2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

Report, HW, 915149, 2004-06-01. Phase II

TYCO / SCOTT AVIATION FACILITY LANCASTER, NEW YORK

PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

June 2004

Prepared for:

TYCO International (US), Inc.

Prepared by:

A **TUCO** INTERNATIONAL LTD. COMPANY.

E-FILED

PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

TYCO / SCOTT AVIATION FACILITY 225 ERIE STREET LANCASTER, NY 14086

Prepared for: TYCO International (US), Inc. 3121 Butterfield Road Oak Brook, IL 60523

Prepared by: Earth Tech, Inc. 3121 Butterfield Road Oak Brook, IL 60523

June 2004

Earth Tech Project No. 76482

Table of Contents

1.0	Introd	uction a	nd Purpose	1-1
2.0	Scope	and Me	ethodology of Investigation	2-1
	2.1	Scope		2-1
	2.2	Metho	dology	2-2
3.0	Phase	II Activ	vities	3-1
	3.1	Geoph	ysical Survey	3-1
	3.2	North	ern Area	
	3.3	Plant 1	No. 2 June 23, 1999 "Oil Spill"	
	3.4		loned USTs	
	3.5	Metal	Plating Shop	3-3
	3.6	Plant 1	No. 1 Foundry Area	3-3
	3.7	West S	Side of Plant No. 1	3-4
4.0	Summ	ary of H	Findings	4-1
	4.1	Recog	nized Environmental Conditions	4-1
		-	Plant No. 2 June 23, 1999 "Oil Spill"	
		4.1.2		
		4.1.3	Plant No. 1 Foundry Area	4-3
		4.1.4	West Side of Plant No. 1	4-3
	4.2	Areas	for No Further Concern	4-4
		4.2.1	Geophysical Survey	4-4
		4.2.2	Northern Area	4-4
		4.2.3	Metal Plating Shop	4-4
		4.2.4	Abandoned USTs	
5.0	Refere	ences		

Page 1

List of Tables

Table 1	Phase II Investigation Locations Summary
Table 2	Northern Area Analytical Results
Table 3	Plant No. 2 "Oil Spill" Area Analytical Results
Table 4	UST Analytical Results - Aqueous
Table 5	UST Analytical Results - Soil
Table 6	Foundry Sand Area Analytical Results
Table 7	West Side Plant No. 1 Analytical Results

List of Figures

Figure 1	Phase II Investigation, Site Layout
Figure 2	Geophysical Survey Results, Phase II Investigation Locations
Figure 3	Plant 2 Soil Boring Locations
Figure 4	Plant 1 Soil Boring and Test Pit Locations

List of Appendices

I.	Geophysic	al Report

- Form I Analytical Data Report II.
- DPT Boring Logs Test Pit Logs III.
- IV.

1.0 INTRODUCTION AND PURPOSE

This Phase II Environmental Site Investigation Summary Report has been prepared by Earth Tech for Tyco International (US), Inc. (Tyco) pursuant to the *Proposal for Phase II Environmental Site Investigation* submitted to Tyco on March 27, 2004 for the Scott Aviation facility, 225 Erie Street, and 25-27 Walter Winter Drive, Lancaster, New York.

The purpose of the Phase II Environmental Site Investigation was to:

• Investigate areas identified in "Section 6.0 – Findings" of the *Phase I Environmental Site* Assessment, dated May 3, 2004 (Phase I report), prepared by Earth Tech for Tyco International (US), Inc., as identified below:

"Earth Tech chose an appropriate level of effort consistent with the ASTM Standard Practice E1527-00 for evaluating the environmental status of the Property. Based on the information reviewed, interviews, and the Property reconnaissance, historical sources for impacts to soil and/or ground water were identified on and adjacent to the Property. Five RECs associated with the Property were identified:

- Soil and shallow ground water west of Plant 2, both on the Property and extending onto the adjacent parcel, have been impacted by releases of chlorinated organic compounds and petroleum products (apparently used oil) from at least two sources. Extensive monitoring and remedial activities have been underway in that area for several years (under a Consent Order with the State of New York), and additional activities are in progress and scheduled to be completed in 2004.
- Most of the sewer lines beneath, and from, Plants 1 and 2 date from the 1950s and 1960s. The potential exists that one or more of them may have leaked during that period, although no specific indication of any such release was found during this assessment.
- Two former USTs that had contained gasoline starting in the early 1970s were removed from the southeastern portion of the Plant 1 Area in November of 1987. However, no records were found to indicate that any post-excavation sampling was done to demonstrate that soil and ground water in the vicinity had not been impacted.
- A former UST that had contained gasoline from an unknown date until the early 1970s was reportedly cleaned and closed in place at that time by filling it with sand. It is believed to be located beneath the current hazardous materials storage shed. No records were found to indicate exactly where that tank is located, when closure occurred, or that any post-excavation sampling was done to demonstrate that soil and ground water in the vicinity had not been impacted.
- Used sand from a steel-casting foundry operation that was located in the western portion of Plant 1 from the early 1950s to about 1973 was disposed behind (south of) Plant 1, and some was used around the foundation of Plant 2 during its construction in 1965.

No information was found regarding substances other than silica and steel that may have been in the used sand."

- Provide statistically reasonable investigative coverage of undeveloped areas of the site using non-intrusive sensing techniques (i.e., geophysical survey), and
- Further investigate any anomalous or suspect areas identified during the non-intrusive investigations.

Organization of Report

Section 1 provides a summary of the scope and methodology of the investigation. Section 2 provides a summary of the investigation methodologies. Section 3 presents a summary of the areas of investigation and activities performed. Section 4 provides a summary of the data acquired during this investigation. Section 5 provides the references used in preparation of this report.

2.0 SCOPE AND METHODOLOGY OF INVESTIGATION

2.1 Scope

The overall property is comprised of several adjoining parcels as presented in Figure 1. Although the property is comprised of multiple adjoining parcels, for convenience of discussion in this summary report, the property has been broken into three general areas: northern property (area north of plant 3, essentially undeveloped); Plant No. 2/Plant No. 3 area (developed parcels north of Erie Avenue, west of Walter Winter Drive, south of northern property); and Plant No. 1 area (developed area south of Erie Avenue). The approximate area of the overall plant property is 25-acres (the plant), about one-third of which is improved as buildings or parking areas. (Additional detail regarding parcel identification can be found in the Phase I Environmental Site Assessment Report (Earth Tech, April 12, 2004.)

Earth Tech conducted the following activities as part of the Phase II investigation:

- A non-intrusive geophysical survey was performed over all accessible areas of the property using a geophysical survey method (i.e., EM31, an electromagnetic induction tool) on a 12.5-foot line spacing. Inaccessible areas of the property were investigated using visual survey and test pit methods. Appendix I presents the geophysical survey summary report.
- Locations of recognized environmental conditions identified in the Phase I report were investigated, including:
 - Underground storage tanks (USTs) including two removed USTs and one closed-inplace UST;
 - Plant No. 2 June 23, 1999 "oil spill" soil remediation at northeast corner of Plant No. 2 (see Appendix H, Phase I report);
 - Plating operation in Plant No. 1;
 - February 2004 "oil spill" west-northwest of Plant No. 2; and,
 - Plant No. 1 foundry area.
- Shallow test pits were conducted over the wooded portion of the Northern Area (i.e., area that was inaccessible to geophysical survey). Prior to the excavation of test pits, a visual survey of the area for suspect fill or stressed vegetation was performed to assist in the determination of where the test pits should be placed. For areas where no suspect fill or stressed vegetation were identified, test pits were spaced to achieve an even, representative coverage of the area. Test pits were excavated to a minimum depth of four feet below grade to confirm the soil profile.
- Shallow test pits were performed on the west side of Plant No. 1 to visually delineate a suspected buried refuse waste pile and to confirm the soil profile.
- Direct push technology (DPT) soil borings were performed within, or at the perimeter of each suspect location (i.e., abandoned UST locations, Plant No. 1 foundry area, Plant No. 2 June 23, 1999 "oil spill" area, and anomalies identified during the geophysical survey).
- Soils exposed during test pit excavation and borings were scanned with an HNu, visually inspected and logged. Appendices III and IV present soil logs for DPT borings and test pits, respectively.

- Soil samples were collected for various chemical analyses at select DPT and test pit locations. Chemical analysis was based on suspected contaminants, using process knowledge. Soil samples were generally biased to the interval(s) with the highest HNu reading or interval(s) containing visually stained soil or fill. Appendix II presents the laboratory Form I data.
- Groundwater samples were collected from temporary piezometers at UST investigation locations and the Plant No. 2 June 23, 1999 "oil spill" soil remediation area. Chemical analysis was based on suspected contaminants, using process knowledge. Appendix II presents the laboratory Form I data.

2.2 Methodology

Subcontractors used by Earth Tech to complete the work included SJB Services, Hamburg, NY (DPT borings), SLC Environmental Services, Lockport, NY (test pits), Geomatrix Consultants (geophysical survey), and Severn Trent Laboratories, Amherst, NY (analytical laboratory; NYSDOH ELAP Certified).

DPT boring subsurface soil sampling was conducted in accordance with ASTM D6282-98 (Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations). DPT borings were advanced into the overburden soil and samples were collected using a truck-mounted DPT unit equipped with a two-inch OD by four-foot long sampler. The DPT unit includes a hydraulic push/percussion hammer that is used to advance the sampler. The DPT borings were advanced to confirm native soils or to below the water table depending on the investigation area (i.e., borings to investigate foundry sand were advanced to native soil whereas borings to investigate abandoned USTs were advanced to below the water table).

The general investigation methodology for the DPT borings was to advance the borings and inspect the soil and fill materials for evidence of contamination. Where no staining, odors, elevated HNu readings, or sheen were noted, no analytical samples were collected. Where there was potential evidence for contamination, a soil sample was collected for analytical laboratory testing. The selected analytical parameters were dependent upon the location of the sample (i.e., based on background data research or generator knowledge). Soil samples collected for analytical laboratory testing were handled in accordance with the *Comprehensive Site Investigation Work Plan*, Appendix IV, Quality Assurance Project Plan, prepared for Tyco by Earth Tech, dated December 31, 2002.

Analytical methods used for this investigation included volatile organic compounds (VOCs) (EPA Method 8260), semi-volatile organic compounds (SVOCs) (EPA Method 8270), total petroleum hydrocarbons (TPH) (NYSDOH Method 310.13), target analyte list (TAL) metals (EPA Method 8010 and 7471 [mercury only]), diesel range organics (DRO) (EPA Method 8015B), and phenolics (EPA Method 9066).

Field "rinsate" blanks were collected over the soil sampling equipment and the groundwater sampling equipment on March 26, 2004 to monitor the effectiveness of the field decontamination effort. The samples were analyzed for VOCs, SVOCs, TPH, TAL metals, DRO and phenolics. All

analytes were non detect for each set of rinsate blanks. Appendix II presents the laboratory Form I data for these samples.

Soil samples from test pits were collected from the sidewall of the test pit or, for deeper interval samples, from the center of the excavator bucket and handled in accordance to the above referenced document.

The macro-core sampler used for DPT borings was field decontaminated between uses using a potable water and phosphate-free detergent wash, followed by a potable water rinse. Spoons and spatulas used to transfer soil to analytical laboratory containers were field decontaminated between uses.

Soil samples were visually examined and described by a qualified Earth Tech geologist in accordance with ASTM D2487 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). A log of each boring and test pit was prepared noting significant geologic features, sample identification, sample depth interval, recovery, and date.

Groundwater samples were collected from select DPT borings. The sampling methodology included placement of a clean, new temporary 1-inch diameter PVC screen and riser from grade to the bottom of the boring, without placement of any additional well materials (e.g., sand pack, bentonite seal, etc.). The purpose of the temporary piezometer was simply to maintain access to the bottom of the boring in case upper portions of the boring caved in. Groundwater samples were collected using dedicated polyethylene tubing attached to a peristaltic pump. Groundwater was pumped directly from the PVC casing to the sample containers. Metals samples were not field or laboratory filtered. After collection, the groundwater samples were handled in accordance with *Site Investigation Work Plan*, Appendix IV, Quality Assurance Project Plan, prepared for Tyco by Earth Tech, dated December 31, 2002.

3.0 PHASE II ACTIVITIES

A summary of the activities performed and findings at each of the investigated areas outlined above are discussed in the following sections.

The reader should note in the interest of presenting concise data tables, analytical summary tables referenced in the following subsections present only reported detections for the respective analyses. A complete set of laboratory Form I reports is presented in Appendix II; the Form I lists all the compounds that were included in each analysis.

3.1 Geophysical Survey

Prior to the subsurface investigation program, a geophysical investigation survey was performed over all accessible areas of the Plant property using EM31. Geomatrix conducted the geophysical survey during the week of March 22, 2004. A report summarizing the geophysical survey was prepared by Geomatrix, and is presented in Appendix I.

Interpretation of the raw geophysical data resulted in the identification of seven anomalies, labeled A through G (refer to Appendix I for additional detail). All anomalies were determined to be attributable to non-hazardous sources, as follows:

- Anomaly A Construction and demolition debris present in a berm (e.g., concrete with reinforcing bar, etc.). Test pits were conducted to confirm absence of non-C&D material.
- Anomaly B Presence of electric dog fence confirmed with adjacent property owner.
- Anomaly C and E- Earth Tech conducted additional investigations to address anomalies C and E on March 29, 2004 using DPT borings. Table 1 presents a summary of these borings. including boring identification numbers, depths and field observations. Figures 2 through 4 depict the DPT boring locations. Based on boring observations, Earth Tech determined that anomalies C and E were attributable to the presence of blast furnace slag (expanded variety; porous, low bulk density) used as subbase material for the Plant No. 1 and No. 2 asphalt parking (For additional information regarding blast furnace lots. slag, http://www.tfhrc.gov/hnr20/recycle/waste/bfs1.htm.) Because the blast furnace slag material is essentially inert, and because the material is covered by asphalt pavement that provides a barrier to personal contact and from surface water contact, no blast furnace slag samples were collected for laboratory analysis.
- Anomaly D Presence of surface metal debris, including steel cable, concrete with reinforcing bar, miscellaneous steel fragments (structural?) confirmed by visual inspection.
- Anomaly F Presence of a single, steel drum lid observed on surface. No other indications of buried metal observed.
- Anomaly G Presence of steel guy wire adjacent to a utility pole observed.

3.2 Northern Area

Approximately one-half of the Northern Area is heavily vegetated (scrub brush, trees). Due to the heavy vegetation, Geomatrix was not able to conduct the geophysical survey in this area. To explore this area, 20 shallow test pits (approximately two per acre) were excavated on March 23, 2004. The test pits were excavated to approximately four feet below grade, to confirm the presence of a native soil profile, and the absence of buried waste material. Figure 2 depicts the test pit locations. Table 1 presents a summary of test pit identification numbers, depths and field observations. Grab samples were collected from surface and subsurface soil for laboratory testing for VOCs, SVOCs, and metals. A total of four samples were collected from two test pits (TP- 11 and TP-15). Table 2 presents a list of detected compounds.

3.3 Plant No. 2 June 23, 1999 "Oil Spill"

On March 26, 2004, three DPT borings (DPT -9, -10, -11) were advanced adjacent to the location of the Plant No. 2 June 23, 1999 "oil spill." Figures 2 and 3 depict the DPT boring locations. Table 1 presents a summary of boring identification numbers, depths and field observations. The soil cores were visually inspected and scanned with an HNu. No indication of contamination was observed or detected with the HNu from the three borings. No soil samples were collected for analytical testing.

An aqueous grab sample of groundwater was collected from DPT-11 (east of the former spill area). The sample was analyzed for total petroleum hydrocarbons, VOCs, SVOCs, and metals. A list of detected compounds is presented in Table 3. It is important to note that the turbidity level of the grab sample was quite high (visual estimation greater than 200 NTU; impact discussed in more detail in Section 4.0). The sample was collected by installing a clean 1-inch diameter PVC screen to the bottom of the DPT boring, followed by collection of an aqueous sample using dedicated tubing and a peristaltic pump. The sample should be considered a "grab" sample, as the method of collection did not include installation of a monitoring well, or pre-purging a volume of water before groundwater sample collection.

3.4 Abandoned USTs

The *Phase I Environmental Site Assessment* identified a total of three abandoned USTs located south (1) and southeast (2) of Plant No. 1. During additional records search in preparation for the Phase II site investigation, Earth Tech acquired the following additional information:

- Two USTs, registered by Scott Aviation as 2,000-gallon gasoline storage tanks, were located approximately 100 feet southeast of Plant No. 1. These two USTs were emptied of their contents and removed by a contractor for Scott Aviation on November 12, 1987.
- A single UST, registered as a diesel storage tank, was abandoned-in-place (date.not confirmed). This UST is located on the south side of Plant No. 1 adjacent to the chemistry laboratory and plating shop.

On March 25 and 26, 2004, a total of six DPT borings were advanced adjacent to the locations of the abandoned USTs areas to an approximate depth of 16 feet below ground surface. Figures 2 and 4 present the DPT boring locations at each area. Table 1 presents a summary of boring identification numbers, depths and field observations.

Borings DPT-3 through DPT-6 (four borings) were advanced around the footprint of the two removed USTs southeast of Plant No. 1. The soil cores were visually inspected and scanned with an HNu. No indication of contamination was visually observed or detected with the HNu. A subsurface soil sample, and a grab sample for groundwater (collected in the same manner as at DPT-11) were collected from DPT-4 for VOCs, diesel range organics, lead, and cyanide (soil only). Tables 4 and 5 present a list of detected compounds for aqueous and soil parameters, respectively.

Borings DPT-7 and DPT-8 were advanced adjacent to the abandoned-in-place UST located immediately south of Plant No. 1 (adjacent to the chemistry laboratory and plating shop). At DPT-8, visual inspection of the soil core revealed black staining in the bottom 1.2 feet of the 0 to 2-foot interval. A visible sheen was noted on the soil sample at eight feet below grade; however, due to heavy rain, apparent storm water was infiltrating the uncased borehole from the surface, as the soil sample was described as "dry," but water was collecting in the boring (water was observed to drain from the annulus of the core liner and the core barrel upon retrieval). Foundry sand was also noted at DPT-8 between 0.8 and 1.0 foot below grade. A grab sample of the shallow foundry sand, and of groundwater (collected in the same manner as at DPT-11) was collected from the DPT-8 boring location for VOCs, diesel range organics, lead, and cyanide (soil only). Tables 4 and 5 present a list of detected compounds for aqueous and soil parameters, respectively.

3.5 Metal Plating Shop

Earth Tech personnel visually inspected the floor and floor drainage collection area of the metal plating shop in Plant No. 1. Both the floor and floor drainage collection area (i.e., pH neutralization basin) appeared to be in satisfactory condition with no visible cracks. According to Mr. Robert Clark, Manufacturing Manager of Scott Aviation, the floor, walls, and ceiling are inspected annually and repainted by maintenance personnel as needed.

3.6 Plant No. 1 Foundry Area

Ten DPT borings (DPT-1 and DPT-2, and DPT-12 through DPT-19) and two hand auger borings were advanced along the Plant No. 1 southern perimeter fence to investigate the possible presence of sand generated from the former foundry operations. The borings were advanced on March 25, 26, and 29, 2004. Figures 2 and 4 depict the DPT and hand auger boring locations. Table 1 presents a summary of boring identification numbers, depths and field observations.

Grab samples of foundry sand were collected from borings DPT-8 and DPT-13. Grab samples of shallow subsurface soil were collected from borings DPT-2, DPT-12, and DPT-17. Each grab

samples was submitted for laboratory analysis for VOCs, phenols, metals, and cyanide. A list of detected compounds is presented in Table 6.

Distinct, apparent foundry sand was identified at DPT-13 located south of the former foundry area (southwest corner of Plant No.1). Foundry sand was also identified and sampled for the parameters noted above from boring DPT-8 (UST investigation boring, discussed above), and from TP-22 ("West Side of Plant No. 1" investigation area, discussed below). Refer to Table 6 for a summary of detected compounds.

3.7 West Side of Plant No. 1

A detailed study of historical aerial photographs from Appendix E of the Phase I report indicated possible reworked soil on the west side of Plant No. 1, south of the existing Visitor Parking Lot and just outside the western perimeter fence gate. During a visual inspection of the area, Earth Tech personnel noted miscellaneous debris (empty steel personal compressed gas cylinder, fire brick, etc.) scattered across the ground surface and partially buried. On March 29, 2004, seven test pits were excavated on the west side of the Plant No. 1 perimeter fence to investigate the extent of the miscellaneous debris. Figures 2 and 4 depict the test pit locations. Table 1 presents a summary of test pit identification numbers, depths and field observations.

Apparent waste material was observed in two test pits (TP-24A and TP-24C). The waste material was found to occur approximately 18 to 24 inches below ground surface, was less than one foot thick (typically six inches), and encompasses approximately 150 square feet in area (determined from a visual inspection of the test pits). A groundwater seep was observed below the waste material in TP- 24A. In TP-25, the seep had a visible chemical sheen. As noted above, foundry sand was observed in TP-22, and a lesser amount of foundry sand was observed at TP-21 (no analytical sample collected at TP-21).

Grab samples of the soil directly below the observed waste was sampled and submitted for laboratory analysis, including VOCs, SVOCs, and metals plus cyanide. Table 7 presents a summary of detected compounds.

Earth Tech, Inc.

4.0 SUMMARY OF FINDINGS

In accordance with the ASTM E1527-00 Standard Practice, a "Recognized Environmental Condition" is defined as:

"The presence or likely presence of any hazardous substances or petroleum products on a Property under the conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the Property or into the ground, ground water, or surface water of the Property. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include the de minimis conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies."

4.1 Recognized Environmental Conditions

Earth Tech chose an appropriate level of effort consistent with ASTM Standard Practice E1903-97, Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process for evaluating the environmental status of the property. Based on the information acquired during this investigation, and review of materials presented in the Phase I Environmental Site Assessment (draft internal, prepared by Earth Tech for Tyco, draft March 8, 2004), Earth Tech notes the following "Recognized Environmental Conditions," in accordance with the definition presented in ASTM E1527-00.

4.1.1 Plant No. 2 June 23, 1999 "Oil Spill"

The aqueous grab sample collected as part of the investigation associated with the June 23, 1999 "oil spill" (located on the northeast side of Plant No. 2) contained low levels of VOC contamination (see Table 3). The VOCs detected in the aqueous grab sample that exceeded New York State Groundwater Standards (6 NYCRR Part 703) included chloroethane, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene, vinyl chloride, and acetone; 2-butanone was also detected but did not exceed the NYS groundwater standard.

The VOC contamination detected at this location is not consistent with solely a petroleum source, but may also be the result of the oil spill source area having been cross-contamination by chlorinated solvent. Based on conversations with Scott Aviation personnel, the concrete pad at the northeast corner of Plant No. 2 contained a scrap metal "hopper" (i.e., small container, 1 to 2 cubic yards capacity) in addition to drum storage. It is likely that the hopper contained scrap metal that also contained some quantity of cutting oil, which may have been cross-contaminated by chlorinated solvent use (residue from cleaning operations, etc). Over the period of use, leakage from the hopper and/or sloppy handling practices may have contributed small amounts of chlorinated solvent to the waste oil spill area. The spill response that was conducted in 1999 did

not include chlorinated VOCs in the confirmatory sampling, and it appears this type of contamination was inadvertently overlooked. The low-level of contamination present in the DPT-11 aqueous grab sample may be the result of residual contamination migrating from the former source area (removed 1999).

As discussed in Section 3.3, the grab sample of groundwater was relatively turbid. As a result, the contaminant levels detected in the aqueous sample may not be indicative of only aqueous phase contamination, but may also include some level of interference from contamination associated with the suspended sediment.

Although this environmental condition appears to present a low level of risk, Earth Tech cannot predict whether or not the regulatory agencies might consider this condition "de minimis," and not require enforcement action. As a result, this environmental condition has been included as a Recognized Environmental Condition, until such time as additional investigations are conducted to clarify the condition, or until the agencies are contacted to determine whether the condition can be considered "de minimis."

4.1.2 Abandoned USTs

Diesel Storage Tank (1), South of Plant No. 1 (LUST issues)

According to Scott Aviation maintenance personnel, the 2,000-gallon diesel underground storage tank, was emptied and abandoned-in-place, although no official records were provided. Access to the tank has been prevented by the construction of a wood-frame building over the location of the tank.

None of the detected VOCs in soil exceed the NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs) (see Table 5). Diesel range organics were detected at a concentration of 140 milligrams per kilogram in the subsurface soil sample collected from 9 to 10 feet below grade.

A review of the DPT-8 boring log and analytical data indicates the presence of low-levels of VOC and diesel range organic contamination at this location. Detected VOCs in groundwater that exceed New York State groundwater standards (6NYCRR Part 703) include acetone, trichloroethene, 1,1-dichloroethane, 1,2-dichloroethane, and vinyl chloride (see Table 4). No standard is available for diesel range organics in groundwater, although a value of 20 milligrams per liter was reported.

As was the case for DPT-11 (northeast of Plant No. 2, Oil Spill area), the grab sample of groundwater collected at DPT-8 was relatively turbid. As a result, the contaminant levels detected in the aqueous sample may not be indicative of only aqueous phase contamination, but may also include some level of interference from contamination associated with the suspended sediment.

Although this environmental condition appears to present a low level of risk, Earth Tech cannot predict whether or not the regulatory agencies might consider this condition "de minimis," and not require enforcement action. As a result, this environmental condition has been included as a Recognized Environmental Condition, until such time as additional investigations are conducted to

clarify the condition, or until the agencies are contacted to determine whether the condition can be considered "de minimis."

4.1.3 Plant No. 1 Foundry Area

Foundry sand was not observed at the following DPT borings conducted south of Plant No. 1: DPT-1 through DPT-7, DPT-9 through DPT-12, and DPT-14 through DPT-17. Foundry sand was identified in shallow subsurface zones at borings DPT-8 and DPT-13 (south-central area of Plant No. 1), and in test pit TP-22 (west of western perimeter fence). In each case, the zone of foundry sand was noted to occur approximately 0.5 feet to less than 2 feet below grade, in a relatively thin layer. Based on the borings and test pits conducted, the occurrence of the foundry sand appeared to be limited to sporadic areas in the south-central to southwest area of the rear of Plant No. 1.

Grab samples of shallow subsurface soil and/or foundry sand (where present) were collected from DPT-2, DPT-8, DPT-12, DPT-13, DPT-17, and TP-22. Analytical data for these samples were compared against analytical data for the test pit soil samples collected from the Northern Area to determine site background concentrations.

With the exception of acetone at DPT-8, there were no VOC detections reported that exceed TAGM 4046 RSCOs. As noted in Section 3.5, the soil sample for DPT-8 was collected from below an asphalt driveway. As such, contact with this soil is limited. No action is recommended considering the isolated occurrence of the acetone detection, and the location of the affected soil.

There were several metals analytes that exceeded the TAGM 4046 RSCOs at DPT-8, DPT-13 and TP-22 where grab samples of the foundry sand were collected. Where metals analyses were performed on soil samples at DPT-2, DPT-12, and DPT-17 (i.e., foundry sand not present), there were no exceedences of the TAGM 4046 RSCOs. (Note: Although antimony was detected, analytical QC qualifiers indicated presence in the blank and poor spike recovery; and, lead was detected at about 1.6 times the average background level, and was considered reasonable given the location of the sample [0 to 1 foot, immediately adjacent to southern fence, which is immediately adjacent to an railroad line].) Refer to Table 6 for a summary of the analyte list (exceedences are shaded).

4.1.4 West Side of Plant No. 1

Apparent waste material of an unknown origin was found just west and south of the vehicle gate located in the western perimeter fence, immediately north of the water tower. Elevated levels of VOCs and SVOCs present in the soil immediately below the waste indicate that some leaching of the waste has occurred. Detected VOCs that exceeded the TAGM 4046 RSCOs included 1,1-dichloroethane, 1,1,1-thrichloroethane, toluene, ehtylbenzene and (total) xylenes. Detected SVOCs that exceeded the TAGM 4046 RSCOs included phenol, 2-methylphenol, and 4-methylphenol. Refer to Table 7 for a summary of detected compounds.

4.2 Areas for No Further Concern

Based on a review of available information, as well as data generated during this Phase II site investigation, the following areas do not present further environmental concern.

4.2.1 Geophysical Survey

Each of the anomalies identified in the geophysical survey have been adequately explained and do not indicate any areas of concern. No further action is recommended at areas investigated via the geophysical survey.

4.2.2 Northern Area

The test pit activity performed in the Northern Area, which supplemented the geophysical survey, did not identify any items of concern. No further action is recommended over the Northern Area.

4.2.3 Metal Plating Shop

The metal plating shop was inspected for obvious breaches in containment (e.g., floor joints, open drains), and was determined to be in satisfactory condition. No further action is recommended for this area.

4.2.4 Abandoned USTs

Gasoline Storage Tanks (2), Southeast of Plant No. 1

Scott Aviation has record of the two gasoline storage tanks being removed in 1987. Visual analysis of the four DPT boring samples, and chemical analyses of soil and groundwater samples collected at DPT-4, indicate only acetone present above groundwater guidance values in this area (grab sample concentration 120 μ g/l; guidance value for Class GA groundwater 50 μ g/l). The presence of acetone in this area is not supported by past disposal practices according to Scott Aviation personnel. Visual sheen or elevated PID reading were not noted at any of the DPT boring locations in this area. As a result, the acetone detection is considered a suspected laboratory artifact. Earth Tech recommends Tyco propose no further action for this area.

5.0 REFERENCES

ASTM E1527-00 Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM International, Philadelphia, Pennsylvania.

ASTM 1903-97 Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, ASTM International, Philadelphia, Pennsylvania

Earth Tech, March 8, 2004. Phase I Environmental Site Assessment (draft internal).

Earth Tech, December 31, 2002. "Comprehensive Site Investigation Work Plan, Scott Aviation Site, Lancaster, NY."

Fetter, C.W., 1988. *Applied Hydrogeology, Second Edition*. Table 4-5, Page 80. Merrill Publishing Company, Columbus, Ohio.

Interstate Technology and Regulatory Cooperation Work Group (ITRC), May 1999. "Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices."

NYS Department of Health, Public Water Systems Part 5, Subpart 5-1, Table 1, revised January 13, 2004.

NYS Department of Environmental Conservation, Division of Environmental Remediation, Technical and Administrative Guidance Memorandum #4046 Determination of Soil Cleanup Objectives and Cleanup Levels - Recommended soil cleanup objectives, January 24, 1994.

NYS Department of Environmental Conservation, Division of Environmental Remediation, Spill Technology and Remediation Series (STARS) Memo #1 Petroleum-Contaminated Soil Guidance Policy, revised August 1992.

SCOTT AVIATION, INC. –PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

TABLES

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

Geophysical Anomaly Investigation

Boring ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
DPT-18	3/29/2004	Plant #1 Parking Lot	Geophysical Anomaly E	8 feet	ND	0.5' slag and 2' saturated very fine sand
DPT-19	3/29/2004	Plant #1 Parking Lot	Adjacent to Anomaly E	4 feet	ND	No slag or saturated very fine sand
DPT-20	3/29/2004	Plant #2 Parking Lot	Geophysical Anomaly C	8 feet	ND	0.5' slag
DPT-21	3/29/2004	Plant #2 Parking Lot	Adjacent to Anomaly C	4 feet	ND	No slag
DPT-22	3/29/2004	Plant #2 Parking Lot	Geophysical Anomaly C	4 feet	ND	0.5' slag

Northern Area Investigation

Test Pit ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
TP-1	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-2	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-3	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	6 feet	ND	Native
TP-4	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-5	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	7 feet	ND	Native
TP-6	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-7	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-8	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-9	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-10	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-11	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	10 feet	ND	Native; sample collected
TP-12	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	7 feet	ND	Native
TP-13	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	5 feet	ND	Native
TP-14	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	6 feet	ND	Native
TP-15	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	6 feet	ND	Native; sample collected
TP-16	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-17	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	ND	Native
TP-18	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	12 feet	ND	Reworked native fill to 6'
TP-19		North of Plant #3	Areas inaccessible to geophysical survey	8 feet	NÐ	Top soil
TP-20	3/23/2004	North of Plant #3	Areas inaccessible to geophysical survey	8 feet	. ND	Tree logs

Plant No. 2 June 23, 1999 "Oil Spill" Area

Boring ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
DPT-9	3/26/2004	Adjacent to south side of Plant #2.	Adjacent to Plant #2 oil spill location	16 feet	ND	
DPT-10	3/26/2004	Adjacent to south side of Plant #3	Adjacent to Plant #2 oil spill location	16 feet	ND	
DPT-11	3/26/2004	Adjacent to south side of Plant #4	Adjacent to Plant #2 oil spill location	16 feet	ND	Aqueous samples collected

Abandoned USTs

Boring ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
DPT-3	3/25/2004	Removed UST	Adjacent to UST location	11 feet	ND	
DPT-4	3/25/2004	Removed UST	Adjacent to UST location	16 feet	ND	Soil and aqueous samples collected
DPT-5	3/25/2004	Removed UST	Adjacent to UST location	17 feet	ND	
DPT-6	3/25/2004	Removed UST	Adjacent to UST location	18 feet	ND	
DPT-7	3/25/2004	Abandoned UST	Adjacent to UST location	19 feet	2ppm	
						Staining, odor, sheen observed; soil and aqueous
DPT-8	3/26/2004	Abandoned UST	Adjacent to UST location	20 feet	3ppm	samples collected (1)

Foundry Sand Investigation

Boring ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
DPT-1	3/25/2004	South of Plant #1 Parking Lot	Foundry sand	7 feet	ND	No foundry sand observed
DPT-2	3/25/2004	South of Plant #1 Parking Lot	Foundry sand	4 feet	ND	No foundry sand observed; sample collected
DPT-8	3/26/2004	South of Plant #1	Abandoned UST	16 feet	3	Foundry sand observed; sample collected
DPT-12	3/26/2004	South of Plant #1	Foundry sand	4 feet		No foundry sand, staining observed; sample collected
DPT-13	3/26/2004	South of Plant #1	Foundry sand	8 feet	ND	Foundry sand observed; sample collected
DPT-14	3/26/2004	West of Plant #1	Foundry sand	0 feet	NA	No recovery
DPT-15	3/26/2004	West of Plant #2	Foundry sand	4 feet	ND	No foundry sand observed
DPT-16	3/26/2004	South of Plant #1	Foundry sand	4 feet	ND	No foundry sand observed
DPT-17	3/26/2004	South of Plant #1	Foundry sand	4 feet	ND	No foundry sand observed
HA-1	3/29/2004	South of Plant #1	Foundry sand	2 feet	ND	No foundry sand observed
HA-2	3/29/2004	South of Plant #1	Foundry sand	2 feet	ND	No foundry sand observed
TP-22	3/29/2004	West side Plant #1	Suspected buried waste	3 feet	ND	Foundry sand observed; sample collected

West Side Plant No. 1 Investigation

Test Pit ID	Date	Location	Target	Depth	Hnu (ppm)	Comments
TP-21	3/29/2004	West side Plant #1	Suspected buried waste	3 feet	ND	Trace foundry sand observed
TP-22	3/29/2004	West side Plant #1	Suspected buried waste	3 feet	ND	Foundry sand observed; samples collected (1)
TP-23	3/29/2004	West side Plant #1	Suspected buried waste	2 feet	ND	Rust colored soil staining observed
TP-24A	3/29/2004	West side Plant #1	Suspected buried waste	3 feet		Waste material observed to 2 feet; samples collected
TP-24B	3/29/2004	West side Plant #1	Suspected buried waste	3 feet	ND	No waste visible
TP-24C		West side Plant #1	Suspected buried waste	3 feet	50	Waste material observed on north sidewall of test pit
TP-25	3/29/2004	West side Plant #1	Suspected buried waste	3.5 feet	ND	No waste visible, sheen on seep

(1) Foundry sand observed and sampled; refer to Foundry Sand table and text for additional information.

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

Northern Area Analytical Results - Soil (VOCs, SVOCs, Metals, and pH)

-		Location	TP-11	TP-11	TP-15	TP-15
		Sample Identification	TP-11-0-1	TP-11-1-4	TP-15-0-1	TP-15-1-4
	·	Interval	0-1'	1-4'	0-1'	1-4'
		Date	3/23/2004	3/23/2004	3/23/2004	3/23/2004
		. Matrix	Soil	Soil	Soil	Soil
1	TAGM #4046 Recom					
Constituent	Up Obje	ectives				
VOCs - Analytical Method 8	3260 plus STARS (µg/K	g)				
Methylene Chloride	100	0	ND	5 J	6 J	5 J
SVOCs - Analytical Method	8270 (µa/Ka)		. —			
Phenanthrene	50.00	00(1)	ND (410)	ND (410)	ND (440)	13J
Di-n-butyl phthalate	8,1	00	43 MJ	14 MJ	21 MJ	20 MJ
Flouranthene	50,0		69 J	ND (410)	ND (440)	18 J
Pyrene	50.0		53 J	ND (410)	ND (440)	16 J
Benzo(a)anthracene	224 or		25 J	ND (410)	ND (440)	ND (420)
Chrysene	40		32J	ND (410)	ND (440)	ND (420)
Bis(2-ethylhexyl) phthalate	50.0		51 MJ	50 MJ	48 MJ	60 MJ
Benzo(a)fluoranthene	1,1		32 J	ND (410)	ND (440)	ND (420
Benzo(k)fluoranthene	1,1		23 J	ND (410)	ND (440)	ND (420
Benzo(a)pyrene	61 or		28 J	ND (410)	ND (440)	ND (420
ndeno(1,2,3-cd)pyrene	3.2		19 J	ND (410)	ND (440)	ND (420)
Benzo(g,h,i)perylene	50,0		22 J	ND (410)	ND (440)	ND (420
	Eastern USA	Cleanup Objective				
•	Background ⁽³⁾	(4)				
Aluminum	Background ⁽³⁾ 33,000	(4) SB	11,400 E	13,900 E	16,700 E	
Aluminum Arsenic	Background ⁽³⁾ 33,000 3-12**	(4) SB 7.5 or SB	5.4	8.1	9.3	7.3
Aluminum Arsenic Barium	Background ⁽³⁾ 33,000 3-12** 15 - 600	(4) SB 7.5 or SB 300 or SB	5.4 33.1 E	8.1 80.9 E	9.3 85.7 E	7.3 89.2 E
Aluminum Arsenic Barium Beryllium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75	(4) SB 7.5 or SB 300 or SB 0.16 or SB	5.4 33.1 E 0.40 B	8.1 80.9 E 0.66	9.3 85.7 E 0.74	89.2 E 0.72
Aluminum Arsenic Barium Beryllium Cadmium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB	5.4 33.1 E 0.40 B 0.31 B	8.1 80.9 E 0.66 0.35 B	9.3 85.7 E 0.74 0.30B	7.3 89.2 E 0.72 0.25 B
Aluminum Arsenic Barium Beryllium Cadmium Calcium Calcium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 ***	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E	8.1 80.9 E 0.66 0.35 B 56,500 E	9.3 85.7 E 0.74 0.30B 1,670 E	7.3 89.2 E 0.72 0.25 B 5,160 E
Aluminum Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 ***	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E 11.3 E	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E
Aluminum Arsenic Barium Beryllium Cadmium Calcium Cobalt	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 **	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E 11.3 E 5.5 BE	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E
Numinum Arsenic Barium Sadmium Calcium Chromium Cobalt Copper	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E 11.3 E 5.5 BE 11.3 E	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E
Aluminum Arsenic Baryllium Zadmium Calcium Chromium Cobalt Copper ron	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 **	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E 11.3 E 5.5 BE 11.3 E 16,800 E	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32,600 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E
Aluminum Arsenic Barium Cadmium Cadmium Calcium Chromium Cobalt Copper ron ead	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 ***	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB****	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16,800 E 17.5 E*	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E 12.5 E*	9.3 85.7 E 0.74 0.308 1,670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E*	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E*
Numinum Arsenic Barium Cadmium Cadmium Cadmium Cobalt Copper ron ead Agnesium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 **** 100 - 5,000	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB ^{****} SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 25,200 E 12.5 E* 18,200 E	9.3 85.7 E 0.74 0.30B 1.670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E* 4,090 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E* 6,690 E
Aluminum Arsenic Jarium Beryllium Zadmium Calcium Chromium Cobalt Cobalt Copper ron ead Aggnesium Aaggesium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 *** 100 - 5,000 50 - 5,000	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB**** SB SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E 127 NE*	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E 12.5 E 18,200 E 540 NE	9.3 85.7 E 0.74 0.30B 1.670 E 19.4 E 13.4 E 11.1 E 32.600 E 22.3 E* 4.090 E 557 NE*	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E* 6,690 E
Aluminum Arsenic Jarium Baryllium Calcium Calcium Calcium Chromium Copper Copper con ead dagnesium Manganese Marganese	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000 **** 100 - 5,000 50 - 5,000 0.001 - 0.2	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB SB 0 - 1	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16,800 E 17.5 E* 1,960E 127 NE* 0.062	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 25,200 E 12.5 E* 18,200 E	9.3 85.7 E 0.74 0.30B 1.670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E* 4,090 E	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E 6,690 E 376 NE
Numinum Arsenic Barium Deryllium Cadmium Cadmium Cobalt Copper con Lead Aagnese Aagnese Aarganese Aercury	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000 **** 100 - 5,000 50 - 5,000 0.001 - 0.2 0.5 - 25	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB**** SB SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E 127 NE*	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 17.7 E 27.2 E 25,200 E 12.5 E [*] 18,200 E 540 NE [*] 0.026	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32.600 E 22.3 E ⁴ 4,090 E 557 NE ⁴ 0.053	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E [*] 6,690 E 376 NE [*] 0.045
Numinum Arsenic Barium Cadmium Cadmium Cadmium Chromium Cobalt Copper ron Cobalt Copper con e.ead Magnesium Magnesium Marganese Marcury Vickel Potassium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000 **** 100 - 5,000 50 - 5,000 0.001 - 0.2	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2000 or SB SB SB SB 0 - 1 13 or SB	5.4 33.1 E 0.40 B 0.31 B 1,040 E 11.3 E 5.5 BE 11.3 E 11.3 E 16,800 E 17.5 E* 1,960E 127 NE* 0.062 13.5 *	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E 12.5 E* 18,200 E 540 NE* 0.026 28.1 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E* 4,090 E 557 NE* 0.053 20.3 E	7.3 89.2 E 0.72 0.25 B 5.160 E 19.7 E 10.3 E 21.4 E 27.100 E 19.5 E 6,690 E 376 NE 376 NE 0.045 24.4 E
Aluminum Arsenic Jarium Beryllium Calcium Calcium Chromium Cobalt Copper ron ead Magnesium Vanganese Mercury Vickel Potassium Selenium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 **** 100 - 5,000 50 - 5,000 0.001 - 0.2 0.5 - 25 8,500 - 43,000 **	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB SB 0 - 1 13 or SB SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E 127 NE* 0.062 13.5 * 792 E	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 25,200 E 12.5 E* 18,200 E 540 NE* 0.026 28.1 E 2,370 E	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E* 4,090 E 557 NE* 0.053 20.3 E 1,640 E	7.3 89.2 E 0.72 0.25 B 5.160 E 19.7 E 10.3 E 27.100 E 27.100 E 27.100 E 376 NE* 0.045 24.4 E 1,770 E
Aluminum Arsenic Jarium Jeryllium Calcium Calcium Calcium Cobalt Copper Ton Lead Maganese Manganese Vickel Potassium Silver	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000 *** 100 - 5,000 50 - 5,000 0.001 - 0.2 0.5 - 25 8,500 - 43,000 ** 0.1 - 3.9	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB 30 or SB 25 or SB 2,000 or SB SB SB SB 0 - 1 13 or SB SB 2 or SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E 127 NE* 0.062 13.5 * 792 E 0.99 B	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E 12.5 E 18,200 E 540 NE* 0.026 28.1 E 2,370 E ND (0.38)	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32.600 E 22.3 E* 4,090 E 557 NE* 0.053 20.3 E 1,640 E 1,1 B	7.3 89.2 E 0.72 0.25 B 5.160 E 19.7 E 10.3 E 21.4 E 27.100 E 19.5 E 6.690 E 376 NE 0.045 24.4 E 1,770 E 0.49 B
Aluminum Arsenic Barium Baryliium Cadmium Cadmium Calcium Cobalt Cooper ron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Vanadium	Background ⁽³⁾ 33,000 3-12** 15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000 **** 100 - 5,000 50 - 5,000 0.001 - 0.2 0.5 - 25 8,500 - 43,000 ** 0.1 - 3.9 N/A	(4) SB 7.5 or SB 300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB SB SB 0 - 1 13 or SB SB 2 or SB SB 2 or SB SB	5.4 33.1 E 0.40 B 0.31 B 1.040 E 11.3 E 5.5 BE 11.3 E 16.800 E 17.5 E* 1.960E 127 NE* 0.062 13.5 * 792 E 0.99 B ND (0.05)	8.1 80.9 E 0.66 0.35 B 56,500 E 17.5 E 11.7 E 27.2 E 25,200 E 12.5 E* 18,200 E 540 NE* 0.026 28.1 E 2,370 E ND (0.38) ND (0.06)	9.3 85.7 E 0.74 0.30B 1,670 E 19.4 E 13.4 E 11.1 E 32,600 E 22.3 E' 4,090 E 557 NE' 0.053 20.3 E 1,640 E 1.1 B 0.07 B	7.3 89.2 E 0.72 0.25 B 5,160 E 19.7 E 10.3 E 21.4 E 27,100 E 19.5 E 6,690 E 376 NE [•] 0.045 24.4 E 1,770 E 0.049 B 0.05

Notes

(1) (2) (3) TAGM #4046 - Recommended soil cleanup objectives (ug/kg or ppb) As per TAGM # 4046, total VOCs < 10,000 ppb, total semi-VOCs <500,000 ppb and individual semi-VOCs <50,000 ppm TAGM #4046 - Recommended soil cleanup objectives (mg/kg or ppm) - Eastern USA Background (4) TAGM #4046 - Recommended soil cleanup objectives (mg/kg or ppm) - Recommended Soil Cleanup Objective (average background concentrations as reported in a 1984 survey of reference material by E. Carol McCovern, NYSDEC) TAGM Technical and Administrative Guidance Memorandum TP. Test Pit SB Site Background (analytical results presented in this table are considered representative of site background) NA Not Applicable ND (0.06) Not detected above the associated reporting limit (presented in parentheses) Volatile Organic Compounds VOCs Semi-Volatile Organic Compounds SVOCs Analyte found in associated blank, as well as in the sample М Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit в Indicates an estimated value Е Indicates a value estimated or not reported due to the presence of interferences Indicates analysis is not within the quality control limits Ν Indicates spike sample recovery is not within the quality control limits New York State background *** Some forms of Cyanide are complex and very stable while other forms are pH dependent and hence are very unstable. Site-specific form(s) of Cyanide should be taken into consideration when establishing soil cleanup objective Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4 - 61 ppm. Average **** background levels in metropolitan or suburban areas near highways are much higher and typically range from 200 - 500 ppm. µg/Kg micrograms per kilogram (ppb - parts per billion) milligrams per kilogram (ppm - parts per million) mg/Kg

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

Plant No. 2 June 23, 1999 "Oll Spill" Area Analytical Results- Aqueous (TPH, VOC plus MTBE, SVOCs, and Metals)

	Location	. DPT-11
	Sample ID	DPT-11
· · · · · · · · · · · · · · · · · · ·	Interval	NA
	Date	3/26/2004
s •:	Matrix	Aqueous
····	6NYCRR Part 703 Class GA	· · · · · · · · · · · · · · · · · · ·
Constituent	Groundwater Standard	
Constituent	4	
PH (Petroleum Products) - A	nalytical Method 310.13 (µg/L)	
Fuel Oil #2	None available	ND (960)
Fuel Oil #4	None available	ND (960)
Fuel Oil #6	None available	ND (960)
Gasoline	None available	ND (960)
Kerosene	None available	ND (960)
Motor Oil	None available	ND (960)
Other-1	None available	ND (960)
VOCs - Analytical Method 826	0 plus STARS (µɑ/L)	
Vinyl chloride	2	32
Chloroethane	50	70
Acetone	50	120
1.1-Dichloroethene	5	120
1,1-Dichloroethane	5	1 9 J
2-Butanone	50	13
trans-1.2-Dichloroethene	5	94
cis-1.2-Dichloroethene	5	9J
Methyl tert butyl ether (MTBE)	10 00	ND (10)
		ND (10)
SVOCs - Analytical Method 82	70 (
No SVOCs were detected.	Not Applicable	ND
NO SVOCS Were detected.		
Metals - Analytical Methods 6	010 and 7471 (Mercury) (mg/L)	
Aluminum	2,000	11,200
Arsenic	50	49
Barium	2,000	677
Beryllium	None available	4.7 B
Cadmium		6.3
Calcium	None available	177,000
Chromium '	None available	148
Cobalt	None available	67.5
Copper	1,000	184
ron	600	144,000
_ead	50 -	144,000
	None available	75.500
Magnesium	600	2.860
	200	2,860
		154
Nickel	Nana available	10,000
Nickel Potassium	None available	10 E B
Manganese Nickel Potassium Selenium	20	10.5 B
Nickel Potassium Selenium Sodium	20 None available	12,000
Nickel Potassium Selenium	20	

<u>Notes</u>

(1)	NYSDOH Public Water Systems Part 5, Subpart 5-1, revised January 13, 2004
	Table 1. Inorganic Chemicals and Physical Characteristics.
167	Constituent detected above 6NYCRR Part 703 Class GA Groundwater Standa
ND (960)	Not detected above the associated reporting limit (presented in parentheses)
ND	Not Dectected
TPH	Total Petroleum Hydrocarbons
VOCs	Volatile Organic Compounds
SVOCs	Semi-Volatile Organic Compounds
В.	Indicates a value greater than or equal to the instrument detection limit
	but less than the quantitation limit
L	Indicates an estimated value
NA	Not Applicable
μg/L	micrograms per liter (ppb - parts per billion)
mg/L	milligrams per liter (ppm - parts per million)
-	

К

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

USTs Analytical Results - Aqueous (VOCs plus MTBE, DRO, Lead and Cyanide)

• • •	Location	DPT-4	DPT-8
	DPT-4	OPT-8	
	Interval	NA	NA
	Date	3/25/2002	3/26/2004
	Matrix	Aqueous	Aqueous
1	6NYCRR Part 703 Class GA		
Constituent	Groundwater Standard		•
VOCs - Analytical Method 8260 plus S			
Vinyl chloride	2	ND (10)	4 J
Chloroethane	50	ND (10)	14
Acetone	50	120 D	71
1,1-Dichloroethane	5	ND (10)	31
1,2-Dichloroethane	5	ND (10)	22
Trichloroethene	5	ND (10)	8 J
cis-1,2-Dichlorothene	5	ND (10)	5 J
Methyl tert butyl ether (MTBE)	. 10 ('')	ND (10)	ND (10)
DRO - Analytical Method 8015B (mg/L			
DRO	None available	ND (0.48)	20
Lead - Analytical Method 6010 (mg/L)			
Lead	None available	335 E	1,610 E
Cyanide - Total - Analytical Method 90	12 (µg/L)		
Cyanide	None available	NA	NA

Notes

(1)	NYSDOH Public Wer Systems Part 5, Subpart 5-1, revised January 13, 2004, Table 1. Inorganic Chemicals and Physical Characteristics.
167	Constituent detected above 6NYCRR Part 703 Class GA Groundwater Standard
NA	Not Analyzed
DPT	Direct Push Technology
DRO	Diesel Range Organics
ND (10)	Not detected above the associated reporting limit (presented in parentheses)
VOCs	Volatile Organic Compounds
J	Indicates an estimated value
Ď	Identifies compounds identified in secondary dilution
E	Indicates a value estimated or not reported due to the presence of interferences
μg/L	micrograms per liter (parts per billion)
mg/L	milligram per liter (parts per million)

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

USTs Analytical Results - Soil (VOCs plus MTBE, DRO, Lead and Cyanide)

		Location	DPT-4	DPT-8
		Sample Identification	DPT-4-6-8	DPT-8-9-1
		Interval		
		Date	3/25/2004	3/26/2004
-		Matrix	Soil	Soil
	TAGM #4046 Recommend	led Soil Clean- Up		
Constituent	Objectives	Objectives ⁽¹⁾		
/OCs - Analytical Method 8260 plus	s STARS (µg/Kg)			
Methylene Chloride	100	100		
I,1-Dichloroethane	200		ND (12)	14
1,2-Dichloroethane	100		ND (12)	2 J
Trichloroethene	700	700		98
cis-1,2-Dichlorothene			ND (12)	13
Methyl tert butyl ether (MTBE)	1,000 ⁽⁴⁾	1,000 ⁽⁴⁾		
DRO - Analytical Method 8015B (mg	ı/Kg)			
DRO	None availa	ble	8.8 J	140
	Eastern USA Background ⁽²⁾	Recommended Soll Cleanup Objective ⁽³⁾		
			· · · · · · · · · · · · · · · · · · ·	
Lead - Analytical Method 6010 (mg/	Kg)			
Lead - Analytical Method 6010 (mg/ Lead	Kg)	SB****	13.0	30.9
	****	SB****	13.0	30.9

Notes

TAGM #4046 - Recommended soil cleanup objectives (ug/kg or ppb)
TAGM #4046 - Recommended soil cleanup objectives (mg/kg or ppm) - Eastern USA Background
TAGM #4046 - Recommended soil cleanup objectives (mg/kg or ppm) - Recommended Soil Cleanup Objective (average background concentrations as reported in a 1984 survey of reference material by E. Carol McCovern, NYSDEC)
STARS - TCLP alternative guidance value for gasoline contaminated soil (ug/kg or ppb)
Not Analyzed
Direct Push Technology
Diesel Range Organics
Not detected above the associated reporting limit (presented in parentheses)
Volatile Organic Compounds
Indicates an estimated value
Some forms of Cyanide are complex and very stable while other forms are pH dependent and hence are very unstable. Site-specific form(s) of Cyanide should be taken into consideration when establishing soil cleanup objective
Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4 - 61 ppm. Average background levels in metropolitan or suburban areas near highways are much higher and typically range from 200 - 500 ppm.
Site Background (analytical results presented in Table 9 (Northern Area) are considered representative of site background)
micrograms per kilogram (ppb - parts per billion)
millioram per kilogram (ppm - parts per million)

Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

Foundry Sand Analytical Results - Soil (VOCs, Metals, Cyanide, and Phenols)

Obje us STARS (µg/Kg) 1	Sample Identification Interval Date Matrix Foundry Sand Observed imended Soil Clean- Up ctlives ⁽¹⁾	DPT-2-2-4 2-4' 3/25/2004 Soil no ND (12) ND (12) ND (12)	DPT-8-0-1 0-1' 3/26/2004 Soli yes 3 J 230	DPT-12-0-1 0-1 3/26/2004 Soil no	DPT-13-1-2 1-2' 3/26/2004 Soil yes	DPT-17-1-2 1-2' 3/26/2004 Soil no	TP-22-0-1 0-1' 3/29/2004 Soil yes
Obje us STARS (µg/Kg) 1	Date Matrix Foundry Sand Observed imended Soil Clean- Up ctlives ⁽¹⁾ 200 .900 100	3/25/2004 Soil no ND (12) ND (12)	3/26/2004 Soil yes	3/26/2004 Soil no	3/26/2004 Soil	3/26/2004 Soil	3/29/2004 Soil
Obje us STARS (µg/Kg) 1	Matrix Foundry Sand Observed imended Soil Clean- Up ctives ⁽¹⁾ 200 .900 100	Soil no ND (12) ND (12)	Soit yes	Soil no	Soil	Soil	Soil
Obje us STARS (µg/Kg) 1	Foundry Sand Observed imended Soil Clean- Up ictives ⁽¹⁾ 2000 .900 100	no ND (12) ND (12)	yes	по			
Obje us STARS (µg/Kg) 1	2000 .900 100	ND (12) ND (12)	31		yes		yes
Obje us STARS (µg/Kg) 1	200	ND (12)					
1	200 .900 100	ND (12)					
1	200 .900 100	ND (12)					
	.900 100	ND (12)		ND (13)	ND (15)	ND (12)	ND (12)
	100		430.	ND (13)	3 J	ND (12)	ND (12)
	200 1	ND (12)	ND (12)	ND (13)	7 J	ND (12)	6 J
2	200	ND (26)	400 E	ND (13)	120	ND (28)	ND (26)
	,700	ND (12)	4 J	ND (13)	ND (15)	ND (12)	ND (12)
	200	ND (12)	39	ND (13)	5 J	ND (12)	3 J
	100	ND (12)	32	ND (13)	ND (15)	ND (12)	ND (12) 5 J
							ND (12)
							6J
				ND (13)	5 J	ND (12)	3 J
							ND (12)
	· · · · ·	<u> </u>	·····	<u> </u>	- \ - /		<u> </u>
		12800 E	75900 E	13200 E	17900 E	17400 E	5540
							ND (0.37)
3-12**		9	7.8	8.3	6	7.6	2.7*
15 - 600	300 or SB	76.2 E	224 E	69.2 E	65 E	152 E	36.1
0 - 1.75	0.16 or SB	0.66	0.52 B	0.61 B	0.51 B	0.83	0.25 B
							2.6*
							49800
							84.8 N* 2.7 B
							65.2 N*
							11100
****							40.8*
100 - 5,000	SB	14400	2750	2270	11600	4860	4960
50 - 5,000	SB	521 E	731 E	195 E	232 E	502 E	301
0.001 - 0.2	0-1	0.020 B	0.53	0.097	0.099		0.199
							14.4
							557 B
							0.51 B 0.47 B
							71.7 B
							ND (0.42)
							7.2
9 - 50	20 or SB	63.3 E	17100 E	75.8 E	561 E	71 E	206 N
- 5040 (
N/A	•••	NA	ND (5012)	NA	NA	NA	NA
			· · · · · · · · · · · · · · · · · · ·				
		ND (5.0)	ND (5 0)	ND (5.0)	ND (5.0)	ND 75 0)	ND (5.0)
Nut applicable	Not applicable	ND (0.0)		110 (0.0)	(0.0)	110 (0.0)	110 (0.0)
	None 1, and 7471 (Mercury Eastern USA Background ⁽²⁾ 33,000 N/A 3-12** 15 - 600 0 - 1.75 0.1 -1 30 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1.5 - 25 500 - 43,000 ** 0.1 - 3.9 N/A 1 - 300 9 - 50 d 5012 (µg/Kg) N/A	800 300 700 None available 1,000 ⁽⁴⁾ and 7471 (Mercury) (mg/Kg) Eastern USA Recommended Soil 3ackground ⁽²⁾ Cleanup Objective ⁽³⁾ 33,000 SB N/A SB 3-12** 7.5 or SB 0 - 1.75 0.16 or SB 0.1.1 1 or SB 3.000 SB 1.5 - 600 300 or SB 0.1.1 1 or SB 0.1.1 1 or SB 0.1.1 1 or SB 0.3.5,000 2.000 or SB 1.5 - 60 *** 30 or SB 1.5 - 50 2.5 or SB 0000 to 550,000 2.000 or SB 0.001 - 0.2 0 - 1 0.5 - 25 13 or SB 50 - 43,000 ** SB 0.1 - 3.9 2 or SB N/A SB 1.1 - 300 150 or SB N/A SB 1.300 150 or SB 9 - 50 20 or SB	800 ND (12) 300 ND (12) 700 ND (12) 700 ND (12) 1,000 ⁽⁴⁾ ND (12) and 7471 (Mercury) (mg/Kg) Eastern USA Recommended Soil 33.000 Sackground ⁽⁷⁾ Cleanup Objective ⁽³⁾ 33.000 SB 12800 E N/A S8 0.80 BN 3-12** 7.5 or SB 9 15 - 600 300 or SB 76.2 E 0 - 1.75 0.16 or SB 0.66 .0.1 - 1 1 or SB 0.53 B 3.00 or *SB 12.1 E 1 - 5.0 25 or SB 26.6 0000 to 550.000 2.000 or SB 26000 E **** SB 14400 50 - 5.000 SB 14400 50 - 5.000 SB 29.2 E	800 ND (12) ND (12) 300 ND (12) 72 700 ND (12) 72 700 ND (12) 72 None available ND (12) 3 J 1,000 ⁽⁴⁾ ND (12) 4 J 1,000 ⁽⁴⁾ ND (12) ND (12) and 7471 (Mercury) (mg/Kg) Eastern USA Recommended Soil Background ⁽⁷⁾ Cleanup Objective ⁽³⁾ 33.000 SB 12800 E 75900 E N/A S8 0.80 BN 4.2 BN 33.000 SB 12800 E 75900 E N/A S8 0.80 BN 4.2 BN 33.000 SB 12800 E 75900 E N/A S8 0.80 BN 4.2 BN 33.000 SB 166 33.000 30.0 or SB 76.2 E 224 E 0.1.75 0.16 or SB 0.66 0.52 B 0.1.1 1 or SB 0.53 B 166 33.000 130.000 E* 130.00 E* 1560 *** 10 or SB 12.1 E 16 E	800 ND (12) ND (12) ND (13) 300 ND (12) 72 ND (13) 700 ND (12) 3 J ND (13) None available ND (12) 4 J ND (13) 1,000 ⁽⁴⁾ ND (12) 4 J ND (13) 1,000 ⁽⁴⁾ ND (12) ND (12) ND (13) and 7471 (Mercury) (mg/Kg) Eastern USA Recommended Soil Stackground ⁽⁷⁾ Cleanup Objective ⁽⁷⁾ 33,000 SB 12800 E 75900 E 13200 E N/A SB 0.80 BN 4.2 BN 1.0 BN 3-12** 7.5 or SB 9 7.8 8.3 15 - 600 300 or SB 76.2 E 224 E 65.2 E 0 - 1.75 0.16 or SB 0.66 0.52 B 0.61 B 0.1 - 1 1 or SB 0.53 B 166 0.65 B 30 ar SB 17.1 E 440 E 14.8 E 2.5 - 60** 30 or SB 12.1 E 16 E 5.6 BE	800 ND (12) ND (12) ND (13) ND (15) 300 ND (12) 72 ND (13) 28 700 ND (12) 3 J ND (13) ND (15) None available ND (12) 4 J ND (13) S J 1,000 ⁽⁴⁾ ND (12) ND (12) ND (13) ND (15) and 7471 (Mercury) (mg/Kg) Eastern USA Recommended Soil Mackground ⁽³⁾ ND (12) ND (12) ND (13) ND (15) 33,000 SB 12800 E 75900 E 13200 E 17900 E N/A SB 0.80 BN 4.2 BN 1.0 BN 1.4 BN 312** 7.5 or SB 9 7.8 8.3 6 0 - 1.75 0.16 or SB 76.2 E 224 E 69.2 E 65 E 0 - 1.75 0.16 or SB 17.1 E 440 E 14.4 B 98.4 E 2.5 - 60 ** 30 or SB 17.1 E 16E 5.6 BE 6.5 BE 1.5 - 40 *** 13 or SB 256 or S0 227 or 156 <td>B00 ND (12) ND (12) ND (13) ND (15) ND (12) 300 ND (12) 72 ND (13) 28 ND (12) 700 ND (12) 3 J ND (13) ND (15) ND (12) None available ND (12) 4 J ND (13) ND (15) ND (12) 1,000⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) 1,000⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) 1,000⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (14) ND (15)</td>	B00 ND (12) ND (12) ND (13) ND (15) ND (12) 300 ND (12) 72 ND (13) 28 ND (12) 700 ND (12) 3 J ND (13) ND (15) ND (12) None available ND (12) 4 J ND (13) ND (15) ND (12) 1,000 ⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) 1,000 ⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) 1,000 ⁶⁰ ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (15) ND (12) atdraw reliable ND (12) ND (12) ND (13) ND (14) ND (15)

SB

Site Background (analytical results presented in Table 9 (Northern Area) are considered representative of site background) New York State background

••••

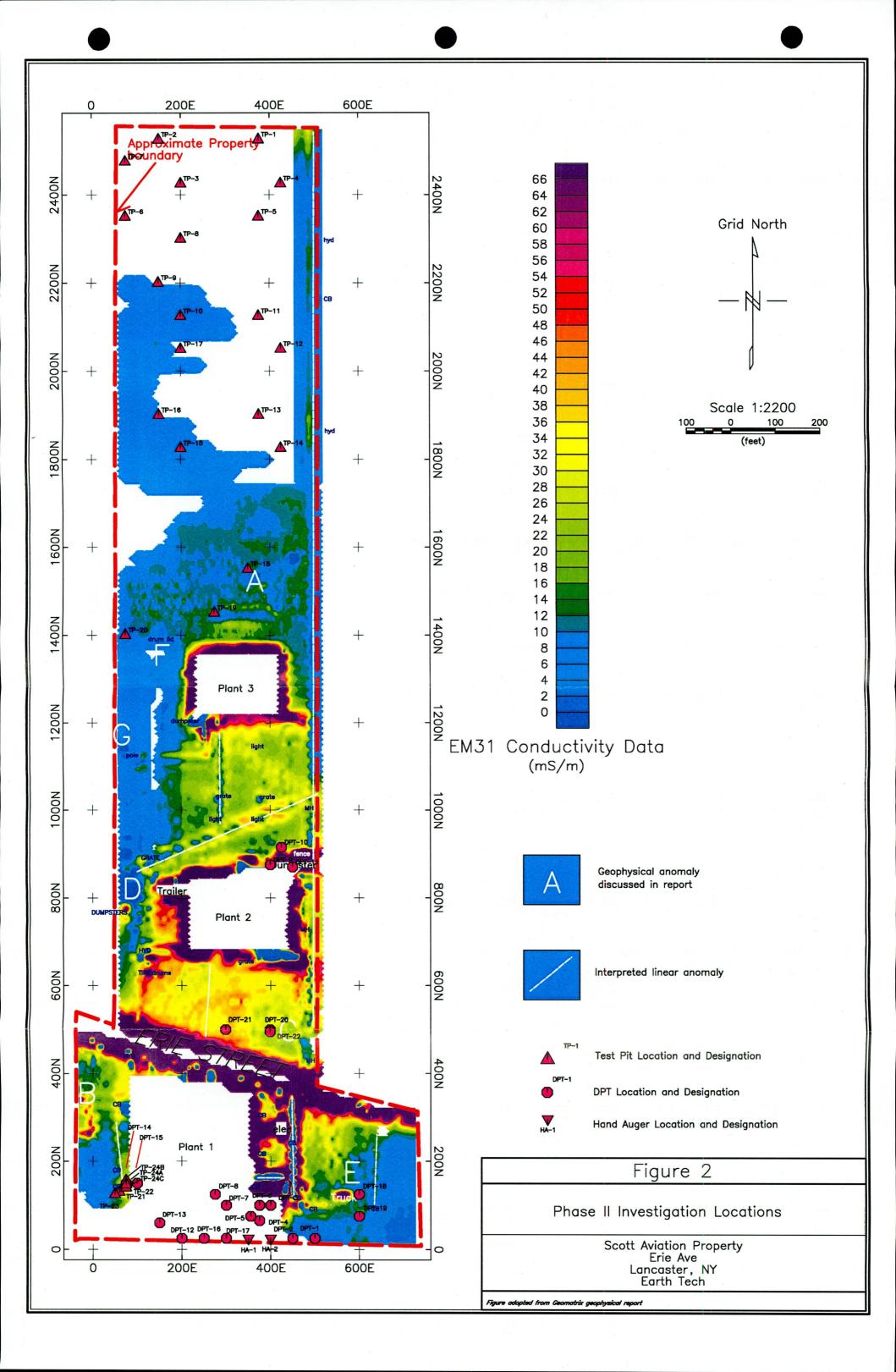
New York State background Some forms of Cyanide are complex and very stable while other forms are pH dependent and hence are very unstable. Site-specific form(s) of Cyanide should be taken into consideration when establishing soil cleanup objective. Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4 - 61 ppm. Average background levels in metropolitan or suburban areas near highways are much higher and typically range from 200 - 500 ppm. micrograms per kilogram (ppb - parts per billion) milligrams per kilogram (parts per million)

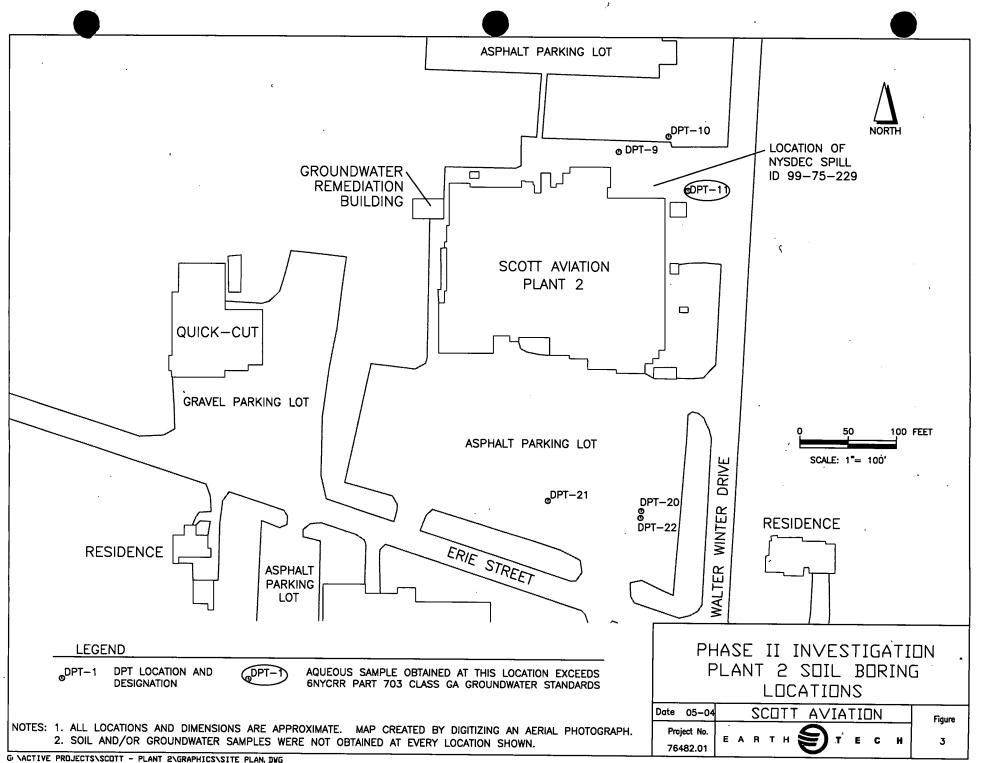
µg/Kg mg/Kg µg/g

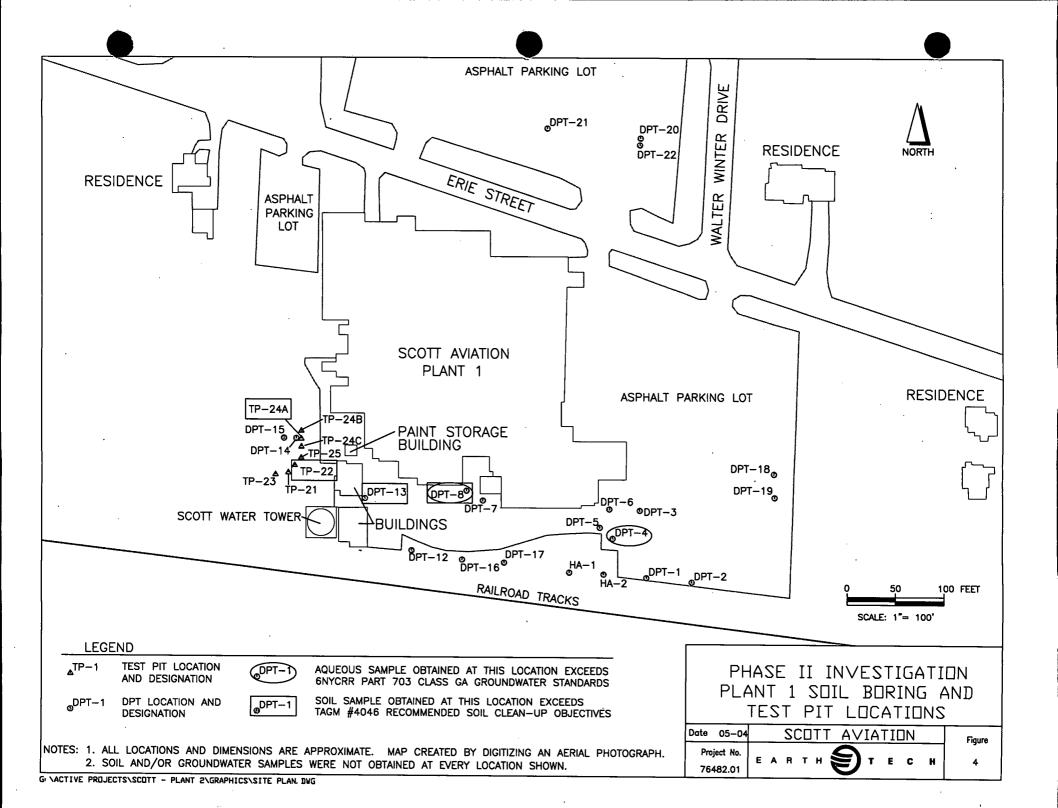
Scott Aviation Facility Lancaster, New York Phase II Environmental Site Investigation

West Side Plant No. 1 Analytical Results - Soil (VOCs, SVOCs, Matals, Cyanide, and pH)

		Location Sample Identification	TP-24A TP-24-3
		Interval	3'
		Date	3/29/2004
		Matrix	Soil
		mended Soil Clean- Up	•
Constituent	Ође	ectives	
/QCs - Analytical Method 8260 plus STARS (µg/K	a)	•	
/inyl Chloride		00 ⁽¹⁾	3 J
Chloroethane	1,900		28
Acetone		48	
1,1-Dichloroethane		200	3,600 D
1,1,1-Trichloroethane	800 700		18,000 D
Trichloroethene		available	60 39
Benzene		60	7.1
4-Methyl-2-pentanone	1	.000	8.1
Tetrachloroethene	1,400		6 J
Toluene	1,500		28,000 D
Ethylbenzene		,500	8,400 D
Total Xylenes	1, Nore	,200	140,000 D
1,1,2-Trichloro-1,2,2-triflour	None	available	7,100 D 4,400 D
Cyclohexane		available	9,1
Methylcyclohexane	None	available	37
sopropylbenzene	None	available	98
sec-Butylbenzene	None	available	2 J
Prophibenzene	None	available	19
p-Cymene		available	2 J
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	None	available available	36
1,4,5 million/1001/1001/2010	1		
SVOCs - Analytical Method 8270 (µg/Kg)			
Phenol	30 or	MDL ⁽²⁾	640
2-Methylphenol	100	or MDL	910
Acetophenone		available	520
Methylphenol		or MDL	6,600 D
2,4-Dimethylphenol		available	11,000 D 120 J
Naphthalene 2-Methylnaphthalene	36	3,000	59 J
2,4,5-Trichlorophenol		100	39 J
Biphenyl	None available		20 J
Pentachlorophenol	100	or MDL	26 J
Phenanthrene	50,	000(3)	64 J
Anthracene	50,	000(3)	13 J
Di-n-butyl phthalate	8	100	66 J
Fluoranthene	50,	000(3)	85 J
Pyrene	50,	000 ⁽³⁾	51 J 30 J
Benzo(a)anthracene Chrysene		400	
Bis(2-ethylhexyl)phthalate)	50	000 ⁽³⁾	2,000
siste on fillow fill in a later f	<u> </u>		-,
Metals - Analytical Methods 6010 and 7471 (Mercu	ry) (mg/Kg)		
	Eastern USA	Recommended Soli	
	Background ⁽⁴⁾	Cleanup Objective (5)	
Aluminum	33,000	SB	17,200 E
Arsenic		7.5 or SB	13.7
	3-12**		
Barlum	15-600	300 or SB	131 E
Barlum Beryllium	15 - 600 0 - 1.75	300 or SB 0.16 or SB	0.95
Barlum Beryllium Cadmium	15 - 600 0 - 1.75 0.1 -1	300 or SB	0.95
Bardum Beryflum Cadmlum Caldum	15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 ***	300 or SB 0.18 or SB 1 or SB SB 10 or SB	0.95 1.0 2,970 E 27.4 E
Barlum Barytilum Cadmium Caldium Chromium Cobatt	15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 **	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB	0.95 1.0 2,970 E 27.4 E 15.3 E
Jarium Barium Badmlum Caldium Caldium Cabat Cobat Copper	15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50	300 or SB 0.18 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB	0.95 1.0 2,970 E 27.4 E 15.3 E 31.4
Barlum Beryllum Catofum Catofum Chromium Cobett Copper Coper	15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 **	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB	0.95 1.0 2,970 E 27.4 E 15.3 E 31.4 38,600 E
Barlum Barlum Cadmlum Caldium Caldium Caldium Conat Cooper Cooper Cooper Cooper Cooper Cooper Cooper	15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 2.5 - 60 ** 1 - 50 2.000 to 550,000	300 or SB 0.18 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB****	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38,600 E 38.1 E
Barlum Geryllum Caldium Caldium Chomium Cobat Copper ron Con Ragneslum Kagneslum	15 - 600 0 - 1.75 0.1 - 1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 *** 100 - 5,000	300 or 58 0.16 or 58 1 or 58 58 10 or 58 30 or 58 25 or 58 2,000 or 58 58***	0.95 1.0 2.970 E. 27.4 E. 15.3 E. 31.4 38,600 E. 38.1 E. 6,400 E.
Barlum Baryllum Cadmlum Saldium Chronium Cobat Copper Copp	15 - 600 0 - 1.75 0.1 -1 130 - 35.000 *** 2.5 - 60 ** 1 - 50 2.000 to 550.000 *** 100 - 5.000 50 - 5.000	300 or SB 0.18 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB****	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38,600 E 38.1 E 6,400 E 525 E
Jarium Jarium Cadnium Cadnum Caldum Canonium Cabah Cabah Capper Con Con Con Con Con Con Con Con Con Con	15.600 0.1.75 0.1.1 130.35000*** 1.5.40*** 1.5.40*** 1.60** 2.5.60** 2.5.60** 1.60** 2.5.60** 1.60** 2.5.60** 1.00** 50.5000 50.5000 0.001-0.2 0.5.25	300 or SB 0.16 or SB 1 or SB SB 30 or SB 25 or SB 2,000 or SB SB*** SB 30 or SB 2,000 or SB SB SB 30 or SB 2,000 or SB SB 3 or SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.600 E 38.1 E 6.400 E 526 E 0.031 35.5 E
Barlum Baryllum Cadonum Cadonum Cadoum Cadoum Cobat Coopper Con Coopper Con Coo Magneslum Manganesie Wasgnesium Vandu Cod Vickol Cod	15.600 0.1.75 0.1.1 130-35,000 *** 1.5-40 *** 2.5-60 *** 1.5-60 *** 2.000 to 550,000 50-5,000 50-5,000 0.001 • 0.2 0.5-25 8,500 • 43,000 ***	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB SB 0 or SI 30 or SB 2,000 or SB SB SB SB SB SB SB SB SB	0.95 10 2.970 E 274 E 15.3 E 31.4 38.600 E 38.1 E 6.400 E 525 E 0.031 35.5 E 1.820 E
Bartum Barytlum Cadmlum Cadmlum Cadmum Cadmum Cadmum Caban Caban Caban Caban Caban Manganese Mercury Victal Victal Cataslum Selenium	15.600 0.1.75 0.1-1 130-35000*** 2.5.60*** 2.5.60** 0.00 550,000 1.00 50,000 100 - 5,000 0.001 - 0.2 0.5.25 8,500 - 43,000** 0.1.3.9	300 or SB 0.16 or SB 1 or SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB SB 30 or SB 2,000 or SB SB SB 0 or SB 2 or SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.600 E 38.1 E 6.400 E 526 E 0.031 35.5 E 1.3 B
Barlum Baryllum Cadomlum Cadomlum Cadoum Cadoum Cobat Coobat Cooper Con Con Con Magnesse Magnesse Manganesse Vickol Portusslum Selenlum Selenlum Silver	15.600 0.1.75 0.1-1 130-35,000 ···· 1.5-40 ··· 2.5-60 ··· 1.55 2,000 to \$50,000 ··· 100-5,000 50-5,000 0.001-0.2 0.3-25 0.5-25 0.1-3.9 N/A	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB 0.1 13 or SB SB 2.1 32 or SB SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38,600 E 38.1 E 6,400 E 525 E 0.031 35.5 E 1,820 E 1.3 B 0.16 B
Barlum Barlum Cadonlum Cadonlum Cadonum Cadonum Cadonum Cobat Copper Coba R Copper R R R R R R R R R R R R R R R R R R R	15.600 0.1.75 0.1-1 130-35000*** 2.5-60** 2.000 1550,000 1.60 2.000 1550,000 100-5,000 0.01-0.2 0.5-25 8,500-43,000** 0.1.3.9 N/A 6,000 -8,000	300 or SB 0.16 or SB 1 or SB 1 or SB 30 or SB 30 or SB 25 or SB 26 or SB SB 30 or SB 30 or SB 30 or SB SB 0 - 1 SB 2 or SB SB 2 or SB SB SB SB SB SB SB SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.60 E 38.1 E 6.400 E 525 E 0.031 35.5 E 1.820 E 1.3 B 0.16 B 129 B
Bartum Barytlum Cadmlum Cadmlum Cadmum Cadmum Cadmum Caban Caban Caban Caban Caban Manganese Mercury Victal Victal Cataslum Selenium	15.600 0.1.75 0.1.1 130-35,000 ··· 1,5.40 ··· 2,5.60 ··· 1,5540 ··· 2,000 lo 550,000 0.001-0.2 0.5-25 8,500-43,000 ··· 0.1-3.9 N/A 6,000-8,000 1.300	300 or SB 0.06 or SB 1 or SB 58 30 or SB 25 or SB 2,000 or SB SB 0.11 13 or SB 2.00 or SB SB 2.00 or SB SB SB 2.07 SB SB 2.07 SB SB 13 or SB SB SB SB 13 or SB SB 150 or SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.600 E 38.1 E 6.400 E 525 E 0.031 35.5 E 1,820 E 1,38 0.16 B 129 B 38.6 E
Sarium Sarium SaryIlium Sarium Sarium Sarium Sarium Sopper Sopper Con Magnesium Magnesium Magnesium Mercury Vickel Vickel Selenium Selenium Solur Sorium Vanadium Zinc	15.600 0.1.75 0.1-1 130-35000*** 2.5-60** 2.000 1550,000 1.60 2.000 1550,000 100-5,000 0.01-0.2 0.5-25 8,500-43,000** 0.1.3.9 N/A 6,000 -8,000	300 or SB 0.16 or SB 1 or SB 1 or SB 30 or SB 30 or SB 25 or SB 26 or SB SB 30 or SB 30 or SB 30 or SB SB 0 - 1 SB 2 or SB SB 2 or SB SB SB SB SB SB SB SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.60 E 38.1 E 6.400 E 525 E 0.031 35.5 E 1.820 E 1.3 B 0.16 B 129 B
Barlum Barlum Caldium Caldium Caldium Cobalt Copper Iron Lead Manganesium Manganesie Mercury Vickol Potasslum Selenium Selenium Selenium Silver Sodium Yanadlum Zinc Cyanide - Total - Analytical Method 5012 (µg/Kg)	15.600 0.1.75 0.1.1 130-35,000 *** 1.5.40 *** 2.5.60 ** 1.55,000 2,000 to 550,000 50.50,000 50.50,000 50.50,000 50.5,000 0.001-0.2 0.5.25 8,500-43,000 ** 0.1.3.9 N/A 6,000 - 8,000 1 - 300 9 - 50	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB 0.1 13 or SB SB SB 2 or SB SB 2 or SB SB 2 or SB SB 2 or SB 2 or SB 20 or SB	0.95 10 2,970 E 274 E 15,3 E 31,4 38,60 E 38,1 E 6,400 E 525 E 0,031 35,5 E 1,820 E 1,800
Barlum Barlum Caldium Caldium Caldium Cobalt Copper Iron Lead Manganesium Manganesie Mercury Vickol Potasslum Selenium Selenium Selenium Silver Sodium Yanadlum Zinc Cyanide - Total - Analytical Method 5012 (µg/Kg)	15.600 0.1.75 0.1.1 130-35,000 ··· 1,5.40 ··· 2,5.60 ··· 1,5540 ··· 2,000 lo 550,000 0.001-0.2 0.5-25 8,500-43,000 ··· 0.1-3.9 N/A 6,000-8,000 1.300	300 or SB 0.06 or SB 1 or SB 58 30 or SB 25 or SB 2,000 or SB SB 0.11 13 or SB 2.00 or SB SB 2.00 or SB SB SB 2.07 SB SB 2.07 SB SB 13 or SB SB SB 13 or SB SB 150 or SB	0.95 1.0 2.970 E 27.4 E 15.3 E 31.4 38.600 E 38.1 E 6.400 E 525 E 0.031 35.5 E 1,820 E 1,38 0.16 B 129 B 38.6 E
Barlum Baryllium Caldinum Caldinum Caldinum Cobatt Coopper Iron Coopper Iron Coopper Iron Coopper Iron Coopper	15.600 0.1.75 0.1.1 130-35,000 *** 1.5.40 *** 2.5.60 ** 1.55,000 2,000 to 550,000 50.50,000 50.50,000 50.50,000 50.5,000 0.001-0.2 0.5.25 8,500-43,000 ** 0.1.3.9 N/A 6,000 - 8,000 1 - 300 9 - 50	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB 0.1 13 or SB SB SB 2 or SB SB 2 or SB SB 2 or SB SB 2 or SB 2 or SB 20 or SB	0.95 10 2,970 E 274 E 15,3 E 31,4 38,60 E 38,1 E 6,400 E 525 E 0,031 35,5 E 1,820 E 1,800
Barlum Barlum Caldium Caldium Caldium Cobalt Copper Iron Lead Manganesium Manganesie Mercury Vickol Potasslum Selenium Selenium Selenium Silver Sodium Yanadlum Zinc Cyanide - Total - Analytical Method 5012 (µg/Kg)	15 - 600 0 - 1.75 0.1 -1 130 - 35,000 *** 1.5 - 40 *** 2.5 - 60 ** 1 - 50 2,000 to 550,000 50 - 5,000 50 - 5,000 0.001 - 0.2 0.5 - 25 8,500 - 43,000 ** 0.1 - 3.9 N/A 6,000 - 8,000 1 - 300 9 - 50	300 or SB 0.16 or SB 1 or SB SB 10 or SB 30 or SB 25 or SB 2,000 or SB SB 0.1 13 or SB SB SB 2 or SB SB 2 or SB SB 2 or SB SB 2 or SB 2 or SB 20 or SB	0.95 10 2,970 E 274 E 15,3 E 31,4 38,60 E 38,1 E 6,400 E 525 E 1,820 E 1,


(1)	TAGM #4048 - Recommended soil cleanup objectives (ug/kg or ppb)
(2)	TAGM #4048 - Recommended soil cleanup objectives (mg/kg or ppm) - Eastern USA Background
(3)	As per TAGM # 4046, total VOCs < 10,000 ppb, total semi-VOCs <500,000 ppb and individual semi-VOCs <50,000 ppm
(4)	TAGM #4048 - Recommended soil cleanup objectives (mg/kg or ppm) - Eastern USA Background
(5)	TAGM #4048 - Recommended soil cleanup objectives (mg/kg or ppm) - Recommended Soil Cleanup Objective
	(average background concentrations as reported in a 1984 survey of reference material by E. Carol McCovern, NYSDEC).
TP	Test Pit
167	Constituent detected above Recommended Soil Clean-up Objective
ND (4914)	Not detected above the associated reporting limit (presented in parentheses)
VOCs	Volatile Organic Compounds
SVOCs	Semi-Volatile Organic Compounds
J	Indicates an estimated value
D	Identifies compounds identified in secondary dilution
8 .	Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit
E	Concentration exceeded the calibration range of the instrument
NA	Not Analyzed
SB	Site Background (analytical results presented in Table 9 (Northern Area) are considered representative of site background)
••	New York State background
	Some forms of Cyanide are complex and very stable while other forms are pH dependent and hence are very unstable.
	Site-specific form(s) of Cyanice should be taken into consideration when establishing soil cleanup objective
••••	Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4 - 61 ppm. Average
	background levels in metropolitan or suburban areas near highways are much higher and typically range from 200 - 500 ppn
μg/kg	micrograms per kilogram (ppb - parts per billion)
mg/Kg	milligrams per kilogram (ppm - parts per million)


SCOTT AVIATION, INC. –PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT


FIGURES

Earth Tech, Inc.

SCOTT AVIATION, INC. -PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

APPENDIX I

GEOPHYSICAL REPORT

Earth Tech, Inc.

June 2004

90B John Muir Drive Amherst, New York 14228 (716) 565-0624 • Fax (716) 565-0625

April 6, 2004

Dino Zack Geologist Earth Tech, Inc. University Corporate Centre, Suite 341 100 Corporate Parkway Amherst, NY 14226

Subject: Proposed Geophysical Survey, Scott Aviation Property, Lancaster, NY

Dear Mr. Zack,

1.0 INTRODUCTION

This letter report presents the results of the geophysical investigation performed for Earth Tech, Inc. in support of their investigation of the Scott Aviation Property located in Lancaster, NY (the Site). The site is approximately 26 acres in size. Approximately half of the site is asphalt paved with the remainder sparsely to heavily vegetated.

The objective of the geophysical investigation was to geophysically characterize the site by identifying anomalies with potential environmental significance. A portion of the northern area of the Site is covered with dense vegetation which limited our ability to acquire geophysical data.

A geophysical investigation was performed at the Site utilizing frequency domain electromagnetic techniques. Geomatrix Consultants, Inc. (Geomatrix) performed the data acquisition between March 18 -21, 2004. Preliminary data were supplied to Earth Tech on March 22, 2004.

The geophysical results presented herein are intended to serve as a guide to focus any future intrusive investigations, if warranted. Additional collaborative data are generally necessary to confirm geophysical anomalies.

Earth Tech, Inc. April 6, 2004

Page 2

METHODOLOGY

The following sections present the geophysical methodology utilized for this investigation.

2.1 Reference Grid

A reference grid was installed by Geomatrix personnel to facilitate data acquisition along lines spaced 12.5 feet apart. The grid consisted of alternating orange and yellow pin flags (vegetated areas) and/or spray painted markings (asphalt-paved areas) nominally spaced at 100 ft by 25 ft intervals. Select grid coordinates were labeled to assure that grid coordinates could be reoccupied if necessary. Surface features were annotated on-site to assist with geophysical data interpretation.

2.2 Electromagnetic EM31 Survey Methodology

Geonics EM31 Terrain A Conductivity meter was used to measure and record the quadrature component (ground conductivity) and the inphase component of the EM field along the survey lines. The quadrature component of the EM field is a measurement of the apparent conductivity. ground The inphase component of the EM field is sensitive to metallic objects. Comparison of the quadrature component of the EM field data (expressed in units of milliSiemens per meter (mS/m)) and the inphase component data (expressed in units of parts per

EM31 in use at the site

thousand (ppt)) results in increased anomaly definition. The character of the EM response, low or high, is partially dependent on the orientation of the buried target relative to the orientation of the EM31 device during data acquisition, and the survey direction. A buried metal pipe, for example, will exhibit a high valued response when the trend of the pipe is parallel to the survey direction. Alternatively, when a survey line crosses a buried metal pipe whose trend is perpendicular to the survey direction, it is characterized by a low response. Similarly, other complex buried metal anomalies are indicated by a coupling of a high and low response.

Earth Tech, Inc. April 6, 2004

Page 3

All readings were taken with the instrument oriented parallel to the direction of travel, in the vertical dipole mode and with the instrument at waist height. The depth of penetration with the instrument in this configuration is approximately 12 to 15 feet below ground surface. Data were collected and stored in a solid state memory data logger during the survey. The data logger was interfaced to a portable computer and the data were transferred to a floppy disk for subsequent processing and interpretation. A survey base station was established on-site and was revisited throughout the survey to check for instrument drift and malfunction. No significant drift or malfunction was observed.

The terrain conductivity and inphase data were initially edited and then plotted as profile lines for interpretation. Contour maps of the data were then constructed and utilized for final interpretation. The geophysical data are presented in final form as a series of color contour maps. The color maps allow for an illustration of detected anomalies that are associated with conductive materials such as buried metals, wastes, fill, utilities, and changes in soil texture and/or moisture content.

3.0 RESULTS

The geophysical conductivity and inphase data from the EM31 survey are presented as color contour maps in Figure 1 and 2, respectively. Conductivity values at the site were observed to range from below 0 mS/m to over 70 mS/m. This variation in conductivity may be related to any one or combination of the following conditions:

- A change in soil/fill type. For example, an increase in relative clay content may increase the measured conductivity;
- A change in soil moisture. Moisture content would be expected to increase in areas of low topographic elevation as more saturated sediments lie within the depth of investigation of the EM instrument;
- A change in pore fluid specific conductance. For example, the presence of salt-impacted water within the pore space of the shallow soil will increase the measured conductivity primarily due to the presence of chloride ions; or
- Interference from surface or buried metallic anthropogenic features such as power lines, fences, pipes, and metallic structures.

The EM-31 inphase data are presented in Figure 2. The inphase component of the electromagnetic field, measured by the EM-31, is sensitive to buried metals. The inphase response is proportional to the conductivity response in areas of high conductivity. Where the

Earth Tech, Inc. April 6, 2004

Page 4

conductivity is highly variable over a relatively short lateral distance, data interpretation and anomaly identification are difficult.

The following labeled anomalies are interpreted to be potentially significant:

Anomaly A is an anomalous zone in the eastern portion of a sparsely vegetated field north of Plant 3. Construction and Demolition (C&D) debris were observed coincident with this anomaly. The inphase data is highly variable in this area suggesting the presence of surface or buried metals.

Anomaly **B** is located in a grassy area west of Plant 1 in close proximity to a neighboring residence. The conductivity data of Figure 1 suggests a linear buried metallic feature. The adjacent property owner indicated that he installed a buried dog fence in this area. If this fence had been energized, it might explain the observed response.

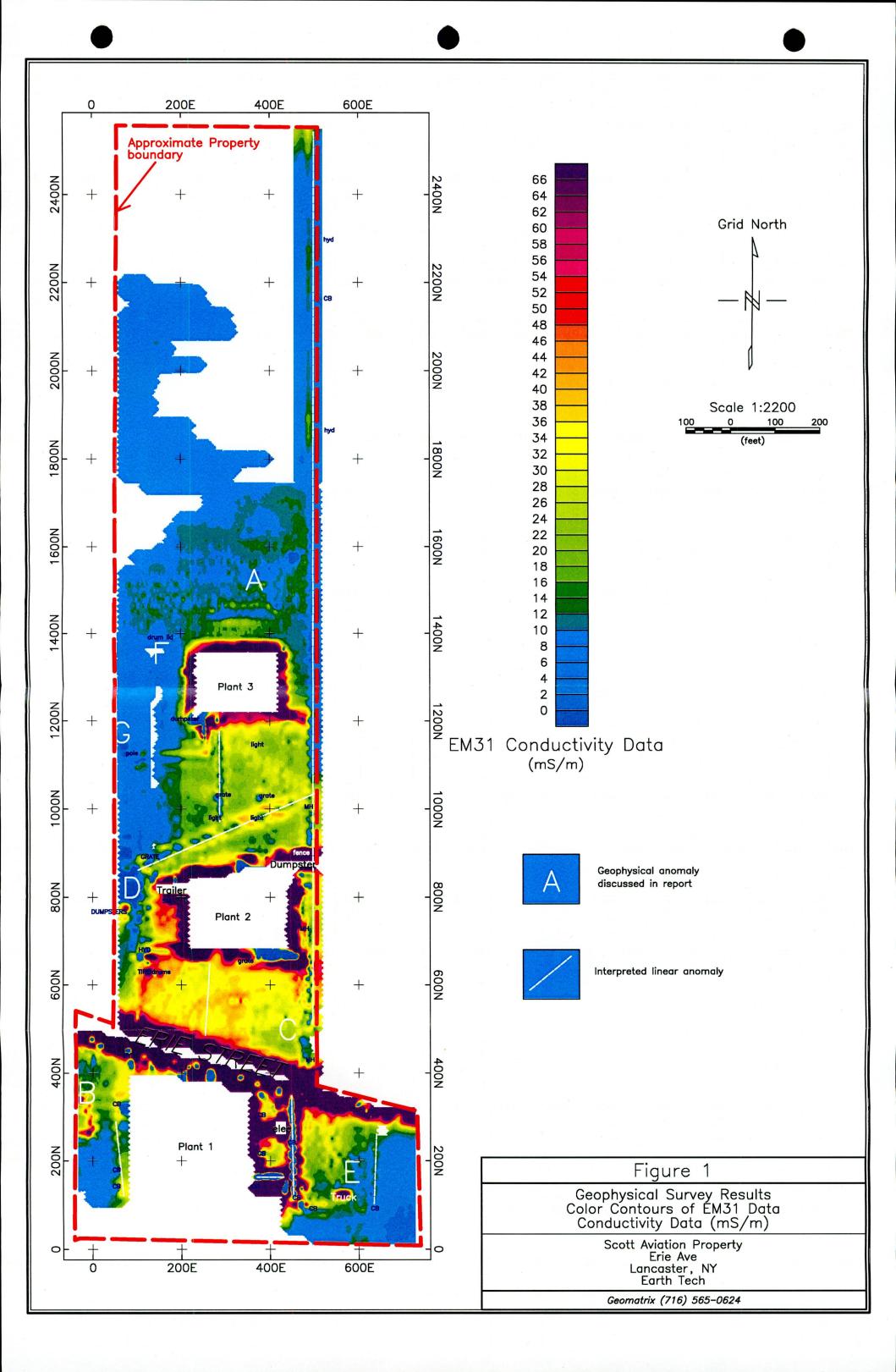
Anomalies C and E are characterized by a moderately high inphase response in the southeast portion of the Plant 2 parking area (C) and the center of the Eastern Plant 1 parking area (E). These anomalous areas appear rectilinear in nature suggesting a man-made source. These anomalies may be due to conductive fill material.

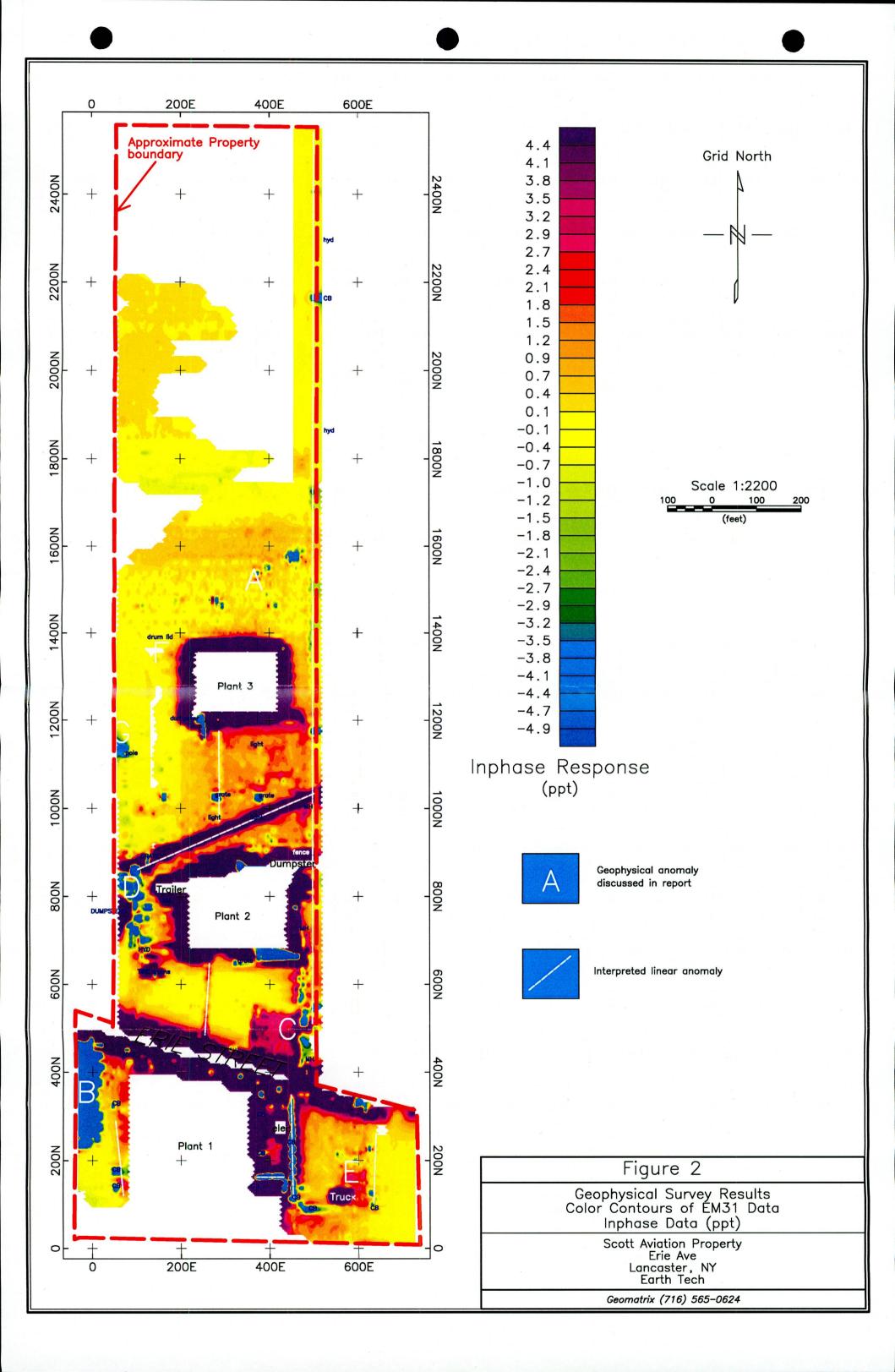
Anomalous Areas D, F, and G are located near the western property boundary in the Plant 2 and Plant 3 areas. These anomalies are characterized by inphase values (and to a lesser extent, conductivity values) fluctuating rapidly over a short distance. These areas likely contain buried metals. A drum lid was observed at surface in the vicinity of Anomaly F. A utility pole is present near Anomaly G and this anomaly may be related to a guy wire or buried lines.

Should an intrusive investigation identify significant environmental concerns associated with any of these anomalies, it would be prudent to review the data and identify other unlabeled anomalies with similar characteristics.

4.0 LIMITATIONS

The geophysical methods used during this survey are established, indirect techniques for nondestructive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. Metallic surface features (electrical wires, scrap metal, tractor trailers, etc.) preclude reliable non-invasive data/results beneath, and in the immediate vicinity of, the surface features. Targets such as buried drums, buried tanks, conduits, etc. are detectable only if they produce recognizable anomalies or patterns against the background geophysical data collected. As with any remote sensing technique, the anomalies identified during a geophysical survey should be further investigated by other techniques such as historical aerial photography, test pit excavation and/or test boring, if warranted. Earth Tech, Inc. April 6, 2004

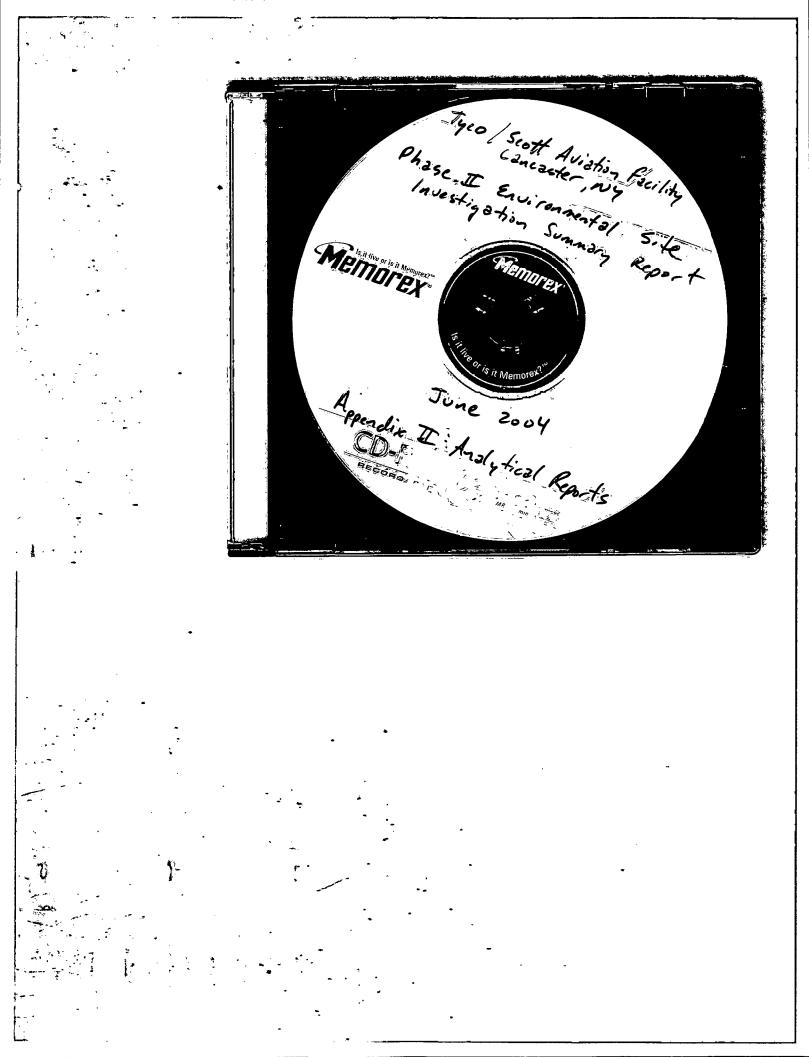



Page 5

Please do not hesitate to contact us if you have any questions or require additional information.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

John Luttinger Senior Geophysicist



SCOTT AVIATION, INC. --PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

APPENDIX II

FORM I ANALYTICAL DATA REPORTS

Earth Tech, Inc.

SCOTT AVIATION, INC. -PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

APPENDIX III

DPT BORING LOGS

Earth Tech, Inc.

	T. 0	dation (D)		ICONTRAC	BORING LOG		Boring No.:	(DPT-1
	T: Scott Av		iase II)		TOR: SJB (Randy Steiner)			1
	E ELEVAT				TION: Lancaster, New York	· · · · · · · · · · · · · · · · · · ·	DATE: March 25,	
				BORING 1/	ARGET: Foundry sand		ET REP.: Dino Za	ICK
DATE					CASING	DRILLING AND SAM		
	TIME	DEPTH		TYPE		SAMPLER		TUBE
				I.D.				
			· · · ·			2 inch		
	 Somala			WT./Fall HNu				
Depth	Sample Number	Blows	Rec.	Readings			AND STRATUM CHA	MOES
(ft)	& Time	per/6"	(feet)	-	SAWIFLE DESCR	IF HON, REWARNS,	AND STRATOM CHA	ANGES
	d time	peno	(ieei) 4	(ppm) ND				
-			4		0 - 0.7' ASPHALT with			
1					0.7 - 4' Reddish brown			silty
_				ND	clay, trace rootlets, tra	ce gravel, native	(dry).	
2 —								
-				ND				
2	ļl							
3 —				ND				
_								
4 —			3	ND	Reddish brown SILTY	CLAY some mo	ttled aray silty	<u> </u>
-			5		clay, trace gravel, stiff,		alou gray silly	
5 —					ciay, i ace graver, Silli,	nauve (ury).		
-				ND				
6 —								
				ND				
7 —								
, –								
<u> </u>			•					
8 —					Borehole depth - 8'.			
۲					Abandon boring with s	poils and top with	n asnhalt	
9 —					, isan aon sonnig min o		r uopriuti.	
_								
10								
-								
11 —	Í							
_								
12 —								
۲ ۲]		Т						
12 T							×	
13 —								
<u> </u>								
14 -								
-	1							
15 —	•							
_		l						
16 —								
17 —								
'' –								
1								
18 —					•			
-								
19 —								
_								
20 –				· ·				
-~								

•	EARTH	S S	ТЕС		BORING LOG		Boring No.:	(DPT-2	
PROJEC	T: Scott Av	viation (Pl	nase II)	CONTRAC	TOR: SJB (Randy Steiner)		PAGE 1 OF	1	
	T No.: 711				TION: Lancaster, New York		DATE: March 25,	2004	
	EELEVAT				ARGET: Foundry sand		ET REP.: Dino Za		
	ATER LEV					DRILLING AND SAM			
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE	
			_	TYPE		DPT			
				I.D.		2 inch			
				WT./Fall					
	Sample			HNu	· · · · · · · · · · · · · · · · · · ·	L			
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCE	NIPTION REMARKS	AND STRATUM CH	ANGES	
(ft)	& Time	per/6"	(feet)	(ppm)	Gran EE BEGGR		///////////////////////////////////////		
	anne	peilo	4	ND	1' ASPHALT with blue-gray slag base.				
-			4			-gray stag base.			
1 —									
_				ND	1 - 4' Reddish brown S	SILTY CLAY, trac	e mottled gray ar	nd olive	
2				1	silty clay, trace gravel,	stiff, native (dry)			
2 —				ND					
3 —				ND					
-							bonolo Motolo		
4					Sample: DPT-2-2-4 (094511(S) VOC, P	nenois, Metais		
_					Borehole depth - 4'.				
5 —					Abandon boring with s	poils and top with	n asphalt.		
Ŭ									
<u> </u>									
6 —									
-							,		
7 –									
_									
8 —									
9 _									
۳T									
10 -									
4									
11 —	•								
_									
12 -									
' ² T		T							
1									
13 —							•		
-									
14 -									
_									
15 —									
<u> </u>									
16 -									
-									
17 —									
_		`							
18 —									
'° –]									
1									
19 —									
4					-				
20 -				I					

EART **BORING LOG Boring No.:** (DPT-3) PROJECT: Scott Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March 25, 2004 SURFACE ELEVATION: NA BORING TARGET: UST ET REP .: Dino Zack WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TUBE TYPE DPT ------_ --------I.D. _ ---------2 inch -----_ --- 1 WT./Fall ---------------Sample HNu Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) & Time per/6" (feet) (ppm) 0.5' ASPHALT 3 ND 0.5 - 3' Reddish brown SILTY CLAY, trace mottled gray and 1 olive silty clay, trace gravel, possibly native (dry). ND 2 ND 3 4 ND 4 Reddish brown SILTY CLAY, some mottled tan to gray silty clay, trace gravel, native, stiff (dry). 5 ND 6 ND 7 ND 8 0.3 Refusal at 11'. Liner stuck in core barrel. Reddish brown SILTY CLAY, stif (dry) in core barrel tip. 9 10 ND 11 12 Borehole depth - 12'. Abandon boring with spoils and top with asphalt. 13 14 15 16 17 18 19 20

е а в т н **Э**тесн

	ARTH				BORING LOG	В	oring No.:	(DPT-4			
	T: Scott Av		nase II)		TOR: SJB (Randy Steiner)		PAGE 1 OF	1			
	T No.: 711				TION: Lancaster, New York		DATE: March 25				
	E ELEVATI			BORING T	ARGET: UST		ET REP.: Dino Z	ack			
	ATER LEVE					DRILLING AND SAMPL	and the second				
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE			
		-		TYPE		DPT					
-		-		I.D.		2 inch	-				
-	-			WT./Fall							
Depth	Sample Number	Blows	Rec.	HNu Readings	SAMPLE DESCE	RIPTION, REMARKS, A					
(ft)	& Time	per/6"	(feet)	(ppm)							
		_	4	ND	0.5' TOPSOIL						
1 —				ND	0.5 - 4' Reddish browr olive silty clay, trace g			and			
2 —					onve only only, have g		ury).				
27				ND							
3 —				ND							
4 _					Reddish brown SILTY CLAY, trace mottled tan to gray						
			•4	ND							
5 —				ND	silty clay, trace gravel, native, stiff (dry).						
- م											
6 —				ND	Sample: DPT-4-6-8 (1145hrs) VOC, DF	RO, Pb				
7 _				ND							
8 –			4	ND	8 - 8.5' Reddish brown	SILTY CLAY trac	e gravel (dry-m	noist)			
9 _			•		8.5 - 8.75' Reddish bro		• • •				
				ND	trace gravel (wet). 8.75 - 12' Reddish bro		ittle grav vf san	d lavers			
10 -				ND	(dry-moist).		the gray vi san	alayers			
11 -				ND							
12 -											
' ⁻ -			4	ND	12 - 12.25' Reddish bro						
13 –				ND	12.25 - 13' Reddish brown 13 - 16' Reddish brown		•	· · ·			
14 –					trace gravel, soft (mois	st).					
				ND							
15 —				ND							
16 -				-	Borehole depth - 16'.	<u> </u>	,, <u>_</u> ,				
17 -					Set temporary 5' scree	n for water sample	e collection.				
"]											
18 —											
19 —											
-											
20 +											

е а в т н **Э**тесн

.... .

E	EARTH		TEC	н	BORING LOG	В	Boring No.:	(DPT-5
PROJEC	T: Scott Av	iation (Ph	iase II)	CONTRAC	TOR: SJB (Randy Steiner)		PAGE 1 OF	1
PROJEC	T No.: 711	49		SITE LOCA	TION: Lancaster, New York	<u></u>	DATE: March 25,	2004
SURFAC	EELEVAT	ON: NA		BORING T	ARGET: UST		ET REP.: Dino Za	
W	ATER LEV	ELS				DRILLING AND SAMP	LING	
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
-		-		TYPE		DPT		
-				I.D.	_	2 inch		
				WT./Fall		2 1101		
	Sample		r	HNu				
Depth	Number	Blows	Dee	Readings				Noro
			Rec.		SAMPLE DESCR	RIPTION, REMARKS, A	AND STRATUM CHA	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
_			0.5	ND	GRAVEL FILL.			
1								
'								
_ 1								
2 —								
-								
3 —								
_								
4 –				Ļ				
·]			· 4	ND	Reddish brown SILTY	CLAY, trace grav	el, native (dry).	
_]								
5 —				ND				
-								
6 —								
_				ND				
7 –								
. T		(ND				
8 –								
이 ㄱ			4	ND	8 - 9.5' Reddish brown	SILTY CLAY, littl	e tan to olive vf	sand
					layers, stiff, native (dry			
9				ND	9.5 - 12' Reddish brow	•	tio mottled top t	
-								Joilve
10 -		Í			and gray silty clay and	vi sand, stiir, nati	ve (ary).	
_				ND				
11 —								
				ND				
12 -			4	ND	12 -13' Reddish brown	SILTY CLAY tra	ce mottled tan to	
-			-					Olive
13 —					and gray silty clay and			
_				ND	13 - 15.5' Reddish brov	WN SILTY CLAY, t	trace gravel, soft	: (moist).
14	(
				ND				
1								
15 -				ND	15.5 - 16' Gray F-C SA		trace silty clay	soft
-	l					avei,	trace sitty clay,	5011
16 -					(moist).			
					Borehole depth - 16'.			
17 -	1				Abandon boring with s	poils.		
'' 1	1							
18 —								
4								
19 —								
<u> </u>								
20 —								

E A R T H 🗲 T E C H

	A R T I				BORING LOG	E	Boring No.:	(DPT-6
	T: Scott Av		nase II)		TOR: SJB (Randy Steiner)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 25	
	E ELEVAT			BORING TA	ARGET: UST		ET REP .: Dino Z	ack
		~~				DRILLING AND SAMP		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
		-		TYPE		DPT		
				I.D.		2 inch		
		-		WT./Fall				
Depth	Sample Number	Blows	Rec.	HNu Readings	SAMPLE DESCR	IPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
			4	ND	1' ASPHALT with blue	-grav slag base (g	drv).	· · · · · · · · · · · · · · · · · · ·
1		:		ND	1 - 4' Reddish brown S		• •	and tan
					silty clay, trace gravel,			
2 _		1		ND				
3 —								
<u> </u>			[ND				
٦ ړ								
4 —			-4	ND	Reddish brown SILTY	CLAY, trace mott	led olive to tan	and grav
_ 1					silty clay (dry).	-		U - 7
5 —				ND				
_								
6 —				ND				
-								
7 –								
_				ND				
8 —								
· _			4	ND	8 -11' Reddish brown	SILTY CLAY, little	mottled tan to	olive silty
9 —					clay and vf sand (dry).			
۳ T				ND				
10 T								
10				ND				
11				ND	11 - 12' Reddish gray :	SILTY CLAY trac	e gravel (dry-m	nist)
-					17 12 Rodalon gray (e graver (ary m	5151).
12	-		4	ND	12 -14' Reddish brown	to grov SILTV CI	AV trace group	
-			4			U gray SILTT CL	, uace grave	si (uiy).
13 —								
_				ND				
14 —								
			1	ND	14 - 16' Gray F SAND,	some gravel, son	ne silt (moist).	
15 —								
ר יי				ND				
1 ₁₆								
16 -					Borehole depth - 16'.		<u> </u>	·
					Abandon boring with s	ooils and ton with	asphalt	
17 –					. Sandon boning with 5		aophan.	
-	Í							
18 -								
4								
19 —								
· • _								
20 _]	•							
20	i							

E A R T H 🐑 T E C H

BORING LOG

G Bori

Boring No.: (DPT-7)

1

PROJEC	T: Scott Av	viation (Ph	ase II)	CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF 1							
	T No.: 711				TION: Lancaster, New York		DATE: March 25, 2004				
	E ELEVAT			BORING TA	ARGET: UST		ET REP .: Dino Za	ack			
-	ATER LEV					DRILLING AND SAMPL		· · · · · · · · · · · · · · · · · · ·			
DATE	TIME	DEPTH			CASING	SAMPLER	CORE '	TUBE			
				TYPE		DPT					
	-	-		I.D.		2 inch					
	-			WT./Fall							
	Sample		_	HNu							
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS, A	ND STRATUM CHA	ANGES			
(ft)	& Time	per/6"	(feet)	(ppm)		•					
			4	ND	1' ASPHALT with grav	el base.					
1				[
1	1			1	1 - 2' Olive SILT and V	/F SAND, little grav	/el, fill (drv).				
	1										
2 —				2	2 A' Poddish brown S		nottlad alive an	daray			
	4			2	2 - 4' Reddish brown SILTY CLAY, little mottled olive and gray						
3 -					silty clay, reworked na	tive (dry).					
				1							
4 —			- 4	ND	Reddish brown SILTY	CLAY, little mottle	ed olive and gra	v siltv			
-	1				clay (dry). Water betw		-				
5 —	•			ND							
-											
6 —											
				ND							
7				•							
				ND							
1 . 1											
8 —			4	ND	8 - 9' GRAVEL slough	(caving into boreh	ole from under	asphalt)			
			4		6 - 9 GRAVEL Slough	(caving into boren		asphait).			
9 -											
				ND	9 - 10' Reddish brown	SILTY CLAY, trace	e gravel (dry).				
10 —		ļ									
				ND	Water between liner a	nd core barrel - no	sheen.				
11				ND	-						
12 -											
			4	ND	12 - 14' GRAVEL sloug	gn (caving into bore	enole from und	er asphalt).			
13 —											
				ND							
14				ND	14 - 16' Reddish browr	SILTY CLAY SOF	ne aray vf sand	lavers			
-					trace gravel (moist).		no gruy vi sanu				
15 -					nace graver (moist).						
_		'		ND		. .					
16 —					Water between liner ar	nd core barrel - no	sheen.				
		T			Borehole depth - 16'.						
1					Abandon boring with s	poils and top with a	asphalt.	ļ			
17					· · · · · · · · · · · · · · · · · · ·		1				
-											
18 —											
19 —											
, ' [®] –											
20 —											

Appendix III DPT Logs

е A R T H 🌔 Т Е С Н

BORING LOG

PROJEC	T: Scott Av	iation (Ph	ase⊣I)	CONTRAC ⁻	TOR: SJB (Randy Steiner)		PAGE 1 OF	1		
	T No.: 711				TION: Lancaster, New York		DATE: March 26	, 2004		
	E ELEVATI				RGET: UST		ET REP.: Dino Z			
	ATER LEVE			1		RILLING AND SAMP				
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE		
		-		TYPE		DPT				
-				I.D.		2 inch				
				WT./Fall						
	Sample			HNu	•			L		
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES		
(ft)	& Time	per/6"	(feet)	(ppm)						
		- poi/o	· 4	4	1' ASPHALT with grav	-	oundry sand sta	unod		
-			4	-	-		oundry sand sta	lineu		
1					black with chemical or					
•				2	Sample: DPT-8-0-1 (0840hrs) VOC, M	etals, Phenols,	CN		
					1 - 2' Olive gray SILT,	little clay, trace v	í sand, trace ara	vel.		
2 —				1	some black staining, fi		,			
-					2 - 4' Reddish brown S	• •	mottled arou to a	live grav		
3 –							nottied gray to c	mve gray		
_				ND	SILTY CLAY, fill (dry-r	noist).				
4										
· _			4	ND	4 - 7' Reddish brown S	ILTY CLAY, som	e mottled olive a	and gray		
_ 1					silty clay, stiff, reworke	d native (dry-moi	st).			
5 —				ND	, ,, ,	())	•			
-										
6 —										
_				ND						
7 —										
' T				ND	7 - 8' Reddish brown S	ILTY CLAY, trace	e mottled gray si	ity clay,		
					trace gravel, native (dr		0,			
8 –			4	5	8 - 9' GRAVEL slough	· · · · · · · · · · · · · · · · · · ·	hole from under	asphalt)		
-			4	5	-	(caving into bore	note itom under	asphait		
9 —					slight sheen (wet).					
				3	9 - 12' Reddish brown	SILTY CLAY, trac	ce gravel (dry-m	oist).		
10					Sample: DPT-8-9-10	(0945hrs) VOC, F	² b, DRO, CN			
10 —		ļ	i	1						
-	ļ	1								
11 —				4						
4				Ï						
12 -										
'- T	T		4	ND	12 - 12.5' GRAVEL slo	ugh (caving into l	oorehole from ur	nder		
٦	ł				asphalt) slight sheen.	-				
13 -				ND	12.5 - 16' Reddish brov		trace gravel (mr	hist)		
						UNICE TOLAT,	auco graver (inc			
14 —										
				ND						
15 .										
15 –				ND						
. –										
16 —		-			Poroholo donth 16'	· · · · · · · · · · · · · · · · · · ·				
_					Borehole depth - 16'.	.				
17 —					Set temporary 5' scree	n tor water sampl	e collection.			
· <i>'</i> –										
18 —										
4										
19 —										
·•]										
20 –										

EARTH **BORING LOG** Boring No.: DPT-9) (PROJECT: Scott Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF 1 PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March 26, 2004 SURFACE ELEVATION: NA BORING TARGET: Plant #2 oil spill ET REP.: Dino Zack WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TUBE TYPE DPT -------_ -----1.D. --2 inch ----------------1 --WT./Fall --------------Sample HNu Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) & Time per/6" (feet) (ppm) 0 - 2' GRAVEL fill. 3 ND 1 ND 2 ND Olive brown SILT and VF SAND, trace gravel, trace organcis, fill (dry-moist). 3 4 4 ND 4 - 5' GRAVEL slough 5 ND 5 - 8' Brown SILTY CLAY and TOPSOIL, trace gravel, trace organics, fill (moist). 6 ND 7 ND 8 8 - 9' GRAVEL slough 4 ND 9 ND 9 - 12' Reddish brown SILTY CLAY, little mottled gray and olive silty clay, native (moist-dry). 10 ND 11 ND 12 3 12 - 13' GRAVEL slough ND 13 ND 13 - 15' Reddish brown SILTY CLAY, trace gravel (moist-dry). 14 ND Refusal at 15'. 15 16 Borehole depth - 15'. Abandon boring with spoils. 17 18 19 20

е а в т н **Э) т е с н**

-	EARTI		TEC	н	BORING LOG	Вс	oring No.:	(DPT-10
	T: Scott Av		nase II)		TOR: SJB (Randy Steiner)		PAGE 1 OF	1
PROJEC	T No.: 711	49		SITE LOCA	TION: Lancaster, New York	_	DATE: March 26	6, 2004
SURFAC	E ELEVAT	ION: NA		BORING TA	ARGET: Plant #2 oil spill		ET REP.: Dino 2	lack
W	ATER LEV	ELS				DRILLING AND SAMPL	ING	
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE
		-		TYPE		DPT		
-				I.D.	_	2 inch		
_				WT./Fall				·
	Sample		T	HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESC	RIPTION, REMARKS, A	ND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
(1)		10000	3	ND	0 - 1' GRAVEL fill.			
_]						
1 —								
				ND	Olive brown SILT CLA	Y, little gravel, fill	(dry-moist).	
2 —								
2				ND				
3 —								
-								
4			<u> </u>					
			• 4	ND	4 - 4.5' GRAVEL sloug	jh		
5 —						•		
5 -				ND	4.5 - 8' Olive brown SI	LTY CLAY, trace of	gravel, trace or	ganics
					fill (moist).	· · ·		
6 —			ſ	ND				
_								
7 –				1				
_				ND				
8 —								
0			4	ND	Reddish brown SILTY	CLAY, trace grave	el, stiff, native	
]					(dry-moist).			
9 —				ND			•	
-								
10 -								
_				ND				
11 —								
				ND				
40								
12 -			1	ND	Reddish brown SILTY	CLAY, trace grave	el. stiff. native	•
-					(dry-moist).	, J	· · · · · · · · · · · · · · · · · · ·	
13 –								
4								
14 —								
_								
15 —								
.' T								
16 -					Borehole depth - 16'.			
-					-	noile		
17 -					Abandon boring with s	pons.		
_								
18 —								
'° –								
19 —								
4								
20 -								

е а к т н **Э**тесн

PROJEC	T: Scott Av	viation (Ph	ase II)	CONTRAC	TOR: SJB (Randy Steiner)		PAGE 1 OF	1
	T No.: 711		•		TION: Lancaster, New York		DATE: March 26,	2004
	EELEVATI				ARGET: Plant #2 oil spill		ET REP.: Dino Za	
	ATER LEVE					RILLING AND SAM		
DATE	TIME	DEPTH		<u> </u>	CASING	SAMPLER	CORE	TUBE
				TYPE		DPT		
_				I.D.		2 inch		
_				WT./Fall				
	Sample			HNu			<u>_</u>	
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCE	IPTION REMARKS	AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)				
	d nine	peno	4	ND	0 - 0.5' ASPHALT and			
4			4				•••	_
1 _					0.5 - 4' Dark gray SILT			ace f
· _				ND	sand, trace organics, t	race gravel, fill (r	noist).	
_ 1								
2 —				ND				
-								
3 —								
_				ND				
4								
			4	ND	Dark gry SILT, trace re	ddish brown silty	/ clay, trace f san	d, trace
_ 1					organics, trace gravel,	•	-	
5 —				ND				
_			ĺ					
6 –								
_				ND				
, 1		ĺ						
7 –				ND				
-								
8 —			_		Olevek av lada i			
_			1	ND	Slough, pushed rock.			
9 —								
<i>-</i> –								
4								
10 -								
_								
11 -		[
· · 7								
<u> </u>								
12			1	ND	Slough, pushed rock.			
4			,		Sidugii, pusiteu tock.			
13 —								
-								
٦ ړ								
14 —								
-								
15 —								
_	1							
16 -								
16 🕂					Borehole depth - 16'.	<u>-</u> <u>-</u>		
-					Set temporary 5' scree	n for water same	le collection	
17 —					Sectemporary 5 scree	nor water samp		
_								
18 —								
'° –			,					
-								
19 🚽								
₂₀								
20 +								
	1			1				

- - TYPE - DPT - <th>E</th> <th>EARTH</th> <th></th> <th>T E C</th> <th>н</th> <th>BORING LOG</th> <th>Во</th> <th colspan="3">oring No.: (DPT-12</th>	E	EARTH		T E C	н	BORING LOG	Во	oring No.: (DPT-12		
UBFACE ELEVATION: NA BORING TARGET: Foundry sand ET REP: Dino Zeck WATER LEVELS DRILLING AND SAMPLER CORE TUBE - - - TYPE - OPT - - - - TYPE - OPT - - - - - 10. - 2 inch - - - - - 10. - 2 inch - - Sample (b) Number Blows (b) Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (b) 1 - - - - - - - 2 - 4 ND 0 - 0.25' TOPSOIL. 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics (moist). 2 - 4' Reddish brown SIL TY CLAY, trace motiled tan to olive silty 3 - - - - - - 4 - - -	PROJEC	T: Scott Av	iation (Ph	nase II)				PAGE 1 OF	1	
WATER LEVELS DRILLING AND SAMPLING	PROJEC	T No.: 711	49		SITE LOCA	TION: Lancaster, New York		DATE: March 26	, 2004	
DATE TIME DEPTH CASING SAMPLER CORE TUBE - - - 10 - 2 inch -	SURFAC	E ELEVAT	ON: NA		BORING TA	ARGET: Foundry sand		ET REP.: Dino Z	ack	
- - TYPE - DPT - <td>W</td> <td>ATER LEVE</td> <td>ELS</td> <td></td> <td></td> <td>[</td> <td>DRILLING AND SAMPLI</td> <td>NG</td> <td></td>	W	ATER LEVE	ELS			[DRILLING AND SAMPLI	NG		
1.0. 2 inch <	DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE	
- - WT/Fell - - Depth Number (t) Number A Time perf6" Blows (feet) Rec. (feet) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - A ND 0 - 0.25' TOPSOIL. 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics (moist). 2 - 4' Reddish brown SILTY CLAY, trace mottled tan to olive silty clay, trace organics, trace gravel, trace rottlets (dry-moist). Sample: DPT-12.0-1 (1430hrs) VOC, Phenols, Metals 6 - - - 7 - - - 8 - - - 9 - - - 11 - - - 12 - - - 14 - - - 15 - - - 16 - - - 18 - - -					TYPE		DPT		'	
Sample Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 4 ND 0 - 0.25' TOPSOIL. 0.25 - 1' Forwn SLT, little f sand, trace gravel, trace organics, trace organics, trace black staining (moist). 2 - ND ND 0 - 0.25' TOPSOIL. 3 - ND 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics, trace organics, trace organics, trace motiled tan to olive silty clay, trace organics, trace gravel, trace contents (dry-moist). 3 - ND Sample 4 - ND Sample Dert 12-0-1 (1430hrs) VOC, Phenols, Metals 5 - - Borehole depth - 4'. Abandon boring with spoils. 6 - - - - - 10 - - - - - 11 - - - - - - 10 - - - - - - - 11 - - - - - - - - - - - - - -					I.D.		2 inch			
Depth Number Bitses Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 4 ND 0 - 0.25' TOPSOIL. 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 2 4 ND ND 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics, trace black staining (moist). 3 - - ND 2 - 4' Reddish brown SILTY CLAY, trace mottled tan to olive silty organics, trace gravel, trace rootlets (dry-moist). 3 - - ND Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 4 - - - Abandon boring with spoils. 6 - - - - 7 - - - - 8 - - - - 9 - - - - 11 - - - - 12 - - - - 13 - - - - 14 - - - - - 14 - - <td></td> <td></td> <td>-</td> <td></td> <td>WT./Fall</td> <td></td> <td></td> <td></td> <td></td>			-		WT./Fall					
Depth Number Bitses Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 4 ND 0 - 0.25' TOPSOIL. 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 2 4 ND ND 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics, trace black staining (moist). 3 - - ND 2 - 4' Reddish brown SILTY CLAY, trace mottled tan to olive silty organics, trace gravel, trace rootlets (dry-moist). 3 - - ND Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 4 - - - Abandon boring with spoils. 6 - - - - 7 - - - - 8 - - - - 9 - - - - 11 - - - - 12 - - - - 13 - - - - 14 - - - - - 14 - - <td>·</td> <td>Sample</td> <td></td> <td></td> <td>HNu</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· ····</td> <td>Ai,</td>	·	Sample			HNu		· · · · · · · · · · · · · · · · · · ·	· ····	Ai,	
(ft) 8 Time perfé ⁺ (feet) (ppm) 1 4 ND 0 - 0.25' TOPSOIL. 0.25 - 1' Brown SILT, little f sand, trace gravel, 2 1 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics, trace black staining (moist). 1 - 2' Tan to olive SILY CLAY, trace motted tan to olive sity 3 ND ND 2 - 4' Reddish brown SILTY CLAY, trace motted tan to olive sity 4 ND Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 5 6 A Abandon boring with spoils. 6 A Abandon boring with spoils. 7 Abandon boring with spoils. Abandon boring with spoils. 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 8 - - - 9 - - - 11 - - - 13 -	Depth		Blows	Rec.		SAMPLE DESCR	RIPTION, REMARKS, A	ND STRATUM CH	ANGES	
1 4 ND 0 - 0.25' TOPSOIL. 2 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 3 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics, trace gravel, trace motiled tan to olive silty clay, trace organics, trace gravel, trace motiled tan to olive silty clay, trace organics, trace gravel, trace rootlets (dry-moist). 3 2 - 4' Reddish brown SILTY CLAY, little f sand, trace gravel, trace motiled tan to olive silty clay, trace organics, trace gravel, trace motiled tan to olive silty clay, trace organics, trace gravel, trace rootlets (dry-moist). 4 5 5 6 7 8 9 9 10 1 11 1 12 1 14 1 15 1 16 1 17 1 18 19 19 1										
1 0.25 - 1' Brown SILT, little f sand, trace gravel, trace organics, trace black staining (moist). 2 ND 3 ND 3 ND 4 1 - 2' Tan to olive SILY CLAY, little f sand, trace gravel, trace organics (moist). 2 -4' Reddish brown SILTY CLAY, trace mottled tan to olive sity clay, trace organics, trace gravel, trace rootlets (dry-moist). 3 Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 6 Borehole depth - 4'. 7 Abandon boring with spoils. 8				•						
ND trace organics, trace black staining (moist). 1 -2 Tan to olive SILY CLAY, little f sand, trace gravel, trace organics (moist). 3 - 4 ND 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 14 - 15 - 16 - 17 - 18 - 19 -	-			-			ittle feend toose -			
2 Image: Single interference interferenc	1 —			ľ						
ND organics (moist). 2 - 4' Reddish brown SILTY CLAY, trace mottled tan to olive silty (day, trace organics, trace gravel, trace rootlets (dry-moist). 3	_				ND	÷		•		
3 ND organics (moist). 4 2 - 4' Reddish brown SILTY CLAY, trace mottled tan to olive silty clay, trace organics, trace gravel, trace rootlets (dry-moist). 5 Borehole depth - 4'. Abandon boring with spoils. Borehole depth - 4'. 8 Borehole depth - 4'. 9 Borehole depth - 4'. 10 Borehole depth - 4'. 11 Borehole depth - 4'. 12 Borehole depth - 4'. 13 Borehole depth - 4'. 14 Borehole depth - 4'. 15 Borehole depth - 4'. 16 Borehole depth - 4'. 17 Borehole depth - 4'. 18 Borehole depth - 4'.	2					1 - 2' Tan to olive SIL	CLAY, little f sand	l, trace gravel,	trace	
3	2 -				ND	lorganics (moist).		-		
ND clay, trace organics, trace gravel, trace rootlets (dry-moist). 4 Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 5 Borehole depth - 4'. Abandon boring with spoils. 6 Abandon boring with spoils. 9 Abandon boring with spoils. 10 Abandon boring with spoils. 11 Abandon boring with spoils. 12 Abandon boring with spoils. 13 Abandon boring with spoils. 14 Abandon boring with spoils. 16 Abandon boring with spoils. 18 Abandon boring with spoils.	-						SILTY CLAY trace	mottled tan to	olive silty	
4 Sample: DPT-12-0-1 (1430hrs) VOC, Phenols, Metals 5 Borehole depth - 4'. Abandon boring with spoils. 6 Abandon boring with spoils. 9 - 10 - 11 - 12 - 13 - 16 - 19 -	3 —									
Borehole depth - 4'. Abandon boring with spoils. Borehole depth - 4'. Abandon boring with spoils. Borehole depth - 4'. Abandon boring with spoils. 9	_								151).	
5 Borehole depth - 4'. 6 Abandon boring with spoils. 7 8 9 10 10 11 11 12 13 14 16 11 18 11 19 11	4 —									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'					Borehole depth - 4'.				
3	_ T					Abandon boring with s	poils.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ㅋㅋ					Ŭ	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 —									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	' T						*			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 –									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 –									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŭ									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	۲ م.									
12	10 H		•			•				
12	-									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 —									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 [–]									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	' ²									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 —						•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 _			1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ר יי		'							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 1									
	15 🚽									
	-									
	16 🗕						· ····································			
		1								
	٦ ـ ٦									
	17 –									
	-									
	18									
	L			ļ						
	<u> </u>			ĺ						
	19 -									
20	-									
	20 🕂									

EART

DATE

Depth

(ft)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

BORING LOG

PROJECT: Scott Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March 26, 2004 SURFACE ELEVATION: NA BORING TARGET: Foundry sand ET REP .: Dino Zack WATER LEVELS DRILLING AND SAMPLING TIMË DEPTH CASING SAMPLER CORE TUBE TYPE DPT -------_ -------I.D. ----2 inch ------WT./Fall I 1 ------------Sample HNu Number SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES Blows Rec. Readings & Time per/6" (feet) (ppm) 4 ND 0 - 0.25' GRAVEL, little topsoil, trace organics, fill (moist). 0.25 - 1' Brown F SAND and SILT, trace gravel (moist). ND 1 - 1.5' Black FOUNDRY SAND (mist-dry). 1.5 - 3 Black F SAND and SILT (moist-dry). 3 - 4' Olive to reddish brown SILTY CLAY, little mottled gray silty ND clay, trace gravel (dry-moist). ND Sample: DPT-13-1-2 (1440hrs) VOC, Phenols, Metals ND Reddish brown SILTY CLAY, trace mottled gray and olive silty clay (dry). ND ND ND Borehole depth - 8'. Abandon boring with spoils.

(DPT-13)

Boring No.:

ROJEC	T: Scott Av	viation (Ph	ase II)	CONTRAC	TOR: SJB (Randy Steiner)		PAGE 1 OF	1		
	T No.: 711				TION: Lancaster, New York		DATE: March 26			
	EELEVAT				ARGET: Foundry sand		ET REP.: Dino Z			
	ATER LEVI				DRILLING AND SAMPLING					
DATE	TIME	DEPTH		t	CASING	SAMPLER	CORE	TUBE		
				TYPE	-	DPT				
_		-		I.D.		2 inch				
_	_	_		WT./Fall						
Depth (ft)	Sample Number & Time	Blows per/6"	Rec. (feet)	HNu Readings (ppm)	SAMPLE DESCR		, AND STRATUM CH	· · · · · · · · · · · · · · · · · · ·		
1 - 2 - 3 -			0		WOOD in core barrel t	ip.				
4 —			-		Developing to allow the state					
-					Borehole depth - 4'.					
5 —					Abandon boring with s	polis.				
_			!							
6 —										
<u>`</u>]								,		
, 1										
′ –										
8					· · · · ·					
-										
9 —										
-										
10 -										
_										
11 _										
'' []										
₁ <u>,</u> 1										
12 -										
- 1		1								
13 —										
-										
14 —										
-										
15 —										
						•				
16 🕂										
'" T		T								
_ 1										
17 —	Ì									
-										
18 —										
4								•		
19 —										
·•]										
20 -+										

Appendix III DPT Logs

_

PROJECT: State Available (Phase II) CONTRACTOR: SUB (Randy, Sterver) PAGE 1 O.F 1 BROLECT Not:: STITE LOCATION: Landstress DATE: Market Press DATE: Date: Date: The Date: Date:<	E	EARTI		TEC	н	BORING LOG	Вс	oring No.:	(DPT-15)
SURFACE LEVATION: NA BORING TARGET: Foundry and ET REF: Diro Zack OATE TIME DEPTH CASING SAMPLENC CORE TUBE - - - TUDE - DPT - - - - - 1D. 2 linch - - - - - - VI/Fail - 2 linch - - Depth Number Blows Rec. Reddings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (t) & Time Perfe (ee) (ppm) - <t< td=""><td></td><td></td><td></td><td>nase II)</td><td></td><td></td><td></td><td></td><td></td></t<>				nase II)					
WATER LEVELS DRILING AND SAMPLING TUBE OATE TIME DEPTH TYPE CASING SAMPLER CORE TUBE								DATE: March 26	5, 2004
DATE TIME DEPTH CASING SAMPLER CORE TUBE - - - 1/D. - 2 Inch -					BORING T				
TYPE DPT			ELS						
- - - VIT / Fail -	DATE	TIME	DEPTH			CASING		CORE	TUBE
- - WT/Fill Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANCES 1 - 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 1 - - - - 2 - 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 3 - - ND 1 - 2' Gray to tan SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - ND ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - - - 5 - - - - 6 - - - - 7 - - - - 8 - - - - 9 - - - - 10 - - - - 11 - - - - 12 - - - - 13 - - - - 14 - - - - 15 - - - - <td></td> <td></td> <td>-</td> <td></td> <td>TYPE</td> <td></td> <td>DPT</td> <td></td> <td></td>			-		TYPE		DPT		
Sample Both A Time Biows perfor Rec. (text) HNU regardings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 1 - - ND 1 - 2' Gray to tan SILTY CLAY, little organics. 2 - ND 1 - 2' Gray to tan SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 3 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - - A 5 - - - A 6 - - - A 7 - - - A 10 - - - - 11 - - - - 12 - - - - 14 - - - - 15 - - - - - 18 - - - - - 19 - - -			-		I.D.		2 inch		
Depth (ft) Number & Time Bows perfer Rec. (feet) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 1 - 4 ND 1 - 2' Gray to tan SILT and ORGANICS (moist). 2 - - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - - - 5 - - - - 6 - - - - 7 - - - - 8 - - - - 9 - - - - 11 - - - - 12 - - - - 14 - - - - 15 - - - - 18 - - - -		-	-		WT./Fall				
(ft) & Time perfer (feet) (ppm) 1 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 1 - 4 ND 1 - 2' Gray to tan SILT and ORGANICS (moist). 2 - - ND 1 - 2' Gray to tan SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 3 - - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - ND 3 4 - - - Abandon boring with spoils. 6 - - - - 7 - - - - 8 - - - - 9 - - - - 10 - - - - 13 - - - - - 14 - - - - - 15 - - - - <td></td> <td>Sample</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Sample							
1 4 ND 0 - 1' Gray to tan SILTY CLAY, little organics. 1 - ND 1 - 2' Gray to tan SILT and ORGANICS (moist). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - ND Borehole depth - 4'. 5 - - Borehole depth - 4'. 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - - - 16 - - - 17 - - - 18 - - -				Rec.	Readings	SAMPLE DESC	RIPTION, REMARKS, A	AND STRATUM CH	IANGES
1 ND 1 - 2' Gray to tan SILT and ORGANICS (moist). 2 - Yeddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -	(ft)	& Time	per/6"	(feet)	(ppm)				
1 ND 1 - 2' Gray to tan SILT and ORGANICS (moist). 2 - Yeddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -				4	ND	0 - 1' Gray to tan SILT	Y CLAY, little orga	anics.	
2 ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 5 6 A 7 Borehole depth - 4'. Abandon boring with spoils. 8 9 10 11 12 13 14 15 16 17 18 19						-	-		
2 ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray and tan silty clay, trace gravel (moist). 4 5 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 A 17 A 18 A 19 A	1 —				ND	1 - 2' Grav to tan SILT	and ORGANICS	(moist)	
3 ND 2 - 4' Reddish brown SLLY CLAY, some motiled gray and tan silty clay, trace gravel (moist). 4 5 Borehole depth - 4'. 5 Abandon boring with spoils. 6 Abandon boring with spoils. 9 Abandon boring with spoils. 10 Abandon boring with spoils. 11 Abandon boring with spoils. 12 Abandon boring with spoils. 13 Abandon boring with spoils. 14 Abandon boring with spoils. 15 Abandon boring with spoils. 16 Abandon boring with spoils. 17 Abandon boring with spoils.	-							(
3 ND silty clay, trace gravel (moist). 4 - - 5 - - 6 - - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -	2 —					2. 4' Roddich brown 6			
ND Borehole depth - 4'. 5 6 6 7 7 8 9 9 10 11 11 12 13 14 15 1 16 1 17 1 18 1 19 1	. -							e mottled gray a	and tan
4 5 A Borehole depth - 4'. 5 4 Abandon boring with spoils. 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -	3 —			[silty clay, trace gravel	(moist).		
5 - Borehole depth - 4'. Abandon boring with spoils. 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -			•		ND				
5 - Borehole depth - 4'. Abandon boring with spoils. 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7					Borehole depth - 4'.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٦ _ ١					Abandon boring with s	poils.		
7	2 –					, i i i i i i i i i i i i i i i i i i i	•		
7	-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 —		• ·						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									ť
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 —			ı					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· ·						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8_								z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
12	10 —					•			
12								•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 —								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 -								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 7								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 –								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 —	ſ							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 —								
	_	Í							
	16 -								·
	17 _]								
	' ヿ								
	- 1								
	18 —								
	19 -	,							
20	r _								
	20 _								
	20 T								

е а в т н **Э**тесн

	EARTI	<u> </u>			BORING LOG	В	oring No.:	(DPT-16
	T: Scott Av		nase II)		TOR: SJB (Randy Steiner)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 26	
	E ELEVAT			BORING TA	ARGET: Foundry sand		ET REP.: Dino Z	lack
	ATER LEV					DRILLING AND SAMP		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE		DPT		
				I.D.		2 inch		
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	IANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
_			4	ND	0 - 1' TOPSOIL.			
1								
, —	Ì i			ND	1 - 2' Tan to reddish b	rown SILTY CLA	Y. trace rootlets.	trace
-	1				mottled gray silty clay,			
2 —				ND	2 - 4' Reddish brown S	-		ad aliva
-	1		1				momeo gray ar	
3 —					silty clay, native (dry).			
_				ND				
4 —								
					Borehole depth - 4'.			
_ 1					Abandon boring with s	poils.		
5 —								
-								
6 —								
_								
7 —								
' _								
8 —								
	•							
9 —								
_								
10 —								
11								
11 —								
-								
12 -								
-								
13 -								
14								
'+ -1								
15 —								
-								
16 —								
_							٠	,
17 _]		ĺ						
17 -								
18 —								
-		1						
19 —								
· ·								
~ ¹								
20 -								

е а к т н 🌍 **т е с н**

BORING LOG

OLECT No: 7149 STELOCATION: Langetring DATE: March 28, 2004 NFACE ELEVATION: NA BORING TARGET: Foundry sand ET TREP: Dine Zeack WATER LEVELS DRILLING AND SAMPLING ET REP:: Dine Zeack ATE TIME DEPTH CASING SAMPLER CORE Tube - - - DPT -	ROJEC	T: Scott A	viation (Ph	ase II)	CONTRACT	BORING LOG	<u>A</u>	Boring No.: PAGE 1 OF	(DPT-1
DRFACE ELEVATION: NA BORING TARGET: Foundry sand ET REF:: Dino Zack WATER LEVELS DPILLING AND SAMPLING TUBE - - - DPT - - - - - - - - - - - Sample: Borehole Sample: DPT-17-12 (1540hrs) VOC, Phenols, Metals 2 - - ND Sample: DPT-17-12 (1540hrs) VOC, Phenols, Metals 3 - - - - Abandon boring with spoils. 6 - - - - - 7 - - - - -									-
WATER LEVELS DRILLING AND SAMPLING ATE TIME DPTH CASING SAMPLER CORE TUBE - - - DPT - DPT - - - - - DPT - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
ATE TIME DEPTH CASING SAMPLER CORE TUBE - - - 1D - 2 inch -					1		ORILLING AND SAM		
- - TYPE - DPT - <td></td> <td></td> <td></td> <td></td> <td>†</td> <td></td> <td></td> <td></td> <td></td>					†				
- - 10. - 2 inch -<					TYPE				
- - WT/Fail - - - - benth Number 2 Blows a Time Rec. (let) Rec. (let) Redings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ppm) 1 - 4 ND 0 - 1' TOPSOIL. 1 - 4 ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - - ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - ND 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan ND 4 - ND silty clay, trace gravel, native (dry). 4 - - Abandon boring with spoils. 6 - - - - 7 - - - - 8 - - - - 9 - - - - 1 - - - - 7 - - - - 8 - - - - 9 - - - - 1 - - -					ļ				
Sample bepth Number & Time a Time bertific Blows (rec) (rec) PRec. (readings (rec) (rec) ND (rec) (rec) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (moist). 1 - 4 ND 0 - 1' TOPSOIL. 2 - ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 9 - - - 9 - - - 9 - -									
Bepth Number Biose Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 4 ND 0 - 1' TOPSOIL. 1 - - 4 ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - - ND 1 - 2' Tan to olive SILTY CLAY, little organics (moist). 3 - ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan sitly clay, trace gravel, native (dry). 4 - ND Borehole depth - 4'. 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - <td></td> <td>Sample</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Sample		1					
# Time per/6" (feet) (ppm) 1 4 ND 0 - 1' TOPSOIL. 2 ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan sitly clay, trace gravel, native (dry). 4 ND Borehole depth - 4': 5 A Abandon boring with spoils. 7 A Abandon boring with spoils. 9 A Abandon boring with spoils. 1 A Abandon boring with spoils.)enth		Blowe	Rec					
1 4 ND 0 - 1' TOPSOIL. 2 ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenois, Metals 2 - 4' Redish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). 4 Borehole depth - 4'. 5 Abandon boring with spoils. 6 - 7 - 8 - 9 - 0 - 1 - 2 - 3 -					-				NUCEO
1 ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - ND 1 - 2' Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 - ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). 4 - - Borehole depth - 4'. Abandon boring with spoils. 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 6 - - - 7 - - - 8 - - - 9 - - - 0 - - - 1 - - - 2 - - - 3 - - - 6 - - - 7 - - - 8 - - - 9 - - - </td <td><u></u></td> <td>or rime</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td>	<u></u>	or rime							<u> </u>
ND 1 - 2 Tan to olive SILTY CLAY, little f sand, little organics (moist). Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). Homosonic Control (Control (Contro) (Control (Control (Control (Control (Con	_			4					
ND 1 - 2 Tan to olive SILTY CLAY, little f sand, little organics (moist). 3 ND 3 ND 3 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). 4 Borehole depth - 4'. 5 Abandon boring with spoils. 6 - 7 - 8 - 9 - 0 - 1 - 2 - 3 -	1 —								
2 ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 3 - - - 3 - ND silly clay, trace gravel, native (dry). 4 - - Borehole depth - 4'. 5 - - Abandon boring with spoils. 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 6 - - - 7 - - - 8 - - - 9 - - -	•				ND	1 - 2' Tan to olive SIL	FY CLAY, little f s	and, little organic	S
ND Sample: DPT-17-1-2 (1540hrs) VOC, Phenols, Metals 3 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - - - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - - - - - - - - - - - - - - - - - - - - - - <td>ີ</td> <td></td> <td>i .</td> <td></td> <td></td> <td>(moist).</td> <td></td> <td></td> <td></td>	ີ		i .			(moist).			
3 - - 2 - 4' Reddish brown SILTY CLAY, trace mottled gray and tan silty clay, trace gravel, native (dry). 4 - - Borehole depth - 4'. 5 - - Abandon boring with spoils. 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 6 - - - 7	2 —				ND		(1540hrs) VOC	Phenols, Metals	
ND sitty clay, trace gravel, native (dry). 4	-						• • •		nd ten
4 Borehole depth - 4'. 5 Abandon boring with spoils. 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	3 —							o notieu gray al	
Borehole depth - 4'. Abandon boring with spoils. 7 8 9 1 2 3 4 4 5 6 1 1 1 1 2 1 1 2 1 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>isiny day, trace gravel,</td> <td>nauve (ory).</td> <td></td> <td></td>	-					isiny day, trace gravel,	nauve (ory).		
5 - Abandon boring with spoils. 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 -	4 —					_			·
$ \begin{array}{c} 3 \\ 6 \\ - \\ 7 \\ - \\ 8 \\ - \\ 9 \\ - \\ 9 \\ - \\ 0 \\ - \\ - \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$						-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۳ م					Abandon boring with s	poils.		
7 - 8 - 9 - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -	5 –					-			
7 - 8 - 9 - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 —								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8								. <u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ړ ٦								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ㅋー								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1								>
3	· _								
3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - - - - - - - - - -	្ក								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1								· · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 –								
	4								
5	4 –								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>٦</u>								
	<mark>۵ –</mark>								
	6 –		··			······································			
	7 –								
9	Ĺ								
	, T								
	י ר								
-	-		.						
	9 –								
γ 	4								
	기								

9

_			TEC		BORING LOG	B	oring No.:	(DPT-18			
	CT: Scott Av		nase II)		TOR: SJB (Randy Steiner)		PAGE 1 OF	1			
	CT No.: 711				TION: Lancaster, New York		DATE: March 29				
	E ELEVAT			BORING TA	ARGET: Anomaly - Plant #1		ET REP.: Dino Z	ack			
	ATER LEVI					RILLING AND SAMP	MPLING				
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE			
				TYPE		DPT					
	-			I.D.		2 inch					
	-			WT./Fall							
	Sample			HNu							
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES			
(ft)	& Time	per/6"	(feet)	(ppm)							
			4	ND	0 - 0.5' ASPHALT						
-	4		ļ		0.5 - 1' Blue-gray SLA	G					
1 —											
-				ND	1 - 1.5' Gray VF SAND	• •					
2 —					1.5 - 3' Tand VF SAN[) (moist-wet).					
-				ND							
]										
3 —	1			ND	3 - 4' Reddish brown S	TY CLAY (dov-	moist)				
-	ł						moloty.				
4 —						<u> </u>					
-				ND	Reddish brown SILTY		ed gray and oliv	e silty			
5 —					clay, trace gravel (dry-moist).						
5 —]			ND							
-											
6 —	1 1										
				ND							
7											
,				ND							
	1 [
8 —					Borehole depth - 8'.						
-					•	noile and ten with	aanhait				
9 —					Abandon boring with s	polis and top with	asphait.				
_											
10 —											
10 -											
_											
11 —											
12 —											
12 T											
13 —			·								
-		.									
14 —		,									
_											
15 —											
·J					,						
16 —								· .			
-											
17 —											
		Í									
18 —											
-			[
19 —		Ì									
		•									
_											
20 —		- x	I	1							

9

PROJEC	T: Scott Av	iation (Ph	ase II)	CONTRAC	TOR: SJB (Randy Steiner)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 2	9, 2004
SURFAC	E ELEVATI	ON: NA		BORING TA	ARGET: Adjacent to anomaly	/ - Plant #1 lot	ET REP.: Dino	
	ATER LEVE	ELS				DRILLING AND SAM	IPLING	
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
-		-		TYPE	-	DPT		
-	-	-		I.D.		2 inch		
-	-			WT./Fall				
Depth (ft)	Sample Number & Time	Blows per/6"	Rec. (feet)	HNu Readings (ppm)		RIPTION, REMARKS		HANGES
1 2 3 4 5 6 1			4	ND ND ND	0 - 0.5' ASPHALT and 0.5 - 4' Reddish brown silty clay, trace gravel Borehole depth - 4'. Abandon boring with s	n SILTY CLAY, li I (dry-moist).	ttle mottled gray	and olive
7 — 8 — 9 — 10 —								
11 — - 12 —								
- 13 — -								
14 — - 15 — -			-					
16 - 17 -						<u> . </u>		
18 — - 19 —								
20 -								

EARTH

_

PROJECT No.: 71149

DATE

Depth

(ft)

1

2

20

WATER LEVELS

TIME

Sample

Number

& Time

BORING LOG

Boring No.: PROJECT: Scott Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF SITE LOCATION: Lancaster, New York DATE: March 29, 2004 SURFACE ELEVATION: NA BORING TARGET: Anomaly - Plant #2 parking lot ET REP .: Dino Zack DRILLING AND SAMPLING DEPTH CASING SAMPLER CORE TYPE ---DPT ---I.D. ---2 inch ---WT./Fall ---------HNu Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES per/6" (feet) (ppm) 4 ND 0 - 0.75' ASPHALT and blue-gray SLAG base. 0.75 - 4' Reddish brown SILTY CLAY, some mottled gray silty ND clay, reworked native (dry-moist).

2 -]		ND	
3 —	-		ND	
-	4			
4 -				4 - 7.75' Reddish brown SILTY CLAY, little mottled gray silty
5 —				clay, trace gravel, native (dry-moist).
6 —	1			
			1	
7 —	•			7.75 - 8' Tan VF SAND layer (dry-moist)
- 8				
-				Borehole depth - 8'.
9 —				Abandon boring with spoils and top with asphalt.
- 10 —				
- 10				
11 —				
12 —				
12 -				
13 —				
- 14 —				
- -				
15 —				· · ·
- 16 —				
17 —				
- 18 -			,	
19 —				
-				

Appendix III DPT Logs

(DPT-20)

TUBE

Е А R Т H 🐑 Т Е С Н

BORING LOG

Boring No.: (DPT-21) PAGE 1 OF 1

PROJECT: South Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF. PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March SURFACE ELEVATION: NA BORING TARGET: Adjacent to anomaly - Plant #2 lot ET REP:: Din WATER LEVELS DRILLING AND SAMPLING DATE: TREP:: Din DATE TIME DEPTH CASING SAMPLER CORE - - - TYPE - DPT - - - - ID. - 2 inch - - - - - WT./Fall -	29, 2004
SURFACE ELEVATION: NA BORING TARGET: Adjacent to anomaly - Plant #2 lot ET REP.: Din WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE - - - TYPE - DPT - - - - 1.D. - 2 inch - - - - WT./Fail Sample Blows Rec. HNu Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM (ft) & Time per/6" (feet) (ppm) 0 - 0.5' ASPHALT and GRAVEL base (no slag). 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace or (moist-dry). 2 ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). ND 4 ND Prehole depth - 4'. Abandon boring with spoils and top with asphalt.	o Zack TUBE
WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE - - - TYPE - DPT - - - - I.D. - 2 inch - - - - WT/Fall - - - Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM (ft) & Time per/6" (feet) (ppm) 0 - 0.5' ASPHALT and GRAVEL base (no slag). 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 ND Borehole depth - 4'. Abandon boring with spoils and top with asphalt.	TUBE
DATE TIME DEPTH CASING SAMPLER CORE - - - TYPE - DPT - - - 1.D. - 2 inch - - - WT./Fall - - Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM (ft) & Time per/6" (feet) (ppm) 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - - - ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 2 - ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 - - ND Borehole depth - 4'. 5 - - - Abandon boring with spoils and top with asphalt.	
- - - TYPE - DPT - - - 1.D. - 2 inch - - - WT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM (ft) & Time per/6" (feet) (ppm) 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - - A ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 2 - ND ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). 4 - - ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	
- - - 1.D. - 2 inch - - - - WT./Fall - - - Depth (ft) Number & Time Blows Rec. (feet) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM 1 - 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). 4 ND Borehole depth - 4'. Abandon boring with spoils and top with asphalt.	
- - - WT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM (ft) & Time per/6" (feet) (ppm) 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - - 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 2 - ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 - ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	
Depth (ft) Sample Number & Blows (feet) Rec. (feet) HNu Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM 1 - 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - 4 ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	
Depth (ft) Number & Time Blows per/6" Rec. (feet) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM 1 - 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - - 0 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 - ND Borehole depth - 4'. 5 - - Borehole depth - 4'.	
(ft) & Time per/6" (feet) (ppm) 1 - 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - - ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 3 - ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	
1 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 - ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). 3 - ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	CHANGES
1 4 ND 0 - 0.5' ASPHALT and GRAVEL base (no slag). 1 - ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 ND ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). 3 - ND Borehole depth - 4'. 5 - - Abandon boring with spoils and top with asphalt.	
1 ND 0.5 - 2' Olive SILT, some topsoil, trace gravel, trace of (moist-dry). 2 ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 3 ND 2 - 4' Reddish brown SILTY CLAY, some mottled grastiff, native (dry). 4 Borehole depth - 4'. 5 Abandon boring with spoils and top with asphalt.	
ND (moist-dry). 2 ND 3 ND 3 ND 4 ND 5 ND 4 ND 5 ND	clav
2 3 3 4 5 Borehole depth - 4'. Abandon boring with spoils and top with asphalt.	
3 ND 2 - 4' Reddish brown SILTY CLAY, some mottled gra stiff, native (dry). 4 ND Borehole depth - 4'. 5 Abandon boring with spoils and top with asphalt.	
3 ND stiff, native (dry). 4 Borehole depth - 4'. 5 Abandon boring with spoils and top with asphalt.	مناشر والمنا
3 ND 4 Borehole depth - 4'. 5 Abandon boring with spoils and top with asphalt.	iy slity clay,
4 - Borehole depth - 4'. 5 - Abandon boring with spoils and top with asphalt.	
5 — Borehole depth - 4'. Abandon boring with spoils and top with asphalt.	
5 — Borehole depth - 4'. Abandon boring with spoils and top with asphalt.	
5 4 Abandon boring with spoils and top with asphalt.	
8	
9	
13 —	
15 —	
16	
19 —	
]	

E	•	A	R	т	H	€	т	E	c	н
---	---	---	---	---	---	---	---	---	---	---

BORING LOG

Boring No.: DPT-22) (PROJECT: Scott Aviation (Phase II) CONTRACTOR: SJB (Randy Steiner) PAGE 1 OF 1 PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March 29, 2004 SURFACE ELEVATION: NA BORING TARGET: Anomaly - Plant #2 lot ET REP .: Dino Zack WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TUBE TYPE DPT -----------------------1.D. 2 inch ---___ ---WT./Fall ------------HNu Sample Depth Rec. Readings Number Blows SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) & Time per/6" (feet) (ppm) 0 - 1' ASPHALT and blueish gray SLAG. 4 ND 1 ND 1 - 2' Olive to reddish brown SILT, little gravel, little silty clay (dry). 2 ND 2 - 4' Reddish brown SILTY CLAY, some mottled gray silty clay, stiff, native (dry). 3 ND 4 Borehole depth - 4'. Abandon boring with spoils and top with asphalt. 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SCOTT AVIATION, INC. -- PHASE II ENVIRONMENTAL SITE INVESTIGATION SUMMARY REPORT

APPENDIX IV

TEST PIT LOGS

,

Earth Tech, Inc.

	T: Scott A			-	TEST PIT LOG TOR: SLC (Jerry Jones)		Test Pit No.: PAGE 1 OF	(TP-1
	T No.: 711		1030 117		TION: Lancaster, New York		DATE: March 23,	_
	E ELEVAT				OCATION: Northern Area	·	ET REP.: Dino Za	
	ATER LEV					DRILLING AND SAM		<u> </u>
DATE		DEPTH		<u>├───</u>	CASING	SAMPLER		TUDE
	-			· TYPE	CASING			TUBE
				I.D.				
				WT./Fall				
	 Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCE	RIPTION, REMARKS,		
(ft)	& Time	per/6"	(feet)	(ppm)		AIP HON, NEMANNO,		ANGES
	a nine	peno	(1001)	ND	0 - 0.5' TOPSOIL			
-							on mottled and	- : I - .
1 —				ND	0.5 - 8' Reddish brown		ace momed gray	Silly
_					clay, trace gravel, nati	ve (ary-moist).		
2 —								
					Collected photograph	of test pit.		
3 —			1					
7								
4								
5 —								
-								
6 –								
-								
7 –								
-							1	
8 —				· · · ·		,		
-								
9 –					Total depth ~8 feet.			
					Test pit backfilled with	excavated soil.		
10 -								
ר יי								
. 1					•			
11 -								
- 4	ļ							
12								
-								
13 —								
-								
14								
_								
15 -		l.		,				
``	ł	ľ						
16 [–]								
16 _								
, 1								
17 —	ľ							
-								
18 —					٤			
-	ļ					`		
19 —								
_								
20 –		1						
-~ . 7								

PROJEC	T: Scott A	viation (P	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV					DRILLING AND SAM	the second s	
DATE	TIME	DEPTH		· · ·	CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
				ND	0 - 0.5' TOPSOIL			
				ND	0.5 - 8' Reddish browr	SILTY CLAY, lit	tle gravel, trace n	nottled
1 -					gray silty clay, native (0	
-					[],,,	()-		
2 —			Í		Collected photograph	of test nit		
-						or toot pit.		
3 —				ļ				
-								
4 —								
5 —		1		1				
Ŭ			ľ					
6								
6 —								
7 —								
-								
8 —	[
_					Total dambh 0 fact			
9					Total depth ~8 feet.			
_					Test pit backfilled with	excavated soil.		
10 —								
10								
. T								
11 —								
. 1								
12 —								
-								
13 –	Í							
-								
14 —								
_								
15 —								
'° –								
16 7								
16 —								
17 -							-	
-								
18 -								
_								
19 —								
·• _]								
20 –								
24 Y								

ROJEC	T: Scott A	viation (P	hase II)		TEST PIT LOG		Test Pit No.:	<u> </u>
	T No.: 711		nase nj		TION: Lancaster, New York	· · · · · · · · · · · · · · · · · · ·	DATE: March 23, 2	
	EELEVAT		. <u>.</u>		OCATION: Northern Area	<u> </u>	ET REP.: Dino Za	
	ATER LEV			1-2011112		DRILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
			<u> </u>	TYPE				
	-			I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS	, AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)				
_			1	ND	0 - 0.5' TOPSOIL			
1 —				ND	0.5 - 6' Reddish browi		ttle gravel, trace m	ottled
· _					gray silty clay, native	(dry-moist).		
2 —								
-					Collected photograph	of test pit.		
3 —								
~]								
4]								
								•
_]								
5 —								
_ 1								
6 –					· · · · · · · · · · · · · · · · · · ·			
_ 1					Total depth ∼6 feet.			
7 –					Test pit backfilled with	excavated soil.		
_ 1								
8 –								
_ 1								
9 –								
10 —								
-								
11 —								
-								
12 –	Í							
-								
13 –								
-								
14 —		ł						
-								
15 —								
4								
16 –					·			
_								
17 –		ļ						
·· _								
18 —								
·o -1				ĺ				
			1					
-		l.						
-								
-								

				[+ - · ·	TEST PIT LOG		Test Pit No.:	<u>(</u> TP-
	T: Scott A		hase II)		TOR: SLC (Jerry Jones)			1
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	
	EELEVAT			LI EST PIT L	OCATION: Northern Area		ET REP.: Dino Za	ck
				L		DRILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
) a m d h	Sample	Diama	Dee	HNu				
epth (ft)	Number & Time	Blows per/6"	Rec. (feet)	Readings	SAMPLE DESCR	IPTION, REIVIARAS,	AND STRATUM CH	ANGES
(11)	& rime	per/o	(leet)	(ppm)			·	
-				ND	0 - 0.5' TOPSOIL			
1 –				ND	0.5 - 8' Reddish browr		tle gravel, trace n	nottled
<u> </u>					gray silty clay, native (dry-moist).		
2 _								
-]					Collected photograph	of test pit.		
3]								
。ー								
<u> </u>				1				
4 —								
-			• •					
5 —			i					
_					. '			
6 –								
7 🚽								
ר '								
្រា								
8 –								
					Total depth ~8 feet.			
위ᅴ					Test pit backfilled with	excavated soil		
-					100t pit buokinicu with	ondereice son.		
ᇬᅴ								
4								
1 –								
_								
2 –								
-]								
, 1								
3 —	·							
. 1			1					
4 —						1 I		
-								
5 –								
3 -								
7 –	ł	1						
ר '								
_ 1								
3 –								
-								
∍ —								
4								
5 –								
- 1								

	EART				TEST PIT LOG		Test Pit No.:	(TP-5	
	T: Scott A		hase II)		TOR: SLC (Jerry Jones)		PAGE 1 OF	1	
	T No.: 711				TION: Lancaster, New York		DATE: March 23,		
	E ELEVAT			TEST PIT L	OCATION: Northern Area		ET REP.: Dino Zack		
	ATER LEV	-				DRILLING AND SAMP			
DATE	TIME	DEPTH		ļ	CASING	SAMPLER	CORE	TUBE	
				TYPE					
				I.D.					
			1	WT./Fall	'				
	Sample	_ .		HNu					
Depth	Number	Blows per/6"	Rec.	Readings	SAMPLE DESCH	RIPTION, REMARKS, A	AND STRATUM CH.	ANGES	
(ft)	& Time	perro	(feet)	(ppm)	0 - 0.5' TOPSOIL		_ <i>i</i>		
_				ND					
1 —			ľ	ND	0.5 - 7' Tan to olive SI		ravel, little mottle	ed	
_					gray silty clay, native (dry-moist).			
2 —									
_			l		Collected photograph	of test pit.			
3 —									
۲ _]									
]									
" –]					•				
_ 1									
5 —									
6 —									
7 -						<u> </u>			
-					Total depth ~7 feet.				
8 —					Test pit backfilled with	overvated sail			
-					rest pit backlined with	excavaleu soll.			
9 —									
-									
10									
_									
11 -									
·· _									
12 -									
13 –									
13 –									
1, 1					`				
14 —									
1									
15 —									
-									
16 —	•								
-									
17 —									
4									
18 —						•			
								1	
19 —									
'' <u> </u>			,						
<u> </u>	Í								
20 —									

					TEST PIT LOG		Test Pit No.:	(TP-6
	T: Scott Av		hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF 1	1
PROJEC	T No.: 711	49		SITE LOCA	TION: Lancaster, New York		DATE: March 23,	
	E ELEVAT			TEST PIT L	OCATION: Northern Area		ET REP .: Dino Za	ck
	ATER LEV					DRILLING AND SAME		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
Donth	Sample Number	Blows	Dee	HNu				NOFO
Depth (ft)	& Time	per/6"	Rec.	Readings	SAMPLE DESCR	IPTION, REMARKS,	AND STRATUM CHA	NGES
(1)	arine	peilo	(feet)	(ppm) ND	0 - 0.5' TOPSOIL		· · ·	
-							lo arount trons	- 4411
1 –				ND	0.5 - 8' Reddish browr		le gravel, trace m	ottled
4					gray silty clay, native (dry-moist).		
2 —								
					Collected photograph	of test pit.	-	
3 —								
ĭ」								
4 –			i i					
7 -								
_]								
5 –								
_ 1								
6 —								
-								
7 —								
-								
8 -						<u>-</u>		
-	ĺ				Total depth ~8 feet.			
9 —					-	every stad and		
-					Test pit backfilled with	excavaled soll.		
10 —	1							
_								
11 -								
	1							
12 —								
·-]								
13 —								
'' _]								
1 I								
14 —	, I							
<u> </u>								
15 –								
-								
16 —							•	
4								
17 -								
4								
18 -								
··]								
10 T								
19 —						-		
20								

Appendix IV TP Logs

.

		U	ТЕС	п	TEST PIT LOG		Test Pit No.:	(TP-7
PROJEC	T: Scott A	viation (P	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF 1	
	T No.: 711				TION: Lancaster, New York		DATE: March 23, 3	2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV					DRILLING AND SAM	IPLING	
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu				· · · · · · · · · · · · · · · · · · ·
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION REMARKS	, AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)				NOLO
	C Tanto	peno		ND	0 - 0.5' TOPSOIL			
-								
1 –				ND	0.5 - 8' Reddish brown		tte gravel, trace m	ottled
					gray silty clay, native (dry-moist).		
2 _								
- 7					Collected photograph	of test pit.		
_ 1						•		
3 —								
-								
4 —			1					
_								
5 —								
ľ l								
ے ا								
6 –								
_ 1								
7 —								
-								
8 -					•			
-								
9 —					Total depth ~8 feet.			
Ĭ					Test pit backfilled with	excavated soil.		
10]								
10 -		i						
-								
11 -								
-								
12 -								
	- 1							
13 —								
' ³ ¬								
1								
14 —								
-4								
15 -		-						
_								
16 —								
••			•			•		
1, 1								
17								
-								
18 _								
18 _								
4								
- 18 — - 19 —								
4								

					TEST PIT LOG		Test Pit No.:	(TP-
	T: Scott A		nase II)		TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23	
	E ELEVAT			TEST PIT L	OCATION: Northern Area		ET REP.: Dino Z	ack
	ATER LEV			ļ		DRILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
		L		TYPE				
				I.D.		-		
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION, REMARKS	, AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
			1	ND	0 - 0.5' TOPSOIL	·····	- #	
-			1	ND	0.5 - 8' Reddish browr	to roddich ton S	ULTY CLAY track	araval
1 —								e gravei,
_					native (dry-moist).	5 5		
2 —								
-			ľ		Collected photograph	of test pit.		
<u> </u>								
3 —					,			
-								
4 —				1				
_								
5 —								
· _								
6								
6 —								
_ 1								
7 —								
_								
8 —								
_								
9 —					Total depth ~8 feet.			
3 7					Test pit backfilled with	excavated soil.		
1								
10 —								
-								
11 —								
						,		
12 —								
12 -								
			.					
13 –								•
4								
14 —								
15 —								
' ^{,,} –								
	ļ							
16 —								
-								
17 –								
<u> </u>								
1 ،								
18 —	1	1						
. –								
19 —								
_								
20 –		1						
				1	•			

•

I	EART	" (1)	тес	н	TEST PIT LOG		Test Pit No.:	(TP-9)
PROJEC	T: Scott A	viation (P	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23	, 2004
SURFAC	E ELEVAT	ION: NA		TEST PIT L	OCATION: Northern Area		ET REP.: Dino Z	ack
	ATER LEV	-				DRILLING AND SAMF		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	IANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
				ND	0 - 0.5' TOPSOIL			
1				ND	0.5 - 8' Reddish browr	n SILTY CLAY, litt	le mottled gray s	silty clay,
					little gravel, native (dry	/-moist).		
2					Collected photograph	of test pit.		
_								
3 —								
-								
4 —								
5					, L			
6								
7								
· _								
8 —								
Ŭ								
9 —					Total depth ~8 feet.			
9 –					Test pit backfilled with	excavated soil.		
10 —			,		•			
-			-					
11 —								
-								
12 —								
_					•			
13 —								
4					•			
14 —								
15 —								
·3 —								
16 1								
16								
1								
17 —	ļ							
-	ł							
18 —								
-				1				
19 —			Í					
_	1							
20 —								
		_						

ŧ

		<u> </u>			TEST PIT LOG		Test Pit No.:	(TP-10
ROJEC	T: Scott Av	viation (Pl	hase II)		TOR: SLC (Jerry Jones)	······································	PAGE 1 OF	
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV					ORILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
		·		I.D.				
				WT./Fall				
	Sample		1	HNu				
Depth	Number	Blows	Rec.	Readings				NOES
				-	SAMPLE DESCR	IF HUN, REMARKS,	AND STRATUM CHA	INGES
(ft)	& Time	per/6"	(feet)	(ppm)			·····-	
4				ND	0 - 0.25' TOPSOIL			
1				ND	0.25 - 8' Reddish brow	n to reddish tan	SILTY CLAY, trac	е
					mottled gray silty clay,	trace gravel, nat	ive (dry-moist).	
-1						0 /		
2 -						of tost pit		
_					Collected photograph	or test pit.		
3 -								
٦ ړ								
4								
-			•					
5 –								
_								
6 –								
×								
_ 7								
7 –								
-								
8 -+							<u> </u>	
_								
9 –					Total depth ~8 feet.			
Ŭ					Test pit backfilled with	excavated soil.		
. 1								
10 -	1							
11 -								
2 —					•			
2 T								
-								
3 –								
4		1						
4 –								
·]								
_ T								
5 –								
-								
6 –								
- 1								
7 –						,		
-								
8 –								
9 –								
3 —				I				
1	1	ſ						
0 -								

ï

PROJECT: Scott Av PROJECT No.: 711 SURFACE ELEVAT WATER LEV	49		TOR: SLC (Jerry Jones) TION: Lancaster, New York		PAGE 1 OF	
SURFACE ELEVAT		ISHELOCA	VIION: Lancaster. New York	,		
	LCANDE NEA			<u> </u>	DATE: March 23,	
WATER LEV		IEST PIT I	LOCATION: Northern Area		ET REP.: Dino Za	ck
				DRILLING AND SAM		
DATE TIME	DEPTH		CASING	SAMPLER	CORE	TUBE
		TYPE				
		I.D.				
		WT./Fall				
Sample Depth Number (ft) & Time	Blows Rec.	HNu Readings	SAMPLE DESCR	RIPTION, REMARKS	, AND STRATUM CHA	NGES
(ft) & Time	per/6" (feet)					
- 1 - 2 - 3 - 4 - 5 - 6 - 7 -		ND ND	0 - 0.5' TOPSOIL 0.5 - 8' Reddish browr mottled gray silty clay, Collected sample TP- Collected sample TP-	trace gravel, na 11-0-1 (VOC, SV 11-1-4 (VOC, SV	tive (dry-moist). OC, metals)	
8			Total depth ~8 feet. Test pit backfilled with	excavated soil.		

د

	T: Scott A		nase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
ROJEC	T No.: 711	49		SITE LOCA	TION: Lancaster, New York		DATE: March 23,	2004
URFAC	E ELËVAT	ION: NA			OCATION: Northern Area		ET REP .: Dino Za	
	ATER LEV					DRILLING AND SAM		
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu	· · · ·			······
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION. REMARKS	S, AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)			,	
		pono	()	ND	0 - 1' TOPSOIL			
-				ND			and mottled arous	
1 —					1 - 10' Reddish brown		ace mollied gray s	siity
_					clay, trace gravel, nati	ve (dry-moist).		
2 –								
-]					Collected photograph	of test pit.		
<u> </u>								
3 —								
-								
4 —								
-								
5 —								
6 –								
רי								
_ 1								
7 –								
-								
8 —								
-								
9 —								
_								
10 🕂								
' ⁰								
. 1					Total depth ~10 feet.			
11					Test pit backfilled with	excavated soil	•	
-				ļ				
12 —								
-								
13 —					1		,	
14 —								
'' -7								
1_1								
15 —								
-								
16 —								
4								
17								
··]								
۲ _۵								
18 —								
_				1				
9 —								
9 _								

	T: Scott A		nase II)	CUNTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23	, 2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Z	
	ATER LEV	ELS	•			DRILLING AND SAM	PLING	
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
		-		TYPE				
		-		I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				-
				ND	0 - 0.5' TOPSOIL		· · ,	_
4				ND	0.5 - 5' Reddish browr	SILTY CLAY, tra	ace mottled gray	silty
					clay, trace gravel, nati			•
. 1								
2 —					Collected photograph	of test pit		
-						o, toot pit.		
3 —								
-								
4 —								
_								
5 —						·····		
Ŭ								
6 —					Total depth ~5 feet.			
0					Test pit backfilled with	excavated soil.		
_ 1					•	Ì		
7 -						Ύ,		
-						·.		
8 —								
-								
9 —							•	
_		1						
10 -								
_								
11 -		· · ·						
'' T								
1 م								
12 –								
13 —								
-								
14 —								
_								
15 —			ĺ					
<u> </u>								
16 —	1	Ì						
'" T								
<u> </u>								
17 –								
-		ĺ						
18 —			ĺ					
_								
19 —								
· •]		1						
20 –			Í					
.u —								

ROJEC	T: Scott Av	viation (PI	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711		iase ii)		TION: Lancaster, New York		DATE: March 23,	-
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV					DRILLING AND SAM		
DATE	TIME	DEPTH		<u> </u>	CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample		<u> </u>	HNu	·····			
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION, REMARKS.	AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)		,		
			, <i>,</i>	ND	0 - 0.5' TOPSOIL			
-				ND	0.5 - 5' Reddish tan Sl	ITY CLAV trace	mottled reddish I	
1 —								5104411
_					and gray silty clay, tra	se gravel, nauve	(ury-moist).	
2 —								
3 —								
~								
٦ ,								
4 –								
-				ND	5 - 6' Reddish brown S	ILTY CLAY nati	ve (drv-moist)	
5 —								
-					Colloctorius hatawaan	- 5 4 4 14		
6					Collected photograph	of test pit.		
_								
7 –					Total depth ~6 feet.			
.'					Test pit backfilled with	excavated soil.		
<u> </u>								
8 —								
9 –								
-								
10 -								
_								
11 -					•			
··]								
12 —								
12 -								
<u> </u>								
13 —								
-								
14 —								
4								
15 -								
16 —	1							
'' –								
,_ 1		Í						
17 –								
18 —								
19 —								
'° -]								
20 –		ĺ						
·//1								

E	ARTI	も	T E C	н	TEST PIT LOG		Test Pit No.:	(TP-15
PROJEC	T: Scott Av	viation (P)	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV			1		DRILLING AND SAM		
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE
				TYPE				
				1.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings				NOES
(ft)		per/6"		1	SAMFLE DESCH	IF HON, REWARKS,	, AND STRATUM CHA	INGES
	& Time	peilo	(feet)	(ppm)		•••		
_				ND	0 - 0.5' TOPSOIL			
1 _				ND	0.5 - 6' Reddish browr	to tan SILTY CL	AY, trace mottled	gray
·					silty clay, trace gravel,	native (dry-mois	st).	
]								
.2 —					Collected sample TP-	15-0-1 (VOC SV	OC metals)	
-					-			
3 —					Collected sample TP-	10-1-4 (000, 30	oo, metais)	
4						•		
4 —					Collected photograph	of test pit		
_]								
5 —								
-								
6 –				·				
_				1				
7 –					Total depth ~6 feet.			
	1				Test pit backfilled with	excavated soil.		
<u> </u>								
8 —								
-								
9		1						
_								
10 —	ŀ							
٦ ،								
11 -								
-	i							
12 —		ſ						
4								
13 —								
·•]		1						
1			•					
14 —								
-								
15 —								
_		.						
16 —		_						
1								
17 —								
4	[
18 —								
``_								
<u> </u>								
19 —								
-								
20 —			Í					

ŧ

ς.

.

		<u> </u>	тес		TEST PIT LOG		Test Pit No.:	<u>(TP-16</u>
	T: Scott A		hase II)		TOR: SLC (Jerry Jones)	·	PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23	
	E ELEVAT			TEST PIT L	OCATION: Northern Area		ET REP.: Dino Z	ack
	ATER LEV	-		ļ		DRILLING AND SAMP		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	IPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
				ND	0 - 0.5' TOPSOIL			
, 7				ND	0.5 - 6' Reddish brown	to tan SILTY CL	AY, some mottle	d grav
1 —					silty clay, trace gravel,			- 3,
-						native (ary motor	<i>.</i> ,.	
2 –					Collopted what are and	af ha ah wit		
_					Collected photograph	or test pit.		
3 –								
Ĺ								
4 –								
ר י								
_ 1								
5 —								
-								
6							·	
4					Takal dan Ab Oferst		•	
7 –					Total depth ~6 feet.			
_					Test pit backfilled with	excavated soil.		
8 –								
ר י					•			
<u> </u>			i					
9 ᅴ								
-								
ッー								
1								
								-
2 –								
- 7	ļ							
्न	ł	ł						
3 –								
4								
5 –		ŀ						
.]	ļ							
3 –	1							
_ 1								
7 –								
-								
8 —								
1								
9 –								
′ T								
₀–			f	1				

2	EARTI	゙゙゙゙゙	ТЕС	н	TEST PIT LOG		Test Pit No.:	(TP-17
PROJEC	T: Scott A	viation (Pl	hase II)	CONTRAC	TOR: SLC (Jerry Jones)	····	PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	2004
	E ELEVAT				OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV					DRILLING AND SAM		
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				·
				WT./Fall				
	Sample		<u> </u>	HNu		····		
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCE	IPTION REMARKS	AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)				
	a nine	poi//0	(1001)	ND	0 - 0.5' TOPSOIL			
_				1				
1 –				ND	0.5 - 8' Reddish browr		ace monied gray	silty
_					clay, trace gravel, nati	ve (dry-moist).		
2 —								
- 7				Ì	Collected photograph	of test pit.		
<u> </u>				ļ				
3 –								
-								
4 —				Į				
-								
5 —		ĺ						
_								
6 —								
Ŭ]								
_								
7 –								
8 -								
-					Total depth ~8 feet.			
9 —					-			
_					Test pit backfilled with	excavated soil.		
10 —	ļ							
]								
11]								
11								
		ľ						
12 —								
-								
13 —	1							
_								
14 —								
·	1	1						
1 <u></u>								
15 —								
. 1								
16 —								
4								
17 -								
	1							
18 —								
" T								
		1						
19 —								
4								
20 –								
1				1				

Appendix IV TP Logs

					TEST PIT LOG		Test Pit No.:	(TP-18
PROJEC	T: Scott A	viation (Pl	hase II)	CONTRAC	TOR: SLC (Jerry Jones)	,	PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York		DATE: March 23,	2004
SURFAC	E ELEVAT	ION: NA		TEST PIT L	OCATION: Northern Area		ET REP.: Dino Za	
	ATER LEV				· · · · · · · · · · · · · · · · · · ·	DRILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu	······································			
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CHA	NGES
(ft)	& Time	per/6"	(feet)	(ppm)				
				ND	0 - 6' Reddish brown S	SILTY CLAY, little	e gravel, fill (drv-m	oist)
-				ND	6 - 11' Reddish brown			
1 —					(dry-moist).		ie gravel, native	
-							441	
2 –				ND	11 - 12' Reddish brow		πie gravei, liπie m	ottled
_			•		gray silty clay, native (dry-moist).		
3 -								
~ _]					Collected photograph	of test pit.		
٦ ,								
4 –								
- 1								
5 —								
-								
6								
7 –								
· 」								
8 —								
° T								
_ 1								
9 —								
-								
10 -								
-								
11 -								
_								
12 -								
12 T								
<u> </u>					Total depth ~12 feet.			
13 —	ſ				Test pit backfilled with	excavated soil		
14 —								
	ľ							
15 —								
_								
16								
10 1								
1								
17 —								
-								
18 —								
_								
19 -			1					
20 -								

		viation (Ph	nase II)	CONTRACTOR: SLC (Jerry Jones)			PAGE 1 OF	1
	T No.: 711				TION: Lancaster, New York	(DATE: March 23	, 2004
URFAC	E ELEVAT	ION: NA			OCATION: Northern Area		ET REP.: Dino Z	ack
	ATER LEV					DRILLING AND SAM		
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
1 — 2 —				ND	0 - 8' TOPSOIL (possi Collected photograph	-	construction).	
3								
4 -								
5 —							-	
6 —								
7 _								
8 —								
9					Total depth ~8 feet. Test pit backfilled with	excavated soil.		
10 —								
- 11 —								
12 —								
13 —								
14 _			•					
15 —								
16 –					<i>.</i>			
17 —								
- 8								۱
- 19								
_ 1								
20 –								

٠

.

•

۱

I	EART		ТЕС	H ,	TEST PIT LOG		Test Pit No.:	(TP-20)
PROJEC	T: Scott A	viation (P	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
	T No.: 711			SITE LOCA	TION: Lancaster, New York	:	DATE: March 23	, 2004
SURFAC	E ELEVAT	ION: NA			OCATION: West of Plant #3		ET REP.: Dino Z	
W	ATER LEV	ELS		1		DRILLING AND SAME	PLING	· · · · ·
DATE	TIME	DEPTH		1	CASING	SAMPLER	CORE	TUBE
				TYPE				
				I.D.				
				WT./Fall				
	Sample			HNu		•	· · · · · · · · · · · · · · · · · · ·	· · ·
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES
(ft)	& Time	per/6"	(feet)	(ppm)				
				ND	0 - 4' WOOD (logs and	d branches) and T	OPSOIL.	·····
_					· · · · · · · · · · · · · · · · · · ·			
1 —								
_			•					
2 —						•		
3 —		ŀ						
<u> у</u> –								
				ND	4 - 8' Reddish brown S	SILTY CLAY, trace	e gravel (drv-mo	ist).
4 —							(u, j o	
-								
5 —								
_					.	.		
6 —					Collected photograph	of test pit.		
Ŭ Ŭ								
7								
' -								
_ 1								
8					·	····		
. –					Total depth ~8 feet.			
9 —						overveted sell		
					Test pit backfilled with	excavated soll.		
10 —			•					
11 _								
· ' 7								
1								
12 —								
-								
13 —								
-								
14 —								
_								1
15 —								
13 7								
1						1		
16 —						I		
-								
17 —		·						
4								
18 —								
. [
٦ _٦	ļ							
19 —								
-1								•
20 -								

PROJECT: South Aviation (Phase II) CONTRACTOR: SLC (Jerry Jones) PAGE 1 OF 1 PROJECT No.: 71149 SITE LOCATION: Lancaster, New York DATE: March 29 2 SURFACE ELEVATION: NA TEST PIT LOCATION: West of Plant #1 (west of gate) ET REP.: Dino Zac WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE I.D. I.D. I.D. I.D.	004
SURFACE ELEVATION: NA TEST PIT LOCATION: West of Plant #1 (west of gate) ET REP.: Dino Zac WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TYPE I.D. VT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAI (ft) & Time per/6" (feet) (ppm) 0 - 3' FILL, weathered rock and brick, topsoil, gravel, tract black foundry sand. 1 - - - - - - 3 - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist) Collected photograph of test pit	TUBE
WATER LEVELS DRILLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TYPE	TUBE
DATE TIME DEPTH CASING SAMPLER CORE <t< td=""><td></td></t<>	
TYPE I.D. I.D. WT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAI (ft) & Time per/6" (feet) (ppm) 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 1 - - - ND 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 2 - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist) 3 - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist)	
WT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAI (ft) & Time per/6" (feet) (ppm) 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 1 - - - ND 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 2 - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist) 3 - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist)	
WT./Fall Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAI (ft) & Time per/6" (feet) (ppm) 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 1 - - - ND 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 2 - - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist) 3 - - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist)	
Sample HNu HNu Depth Number Blows Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAI (ft) & Time per/6" (feet) (ppm) 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace 1	
Depth (ft) Number & Time Blows per/6" Rec. (feet) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHAIL 1	NGES
(ft) & Time per/6" (feet) (ppm) 1	NGES
ND 0 - 3' FILL, weathered rock and brick, topsoil, gravel, trace black foundry sand. 1 - 2 - 3 - ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist) Collected photograph of test pit	
1	
ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist)	е
3 ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist	
3 ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist	
3 ND 3 - 4' reddish brown SILTY CLAY, trace gravel (dry-moist	
Collected photograph of test pit	
Collected photograph of test pit)
Collected photograph of test pit.	<i>i</i> -
Total depth ~4 feet.	
Test pit backfilled with excavated soil.	
6	
8 -	
- $ -$	
13 —	
\rightarrow	
14 —	
15 —	
4	
18	
4 1 1 1	
19 — 1	
20 —	

	EART		ТЕС	н	TEST PIT LOG		Test Pit No.:	(TP-22)	
	T: Scott A		nase II)	CONTRAC	TOR: SLC (Jerry Jones)	· · · · ·	PAGE 1 OF	1	
	T No.: 711				TION: Lancaster, New York	(DATE: March 29	2004	
SURFAC	E ELEVAT	ION: NA		TEST PIT L	OCATION: West of Plant #"	1 (west of gate)	ET REP.: Dino Za	ck	
	ATER LEV	ELS				DRILLING AND SAMP			
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE	
				TYPE					
			-	1.D.					
	 Somolo			WT./Fall					
Depth (ft)	Sample Number & Time	Blows per/6"	Rec. (feet)	HNu Readings (ppm)	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CHA	NGES	
				ND	0 - 3' FILL, topsoil, gra	avel, some black a	and rust foundry s	and.	
1					Collected sample TP-2	22-0-1 (VOC, phe	nols, metals)		
2					Collected photograph of test pit.				
3 —									
4 —					Total depth ~3 feet. Test pit backfilled with	excavated soil.			
5 —		•							
6									
7								:	
8 —									
9 —									
10									
11 —									
12 —									
13 —						×			
- 14									
- 15									
16 _							· .		
17 _									
_		ļ							
18 —									
19 — -									
20 —									

ROJEC	T: Scott A	viation (Pł	hase II)	CONTRAC	TOR: SLC (Jerry Jones)	PAGE 1 OF	1			
	T No.: 711		· · · ·		TION: Lancaster, New York	(DATE: March 29	2004		
	E ELEVAT				OCATION: West of Plant #		ET REP.: Dino Za			
W	ATER LEV	ELS		DRILLING AND SAMPLING						
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE		
				TYPE	·					
				I.D.						
				WT./Fall						
	Sample			HNu		• 				
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CH	ANGES		
(ft)	& Time	per/6"	(feet)	(ppm)						
				ND	0 - 1.75' Black SILT a	nd ORGANICS, t	race rust staining			
							Ũ			
1 —				ND	1.75 - 2' Reddish brow	VN SILTY CLAY	race gravel trace	2		
-					rootlets.		salo graver, indet			
2 —				<u> </u>		of toot pit		<u> </u>		
_					Collected photograph	or test pit.				
3 —										
_										
4 _					Total depth ~2 feet.					
]				1	Test pit backfilled with	excavated soil.				
5 _										
э —										
6 —										
-										
7 –										
_										
8 —										
9										
Ŭ										
<u> </u>										
10 -										
-										
11 -										
-										
2										
_										
3 —										
	. Ι									
14										
ר יי										
٦										
15 —										
-										
6 —		1								
-										
7 –										
18 —										
이지										
_ 1										
9 —										
							৩			
₀ –										

	EART, I		T E C	н	TEST PIT LOG		Test Pit No.:	(TP-24A		
	T: Scott Av		hase II)		TOR: SLC (Jerry Jones)			1		
	T No.: 711			SITE LOCA	TION: Lancaster, New York	(DATE: March 29 2	2004		
	E ELEVAT			TEST PIT L	TEST PIT LOCATION: West of Plant #1 (west of gate) ET REP.: Dino Zack					
W	ATER LEV	ELS				DRILLING AND SAM	PLING			
DATE	TIME	DEPTH			CASING	CORE	TUBE			
				TYPE						
				I.D.						
				WT./Fall						
Depth (ft)	Sample Number & Time	Blows per/6"	Rec. (feet)	HNu Readings (ppm)	SAMPLE DESCF	RIPTION, REMARKS,	AND STRATUM CHA	NGES		
1 — 2 —				50 ND	0 - 2' FILL, yellow and Water seep below was 2 - 3' Reddish brown S Collected photograph Collected samples of v TP-24-2 and TP-24-3	ste. SILTY CLAY, nati of test pit. waste and native	ve. soil below waste.			
3 — 4 — -			۱		Total depth ~3 feet. Test pit backfilled with		۰.	-		
5 - - 6 - -										
7 8										
'9 - 10										
- 11 — - 12 —										
12 — 13 —										
14 — 15 —										
16								-		
17 — - 18 —										
- 19 — -	1									
20 —							•			

PROJECT Softward PAGE 1 1 VMCLCTNo::71149 STELCOATION: Lincatate, New York DATE: MATE 1149 DATE: TMPROJECTNo::71149 DIRLING AND SAMPLING DATE TIME DEPTH CASING SAMPLER CORE TUBE DATE TIME DEPTH CASING SAMPLER CORE TUBE -	I	EART		T E C	н	TEST PIT LOG	-	Test Pit No.:	(TP-24B)
DURPACE ELEVATION: NA TEST PIT LOCATION: West of Plent #1 (west of gale) ET REP:: Inon Zack WATER LEVELS DRILING AND SAMPLING DRILING AND SAMPLING	PROJEC	T: Scott A	viation (P	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1
WATER LEVELS DRILLING AND SAMPLER CORE TUBE					SITE LOCA	TION: Lancaster, New York	(DATE: March 29	2004
DATE TIME DEPTH CASING SAMPLER CORE TUBE </td <td></td> <td></td> <td></td> <td></td> <td>TEST PIT L</td> <td></td> <td></td> <td></td> <td>ack</td>					TEST PIT L				ack
<									
<	DATE	TIME	DEPTH		ļ	CASING	SAMPLER	CORE	TUBE
		+	f		<u>+</u>				
Sample (m) Sample a Time Blows per/6" Rec. (text) HNu Reddings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - - ND 0 - 2' FILL, no waste visible. 2 - ND 2 - 3' Reddish brown SILTY CLAY, native. 3 - - Collected photograph of test pit. 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 19 - - -									
Depth Number Bitwe Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - - ND 0 - 2' FILL, no waste visible. 2 - - ND 2 - 3' Reddish brown SILTY CLAY, native. 3 - - Collected photograph of test pit. 4 - - Collected photograph of test pit. 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - - - 16 - - - 17 - - - 18 - - -		Sample		1					
(t) 8 Time perifé(feet)(ppm)1ND0 - 2' FILL, no waste visible.2ND2 - 3' Reddish brown SILTY CLAY, native.3Collected photograph of test pit.45678910111213141819	Depth		Blows	Rec		SAMPLE DESCE	RIPTION REMARKS A	AND STRATUM CH	ANGES
1 ND 0 - 2' FILL, no waste visible. 2 ND 2 - 3' Reddish brown SilLTY CLAY, native. 3 Collected photograph of test pit. 4 Total depth ~3 feet. 5 Feet Pit backfilled with excavated soil. 6 Feet Pit backfilled with excavated soil. 9 Feet Pit backfilled with excavated soil. 11 Feet Pit backfilled with excavated soil. 12 Feet Pit Pit backfilled with excavated soil. 13 Feet Pit Pit Pit Pit Pit Pit Pit Pit Pit Pi									
1 ND 2 - 3' Reddish brown SILTY CLAY, native. 3 Collected photograph of test pit. 4 Total depth -3 feet. 5 Test pit backfilled with excavated soil. 6 Total depth -3 feet. 7 Test pit backfilled with excavated soil. 9 Total depth -3 feet. 10 Total depth -3 feet. 11 Test pit backfilled with excavated soil. 12 Total depth -3 feet. 13 Test pit backfilled with excavated soil.			1 1 1 1 1	,		0 - 2' FILL, no waste v	risible.		
2 ND 2 - 3' Reddish brown SILTY CLAY, native. 3 Collected photograph of test pit. 4 Total depth ~3 feet. 5 Total depth ~3 feet. 6 Total depth ~3 feet. 7 Total depth ~3 feet. 8 Image: State of the		1				,			
2 Collected photograph of test pit. 3 Total depth ~3 feet. 5 Total depth ~3 feet. 6 Total depth ~3 feet. 7 Total depth ~3 feet. 8 Total depth ~3 feet. 9 Total depth ~3 feet. 10 Total depth ~3 feet. 11 Total depth ~3 feet. 12 Total depth ~3 feet. 13 Total depth ~3 feet. 14 Total depth ~3 feet. 15 Total depth ~3 feet. 16 Total depth ~3 feet. 17 Total depth ~3 feet. 18 Total depth ~3 feet. 19 Total depth ~3 feet.	1	1							
2 Collected photograph of test pit. 3 Total depth ~3 feet. 5 Total depth ~3 feet. 6 Total depth ~3 feet. 7 Total depth ~3 feet. 8 Total depth ~3 feet. 9 Total depth ~3 feet. 10 Total depth ~3 feet. 11 Total depth ~3 feet. 12 Total depth ~3 feet. 13 Total depth ~3 feet. 14 Total depth ~3 feet. 15 Total depth ~3 feet. 16 Total depth ~3 feet. 17 Total depth ~3 feet. 18 Total depth ~3 feet. 19 Total depth ~3 feet.	_				ND	2 - 3' Reddish brown S	SILTY CLAY, nativ	e.	
3	2 —							01	
3						Collected photograph	of test pit		
Test pit backfilled with excavated soil.	3 —					Principal principal of the			
Test pit backfilled with excavated soil.	_					Total depth ~3 feet.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 —			}			excavated soil.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				• .					•
7 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	5 —								
7 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1				ł					
9 - 10 - 11 - 12 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 10 - 10 - 17 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	6 —			[
9 - 10 - 11 - 12 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 10 - 10 - 17 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10									
9 - 10 - 11 - 12 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 10 - 10 - 17 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	/ –								
9 - 10 - 11 - 12 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 19 - 10 - 17 - 18 - 19 - 10 - 10 - 17 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	_ 1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_ 1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 -								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 T								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'' –								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 T					*			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 7								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	' ³]			•					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14]								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'*]								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15]								
	'J _								
	- ⁻				-				
	17 1							•	
	" 1								•
	1 ₀ 1								
						, ,			
	1								
20	19 –								
	20 -								

Þ,

Ŧ

-	EARTI	U	тес		TEST PIT LOG		Test Pit No.:	(TP-240			
ROJEC	T: Scott Av	viation (Pr	hase II)	CONTRAC	TOR: SLC (Jerry Jones)		PAGE 1 OF	1			
	T No.: 711		·····	SITE LOCA	LOCATION: Lancaster, New York DATE: March 2						
URFAC	E ELEVAT	ION: NA			LOCATION: West of Plant #1 (west of gate) ET REP.: Dino Zack						
W	ATER LEV	ELS				DRILLING AND SAMP		_			
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE			
				TYPE							
				I.D.							
				WT./Fall							
	Sample			HNu							
Depth	Number	Blows	Rec.	Readings	SAMPLE DESCR	RIPTION, REMARKS,	AND STRATUM CHA	NGES			
(ft)	& Time	per/6"	(feet)	(ppm)							
				ND	0 - 2' FILL, yellow and	amber to green v	vaste between 0.	75 - 2'			
7					on north wall of test pi						
1											
-				ND	2 - 3' Reddish brown S	SILTY CLAY Inativ	10				
2 —					2 - 3' Reddish brown SILTY CLAY, native.						
_					Collected as at a second	of to at = 14					
3 -					Collected photograph	or test pit.		_			
_											
4 –					Total depth ~3 feet.						
•]					Test pit backfilled with	excavated soil.					
_ T											
5 —											
_ 1											
6 -											
-											
7											
-	Í	-									
8 —											
_											
9 –											
Ŭ											
40 T											
10 —											
-											
11 -		1									
-											
12 —											
13 —											
·•]											
1, T											
14 —	1										
1		ľ									
15 —			ļ								
-											
16 —		ŀ		ľ							
_											
17 –											
··]											
1 ₀ 7											
18 —											
19 —	ļ										
	·						•				
20 –											

-

	EART				TEST PIT LOG		Test Pit No.:	(TP-	
	T: Scott A		hase II)		TOR: SLC (Jerry Jones)		PAGE 1 OF 1		
	T No.: 711				TION: Lancaster, New York		DATE: March 29		
	E ELEVAT			TEST PIT L	OCATION: West of Plant #1		ET REP.: Dino Za	ick	
			<u>.</u>	ļ		DRILLING AND SAM			
DATE	TIME	DEPTH			CASING	SAMPLER	CORE	TUBE	
				TYPE					
-				I.D.			<u>+</u>		
	 Semale		1	WT./Fall					
Depth	Sample Number	Blows	Rec.	HNu Readings					
(ft)	& Time	per/6"	(feet)	(ppm)	SAWFLE DESCH	IPTION, REMARKS,	AND STRATUM CH	ANGES	
	di fillito	peno		ND	0 - 3' FILL, no waste v	isiblo			
-									
1 —					Water seep from east	side of test pit at	3 with sheen.		
-									
2 —									
_									
3 —				ND	3 - 3.5' Reddish brown		ntive.		
			L	L	Collected photograph	of test pit.			
4 —									
					Total depth ~3.5 feet.				
5 —					Test pit backfilled with excavated soil.				
5									
_ ۵									
6 —									
,									
7 —									
_ 1									
8 —									
9 —									
-									
10 —									
-									
11 —									
-									
12 –									
_									
13 —									
_									
14 —									
_									
15 —									
`` _]									
1 ₆ 7									
16 —	1								
1, 1									
17 –									
18 —							•		
-									
19 —									
_									
20 —									
			· ·						

•

. •