From:	"Zack, Dino" <dino.zack@aecom.com></dino.zack@aecom.com>
To:	"Linda Ross" <lcross@gw.dec.state.ny.us></lcross@gw.dec.state.ny.us>
CC:	"Perkins, John" <johnperkins@tycoint.com>, "Eric Frauen" <etfrauen@bizwi< th=""></etfrauen@bizwi<></johnperkins@tycoint.com>
Date:	1/5/2010 1:24 PM
Subject:	12/31/09 letter from NYSDEC re: Site No. 915149
Attachments:	12-31-09 letter from NYSDEC.pdf; MW-5 information.pdf

Linda-

To document our phone conversation today (1/5/09) at 13:00hrs regarding the letter dated 12/31/09 you sent for Site No. 915149;

1. Figure 3 - "Process and Instrumentation Diagram for Combined Dual Phase Extraction Remediation System" reflects current conditions and does not need to be updated. The figure will be updated if future changes to the remediation process and instrumentation are made.

2. Appendix C - I will include the information you requested for MW-5 in the first quarter 2010 submittal of the Groundwater Monitoring Report. For your convenience, I'm also attaching the information to this email.

Please let me know if you any further questions.

Thanks,

Dino

Dino Zack, P.G.

Project Manager - Geologist

Environment

D 716.836.4506 x15 M 716.866.8222

dino.zack@aecom.com

AECOM

100 Corporate Parkway, Suite 341, Amherst, NY 14226

T 716.836.4506 F 716.834.8785

www.aecom.com <http://www.aecom.com>

P Please consider the environment before printing this email.

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2915 Phone: (716) 851-7220 • FAX: (716) 851-7226 Website: www.dec.ny.gov

Alexander B. Grannis Commissioner

RECEIVED

JAN 0 5 2010

AECOM - Amherst, NY

December 31, 2009

John Perkins, CHMM Director, Environmental Health and Safety Tyco Safety Products 6600 Congress Avenue Boca Raton, Florida 33487

Dear Mr. Perkins:

Scott Aviation Site Site No. 915149 Lancaster, Erie County

The New York State Department of Environmental Conservation (NYSDEC) is in receipt of the Fourth Quarter 2009 Groundwater Monitoring Report dated December 3, 2009.

The First Quarter 2010 submittal of the Groundwater Monitoring Report shall be submitted with the following changes:

- 1. Figure 3 The "Process and Instrumentation Diagram for combined Dual Phase Extraction Remediation System" needs to be updated for current conditions.
- 2. Appendix C The "MW-5 Well Inspection Checklist" needs to be resubmitted with a well location figure, well log and two rounds of VOC data (10/20/92 and 11/17/92) as described in the checklist.

If you have any questions, please call me at 716-851-7220.

Sincerely,

Lenne C. Kosa

Linda C. Ross Project Manager

LCR:sz

CC:

Mr. Dino Zack - AECOM, Buffalo Mr. Bill Saskowski - AVOX Ms. Tamara Girard - NYS Department of Health

Final Engineering Report/Post-Construction Summary Report

Soil and Ground Water Remediation Project

Scott Aviation Lancaster, New York

James R. Heckathorne, P.E. Vice President

July 1996

5000 Brittonfield Parkway East Syracuse, New York 13057

2010 CABOT BLVD LANGHORNE, PA 19047 (215) 741-4211 QUILIC Cit Inc. MOP TEST HOLE/WELL LOG l / of Page Test/Well Number:/98-2 ZD Project: Scott Aviation MW-5 •SB-2/MW-5 Project Number: Date: 24.07+ 10/27/92 Drilled By: Nari Logged By: Emoire antow Sampling Method: Drilling Method: 4 11Nv Detector: tion: Grout: Seal: Dellets bentonite morey sand * A Pack: Depth to Liquid: Hole Length: Diameter: a 10 Dia: g Type: DVC Depth to Water: 27.5 Depth: 25' Length: Diameter: К' 1 Slot: 2. Water: .010 WC in Type: WELL Penetration Resistence COMPLETION Sample Recovery Structure Staining Moisture Content X Fines Sample Depth LITHOLOGY/REMARKS Color Vapor hná 0-6" gravel, sand fill <u>IVIN</u> 12" GZ' brown, shift chiy, dry, novder. 2(ground) 66 111 SUN A:20 2.4' gravel + sand at top. shift clay. but mothed wi dark + orange coloss 6/4 Т 2 6/2 IO. 1Ľ H25 Ĵ 14 sin p ten y 4 5 <u>1/1:</u> 1:/8 diy ciay wi interning intering sittlens_ 24 4-6' Ģ B 1430 Wilhal 4" of sample, reny plastic 74" cituy. no odiers. dry. Po 8 9/12 6-8 mostly red-brown clay, some mouled black + at bornin colors. 1435 Y • • 17/10 Å Ø.3 · 0 1440 lū 5% plashe top of spoon, gray sitt stringers. grave i downhole PiD - 0.0ppm. 24 M45 Ś 0 3-10 619 -24" 1460 15/15 0 10-12' same as above, Sew gravel pieces, 64R+ 5/2 ĸЦ 0 no stringers . 12-4' same recibrown clay, bottom of spron more moist, plastic, no odor -24" 1500 0 Ś last 6" shaved by large coubble strick in encipiece. Same strif clay. small puces of gravel. -"Ä" Q1 Ð 610 ٩. 14-16' 213 ∇ -24* 0 ciay w/sitt-fine sand lenses every 1077-5/1 22 16-18' 1-Z inches . wet lerves are wet, clary 25.3 0 '72" 1.542 24 saturated C 19' in a fine sand lens apport 2-4" thick. rest of spoon is clay as above . nowlors , most to wet only most. 510 18-20 20-22' clay at top to Z1' Silty sand w/Grave below - softwarted . 23-25' wet. pourly surred sand + gravel gray no odor. TP 25' to a ž

Table 1 **Soil & Ground Water Remediation Project Summary Report** Scott Aviation Lancaster, New York

Monitoring Well Construction Details and Historic Water Levels

Well	Well Depth From Top of Casing	Elevation TOC	Elevation BOS	Elevation Water Table Nov. 1992	Elevation Water Table Aug. 1993	Elevation Water Table Jan. 1996
MW - 1	27.1 ft	691.85	664.75 (1)	685.31	682.91	684.68
MW - 2	17.3 ft	689.48	672.18	685.85	683.52	684.75
MW - 3	27.7 ft	687.68	659.98 (1)	684.18	680.70	684.52
MW - 4	25.9 ft	687.25	661.35 (1)	684.48	681.12	684.72
MW - 5	23.1 ft	687.74	664.65 (1)	684.43	(Note 2)	(Note 2)
MW - 6	25.0 ft	687.00	658.65 (1)	683.65	680.86	684.33

Notes - (1) Based on information obtained from split spoon sampling, these wells were installed on top of the bedrock surface.

(2) Monitoring well MW-5 could not be located because it has been covered.

(3) TOC - Top of inner wall casing BOS - Bottom of screen/well

O'Brien & Gere Engineers, Inc.

\dwyerjt\scott\table1.wb2

Page 1 of 1

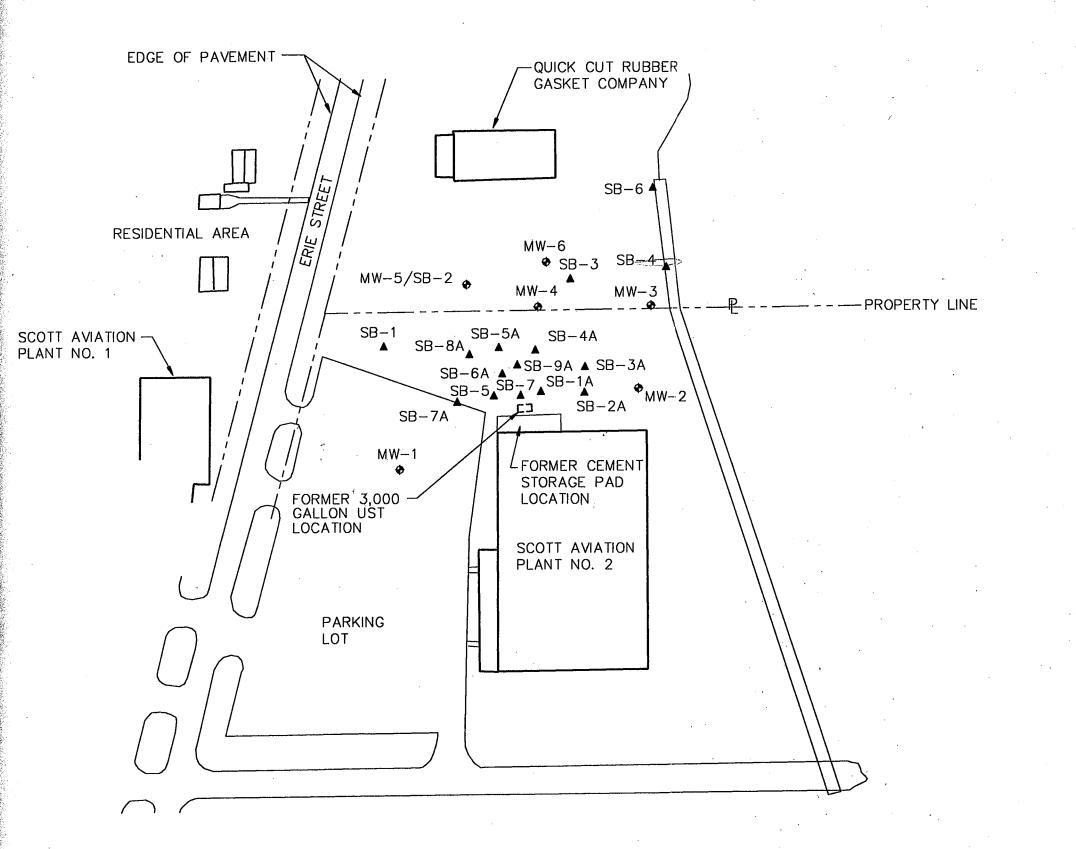
Scott Aviation Lancaster, New York

Historic Ground Water Quality Data (Volatile Organic Compounds)

	Monitoring Well	MW-4				MW-4A DUP. MW-5			MW-6				MW-6 DUP.	
Parameter	Date Sampled:	10/30/92	11/17/92	8/31/93	8/24/95	1/22/96	11/17/92	10/30/92	11/17/92	10/30/92	11/17/92	8/31/93	1/22/96	8/31/93
Acetone		U	U	U	NA	NA	U	υ	U	U	7 J	U U	NA	υ
Chloromethane		NA	NA	NA	<1000	<1000	NA	NA	NA ·	NA	NA	NA	<10	NA
Bromomethane		NA	NA	NA	<1000	<1000	NA	NA	NA	NA	NA	NA	<10	NA
Dichlorodifluoromethane		NA	NA	NA	•	<1000	NA	NA	NA	NA	NA	NA	<10	NA
Vinyl Chloride		U	240 J	300 J	150	<100	280 J	U	υ	υ	U	U	<1	U U
Chloroethane	· · ·	U	U U	300 J	<100	<100	U	υ	U	U	Ū	Ŭ	<1	U U
Dichloromethane	·	270 J	180 JB	U	<100	<100	220 JB	6 JB	5 JB	6 JB	5.JB	ŭ	<1	U U
Trichlorofluoromethane		· NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
1,1-Dichloroethene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
1,1-Dichloroethane		· 250 J	270 .	U	480	<100	340	υ	U	U		U U	<1	U U
1,2-Dichloroethene (total)		. 5900	5100	9400	7600	2700	6100	U	Ū	4 J	ŭ	Ŭ	<1	u u
Chloroform		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
1,2-Dichloroethane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
1,1,1-Trichloroethane		U	U	170 J	<100	<100	U	U	U	U	u u	U U	<1	U U
Carbon tetrachloride		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
Bromodichloromethane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<pre> <1</pre>	NA
1,2-Dichloropropane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
cis-1,3-Dichloropropene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
Trichloroethene		1500	2800	6900	10000	4200	3400	U	U U		U U	- 10 - 10	<1	
Benzene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
Dibromochloromethane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	4	NA
1,1,2-Trichloroethane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
trans-1,3-Dichloropropene		NA	NA	NA	<100	<100	. NA	NA	NA	NA	NA	NA	<1	NA
2-Chloroethylvinyl ether		NA	NA	NA	<1000	<1000	NA	NA	NA	NA	NA	NA	<10	1
Bromoform		NA	NA	NA	<1000	<1000	NA	NA	NA	NA	NA	NA	<10	NA NA
1,1,2,2-Tetrachloroethane		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA NA
Tetrachioroethene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA		1 1
Toluene		U	U	υ	<100	<100	U U	U U	U	U U	1		<1 <1	NA
Chlorobenzene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA		U
Ethylbenzene		NA	NA	NA	<100	<100	NA	NA	NA	NA	NA	NA	<1	NA
Xylene (total)		NA	NA	NA	<300	<300	NA	NA	NA	NA	NA	NA	<1	NA
1,2-Dichlorobenzene		NA	NA	NA	<500	<500	NA	NA	NA	NA	NA	NA	<3	NA
1,3-Dichlorobenzene		NA	NA	NA	<500	<500	NA	NA	NA NA	NA	NA NA	1	<5	NA
1,4-Dichlorobenzene		NA	NA	NA	<500	<500	NA	NA	NA	NA	NA NA	NA	<5	NA
			· ··· ·		-000		1N				INA	NA	<5	NA

NOTES: (1) All units are in ug/l (parts per billion) unless otherwise noted.

.


(2) U - Not Detected

(3) B - Reading was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

(4) J - Estimated value

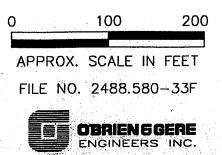
(5) NA - Not Applicable

(6) * The value reported for vinyl chloride may represent vinyl chloride, dichlorodofluoromethane, or any combination of the two compounds.

LEGEND

FIGURE 2

SB-6


APPROX. LOCATIONS OF SOIL BORINGS PREVIOUSLY ADVANCED

MW-1 •

APPROX. LOCATIONS OF EXISTING MONITORING WELLS

SCOTT AVIATION LANCASTER, NEW YORK SOIL & GROUND WATER REMEDIATION PROJECT SUMMARY REPORT

PREVIOUS SITE PLAN

