nationalgrid

November 11, 2015

Mr. David Szymanski Division of Solid and Hazardous Waste NYSDEC, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Re: National Grid Dewey/Kensington Service Center (Site #915144) PRR and 2015 Annual Groundwater Monitoring Report

Dear David:

Enclosed for your review is the Periodic Review Report (PRR) for the National Grid Dewey/Kensington Service Center Site (Site No. 915144).

The PRR includes the following from the period December 1, 2014 – November 30, 2015:

- Attachment 1 PRR
- Attachment 2 PRR Certification Form
- Attachment 3 Annual Monitoring Report

If you have any questions, please feel free to contact me at 315.428.5652.

Sincerely,

Matthew D. Millias for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer

ecc: Kelly Lewandowski - NYSDEC Lisa Montesano – NG Matt Millias – CDM Smith

Reporting Period – December 1, 2014 – November 30, 2015

I. Introduction

A. Brief Site Summary –

The National Grid Dewey/Kensington Service Center Site (#915144) is located in Buffalo, New York. National Grid owns the property and services its customers from the active facility. Service trucks, equipment, and materials are stored and maintained onsite. A mechanic's shop, several administrative buildings, an above ground fuel island, and an employee parking lot are currently located on-site and are part of the service center.

Prior to 1992, the service center also served as a hazardous waste management facility permitted by the New York State Department of Environmental Conservation (NYSDEC) (Part 373 Permit No. 9-1402-00397/00001-0). National Grid stored spent electrical transformers containing polychlorinated biphenyl- (PCB-) laden oil, various solid wastes, and bulk waste oils on-site. Some liquid wastes were stored within underground storage tanks (USTs). The hazardous waste management facility was closed in December 1992, in accordance with a NYSDEC-approved closure plan.

During excavation activities in the mid 1990s, it was discovered that soil and groundwater were contaminated near a UST identified as Solid Waste Management Unit (SWMU) #7. Multiple USTs were subsequently removed, and an investigation including the advancement of soil borings and the installation of groundwater monitoring wells was completed. A remedial action was completed in 2002 and a long-term groundwater monitoring program was implemented.

Finally on October 3, 2011, National Grid received official notification that the site was deleted from the New York State Registry of Inactive Hazardous Waste Disposal Sites (letter from Ms. Kelly Lewandowski, NYSDEC Chief Site Control Section, to Mr. Chuck Willard, NG SIR Director).

- B. **Remedial Program Effectiveness** During the reporting period (December 1, 2014, to November 30, 2015), the long-term remedial objectives were met for the site.
- C. **Remedial Program Compliance** The major elements within the Institutional Control/Engineering Control(s) (IC/EC) Plan are in compliance. Refer to Attachment 3 for the Annual Monitoring Report for annual groundwater sampling events.

Reporting Period – December 1, 2014 – November 30, 2015

D. **Remedial Program Recommendations** - It is recommended that no changes be made to the IC/EC Plan. It is recommended that the Project Review Report (PRR) submittal frequency (annual) remain the same. The next PRR submittal deadline would be December 1, 2016.

II. Site Overview

A. Site Location and Boundaries –

The Dewey/Kensington Service Center is an active National Grid facility, encompasses approximately 23 acres, and is generally located within the center of Buffalo, New York in a predominantly residential area. To the west are Delaware Park, Canisius College, and Forest Lawn Cemetery; to the east are Fillmore Junior High School and the Erie County Medical Center; immediately to the west are the St. Mary School and Sisters of Charity Hospital; and to the south is a four lane expressway.

The site is bordered to south by Kensington Avenue and to the north by Dewey Avenue. The New York Central Railroad tracks boarder the site to the east. The expressway runs along the western side of the site.

B. Regulatory History and Remedy Features -

In September 1992, excavation activities at the facility, in the vicinity of Building #13, revealed petroleum-impacted gravel and a broken vent line connected to an underground waste oil tank. The former waste oil tank was removed and four groundwater monitoring wells (ESI-1, ESI-2, ESI-3, and ESI-4) were installed in the vicinity of the former tank to supplement an existing monitoring well (MW-1) and to facilitate periodic groundwater monitoring in this area.

In February 1994, National Grid agreed to conduct a focused Resource Conservation and Recovery Act (RCRA) Facility Assessment- (RFA-) type soil and groundwater investigation, and a Focused Risk Assessment/ Corrective Measures Study (FRA/CMS) to address the concerns identified by the RFA.

During Fall 1994, National Grid conducted soil and groundwater investigation activities in accordance with the NYSDEC-approved *Soil and Groundwater Investigation Work Plan* (1994). These investigations showed the presence of several volatile organic compounds (VOCs) and polychlorinated biphenyls (PCBs) in groundwater at concentrations above NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 – *Ambient Water Quality Standards and Guidance Values* (NYSDEC, 1998, amended 2000). Based on these results, NYSDEC requested

Reporting Period – December 1, 2014 – November 30, 2015

implementation of the quarterly groundwater monitoring program proposed in the SWMU #7 Soil/Groundwater Investigation Report (1994).

The SWMU #7 Focused Risk Assessment and Corrective Measures Study Report (FRA/CMS Report) (1995, revised 1996) concluded that the limited action alternative (i.e., implementing a groundwater monitoring program) would adequately meet the corrective measure objective of mitigating the offsite migration of impacted groundwater. Following the initial submittal of the FRA/CMS Report, a *Groundwater Sampling and Analysis Plan* (SAP) (1996) was submitted to NYSDEC in May 1996. The May 1996 SAP was then revised based upon NYSDEC comments, and the revised SAP for the groundwater monitoring program was presented in the revised FRA/CMS Report dated June 1996.

In November 1997, National Grid entered into a Consent Order with NYSDEC to guide future site monitoring and to establish a framework for implementing additional site investigation or remediation. As mandated in the Consent Order, semiannual (spring and fall) groundwater monitoring events are conducted at SWMU #7 monitoring wells. The list of wells sampled during each groundwater monitoring event has been modified through time in response to NYSDEC requirements and the results of investigation/evaluation activities, as agreed to by NYSDEC.

The Consent Order specifies that a contingency plan must be implemented to evaluate additional remedial activities if analytical results from monitoring wells located at the property boundary indicate an exceedance of NYSDEC groundwater quality standards presented in TOGS 1.1.1 for two consecutive monitoring events. The monitoring wells designated as property boundary wells have changed, as new monitoring wells have been installed as part of the contingency plan implementation. For example, monitoring wells MW-7 and MW-9 were designated as property boundary wells in the Consent Order. In 1999, the property boundary wells included monitoring wells MW-6, MW-7, MW-11, MW-12, and MW-14. The current property boundary well arrangement includes monitoring wells MW-6, MW-11, MW-12, MW-20, MW-21, and MW-24 (installed spring 2002).

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

A. **Evaluation of Remedy Performance** - The wells are part of the remedy performance. However, there is no current requirement for a site inspection of the existing facility buildings, fences, or fuel tanks. Based on the well inspections and analytical data, the remedy performance has been effective in protecting facility workers and the public.

Reporting Period – December 1, 2014 – November 30, 2015

IV. IC/EC Plan Compliance Report

A. IC/EC Requirements and Compliance

1. IC/EC Controls

The ICs/ECs included:

- Semi-annual groundwater monitoring well inspections and gauging of the following wells: MW-1, MW-2, MW-5, MW-6, MW-7, MW-9, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, MW-17, MW-19, MW-20, MW-21, MW-24, MW-25, and ESI-1.
- Semi-annual groundwater monitoring well sampling and analysis of the following wells: MW-1, MW-6, MW-9, MW-11, MW-12, MW-20, MW-21, MW-24.
- 2. **IC/EC Goals -** Each goal is being met and/or working effectively.
- 3. **IC/EC Corrective Measures** No deficiencies were noted during the quarterly inspections.
- 4. **IC/EC Conclusions/Recommendations** The program is in compliance and there are no recommendations at this time.
- B. IC/EC Certification Refer to PRR Form Attachment 2 for the certification.
- V. Monitoring Plan Compliance Report The Annual Monitoring Report is enclosed as Attachment 3.
- VI. Operation & Maintenance (O&M) Plan Compliance Report Not Applicable
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with Site Management Plan (SMP)
 - 1. **Requirements -** All IC/EC Plan requirements were met during this reporting period.
 - 2. **Exposure Pathways** There are no new completed exposure pathways resulting in unacceptable risk.
 - 3. **Proposed Plans and Schedule to Meet Compliance** No plan proposed.

Periodic Review Report – National Grid Dewey/Kensington Service Center (Site #915144) Reporting Period – December 1, 2014 – November 30, 2015

- B. **Performance and Effectiveness of the Remedy** The remedy as described by the Record of Decision and executed by National Grid has been effective in meeting the program goals.
- **C. Future PRR Submittals** The frequency of PRR Submittals should remain annual. Therefore, the next PRR submittal deadline will be December 1, 2016.
- VIII. Additional Guidance Not Needed

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

٦

	Site No.	Box 1							
	Site Name: D Center	Dewey/Kensington Service							
	Site Address: City/Town: B Buffalo Count Acreage: 23	: 144 Kensington Avenue Zip Code: 14214 Buffalo ty: Erie acres (Dewey/Kensington SC complex)							
	Reporting Pe	riod: December 1, 2014 to November 30, 2015							
			YES	NO					
1.	Is the informa	ation above correct? e handwritten above or on a separate sheet.	\boxtimes						
2.	Has some or tax map ame	all of the site property been sold, subdivided, merged, or undergoendment during this Reporting Period?	one a						
3.	Has there bee (see 6NYCRF	en any change of use at the site during this Reporting Period R 375-1.11(d))?		\boxtimes					
4.	Have any fed for or at the p	leral, state, and/or local permits (e.g., building, discharge) been is property during this Reporting Period?	sued	\boxtimes					
	If you answer that documen	red YES to questions 2 thru 4, include documentation or evidence ntation has been previously submitted with this certification form.	<u>}</u>						
5.	Is the site cur	rrently undergoing development?		\boxtimes					
			Box 2	NO					
6.	Is the current Commercial a	site use consistent with the use(s) listed below? and Industrial							
7.	Are all ICs/EC	\boxtimes							
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
A (Corrective Mea	asures Work Plan must be submitted along with this form to	address these	Issues.					

SITE NO. 915144

Box 3

Description of Institutional Controls

Parcel

National Grid

Owner

Institutional Control

Soil Management Plan Monitoring Plan Site Management Plan Ground Water Use Restriction Land-Use Restriction IC/EC Plan

- Since the remedy resulted in MGP related contamination above unrestricted levels remaining at the site, an
 Institutional control in the form of a deed restriction was filed for the site. The deed restriction requires: a)
 restricting the use of the site to commercial or industrial use. Any specific future use of the site must comply with
 local laws and regulations; b) compliance with the approved site management plan; c) restricting the use of
 groundwater as a source of potable or process water, without necessary water quality treatment as determined
 by NYSDOH; and d) completion of a periodic certification of institutional and engineering controls, submitted to
 the Department.
- 2. A site management plan (SMP) was approved which will: a) require that any soil excavated during future activities will be tested and properly handled in a manner acceptable to the Department to protect the health and safety of workers, the school population, and the nearby community; b) require monitoring of groundwater; c) evaluate the potential for vapor intrusion for any buildings developed on the site, including mitigation of any Impacts Identified; and d) completion of a periodic certification of Institutional and engineering controls, to be submitted to the Department.
- 3. The property owner and/or responsible party will provide a periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the Department, until the Department notifies the property owner in writing that this certification is no longer needed. This submission will: a) contain certification that the institutional controls and engineering controls constituting the remedy remain effectively in place and are either unchanged from the previous certification or are compliant with Department-approved modifications; b) allow the Department access to the site; and c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the site management plan unless otherwise approved by the Department.

Box 4

Date

Ν	Description of Engineering Controls None Required		
N	Not Applicable/No ECs		
			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the reviewed by, the party making the certification;	direction of, and	
	b) to the best of my knowledge and belief, the work and conclusions describ accordance with the requirements of the site remedial program, and general practices; and the information presented is accurate and compete	ed in this certificati	on are in ering
	produces, and the mormation presented is accurate and compete.	YES	NO
		\boxtimes	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true:	for each Institutior at all of the	nal or
	(a) the Institutional Control and/or Engineering Control(s) employed at this s date that the Control was put in-place, or was last approved by the Departme	ite is unchanged si ent;	ince the
	(b) nothing has occurred that would impair the ability of such Control, to pro environment;	tect public health a	nd the
	(c) access to the site will continue to be provided to the Department, to eval Including access to evaluate the continued maintenance of this Control;	uate the remedy,	
	(d) nothing has occurred that would constitute a violation or failure to comply Management Plan for this Control; and	y with the Site	
	(e) if a financial assurance mechanism is required by the oversight documer mechanism remains valid and sufficient for its intended purpose established	nt for the site, the in the document.	
		YES	NO
		\boxtimes	
	IF THE ANSWER TO QUESTION 2IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise c	and ontinue.	
	A Corrective Measures Work Plan must be submitted along with this form to ad	dress these issue	S.

IC CERTIFICATIONS SITE NO. 915144

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements In Boxes 1, 2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Matthew D. Millias</u> at <u>6800 Old Collamer Roa</u> print name print business a	ad, East Syracuse, NY 12057 address
am certifying as Owner's Representative for National Grid	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	
Matthew D. Millias	November 2, 2015
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

national**grid**

Dewey/Kensington Service Center 144 Kensington Avenue, Buffalo, New York

2015 Annual Groundwater Monitoring Report

Prepared by:

6800 Old Collamer Road, Suite 3 East Syracuse, New York 13057

Table of Contents

Section 1 Introduction	1-1
1.1 Introduction	1-1
1.2 Background and Site Investigation History	1-1
1.3 Modifications to the Groundwater Monitoring Program	1-3
Section 2 Groundwater Monitoring Activities	
2.1 Groundwater Well Gauging	2-1
2.2 Groundwater Analytical Results	
2.3 LNAPL Observation	2-1
2.4 Other Operations Maintenance and Monitoring Activities	2-1
Section 3 Schedule	
3.1 Schedule	3-1
Section 4 Conclusions and Recommendations	4-1
4.1 Conclusions	
4.2 Recommendations	4-1

List of Figures

Figure 1-1 Site Location Map	1-4
Figure 1-2 Site Map	1-5
Figure 2-1 Groundwater Flow Map	2-2

List of Tables

Table 1-1 Groundwater Elevations	.1-	6
Table 1-2 Groundwater Analytical Results – Total PCBs	.1-	-7

Appendices

Appendix A	Groundwater Monitoring Field Data
Appendix B	Groundwater Monitoring Laboratory Data

Introduction

1.1 Introduction

This annual report presents the results of the groundwater sampling and analysis activities conducted by CDM Smith at the National Grid, Dewey/Kensington Service Center in Buffalo, New York (the site). These activities were completed as part of ongoing investigations of a former underground storage tank (UST), identified as Solid Waste Management Unit (SWMU) #7. The April 2015 and October 2015 groundwater monitoring events were conducted in conformance with the Order on Consent (Consent Order) Index Number R9-4407-96-09, dated November 19, 1997, between National Grid and the New York State Department of Environmental Conservation (NYSDEC) to monitor the potential migration of impacted groundwater associated with SWMU #7. As further discussed in Section 1.3, the SWMU #7 groundwater monitoring program was modified as identified in NYSDEC's July 22, 2003 letter, which presents comments on the *2002 Soil Investigation and Spring/Fall 2002 Groundwater Monitoring Report*.

1.2 Background and Site Investigation History

The Dewey/Kensington Service Center is an active facility located at 144 Kensington Avenue between Dewey and Kensington Avenues in Buffalo, New York (**Figure 1-1**). The service center previously included a hazardous waste management facility permitted by NYSDEC (Part 373 Permit No. 9-1402-00397/00001-0). The hazardous waste management facility was closed in December 1992 in accordance with a NYSDEC-approved closure plan.

In September 1992, excavation activities at the facility in the vicinity of Building #13 revealed petroleum-impacted gravel and a broken vent line connected to an underground waste oil tank. The waste oil tank was subsequently removed, and four groundwater monitoring wells (ESI-1, ESI-2, ESI-3, and ESI-4) were installed in the vicinity of the former tank to supplement an existing monitoring well (MW-1) and to facilitate periodic groundwater monitoring in this area. **Figure 1-2** illustrates relevant site features and the locations of soil borings and monitoring wells.

In February 1994, National Grid agreed to conduct a focused Resource Conservation and Recovery Act (RCRA) Facility Assessment- (RFA-) type soil and groundwater investigation, and a Focused Risk Assessment/ Corrective Measures Study (FRA/CMS) to address the concerns identified by the RFA.

During Fall 1994, National Grid conducted soil and groundwater investigation activities in accordance with the NYSDEC-approved *Soil and Groundwater Investigation Work Plan* (1994). These investigations showed the presence of several volatile organic compounds (VOCs) and polychlorinated biphenyls (PCBs) in groundwater at concentrations above NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 – Ambient Water Quality Standards and Guidance Values (NYSDEC, 1998, amended 2000). Based on these results, NYSDEC requested implementation of the quarterly groundwater monitoring program proposed in the *SWMU #7 Soil/Groundwater Investigation Report (1994*).

The *SWMU #7 Focused Risk Assessment and Corrective Measures Study Report* (FRA/CMS Report) (1995, revised 1996) concluded that the limited action alternative (i.e., implementing a groundwater

monitoring program) would adequately meet the corrective measure objective of mitigating the offsite migration of impacted groundwater. Following the initial submittal of the FRA/CMS Report, a *Groundwater Sampling and Analysis Plan* (SAP) (1996) was submitted to NYSDEC in May 1996. The May 1996 SAP was then revised based upon NYSDEC comments, and the revised SAP for the groundwater monitoring program was presented in the revised FRA/CMS Report dated June 1996.

In November 1997, National Grid entered into a Consent Order with NYSDEC to guide future site monitoring and to establish a framework for implementing additional site investigation or remediation. As mandated in the Consent Order, semi-annual (spring and fall) groundwater monitoring events are conducted at SWMU #7 monitoring wells. The list of wells sampled during each groundwater monitoring event has been modified through time in response to NYSDEC requirements and the results of investigation/evaluation activities, as agreed to by NYSDEC.

The Consent Order specifies that a contingency plan must be implemented to evaluate additional remedial activities if analytical results from monitoring wells located at the property boundary indicate an exceedance of NYSDEC groundwater quality standards presented in TOGS 1.1.1 for two consecutive monitoring events. The monitoring wells designated as property boundary wells have changed, as new monitoring wells have been installed as part of the contingency plan implementation. For example, monitoring wells MW-7 and MW-9 were designated as property boundary wells in the Consent Order. In 1999, the property boundary wells included monitoring wells MW-6, MW-7, MW-11, MW-12, and MW-14. The current property boundary well arrangement includes monitoring wells MW-6, MW-11, MW-12, MW-20, MW-21, and MW-24 (installed spring 2002). Refer to Figure 1-2 for well locations. Monitoring well construction details are summarized in **Table 1-1**.

The table below summarizes instances when groundwater samples from two consecutive groundwater sampling events exhibited the presence of constituents in groundwater above TOGS standards and guidance values in the property boundary wells. The table also presents the corresponding NYSDEC-approved contingency plan activities that were conducted in response to such instances.

Consecutive Sampling Events with Property Boundary Well TOGS Standards and Guidance Value Exceedances	Corresponding Contingency Plan Activity
Fall 1997 and Spring 1998: PCBs in groundwater samples collected from monitoring well MW-9.	Conducted MW-9 supplemental investigation, including installing additional monitoring wells MW-13, MW-14, and MW-15 in October 1998.
Spring 1999 and Fall 1999: PCBs in groundwater samples collected from monitoring wells MW-9 and MW-14.	Conducted supplemental site investigation, including research of site history and installing additional monitoring wells MW- 16, MW-17, MW-18, MW-19, MW-20, and MW-21 in August and September 2000.
Fall 2000 and Spring 2001: PCBs in groundwater samples collected from monitoring wells MW-9 and MW-14.	Conducted 2002 soil investigation, including advancing soil borings (SB-101, MW-22, SB-102, SB-103, SB-104, SB-105, SB- 106, MW-23, and SB-107), installing monitoring wells (MW-22, MW-23, and MW-24) and sampling and fingerprint analysis of light non-aqueous phase liquid (LNAPL) in monitoring well ESI- 1.

On October 3, 2011, National Grid received official notification that the site was deleted from the New York State Registry of Inactive Hazardous Waste Disposal Sites (letter from Ms. Kelly Lewandowski, NYSDEC Chief Site Control Section, to Mr. Chuck Willard, NG SIR Director).

1.3 Modifications to the Groundwater Monitoring Program

In the 2002 Investigation Report, modifications to the SWMU #7 groundwater monitoring program were recommended. The recommendations were based on the results of the 2002 soil investigation, the 2002 groundwater monitoring events, a review of previous soil and groundwater results, and LNAPL fingerprinting. NYSDEC approved the recommendations presented in the 2002 Report (with select modifications) in a July 22, 2003 letter to National Grid. The recommendations, inclusive of NYSDEC's modifications, were as follows:

- Discontinue VOC analysis except at monitoring wells ESI-1 and MW-16. LNAPL (if present) in monitoring well ESI-1 will be removed. If LNAPL is not present for three consecutive monitoring events in monitoring well ESI-1, groundwater will be sampled and analyzed for VOCs annually. To monitor the conditions downgradient of monitoring well ESI-1, groundwater from monitoring well MW-16 will be sampled and analyzed for VOCs annually. If VOCs are detected in groundwater at MW-16, additional VOC analysis will be required from monitoring wells located downgradient of MW-16.
- Discontinue lead analysis for all monitoring wells.
- Continue PCB analysis at select monitoring wells (i.e., the property boundary wells, MW-1, and MW-9).
- Discontinue data validation (for all groundwater samples collected) for every groundwater monitoring event.
- Continue to sample and measure groundwater levels from the monitoring wells, as summarized in Section 3 Schedule.

Per NYSDEC's July 27, 2011 letter to National Grid, semi-annual groundwater sampling events will continue. However, both monitoring events will be documented in a single annual report to be submitted in the fall of each year.

Groundwater Monitoring Activities

2.1 Groundwater Well Gauging

For the April 27-28, 2015 and October 7-8, 2015 events, static groundwater levels (presented in Table 1-1) were measured prior to groundwater sample collection to evaluate groundwater flow patterns. Groundwater levels were obtained from 18 of the groundwater monitoring wells associated with SWMU #7 (MW-1, MW-2, MW-5, MW-6, MW-7, MW-9, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, MW-17, MW-19, MW-20, MW-21, MW-24, and ESI-1).

The groundwater flow direction is generally toward the south. Refer to **Figure 2-1** for the general groundwater flow direction.

2.2 Groundwater Analytical Results

For the April 2015 and October 2015 events, groundwater samples were analyzed for PCBs. In addition, field measurements of pH, temperature, conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential were obtained prior to sample collection. The groundwater monitoring field data is included in **Appendix A**.

Eight monitoring wells (MW-1, MW-6, MW-9, MW-11, MW-12, MW-20, MW-21, and MW-24) were sampled and analyzed for PCBs during the April 2015 and October 2015 events. Analytical results were compared to the New York State ambient water quality standards and guidance values and groundwater effluent limitations presented in TOGS 1.1.1 (0.09 ppb for total PCBs).

For the April 2015 sampling event, PCBs were detected in two of the eight groundwater samples collected from site groundwater monitoring wells (0.8 parts per billion [ppb] in the sample collected from MW-1, and 6.9 ppb in the sample collected from MW-9). For the October 2015 sampling event, PCBs were detected in **three** of the eight groundwater samples collected from site wells (9.1 ppb in the groundwater sample collected from MW-1, 26 ppb in the groundwater sample collected from MW-9, and 0.053 ppb in the groundwater sample collected from MW-20). This was the first detection of MW-20 since the long-term OM&M program began.

Total PCB results from the groundwater monitoring events are presented in **Table 2-1**. **Appendix B** presents the laboratory analytical reports.

2.3 LNAPL Observation

Prior to groundwater purging and sample collection activities, each monitoring well was gauged with an oil/water interface probe to measure the presence or absence of LNAPL. LNAPL was not observed at any of the monitoring wells during the April 2015 or October 2015 events.

2.4 Other Operations Maintenance and Monitoring Activities

During each semi-annual groundwater sampling event, the sorbent boom was checked at monitoring well ESI-1.

Schedule

3.1 Schedule

Based on the results of the groundwater monitoring program and the recommendations presented in the 2002 Investigation Report (subsequently modified by the NYSDEC's July 22, 2003 response letter); the modified groundwater monitoring program, consisting of semi-annual (spring and fall) groundwater monitoring events, will be continued. The scope of the monitoring program is summarized in the following table.

Monitoring Wells for Continued Groundwater Sampling	Monitoring Wells for Groundwater Level Measurement Only
ESI-1 (VOC analysis)*	MW-2
MW-1 (PCB analysis) ***	MW-5
MW-6 (PCB analysis) ***	MW-17
MW-9 (PCB analysis) ***	MW-10
MW-11 (PCB analysis) ***	MW-13
MW-12 (PCB analysis) ***	MW-15
MW-20 (PCB analysis) ***	MW-17
MW-21 (PCB analysis) ***	MW-19
MW-24 (PCB analysis) ***	

Notes:

- * One groundwater sample will be collected from monitoring well ESI-1 only if LNAPL is not present for three consecutive sampling events.
- *** Monitoring well will be sampled twice a year.

The next semi-annual groundwater monitoring event is scheduled for April 2016. The NYSDEC Project Manager will be notified at least one week in advance of the event. Reporting will be annual (submitted after the fall event) as part of the Periodic Review Report.

Conclusions and Recommendations

4.1 Conclusions

Eight monitoring wells were sampled and analyzed for PCBs during the April 2015 and October 2015 events (MW-1, MW-6, MW-9, MW-11, MW-12, MW-20, MW-21, and MW-24). For the April 2015 sampling event, PCBs were detected in groundwater samples collected from two of the eight site groundwater monitoring wells (MW-1 and MW-9). For the October 2015 sampling event, PCBs were detected in groundwater samples collected from three of the eight site groundwater monitoring wells (MW-1, MW-9). It was the first detection of PCBs in the MW-20 groundwater well. This well will be monitored closely in the next sampling event.

4.2 Recommendations

At this time, no changes to the semi-annual site sampling plan are proposed.

Figures

LEGEND:

Smith

▲ 58-5	APPROXIMATE LOCATION OF SOIL	BORING					
- \$ -M₩-1	APPROXIMATE LOCATION OF MONIT	ORING WELL					
(@:C₩-1	COLLECTION WELL DECOMMISSIONE	D APRIL 2004					
+ € + E5i−2	MONITORING WELL DECOMMISSIONE	D APRIL 2004					
- x - x -	CHAIN LINK FENCE						
ONS	OIL/WATER SEPARATOR						
oo	EXISTING SANITARY SEWER AND M	ANHOLE					
00	EXISTING STORM SEWER AND CAT	CH BASIN					
0O	EXISTING COMBINED SANITARY ANI SEWER	DSTORM					
	APPARENT DIRECTION OF FLOW IN	SEWER					
	EXCAVATION AREA						
NOTES:	:						
1.	BASE MAP SUPPLIED BY BBL AND N MOHAWK POWER CORPORATION, COMPILED BY FIELD SURVEY METH 9/6/94, 2/97 AND 10/97 AT AN ORIGIN SCALE OF 1" = 20'.	IIAGRA IODS ON IAL					
2.	LIMITS OF WASTE OIL TANK EXCAV BASED ON FIELD MEASUREMENTS INC.	ATION BY BBL,					
3.	ALL LOCATIONS ARE APPROXIMATI REQUIRE FIELD VERIFICATION.	EAND					
4.	LOCATION OF MONITORING WELLS COLLECTION WELLS INSTALLED DU THE SSI ARE BASED ON NIAGARA M FIELD SURVEY IN OCTOBER 2000.	and Iring Iohawk					
5.	SOIL BORING LOCATIONS SB-101 TI SB-107 AND MONITORING WELL LOCATIONS MW-22, MW-23 AND MW BASED ON NIAGARA MOHAWK FIEL SURVEY IN SEPTEMBER 2002.	HROUGH /-24 D					
	0 60' APPROXIMATE SI	120'					
NATIONAL GRID DEWEY AVENUE SERVICE CENTER							
	SITE MAP						
CDN		Figure					

1-2

Tabl	es
------	----

Table 1-1 Groundwater Elevations

National Grid Dewey Avenue Service Center Buffalo, New York

Well ID	TOC Elevation (ft AMSL)	Depth to Well Bottom (ft BTOC)	April 2011 DTW (ft BTOC)	April 2011 Potentiometric Surface Elev. (ft AMSL)	October 2011 DTW (ft BTOC)	October 2011 Potentiometric Surface Elev. (ft AMSL)	April 2012 DTW (ft BTOC)	April 2012 Potentiometric Surface Elev. (ft AMSL)	October 2012 DTW (ft BTOC)	October 2012 Potentiometric Surface Elev. (ft AMSL)	April 2013 DTW (ft BTOC)	April 2013 Potentiometric Surface Elev. (ft AMSL)	October 2013 DTW (ft BTOC)	October 2013 Potentiometric Surface Elev. (ft AMSL)
MW-1	650.76	29.90	2.85	647.91	3.07	647.69	3.41	647.35	3.30	647.46	3.02	647.74	3.23	647.53
MW-2	650.55	44.17	•	*	15.26	635.29	12.75	637.80	12.20	638.35	11.62	638.93	11.42	639.13
MW-5	651.65	21.40	10.68	640.97	11.55	640.10	11.72	639.93	11.25	640.40	10.89	640.76	11.58	640.07
MW-6	650.25	21.05	6.90	643.35	10.20	640.05	10.10	640.15	9.90	640.35	7.58	642.67	8.25	642.00
MW-7	650.02	21.30	9.46	640.56	11.56	638.46	11.69	638.33	10.88	639.14	10.31	639.71	11.30	638.72
MW-9	648.95	22.05	9.70	639.25	10.76	638.19	11.02	637.93	10.58	638.37	10.07	638.88	10.00	638.95
MW-10	649.46	24.25	9.48	639.98	10.39	639.07	10.88	638.58	10.76	638.70	9.57	639.89	10.51	638.95
MW-11	647.11	20.22	7.80	639.31	8.76	638.35	8.98	638.13	8.14	638.97	8.12	638.99	8.25	638.86
MW-12	646.90	19.55	7.60	639.30	8.42	638.48	8.50	638.40	8.24	638.66	7.91	638.99	8.04	638.86
MW-13	650.05	26.25	10.66	639.39	11.65	638.40	11.95	638.10	11.50	638.55	11.05	639.00	11.31	638.74
MW-15	651.88	23.80	11.58	640.30	12.81	639.07	13.35	638.53	12.47	639.41	12.21	639.67	12.22	639.66
MW-16	651.72	20.36	6.45	645.27	5.40	646.32	6.65	645.07	6.50	645.22	5.75	645.97	4.82	646.90
MW-17	651.76	20.60	11.57	640.19	11.86	639.90	12.80	638.96	12.37	639.39	11.75	640.01	12.45	639.31
MW-19	651.69	24.00	11.08	640.61	12.82	638.87	13.27	638.42	12.63	639.06	12.26	639.43	12.52	639.17
MW-20	646.76	22.60	7.55	639.21	8.48	638.28	8.73	638.03	8.82	637.94	7.80	638.96	8.20	638.56
MW-21	646.70	21.85	7.65	639.05	8.35	638.35	8.80	637.90	8.34	638.36	7.80	638.90	8.20	638.50
MW-24	647.01	24.25	7.60	639.41	8.53	638.48	8.80	638.21	8.40	638.61	7.90	639.11	8.30	638.71
ESI-1	651.66	21.50	3.68	647.98	3.94	647.72	4.18	647.48	4.40	647.26	4.00	647.66	4.20	647.46

Notes: TOC = Top of Well Casing AMSL = Above Mean Sea Level DTW = Depth to Water BTOC = Below Top of Casing Light non-aqueous phase liquid (LNAPL) observed in ESN-1 only. Numbers in parentheses present depths and elevations to LNAPL. * = MW-2 is typically inaccessible due to staged equipment.

Table 1-1 Groundwater Elevations

National Grid Dewey Avenue Service Center Buffalo, New York

Well ID	TOC Elevation (ft AMSL)	Depth to Well Bottom (ft BTOC)	April 2014 DTW (ft BTOC)	April 2014 Potentiometric Surface Elev. (ft AMSL)	October 2014 DTW (ft BTOC)	October 2014 Potentiometric Surface Elev. (ft AMSL)	April 2015 DTW (ft BTOC)	April 2015 Potentiometric Surface Elev. (ft AMSL)	October 2015 DTW (ft BTOC)	October 2015 Potentiometric Surface Elev. (ft AMSL)
MW-1	650.76	29.90	3.02	647.74	3.82	646.94	2.90	647.86	2.98	647.78
MW-2	650.55	44.17	11.30	639.25	15.40	635.15	14.60	635.95	13.00	637.55
MW-5	651.65	21.40	9.62	642.03	12.53	639.12	9.81	641.84	12.92	638.73
MW-6	650.25	21.05	7.95	642.30	11.15	639.10	8.46	641.79	10.30	639.95
MW-7	650.02	21.30	9.58	640.44	11.98	638.04	10.30	639.72	11.82	638.20
MW-9	648.95	22.05	9.75	639.20	11.16	637.79	10.26	638.69	10.70	638.25
MW-10	649.46	24.25	10.08	639.38	Not Gauged	Not Gauged	10.05	639.41	10.80	638.66
MW-11	647.11	20.22	7.95	639.16	8.80	638.31	8.23	638.88	8.55	638.56
MW-12	646.90	19.55	7.73	639.17	8.90	638.00	8.00	638.90	8.41	638.49
MW-13	650.05	26.25	10.86	639.19	12.17	637.88	11.75	638.30	11.76	638.29
MW-15	651.88	23.80	12.08	639.80	13.62	638.26	12.50	639.38	13.00	638.88
MW-16	651.72	20.36	5.55	646.17	6.06	645.66	5.75	645.97	5.25	646.47
MW-17	651.76	20.60	11.23	640.53	12.19	639.57	10.87	640.89	13.08	638.68
MW-19	651.69	24.00	12.50	639.19	13.56	638.13	12.49	639.20	13.03	638.66
MW-20	646.76	22.60	7.80	638.96	9.00	637.76	8.12	638.64	8.22	638.54
MW-21	646.70	21.85	7.80	638.90	8.72	637.98	8.14	638.56	8.86	637.84
MW-24	647.01	24.25	7.92	639.09	9.13	637.88	8.22	638.79	8.80	638.21
ESI-1	651.66	21.50	3.80	647.86	4.60	647.06	3.66	648.00	3.80	647.86

Notes: TOC = Top of Well Casing AMSL = Above Mean Sea Level DTW = Depth to Water BTOC = Below Top of Casing Light non-aqueous phase liquid (LNAPL) obs ESH 1 only. Numbers in parentheses pres and elevations to LNAPL. * = MW-2 is typically inaccessible due to stag

Table 2-1 Groundwater Analytical Results - Total PCBs (units in ppb or ug/L)

National Grid Dewey Avenue Service Center Buffalo, New York

					Well ID				
Date	NYSDEC Value (1)	MW-1	MW-6	MW-9	MW-11	MW-12	MW-20	MW-21	MW-24
Oct-15	0.09	9.10	ND	26	ND	ND	0.053	ND	ND
April 2015	0.09	0.8	ND	6.9	ND	ND	ND	ND	ND
Oct-14	0.09	0.22	ND	43	ND	ND	ND	ND	ND
April 2014	0.09	2.8	ND	9.4	ND	ND	ND	ND	ND
October 2013	0.09	0.15	ND	16.0	0.10	ND	ND	ND	ND
April 2013	0.09	5.7	ND	24.0	ND	ND	ND	ND	ND
October 2012	0.09	4.5	0.16	11.0	ND	ND	ND	ND	0.051
April 2012	0.09	1.4	ND	29.0	ND	ND	ND	ND	ND
October 2011	0.09	4.9	ND	8.7	ND	ND	ND	ND	ND
April 2011	0.09	7.0	ND	28.0	ND	ND	ND	ND	ND
October 2010	0.09	4.1	ND	24.0	ND	ND	ND	ND	ND
April 2010	0.09	4.6	ND	19.0	ND	ND	ND	ND	ND
October 2009	0.09	1.4 QSU	ND	15 QSU, D08	ND	ND	ND	ND	ND
April 2009	0.09	4.8	1.1	ND	ND	ND	ND	ND	ND
October 2008	0.09	0.44	ND	13	0.44	ND	ND	ND	ND
April 2008	0.09	0.54	ND	4.5	ND	0.01	ND	ND	ND
October 2007	0.09	1.2	ND	ND	ND	ND	ND	ND	ND
April 2007	0.09	1.2	ND	9.9	ND	ND	ND	ND	ND
November 2006	0.09	ND	ND	ND	ND	ND	ND	ND	ND
June 2006	0.09	1.5	ND	ND	ND	ND	ND	ND	ND
November 2005	0.09	1.2	ND	17	ND	ND	ND	ND	ND
April 2005	0.09	1	ND	9.5	ND	ND	ND	ND	ND
November 2004	0.09	1.7 P	ND	15	ND	ND	ND	ND	ND
March 2004	0.09	0.87 P	ND	32.3 P	ND	ND	ND	ND	ND
October 2003	0.09	1.6	ND	40.3 PJ	ND	ND	ND	ND	ND
December 2002	0.09	1.2	ND	16	ND	ND	ND	ND	ND
June 2002	0.09	3.2 J	ND	20 J	ND	ND	ND	ND	ND
October 2001	0.09	3.0 J	ND	29 JN	ND	ND	ND	ND	NS
April 2001	0.09	3.4	NS	6.3	ND	ND	ND	ND	NS
December 2000	0.09	2.9 JN	NS	21 JN	ND	ND	ND	ND	NS
June 2000	0.09	2.9	NS	10 J	ND	ND	NS	NS	NS
December 1999	0.09	3.0 J	NS	21 J	ND	ND	NS	NS	NS
July 1999	0.09	5.9 JN	NS	44 JN	ND	ND	NS	NS	NS
November 1998	0.09	3.6	NS	ND	ND	ND	NS	NS	NS
May 1998	0.09	1.2	NS	6.7	NS	NS	NS	NS	NS

Notes:

(1) NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) "Ambient Water Quality Standards and Guidance Values and Ground Water Effluent Limitations," April 2000, Class GA Ground Water Standards and Guidance Values.

Laboratory Qualifier Notes:

J = Analyte was positively identified; however, the associated numerical value is an estimated concentration only.

JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.

P = Greater than 25% difference for detected concentration between two GC columns.

QSU = Sulfur (EPA 3660) clean-up performed on extract.

D08 = Dilution required due to high concentration of target analyte(s).

ND = Not Detected above detection limit.

NS = Not Sampled.

Units in parts per billion (ppb) or micrograms per liter (ug/L). Bolded numbers indicate Guidance Value Exceedences Appendix A

Groundwater Monitoring Field Data

Well ID.	Sample?	Well Size	DTP	DTW	DTB	Comments
ESI-1	VOC's Fall only	4"	trace on boom	3.66	21.50	checked sorbant boom.
MW-1	yes	4"		2.90	29.90	
MW-2	no	4"		14.60	44.17	
MW-5	no	2"		9.81	21.40	
MW-6	yes	2"		8.46	21.05	MS/MSD
MW-7	no	2"		10.30	21.30	
MW-9	yes	2"		10.26	22.05	
MW-10	no	.2"		10.05	24.25	
MW-11	yes	2"		8.23	20.22	
MW-12	yes	2"		8.00	19.55	Duplicate Sample
MW-13	no	2"		11.75	26.25	
MW-15	no	2"		12.50	23.80	
MW-16	VOC's Fall only	2"	trace on probe	5.75	20.36	
MW-17	no	2"		10.87	20.60	
MW-19	no	2"		12.49	24.00	
MW-20	yes	2"		8.12	22.60	
MW-21	yes	2"		8.14	21.85	
MW-24	yes	2"		8.22	24.25	
MW-25	no	2"		6.66	15.36	

0
3
34
4
<u></u>
ш
3
Ö
ΤĒ.
۵Ö
Ë
5
5
5
ö
Ĕ.

10 Hazelwood Drive

Chain of Custody Record

N - None O - ANN402 P - NA2045 G - NA2045 G - NA2505 G - NA255503 S - H25050 J - Acetone U - Acetone U - Acetone U - Acetone V - Ph 4.5 Z - other (specify) on the second of the second second second second Special Instructions/Note: Strantos Months Company Company M - Hexane Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Spisposal By Leb Archive For Month Special Instructions/QC Requirements: COC No: 480-64510-16322.1 Page 1 of 1 8 Preservation Codes C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchilor H - Ascorbic Acid J - Di Water K - EDTA L - EDA A - HCL B - NaOH 90<u>-</u>-Date/Time: C4- 75-15 Date/Time: # 90 Total Number of containers Date/Time: Method of Shipment: Cemer Tracking No(s) Received by Den WWW Analysis Requested Cooler Temperature(s) °C and Other Remarks Lab PM. Mason, Becky C E-Mait becky.mason@testamericainc.com Received by: こ 3 N 2 2 2 -*~1 24 e) • רר • 77 Z808 ÷ Time: (encorre Company Company ON TO BOY) elginas beretili biel STATIONS, A-AK Preservation Code: Matrix (w-wik. ***** Water Company Rediological Type (C=comp, G≖grab) e Sampler, T/N 13EANHANT Sample Phone: 585 734 2318 ٩ Sample 35 900 302 220 1030 0071 Time 1200 E 5 Date: Unknown TAT Requested (days): Due Date Requested: Sample Date 1/22/17 PO #. 36380.105370 WO #. ンリレマト which ンルにより 4/27/11 エレート エレンドイ V/21/1 רוורכוא אוורטא 4281 Project #: 48011230 SSOW#: Date/Time: Date/Time: 4/28/ Poison B Skin Irritant Possible Hazard Identification Custody Seals Intact: Custody Seal No.: Phone (716) 691-2600 Fax (716) 691-7991 Dewey Ave semi-annual GW Wells 6800 Old Coltamer Road Suite 3 Empty Kit Relinquished by: beaumonttj@cdmsmith.com Amherst, NY 14228-2298 Sample Identification **Client Information** j imothy Beaumont elinquished by WW-6 SD-0415 WW-6 MS-0415 Company: CDM Smith, Inc. elinquished by. elinquished by: East Syracuse AW-24-0415 MW-11-0415 MW-12-0415 MW-20-0415 MW-21-0415 VIW-1-0415 MW-8-0415 MW-9-0415 State, Zip: NY, 13057 rolect Name FD-0415 Phone (inc.) È

Sampling Pe	rsonnel: Ti	m Beaumont			Date:	4/27/1	15	
Job Number:	36380.1053	70			Weather:	clordy	drivel	41
Well Id.	MW-1				Time In:	1045	Time Out:	1120
					· · · · · · · · · · · · · · · · · · ·			
Well Inf	formation	-						
Depth to Ma	tor	((a = 1)		Other	Well Type	e: Flus	hmount	Stick-Up
Depth to Bot	tom:	(feet)	29.90		Measuring	eu. Point Marked		
Depth to Pro	duct:	(feet)	Manage .		Well Mate	erial: PVC	ss ot	ner: steel
Length of Wa	ater Column:	(feet)	27.00		Well Dian	neter: 1"	2"Oth	ner: <u>4"</u>
Volume of W	ater in Well:	(gal)	17.82	3.46	Comment	s:		
	olumes:	(gal)	59.96	3.				
						······································		
Purging I	nformation							1
							Conversion F	actors
Purging Meth	nod:	Baile	r Peristall	lic 🔀 Grundfos I	other other	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer	r Material:	Teflo	n Stainless S	St. Polyeth	ylene 📈 other	of		
Sampling Me	ethod:	Baile	r Peristali	ic Grundfos I	other other	water	0.04 0.16	0.66 1.47
Duration of P	umping Kale.	(mi/min)	20			1 galle	on=3.785L=3785m	L=1337cu. feet
Total Volume	Removed:	(min) (gal)	~ 2,0	Did well ao drv?	Yes No			
Horiba 11-52 V	Water Quality	Motor Llead?	Va					
	vvalor odality		FC			-		
Time	DTW	Amount	Temp	Ha	ORP	Conductivity	Turbidity	
	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
1045	2.98		8.70	7.07	-//2	18.4	12.9	2.49
1050	3.00		8.68	7.10	-/17	20.0	9.1	1.42
1051	3,00		8.69	7.11	-123	22.0	6.5	, 9/
1105	3.00		8,57	7.09	-104	17.1	•9	. (7
1110	3.00		8.47	6.99	- 98	22.7	0	. 61
1115	3.00		8.44	6.96	-97	22.7	O	. 55
								[]
Sampling Inf	formation:							
							-	
				etection limit of 0	05 pph	2 - 1 liter amber	Vaa	
EPA SW-846 M	Aethod 8082	PCB's	Low d		.00 ppp		res	A™L I
EPA SW-846 M EPA SW-846 N	Method 8082 Method 8260	PCB's TCL VOC's	Low d Includ	ing Naphthalene	.03 040	2 - 40 mL vials	Yes	
EPA SW-846 M EPA SW-846 M Sample ID:	Aethod 8082 Aethod 8260 MW-1-6	PCB's TCL VOC's	Low d Includ	ing Naphthalene	1	2 - 40 mL vials		
EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	Aethod 8082 Aethod 8260 <u>MW-1-C</u> ////5	PCB's TCL VOC's <u>M</u> S Du MS	Low d Includ plicate? 5/MSD?	Yes No		2 - 40 mL vials Shipped: E	Prop-off TA	
EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	Aethod 8082 Aethod 8260 <u>MW-1-0</u> <u>/115</u>	PCB's TCL VOC's <u>M</u> MS	Low d Includ plicate? 6/MSD?	Yes No		2 - 40 mL vials Shipped: E	Prop-off TA Fed-Ex	
EPA SW-846 M EPA SW-846 M Sample ID: Sample Time: Comments/No	Aethod 8082 Aethod 8260 <u>M&-1-C</u> <u>/115</u> otes: Ab	PCB's TCL VOC's <u>41</u> 5 Du Ma Shao A	Low d Includ plicate? S/MSD?	Yes No Yes No		2 - 40 mL vials Shipped: E Laboratory:	Prop-off TA Fed-Ex Test Am	Courier UPS erica

					ula alur		
Sampling Personnel: Tim B	leaumont			Date:	9/21/15	1170	
Job Number: 36380.105370				Weathe	r: Chay	<u> </u>	
Well Id. MW-6				Time In	1130	Time Out:	
Well Information						KX	,q
		TOC	Other	Well Ty	pe: Flue	shmount 🖌 🖇	Stick-Up
Depth to Water:	(feet)	8.46		Well Lo	cked:		No
Depth to Bottom:	(feet)	21.05		Measurin	g Point Marked:		No
Length of Water Column:	(feet)	12 59			meter: 1"		ner:
Volume of Water in Well	(dal)	2.01		Comme	nts		
Three Well Volumes:	(gal)	6.03		oonnie	110.		
	(947)			······			
[))						
Purging Information	· · · ·						
						Conversion F	actors
Purging Method:	Bailer	Peristat	ic Grundfos P				
Tubing/Bailer Material:	Teflon	Stainless S	it. Polvethy	tene otr			
Sampling Method:	Bailer	Peristalt	ic Grundfos P	ump oth	er water	0.04 0.16	0.66 1.47
Average Pumping Rate:	Average Pumping Rate: (ml/min) 2.70						L=1337cu, feet
Duration of Pumping:	(min)	30			LÝ		
Total Volume Removed:	(gal)	~2.0	Did well go dry?	Yes	10 10		
Horiba U-52 Water Quality Met	ter Used?	 Ve		P			
	A						
	Amount	Temn	l nH	OPP	Conductivity	Turbidity	DO
(feet) p	Amount uraed (aal)	Temp °C	pН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)
(feet) pi	Amount urged (gal)	Temp °C	рН 7ал	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L) 2 / G
(feet) pi 1130 9.30 1135 9.42	Amount urged (gal)	Temp °C 8.46 8.40	pH 701 6.97	ORP (mV) /6 -2	Conductivity (mS/cm) 17.6	Turbidity (NTU) /\$.2 7.6	DO (mg/L) 2.19 1.22
Image DTVV (feet) pt 1130 9.30 1135 9.42 1140 9.455 1140 1140	Amount urged (gal)	Temp °C 8.46 8.40 8.35	pH 701 6.97	ORP (mV) -2 -2	Conductivity (mS/cm) 17.6 17.6 17.6	Turbidity (NTU) /S.2 7.6 5.5	DO (mg/L) 2.1 4 7
Ime DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1147 9.49	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15	pH 701 6.97 6.90 4.90	ORP (mV) -2 -21 -28	Conductivity (mS/cm) /7.6 /7.6 /7.5 //.9	Turbidity (NTU) 15.2 7.6 5.5 4.6	DO (mg/L) 2.19 1.22 .78 .98
Image DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1147 9.49 1150 9.54	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12	pH 701 6.97 6.90 6.90 6.90 6.89	ORP (mV) -2 -2 -2 -28 -30	Conductivity (mS/cm) 17.6 17.6 17.5 17.5 16.4	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0	DO (mg/L) 2.19 1.22 .78 .98 .98 .600
Image DTVV (feet) pt [130 9.36 1137 9.42 1140 9.45 1140 9.45 1147 9.49 1150 9.54 1157 9.60	Amount urged (gal)	Temp °C 8.46 8.40 8.40 8.40 8.40 8.15 8.15 8.12 8.12 8.12	pH 701 6.97 6.90 6.90 6.89 6.89	ORP (mV) -2 -2 -28 -30 -32	Conductivity (mS/cm) /7.6 /7.6 /7.5 /7.5 //.4 /6.4	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .98 .98 .99 .99
Image DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1140 9.45 1147 9.49 1150 9.54 1177 9.60 1200 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.08 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) -2 -2 -27 -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /1.4 /6.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .9	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .99 .99 .99 .99
Ime DTVV (feet) pt [130 9.30 1131 9.42 1140 9.45 1140 9.45 1141 9.49 1150 9.54 1150 9.60 1170 9.60	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.19 8.19 8.12 9.08 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) -2 -2 -2 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 17.5 17.5 17.5 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .98 .99 .99 .99 .99 .99 .9
Ime DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1140 9.45 1150 9.54 1150 9.60 1200 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.08 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.89 6.90	ORP (mV) -2 -2 -2 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 17.5 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .99 .99 .99 .99 .99 .99 .9
Ime DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1140 9.45 1147 9.49 1150 9.54 1177 9.60 1200 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.08 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) -2 -2 -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 17.5 16.9 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 .9 .9 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .99 .99 .99 .99 .99
Ime DTVV (feet) pt [130 9.36 1137 9.42 1140 9.45 1140 9.45 1147 9.49 1150 9.54 1150 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.19 8.19 8.19 8.19 8.07 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 16.9 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 1.00 .98 .99 .99 .99 .99 .99
Ime DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1141 9.49 1150 9.54 1150 9.60 1200 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.15 8.12 9.08 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) 16 -2 -21 -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 17.5 16.7 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .99 .99 .99 .99 .12
Ime DTVV (feet) pt [130 9.30 1137 9.42 1140 9.45 1140 9.45 1147 9.49 1150 9.54 1177 9.60 1200 9.63	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.03 8.05	pH 701 6.97 6.90 6.90 6.89 6.89 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 16.9 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 1.00 .99 .99 .97 .97
Ime DTV (feet) pt (II30 9.36 II31 9.42 II40 9.45 II40 9.45 II40 9.45 II41 9.60 II70 9.60 I200 9.63 I200 9.63 Sampling Information:	Amount urged (gal)	Temp °C 8.46 8.40 8.15 8.15 8.15 8.15 8.05	pH 701 6.97 6.90 6.99 6.89 6.89 6.89	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 16.7 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 1.00 .99 .99 .99 .99
Ime DTV (feet) pt (feet)	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.15 8.05	pH 701 6.97 6.90 6.89 6.89 6.89 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 16.7 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .99 .99 .99 .99 .99
Ime DTVV (feet) pt II30 9.30 II31 9.45 II40 9.45 II40	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.03 8.05	pH 701 6.97 6.90 6.89 6.89 6.90	ORP (mV) 16 -2 -21 -28 -30 -32 -33	Conductivity (mS/cm) 17.6 17.6 17.5 16.9 16.7 16.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 .9 .9 .8	DO (mg/L) 2.19 1.22- .78 .98 1.00 .99 .99 .99 .97
Ime DTVV (feet) pt II30 9.30 II31 9.45 II40 9.45 II40	Amount urged (gal)	Temp °C 8.46 8.40 8.35 8.15 8.15 8.12 9.08 8.05	pH 701 6.90 6.90 6.99 6.99 6.99 6.99	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /6.7 /6.7 /6.7	Turbidity (NTU) 15.2 7.6 5.5 4.5 2.0 19 .8 .8	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .99 .99 .97 .97
Ime DTV (feet) pt (feet)	Amount urged (gal)	Temp °C 8.46 8.40 8.15 8.15 8.15 8.15 8.15 8.05	pH 7401 6.97 6.90 6.89 6.89 6.89 6.90 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /L.4 /6.7 /6.7 /6.7 /6.7	Turbidity (NTU) /S.2 7.6 S.5 4.5 2.0 .9 .9 .8 .8 Yes	DO (mg/L) 2.19 1.22 .78 .98 .98 .98 .99 .99 .99 .97
Ime DTVV (feet) pt II30 9.30 II31 9.42 II40 9.45 II40 14.5 II40 14.5 II40 14.5 II40 14.5 II40	PCB's TCL VOC's	Temp °C 8.46 8.40 8.35 8.15 8.15 8.15 8.15 8.12 9.03 8.05	pH 7401 6.97 6.90 6.89 6.89 6.89 6.90 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /6.4 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7	Turbidity (NTU) /5.2 7.6 5.5 4.5 2.0 .9 .9 .8 .8 Yes Yes	DO (mg/L) 2.19 1.22 .78 .98 1.00 .99 .99 .97 .97 .97 .97 .97 .97 .00
Ime DTVV (feet) pt II30 9.30 II31 9.45 II40 9.45 II40	Amount urged (gal) PCB's TCL VOC's Du MS	Temp °C 8.46 8.46 8.19 8.19 8.12 9.08 8.05 Low du Includi plicate?	pH 7401 6.97 6.90 6.90 6.99 6.99 6.90 6.90 6.90 70 70 70 70 70 70 70 70 70 70 70 70 70	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7	Turbidity (NTU) /S.2 7.6 5.5 4.5 2.0 .9 .9 .8 Yes Yes Yes	DO (mg/L) 2.19 1.22 .78 .98 1.00 .99 .99 .97 .97 .97 .97 .97 .97 .97 .97
Ime DTVV (feet) pt II30 9.30 II31 9.45 II40 9.45 II40	Amount urged (gal)	Temp °C 8.46 8.40 8.15 8.15 8.15 8.15 8.15 8.05 Low du Includi plicate?	pH 7401 6.97 6.90 6.90 6.89 6.90 6.89 6.90 6.90 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7	Turbidity (NTU) /S.2 7.6 5.5 4.5 2.0 .9 .9 .8 Ves Yes Drop-off Fed-Ex Test Ame	DO (mg/L) 2.19 1.22 .78 .98 .99 .99 .99 .99 .99 .99 .99 .99 .9
Ime DTVV (feet) pt II30 9.30 II31 9.42 II40 9.45 II40 9.45 II40 9.45 II40 9.45 II41 9.40 II50 9.60 II50 9.60 I150 9.63 I150 9.60 I150	Amount urged (gal) PCB's TCL VOC's C Dup MS	Temp °C 8.46 8.40 8.35 8.15 8.12 9.08 8.05 Encludi plicate? 5/MSD?	pH 7401 6.97 6.90 6.89 6.89 6.89 6.90 6.89 6.90 6.90	ORP (mV) /6 -2 -2/ -28 -30 -32 -33	Conductivity (mS/cm) /7.6 /7.6 /7.5 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7 /6.7	Turbidity (NTU) /5.2 7.6 5.5 4.5 2.0 .9 .9 .8 .8 .8 .8 .8 .8 .8	DO (mg/L) 2./9 /.22 .78 .98 .99 .99 .99 .99 .99 .99 .99 .99 .9

	· · · · · · · · · · · · · · · · · · ·							-
Sampling Pe	rsonnel: Tir	n Beaumont			Date:	4/27/15		
Job Number:	36380.1053	70			Weather:	Clusdy	Iprix Kh	41
Well Id.	MW-9				Time In:	917	Time Out:	1035
								~
Well In	formation							
		•	тос	Other	Well Type	: Flus	shmount 🔀	Stick-Up
Depth to Wa	ter:	(feet)	1026		Well Lock	ed:	Yes	No
Depth to Bot	tom:	(feet)	22.05		Measuring	Point Marked:		No
Depth to Pro	duct:	(feet)	-		Well Mate	rial: PVC		ner:
Length of Wa	ater Column:	(feet)			Well Diam	ieter: 1"		ner:
Throp Woll W	ater in vveii:	(gal)			Comment	S:		
	olumes.	(gai)		I				
							r	
Puraina I	nformation							1
	nonnation	•					Convorsion	actors
Purging Meth	nod:	Bailor	Porietaltia		ump other			
Tubing/Bailer	Material	Teflor	Stainless St	Polyethy				
Sampling Me	thod:	Bailer	Peristaltic	Grundfos P	ump other	water	0.04 0.16	0.66 1.47
Average Pun	nping Rate:	(ml/min)	200			1 gall	on=3 7851 =3785n	l =1337cu_feet
Duration of P	'umpina:	(min)	<u> </u>			[gui		
Total Volume	Removed:	(gal)	2.0 D	id well ao drv?	Yes	$\mathbf{>}$		
Horiba 0-52	water Quality	weter Used?	Yes					
								
Time	DTW	Amount	Temp	pН	ORP	Conductivity	Turbidity	DO
	(feet)	purged (gal)	<u> </u>		(mV)	(mS/cm)	(NTU)	(mg/L)
1000	/1.03		8.55	6.41	229	19.1	13.2	1.60
100	11.05		8.96	6.86	179	20.0	2.9	1.17
1010	11.05		9 .17	6.78	127	/9.9	0	1.01
	11.01		9.41	4.71	92	19.3	0	.43
1000	1.0		9.42	6.10	44	<u> </u>	0	18
1025	1.03		/0.03	6.69	23	19.0	O	.72
1030	/1.05		10.07	6.70	12	18.9		.69
		L		L				
Compline 1-4	iormotic=							
Sampling Int	ormation:							
		DOD				0 4 81.		
EPA SW-846 N	lethod 8082	PCB's	Low del	tection limit of 0.	из ррв	2 - 1 liter amber	Yes	Ăvr
EPA SW-846 N	/lethod 8260	TCL VOC's	Includin	ig Naphthalene		2 - 40 mL vials	Yes	
Comple ID:	A1.1. 0. AL	ur	lippte			China al		
Sample ID:	<u>"() " ד ישוק</u>	II S Dup				Snipped:		Courier
Sample Lime:	1030		NISU?				⊢ed-⊨x	052
Comments/No	otes:					Laboratory:	Test Am	erica

Amherst, New York

Job Number:	36380.	105370	
Well Id.	MW-1'	1	

Weather:	Sprinkles	Clasdy	41
Time In:	915	Time Out:	150

Well Information			
		TOC	Other
Depth to Water:	(feet)	8.23	
Depth to Bottom:	(feet)	20.22	
Depth to Product:	(feet)		
Length of Water Column:	(feet)	11.99	
Volume of Water in Well:	(gal)	1.92	
Three Well Volumes:	(gal)	6.76	

Well Type:	Flush	mount	Stick	k-Up
Well Locked:		Yes	3	No
Measuring Point Mar Well Material: Well Diameter:	ked: PVC 1"	Yes SS 2"	Other: Other:	No
Comments:				

Purging Information		
		Conversion Factors
Purging Method:	Bailer Peristaltic Grundfos Pump other	gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bailer Material:	Teflon Stainless St. Polyethylene other	of
Sampling Method:	Bailer Peristaltic Grundfos Pump other	water 0.04 0.16 0.66 1.47
Average Pumping Rate:	(ml/min) 4250 ¥	1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pumping:	(min) 30	
Total Volume Removed:	(gal) 🤏 🛛 🕡 Did well go dry? Yes No 🌱	
Horiba U-52 Water Quality Me	ter Used? Yes No	

Time	DTW	Amount	Temp	pН	ORP	Conductivity	Turbidity	DO
	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
918	9.20		8.76	6.75	268	13.2	9.6	5.57
920	9.64		8.72	6.92	268	13.1	5.2	5.20
925	7.95		8.49	6.55	270	13.3	1.3	Sids
930	10.02		8.26	7.02	270	13.4	Ð	4.56
931	10.08		1.20	7.04	271	13.4	0	4.88
940	10.15		8.17	7.05	272	13.4	Ð	9.79
941	10.23		8.15	7.05	272	13.4	0	4.72
	ē.			The summers				
			1.15		· · · · · · · · · · · · · · · · · · ·			
			1×19 1914					
				24 ¹			_	
							-	

Sampling Information:		2 2	¢	
EPA SW-846 Method 8082 PC EPA SW-846 Method 8260 TC	CB's CL VOC's	Low detection limit of 0.05 ppb Including Naphthalene	2 - 1 liter amber 2 - 40 mL vials	Yes No Yes No
Sample ID: <u>M&-11 - 09/1</u> Sample Time: <u>945</u>	Duplicate MS/MSD?	? Yes No Yes No	Shipped: Dro Fe	pp-off TA Courier
Comments/Notes:	OON NO	shen	Laboratory:	Test America Amherst, New York

								-
Sampling Pe	rsonnel: Tir	n Beaumont			Date:	4/27/15		
Job Number:	36380.1053	70			Weather:	Cloudy S	iprinkles	40.
Well Id.	MW-12				Time In:	820	Time Out	910
					·····			
Well Inf	formation	-		.				
Dopth to Wa	br	(6.4)		Other	Well Type	: Flus		Stick-Up
Depth to Rot	ion [.]	(feet)	19.55		Weasuring	ed: Point Marked:		
Depth to Pro	duct:	(feet)	-		Well Mate	rial: PVC		ner:
Length of Wa	ater Column:	(feet)	11.55		Well Diam	ieter: 1"	2"\\Oti	ner:
Volume of W	ater in Well:	(gal)	1.85		Comment	s:		
Three Well V	olumes:	(gal)	5.55		·			
Duraina	nformation							1
Furging I	mormation					Γ	Conversion	actore
Purging Meth	lod:	Bailer	Peristaltic	Grundfos F	ump other			4" ID 6" ID
Tubing/Bailer	Material:	Teflon	Stainless St	Polyethy	lene other			
Sampling Me	thod:	Bailer	Peristaltic	Grundfos F	ump other	water	0.04 0.16	0.66 1.47
Average Pum	ping Rate:	(ml/min) 🏼	250			1 gall	on=3.785L=3785n	nL=1337cu. feet
Duration of P	umping:	(min)	30		—			
Total Volume	Removed:	(gal) *	2.0 D	id well go dry?	Yes No	Y		
Horiba U-52 V	Water Quality	Meter Used?	Yes	No 🗌				
Time	DTW	Amount	Temp	pН	ORP	Conductivity	Turbidity	DO
67.0	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
835	<u> <u>8.92</u></u>		10.41	6.10	273	6.54	5.6	3.12
1)V VU0	9.17		10.14	6.47	276	6.62		3.28
845	9.12		10.02	1.76	7 108	6.64	0	2.99
XTO	9.17	-	10.15	6.82	Z64	6.72	0	7. 1
XIT	9.12		10.14	6.87	222	6.73	õ	2.69
910	9.12		10.17	6.90	259	6.76	Ó	2,54
		-						
I			L	I		······································		
Sampling Information:								
-subada un	Samping mornation.							
EPA SW-846 N	EPA SW-846 Method 8082 PCB's Low detection limit of 0.05 ppb 4 - 1 liter amber Ves No							
EPA SW-846 Method 8260 TCL VOC's Including Naphthalene 2 - 40 mL vials Yes No								
Sample ID:	Sample ID: MW-12-0Y/I Duplicate? Yes No FD-0415 Shipped: Drop-off TA Courier							
Sample Time:	Sample Time: 90 MS/MSD? Yes No Fed-Ex UPS							

Sample Time:

900 Comments/Notes:

MS/MSD? no shar No ma

Laboratory:

Test America Amherst, New York

	100 0 11 10000							
Sampling Pe	rsonnel: Ti	m Beaumont		Date:	4/28/11	-		
Job Number	36380.1053	370			Weather:	Smay	430	
Well Id.	MW-20				Time In:	820	Time Out:	855
			·····					
Well In	formation	-					-	
Denth to Mi	4			Other	Well Type:	. Flus	shmount S	tick-Up
Depth to Wa	ter:	(feet)	8.12		Well Locke	ed:	Yes	No
Depth to Pro	duct:	(feet)	22.60		Measuring F	oint Marked:		No
Length of Wa	ater Column	(feet)	14.48		Well Mater	idi. PVC ater: 1"		ər:
Volume of W	ater in Well:	(qal)	2.32		Comments	:		51
Three Well V	/olumes:	(gal)	6.96					
Purging I	nformation	-						
				<u> </u>			Conversion Fa	actors
Purging Meth	nod:	Baile	er Peristalti	c Grundfos F	other	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer	r Material:	Teflo	n Stainless St	t. Polyethy	/lene other	of		
Sampling Ne	ethod:	Baile	Peristalti	Grundfos F	ump other	water	0.04 0.16	0.66 1.47
Duration of P	umping Rate.	(mi/min)	230			1 galle	on=3.785L=3785mL	.=1337cu. feet
Total Volume	Removed:	(min)	<u> </u>)id well an dry?		4		
		Meter Llead?	- 210			2		
		weter Used?	Yes					
Timo		Amount	Tama			0	77	<u> </u>
Time	(feet)		remp	рп	URP (m\/)		IUrbidity	DO (mail)
870	£ 20	purged (gai)	<u>V.GI</u>	6.0		(IIIS/CIII) 9 .11		(mg/L) プ カス
XIS	8.20		9.15	6.89	-4	9.06	- 40 - 10	2.00
830	8.20		9.14	6.90	-27	203	0	.80
835	8.20		9.13	4.91	-45	9.01	0	.69
840	8.20		9.16	4.91	-64	8.8	0	.65
89	9.20		9.19	4.92	-76	8.96	0	.62
810	\$.20		9.18	6.92	-90	8.44	0	<u>, 60</u>
					· · · · · · · · · · · · · · · · · · ·		1	
Sampling Inf	Sampling Information:							
EPA SW-846 N	Aethod 8082	PCB's	Low de	etection limit of 0.	05 ppb 2	? - 1 liter amber	Yes	
EPA SW-846 N	lethod 8260	TCL VOC's	s Includii	ng Naphthalene	2	2 - 40 mL vials	Yes	
. =	411	die -			l			
Sample ID: <u>MW-20-04/5</u> Duplicate? Yes No Shipped: Drop-off TA Courier								
Sample Time:		M	5/MSD?				Fed-Ex	UPS
Comments/Notes: 1/2 Character College and the Laboratory: Test America								
Amherst. New York								
			• ·				Amherst, Ne	w York

Sampling Pe	rsonnel: Ti	m Beaumont			Date:	4/28/15		
Job Number:	36380.1053	70			Weather:	Sunn	1 450	
Well Id.	MW-21				Time In:	900	Time Out:	940
Well In	formation	_						
			TOC	Other	Well Type	e: Flus	hmount 🔀 🛛 🗧	Stick-Up
Depth to Wa	ter:	(feet)	8.14		Well Lock	(ed:	Yes	No
Depth to Bot	tom:	(feet)	21.85		Measuring	Point Marked:	Yes	No
Depth to Pro	duct:	(feet)			Well Mate	erial: PVC	X SS Oth	ner:
Length of Wa	ater Column:	(feet)	13.71		Well Dian	neter: 1"	2" 📉 Oth	ner:
Three Woll V	ater in weil:	(gai)	2.19		Commen	S:		
	olumes.	(gai)	6.3/					
Purging I	nformation							
- i arging i	monnation	-					Conversion F	actore
Purging Meth	nod:	Bailer	Peristalti	Grundfos F			1" ID 2" ID	
Tubing/Baile	Material:	Teflon	Stainless St	Polveth		gaint.		
Sampling Me	thod:	Bailer	Peristaltic	Grundfos F	Pump othe	water	0.04 0.16	0.66 1.47
Average Pun	ping Rate:	(ml/min)	250 1			1 gallo	on=3,785L=3785m	L=1337cu. feet
Duration of P	umping:	(min)	30			······································		······································
Total Volume	Removed:	(gal)	2.0 D	id well go dry?	Yes No	9		
Horiba U-52	Water Quality	Meter Used?	Yes					
Time		Amount	Temn	nH	ORP	Conductivity	Turbidity	
1.110	(feet)	purged (gal)	°C	pri	(m\/)	(mS/cm)	(NTU)	(mg/L)
91D	9.3.	(<u>3</u>)	814	4.16	-50	.20.2	92	241
905	9.90		XIL	6.76	-59	20.8	1.7	1.10
910	10.55		8.12	6.92	-65	20.8	0	178
915	10.80		8.07	4.85	-67	20.7	1.1	.69
920	11.03		8.00	4.87	- 64	19.9	2.4	166
925	11.18		7.95	6.90	- 59	19.7	3.0	, 78
930	11.27		7.92	4.90	- 56	19.3	2.7	.87
					<u>I</u>	<u> </u>		
O a mars Bur and A								
Sampling Int	ormation:							
EPA SW-846 Method 8082 PCB's Low detection limit of 0.05 ppb 2 - 1 liter amber Yes No								
LTA 017-040 I		TUL VUUS	Includi	у марни авеле		∠ - 40 mL viais	Yes	
Sample ID: MW-21-6415 Duplicate? Yes No Shipped: Drop-off TA Courier								

Sample Time:	930		MS/MSD?		Yes	
Comments/No	otes: ND	Sheed	rollin Jac		nden	
		9.000		71	vuo	

MS/MSD?

Yes No Yes No Duplicate?

Shipped:

Drop-off	\bowtie	TA Courier
Fed-Ex		UPS

Laboratory:

Test America Amherst, New York
Compliant Developments	······································		n i til	alic		
Sampling Personnel: Tim Beaumont				8/11	1/70	
Job Number: 36380.105370			Weathe	<u>sunny</u>	<u> </u>	
Well Id. MW-24			Time In:	745	Time Out:	320
Well Information					***	
	TOC	Other	Well Typ	be: Flus	shmount	Stick-Up
Depth to Water: (feet)	8.22		Well Loo	ked:	Yes	No
Depth to Bottom: (feet)	24.25		Measurin	g Point Marked:		No
Depth to Product: (feet)			Well Ma	terial: PVC		her:
Length of Water Column: (feet)	1603		Well Dia	meter: 1"		ner:
Three Mall Value and Call	256		Commei	nts:		
Three Weil Volumes: (gal)	768					
Duncie a la ferma etta a						
Purging Information					_	
Durging Mother d					Conversion F	actors
Purging Method: Bai	ler Peristalti	Grundfos P	ump oth	er gal/ft.	1" ID 2" ID	4" ID 6" ID
Campling Mathed	on Stainless S	t. Polyethy	lene oth	er of	0.04 0.40	
Sampling Wethod: Bai	ler Peristalti	Grundfos P	ump oth	er water	0.04 0.16	0.66 1.47
Duration of Pumping:	~~~~			1 gall	on=3.785L=3785n	nL≂1337cu. feet
Total Volume Removed: (min)	<u></u>	Nd woll an day?				
Total volume Removed. (gai)						
Horiba U-52 Water Quality Meter Used?	Ye:	s 🗙 No				
Time DTW Amount	Temp	pН	ORP	Conductivity	Turbidity	DO
Time DTW Amount (feet) purged (ga	Temp I) <u>°C</u>	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)
Time DTW Amount (feet) purged (ga	Temp I) ℃ <i>C</i>, <i>g</i>,	рН 5.7 2	ORP (mV) 24%	Conductivity (mS/cm)	Turbidity (NTU) 6, 3	DO (mg/L) 2.54
Time DTW Amount (feet) purged (ga 141 8.30 750 8.30	Temp I) °C 9, 83 9,19	рН 5.72 4:15	ORP (mV) 248 201	Conductivity (mS/cm) /0./ /0.2	Turbidity (NTU) 6.3 1.6	DO (mg/L) 254 738
Time DTW Amount (feet) purged (ga 141 1.30 750 8.30 755 8.30	Temp) °C 9.93 9.19 9.05	рН 5.72- 6.15 6.27	ORP (mV) 248 201 /79	Conductivity (mS/cm) /0./ /0.2 /0.0	Turbidity (NTU) 6-3 1.6 0	DO (mg/L) 2.54 1.38 1.12
Time DTW Amount purged (ga 141 8.30 750 8.30 755 8.30 755 8.30 870 8.30	Temp) °C <i>9,88</i> <i>9,19</i> <i>9.05</i> <i>8.99</i>	рН 5.72 4.15 4.27 4.49	ORP (mV) 248 201 /79 /30	Conductivity (mS/cm) /0./ /0.0 9.4/	Turbidity (NTU) 6.3 1.6 0 0	DO (mg/L) 2.54 1.38 1.12 1.01
Time DTW Amount purged (ga 141 8.30 750 8.30 755 8.30 755 8.30 8700 8.30 8705 8.30	Temp) °C <i>9.19</i> <i>9.19</i> <i>9.15</i> <i>8.94</i> <i>J.GX</i>	рН 5.7) 6.15 6.27 6.49 6.49	ORP (mV) 248 201 /79 /30 60	Conductivity (mS/cm) /0./ /0.0 9.96 9.74	Turbidity (NTU) 6.3 1.6 0 0	DO (mg/L) 2,54 7.38 1.12 1.01 1.01
Time DTW Amount purged (ga 145 8.30 750 8.30 755 8.30 870 8.30 870 8.30 805 8.30 810 8.30	Temp) °C 9.83 9.19 9.05 8.99 8.99 8.55	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44	Conductivity (mS/cm) /0./ /0.0 9.96 9.74 9.74 9.73	Turbidity (NTU) 6.3 1.6 0 0 0	DO (mg/L) 2.54 7.38 7.12 1.01 1.01 1.71 .70
Time DTW Amount purged (ga 141 8.30 750 8.30 755 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30	Temp)) °C <i>9,88</i> <i>9,19</i> <i>9.05</i> <i>8.99</i> <i>8.99</i> <i>8.99</i> <i>8.99</i> <i>8.99</i> <i>8.99</i> <i>8.99</i> <i>8.99</i>	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.72 G.72 G.74 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6-3 1.6 0 0 0 0 0	DO (mg/L) 2.54 1.38 1.12 1.01 1.71 1.71 1.70 1.67
Time DTW Amount purged (ga 141 8.30 750 8.30 755 8.30 870 8.30 870 8.30 870 8.30 810 8.30 810 8.30 810 8.30	Temp)) °C 9.19 9.19 9.05 8.99 1.68 8.55 9.01	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6.3 1.6 0 0 0 0	DO (mg/L) 2,54 7.38 1.12- 1.01 ,71 .70 .70 .67
Time DTW Amount purged (ga 141 X.30 750 X.30 755 X.30 870 X.30	Temp)) °C 9,88 9,19 9,05 8,99 8,99 8,99 8,55 9,01	pH S.72 G.15 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.74 G.74 G.74 G.75 G.75 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.2 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6-3 1.6 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 7.01 .71 .70 .67
Time DTW Amount (feet) purged (ga 741 8.30 750 8.30 750 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30	Temp) °C 9.19 9.19 9.05 8.99 8.99 8.94 8.94 9.01	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.74 G.74 G.74 G.74 G.75 G.75 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.70	Turbidity (NTU) 6-3 1.6 0 0 0 0	DO (mg/L) 2.54 1.38 1.12 1.01 1.71 1.71 1.70 1.67
Time DTW Amount (feet) purged (ga 141 8.30 750 8.30 750 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 871 8.30	Temp)) °C 9.19 9.19 9.05 8.99 8.99 8.99 8.99 9.01	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6.3 1.6 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 7.0 7.7 70 7.67
Time DTW Amount (feet) purged (ga 141 X.30 750 X.30 750 X.30 870 X.30 975 X.30 975 X.30	Temp)) °C 9,88 9,19 9.05 8.99 8.99 8.99 8.99 9.01	pH S.72 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.74 G.72 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6-3 1.6 0 0 0	DO (mg/L) 2.54 7.38 7.12 1.01 1.71 .70 1.67
Time DTW Amount (feet) purged (ga 7YV 8.30 7SD 8.30 87D 8.30	Temp) °C 9.19 9.19 9.05 8.99 8.99 8.55 9.01	рН 5.7 6.2 6.2 6.2 6.2 6.2 6.2 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.2 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 6.7 7 7 6.7 7 7 6.7 7 7 7 7 7 7 7 	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.70	Turbidity (NTU) 6-3 1.6 0 0 0 0	DO (mg/L) 2.54 1.38 1.12- 1.01 .71 .70 .67
Time DTW Amount purged (ga 141 8.30 750 8.30 750 8.30 870 8.30 870 8.30 870 8.30 870 8.30 975 8.30 975 8.30 970 8.30 970 8.30 970 8.30 970 8.30 970 9.30 970	Temp)) °C 9,88 9,19 9,05 8,99 1,68 8,99 1,68 9,01	pH S.7 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.74 G.74 G.74 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.70	Turbidity (NTU) 6.3 1.6 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 601 77 .70 .67
Time DTW Amount purged (ga 141 8.30 750 8.30 750 8.30 870 8.30 870 8.30 870 8.30 870 8.30 975 8.30 975 8.30 970 8.30 870 8.30 870 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975 9.30 975	Temp)) °C 9,88 9,19 9.05 8.99 8.99 8.99 9.01	pH S.7 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.74 G.74 G.74 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.70	Turbidity (NTU) 6.3 1.6 0 0 0 0	DO (mg/L) 2.54 1.38 1.12- 1.01 1.75 .70 .67
Time DTW Amount purged (ga 141 1.30 750 8.30 750 8.30 870 1.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 9.30 9.30 9.10 8.30 9.10 8.30 9.10 9.30 9.11 1.30 9.10 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30 9.11 9.30	Temp)) °C 9.19 9.05 8.99 8.99 8.99 8.99 9.01 	pH S.7 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.72 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70	Turbidity (NTU) 6-3 7.6 0 0 0 0 0	DO (mg/L) 2.54 1.38 1.12 1.01 .71 .70 .67
Time DTW Amount purged (ga 141 1.30 750 8.30 750 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 870 8.30 9.30 9.30 815 8.30 815 8.30 816 8.30 9.30 9.30 815 8.30 9.30 9.30 815 8.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30	Temp) °C 9.19 9.19 9.05 8.99 8.99 8.55 9.0(pH S.7 G.15 G.27 G.49 G.49 G.49 G.49 G.49 G.72 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.74 G.75 G.75 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.77 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.0 9.96 9.77 9.73 9.73 9.70 2.1 liter amber 240 mL vials	Turbidity (NTU) 6-3 1.6 0 0 0 0 0 0	DO (mg/L) 2.54 1.38 1.12- 1.01 .71 .70 .67
Time DTW Amount purged (ga 141 8.30 750 8.30 750 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 870 8.30 9 9 975 8.30 9 9 975 8.30 9 9 975 8.30 9 9 975 8.30 9 9 975 8 9 9 975 9 9 9	Temp) °C 9.19 9.19 9.05 8.99	pH S.7 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.27 G.74 G.74 G.74 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.75 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.70 	Turbidity (NTU) 6-3 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 1.07 .00 .07 .07 .07
Time DTW Amount purged (ga 141 X.30 750 X.30 750 X.30 870 X.30 975	Temp) °C 9.99 9.99 9.95 8.99	pH S.72- G.15 G.27 G.49 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.12 G.14 G.15 G.12 G.15 G.12 G.15 G.12 G.15 G.12 G.15 G.12 G.15 G.12 G.15 G.15 G.12 G.15 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70 2.1 liter amber 2.40 mL vials Shipped: []	Turbidity (NTU) 6.3 7.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) 2,54 7.38 7.12 7.0 7.0 7.7 70 70 70 70 70 70 70 70 70 70 70 70 70
Time DTW Amount purged (ga 141 1.30 750 8.30 750 8.30 870 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 8.30 975 975 975 975 975 975 975	Temp) °C 9.99 9.99 9.95 8.99	pH S.72- G.15 G.27 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.0 9.96 9.77 9.73 9.73 9.70 2 - 1 liter amber 2 - 40 mL vials Shipped:	Turbidity (NTU) 6-3 7.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) 2.54 7.38 7.72 7.0 7.77 70 7.67 .00 7 .70 .67
Time DTW Amount purged (ga 141 8.30 1 750 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 870 8.30 1 975 8.30 1 975 8.30 1 975 8.30 1 975 8.30 1 975 8.30 1 975 8.30 1 975 9.30 1 975 9.30 1 975 9.30 1 975 9.30 1 975 9.30 1	Temp) °C 9.19 9.19 9.05 8.99 8.99 9.01 0.01 Low de Includi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.05 0	pH S.72- G.27 G.74 G.74 G.74 G.74 G.77 G	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.9.6 9.74 9.73 9.70 2 - 1 liter amber 2 - 40 mL vials Shipped: []	Turbidity (NTU) 6-3 7.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 1.07 1
Time DTW Amount purged (ga 141 8.30 750 8.30 750 8.30 8.30 8.30 870 8.30 8.30 8.30 870 8.30 8.30 8.30 870 8.30 8.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 870 8.30 9.30 9.30 975 8.30 9.30 9.30 975 8.30 9.30 9.30 975 8.30 9.30 9.30 975 8.30 9.30 9.30 975 8.30 9.30 9.30 975 8.30 9.30 9.30	Temp)) °C 9,88 9,99 9.05 8.99	pH S.72 G.27 G.	ORP (mV) 248 201 /79 /30 60 44 33	Conductivity (mS/cm) /0.1 /0.0 9.96 9.74 9.73 9.73 9.70 2 - 1 liter amber 2 - 40 mL vials Shipped: E Laboratory:	Turbidity (NTU) 6.3 7.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) 2.54 7.38 7.12 7.0 7.70 7.67 .70 7.67 .70 7.67 .00 .67 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0

Well ID.	Sample?	Well Size	DTP	DTW	DTB	Comments
ESI-1	VOC's Fall only	4"	trace on boom	3.80	21.50	checked sorbant boom.
MW-1	yes	4"		2.98	29.90	
MW-2	no	4"		13.00	44.17	
MW-5	no	2"		12.92	21.40	
MW-6	yes	2"		10.30	21.05	MS/MSD
MW-7	no	2"		11.82	21.30	
MW-9	yes	2"		10.70	22.05	
MW-10	no	2"		10.80	24.25	
MW-11	yes	2"		8.55	20.22	
MW-12	yes	2"		8.41	19.55	Duplicate Sample
MW-13	no	2"		11.76	26.25	
MW-15	no	2"		13.00	23.80	
MW-16	VOC's Fall only	2"	trace on probe	5.25	20.36	
MW-17	no	2"		13.08	20.60	
MW-19	no	2"		13.03	24.00	
MW-20	yes	2"		8.22	22.60	
MW-21	yes	2"		8.86	21.85	
MW-24	yes	2"		8.80	24.25	
MW-25	no	2"		6.86	15.36	

0
F
±۳
Ξ.
ā
_
8
٠Ē
ወ
F
7
Þ
ģ
ല
-

10 Hazelwood Drive

Chain of Custody Record

mherst, NY 14228-2298				•							2445 1	and the distance	NERS CREAKING OF A CONTRACT OF A	-
hone (716) 691-2600 Fax (716) 691-7991				Lab PW:				Carrie	r Tracking N)(\$):		0		
liont information	Sampler. TLAL	SEAULO	**	Mason,	Becky C			-			480-7 Page:	22/1-10322	1.7	
Heat Contact:	- Land - Land	739 2	319	becky.n	ason@te	stamericain	c.com				Page	1 of 1		
imothy Beaumont								00000	1		# 20 2			ستنسب
ompany: DM Smith, Inc.				1171	2003021			eanhau			Prese	rvation Cod	es:	.
ddress: ann CM Chilamar Road Suite 3	Due Date Requested:										Å Å	-4 č	M - Hexane N - Noce	
duu du duiner en	TAT Requested (day	4									វិស៊ីដី	Acetate inc Acid	0 - AsNaO2 P - Na2O4S	
ast of actors tate, Zp.											22.	HSOM OH	Q - Na2SO3 R - Na2S2SO3	
V1, 13U0/ Phone:	PO#; 36380.110154										₹₹ <u>8</u> 9 i <u>-</u>	nchlor Icorbic Acid	S - H2SO4 T - TSP Dodecahydrate U - Acetone	
imait: as a monthi@cdmsmith.com	*# OM			10.50	(on				·		그 쏘 - - 쏘 -	Water DTA	V - MCAA W - ph 4-5 7 - other fenerity	
Protect Name: Project Name: Provisor Verse semi-annual GW Wells	Project #: 48011230										httro:	ç.,		
	SSOW#:			<u>un</u> s	יז רוי נפס (R OL			
			Sample Type	Matrix (www.	ידר - 209 אנייג איזע	•			••••••		oquan je			
•	Samnia Date	Sample Time	(C=comp, G=grab)	Constation - 1	rze09 00 6-1			 میر ک 		22 22 24 24 24 24 24 24 24 24 24 24 24 2	101	Special Ir	nstructions/Note:	-
Sample Identification	V	X	Preserva	tion Code:	NX						X			
1908. NAVA AL SAVA SAVA ANA ANA ANA ANA ANA ANA ANA ANA ANA	10-7-15	10/0	9	Water	2									
	10-7-15	ero)	v	Water	2									
6101-0-AAW			•	Water	2									
MVV-6 MS-1015	10-77	010	ہ ہ	Matric	4									
MW-6 SD-1015	10-7-15	010/	د	AVGLEI	٦ 									_
MVV-9-1015	10-2-18	930	e	Water	2									Т
MW-11-1015	シートーの	MC	ہ	Water	2									
MVV-12-1015	10-7-15	ŝ	9	Water	4									Τ-
MW-20-1015	10-1-1	900	ی	Water	~									
MW-21-1015	51-8-01	940	9	Water	~									
MVV-24-1015	11-8-01	\$20	ø	Water	0									Τ
FD-1015	11-6-01	ł	ہ	Water	2							noter than	1 month)	
Possible Hazard Identification			Radiologica		Sampi	e Disposa Return To (l (A fee m Ditent	ay be assi	essed if se posal By Lu	ap and an		For	Months	
The Non-Hazard Thammable Skin innariu Tour Deliverable Requested: 1. III. M Other (specify)					Specia	Instruction	Is/QC Req	uirements:						-
		Date:			Time:		`	\setminus	Method o	Shipment				Т
Empty Kri Relinquished by: Deliverished tw	Data/Time		2 5	Company	ея К	sifted by:	₿				11	045	Conteny	
the			2	Company	8					Date			Company	
Heindolshou vy.	Date/Time:			Company	<u> </u>	seived by:	•			Date/Time			Company	Γ
kelinquisted by.					8	oler Tethoera	ture(s) °C and	l Other Rema	chase -					
Custody Seals Intact: Custody Seal No.:					<u>}</u>									

•

Sampling Personnel: Tim Beaumont Date: /0/7//17 Job Number: 36380.110154 Weather: Summer of	
Job Number:36380.110154Weather:SunnyJJWell Id.MW-1Time In:940Time	
Well Id. MW-1 Time In: 940 Time	
	- Out IDIS
Wall Information	
	Stick-Up
Depth to Water: (feet) 3.9.7 Well Locked: Yes	
Depth to Bottom: (feet) 29.90 Measuring Point Marked: Yes	
Depth to Product: (feet) Well Material: PVC SS	Other: steel
Length of Water Column: (feet) 26.92 Well Diameter: 1" 2"	Other: 4"
Volume of Water in Well: (gal) /7.77 Comments:	
Three Well Volumes: (gal) \$3.31	
Purging Information	
Conver	sion Factors
Purging Method: Bailer Peristaltic Grundfos Pump other gal/ft. 1" ID 2	2" ID 4" ID 6" ID
Tubing/Bailer Material: Teflon Stainless St. Polyethylene other of	
Sampling Method: Bailer Peristaltic Grundfos Pump other water 0.04	0.16 0.66 1.47
Average Pumping Rate: (ml/min) 500 1 gallon=3.785L=	=3785mL=1337cu. feet
Duration of Pumping: (min) 3.	
Total Volume Removed: (gal) < 4.0 Did well go dry? Yes No X	
Horiba U-52 Water Quality Meter Used? Yes No	
Time DTW Amount Temp pH ORP Conductivity Turbic	dity DO
(feet) purged (gal) °C (mV) (mS/cm) (NTU	1) (ma/L)
940 302 2015 728 -145 19.3 5.4	1 ,73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 173 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \hline & & & \\ \hline & & & & \\ \hline \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 173 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 .73 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 .73 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{940}{746} 302 \qquad 2015 723 -146 193 5.4 \\ 746 3.07 \qquad 2016 7.12 -163 20.1 3.5 \\ 770 3.03 \qquad 2016 7.10 -168 20.2 .1 \\ 517 3.03 \qquad 20.17 7.10 -169 20.1 .1 \\ 1000 3.01 \qquad 20.20 7.10 -170 20.2 1.0 \\ 1006 3.01 \qquad 20.23 7.10 -172 70.2 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 \qquad 20.23 7.10 -173 20.1 .1 \\ 1010 3.01 -173 20.1 .1 \\ 1010 -173 $	
940 302 2015 728 -145 193 5.4 747 3.03 201 7.12 -743 20.1 3.8 570 303 2017 7.10 -748 20.2 .4 517 3.03 20.17 7.10 -748 20.2 .4 517 3.03 20.17 7.10 -746 20.1 .7 1000 3.03 20.20 7.10 -7170 20.2 .9 1007 3.03 20.22 740 -172 20.2 .8 1010 3.03 20.23 7.10 -773 20.1 .6 1010 3.03 20.23 7.10 -773 20.1 .6 20.23 7.10 -773 20.1 .6 .6 20.23 7.10 -773 20.1 .6 20.23 7.10 -773 20.1 .6 20.24 20.25 20.25 2.1 2.1 1.6 20.24 20.25 2.2 2.1 2.1	Yes No
940 302 2015 728 -/45 /45 747 3.03 2011 7.12 -/43 20.1 3.8 970 3.03 2015 7.10 -/68 20.2 .9 977 3.03 2017 7.10 -/69 20.2 .9 977 3.03 20.17 7.10 -/169 20.1 .7 977 3.03 20.17 7.10 -/169 20.1 .7 977 3.03 20.20 7.10 -170 20.2 1.0 978 20.2 7.10 -171 20.2 .8 979 3.03 20.23 7.10 -172 20.2 .9 970 3.03 20.23 7.10 -173 20.1 .6 970 3.03 20.23 7.10 -173 20.1 .6 971 3.03 20.23 7.10 -173 20.1 .6 971 3.03 20.23 20.2 2.1 .6 .6 971	Yes No Yes No Yes No Yes No
94 b 302 2015 728 -/45 /45 94 b 3.03 2011 7.12 -/43 20.1 3.8 97 3.03 2011 7.12 -/43 20.1 3.8 97 3.03 2017 7.10 -/68 20.2 .9 917 3.03 20.17 7.10 -/68 20.2 .9 917 3.03 20.17 7.10 -/170 20.2 .9 901 3.03 20.20 7.10 -170 20.2 1.0 901 3.03 20.22 7.10 -171 20.2 .8 901 3.03 20.23 7.10 -172 20.1 .6 901 3.03 20.23 7.10 -173 20.1 .6 901 3.03 20.23 7.10 -173 20.1 .6 901 3.03 20.23 7.10 -173 20.1 .6 901 1010 3.03 20.23 7.10 -173 20.1 .6 901 </td <td>Yes No Yes No Yes No Yes No</td>	Yes No Yes No Yes No Yes No
94.b 302 2015 72.8 -/45 192.5 94.b 3.03 2011 7.12 -/163 20.1 3.8 97.0 3.03 2017 7.10 -/163 20.1 3.8 97.0 3.03 20.17 7.10 -/164 20.1 1.7 1000 3.03 20.20 7.10 -/164 20.1 1.7 1000 3.03 20.20 7.10 -/170 20.2 1.0 1007 3.03 20.22 7.10 -/170 20.2 1.0 1016 3.03 20.23 7.10 -173 20.1 .6 9 1016 3.03 20.23 7.10 -173 20.1 .6 9 1016 3.03 20.23 7.10 -173 20.1 .6 9 1016 3.03 20.23 7.10 -173 20.1 .6 9 1016 3.03 20.23 7.10 -173 2.1 .6 9 2.10 1.00 1.00	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No
94 b 302 2015 728 -145 94.3 5.4 947 3.03 2011 7.12 -163 20.1 3.5 570 303 2017 7.10 -168 20.2 .9 517 3.03 20.17 7.10 -169 20.1 .7 1010 3.03 20.17 7.10 -170 20.2 .9 1010 3.03 20.20 7.10 -171 20.2 .9 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 20.23 7.10 -173 20.1 .6 1010 3.03 10.05 Including Naphthalene 2.40 mL vials <td< td=""><td>Yes No Yes No Yes No Yes No</td></td<>	Yes No Yes No Yes No Yes No
940 302 2015 728 -/45 /93 5.4 947 3.03 2011 7.12 -/63 20.1 3.8 570 3.03 2017 7.10 -/63 20.1 3.8 570 3.03 2017 7.10 -/63 20.2 .9 517 3.03 20.17 7.10 -/163 20.1 .1 1000 3.01 20.20 7.10 -/172 20.2 1.0 1007 3.03 20.21 7.10 -/172 20.2 .9 1010 3.03 20.23 7.10 -/173 20.1 .6 1010 3.03 20.23 7.10 -/173 20.1 .6 Sampling Information:	Yes No Yes No Yes No Yes No Yes Solution

				10/- 11	-				
Sampling Personnel: Tim Beaumont			Date:	<u>/8/7//</u>	<u> </u>				
Job Number: 36380,110154			Weather	JUNNY	71				
Well Id. MW-6			Time In:	<u>/020</u>	Time Out	: 1100			
Well Information Depth to Water: (feet) Depth to Bottom: (feet) Depth to Product: (feet) Length of Water Column: (feet) Volume of Water in Well: (gal) Three Well Volumes: (gal)	TOC /030 21.05 /075 /.72 S./L	Other	Well Typ Well Loci Measuring Well Mate Well Diar Commen	e: Flus ked: Point Marked: erial: PVC neter: 1" ts:	hmount Yes Yes SS Ot 2"X Ot	Stick-Up No No her:			
Purging Information Conversion Factors Purging Method: Bailer Peristaltic Grundfos Pump other other gal/ft. 1" ID 2" ID 4" ID 6" ID Tubing/Bailer Material: Teflon Bailer Peristaltic Grundfos Pump other other other other of u u u 1.47 Sampling Method: Bailer Peristaltic Grundfos Pump other other other u 1 gallon=3.785L=3785mL=1337cu. feet Duration of Pumping: (min) 3 o Did well go dry? Yes No No Vers Horiba U-52 Water Quality Meter Used? Yes No No Vers Vers No Vers									
					<u></u>	1 · · · · · · · · · · · · · · · · · · ·			
Ime DTW Amount	Temp	рН	ORP	Conductivity	Turbidity	DO			
	/9 (1)	7.15	(mv)		(NTO) 7.2				
125 10.80	19.02	7.13	- 76	12.L	<u>, , , , , , , , , , , , , , , , , , , </u>	1			
10]0 /0.82	18.82	7.09	-19	12.6	ŏ	Ō			
107. 10.85	18.90	7.09	-79	126	0	Ō			
1040 10.90	18.54	7.09	- 79	p.r	· 2_	0			
10 41 10.92	18.98	7:10	- <u>8</u> 1	/2.4	0	0			
1050 10.94	18.99	7.10	- 81	12.4	0	0			
						 			
						· · · · · · · · · · · · · · · · · · ·			
						<u> </u>			
<u>,</u>	J					3			
Sampling Information:									
EPA SW-846 Method 8082PCB'sEPA SW-846 Method 8260TCL VOC's	Low del s Includin	tection limit of 0. g Naphthalene	05 ppb	6 - 1 liter amber 2 - 40 mL vials	Yes Yes				
Sample ID: <u>MW-6-1015</u> Du Sample Time: <u>1050</u> MS	iplicate?	Yes No X Yes No		Shipped: [Drop-off T	A Courier UPS			
Comments/Notes: No Sh	serit oda	. •		Laboratory:	Test Am	nerica			

	a an an an ann an an an an an an an an a						****	
Sampling Per	rsonnel: Ti	m Beaumont			Date:	10-7-1	r	
Job Number:	36380.1101	54			Weather	: Sunnu	Ω^{-}	
Well Id.	MW-9				Time In:	900 7	Time Out	935
Well Inf	ormation							
		-	тос	Other	Well Typ	e: Flus	hmount	Stick-Up
Depth to Wat	ter:	(feet)	/0.70		Well Loc	ked:	Yes	No
Depth to Bott	iom:	(feet)	22.05		Measurin	g Point Marked:	Yes	No
Depth to Proc	duct:	(feet)			Well Ma	erial: PVC	⊠ss⊡o	her:
Length of Wa	ater Column:	(feet)	11.35		Well Dia	meter: 1"	2" 🔀 Of	her:
Volume of W	ater in Well:	(gal)	1.82		Commer	its:		
Three Well V	olumes:	(gal)	5.46					
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<u> </u>								
Purging Ii	nformation	-						
	l.				—		Conversion	Factors
Purging Meth	OQ:	Bailer	Peristaltic	Grundfos P	ump oth	gal/ft.	1" ID 2" ID	4" ID 6" ID
Sampling Met	thod:	letion Railor	Boriotaltia				0.04 0.16	0.66 1.47
	ning Rate:	(ml/min)					0.04 0.10	0.00 1.47
Duration of P	umning	(min)	250 4			i gand	01=3.785L=3785	mL=1337cu. leet
Total Volume	Removed:	(nin)	<u> </u>	id well an dry?				
		(gai)						
Horiba U-52 V	Vater Quality	Meter Used?	Yes					
	form, from the state			·				
lime		Amount	Temp	рН	ORP	Conductivity	Turbidity	DO
900		purged (gai)	1400		(mV)	(mS/cm)	<u>(NIU)</u>	(mg/L)
9.1-			18.55	7.17	-185	8.99	. 4	0
9/0	11.32		(0. <u>X</u>	7.15	-211	717	<u> </u>	
915	11.20		18.5	7/6	<u>י גער -</u> נער-	778	<u> </u>	
Gan	1.7%		1033	7.15	<u>-21/</u>	7112	<u> </u>	6
92.5	11.83		1854	2/15	- 257	7.45	0	0
930	11.89		1852	7.15	- 261	7.47	<u>v</u>	0
	, . ,		1110		- ¥		V	
	că.							
								i
Sampling Inf	ormation:							
EPA SW-846 M	lethod 8082	PCB's	Low def	tection limit of 0.	05 ppb	2 - 1 liter amber	Yes	
EPA SW-846 N	lethod 8260	TCL VOC's	Includin	g Naphthalene		2 - 40 mL vials	Yes	
	•							
Sample ID:	MU-9.10	ס <u>ור</u> Dup	licate?	Yes 🗌 No 🔀		Shipped: D)rop-off 🔀 т	A Courier
Sample Time:	930	MS	MSD?	Yes No 🗙			Fed-Ex	UPS
Comments/Nr	otes:					Laboratory:	Teet An	uerica
	<u> </u>	oon no	JL			Laboratory.	Amborof N	Iow York
							Anneist, P	

		and a second	and the state of the		te and the state	· · · · · · · · · · · · · · · · · · ·		
Sampling Pe	rsonnel: Ti	m Beaumont			Date:	10/7/15		
Job Number:	: 36380.110 [.]	154			Weathe	r: Sunay	5	
Well Id.	MW-11				Time In	815	Time Out:	80
		<u>, , , , , , , , , , , , , , , , , , , </u>				0/1		030
Well In	formation							
	·····	-	тос	Other	Well Ty	be: Flus	shmount 🔀 🖇	Stick-Up
Depth to Wa	ter:	(feet)	855		Well Lo	cked:	Yes	No
Depth to Bot	tom:	(feet)	20.22		Measurir	g Point Marked:	Yes	No
Depth to Pro	duct:	(feet)	_		Well Ma	terial: PVC	⊠ss⊡ot⊦	ier:
Length of Wa	ater Column:	(feet)	1.67		Well Dia	meter: 1"	2"\/Oth	ier:
Volume of W	ater in Well:	(gal)	1.87		Comme	nts:		
	olumes:	(gal)	5.61					
Puraina	nformation							
	monnation					[Conversion F	actors
Puraina Meth	nod:	Bailer	Peristaltic			er gol/ft		
Tubing/Baile	r Material:	Teflon	Stainless St	Polvethy	/lene oth	er of		
Sampling Me	thod:	Bailer	Peristaltic	Grundfos F	ump oth	er water	0.04 0.16	0.66 1.47
Average Pun	nping Rate:	(ml/min) 🔺	2001	2	•	1 gallo	on=3.785L=3785m	L=1337cu. feet
Duration of P	umping:	(min)	30					
Total Volume	e Removed:	(gal)	2.0 D	id well go dry?	Yes	10 💊		
Horiba U-52	Water Quality	Meter Used?	Yes					
Time	DTW	Amount	Temp	Hq	ORP	Conductivity	Turbidity	DO II
	(feet)	purged (gal)	ໍວ'	•	(mV)	(mS/cm)	(NTU)	(mg/L)
815	4.60		17.75	7.79	143	2.70	2.1	.86
120	10.02		17.66	7.79	151	2.67	1.8	Ö
825	10.30		17.71	7.79	157	2.66	1.2	0
850	10.42		17.68	7.79	/59	2.66	1.2	0
	/0.51		17.65	7.79	169	2.66	/.0	<u> </u>
Velk-	10.60		17.61	7.77	/66	2.66	• 7	
<u> </u>	/0.45		17.60	1.19	/67	وا که یکم	• 2	<u> </u>
Sampling Int	formation:							
							-	
EPA SW-846 N	Method 8082	PCB's	Low de	tection limit of 0.	05 ppb	2 - 1 liter amber	Yes	
EPA SW-846 N	Aethod 8260	TCL VOC's	Includir	ig Naphthalene		2 - 40 mL vials	Yes	
0	11.0 .1 1-	11-	N 0		I			₽ −−−− 1
Sample ID:	MW-[-0	Dup Dup	ilicate?			Shipped: [
Sample Lime:	<u> </u>	MIS/	WSD7				Fed-Ex	
Comments/N	otes:	M MICE 0	she			Laboratory:	Test Am	erica
							Amherst, Ne	ew York
								J

	a and the second se	a and a second secon					and a state of the second second second		
Sampling Pe	ersonnel: Ti	m Beaumont		· • • • • • • • • • • • • • • • • • • •	Date:	71/17/01	e		
Job Number	: 36380.110	154			Weather	Clwdy	540		
Well Id.	MW-12				Time In:	732	Time Out:	810	
Well In	formation	_							
	-		TOC	Other	Well Typ	∋: Flus	shmount 🔀 🛛 S	tick-Up	
Depth to Wa	iter:	(feet)	<u>8.9</u>]		Well Loci	ked:	Yes	No	
Depth to Pro	duct:	(feet)	19.00		Weasuring	Point Marked:			
Length of W	ater Column:	(feet)	11.14		Well Diar	neter: 1"		er:	
Volume of W	/ater in Well:	(gal)	1.78		Commen	ts:			
Three Well \	/olumes:	(gal)	5.34						
						· · · · · · · · · · · · · · · · · · ·			
Purging I	Intormation	-					0		
Purging Met	nod:	Bailor	Poriotali					actors	
Tubing/Baile	r Material:	Teflon	Stainless St	Polveth	viene othe	gai/π.		4 10 0 10	
Sampling Me	ethod:	Bailer	Peristaltic	Grundfos F	Pump othe	water	0.04 0.16	0.66 1.47	
Average Pun	nping Rate:	(ml/min)	250	Hammer H	·	1 gall	on=3.785L=3785m	L=1337cu. feet	
Duration of F	Pumping:	(min)	30		r				
<u>Total Volume</u>	e Removed:	(gal) -	20 D	id well go dry?	Yes				
Horiba U-52	Water Quality	Meter Used?	Yes						
Time	DTW	Amount	Temp	pH	ORP	Conductivity	Turbidity	DO	
-13	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)	
770	7.12		18.85	0.56	214	3.28	1.6	6.96	
740	960		19.21	7.29	184	7.75		1 77	
745	9.62		18,20	7.45	(80	3.24	1.2	1.70	
710	9.62		11.07	7.48	177	3.24	1.0	1.39	
755	9.62		18-00	7.49	169	3.24	0	1.26	
800	9.62		17.95	7.51	/67	3.21	16		
				· · ·	· .			·	
			<u></u>						
Sampling Information:									
Sampling In	Sampling Information:								
Sampling In	formation:						5		
Sampling Int	formation: Method 8082	PCB's	Low de	tection limit of 0.	05 ppb	4 - 1 liter amber	Yes		
Sampling In EPA SW-846 M EPA SW-846 M	formation: Method 8082 Method 8260	PCB's TCL VOC's	Low de Includir	tection limit of 0. ng Naphthalene	05 ppb	4 - 1 liter amber 2 - 40 mL vials	Yes Yes		
Sampling In EPA SW-846 M EPA SW-846 M Sample ID:	formation: Method 8082 Method 8260	PCB's TCL VOC's	Low de Includir	tection limit of 0. ng Naphthalene	05 ppb	4 - 1 liter amber 2 - 40 mL vials	Yes Yes		
Sampling In EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	formation: Method 8082 Method 8260 	PCB's TCL VOC's // Dup MS.	Low de Includir blicate? /MSD?	tection limit of 0. ng Naphthalene Yes No Yes No	05 ppb FD-1015	4 - 1 liter amber 2 - 40 mL vials Shipped: [Yes Yes Drop-off TA Fed-Ex	No No Courier	
Sampling Int EPA SW-846 M EPA SW-846 M Sample ID: Sample Time:	formation: Method 8082 Method 8260 	PCB's TCL VOC's VT Dup MS	Low de Includir blicate? /MSD?	tection limit of 0. ng Naphthalene Yes No Yes No X	05 ppb	4 - 1 liter amber 2 - 40 mL vials Shipped: [Yes Yes Drop-off Fed-Ex	No No Courier UPS	
Sampling In EPA SW-846 M EPA SW-846 M Sample ID: Sample Time: Comments/N	formation: Method 8082 Method 8260 M&- [2- 10] 8/0 otes: N	PCB's TCL VOC's 	Low de Includir MSD?	tection limit of 0. ng Naphthalene Yes No Yes No	05 ppb FD-1015	4 - 1 liter amber 2 - 40 mL vials Shipped: [Laboratory:	Yes Yes Drop-off TA Fed-Ex Test Ame	No No Courier UPS erica	

				1-1		
Sampling Personnel: Tim Beaumont		<u>.</u>	Date:	/0/8/15		
Job Number: 36380.110154			Weather:	Junny	50	
Well Id. MW-20			Time In:	130 '	Time Out	905
Well Information					R	,
	TOC	Other	Well Type	e: Flus	hmount	Stick-Up
Depth to Water: (feet)	886		Well Lock	ked:	Yes	No
Depth to Bottom: (feet)	22.60		Measuring	Point Marked:		No
Length of Water Column: (feet)	12 711		Well Mate	eriai: PVC		ner:
Volume of Water in Well: (real)	220		Comment	feter. I		
Three Well Volumes: (gal)	6.60		Commen			
(34)						
Purging Information						
					Conversion I	actors
Purging Method: Bailer	r Peristaltic	Grundfos Pi	ump othe	r gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material: Teflor	n Stainless St.	Polyethy	ene 📈 othe	r of		
Sampling Method: Bailer	Peristaltic	Grundfos Pt	umpothe	r water	0.04 0.16	0.66 1.47
Average Pumping Rate: (ml/min)	210			1 gallo	on=3.785L=3785n	nL=1337cu. feet
Duration of Pumping: (min)	70		·	F		
Total Volume Removed: (gal)	- 7.0 D	id well go dry?	Yes No			
Horiba U-52 Water Quality Meter Used?	Yes					
Time DTW Amount	Temp	nH	000	Conductivity	Turbidity	<u> </u>
	1	pn l	ORP		ταιριαιτλ	[DO
(feet) purged (gal)	°C	pri	(mV)	(mS/cm)	(NTU)	DO (mg/L)
(feet) purged (gal)	°C (5.§)	7.18	(mV) -/ 9 9	(mS/cm)	(NTU) 	DO (mg/L) Ó
(feet) purged (gal) 835 9.90 121 9.90	°C (5:\$7 16:05	7.18 7.12	(mV) -199 -228	(mS/cm) 9.91 9.71	(NTU) 1.6 0	DO (mg/L) 0 0
(feet) purged (gal) 823 9.90 121 9.90 140 9.90	°C 15:\$7 14:05 16:03	7.18 7.12 7.10	(mV) -199 -228 -241	(mS/cm) 9.91 9.71 9.54	(NTU) 	DO (mg/L) 0 0
(feet) purged (gal) 835 9.90 121 9.90 140 8.90 840 8.90	°C (5.57) /4.05 /4.03 /5.94	7.18 7.12 7.10 7.11	(mV) -199 -228 -221 -291	(mS/cm) 9.91 9.54 9.54 9.45	(NTU) 1.6 0 0	DO (mg/L) 0 0 0
(feet) purged (gal) \$25 \$.90 12.5 \$.90 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$80 \$40 \$10 \$40 \$10 \$40 \$10	°C (5.57) /4.03 /6.03 /5.94 /5.94	7.18 7.12 7.10 7.11 7.11	(mV) -199 -228 -241 -241 -251	(mS/cm) 9.91 9.54 9.54 9.45 9.37	(NTU) 1.6 0 0 0	DO (mg/L) 0 0 0 0
(feet) purged (gal) \$\$25 \$.90 12.5 \$.90 12.5 \$.90 \$\$40 \$\$70 \$\$40 \$\$70 \$\$50 \$\$.90 \$\$50 \$\$.90 \$\$50 \$\$.90 \$\$57 \$\$.90 \$\$60 \$\$60	°C 15:\$7 14:05 14:03 14:03 14:03 15:94 15:94 15:97	7.18 7.12 7.10 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -251	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.12	(NTU) (NTU) 	DO (mg/L) 0 0 0 0
(feet) purged (gal) \$25 \$.90 \$11 ⁻ \$.90 \$12 ⁻ \$.90 \$14 ⁻ \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90 \$10 \$.90	°C 15.57 14.05 14.03 15.94 15.94 15.96 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -251 -257	(mS/cm) 9.91 9.54 9.54 9.45 9.37 9.35 9.35 9.13	(NTU) 1.6 0 0 0 0 0 0 0	DO (mg/L) 0 0 0 0 0 0
Image Diff (feet) purged (gal) \$25 \$.90 12.5 \$.90 \$40 \$.90	°C 15.97 14.05 15.94 15.94 15.97 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -251 -257	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.35 9.13	(NTU) 1.6 0 0 0 0 0 0 0	DO (mg/L) 0 0 0 0 0
(feet) purged (gal) \$\$25 \$.90 \$\$11^- \$.90 \$\$14^- \$\$.90 \$\$140 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90 \$\$170 \$\$.90	°C 15.57 14.05 14.03 15.94 15.94 15.94 15.97 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -251 -257	(mS/cm) 9.91 9.71 9.54 9.37 9.35 9.35 9.13	Image: Constraint of the second se	DO (mg/L) 0 0 0 0 0
Inite Diff (feet) purged (gal) \$25 \$.90 \$125 \$.90 \$25 \$.90 \$25 \$.90 \$125 \$.90 \$125 \$.90 \$126 \$.90 \$126 \$.90 \$126 \$.90 \$126 \$.90 \$127 \$.90 \$126 \$.90 \$127 \$.90 \$128 \$.90 \$129 \$.90 \$129 \$.90 \$129 \$.90 \$129 \$.90	°C (5.§7) /4.03 /5.94 /5.94 /5.97 /4.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -257	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.35	(NTU) 1.6 0 0 0 0 0 0	DO (mg/L) 0 0 0 0 0
Inite Diff (feet) purged (gal) \$25 \$.90 \$121 ⁻ \$.90 \$140 ⁻ \$.90 \$140 ⁻ \$.90 \$140 ⁻ \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90 \$150 \$.90	°C 15:\$7 14:05 14:03 15:94 15:94 15:97 15:97 14:00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -251 -251 -257	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.35 9.13	Image: Constraint of the second se	DO (mg/L) 0 0 0 0 0
Inite Diff (feet) purged (gal) \$\$25 \$.90 \$\$11 \$\$.90 \$\$12 \$\$.90 \$\$14 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90 \$\$17 \$\$.90	°C 15.97 14.05 15.94 15.94 15.94 15.96 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -241 -257 -257	(mS/cm) 9.91 9.71 9.54 9.37 9.35 9.35 9.13	(NTU) 1.6 0 0 0 0 0 0	DO (mg/L) 0 0 0 0 0
Initial Diff (feet) purged (gal) \$25 \$.90 \$25 \$.90 \$25 \$.90 \$25 \$.90 \$11 \$.90 \$12 \$.90 \$40 \$.90 \$10	°C (5.57) 14.05 /4.03 /5.94 /5.94 /5.97 /4.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -251 -251 -257	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.35 9.13	Image: Constraint of the second se	DO (mg/L) 0 0 0 0 0
State State State (feet) purged (gal) \$\$25 \$.90 11 \$\$.90 14 \$\$.90 15 \$\$.90 \$\$10	°C 15.57 14.05 14.03 15.94 15.94 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -251 -251 -257	(mS/cm) 9.91 9.54 9.54 9.37 9.35 9.35 9.13	Image: Constraint of the second se	DO (mg/L) 0 0 0 0 0 0
Image Diff purged (gal) (feet) purged (gal) \$\$25 \$.90 \$\$11^- \$.90 \$\$14^- \$\$.90 \$\$170 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90 \$\$.90 \$\$1.90	°C 15.97 14.03 15.94 15.94 15.94 15.97 14.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11 7.11	(mV) -/99 -228 -241 -241 -257 -257	2 - 1 liter amber	Ves	
Image: Constraint of the second state of the second st	°C (5.57) /4.03 /5.94 /5.94 /5.97 /4.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	(mV) -199 -228 -241 -251 -251 -257 -257	2 - 1 liter amber 2 - 40 mL vials	Ves	
Initial D million (feet) purged (gal) \$\$25 \$.90 111 \$.90 121 \$.90 121 \$.90 121 \$.90 121 \$.90 121 \$.90 121 \$.90 121 \$.90 121 \$.90 \$.90 \$.90	°C (5.57) /4.03 /5.94 /5.97 /5.97 /4.00	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	(mV) -/99 -228 -241 -251 -251 -257 -257	2 - 1 liter amber 2 - 40 mL vials	Ves	
Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state	°C (5.9) /6.03 /5.96 /5.96 /5.97 /6.00 Low def Includin plicate?	7.18 7.12 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	(mV) -/99 -228 -24/ -257 -257 -257	2 - 1 liter amber 2 - 1 liter amber 2 - 1 liter amber 2 - 10 mL vials	Yes Prop-off ∑ T/	
Image: Constraint of the constraint	°C (5.57) /4.03 /5.94 /5.94 /5.97 /5.97 /4.00 Low det Includin plicate?	7.18 7.12 7.10 7.11 <td>(mV) -/99 -228 -241 -241 -257 -257 -257</td> <td>2 - 1 liter amber 2 - 40 mL vials Shipped:</td> <td>Ves Yes Prop-off</td> <td></td>	(mV) -/99 -228 -241 -241 -257 -257 -257	2 - 1 liter amber 2 - 40 mL vials Shipped:	Ves Yes Prop-off	
Image: Comments/Notes: Diff. purged (gal) Image: Comments/Notes: Image: Comments/Notes: Diff. Image: Comments/Notes: Image: Comments/Notes: Image: Comments/Notes:	°C (5.57) /4.03 /5.94 /5.94 /5.97 /4.00 Low def Includin plicate?	7.18 7.12 7.10 7.11 7.12 7.11 <t< td=""><td>0KP (mV) -199 -228 -241 -251 -251 -257</td><td>2 - 1 liter amber 2 - 40 mL vials Shipped:</td><td>Ves Ves Ves Ves Ves Ves</td><td>DO (mg/L) O O O O O O O O O O O O O O O O O O O</td></t<>	0KP (mV) -199 -228 -241 -251 -251 -257	2 - 1 liter amber 2 - 40 mL vials Shipped:	Ves Ves Ves Ves Ves Ves	DO (mg/L) O O O O O O O O O O O O O O O O O O O
Image: Constraint of the second se	°C 15.97 16.03 15.96 15.96 15.96 15.97 16.00 Low def Includin plicate?	7.18 7.12 7.10 7.11 7.12 7.11 <t< td=""><td>0KP (mV) -199 -228 -241 -251 -251 -257</td><td>2 - 1 liter amber 2 - 1 liter amber 2 - 1 liter amber 2 - 40 mL vials Shipped: []</td><td>Ves Ves Ves Ves Ves Ves Ves Ves</td><td>DO (mg/L) O O O O O O O O O O O O O O O O O O O</td></t<>	0KP (mV) -199 -228 -241 -251 -251 -257	2 - 1 liter amber 2 - 1 liter amber 2 - 1 liter amber 2 - 40 mL vials Shipped: []	Ves Ves Ves Ves Ves Ves Ves Ves	DO (mg/L) O O O O O O O O O O O O O O O O O O O

Sampling Pers	onnel: Tim Beau	mont		Date:
Job Number:	36380.110154			Weath
Well Id.	MW-21			Time I
Well Info	rmation			
		тос	Other	Well T

(feet)

(feet)

(feet)

(feet)

(gal)

(gal)

8.22

~

13.63

2.18

6.54

21.85

Depth to Water:

Depth to Bottom:

Depth to Product:

Length of Water Column:

Volume of Water in Well:

Three Well Volumes:

Date:	10-8-15		
Weather:	Sunny	52	
Time In:	910	Time Out:	945
Well Type:	Flush	mount 🔀 🛛 St	ick-Up
Well Locked		Yes	No
Measuring Po	int Marked:	_YesX	No
Well Materia	I: PVC	√ SS Othe	er:
Well Diamete	er: 1"	2"XOthe	er:

Purging Information											
								Conve	ersion F	actors	
Purging Method:	Ba	ailer Peris	taltic	Grundfos Pun	np	other	gal/ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Te	flon Stainles	s St.	Polyethyle	neX	other	of				
Sampling Method:	Ba	ailer Peris	taitic🔀	Grundfos Pun	qn	other	water	0.04	0.16	0.66	1.47
Average Pumping Rate:	(ml/min)	1200-1					1 galle	on=3.785	L=3785m	L=1337c	u. feet
Duration of Pumping:	(min)	30	_								
Total Volume Removed:	(gal)	* 2.0	Did we	ell go dry?	Yes	No 🏷					
Horiba U-52 Water Quality Me	ter Used	?	Yes	No							

Comments:

Time	DTW	Amount	Temp	рН	ORP	Conductivity	Turbidity	DO
	(feet)	purged (gal)	°C		(mV)	(mS/cm)	(NTU)	(mg/L)
910	9.25		16. 12	7.67	- 152	1.57	1.6	0
91	9.80		16.57	7.60	-169	1.57	0	0
920	10.10		16.85	7 59	- 168	1.51	ß	0
925	10.22		14.92	7.60	- 169	1.51	Ö	0
930	10.25		16.96	7.61	- (58	1.50	0	D
95V	10.26		16.98	7.61	-1.52	1.49	0	σ
940	10.27		17.00	7.61	-150	1.49		
				·				

Sampling Information:				
EPA SW-846 Method 8082	PCB's	Low detection limit of 0.05 ppb	2 - 1 liter amber	Yes No
EPA SW-846 Method 8260	TCL VOC's	Including Naphthalene	2 - 40 mL vials	Yes No
Sample ID: <u>M(u-21- /o</u> ,	Duplicate	? Yes No X	Shipped: Drop-off	TA Courier
Sample Time: <u>940</u>		? Yes No X	Fed-Ex	UPS
Comments/Notes:	sheer to then	the och-	Laboratory: T Amh	est America nerst, New York

						· · · · ·	· · · · · · · · · · · · · · · · · · ·	the second of the second s
Sampling Per	sonnel: Ti	m Beaumont			Date	10/8/15		
Job Number:	36380.1101	154			Weather	Sunny	50	
Well Id.	MW-24				Time In:	250	Time Out	825
Well Info	ormation							
			тос	Other	Well Typ	e: Flus	shmount	Stick-Up
Depth to Wate	er:	(feet)	880		Well Loc	keđ:	Yes	No
Depth to Botto	om:	(feet)	24.25		Measuring	Point Marked:	Yes	No
Depth to Prod	luct:	(feet)			Well Mat	erial: PVC		her:
Length of Wa	ter Column:	(feet)	75.41		Well Diai	neter: 1"		her:
	aler in vven.	(gal)	2.11		Commen	ts:		
	Junica,	(gai)	<i>k</i> 91					
Purging In	formation							
<u>~_</u>		-					Conversion I	Factors
Purging Metho	od:	Bailer	Peristaltic	Grundfos F	othe othe	r gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer	Material:	Teflon	Stainless St.	Polyethy	ylene 🔀 othe	r of		
Sampling Met	hod:	Bailer	Peristaltic	Grundfos F	Pump othe	r water	0.04 0.16	0.66 1.47
Average Pum	ping Rate:	(ml/min) 📍	210			1 gall	on=3.785L=3785r	nL=1337cu. feet
Duration of Pu	umping:	(min)	30					
Total Volume	Removed:	(gal)	<u>2.0</u> D	id well go dry?	Yes No			
Horiba U-52 V	Vater Quality	Meter Used?	Yes	No 🗌				
Time	DTW	Amount	Temp	рН	ORP	Conductivity	Turbidity	DO
Time	DTW (feet)	Amount purged (gal)	Temp °C	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)
Time 750	DTW (feet) 8.85	Amount purged (gal)	Temp °C //.0/	рН 6-98	ORP (mV) ~ %7	Conductivity (mS/cm) 9-2.1	Turbidity (NTU) 3.6	DO (mg/L) • 6 (
Time 750 717	DTW (feet) 8.85 8.82	Amount purged (gal)	Temp °C /4.06 //.04	рН 6.98 6.96	ORP (mV) -87 -213	Conductivity (mS/cm) 9.2.1 9.17	Turbidity (NTU) 3.6 0	DO (mg/L) •6 (Ŏ
Time 750 717 800	DTW (feet) 8.85 8.82 8.82 8.82	Amount purged (gal)	Temp °C /6.06 /6.04 /102	рН 6.98 6.96 7.02	ORP (mV) -87 -213 -221	Conductivity (mS/cm) 9.21 9.27 9.30	Turbidity (NTU) 3.6 0	DO (mg/L) •6(0
Time 750 717 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Тетр °С /4.06 /1.04 /1.04 /1.07 /4.00	рН 6.98 6.96 7.02 7.07	ORP (mV) -87 -213 -221 -233	Conductivity (mS/cm) 9.21 9.17 9.30 9.32	Turbidity (NTU) 3.6 0 0	DO (mg/L) .6(0 0
Time 750 715 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Тетр °С /b.06 Ль.04 /l.04 /l.02 /b.00 /b.04	рН 6.98 6.96 7.02 7.07 7.09	ORP (mV) -87 -213 -221 -233 -239	Conductivity (mS/cm) 9.21 9.27 9.30 9.32 9.37	Turbidity (NTU) 3.6 0 0 0	DO (mg/L) .6(0 0
Time 750 717 800 800 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 9.92 9.92	Amount purged (gal)	Temp °C /4.06 /1.04 /1.04 /1.02 /4.00 /6.04 /6.04	рН 6.98 6.96 7.02 7.07 7.09 7.10	ORP (mV) -87 -213 -221 -233 -239 -249	Conductivity (mS/cm) 9.21 9.17 9.30 9.32 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0	DO (mg/L) .6(0 0 0
Time 750 715 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C 14.06 16.04 16.04 16.04 16.04 16.07 16.07	рН 6.98 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -213 -213 -221 -233 -239 -244 -247	Conductivity (mS/cm) 9.21 9.17 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0	DO (mg/L) .6(0 0 0 0 0
Time 750 715 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.92 8.92	Amount purged (gal)	Temp °C /b.06 /b.04 /l.04 /l.07 /l.07 /l.07	рН 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -87 -213 -221 -233 -239 -249 -249 -247	Conductivity (mS/cm) 9.21 9.27 9.30 9.32 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0	DO (mg/L) •6(0 0 0 0
Time 750 715 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C 14.06 14.04 14.04 14.00 14.04 14.04 14.07 14.05	рН 6.98 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -87 -213 -213 -233 -239 -259 -244 -247	Conductivity (mS/cm) 9.21 9.27 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0	DO (mg/L) .6(0 0 0 0
Time 750 715 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /4.04 /4.04 /4.04 /4.00 /4.04 /4.07 /4.05	рН 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -213 -213 -221 -233 -239 -244 -247	Conductivity (mS/cm) 9.2.1 9.27 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0	DO (mg/L) .6(0 0 0 0
Time 750 717 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /4.06 /1.04 /1.07 /4.00 /4.04 /1.07	рН 6.98 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -87 -213 -221 -233 -239 -239 -244 -247	Conductivity (mS/cm) 9.21 9.27 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0	DO (mg/L) .6(0 0 0 0
Time 750 715 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.92 8.92	Amount purged (gal)	Temp °C /4.04 /4.04 /4.04 /4.04 /4.04 /4.04	рН 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -213 -213 -233 -239 -244 -247	Conductivity (mS/cm) 9.21 9.17 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0	DO (mg/L) .6(0 0 0 0
Time 750 715 510 810 810 810 810 810 810 810 810 810 8	DTW (feet) 8.85 8.82 9.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /6.06 /6.04 /6.04 /6.04 /6.04 /6.05	рН 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -87 -213 -21 -233 -239 -249 -249 -247	Conductivity (mS/cm) 9.21 9.17 9.30 9.32 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0	DO (mg/L) .6(0 0 0
Time 750 715 810 810 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /4.06 /4.04 /4.00 /4.04 /4.04 /4.07 /4.05	рН 6.98 С.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) -87 -213 -21 -233 -239 -259 -244 -247	Conductivity (mS/cm) 9.21 9.17 9.30 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0	DO (mg/L) .6(0 0 0
Time 750 715 810 810 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.92 8.92	Amount purged (gal)	Temp °C /4.04 /4.04 /4.04 /4.04 /4.04 /4.07 /4.05	рН 6.96 7.02 7.07 7.09 7.10 7.10	ORP (mV) 87 213 221 233 239 244 247 247	Conductivity (mS/cm) 9.2.1 9.37 9.37 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0	
Time 750 715 810 810 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 9.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /6.06 /6.04 /6.04 /6.04 /6.04 /6.04 /6.05	рН 6.96 7.02 7.07 7.09 7.10 7.10 7.10	ORP (mV) -87 -213 -21 -233 -239 -239 -249 -247	Conductivity (mS/cm) 9.21 9.27 9.37 9.37 9.37 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0 0	DO (mg/L) .6(0 0 0 0
Time 750 715 810 810 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /4.06 /6.04 /6.04 /6.04 /6.04 /6.07 /6.07 /6.07	рН <i>6.96</i> <i>7.02</i> <i>7.07</i> <i>7.09</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i></i>	ORP (mV) -87 -213 -21 -233 -239 -244 -247 -247	Conductivity (mS/cm) 9.2.1 9.37 9.37 9.37 9.37 9.37 9.37 9.37 9.37	Turbidity (NTU) 3.6 0 0 0 0 0 0 0	
Time	DTW (feet) 8.85 8.82 9.82 8.82 8.82 8.82 8.82 8.92 8.92	Amount purged (gal)	Temp °C /4.04 /4.04 /4.04 /4.04 /4.04 /4.07 /4.07 /4.07 /4.07	pH 6.96 7.02 7.07 7.09 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10	ORP (mV) -213 -213 -233 -239 -244 -247 -247 -247	Conductivity (mS/cm) 9.2.1 9.37 9.37 9.37 9.37 9.37 9.37 9.37 2.1 1 2 2 - 1 liter amber 2 - 40 mL vials Shipped: [Turbidity (NTU) 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Time	DTW (feet) 8.85 8.82 9.82 8.82 8.82 8.82 8.82 8.82 8.82	Amount purged (gal)	Temp °C /6.06 /6.04 /6.04 /6.04 /6.04 /6.07 /6.05 /6.05 Low de Includin Dilicate?	рН <i>6.96</i> 7.02 7.07 7.09 7.10	ORP (mV) -87 -213 -21 -233 -239 -239 -244 -247	Conductivity (mS/cm) 9.21 9.37 9.37 9.37 9.37 9.37 9.37 9.37 2.1 liter amber 2 - 1 liter amber 2 - 40 mL vials Shipped: [Turbidity (NTU) 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) . 6 (0 0 0 0 0 0 0 0 0
Time 750 715 810 810 810 810 810 810 810 810 810 810	DTW (feet) 8.85 8.82 8.82 8.82 8.82 8.82 9.82 9.92 8.92 8	Amount purged (gal)	Temp °C /4.04 /4.04 /4.04 /4.04 /4.04 /4.07 /4.07 /4.07 /4.07 /4.07 /4.07 /4.07	рН <i>6.96</i> <i>7.02</i> <i>7.07</i> <i>7.09</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i>7.10</i> <i></i>	ORP (mV) -87 -213 -213 -233 -239 -244 -247 -247 -259 -244 -247	Conductivity (mS/cm) 9.2.1 9.37 9.37 9.37 9.37 9.37 9.37 9.37 2.1 liter amber 2 - 1 liter amber 2 - 40 mL vials Shipped: E Laboratory:	Turbidity (NTU) 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO (mg/L) •6 (0 0 0 0 0 0 0

Appendix B

Groundwater Monitoring Laboratory Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-79276-1

Client Project/Site: Dewey Ave semi-annual GW Wells

For:

CDM Smith, Inc. 6800 Old Collamer Road Suite 3 East Syracuse, New York 13057

Attn: Matthew Millias

Joeph V. Gisconage

Authorized for release by: 5/11/2015 3:06:48 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Detection Limit Exceptions Summary	18
Chain of Custody	19
Receipt Checklists	20

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	A
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	J
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	8
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	13
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
		16

Job ID: 480-79276-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-79276-1

Receipt

The samples were received on 4/28/2015 12:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 3.0° C, 3.1° C and 3.2° C.

GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes and/or due to the nature of the sample matrix: MW-1-0415 (480-79276-1) and MW-9-0415 (480-79276-3). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: All primary data for analytical batch 239603 is reported from the ZB-35 column.

Method(s) 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells TestAmerica Job ID: 480-79276-1

Client Sample ID: MW-1-0415						Li	ab S	Sample II	D: 480-79276-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
PCB-1016	0.80		0.092		ug/L	2		8082A	Total/NA
Polychlorinated biphenyls, Total	0.80		0.11		ug/L	2	8	8082A	Total/NA
Client Sample ID: MW-6-0415						La	ab S	Sample II	D: 480-79276-2
No Detections.									
Client Sample ID: MW-9-0415						La	ab S	Sample II	D: 480-79276-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
PCB-1232	6.9		0.22		ug/L	5	_ ;	8082A	Total/NA
Polychlorinated biphenyls, Total	6.9		0.27		ug/L	5	ł	8082A	Total/NA
Client Sample ID: MW-11-0415						Li	ab S	Sample II	D: 480-79276-4
No Detections.									
Client Sample ID: MW-12-0415						La	ab S	Sample II	D: 480-79276-5
No Detections.									
Client Sample ID: MW-20-0415						La	ab S	Sample II	D: 480-79276-6
No Detections.									
Client Sample ID: MW-21-0415						La	ab S	Sample II	D: 480-79276-7
No Detections.									
Client Sample ID: MW-24-0415						La	ab S	Sample II): 480-79276-8
No Detections.									
Client Sample ID: FD-0415						La	ab S	Sample II	D: 480-79276-9

No Detections.

This Detection Summary does not include radiochemical test results.

RL

0.092

0.092

0.092

0.092

0.092

0.092

0.092

0.11

Limits

25 - 151

10 - 158

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

04/29/15 08:07

Prepared

04/29/15 08:07

04/29/15 08:07

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Result Qualifier

0.80

ND

ND

ND

ND

ND

ND

0.80

67

56

Qualifier

%Recovery

Client Sample ID: MW-1-0415

Date Collected: 04/27/15 11:15 Date Received: 04/28/15 12:30

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Surrogate

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Lab Sample ID: 480-79276-1 Matrix: Water

Analyzed

04/30/15 10:20

04/30/15 10:20

04/30/15 10:20

04/30/15 10:20

04/30/15 10:20

04/30/15 10:20

04/30/15 10:20

Analyzed

04/30/15 10:20

Lab Sample ID: 480-79276-3

Matrix: Water

Dil Fac 04/30/15 10:20 2 2 2 2 2 2 2 2 Dil Fac 04/30/15 10:20 2 2 Lab Sample ID: 480-79276-2

Client Sample ID: MW-6-0415

Date Collected: 04/27/15 12:00 Date Received: 04/28/15 12:30

Polychlorinated biphenyls, Total

Method: 8082A - Polychlorinate	d Biphenyls (PC	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1221	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1232	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1242	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1248	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1254	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
PCB-1260	ND		0.048		ug/L		04/29/15 08:07	04/30/15 10:35	1
Polychlorinated biphenyls, Total	ND		0.058		ug/L		04/29/15 08:07	04/30/15 10:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		25 - 151				04/29/15 08:07	04/30/15 10:35	1
DCB Decachlorobiphenyl	76		10 - 158				04/29/15 08:07	04/30/15 10:35	1

Client Sample ID: MW-9-0415

Date Collected: 04/27/15 10:30

Date Received: 04/28/15 12:30

Method: 8082A - Polychlorinated	l Biphenyls (P0	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1221	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1232	6.9		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1242	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1248	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1254	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
PCB-1260	ND		0.22		ug/L		04/29/15 08:07	04/30/15 10:50	5
Polychlorinated biphenyls, Total	6.9		0.27		ug/L		04/29/15 08:07	04/30/15 10:50	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		25 - 151				04/29/15 08:07	04/30/15 10:50	5
DCB Decachlorobiphenyl	64		10 - 158				04/29/15 08:07	04/30/15 10:50	5

TestAmerica Job ID: 480-79276-1

Lab Sample ID: 480-79276-4 Matrix: Water

Date Collected: 04/27/15 09:45 Date Received: 04/28/15 12:30

Client Sample ID: MW-11-0415

Method: 8082A - Polychlorinat	ed Biphenyls (PO	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1221	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1232	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1242	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1248	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1254	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
PCB-1260	ND		0.048		ug/L		04/29/15 08:07	04/30/15 11:05	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/29/15 08:07	04/30/15 11:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	66		25 - 151				04/29/15 08:07	04/30/15 11:05	1
DCB Decachlorobiphenyl	46		10 _ 158				04/29/15 08:07	04/30/15 11:05	1

Client Sample ID: MW-12-0415

Date Collected: 04/27/15 09:00 Date Received: 04/28/15 12:30

Method: 8082A - Polychlorinate	ed Biphenyls (PC	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1221	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1232	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1242	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1248	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1254	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
PCB-1260	ND		0.045		ug/L		04/29/15 08:07	04/30/15 11:19	1
Polychlorinated biphenyls, Total	ND		0.054		ug/L		04/29/15 08:07	04/30/15 11:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		25 - 151				04/29/15 08:07	04/30/15 11:19	1
DCB Decachlorobiphenyl	63		10 - 158				04/29/15 08:07	04/30/15 11:19	1

Client Sample ID: MW-20-0415

Date Collected: 04/28/15 08:50

Date	Received:	: 04/28/15	12:30

Method: 8082A - Polychlorinate	ed Biphenyls (PC	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1221	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1232	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1242	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1248	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1254	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
PCB-1260	ND		0.046		ug/L		04/29/15 08:07	04/30/15 11:34	1
Polychlorinated biphenyls, Total	ND		0.056		ug/L		04/29/15 08:07	04/30/15 11:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	63		25 - 151				04/29/15 08:07	04/30/15 11:34	1
DCB Decachlorobiphenyl	53		10 - 158				04/29/15 08:07	04/30/15 11:34	1

Matrix: Water

5

6

Lab Sample ID: 480-79276-6

TestAmerica Job ID: 480-79276-1

Lab Sample ID: 480-79276-7 Matrix: Water

Date Collected: 04/28/15 09:30 Date Received: 04/28/15 12:30

Client Sample ID: MW-21-0415

Method: 8082A - Polychlorinate	ed Biphenyls (PO	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1221	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1232	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1242	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1248	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1254	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
PCB-1260	ND		0.045		ug/L		04/29/15 08:07	04/30/15 12:19	1
Polychlorinated biphenyls, Total	ND		0.054		ug/L		04/29/15 08:07	04/30/15 12:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	63		25 - 151				04/29/15 08:07	04/30/15 12:19	1
DCB Decachlorobiphenyl	37		10 _ 158				04/29/15 08:07	04/30/15 12:19	1

Client Sample ID: MW-24-0415

Date Collected: 04/28/15 08:15 Date Received: 04/28/15 12:30

Method: 8082A - Polychlorinate	ed Biphenyls (PC	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1221	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1232	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1242	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1248	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1254	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
PCB-1260	ND		0.047		ug/L		04/29/15 08:07	04/30/15 12:33	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/29/15 08:07	04/30/15 12:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	55		25 - 151				04/29/15 08:07	04/30/15 12:33	1
DCB Decachlorobiphenyl	46		10 - 158				04/29/15 08:07	04/30/15 12:33	1

Client Sample ID: FD-0415

Date Collected: 04/27/15 00:00

Date Received: 04/28/15 12:30

Method: 8082A - Polychlorinat	ed Biphenyls (P0	CBs) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1221	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1232	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1242	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1248	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1254	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
PCB-1260	ND		0.048		ug/L		04/29/15 08:07	04/30/15 12:48	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		04/29/15 08:07	04/30/15 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62		25 - 151				04/29/15 08:07	04/30/15 12:48	1
DCB Decachlorobiphenyl	51		10 - 158				04/29/15 08:07	04/30/15 12:48	1

Prep Type: Total/NA

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(25-151)	(10-158)	
480-79276-1	MW-1-0415	67	56	
480-79276-2	MW-6-0415	68	76	
480-79276-2 MS	MW-6 MS-0415	67	38	
480-79276-2 MSD	MW-6 SD-0415	69	39	
480-79276-3	MW-9-0415	74	64	
480-79276-4	MW-11-0415	66	46	
480-79276-5	MW-12-0415	73	63	
480-79276-6	MW-20-0415	63	53	
480-79276-7	MW-21-0415	63	37	
480-79276-8	MW-24-0415	55	46	
480-79276-9	FD-0415	62	51	
LCS 480-239305/2-A	Lab Control Sample	68	49	
MB 480-239305/1-A	Method Blank	62	55	
Surrogate Legend				

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 239305

Matrix: Water Analysis Batch: 239603

Lab Sample ID: MB 480-239305/1-A

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1221	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1232	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1242	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1248	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1254	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
PCB-1260	ND		0.050		ug/L		04/29/15 08:07	04/30/15 09:20	1
Polychlorinated biphenyls, Total	ND		0.060		ug/L		04/29/15 08:07	04/30/15 09:20	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62		25 - 151				04/29/15 08:07	04/30/15 09:20	1
DCB Decachlorobiphenyl	55		10 - 158				04/29/15 08:07	04/30/15 09:20	1

Lab Sample ID: LCS 480-239305/2-A Matrix: Water

Analysis Batch: 239603					Jatch: 239305				
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016	1.00	0.851		ug/L		85	64 - 129		
PCB-1260	1.00	0.898		ug/L		90	54 - 138		
,	<u> </u>								

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	68		25 - 151
DCB Decachlorobiphenyl	49		10 - 158

Lab Sample ID: 480-79276-2 MS Matrix: Water Analysis Batch: 239603

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		0.941	0.774		ug/L		82	23 - 160	
PCB-1260	ND		0.941	0.742		ug/L		79	16 - 163	
	MS	MS								

Spike

Added

0.939

0.939

MSD MSD

0.810

0.794

Result Qualifier

Unit

ug/L

ug/L

D

86

85

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	67		25 - 151
DCB Decachlorobiphenyl	38		10 - 158

Lab Sample ID: 480-79276-2 MSD Matrix: Water Analysis Batch: 239603 Sample Sample Analyte Result Qualifier PCB-1016 ND PCB-1260 ND

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	69		25 - 151

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: MW-6 MS-0415
Prep Type: Total/NA
Prep Batch: 239305
% Poc

Client Samp	ole ID:	MW-6	SD-0415
	Pren	Type	

23 - 160

16 - 163

	Fieb i	ype. Tot	al/INA
	Prep	Batch: 2	39305
	%Rec.		RPD
%Rec	Limits	RPD	Limit

TestAmerica Buffalo

5

7

50

50

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: 480-79276-2 N	ISD		Client Sample ID: MW-6 SD-0415
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 239603			Prep Batch: 239305
	MSD MSD		
Surrogate	%Recovery Qualifier	Limits	
DCB Decachlorobiphenyl	39	10 - 158	

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

GC Semi VOA

Prep Batch: 239305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-79276-1	MW-1-0415	Total/NA	Water	3510C	
480-79276-2	MW-6-0415	Total/NA	Water	3510C	
480-79276-2 MS	MW-6 MS-0415	Total/NA	Water	3510C	
480-79276-2 MSD	MW-6 SD-0415	Total/NA	Water	3510C	
480-79276-3	MW-9-0415	Total/NA	Water	3510C	
480-79276-4	MW-11-0415	Total/NA	Water	3510C	
480-79276-5	MW-12-0415	Total/NA	Water	3510C	
480-79276-6	MW-20-0415	Total/NA	Water	3510C	
480-79276-7	MW-21-0415	Total/NA	Water	3510C	
480-79276-8	MW-24-0415	Total/NA	Water	3510C	
480-79276-9	FD-0415	Total/NA	Water	3510C	
LCS 480-239305/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-239305/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 239603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-79276-1	MW-1-0415	Total/NA	Water	8082A	239305
480-79276-2	MW-6-0415	Total/NA	Water	8082A	239305
480-79276-2 MS	MW-6 MS-0415	Total/NA	Water	8082A	239305
480-79276-2 MSD	MW-6 SD-0415	Total/NA	Water	8082A	239305
480-79276-3	MW-9-0415	Total/NA	Water	8082A	239305
480-79276-4	MW-11-0415	Total/NA	Water	8082A	239305
480-79276-5	MW-12-0415	Total/NA	Water	8082A	239305
480-79276-6	MW-20-0415	Total/NA	Water	8082A	239305
480-79276-7	MW-21-0415	Total/NA	Water	8082A	239305
480-79276-8	MW-24-0415	Total/NA	Water	8082A	239305
480-79276-9	FD-0415	Total/NA	Water	8082A	239305
LCS 480-239305/2-A	Lab Control Sample	Total/NA	Water	8082A	239305
MB 480-239305/1-A	Method Blank	Total/NA	Water	8082A	239305

				Lab Chr	onicle				
Client: CDM Sm Project/Site: Dev	iith, Inc. wev Ave semi	i-annual GW Wells						TestAmerica Job II): 480-79276-1
		0.445						Lak Osmala ID.	400 70070 4
Client Sampl	e ID: MW-1	-0415						Lab Sample ID:	480-79276-1
Date Collected: Date Received:	04/27/15 11: 04/28/15 12:	15 30							Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		2	239603	04/30/15 10:20	KS	TAL BUF	
Client Sampl	e ID: MW-6	-0415						Lab Sample ID:	480-79276-2
Date Collected:	04/27/15 12	00							Matrix: Water
Date Received:	04/28/15 12:3	30							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		1	239603	04/30/15 10:35	KS	TAL BUF	
Client Sampl	e ID: MW-9	-0415						Lab Sample ID:	480-79276-3
Date Collected:	04/27/15 10:	30 30							Matrix: Water
	Patah	Patah		Dilution	Potob	Bronarad			
Pren Type	Type	Method	Pun	Eactor	Number	or Analyzed	Analyst	Lah	
	Prep				239305	04/29/15 08:07			
Total/NA	Analysis	8082A		5	239603	04/30/15 10:50	KS	TAL BUF	
Client Sampl	e ID: MW-1	1-0415						Lab Sample ID:	480-79276-4
Date Collected:	04/27/15 09:	45							Matrix: Water
Date Received:	04/28/15 12:3	30							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst		
Total/NA Total/NA	Prep Analysis	8082A		1	239305	04/29/15 08:07	DLE KS	TAL BUF	
Olionet Comm	- ID: MM/ 4	0.0445							400 70070 5
Client Sampi		2-0415						Lab Sample ID:	460-/92/0-5 Metrix: Weter
Date Collected: Date Received:	04/27/15 09:0	30							Watrix: water
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		1	239603	04/30/15 11:19	KS	TAL BUF	
Client Sampl	e ID: MW-2	0-0415						Lab Sample ID:	480-79276-6
Date Collected:	04/28/15 08:	50							Matrix: Water
Date Received:	04/28/15 12:3	30							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		1	239603	04/30/15 11:34	KS	TAL BUF	

Client Samp	le ID: MW-2	1-0415						Lab Sample	ID: 480-79276-7
Date Collected	: 04/28/15 09:3	30							Matrix: Water
Date Received	: 04/28/15 12:3	0							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		1	239603	04/30/15 12:19	KS	TAL BUF	
Client Samp	le ID: MW-2 : 04/28/15 08: ²	4-0415 ¹⁵						Lab Sample	ID: 480-79276-8 Matrix: Water
Date Received	: 04/28/15 12:3	80							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF	
Total/NA	Analysis	8082A		1	239603	04/30/15 12:33	KS	TAL BUF	
Client Samn	le ID: FD-04	15						l ah Sample	ID· 480-79276-9
Data Colloctod	· 04/27/15 00·0	10							Matrix: Wator

Date Received: 04/28/15 12:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			239305	04/29/15 08:07	DLE	TAL BUF
Total/NA	Analysis	8082A		1	239603	04/30/15 12:48	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-16
The following analytes	are included in this report, but	certification is not offere	ed by the governing a	authority:	
The following analytes Analysis Method	are included in this report, but Prep Method	certification is not offere Matrix	ed by the governing a Analyt	authority: ie	

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) (GC)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Water

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

Client Sample ID

MW-1-0415

MW-6-0415

MW-9-0415

MW-11-0415

MW-12-0415

MW-20-0415

MW-21-0415

MW-24-0415

FD-0415

Lab Sample ID

480-79276-1

480-79276-2

480-79276-3

480-79276-4

480-79276-5

480-79276-6

480-79276-7

480-79276-8

480-79276-9

TestAmerica Job ID: 480-79276-1

Received

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

04/28/15 12:30

Collected

04/27/15 11:15

04/27/15 12:00

04/27/15 10:30

04/27/15 09:45

04/27/15 09:00

04/28/15 08:50

04/28/15 09:30

04/28/15 08:15

04/27/15 00:00

	5
	8
	9
1	3
1	Λ

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater

quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures

than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Client: CDM Smith, Inc. Project/Site: Dewey Ave semi-annual GW Wells

Method

8082A

8082A

8082A

8082A

8082A

8082A

8082A

do not indicate corrective action for detections below the laboratory's PQL.

Matrix

Water

Water

Water

Water

Water

Water

Water

Client RL

0.050

0.050

0.050

0.050

0.050

0.050

0.050

5

14

Lab PQL

0.06

0.06

0.06

0.06

0.06

0.06

0.06

5/11/2015

TestAmerica Buffalo						5257
10 Hazelwood Drive Amherst, NY 14226-2298 Phonon 7746, 601 7600 Exercited 2001	Chain of Cus	tody Reco	rd			
Fridite (1 10) 03 1-2000 Fax (1 10) 03 1-133	Sampler	Lab PM:		480-79276 Chain of Cu	stody	
Client Information	1 (M SEADMAN)	Mason, Be	ky c	;		
Client Contact: Timothy Beaumont	Phone: 585 739 2368	E-Mail: becky.mase	m@testamericainc.com		Page: Page 1 of 1	
Company: CDM Smith, Inc.			Analysis Requ	uested	Job #:	
Address: 6800 Old Collamer Road Suite 3	Due Date Requested:				Preservation Codes:	
City. East Syracuse	TAT Requested (days):				A - HCL M B - NaOH N C - Zn Acetate O	- Hexane - None - AsNaO2
State, Zp. NY, 13057	1				E - Nitric Acid P E - NaHSO4 Q	- Na204S - Na2S03 Ma2505
Phone:	PO# 36380.105370	5)) 			G - America R G - America S H - Ascorbic Acid T	- Nazozooo - H2SO4 - TSP Dodecahydrate
Emait beaumonttj@cdmsmith.com	,# OW	(0N N JO 9			I - toe U J - DI Water V	- Acetone - MCAA
Project Name: Dewey Ave semi-annual GW Wells	Project#. 48011230	10 59 9人) 위	•		E DA	- other (specify)
Site:	SSOW#:	X) OSI dutes	זר		00 Other:	
	Sample Type Sample (Carama	Matrix Control Matrix	808 - 11 - 808		190muv. Is	
Sample Identification	Sample Date Time G-grab)	BT=TIssue, A=Air) H_ HE	7808		Fo Special Instr X	uctions/Note:
WHAT A DEAL STATE OF A DEAL AND A		Water				
MW-6-0415	4/27/15 1200 6	Water	2			
0 MW-6 MS-0415	4/27/17 1200 6	Water	1-4			
MW-6 SD-0415	4/27/17 1200 6	Water	2			
MW-9-0415	4127/11/ 1030 6	Water	2			·
MW-11-0415	2 142 71/c2/h	Water	2			
MW-12-0415	4/27/15 900 6	Water	2			
MW-20-0415	4/26/12 820 C	Water	2		2.00	
MW-21-0415	4/28/15 930 6	Water	2			
MW-24-0415	4/28/15 815 G	Water	2			
FD-0415	2 - N/22/2	Water	2			
Possible Hazard Identification	on BRadiological	Sa	mple Disposal (A fee may be as	sessed if samples are reta isposal By Lab	ained longer than 1 mc Archive For	Months
Deliverable Requested: I, II, III, (V) Other (specify)		ŝ	ecial Instructions/QC Requirement			
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:		
	Date/Time:	Company with	RECEIVED DUN WW	UM Determe	-15 12°20	Shealto
Refinquished by:	Date/Time:	Company	Received by:	Date/Time:	0	ompány
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	0	ompany
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Rem	narks: [] [] [] [] [] [] [] [] [] [] [] [] []	: J. 3. 1	
		1			4 5 6	2

.

.

5

Login Sample Receipt Checklist

Client: CDM Smith, Inc.

Login Number: 79276 List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDM SMITH INC.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Job Number: 480-79276-1

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-88699-1 Client Project/Site: Dewey Ave Semi-annual GW

For: CDM Smith, Inc. 6800 Old Collame

6800 Old Collamer Road Suite 3 East Syracuse, New York 13057

Attn: Matthew Millias

fore Putine

Authorized for release by: 10/16/2015 1:06:51 PM Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Detection Limit Exceptions Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-annual GW

G	ossarv
G	1033ai y

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-88699-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-88699-1

Comments

No additional comments.

Receipt

The samples were received on 10/8/2015 10:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.9° C, 3.0° C and 3.6° C.

GC Semi VOA

Method(s) 8082A: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-1-1015 (480-88699-1) and MW-9-1015 (480-88699-3). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: All primary data for the water samples is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Detection Summary

		Detec	tion Sun	nmary	/				
Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-ar	nual GW			_		Test/	America Job I	D: 480-88699-1	2
Client Sample ID: MW-1-1	015					Lab S	Sample ID:	480-88699-1	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
PCB-1232	9.1		0.24		ug/L	5	8082A	Total/NA	
Polychlorinated biphenyls, Total	9.1		0.28		ug/L	5	8082A	Total/NA	5
Client Sample ID: MW-6-1	015					Lab S	Sample ID:	480-88699-2	6
No Detections.									
Client Sample ID: MW-9-1	015					Lab S	Sample ID:	480-88699-3	•
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	0
PCB-1232	26		0.94		ug/L	20	8082A	Total/NA	9
Polychlorinated biphenyls, Total	26		1.1		ug/L	20	8082A	Total/NA	
Client Sample ID: MW-11-	1015					Lab S	Sample ID:	480-88699-4	
No Detections.									
Client Sample ID: MW-12-	1015					Lab S	Sample ID:	480-88699-5	
No Detections.									13
Client Sample ID: MW-20-	1015					Lab S	Sample ID:	480-88699-6	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
PCB-1221	0.053		0.047		ug/L	1	8082A	Total/NA	
Client Sample ID: MW-21-	1015					Lab S	Sample ID:	480-88699-7	16
No Detections.									
Client Sample ID: MW-24-	1015					Lab S	Sample ID:	480-88699-8	
No Detections.									
Client Sample ID: FD-101	5					Lab S	Sample ID:	480-88699-9	

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-1-1015

Date Collected: 10/07/15 11:00 Date Received: 10/08/15 10:45 Lab Sample ID: 480-88699-1 Matrix: Water

Lab Sample ID: 480-88699-2

Lab Sample ID: 480-88699-3

Matrix: Water

Matrix: Water

Method: 8082A - Polychlorina	ited Bipheny	yls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1221	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1232	9.1		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1242	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1248	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1254	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
PCB-1260	ND		0.24		ug/L		10/09/15 08:04	10/09/15 15:29	5
Polychlorinated biphenyls, Total	9.1		0.28		ug/L		10/09/15 08:04	10/09/15 15:29	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		25 - 151				10/09/15 08:04	10/09/15 15:29	5
DCB Decachlorobiphenyl	83		10_158				10/09/15 08:04	10/09/15 15:29	5

Client Sample ID: MW-6-1015 Date Collected: 10/07/15 10:50 Date Received: 10/08/15 10:45

Method: 8082A - Polychlori	nated Bipheny	yls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1221	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1232	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1242	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1248	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1254	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
PCB-1260	ND		0.047		ug/L		10/09/15 08:04	10/09/15 15:45	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 15:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		25 - 151				10/09/15 08:04	10/09/15 15:45	1
DCB Decachlorobiphenyl	57		10 - 158				10/09/15 08:04	10/09/15 15:45	1

Client Sample ID: MW-9-1015 Date Collected: 10/07/15 09:30

Date Received: 10/08/15 10:45

Method: 8082A - Polychlorina	ted Biphen	yls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1221	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1232	26		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1242	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1248	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1254	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
PCB-1260	ND		0.94		ug/L		10/09/15 08:04	10/09/15 18:40	20
Polychlorinated biphenyls, Total	26		1.1		ug/L		10/09/15 08:04	10/09/15 18:40	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		25 - 151				10/09/15 08:04	10/09/15 18:40	20
DCB Decachlorobiphenyl	89		10 - 158				10/09/15 08:04	10/09/15 18:40	20

Client Sample ID: MW-11-1015 Date Collected: 10/07/15 08:45 Date Received: 10/08/15 10:45

Lab Sample ID: 480-88699-4

Matrix: Water

TestAmerica Job ID: 480-88699-1

Lab Sample ID: 480-88699-5

Lab Sample ID: 480-88699-6

Matrix: Water

Matrix: Water

Method: 8082A - Polychlori	nated Bipheny	ls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1221	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1232	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1242	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1248	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1254	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
PCB-1260	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:17	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 16:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		25 - 151				10/09/15 08:04	10/09/15 16:17	1
DCB Decachlorobiphenyl	41		10 - 158				10/09/15 08:04	10/09/15 16:17	1

Client Sample ID: MW-12-1015 Date Collected: 10/07/15 08:00 Date Received: 10/08/15 10:45

Method: 8082A - Polychlorii	nated Bipheny	/Is (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1221	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1232	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1242	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1248	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1254	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
PCB-1260	ND		0.047		ug/L		10/09/15 08:04	10/09/15 16:33	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		25 - 151				10/09/15 08:04	10/09/15 16:33	1
DCB Decachlorobiphenyl	57		10 - 158				10/09/15 08:04	10/09/15 16:33	1

Client Sample ID: MW-20-1015

Date Collected: 10/08/15 09:00 Date Received: 10/08/15 10:45

Method: 8082A - Polychlorii	nated Bipheny	'Is (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1221	0.053		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1232	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1242	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1248	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1254	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
PCB-1260	ND		0.047		ug/L		10/09/15 08:04	10/09/15 17:20	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		25 - 151				10/09/15 08:04	10/09/15 17:20	1
DCB Decachlorobiphenyl	73		10 - 158				10/09/15 08:04	10/09/15 17:20	1

Client Sample ID: MW-21-1015 Date Collected: 10/08/15 09:40 Date Received: 10/08/15 10:45

Method: 8082A - Polychlorinated Binhenyls (PCBs) (GC)	
Date Received: 10/08/15 10:45	
Date Collected: 10/08/15 09:40	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1221	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1232	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1242	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1248	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1254	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
PCB-1260	ND		0.048		ug/L		10/09/15 08:04	10/09/15 17:36	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		25 - 151				10/09/15 08:04	10/09/15 17:36	1
DCB Decachlorobiphenyl	67		10_158				10/09/15 08:04	10/09/15 17:36	1

Client Sample ID: MW-24-1015 Date Collected: 10/08/15 08:20 Date Received: 10/08/15 10:45

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC) **Result Qualifier** RL MDL Unit Prepared D Analyzed Dil Fac ND 0.047 10/09/15 08:04 10/09/15 17:52 ug/L ND 0.047 ug/L 10/09/15 08:04 10/09/15 17:52 ND ug/L 10/09/15 08:04 10/09/15 17:52 0.047

Polychlorinated biphenyls, Total	ND		0.057	ug/L	10/09/15 08:04	10/09/15 17:52	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		25 - 151		10/09/15 08:04	10/09/15 17:52	1
DCB Decachlorobiphenyl	68		10 - 158		10/09/15 08:04	10/09/15 17:52	1

Client Sample ID: FD-1015

Date Collected: 10/07/15 00:00 Date Received: 10/08/15 10:45

Method: 8082A - Polychlorii	nated Biphenyl	ls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1221	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1232	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1242	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1248	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1254	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
PCB-1260	ND		0.048		ug/L		10/09/15 08:04	10/09/15 18:08	1
Polychlorinated biphenyls, Total	ND		0.057		ug/L		10/09/15 08:04	10/09/15 18:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82		25 - 151				10/09/15 08:04	10/09/15 18:08	1
DCB Decachlorobiphenyl	71		10 - 158				10/09/15 08:04	10/09/15 18:08	1

Matrix: Water

TestAmerica Job ID: 480-88699-1

Lab Sample ID: 480-88699-7

Lab Sample ID: 480-88699-8

Lab Sample ID: 480-88699-9

Matrix: Water

1

1

1

1

1

1

Matrix: Water

TestAmerica Buffalo

6

Prep Type: Total/NA

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water

-			Per	cent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(25-151)	(10-158)	
480-88699-1	MW-1-1015	78	83	
480-88699-2	MW-6-1015	78	57	
480-88699-2 MS	MW-6 MS-1015	81	41	
480-88699-2 MSD	MW-6 SD-1015	79	40	
480-88699-3	MW-9-1015	76	89	
480-88699-4	MW-11-1015	79	41	
480-88699-5	MW-12-1015	76	57	
480-88699-6	MW-20-1015	70	73	
480-88699-7	MW-21-1015	73	67	
480-88699-8	MW-24-1015	69	68	
480-88699-9	FD-1015	82	71	
LCS 480-267809/2-A	Lab Control Sample	82	60	
MB 480-267809/1-A	Method Blank	82	64	
Surrogate Legend				

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-20 Matrix: Water	67809/1-A						Client Sam	ole ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 267940								Prep Batch:	267809
Analyto	l Bos	VIB IVIB ult Qualifia	r DI) Proparod	Analyzod	Dil Eac
PCB-1016						•		10/09/15 14·10	1
PCB-1221			0.000		ug/L		10/09/15 08:04	10/09/15 14:10	1
PCB-1232			0.050		ug/l		10/09/15 08:04	10/09/15 14:10	1
PCB-1242			0.050		ug/L		10/09/15 08:04	10/09/15 14:10	
PCB-1248			0.050		ug/l		10/09/15 08:04	10/09/15 14:10	1
PCB-1254		ND	0.050		ug/L		10/09/15 08:04	10/09/15 14:10	1
PCB-1260		ND	0.050		ua/L		10/09/15 08:04	10/09/15 14:10	1
Polychlorinated biphenyls. Total		ND	0.060)	ua/L		10/09/15 08:04	10/09/15 14:10	1
- J									
	I	MB MB							
Surrogate	%Recove	ery Qualifie	r Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene		82	25 - 151				10/09/15 08:04	10/09/15 14:10	1
DCB Decachlorobiphenyl		64	10 - 158				10/09/15 08:04	10/09/15 14:10	1
Lab Sample ID: LCS 480-2 Matrix: Water	267809/2-A					Clier	nt Sample ID:	Lab Control Prep Type: T	Sample otal/NA
Analysis Batch: 26/940			Sniko	109	109			Prep Batch:	26/809
Analyte				Result	Qualifier	Unit	D %Rec	l imite	
PCB-1016			1 00	0.882	Quanner		$-\frac{1}{2}$ $-\frac{1}{88}$ $-\frac{1}{88}$	64 . 129	
PCB-1260			1.00	0.895		ug/L	90	54 - 138	
				0.000		~ <u>9</u> /2			
	LCS I	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	82		25 - 151						
DCB Decachlorobiphenyl	60		10 - 158						
Lab Samala ID: 480 88600	2 MC						Client Comp		IC 4045
Lab Sample ID: 460-6669:	9-2 IVIS						Chent Samp		
Analysia Pataby 267040								Prep Type: T	01al/NA
Analysis Balch. 20/940	Sample 9	Sample	Snike	MS	MS			WRec	20/009
Analyte	Result (Qualifier		Result	Qualifier	Unit	D %Rec	l imits	
PCB-1016			0 947	0.838	Quanner		$-\frac{1}{2}$ $-\frac{1}{89}$ -	23 - 160	
PCB-1260	ND		0.947	1 00		ug/L	106	16 - 163	
1 02 1200			0.011	1.00		ug/L	100	10 - 100	
	MS I	MS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	81		25 - 151						
DCB Decachlorobiphenyl	41		10 - 158						
Lab Sample ID: 480-88699 Matrix: Water Analysis Batch: 267940	9-2 MSD		Onite	MOD	MOD		Client Samp	le ID: MW-6 S Prep Type: T Prep Batch:	D-1015 otal/NA 267809
Amelute	Sample S	Sample	Spike	MSD	MSD	11		%Rec.	
		Jualitier		Result	Qualifier			LIMITS RP	
PCB-1016	ND		0.947	0.809		ug/L	85	23 - 160	4 50
PGB-1260	ND		0.947	0.991		ug/L	105	16 - 163	1 50
	MSD I	NSD							
Surrogate	%Recovery	Qualifier	l imits						

Surrogate	%Recovery	Quaimer	Linns
Tetrachloro-m-xylene	79		25 - 151

5

8

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC) (Continued) Lab Sample ID: 480-88699-2 MSD Client Sample ID: MW-6 SD-1015 Matrix: Water Prep Type: Total/NA Analysis Batch: 267940 Prep Batch: 267809 Surrogate %Recovery Qualifier DCB Decachlorobiphenyl 40 Limits

QC Association Summary

Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-annual GW

GC Semi VOA

Prep Batch: 267809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88699-1	MW-1-1015	Total/NA	Water	3510C	
480-88699-2	MW-6-1015	Total/NA	Water	3510C	
480-88699-2 MS	MW-6 MS-1015	Total/NA	Water	3510C	
480-88699-2 MSD	MW-6 SD-1015	Total/NA	Water	3510C	
480-88699-3	MW-9-1015	Total/NA	Water	3510C	
480-88699-4	MW-11-1015	Total/NA	Water	3510C	
480-88699-5	MW-12-1015	Total/NA	Water	3510C	
480-88699-6	MW-20-1015	Total/NA	Water	3510C	
480-88699-7	MW-21-1015	Total/NA	Water	3510C	
480-88699-8	MW-24-1015	Total/NA	Water	3510C	
480-88699-9	FD-1015	Total/NA	Water	3510C	
LCS 480-267809/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-267809/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 267940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-88699-1	MW-1-1015	Total/NA	Water	8082A	267809	
480-88699-2	MW-6-1015	Total/NA	Water	8082A	267809	
480-88699-2 MS	MW-6 MS-1015	Total/NA	Water	8082A	267809	
480-88699-2 MSD	MW-6 SD-1015	Total/NA	Water	8082A	267809	
480-88699-3	MW-9-1015	Total/NA	Water	8082A	267809	
480-88699-4	MW-11-1015	Total/NA	Water	8082A	267809	
480-88699-5	MW-12-1015	Total/NA	Water	8082A	267809	
480-88699-6	MW-20-1015	Total/NA	Water	8082A	267809	
480-88699-7	MW-21-1015	Total/NA	Water	8082A	267809	
480-88699-8	MW-24-1015	Total/NA	Water	8082A	267809	
480-88699-9	FD-1015	Total/NA	Water	8082A	267809	
LCS 480-267809/2-A	Lab Control Sample	Total/NA	Water	8082A	267809	
MB 480-267809/1-A	Method Blank	Total/NA	Water	8082A	267809	

Total/NA

Analysis

8082A

Project/Site: D	ewey Ave S	emi-annual GV	V				163	stAmerica Job	ID. 400-00099-1	
Client Sam Date Collecte	ple ID: MV d: 10/07/15	V-1-1015 11:00					Lab	Sample ID:	: 480-88699-1 Matrix: Water	
Date Receive	d: 10/08/15	10:45								
Γ	Batch	Batch		Dilution	Batch	Prepared				5
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		5
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		
Total/NA	Analysis	8082A		5	267940	10/09/15 15:29	KS	TAL BUF		
Client Sam	ple ID: MV	V-6-1015					Lab	Sample ID:	480-88699-2	
Date Collecte Date Receive	d: 10/07/15 d: 10/08/15	10:50 10:45							Matrix: Water	8
Γ	Batch	Batch		Dilution	Batch	Prepared				9
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		10
Total/NA	Analysis	8082A		1	267940	10/09/15 15:45	KS	TAL BUF		
Client Sam	ple ID: MV	V-9-1015 09:30					Lab	Sample ID:	: 480-88699-3 Matrix: Water	
Date Receive	d: 10/08/15	10:45								13
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		
Total/NA	Analysis	8082A		20	267940	10/09/15 18:40	KS	TAL BUF		
Client Sam Date Collecte Date Receive	ple ID: MV d: 10/07/15 d: 10/08/15	V-11-1015 08:45 10:45					Lab	Sample ID	: 480-88699-4 Matrix: Water	16
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		
Total/NA	Analysis	8082A		1	267940	10/09/15 16:17	KS	TAL BUF		
Client Sam Date Collecte Date Receive	ple ID: MV d: 10/07/15 d: 10/08/15	V-12-1015 08:00 10:45					Lab	Sample ID:	: 480-88699-5 Matrix: Water	
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		
Total/NA	Analysis	8082A		1	267940	10/09/15 16:33	KS	TAL BUF		
Client Sam Date Collecte Date Receive	ple ID: MV d: 10/08/15 d: 10/08/15	V-20-1015 09:00 10:45					Lab	Sample ID:	: 480-88699-6 Matrix: Water	
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF		

TAL BUF

1

267940 10/09/15 17:20 KS

Lab Sample ID: 480-88699-7

Lab Sample ID: 480-88699-8

Lab Sample ID: 480-88699-9

Matrix: Water

Matrix: Water

Matrix: Water

1 2 3 4 5 6 7 8 9 10 11 12 13

Client Sample ID: MW-21-1015 Date Collected: 10/08/15 09:40

Date Receive	ed: 10/08/15 1	10:45												
Γ	Batch	Batch		Dilution	Batch	Prepared								
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab						
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF						
Total/NA	Analysis	8082A		1	267940	10/09/15 17:36	KS	TAL BUF						

Client Sample ID: MW-24-1015 Date Collected: 10/08/15 08:20 Date Received: 10/08/15 10:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF
Total/NA	Analysis	8082A		1	267940	10/09/15 17:52	KS	TAL BUF

Client Sample ID: FD-1015 Date Collected: 10/07/15 00:00 Date Received: 10/08/15 10:45

- -	Batch	Batch	Dere	Dilution	Batch	Prepared	Awahaat	Lah
Prep Type		Method	Run	Factor	Number	or Analyzed	Analyst	
I otal/NA	Prep	3510C			267809	10/09/15 08:04	MCZ	TAL BUF
Total/NA	Analysis	8082A		1	267940	10/09/15 18:08	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
The following analytes	s are included in this repo	ort, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	overning authority: e	

Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-annual GW

5
8
9
12
13

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) (GC)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-annual GW TestAmerica Job ID: 480-88699-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-88699-1	MW-1-1015	Water	10/07/15 11:00	10/08/15 10:45
480-88699-2	MW-6-1015	Water	10/07/15 10:50	10/08/15 10:45
480-88699-3	MW-9-1015	Water	10/07/15 09:30	10/08/15 10:45
480-88699-4	MW-11-1015	Water	10/07/15 08:45	10/08/15 10:45
480-88699-5	MW-12-1015	Water	10/07/15 08:00	10/08/15 10:45
480-88699-6	MW-20-1015	Water	10/08/15 09:00	10/08/15 10:45
480-88699-7	MW-21-1015	Water	10/08/15 09:40	10/08/15 10:45
480-88699-8	MW-24-1015	Water	10/08/15 08:20	10/08/15 10:45
480-88699-9	FD-1015	Water	10/07/15 00:00	10/08/15 10:45

Client: CDM Smith, Inc. Project/Site: Dewey Ave Semi-annual GW

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but great than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedure do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
8082A	Water	PCB-1016	ug/L	0.050	0.06
8082A	Water	PCB-1221	ug/L	0.050	0.06
8082A	Water	PCB-1232	ug/L	0.050	0.06
8082A	Water	PCB-1242	ug/L	0.050	0.06
8082A	Water	PCB-1248	ug/L	0.050	0.06
8082A	Water	PCB-1254	ug/L	0.050	0.06
8082A	Water	PCB-1260	ug/L	0.050	0.06

14 15

TestAmerica Job ID: 480-88699-1

TestAmerica Buffalo						Toct A morina
10 Hazelwood Drive Amherst, NY 14228-2298 Dhhnie 7718) 661 - 2600 Eav 7718) 601 - 2001	Ú	hain of (custody R	ecord		THE LEACER IN ENDREDNAMENTAL TESTING
Climb Information	Sampler:	Re to the	Lab P	li I	Carrier Tracking No(s):	COC No:
	Dhone:	LARN AULA		u, becky v		480-72277-16322.1
Timothy Beaumont	FRONE: 585	739 236	Y beck	/.mason@testamericainc.com		Page 1 of 1
Company: CDM Smith, inc.				Analysis Rec	guested	Job #.
Address: 6800 Old Collarner Road Suite 3	Due Date Requested					Preservation Codes:
City: East Syracuse	TAT Requested (day					A - HCL M - Hexane B - NaOH N - None P C - Zn Acetate O - AsNaO2
State, Zp: NY, 13057	T					D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3
Phone:	PO#: 36380.110154					F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4 H - Assorbic Acid T - TSP Doderehundrehe
Email: beaumontij@cdmsmith.com	#O#			(0), 2011/201		I - Ice U - Acetone U - MCAA
Project Name: Dewey Ave semi-annual GVV Wells	Project #: 48011230			200 Se		K - EDTA W - ph 4-5 L - EDA Z - other (specify)
Site:	SSOW#.			ז רר s רר sox(ער gambi	uco 10	Other:
		Samole (C=c	nple Matrix pe (w=water, s=solid, cemp.	Mperatifs bi M/SMmpot 2008 - JJ_AS	19dmu/ 19	
Sample Identification	Sample Date	Time G=g	rab) BT=Tissue, A=Air) SerVation Code	808 X X 808		Special Instructions/Note:
MW-1-1015	10-7-16	10/0	6 Water	2		
MW-6-1015	10-7-15) eroj	water	2		10000
MW-6 MS-1015	10-77	9 aros	Water	2		
MW-6 SD-1015	10-7-15	lovo C	Water	P		
MW-9-1015	10.7-15	93a (5 Water	2		
MW-11-1015	21-6-01	sur (- Water	2	480-88699 Chain of (Custody
MW-12-1015	10-7-15	200	Water	2		
MW-20-1015	10-8-01	900 G	Water	2		
MW-21-1015	10-8-15	940 G	Water	2		
MW-24-1015	11-8-01	\$20 E	Water	2		
FD-1015	11-2-01	- (Water			1901 J. 12
Possible Hazard Identification	ison B Unknow	n 🗌 Radiolo	gical	Sample Disposal (A fee may be a	ssessed if samples are retaine	ed longer than 1 month) ive For Months
Deliverable Requested: I, II, III, Other (specify)				Special Instructions/QC Requirement	ıts:	
Empty Kit Relinquished by:	<u>a</u>	ate:		Time:	Method of Shipment.	
Relinquished by:	Date/Time 10/8/15	i oys	Company	Received by U	Date/Tinger	(organy
Relinquished by:	Date/Time:		Comparty	Received by:	Date/Tithe:	Company
Relinquished by:	Date/Time:		Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Re	marks: 3, 6, 3, C	0, 2,9 El
			10	11 12 13	<u> </u>	

5

Login Sample Receipt Checklist

Client: CDM Smith, Inc.

Login Number: 88699 List Number: 1 Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDMSMITH
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-88699-1

List Source: TestAmerica Buffalo