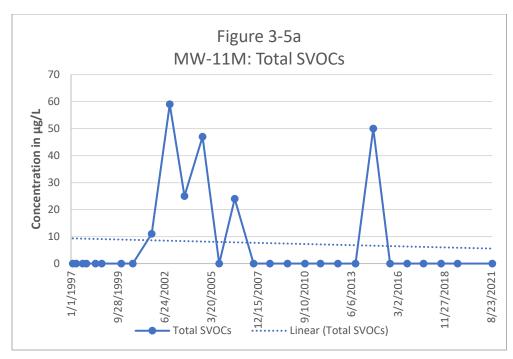


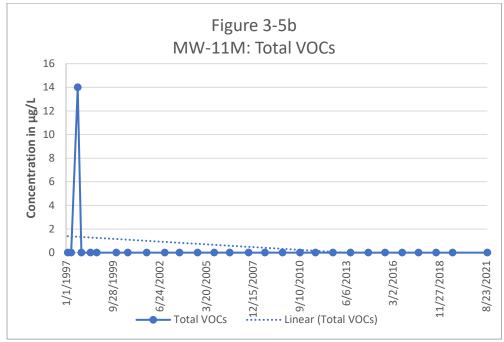


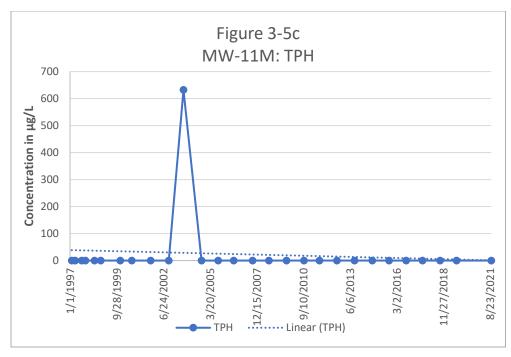


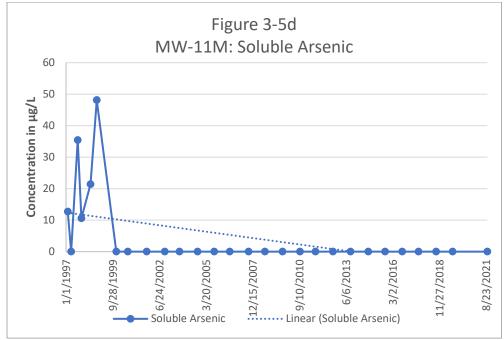


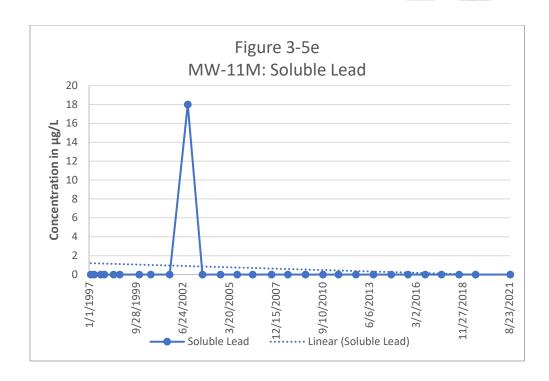


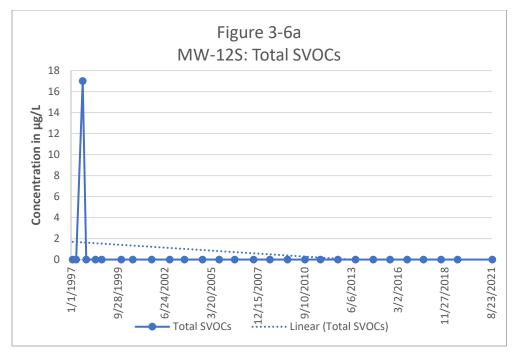


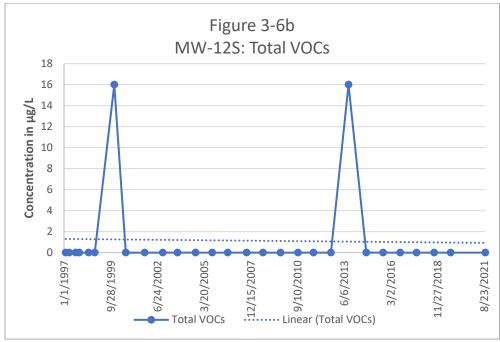


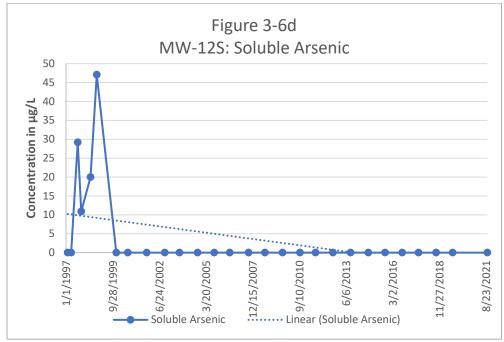


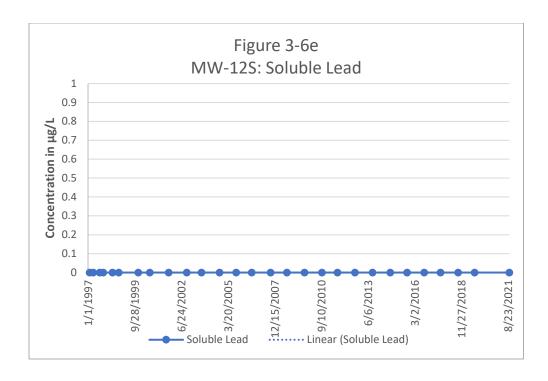


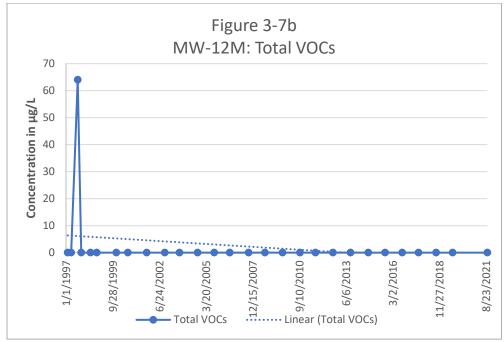


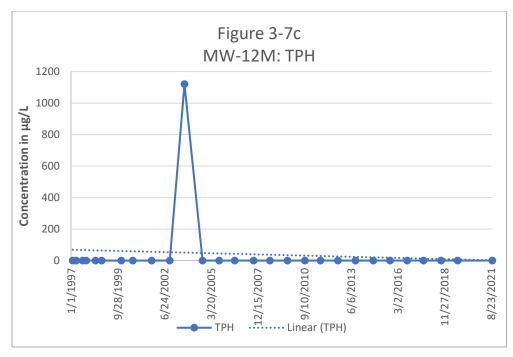


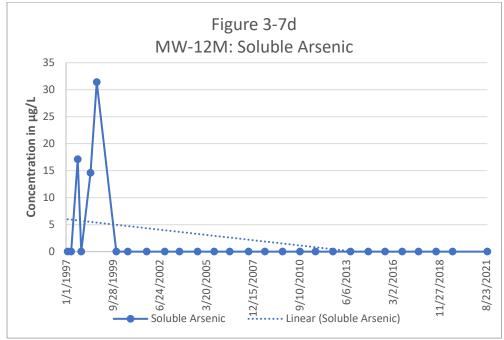


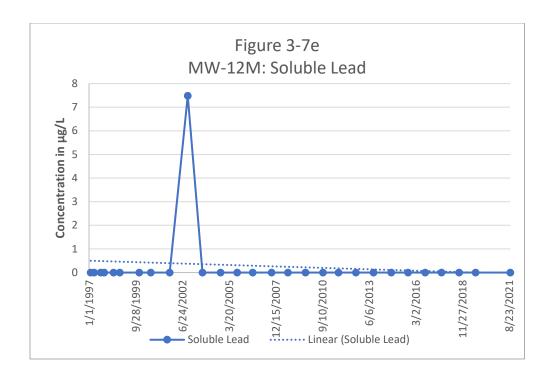


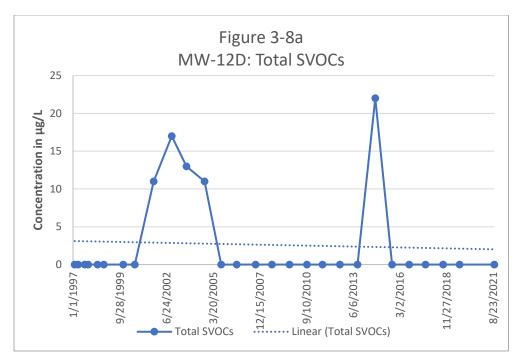


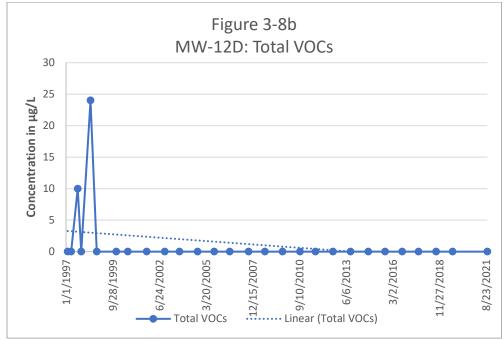


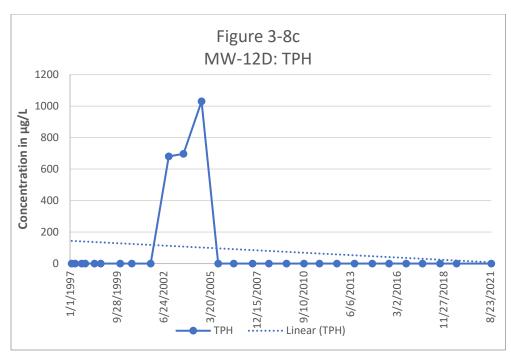


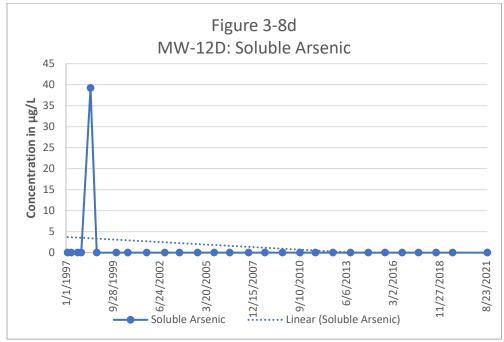


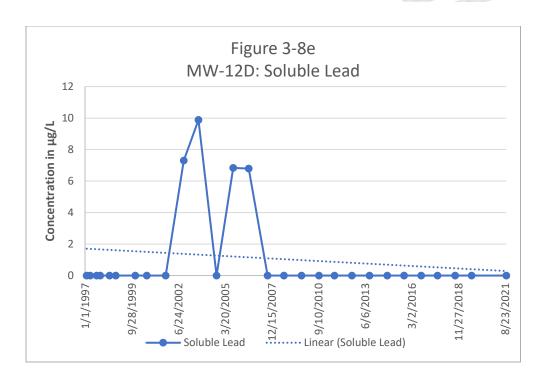


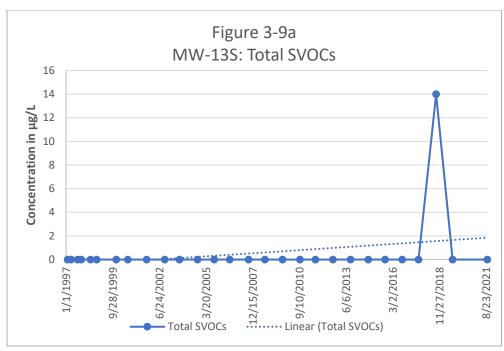


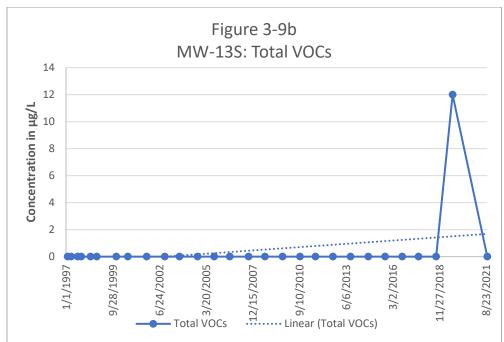


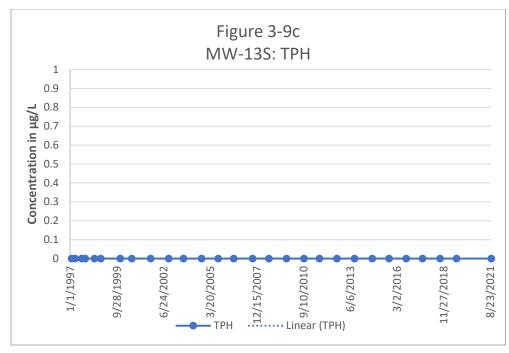


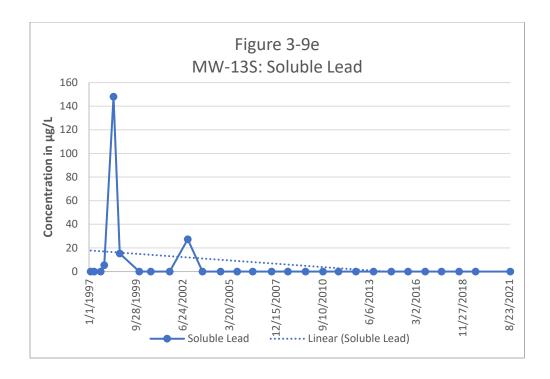


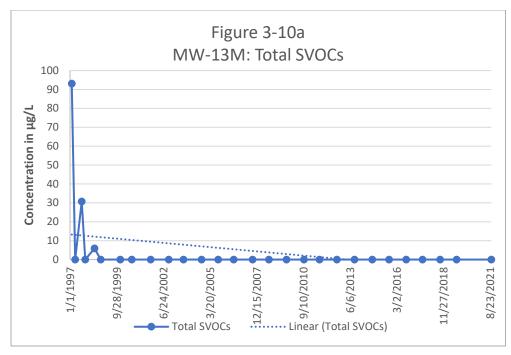


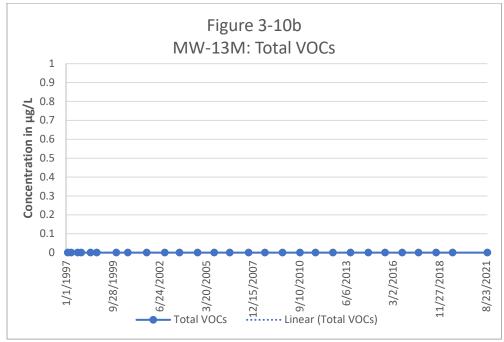


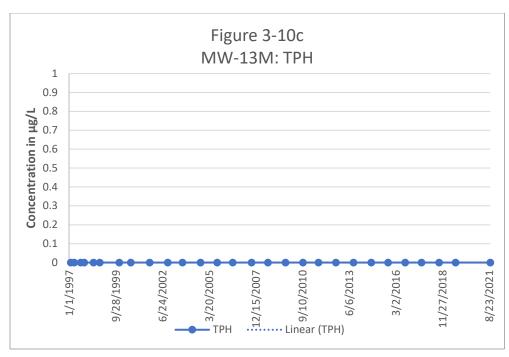


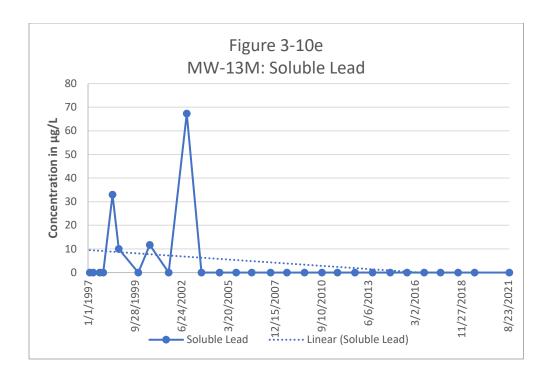


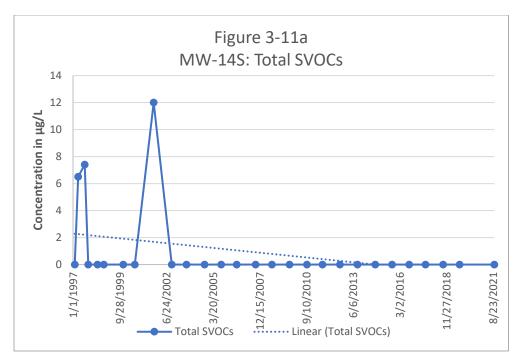


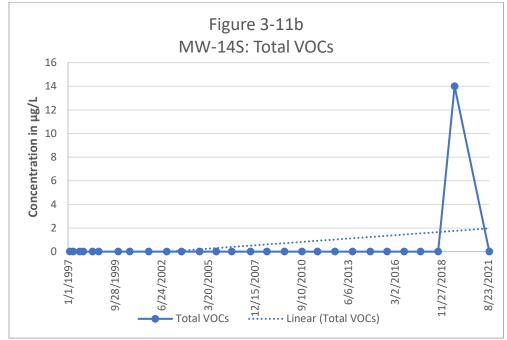


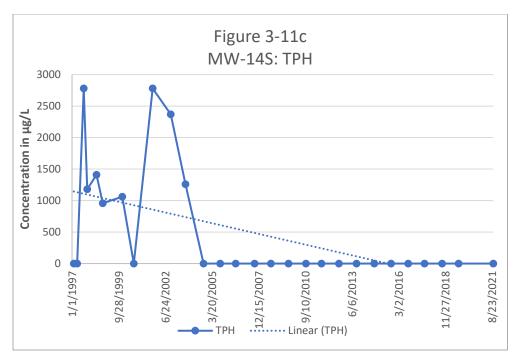


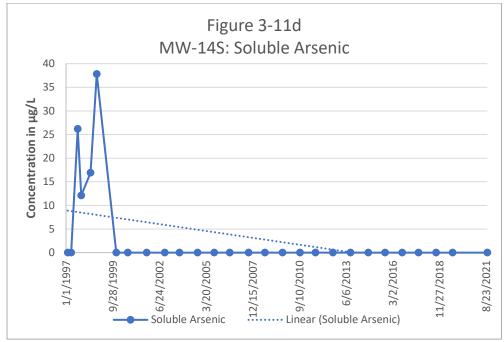


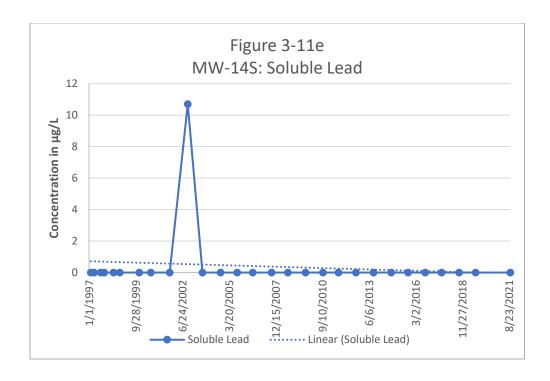


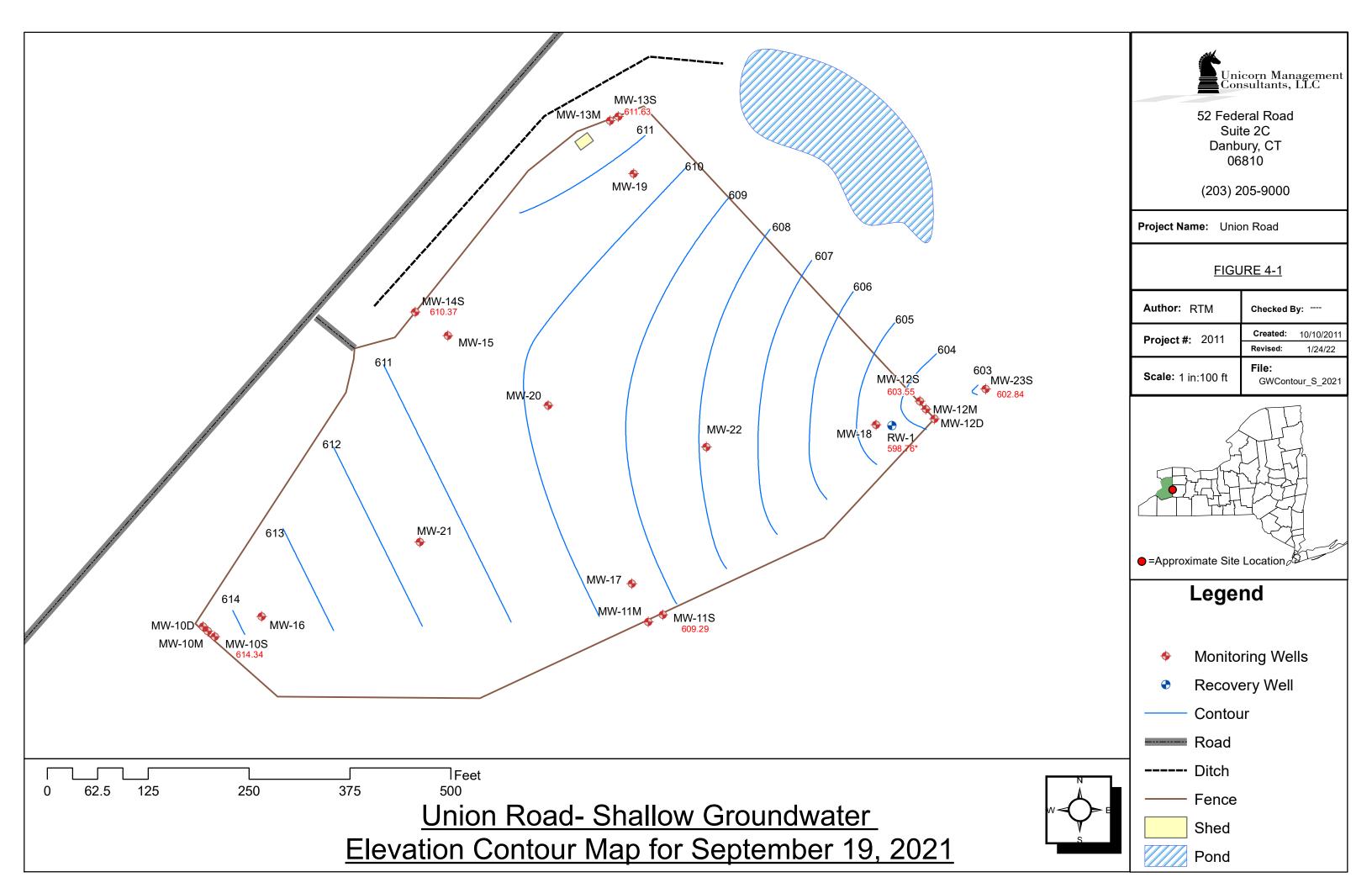


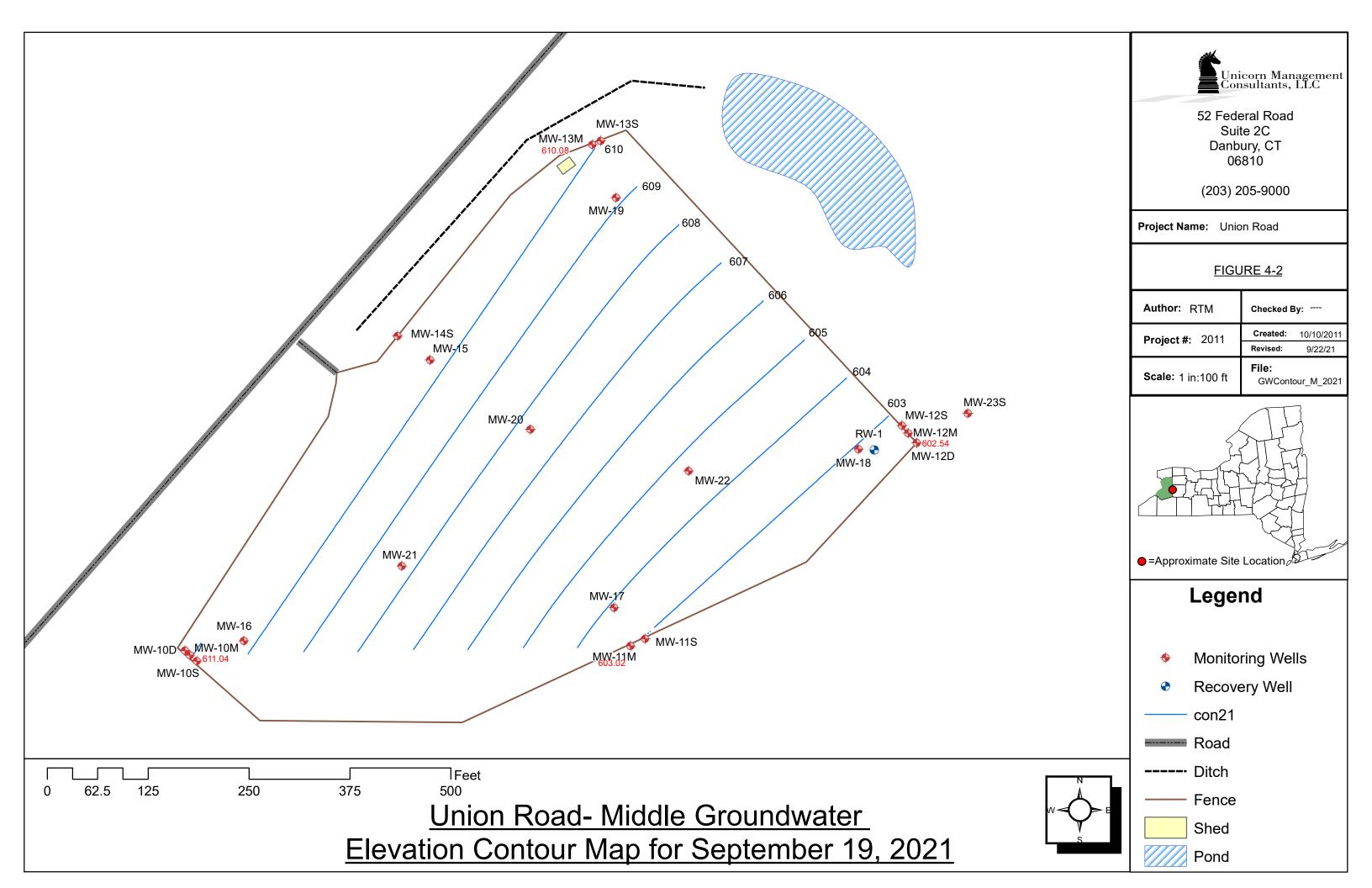


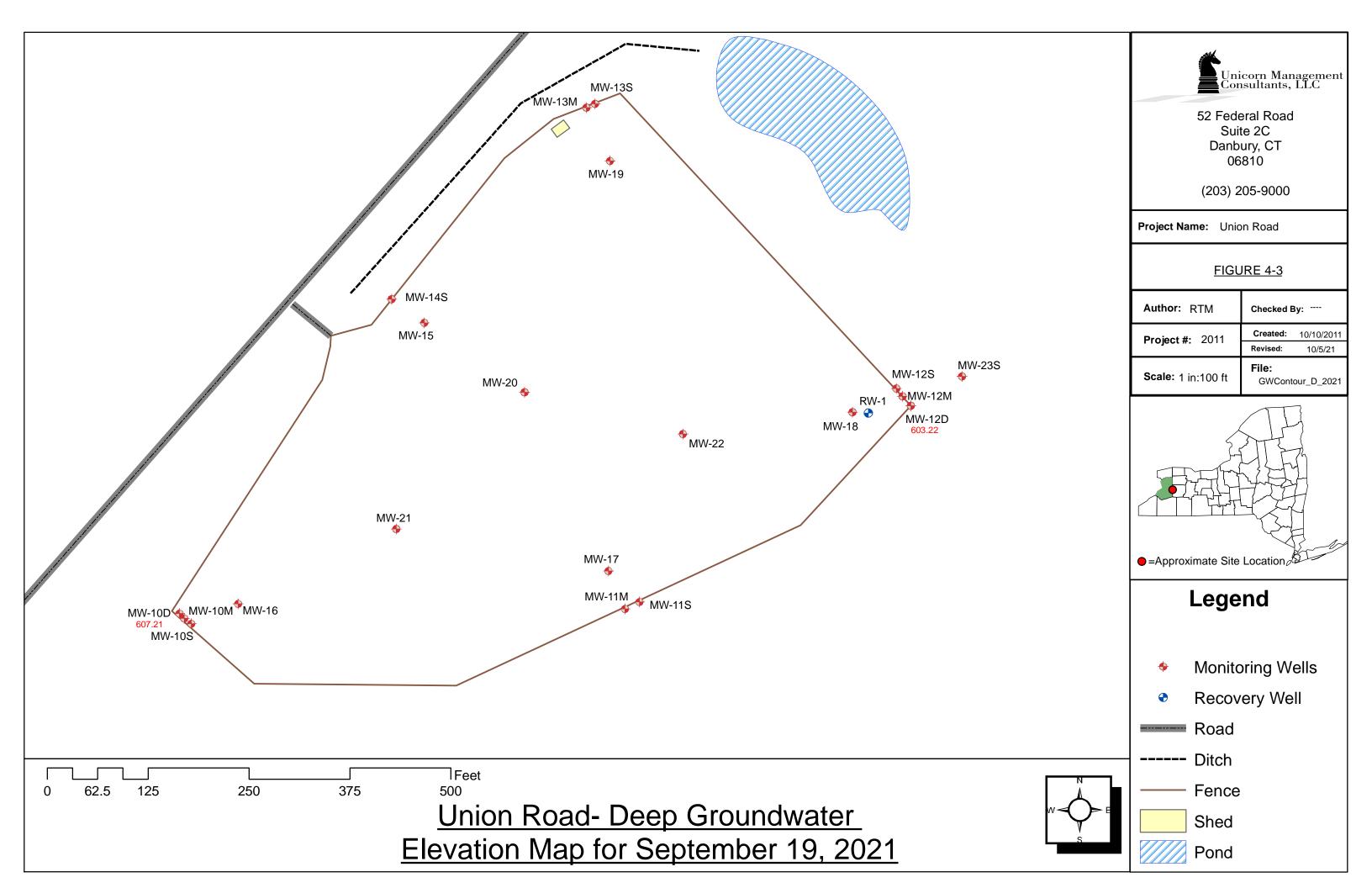












UMC

Period: Annual 2021

TABLES

TABLE 3-1 UNION ROAD GROUNDWATER MONITORING REPORT CLOSURE YEAR 25 (2021)

PRE-CONSTRUCTION SAMPLING OF SHALLOW WELLS (JUNE - AUGUST, 1991)

(concentrations in ug/L)

	MW-4S	MW-4S	MW-5S	MW-6S	MW-6S	
ANALYTE	PHASE I	PHASE II	PHASE I	PHASE I	PHASE II	AVERAGE
SVOC's (Base Neutrals)	17	16	120	290	100	109
Total VOC's	ND	5.9	ND	42	3	10
ТРН	4,400	1,800	2,200	5,800	ND	2,840
Soluble Arsenic	34.8	35.5	14.7	27.1	5.7	24
Soluble Lead	10,100	8,090	4,450	3,560	367	5,313

ND- analyte not detected

File:2021 Annual Report Tables.xlsx Sheet: 3-1 Pre-Const Data

TABLE 3-2 UNION ROAD GROUNDWATER MONITORING REPORT September 19- 20, 2021

WELL PURGING SUMMARY

Well Number	Riser Elev. (Feet) ¹	Orginal Bottom Elev. (Feet)	Depth to Water (Feet)	Water Elev. (Feet)	Water Height in Well (Feet)	Water Volume in Well (Gallons)	3X	Water Removed from Well (Gallons)	Notes
10S	623.09	599.9	8.75	614.34	14.44	2.3	6.9	7.02	
10M	622.50	589.6	11.46	611.04	21.44	3.4	10.3	10.24	
10D	622.02	574.1	14.81	607.21	33.11	5.3	15.9	8.00	Purged Dry
11S	622.74	597.1	13.45	609.29	12.19	2.0	5.9	6.00	
11M	622.86	578.4	19.84	603.02	24.62	3.9	11.8	10.50	
12S	622.62	595.8	19.07	603.55	7.75	1.2	3.7	2.00	Purged Dry
12M	622.97	578.8	20.43	602.54	23.74	3.8	11.4	12.00	
12D	621.18	557.8	17.96	603.22	45.42	7.3	21.8	21.75	
13S	622.96	599.1	11.33	611.63	12.53	2.0	6.0	6.00	
13M	621.66	585.8	11.58	610.08	24.28	3.9	11.7	12.00	
14S ²	621.61	602.1	11.24	610.37	8.27	1.3	4.0	3.75	

¹ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997

² MW-14S was reinstalled, developed and resurveyed on August 19, 1997.

³ All Elevations are referenced to Mean Sea Level

⁴ All wells are two 2-inches in diameter

⁵ Well development was performed on 1/16/1997

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

SHALLOW WELL SVOCs

		NYS						
	NYS	Water						
	Water	Quality		ANALYTI	CAL RESUI	LTS (nø/L)		
	Quality	Guidance		111 (1111)	orie resoci	ors (ug/L)		
ANALYTE	Standard	Value						MRL
Well ID		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MW-10S	MW-11S	MW-12S	MW-13S	MW-14S	
Dilution			1.00	1.00	1.00	1.00	1.00	
acenapthene		20	ND	ND	ND	ND	ND	9.1
acenapthylene	NR	NR	ND	ND	ND	ND	ND	9.1
anthracene		50	ND	ND	ND	ND	ND	9.1
benzo(a)anthracene		0.002	ND	ND	ND	ND	ND	9.1
benzo(a)pyrene	>ND		ND	ND	ND	ND	ND	9.1
benzo(b)fluoranthene		0.002	ND	ND	ND	ND	ND	9.1
benzo(g,h,i)perylene	NR	NR	ND	ND	ND	ND	ND	9.1
benzo(k)fluoranthene		0.002	ND	ND	ND	ND	ND	9.1
benzyl alcohol	NR	NR	ND	ND	ND	ND	ND	9.1
butly benzyl phthalate		50	ND	ND	ND	ND	ND	9.1
di-n-butlyphthalate	50		ND	ND	ND	ND	ND	9.1
carbazole	NR	NR	ND	ND	ND	ND	ND	9.1
indeno(1,2,3-cd)pyrene		0.002	ND	ND	ND	ND	ND	9.1
4-chloroaniline	5		ND	ND	ND	ND	ND	9.1
bis(-2-chloroethoxy)methane	5		ND	ND	ND	ND	ND	9.1
bis(2-chloroethyl)ether	1		ND	ND	ND	ND	ND	9.1
2-chloronapthalene		10	ND	ND	ND	ND	ND	9.1
2-chlorophenol	1†		ND	ND	ND	ND	ND	9.1
2,2'-oxybis(1-chloropropane)	5		ND	ND	ND	ND	ND	9.1
chrysene		0.002	ND	ND	ND	ND	ND	9.1
dibenzo(a,h)anthracene	NR	NR	ND	ND	ND	ND	ND	9.1
dibenzofuran	NR	NR	ND	ND	ND	ND	ND	9.1
1,2-dichlorobenzene	3		ND	ND	ND	ND	ND	9.1
1,3-dichlorobenzene	3		ND	ND	ND	ND	ND	9.1
1,4-dichlorobenzene	3		ND	ND	ND	ND	ND	9.1
3,3'-dichlorobenzidine	5		ND	ND	ND	ND	ND	9.1
2,4-dichlorophenol	5		ND	ND	ND	ND	ND	9.1
diethylphthalate		50	ND	ND	ND	ND	ND	9.1
dimethyl phthalate		50	ND	ND	ND	ND	ND	9.1
2,4-dimethlyphenol		50	ND	ND	ND	ND	ND	9.1
2,4-dinitrophenol		10	ND	ND	ND	ND	ND	45
2,4-dinitrotoluene	5		ND	ND	ND	ND	ND	9.1
2,6-dinitrotoluene	5		ND	ND	ND	ND	ND	9.1
bis(2-ethylhexyl)phthalate	5		ND	ND	ND	ND	ND	9.1
fluoranthene		50	ND	ND	ND	ND	ND	9.1
fluorene		50	ND	ND	ND	ND	ND	9.1
hexachlorobenzene	0.04		ND	ND	ND	ND	ND	9.1
hexachlorobutadiene	0.5		ND	ND	ND	ND	ND	9.1
hexachlorocyclopentadiene	5		ND	ND	ND	ND	ND	9.1
hexachloroethane	5		ND	ND	ND	ND	ND	9.1
isophorone		50	ND	ND	ND	ND	ND	9.1
2-methlynapthalene	NR	NR	ND	ND	ND	ND	ND	9.1
2-methylphenol	1†		ND	ND	ND	ND	ND	9.1

File:2021 Annual Report Tables.xlsx

Sheet: 3-3 S-Well SVOCs Printed: 1/19/2022

TABLE 3-3 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

SHALLOW WELL SVOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value		MRL				
Well ID			MW-10S	MW-11S	MW-12S	MW-13S	MW-14S	
Dilution			1.00	1.00	1.00	1.00	1.00	
4,6-dinitro-2-methylphenol	1†		ND	ND	ND	ND	ND	45
4-chloro-3-methlyphenol	1†		ND	ND	ND	ND	ND	9.1
3+4-methylphenol	1†		ND	ND	ND	ND	ND	9.1
napthalene		10	ND	ND	ND	ND	ND	9.1
2-nitroaniline	5		ND	ND	ND	ND	ND	45
3-nitroaniline	5		ND	ND	ND	ND	ND	45
4-nitroaniline	5		ND	ND	ND	ND	ND	45
nitrobenzene	0.4		ND	ND	ND	ND	ND	9.1
2-nitrophenol	1†		ND	ND	ND	ND	ND	9.1
4-nitrophenol	1†		ND	ND	ND	ND	ND	45
n-nitrosodimethylamine	NR	NR	ND	ND	ND	ND	ND	9.1
n-nitrosodiphenylamine		50	ND	ND	ND	ND	ND	9.1
di-n-octyl phthalate		50	ND	ND	ND	ND	ND	9.1
pentachlorophenol	1†		ND	ND	ND	ND	ND	45
phenanthrene		50	ND	ND	ND	ND	ND	9.1
phenol	1†		ND	ND	ND	ND	ND	9.1
4-bromophenyl-phenylether	NR	NR	ND	ND	ND	ND	ND	9.1
4-chlorophenyl-phenylether	NR	NR	ND	ND	ND	ND	ND	9.1
n-nitroso-di-n-propylamine	NR	NR	ND	ND	ND	ND	ND	9.1
pyrene		50	ND	ND	ND	ND	ND	9.1
1,2,4-trichlorobenzene	5		ND	ND	ND	ND	ND	9.1
2,4,5-trichlorophenol	1†		ND	ND	ND	ND	ND	9.1
2,4,6-trichlorophenol	1†		ND	ND	ND	ND	ND	9.1
TOTALS			ND	ND	ND	ND	ND	

Average Outside Landfill (MW 10S - 14S	ND
Average Inside Landfill (Table 3-1)	109

ND - Not Detected, above the laboratory detection limit

Sheet: 3-3 S-Well SVOCs Printed: 1/19/2022

^{† -} Applies to the sum total of these substances

TABLE 3-4 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

SHALLOW WELL VOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value	ANALYTICAL RESULTS (ug/L)					
Well ID			MW-10S MW-11S MW-12S MW-13S MW-14S					
Dilution			1.00	1.00	1.00	1.00	1.00	
acetone		50	ND	ND	ND	ND	ND	10
benzene	1		ND	ND	ND	ND	ND	5.0
bromodichloromethane		50	ND	ND	ND	ND	ND	5.0
bromoform		50	ND	ND	ND	ND	ND	5.0
bromomethane	5		ND	ND	ND	ND	ND	5.0
2-butanone (MEK)		50	ND	ND	ND	ND	ND	10
carbon disulfide	NR	NR	ND	ND	ND	ND	ND	10
carbon tetrachloride	5		ND	ND	ND	ND	ND	5.0
chlorobenzene	5		ND	ND	ND	ND	ND	5.0
chloroethane	5		ND	ND	ND	ND	ND	5.0
chloroform	7		ND	ND	ND	ND	ND	5.0
chloromethane	5		ND	ND	ND	ND	ND	5.0
dibromochloromethane		50	ND	ND	ND	ND	ND	5.0
1,1-dichloroethane	5		ND	ND	ND	ND	ND	5.0
1,2-dichloroethane	0.6		ND	ND	ND	ND	ND	5.0
1,1-dichloroethene	5		ND	ND	ND	ND	ND	5.0
cis-1,2-dichloroethene	5		ND	ND	ND	ND	ND	5.0
trans-1,2-dichloroethene	5		ND	ND	ND	ND	ND	5.0
1,2-dichloropropane	1		ND	ND	ND	ND	ND	5.0
cis-1,3-dichloropropene	0.4*		ND	ND	ND	ND	ND	5.0
trans-1,3-dichloropropene	0.4*		ND	ND	ND	ND	ND	5.0
ethlybenzene	5		ND	ND	ND	ND	ND	5.0
2-hexanone		50	ND	ND	ND	ND	ND	10
methylene chloride	5		ND	ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK)	NR	NR	ND	ND	ND	ND	ND	10
styrene	5		ND	ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane	5		ND	ND	ND	ND	ND	5.0
tetrachloroethene	5		ND	ND	ND	ND	ND	5.0
toluene	5		ND	ND	ND	ND	ND	5.0
1,1,1-trichloroethane	5		ND	ND	ND	ND	ND	5.0
1,1,2-trichloroethane	1		ND	ND	ND	ND	ND	5.0
trichloroethene	5		ND	ND	ND	ND	ND	5.0
vinyl chloride	2		ND	ND	ND	ND	ND	5.0
m+p xylene	5 (each)		ND	ND	ND	ND	ND	5.0
o-xylene	5		ND	ND	ND	ND	ND	5.0
TOTAL VOC'S			ND	ND	ND	ND	ND	

Average	Average
Outside	Inside
Landfill	Landfill
(MW 10S -	(Table 3-1)
14S)	
0	10

ТРН		ND	ND	ND	ND	ND	4.7
SOLUBLE ARSENIC	25	ND	ND	ND	ND	ND	10
SOLUBLE LEAD	25	ND	ND	ND	ND	ND	50

0.0	2,840
0.0	24
0.0	5,313

ND - Not Detected, above the laboratory detection limit

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-21, 2021

MEDIUM WELL SVOCs

	NYS	NYS								
	Water Quality	Water Quality Guidance	ANA	LYTICAL I	RESULTS (ug/L)				
ANALYTE	Standard	Value								
Well ID			MW-10M	MW-11M	MW-12M	MW-13M				
Dilution			1.00	1.00	1.00	1.00				
acenapthene		20	ND	ND	ND	ND	9.4			
acenapthylene	NR	NR	ND	ND	ND	ND	9.4			
anthracene		50	ND	ND	ND	ND	9.4			
benzo(a)anthracene		0.002	ND	ND	ND	ND	9.4			
benzo(a)pyrene	>ND		ND	ND	ND	ND	9.4			
benzo(b)fluoranthene		0.002	ND	ND	ND	ND	9.4			
benzo(g,h,i)perylene	NR	NR	ND	ND	ND	ND	9.4			
benzo(k)fluoranthene		0.002	ND	ND	ND	ND	9.4			
benzyl alcohol	NR	NR	ND	ND	ND	ND	9.4			
butly benzyl phthalate		50	ND	ND	ND	ND	9.4			
di-n-butlyphthalate	50		ND	ND	ND	ND	9.4			
carbazole	NR	NR	ND	ND	ND	ND	9.4			
indeno(1,2,3-cd)pyrene		0.002	ND	ND	ND	ND	9.4			
4-chloroaniline	5		ND	ND	ND	ND	9.4			
bis(-2-chloroethoxy)methane	5		ND	ND	ND	ND	9.4			
bis(2-chloroethyl)ether	1		ND	ND	ND	ND	9.4			
2-chloronapthalene		10	ND	ND	ND	ND	9.4			
2-chlorophenol	1†		ND	ND	ND	ND	9.4			
2,2'-oxybis(1-chloropropane)	5		ND	ND	ND	ND	9.4			
chrysene		0.002	ND	ND	ND	ND	9.4			
dibenzo(a,h)anthracene	NR	NR	ND	ND	ND	ND	9.4			
dibenzofuran	NR	NR	ND	ND	ND	ND	9.4			
1,2-dichlorobenzene	3		ND	ND	ND	ND	9.4			
1,3-dichlorobenzene	3		ND	ND	ND	ND	9.4			
1,4-dichlorobenzene	3		ND	ND	ND	ND	9.4			
3,3'-dichlorobenzidine	5		ND	ND	ND	ND	9.4			
2,4-dichlorophenol	5		ND	ND	ND	ND	9.4			
diethylphthalate		50	ND	ND	ND	ND	9.4			
dimethyl phthalate		50	ND	ND	ND	ND	9.4			
2,4-dimethlyphenol		50	ND	ND	ND	ND	9.4			
2,4-dinitrophenol		10	ND	ND	ND	ND	47			
2,4-dinitrotoluene	5		ND	ND	ND	ND	9.4			
2,6-dinitrotoluene	5		ND	ND	ND	ND	9.4			
bis(2-ethylhexyl)phthalate	5		ND	ND	ND	ND	9.7			
fluoranthene		50	ND	ND	ND	ND	9.4			
fluorene		50	ND	ND	ND	ND	9.4			
hexachlorobenzene	0.04		ND	ND	ND	ND	9.4			
hexachlorobutadiene	0.5		ND	ND	ND	ND	9.4			

File:2021 Annual Report Tables.xlsx

Sheet: 3-5 M-Well SVOCs Printed: 1/19/2022

TABLE 3-5 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-21, 2021

MEDIUM WELL SVOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value	ANA	,	MRL		
Well ID			MW-10M	MW-11M	MW-12M	MW-13M	
Dilution			1.00	1.00	1.00	1.00	
hexachlorocyclopentadiene	5		ND	ND	ND	ND	9.4
hexachloroethane	5		ND	ND	ND	ND	9.4
isophorone		50	ND	ND	ND	ND	9.4
2-methlynapthalene	NR	NR	ND	ND	ND	ND	9.4
2-methylphenol	1†		ND	ND	ND	ND	9.4
4,6-dinitro-2-methylphenol	1†		ND	ND	ND	ND	47
4-chloro-3-methlyphenol	1†		ND	ND	ND	ND	9.4
3+4-methylphenol	1†		ND	ND	ND	ND	9.4
napthalene		10	ND	ND	ND	ND	9.4
2-nitroaniline	5		ND	ND	ND	ND	47
3-nitroaniline	5		ND	ND	ND	ND	47
4-nitroaniline	5		ND	ND	ND	ND	47
nitrobenzene	0.4		ND	ND	ND	ND	9.4
2-nitrophenol	1†		ND	ND	ND	ND	9.4
4-nitrophenol	1†		ND	ND	ND	ND	47
n-nitrosodimethylamine	NR	NR	ND	ND	ND	ND	9.4
n-nitrosodiphenylamine		50	ND	ND	ND	ND	9.4
di-n-octyl phthalate		50	ND	ND	ND	ND	9.4
pentachlorophenol	1†		ND	ND	ND	ND	47
phenanthrene		50	ND	ND	ND	ND	9.4
phenol	1†		ND	ND	ND	ND	9.4
4-bromophenyl-phenylether	NR	NR	ND	ND	ND	ND	9.4
4-chlorophenyl-phenylether	NR	NR	ND	ND	ND	ND	9.4
n-nitroso-di-n-propylamine	NR	NR	ND	ND	ND	ND	9.4
pyrene		50	ND	ND	ND	ND	9.4
1,2,4-trichlorobenzene	5		ND	ND	ND	ND	9.4
2,4,5-trichlorophenol	1†		ND	ND	ND	ND	9.4
2,4,6-trichlorophenol	1†		ND	ND	ND	ND	9.4
TOTALS			ND	ND	ND	ND	

D - Reported concentration is a result of a dilution.

Printed: 1/19/2022

ND - Not Detected, above the laboratory detection limit

^{† -} Applies to the sum total of these substances

TABLE 3-6 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

MEDIUM WELL VOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value	ANA	MRL			
Well ID		7 64.62.5	MW-10M	MW-11M	MW-12M	MW-13M	
Dilution			1.00	1.00	1.00	1.00	
acetone		50	ND	ND	ND	ND	10
benzene	1		ND	ND	ND	ND	5.0
bromodichloromethane		50	ND	ND	ND	ND	5.0
bromoform		50	ND	ND	ND	ND	5.0
bromomethane	5		ND	ND	ND	ND	5.0
2-butanone (MEK)		50	ND	ND	ND	ND	10
carbon disulfide	NR	NR	ND	ND	ND	ND	10
carbon tetrachloride	5		ND	ND	ND	ND	5.0
chlorobenzene	5		ND	ND	ND	ND	5.0
chloroethane	5		ND	ND	ND	ND	5.0
chloroform	7		ND	ND	ND	ND	5.0
chloromethane	5		ND	ND	ND	ND	5.0
dibromochloromethane		50	ND	ND	ND	ND	5.0
1,1-dichloroethane	5		ND	ND	ND	ND	5.0
1,2-dichloroethane	0.6		ND	ND	ND	ND	5.0
1,1-dichloroethene	5		ND	ND	ND	ND	5.0
cis-1,2-dichloroethene	5		ND	ND	ND	ND	5.0
trans-1,2-dichloroethene	5		ND	ND	ND	ND	5.0
1,2-dichloropropane	1		ND	ND	ND	ND	5.0
cis-1,3-dichloropropene	0.4*		ND	ND	ND	ND	5.0
trans-1,3-dichloropropene	0.4*		ND	ND	ND	ND	5.0
ethlybenzene	5		ND	ND	ND	ND	5.0
2-hexanone		50	ND	ND	ND	ND	10
methylene chloride	5		ND	ND	ND	ND	5.0
4-methyl-2-pentanone (MIBK)	NR	NR	ND	ND	ND	ND	10
styrene	5		ND	ND	ND	ND	5.0
1,1,2,2-tetrachloroethane	5		ND	ND	ND	ND	5.0
tetrachloroethene	5		ND	ND	ND	ND	5.0
toluene	5		ND	ND	ND	ND	5.0
1,1,1-trichloroethane	5		ND	ND	ND	ND	5.0
1,1,2-trichloroethane	1		ND	ND	ND	ND	5.0
trichloroethene	5		ND	ND	ND	ND	5.0
vinyl chloride	2		ND	ND	ND	ND	5.0
m+p xylene	5 (each)		ND	ND	ND	ND	5.0
o-xylene	5		ND	ND	ND	ND	5.0
TOTAL VOC'S			ND	ND	ND	ND	-
ТРН			ND	ND	ND	ND	4.7
SOLUBLE ARSENIC	25		ND	ND	ND	ND	10
SOLUBLE LEAD	25		ND	ND	ND	ND	50
SOLUBLE LEAD	23	I	עאו	עויו	עאו	עאו	50

ND - Not Detected, above the laboratory detection limit

File:2021 Annual Report Tables.xlsx Sheet: 3-6 M-Well VOCs TPH Metal

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

TABLE 3-7 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

DEEP WELL SVOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value		RESULTS (ug/L)	MRL
Well ID			MW-10D	MW-12D	
Dilution			1.00	1.00	
acenapthene		20	ND	ND	9.4
acenapthylene	NR	NR	ND	ND	9.4
anthracene		50	ND	ND	9.4
benzo(a)anthracene		0.002	ND	ND	9.4
benzo(a)pyrene	>ND		ND	ND	9.4
benzo(b)fluoranthene		0.002	ND	ND	9.4
benzo(g,h,i)perylene	NR	NR	ND	ND	9.4
benzo(k)fluoranthene		0.002	ND	ND	9.4
benzyl alcohol	NR	NR	ND	ND	9.4
butly benzyl phthalate		50	ND	ND	9.4
di-n-butlyphthalate	50		ND	ND	9.4
carbazole	NR	NR	ND	ND	9.4
indeno(1,2,3-cd)pyrene		0.002	ND	ND	9.4
4-chloroaniline	5		ND	ND	9.4
bis(-2-chloroethoxy)methane	5		ND	ND	9.4
bis(2-chloroethyl)ether	1		ND	ND	9.4
2-chloronapthalene		10	ND	ND	9.4
2-chlorophenol	1†		ND	ND	9.4
2,2'-oxybis(1-chloropropane)	5		ND	ND	9.4
chrysene		0.002	ND	ND	9.4
dibenzo(a,h)anthracene	NR	NR	ND	ND	9.4
dibenzofuran	NR	NR	ND	ND	9.4
1,2-dichlorobenzene	3		ND	ND	9.4
1,3-dichlorobenzene	3		ND	ND	9.4
1,4-dichlorobenzene	3		ND	ND	9.4
3,3'-dichlorobenzidine	5		ND	ND	9.4
2,4-dichlorophenol	5		ND	ND	9.4
diethylphthalate		50	ND	ND	9.4
dimethyl phthalate		50	ND	ND	9.4
2,4-dimethlyphenol		50	ND	ND	9.4
2,4-dinitrophenol		10	ND	ND	47
2,4-dinitrotoluene	5		ND	ND	9.4
2,6-dinitrotoluene	5		ND	ND	9.4
bis(2-ethylhexyl)phthalate	5		ND	ND	9.7
fluoranthene		50	ND	ND	9.4
fluorene		50	ND	ND	9.4
hexachlorobenzene	0.04		ND	ND	9.4
hexachlorobutadiene	0.5		ND	ND	9.4

File:2021 Annual Report Tables.xlsx

Sheet: 3-7 D-Well SVOCs Printed: 1/19/2022

TABLE 3-7 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

DEEP WELL SVOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value	ANALYTICAL	RESULTS (ug/L)	MRL
Well ID			MW-10D	MW-12D	
Dilution			1.00	1.00	
hexachlorocyclopentadiene	5		ND	ND	9.4
hexachloroethane	5		ND	ND	9.4
isophorone		50	ND	ND	9.4
2-methlynapthalene	NR	NR	ND	ND	9.4
2-methylphenol	1†		ND	ND	9.4
4,6-dinitro-2-methylphenol	1†		ND	ND	47
4-chloro-3-methlyphenol	1†		ND	ND	9.4
3+4-methylphenol	1†		ND	ND	9.4
napthalene		10	ND	ND	9.4
2-nitroaniline	5		ND	ND	47
3-nitroaniline	5		ND	ND	47
4-nitroaniline	5		ND	ND	47
nitrobenzene	0.4		ND	ND	9.4
2-nitrophenol	1†		ND	ND	9.4
4-nitrophenol	1†		ND	ND	47
n-nitrosodimethylamine	NR	NR	ND	ND	9.4
n-nitrosodiphenylamine		50	ND	ND	9.4
di-n-octyl phthalate		50	ND	ND	9.4
pentachlorophenol	1†		ND	ND	47
phenanthrene		50	ND	ND	9.4
phenol	1†		ND	ND	9.4
4-bromophenyl-phenylether	NR	NR	ND	ND	9.4
4-chlorophenyl-phenylether	NR	NR	ND	ND	9.4
n-nitroso-di-n-propylamine	NR	NR	ND	ND	9.4
pyrene		50	ND	ND	9.4
1,2,4-trichlorobenzene	5		ND	ND	9.4
2,4,5-trichlorophenol	1†		ND	ND	9.4
2,4,6-trichlorophenol	1†		ND	ND	9.4
TOTALS			ND	ND	

ND - Not Detected, above the laboratory detection limit

File:2021 Annual Report Tables.xlsx

Sheet: 3-7 D-Well SVOCs Printed: 1/19/2022

^{† -} Applies to the sum total of these substances

TABLE 3-8 UNION ROAD ANNUAL GROUNDWATER MONITORING September 19-20, 2021

DEEP WELL VOCs

ANALYTE	NYS Water Quality Standard	NYS Water Quality Guidance Value	ANALYTICAL	RESULTS (ug/L)	MRL
Well ID		, 112110	MW-10D	MW-12D	
Dilution			1.00	1.00	
acetone		50	13	ND	10
benzene	1		ND	ND	5.0
bromodichloromethane		50	ND	ND	5.0
bromoform		50	ND	ND	5.0
bromomethane	5		ND	ND	5.0
2-butanone (MEK)		50	ND	ND	10
carbon disulfide	NR	NR	ND	ND	10
carbon tetrachloride	5		ND	ND	5.0
chlorobenzene	5		ND	ND	5.0
chloroethane	5		ND	ND	5.0
chloroform	7		ND	ND	5.0
chloromethane	5		ND	ND	5.0
dibromochloromethane		50	ND	ND	5.0
1,1-dichloroethane	5		ND	ND	5.0
1,2-dichloroethane	0.6		ND	ND	5.0
1,1-dichloroethene	5		ND	ND	5.0
cis-1,2-dichloroethene	5		ND	ND	5.0
trans-1,2-dichloroethene	5		ND	ND	5.0
1,2-dichloropropane	1		ND	ND	5.0
cis-1,3-dichloropropene	0.4*		ND	ND	5.0
trans-1,3-dichloropropene	0.4*		ND	ND	5.0
ethlybenzene	5		ND	ND	5.0
2-hexanone		50	ND	ND	10
methylene chloride	5		ND	ND	5.0
4-methyl-2-pentanone (MIBK)	NR	NR	ND	ND	10
styrene	5		ND	ND	5.0
1,1,2,2-tetrachloroethane	5		ND	ND	5.0
tetrachloroethene	5		ND	ND	5.0
toluene	5		ND	ND	5.0
1,1,1-trichloroethane	5		ND	ND	5.0
1,1,2-trichloroethane	1		ND	ND	5.0
trichloroethene	5		ND	ND	5.0
vinyl chloride	2		ND	ND	5.0
m+p xylene	5 (each)		ND	ND	5.0
o-xylene	5		ND	ND	5.0
TOTAL VOC'S			13	ND	
ТРН			ND	ND	4.7
SOLUBLE ARSENIC	25		ND	ND	10
SOLUBLE LEAD	25		ND	ND	50

ND - Not Detected, above the laboratory detection limit

File:2021 Annual Report Tables.xlsx Sheet: 3-8 D-Well VOCs TPH Metal

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		[Well ID								M	W-10S							$\overline{}$
			Date	2/6/1997	4/22/1997	9/10/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
<u> </u>	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	56-55-3	>ND	0.002	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
177	50-32-8 205-99-2	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	191-24-2	NR	NR	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND
	207-08-9		0.002	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
111 111	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
` ''	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7	1.	10	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol 2,2'-oxybis(1-chloropropane)	95-57-8 108-60-1	1† 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9		0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,7	132-64-9	NR NR	NR NR	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3	.410	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
· · · · · · · · · · · · · · · · · · ·	541-73-1	3		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND
	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
·	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3 1 11	117-81-7	5	F0	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND
<u> </u>	206-44-0 86-73-7		50 50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
fluorene hexachlorobenzene	118-74-1	0.04	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3	 	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
· · ·	100-02-7	1†		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8	<u> </u>	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR NB	NR NB	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
	621-64-7 129-00-0	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0	5	OU.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	88-06-2	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,0-ининогорненог	30 00-2	. 4. 1		IVD	140	140	140	שאו	110	110	110	1 140	IND	IND	140	1 110	140	140	IND
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
.52.57065																			

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	0/44/2000	0/22/2010	0/22/2011	0/20/2012	0/42/2042	MW-10S	0/24/2045	0/24/2046	0/6/2017	0/40/2040	0/0/2010	0/40/202
Analyte	CAS No.	NYS Water Quality	Date NYS Water Quality	9/14/2009 μg/L	9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L	9/25/2014 μg/L	9/21/2015 μg/L	9/21/2016 μg/L	9/6/2017 μg/L	9/18/2018 μg/L	9/8/2019 μg/L	9/19/202 μg/L
Analyte	CAS NO.	Standard	Guidance Value	μ6/ L	µ6/ ∟	μ6/-	P6/L	μ6/1	μ6/-	μ6/1	μ6/ -	μ6/1	μ6/ L	μ6/ L	P6/L
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzyl alcohol	100-51-6	NR	NR 50	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	14.1	0.002	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
2,4-dichlorophenol	120-83-2	5		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
diethylphthalate	84-66-2 131-11-3		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dimethyl phthalate 2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinetnyiphenol	51-28-5		10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenol	121-14-2	5	10	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3- and 4-methylphenol napthalene	NA 91-20-3	+ ''	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alt or a second or bath or beautiful or a	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-octyl phthalate	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol		1	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol phenanthrene	85-01-8		30			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol phenanthrene phenol	108-95-2	1†		ND	ND										
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether	108-95-2 101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether	108-95-2 101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND							
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	108-95-2 101-55-3 7005-72-3 621-64-7	NR	NR NR NR	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND							
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether n-nitroso-di-n-propylamine pyrene	108-95-2 101-55-3 7005-72-3 621-64-7 129-00-0	NR NR NR	NR NR	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND							
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether n-nitroso-di-n-propylamine pyrene 1,2,4-trichlorobenzene	108-95-2 101-55-3 7005-72-3 621-64-7 129-00-0 120-82-1	NR NR NR	NR NR NR	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND							
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether n-nitroso-di-n-propylamine pyrene 1,2,4-trichlorobenzene 2,4,5-trichlorophenol	108-95-2 101-55-3 7005-72-3 621-64-7 129-00-0 120-82-1 95-95-4	NR NR NR 5	NR NR NR	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND							
pentachlorophenol phenanthrene phenol 4-bromophenyl-phenylether 4-chlorophenyl-phenylether n-nitroso-di-n-propylamine pyrene 1,2,4-trichlorobenzene	108-95-2 101-55-3 7005-72-3 621-64-7 129-00-0 120-82-1	NR NR NR	NR NR NR	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND							

Notes: Bolded results exceed NYS Ambient Water Quality Standards. NR - No groundwater standard or guidance value available.

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		[Well ID								MV	V-10M							
			Date	2/6/1997	4/22/1997	9/10/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)pyrene benzo(b)fluoranthene	50-32-8 205-99-2	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	191-24-2	NR	NR	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
	207-08-9		0.002	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol 2,2'-oxybis(1-chloropropane)	95-57-8 108-60-1	1† 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9		0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a.h)anthracene	55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzofuran	132-64-9	NR NR	NR NR	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3	.410	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5	F0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
fluorene hexachlorobenzene	118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline nitrobenzene	98-95-3	0.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-02-7	1†		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodiphenylamine	86-30-6	<u> </u>	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	117-84-0		50	8.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3	NR NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR FO	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0 120-82-1	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichloropenzene 2,4,5-trichlorophenol	95-95-4	1 [†]		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	88-06-2	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2, 4,0- tricinorophenor	30 00-2	. 4. 1		IVD	110	1 110	140	שאו	110	IND	110	1 110	IND	140	140	1 110	140	140	140
Toal SVOCs				8.7	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND
100107003				J.,					.,,,		.,,,			.,,,					

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	0/14/2000	0/22/2010	0/22/2011	0/20/2012	0/12/2012	MW-10		0/21/2016	0/6/2017	0/10/2010	0/9/2010	0/10/2021
Analyte	CAS No.	NYS Water Quality	Date NYS Water Quality	9/14/2009 μg/L	9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L	9/25/2014 μg/L	9/21/2015 μg/L	9/21/2016 μg/L	9/6/2017 μg/L	9/18/2018 μg/L	9/8/2019 μg/L	9/19/2021 μg/L
,		Standard	Guidance Value	P-07 -	P-0/ -	Por -	1-0/-		P-6/ -	1-0,-	F-6/-	1-0/-	F-6/ -	1-6/-	107-
acenapthene	83-32-9		20	ND	ND	ND	ND	ND							
acenapthylene		NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND ND							
benzo(a)anthracene benzo(a)pyrene	56-55-3 50-32-8	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND							
benzo(a)pyrene benzo(b)fluoranthene	205-99-2	>ND	0.002	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(g,h,i)perylene		NR	NR NR	ND	ND	ND	ND	ND ND							
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND							
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND							
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2 86-74-8	50 NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
carbazole indeno(1,2,3-cd)pyrene	193-39-5	INK	0.002	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloroaniline	106-47-8	5	0.002	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
bis(-2-chloroethoxy)methane		5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND							
2-chloronapthalene			10	ND	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
2,2'-oxybis(1-chloropropane) chrysene	108-60-1 218-01-9	5	0.002	ND ND	ND ND	ND ND	ND ND	ND ND							
chrysene dibenzo(a,h)anthracene	55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND							
dibenzofuran	132-64-9	NR NR	NR NR	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND							
1,4-dichlorobenzene		3		ND	ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2 84-66-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND							
diethylphthalate dimethyl phthalate	131-11-3		50	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND							
fluoranthene fluorene	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene	118-74-1	0.04	30	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND							
hexachloroethane		5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR 1†	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
2-methylphenol 4,6-dinitro-2-methylphenol	95-48-7 534-52-1	1†		ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
3- and 4-methylphenol	NA NA	1†		ND	ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND							
3-nitroaniline	99-09-2	5		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
4-nitroaniline nitrobenzene	100-01-6 98-95-3	5 0.4		ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitrophenol	98-95-3 88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine			50	ND	ND	ND	ND	ND							
di-n-octyl phthalate		ļ.,	50	ND	ND	ND	ND	ND							
pentachlorophenol phenanthrene	87-86-5 85-01-8	1†	50	ND ND	ND ND	ND ND	ND ND	ND ND							
pnenantnrene	108-95-2	1†	JU	ND ND	ND ND	ND ND	ND ND	ND ND							
4-bromophenyl-phenylether		NR	NR	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chlorophenyl-phenylether		NR	NR	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine		NR	NR	ND	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND							
2,4,5-trichlorophenol		1†		ND	ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND							
Toal SVOCs				ND	ND	ND	ND	ND							
rodi 3VOCS				HU	IND	HD	1 110	1 110	140	140	140	140	עויו ן	שויו	

Notes: Bolded results exceed NYS Ambient Water Quality Standards. NR - No groundwater standard or guidance value available.

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID Date	2/7/1997	4/22/1997	9/10/1997	11/25/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	/-10D 9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality		μg/L	μg/L	9/10/1997 μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	8/28/2003 μg/L	9/19/2004 μg/L	9/11/2003 μg/L	8/10/2006 μg/L	μg/L	9/3/2008 μg/L
1,1.2		Standard	Guidance Value	1-01 -	-67	F-6/-	P-6/ -	-67	F-6/-	1-0/-	F-6/-	F-6/-	F-6/-	F-6/-	F-6/-	F-6/ -	1-6/-	1-6/-	P-6/ -
	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-12-7 56-55-3		50 0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	50-32-8	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	205-99-2	7.1.2	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-51-6 85-68-7	NR	NR 50	ND ND	ND ND	ND ND	ND ND	5.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	84-74-2	50	30	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	91-85-7	1	10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-57-8	1†		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
177	55-70-3 132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-50-1	3	INK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-83-2 84-66-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	131-11-3		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
7,	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	606-20-2 117-81-7	5		ND 8.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND 40	ND ND	ND 18	ND 58	ND 47	ND ND	ND ND	ND ND	ND ND	ND ND
` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	206-44-0	,	50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	77-47-4 67-72-1	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	78-59-1	1	50	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
, , , ,	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol 3- and 4-methylphenol	59-50-7 NA	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	91-20-3		10	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-01-6 98-95-3	5 0.4		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	86-30-6 117-84-0		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	87-86-5	1†	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	85-01-8		50	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	101-55-3	NR	NR NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7005-72-3 621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0	INK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toal SVOCs		ı		8.2	ND	ND	ND		ND	40	ND	10	F0	47	ND	ND	ND	ND	T ND
10ai SVOCS		i	I	0.2	ND	ND	NU	5.7	IND	40	עויו ו	18	58	4/	ND	ND	ND	עויו ן	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	0/44/2000	0/22/2010	0/22/2011	0/20/2012	0/42/2042	MW-1		0/24/2046	0/5/2047	0/40/2040	0/0/2010	0/20/2024
Analyte	CAS No.	NYS Water Quality	Date NYS Water Quality	9/14/2009 μg/L	9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L	9/25/2014 μg/L	9/21/2015 μg/L	9/21/2016 μg/L	9/6/2017 μg/L	9/18/2018 μg/L	9/8/2019 μg/L	9/20/2021 μg/L
Analyte	CAS NO.	Standard	Guidance Value	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L
acenapthene	83-32-9		20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2 191-24-2	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND							
benzo(g,h,i)perylene benzo(k)fluoranthene	207-08-9	INK	0.002	ND ND	ND ND	ND ND	ND ND	ND ND							
benzyl alcohol	100-51-6	NR	NR NR	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-chloronapthalene 2-chlorophenol	91-85-7	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND ND	ND ND	ND ND	ND ND	ND ND							
chrysene	218-01-9		0.002	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND	ND ND							
2,4-dichlorophenol diethylphthalate	84-66-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND							
dimethyl phthalate	131-11-3		50	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND							
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND							
fluorene	86-73-7 118-74-1	0.04	50	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene hexachlorobutadiene	87-68-3	0.04		ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
hexachloroethane	67-72-1	5		ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND ND	ND ND							
3- and 4-methylphenol	NA 01 20 2	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND							
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND							
3-nitroaniline	99-09-2	5		ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
di-n-octyl phthalate pentachlorophenol	117-84-0 87-86-5	1†	50	ND ND	ND ND	ND ND	ND ND	ND ND							
phenanthrene	87-86-5 85-01-8	1	50	ND ND	ND ND	ND ND	ND ND	ND ND							
phenol	108-95-2	1†	30	ND ND	ND ND	ND ND	ND ND	ND ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND	ND							
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND							
		1		NO	l 1:-		1	1 100	1:0	1 100	l	N-0	l 1:0	l 1/2	
Toal SVOCs		<u> </u>		ND	ND	ND	ND	ND							

Notes: Bolded results exceed NYS Ambient Water Quality Standards. NR - No groundwater standard or guidance value available.

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								м	IW-11S							
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
· ·		Standard	Guidance Value					'-"											
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9	ND	0.002	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
benzyl alcohol	100-51-6	NR	NR 50	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	141.	0.002	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND
4-chloroaniline	106-47-8	5		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	ND	ND
3,3'-dichlorobenzidine	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dichlorophenol diethylphthalate	84-66-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dimethyl phthalate	131-11-3		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND
2,4-dinitrophenol	51-28-5		10	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
2,4-dinitrotoluene	121-14-2	5		ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone 2-methlynapthalene	78-59-1 91-57-6	NR	50 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16 ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
2-metniynaptnaiene 2-methylphenol	95-48-7	1†	NK	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND
3- and 4-methylphenol	NA	1†		ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
napthalene	91-20-3		10	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR EO	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodiphenylamine	86-30-6 117-84-0	-	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-octyl phthalate pentachlorophenol	117-84-0 87-86-5	1†	JU	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pentacnioropnenoi	87-86-5 85-01-8	1'	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
phenol	108-95-2	1†	30	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pyrene	129-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										· · · · · · · · · · · · · · · · · · ·			I						
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	0/44/2000	0/22/2010	0/22/2011	0/20/2012	0/42/2042	MW-1		0/24/2046	0/5/2017	0/40/2040	0/0/2010	0/20/2024
Analyte	CAS No.	NYS Water Quality	Date NYS Water Quality	9/14/2009 μg/L	9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L	9/25/2014 μg/L	9/21/2015 μg/L	9/21/2016 μg/L	9/6/2017 μg/L	9/18/2018 μg/L	9/8/2019 μg/L	9/20/2021 μg/L
Allalyte	CAS NO.	Standard	Guidance Value	µg/L	μg/L	дв/г	μg/L	μg/L	μg/∟	μg/L	µg/L	дв/г	μg/∟	μg/L	µg/L
acenapthene	83-32-9		20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND							
benzo(a)pyrene benzo(b)fluoranthene	50-32-8 205-99-2	>ND	0.002	ND	ND ND	ND ND	ND ND	ND	ND ND						
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND							
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND							
butly benzyl phthalate	85-68-7		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND
di-n-butylphthalate carbazole	84-74-2 86-74-8	50 NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
indeno(1,2,3-cd)pyrene	193-39-5	i i i i	0.002	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1	40	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
2-chloronapthalene 2-chlorophenol	91-85-7 95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND ND	ND ND	ND ND	ND ND	ND ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND ND							
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND							
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene 1,4-dichlorobenzene	106-46-7	3		ND ND	ND ND	ND ND	ND ND	ND ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND ND	ND ND	ND ND	ND	ND ND						
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND							
2,4-dimethylphenol 2,4-dinitrophenol	105-67-9 51-28-5		50 10	ND ND	ND ND	ND ND	ND ND	ND ND							
2,4-dinitrotoluene	121-14-2	5	10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND							
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND							
fluorene hexachlorobenzene	86-73-7 118-74-1	0.04	50	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobutadiene	87-68-3	0.5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6 95-48-7	NR 1†	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
2-methylphenol 4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND ND	ND ND	ND ND	ND ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND	ND							
2-nitroaniline 3-nitroaniline	88-74-4 99-09-2	5		ND ND	ND ND	ND ND	ND ND	ND ND							
4-nitroaniline	100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND							
n-nitrosodiphenylamine di-n-octyl phthalate	86-30-6 117-84-0		50	ND ND	ND ND	ND ND	ND ND	ND ND							
pentachlorophenol	87-86-5	1†	- 50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND							
phenol	108-95-2	1†		ND	ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR NB	NR NB	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	7005-72-3 621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
n-nitroso-ai-n-propyiamine pyrene	129-00-0	IAL	50	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND							
1					l	110	1 100	1 100	110	1 110	No	1:0		1 100	
Toal SVOCs		I		ND	ND	ND	ND	ND							

Notes: Bolded results exceed NYS Ambient Water Quality Standards. NR - No groundwater standard or guidance value available.

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		Г	Well ID									W-11M							
		ŀ	Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
acenapthene	83-32-9	Standard	Guidance Value 20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR NR	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene benzo(k)fluoranthene	191-24-2 207-08-9	NR	NR 0.002	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate	85-68-7	····	50	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB
bis(-2-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chloroapthalene	91-85-7	-	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran 1,2-dichlorobenzene	132-64-9 95-50-1	NR 3	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene 1.3-dichlorobenzene	541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate 2,4-dimethylphenol	131-11-3 105-67-9		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenol	51-28-5		10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	59	25	47	ND	24	ND	ND
fluoranthene	206-44-0		50 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB
fluorene hexachlorobenzene	86-73-7 118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	11	ND NB	ND	ND	ND	ND	ND	ND
2-methlynapthalene 2-methylphenol	91-57-6 95-48-7	NR 1 [†]	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline 3-nitroaniline	88-74-4 99-09-2	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline 4-nitroaniline	100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9	NR	NR FO	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodiphenylamine di-n-octyl phthalate	86-30-6 117-84-0		50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pentachlorophenol	87-86-5	1†	50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenol	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3 621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitroso-di-n-propylamine pyrene	129-00-0	INK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T_ 10100		<u> </u>	1	ND	ND	ND	No.	ND	ND.	ND I	ND	11	F0 1	25	1 47	ND	24	ND	ND
Toal SVOCs		l l		ND	ND	ND	ND	ND	ND	ND	ND	11	59	25	47	ND	24	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Analyte acenapthene acenapthylene	CAS No.		Well ID Date	9/14/2009	9/22/2010				MW-1	1M					
acenapthene	CAS No.		Date I	9/14/2009								- /- /	- 1 1	- 1- 1	- / /
acenapthene	LAS NO.	NIVE Mater Over				8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
		NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L	μg/L							
acenapthylene	83-32-9		20	ND	ND	ND	ND	ND							
	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND							
benzo(b)fluoranthene benzo(g,h,i)perylene	205-99-2 191-24-2	NR	0.002 NR	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(k)fluoranthene	207-08-9	INK	0.002	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND							
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND							
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-chlorophenol	95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
chrysene	218-01-9	 	0.002	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND							
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND							
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND							
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND							
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND							
2,4-dichlorophenol diethylohthalate	120-83-2	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
dinethyl phthalate	84-66-2 131-11-3		50	ND ND	ND ND	ND ND	ND ND	ND ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
2,4-dinitrotoluene	121-14-2	5	-	ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	50	ND	ND	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND							
fluorene	86-73-7		50	ND	ND	ND	ND	ND							
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND							
hexachlorobutadiene	87-68-3 77-47-4	0.5 5		ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorocyclopentadiene hexachloroethane	67-72-1	5		ND ND	ND ND	ND ND	ND ND	ND ND							
isophorone	78-59-1	,	50	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-methlynapthalene	91-57-6	NR	NR NR	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND							
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND							
napthalene	91-20-3		10	ND	ND	ND	ND	ND							
2-nitroaniline	88-74-4	5		ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND
3-nitroaniline	99-09-2	5		ND ND	ND	ND ND	ND ND	ND ND	ND ND						
4-nitroaniline nitrobenzene	100-01-6 98-95-3	5 0.4		ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitropenzene	98-95-3 88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodimethylamine	62-75-9	NR NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6	<u> </u>	50	ND	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†	_	ND	ND	ND	ND	ND							
phenanthrene	85-01-8	\Box	50	ND	ND	ND	ND	ND							
phenol	108-95-2	1†		ND	ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND							
4-chlorophenyl-phenylether	7005-72-3	NR NR	NR NB	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
n-nitroso-di-n-propylamine pyrene	621-64-7 129-00-0	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene	129-00-0	5	3Ú	ND ND	ND ND	ND ND	ND ND	ND ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
=, .,s a.cspiiciloi	88-06-2	1†		ND	ND	ND	ND	ND							
2,4,6-trichlorophenol										•		•	•		
2,4,6-trichlorophenol															

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

March Column Co				Well ID								M	IW-12S							
Secondary Seco					2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999			10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Company Comp	Analyte	CAS No.															μg/L			μg/L
Part		02.22.0	Standard		NB	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND
Minister 1991 199			ND																	ND ND
Processing 15-13	, ,		INI															1	1	ND ND
Memoring process 1988 1980 1981 19																				ND ND
			>ND	0.002																ND
Manual Conference 19-1-1-1 Manual Property 19-1-1-1 Manual Property 19-1-1 Manual Proper				0.002																ND ND
	,,		NR																	ND
Methods 1647 52																				ND
Column C	benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Column C	butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Property 1989 198	di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
## 4:00000000000000000000000000000000000	carbazole	86-74-8	NR		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Miles Selection of Processing 1945 1	1,,,,,,,			0.002															i e	ND
Big Selected 134-44 1																				ND
2-chemosphase 35-7																				ND
2-despeciation 35-73 11	` ''		1																	ND
## 12.2 - Septiment 19.64 5 5 5 5 5 5 5 5 5			,.	10															i e	ND
dispersion 19-19-19																		1		ND ND
Hemotol_Allenthrecens 57-79 NN			- 5	0.002																ND ND
December 132-644 MR			ND																	ND ND
1_3-disclosed-searce 55-95-1 3	, , ,																			ND ND
1.3 dishierodementers 547.74 3				1411														1	1	ND ND
1.4.dicthrophenoidness 164-67 3																		1		ND ND
3.3° deliveropersonal 93.94.1 5																				ND
2,4-dickboropened 26-83-2 S																			i e	ND
	·		5																	ND
2.4-dimetrophenol 195-679 50 N0	diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Administrationary St.28.5 10 ND ND ND ND ND ND ND N	dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.4-finitrotolenee 121-142 5	2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.5-dimitroliume 66-20 2 5	2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bisig2-ethylescyliphtsalate 117-81-7 S	2,4-dinitrotoluene		5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Formation 18-64-40 50 ND ND ND ND ND ND ND N																			i e	ND
Mace			5																	ND
hexachiorobennee 134-74-1																			i e	ND
Pexachbrorobtadeline 74-74-74 5				50																ND
hexachlorocylopentalleine 77-47-4 5																				ND
No. No.																		1		ND ND
Suphrorone 78-59-1 50 ND	, ,																			ND ND
2-methylphenol 91-57-6 NR NR ND ND ND ND ND ND			,	50															i e	ND ND
2-methylphenol 95-48-7			NR																	ND ND
Af-dintro-2-methylphenol 534-52-1 11				NIK																ND
A-chloro-3-methylphenol S9-50-7	,,																	1		ND ND
3- and 4-methylphenol NA 1† ND ND ND ND ND ND ND N																				ND
No																				ND
3-nitroaniline 99-09-2 5	,, ,			10						ND	ND		ND			ND			ND	ND
A-nitroaniline 100-01-6 5	2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
No	3-nitroaniline					ND		ND			ND		ND			ND	ND		ND	ND
2-nitrophenol 88-75-5 1†																				ND
A-nitrophenoi 100-02-7 1† ND																				ND
n-nitrosodimethylamine 62-75-9 NR NR NR ND ND ND ND ND																	1		1	ND
n-nitrosodiphenylamine																				ND
Descript Control Con	, , ,		NR																	ND ND
Pentachlorophenol 87-86-5 1† ND			-																i e	ND ND
Phenanthrene 85-01-8 50 ND			1+	30															i e	ND ND
phenol 108-95-2 1† ND			1'	50																ND ND
4-bromophenyl-phenylether 101-55-3 NR NR ND			1†	30																ND ND
				NR																ND ND
וואר ב אווי ב א	4-chlorophenyl-phenylether	7005-72-3	NR	NR NR	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
																			i e	ND ND
pyrene 129-00-0 50 ND																				ND ND
1,2,4-trichlorobenzene 120-82-1 5 ND			5																	ND
2,4,5-trichlorophenol 95-95-4 1† ND						ND		ND			ND	ND			ND	ND			ND	ND
2,4,6-trichlorophenol 88-06-2 1† ND		88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
ND ND 17 ND	Toal SVOCs				ND	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID						MW-1	20					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality Standard		μg/L	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9	ND	0.002	ND	ND	ND	ND	ND ND							
benzyl alcohol	100-51-6	NR	NR 50	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR NB	NR NB	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzofuran 1,2-dichlorobenzene	132-64-9 95-50-1	NR 3	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene	106-46-7	3		ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3.3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5	50	ND	ND	ND	ND	ND							
fluoranthene fluorene	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene	118-74-1	0.04	30	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobetizene	87-68-3	0.5		ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND							
3- and 4-methylphenol	NA OA O	1†	40	ND	ND	ND	ND	ND							
napthalene	91-20-3	-	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline 3-nitroaniline	88-74-4 99-09-2	5		ND ND	ND ND	ND ND	ND ND	ND ND							
3-nitroaniine 4-nitroaniline	100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND							
phenol	108-95-2	1†	N/D	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND
4-bromophenyl-phenylether	101-55-3	NR NB	NR NB	ND ND	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
n-nitroso-di-n-propylamine pyrene	621-64-7 129-00-0	NIK	50	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene	129-00-0	5	JU	ND ND	ND ND	ND ND	ND ND	ND ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
								•					•		
Toal SVOCs				ND	ND	ND	ND	ND							
·					_		_								

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Analyte CAS No. NF Water Quality Symbol 1/2/1997 1/2/1997 1/2/1997 1/2/1997 1/2/1999 1/2/1999 1/2/1999 1/2	9/17/2007 9 Hg/L ND ND ND ND ND ND ND ND ND N	9/3/2008 µg/L ND ND ND ND ND ND ND ND ND N
Standard Guidance Value Standard Sta	ND N	ND N
Accoration Assessment Ass	ND N	ND N
According Acco	ND N	ND N
anthracene 19-12-7 50 ND ND ND ND ND ND ND N	ND N	ND N
Dento(a)anthracene	ND N	ND N
Description Section	ND N	ND N
Decay(b) Internation 205-99-2 D.0.002 ND	ND N	ND N
Denze (k)fluoranthene	ND N	ND N
Denzyl alcohol 100-51-6 NR	ND N	ND N
Dutly benzyl phthalate 85-68-7 SO ND	ND N	ND N
Description	ND N	ND
Carbazole 86-74-8	ND N	ND ND ND ND ND ND
Indeno(1,2,3-cd)pyrene 193-39-5 0.002 ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND
A-chloroanilline 106-47-8 5	ND	ND ND ND ND
bis(-2-chloroethoxy)methane 111-91-1 5	ND	ND ND ND
Dis[2-chloroethyl]ether 111-44-4 1	ND ND ND ND ND ND ND ND	ND ND ND
2-chlorophenol 91-85-7 10	ND ND ND ND	ND ND
2,2'-oxybis(1-chloropropane) 108-60-1 5 ND	ND ND ND	
Chrysene 218-01-9 0.002 ND	ND ND	NID
dibenzo(a,h)anthracene 55-70-3 NR	ND	ทบ
dibenzofuran 132-64-9 NR NR ND ND ND ND ND ND		ND
1,2-dichlorobenzene 95-50-1 3 ND	ND.	ND
1,3-dichlorobenzene 541-73-1 3 ND N		ND
1,4-dichlorobenzene 106-46-7 3 ND	ND ND	ND
	ND ND	ND
3,3'-dichlorobenzidine 91-94-1 5	ND ND	ND ND
3,5-01.00100100101010101 91.2-94-1 3 ND	ND ND	ND ND
Contract Contract	ND ND	ND
	ND ND	ND
2,4-dimethylphenol 105-67-9 50 ND	ND	ND
2,4-dinitrophenol 51-28-5 10 ND	ND	ND
2,4-dinitrotoluene 121-14-2 5 ND	ND	ND
2,6-dinitrotoluene 606-20-2 5 ND	ND	ND
bis(2-ethylhexyl)phthalate 117-81-7 5 ND	ND	ND
	ND	ND
	ND ND	ND ND
hexachlorobenzene 118-74-1 0.04 ND ND ND ND ND ND ND N	ND ND	ND ND
	ND ND	ND ND
	ND ND	ND
	ND ND	ND
2-methlynapthalene 91-57-6 NR NR ND	ND	ND
2-methylphenol 95-48-7 1 [†] ND	ND	ND
4,6-dinitro-2-methylphenol 534-52-1 1† ND	ND	ND
4-chloro-3-methylphenol 59-50-7 1† ND <	ND	ND
3- and 4-methylphenol NA 1† ND	ND	ND
napthalene 91-20-3 10 ND	ND ND	ND
2-nitroaniline 88-74-4 5 ND	ND ND	ND ND
3-nitroaniline 99-09-2 5 ND	ND ND	ND ND
#-Introduction 100-01-6 5 ND ND ND ND ND ND ND	ND ND	ND ND
2-nitrophenol 88-75-5 1† ND	ND ND	ND ND
4-nitrophenol 100-02-7 1† ND	ND ND	ND
n-nitrosodimethylamine 62-75-9 NR NR ND	ND	ND
n-nitrosodiphenylamine 86-30-6 50 ND	ND	ND
di-n-octyl phthalate 117-84-0 50 ND	ND	ND
pentachlorophenol 87-86-5 1† ND ND<	ND	ND
phenanthrene 85-01-8 50 ND	ND	ND
phenol 108-95-2 1† ND	ND	ND
4-bromophenyl-phenylether 101-55-3 NR NR ND	ND ND	ND
4-chlorophenyl-phenylether 7005-72-3 NR NR ND	ND ND	ND
	ND ND	ND ND
pyrene 129-00-0 50 ND	ND ND	ND ND
2,4,5-trichlorophenol 95-95-4 1† ND	ND ND	ND ND
2,4,6-trichtorophenol 38-30-6-2 1† ND	ND ND	ND
Toal SVOCs ND	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		i	Well ID						MW-1	204					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality Standard		μg/L	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	Stallualu	20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR NR	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND							
benzyl alcohol	100-51-6	NR	NR 50	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND							
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5	0.000	ND	ND	ND	ND	ND ND							
chrysene dibenzo(a,h)anthracene	218-01-9 55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND							
dibenzofuran	132-64-9	NR NR	NR NR	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3	IAU	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND							
3,3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2 117-81-7	5		ND ND	ND ND	ND ND	ND 120	ND ND							
bis(2-ethylhexyl)phthalate fluoranthene	206-44-0	,	50	ND ND	ND ND	ND ND	ND	ND ND							
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
hexachlorobenzene	118-74-1	0.04	30	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-chloro-3-methylphenol	59-50-7	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND							
3- and 4-methylphenol napthalene	NA 91-20-3		10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND							
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND							
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6	<u> </u>	50	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
di-n-octyl phthalate	117-84-0 87-86-5	1†	50	ND ND	ND ND	ND ND	ND ND	ND ND							
pentachlorophenol phenanthrene	87-86-5 85-01-8		50	ND ND	ND ND	ND ND	ND ND	ND ND							
phenol	108-95-2	1†	JU	ND ND	ND ND	ND ND	ND ND	ND ND							
4-bromophenyl-phenylether	101-55-3	NR NR	NR	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND							
pyrene	129-00-0		50	ND	ND	ND	ND	ND							
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND							
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND	ND	ND							
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND							
T			-												
Toal SVOCs				ND	ND	ND	120	ND							

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID								M	W-12D							
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
carbazole	86-74-8	NR	NR	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	INIX	0.002	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
4-chloroaniline	106-47-8	5	0.002	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine 2,4-dichlorophenol	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
z,4-dichiorophenoi diethylphthalate	84-66-2	,	50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dimethyl phthalate	131-11-3		50	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
2,4-dimethylphenol	105-67-9		50	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	17	13	11	ND	ND	ND	ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
hexachloroethane isophorone	67-72-1 78-59-1	3	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-methlynapthalene	91-57-6	NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-nitroaniline	99-09-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitroaniline	100-01-6	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nitrobenzene	98-95-3	0.4		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
2-nitrophenol	88-75-5	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitrophenol n-nitrosodimethylamine	100-02-7 62-75-9	1† NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitrosodimetnylamine n-nitrosodiphenylamine	86-30-6	INIV	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
di-n-octyl phthalate	117-84-0		50	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
pentachlorophenol	87-86-5	1†		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenol	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3		NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
pyrene	129-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
2,4,6-trichlorophenol	88-06-2	1†	I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	11	17	13	11	ND	ND	ND	ND
Tual 3VUCS		1	ı	IND	ואט ו	ND	IND	IND	שאו	IAD	HD	1 11	1/	13	1 11	ND	HD	ND	IND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Part			1								•					
Column C				Well ID	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013			9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Second S	Analyte	CAS No.	NYS Water Quality													
March Marc	, and yet	C 15 1101	1 1		P6/ -	P6/ -	P6/-	P6/-	P6/-	P6/-	P6/-	P6/-	P6/-	P6/-	P6/-	P6/-
Instruction 19-13 98 90 10 10 10 10 10 10 10	acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Memory 19-95 100	acenapthylene		NR									ND				
Memory March Mar																
	·			0.002												
			>ND	0.002												
	i		NR													
March Marc																
##			NR	NR												
Column C	butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	di-n-butylphthalate	84-74-2					ND	ND	ND	ND	ND	ND	ND	ND	ND	
Color Colo			NR													
big 3-th content any methods 111-14-1 1	, , , , , , , , , , , , , , , , , , , ,			0.002												
Selection Sele																
2-theresepatheres 94-74 19 10 10 10 10 10 10 10																
2-chrosphene 55-74 31			1	10												
March Marc			1†													
March Marc	· · ·															
				0.002												
1.2-distolereleases 54-951 3																
1.5 6.5 1.5				NR												
1,4-6/16/rechesterine 19-42 3																
3.4 dictorelevented 91-94-1 5																
2.4-dictolerophenols 130-83-2 S																
dischypithholates \$4.66-2 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$																
General phthalable 131-13-1 95			,	50												
2.4-dimetrhyphenol 195-879 195-88 10 NO NO NO NO NO NO NO N																
2.4-dintrotolouse 21-14-2 5				50												
2.6-dintrotoluses	2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Big/2-ethylevylghtablate 17.81-7 5																
More																
Part			5													
No. No.																
Peachforoprotyperstations			0.04	50												
Phexahlorocyclopertadiene 77-47-4 5																
Nexachrorestane 17-21 5																
2-methylphenol 35-45-7 11			5													
2-methylphenol 35-48-7 1†	isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4.6-dinitro-2-methylphenol 534-52-1 11	2-methlynapthalene			NR								ND				
A-thirors-methylphenol NA 1†																
3- and 4-methylphenol NA																
No																
2-nitroaniline 88-74-4 5 ND ND ND ND ND ND ND				10												
3-nitroaniline 99-99-2 5			5													
No																
2-nitrophenol 88-75-5	4-nitroaniline	100-01-6			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-nitrophenol 100-02-7											ND	ND				
No. No.																
No. No.				N												
Description of the content of the	,		NR													
Pentachlorophenol 87-86-5 1† ND																
Phenanthrene			1†	30												
Phenol 108-95-2 1†				50												
4-bromophenyl-phenylether 101-55-3 NR NR ND	·		1†													
No. No.	4-bromophenyl-phenylether				ND	ND	ND	ND	ND	ND		ND	ND		ND	ND
pyrene 129-00-0 50 ND																
1,2,4-trichlorobenzene 120-82-1 5 ND ND <t< td=""><td></td><td></td><th>NR</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			NR													
2,4,5-trichlorophenol 95-95-4 1† ND ND ND ND ND ND ND N				50												
2,4,6-trichlorophenol 88-06-2 1† ND																
TOSISVOCS ND ND ND ND 22 ND	2,4,6-tricniorophenol	00-00-2	1 1'		NU	שאו	ND	NU	NU	I ND	NU	ND	טא	NU	טא	עא
	Toal SVOCs			1	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		I	Well ID								M	W-13S							
		l	Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality Standard	NYS Water Quality Guidance Value	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
anthracene	120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2 207-08-9	NR	NR 0.002	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
benzo(k)fluoranthene benzyl alcohol	100-51-6	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate	85-68-7	NIX	50	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
di-n-butylphthalate	84-74-2	50		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane	111-91-1	5		ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
bis(2-chloroethyl)ether 2-chloronapthalene	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-chlorophenol	95-57-8	1†		ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzo(a,h)anthracene	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibenzofuran	132-64-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	541-73-1 106-46-7	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3,3'-dichlorobenzidine	91-94-1	5		ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
2,4-dinitrotoluene 2,6-dinitrotoluene	121-14-2 606-20-2	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane isophorone	67-72-1 78-59-1	5	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-methlynapthalene	91-57-6	NR	NR	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- and 4-methylphenol	NA OL OL OL	1†	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-nitroaniline	100-01-6	5		ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitrosodimethylamine	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
n-nitrosodiphenylamine di-n-octyl phthalate	86-30-6 117-84-0		50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pentachlorophenol	87-86-5	1†		ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
phenol	108-95-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-bromophenyl-phenylether	101-55-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chlorophenyl-phenylether	7005-72-3	NR	NR NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-nitroso-di-n-propylamine	621-64-7 129-00-0	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
pyrene 1,2,4-trichlorobenzene	129-00-0	5	JU	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toal SVOCs				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID						MW-1	20					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality Standard		μg/L	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND							
benzyl alcohol	100-51-6	NR	NR 50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND							
carbazole	86-74-8	NR	NR	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5	, , , ,	0.002	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND							
chrysene	218-01-9		0.002	ND	ND	ND	ND	ND							
dibenzo(a,h)anthracene	55-70-3	NR NB	NR NB	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzofuran 1,2-dichlorobenzene	132-64-9 95-50-1	NR 3	NR	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene 1,3-dichlorobenzene	95-50-1 541-73-1	3		ND ND	ND ND	ND ND	ND ND	ND ND							
1,3-dichlorobenzene	106-46-7	3		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
3.3'-dichlorobenzidine	91-94-1	5		ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5	F0	ND	ND	14	ND	ND							
fluoranthene fluorene	206-44-0 86-73-7		50 50	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobenzene	118-74-1	0.04	30	ND ND	ND ND	ND ND	ND ND	ND ND							
hexachlorobetizene	87-68-3	0.5		ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND							
3- and 4-methylphenol	NA OA O	1†	40	ND	ND	ND	ND	ND							
napthalene	91-20-3	 	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitroaniline 3-nitroaniline	88-74-4 99-09-2	5 5		ND ND	ND ND	ND ND	ND ND	ND ND							
3-nitroaniine 4-nitroaniline	100-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND							
nitrobenzene	98-95-3	0.4		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND							
phenol	108-95-2	1†	N/2	ND	ND	ND	ND	ND							
4-bromophenyl-phenylether	101-55-3	NR NB	NR NB	ND ND	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
n-nitroso-di-n-propylamine pyrene	621-64-7 129-00-0	NIK	50	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2,4-trichlorobenzene	129-00-0	5	JU	ND ND	ND ND	ND ND	ND ND	ND ND							
2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
													•		
Toal SVOCs				ND	ND	14	ND	ND							
·						_	_	_							

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ĺ	Well ID								MV	V-13M							
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value																
	83-32-9	ND.	20	21	ND	8.8	ND	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	208-96-8 120-12-7	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	56-55-3		0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	50-33-8	>ND	0.002	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
177	205-99-2	-145	0.002	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzyl alcohol	100-51-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
butly benzyl phthalate	85-68-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
di-n-butylphthalate	84-74-2	50		ND	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
111 111	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	111-91-1	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
` ''	111-44-4 91-85-7	1	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-57-8	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	108-60-1	5		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	218-01-9	 	0.002	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
	55-70-3	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
	132-64-9	NR	NR	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-94-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	120-83-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	84-66-2		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	51-28-5	_	10	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
	121-14-2 606-20-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	117-81-7	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	206-44-0		50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	86-73-7		50	16	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
	118-74-1	0.04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	87-68-3	0.5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	95-48-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	534-52-1	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	59-50-7	1†		ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
3- and 4-methylphenol	NA 01.20.2	1†	10	ND 19	ND ND	ND 8.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	91-20-3 88-74-4	5	10	ND	ND ND	8.7 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-nitroaniline	99-09-2	5		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100-01-6	5		ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
	98-95-3	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100-02-7	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	62-75-9	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	86-30-6	$oxed{\Box}$	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	117-84-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	87-86-5	1†		ND	ND	ND 7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	85-01-8	4.	50	19 ND	ND	7.8	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND
	108-95-2	1†	NR	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	/005-72-3 621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0	NK	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	129-00-0	5	JU	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	95-95-4	1†		ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	88-06-2	1†		ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
Toal SVOCs				93.1	ND	30.7	ND	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	_				_												_		

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID						MW-1	284					
			Date	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality Standard		μg/L	μg/L	μg/L	μg/L	μg/L							
acenapthene	83-32-9	Standard	20	ND	ND	ND	ND	ND							
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND							
anthracene	120-12-7		50	ND	ND	ND	ND	ND							
benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND							
benzo(a)pyrene	50-32-8	>ND		ND	ND	ND	ND	ND							
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND							
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND							
benzo(k)fluoranthene	207-08-9	ND.	0.002	ND	ND	ND	ND	ND ND							
benzyl alcohol	100-51-6	NR	NR 50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
butly benzyl phthalate di-n-butylphthalate	85-68-7 84-74-2	50	30	ND ND	ND ND	ND ND	ND ND	ND ND							
carbazole	86-74-8	NR NR	NR	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND							
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND							
bis(-2-chloroethoxy)methane	111-91-1	5		ND	ND	ND	ND	ND							
bis(2-chloroethyl)ether	111-44-4	1		ND	ND	ND	ND	ND							
2-chloronapthalene	91-85-7		10	ND	ND	ND	ND	ND							
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND							
2,2'-oxybis(1-chloropropane)	108-60-1	5	0.000	ND	ND	ND	ND	ND ND							
chrysene	218-01-9	N/S	0.002	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a,h)anthracene dibenzofuran	55-70-3 132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene	95-50-1	NK 3	NK	ND ND	ND ND	ND ND	ND ND	ND ND							
1,2-dichlorobenzene	541-73-1	3		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
3.3'-dichlorobenzidine	91-94-1	5		ND	ND	ND	ND	ND							
2,4-dichlorophenol	120-83-2	5		ND	ND	ND	ND	ND							
diethylphthalate	84-66-2		50	ND	ND	ND	ND	ND							
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND							
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND							
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND							
2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND							
2,6-dinitrotoluene	606-20-2	5 5		ND	ND	ND	ND	ND							
bis(2-ethylhexyl)phthalate	117-81-7	5	50	ND ND	ND ND	ND ND	ND ND	ND ND							
fluoranthene fluorene	206-44-0 86-73-7		50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobenzene	118-74-1	0.04	30	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
hexachlorobutadiene	87-68-3	0.5		ND	ND	ND	ND	ND							
hexachlorocyclopentadiene	77-47-4	5		ND	ND	ND	ND	ND							
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND							
isophorone	78-59-1		50	ND	ND	ND	ND	ND							
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND							
2-methylphenol	95-48-7	1†		ND	ND	ND	ND	ND							
4,6-dinitro-2-methylphenol	534-52-1	1†		ND	ND	ND	ND	ND							
4-chloro-3-methylphenol	59-50-7	1†		ND	ND	ND	ND	ND ND							
3- and 4-methylphenol	NA 01.20.2	1†	10	ND ND	ND ND	ND ND	ND ND	ND ND							
napthalene 2-nitroaniline	91-20-3 88-74-4	5	10	ND ND	ND ND	ND ND	ND ND	ND ND							
2-nitroaniine 3-nitroaniline	99-09-2	5		ND ND	ND ND	ND ND	ND ND	ND ND							
4-nitroaniline	100-01-6	5		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND							
4-nitrophenol	100-02-7	1†		ND	ND	ND	ND	ND							
n-nitrosodimethylamine	62-75-9	NR	NR	ND	ND	ND	ND	ND							
n-nitrosodiphenylamine	86-30-6		50	ND	ND	ND	ND	ND							
di-n-octyl phthalate	117-84-0		50	ND	ND	ND	ND	ND							
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND							
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND							
phenol	108-95-2	1†	ND	ND ND	ND ND	ND ND	ND ND	ND ND							
4-bromophenyl-phenylether 4-chlorophenyl-phenylether	101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
4-chlorophenyl-phenylether n-nitroso-di-n-propylamine	621-64-7	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND							
n-nitroso-di-n-propylamine pyrene	129-00-0	.411	50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND							
Toal SVOCs				ND	ND	ND	ND	ND							

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ı																	
			Well ID Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999	MW-14 8/17/2000	4S 9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006	9/17/2007	9/3/2008
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	4/22/1557 μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value																
acenapthene	83-32-9		20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS*	ND	ND	ND	ND	ND
acenapthylene	208-96-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS*	ND	ND	ND	ND	ND
anthracene benzo(a)anthracene	120-12-7 56-55-3		50 0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS* NS*	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(a)pyrene	50-33-8	>ND	0.002	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS*	ND ND	ND ND	ND ND	ND ND	ND ND
benzo(b)fluoranthene	205-99-2		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS*	ND	ND	ND	ND	ND
benzo(g,h,i)perylene	191-24-2	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
benzo(k)fluoranthene	207-08-9		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
benzyl alcohol butly benzyl phthalate	100-51-6 85-68-7	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-butylphthalate	84-74-2	50	30	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	NS *	ND	ND	ND	ND	ND
carbazole	86-74-8	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
indeno(1,2,3-cd)pyrene	193-39-5		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-chloroaniline	106-47-8	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
bis(-2-chloroethoxy)methane bis(2-chloroethyl)ether	111-91-1 111-44-4	5 1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
2-chloronapthalene	91-85-7	1	10	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND	ND ND
2-chlorophenol	95-57-8	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,2'-oxybis(1-chloropropane)	108-60-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
chrysene dibenzo(a,h)anthracene	218-01-9 55-70-3	NR	0.002 NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
dibenzo(a,n)anthracene dibenzofuran	132-64-9	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	95-50-1	3		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND ND
1,3-dichlorobenzene	541-73-1	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
1,4-dichlorobenzene	106-46-7	3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine 2,4-dichlorophenol	91-94-1 120-83-2	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
z,4-dictiorophenoi diethylphthalate	84-66-2	3	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
dimethyl phthalate	131-11-3		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4-dimethylphenol	105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4-dinitrotoluene 2,6-dinitrotoluene	121-14-2 606-20-2	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
bis(2-ethylhexyl)phthalate	117-81-7	5		ND	6.5	7.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND	ND ND	ND ND	ND ND
fluoranthene	206-44-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
fluorene	86-73-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
hexachlorobenzene	118-74-1	0.04		ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	NS *	ND	ND	ND	ND	ND ND
hexachlorobutadiene hexachlorocyclopentadiene	87-68-3 77-47-4	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
hexachloroethane	67-72-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
isophorone	78-59-1		50	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	NS *	ND	ND	ND	ND	ND
2-methlynapthalene	91-57-6	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2-methylphenol 4,6-dinitro-2-methylphenol	95-48-7 534-52-1	1† 1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-dinitro-2-methylphenol	59-50-7	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
3- and 4-methylphenol	NA	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
napthalene	91-20-3		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2-nitroaniline	88-74-4	5		ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND	ND ND
3-nitroaniline 4-nitroaniline	99-09-2 100-01-6	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
nitrobenzene	98-95-3	0.4		ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND ND
2-nitrophenol	88-75-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
4-nitrophenol	100-02-7	1†	N/P	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND	ND ND
n-nitrosodimethylamine n-nitrosodiphenylamine	62-75-9 86-30-6	NR	NR 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
di-n-octyl phthalate	117-84-0		50	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
pentachlorophenol	87-86-5	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
phenanthrene	85-01-8		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
phenol	108-95-2	1† NR	NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
4-bromophenyl-phenylether 4-chlorophenyl-phenylether	101-55-3 7005-72-3	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
n-nitroso-di-n-propylamine	621-64-7	NR NR	NR NR	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND	ND ND
pyrene	129-00-0		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	120-82-1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
2,4,5-trichlorophenol	95-95-4	1†		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS *	ND ND	ND ND	ND ND	ND ND	ND ND
Z,4,6-trichiorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS *	ND	ND	ND	ND	ND
Toal SVOCs			I	ND	6.5	7.4	ND	ND	ND	ND	ND	12	ND	NS*	ND	ND	ND	ND	ND

Notes:
Bolded results exceed NYS Ambient Water Quality Standards.
NR - No groundwater standard or guidance value available.
ND - Analyte not detected in Sample
NS - Not sampled
† - Applies to the sum total of these substances

* MW-14S - August 28, 2003 - Sampled, but not analyzed because the sample jar broke at laboratory. NYSDEC split sample contained 390 µg/L of caprolactam. No groundwater standard or guidance value for caprolactam available.

Table 3-9 Summary of Post-Closure Groundwater Monitoring Data Total SVOCs 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Accordance Color				Well ID	0/14/2000	0/22/2010	9/22/2011	0/20/2012	0/12/2012			0/21/2016	0/6/2017	0/10/2010	0/0/2010	9/20/2021
Standard	Analyte	CAS No.	NVS Water Quality													9/20/2021 μg/L
Second Column Col	Analyte	CAS NO.			µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L
### Company No. 1, 1997 1997	acenapthene	83-32-9	Standard		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Marchester 120-127 90 150			NR													ND
Memory 1992 1995 1996		120-12-7		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	benzo(a)anthracene	56-55-3		0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	benzo(a)pyrene	50-32-8	>ND		ND		ND	ND	ND		ND	ND	ND			ND
																ND
Mary Service 1985 14			NR													ND
Decision Security of the Company																ND
dispreparation 49.72 50 No.			NK													ND ND
Interest 1997 199			50	30												ND ND
Memoria 1964-74 2	· · ·			NR												ND ND
## chloresterilles			14.1													ND
Big 2-deconstrate/princhard 119-14 1			5													ND
Bell-Achtecetylether 114-44 1			5			ND	ND	ND			ND	ND	ND	ND	ND	ND
2-thereplaced 35-24 11			1						ND		ND	ND		ND	ND	ND
22-averlati-chromorepasem 104-061 5	2-chloronapthalene			10							ND					ND
																ND
Giberrola, Allumbracenes \$57-9-1 NR			5													ND
Beauty B																ND
1.1.delchoroberease 55-90-1 3																ND
1.4 dichlorobersenee 541-73 3				NR												ND ND
1.4-dichlorobestanden 1.90-46-7 3	·															ND ND
3,1 declared persons 91-94.1 5	·															ND ND
2.4-dichoropheno 124-93-2 5																ND ND
diesthyphthalate	·															ND
Gimethylphanistal 31.1-13 50 NO ND ND NO				50												ND
2,4-dirtorpolemen	dimethyl phthalate															ND
2.4-definiterolusers 22.14-2 5		105-67-9		50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.6-dinitrotolume 696-20-2 5	2,4-dinitrophenol	51-28-5		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
big 2-ethytexylightsdate 117-817 5	2,4-dinitrotoluene	121-14-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthemol Reference	2,6-dinitrotoluene	606-20-2	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Big Section		117-81-7	5		ND		ND	ND		ND	ND	ND	ND	ND		ND
																ND
No.				50												ND
Personal Processing																ND
																ND ND
Signbronne Sig																ND ND
2-methylpathalene			,	50												ND ND
2-methylphenol 95-48-7			NR													ND ND
4,6 dinitro-2-methylphenol \$34-52-1																ND
3- and 4-methylphenol NA																ND
3- and 4-methylphenol NA			1†		ND	ND	ND	ND			ND	ND	ND	ND	ND	ND
2-nitroaniline																ND
3-nitroaniline 99-99-2 5				10												ND
A-nitroaniline 100-01-6 5																ND
No																ND
2-nitrophenol 88-75-5																ND ND
A-nitrophenol 100-02-7																ND ND
No.																ND ND
No.				ND												ND ND
di-n-octyl phthalate 117-84-0 50 ND			1417													ND ND
Pentachlorophenol 87-86-5 1†																ND ND
phenanthrene 85-01-8 50 ND			1†													ND ND
Phenol 108-95-2 1†				50												ND
4-bromophenyl-phenylether	·		1†													ND
4-chlorophenyl-phenylether				NR												ND
pyrene 129-00-0 50 ND			NR	NR												ND
1,2,4-trichlorobenzene 120-82-1 5 ND ND <t< td=""><td>n-nitroso-di-n-propylamine</td><th></th><td>NR</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td></t<>	n-nitroso-di-n-propylamine		NR		ND		ND	ND	ND	ND	ND	ND		ND		ND
2,4,5-trichlorophenol 95-95-4 1† ND				50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																ND
2,4,6-trichlorophenol 88-06-2 1† ND ND ND ND ND ND ND N																ND
	2,4,6-trichlorophenol	88-06-2	1†		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toal SVOCs ND			1								1			1		ND

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10S			
			Date	2/6/1997	4/22/1997	9/10/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6	_	50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR -	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND ND	ND ND	ND	ND	ND ND	ND
toluene 1,1,1-trichloroethane	108-88-3 71-55-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-trichloroethane	79-00-5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trichloroethene	79-00-5	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
vinyl chloride	75-01-6	2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
i	75-01-4 NA	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m+p xylene o-xylene	95-47-6	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
U-xylene	33-47-0			IND	ND	ND	IND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
				ND	l ND	ND	l ND	ND	ND.	ND
TPH COLUMN ADSTAUC	NA 7440 28 2	25		ND 13	ND ND	ND 20.4	ND ND	ND	ND 57.4	ND ND
SOLUBLE ARSENIC	7440-38-2	25 25		ND	ND ND	29.4 ND	ND ND	14.8 ND	57.4 ND	ND ND
SOLUBLE LEAD	7439-92-1	25		ND	NU	טא	ND	טא	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-10S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	1-01 -	F-6/ -	F-67 -	P-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA .	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1	ND	ND	ND	ND	ND	ND	ND
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	15.5	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		Ī	Well ID				MW-10S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
Total VOCS				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10S			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/19/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
г		1			ı	1		ı	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10M			
			Date	2/6/1997	4/22/1997	9/10/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5 5		ND	ND ND	ND ND	ND	ND	ND ND	ND
toluene 1,1,1-trichloroethane	108-88-3 71-55-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-trichloroethane	79-00-5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trichloroethene	79-00-5	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
vinyl chloride	75-01-6	2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m+p xylene	75-01-4 NA	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	95-47-6	5 (each) 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	33-47-0	, ,		ND	ND	ND	I ND	NU	ND	NU
Total VOCs				ND	ND	ND	ND	ND	ND	ND
Г		1			ı	1	ı		1	
TPH	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		15	ND	30.9	10.5	21.2	54.6	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	6.48	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Analyte	
Analyte	8/10/2006
Standard Guidance Value Standard Suidance Value Standard Suidance Value Suida	μg/L
Section Color Co	F-67 -
Bromodichloromethane	ND
Department Ty-2-2-2 S0	ND
December T4-83-9 S	ND
2-butanone (MEK) 78-93-3 50 ND	ND
Carbon disulfide 75-15-0	ND
Carbon tetrachloride S6-23-5 S	ND
chlorobenzene 108-90-7 5 ND	ND
chloroethane 75-00-3 5 ND	ND
chloroform 67-66-3 7 ND	ND
chloromethane 74-87-3 5 ND	ND
Description	ND
1,1-dichloroethane	ND
1,2-dichloroethane	ND
1,1-dichloroethene	ND
cis-1,2-dichloroethene 156-59-2 5 ND ND <t< td=""><td>ND</td></t<>	ND
trans-1,2-dichloroethene 156-60-5 5 ND	ND
1,2-dichloropropane	ND
cis-1,3-dichloropropene 10061-01-5 0.4* ND	ND
trans-1,3-dichloropropene 10061-02-6 0.4* ND	ND
ethlybenzene 100-41-4 5 ND	ND
2-hexanone 591-78-6 50 ND	ND
methylene chloride 75-09-2 5 ND ND<	ND
4-methyl-2-pentanone (MIBK) 108-10-1 NR NR ND	ND
styrene 100-42-5 5 ND	ND
1,1,2,2-tetrachloroethane 79-34-5 5 ND ND ND ND ND ND ND	ND
	ND
	ND
tetrachloroethene 127-18-4 5 ND ND<	ND
toluene 108-88-3 5 ND	ND ND
1,1,1-trichloroethane 71-55-6 5 ND	ND ND
1,1,2-trichloroethane 79-00-5 1 ND	ND ND
ND	ND
	ND
m+p xylene NA 5 (each) ND	ND ND
טא טא טאן טאן טאן טאן טאן טאן טאן טאן טא	טוו
Total VOCs ND ND ND ND ND ND	ND
10ta 1 VOC3 10t0 10t0	NU
TPH NA ND ND 6660 566 ND ND	ND
SOLUBLE ARSENIC 7440-38-2 25 ND ND ND ND ND ND	ND
SOLUBLE LEAD 7439-92-1 25 8.44 ND ND ND ND ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

acetone benzene bromodichloromethane bromoform bromomethane	CAS No. 67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	NYS Water Quality Standard	Well ID Date NYS Water Quality Guidance Value 50	9/17/2007 μg/L	9/3/2008 μg/L	9/14/2009 μg/L	MW-10M 9/22/2010 μg/L	8/23/2011 μg/L	8/28/2012 μg/L	9/12/2013 μg/L
acetone benzene bromodichloromethane bromoform bromomethane	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	Standard	NYS Water Quality Guidance Value 50	μg/L						
acetone benzene bromodichloromethane bromoform bromomethane	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9	Standard	Guidance Value 50		P07 =	F-07 =				
benzene bromodichloromethane bromoform bromomethane	71-43-2 75-27-4 75-25-2 74-83-9	1	50	ND				r-6/ -	P-07 -	P-07 -
bromodichloromethane bromoform bromomethane	75-27-4 75-25-2 74-83-9	1			ND	ND	ND	ND	ND	ND
bromodichloromethane bromoform bromomethane	75-25-2 74-83-9			ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9		50	ND	ND	ND	ND	ND	ND	ND
			50	ND	ND	ND	ND	ND	ND	ND
		5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
,	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
, , , , , , , , , , , , , , , , , , , ,	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
	.0061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
	.0061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
,,,	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
,,	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
-	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF ARC	5 (each)		ND	ND	ND	ND	ND ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Tet-1400-			1	ND	ND	ND	ND	ND	ND	ND
Total VOCs				NU	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC 7	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD 7	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10M			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/19/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	7439-92-1	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
SOLUBLE LEAD	/433-32-1	25		IND	IND	IND	NU	IND	IND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-10D			
			Date	2/7/1997	4/22/1997	9/10/1997	11/25/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,,,,		Standard	Guidance Value	1.0	10,	1.0	10			10
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	160	38	ND	76	19	44
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1				1	T -	T -	1
Total VOCs		ı		ND	160	38	ND	76	19	44
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	16.5	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10D			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	61	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			ı	ı	1	1	ı	1
Total VOCs				ND	ND	ND	61	ND	ND	ND
ТРН	NA			ND	ND	5820	1740	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		8.16	ND	7.87	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		İ	Well ID				MW-10D			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г								T		1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-10D			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	2	10	13
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND NB
1,1,2,2-tetrachloroethane	79-34-5	5 5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND NB
toluene 1,1,1-trichloroethane	108-88-3 71-55-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-trichloroethane	79-00-5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trichloroethene	79-00-5	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
vinyl chloride	75-01-6	2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m+p xylene	73-01- 4 NA	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
o-xylene	95-47-6	5 (each) 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
0-xylene	33-47-0			ND	NU	IND	ND	ND	ND	IND
Total VOCs				ND	ND	ND	ND	2	10	13
				ND	l ND	ND.	ND	ND.	ND	ND.
TPH SOLUBLE ABSENCE	NA 7440 29 2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE ARSENIC	7440-38-2	25			ND ND	ND ND	ND	ND ND		ND ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11S			
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-67 -	P-0/ -	P-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND ND	ND	ND ND	ND
trichloroethene	79-01-6	5		ND ND	ND	ND	ND ND	ND	ND ND	ND
vinyl chloride	75-01-4	2 5 (h)		ND ND	ND	ND	ND ND	ND	ND ND	ND
m+p xylene	NA 95-47-6	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	33-47-b	5		ND	ND	ND	ם או	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
i otal vocs		<u> </u>		טאו	NU	עוא	ND	Nυ	ND	ND
ТРН	NA			714	554	818	2480	1230	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		17.4	ND	39.8	14.8	23.6	57.7	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,,,,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0	1.0	1.0
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF 47.6	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
- : :::aa		1		ND	ND	ND	ND	ND	ND	l ND
Total VOCs		ı		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	1030	1390	1100	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		İ	Well ID				MW-11S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	r-0/ -	P-07 -	1-07 -	P-07 -	F-6/ -	F-67 -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF AR C	5 (each)		ND	ND	ND	ND	ND	ND ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
i otal vocs		<u> </u>		טאו	טא	טא	עוו	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-11S			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	1-0/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND ND
trichloroethene	79-01-6	5		ND ND	ND	ND	ND	ND	ND	ND ND
vinyl chloride	75-01-4	2 5 (h)		ND ND	ND	ND	ND	ND	ND	ND ND
m+p xylene	NA OF 47.6	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
7-1-11/06-				ND	ND	ND	ND	ND	ND	ND
Total VOCs		<u> </u>		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11M			
			Date	2/7/1997	4/22/1997	9/9/1997	11/25/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	F-67 -	P-07 -	P-07 -	P-07 -	F-67 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	14	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1							
Total VOCs		1		ND	ND	14	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		12.7	ND	35.4	10.6	21.4	48.1	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID				MW-11M			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
, , ,		Standard	Guidance Value	1.0	10,	1.0	1.0	1.0		10
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		_				1		T		1
Total VOCs		ı		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	632	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	18	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11M			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	ı	1	1	ı	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-11M			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
•		Standard	Guidance Value				. 5			
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	7440-36-2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	7433-32-1	25		IND	IND	IND	NU	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12S			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	16
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			ı	1	1	1	1	
Total VOCs				ND	ND	ND	ND	ND	ND	16
ТРН	NA			1280	ND	1420	2040	517	520	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	29.2	10.9	20	47.1	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Date 8/17/2000 9/27/2001 10/17/2002 8/28/2003 9/19/2004 9/11/2005 9/19/2004 9/11/2005 9/19/2004 9/11/2005 9/19/2004 9/11/2005 9/11/2005 9/19/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/2004 9/11/200				Well ID				MW-12S			
Standard Guidance Value Standard Guidance Value Standard			_	8/17/2000	9/27/2001	10/17/2002		9/19/2004	9/11/2005	8/10/2006	
Standard Guidance Value Standard Suidance Value	Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Denzene 71-43-2 1			Standard	Guidance Value							
	acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
December Ty-2-5-2 SO	benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
December T4-83-9 S	bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK) 78-93-3 50 ND ND ND ND ND ND ND ND ND ND ND ND ND	bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide 75-15-0 NR NR ND ND </td <td>bromomethane</td> <td>74-83-9</td> <td>5</td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride 56-23-5 5	2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
chlorobenzene 108-90-7 5 ND	carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
chloroethane 75-00-3 5 ND	carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chloroform 67-66-3 7 ND	chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloromethane 74-87-3 5 ND	chloroethane	75-00-3			ND	ND	ND	ND	ND	ND	ND
Description	chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	1,1-dichloroethane	75-34-3	5		ND	ND		ND	ND		ND
cis-1,2-dichloroethene 156-59-2 5 ND ND <t< td=""><td>1,2-dichloroethane</td><td>107-06-2</td><td>0.6</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene 156-60-5 5 ND		75-35-4									ND
1,2-dichloropropane	cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene 10061-01-5 0.4* ND	trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene 10061-02-6 0.4* ND	1,2-dichloropropane	78-87-5			ND	ND	ND	ND	ND		ND
ethlybenzene 100-41-4 5 ND											ND
2-hexanone 591-78-6 50 ND	trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
methylene chloride 75-09-2 5 ND ND<	ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK) 108-10-1 NR NR ND				50							ND
styrene 100-42-5 5 ND	,										ND
1,1,2,2-tetrachloroethane 79-34-5 5 ND ND ND ND ND ND ND ND	4-methyl-2-pentanone (MIBK)			NR							ND
		100-42-5			ND	ND					ND
totracklargethans 137 19 4 E ND ND ND ND ND ND ND ND ND											ND
	tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene 108-88-3 5 ND											ND
1,1,1-trichloroethane 71-55-6 5 ND ND ND ND ND ND ND	,,										ND
1,1,2-trichloroethane 79-00-5 1 ND ND ND ND ND ND ND											ND
trichloroethene 79-01-6 5 ND ND ND ND ND ND											ND
vinyl chloride 75-01-4 2 ND ND ND ND ND ND	vinyl chloride										ND
m+p xylene NA 5 (each) ND ND ND ND ND ND											ND
o-xylene 95-47-6 5 ND	o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1			1	1		1		1
Total VOCs ND ND ND ND ND ND	Total VOCs				ND	ND	ND	ND	ND	ND	ND
TPH NA ND ND 892 561 ND ND	ТРН	NA			ND	ND	892	561	ND	ND	ND
SOLUBLE ARSENIC 7440-38-2 25 ND ND ND ND ND ND ND			25								ND ND
SOLUBIE LEAD 7439-92-1 25											ND ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		İ	Well ID				MW-12S			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	16
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	16
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		ĺ	Well ID				MW-12S			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
.,		Standard	Guidance Value	1.0	10,	1.0	1.0		10	1.0
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1			1		1		1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12M			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	64	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1	1		T	1	T	T	1	T
Total VOCs				ND	ND	64	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	17.1	ND	14.6	31.4	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12M			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1			1	1	T	T	1	1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	1120	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	7.48	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Analyte	Standard 4-1 3-2 1 7-4 5-2 3-9 5-0 NR 3-5 5 0-7 5 0-3 5 6-3 7 7-3 5	Well ID Date NYS Water Quality Guidance Value 50 50 50 NR	9/17/2007 µg/L ND ND ND ND ND ND ND ND ND N	9/3/2008 µg/L ND ND ND ND ND ND ND ND ND N	9/14/2009 µg/L ND ND ND ND ND ND ND ND ND N	MW-12M 9/22/2010 μg/L ND ND ND ND ND ND ND ND ND ND ND ND ND	8/23/2011 μg/L ND ND ND ND ND ND ND	8/28/2012 μg/L ND ND ND ND ND ND	9/12/2013 μg/L ND ND ND ND ND ND
acetone 67-6	Standard 4-1 3-2 1 7-4 5-2 3-9 5-0 NR 3-5 5 0-7 5 0-3 5 6-3 7 7-3 5	NYS Water Quality Guidance Value 50 50 50 50	ME/L ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	μg/L ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	μg/L ND ND ND ND ND ND ND
acetone 67-6	Standard 4-1 3-2 1 7-4 5-2 3-9 5-0 NR 3-5 5 0-7 5 0-3 5 6-3 7 7-3 5	50 50 50 50 50	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND
benzene 71-4	3-2 1 7-4 5-2 3-9 5 3-3 3-9 5 3-3 5-0 NR 3-5 5 0-7 5 0-3 5 6-3 7 7-3 5	50 50 50 50	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
bromodichloromethane 75-2	7-4 5-2 3-9 5-3 3-3 5-0 NR 3-5 5-0 S-7 5-0 5-3 5-7 7-3 5	50 50	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND
bromodichloromethane 75-2	7-4 5-2 3-9 5-3 3-3 5-0 NR 3-5 5-0 S-7 5-0 5-3 5-7 7-3 5	50 50	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND
bromomethane 74-8 2-butanone (MEK) 78-9 Carbon disulfide 75-1 Carbon tetrachloride 56-2 Chlorobenzene 108- Chloroform 67-6 Chloroform 67-6 Chloromethane 74-8 dibromochloromethane 124- 1,1-dichloroethane 75-3	3-9 5 3-3 5-0 NR 3-5 5 00-7 5 00-3 5 6-3 7 7-3 5	50	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND
2-butanone (MEK) 78-5	3-3 S S S S S S S S S S S S S S S S S S		ND ND ND	ND ND ND	ND ND	ND ND	ND	ND	
carbon disulfide 75-1 carbon tetrachloride 56-2 chlorobenzene 108- chlorotenane 75-0 chloroform 67-0 chloromethane 74-8 dibromochloromethane 124- 1,1-dichloroethane 75-3	5-0 NR 3-5 5 90-7 5 90-3 5 6-3 7 7-3 5		ND ND ND	ND ND	ND	ND			ND
carbon tetrachloride 56-2 chlorobenzene 108-2 chloroethane 75-4 chloromethane 74-8 dibromochloromethane 124-1,1-dichloroethane 75-3	3-5 5 90-7 5 90-3 5 6-3 7 7-3 5	NR	ND ND	ND			ND		
Chlorobenzene 108- Chloroethane 75-(Chloromethane 74-(Chloromethane 74-(Chloromethane 124-(1,1-dichloroethane 75-3-(90-7 5 0-3 5 6-3 7 7-3 5		ND		ND			ND	ND
Chloroethane 75-C Chloroform 67-E Chloromethane 74-E Chloromethane 124-E Chloromethane 124-E Chloroethane 75-E Chloroethane 75	0-3 5 6-3 7 7-3 5			ND		ND	ND	ND	ND
chloroform 67-6 chloromethane 74-8 dibromochloromethane 124-1,1-dichloroethane 75-3	6-3 7 7-3 5		ND	ND	ND	ND	ND	ND	ND
chloromethane 74-8 dibromochloromethane 124- 1,1-dichloroethane 75-3	7-3 5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane 124- 1,1-dichloroethane 75-3			ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane 75-3	18-1		ND	ND	ND	ND	ND	ND	ND
		50	ND	ND	ND	ND	ND	ND	ND
4 6 11 11 11 11	4-3 5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane 107-	06-2 0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene 75-3	5-4 5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene 156-	59-2 5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene 156-	50-5 5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane 78-8			ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene 10061			ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene 10061			ND	ND	ND	ND	ND	ND	ND
ethlybenzene 100-			ND	ND	ND	ND	ND	ND	ND
2-hexanone 591-		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride 75-0			ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK) 108-		NR	ND	ND	ND	ND	ND	ND	ND
styrene 100-			ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane 79-3			ND	ND	ND	ND	ND	ND	ND
tetrachloroethene 127-			ND	ND	ND	ND	ND	ND	ND
toluene 108-			ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane 71-5			ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane 79-0			ND	ND	ND	ND	ND	ND	ND
trichloroethene 79-0			ND	ND	ND	ND	ND	ND	ND
vinyl chloride 75-0			ND	ND	ND	ND	ND	ND	ND
m+p xylene N			ND	ND	ND	ND	ND	ND	ND
o-xylene 95-4	7-6 5	<u> </u>	ND	ND	ND	ND	ND	ND	ND
Tabilitas	1		l ND	ND	ND	ND	ND	ND	ND
Total VOCs		<u> </u>	ND	ND	ND	ND	ND	ND	ND
TPH N	A		ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC 7440	38-2 25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD 7439	92-1 25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12M			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			ı	1		ı	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12D			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	10	ND	24	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Г		1			1	ı	1		1	
Total VOCs		<u> </u>		ND	ND	10	ND	24	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	39.2	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12D			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1			T	1		T		T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	681	697	1030	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	7.3	9.88	ND	6.84	6.8

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12D			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	r-0/ -	P-07 -	1-07 -	P-07 -	P-07 -	P-07 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA OF AR C	5 (each)		ND	ND	ND	ND	ND	ND ND	ND ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
i otal vocs		<u> </u>		טאו	טא	טא	עוו	טא	ND	טא ן
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-12D			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,,,,		Standard	Guidance Value	1.0	10,	1.0	1.0	10	10	1.0
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1			T		T		1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13S			
			Date	2/6/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	1-07 -	P-07 -	P-0/ -	F-6/ -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA .	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
			1	ND	ND	ND	l ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		14	ND	38.1	10	39.5	29	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	5.4	148	15.3	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13S			
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
1		1			T			I		I
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	27.4	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		1	Well ID	MW-13S						
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value	P-07 -	P-07 -	1-07 -	P-07 -	F-6/ -	P-07 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
T										
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	11.4	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13S			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value							, 5.
acetone	67-64-1		50	ND	ND	ND	ND	ND	12	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6	_	50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND NB
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND ND	ND ND	ND	ND	ND	ND	ND ND
toluene 1,1,1-trichloroethane	108-88-3 71-55-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-trichloroethane 1,1,2-trichloroethane	79-00-5	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-trichloroethane trichloroethene	79-00-5 79-01-6	5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
vinyl chloride	79-01-6 75-01-4	2		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m+p xylene	75-01-4 NA	5 (each)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	95-47-6	5 (each) 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
0-xylene	33-47-0			ND	NU	IND	ND	ND	ND	IND
Total VOCs				ND	ND	ND	ND	ND	12	ND
		T								
TPH SOLUBLE ABSENCE	NA 7440 29 2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE ARSENIC	7440-38-2	25 25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	7439-92-1	25		NU	NU	ND	NU	עא	NU	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13M			
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/10/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Т		1	1		1		T	T	1	T
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	20.1	10.1	25.7	39	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	33	10	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID	MW-13M						
			Date	8/17/2000	9/27/2001	10/17/2002	8/28/2003	9/19/2004	9/11/2005	8/10/2006
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
,		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
m+p xylene o-xylene	NA 95-47-6	5 (each) 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-xylene	95-47-6	5		ND	טא	ND	ND	ND	ND	טא
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA	1		ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND ND	ND ND	12.6	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	7439-92-1	25		11.7	ND ND	67.3	ND ND	ND ND	ND ND	ND
JOLUBLE LEAD	7433-34-1	23		11./	I ND	07.3	NU	עוו	טוו	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13M			
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
										ND
vinyl chloride										ND
m+p xylene										ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
					1	1		1		1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
		25		ND	ND	ND	ND	ND	ND	ND ND
O-xylene Total VOCs	79-01-6 75-01-4 NA 95-47-6 NA 7440-38-2 7439-92-1									

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-13M			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
•		Standard	Guidance Value				. 5			
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND.	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND ND	ND 12	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE ARSENIC SOLUBLE LEAD	7440-38-2	25		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE LEAD	/433-32-1	25		טא	טא	טויו	טויו	טא	טא	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-14S			
			Date	2/7/1997	4/22/1997	9/9/1997	11/24/1997	6/9/1998	10/20/1998	12/14/1999
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
-		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		,	,		1					1
Total VOCs				ND	ND	ND	ND	ND	ND	ND
Т		1			T					
ТРН	NA			ND	ND	2780	1180	1410	957	1060
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	26.2	12.1	16.9	37.8	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

Date Analyte C.A.S. No. NYS Water Guality Date Aff-Zigodo 9/21/2001 10/17/2002 8/24/2003 9/19/2004 9/11/2005 8/10/2006 8/16/2004 9/11/2005 8/10/2006 8/16/2004 9/11/2005 8/10/2006 8/16/2004 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 8/10/2006 9/11/2005 9/11/2005 8/10/2006 9/11/2005 9/11/				Well ID	MW-14\$						
Analyte				_	8/17/2000	9/27/2001	10/17/2002		9/19/2004	9/11/2005	8/10/2006
Standard Guidance Value Standard Guidance Value Standard Analyte	CAS No.	NYS Water Quality									
Section S7-64-1	,				F-67 -	P-07 -	P-07 -	1-01 -	F-6/ -	F-67 -	F-6/ -
bromodichloromethane 75-27-4 50	acetone	67-64-1			ND	ND	ND	ND	ND	ND	ND
bromodichloromethane 75-27-4 50 ND ND ND ND ND ND ND ND ND ND ND ND ND	benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
December 74-83-9 5 ND ND ND ND ND ND ND		75-27-4		50	ND			ND		ND	ND
2-butanone (MRK) 78-93-3 50 ND ND ND ND ND ND ND ND ND ND ND ND ND	bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
Carbon disulfied 75-15-0	bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
Chlorobenzee 108-90-7 5 ND ND ND ND ND ND ND	carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
Chioroethane 75-00-3 S	carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
Chiloroptim 67-66-3	chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
Chloromethane 74-87-3 5	chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
	chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane 107-06-2 0.6	dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	1,1-dichloroethane	75-34-3	5		ND	ND		ND			ND
Cis-1,2-dichloroethene 156-59-2 5	,										
trans-1,2-dichloropethene 156-60-5 5	1,1-dichloroethene	75-35-4			ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane 78-87-5	cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
Cis-1,3-dichloropropene 10061-01-5 0.4*	trans-1,2-dichloroethene				ND	ND		ND			
trans-1,3-dichloropropene 10061-02-6 0.4*											
Part Part											
2-hexanone	, , ,										
Methylene chloride 75-09-2 5	,		5								
4-methyl-2-pentanone (MIBK) 108-10-1				50							
Styrene 100-42-5 5											
1,1,2,2-tetrachloroethane	, , , , ,			NR							
Total VOCs ND ND ND ND ND ND ND ND ND ND ND ND ND	,										
Total VOCs ND ND ND ND ND ND ND ND ND ND ND ND ND	, , ,										
1,1,1-trichloroethane											
1,1,2-trichloroethane											
Trichloroethene 79-01-6 5											
Vinyl chloride 75-01-4 2	,,										
Max Seach ND ND ND ND ND ND ND N											
O-xylene 95-47-6 5											
ND ND ND ND ND ND ND ND ND ND ND ND ND											
TPH NA	o-xylene	33-47-0] 3		ND	ND	ND	ND	טוא	טא	טא
TPH NA	Total VOCs				ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC 7440-38-2 25 ND ND<	Total VOCs		L		IND	IND	IND	שוו	ND	ND	I ND
	ТРН	NA			ND	2780	2370	1260	ND	ND	ND
SOLUBLE LEAD 7439-92-1 25 ND ND 10.7 ND ND ND ND ND	SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
	SOLUBLE LEAD	7439-92-1	25		ND	ND	10.7	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

		İ	Well ID	MW-14S						
			Date	9/17/2007	9/3/2008	9/14/2009	9/22/2010	8/23/2011	8/28/2012	9/12/2013
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Standard	Guidance Value	P-07 -	P-07 -	P-07 -	P-07 -	F-6/ -	F-67 -	F-07 -
acetone	67-64-1		50	ND	ND	ND	ND	ND	ND	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
		<u> </u>								
Total VOCs		1		ND	ND	ND	ND	ND	ND	ND
ТРН	NA			ND	ND	ND	ND	ND	ND	ND
SOLUBLE ARSENIC	7440-38-2	25		ND	ND	ND	ND	ND	ND	ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Table 3-10 Summary of Post-Closure Groundwater Monitoring Data Total VOCs, TPH, Soluble Arsenic, and Soluble Lead 1997 to 2021

Union Road Site - Cheektowaga, NY (Site Registry No. 9-15-128)

			Well ID				MW-14S			
			Date	9/25/2014	9/21/2015	9/21/2016	9/6/2017	9/18/2018	9/8/2019	9/20/2021
Analyte	CAS No.	NYS Water Quality	NYS Water Quality	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
·		Standard	Guidance Value							
acetone	67-64-1		50	ND	ND	ND	ND	ND	14	ND
benzene	71-43-2	1		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75-27-4		50	ND	ND	ND	ND	ND	ND	ND
bromoform	75-25-2		50	ND	ND	ND	ND	ND	ND	ND
bromomethane	74-83-9	5		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78-93-3		50	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75-15-0	NR	NR	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56-23-5	5		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108-90-7	5		ND	ND	ND	ND	ND	ND	ND
chloroethane	75-00-3	5		ND	ND	ND	ND	ND	ND	ND
chloroform	67-66-3	7		ND	ND	ND	ND	ND	ND	ND
chloromethane	74-87-3	5		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124-48-1		50	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75-34-3	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107-06-2	0.6		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75-35-4	5		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156-59-2	5		ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156-60-5	5		ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78-87-5	1		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	10061-01-5	0.4*		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	10061-02-6	0.4*		ND	ND	ND	ND	ND	ND	ND
ethlybenzene	100-41-4	5		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591-78-6		50	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75-09-2	5		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108-10-1	NR	NR	ND	ND	ND	ND	ND	ND	ND
styrene	100-42-5	5		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79-34-5	5		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127-18-4	5		ND	ND	ND	ND	ND	ND	ND
toluene	108-88-3	5		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71-55-6	5		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79-00-5	1		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79-01-6	5		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75-01-4	2		ND	ND	ND	ND	ND	ND	ND
m+p xylene	NA	5 (each)		ND	ND	ND	ND	ND	ND	ND
o-xylene	95-47-6	5		ND	ND	ND	ND	ND	ND	ND
Total VOCs				ND	ND	ND	ND	ND	14	ND
		<u> </u>		ND	ND.	ND.	ND	ND	ND	ND
TPH SOLUBLE ABSTAUC	NA 7440 29 2	25		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SOLUBLE ARSENIC	7440-38-2	25			ND ND	ND ND	ND	ND ND		ND ND
SOLUBLE LEAD	7439-92-1	25		ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded results exceed NYS Ambient Water Quality Standards.

ND - Analyte not detected in Sample

^{* -} Applies to the sum total of cis- and trans-1,3-dichloropropene

Prepared by: RTM Date: 9/22/21 Checked by: MP Date: 1/18/22

TABLE 4-1 UNION ROAD GROUNDWATER MONITORING REPORT

GROUNDWATER WELL MEASUREMENTS September 19-20, 2021

Well Number	Riser Elev. ¹ (Feet)	Depth to Water (Feet)	Water Elev. (Feet)
10S	623.09	8.75	614.34
10M	622.50	11.46	611.04
10D	622.02	14.81	607.21
11S	622.74	13.45	609.29
11M	622.86	19.84	603.02
12S	622.62	19.07	603.55
12M	622.97	20.43	602.54
12D	621.18	17.96	603.22
13S	622.96	11.33	611.63
13M	621.66	11.58	610.08
14S ²	621.61	11.24	610.37
15	624.67	18.07	606.60
16	624.51	14.70	609.81
17	624.44	20.70	603.74
18 ³	624.67	Dry	<602.75
19	625.08	21.40	603.68
20 4	631.98	28.30	603.68
21	629.25	22.96	606.29
22 4	629.24	25.90	603.34
23S	607.45	4.61	602.84
RW1 ⁵	623.76	NM	598.76

¹ Elevations were surveyed by Douglas C. Meyers P.L.S., P.C. on March 17, 1997.

² MW-14S was reinstalled and resurveyed on August 19, 1997.

³ MW-18 is dry; measuring tape stopped without indicating water.

⁴ Depth measured to free product. Both MW-20 and MW-22 have free product on water surface; therefore water level measurement is conservatively assumed as the top of the oil layer (Because of the less dense oil, the actual water elevation would be lower).

⁵ Groundwater measurement was not taken in RW1. The assumed elevation is at the pump inlet (598.76).

⁶ NM: Not Measured

⁷ All Elevations are referenced to Mean Sea Level

UMC

Period: Annual 2021

APPENDIX A BORING LOGS AND WELL CONSTRUCTION DRAWINGS

	Wouldan - 2035 - 200 Bufface NY	and the second s	
CRILLING CONTRAC	MANM	7	
जुड़ GZOLOGIST.	JOHN J ZACHER JR		
DRILLING EQUIPM	HSA G" WE HSA	SRIT SPOON	ART. FINISH Q
WELL INSTALLED?	CASING MAT./OIA. SCREEN: STAINLESS STEEL 12" TYPE SLOT MAT. STAINLESS U		07 81780 22
	GROUNG SURFACE TOP OF WELL CARRY TOP & BOTTOM SC		BATE
SEM A GW C.	21', SIMPLES TO 20'		
	LOG OF TEST BORING		L COMBY.
41 17 44 4 6 7 6 7	BESCRIPTION	REMARKS	ES KE
-	SAMELING STARTS AT 41B.G.		
- 4 4 6 5 5 5 5 5 5 5 5 5	BER TO THE HOUSER BECKE FULLY	STIFF, Dilyin	
- 6 100	0-3" PRIMICIO TANKEFICLAF SME RECLES - TO 3/4"	STIFE DIMP	7/17
21 25 20 5	15-21' BROWNIAN COAY SCHE SIND PUTTLE SILL TRAGRE	COUCCIOSIVE	
24" 3	TANBIEC CLAY	STIFF, LITTLE HZ	1/1 5mJ
$\frac{10}{12}$ $\frac{12}{3}$ $\frac{2}{3}$	TAN 141 BROWN CLIFT	HEN STIFF	
12 2 16" 3 14	TANKIBEOUR CLIFY -TRACE SILIS	MED STIFF SUMF HEC	
17 2 2	CREY TO ET BROWN CLINY SEE LITTLE RELIAND ROCKS	\$160 37166 51.46 Hz 0	
16 3 3 2 3 3	TAN TOUT BROWN SLA-(MEDSTIFF SLAE HZC	
18 3	GRENISH DIEN GLAY TRACECTERINICS.	HEDSTIFE STHE HZC	

1=

DRILLING CONTRACT	Nouloan - 2035 - 200 LOCATION BUFFALE	- Control of the Cont
GEOLOGISTI (JOHN J ZACHEE JR	
DRILLING EQUIPME	HSA G" HSA	SRIT SPOON 1/3/47
ELEVATION OF: Q	TAILUESS STEEL 12" TYPE SLOT MAT. STAINLE	SS LENGTH 10' DIA 2" SLOT SIZEON TOM SCREEN ON SLREAGE DATE
REMARKS:		
	LOG OF TEST BO	DRING PO
32 1 32 2 2 3 4 5	NOITRIN BESCRIPTION	REMARKS 3
- 5 20 5	RIX 10 TAD GREG CLAY WILLITTLE BOCKS TO 4"	Stiff, Diffe
- 6 22 5 5 12	G-7" BLAKED INDIGERY CLAY SCHERCES 744' CINDERS M-22' BROWTHD CLAY LITTLE RELIES	STIFE DIMP
3 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TANKI BROWN CLAY	STIFF, LITTLE HZC
15" 37 7	TANKT BRUNG CLAY	HED STIFF SUMBHIZE
12 3 3 5 5 5 5 5	TANILI BRUNN CLANY	MEDSTIFF SOME HZC
-1 s 4 3 4 4 4 4 4	TANKT BROWN CLAY, LITTLE GREY LITTLE RELUD ROCKS	MED STIFF SIME HZF
14 33	TANTOLIBRUIN CLAY	MEDSTIFF SHEHEO
15 3	CREAIRH BERTH CHALL THE OSCUMICS	SMEHZU 1. 51

	_			CAN CONTRACTOR OF THE CONTRACT
SCARC NO.	TEST BO	AING LOS		
	140 - 2035 - 200	BUFFAL NY	۲.,	
CRILLING CONTRACTOR/ORI	MAHM		14	,,
कुल्वराध्याता office	JOHN J ZACHER JR.			
DRILLING EQUIPMENT. MET	HSA SEE	TYPE CF BIT " HSA	SPLIT SPOON	HOO STAT. FINEN 3.
	MAT./DIA. SCREEN: Steel/2" Type SLOT	MAT. STAINLESS	LENGTH 10' DI	<u>a</u> 2" s at sizzo ez
ELEVATION OF: GROUND (FT. ABOVE M.S.L.)	SURFACE TOP OF WELL C	TOP & BOTTOM	SCHEME ON ST	BFACE DATE
Remarks:				

1	LOG OF TEST SORING		COMBY.
	OESCRIPTION	REMARKS	WELL
22 21 23 2	DARKGUEY N/SEME OKUMUCS	MED STIFF	
22 4 5	GREY YEME BROWN CLAYS	MED STIFE	
24 2 3 3 3 3 5	GREY CLAY	SIFF, WEF	
2) 2	TUP 14" GREY CLAY	SCAT WALL	
25 26 12	BET 7" GREY/LIBREWN CLAY SCHE ROCK FRINGS, LITTLESAND	LIET, METCHESING	
	LT BROWN CLAY, S. 15 ROCKS 617"	ser-wet	
	Bobe 31' Bgl		11.5
	•		
			•
	•.		

WELL INSTALLED? CA	METHOD SIZE TYPE OF BIT 178" SAM	IPLING METHOD STARTSON 12/0	FINIS	.070
, io	LOG OF TEST BORING		CONST.	00 T
SEPITATE BOYERS	LOG OF TEST BORING	EXRAMBR	WELL C	GRAPHIC LIYHO LOG
21° 10	Sampling started @ 4' BG. -BIK to tam/Grey Clay of Trace argular Fragmented Rock upto 1" in Size Tap 8" Bik, tan/Grey Glay of Trace angular Fragmented Rock next Bik Cinder like material of the organism of Reck Retten 6" Boun / Tam Sard/Si Hly Clay of 10th -20th Rx Frag. 2" Tan to It Brown Clay, No Rocks Tom to It Brown Clay w/o Rocks Possibly Some Silts Grey to It Brown Modeled Clay of trace rounded Rocks, yy - 1/8" diameter.	Damp	12 h X You Change Con Contract Change Contract C	

DRING NO.	2.035-200 DR/ORILLER	ST BORING LO		D D D D D D D D D D D D D D D D D D D	
RILLING EQUIPMENT HS A	ASING MAT. DIA 3	SIZE TYPE OF BIT CREEN: TYPE SIOT WAT. Stain! P OF WELL CASING TOP & BO	es LENGTH /	SPOON	SIZE .ORC
	AT APT AD ON SO PT	LOG OF TEST	SCRING		WELL CONST.
56 1.4 4.7 1. 40. 4	Transition of the second	DESCRIPTION		EXRAMS	3 0 -
		2 water bearing 20	ne,	 	
	The Rock	e water bearing 20 ole has collar isn't very consolid	ated	B.O.B 45.5	-BG-
- 10					
-15					

ORILLIN जुड्ड	T NO COMMEDICATION G EQUIPMENT NO. ON OF:	INDIFFACTOR	TEST BORING LOG LOCATION BUFFILLER MATIM TICE JOHN 1 ZACHER JR METHOD HSA SIREMINISTRACE SUPERING MAT. DIA SUPERING MAT. STAINLESS LENG SUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN	TH 10 DIA. 2" SLOT	PAUL PAUL Con 1917	H 0AT
		JHO,	LOG OF TEST BORING		COMST.	1 06
\$2.17P	41) 41)		LOG OF TEST BORING AND STREET AT 4' B.G.	REMARKS	WELL	GRAPHIC LIYIN LOG
ان و خ ادا دا دا ادا ادا ادا ادا ادا ادا ادا ا	15"	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPLING STARTED AT 4' B.G. Bicomplex Brown Silisaclans TRACE 2x FRANCHENTS < 118 Bucomplex Brown Silis And Clars NO 2x5	STIFFI DAY-HARM TO AZO DATEF LITTLE TO ME AZO		Ç. s.v
10 12 12'	10°	9	FILL BROWN DER BEEM CLAYS TRACE RA FRAGS FILL TOP 9" DER BROWN CLAYS WISCHE CLOWNICS BOTTOM 4" - GIRLS IND I CLAYS WISCHAMICS GREY CLAYS LITTLE CROWNICS	STIFF LITTE TO IN 1/20 STIFF, LITTER IN 1/20 THED THED THED THED THED THED THED THED		Ball Ball
12'	21"	こういんしょ ななられる いっぱい	TOP 6. GREY CLAYS, LITTLE OFFINIES BOTEM 12" - REDUISH BROWN CLAY DO IXS OFFINIES REDUISH BROWN CLAYS WIGHEY LAYERS GERY LAYERS MAY BE EVIDENCE OF VARBED CLAYS REDUISH BROWN CLAYS WI GREY LAYERS REDUISH BROWN CLAYS WI GREY LAYERS CLEY WAYERS HAY BO EVIDENCE OF VARBED CLAYS	MED STIFFARS CISCAR 1120 STILL- LITTLETEND 1120 STIFF- LITTLE TO DU 1120 M. STIFFAESS DAMP		沙

PROJECT NO NAME [No 12 DRILLING CONTRACTOR	CHO - 2035-700 LOCATION BUFFALO		
ಪ್ರಸ್ತ್ GZOLOGIST. OF	John J Zacher Jr		
DRILLING EQUIPMENT		SALE CITY MAIN	tt. Finish Cate 2/97
WELL INSTALLED? CA		SS LENGTH IC' DIA. 2" SLO	T 31220 CZC
	DUND SURFACE TOP OF WELL CASING TOP & 40	TTOM SCREEN GW SLAFACE	DATE
REMARKS:			
Į pro	LOG OF TEST	BORING	MELL COMBY. GRAPING
34 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST	REMARKS	WELL CO
22 24 35 65 2 4 54 2 1 3 5 6 5 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	BRUN DAK BROWN CLAYS, NO ZAS. BRUN WISCHE GREY CLAYS (ASBE) July 12/	STIFF LITTLE - AL HZQ STIFF TRACE HZQ	

Proportions Used: Trace = 0-10%. Little = 10-20%. Some = 20-35%. And = 35-50% Sampling Abbreviations: SS = Spitt Spoon. ST = Shelpy Tube. CSC = Continuous Soil Core

GOSING NO. MW- //M PROJECT NO NAME UNION PAGE 20: PROJECT NO NAME UNION PAGE 20: MAXIM GEOLOGIST OFFICE Tamas Down DRILLING EQUIPMENT. A HS A WELL INSTALLED? CASIN YES TO NO IT Shi	E SIZE TYPE OF BIT SA	MPLING METHOD START. Split SPOON 12/18 HGTH 10 DIA. Z" SLOT	FINISH GATE - 12 14/16 SIZE .CZC
SEPINIFILE NO. SERVE	LOG OF TEST SORING LOG OF TEST SORING CE STATE OF TEST SORING CE STATE OF TEST SORING	REMARKS	WELL COMST. GRAPHIC LIVIED LOG
10 8 10 0 8 12 12 14 35 7 9 10 10 12 12 14 10 10 12 12 14 10 10 10 12 12 14 10 10 10 12 12 14 10 10 10 12 12 14 10 10 10 10 12 12 14 10 10 10 10 10 10 10 10 10 10 10 10 10	Sampling started Dy BG Brown / DRKBrown Silts + clays w/ Trace anounts of Ax Fragments. Less than 18 Brown / Drk Brown Silts + clays, w/o Rxs Most likely Fill Bro Drk Brown clays w/ Trace are not of Rx fra most liky Fill Top8" Drk Brown clays w/ Some Organics Bottom 2" Grey silts + Clays w/ Some Organics Top 4" discorded boked as if they is felling to Bottom 14" Grey clays w/ Some organics + Tro Bottom 14" Grey clays w/ Some organics + Tro Reddish Brown Clays w/ No Rxs or organic Reddish Brown Clays w/ Grey layors The grey layors maybed varbed clays.	LIFTE TO HE SOFT WISDMENSON HE SOME HE SOME HE CE SLIFT	JANAMAN MANAMANAMANAMANAMANAMANAMANAMANAM

TEST BORING LOG BORING NO. MW- 11M

PROJECT NO. NAME 2035-200 Union Road DRILLING CONTRACTOR/DRILLER

BUFFALO

Maxim James Drain

DRILLING EQUIPMENT, METHOD HS A

WELL INSTALLED? CASING MATURIALY
YES IN NO [Stainless Steel 2"

SIZE TYPE OF BIT

SCREEN:

NY

SAMPLING METHOD Split SPOON

START. FINISH DATE

LENGTH /0 DIA. Z" SLOT SIZE .OZC

 ∇ Silling

DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION REMARKS Soft and day k Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet Wet 18" Reddish Brown (Fleshy Colon) Clays 4"- 1/2" Rx frags. Wet Wet	Angeranding they well
22' 24" 33 Peddish Brown clays 12" 24' 12" 2 Reddish Brown (Fleshy Colon) Clays 4"-12" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Colon) Clays 4"-12" Rafrags. Wet 18" 1 Reddish Brown (Fleshy Colon) Clays 4"-12" Rafrags. Soft Wet 18" 1 Soft Wet	Mary drown of the state of the
22' 12' 22' 12' 22' 12' 24' 12' 24' 1 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Soft Wet 18" 1 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Wet Wet Wet Wet Soft Wet Soft	and a second
24' - 4 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Soft Wet 18" 3 Reddish Brown (Fleshy Colon) clays 4"-1/2" Rafrags. Wet Wet Soft	PAR .
24 18" 3 Reddish Brown (Fleshy Color) 4 12 7" Wet well anded edges.	
26 3 Soft	
1.014	(1)
[0] 5 W 180Made 24795.	-
128 12 7 Reddish blown (Frank Counted edges wet	
10 30 Super Poddich Bown Suft	
Leshy (Old) C/WY	t -
- Reddish Brown (Fresh Cock mostly smoothed peobles Wet	-
34 Readish Brown/Grey Silts + Clays From Soft > hard	
2/ 22 Hard	1-1-1-1
- 35 Reddish Brown/Grey silts, clays, Sands + Wet	

BCRING NO. 17-5 PROJECT NO. NAME () CRILLING CONTRACT	DOURGED - 2035 - 200 LOCATION BUFFALE MANIM		
SECTOR CONTRACT	JOHN J ZACHER JR		
DAILLING EQUIPME		A SRIT SPOON 15	17. FIMSH GA 2-97
	aimess Steel 12" THE SLOT MAT. STAINS	ESS LENGTH 10" DIA 2" SLO TIOM SCREEN GW SLAFACZ	T SIZZÓ CAC DATE
34 17 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST E	BGRING	WELL COMBY.
(4) (4) (4) (4)	SANDLING START AT 15' BG	REMARKS	3 5=
- 3 - 6 - 7		10	The same
- s 5 3 7 7 7 7 7 7 7 7 7	BREEN CHAS- FILL	STIFF: LITTLE IN AL	
17 9 7 7 17 19 19 19 19 19 19 19 19 19 19 19 19 19	Brown CHAYS FILL	STIFF TEACH HZC	1 × =
11 23 6 1 23 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Brown To Drik Brown CLIMS	SIIFF LITILE HZC	
21 - 8	BRUND TOTANCLAS VILITTLE GREY	STIFE SCHED WITCH	
23 69 78 1 21 21 21 23 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	B20-2 6264 CLIM G-12 12-24		
			-

AILLIMO ELL INC	E EO	Cist. Offic Liphent. M 2071 Casin	HSA GU SH O" HSA	SPLIT SPOOL 12	13.19C
EVATION ABOVE	W OF VE M	: GACU .5.L.)	ID SURFACE TOP OF WELL CASING TOP & BOTTOM !		0.
	/		C-26 FILL MATERIAL, CUTTING BRULL DRA		COMBY.
22 1 th	N. S.		BESCRIPTION	PEMARKS	WELL
22 22 22	22"	15 .	on IDRK BROWN CLAYS	STIFF SCIETURES	
21 24 24 210 210	24"	,	EY TO LED BROWN CLAY, TRIKE BLICES	SCHT, MOIST STIFF, little H2 G	
23 23	171" 18	7 Z Z Z 6	RUN MAN CLAM, TRACESILIS, LITTLE ROCKS (18")	SET, WIMP	
3 Q	16	2 2 3,	SELLETTAN CUM - LITTLE GLEN, LITTLE ROCKSCIIS 1/4	STATE DAMP	
32 34 34		5 2 80	P 12" - LT BROWN ITANCULA - SOUF GITTES, LITTLE RUIC TO "- CKE-1 CLAY AND SAND, NO CLHESING STREAM THE CLAY AND SAND		
36 36 36	21"	1 15-	ETLY RULK - WISCHE GEFT TANCLAY	NC STRAK FY Wet Wet, STIFF	

44 SHELTER ROCK ROAD DANBURY, CT 06810 (203) 796-5279 * MW-103 TEST BORING LOG BORING NO. BUTTON MW- 12D NY PROJECT NO. NAME Union Road 2035-200 ∇ لهود بوارسى DRILLING CONTRACTOR/ DRILLER Dick miller Brown (Ron START, FINISH GATE Maxim SAMPLING METHOD James Drain 12/12-12/16/96 SIZE: TYPE OF BIT 8 /4" HSH / 77/8 A1/15 # Solit SACON DRILLING EQUIPMENT, METHOD SLOT SIZE .OZC LENGTH 10 DIA. - / A/ PATONY WELL INSTALLED? CASING MAT. DIA. ...
YES IN NO [Stainless Steel 2" SCREEN: TYPE SICT MAT. Stainless GW SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GROUND SURFACE ELEVATION OF: (FT. ABOVE M.S.L.)

MARKS:	LOG OF TEST	EORING		WELL CONST.
ARKS: AR	DESCRIPTION		REMARKS	
-5	The material is all untill then.	en G Fill		THE ME AND AND AND AND AND AND AND AND AND AND
-10 	eu (A SKIN BANDAN MYRANIKWYPONYN
15				
		u ·		Andread

BORING NO. MW- PROJECT NO NAME Union Road 2035- DRILLING CONTRACTOR/DRIL MAXIM GEOLOGIST, OFFICE James Drow ORILLING EQUIPMENT, METH HS A	LOCATION LOCATION BUTTALO LER HOD SIZE TYPE OF BIT MAT. OIA SCREEN: STEEL STOT MAT. Stainless	SAMPLING METHOD START. Split SPON LENGTH 10 DIA. Z" SLOT S	TAN CATE
REMARKS:			-
[1.4°]	LOG OF TEST BOR	ING	VELL CONST
SEOTH STREET SEEDS	DESCRIPTION	REMARKS	WELL CO GRAPING LIYIIO 1
24 24 24 24 24 26 28 28 28 28 28 32 24 50 BS	Cown to Drk Brown Clays, NO 125 cown Tan / w/ some Greys Greyish/ Red Brown Clays, Trace Par Fag.	sits exerces Some H20 Soft Some H20 Soft Some H20 Soft, Damp silts The Cohecive Strang Wet to Damp	JAMIN MOUNTAND AMOND AN AND AND AND AND AND AND AND AND AN

39'

RING NG. MW- OJECT NO NAME UNION ROAD ILLING CONTRACTOR/ DI MAXIM GEOLOGIST OFFICE TOMAS RILLING EQUIPMENT. M ELL INSTALLED? CASIN ST. NO. St. IN.	ETHOD SIZE TYPE OF BIT SAI	Split SPOON STH /O' DIA. Z" SLOT	FINISH DATE
SEPTIFFIELD SEPTIFFE	DESCRIPTION Mostly RY 4"-2" insize of a matrix of	REMARKS	WELL CONST. GRAPHIC LIYHO LOG
42' 2' 50/2"	mostly RY 14"-2" insize of a matrix of HE Bown/Tan/Grey Clays + silts Bed ROCK @ -41' BG Bottom of Protective Cosing @ Stain less Steal Riser Stain less Steal Screen	We to Stiff Coment Boat He BE Bentonite Seal	THANKANANANANANANANANANANANANANANANANANAN
-15	Botten of hole 61,5 Bb = 0-103. Little = 10-203. Some = 20-353. And = 35-5		

				TEST BORING LOG		\		
BORIN					GITE	,	<i>;</i>	
PROJE	MW -135 PROJECT NO_ NAME UNION PLACE 2035-200 BUFFALL W							
			RACTOR	MAXIM				
ان الله ما الله	GZO	LOGI	ST. OFF		RING METHOD START	. ศพุธ	H CATE	
CRILL	ING	EQU	PMENT.	METHOD SIZE TYPE OF BIT SPEC	IT SPECY 12.	120/9	(د.	
WELL YES G		ALLE NO	D7 CAS	SING MAT./DIA. SCREEN:	/	SIZEC	€2c.	
ELEYA (FT. A	TICH	QF:	GRO	NUNC SURFACE TOP OF WELL CASING TOP & BUTTOM SCALE				
REMAR				o 21', last 1' NOT SPLIT SPECLED Well CHESTE	- RISER AT 2051	} G.		
		/		LOG OF TEST BORING		COMST.	SBAPIUC FYIO LOG	
	14/3	A VOTE	01/2	NOTTEN DESCRIPTION	REMARKS	WELL	CBA	
7 34	/ 5	•		SAMPLING STARTEDAT H! B. B.				
_								
_				•			L	
							Ţ., Ţ	
	4		15	Dier Brewn Clims	STIFF		-)	
5]→ , ,	ic is	No Boirs Sid Circo	LIFFLE, NK, HZC	KA		
	'تا ت		12 12	DIER BREIN CLAYS	STIFE	7//	- p	
_		12	40	SCHE CINDERS	TRINE HZC	14/1/	-13.74	
-	ช'	.	ان	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STIFF, LIFIE HZU	1,4/4		
-	'ઇ'	c	12	5'-> DETERBELLA CLAYS, LITTLE CINDERS			الميراد	
- - 10	10:	١٥	13	BOTS" - BLACK SCUIDS CINDERS NOT NITTUE	224 2124	门闩		
	10		ガ	RAD 3" - BLACK SHOW CINDERS	DIET	月日		
-	i2	11	707	BETTER 3" - WILLOW COME CARE COX 12	LET	I' , †		
-	i)		3	BLALIC SAND / CININIES:				
-	14	jc"	3			I; FI		
_	, i⊶i		7	BLACK SAND KINDERS	wf.t-			
15	ju	12"	U L	SOME BRICK AND DOED		门山		
F	الا		5	Builting CINDERS IN FOICE REDCLING	DAMP	山上	-	
-		7"	4			1)11		
-	15		7/70	TUDG" BLACK CINDERS	MEDSTIFF	I.El	!	
F		21"	104	6-15" RED CLIPIL, NO ECKS	ENG HZC			

Sampling Abbreviations: S5 = Spitt Speed, ST = Shelby Tube, CSC & Continuous Soil Core

ORILLING EQUIPME HS A WELL INSTALLED? YES TO NO CO ELEVATION OF: IFT. ABOVE M.S.L.	2035-200 TOR/ORILLER DEFICE TORY THE THOO CASING MAT./DIA./ SCY Starriess Steel 2	LOCATION LOCATION BUFFALO NY SIZE TYPE OF BIT REEN: TYPE SIOT MAT. Stainle OF WELL CASING TOP & BO	SAMPLI	+ SPOON 12/19/1	FIMISH DATE
REMARKS:	AND (1) AREAST	LOG OF TEST	BORING		MELL CONST. GRAPIUG LIVIO 10G
SEPT SAMPLES		DESCRIPTION		REMARKS	
5 5	18 - Dr.K. Brown cla	Lys w/o Rxs		Stiff little to No HO	A MARKAN A MANOR
10 10 8 11 12 11 11 11 11 11 11 11 11 11 11 11	- Not a Nati	d, Abbly from a RR:	ie organics	No Coheasive Strangth No Coheasive strangth DRY Damp	

50/3"

50/3

18

141

Wood Nex Sample will be 19'-21'

44 SHELTER ROCK ROAD DANBURY, CT 06810 (203) 796-5279

20+2

	TEST BORING LOG
CRING NO. 15 M	LOCATION

Union Road 2035-200

LOCATION Buffalo NY

PHILLING CONTRACTOR/ORILLER

Maxim James Drain

SIZE: TYPE OF BIT DRILLING EQUIPMENT, METHOD

START. FINISH DATE SAMPLING METHOD Solit SROON

Dull: 45

WELL INSTALLED? CASING MAT. DIA. SCREEN:
YES TO NO C Stainless Steel 2" TYPE SICT MAT. Stainless HS A

GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE

LENGTH 10 DIA. Z" SLOT SIZE .CZC

ELEVATION OF:

10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST BORIS	NG .	VELL CONST. GRAPHIC LITHO LOG
SEPIN FILE COVER PROPERTY OF THE SEPIN SEP	DESCRIPTION	REMARKS	MEL GRA
7 Top 5" 24" 5 Bottom 19	Wood Greyish red clays, No Rocks Cary clays of some tacks	Stiff S-> Sofi little to No Hzc	
Bottom/2 32 or 35 There	wasn't on basket in the spe	bles	

10-205, Some = 20-355, And = 35-505

DRILLING CONTRACT DRILLING EQUIPME WELL INSTALLED? YES 2 NO CONTRACT ELEVATION OF: (FT. ABOVE M.S.L.) REMARKS: Q. O. O.	OFFICE MAXIM TECH no logics DEFICE MAZIS CAMBRA NES DANBURY NT. METHOD HSA CASING MAT./DIA. SCREEN: STELL 4" TYPE SE MAT. STAMPS STALL GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM STALL STOLL DOELLOSS 14-S Well.	SAMPLING METHOD START	FINISH DATE -/19/97 SIZE OZO DATE 8/19/9)
100 171	LOG OF TEST BORIS	1G	WELL CONST. GRAPHIC LITHO LOG
569 TH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ENTAPTION DESCRIPTION	REMARKS	WELL
	Fill- Of Reclish brown Sarry Clay Reclish Brown Clay	3.8 Bestout 5.3 C.8	
- 15 	- ENDY Bor. 7	[6.8] [7.3	

YES Z NO C STAN	FICE JOHN J ZACHER JR METHOD SIZE TYPE OF BIT SAME	1 Special 12-3	F. FINISH CAT 3C-9(a SIZECACO GATE
Stirt Stirt & COVERS	LOG OF TEST BORING	REMARKS	WELL CONST. GRAPING LIVIN 1 0G
7472 97 10 10 22 24 24 24 24 24 24 24 24 24 24 24 24	TOP I"- WORD TOP I"- WORD TOP I"- BROWN CLAY WILLIFTLE CHANEL 11-10 BROWN CLAY WILLIFTLE CHANEL 11-10 BROWN CLAY WILLIFTLE CHANEL C-7" - FILL CHOOSES, STEWED, DRICK T-19" - BROWN CLAY WITTIE RECES (IN-) T-27" BEDIBROWN CLAY WITTIE RECES (IN-) REDIBROWN CLAY, TRACE CHEADICS (Richs) REDIBROWN CLAY - SOILE GREY VARBING REDIBROWN CLAY SCHE GREY VARBING REDIBROWN CLAY WISCAR GREY VARBING REDIBROWN CLAY WISCAR GREY VARBING	STIFF, OIZ-I DIZY STIFF, DRY STIFF, TRING HZG STIFF, LITTLE ME HZG STIFF LITTLE ME HZG STIFF LITTLE ME HZG STIFF LITTLE ME HZG STIFF LITTLE MZG STIFF LITTLE MZG STIFF LITTLE MZG HEDSTIFF AMONIZG LEDSTIFF SCHARZ HEDSTIFF AMONIZG	

PROJECT NO NAME LOCATION	
PROJECT NO. NAME	,
DRILLING CONTRACTOR/DRILLER	
जुङ्ग GZOLOGIST. OFFICE	
DRILLING EQUIPMENT, METHOD SET SAMPLING METHOD S	TART. FINISH CA
YES NO	SLOT SIZE
ELEVATION OF: GROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SURFACE (FT. ABOVE M.S.L.)	UAIE
REMARKS:	
LOG OF TEST BORING	COMST.
LOG OF TEST BORING LOG OF TEST BORING REMARKS SOFT WET	WELL COM
22 18 3	

ORILLING EQUIPMEN ### ### ############################	PAND PRICHER MAKIM - EMPIRE - P FFICE S ZWAYA D D D D D IT. METHOD HSA ASING MAT DIA. SCREEN: TYPE ROUND SURFACE TOP OF WE GLESS D H AND DETITY RELIATIVE	MAT. SOLUTION TOP & BOTT	SAMPLING 55 LENGTH 10' CM SCREEN GY	2.1/	SIZE O DO DATE, DA
SEPTH OF THE CONF	C S A LES ST	LOG OF TEST BO		REMARKS	WELL COMST. GRAPING
P- 1 1 1	Frit general SIFT of the flag	TENCE LIMITE COMMENTER TO LOCAL SOLIT SILM CUM. TENCE LI SILM CUM.	IN REIGH FRAG.	Grand Grand	

S.c.		(203) 796-5279	N	
	BORING NO. Miw - 16	TEST BORING LOG		
-	PROJECT NO NAME	UNITE ROAD CAP INTERTOR		
		emple Bence	\ m	الرعديد
		ANNON/52MAYA DANBUNY	•	T, FINISH DATE
	ORILLING EQUIPMENT	[11 MC11100]	22 1 3	13,19-2
	WELL INSTALLED? C	2" SS TYPE 0.10 MAT. SS LENGT		PATE
	(FT. ABOVE M.S.L.)	ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREEN 618 610.5 - 600.	O NA 2/	1/9/
L	REMARKS: ALL ELE	WATERS AND DEPTHS RELATIVE TO PRE-LAP	GRAVE	
	.//	LOG OF TEST BORING		NST.
	1 40.	(+ 100 h 2 h		MELL CONS
	362-14-14-16-16-16-16-16-16-16-16-16-16-16-16-16-	LOG OF TEST BORING	REMARKS	WELL GRAP
		- Clay 10°h Grand	Foto	
	7.0 35	- Hard Brown Clay, 10% Granel		
	2/ 1/5/20	Rottom b" CILLERS	021	
		Bottom by CIHOLERS	60·1→	
	5 1.0 0/4	SAME	PRI	
			£ ~	
	9" 12/4	THE SENT , SELF, SUSTANGULA ROCK FRAYS WELL 420004	F.~ Soud	,,,,
	3'	The word . He compare the		1
	2' 5/4			
	- 10'	same but anythron Scient to Staining		
	1.5' 5/56	SAME of TALLE DIGALILL.		
	1.5' \$18	Samé		
	1.5' 4/50	SANE Y LOCK FARIS, TO YY" ANGULA. IN BOSTONG"		
	16 12/4		สบาร์	
	- 18	EOB 19.0'	(5,7,6)	· .

PROJECT DRILLING	O. MW-17 MO NAME UMLEY ZUA CONTRACTOR MALIO - S CLEGIST, OF	A RIORILLER Solute : P. Bened	LOCATION LAMPELL (AP)		START FINISH 3
	HO [] N OF: GRO (E M.S.L.)	SING MAT. DIA. SCRE	SIZE TYPE OF BIT (0.25 " HIA EN: PE MAT. SS F WELL CASING TOP & BOTTON	2" 55 LENGTH 10' DIA- Z	2/22/96 SLOT SIZE 20
	AVE HOVERY	17 PE 2 2 2 3 3 1 1 1 2 2 3 3 1 1 1 2 3 2 3 1 3 1	LOG OF TEST BOR		WELL CONST.
3£977 4	ALCOVER	•	DESCRIPTION	REMARKS	1 3 G
2'	125' 20194 125' 42/4	RIME / DAIL & CO. The	FLAND, WAVEL PRESENT. PL	ne et	
- 4'	11/45	اغراد الجمعاع المرادية الملكة المكانية المكانية المكانية المكانية المكانية المكانية المكانية المكانية المكانية المكانية المكانية ا	TABLE STABLES, FOR STAINING . R	l	683
- 5	1.2 स्थाप	Benck com. 30% on.	chinose, Linase), TAALE LINASE MATCH (GINOSE, GINUSE),	6.40	
- - - - - - - - -	0.5 1/4	SIME CINOSA FILL SIME	MATIC		
- 14 14 14 14 14 14 14 14 14 - 14	0 7/4t	NU RECUYERY		WET	
- 15 - 15	0 3/1	He Rein word			
- 18	0.R. 11/8F	IMME, NO THE MA	FL. TRALE PREMARIO ! ANOLON	of grande	
- -	1.5 14/ FE	CARTARIA CLAS H HIM	ile Sealing. TARLE EAGLANTISCO FET FARMIN (SLIMET)	(1.0	

	DANBURY. CT 06810 (203) 796-5279		N	
BORING NO.		BORING LOG		250' }
PROJECT NO.	NAME	LOCATION LAM FILL EAD		
DRILLING CON	TRACTOR/ORILLER Notice - Sampling V. Bened			-
ਚੂ ਵਰ∎oro	GIST, OFFICE			
1	GIF MEII I MEI II O	SIZE: TYPE OF BIT	SAMPLING METHOD STA	AT. FINISH 34"
WELL INSTALL	ED7 CASING MAT. DIA. SCREE	1:	THE LA CL	OT SIZE LO
YES W NO	GROUND SURFACE TOP OF	WELL CASING TOP & BOTTOM S	CREEN GW SURFACE	DATE
(FT. ABOVE M	.S.L.) 619.1 (,20 603 - 3 43	- 602	
	Slevanon & Maria ALLATIVE	TO PREMAP TOPS,		
j	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST BORIN	G	CONST
	10. 81 (87) (00 y 9)			
SEPTA STATE	E CO LET AL DO MAN AND COMMENT OF THE PROPERTY	ESCRIPTION	REMARKS	WEL
ω L $_{\parallel}$	141 (BANE) 6,19/6,12 cm	" y man staining. Thank off.	MAS WRT	
E 2'	14/ (same) 6,01/6,12 cm	mark. Sugarific smary	J	
22'	4			
4.5	15/gt 23:00	MALLE OF JANG MELTING		(E
<u> </u>		EAD. 24.0'		
-3				
F				
		4		
10				
15				
				-
-				

A DIVISION OF THES
44 SHELTER ROCK ROAD
DANBURY, CT 06810
(203) 796-5279

		(2	03) 796-5279	•	•		11	• 1	-'ب ١٠
BORIN	1G NO. NW-'남			TEST BC	RING LOG				
PROJE	ECT NO.		Catton BOW		CAP INTE.	グエッ ン			
			PORILLER	HIM ENDI	RE PHIL BEN	ىلى			
1 <u>.</u> 1. 4812.	GEOLOG	IST, OFF	ICE Hanlon/	152 mayor,	MANURY				
DRILL		JIPMENT	METHOD	SIZE	TYPE OF BIT	SAMPLIN 55	METHOD ST.	ART. FINISH	
WELL YES I	INSTALL	ED7 CAS	SING MAT./DIA.	SCREEN: TYPE	MAT. 55	LENGTH	6' DIA. 2" SE	OT SIZE O.	15
	TION OF		UND SURFACE	FOR OF WELL	CASING TOP & BOTT BOS-0-	595.0	LA LA	2/19/9	6_
REMAR	rks:	EURIZE	our And I	LETTHS REL	ATTUE TO PRO	e-(A)	gurgace		
		J.HO	AT ON SIT		LOG OF TEST BO	DRING		CONST.	MC) 1.0G
/se ⁵	21H (51)	E TO LEAT	AL BLOW	DESCR	IPTION		REMARKS	WELL	CRAPHIC LIYHO LOG
	5,	32/5~	120 5.77		ĭ		(آت ۽ ذمها		
	17	10/57	Ton Clay	Firm Ho	course Day			_	
- 5 - 5	,¹	1-15	Tanjon (1 [Lag F. ~	المن (۱۳۰۰)	Dri	OF T	<i>></i>	
-	」 ,	15/57	Brown ile Festing	Y SEF	Tem , the Conf	5-'D->	U	-	, <u>-</u> , -, -, -, -, -, -, -, -, -, -, -, -, -,
- -	į	14/50	Sal	ر مر				-	,
— 10 - 1 1	10	MFT	hittan	- 6 ¹	ا د دیدرو		(in)		
- -	1.2	77/FI	Same	w/t5-c2	ruck figs (way	uar gine	24		
- - - 15	13	2/8-	Sama	(5.17 closes	40 10%)		الم من		11111
	2,	348.	Same				Fork		
- -	15	4/64	Sime	ケスケデ	4-17655				

BORINGI NELL LOCATION SAETER L

REMARKS: LIEUR	TISING AND DETITY (DELATIVE TO A BOTTO OF WELL CASING TOP & BOTTO OF WELL	SAMPLING METHOD START, FINISH CA LENGTH O DIA. 2 SLOT SIZE O.2 DM SCREEN GW SLRFACE 2/19/94
	LOG OF TEST BO	RING SAIR
OFOTH SAMPRECOM	DESCRIPTION	WELL CO GRAPHIC LINE I CO
F 7,	From Sendy Clay 20% organice Very SUFT Trace Ruch Fra GUTTIUM 6" Ver: Suff were CLAY trace Ruch fragents INTSET 1" EDB 24.5"	544 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

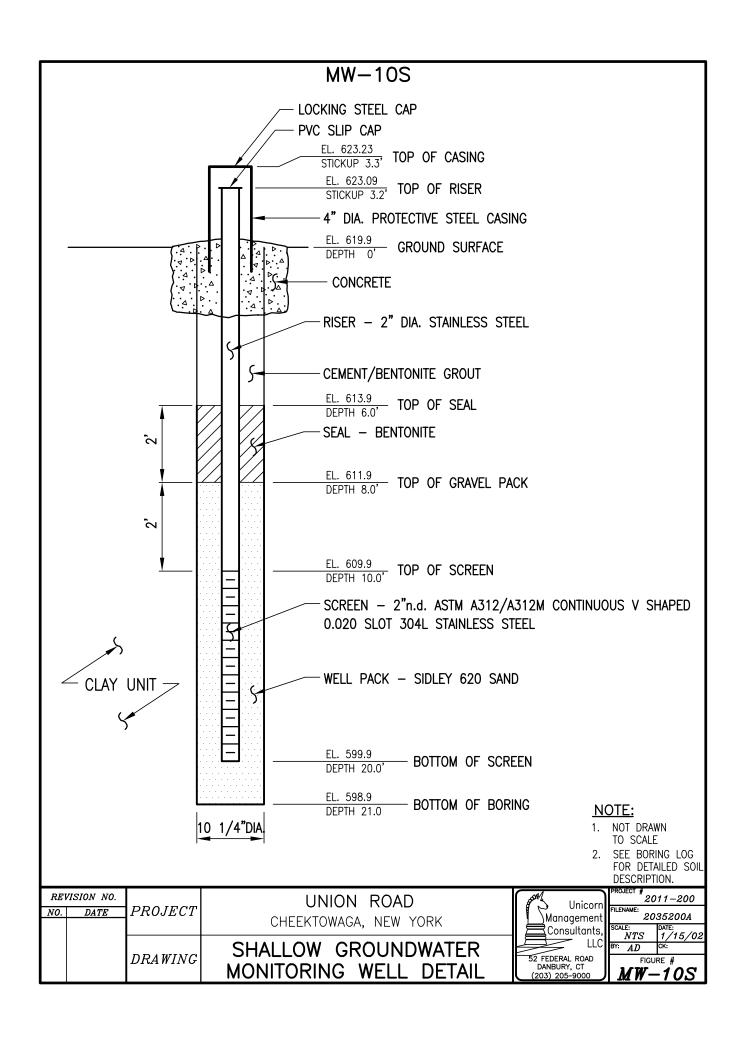
LOG OF TEST EORING 110 19/14 1115 19/14 112 19/14 113 19/14 114 19/14 115 19/14 116 19/14 117 14/16 118 11/14 119 11/14 1	/		O. AND	LOG OF TEST BORING		·	CONST.	HIC
2' 12/4 5 13/54 Short with Thacity " whange (surrow), vinhalo 1.5' 26/66 The short with thacity " whange (surrow), vinhalo 0.5' 62/56 The same since may be strong. Thace grand 2007. Surre surre since may be strong. 1.75' 24/16 Short with surre since may be strong. 1.75' 24/16 Short with surre since may be strong. 1.75' 24/16 Short since since may be strong. 1.75' 24/16 Short since si	SEPTH S	JP E	ECO LER	DESCRIPTION	REM	ARKS	WELL	GHAF
1.5 24/16 SAME SAME SAME SAME SAME SAME SAME SAME	1 1				feszár			-
1.5 16/4 SAME THATE YOU WARRE (ALLESA), VINARD 0.5 62/4 TANDAR, MAND, CLAY FRIT, FE TRAINING, TRACE MANUE PROPARE SINGLE BLOOK AND CLAY FRIT CARRAITS. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND AND SHAPE CLARATES. AND SHAPE CLARATE		Lu.	12/14	FIRM BOOK IN FORM CHIEF , FE' & BUNKE STAINING NO CHART	. بدین	.	-	
1.75' 24/ H Same, Francour Character Andrew Comment of Stranger Comments	5	1.5	13/4	Short.		(M.)	-	_ _
1.0' 14/pf. Same, surfram, surframe catagories, Angularis de visione de la constitue de la con		1.5	**/&	BIS SAME - I'M TARLE YET LANGE (RELACE) , V. MARD	ن بح			- - -
10' 14/ Same, user, surrivana, some Kamel Areson paston books. 10' 14/ pt. Same, user, surrivana, some Kamel Areson paston books. 10' 19' by Same, Sugar succer poster. Bank bakels try, prod.		0.5	62/16	TANDONIAMO LENY (SILI) FE TANING TANKE MANUE PROMATE E STAINING		Fuelan		
10' 14/ pf. Bener, war, surrivant into came Arrow parton well. 10' 14/ pf. Same. Sugar succes processor. Beick takels try, process. 10' 15' Same. Sugar success success true for a commercial form.		1.75	ع4/لا	, a a				
hui 19th Same. Sugar succer posser. Bank Back Backs Hogs, Porch.		1.0	14/10	BLANK, WAT, STETS SAME, SAME KAME AMOUNT PROTON HORS.		ح مده في مده		
1.01 6/ ft South water cool, Sunce mottery from organis. Trace	15	hoi		16'				
/ ·	_	1.01	6/4	Softwar, wrentery cook, succe morning from organic. Trace erjaniment's refer things was carrie matric.				

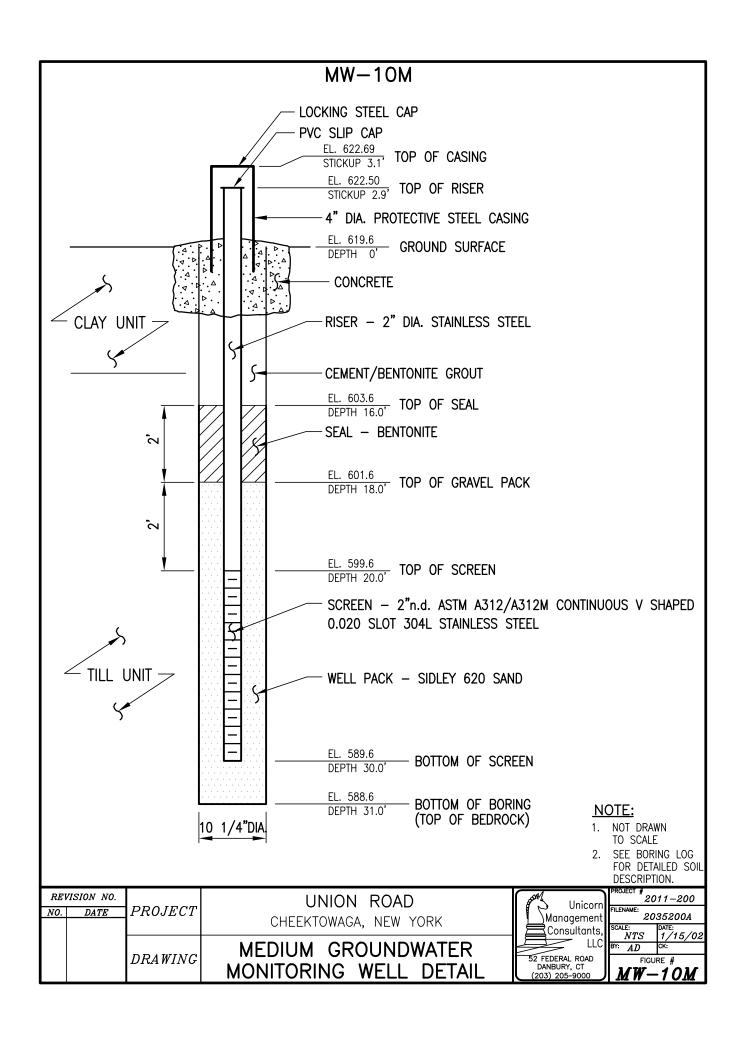
चुं न GEOLOGIST. O ORILLING EQUIPMEN WELL INSTALLED?	DR/DRILLER M- IMPIRE , P. FFICE SEWAL DAME A T. METHOD SER MSA ASING MAT./DIA.	BENZE TYPE	ANDFILE CAP OF BIT HSA	SAMPLING A		RT. FINIS	<u> </u>
	ROUND SURFACE	TOP OF WELL CASING	TOP & BOTTOM	SCREEN GW	DIA. Zª SLO SURFACE	OAT	ξ
(FT. ABOVE M.S.L.) REMARKS:	618.5	617.5	605'- 595	••	und.	2/23	196
SEPIT GANGE COVER	/5° / 65°	LOG	G-CAP ELEU, OF TEST BORI	ING		CONST.	GRAPING LYHO LOG
SEP IT OF THE COVER	the st	NOITHINDESO			REMARKS	WELL	CRAPIUC LIVIO 1 (
- 15		20' 8.0.8					

	DANBURY, CT 06810	N	
BORING NO.	TEST BORING LOG		·
PROJECT NO NAME	UNION RD LOCATION THIERTILL CAP		-
DRILLING CONTRACT	OR/DRILLER VA XIM/EMPIRE BELLE/BOHNCKET		o Sana
चुनु GEOLOGIST. O	FFICE HAMON/SZUMYA DAMBURY		
DRILLING EQUIPMENT CANE 450	AT. METHOD SIZE TYPE OF BIT ISA	MPLING METHOD	START. FINISH CATE 2/2//5<
WELL MSTALLED? C		GTH 10' DIA.)"	SLOT SIZE 0.20
ELEVATION OF: G	ROUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCRE	EN GW SURFACE	DATE 7/11/96
7514.5	TI-AL ALLO DEPTHS RELATIVE TO PRE-		
L. Clear	12-14 ACO UCHILD RECT. IST ID PRE-	CAD SORPHI	<i></i>
A	LOG OF TEST BORING		COMST.
SEPTH SAMPRESONE	LOG OF TEST BORING LOG OF TEST BORING DESCRIPTION	REMARKS	WELL O
JE / 4 / 4E / 4E	DESCRIPTION		3 0 -
- 1.5 8	Brown CIGY; NO COME, FROZEN, BOTTOM	F 20'26M	*
1.0 26	Brunn (lay trace organics this it	nsist	
1.5 19	BUTTON 12" BINCK I'M FINNLY WASSING W/charcon ODEZ, 10% OZMATES 10% "F. DET	mist	
	Black Fim Clay 100 poxyages TRACE 1/2" Took Trags	moist	SA STATE
1.5 221	Hert 6" WHITE CINESY ASK W/30% Chood	Wist	01111
05 6	Fine and/5,14 red w/ Blow String	wet.	
15 2 8	The ice fire only	De Cott	
[-]	Same Francoising	1.00.	
- 1023	BERN CLAY + SAND U BULL STING SHOR PETIDER. DEOR, SHERING 20010 POUL FINES UPTO U.S."	, wet	300 A

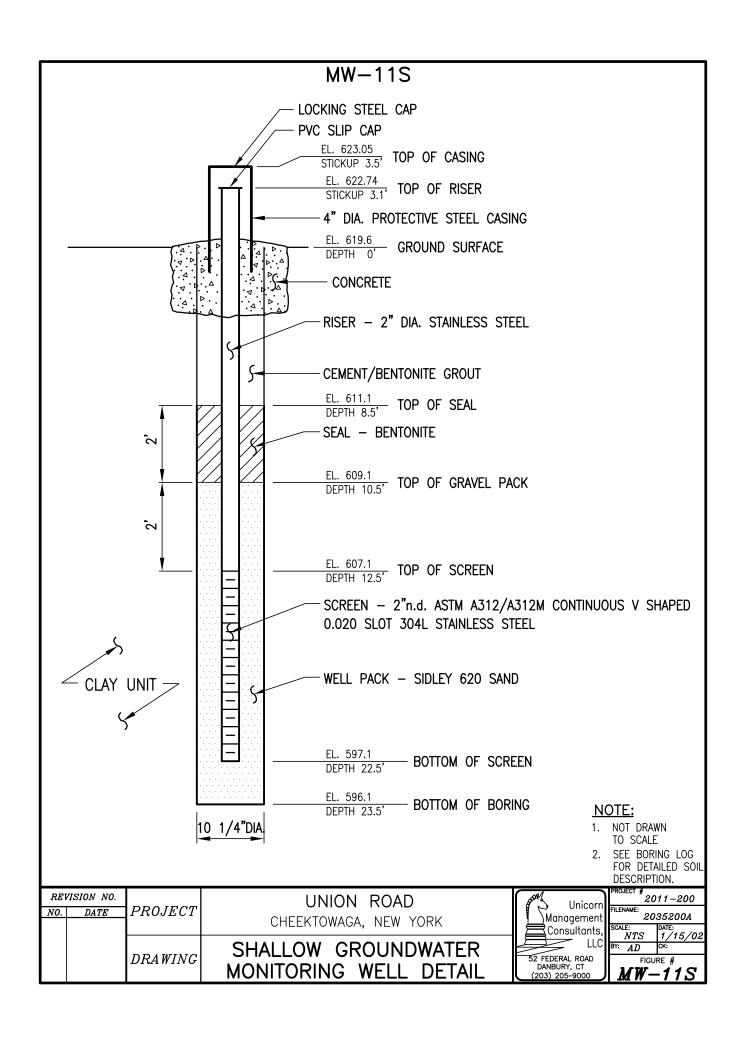
WELL INSTALLED? OF YES SEND CONTROL OF GENERAL SELECTION OF GENERAL SELE	ROAD THERESON THE PLANT BENCE FFICE HAMDA SWAM HT. METHOD SCREEN: ASING MAT. DIA. SCREEN: TYPE MAT. SS ROUND SURFACE TOP OF WELL CLISING TOP & BO EATLY 624.6 627.0 TOMS ALLS DEPTIKS RELATIVE TO PRO-	SAMPLING METHOD S LENGTH 10 DIA. 7 S OTTOM SCREEN GW SURFACE NA	TART FINISH CAT 2/2/1/76 SLOT SIZE 0-10 1/2/96
	LOG OF TEST LOG OF TEST LOG OF TEST LOG OF TEST DESCRIPTION	BORING	CONST.
SEPIT STATE OF	DESCRIPTION	REMARKS	WELL CO
3 8 7 6 3 8 7 6	Sume Wirks up > 1.5" findes in the Buttom 3" Blust Uni No course, truce of the course	ND petrolem	

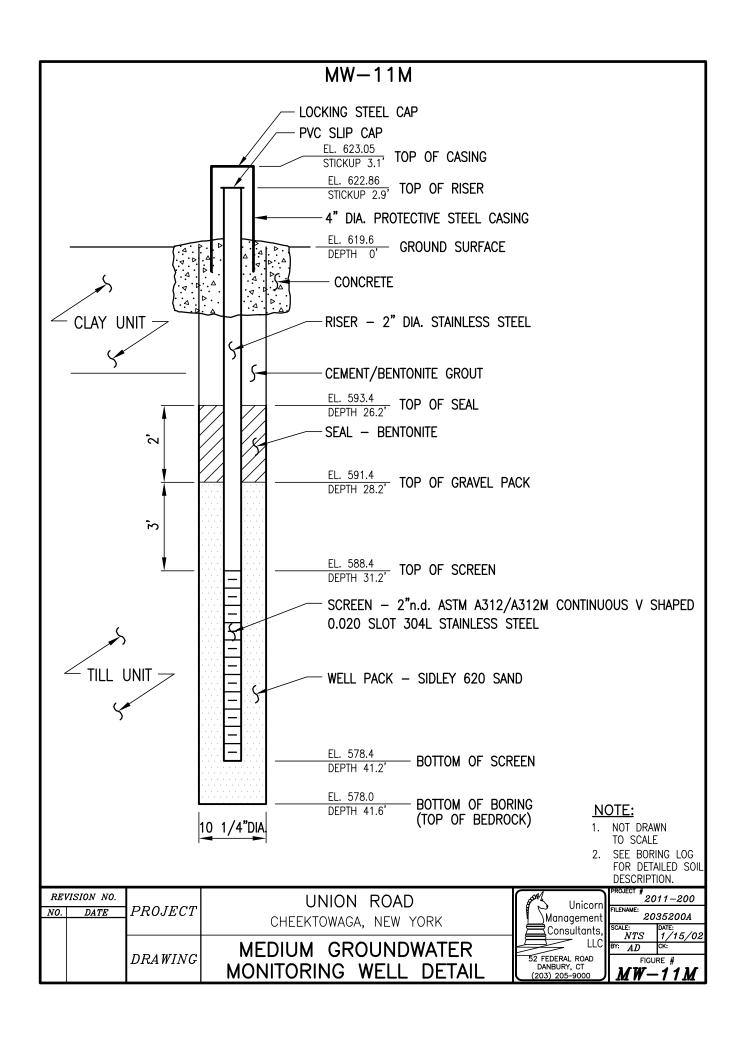
•	(203) 796-5279	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
BORING NO.	TEST BORING LOG		
PROJECT NO NAME	LOCATION		L I
UNION P	RIORILLER		× 175°
. 🔥 🐧	5 m 6 m 0 m 2 l	\	170
್ರ್ಯ GEOLOGIST. OF	WATA THINGS OF		
DRILLING EQUIPMENT	METHOD SIZE TYPE OF BIT SAME	PLING METHOD	START. FINISH CA Z/22/96
WELL INSTALLED? CA	SING MAT /DIA. SCREEN.		,
YES 2 NO []	2" 55 TYPE MAT. 5.5. LENGT OUND SURFACE TOP OF WELL CASING TOP & BOTTOM SCREE	H GW SURFACE	DATE
(FT. ABOVE M.S.L.)	623.4 625' 505'- 605'	J~k	2/22/4/
REMARKS: All SLO	DEFINE & DEATHS ZECATIVE TO PRE-CAP GRADE		
	14/5		<u> </u>
///	LOG OF TEST BORING RECORDS DESCRIPTION BRANT FRICE CLARK,		CONST
SEPT SAMPLE OF A	A LICON STATE OF THE STATE OF T	1	WELL CONS
Serit State Second	TAT ST	REMARKS	VELL SRAG
1 / 4 / 46 / AL	DESCRIPTION	MEMARY	3 6 -
2' 41/4	BRILL FEBRUARY	Kno zen	
_ / / / / / / / / / / / / / / / / / /	Distil and mo anader chose ful marchine many		
- 1'	a original. Milest/ feet made.	A	==
1, 25' UM2.		ال التهميم المرابي المتعادلة المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ا	- 77 A
	som s	SHOP HARMEL	
- 1 1.20 9/14			
-5 1.23 1/4 -	Same of write land, For staining with or, miles	324	
- 6-	BLAN CHAL CINDERS PRESENT		14
		1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 1, 20/4	BLACE COME TED LINEAR FIRE MATTER AND TEACH	ļ.	
- 50/H - 5' +	Bence all ICD Linear Cies MATTER WHY. TENCE		
- 5'-	Finds, the GEAST IT Aggress. DAY. TENESS FINDS SILVE SEAST PROBLEMANCE DAY.		
- 5'	beine about the tennal contraction of their fines, the capt IT, Age		
- 5'-	Finds, the GEAST IT Aggress. DAY. TENESS FINDS SILVE SEAST PROBLEMANCE DAY.		
- 5' - 10 1' 7' 14	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate Cunto Fings, printing. Black sier - Find some. Trace organise. Des. Possed water - 200 sams by committee supported. Day.		
- 5' - 10 - 10 - 125' = (1/4)	Busice addition from the marriage of their fings, the GRASS IT fly man. Action for Samo. Product hands only. Same of mark (Mys) Rober a hands from provings. Shock for a find some track organises. Det.		
- 5' - 10 - 10 - 125' = 1/16	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate Cunto Fings, printing. Black sier - Find some. Trace organise. Des. Possed water - 200 sams by committee supported. Day.		
- 5' - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate Cunto Fings, printing. Black sier - Find some. Trace organise. Des. Possed water - 200 sams by committee supported. Day.		
- 5'- - 10 - 10 - 12 - 125' = (1/4)	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate wants fings, printing. Denote 3 ier - Frad 1 and Traced drywies. Det. Possed water - 200 sams No committee september. Day.		
- 5' 10 - 12 - 12 - 12 - 14 - 15/14	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate wants fings, printing. Denote 3 ier - Frad 1 and Traced drywies. Det. Possed water - 200 sams No committee september. Day.		
- 5' - 10 - 10 - 10 - 10 - 10 - 15/1/4 - 15 - 15 - 15/1/4	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate wants fings, printing. Denote 3 ier - Frad 1 and Traced drywies. Det. Possed water - 200 sams No committee september. Day.		
- 5' 10 - 12 - 12 - 12 - 15/16 - 15/16 - 15/16	Busice Collection Comman circ september of Tencis Fings, Bus Genes 17, Agrical Action sier - Samo. Product wants fings, printing. Samily serie courte (Malibrate wants fings, printing. Denote 3 ier - Frad 1 and Traced drywies. Det. Possed water - 200 sams No committee september. Day.	M3451	
- 5' 10 - 12 - 12 - 12 - 15/16 - 15/16 - 15/16	Busice College Connact Cice Approximate of Tancing Fings, Our GRASS IT Aggress. Action for Samo. Product Lands off. Samily Manus Grante (Man) Rolle Country Fings, Francis. Dence for Sand some Traces organism. Date. Project water and also samo by coming ampropriac. Day, Ext. Stands.	:'A+15."	
- 5' - 10 - 10 - 125' = 1/16 - 15/16 -	Busice College Connact Cice Approximate of Tancing Fings, Our GRASS IT Aggress. Action for Samo. Product Lands off. Samily Manus Grante (Man) Rolle Country Fings, Francis. Dence for Sand some Traces organism. Date. Project water and also samo by coming ampropriac. Day, Ext. Stands.	`\e*\.	

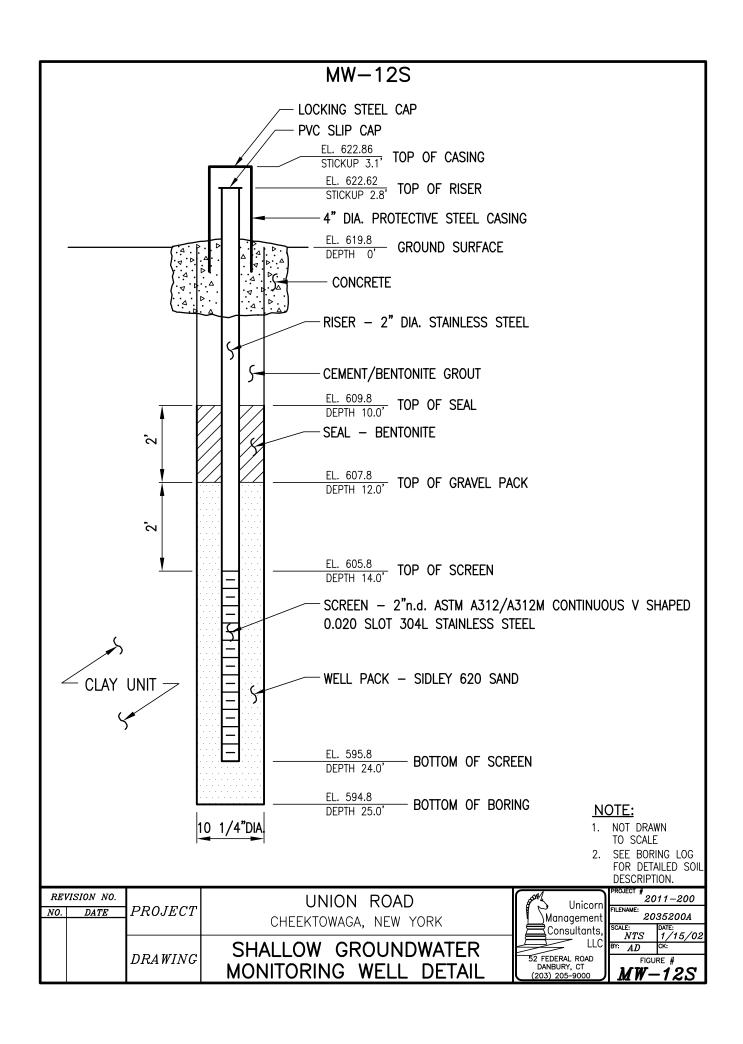

*					DANBUKI. CI 00311 203) 796-5279		BORI	NG LOG		x			-
	BCRI	MG NO.			C. Samming				10 mg (6)-		mw-21		
	PROJ	ECT NO) N				LOCATION	AND FILL CAM			יס'	_1.75! /	/
		THE CE	NT	1V/A2,2	R/ORILLER n = Empire : D	BENCE		morre ou			270	\nearrow	
į	` ⊌ }: ⊷r	GEOL	OG:	ST. OFF	FICE . Szurza : Drug	د پېړل						/ 	
	DRIL	ING E			. METHOD		SIZE TYPE	OF BIT 25" HIS.A.		NG METHOD		P. FINIS 2/22/2	
	WELL	INSTA	LLE:]	SING MAT./DIA. 27 55	SCREE	€	MAT. 5.5.	LENGTH	10 ' DIA. 2"	SLOT	SIZE	
	ELEYA (FT. A		OF: M.S		OUND SURFACE	6	, 25'	G07'- 547	۲′	GW SURFACE		0A 1/2	2/.
Į				1	1) Eleventur :	Derthy		OF TEST BO	-			157.	
		44 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	/ /&	HO LERY	THE STATE OF THE S	·						LL CONST	GRAPING
	150	44 (41) 44 (41)	ST.	CO SERVE	ALCE I	D	ESCRIPTION	1		REMARK	5	WELL	2
			.ಚ	40/4	Samé. 2" Rue	السادارة	راسىيە ئۇچىدى	7					
	一 <u>亿</u> -		ندا	19/16	Beauty Horach	ing an	guide Rock i	عدام، المراد	שיטיבן אפרוזיג.				4
	- 一型~ 	1	5	·1 _H	t ancy and	س ب							
	- 10 -				,		EOB	26					
	- -3°												
	-										,		
	- - -												
	— 15 - -												' - -
	_												

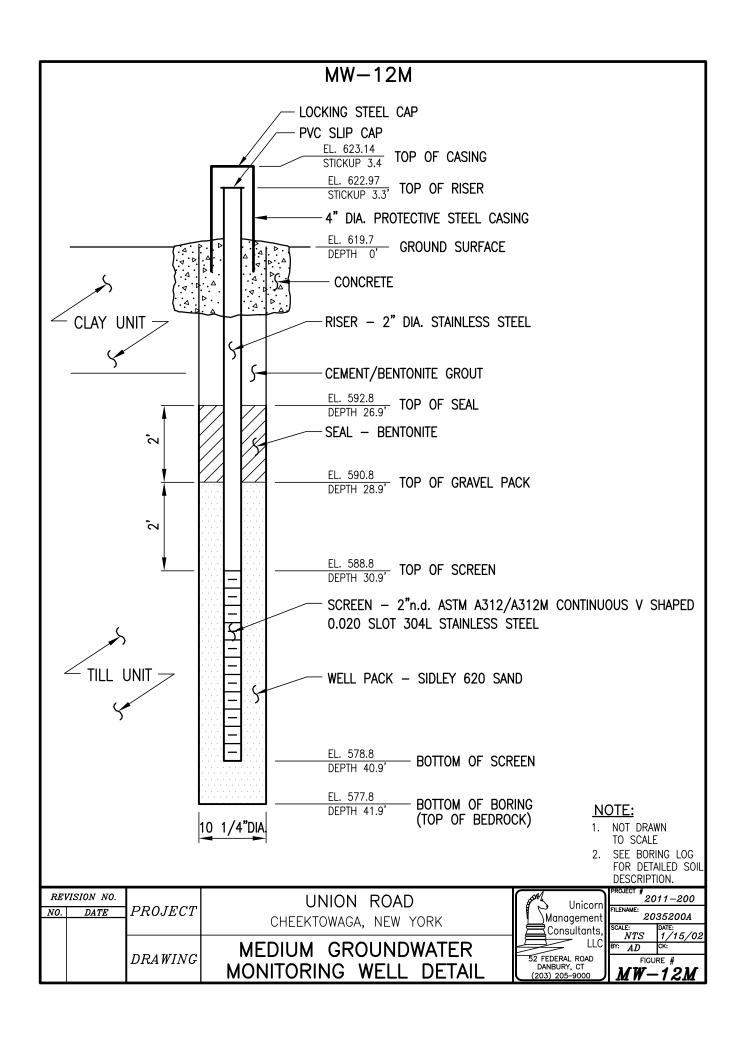

BORING NO. YOU'LL PROJECT NO NAME INVION DRILLING CONTRACTOR MAY GEOLOGIST. OFF HANLUN DRILLING EQUIPMENT CIME 55 WELL INSTALLED? CAL	NORILLER MEMPINE D. BENLE ICE SELVALA. DANSLEY METHOD SIZE TYPE OF BIT G. 75 H5A	ALL CAP SAMPL	ING METHOD STAR 2/	1. FINISH 3. 20/96	4
ELEVATION OF: GRO	UND SURFACE TOP OF WELL CASING TOP 623.4 626.40 66	x60' - 596.0'	<u> </u>	2/20/	196
~2' 🛋 .	TATE / NOT /	PRE-CAR SUR	FACE	L CONST.	1 Miles 1 OG
SEPT SHIP RECOVERY	DESCRIPTION	·	EXRAMS	WEL	
2' 13/4 1' 5/4 1' 5/4 10/46 1' 5/4 1' 5/4 1' 5/4 1' 5/4 1' 5/4 1' 5/4	SAME SAME	L NOG,	Kindy Sand Sand		THE STATE OF THE S

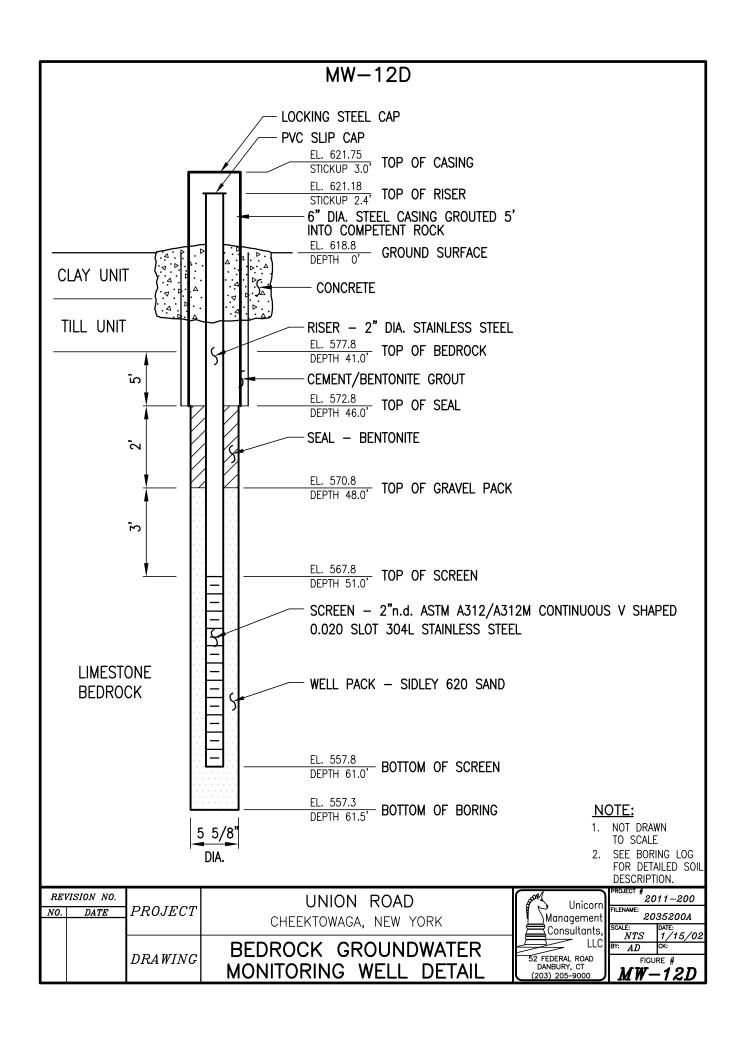
BORIN			TEST BORING LOG		M-22 20
PROJE	CT NO		LOCATION		/
DRILLI	NG CONT	TRACTOR	DRILLER O	\	
	CEO! 00	MARL	CE 1 52 FORD DOLLAR		
		MAN	D 1 3 60 11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MPLING METHOD STAR	T, FINISH C
			850 6.25° H5A	5> 2	120/96
YES TO) HC		הילה ו TYPE MAT. סיו בא	HITH 10' DIA. 2" SLO	T SIZE 10
ELEYA	TION OF:	GRO	IND SURFACE TOP OF WELL CASING TOP & BOTTOM SCRE	EEN GW SURFACE	
REMAR			E-CAR SORALE		
					
			LOG OF TEST BORING		CONST
	13/	10. P.	7,00,10	1	7 - 1 6
13	(H (FT) / 6	ECO JE NE	DESCRIPTION	REMARKS	WEL
\ \frac{\alpha_{\mathbb{E}_{1}}}{\rightarrow}	<u>/4</u>	E/42 }	Angular granelly marie. Botholo Book & Species. Frace on		18.国、
_	6 44	15/66	2º Agrilla Asile.	٠,٠	
- 27 +		""	ASCIL.		小目:
	6	15 14	Lisme		【八目▶
- - 4		111		340	
- `	,,		TREA CENTY FRAME TENES CHANGE LES MU CONASE MATE	(original original or	
-		11/54	mg-52,	-	世二
- 2	ג'	9/16	SAME EOB 2800		
- -,	.				
_10					
-					
_					
-					
-					
-				,	
— 15 -					
-					
1					
_					

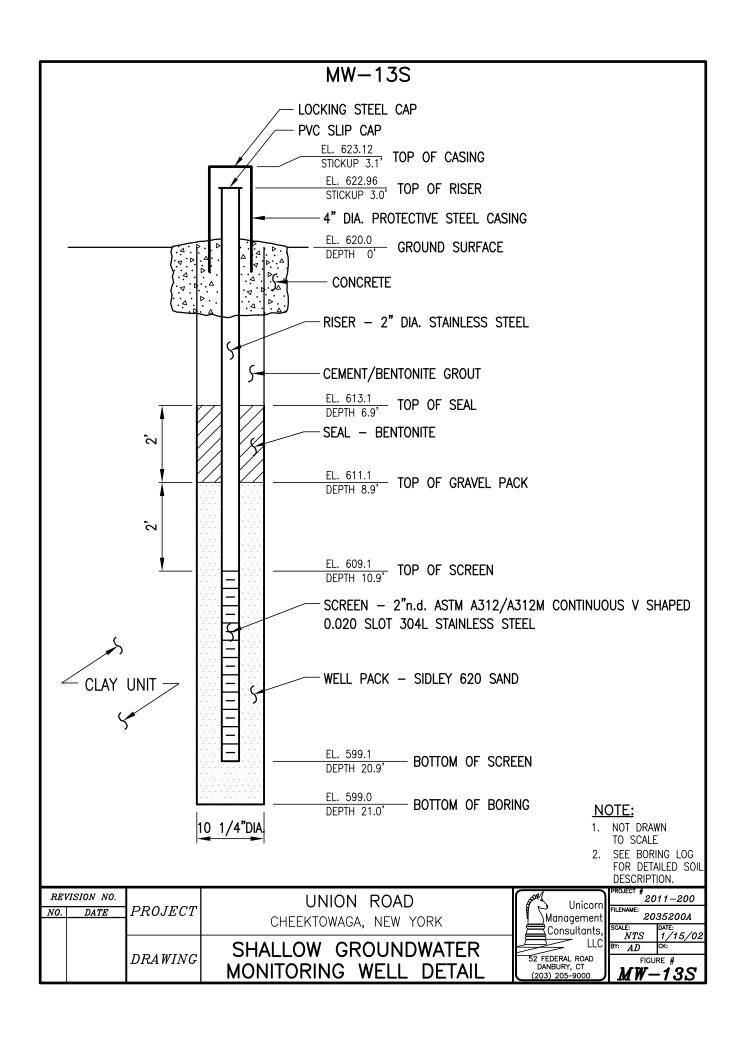

20

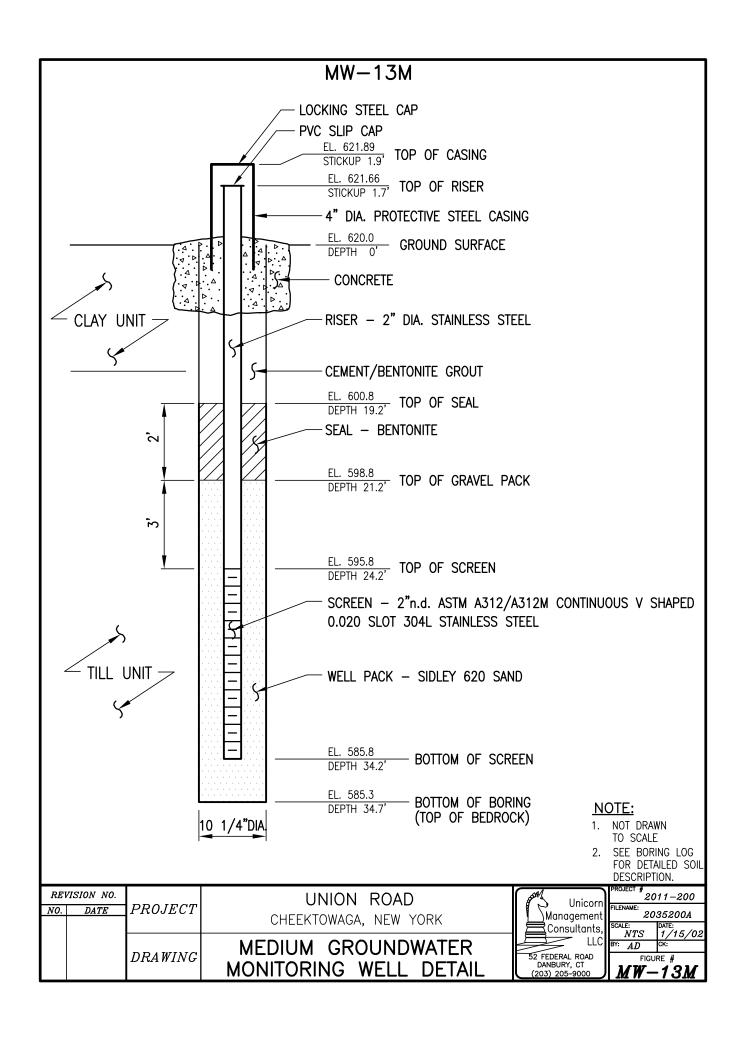

BORING NO. PROJECT NO NAME UNION ROAD 2035-200 LOCATION DRILLING CONTRACTOR/DRILLER MAXIM DRILLING EQUIPMENT. METHOD HSA WELL INSTALLED? CASING MAT./OIA. YES SO NO D STAIRLES STOCK 2" TYPE SLOT MAT.STAINESS LENGTH /C' DIA. 2" SLOT SIZEC-OX ELEVATION OF: GROUND SLAFACE TOP OF WELL CASING TOP & BOTTOM SCREEN GW SLAFACE DATE REMARKS:			
LOG OF TEST BORING		COMST.	
34 14 41 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOG OF TEST EO	REMARKS	WELL COMS
1777 9 - 1 3 6 6 8 6 6 7 7 2 7 2 7 2 7 3 3 3 3 3 3 3 3 3 3 3 3	SAMPLING STARTS 2' BG. CH TWEEL HUNDAND HTS REOIBER CITY 15-18 REOIBER CLAY 15-21 SCHE MCHURE OHO REOIBER CLAY IGHH REOIBER CLAY GETH CLAY CLAY GETH CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES GREY CLAY, LITTLE SHIM, LITTLE RES CREY CLAY, LITTLE SHIM, LITTLE RES	STIFF- DAY STIFF, TOKE HOO MEDSTIFF DAMP MEDSTIFF, DAMP SCAT, WET SCAT, WET SCAT, WET	7204/2

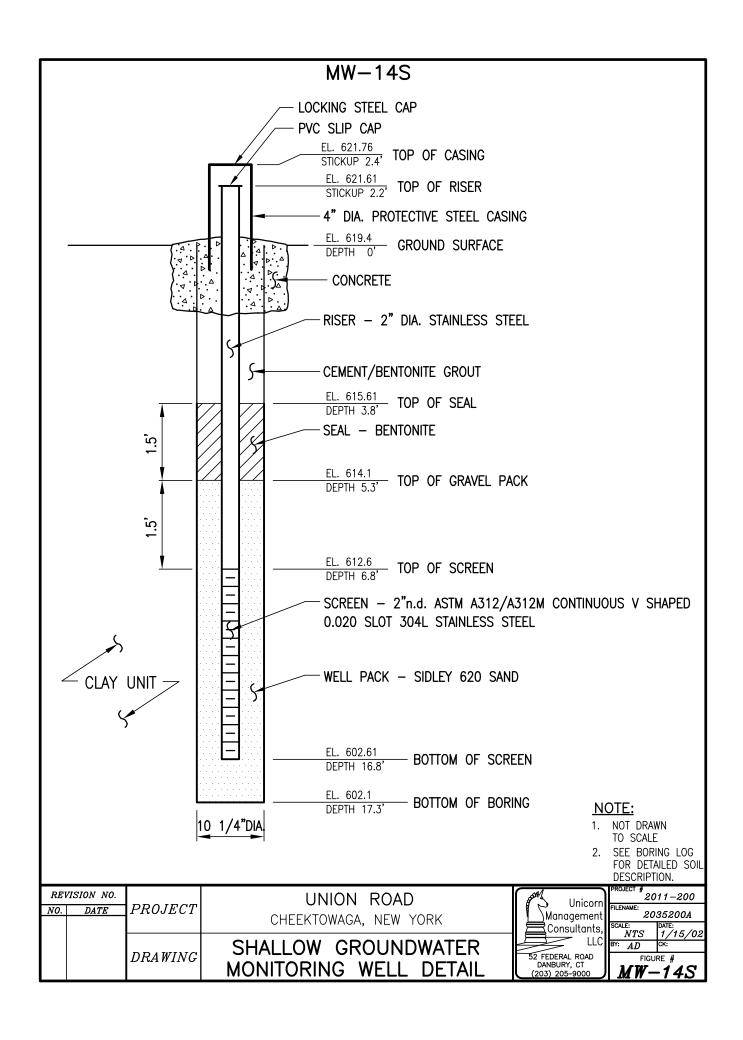


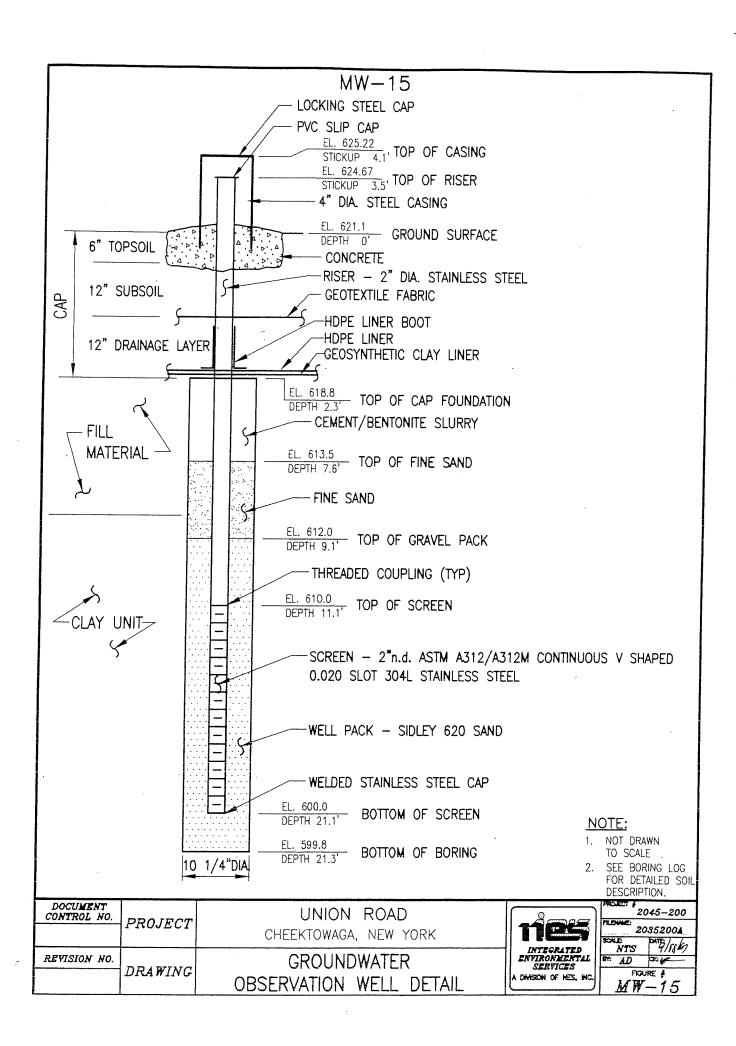


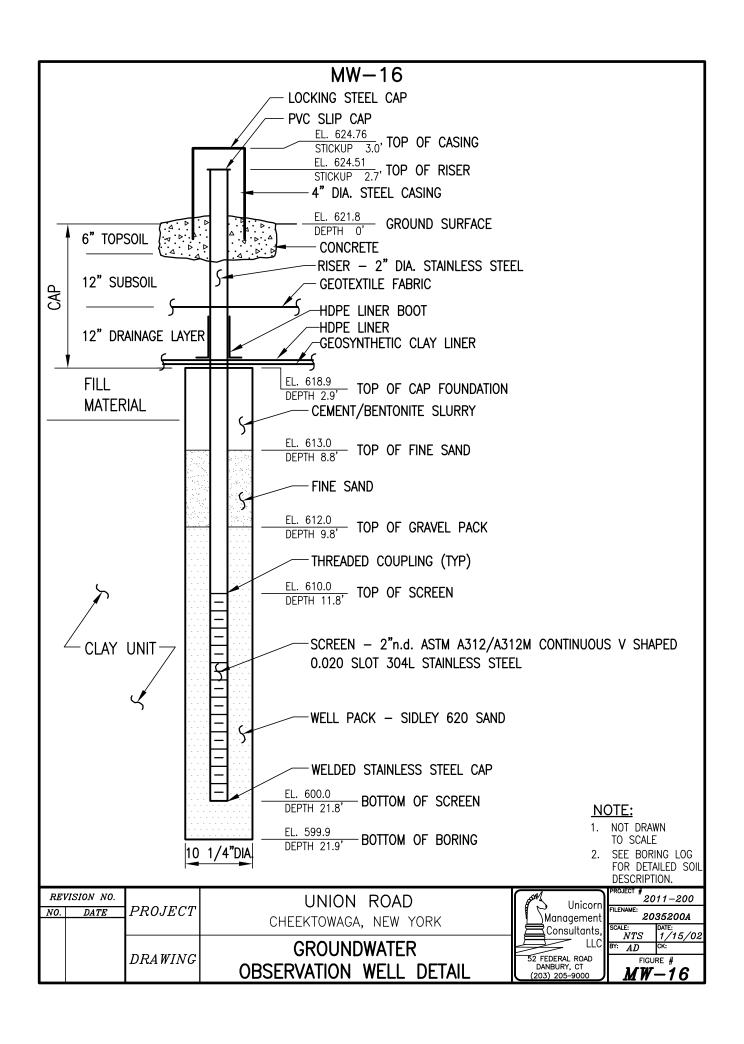


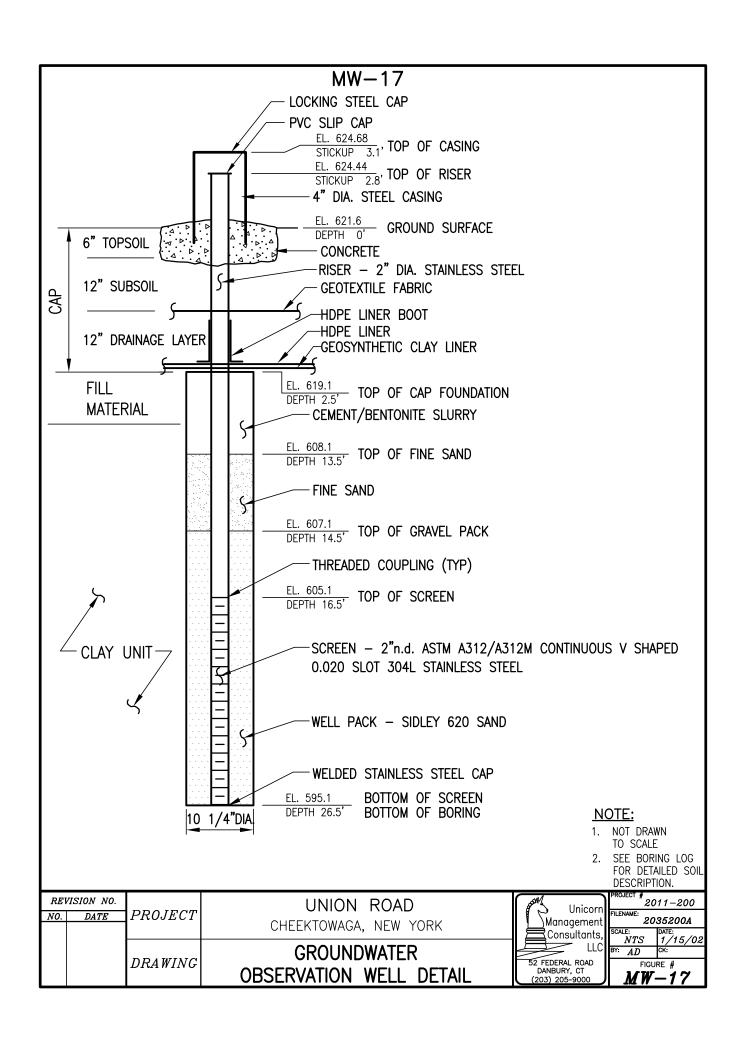


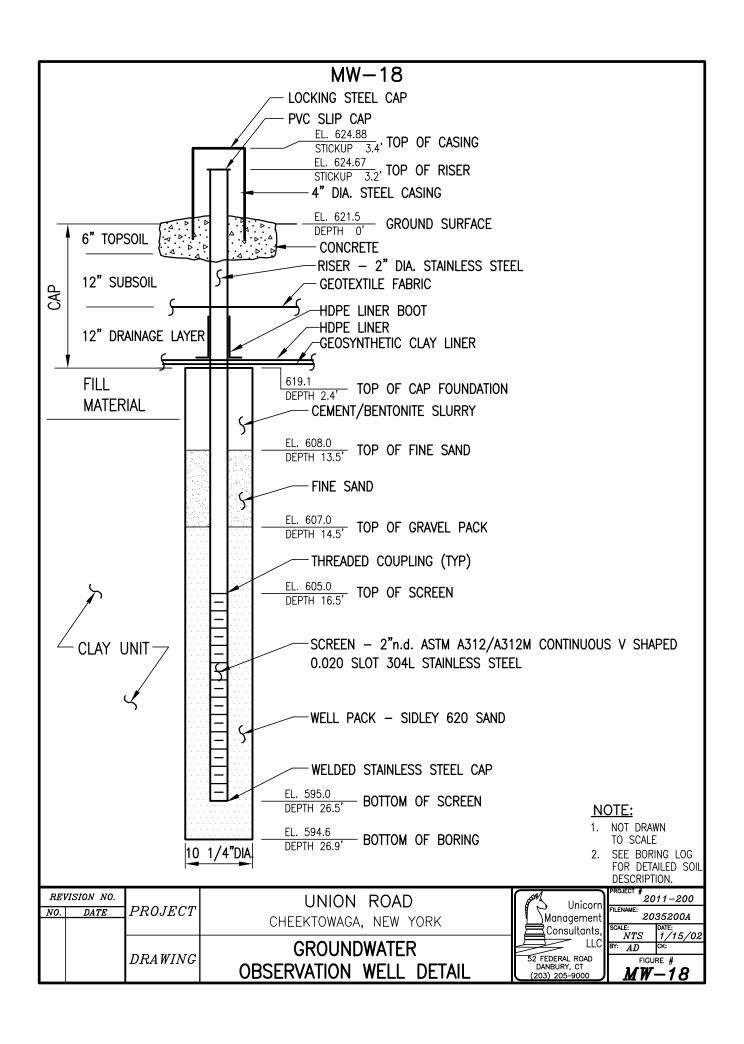


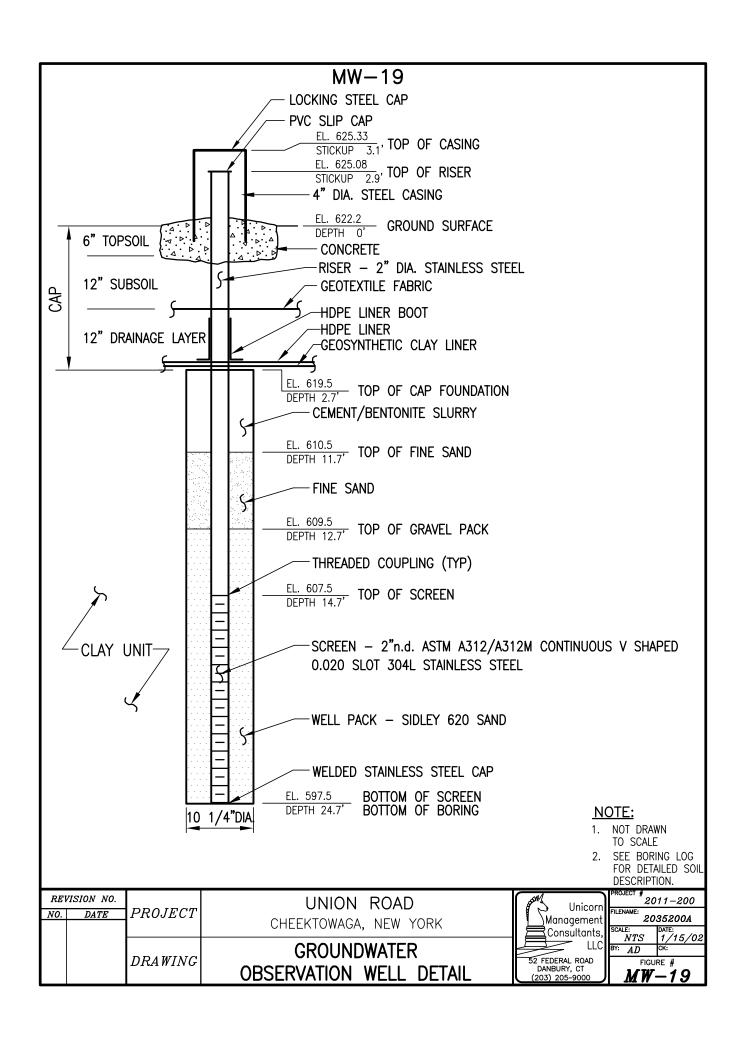


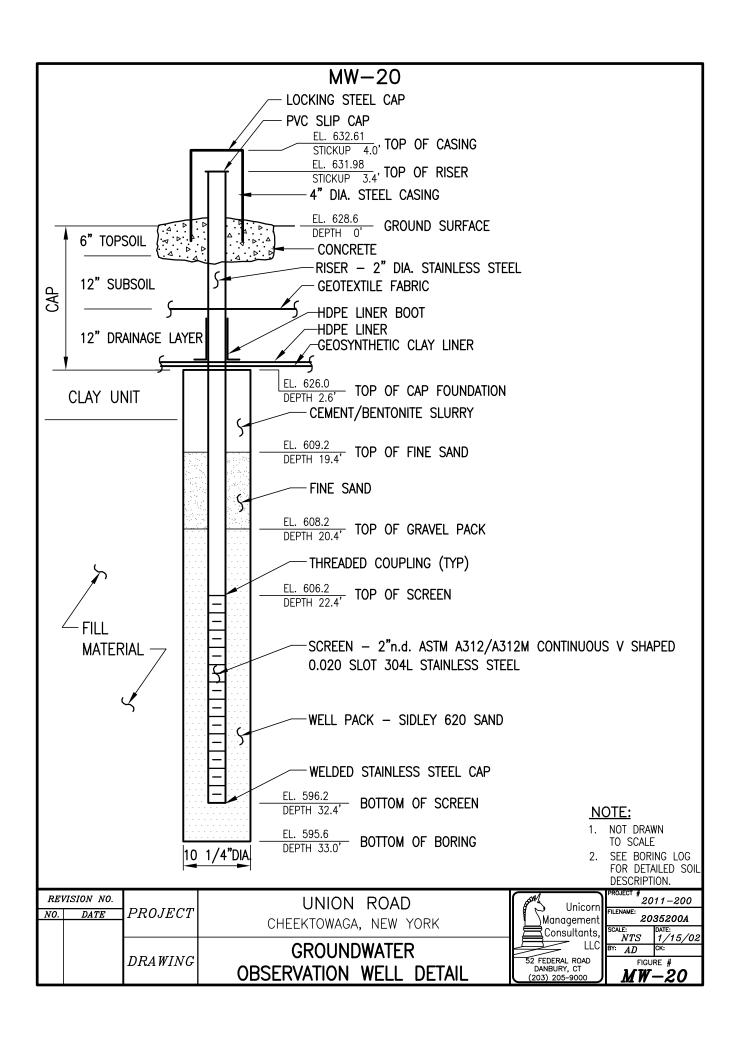


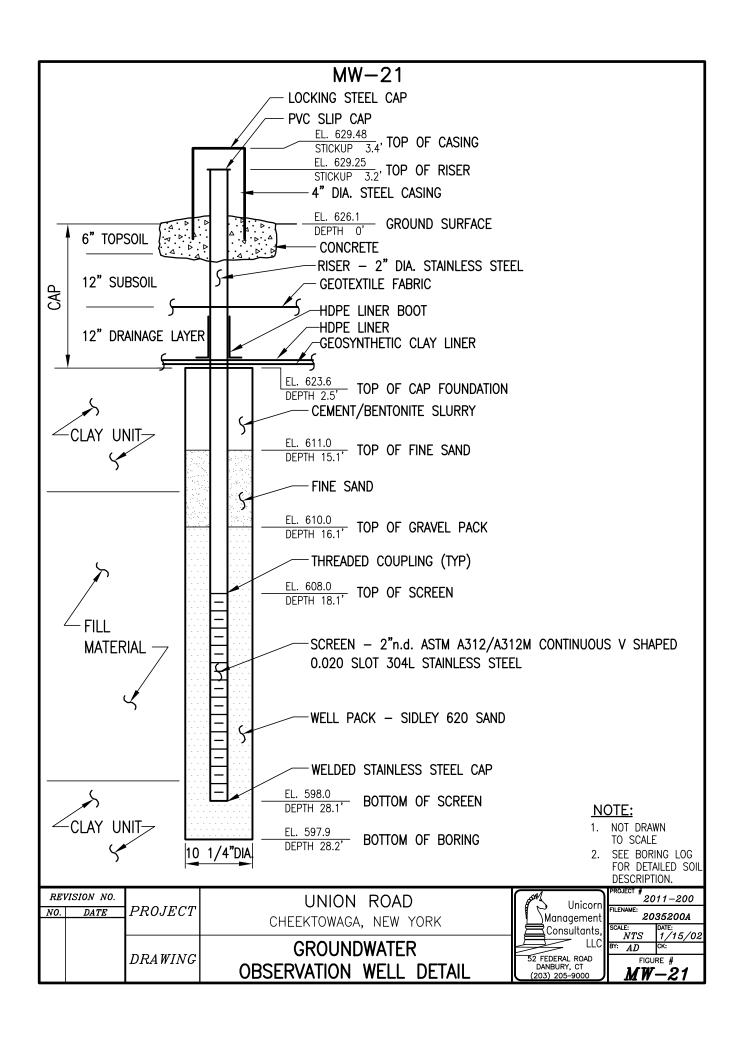


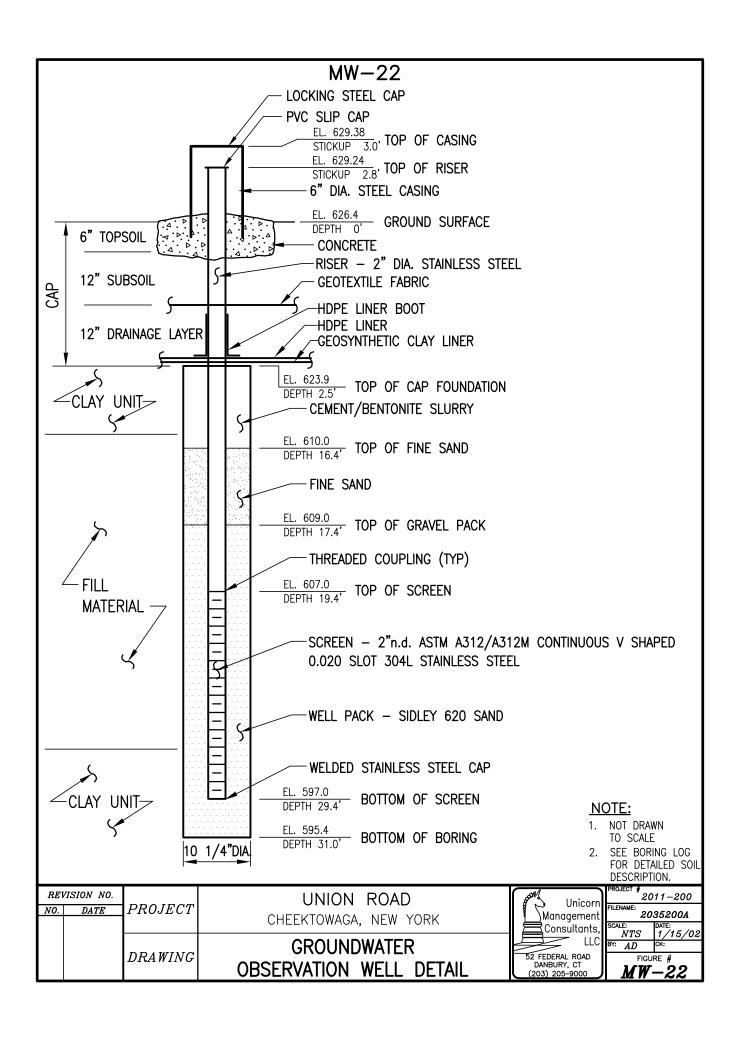


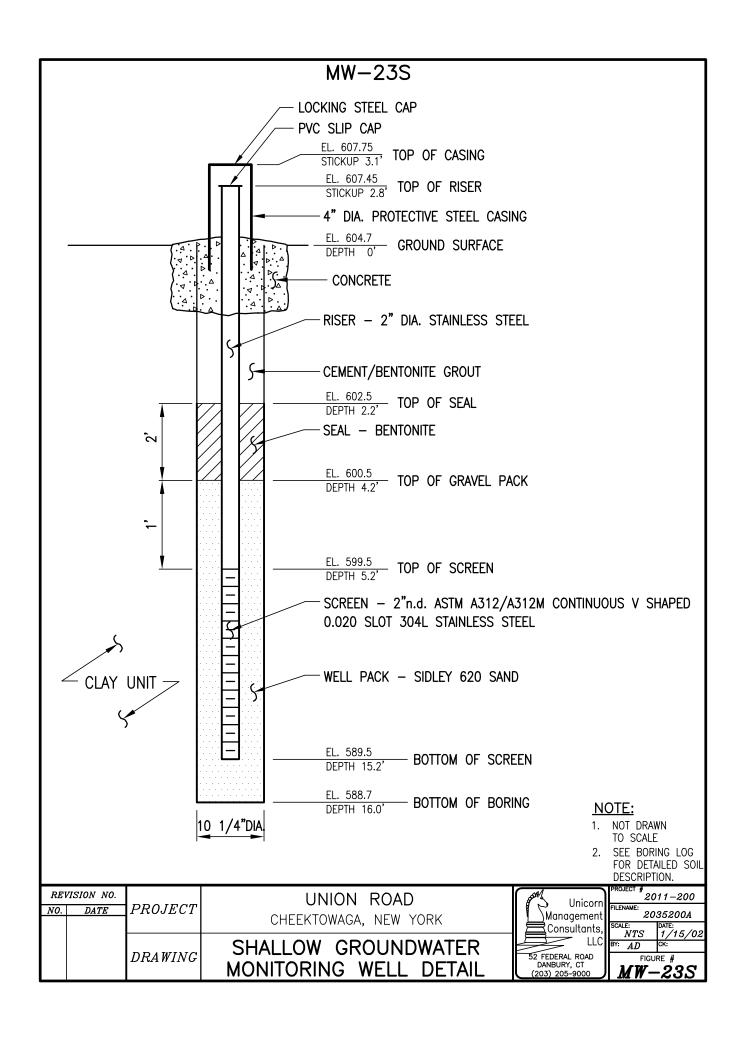


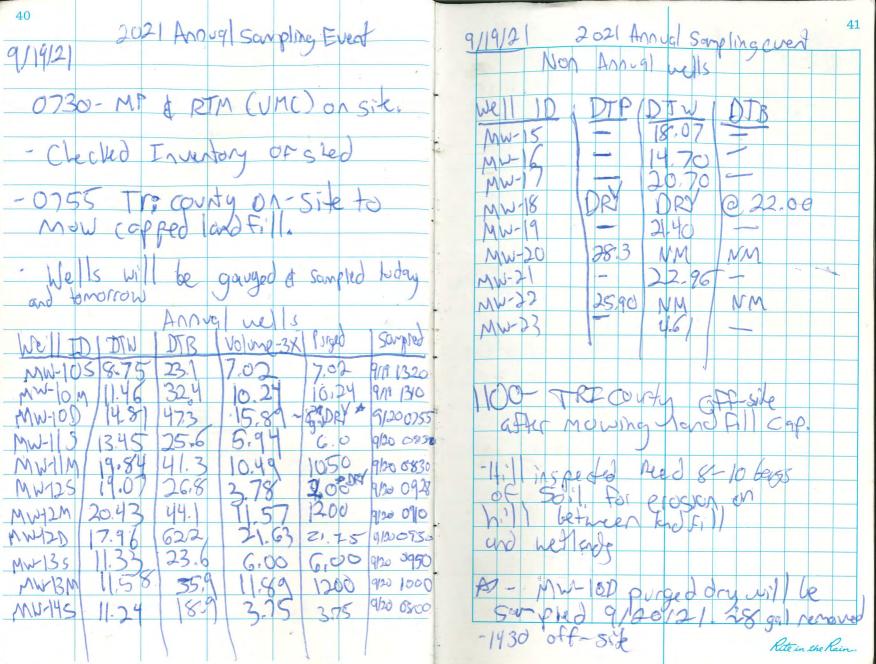












APPENDIX B FIELD NOTES

Annual sampling Event 9/2012 070-RTM + MP on Site tasks: finish anval sampling and drop off samples of Als: Will info on Pg. 40 MW-1 S only has two vats, One broke - After sampling will perform short site

APPENDIX C LABORATORY REPORT

Service Request No:R2109739

Mr. Michael Persico Unicorn Management Consultants 52 Federal Road Suite 2C Danbury, CT 06810

Laboratory Results for: Union Rd

Dear Mr. Persico,

Enclosed are the results of the sample(s) submitted to our laboratory September 20, 2021 For your reference, these analyses have been assigned our service request number **R2109739**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

Mighour tedro

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd Date Received: 09/20/2021

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twelve water samples were received for analysis at ALS Environmental on 09/20/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 09/29/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

Method 8260C, 09/28/2021: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8260C, 09/28/2021: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8260C, 09/28/2021: The upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

	Michael Pedro		
Approved by	<u> </u>	Date	09/30/2021
		•	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-10D	Lab ID: R2109739-003											
Analyte	Results	Flag	MDL	MRL	Units	Method						
Acetone	13			10	ug/L	8260C						

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Unicorn Management Consultants Service Request:R2109739

Project: Union Rd/2011-200

Client:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2109739-001	MW-10S	9/19/2021	1320
R2109739-002	MW-10M	9/19/2021	1310
R2109739-003	MW-10D	9/20/2021	0755
R2109739-004	MW-11S	9/20/2021	0830
R2109739-005	MW-11M	9/20/2021	0830
R2109739-006	MW-12S	9/20/2021	0928
R2109739-007	MW-12M	9/20/2021	0910
R2109739-008	MW-12D	9/20/2021	0930
R2109739-009	MW-13S	9/20/2021	0950
R2109739-010	MW-13M	9/20/2021	1000
R2109739-011	MW-14S	9/20/2021	0800
R2109739-012	TB 092021 A	9/20/2021	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

061175

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____ OF ____

Project Name Union Road	Project Num		-200		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager Michael Persico	Report CC	*	שיינפיחה	مارى باي	PRES	SERVAT	IVE \	Ø			1		\bigcirc	3						·==:	
Company/Address Unicorn Manage	_	sulfents		900				<u> </u>	//	\mathcal{T}	7	7	7		/	7	7	//	/ / '	0. NON 1. HCL	
52 Federal	Roca 5	wite '	20		CONTAINERS	,	/ /				٤٠/	27	/~	/	/ /	/ /	/ /			2. HNO 3. H ₂ S0 4. NaOI	D ₄
Donbury, ct	06810			_	OF CO	ر/	3/3	/ &	/ /	METALS 1076.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							//	/		cetate H
Phone 203-205-9000	M #	ersico Qu	MOM	f.con	NUMBER OF	\$ 5	*\&\\	2 8 E					9	/		/ ,	/ /	/ /		8. Othe	r
Sampler's Signature	Sampler's I	Printed Name VM ()-1	ž	\$2.50 \$2.50 \$3.50		**************************************				0	/ /	<u> </u>	/				R ALTERNA	EMARKS TE DESC	
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPL DATE	ING	MATRIX																	
MW-10 5		9/19/21		<u> </u>	7	X	<u> </u>		ļ		시	X				_					
MW-10 M	ع	9/9/21		<u> </u>	7	3	7	-	.		4	시				_					
WM-10 D				<u> PO</u>	7		/ . -		- 	-	쑀	4				_	_	7	·		
MW-11.5		9120/21	U = -	<u>AO</u>	<u>(a</u>	+	* -	-	-		入	7				-	+	ユ	1/0/	A-S.	
- M - 1 M		9/2012	0830	T XX	7		\		- 	\vdash	۲	\			-	_	-				
MW-125		9/20/21	0928	2 G_	3	14	<u> </u>		+		+	*				-	-				
WW-12W		7-01-1-	0910	<u> </u>	Z		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		+	\vdash	7 	4		- []	-	-					
- Q - 13- D		1/20/21	0930	 	1	*	7		+		×	广		- 1		-					
1 MW-135		1/20/21		120_	4	3	꿁 -	_	-	\vdash	\leftarrow	3		<u> </u>	+						
Mw-13.M-		9/20/21	1000	* ACO	4	*	7	-		\vdash	<u> 4.</u>	-}-		- !	-			-			
MW-145		9120124	574001	1 4 62		<u> }- </u>	T	_	_1		$\mathbf{\lambda}$	┲		- 11							
SPECIAL INSTRUCTIONS/COMMENTS Metals P(Senic &)	Lacd Cdi	s solved) # Please	e fil	kr°			IAROUN RUSH (SUI				1	REPO	j	QUIREN	MENTS		IN	NVOICE I	NFORMA	ATION
							1	day	-5 qay —	3 day					Summar MSD as r			PO 1 20	211-2	00	
BC. Mowr	ey @ UNG	iorn maj	r.com				文	i day Standerd (_5 day 10 business	ı daya-No S	iurd arge	,	_ III. Resu	its + OÇ	and Cali			BILL TO:	Salal	mill	e(
	J .	O					REQUES	STED REF	PORT DA	TE			Summa _ IV. Data		on Repor	t with Ra	1				msdrcon
See QAPP											•						}				
STATE WHERE SAMPLES WERE COL	LECTED NY							_					Edate	<u>' </u>	_Yes .	No	· .				
RELINOUISHED BY	RECEIVE	O BY	RELIT	NOUISHED	8Y			REC	EIVED B	Y			RE	UPOU	ISHED I	BY			RECE	IVED BY	
Signature /		am	Signature				Signature					Signat	ture					Signature		£	
Printed Name Page Monday	Gregor D. E	merlan	Printed Name				Printed Na	mė				1	d Name	R	210	097	39		5	7	
Firm VMC	Firm , J.		Firm				Firm					Firm		Uni	COTH ME	VEĞema	TIL COITE		a 1111 8 181 1 (111	<u> </u>
Date/Time G/20/2 1216	Date/Time(<i>[]</i>	PUR	Date/Time				Date/Time					Date/	Time	_! [III	<u> </u>
Distribution: White - Lab Copy; Yellow - Return	to Originator				Pag	e 7 of	114							U	(11 (11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	6 (16 1) (1	911 6811			באריקטיה	Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 061176 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 2

Project Name UNION RC Rd	Project Nun	2011-	200		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager, & Persico	Report COS			4.0M	PRES	SERVA	nve															
Company/Address UNICOM Manage	١,	sultants		,,,	န္		7	7	$\overline{}$	$\overline{}$	7	7	_/	7	7	17	7			\mathcal{T}	Presen 0. NO 1. HC	
\ \ \ \	and Sui	te 20			NUMBER OF CONTAINERS							/,	,/,			/				//	/ 2. HN 3. H ₂ 9	O3 SO4
Dachara	7 068	510			ğ	/	/ స్ట్ర/	//	/ ۾	/ /	/ /	\$ \$	The Source of th	/ /	/ /	/	/ /	/ ,	/ /	/ /	6. Me	Acetate OH
Phone # 202 205 190 0	I Email	er 5100@	יחעיגט(א	mad ma	BERO	S. S. S. D.	10 / W. S. W	\$ \ \$ \ \$	#53708782 889 COE	3/	METALS TO	S S S				/					7. Nai 8. Oth	ISO ₄ er
Sampler's Signature	Samplers	Printed Name		Jizor	Ž		}\ <i>\</i> {\}	\$\&\ \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			¥ E. F.	E SE SE	/		Ι.	/	/			/	REMARK	
- INC PARA	FOR OFFICE USE	UM (LÍNG	1			<u> </u>			 		, @				1			$\overline{}$	/ ALI	ERNATE DES	CHIPTION
CLIENT SAMPLE ID	ONLY LAB ID	9/13/21	/ A O	MATRIX	R	X																
TB 092021 A		<u> </u>	LAB	pa	-2	_				<u> </u>				-		1						
				-												Ī						
																1	ļ	ļ	ļ			
·				-	ļ	ļ										 		-				
						1			<u> </u>							-						
<u> </u>					ļ	<u> </u>				-						1						
																		<u> </u>				
													<u> </u>	<u> </u>		1_			<u> </u>			
SPECIAL INSTRUCTIONS/COMMENTS Metals						TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE RUSH (SURCHARGES APPLY) 1. Results Only						ICE INFORM	ATION									
	<u> </u>	ı				Il Gecuite A CC Summarine																
& CC: Wone	4 (0) UNIC	comat,	COM			1 day2 day3 day							<u>-200</u>									
	J	Ų					1	Slan	Or) braba	business	days-No	Surcharg	e)	III. Re Summ	sutts + O raries	C and C	Calibratk	on	1	عملعا	miller	
	•						REO	UESTE	D REPO	ORT DA	TE		_	-	In Validat	ion Rep	oort with	Row Da	ىت م	nillu	@ unic	<u>ommstren</u>
C 0400 (7							<u>├</u>															·
STATE WHERE SAMPLES WERE COLLECTED							\vdash		_				1	Ede	տ <u>∀</u>	Yes		_No				i
RELINQUISHED BY RECEIVED BY RELINQUISHED							1		RECE	IVED 8	Y		1	F	RELINO	JISHE	D BY				RECEIVED B	Ÿ
Street A Company							Signat	1170	•••				Sign	aturo	_	+	•		Sign	ature		
Signature Signature Signature							<u> </u>	d Name				_		ed Name		1				tod Nema		
Printed Name Quan Maury Printed Name Printed Name							Firm	- 1141110					Firm			R2109739 Unicorn Management Consultants						}
Pate/Time 9/20/21 12/6	Date/Time9/20/91	1216	Date/Time				Date/1	Time						/Time		Unico	orn Mar o'Rd	rageme	nt Con		AND CES 1991	1
Distribution: White - Lab Copy; Yellow - Return		צוימו		-	Doo	re 8 o	Ь		•						<u></u>						AND AND AND	Jup

5

Cooler Receipt and Preservation C

Projec	t/Clie	nt Unicor	n Manag	ement	-	Fol	der Nun	nber	~-				ree mile (Ell	'''' <i>)</i>			
Cooler	receive	ed on 9/20	121	by: //		1 01		RIER:	ALS	UPS	FEDEX	· 〈 VEL	OCITY	CLIENT	\triangleright		
		stody seals on	outside of co	oler?		Y (N) 5a	Perch	lorate s	amples	have rec	uired h	eadspace	? Y	NC	NA	}
2 C u	ıstody	papers proper	ly completed	(ink, sign	ed)?	(Ý) Ň	5b	Did√	OA vial	ج Alk,	or Sulfide	e have s	ig* bubb	les? Y	\supset	NA	*
3 Di	d all bo	ottles arrive in	good conditi	on (unbro	ken)?	(Y) N	6	Where	did the	bottles	originat	e?	ALS/R	0000	LIEN	r_	1
4 Cii	rcle	Vet Ice Dry	Ice Gel pac	ks pre	sent?	N	7	Soil V	ОА гес	eived a	s: Bu	ılk E	ncore	5035set	NA		
3. Temp	peratur	e Readings	Date: 9/	20/21	_Time	: 12:19	<u> </u>	ID:	IR#7(IR#11	\geq	From	Temp	Blank S	Sample	Bottl	e
Obser	ved Te	mp (°C)	1.9		23												
	n 0-6°0		1 ()	N	Y	(N)		N	Y	N		N		N		N	
If <0°	C, wer	e samples froz	en? Y	N	Y	N	Y	N	Y	N	<u>Y</u>	N	Y	N	<u>Y</u>	N_	
If o	ut of T	emperature,	note packing	g/ice cond		-		ce melt		•	acked (d		-	Sar	ne Day	Rule	,
&C	lient A	pproval to R	un Samples:		_ Stai	nding A	pproval	Client	aware a	at drop-	off Cl	ient not	ified by:				
All sa	mnles	held in storag	e location:	R-01	n	by	12 or	1 4/20	at]	7:30		-	<u> </u>				٦
	-	s placed in st				by —	or	- / - /	_ at		within 4	B hours	of sampl	ling? Y	' N		
	•																
Coo	lor Dr	akdown/Prese	restion Chec	v**∗ Dat	, ζ	1/221	ไลา	Time:	07:1	O .	مــ by:	913					
9.		vere all bottle							0/11		ES 2	NO					
10.		id all bottle la						.,.		8	ESS	NO					
11.		Vere correct co								₫	ES	NO			_		
12.		Vere 5035 vial								Y	ES	NO		N	À		
13.		ir Samples: C					_	Canis	ters Pres	ssurize	i To	dlar® I	Bags Infla	ated (N/	<u>A)</u>		
pН		Lot of test	Reagent	Prese	rved?	Lot R	Received		Exp	Samp	le ID	Vol.	1	Added		inal	
		paper		Yes	No					Adjus	ted	Added	1		p	H	_
≥12			NaOH						<u> </u>								
≤2			HNO₃			١,			1								_
≤2			H₂SO₄			2159	47		66/22								_
<4			NaHSO₄		<u> </u>												_
5-9		. <u></u>	For 608pest				lotify for .	-									4
	idual		For CN,			, -	ontact PM		1 1								ı
Chl	orine		Phenol, 625				O3 (625, 69 Iscorbic (p										
(-)			608pest, 52	2		1011,	Бестого (р										\dashv
L			Na ₂ S ₂ O ₃	_	ļ					++1/0		1 31-44-3		fore analys		-	┙
			ZnAcetate	-	-	ļ	l ia D							vith chemica		vatives	
			HCI	**	**	<u> Wo </u>	Loting	•)			cked (not j				<u> </u>		
		0/	1271-14	7727	7/	2721		16 al	1564								
Bot	tle lot	numbers: 90	1501-V12	7732	/ - U	a I No	1 <u>, WU7</u>	V, a	17011							_	
Exp	lain al	l Discrepancio	es/ Other Cor	nments:			•	/									
\divideontimes	11/1	Blank: 2	Pot3 Wa	115													
	Μ	W-13511	153 160	15													
	1-1	VV 1////	0,5														
						•											
													1	HPROD	BULK		
															 	-	
														HTR	FLDT		
							-							SUB	HGFB	,	

03/02/2021

*significant air bubbles: VOA > 5-6 mm; WC >1 in. diameter

LL3541

Labels secondary reviewed by:

PC Secondary Review:

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF routine rev 6.doc

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations¹

NELAP States
Florida ID # E87674
New Hampshire ID # 2941
New York ID # 10145
Pennsylvania ID# 68-786
Virginia #460167

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 Service Request: R2109739

Sample Name: MW-10S

Lab Code: R2109739-001 **Date Collected:** 09/19/21 **Date Received:** 09/20/21

JMISIUREWICZ

Sample Matrix: Water

8270D

Analyzed By Extracted/Digested By Analysis Method

1664B **STALARICO** 6010C **BDIAMOND KMCLAEN**

8260C **KRUEST**

8270D **KSERCU JMISIUREWICZ**

Sample Name: MW-10M Date Collected: 09/19/21

Lab Code: R2109739-002 **Date Received:** 09/20/21 Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method

1664B **STALARICO** 6010C **BDIAMOND KMCLAEN**

8260C **KRUEST**

8270D **KSERCU JMISIUREWICZ**

Sample Name: MW-10D Date Collected: 09/20/21 Lab Code: R2109739-003

Date Received: 09/20/21 **Sample Matrix:** Water

Analyzed By Analysis Method Extracted/Digested By

1664B **STALARICO** 6010C **BDIAMOND KMCLAEN**

8260C **KRUEST KSERCU**

Sample Name: MW-11S Date Collected: 09/20/21

R2109739-004 Lab Code: **Date Received:** 09/20/21 Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method 1664B **STALARICO**

Printed 9/30/2021 8:08:57 PM Superset Reference:21-0000604749 rev 00

Analyst Summary report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Service Request: R2109739

Sample Name: MW-11S

Lab Code: R2109739-004

Sample Matrix: Water

Date Collected: 09/20/21 **Date Received:** 09/20/21

Analysis Method Extracted/Digested By Analyzed By

6010C BDIAMOND KMCLAEN 8260C KRUEST

8270D KSERCU JMISIUREWICZ

 Sample Name:
 MW-11M
 Date Collected: 09/20/21

 Lab Code:
 R2109739-005
 Date Received: 09/20/21

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1664BSTALARICO6010CBDIAMONDKMCLAEN8260CKRUEST

8270D KSERCU JMISIUREWICZ

Sample Name: MW-12S Date Collected: 09/20/21

Lab Code: R2109739-006 Date Received: 09/20/21
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1664B STALARICO 6010C BDIAMOND KMCLAEN

8260C KRUEST

8270D KSERCU JMISIUREWICZ

Sample Name: MW-12M Date Collected: 09/20/21

Lab Code: R2109739-007 Date Received: 09/20/21 Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
1664B STALARICO

1664B STALARICO 6010C BDIAMOND KMCLAEN

Printed 9/30/2021 8:08:57 PM Superset Reference:21-0000604749 rev 00

Analyst Summary report

Client: Unicorn Management Consultants

MW-12M

Water

Project: Union Rd/2011-200

Date Collected: 09/20/21

Service Request: R2109739

Lab Code: R2109739-007 **Date Received:** 09/20/21

Sample Matrix: Water

Sample Name:

Sample Matrix:

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

8270D KSERCU JMISIUREWICZ

Sample Name: MW-12D Date Collected: 09/20/21

Lab Code: R2109739-008 **Date Received:** 09/20/21

·

Analysis Method Extracted/Digested By Analyzed By

1664B STALARICO

6010C BDIAMOND KMCLAEN 8260C KRUEST

8270D KSERCU JMISIUREWICZ

Sample Name: MW-13S Date Collected: 09/20/21

Lab Code: R2109739-009 **Date Received:** 09/20/21 **Sample Matrix:** Water

Analysis Method Extracted/Digested By Analyzed By

1664B STALARICO 6010C BDIAMOND KMCLAEN

8260C KRUEST

8270D KSERCU JMISIUREWICZ

 Sample Name:
 MW-13M
 Date Collected: 09/20/21

 Lab Code:
 R2109739-010
 Date Received: 09/20/21

Lab Code: R2109739-010 Date Received: 09/20/21 Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

1664B STALARICO
6010C BDIAMOND KMCLAEN
8260C KRUEST

Printed 9/30/2021 8:08:57 PM Superset Reference:21-0000604749 rev 00

Analyst Summary report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Service Request: R2109739

Sample Name: MW-13M Lab Code: R2109739-010

Sample Matrix: Water

Date Collected: 09/20/21 **Date Received:** 09/20/21

Analysis Method

8270D

Sample Name: MW-14S

Lab Code: R2109739-011

Sample Matrix: Water

Extracted/Digested By Analyzed By

KSERCU JMISIUREWICZ

Date Collected: 09/20/21

Date Received: 09/20/21

Analyzed By

Analysis Method

Analysis Method 1664B 6010C 8260C 8270D

> TB 092021 A R2109739-012

Sample Matrix: Water

Extracted/Digested By

STALARICO
BDIAMOND KMCLAEN
KRUEST

KSERCU JMISIUREWICZ

Date Collected: 09/20/21 **Date Received:** 09/20/21

Analysis Method

Sample Name:

Lab Code:

8260C

Extracted/Digested By

Analyzed By

KRUEST

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed, method is the same as the analytic reference.	

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/19/21 13:20 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-10S Units: ug/L Lab Code: R2109739-001 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 03:27	
Benzene	ND U	5.0	1	09/28/21 03:27	
Bromodichloromethane	ND U	5.0	1	09/28/21 03:27	
Bromoform	ND U	5.0	1	09/28/21 03:27	
Bromomethane	ND U	5.0	1	09/28/21 03:27	
2-Butanone (MEK)	ND U	10	1	09/28/21 03:27	
Carbon Disulfide	ND U	10	1	09/28/21 03:27	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 03:27	
Chlorobenzene	ND U	5.0	1	09/28/21 03:27	
Chloroethane	ND U	5.0	1	09/28/21 03:27	
Chloroform	ND U	5.0	1	09/28/21 03:27	
Chloromethane	ND U	5.0	1	09/28/21 03:27	
Dibromochloromethane	ND U	5.0	1	09/28/21 03:27	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 03:27	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 03:27	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 03:27	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:27	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:27	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 03:27	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:27	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:27	
Ethylbenzene	ND U	5.0	1	09/28/21 03:27	
2-Hexanone	ND U	10	1	09/28/21 03:27	
Methylene Chloride	ND U	5.0	1	09/28/21 03:27	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 03:27	
Styrene	ND U	5.0	1	09/28/21 03:27	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 03:27	
Tetrachloroethene	ND U	5.0	1	09/28/21 03:27	
Toluene	ND U	5.0	1	09/28/21 03:27	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 03:27	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 03:27	
Trichloroethene	ND U	5.0	1	09/28/21 03:27	
Vinyl Chloride	ND U	5.0	1	09/28/21 03:27	
o-Xylene	ND U	5.0	1	09/28/21 03:27	
m,p-Xylenes	ND U	5.0	1	09/28/21 03:27	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:20

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10S
 Units: ug/L

 Lab Code:
 R2109739-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/28/21 03:27	
Toluene-d8	107	87 - 121	09/28/21 03:27	
Dibromofluoromethane	104	80 - 116	09/28/21 03:27	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10M
 Units: ug/L

 Lab Code:
 R2109739-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 03:48	
Benzene	ND U	5.0	1	09/28/21 03:48	
Bromodichloromethane	ND U	5.0	1	09/28/21 03:48	
Bromoform	ND U	5.0	1	09/28/21 03:48	
Bromomethane	ND U	5.0	1	09/28/21 03:48	
2-Butanone (MEK)	ND U	10	1	09/28/21 03:48	
Carbon Disulfide	ND U	10	1	09/28/21 03:48	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 03:48	
Chlorobenzene	ND U	5.0	1	09/28/21 03:48	
Chloroethane	ND U	5.0	1	09/28/21 03:48	
Chloroform	ND U	5.0	1	09/28/21 03:48	
Chloromethane	ND U	5.0	1	09/28/21 03:48	
Dibromochloromethane	ND U	5.0	1	09/28/21 03:48	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 03:48	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 03:48	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 03:48	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:48	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:48	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 03:48	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:48	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:48	
Ethylbenzene	ND U	5.0	1	09/28/21 03:48	
2-Hexanone	ND U	10	1	09/28/21 03:48	
Methylene Chloride	ND U	5.0	1	09/28/21 03:48	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 03:48	
Styrene	ND U	5.0	1	09/28/21 03:48	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 03:48	
Tetrachloroethene	ND U	5.0	1	09/28/21 03:48	
Toluene	ND U	5.0	1	09/28/21 03:48	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 03:48	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 03:48	
Trichloroethene	ND U	5.0	1	09/28/21 03:48	
Vinyl Chloride	ND U	5.0	1	09/28/21 03:48	
o-Xylene	ND U	5.0	1	09/28/21 03:48	
m,p-Xylenes	ND U	5.0	1	09/28/21 03:48	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10M
 Units: ug/L

 Lab Code:
 R2109739-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/28/21 03:48	
Toluene-d8	104	87 - 121	09/28/21 03:48	
Dibromofluoromethane	103	80 - 116	09/28/21 03:48	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 07:55

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10D
 Units: ug/L

 Lab Code:
 R2109739-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	13	10	1	09/28/21 04:10	
Benzene	ND U	5.0	1	09/28/21 04:10	
Bromodichloromethane	ND U	5.0	1	09/28/21 04:10	
Bromoform	ND U	5.0	1	09/28/21 04:10	
Bromomethane	ND U	5.0	1	09/28/21 04:10	
2-Butanone (MEK)	ND U	10	1	09/28/21 04:10	
Carbon Disulfide	ND U	10	1	09/28/21 04:10	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 04:10	
Chlorobenzene	ND U	5.0	1	09/28/21 04:10	
Chloroethane	ND U	5.0	1	09/28/21 04:10	
Chloroform	ND U	5.0	1	09/28/21 04:10	
Chloromethane	ND U	5.0	1	09/28/21 04:10	
Dibromochloromethane	ND U	5.0	1	09/28/21 04:10	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 04:10	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 04:10	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 04:10	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:10	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:10	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 04:10	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:10	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:10	
Ethylbenzene	ND U	5.0	1	09/28/21 04:10	
2-Hexanone	ND U	10	1	09/28/21 04:10	
Methylene Chloride	ND U	5.0	1	09/28/21 04:10	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 04:10	
Styrene	ND U	5.0	1	09/28/21 04:10	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 04:10	
Tetrachloroethene	ND U	5.0	1	09/28/21 04:10	
Toluene	ND U	5.0	1	09/28/21 04:10	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 04:10	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 04:10	
Trichloroethene	ND U	5.0	1	09/28/21 04:10	
Vinyl Chloride	ND U	5.0	1	09/28/21 04:10	
o-Xylene	ND U	5.0	1	09/28/21 04:10	
m,p-Xylenes	ND U	5.0	1	09/28/21 04:10	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 07:55

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10D
 Units: ug/L

 Lab Code:
 R2109739-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/28/21 04:10	
Toluene-d8	106	87 - 121	09/28/21 04:10	
Dibromofluoromethane	100	80 - 116	09/28/21 04:10	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-11S
 Units: ug/L

 Lab Code:
 R2109739-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 04:32	
Benzene	ND U	5.0	1	09/28/21 04:32	
Bromodichloromethane	ND U	5.0	1	09/28/21 04:32	
Bromoform	ND U	5.0	1	09/28/21 04:32	
Bromomethane	ND U	5.0	1	09/28/21 04:32	
2-Butanone (MEK)	ND U	10	1	09/28/21 04:32	
Carbon Disulfide	ND U	10	1	09/28/21 04:32	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 04:32	
Chlorobenzene	ND U	5.0	1	09/28/21 04:32	
Chloroethane	ND U	5.0	1	09/28/21 04:32	
Chloroform	ND U	5.0	1	09/28/21 04:32	
Chloromethane	ND U	5.0	1	09/28/21 04:32	
Dibromochloromethane	ND U	5.0	1	09/28/21 04:32	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 04:32	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 04:32	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 04:32	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:32	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:32	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 04:32	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:32	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:32	
Ethylbenzene	ND U	5.0	1	09/28/21 04:32	
2-Hexanone	ND U	10	1	09/28/21 04:32	
Methylene Chloride	ND U	5.0	1	09/28/21 04:32	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 04:32	
Styrene	ND U	5.0	1	09/28/21 04:32	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 04:32	
Tetrachloroethene	ND U	5.0	1	09/28/21 04:32	
Toluene	ND U	5.0	1	09/28/21 04:32	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 04:32	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 04:32	
Trichloroethene	ND U	5.0	1	09/28/21 04:32	
Vinyl Chloride	ND U	5.0	1	09/28/21 04:32	
o-Xylene	ND U	5.0	1	09/28/21 04:32	
m,p-Xylenes	ND U	5.0	1	09/28/21 04:32	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-11S
 Units: ug/L

 Lab Code:
 R2109739-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/28/21 04:32	
Toluene-d8	107	87 - 121	09/28/21 04:32	
Dibromofluoromethane	107	80 - 116	09/28/21 04:32	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-11M
 Units: ug/L

 Lab Code:
 R2109739-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 04:54	
Benzene	ND U	5.0	1	09/28/21 04:54	
Bromodichloromethane	ND U	5.0	1	09/28/21 04:54	
Bromoform	ND U	5.0	1	09/28/21 04:54	
Bromomethane	ND U	5.0	1	09/28/21 04:54	
2-Butanone (MEK)	ND U	10	1	09/28/21 04:54	
Carbon Disulfide	ND U	10	1	09/28/21 04:54	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 04:54	
Chlorobenzene	ND U	5.0	1	09/28/21 04:54	
Chloroethane	ND U	5.0	1	09/28/21 04:54	
Chloroform	ND U	5.0	1	09/28/21 04:54	
Chloromethane	ND U	5.0	1	09/28/21 04:54	
Dibromochloromethane	ND U	5.0	1	09/28/21 04:54	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 04:54	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 04:54	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 04:54	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:54	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 04:54	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 04:54	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:54	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 04:54	
Ethylbenzene	ND U	5.0	1	09/28/21 04:54	
2-Hexanone	ND U	10	1	09/28/21 04:54	
Methylene Chloride	ND U	5.0	1	09/28/21 04:54	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 04:54	
Styrene	ND U	5.0	1	09/28/21 04:54	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 04:54	
Tetrachloroethene	ND U	5.0	1	09/28/21 04:54	
Toluene	ND U	5.0	1	09/28/21 04:54	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 04:54	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 04:54	
Trichloroethene	ND U	5.0	1	09/28/21 04:54	
Vinyl Chloride	ND U	5.0	1	09/28/21 04:54	
o-Xylene	ND U	5.0	1	09/28/21 04:54	
m,p-Xylenes	ND U	5.0	1	09/28/21 04:54	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-11M
 Units: ug/L

 Lab Code:
 R2109739-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/28/21 04:54	
Toluene-d8	107	87 - 121	09/28/21 04:54	
Dibromofluoromethane	103	80 - 116	09/28/21 04:54	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:28

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12S
 Units: ug/L

 Lab Code:
 R2109739-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 05:16	
Benzene	ND U	5.0	1	09/28/21 05:16	
Bromodichloromethane	ND U	5.0	1	09/28/21 05:16	
Bromoform	ND U	5.0	1	09/28/21 05:16	
Bromomethane	ND U	5.0	1	09/28/21 05:16	
2-Butanone (MEK)	ND U	10	1	09/28/21 05:16	
Carbon Disulfide	ND U	10	1	09/28/21 05:16	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 05:16	
Chlorobenzene	ND U	5.0	1	09/28/21 05:16	
Chloroethane	ND U	5.0	1	09/28/21 05:16	
Chloroform	ND U	5.0	1	09/28/21 05:16	
Chloromethane	ND U	5.0	1	09/28/21 05:16	
Dibromochloromethane	ND U	5.0	1	09/28/21 05:16	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 05:16	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 05:16	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 05:16	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:16	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:16	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 05:16	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:16	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:16	
Ethylbenzene	ND U	5.0	1	09/28/21 05:16	
2-Hexanone	ND U	10	1	09/28/21 05:16	
Methylene Chloride	ND U	5.0	1	09/28/21 05:16	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 05:16	
Styrene	ND U	5.0	1	09/28/21 05:16	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 05:16	
Tetrachloroethene	ND U	5.0	1	09/28/21 05:16	
Toluene	ND U	5.0	1	09/28/21 05:16	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 05:16	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 05:16	
Trichloroethene	ND U	5.0	1	09/28/21 05:16	
Vinyl Chloride	ND U	5.0	1	09/28/21 05:16	
o-Xylene	ND U	5.0	1	09/28/21 05:16	
m,p-Xylenes	ND U	5.0	1	09/28/21 05:16	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:28

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12S
 Units: ug/L

 Lab Code:
 R2109739-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/28/21 05:16	
Toluene-d8	105	87 - 121	09/28/21 05:16	
Dibromofluoromethane	101	80 - 116	09/28/21 05:16	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12M
 Units: ug/L

 Lab Code:
 R2109739-007
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 05:37	
Benzene	ND U	5.0	1	09/28/21 05:37	
Bromodichloromethane	ND U	5.0	1	09/28/21 05:37	
Bromoform	ND U	5.0	1	09/28/21 05:37	
Bromomethane	ND U	5.0	1	09/28/21 05:37	
2-Butanone (MEK)	ND U	10	1	09/28/21 05:37	
Carbon Disulfide	ND U	10	1	09/28/21 05:37	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 05:37	
Chlorobenzene	ND U	5.0	1	09/28/21 05:37	
Chloroethane	ND U	5.0	1	09/28/21 05:37	
Chloroform	ND U	5.0	1	09/28/21 05:37	
Chloromethane	ND U	5.0	1	09/28/21 05:37	
Dibromochloromethane	ND U	5.0	1	09/28/21 05:37	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 05:37	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 05:37	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 05:37	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:37	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:37	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 05:37	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:37	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:37	
Ethylbenzene	ND U	5.0	1	09/28/21 05:37	
2-Hexanone	ND U	10	1	09/28/21 05:37	
Methylene Chloride	ND U	5.0	1	09/28/21 05:37	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 05:37	
Styrene	ND U	5.0	1	09/28/21 05:37	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 05:37	
Tetrachloroethene	ND U	5.0	1	09/28/21 05:37	
Toluene	ND U	5.0	1	09/28/21 05:37	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 05:37	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 05:37	
Trichloroethene	ND U	5.0	1	09/28/21 05:37	
Vinyl Chloride	ND U	5.0	1	09/28/21 05:37	
o-Xylene	ND U	5.0	1	09/28/21 05:37	
m,p-Xylenes	ND U	5.0	1	09/28/21 05:37	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12M
 Units: ug/L

 Lab Code:
 R2109739-007
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/28/21 05:37	
Toluene-d8	103	87 - 121	09/28/21 05:37	
Dibromofluoromethane	100	80 - 116	09/28/21 05:37	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:30 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-12D Units: ug/L Lab Code: R2109739-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 05:59	
Benzene	ND U	5.0	1	09/28/21 05:59	
Bromodichloromethane	ND U	5.0	1	09/28/21 05:59	
Bromoform	ND U	5.0	1	09/28/21 05:59	
Bromomethane	ND U	5.0	1	09/28/21 05:59	
2-Butanone (MEK)	ND U	10	1	09/28/21 05:59	
Carbon Disulfide	ND U	10	1	09/28/21 05:59	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 05:59	
Chlorobenzene	ND U	5.0	1	09/28/21 05:59	
Chloroethane	ND U	5.0	1	09/28/21 05:59	
Chloroform	ND U	5.0	1	09/28/21 05:59	
Chloromethane	ND U	5.0	1	09/28/21 05:59	
Dibromochloromethane	ND U	5.0	1	09/28/21 05:59	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 05:59	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 05:59	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 05:59	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:59	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 05:59	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 05:59	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:59	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 05:59	
Ethylbenzene	ND U	5.0	1	09/28/21 05:59	
2-Hexanone	ND U	10	1	09/28/21 05:59	
Methylene Chloride	ND U	5.0	1	09/28/21 05:59	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 05:59	
Styrene	ND U	5.0	1	09/28/21 05:59	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 05:59	
Tetrachloroethene	ND U	5.0	1	09/28/21 05:59	
Toluene	ND U	5.0	1	09/28/21 05:59	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 05:59	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 05:59	
Trichloroethene	ND U	5.0	1	09/28/21 05:59	
Vinyl Chloride	ND U	5.0	1	09/28/21 05:59	
o-Xylene	ND U	5.0	1	09/28/21 05:59	
m,p-Xylenes	ND U	5.0	11	09/28/21 05:59	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12D
 Units: ug/L

 Lab Code:
 R2109739-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/28/21 05:59	
Toluene-d8	105	87 - 121	09/28/21 05:59	
Dibromofluoromethane	102	80 - 116	09/28/21 05:59	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:50 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-13S Units: ug/L Lab Code: R2109739-009 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 06:21	
Benzene	ND U	5.0	1	09/28/21 06:21	
Bromodichloromethane	ND U	5.0	1	09/28/21 06:21	
Bromoform	ND U	5.0	1	09/28/21 06:21	
Bromomethane	ND U	5.0	1	09/28/21 06:21	
2-Butanone (MEK)	ND U	10	1	09/28/21 06:21	
Carbon Disulfide	ND U	10	1	09/28/21 06:21	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 06:21	
Chlorobenzene	ND U	5.0	1	09/28/21 06:21	
Chloroethane	ND U	5.0	1	09/28/21 06:21	
Chloroform	ND U	5.0	1	09/28/21 06:21	
Chloromethane	ND U	5.0	1	09/28/21 06:21	
Dibromochloromethane	ND U	5.0	1	09/28/21 06:21	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 06:21	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 06:21	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 06:21	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 06:21	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 06:21	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 06:21	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 06:21	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 06:21	
Ethylbenzene	ND U	5.0	1	09/28/21 06:21	
2-Hexanone	ND U	10	1	09/28/21 06:21	
Methylene Chloride	ND U	5.0	1	09/28/21 06:21	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 06:21	
Styrene	ND U	5.0	1	09/28/21 06:21	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 06:21	
Tetrachloroethene	ND U	5.0	1	09/28/21 06:21	
Toluene	ND U	5.0	1	09/28/21 06:21	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 06:21	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 06:21	
Trichloroethene	ND U	5.0	1	09/28/21 06:21	
Vinyl Chloride	ND U	5.0	1	09/28/21 06:21	
o-Xylene	ND U	5.0	1	09/28/21 06:21	
m,p-Xylenes	ND U	5.0	1	09/28/21 06:21	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:50

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-13S
 Units: ug/L

 Lab Code:
 R2109739-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/28/21 06:21	
Toluene-d8	106	87 - 121	09/28/21 06:21	
Dibromofluoromethane	101	80 - 116	09/28/21 06:21	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 10:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-13M
 Units: ug/L

 Lab Code:
 R2109739-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 06:43	
Benzene	ND U	5.0	1	09/28/21 06:43	
Bromodichloromethane	ND U	5.0	1	09/28/21 06:43	
Bromoform	ND U	5.0	1	09/28/21 06:43	
Bromomethane	ND U	5.0	1	09/28/21 06:43	
2-Butanone (MEK)	ND U	10	1	09/28/21 06:43	
Carbon Disulfide	ND U	10	1	09/28/21 06:43	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 06:43	
Chlorobenzene	ND U	5.0	1	09/28/21 06:43	
Chloroethane	ND U	5.0	1	09/28/21 06:43	
Chloroform	ND U	5.0	1	09/28/21 06:43	
Chloromethane	ND U	5.0	1	09/28/21 06:43	
Dibromochloromethane	ND U	5.0	1	09/28/21 06:43	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 06:43	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 06:43	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 06:43	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 06:43	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 06:43	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 06:43	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 06:43	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 06:43	
Ethylbenzene	ND U	5.0	1	09/28/21 06:43	
2-Hexanone	ND U	10	1	09/28/21 06:43	
Methylene Chloride	ND U	5.0	1	09/28/21 06:43	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 06:43	
Styrene	ND U	5.0	1	09/28/21 06:43	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 06:43	
Tetrachloroethene	ND U	5.0	1	09/28/21 06:43	
Toluene	ND U	5.0	1	09/28/21 06:43	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 06:43	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 06:43	
Trichloroethene	ND U	5.0	1	09/28/21 06:43	
Vinyl Chloride	ND U	5.0	1	09/28/21 06:43	
o-Xylene	ND U	5.0	1	09/28/21 06:43	
m,p-Xylenes	ND U	5.0	1	09/28/21 06:43	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 10:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-13M
 Units: ug/L

 Lab Code:
 R2109739-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/28/21 06:43	
Toluene-d8	104	87 - 121	09/28/21 06:43	
Dibromofluoromethane	102	80 - 116	09/28/21 06:43	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-14S
 Units: ug/L

 Lab Code:
 R2109739-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 07:05	
Benzene	ND U	5.0	1	09/28/21 07:05	
Bromodichloromethane	ND U	5.0	1	09/28/21 07:05	
Bromoform	ND U	5.0	1	09/28/21 07:05	
Bromomethane	ND U	5.0	1	09/28/21 07:05	
2-Butanone (MEK)	ND U	10	1	09/28/21 07:05	
Carbon Disulfide	ND U	10	1	09/28/21 07:05	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 07:05	
Chlorobenzene	ND U	5.0	1	09/28/21 07:05	
Chloroethane	ND U	5.0	1	09/28/21 07:05	
Chloroform	ND U	5.0	1	09/28/21 07:05	
Chloromethane	ND U	5.0	1	09/28/21 07:05	
Dibromochloromethane	ND U	5.0	1	09/28/21 07:05	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 07:05	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 07:05	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 07:05	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 07:05	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 07:05	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 07:05	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 07:05	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 07:05	
Ethylbenzene	ND U	5.0	1	09/28/21 07:05	
2-Hexanone	ND U	10	1	09/28/21 07:05	
Methylene Chloride	ND U	5.0	1	09/28/21 07:05	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 07:05	
Styrene	ND U	5.0	1	09/28/21 07:05	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 07:05	
Tetrachloroethene	ND U	5.0	1	09/28/21 07:05	
Toluene	ND U	5.0	1	09/28/21 07:05	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 07:05	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 07:05	
Trichloroethene	ND U	5.0	1	09/28/21 07:05	
Vinyl Chloride	ND U	5.0	1	09/28/21 07:05	
o-Xylene	ND U	5.0	1	09/28/21 07:05	
m,p-Xylenes	ND U	5.0	1	09/28/21 07:05	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-14S
 Units: ug/L

 Lab Code:
 R2109739-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/28/21 07:05	
Toluene-d8	108	87 - 121	09/28/21 07:05	
Dibromofluoromethane	104	80 - 116	09/28/21 07:05	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: TB 092021 A Units: ug/L Lab Code: R2109739-012 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/28/21 03:05	
Benzene	ND U	5.0	1	09/28/21 03:05	
Bromodichloromethane	ND U	5.0	1	09/28/21 03:05	
Bromoform	ND U	5.0	1	09/28/21 03:05	
Bromomethane	ND U	5.0	1	09/28/21 03:05	
2-Butanone (MEK)	ND U	10	1	09/28/21 03:05	
Carbon Disulfide	ND U	10	1	09/28/21 03:05	
Carbon Tetrachloride	ND U	5.0	1	09/28/21 03:05	
Chlorobenzene	ND U	5.0	1	09/28/21 03:05	
Chloroethane	ND U	5.0	1	09/28/21 03:05	
Chloroform	ND U	5.0	1	09/28/21 03:05	
Chloromethane	ND U	5.0	1	09/28/21 03:05	
Dibromochloromethane	ND U	5.0	1	09/28/21 03:05	
1,1-Dichloroethane	ND U	5.0	1	09/28/21 03:05	
1,2-Dichloroethane	ND U	5.0	1	09/28/21 03:05	
1,1-Dichloroethene	ND U	5.0	1	09/28/21 03:05	
cis-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:05	
trans-1,2-Dichloroethene	ND U	5.0	1	09/28/21 03:05	
1,2-Dichloropropane	ND U	5.0	1	09/28/21 03:05	
cis-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:05	
trans-1,3-Dichloropropene	ND U	5.0	1	09/28/21 03:05	
Ethylbenzene	ND U	5.0	1	09/28/21 03:05	
2-Hexanone	ND U	10	1	09/28/21 03:05	
Methylene Chloride	ND U	5.0	1	09/28/21 03:05	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/28/21 03:05	
Styrene	ND U	5.0	1	09/28/21 03:05	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/28/21 03:05	
Tetrachloroethene	ND U	5.0	1	09/28/21 03:05	
Toluene	ND U	5.0	1	09/28/21 03:05	
1,1,1-Trichloroethane	ND U	5.0	1	09/28/21 03:05	
1,1,2-Trichloroethane	ND U	5.0	1	09/28/21 03:05	
Trichloroethene	ND U	5.0	1	09/28/21 03:05	
Vinyl Chloride	ND U	5.0	1	09/28/21 03:05	
o-Xylene	ND U	5.0	1	09/28/21 03:05	
m,p-Xylenes	ND U	5.0	1	09/28/21 03:05	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: TB 092021 A Units: ug/L Lab Code: R2109739-012 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	09/28/21 03:05	
Toluene-d8	104	87 - 121	09/28/21 03:05	
Dibromofluoromethane	99	80 - 116	09/28/21 03:05	

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:20

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10S
 Units: ug/L

 Lab Code:
 R2109739-001
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 18:44	9/24/21	-
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 18:44	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 18:44	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 18:44	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 18:44	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 18:44	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 18:44	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 18:44	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 18:44	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 18:44	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 18:44	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 18:44	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 18:44	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 18:44	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 18:44	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 18:44	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Dutyi Denzyi Filmaiate	ט שא	2.1	1	07/20/21 10.44	J1 47/ 41	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/19/21 13:20 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-10S Units: ug/L Lab Code: R2109739-001 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 18:44	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 18:44	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 18:44	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 18:44	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 18:44	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 18:44	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 18:44	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 18:44	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 18:44	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 18:44	9/24/21	
Phenol	ND U	9.1	1	09/28/21 18:44	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 18:44	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	87	35 - 141	09/28/21 18:44	
2-Fluorobiphenyl	66	31 - 118	09/28/21 18:44	
2-Fluorophenol	48	10 - 105	09/28/21 18:44	
Nitrobenzene-d5	65	31 - 110	09/28/21 18:44	
Phenol-d6	32	10 - 107	09/28/21 18:44	
p-Terphenyl-d14	71	10 - 165	09/28/21 18:44	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10M
 Units: ug/L

 Lab Code:
 R2109739-002
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 19:11	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 19:11	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 19:11	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 19:11	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 19:11	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 19:11	9/24/21	,
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 19:11	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 19:11	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 19:11	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 19:11	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 19:11	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 19:11	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 19:11	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 19:11	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 19:11	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

MW-10M

R2109739-002

Service Request: R2109739 **Date Collected:** 09/19/21 13:10 **Project:** Union Rd/2011-200 **Date Received:** 09/20/21 12:16

Sample Matrix: Water

Sample Name:

Lab Code:

Units: ug/L Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 19:11	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 19:11	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 19:11	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 19:11	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 19:11	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 19:11	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 19:11	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 19:11	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 19:11	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 19:11	9/24/21	
Phenol	ND U	9.1	1	09/28/21 19:11	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 19:11	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	89	35 - 141	09/28/21 19:11	
2-Fluorobiphenyl	65	31 - 118	09/28/21 19:11	
2-Fluorophenol	40	10 - 105	09/28/21 19:11	
Nitrobenzene-d5	57	31 - 110	09/28/21 19:11	
Phenol-d6	29	10 - 107	09/28/21 19:11	
p-Terphenyl-d14	69	10 - 165	09/28/21 19:11	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 07:55

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-10D
 Units: ug/L

 Lab Code:
 R2109739-003
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 19:38	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 19:38	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 19:38	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 19:38	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 19:38	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 19:38	9/24/21	,
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 19:38	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 19:38	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 19:38	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 19:38	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 19:38	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 19:38	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 19:38	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 19:38	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 19:38	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 07:55 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-10D Units: ug/L Lab Code: R2109739-003 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 19:38	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 19:38	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 19:38	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 19:38	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 19:38	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 19:38	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 19:38	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 19:38	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 19:38	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 19:38	9/24/21	
Phenol	ND U	9.1	1	09/28/21 19:38	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 19:38	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	95	35 - 141	09/28/21 19:38	
2-Fluorobiphenyl	60	31 - 118	09/28/21 19:38	
2-Fluorophenol	41	10 - 105	09/28/21 19:38	
Nitrobenzene-d5	57	31 - 110	09/28/21 19:38	
Phenol-d6	30	10 - 107	09/28/21 19:38	
p-Terphenyl-d14	70	10 - 165	09/28/21 19:38	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:30 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

MW-11S **Sample Name:** Units: ug/L Lab Code: R2109739-004 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 20:06	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 20:06	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 20:06	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 20:06	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 20:06	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 20:06	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 20:06	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 20:06	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 20:06	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 20:06	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 20:06	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 20:06	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 20:06	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 20:06	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 20:06	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:30 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-11S Units: ug/L Lab Code: R2109739-004 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 20:06	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 20:06	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 20:06	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 20:06	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 20:06	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 20:06	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 20:06	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 20:06	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 20:06	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 20:06	9/24/21	
Phenol	ND U	9.1	1	09/28/21 20:06	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 20:06	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	81	35 - 141	09/28/21 20:06	
2-Fluorobiphenyl	67	31 - 118	09/28/21 20:06	
2-Fluorophenol	39	10 - 105	09/28/21 20:06	
Nitrobenzene-d5	61	31 - 110	09/28/21 20:06	
Phenol-d6	28	10 - 107	09/28/21 20:06	
p-Terphenyl-d14	74	10 - 165	09/28/21 20:06	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-11M
 Units: ug/L

 Lab Code:
 R2109739-005
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 20:33	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 20:33	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 20:33	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 20:33	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 20:33	9/24/21	,
2-Nitrophenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 20:33	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 20:33	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 20:33	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 20:33	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 20:33	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 20:33	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 20:33	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 20:33	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 20:33	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 20:33	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 20:33	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 20:33	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 20:33	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Daty: Donzy: 1 initiatate	112 0	7.1	1	07,20,21 20.33), <u>=</u> 1, <u>=</u> 1	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:30 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-11M Units: ug/L Lab Code: R2109739-005 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 20:33	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 20:33	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 20:33	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 20:33	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 20:33	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 20:33	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 20:33	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 20:33	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 20:33	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 20:33	9/24/21	
Phenol	ND U	9.1	1	09/28/21 20:33	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 20:33	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	85	35 - 141	09/28/21 20:33	
2-Fluorobiphenyl	65	31 - 118	09/28/21 20:33	
2-Fluorophenol	44	10 - 105	09/28/21 20:33	
Nitrobenzene-d5	62	31 - 110	09/28/21 20:33	
Phenol-d6	31	10 - 107	09/28/21 20:33	
p-Terphenyl-d14	71	10 - 165	09/28/21 20:33	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:28

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12S
 Units: ug/L

 Lab Code:
 R2109739-006
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 21:00	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 21:00	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 21:00	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 21:00	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 21:00	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 21:00	9/24/21	,
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:00	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 21:00	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:00	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 21:00	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 21:00	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 21:00	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 21:00	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 21:00	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 21:00	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:28 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12S Units: ug/L Lab Code: R2109739-006 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 21:00	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 21:00	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 21:00	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 21:00	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 21:00	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 21:00	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 21:00	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 21:00	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 21:00	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 21:00	9/24/21	
Phenol	ND U	9.1	1	09/28/21 21:00	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 21:00	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	96	35 - 141	09/28/21 21:00	
2-Fluorobiphenyl	80	31 - 118	09/28/21 21:00	
2-Fluorophenol	47	10 - 105	09/28/21 21:00	
Nitrobenzene-d5	66	31 - 110	09/28/21 21:00	
Phenol-d6	32	10 - 107	09/28/21 21:00	
p-Terphenyl-d14	80	10 - 165	09/28/21 21:00	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:10

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12M
 Units: ug/L

 Lab Code:
 R2109739-007
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 21:27	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 21:27	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 21:27	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 21:27	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 21:27	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 21:27	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:27	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 21:27	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:27	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 21:27	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 21:27	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 21:27	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 21:27	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 21:27	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 21:27	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:10 **Project:** Union Rd/2011-200 **Date Received:** 09/20/21 12:16

Sample Matrix: Water

Sample Name:

Lab Code:

MW-12M Units: ug/L R2109739-007 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 21:27	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 21:27	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 21:27	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 21:27	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 21:27	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 21:27	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 21:27	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 21:27	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 21:27	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 21:27	9/24/21	
Phenol	ND U	9.1	1	09/28/21 21:27	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 21:27	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	82	35 - 141	09/28/21 21:27	
2-Fluorobiphenyl	60	31 - 118	09/28/21 21:27	
2-Fluorophenol	44	10 - 105	09/28/21 21:27	
Nitrobenzene-d5	56	31 - 110	09/28/21 21:27	
Phenol-d6	29	10 - 107	09/28/21 21:27	
p-Terphenyl-d14	75	10 - 165	09/28/21 21:27	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12D
 Units: ug/L

 Lab Code:
 R2109739-008
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 21:54	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 21:54	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 21:54	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 21:54	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 21:54	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 21:54	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:54	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 21:54	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 21:54	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 21:54	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 21:54	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 21:54	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 21:54	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 21:54	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 21:54	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Daty: Donzy: 1 initiatate	110 0	7.1	1	07,20,21 21.3T), <u>=</u> 1, <u>=</u> 1	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:30

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-12D
 Units: ug/L

 Lab Code:
 R2109739-008
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 21:54	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 21:54	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 21:54	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 21:54	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 21:54	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 21:54	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 21:54	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 21:54	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 21:54	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 21:54	9/24/21	
Phenol	ND U	9.1	1	09/28/21 21:54	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 21:54	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	69	35 - 141	09/28/21 21:54	
2-Fluorobiphenyl	58	31 - 118	09/28/21 21:54	
2-Fluorophenol	39	10 - 105	09/28/21 21:54	
Nitrobenzene-d5	59	31 - 110	09/28/21 21:54	
Phenol-d6	26	10 - 107	09/28/21 21:54	
p-Terphenyl-d14	57	10 - 165	09/28/21 21:54	

Service Request: R2109739

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:50 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-13S Units: ug/L Lab Code: R2109739-009 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 22:21	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 22:21	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 22:21	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 22:21	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 22:21	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 22:21	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 22:21	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 22:21	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 22:21	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 22:21	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 22:21	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 22:21	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 22:21	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 22:21	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 22:21	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:50 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-13S Units: ug/L Lab Code: R2109739-009 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 22:21	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 22:21	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 22:21	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 22:21	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 22:21	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 22:21	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 22:21	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 22:21	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 22:21	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 22:21	9/24/21	
Phenol	ND U	9.1	1	09/28/21 22:21	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 22:21	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	91	35 - 141	09/28/21 22:21	
2-Fluorobiphenyl	69	31 - 118	09/28/21 22:21	
2-Fluorophenol	48	10 - 105	09/28/21 22:21	
Nitrobenzene-d5	64	31 - 110	09/28/21 22:21	
Phenol-d6	33	10 - 107	09/28/21 22:21	
p-Terphenyl-d14	81	10 - 165	09/28/21 22:21	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 10:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-13M
 Units: ug/L

 Lab Code:
 R2109739-010
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,4-Dichlorophenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,4-Dimethylphenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,4-Dinitrophenol	ND U	45	1	09/28/21 22:48	9/24/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Chloronaphthalene	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Chlorophenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Methylnaphthalene	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Methylphenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Nitroaniline	ND U	9.1	1	09/28/21 22:48	9/24/21	
2-Nitrophenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/28/21 22:48	9/24/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/28/21 22:48	9/24/21	
3-Nitroaniline	ND U	9.1	1	09/28/21 22:48	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/28/21 22:48	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/28/21 22:48	9/24/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
4-Chloroaniline	ND U	9.1	1	09/28/21 22:48	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/28/21 22:48	9/24/21	
4-Nitroaniline	ND U	9.1	1	09/28/21 22:48	9/24/21	
4-Nitrophenol	ND U	45	1	09/28/21 22:48	9/24/21	
Acenaphthene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Acenaphthylene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Anthracene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benz(a)anthracene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benzo(a)pyrene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Benzyl Alcohol	ND U	9.1	1	09/28/21 22:48	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/28/21 22:48	9/24/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/28/21 22:48	9/24/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/28/21 22:48	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 10:00 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-13M Units: ug/L Lab Code: R2109739-010 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/28/21 22:48	9/24/21	
Chrysene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Dibenzofuran	ND U	9.1	1	09/28/21 22:48	9/24/21	
Diethyl Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	
Dimethyl Phthalate	ND U	9.1	1	09/28/21 22:48	9/24/21	
Fluoranthene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Fluorene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Hexachlorobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Hexachlorobutadiene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Hexachloroethane	ND U	9.1	1	09/28/21 22:48	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Isophorone	ND U	9.1	1	09/28/21 22:48	9/24/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/28/21 22:48	9/24/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/28/21 22:48	9/24/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/28/21 22:48	9/24/21	
Naphthalene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Nitrobenzene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Pentachlorophenol (PCP)	ND U	45	1	09/28/21 22:48	9/24/21	
Phenanthrene	ND U	9.1	1	09/28/21 22:48	9/24/21	
Phenol	ND U	9.1	1	09/28/21 22:48	9/24/21	
Pyrene	ND U	9.1	1	09/28/21 22:48	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	96	35 - 141	09/28/21 22:48	
2-Fluorobiphenyl	69	31 - 118	09/28/21 22:48	
2-Fluorophenol	48	10 - 105	09/28/21 22:48	
Nitrobenzene-d5	68	31 - 110	09/28/21 22:48	
Phenol-d6	29	10 - 107	09/28/21 22:48	
p-Terphenyl-d14	69	10 - 165	09/28/21 22:48	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:00 **Project:** Union Rd/2011-200

Sample Matrix: Water **Date Received:** 09/20/21 12:16

Sample Name: MW-14S Units: ug/L Lab Code: R2109739-011 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
1,2-Dichlorobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
1,3-Dichlorobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
1,4-Dichlorobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,4,5-Trichlorophenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,4,6-Trichlorophenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,4-Dichlorophenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,4-Dimethylphenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,4-Dinitrophenol	ND U	45	1	09/29/21 11:05	9/27/21	
2,4-Dinitrotoluene	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,6-Dinitrotoluene	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Chloronaphthalene	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Chlorophenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Methylnaphthalene	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Methylphenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Nitroaniline	ND U	9.1	1	09/29/21 11:05	9/27/21	
2-Nitrophenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
3,3'-Dichlorobenzidine	ND U	9.1	1	09/29/21 11:05	9/27/21	
3- and 4-Methylphenol Coelution	ND U	9.1	1	09/29/21 11:05	9/27/21	
3-Nitroaniline	ND U	9.1	1	09/29/21 11:05	9/27/21	
4,6-Dinitro-2-methylphenol	ND U	45	1	09/29/21 11:05	9/27/21	
4-Bromophenyl Phenyl Ether	ND U	9.1	1	09/29/21 11:05	9/27/21	
4-Chloro-3-methylphenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
4-Chloroaniline	ND U	9.1	1	09/29/21 11:05	9/27/21	
4-Chlorophenyl Phenyl Ether	ND U	9.1	1	09/29/21 11:05	9/27/21	
4-Nitroaniline	ND U	9.1	1	09/29/21 11:05	9/27/21	
4-Nitrophenol	ND U	45	1	09/29/21 11:05	9/27/21	
Acenaphthene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Acenaphthylene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Anthracene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benz(a)anthracene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benzo(a)pyrene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benzo(b)fluoranthene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benzo(g,h,i)perylene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benzo(k)fluoranthene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Benzyl Alcohol	ND U	9.1	1	09/29/21 11:05	9/27/21	
2,2'-Oxybis(1-chloropropane)	ND U	9.1	1	09/29/21 11:05	9/27/21	
Bis(2-chloroethoxy)methane	ND U	9.1	1	09/29/21 11:05	9/27/21	
Bis(2-chloroethyl) Ether	ND U	9.1	1	09/29/21 11:05	9/27/21	
Bis(2-ethylhexyl) Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Butyl Benzyl Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Daty i Donzy i i initiatate	1,12	/··		07/27/21 11:03	// = 1 // = 1	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:00

Sample Matrix: Water Date Received: 09/20/21 12:16

 Sample Name:
 MW-14S
 Units: ug/L

 Lab Code:
 R2109739-011
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	9.1	1	09/29/21 11:05	9/27/21	
Chrysene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Di-n-butyl Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Di-n-octyl Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Dibenz(a,h)anthracene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Dibenzofuran	ND U	9.1	1	09/29/21 11:05	9/27/21	
Diethyl Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Dimethyl Phthalate	ND U	9.1	1	09/29/21 11:05	9/27/21	
Fluoranthene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Fluorene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Hexachlorobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Hexachlorobutadiene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Hexachlorocyclopentadiene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Hexachloroethane	ND U	9.1	1	09/29/21 11:05	9/27/21	
Indeno(1,2,3-cd)pyrene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Isophorone	ND U	9.1	1	09/29/21 11:05	9/27/21	
N-Nitrosodi-n-propylamine	ND U	9.1	1	09/29/21 11:05	9/27/21	
N-Nitrosodimethylamine	ND U	9.1	1	09/29/21 11:05	9/27/21	
N-Nitrosodiphenylamine	ND U	9.1	1	09/29/21 11:05	9/27/21	
Naphthalene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Nitrobenzene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Pentachlorophenol (PCP)	ND U	45	1	09/29/21 11:05	9/27/21	
Phenanthrene	ND U	9.1	1	09/29/21 11:05	9/27/21	
Phenol	ND U	9.1	1	09/29/21 11:05	9/27/21	
Pyrene	ND U	9.1	1	09/29/21 11:05	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	83	35 - 141	09/29/21 11:05	
2-Fluorobiphenyl	66	31 - 118	09/29/21 11:05	
2-Fluorophenol	46	10 - 105	09/29/21 11:05	
Nitrobenzene-d5	70	31 - 110	09/29/21 11:05	
Phenol-d6	32	10 - 107	09/29/21 11:05	
p-Terphenyl-d14	54	10 - 165	09/29/21 11:05	

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/19/21 13:20 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-10S Basis: NA

Lab Code: R2109739-001

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:15	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:15	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/19/21 13:10 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-10M Basis: NA

Lab Code: R2109739-002

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:19	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:19	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 07:55 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-10D Basis: NA

Lab Code: R2109739-003

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:22	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:22	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-11S Basis: NA

Lab Code: R2109739-004

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:25	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:25	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:30 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-11M Basis: NA

Lab Code: R2109739-005

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:35	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:35	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:28 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12S Basis: NA

Lab Code: R2109739-006

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:38	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:38	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:10 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12M Basis: NA

Lab Code: R2109739-007

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:42	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:42	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:30 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12D Basis: NA

Lab Code: R2109739-008

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:45	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:45	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:50 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-13S Basis: NA

Lab Code: R2109739-009

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:48	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:48	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 10:00

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-13M Basis: NA

Lab Code: R2109739-010

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:51	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:51	09/23/21	

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:00 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-14S Basis: NA

Lab Code: R2109739-011

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 18:55	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 18:55	09/23/21	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/19/21 13:20 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-10S Basis: NA

Lab Code: R2109739-001

Inorganic Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 1664B 09/29/21 09:00 Oil and Grease, Total (HEM) ND U mg/L 4.6

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/19/21 13:10

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-10M Basis: NA

Lab Code: R2109739-002

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 4.6 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

R2109739-003

Lab Code:

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 07:55

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-10D Basis: NA

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 4.9 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:30

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-11S Basis: NA

Lab Code: R2109739-004

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 5.0 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 08:30 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-11M Basis: NA

Lab Code: R2109739-005

Inorganic Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 1664B 09/29/21 09:00 Oil and Grease, Total (HEM) ND U mg/L 5.2

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739 **Date Collected:** 09/20/21 09:28 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12S Basis: NA

Lab Code: R2109739-006

Inorganic Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 1664B 09/29/21 09:00 Oil and Grease, Total (HEM) ND U mg/L 4.7

Analytical Report

Client: Unicorn Management Consultants

R2109739-007

Lab Code:

Service Request: R2109739 **Date Collected:** 09/20/21 09:10 **Project:** Union Rd/2011-200

Date Received: 09/20/21 12:16 **Sample Matrix:** Water

Sample Name: MW-12M Basis: NA

Inorganic Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 1664B 09/29/21 09:00 Oil and Grease, Total (HEM) ND U mg/L 5.1

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:30

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-12D Basis: NA

Lab Code: R2109739-008

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 4.7 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 09:50

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-13S Basis: NA

Lab Code: R2109739-009

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 5.0 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 10:00

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-13M Basis: NA

Lab Code: R2109739-010

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 4.6 1 09/29/21 09:00

Analytical Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 **Date Collected:** 09/20/21 08:00

Sample Matrix: Water Date Received: 09/20/21 12:16

Sample Name: MW-14S Basis: NA

Lab Code: R2109739-011

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Oil and Grease, Total (HEM) 1664B ND U mg/L 4.6 1 09/29/21 09:00

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Toluene-d8	Dibromofluoromethane
Sample Name	Lab Code	85-122	87-121	80-116
MW-10S	R2109739-001	104	107	104
MW-10M	R2109739-002	99	104	103
MW-10D	R2109739-003	100	106	100
MW-11S	R2109739-004	102	107	107
MW-11M	R2109739-005	102	107	103
MW-12S	R2109739-006	102	105	101
MW-12M	R2109739-007	99	103	100
MW-12D	R2109739-008	100	105	102
MW-13S	R2109739-009	99	106	101
MW-13M	R2109739-010	101	104	102
MW-14S	R2109739-011	103	108	104
TB 092021 A	R2109739-012	99	104	99
Method Blank	RQ2112047-04	100	103	102
Lab Control Sample	RQ2112047-03	101	105	105

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2112047-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	ND U	10	1	09/27/21 23:48	
Benzene	ND U	5.0	1	09/27/21 23:48	
Bromodichloromethane	ND U	5.0	1	09/27/21 23:48	
Bromoform	ND U	5.0	1	09/27/21 23:48	
Bromomethane	ND U	5.0	1	09/27/21 23:48	
2-Butanone (MEK)	ND U	10	1	09/27/21 23:48	
Carbon Disulfide	ND U	10	1	09/27/21 23:48	
Carbon Tetrachloride	ND U	5.0	1	09/27/21 23:48	
Chlorobenzene	ND U	5.0	1	09/27/21 23:48	
Chloroethane	ND U	5.0	1	09/27/21 23:48	
Chloroform	ND U	5.0	1	09/27/21 23:48	
Chloromethane	ND U	5.0	1	09/27/21 23:48	
Dibromochloromethane	ND U	5.0	1	09/27/21 23:48	
1,1-Dichloroethane	ND U	5.0	1	09/27/21 23:48	
1,2-Dichloroethane	ND U	5.0	1	09/27/21 23:48	
1,1-Dichloroethene	ND U	5.0	1	09/27/21 23:48	
cis-1,2-Dichloroethene	ND U	5.0	1	09/27/21 23:48	
trans-1,2-Dichloroethene	ND U	5.0	1	09/27/21 23:48	
1,2-Dichloropropane	ND U	5.0	1	09/27/21 23:48	
cis-1,3-Dichloropropene	ND U	5.0	1	09/27/21 23:48	
trans-1,3-Dichloropropene	ND U	5.0	1	09/27/21 23:48	
Ethylbenzene	ND U	5.0	1	09/27/21 23:48	
2-Hexanone	ND U	10	1	09/27/21 23:48	
Methylene Chloride	ND U	5.0	1	09/27/21 23:48	
4-Methyl-2-pentanone (MIBK)	ND U	10	1	09/27/21 23:48	
Styrene	ND U	5.0	1	09/27/21 23:48	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	09/27/21 23:48	
Tetrachloroethene	ND U	5.0	1	09/27/21 23:48	
Toluene	ND U	5.0	1	09/27/21 23:48	
1,1,1-Trichloroethane	ND U	5.0	1	09/27/21 23:48	
1,1,2-Trichloroethane	ND U	5.0	1	09/27/21 23:48	
Trichloroethene	ND U	5.0	1	09/27/21 23:48	
Vinyl Chloride	ND U	5.0	1	09/27/21 23:48	
o-Xylene	ND U	5.0	1	09/27/21 23:48	
m,p-Xylenes	ND U	5.0	1	09/27/21 23:48	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2112047-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	09/27/21 23:48	
Toluene-d8	103	87 - 121	09/27/21 23:48	
Dibromofluoromethane	102	80 - 116	09/27/21 23:48	

QA/QC Report

Unicorn Management Consultants **Client:**

Project: Union Rd/2011-200

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2109739

Date Analyzed: 09/27/21

Lab Control Sample

RQ2112047-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	21.4	20.0	107	40-161
Benzene	8260C	21.2	20.0	106	79-119
Bromodichloromethane	8260C	20.4	20.0	102	81-123
Bromoform	8260C	22.0	20.0	110	65-146
Bromomethane	8260C	17.8	20.0	89	42-166
2-Butanone (MEK)	8260C	21.0	20.0	105	61-137
Carbon Disulfide	8260C	25.6	20.0	128	66-128
Carbon Tetrachloride	8260C	19.1	20.0	95	70-127
Chlorobenzene	8260C	19.9	20.0	100	80-121
Chloroethane	8260C	24.3	20.0	121	62-131
Chloroform	8260C	20.9	20.0	104	79-120
Chloromethane	8260C	32.6	20.0	163 *	65-135
Dibromochloromethane	8260C	21.5	20.0	108	72-128
1,1-Dichloroethane	8260C	22.1	20.0	110	80-124
1,2-Dichloroethane	8260C	19.7	20.0	98	71-127
1,1-Dichloroethene	8260C	21.7	20.0	108	71-118
cis-1,2-Dichloroethene	8260C	21.4	20.0	107	80-121
trans-1,2-Dichloroethene	8260C	22.2	20.0	111	73-118
1,2-Dichloropropane	8260C	21.3	20.0	106	80-119
cis-1,3-Dichloropropene	8260C	22.1	20.0	111	77-122
trans-1,3-Dichloropropene	8260C	22.2	20.0	111	71-133
Ethylbenzene	8260C	20.2	20.0	101	76-120
2-Hexanone	8260C	21.4	20.0	107	63-124
Methylene Chloride	8260C	21.4	20.0	107	73-122
4-Methyl-2-pentanone (MIBK)	8260C	22.0	20.0	110	66-124
Styrene	8260C	20.8	20.0	104	80-124
1,1,2,2-Tetrachloroethane	8260C	25.5	20.0	128 *	78-126
Tetrachloroethene	8260C	19.0	20.0	95	72-125
Toluene	8260C	21.7	20.0	108	79-119
1,1,1-Trichloroethane	8260C	20.9	20.0	104	75-125
1,1,2-Trichloroethane	8260C	20.5	20.0	103	82-121
Trichloroethene	8260C	18.8	20.0	94	74-122
Vinyl Chloride	8260C	24.1	20.0	121	74-159
Printed 9/30/2021 8:09:00 PM			Superso	et Reference:21-000	00604749 rev 00

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Sample Matrix: Water

Service Request: R2109739

Date Analyzed: 09/27/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

Lab Control Sample

RQ2112047-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.6	20.0	103	79-123
m,p-Xylenes	8260C	41.4	40.0	103	80-126

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Extraction Method:** EPA 3510C

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
Sample Name	Lab Code	35-141	31-118	10-105
MW-10S	R2109739-001	87	66	48
MW-10M	R2109739-002	89	65	40
MW-10D	R2109739-003	95	60	41
MW-11S	R2109739-004	81	67	39
MW-11M	R2109739-005	85	65	44
MW-12S	R2109739-006	96	80	47
MW-12M	R2109739-007	82	60	44
MW-12D	R2109739-008	69	58	39
MW-13S	R2109739-009	91	69	48
MW-13M	R2109739-010	96	69	48
MW-14S	R2109739-011	83	66	46
Method Blank	RQ2111872-01	87	62	43
Lab Control Sample	RQ2111872-02	92	64	45
Duplicate Lab Control Sample	RQ2111872-03	103	76	50
Method Blank	RQ2111964-03	80	50	44
Lab Control Sample	RQ2111964-04	94	65	50
Duplicate Lab Control Sample	RQ2111964-05	112	84	56

QA/QC Report

Client: Unicorn Management Consultants Service Request: R2109739

Project: Union Rd/2011-200

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Extraction Method:** EPA 3510C

		Nitrobenzene-d5	Phenol-d6	p-Terphenyl-d14
Sample Name	Lab Code	31-110	10-107	10-165
MW-10S	R2109739-001	65	32	71
MW-10M	R2109739-002	57	29	69
MW-10D	R2109739-003	57	30	70
MW-11S	R2109739-004	61	28	74
MW-11M	R2109739-005	62	31	71
MW-12S	R2109739-006	66	32	80
MW-12M	R2109739-007	56	29	75
MW-12D	R2109739-008	59	26	57
MW-13S	R2109739-009	64	33	81
MW-13M	R2109739-010	68	29	69
MW-14S	R2109739-011	70	32	54
Method Blank	RQ2111872-01	61	30	86
Lab Control Sample	RQ2111872-02	59	33	87
Duplicate Lab Control Sample	RQ2111872-03	75	35	89
Method Blank	RQ2111964-03	50	32	74
Lab Control Sample	RQ2111964-04	69	37	75
Duplicate Lab Control Sample	RQ2111964-05	80	40	82

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2111872-01Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
1,2-Dichlorobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
1,3-Dichlorobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
1,4-Dichlorobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
2,4,5-Trichlorophenol	ND U	10	1	09/28/21 15:03	9/24/21	
2,4,6-Trichlorophenol	ND U	10	1	09/28/21 15:03	9/24/21	
2,4-Dichlorophenol	ND U	10	1	09/28/21 15:03	9/24/21	
2,4-Dimethylphenol	ND U	10	1	09/28/21 15:03	9/24/21	
2,4-Dinitrophenol	ND U	50	1	09/28/21 15:03	9/24/21	
2,4-Dinitrotoluene	ND U	10	1	09/28/21 15:03	9/24/21	
2,6-Dinitrotoluene	ND U	10	1	09/28/21 15:03	9/24/21	
2-Chloronaphthalene	ND U	10	1	09/28/21 15:03	9/24/21	
2-Chlorophenol	ND U	10	1	09/28/21 15:03	9/24/21	
2-Methylnaphthalene	ND U	10	1	09/28/21 15:03	9/24/21	
2-Methylphenol	ND U	10	1	09/28/21 15:03	9/24/21	
2-Nitroaniline	ND U	10	1	09/28/21 15:03	9/24/21	
2-Nitrophenol	ND U	10	1	09/28/21 15:03	9/24/21	
3,3'-Dichlorobenzidine	ND U	10	1	09/28/21 15:03	9/24/21	
3- and 4-Methylphenol Coelution	ND U	10	1	09/28/21 15:03	9/24/21	
3-Nitroaniline	ND U	10	1	09/28/21 15:03	9/24/21	
4,6-Dinitro-2-methylphenol	ND U	50	1	09/28/21 15:03	9/24/21	
4-Bromophenyl Phenyl Ether	ND U	10	1	09/28/21 15:03	9/24/21	
4-Chloro-3-methylphenol	ND U	10	1	09/28/21 15:03	9/24/21	
4-Chloroaniline	ND U	10	1	09/28/21 15:03	9/24/21	
4-Chlorophenyl Phenyl Ether	ND U	10	1	09/28/21 15:03	9/24/21	
4-Nitroaniline	ND U	10	1	09/28/21 15:03	9/24/21	
4-Nitrophenol	ND U	50	1	09/28/21 15:03	9/24/21	
Acenaphthene	ND U	10	1	09/28/21 15:03	9/24/21	
Acenaphthylene	ND U	10	1	09/28/21 15:03	9/24/21	
Anthracene	ND U	10	1	09/28/21 15:03	9/24/21	
Benz(a)anthracene	ND U	10	1	09/28/21 15:03	9/24/21	
Benzo(a)pyrene	ND U	10	1	09/28/21 15:03	9/24/21	
Benzo(b)fluoranthene	ND U	10	1	09/28/21 15:03	9/24/21	
Benzo(g,h,i)perylene	ND U	10	1	09/28/21 15:03	9/24/21	
Benzo(k)fluoranthene	ND U	10	1	09/28/21 15:03	9/24/21	
Benzyl Alcohol	ND U	10	1	09/28/21 15:03	9/24/21	
2,2'-Oxybis(1-chloropropane)	ND U	10	1	09/28/21 15:03	9/24/21	
Bis(2-chloroethoxy)methane	ND U	10	1	09/28/21 15:03	9/24/21	
Bis(2-chloroethyl) Ether	ND U	10	1	09/28/21 15:03	9/24/21	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	
Butyl Benzyl Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2111872-01
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	10	1	09/28/21 15:03	9/24/21	
Chrysene	ND U	10	1	09/28/21 15:03	9/24/21	
Di-n-butyl Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	
Di-n-octyl Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	
Dibenz(a,h)anthracene	ND U	10	1	09/28/21 15:03	9/24/21	
Dibenzofuran	ND U	10	1	09/28/21 15:03	9/24/21	
Diethyl Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	
Dimethyl Phthalate	ND U	10	1	09/28/21 15:03	9/24/21	
Fluoranthene	ND U	10	1	09/28/21 15:03	9/24/21	
Fluorene	ND U	10	1	09/28/21 15:03	9/24/21	
Hexachlorobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
Hexachlorobutadiene	ND U	10	1	09/28/21 15:03	9/24/21	
Hexachlorocyclopentadiene	ND U	10	1	09/28/21 15:03	9/24/21	
Hexachloroethane	ND U	10	1	09/28/21 15:03	9/24/21	
Indeno(1,2,3-cd)pyrene	ND U	10	1	09/28/21 15:03	9/24/21	
Isophorone	ND U	10	1	09/28/21 15:03	9/24/21	
N-Nitrosodi-n-propylamine	ND U	10	1	09/28/21 15:03	9/24/21	
N-Nitrosodimethylamine	ND U	10	1	09/28/21 15:03	9/24/21	
N-Nitrosodiphenylamine	ND U	10	1	09/28/21 15:03	9/24/21	
Naphthalene	ND U	10	1	09/28/21 15:03	9/24/21	J
Nitrobenzene	ND U	10	1	09/28/21 15:03	9/24/21	
Pentachlorophenol (PCP)	ND U	50	1	09/28/21 15:03	9/24/21	
Phenanthrene	ND U	10	1	09/28/21 15:03	9/24/21	
Phenol	ND U	10	1	09/28/21 15:03	9/24/21	
Pyrene	ND U	10	1	09/28/21 15:03	9/24/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	87	35 - 141	09/28/21 15:03	
2-Fluorobiphenyl	62	31 - 118	09/28/21 15:03	
2-Fluorophenol	43	10 - 105	09/28/21 15:03	
Nitrobenzene-d5	61	31 - 110	09/28/21 15:03	
Phenol-d6	30	10 - 107	09/28/21 15:03	
p-Terphenyl-d14	86	10 - 165	09/28/21 15:03	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2111964-03Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** Method

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4-Trichlorobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
1,2-Dichlorobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
1,3-Dichlorobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
1,4-Dichlorobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
2,4,5-Trichlorophenol	ND U	10	1	09/29/21 08:09	9/27/21	
2,4,6-Trichlorophenol	ND U	10	1	09/29/21 08:09	9/27/21	
2,4-Dichlorophenol	ND U	10	1	09/29/21 08:09	9/27/21	
2,4-Dimethylphenol	ND U	10	1	09/29/21 08:09	9/27/21	
2,4-Dinitrophenol	ND U	50	1	09/29/21 08:09	9/27/21	
2,4-Dinitrotoluene	ND U	10	1	09/29/21 08:09	9/27/21	
2,6-Dinitrotoluene	ND U	10	1	09/29/21 08:09	9/27/21	
2-Chloronaphthalene	ND U	10	1	09/29/21 08:09	9/27/21	
2-Chlorophenol	ND U	10	1	09/29/21 08:09	9/27/21	
2-Methylnaphthalene	ND U	10	1	09/29/21 08:09	9/27/21	
2-Methylphenol	ND U	10	1	09/29/21 08:09	9/27/21	
2-Nitroaniline	ND U	10	1	09/29/21 08:09	9/27/21	
2-Nitrophenol	ND U	10	1	09/29/21 08:09	9/27/21	
3,3'-Dichlorobenzidine	ND U	10	1	09/29/21 08:09	9/27/21	
3- and 4-Methylphenol Coelution	ND U	10	1	09/29/21 08:09	9/27/21	
3-Nitroaniline	ND U	10	1	09/29/21 08:09	9/27/21	
4,6-Dinitro-2-methylphenol	ND U	50	1	09/29/21 08:09	9/27/21	
4-Bromophenyl Phenyl Ether	ND U	10	1	09/29/21 08:09	9/27/21	
4-Chloro-3-methylphenol	ND U	10	1	09/29/21 08:09	9/27/21	
4-Chloroaniline	ND U	10	1	09/29/21 08:09	9/27/21	
4-Chlorophenyl Phenyl Ether	ND U	10	1	09/29/21 08:09	9/27/21	
4-Nitroaniline	ND U	10	1	09/29/21 08:09	9/27/21	
4-Nitrophenol	ND U	50	1	09/29/21 08:09	9/27/21	
Acenaphthene	ND U	10	1	09/29/21 08:09	9/27/21	
Acenaphthylene	ND U	10	1	09/29/21 08:09	9/27/21	
Anthracene	ND U	10	1	09/29/21 08:09	9/27/21	
Benz(a)anthracene	ND U	10	1	09/29/21 08:09	9/27/21	
Benzo(a)pyrene	ND U	10	1	09/29/21 08:09	9/27/21	
Benzo(b)fluoranthene	ND U	10	1	09/29/21 08:09	9/27/21	
Benzo(g,h,i)perylene	ND U	10	1	09/29/21 08:09	9/27/21	
Benzo(k)fluoranthene	ND U	10	1	09/29/21 08:09	9/27/21	
Benzyl Alcohol	ND U	10	1	09/29/21 08:09	9/27/21	
2,2'-Oxybis(1-chloropropane)	ND U	10	1	09/29/21 08:09	9/27/21	
Bis(2-chloroethoxy)methane	ND U	10	1	09/29/21 08:09	9/27/21	
Bis(2-chloroethyl) Ether	ND U	10	1	09/29/21 08:09	9/27/21	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	
Butyl Benzyl Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	

Analytical Report

Client: Unicorn Management Consultants Service Request: R2109739

Project:Union Rd/2011-200Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2111964-03
 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method: 8270D **Prep Method:** Method

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	ND U	10	1	09/29/21 08:09	9/27/21	
Chrysene	ND U	10	1	09/29/21 08:09	9/27/21	
Di-n-butyl Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	
Di-n-octyl Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	
Dibenz(a,h)anthracene	ND U	10	1	09/29/21 08:09	9/27/21	
Dibenzofuran	ND U	10	1	09/29/21 08:09	9/27/21	
Diethyl Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	
Dimethyl Phthalate	ND U	10	1	09/29/21 08:09	9/27/21	
Fluoranthene	ND U	10	1	09/29/21 08:09	9/27/21	
Fluorene	ND U	10	1	09/29/21 08:09	9/27/21	
Hexachlorobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
Hexachlorobutadiene	ND U	10	1	09/29/21 08:09	9/27/21	
Hexachlorocyclopentadiene	ND U	10	1	09/29/21 08:09	9/27/21	
Hexachloroethane	ND U	10	1	09/29/21 08:09	9/27/21	
Indeno(1,2,3-cd)pyrene	ND U	10	1	09/29/21 08:09	9/27/21	
Isophorone	ND U	10	1	09/29/21 08:09	9/27/21	
N-Nitrosodi-n-propylamine	ND U	10	1	09/29/21 08:09	9/27/21	
N-Nitrosodimethylamine	ND U	10	1	09/29/21 08:09	9/27/21	
N-Nitrosodiphenylamine	ND U	10	1	09/29/21 08:09	9/27/21	
Naphthalene	ND U	10	1	09/29/21 08:09	9/27/21	
Nitrobenzene	ND U	10	1	09/29/21 08:09	9/27/21	
Pentachlorophenol (PCP)	ND U	50	1	09/29/21 08:09	9/27/21	
Phenanthrene	ND U	10	1	09/29/21 08:09	9/27/21	
Phenol	ND U	10	1	09/29/21 08:09	9/27/21	
Pyrene	ND U	10	1	09/29/21 08:09	9/27/21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	80	35 - 141	09/29/21 08:09	
2-Fluorobiphenyl	50	31 - 118	09/29/21 08:09	
2-Fluorophenol	44	10 - 105	09/29/21 08:09	
Nitrobenzene-d5	50	31 - 110	09/29/21 08:09	
Phenol-d6	32	10 - 107	09/29/21 08:09	
p-Terphenyl-d14	74	10 - 165	09/29/21 08:09	

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Sample Matrix: Water

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2109739

Date Analyzed: 09/28/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2111872-02

RQ2111872-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,2,4-Trichlorobenzene	8270D	44.4	80.0	55	53.5	80.0	67	10-127	20	30
1,2-Dichlorobenzene	8270D	44.0	80.0	55	49.5	80.0	62	23-130	12	30
1,3-Dichlorobenzene	8270D	46.5	80.0	58	48.1	80.0	60	21-90	3	30
1,4-Dichlorobenzene	8270D	44.0	80.0	55	45.8	80.0	57	10-124	4	30
2,4,5-Trichlorophenol	8270D	63.2	80.0	79	68.5	80.0	86	48-134	8	30
2,4,6-Trichlorophenol	8270D	55.5	80.0	69	61.2	80.0	76	44-135	10	30
2,4-Dichlorophenol	8270D	51.5	80.0	64	59.9	80.0	75	48-127	16	30
2,4-Dimethylphenol	8270D	52.2	80.0	65	58.1	80.0	73	35-99	12	30
2,4-Dinitrophenol	8270D	53.2	80.0	66	59.8	80.0	75	21-154	13	30
2,4-Dinitrotoluene	8270D	67.3	80.0	84	70.5	80.0	88	54-130	5	30
2,6-Dinitrotoluene	8270D	71.9	80.0	90	82.3	80.0	103	51-127	13	30
2-Chloronaphthalene	8270D	57.4	80.0	72	64.8	80.0	81	40-108	12	30
2-Chlorophenol	8270D	46.8	80.0	58	53.8	80.0	67	42-112	14	30
2-Methylnaphthalene	8270D	50.9	80.0	64	61.9	80.0	77	34-102	18	30
2-Methylphenol	8270D	48.8	80.0	61	54.5	80.0	68	47-100	11	30
2-Nitroaniline	8270D	68.6	80.0	86	72.3	80.0	90	52-133	5	30
2-Nitrophenol	8270D	47.9	80.0	60	62.4	80.0	78	43-131	26	30
3,3'-Dichlorobenzidine	8270D	70.2	80.0	88	68.3	80.0	85	43-126	3	30
3- and 4-Methylphenol Coelution	8270D	44.3	80.0	55	53.5	80.0	67	40-92	20	30
3-Nitroaniline	8270D	73.4	80.0	92	73.1	80.0	91	42-111	1	30
4,6-Dinitro-2-methylphenol	8270D	52.2	80.0	65	57.6	80.0	72	36-152	10	30
4-Bromophenyl Phenyl Ether	8270D	72.9	80.0	91	86.0	80.0	107	48-114	16	30
4-Chloro-3-methylphenol	8270D	55.7	80.0	70	65.2	80.0	82	52-113	16	30
4-Chloroaniline	8270D	54.8	80.0	68	69.4	80.0	87	44-109	25	30
4-Chlorophenyl Phenyl Ether	8270D	63.6	80.0	79	73.6	80.0	92	51-107	15	30
4-Nitroaniline	8270D	59.3	80.0	74	67.4	80.0	84	54-133	13	30
4-Nitrophenol	8270D	32.4 J	80.0	41	35.7 J	80.0	45	10-126	9	30
Acenaphthene	8270D	59.2	80.0	74	65.5	80.0	82	52-107	10	30
Acenaphthylene	8270D	64.1	80.0	80	75.0	80.0	94	55-109	16	30
Anthracene	8270D	65.4	80.0	82	76.3	80.0	95	55-116	15	30
Benz(a)anthracene	8270D	61.8	80.0	77	68.0	80.0	85	61-121	10	30
Benzo(a)pyrene	8270D	69.6	80.0	87	79.0	80.0	99	44-114	13	30
Benzo(b)fluoranthene	8270D	60.8	80.0	76	72.5	80.0	91	62-115	18	30
Printed 9/30/2021 8:09:10 PM						Sup	erset Referen	ice:21-00006	04749 rev ()0

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Sample Matrix: Water

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2109739

Date Analyzed: 09/28/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2111872-02

RQ2111872-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzo(g,h,i)perylene	8270D	65.9	80.0	82	71.0	80.0	89	63-136	8	30
Benzo(k)fluoranthene	8270D	66.5	80.0	83	69.8	80.0	87	49-133	5	30
Benzyl Alcohol	8270D	48.5	80.0	61	62.4	80.0	78	31-109	24	30
2,2'-Oxybis(1-chloropropane)	8270D	46.6	80.0	58	53.2	80.0	66	32-122	13	30
Bis(2-chloroethoxy)methane	8270D	62.7	80.0	78	75.6	80.0	95	55-110	20	30
Bis(2-chloroethyl) Ether	8270D	50.6	80.0	63	57.1	80.0	71	46-102	12	30
Bis(2-ethylhexyl) Phthalate	8270D	60.5	80.0	76	68.9	80.0	86	51-132	12	30
Butyl Benzyl Phthalate	8270D	61.4	80.0	77	71.1	80.0	89	41-148	14	30
Carbazole	8270D	75.6	80.0	94	85.2	80.0	107	56-139	13	30
Chrysene	8270D	66.8	80.0	84	73.9	80.0	92	57-118	9	30
Di-n-butyl Phthalate	8270D	75.2	80.0	94	86.4	80.0	108	57-128	14	30
Di-n-octyl Phthalate	8270D	60.4	80.0	76	69.4	80.0	87	62-124	13	30
Dibenz(a,h)anthracene	8270D	65.2	80.0	82	73.9	80.0	92	54-135	11	30
Dibenzofuran	8270D	63.8	80.0	80	70.8	80.0	88	55-110	10	30
Diethyl Phthalate	8270D	71.9	80.0	90	76.9	80.0	96	53-113	6	30
Dimethyl Phthalate	8270D	69.6	80.0	87	75.6	80.0	94	51-112	8	30
Fluoranthene	8270D	72.4	80.0	90	83.5	80.0	104	66-127	14	30
Fluorene	8270D	65.0	80.0	81	71.6	80.0	90	54-106	11	30
Hexachlorobenzene	8270D	68.3	80.0	85	82.8	80.0	104	53-123	20	30
Hexachlorobutadiene	8270D	43.7	80.0	55	55.6	80.0	69	16-95	23	30
Hexachlorocyclopentadiene	8270D	26.6	80.0	33	33.3	80.0	42	10-99	24	30
Hexachloroethane	8270D	39.2	80.0	49	51.6	80.0	64	15-92	27	30
Indeno(1,2,3-cd)pyrene	8270D	61.5	80.0	77	67.9	80.0	85	62-137	10	30
Isophorone	8270D	56.1	80.0	70	68.8	80.0	86	50-116	21	30
N-Nitrosodi-n-propylamine	8270D	50.3	80.0	63	57.3	80.0	72	49-115	13	30
N-Nitrosodimethylamine	8270D	38.7	80.0	48	45.8	80.0	57	31-70	17	30
N-Nitrosodiphenylamine	8270D	76.3	80.0	95	86.2	80.0	108	45-123	13	30
Naphthalene	8270D	49.8	80.0	62	59.8	80.0	75	38-99	19	30
Nitrobenzene	8270D	52.9	80.0	66	56.7	80.0	71	46-108	7	30
Pentachlorophenol (PCP)	8270D	61.9	80.0	77	71.3	80.0	89	29-164	14	30
Phenanthrene	8270D	64.0	80.0	80	73.2	80.0	91	58-118	13	30
Phenol	8270D	26.4	80.0	33	29.1	80.0	36	10-113	9	30
Pyrene	8270D	64.1	80.0	80	71.5	80.0	89	61-122	11	30
D : 4 1 0/20/2021 0 00 10 DM							. D. C	21 00006	0.47.40	

Printed 9/30/2021 8:09:10 PM

Superset Reference:21-0000604749 rev 00

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Sample Matrix: Water

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2109739

Date Analyzed: 09/29/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2111964-04

RQ2111964-05

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,2,4-Trichlorobenzene	8270D	47.4	80.0	59	54.4	80.0	68	10-127	14	30
1,2-Dichlorobenzene	8270D	46.9	80.0	59	49.6	80.0	62	23-130	5	30
1,3-Dichlorobenzene	8270D	43.9	80.0	55	49.1	80.0	61	21-90	10	30
1,4-Dichlorobenzene	8270D	41.8	80.0	52	48.3	80.0	60	10-124	14	30
2,4,5-Trichlorophenol	8270D	69.5	80.0	87	74.9	80.0	94	48-134	8	30
2,4,6-Trichlorophenol	8270D	59.0	80.0	74	64.8	80.0	81	44-135	9	30
2,4-Dichlorophenol	8270D	55.6	80.0	70	64.9	80.0	81	48-127	15	30
2,4-Dimethylphenol	8270D	45.0	80.0	56	45.5	80.0	57	35-99	2	30
2,4-Dinitrophenol	8270D	54.6	80.0	68	66.6	80.0	83	21-154	20	30
2,4-Dinitrotoluene	8270D	72.3	80.0	90	70.8	80.0	89	54-130	1	30
2,6-Dinitrotoluene	8270D	68.5	80.0	86	79.4	80.0	99	51-127	14	30
2-Chloronaphthalene	8270D	57.6	80.0	72	63.7	80.0	80	40-108	11	30
2-Chlorophenol	8270D	50.3	80.0	63	55.3	80.0	69	42-112	9	30
2-Methylnaphthalene	8270D	52.3	80.0	65	60.7	80.0	76	34-102	16	30
2-Methylphenol	8270D	52.3	80.0	65	56.8	80.0	71	47-100	9	30
2-Nitroaniline	8270D	68.9	80.0	86	73.0	80.0	91	52-133	6	30
2-Nitrophenol	8270D	50.9	80.0	64	59.2	80.0	74	43-131	14	30
3,3'-Dichlorobenzidine	8270D	76.3	80.0	95	78.8	80.0	98	43-126	3	30
3- and 4-Methylphenol Coelution	8270D	50.5	80.0	63	54.6	80.0	68	40-92	8	30
3-Nitroaniline	8270D	72.2	80.0	90	77.6	80.0	97	42-111	7	30
4,6-Dinitro-2-methylphenol	8270D	51.7	80.0	65	60.2	80.0	75	36-152	14	30
4-Bromophenyl Phenyl Ether	8270D	73.6	80.0	92	87.2	80.0	109	48-114	17	30
4-Chloro-3-methylphenol	8270D	56.2	80.0	70	61.4	80.0	77	52-113	10	30
4-Chloroaniline	8270D	61.2	80.0	77	69.0	80.0	86	44-109	11	30
4-Chlorophenyl Phenyl Ether	8270D	65.3	80.0	82	77.4	80.0	97	51-107	17	30
4-Nitroaniline	8270D	62.4	80.0	78	72.5	80.0	91	54-133	15	30
4-Nitrophenol	8270D	37.3 J	80.0	47	38.2 J	80.0	48	10-126	2	30
Acenaphthene	8270D	61.4	80.0	77	67.0	80.0	84	52-107	9	30
Acenaphthylene	8270D	64.3	80.0	80	74.9	80.0	94	55-109	16	30
Anthracene	8270D	67.2	80.0	84	74.9	80.0	94	55-116	11	30
Benz(a)anthracene	8270D	66.7	80.0	83	73.7	80.0	92	61-121	10	30
Benzo(a)pyrene	8270D	76.0	80.0	95	83.3	80.0	104	44-114	9	30
Benzo(b)fluoranthene	8270D	68.3	80.0	85	69.6	80.0	87	62-115	2	30
Printed 0/20/2021 9:00:11 PM						Cun	areat Dafarar	21 00006	04740 ***** (00

Printed 9/30/2021 8:09:11 PM Superset Reference:21-0000604749 rev 00

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200

Sample Matrix: Water

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2109739

Date Analyzed: 09/29/21

Lab Control Sample

Duplicate Lab Control Sample

RQ2111964-04

RQ2111964-05

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzo(g,h,i)perylene	8270D	69.8	80.0	87	81.3	80.0	102	63-136	16	30
Benzo(k)fluoranthene	8270D	68.8	80.0	86	74.9	80.0	94	49-133	9	30
Benzyl Alcohol	8270D	56.0	80.0	70	62.4	80.0	78	31-109	11	30
2,2'-Oxybis(1-chloropropane)	8270D	47.8	80.0	60	54.7	80.0	68	32-122	13	30
Bis(2-chloroethoxy)methane	8270D	70.9	80.0	89	77.3	80.0	97	55-110	9	30
Bis(2-chloroethyl) Ether	8270D	51.9	80.0	65	59.5	80.0	74	46-102	13	30
Bis(2-ethylhexyl) Phthalate	8270D	64.4	80.0	81	72.5	80.0	91	51-132	12	30
Butyl Benzyl Phthalate	8270D	65.7	80.0	82	72.8	80.0	91	41-148	10	30
Carbazole	8270D	73.8	80.0	92	86.0	80.0	107	56-139	15	30
Chrysene	8270D	68.8	80.0	86	78.4	80.0	98	57-118	13	30
Di-n-butyl Phthalate	8270D	75.1	80.0	94	85.4	80.0	107	57-128	13	30
Di-n-octyl Phthalate	8270D	65.7	80.0	82	69.6	80.0	87	62-124	6	30
Dibenz(a,h)anthracene	8270D	72.9	80.0	91	83.7	80.0	105	54-135	14	30
Dibenzofuran	8270D	63.4	80.0	79	73.2	80.0	92	55-110	15	30
Diethyl Phthalate	8270D	70.7	80.0	88	75.9	80.0	95	53-113	8	30
Dimethyl Phthalate	8270D	72.4	80.0	90	77.9	80.0	97	51-112	7	30
Fluoranthene	8270D	71.2	80.0	89	83.6	80.0	105	66-127	16	30
Fluorene	8270D	68.3	80.0	85	76.7	80.0	96	54-106	12	30
Hexachlorobenzene	8270D	73.1	80.0	91	82.8	80.0	104	53-123	13	30
Hexachlorobutadiene	8270D	47.4	80.0	59	57.0	80.0	71	16-95	18	30
Hexachlorocyclopentadiene	8270D	24.0	80.0	30	32.2	80.0	40	10-99	29	30
Hexachloroethane	8270D	38.4	80.0	48	42.6	80.0	53	15-92	10	30
Indeno(1,2,3-cd)pyrene	8270D	70.0	80.0	88	73.6	80.0	92	62-137	4	30
Isophorone	8270D	61.0	80.0	76	66.3	80.0	83	50-116	9	30
N-Nitrosodi-n-propylamine	8270D	50.5	80.0	63	58.7	80.0	73	49-115	15	30
N-Nitrosodimethylamine	8270D	43.8	80.0	55	51.5	80.0	64	31-70	15	30
N-Nitrosodiphenylamine	8270D	76.2	80.0	95	91.6	80.0	114	45-123	18	30
Naphthalene	8270D	51.3	80.0	64	60.2	80.0	75	38-99	16	30
Nitrobenzene	8270D	57.6	80.0	72	61.9	80.0	77	46-108	7	30
Pentachlorophenol (PCP)	8270D	63.2	80.0	79	78.3	80.0	98	29-164	21	30
Phenanthrene	8270D	66.1	80.0	83	74.3	80.0	93	58-118	11	30
Phenol	8270D	31.0	80.0	39	31.7	80.0	40	10-113	3	30
Pyrene	8270D	69.8	80.0	87	79.2	80.0	99	61-122	13	30
D: 4 1 0/20/2021 0 00 11 DM						G	. D. C	21 00006	0.47.40	

Printed 9/30/2021 8:09:11 PM

Superset Reference:21-0000604749 rev 00

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739

Date Collected: NA **Project:** Union Rd/2011-200 Date Received: NA **Sample Matrix:** Water

Sample Name: Method Blank Basis: NA

Lab Code: R2109739-MB

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic, Dissolved	6010C	ND U	ug/L	10	1	09/25/21 17:56	09/23/21	
Lead, Dissolved	6010C	ND U	ug/L	50	1	09/25/21 17:56	09/23/21	

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 Date Analyzed: 09/25/21

Sample Matrix: Water

Duplicate Lab Control Sample Summary Inorganic Parameters

Units:ug/L Basis:NA

Service Request: R2109739

Lab Control Sample

Duplicate Lab Control Sample

R2109739-LCS

R2109739-DLCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Arsenic, Dissolved	6010C	37	40	92	36	40	90	80-120	2	20
Lead, Dissolved	6010C	493	500	99	485	500	97	80-120	2	20

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Unicorn Management Consultants

Service Request: R2109739

Date Collected: NA **Project:** Union Rd/2011-200 Date Received: NA **Sample Matrix:** Water

Sample Name: Method Blank Basis: NA

Lab Code: R2109739-MB

Inorganic Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 1664B 09/29/21 09:00 Oil and Grease, Total (HEM) ND U mg/L 5.0

QA/QC Report

Client: Unicorn Management Consultants

Project: Union Rd/2011-200 Date Analyzed: 09/29/21

Sample Matrix: Water

Duplicate Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Service Request: R2109739

Lab Control Sample

Duplicate Lab Control Sample

R2109739-LCS

R2109739-DLCS

Analytical			Spike		Spike			% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Oil and Grease, Total (HEM)	1664B	33.9	41.1	82	35.3	41.4	85	78-114	4	18