

October 29, 2013

Mr. Stanley Radon Senior Engineering Geologist Division of Solid and Hazardous Waste NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Re: National Grid Dewey Avenue Service Center (Site #915144) 2013 Annual Groundwater Monitoring Report

Dear Stan:

Enclosed for your review is the 2013 Annual Groundwater Monitoring Report for National Grid Dewey Avenue Service Center Site in Buffalo, New York. It includes the April 2013 and October 2013 sampling results. Please note that during the October 8, 2013 sampling event, there was a relatively low PCB detection (0.1 ug/L; NYSDEC GA Value is 0.09 ug/L; Aroclor 1242) at MW-11 which is a property boundary well. This is the second detection (2008) at MW-11. There were no PCB detections at MW-24 (located below Kingsley Ave.) in April and October 2013 events. The first slight PCB detection at MW-24 was during the October 2012 event. Both these perimeter wells will be monitored closely.

The next groundwater monitoring event will be conducted in April 2014. We will contact you at least one week in advance. If you have any questions, please feel free to contact me at 315.428.5652.

Sincerely,

Steven P. Stucker, C.P.G.

Lead Environmental Engineer

ecc: Kelly Lewandowski - NYSDEC

Matthew D. Millias for SPS

Lisa Montesano – NG Matt Millias – CDM Smith Tim Beaumont – CDM Smith

nationalgrid

Dewey Avenue Service Center 2013 Annual Groundwater Monitoring Report

Prepared by:
CDM Smith
1 General Motors Drive
Syracuse, NY 13212

Contents

Section 1	Introduction	
1.1	Introduction	1-1
1.2	Background and Site Investigation History	1-1
1.3	Modifications to the Groundwater Monitoring Program	1-3
Section 2	2013 Groundwater Monitoring Activities	
2.1	Groundwater Well Gauging	2-1
2.2	Groundwater Analytical Results	
2.3	LNAPL Observation	2-1
2.4	Other OM&M Activities	2-1
Section 3	Schedule	
3.1	Schedule	3-1
Section 4	Conclusions & Recommendations	
4.1	Conclusions	4-1
4.2	Recommendations	4-1
Tahles		

Table 1 – Groundwater Elevations

Table 2 - Groundwater Analytical Results - Total PCB's

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 - Groundwater Flow Map

Appendices

Appendix A - Groundwater Monitoring Field Data

Appendix B - Groundwater Monitoring Laboratory Data

Section 1 Introduction

1.1 Introduction

This annual report presents the results of the groundwater sampling and analysis activities conducted by CDM Smith at the National Grid, Dewey Avenue Service Center in Buffalo, New York (the site). These activities were completed as part of ongoing investigations of a former underground storage tank (UST), identified as Solid Waste Management Unit (SWMU) #7. The April 2013 and October 2013 groundwater monitoring events were conducted in conformance with the Order on Consent (Consent Order) Index Number R9-4407-96-09, dated November 19, 1997, between National Grid and the New York State Department of Environmental Conservation (NYSDEC) to monitor the potential migration of impacted groundwater associated with SWMU #7. As further discussed in Section 1.3, the SWMU #7 groundwater monitoring program was modified as identified in the NYSDEC's July 22, 2003 letter that presented comments on the 2002 Soil Investigation and Spring/Fall 2002 Groundwater Monitoring Report.

1.2 Background and Site Investigation History

The Dewey Avenue Service Center is an active facility located at 144 Kensington Avenue between Dewey and Kensington Avenues in Buffalo, New York (Figure 1). The service center previously included a hazardous waste management facility permitted by the NYSDEC (Part 373 Permit No. 9-1402-00397/00001-0). The hazardous waste management facility was closed in December 1992 in accordance with a NYSDEC-approved closure plan.

In September 1992, excavation activities at the facility, in the vicinity of Building #13, revealed petroleum-impacted gravel and a broken vent line connected to an underground waste oil tank. The former waste oil tank was removed and four groundwater monitoring wells (ESI-1, ESI-2, ESI-3, and ESI-4) were installed in the vicinity of the former tank to supplement an existing monitoring well (MW-1) and to facilitate periodic groundwater monitoring in this area. Figure 2 illustrates relevant site features, and the locations of soil borings and monitoring wells.

In February 1994, National Grid agreed to conduct a focused Resource Conservation and Recovery Act (RCRA) Facility Assessment- (RFA-) type soil and groundwater investigation, and a Focused Risk Assessment/ Corrective Measures Study (FRA/CMS) to address the concerns identified by the RFA.

During fall 1994, National Grid conducted soil and groundwater investigation activities in accordance with the NYSDEC-approved *Soil and Groundwater Investigation Work Plan* (1994). These investigations showed the presence of several volatile organic compounds (VOC's) and polychlorinated biphenyls (PCB's) in groundwater at concentrations above the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 – *Ambient Water Quality Standards and Guidance Values*

(NYSDEC, 1998, amended 2000). Based on these results, the NYSDEC requested implementation of the quarterly groundwater monitoring program proposed in the *SWMU #7 Soil/Groundwater Investigation Report* (1994).

The SWMU #7 Focused Risk Assessment and Corrective Measures Study Report (FRA/CMS Report) (1995, revised 1996) concluded that the limited action alternative (i.e., implementing a groundwater monitoring program) would adequately meet the corrective measure objective of mitigating the offsite migration of impacted groundwater. Following the initial submittal of the FRA/CMS Report, a Groundwater Sampling and Analysis Plan (SAP) (1996) was submitted to the NYSDEC in May 1996. The May 1996 SAP was then revised based upon NYSDEC comments, and the revised SAP for the groundwater monitoring program was presented in the revised FRA/CMS Report dated June 1996.

In November 1997, National Grid entered into a Consent Order with the NYSDEC to guide future site monitoring and to establish a framework for implementing additional site investigation or remediation. As mandated in the Consent Order, semiannual (spring and fall) groundwater monitoring events are conducted at SWMU #7 monitoring wells. The list of wells sampled during each groundwater monitoring event has been modified through time in response to NYSDEC requirements and the results of investigation/evaluation activities, as agreed to by the NYSDEC.

The Consent Order specifies that a contingency plan must be implemented to evaluate additional remedial activities if analytical results from monitoring wells located at the property boundary indicate an excedance of the NYSDEC groundwater quality standards presented in TOGS 1.1.1 for two consecutive monitoring events. The monitoring wells designated as property boundary wells have changed, as new monitoring wells have been installed as part of the contingency plan implementation. For example, monitoring wells MW-7 and MW-9 were designated as property boundary wells in the Consent Order. In 1999, the property boundary wells included monitoring wells MW-6, MW-7, MW-11, MW-12, and MW-14. The current property boundary well arrangement includes monitoring wells MW-6, MW-11, MW-12, MW-20, MW-21, and MW-24 (installed spring 2002). Refer to Figure 2 for well locations. Monitoring well construction details are summarized in Table 1.

The following table summarizes instances when two consecutive groundwater sampling events exhibited the presence of constituents in groundwater above TOGS standards and guidance values in the property boundary wells. In addition, it presents the corresponding NYSDEC-approved contingency plan activity that was conducted in response to such instances.

Consecutive Sampling Events with Property Boundary Well TOGS Standards and Guidance Value Excedances	Corresponding Contingency Plan Activity
Fall 1997 and spring 1998: PCBs in monitoring well MW-9.	Conducted MW-9 supplemental investigation, including installing additional monitoring wells MW-13, MW-14, and MW-15 in October 1998.
Spring 1999 and fall 1999: PCBs in monitoring wells MW-9 and MW-14.	Conducted supplemental site investigation, including research of site history and installing additional monitoring wells MW-16, MW-17, MW-18, MW-19, MW-20, and MW-21 in August and September 2000.
Fall 2000 and spring 2001; PCBs in monitoring wells MW-9 and MW-14.	Conducted 2002 soil investigation, including installing soil borings (SB-101, MW-22, SB-102, SB-103, SB-104, SB-105, SB-106, MW-23, and SB-107), installing monitoring wells (MW-22, MW-23, and MW-24) and sampling and fingerprint analysis of light nonaqueous phase liquid (LNAPL) in monitoring well ESI-1.

Per NYSDEC's July 27, 2011 letter to NG, semi-annual groundwater sampling events will continue. However, both monitoring events will be documented in an annual report (submitted in the Fall of each year).

On October 3, 2011, National Grid received official notification that the Site was deleted from the New York State Registry of Inactive Hazardous Waste Disposal Sites (letter from Ms. Kelly Lewandowski, NYSDEC Chief Site Control Section to Mr. Chuck Willard, NG SIR Director).

1.3 Modifications to the Groundwater Monitoring Program

In the 2002 Report, modifications to the SWMU #7 groundwater monitoring program were recommended. The recommendations were based on the results of the 2002 soil investigation, the 2002 groundwater monitoring events, a review of previous soil and groundwater results, and LNAPL fingerprinting. The NYSDEC approved the recommendations presented in the 2002 Report (with select modifications) in a July 22, 2003 letter to National Grid. The recommendations, incorporating the NYSDEC's modifications, include:

- Discontinue VOC analysis except at monitoring wells ESI-1 and MW-16. LNAPL (if present) in monitoring well ESI-1 will be removed. If LNAPL is not present for three consecutive monitoring events in monitoring well ESI-1, groundwater will be sampled and analyzed for VOC's annually. To monitor the conditions downgradient of monitoring well ESI-1, groundwater from monitoring well MW-16 will be sampled and analyzed for VOC's annually. If VOC's are detected in groundwater at MW-16, additional VOC analysis will be required from monitoring wells located downgradient of MW-16.
- Discontinue lead analysis for all monitoring wells.

- Continue PCB analysis at select monitoring wells (i.e., the property boundary wells, MW-1, and MW-9).
- Discontinue data validation (for all groundwater samples collected) for every groundwater monitoring event.
- Continue to sample and measure groundwater levels from the monitoring wells, as summarized in Section 3 Schedule.

Per NYSDEC's July 27, 2011 letter to NG, semi-annual groundwater sampling events will continue. However, both monitoring events will be documented in an annual report (submitted in the Fall of each year).

Section 2 Groundwater Monitoring Activities

2.1 Groundwater Well Gauging

For the April 2013 and October 2013 events, static groundwater levels (presented in Table 1) were measured prior to groundwater sample collection to evaluate groundwater flow patterns. Groundwater levels were obtained from 18 of the groundwater monitoring wells associated with SWMU #7 (MW-1, MW-2, MW-5, MW-6, MW-7, MW-9, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, MW-17, MW-19, MW-20, MW-21, MW-24, and ESI-1).

The groundwater flow direction is generally toward the south. Refer to Figure 3 for the general groundwater flow direction.

2.2 Groundwater Analytical Results

For the April 2013 and October 2013 events, groundwater samples were analyzed for PCBs. In addition, field measurements of pH, temperature, conductivity, DO, turbidity, and ORP were obtained prior to sample collection. The groundwater monitoring field data is included in Appendix A.

Eight monitoring wells were sampled and analyzed for PCBs during the April 2013 and October 2013 events (MW-1, MW-6, MW-9, MW-11, MW-12, MW-20, MW-21 and MW-24). Analytical results were compared to the New York State ambient water quality standards and guidance values and groundwater effluent limitations presented in TOGS 1.1.1 (0.09 ppb for total PCBs).

For the April 2013 sampling event, PCBs were detected in two of the eight site groundwater monitoring wells (5.7 ppb in MW-1 and 24 ppb in MW-9). For the October 2013 sampling event, PCBs were detected in three of the eight site wells (0.15 ppb in MW-1, 16 ppb in MW-9, and 0.10 ppb in MW-11).

Total PCB results of the groundwater monitoring events are presented in Table 2. Appendix B presents the analytical laboratory summary reports.

2.3 LNAPL Observation

Prior to groundwater purging and sample collection activities, each monitoring well was observed for the presence or absence of LNAPL using an oil/water interface probe. LNAPL was not observed at any of the monitoring wells during the April 2013 or October 2013 events.

2.4 Other OM&M Activities

■ The sorbent boom was checked at monitoring well ESI-1.

Section 3 Schedule

3.1 Schedule

Based on the results of the groundwater monitoring program and the recommendations presented in the 2002 Report (subsequently modified by the NYSDEC's July 22, 2003 response letter), the modified groundwater monitoring program, consisting of semiannual (spring and fall) groundwater monitoring events will be continued. The scope of the monitoring program is summarized in the following table.

Monitoring Wells for Continued Groundwater Sampling	Monitoring Wells for Groundwater Level Measurement Only
ESI-1 (VOC analysis)*	MW-2***
MW-1 (PCB analysis) ***	MW-5
MW-6 (PCB analysis) ***	MW-17
MW-9 (PCB analysis) ***	MW-10
MW-11 (PCB analysis) ***	MW-13
MW-12 (PCB analysis) ***	MW-15
MW-16 (VOC analysis)**	MW-17
MW-20 (PCB analysis) ***	MW-19
MW-21 (PCB analysis) ***	
MW-24 (PCB analysis) ***	

Notes:

- * One groundwater sample will be collected from monitoring well ESI-1 only if LNAPL is not present for three consecutive sampling events.
- ** One groundwater sample will be collected from monitoring well MW-16 annually during the Fall 2006 sampling event.
- *** Monitoring well will be sampled twice a year.
- **** MW-2 was uncovered in April 2010. Groundwater levels will continue.

The next semi-annual groundwater monitoring event is scheduled for April 2014. The NYSDEC Project Manager will be notified at least one week in advance of the event. Reporting will be annual (submitted after the Fall event).

Section 4 Conclusions & Recommendations

4.1 Conclusions

Eight monitoring wells were sampled and analyzed for PCBs during the April 2013 and October 2013 events (MW-1, MW-6, MW-9, MW-11, MW-12, MW-20, MW-21 and MW-24). For the April 2013 sampling event, PCBs were detected in two of the eight site groundwater monitoring wells (MW-1 and MW-9). For the October 2013 sampling event, PCBs were detected in three of the eight site wells (MW-1, MW-9, and MW-11).

4.2 Recommendations

At this time, no changes to the semi-annual site sampling plan are proposed.

Table 1 **Groundwater Elevations**

National Grid Dewey Avenue Service Center Buffalo, New York

Well ID	TOC Elevation (ft AMSL)	Depth to Well Bottom (ft BTOC)	Well Bottom Elev. (ft AMSL)	April 2011 DTW (ft BTOC)	April 2011 Potentiometric Surface Elev. (ft AMSL)	October 2011 DTW (ft BTOC)	October 2011 Potentiometric Surface Elev. (ft AMSL)	April 2012 DTW (ft BTOC)	April 2012 Potentiometric Surface Elev. (ft AMSL)	October 2012 DTW (ft BTOC)	October 2012 Potentiometric Surface Elev. (ft AMSL)	April 2013 DTW (ft BTOC)	April 2013 Potentiometric Surface Elev. (ft AMSL)	October 2013 DTW (ft BTOC)	October 2013 Potentiometric Surface Elev. (ft AMSL)
MW-1	650.76	29.90	620.86	2.85	647.91	3.07	647.69	3.41	647.35	3.30	647.46	3.02	647.74	3.23	647.53
MW-2	650.55	44.17	606.38	*	*	15.26	635.29	12.75	637.80	12.20	638.35	11.62	638.93	11.42	639.13
MW-5	651.65	21.40	630.25	10.68	640.97	11.55	640.10	11.72	639.93	11.25	640.40	10.89	640.76	11.58	640.07
MW-6	650.25	21.05	629.20	6.90	643.35	10.20	640.05	10.10	640.15	9.90	640.35	7.58	642.67	8.25	642.00
MW-7	650.02	21.30	628.72	9.46	640.56	11.56	638.46	11.69	638.33	10.88	639.14	10.31	639.71	11.30	638.72
MW-9	648.95	22.05	626.90	9.70	639.25	10.76	638.19	11.02	637.93	10.58	638.37	10.07	638.88	10.00	638.95
MW-10	649.46	24.25	625.21	9.48	639.98	10.39	639.07	10.88	638.58	10.76	638.70	9.57	639.89	10.51	638.95
MW-11	647.11	20.22	626.89	7.80	639.31	8.76	638.35	8.98	638.13	8.14	638.97	8.12	638.99	8.25	638.86
MW-12	646.90	19.55	627.35	7.60	639.30	8.42	638.48	8.50	638.40	8.24	638.66	7.91	638.99	8.04	638.86
MW-13	650.05	26.25	623.80	10.66	639.39	11.65	638.40	11.95	638.10	11.50	638.55	11.05	639.00	11.31	638.74
MW-15	651.88	23.80	628.08	11.58	640.30	12.81	639.07	13.35	638.53	12.47	639.41	12.21	639.67	12.22	639.66
MW-16	651.72	20.36	631.36	6.45	645.27	5.40	646.32	6.65	645.07	6.50	645.22	5.75	645.97	4.82	646.90
MW-17	651.76	20.60	631.16	11.57	640.19	11.86	639.90	12.80	638.96	12.37	639.39	11.75	640.01	12.45	639.31
MW-19	651.69	24.00	627.69	11.08	640.61	12.82	638.87	13.27	638.42	12.63	639.06	12.26	639.43	12.52	639.17
MW-20	646.76	22.60	624.16	7.55	639.21	8.48	638.28	8.73	638.03	8.82	637.94	7.80	638.96	8.20	638.56
MW-21	646.70	21.85	624.85	7.65	639.05	8.35	638.35	8.80	637.90	8.34	638.36	7.80	638.90	8.20	638.50
MW-24	647.01	24.25	622.76	7.60	639.41	8.53	638.48	8.80	638.21	8.40	638.61	7.90	639.11	8.30	638.71
ESI-1	651.66	21.50	630.16	3.68	647.98	3.94	647.72	4.18	647.48	4.40	647.26	4.00	647.66	4.20	647.46

Notes: TOC = Top of Well Casing AMSL = Above Median Sea Level DTW = Depth to Water

BTOC = Below Top of Casing
LNAPL observed in ESI-1 only. Number in parentheses present depth and elevation to NAPL.

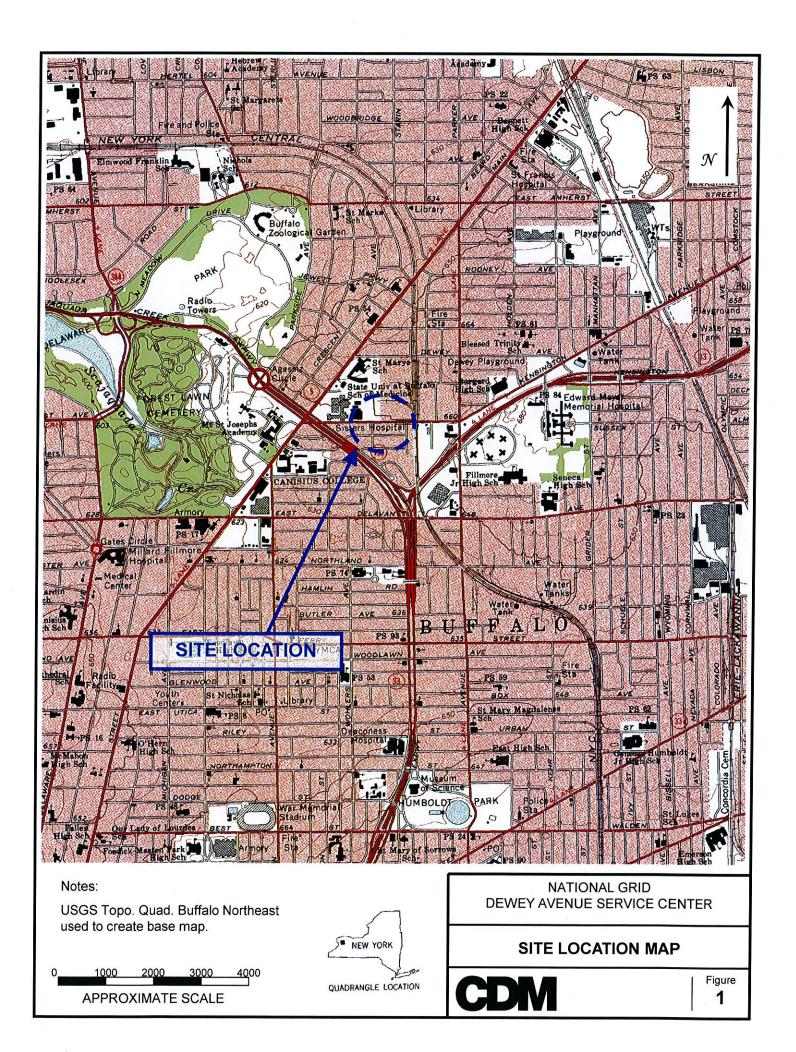
* = MW-2 is typically inaccessible due to staged equipment.

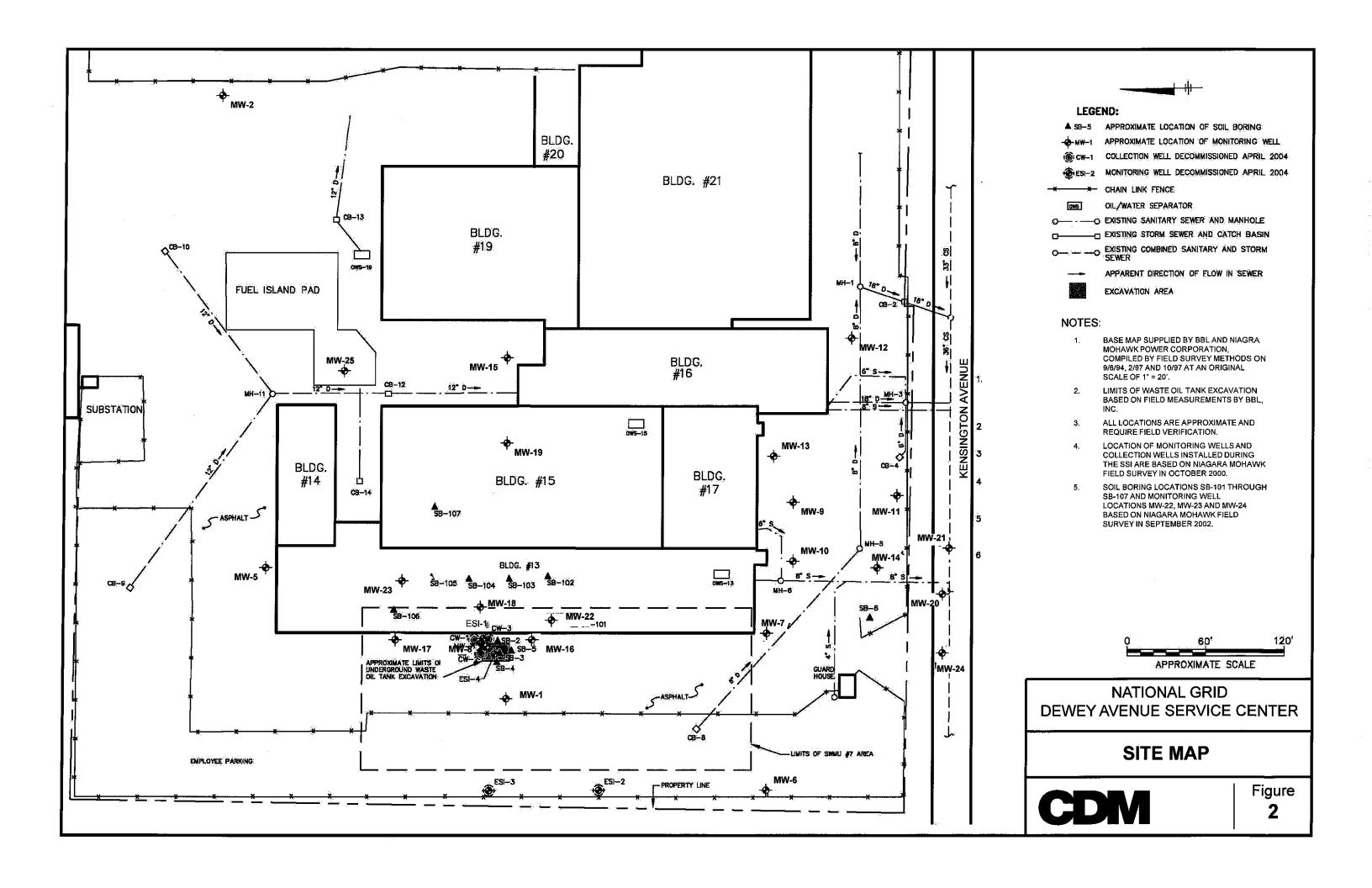
Table 2
Groundwater Analytical Results - Total PCBs (units in ppb or ug/l)

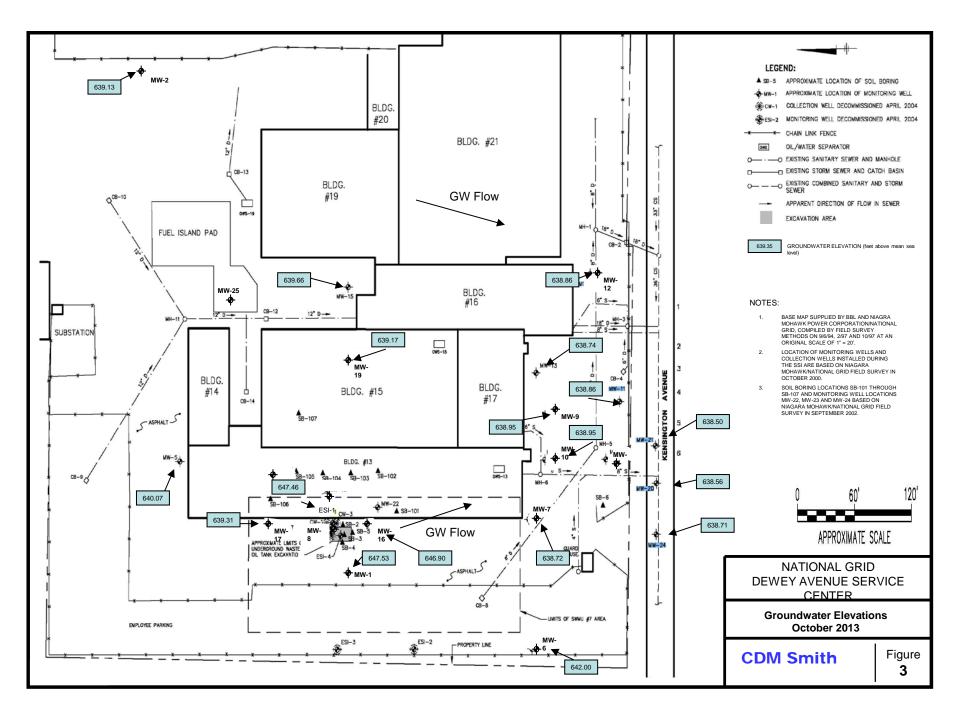
National Grid Dewey Avenue Service Center Buffalo, New York

	ĺ				Well ID				
Date	NYSDEC Value (1)	MW-1	MW-6	MW-9	MW-11	MW-12	MW-20	MW-21	MW-24
October 2013	0.09	0.15	ND	16.0	0.10	ND	ND	ND	ND
April 2013	0.09	5.7	ND	24.0	ND	ND	ND	ND	ND
October 2012	0.09	4.5	0.16	11.0	ND	ND	ND	ND	0.051
April 2012	0.09	1.4	ND	29.0	ND	ND	ND	ND	ND
October 2011	0.09	4.9	ND	8.7	ND	ND	ND	ND	ND
April 2011	0.09	7.0	ND	28.0	ND	ND	ND	ND	ND
October 2010	0.09	4.1	ND	24.0	ND	ND	ND	ND	ND
April 2010	0.09	4.6	ND	19.0	ND	ND	ND	ND	ND
October 2009	0.09	1.4 QSU	ND	15 QSU, D08	ND	ND	ND	ND	ND
April 2009	0.09	4.8	1.1	ND	ND	ND	ND	ND	ND
October 2008	0.09	0.44	ND	13	0.44	ND	ND	ND	ND
April 2008	0.09	0.54	ND	4.5	ND	0.01	ND	ND	ND
October 2007	0.09	1.2	ND	ND	ND	ND	ND	ND	ND
April 2007	0.09	1.2	ND	9.9	ND	ND	ND	ND	ND
November 2006	0.09	ND	ND	ND	ND	ND	ND	ND	ND
June 2006	0.09	1.5	ND	ND	ND	ND	ND	ND	ND
November 2005	0.09	1.2	ND	17	ND	ND	ND	ND	ND
April 2005	0.09	1	ND	9.5	ND	ND	ND	ND	ND
November 2004	0.09	1.7 P	ND	15	ND	ND	ND	ND	ND
March 2004	0.09	0.87 P	ND	32.3 P	ND	ND	ND	ND	ND
October 2003	0.09	1.6	ND	40.3 PJ	ND	ND	ND	ND	ND
December 2002	0.09	1.2	ND	16	ND	ND	ND	ND	ND
June 2002	0.09	3.2 J	ND	20 J	ND	ND	ND	ND	ND
October 2001	0.09	3.0 J	ND	29 JN	ND	ND	ND	ND	NS
April 2001	0.09	3.4	NS	6.3	ND	ND	ND	ND	NS
December 2000	0.09	2.9 JN	NS	21 JN	ND	ND	ND	ND	NS
June 2000	0.09	2.9	NS	10 J	ND	ND	NS	NS	NS
December 1999	0.09	3.0 J	NS	21 J	ND	ND	NS	NS	NS
July 1999	0.09	5.9 JN	NS	44 JN	ND	ND	NS	NS	NS
November 1998	0.09	3.6	NS	ND	ND	ND	NS	NS	NS
May 1998	0.09	1.2	NS	6.7	NS	NS	NS	NS	NS

Notes:


(1) NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) "Ambient Water Quality Standards and Guidance Values and Ground Water Effluent Limitations," April 2000, Class GA Ground Water Standards and Guidance Values.


Laboratory Qualifier Notes:


- J = Analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- P = Greater than 25% difference for detected concentration between two GC columns.
- QSU = Sulfur (EPA 3660) clean-up performed on extract.
- D08 = Dilution required due to high concentration of target analyte(s).
- ND = Not Detected above detection limit.
- NS = Not Sampled.

Units in parts per billion (ppb) or ug/L.

Bolded numbers indicate Guidance Value Exceedences

Appendix A Field Data

National Grid Dewey Avenue Service Center 144 Kensington Avenue Buffalo, New York

Well ID.	Sample?	Well Size	DTP	DTW	DTB	Comments
ESI-1	VOC's Fall only	4"	trace on boom	4.00	21.50	checked sorbant boom.
MW-1	yes	4"		3.02	29.90	
MW-2	no	4"		11.62	44.17	
MW-5	no	2"		10.89	21.40	
MW-6	yes	2"		7.58	21.05	
MW-7	no	2"		10.31	21.30	
MW-9	yes	2"		10.07	22.05	
MW-10	no	2"		9.57	24.25	
MW-11	yes	2"		8.12	20.22	
MW-12	yes	2"		7.91	19.55	
MW-13	no	2"		11.05	26.25	
MW-15	no	2"		12.21	23.80	
MW-16	VOC's Fall only	2"	trace on probe	5.75	20.36	16.
MW-17	no	2"		11.75	20.60	
MW-19	no	2"		12.26	24.00	
MW-20	yes	2"		7.8	22.60	
MW-21	yes	2"		7.80	21.85	
MW-24	yes	2"		7.90	24.25	
MW-25	no	2"		6.26	15.36	

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

STAN BUTTON N - None
O - - seNado
P - Na2045
Q - Na203
R - Na252503
R - Na252503
R - Na262500
T - TSP Dodecallydrate
U - Acetone
W - Inh 4-5
Z - other (specify) Special Instructions/Note: Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Capecial Petur To Client Disposal By Lab Archive For Mon Special Instructions/QC Requirements: Company COC No: 480-34362-8767.1 Preservation Codes 77.72 G - Amchlor H - Ascorbic Acid Page: Page 1 of 1 O - Nitric Acid E - NaHSO4 F - MeOH I - Ice J - DI Water K - EDTA L - EDA Date/Time: real Number of containers Date/Time: Method of Shipment. Carrier Tracking No(s): **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Lab PM: Gray-Erdmann, Peggy E-Mait peggy.gray-erdmann@testamericainc.com Lathan Received by: ~ ~ 2 Pertorm MS/MSD (Yes or No) 4 💸 💮 💮 Time: Company Company Field Filtered Sample (Yes or No) Preservation Code: (W=water, S=solid, O=waste/oll, BT=filssue, Water Company Radiological G=grab) Sample (C=comp, Type وې O SPE 734 2368 وب es ৽ S 9 O Sampler: TIM BEANE Sample 730 Time 48 1130 1015 1055 830 % 20,′ 20,′ 20,′ 730 2 Date: Unknown 'AT Requested (days): Due Date Requested: Sample Date PO#: 36380.93808 WO#: のルル dicilh 2/2/2 4/17/0 CIUIN 2/17/2 212 (//レ//% Project #: 48002647 SSOW#: Date/Time: Poison B Project Name: CDM Smith/ Event Desc: Dewey Avenue GW Wells April Skin Irritant Non-Hazard Flammable Skin Irrit
Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Possible Hazard Identification beaumonttj@cdmsmith.com One General Motors Drive Empty Kit Relinquished by: Client Information Sample Identification imothy Beaumont Company: CDM Smith, Inc. MW-6 MS-0413 MW-6 SD-0413 MW-11-0413 MW-12-0413 MW-20-0413 MW-21-0413 MW-24-0413 Relinquished by: elinquished by: Relinquished by: MW-6-0413 MW-9-0413 MW-1-0413 State, Zip: NY, 13206 New York Syracuse -D-0413 hone:

	im Beaumont						
Joh Musekani 20000 00	in beaumont			Date:	4/17/13		
Job Number: 36380.93	808			Weather	Sunay	54°	
Well Id. MW-1				Time In:	1135	Time Ou	f·
					,,,,,,	711110 00	·
Well Information							
		TOC	Other	Well Typ	e: Flus	shmount	Stick-Up
Depth to Water:	(feet)	3.02		Well Loc		Yes	No
Depth to Bottom:	(feet)	29.90		Measuring	Point Marked:	Yes	No
Depth to Product:	(feet)	_		Well Mat			her: steel
Length of Water Column:	(feet)	26.88		Well Diar	meter: 1"		her: 4"
Volume of Water in Well:	(gal)	17.74		Commen	its:		
Three Well Volumes:	(gal)	53.22					
Purging Information							······································
						Conversion I	Factors
Purging Method:	Baile		<u></u>		gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflo		k 7	<u> </u>	r of		
Sampling Method:	Baile		Grundfos P	ump othe	r water	0.04 0.16	0.66 1.47
Average Pumping Rate:	(ml/min)	200			1 gallo	on=3.785L=3785r	nL=1337cu. feet
Duration of Pumping:	(min)	<u>Jo</u>		,			
Total Volume Removed:	(gal)	2,0 D	id well go dry?	YesNo	\ <u>\</u> \\		
Horiba U-52 Water Quality	Meter Used?	Yes	N₀ No				
Time DTW	Amount	Temp	рН	ORP	Conductivity	Turbidity	DO I
(feet)	purged (gal)	1	'	(mV)	(mS/cm)	_	1 50 1
				: \111V/	1 (1110/011)		[(ma/L)
1135 3.10		14.90	7.48			(NTU) / 4 -1	(mg/L)
1135 3.10		14.90	7.48	-49 -52	17.2	(4-1	1-43
1135 3.10 1140 3.12 1145 3.12				-49 -52	17.5	(4-1 /7-6	1.43
1135 3.10 1140 3.12 1145 3.12		13.26 12.95 12.86	7.45	-49 -52 -8	17.5	19-1 17-6 18-2	1.42 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1155 3.12		13.21 12.95 12.86 12.50	7.45 7.43	-49 -52 -8 -60	17.5	(4.1 7.6 18.2 2.6	1.43 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8	17.2 17.5 17.9 17.7	19.1 17.6 18.2 12.6 5.1	(.4) 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1155 3.12		13.21 12.95 12.86 12.50	7.45 7.43 7.44	-49 -52 -8 -60	17.2 17.5 17.9 17.7 17.8	(4.1 7.6 18.2 2.6	(.4) 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.7 17.8 17.7	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	0 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1250 3.12 1250 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0 0
1135 3.10 1140 3.12 1145 3.12 1150 3.12 1150 3.12 1150 3.12		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	(.4) 0 0 0 0
		13.26 12.95 12.86 12.50 12.74	7.45 7.43 7.44 7.45	-49 -52 -8 -60 -62 -65	17.2 17.5 17.9 17.7 17.8	17.6 17.6 18.2 12.6 5.1	0 0 0 0 0
1 3 3 10 1 10 3 12 1 14 3 12 1 15 3 12 1 15 3 12 1 15 3 12 1 15 3 12 1 15 3 12 12 12 12 12 12 12	PCB's	/3.26 /2.95 /2.86 /2.70 /2.74 /2.72	7.45 7.43 7.44 7.45	-49 -52 -88 -60 -62 -65 -68	17.2 17.5 17.9 17.7 17.8	19.1 17.6 18.2 12.6 5.1 1.6 1.2	(.4) 0 0 0 0
		/3.26 /2.95 /2.86 /2.70 /2.74 /2.72	7.45 7.43 7.44 2.46 7.45 7.48	-49 -52 -88 -60 -62 -65 -68	17.2 17.5 17.9 17.8 17.7 17.9	19.1 17.6 18.2 12.6 5.1 1.6 1.2	(.43 0 0 0 0 0 0
1 3 3 10 1 10 3 12 1 14 3 12 1 15 3 12 1 15 3 12 1 15 3 12 1 15 3 12 15 15 15 15 15 15 15	PCB's TCL VOC's	/3.26 /2.95 /2.86 /2.70 /2.79 /2.72 Low det	7. 45 7.44 7.45 7.45 7.45 7.45 9.48	-49 -52 -88 -60 -62 -65 -68	2 - 1 liter amber	/4.1 /7.6 /8.2 /2.6 5.1 /.6 /.2	(.43 0 0 0 0 0 0
1 3 3 10 1 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 14 14 14 14 14 14	PCB's TCL VOC's	/3.26 /2.95 /2.86 /2.70 /2.74 /2.72 Low det Includin	7. 45 7.44 7.45 7.45 7.45 7.48 ection limit of 0. g Naphthalene	-49 -52 -88 -60 -62 -65 -68	2 - 1 liter amber 2 - 40 mL vials	/4.1 /7.6 /8.2 /2.6 5.1 /.6 /.2	(.43 0 0 0 0 0 0
1 3 3 10 1 10 3 12 1 14 3 12 1 15 3 12 1 15 3 12 1 15 3 12 1 15 3 12 15 15 15 15 15 15 15	PCB's TCL VOC's	/3.26 /2.95 /2.86 /2.70 /2.74 /2.72 Low det Includin	7. 45 7.44 7.45 7.45 7.45 7.45 9.48	-49 -52 -88 -60 -62 -65 -68	2 - 1 liter amber 2 - 40 mL vials Shipped:	/4.1 /7.6 /8.2 /2.6 5.1 /.6 /.2	(.43 0 0 0 0 0 0 0
1 3 3 10 1 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 3 12 14 14 14 14 14 14 14	PCB's TCL VOC's	/3.26 /2.95 /2.86 /2.70 /2.74 /2.72 Low det Includin	7. 45 7.44 7.45 7.45 7.45 7.48 ection limit of 0. g Naphthalene	-49 -52 -8 -60 -62 -65 -68	2 - 1 liter amber 2 - 40 mL vials Shipped:	(4.1 /7.6 /8.2 /2.6 5.1 /.6 /.2 Yes Yes	No No Courier UPS

	<u>.</u>			·			<u></u>		
Sampling Pe	ersonnel: Ti	m Beaumont		· · · · ·	Date:	<u> 3 / ۲۱/ ۲</u>	· · · · · · · · · · · · · · · · · · ·		
Job Number	36380.938	08			Weather:	Clean 3	?°		
Well Id.	MW-6				Time In:	650	Time Out	: 14	Δ
						ענש		. /7	<u>U</u>
Well In	formation								
			TOC	Other	Well Type	: Flus	hmount	Stick-Up	
Depth to Wa	iter:	(feet)	2.58		Well Lock		Yes	No.	-
Depth to Bott	tom:	(feet)	21.05		Measuring	Point Marked:	Yes	No	⊢
Depth to Pro	duct:	(feet)			Well Mate		K	her:	
Length of Wa	ater Column:	(feet)	13.47		Well Dian			ner:	7
Volume of W	/ater in Well:	(gal)	2.15		Commen	s:	<u> </u>		
Three Well V	/olumes:	(gal)	6.45						
Purging I	Information	_	_						
				<u></u>	_		Conversion F	actors	
Purging Meth	nod:	Bailei	Peristaltic	c Grundfos P	ump other	gal/ft.	1" ID 2" ID	4" ID	6" ID
Tubing/Bailer	r Material:	Teflon	Stainless St	t. Polyethy		9a"''			<u> </u>
Sampling Me	thod:	Bailer	Peristaltic		<u> </u>		0.04 0.16	0.66	1.47
Average Pum		(ml/min)	1200	KY	' !		n=3.785L=3785n	<u> </u>	
Duration of P		(min)	30			<u> </u>		10010	u. Ioo.
Total Volume				Did well go dry?	Yes No				
				s No					
Horiba U-52	Water Quality	Meter Oseur	Yes						
IT Time	T DTM	1 Aa.i.m4	T	T	000	1			
Time	DTW (fact)	Amount	Temp	pН	ORP	Conductivity	Turbidity	D	
700	(feet) 7.98	purged (gal)	°C	(11)	(mV)	(mS/cm)	(NTU)	(mg	
		<u> </u>	12.92	6.46	<u>(66</u>	110	96.2		
705	8.00		12.06	11.87	- 7	11.5	426		2
710	8.00	<u> </u>	11.35	7.16	-/[11:6	21.7		3
/()	9.00		10.40	7,19	-/1	11.8	15.6	,	10
720	8.00	1	10.45	7,20	-10	11.8	8.2		29
	8.00		10.52	7.19	- 8	//.7	3.6		2
730	8.00		10.61	7,20	- 6	/1.7	1,9		2
					· · · · · · · · · · · · · · · · · · ·				
	1	ſ							
11 1			1				· ·		
					"				
Sampling Info	ormation:								
EPA SW-846 N	Method 8082	PCB's		etection limit of 0	05 ppb	6 - 1 liter ambei	Yes	×No[
	Method 8082	PCB's TCL VOC's		etection limit of 0	05 ppb	6 - 1 liter ambei 2 - 40 mL vials	Yes Yes	× No	
EPA SW-846 M EPA SW-846 M	Method 8082 Method 8260	TCL VOC's	Includi	ng Naphthalene	05 ppb	2 - 40 mL vials			
EPA SW-846 M EPA SW-846 M Sample ID:	Method 8082 Method 8260 MW-6-0 ⁰	TCL VOC's	Includii	ng Naphthalene Yes No No	05 ppb	2 - 40 mL vials	Yes		
EPA SW-846 M EPA SW-846 M	Method 8082 Method 8260	TCL VOC's	Includii	ng Naphthalene	05 ppb	2 - 40 mL vials Shipped: E	Yes	No	
EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	Method 8082 Method 8260 Mい-6-0 ⁰ 130	TCL VOC's <u>1(3</u> Du MS	Includii plicate? b/MSD?	ng Naphthalene Yes No No	05 ppb	2 - 40 mL vials Shipped: E	Yes Prop-off TA	No No Dourier UPS	
EPA SW-846 M EPA SW-846 M Sample ID:	Method 8082 Method 8260 Mい-6-0 ⁰ 130	TCL VOC's <u>1(3</u> Du MS	Includii	ng Naphthalene Yes No No	05 ppb	2 - 40 mL vials Shipped: E	Yes Drop-off⊠ TA	Courier UPS erica	

						1		
Sampling Pe	rsonnel: Ti	m Beaumont			Date:	4/17/13		
Job Number	36380.938	08			Weath	er: Sunay	<i>'</i> D,	
Well Id.	MW-9				Time I		Time Out	1135
						1.10		1130
Well In	formation			· · · · · · · · · · · · · · · · · · ·				
			тос	Other	Well T	ype: Flusi	hmount	Stick-Up
Depth to Wa	ter:	(feet)	10.07		Well L	ocked:	Yes	No
Depth to Bot		(feet)	22.05		Measur	ing Point Marked:	Yes 🔀	No
Depth to Pro		(feet)						ner:
Length of Wa		(feet)	11.98			iameter: 1"	2" X Ott	ner:
Volume of W		(gal)	1.92		Comm	ents:		
Three Well V	olumes:	(gal)	5.76					
<u> </u>								
D	nfarmati							
Purging I	nformation	-					0	
Purging Meth	nod:	Baile	Peristaltic	Grundfos P			Conversion F	
Tubing/Bailer		Tefion		<u></u>	· k	ther gal/ft.	1 10 2 10	4" ID 6" ID
Sampling Me		Bailer			E3	ther water	0.04 0.16	0.66 1.47
Average Pun	''		200 V	Ordinalos i	م السسالط،،،،،،		n=3.785L=3785n	
Duration of P		(min)	30				0.7002 070011	IL-7007 cu. leet
Total Volume				id well go dry?	Yes	No 🏏		
Horiba I I-52 \	Water Quality			No	<u> </u>			
Tioriba C GZ	vvaici Quality	Wicker Osea:	103			 		
Time	DTW	Amount	Temp	pH	ORP	Conductivity	Turbidity	DO
1	(feet)	purged (gal)	.C	Pil	(mV)	(mS/cm)	(NTU)	(mg/L)
1100	10.42	pargea (ga.)	16.11	7.44	Ч	17.3	27.4	/. 0 Y
1105	10.70		16.06	7.57	- 3	17.5	20.3	,76
MIO	10.75		16.08	7.35	-5	17:5	17.5	. 14
1115	10.82		15.95	7,38	-6	18.6	3.6	0
1120	10.91		15.94	7.40	- 8	18.2	1,2	Ó
1125	10.99		15.90	7041	- 10	18.0	0	0
1130	4.04		15.87	7.42	-12	18.0	0	ð
	•							
			<u></u>					
<u>.l</u>	T + COURT O L	<u> </u>		<u> </u>		<u> </u>		
								···········
Sampling Inf	ormation:							•
							,	
EPA SW-846 N		PCB's		tection limit of 0	.05 ppb	2 - 1 liter amber		No□
EPA SW-846 N	nethod 8260	TCL VOC's	Includir	ng Naphthalene		2 - 40 mL vials	Yes	No
Campia ID:	46-9-00	117	nlicoto?	vaa 🗀 u 🔽		Ohimmadı =		—
Sample ID: Sample Time:	1130		-	Yes No				Courier
		IVIS	NIVIOU (YesNo_X			Fed-Ex	UPS
Comments/No	otes:) JON	No she]	Laboratory:	Test Ame	erica
	VV.		JUN SVI	-			Amherst, Ne	w York

		·····							
Sampling Personnel:	Tim Beaumont		·····	Date:	4/17/13				
Job Number: 36380	0.93808		····	Weather:	Sunny	50			
Well Id. MW-1	1			Time In:	1025	Time Out:	1100		
Well Information			<u></u>						
	<u> </u>	TOC	Other	Well Type	: Flus	hmount X s	Stick-Up		
Depth to Water:	(feet)	8.12		Well Lock		Yes	No		
Depth to Bottom:	(feet)	20.22		~	Point Marked:	Yes	No		
Depth to Product: Length of Water Colu	(feet)	12.10	——————————————————————————————————————	Well Mate			ner:		
Volume of Water in W	······································	1.94		Well Dian Comment		2"\Oth	er:		
Three Well Volumes: (gal) 5.82									
Purging Information	on.		······································						
r ungung mormuta						Conversion F	actors		
Purging Method:	Bailer	Peristaltic	Grundfos P	ump other	gal/ft.	1" ID 2" ID	4" ID 6" ID		
Tubing/Bailer Material									
Sampling Method:	Bailer		Grundfos P	ump other	<u> </u>	0.04 0.16			
Average Pumping Rat Duration of Pumping:		200 V			1 galio	on=3.785L=3785m	L=1337cu. feet		
Total Volume Remove	(min) d: (gal) <		id well go dry?	Yes No	তা				
				1 es1100	121				
Horiba U-52 Water Qu	lality Meter Used?	Yes	No □						
Time DTV	V Amount	Temp	На	ORP	Conductivity	Turbidih	T		
(fee	1 1 1 1 1 1 1 1 1 1 1 1 1	, C	pri 	(mV)	(mS/cm)	Turbidity (NTU)	DO (mg/L)		
1025 9.02		14.95	7,77	139	4.3	/3,2	4.90		
1030 9,40		14.03	7.66	160	12.0	401	2.23		
1035 9.5		14:10	7.65	165	12.0	/.3	1.65		
1040 9,7		14012	7.64	164	12.0	0	, 59		
(045 9.7		14.08	7.64	171	12-0	0	0		
1000 9.8	6	14.03	7.63	174	12.0	0	0		
1055 9.9	9	14.00	7.63	178	19.0	0			
									
Sampling Information							1		
Sampling intollinguoli	_								
EPA SW-846 Method 80	B2 PCB's	Low de	tection limit of 0	.05 ppb	2 - 1 liter amber	Yes Y	No∏		
EPA SW-846 Method 826	TCL VOC's		g Naphthalene	• •	2 - 40 mL vials	Yes	No X		
Comple ID: ONE L./	01112 -	-84- 0 -	, <u> </u>						
Sample ID: NW-((Yes No No			_	Courier		
	77 INIO	UNIOD!	Yes No X			Fed-Ex	UPS		
Comments/Notes:	NO OON NO	Shan			Laboratory:	Test Ame	rica		

Sampling Personnel: Tim Beau						
Carry mig : Cicciment : Inn acce	ımont		Date:	<u>4/11/13</u>		
Job Number: 36380.93808			Weather:	Sunny	50	
Well Id. MW-12			Time In:	945	Time Out:	1025
Well Information						
	TOC	Other	Well Type	: Flus	hmount 🔀 🤌	Stick-Up
	eet) 7.9/		Well Lock	ed:	Yes	No
	eet) 19.55		_	Point Marked:	Yes 🔀	No
	eet) —		Well Mate	· ·		
	eet) //. 		Well Diam		2" <mark>∑</mark> Oth	ner:
	gal) (186		Comment	s:		
Three Well Volumes: (g	gai) 5,58					
	··.	· · · · · · · · · · · · · · · · · · ·		 		
						
Purging Information						
D		. 🖂	 1	, , , , , , , , , , , , , , , , , , ,	Conversion F	
Purging Method:	Bailer Peristalt	K	K - 2		1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflon Stainless S		<u> </u>	⊢	0.04	0 00 4 4-
Sampling Method:	Bailer Peristalt	ic Grundfos P	ump other		0.04 0.16	
	/min) ~ 200			1 gallo	n=3.785L=3785m	L=1337cu. feet
	(min) 3つ (gal) ~ /・フく 1	المريد المريد المريد	V 11-			
· · · · · · · · · · · · · · · · · · ·		Did well go dry?	YesNo	[Xi]		
Horiba U-52 Water Quality Meter U	Jsed? Ye	s No				
Time DTW Am	ount Temp	рН	ORP	Conductivity	Turbidity	D0 1
/£a_4\	1/ 13 00					DO
	ed (gal) °C		(mV)	(mS/cm)	(NTU)	(mg/L)
945 8.50	d (gai) C	7.67	(mV) 90	(mS/cm) 7.54	- I	
945 8.50 910 9.12	12.12	7.77		7.84 7.93	(NTU)	(mg/L) 2.92 /A7
945 8.50 910 9.12 95 9.17	/1.95 12.12 12.26	7.77	90	7.54 7.93 9.21	(NTU) (6-2	(mg/L) 2.92 (A7 /.53
945 8.50 950 9.12 95 9.17 (NO 9.20	/1.95 12.12 12.26 12.45	7.77 7.81 7.81	90 (00	7.84 7.93	(NTU) /6-2 3.2-	(mg/L) 2.92 /Я7
945 8.50 910 9.12 915 9.17 (NO 9.20 105 9.22	/1.95 12.12 12.26 12.45 12.90	7.77 7.81 7.81 7.79	90 /00 /09 /12 /16	7.84 7.93 8.21 4.40 9.82	(NTU) /6-2 3.2 O O	(mg/L) 2.92 /.57 /.53 /.30
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 915 9.17 (NO 9.20 105 9.22	/1.95 12.12 12.26 12.45 12.90	7.77 7.81 7.81 7.79	90 /00 /09 /12 /16	7.84 7.93 8.21 4.40 9.82	(NTU) /6-2 3.2 O O	(mg/L) 2.92 /.57 /.53 /.30
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 915 9.17 100 9.20 1010 9.25 1010 9.28	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 100 9.20 100 9.22	/1.95 12.12 12.26 12.45 12.90 /2.98	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 95 9.17 (W 9.20 100 9.25 1010 9.28 Sampling Information:	12.12 12.12 12.45 12.45 12.90 12.98 13.03	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6.2 3.2 O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
945 8.50 910 9.12 915 9.17 100 9.20 1010 9.25 1010 9.28	12.12 12.12 12.45 12.45 12.90 12.98 13.03	7.77 7.81 7.81 7.79 7.78	90 /00 /09 /12 /16 /17 /20	7.84 7.93 8.21 8.40 8.82 9.10	(NTU) /6-2 3.2 O O O O O	(mg/L) 2.92 /.57 /.53 /.30 /.17 /.92
946 8.50 910 9.12 95 9.17 100 9.20 100 9.25 1010 9.28 Sampling Information: EPA SW-846 Method 8082 PC	12.12 12.12 12.45 12.45 12.90 12.98 13.03	7.77 7.81 7.81 7.79 7.78 7.79	90 /00 /09 /12 /16 /17 /120	7.84 7.93 8.21 4.40 9.82 9.10 9.13	(NTU) /6-2 3.2 O O O O O	(mg/L) 2.92 /.67 /.53 /.30 /.17 /.92 2.78
910 9.12 917 9.20 100 9.22 100 9.23 100 9.25 1010 9.28 Sampling Information: EPA SW-846 Method 8082 PC EPA SW-846 Method 8260 TC		7.77 7.81 7.81 7.79 7.78 7.79 7.79 etection limit of 0 ing Naphthalene	90 109 112 116 117 120 05 ppb	7. 94 7.93 9. 21 4.40 9.82 9.70 9.73	(NTU) /6.2 3.2 0 0 0 0 7 Yes	(mg/L) 2.92 /.57 /.53 /.30 /.17 .9278
946 8.50 910 9.12 95 9.17 100 9.20 100 9.25 100 9.28 1015 9.28 EPA SW-846 Method 8082 PC EPA SW-846 Method 8260 TCI Sample ID: MW-12-0413		7.77 7.81 7.81 7.79 7.78 7.79 etection limit of 0 ing Naphthalene Yes No	90 /00 /09 /12 /16 /17 /120	7. §4 7. §3 8. 21 \$.40 §.82 9. /0 9. /3 4 - 1 liter amber 2 - 40 mL vials	(NTU) /6-2 3.2 O O O O Yes Yes	(mg/L) 2.92 /.57 /.53 /.30 /.17 .9278
910 9.12 917 9.20 100 9.22 100 9.23 100 9.25 1010 9.28 Sampling Information: EPA SW-846 Method 8082 PC EPA SW-846 Method 8260 TC		7.77 7.81 7.81 7.79 7.78 7.79 7.79 etection limit of 0 ing Naphthalene	90 109 112 116 117 120 05 ppb	7. 94 7. 9.3 9. 21 4. 40 9. 82 9. 70 9. 73 4 - 1 liter amber 2 - 40 mL vials Shipped:	(NTU) /6-2 3.2 O O O O Yes Yes	(mg/L) 2.92 /.57 /.53 /.30 /.17 .9278
946 8.50 910 9.12 95 9.17 100 9.20 100 9.25 100 9.28 1015 9.28 EPA SW-846 Method 8082 PC EPA SW-846 Method 8260 TCI Sample ID: MW-12-0413		7.77 7.81 7.81 7.79 7.78 7.79 etection limit of 0 ing Naphthalene Yes No	90 /00 /09 /12 /16 /17 /120 05 ppb	7. 94 7. 9.3 9. 21 4. 40 9. 82 9. 70 9. 73 4 - 1 liter amber 2 - 40 mL vials Shipped:	(NTU) /6-2 3.2- O O O O Yes Yes Yes	(mg/L) 2.92 /.67 /.33 /.30 /.17 .9278 No No X Courier UPS

						7 1		· · · · · · · · · · · · · · · · · · ·
Sampling Pe	ersonnel: Ti	m Beaumont			Date:	4/17/13		
Job Number	: 36380.938	08			Weathe	r: Junny	58	
Well Id.	MW-20				Time In:	820	Time Out:	778
						<u> </u>		030
Well In	formation							
		-	TOC	Other	Well Ty	oe: Flus	hmount 3	Stick-Up
Depth to Wa	iter:	(feet)	77.80		Well Lo		Yes	No
Depth to Bot		(feet)	22.60		Measurin	g Point Marked:	Yes	No
Depth to Pro	duct:	(feet)	-		Well Ma			ner:
Length of W	ater Column:	(feet)	14.80		Well Dia		2"XOth	
Volume of W	/ater in Well:	(gal)	2.37		Comme	nts:		
Three Well \	/olumes:	(gal)	7011					
			<u> </u>					
Purging I	information				·			
		-					Conversion F	actors
Purging Meth	nod:	Bailer	Peristaltio	Grundfos P	ump oth	er gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflon			· k 🔀	——————————————————————————————————————		1 10 10 10
Sampling Me		Bailer	\blacksquare	k i	<u> </u>	⊢	0.04 0.16	0.66 1.47
Average Pun	nping Rate:	(ml/min) ^		E-3	· ——		n=3.785L=3785m	
Duration of F	umping:	(min)	3.			 -		
Total Volume	Removed:	(gal) ~		id well go dry?	Yes	lo 🗶		
Horiba I I-52	Water Quality			No No		<u></u>		
TIOTIDA O-02	Water Quality	weter oseur	168		·			
T	D.T.A.	1 4	T -	T		To		
Time	DTW	Amount	Temp	Нq	ORP	Conductivity	Turbidity	DO
23.00	(feet)	purged (gal)	°C	/ 6 /	(mV)	(mS/cm)	(NTU)	(mg/L)
82 0 825	7.88		9.92	6.91	44	. 004	98.9	11.36
¥30	7.85		/0.23	7.48	-/5	8.67	13.6	2.15
835	7.86		10.51	7.42	-28	8.79	4.4	,69
840	7.85		10.59	7.42	-35	8.75	1.6	.06
84	7.86		10.65	7.41 7.40	- 38	8.70	0	0
850	7.86			7.40	-37	8.69		\delta
	1.00		10.68	7.90	-2/	8.69	0	
								· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·			
						1		
		· · · · · · · · · · · · · · · · · · ·		†				
	-			I	<u> </u>			
Sampling Inf	formation							
Sampling in	ionnauon.							
EDA 6144 046 1	4-4	DODI-	1 1-	40446-	0.5	6 4 Br	5	
EPA SW-846 N		PCB's		tection limit of 0	.05 ppb	2 - 1 liter ambe	r	X _N ₀ □
EPA SW-846	vietnod 8260	TCL VOC's	Includii	ng Naphthalene		2 - 40 mL vials	Yes	No_
Commis ID:	M(1-37) . A('/3 ¬	allantaO	,	1	Ob.:		
Sample ID:	MW-20-04		•	Yes No				Courier
Sample Time:	850	MS	/MSD?	Yes No X			Fed-Ex	UPS
Commonte/Al								
Comments/N	otes:	Sheeps A. Ll		_		Laboratory:	Test Ame	erica
Comments/N	otes: 1.	sheen 164	er egg oder	_		Laboratory:	Test Ame Amherst, Ne	

								
Sampling Pe	ersonnel: Ti	m Beaumont			Date:	4/17/13		
Job Number	: 36380.938	08	•		Weather	: Sunay J	7'	
Well Id.	MW-21				Time In:		Time Out	935
								7.73
Well In	formation							
		-	TOC	Other	Well Typ	e: Flus	nmount	Stick-Up
Depth to Wa	ter:	(feet)	7.80		Well Loc		Yes	No
Depth to Bot	tom:	(feet)	21.85		Measurin	g Point Marked:	Yes	No
Depth to Pro	duct:	(feet)		·	Well Ma	terial: PVC	⊠ss ou	her:
Length of Wa	ater Column:	(feet)	1405		Well Dia	meter: 1"		ner:
Volume of W	/ater in Well:	(gal)	2.25		Comme	nts:		
Three Well V	/olumes:	(gai)	4.75					
Purging I	nformation	_						-
							Conversion F	actors
Purging Meth	nod:	Bailer	Peristalt	ic Grundfos P	ump oth	er gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile	r Material:	Teflon	Stainless S	t Polyethy	riene oth			
Sampling Me		Bailer	Peristalti	ic Grundfos P	ump oth	er water	0.04 0.16	0.66 1.47
Average Pun		(ml/min) 😓	175			1 gallo	n=3.785L=3785n	nL=1337cu. feet
Duration of P		(min)	30					
Total Volume	Removed:	(gal)	1/175	Did well go dry?	YesN	lo <u>7</u> 9	•	
Horiba U-52	Water Quality	Meter Used?	Ye	s No				
	,							
Time	I DTW	Amount	Temp	pН	ORP	Conductivity	Turbidity	DO
	(feet)	purged (gal)	°C	"	(mV)	(mS/cm)	(NTU)	(mg/L)
900	8.65	January (gun)	9.77	7.57	-27	8.56	16.2	4.60
905	9.80		10:03	7.43	32	9,23	8.2	.57
900	10.05		10.12	7.41	44	9.24	1.2	.36
9(1	10.15		10.14	7.40	53	9.20	0	.24
920	10.19		10.15	7.40	56	9,13	0	1/5
920	10.24		10.18	7.40	54	9.05	0	0
930	10.28		10.23	7.40	51	8.98	0	0
				<u> </u>				
								
Sampling Int	formation:							
	<u>-</u>							
EPA SW-846 N	Method 8082	PCB's	Low d	etection limit of C	0.05 ppb	2 - 1 liter ambe	Yes	No
EPA SW-846	Method 8260	TCL VOC's	Includ	ing Naphthalene		2 - 40 mL vials	Yes	No
					_			
Sample ID:	MW-21-04	<u>[]3</u> Duj	olicate?	Yes No X		Shipped: [)rop-off X TA	Courier
Sample Time:	930		/MSD?	Yes No			Fed-Ex	UPS
Comments/N	otes:			1		Laboratory:	Test Am	erica
COMMENTS/N	Mo	Shaw No	on use o	ide	1	Laboratory.		
			•		1		Amherst, N	∌W YOFK

Sampling Pe	rsonnel: Tir	m Beaumont			Date:	4/17/13		
Job Number:	: 36380.9380)8			Weather:	Sunny	490	
Well Id.	MW-24				Time In:	745	Time Out	820
								<u> </u>
Well In	formation							
		• <u>. </u>	TOC	Other	Well Type	e: Flus	hmount	Stick-Up
Depth to Wat		(feet)	7.90		Well Lock	ked:	Yes	No
Depth to Bott		(feet)	24.25		_	Point Marked:	Yes	No
Depth to Prod		(feet)	10 -		Well Mate			her:
Length of Wa	·	(feet)	16.35		Well Dian		2"_Oti	her:
Volume of W	 	(gal)	2.62		Commen	ts:		
Three Well V	olumes:	(gał)	7.86					
<u> </u>							<u> </u>	
Duraina I	-farmation	 						
Purging ii	nformation	•					O	
Purging Meth			Contotalitie	Country D			Conversion F	
Tubing/Bailer		Bailer Teflon	 		· 🔂		1" ID 2" ID	4" ID 6" ID
Sampling Me		Bailer			_		0.04 0.16	0.66 1.47
Average Pum			200	Giunalos I	Tube Table		on=3.785L=3785n	
Duration of P		(min)	30			. 3	JN-0.1 00E-07 00H	IIL 1337 Gu. 1001
Total Volume				id well go dry?	Yes No	<u>\</u>		
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •				,	'لٽا		
Horida U-52 v	Water Quality N	Meter Useur	res	No				
							· · · · · · · · · · · · · · · · · · ·	
eyer	I POLYGOLA E	1		1 1	222	T		
Time	DTW (fact)	Amount	Temp	рН	ORP	Conductivity	Turbidity	DO
	(feet)	Amount purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
745	(feet)		°C /0./0	7.33	(mV) 35	(mS/cm) /0,0	(NTU) 26.2	(mg/L) 2.43
745 750	(feet) 7.95 7.98		°C /0./0 /0.26	7,33	(mV) 35 30	(mS/cm) /0,0 //,0	(NTU) 26.2 /2.6	(mg/L) 2. 43 1. 65
745 750 255	7.98 7.98 7.98		°C /0./0 /0.26 /0.40	7.33 7.30 7.28	(mV) 35 30 28	(mS/cm) /0,0 //,0 //,0	(NTU) 26.2 /2.6 5.2	(mg/L) 2. 43 /, 65
745 750 255 800	(feet) 7.95 7.98 7.98 7.98		°C /0.10 10.26 /0.40 /0.56	7.33 7.30 7.28 7.27	(mV) 35 30 28 28	(mS/cm) /0,0 (/,0 /0,0 /0.0	(NTU) 24.2 /2.1 5.2 3.1	(mg/L) 2. 43 1. 65 .53 .62
745 750 755 800 805	(feet) 7.95 7.98 7.98 8.00		0.10 10.26 10.40 10.56 10.53	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28	(mS/cm) /0,0 //,0 //,0 //,0 //0,0 //0,0	(NTU) 26.2 /2.6 5.2	(mg/L) 2. 43 1. 65 .58 .62
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 755 800 805	(feet) 7.95 7.98 7.98 8.00		0.10 10.26 10.40 10.56 10.53	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28	(mS/cm) /0,0 //,0 //,0 //,0 //0,0 //0,0	(NTU) 26.2 /2.6 5.2 3.1	(mg/L) 2. 43 1. 65 .58 .62
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 255 800 805 810	(feet) 7.95 7.98 7.98 8.00 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 800 805 810 815	(feet) 7.95 7.98 7.98 8.00 8.00 8.00		°C /0.10 /0.26 /0.40 /0.56 /0.53 /0.50	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 28 28 22 21	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.6 5.2 3.1 0	(mg/L) 2.43 1.65 .51 .62 .27
745 750 800 805 810 815	(feet) 7.95 7.98 7.98 8.00 8.00 8.00		°C /0.10 /0.26 /0.40 /0.53 /0.53 /0.50 /0.47	7.33 7.30 7.28 7.27 7.27	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.4 5.2 3.1 0 0	(mg/L) 2. 43 1. 65 . 58 . 62 . 27 . 0
775 770 775 805 805 810 815	(feet) 7.95 7.98 7.98 7.98 8.00 8.00 8.00	purged (gal)	C /0./0 /0.26 /0.40 /0.53 /0.50 /0.47	7.33 7.30 7.28 9.27 7.27 7.27 7.27	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 /1,0 /0,0 /0,0 /0,0 /0,0 /0,0	(NTU) 24.2 /2.4 5.2 3.1 0 0	(mg/L) 2. 43 1. 65 . 53 . 62 . 27 0 0
745 750 755 800 805 810 815 Sampling Info	(feet) 7.95 7.98 7.98 7.98 8.00 8.00 8.00	purged (gal)	C /0./0 /0.26 /0.40 /0.53 /0.50 /0.47	7.33 7.30 7.28 7.27 7.27 7.27 7.27	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 //,0 /0,0 /0,0 /0,(/0,0 /0,0 2-1 liter ambe	(NTU) 24.2 /2.4 5.2 3.1 0 0 Ves	(mg/L) 2. 43 1. 65 . 53 . 62 . 27 . 0 . 0
775 750 755 800 805 810 815 Sampling Info	(feet) 7.95 7.98 7.98 7.98 8.00 8.00 8.00	PCB's TCL VOC's	C /0./0 /0.26 /0.70 /0.53 /0.50 /0.47	7.33 7.30 7.28 7.27 7.27 7.27 7.27	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 //,0 /0,0 /0,0 /0,0 /0,0 /0,0 2-1 liter amber 2-40 mL vials	(NTU) 24.2 /2.4 5.2 3.1 0 0 0 Yes Yes	(mg/L) 2. 43 1. 65 . 53 . 62 . 27 . 0 . 0
775 770 775 800 805 800 815 Sampling Info EPA SW-846 N	(feet) 7.95 7.98 7.98 7.98 8.00 8.00 8.00 8.00	PCB's TCL VOC's	C /0./0 /0.26 /0.70 /0.53 /0.50 /0.47 Low de Includir	7.33 7.30 7.28 7.27 7.27 7.27 7.27 7.27 7.20	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 //,0 /0,0 /0,0 /0,0 /0,0 /0,0 /0,0 2-1 liter amber 2-40 mL vials Shipped:	(NTU) 24.2 /2.4 5.2 3.1 0 0 0 Yes Yes	(mg/L) 2. 43 1. 65 . 73 . 62 . 27 . 0 . 0 . No No No
Sampling Info EPA SW-846 M EPA SW-846 M Sample ID:	(feet) 7.95 7.98 7.98 7.98 8.00 8.00 8.00 8.00 8.00 Mu-24-04 816	PCB's TCL VOC's MS	C /0./0 /0.26 /0.70 /0.53 /0.50 /0.47 Low de Includir	7.33 7.30 7.28 7.27 7.27 7.27 7.27 7.27 No mg Naphthalene Yes No No	(mV) 35 30 28 28 26 23 20	(mS/cm) /0,0 //,0 /0,0 /0,0 /0,0 /0,0 /0,0 /0,0 2-1 liter amber 2-40 mL vials Shipped:	(NTU) 24.2 /2.4 5.2 3.1 0 0 O Test Yes Yes	(mg/L) 2. 93 7. 65 78 762 727 0 0 No No No No Courier UPS

Well ID.	Sample?	Well Size	DTP	DTW	DTB	Comments
ESI-1	VOC's Fall only	4"	trace on boom	4.20	21.50	checked sorbant boom.
MW-1	yes	4"		3.23	29.90	one of Solid Boom.
MW-2	no	4"		11.42	44.17	
MW-5	no	2"		11.58	21.40	
MW-6	yes	2"		8.25	21.05	
MW-7	no	2"		11.30	21.30	
MW-9	yes	2"		10.00	22.05	
MW-10	no	2"		10.51	24.25	
MW-11	yes	2"		8.25	20.22	
MW-12	yes	2"		8.04	19.55	
MW-13	no	2"		11.31	26.25	
MW-15	no	2"		12,22	23.80	and the second
MW-16	VOC's Fall only	2"	trace on probe	4.82	20.36	
MW-17	no	2"		12.45	20.60	
MW-19	no	2"		12.52	24.00	
MW-20	yes	2"		8.20	22.60	
MW-21	yes	2"		8.20	21.85	
MW-24	yes	2"		8.30	24.25	
MW-25	no	2"		5.25	15.36	

Chain of Custody Record

N - None
O - ANNAOZ
P - NAZO4S
Q - NAZSO3
R - NAZSSSO3
S - HZSD4
T - TSP Dodecanydrate
U - Acetone
W - ph 4-6
Z - other (specify) Special Instructions/Note: Months Company Sample Disposal (A fee may be assessed if samples are retained fonger than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No. 480-39682-7262.1 Preservation Codes G - Amchlor H - Ascorbic Acid Page Page 1 of 1 C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH J · Di Water K · EDTA L · EDA erenistnos lo redmuli isto) Date/Time: Method of Shipment: Cooler Temperature(s) C. and Office Remarks **Analysis Requested** Special Instructions/QC Requirements: peggy, gray-erdmann@testamericainc.com Lab PW: Gray-Erdmann, Peggy J Received by: Received by: Received by N H Time (ON TO #eV) QEI Company Company Company E-Vall: Preservation Code: Water (Wewster, Septid, Oewsteriol BTeTissue. Company Radiological Type (C=comp, G=grab) Sample 9 ٥ Q S Sampler TIM Becomed 585 739 2348 Sample 930 K 동 을 S 200 3 53% <u>|</u> 215 Date: Poison B Unknown TAT Requested (days): Due Date Requested: Sample Date [0]8|CJ D 8 01 () 8 01 PO#: 36380.99758 WO#: (olel13 0/3/17 0/8/01 C1/5/c) (0) 11/S 10 3 1.13 [18 8 12 roje (G Project #: 48002647 SSOW#: Cate/Time: CDM Smith /CDM Event Desc. Dewey Avenue GW Wells Oct Skin Imitant Custody Seals (nadd) | Custody Seal No Possible Hazard Identification

(A) Non-Hazard — Flammable Skin Imit
Deliverable Requested: I, II, III, (V) Other (specify) beaumonttj@cdmsmith.com Empty Kit Relinquished by: Address: One General Motors Drive Client Information Sample Identification Relinquished by Timothy Beaumont COM Smith, Inc. MW-6-1013 MS WW-6-1013 SD WW-21-1013 MW-24-1013 Relinquished by: MW-11-1013 MW-12-1013 MW-20-1013 telinquished by: MW-1-1013 MW-6-1013 MW-9-1013 State, Zip: NY, 13206 Clent Contact **New York** Syracuse FD-1013 Pole

Committee De		D				. 1.1 -		
Sampling Pe		m Beaumont			Date:	10/8/13		
Job Number	: 36380.997	58			Weathe	: Sunny		
Well Id.	MW-1				Time In:		Time Ou	t: / 0Zo
								, , ,
Well In	formation	_						
			TOC	Other	Well Typ	e: Flus	shmount	Stick-Up
Depth to Wa	iter:	(feet)	3.23		Well Loc		Yes	No
Depth to Bot	tom:	(feet)	29.90		Measurin	g Point Marked:	Yes	No
Depth to Pro	duct:	(feet)	_		Well Ma	terial: PVC		her: steel
Length of Wa	ater Column:	(feet)	2667		Well Dia	meter: 1"		her: 4"
Volume of W	/ater in Well:	(gal)	17.60		Commei	nts:		
Three Well \	/olumes:	(gal)	5280				•	
Purging I	nformation	_						
							Conversion	Factors
Purging Meth		Baile	r Peristalti	c Grundfos F	othe other	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflor	Stainless S	tPolyeth	ylene othe			
Sampling Me		Baile	r Peristalti	c Grundfos F	othe other	water	0.04 0.16	0.66 1.47
Average Pun		(ml/min)	200			1 gallo	on=3.785L=3785r	
Duration of P		(min)						
Total Volume	Removed:	(gal)	~ 2.0	Did well go dry?	Yes N	o >		
Horiba U-52	Water Quality	Meter Used?	Ye	s No				
								
Time	DTW	Amount	Temp	PН	ORP	Conductivity	Turbidity	DO I
	(feet)	purged (gal)	°C	, ,,,	(mV)	(mS/cm)	(NTU)	1 11
945	3.20	3- 3-7	20.88	8.62	-185	/· ½	20.1	(mg/L)
950	3.22		20.87	8.80	-(8)	1.58	18.6	730
455	3.22		21.05	9.08	-189	5.16	18.8	0
טעטן	3.22		31.05	7.43	-104	8.97	/2.	o l
1005	3.22		21.07	7.61	-100	9,00	1.2	0
1010	3.24		21,10	7-60	- 97	9.07	0	0
1015	3.24		21.12	7.60	- 93	9.09	0	0
		i				1-2		— <u> </u>
								
Sampling Inf	ormation:							
	-		•		•			·
EPA SW-846 N	lethod 8082	PCB's	Low de	etection limit of 0	.05 ppb	2 - 1 liter amber	Yes	N₀ □
EPA SW-846 M	lethod 8260	TCL VOC's		ng Naphthalene	,	2 - 40 mL vials	Yes	No No
						_ , _ , ,	1 GS	
Sample ID:	MW-1-101	3 Du	plicate?	Yes No X		Shipped: D	rop-off TA	Courier
Sample Time:	1015			Yes No			Fed-Ex	UPS
Comments/No								<u> </u>
COMMENS/NO	sh	yer odor	no stee			Laboratory:	Test Ame	
	-	en '			11		Amherst Na	37 1

Sampling Pe	ersonnel T	m Beaumont	· · · · · · · · · · · · · · · · · · ·		Date:	10/8/1.	·	
Job Number						_		
	MW-6	<u> </u>	·		Weathe	7	56	
Well Id.	INIAA-0				Time In:	1030	Time Ou	t: 11/5
Well In	formation							
	TOTTIALION	-	тос 💇	Other	Mall To	51	\	
Depth to Wa	ter:	(feet)	-/0.25	8.25	Well Typ Well Loc			Stick-Up
Depth to Bot		(feet)	21.05	0.23		g Point Marked:	Yes Yes	No -
Depth to Pro		(feet)			Well Ma	-		No her:
Length of Wa	ater Column:	(feet)	/0,80	12.80	Well Dia			her:
Volume of W	/ater in Well:	(gal)	1.73	2.05	Commei	nts:		
Three Well V	/olumes:	(gal)	5119	6-15				
Purging I	nformation	-						
- · · · · · · · · · · · · · · · · · · ·				~			Conversion	
Purging Meth		Baile		<u> </u>	· ——		1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflor	<u> </u>		ylene othe	F-1 1 -		
Sampling Me Average Pur		Bailer		ic Grundfos P	othe other		0.04 0.16	
Duration of P			30			1 gallo	on=3.785L=3785r	nL=1337cu. feet
Total Volume		(min)		Did well go dry?	You Tak	্ব		
					YesN	o[]		
Horiba U-52	Water Quality	Meter Used?	Ye	s No				
Time	DTW	1 1	T -					
rine	(feet)	Amount	Temp °C	pH	ORP	Conductivity	Turbidity	DO
/030	9.25	purged (gal)	19.5%	2.70	(mV) -59	(mS/cm)	(NTU)	(mg/L)
1031	7.20		19.31	7.70	1	7.05	/3.2	8.02
1840	9.22		19.14	7.75	-64		2.7	6.76
1045	9.22		18.94	7.70	-61	7.02	0	6.69
1000	9.22		18.71	7.69	_c-G	7,26	0	568
1055	9,23		18.70	7.69	- 57	7.27	0	5.17
1100	9,23		18.65	7.67	-56	7.27	D	4.89
							· · ·	1.01
					-			
L				<u></u>				
Sampling Info	ormation:							
							_	
EPA SW-846 M		PCB's		etection limit of 0	.05 ppb	6 - 1 liter amber	Yes	⊠ No 🔲
EPA SW-846 M	ethod 8260	TCL VOC's	Includi	ng Naphthalene		2 - 40 mL vials	Yes	No⊠
Sample ID:	MIALL	12	-1:	,			(-3	_
Sample ID: Sample Time:	MW-6-10		•	Yes No X		- ·		Courier
	1100		/MSD?	Yes No No		1	ed-Ex	UPS
Comments/No	otes:	yer on	no Shen	-		Laboratory:	Test Am	erica
		7 . 000	in shew			-	Amherst, Ne	· · · · · · · · · · · · · · · · · ·

Sampling Pe	rsonnel T	m Beaumont			Deter			
					Date:	10/8/12	·	
Job Number		58	 -		Weather			
Well Id.	MW-9				Time In:	900	Time Out	<u>: 935</u>
						·····		
Well In	formation	_						
<u> </u>			TOC	Other	Well Type		shmount	Stick-Up
Depth to Wa		(feet)	18.00		Well Loc	red:	Yes	No
Depth to Bot		(feet)	22.05	,,,,,,	_	Point Marked:	Yes 🔀	No
Depth to Pro		(feet)			Well Mate		SSOt	her:
Length of Wa		(feet)	12.05		Well Diar		2" ∑ _Ot	her:
Volume of W		(gal)	1.93		Commen	ts:		
Three Well V	/olumes:	(gal)	5.79					
<u></u>								
Purging I	nformation	_						· · · · · · · · · · · · · · · · · · ·
			_				Conversion I	actors
Purging Meth		Baile	Peristaltio	Grundfos F	ump othe	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflor	Stainless St	. Polyethy	rlene othe			
Sampling Me		Baile		Grundfos F	ump othe	water	0.04 0.16	0.66 1.47
Average Pun		(ml/min)	200 +			1 galio	n=3.785L=3785n	nL=1337cu. feet
Duration of P		(min)	30					
Total Volume	Removed:	(gal) 🛋	- 2.0 D	id well go dry?	Yes No	×		ì
Horiba U-52	Water Quality	Meter Used?	Yes	No				
								
Time	DTW	Amount	Temp	рН	ORP	Conductivity	Turbidit	
	(feet)	purged (gal)	°C) Pi''	(mV)	(mS/cm)	Turbidity	DO
900	11.02	pargoa (gar)	17.88	7.57	-71	5.79	(NTU) 7.Z	(mg/L)
405	11.05		17.94	7.57	-79	5.73	1.1	7.02
910	11.06		17.99	7.57	- 81	2.81	0	7.17
915	11.06		18.05	7.58	-86	6.82	0	7-/4
920	11.06		18.16	7,58	-91	1.84	0	7.03
925	11.06		14.20	7.60	- 97	2.87		6.85
930	1106		18.21	7.60	- 95	5.87	0	654
	710-2			7.90		1.0/		6.30
								
								
			 	 				
				1				111
Sampling Inf	ormation:							
Sampling Inf	ormation:							
		DCP's	Loudo	tootion limit of 0	05 1			
EPA SW-846 N	Method 8082	PCB's		tection limit of 0	.05 ppb	2 - 1 liter amber		No □
	Method 8082	PCB's TCL VOC's		tection limit of 0	.05 ppb	2 - 1 liter amber 2 - 40 mL vials	Yes Yes	No No
EPA SW-846 N EPA SW-846 N	Nethod 8082 Nethod 8260	TCL VOC's	Includir	ng Naphthalene	.05 ppb	2 - 40 mL vials	Yes	N _o ∑
EPA SW-846 N EPA SW-846 N Sample ID:	Method 8082 Method 8260	TCL VOC's Du	Includir plicate?	ng Naphthalene Yes No X	.05 ppb	2 - 40 mL vials Shipped:	Yes Prop-off X TA	No Courier
EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	Method 8082 Method 8260 MW-9 - 10 930	TCL VOC's Du	Includir plicate?	ng Naphthalene	05 ppb	2 - 40 mL vials Shipped:	Yes	N _o ∑
EPA SW-846 N EPA SW-846 N Sample ID:	Method 8082 Method 8260 MW-9-10 930	TCL VOC's Du MS	Includir plicate?	ng Naphthalene Yes No X	.05 ppb	2 - 40 mL vials Shipped:	Yes Prop-off X TA	No Courier UPS

	Personnel:	Tim Beaumont			Date:	10/8/13		
Job Numb		9758			Weath		าษ	
Well Id.	MW-11			<u></u>	Time Ir		Time C	Out: AT
Well	Information							AC. 83 3
- vven	mormation				· · · · · · · · · · · · · · · · · · ·			
Depth to V	Vater:		TOC	Other	Well Ty	rpe: Fi	ushmount	Stick-Up
Depth to B		(feet)	8.25		Well Lo		Yes	No No
Depth to P		(feet)	20.22		Measuri	ng Point Marked		No
	Vater Column	(feet)			Well Ma			Other:
Volume of	Water in Well:		11.97		Well Dia	ameter:		Other:
Three Well		(947)	1.52		Comme	nts:		
		(gal)	5.76					
Purging	Information							
	omation	_						
Purging Me	thod:			K 7			Conversion	Factors
Tubing/Baile		Baile	<u> </u>			er gal/ft		
Sampling M		Teflor					 	7 7 10 0 11
	mping Rate:	Baile		Grundfos	Pump oth		0.04 0.16	0.66 1.47
Duration of I	Pumping:		1 200 1					mL=1337cu. feet
Total Volum	e Removed:	(min)	30			_		TIC-1337Cu. Teet
				Did well go dry?	Yes N	∘ ∀		
nonba U-52	Water Quality	Meter Used?	Yes			_ _		
Time	DTW	Amount	Temp	рН	ORP			
	(feet)	purged (gal)	ໍຕໍ	J	1	Conductivity	Turbidity	DO
820	9.20		17.12	7.99	(mV)	(mS/cm)	(NTU)	(mg/L)
125	9.80		/2013	7.93	/42	2.00	17.2	3.7
830	/0.01		16.99	7.73	/50	2.00	6.1	3.56
835	9.85		16.82	7.92	161	2.00	0	3.00
840	9.37		14.78	7.92		2.00		3.16
842	9.89		14.71	7.92	163	7.00		2.40
150	9.90		16.66	7.92	162	2.00		2.75
				- 676	163	2.00		2.61
								
ampling Info	ormation:							
	· · · · · · · · · · · · · · · · · · ·							
A SW-846 M	ethod 8082	PCB's	ا مند طحد	andiam there is a second				
'A SW-846 Me		TCL VOC's	LOW GET	ection limit of 0.0		2 - 1 liter amber	Yes	No N
	- 	. 52. 7003	uciuaing	Naphthalene	:	2 - 40 mL vials	Yes	No.
mple ID:	MW-11-1013	Dunli	cate? y					
mple Time:	850	Dupii MS/N		3s No No		Shipped: Dr	op-off TA	Courier
			יוסטי אָן	es No X		Fe	ed-Ex	UPS
mments/Not	es:	to non i	no Shew			aboratory:	Too! ^	——.
			- 0.00		'	y.	Test Ame Amherst, Nev	41

Sampling Po	ersonnel: T	'in- D		• • • • • • • • • • • • • • • • • • • •	-	. ; [.	· · · · · · · · · · · · · · · · · · ·	
Job Number		im Beaumont			Date:	10/8/13		
	r: 36380.99	758			Weather	Sunny		_
Well Id.	MW-12				Time In:		Time Ou	t: 810
								0,0
Well Ir	formation	_						
			TOC	Other	Well Typ	e: Flu	shmount	Stick-Up
Depth to Wa		(feet)	8.04		Well Loc	ked:	Yes	No
Depth to Bo		(feet)	19.55		Measurin	g Point Marked:	Yes	No
Depth to Pro		(feet)			Well Ma	terial: PVC	SS O	ther:
	ater Column:	(feet)	11.51		Well Dia	meter: 1'	'	ther:
	/ater in Well:	(gal)	1.84		Commer	nts:		
Three Well \	/olumes:	(gal)	5.52					
								
Durania	mfa 4:			 				
Purging	Information	_						
Durging Mod		 1			 1		Conversion I	
Purging Met		Bailer	H		· k—	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflon	├	K-3	F4	of		
Sampling Me		Bailer		Grundfos P	ump othe	r water	0.04 0.16	0.66 1.47
Average Pur			200			1 gallo	on=3.785L=3785r	nL=1337cu. feet
Duration of F		(min)	30					
Total Volume	Removed:	(gal)	<u> አ.</u> ወ D	id well go dry?	Yes No	X		
Horiba U-52	Water Quality	Meter Used?	Yes	No	 			
Time	DTW	Amount	Temp	рН	ODD	Conductivity		
111110	D 1 4 4	I thinount			1 ()22		Lurbidita	
	(feet)		1 '	ļ Pil	ORP (mV)	Conductivity (mS/cm)	Turbidity	DO (may(l))
	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
730	(feet) 9.08		°C 17.42	8-13	(mV) /G	(mS/cm)	(NTU) 6.7	(mg/L) • 75
730 73	(feet) 9.08 9.25		°C 17.42 17.39	8-13	(mV) 19 21	(mS/cm) / *** / *** / *** / *** / *** / *** / *** / *** / *** / * /	(NTU) 6.7 1.6	(mg/L) • 75 8.44
730 736 740	(feet) 9.08 9.25 9.25		17.42 17.39 17.39	8-13 7-82 7-79	(mV) 19 21 96	(mS/cm) /e *\ /e *	(NTU) 6.7 1.6	(mg/L) • 75 8.44 7.43
730 731 740 745	(feet) 9.08 9.25 9.25 9.24		17.42 17.39 17.39 17.21	8-13 7-82 7-79 7-77	(mV) 19 21 94 114	(mS/cm) /e P /e P /e P3 /e P 3 /e P 3	(NTU) 6.7 1.6	(mg/L) • 75 8.44 7.53 7.29
730 736 746 745 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.29 17.21 17.26	8-13 7-82 7-79 7-77 7-78	(mV) 19 21 96 114 123	(mS/cm) /e P\ /e P	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.12
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 746 745 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.29 17.21 17.26	8-13 7-82 7-79 7-77 7-78	(mV) 19 21 96 114 123	(mS/cm) /e P\ /e P	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.12
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 746 745 717 717 717	(feet) 9.08 9.25 9.25 9.27 9.24 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 740 745 750 750	(feet) 9.08 9.25 9.25 9.27 9.24 9.24 9.24		7.42 17.39 17.34 17.21 17.26 17.24	8-13 7-82 7-79 7-77 7-78 7-18	(mV) 19 21 96 114 123 126	(mS/cm) / ** / * /	(NTU) 6.7 1.6 0	(mg/L) • 75 8.44 7.53 7.29 7.72 6.86
730 736 746 745 717 717 717 717 800	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 9.24	purged (gal)	17.42 17.39 17.34 17.21 17.26 17.24 17.26	8-13 7-82 7-79 7-77 7-78 7-79	(mV) 19 21 96 114 123 126 131	(mS/cm) /e P\	(NTU) 6.7 6.6 0 0 0 0	(mg/L) -75 8.44 7.93 7.29 7.12 6.86 6.59
730 736 746 747 717 717 717 FVD	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 Grantion:	purged (gal)	17.42 17.39 17.24 17.26 17.24 17.26	8-13 7-82 7-77 7-78 7-78 7-79	(mV) 19 21 96 114 123 126 131	(mS/cm) / 1/7 / 1/7 / 1/7 / 1/7 / 1/7 / 1/7 / 1/7 / 1/8 / 1/86	(NTU) 6.7 6.6 0 0 0 0 0 Yes	(mg/L) -75 -8.44 -7.53 -7.29 -7.72 -6.86 -6.55
730 736 746 745 717 717 717 717 800	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 Grantion:	purged (gal)	17.42 17.39 17.24 17.26 17.24 17.26	8-13 7-82 7-79 7-77 7-78 7-79	(mV) 19 21 96 114 123 126 131	(mS/cm) /e P\	(NTU) 6.7 6.6 0 0 0 0	(mg/L) -75 8.44 7.93 7.29 7.12 6.86 6.59
730 737 740 747 717 717 717 FVD Sampling Inf	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 Gradient Street	PCB's TCL VOC's	17.42 17.39 17.39 17.21 17.26 17.24 17.26	8.13 7.82 7.77 7.78 7.78 7.75	(mV) 9 2 9 14 23 26 31	(mS/cm) / PC / PS	(NTU) 6.7 6.6 0 0 0 0 7 Yes Yes	(mg/L) -75 8.44 7.73 7.29 7.72 6.86 6.55
730 731 740 741 717 717 717 FVD Sampling Inf	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.24	PCB's TCL VOC's	17.42 17.39 17.24 17.26 17.24 17.26 17.26 17.26	8.13 7.82 7.79 7.78 7.18 7.18 7.75 ection limit of 0. g Naphthalene 'es ⊠No □	(mV) 19 21 96 114 123 126 131	(mS/cm) /ePC /ePC /ePC /ePC /ePC /ePC /ePC /ePC	(NTU) 6.7 6.6 0 0 0 0 0 7 es Yes Yes	(mg/L) - 75 - 8.44 - 7.5 - 7.12 - 7.12 - 7.12 - 7.12 - 6.86 - 6.55
730 736 746 746 747 717 717 717 717 FAR SW-846 M EPA SW-846 M Sample ID: Sample Time:	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 9.24 9.24 9.26 MW-(2-10) 880	PCB's TCL VOC's	17.42 17.39 17.24 17.26 17.24 17.26 17.21 Low det Including	8.13 7.82 7.77 7.78 7.78 7.75	(mV) 9 2 9 14 23 26 31	(mS/cm) /ePC /ePC /ePC /ePC /ePC /ePC /ePC /ePC	(NTU) 6.7 6.6 0 0 0 0 7 Yes Yes	(mg/L) -75 8.44 7.73 7.29 7.72 6.86 6.55
730 731 740 741 717 717 717 FVD Sampling Inf	(feet) 9.08 9.25 9.27 9.24 9.24 9.24 9.24 9.24 9.24 9.26 MW-(2-10) 880	PCB's TCL VOC's	17.42 17.39 17.24 17.26 17.24 17.26 17.26 17.26	ection limit of 0. g Naphthalene	(mV) 9 2 9 14 23 26 31	(mS/cm) /ePC /ePC /ePC /ePC /ePC /ePC /ePC /ePC	(NTU) 6.7 6.6 0 0 0 0 0 7 es Yes Yes	(mg/L) -75 -8.44 -7.53 -7.29 -7.72 -6.86 -6.55

Sampling Pe	ersonnel: T	im Beaumont			Date:	10/9/13		
Job Number					Weathe		50.	
Well Id.	MW-20							0
Well Id.	19199-20				Time In	825	Time Out	900
Well In	formation							
-			TOC	Other	Well Ty	ne. Elu	shmount X	Stick-Up
Depth to Wa	nter:	(feet)	820	00101	Well Lo		Yes	No No
Depth to Bot		(feet)	22.60			ng Point Marked:	Yes	No
Depth to Pro		(feet)	_		Well Ma	•		her:
Length of W	ater Column:	(feet)	14.40		Well Dia			
Volume of W	/ater in Well:	(gal)	2.30		Comme			
Three Well \	/olumes:	(gal)	4.40					
			<u> </u>					
Purging I	Information	···						
		····			<u></u>		Conversion F	actors
Purging Meth		Bailer	Peristaltion	Grundfos P	ump oth	er gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflon	 -	k	_	er of		
Sampling Me		Bailer	Peristaltid	Grundfos P	ump oth	er water	0.04 0.16	0.66 1.47
Average Pun		(ml/min)	200			1 galie	on=3.785L=3785m	nL=1337cu. feet
Duration of P		(min)	30				-	
Total Volume	e Removed:	(gal)	* 2.0 D	id well go dry?	YesN	10 X		
Horiba U-52	Water Quality	Meter Used?	Yes	No No				
		· · · · · · · · · · · · · · · · · · ·						
Time	DTW	Amount	Temp	рН	ORP	Conductivity	Turbidity	DO
	(feet)	purged (gal)	့င		(mV)	(mS/cm)	(NTU)	(mg/L)
525	8.28		15.W	7.54	-96	8.70	14.8	O
¥30	8.29		15.15	752	-100	8-61	6.2	0
*35	8.30		15.21	7.52	-107	8.52	1.2	0
840	y.30		15.26	7.51	-117	8.50	0	0
845	8.30		15.30	7.51	-129	8.46	0	0
810	y.30		15.32	7.51	-130	8.47	0	0
YIT	8.30		15.33	7.50	-132	1:47	0	0
			· ·					
ļ————				 		<u> </u>		
								
	<u>!</u>	<u> </u>						
Sampling Inf	formation:							1
Sampling in	ornation,							ļ
EPA SW-846 N	Anthod 9093	PCB's	ما م	ta atiam lima't at O	05	0.486	1	
EPA SW-846 N		TCL VOC's		tection limit of 0	.us ppb	2 - 1 liter amber		× No
LFA 377-040 N	vieti iod 6260	ICL VOCS	includir	ng Naphthalene		2 - 40 mL vials	Yes	No⊠
Sample ID:	MW-20-101	3 Dur	olicate?	Yes No X		Shipped: [rop-off TA	
Sample Time:	*13			Yes No			Fed-Ex	Courier
				· 550 L 170 K 2			CU-LX	059[_]
	_ 1							
Comments/No	otes: M	io Sheen i	ro Hen egg	oder		Laboratory:	Test Ame	erica

Sampling Pe	ersonnel: T	im Beaumont			Date:	10/9/13		
Job Number	: 36380.997	758	*	· · · · · · · · · · · · · · · · · · ·	Weather		10	
Well Id.	MW-21				Time In:	900	Time Out	. 62.5
			······································	<u> </u>	11110111.	700	Time Out	935
Well In	formation							
			TOC	Other	Well Typ	e: Flus	shmount	Stick-Up
Depth to Wa		(feet)	1,20		Well Loc	ked:	Yes	No
Depth to Bot		(feet)	21.85		_	Point Marked:	Yes 🔀	No
Depth to Pro		(feet)			Well Mat	·		her:
Length of Wa		(feet)	13.65		Well Diar		2" ∑ Oŧl	ner:
Three Well V		(gal) (gal)	1.35 4.05		Commen	ts:		
711100 71011		(gai)	7401					
Purging I	nformation							
		<u> </u>					Conversion F	actors
Purging Meth		Bailer	Peristaltio	Grundfos F	ump othe	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflon	⊢ — · · · · ·	k				
Sampling Me		Bailer		Grundfos F	ump other		0.04 0.16	0.66 1.47
Average Pun Duration of P			700			1 gallo	n=3.785L=3785m	L=1337cu. feet
Total Volume		(min) (gal)	30 2.0 D	id well go dry?	Van 🗖 Na	.		ľ
					Yes No	×		
riorida U-52	Water Quality	Meter Used?	Yes	No.				
Time	DTW	1 Amount	Tanan	T	0.00			
i mile	(feet)	Amount purged (gal)	Temp °C	pН	ORP	Conductivity	Turbidity	DO
900	(1001)	parged (gar)	14.92	7.85	(mV) -7%	(mS/cm) 2.63	(NTU)	(mg/L)
90-			15.98	7.64	-65	2.52	/2.6 2.2	8
910			16.05	7.62	-60	2.50	0	0
915			16.17	7.68	- 57.	2.48	0	0
920			16.19	7.71	-52	2.49	0	0
925			14.23	2.72	- 48	2.50	0	0
930		<u> </u>	16.24	7.72	- 47	2.50	0	_0
-								
			···		· · · · · · · · · · · · · · · · · · ·			
								·
Sampling Info	ormation:						· · · · · · · · · · · · · · · · · · ·	
EPA SW-846 M		PCB's		tection limit of 0.	05 ppb	2 - 1 liter amber	Yes	No∏
EPA SW-846 N	lethod 8260	TCL VOC's	Includin	ig Naphthalene		2 - 40 mL vials	Yes	No⊠
Sample ID:	MW-21-10		lioote2	/ \		Obline		
Sample Time:	930	-		Yes No X				Courier
	<u> </u>					· I	ed-Ex	UPS
Comments/No	otes:	to sheen	An Wen Oca	pelis	.	Laboratory:	Test Ame	erica
			- 100 miles		!!	-	Amherst Ne	II

Sampling F	Personnei:	Tim Beaumont			Dete	1-10/1		
Job Numbe					Date:	10/9/	13	
Well Id.	MW-24				Weathe			
			-		Time In	745	Time Ou	ıt: <i>82</i> 0
Well (nformation							
Depth to W	ater	(feet)	TOC	Other	Well Ty		ıshmount	Stick-Up
Depth to Bo		(feet)	8.30 24.25		Well Lo		Yes	No
Depth to Pr		(feet)	24.20			ng Point Marked:	Yes	No
Length of W	Vater Column:	(feet)	15.95		Well Ma Well Dia	-		ther:
	Vater in Well:	(gal)	2.55		Comme		" <u> </u>	ther:
Three Well	Volumes:	(gal)	7.65		Comme	nts:		
							· · · · · · · · · · · · · · · · · · ·	
Purging	Information							
Duraina Mat	do o al	-	 -	k		<u> </u>	Conversion	Factors
Purging Met		Bailei			Pump oth	er gai/ft.		
Tubing/Baile Sampling Me		Tefion	—					1 10 0 10
Average Pur		Bailer		C Grundfos I	Pump oth	er water	0.04 0.16	0.66 1.47
Duration of F		(ml/min) 4				1 gall	on=3.785L=3785r	
Total Volume		(min)	<u> 30 </u>					
			· · · · · · · · · · · · · · · · · · ·	oid well go dry	Yes N	∨		
Horiba U-52	Water Quality	Meter Used?	Yes	No				
Time	DTW	Amount	Temp	рН	ORP	Conductivity	Turbidity	
MILL	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	DO (ma/l.)
745	8.36		/s.sy	7.59	-75	8.38	8.2	(mg/L)
750	8.32	<u> </u>	15.63	7.43	-90	8.47	1.3	.49
	8.32	 	15.69	7.44	-96	8.46	0	7.16
805	8.32		15.69	7.46	-101	8.46	0	7.07
810	8.32	<u> </u>	15.70	7.46	-103	8.40	0	4.52
815		 	11.77	7.48	-106	8.42	0	5.94
	1.32		12.89	7.48	-112	1.43	Ò	5.57
·								
		 				 		
					<u></u>	 		
Sampling Info	ormation:							
								[]
PA SW-846 M	lethod 8082	PCB's	i ow det	action limit of O	05		K	
PA SW-846 M		TCL VOC's		ection limit of 0. g Naphthalene	og ppb	2 - 1 liter amber		\boxtimes No \square
			moluul()	A Mahumajene		2 - 40 mL vials	Yes	No⊠
ample ID:	MW-24-	101 3 Dubi	icate? Y	es No		Chinned: -		
ample Time:	815			es No				Courier
omments/No						F	ed-Ex	UPS
	100. T) Shew No	Hen egg	OM		Laboratory:	Test Ame	rica
		. •	11 ,	- VT -]	-	Amberet Ne	

Appendix B April & October 2013 Groundwater Monitoring Laboratory Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-36521-1

Client Project/Site: CDM Smith - NG Dewey Ave Service Center

Revision: 1

For:

CDM Smith, Inc.
One General Motors Drive
Syracuse, New York 13206

Attn: Matthew Millias

Authorized for release by: 4/24/2013 1:09:45 PM Eve Berry Project Administrator eve.berry@testamericainc.com

Designee for

Peggy Gray-Erdmann
Project Manager II
peggy.gray-erdmann@testamericainc.com

Review your project

results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	
Definitions/Glossary	3
•	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Detection Limit Exceptions Summary	18
Chain of Custody	19
Receipt Chacklists	20

4

Q

9

10

12

14

15

Definitions/Glossary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-36521-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Glossary

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Job ID: 480-36521-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-36521-1

Comments

No additional comments.

Receipt

The samples were received on 4/17/2013 2:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.8° C and 3.6° C.

Except:

Report revised to list site on cover page.

GC Semi VOA

Method(s) 8082: The following samples contained more than one Aroclor component: MW-1-0413 (480-36521-15), MW-9-0413 (480-36521-17). Results are estimated due to shared peaks.

Method(s) 8082: The following sample was diluted due to the nature of the sample matrix: MW-9-0413 (480-36521-17). As such, surrogate recoveries are not representative, and elevated reporting limits (RLs) are provided.

Method(s) 8082: The continuing calibration verifications (CCV) for analytical batch 114206 exceeded control criteria for surrogates Decachlorobiphenyl and Tetrachloro-m-xylene. The data have been qualified and reported.

Method(s) 8082: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

Method(s) 8082: All primary data is reported from the ZB-5 column, with the exception of samples MW-1-0413 (480-36521-15), MW-9-0413 (480-36521-17) and LCS 480-113732/2-A, for which primary data is reported from the ZB-35 column.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

6

9

11

40

14

15

Detection Summary

Client: CDM Smith, Inc.

Client Sample ID: MW-1-0413

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Lab Sample ID: 480-36521-15

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1016	3.2	0.047	ug/L	1	8082	Total/NA
PCB-1221	2.5	0.047	ug/L	1	8082	Total/NA
Polychlorinated biphenyls, Total	5.7	0.057	ug/L	1	8082	Total/NA

Client Sample ID: MW-6-0413 Lab Sample ID: 480-36521-16

No Detections.

Client Sample ID: MW-9-0413 Lab Sample ID: 480-36521-17

Ar	nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PC	CB-1016	2.6		0.47		ug/L		_	8082	Total/NA
PC	CB-1221	21		0.47		ug/L	10		8082	Total/NA
Po	olychlorinated biphenyls, Total	24		0.57		ug/L	10		8082	Total/NA

Client Sample ID: MW-11-0413 Lab Sample ID: 480-36521-18

No Detections.

Client Sample ID: MW-12-0413 Lab Sample ID: 480-36521-19

No Detections.

Client Sample ID: MW-20-0413 Lab Sample ID: 480-36521-20

No Detections.

Client Sample ID: MW-21-0413 Lab Sample ID: 480-36521-21

No Detections.

Client Sample ID: MW-24-0413 Lab Sample ID: 480-36521-22

No Detections.

Client Sample ID: FD-0413 Lab Sample ID: 480-36521-23

No Detections.

This Detection Summary does not include radiochemical test results.

А

5

7

9

11

13

14

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

Lab Sample ID: 480-36521-15

TestAmerica Job ID: 480-36521-1

Matrix: Water

Date Collected: 04/17/13 12:05 Date Received: 04/17/13 14:25

Client Sample ID: MW-1-0413

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	3.2		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1221	2.5		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/22/13 10:41	1
Polychlorinated biphenyls, Total	5.7		0.057		ug/L		04/18/13 15:03	04/22/13 10:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		32 - 172				04/18/13 15:03	04/22/13 10:41	1
DCB Decachlorobiphenyl	49		18 - 151				04/18/13 15:03	04/22/13 10:41	1

Client Sample ID: MW-6-0413 Lab Sample ID: 480-36521-16

Date Collected: 04/17/13 07:30 **Matrix: Water**

Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 13:13	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	125		32 - 172				04/18/13 15:03	04/20/13 13:13	1
DCB Decachlorobiphenyl	62		18 - 151				04/18/13 15:03	04/20/13 13:13	1

Client Sample ID: MW-9-0413 Lab Sample ID: 480-36521-17

Date Collected: 04/17/13 11:30 Matrix: Water Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	2.6		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1221	21		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1232	ND		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1242	ND		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1248	ND		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1254	ND		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
PCB-1260	ND		0.47		ug/L		04/18/13 15:03	04/22/13 10:56	10
Polychlorinated biphenyls, Total	24		0.57		ug/L		04/18/13 15:03	04/22/13 10:56	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	0	X	32 - 172				04/18/13 15:03	04/22/13 10:56	10
DCB Decachlorobiphenyl	63		18 - 151				04/18/13 15:03	04/22/13 10:56	10

TestAmerica Buffalo

Page 6 of 20

4/24/2013

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

Lab Sample ID: 480-36521-18

TestAmerica Job ID: 480-36521-1

Client Sample ID: MW-11-0413 Date Collected: 04/17/13 10:55

Matrix: Water

Date Received: 04/17/13 14:25

Method: 8082 - Polychlorinated	d Biphenyls (PCE	3s) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:12	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 14:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		32 - 172				04/18/13 15:03	04/20/13 14:12	1
DCB Decachlorobiphenyl	65		18 - 151				04/18/13 15:03	04/20/13 14:12	1

Client Sample ID: MW-12-0413 Lab Sample ID: 480-36521-19

Date Collected: 04/17/13 10:15 **Matrix: Water**

Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:27	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 14:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	97		32 - 172				04/18/13 15:03	04/20/13 14:27	1
DCB Decachlorobiphenyl	74		18 - 151				04/18/13 15:03	04/20/13 14:27	1

Client Sample ID: MW-20-0413 Lab Sample ID: 480-36521-20

Date Collected: 04/17/13 08:50 **Matrix: Water**

Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:42	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		32 - 172				04/18/13 15:03	04/20/13 14:42	1
DCB Decachlorobiphenyl	58		18 - 151				04/18/13 15:03	04/20/13 14:42	1

Page 7 of 20

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

Lab Sample ID: 480-36521-21

Lab Sample ID: 480-36521-22

TestAmerica Job ID: 480-36521-1

Client Sample ID: MW-21-0413

Date Collected: 04/17/13 09:30

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 14:56	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 14:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		32 - 172				04/18/13 15:03	04/20/13 14:56	1
DCB Decachlorobiphenyl	73		18 - 151				04/18/13 15:03	04/20/13 14:56	1

Client Sample ID: MW-24-0413

Date Collected: 04/17/13 08:15

Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:11	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		32 - 172				04/18/13 15:03	04/20/13 15:11	1
DCB Decachlorobiphenvl	60		18 - 151				04/18/13 15:03	04/20/13 15:11	1

Client Sample ID: FD-0413 Lab Sample ID: 480-36521-23

Date Collected: 04/17/13 00:00 Date Received: 04/17/13 14:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1221	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1232	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1242	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1248	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1254	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
PCB-1260	ND		0.047		ug/L		04/18/13 15:03	04/20/13 15:56	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/18/13 15:03	04/20/13 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89		32 - 172				04/18/13 15:03	04/20/13 15:56	1
DCB Decachlorobiphenyl	69		18 - 151				04/18/13 15:03	04/20/13 15:56	1

TestAmerica Buffalo

Page 8 of 20

Surrogate Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Method: 8082 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(32-172)	(18-151)	
480-36521-15	MW-1-0413	101	49	
480-36521-17	MW-9-0413	0 X	63	
LCS 480-113732/2-A	Lab Control Sample	78	55	
Surrogate Legend				
TCX = Tetrachloro-m-xy	vlene			
DCB = DCB Decachloro	obiphenyl			

Method: 8082 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(32-172)	(18-151)	
480-36521-16	MW-6-0413	125	62	
480-36521-16 MS	MW-6-0413	106	71	
480-36521-16 MSD	MW-6-0413	106	80	
480-36521-18	MW-11-0413	101	65	
480-36521-19	MW-12-0413	97	74	
480-36521-20	MW-20-0413	90	58	
480-36521-21	MW-21-0413	90	73	
480-36521-22	MW-24-0413	87	60	
480-36521-23	FD-0413	89	69	
MB 480-113732/1-A	Method Blank	96	106	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-36521-1

Project/Site: CDM Smith - NG Dewey Ave Service Center

Method: 8082 - Polychlorinated Biphenyls (PCBs) (GC)

Client: CDM Smith, Inc.

Lab Sample ID: MB 480-113732/1-A			Client	Sample ID: N	/lethod	Blank
Matrix: Water				Prep Ty	ype: To	tal/NA
Analysis Batch: 114063				Prep E	Batch: 1	13732
	MB MB					

Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1221	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1232	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1242	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1248	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1254	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
PCB-1260	ND	0.05	0	ug/L		04/18/13 15:03	04/20/13 09:11	1
Polychlorinated biphenyls, Total	ND	0.06	0	ug/L		04/18/13 15:03	04/20/13 09:11	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		32 - 172	04/18/13 15:03	04/20/13 09:11	1
DCB Decachlorobiphenyl	106		18 - 151	04/18/13 15:03	04/20/13 09:11	1

Lab Sample ID: LCS 480-113732/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 114206 **Prep Batch: 113732**

	Spike	LC3 LC3				MREC.	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.00	1.31	ug/L	_	131	50 - 149	
PCB-1260	1.00	1.10	ug/L		110	54 - 146	

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 78 32 - 172 DCB Decachlorobiphenyl 55 18 - 151

Lab Sample ID: 480-36521-16 MS Client Sample ID: MW-6-0413 **Matrix: Water**

Prep Type: Total/NA **Analysis Batch: 114063** Prep Batch: 113732

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		0.946	1.36		ug/L		144	32 - 156	
PCB-1260	ND		0.946	1.22		ug/L		129	10 - 140	

MS MS %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 106 32 - 172 DCB Decachlorobiphenyl 71 18 - 151

Lab Sample ID: 480-36521-16 MSD Client Sample ID: MW-6-0413

Matrix: Water Analysis Batch: 114063

	•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	PCB-1016	ND		0.946	1.37		ug/L		145	32 - 156	1	50
ı	PCB-1260	ND		0.946	1.25		ug/L		133	10 - 140	3	50

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	106		32 - 172

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 113732

Page 10 of 20

QC Sample Results

Client: CDM Smith, Inc.

TestAmerica Job ID: 480-36521-1

Project/Site: CDM Smith - NG Dewey Ave Service Center

Method: 8082 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: 480-36521-16 MSD

Matrix: Water

Analysis Batch: 114063

MSD MSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 DCB Decachlorobiphenyl
 80
 18 - 151

Client Sample ID: MW-6-0413

Prep Type: Total/NA Prep Batch: 113732

Ţ

5

6

8

40

11

13

15

QC Association Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

GC Semi VOA

Prep Batch: 113732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-36521-15	MW-1-0413	Total/NA	Water	3510C	
480-36521-16	MW-6-0413	Total/NA	Water	3510C	
480-36521-16 MS	MW-6-0413	Total/NA	Water	3510C	
480-36521-16 MSD	MW-6-0413	Total/NA	Water	3510C	
480-36521-17	MW-9-0413	Total/NA	Water	3510C	
480-36521-18	MW-11-0413	Total/NA	Water	3510C	
480-36521-19	MW-12-0413	Total/NA	Water	3510C	
480-36521-20	MW-20-0413	Total/NA	Water	3510C	
480-36521-21	MW-21-0413	Total/NA	Water	3510C	
480-36521-22	MW-24-0413	Total/NA	Water	3510C	
480-36521-23	FD-0413	Total/NA	Water	3510C	
LCS 480-113732/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-113732/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 114063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-36521-16	MW-6-0413	Total/NA	Water	8082	113732
480-36521-16 MS	MW-6-0413	Total/NA	Water	8082	113732
480-36521-16 MSD	MW-6-0413	Total/NA	Water	8082	113732
480-36521-18	MW-11-0413	Total/NA	Water	8082	113732
480-36521-19	MW-12-0413	Total/NA	Water	8082	113732
480-36521-20	MW-20-0413	Total/NA	Water	8082	113732
480-36521-21	MW-21-0413	Total/NA	Water	8082	113732
480-36521-22	MW-24-0413	Total/NA	Water	8082	113732
480-36521-23	FD-0413	Total/NA	Water	8082	113732
MB 480-113732/1-A	Method Blank	Total/NA	Water	8082	113732

Analysis Batch: 114206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-36521-15	MW-1-0413	Total/NA	Water	8082	113732
480-36521-17	MW-9-0413	Total/NA	Water	8082	113732
LCS 480-113732/2-A	Lab Control Sample	Total/NA	Water	8082	113732

Project/Site: CDM Smith - NG Dewey Ave Service Center

Client Sample ID: MW-1-0413 Lab Sample ID: 480-36521-15

Date Collected: 04/17/13 12:05 **Matrix: Water**

Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114206	04/22/13 10:41	JM	TAL BUF

Client Sample ID: MW-6-0413 Lab Sample ID: 480-36521-16

Date Collected: 04/17/13 07:30 **Matrix: Water** Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 13:13	JM	TAL BUF

Client Sample ID: MW-9-0413 Lab Sample ID: 480-36521-17

Date Collected: 04/17/13 11:30

Matrix: Water Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		10	114206	04/22/13 10:56	JM	TAL BUF

Client Sample ID: MW-11-0413 Lab Sample ID: 480-36521-18

Date Collected: 04/17/13 10:55 Matrix: Water Date Received: 04/17/13 14:25

Batch Dilution Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 3510C Prep 113732 04/18/13 15:03 TG TAL BUF Total/NA Analysis 8082 1 114063 04/20/13 14:12 JM TAL BUF

Client Sample ID: MW-12-0413 Lab Sample ID: 480-36521-19

Date Collected: 04/17/13 10:15 Matrix: Water

Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 14:27	JM	TAL BUF

Client Sample ID: MW-20-0413 Lab Sample ID: 480-36521-20

Date Collected: 04/17/13 08:50 Matrix: Water

Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 14:42	JM	TAL BUF

TestAmerica Buffalo

Lab Chronicle

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Lab Sample ID: 480-36521-21

Matrix: Water

Date Collected: 04/17/13 09:30 Date Received: 04/17/13 14:25

Client Sample ID: MW-21-0413

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C	· 		113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 14:56	JM	TAL BUF

Lab Sample ID: 480-36521-22 Client Sample ID: MW-24-0413

Matrix: Water

Date Collected: 04/17/13 08:15 Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 15:11	JM	TAL BUF

Client Sample ID: FD-0413 Lab Sample ID: 480-36521-23

Date Collected: 04/17/13 00:00 Matrix: Water Date Received: 04/17/13 14:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C		·	113732	04/18/13 15:03	TG	TAL BUF
Total/NA	Analysis	8082		1	114063	04/20/13 15:56	JM	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: CDM Smith, Inc.
Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	04-01-14

- - -

4

5

7

8

10

11

13

. -

Method Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Method	Method Description	Protocol	Laboratory
8082	Polychlorinated Biphenyls (PCBs) (GC)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

G

3

4

5

0

8

9

4 4

12

11

15

Sample Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-36521-15	MW-1-0413	Water	04/17/13 12:05	04/17/13 14:25
480-36521-16	MW-6-0413	Water	04/17/13 07:30	04/17/13 14:25
480-36521-17	MW-9-0413	Water	04/17/13 11:30	04/17/13 14:25
480-36521-18	MW-11-0413	Water	04/17/13 10:55	04/17/13 14:25
480-36521-19	MW-12-0413	Water	04/17/13 10:15	04/17/13 14:25
480-36521-20	MW-20-0413	Water	04/17/13 08:50	04/17/13 14:25
480-36521-21	MW-21-0413	Water	04/17/13 09:30	04/17/13 14:25
480-36521-22	MW-24-0413	Water	04/17/13 08:15	04/17/13 14:25
480-36521-23	FD-0413	Water	04/17/13 00:00	04/17/13 14:25

3

4

_

_

9

10

12

13

15

Detection Limit Exceptions Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith - NG Dewey Ave Service Center

TestAmerica Job ID: 480-36521-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
8082	Water	PCB-1016	ug/L	0.050	0.06
8082	Water	PCB-1221	ug/L	0.050	0.06
8082	Water	PCB-1232	ug/L	0.050	0.06
8082	Water	PCB-1242	ug/L	0.050	0.06
8082	Water	PCB-1248	ug/L	0.050	0.06
8082	Water	PCB-1254	ug/L	0.050	0.06
8082	Water	PCB-1260	ug/L	0.050	0.06

TestAmerica

Chain of Custody Record

14:25 PT BUGAR N. None N. None O. AsNaO2 P. Na2O46 Q. Na2O503 R. Na2O503 S. H2SO4 I. TSP Dodecalydrate U. Acestone V. MCAA W. ph 4-5 Z. other (specify) Special Instructions/Note: Page 1 of 1 Job # 4 8 6 3 5 2 Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Mont Company COC No: 480-34362-8767.1 H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchior I - Ice J - DI Water K - EDTA L - EDA Date/Time: Date/Time: Date/Time Aethod of Shipment: Carrier Tracking No(s) # **Analysis Requested** Š Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: E-Mail: peggy.gray-erdmann@testamericainc.com action Received by: Lab PM: Gray-Erdmann, Peggy 7 ~ ~ 72 Time: SK K K 15 Preservation Code: (W=water, S=solid, O=wasts/oll, BT=Tissue, Water Company Company Radiological Type (C=comp, G=grab) Sample O SPC 734 2368 ング、ド O و O ٩ S 0 Sampler. Tith Konked Sample 730 1015 730 1130 1055 Time 702 830 639 22 **%** Date: Unknown TAT Requested (days): Due Date Requested: *(\/\/* Sample Date PO#: 36380.93808 dialh のたり にたが 9/4/16 ()(レ) 2/2/2 くルン (パレル 212 Poison B ... Project #: 48002647 SSOW#: 10/2 Date/Time: Phone: ₩O₩ Project Name: CDM Smith/ Event Desc: Dewey Avenue GW Wells April Skin Irritant Deliverable Requested: 1, II, III, IV, Other (specify) Custody Seal No.: Non-Hazard Flammable Possible Hazard Identification beaumonttj@cdmsmith.com Address: One General Motors Drive Empty Kit Relinquished by: Custody Seals intact: △ Yes △ No Client Information Sample Identification Timothy Beaumont CDM Smith, Inc. MW-6 MS-0413 MW-6 SD-0413 MW-11-0413 MW-12-0413 MW-20-0413 MW-21-0413 MW-24-0413 inquished by: elinquished by: nquished by: AW-1-0413 AW-6-0413 MW-9-0413 State, Zip: NY, 13206 Site: New York City: Syracuse FD-0413

Login Sample Receipt Checklist

Client: CDM Smith, Inc. Job Number: 480-36521-1

Login Number: 36521 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Creator. Rold, Clins W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

2

7

q

10

12

15

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-47573-1

Client Project/Site: CDM Smith

Sampling Event: Dewey Avenue GW Wells Oct

For:

CDM Smith, Inc. One General Motors Drive Syracuse, New York 13206

Attn: Matthew Millias

Authorized for release by: 10/22/2013 2:29:57 PM

Peggy Gray-Erdmann, Project Manager II (716)504-9829

peggy.gray-erdmann@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Detection Limit Exceptions Summary	18
Chain of Custody	19
Receipt Checklists	20

6

8

10

11

13

15

Definitions/Glossary

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

Qualifiers

GC Semi VOA

X Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: CDM Smith, Inc. TestAmerica Job ID: 480-47573-1 Project/Site: CDM Smith

Job ID: 480-47573-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-47573-1

Comments

No additional comments.

The samples were received on 10/9/2013 12:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.0° C, 2.2° C and 2.9° C.

GC Semi VOA

Method(s) 8082A: The surrogate percent difference in the associated continuing calibration verifications (CCV) for Tetrachloro-m-xylene was decreased and slightly exceeded 15% on the ZB-5 column, indicating a low bias. (CCV 480-144204/12), (CCV 480-144204/146), (CCV 480-144204/2), (CCV 480-144204/23), (CCV 480-144204/34)

Method(s) 8082A: The following samples contained more than one Aroclor component: MW-9-1013 (480-47573-4). Results are estimated due to shared peaks.

Method(s) 8082A: The following sample was diluted due to the abundance of target analytes: MW-9-1013 (480-47573-4). As such, surrogate recoveries are not representative, and elevated reporting limits (RLs) are provided.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

Method(s) 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client Sample ID: FD-1013

Lab Sample ID: 480-47573-1

No Detections.

Client Sample ID: MW-1-1013	Lab Sample ID: 480-47573-2

Analyte	Result	Qualifier	RL	MDL	Unit	Γ	Dil Fac	D	Method	Prep Type
PCB-1242	0.15		0.047		ug/L		1	_	8082A	 Total/NA
Polychlorinated biphenyls, Total	0.15		0.057		ug/L		1		8082A	Total/NA

Client Sample ID: MW-6-1013 Lab Sample ID: 480-47573-3

No Detections.

Client Sample ID: MW-9-1013 Lab Sample ID: 480-47573-4

	- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1	PCB-1016	3.1		0.47		ug/L	10	_	8082A	Total/NA
	PCB-1221	13		0.47		ug/L	10		8082A	Total/NA
	Polychlorinated biphenyls, Total	16		0.57		ug/L	10		8082A	Total/NA

Client Sample ID: MW-11-1013 Lab Sample ID: 480-47573-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1242	0.10	0.047	ug/L		8082A	Total/NA
Polychlorinated biphenyls, Total	0.10	0.057	ug/L	1	8082A	Total/NA

Client Sample ID: MW-12-1013 Lab Sample ID: 480-47573-6

No Detections.

Client Sample ID: MW-20-1013 Lab Sample ID: 480-47573-7

No Detections.

Client Sample ID: MW-21-1013 Lab Sample ID: 480-47573-8

No Detections.

Client Sample ID: MW-24-1013 Lab Sample ID: 480-47573-9

No Detections.

This Detection Summary does not include radiochemical test results.

10/22/2013

Client: CDM Smith, Inc. Project/Site: CDM Smith TestAmerica Job ID: 480-47573-1

Lab Sample ID: 480-47573-1

Matrix: Water

Date Collected: 10/08/13 00:00 Date Received: 10/09/13 12:30

Client Sample ID: FD-1013

Method: 8082A - Polychlorinate	ed Biphenyls (PC	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1221	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1232	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1242	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1248	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1254	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
PCB-1260	ND		0.047		ug/L		10/10/13 14:46	10/11/13 11:59	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/10/13 14:46	10/11/13 11:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	63		32 - 172				10/10/13 14:46	10/11/13 11:59	1
DCB Decachlorobiphenyl	75		18 - 151				10/10/13 14:46	10/11/13 11:59	1

Client Sample ID: MW-1-1013 Lab Sample ID: 480-47573-2

Date Collected: 10/08/13 10:15 **Matrix: Water**

Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1221	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1232	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1242	0.15		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1248	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1254	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
PCB-1260	ND		0.047		ug/L		10/10/13 14:46	10/11/13 12:15	1
Polychlorinated biphenyls, Total	0.15		0.057		ug/L		10/10/13 14:46	10/11/13 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	60		32 - 172				10/10/13 14:46	10/11/13 12:15	1
DCB Decachlorobiphenyl	78		18 - 151				10/10/13 14:46	10/11/13 12:15	1

Client Sample ID: MW-6-1013 Lab Sample ID: 480-47573-3 Date Collected: 10/08/13 11:00

Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1221	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1232	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1242	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1248	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1254	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
PCB-1260	ND		0.048		ug/L		10/10/13 14:46	10/11/13 12:31	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/10/13 14:46	10/11/13 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	61		32 - 172				10/10/13 14:46	10/11/13 12:31	1
DCB Decachlorobiphenyl	54		18 - 151				10/10/13 14:46	10/11/13 12:31	1

TestAmerica Buffalo

Page 6 of 20

Matrix: Water

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

Client Sample ID: MW-9-1013

Lab Sample ID: 480-47573-4

Matrix: Water

Date Collected: 10/08/13 09:30 Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	3.1		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1221	13		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1232	ND		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1242	ND		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1248	ND		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1254	ND		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
PCB-1260	ND		0.47		ug/L		10/10/13 14:46	10/13/13 09:57	10
Polychlorinated biphenyls, Total	16		0.57		ug/L		10/10/13 14:46	10/13/13 09:57	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		X	32 - 172				10/10/13 14:46	10/13/13 09:57	10
DCB Decachlorobiphenyl	100		18 - 151				10/10/13 14:46	10/13/13 09:57	10

Client Sample ID: MW-11-1013

Lab Sample ID: 480-47573-5

Matrix: Water

Date Collected: 10/08/13 08:50 Date Received: 10/09/13 12:30

. .

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1221	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1232	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1242	0.10	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1248	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1254	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
PCB-1260	ND	0.047	U	ug/L		10/10/13 14:46	10/11/13 13:57	1
Polychlorinated biphenyls, Total	0.10	0.057	u	ug/L		10/10/13 14:46	10/11/13 13:57	1

Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Tetrachloro-m-xylene 61 32 - 172 10/10/13 14:46 10/11/13 13:57 DCB Decachlorobiphenyl 56 18 - 151 10/10/13 14:46 10/11/13 13:57

Client Sample ID: MW-12-1013

Lab Sample ID: 480-47573-6

Matrix: Water

Date Collected: 10/08/13 08:00 Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1221	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1232	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1242	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1248	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1254	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
PCB-1260	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:10	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/10/13 14:46	10/11/13 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		32 - 172				10/10/13 14:46	10/11/13 16:10	1
DCB Decachlorobiphenyl	78		18 - 151				10/10/13 14:46	10/11/13 16:10	1

TestAmerica Buffalo

Client: CDM Smith, Inc. Project/Site: CDM Smith TestAmerica Job ID: 480-47573-1

Lab Sample ID: 480-47573-8

Client Sample ID: MW-20-1013

Lab Sample ID: 480-47573-7 Date Collected: 10/09/13 08:55

Matrix: Water

Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1221	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1232	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1242	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1248	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1254	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
PCB-1260	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:25	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/10/13 14:46	10/11/13 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	65		32 - 172				10/10/13 14:46	10/11/13 16:25	1
DCB Decachlorobiphenyl	85		18 - 151				10/10/13 14:46	10/11/13 16:25	1

Client Sample ID: MW-21-1013

Date Collected: 10/09/13 09:30 Matrix: Water

Date Received: 10/09/13 12:30

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1221	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1232	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1242	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1248	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1254	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
PCB-1260	ND	0.047		ug/L		10/10/13 14:46	10/11/13 16:41	1
Polychlorinated biphenyls, Total	ND	0.057		ug/L		10/10/13 14:46	10/11/13 16:41	1
Surrogato	%Pecovery Quality	fior Limits				Propared	Analyzad	Dil Fac

Tetrachloro-m-xylene 62 32 - 172 10/10/13 14:46 10/11/13 16:41 DCB Decachlorobiphenyl 69 18 - 151 10/10/13 14:46 10/11/13 16:41

Client Sample ID: MW-24-1013

Lab Sample ID: 480-47573-9 Date Collected: 10/09/13 08:15 **Matrix: Water**

Date Received: 10/09/13 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1221	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1232	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1242	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1248	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1254	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
PCB-1260	ND		0.047		ug/L		10/10/13 14:46	10/11/13 16:57	1
Polychlorinated biphenyls, Total	ND		0.056		ug/L		10/10/13 14:46	10/11/13 16:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	57		32 - 172				10/10/13 14:46	10/11/13 16:57	1
DCB Decachlorobiphenyl	75		18 - 151				10/10/13 14:46	10/11/13 16:57	1

TestAmerica Buffalo

Page 8 of 20

Surrogate Summary

Client: CDM Smith, Inc. TestAmerica Job ID: 480-47573-1 Project/Site: CDM Smith

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
_ab Sample ID	Client Sample ID	(32-172)	(18-151)	
180-47573-1	FD-1013	63	75	
180-47573-2	MW-1-1013	60	78	
80-47573-3	MW-6-1013	61	54	
80-47573-3 MS	MW-6-1013	55	57	
80-47573-3 MSD	MW-6-1013	60	49	
80-47573-4	MW-9-1013	0 X	100	
80-47573-5	MW-11-1013	61	56	
80-47573-6	MW-12-1013	69	78	
80-47573-7	MW-20-1013	65	85	
80-47573-8	MW-21-1013	62	69	
80-47573-9	MW-24-1013	57	75	
.CS 480-144079/2-A	Lab Control Sample	71	75	
ИВ 480-144079/1-A	Method Blank	64	80	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-47573-1

Client: CDM Smith, Inc. Project/Site: CDM Smith

2

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-144079/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 144204

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 144079

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1221	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1232	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1242	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1248	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1254	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
PCB-1260	ND		0.050		ug/L		10/10/13 14:46	10/11/13 07:06	1
Polychlorinated biphenyls, Total	ND		0.060		ug/L		10/10/13 14:46	10/11/13 07:06	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	64		32 - 172	10/10/13 14:46	10/11/13 07:06	1
DCB Decachlorobiphenyl	80		18 - 151	10/10/13 14:46	10/11/13 07:06	1

Lab Sample ID: LCS 480-144079/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 144204

Prep Batch: 144079

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 1.00 1.08 ug/L 108 50 - 149 PCB-1260 1.00 0.935 ug/L 94 54 - 146

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 71
 32 - 172

 DCB Decachlorobiphenyl
 75
 18 - 151

Lab Sample ID: 480-47573-3 MS

Client Sample ID: MW-6-1013

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 144204 Prep Batch: 144079

	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016	ND		0.946	0.941		ug/L		100	32 - 156		_
PCB-1260	ND		0.946	0.663		ug/L		70	10 - 140		

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 55
 32 - 172

 DCB Decachlorobiphenyl
 57
 18 - 151

Lab Sample ID: 480-47573-3 MSD Client Sample ID: MW-6-1013

Matrix: Water Prep Type: Total/NA
Analysis Batch: 144204 Prep Batch: 144079

	Sample	Sample	Spike	MSD	MSD				%Rec.			RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD)	Limit
PCB-1016	ND		0.945	0.962		ug/L		102	32 - 156		_	50
PCB-1260	ND		0.945	0.664		ug/L		70	10 - 140	()	50

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	60		32 - 172

TestAmerica Buffalo

Page 10 of 20

4

6

8

10

12

14

QC Sample Results

Client: CDM Smith, Inc.

TestAmerica Job ID: 480-47573-1

Project/Site: CDM Smith

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: 480-47573-3 MSD

Matrix: Water

Analysis Batch: 144204

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	49	-	18 _ 151

Client Sample ID: MW-6-1013 Prep Type: Total/NA

Prep Batch: 144079

0

46

11

13

15

QC Association Summary

Client: CDM Smith, Inc.

Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

GC Semi VOA

Prep Batch: 144079

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-47573-1	FD-1013	Total/NA	Water	3510C	
480-47573-2	MW-1-1013	Total/NA	Water	3510C	
480-47573-3	MW-6-1013	Total/NA	Water	3510C	
480-47573-3 MS	MW-6-1013	Total/NA	Water	3510C	
480-47573-3 MSD	MW-6-1013	Total/NA	Water	3510C	
480-47573-4	MW-9-1013	Total/NA	Water	3510C	
480-47573-5	MW-11-1013	Total/NA	Water	3510C	
480-47573-6	MW-12-1013	Total/NA	Water	3510C	
480-47573-7	MW-20-1013	Total/NA	Water	3510C	
480-47573-8	MW-21-1013	Total/NA	Water	3510C	
480-47573-9	MW-24-1013	Total/NA	Water	3510C	
LCS 480-144079/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-144079/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 144204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-47573-1	FD-1013	Total/NA	Water	8082A	144079
480-47573-2	MW-1-1013	Total/NA	Water	8082A	144079
480-47573-3	MW-6-1013	Total/NA	Water	8082A	144079
480-47573-3 MS	MW-6-1013	Total/NA	Water	8082A	144079
480-47573-3 MSD	MW-6-1013	Total/NA	Water	8082A	144079
480-47573-4	MW-9-1013	Total/NA	Water	8082A	144079
480-47573-5	MW-11-1013	Total/NA	Water	8082A	144079
480-47573-6	MW-12-1013	Total/NA	Water	8082A	144079
480-47573-7	MW-20-1013	Total/NA	Water	8082A	144079
480-47573-8	MW-21-1013	Total/NA	Water	8082A	144079
480-47573-9	MW-24-1013	Total/NA	Water	8082A	144079
LCS 480-144079/2-A	Lab Control Sample	Total/NA	Water	8082A	144079
MB 480-144079/1-A	Method Blank	Total/NA	Water	8082A	144079

2

3

4

6

Я

9

A A

12

14

15

TestAmerica Job ID: 480-47573-1

Client: CDM Smith, Inc. Project/Site: CDM Smith

Lab Sample ID: 480-47573-1

Matrix: Water

Client Sample ID: FD-1013 Date Collected: 10/08/13 00:00 Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 11:59	JMM	TAL BUF

Client Sample ID: MW-1-1013 Lab Sample ID: 480-47573-2

Date Collected: 10/08/13 10:15 Matrix: Water

Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 12:15	JMM	TAL BUF

Client Sample ID: MW-6-1013 Lab Sample ID: 480-47573-3

Date Collected: 10/08/13 11:00 **Matrix: Water**

Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 12:31	JMM	TAL BUF

Client Sample ID: MW-9-1013 Lab Sample ID: 480-47573-4

Date Collected: 10/08/13 09:30 **Matrix: Water** Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		10	144204	10/13/13 09:57	JMM	TAL BUF

Client Sample ID: MW-11-1013 Lab Sample ID: 480-47573-5

Date Collected: 10/08/13 08:50 **Matrix: Water**

Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 13:57	JMM	TAL BUF

Client Sample ID: MW-12-1013 Lab Sample ID: 480-47573-6

Date Collected: 10/08/13 08:00 Matrix: Water

Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 16:10	JMM	TAL BUF

TestAmerica Buffalo

Lab Chronicle

Client: CDM Smith, Inc. Project/Site: CDM Smith TestAmerica Job ID: 480-47573-1

Lab Sample ID: 480-47573-7

Matrix: Water

Date Collected: 10/09/13 08:55 Date Received: 10/09/13 12:30

Client Sample ID: MW-20-1013

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 16:25	JMM	TAL BUF

Client Sample ID: MW-21-1013 Lab Sample ID: 480-47573-8

Matrix: Water

Date Collected: 10/09/13 09:30 Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 16:41	JMM	TAL BUF

Client Sample ID: MW-24-1013 Lab Sample ID: 480-47573-9

Date Collected: 10/09/13 08:15 **Matrix: Water**

Date Received: 10/09/13 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144079	10/10/13 14:46	JRL	TAL BUF
Total/NA	Analysis	8082A		1	144204	10/11/13 16:57	JMM	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	04-01-14

- - -

4

9

11

14

14

Method Summary

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) (GC)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

1

7

0

10

13

15

Sample Summary

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47573-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-47573-1	FD-1013	Water	10/08/13 00:00	10/09/13 12:30
480-47573-2	MW-1-1013	Water	10/08/13 10:15	10/09/13 12:30
480-47573-3	MW-6-1013	Water	10/08/13 11:00	10/09/13 12:30
480-47573-4	MW-9-1013	Water	10/08/13 09:30	10/09/13 12:30
480-47573-5	MW-11-1013	Water	10/08/13 08:50	10/09/13 12:30
480-47573-6	MW-12-1013	Water	10/08/13 08:00	10/09/13 12:30
480-47573-7	MW-20-1013	Water	10/09/13 08:55	10/09/13 12:30
480-47573-8	MW-21-1013	Water	10/09/13 09:30	10/09/13 12:30
480-47573-9	MW-24-1013	Water	10/09/13 08:15	10/09/13 12:30

A

Detection Limit Exceptions Summary

Client: CDM Smith, Inc. TestAmerica Job ID: 480-47573-1 Project/Site: CDM Smith

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
8082A	Water	PCB-1016	ug/L	0.050	0.06
8082A	Water	PCB-1221	ug/L	0.050	0.06
8082A	Water	PCB-1232	ug/L	0.050	0.06
8082A	Water	PCB-1242	ug/L	0.050	0.06
8082A	Water	PCB-1248	ug/L	0.050	0.06
8082A	Water	PCB-1254	ug/L	0.050	0.06
8082A	Water	PCB-1260	ug/L	0.050	0.06

<u>TestAmerica</u>

Chain of Custody Record

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2SO3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - ph 45 Special Instructions/Note Z - other (specify) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Special Instructions/QC Requirements: Company Preservation Codes COC No: 480-39682-7262.1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Cooler Temperature(s) °C and Other Pemarks: \(\mathcal{L} \) \(\ Total Number of containers Date/Time: Method of Shipment **Analysis Requested** XOZY peggy.gray-erdmann@testamericainc.com Ś Received by: Lab PM: Gray-Erdmann, Peggy Received by: 22 2 4 8082_LL - (MOD) Local Method H (on to set) (i CONSERT E-Mail: 15 (W=water, S=solid, O=waste/oil, BT=Tissue, Preservation Code: Water Company Radiological Type (C=comp, Sample G=grab) છ S ڡ ف S S U S S 1230 Sampler TIM Becument 585 739 2368 Sample Time 중 930 880 **%** <u>=</u> 2 € <u>=</u> 939 718 Date: Unknown (AT Requested (days): Due Date Requested: Sample Date 10/8/13 E) 8 01 (1/8/0/ PO#: 36380.99758 10/8/13 0/2/0 [38/13 10/4/17 0/5/01 (o|8|13 C1/5/c) 1013 Project #: 48002647 Date/Time: # 0 8 Poison B Project Name: CDM Smith /CDM Event Desc: Dewey Avenue GW Wells Oct Skin Imtant Deliverable Requested: I, II, III, 🕜 Other (specify) Custody Seals Intact: Custody Seal No. Non-Hazard Flammable Possible Hazard Identification beaumonttj@cdmsmith.com mpty Kit Relinquished by: One General Motors Drive Client Information Sample Identification elinquished by: Fimothy Beaumont Company: CDM Smith, Inc. MW-6-1013 MS MW-6-1013 SD MW-21-1013 MW-11-1013 MW-12-1013 MW-20-1013 MW-24-1013 elinquished by: inquished by: MW-6-1013 MW-9-1013 AW-1-1013 State, Zip: NY, 13206 New York Syracuse FD-1013

Login Sample Receipt Checklist

Client: CDM Smith, Inc. Job Number: 480-47573-1

Login Number: 47573 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator: Janish, Carl M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time.	True	
ample containers have legible labels.	True	
Containers are not broken or leaking.	True	
ample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

6

1 1

46

14