

Infrastructure, environment, buildings

Transmittal Letter

To:

Mr. Ken H. Stroebel, P.G. The Sherwin-Williams Company, Inc. 101 Prospect Avenue Northeast Cleveland, OH 44115 Copies:

Kevin Lynch, US EPA Michael Walters, US EPA C. Psoras Esq., US EPA Vivek Nattanmai, NYSDEC Louis DiGuardia, US EPA File **ARCADIS**

465 New Karner Road

First Floor Albany

New York 12205-3839

Tel 518.452.7826

Fax 518.452.7086

APR 08 2609

From: Lisa Collins		Date: April 6, 2009	
Subject:		ARCADIS Project No.:	
January 2009 Semi-Ani	nual Groundwater	AY000386.0001	
Sampling Report			
We are sending you: Attached	☐ Under	Separate Cover Via the Following	g Items:
☐ Shop Drawings ☐ Prints ☐ Other:	☐ Plans ☐ Samples	☐ Specifications ☐ Copy of Letter	☐ Change Order ☐ Reports

Copies	Date	Drawing No.	Rev.	Description	Action*
1	4/6/09			January 2009 Semi-Annual Groundwater Sampling Report, Newstead Superfund Site, Newstead, New York	

Action* A Approved AN Approved As Noted AS As Requested Other:	☐ F File	rect and Resubmit	Resubmit Copies Return Copies Review and Comment
Mailing Method ☐ U.S. Postal Service 1st Class ☐ Certified/Registered Mail ☐ Other:	☐ Courier/Hand Delivery ☐ United Parcel Service (U	☐ FedEx Priority Overnight ☐ FedEx Standard Overnight	☐ FedEx 2-Day Delivery ☐ FedEx Economy
Comments:			

Page:

Infrastructure, environment, buildings

Mr. Ken H. Stroebel, P.G. The Sherwin-Williams Company, Inc 101 Prospect Avenue Northwest Cleveland, OH 44115 465 New Karner Road First Floor Albany New York 12205-3839

ARCADIS

New York 12205-3839 Tel 518.452.7826 Fax 518.452.4398 www.arcadis-us.com

Subject:

January 2009 Semi-Annual Groundwater Sampling Report, Newstead Superfund Site, Newstead, New York

ENVIRONMENT

April 6, 2009

Marc Sanford

518.452.7826 x15

marc.sanford@arcadis-

AY000386.0001

Date:

Contact

Email:

us.com

Our ref:

Dear Mr. Stroebel,

This letter report provides the results of the January 2009 semi-annual groundwater monitoring event at the Newstead Superfund Site, Newstead, New York (Figure 1). This is the first semi-annual event of 2009, and the third sampling event of the Post-Removal Groundwater Monitoring Plan.

Groundwater Sampling Methodology

Groundwater samples were collected on January 20/21, 2009 and February 17, 2009, using low flow sampling techniques (Minimal Drawdown Ground–Water Sampling Procedures; USEPA, 1996) as specified in the USEPA approved Post-Removal Groundwater Monitoring Plan dated February 2007. Monitoring well locations are shown on Figure 2. Monitoring wells MW1A-93, MW3A-08, and MW4A-93 were not sampled during the initial January 20/21, 2009 site visit because of frozen water within the well casings at these locations. These wells were subsequently sampled on February 17, 2009 with the exception of monitoring well MW1A-93 which remained frozen. The cement pad surrounding the base of monitoring well MW1A-93 has heaved and exposed the inner well casing. This well will be inspected prior to the next semi-annual sampling event and repaired.

Groundwater samples were collected from monitoring wells, MW1B-93, MW2A-93, MW2B-93, MW3B-93, and MW5A-07 and analyzed for:

- Volatile Organic Compounds (VOCs) by USEPA SW846-8360/5030;
- Semi-Volatile Organic Compounds (SVOCs) by USEPA SW846-8270/5035
- Metals by USEPA SW846-6000/7000 series
- Total Cyanide by USEPA SW846-9012

Imagine the result

ARCADIS

Mr. Ken H. Stroebel
April, 2009

All samples were analyzed by Test America in Amherst New York. The analytical reports are presented in Appendix A. Groundwater sampling logs are included as Appendix B.

Quality Assurance and Data Validation

The ground water data were validated in accordance with the Quality Assurance project Plan (QAPP) Worksheets #35 and #36. For the laboratory data deliverable, the ARCADIS QA Manager prepared a DUSR (Appendix C). The DUSR was prepared in accordance with the guidelines established by the NYSDEC Division of Environmental Remediation Quality Assurance Group. A preliminary review of the data was performed to verify that all of the necessary paperwork, such as chains-of-custody, traffic reports, analytical reports, and deliverable package were present. The laboratory provided all analytical data in an Analytical Services Protocol (ASP) Category B deliverable format as specified in the QAPP. A detailed quality assurance review as performed to verify the qualitative and quantitative reliability of the data.

The data validation report consists of a section that contains an assessment of the deliverables, followed by a section that describes, on an item-by-item basis, the analytical results containing deficiencies (if any) and any qualifications that should be considered when using the data. The qualifications were made by assessing the results based on the analytical method technical requirements (including QA/QC criteria) and the data validation requirements. The data validation report indicates the data qualification actions taken as a result of these criteria and includes a discussion of the possible bias in the sample results. Based on the data validation review, qualification of data, where appropriate, was made by the use of qualifier codes. These qualifiers serve as an indication of the qualitative and quantitative reliability of the data.

Results

Groundwater Flow Direction

Table 1 includes the water level data collected for the post-removal groundwater monitoring program. Water levels collected from the site monitoring wells on February 17, 2009 for both the shallow and deep monitoring wells were used to develop groundwater elevation contour maps. As shown on Figure 3a and Figure 3b, groundwater contours indicate a westerly direction of groundwater flow consistent

ARCADIS

Mr. Ken H. Stroebel
April, 2009

with the previous January 2008, and July 2008 groundwater flow patterns and flow direction.

Laboratory Analytical Results

VOCs analytical results for the January and February 2009 sampling events are presented in Table 2. VOCs were not detected in groundwater samples at concentrations above the laboratory detection limits, with the exception of toluene at 5.5 ug/L in well MW3A-08.

SVOC analytical results are presented in Table 3. SVOCs were not detected in groundwater samples with the exception of low, estimated concentrations (less than 1 ug/L) naphthalene and/or Di-n-butyl phthalate at monitoring wells MW1B-93, MW3A-08, and MW3B-93. Each of these detections was below the project action limits.

Total and dissolved metals analytical results are presented in Table 4. All detected metals were below the project action limits with the exception of total chromium detected in shallow monitoring well MW5A-07 (218 ug/L). The turbidity in this well was slightly higher than the previous sampling events, with black particulates observed in the water at the time of sampling. All dissolved (filtered) results were non-detect except for barium detected in each well at concentrations similar to the prior sampling events. All results for barium were below the project action limits.

Schedule

ARCADIS will schedule the next semi-annual round of ground water sampling for July 2009.

ARCADIS appreciates the opportunity to be of service to Sherwin-Williams on the Newstead site. If you have any questions regarding this report, please call the undersigned at (518) 452-7826.

ARCADIS

Mr. Ken H. Stroebel
April, 2009

Sincerely,

ARCADIS

Katie Arnold Project Scientist

Marc W. Sanford Project Manager

Copies:

Kevin Lynch, US EPA Michael Walters, US EPA C. Psoras Esq., US EPA Vivek Nattanmai, NYSDEC Louis DiGuardia, US EPA File

Man W. Lafel

Tables

Table 1. Water-level Data, Newstead Superfund Site, Newstead, New York

Well ID	Measuring Point Elevation	Groundwater Elevation									
		Jan-08	Jul-08	Jan-09	Feb-09						
MW1A-93	597.81	593.31	593.2	594.21	589.93						
MW-1B-93	597.06	589.81	591.13	592.37	584.56						
MW2A-93	597.88	593.2	593.08	593.26	589						
MW-2B-93	597.9	589.89	589.91	591.87	584.05						
MW3A-08	597.49	593.61	593.3	593.99	590.12						
MW-3B-93	596.06	589.44	590.1	591.92	585.06						
MW-4A-93	597.24	593.47	593.28	594.24	589.94						
MW-5A-07	595.88	592.15	592.52	593.66	589.65						

BOLD ≃ Depth to ice

Bold values indicate that well water was frozen.

Table 2. Volatile Organic Compounds in Ground Water, Semi-Annual Groundwater Monitoring - January/February, 2009. Newstead Superfund Site, Newstead, New York

	Project Action		MW1A-93			MW1B-93			MW2A-93			MW2B-93			MW3A-08			MW38-93			MW4A-9	3		MW5A-93	3
Volatile Organics	Limit	Jan-08	Jul-08	NA	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Sep-08	Feb-09	Jan-08	Jul-08	Jan-09
1,1-Dichloroethene	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0
2-Butanone	50 ug/L	< 5.0	<50J	NS	< 5.0	< 5.0 J	< 5.0	< 5.0	< 5.0 J	< 5.0	< 5.0	< 5.0 J	< 5.0	< 5.0	< 50 J	<5.0	< 5.0	< 5.0 J	< 5.0	<5.0	<5.0	<5.0	< 5.0 J	< 5.0	< 5.0
Acetone	50 ug/L	< 5.0	< 5.0	NS	< 5.0	< 5.0 J	< 5.0	3.6	<5.0 J	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	2.0 J	< 5.0	< 5.0	< 5.0	<5.0	<5.0	2.5 J	< 5.0	< 5.0	< 5.0
Benzene	1 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	1	<1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	50 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Carbon Disulfide	60 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Chloroform	7 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1 0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Methylene chloride	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0 J	<1.0	< 1.0	< 1.0	< 1.0
Toluene	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.5	< 1.0	< 1.0	< 1.0	<1.0	<1.03	<1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	5 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10 J	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	2 ug/L	< 1.0	< 1.0	NS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	
Total Xylenes	5 ug/L	< 3.0	< 3.0	NS	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	<2.0	< 3.0	< 3.0	< 3.0	<3.0	<3.0	<2.0	< 3.0	< 3.0	< 1.0 < 3.0

Notes:

Results reported in ug/L

Project Action Limits per NYSDEC Ambient Ground Water Quality Standards and Guidance Values as listed in TOGS 1.1.1 (June 1998) and in 6 NYCRR 703.5.

J = Indicates an estimated value.

NS = Did not sample. Monitoring Well MW1a-93 was frozen solid during both sampling events in January and Febuary.

Table 3. Semi-Volatile Compounds in Ground Water, Semi-Annual Groundwater Monitoring - January/February, 2009, Newstead Superfund Site, Newstead, New York

	Project Action		MW1A-93	3		MW1B-93	3		MW2A-9:	3		MW2B-9	3		MW3A-0	8		MW3B-9:	3		MW4A-9:	3		MW5A-0	7
Semi-Volatile Organics	Limit	Jan-08	Jul-08	NA	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-03	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09
2,4-Dimethylphenol	50 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
2.4-Dinitrotoluene	5 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
2,6-Dinitrotoluene	5 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
4-Methylphenol	5 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
4-Nitroaniline	5 ug/L	< 48	< 48	NS	< 48	< 48	<50	<48	<47	<50	<48	<47	<50	<48	<47	< 50	<48	<47	<50	< 48	< 48	< 50	<48	<47	<50
Acenaphthylene	5 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
Benzoic acid	NA	< 140	< 140	NS	< 140	< 140	<150	< 140	< 140	<150	< 140	< 140	<140	< 140	< 140	< 150	< 140	< 140	<150	<140	360 J	< 150	< 140	< 140	<140
Bis (2-chloroethyl) ether	1 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
Bis (2-ethylhexy) phthalate	5 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
Diethyl phthalate	50 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	0.3 J	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10
Di-n-butyl phthalate	50 ug/L	< 10	< 10	NS	< 10	< 10	0.59 J	0.3	<9	<10	<10	<9	<10	0.4	<9	< 10	<10	<9	0.36 J	0.8	< 10	< 10	0.4	<9	<10
Naphthalene	10 ug/L	< 10	< 10	NS	< 10	< 10	0.35 J	<10	<9	<10	<10	< 0.2	0.21 J	<10	<9	< 10	0.3	<9	0.32 J	0.3	< 1.0	< 10	<10	<9	<10
Phenol	1 ug/L	< 10	< 10	NS	< 10	< 10	<10	<10	<9	<10	<10	<9	<10	<10	<9	< 10	<10	<9	<10	< 10	< 10	< 10	<10	<9	<10

Notes:

Results reported in ug/L

Project Action Limits per NYSDEÇ Ambient Ground Water Quality Standards and Guidance Values as listed in TOGS 1.1.1 (June 1998)

and in 6 NYCRR 703.5,

J = Indicates an estimated value.

DNS = Did not sample. Monitoring Well MW1a-93 was frozen solid during both sampling events in January 2009 and Febuary 2009.

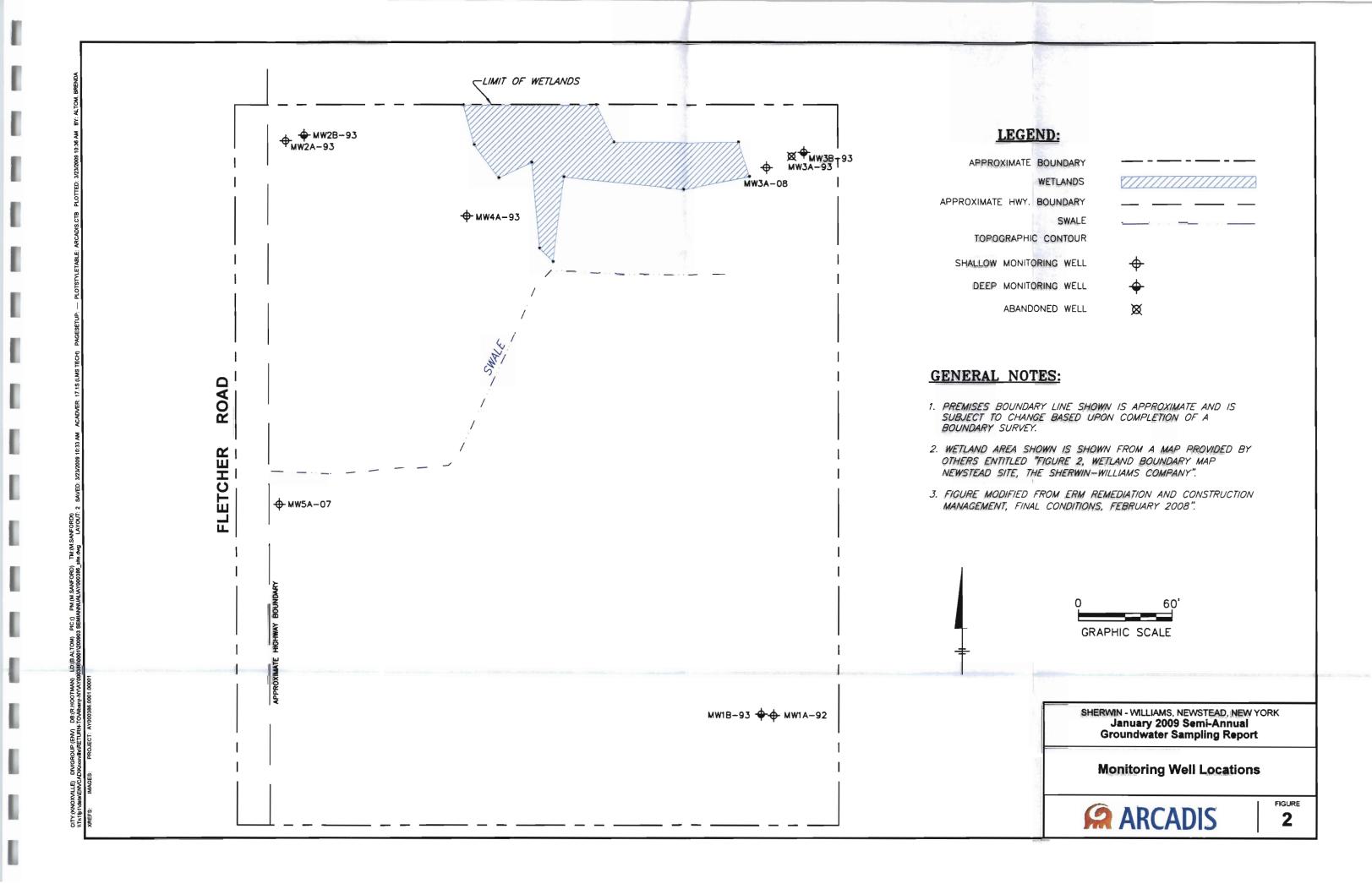
NS = Not sampled

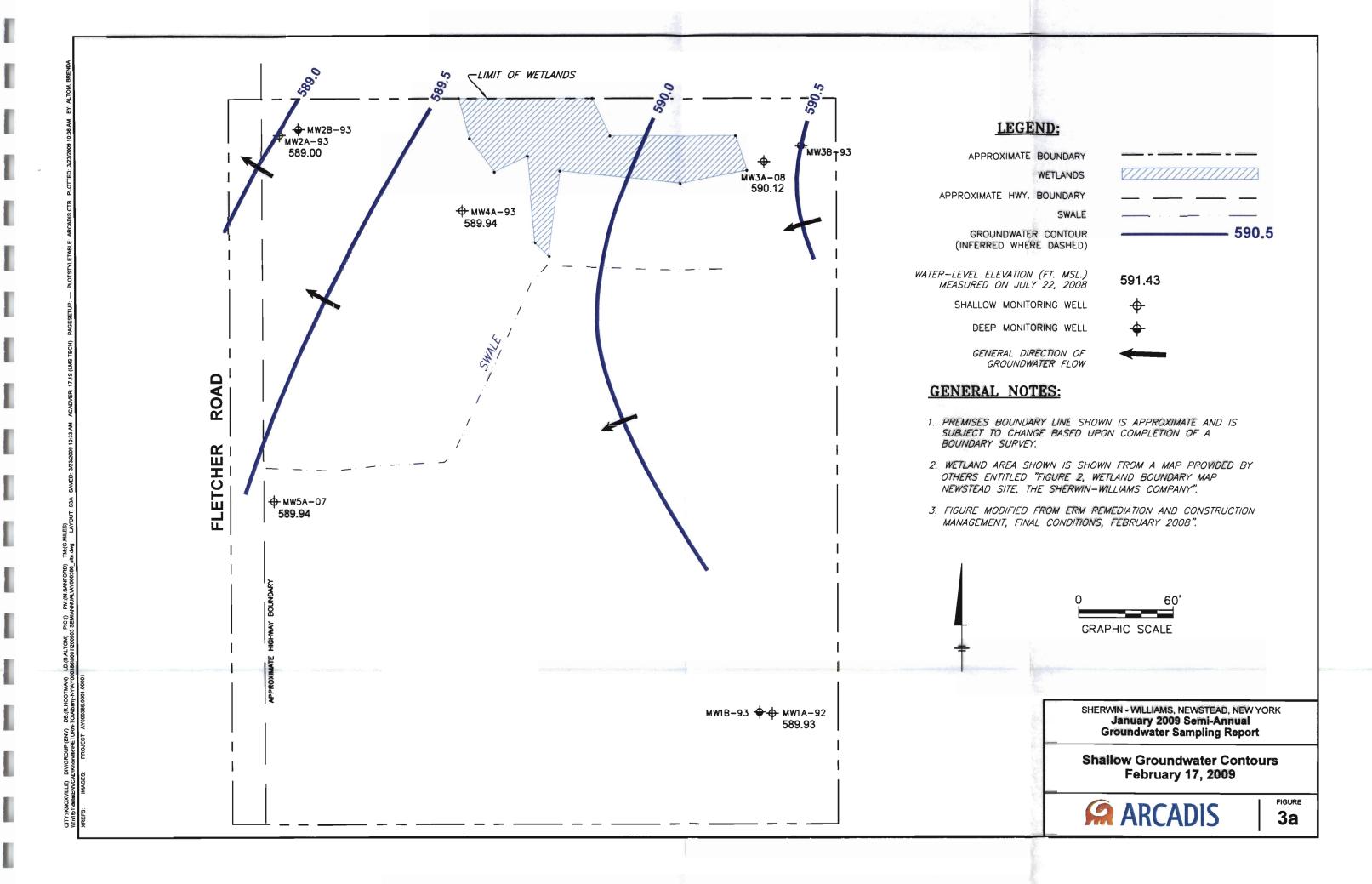
Table 4. Metals in Ground Water, Semi-Annual Groundwater Monitoring - January/February, 2009, Newstead Superfund Site, Newstead, New York

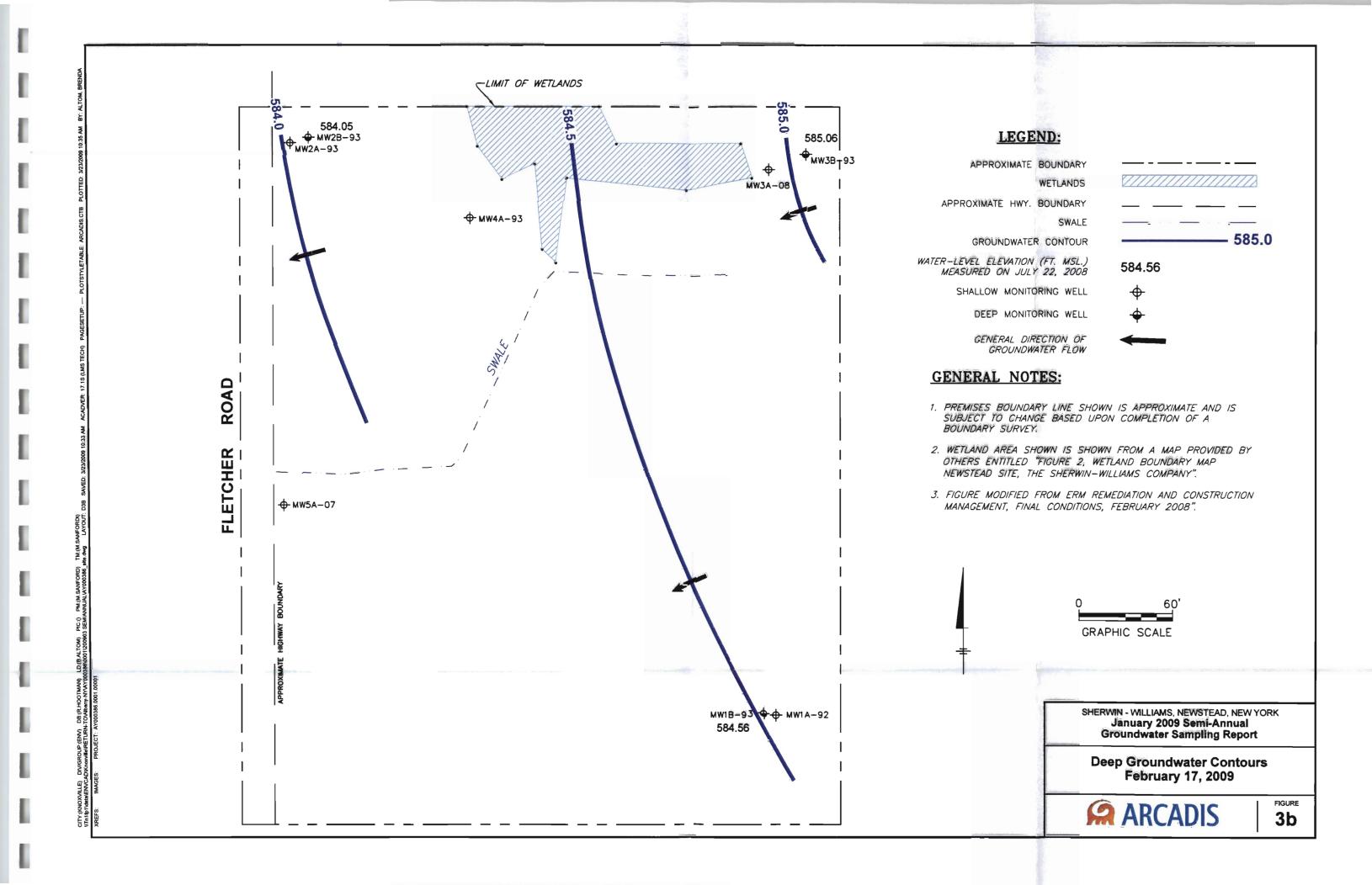
Total Metals Project Action		MW1A-9	3		MW1B-9	3		MW:2A-9:	3		/W2B-93			MW3A-0	8		MW3B-9	3		MW4A-9	13		MW5A-0	7	
	Limit	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09
Barium	1000 ug州	28.2	39.3	NS	71.5	66.2	60.5	151	138	124	35.6	25.2	31.2	23	66.0	103	26.7	35.8	33.2	28.1	29.9	21.9	173	147	138
Cadium	5 ug/l	< 1.0	< 1.0	NS	< 1.0	< 1.0	0.55	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 01 0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.00	< 1.0	< 1.0	< 1.0
Chromium	50 ug/l	< 4.0	15.3	NS	<4.0	<4.0	8.06	<4.0	14.5	1.67	<4.0	<4.0	1.85	<4.0	<4.0	2.36 J	< 4.0	< 4.0	1.78	< 4.0	< 4.0	1.40 J	6.2	7.5	218
Cobalt	NA	< 4.0	< 4.0	NS	<4.0	<4.0	1.4	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	< 04.0	< 4.0	< 4.0	<4.0	< 4.0	< 4.0	1.97 J	< 4.0	< 4.0	<4.0
Copper	200 ug/l	< 10.0	< 10.0	NS	<10.0	<10.0	4.42	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	3.05 J	< 10.0	< 10.0	<10.0	< 10.0	10.4	2.75 J	< 10.0	< 10.0	4.34
Lead	25 ug/i	< 5.0	< 5.0	NS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	5.01	< 5.0	< 5.0	< 5.0
Zinc	2000 ug/l	< 10.0	< 10.0	NS	<10.0	<10.0	7.91	<10.0	<10.0	5.71	<10.0	<10.0	3.85	<10.0	<10.0	8.37 J	< 10.0	< 10.0	3.73	< 10.0	36.4	10.6	< 10.0	< 10.0	6.18
		BOSCOSOO!	TO THE REAL PROPERTY.	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	20000000	SECOND STREET		STATE OF THE PARTY OF THE PART	10000000000000000000000000000000000000	853 USD 1000	TEXTS - 57	2010/09/09	10000000	(C)(C)(C)(C)		-	10000000	581000	10 G 10 S	55000000	1988 (2000)	ALCOHOL: NAME OF THE PARTY OF T	BACKSON		STATE OF THE PARTY.
Soluable Metals	Project Action	1	MW-1A-9	13		MW1B-9	3		MW2A-9	3		/W2B-93			МW3A-0	8	h	W3B-9	3		MW4A-9	3		MW5A-0	7
Soluable Metals	Action Limit	Jan-08		3 Feb-09	Delegange	Jul-08	3 Jan-09	Jan-08	Jul-08	3 Jan-09		/W2B-93 Jul-08	Jan-09	Jan-08		8 Feb-09	Jan-08	Jul-08	3 Jan-09	Jan-08	MW4A-9 Jul-08	3 Feb-09	Jan-08		
Soluable Metals Barium	Action				Delegange	History 1985			Representation of the last					NAME OF TAXABLE PARTY.	-	Discourse Control	Jan-08 23.9		-	Jan-08 26.1	Marine Street	Maria and a second		-	
	Action Limit	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09	Jan-08	Jul-08	Feb-09	Jan-08	Jul-08	Jan-09
Barium	Action Limit 1000 ug/l	Jan-08 27.7	Jul-08 30.3	Feb-09	Jan-08 67.8	Jul-08 64.8	Jan-09 56.4	Jan-08 121	Jul-08 127	Jan-09 119	Jan-08 33.8	Jul-08 27.5	Jan-09 25.9	Jan-08 21.1	Jul-08 52.4	Feb-09 92.8	Jan-08 23.9	Jul-08 21.8	Jan-09 27.6	Jan-08 26.1	Jul-08 32.3	Feb-09 19.8	Jan-08 163	Jul-08 140	Jan-09 129
Barium Cadium	Action Limit 1000 ug/l 5 ug/l	Jan-08 27.7 < 1.0	30.3 < 1.0	Feb-09 NS NS	Jan-08 67.8 < 1.0	Jul-08 64.8 < 1.0	Jan-09 56.4 < 1.0	Jan-08 121 < 1.0	Jul-08 127	Jan-09 119 < 1.0	Jan-08 33.8 < 1.0	Jul-08 27.5 < 1.0	Jan-09 25.9 < 1.0	Jan-08 21.1 < 1.0	Jul-08 52.4 < 1.0	92.8 <1.0	Jan-08 23.9 < 1.0	Jul-08 21.8 < 1.0	Jan-09 27.6 < 1.0	Jan-08 26.1 < 1.0	Jul-08 32.3 < 1.0	19.8 < 1.0	Jan-08 163 < 1.0	Jul-08 140 < 1.0	Jan-09 129 < 1.0
Barium Cadium Chromium	Action Limit 1000 ug/l 5 ug/l 50 ug/l	Jan-08 27.7 < 1.0 < 4.0	30.3 < 1.0 < 4.0 < 4.0	NS NS NS NS	Jan-08 67.8 < 1.0 < 4.0	Jul-08 64.8 < 1.0 < 4.0	Jan-09 56.4 < 1.0 2.27	Jan-08 121 < 1.0 < 4.0	127 < 1.0 < 4.0	Jan-09 119 < 1.0 < 4.0 < 4.0	Jan-08 33.8 < 1.0 < 4.0	Jul-08 27.5 < 1.0 < 4.0	Jan-09 25.9 < 1.0 < 4.0	Jan-08 21.1 < 1.0 < 4.0	Jul-08 52.4 < 1.0 < 4.0	92.8 <1.0 <4.0	Jan-08 23.9 < 1.0 < 4.0	Jul-08 21.8 < 1.0 < 4.0	Jan-09 27.6 < 1.0 1.12 < 4.0	Jan-08 26.1 < 1.0 < 4.0	32.3 < 1.0 < 4.0	19.8 < 1.0 < 4.0	Jan-08 163 < 1.0 < 4.0	Jul-08 140 < 1.0 < 4.0 < 4.0	Jan-09 129 < 1.0 < 4.0
Barium Cadium Chromium Cobalt	Action Limit 1000 ug/l 5 ug/l 50 ug/l NA	Jan-08 27.7 < 1.0 < 4.0 < 4.0	30.3 < 1.0 < 4.0 < 4.0	NS NS NS NS	Jan-08 67.8 < 1.0 < 4.0 < 4.0	Jul-08 64,8 < 1.0 < 4.0 < 4.0	Jan-09 56.4 < 1.0 2.27 < 4.0	Jan-08 121 < 1.0 < 4.0 < 4.0	Jul-08 127 < 1.0 < 4.0 < 4.0	Jan-09 119 < 1.0 < 4.0 < 4.0	Jan-08 33.8 < 1.0 < 4.0 < 4.0	Jul-08 27.5 < 1.0 < 4.0 < 4.0	Jan-09 25.9 < 1.0 < 4.0 < 4.0	Jan-08 21.1 < 1.0 < 4.0 < 4.0	Jul-08 52.4 < 1.0 < 4.0 < 4.0	92.8 <1.0 <4.0 <4.0	Jan-08 23.9 < 1.0 < 4.0 < 4.0	Jul-08 21.8 < 1.0 < 4.0 < 4.0	Jan-09 27.6 < 1.0 1.12 < 4.0	Jan-08 26.1 < 1.0 < 4.0 < 4.0	Jul-08 32.3 < 1.0 < 4.0 < 4.0	Feb-09 19.8 < 1.0 < 4.0 1.17 J	Jan-08 163 < 1.0 < 4.0 < 4.0	Jul-08 140 < 1.0 < 4.0 < 4.0	Jan-09 129 < 1.0 < 4.0 < 4.0

Notes:

Results reported in ug/L


Project Action Limits per NYSDEC Ambient Ground Water Quality Standards and Guidance Values as listed in TOGS 1.1.1 (June 1998) and in 6 NYCRR 703.5.


J = Indicates an estimated value.


NS = Did not sample. Monitoring Well MW1a-93 was frozen solid during both sampling events in January and Febuary.

Figures

3/23/2009 10:08 AM BY: -- PLOTSTYLETABLE: TN1_STANDARD,CTB PLOTTED.

_	ARCADIS	
-		
-		
-		
-		Appendix A Analytical Reports
-		, undividual reports
-		
-		
-		
-		
-		
•		

Appendix B

Groundwater Sampling Logs

ARCADIS Low Flow	G&M Groundwat	ter Sampl	ing Forn	า				Page	of /	
Project/No.	AY000386.00	001		Well	Mw. 189	3	_ Date	1/20/	<u>c9</u>	_
Total depth (ft bmp)	42.80	}	Screened Interva	l l (ft bmp)			Casing Diamet	er (inches)	2"	_
Measuring Po Description	oint. This il il les	casnig	-	Statio Wate	c er Level (ft bmp)	4.69		_		
Pump Intake (ft bm	D) 14 off	bother	-		Sampling Time:	Begin	1550	_ End	1610	_
Weather	rold, 10'	s light	Show	-	Pump type:					
Sampled by :	GM/KA			-	Water Quality M	eter: Y(-	rentel 1	Achteac\	i LaMette	Wib. 2020e
Time	Pumping Rate (mi/min)	DTW (ft bmp)	pH (s.u.) +/- 0.1	TEMP. (C) 3%	Cond. (umhos or ms/cm) 3%	ORP (mV) +/-10	DO (mg/L) 10%	TURB (NTU) 10%	Notes	l'ad
1505	300	380	4.80	1.39	1473	34.9	4.55	14.6		
1510		1,50	10.00	6.03	1,455	47.7	3.58	9.84		-ਫ਼-
1515		Y. 02	1007	732	64/2	64.5	13.07	142		tenhanendry 1
1520	<u> </u>	9.85	10 29	4.15	0.404	06.0	3.88	5.19		Th.
1525	<u> </u>	10 70	10 30	7.49	0.403	73.2	3.10	3.73		T E
1530		12 62	10.2.8	(91)	1403	73.3	3.24	2.02		宣
1535		13,90	10.10	9 14	6.401	80.6	3.32	2 46		
1540	-	15.59	10.05	899	0.399	798	356	1 44	<u> </u>	
1340		12.21	10.03	0.51	0.711	101.	7.)1	7.49		here during
										- \$
										¥ =
								ļ		7
	<u> </u>									Š
]= '
										(Jund (Sa
										٦,٤٠
										7
	<u> </u>								77	7
					_					7
		-								7
							-			1
										1
										-
			V							-
										-
Color:	<u>C</u> Vêçiv					Pump start:	1505			J
Odor:	Nord					Pump stop:				
Appearance:						Gallons reme				
. ippodianos.						Dup(MS/MSI		W/MIC		
Analyses:	sel (lC								

ARCADIS Low Flow	_{G&м} Groundwat	er Sampl	ing Form	1				Page	of	-
Project/No.	AY000386.00	01		_ Well	MUI 3E	93	Date	1/25	109	-
Total depth (ft bmp)	51.40	0	Screened Interva	l i (ft bmp)			Casing Diamete	er (inches)	211	
Measuring Po Description	int Topice	222	_	Statio Wate	; r Level (ft bmp)	4.14		-		
Pump Intake (ft bmp	98,4	5'	-		Sampling Time:	Begin	此处	End	11000	•
Weather	Choud	3 16°	E	-	Pump type	Grundfos				
Sampled by:	GM/KA				Water Quality M	eter: Y.S.	T 55	<u>(2)</u>		
Time	Pumping Rate L (ml/min)	DTW (ft bmp)	pH (s.u.) +/- 0.1	TEMP. (C) 3%	Cond. (umhos or /ms/cm)>3%	ORP (mV) +/-10	DO (mg/L) 10%	TURB (NTU) 10%	Notes	
1625	(144711111)	6.40			1	1 10	1070	3.71	Tech a tici	. c 2
1552		15 20	10.67	7.05	504.0	36	5.64	7.87	KC4, 01-8:72-1	no r
1551		1, 27	303	7 37	F 407	17.3	13,07	5.23		
1400Z		7.00	900	0.52	0.409	10.7	2,56	3.64		
407	1,615mm		9 95	6.06	0.403	4 6	1.56	5.63		
1/01/2	1,010:500	4.32	15. 1.7.	7 68	r. 451	- 2 7	125	(W, 11		
11072		7 20	10 11	1, 43	CUPY	c 6. 8	1007	8.55		
11 / 7		771	17.11	10.71	0 304	- () 1	6.73	2/		
11037		12 11	IN EX	10.34	0.398	-180	1.03	589		
1638		12.00	10.410	3,12	- 117	- 100	i. (34	5.80		
102		13.25	11 41	400	6 105	-9.9	107	5 82		
16 1-7		13 29	1 45	9 70	7 336	- 3.2	1. 28	5.44		
16-7-		12.21	10.00	5.70		1,3,4,4,	Cill	3.77		

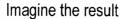
	Marin ha									
								_		

	7100					D		<u> </u>		
Color:	CLKK					Pump start:	,			
Odor:	They.					Pump stop:				
Appearance:	(kin	<u> </u>				Gallons remo		4:6		
A malue = = :						Dup/MS/MSE)	UC P.		
Analyses:										

ARCADIS	S G&M Groundwa	ter Sampl	ing Form	า				Page	of	
Project/No.	AY000386.00	ŕ	Ū		mw. 5	A OT	Date	01/21	108	•
Total depth			Screened		· · · · · · · · · · · · · · · · · · ·		— Casing		1 2 2	•
(ft bmp)	17.2		Interva	il (ft bmp)			Diamete	er (inches)	2"	
Measuring P Description	oint but i	nne com	Ý	Stati Wate	c er Level (ft bmp)	3.28		_		
Pump Intake (ft bm	p)[[[20/2011	<i>-</i>		Sampling Time:	Begin	1045	End	1050	
Weather	coll. sue	W 10°F		_	Pump type	: Grundfos				
Sampled by :	GM/KA			_	Water Quality M	leter: \$\forall \sqrt{\integral}	556 MP	1- 16	tellate late	2020
Time	Pumping Rate	DTW	pΗ	TEMP.	Cond.	ORP	DO	TURB	Notes	
	(ml/min)	(ft bmp)	(s.u.) +/- 0.1	(C) 3%	(umhos or ms/cm) 3%	(mV) +/-10	(mg/L) 10%	(NTU) 10%		
0955	300	3.02	7.28	7.29	1.287	- 1757	1,34	>		
1000	- A .V.	4.55	141	7,14	1,390	-107,1	1.08	182		
1005	200	4.60	1.48	7,24	1,796	-118.5	0.5/	144		
1010		4.60	750	7.27	1.393	-8970	0.53	40.1		
1015		458	7.40	7.00	1.396	-12.	0.44	21.0		
1120		4.170	7.45	7.41	1.281	- [1 7 7	0.40	12.5		
1025		4,100	7 44	7.41	1.379	- 5X X		8,9/		
1030		4.60	7.42	7.43	1,379	- 58.1	0.40	7.20		
1025	-	4.00	7.43	1.77	1.577	37.1	0.51	792		
·			· · · · · · · · · · · · · · · · · · ·							
		†								
		<u> </u>								
		 					_			
			,							
0-1	la sa ti					Duma start	1000			
Color:	hort					Pump start:	0427			
Odor:	MIN	. A Victor				Pump stop:				
Appearance:	plicit p	apann-	(Gallons remo				
Analyses:	Ser roc				r	Dup/MS/MSt	30			
,										

ARCADIS Low Flow	_{G&м} Groundwat	er Sampl	ing Forn	า				Page	of
Project/No.	AY000386.00	01		_ Well	MW-SA	93	Date	1161	19
Total depth (ft bmp)	17.8	3	Screened Interva	l ıl (ft bmp)			Casing Diamet	er (inches)	5
Measuring Po Description	oint it (i		-	Statio Wate	c er Level (ft bmp)	11		_	
Pump Intake (ft bmp		2.5	-		Sampling Time:	Begin	405	_ End	11.14
Weather	· , , , , ,		c. 10"	**************************************	Pump type	: Grundfos			
Sampled by:	GM/KA			-	Water Quality M	eter: 🏸	[O.	76	
Time	Pumping Rate (ml/min)	DTW (ft bmp)	pH (s.u.) +/- 0.1	TEMP. (C)	Cond. (umhos or ms/cm) 3%	ORP (mV) +/-10	DO (mg/L) 10%	TURB (NTU) 10%	Notes
1747								710	FACK WIT
Time								107	
10 12		7,10	4.59	44.32	1.452	- 29,3	2.71	15.5	
1617	2001	1.05	6,54	45.54	1.471	-32.3	0.06	52, 3	
1077	200	77 62	10 81	4563	1437	· 32.5 -450	0.61	53.4	
10 32		701	6.80	46. 22	11100	- 50 3	r 47	2× 10	
10 17		702	151	46.37	1.412	-452	2 2 3	217	
11. 42		7.04	(32	45.52	1.409	- 47.4	0.42	10,1	
1647		7.63	4.51	46.03	1.404	- 45%	0.46	13.1	
16.52		7.10	6.50	45.23	1.405	~55,3	0.30	134131	C
1657		7.02	6.50	46.00	1.391	-57.c	0.27	7.55	
Mr. E		7.05	6.75	45.99	1.293	~(,C.C	0 25	7.77	
					· · · · · · · · · · · · · · · · · · ·				
						M			
	- Hillian Auto-								
	() 1								
	CLAR					Pump start:	(Cir.		
Odor:	Dar					Pump stop:	11 15		
Appearance:_	Sterted	count	Silly E	ir con		Gallons remo		7.0	
res:	1.	resp 3	•			Dup/MS/MSD		,	
-00.									

ARCADIS Low Flow	G&м Groundwat	er Samp	ling Form	1				Page	1 of	_
Project/No.	AY000386.00	001		Well	mw. 2	293	Date	1/2/	09	-
Total depth (ft bmp)	45 8	Ö	Screened Interva	l Il (ft bmp)	-		Casing Diamet	er (inches)	2"	
Measuring Po Description	oint Top of R)C	_	Stati Wate	c er Level (ft bmp)	140	4 5.2	<u>'C</u> .		
Pump Intake (ft bmp) He C.	<u>()</u>	-		Sampling Time:	Begin	1255	End	1304	-
Weather	was so	our is	J'F_	-	Pump type	: Grundfos				
Sampled by :	GM/KA				Water Quality M	leter: YSI	- 55 G			-
Time	Pumping Rate (ml/min)	DTW (ft bmp)	pH (s.u.) +/- 0.1	TEMP.	Cond. (umhos or ms/cm) 3%	ORP (mV) +/-10	DO (mg/L) 10%	TURB (NTU) 10%	Notes	
1135		7.70	7,93	44,46	0431	-132.9	1.64	9.74	Clevily	,,
1140	200	7.75	8:10	4844	0.47	-15V.7 -1515	0.30	207	clearly light	nnntmi
1150		7. 3.	8 10°	39.30	0.440	-150.0	0.30	151	Cleared Eloi	crhamejo Cell
1205		8.42	3,6	44.63 43.33	0.431	-30.8	0.51	35.5		+ puller
1215		8 55	8.17	42.47	0.434	- 54,2	0.3	27.5		(C.S.A.S.C. V
1225		8.56	\$.32 \$.20	42.96	0.435	- 31.1	0.20	15.3		
1235		8.55	8.25	43.10	0 435	- 48.8	0.31	10.49		
1245		8.52	8,25	42.38 42.47	0.4.34	-65.7	0.21	6.82		
1250		8.52	8.21	42.41	0.432	-64.7	0.22	6.70		
Color:	Clear					Pump start:	1125			
Odor:	กงก					Pump stop:	130	5		
Appearance:	Clos	idy				Gallons remo		4.5		
Analyses:										


ARCADIS Low Flow	<mark>3</mark> ց <mark>ա</mark> Groundwat	ter Samp	ling Forr	n				Page	of	
Project/No.	A400038	iv. neci		Well	Mw- 36	93	Date		107	
Total depth (ft bmp)	_18		Screened Interva		18 - 8.	0	Casing Diamet	er (inches)	_2"	
Measuring Po	oint <u>INNO-Sta</u>	ch Casi	<u>^</u>	Stati Wat	c er Level (ft bmp)	349		_		
Pump Intake (ft bmp)12'_		_		Sampling Time:	Begin	1557	End	1615	
Weather	Partly	Cloud	y 30°	· -	Pump type	George	·me			
Sampled by :	KA			-	Water Quality M	eter: Ho	stika	4.22	/ Lamate 2	ززز
Time	Pumping Rate	DTW	pH	TEMP	Cond.	ORP	DO	TURB	Notes	
	(ml/min)	(ft bmp)	(s.u.) +/- 0.1	(C) 3%	(umhos or ms/cm) 3%	(mV) +/-10	(mg/L) 10%	(NTU) 10%		
11 27								315		
1405	100	3,80	7.35	5,6	0.634	. 49	12 4	747		
1410	201	382	7.39	5, 7	C. 549	-51	9.92	312		
1415	100	4.10	7.33	5, 8	0.091	- 48	8.14	307		
1421	200	1.62	7.44	5.5	VII.	-35	14/1	248		
14125	200	4.62	7.50	55	Ciye	-35	y 17	2-73		
1430	200	41,12.	7.50	5.5	180	- 4	7 91	234 141		
1445		4.02	12	5.4	0.659	-23	195	12,2,		
1445		4 102	13	5.4	0.695	23 28	126	82.8		
1450		4.02	751	5,4	0 681	- 30	7.83	64.1		
1455		4.00	7.48	5.4	0.1091	- 24	7.54	60.2		
1500		4.09	7.45	5, 3	0.1092	" 28	7.46	58,3		
1505		4.09	7.40	5.3	0.687	. 19	7.54	50.3		
1510		4. c8	7.34	5.5	0.1035	- 32		44.5		
F20		4.09	730	5.5	0.694	31	7,50	42,5		
15,50		4 61	7.31	5.4	6,645	-31	7.48	35,7		
1540		4,10	7.4	5.4	0690	- 41	7.54	23.80		
1545		4.10	·7.42	5 5 5 5	0.687	-42	7.47	22.40		
1550		4.11	7.41	5,5	0:689	-48	7.41	22.3		
	,									
			-							
			_							
			-							
Color:	Clare			_		Pump start:	1375			
Odor:	neile					Pump stop:	-			
Appearance:	SLICIO	L. Cin	1			Gallons remo				
, ppcalalice.	<u>Jerejor</u>	13 (100	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Dup/MS/MSD				
Analyses:							•			
-	Neato E	sex the	-16-72 J	<u> </u>	furge or So	emple				

G.\TECHNICL\FIELD LOGS\Low Flow Samling Form XLS- Sheet1

ARCADIS Low Flow	G&M Groundwa	ter Samp	ling Forn	n				Page	of	
Project/No.	140003	186.		Well	MW-4A	-93	Date	02/13	7/09	-
Total depth (ft bmp)	15.90		Screened Interva	l I (ft bmp)			Casing Diamete	er (inches)	2"	_
Measuring Po Description	DVC/M	i Million	-	Statio Wate	c er Level (ft bmp)	4.08				
Pump Intake (ft bmp) 4 Gerl	ell bottoin	_		Sampling Time:	Begin	1450	End	1505	-
Weather	cold, 30,	cloudy		-	Pump type	= geopei	np			
Sampled by :	C3M			-	Pump type Water Quality M	leter: 11 /	nt Lam	offe		-
Time	Pumping Rate (ml/min)	DTW (ft bmp)	pH (s.u.) +/- 0.1	TEMP. (C) 3%	Cond. (umhos or ms/cm) 3%	ORP (mV) +/-10	DO (mg/L) 10%	TURB (NTU) 10%	Notes	
1310		4.09							flow through	
1320	50	4.5	7.16	5.	2.11	50	842	85.8	Cil has ein bu	
1335	100	4.55	7.62	.4.3	2-21	29	¥.50	42,7		
1330	105	4.55	7.68	4.6	2.17	25	844	25,9		
1335	15	4.55	7.71	4.3	2.09	20	Y. 6	17.0		
13110	15	4.55	14.4	4.6	2.16	13	18.69	15.0		
1345	75	4.55	7.73	4.0	2.14	12	8.65	11.8		
1350		1,55	7.77	4.1	215	6	7.07	X:0+		
1355	75	4.55		4.	- E-1 - J	3	8.73	9.90		
1400	1 +>	4.55	7,77	-4.1	2.17		8.76	1.4		
								_		
***************************************							1			
							 			
						7				
	15. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ci ¹ 13					40:7			
Color:	tin tin'-	stight				Pump start:				
•	new	<u>-</u>				Pump stop:	1202			
Appearance:						Gallons remo				
Analyses:	See WC			-		Dup/MS/MS[-			

Appendix C

DUSR

The Sherwin-Williams Company, Inc.

Data Usability Summary Report

NEWSTEAD, NEW YORK

Volatiles, Semivolatiles, Metals, and Misc.

SDG: RSA0637

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report: #9899R

Project: AY000386.0001.0001

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #RSA0637 for samples collected in association with the Newstead Superfund Site, Newstead, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

		Sample							
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PEST/ PCB	MET	MISC
MW-1B-93	RSA0637-01	Water	01/20/2009		Х	Х		Х	Х
MW-3B-93	RSA0637-02	Water	01/20/2009		Х	Х		Х	X
DUP-1	RSA0637-03	Water	01/20/2009	MW-3B-93	Х	Х		Х	Х
MW-5A-07	RSA0637-04	Water	01/21/2009		Х	Х		Х	Х
MW-2A-93	RSA0637-05	Water	01/21/2009		Х	Х	_	Х	Х
MW-2B-93	RSA0637-06	Water	01/21/2009		Х	Х		Х	Х
FB012109	RSA0637-07	Water	01/21/2009		Х	Х		Х	Х
Trip Blank	RSA0637-08	Water	01/21/2009		Х	Х		Х	Х

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted	Performance Acceptable		Not	
Items Reviewed		No	Yes	No	Yes	Required	
1.	Sample receipt condition		X		Х		
2.	Requested analyses and sample results		Х		Х		
3.	Master tracking list		Х		Х	-	
4.	Methods of analysis		X		X		
5.	Reporting limits		Х		Х		
6.	Sample collection date		Х		Х		
7.	Laboratory sample received date		Х		· X	-	
8.	Sample preservation verification (as applicable)		х		х		
9.	Sample preparation/extraction/analysis dates		Х		Х		
10.	Fully executed Chain-of-Custody (COC) form		Х		Х		
11.	Narrative summary of QA or sample problems provided		х		х		
12.	Data Package Completeness and Compliance	-	Х		х		

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B (VOCs), and Method 8270C (SVOCs). Data was reviewed in accordance with USEPA National Functional Guidelines of October 1999 and January 2005 and USEPA Region II SOPs associated with USEPA SW-846 Volatile Organic Compounds by SW-846 Method 8260B(SOP HW-24 Revision 2, October 2006) and Validating Semi-volatile Organic Compounds by SW-846 Method 8270 (SOP HW-22 Revision 3, October 2006)

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

9899R 4

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2 s.u.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05). All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

9899R 7

DATA VALIDATION CHECKLIST FOR VOCs

DATA VALIDATI	<u> </u>	OTTE IOT				
VOCs: SW-846 8260B		orted	Perfori Accep		Not Required	
	No	Yes	No	Yes		
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/M	1S)	_			
Tier II Validation						
Holding times		X		Х		
Reporting limits (units)		X		×		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks		Х		×		
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS)		Х		X	_	
Laboratory Control Sample Duplicate(LCSD)		Х		Х		
LCS/LCSD Precision (RPD)		Х	_	Х		
Matrix Spike (MS)		Х		Х		
Matrix Spike Duplicate(MSD)		Х		X	_	
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (%D)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		×		
Instrument tune and performance check		Х		×		
Ion abundance criteria for each instrument used		Х		Х	_	
Internal standard		Х		Х	-	
Compound identification and quantitation			'	•		
A. Reconstructed ion chromatograms		X		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		х		х		
D.Transcription/calculation errors present		Х		Х		
E.Reporting limits adjusted to reflect sample dilutions %RSD_Percent relative difference		X		Х		

[%]RSD Percent relative difference %R Percent recovery

VOCs: SW-846 8260B	Repo	orted	Perform Accep		Not Required	
	No	Yes	No	Yes	. toquirou	
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/M	S)				

RPD %D Relative percent difference Percent difference

SEMIVOLATILE VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

9899R 10

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-3B-93/DUP-1	Di-n-butylphalate	0.36 J	0.33 J	AC
IVIVV-3B-93/DUP-1	Naphthalene	0.32 J	ND(10)	AC

AC Acceptable
NC Not compliant
ND Not detected

9899R 11

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Repo	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/M	IS)			
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		X		Х	
Blanks					
D. Method blanks		X		X	
E. Equipment blanks		Х		Х	_
Laboratory Control Sample (LCS)		Х		X	
Laboratory Control Sample Duplicate(LCSD)		Х		X	
LCS/LCSD Precision (RPD)		X		Х	
Matrix Spike (MS)		X		Х	
Matrix Spike Duplicate(MSD)		Х		X	
MS/MSD Precision (RPD)		X		Х	
Field/Lab Duplicate (RPD)		X	X		
Surrogate Spike Recoveries		Х		X	
Dilution Factor		Х	_	Х	
Moisture Content		X		X	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		X		X	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		X	
B.Quantitation Reports		Х		Х	
C.RT of sample compounds within the established RT windows		×		х	
D.Transcription/calculation errors present		Х		X	
E. Reporting limits adjusted to reflect sample dilutions %RSD_Percent relative difference		×		х	

%RSD Percent relative difference
%R Percent recovery
RPD Relative percent difference
%D Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010B (metals total and dissolved) and 9012A (cyanide). Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL) or method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the IDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (AI), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table.

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	Barium, Dissolved	0.0276	0.0246	11.5%
	Chromium, Dissolved	0.0011 J	ND(0.0040)	AC
MW-3B-93/DUP-1	Copper, Dissolved	0.0014 J	0.0017 J	AC
WW-3B-93/DOF-1	Barium, Total	0.0332	0.0333	0.03%
	Chromium, Total	0.0018 J	0.0021 J	AC
	Zinc, Total	0.0037 J	0.0049 J	AC

ND = Not detected

AC = Acceptable

NC = Non-compliant

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the

control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution performed on sample location MW-1B-93 exhibited %D within the control limit.

8. Furnace Analysis QC

No furnace analyses were performed on the samples.

9. Method of Standard Additions (MSA)

No samples were analyzed following the method of standard additions.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METALS

METALS: SW-846 6010B	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Sp	ectrometry	(ICP)			
Atomic Absorption – Manual Cold Vapor (CV)					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х	Х		_
B. Method Blanks		Х		X	
C. Equipment/Field Blanks		Х	Х		_
Laboratory Control Sample (LCS)		Х	_	Х	
Matrix Spike (MS) %R		X		Х	
Matrix Spike Duplicate (MSD) %R		Х		X	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х	X		
ICP Serial Dilution		Х		Х	
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	_
Tier III Validation					
Initial Calibration Verification		Х		Х	· -
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

[%]R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Cyanide by SW-846 9012A	Water	14 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL) or method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the IDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS analysis performed on sample location MW-1B-93 exhibited recoveries within the control limits

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: EPA SW-846 9012A	Rep	orted	1	mance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		X		Х	
Blanks					
A. Method blanks		Х		X	
B. Equipment blanks		Х		X	
Laboratory Control Sample (LCS) %R		X		X	
Laboratory Control Sample Duplicate(LCSD) %R		Х		X	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х		X	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		X		X	
Field/Lab Duplicate (RPD)	_	Х		X	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		X		Х	
Continuing calibration %Ds		X	_	×	
Raw Data	_	X		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		x		х	

[%]RSD – percent relative difference, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Sample							Compliancy ¹			Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCB/PEST	MET	MISC	
RSA0637-01	01/20/2009	SW-846	MW-1B-93	Water	Yes	Yes		Yes	Yes	
RSA0637-02	01/20/2009	SW-846	MW-3B-93	Water	Yes	Yes		Yes	Yes	
RSA0637-03	01/20/2009	SW-846	DUP-1	Water	Yes	Yes		Yes	Yes	
RSA0637-04	01/21/2009	SW-846	MW-5A-07	Water	Yes	Yes		Yes	Yes	
RSA0637-05	01/21/2009	SW-846	MW-2A-93	Water	Yes	Yes		Yes	Yes	
RSA0637-06	01/21/2009	SW-846	MW-2B-93	Water	Yes	Yes		Yes	Yes	
RSA0637-07	01/21/2009	SW-846	FB012109	Water	Yes	Yes		Yes	Yes	
RSA0637-08	01/21/2009	SW-846	Trip Blank	Water	Yes	Yes		Yes	Yes	

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Mary Ann Doyle

SIGNATURE:

made

DATE: March 23, 2009

PEER REVIEW: Dennis Capria

DATE: March 30, 2009

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project Newstead Post-Removal Groundwater

Project Number: AGM

			Analyti	ical Repo	ort					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSA0637-02 (MW-3B-	-93 - Water)				S	ampled: 01	1/20/09 16:50	Rec	vd: 01/21/	09 15:00
Dissolved Metals by SW 846 Series N	<u>lethods</u>					•				
Barium, Dissolved	0.0276		0 00200	0.000280	mg/L	1.00	01/23/09 23:45	AH	9A22071	6010B
Cadmium, Dissolved	ND		0.00100	0.000330	mg/L	1.00	01/23/09 23:45	AH	9A22071	6010B
Chromium, Dissolved	0.00112	J	0.00400	0.000880	mg/L	1.00	01/23/09 23:45	AH	9A22071	601013
Cobalt, Dissolved	ND		0.00400	0.00106	mg/L	1.00	01/23/09 23:45	AR	9A22071	6010B
Copper, Dissolved	0.00140	J	0.0100	0.00126	mg/L	1.00	01/23/09 23:45	AH	9A22071	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/23/09 23:45	AH	9A22071	6010B
Zinc, Dissolved	ND		0.0100	0.00360	mg/L	1.00	01/23/09 23:45	AH	9/122071	6010B
General Chemistry Parameters										
Total Cyanide	ND		10.0	5.00	ug/L	1.00	01/23/09 11:02	jmm	9A22099	9012A
Semivolatile Organics by GC/MS										
2,4-Dimethylphenol	ND		10	0.96	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
2.4-Dinitrotoluene	ND		10	0.45	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
2,6-Dinitrotoluene	ND		10	0.51	ug/L	1,00	02/12/09 00:42	JLG	9A21080	8270C
4-Methylphenol	ND		10	0.35	սը/ե	1.00	02/12/09 00:42	JLG	9A21080	8270C
4-Nitroaniline	ND		50	0.46	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
Acenaphthylene	ND		10	0.047	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
Benzoic acid	ИD		150	100	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
Bis(2-chloroethyl)ether	ND		10	0.18	ug/L	1.00	02/12/09 00:42	JI.G	9A21080	8270C
Bis(2-ethylhexyl) phthaiate	ИD		10	4.8	ug/L	1.00	02/12/09 00:42	J1.G	9A21080	8270C
Diethyl phthalate	ND		10	0.11	ս g /L	1.00	02/12/09 00:42	JI.G	9A21080	8270C
Di-n-butyl pluthalate	0.36	j	10	0.30	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
Saphthalene	0.32	J	10	0.12	ug/L	1.00	02/12/09 00:42	JLG	9A21080	8270C
Phenol	ND		10	0.45	ug/L	1.00	02/12/09 00:42)1.G	9A21080	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	125 %						02/12/09 00:42	JLG	9A21080	8270C
urr: 2-Fluorahiphenyl (48-120%)	86 %						02/12/09 00:42	JLG	9A21080	8270C
Surr: 2-Fluorophenol (20-120%)	48 %						02/12/09 00:42	JLG	9A21080	8270C
iarr: Nitrobenzene-d5 (46-120%)	90 %						02/12/09 00:42	JLG	9A21080	8270C
Surr: Phenol-d5 (16-120%)	37 %						02/12/09 00:42	JLG	9A21080	8270C
Surr: p-Terphenyl-d14 (24-136%)	91%						02/12/09 00:42	JLG	9A21080	8270€
Total Metals by SW 846 Series Metho	ds									
3arium	0.0332		0.00200	0.000280	mg/L	1.00	01/23/09 19:12	TWS	9A22068	6010B
admium	NĎ		0.00100	0.000330	mg/L	1.00	01/23/09 19:12	TWS	9A22068	6010B
Chromium	0.00178	J	0.00400	0.000880	mg/L	1.00	01/23/09 19:12	TWS	9A22068	6010B
Cobalt	ND		0.00400	0.00106	mg/L	1.00	01/23/09 19:12	TWS	9A22068	6010B
Copper	ND		0.0100	0.00126	mg/L	1.00	01/23/09 19:12	TWS	9A22068	601013
.ead	ND		0.00500	0.00290	mg/L	1.00	01/23/09 19:12	TWS	9A22068	6010B
line	0.00373	1	0.0100	0.00360	mg/L,	1.00	01/23/09 19:12	TWS	9A22068	601033
olatile Organic Compounds by EPA	8260B									
, I-Dichloroethene	ND		1.0	0.29	ug/L	1.00	01/31/09 20:48	PQ	9A31011	826013
-Butanone	ND		5.0	13	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
cetone	ND		5.0	1.3	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
ien ze'ne	ND		1.0	0.16	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
romochloromethane	КD		1.0	0.12	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
arbon disulfide	ND		1.0	0.19	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
hlorobenzene	ИD		1.0	0.32	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
Moroform	ND		1.0	0.34	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
thylbenzene	ND		1.0	0.18	սը/ե_	1.00	01/31/09 20.48	PQ	9A31011	8260B
fethylene Chloride	ND		1.0	0.44	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B
oluene	ND		10	0.51	ug/L	1.00	01/31/09 20:48	PQ	9/31011	8260B
richloroethene	ND		1.0	0.18	ug/L	1.00	01/31/09 20:48	PQ	9/31011	8260B
finyl chloride	ND		1.0	0.24	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

	Analytical Report											
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method		
Sample ID: RSA0637-02 (MW-3B-9	,	ont.			S	ampled: 01	/20/09 16:50	Rec	vd: 01/21/	09 15:00		
Volatile Organic Compounds by EPA	8260B - cont.											
Xylenes, total	ND		3.0	0.93	ug/L	1.00	01/31/09 20:48	PQ	9A31011	8260B		
Surr: 1,2-Dichloroethane-d4 (66-137%)	102 %						01/31/09 20:48	PQ	9A31011	8260B		
Surr. 4-Bromofluorobenzene (73-120%)	99 %						01/31/09 20:48	PQ	9A31011	8260B		
Surr: Dibromofhoromethane (70-130%)	103 %						01/31/09 20.48	PO	9A31011	\$260B		
Surr: Toluene-d8 (71-126%)	100 %						01/31/09 20:48	PQ	9A31011	8260B		

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analyti	cal Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-03 (DUP-1 -	Water)				s	ampled: 01	/20/09	Rec	vd: 01/21/	09 15:00
Dissolved Metals by SW 846 Series M	lethods									
Barium, Dissolved	0.0246		0.00200	0.000280	mg/L	1.00	01/23/09 23:50	AH	9A22071	6010B
Cadmium, Dissolved	ND		0.00100	0.000330	mg/L	1.00	01/23/09 23:50	AH	9A22071	6010B
Chromium, Dissolved	ND		0.00400	0.000880	mg/L	1.00	01/23/09 23:50	Ald	9A22071	6010B
Cobalt, Dissolved	ND		0.00400	0.00106	mg/L	1.00	01/23/09 23:50	ΑĬſ	9A22071	6010B
Copper, Dissolved	0.00174	3	0.0100	0.00126	mg/L	1.00	01/23/09 23:50	AH	9A22071	6010B
cad	ND		0.00500	0.00290	mg/L	1.00	01/23/09 23:50	AH	9A22071	6010B
Zinc, Dissolved	ND		0 0 1 0 0	0.00360	mg/L	1.00	01/23/09 23:50	AH	9A22071	6010B
General Chemistry Parameters					,g. ~					
	ND		10.0	5.00		1.00	01/23/09 11:03	jmm	9A22099	9012A
Total Cyanide	ND		10.0	3.00	ug/L	1.00	01/25/05 11:05	Jillan	,,,,,,,	201411
Semivolatile Organics by GC/MS						1.00	02/12/00 01:06		0421080	8270C
,4-Dimethylphenol	ND		10	0.94	ug/L	1.00	02/12/09 01:05	JLG	9A21080	
,4-Dinitrotolucne	ND		10	0.44	ug/L	1,00	02/12/09 01:05	JLG	9A21080	8270C
,6-Dinitrotoluene	ND		10	0.50	ug/L	1.00	02/12/09 01:05	JLG	9A21080	8270C
-Methylphenol	ND		10	0.35	ug/L	1.00	02/12/09 01:05	11.G	9A21080	8270C
-Nitroaniline	ИD		50	0.45	ug/L	1.00	02/12/09 01:05	Jl.G	9A21080	8270C
Acenaphthylene	ND		10	0.046	ug/L	1.00	02/12/09 01:05	JLG	9A21080	8270C
Benzoic acid	ND		150	98	ng/L	1.00	02/12/09 01:05	JLG	9A21080	8270C
Bis(2-chloroethyl)ether	ND		10	0.18	ug/L	1.00	02/12/09 01:05	JL.G	9A21080	82700
is(2-ethylhexyl) phthalate	ND		10	4.7	ug/L	1.00	02/12/09 01:05	JLG	9A21080	82700
Diethyl phthalate	ND		10	0.11	ug/L	1.00	02/12/09 01:05	JLG	9A21080	82700
i-n-butyl phthalate	0.33	j	10	0.29	ug/L	1.00	02/12/09 01:05	JLG	9A21080	82700
/aphthalene	ND		10	0.11	ug/L	1.00	02/12/09 01:05	JLG	9A21080	82700
thenol	ND		10	0.44	ug/L	1.00	02/12/09 01:05	JLG	9A21080	82700
urr: 2,4,6-Tribramophenal (52-132%)	123 %			••••	118/13		02/12/09 01:05	JLG	9A21080	8270C
•	87 %						02/12/09 01:05	JLG	9A21080	8270C
ur: 2-1-luorobiphenyl (48-120%)	47%						02/12/09 01:05	JLG	9A21080	8270C
ur: 2-Fluorophenol (20-120%)							02/12/09 01:05	JLG	9A21080	8270C
urr: Nitrobenzene-d5 (46-120%)	92 %						02/12/09 01:05		9A21080	8270C
ur; Phenol-d5 (16-120%)	36 %							JLG	9A21080	8270C
iarr: p-Terphenyl-d14 (24-136%)	91%						02/12/09 01:05	JLG	9A21080	5270C.
otal Metals by SW 846 Series Metho	<u>ods</u>									
Barium	0.0333		0.00200	0.000280	mg/l.	1.00	01/23/09 19:17	TWS	9A22068	601013
Tadmium	ИD		0.00100	0.000330	mg/L,	1.00	01/23/09 19:17	TWS	9A22068	601013
Thromium	0.00210	J	0.00400	0.000880	mg/L	1.00	01/23/09 19:17	TWS	9A22068	60101
Obalt	ND		0.00400	0.00106	mg/L	1.00	01/23/09 19:17	TWS	9A22068	60101
Copper	ND		0.0100	0.00126	mg/l_	1.00	01/23/09 19:17	TWS	9A22068	60101
ead	ND		0.00500	0.00290	mg/L	3.00	01/23/09 19:17	TWS	9A22068	6010B
line	0.00498	j	0.0100	0.00360	mg/L	1.00	01/23/09 19:17	TWS	9A22068	6010B
olatile Organic Compounds by EPA	8260B				_					
.1-Dichloroethene	MD		1.0	0.29	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E
-Butanone	ND		5.0	1,3	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E
	ND		5.0	1.3	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E
cetone	ND		1.0	0.16	ug/L	1,00	01/31/09 21:15	PQ	9A31011	8260E
romochloromethane	ND CIN		1.0	0.12	ug/L	1.00	01/31/09 21:15	PQ	9A31011	82601
arbon disulfide	ND		1.0	0.19	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E
	ND		1.0	0.32	-	1.00	01/31/09 21:15	PQ	9A31011	8260E
hlorobenzene					ug/L	1.00	01/31/09 21:15		9A31011	82601
Thioroform	ND		1.0	0.34	ug/L			PQ	9A31011	8260E
ahylbenzene	ND		1.0	0.18	ug/L	1.00	01/31/09 21:15	PQ		
Aethylene Chloride	ND		1.0	0 44	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260F
oluene	ND		0.1	0.51	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260B
Trichloroethene	ND		1.0	0.18	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E
Vinyl chloride	ИD		1.0	0.24	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260E

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-03 (DUP-1 - Volatile Organic Compounds by EPA	,				S	ampled: 01	/20/09	Rec	vd: 01/21/	09 15:00
Xylenes, total	ND		3.0	0.93	ug/L	1.00	01/31/09 21:15	PQ	9A31011	8260B
Surv: 1,2-Dichloroethane-d4 (66-137%)	100 %				-		01/31/09 21:15	PQ	9A31011	8260B
Surr: 4-Bromofluorobenzene (73-120%)	99 %						01/31/09 21:15	PQ	9A31011	8260B
Surr: Dibromofluoromethane (70-130%)	104%						01/31/09 21:15	PQ	9A31011	8260B
Surr: Toluene-d8 (71-126%)	98 %						01/31/09 21:15	PQ	9A31011	8260B

ARCADIS U.S., Inc. - Albany, NY 465 New Karner Road

Albany, NY 12205

Work Order: RSA0637

Received: Reported: 01/21/09

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analyti	cal Repo	rt					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSA0637-04 (MW-5A-	07 - Water)				S	ampled: 01	/21/09 10:45	Rec	vd: 01/21/	09 15:00
Dissolved Metals by SW 846 Series M										
Barjum, Dissolved	0.129		0.00200	0.000280	mg/L	1.00	01/23/09 23:55	AH	9A22071	6010B
Cadmium, Dissolved	ND		0 00 100	0 000330	mg/L	1.00	01/23/09 23:55	AH	9A22071	601013
Chromium, Dissolved	ND		0.00400	0.000880	mg/L	1.00	01/23/09 23:55	AH	9/122071	6010B
Cobalt, Dissolved	ND		0.00400	0.00106	mg/L	1.00	01/23/09 23:55	HA	9A22071	6010B
Copper, Dissolved	ND		0.0100	0.00126	mg/L	1.00	01/23/09 23:55	AH	9A22071	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/23/09 23:55	AΗ	9A22071	6010B
Zinc, Dissolved	ND		0.0100	0.00360	mg/L	1.00	01/23/09 23:55	AH	9A22071	6010B
General Chemistry Parameters										
Total Cyanide	ND		10.0	5.00	սց/Լ	1.00	01/23/09 11:03	jmm	9A22099	9012A
Semivolatile Organics by GC/MS										
2,4-Dimethylphenol	ND		10	0.93	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
2.4-Dinitrototuene	ND		10	0.43	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
2,6-Dinitrotoluene	ND		10	0.49	ng/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
4-Methylphenol	ND		10	0.34	ug/L	3.00	02/12/09 01:28	JLG	9A21080	8270C
4-Nitroaniline	ND		50	0.44	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
Acenaphthylene	ND		10	0.045	ug/L	1.00	02/12/09 01:28	JŁG	9A21080	8270C
Benzoic acid	ND		140	97	սբ/Լ	1.00	02/12/09 01:28	JLG	9A21080	8270C
Bis(2-chlorocthyl)ether	ND		10	0.17	սջ/Լ	1.00	02/12/09 01:28	JLG	9A21080	8270C
	ND		10	4.6	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
Bis(2-ethylhexyl) pluhalate	ND		10	0.11	ug/L	1.00	02/12/09 01:28	JLG.	9A21080	8270C
Diethyl phthalate	ND		10	0.29	սց/Լ	1.00	02/12/09 01:28	JLG	9A21080	8270C
Di-n-butyl phthalate	ND		10	0.11	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
Naphthalene	ND		10	0.43	ug/L	1.00	02/12/09 01:28	JLG	9A21080	8270C
Phenol	127 %			0	ugi		02/12/09 01:28	Jr.G	9A21080	8270C
Surr: 2,4,6-Tribromophenal (52-132%)							02/12/09 01:28	JLG	9A21080	8270C
Surr: 2-1-luorobiphenyl (48-120%)	86 %						02/12/09 01:28	JLG	9A21080	8270C
Surr: 2-Fluorophenol (20-120%)	45 %						02/12/09 01:28	JLG	9A21080	8270C
Surr: Nitrobenzene-d5 (46-120%)	87%						02/12/09 01:28	JLG	9A21080	8270C
Surr: Phenol-d5 (16-120%)	34%						02/12/09 01:28	JLG JLG	9A21080	8270C
Surr: p-Terphenyl-d14 (24-136%)	89%						02/12/07 01:20	31,0	,,,,,,,,,,,	
Total Metals by SW 846 Series Metho								*****	0.4.22060	6010B
Barium	0.138		0.00200	0.000280	mg/l.	1.00	01/23/09 19:22	TWS	9A22068	
Cadmium	ND		0.00100	0.000330	mg/L	1.00	01/23/09 19:22	TWS	9A22068	601013
Chromium	0.218		0.00400	0.000880	mg/L	1.00	01/23/09 19:22	TWS	9A22068	6010B
Cobalt	ND		0.00400	0.00106	mg/L	1.00	01/23/09 19:22	TWS	9A22068	6010B
Copper	0.00434	3	0.0100	0.00126	mg/L	1.00	01/23/09 19:22	TWS	9A22068	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/23/09 19:22	TWS	9A22068	6010B
Zinc	0.00618	J	0.0100	0.00360	mg/L	1.00	01/23/09 19:22	TWS	9A22068	6010B
Volatile Organic Compounds by EPA	8260B									***
1.1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
2-Butanone	ND		5.0	1.3	ug/L	1.00	01/31/09 21:43	PQ	9A31011	826013
Acetone	ND		5.0	1.3	սց/L	1.00	01/31/09 21:43	PQ	9A31011	826013
Benzene	ND		1.0	0.16	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Bromochloromethane	ND		1.0	0.12	ug/L	1.00	01/31/09 21:43	PQ	9A31011	826013
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Chlorobenzene	ND		1,0	0.32	ug/L	1.00	01/31/09 21:43	PQ	9/31011	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Ethylbenzene	ND		1.0	0.18	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	01/31/09 21:43	PQ	9A31011	826013
Tolucue	ND		1.0	0.51	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Trichloroethene	ND		1.0	0.18	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

ARCADIS U.S., Inc. - Albany, NY 465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-04 (MW-5A-0	•	ont.			S	ampled: 01	/21/09 10:45	Rec	vd: 01/21/	09 15:00
Volatile Organic Compounds by EPA	8260B - cont.									
Xylenes, total	ND		3.0	0.93	ug/L	1.00	01/31/09 21:43	PQ	9A31011	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	104 %						01/31/09 21:43	PQ	9A31011	8260B
Surr: 4-Bromofluorobenzene (73-120%)	100 %						01/31/09 21:43	PQ	9A31011	8260B
Surr: Dibromofluoromethane (70-130%)	105 %						01/31/09 21:43	PQ	9A31011	8260B
Surr: Toluene-d8 (71-126%)	100 %						01/31/09 21:43	PO	9A31011	8260B

ARCADIS U.S., Inc. - Albany, NY 465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analyti	ical Repo	rt					
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSA0637-05 (MW-2A-	-93 - Water)				S	ampled: 01	/21/09 11:05	Rec	vd: 01/21/	09 15:00
Dissolved Metals by SW 846 Series M	<u>fethods</u>									
Barium, Dissolved	0.119		0.00200	0.000280	mg/L	1.00	01/24/09 00:11	AH	9A22071	601013
Cadmium, Dissolved	ND		0.00100	0.000330	mg/L	1.00	01/24/09 00:11	АH	9A22071	6010B
Chromium, Dissolved	ND		0.00400	0.000880	mg/L	1.00	01/24/09 00:11	AH	9A22071	6010B
Cobalt, Dissolved	ND		0.00400	0.00106	mg/L	1.00	01/24/09 00:11	ΛН	9A22071	6010B
Copper, Dissolved	ND		0.0100	0.00126	mg/L	1.00	01/24/09 00:11	AH	9A22071	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/24/09 00:11	AH	9A22071	6010B
Zine, Dissolved	0.00460	J	0.0100	0.00360	mg/i,	1.00	01/24/09 00:11	AH	9A22071	6010B
General Chemistry Parameters					-					
Total Cyanide	ND		10.0	5.00	ug/L	1.00	01/23/09 11:06	imm	9A22099	9012A
Semivolatile Organics by GC/MS								J		
2,4-Dmethylphenol	ND		10	0.95	ug/L	1,00	02/12/09 01:52	JLG	9A21080	8270C
2,4-Dinitrotoluene	ND		10	0.44	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
2,6-Dinitrotoluene	ND		10	0.50	บย/ไ.	1.00	02/12/09 01:52	JLG	9A21080	8270C
4-Methylphenol	ND		10	0.35	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
4-Nitroaniline	ND		50	0.45	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Acenaphthylene	ND		10	0.047	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Benzoic acid	ND		150	99	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Bis(2-chloroethyl)ether	ND		10	0.18	ng/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Bis(2-ethylhexyl) phthalate	ND		10	4.7	-	1.00	02/12/09 01:52	JLG	9A21080	8270C
Diethyl phthalate	ND		10	0.11	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Di-n-butyl phthalate	ND		10	0.30	սջ/Լ	1.00	02/12/09 01:52		9A21080	8270C
Vaphthalene	ND		10	0.11	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Phenol	ND		10	0.11	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
	126%		10	0.44	ug/L	1.00	02/12/09 01:52	JLG	9A21080	8270C
Surr: 2,4,6-Tribromophenol (52-132%)								JLG		8270C
Surr: 2-Fluorohyphenyl (48-120%)	86 %						02/12/09 01:52	JLG	9A21080	8270C
Surr: 2-Fluorophenol (20-120%)	43 %						02/12/09 01:52	JLG	9/10/80	
Surr: Nitrohenzene-d5 (46-120%)	88 %						02/12/09 01:52	ЛG	9A21080	8270C
Surr: Phenol-d5 (16-120%)	35 %						02/12/09 01:52	JLG	9A21080	8270C
Surr: p-Terphenyl-dl4 (24-136%)	85 %						02/12/09 01:52	JLG	9A21080	8270C
Fotal Metals by SW 846 Series Metho	_									
3arium	0.124		0.00200	0.000280	mg/L	1.00	01/23/09 19:27	TWS	9∧22068	6010B
Cadmium	ИN		0.00100	0.000330	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Chromium	0.00167	1	0.00400	0.000880	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Cobalt	ND		0.00400	0.00106	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Copper	ND		0.0100	0.00126	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Zinc	0.00571	J	0.0100	0.00360	mg/L	1.00	01/23/09 19:27	TWS	9A22068	6010B
Volatile Organic Compounds by EPA										
,1-Dichloroethene	ND	D03	4.0	1.2	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
-Butanone	ND	D03	20	5.3	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
Acetone	ND	1003	20	5.4	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
Benzene	ND	D03	4.0	0.66	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
romochloromethane	ND	D03	4,0	0.49	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
arbon disulfide	ND	D03	4.0	0.78	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
Thlorobenzene	ND	D03	4.0	13	ug/L	4.00	01/31/09 22:11	PQ	9A31011	826013
hloroform	ND	D03	4.0	1.3	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
thylbenzene	ND	D03	4.0	0.74	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
fethylene Chloride	ND	D03	4.0	1.8	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
oluene	ND	D03	4.0	2.0	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
richloroethene	CIN	D03	4.0	0.70	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B
Vinyl chloride	ND	D03	4.0	0.97	ug/L	4.00	01/31/09 22:11	PQ	9A31011	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Desire

Reported: 03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-05 (MW-2A-9	,	ont.			S	ampled: 01	/21/09 11:05	Rec	vd: 01/21/	09 15:00
Xylenes, total	ND	D03	12	3.7	ug/L	4.00	01/31/09 22:11	PO	9A31011	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	102 %	1203					01/31/09 22:11	PQ	9A31011	8260B
Surr: 4-Bromofluorobenzene (73-120%)	96 %	1203					01/31/09 22:11	PQ	9A31011	8260B
Surr: Dibromofluoromethane (70-130%)	104 %	1003					01/31/09 22:11	PQ	9A31011	8260B
Surr: Toluene-d8 (71-126%)	99 %	1203					01/31/09 22:11	PQ	9A31011	8260B

465 New Karner Road Albany, NY 12205

Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analyti	cal Repo	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-06 (MW-2B	1-93 - Water)				s	Sampled: 01/21/09 12:55			vd: 01/21/	09 15:00
Dissolved Metals by SW 846 Series	Tethods					•				
Barium, Dissolved	0.0259		0.00200	0.000280	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
Cadmium, Dissolved	ND		00100.0	0.000330	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
Chromium, Dissolved	ND		0.00400	0.000880	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
Cobalt, Dissolved	ND		0.00400	0.00106	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
Copper, Dissolved	ND		0.0100	0.00126	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
Lead	ND		0.00500	0.00290	mg/L	1.00	01/24/09 00:16	АН	9A22071	6010B
Zinc, Dissolved	ND		0.0100	0.00360	mg/L	1.00	01/24/09 00:16	AH	9A22071	6010B
General Chemistry Parameters										
Total Cyamde	ИD		10.0	5.00	ug/L	1,00	01/23/09 11:07	jmm	9A22099	9012A
Semivolatile Organics by GC/MS								•		
2,4-Dimethylphenol	ИŊ		10	0.92	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
2,4-Dinitrotoluene	ИN		10	0.43	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
2,6-Dinitrotoluene	ND		10	0.49	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
4-Methylphenol	ND		10	0.34	ng/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
4-Nitroaniline	ND		50	0.44	սը/Լ	1.00	02/12/09 02:15	JLG	9A21080	8270C
Acenaphthylene	ND		10	0.045	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
Benzoic acid	ND		140	96	ug/L	1.00	02/12/09 02:15	JL.G	9A21080	8270C
Bis(2-chloroethyl)ether	ND		10	0.17	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
Bis(2-ethylhexyl) phthalate	ND		10	4.6	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
Diethyl phthalate	ND		10	0.11	սց/∟	1.00	02/12/09 02:15	JLG	9A21080	8270C
Di-n-butyl phthalate	ND		10	0.29	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
Naphthalene	0.21	J	10	0.11	ug/L	1,00	02/12/09 02:15	JLG	9/12/1080	8270C
Phenol	ND	•	10	0.43	ug/L	1.00	02/12/09 02:15	JLG	9A21080	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	122 %		,,	0.10	ug 1.	1.00	02/12/09 02:15	JLG	9A21080	8270C
Surr: 2-Fluorobiphenyl (48-120%)	80 %						02/12/09 02:15	JLG	9A21080	8270C
Surv: 2-1-harrophenol (20-120%)	40 %						02/12/09 02:15	JLG	9A21080	8270C
Surr: Nitrobenzene-d5 (46-120%)	81%						02/12/09 02:15	JLG	9A21080	8270C
Surr: Phenol-d5 (16-120%)	30 %						02/12/09 02:15	1LG	9A21080	8270C
Surr: p-Terphenyl-dl 4 (24-136%)	84%						02/12/09 02:15	JLG	9A21080	8270C
Total Metals by SW 846 Series Methy							02 12/07 04.15	JEO	//L1000	
	0.0312		0.00200	0.000200		1.00	01/22/00 10:22	muro	9A22068	6010B
Barium	0.0312 ND		0.00200	0.000280	m€\Γ	1.00	01/23/09 19:32	TWS		6010B
Cadmium	0.00185	J	0.00100	0.000330	mg/L	1.00	01/23/09 19.32	TWS	9A22068	
Chromium	0.00185 ND	,	0.00400 0.00400	0.000880	mg/L	1.00	01/23/09 19:32 01/23/09 19:32	TWS	9A22068 9A22068	6010B 6010B
Cobalt	ND		0.0100	0.00106	mg/L	1,00	01/23/09 19:32	TWS TWS	9A22068	6010B
Copper Lead	ND		0.00500	0.00120	mg/L	1,00	01/23/09 19:32	TWS	9A22068	6010B
Zinc	0.00385	3	0.0100	0.00360	mg/L	1.00	01/23/09 19:32	TWS	9A22068	6010B
Volatile Organic Compounds by EPA		,	0.0100	0.00500	mg/L	1.00	01/25/05 15:52	1 W S	77122000	00108
1,1-Dichloroethene	ND		1.0	0.29		1.00	01/31/09 22:38	00	9A31011	8260B
2-Butanone	ND		5.0	1.3	ug/L	1.00	01/31/09 22:38	PQ	9A31011	826013
Acetone	ND		5.0	1.3	ug/L	1.00	01/31/09 22:38	PQ	9/31011	8260B
Benzene	ND		1.0	0.16	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Bromochloromethane	ND		1.0	0.13	ug/L	1.00	01/31/09 22:38	PQ	9A31011	826013
Carbon disulfide	ND		0.1	0.12	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Chlorobenzene	ND		1.0	0.19	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Ethylbenzene	ND		1.0	0.18	ug/L		01/31/09 22:38	PQ	9A31011	8260B
•	ND		1.0		ug/L	1.00	01/31/09 22:38	PQ		8260B
Methylene Chloride Toluene				0.44	ug/L	1.00		PQ	9A31011	
	ND		1.0	0.51	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Trichloroethene Visual ablanida	ND		1.0	0.18	ug/L	1.00	01/31/09 22:38	PQ	9A31011	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	01/31/09 22:38	PQ	9/31011	826013

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analytical Report										
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Difution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample 1D: RSA0637-06 (MW-2B-9 Volatile Organic Compounds by EPA	-	ont.			S	ampled: 01	/21/09 12:55	Rec	vd: 01/21/	09 15:00
Xylenes, total Surr: 1,2-Dichloroethane-d4 (66-137%) Surr: 4-Bromofluorobenzene (73-126%)	ND 102 % 98 %		3.0	0.93	սե/Լ	1.00	01/31/09 22:38 01/31/09 22:38 01/31/09 22:38	PQ PQ PQ	9A31011 9A31011 9A31011	8260B 8260B
Surr: Dibromofluoromethane (70-130%) Surr: Toluene-d8 (71-126%)	106 % 99 %						01/31/09 22:38 01/31/09 22 38	PQ PQ	9A31011 9A31011	8260B 8260B

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Sample ID: RSA0637-07 (FB 012109 - Water) Dissolved Metals by SW 846 Series Methods Barium, Dissolved 0.000350 J 0.00200 0.000280 mg Cadmium, Dissolved ND 0.00400 0.000880 mg Chromium, Dissolved ND 0.00400 0.000880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg	₃ /L 1 00	Date Analyzed /21/09 13:30	Analyst Rec	Seq/ Batch	Method
Sample ID: RSA0637-07 (FB 012109 - Water)	Sampled: 01	/21/09 13:30		Batch	Method
Dissolved Metals by SW 846 Series Methods Barium, Dissolved 0.000350 J 0.00200 0.00280 mg Cadmium, Dissolved ND 0.00100 0.000330 mg Chromium, Dissolved ND 0.00400 0.00880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg	g/L 1.00 g/L 1.00		Rec		
Barium, Dissolved 0.000350 J 0.00200 0.00280 mg Cadmium, Dissolved ND 0.00100 0.000330 mg Chromium, Dissolved ND 0.00400 0.000880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg	g/L 1.00 g/L 1.00			vd: 01/21/	09 15:00
Cadmium, Dissolved ND 0.00100 0.000330 mg Chromium, Dissolved ND 0.00400 0.000880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg	g/L 100	01/24/09 00:31			
Cadmium, Dissolved ND 0.00100 0.000300 mg Chromium, Dissolved ND 0.00400 0.000880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg	₃ /L 1 00	01/44/07 00.71	AH	9A22072	6010B
Chromium, Dissolved ND 0.00400 0.00880 mg Cobalt, Dissolved ND 0.00400 0.00106 mg		01/24/09 00:31	AH	9A22072	6010B
Cobalt, Dissolved ND 0.00400 0.00106 mg		01/24/09 00:31	Alf	9A22072	6010B
		01/24/09 00:31	AΗ	9A22072	6010B
Copper, Dissolved ND 0.0100 0.00126 mg		01/24/09 00:31	AH	9A22072	601013
l.cad ND 0.00500 0.00290 mg	/L 1.00	01/24/09 00:31	AH	9A22072	6010B
Zinc, Dissolved ND 0.0100 0.00360 mg	/L 1.00	01/24/09 00:31	AB	9A22072	6010B
General Chemistry Parameters					
Total Cyanide ND 10.0 5.00 ug/	/L. 1.00	01/23/09 11:08	jmm	9A22099	9012A
Semivolatile Organics by GC/MS					
1,2,4,5-Tetrachlorobenzene ND 4.9 0.79 ug/	/L 1,00	02/12/09 02 38	JLG	9A21080	8270C
2,4-Dimethylphenol ND 10 0.93 mg/		02/12/09 02:38	JLG	9A21080	8270C
2,4-Dinitrotoluene ND 10 0.43 ug/		02/12/09 02:38	JLG	9A21080	8270C
2,6-Dinitrotoluene ND 10 0.49 ug/		02/12/09 02:38	JLG	9A21080	8270C
4-Methylphenol ND 10 0.34 ug/		02/12/09 02:38	JI.G	9A21080	8270C
4-Nitroaniline ND 50 0.44 ug/		02/12/09 02:38	JLG	9A21080	8270C
Accephithylene ND 10 0.046 ug/		02/12/09 02:38	JLG	9A21080	8270C
Benzoic acid ND 150 97 ug/		02/12/09 02:38	JLG	9A21080	8270C
Bis(2-chloroethyf)ether ND 10 0.17 ug/		02/12/09 02:38	JLG	9A21080	8270C
Bis(2-ethylhexyl) phthalate ND 10 4.6 ug/		02/12/09 02:38	JLG	9A21080	8270C
Diethyl phthalate ND 10 0.11 ug/		02/12/09 02:38	JLG	9A21080	8270C
Di-n-butyl phthalate ND 10 0.29 ug/		02/12/09 02:38	JLG	9A21080	8270C
Naphthalene ND 10 0.11 ug/		02/12/09 02:38	JLG	9A21080	8270C
Phenol ND 10 0.43 ug/		02/12/09 02:38	JLG	9A21080	8270C
Surr: 2,4,6-Tribromophenol (52-132%) 126 %		02/12/09 02:38	JLG	9A21080	8270C
Surr: 2-Fluorobiphenyl (48-120%) 90 %		02/12/09 02:38	JLG	9A21080	\$270C
Surr: 2-Fluorophenol (20-120%) 50 %		02/12/09 02:38	Jl.G	9A2J080	8270C
Surr: Nurobenzene-d5 (46-120%) 99 %		02/12/09 02:38	Jl.G	9A21080	8270C
Surr: Phenol-d5 (16-120%) 37 %		02/12/09 02:38	Jl.G	9A21080	8270C
Surr: p-Terphenyt-d14 (24-136%) 91 %		02/12/09 02:38	JLG	9A21080	8270C
Total Metals by SW 846 Series Methods					
Barium ND 0.00200 0.000280 mg/	/L 1.00	01/23/09 19:50	TWS	9A22068	6010B
Cadmium ND 0.00100 0.000330 mg/		01/23/09 19:50	ZWZ	9A22068	6010B
Chromium ND 0.00400 0.000880 mg/		01/23/09 19:50	TWS	9A22068	6010B
Cohalt ND 0.00400 0,00106 mg/		01/23/09 19:50	TWS	9A22068	6010B
Copper ND 0.0100 0.00126 mg/	/L 1.00	01/23/09 19:50	TWS	9A22068	6010B
Lead ND 0.00500 0.00290 mg/	1.00	01/23/09 19:50	TWS	9A22068	6010B
Zinc ND 0.0100 0.00360 mg/	1.00	01/23/09 19:50	TWS	9A22068	601013
Volatile Organic Compounds by EPA 8260B					
i,1-Dichloroethene ND 1.0 0.29 ug/l	L 1.00	01/31/09 23:06	PQ	9A31011	826013
2-Butanone ND 5,0 1.3 ug/1		01/31/09 23:06	PQ	9A31011	8260B
Acetone ND 5.0 1.3 ug/l		01/31/09 23:06		9A31011	8260B
Benzene ND 1.0 0.16 ug/1		01/31/09 23:06	PQ	9A31011	8260B
Bromochloromethane ND 1.0 0.12 ug/I		01/31/09 23:06	PQ	9A31011	8260B
Carbon disulfide ND 1.0 0.19 ug/l		01/31/09 23:06	PQ	9A31011	8260B
Chlorobenzene ND 1.0 0.32 ug/1		01/31/09 23:06	-	9A31011	826013
Chlorofonn ND 1.0 0.34 ug/l		01/31/09 23:06	PQ	9A31011	8260B
Ethylbenzene ND 1.0 0.18 ug/I		01/31/09 23:06	PQ	9A31011	8260B
Methylene Chloride ND 1.0 0.44 ug/l		01/31/09 23:06	PQ	9A31011	8260B
Toluene ND 1.0 0.51 ug/l		01/31/09 23:06	PQ	9A31011	8260B
Trichloroethene ND 1.0 0.18 ug/L		01/31/09 23:06	PQ	9A31011	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analytical Report										
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-07 (FB 01210	9 - Water) - co	ont.			s	ampled: 01	/21/09 13:30	Rec	vd: 01/21/	09 15:00
Volatile Organic Compounds by EPA	8260B - cont.									
Vinyt chloride	ND		1.0	0.24	ug/L	1.00	01/31/09 23:06	PQ	9A31011	8260B
Xylenes, total	ND		3.0	0.93	ug/L	1.00	01/31/09 23:06	PQ	9A31011	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	105 %						01/31/09 23:06	PQ	9A31011	8260B
Surr: 4-Bromofluorobenzene (73-120%)	101 %						01/31/09 23:06	PQ	9A31011	8260B
Surr: Dibramafluoromethane (70-130%)	108 %						01/31/09 23:06	PQ	9A31011	8260B
Surr: Toluene-d8 (71-126%)	101 %						01/31/09 23:06	PQ	9A31011	8260B

ARCADIS U.S., Inc. - Albany, NY 465 New Karner Road Albany, NY 12205 Work Order: RSA0637

Received:

01/21/09

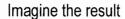
Reported:

03/04/09 09:27

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			Analytic	al Repo	rt					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSA0637-08 (TRIP BLANK - Water)				S	ampled: 01	/21/09	Recvd: 01/21/09 15:00			
Yolatile Organic Compounds by EPA	8260B					•				
1,1-Dichloroethene	ND		1.0	0.29	ng/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
2-Butanone	ND		5.0	1.3	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Acetone	ND		5.0	1.3	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Benzene	ND		1.0	0.16	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Bromochloromethane	ND		1.0	0.12	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Ethylbenzene	ND		1.0	0.18	աց/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Methylene Chloride	ИD		1.0	0.44	սը/Լ	1.00	01/31/09 23:34	PQ	9A31011	8260B
Tolnene	ND		1.0	0.51	ug/L	1.00	01/31/09 23:34	PQ	9A31011	8260B
Trichloroethene	ND		1.0	0.18	սջ/Լ	1.00	01/31/09 23:34	PQ	9A31011	8260B
Vinyl chloride	ND '		1.0	0.24	ոց/Լ	1.00	01/31/09 23:34	PQ	9A31011	8260B
Xylenes, total	ND		3.0	0.93	ug/L	1.00	01/31/09 23:34	PQ	9A31011	826013
Surr: 1,2-Dichtoroethane-d4 (66-137%)	105 %				•		01/31/09 23:34	PQ	9A31011	8260B
Surr: 4-Bromojluorobenzene (73-120%)	101 %						01/31/09 23:34	PQ	9A31011	8260B
Surr: Dibromoftuoromethane (70-130%)	105 %						01/31/09 23:34	PQ	9A31011	8260B
Surr: Toluene-d8 (71-126%)	100 %						01/31/09 23:34	PQ	9A31011	8260B


TestAmerica Chain of Temperature on Receipt **Custody Record** Drinking Water? Yes □ No M THE LEADER IN ENVIRONMENTAL TESTING TAL-4124 (1007) Client Project Manager Chain of Custody Number Marc Sanford 087032 65 New Karner Rd. Page Zip Code 12205 Site Contact Analysis (Attach list if man space is needed) Candace Fox TCL BN M5270 TCN M9012 Sp. Het. ERM (1) SPUDAS M. 8240 Project Name and Location (State) Carrier/Waybill Number Sharwin Williams: Special Instructions/ Conditions of Receipt AY 000386,0001 Containers & Matrix TCL BN Preservatives Sample I.D. No. and Description NaOH ZnAC Date Time (Containers for each sample may be combined on one line) Š χ 2 Feld Blank not 01/20/09 2 X filtered - preparative MW-18-93 MSD 2 2 was vinsed poor MW-3B-93 1650 X 2 2 to colbeton. DUPχ 2 2 2 X 1045 2 2 2 2 MW-21-93 χ 2 MW-2B-93 2 2 FB 012109 330 χ 2

Dock to the All of the						
Possible Hazard Identification Non-Hazard	Unknown	Sample Disposal Return To Client	Disposal By Lab	Archive For Months	(A fee may be assessed if samples are forger than 1 month)	etained
Turn Around Time Required 24 Hours	□ omed	Fordard	QC Requirements (Specify)		
1. Religgished By Milly Milly	Date 153	O Time	1. Received By	allengo	1/21/09	15:00
2. Relinquished By	Date	Time	2. Received By		Date	Time
3. Relinquished By	Date	Time	3. Received By		Date	Time
Comments				302.000	<u> </u>	

2

Trip Blank

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy

The Sherwin-Williams Company, Inc..

Data Usability Summary Report

NEWSTEAD, NEW YORK

Volatiles, Semivolatiles, Metals, and Misc.

SDG: RSB0564

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report: #9900R

Project: AY000386.0001.0001

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #RSB0564 for samples collected in association with the Newstead Superfund Site, Newstead, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis							
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PEST/ PCB	MET	MISC			
MW-4A-93	RSA0564-01	Water	02/17/2009		Х	Х		Х	X			
MW-3A-08	RSA0564-02	Water	02/17/2009		X	Х		Х	Х			
Trip Blank	RSA0564-03	Water	02/17/2009		Х	Х		Х	Х			

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Repo	rted	Perfor Accep	mance otable	Not
Items Reviewed		No	Yes	No	Yes	Required
Sample receipt condition			Х		Х	
2. Requested analyses and sam	ple results		X		X	
Master tracking list			Χ		X	
4. Methods of analysis			Χ		Χ	
5. Reporting limits			Х		Х	
6. Sample collection date			Х		Х	
7. Laboratory sample received of	late		Х		Х	
Sample preservation verificati applicable)	on (as		Х		X	
9. Sample preparation/extraction	/analysis dates		X		Х	
10. Fully executed Chain-of-Custo	ody (COC) form		Х		Х	
Narrative summary of QA or provided	sample problems		Х		х	
12. Data Package Completeness Compliance	s and		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B (VOCs), and Method 8270C (SVOCs). Data was reviewed in accordance with USEPA National Functional Guidelines of October 1999 and January 2005 and USEPA Region II SOPs associated with USEPA SW-846 Volatile Organic Compounds by SW-846 Method 8260B(SOP HW-24 Revision 2, October 2006) and Validating Semi-volatile Organic Compounds by SW-846 Method 8270 (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2 s.u.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05). All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

6

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	TRY (GC/N	IS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		X	
Blanks				-	
A. Method blanks		X		X	
B. Equipment blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		X	
Laboratory Control Sample Duplicate(LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х		X	
Matrix Spike Duplicate(MSD)		Х		×	
MS/MSD Precision (RPD)		Х		Х	_
Field/Lab Duplicate (%D)					Х
Surrogate Spike Recoveries		Х		X	·-
Dilution Factor		X		X	
Moisture Content		Х		Х	
Tier III Validation			•		
System performance and column resolution		Х	_	Х	_
Initial calibration %RSDs		Х		X	
Continuing calibration RRFs		Х		х	
Continuing calibration %Ds		Х		X	_
Instrument tune and performance check		Х		X	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		X		Х	
Compound identification and quantitation					
A.Reconstructed ion chromatograms		Х		Х	
B.Quantitation Reports		Х		X	
C.RT of sample compounds within the established RT windows		Х		х	
D.Transcription/calculation errors present		X		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

VOCs: SW-846 8260B	Rep	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	
GAS CHROMATOGRAPHY/MASS SPECTROMET	ΓRY (GC/M	IS)			

%RSD Percent relative difference
%R Percent recovery
RPD Relative percent difference
%D Percent difference

SEMIVOLATILE VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/N	MS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		Х		X	
Blanks					
D. Method blanks		Х		Х	
E. Equipment blanks					Х
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		X	
MS/MSD Precision (RPD)		X		X	_
Field/Lab Duplicate (RPD)	_				X
Surrogate Spike Recoveries		Х		X	
Dilution Factor		X		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		X	
Continuing calibration RRFs		Х		X	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		X		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B.Quantitation Reports		Х		Х	
C.RT of sample compounds within the established RT windows		Х		х	
D.Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD Percent relative difference
%R Percent recovery
RPD Relative percent difference
%D Percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010B (metals total and dissolved) and 9012A (cyanide). Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- · Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- · Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL) or method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the IDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table.

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution performed on sample location MW-3A-08 exhibited %D within the control limit.

8. Furnace Analysis QC

No furnace analyses were performed on the samples.

9. Method of Standard Additions (MSA)

No samples were analyzed following the method of standard additions.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METALS

METALS: SW-846 6010B	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Sp	pectrometry	(ICP)			
Atomic Absorption – Manual Cold Vapor (CV)					
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks					X
Laboratory Control Sample (LCS)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)					X
ICP Serial Dilution		Х		Х	
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х	_	Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Cyanide by SW-846 9012A	Water	14 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL) or method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the IDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

All analytes associated with MS/MSD recoveries were within control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: EPA SW-846 9012A	Rep	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
Miscellaneous Instrumentation						
Tier II Validation	-					
Holding times		Х		Х		
Reporting limits (units)		Х		X	_	
Blanks				•		
A. Method blanks		X		Х		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		X		Х		
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		X		
Matrix Spike (MS) %R		X		X		
Matrix Spike Duplicate(MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		X		
Field/Lab Duplicate (RPD)					Х	
Dilution Factor		Х		Х		
Moisture Content		Х		Х	_	
Tier III Validation						
Initial calibration %RSD or correlation coefficient		Х		X	-	
Continuing calibration %Ds		Х		×	-	
Raw Data		Х		Х		
Transcription/calculation errors present		Х		×	-	
Reporting limits adjusted to reflect sample dilutions		х		х		

[%]RSD – percent relative difference, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Sample					Compliancy ¹					Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCB/PEST	MET	MISC	
RSB0564-01	02/17/2009	SW-846	MW-4A-93	Water	Yes	Yes		Yes	Yes	
RSB0564-02	02/17/2009	SW-846	MW-3A-08	Water	Yes	Yes		Yes	Yes	
RSB0564-03	02/17/2009	SW-846	Trip Blank	Water	Yes	Yes		Yes	Yes	

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Mary Ann Doyle

SIGNATURE:

mode

DATE: March 23, 2009

PEER REVIEW: Dennis Capria

DATE: March 30, 2009

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

ARCADIS U.S., Inc. - Albany, NY 465 New Karner Road Albany, NY 12205 Work Order: RSB0564

Received: Reported: 02/18/09

03/19/09 15:35

....

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analyte Sample ID: RSB0564-01 (MW-4A- <u>Dissolved Metals by SW 846 Series M</u> Barium, Dissolved	Sample Result 93 - Water)	Data Qualifiers	Rpt	1507		Dilution	Date		Seq/	
Sample ID: RSB0564-01 (MW-4A- Dissolved Metals by SW 846 Series M Barium, Dissolved		Qualifiers	v							
Dissolved Metals by SW 846 Series M Barium, Dissolved	93 - Water)		Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
<u>Dissolved Metals by SW 846 Series M</u> Barium, Dissolved					S	ampled: 02	/17/09 14:50	Rec	vd: 02/18/	09 14:20
Barium, Dissolved										
	0.020		0.0020	0.00028	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Cadmium, Dissolved	ND		0.0010	0.00033	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Chromium, Dissolved	ND		0.0040	0.00088	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Cobalt, Dissolved	0.0012	J	0.0040	0.0011	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Copper, Dissolved	ND		0.010	0.0013	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Lead	ND		0.0050	0.0029	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
Zinc, Dissolved	0.0043	J	0.010	0.0036	mg/L	1.00	02/20/09 17:15	TWS	9B19046	6010B
General Chemistry Parameters										
Total Cyanide	ND		10	5.0	ug/L	1.00	02/20/09 08:25	jmm	9B19013	9012A
Semivolatile Organics by GC/MS					-0-			-		
	ND		10	0.35	ug/L	1.00	03/03/09 22:39	3LG	9B18080	8270C
4-Methylphenol	ND		10	0.95	-	1.00	03/03/09 22:39	JLG	9B18080	8270C
2,4-Dimethylphenol	ND		10	0.44	ug/L ug/L	1.00	03/03/09 22:39	1re	9B18080	8270C
2,4-Dinitrotohuene	ND ND		10	0.50	ug/L ug/L	1.00	03/03/09 22:39	JLG	9B18080	8270C
2,6-Dinitrotoluene			50	0.45	-	1.00	03/03/09 22:39	JLG	9B18080	8270C
4-Nitroaniline	ND		10	0.047	ug/L	1.00	03/03/09 22:39	JLG	9B18080	8270C
Acenaphthylene	ND		150	99	ug/L	1.00	03/03/09 22:39	JLG	9B18080	82700
Benzoic acid	ND				ug/L	1.00	03/03/09 22:39	JLG	9B18080	82700
Bis(2-chloroethyl)ether	ND		10	0.18	ug/L		03/03/09 22:39	JLG	9B18080	82700
Bis(2-ethylhexyl) phthalate	ND		10	4.7	ug/L	1.00	03/03/09 22:39		9B18080	82700
Diethyl phthalate	ND		10	0.11	ug/L	1.00		JLG	9B18080	8270C
Di-n-butyl phthalate	ND		10	0.30	ug/L	1.00	03/03/09 22:39	JLG	9B18080	82700
Naphthalene	ND		10	0.11	ug/L	1.00	03/03/09 22:39	JLG		82700
Phenol	ND		10	0.44	ug/L	1.00	03/03/09 22:39	JLG	9B18080	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	87 %						03/03/09 22:39	JLG	9B18080	8270C
Surr: 2-Fluorobiphenyl (48-120%)	76 %						03/03/09 22:39	JLG	9B18080	
Surr: 2-Fluorophenol (20-120%)	34%						03/03/09 22:39	JLG	9B18080	8270C
Surr: Nitrobenzene-d5 (46-120%)	73 %						03/03/09 22:39	JLG	9B18080	8270C
Surr: Phenol-d5 (16-120%)	26 %						03/03/09 22:39	JLG	9B18080	8270C
Surr: p-Terphenyl-d14 (24-136%)	38 %						03/03/09 22:39	JLG	9B18080	8270C
Total Metals by SW 846 Series Metho	ods.									
Barium	0.022		0.0020	0.00028	mg/L	1.00	02/20/09 16:03	ΑH	9B19056	6010B
Cadmium	ND		0.0010	0.00033	mg/L	1.00	02/20/09 16:03	AH	9B19056	6010E
Chromium	0.0014	J	0.0040	0.00088	mg/L	1.00	02/20/09 16:03	ΑH	9B19056	6010B
Cobait	0.0020	1	0.0040	0.0011	mg/L	1.00	02/20/09 16:03	AH	9B19056	6010B
Copper	0.0028	J	0.010	0.0013	mg/L	1.00	02/20/09 16:03	AH	9B19056	6010B
Lead	0.0050	J	0.0050	0.0029	mg/L	1.00	02/20/09 16:03	AH	9B19056	6010B
Zinc	0.011		0.010	0.0036	mg/L	1.00	02/20/09 16:03	AH	9B19056	6010B
Volatile Organic Compounds by EPA	8260B				-					
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
	ND		5.0	1.3	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
2-Butanone Acetone	2.5	J	5.0	1.3	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Acetone Benzene	ND	-	1.0	0.16	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Bromochloromethane	ND		1.0	0.12	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
	ND		1.0	0.32	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Chlorobenzene	ND		1.0	0.34	ug/L ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Chloroform	ND		1.0	0.18	•	1.00	03/02/09 23:35	ND	9C02020	8260B
Ethylbenzene			1.0	0.44	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B
Methylene Chloride	ND				ug/L	1.00	03/02/09 23:35	אם מא	9C02020	8260E
Toluene	ND		1.0	0.51	ug/L		03/02/09 23:35	ND	9C02020	8260E
Trichloroethene Viny! chloride	ND ND		1.0	0.18 0.24	ug/L ug/L	1.00 1.00	03/02/09 23:35	ND	9C02020	8260E

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSB0564

Received:

02/18/09

Reported:

03/19/09 15:35

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analytical Report											
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method	
Sample ID: RSB0564-01 (MW-4A-)3 - Water) - c	ont.			s	ampled: 02	/17/09 14:50	Rec	vd: 02/18/	09 14:20	
Volatile Organic Compounds by EPA	8260B - cont.					•					
Xylenes, total	ND		2.0	0,66	ug/L	1.00	03/02/09 23:35	ND	9C02020	8260B	
Surr: 1,2-Dichloroethane-d4 (66-137%)	98 %				-		03/02/09 23:35	ND	9C02020	8260B	
Surr: 4-Bromofluorobenzene (73-120%)	99 %						03/02/09 23:35	ND	9C02020	8260B	
Surr: Toluene-d8 (71-126%)	95 %						03/02/09 23:35	ND	9C02020	8260B	

465 New Karner Road Albany, NY 12205 Work Order: RSB0564

Received: Reported: 02/18/09

03/19/09 15:35

Project: Newstead Post-Removal Groundwater

Project Number: AGM

			•	ical Repo						
	Sample	Data	Rpt			Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSB0564-02 (MW-3A-	-08 - Water)				s	ampled: 02	/17/09 15:57	Rec	vd: 02/18/	09 14:20
Dissolved Metals by SW 846 Series M	•				v					.,
Barium, Dissolved	0.093		0.0020	0.00028	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
Cadmium, Dissolved	ND		0.0010	0.00033	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
Chromium, Dissolved	ND		0.0040	0.00088	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
Cobalt, Dissolved	ND		0.0040	0.0011	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
Copper, Dissolved	ND		0.010	0.0013	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
Load	ND		0.0050	0.0029	mg/L	1,00	02/20/09 17:33	TWS	9B19046	6010B
Zinc, Dissolved	ND		0.010	0.0036	mg/L	1.00	02/20/09 17:33	TWS	9B19046	6010B
General Chemistry Parameters					····					
Total Cyanide	ND		10	5,0	ug/L	1.00	02/20/09 08:26	jmm	9B19013	9012A
Semivolatile Organics by GC/MS	ND		10	5,0	ug/L	1,00	02/20/07 00:20	Jessini	7517415	701211
	ND		10	0.25	,,	1.00	02/02/00 22:02		9B18080	8270C
4-Methylphenol	ND ND		10 10	0,35 0,94	ug/L	1.00 1.00	03/03/09 23:02 03/03/09 23:02	JLG	9B18080	8270C
2,4-Dimethylphenol					ug/L			JLG	9B18080	8270C
2,4-Dinitrotoluene	ND		10	0.44	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
2,6-Dinitrotoluene	ND		10 50	0.50	ug/L	1.00	03/03/09 23:02 03/03/09 23:02	JLG	9B18080	8270C 8270C
I-Nitroaniline	ND			0.45	ug/L	1.00		JLG		
Acenaphthylene	ND		10	0.046	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Benzoic acid	ND		150	98	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
3is(2-chloroethyl)ether	ND		10	0.18	ug/L	1.00	03/03/09 23:02	ırg	9B18080	8270C
3is(2-ethylhexyl) phthalate	ND		10	4.7	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Diethyl phthalate	ND		10	0.11	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Di-n-butyl phthalate	ND		10	0.29	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Raphthalene	ND		10	0.11	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Phonol	ND		10	0.44	ug/L	1.00	03/03/09 23:02	JLG	9B18080	8270C
Surr: 2,4,6-Tribromophenol (52-132%)	93 %						03/03/09 23:02	JLG	9B18080	8270C
urr: 2-Fluorobiphenyl (48-120%)	85 %						03/03/09 23:02	JLG	9B18080	8270C
iurr: 2-Fluorophenol (20-120%)	39 %						03/03/09 23:02	JLG	9B18080	8270C
iurr: Nitrobenzene-d5 (46-120%)	84 %						03/03/09 23:02	JLG	9B18080	8270C
Surr: Phenol-d5 (16-120%)	30 %						03/03/09 23:02	JLG	9B18080	8270C
Surr: p-Terphenyl-d14 (24-136%)	46 %						03/03/09 23:02	JLG	9B18080	8270C
Total Metals by SW 846 Series Metho	<u>ds</u>									
Barium	0.10		0.0020	0.00028	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Cadmium	ND		0,0010	0,00033	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Chromium	0.0024	3	0.0040	0.00088	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Cobalt	ND		0.0040	0.0011	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Copper	0.0030	J	0.010	0.0013	mg/L	1,00	02/20/09 16:08	AH	9B19056	6010B
ead	ND		0.0050	0.0029	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Zine	0.0084	J	0.010	0.0036	mg/L	1.00	02/20/09 16:08	AH	9B19056	6010B
Volatile Organic Compounds by EPA	8260B									
,1-Dichloroethene	ND		1,0	0.29	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
-Butanone	ND		5.0	1.3	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
Acetone	2.0	j	5.0	1.3	ug/L	1,00	03/02/09 23:57	ND	9C02020	8260B
Benzene	ND		1.0	0.16	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
romochloromethane	ND		1.0	0.12	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
arbon disulfide	ND		1.0	0.19	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
Phlorobenzene	ND		1.0	0.32	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
'hloroform	ND		1.0	0.34	ug/L ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
thylbenzene	ND		1.0	0.34	ug/L ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
fethylene Chloride	ND		1.0	0.44	ug/L ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
oluene	5.5		1.0	0.44	•	1.00	03/02/09 23:57	ND ND	9C02020	8260B
owene richloroethene	ND		1.0	0.31	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B
rientoroethene Tinyl chloride	ND		1.0	0.16	ug/L ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

465 New Karner Road Albany, NY 12205 Work Order: RSB0564

Received:

02/18/09

Reported:

03/19/09 15:35

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analytical Report											
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method	
Sample ID: RSB0564-02 (MW-3A-0)8 - Water) - c	ont.			s	ampled: 02	/17/09 15:57	Rec	d: 02/18/	09 14:20	
Volatile Organic Compounds by EPA	8260B - cont.					-					
Xylenes, total	ND		2.0	0.66	ug/L	1.00	03/02/09 23:57	ND	9C02020	8260B	
Surr: 1,2-Dichloroethane-d4 (66-137%)	95 %				-		03/02/09 23:57	ND	9C02020	8260B	
Surr: 4-Bromofluorobenzene (73-120%)	96 %						03/02/09 23:57	ND	9C02020	8260B	
Surr: Toluene-d8 (71-126%)	91%						03/02/09 23:57	ИD	9C02020	8260B	

465 New Karner Road Albany, NY 12205 Work Order: RSB0564

Received:

02/18/09

Reported:

03/19/09 15:35

Project: Newstead Post-Removal Groundwater

Project Number: AGM

Analytical Report										
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Dilution		Date			
					Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSB0564-03 (TRIP BLANK - Water)					Sampled: 02/17/09			Recvd: 02/18/09 14:20		
Volatile Organic Compounds by EPA	8260B									
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
2-Butanone	ND		5.0	1.3	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Acetone	ND		5.0	1.3	ng/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Benzene	ND		1.0	0.16	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Bromochloromethane	ND		1.0	0.12	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Ethylbenzene	ND		1.0	0.18	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Toluene	ND		1.0	0.51	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Prichloroethene	ND		1.0	0.18	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Kylenes, total	ND		2.0	0.66	ug/L	1.00	03/03/09 00:19	ND	9C02020	8260B
Surr: 1,2-Dichloroethane-d4 (66-137%)	94%				-		03/03/09 00:19	ND	9C02020	8260B
Surr: 4-Bromofluorobenzene (73-120%)	96 %						03/03/09 00:19	ND	9C02020	8260B
Surr: Toluene-d8 (71-126%)	93 %						03/03/09 00:19	ND	9C02020	8260B

Chain of **Custody Record** Drinking Water? Yes □ No 15 THE LEADER IN ENVIRONMENTAL TESTING Project Manager Telephone Number (Area Code)/Fax Numbe 465 New Karner Rd. 518 452 7826 Zip Code Site Contact Lab Contact Analysis (Attach list if more space is needed) Candace Fox Project Name and Location (State) Carrier/Waybill Number Sherwin Williams Special Instructions/. Conditions of Receipt Containers & w." AY000386.0001.00001 Matrix V Preservatives 5 Sample I.D. No. and Description ·Time Date (Containers for each sample may be combined on one line) 1480 this sample was not i tyru 🖡 🗸 * *, * 10 4 t çi. à. Anchive For Sample Disposal 6 (A fee may be assessed if samples are retained ☐ Flammable 🕯 🗌 Skin Imitant Poison B Unknown Return To Client Disposal By Lab QC Requirements (Specify) Turn Around Time Required . 24 Hours 48 Hours 7 Days 14 Days 21 Days Other J 1. Relingitished By 02/18/09 3. Relinquished By Date ,. 3. Received By Date Time Time DISTRIBUTION: WHITE Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy