REMEDIAL ACTION ENGINEERING REPORT (January 22, 2009 through April 8, 2010)

FORMER SCOTT AVIATION FACILTIY LANCASTER, NEW YORK NYSDEC SITE CODE NO. 9-15-149

Prepared for:

Tyco Safety Products 6600 Congress Avenue Boca Raton, FL 33487

Prepared by:

AECOM Technical Services, Inc. 100 Corporate Parkway, Suite 341 Amherst, New York 14226

June 2010

CERTIFICATION

I hereby certify, as a Professional Engineer licensed in the State of New York, that this "Remedial Action Engineering Report (January 22, 2009 through April 8, 2010)," prepared by AECOM Technical Services, Inc. for Tyco Safety Products, was completed in conformance with accepted standards of practice for a project of this scope and nature, as well as the requirements of State of New York, Department of Environmental Conservation (NYSDEC), Order on Consent, Index No. B9-0377095-05, for the former Scott Aviation property (formerly Figgie International), NYSDEC Site Code No. 9-15-149.

Warning: It is a violation of the New York State Education Law for any person, unless acting under the direction of a licensed professional engineer, to alter an item in these plans or report in any way. If alterations are required, they shall be made in accordance with Article 145, Subsection 7209 of the New York State Education Law.

PE Stamp

Signature:

Timothy Stephen Renn, P.E.

New York License No. 085808

AECOM Technical Services, Inc.

Date:

e: _

TABLE OF CONTENTS

<u>SEC</u>	CTIO	<u>N</u>	<u>]</u>	<u>PAGE</u>
LIS	г оғ	FIGUI	RES	iii
LIS	г оғ	TABL	ES	iii
LIS	T OF	APPE	NDICES	iii
LIS	T OF	ACRO	NYMS	iv
1.0	INT	RODU	CTION	1-1
	1.1	REPC	ORT ORGANIZATION	1-1
	1.2	SITE	BACKGROUND	1-2
		1.2.1	Site Remedial Investigation/Feasibility Study	1-2
		1.2.2	Record of Decision	1-2
		1.2.3	Previous Remediation Activities	1-3
			1.2.3.1 Source Area Soil Excavation and Treatment	1-3
			1.2.3.2 Groundwater Collection Trench	
		1.2.4	Additional Investigation Activities	1-4
		1.2.5	Remedial Alternatives Analysis	
	1.3	REMI	EDIAL ACTION OBJECTIVES	1-4
2.0			REMEDIATION SYSTEM CONFIGURATION AND OPERATION AND IANCE SUMMARY	2-1
	2.1		RENT REMEDIATION SYSTEM DESCRIPTION AND CONFIGURATION	
	2.2		BINED DPE REMEDIATION SYSTEM OPERATION SUMMARY	
	2.3		TINE DPE SYSTEM MAINTENANCE AND TROUBLESHOOTING	
		2.3.1	Routine System Maintenance	
		2.3.2	System Troubleshooting	
		2.3.3	Waste Disposal	
3.0	GRO	OUND	WATER MONITORING SUMMARY	3-1
	3.1		CRIPTION OF GROUNDWATER MONITORING ACTIVITIES FOR THE DRIVING PERIOD	3-1
	3.2		JARY 2009 GROUNDWATER ELEVATIONS AND GROUNDWATER FLOW CTION	3-1
	3.3	JANU	JARY 2009 GROUNDWATER ANALYTICAL RESULTS	3-2
	3.4		PARISION OF JANUARY 2009 GROUNDWATER ANALYTICAL DATA WIT	ΓΗ 3-4

TABLE OF CONTENTS (Continued)

<u>SEC</u>	CTIO	<u>N</u>	<u>PAGE</u>
4.0		OUNDWATER REMEDIATION SYSTEM MONITORING AND VOC MASS MOVAL SUMMARY	4-1
	4.1	SYSTEM MONITORING RESULTS	4-1
	4.2	MASS REMOVAL SUMMARY	4-2
5.0	CO	NCLUSIONS AND UPCOMING ACTIVITIES	5-1
	5.1	CONCLUSIONS	5-1
	5.2	UPCOMING ACTIVITIES	5-2
	5.3	PROPOSED MONITORING AND COMPLIANCE SAMPLING SCHEDULE	5-3
6.0	REI	FERENCES	6-1

ii

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Site Location Map
2	Site Features Map
3	Typical Dual Phase Extraction Recovery Well Construction Diagram
4	Typical Nested Piezometer Construction Diagram
5	Process and Instrumentation Diagram
6	Groundwater Surface Contour Map – April 2010 Average Water Levels
7	Groundwater Surface Contour Map – April 2010 Deep Overburden Groundwater Levels
8	Trichloroethene Isoconcentration Contour Map – April 2009
9	Cis-1,2-Dichloroethene Isoconcentration Contour Map – April 2009
10	Vinyl Chloride Isoconcentration Contour Map – April 2009
11	1,1,1-Trichloroethane Isoconcentration Contour Map – April 2009
12	1,1-Dichloroethane Isoconcentration Contour Map – April 2009
13	Chloroethane Isoconcentration Contour Map – April 2009

LIST OF TABLES

<u>l'able</u>	<u>Title</u>
1	Remedial Action Objectives
2	Monitoring Well, Nested Piezometer, and Dual Phase Extraction Well Construction
	Specifications
3	Summary of the Groundwater Monitoring Program
4	Quarterly Groundwater Monitoring Well Water Level Data – April 2010
5	Summary of Groundwater Analytical Data – April 2010
6	Vapor Effluent Monitoring Results – April 2010
7	Volatile Organic Compound Mass Removed – Aqueous Phase
8	Volatile Organic Compound Mass Removed – Vapor Phase
9	Combined DPE Remediation System Operation and Maintenance Schedule
10	Groundwater Monitoring Schedule – July 2010 through July 2011
11	Monitoring and Compliance Sampling Summary

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Former Scott Aviation Plant 2 O&M Checklists
В	April 2010 Field Forms
C	Current and Historical Summary of Groundwater Elevations
D	Analytical Laboratory Data Packages
E	Current and Historical Summary of VOCs in Groundwater

iii April 2010

LIST OF ACRONYMS

AECOM Technical Services, Inc.

AS air stripper

bgs below ground surface
BSA Buffalo Sewer Authority
cis-1,2 DCE cis-1,2-dichloroethene

CD compact disc
1,1-DCA 1,1-dichloroethane
DPE Dual Phase Extraction
gpm gallons per minute

GWCT Groundwater Collection Trench
GWTB Groundwater Treatment Building
HES Heritage Environmental Services, LLC

lb/hr pounds per hour

LNAPL Light Non Aqueous Phase Liquid

LRP Liquid Ring Pump

MVS Mechanical Volatilization System

 μ g/L micrograms per liter μ g/m³ micrograms per cubic meter

NYCRR New York Code of Rules and Regulations

NYSDEC State of New York Department of Environmental Conservation

O&M Operation and Maintenance

RAER Remedial Action Engineering Report

RAO Remedial Action Objective RDWP Remedial Design Work Plan

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

SICR Site Investigation Completion Report

SVE Soil Vapor Extraction
1,1,1-TCA 1,1,1-trichloroethane
TCE Trichloroethene

TEH Total Extractable Hydrocarbons

TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

UST Underground Storage Tank

VC Vinyl Chloride

VOC Volatile Organic Compound

iv April 2010

1.0 INTRODUCTION

On behalf of Tyco Safety Products and pursuant to the requirements of State of New York, Department of Environmental Conservation (NYSDEC), Order on Consent, Index No. B9-0377095-05, AECOM Technical Services, Inc. (AECOM) prepared this Remedial Action Engineering Report (RAER) to summarize the configuration, operation and maintenance (O&M), and monitoring activities for the combined dual phase extraction (DPE) remediation system at the former Scott Aviation property (the "site"), NYSDEC Site Code No. 9-15-149, located at 225 Erie Street, Village of Lancaster, County of Erie, State of New York (Figure 1). A selected remedy for soil and groundwater was described in the Record of Decision (ROD), Scott Aviation Site, Village of Lancaster, Erie County, I.D. Number 9-15-149, which was signed into Declaration on November 7, 1994 (NYSDEC, November 1994). The reporting period discussed herein encompasses the period between January 22, 2009 and April 8, 2010.

1.1 REPORT ORGANIZATION

This is the fifth RAER prepared for this site. The purpose of this report is to provide a summary of the current remediation system configuration, to describe significant O&M and groundwater monitoring activities, to discuss overall remediation system performance during the reporting period, and to provide recommendations for future combined DPE remediation system operation.

This RAER was developed to adhere to NYSDEC site investigation and remediation requirements (NYSDEC, December 2002). More specifically, this report provides the following information:

- Report organization details, a brief summary of site history, previous site investigations, and remediation activities, and remedial action objectives (RAOs) for the site (Section 1.0);
- A description of the current combined DPE system configuration and detailed summary of O&M activities performed during the reporting period (Section 2.0);
- A groundwater monitoring program summary including a description of groundwater monitoring activities completed during the reporting period, a detailed review of the April 2010 comprehensive groundwater monitoring event, and a comparison of historical comprehensive groundwater analytical results to the April 2010 comprehensive groundwater analytical results (Section 3.0);
- A summary of groundwater remediation system monitoring and remediation progress (Section 4.0);
- Conclusions, a description of upcoming site-related activities, and a proposed monitoring and compliance sampling schedule (Section 5.0); and

• References used in the preparation of this report (Section 6.0).

1.2 SITE BACKGROUND

The following subsections present a brief summary of site history and previous investigation and remediation activities.

1.2.1 <u>Site Remedial Investigation/Feasibility Study</u>

A 3,000-gallon underground storage tank (UST) was previously located at the site, immediately adjacent to the southwest corner of Scott Aviation Plant 2 (Figure 2). The UST was used to store waste cutting oil and spent chlorinated solvents generated during manufacturing operations conducted in Plant 2. Activities at Plant 2 have historically included the machining of piece parts from metal feedstock and the fabrication of cores to fit into devices that provide emergency oxygen upon demand in commercial aircraft (Earth Tech, April 2004).

During April 1991, the former site owner, Figgie International, removed the aforementioned UST. Based on contamination discovered during the removal of the UST, Figgie International entered into a remedial investigation/feasibility study (RI/FS) Order on Consent with the NYSDEC on July 9, 1992, and an RI was initiated by Versar, Inc. on behalf of Figgie International in the immediate area surrounding the former UST location. The final RI report was approved by the NYSDEC on December 13, 1993, and it indicated the presence of volatile organic compounds (VOCs) in excess of NYSDEC soil and groundwater guidance values to the west of Plant 2. A subsequent FS report was prepared by Figgie International and approved by the NYSDEC on August 29, 1994 (O'Brien & Gere, July 1996).

1.2.2 Record of Decision

Based on the results of the RI/FS, the NYSDEC prepared an ROD, dated November 7, 1994, which required remedial actions to be initiated to address contaminated soils and groundwater at the site. The ROD specified that soil remediation would be accomplished by excavating all soils with VOCs above site-specific RAOs and subsequently treating the soil on-site using an ex situ soil vapor extraction (SVE) system. The established RAOs for the site are presented in Table 1 and are discussed further in Section 1.3 of this report. The ROD also specified that groundwater remediation would be performed by installing a groundwater collection trench (GWCT) west of Plant 2 to induce hydraulic capture of groundwater impacted with VOCs and by constructing an associated groundwater treatment system. An ROD Amendment approving the use of a Mechanical Volatilization System (MVS) to treat excavated soils in lieu of the proposed ex situ SVE system was issued by the NYSDEC on April 19, 1995 (O'Brien & Gere, July 1996).

1.2.3 Previous Remediation Activities

This section summarizes previous soil and groundwater remedial activities performed at the Site.

1.2.3.1 Source Area Soil Excavation and Treatment

Following approval of the Remedial Design by the NYSDEC in September 1995, soil remediation actions were initiated. Soils to the west of Plant 2 in the vicinity of the former UST were excavated and treated on-Site using an MVS. The MVS process consisted of a screening plant and hammermill shredder that mechanically pulverized and aerated the excavated soil that had previously been amended with pulverized quick lime. Volatilization of the VOCs from the soil occurred as a result of the sieving and pulverizing actions and also because of the heat generated by the reaction of lime with moisture in the soil. Approximately 5,600 cubic yards of soil were excavated from depths ranging between 2 feet and 21 feet (bedrock contact) below ground surface (bgs) and treated using the MVS. Based on analytical results for the treated soil (each individual VOC <1 milligram per kilogram and total VOCs <10 milligrams per kilogram), the NYSDEC approved backfilling the excavation with the originally excavated soil processed on-site with the MVS on December 11, 1995. Backfilling of the excavation was completed on December 19, 1995.

1.2.3.2 Groundwater Collection Trench

In accordance with the ROD, a 200-foot long GWCT was constructed approximately 90 feet west of Plant 2 during February 1996. The purpose of the trench was to maintain hydraulic control of VOC-impacted groundwater. The bottom of the trench was excavated down to bedrock (approximately 25 feet bgs). The bottom five feet of the trench consists of rounded pea gravel and the top 20 feet of the trench was backfilled with remediated soils. A 6-inch diameter, slotted high density polyethylene pipe located at the bottom of the trench conveys water to a wet well located at the north end of the trench. The water is transferred from the wet well using a submersible pump through a 1-inch diameter Schedule 80 polyvinyl chloride pipe to a treatment system located in the Groundwater Treatment Building (GWTB) immediately west of Plant 2. The groundwater treatment system consists of a low-profile shallow tray air stripper (AS) unit. Treated water from the AS unit is discharged under a City of Buffalo Pollutant Discharge Elimination System permit via a 2-inch diameter force main to the local sanitary sewer located south of the GWTB at Erie Street (O'Brien & Gere, July 1996). Start-up of the groundwater treatment system occurred on March 1, 1996. Figure 2 shows the location of the GWCT and GWTB.

1.2.4 Additional Investigation Activities

Annual groundwater monitoring completed in April 1998 indicated an increasing trend in VOC concentrations in MW-4, located to the west of the GWCT at the western property boundary of the site. Additionally, light non aqueous phase liquid (LNAPL) was observed at MW-4 on the water level probe during a quarterly monitoring event conducted in November 1998. In April 1999, four new monitoring wells (designated MW-7, MW-8, MW-9, and MW-10) were installed to evaluate the extent and potential source of VOCs and LNAPL observed in MW-4. Based on repeated detections of VOCs and LNAPL in the groundwater to the west of the GWCT, a comprehensive site investigation was conducted in February 2003 to further assess the vertical and horizontal extent of VOCs and LNAPL.

During the 2003 investigation, LNAPL was observed in MW-8 only. A total of 21 direct push technology borings were advanced to the east and west of the GWCT to further assess the extent of impacted soils west of Plant 2. Results were summarized in the June 2003 Site Investigation Completion Report (SICR), and the data indicated the continued presence of VOCs above the RAOs in the saturated soil and groundwater, primarily to the west of the GWCT (Earth Tech, June 2003).

1.2.5 Remedial Alternatives Analysis

Based upon the results of the 2003 investigation, a remedial alternatives analysis was completed and results were included in the SICR. DPE with a reductive dechlorination polishing step was recommended to be implemented to supplement the existing remediation system and to further remediate VOCs in soil and groundwater at the site (Earth Tech, June 2003).

At the request of the NYSDEC, a Remedial Design Work Plan (RDWP) was prepared that provided a detailed description of the proposed DPE system recommended in the SICR (Earth Tech, November 2003). A discussion of DPE system construction, startup, and O&M activities during approximately the first year of operation (May 14, 2004 through July 19, 2005) is provided in the first RAER prepared for this site (Earth Tech, November 2005).

1.3 REMEDIAL ACTION OBJECTIVES

Cleanup criteria for site soil and groundwater are based on the RAOs established in the ROD (NYSDEC, November 1994). Table 1 presents the site-specific RAOs. The objectives for the combined soil and groundwater remediation system include:

1. Maintain hydraulic control of shallow groundwater and eliminate potential off-site migration of VOCs along the western property boundary.

- 2. Lower the groundwater table within the impacted source area to expose the aquifer matrix and subsequently extract soil vapors containing VOCs using enhanced vacuum extraction. By lowering the water table surface, the DPE system will induce groundwater flow toward the system extraction wells, thereby allowing the applied vacuum to more effectively remove VOCs in the exposed aquifer matrix.
- 3. Reduce the mass of VOCs in the subsurface and remediate site soil and groundwater to meet RAOs.
- 4. Obtain No Further Action status for the site.

2.0 CURRENT REMEDIATION SYSTEM CONFIGURATION AND OPERATION AND MAINTENANCE SUMMARY

This section provides a description of the current remediation system configuration and a summary of remediation system O&M activities performed during the reporting period (January 22, 2009 through April 8, 2010) for the combined DPE remediation system.

2.1 CURRENT REMEDIATION SYSTEM DESCRIPTION AND CONFIGURATION

As described in Section 1.2.3.2 of this report, the initial groundwater remediation system installed at the Site consisted of a 200-foot long GWCT and an associated groundwater treatment system located to the west of Plant 2. The pre-existing GWCT remediation system was combined to operate with a new DPE remediation system installed at the site between February and May 2004. The combined remediation systems, known collectively as the combined DPE remediation system, began operation on May 14, 2004.

Figure 2 depicts the combined DPE remediation system including DPE system recovery wells, monitoring wells, and nested piezometers, DPE system piping locations, the DPE system trailer, and the pre-existing GWCT and GWTB. The DPE system consists of eight recovery or extraction wells. Figure 3 presents a typical DPE recovery well construction diagram. Three additional monitoring wells (MW-8R, MW-11 and MW-12) and four pairs of nested piezometers (MW-13S/D through MW-16S/D) were also installed as part of DPE system construction activities and monitoring activities completed in 2004 and 2005. A typical nested piezometer construction diagram is shown in Figure 4. Monitoring well, nested piezometer, and DPE system recovery well construction specifications are provided in Table 2. Section 2.0 of the first RAER provides a detailed summary of recovery well and monitoring well installation, subsequent DPE system installation, and DPE system equipment specifics (Earth Tech, November 2005). Figure 5 presents the process and instrumentation diagram for the combined DPE remediation system.

For the entire reporting period, the combined DPE remediation system extracted groundwater and soil vapors from the shallow and deep recovery wells. Shallow recovery well, DPE-6 (located in former soil excavation area to the east of the GWCT), was kept out of operation due to excessive calcium hydroxide (lime) scale buildup issues. The optimization plan during the reporting period was to focus extraction on both the shallow and deep perched water-bearing unit, which consists of silty clays and silty sands, poorly sorted sands, and gravel respectively.

Recovery wells DPE-1, DPE-5, and DPE-6 had previously been left out of operation due to the high quantity of lime scale recovered by these wells during approximately the first year of operation by the combined DPE remediation system. This scale caused continuous fouling of DPE recovery system

conveyance piping and associated components and subsequently resulted in excessive downtime of the DPE system for maintenance. The large quantity of lime scale recovered by these three extraction wells is attributed to historic soil remediation activities conducted at the site that mixed excavated soil with pulverized quick lime. The treated soil was subsequently used as backfill in the vicinity of these recovery wells (refer to Section 1.2.3.1 of this report). As a component of system optimization during the reporting period, DPE-1 and DPE-5 and the associated conveyance piping were flushed with a chemical solution to remove lime scale build up.

2.2 COMBINED DPE REMEDIATION SYSTEM OPERATION SUMMARY

With the exception of system equipment breakdowns and malfunctions noted in Section 2.3.2 of this report, the system ran with a total DPE system runtime of approximately 60 percent for the reporting period. This runtime percentage was derived in part from the liquid ring pump (LRP) hour meter.

During the reporting period, the DPE system collected approximately 244,399 gallons of groundwater at an average flow rate of 0.34 gallons per minute (gpm). The pre-existing GWCT collected approximately 539,988 gallons of groundwater at an average flow rate of 0.85 gpm. Therefore, the total combined DPE remediation system groundwater treated and discharged to the sanitary sewer by the AS unit effluent pump was approximately 786,659 gallons at a combined average flow rate of 1.22 gpm.

2.3 ROUTINE DPE SYSTEM MAINTENANCE AND TROUBLESHOOTING

The following subsections describe routine DPE system maintenance and troubleshooting as well as associated waste disposal that occurred during the reporting period.

2.3.1 Routine System Maintenance

During routine weekly site visits, AECOM personnel recorded system operating parameters, inspected and cleaned the various system components and piping, inspected and replaced filters (air and water), and maintained the LRP seal fluid levels. Minor system repairs were also made as necessary throughout the reporting period. The O&M data collected during the site visits was recorded using the O&M checklist presented in Appendix A. Data collected on these checklists was entered into the master tracking database for the site.

2.3.2 System Troubleshooting

AECOM responded to system shutdowns and delays that required sporadic troubleshooting and maintenance during the reporting period. These activities are summarized below:

- In March 2009, performed DPE system cleaning and preventative maintenance including;
 - o Changed LRP oil,
 - o Changed LRP filter element,
 - o Greased LRP fittings,
 - o Removed sediment from knock out tank,
 - o Replaced knock out tank filter,
 - o Removed sediment from hold tank,
 - o Replaced bag filters and cleaned bag filter vessels,
 - o Replaced DPE well drop tubes.
- On March 24, 2009, all DPE wells were activated except DPE-6 and spent granulated activated carbon was sent off site for incineration.
- In April 2009, removed sediment accumulated in monitoring wells and piezometers.
- On May 13-14, 2009, performed scale abatement in DPE-1, DPE-2, DPE-5, and associated system conveyance piping.
- On May 14, 2009, replaced LRP solenoid valve, installed new flow meter on the AS unit exhaust piping, and disassembled and cleaned AS unit.
- On July 14, 2009, refurbished LRP motor and reinstalled it on July 16, 2009.
- On September 9, 2009, performed repairs to the LRP including installation of a new vacuum loop and installation of a valve to correct amp draws on the LRP.
- On September 27, 2009, changed LRP oil and installed new filter element.
- On October 5, 2009, installed a new totalizer on the AS unit influent, installed new fuse on GWCT pump panel, replaced leaking oil line on LRP, and winterized DPE system.
- On December 21, 2009, replaced damaged GWCT pump.
- On January 14, 2010, replaced electrical wire from the GWCT to the control panel in the GWTB.

2-3

• On February 16, 2010, repaired the hold tank transfer pump.

- In April 2010, performed DPE system cleaning and preventative maintenance including;
 - o Topped off LRP oil,
 - o Changed LRP filter element,
 - o Greased LRP fittings,
 - o Removed sediment from knock out tank,
 - o Replaced knock out tank filter,
 - o Removed sediment from hold tank,
 - o Replaced bag filters and cleaned bag filter vessels,
 - o Removed sediment from DPE wells,
 - o Replaced DPE well drop tubes.

2.3.3 Waste Disposal

On January 30, 2009, Heritage Environmental Services, LLC (HES) transported and disposed one 55-gallon drum (204 pounds) containing sediment, bag filters, and miscellaneous debris. This hazardous material (F002 waste code) was generated during O&M activities conducted at the site between August 2008 and January 2009. On July 14, 2009, HES transported and disposed one 55-gallon drum (239 pounds) of hazardous waste (e.g., sediment, bag filters, and absorbent socks) generated at the site between December 2008 and July 2009. On January 2, 2010, HES transported and disposed one 55-gallon drum (166 pounds) of hazardous waste (e.g., sediment, bag filters, and absorbent socks) generated at the site between July 2009 and December 2009. AECOM personnel supervised the loading of the drums at the site prior to transportation to an approved disposal facility. The next hazardous waste pickup (for waste generated between January 2010 and July 2010) is scheduled for July 2010.

On March 24, 2009, an AECOM subcontractor, OP-TECH Environmental Services, Inc., transported approximately 1,500 pounds of spent granulated activated carbon to the Waste Management, Inc. disposal facility at Model City, Lewiston, New York.

3.0 GROUNDWATER MONITORING SUMMARY

A detailed description of groundwater monitoring activities completed during the reporting period (January 22, 2009 through April 8, 2010), a review of the most recent comprehensive groundwater monitoring event analytical results, and a comparison of those results to historical comprehensive groundwater monitoring event analytical data are provided in the following sections.

3.1 DESCRIPTION OF GROUNDWATER MONITORING ACTIVITIES FOR THE REPORTING PERIOD

The groundwater monitoring program associated with the original GWCT system was combined with the monitoring program developed for the new DPE system in May 2004. The monitoring wells sampled varied during the remainder of 2004 and throughout 2005. The NYSDEC-approved first RAER defined the monitoring wells to be sampled during subsequent monitoring events in Table 10 (Earth Tech, November 2005). A total of five groundwater monitoring events were performed during the current reporting period (Table 3); these included four targeted quarterly monitoring events (April 2009, July 2009, October 2009, and January 2010) and one comprehensive monitoring event (April 2010).

In April 2009, July 2009, October 2009, and January 2010, quarterly sampling was performed which targeted eight monitoring wells (MW-2, MW-3, MW-4, MW-6, MW-8R, MW-10, MW-11, and MW-12) and two shallow groundwater piezometers (MW-13S and MW-16S). Beginning in July 2009, sample collection at the four source wells were rotated; MW-4 and MW-16S were sampled in July 2009, MW-8R and MW-13S were sampled in October, and MW-4 and MW-16S were sampled in January 2010. In April 2010, a comprehensive groundwater monitoring event was conducted that included all site monitoring wells and nested piezometer pairs (17 total wells). A discussion of the results and the associated laboratory reports for the April 2009, July 2009, October 2009, and January 2010 groundwater sampling events have previously been provided to the NYSDEC in quarterly monitoring summary reports (AECOM, May 2009; AECOM August 2009; AECOM November 2009; and AECOM, February 2010). A discussion of the groundwater analytical results for the comprehensive April 2010 sampling event is presented in Sections 3.2 and 3.3 of this report.

3.2 APRIL 2010 GROUNDWATER ELEVATIONS AND GROUNDWATER FLOW DIRECTION

AECOM personnel collected groundwater samples for the latest comprehensive monitoring event between April 7 and 8, 2010, in accordance with the procedures outlined in the NYSDEC-approved RDWP. Monitoring wells sampled in April 2010 included MW-2, MW-3, MW-4, MW-6, MW-8R, MW-9, MW-10, MW-11, MW-12, MW-13S, MW-13D, MW-14S, MW-14D, MW-15S, MW-15D, MW-16S, and MW-16D (Figure 2). Field forms generated for the April 2010 sampling event are provided in

Appendix B. Groundwater samples were analyzed for VOCs by United States Environmental Protection Agency (USEPA) SW-846 Method 8260B by TestAmerica, Inc. located in Amherst, New York.

A complete round of groundwater levels were measured for all site wells and piezometers. Table 4 provides a summary of groundwater elevations measured on April 8, 2010. A historical summary of groundwater levels and corresponding elevations and hydrographs for each monitoring well and nested piezometer pair are provided in Appendix C. Monitoring wells MW-2, MW-3, MW-4, MW-6, MW-8R, MW-9, MW-10, MW-11, and MW-12 are screened across both the shallow and deep perched water-bearing units. The nested piezometer pairs (MW-13S/D, MW-14S/D, MW-15S/D, and MW-16S/D) are discretely screened with one piezometer screened in the shallow perched water-bearing unit ('S' designation) and one piezometer screened in the deep perched water-bearing unit ('D' designation). Two groundwater surface contour maps for April 2010 are provided in this report. The average water levels calculated for the nested piezometer pairs in conjunction with monitoring well water level data were used to generate the groundwater surface contours presented in Figure 6. Figure 7 illustrates the groundwater surface contours using monitoring well and deep piezometer water level data.

Groundwater elevations measured on April 8, 2010 ranged from 670.42 feet above mean sea level at MW-14D to 685.52 feet above mean sea level at MW-15S. Based on these water level measurements, the groundwater surface beneath the site continues to exhibit a radial pattern (i.e., cone of depression), and groundwater flows inward towards the operating DPE recovery wells and the GWCT. Figures 6 and 7 reveal that there is a depression in the water table surface that centers in between the GWCT and the western property boundary. The historical groundwater flow direction at the site before active groundwater remediation was initiated had been predominantly to the west. These figures indicate that the combined DPE remediation system continues to induce groundwater flow reversal along the western property boundary. This groundwater flow reversal helps to provide sustained hydraulic capture of VOCs present in the perched groundwater that might otherwise migrate off-site.

3.3 APRIL 2010 GROUNDWATER ANALYTICAL RESULTS

The April 2010 groundwater sampling event was the fifth comprehensive sampling event conducted at the site following the installation of the DPE system in May 2004. VOCs detected in groundwater during the April 2010 sampling event are presented in Table 5. The following table summarizes the VOCs detected, their respective concentration ranges, the number of detections, and the number of those detections that exceeded site-specific groundwater RAOs or groundwater criteria presented in New York Code of Rules and Regulations (NYCRR), Title 6, Part 702.15(a)(2) and 703.5.

Groundwater Quality Results April 2010

VOCs Detected in Groundwater	Concentration Number of Detections		Remedial Action Objective/NYCRR Exceedances	
cis-1,2-Dichloroethene	1.7 - 99,000	12	10	
1,1-Dichloroethane	2 - 3,000	12	10	
Vinyl chloride	$3.6 - 6{,}800$	11	9	
Chloroethane	0.62 - 1,700	11	9	
Trichloroethene	0.95 - 220,000	8	7	
1,1-Dichloroethene	0.88 - 930	6	4	
1,1,1-Trichloroethane	2.4 - 2,000	3	2	
Toluene	0.63 - 510	3	2	
1,2-Dichloroethane	0.7 - 2.3	2	2	
Xylenes, total	45	1	1	
Acetone	2,600	1	1	
2-Butanone	580	1	1	
Benzene	0.8	1	0	

A total of 13 VOCs were detected in groundwater during the April 2010 sampling event. Twelve of the thirteen VOCs detected exceeded either the site-specific RAOs or the NYCRR criteria for groundwater. Figures 8 through 13 illustrate April 2010 isoconcentration contours for trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride (VC), 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), and chloroethane respectively. These specific compounds were selected because they are the most frequently detected VOCs in groundwater at the site.

The highest concentrations of VOCs were detected west of the GWCT and the former soil excavation area, in a suspected source area located in the vicinity of MW-4, MW-8R, MW-13S/D, and MW-16S/D. Similar to the analytical results reported in the fourth RAER, TCE and cis-1,2-DCE exhibited the highest overall concentrations in groundwater. As has been observed historically, the shallow piezometers, which are screened in silts and clays, generally showed higher concentrations of the most frequently detected VOCs when compared to their deeper piezometer counterparts, which are screened in sands and gravels located immediately above bedrock.

The presence and distribution of TCE daughter products (cis-1,2-DCE, VC, and chloroethane) and 1,1,1-TCA daughter products (1,1-DCA and chloroethane) provide supportive evidence that the attenuation of TCE and 1,1,1-TCA and their daughter products via reductive de-chlorination continues to occur naturally at the site. The occurrence of these daughter products appears to be directly related to the distribution of TCE and 1,1,1-TCA in the subsurface. The highest concentrations of TCE and 1,1,1-TCA detected during April 2010 were centered on a suspected source area located in the vicinity of MW-16S

and MW-4. The daughter products of TCE and 1,1,1-TCA were also detected at their highest concentrations around this suspected source area, but they also occurred in lower concentrations at two of the site perimeter monitoring wells (MW-3 and MW-11). A limited number of other VOCs were sporadically detected in the perched groundwater at the site with the majority of these detections at MW-15S.

An electronic copy of the analytical laboratory data package for the April 2010 sampling event is provided in Appendix D on a compact disc (CD). A complete hard copy of the analytical data report is on file in AECOM's Amherst, New York office. This analytical report can be made available upon request.

3.4 COMPARISION OF APRIL 2010 GROUNDWATER ANALYTICAL DATA WITH HISTORICAL GROUNDWATER ANALYTICAL DATA

As previously described, quarterly groundwater quality data obtained during the reporting period with the exception of the April 2010 sampling event has already been submitted to the NYSDEC in quarterly summary reports. Trend plots illustrating concentrations of TCE, cis-1,2-DCE, VC, chloroethane, 1,1-DCA, and 1,1,1-TCA over time are provided in Appendix E. Because concentrations of TCE are among the highest detected at the site, a discussion of historical and current TCE concentrations in perched groundwater at site monitoring wells and piezometers is provided below.

Summary of Annual TCE Concentrations in Groundwater Baseline Events (November 2003 and April 2004) through April 2010

					TCE Concentrations (µg/L)			
Well ID	November 2003	April 2004	April 2005	July 2006	October 2007	January 2009	April 2010	Percent TCE Reduction from January 2009
MW-2	NS	NS	<10	< 25	< 5	< 5	<25	Not Detected
MW-3	NS	NS	<10	< 25	5 J	< 5	<5	Not Detected
MW-4	270	NS	NS	2,400	4,800	19,000	3,000	84
MW-6	< 10	NS	< 10	< 5	0.63 J	< 5	<5	Not Detected
MW-8R	NS	NS	15,000	16,000	2,200	8,400	2,500 J	70
MW-9	6	NS	< 10	1.3	2.6 J	< 5	<5	Not Detected
MW-10	NS	NS	<10	< 5	< 5	< 5	<5	Not Detected
MW-11	NS	NS	<10	< 20	0.71	0.77 J	0.95 J	Increase
MW-12	NS	NS	< 10	< 25	< 5	NS	<5	Not Detected
MW-13S	NS	10,000	760	17,000	570	3,400	1,400	59
MW-13D	NS	17	8	2 J	< 5	< 5	< 5	Not Detected
MW-14S	NS	21	< 10	5.7 J	< 5	0.38 J	< 5	Not Detected
MW-14D	NS	21	10	0.96 J	< 5	< 5	9.4	Increase
MW-15S	NS	280	400	400	400	180	270	Increase
MW-15D	NS	21	< 50	4.9 J	3.6 J	< 25	<5	Not Detected
MW-16S	NS	860,000	400,000	310,000	130,000	92,000	220,000	Increase
MW-16D	NS	6,900	32	6.1	6 J	52	12	77

Notes:

J – Estimated concentration.

NS - Not sampled

TCE concentrations decreased or remained constant in all but four wells (MW-11, MW-14D, MW-15S, and MW-16S) since the last comprehensive groundwater sampling event conducted at the site in January 2009. The percent reduction in TCE concentrations ranged from 59% in MW-13S to 84% in MW-4. Groundwater collected from perimeter monitoring wells MW-2, MW-3, MW-6, MW-9, MW-10, and MW-12, contained no detections of TCE at or above the reporting detection limit. Based on these results, the combined DPE and GWCT treatment system continues to successfully prevent additional migration of TCE off-site.

MW-16S, MW-15S, MW-14D, and MW-11 showed an increase in TCE concentration since the last comprehensive sampling event in January 2009. There is no readily apparent explanation for the increases in TCE concentration observed at these wells; however, the TCE results were within the range of historical detections for TCE at all of these wells. It should also be noted that the concentration of TCE has decreased in all wells with detections since baseline groundwater sampling was conducted for the combined DPE remediation system in 2003 and 2004. At perimeter monitoring well, MW-11, an

increase in TCE concentration from an estimated 0.77 micrograms per liter (μ g/L) to an estimated 0.95 μ g/L was observed; however, this result is still below the groundwater RAO for TCE (5 μ g/L).

4.0 GROUNDWATER REMEDIATION SYSTEM MONITORING AND VOC MASS REMOVAL SUMMARY

This section describes system performance monitoring and summarizes the mass of VOCs removed by the combined DPE remediation system during the current reporting period from January 22, 2009 to April 8, 2010.

4.1 SYSTEM MONITORING RESULTS

Samples were obtained from the vapor effluent of the AS and LRP on a quarterly basis and analyzed by USEPA Compendium Method TO-14A by TestAmerica, Inc., located in South Burlington, Vermont. Based on the analytical results for the vapor samples collected, the exhaust mass-loading rate is calculated and presented to the NYSDEC in the site quarterly groundwater monitoring reports. The combined total of the exhaust mass-loading rates for both vapor discharges are compared to the NYSDEC standard of 0.5 pounds per hour (lb/hr) of VOCs. Vapor effluent monitoring results for the first four monitoring events (April 2009, July 2009, October 2009, and January 2010) during the reporting period have been previously submitted to the NYSDEC and no exceedance of the NYSDEC standard for VOC emissions occurred.

AECOM personnel collected vapor effluent samples from the AS and LRP units for the final (fifth) quarterly monitoring event of the reporting period on April 8, 2010. The DPE system vapor effluent analytical results are summarized in Table 6, and an electronic copy of the analytical laboratory data package is provided on the enclosed CD in Appendix D (complete hard copy available in AECOM's Amherst, New York offices). A total of three site-related VOCs were detected in the LRP unit effluent, and a total of four site-related VOCs were detected in the AS unit effluent. The total VOC discharge in the LRP effluent was 126,530 micrograms per cubic meter (μ g/m³) and 84 μ g/m³ in the AS unit effluent. Based on these effluent totals, the calculated VOC discharge-loading rate for the combined DPE remediation system was 0.01 lb/hr, which is below the NYSDEC discharge guidance value of 0.5 lb/hr. In comparison, during the last quarterly sampling event in January 2010 (AECOM, March 2010) and during the last comprehensive sampling event in January 2009 (AECOM, April 2009), the calculated VOC discharge-loading rates were 0.022 lb/hr and 0.05 lb/hr, respectively.

Following the sale of Scott Aviation to AVOX Systems Inc., in September 2004, AECOM assumed responsibility for Buffalo Sewer Authority (BSA) permit compliance sampling and reporting. AECOM completed a new sewer discharge permit application on behalf of Scott Technologies, Inc. (former owner of Scott Aviation, Inc., and a continuing subsidiary of Tyco International). The new permit (No. 08-02-E4045) was approved by the BSA on March 11, 2008 and became effective on March 15, 2008. The

current BSA permit for the combined DPE remediation system will expire on March 14, 2011. A new permit application will be submitted in September 2010.

The current BSA permit requires quarterly sampling of treated groundwater discharge from the combined DPE groundwater remediation systems for a specific list of VOCs, total extractable hydrocarbons (TEH), total suspended solids (TSS), and pH. The quarterly discharge samples are analyzed by TestAmerica Inc., located in Amherst, New York. AECOM collected BSA compliance samples from the AS unit treated effluent discharge sampling point in April 2009, July 2009, October 2009, January 2010, and April 2010. Each quarter, AECOM tabulated the analytical data, converted the data to mass loading rates, compared the results to the BSA permit requirements, and prepared a letter report for submittal to the BSA and NYSDEC. No exceedences of the BSA permit discharge limits occurred during the reporting period.

4.2 MASS REMOVAL SUMMARY

AECOM calculated the estimated VOC mass removed for both groundwater and soil vapor based on operational and analytical data collected during the reporting period. The mass removal via groundwater extraction by the combined DPE remediation system was calculated using total influent VOC concentrations, collected quarterly, and AS unit totalizer readings. The calculations are presented in Table 7. As shown in the table, approximately 3.8 pounds of VOCs were removed via groundwater extraction by the combined GWCT and DPE systems.

The DPE system additionally collects vapor from the subsurface and volatilizes VOCs during the groundwater extraction process. Mass removal was calculated using LRP runtime measurements, the total average LRP effluent sample VOC concentration for the reporting period, and the actual LRP airflow rate based on the manufacturer's operational curve, converted to standard cubic feet per minute. These calculations are presented in Table 8; approximately 114 pounds of VOCs were removed via the DPE system as vapor. Therefore, a total of 117.8 pounds of VOCs are estimated to have been removed by the combined DPE remediation system during the current reporting period. Combining the totals for the four reporting periods, the cumulative mass of VOCs removed by the system is approximately 2,564 pounds since system startup on May 14, 2004.

5.0 CONCLUSIONS AND UPCOMING ACTIVITIES

Based on results of the combined DPE remediation system analytical and system operational data collected during the fifth reporting period, conclusions, upcoming site-related activities, and a proposed system monitoring schedule are presented below.

5.1 CONCLUSIONS

- 1. Approximately 117.8 pounds of VOCs were removed by the combined DPE remediation system during the reporting period from January 22, 2009 through April 7, 2010. A cumulative total of 2,564 pounds of VOCs has been removed since system startup on May 14, 2004.
- 2. The combined DPE remediation system experienced slightly lower runtime during the fifth reporting period (approximately 60%) when compared to the runtime for the fourth reporting period time (approximately 76%).
- 3. During the reporting period, the combined DPE remediation system collected approximately 244,399 gallons of groundwater at an average flow rate of 0.34 gpm. The GWCT collected approximately 539,988 gallons of groundwater at an average flow rate of 0.85 gpm. The total combined system groundwater treated and discharged to the sanitary sewer by the AS unit was approximately 786,659 gallons at a combined average flow rate of 1.22 gpm.
- 4. The system was in compliance with the current BSA effluent discharge permit requirements and the NYSDEC emission standard for VOCs for the entire reporting period.
- 5. Groundwater elevations measured on April 7, 2010 ranged from 670.42 feet above mean sea level to 685.52 feet mean sea level. The groundwater surface exhibits a cone of depression and groundwater flows inward towards the DPE recovery wells and the GWCT. This cone of depression is centered between the GWCT and the western property boundary. The combined DPE remediation system continues to induce groundwater flow reversal along the western property boundary, which serves to mitigate further off-site migration of VOCs in the perched water-bearing unit.
- 6. Cis-1,2-DCE, 1,1-DCA, VC, and chloroethane were the most frequently detected VOCs in groundwater. For the April 2010 comprehensive groundwater sampling event, the highest concentrations of VOCs were detected west of the GWCT and the former source area soil excavation.
- 7. The presence and distribution of TCE daughter products (cis-1,2-DCE, VC, chloroethane) and 1,1,1-TCA daughter products (1,1,-DCA and chloroethane) continued to provide supportive evidence that the attenuation of TCE and 1,1,1-TCA via reductive de-chlorination was occurring naturally at the site.

- 8. TCE concentrations decreased in four wells since the last comprehensive groundwater sampling event conducted at the site in January 2009. The percent reduction in TCE concentrations in groundwater was 84%, 77%, 70%, and 59% at MW-4, MW-16D, MW-8R, and MW-13S respectively.
- 9. VOC concentrations in groundwater generally continue to decrease at the perimeter wells as a result of naturally occurring reductive dechlorination processes, as well as by groundwater extraction and treatment through the combined DPE remediation system.

5.2 UPCOMING ACTIVITIES

Based on information gathered during the current reporting period, the following upcoming activities are planned for the combined DPE remediation system.

- 1. The DPE and GWCT remediation systems should continue to operate full time during the next reporting period (April 8, 2010 through July 2011) to further assess the extent of hydraulic control of shallow groundwater and to continue to remove VOCs from the subsurface.
- 2. The DPE recovery well network will continue to target both shallow and deep perched water-bearing unit VOC contamination. This will be done by continuing to have shallow perched water-bearing unit DPE wells (DPE-1, DPE-3, DPE-5, and DPE-8) and deep perched water-bearing unit groundwater DPE recovery wells (DPE-2 and DPE-7) remain on. DPE-4 (screened across the shallow and deep perched water-bearing units) turned on. Only DPE-6, which is located approximately 30 feet east of the GWCT in the former soil excavation area, will be kept off-line.
- 3. The manifold and individual recovery wells (DPE-1 and DPE-5 in particular) for the DPE system continue to become fouled with calcium hydroxide (lime) buildup that is the result of previous soil remediation activities using quick lime. During the next reporting period, the DPE portion of the combined remediation system should be shut down temporarily to clean and/or replace the manifold as necessary. Also, DPE-1 and DPE-5 will be re-developed to remove excessive lime buildup within the wells and within the associated conveyance piping.
- 4. Sporadic sheens of LNAPL have been observed in MW-4, MW-8R, MW-13S, and MW-16S during the last two reporting periods. LNAPL may contribute to higher concentrations of TCE being detected in these wells. As such, the use of oil absorbent booms will continue to be placed in these wells between future groundwater sampling events to collect any LNAPL present. Used absorbent booms will be disposed as part of semi-annual disposal activities conducted for the site.
- 5. The current BSA permit for discharge of effluent from the combined DPE remediation system to the local sanitary sewer will expire on March 31, 2011. As noted in the permit cover letter, a new

permit application must be submitted at least six (6) months prior to the permit expiration date to avoid any disruption to the current site groundwater remediation activities. Therefore, a new permit application will be submitted in September 2010.

- 6. During the next reporting period, AECOM personnel will continue to perform O&M activities at the site. Table 9 presents the weekly, monthly, quarterly, and annual O&M schedule.
- 7. Targeted quarterly groundwater sampling events as well as one comprehensive groundwater sampling event will occur during the next reporting period based on the proposed monitoring and compliance sampling schedule presented in Section 5.3 of this report.
- 8. A Chemical Oxidation Pilot Test is scheduled to be completed by de maximis, inc. in early August 2010. The pilot test will take place in the DPE area with TCE concentration greater than 1,000 ug/L, as indicated by the April 2010 groundwater sampling. The details of the pilot test are presented in the Pilot Test Work Plan, being prepared by de maximis, inc. Approval of the Pilot Test Work Plan by the NYSDEC is not required; however, the Work Plan will be submitted to the NYSDEC as a courtesy.
- 9. The 10 injection wells for the Chemical Oxidation Pilot Test have been installed. The wells were screened to span the vertical interval that has historically contained groundwater with the highest concentrations of volatile organic compounds.

5.3 PROPOSED MONITORING AND COMPLIANCE SAMPLING SCHEDULE

The proposed schedule for groundwater sampling at the site during the next reporting period is presented in Table 10. As shown in Table 10, six perimeter wells, four suspected source area wells (MW-4, MW-8R, MW-16S, and MW-13S) will be sampled during the targeted quarterly events (July 2010, October 2010, January 2011, and April 2011). To minimize redundancy (the four source area wells are located within approximately 30 feet of each other), only two source area wells will be sampled per quarter. Quarterly sampling will rotate between MW-4 and MW-16S, and MW-8R and MW-13S each quarter. The comprehensive groundwater monitoring event in July 2011 will include all 17 site monitoring wells and nested piezometers. The scheduling of the comprehensive event moves forward one quarter each reporting period to obtain groundwater samples at different times of the year to assess potential seasonal trends.

Prior to the collection of groundwater samples, a complete round of water level measurements will be collected. Groundwater samples will be analyzed for VOCs using USEPA SW-846 Method 8260B. Quality assurance/quality control samples will include rinsate blanks, trip blanks, and blind duplicate samples. Laboratory batch quality control will be included with the completed data package.

AECOM will continue to collect quarterly air samples from the AS unit and LRP vapor effluent sampling ports to ensure compliance with the NYSDEC exhaust mass-loading rate standard of 0.5 lb/hr of VOCs. Quarterly effluent LRP air samples will be collected to determine the mass of VOCs removed by the DPE system as a vapor. The samples will be analyzed for VOCs utilizing USEPA Method TO-14A.

In addition, AECOM will continue to collect quarterly samples from the AS unit effluent discharge to the sanitary sewer as specified in the current BSA discharge permit, and AS unit influent samples will be collected to determine the treatment efficiency of the AS unit. These samples will be analyzed for VOCs, TEH, TSS, and pH as specified in the current permit. Table 11 provides a summary of the proposed monitoring and compliance sampling activities during the next reporting period. Note that a new BSA discharge permit must be completed to replace the current BSA discharge permit within six months of the expiration date (March 31, 2011) of the current permit. In the event that any permit monitoring requirements change, notification of these changes will be given to the NYSDEC in a future quarterly groundwater monitoring summary report.

The sixth RAER for the combined DPE remediation system will be prepared following the receipt of laboratory analytical results for the July 2011 comprehensive groundwater sampling event.

6.0 REFERENCES

- AECOM. February 2010. "First Quarter 2010 Groundwater Monitoring Report, January 2010 Sampling Event, Former Scott Aviation Facility, Lancaster, New York, NYSDEC Site Code No. 9-15-149".
- AECOM. November 2009. "Fourth Quarter 2009 Groundwater Monitoring Report, October 2009 Sampling Event, Former Scott Aviation Facility, Lancaster, New York, NYSDEC Site Code No. 9-15-149".
- AECOM. August 2009. "Third Quarter 2009 Groundwater Monitoring Report, July 2009 Sampling Event, Former Scott Aviation Facility, Lancaster, New York, NYSDEC Site Code No. 9-15-149".
- AECOM. May 2009. "Second Quarter 2009 Groundwater Monitoring Report, April 2009 Sampling Event, Former Scott Aviation Facility, Lancaster, New York, NYSDEC Site Code No. 9-15-149".
- AECOM. April 2009. "Remedial Action Engineering Report Former (October 15, 2007 through January 22, 2009), Scott Aviation Site, Lancaster, New York".
- Earth Tech. January 2008. "Remedial Action Engineering Report Former (July 21, 2006 through October 15, 2007), Scott Aviation Site, Lancaster, New York".
- Earth Tech. November 2006. "Remedial Action Engineering Report (July 20, 2005 through July 20, 2006), Former Scott Aviation Site, Lancaster, New York".
- Earth Tech. November 2005. "Remedial Action Engineering Report (May 14, 2004 through July 19, 2005), Former Scott Aviation Site, Lancaster, New York".
- Earth Tech. April 2004. "Phase I Environmental Site Assessment and Modified Compliance Assessment, Tyco/Scott Aviation Facility, Lancaster, New York."
- Earth Tech. November 2003. "Remedial Design Work Plan, Scott Aviation, Inc., Lancaster, New York".
- Earth Tech. June 2003. "Site Investigation Completion Report, Scott Aviation, Inc., Lancaster, New York".
- NYSDEC. December 2002. "New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft DER-10 Technical Guidance for Site Investigation and Remediation".
- NYSDEC, Division of Hazardous Waste Remediation. November 1994. "Record of Decision, Scott Aviation Site, Village of Lancaster, Eric County, I.D. Number 9-15-149".

O'Brien & Gere Engineers, Inc. July 1996. "Soil and Ground Water Remediation Project, Scott Aviation, Lancaster, New York".

6-2 April 2010

FIGURES

SOURCE:

1982 GEOLOGIC SURVEY 7.5 X 15 MINUTE TOPOGRAPHIC QUADRANGLE LANCASTER, NEW YORK

LEGEND

AVOX PLANT 3 ADDED AFTER PUBLICATION OF LANCASTER, NEW YORK TOPOGRAPHIC QUADRANGLE.

FIGURE 1 SITE LOCATION MAP

FORMER SCOTT AVIATION FACILITY AREA 1 LANCASTER, NEW YORK

FORMER SCOTT AVIATION FACILITY LANCASTER, NEW YORK

FIGURE 3 TYPICAL DUAL PHASE EXTRACTION RECOVERY WELL CONSTRUCTION DIAGRAM

FORMER SCOTT AVIATION FACILITY LANCASTER, NEW YORK

FIGURE 4 TYPICAL NESTED PIEZOMETER CONSTRUCTION DIAGRAM

FORMER SCOTT AVIATION FACILITY LANCASTER, NEW YORK

FORMER SCOTT AVIATION FACILITY LANCASTER, NEW YORK

TABLES

Table 1 Remedial Action Objectives Former Scott Aviation Facility Lancaster, New York

	Remedial	Action Objective
VOCs	Soil (mg/kg)	Groundwater (µg/L)
Chloroethane	1	5
1,1-Dichloroethane	1	5
1,2-Dichloroethene	1	5
1,1,1-Trichloroethane	1	5
Trichloroethene	1	5
Vinyl chloride	1	5
Ethylbenzene	1	5
Toluene	1	5
Xylenes	1	5
Total VOCs	10	NA

Notes:

mg/kg - milligrams per kilogram

 μ g/L - micrograms per liter NA - not applicable

VOCs - volatile organic compounds

Table 2

Dual Phase Extraction, Monitoring Well, and Nested Piezometer Construction Specifications

Former Scott Aviation Facility

Lancaster, New York

Well ID	Date Installed	Well Diameter (inches)	Bottom of Boring (ft bgs)	Screen Length (feet)	Screen Well Interval (ft bgs)	Filter Sand Pack Interval (ft bgs)	Bentonite Seal Interval (ft bgs)
Monitoring Wells	S						
MW-1	(1)						
MW-2	05/24/91	2.0	15.0	10	5.0 - 15.0	4.0-15.0	1.0-4.0
MW-3	05/19/91	2.0	26.0	15	11.0 - 26.0	9.0-26.0	5.0-9.0
MW-4	05/23/91	2.0	26.0	10	16.0 - 26.0	14.0 - 26.0	11.0-14.0
MW-5	(1)						
MW-6	03/17/04	2.0	26.0	10	16.0-26.0	14.0-16.0	11.5-14.0
MW-7	(2)						
MW-8R	02/17/04	2.0	28.0	10	14.0 - 24.0	13.0 - 24.5	12.0 - 13.0
MW-9	04/11/99	2.0	25.4	20	5.4-25.4	4.0-25.4	2.0-4.0
MW-10	04/11/99	2.0	24.4	20	4.4-24.4	3.0-4.4	1.0-3.0
MW-11	03/01/04	2.0	29.0	20	8.5 - 28.5	7.5 - 29.0	6.5 - 7.5
MW-12	03/17/04	2.0	27.5	20	7.0 - 27.0	6.0 - 27.5	5.0 - 6.0
Nested Piezomete	ers						
MW-13S	03/03/04	1.0	24.0	8	8.5 - 16.5	7.5 - 17.0	6.5 - 7.5
MW-13D	03/03/04	1.0	24.0	4	19.5 - 23.5	19.0 - 24.0	17.0 - 19.0
MW-14S	03/04/05	1.0	24.0	8	8.5 - 16.5	7.5 - 16.75	6.5 - 7.5
MW-14D	03/04/05	1.0	24.0	5	18.5 - 23.5	18.25 - 24.0	16.75 - 18.25
MW-15S	03/02/05	1.0	28.0	6	12.0 - 18.0	11.0 - 12.0	10.0 - 11.0
MW-15D	03/02/05	1.0	28.0	4	21.0 - 25.0	20.5 - 28.0	18.5 - 20.5
MW-16S	03/03/05	1.0	24.0	6	12.0 - 18.0	11.0 -18.25	10.0 - 11.0
MW-16D	03/03/05	1.0	24.0	4	20.0 - 24.0	19.75 - 24.0	18.25 - 19.75
Dual Phase Extra	action Wells						
DPE-1	02/17/04	4.0	18.5	5	13.0 - 18.0	12.0 - 18.5	11.0 - 12.0
DPE-2	02/19/04	4.0	26.0	5	18.5 - 23.5	18.0 - 26.0	17.0 - 18.0
DPE-3	02/18/04	4.0	18.0	8	8.5 - 16.5	8.0 - 18.0	7.0 - 8.0
DPE-4	(3)	2.0	27.7	20	7.7 - 27.7	6.0 - 27.7	4.0- 6.0
DPE-5	02/16/04	4.0	18.3	6	12.0 - 18.0	11.0 - 18.3	10.0 - 11.0
DPE-6	02/16/04	4.0	18.3	6	12.0 - 18.0	11.0 - 18.3	10.0 - 11.0
DPE-7	02/19/04	4.0	26.0	4	19.5 - 23.5	19.0 - 26.0	18.0 - 19.0
DPE-8	02/18/04	4.0	17.0	8	8.5 - 16.5	8.0 - 17.0	7.0 - 8.0

 $ft\ bgs\ \hbox{-}\ feet\ below\ ground\ surface$

MW-# - Monitoring Well

DPE-# - Dual Phase Extraction Recovery Well

- (1) MW-1 and MW-5 are not monitored for this project.
- (2) MW-7 was abandoned in November 2003 per Section 3.7 of the Remedial Design Work Plan.
- (3) Pre-existing monitoring well MW-8 (installed 04/11/99) was converted to DPE-4 in February 2004.

Table 3
Summary of the Groundwater Monitoring Program
Former Scott Aviation Facility
Lancaster, New York

Event Date	Number of Wells/Piezometers Sampled	Wells/Piezometers Sampled				
Quarterly Groundwa	ater Monitoring					
		MW-2	MW-3	MW-4	MW-6	
April 2009	10	MW-8R	MW-10	MW-11	MW-12	
		MW-13S	MW-16S			
		MW-2	MW-3	MW-4	MW-6	
July 2009	8	MW-10	MW-11	MW-12	MW-16S	
		MW-2	MW-3	MW-6	MW-8R	
October 2009	8	MW-10	MW-11	MW-12	MW-13S	
		MW-2	MW-3	MW-4	MW-6	
January 2010	8	MW-10	MW-11	MW-12	MW-16S	
Comprehensive Ann	ual Groundwater Mo	nitoring				
		MW-2	MW-3	MW-4	MW-6	
		MW-8R	MW-9	MW-10	MW-11	
April 2010	17	MW-12	MW-13S	MW-13D	MW-14S	
		MW-14D	MW-15S	MW-15D	MW-16S	
		MW-16D				

Page 1 of 1 January 2009

Table 4

Quarterly Groundwater Monitoring Water Level Data – April 8, 2010

Former Scott Aviation Facility

Lancaster, New York

Monitoring Point Identification	Top of Casing Elevation	Depth to Water (feet from TOC)	Ground Water Elevation (feet AMSL)
Monitoring Wells			
MW-2	690.35	5.45	684.90
MW-3	687.02	11.02	676.00
MW-4	686.42	10.90	675.52
MW-6	686.53	10.05	676.48
MW-8R	686.21	14.95	671.26
MW-9	688.64	15.40	673.24
MW-10	687.41	9.35	678.06
MW-11	688.65	13.90	674.75
MW-12	686.15	7.10	679.05
Nested Piezometers			
MW-13S	686.60	8.30	678.30
MW-13D	686.73	12.00	674.73
MW-14S	685.70	6.50	679.20
MW-14D	685.82	15.40	670.42
MW-15S	687.52	2.00	685.52
MW-15D	687.62	15.00	672.62
MW-16S	690.37	18.60	671.77
MW-16D	690.55	17.19	673.36

TOC - Top of Casing

AMSL - Above Mean Sea Level

Table 5 Summary of Analytical Data Former Scott Aviation Facility Lancaster, New York

Sample ID	Groundwater		MW-13D		MW-13	S		MW-14E)		MW-14S]	MW-15D)	1	MW-15	S]	MW-16)		MW-16S	
Date Collected	RAO/ NYCRR		04/07/10		04/07/1	0		04/08/10			04/08/10			04/08/10)	(04/08/10	0		04/08/1)	'n	04/08/10	
Lab Sample ID	Objectives	R'	TD1034-04	R'	TD1034	-03	R	TD1034-	06	R	TD1034-0	05	R	ΓD1034-0	08	RT	TD1034	-07	R'	ΓD1034	-09	R	RTS1034-1	18
Volatile Organic Compound	ds by Method 8260 (μg/L)											•											
1,1,1-Trichloroethane	5	<	5		10	D08,J	<	5		<	0.5		<	5		<	100	D08		10	D08		2000	D08
1,1-Dichloroethane	5	<	5		16	D08,J		2	J		5.9			12			1400	D08		8.7	D08		3000	D08
1,1-Dichloroethene	5	<	5		13	D08,J		0.88	J	<	5		<	5			36	D08J	<	10	D08		930	D08,J
1,2-Dichloroethane	0.6	<	5	<	50	D08	<	5		<	5		<	5	,	<	100	D08	<	10	D08	<	2000	D08
2-Butanone	50*	<	25	<	250	D08	<	5		<	25		<	25			580	D08	<	50	D08	<	10000	D08
Acetone	50*	<	25	<	250	D08	<	5		<	25		<	25			2600	D08	<	50	D08	<	10000	D08
Benzene	1	<	5	<	50	D08	<	5			0.8	J	<	5		<	100	D08	<	10	D08	<	2000	D08
Chloroethane	5	<	5	<	50	D08		1.5	J		0.62	J		1700	D08		700	D08		240	D08		1100	D08,J
cis-1,2-Dichloroethene	5	<	5		1600	D08		99			4	J		33			1900	D08		6.9	D08,J		99000	D08
Tetrachloroethene	5	<	5	<	50	D08	<	5		<	5		<	5		<	100	D08	<	10	D08	<	100	D08
Toluene	5	<	5	<	50	D08	<	5		<	5			0.63	J		180	D08	<	10	D08		510	D08,J
Trichloroethene	5	<	5		1400	D08		9.4		<	5		<	5			270	D08		12	D08		220000	D08
Xylenes, total	5	<	15	<	150	D08	<	15		<	5		<	15			45	D08,J	<	30	D08	<	6000	D08
Vinyl chloride	5	<	5		45	D08,J		21		<	5			19			690	D08		3.6	D08		6800	D08,J

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

J - Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.

D08 - Dilution required due to high concentration of target analyte(s).

Page 2 of 2 April 2010

Table 5 Summary of Analytical Data Former Scott Aviation Facility Lancaster, New York

Sample ID	Groundwater		MW-2		MW-3			MW-	4		MW-6		MW-8	R		MW-9		MW-10		MW-11			MW-1	2
Date Collected	RAO/ NYCRR		04/07/10		04/07/1	0		04/08/	10		04/07/10		04/08/	10		04/07/10		04/07/10		04/07/10)		04/07/1	.0
Lab Sample ID	Objectives	R	TD1034-14		RTD1034	-15		RTD103	4-16	F	RTD1034-17	F	TD103	4-01	F	RTD1034-02	F	RTD1034-12	R	TD1034-	13	F	DT1034	-19
Volatile Organic Compound	ds by Method 8260	(µg/L))																					
1,1,1-Trichloroethane	5	<	25	<	5		<	500	D08	<	5	<	100	D08	<	5	<	5		2.4	J	<	5	
1,1-Dichloroethane	5	<	25		10			110	D08,J	<	5		19	D08,J		99	<	5		13		<	5	
1,1-Dichloroethene	5	<	25	<	5			50	D08,J	<	5	<	100	D08	<	5	<	5		2	J	<	5	
1,2-Dichloroethane	0.6	<	25	<	5		<	500	D08	<	5	<	100	D08		2.3 J	<	5	<	5			0.7	J
2-Butanone	50*	<	120	<	25		<	2500	D08	<	25	<	500	D08	<	25	<	25	<	25		<	25	
Acetone	50*	<	120	<	25		<	2500	D08	<	25	<	500	D08	<	25	<	25	<	25		<	25	
Benzene	1	<	25	<	5		<	500	D08	<	5	<	100	D08	<	5	<	5	<	5		<	5	
Chloroethane	5		21 J	<	5		<	500	D08	<	5		10	D08,J		16	<	5		26			23	
cis-1,2-Dichloroethene	5	<	25		1.7	J		7200	D08	<	5		1300	D08		17	<	5		60		<	5	
Tetrachloroethene	5	<	25	<	5		<	500	D08	<	5	<	100	D08	<	5	<	5	<	5		<	5	
Toluene	5	<	25	<	5		<	500	D08	<	5	<	100	D08	<	5	<	5	<	5		<	5	
Trichloroethene	5	<	25	<	5			3000	D08	<	5		2500	D08,J	<	5	<	5		0.95	J	<	5	
Xylenes, total	5	<	75	<	15		<	1500	D08	<	15	<	300	D08	<	15	<	15	<	15		<	15	
Vinyl chloride	5	<	25		4.6	J		560	D08	<	5		84	D08,J		19	<	5		17		<	5	

April 2010

Table 6
Vapor Monitoring Results - April 2010
Former Scott Aviation Facility
Lancaster, New York

	Sample ID: Sample Date:	LRP Effluent 4/7/2010	AS Effluent 4/7/2010
VOCs by Method TO-14A (μg/m³)			
Vinyl Chloride		360 U	0.51
Carbon disulfide		1,100 U	13.0
Trichlorofluoromethane		790 U	1.3
Toluene		530	2.8
cis-1,2-Dichloroethene		16,000	17
Trichloroethene		110,000	64
Total Detected VOCs ($\mu g/m^3$)		126,530	99
Vacuum (inches Hg)*		26	0.44
Air Flow Rate (acfm)*		22	288
VOC discharge loading (lb/hr)		0.0104	0.0001
Total VOC discharge loading (lb/hr)		0.0	11

- 1. $\mu g/m^3 = micrograms per cubic meter$
- 2. acfm = actual cubic feet per minute
- 3. scfm = standard cubic feet per minute
- 4. lb/hr = pounds per hour
- 5. LRP Effluent represents the untreated vapor discharge for the Liquid Ring Pump.
- 6. AS Effluent represents the untreated vapor discharge for the Air Stripper.

Qualifiers:

U - Not detected at or above reporting limit (reporting limit not included in the Total Detected VOCs).

^{*} The LRP flow rate used for the calculation was recorded during the sampling activity (21 scfm, 25 in. Hg) on April 7, 2010.

^{*} The air stripper vacuum measured on that day was 6 inches HO and the flow rate was 285 scfm.

Table 7

Volatile Organic Compound Mass Removed – Aqueous Phase
Former Scott Aviation Facility
Lancaster, New York

Sample ID	Influent	Influent	Influent	Influent	Influent
Sample Date	4/14/2009	7/14/2009	10/12/2009	1/18/2010	4/7/2010
VOCs (Method 8260) (µg/L)					
Acetone	25.0 U	4.3 J	13.0 J	22.0 J	24.0 J
Chloroethane	18.0	74.0	15.0	22.0 J	17.0 J
1,1-Dichloroethane	1.6 J	18.0	6.2	8.2 J	14.0 J
cis-1,2-Dichloroethene	56.0	390.0	320.0 D	180.0 D	630.0 D
trans-1,2-Dichloroethene	0.3 J	1.80 J	5.0 U	25.0 U	25.0 U
Toluene	5.0 U	4.4 J	5.0 U	3.1 J	5.1 J
1,1,1-Trichloroethane	0.4 J	5.00 U	2.8 J	25.0 U	25.0 U
Trichloroethene	32.0	44.0	120.0 D	250.0	340.0 D
Vinyl Chloride	3.2 J	210.0	4.6 J	9.3	77.0
Total VOCs (µg/L)	111.5	746.5	481.6	494.6	1107.1
Air Stripper Totalizer Readings (gallons)	15,388,410 (1/19/09) 15,557,630 (4/14/2009)	15,557,630 (4/14/2009) 15,754,269 (7/14/09)	15,754,269 (7/14/09) 15,863,009 (10/12/09)	15,863,009 (10/12/09) 16,038,379 (1/18/10)	16,038,379 (1/18/10) 16,175,069 (4/7/10)
Gallons Processed	169,220	196,639	108,740	175,370	136,690
VOCs Removed (pounds)	0.2	1.2	0.4	0.7	1.3
Total VOCs Removed (pounds)			3.8		

- 1. μ g/L = micrograms per liter.
- 2. Influent Represents the combined dual phase extraction and groundwater collection trench influent to the air stripper.
- 3. Dates are indicated next to the air stripper totalizer readings.
- 4. Undetected compounds (U) not included in Total VOCs.

Qualifiers:

- J Indicates compounds detected as estimated.
- U Indicates compounds not detected above the quantitation limit.
- D Indicates compounds detected at secondary dilution factor.

Table 8
Volatile Organic Compound Mass Removed – Vapor Phase
Former Scott Aviation Facility
Lancaster, New York

Sample ID	LRP Effluent	LRP Efflu	ent LRP Efflu	ent LRP Efflu	ent LRP Efflue	nt Average
Sample Date	4/14/2009	7/14/2009	10/12/200	9 1/18/201	0 4/7/2010	LRP Effluent
VOCs (EPA Method TO-14A) (μg/m³)¹						
Vinyl Chloride	1,100	4,100	4,300	6,100	360	U 3,192
1,1-Dichloroethene	200 U	630	710	990	ND	777
1,1-Dichloroethane	530	2,500	2,300	4,000	ND	2,333
cis-1,2-Dichloroethene	22,000	99,000	95,000	120,000	16,000	70,400
1,1,1-Trichloroethane	280 U	4,300	U 1,900	3,500	ND	2,700
Trichloroethene	33,000	130,000	100,000	240,000	110,000	122,600
Total Average VOCs (μg/m ³) ²	56,630	236,230	204,210	374,590	126,360	202,001
Air Flow Rate (acfm) ³	21.67	23.92	44.23	15.93	21.65	25.48
VOC discharge loading (lb/hr) ⁵	0.0046	0.0212	0.0338	0.0224	0.0102	0.0193
LRP Runtime from O&M logs (hours) ⁶						5,888
Total VOCs removed (lbs):						114

- 1. $\mu g/m^3 = micrograms per cubic meter.$
- 2. Undetected compounds (U) not included in Total Average VOCs.
- 3. acfm = actual cubic feet per minute.
- 4. scfm = standard feet per minute
- 5. lb/hr = pounds per hour
- 6. LRP runtime calculated using the difference in hour meter readings for the reporting period January 19, 2009 (22,802 hours) through April 7, 2010 (28,690 hours).

Qualifiers:

ND - Compound not detected.

U - Indicates compounds not detected above the quantitation limit.

Page 1 of 1 January 2008

Table 9 Combined DPE Remediation System Operation and Maintenance Schedule Former Scott Aviation Facility Lancaster, New York

Frequency	Operation and Maintenance Activity
	Record System Operational Parameters
Weekly	Inspect All Piping, Mechanical, and Electrical Components
	Check/Fill LRP Seal Fluid
Monthly	Change Bag Filters/Clean Housings. Change KO Tank Filter as needed
Quarterly	Clean System Components (KO Tank, OWS, Hold Tank, Air Stripper)
	Replace LRP Seal Fluid
Annually	Replace LRP Separator Element
	Grease LRP bearings

Notes:

KO: Knockout

LRP: Liquid Ring Pump OWS: Oil/Water Separator

Table 10
Groundwater Monitoring Schedule - July 2010 through July 2011
Former Scott Aviation Facility
Lancaster, New York

Event Date	Number of Wells/Piezometers Sampled	Wells/Piezometers Sampled						
Quarterly Grou	ndwater Monitoring							
July 2010	8	MW-2	MW-3	MW-6	MW-8R			
July 2010	0	MW-10	MW-11	MW-12	MW-13S			
October 2010	8	MW-2	MW-3	MW-4	MW-6			
October 2010	0	MW-10	MW-11	MW-12	MW-16S			
Janassams 2011	8	MW-2	MW-3	MW-6	MW-8R			
Janauary 2011	0	MW-10	MW-11	MW-12	MW-13S			
A mail 2011	8	MW-2	MW-3	MW-4	MW-6			
April 2011	8	MW-10	MW-11	MW-12	MW-16S			
Comprehensive	Annual Groundwater N	Ionitoring						
		MW-2	MW-3	MW-4	MW-6			
		MW-8R	MW-9	MW-10	MW-11			
July 2011	17	MW-12	MW-13S	MW-13D	MW-14S			
		MW-14D	MW-15S	MW-15D	MW-16S			
		MW-16D						

MW-## - Monitoring Well MW-##S - Shallow piezometer MW-##D - Deep piezometer

Page 1 of 1 January 2009

Table 11
Monitoring and Compliance Sampling Summary
Former Scott Aviation Facility
Lancaster, New York

			Anal	ytical Paramete	r		Comments
Location/Type Quarterly BSA Sampling - 5 Ev	Matrix	VOCs (8260B)	Total Extractable Hydrocarbons (TEHs)	TSS	рН	VOCs (TO-14A)	
GWTB Influent	aqueous	1 1	1	1	1 1	0	four grabs over process day
GWTB Effluent	aqueous	1	1	1	1	0	four grabs over process day
Trip Blank	aqueous	1	0	0	0	0	Trip Blank for BSA and Compliance Sampling, Quality Assurance/Quality Control
Per Event		3	2	2	2	0	Tablataneo Quanty Control
Sub-Total		15	10	10	10	0	
Remedial Action Compliance Sa Quarterly - 4 Events	mpling						
							*Wells: MW-2, MW-3, MW-4, MW-6, MW-8R, MW-10, MW-11
Primary Samples	aqueous	8	0	0	0	0	MW-12, MW-13S, MW-16S
Duplicate	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Trip Blank	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Rinsate Blank	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Air Stripper Effluent	air	0	0	0	0	1	Air Discharge Limit Compliance
LRP Effluent	air	0	0	0	0	1	Air Discharge Limit Compliance
Per Event		11	0	0	0	2	
Subtotal		44	0	0	0	8	
Annual Event - 1 Event							
Primary Samples	aqueous	17	0	0	0	0	Wells: MW-2, MW-3, MW-4, MW-6, MW-8R, MW-9, MW-10, MW-11, MW-12, MW-13 S&D, MW-14 S&D, MW-15 S&D, MW-16 S&D
Trip Blank	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Duplicate	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Rinsate Blank	aqueous	1	0	0	0	0	Quality Assurance/Quality Control
Air Stripper Effluent	air	0	0	0	0	1	Air Discharge Limit Compliance
LRP Effluent	air	0	0	0	0	1	Air Discharge Limit Compliance
Subtotal		20	0	0	0	2	
Total		79	10	10	10	10	

Methods:

VOCs by USEPA SW-846 Method 8260B (aqueous)
Total extractable hydrocarbons by 40 CFR 136 Method 160.2
Total suspended solids by 40 CFR 136 Method 1664
pH by 40 CFR 136 Method 150.1
VOCs by USEPA Method TO-14A (air)

^{*} alternate MW-4/MW-16S and MW-8R/MW-13S every quarter

APPENDICES

APPENDIX A

FORMER SCOTT AVIATION PLANT 2 O&M CHECKLIST

AECOM Technical Services, Inc.

SCOTT AVIATION PLANT 2 O&M CHECKLIST

Date:		Weather:	
Time:		Field Technician Name:	
DPE Process Room			
DPE Wells (indicate vacuum reading if well is i	in operation)		
DPE-1	"Hg	DPE-5	"Hg
DPE-2	"Hg	DPE-6	OFF
DPE-3	"Hg	DPE-7	"Hg
DPE-4	"Hg	DPE-8	"Hg
Comments:			
LRP Tank Exhaust Temperature -	°F_	KO Pump Pressure -	PSI
LRP Filter Pressure -	PSI	Hold Tank Pump Pressure -	PSI
LRP Oil Level -		Bag Filter #1 Inlet Pressure -	Gauge Broken
LRP Inlet Vacuum -	"Hg	Bag Filter #1 Outlet Pressure -	Gauge Broken
LRP Exhaust Temperature -	<u> </u>	Bag Filter #2 Inlet Pressure -	Gauge Broken
LRP Flow Rate -	x1000 FPM	Bag Filter #2 Outlet Pressure -	Gauge Broken
KO Tank Vacuum -	"Hg		
Comments:			
DPE Control Room			
LRP Hour Meter -	HRS		
KO Tank Hour Meter -	HRS		
Hold Tank Hour Meter -	HRS		
Comments:			
Groundwater Treatment Building			
GW Trench Totalizer	GAL	Air Stripper Vacuum -	"H ₂ O_
Air Stripper Influent Flowrate -	GPM	Air Stripper Flow -	"H ₂ O
Air Stripper Influent Totalizer -	GAL	AS Discharge Pump Pressure -	PSI
Air Stripper Effluent Temperature -	°F	AS Flow Gauge -	SCFM
DPE Exhaust Temp (Pre Heat Exchanger) -	OFF LINE		
DPE Exhaust Temp (Post Heat Exchanger) -	OFF LINE		
Comments:			

APPENDIX B

FIELD FORMS

Dogo	٥f	
Page	of	

Date (mo/day/yr) Field Personnel Site Name Forme Earth Tech Job # Well ID # Upgradier Weather Conditions Air Temperature	E. L. er Scott Aviation S 601 MW-2 nt cloud: 60 sing =	Downgradient y, breezy	° F	Casing Diameter Casing Material Measuring Point Elevation Height of Riser (above la Land Surface Elevation Screened Interval (below	ion land surface)	PVC	690.35		1/100 ft 1/100 ft 1/100 ft
Site Name Forme Earth Tech Job # Well ID # Upgradier Weather Conditions	601 MW-2 nt cloud: 60 sing =	Downgradient y, breezy	<u>°</u> F	Height of Riser (above la Land Surface Elevation Screened Interval (below	land surface)				1/100 ft 1/100 ft
Well ID # Upgradier Weather Conditions	MW-2 nt cloud; 60 sing =	Downgradient y, breezy	°F	Land Surface Elevation Screened Interval (below					1/100 ft
Upgradier Weather Conditions	cloud 60 sing =	Downgradient y, breezy	°F	Screened Interval (below			7-17		
Weather Conditions	60 sing =	y, breezy	°F		w land surface)		7-17		4/400 **
	60 sing =		°F	Container					1/100 ft
Air Temperature	sing =		°F	Container					
All Temperature				Container	Analysis (Method)	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of Cas	Top of Casing =		1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below	. op o. odomig	6.12	1/100 ft						
Length of Water Column (LWC) = TW	VD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		eristaltic Pump							
Method of Sample Collection	Peristalti	ic Pump/Poly Tubing							
Total Volume of Water Removed		8	liter						
_			F	FIELD ANALYSES		1			
Flow Rate (ml/min)	250	175	175	175	200	200		200	200
Time (Military)	9:05	9:10	9:15	9:20	9:25	9:30		9:35	9:40
Depth to Groundwater Below Top of Casing (ft)	7.9	8.3	8.6	8.95	9.2	9.5		9.85	10.1
Drawdown (ft)	-1.78	-0.4	-0.3	-0.35	-0.25	-0.3		-0.35	-0.25
pH (S.U.)	6.61	6.57	6.59	6.61	6.58	6.54		6.51	6.5
Sp. Cond. (mS/cm)	1.436	1.36	1.008	0.83	0.792	0.846		0.967	1.046
Turbidity (NTUs)	35.15	33.74	82.25	65.1	36.36	27.02		18.23	12.2
Dissolved Oxygen (mg/L)	3.3	1.21	0.47	0.39	0.5	0.49		0.55	0.4
Water Temperature (°C)	10.6	10.54	10.57	10.25	9.99	9.93		10.02	10.07
ORP (mV)	-36.2	-36.3	-30.1	-5.9	-13.3	-19.6		-26.5	-29.9
	Physical appeara	nce at start Cold	or iron bacteria fl	ecks Physi	ical appearance at	sampling Colo	cle	ear	
		Odo	or no	_		Odor		no	
	Sheen/Free Prod	uct	no	Shee	en/Free Product				
COMMENTS/OBSERVATIONS Sta	art purging @ 9:00.	Set tubing at center	of well screen. Sai	mple time @ 9:50					
_									

Page	of	
i age	Oi	

Date (mo/day/yr)	4/7/:	2010		Casing Diameter			2		inches
Field Personnel		_aity		Casing Material		PVC			
Site Name Fo	rmer Scott Aviation	Site - Lancaster,	, NY	Measuring Point Eleva	ation		690.35		1/100 ft
Earth Tech Job #	60	147012		Height of Riser (above	e land surface)				1/100 ft
Well ID #	MW-	2		Land Surface Elevation	n				1/100 ft
Upgra	dient	Downgradient	t	Screened Interval (be	low land surface)		7-17		1/100 ft
Weather Conditions	cloud	dy, breezy			_				
Air Temperature	60		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =		1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Bel	low Top of Casing =	6.12	1/100 ft						
Length of Water Column (LWC) =	TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation									
Method of Sample Collection	Peristal	tic Pump/Poly Tu	bing						
Total Volume of Water Removed		8	liter						
Flow Data (mil/min)	200			FIELD ANALYSES					
Flow Rate (ml/min)	200								
Time (Military) Depth to Groundwater	9:45								
Below Top of Casing (ft)	10.5								
Drawdown (ft)	-0.4								
pH (S.U.)	6.5								
Sp. Cond. (mS/cm)	1.131								
Turbidity (NTUs)	10.3								
Dissolved Oxygen (mg/L)	0.37								
Water Temperature (°C)	10.13								
ORP (mV)	-32.7								
	Physical appeara	ance at start	Color iron bacteria	<u>fle</u> cks Phy	sical appearance at	sampling	Color cl	ear	
			Odor no	_		(Odor	no	
	Sheen/Free Prod	duct	no	She	een/Free Product		no		
COMMENTS/OBSERVATIONS	Start purging @ 9:00	. Set tubing at ce	enter of well screen. S	ample time @ 9:50					

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/7/2	2010		Casing Diameter			2		inches
Field Personnel	E. Laity					PVC			
Site Name Fo	Former Scott Aviation Site - Lancaster, NY				tion		687.72		1/100 ft
Earth Tech Job #	ob #60147012				land surface)				1/100 ft
Well ID #	MW-3	3		Land Surface Elevation	n				1/100 ft
Upgra	adient	Downgradient		Screened Interval (belo	ow land surface)		7.5 - 27	7.5	1/100 ft
Weather Conditions	cloudy w/	occ. Showers							
Air Temperature	60		° F	Container	Analysis (N	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	28	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	low Top of Casing =	11	1/100 ft						
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		eristaltic Pump							
Method of Sample Collection		ic Pump/Poly Tubing							
Total Volume of Water Removed		8.0	liter						
				FIELD ANALYSES		ı	1		
Flow Rate (ml/min)	200	200	200	200	200				
Time (Military)	10:20	10:25	10:30	10:35	10:40				
Depth to Groundwater Below Top of Casing (ft)	12.1	12.7	13.2	13.4	13.7				
Drawdown (ft)	-1.1	-0.6	-0.5	-0.2	-0.3				
pH (S.U.)	6.87	6.86	6.86	6.85	6.84				
Sp. Cond. (mS/cm)	1.114	1.113	1.111	1.112	1.112				
Turbidity (NTUs)	3.92	76.04	5.4	5.24	5.19				
Dissolved Oxygen (mg/L)	0.66	0.6	0.41	0.47	0.48				
Water Temperature (°C)	10.2	10.12	10.19	10.21	10.12				
ORP (mV)	35.7	39.7	45	47.2	48.7				
	Physical appeara	ance at start Cole	or <u>clear</u>	Phy:	sical appearance at s	sampling (Color	clear	
		Odd	or no	<u> </u>		(Odor	no	
	Sheen/Free Prod	luct	no	She	en/Free Product				
COMMENTS/OBSERVATIONS	Start purgin at 10:15.	Set tubing at center	of well screen. Sa	mple time @ 10:45					

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/8	/2010		Casing Diameter		2			inches
Field Personnel		Laity		Casing Material					<u></u>
Site Name F	ormer Scott Aviation	Site - Lancaster, NY		Measuring Point Elevat	ion	(686.64		1/100 ft
Earth Tech Job #	60)147012		Height of Riser (above I	and surface)				1/100 ft
Well ID #	MW-	4		Land Surface Elevation					1/100 ft
Upgr	radient	Downgradient		Screened Interval (belo	w land surface)		15.5 - 25.5		1/100 ft
Weather Conditions	cloudy,	becoming rain					•		
Air Temperature	55		° F	Container	Analysis (Method) #	Bottles Prese	ervative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing =	26	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3 HCI	_, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing =	14.95	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3 HCI	_, 4°C	DUP
Length of Water Column (LWC)	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		Peristaltic Pump							
Method of Sample Collection	Perista	Itic Pump/Poly Tubing							
Total Volume of Water Removed	d	6	liter						
				EIELD ANALVOEO					
Flow Rate (ml/min)	150	150	150	FIELD ANALYSES 150	150	150	150		
Time (Military)	14:15	14:20	14:25	14:30	14:35	14:40	14:44		
Depth to Groundwater	14.15	14.20	14.25	14.50	14.33	14.40	14.44		
Below Top of Casing (ft)	16.2	16.4	16.9	17.2	17.7	17.7	17.8		
Drawdown (ft)	-1.25	-0.2	-0.5	-0.3	-0.5	0	-0.1		
pH (S.U.)	7.07	6.9	6.89	6.85	6.82	6.8	6.82		
Sp. Cond. (mS/cm)	1.285	1.276	1.214	1.167	1.181	1.217	1.234		
Turbidity (NTUs)	38.85	20.19	29.43	15.87	15.36	9.65	9.11		
Dissolved Oxygen (mg/L)	2.61	1.45	2.29	2.22	1.78	1.3	1.11		
Water Temperature (°C)	10.61	10.31	10.17	10.1	10.07	10.04	10.06		
ORP (mV)	-58	-48.9	-42.6	-38.5	-36.9	-34.9	-33.4		
	Physical appear	rance at start Col	or	Phys	ical appearance at	sampling Color	clear	_	
		Odd	or <u>no</u>	<u> </u>		Odor	no	_	
	Sheen/Free Pro	duct	no	_ Shee	n/Free Product	no		=	
COMMENTS/OBSERVATIONS	Start purging @ 14:	10. Set tubing at cente	er of well screen. S	ample time @ 14:45. Dup	olicate collected at	this well			

Dogo	٥f	
Page	of	

Date (mo/day/yr) Field Personnel Site Name Form Earth Tech Job #	E. I	Laity		Casing Diameter					
Site Name For				Casing Material	PVC				
Farth Tech Job #		Site - Lancaster, NY		Measuring Point Elevation	on		686.68		1/100 ft
	60	147012		Height of Riser (above la	and surface)				1/100 ft
Well ID #	MW-	6		Land Surface Elevation					1/100 ft
Upgrad	lient	Downgradient		Screened Interval (below	v land surface)		14.5 - 2	4.5	1/100 ft
Weather Conditions	cloudy w	/ occ. Showers							
Air Temperature	60			Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of C	Casing =	25	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Belo	ow Top of Casing =	10.4	1/100 ft						
Length of Water Column (LWC) = -	TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		Peristaltic Pump							
Method of Sample Collection	Peristal	Itic Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
ī		T T		FIELD ANALYSES					
Flow Rate (ml/min)	175	175	175	175	175				
Time (Military)	12:10	12:15	12:20	12:25	12:30				
Depth to Groundwater Below Top of Casing (ft)	11.2	12.05	12.45	12.85	13.1				
Drawdown (ft)	-0.8	-0.85	-0.4	-0.4	-0.25				
pH (S.U.)	7.89	7.93	7.92	7.89	7.88				
Sp. Cond. (mS/cm)	1.207	1.209	1.208	1.201	1.196				
Turbidity (NTUs)	25.94	23.67	25.93	27.96	26.98				
Dissolved Oxygen (mg/L)	2.61	2.24	2.09	1.92	1.94				
Water Temperature (°C)	11.29	11.21	11.21	11.25	11.26				
ORP (mV)	-57.7	-41.2	-27.2	-17.1	-12.3				
	Physical appear	ance at start Cold	or no	Physi	cal appearance at sa	ampling C	Color	no	
		Odo	r <u>no</u>	_		C	Odor	no	
	Sheen/Free Pro	duct	no	Shee	n/Free Product		no		
COMMENTS/OBSERVATIONS	Start purging @ 12:0	05. Set tubing at center	r of well screen. S	sample time @ 12:35					
,									

Dogo	of	
Page	OI .	

Date (mo/day/yr)	04/0	8/10		Casing Diameter		4			inches
Field Personnel	E. Laity								
Site Name Fo	Former Scott Aviation Site - Lancaster, NY			Measuring Point Elevation 685.67				1/100 ft	
Earth Tech Job #	601	147012		Height of Riser (abo	ve land surface)				1/100 ft
Well ID #	MW-8R			Land Surface Elevat					1/100 ft
Upgra	dient	Downgradient		Screened Interval (b	elow land surface)		14 - 24		1/100 ft
Weather Conditions	Rai	n storm							
Air Temperature	50		° F	Container	Analysis ((Method) #	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	27.5	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	low Top of Casing =	14.95	1/100 ft						
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
				FIELD ANALYSES					
Flow Rate (ml/min)	150	150	150	150	150	150			
Time (Military)	15:10	15:15	15:20	15:25	15:30	15:35			
Depth to Groundwater Below Top of Casing (ft)	-	-	-	-	-	-			
Drawdown (ft)	-	-	•	-	-	-			
pH (S.U.)	7.59	7.47	7.45	7.4	7.43	7.4			
Sp. Cond. (S/cm)	0.615	0.611	0.606	0.605	0.604	0.605			
Turbidity (NTUs)	122.8	127.8	132.4	148.1	133.1				
Dissolved Oxygen (g/L)	7.15	4.8	4.86	4.52	4.2	4.06			
Water Temperature (°C)	9.63	9.71	9.73	9.75	9.78	9.73			
ORP (mV)	-13.8	-14.1	-14	-12.6	-11.7	-11			
	Physical appeara	ance at start Col	or pale yellow w	<u>/ o</u> range bac. Pl	nysical appearance at	sampling Color	pale	yellow	
		Odd	or no	_		Odor	no)	
	Sheen/Free Prod	luct	no	_ SI	neen/Free Product				
COMMENTS/OBSERVATIONS	Start purging @ 15:0	5. Set tubing at cente	r of well screen. V	Vater meter not working	g properly, unable to g	et readings past initi	ial water dept	h.	
	Sample time @ 15:40)							

Dogo	of	
Page	OI .	

Date (mo/day/yr)	04/0	7/10		Casing Diameter		2			inches
Field Personnel	E. Laity					PVC	;		
Site Name Fo	rmer Scott Aviation S	Site - Lancaster, NY		Measuring Point Ele	Measuring Point Elevation 687.72				
Earth Tech Job #	601	147012		Height of Riser (abo	ve land surface)				1/100 ft
Well ID #					ion				1/100 ft
Upgra	Upgradient Downgradient			Screened Interval (b	elow land surface)		3.5 - 2	3.5	1/100 ft
Weather Conditions	r Conditions rain to cloudy								_
Air Temperature	Temperature 60			Container	Analysis (Method)	# Bottles	Preservativ	ve Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =		1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	;
Depth to Groundwater (DGW) Be	low Top of Casing =	15	1/100 ft						
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalt	tic Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
				FIELD ANALYSES					
Flow Rate (ml/min)	125	125	125	125	125	125		125	
Time (Military)	14:45	14:50	14:55	15:00	15:05	15:10		15:15	
Depth to Groundwater Below Top of Casing (ft)	15.6	15.9	16.5	16.7	-	-		-	
Drawdown (ft)	-0.6	-0.3	-0.6	-0.2	-	-		-	
pH (S.U.)	6.95	6.93	6.92	6.91	6.91	6.9		6.9	
Sp. Cond. (mS/cm)	1.14	1.13	1.121	1.115	1.108	1.107		1.104	
Turbidity (NTUs)	1.65	1.66	2.92	4.7	10.7	7.85		7.68	
Dissolved Oxygen (mg/L)	1.5	1.19	1.25	1.34	1.84	1.86		1.81	
Water Temperature (°C)	11.09	11.1	11.05	11	10.84	10.85		10.85	
ORP (mV)	41	42.7	45.8	50.2	55.2	55.5		56.8	
	Physical appeara	ance at start Cold	or	Pi	nysical appearance at	sampling Colo	r <u>c</u>	lear	
		Odo	r no	_		Odor		no	
	Sheen/Free Prod	luct	no	SI	neen/Free Product	ne)		
COMMENTS/OBSERVATIONS	Start purging at 14:40	D. Set tubing at center	of well screen. S	ample time @ 15:20. \	Nater meter stopped w	vorking ~ 15:05. Se	t in buildir	g to dry out.	
	Note	: Turbiditing started g	oing up but it may	be due to condensatio	n from humidity accum	nulating on vial after	rain stopp	oed, water appea	ars clear.

Dogo	٥f	
Page	of	

Field Personnel	FI									inches
	E. Laity				asing Material PVC					<u></u>
		Site - Lancaster, NY		Measuring Point Elevation 687.72					1/100 ft	
Earth Tech Job #	60	147012		Height of Riser (above land surface)					1/100 ft	
Well ID #	MW-10				on					1/100 ft
Upgra	dient	Downgradient		Screened Interval (be	low land surface)		3	3.5 - 23.5		1/100 ft
Weather Conditions	cloudy w	/ rain showers								
Air Temperature	65		° F	Container	Analysis (Method)	# Bot	tles Preserva	ative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	24	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4	°C	
Depth to Groundwater (DGW) Bel	ow Top of Casing =	9.2	1/100 ft							
Length of Water Column (LWC) =	TWD - DGW =		1/100 ft							
1 Casing Volume (OCV) = LWC x	0.163 =		gal							
3 Casing Volumes =			gal							
Method of Well Evacuation		eristaltic Pump								
Method of Sample Collection	Peristal	tic Pump/Poly Tubing								
Total Volume of Water Removed		6	liter							
		1		FIELD ANALYSES	1	1			1	
Flow Rate (ml/min)	150	150	150	150	150					
Time (Military)	13:00	13:05	13:10	13:15	13:20					
Depth to Groundwater Below Top of Casing (ft)	9.95	10.1	10.35	10.55	10.75					
Drawdown (ft)	-0.75	-0.15	-0.25	-0.2	-0.2					
pH (S.U.)	6.68	6.68	6.66	6.66	6.69					
Sp. Cond. (mS/cm)	2.027	2.044	2.05	2.052	2.051					
Turbidity (NTUs)	15.06	7.53	7.95	8.8	9.71					
Dissolved Oxygen (mg/L)	1.55	0.52	0.4	0.37	0.38					
Water Temperature (°C)	10.81	10.64	10.64	10.52	10.5					
ORP (mV)	45.8	43.8	43	42.4	42.5					
	Physical appear	ance at start Cold	or clear w/ flect	ks orange iron bac. Phy	ysical appearance at	sampling	Color o	clear w/ some iron l	oac.	
		Odo	r no	<u> </u>			Odor	no		
	Sheen/Free Prod	duct	no	She	een/Free Product		no			
COMMENTS/OBSERVATIONS	Start purging @ 12:5	55. Set tubing at center	r of well screen. S	ample time @ 13:25.						

Dogo	٥f	
Page	of	

Date (mo/day/yr)	04/0	07/10		Casing Diameter			2		inches
Field Personnel		Laity		Casing Material			PVC		
Site Name Fo	ormer Scott Aviation	Site - Lancaster, NY		Measuring Point Elevation 688.61					1/100 ft
Earth Tech Job #	60	147012		Height of Riser (above land surface)					1/100 ft
Well ID #	#				n				1/100 ft
Upgra	adient	Downgradient	_	Screened Interval (bel	ow land surface)		8.5 - 28	8.5	1/100 ft
Weather Conditions		Rain							
Air Temperature	60			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	28.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	15.4	1/100 ft						
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC >	x 0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	F	Peristaltic Pump							
Method of Sample Collection	Perista	ltic Pump/Poly Tubing							
Total Volume of Water Removed		4	liter						
				FIELD ANALYSES					
Flow Rate (ml/min)	125	125	125	125					
Time (Military)	13:55	14:00	14:05	14:10		†			
Depth to Groundwater Below Top of Casing (ft)	15.85	16	16.05	16.1					
Drawdown (ft)	-0.45	-0.15	-0.05	-0.05					
pH (S.U.)	6.57	6.56	6.56	6.57					
Sp. Cond. (mS/cm)	3.298	3.31	3.309	3.31					
Turbidity (NTUs)	1.46	0.67	0.44	0.6					
Dissolved Oxygen (mg/L)	0.79	0.42	0.43	0.38					
Water Temperature (°C)	11.13	11.03	11.04	11.05					
ORP (mV)	-3.6	-8.9	-13	-17.3					
	Physical appear	ance at start Cold	or clear	Phy	sical appearance at	sampling	Color	clear	
		Odo	r no			(Odor	no	
	Sheen/Free Pro	duct	no	She	en/Free Product		no		
COMMENTS/OBSERVATIONS	Start purging at 13:5	0. Set tubing at center	of well screen. S	Sample time @ 14:15					

Dogo	of	
Page	OI .	

Date (mo/day/yr)	04/0	7/10		Casing Diameter		4		inches	
Field Personnel		aity		Casing Material		PVC			
Site Name Fo	e Name Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation 685.79				
Earth Tech Job #	60°	147012		Height of Riser (abo	ve land surface)			1/100 ft	
Well ID #				Land Surface Elevat				1/100 ft	
Upgra	dient	Downgradient		Screened Interval (b	elow land surface)		7 - 27	1/100 ft	
Weather Conditions		occ. Showers							
Air Temperature	65		°F	Container	Analysis (I	Method) #	Bottles Preserva	ative Dup - MS/MSD	
Total Depth (TWD) Below Top of	Casing =	27.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3 HCL, 4	l°C	
Depth to Groundwater (DGW) Bel	low Top of Casing =	7.1	1/100 ft						
Length of Water Column (LWC) =	TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristaltion	Pump/Teflon Tubing	<u> </u>						
Total Volume of Water Removed		8	liter						
				FIELD ANALYSES					
VOLUME PURGED (ml)	175	175	150	150	150	150	150	150	
TIME (Military)	11:05	11:10	11:15	11:20	11:25	11:30	11:35	11:40	
Depth to Groundwater	11.05	11.10	11.15	11.20	11.25	11.30	11.35	11.40	
Below Top of Casing (ft)	7.75	8.14	8.55	8.9	9.1	9.2	9.4	9.6	
Drawdown (ft)	-0.65	-0.39	-0.41	-0.35	-0.2	-0.1	-0.2	-0.2	
pH (S.U.)	-	6.66	6.68	6.66	6.66	6.66	6.66	6.66	
Sp. Cond. (mS/cm)	-	1.35	1.347	1.341	1.343	1.344	1.343	1.346	
Turbidity (NTUs)	-	-	369	70.06	74.62	36.92	24.44	25.66	
Dissolved Oxygen (mg/L)	-	1.85	4.7	0.96	0.62	0.62	0.5	0.48	
Water Temperature (°C)	-	9.28	9.18	9.33	9.41	9.23	9.24	9.17	
ORP (mV)	-	-65.2	-70.3	-72	-71.6	-71.5	-72.9	-73.3	
	Physical appeara	nce at start Colo	rust colored; lo	ots iron bac.	hysical appearance at	sampling Color	flecks iron bac.		
		Odo	r <u>no</u>	_		Odor	no		
	Sheen/Free Prod	luct	no	_ S	heen/Free Product	no			
COMMENTS/OBSERVATIONS	Start puring @ 11:00	Set tubing at center	of well screen. The	ere is a lot of iron bact	eria. Did not pump thru	u the flow thru cell fo	r 1st 10 min to clear in	on bacteria.	
	The iron bacteria did	not clear until the tubi	ng was raised up	~ 1 ft. Sample time @	11:45.				

Dogo	of	
Page	OI	

Date (mo/day/yr)	4/7/2	010		Casing Diameter		1			inches
Field Personnel		aity			Casing Material PVC				<u> </u>
	ormer Scott Aviation S	ite - Lancaster, NY		Measuring Point Elevat					1/100 ft
Earth Tech Job #	60147012				Height of Riser (above land surface)				
Well ID #	MW-13S								1/100 ft
Upgra	Upgradient Downgradient			Screened Interval (belo	w land surface)		8.5-16	.5	1/100 ft
Weather Conditions	cloudy w/ c	occ. Sprinkles							
Air Temperature	65		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	16.5	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	8.8	1/100 ft						
Length of Water Column (LWC) :	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
			_						
				FIELD ANALYSES		1			
Flow Rate (ml/min)	100	100	100	100	100	100			
Time (Military) Depth to Groundwater	16:40	16:45	16:50	16:55	17:00	17:05		+	
Below Top of Casing (ft)	9.1	9.3	9.35	9.5	9.6	9.75			
Drawdown (ft)	-0.3	-0.2	-0.05	-0.15	-0.1	-0.15			
pH (S.U.)	6.92	6.92	6.92	6.92	6.91	6.91			
Sp. Cond. (mS/cm)	1.065	1.065	1.065	1.062	1.061	1.060			
Turbidity (NTUs)	11.56	4.83	3.36	1.41	1.62	0.39			
Dissolved Oxygen (mg/L)	1.32	1.13	1.4	1.66	1.97	2.01			
Water Temperature (°C)	9.54	9.51	9.37	9.29	9.26	9.24			
ORP (mV)	1.9	0.5	-4.1	-7.9	-11.4	-14.7			
	Physical appearar	ce at start Col	lor clear	Phys	ical appearance at	sampling Cold	or <u>c</u>	clear	
		Od	or no	_		Odo	or	no	
	Sheen/Free Produ	ct	no	Shee	en/Free Product	r	no		
COMMENTS/OBSERVATIONS	Start purging @ 16:35	Set tubing at center	r of well screen. Sa	imple time @ 17:10.					

Page	of	

Date (mo/day/yr)	4/7/2010				Casing Diameter 1				
	E. Laity				PVC				
ite Name Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation					1/100 ft
Earth Tech Job #	Job # 60147012				Height of Riser (above land surface)				
Well ID #	ell ID# MW-13D				Land Surface Elevation				
Upgradient Downgradient				Screened Interval (below land surface) 19.5-23.5					1/100 ft
Weather Conditions	ather Conditions cloudy w/ occ. Sprinkles								
Air Temperature	65			Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
otal Depth (TWD) Below Top of Casing = 23.5 1/1			1/100 ft	VOA 40 mL glass	TCL VOC	CL VOCs (8260B)		HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing = 14.5			1/100 ft						
Length of Water Column (LWC) = TWD - DGW = 1/100 ft									
1 Casing Volume (OCV) = LWC	x 0.163 =		gal						
3 Casing Volumes = gal									
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collection									
Total Volume of Water Removed 6			liter						
			_	TIFLD ANALYSES					
Flow Rate (ml/min)	125	125	125	100	100	100		100	
Time (Military)	15:50	15:55	16:00	16:05	16:10	16:15		16:20	
Depth to Groundwater Below Top of Casing (ft)	15.8	17.3	18.3	19.4	19.7	20		20.1	
Drawdown (ft)	-1.3	-1.5	-1	-1.1	-0.3	-0.3		-0.1	
pH (S.U.)	7.51	7.51	7.51	7.5	7.49	7.48		7.47	
Sp. Cond. (mS/cm)	0.973	0.95	0.912	0.905	0.904	0.91		0.915	
Turbidity (NTUs)	53.2	9.16	4.98	2.69	2.1	2.53		2.45	
Dissolved Oxygen (mg/L)	2.74	2.41	2.07	1.78	1.3	0.87		0.61	
Water Temperature (°C)	11.29	11.22	11.22	11.23	11.24	11.24		11.27	
ORP (mV)	-108.7	-98	-88.9	-94.1	-92.9	-96.9		-103.1	
	Physical appearar	nce at start Co	olor clear with few	flecs Phys	sical appearance at	sampling Cold	or	clear	
	Odor no			Odor			no		
	Sheen/Free Productno			Sheen/Free Product no					
COMMENTS/OBSERVATIONS Start purging @ 15:45. Set tubing at ~ 22 ft bgs. Sample time @ 16:20.									
	· ·	•						-	

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/8/2	010		Casing Diameter		1			inches
Field Personnel		aity		Casing Material			;		
Site Name Fo	ormer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva			685.84		1/100 ft
Earth Tech Job #	601	47012		Height of Riser (above land surface)					
Well ID #	MW-14	S		Land Surface Elevation	n				1/100 ft
Upgra	dient	Downgradient		Screened Interval (belo	ow land surface)		8.5-16.	5	1/100 ft
Weather Conditions	cle	oudy							
Air Temperature			° F	Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =		1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Bel	low Top of Casing =	6.45	1/100 ft						
Length of Water Column (LWC) =	TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
			_	IELD ANAL VOEO					
Flow Rate (ml/min)	150	150	150	IELD ANALYSES 150	150	150			
Flow Rate (ml/min) Time (Military)	9:10	9:15	9:20	9:25	9:30	9:35			
Depth to Groundwater	9.10	9.10	9.20	9.25	9.30	9.55			
Below Top of Casing (ft)	9	10.4	10	10	11.2	11.5			
Drawdown (ft)	-2.55	-1.4	0.4	0	-1.2	-0.3			
pH (S.U.)	7.57	7.55	7.24	7.15	7.13	7.09			
Sp. Cond. (S/cm)	0.703	0.678	0.68	0.676	0.676	0.681			
Turbidity (NTUs)	377.2	352.9	105	67.8	53.63	35.49			
Dissolved Oxygen (g/L)	8.01	9.3	3.68	1.78	1.05	0.89			
Water Temperature (°C)	9.55	9.18	9.2	9.2	9.25	9.33			
ORP (mV)	8.9	22.9	32.4	33.3	34.3	36.5			
	Physical appearar	nce at start Col	or tannish cloudy	Phy	sical appearance at	sampling Color	r cle	ear	
		Od	or no	_		Odor		no	
	Sheen/Free Produ	uct	no	_ She	en/Free Product				
COMMENTS/OBSERVATIONS	Start purging @ 9:05.	Set tubing at center	of well screen. Sam	ple time @ 9:40. Note:	water level meter dy	ving. Measurement	may be slig	ghtly off.	

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/8/2	4/8/2010 Casing Diameter 1						inches	
Field Personnel	E. L	aity		Casing Material			;		
Site Name F	ormer Scott Aviation S	ite - Lancaster, NY		Measuring Point Elevat	on		685.84		1/100 ft
Earth Tech Job #	60 1	47012		Height of Riser (above land surface)					
Well ID #	MW-14	D		Land Surface Elevation					1/100 ft
Upgr	Upgradient Downgradient				w land surface)		18.5-23	.5	1/100 ft
Weather Conditions	cl	oudy							
Air Temperature				Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing =	23.5	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing =	15.4	1/100 ft						
Length of Water Column (LWC)	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing	1						
Total Volume of Water Removed	d b	6	liter						
			_	TITLE ANALYSES					
Flow Rate (ml/min)	150	125	125	FIELD ANALYSES 125	125	125			
Time (Military)	8:25	8:30	8:35	8:40	8:45	8:50			
Depth to Groundwater	0.23	0.50	0.00	0.40	0.40	0.00			
Below Top of Casing (ft)	16.95	17.35	17.75	18.2	18.5	18.8			
Drawdown (ft)	-1.55	-0.4	-0.4	-0.45	-0.3	-0.3			
pH (S.U.)	7.18	7.14	7.08	7.1	7.08	7.09			
Sp. Cond. (mS/cm)	1.117	1.132	1.141	1.146	1.147	1.149			
Turbidity (NTUs)	36.27	15.53	14.86	8.08	5.16	2.92			
Dissolved Oxygen (mg/L)	3.99	0.79	0.41	0.35	0.39	0.49			
Water Temperature (°C)	11.47	11.38	11.38	11.4	11.49	11.53			
ORP (mV)	-53.9	-59.8	-62.6	-65.1	-67.1	-69.4			
	Physical appeara	nce at start Co	lor clear	Phys	ical appearance at	sampling Colo	r <u>c</u>	lear	
		Od	or no	_		Odo		no	
	Sheen/Free Produ	uct	no	Shee	n/Free Product	n	0		
COMMENTS/OBSERVATIONS	Start puring @ 8:20. S	et tubing at center o	f well screen. Sam	ple time @ 8:55.					

Dogo	of	
Page	OI .	

Date (mo/day/yr)	4/8/2	2010		Casing Diameter		1		inches		
Field Personnel		aity		Casing Material						
	ormer Scott Aviation S	Site - Lancaster, NY		Measuring Point Elev				1/100 ft		
Earth Tech Job #	b# 60147012				Height of Riser (above land surface)					
Well ID #	MW-15	S		Land Surface Elevati				1/100 ft		
Upgra	dient	Downgradient		Screened Interval (be	elow land surface)		12-18	1/100 ft		
Weather Conditions	p.	cloudy			_					
Air Temperature	60		°F	Container	Analysis (Method)	# Bottles Preserv	ative Dup - MS/MSD		
Total Depth (TWD) Below Top of	Casing =	18	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3 4°C	;		
Depth to Groundwater (DGW) Be	low Top of Casing =	1.4	1/100 ft							
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft							
1 Casing Volume (OCV) = LWC x	0.163 =		gal							
3 Casing Volumes =			gal							
Method of Well Evacuation		eristaltic Pump								
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing								
Total Volume of Water Removed		7	liter							
			-	FIELD ANALYSES						
Flow Rate (ml/min)	175	175	175	175	175	175	175	175		
Time (Military)	13:10	13:15	13:20	13:25	13:30	13:35	13:40	13:45		
Depth to Groundwater Below Top of Casing (ft)	4	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
Drawdown (ft)	-2.6	-0.2	0	0	0	0	0	0		
pH (S.U.)	11.21	11.86	12.06	12.45	12.42	12.43	12.47	12.47		
Sp. Cond. (mS/cm)	1.16	2.013	2.742	3.526	3.858	4.098	4.239	4.315		
Turbidity (NTUs)	133.7	122.9	68.66	36.1	43.17	27.95	27.76	19.75		
Dissolved Oxygen (mg/L)	0.68	0.2	0.1	0.06	0.04	0.03	0.02	0.03		
Water Temperature (°C)	10.98	10.91	11.02	10.92	10.9	10.73	10.62	10.48		
ORP (mV)	-236.4	-216	-220.6	-240.1	-244.9	-249.6	-245.5	-243.3		
	Physical appeara	nce at start Col	lor cloudy w/ blac	<u>ck</u> flecks Ph	ysical appearance at	sampling Colo	r clear w/ black fleck	S		
		Od	or no	<u> </u>		Odo	r <u>no</u>			
		uct	no		een/Free Product	n	0			
COMMENTS/OBSERVATIONS	Start purging @ 13:06	S. Set tubing at center	r of well screen. Sa	mple time @ 13:50.						
								_		

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/8/2	010		Casing Diameter 1					inches
Field Personnel		aity		Casing Material)		
Site Name I	Former Scott Aviation S	ite - Lancaster, NY		Measuring Point Elevati	ion				1/100 ft
Earth Tech Job #	601	47012		Height of Riser (above land surface)					1/100 ft
Well ID #	MW-15	D		Land Surface Elevation					1/100 ft
Upg	radient	Downgradient		Screened Interval (below	w land surface)		21-2	25	1/100 ft
Weather Conditions	р. с								
Air Temperature				Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing =	25	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	4°C	
Depth to Groundwater (DGW) B	Below Top of Casing =	15.5	1/100 ft						
Length of Water Column (LWC)	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Remove	ed	6	liter						
				FIELD ANALYSES		T			
Flow Rate (ml/min)	150	200	200	200	200	200		200	
Time (Military)	12:25	12:30	12:35	12:40	12:45	12:50		12:55	
Depth to Groundwater Below Top of Casing (ft)	15.75	15.75	15.75	15.8	15.8	15.8		15.8	
Drawdown (ft)	-0.25	0	0	-0.05	0	0		0	
pH (S.U.)	7.53	7.61	7.64	7.72	7.78	7.75		7.73	
Sp. Cond. (mS/cm)	1.081	0.188	1.273	1.36	1.423	1.472		1.494	
Turbidity (NTUs)	3.95	4.49	1.63	2.03	0.92	1.98		0.75	
Dissolved Oxygen (mg/L)	6.44	3	0.98	0.23	0.11	0.11		0.1	
Water Temperature (°C)	13.16	13	12.97	12.82	12.82	12.59		12.52	
ORP (mV)	-130.1	-141.2	-148.4	-155.5	-161.1	-168.9		-181.8	
	Physical appearar	nce at start Col	or clear	Phys	ical appearance at	sampling Colo	r	clear	
		Od	or <u>no</u>	_		Odo	r	no	
	Sheen/Free Produ	ıct	no	Shee	n/Free Product	n	0		
COMMENTS/OBSERVATIONS	Start purging @ 12:20	. Set tubing at center	r of well screen. Sa	mple time @ 13:00					

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/8/2	010		Casing Diameter			1		inches
Field Personnel		aity	Casing Material			PVC			
	Former Scott Aviation Site - Lancaster, NY				ion		685.84		1/100 ft
Earth Tech Job #	601		Height of Riser (above land surface)						
Well ID #	MW-16		Land Surface Elevation	ı				1/100 ft	
Upgra	adient	Downgradient		Screened Interval (belo	w land surface)		12 - 18	3	1/100 ft
Weather Conditions	cl	oudy							
Air Temperature	60		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing =	24	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	18.7	1/100 ft						
Length of Water Column (LWC) =	= TWD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		eristaltic Pump							
Method of Sample Collection	Peristalt	c Pump/Poly Tubing							
Total Volume of Water Removed		6	liter						
			-	IELD ANALYSES					
Flow Rate (ml/min)	-	175	175	50	150				
Time (Military)	10:15	10:20	10:25	10:30	10:35				
Depth to Groundwater Below Top of Casing (ft)	-	20.5	20.8	20.9	21.2				
Drawdown (ft)	-	-1.8	-0.3	-0.1	-0.3				
pH (S.U.)	-	6.9	6.91	6.9	6.9				
Sp. Cond. (mS/cm)	-	1.464	1.47	1.479	1.488				
Turbidity (NTUs)	-	98.89	48.42	60.95	42.24				
Dissolved Oxygen (mg/L)	-	2.5	0.58	0.49	0.46				
Water Temperature (°C)	-	12.78	12.81	12.82	13.25				
ORP (mV)	-	-38.7	-40.8	-43.2	-47.7				
	Physical appearar	nce at start Col	or tannish cloudy	Phys	sical appearance at	sampling	Color		
		Odd	or <u>no</u>	<u>-</u>			Odor		
	Sheen/Free Produ	ıct	yes	Shee	en/Free Product				
COMMENTS/OBSERVATIONS	Start purging @ 10:10	. Set tubing at center	of well screen. Sar	mple time @ 10:40. Due	to only 1.5' of water	r in this well, pu	urged well at a h	igh rate of speed to	
	it down and let it recha	arge; however well pa	used in drawing do	wn at level ~ 20.5' btic.	Slowed pumping rat	e to 175 ml/mi	n and started tak	ning parameters.	

Dogo	٥f	
Page	of	

Date (mo/day/yr)	4/0/20	010		Casing Diameter 1					inches
Field Personnel		aity		Casing Material			С		<u></u>
Site Name Form	mer Scott Aviation S	te - Lancaster, NY		Measuring Point Elevat					1/100 ft
Earth Tech Job #	601	47012		Height of Riser (above land surface)					1/100 ft
Well ID #	MW-16)		Land Surface Elevation					1/100 ft
Upgradi	ent	Downgradient		Screened Interval (belo	w land surface)		20-2	24	1/100 ft
Weather Conditions		oudy							
Air Temperature				Container	Analysis (N	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of Ca	asing =	24	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below	w Top of Casing =	18.5	1/100 ft						
Length of Water Column (LWC) = T	WD - DGW =		1/100 ft						
1 Casing Volume (OCV) = LWC x	0.163 =		gal						
3 Casing Volumes =			gal						
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collection	Peristalti	Pump/Poly Tubing							
Total Volume of Water Removed 6 liter									
			_						
Flour Boto (col/coin)	450	450		FIELD ANALYSES	450	150		450	
Flow Rate (ml/min)	150	150	150	150	150	150		150	
Time (Military) Depth to Groundwater	11:05	11:10	11:15	11:20	11:25	11:30		11:35	
Below Top of Casing (ft)	20.8	21.45	21.7	22.05	22.1	22.2		22.25	
Drawdown (ft)	-2.3	-0.65	-0.25	-0.35	-0.05	-0.1		-0.05	
pH (S.U.)	7.75	7.66	7.66	7.71	7.72	7.73		7.78	
Sp. Cond. (S/cm)	1.157	1.215	1.347	1.458	1.493	1.529		1.539	
Turbidity (NTUs)	48.24	18.33	7.25	3.16	2.87	2.1		1.98	
Dissolved Oxygen (g/L)	6.77	2.47	0.44	0.18	0.13	0.11		0.12	
Water Temperature (°C)	13.23	12.91	12.76	12.63	12.8	12.66		12.77	
ORP (mV)	-91.7	-111.6	-123.9	-130.5	-128.4	-129.8		-134.8	
	Physical appearan	ce at start Cold	or clear	Phys	ical appearance at s	sampling Cole	or	clear	
		Odo	r no	_		Odd	or	no	
	Sheen/Free Produ	ct	no	_ Shee	n/Free Product				
COMMENTS/OBSERVATIONS S	Start purging @ 10:55.	Set tubing at center	of well screen. Sa	mple time @ 11:40.					
-									

MONITORING WELL MW-2 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

	D 4 - W - A - MOG (4)	
Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
11/7/2003	7.29	683.06
4/8/2004	NM	
10/12/2004	NM	
1/6/2005	5.92	684.43
4/14/2005	6.50	683.85
7/20/2005	7.77	682.58
10/4/2005	6.08	684.27
1/5/2006	9.56	680.79
4/11/2006	6.65	683.70
7/10/2006	7.79	682.56
10/18/2006	6.11	684.24
1/9/2007	6.27	684.08
2/28/2007	5.20	685.15
4/16/2007	5.99	684.36
7/2/2007	7.22	683.13
10/15/2007	8.15	682.20
1/8/2008	5.73	684.62
4/2/2008	5.95	684.40
7/1/2008	4.90	685.45
9/30/2008	7.40	682.95
1/19/2009	6.75	683.60
4/14/2009	6.15	684.20
7/21/2009	6.25	684.10
10/14/2009	5.85	684.50
1/18/2010	7.00	683.35
4/8/2010	5.45	684.90

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 690.35

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-3 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Croundwater Floretien (ft MCI)
		Groundwater Elevation (ft MSL)
11/7/2003	12.76	674.96
4/8/2004	NM	NA
10/12/2004	NM	NA
1/6/2005	11.65	676.07
4/14/2005	12.64	675.08
7/20/2005	12.73	674.99
10/4/2005	7.38	680.34
1/5/2006	11.31	676.41
4/11/2006	11.84	675.88
7/10/2006	12.31	675.41
10/18/2006	10.82	676.9
1/9/2007	10.99	676.73
2/28/2007	3.99	683.73
4/16/2007	11.87	675.85
7/2/2007	13.35	674.37
10/17/2007	13.1	674.62
1/8/2008	7.61	680.11
4/2/2008	11.71	676.01
7/1/2008	10.75	676.27
9/30/2008	11.95	675.07
1/19/2009	10.94	676.08
4/14/2009	10.94	676.08
7/21/2009	11.51	675.51
10/14/2009	10.75	676.27
1/18/2010	12.38	674.64
4/8/2010	11.02	676

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 687.72

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-4 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
11/7/2003	8.54	678.10
4/8/2004	NM	0/8.10 NA
10/12/2004	11.40	675.24
1/6/2005	9.20	677.44
4/14/2005	NM	NA
7/20/2005	NM	NA
10/4/2005	15.24	671.40
1/5/2006	15.71	670.93
4/11/2006	18.56	668.08
7/10/2006	15.02	671.62
10/18/2006	15.21	671.43
1/9/2007	14.00	672.64
2/28/2007	2.54	684.10
4/16/2007	12.45	674.19
7/2/2007	14.89	671.75
10/17/2007	12.91	673.73
1/8/2008	5.59	681.05
4/2/2008	9.31	677.33
7/1/2008	13.91	672.51
9/30/2008	13.55	672.87
1/19/2009	10.78	675.64
4/14/2009	8.90	677.52
7/21/2009	12.35	674.07
10/14/2009	10.40	676.02
1/18/2010	8.90	677.52
4/8/2010	10.90	675.52

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 686.64

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-6 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
11/7/2003	11.06	675.62
4/8/2004	NM	NA
10/12/2004	9.95	676.73
1/6/2005	13.00	673.68
4/14/2005	11.57	675.11
7/20/2005	12.88	673.80
10/4/2005	8.55	678.13
1/5/2006	12.11	674.57
4/11/2006	12.11	674.77

7/10/2006	12.5	674.18
10/18/2006	11.02	675.66
1/9/2007	11.1	675.58
2/28/2007	4.35	682.33
4/16/2007	11.81	674.87
7/2/2007	12.85	673.83
10/17/2007	13.09	673.59
1/8/2008	7.02	679.66
4/2/2008	11.00	675.68
7/1/2008	10.98	675.55
9/30/2008	11.39	675.14
1/19/2009	9.68	676.85
4/14/2009	10.02	676.51
7/21/2009	11.50	675.03
10/14/2009	10.35	676.18
1/18/2010	11.20	675.33
4/8/2010	10.05	676.48

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 686.68

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-8R SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	NM	NA
10/12/2004	12.75	672.92
1/6/2005	7.45	678.22
4/14/2005	14.45	671.22
7/20/2005	NM	NA
10/4/2005	NM	NA
1/6/2006	15.51	670.16
4/11/2006	15.65	670.02
7/10/2006	14.9	670.77
10/18/2006	15.72	669.95
1/9/2007	15.76	669.91
2/28/2007	10.78	674.89
4/16/2007	15.60	670.07
7/2/2007	16.29	669.38
10/15/2007	18.50	667.17
1/8/2008	4.99	680.68
4/2/2008	13.19	672.48
7/1/2008	12.15	674.06
9/30/2008	15.83	670.38
1/19/2009	11.55	674.66
4/14/2009	11.20	675.01
7/21/2009	13.57	672.64
10/14/2009	12.76	673.45
1/18/2010	11.26	674.95
4/8/2010	14.95	671.26

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.67

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-9 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
11/7/2003	13.03	672.4
4/8/2004	NM	NA
10/12/2004	13.68	671.75
1/6/2005	12.89	672.54
4/14/2005	12.74	672.69
7/20/2005	13.88	671.55
10/4/2005	7.22	678.21
	* *	* · • · - -
1/5/2006	12.79	672.64
4/11/2006	13.50	671.93
7/10/2006	13.24	672.19
10/18/2006	11.00	674.43
1/9/2007	12.24	673.19
2/28/2007	1.66	683.77
4/16/2007	13.15	672.28
7/2/2007	13.00	672.43
10/17/2007	13.95	671.48
1/8/2008	6.70	678.73
4/2/2008	10.61	674.82
7/1/2008	14.25	674.39
9/30/2008	15.67	672.97
1/19/2009	14.48	674.16
4/14/2009	15.48	673.16
7/21/2009	15.20	673.44
10/10/2009	15.06	673.58
1/18/2010	17.00	671.64
4/8/2010	15.40	673.24

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.43

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-10 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Don'th to Water from TOC (ft)	Croundwater Floretien (ft MCI)
	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
11/7/2003	10.75 NM	676.97 NA
4/8/2004		= := =
10/12/2004	NM	NA
1/6/2005	10.28	677.44
4/14/2005	11.50	676.22
7/20/2005	12.43	675.29
10/4/2005	9.58	678.14
1/5/2006	11.28	676.44
4/11/2006	10.91	676.81
7/10/2006	10.90	676.82
10/18/2006	10.13	677.59
1/9/2007	10.21	677.51
2/28/2007	4.30	683.42
4/16/2007	10.93	676.79
7/2/2007	12.21	675.51
10/17/2007	13.15	674.57
1/8/2008	7.03	680.69
4/2/2008	9.91	677.81
7/1/2008	10.04	677.37
9/30/2008	11.05	676.36
1/19/2009	9.74	677.67
4/14/2009	9.14	678.27
7/21/2009	10.56	676.85
10/14/2009	9.37	678.04
1/18/2010	10.59	676.82
4/8/2010	9.35	678.06

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 687.72

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-11 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	NM	NA
10/12/2004	NM	NA
1/6/2005	15.59	673.02
4/14/2005	11.59	677.02
7/20/2005	17.34	671.27
10/4/2005	10.45	678.16
1/5/2006	16.58	672.03
4/11/2006	13.52	675.09
7/10/2006	13.75	674.86
10/18/2006	14.35	674.26
1/9/2007	15.26	673.35
2/28/2007	6.34	682.27
4/16/2007	11.55	677.06
7/2/2007	17.30	671.31
10/16/2007	17.69	670.92
1/8/2008	11.73	676.88
4/2/2008	14.78	673.83
7/1/2008	13.91	674.74
9/30/2008	15.25	673.4
1/19/2009	13.45	675.2
4/14/2009	13.50	675.15
7/21/2009	14.51	674.14
10/14/2009	13.85	674.8
1/18/2010	16.38	672.27
4/8/2010	13.90	674.75

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 688.61

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-12 SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	NM	`
10/12/2004	10.64	675.15
1/6/2005	6.18	679.61
4/14/2005	6.80	678.99
7/20/2005	11.95	673.84
10/4/2005	7.36	678.43
1/5/2006	6.8	678.99
4/11/2006	6.76	679.03
7/10/2006	11.35	674.44
10/18/2006	NM*	-
1/9/2007	6.35	679.44
2/28/2007	NM*	-
4/16/2007	7.38	678.41
7/2/2007	11.42	674.37
10/15/2007	12	673.79
1/8/2008	4.31	681.48
4/2/2008	5.86	679.93
7/1/2008	7.1	679.04
9/30/2008	10.92	675.22
1/19/2009	NM*	
4/14/2009	7.14	679
7/21/2009	9.66	676.48
10/14/2009	8.83	677.31
1/18/2010	7.4	678.74
4/8/2010	7.1	679.04

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.79

 $NM\ensuremath{^*}$ - Well could not be located due to snow cover

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-13S SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	7.01	679.56
10/12/2004	13.47	673.10
1/6/2005	7.24	679.33
4/14/2005	13.91	672.66
7/20/2005	12.81	673.76
10/4/2005	13.35	673.22
1/5/2006	13.79	672.78
4/11/2006	12.45	674.12
7/10/2006	13.02	673.55
10/18/2006	10.99	675.58
1/9/2007	11.35	675.22
2/28/2007	3.49	683.08
4/16/2007	12.01	674.56
7/2/2007	13.20	673.37
10/18/2007	12.77	673.80
1/8/2008	5.08	681.49
4/2/2008	5.45	681.12
7/1/2008	9.70	676.90
9/30/2008	11.80	674.80
1/19/2009	8.70	677.90
4/14/2009	8.64	677.96
7/21/2009	10.91	675.69
10/14/2009	9.18	677.42
1/18/2010	9.80	676.80
4/8/2010	8.30	678.30

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing TOC Elevation - 686.57

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-13D SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	13.28	673.43
10/12/2004	14.87	671.84
1/6/2005	14.55	672.16
4/14/2005	15.32	671.39
7/20/2005	15.65	671.06
10/4/2005	9.44	677.27
1/5/2006	15.83	670.88
4/11/2006	15.41	671.30
7/10/2006	13.79	672.92
10/18/2006	13.17	673.54
1/9/2007	14.41	672.30
2/28/2007	3.28	683.43
4/16/2007	14.66	672.05
7/2/2007	15.68	671.03
10/18/2007	15.8	670.91
1/8/2008	8.69	678.02
4/2/2008	12.86	673.85
7/1/2008	12.55	674.18
9/30/2008	13.89	672.84
1/19/2009	12.1	674.63
4/14/2009	11.78	674.95
7/21/2009	12.86	673.87
10/14/2009	11.59	675.14
1/18/2010	13.88	672.85
4/8/2010	12	674.73

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 686.71

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-14S SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	5.14	680.17
10/12/2004	8.57	676.74
1/6/2005	6.27	679.04
4/14/2005	5.16	680.15
7/20/2005	8.32	676.99
10/4/2005	6.14	679.17
1/5/2006	8.41	676.9
4/11/2006	7.75	677.56
7/10/2006	8.18	677.13
10/18/2006	9.00	676.31
1/9/2007	6.61	678.7
2/28/2007	1.50	683.81
4/16/2007	3.45	681.86
7/2/2007	8.36	676.95
10/15/2007	9.45	675.86
1/8/2008	4.65	680.66
4/2/2008	4.47	680.84
7/1/2008	6.37	679.33
9/30/2008	8.9	676.8
1/19/2009	6.15	679.55
4/14/2009	7.7	678
7/21/2009	7.25	678.45
10/14/2009	7.05	678.65
1/18/2010	NM	
4/8/2010	6.50	NA

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.31

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-14D SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	13.21	672.22
10/12/2004	14.55	670.88
1/6/2005	15.97	669.46
4/14/2005	13.25	672.18
7/20/2005	18.20	667.23
10/4/2005	13.26	672.17
1/5/2006	19.08	666.35
4/11/2006	19.79	665.64
7/10/2006	17.16	668.27
10/18/2006	19.44	665.99
1/9/2007	14.71	670.72
2/28/2007	2.67	682.76
4/16/2007	19.74	665.69
7/2/2007	19.68	665.75
10/15/2007	19.76	665.67
1/8/2008	7.92	677.51
4/2/2008	14.41	671.02
7/1/2008	14.45	671.37
9/30/2008	15.39	670.43
1/19/2009	13.55	672.27
4/14/2009	20.10	665.72
7/21/2009	15.15	670.67
10/14/2009	20.27	665.55
1/18/2010	20.40	665.42
4/8/2010	15.40	670.42

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.43

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-15S SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	1.20	685.44
10/12/2004	5.26	681.38
1/6/2005	0.35	686.29
4/14/2005	2.31	684.33
7/20/2005	4.78	681.86
10/4/2005	2.22	684.42
1/5/2006	0.70	685.94
4/11/2006	2.00	684.64
7/10/2006	4.75	681.89
1/9/2007	0.05	686.59
2/28/2007	0.00	686.64
4/16/2007	0.50	686.14
7/2/2007	4.67	681.97
10/16/2007	4.8	681.84
1/8/2008	0.7	685.94
4/2/2008	0	686.64
7/1/2008	0.5	687.02
9/30/2008	3.14	684.38
1/19/2009	1.5	686.02
4/14/2009	1.6	685.92
7/21/2009	1.11	686.41
10/14/2009	1.11	686.41
1/18/2010	0.8	686.72
4/8/2010	2	685.52

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 686.64'

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-15D SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	15.70	671.61
10/12/2004	17.42	669.89
1/6/2005	15.74	671.57
4/14/2005	16.99	670.32
7/20/2005	17.31	670.00
10/4/2005	8.94	678.37
1/5/2006	16.16	671.15
4/11/2006	16.90	670.41
7/10/2006	15.78	671.53
10/18/2006	15.50	671.81
1/9/2007	15.80	671.51
2/28/2007	4.10	683.21
4/16/2007	16.61	670.70
7/2/2007	17.20	670.11
10/16/2007	16.70	670.61
1/8/2008	8.99	678.32
4/2/2008	15.01	672.30
7/1/2008	14.64	672.98
9/30/2008	16.24	671.38
1/19/2009	15.00	672.62
4/14/2009	14.21	673.41
7/21/2009	14.61	673.01
10/14/2009	14.81	672.81
1/18/2010	16.89	670.73
4/8/2010	15.00	672.62

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 687.31'

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-16S SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	5.09	680.75
10/12/2004	12.09	673.75
1/6/2005	4.75	681.09
4/14/2005	10.15	675.69
7/20/2005	14.56	671.28
10/4/2005	11.50	674.34
1/5/2006	11.41	674.43
4/11/2006	12.90	672.94
7/10/2006	11.54	674.30
10/18/2006	12.50	673.34
1/9/2007	13.82	672.02
2/28/2007	2.90	682.94
4/16/2007	13.07	672.77
7/2/2007	12.50	673.34
10/18/2007	15.23	670.61
1/8/2008	5.60	680.24
4/2/2008	12.40	673.44
7/1/2008	15.70	674.67
9/30/2008	19.34	671.03
1/19/2009	17.80	672.57
4/14/2009	18.22	672.15
7/21/2009	19.95	670.42
10/14/2009	17.77	672.60
1/18/2010	16.45	673.92
4/8/2010	18.60	671.77

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 685.84'

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

MONITORING WELL MW-16D SUMMARY OF GROUNDWATER ELEVATIONS

Former Scott Aviation Site Lancaster, New York

Date	Depth to Water from TOC (ft)	Groundwater Elevation (ft MSL)
4/8/2004	13.62	672.39
10/12/2004	15.51	670.50
1/6/2005	13.70	672.31
4/14/2005	16.09	669.92
7/20/2005	16.65	669.36
10/4/2005	9.89	676.12
1/5/2006	17.21	668.80
4/11/2006	17.1	668.91
7/10/2006	10.61	675.4
10/18/2006	15.41	670.6
1/9/2007	15.6	670.41
2/28/2007	2.74	683.27
4/16/2007	16.35	669.66
7/2/2007	16.85	669.16
10/18/2007	17.17	668.84
1/8/2008	8.32	677.69
4/2/2008	13.44	672.57
7/1/2008	17.72	672.83
9/30/2008	19.29	671.26
1/19/2009	17.95	672.60
4/14/2009	17.21	673.34
7/21/2009	18.28	672.27
10/14/2009	17.60	672.95
1/18/2010	19.51	671.04
4/8/2010	17.19	673.36

NOTES:

ft MSL - feet mean sea level

NA - Not Available

NM - Not Measured

TOC - top of PVC casing

TOC Elevation - 686.01'

DPE and GWCT down on 2/28/07

DPE down on 1/8/08

APPENDIX D

ANALYTICAL LABORATORY DATA PACKAGES (PROVIDED ON CD)

Analytical Report

Work Order: RTD1034

Project Description
Scott Aviation site

For:

Dino Zack

AECOM - Amherst, NY 100 Corporate Pkwy-Univ Centre Amherst, NY 14226

Brian Fischer

Project Manager
Brian.Fischer@testamericainc.com
Thursday, April 22, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Work Order: RTD1034

Project: Scott Aviation site
Project Number: EARTH-000

Received: 04/08/10 Reported: 04/22/10 12:03

TestAmerica Buffalo Current Certifications

As of 12/21/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	<i>E-10187</i>
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RTD1034

Received:

04/08/10

Reported:

d: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Work Order: RTD1034

Received: Reported:

04/22/10 12:03

04/08/10

Project: Scott Aviation site
Project Number: EARTH-0001

DATA QUALIFIERS AND DEFINITIONS

D03 Dilution required due to excessive foaming

D08 Dilution required due to high concentration of target analyte(s)

E Concentration exceeds the calibration range and therefore result is semi-quantitative.

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

Work Order: RTD1034

Received: 0

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-0001

		Pr	oject Numb	er: EAR	ГН-0001					
		E	ecutive	e Summar	y - Detect	tions				
	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-01	(MW-8R - Gr	ound Water)			Samı	pled: 04	/08/10 15:40	Rec	vd: 04/08/1) 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	19	D08,J	100	7.7	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Chloroethane	10	D08,J	100	6.5	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
cis-1,2-Dichloroethene	1300	D08	100	16	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Trichloroethene	2200	D08,E	100	9.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Vinyl chloride	84	D08,J	100	18	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Sample ID: RTD1034-01I	RE1 (MW-8R	- Ground Wate	r)		Samı	pled: 04	/08/10 15:40	Rec	vd: 04/08/1) 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	21	D08,J	200	15	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
cis-1,2-Dichloroethene	1400	D08	200	32	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Trichloroethene	2500	D08	200	18	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Vinyl chloride	91	D08,J	200	36	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Sample ID: RTD1034-02	(MW-9 - Grou	und Water)			Samı	pled: 04	/07/10 15:20	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by FD/	1 8260B			•					
1,1-Dichloroethane	99	4 0200 <u>D</u>	5.0	0.38	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dichloroethane	2.3	J	5.0	0.30	ug/L ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Chloroethane	16	3	5.0	0.32	ug/L ug/L	1.00	04/15/10 13:42	LH	10D1333	8260B
cis-1,2-Dichloroethene	17		5.0	0.81	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Vinyl chloride	19		5.0	0.90	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Sample ID: RTD1034-03	(MW-13S - G	round Water)			_	oled: 04	/07/10 17:10	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by FD/	1 8260B								
1,1,1-Trichloroethane	10	D08,J	50	8.2		10.0	04/15/10 14:06	LH	10D1339	8260B
1,1-Dichloroethane	16	D08,J	50	3.8	ug/L ug/L	10.0	04/15/10 14:06	LH	10D1339 10D1339	8260B
1,1-Dichloroethene	13	D08,J	50	2.9	ug/L ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
cis-1,2-Dichloroethene	1600	D08,E	50	8.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Trichloroethene	1300	D08,E	50	4.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Vinyl chloride	45	D08,J	50	9.0	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Sample ID: RTD1034-03I	RE1 (MW-135	S - Ground Wat	er)		Samı	oled: 04	/07/10 17:10	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	-		·							
			400	0.0		25.0	04/40/40 47:50	DUC	40D4400	00000
1,1-Dichloroethane 1.1-Dichloroethene	16	D08,J	120	9.6	ug/L	25.0	04/16/10 17:59		10D1488 10D1488	8260B
cis-1,2-Dichloroethene	14 1600	D08,J D08	120 120	7.3 20	ug/L	25.0 25.0	04/16/10 17:59 04/16/10 17:59		10D1488	8260B 8260B
Trichloroethene	1400	D08	120	11	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Vinyl chloride	46	D08,J	120	22	ug/L ug/L	25.0	04/16/10 17:59		10D1488	8260B
Sample ID: RTD1034-05			120	22	· ·					
•	•	•			Sam	piea: U4/	/08/10 09:40	Kec	vd: 04/08/1	J 17:15
Volatile Organic Compo		A 8260B								
1,1-Dichloroethane	5.9		5.0	0.38	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Benzene	0.80	J	5.0	0.41	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Chloroethane	0.62	J	5.0	0.32	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
cis-1,2-Dichloroethene	4.0	J	5.0	0.81	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B

Sampled: 04/08/10 08:55

Recvd: 04/08/10 17:15

Sample ID: RTD1034-06 (MW-14D - Ground Water)

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

-			Executive	Summar	y - Detect	tions				
	Sample	Data			•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-06	(MW-14D - G	round Water)	- cont.		Sam	pled: 04	/08/10 08:55	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by EPA	8260B								
1,1-Dichloroethane	2.0	J	5.0	0.38	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,1-Dichloroethene	0.88	J	5.0	0.29	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Chloroethane	1.5	J	5.0	0.32	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
cis-1,2-Dichloroethene	99		5.0	0.81	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Trichloroethene	9.4		5.0	0.46	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Vinyl chloride	21		5.0	0.90	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Sample ID: RTD1034-07	(MW-15S - G	round Water)			Sam	pled: 04	/08/10 13:50	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	1400	D08	100	7.7	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,1-Dichloroethene	36	D08,J	100	5.9	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
2-Butanone	580	D08	500	26	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Acetone	2600	D08	500	60	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Chloroethane	700	D08	100	6.5	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
cis-1,2-Dichloroethene	1900	D08	100	16	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Toluene	180	D08	100	10	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Trichloroethene	270	D08	100	9.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Vinyl chloride	690	D08	100	18	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Xylenes, total	45	D08,J	300	13	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Sample ID: RTD1034-08	(MW-15D - G	round Water)			Sampled: 04/08/10 13:00 Recvo			ecvd: 04/08/10 17:15		
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	12		5.0	0.38	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Chloroethane	960	E	5.0	0.32	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
cis-1,2-Dichloroethene	33		5.0	0.81	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Toluene	0.63	J	5.0	0.51	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Vinyl chloride	19		5.0	0.90	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Sample ID: RTD1034-08	RE1 (MW-150	- Ground Wa	ter)		Sam	pled: 04	/08/10 13:00	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
Chloroethane	1700	D08	250	16	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Sample ID: RTD1034-09	(MW-16D - G	round Water)			Sam	pled: 04	/08/10 11:40	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	ounds by EPA	8260B								
1,1-Dichloroethane	8.7	D08,J	10	0.77	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Chloroethane	250	D08,E	10	0.65	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
cis-1,2-Dichloroethene	6.9	D08,J	10	1.6	ug/L	2.00	04/16/10 18:48			8260B
Trichloroethene	12	D08	10	0.92	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Vinyl chloride	3.6	D08,J	10	1.8	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Sample ID: RTD1034-09	RE1 (MW-16D	- Ground Wa	ter)		_	pled: 04	/08/10 11:40	Rec	vd: 04/08/1	0 17:15
Volatile Organic Compo	•									
1,1-Dichloroethane	8.3	D08,J	25	1.9	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Chloroethane	240	D08,3	25 25	1.6	ug/L ug/L	5.00	04/17/10 13:42		10D1581	8260B
cis-1,2-Dichloroethene	4.9	D08,J	25 25	4.0	ug/L ug/L	5.00	04/17/10 13:42		10D1581	8260B
Trichloroethene	8.8	D08,J	25 25	2.3	ug/L ug/L	5.00	04/17/10 13:42			8260B
	0.0	200,0	20	2.0	ug/L	0.00	3-7/17/10 10. 7 2	5.10	1001001	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

6/416

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-000

Executive 3	Summary -	Detections
-------------	-----------	------------

		'		, Gannina y	Dottoo					
	Sample	Data	DI	MDL		Dil	Date	Lab	5	
Analyte	Result	Qualifiers	RL	MIDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-11	(DUPLICATE	- Ground Wa	ter)		Sam	pled: 04/	08/10 15:30	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	98	D08,J	500	38	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
cis-1,2-Dichloroethene	6900	D08	500	81	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Trichloroethene	3000	D08	500	46	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Vinyl chloride	540	D08	500	90	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Sample ID: RTD1034-13	(MW-11 - Gro	ound Water)			Sam	pled: 04/	07/10 14:15	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1,1-Trichloroethane	2.4	J	5.0	0.82	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1-Dichloroethane	13		5.0	0.38	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1-Dichloroethene	2.0	J	5.0	0.29	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Chloroethane	26		5.0	0.32	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
cis-1,2-Dichloroethene	60		5.0	0.81	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Trichloroethene	0.95	J	5.0	0.46	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Vinyl chloride	17	· ·	5.0	0.90	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Sample ID: RTD1034-14	(MW-2 - Grou	und Water)			Ū	nled: 04/	07/10 09:50	Rec	vd: 04/08/10	0 17:15
•	•	,			Oum	piou. U-	01710 00.00	1100	14. 04/00/1V	
Volatile Organic Compo Chloroethane	21	<u>А 6260Б</u> D03,J	25	1.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Sample ID: RTD1034-15		•	25	1.0	Ū					
-	•	·			Sam	piea: U4/	07/10 10:45	Rec	vd: 04/08/10	J 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	10		5.0	0.38	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
cis-1,2-Dichloroethene	1.7	J	5.0	0.81	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Vinyl chloride	4.6	J	5.0	0.90	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Sample ID: RTD1034-16	(MW-4 - Grou	und Water)			Sam	pled: 04/	08/10 14:45	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,1-Dichloroethane	110	D08,J	500	38	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,1-Dichloroethene	50	D08,J	500	29	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
cis-1,2-Dichloroethene	7200	D08	500	81	ug/L	100	04/16/10 20:01		10D1488	8260B
Trichloroethene	3000	D08	500	46	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Vinyl chloride	560	D08	500	90	ug/L	100	04/16/10 20:01		10D1488	8260B
Sample ID: RTD1034-18	(MW-16S - G	round Water)			_	pled: 04/	08/10 10:40	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B				-				
1,1,1-Trichloroethane	2000	D08	2000	330	ua/l	400	04/15/10 20:56	LH	10D1339	8260B
1,1-Dichloroethane	3000	D08	2000	150	ug/L	400	04/15/10 20:56	LH	10D1333	8260B
1,1-Dichloroethene	930	D08,J	2000	120	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Chloroethane	1100	D08,J	2000	130	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
cis-1,2-Dichloroethene	11000	D08,5 D08,E	2000	320	ug/L	400	04/15/10 20:56	LH	10D1339 10D1339	8260B
Toluene	510	D08,E D08,J	2000	200	ug/L	400	04/15/10 20:56	LH	10D1339 10D1339	8260B
	220000				ug/L					
Trichloroethene	6800	D08,E D08	2000	180	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Vinyl chloride			2000	360	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Sample ID: RTD1034-18F	RE1 (MW-165	S - Ground Wa	ter)		Sam	pled: 04/	08/10 10:40	Rec	vd: 04/08/10	0 17:15

Volatile Organic Compounds by EPA 8260B

Work Order: RTD1034

Received:

04/08/10

Reported:

d: 04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-0001

Executive Summary - Detections

					,					
Amalista	Sample	Data	RL	MDL	l laita	Dil	Date	Lab	Datah	
Analyte	Result	Qualifiers	KL_	IVIDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-18	RE1 (MW-16S	6 - Ground Wa	iter) - cont.		Sam	pled: 04	08/10 10:40	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B - cont	<u>t.</u>							
1,1-Dichloroethane	2900	D08,J	20000	1500	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
cis-1,2-Dichloroethene	99000	D08	20000	3200	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Trichloroethene	200000	D08	20000	1800	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Vinyl chloride	6200	D08,J	20000	3600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Sample ID: RTD1034-19	(MW-12 - Gro	ound Water)			Sam	pled: 04	07/10 11:45	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	A 8260B								
1,2-Dichloroethane	0.70	J	5.0	0.21	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Chloroethane	23		5.0	0.32	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B

Work Order: RTD1034

Received: Reported: 04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Sample Summary

			Date/Time	Date/Time	Sample		
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers		
MW-8R	RTD1034-01	Ground Water	04/08/10 15:40	04/08/10 17:15			
MW-9	RTD1034-02	Ground Water	04/07/10 15:20	04/08/10 17:15			
MW-13S	RTD1034-03	Ground Water	04/07/10 17:10	04/08/10 17:15			
MW-13D	RTD1034-04	Ground Water	04/07/10 16:20	04/08/10 17:15			
MW-14S	RTD1034-05	Ground Water	04/08/10 09:40	04/08/10 17:15			
MW-14D	RTD1034-06	Ground Water	04/08/10 08:55	04/08/10 17:15			
MW-15S	RTD1034-07	Ground Water	04/08/10 13:50	04/08/10 17:15			
MW-15D	RTD1034-08	Ground Water	04/08/10 13:00	04/08/10 17:15			
MW-16D	RTD1034-09	Ground Water	04/08/10 11:40	04/08/10 17:15			
FIELD BLANK	RTD1034-10	Ground Water	04/07/10 11:15	04/08/10 17:15			
DUPLICATE	RTD1034-11	Ground Water	04/08/10 15:30	04/08/10 17:15			
MW-10	RTD1034-12	Ground Water	04/07/10 13:25	04/08/10 17:15			
MW-11	RTD1034-13	Ground Water	04/07/10 14:15	04/08/10 17:15			
MW-2	RTD1034-14	Ground Water	04/07/10 09:50	04/08/10 17:15			
MW-3	RTD1034-15	Ground Water	04/07/10 10:45	04/08/10 17:15			
MW-4	RTD1034-16	Ground Water	04/08/10 14:45	04/08/10 17:15			
MW-6	RTD1034-17	Ground Water	04/07/10 12:35	04/08/10 17:15			
MW-16S	RTD1034-18	Ground Water	04/08/10 10:40	04/08/10 17:15			
MW-12	RTD1034-19	Ground Water	04/07/10 11:45	04/08/10 17:15			
TRIP BLANK	RTD1034-20	Water	04/07/10	04/08/10 17:15			

Work Order: RTD1034

Received:

04/08/10 Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-01 (N							08/10 15:40		/d: 04/08/1	
Volatile Organic Compou	nde by EDA	9260B			·					
1,1,1-Trichloroethane	ND	D08	100	16	ua/l	20.0	04/15/10 13:18	LH	10D1339	8260B
	ND	D08	100	4.3	ug/L					8260B
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ND	D08	100	4.5 4.6	ug/L	20.0 20.0	04/15/10 13:18 04/15/10 13:18	LH LH	10D1339 10D1339	8260B
	ND	D08	100	6.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D06	100	0.2	ug/L	20.0	04/13/10 13.16	LH	1001339	0200B
oroethane 1,1-Dichloroethane	19	D08,J	100	7.7	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,1-Dichloroethene	ND	D08	100	5.9	ug/L	20.0	04/15/10 13:18	LH	10D1333	8260B
1,2,4-Trichlorobenzene	ND	D08	100	8.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND	D08	100	7.9	ug/L ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
ane	ND	D00	100	7.5	ug/L	20.0	04/13/10 13.10	LII	100 1339	0200B
1,2-Dibromoethane	ND	D08	100	15	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,2-Dichlorobenzene	ND	D08	100	16	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,2-Dichloroethane	ND	D08	100	4.3	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,2-Dichloropropane	ND	D08	100	14	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,3-Dichlorobenzene	ND	D08	100	16	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,4-Dichlorobenzene	ND	D08	100	17	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
2-Butanone	ND	D08	500	26	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
2-Hexanone	ND	D08	500	25	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
4-Methyl-2-pentanone	ND	D08	500	42	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Acetone	ND	D08	500	60	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Benzene	ND	D08	100	8.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Bromodichloromethane	ND	D08	100	7.7	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Bromoform	ND	D08	100	5.1	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Bromomethane	ND	D08	100	14	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Carbon disulfide	ND	D08	100	3.9	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Carbon Tetrachloride	ND	D08	100	5.3	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Chlorobenzene	ND	D08	100	15	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Dibromochloromethane	ND	D08	100	6.4	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Chloroethane	10	D08,J	100	6.5	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Chloroform	ND	D08	100	6.7	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Chloromethane	ND	D08	100	6.9	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
cis-1,2-Dichloroethene	1300	D08	100	16	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND	D08	100	7.1	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Cyclohexane	ND	D08	100	3.6	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Dichlorodifluoromethane	ND	D08	100	14	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Ethylbenzene	ND	D08	100	15	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Isopropylbenzene	ND	D08	100	16	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Methyl Acetate	ND	D08	100	10	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND	D08	100	3.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
(MTBE)	.,,,	200	100	0.2	ug/ L	20.0	0 11 10/10 10:10		102 1000	02002
Methylcyclohexane	ND	D08	100	3.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Methylene Chloride	ND	D08	100	8.8	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Styrene	ND	D08	100	15	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Tetrachloroethene	ND	D08	100	7.3	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
Toluene	ND	D08	100	10	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND	D08	100	18	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND	D08	100	7.4	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
e		-	-		3					
Trichloroethene	2200	D08,E	100	9.2	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
		· · · · · · · · · · · · · · · · · · ·			-		04/15/10 13:18			
Trichlorofluoromethane	ND	D08	100	18	ug/L	20.0	04/13/10 13.10	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

10/416

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

			A1	iaiy tioai i	СРОП					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-01	(MW-8R - Gro	ound Water)	- cont.		Sam	pled: 04/	08/10 15:40	Recv	/d: 04/08/10	17:15
Volatile Organic Compo	unds by EPA	8260B - co	<u>ont.</u>							
Xylenes, total	ND	D08	300	13	ug/L	20.0	04/15/10 13:18	LH	10D1339	8260B
1,2-Dichloroethane-d4	87 %	D08	Surr Limits:	(66-137%)			04/15/10 13:18	LH	10D1339	8260B
1,2-Dichloroethane-d4 4-Bromofluorobenzene	87 % 79 %	D08 D08	Surr Limits: Surr Limits:	,			04/15/10 13:18 04/15/10 13:18	LH LH	10D1339 10D1339	8260B 8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-01RE			er)				08/10 15:40		/d: 04/08/10	
Volatile Organic Compoun	ds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D08	200	33	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	200	8.5	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND	D08	200	9.2	ug/L	40.0	04/16/10 17:35		10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	200	12	ug/L	40.0	04/16/10 17:35		10D1488	8260B
oroethane	115	200	200		ug/L	10.0	0 11 10/10 17:00	5110	1021100	02003
1,1-Dichloroethane	21	D08,J	200	15	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1.1-Dichloroethene	ND	D08	200	12	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	200	16	ug/L	40.0	04/16/10 17:35		10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	200	16	ug/L	40.0			10D1488	8260B
ane					- 3					
1,2-Dibromoethane	ND	D08	200	29	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND	D08	200	32	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,2-Dichloroethane	ND	D08	200	8.6	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,2-Dichloropropane	ND	D08	200	29	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND	D08	200	31	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,4-Dichlorobenzene	ND	D08	200	34	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
2-Butanone	ND	D08	1000	53	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
2-Hexanone	ND	D08	1000	50	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
4-Methyl-2-pentanone	ND	D08	1000	84	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Acetone	ND	D08	1000	120	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Benzene	ND	D08	200	16	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Bromodichloromethane	ND	D08	200	15	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Bromoform	ND	D08	200	10	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Bromomethane	ND	D08	200	28	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Carbon disulfide	ND	D08	200	7.8	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Carbon Tetrachloride	ND	D08	200	11	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Chlorobenzene	ND	D08	200	30	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Dibromochloromethane	ND	D08	200	13	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Chloroethane	ND	D08	200	13	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Chloroform	ND	D08	200	13	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Chloromethane	ND	D08	200	14	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
cis-1,2-Dichloroethene	1400	D08	200	32	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	200	14	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Cyclohexane	ND	D08	200	7.2	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Dichlorodifluoromethane	ND	D08	200	27	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Ethylbenzene	ND	D08	200	30	ug/L	40.0	04/16/10 17:35		10D1488	8260B
Isopropylbenzene	ND	D08	200	32	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Methyl Acetate	ND	D08	200	20	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	200	6.4	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Methylcyclohexane	ND	D08	200	6.4	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Methylene Chloride	ND	D08	200	18	ug/L	40.0	04/16/10 17:35		10D1488	8260B
Styrene	ND	D08	200	29	ug/L	40.0	04/16/10 17:35		10D1488	8260B
Tetrachloroethene	ND	D08	200	15	ug/L	40.0	04/16/10 17:35		10D1488	8260B
Toluene	ND	D08	200	20	ug/L	40.0	04/16/10 17:35		10D1488	8260B
trans-1,2-Dichloroethene	ND	D08	200	36	ug/L	40.0	04/16/10 17:35		10D1488	8260B
trans-1,3-Dichloropropen	ND	D08	200	15	ug/L	40.0	04/16/10 17:35		10D1488	8260B
е					3					
Trichloroethene	2500	D08	200	18	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
Trichlorofluoromethane	ND	D08	200	35	ug/L	40.0	04/16/10 17:35		10D1488	8260B
Vinyl chloride	91	D08,J	200	36	ug/L	40.0	04/16/10 17:35		10D1488	8260B
-					-					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytica	al Report
-----------	-----------

	Sample	Data		,		Dil	Date	Lab		
Analyte	Result	Qualifiers	s RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-01F	RE1 (MW-8R	- Ground W	/ater) - cont.		Sam	pled: 04/	/08/10 15:40	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo	ounds by EPA	8260B - c	ont.							
Xylenes, total	ND	D08	600	26	ug/L	40.0	04/16/10 17:35	DHC	10D1488	8260B
1,2-Dichloroethane-d4	117 %	D08	Surr Limits: (66-137%)			04/16/10 17:35	DHC	10D1488	8260B
4-Bromofluorobenzene	110 %	D08	Surr Limits: (73-120%)			04/16/10 17:35	DHC	10D1488	8260B
Toluene-d8	116 %	D08	Surr Limits: (71-126%)			04/16/10 17:35	DHC	10D1488	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-02 (I							07/10 15:20		vd: 04/08/10	
		•			ou,	510ui • ii	07710 10120			
Volatile Organic Compou	-	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
oroethane										
1,1-Dichloroethane	99		5.0	0.38	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
ane										
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dichloroethane	2.3	J	5.0	0.21	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1.4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
	ND		25 25	2.1	-	1.00	04/15/10 13:42	LH	10D1339	8260B
4-Methyl-2-pentanone			25 25		ug/L			LH	10D1339	
Acetone	ND			3.0	ug/L	1.00	04/15/10 13:42			8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Chloroethane	16		5.0	0.32	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
cis-1,2-Dichloroethene	17		5.0	0.81	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 13:42	LH	10D1333	8260B
•	ND		5.0	0.74			04/15/10 13:42		10D1339	8260B
Isopropylbenzene					ug/L	1.00		LH		
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
(MTBE)	ND		5 0	0.40	/1	4.00	04/45/40 40:40		40D4220	00000
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 13:42		10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
Vinyl chloride	19		5.0	0.90	ug/L	1.00	04/15/10 13:42		10D1339	8260B
Viriyi dillollac	1.5		5.0	0.30	ug/L	1.00	J-110110 10.42		1001003	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			A	maryucar r	keport					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-02	(MW-9 - Grou	und Water) - co	ont.		Sam	pled: 04/	07/10 15:20	Recv	/d: 04/08/10	17:15
Volatile Organic Compo	unds by EPA	<u> 8260B - cont.</u>	<u>.</u>							
Xylenes, total	ND		15	0.66	ug/L	1.00	04/15/10 13:42	LH	10D1339	8260B
1,2-Dichloroethane-d4	89 %	S	Surr Limits:	(66-137%)			04/15/10 13:42	LH	10D1339	8260B
4-Bromofluorobenzene	81 %	S	Surr Limits:	(73-120%)			04/15/10 13:42	LH	10D1339	8260B
Toluene-d8	83 %	S	Surr Limits:	(71-126%)			04/15/10 13:42	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-03 (N	IW-13S - G				Samı	pled: 04/	07/10 17:10	Recv	/d: 04/08/10	17:15
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	10	D08,J	50	8.2	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND	D08	50	2.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,1,2-Trichloroethane	ND	D08	50	2.3	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	50	3.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
oroethane		200		0	~g/=		0 11 107 10 1 1100		.02.000	02002
1,1-Dichloroethane	16	D08,J	50	3.8	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,1-Dichloroethene	13	D08,J	50	2.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND	D08	50	4.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND	D08	50	3.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
ane					Ü					
1,2-Dibromoethane	ND	D08	50	7.3	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2-Dichlorobenzene	ND	D08	50	7.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2-Dichloroethane	ND	D08	50	2.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2-Dichloropropane	ND	D08	50	7.2	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,3-Dichlorobenzene	ND	D08	50	7.8	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,4-Dichlorobenzene	ND	D08	50	8.4	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
2-Butanone	ND	D08	250	13	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
2-Hexanone	ND	D08	250	12	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
4-Methyl-2-pentanone	ND	D08	250	21	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Acetone	ND	D08	250	30	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Benzene	ND	D08	50	4.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Bromodichloromethane	ND	D08	50	3.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Bromoform	ND	D08	50	2.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Bromomethane	ND	D08	50	6.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Carbon disulfide	ND	D08	50	1.9	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Carbon Tetrachloride	ND	D08	50	2.7	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Chlorobenzene	ND	D08	50	7.5	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Dibromochloromethane	ND	D08	50	3.2	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Chloroethane	ND	D08	50	3.2	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Chloroform	ND	D08	50	3.4	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Chloromethane	ND	D08	50	3.5	ug/L	10.0	04/15/10 14:06		10D1339	8260B
cis-1,2-Dichloroethene	1600	D08,E	50	8.1	ug/L	10.0	04/15/10 14:06		10D1339	8260B
cis-1,3-Dichloropropene	ND	D08	50	3.6	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Cyclohexane	ND	D08	50	1.8	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Dichlorodifluoromethane	ND	D08	50	6.8	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Ethylbenzene	ND	D08	50	7.4	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Isopropylbenzene	ND	D08	50	7.9	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Methyl Acetate	ND	D08	50	5.0	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	50	1.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Methylcyclohexane	ND	D08	50	1.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Methylene Chloride	ND	D08	50	4.4	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Styrene	ND	D08	50	7.3	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Tetrachloroethene	ND	D08	50	3.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Toluene	ND	D08	50	5.1	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND	D08	50	9.0	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND	D08	50	3.7	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Trichloroethene	1300	D08,E	50	4.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
Trichlorofluoromethane	ND	D08	50	8.8	ug/L	10.0	04/15/10 14:06		10D1339	8260B
Vinyl chloride	45	D08,J	50	9.0	ug/L	10.0	04/15/10 14:06		10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			A	illalytical r	report					
Analyte	Sample Result	Data Qualifiers	, RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-03	(MW-13S - G	round Wate	r) - cont.		Samı	pled: 04/	07/10 17:10	Recv	/d: 04/08/1	17:15
Volatile Organic Compo	ounds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	150	6.6	ug/L	10.0	04/15/10 14:06	LH	10D1339	8260B
1,2-Dichloroethane-d4	84 %	D08	Surr Limits:	(66-137%)			04/15/10 14:06	LH	10D1339	8260B
4-Bromofluorobenzene	81 %	D08	Surr Limits:	(73-120%)			04/15/10 14:06	LH	10D1339	8260B
Toluene-d8	86 %	D08	Surr Limits:	(71-126%)			04/15/10 14:06	LH	10D1339	8260B

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-03RE	E1 (MW-13S	- Ground Wat	er)		Sam	oled: 04/	/07/10 17:10	Recv	/d: 04/08/10	17:15
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D08	120	20	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	120	5.3	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND	D08	120	5.8	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	120	7.7	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
oroethane					J					
1,1-Dichloroethane	16	D08,J	120	9.6	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,1-Dichloroethene	14	D08,J	120	7.3	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	120	10	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	120	9.8	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
ane					Ü					
1,2-Dibromoethane	ND	D08	120	18	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND	D08	120	20	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2-Dichloroethane	ND	D08	120	5.4	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2-Dichloropropane	ND	D08	120	18	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND	D08	120	20	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,4-Dichlorobenzene	ND	D08	120	21	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
2-Butanone	ND	D08	620	33	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
2-Hexanone	ND	D08	620	31	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
4-Methyl-2-pentanone	ND	D08	620	52	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Acetone	ND	D08	620	75	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Benzene	ND	D08	120	10	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Bromodichloromethane	ND	D08	120	9.6	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Bromoform	ND	D08	120	6.4	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Bromomethane	ND	D08	120	17	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Carbon disulfide	ND	D08	120	4.8	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Carbon Tetrachloride	ND	D08	120	6.7	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Chlorobenzene	ND	D08	120	19	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Dibromochloromethane	ND	D08	120	8.1	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Chloroethane	ND	D08	120	8.1	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Chloroform	ND	D08	120	8.4	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Chloromethane	ND	D08	120	8.6	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
cis-1,2-Dichloroethene	1600	D08	120	20	ug/L ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	120	8.9	_	25.0	04/16/10 17:59	DHC	10D1488	8260B
	ND ND	D08	120		ug/L			DHC	10D1488	8260B
Cyclohexane	ND ND		120	4.5 17	ug/L	25.0	04/16/10 17:59 04/16/10 17:59	DHC	10D1488	
Dichlorodifluoromethane	ND ND	D08	120	17	ug/L	25.0	04/16/10 17:59		10D1488	8260B 8260B
Ethylbenzene		D08			ug/L	25.0				
Isopropylbenzene	ND	D08	120	20	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Methyl Acetate	ND	D08	120	13	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	120	4.0	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Methylcyclohexane	ND	D08	120	4.0	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Methylene Chloride	ND	D08	120	11	ug/L	25.0			10D1488	8260B
Styrene	ND	D08	120	18	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Tetrachloroethene	ND	D08	120	9.1	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Toluene	ND	D08	120	13	ug/L	25.0	04/16/10 17:59		10D1488	8260B
trans-1,2-Dichloroethene	ND	D08	120	22	ug/L	25.0	04/16/10 17:59		10D1488	8260B
trans-1,3-Dichloropropen	ND	D08	120	9.2	ug/L	25.0	04/16/10 17:59		10D1488	8260B
e			~		~g. -	_0.0	2			
Trichloroethene	1400	D08	120	11	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
Trichlorofluoromethane	ND	D08	120	22	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Vinyl chloride	46	D08,J	120	22	ug/L	25.0	04/16/10 17:59		10D1488	8260B
Thry official	40	200,0	120	~ ~	ug/L	20.0	0-7/10/10 17.39	5110	100 1700	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			All	iaiyucai r	report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-03I	RE1 (MW-13S	- Ground V	Vater) - cont.		Sam	pled: 04/	/07/10 17:10	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo	unds by EPA	8260B - cc	ont.							
Xylenes, total	ND	D08	380	16	ug/L	25.0	04/16/10 17:59	DHC	10D1488	8260B
1,2-Dichloroethane-d4	113 %	D08	Surr Limits: (6	66-137%)			04/16/10 17:59	DHC	10D1488	8260B
4-Bromofluorobenzene	106 %	D08	Surr Limits: (7	73-120%)			04/16/10 17:59	DHC	10D1488	8260B
Toluene-d8	115 %	D08	Surr Limits: (7	71-126%)			04/16/10 17:59	DHC	10D1488	8260B

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-04 (M	MW-13D - G	round Water)			Sam	pled: 04	07/10 16:20	Recv	vd: 04/08/1	0 17:15
Volatile Organic Compou	ınds by EP <i>A</i>	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
oroethane			0.0	0.0.	~g, =		0 11 10/10 1 1100		.02.000	02002
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
ane	ND		0.0	0.00	ug/L	1.00	04/10/10 14:00		100 1000	0200B
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.79	-	1.00	04/15/10 14:30	LH	10D1339	8260B
·					ug/L			LH	10D1339	
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 14:30			8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.10	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
						1.00				
Isopropylbenzene	ND		5.0	0.79	ug/L		04/15/10 14:30	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.16	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 14:30		10D1339	8260B
Tetrachloroethene	ND		5.0	0.76	-	1.00	04/15/10 14:30	LH	10D1339	8260B
Toluene	ND		5.0	0.50	ug/L ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
			5.0				04/15/10 14:30	LH		
trans-1,2-Dichloroethene	ND			0.90	ug/L	1.00			10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
Vinyl chloride	ND		5.0	0.90	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
					-					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04

04/08/10

Project: Scott Aviation site

Project Number: EARTH-0001

Reported: 04/22/10 12:03

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-04	(MW-13D - Gı	round Water)	- cont.		Sam	pled: 04/	07/10 16:20	Recv	d: 04/08/10	17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	<u> 8260B - cont</u>	<u>.</u> 15	0.66	ug/L	1.00	04/15/10 14:30	LH	10D1339	8260B
1,2-Dichloroethane-d4	87 %		Surr Limits:	(66-137%)			04/15/10 14:30	LH	10D1339	8260B
4-Bromofluorobenzene	80 %		Surr Limits:	(73-120%)			04/15/10 14:30	LH	10D1339	8260B
Toluene-d8	84 %		Surr Limits:	(71-126%)			04/15/10 14:30	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-05 (I							/08/10 09:40		vd: 04/08/1	
·		•			Odini	pica. U-/	00/10 03.40	IXCC	va. 04/00/1	0 17.10
Volatile Organic Compou	-	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
oroethane										
1,1-Dichloroethane	5.9		5.0	0.38	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
ane										
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Benzene	0.80	J	5.0	0.41	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Bromodichloromethane	ND	· ·	5.0	0.39	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.03	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.19	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.27	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.73	-	1.00	04/15/10 14:54	LH	10D1339	8260B
	0.62	J			ug/L				10D1339	8260B
Chloroethane		J	5.0	0.32	ug/L	1.00	04/15/10 14:54	LH		
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
cis-1,2-Dichloroethene	4.0	J	5.0	0.81	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.16	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 14:54		10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND		5.0	0.37	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.40	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
Vinyl chloride	ND		5.0	0.90	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
viriyi oriionac	IND		5.0	0.30	ug/L	1.00	0 -1 /10/10 1 -1 .04	LI I	1001000	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-05	(MW-14S - Gı	round Water) -	cont.		Samı	pled: 04/	08/10 09:40	Recv	d: 04/08/10	17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	<u> 8260B - cont.</u>	<u>.</u> 15	0.66	ug/L	1.00	04/15/10 14:54	LH	10D1339	8260B
1,2-Dichloroethane-d4	88 %	S	Surr Limits:	(66-137%)			04/15/10 14:54	LH	10D1339	8260B
4-Bromofluorobenzene	85 %	5	Surr Limits:	(73-120%)			04/15/10 14:54	LH	10D1339	8260B
Toluene-d8	85 %	5	Surr Limits:	(71-126%)			04/15/10 14:54	LH	10D1339	8260B

Work Order: RTD1034

Received:

04/08/10 Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Amalista	Sample	Data	ы	MDL	Huita	Dil	Date	Lab	Datah	
Analyte	Result	Qualifiers	RL	IVIDE	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-06 (I	MW-14D - G	round Water)			Samı	pled: 04	/08/10 08:55	Rec	vd: 04/08/10) 17:15
Volatile Organic Compou	ınds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
oroethane										
1,1-Dichloroethane	2.0	J	5.0	0.38	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,1-Dichloroethene	0.88	J	5.0	0.29	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
ane										
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Chloroethane	1.5	J	5.0	0.32	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
cis-1,2-Dichloroethene	99		5.0	0.81	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
(MTBE)										
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Trichloroethene	9.4		5.0	0.46	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
Vinyl chloride	21		5.0	0.90	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

04/08/10

Reported:

: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Anal	ytical	Report
------	--------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-06	•	,			Samı	oled: 04/	08/10 08:55	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	<u> 8260B - cont</u>	<u>:.</u> 15	0.66	ug/L	1.00	04/15/10 15:18	LH	10D1339	8260B
1,2-Dichloroethane-d4	89 %	,	Surr Limits:	(66-137%)			04/15/10 15:18	LH	10D1339	8260B
4-Bromofluorobenzene	83 %	,	Surr Limits:	(73-120%)			04/15/10 15:18	LH	10D1339	8260B
Toluene-d8	85 %	,	Surr Limits:	(71-126%)			04/15/10 15:18	LH	10D1339	8260B

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-07 (N							/08/10 13:50		/d: 04/08/1	
Valatila Organia Compan	nda by EDA	. 02C0D			•					
Volatile Organic Compou			400	40	,,	00.0	04/45/40 45 40		1001000	00000
1,1,1-Trichloroethane	ND	D08	100	16	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND	D08	100	4.3	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,1,2-Trichloroethane	ND	D08	100	4.6	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	100	6.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
oroethane	1400	D08	100	77	/1	20.0	04/45/40 45:42	LH	1001220	92600
1,1-Dichloroethane				7.7 5.0	ug/L	20.0	04/15/10 15:43		10D1339	8260B
1,1-Dichloroethene	36 ND	D08,J	100	5.9	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND	D08	100	8.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND	D08	100	7.9	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
ane	ND	D08	100	15	/1	20.0	04/45/40 45:42	LH	10D1339	8260B
1,2-Dibromoethane	ND		100	15 16	ug/L	20.0	04/15/10 15:43			
1,2-Dichlorobenzene	ND	D08	100	16	ug/L	20.0	04/15/10 15:43	LH	10D1339 10D1339	8260B
1,2-Dichloroethane	ND	D08	100	4.3	ug/L	20.0	04/15/10 15:43	LH		8260B
1,2-Dichloropropane	ND	D08	100	14	ug/L	20.0	04/15/10 15:43	LH	10D1339 10D1339	8260B
1,3-Dichlorobenzene	ND	D08	100	16	ug/L	20.0	04/15/10 15:43	LH		8260B
1,4-Dichlorobenzene	ND	D08	100	17	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
2-Butanone	580	D08	500	26	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
2-Hexanone	ND	D08	500	25	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
4-Methyl-2-pentanone	ND	D08	500	42	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Acetone	2600	D08	500	60	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Benzene	ND	D08	100	8.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Bromodichloromethane	ND	D08	100	7.7	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Bromoform	ND	D08	100	5.1	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Bromomethane	ND	D08	100	14	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Carbon disulfide	ND	D08	100	3.9	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Carbon Tetrachloride	ND	D08	100	5.3	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Chlorobenzene	ND	D08	100	15	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Dibromochloromethane	ND	D08	100	6.4	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Chloroethane	700	D08	100	6.5	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Chloroform	ND	D08	100	6.7	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Chloromethane	ND	D08	100	6.9	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
cis-1,2-Dichloroethene	1900	D08	100	16	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND	D08	100	7.1	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Cyclohexane	ND	D08	100	3.6	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Dichlorodifluoromethane	ND	D08	100	14	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Ethylbenzene	ND	D08	100	15	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Isopropylbenzene	ND	D08	100	16	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Methyl Acetate	ND	D08	100	10	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	100	3.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Methylcyclohexane	ND	D08	100	3.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Methylene Chloride	ND	D08	100	8.8	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Styrene	ND	D08	100	15	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Tetrachloroethene	ND	D08	100	7.3	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Toluene	180	D08	100	10	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND	D08	100	18	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND	D08	100	7.4	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
	270	D08	100	9.2	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
Trichioroethene										
Trichloroethene Trichlorofluoromethane	ND	D08	100	18	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

				ilaly tioul i	Coport					
Analyte	Sample Result	Data Qualifiers	, RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-07	(MW-15S - Gi	round Wate	r) - cont.		Sam	pled: 04/	08/10 13:50	Recv	d: 04/08/10) 17:15
Volatile Organic Compo	unds by EPA	8260B - co	ont.							
Xylenes, total	45	D08,J	300	13	ug/L	20.0	04/15/10 15:43	LH	10D1339	8260B
1,2-Dichloroethane-d4	88 %	D08	Surr Limits:	(66-137%)			04/15/10 15:43	LH	10D1339	8260B
4-Bromofluorobenzene	80 %	D08	Surr Limits:	(73-120%)			04/15/10 15:43	LH	10D1339	8260B
Toluene-d8	78 %	D08	Surr Limits:	(74 4060/)			04/15/10 15:43	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-08 (N	MW-15D - G	round Water)			Sam	pled: 04	08/10 13:00	Recv	/d: 04/08/1	0 17:15
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
oroethane					Ü					
1,1-Dichloroethane	12		5.0	0.38	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
ane					J					
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Chloroethane	960	Е	5.0	0.32	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
cis-1,2-Dichloroethene	33		5.0	0.81	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
(MTBE)	ND		0.0	0.10	ug/L	1.00	0-1/10/10 10:07		100 1000	0200B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 16:07		10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 16:07		10D1339	8260B
Toluene	0.63	J	5.0	0.51	ug/L	1.00	04/15/10 16:07		10D1339	8260B
trans-1,2-Dichloroethene	ND	Ŭ	5.0	0.90	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND		5.0	0.37	ug/L ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
e	140		5.0	0.57	ug/L	1.00	J-7/13/10 10.07	LII	יטט וטטפ	02000
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.40	ug/L ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
Vinyl chloride	19		5.0	0.88	ug/L ug/L	1.00	04/15/10 16:07		10D1339	8260B
Villy dillollac	15		5.0	0.30	ug/L	1.00	J-7/13/10 10.07	LII	יטט וטטפ	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04/

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			•	Analytical is	Срогс					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-08	•	·			Sam	pled: 04/	08/10 13:00	Recv	d: 04/08/10	17:15
Volatile Organic Compo	unds by EPA	<u> 8260B - cont.</u>	i							
Xylenes, total	ND		15	0.66	ug/L	1.00	04/15/10 16:07	LH	10D1339	8260B
1,2-Dichloroethane-d4	90 %	S	Surr Limits:	(66-137%)			04/15/10 16:07	LH	10D1339	8260B
4-Bromofluorobenzene	81 %	S	Surr Limits:	(73-120%)			04/15/10 16:07	LH	10D1339	8260B
Toluene-d8	79 %	S	Surr Limits:	(71-126%)			04/15/10 16:07	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

04/22/10 12:03

Reported:

Project: Scott Aviation site Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-08RE	E1 (MW-150) - Ground Wa	ter)		Samı	oled: 04/	08/10 13:00	Recv	/d: 04/08/1	0 17:15
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D08	250	41	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,1,2,2-Tetrachloroethane	ND	D08	250	11	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,1,2-Trichloroethane	ND	D08	250	12	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	250	15	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
oroethane					Ü					
1,1-Dichloroethane	ND	D08	250	19	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,1-Dichloroethene	ND	D08	250	15	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2,4-Trichlorobenzene	ND	D08	250	20	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2-Dibromo-3-chloroprop	ND	D08	250	20	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
ane					· ·					
1,2-Dibromoethane	ND	D08	250	36	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2-Dichlorobenzene	ND	D08	250	40	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2-Dichloroethane	ND	D08	250	11	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2-Dichloropropane	ND	D08	250	36	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,3-Dichlorobenzene	ND	D08	250	39	ug/L	50.0	04/17/10 13:17		10D1581	8260B
1,4-Dichlorobenzene	ND	D08	250	42	ug/L	50.0	04/17/10 13:17		10D1581	8260B
2-Butanone	ND	D08	1200	66	ug/L	50.0	04/17/10 13:17		10D1581	8260B
2-Hexanone	ND	D08	1200	62	ug/L	50.0	04/17/10 13:17		10D1581	8260B
4-Methyl-2-pentanone	ND	D08	1200	100	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Acetone	ND	D08	1200	150	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Benzene	ND	D08	250	20	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Bromodichloromethane	ND	D08	250	19	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Bromoform	ND	D08	250	13	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Bromomethane	ND	D08	250	34	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Carbon disulfide	ND	D08	250	9.7	ug/L ug/L	50.0	04/17/10 13:17		10D1581	8260B
Carbon Tetrachloride	ND	D08	250	13	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Chlorobenzene	ND	D08	250	38	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Dibromochloromethane	ND	D08	250	16	ug/L ug/L	50.0	04/17/10 13:17		10D1581	8260B
Chloroethane	1700	D08	250	16	_	50.0	04/17/10 13:17		10D1581	8260B
Chloroform	ND	D08	250	17	ug/L	50.0	04/17/10 13:17		10D1581	8260B
	ND ND	D08	250 250		ug/L		04/17/10 13:17		10D1561 10D1581	8260B
Chloromethane	ND ND			17	ug/L	50.0			10D1561 10D1581	
cis-1,2-Dichloroethene		D08	250	40	ug/L	50.0	04/17/10 13:17			8260B
cis-1,3-Dichloropropene	ND	D08	250	18	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Cyclohexane	ND	D08	250	9.0	ug/L	50.0	04/17/10 13:17		10D1581 10D1581	8260B
Dichlorodifluoromethane	ND	D08	250	34	ug/L	50.0	04/17/10 13:17			8260B
Ethylbenzene	ND	D08	250	37	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Isopropylbenzene	ND	D08	250	40	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Methyl Acetate	ND	D08	250	25	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	250	8.0	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Methylcyclohexane	ND	D08	250	8.0	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Methylene Chloride	ND	D08	250	22	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Styrene	ND	D08	250	36	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Tetrachloroethene	ND	D08	250	18	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Toluene	ND	D08	250	26	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
trans-1,2-Dichloroethene	ND	D08	250	45	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
trans-1,3-Dichloropropen e	ND	D08	250	18	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Trichloroethene	ND	D08	250	23	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
Trichlorofluoromethane	ND	D08	250	44	ug/L	50.0	04/17/10 13:17		10D1581	8260B
Vinyl chloride	ND	D08	250	45	ug/L	50.0	04/17/10 13:17		10D1581	8260B
This official	110	200	200	→ 0	ug/L	55.5	3-771710 10.17	2.10	.00 1001	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			7 11.	ary trour r	topo.t					
Analyte	Sample Result	Data Qualifiers	. RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-08F	RE1 (MW-15D				Sam	pled: 04	/08/10 13:00		/d: 04/08/10	
Volatile Organic Compo	unds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	750	33	ug/L	50.0	04/17/10 13:17	DHC	10D1581	8260B
1,2-Dichloroethane-d4	113 %	D08	Surr Limits: (6	66-137%)			04/17/10 13:17	DHC	10D1581	8260B
4-Bromofluorobenzene	110 %	D08	Surr Limits: (1	73-120%)			04/17/10 13:17	DHC	10D1581	8260B
Toluene-d8	115 %	D08	Surr Limits: (1	71-126%)			04/17/10 13:17	DHC	10D1581	8260B

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-09 (M	//W-16D - G	round Water)			Samı	oled: 04/	/08/10 11:40	Recv	/d: 04/08/1	17:15
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D08	10	1.6	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	10	0.43	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND	D08	10	0.46	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	10	0.62	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
oroethane					3					
1,1-Dichloroethane	8.7	D08,J	10	0.77	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,1-Dichloroethene	ND	D08	10	0.59	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	10	0.82	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	10	0.79	ug/L	2.00	04/16/10 18:48		10D1488	8260B
ane		200	. •	00	~g/=		0 11 107 10 10110	2	.0200	02002
1,2-Dibromoethane	ND	D08	10	1.5	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND	D08	10	1.6	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,2-Dichloroethane	ND	D08	10	0.43	ug/L	2.00	04/16/10 18:48		10D1488	8260B
1,2-Dichloropropane	ND	D08	10	1.4	ug/L	2.00	04/16/10 18:48		10D1488	8260B
1,3-Dichlorobenzene	ND	D08	10	1.6	ug/L	2.00	04/16/10 18:48		10D1488	8260B
1,4-Dichlorobenzene	ND	D08	10	1.7	ug/L	2.00	04/16/10 18:48		10D1488	8260B
2-Butanone	ND	D08	50	2.6	ug/L	2.00	04/16/10 18:48		10D1488	8260B
2-Hexanone	ND	D08	50	2.5	ug/L	2.00	04/16/10 18:48		10D1488	8260B
4-Methyl-2-pentanone	ND	D08	50	4.2	ug/L ug/L	2.00	04/16/10 18:48		10D1488	8260B
	ND	D08	50	6.0	_	2.00	04/16/10 18:48		10D1488	8260B
Acetone	ND	D08			ug/L				10D1488	
Benzene			10	0.82	ug/L	2.00	04/16/10 18:48			8260B
Bromodichloromethane	ND	D08	10	0.77	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Bromoform	ND	D08	10	0.51	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Bromomethane	ND	D08	10	1.4	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Carbon disulfide	ND	D08	10	0.39	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Carbon Tetrachloride	ND	D08	10	0.53	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Chlorobenzene	ND	D08	10	1.5	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Dibromochloromethane	ND	D08	10	0.64	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Chloroethane	250	D08,E	10	0.65	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Chloroform	ND	D08	10	0.67	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Chloromethane	ND	D08	10	0.69	ug/L	2.00	04/16/10 18:48		10D1488	8260B
cis-1,2-Dichloroethene	6.9	D08,J	10	1.6	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	10	0.71	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Cyclohexane	ND	D08	10	0.36	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Dichlorodifluoromethane	ND	D08	10	1.4	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Ethylbenzene	ND	D08	10	1.5	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Isopropylbenzene	ND	D08	10	1.6	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Methyl Acetate	ND	D08	10	1.0	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	10	0.32	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Methylcyclohexane	ND	D08	10	0.32	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
Methylene Chloride	ND	D08	10	0.88	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Styrene	ND	D08	10	1.5	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Tetrachloroethene	ND	D08	10	0.73	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Toluene	ND	D08	10	1.0	ug/L	2.00	04/16/10 18:48		10D1488	8260B
trans-1,2-Dichloroethene	ND	D08	10	1.8	ug/L	2.00	04/16/10 18:48		10D1488	8260B
trans-1,3-Dichloropropen	ND	D08	10	0.74	ug/L ug/L	2.00			10D1488	8260B
	140	200	10	0.74	ug/L	2.00	J-/ 10/ 10 10.40	סוום	100 1700	02000
e Trichloroethene	12	D08	10	0.92	ua/I	2 00	04/16/10 18:48	DHC	10D1488	8260B
					ug/L	2.00				
Trichlorofluoromethane	ND	D08	10	1.8	ug/L	2.00	04/16/10 18:48		10D1488	8260B
Vinyl chloride	3.6	D08,J	10	1.8	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number:

			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	; RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-09	(MW-16D - G	round Wate	er) - cont.		Sam	pled: 04/	08/10 11:40	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo	ounds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	30	1.3	ug/L	2.00	04/16/10 18:48	DHC	10D1488	8260B
1,2-Dichloroethane-d4	115 %	D08	Surr Limits:	(66-137%)			04/16/10 18:48	DHC	10D1488	8260B
4-Bromofluorobenzene	107 %	D08	Surr Limits:	(73-120%)			04/16/10 18:48	DHC	10D1488	8260B
Toluene-d8	115 %	D08	Surr Limits:	(71-126%)			04/16/10 18:48	DHC	10D1488	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-09RE	E1 (MW-160) - Ground Wat	ter)		Samı	pled: 04	/08/10 11:40	Recv	/d: 04/08/1	0 17:15
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D08	25	4.1	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,1,2,2-Tetrachloroethane	ND	D08	25	1.1	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,1,2-Trichloroethane	ND	D08	25	1.2	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	25	1.5	ug/L	5.00	04/17/10 13:42		10D1581	8260B
oroethane					3					
1,1-Dichloroethane	8.3	D08,J	25	1.9	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1.1-Dichloroethene	ND	D08	25	1.5	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,2,4-Trichlorobenzene	ND	D08	25	2.0	ug/L	5.00	04/17/10 13:42		10D1581	8260B
1,2-Dibromo-3-chloroprop	ND	D08	25	2.0	ug/L	5.00	04/17/10 13:42		10D1581	8260B
ane		200			~g/ =	0.00	•	2	.02.00.	02002
1,2-Dibromoethane	ND	D08	25	3.6	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,2-Dichlorobenzene	ND	D08	25	4.0	ug/L	5.00	04/17/10 13:42		10D1581	8260B
1,2-Dichloroethane	ND	D08	25	1.1	ug/L	5.00	04/17/10 13:42		10D1581	8260B
1,2-Dichloropropane	ND	D08	25	3.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
1,3-Dichlorobenzene	ND	D08	25	3.9	ug/L	5.00	04/17/10 13:42		10D1581	8260B
1,4-Dichlorobenzene	ND	D08	25	4.2	ug/L	5.00	04/17/10 13:42		10D1581	8260B
2-Butanone	ND	D08	120	6.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
2-Hexanone	ND	D08	120	6.2	ug/L	5.00	04/17/10 13:42		10D1581	8260B
4-Methyl-2-pentanone	ND	D08	120	10	ug/L ug/L	5.00	04/17/10 13:42		10D1581	8260B
	ND	D08	120	15	-	5.00	04/17/10 13:42		10D1581	8260B
Acetone	ND	D08		2.0	ug/L		04/17/10 13:42		10D1581	
Benzene			25		ug/L	5.00				8260B
Bromodichloromethane	ND	D08	25	1.9	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Bromoform	ND	D08	25	1.3	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Bromomethane	ND	D08	25	3.4	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Carbon disulfide	ND	D08	25	0.97	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Carbon Tetrachloride	ND	D08	25	1.3	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Chlorobenzene	ND	D08	25	3.8	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Dibromochloromethane	ND	D08	25	1.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Chloroethane	240	D08	25	1.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Chloroform	ND	D08	25	1.7	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Chloromethane	ND	D08	25	1.7	ug/L	5.00	04/17/10 13:42		10D1581	8260B
cis-1,2-Dichloroethene	4.9	D08,J	25	4.0	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
cis-1,3-Dichloropropene	ND	D08	25	1.8	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Cyclohexane	ND	D08	25	0.90	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Dichlorodifluoromethane	ND	D08	25	3.4	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Ethylbenzene	ND	D08	25	3.7	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Isopropylbenzene	ND	D08	25	4.0	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Methyl Acetate	ND	D08	25	2.5	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Methyl-t-Butyl Ether	ND	D08	25	0.80	ug/L	5.00	04/17/10 13:42		10D1581	8260B
(MTBE)	ND	D08	25	0.00	/1	E 00	04/47/40 42:42	DHC	1001501	9260D
Methylcyclohexane	ND		25 25	0.80	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Methylene Chloride	ND	D08	25	2.2	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Styrene	ND	D08	25	3.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Tetrachloroethene	ND	D08	25	1.8	ug/L	5.00	04/17/10 13:42		10D1581	8260B
Toluene	ND	D08	25	2.6	ug/L	5.00	04/17/10 13:42		10D1581	8260B
trans-1,2-Dichloroethene	ND	D08	25	4.5	ug/L	5.00	04/17/10 13:42		10D1581	8260B
trans-1,3-Dichloropropen e	ND	D08	25	1.8	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Trichloroethene	8.8	D08,J	25	2.3	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Trichlorofluoromethane	ND	D08	25	4.4	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
Vinyl chloride	ND	D08	25	4.5	ug/L	5.00	04/17/10 13:42		10D1581	8260B
•		- -	-		- 3. –					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

			An	ıaıytıcaı F	keporτ					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-09F	RE1 (MW-16D	- Ground V	Vater) - cont.		Sam	pled: 04	08/10 11:40	Recv	/d: 04/08/10	17:15
Volatile Organic Compo	unds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	75	3.3	ug/L	5.00	04/17/10 13:42	DHC	10D1581	8260B
1,2-Dichloroethane-d4	116 %	D08	Surr Limits: (66-137%)			04/17/10 13:42	DHC	10D1581	8260B
4-Bromofluorobenzene	109 %	D08	Surr Limits: (73-120%)			04/17/10 13:42	DHC	10D1581	8260B
Toluene-d8	116 %	D08	Surr Limits: (71-126%)			04/17/10 13:42	DHC	10D1581	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

	Sample	Data		iiaiyiicai r		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-10 (I			ater)		Samı	pled: 04/	/07/10 11:15		vd: 04/08/10	
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.02	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 16:55	LH	10D1333	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.23	ug/L	1.00	04/15/10 16:55	LH	10D1333	8260B
oroethane	NB		0.0	0.01	ug/L	1.00	04/10/10 10:00		1001000	0200B
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
ane					Ü					
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.16	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
Vinyl chloride	ND		5.0	0.90	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
J				2.00	g. - -		3 2			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-10	(FIELD BLAN	IK - Ground W	ater) - con	t.	Sam	pled: 04/	07/10 11:15	Recv	/d: 04/08/10	17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	8260B - cont.	15	0.66	ug/L	1.00	04/15/10 16:55	LH	10D1339	8260B
1,2-Dichloroethane-d4	88 %	S	Surr Limits:	(66-137%)			04/15/10 16:55	LH	10D1339	8260B
4-Bromofluorobenzene	76 %	S	Surr Limits:	(73-120%)			04/15/10 16:55	LH	10D1339	8260B
Toluene-d8	76 %	5	Surr Limits:	(71-126%)			04/15/10 16:55	LH	10D1339	8260B

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-11 (I							/08/10 15:30		vd: 04/08/1	
Valetta Onnania Oanna			·							
Volatile Organic Compou	-									
1,1,1-Trichloroethane	ND	D08	500	82	ug/L	100	04/16/10 19:12		10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	500	21	ug/L	100	04/16/10 19:12		10D1488	8260B
1,1,2-Trichloroethane	ND	D08	500	23	ug/L	100	04/16/10 19:12		10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	500	31	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
oroethane										
1,1-Dichloroethane	98	D08,J	500	38	ug/L	100	04/16/10 19:12		10D1488	8260B
1,1-Dichloroethene	ND	D08	500	29	ug/L	100	04/16/10 19:12		10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	500	41	ug/L	100	04/16/10 19:12		10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	500	39	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
ane										
1,2-Dibromoethane	ND	D08	500	73	ug/L	100	04/16/10 19:12		10D1488	8260B
1,2-Dichlorobenzene	ND	D08	500	79	ug/L	100	04/16/10 19:12		10D1488	8260B
1,2-Dichloroethane	ND	D08	500	21	ug/L	100	04/16/10 19:12		10D1488	8260B
1,2-Dichloropropane	ND	D08	500	72	ug/L	100	04/16/10 19:12		10D1488	8260B
1,3-Dichlorobenzene	ND	D08	500	78	ug/L	100	04/16/10 19:12		10D1488	8260B
1,4-Dichlorobenzene	ND	D08	500	84	ug/L	100	04/16/10 19:12		10D1488	8260B
2-Butanone	ND	D08	2500	130	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
2-Hexanone	ND	D08	2500	120	ug/L	100	04/16/10 19:12		10D1488	8260B
4-Methyl-2-pentanone	ND	D08	2500	210	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Acetone	ND	D08	2500	300	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Benzene	ND	D08	500	41	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Bromodichloromethane	ND	D08	500	39	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Bromoform	ND	D08	500	26	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Bromomethane	ND	D08	500	69	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Carbon disulfide	ND	D08	500	19	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Carbon Tetrachloride	ND	D08	500	27	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Chlorobenzene	ND	D08	500	75	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Dibromochloromethane	ND	D08	500	32	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Chloroethane	ND	D08	500	32	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Chloroform	ND	D08	500	34	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Chloromethane	ND	D08	500	35	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
cis-1,2-Dichloroethene	6900	D08	500	81	ug/L	100	04/16/10 19:12		10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	500	36	ug/L	100	04/16/10 19:12		10D1488	8260B
Cyclohexane	ND	D08	500	18	ug/L	100	04/16/10 19:12		10D1488	8260B
Dichlorodifluoromethane	ND	D08	500	68	ug/L	100	04/16/10 19:12		10D1488	8260B
Ethylbenzene	ND	D08	500	74	ug/L	100	04/16/10 19:12		10D1488	8260B
Isopropylbenzene	ND	D08	500	79	ug/L	100	04/16/10 19:12		10D1488	8260B
Methyl Acetate	ND	D08	500	50	ug/L	100	04/16/10 19:12		10D1488	8260B
Methyl-t-Butyl Ether	ND	D08	500	16	ug/L	100	04/16/10 19:12		10D1488	8260B
(MTBE)	ND	D00	300	10	ug/L	100	04/10/10 19.12	DITIC	1001400	0200B
Methylcyclohexane	ND	D08	500	16	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Methylene Chloride	ND	D08	500	44	ug/L	100	04/16/10 19:12		10D1488	8260B
-	ND	D08	500	73	-	100	04/16/10 19:12		10D1488	8260B
Styrene Tetrachloroethene	ND ND	D08	500	73 36	ug/L	100	04/16/10 19:12		10D1488	8260B
Toluene	ND ND	D08	500	50 51	ug/L	100	04/16/10 19:12		10D1488	8260B
					ug/L					
trans-1,2-Dichloroethene	ND	D08	500	90	ug/L	100	04/16/10 19:12		10D1488	8260B
trans-1,3-Dichloropropen e	ND	D08	500	37	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
Trichloroethene	3000	D08	500	46	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
					-					8260B
										8260B
Trichlorofluoromethane Vinyl chloride	ND 540	D08 D08	500 500	88 90	ug/L ug/L	100 100	04/16/10 19:12 04/16/10 19:12		10D1488 10D1488	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-0001

Anal	ytical	Report
------	--------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-11							08/10 15:30		/d: 04/08/10	
Volatile Organic Compo	unds by EPA	8260B - co	<u>nt.</u>							
Xylenes, total	ND	D08	1500	66	ug/L	100	04/16/10 19:12	DHC	10D1488	8260B
1,2-Dichloroethane-d4	115 %	D08	Surr Limits:	(66-137%)			04/16/10 19:12	DHC	10D1488	8260B
4-Bromofluorobenzene	106 %	D08	Surr Limits:	(73-120%)			04/16/10 19:12	DHC	10D1488	8260B
Toluene-d8	114 %	D08	Surr Limits:	(71-126%)			04/16/10 19:12	DHC	10D1488	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-12 (M							07/10 13:25		vd: 04/08/10	
		-			Guin	pica. U-ii	07710 10.20	1100	va. 0-7/00/10	, , , , , ,
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
oroethane										
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
ane					•					
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/16/10 19:37		10D1488	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/16/10 19:37		10D1488	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/16/10 19:37		10D1488	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/16/10 19:37		10D1488	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Bromodichloromethane	ND		5.0	0.41	-	1.00	04/16/10 19:37		10D1488	8260B
Bromoform	ND		5.0	0.39	ug/L	1.00	04/16/10 19:37		10D1488	8260B
	ND		5.0		ug/L				10D1488	8260B
Bromomethane				0.69	ug/L	1.00	04/16/10 19:37			
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/16/10 19:37		10D1488	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/16/10 19:37		10D1488	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
(MTBE)					•					
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/16/10 19:37		10D1488	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/16/10 19:37		10D1488	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/16/10 19:37		10D1488	8260B
trans-1,3-Dichloropropen	ND		5.0	0.37	ug/L	1.00	04/16/10 19:37		10D1488	8260B
e	110		0.0	0.07	ug/L	1.00	3-110/10 10.0 <i>1</i>	5.10	100 1700	02000
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
Trichlorofluoromethane	ND		5.0	0.40	-	1.00	04/16/10 19:37		10D1488	8260B
Vinyl chloride	ND		5.0	0.88	ug/L	1.00	04/16/10 19:37		10D1488	8260B
vinyr omonuc	שויו		5.0	0.50	ug/L	1.00	U-7/10/10 15.3/	טווט	יטטדו שטו	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical	Report
------------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-12	(MW-10 - Gro	ound Water) - c	ont.		Sam	pled: 04/	07/10 13:25	Recv	/d: 04/08/10	17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	A 8260B - cont.	15	0.66	ug/L	1.00	04/16/10 19:37	DHC	10D1488	8260B
1,2-Dichloroethane-d4	119 %	S	Surr Limits:	(66-137%)			04/16/10 19:37	DHC	10D1488	8260B
4-Bromofluorobenzene	110 %	S	Surr Limits:	(73-120%)			04/16/10 19:37	DHC	10D1488	8260B
Toluene-d8	116 %		Surr Limits:	(71-126%)			04/16/10 19:37	DHC	10D1488	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-13 (I	MW-11 - Gro	ound Water)			Samı	pled: 04/	/07/10 14:15	Recv	/d: 04/08/1	17:15
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	2.4	J	5.0	0.82	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
oroethane					3					
1,1-Dichloroethane	13		5.0	0.38	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,1-Dichloroethene	2.0	J	5.0	0.29	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
ane					3					
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Chloroethane	26		5.0	0.32	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
cis-1,2-Dichloroethene	60		5.0	0.81	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.79	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
(MTBE)	ND		5.0	0.10	ug/L	1.00	04/15/10 10.07	LII	1001339	0200D
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.75	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 18:07		10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
·	ND		5.0	0.90		1.00	04/15/10 18:07	LH	10D1339	8260B
trans-1,3-Dichloropropen	טאו		5.0	0.37	ug/L	1.00	U4/13/10 10.0/	LΠ	פננו טטו	0200D
e Trichloroethene	0.95	J	5.0	0.46	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
		J			•					
Trichlorofluoromethane Vinyl chloride	ND 17		5.0 5.0	0.88 0.90	ug/L	1.00 1.00	04/15/10 18:07 04/15/10 18:07	LH LH	10D1339 10D1339	8260B 8260B
viriyi cilionde	17		5.0	0.90	ug/L	1.00	04/10/10 10.0/	LΠ	1001338	020UD

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

				ilalytical r	report					
Analyta	Sample Result	Data	RL	MDL	Units	Dil Fac	Date	Lab	Potob	84 a 4 b a al
Analyte	Result	Qualifiers	INL.	- INDL	Units	гас	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-13	(MW-11 - Gro	ound Water) - c	ont.		Samı	pled: 04/	07/10 14:15	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo	aunde by ED/	1 9260B cont								
		4 0200B - COIIL	•							
Xylenes, total	ND		15	0.66	ug/L	1.00	04/15/10 18:07	LH	10D1339	8260B
1,2-Dichloroethane-d4	91 %	S	Surr Limits:	(66-137%)			04/15/10 18:07	LH	10D1339	8260B
4-Bromofluorobenzene	79 %	S	Surr Limits:	(73-120%)			04/15/10 18:07	LH	10D1339	8260B
Toluene-d8	81 %	-	Surr Limits:	(74 4000()			04/15/10 18:07	LH	10D1339	8260B

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-14 (N	MW-2 - Groเ	ınd Water)			Samı	oled: 04/	/07/10 09:50	Recv	/d: 04/08/1	0 17:15
Volatile Organic Compou	ınds by EPA	8260B								
1,1,1-Trichloroethane	ND	D03	25	4.1	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND	D03	25	1.1	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,1,2-Trichloroethane	ND	D03	25	1.2	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D03	25	1.5	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
oroethane		200			~g/=	0.00	0 11 107 10 1010 1		.02.000	02002
1,1-Dichloroethane	ND	D03	25	1.9	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,1-Dichloroethene	ND	D03	25	1.5	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND	D03	25	2.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND	D03	25	2.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
ane	115	200		2.0	ug/L	0.00	0 17 107 10 10.01		102 1000	02002
1,2-Dibromoethane	ND	D03	25	3.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2-Dichlorobenzene	ND	D03	25	4.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2-Dichloroethane	ND	D03	25	1.1	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2-Dichloropropane	ND	D03	25	3.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,3-Dichlorobenzene	ND	D03	25	3.9	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,4-Dichlorobenzene	ND	D03	25	4.2	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
2-Butanone	ND	D03	120	6.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
2-Hexanone	ND	D03	120	6.2	-	5.00	04/15/10 18:31	LH	10D1339	8260B
	ND	D03	120		ug/L			LH	10D1339	8260B
4-Methyl-2-pentanone				10	ug/L	5.00	04/15/10 18:31			
Acetone	ND	D03	120	15	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Benzene	ND	D03	25	2.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Bromodichloromethane	ND	D03	25	1.9	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Bromoform	ND	D03	25	1.3	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Bromomethane	ND	D03	25	3.4	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Carbon disulfide	ND	D03	25	0.97	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Carbon Tetrachloride	ND	D03	25	1.3	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Chlorobenzene	ND	D03	25	3.8	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Dibromochloromethane	ND	D03	25	1.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Chloroethane	21	D03,J	25	1.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Chloroform	ND	D03	25	1.7	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Chloromethane	ND	D03	25	1.7	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
cis-1,2-Dichloroethene	ND	D03	25	4.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND	D03	25	1.8	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Cyclohexane	ND	D03	25	0.90	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Dichlorodifluoromethane	ND	D03	25	3.4	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Ethylbenzene	ND	D03	25	3.7	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Isopropylbenzene	ND	D03	25	4.0	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Methyl Acetate	ND	D03	25	2.5	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D03	25	0.80	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Methylcyclohexane	ND	D03	25	0.80	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Methylene Chloride	ND	D03	25	2.2	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Styrene	ND	D03	25	3.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Tetrachloroethene	ND	D03	25	1.8	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Toluene	ND	D03	25	2.6	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND	D03	25	4.5	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND	D03	25	1.8	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
е										
Trichloroethene	ND	D03	25	2.3	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Trichlorofluoromethane	ND	D03	25	4.4	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
Vinyl chloride	ND	D03	25	4.5	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 0

04/08/10

Reported: 0

: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Anal	ytical	Report
------	--------	--------

Analyte	Sample Result	Data Qualifiers	; RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-14	(MW-2 - Grou	ınd Water) ·	- cont.		Samı	pled: 04/	07/10 09:50	Rec	vd: 04/08/10	17:15
Volatile Organic Compo	ounds by EPA	8260B - co	ont.							
Xylenes, total	ND	D03	75	3.3	ug/L	5.00	04/15/10 18:31	LH	10D1339	8260B
1,2-Dichloroethane-d4	91 %	D03	Surr Limits: (6	66-137%)			04/15/10 18:31	LH	10D1339	8260B
4-Bromofluorobenzene	73 %	D03	Surr Limits: (73-120%)			04/15/10 18:31	LH	10D1339	8260B
Toluene-d8	82 %	D03	Surr Limits: (71-126%)			04/15/10 18:31	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-15 (N	MW-3 - Grou	ınd Water)			Samı	pled: 04/	/07/10 10:45	Recv	vd: 04/08/1	0 17:15
Volatile Organic Compou	ınds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
oroethane					3					
1,1-Dichloroethane	10		5.0	0.38	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
ane			0.0	0.00	~g/ =		0 11 101 10 10100		.02.000	02002
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
	ND		25 25	3.0	-	1.00	04/15/10 18:55	LH	10D1339	8260B
Acetone	ND				ug/L			LH		
Benzene			5.0	0.41	ug/L	1.00	04/15/10 18:55		10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
cis-1,2-Dichloroethene	1.7	J	5.0	0.81	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.16	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	-	1.00	04/15/10 18:55	LH	10D1339	8260B
Styrene	ND		5.0	0.44	ug/L		04/15/10 18:55	LH	10D1339	8260B
,					ug/L	1.00				
Tetrachloroethene Toluene	ND		5.0 5.0	0.36	ug/L	1.00	04/15/10 18:55 04/15/10 18:55		10D1339	8260B
	ND		5.0	0.51	ug/L	1.00		LH	10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
Vinyl chloride	4.6	J	5.0	0.90	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

, mary nour report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-15	(MW-3 - Grou	ınd Water) - co	ont.		Sam	pled: 04/	/07/10 10:45	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo Xylenes, total	unds by EPA ND	<u> 8260B - cont.</u>	15	0.66	ug/L	1.00	04/15/10 18:55	LH	10D1339	8260B
1,2-Dichloroethane-d4	90 %	S	Surr Limits:	(66-137%)			04/15/10 18:55	LH	10D1339	8260B
4-Bromofluorobenzene	88 %	S	Surr Limits:	(73-120%)			04/15/10 18:55	LH	10D1339	8260B
Toluene-d8	87 %	S	Surr Limits:	(71-126%)			04/15/10 18:55	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-16 (M	/IW-4 - Grou	und Water)			Samı	oled: 04/	08/10 14:45	Recv	/d: 04/08/10	17:15
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		500	82	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	500	21	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND	D08	500	23	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	500	31	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
oroethane		200		•	~g/ =		0 10/ 10 2010 1	2	.0200	02002
1,1-Dichloroethane	110	D08,J	500	38	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,1-Dichloroethene	50	D08,J	500	29	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	500	41	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	500	39	ug/L	100	04/16/10 20:01		10D1488	8260B
ane	.,,,	200	000	00	ug/L	100	0 11 101 10 20.01	5110	1021100	02002
1,2-Dibromoethane	ND	D08	500	73	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND	D08	500	79	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2-Dichloroethane	ND	D08	500	21	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2-Dichloropropane	ND	D08	500	72	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND	D08	500	78	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,4-Dichlorobenzene	ND	D08	500	84	ug/L	100	04/16/10 20:01		10D1488	8260B
2-Butanone	ND	D08	2500	130	ug/L	100	04/16/10 20:01		10D1488	8260B
2-Hexanone	ND	D08	2500	120	ug/L	100	04/16/10 20:01		10D1488	8260B
4-Methyl-2-pentanone	ND	D08	2500	210	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Acetone	ND	D08	2500	300	ug/L	100	04/16/10 20:01		10D1488	8260B
Benzene	ND	D08	500	41	ug/L ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Bromodichloromethane	ND	D08	500	39	ug/L ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Bromoform	ND	D08	500	26	-	100	04/16/10 20:01	DHC	10D1488	8260B
Bromomethane	ND	D08	500	69	ug/L	100	04/16/10 20:01		10D1488	8260B
	ND		500		ug/L			DHC	10D1488	
Carbon disulfide		D08 D08	500	19 27	ug/L	100	04/16/10 20:01 04/16/10 20:01	DHC	10D1488	8260B
Carbon Tetrachloride	ND ND	D08	500	75	ug/L	100 100	04/16/10 20:01	DHC	10D1488	8260B 8260B
Chlorobenzene					ug/L					
Dibromochloromethane	ND	D08	500	32	ug/L	100	04/16/10 20:01		10D1488	8260B
Chloroethane	ND	D08	500	32	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Chloroform	ND	D08	500	34	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Chloromethane	ND	D08	500	35	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
cis-1,2-Dichloroethene	7200	D08	500	81	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	500	36	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Cyclohexane	ND	D08	500	18	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Dichlorodifluoromethane	ND	D08	500	68	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Ethylbenzene	ND	D08	500	74	ug/L	100	04/16/10 20:01		10D1488	8260B
Isopropylbenzene	ND	D08	500	79	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Methyl Acetate	ND	D08	500	50	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	500	16	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Methylcyclohexane	ND	D08	500	16	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Methylene Chloride	ND	D08	500	44	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Styrene	ND	D08	500	73	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Tetrachloroethene	ND	D08	500	36	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Toluene	ND	D08	500	51	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
trans-1,2-Dichloroethene	ND	D08	500	90	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
trans-1,3-Dichloropropen e	ND	D08	500	37	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Trichloroethene	3000	D08	500	46	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
Trichlorofluoromethane	ND	D08	500	88	-	100	04/16/10 20:01		10D1488	8260B
	560				ug/L					
Vinyl chloride	300	D08	500	90	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

48/416

Work Order: RTD1034

Received: (

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

			-	ilialytical r	report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-16	(MW-4 - Grou	und Water) -	· cont.		Sam	pled: 04	/08/10 14:45	Recv	vd: 04/08/10) 17:15
Volatile Organic Compo	ounds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	1500	66	ug/L	100	04/16/10 20:01	DHC	10D1488	8260B
1,2-Dichloroethane-d4	116 %	D08	Surr Limits:	(66-137%)			04/16/10 20:01	DHC	10D1488	8260B
4-Bromofluorobenzene	107 %	D08	Surr Limits:	(73-120%)			04/16/10 20:01	DHC	10D1488	8260B
Toluene-d8	116 %	D08	Surr Limits:	(71-126%)			04/16/10 20:01	DHC	10D1488	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-17 (I	MW-6 - Groเ	und Water)			Samı	pled: 04/	07/10 12:35	Rec	vd: 04/08/10	17:15
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
oroethane					3					
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
ane										
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.16	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
trans-1,3-Dichloropropen e	ND		5.0	0.37	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
Vinyl chloride	ND		5.0	0.90	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
7.1.,7 OHIOHAO	ND		0.0	0.00	ug/L	1.00	3-11 TO 10 20.02		102 1000	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

50/416

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Anal	ytical	Report
------	--------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-17	(MW-6 - Grou	ınd Water) - co	ont.		Samı	pled: 04/	07/10 12:35	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo	ounds by EPA	8260B - cont	<u>.</u>							
Xylenes, total	ND		15	0.66	ug/L	1.00	04/15/10 20:32	LH	10D1339	8260B
1,2-Dichloroethane-d4	91 %		Surr Limits:	(66-137%)			04/15/10 20:32	LH	10D1339	8260B
4-Bromofluorobenzene	75 %	;	Surr Limits:	(73-120%)			04/15/10 20:32	LH	10D1339	8260B
Toluene-d8	81 %		Surr Limits:	(71-126%)			04/15/10 20:32	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-18 (N							08/10 10:40		vd: 04/08/10	
Volatile Organic Compou	nds by EPA	A 8260B								
1,1,1-Trichloroethane	2000	D08	2000	330	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND	D08	2000	85	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,1,2-Trichloroethane	ND	D08	2000	92	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	2000	120	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
oroethane	NB	D 00	2000	120	ug/L	400	04/10/10 20:00		1001000	02008
1,1-Dichloroethane	3000	D08	2000	150	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,1-Dichloroethene	930	D08,J	2000	120	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND	D08	2000	160	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND	D08	2000	160	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
ane	.,,	200	2000	100	ug/L	100	0 11 101 10 20.00		102.000	02002
1,2-Dibromoethane	ND	D08	2000	290	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2-Dichlorobenzene	ND	D08	2000	320	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2-Dichloroethane	ND	D08	2000	86	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2-Dichloropropane	ND	D08	2000	290	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,3-Dichlorobenzene	ND	D08	2000	310	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,4-Dichlorobenzene	ND	D08	2000	340	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
2-Butanone	ND	D08	10000	530	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
2-Hexanone	ND	D08	10000	500	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
4-Methyl-2-pentanone	ND	D08	10000	840	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Acetone	ND	D08	10000	1200	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Benzene	ND	D08	2000	160	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Bromodichloromethane	ND	D08	2000	150	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Bromoform	ND	D08	2000	100	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Bromomethane	ND	D08	2000	280	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Carbon disulfide	ND	D08	2000	78	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Carbon Tetrachloride	ND	D08	2000	110	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Chlorobenzene	ND	D08	2000	300	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Dibromochloromethane	ND	D08	2000	130	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Chloroethane	1100	D08,J	2000	130	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Chloroform	ND	D08	2000	130	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Chloromethane	ND	D08	2000	140	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
cis-1,2-Dichloroethene	110000	D08,E	2000	320	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
cis-1,3-Dichloropropene	ND	D08	2000	140	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Cyclohexane	ND	D08	2000	72	ug/L ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Dichlorodifluoromethane	ND	D08	2000	270	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Ethylbenzene	ND	D08	2000	300	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Isopropylbenzene	ND	D08	2000	320	ug/L ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Methyl Acetate	ND	D08	2000	200	ug/L ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND	D08	2000	64	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
(MTBE)	ND	D00	2000	04	ug/L	400	04/10/10 20:00	LII	100 1000	0200B
Methylcyclohexane	ND	D08	2000	64	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Methylene Chloride	ND	D08	2000	180	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Styrene	ND	D08	2000	290	ug/L	400	04/15/10 20:56		10D1339	8260B
Tetrachloroethene	ND	D08	2000	150	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Toluene	510	D08,J	2000	200	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND	D08,3	2000	360	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND	D08	2000	150	ug/L ug/L	400	04/15/10 20:56	LH	10D1339	8260B
trans-1,3-Dichloropropen e	טאו	D00	2000	130	ug/L	700	0 4 /10/10/20:00	LII	פננו סטי	02000
Trichloroethene	220000	D08,E	2000	180	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Trichlorofluoromethane	ND	D08	2000	350	ug/L ug/L	400	04/15/10 20:56	LH	10D1339	8260B
Vinyl chloride	6800	D08	2000	360	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
They official	5500	200	2000	000	ug/L	700	3-7 10/10 2 0.00	L11	.02 1000	02000

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

				ilalytical i	cport					
Analyte	Sample Result	Data Qualifiers	s RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-18	(MW-16S - G	round Wate	er) - cont.		Samı	pled: 04	/08/10 10:40	Recv	/d: 04/08/10	0 17:15
Volatile Organic Compo	unds by EPA	8260B - co	ont.							
Xylenes, total	ND	D08	6000	260	ug/L	400	04/15/10 20:56	LH	10D1339	8260B
1,2-Dichloroethane-d4	90 %	D08	Surr Limits:	(66-137%)			04/15/10 20:56	LH	10D1339	8260B
4-Bromofluorobenzene	80 %	D08	Surr Limits:	(73-120%)			04/15/10 20:56	LH	10D1339	8260B
Toluene-d8	81 %	D08	Surr Limits:	(71-126%)			04/15/10 20:56	LH	10D1339	8260B
	- · / •	200		(

Work Order: RTD1034

Received:

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-18RE	1 (MW-16S		iter)		Sam		08/10 10:40	Recv	/d: 04/08/10	17:15
Volatile Organic Compour	nds by EPA	8260B								
1,1,1-Trichloroethane	ND	D08	20000	3300	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND	D08	20000	850	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND	D08	20000	920	ug/L	4000	04/16/10 20:25		10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	20000	1200	ug/L	4000	04/16/10 20:25		10D1488	8260B
oroethane					9					
1,1-Dichloroethane	2900	D08,J	20000	1500	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,1-Dichloroethene	ND	D08	20000	1200	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND	D08	20000	1600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND	D08	20000	1600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
ane					J					
1,2-Dibromoethane	ND	D08	20000	2900	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND	D08	20000	3200	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2-Dichloroethane	ND	D08	20000	860	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2-Dichloropropane	ND	D08	20000	2900	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND	D08	20000	3100	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,4-Dichlorobenzene	ND	D08	20000	3400	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
2-Butanone	ND	D08	100000	5300	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
2-Hexanone	ND	D08	100000	5000	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
4-Methyl-2-pentanone	ND	D08	100000	8400	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Acetone	ND	D08	100000	12000	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Benzene	ND	D08	20000	1600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Bromodichloromethane	ND	D08	20000	1500	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Bromoform	ND	D08	20000	1000	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Bromomethane	ND	D08	20000	2800	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Carbon disulfide	ND	D08	20000	780	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Carbon Tetrachloride	ND	D08	20000	1100	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Chlorobenzene	ND	D08	20000	3000	ug/L	4000	04/16/10 20:25		10D1488	8260B
Dibromochloromethane	ND	D08	20000	1300	ug/L	4000	04/16/10 20:25		10D1488	8260B
Chloroethane	ND	D08	20000	1300	ug/L	4000	04/16/10 20:25		10D1488	8260B
Chloroform	ND	D08	20000	1300	ug/L	4000	04/16/10 20:25		10D1488	8260B
Chloromethane	ND	D08	20000	1400	ug/L	4000	04/16/10 20:25		10D1488	8260B
cis-1,2-Dichloroethene	99000	D08	20000	3200	ug/L	4000	04/16/10 20:25		10D1488	8260B
cis-1,3-Dichloropropene	ND	D08	20000	1400	ug/L	4000	04/16/10 20:25		10D1488	8260B
Cyclohexane	ND	D08	20000	720	ug/L	4000	04/16/10 20:25		10D1488	8260B
Dichlorodifluoromethane	ND	D08	20000	2700	ug/L	4000	04/16/10 20:25		10D1488	8260B
Ethylbenzene	ND	D08	20000	3000	ug/L	4000	04/16/10 20:25		10D1488	8260B
Isopropylbenzene	ND	D08	20000	3200	ug/L	4000	04/16/10 20:25		10D1488	8260B
Methyl Acetate	ND	D08	20000	2000	ug/L	4000	04/16/10 20:25		10D1488	8260B
Methyl-t-Butyl Ether (MTBE)	ND	D08	20000	640	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Methylcyclohexane	ND	D08	20000	640	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Methylene Chloride	ND	D08	20000	1800	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
Styrene	ND	D08	20000	2900	ug/L	4000	04/16/10 20:25		10D1488	8260B
Tetrachloroethene	ND	D08	20000	1500	ug/L	4000	04/16/10 20:25		10D1488	8260B
Toluene	ND	D08	20000	2000	ug/L	4000	04/16/10 20:25		10D1488	8260B
trans-1,2-Dichloroethene	ND	D08	20000	3600	ug/L	4000	04/16/10 20:25		10D1488	8260B
trans-1,3-Dichloropropen	ND	D08	20000	1500	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
<u>e</u>		D. 6 -		40.5.5			0.44045-5-5-	D	1001:	
Trichloroethene	200000	D08	20000	1800	ug/L	4000	04/16/10 20:25		10D1488	8260B
Trichlorofluoromethane	ND	D08	20000	3500	ug/L	4000	04/16/10 20:25		10D1488	8260B
Vinyl chloride	6200	D08,J	20000	3600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1034

Received: 04

04/08/10

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-18I	RE1 (MW-16S	- Ground V	Vater) - cont.		Sam	pled: 04/	08/10 10:40	Recv	/d: 04/08/10	17:15
Volatile Organic Compo Xylenes, total	ounds by EPA ND	N 8260B - co D08	ont. 60000	2600	ug/L	4000	04/16/10 20:25	DHC	10D1488	8260B
1,2-Dichloroethane-d4	112 %	D08	Surr Limits: (56-137%)			04/16/10 20:25	DHC	10D1488	8260B
4-Bromofluorobenzene	105 %	D08	Surr Limits: (73-120%)			04/16/10 20:25	DHC	10D1488	8260B
Toluene-d8	113 %	D08	Surr Limits: (71-126%)			04/16/10 20:25	DHC	10D1488	8260B

Work Order: RTD1034

Received:

04/08/10 Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyto	Sample Result	Data	RL	MDL	Units	Dil Fac	Date Analyzed	Lab	Batch	Mother
Analyte		Qualifiers	IXL	WIDE				Tech		Method
Sample ID: RTD1034-19 (I	WW-12 - Gro	ound water)			Samı	pled: 04/	07/10 11:45	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
oroethane					Ü					
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
ane					J					
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2-Dichloroethane	0.70	J	5.0	0.21	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Chloroethane	23		5.0	0.32	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
	ND		5.0	0.36		1.00	04/15/10 21:20	LH	10D1339	8260B
cis-1,3-Dichloropropene Cyclohexane	ND		5.0	0.30	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Dichlorodifluoromethane	ND		5.0	0.18	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Ethylbenzene	ND		5.0	0.08	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
,					ug/L					
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
(MTBE)	ND		E 0	0.16	/1	1.00	04/15/10 21:20		1001220	9260D
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
trans-1,3-Dichloropropen	ND		5.0	0.37	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
e T. I.I.			. .	0.10		4.00	04/45/40 04 55		1001000	00000
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Trichlorofluoromethane	ND		5.0	0.88	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
Vinyl chloride	ND		5.0	0.90	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

56/416

Work Order: RTD1034

Received: 0

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

				ilalytical i	cport					
	Sample	Data Qualifiers				Dil	Date	Lab		
Analyte	Result		RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-19	(MW-12 - Gro	ound Water) - o	ont.		Samı	pled: 04/	07/10 11:45	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo	ounds by EPA	A 8260B - cont.	<u>.</u>							
Xylenes, total	ND		15	0.66	ug/L	1.00	04/15/10 21:20	LH	10D1339	8260B
1,2-Dichloroethane-d4	91 %	5	Surr Limits:	(66-137%)			04/15/10 21:20	LH	10D1339	8260B
4-Bromofluorobenzene	83 %	9	Surr Limits:	(73-120%)			04/15/10 21:20	LH	10D1339	8260B
Toluene-d8	80 %	9	Surr Limits:	(71-126%)			04/15/10 21:20	LH	10D1339	8260B

Work Order: RTD1034

04/08/10 Received:

Reported: 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

Analytical Report

Analyto	Sample	Data	RL	MDL	Unito	Dil	Date Analyzed	Lab	Ratah	Mathad
Analyte	Result	Qualifiers	KL	WIDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1034-20 (1	TRIP BLANK	K - Water)			Samı	pled: 04/	07/10	Rec	vd: 04/08/10	0 17:15
Volatile Organic Compou	ınds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.0	0.82	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,1,2,2-Tetrachloroethane	ND		5.0	0.21	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,1,2-Trichloroethane	ND		5.0	0.23	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.0	0.31	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
oroethane					· ·					
1,1-Dichloroethane	ND		5.0	0.38	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,1-Dichloroethene	ND		5.0	0.29	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2,4-Trichlorobenzene	ND		5.0	0.41	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2-Dibromo-3-chloroprop	ND		5.0	0.39	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
ane										
1,2-Dibromoethane	ND		5.0	0.73	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2-Dichlorobenzene	ND		5.0	0.79	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2-Dichloroethane	ND		5.0	0.21	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2-Dichloropropane	ND		5.0	0.72	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,3-Dichlorobenzene	ND		5.0	0.78	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,4-Dichlorobenzene	ND		5.0	0.84	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
2-Butanone	ND		25	1.3	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
2-Hexanone	ND		25	1.2	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
4-Methyl-2-pentanone	ND		25	2.1	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Acetone	ND		25	3.0	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Benzene	ND		5.0	0.41	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Bromodichloromethane	ND		5.0	0.39	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Bromoform	ND		5.0	0.26	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Bromomethane	ND		5.0	0.69	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Carbon disulfide	ND		5.0	0.19	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Carbon Tetrachloride	ND		5.0	0.27	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Chlorobenzene	ND		5.0	0.75	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Dibromochloromethane	ND		5.0	0.32	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Chloroethane	ND		5.0	0.32	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Chloroform	ND		5.0	0.34	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Chloromethane	ND		5.0	0.35	ug/L	1.00	04/16/10 20:50		10D1488	8260B
cis-1,2-Dichloroethene	ND		5.0	0.81	ug/L	1.00	04/16/10 20:50		10D1488	8260B
cis-1,3-Dichloropropene	ND		5.0	0.36	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Cyclohexane	ND		5.0	0.18	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Dichlorodifluoromethane	ND		5.0	0.68	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Ethylbenzene	ND		5.0	0.74	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Isopropylbenzene	ND		5.0	0.79	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Methyl Acetate	ND		5.0	0.50	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Methyl-t-Butyl Ether	ND		5.0	0.16	ug/L	1.00	04/16/10 20:50		10D1488	8260B
(MTBE)	ND		0.0	0.10	ug/L	1.00	04/10/10 20:00	Dilo	1001400	0200B
Methylcyclohexane	ND		5.0	0.16	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Styrene	ND		5.0	0.73	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	04/16/10 20:50		10D1488	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	04/16/10 20:50		10D1488	8260B
trans-1,2-Dichloroethene	ND		5.0	0.90	ug/L	1.00	04/16/10 20:50		10D1488	8260B
trans-1,3-Dichloropropen	ND		5.0	0.37	ug/L ug/L	1.00	04/16/10 20:50		10D1488	8260B
e	ND		5.0	0.57	ug/L	1.00	5 -7 /10/10 20.50	סווס	יטטדו שטי	02000
Trichloroethene	ND		5.0	0.46	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
Trichlorofluoromethane	ND		5.0	0.40	ug/L ug/L	1.00	04/16/10 20:50		10D1488	8260B
Vinyl chloride	ND		5.0	0.88	ug/L ug/L	1.00	04/16/10 20:50		10D1488	8260B
viriyi dilidilde	טאו		3.0	0.90	ug/L	1.00	U-1 10/10 ZU.3U	טווט	100 1400	UZUUD

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

58/416

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site Project Number: EARTH-0001

			F	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1034-20	(TRIP BLANK	K - Water) - con	ıt.		Sam	pled: 04/	07/10	Recv	/d: 04/08/10) 17:15
Volatile Organic Compo	unds by EPA	A 8260B - cont.								
Xylenes, total	ND		15	0.66	ug/L	1.00	04/16/10 20:50	DHC	10D1488	8260B
1,2-Dichloroethane-d4	116 %	S	urr Limits:	(66-137%)			04/16/10 20:50	DHC	10D1488	8260B
4-Bromofluorobenzene	106 %	S	urr Limits:	(73-120%)			04/16/10 20:50	DHC	10D1488	8260B
Toluene-d8	115 %	S	urr Limits:	(71-126%)			04/16/10 20:50	DHC	10D1488	8260B

Work Order: RTD1034

Received: Reported:

04/08/10 04/22/10 12:03

Project: Scott Aviation site

Project Number: EARTH-0001

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
Volatile Organic Compounds by E	PA 8260B								
8260B	10D1488	RTD1034-01RE ²	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-03RE ²	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-09	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-11	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-12	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-16	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-18RE	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1488	RTD1034-20	5.00	mL	5.00	mL	04/16/10 09:48	DHC	5030B MS
8260B	10D1581	RTD1034-09RE ²	5.00	mL	5.00	mL	04/17/10 12:20	DHC	5030B MS
8260B	10D1581	RTD1034-08RE	5.00	mL	5.00	mL	04/17/10 12:23	DHC	5030B MS
8260B	10D1339	RTD1034-01	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-02	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-03	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-04	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-05	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-06	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-07	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-08	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-10	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-13	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-14	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-15	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-17	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-18	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS
8260B	10D1339	RTD1034-19	5.00	mL	5.00	mL	04/15/10 10:24	TRB	5030B MS

Work Order: RTD1034

Received:

04/08/10

Reported:

ed: 04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-0001

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	ınds by EP	A 8260B									
Blank Analyzed: 04/15/10	(Lab Num	1ber:10D13									
1,1,1-Trichloroethane			5.0	0.82	ug/L	ND					
1,1,2,2-Tetrachloroethane			5.0	0.21	ug/L	ND					
1,1,2-Trichloroethane			5.0	0.23	ug/L	ND					
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	0.31	ug/L	ND					
1,1-Dichloroethane			5.0	0.38	ug/L	ND					
1,1-Dichloroethene			5.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			5.0	0.41	ug/L	ND					
1,2-Dibromo-3-chloroprop			5.0	0.39	ug/L	ND					
ane					- 3						
1,2-Dibromoethane			5.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			5.0	0.79	ug/L	ND					
1,2-Dichloroethane			5.0	0.21	ug/L	ND					
1,2-Dichloropropane			5.0	0.72	ug/L	ND					
1,3-Dichlorobenzene			5.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			5.0	0.84	ug/L	ND					
2-Butanone			25	1.3	ug/L	ND					
2-Hexanone			25	1.2	ug/L	ND					
4-Methyl-2-pentanone			25	2.1	ug/L	ND					
Acetone			25	3.0	ug/L	ND					
Benzene			5.0	0.41	ug/L	ND					
Bromodichloromethane			5.0	0.39	ug/L	ND					
Bromoform			5.0	0.26	ug/L	ND					
Bromomethane			5.0	0.69	ug/L	ND					
Carbon disulfide			5.0	0.19	ug/L	ND					
Carbon Tetrachloride			5.0	0.27	ug/L	ND					
Chlorobenzene			5.0	0.75	ug/L	ND					
Dibromochloromethane			5.0	0.32	ug/L	ND					
Chloroethane			5.0	0.32	ug/L	ND					
Chloroform			5.0	0.34	ug/L	ND					
Chloromethane			5.0	0.35	ug/L	ND					
cis-1,2-Dichloroethene			5.0	0.81	ug/L	ND					
cis-1,3-Dichloropropene			5.0	0.36	ug/L	ND					
Cyclohexane			5.0	0.18	ug/L	ND					
Dichlorodifluoromethane			5.0	0.68	ug/L	ND					
Ethylbenzene			5.0	0.74	ug/L	ND					
Isopropylbenzene			5.0	0.79	ug/L	ND					
Methyl Acetate			5.0	0.50	ug/L	ND					
*					-						

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com \$61/416\$

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

04/22/10 12:03

EARTH-0001

			L/	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B								
Blank Analyzed: 04/15/10	(Lab Num	ber:10D1	339-BLK1,	Batch: 10D1339	9)					
Methyl-t-Butyl Ether (MTBE)			5.0	0.16	ug/L	ND				
Methylcyclohexane			5.0	0.16	ug/L	ND				
Methylene Chloride			5.0	0.44	ug/L	ND				
Styrene			5.0	0.73	ug/L	ND				
Tetrachloroethene			5.0	0.36	ug/L	ND				
Toluene			5.0	0.51	ug/L	ND				
trans-1,2-Dichloroethene			5.0	0.90	ug/L	ND				
trans-1,3-Dichloropropen e			5.0	0.37	ug/L	ND				
Trichloroethene			5.0	0.46	ug/L	ND				
Trichlorofluoromethane			5.0	0.88	ug/L	ND				
Vinyl chloride			5.0	0.90	ug/L	ND				
Xylenes, total			15	0.66	ug/L	ND				
Surrogate:					ug/L		86	66-137		
1,2-Dichloroethane-d4 Surrogate:					ug/L		79	73-120		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		85	71-126		
LCS Analyzed: 04/15/10 (Lab Numb	er:10D133	89-BS1, Bat	ch: 10D1339)						
1,1,1-Trichloroethane			5.0	0.82	ug/L	ND		73-126		
1,1,2,2-Tetrachloroethane			5.0	0.21	ug/L	ND		70-126		
1,1,2-Trichloroethane			5.0	0.23	ug/L	ND		76-122		
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	0.31	ug/L	ND		60-140		
1,1-Dichloroethane			5.0	0.38	ug/L	ND		71-129		
1,1-Dichloroethene		25.0	5.0	0.29	ug/L	22.8	91	65-138		
1,2,4-Trichlorobenzene			5.0	0.41	ug/L	ND		70-122		
1,2-Dibromo-3-chloroprop ane			5.0	0.39	ug/L	ND		56-134		
1,2-Dibromoethane			5.0	0.73	ug/L	ND		77-120		
1,2-Dichlorobenzene			5.0	0.79	ug/L	ND		77-120		
1,2-Dichloroethane			5.0	0.21	ug/L	ND		75-127		
1,2-Dichloropropane			5.0	0.72	ug/L	ND		76-120		
1,3-Dichlorobenzene			5.0	0.78	ug/L	ND		77-120		
1,4-Dichlorobenzene			5.0	0.84	ug/L	ND		75-120		
2-Butanone			25	1.3	ug/L	ND		57-140		
2-Hexanone			25	1.2	ug/L	ND		65-127		
4-Methyl-2-pentanone			25	2.1	ug/L	ND		71-125		
Acetone			25	3.0	ug/L	ND		56-142		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

62/416

Work Order: RTD1034

Received:

04/08/10

Reported:

04/22/10 12:03

Project: Scott Aviation site
Project Number: EARTH-0001

LABORATORY QC DATA

				BORATORI	QU DAIA					
	Source	Spike	D.				%	% REC		PD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Li	mit Qualifiers
Volatile Organic Compo	unds by EP	A 8260B								
LCS Analyzed: 04/15/10	(Lab Numb	er:10D13	39-BS1, Bat	ch: 10D1339)						
Benzene	`	25.0	5.0	0.41	ug/L	25.5	102	71-124		
Bromodichloromethane			5.0	0.39	ug/L	ND		80-122		
Bromoform			5.0	0.26	ug/L	ND		66-128		
Bromomethane			5.0	0.69	ug/L	ND		36-150		
Carbon disulfide			5.0	0.19	ug/L	ND		59-134		
Carbon Tetrachloride			5.0	0.27	ug/L	ND		72-134		
Chlorobenzene		25.0	5.0	0.75	ug/L	24.2	97	72-120		
Dibromochloromethane			5.0	0.32	ug/L	ND		75-125		
Chloroethane			5.0	0.32	ug/L	ND		69-136		
Chloroform			5.0	0.34	ug/L	ND		73-127		
Chloromethane			5.0	0.35	ug/L	ND		49-142		
cis-1,2-Dichloroethene			5.0	0.81	ug/L	ND		74-124		
cis-1,3-Dichloropropene			5.0	0.36	ug/L	ND		74-124		
Cyclohexane			5.0	0.18	ug/L	ND		70-130		
Dichlorodifluoromethane			5.0	0.68	ug/L	ND		33-157		
Ethylbenzene			5.0	0.74	ug/L	ND		77-123		
Isopropylbenzene			5.0	0.79	ug/L	ND		77-122		
Methyl Acetate			5.0	0.50	ug/L	ND		60-140		
Methyl-t-Butyl Ether (MTBE)			5.0	0.16	ug/L	ND		64-127		
Methylcyclohexane			5.0	0.16	ug/L	ND		60-140		
Methylene Chloride			5.0	0.44	ug/L	ND		57-132		
Styrene			5.0	0.73	ug/L	ND		70-130		
Tetrachloroethene			5.0	0.36	ug/L	ND		74-122		
Toluene		25.0	5.0	0.51	ug/L	24.7	99	70-122		
trans-1,2-Dichloroethene			5.0	0.90	ug/L	ND		73-127		
trans-1,3-Dichloropropen e			5.0	0.37	ug/L	ND		72-123		
Trichloroethene		25.0	5.0	0.46	ug/L	23.7	95	74-123		
Trichlorofluoromethane			5.0	0.88	ug/L	ND		62-152		
Vinyl chloride			5.0	0.90	ug/L	ND		65-133		
Xylenes, total			15	0.66	ug/L	ND		76-122		
Surrogate: 1,2-Dichloroethane-d4					ug/L		85	66-137		
Surrogate: 4-Bromofluorobenzene					ug/L		79	73-120		
Surrogate: Toluene-d8					ug/L		85	71-126		

Volatile Organic Compounds by EPA 8260B

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

ted: 04/22/10 12:03

LABORATORY QC DATA

				ABUKATUKT	QU DAIA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	ınds by EP	A 8260B									
Blank Analyzed: 04/16/10	(Lab Num	nber:10D14	188-BLK1,	Batch: 10D1488	3)						
1,1,1-Trichloroethane			5.0	0.82	ug/L	ND					
1,1,2,2-Tetrachloroethane			5.0	0.21	ug/L	ND					
1,1,2-Trichloroethane			5.0	0.23	ug/L	ND					
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	0.31	ug/L	ND					
1,1-Dichloroethane			5.0	0.38	ug/L	ND					
1,1-Dichloroethene			5.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			5.0	0.41	ug/L	ND					
1,2-Dibromo-3-chloroprop ane			5.0	0.39	ug/L	ND					
1,2-Dibromoethane			5.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			5.0	0.79	ug/L	ND					
1,2-Dichloroethane			5.0	0.21	ug/L	ND					
1,2-Dichloropropane			5.0	0.72	ug/L	ND					
1,3-Dichlorobenzene			5.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			5.0	0.84	ug/L	ND					
2-Butanone			25	1.3	ug/L	ND					
2-Hexanone			25	1.2	ug/L	ND					
4-Methyl-2-pentanone			25	2.1	ug/L	ND					
Acetone			25	3.0	ug/L	ND					
Benzene			5.0	0.41	ug/L	ND					
Bromodichloromethane			5.0	0.39	ug/L	ND					
Bromoform			5.0	0.26	ug/L	ND					
Bromomethane			5.0	0.69	ug/L	ND					
Carbon disulfide			5.0	0.19	ug/L	ND					
Carbon Tetrachloride			5.0	0.27	ug/L	ND					
Chlorobenzene			5.0	0.75	ug/L	ND					
Dibromochloromethane			5.0	0.32	ug/L	ND					
Chloroethane			5.0	0.32	ug/L	ND					
Chloroform			5.0	0.34	ug/L	ND					
Chloromethane			5.0	0.35	ug/L	ND					
cis-1,2-Dichloroethene			5.0	0.81	ug/L	ND					
cis-1,3-Dichloropropene			5.0	0.36	ug/L	ND					
Cyclohexane			5.0	0.18	ug/L	ND					
Dichlorodifluoromethane			5.0	0.68	ug/L	ND					
Ethylbenzene			5.0	0.74	ug/L	ND					
Isopropylbenzene			5.0	0.79	ug/L	ND					
Methyl Acetate			5.0	0.50	ug/L	ND					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com \$64/416\$

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

04/22/10 12:03

LABORATORY QC DATA

EARTH-0001

			LA	ABURATURY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	ınds by EP	A 8260B									
Blank Analyzed: 04/16/10	(Lab Num	ber:10D1	488-BLK1.	Batch: 10D1488	3)						
Methyl-t-Butyl Ether (MTBE)	,		5.0	0.16	ug/L	ND					
Methylcyclohexane			5.0	0.16	ug/L	ND					
Methylene Chloride			5.0	0.44	ug/L	ND					
Styrene			5.0	0.73	ug/L	ND					
Tetrachloroethene			5.0	0.36	ug/L	ND					
Toluene			5.0	0.51	ug/L	ND					
trans-1,2-Dichloroethene			5.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen e			5.0	0.37	ug/L	ND					
Trichloroethene			5.0	0.46	ug/L	ND					
Trichlorofluoromethane			5.0	0.88	ug/L	ND					
Vinyl chloride			5.0	0.90	ug/L	ND					
Xylenes, total			15	0.66	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4					ug/L		113	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		108	73-120			
Surrogate: Toluene-d8					ug/L		115	71-126			
LCS Analyzed: 04/16/10	(Lab Numb	er:10D14	88-BS1, Bat	tch: 10D1488)							
1,1,1-Trichloroethane	`	25.0	5.0	0.82	ug/L	24.7	99	73-126			
1,1,2,2-Tetrachloroethane		25.0	5.0	0.21	ug/L	21.9	88	70-126			
1,1,2-Trichloroethane		25.0	5.0	0.23	ug/L	24.2	97	76-122			
1,1,2-Trichloro-1,2,2-triflu oroethane		25.0	5.0	0.31	ug/L	22.4	90	60-140			
1,1-Dichloroethane		25.0	5.0	0.38	ug/L	25.6	102	71-129			
1,1-Dichloroethene		25.0	5.0	0.29	ug/L	25.2	101	65-138			
1,2,4-Trichlorobenzene		25.0	5.0	0.41	ug/L	23.0	92	70-122			
1,2-Dibromo-3-chloroprop ane		25.0	5.0	0.39	ug/L	17.4	70	56-134			
1,2-Dibromoethane		25.0	5.0	0.73	ug/L	23.4	93	77-120			
1,2-Dichlorobenzene		25.0	5.0	0.79	ug/L	22.8	91	77-120			
1,2-Dichloroethane		25.0	5.0	0.21	ug/L	24.7	99	75-127			
1,2-Dichloropropane		25.0	5.0	0.72	ug/L	25.9	104	76-120			
1,3-Dichlorobenzene		25.0	5.0	0.78	ug/L	23.4	94	77-120			
1,4-Dichlorobenzene		25.0	5.0	0.84	ug/L	23.2	93	75-120			
2-Butanone		125	25	1.3	ug/L	109	87	57-140			
2-Hexanone		125	25	1.2	ug/L	105	84	65-127			
4-Methyl-2-pentanone		125	25	2.1	ug/L	107	85	71-125			
Acetone		125	25	3.0	ug/L	107	86	56-142			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

65/416

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

ted: 04/22/10 12:03

LABORATORY QC DATA

EARTH-0001

			LF	ABURATURY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compo	unds by EP	A 8260B								
LCS Analyzed: 04/16/10	(Lab Numb	er:10D148	88-BS1, Bat	ch: 10D1488)						
Benzene	•	25.0	5.0	0.41	ug/L	25.9	104	71-124		
Bromodichloromethane		25.0	5.0	0.39	ug/L	23.9	95	80-122		
Bromoform		25.0	5.0	0.26	ug/L	19.5	78	66-128		
Bromomethane		25.0	5.0	0.69	ug/L	34.8	139	36-150		
Carbon disulfide		25.0	5.0	0.19	ug/L	18.8	75	59-134		
Carbon Tetrachloride		25.0	5.0	0.27	ug/L	23.7	95	72-134		
Chlorobenzene		25.0	5.0	0.75	ug/L	23.9	95	72-120		
Dibromochloromethane		25.0	5.0	0.32	ug/L	21.5	86	75-125		
Chloroethane		25.0	5.0	0.32	ug/L	30.5	122	69-136		
Chloroform		25.0	5.0	0.34	ug/L	25.7	103	73-127		
Chloromethane		25.0	5.0	0.35	ug/L	26.4	106	49-142		
cis-1,2-Dichloroethene		25.0	5.0	0.81	ug/L	25.8	103	74-124		
cis-1,3-Dichloropropene		25.0	5.0	0.36	ug/L	24.6	98	74-124		
Cyclohexane		25.0	5.0	0.18	ug/L	22.8	91	70-130		
Dichlorodifluoromethane		25.0	5.0	0.68	ug/L	20.1	80	33-157		
Ethylbenzene		25.0	5.0	0.74	ug/L	24.6	98	77-123		
Isopropylbenzene		25.0	5.0	0.79	ug/L	23.3	93	77-122		
Methyl Acetate		25.0	5.0	0.50	ug/L	34.7	139	60-140		
Methyl-t-Butyl Ether (MTBE)		25.0	5.0	0.16	ug/L	20.2	81	64-127		
Methylcyclohexane		25.0	5.0	0.16	ug/L	22.6	90	60-140		
Methylene Chloride		25.0	5.0	0.44	ug/L	24.9	100	57-132		
Styrene		25.0	5.0	0.73	ug/L	24.4	98	70-130		
Tetrachloroethene		25.0	5.0	0.36	ug/L	25.0	100	74-122		
Toluene		25.0	5.0	0.51	ug/L	24.5	98	70-122		
trans-1,2-Dichloroethene		25.0	5.0	0.90	ug/L	25.9	103	73-127		
trans-1,3-Dichloropropen e		25.0	5.0	0.37	ug/L	22.4	89	72-123		
Trichloroethene		25.0	5.0	0.46	ug/L	25.4	101	74-123		
Trichlorofluoromethane		25.0	5.0	0.88	ug/L	29.5	118	62-152		
Vinyl chloride		25.0	5.0	0.90	ug/L	24.7	99	65-133		
Xylenes, total		75.0	15	0.66	ug/L	74.6	99	76-122		
Surrogate: 1,2-Dichloroethane-d4					ug/L		110	66-137		
Surrogate: 4-Bromofluorobenzene					ug/L		114	73-120		
Surrogate: Toluene-d8					ug/L		118	71-126		

Volatile Organic Compounds by EPA 8260B

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

ed: 04/22/10 12:03

LABORATORY QC DATA

EARTH-0001

	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B								
Blank Analyzed: 04/17/10	(Lab Num	nber:10D15	81-BLK1	, Batch: 10D1581)						
1,1,1-Trichloroethane			5.0	0.82	ug/L	ND				
1,1,2,2-Tetrachloroethane			5.0	0.21	ug/L	ND				
1,1,2-Trichloroethane			5.0	0.23	ug/L	ND				
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	0.31	ug/L	ND				
1,1-Dichloroethane			5.0	0.38	ug/L	ND				
1,1-Dichloroethene			5.0	0.29	ug/L	ND				
1,2,4-Trichlorobenzene			5.0	0.41	ug/L	ND				
1,2-Dibromo-3-chloroprop ane			5.0	0.39	ug/L	ND				
1,2-Dibromoethane			5.0	0.73	ug/L	ND				
1,2-Dichlorobenzene			5.0	0.79	ug/L	ND				
1,2-Dichloroethane			5.0	0.21	ug/L	ND				
1,2-Dichloropropane			5.0	0.72	ug/L	ND				
1,3-Dichlorobenzene			5.0	0.78	ug/L	ND				
1,4-Dichlorobenzene			5.0	0.84	ug/L	ND				
2-Butanone			25	1.3	ug/L	ND				
2-Hexanone			25	1.2	ug/L	ND				
4-Methyl-2-pentanone			25	2.1	ug/L	ND				
Acetone			25	3.0	ug/L	ND				
Benzene			5.0	0.41	ug/L	ND				
Bromodichloromethane			5.0	0.39	ug/L	ND				
Bromoform			5.0	0.26	ug/L	ND				
Bromomethane			5.0	0.69	ug/L	ND				
Carbon disulfide			5.0	0.19	ug/L	ND				
Carbon Tetrachloride			5.0	0.27	ug/L	ND				
Chlorobenzene			5.0	0.75	ug/L	ND				
Dibromochloromethane			5.0	0.32	ug/L	ND				
Chloroethane			5.0	0.32	ug/L	ND				
Chloroform			5.0	0.34	ug/L	ND				
Chloromethane			5.0	0.35	ug/L	ND				
cis-1,2-Dichloroethene			5.0	0.81	ug/L	ND				
cis-1,3-Dichloropropene			5.0	0.36	ug/L	ND				
Cyclohexane			5.0	0.18	ug/L	ND				
Dichlorodifluoromethane			5.0	0.68	ug/L	ND				
Ethylbenzene			5.0	0.74	ug/L	ND				
Isopropylbenzene			5.0	0.79	ug/L	ND				
Methyl Acetate			5.0	0.50	ug/L	ND				

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com \$67/416\$

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

04/22/10 12:03

EARTH-0001

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B								
Blank Analyzed: 04/17/10	(Lab Num	ber:10D1	581-BLK1,	Batch: 10D1581	1)					
Methyl-t-Butyl Ether (MTBE)	•		5.0	0.16	ug/L	ND				
Methylcyclohexane			5.0	0.16	ug/L	ND				
Methylene Chloride			5.0	0.44	ug/L	ND				
Styrene			5.0	0.73	ug/L	ND				
Tetrachloroethene			5.0	0.36	ug/L	ND				
Toluene			5.0	0.51	ug/L	ND				
trans-1,2-Dichloroethene			5.0	0.90	ug/L	ND				
trans-1,3-Dichloropropen e			5.0	0.37	ug/L	ND				
Trichloroethene			5.0	0.46	ug/L	ND				
Trichlorofluoromethane			5.0	0.88	ug/L	ND				
Vinyl chloride			5.0	0.90	ug/L	ND				
Xylenes, total			15	0.66	ug/L	ND				
Surrogate: 1,2-Dichloroethane-d4					ug/L		112	66-137		
Surrogate: 4-Bromofluorobenzene					ug/L		109	73-120		
Surrogate: Toluene-d8					ug/L		115	71-126		
LCS Analyzed: 04/17/10 (Lab Numb	er:10D158	81-BS1, Bat	ch: 10D1581)						
1,1,1-Trichloroethane			5.0	0.82	ug/L	ND		73-126		
1,1,2,2-Tetrachloroethane			5.0	0.21	ug/L	ND		70-126		
1,1,2-Trichloroethane			5.0	0.23	ug/L	ND		76-122		
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	0.31	ug/L	ND		60-140		
1,1-Dichloroethane			5.0	0.38	ug/L	ND		71-129		
1,1-Dichloroethene		25.0	5.0	0.29	ug/L	30.0	120	65-138		
1,2,4-Trichlorobenzene			5.0	0.41	ug/L	ND		70-122		
1,2-Dibromo-3-chloroprop ane			5.0	0.39	ug/L	ND		56-134		
1,2-Dibromoethane			5.0	0.73	ug/L	ND		77-120		
1,2-Dichlorobenzene			5.0	0.79	ug/L	ND		77-120		
1,2-Dichloroethane			5.0	0.21	ug/L	ND		75-127		
1,2-Dichloropropane			5.0	0.72	ug/L	ND		76-120		
1,3-Dichlorobenzene			5.0	0.78	ug/L	ND		77-120		
1,4-Dichlorobenzene			5.0	0.84	ug/L	ND		75-120		
2-Butanone			25	1.3	ug/L	ND		57-140		
2-Hexanone			25	1.2	ug/L	ND		65-127		
4-Methyl-2-pentanone			25	2.1	ug/L	ND		71-125		
Acetone			25	3.0	ug/L	ND		56-142		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

68/416

Work Order: RTD1034

Project Number:

Project: Scott Aviation site

Received:

04/08/10

Reported:

rted: 04/22/10 12:03

LABORATORY QC DATA

EARTH-0001

			L	ABONATORT	QC DATA						
	Source	Spike					%	% REC			Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Li	nit Qua	alifiers
Volatile Organic Compo	unds by EP	A 8260B									
LCS Analyzed: 04/17/10	(Lab Numb	er:10D15	81-BS1. Bat	ch: 10D1581)							
Benzene	,	25.0	5.0	0.41	ug/L	27.4	110	71-124			
Bromodichloromethane			5.0	0.39	ug/L	ND		80-122			
Bromoform			5.0	0.26	ug/L	ND		66-128			
Bromomethane			5.0	0.69	ug/L	ND		36-150			
Carbon disulfide			5.0	0.19	ug/L	ND		59-134			
Carbon Tetrachloride			5.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	5.0	0.75	ug/L	25.6	102	72-120			
Dibromochloromethane			5.0	0.32	ug/L	ND		75-125			
Chloroethane			5.0	0.32	ug/L	ND		69-136			
Chloroform			5.0	0.34	ug/L	ND		73-127			
Chloromethane			5.0	0.35	ug/L	ND		49-142			
cis-1,2-Dichloroethene			5.0	0.81	ug/L	ND		74-124			
cis-1,3-Dichloropropene			5.0	0.36	ug/L	ND		74-124			
Cyclohexane			5.0	0.18	ug/L	ND		70-130			
Dichlorodifluoromethane			5.0	0.68	ug/L	ND		33-157			
Ethylbenzene			5.0	0.74	ug/L	ND		77-123			
Isopropylbenzene			5.0	0.79	ug/L	ND		77-122			
Methyl Acetate			5.0	0.50	ug/L	ND		60-140			
Methyl-t-Butyl Ether (MTBE)			5.0	0.16	ug/L	ND		64-127			
Methylcyclohexane			5.0	0.16	ug/L	ND		60-140			
Methylene Chloride			5.0	0.44	ug/L	ND		57-132			
Styrene			5.0	0.73	ug/L	ND		70-130			
Tetrachloroethene			5.0	0.36	ug/L	ND		74-122			
Toluene		25.0	5.0	0.51	ug/L	26.6	106	70-122			
trans-1,2-Dichloroethene			5.0	0.90	ug/L	ND		73-127			
trans-1,3-Dichloropropen e			5.0	0.37	ug/L	ND		72-123			
Trichloroethene		25.0	5.0	0.46	ug/L	27.0	108	74-123			
Trichlorofluoromethane			5.0	0.88	ug/L	ND		62-152			
Vinyl chloride			5.0	0.90	ug/L	ND		65-133			
Xylenes, total			15	0.66	ug/L	ND		76-122			
Surrogate: 1,2-Dichloroethane-d4					ug/L		110	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		111	73-120			
Surrogate: Toluene-d8					ug/L		116	71-126			

Chain of Custody Record

Client Information	Enity	1/2/4	• -	tab Pivi Brian Fischer	þē			Camer fo	Camer Fracking Milk)	_	CCC No. 03192010 16:39	39.2
Gentimate. Dino Zack	8 9/t mak	836-450	9	. Atail: Bright, Fast	her@test	L-Atait Brian. Fischer (Qtastamericaloc.com	, 				Page.	
Company, AECCA1 - Amherst, NY						Par	Parameter(s) Requested	Request	- P		# cor	
Angests 100 Corporato Pkwy-Uny Canite	Due Date Requested:				- >.						Preservation Codes:	Codes: 2=2
Gty Amharst	TAT Requested (Business Days 10	inees Days 10			<u> </u>						D-NaOH C-74 Aoriste	
Ny 14226 Ny 14226	Γ			<u>'</u>	, _V				_		DrN4eic Add I≕ke	
	PC 2 7114814										N=Nore S=H2SO4	
1 1 3.1	₩ RT00228				. (6				_			
Fruest Hane. A£ COM- Soot Aviation: GWA-NY3A9023	Project #. Scott Avvation sile				10.00							V=Val
Shi AECOhi, Inc Scott Avalkin site - NY3A9023	418083				ıl on							
			Sample Matrix	Flitered.	MISM UDI						т өdгги м	
Sample Identification	Sample Date	를 됩 다 ()	(C=comp. o=milest G=grab) armies.r-su	FIBIO			-	-				Special instructions/Note:
	$\langle $	<u> </u>	Preserv-Cont Code:	2	1	-	1	1	_		\\ X	
	†	+	3	+	7	$\frac{1}{4}$	<u> </u>	 -	1	\pm	1	
MW-8R	4/8/10	15.40	5		-7							
5-MM	1/4//6	15:20	%	-	6		 				۳.	
MW-13S	1/4/10	17.10	w o		۳.							
MW-13D	0//+//6	16:20	≯	 	m							
MW-14S	01/9/6	140	9		3		_				3	
MW-14D	3 91/8//	8:55	. w		3						3	
MW-15S	1/8//0	13:50	G W	 	3						3	
MW-150	1/8/10	13:00	G w		3						3	
MW-16D	//8//	04:11	9 W		ť						8	
Trip Blank		<u> </u>	≫		7		-					
Posentole Hazard Identification Skin Irrilan:	Doison B Duknown	n [] Radiological	hogical	<u>s</u>	ampte Di [_]Retu	sposal (A n: To Civen	tee may be	v be assessed if sam [□] Disposal By Lah	if sample IV Lah	% § ∫	Sample Disposal (A fee may be assessed if samples are retained fonger than 1 month) Checken, Albert To Chen, Albert Samples and Checken, Month Month See Man	r 1 month) Months
Other (specify)	son Contract	1		92	proced his	Okuchansi	Special Instructions/OC Requirements	ants				
Emply Kit Relinquished by: //		alog		Time				1. Arch	Inhiting of Shipment	****		
Acting to be a second of the s	01/2/faire	17:15	Сапрасу		KILL AND BY	ا مار	6	b	aled 9	Darestower.	-1127 :	Company
Retinounhed by	DaléTrne.		Сипрану		Received by	in the second			Zer.	Date,Tima)		Company
Aeineuraned by	DateTime:		Операту		Remod by	Total			H _F	Dain, from		Campany
Custody Seals Infact Custody Seal No					Count	(Sheiragantino	Guard Tumpersanight Ft. and Other Renative	Renans.				
									 -			

Chain of Custody Record

Client Information	Samples EMILY	4,4	Cab PM* Bruan Feycher	her	Carage Tracking Naga	GOC No. 03192010 16:39_1	
Chert Contact	758 - 4/4 WOULD	90/8/06	Pran Fish	e-Mail: Bran Fischer@lesjamericainc.com		Page 1	
Corpet s	3	1	 - 			a qor	
AECONS - Amhorst, NY			<u> </u>	Parametens	Kequestad		
Address* 100 Corporate Pkwy-Univ Centre			«·· ·		_	Preservation Codes:	
Chy: Amberst	1AT Requested (Bushines Days) 10	÷.	·			S=NaO+ C-Zn Acetale	
Sole 20 NY, 14226	 					D Mitric Acid Crice	
Piene	PD = 71149;4		(o			Navione SHR2804	
ł mal:	0.0 €. R1D0228		N 10 E				
Pioper Name. AFCOM- Scott Aviation: G/W- NY3A9023	Project # Scott Aviation site		10 TA				В
See: AECOM. Inc Scott Availion site - NY3A9023	SECWE		dwas		-	6 PrPotychlastic 5 Triffets	
		Sample	Natrix beneath			Jeguin	
Sample Identification	Sample Date Time	(C=comp. G=grab)	1 DIBIT	80/		Special Instructions/Note:	tions/Note:
	$/\setminus$	-1 %	\times	4			
FIELD BLANK	81711 olle11	Ü	W			6	
© OUPLICATE	4/8/10 15.30	ű	3			9	
MW-10	SK. El 01/E/F	٥	*	0			
MW-11	81:H1 0/1/2/18	0	*	£		rs	ı
IAW-2	19/2/10 19:50	0		3		e	
S-WM	0//	1 ° 1	W	3		6	
MWA	101	0	W	3		3.	
MW-8	4/2/10 113:35	5 د		E)		3	
MW-16S	01/8/10 10:40	9 (ķ	3		3	
IAW-12	4/2/10 11.45	 U	¥	r.		£	
EXTRA 1		-9	707	╅╩╪╍┼┈╁╼┾╌╇╼┼		3	
Possible Hazard Identification	The second of th	Rectodorices	s	Sample Disposal (A fee may be assessed it samples are relatined longer than 1 month) $\begin{bmatrix} -1 \\ -1 \end{bmatrix}_{Bettin} To Client$	be assessed if samples are retail	stained longer than 1 mont	onth)
/, Other (specily)	1		so.	Requir			9
/ V :Ac pau			T.me		Method of Shypmoni:		
Removement June	01/01	17:15	Company	HIRCHARD CV	Unterime.	reduced 2727	y tree
Heliquatied by	Date:11-fe	<u>8</u>	Company	Recoved by	العضروفات	(vectuo)	hize
Retroqualed by:	DalisTirue	<u>8_</u>	Company	Renewalby	DateJumo	Сомрану	ли
Custody Seals Infact - Custody Seal No. A Yes A No.				Group Temperature(s) 'C and Other Remarks	(delicates		
				7			

TestAmerica Buffalo

SDG:

CLASS:

VOA

METHOD:

8260B

72/416

ANALYSES DATA PACKAGE COVER PAGE

8260B

Laboratory: TestAmerica Buffalo

SDG:

Client: AECOM - Amherst, NY

Project: AECOM, Inc. - Scott Aviation site - NY3A9023

		······································
Client Sample Id:	Lab Sample Id:	
MW-8R	RTD1034-01	
MW-9	RTD1034-02	
MW-13S	RTD1034-03	
MW-13D	RTD1034-04	
MW-14S	RTD1034-05	
MW-14D	RTD1034-06	Α.
MW-15S	RTD1034-07	
MW-15D	RTD1034-08	
MW-16D	RTD1034-09	
FIELD BLANK	RTD1034-10	
DUPLICATE	RTD1034-11	
MW-10	RTD1034-12	
MW-11	RTD1034-13	
MW-2	RTD1034-14	
MW-3	RTD1034-15	
MW-4	RTD1034-16	
MW-6	<u>RTD1034-17</u>	
MW-16S	RTD1034-18	
MW-12	RTD1034-19	
TRIP BLANK	RTD1034-20	

Form Rev: 11/23/09 73/416 Printed: 04/21/2010

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10D026

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
Blank (10D1339-BLK1)			Lab File ID: T	8565.D	Analyzed	: 04/15/10 11:4	1	
1,2-Dichloroethane-d4	25.0	86	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	79	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	85	71 - 126	6.8	6.8	0.0000	+/-1.0	
LCS (10D1339-BS1)			Lab File ID: T	8564.D	Analyzed	: 04/15/10 11:1	7	
1,2-Dichloroethane-d4	25.0	85	66 - 137	5.38	5.373333	0.0067	+/-1.0	
4-Bromofluorobenzene	25.0	79	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	85	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-8R (RTD1034-01)	*.		Lab File ID: To	8569.D	Analyzed	: 04/15/10 13:1	8	
1,2-Dichloroethane-d4	25.0	87	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	79	73 - 120	8.89	8.9	-0.0100	+/-1.0	
Toluene-d8	25.0	81	71 - 126	6.8	6.8	0.0000	+/-1.0	
MW-9 (RTD1034-02)			Lab File ID: T	8570.D	Analyzed	: 04/15/10 13:4	2	
1,2-Dichloroethane-d4	25.0	89	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	81	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	83	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-13S (RTD1034-03)			Lab File ID: T	8571.D	Analyzed	: 04/15/10 14:0	6	
1,2-Dichloroethane-d4	25.0	84	66 - 137	5.37	5.373333	-0.0033	+/-1.0	T
4-Bromofluorobenzene	25.0	81	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	86	71 - 126	6.8	6.8	0.0000	+/-1.0	
MW-13D (RTD1034-04)			Lab File ID: T	8572.D	Analyzed	: 04/15/10 14:3	0	
1,2-Dichloroethane-d4	25.0	87	66 - 137	5.38	5.373333	0.0067	+/-1.0	
4-Bromofluorobenzene	25.0	80	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	84	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-14S (RTD1034-05)			Lab File ID: T	8573.D	Analyzed	: 04/15/10 14:5	4	
1,2-Dichloroethane-d4	25.0	88	66 - 137	5.37	5.373333	-0.0033	+/-1.0	T
4-Bromofluorobenzene	25.0	85	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	85	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-14D (RTD1034-06)			Lab File ID: T	8574.D	Analyzed	: 04/15/10 15:1	8	
1,2-Dichloroethane-d4	25.0	89	66 - 137	5.38	5.373333	0.0067	+/-1.0	T
								+
4-Bromofluorobenzene	25.0	83	73 - 120	8.9	8.9	0.0000	+/-1.0	L

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10D026

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
MW-15S (RTD1034-07)	<u> </u>		Lab File ID: T	8575.D	Analyzed	: 04/15/10 15:4	3	
1,2-Dichloroethane-d4	25.0	88	66 - 137	5.38	5.373333	0.0067	+/-1.0	
4-Bromofluorobenzene	25.0	80	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	78	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-15D (RTD1034-08)			Lab File ID: T	8576.D	Analyzed	: 04/15/10 16:0	7	
1,2-Dichloroethane-d4	25.0	90	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	81	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	79	71 - 126	6.8	6.8	0.0000	+/-1.0	
FIELD BLANK (RTD1034-10)	<u> </u>	•	Lab File ID: T	8578.D	Analyzed	: 04/15/10 16:5	5	
1,2-Dichloroethane-d4	25.0	88	66 - 137	5.38	5.373333	0.0067	+/-1.0	T
4-Bromofluorobenzene	25.0	76	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	76	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-11 (RTD1034-13)		•	Lab File ID: T	8581.D	Analyzed	: 04/15/10 18:0	7	
1,2-Dichloroethane-d4	25.0	91	66 - 137	5.38	5.373333	0.0067	+/-1.0	
4-Bromofluorobenzene	25.0	79	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	81	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-2 (RTD1034-14)			Lab File ID: T	8582.D	Analyzed	: 04/15/10 18:3	1	
1,2-Dichloroethane-d4	25.0	91	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	73	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	82	71 - 126	6.8	6.8	0.0000	+/-1.0	
MW-3 (RTD1034-15)			Lab File ID: T	8583.D	Analyzed	: 04/15/10 18:5	5	
1,2-Dichloroethane-d4	25.0	90	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	88	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	87	71 - 126	6.8	6.8	0.0000	+/-1.0	
MW-6 (RTD1034-17)			Lab File ID: T	8587.D	Analyzed	: 04/15/10 20:3	2	
1,2-Dichloroethane-d4	25.0	91	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	75	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	81	71 - 126	6.81	6.8	0.0100	+/-1.0	
MW-16S (RTD1034-18)			Lab File ID: T	8588.D	Analyzed	: 04/15/10 20:5	6	
1,2-Dichloroethane-d4	25.0	90	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	80	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	81	71 - 126	6.8	6.8	0.0000	+/-1.0	

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10D026

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
MW-12 (RTD1034-19)			Lab File ID: T	3589.D	Analyzed	: 04/15/10 21:2	0	
1,2-Dichloroethane-d4	25.0	91	66 - 137	5.37	5.373333	-0.0033	+/-1.0	
4-Bromofluorobenzene	25.0	83	73 - 120	8.9	8.9	0.0000	+/-1.0	
Toluene-d8	25.0	80	71 - 126	6.8	6.8	0.0000	+/-1.0	

76/416

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001440

Instrument:

HP5973S

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10C101

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
Blank (10D1488-BLK1)		,	Lab File ID: S:	5595.D	Analyzed	: 04/16/10 12:1	3	
1,2-Dichloroethane-d4	25.0	113	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	108	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	
LCS (10D1488-BS1)			Lab File ID: S	5592.D	Analyzed	: 04/16/10 11:0	0	
1,2-Dichloroethane-d4	25.0	110	66 - 137	4.68	4.681667	-0.0017	+/-1.0	
4-Bromofluorobenzene	25.0	114	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	118	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-8R (RTD1034-01RE1)			Lab File ID: S:	5608.D	Analyzed	: 04/16/10 17:3	5	
1,2-Dichloroethane-d4	25.0	117	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	110	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-13S (RTD1034-03RE1)			Lab File ID: S	5609.D	Analyzed	: 04/16/10 17:5	9	
1,2-Dichloroethane-d4	25.0	113	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	106	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-16D (RTD1034-09)			Lab File ID: S	5611.D	Analyzed: 04/16/10 18:48			
1,2-Dichloroethane-d4	25.0	115	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	107	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	
DUPLICATE (RTD1034-11)			Lab File ID: S	5612.D	Analyzed	: 04/16/10 19:1	2	
1,2-Dichloroethane-d4	25.0	115	66 - 137	4.69	4.681667	0.0083	+/-1.0	5.50
4-Bromofluorobenzene	25.0	106	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	114	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-10 (RTD1034-12)			Lab File ID: S	5613.D	Analyzed	: 04/16/10 19:3	7	
1,2-Dichloroethane-d4	25.0	119	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	110	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-4 (RTD1034-16)		-	Lab File ID: S	5614.D	Analyzed	: 04/1 6/10 20:0	1	
1,2-Dichloroethane-d4	25.0	116	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	107	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.07	6.07	0.0000	+/-1.0	

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001440

Instrument:

HP5973S

Matrix:

Water

Calibration:

R10C101

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
MW-16S (RTD1034-18RE1)			Lab File ID: S5	615.D	Analyzed	: 04/16/10 20:2	5	
1,2-Dichloroethane-d4	25.0	112	66 - 137	4.69	4.681667	0.0083	+/-1.0	\prod
4-Bromofluorobenzene	25.0	105	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	113	71 - 126	6.07	6.07	0.0000	+/-1.0	\perp
TRIP BLANK (RTD1034-20)			Lab File ID: S5	616.D	Analyzed	: 04/16/10 20:5	0	
1,2-Dichloroethane-d4	25.0	116	66 - 137	4.69	4.681667	0.0083	+/-1.0	T
4-Bromofluorobenzene	25.0	106	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	T

Form Rev: 11/23/09 78/416 Printed: 04/21/2010

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001461

Instrument:

HP5973S

Matrix:

Water

Calibration:

R10C101

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
Blank (10D1581-BLK1)			Lab File ID: S:	5621.D	Analyzed	: 04/17/10 12:4	7	
1,2-Dichloroethane-d4	25.0	112	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	109	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	
LCS (10D1581-BS1)			Lab File ID: S:	5620.D	Analyzed	: 04/17/10 12:2	2	
1,2-Dichloroethane-d4	25.0	110	66 - 137	4.68	4.681667	-0.0017	+/-1.0	
4-Bromofluorobenzene	25.0	111	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-15D (RTD1034-08RE1)	·		Lab File ID: S:	5622.D	Analyzed: 04/17/10 13:17			_
1,2-Dichloroethane-d4	25.0	113	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	110	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.07	6.07	0.0000	+/-1.0	
MW-16D (RTD1034-09RE1)			Lab File ID: S:	5623.D	Analyzed	: 04/17/10 13:4	2	
1,2-Dichloroethane-d4	25.0	116	66 - 137	4.69	4.681667	0.0083	+/-1.0	
4-Bromofluorobenzene	25.0	109	73 - 120	8.12	8.12	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.07	6.07	0.0000	+/-1.0	

Form Rev: 11/23/09 79/416 Printed: 04/21/2010

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT03994

Batch:

10D1339

Laboratory ID:

10D1339-BS1

Preparation:

Form Rev: 11/23/09

5030B MS

Initial/Final:

 $5 \, mL / 5 \, mL$

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
1,1,1-Trichloroethane		ug/L	ND		73 - 126
1,1,2,2-Tetrachloroethane		ug/L	ND		70 - 126
1,1,2-Trichloro-1,2,2-trifluoroethane		ug/L	ND		60 - 140
1,1,2-Trichloroethane		ug/L	ND		76 - 122
1,1-Dichloroethane		ug/L	ND		71 - 129
1,1-Dichloroethene	25.0	ug/L	22.8	91	65 - 138
1,2,4-Trichlorobenzene		ug/L	ND		70 - 122
1,2-Dibromo-3-chloropropane		ug/L	ND		56 - 134
1,2-Dibromoethane		ug/L	ND		77 - 120
1,2-Dichlorobenzene		ug/L	ND		77 - 120
1,2-Dichloroethane		ug/L	ND		75 - 127
1,2-Dichloropropane		ug/L	ND		76 - 120
1,3-Dichlorobenzene		ug/L	ND		77 - 120
1,4-Dichlorobenzene		ug/L	ND		75 - 120
2-Butanone		ug/L	ND		57 - 140
2-Hexanone		ug/L	ND		65 - 127
4-Methyl-2-pentanone		ug/L	ND		71 - 125
Acetone		ug/L	ND		56 - 142
Benzene	25.0	ug/L	25.5	102	71 - 124
Bromodichloromethane		ug/L	ND		80 - 122
Bromoform		ug/L	ND		66 - 128
Bromomethane		ug/L	ND		36 - 150
Carbon disulfide		ug/L	ND		59 - 134
Carbon Tetrachloride		ug/L	ND		72 - 134
Chlorobenzene	25.0	ug/L	24.2	97	72 - 120
Chloroethane		ug/L	ND		69 - 136
Chloroform		ug/L	ND		73 - 127
Chloromethane		ug/L	ND		49 - 142
cis-1,2-Dichloroethene		ug/L	ND		74 - 124
cis-1,3-Dichloropropene		ug/L	ND		74 - 124

80/416

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT03994

Batch:

10D1339

Laboratory ID:

10D1339-BS1

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
Cyclohexane		ug/L	ND		70 - 130
Dibromochloromethane		ug/L	ND	,	75 - 125
Dichlorodifluoromethane		ug/L	ND		33 - 157
Ethylbenzene		ug/L	ND		77 - 123
Isopropylbenzene		ug/L	ND		77 - 122
Methyl Acetate		ug/L	ND		60 - 140
Methylcyclohexane		ug/L	ND		60 - 140
Methylene Chloride		ug/L	ND		57 - 132
Methyl-t-Butyl Ether (MTBE)		ug/L	ND		64 - 127
Styrene		ug/L	ND		70 - 130
Tetrachloroethene		ug/L	ND		74 - 122
Toluene	25.0	ug/L	24.7	99	70 - 122
trans-1,2-Dichloroethene		ug/L	ND		73 - 127
trans-1,3-Dichloropropene		ug/L	ND		72 - 123
Trichloroethene	25.0	ug/L	23.7	95	74 - 123
Trichlorofluoromethane		ug/L	ND		62 - 152
Vinyl chloride		ug/L	ND		65 - 133
Xylenes, total		ug/L	ND		76 - 122

[#] Column to be used to flag recovery and RPD values with an asterisk

Form Rev: 11/23/09

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT04523

Batch:

10D1488

Laboratory ID:

10D1488-BS1

Preparation:

Form Rev: 11/23/09

5030B MS

Initial/Final:

5 mL / 5 mL

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
1,1,1-Trichloroethane	25.0	ug/L	24.7	99	73 - 126
1,1,2,2-Tetrachloroethane	25.0	ug/L	21.9	88	70 - 126
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	ug/L	22.4	90	60 - 140
1,1,2-Trichloroethane	25.0	ug/L	24.2	97	76 - 122
1,1-Dichloroethane	25.0	ug/L	25.6	102	71 - 129
1,1-Dichloroethene	25.0	ug/L	25.2	101	65 - 138
1,2,4-Trichlorobenzene	25.0	ug/L	23.0	92	70 - 122
1,2-Dibromo-3-chloropropane	25.0	ug/L	17.4	70	56 - 134
1,2-Dibromoethane	25.0	ug/L	23.4	93	77 - 120
1,2-Dichlorobenzene	25.0	ug/L	22.8	91	77 - 120
1,2-Dichloroethane	25.0	ug/L	24.7	99	75 - 127
1,2-Dichloropropane	25.0	ug/L	25.9	104	76 - 120
1,3-Dichlorobenzene	25.0	ug/L	23.4	94	77 - 120
1,4-Dichlorobenzene	25.0	ug/L	23.2	93	75 - 120
2-Butanone	125	ug/L	109	87	57 - 140
2-Hexanone	125	ug/L	105	84	65 - 127
4-Methyl-2-pentanone	125	ug/L	107	85	71 - 125
Acetone	125	ug/L	107	86	56 - 142
Benzene	25.0	ug/L	25.9	104	71 - 124
Bromodichloromethane	25.0	ug/L	23.9	95	80 - 122
Bromoform	25.0	ug/L	19.5	78	66 - 128
Bromomethane	25.0	ug/L	34.8	139	36 - 150
Carbon disulfide	25.0	ug/L	18.8	75	59 - 134
Carbon Tetrachloride	25.0	ug/L	23.7	95	72 - 134
Chlorobenzene	25.0	ug/L	23.9	95	72 - 120
Chloroethane	25.0	ug/L	30.5	122	69 - 136
Chloroform	25.0	ug/L	25.7	103	73 - 127
Chloromethane	25.0	ug/L	26.4	106	49 - 142
cis-1,2-Dichloroethene	25.0	ug/L	25.8	103	74 - 124
cis-1,3-Dichloropropene	25.0	ug/L	24.6	98	74 - 124

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT04523

Batch:

Laboratory ID:

10D1488-BS1

Preparation:

10D1488 5030B MS

Initial/Final:

5 mL / 5 mL

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
Cyclohexane	25.0	ug/L	22.8	91	70 - 130
Dibromochloromethane	25.0	ug/L	21.5	86	75 - 125
Dichlorodifluoromethane	25.0	ug/L	20.1	80	33 - 157
Ethylbenzene	25.0	ug/L	24.6	98	77 - 123
Isopropylbenzene	25.0	ug/L	23.3	93	77 - 122
Methyl Acetate	25.0	ug/L	34.7	139	60 - 140
Methylcyclohexane	25.0	ug/L	22.6	90	60 - 140
Methylene Chloride	25.0	ug/L	24.9	100	57 - 132
Methyl-t-Butyl Ether (MTBE)	25.0	ug/L	20.2	81	64 - 127
Styrene	25.0	ug/L	24.4	98	70 - 130
Tetrachloroethene	25.0	ug/L	25.0	100	74 - 122
Toluene	25.0	ug/L	24.5	98	70 - 122
trans-1,2-Dichloroethene	25.0	ug/L	25.9	103	73 - 127
trans-1,3-Dichloropropene	25.0	ug/L	22.4	89	72 - 123
Trichloroethene	25.0	ug/L	25.4	101	74 - 123
Trichlorofluoromethane	25.0	ug/L	29.5	118	62 - 152
Vinyl chloride	25.0	ug/L	24.7	99	65 - 133
Xylenes, total	75.0	ug/L	74.6	99	76 - 122

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT03369

Batch:

10D1581

Laboratory ID:

10D1581-BS1

Preparation:

Form Rev: 11/23/09

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Treplation. Substitute and the s					
COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
1,1,1-Trichloroethane		ug/L	ND		73 - 126
1,1,2,2-Tetrachloroethane		ug/L	ND		70 - 126
1,1,2-Trichloro-1,2,2-trifluoroethane		ug/L	ND		60 - 140
1,1,2-Trichloroethane		ug/L	ND		76 - 122
1,1-Dichloroethane		ug/L	ND		71 - 129
1,1-Dichloroethene	25.0	ug/L	30.0	120	65 - 138
1,2,4-Trichlorobenzene		ug/L	ND		70 - 122
1,2-Dibromo-3-chloropropane		ug/L	ND		56 - 134
1,2-Dibromoethane		ug/L	ND		77 - 120
1,2-Dichlorobenzene		ug/L	ND		77 - 120
1,2-Dichloroethane		ug/L	ND		75 - 127
1,2-Dichloropropane		ug/L	ND		76 - 120
1,3-Dichlorobenzene		ug/L	ND		77 - 120
1,4-Dichlorobenzene		ug/L	ND		75 - 120
2-Butanone		ug/L	ND		57 - 140
2-Hexanone		ug/L	ND		65 - 127
4-Methyl-2-pentanone		ug/L	ND		71 - 125
Acetone		ug/L	ND		56 - 142
Benzene	25.0	ug/L	27.4	110	71 - 124
Bromodichloromethane		ug/L	, ND		80 - 122
Bromoform		ug/L	ND		66 - 128
Bromomethane		ug/L	ND		36 - 150
Carbon disulfide	-	ug/L	ND		59 - 134
Carbon Tetrachloride		ug/L	ND		72 - 134
Chlorobenzene	25.0	ug/L	25.6	102	72 - 120
Chloroethane		ug/L	ND		69 - 136
Chloroform		ug/L	ND		73 - 127
Chloromethane		ug/L	ND		49 - 142
cis-1,2-Dichloroethene		ug/L	ND		74 - 124
cis-1,3-Dichloropropene		ug/L	ND		74 - 124

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Spike standard:

RT03369

Batch:

10D1581

Laboratory ID:

10D1581-BS1

Preparation:

5030B MS

Initial/Final:

<u>5 mL / 5 mL</u>

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
Cyclohexane		ug/L	ND		70 - 130
Dibromochloromethane		ug/L	ND		75 - 125
Dichlorodifluoromethane		ug/L	ND		33 - 157
Ethylbenzene		ug/L	ND		77 - 123
Isopropylbenzene		ug/L	ND		77 - 122
Methyl Acetate		ug/L	ND		60 - 140
Methylcyclohexane		ug/L	ND		60 - 140
Methylene Chloride		ug/L	ND		57 - 132
Methyl-t-Butyl Ether (MTBE)		ug/L	ND		64 - 127
Styrene		ug/L	ND		70 - 130
Tetrachloroethene		ug/L	ND		74 - 122
Toluene	25.0	ug/L	26.6	106	70 - 122
trans-1,2-Dichloroethene		ug/L	ND		73 - 127
trans-1,3-Dichloropropene		ug/L	ND		72 - 123
Trichloroethene	25.0	ug/L	27.0	108	74 - 123
Trichlorofluoromethane		ug/L	ND		62 - 152
Vinyl chloride		ug/L	ND		65 - 133
Xylenes, total		ug/L	ND		76 - 122

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

PREPARATION BATCH SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

AECOM, Inc. - Scott Aviation site - NY3A9023

Batch:

10D1339

Batch Matrix:

Water

Project: Preparation:

5030B MS

SAMPLE NAME	LAB SAMPLE ID	INITIAL	FINAL	DATE PREPARED	TOT/DIS
Blank	10D1339-BLK1	5.00 mL	5.00 mL	04/15/10 10:24	N/A
LCS	10D1339-BS1	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-8R	RTD1034-01	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-9	RTD1034-02	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-13S	RTD1034-03	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-13D	RTD1034-04	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-14S	RTD1034-05	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-14D	RTD1034-06	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-15S	RTD1034-07	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-15D	RTD1034-08	5.00 mL	5.00 mL	04/15/10 10:24	N/A
FIELD BLANK	RTD1034-10	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-11	RTD1034-13	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-2	RTD1034-14	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-3	RTD1034-15	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-6	RTD1034-17	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-16S	RTD1034-18	5.00 mL	5.00 mL	04/15/10 10:24	N/A
MW-12	RTD1034-19	5.00 mL	5.00 mL	04/15/10 10:24	N/A

86/416 Printed: 04/21/2010 Form Rev: 11/23/09

PREPARATION BATCH SUMMARY

8260B

Laboratory:

Form Rev: 11/23/09

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Batch:

10D1488

Batch Matrix:

Water

Preparation:

5030B MS

SAMPLE NAME	LAB SAMPLE ID	INITIAL	FINAL	DATE PREPARED	TOT/DIS
Blank	10D1488-BLK1	5.00 mL	5.00 mL	04/16/10 09:48	N/A
LCS	10D1488-BS1	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-8R	RTD1034-01RE1	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-13S	RTD1034-03RE1	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-16D	RTD1034-09	5.00 mL	5.00 mL	04/16/10 09:48	N/A
DUPLICATE	RTD1034-11	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-10	RTD1034-12	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-4	RTD1034-16	5.00 mL	5.00 mL	04/16/10 09:48	N/A
MW-16S	RTD1034-18RE1	5.00 mL	5.00 mL	04/16/10 09:48	N/A
TRIP BLANK	RTD1034-20	5.00 mL	5.00 mL	04/16/10 09:48	N/A

87/416

PREPARATION BATCH SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Batch:

10D1581

Batch Matrix:

Water

Preparation:

5030B MS

SAMPLE NAME	LAB SAMPLE ID	INITIAL	FINAL	DATE PREPARED	TOT/DIS
Blank	10D1581-BLK1	5.00 mL	5.00 mL	04/17/10 10:20	N/A
LCS	10D1581-BS1	5.00 mL	5.00 mL	04/17/10 10:20	N/A
MW-15D	RTD1034-08RE1	5.00 mL	5.00 mL	04/17/10 12:23	N/A
MW-16D	RTD1034-09RE1	5.00 mL	5.00 mL	04/17/10 12:20	N/A

Form Rev: 11/23/09 88/416 Printed: 04/21/2010

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Lab File ID:

S5057.D

Injection Date:

03/31/10

Instrument ID:

HP5973S

Injection Time:

12:43

Sequence:

T001101

Lab Sample ID:

T001101-TUN1

Calibration:

Form Rev: 11/23/09

R10C101

m/z	ION ABUNDANCE CRITERIA	 % RELATIVE ABUNDANCE	
50	15 - 40% of 95	20.1	PASS
75	30 - 60% of 95	50.842	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.8829	PASS
173	Less than 2% of 174	0	PASS
174	50 - 100% of 95	61.927	PASS
175	5 - 9% of 174	7.7453	PASS
176	95 - 101% of 174	98.176	PASS
177	5 - 9% of 176	6.6751	PASS

INITIAL CALIBRATION STANDARDS

8260B

Laboratory:

TestAmerica Buffalo

SDG:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Client: Sequence:

T001101

Instrument:

HP5973S

Calibration:

R10C101

Standard ID	Description	Lab Sample ID	Lab File ID	Analysis Date/Time
RT03585	BFB Working Standard	T001101-TUN1	S5057.D	03/31/10 12:43
RT03848	G Cal Mix - 1ppb - 3/31/10	T001101-CAL1	S5059.D	03/31/10 13:37
RT03849	G Cal Mix - 5ppb - 3/31/10	T001101-CAL2	S5060.D	03/31/10 14:02
RT03850	G Cal Mix - 10ppb - 3/31/10	T001101-CAL3	S5061.D	03/31/10 14:26
RT03851	G Cal Mix - 25ppb - 3/31/10	T001101-CAL4	S5062.D	03/31/10 14:51
RT03852	G Cal Mix - 50ppb - 3/31/10	T001101-CAL5	S5063.D	03/31/10 15:15
RT03853	G Cal Mix - 100ppb - 3/31/10	T001101-CAL6	S5064.D	03/31/10 15:39

90/416 Form Rev: 11/23/09 Printed: 04/21/2010

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Lab File ID:

S5590.D

Injection Date:

04/16/10

Instrument ID:

HP5973S

Injection Time:

<u>09:48</u>

Sequence:

T001440

Lab Sample ID:

T001440-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANO	E
50	15 - 40% of 95	19.001	PASS
75	30 - 60% of 95	47.067	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.9336	PASS
173	Less than 2% of 174	0	PASS
174	50 - 100% of 95	67.568	PASS
175	5 - 9% of 174	7.0526	PASS
176	95 - 101% of 174	99.366	PASS
177	5 - 9% of 176	5.8952	PASS

Form 5A

ANALYSIS BATCH (SEQUENCE) SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

Form Rev: 11/23/09

T001440

Instrument:

HP5973S

Calibration:

R10C101

Sample Name	Lab Sample ID	Lab File ID	Analysis Date/Time
MS Tune	T001440-TUN1	S5590.D	04/16/10 09:48
Calibration Check	T001440-CCV1	S5591.D	04/16/10 10:09
LCS	10D1488-BS1	S5592.D	04/16/10 11:00
Blank	10D1488-BLK1	S5595.D	04/16/10 12:13
MW-8R	RTD1034-01RE1	S5608.D	04/16/10 17:35
MW-13S	RTD1034-03RE1	S5609.D	04/16/10 17:59
MW-16D	RTD1034-09	S5611.D	04/16/10 18:48
DUPLICATE	RTD1034-11	S5612.D	04/16/10 19:12
MW-10	RTD1034-12	S5613.D	04/16/10 19:37
MW-4	RTD1034-16	S5614.D	04/16/10 20:01
MW-16S	RTD1034-18RE1	S5615.D	04/16/10 20:25
TRIP BLANK	RTD1034-20	S5616.D	04/16/10 20:50

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK 8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Lab File ID:

S5617.D

Injection Date:

04/17/10

Instrument ID:

HP5973S

Injection Time:

11:00

Sequence:

T001461

Lab Sample ID:

T001461-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANG	CE
50	15 - 40% of 95	19.578	PASS
75	30 - 60% of 95	48.667	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.1882	PASS
173	Less than 2% of 174	0	PASS
174	50 - 100% of 95	81.961	PASS
175	5 - 9% of 174	6.7411	PASS
176	95 - 101% of 174	97.773	PASS
177	5 - 9% of 176	6.3972	PASS

Form Rev: 11/23/09 93/416 Printed: 04/21/2010

Form 5A

ANALYSIS BATCH (SEQUENCE) SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001461

Instrument:

HP5973S

Calibration:

R10C101

Sample Name	Lab Sample ID	Lab File ID	Analysis Date/Time
MS Tune	T001461-TUN1	S5617.D	04/17/10 11:00
Calibration Check	T001461-CCV1	S5618.D	04/17/10 11:27
LCS	10D1581-BS1	S5620.D	04/17/10 12:22
Blank	10D1581-BLK1	S5621.D	04/17/10 12:47
MW-15D	RTD1034-08RE1	S5622.D	04/17/10 13:17
MW-16D	RTD1034-09RE1	S5623.D	04/17/10 13:42

94/416

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Lab File ID:

T8326.D

Injection Date:

04/06/10

Instrument ID:

HP5975T

Injection Time:

15:00

Sequence:

T001209

Lab Sample ID:

T001209-TUN1

Calibration:

Form Rev: 11/23/09

R10D026

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANO	CE .
50	15 - 40% of 95	19.534	PASS
75	30 - 60% of 95	45.464	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.9938	PASS
173	Less than 2% of 174	0	PASS
174	50 - 100% of 95	66.246	PASS
175	5 - 9% of 174	7.2341	PASS
176	95 - 101% of 174	97.913	PASS
177	5 - 9% of 176	7.275	PASS

95/416

INITIAL CALIBRATION STANDARDS

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001209

Instrument:

HP5975T

Calibration:

R10D026

Standard ID	Description	Lab Sample ID	Lab File ID	Analysis Date/Time
RT03585	BFB Working Standard	T001209-TUN1	T8326.D	04/06/10 15:00
RT04113	T CAL1 MIX 1PPB	T001209-CAL1	T8328.D	04/06/10 17:41
RT04114	T CAL2 MIX 5PPB	T001209-CAL2	T8329.D	04/06/10 18:05
RT04115	T CAL3 MIX 10PPB	T001209-CAL3	T8330.D	04/06/10 18:29
RT04116	T CAL4 MIX 25PPB	T001209-CAL4	T8331.D	04/06/10 18:53
RT04117	T CAL5 MIX 50PPB	T001209-CAL5	T8332.D	04/06/10 19:17
RT04118	T CAL6 MIX 100PPB	T001209-CAL6	T8333.D	04/06/10 19:41

Form Rev: 11/23/09 96/416 Printed: 04/21/2010

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Lab File ID:

T8562.D

Injection Date:

04/15/10

Instrument ID:

HP5975T

Injection Time:

<u>10:17</u>

Sequence:

T001413

Lab Sample ID:

T001413-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE				
50	15 - 40% of 95	22.4	PASS			
. 75	30 - 60% of 95	46.854	PASS			
95	Base peak, 100% relative abundance	100	PASS			
96	5 - 9% of 95	6.9345	PASS			
173	Less than 2% of 174	0.30283	PASS			
174	50 - 100% of 95	77.998	PASS			
175	5 - 9% of 174	7.2966	PASS			
176	95 - 101% of 174	99.947	PASS			
177	5 - 9% of 176	6.4544	PASS			

Form Rev: 11/23/09 97/416 Printed: 04/21/2010

Form 5A

ANALYSIS BATCH (SEQUENCE) SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Calibration:

R10D026

Sample Name	Lab Sample ID	Lab File ID	Analysis Date/Time
MS Tune	T001413-TUN1	T8562.D	04/15/10 10:17
Calibration Check	T001413-CCV1	T8563.D	04/15/10 10:39
LCS	10D1339-BS1	T8564.D	04/15/10 11:17
Blank	10D1339-BLK1	T8565.D	04/15/10 11:41
MW-8R	RTD1034-01	T8569.D	04/15/10 13:18
MW-9	RTD1034-02	T8570.D	04/15/10 13:42
MW-13S	RTD1034-03	T8571.D	04/15/10 14:06
MW-13D	RTD1034-04	T8572.D	04/15/10 14:30
MW-14S	RTD1034-05	T8573.D	04/15/10 14:54
MW-14D	RTD1034-06	T8574.D	04/15/10 15:18
MW-15S	RTD1034-07	T8575.D	04/15/10 15:43
MW-15D	RTD1034-08	T8576.D	04/15/10 16:07
FIELD BLANK	RTD1034-10	T8578.D	04/15/10 16:55
MW-11	RTD1034-13	T8581.D	04/15/10 18:07
MW-2	RTD1034-14	T8582.D	04/15/10 18:31
MW-3	RTD1034-15	T8583.D	04/15/10 18:55
MW-6	RTD1034-17	T8587.D	04/15/10 20:32
MW-16S	RTD1034-18	T8588.D	04/15/10 20:56
MW-12	RTD1034-19	T8589.D	04/15/10 21:20

Form Rev: 11/23/09 98/416 Printed: 04/21/2010

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Matrix:

Water

Calibration:

R10D026

Internal Standard	· · · · · · · · · · · · · · · · · · ·	1		1			1			Т
Lab File ID: T8563.D Analyzed 04/15/10 10-39	Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
1,4-Dichlorobenzene-44	Calibration Check (T001413-CCV1	<u> </u>		<u> </u>	Lab File ID: T8563.D			4/15/10 10:39	9	<u> </u>
Chlorobenzene-d5 1028932 7.95 Lab File ID: T8564_D	***************************************	 	9.86				50 - 200		+/-0.50	\prod
Chlorobenzene-d5 1028932 7.95 Lab File ID: T8564_D	1,4-Difluorobenzene	1201787	5.68				50 - 200		+/-0.50	
1,4-Dichlorobenzene-d4 381918 9,86 470395 9,86 81 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 883995 7,95 1028932 7,95 86 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 354913 9,86 470395 9,86 75 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 354913 9,86 470395 9,86 75 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 812801 7,95 1028932 7,95 79 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 812801 7,95 1028932 7,95 79 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 309140 9,86 470395 9,86 66 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 812801 7,95 1028932 7,95 79 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 80998 5,68 1201787 5,68 72 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d5 753990 7,95 1028932 7,95 73 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303308 9,86 470395 9,86 66 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303920 9,86 470395 9,86 64 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303920 9,86 470395 9,86 65 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303920 9,86 470395 9,86 65 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 303920 9,86 470395 9,86 65 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70-50 1,4-Diffuorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +		1028932	7.95				50 - 200		+/-0.50	
1,4-Dichlorobenzene-d4 381918 9,86 470395 9,86 81 50-200 0,0000 +70.50 1,4-Dichlorobenzene 1076400 5,68 1201787 5,68 90 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d5 883995 7,95 1028932 7,95 86 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 354913 9,86 470395 9,86 75 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d8 812801 7,95 1028932 7,95 79 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d8 812801 7,95 1028932 7,95 79 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 309140 9,86 470395 9,86 66 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 309140 9,86 470395 9,86 66 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d8 812801 7,95 1028932 7,95 73 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d8 80998 5,68 1201787 5,68 72 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d8 80998 5,68 1201787 5,68 72 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303308 9,86 470395 9,86 66 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303920 9,86 470395 9,86 69 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303920 9,86 470395 9,86 65 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 303920 9,86 470395 9,86 65 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70.50 1,4-Dichlorobenzene-d4 297542 9,86 470395 9,86 63 50-200 0,0000 +70	LCS (10D1339-BS1)			Lab File ID: To	8564.D	<u></u>	Analyzed: 04	4/15/10 11:1	7	
Chlorobenzene-d5 883995 7.95 1028932 7.95 86 50 - 200 0.0000 +/-0.50		381918	9.86	470395	9.86	81	50 - 200	0.0000	+/-0.50	
Rabk (10D1339-BLK1)	1,4-Difluorobenzene	1076400	5.68	1201787	5.68	90	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 354913 9,86 470395 9,86 75 50-200 0,0000 +/-0.50 1,4-Difluorobenzene 987919 5.68 1201787 5.68 82 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 812801 7.95 1028932 7.95 79 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d4 309140 9,86 470395 9,86 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 75390 7.95 1028932 7.95 73 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 75390 7.95 1028932 7.95 73 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d4 303308 9,86 470395 9,86 64 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 67838 7.95 1028932 7.95 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 67838 7.95 1028932 7.95 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 663898 7.95 1028932 7.95 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 663898 7.95 1028932 7.95 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 663898 7.95 1028932 7.95 66 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 663898 7.95 1028932 7.95 65 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63869 7.95 1028932 7.95 65 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63869 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63869 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63868 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63868 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63868 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 638669 7.95 1028932 7.95 62 50-200 0,0000 +/-0.50 1,4-Difluorobenzene-d5 63866 7.95 10	Chlorobenzene-d5	883995	7.95	1028932	7.95	86	50 - 200	0.0000	+/-0.50	
1,4-Diffluorobenzene 987919 5.68 1201787 5.68 82 50-200 0.0000 +/-0.50	Blank (10D1339-BLK1)			Lab File ID: T	8565.D	<u> </u>	Analyzed: 0	4/15/10 11:4	1	
Chlorobenzene-d5	1,4-Dichlorobenzene-d4	354913	9.86	470395	9.86	75	50 - 200	0.0000	+/-0.50	
Lab File ID: T8569.D Analyzed: 04/15/10 13:18 1,4-Dichlorobenzene-d4 309140 9.86 470395 9.86 66 50 - 200 0.0000 +/-0.50 1,4-Difflorobenzene 860998 5.68 1201787 5.68 72 50 - 200 0.0000 +/-0.50 1,4-Difflorobenzene-d5 753990 7.95 1028932 7.95 73 50 - 200 0.0000 +/-0.50 MW-9 (RTD1034-02)	1,4-Difluorobenzene	987919	5.68	1201787	5.68	82	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 309140 9.86 470395 9.86 66 50-200 0.0000 +/-0.50 1,4-Diffluorobenzene 860998 5.68 1201787 5.68 72 50-200 0.0000 +/-0.50 Chlorobenzene-d5 753990 7.95 1028932 7.95 73 50-200 0.0000 +/-0.50 Chlorobenzene-d4 303308 9.86 470395 9.86 64 50-200 0.0000 +/-0.50 1,4-Dichlorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0.0000 +/-0.50 Chlorobenzene-d5 702728 7.95 1028932 7.95 68 50-200 0.0000 +/-0.50 Chlorobenzene-d4 303920 9.86 470395 9.86 65 50-200 0.0000 +/-0.50 Chlorobenzene-d4 303920 9.86 470395 9.86 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 68 50-200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50-200 0.0000 +/-0.50 Chlorobenzene-d4 297542 9.86 470395 9.86 63 50-200 0.0000 +/-0.50 Chlorobenzene-d4 297542 9.86 470395 9.86 63 50-200 0.0000 +/-0.50 Chlorobenzene-d4 297542 9.86 470395 9.86 63 50-200 0.0000 +/-0.50 Chlorobenzene-d4 297542 9.86 470395 9.86 63 50-200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 62 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.9	Chlorobenzene-d5	812801	7.95	1028932	7.95	79	50 - 200	0.0000	+/-0.50	
1,4-Diffluorobenzene 860998 5.68 1201787 5.68 72 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 753990 7.95 1028932 7.95 73 50 - 200 0.0000 +/-0.50 MW-9 (RTD1034-02) Lab File ID: T8570.D Analyzed: ∪t/15/10 13-42 1,4-Diffluorobenzene-d4 303308 9.86 470395 9.86 64 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 829434 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 702728 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 MW-13S (RTD1034-03) Lab File ID: T8571.D Analyzed: ∪t/15/10 14:06 Ly-Diffluorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 Ly-Diffluorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab	MW-8R (RTD1034-01)			Lab File ID: T	8569.D		Analyzed: 0	4/15/10 13:1	8	-
Chlorobenzene-d5 753990 7.95 1028932 7.95 73 50 - 200 0.0000 +/-0.50 MW-9 (RTD1034-02) Lab File ID: T8570.D Analyzed: ∪4/15/10 13:42 1,4-Dichlorobenzene-d4 303308 9.86 470395 9.86 64 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 829434 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 702728 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 MW-13S (RTD1034-03) Lab File ID: T8571.D Analyzed: ∪4/15/10 14:06 1,4-Dichlorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: ∪4/15/10 14:30 1,4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 <td>1,4-Dichlorobenzene-d4</td> <td>309140</td> <td>9.86</td> <td>470395</td> <td>9.86</td> <td>66</td> <td>50 - 200</td> <td>0.0000</td> <td>+/-0.50</td> <td></td>	1,4-Dichlorobenzene-d4	309140	9.86	470395	9.86	66	50 - 200	0.0000	+/-0.50	
MW-9 (RTD1034-02) Lab File ID: T8570.D Analyzed: 04/15/10 13:42 1,4-Dichlorobenzene-d4 303308 9.86 470395 9.86 64 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 829434 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 702728 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 MW-13S (RTD1034-03) Lab File ID: T8571.D Analyzed: 04/15/10 14:05 1,4-Dichlorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 829651 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:3 1.4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000	1,4-Difluorobenzene	860998	5.68	1201787	5.68	72	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 303308 9.86 470395 9.86 64 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 829434 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 702728 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 1.4-Dichlorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 667126 7.95 1028932	Chlorobenzene-d5	753990	7.95	1028932	7.95	73	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 829434 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 MW-13S (RTD1034-03)	MW-9 (RTD1034-02)			Lab File ID: To	8570.D		Analyzed: 0	4/15/10 13:4:	2	
Chlorobenzene-d5 702728 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	303308	9.86	470395	9.86	64	50 - 200	0.0000	+/-0.50	
MW-13S (RTD1034-03) Lab File ID: T8571.D Analyzed: 04/15/10 14:06 1,4-Dichlorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 829651 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:30	1,4-Difluorobenzene	829434	5.68	1201787	5.68	69	50 - 200	0.0000	+/-0.50	Ī
1,4-Dichlorobenzene-d4 303920 9.86 470395 9.86 65 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 829651 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:30 1,4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200	Chlorobenzene-d5	702728	7.95	1028932	7.95	68	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 829651 5.68 1201787 5.68 69 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:30 1,4-Difluorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 Chlorobenze	MW-13S (RTD1034-03)			Lab File ID: T8571.D		Analyzed: 04/15/10 14:06			-	
Chlorobenzene-d5 677838 7.95 1028932 7.95 66 50 - 200 0.0000 +/-0.50 MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:30 1,4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 -	1,4-Dichlorobenzene-d4	303920	9.86	470395	9.86	65	50 - 200	0.0000	+/-0.50	
MW-13D (RTD1034-04) Lab File ID: T8572.D Analyzed: 04/15/10 14:30 1,4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 5	1,4-Difluorobenzene	829651	5.68	1201787	5.68	69	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 297542 9.86 470395 9.86 63 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 <td< td=""><td>Chlorobenzene-d5</td><td>677838</td><td>7.95</td><td>1028932</td><td>7.95</td><td>66</td><td>50 - 200</td><td>0.0000</td><td>+/-0.50</td><td></td></td<>	Chlorobenzene-d5	677838	7.95	1028932	7.95	66	50 - 200	0.0000	+/-0.50	
1,4-Diffuorobenzene 814047 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000	MW-13D (RTD1034-04)		-	Lab File ID: To	8572.D		Analyzed: 0	4/15/10 14:30	0	
Chlorobenzene-d5 663898 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	297542	9.86	470395	9.86	63	50 - 200	0.0000	+/-0.50	
MW-14S (RTD1034-05) Lab File ID: T8573.D Analyzed: 04/15/10 14:54 1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	1,4-Difluorobenzene	814047	5.68	1201787	5.68	68	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 278128 9.86 470395 9.86 59 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	Chlorobenzene-d5	663898	7.95	1028932	7.95	65	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 786649 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	MW-14S (RTD1034-05)			Lab File ID: T	8573.D		Analyzed: 04	4/15/10 14:54	4	
Chlorobenzene-d5 638769 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	278128	9.86	470395	9.86	59	50 - 200	0.0000	+/-0.50	
MW-14D (RTD1034-06) Lab File ID: T8574.D Analyzed: 04/15/10 15:18 1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	1,4-Difluorobenzene	786649	5.68	1201787	5.68	65	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 316295 9.86 470395 9.86 67 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	Chlorobenzene-d5	638769	7.95	1028932	7.95	62	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 811560 5.68 1201787 5.68 68 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	MW-14D (RTD1034-06)			Lab File ID: T	8574.D		Analyzed: 0	4/15/10 15:18	3	
Chlorobenzene-d5 667126 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	316295	9.86	470395	9.86	67	50 - 200	0.0000	+/-0.50	
	1,4-Difluorobenzene	811560	5.68	1201787	5.68	68	50 - 200	0.0000	+/-0.50	
99/416	Chlorobenzene-d5	667126	7.95	1.		65	50 - 200	0.0000	+/-0.50	

Form Rev: 11/23/09

99/416

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001413

Instrument:

HP5975T

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10D026

Response	<u> </u>									
1,4-Dichlorobenzene-44	Internal Standard	Response	RT			Area %		RT Diff		Q
	MW-15S (RTD1034-07)			Lab File ID: T	8575.D		Analyzed: 0	4/15/10 15:4:	3	
Chlorobenzene-d5	1,4-Dichlorobenzene-d4	282706	9.86	470395	9.86	60	50 - 200	0.0000	+/-0.50	
Lab File ID: T8576.D	1,4-Difluorobenzene	800460	5.68	1201787	5.68	67	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 285288 9.86 470395 9.86 61 50-200 0.0000 +/-0.50 1,4-Difluorobenzene 806101 5.68 1201787 5.68 67 50-200 0.0000 +/-0.50 1,4-Difluorobenzene-d5 715315 7.95 1028932 7.95 70 50-200 0.0000 +/-0.50 FIELD BLANK (RTD1034-10)	Chlorobenzene-d5	727507	7.95	1028932	7.95	71	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	MW-15D (RTD1034-08)			Lab File ID: T	8576.D		Analyzed: 0	4/15/10 16:0	7	
Chlorobenzene-d5	1,4-Dichlorobenzene-d4	285288	9.86	470395	9.86	61	50 - 200	0.0000	+/-0.50	
Lab File ID: T8578.D Analyzed: 04/15/10 16:55 A. Dichlorobenzene-d4 302287 9.86 470395 9.86 64 50-200 0.0000 +70.50 A. Dichlorobenzene 812464 5.68 1201787 5.68 68 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 750317 7.95 1028932 7.95 73 50-200 0.0000 +70.50 A. MW-11 (RTD1034-13) Lab File ID: T851.D Analyzed: 04/15/10 18:57 A. Dichlorobenzene-d4 290008 9.86 470395 9.86 62 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 671392 7.95 1028932 7.95 65 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 671392 7.95 1028932 7.95 65 50-200 0.0000 +70.50 A. Dichlorobenzene-d4 274007 9.86 470395 9.86 58 50-200 0.0000 +70.50 A. Dichlorobenzene 770977 5.68 1201787 5.68 64 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 694888 7.95 1028932 7.95 68 50-200 0.0000 +70.50 A. Dichlorobenzene-d4 281371 9.86 470395 9.86 64 50-200 0.0000 +70.50 A. Dichlorobenzene-d4 281371 9.86 470395 9.86 66 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 643431 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 643431 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 643431 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 643431 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzene-d5 649944 7.95 1028932 7.95 63 50-200 0.0000 +70.50 A. Dichlorobenzen	1,4-Difluorobenzene	806101	5.68	1201787	5.68	67	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 1302287 9,86 470395 9,86 64 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene 1312464 5,68 1201787 5,68 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 750317 7,95 1028932 7,95 73 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d4 290008 9,86 470395 9,86 62 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 671392 7,95 1028932 7,95 65 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 671392 7,95 1028932 7,95 65 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d4 274007 9,86 470395 9,86 58 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 69488 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 643431 7,95 1028932 7,95 68 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 643431 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 643431 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 643431 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 643431 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 64944 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 649944 7,95 1028932 7,95 63 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 687260 7,95 1028932 7,95 67 50 - 200 0,0000 + 7-0.50 1,4-Difluorobenzene-d5 68726	Chlorobenzene-d5	715315	7.95	1028932	7.95	70	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	FIELD BLANK (RTD1034-10)			Lab File ID: To	8578.D		Analyzed: 0	4/15/10 16:5	5	
Chlorobenzene-d5 750317 7.95 1028932 7.95 73 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	302287	9.86	470395	9.86	64	50 - 200	0.0000	+/-0.50	
Lab File ID: T8581.D Analyzed: 04/15/10 18:07	1,4-Difluorobenzene	812464	5.68	1201787	5.68	68	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 290008 9.86 470395 9.86 62 50-200 0.0000 +/-0.50 1,4-Diffluorobenzene 776454 5.68 1201787 5.68 65 50-200 0.0000 +/-0.50 Chlorobenzene-d5 671392 7.95 1028932 7.95 65 50-200 0.0000 +/-0.50 MW-2 (RTD1034-14) Lab File ID: T8582.D Analyzed: 04/15/10 18:31 1,4-Dichlorobenzene-d4 274007 9.86 470395 9.86 58 50-200 0.0000 +/-0.50 1,4-Difluorobenzene 770977 5.68 1201787 5.68 64 50-200 0.0000 +/-0.50 MW-3 (RTD1034-15) Lab File ID: T8583.D Analyzed: 04/15/10 18:55 1,4-Difluorobenzene-d4 281371 9.86 470395 9.86 60 50-200 0.0000 +/-0.50 1,4-Difluorobenzene-d5 643431 7.95 1028932 7.95 63 50-200 0.0000 +/-0.50 Chlorobenzene-d5 643431 7.95 1028932 7.9	Chlorobenzene-d5	750317	7.95	1028932	7.95	73	50 - 200	0.0000	+/-0.50	
1,4-Diffluorobenzene-d5	MW-11 (RTD1034-13)			Lab File ID: To	8581.D		Analyzed: 0	4/15/10 18:0	7	
Chlorobenzene-d5 671392 7.95 1028932 7.95 65 50 - 200 0.0000 +/-0.50 MW-2 (RTD1034-14) Lab File ID: TSS2.D Analyzed: □4/15/10 18:31 1,4-Dichlorobenzene-d4 274007 9.86 470395 9.86 58 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 770977 5.68 1201787 5.68 64 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 694888 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 MW-3 (RTD1034-15) Lab File ID: TSS3.D Analyzed: □4/15/10 18:55 1,4-Dichlorobenzene-d4 281371 9.86 470395 9.86 60 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene-d5 643431 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-6 (RTD1034-17) Lab File ID: TSS7.D Analyzed: □4/15/10 20:32 1,4-Difluorobenzene-d4 261456 9.86	1,4-Dichlorobenzene-d4	290008	9.86	470395	9.86	62	50 - 200	0.0000	+/-0.50	
Lab File ID: T8582.D	1,4-Difluorobenzene	776454	5.68	1201787	5.68	65	50 - 200	0.0000	+/-0.50	<u> </u>
1,4-Dichlorobenzene-d4 274007 9.86 470395 9.86 58 50 - 200 0.0000 +/-0.50 1,4-Diffuorobenzene 770977 5.68 1201787 5.68 64 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 694888 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 1.4-Dichlorobenzene-d4 281371 9.86 470395 9.86 60 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene 787397 5.68 1201787 5.68 66 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 643431 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Diffuorobenzene-d5 642570 7.95 1028932 7.9	Chlorobenzene-d5	671392	7.95	1028932	7.95	65	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 770977 5.68 1201787 5.68 64 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 694888 7.95 1028932 7.95 68 50 - 200 0.0000 +/-0.50 MW-3 (RTD1034-15) Lab File ID: T8583.D Analyzed: 04/15/10 18:55 Analyzed: 04/15/10 18:55 1,4-Dichlorobenzene-d4 281371 9.86 470395 9.86 60 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 787397 5.68 1201787 5.68 66 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 643431 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-6 (RTD1034-17) Lab File ID: T8587.D Analyzed: 04/15/10 20:32 Analyzed: 04/15/10 20:32 1,4-Difluorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 <td>MW-2 (RTD1034-14)</td> <td></td> <td></td> <td>Lab File ID: To</td> <td>8582.D</td> <td></td> <td>Analyzed: 0</td> <td>4/15/10 18:3</td> <td>1</td> <td></td>	MW-2 (RTD1034-14)			Lab File ID: To	8582.D		Analyzed: 0	4/15/10 18:3	1	
Chlorobenzene-d5	1,4-Dichlorobenzene-d4	274007	9.86	470395	9.86	58	50 - 200	0.0000	+/-0.50	<u> </u>
MW-3 (RTD1034-15)	1,4-Difluorobenzene	770977	5.68	1201787	5.68	64	50 - 200	0.0000	+/-0.50	<u> </u>
1,4-Dichlorobenzene-d4	Chlorobenzene-d5	694888	7.95	1028932	7.95	68	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 787397 5.68 1201787 5.68 66 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 643431 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-6 (RTD1034-17) Lab File ID: T8587.D Analyzed: 04/15/10 20:32 1,4-Dichlorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-168 (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50 1.4-Difluorobenzene-d	MW-3 (RTD1034-15)			Lab File ID: To	8583.D		Analyzed: 0	4/15/10 18:5:	5	
Chlorobenzene-d5 643431 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-6 (RTD1034-17) Lab File ID: T8587.D Analyzed: 04/15/10 20:32 1,4-Dichlorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 <td>1,4-Dichlorobenzene-d4</td> <td>281371</td> <td>9.86</td> <td>470395</td> <td>9.86</td> <td>60</td> <td>50 - 200</td> <td>0.0000</td> <td>+/-0.50</td> <td></td>	1,4-Dichlorobenzene-d4	281371	9.86	470395	9.86	60	50 - 200	0.0000	+/-0.50	
MW-6 (RTD1034-17) Lab File ID: T8587.D Analyzed: 04/15/10 20:32 1,4-Dichlorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50	1,4-Difluorobenzene	787397	5.68	1201787	5.68	66	50 - 200	0.0000	+/-0.50	<u></u>
1,4-Dichlorobenzene-d4 261456 9.86 470395 9.86 56 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50	Chlorobenzene-d5	643431	7.95	1028932	7.95	63	50 - 200	0.0000	+/-0.50	<u> </u>
1,4-Diffuorobenzene 749028 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Diffluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 <td>MW-6 (RTD1034-17)</td> <td></td> <td></td> <td>Lab File ID: To</td> <td>8587.D</td> <td></td> <td>Analyzed: 0</td> <td>4/15/10 20:3</td> <td>2</td> <td></td>	MW-6 (RTD1034-17)			Lab File ID: To	8587.D		Analyzed: 0	4/15/10 20:3	2	
Chlorobenzene-d5 649944 7.95 1028932 7.95 63 50 - 200 0.0000 +/-0.50 MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	261456	9.86	470395	9.86	56	50 - 200	0.0000	+/-0.50	
MW-16S (RTD1034-18) Lab File ID: T8588.D Analyzed: 04/15/10 20:56 1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	1,4-Difluorobenzene	749028	5.68	1201787	5.68	62	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 287155 9.86 470395 9.86 61 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	Chlorobenzene-d5	649944	7.95	1028932	7.95	63	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 787005 5.68 1201787 5.68 65 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	MW-16S (RTD1034-18)			Lab File ID: T	8588.D		Analyzed: 0	4/15/10 20:5	6	
Chlorobenzene-d5 687260 7.95 1028932 7.95 67 50 - 200 0.0000 +/-0.50 MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	287155	9.86	470395	9.86	61	50 - 200	0.0000	+/-0.50	
MW-12 (RTD1034-19) Lab File ID: T8589.D Analyzed: 04/15/10 21:20 1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	1,4-Difluorobenzene	787005	5.68	1201787	5.68	65	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4 268752 9.86 470395 9.86 57 50 - 200 0.0000 +/-0.50 1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	Chlorobenzene-d5	687260	7.95	1028932	7.95	67	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene 748175 5.68 1201787 5.68 62 50 - 200 0.0000 +/-0.50 Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	MW-12 (RTD1034-19)			Lab File ID: To	8589.D		Analyzed: 0	4/15/10 21:20	0	
Chlorobenzene-d5 642570 7.95 1028932 7.95 62 50 - 200 0.0000 +/-0.50	1,4-Dichlorobenzene-d4	268752	9.86	470395	9.86	57	50 - 200	0.0000	+/-0.50	
	1,4-Difluorobenzene	748175	5.68	1201787	5.68	62	50 - 200	0.0000	+/-0.50	
	Chlorobenzene-d5	642570	7.95			62	50 - 200	0.0000	+/-0.50	

100/416

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001440

Instrument:

HP5973S

Matrix:

Water

Calibration:

R10C101

			I B C	n c	·	A 0/		DT D:C	Т
Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (T001440-CCV1)		Lab File ID: S	5591.D		Analyzed: 0	4/16/10 10:0)	<u></u>
1,4-Dichlorobenzene-d4	192606	9.05				50 - 200		+/-0.50	
1,4-Difluorobenzene	368522	4.99				50 - 200		+/-0.50	
Chlorobenzene-d5	202829	7.19				50 - 200		+/-0.50	
LCS (10D1488-BS1)			Lab File ID: S:	5592.D		Analyzed: 0	4/16/10 11:0	0	
1,4-Dichlorobenzene-d4	190817	9.05	192606	9.05	99	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	373394	4.99	368522	4.99	101	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	206161	7.19	202829	7.19	102	50 - 200	0.0000	+/-0.50	
Blank (10D1488-BLK1)			Lab File ID: S:	5595.D		Analyzed: 0	4/16/10 12:1:	3	
1,4-Dichlorobenzene-d4	165326	9.05	192606	9.05	86	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	356882	4.99	368522	4.99	97	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	192850	7.19	202829	7.19	95	50 - 200	0.0000	+/-0.50	
MW-8R (RTD1034-01RE1)			Lab File ID: S	5608.D		Analyzed: 0	4/16/10 17:3	5	
1,4-Dichlorobenzene-d4	151342	9.05	192606	9.05	79	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	331863	4.99	368522	4.99	90	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	179819	7.19	202829	7.19	89	50 - 200	0.0000	+/-0.50	
MW-13S (RTD1034-03RE1)			Lab File ID: S	5609.D		Analyzed: 0	4/16/10 17:5	9	
1,4-Dichlorobenzene-d4	158628	9.05	192606	9.05	82	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	343502	4.99	368522	4.99	93	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	183612	7.19	202829	7.19	91	50 - 200	0.0000	+/-0.50	
MW-16D (RTD1034-09)			Lab File ID: S:	5611.D		Analyzed: 0	4/16/10 18:4	8	
1,4-Dichlorobenzene-d4	149243	9.05	192606	9.05	77	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	328911	4.99	368522	4.99	89	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	177410	7.19	202829	7.19	87	50 - 200	0.0000	+/-0.50	
DUPLICATE (RTD1034-11)			Lab File ID: S:	5612.D		Analyzed: 0	4/16/10 19:1:	2	
1,4-Dichlorobenzene-d4	152794	9.05	192606	9.05	79	50 - 200	0.0000	+/-0.50	<u> </u>
1,4-Difluorobenzene	331487	4.99	368522	4.99	90	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	181399	7.19	202829	7.19	89	50 - 200	0.0000	+/-0.50	
MW-10 (RTD1034-12)			Lab File ID: S	5613.D		Analyzed: 0	4/16/10 19:3	7 ,	
1,4-Dichlorobenzene-d4	149380	9.05	192606	9.05	78	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	319751	4.99	368522	4.99	87	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	175506	7.19	202829	7.19	87	50 - 200	0.0000	+/-0.50	
MW-4 (RTD1034-16)			Lab File ID: S:	5614.D		Analyzed: 0	4/16/10 20:0	t	
1,4-Dichlorobenzene-d4	151995	9.05	192606	9.05	79	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	328117	4.99	368522	4.99	89	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	176386	7.19	202829	7.19	87	50 - 200	0.0000	+/-0.50	

Form Rev: 11/23/09

101/416

INTERNAL STANDARD AREA AND RT SUMMARY

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001440

Instrument:

HP5973S

Matrix:

Form Rev: 11/23/09

Water

Calibration:

R10C101

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
MW-16S (RTD1034-18RE1)			Lab File ID: S:	615.D		Analyzed: 0	4/16/10 20:2	5	
1,4-Dichlorobenzene-d4	156002	9.05	192606	9.05	81	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	336344	4.99	368522	4.99	91	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	182418	7.19	202829	7.19	90	50 - 200	0.0000	+/-0.50	
TRIP BLANK (RTD1034-20)			Lab File ID: S	616.D		Analyzed: 0	4/16/10 20:5	0	
1,4-Dichlorobenzene-d4	148113	9.05	192606	9.05	77	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	324741	4.99	368522	4.99	88	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	175351	7.19	202829	7.19	86	50 - 200	0.0000	+/-0.50	

102/416

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sequence:

T001461

Instrument:

HP5973S

Matrix:

Water

Calibration:

R10C101

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (T001461-CC)	V1)		Lab File ID: S:	5618.D		Analyzed: 0	4/17/10 11:2	7	
1,4-Dichlorobenzene-d4	- 192218	9.05				50 - 200		+/-0.50	<u></u>
1,4-Difluorobenzene	349630	4.99				50 - 200		+/-0.50	
Chlorobenzene-d5	195882	7.19				50 - 200		+/-0.50	
LCS (10D1581-BS1)			Lab File ID: S:	5620.D		Analyzed: 0	4/17/10 12:2	2	
1,4-Dichlorobenzene-d4	159598	9.05	192218	9.05	83	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	345725	4.99	349630	4.99	99	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	183551	7.19	195882	7.19	94	50 - 200	0.0000	+/-0.50	
Blank (10D1581-BLK1)			Lab File ID: S5621.D			Analyzed: 04/17/10 12:47			
1,4-Dichlorobenzene-d4	155336	9.05	192218	9.05	81	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	336065	4.99	349630	4.99	96	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	182223	7.19	195882	7.19	93	50 - 200	0.0000	+/-0.50	
MW-15D (RTD1034-08RE1)			Lab File ID: S:	5622.D		Analyzed: 04/17/10 13:17			
1,4-Dichlorobenzene-d4	157289	9.05	192218	9.05	82	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	336868	4.99	349630	4.99	96	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	182939	7.19	195882	7.19	93	50 - 200	0.0000	+/-0.50	
MW-16D (RTD1034-09RE1)			Lab File ID: S5623.D			Analyzed: 0	4/17/10 13:4	2	
1,4-Dichlorobenzene-d4	152420	9.05	192218	9.05	79	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	329577	4.99	349630	4.99	94	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	181689	7.19	195882	7.19	93	50 - 200	0.0000	+/-0.50	

103/416 Printed: 04/21/2010 Form Rev: 11/23/09

8260B

SDG:

Laboratory: <u>TestAmerica Buffalo</u>

Client: AECOM - Amherst, NY

Project: AECOM, Inc. - Scott Aviation site - NY3A

Matrix: Water Instrument: HP5973S

water		Instrument: HP39/38				
Analyte	MDL	MRL	Units			
1,1,1-Trichloroethane	0.82	5.0	ug/L			
1,1,2,2-Tetrachloroethane	0.21	5.0	ug/L			
1,1,2-Trichloro-1,2,2-trifluoroethane	0.31	5.0_	ug/L			
1,1,2-Trichloroethane	0.23	5.0	ug/L			
1,1-Dichloroethane	0.38	5.0	ug/L			
1,1-Dichloroethene	0.29	5.0	ug/L			
1,2,4-Trichlorobenzene	0.41	5.0	ug/L			
1,2-Dibromo-3-chloropropane	0.39	5.0	ug/L			
1,2-Dibromoethane	0.73	5.0	ug/L			
1,2-Dichlorobenzene	0.79	5.0	ug/L			
1,2-Dichloroethane	0.21	5.0	ug/L			
1,2-Dichloropropane	0.72	5.0	ug/L			
1,3-Dichlorobenzene	0.78	5.0	ug/L			
1,4-Dichlorobenzene	0.84	5.0	ug/L			
2-Butanone	1.3	25	ug/L			
2-Hexanone	1.2	25	ug/L			
4-Methyl-2-pentanone	2.1	25	ug/L			
Acetone	3.0	25	ug/L			
Benzene	0.41	5.0	ug/L			
Bromodichloromethane	0.39	5.0	ug/L			
Bromoform	0.26	5.0	ug/L			
Bromomethane	0.69	5.0	ug/L			
Carbon disulfide	0.19	5.0	ug/L			
Carbon Tetrachloride	0.27	5.0	ug/L			
Chlorobenzene	0.75	5.0	ug/L			
Chloroethane	0.32	5.0	ug/L			
Chloroform	0.34	5.0	ug/L			
Chloromethane	0.35	5.0	ug/L			
cis-1,2-Dichloroethene	0.81	5.0	ug/L			
cis-1,3-Dichloropropene	0.36	5.0	ug/L			
Cyclohexane	0.18	5.0	ug/L			
Dibromochloromethane	0.32	5.0	ug/L			
Dichlorodifluoromethane	0.68	5.0	ug/L			
Ethylbenzene	0.74	5.0	ug/L			
Isopropylbenzene	0.79	5.0	ug/L			
Methyl Acetate	0.50	5.0	ug/L			
Methylcyclohexane	0.16	5.0	ug/L			
Methylene Chloride	0.44	5.0	ug/L			

8260B

Laboratory: TestAmerica Buffalo

Client: AECOM - Amherst, NY

SDG:

Project: AECOM, Inc. - Scott Aviation site - NY3A

Matrix: Water

Form Rev: 11/23/09

Instrument: HP5973S

Analyte	MDL	MRL	Units
Methyl-t-Butyl Ether (MTBE)	0.16	5.0	ug/L
Styrene	0.73	5.0	ug/L
Tetrachloroethene	0.36	5.0	ug/L
Toluene	0.51	5.0	ug/L
trans-1,2-Dichloroethene	0.90	5.0	ug/L
trans-1,3-Dichloropropene	0.37	5.0	ug/L
Trichloroethene	0.46	5.0	ug/L
Trichlorofluoromethane	0.88	5.0	ug/L
Vinyl chloride	0.90	5.0	ug/L
Xylenes, total	0.66	15	ug/L

8260B

Laboratory: TestAmerica Buffalo

Client: AECOM - Amherst, NY

SDG:

Project: AECOM, Inc. - Scott Aviation site - NY3A

Matrix: Water

Form Rev: 11/23/09

Instrument: HP5975T

Water -		Instru	ment: HP5975	
Analyte	MDL	MRL	Units	
1,1,1-Trichloroethane	0.82	5.0	ug/L	
1,1,2,2-Tetrachloroethane	0.21	5.0	ug/L	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.31	5.0	ug/L	
1,1,2-Trichloroethane	0.23	5.0	ug/L	
1,1-Dichloroethane	0.38	5.0	ug/L	
1,1-Dichloroethene	0.29	5.0	ug/L_	
1,2,4-Trichlorobenzene	0.41	5.0	ug/L	
1,2-Dibromo-3-chloropropane	0.39	5.0	ug/L	
1,2-Dibromoethane	0.73	5.0	ug/L	
1,2-Dichlorobenzene	0.79	5.0	ug/L	
1,2-Dichloroethane	0.21	5.0	ug/L	
1,2-Dichloropropane	0.72	5.0	ug/L_	
1,3-Dichlorobenzene	0.78	5.0	ug/L	
1,4-Dichlorobenzene	0.84	5.0	ug/L	
2-Butanone	1.3	25	ug/L	
2-Hexanone	1.2	25	ug/L	
4-Methyl-2-pentanone	2.1	25	ug/L	
Acetone	3.0	25	ug/L	
Benzene	0.41	5.0	ug/L	
Bromodichloromethane	0.39	5.0	ug/L	
Bromoform	0.26	5.0	ug/L	
Bromomethane	0.69	5.0	ug/L	
Carbon disulfide	0.19	5.0	ug/L	
Carbon Tetrachloride	0.27	5.0	ug/L	
Chlorobenzene	0.75	5.0	ug/L	
Chloroethane	0.32	5.0	ug/L	
Chloroform	0.34	5.0	ug/L	
Chloromethane	0.35	5.0	ug/L	
cis-1,2-Dichloroethene	0.81	5.0	ug/L	
cis-1,3-Dichloropropene	0.36	5.0	ug/L	
Cyclohexane	0.18	5.0	ug/L	
Dibromochloromethane	0.32	5.0	ug/L	
Dichlorodifluoromethane	0.68	5.0	ug/L	
Ethylbenzene	0.74	5.0	ug/L	
Isopropylbenzene	0.79	5.0	ug/L	
Methyl Acetate	0.50	5.0	ug/L	
Methylcyclohexane	0.16	5.0	ug/L	
Methylene Chloride	0.44	5.0	ug/L	

8260B

Laboratory: TestAmerica Buffalo

Client: AECOM - Amherst, NY

SDG:

Project: AECOM, Inc. - Scott Aviation site - NY3A

Matrix: Water

Form Rev: 11/23/09

Instrument: HP5975T

Analyte	MDL	MRL	Units
Methyl-t-Butyl Ether (MTBE)	0.16	5.0	ug/L
Styrene	0.73	5.0	ug/L
Tetrachloroethene	0.36	5.0	ug/L
Toluene	0.51	5.0	ug/L
trans-1,2-Dichloroethene	0.90	5.0	ug/L
trans-1,3-Dichloropropene	0.37	5.0	ug/L
Trichloroethene	0.46	5.0	ug/L
Trichlorofluoromethane	0.88	5.0	ug/L
Vinyl chloride	0.90	5.0	ug/L
Xylenes, total	0.66	15	ug/L

107/416 Printed: 04/21/2010

MW-8R

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-01

File ID:

T8569.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 13:18

04/08/10 15:40

Solids:		Preparation:	5030B MS	Initial/Final: 5 mL / 5 mL	
Batch:	10D1339 Sequence	e: <u>T001413</u>	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND		DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		20	100	UD
79-34-5	1,1,2,2-Tetrachloroethane		20	100	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluo	roethane	20	100	UD
79-00-5	1,1,2-Trichloroethane		20	100	UD
75-34-3	1,1-Dichloroethane		20	19	ND.
75-35-4	1,1-Dichloroethene		20	100	UD
120-82-1	1,2,4-Trichlorobenzene		20	100	UD
96-12-8	1,2-Dibromo-3-chloropropa	ne	20	100	UD
106-93-4	1,2-Dibromoethane		20	100	UD
95-50-1	1,2-Dichlorobenzene		20	100	UD
107-06-2	1,2-Dichloroethane		20	100	UD
78-87-5	1,2-Dichloropropane		20	100	UD
541-73-1	1,3-Dichlorobenzene		20	100	UD
106-46-7	1,4-Dichlorobenzene		20	100	UD
78-93-3	2-Butanone		20	500	UD
591-78-6	2-Hexanone		20	500	αυ
108-10-1	4-Methyl-2-pentanone		20	500	UD
67-64-1	Acetone		20	500	UD
71-43-2	Benzene		20	100	UD
75-27-4	Bromodichloromethane		20	100	UD
75-25-2	Bromoform		20	100	UD
74-83-9	Bromomethane		20	100	UD
75-15-0	Carbon disulfide		20	100	UD
56-23-5	Carbon Tetrachloride		20	100	UD
108-90-7	Chlorobenzene		20	100	UD
75-00-3	Chloroethane	,	20	10	1D
67-66-3	Chloroform		20	100	UD
74-87-3	Chloromethane		20	100	UD
156-59-2	cis-1,2-Dichloroethene		20	1300	D
10061-01-5	cis-1,3-Dichloropropene		20	100	UD
110-82-7	Cyclohexane		20	100	UD
124-48-1	Dibromochloromethane		20	100	UD
75-71-8	Dichlorodifluoromethane		20	100	UD
100-41-4	Ethylbenzene		20	100	UD
98-82-8	Isopropylbenzene		20	100	UD
79-20-9	Methyl Acetate		20	100	UD
108-87-2	Methylcyclohexane		20	100	UD
75-09-2	Methylene Chloride		20	100	UD
1634-04-4	Methyl-t-Butyl Ether (MTB	E)	20	100	UD

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-8R

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-01

File ID:

T8569.D

Sampled:

•

Analyzed:

04/15/10 13:18

Solids:

04/08/10 15:40

Prepared:
Preparation:

04/15/10 10:24 5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1339	Sequence:	<u>T001413</u>	Calibration:	R10D026	R10D026 Instrument:	
CAS NO.	COMPOUNI)		DILUTION	CON	CONC. (ug/L)	
100-42-5	Styrene			20	1	00	UD
127-18-4	Tetrachloroet	hene		20	1	00	UD
108-88-3	Toluene			20	1	100	UD
156-60-5	trans-1,2-Dic	hloroethene		20	1		UD
10061-02-6	trans-1,3-Dic	hloropropene		20	1	100	UD
79-01-6	Trichloroethene			20	2200		ED
75-69-4	Trichlorofluoromethane		20	100		UD	
75-01-4	Vinyl chloride		20	84		JD	
1330-20-7	Xylenes, total		20	300		UD	
SYSTEM MON	NITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	21.8	87	66 - 137	D
4-Bromofluorol	benzene		25.0	19.8	79	73 - 120	D
Toluene-d8		25.0	20.3	81	71 - 126	D	
INTERNAL STANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichlorobenzene-d4		309140	9.86	470395	9.86		
1,4-Difluorober	nzene		860998	5.68	1201787	5.68	
Chlorobenzene	-d5		753990	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Vial: 51 Operator: LH Inst : 5975 T Multiplr: 1.00

Data File : H:\GCMS_VOA\T\041510\T8569.D Acq On : 15 Apr 2010 13:18 Sample : RTD1034-01@20X

Misc

Quant Time: Apr 15 13:44:48 2010

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

		_			_			,
Inte	rnal				Response		nits Dev	(Min)
1) (CI10	1,4-Difluorobenzene	5.68	3 114	860998	25.00	ug/L	0.00
			= 0.5	- 445	752000	0F 00	ug/L	1.64%
42) (CI20	Chlorobenzene-D5	7.95	5 11/	753990	23.00		3.28%
C1\ /	~ + 2 0	1,4-Dichlorobenzene-	0.86	152	309140	25 00	ug/L	
OT) (C130	1,4-bichiolobenzene	9.00	7 172	303140	20.00	6	5.72%
Syste	em Mo	onitoring Compounds						
30)	CS15	1,2-Dichloroethane-D	5.37	7 65	350287	21.83	ug/L	0.00
		mount 25.000 Rar	ige 66	5 - 137	Recove	ry =	87.32%	
43)	CS05	Toluene-D8		98			ug/L	
Spi.	ked A	amount 25.000 Rar	ige 71	L - 126	Recove	ry =	81.08%	
60) (CS10	p-Bromofluorobenzene	8.89	9 174	247080	19.75	ug/L	0.00
Spi	ked A	amount 25.000 Rar	ige 73	3 - 120	Recove	ry =	79.00%	
Targ	et Co	ompounds					QV	alue
		Dichlorodifluorome			0	N.D.		
		Chloromethane	1.71		113	N.D.	/ = /	95
	C 020	Vinyl chloride			43017	4.22	ug/L/	95
	C015	Bromomethane	2.23	94	621	N.D.	/T	83
	C025	Chloroethane Trichlorofluoromet	2.35		1784		ug/L/	8.3
	C275	Trichlorofluoromet	0.00	101	0	N.D.		
8) (C045	1,1-Dichloroethene Methylene chloride	3.14	96	5611	N.D.		
9) (C030	Methylene chloride	3.65	8 4 76	1970 1025	N.D. N.D.		
		Carbon disulfide	3.30	76 56	752	N.D.		
11)		Acrolein Acrylonitrile	3.09	53	7 52	N.D.		
12)		Action Action Acetone	3.25	43		N.D.		
13) (3.53	41	1257	N.D.		
15)				142	0	N.D.		
16)		1,1,2 Trichloro-1,		101	Ö	N.D.		
17)		T-butyl Methyl Eth	0.00	73	Ō	N.D.		
18)			3.86	96	1620	N.D.		
19)		Methyl Acetate	3.55		290	N.D.	,	
20)		1,1-Dichloroethane		4 63	23589	0.97	ug/L /	98
21)			4.28	43	73	N.D.	,	
22)		2,2-Dichloropropan	0.00	77	0	N.D.		
23)		cis-1,2-Dichloroethe		2 96	903717	64.58	ug/L #	8
24)		Tetrahydrofuran	4.96		4649	N.D.	ŕ	
25)	C222	Bromochloromethane		128	0	N.D.		
26)	C060	Chloroform	4.98	83	659	N.D.		
	C115	1,1,1-Trichloroeth	5.11	97	953	N.D.		
28)	C120	Carbon tetrachlori	0.00	117	0	N.D.		
29)	C116	1,1-Dichloropropen	0.00	75	0	N.D.		
	C165	Benzene	5.39	78	2587	N.D.		
32)	C065	1,2-Dichloroethane	5.43	62	102	N.D.		
	C110	2-Butanone	4.75	43	1706	N.D.		
33)		Q 3 - 3 - 3	5.13	56	94	N.D.		
33) 34)	C256	Cyclohexane			1 40 6555	107 70	33 er / T	0
33) 34) 35)	C256 C150	Trichloroethene	5.89	9 95	1486755	107.78	ug/L /	91
33) 34) 35)	C256 C150 C140	Trichloroethene 1,2-Dichloropropan	5.89	9 95 63	0	N.D.	ug/L /	98
33) 34) 35) 36) 37)	C256 C150 C140 C278	Trichloroethene 1,2-Dichloropropan Dibromomethane	5.89 0.00 0.00	9 95 63 93	0 0	N.D.	ug/L/	98
33) 34) 35) 36) 37) 38)	C256 C150 C140	Trichloroethene 1,2-Dichloropropan	5.89	9 95 63	0	N.D.	ug/L /	98

Data File : H:\GCMS_VOA\T\041510\T8569.D
Acq On : 15 Apr 2010 13:18
Sample : RTD1034-01@20X Vial: 51 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 15 13:44:48 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44)	C230	Toluene	6.86	92	1529	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.72	43	154	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	O	N.D.	
53)	C215	2-Hexanone	7.35	43	84	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.03	91	197	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.90	105	248	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.08	91	75	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	9.88	146	79	N.D.	
76)	C309	4-Isopropyltoluene	9.76	119	394	N.D.	
77)	C267	1,4-Dichlorobenzen	9.88	146	79	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
	C310	n-Butylbenzene	10.12	91	166	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
	C314	Naphthalene	11.76	128	190	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Vial: 51 Operator: LH : 5975 T Inst Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:44:48 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

MW-8R

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-01RE1

File ID:

S5608.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 17:35

Solids:

Form Rev: 11/23/09

04/08/10 15:40

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Solius; .		C 171 di	Plociol July 5 mil	TIDE072C
Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	40	200	UD
79-34-5	1,1,2,2-Tetrachloroethane	40	200	. UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	40	200	UD
79-00-5	1,1,2-Trichloroethane	40	200	UD
75-34-3	1,1-Dichloroethane	40	21	ъ
75-35-4	1,1-Dichloroethene	40	200	UD
120-82-1	1,2,4-Trichlorobenzene	40	200	UD
96-12-8	1,2-Dibromo-3-chloropropane	40	200	UD
106-93-4	1,2-Dibromoethane	40	200	UD
95-50-1	1,2-Dichlorobenzene	40	200	UD
107-06-2	1,2-Dichloroethane	40	200	UD
78-87-5	1,2-Dichloropropane	40	200	UD
541-73-1	1,3-Dichlorobenzene	40	200	UD
106-46-7	1,4-Dichlorobenzene	40	200	UD
78-93-3	2-Butanone	40	1000	UD
591-78-6	2-Hexanone	40	1000	UD
108-10-1	4-Methyl-2-pentanone	40	1000	UD
67-64-1	Acetone	40	1000	UD
71-43-2	Benzene	40	200	UD
75-27-4	Bromodichloromethane	40	200	UD
75-25-2	Bromoform	40	200	UD
74-83-9	Bromomethane	40	200	UD
75-15-0	Carbon disulfide	40_	200	UD
56-23-5	Carbon Tetrachloride	40	200	UD
108-90-7	Chlorobenzene	40	200	UD
75-00-3	Chloroethane	40	200	UD
67-66-3	Chloroform	40	200	UD
74-87-3	Chloromethane	40	200	UD
156-59-2	cis-1,2-Dichloroethene	40	1400	D
10061-01-5	cis-1,3-Dichloropropene	40	200	UD
110-82-7	Cyclohexane	40	200	UD
124-48-1	Dibromochloromethane	40	200	UD ·
75-71-8	Dichlorodifluoromethane	40	200	UD
100-41-4	Ethylbenzene	40	200	UD
98-82-8	Isopropylbenzene	40	200	UD
79-20-9	Methyl Acetate	40	200	UD
108-87-2	Methylcyclohexane	40	200	UD
75-09-2	Methylene Chloride	40	200	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	40	200	UD

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-8R

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-01RE1

File ID:

S5608.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 17:35

Solids:

04/08/10 15:40

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1488	Sequence:	<u>T001440</u>	Calibration:	R10C101 Instrument:		HP5973S
CAS NO.	COMPOUND)		DILUTION	CONC	CONC. (ug/L)	
100-42-5	Styrene			40	2	.00	UD
127-18-4	Tetrachloroetl	nene		40	2	00	UD .
108-88-3	Toluene			40	2	00	UD
156-60-5	trans-1,2-Dich	loroethene		40	2	.00	UD
10061-02-6	trans-1,3-Dich	loropropene		40	2	.00	UD
79-01-6	Trichloroethene			40	2:	D	
75-69-4	Trichlorofluoromethane		40	200		UD	
75-01-4	Vinyl chloride		40	91		Ъ	
1330-20-7	Xylenes, total			40	600		UD
SYSTEM MON	ITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25.0	29.3	117	66 - 137	D
4-Bromofluorob	enzene		25.0	27.5	110	73 - 120	D
Toluene-d8	Toluene-d8		25.0	29.0	116	71 - 126	D
INTERNAL STANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichloroben	zene-d4		151342	9.05	192606 9.05		
1,4-Difluoroben	zene		331863	4.99	368522 4.99		
Chlorobenzene-	1 5		179819	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

Vial: 19 Data File : D:\MSDCHEM\S\DATA\041610\S5608.D Acq On : 16 Apr 2010 17:35 Sample : RTD1034-01RE1040X Operator: DHC Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:29:58 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

s QA Fil	e : D:\MSDCHEM\S\DATA	A\04161	0\s559:	1.D (16 Ap	r 2010	10:09)	V
	Standards			Response	Conc Ur		ev(Min)	
1) CI10		4.99	114	331863	25.00	ug/L	0.00	. — !
42) CI20	Chlorobenzene-D5	7.19	82	179819	25.00	ug/L)
62) CI30	1,4-Dichlorobenzene-	9.05	152	151342	25.00	ug/L)
System M	onitoring Compounds	4 60	<i>c</i> =	123505	20 22	11 C / T	0.00	1
SD CSIS	1,2-Dichloroethane-D Amount 25.000 Ran	4.69	_ 137					
	Toluene-D8		98	390608	29.01	ug/L	0.00)
43) CSOS Sniked	Amount 25 000 Rai	nge 71	- 126	Recove	rv =	116.0	48	
61) CS10	Amount 25.000 Rai p-Bromofluorobenzene	8.12	1.74	114481	27.51	ug/L	0.00)
Spiked	Amount 25.000 Rai	nge 73	- 120	Recove	ry =	110.0	48	
	ompounds						Qvalue	
2) C290	Dichlorodifluorome		85	0	N.D.			
C010	Chloromethane	0.00		0	N.D.	/-	0.7	,
(4) 3020		1.53		10985	2.28	ug/L	/ 87	
5) e015		0.00	94	0	N.D.			
6) C025		0.00		0	N.D.			
7) C275				0	N.D. N.D.			
8) C045		2.59		786 1229	N.D.			
9) C030		3.04	76	321	N.D.			
10) C040 11) C036		2.77	7 O	0	N.D.			
11) C038 12) C038		0.00		Ö	N.D.			
12) C035			43	Ö	N.D.			
14) C300			41	Ö	N.D.			
15) C276			142	Ö	N.D.			
16) C291			101	0	N.D.			
17) C962	T-butyl Methyl Eth	0.00		0	N.D.			
18) C057	-	0.00		0	N.D.			
19) C255		0.00		0	N.D.			
20) coso		3.60	63	3993	0.52	ug/L	/ 93	3
21) C125		0.00	43	0	N.D.			
<u>22)</u> C051		0.00		0	N.D.		,	
23))c056		4.06		151594	33.93	ug/L	94	Ė
24) C272		0.00	42	0	N.D.			
25) C222			128	0	N.D.			
26) C060		0.00	83	0	N.D.			
27) C115	· ·	0.00	97	0	N.D.			
28) C120			117	0	N.D.			
29) C116		0.00	75 70	0	N.D.			
31) C165		4.69	78 63	166 0	И.D. И.D.			
32) C065		0.00	62 43	0	N.D.			
33) C110		0.00	43 56	0	N.D.			
34) C256 35) C150		5.17		262112	62.54	ua/T	91	L
36) C130		0.00	63	0	N.D.	ug/11	/	-
36) C140 37) C278		0.00	93	0	N.D.			. ٢٨
37) C276 38) C130		0.00	83	0	N.D.		6	N,
39) C161		0.00	63	Ő	N.D.		\	J
40) C012		5.17	83	2886	N.D.			
10, 0012	110 City 1 Cy C1 Off Charle	J . 1	00					

Data File : D:\MSDCHEM\S\DATA\041610\S5608.D

Vial: 19 Acq On : 16 Apr 2010 17:35 Operator: DHC

Inst : HP5973S : RTD1034-01RE1@40X Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 17 09:29:58 2010 Results File: R10C101-SIXPT.RES

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230		6.12	92	128	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentano	6.07	43	1487	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	О	N.D.	
53)	C215	2-Hexanone	0.00	43	0	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	7.19	91	168	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	И. D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	8.11	91	141	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
,	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306		0.00	134	0	N.D.	
73)	C307		0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	О	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	О	N.D.	
76)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0,00	146	0	N.D.	
	C249		0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	0.00	91	0	N.D.	
80)	C286		0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316		0.00	225	О	N.D.	
83)	C314		0.00	128	0	N.D.	
84)	C934		0.00	180	0	N.D.	
							

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Vial: 19 Data File: D:\MSDCHEM\S\DATA\041610\S5608.D Operator: DHC : 16 Apr 2010 17:35 Acq On : HP5973S Inst Sample : RTD1034-01RE1@40X Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:29:58 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-02

File ID: T8570.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 13:42

Solids:

Form Rev: 11/23/09

04/07/10 15:20

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solius:	Preparation: 503	OUB MS	mual/Finar. <u>5 ms / 5 mc</u>	
Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U ·
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	99	
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	2.3	J
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	16	
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	17	
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

MW-9

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-02

File ID:

T8570.D

Sampled:

Analyzed:

04/15/10 13:42

04/07/10 15:20

Prepared:

04/15/10 10:24

Solids:		Prepar	ration: <u>5030B</u>	<u>MS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1339	Sequence:	<u>T001413</u>	Calibration:	R10D026	Instrument:	HP5975T
CAS NO.	COMPOUND			DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			1	4	U	
127-18-4	Tetrachloroeth	ene		1	4	U	
108-88-3	Toluene			1		5.0	U
156-60-5	trans-1,2-Dichl	trans-1,2-Dichloroethene				5.0	U
10061-02-6	trans-1,3-Dichloropropene			1		5.0	U
79-01-6	Trichloroethene			1		U	
75-69-4	Trichlorofluoromethane			1		5.0	U
75-01-4	Vinyl chloride			11		19	
1330-20-7	Xylenes, total			1		U	
SYSTEM MON	ITORING COMI	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25.0	22,2	89	66 - 137	
4-Bromofluorob	enzene		25.0	20.2	81	73 - 120	
Toluene-d8			25.0	20.7	83	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		303308	9.86	470395	9.86	
1,4-Difluoroben	zene		829434	5.68	1201787	5.68	<u> </u>
Chlorobenzene-	d5		702728	7.95	1028932	7.95	

^{*} Values outside of QC limits

Data File : H:\GCMS_VOA\T\041510\T8570.D
Acq On : 15 Apr 2010 13:42
Sample : RTD1034-02
Misc : Vial: 52 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:26:40 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

DataAcq Me IS QA File	eth : VOA.M e : H:\GCMS_VOA\T\04	1510\T8	3563.D	(15 Apr 20	10 10:3	39)	W.
Internal	Standards	R.T.	QIon	Response	Conc Ur		ev(Min) cv(Ar)
1) CI10	1,4-Difluorobenzene	5.68	3 114	829434	25.00	ug/L	0.00 69.02%
42) CI20	Chlorobenzene-D5	7.95	117	702728	25.00	ug/L	0.00
61) CT30	1,4-Dichlorobenzene-	9 86	152	303308	25.00	ua/L	
01/ 0130	1,4 Dichiologenzene	J.00	, 102			J / -	64.48%
System Mo	onitoring Compounds 1,2-Dichloroethane-D		. 65	312101	22 16	ua/T.	0.00
30) CSIS Spiked 7	1,2-Dichtoroethane-D Amount 25.000 Ra	nge 66	5 - 137	Recove	ry =	88.6	4 %
43) CS05	Toluene-D8	6.81	. 98	943562	20.66	ug/L	0.00
Spiked A	Amount 25.000 Ra	nge 71	126	Recove	ry =	82.6	
60) CS10	p-Bromofluorobenzene	8.90	$\begin{array}{ccc} 174 \\ 120 \end{array}$	235166	20.1/	ug/ь 80 б	0.00
Spiked A	Amount 25.000 Ra	.nge /3	5 - 120	Recove	ту —	00.0	5 5
Target Co	ompounds						Qvalue
2) C290				0	N.D.		
3) C010	Chloromethane	1.71		1276	N.D.	/ 7	/ 99
		1.84		182862 208	18.60 N.D.	ug/L	/ 99
5) C015 6) C025	Bromomethane	2.20	94 5 64	53528	15.66	ua/L	92
7) C275		0.00	101	0	N.D.		/
8) C045	1.1-Dichloroethene	3.15		2055	N.D.		
9) C030		3.64	84	1027	N.D.		
10) C040	Carbon disulfide	3.36		833	N.D.		
11) C036		3.08		322	N.D.		
12) C038		0.00 3.25	53 43	0 5347	N.D. N.D.		
13) C035 14) C300		3.49		295	N.D.		
15) C276		3.30	142	1652	N.D.		
16) C291				0	N.D.		
17) C962	T-butyl Methyl Eth	0,00	73	0	N.D.		
18) C057	trans-1,2-Dichloro	3.87		5258	N.D.		
19) C255 20) C050		3.52	43 1 63	295 2319928	N.D.	ug/L	/ 99
21) C125				323	и.р.	ug/ 11	
22) C051				81	N.D.		
23) C056	cis-1,2-Dichloroethe			232187		ug/L	
24) C272	Tetrahydrofuran	4.95		54843		ug/L	# 78
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) C060		4.97	83 97	75 8332	N.D. N.D.		
27) C115 28) C120	1,1,1-Trichloroeth Carbon tetrachlori	5.10 5.18	117	81	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165	Benzene	5.39	78	1747	N.D.		,
(32) C065	1,2-Dichloroethane	5.43		43111		ug/L	/ 89
33) C110		4.73	43	2040	N.D.		
34) C256	Cyclohexane Trichloroethene	0.00 5.89	56 95	0 1400	N.D. N.D.		
35) C150 36) C140		0.00	95 63	0	N.D.		-
37) C278	Dibromomethane	0.00	93	Ö	N.D.		
38) C130	Bromodichlorometha	0.00	83	0	N.D.		۱ م.
39) C161		0.00	63	0	N.D.		(M,127)
40) C012	Methylcycolhexane	0.00	83	0	N.D.		∪ <i>\\\</i> ν

Data File: H:\GCMS_VOA\T\041510\T8570.D
Acq On: 15 Apr 2010 13:42
Sample: RTD1034-02 Vial: 52 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:26:40 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C230 Toluene	6.85	92	2033	N.D.	
45) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
47) C160 1,1,2-Trichloroeth	7.19	83	1458	N.D.	
48) C210 4-Methyl-2-pentano	6.70	43	291	N.D.	
49) C220 Tetrachloroethene	0.00	166	0	N.D.	
50) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155 Dibromochlorometha	0.00	129	0	N.D.	
52) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215 2-Hexanone	7.36	43	176	N.D.	
54) C235 Chlorobenzene	7.97	112	204	N.D.	
55) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C240 Ethylbenzene	8.02	91	1119	N.D.	
57) C246 m,p-Xylene	8.12	106	607	N.D.	
58) C247 o-Xylene	8.45	106	137	N.D.	
59) C245 Styrene	8.47	104	82	N.D.	
62) C180 Bromoform	0.00	173	0	N.D.	
63) C966 Isopropylbenzene	8.89	105	258	N.D.	
64) C301 Bromobenzene	0.00	156	0	N.D.	
65) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C283 t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68) C302 n-Propylbenzene	9.06	91	609	N.D.	
69) C303 2-Chlorotoluene	0.00	126	0	N.D.	
70) C289 4-Chlorotoluene	0.00	126	0	N.D.	
71) C304 1,3,5-Trimethylben	9.20	105	142	N.D.	
72) C306 tert-Butylbenzene	0.00	134	0	N.D.	
73) C307 1,2,4-Trimethylben	9.53	105	959	N.D.	
74) C308 sec-Butylbenzene	9.53	105	959	N.D.	
75) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
76) C309 4-Isopropyltoluene		119	289	N.D.	
77) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
·	0.00	146	0	N.D.	
79) C310 n-Butylbenzene	10.11	91	160	N.D.	
80) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
·	0.00		0	N.D.	
83) C314 Naphthalene	11.75		484	N.D.	
84) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
					· ·

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Operator: LH : 5975 T Inst Multiplr: 1.00

Vial: 52

Misc MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:40 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-03

File ID:

T8571.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 14:06

Solids:

04/07/10 17:10

Preparation:

5030B MS

Initial/Final:

<u>5 mL / 5 mL</u>

Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	10	10	Ъ
79-34-5	1,1,2,2-Tetrachloroethane	10	50	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	50	UD
79-00-5	1,1,2-Trichloroethane	10	50	UD
75-34-3	1,1-Dichloroethane	10	16	л
75-35-4	1,1-Dichloroethene	10	13	л
120-82-1	1,2,4-Trichlorobenzene	10	50	UD
96-12-8	1,2-Dibromo-3-chloropropane	10	50	UD
106-93-4	1,2-Dibromoethane	10	50	UD
95-50-1	1,2-Dichlorobenzene	10	50	UD
107-06-2	1,2-Dichloroethane	10	50	UD
78-87-5	1,2-Dichloropropane	10	50	UD
541-73-1	1,3-Dichlorobenzene	10	50	UD
106-46-7	1,4-Dichlorobenzene	10	50	UD
78-93-3	2-Butanone	10	250	UD
591-78-6	2-Hexanone	10	250	UD
108-10-1	4-Methyl-2-pentanone	10	250	UD
67-64-1	Acetone	10	250	UD
71-43-2	Benzene	10	50	UD
75-27-4	Bromodichloromethane	10	50	UD
75-25-2	Bromoform	10	50	UD
74-83-9	Bromomethane	10	50	UD
75-15-0	Carbon disulfide	10	50	UD
56-23-5	Carbon Tetrachloride	10	50	UD
108-90-7	Chlorobenzene	10	- 50	UD
75-00-3	Chloroethane	10	50	UD
67-66-3	Chloroform	10	50	UD
74-87-3	Chloromethane	10	_50	UD
156-59-2	cis-1,2-Dichloroethene	10	1600	ED
10061-01-5	cis-1,3-Dichloropropene	10	50	UD
110-82-7	Cyclohexane	10	50	UD
124-48-1	Dibromochloromethane	10	50	UD
75-71-8	Dichlorodifluoromethane	10	50	UD
100-41-4	Ethylbenzene	10	50	UD
98-82-8	Isopropylbenzene	10	50	UD
79-20-9	Methyl Acetate	10	50	UD
108-87-2	Methylcyclohexane	10	50	UD
75-09-2	Methylene Chloride	10	50	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	10	50	UD

MW-13S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-03

File ID:

T8571.D

Preparation:

Sampled: Solids:

04/07/10 17:10

Prepared:

04/15/10 10:24

5030B MS

Analyzed: Initial/Final: 04/15/10 14:06 5 mL / 5 mL

Batch:	<u>10D1339</u>	Sequence:	T001413	Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND			DILUTION	CC	ONC. (ug/L)	Q
100-42-5	Styrene			10		50	UD
127-18-4	Tetrachloroeth	iene		10		50	UD

CAS NO.	COMPOUND		DILUTION	CONC	(ug/L)	Ų
100-42-5	Styrene		10		50	UD
127-18-4	Tetrachloroethene		10		50	UD
108-88-3	Toluene	10		50	UD	
156-60-5	trans-1,2-Dichloroethene	10	:	· ·	UD	
10061-02-6	trans-1,3-Dichloropropene	trans-1,3-Dichloropropene 10 50				UD
79-01-6	Trichloroethene	10	13	300	ED	
75-69-4	Trichlorofluoromethane	10	50		UD	
75-01-4	Vinyl chloride	10	45		л	
1330-20-7	Xylenes, total		10	150		UD
SYSTEM MON	IITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4	25.0	21.1	84	66 - 137	D
4-Bromofluorob	enzene	25.0	20.2	81	73 - 120	D
Toluene-d8		25.0	21.4	86	71 - 126	D
INTERNAL ST	ANDARD	AREA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	nzene-d4	303920	9.86	470395	9.86	
1,4-Difluoroben	zene	829651	5.68	1201787	5.68	<u> </u>
Chlorobenzene-	d5	677838	7.95	1028932	7.95	

^{*} Values outside of QC limits

Data File : H:\GCMS_VOA\T\041510\T8571.D
Acq On : 15 Apr 2010 14:06
Sample : RTD1034-03@10X

Misc

MS Integration Params: RTEINT.P Quant Time: Apr 16 09:26:48 2010

Operator: LH Inst : 5975 T Multiplr: 1.00

Results File: R10D026-6PT.RES

Vial: 53

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\0415	510\T8	563.D	(15 Apr 20	10 10:3	39)	'	W
Internal Standards					-	D /	7\ >c \
1) CI10 1,4-Difluorobenzene				25.00			
42) CI20 Chlorobenzene-D5	7.95	117	677838	25.00	ug/L		
61) CI30 1,4-Dichlorobenzene-	9.86	152	303920	25.00	ug/L		
System Monitoring Compounds	£ 0.5	<i>c</i> =	206160	01 00			0 00
30) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Rand	5.37 1e 66	- 137	326169 Recove	21.09 ry =	84.		0.00
Spiked Amount 25.000 Rang 43) CS05 Toluene-D8	6.80	98	944311	21.44	ug/L	760	0.00
Spiked Amount 25.000 Rang 60) CS10 p-Bromofluorobenzene	ge /I 8.90	174	226583	20.15	ug/L	/ ৩ ব	0.00
Spiked Amount 25.000 Rang	ge 73	- 120	Recove	ry =	80.	60%	
Target Compounds						Qva	lue
2) C290 Dichlorodifluorome C				N.D.			
	72 1.84		116 44035	N.D. 4.48	ug/L	1	99
5) CO15 Bromomethane 2	24	94		4.48 N.D.	9,		
6) CO25 Chloroethane 2	2.34			N.D.			
7) C275 Trichlorofluoromet C	3 14	101	0 14757	N.D. 1.26	na/L	#,	80
8 C045 1,1-Dichloroethene 9 C030 Methylene chloride	3.64	84	1627	N.D.	ug, 1	9	•
10) CO40 Carbon disulfide 3	3.36	76	393	N.D.			
11) C036 Acrolein 3	3.09	56	187	N.D.			
12) C038 Acrylonitrile Cost Acetone 3	0.00	53 43	0 2205	N.D. N.D.			
14) C300 Acetonitrile				N.D.			
15) C276 Iodomethane C	.00	142	O	N.D.			
16) C291 1,1,2 Trichloro-1, C		101	0	N.D.			
17) C962 T-butyl Methyl Eth 18) C057 trans-1,2-Dichloro	2.00	/3 96	0 4972	И.D. И.D.			
19) C255 Methyl Acetate	8.87 8.53	43	622	N.D.			
201 CO50 1 1-Dichloroothano	1 21	63	37445	1.59	ug/L	,	98
21) C125 Vinyl Acetate 4	1.28	43	83	N.D.		•	
22) C051 2,2-Dichloropropan 4 23) C056 cis-1,2-Dichloroethe	. 0 /	/ /	75 2150620	N.D. 159.50	1107 / T.	# /	84
	1.96	42	3799	N.D.	ug/ II	n y	01
		128	0	N.D.			
	1.98	83	603	N.D.	/ ~		0.0
27) C115 1,1,1-Trichloroethan 28) C120 Carbon tetrachlori 5	5.10 5.09	97 117	17750 2371	N.D.	ug/L		90
	0.00	75	23/1	N.D.			
	5.39	78	1426	N.D.			
·	5.38	62	327	N.D.			
	1.75	43 56	1053 0	И.D. И.D.			
34) C256 Cyclohexane (35) C150 Trichloroethene).00 5.89	95	1679863	126.38	ug/L	,	98
	0.00	63	0	N.D.	· J · ·	/	
37) C278 Dibromomethane	0.00	93	0	N.D.			CIN
,	0.00	83 63	0 0	И.D. И.D.			\mathcal{O}^{*}
39) C161 2-Chloroethylvinyl (40) C012 Methylcycolhexane	0.00 5.88	63	19064	N.D.	/-		-

Data File : H:\GCMS_VOA\T\041510\T8571.D
Acq On : 15 Apr 2010 14:06
Sample : RTD1034-03@10X Vial: 53 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:48 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.85	92	1052	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47)	C160	1,1,2-Trichloroeth	7.20	83	81	N.D.	
	C210	4-Methyl-2-pentano	6.75	43	109	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.37	43	204	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.03	91	78	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
	C245	Styrene	8.28	104	75	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.89	105	316	N.D.	
	C301	Bromobenzene	0.00	156	0	N.D.	
	C225	• • •	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
	C302	n-Propylbenzene	9.09	91	84	N.D.	
	C303	2-Chlorotoluene	0.00	126	O	N.D.	
	C289	4-Chlorotoluene	0.00	126	0	N.D.	
	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
	C308	sec-Butylbenzene	0.00	105	0	N.D.	
	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
•	C309	4-Isopropyltoluene	9.79	119	289	N.D.	
	C267		0.00	146	0	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
	C310	n-Butylbenzene	10.12	91	187	N.D.	
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313		0.00	180	0	N.D.	
	C316		0.00	225	0	N.D.	
	C314	Naphthalene	11.76		76	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Misc

Operator: LH Inst : 5975 T Multiplr: 1.00

Vial: 53

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:48 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-03RE1

File ID:

S5609.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 17:59

Solids:

04/07/10 17:10

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1488</u>	Sequence:	<u>T001440</u>	Calibration:	R10C101	Instrument:	<u>HP5973S</u>

Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	25	120	UD
79-34-5	1,1,2,2-Tetrachloroethane	25	120	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	25	120	UD
79-00-5	1,1,2-Trichloroethane	25	120	UD
75-34-3	1,1-Dichloroethane	25	16)D
75-35-4	1,1-Dichloroethene	25	14	JD
120-82-1	1,2,4-Trichlorobenzene	25	120	UD
96-12-8	1,2-Dibromo-3-chloropropane	25	120	UD
106-93-4	1,2-Dibromoethane	25	120	UD
95-50-1	1,2-Dichlorobenzene	25	120	UD
107-06-2	1,2-Dichloroethane	25	120	UD
78-87-5	1,2-Dichloropropane	25	120	UD
541-73-1	1,3-Dichlorobenzene	25	120	UD
106-46-7	1,4-Dichlorobenzene	25	120	UD
78-93-3	2-Butanone	25	620	UD .
591-78-6	2-Hexanone	25	620	UD
108-10-1	4-Methyl-2-pentanone	25	620	UD
67-64-1	Acetone	25	620	UD
71-43-2	Benzene	25	120	UD
75-27-4	Bromodichloromethane	25	120	UD
75-25-2	Bromoform	25	120	UD
74-83-9	Bromomethane	25	120	UD
75-15-0	Carbon disulfide	25	120	UD
56-23-5	Carbon Tetrachloride	25	120	UD
108-90-7	Chlorobenzene	25	120	UD
75-00-3	Chloroethane	25	120	UD
67-66-3	Chloroform	25	120	UD
74-87-3	Chloromethane	25	120	UD
156-59-2	cis-1,2-Dichloroethene	25	1600	D
10061-01-5	cis-1,3-Dichloropropene	25	120	UD
110-82-7	Cyclohexane	25	120	UD
124-48-1	Dibromochloromethane	25	120	UD
75-71-8	Dichlorodifluoromethane	25	120	UD
100-41-4	Ethylbenzene	25	120	UD
98-82-8	Isopropylbenzene	25	120	UD
79-20-9	Methyl Acetate	25	120	UD
108-87-2	Methylcyclohexane	25	120	UD
75-09-2	Methylene Chloride	25	120	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	25	120	UD

139/416 Form Rev: 11/23/09

MW-13S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-03RE1

File ID: S5609.D

Sampled:

Analyzed:

04/16/10 17:59

Solids:

04/07/10 17:10

Prepared:

04/16/10 09:48

Initial/Final:

Solids:		Prepa	ration:	5030B M	<u>1S</u>	Initial/Final:	<u>5 mL / 5 mL</u>		
Batch:	10D1488	Sequence:	<u>T001440</u>		Calibration:	R10C101	Instrument:	HP5973S	
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q	
100-42-5	Styrene				25	1	UD		
127-18-4	Tetrachloroeth	iene			25	1	UD		
108-88-3	Toluene				25	1	20	UD	
156-60-5	trans-1,2-Dich	loroethene			25	1	20	UD	
10061-02-6	6 trans-1,3-Dichloropropene 25				1	20	UD		
79-01-6	Trichloroethene			25	14	D			
75-69-4	Trichlorofluor	Trichlorofluoromethane			25	1	20	UD	
75-01-4	Vinyl chloride				25	4	46		
1330-20-7	Xylenes, total				25	3	UD		
SYSTEM MON	ITORING COM	POUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroetha	ane-d4		25	5.0	28.3	113	66 - 137	D	
4-Bromofluorob	enzene		25	5.0	26.5	106	73 - 120	D	
Toluene-d8			25	5.0	28.7	115	71 - 126	D	
INTERNAL ST.	ANDARD		AR	REA	RT	REF AREA	REF RT	Q	
1,4-Dichloroben	zene-d4		158	628	9.05	192606	9.05		
1,4-Difluoroben	zene		343	502	4.99	368522	4.99		
Chlorobenzene-	d5		183	612	7.19	202829	7.19		

^{*} Values outside of QC limits

Data File : D:\MSDCHEM\S\DATA\041610\S5609.D
Acq On : 16 Apr 2010 17:59
Sample : RTD1034-03RE1@25X Vial: 20 Operator: DHC Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:04 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Internal :	Standards						
1) CI10		4.99	114	343502	25.00	ug/L	0.00 93.21%
42) CI20	Chlorobenzene-D5	7.19	82	183612	25.00	ug/L	0.00
62) CI30	1,4-Dichlorobenzene-	9.05	152	158628	25.00	ug/L	
System Mo:	nitoring Compounds					/ -	0.00
30) CS15 Spiked A	1,2-Dichloroethane-D mount 25.000 Ra Toluene-D8 mount 25.000 Ra	4.69 nge 66	65 - 137	123477 Recove:	28.33 ry =	ug/L 113.3	0.00 2% 0.00
43) CS05 Spiked A	Toluene-D8 mount 25.000 Ra	6.07 nge 71	- 126	394257 Recove	zo.67 ry =	114.6	8%
61) CS10	p-Bromofluorobenzene mount 25.000 Ra	8.12	1/4	117200	20.40	ug/ L	0.00
Target Co	mpounds						Qvalue
2) C290	Dichlorodifluorome Chloromethane	0.00	85 50	0	N.D. N.D.		
((4)) co20	Vinyl chloride	1.53	62	9230	1.85	ug/L	/ 82
57 C015	Bromomethane	0.00	94 64	0	И.D. И.D.		
C275	Chloroethane Trichlorofluoromet	0.00	101	0	N.D.		
(8) c045	1,1-Dichloroethene	2.59	96	1944 1290	0.56 N.D.	ug/L	82
9) C030	Methylene chloride Carbon disulfide	3.05 2.77	84 76	271	N.D.		_
11) C036	Acrolein	0.00	56	0	N.D.		
12) C038		0.00	53	0	N.D.		
		0.00	43				
14) C300				0 0			
15) C276	Iodomethane		142	0	N.D. N.D.		
16) C291	1,1,2-Trichloro-1, T-butyl Methyl Eth	0.00	73	0	N.D.		
17) C962 18) C057		3 25	96	323	N.D.		
19) C255		0.00	43	0	N.D.		
(20) C050		3.60	63	5117	0.64	ug/L	/ 98
21) C125	Vinyl Acetate	0.00	43	0	N.D.	•	
22) C051	2.2-Dichloropropan	0.00	77	0	N.D.		0.0
(Z3) C056	cis-1,2-Dichloroethe	4.06	96	295748		ug/L	98
24) 6272		0.00		0	N.D. N.D.		
25) C222		0.00		0	N.D.		
26) C060	Chloroform 1,1,1-Trichloroeth	0.00 4.41	83 97	3036	N.D.		
27) C115 28) C120	Carbon tetrachlori	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	Ō	N.D.		
31) C165	Benzene	0.00	78	0	N.D.		
32) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
33) C110	2-Butanone	0.00	43	O	N.D.		
C256	Cyclohexane	0.00	56	0	N.D.	12 or /T	/ 90
35) 150	Trichloroethene	5.17		242773 0	55.96 N.D.	ug/L	/
36) C140	1,2-Dichloropropan Dibromomethane	0.00	63 93	0	N.D.		
37) C278 38) C130	Bromodichlorometha	0.00	83	0	N.D.		
39) C161	2-Chloroethylvinyl	0.00	63	0	N.D.		(Min)
40) C012	Methylcyclohexane	5.17	83	2628	N.D.		(K. _M)

Data File : D:\MSDCHEM\S\DATA\041610\S5609.D

Vial: 20 Acq On : 16 Apr 2010 17:59 Sample : RTD1034-03RE1@25X Operator: DHC Inst : HP5973S Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:04 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Internal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C230		0.00	92	0	N.D.	
45) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C210	4-Methyl-2-pentano	6.07	43	1414	N.D.	
49) C220		0.00	166	О	N.D.	
50) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155	Dibromochlorometha	0.00	129	0	N.D.	
52) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215	2-Hexanone	0.00	43	0	N.D.	
54) C235	Chlorobenzene	0.00	112	0	N.D.	
55) C281		0.00	131	0	N.D.	
56) C240) Ethylbenzene	7.19	91	522	N.D.	
57) C246		0.00	106	0	N.D.	
58) C24		0.00	106	0	N.D.	
59) C245	Styrene	0.00	104	O	N.D.	
60) C180		0.00	173	0	N.D.	
63) C966		0.00	105	0	N.D.	
64) C301		0.00	156	0	N.D.	
65) C225		0.00	83	0	N.D.	
66) C282	• •	0.00	110	0	N.D.	
67) C283		0.00	51	0	N.D.	
68) C302		8.12	91	152	N.D.	
69) C303		0.00	126	0	N.D.	
70) C289		0.00	126	0	N.D.	
71) C304		0.00	105	0	N.D.	
72) C30		0.00	134	0	N.D.	
73) C301		0.00	105	0	N.D.	
74) C308	-	0.00	105	0	N.D.	
75) C260	•	0.00	146	0	N.D.	
76) C309		0.00	119	0	N.D.	
77) C26		0.00	146	0	N.D.	
78) C249	•	0.00	146	0	N.D.	
79) C310		0.00	91	0	N.D.	
80) C28(0.00	75	0	N.D.	
81) C313		0.00	180	0	N.D.	
82) C31		0.00	225	0	N.D.	
83) C31		10.91	128	292	N.D.	
84) C93	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Data File: D:\MSDCHEM\S\DATA\041610\S5609.D Vial: 20 : 16 Apr 2010 17:59 Operator: DHC Acq On : HP5973S Inst Sample : RTD1034-03RE1@25X Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:04 2010

Quant Method: D:\MSDCHEM\s...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-04

File ID:

T8572.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 14:30

Form Rev: 11/23/09

04/07/10 16:20

Solids:	Pre	paration: 50	30B MS	Initial/Final:	5 mL / 5 mL	
Batch:	10D1339 Sequence:	T001413	Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND		DILUTION	COl	VC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		1		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1		5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroeth	nane	1		5.0	U
79-00-5	1,1,2-Trichloroethane		1		5.0	U
75-34-3	1,1-Dichloroethane		1		5.0	· U
75-35-4	1,1-Dichloroethene		1		5.0	U
120-82-1	1,2,4-Trichlorobenzene		1		5.0	υ
96-12-8	1,2-Dibromo-3-chloropropane		1		5.0	U
106-93-4	1,2-Dibromoethane		1		5.0	U
95-50-1	1,2-Dichlorobenzene		1		5.0	U
107-06-2	1,2-Dichloroethane		1		5.0	υ
78-87-5	1,2-Dichloropropane		1		5.0	ט
541-73-1	1,3-Dichlorobenzene		1		5.0	U
106-46-7	1,4-Dichlorobenzene		1		5.0	υ
78-93-3	2-Butanone		1		25	U
591-78-6	2-Hexanone		1		25	U
108-10-1	4-Methyl-2-pentanone		1		25	U
67-64-1	Acetone		1		25	U
71-43-2	Benzene		1		5.0	U
75-27-4	Bromodichloromethane		1		5.0	U
75-25-2	Bromoform		1		5.0	U
74-83-9	Bromomethane		1		5.0	U
75-15-0	Carbon disulfide		1		5.0	U
56-23-5	Carbon Tetrachloride		1		5.0	U
108-90-7	Chlorobenzene		1		5.0	U
75-00-3	Chloroethane		1		5.0	U
67-66-3	Chloroform		1		5.0	U
74-87-3	Chloromethane		1		5.0	U
156-59-2	cis-1,2-Dichloroethene		1		5.0	U
10061-01-5	cis-1,3-Dichloropropene		1		5.0	U
110-82-7	Cyclohexane		1		5.0	U
124-48-1	Dibromochloromethane		1		5.0	U
75-71-8	Dichlorodifluoromethane		1		5.0	U
100-41-4	Ethylbenzene		1		5.0	U.
98-82-8	Isopropylbenzene		1		5.0	U
79-20-9	Methyl Acetate		1		5.0	U
108-87-2	Methylcyclohexane		1		5.0	U
75-09-2	Methylene Chloride		1		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1		5.0	U

147/416

Printed: 04/21/2010

MW-13D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-04

File ID:

T8572.D

Sampled:

Giodila Water

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 14:30

Solids:

04/07/10 16:20

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

		P					-
Batch: 10D1339 Sequence:		Sequence:	<u>T001413</u>	Calibration:	<u>R10D026</u>	Instrument:	HP5975T
CAS NO.	COMPOUNI)		DILUTION	CON	C. (ug/L)	Q
100-42-5	Styrene			1		5.0	U
127-18-4	Tetrachloroet	hene		1		5.0	U
108-88-3	Toluene			1		5.0	U
156-60-5	trans-1,2-Dic	hloroethene		11		5.0	U
10061-02-6	trans-1,3-Dic	hloropropene		1		5.0	U
79-01-6	Trichloroethe	ene		1	:	5.0	U
75-69-4	Trichlorofluo	romethane		1		5.0	ט
75-01-4	Vinyl chlorid	e		11		5.0	U
1330-20-7	Xylenes, total	1		1		15	U
SYSTEM MON	IITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	21.8	87	66 - 137	
4-Bromofluorob	oenzene_		25.0	20.1	80	73 - 120	
Toluene-d8			25.0	20.9	84	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		297542	9.86	470395	9.86	
1,4-Difluorober	ızene		814047_	5.68	1201787	5.68	<u> </u>
Chlorobenzene-	-d5		663898	7.95	1028932	7.95	

^{*} Values outside of QC limits

Data File : H:\GCMS_VOA\T\041510\T8572.D
Acq On : 15 Apr 2010 14:30
Sample : RTD1034-04 Vial: 54 Operator: LH

Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:58 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

-	Inte	ernal	Standards	R.T.	QIon	Response	Conc Ur	nits D R	ev(Min) cv(Ar)
	1)	CI10	1,4-Difluorobenzene	5.68	114	814047	25.00	ug/L	0.00 67.74%
	42)	CI20	Chlorobenzene-D5	7.95	117	663898	25.00	ug/L	
	61)	CI30	1,4-Dichlorobenzene-	9,86	152	297542	25.00	ug/L	
	30) spi 43) spi 60)	CS15 iked A CS05 iked A CS10	onitoring Compounds 1,2-Dichloroethane-E Amount 25.000 Ra Toluene-D8 Amount 25.000 Ra p-Bromofluorobenzene Amount 25.000 Ra	inge 66 6.81 inge 71 e 8.90	- 137 98 - 126 174	Recove 903449 Recove 221514	ry = 20.94 ry = 20.11	87.2 ug/L 83.7 ug/L	8% 0.00 6% 0.00
			ompounds						Qvalue
	2)	C290 C010 C020 C015 C025 C045 C030 C036 C036 C0376 C2962 C2962 C2550	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2 Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane	1.85 2.24 2.35 0.00 0.00 3.64 3.36 3.10 0.00 3.25 3.63 3.31 0.00 0.00 3.87 3.55 4.24	62 94 64 101 96 84 76 56 53 41 142 101 73 96 43 63	890 4600 615 354 0 0 554 843 605 0 3993 927 866 0 0 1337 794 376	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		
	22) 23) 24) 25) 26) 27) 28) 31) 32) 33) 34) 35) 36) 37)	C123 C051 C056 C272 C222 C060 C115 C120 C165 C165 C150 C140 C278	2,2-Dichloropropan cis-1,2-Dichloroet Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene 1,2-Dichloropropan Dibromomethane	4.70 4.73 4.95 0.00 0.00 0.00 0.00 5.39 5.38 4.75 5.11 5.89 0.00	77 96 42 128 83 97 117 75 78 62 43 56 95 63 93	95 2976 1428 0 0 0 0 1284 171 1420 82 3665 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		
	38)	C130 C161	Bromodichlorometha 2-Chloroethylvinyl	0.00	83 63	0	N.D. N.D.		mil.

5.99

83

102

40) C012 Methylcycolhexane

N.D.

Data File : H:\GCMS_VOA\T\041510\T8572.D
Acq On : 15 Apr 2010 14:30
Sample : RTD1034-04 Vial: 54 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:58 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010
Response via : Initial Calibration
DataAcq Meth : VOA.M
IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.86	92	1374	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
,	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentano	6.72	43	422	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155	Dibromochlorometha	0.00	129	0	N.D.	
,	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
	C215	2-Hexanone	7.34	43	78	N.D.	
	C235	Chlorobenzene	0.00	112	0	N.D.	
	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	8.03	91	894	N.D.	
	C246	m,p-Xylene	8.12	106	631	N.D.	
	C247	o-Xylene	8,44	106	89	N.D.	
	C245	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
	C966	Isopropylbenzene	8.89	105	374	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.08	91	181	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	9.17	105	169	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	9.53	105	797	N.D.	
74)	C308	sec-Butylbenzene	9.53	105	797	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	¢309	4-Isopropyltoluene	9.77	119	102	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.14	91	109	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316		0.00	225	0	N.D.	
83)	C314	Naphthalene	11.76	128	684	N.D.	
84)	C934		0.00	180	0	N.D.	
							

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Multiplr: 1.00

Data File : H:\GCMS_VOA\T\041510\T8572.D Acq On : 15 Apr 2010 14:30 Sample : RTD1034-04 Vial: 54 Operator: LH Inst : 5975 T

Misc MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:26:58 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-05

File ID:

T8573.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 14:54

Solids:

Form Rev: 11/23/09

04/08/10 09:40

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solius:	Preparation. 303	DOB MS	mittavrinai. <u>5 mit / 5 mit</u>	
Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.9	
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	Ü
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1 .	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	0.80	J
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	0.62	J
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	4.0	J
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	ט
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	บ
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

MW-14S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-05

File ID:

T8573.D

Sampled:

Analyzed:

04/15/10 14:54

Solids:

04/08/10 09:40

Prepared:

04/15/10 10:24

Initial/Final:

Solids:		Prepa	ration:	5030B N	<u>as</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1339	Sequence:	T001413		Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND		·		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	U
127-18-4	Tetrachloroethe	ene			11	5	5.0	U
108-88-3	Toluene				1	5	5.0	U
156-60-5	trans-1,2-Dichl	oroethene			1	5	5.0	U
10061-02-6	trans-1,3-Dichl	oropropene			1	5	5.0	U
79-01-6	Trichloroethene	•			11	5	5.0	U
75-69-4	Trichlorofluoro	methane			1	5	.0	U
75-01-4	Vinyl chloride				1	5	5.0	U
1330-20-7	Xylenes, total				1	1	15	U
SYSTEM MON	TORING COME	POUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4		25	5.0	22.0	88	66 - 137	
4-Bromofluorobe	enzene		25	5.0	21.4	85	73 - 120	
Toluene-d8			25	5.0	21.2	85	71 - 126	
INTERNAL STA	ANDARD		AF	EA.	RT .	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		278	128	9.86	470395	9.86	
1,4-Difluorobenz	zene		786	649	5.68	1201787 5.68		
Chlorobenzene-c	15		638	769	7.95	1028932	7.95	

^{*} Values outside of QC limits

Data File : H:\GCMS_VOA\T\041510\T8573.D Acq On : 15 Apr 2010 14:54 Sample : RTD1034-05 Vial: 55 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:06 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

Misc

DataAcq Meth : VOA.M
IS OA File : H:\GCMS VOA\T\041510\T8563.D (15 Apr 2010 10:39)

IS QA File	: H:\GCMS_VOA\T\04	1510\T8563.I) (15 Apr 20	10:3	39)	M
Internal	Standards	R.T. QIor	n Response	Conc Un		(Min)
1) CI10	1,4-Difluorobenzene	5.68 114		25.00	ug/L	0.00 5.46%
42) CI20	Chlorobenzene-D5	7.95 117	638769	25.00	ug/L	0.00
61) CI30	1,4-Dichlorobenzene-	9.86 152	278128	25.00	ug/L	0.00 0.00 9.13%
Sustam Ma	nitoring Compounds					, <u>, , , , , , , , , , , , , , , , , , </u>
30) CS15	nitoring Compounds 1,2-Dichloroethane-D		322797			0.00
Spiked A 43) CSO5	mount 25.000 Rai Toluene-D8	nge 66 - 13 6.81 98	87 Recove 8 879144	-	88.08% ug/L	0.00
Spiked A	mount 25.000 Rai	nge 71 - 12	26 Recove	ery =	84.72%	
	p-Bromofluorobenzene mount 25,000 Rai	8.90 174 nge 73 - 12		21.37 ery =	ug/L 85.48%	0.00
Target Co	mpounds				Qv	alue
2) C290	Dichlorodifluorome	0.00 85	0	N.D.		
$\frac{3)}{40}$ C010	Chloromethane Vinyl chloride	1.71 50 1.84 62	826 2 5898	N.D. 0.63	ug/L /	96
5) C015	Bromomethane	2.23 94	868	N.D.		
6) C025	Chloroethane	2.35 64		0.62	ug/L /	67
7) C275	Trichlorofluoromet	0.00 101	0	N.D.	•	
8) C045	1,1-Dichloroethene	3.15 96	163	N.D.		
9) C030 10) C040	Methylene chloride Carbon disulfide	3.64 84 3.37 76	1008 422	N.D. N.D.		
10) C040 11) C036	Acrolein	3.08 56	630	N.D.		
12) C038	Acrylonitrile	0.00 53	0	N.D.		
13) C035	Acetone	3.25 43	7944	N.D.		
14) C300	Acetonitrile	3.52 41	651	N.D.		
15) C276	Iodomethane	0.00 142	0	N.D.		
16) C291	1,1,2 Trichloro-1,	0.00 101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00 73	0	N.D.		
18) C057	trans-1,2-Dichloro	3.87 96	4444 696	N.D. N.D.		
$\begin{array}{c} 19 \\ 20 \\ \end{array}$ C255	Methyl Acetate 1,1-Dichloroethane	3.54 43 4.24 63			ug/L /	98
21) C125	Vinyl Acetate	4.26 43	173	N.D.	ug/L/	50
22) C051	2,2-Dichloropropan	4.77 77	73	N.D.		
23) C056	cis-1,2-Dichloroethe		5 51071	3.99	ug/L #/	86
24) C272	Tetrahydrofuran	4.96 42	6938	N.D.	,	
25) C222	Bromochloromethane	0.00 128	0	N.D.		
26) C060	Chloroform	0.00 83	0	N.D.		
27) C115	1,1,1-Trichloroeth	5.09 97	1092	N.D.		
28) C120	Carbon tetrachlori	5.19 117 0.00 75	7 <i>7</i> 0	И.D. И.D.		
29) C116 31) C165	1,1-Dichloropropen Benzene	5.39 78		0.80	ug/L /	95
32) C065	1,2-Dichloroethane	5.44 62	3087	N.D.	/	
33) C110	2-Butanone	4.74 43	2082	N.D.		
34) C256	Cyclohexane	5.21 56	77	N.D.		
35) C150	Trichloroethene	5.89 95	2253	N.D.		
36) C140	1,2-Dichloropropan	0.00 63	0	N.D.		
37) C278	Dibromomethane	0.00 93	0	N.D.		.1*
38) C130 39) C161	Bromodichlorometha 2-Chloroethylvinyl	0.00 83 0.00 63	0	N.D. N.D.		UN,
40) C012	Methylcycolhexane	0.00 83	0	N.D.		$\bigcap_{i} \lambda_i \sum_{i} \lambda_i \sum_{j} \lambda_j \sum_{i} \lambda_j \sum_{j} \lambda_j \sum_{j$
10, 0012	110 011 1 1 0 1 0 0 1 11 0 1 0 11 10					٠//٥

Data File : H:\GCMS_VOA\T\041510\T8573.D
Acq On : 15 Apr 2010 14:54
Sample : RTD1034-05 Vial: 55 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:06 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C230	Toluene	6.86	92	1295	N.D.	
45) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47) C160	1,1,2-Trichloroeth	7.03	83	643	N.D.	
48) C210	4-Methyl-2-pentano		43	807	N.D.	
49) C220	Tetrachloroethene	0.00	166	0	N.D.	
50) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155	Dibromochlorometha	0.00	129	0	N.D.	
52) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215	2-Hexanone	7.35	43	169	N.D.	
54) C235	Chlorobenzene	0.00	112	Q	N.D.	
55) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C240	Ethylbenzene	8.02	91	285	N.D.	
57) C246	m,p-Xylene	8.12	106	426	N.D.	
58) C247	o-Xylene	0.00	106	0	N.D.	
59) C245	Styrene	0.00	104	0	N.D.	
62) C180	Bromoform	0.00	173	0	N.D.	
63) C966	Isopropylbenzene	8.89	105	456	N.D.	
64) C301	Bromobenzene	0.00	156	0	N.D.	
65) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68) C302	n-Propylbenzene	9.06	91	369	N.D.	
69) C303	2-Chlorotoluene	0.00	126	0	N.D.	
70) C289	4-Chlorotoluene	0.00	126	0	N.D.	
71) C304	1,3,5-Trimethylben	9.15	105	173	N.D.	
72) C306	tert-Butylbenzene	0.00	134	0	N.D.	
73) C307	1,2,4-Trimethylben	9.53	105	316	N.D.	
74) C308	sec-Butylbenzene	9.53	105	316	N.D.	
75) C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76) C309	4-Isopropyltoluene	9.80	119	1043	N.D.	
77) C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78) C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C310	n-Butylbenzene	10.15	91	167	N.D.	
80) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81) C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82) C316	Hexachlorobutadien	0.00	225	0	N.D.	
83) C314	Naphthalene	11.75	128	84	N.D.	
84) C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8573.D Acq On : 15 Apr 2010 14:54 Vial: 55 Operator: LH : RTD1034-05 : 5975 T Sample Inst Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:06 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-06

File ID: T8574.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 15:18

Solids:

Form Rev: 11/23/09

04/08/10 08:55

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Solius:	rteparation: <u>5</u>	USUB IMIS	mittal/Final. 5 inte / 5 inte	
Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	11	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	2.0	J
75-35-4	1,1-Dichloroethene	1	0.88	J J
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	11	5.0	Ŭ
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	UU
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	11	25	U
71-43-2	Benzene	11	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	11	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	υ
56-23-5	Carbon Tetrachloride	1_	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	1.5	J
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	· U
156-59-2	cis-1,2-Dichloroethene	1	99	
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	-1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

Printed: 04/21/2010

MW-14D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-06

File ID:

T8574.D

Sampled:

Analyzed:

04/15/10 15:18

Solids:

04/08/10 08:55

Prepared:

04/15/10 10:24

Initial/Final:

Solids: Preparation:		ation:	<u>5030B N</u>	<u> 18</u>	Initial/Final:	5 mL / 5 mL		
Batch:	10D1339	Sequence:	T001413		Calibration:	<u>R10D026</u>	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILUTION	CONG	Q	
100-42-5	Styrene				1	4	U	
127-18-4	Tetrachloroeth	ene			1	4	U	
108-88-3	Toluene			1		5.0	U	
156-60-5	trans-1,2-Dichloroethene			1		5.0	U	
10061-02-6	trans-1,3-Dich	loropropene			1		5.0	U
79-01-6	Trichloroether	ıe			1	9).4	
75-69-4	Trichlorofluoromethane		11		5.0	U		
75-01-4	Vinyl chloride	Vinyl chloride		1		21		
1330-20-7	Xylenes, total				1	15		U
SYSTEM MON	IITORING COM	POUND	ADDED	(ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0)	22.2	89	66 - 137	
4-Bromofluorob	enzene		25.0)	20.8	83	73 - 120	
Toluene-d8			25.0)	21.3	85	71 - 126	
INTERNAL ST	ANDARD		ARE	EA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	ozene-d4		31629	95	9.86	470395	9.86	
1,4-Difluorober	zene		81150	60	5.68	1201787	5.68	
Chlorobenzene-	·d5		66712	26	7.95	1028932	7.95	<u> </u>

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8574.D
Acq On : 15 Apr 2010 15:18
Sample : RTD1034-06 Vial: 56 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:14 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

	-			_			
Internal	Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
							(Ar)
							0 00
1) CI10	1,4-Difluorobenzene	5.68	114	811260	25.00	ug/L	0.00 7.53%
42) CT20	Chlorobenzene-D5	7 95	117	667126	25 00	ug/L	
42) 0120	CHIOLODeHZeHe-D3	7.90	11/	007120	20.00	(49, 1	4.84%
61) CT30	1,4-Dichlorobenzene-	9.86	152	316295	25.00	ug/L	
01, 010	2, 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					. 6	57.24%
	onitoring Compounds			226222	00.00	/T	0 00
30) CS15	1,2-Dichloroethane-D	5.38	65	336229		ug/L 88.92%	
	mount 25.000 Ra Toluene-D8			923964	21 31	ug/L	
43) CS05	Toluene-D8 mount 25.000 Ra		- 126	Recove			
60) CS10	p-Bromofluorobenzene	8.90	174	230721	20.84	ug/L	0.00
	mount 25.000 Ra				ry =	83.36%	5
•		-					
Target Co	mpounds					QV	ralue
	Dichlorodifluorome		85	0	N.D.		
	Chloromethane	1.72	50 62	1178 204863	N.D.	ug/L /	96
5) C015	Vinyl chloride	1.84 2.25	94	564	N.D.	ug/ b	20
6) C025	Bromomethane Chloroethane	2.35		4971	1.49	ug/L	71
7) C275	Trichlorofluoromet		101	0	N.D.		
			96	9988	0.88	ug/L #	63
9) C030	1,1-Dichloroethene Methylene chloride	3.64		485	N.D.	•	
10) C040	Carbon disulfide	3.35	76	740	N.D.		
11) C036		3.10	56 53	790	N.D.		
12) C038				0	N.D.		
13) C035		3.25	43 41	6864 910	N.D. N.D.		
14) C300 15) C276	Acetonitrile Iodomethane	3.33	142	3330	N.D.		
16) C291	1,1,2 Trichloro-1,		101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73	Ō	N.D.		
18) C057	trans-1,2-Dichloro		96	3077	N.D.		
19) C255	Methyl Acetate	3.52	43	354	N.D.		
(20) C050	1,1-Dichloroethane		63	45564	1.98	ug/L /	95
21) C125	Vinyl Acetate	4.30	43	175	N.D.		
	2,2-Dichloropropan		77 96	80 1303250	N.D.	ug/L #	/ 84
23) C056 24) C272	cis-1,2-Dichloroethe Tetrahydrofuran	4.72		17186	N.D.	ug/Li #	/ 04
25) C222	Bromochloromethane		128	0	N.D.		
26) C060	Chloroform	0.00	83	Ö	N.D.		
27) C115	1,1,1-Trichloroeth	5.11	97	3698	N.D.		
28) C120	Carbon tetrachlori	5.21	117	78	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165	Benzene	5.39	78	855	N.D.		
32) C065	1,2-Dichloroethane	5.44	62	104	N.D.		
33) C110	2-Butanone	4.74	43 56	1461 0	N.D. N.D.		
34) C256 35) C150	Cyclohexane Trichloroethene	0.00 5.89		121696		ug/L	98
35) C140	1,2-Dichloropropan	0.00	63	0	N.D.	~~ /	• ~~~
37) C278	Dibromomethane	0.00	93	Ö	N.D.	•	
38) C130	Bromodichlorometha	0.00	83	0	N.D.		_
39) C161	2-Chloroethylvinyl	6.53	63	985	N.D.		N
40) C012	Methylcycolhexane	5.89	83	1611	N.D.		V.
		16	2/416				`

Data File : H:\GCMS_VOA\T\041510\T8574.D
Acq On : 15 Apr 2010 15:18
Sample : RTD1034-06 Vial: 56 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:14 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	 C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.85	92	1174	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
-	C210	4-Methyl-2-pentano	6.71	43	361	N.D.	
	C220	Tetrachloroethene	0.00	166	O	N.D.	
	C221	1,3-Dichloropropan	0.00	76	Ο	N.D.	
	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.36	43	174	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
	C281	1, 1, 1, 2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	8.02	91	543	N.D.	
57)	C246	m,p-Xylene	8.12	106	483	N.D.	
58)	C247	o-Xylene	8.45	106	159	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	•
63)	C966	Isopropylbenzene	8.89	105	387	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.08	91	74	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	9.20	105	99	N.D.	
72)	C306	tert-Butylbenzene	9.47	134	80	N.D.	
73)	C307	1,2,4-Trimethylben	9.53	105	454	N.D.	
74)	C308	sec-Butylbenzene	9.53	105	454	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	9.78	119	385	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.12	91	91	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316	Hexachlorobutadien	0.00	225	0	N.D.	
83)	C314	Naphthalene	11.76	128	198	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8574.D Acq On : 15 Apr 2010 15:18 Sample : RTD1034-06

Operator: LH : 5975 T Inst

Misc

Multiplr: 1.00

Vial: 56

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:14 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-07

File ID:

T8575.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 15:43

Solids:

Form Rev: 11/23/09

04/08/10 13:50

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1339 Sequence: T001413	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
				UD
71-55-6	1,1,1-Trichloroethane	20	100	
79-34-5	1,1,2,2-Tetrachloroethane	20		UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	20	100	UD
79-00-5	1,1,2-Trichloroethane	20	100	UD
75-34-3	1,1-Dichloroethane	20	1400	D
75-35-4	1,1-Dichloroethene	20	36	ND ND
120-82-1	1,2,4-Trichlorobenzene	20	100	UD
96-12-8	1,2-Dibromo-3-chloropropane	20	100	UD
106-93-4	1,2-Dibromoethane	20	100	UD
95-50-1	1,2-Dichlorobenzene	20	100	UD
107-06-2	1,2-Dichloroethane	20	100	UD
78-87-5	1,2-Dichloropropane	20	100	. UD
541-73-1	1,3-Dichlorobenzene	20	100	UD
106-46-7	1,4-Dichlorobenzene	20	100	UD
78-93-3	2-Butanone	20	580	D
591-78-6	2-Hexanone	20	500	UD
108-10-1	4-Methyl-2-pentanone	20	500	UD
67-64-1	Acetone	20	2600	D
71-43-2	Benzene	20	100	UD
75-27-4	Bromodichloromethane	20	100	UD
75-25-2	Bromoform	20	100	UD
74-83-9	Bromomethane	20	100	UD
75-15-0	Carbon disulfide	20	100	UD
56-23-5	Carbon Tetrachloride	20	100	UD
108-90-7	Chlorobenzene	20	100	UD
75-00-3	Chloroethane	20	700	D
67-66-3	Chloroform	20	100	UD
74-87-3	Chloromethane	20	100	UD
156-59-2	cis-1,2-Dichloroethene	20	1900	D
10061-01-5	cis-1,3-Dichloropropene	20	100	UD
110-82-7	Cyclohexane	20	100	UD
124-48-1	Dibromochloromethane	20	100	UD
			100	UD
75-71-8	Dichlorodifluoromethane	20		
100-41-4	Ethylbenzene	20	100	UD
98-82-8	Isopropylbenzene	20	100	UD
79-20-9	Methyl Acetate	20	100	UD
108-87-2	Methylcyclohexane	20	100	UD
75-09-2	Methylene Chloride	20	100	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	20	100	UD

MW-15S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-07

File ID:

T8575.D

Sampled:

04/00/10 10 5

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 15:43

Solids:

04/08/10 13:50

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1339</u>	Sequence:	T001413	Calibration:	R10D026	Instrument:	HP5975T	
CAS NO.	COMPOUNI)		DILUTION	CONC	C. (ug/L)	Q	
100-42-5	Styrene			20	1	100		
127-18-4	Tetrachloroet	hene		20	1	100		
108-88-3	Toluene	Toluene			1	80	D	
156-60-5	trans-1,2-Dichloroethene			20	1	00	UD	
10061-02-6	trans-1,3-Dic	trans-1,3-Dichloropropene			1	00	UD	
79-01-6	Trichloroethene			20	270		D	
75-69-4	Trichlorofluoromethane			20	1	00	UD	
75-01-4	Vinyl chloride		20	6	90	D		
1330-20-7	Xylenes, total			20	45		JD	
SYSTEM MON	IITORING COM	IPOUND `	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroeth	ane-d4		25.0	21.9	88	66 - 137	D	
4-Bromofluorol	enzene		25.0	20.1	80	73 - 120	D	
Toluene-d8			25.0	19.4	78	71 - 126	D	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichlorober	nzene-d4		282706	9.86	470395	9.86		
1,4-Difluorober	zene		800460	5.68	1201787	5.68		
Chlorobenzene-	·d5		727507	7.95	1028932	7.95		

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8575.D

Acq On : 15 Apr 2010 15:43

Sample : RTD1034-07@20X

Misc : FOAM Vial: 57 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:22 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

	Standards					nits I	Dev(Min) Rcv(Ar)
	1,4-Difluorobenzene					ug/L	
							66.618
42) CI20	Chlorobenzene-D5	7.95	117	727507	25.00	ug/L	
		2 2 4	1.50	000706	25 00	/T	70.71%
61) CI30	1,4-Dichlorobenzene-	9.86	152	282706	25.00	ug/L	60.10%
System Mo	nitoring Compounds						
201 0015	1 0 Dieblemasthams D	5.38	65	326953	21.92	ug/L	0.00
Spiked A	mount 25.000 Ra	nge 66	- 137	Recove	ery =	87.	68%
43) CS05	mount 25.000 Ra: Toluene-D8 mount 25.000 Ra:	6.81	98	916612	19.39	ug/L	0.00
Spiked A	mount 25.000 Ra	nge 71	- 126	Recove	ry =	77.	56%
60) CS10	p-Bromofluorobenzene mount 25.000 Ras	8.90	1/4	242204	20.06	ug/L	0.00
spiked A	mount 25.000 Ka	iige /5	- 120	Recove	: -		
Target Co		0 00	0.5	0	NT 10		Qvalue
2) C290	Dichlorodifluorome	0.00	80	0	N.D.		
3) C010	Chloromethane	1.72	50	227000	N.D.	110 / T	, 95
4) 5020	Chloromethane Vinyl chloride Bromomethane	1.84	0.4	155	24.J/	ug/11	/
6) C025	Chlorosthans	2.44	94	114871	34 81	ua/L	, 96
7) C275	Chloroethane Trichlorofluoromet	0 00	101	0	34.81 N.D.	ug/ H	,
01 0015	1 1-Dichloroothono	2 15	96	20170	1 79	ua/L	# 82
9) C030	Methylene chloride	3 64	84	5437	N.D.	49/1	7
10) C040	Carbon disulfide	3.36	76	5972	N.D.		
11) C036	Methylene chloride Carbon disulfide Acrolein	3.08	56	80	N.D.		
12) C038	Acrylonitrile	3.90	53	80	N.D.		
13) c035	Acrylonitrile Acetone Acetonitrile	3.24	43	811766	130.50	ug/L	# / 88
14) C300	Acetonitrile	3.53	41	2204	N.D.	_	
15) C276	Iodomethane	0.00	142	0	N.D.		
16) C291	1,1,2 Trichloro-1, T-butyl Methyl Eth	0.00	101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73		N.D.		
18) C057	trans-1,2-Dichloro	3.86	96	5682	N.D.		
19) C255	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate	3.55	43	5458	N.D.		
20) C050	1,1-Dichloroethane	4.24	63	1574119	69.32	ug/L	99
21) C125	Vinyl Acetate	4.24	43	3005			
22) C051	2,2-Dichloropropan	4.63	77	541	N.D. 93.97	/-	
	cis-1,2-Dichloroethe					ug/L	#, 85
24) C272	Tetrahydrofuran	4.95			N.D.		
25) C222	Bromochloromethane		128	0	N.D.		
26) C060	Chloroform	4.98	83	473	N.D.		
27) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
28) C120	Carbon tetrachlori		117 75	8 9 0	И.D. И.D.		
29) C116 31) C165	1,1-Dichloropropen Benzene	0.00 5.40	73 78	11583	N.D.		
32) C065	1,2-Dichloroethane	5.43	62	2828	N.D.		
33) C110	2-Butanone	4.74	43	316915	29.09	ua/L	# , 70
34) C256	Cyclohexane	5.13	56	1002	N.D.	- 5, —	
35) C150	Trichloroethene	5.89	95	175328	13.67	ug/L	98
36) C140	1,2-Dichloropropan	0.00	63	0	N.D.	-	
37) C278	Dibromomethane	0.00	93	Ō	N.D.		
38) C130	Bromodichlorometha	0.00	83	0	N.D.		٠,
							~ N
39) C161	2-Chloroethylvinyl	0.00	63	0	N.D.		(1)

Data File : H:\GCMS_VOA\T\041510\T8575.D
Acq On : 15 Apr 2010 15:43
Sample : RTD1034-07@20X Vial: 57 Operator: LH Inst : 5975 T Misc : FOAM Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:22 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

	Internal	Standards	R.T	. QIon	Response	Conc Ur	nits Dev(Rcv(
	41) C145 44) 230	Toluene	0.00		0 293563		ug/L /	95
•	45) C170	trans-1,3-Dichloro	0.00	75	0	N.D.		
	46) C284		7.00	69	487	N.D.		
	47) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.		
	48) C210	4-Methyl-2-pentano	6.71	43	47506	N.D.		
	49) C220	Tetrachloroethene	7.28	166	462	N.D.		
	50) C221	1,3-Dichloropropan	0.00	76	0	N.D.		
	51) C155	Dibromochlorometha	0.00	129	0	N.D.		
	52) C163	1,2-Dibromoethane	0.00	107	0	N.D.		
	53) C215	2-Hexanone	7.35	43	13403	N.D.		
	54) C235	Chlorobenzene	0.00	112	0	N.D.		
	55) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.		
	56) C240	Ethylbenzene	8.03	91	27350	N.D.	ug/L/	95
<u></u>	57) C246	m,p-Xylene	8.12		31824			88
`~	58) C247	o-Xylene	8.45		18668		ug/L/	00
	59) C245	Styrene Bromoform	8.45 0.00	104 173	1942	N.D. N.D.		
	62) C180 63) C966	Isopropylbenzene	8.73	105	0 1079	N.D.		
	64) C301	Bromobenzene	0.00	156	0	N.D.		
	65) C225			83	0	N.D.		
	66) C282	1,1,2,2-Tetrachlor	0.00	110	0	N.D.		
	67) C283	1,2,3-Trichloropro t-1,4-Dichloro-2-B	8.89	53	83	N.D.		
	68) C302		9.06	91	972	N.D.		
	69) C303	2-Chlorotoluene	0.00	126	0	N.D.		
	70) C289		0.00	126	0	N.D.		
	71) C304	1,3,5-Trimethylben	9.21	105	1437	N.D.		
	72) C304		0.00	134	0	N.D.		
	73) C307	1,2,4-Trimethylben	9.53	105	3803	N.D.		
	74) C308	sec-Butylbenzene	9.68	105	162	N.D.		
	75) C260	1,3-Dichlorobenzen	0.00	146	0	N.D.		
	76) C309	4-Isopropyltoluene	9.78	119	715	N.D.		
	77) C267	1,4-Dichlorobenzen	0.00	146	, 19	N.D.		
	78) C249	1,2-Dichlorobenzen	0.00	146	Ö	N.D.		
	79) C310	n-Butylbenzene	10.13	91	196	N.D.		
	80) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.		
	81) C313	1,2,4-Trichloroben	0.00	180	Õ	N.D.		
	82) C316		0.00	225	0	N.D.		
	83) C314		11.76	128	7459	N.D.		
	84) C934	1,2,3-Trichloroben	0.00	180	0	N.D.		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Vial: 57

Data File : H:\GCMS_VOA\T\041510\T8575.D Acq On : 15 Apr 2010 15:43 Operator: LH

: 5975 T : RTD1034-07020X Inst Sample Multiplr: 1.00 Misc : FOAM

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:22 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-08

File ID:

T8576.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 16:07

Form Rev: 11/23/09

04/08/10 13:00

Solids:	Preparation	n: <u>503</u>	<u>0B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	<u>10D1339</u> Sequence: <u>T</u>	001413	Calibration:	R10D026	Instrument:	HP5975T
CAS NO.	COMPOUND		DILUTION	CON	IC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		1		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		. 1		5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane		1		5.0	U
79-00-5	1,1,2-Trichloroethane		1	·	5.0	U
75-34-3	1,1-Dichloroethane		11		12	
75-35-4	1,1-Dichloroethene		1		5.0	U
120-82-1	1,2,4-Trichlorobenzene		1		5.0	υ
96-12-8	1,2-Dibromo-3-chloropropane		1		5.0	U
106-93-4	1,2-Dibromoethane		1		5.0	U
95-50-1	1,2-Dichlorobenzene		1		5.0	U
107-06-2	1,2-Dichloroethane		1		5.0	U
78-87-5	1,2-Dichloropropane		1		5.0	U
541-73-1	1,3-Dichlorobenzene		1		5.0	U
106-46-7	1,4-Dichlorobenzene		1		5.0	U
78-93-3	2-Butanone		1		25	U
591-78-6	2-Hexanone		1		25	U
108-10-1	4-Methyl-2-pentanone		1		25	U
67-64-1	Acetone		1		25	υ
71-43-2	Benzene		1		5.0	U
75-27-4	Bromodichloromethane		1		5.0	U
75-25-2	Bromoform		1		5.0	U
74-83-9	Bromomethane		1		5.0	U
75-15-0	Carbon disulfide		1	-	5.0	υ
56-23-5	Carbon Tetrachloride		1		5.0	U
108-90-7	Chlorobenzene	-	1		5.0	U
75-00-3	Chloroethane		1		960	Е
67-66-3	Chloroform		1		5.0	υ
74-87-3	Chloromethane		1		5.0	υ
156-59-2	cis-1,2-Dichloroethene		1		33	
10061-01-5	cis-1,3-Dichloropropene	_	1		5.0	U
110-82-7	Cyclohexane		1		5.0	U
124-48-1	Dibromochloromethane		1		5.0	U
75-71-8	Dichlorodifluoromethane		1		5.0	· U
100-41-4	Ethylbenzene		1		5.0	U
98-82-8	Isopropylbenzene		1		5.0	U
79-20-9	Methyl Acetate		1		5.0	U
108-87-2	Methylcyclohexane		1		5.0	U
75-09-2	Methylene Chloride		1		5.0	U_
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1 .		5.0	U

MW-15D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID: RTD1034-08 File ID:

T8576.D

Sampled:

Analyzed:

04/15/10 16:07

04/08/10 13:00

Prepared:

04/15/10 10:24

Initial/Final:

Solids:		Prepar	ation:	5030B N	<u> MS</u>	Initial/Final: $5 \text{ mL} / 5 \text{ mL}$		
Batch:	10D1339	Sequence:	T001413		Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	ט
127-18-4	Tetrachloroethene		1	5	5.0	υ		
108-88-3	Toluene				1	0	.63	J
156-60-5	trans-1,2-Dich	oroethene			1	5	5.0	U
10061-02-6	trans-1,3-Dich	oropropene			1		5.0	U
79-01-6	Trichloroethen	e			1	5	5.0	U
75-69-4	Trichlorofluoro	omethane			1	5	5.0	U
75-01-4	Vinyl chloride		1	-	19			
1330-20-7	Xylenes, total				1	15		U
SYSTEM MON	ITORING COM	POUND	ADDEL) (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25	.0	22.6	90	66 - 137	
4-Bromofluorob	enzene		25	.0	20.3	81	73 - 120	
Toluene-d8			25	.0	19.7	79	71 - 126	
INTERNAL ST	ANDARD		AR	EA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		285	288	9.86	470395	9.86	
1,4-Difluoroben	zene		806	101	5.68	1201787	5.68	
Chlorobenzene-	d5		715	315	7.95	1028932	7.95	1

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : H:\GCMS_VOA\T\041510\T8576.D
Acq On : 15 Apr 2010 16:07
Sample : RTD1034-08

Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:30 2010

Vial: 58 Operator: LH Inst : 5975 T Multiplr: 1.00

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

Internal	Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(I Rov(I	Min) Ar)
1) CI10	1,4-Difluorobenzene							0.00 .08%
42) CI20	Chlorobenzene-D5	7.95	117	715315	25.00	ug/L	•	00.0
61) CI30	1,4-Dichlorobenzene-	9.86	152	285288	25.00		(.52% 0.00 .65%
System Mc	onitoring Compounds		6.5	220745	22 55	/T	,	2 00
Spiked A	1,2-Dichloroethane-Damount 25.000 Rai	nge 66	- 137	Recove	ry =	90.2	208	
43) CS05	Toluene-D8 Amount 25,000 Ran	6.80	98 126	916391	19.72	ug/L 78 8	3 8 S	5.00
60) CS10	mount 25,000 Rai p-Bromofluorobenzene Amount 25,000 Rai	8.90	174	240697	20.28	ug/L	1	00.0
Target Co		2					Qva.	lue
2) C290	Dichlorodifluorome	0.00	85	0 3101	N.D.			
3) C010	Chloromethane Vinyl chloride	1.71	50	3101 183976	N.D.	ua/T.		98
5) C015	Bromomethane	2.25	94	445	N.D.	ug/11		
6) C025	Chloroethane Trichlorofluoromet	2.35	64	445 3183187 0	958.00	ug/L	/	97
	Trichlorofluoromet	0.00	101	0	N.D.		,	
8) C045 9) C030	1,1-Dichloroethene	3.14	96 84	1827	N.D.			
10) C040	Methylene chloride Carbon disulfide	3.36	76	9473	N.D.			
11) C036	Acrolein	3,03	56	3113	N.D.			
12) C038	Acrylonitrile Acetone	0.00	53	0	N.D.			
13) C035	Acetone Acetonitrile	3.25	43	6910 1075	N.D. N.D.			
14) C300 15) C276	Acetonitrile	3.33	142	1622	N.D.			
16) C291	Iodomethane 1,1,2 Trichloro-1, T-butyl Methyl Eth	0.00	101	0	N.D.			
17) C962	T-butyl Methyl Eth	3.86	73	85	N.D.			
(18) C057	trans-1,2-Dichloroet	3.87	96	6225	0.51	ug/L	#/	74
19) C255	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate	3.55	43	626	N.D.	11 cr / T		99
20) C050 21) C125	I, I-Dichloroethane	4.24	43 43	1146	N.D.	ug/1		99
22) C051	2.2-Dichloropropan	4.64	77	1954	N.D.			
23) C056	cis-1,2-Dichloroethe	4.72	96	432343	33.00	ug/L	#/	83
24) C272	2,2-Dichloropropan cis-1,2-Dichloroethe Tetrahydrofuran	4.95	42	18493	2.62	ug/L	#	65
231 C222	Bromochioromethane	0.00	128	U	и.р.			
26) C060 27) C115	Chloroform 1,1,1-Trichloroeth	0.00	83 97	0	N.D. N.D.			
28) C120	Carbon tetrachlori		117	Ö	N.D.			
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.			
31) C165	Benzene	5.39	78	9659	N.D.			
32) C065	1,2-Dichloroethane	5.43	62 43	5710 3003	N.D. N.D.			
33) C110 34) C256	2-Butanone Cyclohexane	4.75 5.13	43 56	812	N.D.			
35) C150	Trichloroethene	5.89	95	4125	N.D.			
36) C140	1,2-Dichloropropan	6.00	63	86	N.D.			
37) C278	Dibromomethane	0.00	93	0	N.D.			
38) C130	Bromodichlorometha 2-Chloroethylvinyl	0.00 6.53	83 63	0 165	N.D. N.D.			٧٧
39) C161 40) C012	Methylcycolhexane	6.00	83	542	N.D.			ל,"ט
								•

Data File : H:\GCMS_VOA\T\041510\T8576.D
Acq On : 15 Apr 2010 16:07
Sample : RTD1034-08 Vial: 58 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:30 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
			_		RCV(Ar)

					R	cv(Ar)
41) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C230	Toluene	6.8		19559	0.63 ug/L	95
45) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284	Ethyl Methacrylate	7.04	69	93	N.D.	
47) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C210	4-Methyl-2-pentano	6.71	43	3548	N.D.	
49) C220	Tetrachloroethene	0.00	166	0	N.D.	
50) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155	Dibromochlorometha	0.00	129	0	N.D.	
52) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215	2-Hexanone	7.34	43	200	N.D.	
54) C235	Chlorobenzene	0.00	112	0	N.D.	
55) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C240	Ethylbenzene	8.03	91	2528	N.D.	
57) C246	m,p-Xylene	8.12	106	2905	N.D.	
58) C247	o-Xylene	8.45	106	2558	N.D.	
59) C245	Styrene	0.00	104	0	N.D.	
62) C180	Bromoform	0.00	173	0	N.D.	
63) C966	Isopropylbenzene	8.73	105	74	N.D.	
64) C301	Bromobenzene	0.00	156	0	N.D.	
65) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68) C302	n-Propylbenzene	9.07	91	269	N.D.	
69) C303	2-Chlorotoluene	0.00	126	0	N.D.	
70) C289	4-Chlorotoluene	9.40	126	74	N.D.	
71) C304	1,3,5-Trimethylben	9.22	105	74	N.D.	
72) C306	tert-Butylbenzene	0.00	134	0	N.D.	
73) C307	1,2,4-Trimethylben	9.53	1.05	814	N.D.	
74) C308	sec-Butylbenzene	9.53	105	814	N.D.	
75) C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76) C309	4-Isopropyltoluene	9.79	119	1402	N.D.	
77) C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78) C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C310	n-Butylbenzene	10.11	91	82	N.D.	
80) C286	1,2-Dibromo-3-Chlo	0.00	75	O	N.D.	
81) C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82) C316	Hexachlorobutadien	0.00		0	N.D.	
83) C314	Naphthalene	11.76		923	N.D.	
84) C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Vial: 58 Operator: LH : 5975 т Inst Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:30 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-08RE1

File ID:

S5622.D

Sampled:

Prepared:

04/17/10 12:23

Analyzed:

04/17/10 13:17

Solids:

04/08/10 13:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch: T001461 R10C101 HP5973S 10D1581 Calibration: Instrument:

Batch:	<u>10D1581</u> Sequence: <u>T001461</u>	Calibration:	R10C101 Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	50	250	UD
79-34-5	1,1,2,2-Tetrachloroethane	50	250	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	50	250	UD
79-00-5	1,1,2-Trichloroethane	50	250	UD
75-34-3	1,1-Dichloroethane	50	250	UD
75-35-4	1,1-Dichloroethene	50	250	UD
120-82-1	1,2,4-Trichlorobenzene	50	250	UD
96-12-8	1,2-Dibromo-3-chloropropane	50	250	UD
106-93-4	1,2-Dibromoethane	50	250	UD
95-50-1	1,2-Dichlorobenzene	50	250	UD
107-06-2	1,2-Dichloroethane	50	250	UD
78-87-5	1,2-Dichloropropane	50	250	UD
541-73-1	1,3-Dichlorobenzene	50	250	UD
106-46-7	1,4-Dichlorobenzene	50	250	UD
78-93-3	2-Butanone	50	1200	UD
591-78-6	2-Hexanone	50	1200	UD
108-10-1	4-Methyl-2-pentanone	50	1200	UD
67-64-1	Acetone	50	1200	UD
71-43-2	Benzene	50	250	UD
75-27-4	Bromodichloromethane	50	250	UD
75-25-2	Bromoform	50	250	UD
74-83-9	Bromomethane	50	250	UD
75-15-0	Carbon disulfide	50	250	UD
56-23-5	Carbon Tetrachloride	50	250	UD
108-90-7	Chlorobenzene	50	250	UD
75-00-3	Chloroethane	50	1700	D
67-66-3	Chloroform	50	250	UD
74-87-3	Chloromethane	50	250	UD
156-59-2	cis-1,2-Dichloroethene	50	250	UD
10061-01-5	cis-1,3-Dichloropropene	50	250	UD
110-82-7	Cyclohexane	50	250	UD
124-48-1	Dibromochloromethane	50	250	UD
75-71-8	Dichlorodifluoromethane	50	250	UD
100-41-4	Ethylbenzene	50	250	UD
98-82-8	Isopropylbenzene	50	250	UD
79-20-9	Methyl Acetate	50	250	UD
108-87-2	Methylcyclohexane	50	250	UD
75-09-2	Methylene Chloride	50	250	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	50	250	UD

MW-15D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-08RE1

File ID:

S5622.D

Sampled:

Analyzed:

04/17/10 13:17

Solids:

04/08/10 13:00

Prepared:

04/17/10 12:23

Initial/Final:

Solids:		Prepar	ration:	on: <u>5030B MS</u>		Initial/Final: 5 mL / 5 mL		
Batch:	10D1581	Sequence:	<u>T001461</u>	,	Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				50	2	UD	
127-18-4	Tetrachloroeth	ene			50	2	UD	
108-88-3	Toluene				50	2	UD	
156-60-5	trans-1,2-Dich	loroethene			50	2	UD	
10061-02-6	trans-1,3-Dich	loropropene			50	250		UD
79-01-6	Trichloroethene		50	250		UD		
75-69-4	Trichlorofluoromethane			50	250		UD	
75-01-4	Vinyl chloride		50	250		UD		
1330-20-7	Xylenes, total		50	750		UD		
SYSTEM MON	ITORING COM	POUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25	5.0	28.2	113	66 - 137	D
4-Bromofluorob	enzene		25	5.0	27.5	110	73 - 120	D
Toluene-d8			25	5.0	28.9	115	71 - 126	D
INTERNAL STANDARD AREA		RT	REF AREA	REF RT	Q			
1,4-Dichlorobenzene-d4 157289		289	9.05	192218 9.05				
1,4-Difluorobenzene 336868		4.99	349630	4.99				
Chlorobenzene-d5 182939		7.19	195882	7.19				

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 18 08:44:44 2010 Results File: R10C101-SIXPT.RES

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010

Response via: Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	R.T.	QIon	Response	Conc Ur		Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	4.99	114	336868	25.00	ug/L	0.00 96.35%
42) CI20 Chlorobenzene-D5	7.19	82	182939	25.00	ug/L	
62) CI30 1,4-Dichlorobenzene-	9.05	152	157289	25.00	ug/L	
43) CS05 Toluene-D8 Spiked Amount 25.000 Ran 61) CS10 p-Bromofluorobenzene	ge 66.07	- 137 98 - 126 174	Recove: 395398 Recove:	28.86 ry = 27.50	112. ug/L 115.	88% 0.00 44% 0.00
Target Compounds						Qvalue
2) C290 Dichlorodifluorome 3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluoromet 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride 10) C040 Carbon disulfide	0.00 3.04 2.77	101 96 84 76	0 0 1975 0 24913 0 0 1161 651	N.D. N.D. N.D. 33.33 N.D. N.D. N.D.	ug/I	92
11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2-Trichloro-1, 17) C962 T-butyl Methyl Eth 18) C057 trans-1,2-Dichloro 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropan 23) C056 cis-1,2-Dichloroethe	0.00 0.00 0.00 0.00 3.60 0.00 4.06 0.00 0.00 4.32 0.00	56 53 43 41 142 101 73 96 43 63 43 77 96 42 128 83 97 117 75 78 62 43 56 95 63	0 0 151 405 0 0 0 0 1940 0 3006 0 289 0 0 294	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	ug/I	. / 89

milaly

MS Integration Params: RTEINT.P

Quant Time: Apr 18 08:44:44 2010 Results File: R10C101-SIXPT.RES

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010 Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	R.T	. QIon	Response	Conc Units Dev(Min) Rcv(Ar)
37) C278 Dibromomethane	0.00	93	0	N.D.
38) C130 Bromodichlorometha	0.00	83	0	N.D.
39) C161 2-Chloroethylvinyl	0.00	63	0	N.D.
40) C012 Methylcyclohexane	0.00	83	0	N.D.
41) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.
44) C230 Toluene	6.12	92	1278	N.D.
45) C170 trans-1,3-Dichloro	0.00	75	0	N.D.
46) C284 Ethyl Methacrylate	0.00	69	0	N.D.
47) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.
48) C210 4-Methyl-2-pentano	6.07	43	1698	N.D.
49) C220 Tetrachloroethene	0.00	166	0	N.D.
50) C221 1,3-Dichloropropan	0.00	76	0	N.D.
51) C155 Dibromochlorometha	0.00	129	0	N.D.
52) C163 1,2-Dibromoethane	0.00	107	0	N.D.
53) C215 2-Hexanone	0.00	43	0	N.D.
54) C235 Chlorobenzene	7.21	112	295	N.D.
55) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.
56) C240 Ethylbenzene	7.19	91	497	N.D.
57) C246 m,p-Xylene	0.00	106	0	N.D.
58) C247 o-Xylene	0.00	106	0	N.D.
59) C245 Styrene	0.00	104	0	N.D.
60) C180 Bromoform	0.00	173	0	N.D.
63) C966 Isopropylbenzene	0.00	105	0	N.D.
64) C301 Bromobenzene	0.00	156	0	N.D.
65) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.
66) C282 1,2,3-Trichloropro	0.00	110	0	N.D.
67) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.
68) C302 n-Propylbenzene	8.12	91	151	N.D.
69) C303 2-Chlorotoluene	0.00	126	0	N.D.
70) C289 4-Chlorotoluene	0.00	126	0	N.D.
71) C304 1,3,5-Trimethylben	0.00	105	0	N.D.
72) C306 tert-Butylbenzene	0.00	134	0	N.D.
73) C307 1,2,4-Trimethylben	0.00	105	- 0	N.D.
74) C308 sec-Butylbenzene	0.00	105	0	N.D.
75) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.
76) C309 4-Isopropyltoluene	0.00	119	0	N.D.
77) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.
78) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.
79) C310 n-Butylbenzene	0.00	91	0	N.D.
80) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.
81) C313 1,2,4-Trichloroben	0.00	180	0	N.D.
82) C316 Hexachlorobutadien	0.00	225	0	N.D.
83) C314 Naphthalene	10.90	128	705	N.D.
84) C934 1,2,3-Trichloroben	0.00	180	0	N.D.
			-	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\041710\S5622.D

Acq On : 17 Apr 2010 13:17

Vial: 6 Operator: DHC

Misc

Sample

: HP5973S : RTD1034-08RE1@50X Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 18 08:44:44 2010

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010

Response via: Initial Calibration

DataAcq Meth: VOA

MW-16D

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-09

File ID:

S5611.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 18:48

Solids:

Form Rev: 11/23/09

04/08/10 11:40

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation: <u>50301</u>	3 MS	Initial/Final: 3 mL/3 mL	
Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	2	10	UD
79-34-5	1,1,2,2-Tetrachloroethane	2	10	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	2	10	UD
79-00-5	1,1,2-Trichloroethane	2	10	UD
75-34-3	1,1-Dichloroethane	2	8.7)D
75-35-4	1,1-Dichloroethene	2	10	UD
120-82-1	1,2,4-Trichlorobenzene	2	10	UD
96-12-8	1,2-Dibromo-3-chloropropane	2	10	UD
106-93-4	1,2-Dibromoethane	2	10	UD
95-50-1	1,2-Dichlorobenzene	2	10	UD
107-06-2	1,2-Dichloroethane	2	10	UD
78-87-5	1,2-Dichloropropane	2	10	UD
541-73-1	1,3-Dichlorobenzene	2	10	UD
106-46-7	1,4-Dichlorobenzene	2	10	UD
78-93-3	2-Butanone	2	50	UD
591-78-6	2-Hexanone	2	50	UD
108-10-1	4-Methyl-2-pentanone	2	50	UD
67-64-1	Acetone	2	50	UD
71-43-2	Benzene	2	10	UD
75-27-4	Bromodichloromethane	2	10	UD
75-25-2	Bromoform	2	10	UD
74-83-9	Bromomethane		10	UD
75-15-0	Carbon disulfide	2	10	UD
56-23-5	Carbon Tetrachloride	2	10	UD
108-90-7	Chlorobenzene	2	10	UD
75-00-3	Chloroethane	2	250	ED
67-66-3	Chloroform	2	10	UD
74-87-3	Chloromethane	2	10	UD
156-59-2	cis-1,2-Dichloroethene	2	6.9)D
10061-01-5	cis-1,3-Dichloropropene	2	10	UD
110-82-7	Cyclohexane	2	. 10	UD
124-48-1	Dibromochloromethane	2	10	UD
75-71-8	Dichlorodifluoromethane	2	10	UD
100-41-4	Ethylbenzene	2	10	UD
98-82-8	Isopropylbenzene	2	10	UD
79-20-9	Methyl Acetate	2	10	UD
108-87-2	Methylcyclohexane	2	10	UD
75-09-2	Methylene Chloride	2	10	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	2	10	UD

MW-16D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-09

File ID:

S5611.D

Sampled:

Analyzed:

04/16/10 18:48

04/08/10 11:40

Prepared:

04/16/10 09:48

Initial/Final:

Solids:		Prepar	ration:	5030B N	<u>MS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1488	Sequence:	T001440		Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND)			DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			2		10	UD	
127-18-4	Tetrachloroetl	nene			2		10	UD
108-88-3	Toluene				2		10	UD
156-60-5	trans-1,2-Dich	loroethene			2		10	UD
10061-02-6	trans-1,3-Dichloropropene			2		10	UD	
79-01-6	Trichloroethene		2		12			
75-69-4	Trichlorofluoromethane		2		10	UD		
75-01-4	Vinyl chloride	e			2	3	3.6	
1330-20-7	Xylenes, total				2	30		UD
SYSTEM MON	IITORING COM	POUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25	5.0	28.6	115	66 - 137	D
4-Bromofluorol	enzene		25	5.0	26.7	107	73 - 120	D
Toluene-d8		·	25	5.0	28.8	115	71 - 126	D
INTERNAL ST	ANDARD		AF	EA.	RT	REF AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		149	243	9.05	192606	9.05	
1,4-Difluorober	izene		328	911	4.99	368522	4.99	
Chlorobenzene-	·d5		177	410	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDChem\S\Data\041610\S5611.D Vial: 22 Acq On : 16 Apr 2010 18:48 Sample : RTD1034-09@2X Operator: DHC Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:16 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010

Internal Standards	R.T	. QIon	Response	Conc Ur	nits Dev Rcv	(Min)
1) CI10 1,4-Difluorobenze	ene 4.9	9 114	328911	25.00	ug/L	0.00
					8	9.25%
42) CI20 Chlorobenzene-D5	7.1	9 82	177410	25.00	ug/L	7.47%
62) CI30 1,4-Dichlorobenze	ne- 9 0	5 152	149243	25.00	ua/L	0.00
62) CISO I, 4 DICHIOLOBEHZE	:iie	0 102	1,102,10	20.00	7	7.49%
System Monitoring Compounds			110500	00.65	/ T	0 00
30) CS15 1,2-Dichloroethar	ie-D 4.6	9 65	119580	28.65	ug/ь 11/1 60%	0.00
Spiked Amount 25.000	Kange 6	6 - 13/ 7 98	383273	28 85	114.00%	0.00
Spiked Amount 25.000 43) CS05 Toluene-D8 Spiked Amount 25.000	Range 7	7 - 126	Recove	rv =	115.40%	0.00
61) CS10 p-Bromofluorobenz	ene 8.1	2 174	109607	26.70	ug/L	0.00
Spiked Amount 25.000	Range 7	3 - 120	Recove	ry =	106.80%	
Target Compounds		0.5	0	N.D.	Qν	alue
2) C290 Dichlorodifluoror	1e 0.00	50	0			
3) C010 Chloromethane 4) C020 Vinyl chloride 5 C015 Bromomethane	1.5	3 62	8669	1.82	ug/L /	85
5) C015 Bromomethane	0.00	94	0	N.D.		
(8) C025 Chloroethane	1.9	0 64	91975	126.03	ug/L	93
4) C020 Vinyl chloride 5) C015 Bromomethane 8) C025 Chloroethane 7 C275 Trichlorofluorome 8) C045 1,1-Dichloroether	et 0.00	101	0	N.D.		
8) C045 1,1-Dichloroether	e 0.00	96	0	N.D. N.D.		
9) CU3U Metnylene chioric	ie 3.05	84	1/99	и. D.		
10) C040 Carbon disulfide	2.//	/ 6 5 6	329 .	N.D.		
10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile	0.00	53	0	и.р.		
13) C035 Acetone	2.73	43	994	N.D.		
14) C300 Acetonitrile	0.00	41	0	N.D.		
15) C276 Iodomethane	0.00	142	0 0 0	N.D.		
16) C291 1,1,2-Trichloro-1	0.00	101	0	N.D.		
17) C962 T-butyl Methyl Et	h 0.00	73	0	N.D.		
18) C057 trans-1,2-Dichlor 19) C255 Methyl Acetate C0) C050 1,1-Dichloroethar	0.00	96	0	N.D.		
CO) CO50 1,1-Dichloroethan	1e 3.6	0 63	32957	4.34	ua/L	98
21) C125 Vinyl Acetate	0.00	43	0	N.D.	/	
22) C051 2 2-Dichloropropa	n 0.00	77	0	N.D.		
23) C056 cis-1,2-Dichloroe	ethe 4.0	6 96	15352	3.47	ug/L /	95
24) C272 Tetrahydrofuran		42			,	
25) C222 Bromochloromethan		128	0	N.D.		
26) C060 Chloroform 27) C115 1,1,1-Trichloroe	0.00 h 4.41	83 97	0 519	N.D. N.D.		
27) C115 1,1,1-Trichloroet 28) C120 Carbon tetrachlor		117	0	и.р.		
29) Cl16 1,1-Dichloroprope		75	0	N.D.		
31) C165 Benzene	0.00	78	0	N.D.		
32) C065 1,2-Dichloroethan		62	0	N.D.		
33) C110 2-Butanone	0.00	43	0	N.D.		
34) C256 Cyclohexane 35) C150 Trichloroethene	0.00 5.1	56 7 95	0 24003	N.D. 5 78	ug/L /	87
(5) C150 Trichloroethene 36) C140 1,2-Dichloropropa		63	24003	N.D.	49/H V	<i>J</i> ,
37) C278 Dibromomethane	0.00	93	0	N.D.		
38) C130 Bromodichlorometh		83	O	N.D.		ړ _{ړ د} .
39) C161 2-Chloroethylving		63	0	N.D.		U.S.
40) C012 Methylcyclohexane	0.00	83	О	N.D.		J. J.

Data File : D:\MSDChem\S\Data\041610\S5611.D

Vial: 22 Acq On : 16 Apr 2010 18:48 Sample : RTD1034-09@2X Operator: DHC Inst : HP5973S Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:16 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.12	92	686	N.D.	
		trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.07	43	1383	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	0.00	43	0	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	7.19	91	416	N.D.	
57)	C246	m,p-Xylene	0.00	106	O	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	0.00	91	0	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	0.00	91	0	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0,00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316		0.00	225	0	N.D.	
83)	C314	Naphthalene	10.91		133	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDChem\S\Data\041610\S5611.D Acq On

Vial: 22 : 16 Apr 2010 18:48 Operator: DHC : RTD1034-09@2X : HP5973S Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:16 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

HP5973

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-09RE1

File ID:

S5623.D

Sampled:

Prepared:

04/17/10 12:20

Analyzed:

04/17/10 13:42

Solids:

04/08/10 11:40

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

R10C101 Instrument: HP5973S Batch: 10D1581 T001461 Calibration: Sequence: CAS NO COMPOLIND DILLITION CONC (ng/L)

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	5	25	UD
79-34-5	1,1,2,2-Tetrachloroethane	5	25	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	5	25	UD
79-00-5	1,1,2-Trichloroethane	5	25	UD
75-34-3	1,1-Dichloroethane	5	8.3	
75-35-4	1,1-Dichloroethene	5	25	UD
120-82-1	1,2,4-Trichlorobenzene	5	25	UD
96-12-8	1,2-Dibromo-3-chloropropane	5	25	UD
106-93-4	1,2-Dibromoethane	5	25	UD
95-50-1	1,2-Dichlorobenzene	5	25	UD
107-06-2	1,2-Dichloroethane	5	25	UD
78-87-5	1,2-Dichloropropane	. 5	25	UD
541-73-1	1,3-Dichlorobenzene	5	25	UD
106-46-7	1,4-Dichlorobenzene	5	25	UD
78-93-3	2-Butanone	5	120	UD
591-78-6	2-Hexanone	5	120	UD
108-10-1	4-Methyl-2-pentanone	5	120	עט
67-64-1	Acetone	5	120	UD
71-43-2	Benzene	5	25	UD
75-27-4	Bromodichloromethane	5	25	UD
75-25-2	Bromoform	5	25	UD
74-83-9	Bromomethane	5	25	UD
75-15-0	Carbon disulfide	5	25	UD
56-23-5	Carbon Tetrachloride	5	25	UD
108-90-7	Chlorobenzene	5	25	UD
75-00-3	Chloroethane	5	240	D
67-66-3	Chloroform	5	25	UD
74-87-3	Chloromethane	5	25	UD
156-59-2	cis-1,2-Dichloroethene	5	4.9	JD.
10061-01-5	cis-1,3-Dichloropropene	5	25	UD
110-82-7	Cyclohexane	5	25	UD
124-48-1	Dibromochloromethane	5	25	UD
75-71-8	Dichlorodifluoromethane	5	25	UD
100-41-4	Ethylbenzene	5	25	UD
98-82-8	Isopropylbenzene	5	25	UD
79-20-9	Methyl Acetate	5	25	UD
108-87-2	Methylcyclohexane	5	25	UD
75-09-2	Methylene Chloride	5	25	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)	5	25	UD

202/416 Form Rev: 11/23/09

MW-16D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-09RE1

File ID: <u>S5623.D</u>

Sampled:

04/17/10 12:20

Analyzed:

04/17/10 13:42

Solids:

04/08/10 11:40

Prepared:
Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

		•					
Batch:	<u>10D1581</u>	Sequence:	<u>T001461</u>	Calibration:	R10C101	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUNI)		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			5		25	UD
127-18-4	Tetrachloroet	hene		5		25	UD
108-88-3	Toluene			5		25	UD
156-60-5	trans-1,2-Dic	hloroethene		5		25	UD
10061-02-6	trans-1,3-Dic	hloropropene		5		25	UD
79-01-6	Trichloroethene		5	8.8		'ID	
75-69-4	Trichlorofluoromethane		5		25		
75-01-4	Vinyl chloride		5		25		
1330-20-7	Xylenes, tota	1		5	75		UD
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25.0	29.1	116	66 - 137	D
4-Bromofluorob	enzene		25.0	27.2	109	73 - 120	D_
Toluene-d8			25.0	28.9	116	71 - 126	D
INTERNAL ST.	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		152420	9.05	192218	9.05	
1,4-Difluoroben	zene		329577	4.99	349630	4.99	_
Chlorobenzene-	d5		181689	7.19	195882	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : D:\MSDCHEM\S\DATA\041710\S5623.D Acq On : 17 Apr 2010 13:42

Vial: 7 Operator: DHC Sample : RTD1034-09RE1@5X Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 18 08:44:46 2010

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010 Response via : Initial Calibration

DataAcq Meth: VOA

Misc

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	R.T.	QIon	Response	Conc Ur		Dev(M. Rcv(A.	
1) CI10 1,4-Difluorobenzene	4.99	114	329577	25.00	ug/L	0 94.:	.00 26%
• 42) CI20 Chlorobenzene-D5	7.19	82	181689	25.00	ug/L		.00
62) CI30 1,4-Dichlorobenzene-	9.05	152	152420	25.00	ug/L		.00
System Monitoring Compounds							
30) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Rar		65 - 137			ug/L 116.		.00
43) CS05 Toluene-D8 Spiked Amount 25.000 Rar	6.07			28.92 rv =	ug/L 115.		.00
61) CS10 p-Bromofluorobenzene	8.12			27.22		0	.00
_	190 , 3		1100010	- <u>1</u>			
Target Compounds 2) C290 Dichlorodifluorome	0.00	85	0	N.D.		Qvalı	ue
3) C010 Chloromethane (4) C020 Vinyl chloride	0.00	50 62	0 3016	N.D. 0.63	ug/L	,	77
5) C015 Bromomethane	0.00	94	0	N.D.			92
6) C025 Chloroethane 7) C275 Trichlorofluoromet		64 101	35631 0	48.73 N.D.	ug/L	1	92
8) C045 1,1-Dichloroethene 9) C030 Methylene chloride	0.00 3.05	96 84	0 1315	N.D. N.D.			
10) C040 Carbon disulfide 11) C036 Acrolein	2.77	76 56	828 0	N.D. N.D.			
12) C038 Acrylonitrile	0.00	53	0	N.D.			
13) C035 Acetone 14) C300 Acetonitrile	2.73	43 41	433 0	N.D. N.D.			
15) C276 Iodomethane 16) C291 1,1,2-Trichloro-1,		142 101	0 0	N.D. N.D.			
17) C962 T-butyl Methyl Eth	0.00	73	0	N.D.			
18) C057 trans-1,2-Dichloro 1 <u>9</u>) C255 Methyl Acetate	0.00	96 43	0 0	N.D. N.D.			
(20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate	3.60	63 43	12613 0	1.66 N.D.	ug/L	/	93
22) C051 2,2-Dichloropropan	0.00	77	0	N.D.	. / -		٥٢
(23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran		96 42	4350 943	0.98 N.D.	ug/L	/	85
25) C222 Bromochloromethane 26) C060 Chloroform	0.00	128 83	0 0	N.D. N.D.			
27) C115 1,1,1-Trichloroeth	0.00	97	0	N.D.			
28) C120 Carbon tetrachlori 29) C116 1,1-Dichloropropen	0.00	117 75	0 0	N.D. N.D.			
31) C165 Benzene 32) C065 1,2-Dichloroethane	0.00	78 62	0 0	N.D. N.D.			
33) C110 2-Butanone	0.00	43	0	N.D.			
34) C256 Cyclohexane 35) C150 Trichloroethene 36) C140 1,2-Dichloropropan	0.00 5.17 0.00	56 95 63	0 7337 0	N.D. 1.76 N.D.	ug/L	/	93

MS Integration Params: RTEINT.P

Quant Time: Apr 18 08:44:46 2010 Results File: R10C101-SIXPT.RES

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010 Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C278 Dibromomethane	0.00	93	0	N.D.	
38) C130 Bromodichlorometha	0.00	83	0	N.D.	
39) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
40) C012 Methylcyclohexane	0.00	83	0	N.D.	
41) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C230 Toluene	6.12	92	591	N.D.	
45) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
47) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C210 4-Methyl-2-pentano	6.07	43	1586	N.D.	
49) C220 Tetrachloroethene	0.00	166	0	N.D.	
50) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155 Dibromochlorometha	0.00	129	0	N.D.	
52) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215 2-Hexanone	0.00	43	0	N.D.	
54) C235 Chlorobenzene	0.00	112	0	N.D.	
55) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C240 Ethylbenzene	7.18	91	448	N.D.	
57) C246 m,p-Xylene	0.00	106	0	N.D.	
58) C247 o-Xylene	0.00	106	0	N.D.	
59) C245 Styrene	0.00	104	0	N.D.	
60) C180 Bromoform	0.00	173	0	N.D.	
63) C966 Isopropylbenzene	0.00	105	0	N.D.	
64) C301 Bromobenzene	0.00	156	0	N.D.	
65) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68) C302 n-Propylbenzene	0.00	91	0	N.D.	
69) C303 2-Chlorotoluene	0.00	126	0	N.D.	
70) C289 4-Chlorotoluene	0.00	126	. 0	N.D.	
71) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
72) C306 tert-Butylbenzene	0.00	134	0	N.D.	
73) C307 1,2,4-Trimethylben	0.00	105	0	N.D.	
74) C308 sec-Butylbenzene	0.00	105	0	N.D.	
75) C260 1,3-Dichlorobenzen 76) C309 4-Isopropyltoluene	0.00	146	0	N.D.	
	0.00	119	0	N.D.	
77) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
78) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C310 n-Butylbenzene 80) C286 1,2-Dibromo-3-Chlo	0.00	91 75	0	N.D.	
	0.00		0	N.D.	
81) C313 1,2,4-Trichloroben	0.00	180 225	0	N.D. N.D.	
82) C316 Hexachlorobutadien 83) C314 Naphthalene	0.00 10.90	128	298	N.D.	
84) C934 1,2,3-Trichloroben	0.00	180	290	N.D.	
04, C)04 1,2,0=111CIIIOTODell				IN • D •	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\041710\S5623.D

: 17 Apr 2010 13:42

: RTD1034-09RE1@5X

Vial: 7 Operator: DHC : HP5973S Inst Multiplr: 1.00

Misc

Acq On

Sample

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 18 08:44:46 2010

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sun Apr 18 08:44:27 2010

Response via: Initial Calibration

DataAcq Meth: VOA

FIELD BLANK

Form 1 **ORGANIC ANALYSIS DATA SHEET**

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-10

T8578.D File ID:

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 16:55

Solids:

Form Rev: 11/23/09

04/07/10 11:15

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1339 Sequence: T001413	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	υ
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	· U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1 .	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U.
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

210/416

Printed: 04/21/2010

FIELD BLANK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-10

File ID:

T8578.D

Sampled:

04/07/10 11:15

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 16:55

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1339	Sequence:	T001413	Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND) .		DILUTION	CONC	CONC. (ug/L)	
100-42-5	Styrene			1	4	U	
127-18-4	Tetrachloroet	Tetrachloroethene				5.0	U
108-88-3	Toluene			1		5.0	U
156-60-5	trans-1,2-Dichloroethene			1		5.0	U
10061-02-6	trans-1,3-Dichloropropene			1	4	5.0	U
79-01-6	Trichloroethene			1		U	
75-69-4	Trichlorofluoromethane		1		5.0	U	
75-01-4	Vinyl chloride	Vinyl chloride		1		5.0	
1330-20-7	Xylenes, total		· · · · · ·	1	15		U
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	22.1	88	66 - 137	
4-Bromofluorob	enzene		25.0	19.1	76	73 - 120	
Toluene-d8			25.0	19.1	76	71 - 126	<u> </u>
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	zene-d4		302287	9.86	470395	9.86	
1,4-Difluoroben	zene		812464	5.68	1201787 5.68		
Chlorobenzene-	d5		750317	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8578.D
Acq On : 15 Apr 2010 16:55
Sample : RTD1034-10 Vial: 60 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:46 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

	_						W.
Internal :	Standards	R.T.	. QIon	Response	Conc Ur		
						F	(cv(Ar)
						110 / T.	0.00
1) CI10	1,4-Difluorobenzene	5.68	3 114	012404	23.00	ug/1	67.60%
42) CI20	Chlorobenzene-D5	7 0 5	5 117	750317	25 00	110 / T.	0.00
42) CI20	Chrotopenzene-bo	7.90) 11/	730317	23.00	ug/ 11	72.92%
61) CI30	1,4-Dichlorobenzene-	- 9.86	5 152	302287	25.00	ua/L	0.00
01) 0130	i, a bidhidiobdhiadha	J. 0		00000		5.	64.26%
System Mon	nitoring Compounds						
30) CS15	1,2-Dichloroethane-I mount 25.000 Ra	5.38	3 65	334093	22.06		
Spiked Ar	mount 25.000 Rá	ange 60	6 - 137	Recove	ery =		
43) CS05	Toluene-D8	6.83		929240			0.00
Spiked Ar	mount 25.000 Ra p-Bromofluorobenzene	ange 71	1 - 126	Recove	ery =	76.2	:4%
60) CS10	p-Bromofluorobenzene	8.90	174	237568	19.08	ug/L	0.00
Spiked A	mount 25.000 Ra	ange 73	3 - 120	Recove	ery =	76.3	328
m							Qvalue
Target Con	mpounds Dichlorodifluorome	0 00	85	0	N.D.		Qvarue
	Chloromethane		50	207	N.D.		
4) CO10	Vinyl chloride	1.85	62	226	N.D.		
5) C015	Bromomethane	2.19	94	93	N.D.		
		2.33	64	715	N.D.		
			101	0	N.D.		
8) C045	Trichlorofluoromet 1,1-Dichloroethene	0.00	96	Ö	N.D.		
9) C030	Methylene chloride	3.64	84	1035	N.D.		
	Carbon disulfide	3.36	76	5535	N.D.		
11) 0036	Acrolein	3.08	56	470	N.D.		
12) C038		0.00	53	0	N.D.		
13) C035	Acetone	3.25	43	4279	N.D.		
14) C300	Acetonitrile	3 50	41	224	N.D.		
15) C276	Iodomethane	0.00	142	0	N.D.		
16) C291	1,1,2 Trichloro-1,	0.00	101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73	0	N.D.		
18) C057		0.00	96	0	N.D.		
19) C255	Methyl Acetate	3.54	43	308	N.D.		
20) C050	1,1-Dichloroethane	0,00	63	0	N.D.		
21) C125	Vinyl Acetate	4.28	43	182	N.D.		
22) C051	2,2-Dichloropropan	4.63	77	82	N.D.		
	cis-1,2-Dichloroet	0.00	9.6	0	N.D.		
	Tetrahydrofuran	4.96		7725	N.D.		
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) C060	Chloroform	4.98	83	725	N.D.		
27) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
28) C120	Carbon tetrachlori	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropen	0.00	75 78	0 75	N.D. N.D.		
31) C165	Benzene	5.39 5.39	78 62	75 98	N.D.		
32) C065 33) C110	1,2-Dichloroethane 2-Butanone	3.39 4.74	43	465	N.D.		
34) C256	Z-Bucanone Cyclohexane	0.00	56	0	N.D.		
35) C150	Trichloroethene	0.00	95	ŏ	N.D.		
36) C140	1,2-Dichloropropan	0.00	63	Ö	N.D.		
37) C278	Dibromomethane	0.00	93	Õ	N.D.		
38) C130	Bromodichlorometha	0.00	83	Õ	N.D.		٠,٨٠
39) C161	2-Chloroethylvinyl	0.00	63	Ō	N.D.		(JV, 1/J)
401 -010	26-43	0.00	0.3	0	C TA		U 211°

0.00

0

N.D.

40) C012 Methylcycolhexane

Data File : H:\GCMS_VOA\T\041510\T8578.D
Acq On : 15 Apr 2010 16:55
Sample : RTD1034-10 Vial: 60 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:27:46 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44)	C230	Toluene	6.86	92	738	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.71	43	153	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.34	43	76	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.04	91	474	N.D.	
57)	C246	m,p-Xylene	8.12	106	80	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.90	105	344	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	8.89	83	83	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.06	91	172	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	9.78	119	462	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.12	91	208	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	O	N.D.	
83)	C314	Naphthalene	11.75	128	98	N.D.	
	C934	1,2,3-Trichloroben	0.00	180	Ο	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8578.D
Acq On : 15 Apr \(\frac{2}{2}\)010 16:55
Sample : RTD1034-10

Vial: 60 Operator: LH Inst : 5975 T

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:27:46 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

DUPLICATE

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Methyl-t-Butyl Ether (MTBE)

1634-04-4

Form Rev: 11/23/09

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-11

File ID:

S5612.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 19:12

Solide

04/08/10 15:30

5030B MS

5 mI /5 mI

Solids:	Preparation: 503	0B MS	Initial/Final: 5 mL / 5 mL	
Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	100	500	UD
79-34-5	1,1,2,2-Tetrachloroethane	100	500	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	100	500	UD
79-00-5	1,1,2-Trichloroethane	100	500	UD
75-34-3	1,1-Dichloroethane	100	98	Ъ
75-35-4	1,1-Dichloroethene	100	500	UD
120-82-1	1,2,4-Trichlorobenzene	100	500	UD
96-12-8	1,2-Dibromo-3-chloropropane	100	500	UD
106-93-4	1,2-Dibromoethane	100	500	UD
95-50-1	1,2-Dichlorobenzene	100	500	UD
107-06-2	1,2-Dichloroethane	100	500	UD
78-87-5	1,2-Dichloropropane	100	500	UD
541-73-1	1,3-Dichlorobenzene	100	500	UD
106-46-7	1,4-Dichlorobenzene	100	500	עט
78-93-3	2-Butanone	100	2500	UD
591-78-6	2-Hexanone	100	2500	UD
108-10-1	4-Methyl-2-pentanone	100	2500	UD
67-64-1	Acetone	100	2500	UD
71-43-2	Benzene	100	500	UD
75-27-4	Bromodichloromethane	100	500	UD
75-25-2	Bromoform	100	500	UD
74-83-9	Bromomethane	100	500	UD
75-15-0	Carbon disulfide	100	500	UD
56-23-5	Carbon Tetrachloride	100	500	UD
108-90-7	Chlorobenzene	100	500	UD
75-00-3	Chloroethane	100	500	UD
67-66-3	Chloroform	100	500	UD
74-87-3	Chloromethane	100	500	UD
156-59-2	cis-1,2-Dichloroethene	100	6900	D
10061-01-5	cis-1,3-Dichloropropene	100	500	UD
110-82-7	Cyclohexane	100	500	UD
124-48-1	Dibromochloromethane	100	500	UD
75-71-8	Dichlorodifluoromethane	100	500	UD
100-41-4	Ethylbenzene	100	500	UD
98-82-8	Isopropylbenzene	100	500	UD
79-20-9	Methyl Acetate	100	500	UD
108-87-2	Methylcyclohexane	100	500	UD
75-09-2	Methylene Chloride	100	500	UD

100

UD

500

DUPLICATE

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-11

File ID:

S5612.D

Sampled:

04/16/10 19:12

04/08/10 15:30

Prepared:

04/16/10 09:48

Analyzed:

Solids:		Prepar	ration:	5030B M	<u>IS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1488	Sequence:	<u>T001440</u>	(Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				100	5	00	UD
127-18-4	Tetrachloroethe	ene			100	5	00	UD
108-88-3	Toluene				100	5	00	UD
156-60-5	trans-1,2-Dichl	oroethene			100	5	00	UD
10061-02-6	trans-1,3-Dichl	oropropene			100	5	00	UD
79-01-6	Trichloroethene				100	3000		D .
75-69-4	Trichlorofluoro	Trichlorofluoromethane		100	5	500		
75-01-4	Vinyl chloride				100	5	540	D
1330-20-7	Xylenes, total				100	1:	500	UD
SYSTEM MON	ITORING COM	POUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ane-d4		25	5.0	28.9	115	66 - 137	D
4-Bromofluorob	enzene		25	5.0	26.6	106	73 - 120	D
Toluene-d8			25	5.0	28.4	114	71 - 126	D
INTERNAL STANDARD		AR	EA	RT	REF AREA	REF RT	Q ·	
1,4-Dichloroben	zene-d4		152	794	9.05	192606	9.05	
1,4-Difluoroben	zene		331	487	4.99	368522	4.99	
Chlorobenzene-	d5		181	399	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

Results File: R10C101-SIXPT.RES

Data File : D:\MSDCHEM\S\DATA\041610\S5612.D Vial: 23 Acq On : 16 Apr 2010 19:12 Sample : RTD1034-11@100X Operator: DHC Inst : HP5973S

Multiplr: 1.00 Misc

Quant Time: Apr 17 09:30:21 2010 Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

MS Integration Params: RTEINT.P

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Inte	rnal	Standards	R.T.	QIon	Response	Conc Ur		(Min)
1)	 CI10	1,4-Difluorobenzene	4.99	114	331487	25.00		0.00 9.95%
42)	CI20	Chlorobenzene-D5	7.19	82	181399	25.00	ug/L	0.00
62) (CI30	1,4-Dichlorobenzene-	9.05	152	152794	25.00	ug/L	0.00 9.33%
30) Spi 43) Spi 61)	CS15 ked A CS05 ked A CS10	Toluene-D8 Amount 25.000 Rar p-Bromofluorobenzene	nge 66 6.07 nge 71 8.12	- 137 98 - 126 174	Recove 386025 Recove 111671	ry = 28.42 ry = 26.60	115.44% ug/L 113.68% ug/L	0.00
Spi	ked A	Amount 25.000 Ran	nge 73	- 120	Recove	ry =	106.40%	
		ompounds Dichlorodifluorome	0.00	85	0	N.D.	Qv	ralue
5) 6) 7) 8)	C010 C020 C015 C025 C275 C045 C030 C040 C036 C038	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone	0.00 1.53 0.00 0.00	50 62 94 64 101 96 84 76 56 53 43	0 26157 0 0 0 1447 962 454 0 0	N.D.	ug/L /	87
14) 15) 16) 17) 18)	C300 C276 C291 C962	Acetonitrile Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane	0.00	41 142 101 73 96 43	0 0 0 0 335 0 7520	N.D. N.D. N.D. N.D. N.D.	ug/L /	95
21)		Vinyl Acetate 2,2-Dichloropropan	0.00	43 77	0	N.D.		-
24) 25) 26) 27) 28) 29)	C056	cis-1,2-Dichloroethe Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen Benzene	4.06 0.00 0.00 0.00 4.41	96 42 128	309504 0 0 0 2404 0 0	69.35 N.D. N.D. N.D. N.D. N.D. N.D.	ug/L /	98
32) 33) 35) 36) 37) 38)	C065 C110 C256 C150 C140 C278 C130	1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene 1,2-Dichloropropan Dibromomethane Bromodichlorometha	0.00 0.00 0.00 5.17 0.00 0.00 0.00	62 43 56 95 63 93 83 63	0 0 0 123594 0 0 0	N.D. N.D. N.D. 29.52 N.D. N.D. N.D.	ug/L /	90
	C161 C012	2-Chloroethylvinyl Methylcyclohexane	5.17	83	1483	N.D.		o_{i}

Data File : D:\MSDCHEM\S\DATA\041610\S5612.D

Vial: 23 Acq On : 16 Apr 2010 19:12 Sample : RTD1034-11@100X Operator: DHC Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:21 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Interna	l Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41) C14	5 cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C23		6.12	92	146	N.D.	
45) C17	0 trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C28	4 Ethyl Methacrylate	0.00	69	0	N.D.	
47) C16	0 1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C21	0 4-Methyl-2-pentano	6.07	43	1705	N.D.	
49) C22	O Tetrachloroethene	0.00	166	0	N.D.	
50) C22	1 1,3-Dichloropropan	0.00	76	O	N.D.	
51) C15	5 Dibromochlorometha	0.00	129	0	N.D.	
52) C16	3 1,2-Dibromoethane	0.00	107	0	N.D.	
53) C21	5 2-Hexanone	0.00	43	0	N.D.	
54) C23	5 Chlorobenzene	0.00	112	О	N.D.	
55) C28	1 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C24	0 Ethylbenzene	7.19	91	170	N.D.	
57) C24	6 m,p-Xylene	0.00	106	0	N.D.	
58) C24	7 o-Xylene	0.00	106	0	N.D.	
59) C24	5 Styrene	0.00	104	0	N.D.	
60) C18	0 Bromoform	0.00	173	0	N.D.	
63) C96	6 Isopropylbenzene	0.00	105	0	N.D.	
64) C30	1 Bromobenzene	0.00	156	0	N.D.	
65) C22	5 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C28		0.00	110	0	N.D.	
67) C28	3 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68) C30	2 n-Propylbenzene	0.00	91	0	N.D.	
69) C30	3 2-Chlorotoluene	0.00	126	0	N.D.	
70) C28		0.00	126	О	N.D.	
71) C30	4 1,3,5-Trimethylben	0.00	105	О	N.D.	
72) C30		0.00	134	О	N.D.	
73) C30		0.00	105	0	N.D.	
74) C30	8 sec-Butylbenzene	0.00	105	0	N.D.	
75) C26		0.00	146	О	N.D.	
76) C30	9 4-Isopropyltoluene	0.00	119	0	N.D.	
77) C26	•	0.00	146	0	N.D.	
78) C24	9 1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C31	0 n-Butylbenzene	0.00	91	0	N.D.	
80) C28	•	0.00	75	0	N.D.	
81) C31		0.00	180	0	N.D.	
82) C31		0.00	225	0	N.D.	
83) C31	4 Naphthalene	10.90		151	N.D.	
84) C93	4 1,2,3-Trichloroben	0.00	180	О	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo (Not Reviewed) Quantitation Report

Data File : D:\MSDCHEM\S\DATA\041610\S5612.D : 16 Apr 2010 19:12

Vial: 23 Operator: DHC : HP5973S Inst

: RTD1034-11@100X Sample

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:21 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

5ML WATER Title : 8260

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

Acq On

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-12

File ID:

S5613.D

Sampled:

Prepared:

Preparation:

04/16/10 09:48

Analyzed:

04/16/10 19:37

Solids:

04/07/10 13:25

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1488 Sequence: T001440	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	υ
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

222/416 Form Rev: 11/23/09

Printed: 04/21/2010

MW-10

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-12

File ID:

S5613.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 19:37

Solids:

04/07/10 13:25

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:		Preparation: 503	30B MS	Initial/Final:	<u>5 mL / 5 mL</u>		
Batch:	10D1488 Sequence	e: <u>T001440</u>	Calibration:	R10C101	Instrument:	HP5973S	
CAS NO.	COMPOUND		DILUTION	CON	C. (ug/L)	Q	
100-42-5	Styrene		1		5.0	U	
127-18-4	Tetrachloroethene		1	-	5.0	U	
108-88-3	Toluene		1	:	5.0	U	
156-60-5	trans-1,2-Dichloroethene		1		5.0	Ŭ	
10061-02-6	trans-1,3-Dichloropropene		1		5.0	U	
79-01-6	Trichloroethene		1	:	5.0	U	
75-69-4	Trichlorofluoromethane		1		5.0		
75-01-4	Vinyl chloride		1		U		
1330-20-7	Xylenes, total		1		15	U	
SYSTEM MON	ITORING COMPOUND	ADDED (ug	(L) CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroetha	nne-d4	25.0	29.8	119	66 - 137		
4-Bromofluorob	enzene	25.0	27.4	110	73 - 120		
Toluene-d8		25.0	29.0	116	71 - 126		
INTERNAL ST.	ANDARD	AREA	RT	REF AREA	REF RT	. Q	
1,4-Dichloroben	zene-d4	149380	9.05	192606	9.05		
1,4-Difluoroben	zene	319751	4.99	368522	4.99		
Chlorobenzene-	15	175506	7.19	202829	7.19		

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5613.D

Vial: 24 Acq On : 16 Apr 2010 19:37 Operator: DHC

Inst : HP5973S : RTD1034-12 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:27 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010)

	Standards			Response	Conc Ur	Rcv	(Min) (Ar)
1) CI10	1,4-Difluorobenzene	4.99	114	319751	25.00	ug/L	
42) CI20	Chlorobenzene-D5	7.19	82	175506	25.00	ug/L 8	0.00 6.53%
62) CI30	1,4-Dichlorobenzene-	9,05	152	149380	25.00	ug/L	0.00 7.56%
30) CS15	onitoring Compounds 1,2-Dichloroethane-D	4.69	65	120956			0.00
Spiked A 43) CS05	Amount 25.000 Ra Toluene-D8 Amount 25.000 Ra	nge 66 6.07	98	Recove 381695	29.04	119.24% ug/L	0.00
61) CS10	n-Bromofluorobenzene	e 8.12	1/4	111305	2/.41	ug/L	0.00
Spiked A	Amount 25.000 Ra	inge 73	- 120	Recove	ery =	109.64%	
Target Co		0 00	0.5	0	N.D.	Qv	alue
	Dichlorodifluorome	0.00	85 50	0	N.D.		
3) COIO	Chloromethane Vinyl chloride	0.00	62	0	N.D.		
4) COZO	Bromomethane	0.00	94	Ö	N.D.		
6) 0025	Chloroethane	0 00	64	Ö	N.D.		
7) 0275	Trichlorofluoromet	0.00	101	Ö	N.D.		
8) C045	1,1-Dichloroethene	0.00	96	Ō	N.D.		
9) C030	Methylene chloride	0.00	84	0	N.D.		
10) C040	Methylene chloride Carbon disulfide	2.77	76	334	N.D.		
	Acrolein	0.00	56	0	N.D.		
12) C038	Acrylonitrile		53	0	N.D.		
13) C035	Acetone	0.00	43	0	N.D.		
14) C300	Acetonitrile	0.00	41	О	N.D.		
15) C276	Iodomethane	0.00	142	0	N.D.		
16) C291	1,1,2-Trichloro-1, T-butyl Methyl Eth	0.00	101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73	0	N.D.		
18) C057	trans-1,2-Dichloro	0.00	96	0	N.D.		
19) C255	Methyl Acetate 1,1-Dichloroethane	0.00	43	0	N.D.		
20) C050		0.00	63	0	N.D. N.D.		
21) C125	Vinyl Acetate	0.00	43 77	0	N.D.		
22) COSI	2,2-Dichloropropan cis-1,2-Dichloroet	4.07	96	157	N.D.		
24) 0036	Tetrahydrofuran	0.00	42	0	N.D.		
24) C272 25) C222	Bromochloromethane	0.00	128	Ö	N.D.		
	Chloroform			Ö	N.D.		
27) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
28) C120	Carbon tetrachlori	0.00	117	Ο	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165	Benzene	0.00	78	0	N.D.		
32) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
33) C110	2-Butanone	0.00	43	0	N.D.		
34) C256	Cyclohexane	0.00	56	0	N.D.		7
35) C150	Trichloroethene	0.00	95	0	N.D.		anny
36) C140	1,2-Dichloropropan	0.00	63	0	N.D.		.W
37) C278	Dibromomethane	0.00	93	0	N.D.		ω_{a}
38) C130	Bromodichlorometha	0.00	83	0	N.D.		U,

0.00

0

0

N.D.

N.D.

40) C012 Methylcyclohexane

39) C161 2-Chloroethylvinyl 0.00 63

Data File : D:\MSDCHEM\S\DATA\041610\S5613.D

Vial: 24 Operator: DHC

Acq On : 16 Apr 2010 19:37 Sample : RTD1034-12 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:27 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	и.р.	
	C230	Toluene	0.00	92	0	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284		0.00	69	0	N.D.	
	C160	-	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentano	6.07	43	1452	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	0.00	43	0	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	7.19	91	315	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	8.12	91	147	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	0.00	91	0	N.D.	
80)	C286			75	0	N.D.	
	C313		0.00	180	0	N.D.	
	C316		0.00		0	N.D.	
	C314		10.91		137	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo Quantitation Report (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5613.D

Vial: 24 : 16 Apr 2010 19:37 Operator: DHC

Acq On Inst : HP5973s : RTD1034-12 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:27 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-13

File ID:

T8581.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 18:07

Solids:

04/07/10 14:15

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1339</u>	Sequence:	T001413	Calibration:	R10D026	Instrument:	HP5975T
CAS NO.	COMPOUND			DILUTION	C	ONC. (ug/L)	Q

Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	HP39/31
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	2.4	J
79-34-5	1,1,2,2-Tetrachloroethane	11	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	11	5.0	บ
75-34-3	1,1-Dichloroethane	1	13	
75-35-4	1,1-Dichloroethene	1	2.0	J
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	5.0	υ
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	υ
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	Ū
67-64-1	Acetone	1	25	υ.
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	26	
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	60	
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

227/416 Form Rev: 11/23/09

MW-11

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-13

File ID:

T8581.D

Sampled:

Analyzed:

04/15/10 18:07

Solids:

04/07/10 14:15

Prepared:

04/15/10 10:24

Initial/Final:

Solids:		Prepar	ration: 503	30B MS		Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10D1339	Sequence:	T001413	Ca	alibration:	<u>R10D026</u>	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1		5.0	U
127-18-4	Tetrachloroethe	ene			1	5	5.0	U
108-88-3	Toluene				1		5.0	Ŭ
156-60-5	trans-1,2-Dichl	oroethene			11	5	5.0	U
10061-02-6	trans-1,3-Dichl	oropropene			1	5	5.0	U
79-01-6	Trichloroethene	<u> </u>			11	0	.95	J
75-69-4	Trichlorofluoro	methane			11		5.0	U
75-01-4	Vinyl chloride				11		17	
1330-20-7	Xylenes, total				1		15	U
SYSTEM MON	ITORING COME	OUND	ADDED (ug	g/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0		22.8	91	66 - 137	
4-Bromofluorob	enzene		25.0		19.7	79	73 - 120	
Toluene-d8			25.0		20.1	81	71 - 126	
INTERNAL ST	ANDARD		AREA		RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		290008		9.86	470395	9.86	
1,4-Difluoroben	zene		776454		5.68	1201787	5.68	
Chlorobenzene-	d5		671392		7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : H:\GCMS_VOA\T\041510\T8581.D
Acq On : 15 Apr 2010 18:07
Sample : RTD1034-13 Vial: 63 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:28:10 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

IS QA	A File	: H:\GCMS_VOA\T\041	L510\T8	563.D	(15 Apr 20)	10 10:3	39)		
Inte	ernal S	Standards			Response	Conc Ur	R	ev(M .cv(A	r)
1)	CI10	1,4-Difluorobenzene				25.00			.00
42)	CI20	Chlorobenzene-D5	7.95	117	671392	25.00	ug/L	0	.00 25%
61)	CI30	1,4-Dichlorobenzene-	9.86	152	290008	25.00	ug/L	0	.00 65%
Syst	em Moi	nitoring Compounds	F 20	<i>C</i> =	320400	22 76	ug/T	0	.00
3U) Spi	ked Ar	1,2-Dichloroethane-D mount 25.000 Ran	3.30 nare 66	- 137	Recove:	rv =	91.0		.00
43)	CS05	Toluene-D8	6.81	98	878635	20.14			.00
Spi	ked Aı	mount 25.000 Rar	nge 71	- 126	Recove		80.5		
60)	CS10	p-Bromofluorobenzene	8.90	174	219913	19.74	ug/L		.00
Spi	ked Ar	mount 25.000 Rar	nge 73	- 120	Recove	ry =	78.9	68	
Taro	get Coi	mpounds						Qval	ue
2)	C290	Dichlorodifluorome	0.00	85	0	N.D.			
		Chloromethane	1.72	50		N.D.		,	0.0
	C020	Vinyl chloride	1.84		153428	16.67	ug/L		99
	C015	Bromomethane Chloroethane	2.22	94	233	N.D.	1107 / T	,	96
	7		2.35	64 101	82683 0	25.83 N.D.	ug/L	/	90
	€045	Trichlorofluoromet	3.15			2.01	ua/L	# /	79
97	C030	1,1-Dichloroethene Methylene chloride	3 64	84		N.D.		" /	-
	C040	Carbon disulfide			2183	N.D.			
	C036		3.10	56	275	N.D.			
	C038		0.00	53	0	N.D.			
	C035	Acetone	3.25	43	7593	N.D.			
	C300	Acetonitrile	3.55	41	811	N.D.			
15)	C276	Todomethane	3.31	142	2896	N.D.			
16)	C291	1,1,2 Trichloro-1,		101	0	N.D.			
17)	C962	T-butyl Methyl Eth		73	856	N.D.		/	
18)) C057	trans-1,2-Dichloroet			7559	0.64	ug/L	#/	81
	C255	Methyl Acetate	3.54	43	483	N.D.	. /		0.0
	C050	1,1-Dichloroethane	4.24	63			ug/L	/	98
	C125	Vinyl Acetate 2,2-Dichloropropan	4.26	43	280	N.D. N.D.			
	C051 C056	cis-1,2-Dichloroethe	0.00	77 96	0 752207	59.61	1107 / T.	# /	84
	C272	Tetrahydrofuran	4.72	42	8436	N.D.	ug/11	<i>"</i>	Ų J
		Bromochloromethane	0.00		0	N.D.			
	C060	Chloroform	4.99	83	409	N.D.			
27)	C115	1,1,1-Trichloroethan	5.10	97	39065		ug/L	,	99
	C120	Carbon tetrachlori		117	4943	N.D.	3	•	
	C116	1,1-Dichloropropen	0.00	75	0	N.D.			
	C165	Benzene	5.39	78	4549	N.D.			
32)		1,2-Dichloroethane	5.43	62	3025	N.D.			
33)	C110	2-Butanone	4.74	43	1748	N.D.			
34)	C256	Cyclohexane	5.13	56	1303	N.D.	,		0.5
35)	C150	Trichloroethene	5.88		11824		ug/L	/	91
36)	C140	1,2-Dichloropropan	0.00	63	0	N.D.		•	
	C278	Dibromomethane	0.00	93	0	N.D.			
38)	C130	Bromodichlorometha	0.00	83	0	N.D.			~ ~~
39)		2-Chloroethylvinyl	0.00	63	0	N.D.			$(n_{i,i})$
40)	C012	Methylcycolhexane	6.01	83	154	N.D.			٧ ٧

Data File : H:\GCMS_VOA\T\041510\T8581.D
Acq On : 15 Apr 2010 18:07
Sample : RTD1034-13 Vial: 63 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:28:10 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44)	C230	Toluene	6.86	92	853	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	6.93	69	73	N.D.	
47)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.71	43	88	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.36	43	187	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.03	91	977	N.D.	
57)	C246	m,p-Xylene	8.12	106	733	N.D.	
58)	C247	o-Xylene	8.46	106	374	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.90	105	207	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
		1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.06	91	191	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	9.15	105	536	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	9.54	105	745	N.D.	
-	C308	sec-Butylbenzene	9.54	105	745	N.D.	
	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
	C309	4-Isopropyltoluene	9.78	119	120	N.D.	
	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.15	91	94	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	O	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316	Hexachlorobutadien	0.00	225	0	N.D.	
83)	C314	Naphthalene	11.77	128	734	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	
							

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8581.D Acq On : 15 Apr 2010 18:07

Vial: 63 Operator: LH

Sample Misc

: RTD1034-13

Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:28:10 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

: Fri Apr 16 09:26:11 2010 Last Update

Response via : Initial Calibration DataAcq Meth : VOA.M

MW-2

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-14

File ID:

T8582.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 18:31

Solids:

Form Rev: 11/23/09

04/07/10 09:50

5030B MS

Initial/Final:

5 mL / 5 mL

Preparation: R10D026 HP5975T T001413 Calibration: Instrument: Batch: 10D1339 Sequence: CAS NO. DILUTION CONC. (ug/L) 0 COMPOUND 25 UD 71-55-6 1,1,1-Trichloroethane 5 UD 5 25 79-34-5 1,1,2,2-Tetrachloroethane UD 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 5 25 UD 79-00-5 1,1,2-Trichloroethane 5 25 25 UD 75-34-3 1,1-Dichloroethane 5 75-35-4 5 25 UD 1,1-Dichloroethene UD 5 25 120-82-1 1,2,4-Trichlorobenzene 5 25 UD 96-12-8 1,2-Dibromo-3-chloropropane UD 5 25 106-93-4 1,2-Dibromoethane UD 95-50-1 1,2-Dichlorobenzene 5 25 UD 107-06-2 5 25 1,2-Dichloroethane UD 78-87-5 1,2-Dichloropropane 5 25 UD 541-73-1 5 25 1,3-Dichlorobenzene 5 25 UD 106-46-7 1,4-Dichlorobenzene UD 5 120 78-93-3 2-Butanone UD 120 591-78-6 5 2-Hexanone UD 108-10-1 4-Methyl-2-pentanone 5 120 ÚD 5 67-64-1 120 Acetone 71-43-2 5 25 UD Benzene UD 25 75-27-4 Bromodichloromethane 5 75-25-2 5 25 UD Bromoform UD 74-83-9 5 25 Bromomethane 75-15-0 5 25 UD Carbon disulfide 25 UD Carbon Tetrachloride 5 56-23-5 UD 108-90-7 Chlorobenzene 5 25 Ъ 75-00-3 5 21 Chloroethane UD 67-66-3 Chloroform 5 25 5 UD 74-87-3 25 Chloromethane UD 5 25 156-59-2 cis-1,2-Dichloroethene 5 25 UD 10061-01-5 cis-1,3-Dichloropropene UD 25 5 110-82-7 Cyclohexane 5 25 UD 124-48-1 Dibromochloromethane UD 75-71-8 Dichlorodifluoromethane 5 25 UD 100-41-4 5 25 Ethylbenzene 98-82-8 5 25 UD Isopropylbenzene 79-20-9 5 25 UD Methyl Acetate 5 UD 25 108-87-2 Methylcyclohexane UD 75-09-2 Methylene Chloride 5 25 5 25 UD 1634-04-4 Methyl-t-Butyl Ether (MTBE)

236/416

Printed: 04/21/2010

MW-2

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-14

File ID:

T8582.D

Sampled:

•

04/15/10 10 04

Analyzed:

04/15/10 18:31

Solids:

04/07/10 09:50

Prepared:
Preparation:

04/15/10 10:24 5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	<u>10D1339</u>	Sequence:	T001413	Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND)		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			5		25	UD
127-18-4	Tetrachloroetl	nene		5		25	UD
108-88-3	Toluene			5		25	UD
156-60-5	trans-1,2-Dich	loroethene		5		25	UD
10061-02-6	trans-1,3-Dich	loropropene		. 5		25	UD
79-01-6	Trichloroether	ne		5		25	UD
75-69-4	Trichlorofluor	romethane		5		25	UD
75-01-4	Vinyl chloride	2		5	<u> </u>	25	UD
1330-20-7	Xylenes, total			5		75	UD
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ane-d4		25.0	22.8	91	66 - 137	D
4-Bromofluorob	enzene		25.0	18.3	73	73 - 120	D
Toluene-d8			25.0	20.4	82	71 - 126	D
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		274007	9.86	470395	9.86	
1,4-Difluoroben	zene		770977	5.68	1201787	5.68	
Chlorobenzene-	d5		694888	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8582.D
Acq On : 15 Apr 2010 18:31
Sample : RTD1034-14@5X
Misc : FOAM Vial: 64 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 16 09:28:18 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

<u></u>				` -			ν.
Internal	Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
						RC1	7(Ar)
1) CT10	1,4-Difluorobenzene	5.68	114	770977	25.00	ug/L	0.00
_,						6	54.15%
42) CT20	Chlorobenzene-D5	7.95	117	694888	25.00	ug/L	0.00
						(57,54%
61) CI30	1,4-Dichlorobenzene-	- 9.86	152	274007	25.00	ug/L	0.00
01, 0100	1,1 210112011111111111111111111111111111						58.25%
G	nitoring Compounds						
System Mo	1,2-Dichloroethane-I	5 37	65	327454	22 79	na/L	0.00
Spiked A	mount 25.000 Ra Toluene-D8 mount 25.000 Ra p-Bromofluorobenzena	2.57 22.66	- 137	Recove	rv =	91.169	5
3piked A	Toluene-D8	411 9 E 00	98	923588	20.45	ua/L	0.00
Spiked A	mount 25 000 Ra	ange 71	- 126	Recove	rv =	81.809	3
60) Calo	n-Bromofluorobenzene	8 90	174	211362	18.33	ug/L	0.00
Spiked A	mount 25.000 Ra	ange 73	- 120	Recove	ry =	73.32	5
		-					
Target Co	mpounds		0.5	0	17 T)	Q7	zalue
2) C290	Dichlorodifluorome Chloromethane	0.00	85	100	N.D.		
3) C010	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide	1.71	50	499	N.D.		
4) C020	Vinyl chloride	1.85	62	126	N.D.		
5) C015	Bromomethane	2.21	94	544	N.D.	/T	84
(6) (5025)	Chloroethane	2.35	64	13397	4.22	ug/L/	04
7) C275	Trichlorofluoromet	0.00	101	0	N.D.	•	
8) C045	1,1-Dichloroethene	0.00	96	0	N.D.		
9) C030	Methylene chloride	3.64	84	1735	N.D.		
10) C040	Carbon disulfide	3.36	76	853	N.D.		
11) C036	Acrolein Acrylonitrile Acetone	3.13	56	167	N.D.		
12) C038	Acrylonitrile	0.00	53	0	N.D.		
13) C035	Acetone	3.25	43	4/24	N.D.		
14) C300	Acetonitrile	3.55	41	1037	N.D.		
15) C276	<pre>Iodomethane 1,1,2 Trichloro-1,</pre>	3.31	142	695	N.D.		
16) C291	1,1,2 Trichloro-1,	0.00	101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73	0	N.D.		
18) C057	trans-1,2-Dichloro	3.86	96	79	N.D.		
19) C255	Methyl Acetate	3.52	43	290	N.D.		
20) C050	1,1-Dichloroethane	4.24	63	153	N.D.		
21) C125	Vinyl Acetate	4.27	43	95	N.D.		
22) C051	2,2-Dichloropropan	0.00	77	0	N.D.		
231 C056	1,1,2 Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan cis-1,2-Dichloroet Tetrahydrofuran Bromochloromethane	4.74	96	97	N.D.	/ + 11	0.3
_ 24) C 272	Tetrahydrofuran	4.95	42	17333	2.57	ug/L #	83
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) 0060	Chloroform	4.99	0.3	860	D.		
27) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
28) C120	Carbon tetrachlori		117	0	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165	Benzene	5.40	78	7968	N.D.		
32) C065	1,2-Dichloroethane	5.37	62	114	N.D.		
33) C110	2-Butanone	4.75	43	1405	N.D.		
34) C256	Cyclohexane	5.12	56	2020	N.D.		
35) C150	Trichloroethene	0.00	95	0	N.D.		
36) C140	1,2-Dichloropropan	0.00	63	0	N.D.		\
37) C278	Dibromomethane	0.00	93	0	N.D.		
38) C130	Bromodichlorometha	0.00	83	0	N.D.		U. M. SIL
39) C161	2-Chloroethylvinyl	0.00	63	0	N.D.		(MM/22/10
40) C012	Methylcycolhexane	6.00	83	550	N.D.		~ dla

Data File : H:\GCMS_VOA\T\041510\T8582.D
Acq On : 15 Apr 2010 18:31
Sample : RTD1034-14@5X
Misc : FOAM Vial: 64 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:28:18 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via: Initial Calibration
DataAcq Meth: VOA.M
IS QA File: H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc U	nits Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.86	92	714	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	7.01	69	79	N.D.	
47)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	0.00	43	0	N.D.	
49)	C220	Tetrachloroethene	0.00	166	0	N.D.	
5.0)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.35	43	101	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.04	91	203	N.D.	
57)	C246	m,p-Xylene	8.11	106	190	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.73	105	389	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.08	91	490	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	9.53	105	150	N.D.	
74)	C308	sec-Butylbenzene	9.53	105	150	N.D.	
	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	9.80	119	362	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.07	91	73	N.D.	
80)	C286		0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
	C314		0.00		0	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	
							

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Vial: 64 Operator: LH : 5975 **T** Inst Multiplr: 1.00 : FOAM Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:28:18 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-15

File ID:

T8583.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 18:55

Solids:

04/07/10 10:45

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

_]	Batch:	<u>10D1339</u> Sequence: <u>T001413</u>		T001413	Calibration:	R10D026	Instrument:	HP5975T	
	CAS NO.	COMPOUND			DILUTION	C	ONC. (ug/L)	Q	
Ī	71-55-6	1,1,1-Trichlor	oethane.		1		5.0	U	_
	79-34-5	1,1,2,2-Tetrac	hloroethane		1		5.0	U	
	76-13-1	1,1,2-Trichlor	o-1,2,2-trifluoroeth	ane	1		5.0	ับ	
- 1						1			

79-00-5 1,1,2-Trichloroethane 5.0 U 75-34-3 1,1-Dichloroethane 1 10 75-35-4 1,1-Dichloroethene 1 5.0 U 1 5.0 U 120-82-1 1,2,4-Trichlorobenzene 96-12-8 1 5.0 U 1,2-Dibromo-3-chloropropane U 106-93-4 1 5.0 1,2-Dibromoethane U 95-50-1 1,2-Dichlorobenzene 1 5.0 U 107-06-2 1,2-Dichloroethane 1 5.0 U 78-87-5 1,2-Dichloropropane 1 5.0 1 U 541-73-1 1,3-Dichlorobenzene 5.0 1 5.0 U 106-46-7 1,4-Dichlorobenzene 1 25 U 78-93-3 2-Butanone U 1 591-78-6 25 2-Hexanone U 108-10-1 4-Methyl-2-pentanone 1 25 25 U 67-64-1 Acetone 1 71-43-2 5.0 U Benzene 1 5.0 Bromodichloromethane U 75-27-4 1 75-25-2 Bromoform 1 5.0 U U 74-83-9 Bromomethane 1 5.0 75-15-0 Carbon disulfide 1 5.0 U U Carbon Tetrachloride 5.0 56-23-5 1 U 108-90-7 Chlorobenzene 1 5.0 U 75-00-3 Chloroethane 5.0 1 5.0 U 67-66-3 Chloroform 1 U 74-87-3 Chloromethane 1 5.0 156-59-2 cis-1,2-Dichloroethene 1 1.7 J 5.0 U 10061-01-5 cis-1,3-Dichloropropene 1 U 110-82-7 Cyclohexane 5.0 1 1 5.0 U 124-48-1 Dibromochloromethane U 75-71-8 Dichlorodifluoromethane 1 5.0 U 100-41-4 5.0 Ethylbenzene 1 98-82-8 1 5.0 U Isopropylbenzene 79-20-9 1 5.0 U Methyl Acetate U 108-87-2 Methylcyclohexane 1 5.0 75-09-2 U Methylene Chloride 1 5.0 U 1 5.0 1634-04-4 Methyl-t-Butyl Ether (MTBE)

242/416 Form Rev: 11/23/09

MW-3

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-15

File ID:

T8583.D

Sampled:

04/15/10 10:24

Analyzed:

04/15/10 18:55

Solids:

04/07/10 10:45

Prepared:

5030B MS

Initial/Final:

Solids:		Prepar	ration:	5030B N	<u>MS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1339	Sequence:	T001413		Calibration:	R10D026	Instrument:	HP5975T
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	U
127-18-4	Tetrachloroeth	nene			1	5	5.0	υ
108-88-3	Toluene				1	5	5.0	U
156-60-5	trans-1,2-Dich	loroethene			1	5	5.0	U
10061-02-6	trans-1,3-Dich	loropropene			1	5	5.0	U
79-01-6	Trichloroether	ne			1	5	5.0	U
75-69-4	Trichlorofluor	omethane			1	5	5.0	U
75-01-4	Vinyl chloride	,			1	4	1.6	J
1330-20-7	Xylenes, total				1		15	υ
SYSTEM MON	ITORING COM	POUND	ADDE	D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		2	5.0	22.5	90	66 - 137	
4-Bromofluorob	enzene		2	5.0	22.0	88	73 - 120	
Toluene-d8			2	5.0	21.7	87	71 - 126	
INTERNAL ST	ANDARD		A	REA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	zene-d4		28	1371	9.86	470395	9.86	
1,4-Difluoroben	zene		78′	7397	5.68	1201787	5.68	
Chlorobenzene-	d5		643	3431	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : H:\GCMS_VOA\T\041510\T8583.D
Acq On : 15 Apr 2010 18:55
Sample : RTD1034-15 Vial: 65 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 16 09:28:28 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS VOA\T\041510\T8563.D (15 Apr 2010 10:39)

IS QA File	: H:\GCMS_VOA\T\04	1510\T8563.D	(15 Apr 20	10 10:3:	<i>Э</i>)	
Internal	Standards	R.T. QIon	Response	Conc Un:		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.68 114	787397	25.00 1	ug/L 65	0.00 5.52%
42) CI20	Chlorobenzene-D5	7.95 117	643431	25.00 1	ug/L	0.00
61) CI30	1,4-Dichlorobenzene-	9.86 152	281371	25.00 1	ug/L	0.00 9.82%
30) CS15 Spiked A 43) CS05	nitoring Compounds 1,2-Dichloroethane-D mount 25.000 Ra Toluene-D8	nge 66 - 13' 6.80 98	7 Recove 906547	21.68	89.96% ug/L	0.00
Spiked A 60) CS10 Spiked A	mount 25.000 Ra p-Bromofluorobenzene mount 25.000 Ra	8.90 174	234432	21.96		0.00
Target Co	mpounds				Qva	alue
3) C010 4) C020 5) C015 6) C025 7) C275	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone	1.72 50 1.85 62 2.23 94 2.34 64 0.00 101 0.00 96 3.64 84	1142 1256 0	N.D. N.D. 1.64 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	^{ag/L} /	99
14) C300 15) C276 16) C291 17) C962 18) C057 19) C255	Acetonitrile Iodomethane 1,1,2 Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate	3.54 41 3.31 142 0.00 101 0.00 73 3.87 96 3.54 43	643 1485 0 0 2836 328	N.D. N.D. N.D. N.D. N.D. N.D.	ug/L 🖊	98
23) C056	1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan cis-1,2-Dichloroethe	4.72 96	21576	N.D. N.D. 1.69	, ug/L # /	, 86
24) C272 C222 26) C060 27) C115 28) C120 29) C116 31) C165 32) C065 33) C110 34) C256 35) C150 36) C140 37) C278 38) C130 39) C161 40) C012	Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene 1,2-Dichloropropan Dibromomethane Bromodichlorometha 2-Chloroethylvinyl Methylcycolhexane	4.95 42	1/9/8	2.61	ug/L #	24 84 W
		044/440				

Data File : H:\GCMS_VOA\T\041510\T8583.D
Acq On : 15 Apr 2010 18:55
Sample : RTD1034-15 Vial: 65 Operator: LH

Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:28:28 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.86	92	932	N.D.	
	C170		0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	7.02	83	277	N.D.	
	C210	4-Methyl-2-pentano	7.02 6.74	43	90	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155	1,3-Dichloropropan Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.40	43	100	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	8.03	91	507	N.D.	
57)	C246	m,p-Xylene	8.11	106	507	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	, O	N.D.	
62)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	8.89	105	286	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor 1,2,3-Trichloropro	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.07	91	196	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	9,20	105	76	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307	1,2,4-Trimethylben	9.52	105	357	N.D.	
	C308		9.58	105	81	N.D.	
	C260	1,3-Dichlorobenzen	0.00 9.78	146	0	N.D.	
	C309			119	291	N.D.	
	C267		0.00	146	0	N.D.	
	C249	•	0.00	146	0	N.D.	
	C310	n-Butylbenzene	10.16	91	79	N.D.	
-	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316		0.00	225	0	N.D.	
	C314		11.75		323	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8583.D Acq On : 15 Apr \(\frac{2}{2}\)010 18:55 Sample : RTD1034-15 Vial: 65 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:28:28 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-16

File ID:

S5614.D

Sampled:

04/09/10 14:45

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 20:01

Solids:

Form Rev: 11/23/09

<u>04/08/10 14:45</u>

Preparation: 5030B MS

MS Initial

Initial/Final:

5 mL / 5 mL

HP5973S R10C101 Batch: 10D1488 Sequence: T001440 Calibration: Instrument: COMPOUND DILUTION CONC. (ug/L) Q CAS NO. UD 71-55-6 1,1,1-Trichloroethane 100 500 UD 100 500 79-34-5 1,1,2,2-Tetrachloroethane UD 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 100 500 UD 79-00-5 1,1,2-Trichloroethane 100 500 JD 75-34-3 1,1-Dichloroethane 100 110 75-35-4 100 50 JD 1,1-Dichloroethene UD 120-82-1 1,2,4-Trichlorobenzene 100 500 500 UD 96-12-8 100 1,2-Dibromo-3-chloropropane 106-93-4 100 500 UD 1,2-Dibromoethane 95-50-1 1,2-Dichlorobenzene 100 500 UD UD 107-06-2 1,2-Dichloroethane 100 500 78-87-5 1,2-Dichloropropane 100 500 UD UD 541-73-1 1,3-Dichlorobenzene 100 500 100 500 UD 106-46-7 1,4-Dichlorobenzene 2500 UD 78-93-3 100 2-Butanone UD 591-78-6 100 2500 2-Hexanone UD 108-10-1 4-Methyl-2-pentanone 100 2500 UD 67-64-1 100 2500 Acetone 100 500 UD 71-43-2 Benzene UD 75-27-4 Bromodichloromethane 100 500 75-25-2 100 500 UD Bromoform 74-83-9 100 500 UD Bromomethane 100 500 UD 75-15-0 Carbon disulfide UD 100 500 56-23-5 Carbon Tetrachloride 108-90-7 Chlorobenzene 100 500 UD 75-00-3 Chloroethane 100 500 UD 500 UD 67-66-3 Chloroform 100 UD 74-87-3 100 500 Chloromethane 7200 D 156-59-2 cis-1,2-Dichloroethene 100 UD 10061-01-5 cis-1,3-Dichloropropene 100 500 UD 100 500 110-82-7 Cyclohexane 500 UD 124-48-1 Dibromochloromethane 100 75-71-8 Dichlorodifluoromethane 100 500 UD 100-41-4 100 500 UD Ethylbenzene 98-82-8 Isopropylbenzene 100 500 UD 79-20-9 100 500 UD Methyl Acetate UD 108-87-2 Methylcyclohexane 100 500 UD 75-09-2 Methylene Chloride 100 500 UD 1634-04-4 100 500 Methyl-t-Butyl Ether (MTBE)

249/416

MW-4

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-16

File ID:

S5614.D

Sampled:

04/00/10 14 4

Preparation:

Analyzed:

04/16/10 20:01

Solids:

04/08/10 14:45

Prepared:

04/16/10 09:48

5030B MS

Initial/Final:

<u>5 mL / 5 mL</u>

Batch:	10D1488	Sequence:	T001440	Calibration:	R10C101	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUNI)		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			100	5	00	UD
127-18-4	Tetrachloroet	hene		100	5	00	UD
108-88-3	Toluene			100	5	00	UD
156-60-5	trans-1,2-Dic	hloroethene		100	5	00	UD
10061-02-6	trans-1,3-Dic	hloropropene		100	5	00	UD
79-01-6	Trichloroethe	ne		100	30	000	D
75-69-4	Trichlorofluo	romethane		100	5	600	UD
75-01-4	Vinyl chlorid	e.		100	5	60	D
1330-20-7	Xylenes, tota	l		100	1:	500	UD
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	28.9	116	66 - 137	D
4-Bromofluorob	enzene		25.0	26.8	107	73 - 120	D
Toluene-d8			25.0	29.0	116	71 - 126	D
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		151995	9.05	192606	9.05	
1,4-Difluoroben	zene		328117	4.99	368522	4.99	
Chlorobenzene-	d5		176386	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5614.D

Vial: 25 Acq On : 16 Apr 2010 20:01 Sample : RTD1034-16@100X Operator: DHC

Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:33 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010)

	: D:\MSDCHEM\S\DATA	A / U4 I O I ()\5559.	I.D (IO AD	1 2010	10.09)	
Internal S	Standards	R.T.	QIon	Response	Conc Ur		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	4.99	114	328117	25.00		0.00 9.04%
42) CT20	Chlorobenzene-D5	7 10	9.2	176386	25 00	110/T.	0.00
42) CIZU	Chrorobenzene-D5	7.19	0.2	1/0200	23.00		6.96%
621 CT30	1,4-Dichlorobenzene-	9 05	152	151995	25 00	na/T.	0.00
02/ 0130	1,4 Dichiolopenzene	9.00	102	101770	20.00	7	8.91%
System Mor	nitoring Compounds						
30) CS15	1,2-Dichloroethane-D	4.69	65	120294	28.89	ug/L	0.00
Spiked Am	nount 25.000 Rai Toluene-D8 nount 25.000 Rai	nge 66	- 137	Recove	ry =	115.56%	
43) CS05	Toluene-D8	6.07	98	382447	28.95	ug/L	0.00
Spiked Am	nount 25.000 Rai	nge 71	- 126	Recove	ry =	115.80%	
61) CS10	p-Bromofluorobenzene mount 25.000 Ran	8.12	174	109535	26.84	ug/L	0.00
Spiked Am	nount 25.000 Ran	nge 73	- 120	Recove	ry =	107.36%	
Target Com						QV	alue
2) C290	Dichlorodifluorome	0.00	85		N.D.		
C010	Chloromethane	0.00	50	Ο	N.D.	,	
(4) C020	Vinyl chloride Bromomethane Chloroethane	1.53	62	26733	5.61	ug/L /	85
5) C015	Bromomethane Chloroethane	0.00	94	0	N.D.	/	
6) C025	Chloroethane	0.00	64	0	N.D.		
(7) C275	Trichlorofluoromet	0.00	101	0	N.D.		0.4
8) 5045	Trichlorofluoromet 1,1-Dichloroethene Methylene chloride	2.59	96	1657	0.50	ug/L /	84
9) C030	Methylene chloride	3.05	84	1088	N.D.		
10) C040	Carbon disulfide	2.//	76	307	N.D.		
11) C036	Acrolein Acrylonitrile Acetone	0.00 0.00 0.00	56	0	N.D. N.D.		
12) C038	Acrylonitrile	0.00	53	0	N.D.		
13) 0035	Acetone	0.00	43	0	N.D.		
14) C300	Acetonitrile	0.00	41	0	N.D. N.D.		
15) C276	<pre>Iodomethane 1,1,2-Trichloro-1,</pre>	0.00	142 101	0	N.D.		
				0			
17) C962	T-butyl Methyl Eth	0.00	7.3	0	N.D. N.D.		
18) C057 1 <u>9)</u> C255	trans-1,2-Dichloro Methyl Acetate	0.00	12	0	N.D.		
C255	1 1 Dichleresthans	3 60	42	2065	1 06	1107/T .	91
21) C125	1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan	0.00	V 3	0000	NI D	ag/ b	24
21) C123	2 2-Dichloropropan	0.00	77	Ô	N D		
23) C056	cis-1,2-Dichloroethe	4.06	96	316378	71.62	ua/L	98
24) C272	Tetrahydrofuran	0.00	42	0	N.D.	,	
	Bromochloromethane	0.00	128	Ö	N.D.	/	
26) C060	Chloroform	0.00	83	Ō	N.D.		
27) C115	1,1,1-Trichloroeth	4.42	97	2431	N.D.		
28) C120	Carbon tetrachlori		117	0	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165	Benzene	0.00	78	0	N.D.		
32) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
33) C110	2-Butanone	0.00	43	0	N.D.		
34) C256	Cyclohexane	0.00	56	0	N.D.		
(35) c150	Trichloroethene	5.17	95	125683	30.33	ug/L	90
36) C140	1,2-Dichloropropan	0.00	63	0	N.D.		
37) C278	Dibromomethane	0.00	93	0	N.D.	*	.
38) C130	Bromodichlorometha	0.00	83	0	N.D.		~ W~!\1
,							
39) C161	2-Chloroethylvinyl Methylcyclohexane	0.00 5.17	63 83	0	N.D.		(N. W/

Data File : D:\MSDCHEM\S\DATA\041610\S5614.D

Vial: 25 Acq On : 16 Apr 2010 20:01 Sample : RTD1034-16@100X Operator: DHC Inst : HP59735 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:33 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
,	C230	Toluene	6.13	92	131	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	-	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.07	43	1485	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	0.00	43	Ο	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56)	C240	Ethylbenzene	7.19	91	268	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	0.00	91	0	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	0.00	91	0	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316		0.00		0	N.D.	
83)		Naphthalene	10.90		348	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo (Not Reviewed) Quantitation Report

Data File : D:\MSDCHEM\S\DATA\041610\S5614.D

Vial: 25 Operator: DHC

: 16 Apr 2010 20:01 Acq On

: HP5973S

: RTD1034-160100X Sample Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:33 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-17

File ID:

T8587.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 20:32

Solids:

Form Rev: 11/23/09

04/07/10 12:35

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration: R	10D026 Instrument:	<u>HP5975T</u>	
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	
71-55-6	1,1,1-Trichloroethane	1	5.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	υ	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U	
79-00-5	1,1,2-Trichloroethane	1	5.0	U	
75-34-3	1,1-Dichloroethane	1	5.0	U	
75-35-4	1,1-Dichloroethene	1	5.0	υ	
120-82-1	1,2,4-Trichlorobenzene	1	5.0	υ	
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U	
106-93-4	1,2-Dibromoethane	1	5.0	U	
95-50-1	1,2-Dichlorobenzene	1	5.0	U	
107-06-2	1,2-Dichloroethane	1	5.0	U	
78-87-5	1,2-Dichloropropane	1	5.0	U	
541-73-1	1,3-Dichlorobenzene	1	5.0	U	
106-46-7	1,4-Dichlorobenzene	1	5.0	U	
78-93-3	2-Butanone	1	25	U	
591-78-6	2-Hexanone	1	25	U	
108-10-1	4-Methyl-2-pentanone	1	25	U	
67-64-1	Acetone	1	25	U	
71-43-2	Benzene	1	5.0	U	
75-27-4	Bromodichloromethane	1	5.0	U	
75-25-2	Bromoform	1	5.0	U	
74-83-9	Bromomethane	1	5.0	U	
75-15-0	Carbon disulfide	1	5.0	U	
56-23-5	Carbon Tetrachloride	11	5.0	U	
108-90-7	Chlorobenzene	1	5.0	U ·	
75-00-3	Chloroethane	1	5.0	U	
67-66-3	Chloroform	1	5.0	U	
74-87-3	Chloromethane	1	5.0	U	
156-59-2	cis-1,2-Dichloroethene	1	5.0	U	
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U	
110-82-7	Cyclohexane	1	5.0	U	
124-48-1	Dibromochloromethane	1	5.0	U	
75-71-8	Dichlorodifluoromethane	1	5.0	U	
100-41-4	Ethylbenzene	1	5.0	U	
98-82-8	Isopropylbenzene	1	5.0	U	
79-20-9	Methyl Acetate	1	5.0	U	
108-87-2	Methylcyclohexane	1			
75-09-2	Methylene Chloride	1	5.0	U	
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U	

MW-6

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-17

File ID:

T8587.D

Sampled:

04/15/10 10:24

Analyzed:

04/15/10 20:32

04/07/10 12:35

Prepared:

5030B MS

Solids:		Prepar	Preparation: 5030B N		<u>IS</u> Initial/Final:		5 mL / 5 mL	
Batch:	10D1339	Sequence:	<u>T001413</u>	(Calibration:	R10D026	Instrument:	HP5975T
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	. 5	U	
127-18-4	Tetrachloroeth	ene			1	5	.0	U
108-88-3	Toluene				1	5	.0	U
156-60-5	trans-1,2-Dich	loroethene			1	5	.0	U
_ 10061-02-6	trans-1,3-Dich	loropropene			1	5	U	
79-01-6	Trichloroethen	e			1	5.0		U
75-69-4	Trichlorofluor	omethane			1	5.0		U
75-01-4	Vinyl chloride				1	5	0.0	Ū
1330-20-7	Xylenes, total				1	15		U
SYSTEM MON	ITORING COM	POUND	ADDED (u	ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25.0		22.7	91	66 - 137	
4-Bromofluorob	enzene		25.0		18.7	75	73 - 120	
Toluene-d8			25.0		20.2	81	71 - 126	
INTERNAL STANDARD			AREA	4	RT	REF AREA	REF RT	Q
1,4-Dichlorobenzene-d4			261456	6	9.86	470395	9.86	
1,4-Difluorobenzene			749028	8	5.68	1201787	5.68	
Chlorobenzene-	d5		649944	4	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Multiplr: 1.00

Misc :

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:29:00 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal	Standards					R	cv(Ar)
1) CI10	1,4-Difluorobenzene					ug/L	
2) CI20	Chlorobenzene-D5	7.9	5 117	649944	25.00		
							63.179
1) CI30	1,4-Dichlorobenzene-	9.8	6 152	261456	25.00	ug/L	0.00
							55.589
ystem M	onitoring Compounds		7 (5	217025	22 71	na/T	0.00
O) CSIS	1,2-Dichloroethane-I	nae 6	6 - 137	Recov	erv =	90.8	4%
spikea spikea	Amount 25.000 Ra	inge o	1 98	852104	20.18	ua/L	0.00
spiked	Amount 25.000 Ra Toluene-D8 Amount 25.000 Ra	nge 7	1 - 126	Recov	erv =	80.7	2%
0) CS10	p-Bromofluorobenzene	8.9	0 174	201879	18.72	ug/L	0.00
Spiked	Amount 25.000 Ra	inge 7	3 - 120	Recov	ery =	74.8	8%
arget C	ompounds						Qvalue
2) C290	Dichlorodifluorome	0.00	85	0	N.D.		
3) C010	Chloromethane	1.72	50	847	N.D.		
4) C020	Vinyl chloride	1.80	62	75 69 9	N.D.		
5) C015	Bromomethane Chloroethane	2.19	94		N.D.		
6) C025	Chloroethane	2.35	64	339	N.D.		
7) C275	Trichlorofluoromet	0.00	101	0	N.D.		
8) C045	Trichlorofluoromet 1,1-Dichloroethene Methylene chloride	0.00	96	0	N.D.		
9) C030	Methylene chloride	3.64	84	649	N.D.		
0) C040	Carbon disulfide	3.36	76	403	N.D.		
1) C036	Acrolein	3.09	5 6 5 2	216 0	N.D. N.D.		
2) C038	*	0.00	53				
3) C035	Acetone	3.26	43 41	5479 273 1059	N.D.		
4) C300	Acetonitrile Iodomethane	3.33	142	1059	N.D.		
5) C2/6	1,1,2 Trichloro-1,	0.00	101	\cap	N.D.		
0) C291	T-butyl Mothyl Eth	0.00	73	0	N.D.		
7) C902 8) C057	T-butyl Methyl Eth trans-1,2-Dichloro	0.00	96	Ö	N.D.		
9) C255		3.55	4.3	297			
0) C050	1.1-Dichloroethane	0.00	63	0	N.D.		
1) C125	1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan	4.28	43	155	N.D.		
2) C051	2,2-Dichloropropan	0.00	77	0	N.D.		
3) C056	cis-1,2-Dichloroet	4.71	96	152	N.D.		
4) C272		4.95		1906	N.D.		
5) C222	Bromochloromethane	0.00	128	О	N.D.		
6) C060	Chloroform	0.00	83	0	N.D.		
7) C115		0.00	97	0	N.D.		
8) C120		5.20	117	78	N.D.		
9) C116		0.00	75	0	N.D.		
1) C165		5.39	78	640	N.D.		
2) C065	•	5.39	62	82	N.D.		
3) C110		4.75	43	2191	N.D.		
4) C256	-	0.00	56	0	N,D. N.D.		
5) C150		0.00	95 63	0			
6) C140		0.00	63 93	0	N.D. N.D.		
7) C278		0.00	93	0	N.D.		
8) C130		0.00	83 63	0	N.D.		
9) C161		0.00	83 83	0	N.D.		N

0 83 259/416

0.00

Page:

N.D.

0

40) C012 Methylcycolhexane

Data File : H:\GCMS_VOA\T\041510\T8587.D
Acq On : 15 Apr 2010 20:32
Sample : RTD1034-17 Vial: 69 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:29:00 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal Standard				Response	Conc Unit	Rcv(Ar)
	-Dichloropr	0.00	75	0	N.D.	
44) C230 Toluene	promioropr	6.86	92	673	N.D.	
	,3-Dichloro	0.00	75	0	N.D.	
		0.00	69	Õ	N.D.	
-			83	Ö	N.D.	
	1-2-pentano		43	2524	N.D.	
	loroethene	0.00	166	0	N.D.	
	hloropropan		76	Ō	N.D.	
	chlorometha	0.00	129	Ō	N.D.	
52) C163 1,2-Dib	romoethane	0.00	107	0	N.D.	
53) C215 2-Hexan			43	96	N.D.	
			112	187	N.D.	
	-Tetrachlor	7.98 0.00	131	0	N.D.	
56) C240 Ethylbe:		8.04	91	475	N.D.	
57) C246 m,p-Xyl		8.12	106	396	N.D.	
58) C247 o-Xylen		8.45	106	76	N.D.	
59) C245 Styrene		0.00	104	0	N.D.	
62) C180 Bromofo		0.00	173	0	N.D.	
	ylbenzene	8.90	105	172	N.D.	
64) C301 Bromobe		0.00	156	0	N.D.	
65) C225 1,1,2,2	-Tetrachlor	0.00	83	0	N.D.	
66) C282 1,2,3-T	richloropro	0.00	110	0	N.D.	
67) C283 t-1,4-D	ichloro-2-B	0.00	53	0	N.D.	
68) C302 n-Propy	lbenzene	9.08	91	208	N.D.	
69) C303 2-Chlor	otoluene	0.00	126	0	N.D.	
70) C289 4-Chlore	otoluene	0.00	126	0	N.D.	
71) C304 1,3,5-T	rimethylben	9.15	105	166	N.D.	
72) C306 tert-Bu	tylbenzene rimethylben	0.00	134	0	N.D.	
73) C307 1,2,4-T	rimethylben	9.53	105	478	N.D.	
74) C308 sec-But	ylbenzene	9.63	105	76	N.D.	
	hlorobenzen	0.00	146	0	N.D.	
76) C309 4-Isopr	opyltoluene	9.79	119	255	N.D.	
77) C267 1,4-Dic		0.00	146	0	N.D.	
78) C249 1,2-Dic	hlorobenzen	0.00	146	0	N.D.	
79) C310 n-Butyl			91	89	N.D.	
80) C286 1,2-Dib			75	0	N.D.	
81) C313 1,2,4-T	richloroben	0.00	180	0	N.D.	
		0.00		0	N.D.	
83) C314 Naphtha		11.76		528	N.D.	
84) C934 1,2,3-T	richloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8587.D
Acq On : 15 Apr 2010 20:32
Sample : RTD1034-17 Operator: LH

Misc

Inst : 5975 T Multiplr: 1.00

Vial: 69

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:29:00 2010

Quant Method: C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-18

File ID:

T8588.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 20:56

Solids:

Form Rev: 11/23/09

04/08/10 10:40

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation: 50	30B MS	Initial/Final: 5 mL/5 mL		
Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	<u>HP5975T</u>	
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	
71-55-6	1,1,1-Trichloroethane	400	2000	D	
79-34-5	1,1,2,2-Tetrachloroethane	400	2000	CU	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	400	2000	UD	
79-00-5	1,1,2-Trichloroethane	400	2000	UD	
75-34-3	1,1-Dichloroethane	400	3000	D	
75-35-4	1,1-Dichloroethene	400	930)D	
120-82-1	1,2,4-Trichlorobenzene	400	2000	UD	
96-12-8	1,2-Dibromo-3-chloropropane	400	2000	UD	
106-93-4	1,2-Dibromoethane	400	2000	UD	
95-50-1	1,2-Dichlorobenzene	400	2000	UD	
107-06-2	1,2-Dichloroethane	400	2000	UD	
78-87-5	1,2-Dichloropropane	400	2000	UD	
541-73-1	1,3-Dichlorobenzene	400	2000	UD	
106-46-7	1,4-Dichlorobenzene	400	2000	UD	
78-93-3	2-Butanone	400	10000	UD	
591-78-6	2-Hexanone	400	10000	UD	
108-10-1	4-Methyl-2-pentanone	400	10000	UD	
67-64-1	Acetone	400	10000	UD	
71-43-2	Benzene	400	2000	UD	
75-27-4	Bromodichloromethane	400	2000	UD	
75-25-2	Bromoform	400	2000	UD	
74-83-9	Bromomethane	400	2000	QU	
75-15-0	Carbon disulfide	400	2000	UD	
56-23-5	Carbon Tetrachloride	400	2000	UD	
108-90-7	Chlorobenzene	400	2000	UD	
75-00-3	Chloroethane	400	1100	Ъ	
67-66-3	Chloroform	400	2000	UD	
74-87-3	Chloromethane	400	2000	UD	
156-59-2	cis-1,2-Dichloroethene	400	110000	ED	
10061-01-5	cis-1,3-Dichloropropene	400	2000	UD	
110-82-7	Cyclohexane	400	2000	UD	
124-48-1	Dibromochloromethane	400	2000	UD	
75-71-8	Dichlorodifluoromethane	400	2000	UD	
100-41-4	Ethylbenzene	400	2000	UD	
98-82-8	Isopropylbenzene	400	2000	UD	
79-20-9	Methyl Acetate	400	2000	UD	
108-87-2	Methylcyclohexane	400	2000	UD	
75-09-2	Methylene Chloride	400	2000	UD	
1634-04-4	Methyl-t-Butyl Ether (MTBE)	400	2000	UD	

MW-16S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-18

File ID:

T8588.D

Sampled:

Analyzed:

04/15/10 20:56

04/08/10 10:40

Prepared:

04/15/10 10:24

Initial/Final:

Solids:		Prepar	ation:	5030B N	<u>MS</u>	Initial/Final:	5 mL / 5 mL		
Batch:	10D1339	Sequence:	T001413		Calibration:	R10D026	Instrument:	HP5975T	
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q	
100-42-5	Styrene				400	20	UD		
127-18-4	Tetrachloroeth	ene			400	20	000	UD	
108-88-3	Toluene				400	5	10)D	
156-60-5	trans-1,2-Dichl	loroethene			400	20	000	UD	
10061-02-6	trans-1,3-Dichl	oropropene			400	20	2000		
79-01-6	Trichloroethen	е			400	220000		ED	
75-69-4	Trichlorofluoromethane			400	2000		UD		
75-01-4	Vinyl chloride	Vinyl chloride			400	68	800	D	
1330-20-7	Xylenes, total				400	6000		עט	
SYSTEM MON	ITORING COMI	POUND	ADDE	D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroetha	me-d4		2:	5.0	22.4	90	66 - 137	D	
4-Bromofluorob	enzene		2:	5.0	20.0	80	73 - 120	D	
Toluene-d8	Toluene-d8			5.0	20.3	81	71 - 126	D	
INTERNAL STANDARD			Al	REA	RT	REF AREA	REF RT	Q	
1,4-Dichlorobenzene-d4			287	7155	9.86	470395	9.86		
1,4-Difluorobenzene			787	7005	5.68	1201787	5.68		
Chlorobenzene-c	d5		687	7260	7.95	1028932	7.95		

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Vial: 70 Operator: LH Inst : 5975 T Multiplr: 1.00

Data File : H:\GCMS_VOA\T\041510\T8588.D
Acq On : 15 Apr 2010 20:56
Sample : RTD1034-18@400X

Misc

MS Integration Params: RTEINT.P Quant Time: Apr 16 09:29:08 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

Internal	Standards	R.T.	QIon	Response	Conc U	nits	Dev ((Min)
1) CI10	1,4-Difluorobenzene	5.68	114	787005	25.00	ug/L	65	0.00 5.49%
42) CT20	Chlorobenzene-D5	7.95	117	687260	25.00	ug/I	,	0.00
							66	5.79%
61) CI30	1,4-Dichlorobenzene-	9.86	152	287155	25.00	ug/L	,	0.00
							61	1.05%
System Mo	nitoring Compounds							
30) CS15	1,2-Dichloroethane-D	5.37	65	329096	22.44	ug/L		0.00
Spiked A	mount 25.000 Rai	nge 66	- 137	Recove	ery =	89.	76%	0 00
43) CS05	Toluene-D8 mount 25.000 Rai	6.80	98	907348	20.32	ug/L	, 00 g	0.00
Spiked A	mount 25.000 Rai p-Bromofluorobenzene	nge /l	17/	227/91	19 95	01.	200	0.00
ou) USIU Spiked A	mount 25.000 Rai	0.90 nae 73	- 120	Recove	rv =	79.	, 80%	0.00
opined A	23.000 Ka	iige /J	120	Recove	- <u>-</u> y	, 3 •		
Farget Co							Qva	alue
2) C290	Dichlorodifluorome	0.00	85	0	N.D.			
3) C010	Chloromethane Vinyl chloride Bromomethane	1.72	50	251 159722	N.D. 17.12	110 / T	. /	94
4) 2020 5) C015	Vinyi chioride	7.83	9/	159722	N.D.	ug/1	, /	24
6) 0015	Chloroethane	2 3 3 5	94 64	8805	2.71	ua/I		100
7) C275	Chloroethane Trichlorofluoromet	0.00	101	8805 0	N.D.	0.97		
8) 045	1 1-Dichloroothone	2 1 5	96	25687	2.32	ug/I	. #/	77
9) C030	Methylene chloride Carbon disulfide	3.64	84	1672	N.D.			
10) C040	Carbon disulfide	3.36	76	672 651	N.D.			
11) CO36	Acrolein	3.08	56	651	N.D.			
12) C038	Acrylonitrile	3.89	53	101 1803	N.D.			
13) C035	Acetone Acetonitrile	3.24	43	1803	N.D.			
				1005	N.D. N.D.			
	Iodomethane	0.00	- O-1	0	N.D.			
16) C291 17) C962	1,1,2 Trichloro-1, T-butyl Methyl Eth	0.00	73	0	N.D.			
	trans-1,2-Dichloro		96	4758				
19) C255	Methyl Acetate	3.55	43	361	N.D.			
20) C050	Methyl Acetate 1,1-Dichloroethane	4.24	63	165570	7.42	ug/I	٠,	100
21) C125	Vinvl Acetate	4.23	43	506	N.D.		/	
22) C051	2,2-Dichloropropan cis-1,2-Dichloroethe	0.00	77	0	N.D.		,	
23 C056	cis-1,2-Dichloroethe	4.72	96	3535005	276.38	ug/I	. # /	84
c272								
25) C222	Bromochloromethane	0.00	128	0	N.D.			
26) C060	Chloroform	4.98	83	1737 79849	N.D.	ug/I		97
27) C115 28) C120	1,1,1-Trichloroethan Carbon tetrachloride			10361	9.76		. /	99
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		•	
31) C165	Benzene	5.40	78	294	N.D.			
32) C065	1,2-Dichloroethane	5.43	62	664	N.D.			
33) C110	2-Butanone	4.73	43	1873	N.D.			
34) C256	Cyclohexane	0.00	56	0	N.D.			
35) C150	Trichloroethene	5.89		7024350	557.11	ug/I	ı. ,	98
36) C140	1,2-Dichloropropan	0.00	63	0	N.D.			
37) C278	Dibromomethane	0.00	93	0	N.D.			D1.N
38) C130	Bromodichlorometha	0.00	83	0	N.D.			\ M'
39) C161	2-Chloroethylvinyl	0.00	63	0	N.D.			

Data File : H:\GCMS_VOA\T\041510\T8588.D
Acq On : 15 Apr 2010 20:56
Sample : RTD1034-18@400X Vial: 70 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:29:08 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Un	its	Dev(1 Rcv(1	Min) Ar)
	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	/-		03
) C230	Toluene	6.8		38249	1.28	ug/L		93
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.			
	C284	Ethyl Methacrylate	0.00	69	0	N.D.			
	C160	1,1,2-Trichloroeth	7.19	83	423	N.D.			
	C210	4-Methyl-2-pentano	6.70	43	399	N.D.			
	C220	Tetrachloroethene	7.29	166	344	N.D.			
	C221	1,3-Dichloropropan	0.00	76	0	N.D.			
	C155	Dibromochlorometha	0.00	129	0	N.D.			
	C163	1,2-Dibromoethane	0.00	107	0	N.D.			
	C215		7.36	43	103	N.D.			
	C235		0.00	112	0	N.D.			
	C281		0.00	131	0	N.D.			
56)	C240		8.02	91	446	N.D.			
57)	C246	m,p-Xylene	0.00	106	0	N.D.			
	C247	o-Xylene	0.00	106	0	N.D.			
59)	C245	Styrene	0.00	104	0	N.D.			
62)	C180	Bromoform	0.00	173	0	N.D.			
63)	C966	Isopropylbenzene	8.90	105	118	N.D.			
64)	C301	Bromobenzene	0.00	156	0	N.D.			
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.			
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.			
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.			
68.)	C302	n-Propylbenzene	9.18	91	155	N.D.			
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.			
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.			
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.			
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.			
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.			
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.			
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.			
	C309		9.78	119	158	N.D.			
	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.			
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.			
	C310		10.11	91	322	N.D.			
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.			
	C313		0.00	180	0	N.D.			
				225	0	N.D.			
			0.00	128	0	N.D.			
			0.00	180	0	N.D.			
82) 83)	C316 C314 C934	Hexachlorobutadien Naphthalene		128	0	N.D.			

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8588.D Acq On : 15 Apr 2010 20:56 Sample : RTD1034-18@400X

Misc

MS Integration Params: RTEINT.P

Vial: 70 Operator: LH Inst : 5975 T

Multiplr: 1.00

Quant Time: Apr 16 09:29:08 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-18RE1

File ID:

S5615.D

Sampled:

04/16/10 09:48

Analyzed:

04/16/10 20:25

Form Rev: 11/23/09

04/08/10 10:40

Prepared:

Solids:	Prepar	ation:	6030B MS	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10D1488 Sequence:	T001440	Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND		DILUTION	CON	C. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		4000	2	0000	UD
79-34-5	1,1,2,2-Tetrachloroethane		4000	2	0000	UD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	e	4000	2	0000	UD
79-00-5	1,1,2-Trichloroethane		4000	2	0000	UD
75-34-3	1,1-Dichloroethane		4000	2	2900	ND
75-35-4	1,1-Dichloroethene		4000	2	0000	UD
120-82-1	1,2,4-Trichlorobenzene		4000	2	0000	UD
96-12-8	1,2-Dibromo-3-chloropropane		4000	2	0000	UD
106-93-4	1,2-Dibromoethane		4000	2	0000	UD
95-50-1	1,2-Dichlorobenzene		4000	2	0000	UD
107-06-2	1,2-Dichloroethane		4000	2	0000	UD
78-87-5	1,2-Dichloropropane		4000	2	0000	UD
541-73-1	1,3-Dichlorobenzene		4000	2	0000	UD
106-46-7	1,4-Dichlorobenzene		4000	2	0000	UD
78-93-3	2-Butanone		4000	10	00000	UD
591-78-6	2-Hexanone		4000	10	00000	UD
108-10-1	4-Methyl-2-pentanone		4000	10	00000	UD
67-64-1	Acetone		4000	10	00000	UD
71-43-2	Benzene		4000	2	0000	UD
75-27-4	Bromodichloromethane		4000	2	0000	UD
75-25-2	Bromoform		4000	2	0000	UD
74-83-9	Bromomethane		4000	2	0000	UD
75-15-0	Carbon disulfide		4000	2	0000	UD
56-23-5	Carbon Tetrachloride		4000	2	0000	עט
108-90-7	Chlorobenzene		4000	2	0000	UD
75-00-3	Chloroethane		4000	2	0000	UD
67-66-3	Chloroform		4000	2	0000	UD
74-87-3	Chloromethane		4000	2	0000	UD
156-59-2	cis-1,2-Dichloroethene		4000	9	9000	D
10061-01-5	cis-1,3-Dichloropropene		4000	2	0000	UD
110-82-7	Cyclohexane		4000	2	0000	UD
124-48-1	Dibromochloromethane		4000	2	0000	UD
75-71-8	Dichlorodifluoromethane		4000	2	0000	UD
100-41-4	Ethylbenzene	., -	4000	2	0000	UD
98-82-8	Isopropylbenzene		4000	2	0000	UD
79-20-9	Methyl Acetate		4000	2	0000	UD
108-87-2	Methylcyclohexane		4000	2	0000	UD
75-09-2	Methylene Chloride		4000	2	0000	UD
1634-04-4	Methyl-t-Butyl Ether (MTBE)		4000	2	0000	UD

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-16S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-18RE1

File ID:

S5615.D

Sampled:

04/16/10 20:25

04/08/10 10:40

Prepared:

04/16/10 09:48

Analyzed:

Solids:		Prepar	ation:	5030B M	<u>1S</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1488	Sequence:	T001440		Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND		٠		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				4000	20	0000	UD
127-18-4	Tetrachloroethe	ne			4000	20	0000	UD
108-88-3	Toluene				4000	20	0000	UD
156-60-5	trans-1,2-Dichlo	oroethene			4000	20	000	UD
10061-02-6	trans-1,3-Dichlo	oropropene			4000	20	0000	UD
79-01-6	Trichloroethene				4000	200	0000	D
75-69-4	Trichlorofluoror	methane			4000	20	0000	UD
75-01-4	Vinyl chloride				4000	6	200)D
1330-20-7	Xylenes, total				4000	60	0000	UD
SYSTEM MON	ITORING COMP	OUND	ADDEI	O (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		25	5.0	28.0	112	66 - 137	D
4-Bromofluorob	enzene		25	5.0	26.4	105	73 - 120	D
Toluene-d8			25	5.0	28.2	113	71 - 126	D
INTERNAL ST	ANDARD		AR	REA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		156	002	9.05	192606	9.05	
1,4-Difluoroben	zene		336	344	4.99	368522	4.99	
Chlorobenzene-c	15		182	418	7.19	202829	7.19	<u> </u>

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : D:\MSDCHEM\S\DATA\041610\S5615.D

Vial: 26 Operator: DHC

Acq On : 16 Apr 2010 20:25 Sample : RTD1034-18RE104000X Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:39 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

IS Q	A Fil∈	: D:\MSDCHEM\S\DATA	4/04161	0\s559	1.D (16 Ap.	r 2010	10:09))		
Int	ernal	Standards				Conc Ur	E	Dev (M: Rcv (A:	r)	
		1,4-Difluorobenzene	4.99	114	336344		ug/L	0 91 :	.00 27%	
		Chlorobenzene-D5						0 89.9	.00 94%	
62)	CI30	1,4-Dichlorobenzene-	9.05	152	156002	25.00	ug/L	81.0	.00	
301	CS15	onitoring Compounds 1,2-Dichloroethane-D	4.69	65	119354	27.96	ug/L	0	.00	
Sp.	iked A	Amount 25.000 Ran	nge 66	- 137	Recove	ry =	111.8	3 4 %		
43)	CS05	Toluene-D8	6.07	98	385002	28.18	ug/L	0	.00	
sp.	iked A	Amount 25.000 Ran Toluene-D8 Amount 25.000 Ran	nge 71	- 126	Recove	ry =	112	72%	0.0	
67)	CS10	p-Bromofluorobenzene	8.12	1/4	111210	26.33	ug/ь	U	.00	
Sp.	iked A	Amount 25.000 Ran	nge /3	- 120	Recove	ту —	100.	100		
Tar	ret Cr	ompounds						Qvalı	ıe .	
		Dichlorodifluorome	0.00	85	0	N.D.				
~3)	C010	Chloromethane	0.00	50	0	N.D.		/		
(4)	C020	Vinvl chloride	1.53	62	7519	1.54	ug/L		93	
57	C015	Bromomethane Chloroethane Trichlorofluoromet	0.00	94	0	N.D. N.D.				
6)	C025	Chloroethane	0.00	64						
7)	C275	Trichlorofluoromet	0.00	101	0	N.D.				
	C045	1,1-Dichloroethene	2.59	96	525 1055	N.D. N.D.				
	C030		3.03	76	133	N.D.				
	C040 C036		0.00	7.6 5.6	0					
	C038	Acrylonitrile	0.00	53	Ö					
	C035	Acetone	0.00	43	. 0	N.D.				
	C300	Acetonitrile	0.00	41	0	N.D.				
	C276		0.00	142	0 0 0	N.D.				
16)	C291	1, 1, 2-Trichloro-1,	0.00	101						
17)	C962	T-butyl Methyl Eth	0.00	73	0	N.D.				
	C057	trans-1,2-Dichloro	0.00	96	0	N.D. N.D.				
	C255		0.00	43	0		12 or / T		92	
	C050	1,1-Dichloroethane	3.60	63	2/11	0.73 N.D.	ug/ь		24	
	C125		0.00		0	N.D.		•		
	C051	2,2-Dichloropropan cis-1,2-Dichloroethe	1.06	96	112294	24.80	ua/L	1	95	
	C056	Tetrahydrofuran	4.33	42	132	N.D.	, 			
	C272	Bromochloromethane	0.00		0	N.D.				
	C060	Chloroform	0.00	83	0	N.D.				
	C115	1,1,1-Trichloroeth	4.41	97	2908	N.D.				
	C120	Carbon tetrachlori		117	0	N.D.				
	C116	1,1-Dichloropropen	0.00	75	0	N.D.				
	C165	Benzene	0.00	78	0	N.D.				\
	C065	1,2-Dichloroethane	0.00	62	0	N.D.			92 M	\^1
	C110	2-Butanone	0.00	43	0	N.D.			λ	'Who
	C256	Cyclohexane	0.00	56	0 215851	N.D. 50.82	1107/T		92 U	N ^D
$\frac{35}{3}$		Trichloroethene	5.17		215851 0	N.D.	uy/b	./	mV	1.
36) 37)	C140	1,2-Dichloropropan Dibromomethane	0.00	63 93	0	N.D.		•	$\mathcal{O}_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_$	
	C278		0.00	83	0	N.D.			V,	
	C161	2-Chloroethylvinyl	0.00	63	0	N.D.				
	C012	Methylcyclohexane	5.17	83	2242	N.D.				
/				70/440						

Vial: 26 Data File : D:\MSDCHEM\S\DATA\041610\S5615.D Acq On : 16 Apr 2010 20:25 Sample : RTD1034-18RE1@4000X Operator: DHC Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:39 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44)	C230	Toluene	6.12	92	1282	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6,07	43	1491	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51)	C155	Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
	C215	2-Hexanone	0.00	43	0	N.D.	
54)	C235	Chlorobenzene	0.00	112	0	N.D.	
55)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	7.19	91	472	N.D.	
	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	8.12	91	1.45	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	Ο	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	0.00	91	0	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82)	C316		0.00	225	0	N.D.	
	C314		10.91	128	154	N.D.	
	C934	1,2,3-Trichloroben	0.00	180	O	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5615.D

Vial: 26 Operator: DHC : 16 Apr 2010 20:25 : HP5973S Inst

Sample

Acq On

: RTD1034-18RE1@4000X

Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:39 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration DataAcq Meth : VOA

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Ground Water

Laboratory ID:

RTD1034-19

File ID:

T8589.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 21:20

Solids:

Form Rev: 11/23/09

04/07/10 11:45

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation:	5030B MS	Initial/Final: <u>5 mL / 5 mL</u>	
Batch:	<u>10D1339</u> Sequence: <u>T00141</u>	Calibration:	R10D026 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	11	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	Ü
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	0.70	J
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	11	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	υ
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	23	
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

Form 1 **ORGANIC ANALYSIS DATA SHEET**

MW-12

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

RTD1034-19

T8589.D File ID:

Sampled:

Ground Water

Analyzed:

04/15/10 21:20

04/07/10 11:45

Prepared:

04/15/10 10:24

Initial/Final:

Solids:		Prepar	ation: <u>503</u>	0B MS		Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10D1339	Sequence:	<u>T001413</u>	Cal	ibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	U
127-18-4	Tetrachloroeth	ene			1	5	5.0	U
108-88-3	Toluene				1	5	5.0	U
156-60-5	trans-1,2-Dich	loroethene			11	5	5.0	U
10061-02-6	trans-1,3-Dich	loropropene			11		5.0	U
79-01-6	Trichloroethen	ie			11	5	5.0	U
75-69-4	Trichlorofluore	omethane			11	5	5.0	U
75-01-4	Vinyl chloride				1	5	5.0	U
1330-20-7	Xylenes, total				1		15	U
SYSTEM MON	ITORING COM	POUND	ADDED (ug	/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0		22.7	91	66 - 137	
4-Bromofluorob	enzene		25.0		20.8	83	73 - 120	
Toluene-d8			25.0		20.1	80	71 - 126	
INTERNAL ST	ANDARD		AREA		RT	REF AREA	REF RT	Q
1,4-Dichlorober	izene-d4		268752		9.86	470395	9.86	
1,4-Difluoroben	zene		748175		5.68	1201787	5.68	
Chlorobenzene-	d5		642570		7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8589.D
Acq On : 15 Apr 2010 21:20
Sample : RTD1034-19 Vial: 71 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:29:16 2010 Results File: R10D026-6PT.RES

Title Last Update Response v	od: C:\MSDCHEM\1\R : 8260 5ML e: Fri Apr 16 09:26: ia: Initial Calibrati th: VOA.M : H:\GCMS_VOA\T\041	11 2010 on		grator)	HUND
Internal	Standards				Dev(Min) Rcv(Ar)
	1,4-Difluorobenzene	5.68 114	748175	25.00 ug/	L 0.00
	Chlorobenzene-D5				L 0.00 62.45%
61) CI30	1,4-Dichlorobenzene-	9.86 152	268752	25.00 ug/	L 0.00 57.13%
30) CS15 Spiked A: 43) CS05 Spiked A: 60) CS10	nitoring Compounds 1,2-Dichloroethane-D mount 25.000 Ran Toluene-D8 mount 25.000 Ran p-Bromofluorobenzene mount 25.000 Ran	5.37 65 ge 66 - 137 6.80 98 ge 71 - 126 8.90 174 ge 73 - 120	316164 Recove: 838528 Recove: 221702 Recove:	22.67 ug/ ry = 90 20.08 ug/ ry = 80 20.79 ug/ ry = 83	L 0.00 .68% L 0.00 .32% L 0.00
Target Co	mpounds Dichlorodifluorome	0 00 85	0	N.D.	Qvalue
3) C010 4) C020 5) C015 6) C025 7) C275 8) C045 9) C030 10) C040 11) C036 12) C038 13) C035 14) C300 15) C276 16) C291 17) C962 18) C057	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride	1.71 50 1.84 62 2.24 94 2.35 64 0.00 101 0.00 96 3.64 84 3.37 76 3.09 56 0.00 53 3.25 43 3.55 41 3.31 142 0.00 101 3.86 73 3.87 96	1542 3046 316 71621 0 803 677 451 0 12163 395 371 0 294 1729	N.D. N.D. 23.22 ug/ N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	L / 93
24) 272 25) C222 26) C060 27) C115 28) C120 29) C116	Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen	4.95 42 0.00 128 0.00 83 0.00 97 0.00 117 0.00 75 5.39 78	33600 0 0 0 0 0 0 0	5.13 ug/ N.D. N.D. N.D. N.D. N.D. N.D.	L # 74
31) C165 32) C065 33) C110 34) C256 35) C150 36) C140 37) C278 38) C130 39) C161 40) C012	Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene 1,2-Dichloropropan Dibromomethane Bromodichlorometha 2-Chloroethylvinyl Methylcycolhexane	5.43 62 4.74 43 5.14 56 5.89 95 0.00 63 0.00 93 0.00 83 0.00 63 0.00 83	11813 1937 1218 687 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	044/24/m

Data File : H:\GCMS_VOA\T\041510\T8589.D
Acq On : 15 Apr 2010 21:20
Sample : RTD1034-19 Vial: 71 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 16 09:29:16 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44)	C230	Toluene	6.86	92	1085	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	7.34	83	75	N.D.	
	C210	4-Methyl-2-pentano	6.71	43	171	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155	Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53)	C215	2-Hexanone	7.34	43	268	N.D.	
	C235	Chlorobenzene	0.00	112	0	N.D.	
	C281	1, 1, 1, 2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	8.03	91	752	N.D.	
	C246	m,p-Xylene	8.12	106	798	N.D.	
	C247	o-Xylene	8.45	106	650	N.D.	
	C245	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
	C966	Isopropylbenzene	8.89	105	138	N.D.	
64)	C301	Bromobenzene	8.90	156	82	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68)	C302	n-Propylbenzene	9.05	91	139	N.D.	
	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	9.15	105	158	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
73)	C307	1,2,4-Trimethylben	9.53	105	864	N.D.	
74)	C308	sec-Butylbenzene	9.59	105	167	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309	4-Isopropyltoluene	9.78	119	279	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310	n-Butylbenzene	10.11	91	86	N.D.	
80)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316		0.00	225	0	N.D.	
	C314	Naphthalene	11.75	128	76	N.D.	
84)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\041510\T8589.D Acq On : 15 Apr 2010 21:20 Sample : RTD1034-19

Vial: 71 Operator: LH Inst : 5975 T

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 16 09:29:16 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Apr 16 09:26:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

TRIP BLANK

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

RTD1034-20

File ID:

S5616.D

Sampled:

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 20:50

Solids:

04/07/10 00:00

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	10D1488	Sequence:	T001440	Calibration:	R10C101	Instrument:	<u>HP5973S</u>

Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1 -	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	ט
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	ט
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	ט
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	บ

Form Rev: 11/23/09

285/416

Printed: 04/21/2010

Form 1 **ORGANIC ANALYSIS DATA SHEET**

TRIP BLANK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

RTD1034-20

File ID:

S5616.D

Sampled:

Water

04/16/10 09:48

Analyzed:

04/16/10 20:50

04/07/10 00:00

Prepared:

5030B MS

Solids:		Prepara	ation:	5030B	<u>MS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1488	Sequence:	T001440		Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUND			·	DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	U
127-18-4	Tetrachloroeth	ene			1	5	5.0	U
108-88-3	Toluene			11		U		
156-60-5	trans-1,2-Dich	loroethene			1	5	5.0	U.
10061-02-6	trans-1,3-Dich	loropropene			1	5	5.0	υ
79-01-6	Trichloroether	ıe			11	5	5.0	U
75-69-4	Trichlorofluor	ichlorofluoromethane		1	5	5.0	U	
75-01-4	Vinyl chloride				1	5.0		U
1330-20-7	Xylenes, total				1		15	U
SYSTEM MON	ITORING COM	POUND	ADDE	D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4		2:	5.0	28.9	116	66 - 137	
4-Bromofluorob	enzene		2:	5.0	26.6	106	73 - 120	
Toluene-d8			2:	5.0	28.8	115	71 - 126	
INTERNAL ST	ANDARD		AJ	REA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	1,4-Dichlorobenzene-d4		148	3113	9.05	192606	9.05	
1,4-Difluorobenz	zene		324	1741	4.99 368522		4.99	
Chlorobenzene-c	15		175	5351	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5616.D
Acq On : 16 Apr 2010 20:50
Sample : RTD1034-20 Vial: 27 Operator: DHC Inst : HP5973S

Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:45 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09

Internal	Standards	R.T.	QIon	Response	Conc Ui	nits Dev Rcv	(Min) (Ar_)
1) CI10	1,4-Difluorobenzene	4.99	114	324741	25.00	ug/L 8	0.00 8,12%
	Chlorobenzene-D5					8	6.45%
52) CI30	1,4-Dichlorobenzene-	9.05	152	148113	25.00	ug/L	0.00 6.90%
System Mo	onitoring Compounds 1,2-Dichloroethane-I	n 4 69	65	119144	28.91	ua/L	0.00
Contlead t	Amount 25 000 P:	ango 66	137	Recove	rv =	115.64%	
Spiked A		411ge 00	98	378583	28.83	ua/L	0.00
sniked i	Toluene-D8 Amount 25.000 Ra	0.0, ange 71	- 126	Recove	erv =	115.32%	
DDIKEG 7	p-Bromofluorobenzene	= 8 12	174	107797	26.57	ug/L	0.00
Spiked 2	Amount 25.000 Ra	ange 73	- 120	Recove	ery =	106.28%	
arget Co	ompounds					Qv	alue
2) C290	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane	0.00	85	0	N.D.		
3) C010	Chloromethane	0.00	50	0	N.D.		
4) C020	Vinyl chloride	0.00	62	0	N.D.		
5) C015	Bromomethane	0.00	94	0	N.D.		
6) C025	Chloroethane Trichlorofluoromet 1,1-Dichloroethene	0.00	64	Ü	N.D.		
7) C275	Trichlorofluoromet	0.00	101	0	N.D.		
8) C045	1,1-Dichloroethene	0.00	96	0	N.D.		
9) C030	Methylene chloride	0.00	84	0	N.D.		
0) C040	Carbon disulfide	2.//	/6	304	N.D.		
1) C036	Acrolein	0.00	56	0	N.D.		
2) 0038	1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Eth	0.00	23	462	N.D.		
3) CU35	Acetone	2.72	43	0	N D		
4) C300	Acetoniciie	0.00	142	0	N.D.		
5) C2/6	1 1 2-Trichloro-1	0.00	101	0	N.D.		
b) C291	1,1,2-Trichloro-1, T-butyl Methyl Eth	0.00	73	Ô	N.D.		
7) C962	trans-1,2-Dichloro	0.00	96	0	N.D.		
9) 0057	Methyl Acetate	0.00	43	Ô	N.D.		
0) 0255	1.1-Dichloroethane	0.00	63	ō	N.D.		
1) C125	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate	0.00	43	0	N.D.		
2) C051	2,2-Dichloropropan	0.00	77	0	N.D.		
3) C056	cis-1,2-Dichloroet	0.00	96	0	N.D.		
4) C272	2,2-Dichloropropan cis-1,2-Dichloroet Tetrahydrofuran	4.33	42	462	N.D.		
5) C222	Bromochloromethane	0.00	128	0	N.D.		
6) C060	Chloroform	0.00	83	0	N.D.		
7) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
8) C120	Carbon tetrachlori	0.00	117	0	N.D.		
9) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
1) C165	Benzene	0.00	78	0	N.D.		
2) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
3) C110	2-Butanone	0.00	43	0	N.D.		
4) C256		0.00	56	0	N.D.		
5) C150		0.00	95	0	N.D.		
6) C140		0.00	63	0	N.D.		~ 1
7) C278		0.00	93	0	N.D.		()
8) C130		0.00	83	0	N.D.		~
9) C161	2-Chloroethylvinyl	0.00	63	0	N.D.		

0

N.D.

Quantitation Report TA Buffalo (Not Reviewed)

Vial: 27 Data File : D:\MSDCHEM\S\DATA\041610\S5616.D

Acq On : 16 Apr 2010 20:50 Sample : RTD1034-20 Operator: DHC Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Apr 17 09:30:45 2010 Results File: R10C101-SIXPT.RES

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230		0.00	92	0	N.D.	
45)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48)	C210	4-Methyl-2-pentano	6.07	43	1483	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
50)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155		0.00	129	0	N.D.	
52)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
	C215	2-Hexanone	0.00	43	0	N.D.	
	C235	Chlorobenzene	0.00	112	0	N.D.	
	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	7.19	91	469	N.D.	
57)	C246	m,p-Xylene	0.00	106	0	N.D.	
58)	C247	o-Xylene	0.00	106	0	N.D.	
59)	C245	Styrene	0.00	104	0	N.D.	
60)	C180	Bromoform	0.00	173	0	N.D.	
63)	C966	Isopropylbenzene	0.00	105	0	N.D.	
64)	C301	Bromobenzene	0.00	156	0	N.D.	
65)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67)	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
68)	C302	n-Propylbenzene	8.12	91	154	N.D.	
69)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
70)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
71)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307		0.00	105	0	N.D.	
	C308	sec-Butylbenzene		105	0	N.D.	
75)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76)	C309		0.00	119	0	N.D.	
77)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79)	C310		0.00	91	0	N.D.	
		1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
			0.00	225	0	N.D.	
		Naphthalene	10.91	128	142	N.D.	
	C934		0.00		0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDCHEM\S\DATA\041610\S5616.D

Vial: 27 : 16 Apr 2010 Operator: DHC 20:50 Acq On Inst : HP5973s Sample : RTD1034-20 Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 09:30:45 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration DataAcq Meth : VOA

Misc

Form 6 INITIAL CALIBRATION DATA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A90:

Calibration:

R10C101

Instrument:

HP5973S

Calibration Date:

03/31/10 13:37

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	L	evel 06
Compound	ug/L	RF										
1,1,1-Trichloroethane	1	0.4636212	5	0.493244	10	0.4744818	25	0.438461	50	0.4615667	100	0.4667955
1,1,2,2-Tetrachloroethane	1	0.8601876	5	0.8389655	10	0.9205029	25	0.7731597	50	0.8061086	100	0.8738298
1,1,2-Trichloro-1,2,2-trifluoroethar	1	0.2356881	5	0.3032927	10	0.2666783	25	0.3002074	50	0.2876451	100	0.2692813
1,1,2-Trichloroethane	1	0.4302487	5	0.4464793	10	0.461745	25	0.4241829	50	0.4317533	100	0.4483815
1,1-Dichloroethane	1	0.5916437	5	0.5972951	10	0.5827001	25	0.5410064	50	0.5679347	100	0.5864645
1,1-Dichloroethene	1	0.2732353	5	0.2647412	10	0.2509434	25	0.2354447	50	0.2425416	100	0.245082
1,2,4-Trichlorobenzene	1	0.6824816	5	0.7004519	10	0.7579664	25	0.7173882	50	0.7793192	100	0.8235586
1,2-Dibromo-3-chloropropane	1	0.1463878	5	0.1403132	10	0.1738451	25	0.1506605	50	0.1669342	100	0.1983529
1,2-Dibromoethane	1	0.5474091	5	0.5743762	10	0.5951413	25	0.5377359	50	0.5575005	100	0.584438
1,2-Dichlorobenzene	1	1.443613	5	1.402989	10	1.377639	25	1.25861	50	1.308234	100	1.31247
1,2-Dichloroethane	1	0.4569002	5	0.4543639	10	0.4524788	25	0.4133074	50	0.4308315	100	0.4435836
1,2-Dichloroethane-d4	1	0.3263573	5	0.3063894	10	0.3040736	25	0.3483516	50	0.3185375	100	0.2998901
1,2-Dichloroethene, Total	2	0.3391207	10	0.3289262	20	0.3189232	50	0.2963979	100	0.3059591	200	0.3124422
1,2-Dichloropropane	1	0.3344354	5	0.338482	10	0.3287389	25	0.31149	50	0.3209105	100	0.3324891
1,3-Dichlorobenzene	1	1.489811	5	1.4197	10	1.394689	25	1.270763	50	1.29663	100	1.266575
1,4-Dichlorobenzene	1	1.521554	5	1.452579	10	1.438743	25	1.297188	50	1.337616	100	1.365248
2-Butanone	5	0.2222461	25	0.1786488	50	0.2047172	125	0.1878182	250	0.182771	500	0.1942345
2-Hexanone	5	0.5183048	25	0.4608189	50	0.5383597	125	0.4895296	250	0.4829649	500	0.500194
4-Bromofluorobenzene	1	0.6275389	5	0.551028	10	0.5598756	25	0.6159645	50	0.5691119	100	0.5473129
4-Methyl-2-pentanone	5	0.7277321	25	0.6636079	50	0.7555685	125	0.6959649	250	0.6812132	500	0.6794392
Acetone	5	0.1598181	25	0.1190166	50	0.1310277	125	0.1202171	250	0.1154618	500	0.1204991
Benzene	1	1.331473	5	1.333148	10	1.294012	25	1.189545	50	1.234433	100	1.247042
Bromodichloromethane	1	0.3715949	5	0.3778171	10	0.3817075	25	0.363689	50	0.388413	100	0.4100375
Bromoform	1	0.2396463	5	0.2811659	10	0.2991663	25	0.2964604	50	0.3309568	100	0.3703213
Bromomethane	1	6.443132E-02	5	5.609556E-02	10	0.0506617	25	0.0580412	50	7.028207E-02	100	7.552596E-02
Carbon disulfide	1	0.8202877	5	0.8210959	10	0.7490242	25	0.8214354	50	0.8148795	100	0.7802596
Carbon Tetrachloride	1	0.3789622	5	0.4098338	10	0.3866574	25	0.3717126	50	0.3967543	100	0.4016979
Chlorobenzene	1	2.004236	5	1.723351	10	1.669667	25	1.540442	50	1.605716	100	1.616925
Chloroethane	1	5.234641E-02	5	5.977375E-02	10	5.471981E-02	25	5.570327E-02	50	5.604794E-02	100	5.422349E-02
Chloroform	1	0.5325116	5	0.5387727	10	0.5234569	25	0.4893789	50	0.5105775	100	0.5213555
Chloromethane	1	0.407785	5	0.407369	10	0.379756	25	0.3905752	50	0.3818527	100	0.3654973
cis-1,2-Dichloroethene	1	0.3623535	5	0.3446628	10	0.3372557	25	0.3145247	50	0.3270117	100	0.3335846
cis-1,3-Dichloropropene	1	0.4779034	5	0.4873791	10	0.4989338	25	0,4622448	50	0.4886528	100	0.5122935
Cyclohexane	1	0.56211	5	0.6561967	10	0.593149	25	0.6421819	50	0.6237218	100	0.5854467
Dibromochloromethane	1	0.4733479	5	0.4991485	10	0.5137024	25	0.4995228	50	0.5360058	100	0.5750313
Dichlorodifluoromethane	1	0.2777591	5	0.320862	10	0.2834148	25	0.2955655	50	0.2918119	100	0.2946633
Ethylbenzene	1	3.076142	5	3.150357	10	3.030357	25	2.81656	50	2.889362	100	2.852655
Isopropylbenzene	1	3.127143	5	3.394911	10	3.276469	25	3.008783	50	3.121861	100	3.137538
Methyl Acetate	1	0.5506713	5	0.4072047	10	0.4448085	25	0.4185991	50	0.3961751	100	0.4032417
Methylcyclohexane	1	0.5191342	5	0.6301334	10	0.5729877	25	0.6322796	50	0.6235121	100	0.5900534
Methylene Chloride	1	0.4081728	5	0.3242495	10	0.3108393	25	0.2849874	50	0.2935175	100	0.3014005
Methyl-t-Butyl Ether (MTBE)	1	1.011708	5	0.9671112	10	0.9729567	25	1.001529	50	0.967379	100	0.9377223
Styrene	. 1	1.752204	5	1.856159	10	1.830301	25	1.713109	50	1.781552	100	1.788404
Tetrachloroethene	1	0.5648717	5	0.5977491	10	0.5642885	25	0.5225918	50	0.5495429	100	0.5512828

290/416

Form 6

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A90:

Calibration:

R10C101

Instrument:

HP5973S

Calibration Date:

03/31/10 13:37

	L	Level 01		evel 02	L	evel 03	L	evel 04	Level 05		Level 06	
Compound	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF
Toluene	1	1.610398	5	1.680603	10	1.597826	25	1.449232	50	1.511601	100	1.514344
Toluene-d8	1	1.866021	5	1.785201	10	1.732469	25	2.172038	50	1.917979	100	1.759581
trans-1,2-Dichloroethene	1	0.315888	5	0.3131897	10	0.3005906	25	0.2782711	50	0.2849064	100	0.2912998
trans-1,3-Dichloropropene	1	0.8763499	5	0.8847151	10	0.8934475	25	0.8514576	50	0.9001973	100	0.9384681
Trichloroethene	1	0.3296531	5	0.3297731	10	0.3155694	25	0.2935302	50	0.3088435	100	0.3169249
Trichlorofluoromethane	1	0.295014	5	0.376452	10	0.2820771	25	0.3488082	50	0.332397	100	0.304178
Vinyl acetate	5	0.8223944	25	0.7850142	50	0.8024491	125	0.8133586	250	0.7717197	500	0.7285489
Vinyl chloride	1	0.3637106	5	0.3934526	10	0.348506	25	0.3634385	50	0.3557651	100	0.3530175
Xylenes, total	3	1,145472	15	1.169361	30	1.146378	75	1.061815	150	1.083107	300	1.077654

Form Rev: 11/23/09 291/416 Printed: 04/21/2010

Form 6

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

Client:

TestAmerica Buffalo

SDG:

AECOM - Amherst, NY Project: AECOM, Inc. - Scott Aviation site - NY3A9023

Calibration:

R10C101

Instrument:

HP5973S

Calibration Date:

03/31/10 13:37

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	COD	LIMIT	Q
1,1,1-Trichloroethane	0.4663617	3.83304	4.41	1.724867E-02			15	
1,1,2,2-Tetrachloroethane	0.845459	6.139401	8.26	2.545302E-02			SPCC (0.3)	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2771322	9.151215	2.56	1.527404E-02			15	
1,1,2-Trichloroethane	0.4404651	3.205971	6.461667	6.537328E-02			15	
1,1-Dichloroethane	0.5778407	3.565092	3.6	1.455773E-02			SPCC (0.1)	
1,1-Dichloroethene	0.251998	5.683897	2.576667	0.2011143			CCC (30)	
1,2,4-Trichlorobenzene	0.7435277	7.157285	10.7	0.0142798			15	
1,2-Dibromo-3-chloropropane	0.162749	13.25109	10.04	1.396751E-02			15	
1,2-Dibromoethane	0.5661002	3.930935	6.85	2.203062E-02			15	1
1,2-Dichlorobenzene	1.350593	5,112423	9.38	2.144103E-02			15	
1,2-Dichloroethane	0.4419109	3,833809	4.74	8.371851E-03			15	T
1,2-Dichloroethane-d4	0.3172666	5.716812	4.681667	0.0893698			15	1
1,2-Dichloroethene, Total	0.3169616	4.892464	4.06	2.452584E-02			15	
1,2-Dichloropropane	0.3277577	3.034111	5.36	1.480693E-02			CCC (30)	1
1,3-Dichlorobenzene	1.356361	6.776921	8.99	2.107802E-02			15	
1.4-Dichlorobenzene	1.402155	5.939868	9.07	1.658642E-02			CCC (20)	T
2-Butanone	0.1950726	8.284362	4.1	0.2676727			15	1
2-Hexanone	0.1930720	5.47721	6.631667	0.0621275			15	1
4-Bromofluorobenzene	0.578472	5.97375	8.12	2.452584E-02			15	
	0.7005876	4.932701	6.001667	6.768754E-02			15	_
4-Methyl-2-pentanone							15	┼
Acetone	0.1276734	12.99184	2.721667	0.1505239		· · · · · ·	15	1
Benzene	1.271609	4.530217	4.69	2.144103E-02			15	†
Bromodichloromethane	0.3822098	4.199406	5.58	1.791896E-02				1
Bromoform	0.3029528	14.65933	7.89	6.057507E-03			SPCC (0.1)	
Bromomethane	0.0625063	14.92246	1.803333	0.2858725			15	
Carbon disulfide	0.8011637	3.751878	2.75	0			15	+
Carbon Tetrachloride	0.3909364	3.685612	4.52	2.281919E-02			15	
Chlorobenzene	1.693389	9.703879	7.21	6.933966E-03		•	SPCC (0.3)	+
Chloroethane	5.546911E-02	4.473279	1.88	3.774498E-03			15	1
Chloroform	0.5193422	3.386444	4.31	8.468176E-03			CCC (30)	-
Chloromethane	0.3888059	4.275123	1.51	2.321752E-02			SPCC (0.1)	 -
cis-1,2-Dichloroethene	0.3365655	4.822164	4.06	2.452584E-02			15	
cis-1,3-Dichloropropene	0.4879012	3.521202	5.896667	8.677082E-02			15	
Cyclohexane	0.6104677	5.923016	4.42	2.262167E-02			15	1
Dibromochloromethane	0.5161264	6.858234	6.77	1.815745E-02			15	1
Dichlorodifluoromethane	0.2940128	5.056405	1.29	0.0147416			15	<u> </u>
Ethylbenzene	2.969239	4.549752	7.27	1.985362E-02			CCC (30)	
Isopropylbenzene	3.177784	4.286103	7.963333	6.335868E-02			15	<u> </u>
Methyl Acetate	0.4367834	13.35545	2.975	0.1829701			15	
Methylcyclohexane	0.5946834	7.406948	5.27	8.602669E-03			15	
Methylene Chloride	0.3205278	14.05521	3.04	1.867383E-02			15	
Methyl-t-Butyl Ether (MTBE)	0.976401	2.730389	3.251667	0.1253833			15	
Styrene	1.786955	2.892693	7.7	2.778624E-03			15	
Tetrachloroethene	0.5583878	4.413129	6.528334	6.356984E-02			15	
Toluene	1.560667	5.376946	6.12	1.277828E-02		-	CCC (30)	
Toluene-d8	1.872215	8.672392	6.07	3.845082E-03			15	
trans-1,2-Dichloroethene	0.2973576	5.123422	3.241667	0.1241873			15	
trans-1,3-Dichloropropene	0.8907726	3.238611	6.32	9.234004E-03			15	1
Trichloroethene	0.3157157	4.326165	5.17	7.356541E-03			15	
Trichlorofluoromethane	0.3231544	11.09152	2.081667	0.1968804			15	†

Form 6

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Calibration:

R10C101

Instrument:

HP5973S

Calibration Date:

03/31/10 13:37

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	COD	LIMIT	Q
Vinyl acetate	0.7872475	4.341123	3.65	2.051615E-02			15	
Vinyl chloride	0.3629817	4.425344	1.525	0.3595174			CCC (30)	
Xylenes, total	1.113965	4.035136	7.68	1.817441E-02			15	

Printed: 04/21/2010 Form Rev: 11/23/09

Method Path : D:\MSDCHEM\S\METHODS\82605MLLOW\

Method File : R10C101-SIXPT.M Title : 8260 5ML WATER

Calibration Files

37) T

38) T

39) T

40) T

41) T

42) T

C161

C012

C145

Last Update : Fri Apr 02 11:46:34 2010

Response Via : Initial Calibration

RIOC 101 5260 61.D S 400

1		=\$505		=s50	60.D	3		5061.I		$\leq \iota$	<i>(</i> /)
4		=\$506		=S50	63.D	6	== 5	35064.I) () ~	1/2
					_	_			_	N	%RSD
		Compou	nd	. 1	2	3	4	5	6 	Avg	USA#
				,							
1)	I	CI10	1,4-Difluoro	ben			-ISTD	- 			· -
2)		C290	Dichlorodifly	u 0.278	0.321	0.283	0.296	0.292	0.295	0.294	5.06
3)		C010	Chloromethan	e 0.408	0.407	0.380	0.391	0.382	0.365	0.389	4.28
4)		C020	Vinvl chloric	d 0.364	0.393	0.349	0.363	0.356	0.353	0.363	4.43
5)		C015	Bromomethane	0.064	0.056	0.051	0.058	0.070	0.076	0.063	14.92
6)	T	C025	Chloroethane	0.052	0.060	0.055	0.056	0.056	0.054	0.055	4.47
7)	-	C275	Trichloroflue	0.295	0.376	0.282	0.349	0.332	0.304	0.323	11.09
8)		C045	1.1-Dichloro	e 0.273	0.265	0.251	0.235	0.243	0.245	0.252	5.68
9)	_	C030	Methylene ch	1 0.408	0.324	0.311	0.285	0.294	0.301	0.321	14.06
10)		C040	Carbon disul	f 0.820	0.821	0.749	0.821	0.815	0.780	0.801	3.75
11)	T	C036	Acrolein	0.024	0.021	0.023	0.023	0.021	0.022	0.022	4.17
12)		C038	Acrylonitril	e 0.170	0.153	0.166	0.159	0.152	0.157	0.159	4.53
13)	T	C035	Acetone	0.160	0.119	0.131	0.120	0.115	0.120	0.128	12.99
14)	_	C300	Acetonitrile	0.072	0.059	0.065	0.061	0.058	0.058	0.062	9.00
15)		C276	Iodomethane	0.140	0.265	0.271	0.423	0.410	0.385		
-0/	*	02,0						ro	M = 0	.392 R^	2=0.996
16)	т	C291	1,1,2-Trichle	0 0.236	0.303	0.267	0.300	0.288	0.269	0.277	9.15
17)		C962	T-butvl Meth	v 1.012	0.967	0.973	1.002	0.967	0.938	0.976	2.73
18)	$\hat{\mathbf{r}}$	C057	trans-1,2-Di	c 0.316	0.313	0.301	0.278	0.285	.0.291	0.297	5.12
19)	Ť	C255	Methyl Aceta	t. 0.551	0.407	0.445	0.419	0.396	0.403	0.437	13.36
20)	T	C050	1,1-Dichloro	e 0.592	0.597	0.583	0.541	0.568	0.586	0.578	3.57
21)	_	C125	Vinyl Acetat	e 0.822	0.785	0.802	0.813	0.772	0.729	0.787	4.34
22)	_	C051	2,2-Dichloro	p 0.491	0.489	0.462	0.435	0.457	0.464	0.466	4.48
23)	Ť	C056	cis-1,2-Dich	1 0 362	0.345	0.337	0.315	0.327	0.334	0.337	4.82
24)		C272	Tetrahydrofu	r 0.151	0.121	0.134	0.124	0.120	0.127	0.130	8.88
25)		C222	Bromochlorom	e 0.152	0.150	0.151	0.138	0.139	0.143	0.145	4.17
26)	s	CS87	Dibromofluor	0.255	0.254	0.249	0.269	0.259	0.248	0.256	3.02
27)		C060	Chloroform		0.539	0.523	0.489	0.511	0.521	0.519	3.39
28)		C115	1,1,1-Trichl	0 0.464	0.493	0.474	0.438	0.462	0.467	0.466	3.83
29)	-	C120	Carbon tetra	c 0 379	0.410	0.387	0.372	0.397	0.402	0.391	3.69
30)		C116	1,1-Dichloro	n 0 435	0.444	0.428	0.398	0.416	0.420	0.423	3.77
31)		CS15	1,2-Dichloro	e 0.326	0.306	0.304	0.348	0.319	0.300	0.317	5.72
32)		C165	Benzene	1 331	1.333	1.294	1.190	1.234	1.247	1.272	4.53
33)	T	C165	1,2-Dichloro	e 0 457	0.454	0.452	0.413	0.431	0.444	0.442	3.83
34)		C110	2-Butanone	0.307	0.179	0.205	0.188	0.183	0.194	0.195	8.28
35)	_	C256	Cyclohexane		0.656	0.593	0.642	0.624	0.585	0.610	5.92
36)	_	C256	Trichloroeth	E U 330	0.330	0.316	0.294	0.309	0.317	0.316	4.33
30)	1	C150	Trichlordech	- 0.330	0.330	0.310	0.201	0.321	0 333	0 328	3.03

C140 1,2-Dichlorop 0.334 0.338 0.329 0.311 0.321 0.332 0.328

C278 Dibromomethan 0.199 0.190 0.190 0.176 0.182 0.191 0.188

C130 Bromodichloro 0.372 0.378 0.382 0.364 0.388 0.410 0.382

2-Chloroethyl 0.252 0.250 0.261 0.260 0.251 0.238 0.252

Methylcyclohe 0.519 0.630 0.573 0.632 0.624 0.590 0.595 cis-1,3-Dichl 0.478 0.487 0.499 0.462 0.489 0.512 0.488

3.03

4.40

4.20

3.31

7.41

3.52

Response Factor Report HP5973S

Method Path : D:\MSDCHEM\S\METHODS\82605MLLOW\

Method File : R10C101-SIXPT.M Title : 8260 5ML WATER

Last Update : Fri Apr 02 11:46:34 2010

Response Via : Initial Calibration

```
Calibration Files
          =S5059.D
                             2
                                       =$5060.D
=$5063.D
                                                                    = 85061.D
                                                         3
6
                                                                   ≈$5064.D
                             5
          =S5062.D
 4
          C281 1,1,1,2-Tetra 0.510 0.528 0.540 0.510 0.520 0.524 0.522
                                                                                                    2.23
56) T
          C240 Ethylbenzene 3.076 3.150 3.030 2.817 2.889 2.853 2.969
                                                                                                    4.55
57) T
          C246 m,p-Xylene 1.154 1.192 1.161 1.073 1.090 1.077 1.125 C247 o-Xylene 1.129 1.124 1.117 1.040 1.069 1.078 1.093 C245 Styrene 1.752 1.856 1.830 1.713 1.782 1.788 1.787 C180 Bromoform 0.240 0.281 0.299 0.296 0.331 0.370 0.303
                                                                                                   4.52
58) T
                                                                                                    3.26
59) T
                                                                                                    2.89
60) T
61) T
          CS10 p-Bromofluoro 0.628 0.551 0.560 0.616 0.569 0.547 0.578
62) S
          CI30 1,4-Dichloroben -----ISTD-----ISTD-----
63) I
          C966 Isopropylbenz 3.127 3.395 3.276 3.009 3.122 3.138 3.178
64) T
          C301 Bromobenzene 0.743 0.733 0.735 0.676 0.698 0.703 0.715 3.69 C225 1,1,2,2-Tetra 0.860 0.839 0.921 0.773 0.806 0.874 0.845 6.14
65) T
66) T
                  1,2,3-Trichlo 0.288 0.279 0.303 0.249 0.249 0.250 0.270 t-1,4-Dichlor 0.159 0.156 0.166 0.155 0.148 0.134 0.153
                                                                                                    8.77
          C282
67) T
                                                                                                    7.34
68) T
          C283
          C302 n-Propylbenze 4.205 4.394 4.317 3.888 3.937 3.721 4.077
                                                                                                    6.55
69) T
          C303 2-Chlorotolue 0.720 0.787 0.763 0.705 0.723 0.729 0.738
                                                                                                    4.17
70) T
          C289 4-Chlorotolue 0.757 0.794 0.789 0.717 0.749 0.749 0.759
                                                                                                    3.77
71) T
          C304 1,3,5-Trimeth 2.709 2.864 2.816 2.559 2.663 2.708 2.720
                                                                                                   4.02
72) T
          C306 tert-Butylben 0.545 0.609 0.578 0.544 0.569 0.577 0.570 C307 1,2,4-Trimeth 2.815 2.876 2.849 2.614 2.687 2.735 2.763 C308 sec-Butylbenz 3.163 3.529 3.449 3.214 3.368 3.451 3.362
                                                                                                   4.22
73) T
                                                                                                   3.67
74) T
                                                                                                    4.30
75) T
          C26U 1,3-Dichlorob 1.490 1.420 1.395 1.271 1.297 1.267 1.356 6.78
C309 4-Isopropylto 2.615 2.865 2.831 2.630 2.727 2.735 2.734 3.72
C267 1,4-Dichlorob 1.522 1.453 1.439 1.297 1.338 1.365 1.402 5.94
C249 1,2-Dichlorob 1.444 1.403 1.378 1.259 1.308 1.312 1.351 5.11
C310 n-Butylbenzen 2.079 2.328 2.388 2.263 2.426 2.525 2.335 6.58
C286 1,2-Dibromo-3 0.146 0.140 0.174 0.151 0.167 0.198 0.163 13.25
C313 1,2,4-Trichlo 0.682 0.700 0.758 0.717 0.779 0.824 0.744 7.16
                                                                                                   6.78
76) T
77) T
78) T
79.) T
80) T
81) T
82) T
          C316 Hexachlorobut 0.263 0.282 0.274 0.269 0.292 0.309 0.281
                                                                                                    6.04
83) T
           C314 Naphthalene 1.928 1.824 2.255 1.984 2.256 2.504 2.125
                                                                                                   12.03
84) T
           C934 1,2,3-Trichlo 0.632 0.642 0.715 0.659 0.719 0.767 0.689 7.67
Total Average %RSD 5.83
```

L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef (#) = Out of Range

R10C101-SIXPT.M Fri Apr 02 11:48:01 2010 HP5973

Data File : D:\MSDCHEM\S\DATA\033110\S5059.D

Acq On : 31 Mar 2010 13:37

: T001101-CAL1 Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Apr 02 11:45:02 2010 Multiplr: 1.00

Results File: R10C101-SIXPT.RES

Inst : HP5973S

Vial: 3 Operator: DHC

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

IS QA File	: D:\MSDChem\S\Data\	(033110	133002	(31 1141			•	
Internal S	Standards	R.T.	QIon	Response		its D	ev(Min) cv(Ar)	
1) CI10	1,4-Difluorobenzene			386846	25.00	ug/L	0.00	
43) CI20	Chlorobenzene-D5	7.19	82	201860			102.48%	
63) CI30	1,4-Dichlorobenzene-	9.05	152	176415	25.00	ug/L	0.00 101.28%	
26) CS87 Spiked Ar 31) CS15 Spiked Ar 44) CS05 Spiked Ar	1,2-Dichloroethane-D mount 25.000 Ran Toluene-D8	ge 70 4.69 ge 66 6.07 ge 71 8.12	- 130 65 - 137 98 - 126 174	Recove 5050 Recove 15067 Recove 5067	1.03 ry = 1.00 ry = 1.08	4.0 ug/L 4.1 ug/L 4.0 ug/L	#80: 0.00	0
3) C010 4) C020	Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1,2, T-butyl Methyl Ether trans-1,2-Dichloroet Methyl Acetate	1.51 1.53 1.81 1.88 2.08 2.57 3.04 2.75 2.56 3.30 2.73 2.98 2.72 2.56 3.24 2.98 3.65 4.03	53 43 41 142 101 73 96 43 63 77 96 42 128 83 97 17 75 78 62 43 56 43 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57		1.05 1.00 1.03 0.94 0.91 1.08 1.27 1.02 21.20 5.33 6.26 46.43 0.44 1.06 1.02 5.22 1.05 1.08 5.81 1.04 1.03 0.99 0.97 1.03 1.03 5.70 0.92 1.03	ug/L ug/L ug/L	# 8999999999999999999999999999999999999	065920399556661265899

Data File : D:\MSDCHEM\S\DATA\033110\S5059.D

Vial: 3 Operator: DHC

Acq On : 31 Mar 2010 13:37 Sample : T001101-CAL1 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:45:02 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010
Response via : Initial Calibration

DataAcq Meth : VOA

: D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51) IS QA File

Internal	Standards	R.T.	QIon	Response	Conc Units Dev(Rcv(
40) C161	2-Chloroethylvinyl E	5.78	63	19495	5.00 ug/L	95
41) C012	Methylcyclohexane	5.27	83	8033	0.87 ug/L	92
42) C145	cis-1,3-Dichloroprop	5.90	75	7395	0.98 ug/L	93
45) C230	Toluene	6.12	92	13003	1.03 ug/L	92
46) C170		6.32	75	7076	0.98 ug/L	98
47) C284	Ethyl Methacrylate	6.35	69	7053	0.94 ug/L #	97
48) C160	1,1,2-Trichloroethan	6.47	83	3474	0.98 ug/L	95
49) C210	4-Methyl-2-pentanone	6.01	43	29380	5.19 ug/L	93
50) C220	Tetrachloroethene	6.52	166	4561	1.01 ug/L	93
51) C221	1,3-Dichloropropane	6.59	76	8124	1.01 ug/L	98
52) C155	Dibromochloromethane	6.77	129	3822	0.92 ug/L	91
53) C163	1,2-Dibromoethane	6.85	107	4420	0.97 ug/L	92
54) C215	2-Hexanone	6.64	43	20925	5.20 ug/L	94
55) C235	Chlorobenzene	7.21	112	16183	1.18 ug/L	96
56) C281	1,1,1,2-Tetrachloroe	7.27	131	4117	0.98 ug/L	91
57) C240	Ethylbenzene	7.27	91	24838	1.04 ug/L	95 05
58) C246	m,p-Xylene	7.36	106	18635	2.05 ug/L	95 05
59) C247	o-Xylene	7.68	106	9112	1.03 ug/L	95
60) C245	Styrene	7.70	104	14148	0.98 ug/L	95
61) C180	Bromoform	7.89	173	1935	0.79 ug/L	79
64) C966	Isopropylbenzene	7.96	105	22067	0.98 ug/L	96
65) C301	Bromobenzene	8.24	156	5244	1.04 ug/L #	78
66) C225	1,1,2,2-Tetrachloroe	8.26	83	6070	1.02 ug/L	100
67) C282		8.30	110	2034	1.07 ug/L	100 57
68) C283	·	8.30	51	5606	5.20 ug/L #	91
69) C302		8.30	91	29675	1.03 ug/L	100
70) C303		8.38	126	5079	0.98 ug/L	100
71) C289		8.47	126	5343	1.00 ug/L	100
72) C304	, ,	8.44	105	19114	1.00 ug/L	92
73) C306		8.70	134	3848	0.96 ug/L	92. 98
74) C307		8.74	105	19863	1.02 ug/L	98
75) C308		8.87	105	22320	0.94 ug/L	98
76) C260		8.99	146	10513	1.10 ug/L	97
77) C309		8.99	119	18452	0.96 ug/L	90
78) C267	•	9.07	146	10737	1.09 ug/L	
79) C249		9.38	146	10187	1.07 ug/L	94
80) C310		9.33	91	14669	0.89 ug/L	96 57
81) C286		10.04	75	1033	0.90 ug/L #	57
82) C313		10.70	180	4816	0.92 ug/L	97 05
83) C316		10.81		1853	0.93 ug/L	95
84) C314	•	10.91	128	13608	0.91 ug/L	96
85) C934	1,2,3-Trichlorobenze	11.10	180	4461	0.92 ug/L	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\033110\S5059.D

: 31 Mar 2010 13:37 Acq On

Operator: DHC Inst : HP5973S

Sample Misc

T001101-CAL1

Multiplr: 1.00

Vial: 3

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:45:02 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration

DataAcq Meth : VOA

Data File : D:\MSDCHEM\S\DATA\033110\S5060.D

Vial: 4 Operator: DHC Acq On : 31 Mar 2010 14:02 Sample : T001101-CAL2 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:43 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 02 11:39:44 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal St	andards	R.T.	QIon	Response	Conc Un	its !	Dev (Mi Rcv (Ai	in)
1) CI10 1	,4-Difluorobenzene	4.99	114	395575	25.00	ug/L	103.2	
43) CI20 C	hlorobenzene-D5	7.19	82	202585	25.00	ug/L	0 102.8	.00 35%
63) CI30 1	,4-Dichlorobenzene-	9.05	152	175037	25.00	ug/L	100.4	.00 18%
	toring Compounds				4.97		0	.00
	ibromofluoromethane	4.44	111		_		888#	.00
Spiked Amo	unt 25.000 Range		- 130	Recove				.00
	,2-Dichloroethane-D	4.68	65		4.83			.00
Spiked Amo	unt 25.000 Range		- 137	Recove			32%#	.00
44) CS05 T	oluene-D8	6.07		72331	4.77	_	_	.00
Spiked Amo	unt 25.000 Rang		- 126	Recove			08%#	0.0
62) CS10 p	-Bromofluorobenzene	8.12	174	22326	4.76			.00
Spiked Amo		e 73	- 120	Recove	ry =	19.	048#	
•								
Target Comp	ounds						Qval	
	ichlorodifluorometh	1.29	85	25385	5.46		**	100
	hloromethane	1.51	50	32229	5.24			99
	inyl chloride	1.52	62	31128	5.42	-		88
	romomethane	1.80	94	4438	4.49			92
	Chloroethane	1.88	64	4729	5.39			83
-,	richlorofluorometha	2.09	101	29783	5.82	ug/L		99
	,1-Dichloroethene	2.58	96	20945	5.25			96
9) C030 M	Methylene chloride	3.04	84	25653	5.06	ug/L		94
	Carbon disulfide	2.75	76	64961	5.12	ug/L		99
	crolein	2.56	56	34014	95.73	ug/L		99
• • • • • • • • • • • • • • • • • • • •	crylonitrile	3.29		60368	23.92	ug/L		94
	cetone	2.72		47080	23.30	ug/L		96
	cetonitrile	2.98		186615	189.29	ug/L	ļ.	100
	Codomethane	2.72		20982	4.20	ug/L	1 .	98
16) C291 1	.,1,2-Trichloro-1,2,	2.56		23995	5.47	ug/L	,	89
	-butyl Methyl Ether	3.25	73	76513	4.95	ug/L		92
	rans-1,2-Dichloroet	3.25		24778		ug/L		100
10) 6355	Methyl Acetate	2.98		32216	4.66	ug/L	•	96
	,1-Dichloroethane	3.60		47255		ug/L		99
	inyl Acetate	3.65		310532	24.93	ug/L		97
	2,2-Dichloropropane	4.03		38662		ug/L		97
	cis-1,2-Dichloroethe	4.06		27268	5.12	ug/L	,	96
	Tetrahydrofuran	4.29		47846	23.32			95
24) C272 I	Bromochloromethane	4.25		11831		ug/L		89
		4.31		42625		ug/L		97
	Chloroform L,1,1-Trichloroethan	4.41		39023		ug/I		98
	Carbon tetrachloride	4.52		32424		ug/L		98
	L,1-Dichloropropene	4.53		35129		ug/I		98
		4.69		105472		ug/I		99
	Benzene L,2-Dichloroethane	4.74		35947		ug/I		97
	2-Butanone	4.10		70669	22.90			95
		4.42		51915		ug/I		98
•	Cyclohexane Frichloroethene	5.17		26090		ug/I		93
,	richioroethene [,2-Dichloropropane	5.36		26779		ug/I		98
/	Dibromomethane	5.46		15053		ug/I		82
//-	Bromodichloromethane	5.58		29891		ug/I		99
39) C130 F	scomodicutoromernane	5.50	0.5	یر ۵ ر ے	3,54	9 / 1		

Data File : D:\MSDCHEM\S\DATA\033110\S5060.D

Vial: 4 Operator: DHC : 31 Mar 2010 14:02 Acq On Inst : HP5973S : T001101-CAL2 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:43 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010
Response via : Initial Calibration
DataAcq Meth : VOA IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal	Standards	R.T.	QIon	Response	Conc Units Dev(Min Rcv(Ar	
40) C161	2-Chloroethylvinyl E	5.78	63	99078	24.85 ug/L 9	94
41) C012	Methylcyclohexane	5.27	83	49853	5.30 ug/L 9	96
42) C145	cis-1,3-Dichloroprop	5.90	75	38559		99
45) C230	Toluene	6.12	92	68093		97
46) C170	trans-1,3-Dichloropr	6.32	75	35846	4.97 ug/L 9	97
47) C284	Ethyl Methacrylate	6.35	69	35743		93
48) C160	1,1,2-Trichloroethan	6.46	83	18090		99
49) C210	4-Methyl-2-pentanone	6.00	43	134437	20.00	93
50) C220	Tetrachloroethene	6.53	166	24219		94
51) C221	1,3-Dichloropropane	6.59	76	41593		96
52) C155	Dibromochloromethane	6.77	129	20224		98
53) C163	1,2-Dibromoethane	6.85	107	23272		92
54) C215	2-Hexanone	6.63	43	93355		39
55) C235	Chlorobenzene	7.21	112	69825		96
56) C281	1,1,1,2-Tetrachloroe	7.28	131	21378	-	91
57) C240	Ethylbenzene	7.27	91	127643		99
58) C246	m,p-Xylene	7.36	106	96614	20.00	95
59) C247	o-Xylene	7.68	106	45523	9 9	39
60) C245	Styrene	7.70	104	75206	~·	99
61) C180	Bromoform	7.89	173	11392		99
64) C966	Isopropylbenzene	7.96	105	118847	0.01 9,	96
65) C301	Bromobenzene	8.24	156	25665		77
66) C225	1,1,2,2-Tetrachloroe	8.26	83	29370	****	99
67) C282	1,2,3-Trichloropropa	8.30	110	9755	*** - 3 · -	00
68) C283	t-1,4-Dichloro-2-But	8.30	51	27234	20.10	64
69) C302	n-Propylbenzene	8.30	91	153832		93
70) C303	2-Chlorotoluene	8.39	126	27546	- +	00
71) C289	4-Chlorotoluene	8.47	126	27797		00
72) C304	1,3,5-Trimethylbenze	8.44	105	100276		96
73) C306	tert-Butylbenzene	8.70	134	21315	9	87
74) C307	1,2,4-Trimethylbenze	8.74	105	100672	O.GO 5	97
75) C308	sec-Butylbenzene	8.87	105	123525	# · =	95
76) C260	1,3-Dichlorobenzene	8.99	146	49700		97
77) C309	4-Isopropyltoluene	8.99	119	100297		98
78) C267	1,4-Dichlorobenzene	9.07	146	50851	0.10 -p	94
79) C249	1,2-Dichlorobenzene	9.38	146	49115	# · = · · · · · · · · · · · · · · · · ·	94
80) C310	n-Butylbenzene	9.32	91	81491	1.22 - 5, -	94
81) C286		10.04	75	4912	1102 - 91 -	76
82) C313		10.70		24521	* * * * * * * * * * * * * * * * * * *	99
83) C316	Hexachlorobutadiene	10.81		9871	3.32 -3.4	94
84) C314	Naphthalene	10.91		63860	11 = 3 ···· 91 ···	94
85) C934	-	11.10	180	22475	4.66 ug/L	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\033110\S5060.D

Vial: 4 Operator: DHC

Acq On : 31 Mar 2010 14:02

Operator: DHC Inst : HP5973S

Sample : T001101-CAL2

Multiplr: 1.00

Misc : MS Integration Params: RTEINT.P

Quant Time: Apr 02 11:42:43 2010 Results File: R10C101-SIXPT.RES

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 02 11:39:44 2010

Response via : Initial Calibration

DataAcq Meth : VOA

Data File : D:\MSDCHEM\S\DATA\033110\S5061.D

Vial: 5 Operator: DHC Acq On : 31 Mar 2010 14:26 Sample : T001101-CAL3 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:48 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 02 11:39:44 2010

Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal Standards	R.T.	QIon	Response	Conc Un	its D	ev(Min)
1) CI10 1,4-Difluorobenzene	4.99	114	386880	25.00	ug/L	0.00 100.95%
43) CI20 Chlorobenzene-D5	7.19	82	200549	25.00	ug/L	0.00 101.81%
63) CI30 1,4-Dichlorobenzene-	9.05	152	173761	25.00	ug/L	0.00 99.75%
System Monitoring Compounds 26) CS87 Dibromofluoromethane Spiked Amount 25.000 Ran 31) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Ran 44) CS05 Toluene-D8 Spiked Amount 25.000 Ran	4.68 ge 66 6.07	111 - 130 65 - 137 98 - 126	38528 Recove 47056 Recove 138978 Recove	9.58 ery = 9.25 ery =	ug/L 38.9 ug/L 38.3 ug/L 37.0	0.00 32%# 0.00
62) CS10 p-Bromofluorobenzene	8.12		44913 Recove		ug/L 38.7	0.00 72%#
Spiked Amount 25.000 Ran Target Compounds 2) C290 Dichlorodifluorometh 3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluorometha 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride 10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2-Trichloro-1,2, 17) C962 T-butyl Methyl Ether 18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropane 23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran 25) C222 Bromochloromethane		- 120 85 50 62 94 64 101 96 87 53 43 43 77 96 42	43859 58768 53932 7840 8468 43652 38834 48103 115913 71439 128367 101384 404485 41932 41269 150567 46517 68835 90174 620903 71484 52191 103963 23333	9.64 9.77 9.60 8.11 9.86 8.73 9.96 9.70 9.35 205.58 52.02 51.31 419.51 8.59 9.62 9.62 10.11 10.18 10.08 50.97 9.91 10.02 51.82 10.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Qvalue # 100 97 83 84 99 100 97 95 99 98 93 99 91 92 95 99 98 97 98
27) C060 Chloroform 28) C115 1,1,1-Trichloroethan 29) C120 Carbon tetrachloride 30) C116 1,1-Dichloropropene 32) C165 Benzene 33) C065 1,2-Dichloroethane 34) C110 2-Butanone 35) C256 Cyclohexane 36) C150 Trichloroethene 37) C140 1,2-Dichloropropane 38) C278 Dibromomethane 39) C130 Bromodichloromethane	4.31 4.41 4.52 4.53 4.69 4.74 4.10 4.42 5.17 5.36 5.46	97 117 75 78 62 43 56 95 63 93	81006 73427 59836 66197 200251 70022 158402 91791 48835 50873 29449 59070	10.10 10.18 10.24 52.47 9.72 10.00 10.03	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	98 99 98 100 98 94 98 92 99

(Not Reviewed) Quantitation Report TA Buffalo

Data File : D:\MSDCHEM\S\DATA\033110\S5061.D Vial: 5 : 31 Mar 2010 14:26 : T001101-CAL3 Operator: DHC Acq On

Inst : HP5973S Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:48 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010
Response via : Initial Calibration

DataAcq Meth : VOA

: D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51) IS QA File

Internal	Standards	R.T.	QIon	Response	Conc Units	(Min)
40)		5.78		202182	51.84 ug/I	 95
40) C161		5.78	63 83	88671	9.64 ug/I	96
41) CO12			75	77211	10.23 ug/I	96
42) C145		5.89 6.12	92	128177	10.24 ug/I	94
45) C230		6.32	92 75	71672	10.24 ug/I	98
46) C170		6.35	69	75279	10.15 ug/I	93
47) C284		6.46	83	37041	10.48 ug/I	96
48) C160		6.00	43	303057	53.92 ug/I	93
49) C210		6.53		45267	10.11 ug/I	94
50) C220		6.59		83186	10.40 ug/I	97
51) C221	·	6.77		41209	9.95 ug/I	97
52) C155		6.85		47742	10.51 ug/I	93
53) C163 54) C215	•	6.63		215935	54.01 ug/I	91
•		7.21		133940	9.86 ug/I	98
55) C235 56) C281		7.28	131	43343	10.35 ug/I	95
		7.27		243094	10.21 ug/I	98
57) C240		7.36		186268	20.65 ug/I	94
58) C246		7.68		89618	10.22 ug/I	94
59) C247		7.70		146826	10.24 ug/I	99
60) C245		7.89		23999	9.88 ug/I	92
61) C180		7.09		227729	10.31 ug/I	97
64) C966	2 2 2	8.24		51096	10.29 ug/I	82
65) C301		8.26		63979	10.89 ug/I	98
66) C225		8.30		21077	11.24 ug/I	100
67) C282		8.30		57853	54.45 ug/1	 67
68) C283	· · · · · · · · · · · · · · · · · · ·	8.30		300049	10.59 ug/I	92
69) C302	1 1	8.38		53027	10.34 ug/1	100
70) C303		8.47		54841	10.39 ug/l	100
71) C289		8.43		195741	10.35 ug/1	97
72) C304	, , <u> </u>	8.70		40173	10.14 ug/1	74
73) C306	•	8.74		198000	10.31 ug/	97
		8.87		239696	10.26 ug/1	96
•		8.99		96937	10.28 ug/1	97
76) C260		8.99		196782	10.36 ug/	97
•		9.07		99999	10.26 ug/	94
78) C267		9.38		95752	10.20 ug/	94
•	·	9.32		165945	10.23 ug/	91
80) C310	_	10.04		12083	10.68 ug/	72
82) C313	•	10.70		52682	10.19 ug/	100
		10.70		19071	9.75 ug/1	95
83) C316 84) C314		10.91		156735	10.61 ug/	98
85) C934	_	10.90		49689	10.37 ug/	99
03/ 0934	: 1,2,5-111CIIIOTODellZe					

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\033110\S5061.D

: 31 Mar 2010 14:26 Acq On

: T001101-CAL3

Sample Misc

Vial: 5 Operator: DHC

: HP5973S Inst Multiplr: 1.00

MS Integration Params: RTEINT.P Results File: R10Cl01-SIXPT.RES Quant Time: Apr 02 11:42:48 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration

DataAcq Meth : VOA

Data File : D:\MSDCHEM\S\DATA\033110\S5062.D

Vial: 6 Acq On : 31 Mar 2010 14:51 Sample : T001101-CAL4 Operator: DHC Inst : HP5973S

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 02 11:42:54 2010

Results File: R10C101-SIXPT.RES

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010
Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal S	Standards	R.T.	QIon	Response	Conc Ur	nits Dev Rcv	(Min) (Ar)
1) CI10	1,4-Difluorobenzene	4.99	114	383245	25.00	ug/L	0.00
43) CI20	Chlorobenzene-D5	7.19	82	196974	25.00	ug/L	
43) 0120	Chilorobenizene bo	,,,,	02				0.00%
63) CI30	1,4-Dichlorobenzene-	9.05	152	174193	25.00	ug/L	0.00
						10	0.00%
Sustan Mar	nitoring Compounds						
	Dibromofluoromethane	4.44	111	103097	26.32	ug/L	0.00
Spiked Am				Recove		105.28%	
	1,2-Dichloroethane-D	4.68	65	133504	27.45	_	0.00
Spiked Am					_	109.80%	
44) CS05	Toluene-D8	6.07				_	0.00
Spiked Am	nount 25.000 Rang		- 126			116.00%	0.00
62) CS10	p-Bromofluorobenzene	8.12	1/4		zo.62 ry =		
Spiked An	mount 25.000 Rang	je /3	- 120	Recove	г. У —	100.40	
Target Con	npounds			•			alue
2) C290	Dichlorodifluorometh	1.29	85	113274		ug/L #	100
•	Chloromethane	1.51	50	149686			98
	Vinyl chloride	1.52	62	139286	25.03		86
	Bromomethane	1.80	94	139286 22244 21348	23.21		85 94
	Chloroethane	1.88	0.1	21010			99
	Trichlorofluorometha	2.08	101 96	133679 90233	23.36	_	97
•	1,1-Dichloroethene Methylene chloride	2.58	84	100233	22.30		95
9) C030 10) C040	Carbon disulfide	2.75	76	109220 314811	25.63	ug/L	99
11) C036	Acrolein			175018	508 44		98
12) C038	Acrylonitrile	3.29		304376	124.51		92
13) C035	Acetone	2.72	43	230363	117.70		97
14) C300	Acetonitrile	2.98		932995			98
15) C276	Iodomethane	2.72	142	162058	33 50	ug/L	97
16) C291	1,1,2-Trichloro-1,2,	2.56	101	115053	27.08		90
17) C962	T-butyl Methyl Ether	3.25	73	383831	25.64		92
18) C057	trans-1,2-Dichloroet	3.24	96	106646	23.40		96
19) C255	Methyl Acetate	2.97	43	160426	23.94	ug/L	97
20) C050	1,1-Dichloroethane		63	207338 1558578	23.41	ug/L	99
	Vinyl Acetate	3.65	43	1558578	129.15	ug/L	97 94
	2,2-Dichloropropane		11	166679	23.32	ug/L	99
•	cis-1,2-Dichloroethe		96	120540 238133	119.82	ug/L	90
24) C272	Tetrahydrofuran	4.29			23.80	-	89
25) C222		4.23	83	187552	23.56		99
27) C060 28) C115	Chloroform 1,1,1-Trichloroethan	4.41	97	168038	23.50		97
29) C120	Carbon tetrachloride	4.52	117	142457	23.77		99
30) C116	1,1-Dichloropropene	4.53	75	152551	23.50		98
32) C165	Benzene	4.69	78	455887	23.39		99
33) C065	1,2-Dichloroethane	4.74	62	158398	23.38	ug/L	98
34) C110	2-Butanone	4.10	43	359902	120.35		96
35) C256	Cyclohexane	4.42	56	246113	26.30		98
36) C150	Trichloroethene	5.17	95	112494	23.24		92
37) C140	1,2-Dichloropropane	5.36	63	119377	23.76	-	99
38) C278	Dibromomethane	5.46	93	67343		ug/L #	81 99
39) C130	Bromodichloromethane	5.58	83	139382	23.79	ug/L	ラ ラ

Data File : D:\MSDCHEM\S\DATA\033110\S5062.D

Vial: 6 Operator: DHC

Acq On : 31 Mar 2010 14:51 Sample : T001101-CAL4 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:54 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal	Standards	R.T.	QIon	Response	Conc Units Dev(Min) Rcv(Ar)
				407652	128.82 ug/L 95
40) C161	2-Chloroethylvinyl E	5.78	63	497652	26.58 ug/L 98
41) C012	Methylcyclohexane	5.27	83	242318 177153	23.69 ug/L 99
42) C145	cis-1,3-Dichloroprop	5.90	75	285461	23.21 ug/L 94
45) C230	Toluene	6.12	92	167715	23.90 ug/L 98
46) C170	trans-1,3-Dichloropr	6.32	75 60	188474	25.87 ug/L # 93
47) C284	Ethyl Methacrylate	6.35	69	83553	24.08 ug/L 98
48) C160	1,1,2-Trichloroethan	6.46	83	685435	124.18 ug/L 93
49) C210	4-Methyl-2-pentanone	6.00	43 166	102937	23.40 ug/L 94
50) C220	Tetrachloroethene	6.53		185496	23.40 ug/L 97
51) C221	1,3-Dichloropropane	6.59 6.77	76 129	98393	24.20 ug/L 100
52) C155	Dibromochloromethane		107	105920	23.75 ug/L 97
53) C163	1,2-Dibromoethane	6.85	43	482123	122.78 ug/L 90
54) C215	2-Hexanone	6.63 7.21	112	303427	22.74 ug/L 98
55) C235	Chlorobenzene	7.21	131	100402	24.41 ug/L 99
56) C281	1,1,1,2-Tetrachloroe	7.20	91	554789	23.71 ug/L 99
57) C240	Ethylbenzene	7.36		422521	47.69 ug/L 96
58) C246	m, p-Xylene	7.68	106	204929	23.80 ug/L 96
59) C247	o-Xylene	7.70		337438	23.97 ug/L 100
60) C245	Styrene	7.70		58395	24.46 ug/L 97
61) C180	Bromoform	7.96		524109	23.67 ug/L 98
64) C966	Isopropylbenzene	8.24		117761	23.65 ug/L # 84
65) C301	Bromobenzene	8.26		134679	22.86 ug/L 99
66) C225	1,1,2,2-Tetrachloroe	8.30		43381	23.09 ug/L 100
67) C282	1,2,3-Trichloropropa	8.30		134972	126.72 ug/L # 71
68) C283	t-1,4-Dichloro-2-But	8.30		677260	23.84 ug/L 93
69) C302	n-Propylbenzene	8.39		122857	23.90 ug/L 100
70) C303	2-Chlorotoluene 4-Chlorotoluene	8.47		124917	23.61 ug/L 100
71) C289	1,3,5-Trimethylbenze	8.43		445741	23.52 ug/L 96
72) C304	tert-Butylbenzene	8.70		94792	23.86 ug/L # 83
73) C306	1,2,4-Trimethylbenze	8.74	_	455319	23.65 ug/L 96
74) C307	sec-Butylbenzene	8.87	-	559876	23.90 ug/L 95
75) C308 76) C260	1,3-Dichlorobenzene	8.99		221358	23.42 ug/L 97
•	4-Isopropyltoluene	8,99		458167	24.05 ug/L 97
77) C309	1,4-Dichlorobenzene	9.07		225961	23.13 ug/L 95
78) C267	1.2-Dichlorobenzene	9.38		219241	23.30 ug/L 95
79) C249	n-Butylbenzene	9.33		394211	24.23 ug/L 96
80) C310	1,2-Dibromo-3-Chloro	10.04		26244	23.14 ug/L # 75
81) C286	1,2,4-Trichlorobenze	10.70		124964	24.12 ug/L 98
82) C313	Hexachlorobutadiene	10.81		46773	23.86 ug/L 97
83) C316 84) C314	Naphthalene	10.91		345610	23.34 ug/L 98
85) C934	1,2,3-Trichlorobenze	11.10		114867	23.92 ug/L 99
	1,2,3 111011010101110				

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\033110\S5062.D

: 31 Mar 2010 14:51 Acq On

T001101-CAL4 Sample

Misc

MS Integration Params: RTEINT.P

Vial: 6 Operator: DHC

: HP5973s Inst Multiplr: 1.00

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:42:54 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration

DataAcq Meth : VOA

Vial: 7 Data File : D:\MSDCHEM\S\DATA\033110\S5063.D Operator: DHC Acq On : 31 Mar 2010 15:15 Sample : T001101-CAL5 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:02 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010
Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Internal Standards	R.T.	QIon	Response	Conc Un	its De	v(Min) v(Ar)
1) CI10 1,4-Difluorobenzene	4.99	114	391067	25.00		0.00
43) CI20 Chlorobenzene-D5	7.19	82	202259	25.00	ug/L	0.00 02.68%
63) CI30 1,4-Dichlorobenzene-	9.05	152	178765	25.00	ug/L	0.00
System Monitoring Compounds 26) CS87 Dibromofluoromethane Spiked Amount 25.000 Range 31) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Range 44) CS05 Toluene-D8 Spiked Amount 25.000 Range 62) CS10 p-Bromofluorobenzene Spiked Amount 25.000 Range	e 70 4.68 e 66 6.07 e 71 8.12	- 137 98 - 126	Recove 249139 Recove 775857 Recove 230216	50.20 ery = 51.22 ery = 49.19	202.28 ug/L 200.80 ug/L 204.88	0.00 %# 0.00 3%# 0.00
Target Compounds 2) C290 Dichlorodifluorometh 3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluorometha 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride 10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2-Trichloro-1,2, 17) C962 T-butyl Methyl Ether 18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropane 23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran 25) C222 Bromochloromethane 27) C060 Chloroform 28) C115 1,1,1-Trichloroethan 29) C120 Carbon tetrachloride 30) C116 1,1-Dichloropropene 32) C165 Benzene 33) C065 1,2-Dichloroethane 34) C110 2-Butanone	1.51 1.52 1.888 2.54 2.52 2.52 2.52 2.52 2.52 2.52 2.52	62 94 64 101 96 84 76 53 43 41 142 101 73 96 43 77 96 42 128 83 97 117 78 62	228236 298660 278256 54970 43837 259979 189770 229570 637345 336101 595473 451533 1809665 320368 224977 756620 222835 309862 444201 3017941 357292 255767 470409 108697 399340 361007 310315 325578 965492 336968 714757	49.11 49.01 56.22 50.52 51.43 48.12 45.79 50.86 956.86 238.71 226.09 1856.81 64.89 51.90 49.54 47.91 45.31 49.14 245.07 49.00 48.58 231.96 47.82 49.16 49.49 50.74 49.15	ug/L tug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2value # 100 98 85 87 91 98 97 99 98 92 96 98 97 90 91 94 96 100 97 94 99 93 89 100 97 98
35) C256 Cyclohexane 36) C150 Trichloroethene 37) C140 1,2-Dichloropropane 38) C278 Dibromomethane 39) C130 Bromodichloromethane	4.42 5.17 5.36 5.46 5.58	95 63 93	487834 241557 250995 142034 303791	48.91 48.96 48.27	ug/L ug/L ug/L ug/L	98 91 100 # 82 99

Data File : D:\MSDCHEM\S\DATA\033110\S5063.D

Vial: 7 : 31 Mar 2010 15:15 : T001101-CAL5 Operator: DHC Inst : HP5973S

Misc

Acq On

Sample

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:02 2010

Quant Method : D:\MSDCHEM\s...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010

Response via : Initial Calibration

DataAcq Meth : VOA

: D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51) IS QA File

Internal Standards	R.T.	QIon	Response	Conc Unit		v(Min) v(Ar)
AON CASA O Chilara at balanina il E	5.78	 63	980065	248.62 ug		94
40) C161 2-Chloroethylvinyl E	5.27	83	487670	52.42 ug		97
41) C012 Methylcyclohexane		75	382192	50.08 ug		97
42) C145 cis-1,3-Dichloroprop 45) C230 Toluene	5.89 6.12	92	611470	48.43 ug		94
45) C230 Toluene 46) C170 trans-1,3-Dichloropr	6.32	75	364146	50.53 ug		100
47) C284 Ethyl Methacrylate	6.35	69	385851	51.57 uc		93
48) C160 1,1,2-Trichloroethan	6.46	83	174652	49.01 uc		98
49) C210 4-Methyl-2-pentanone	6.00	43	1377815	243.09 ug		92
50) C220 Tetrachloroethene	6.53	166	222300	49.21 uc		92
51) C221 1,3-Dichloropropane	6.59	76	392777	48.67 uc		98
52) C155 Dibromochloromethane	6.77	129	216824	51.93 uc		97
53) C163 1,2-Dibromoethane	6.85	107	225519	49.24 uc		99
54) C215 2-Hexanone	6.63	43	976840	242.28 ug		91
55) C235 Chlorobenzene	7.21	112	649541	47.41 uc		99
56) C281 1,1,1,2-Tetrachloroe	7.28	131	210211	49.78 ud		96
57) C240 Ethylbenzene	7.27	91	1168799	48.65 uc	ı/L	99
58) C246 m,p-Xylene	7.36	106	881892	96.93 u	[/L	96
59) C247 o-Xylene	7.68	106	432517	48.92 ug	ı/L	94
60) C245 Styrene	7.70	104	720670	49.85 ug	ı/L	99
61) C180 Bromoform	7.89	173	133878	54.62 ug	j/L	97
64) C966 Isopropylbenzene	7.96	105	1116159	49.12 ug	$_{i}/_{L}$	98
65) C301 Bromobenzene	8.24	156	249482	48.82 ug	$_{ m i}/{ m L}$	86
66) C225 1,1,2,2-Tetrachloroe	8.26	83	288208	47.67 ug	;/L	99
67) C282 1,2,3-Trichloropropa	8.30	110	89058	46.18 ug		100
68) C283 t-1,4-Dichloro-2-But	8.30	51	263942	241.46 ug		73
69) C302 n-Propylbenzene	8.30	91	1407539	48.28 ug	-	92
70) C303 2-Chlorotoluene	8.39	126	258348	48.97 ug	-	100
71) C289 4-Chlorotoluene	8.47	126	267728	49.32 ug	;/L	100
72) C304 1,3,5-Trimethylbenze	8.44	105	951937	48.95 ug	•	97
73) C306 tert-Butylbenzene	8.70	134	203258	49.85 ug		84
74) C307 1,2,4-Trimethylbenze	8.74	105	960844	48.64 ug	•	97
75) C308 sec-Butylbenzene	8.87	105	1204069	50.08 ug	-	95
76) C260 l,3-Dichlorobenzene	8.99	146	463584	47.80 ug		96
77) C309 4-Isopropyltoluene	8.99	119	975107	49.88 ug	-	97
78) C267 1,4-Dichlorobenzene	9.07	146	478238	47.70 ug		95
79) C249 1,2-Dichlorobenzene	9.38		467733	48.43 ug	-	94
80) C310 n-Butylbenzene	9.33	91	867221	51.95 uç	•	96
81) C286 1,2-Dibromo-3-Chloro	10.04	75	59684	51.29 ug	•	73
82) C313 1,2,4-Trichlorobenze	10.70	180	278630	52.41 ug		99
83) C316 Hexachlorobutadiene	10.81	225	104304	51.84 ug		98
84) C314 Naphthalene	10.90	128	806471	53.07 ug	-	97
85) C934 1,2,3-Trichlorobenze	11.10	180	257202	52.20 ug	1/ F	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDCHEM\S\DATA\033110\S5063.D

: 31 Mar 2010 15:15 Acq On

: T001101-CAL5 Sample

Misc

MS Integration Params: RTEINT.P

Vial: 7

Operator: DHC : HP5973S

Multiplr: 1.00

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:02 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration

DataAcq Meth : VOA

Data File : D:\MSDCHEM\S\DATA\033110\S5064.D

Vial: 8 Operator: DHC Acq On : 31 Mar 2010 15:39 Inst : HP5973S Multiplr: 1.00

: T001101-CAL6 Sample

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:08 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 02 11:39:44 2010

Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

S ON LITE	: D. (MSDeffell (O (Data)		,					
Internal S	tandards	R.T.	QIon	Response	Conc Un	its	Dev (N	1in)
							Rcv (A	AF)
			111	395940	25.00	ug/L		0.00
1) CI10	1,4-Difluorobenzene	4.99	114	393940	23.00		103.	.31%
		7 10	82	207750	25.00	ug/L	, (0.00
43) CI20	Chlorobenzene-D5	1.15	02	20.,00		-	105.	. 47%
	1,4-Dichlorobenzene-	9 05	152	185325	25.00	ug/L		0.00
63) CI30	1,4-Dichiorobenzene	J.00					106	.39%
System Mon	itoring Compounds							0 00
26) CS87	nibromofluoromethane	4.44	111					0.00
Spiked Am	ount 25.000 Rang	e 70	- I3U	Recov	ery =		728#	0.00
31) CS15	1.2-Dichloroethane-D				94.52	279	08%#	3.00
Spiked Am	ount 25.000 Rang		- 137					0.00
44) CS05	Toluene-D8	6.07					928#	
Spiked Am	ount 25.000 Rang		- 126	454817	94 61			0.00
62) CS10	p-Bromofluorobenzene	8.12			ery =	378.	448#	
Spiked Am	nount 25.000 Rang	e /3	- 120	Kecov	e T X			
							Qva	lue
Target Com	pounds Dichlorodifluorometh	1.29	85	466676	100.22	ug/I	# د	100
2) C290	Dichlorodilluolomeen	1.51		578860	94.01	ug/I		100
3) 0010	Chloromethane Vinyl chloride	1.53		559095	97.25	ug/I	_	86
5) C015	Bromomethane	1.81		119615	120.83	ug/I	<u>.</u>	87
	Chloroethane	1.88	64	85877	97.75			90
7) C275	Trichlorofluorometha	2.08	101	481745	94.13	ug/I		99
8) CO45	1.1-Dichloroethene	2.58	96	388151	97.26	ug/l	_	97 96
9) C030	Methylene chloride	3.04		477346	94.03			100
10) CO40	Carbon disulfide	2.75		1235744	97.39 1962.12			98
11) C036	Acrolein Acrylonitrile	2.56		697790	492.43			92
12) C038	Acrylonitrile	3.29		1243694 954208	471.90			97
13) C035	Acetone	2.72		3705300	3755.04	ug/	Ĺ	98
14) C300	Acetonitrile	2.98		609175	121.87	ug/	Ĺ	96
15) C276	Iodomethane	2.72		426477	97.17			90
16) C291	1,1,2-Trichloro-1,2,	3.25				ug/:	L	92
17) C962	T-butyl Methyl Ether trans-1,2-Dichloroet	3.24		1485127	97.96	ug/	L	96
18) C057	Methyl Acetate	2.97		638638	92.23	ug/	L	95
19) C255 20) C050	1,1-Dichloroethane	3,60		928819	101.49	ug/	L	99
20) C030 21) C125	Vinyl Acetate	3.65	43		462.72			96
22) C051	2,2-Dichloropropane	4.03	77	735280	99.59			96
23) C056	cis-1,2-Dichloroethe	4.06		528318	99.11	ug/	T-	97 91
24) C272	Tetrahydrofuran	4.28		1007939	490.90	ug/	با. ۲	90
25) C222	Bromochloromethane	4.25		225920	98.16 100.39			100
27) C060	Chloroform	4.31		825702	100.39	ug/	Д. Т.	97
28) C115	1,1,1-Trichloroethan	4.41		739292 636193	100.05			98
29) C120	Carbon tetrachloride	4.52		665296	99.19			98
30) C116	1,1-Dichloropropene	4.53		1975015	98.07			100
32) C165	Benzene	4.69		702530	100.38			98
33) C065	1,2-Dichloroethane	4.09		1538104	497.85	ug/	L	96
34) C110	2-Butanone Cyclohexane	4.42		927207	95.90) ug/	L	98
35) C256 36) C150	Trichloroethene	5.1		501933	100.38	3 ug/	L	90
36) C150 37) C140	1,2-Dichloropropane	5.36		526583	101.44	1 ug/	L	99
38) C278	Dibromomethane	5.46		302982	101.73	l ug/	L #	81
39) C130	Bromodichloromethane	5.58		649401	107.28	3 ug/	ᅩ	97
52, 0200	•							

(Not Reviewed) Quantitation Report TA Buffalo

Multiplr: 1.00

Data File : D:\MSDCHEM\S\DATA\033110\S5064.D

Vial: 8 Operator: DHC Acq On : 31 Mar 2010 15:39 Inst : HP5973S

: T001101-CAL6 Sample

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:08 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Apr 02 11:39:44 2010 Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\033110\S5062.D (31 Mar 2010 14:51)

Inter	nal	Standards	R.T.	QIon	Response	Conc Units Dev(Min) Rcv(Ar)
40\ 0		2-Chloroethylvinyl E	5.78	63	1884449	472.16 ug/L 92
40) C	2012	Methylcyclohexane	5.27	83	934503	99.22 ug/L 97
	1145	cis-1,3-Dichloroprop	5.90	75	811350	105.00 ug/L 99
•	2230	Toluene	6.12	92	1258420	97.03 ug/L 94
/	230	trans-1,3-Dichloropr	6.32	75	779867	105.35 ug/L 97
	284	Ethyl Methacrylate	6.35	69	784678	102.10 ug/L # 93
	2160	1,1,2-Trichloroethan	6.46	83	372605	101.80 ug/L 98
•	2210	4-Methyl-2-pentanone	6.00	43	2823070	484.91 ug/L 89
	2220	Tetrachloroethene	6.53	166	458116	98.73 ug/L 92
	2221	1,3-Dichloropropane	6.59	76	833267	100.52 ug/L 99
•	2155	Dibromochloromethane	6.77	129	477851	111.41 ug/L 98
	2163	1,2-Dibromoethane	6.85	107	485668	103.24 ug/L 96
	2215	2-Hexanone	6.63	43	2078306	501.84 ug/L 88
•	2235	Chlorobenzene	7.21	112	1343665	95.48 ug/L 98
	2281	1,1,1,2-Tetrachloroe	7.28	131	435830	100.48 ug/L 97
	2240	Ethylbenzene	7.27	91	2370556	96.07 ug/L 99
	2246	-	7.36	106	1790687	191.62 ug/L 95
-	2247	o-Xylene	7.68	106	895904	98.65 ug/L 95
60)		Styrene	7.70	104	1486164	100.08 ug/L 98
•	C180	Bromoform	7.89	173	307737	122.24 ug/L 97
•	C966		7.97	105	2325857	98.73 ug/L 97
-	C301	Bromobenzene	8.24	156	521051	98.35 ug/L # 82
	C225	1,1,2,2-Tetrachloroe	8.26	83	647770	103.36 ug/L 99
67)			8.30	110	185148	92.62 ug/L 100
	C283		8.30	51	495314	437.09 ug/L # 81
	C302		8.30	91	2758108	91.26 ug/L 92
•	C303		8.39	126	540509	98.83 ug/L 100
,	C289		8.47	126	555282	98.66 ug/L 100
72)			8.44	105	2007543	99.57 ug/L 96
	C306		8.70	134	427488	101.13 ug/L # 82
74)			8.74	105	2027803	99.02 ug/L 95
75)			8.87	105	2558418	102.65 ug/L 95
,	C260		8.99	146	938912	93.38 ug/L 95
77)			8.99	119	2027703	100.05 ug/L 96
	C267		9.07	146	1012058	97.37 ug/L 97
79)			9.38	146	972934	97.18 ug/L 95
80)			9.33	91	1872149	108.17 ug/L 95
81)		-	10.04	75	147039	121.88 ug/L # 74
82)			10.70	180	610504	110.76 ug/L 96
,	C316		10.83	225	229179	109.87 ug/L 97
84)			10.91	128	1856347	117.83 ug/L 97
85)			11.10	180	568481	111.28 ug/L 100
,						

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

(Not Reviewed) TA Buffalo Quantitation Report

Data File : D:\MSDCHEM\S\DATA\033110\S5064.D

Vial: 8 Operator: DHC : 31 Mar 2010 15:39 Acg On

: HP5973S Inst T001101-CAL6 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 02 11:43:08 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

5ML WATER Title : 8260

: Fri Apr 02 11:39:44 2010 Last Update

Response via : Initial Calibration

DataAcq Meth : VOA

Please disregard the calculated values for the coefficient of determination (COD) and the linear regression (linear r) on the form 6. Due to computer programming limitations they are stated incorrectly on this form. For the correct values view the Response Factor Report from the instrument located directly behind the form 6. Test America's IT group is working to resolve this situation.

INITIAL CALIBRATION DATA

8260B

Laboratory:

Client:

TestAmerica Buffalo

AECOM - Amherst, NY

SDG: Project:

AECOM, Inc. - Scott Aviation site - NY3A90

Calibration:

R10D026

Instrument:

HP5975T

Calibration Date:

04/06/10 17:41

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	L	evel 06
Compound	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF	ug/L	RF
1,1,1-Trichloroethane	1	0.4815776	5	0.5364217	10	0.5195572	25	0.5247723	50	0.5305067	100	0.5109127
1,1,2,2-Tetrachloroethane	1	1.304672	5	1.367719	10	1.389429	25	1.400899	50	1.379913	100	1.368917
1,1,2-Trichloro-1,2,2-trifluoroetha	1	0.2880971	5	0.2895408	10	0.2964093	25	0.2957984	50	0.277434	100	0.2504743
1,1,2-Trichloroethane	1	0.378126	5	0.3682273	10	0.358202	25	0.3694584	50	0.3726144	100	0.3680706
1,1-Dichloroethane	1	0.6900708	5	0.7393358	10	0.7117104	25	0.7132062	50	0.7174661	100	0.683739
1,1-Dichloroethene	1	0.3549218	5	0.3791002	10	0.3628527	25	0.3558863	50	0.3479124	100	0.3084852
1,2,4-Trichlorobenzene	1	0.9779392	5	1.121779	10	1.114187	25	1.166474	50	1,186899	100	1.147681
1,2-Dibromo-3-chloropropane	1	0.2398488	5	0.2688536	10	0.2737283	25	0.2877817	50	0.2958462	100	0.2955949
1,2-Dibromoethane	1	0.421942	5	0.4456899	10	0.4410744	25	0.4507248	50	0.4669998	100	0.467363
1,2-Dichlorobenzene	1	1.540285	5	1.700715	10	1.685881	25	1.716128	50	1.735667	100	1.688443
1,2-Dichloroethane	1	0.5288493	5	0.5688706	10	0.5572486	25	0.5679679	50	0.582451	100	0.5890573
1,2-Dichloroethane-d4	1	0.537747	5	0.493397	10	0.4661047	25	0.3776738	50	0.4443325	100	0.4762762
1,2-Dichloroethene, Total	2	0.3904579	10	0.4116441	20	0.3956408	50	0.3965472	100	0.3913847	200	0.3702361
1,2-Dichloropropane	1	0.4012048	5	0.3992716	10	0.4008567	25	0.4122318	50	0.4218829	100	0.4248173
1,3-Dichlorobenzene	1	1.607778	5	1.829479	10	1.750809	25	1.789383	50	1.797911	100	1.751598
1,4-Dichlorobenzene	1	1.640724	5	1.841363	10	1.778426	25	1.840058	50	1.832133	100	1.809799
2-Butanone	5	0.3787151	25	0.3306965	50	0.3381922	125	0.3351211	250	0.3307296	500	0.3279073
2-Hexanone	5	0.5920529	25	0.5823028	50	0.6095346	125	0.5969596	250	0.5916104	500	0.5808252
4-Bromofluorobenzene	1	0.4526787	5	0.4498229	10	0.4271307	25	0.3399424	50	0.4004792	100	0.4188438
4-Methyl-2-pentanone	5	0.7994402	25	0.761365	50	0.7706463	125	0.7841643	250	0.7573752	500	0.7549455
Acetone	5	0.2160874	25	0.1929249	50	0.19841	125	0.1943404	250	0.1878904	500	0.1759803
Benzene	1	1.459343	5	1.561477	10	1.525266	25	1.525345	50	1.544416	100	1.523284
Bromodichloromethane	1	0.4329878	5	0.4535861	10	0.4436781	25	0.4619412	50	0.4913864	100	0.4974675
Bromoform	1	0.4149346	5	0.4664376	10	0.4937885	25	0.5355486	50	0.576961	100	0.6243021
Bromomethane	1	3.606706E-02	5	0.1018977	10	7.270652E-02	25	9.343033E-02	50	8.132093E-02	100	8,323046E-02
Carbon disulfide	1	1.054623	5	1.120168	10	1.046046	25	1,09971	50	1.081597	100	1.002093
Carbon Tetrachloride	1	0.3711062	5	0.4437473	10	0.4345747	25	0.4431431	50	0.4558333	100	0.4506347
Chlorobenzene	1	1.070681	5	1.180914	10	1.143092	25	1.169669	50	1.191745	100	1.164157
Chloroethane	1	0.1016102	5	0.108386	10	9.691076E-02	25	0.110696	50	0.1022073	100	9.849116E-02
Chloroform	1	0.6924143	5	0.681458	10	0.6498225	25	0.6509271	50	0.6586847	100	0.6483161
Chloromethane	1	0.4346721	5	0.4522717	10	0.4126365	25	0.4248423	50	0.3957621	100	0.3379485
cis-1,2-Dichloroethene	1	0.4065874	5	0.4209852	10	0.4074597	25	0.4080205	50	0.4062703	100	0.3884656
cis-1,3-Dichloropropene	1	0.5021194	5	0.5672903	10	0.5547872	25	0.5977812	50	0.6301878	100	0.642539
Cyclohexane	1	0.7509637	5	0.7155632	10	0.725854	25	0.7207254	50	0.7136812	100	0.6976512
Dibromochloromethane	i	0.3405881	5	0.3626247	10	0.3713086	25	0.4059576	50	0.4326876	100	0.4445166
Dichlorodifluoromethane	1	0.2786867	5	0.297032	10	0.288939	25	0.2819488	50	0.2758321	100	0.2383805
Ethylbenzene	1	1.882172	5	2.079806	10	2.048668	25	2.060302	50	2.068897	100	1.980646
Isopropylbenzene	1	3.874763	5	4.364785	10	4.31862	25	4.220844	50	4.129925	100	4.112124
Methyl Acetate	1	0.8765577	5	0.8351403	10	0.9034534	25	0.8285558	50	0.7986822	100	0.7504921
Methylcyclohexane	1	0.7237944	5	0.6891922	10	0.6640013	25	0.6817694	50	0.6639295	100	0.6458817
Methylene Chloride	1	0.4609626	5	0.409589	10	0.3861388	25	0.3866596	50	0.3832567	100	0.3619564
Methyl-t-Butyl Ether (MTBE)	1	1.198049	5	1.043547	10	0.959086	25	1.068791	50	1.038654	100	1.010342
Styrene	1	1.187742	5	1.26667	10	1.249653	25	1.264442	50	1.297301	100	1.249164
Tetrachloroethene	1	0.3777772	5	0.4260992	10	0.4329231	25	0.4229451	50	0.4241846	100	0.410187

315/416

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A90

Calibration:

R10D026

Instrument:

HP5975T

Calibration Date:

04/06/10 17:41

	L	Level 01		Level 02		Level 03		Level 04		Level 05		Level 06	
Compound	ug/L	RF											
Toluene	1	1.045874	5	1.124631	10	1.091379	25	1.102365	. 50	1.096663	100	1.082571	
Toluene-d8	1	1.770212	5	1.733117	10	1.693157	25	1.384609	50	1.54437	100	1.621222	
trans-1,2-Dichloroethene	1	0.3743285	5	0.402303	10	0.383822	25	0.3850739	50	0.3764992	100	0.3520065	
trans-1,3-Dichloropropene	1	0.5453681	5	0.6177626	10	0.6224319	25	0.671683	50	0.6931564	100	0.7001704	
Trichloroethene	1	0.3759762	5	0.4129319	10	0.4028572	25	0.4039629	50	0.4086887	100	0.398727	
Trichlorofluoromethane	1	0.2484416	5	0.3078432	10	0.2907753	25	0.2950251	50	0.2926082	100	0.2687774	
Vinyl acetate	5	0.9152977	25	0.8559103	50	0.8223709	125	0.9092693	250	0.9265223	500	0.9207136	
Vinyl chloride	1	0.3076868	5	0.3205614	10	0.3060284	25	0,3023373	50	0.288735	100	0.2525643	
Xylenes, total	3	0.7004174	15	0.7957562	30	0.7701114	75	0.7796861	150	0.7837534	300	0.7492778	

Form Rev: 11/23/09 316/416

Printed: 04/21/2010

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

TestAmerica Buffalo

SDG: Project:

Client:

AECOM - Amherst, NY

AECOM, Inc. - Scott Aviation site - NY3A9023

Calibration:

Form Rev: 11/23/09

R10D026

Instrument:

HP5975T

Calibration Date:

04/06/10 17:41

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	COD	LIMIT	Q
1,1,1-Trichloroethane	0.5172914	3.786078	5.1	1.804415E-02			15	<u> </u>
1,1,2,2-Tetrachloroethane	1.368592	2.465488	9.025	5.762637E-02			SPCC (0.3)	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.282959	6.123767	3.136667	0.1655643	- T-		15	<u> </u>
1,1,2-Trichloroethane	0.3691165	1.774509	7.193333	7.270865E-02			15	<u> </u>
1,1-Dichloroethane	0.7092547	2.829008	4.24	9.359097E-03			SPCC (0.1)	<u> </u>
1,1-Dichloroethene	0.3515264	6.713497	3.146667	0.1645777			CCC (30)	
1,2,4-Trichlorobenzene	1.11916	6.640467	11.55167	4.161482E-02			15	
1,2-Dibromo-3-chloropropane	0.2769422	7.701318	10.88667	4.980291E-02			15	
1,2-Dibromoethane	0.4489656	3.819188	7.61	7.704704E-03			15	
1,2-Dichlorobenzene	1.677853	4.166162	10.2	1.804415E-02			15	
1,2-Dichloroethane	0.5657408	3.766878	5.43	1.457883E-02			15	
1,2-Dichloroethane-d4	0.4659219	11.46799	5.373333	9.583287E-02			15	
1,2-Dichloroethene, Total	0.3926518	3.404856	4.72	1.631853E-02			15	
1,2-Dichloropropane	0.4100442	2.762997	6.07	3.845082E-03			CCC (30)	
1,3-Dichlorobenzene	1.754493	4.434936	9.808334	3.914631E-02			15	
1,4-Dichlorobenzene	1.790417	4.306651	9.88	7.915292E-03			CCC (20)	
2-Butanone	0.340227	5.645051	4.73	9.584792E-03			15	
2-Hexanone	0.5922142	1.772338	7.345	7.528777E-02			15	
4-Bromofluorobenzene	0.4148163	10.02027	8.9	1.630458E-02			15	
4-Methyl-2-pentanone	0.7713227	2,258844	6.7	2.235342E-02			- 15	
Acetone	0.1942722	6.79054	3.245	0.1680112			15	
Benzene	1.523188	2.274578	5.39	1.660072E-02			15	1
Bromodichloromethane	0.4635079	5.589482	6.29	1.877306E-02			15	
Bromoform	0.5186621	14.67064	8.67	1.688924E-02			SPCC (0.1)	1
Bromomethane	7.810883E-02	29.38425	2.221667	0.1830858		0.9980712	0.99	1
Carbon disulfide	1.067373	3.955853	3.36	1.146183E-02			15	1
Carbon Tetrachloride	0.4331732	7.214982	5.22	2.779896E-03			15	
Chlorobenzene	1.153376	3.790476	7.97	6.953822E-03			SPCC (0.3)	1
Chloroethane	0.1030502	5.282932	2.35	4.552213E-03			15	
Chloroform	0.6636038	2.825095	4.98	0.0140797	· · · · · · · · · · · · · · · · · · ·		CCC (30)	
Chloromethane	0.4096889	9.773518	1.715	0.3191886			SPCC (0.1)	
cis-1,2-Dichloroethene	0.4062981	2.553314	4.72	1.631853E-02			15	1
cis-1,3-Dichloropropene	0.5824508	8.945172	6.61	1.845558E-02			15	
Cyclohexane	0.7207398	2.442359	5.126667	9.971869E-02			15	1
Dibromochloromethane	0.3929472	10.51567	7.51	1.519307E-02		-	15	
Dichlorodifluoromethane	0.2768032	7.339608	1.513333	0.3408792			15	
Ethylbenzene	2.020082	3.76737	8.03	7.277371E-03			CCC (30)	
Isopropylbenzene	4.170177	4.218456	8.73	1.475369E-02			15	
Methyl Acetate	0.8321469	6.552605	3.54	1.603628E-02			15	1
Methylcyclohexane	0.6780947	3.991061	6	0			15	T
Methylene Chloride	0.3980938	8.617443	3.64	1.788648E-02			15	1
Methyl-t-Butyl Ether (MTBE)	1.053078	7.623244	3.845	0.143041			15	
Styrene	1.252495	2.892721	8.47	1.439168E-02			15	-
Tetrachloroethene	0.415686	4.80866	7.28	1.788648E-02			15	1
Toluene	1.090581	2.390635	6.86	1.598247E-02			CCC (30)	1
Toluene-d8	1.624448	8.78048	6.8	1.541407E-02			15	1
trans-1,2-Dichloroethene	0.3790055	4.351302	3.861667	0.1053741			15	1
trans-1,3-Dichloropropene	0.6417621	9.136374	7.043333	7.389517E-02			15	1
Trichloroethene	0.400524	3.243272	5.886667	8.577549E-02			15	1
Trichlorofluoromethane	0.2839118	7.564403	2.608333	0.1563223			15	

317/416

Printed: 04/21/2010

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Calibration:

R10D026

Instrument:

HP5975T

Calibration Date:

04/06/10 17:41

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	COD	LIMIT	Q
Vinyl acetate	0.8916807	4.759964	4.27	2.269215E-02			15	
Vinyl chloride	0.2963189	8.013717	1.843333	0.2801006			CCC (30)	
Xylenes, total	0.763167	4.515335	8.45	8.586435E-03			15	

Form Rev: 11/23/09 318/416 Printed: 04/21/2010

Response Factor Report 5975 T

Method Path : C:\MSDCHEM\1\DATA\METHODS 2009\

Method File: R10D026-6PT.M Title: 8260 5ML

Last Update : Wed Apr 07 10:03:05 2010

Response Via : Initial Calibration

210D026-6pt

Calib	ration :								•	
1 4	=T832		=T832 =T833		3 6		78330.I 78333.I			
	Compou	nd	1	2	3	4	5	6	Avg	%RSD
1) I	CI10	1,4-Difluorobe	en		w was and any old top of	-ISTD				
2) T	C290	Dichlorodiflu	0.279	0.297	0.289	0.282	0.276	0.238	0.277	7.34
T (E	C010	Chloromethane	0.435	0.452	0.413	0.425	0.396	0.338	0.410	9.77
4) T	C020	Vinyl chlorid	0.308	0.321	0.306	0.302	0.289	0.253	0.296	8.01
5) T	C015	Bromomethane	0.036	0.102	0.073	0.093		0.083		2=0.997
6) m	G00F	Chlanasthans	0 102	0.108	0 007	0 111				5.28
6) T 7) T	C025 C275	Chloroethane Trichlorofluo	0.102	0.108	0.097	0.111	0.102	0.050	0.284	7.56
8) T	C045	1,1-Dichloroe	0.240	0.379	0.363	0.356	0.348	0.308	0.352	6.71
9) T	C030	Methylene chl	0.461	0.410	0.386	0.387	0.383	0.362	0.398	8.62
10) T	C040	Carbon disulf	1.055	1.120	1.046	1.100	1.082	1.002	1.067	3.96
11) T	C036	Acrolein	0.023	0.020	0.021	0.021	0.020	0.019	0.021	6.34
12) T	C038	Acrylonitrile	0.256	0.251	0.250	0.253	0.245	0.237	0.249	2.69
13) T	C035	Acetone	0.216	0.193	0.198	0.194	0.188	0.176	0.194	6.79
14) T	C300	Acetonitrile	0.081	0.082	0.083	0.082	0.077	0.072	0.079	5.20
15) T	C276	Iodomethane	0.405	0.391	0.340	0.377	0.360	0.334	0.368	7.66
16) T	C291	1,1,2 Trichlo	0.288	0.290	0.296	0.296	0.277	0.250	1.053	6.12 7.62
17) T	C962	T-butyl Methy trans-1,2-Dic	1.198	1.044	0.959	1.069	0.376	0.352	1.033	4.35
18) T	C057 C255	Methyl Acetat								6.55
19) T 20) T	C255	1,1-Dichloroe								2.83
21) T	C125	Vinyl Acetate	0.915	0.755	0.822	0.909	0.927	0.921	0.892	4.76
22) T	C051	2,2-Dichlorop	0.417	0.427	0.406	0.418	0.409	0.387	0.411	3.35
23) T	C056	cis-1,2-Dichl	0.407	0.421	0.407	0.408	0.406	0.388	0.406	2.55.
24) T	C272	Tetrahydrofur	0.251	0.217	0.215	0.213	0.210	0.209	0.219	7.31
25) T	C222	Bromochlorome	0.179	0.196	0.191	0.193	0.195	0.192	0.191	3.14
26) T	C060	Chloroform								2.83
27) T	C115	1,1,1-Trichlo								3.79
28) T	C120	Carbon tetrac								7.21
29) T	C116	1,1-Dichlorop								5.60 11.47
30) S	CS15	1,2-Dichloroe	1.538	1.561	1 525	1 525	1 544	1 523	1 523	2.27
31) T 32) T	C165	Benzene 1,2-Dichloroe								3.77
32) T	C065 C110	2-Butanone	0.329	0.309	0.337	0.335	0.302	0.309	0.340	5.65
34) T	C256	Cyclohexane	0.751	0.716	0.726	0.721	0.714	0.698	0.721	2.44
35) T	C150	Trichloroethe	0.376	0.413	0.403	0.404	0.409	0.399	0.401	3.24
36) T	C140	1,2-Dichlorop	0.401	0.399	0.401	0.412	0.422	0.425	0.410	2.76
37) T	C278	Dibromomethan	0.289	0.254	0.251	0.259	0.262	0.261	0.262	5.17
38) T	C130	Bromodichloro	0.433	0.454	0.444	0.462	0.491	0.497	0.464	5.59
39) T	C161	2-Chloroethyl								10.45
40) T	C012	Methylcycolhe								3.99
41) T	C145	cis-1,3-Dichl	0.502	0.567	0.555	0.598	0.630	0.643	0.582	8.95
42) I	CI20	Chlorobenzene	-D			_ T S T T)				
42) I 43) S	CS05	Toluene-D8		1.733						8.78
43) T	C230	Toluene	1.046	1.125	1 091	1.102	1.097	1.083	1.091	2.39
45) T	C170	trans-1,3-Dic								9.14
46) T	C284	Ethyl Methacr								4.79
47) T	C160	1,1,2-Trichlo								1.77
48) T	C210	4-Methyl-2-pe								2.26
49) T	C220	Tetrachloroet	0.378	0.426	0.433	0.423	0.424	0.410	0.416	4.81
50) T	C221	1,3-Dichlorop								4.76
51) T	C155	Dibromochloro								10.52
52) T	C163	1,2-Dibromoet								3.82
53) T	C215	2-Hexanone		0.582						$\frac{1.77}{2.79}$
54) T	C235	Chlorobenzene 1,1,1,2-Tetra								3.79 5.35
55) T	C281	i, i, i, 2-Tecra	0.334	0.330	0.330	0.3/3	0.3/0	0.3/I	0.307	J. J.

Response Factor Report 5975 T

Method Path : C:\MSDCHEM\1\DATA\METHODS 2009\

Method File: R10D026-6PT.M Title: 8260 5ML

Last Update : Wed Apr 07 10:03:05 2010

Response Via : Initial Calibration

	libra	ation H				_			_		
1		=T8328		=T832		3	_	18330.I			
4		=T8331	L.D 5	=T833	32.D	6	==.1	. 8333.I	ر		
56)	т	C240	Ethylbenzene	1.882	2.080	2.049	2.060	2.069	1.981	2.020	3.77
57)	$\hat{f T}$	C246	m,p-Xylene	0.701	0.804	0.778	0.786	0.793	0.756	0.769	4.83
58)	Î	C247	o-Xylene	0.699	0.780	0.755	0.768	0.766	0.735	0.751	3.89
59)	Ť	C245	Styrene	1.188	1.267	1.250	1.264	1,297	1.249	1.252	2.89
60)	s	CS10	p-Bromofluoro	0.453	0.450	0.427	0.340	0.400	0.419	0.415	10.02
C11	I	CI30	1,4-Dichlorobe	on			- T S T D				
61) 62)	T	C180	Bromoform	0 415	0 466	0 494	0.536	0 577	0.624	0.519	14.67
63)	T T	C966	Isopropylbenz	3 875	4 365	4 319	4 221	4 130	4.112	4.170	4.22
64)	т	C301	Bromobenzene	0 905	0 949	0 954	0.953	0.941	0.935	0.940	1.98
65)	T	C225	1,1,2,2-Tetra	1 305	1 368	1 389	1 401	1.380	1.369	1.369	2.47
66)	T	C282	1,2,3-Trichlo	0 358	0.381	0.381	0.369	0.353	0.340	0.364	4.52
67)	T	C283	t-1,4-Dichlor	0.307	0.325	0.349	0.386	0.398	0.413	0.363	11.66
68)	T	C302	n-Propylbenze	4.698	5.488	5.463	5.429	5.309	5.073	5.243	5.87
69)	T	C303	2-Chlorotolue	0.890	1.008	0.984	0.988	0.980	0.969	0.970	4.23
70)	T	C289	4-Chlorotolue	0.918	1.019	0.995	1.001	1.013	0.999	0.991	3.72
71)	T	C304	1,3,5-Trimeth	3.355	3.642	3.564	3.553	3.486	3.392	3.499	3.14
72)	T	C306	tert-Butylben	0.600	0.711	0.666	0.679	0.636	0.628	0.653	6.10
73)	\mathbf{T}	C307	1,2,4-Trimeth	3.375	3.650	3.553	3.591	3.547	3.461	3.529	2.77
74)	T	C308	sec-Butylbenz	4.021	4.623	4.518	4.516	4.416	4.270	4.394	4.96
75)	${f T}$	C260	1,3-Dichlorob	1.608	1.829	1.751	1.789	1.798	1.752	1.754	4.43
76)	${f T}$	C309	4-Isopropylto	3.299	3.643	3.585	3.606	3.533	3.398	3.511	3.82
77)	T ·	C267	1,4-Dichlorob	1.641	1.841	1.778	1.840	1.832	1.810	1.790	4.31
78)	${f T}$	C249	1,2-Dichlorob	1.540	1.701	1.686	1.716	1.736	1.688	1.678	4.17
79)	${f T}$	C310	n-Butylbenzen	3.220	3.727	3.651	3.656	3.632	3.501	3.564	5.17
80)	${f T}$	C286	1,2-Dibromo-3	0.240	0.269	0.274	0.288	0.296	0.296	0.277	7.70
81)	\mathbf{T}	C313	1,2,4-Trichlo	0.978	1.122	1.114	1.166	1.187	1.148	1.119	6.64
82)	${f T}$	C316	Hexachlorobut								5.16
83)	${f T}$	C314	Naphthalene	3.293	3,689	3.722	3.908	3.971	3.917	3.750	6.70
84)	T	C934	1,2,3-Trichlo	0.897 	1.014	1.005	T.086	T.106	1.103	I.U35	7.81

Total Average %RSD 5.44

R10D026-6PT.M

Wed Apr 07 10:05:24 2010 CHEMSTAT2

L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef (#) = Out of Range

paralitamente de la relació de la completa de la c (QT Reviewed) Quantitation Report

Data File : H:\GCMS_VOA\T\040610\T8328.D Acq On : 6 Apr 2010 17:41 Sample : T001209-CAL1 Vial: 3 Operator: LH Inst : 5975 T Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 09:58:04 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 09:52:49 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Internal Standards	R.T.	QIon	Response	Conc Ur		v(Min)
1) CI10 1,4-Difluorobenzene	5.68	114	682756	25.00		0.00 07.09%
42) CI20 Chlorobenzene-D5	7.95	117	573420	25.00	ug/L	0.00
61) CI30 1,4-Dichlorobenzene-	9.86	152	265584	25.00	ug/L	0.00 07.15%
System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Rang 43) CS05 Toluene-D8 Spiked Amount 25.000 Rang 60) CS10 p-Bromofluorobenzene Spiked Amount 25.000 Rang	6.80 se 71 8.90	- 137	14686 Recove 40603 Recove 10383 Recove	ry = 1.09 ry = 1.09	ug/L 4.60 ug/L 4.36 ug/L 4.36	0.00 %# 0.00 %#
Target Compounds 2) C290 Dichlorodifluorometh	1.51	85	7611	1.01	ug/L	value 97
3) C010 Chloromethane	1.72	50	11871		ug/L	99
4) C020 Vinyl chloride	1.84		8403		ug/L	82
5) C015 Bromomethane	2.22	94	985m	0.47	ug/L	98
6) C025 Chloroethane	2.35		2775		ug/L	80
7) C275 Trichlorofluorometha	2.60		6785		ug/L	95
8) C045 1,1-Dichloroethene	3.14	96	9693		ug/L #	
9) C030 Methylene chloride	3.64		12589		ug/L #	
10) C040 Carbon disulfide	3.36		28802		ug/L	99
11) C036 Acrolein	3.09 3.88		12459	22.17	ug/L ug/L	94 100
12) C038 Acrylonitrile 13) C035 Acetone	3.88		35000 29507		ug/L #	
14) C300 Acetonitrile	3.53		29307 88487	40.83	_	99
15) C276 Iodomethane	3.31		11051		ug/L	94
16) C291 1,1,2 Trichloro-1,2,	3.13		7868		ug/L #	
17) C962 T-butyl Methyl Ether	3,84		32719		ug/L	94
18) C057 trans-1,2-Dichloroet	3.86	96	10223	0.99	ug/L #	82
19) C255 Methyl Acetate	3.54		23939		ug/L #	
20) C050 1,1-Dichloroethane	4.24		18846		ug/L	86
21) C125 Vinyl Acetate	4.27		124985		ug/L #	
22) C051 2,2-Dichloropropane	4.70		11380		ug/L	93
23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran	4.72		11104		ug/L #	
24) C272 Tetrahydrofuran 25) C222 Bromochloromethane	4.95 4.92		34300 4899		ug/L #	
26) C060 Chloroform	4.98		18910		ug/L #	97
27) C115 1,1,1-Trichloroethan	5.10		13152		ug/L	95
28) C120 Carbon tetrachloride	5.22	117	10135		ug/L	85
29) C116 1,1-Dichloropropene	5.22		12767		ug/L	96
31) C165 Benzene	5.39		39855	0.96	ug/L	99
32) C065 1,2-Dichloroethane	5,43	62	14443		ug/L	98
33) C110 2-Butanone	4,73		51714		ug/L #	
34) C256 Cyclohexane	5.12		20509		ug/L #	
35) C150 Trichloroethene	5.88	95 63	10268		ug/L ug/L	97 95
36) C140 1,2-Dichloropropane 37) C278 Dibromomethane	6.07 6.18		10957 7889		ug/L ug/L	95 95
38) C130 Bromodichloromethane	6.29		11825		ug/L ug/L	94
39) C161 2-Chloroethylvinyl E	6.48		41933		ug/L #	
40) C012 Methylcycolhexane	6.00		19767		ug/L	85

(QT Reviewed) Quantitation Report

Data File : H:\GCMS_VOA\T\040610\T8328.D Acq On : 6 Apr 2010 17:41 Sample : T001209-CAL1 Vial: 3 Operator: LH

Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 07 09:58:04 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 09:52:49 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Inte	rnal	Standards	R.T.	QIon	Response	Conc Units Dev Rcv	(Min) (Ar)
41)	C145	cis-1,3-Dichloroprop	6.61	75	13713	0.86 ug/L	94
44) (C230	Toluene	6.86	92	23989	0.96 ug/L #	84
45) (C170	trans-1,3-Dichloropr	7.05	75	12509	0.85 ug/L	97
46) (C284	Ethyl Methacrylate	7.06	69	18755	$1.10~\mathrm{ug/L}$ #	76
47) (C160	1,1,2-Trichloroethan	7.19	83	8673	$1.02~\mathrm{ug/L}$	89
48)	C210	4-Methyl-2-pentanone	6.70	43	91683	5.18 ug/L #	90
49)	C220	Tetrachloroethene	7.28	166	8665	0.91 ug/L	95
50)	C221	1,3-Dichloropropane	7.33	76	14926	0.91 ug/L	93
	C155	Dibromochloromethane	7.51	129	7812	0.87 ug/L	94
52) (C163	1,2-Dibromoethane	7.61	107	9678	0.94 ug/L	91
53) (C215	2-Hexanone	7.35	43	67899	5.00 ug/L #	87
54) (C235	Chlorobenzene	7.97	112	24558	0.93 ug/L	97
55) (C281	1,1,1,2-Tetrachloroe	8.04	131	7656	0.93 ug/L #	85
56)	C240	Ethylbenzene	8.03	91	43171	0.93 ug/L	100
57) (C246	m,p-Xylene	8.12	106	32152	1.82 ug/L	96
58)	C247	o-Xylene	8.45	106	16044	0.93 ug/L #	82
59)	C245	Styrene	8.47	104	27243	0.95 ug/L	98
62) (C180	Bromoform	8.67	173	4408	$0.80~{ m ug/L}$	95
	C966	Isopropylbenzene	8.73	105	41163	0.93 ug/L	97
64)	C301	Bromobenzene	9.03	156	9612	0.96 ug/L #	88
65)	C225	1,1,2,2-Tetrachloroe	9.03	83	13860	0.95 ug/L	96
66)	C282	1,2,3-Trichloropropa	9.06	110	3804	0.98 ug/L	100
67)	C283	t-1,4-Dichloro-2-But	9.06	53	16333	4.24 ug/L #	88
68)	C302	n-Propylbenzene	9.07	91	49905	0.90 ug/L	99
69)	C303	2-Chlorotoluene	9.17	126	9459	0.92 ug/L	100
70)	C289	4-Chlorotoluene	9,26	126	9752	0.93 ug/L	100
71)	C304	1,3,5-Trimethylbenze	9.21	105	35638	0.96 ug/L	96
72)	C306	tert-Butylbenzene	9.49	134	6374	0.92 ug/L	100
73)	C307	1,2,4-Trimethylbenze	9.53	105	35850	0.96 ug/L	97
74)	C308	sec-Butylbenzene	9.67	105	42716	0.92 ug/L	97
75)	C260	1,3-Dichlorobenzene	9.81	146	17080	0.92 ug/L	96
76)	C309	4-Isopropyltoluene	9.78	119	35049	0.94 ug/L	98
77)	C267	1,4-Dichlorobenzene	9.88	146	17430	0.92 ug/L	78
78)	C249	1,2-Dichlorobenzene	10.20	146	16363	0.92 ug/L	94
79)	C310	n-Butylbenzene	10.14	91	34205	0.90 ug/L	100
80)	C286	1,2-Dibromo-3-Chloro	10.89		2548	0.87 ug/L #	86
81)	C313	1,2,4-Trichlorobenze	11.56		10389	0.87 ug/L	92
82)	C316	Hexachlorobutadiene	11.67	225	5209	0.91 ug/L	95
83)	C314	Naphthalene	11.76		34979	0.88 ug/L	100
84)	C934	1,2,3-Trichlorobenze	11.97	180	9530	0.87 ug/L	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report

(QT Reviewed)

Data File : H:\GCMS_VOA\T\040610\T8328.D Acq On : 6 Apr 2010 17:41

: T001209-CAL1 Sample

Misc

Vial: 3 Operator: LH : 5975 T Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 09:58:04 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Quantitation Report (Qedit)

Data File : H:\GCMS_VOA\T\040610\T8328.D Acq On : 6 Apr 2010 17:41

Vial: 3 Operator: LH Inst : 5975 T

Sample

: T001209-CAL1

Multiplr: 1.00

Misc MS Integration Params: RTEINT.P Quant Time: Apr 07 09:57:00 2010

Method

: C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

: Wed Apr 07 09:52:49 2010 Last Update : Multiple Level Calibration

Quantitation Report (Qedit)

Vial: 3

Operator: LH

Data File : H:\GCMS_VOA\T\040610\T8328.D Acq On : 6 Apr 2010 17:41

:

: 5975 T Inst T001209-CAL1 Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Apr 07 09:57:00 2010 : C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator) Method 8260 5ML Title : Wed Apr 07 09:52:49 2010 Last Update Response via : Multiple Level Calibration Ion 94.00 (93.70 to 94.70): T8328.D Ion 96.00 (95.70 to 96.70): T8328.D Abundance 3500 3000 2500 2000 1500 2.22 2d 1000 500 2.45 2.50 2.20 2.25 2.30 2.35 2.40 2.05 2.10 2.15 Time---> 1.95 2.00 Scan 129 (2.223 min): T8328.D (-126) (-) Abundance 2000 1000 134 119 165 109 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 70 80 40 50 60 90 m/z--> 30 Abundance Scan 155 (2.382 min): T3121.D (-147) (-) 5000 104 118 142 167 179 100 110 120 130 140 150 160 170 180 190 200 53 60 70 210 220 230 240 60 70 80 90 m/z--> TIC: T8328.D (5) C015 Bromomethane (T) 2.22min (-0.006) 0.47ug/L m response 985 Ехр% Act% lon 94.00 100 100 95.50 97.25 96.00 0.00 0.00 0.00 0.00 0.00 0.00

Vial: 4 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 07 09:58:38 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Internal Standards	R.T.	QIon	Response	Conc Ur		v(Min)
1) CI10 1,4-Difluorobenzene	5.68	114	658111	25.00		0.00
42) CI20 Chlorobenzene-D5	7.95	117	544392	25.00	ug/L	0.00
61) CI30 1,4-Dichlorobenzene-	9.86	152	251159	25.00	_	0.00 0.33%
System Monitoring Compounds	F 20	C.E.	64042	5 20	ug/L	0.00
30) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Ran	5.38 ge 66	65 - 137	64942 Recove		21.16	
43) CS05 Toluene-D8	6.80	98	188699		ug/L	0.00
Spiked Amount 25.000 Ran		- 126	Recove		21.32	
60) CS10 p-Bromofluorobenzene	8.90	174	48976		ug/L	0.00
Spiked Amount 25.000 Ran	ge 73	- 120	Recove	ry =	21.68	38#
· · · · · · · · · · · · · · · · · · ·		•			_	> 7
Target Compounds	1 51	0.5	39096	5.37		Qvalue 98
2) C290 Dichlorodifluorometh 3) C010 Chloromethane	1.51 1.71	85 50	59529	5.52	_	98
4) C020 Vinyl chloride	1.84	62	42193	5.41		98
5) C015 Bromomethane	2.22	94	13412		ug/L	96
6) C025 Chloroethane	2.35	64	14266		ug/L	89
7) C275 Trichlorofluorometha	2.61	101	40519		ug/L	98
8) C045 1,1-Dichloroethene	3.15	96	49898	5.39	ug/L #	ŧ 72
9) C030 Methylene chloride	3.64	84	53911	5.14	ug/L #	74
10) C040 Carbon disulfide	3.36	76	147439	5,25	ug/L	97
11) C036 Acrolein	3.08	56	51908	95.82		100
12) C038 Acrylonitrile	3.88		165122	25.22		95
13) C035 Acetone	3.25		126966		ug/L #	
14) C300 Acetonitrile	3.53		430255	205,95		99
15) C276 Iodomethane	3.31		51441		ug/L	98
16) C291 1,1,2 Trichloro-1,2,	3.13		38110		ug/L	99
17) C962 T-butyl Methyl Ether	3.85		137354		ug/L	94
18) C057 trans-1,2-Dichloroet	3.86		52952		ug/L #	
19) C255 Methyl Acetate	3.54 4.24		109923 97313		ug/L nug/L	97
20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate	4.27		563284		ug/L #	
22) C051 2,2-Dichloropropane	4.70		56140		ug/L	93
23) C056 cis-1,2-Dichloroethe	4.72		55411		ug/L #	
24) C272 Tetrahydrofuran	4.95		142724		ug/L #	
25) C222 Bromochloromethane	4.92		25742	5.12	ug/L #	ŧ 66
26) C060 Chloroform	4.98	83	89695	5.13	ug/L	98
27) C115 1,1,1-Trichloroethan	5.10	97	70605	5.18	ug/L	93
28) C120 Carbon tetrachloride	5.22	117	58407		ug/L	94
29) C116 1,1-Dichloropropene	5.22	75	72637		ug/L	98
31) C165 Benzene	5.39	78	205525		ug/L	98
32) C065 1,2-Dichloroethane	5.43		74876		ug/L	95
33) C110 2-Butanone	4.73		217635		ug/L #	
34) C256 Cyclohexane	5.13		94184		ug/L #	
35) C150 Trichloroethene	5.89		54351		ug/L ug/L	97 94
36) C140 1,2-Dichloropropane	6.07		52553 33391		ug/L ug/L	91
37) C278 Dibromomethane 38) C130 Bromodichloromethane	6.18 6.29		59702		ug/L ug/L	100
39) C161 2-Chloroethylvinyl E	6.48		180320		ug/L #	
40) C012 Methylcycolhexane	6.00		90713		ug/L	86
→ The Hart Control of the					-	

(QT Reviewed) Quantitation Report

Data File : H:\GCMS_VOA\T\040610\T8329.D Acq On : 6 Apr 2010 18:05 Sample : T001209-CAL2 Vial: 4 Operator: LH Inst : 5975 T

Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES Quant Time: Apr 07 09:58:38 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 09:52:49 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal Standards	R.T.	QIon	Response	Conc Units Dev Rcv	(Min) (Ar)
41) C145 cis-1,3-Dichloroprop	6.61	 75	74668	4.87 ug/L	93
44) C230 Toluene	6.86	92	122448	5.16 ug/L	95
45) C170 trans-1,3-Dichloropr		75	67261	4.81 ug/L	95
46) C284 Ethyl Methacrylate	7.06	69	79045	4.87 ug/L #	80
47) C160 1,1,2-Trichloroethan	7.19	83	40092	4.99 ug/L	94
48) C210 4-Methyl-2-pentanone	6.70	43	414481	24.68 ug/L	91
49) C220 Tetrachloroethene	7.28	166	46393	5.13 ug/L	98
50) C221 1,3-Dichloropropane	7.33	76	78160	5.01 ug/L	97
51) C155 Dibromochloromethane	7.51	129	39482	4.61 ug/L	95
52) C163 1,2-Dibromoethane	7.61	107	48526	4.96 ug/L	98
53) C215 2-Hexanone	7.35	43	317001	24.58 ug/L #	87
54) C235 Chlorobenzene	7.97	112	128576	5.12 ug/L	99
55) C281 1,1,1,2-Tetrachloroe	8.04	131	38059	4.89 ug/L	94
56) C240 Ethylbenzene	8.03	91	226446	5.15 ug/L	97
57) C246 m,p-Xylene	8.12	106	175000	10.44 ug/L	96
58) C247 o-Xylene	8.45	106	84922	5.20 ug/L	96
59) C245 Styrene	8.47	104	137913	5.06 ug/L	99
62) C180 Bromoform	8.67	173	23430	4.50 ug/L #	85
63) C966 Isopropylbenzene	8.73	105	219251	5.23 ug/L	99
64) C301 Bromobenzene	9.03	156	47651	5.05 ug/L	92
65) C225 1,1,2,2-Tetrachloroe	9.03	83	68703	5.00 ug/L	98
66) C282 1,2,3-Trichloropropa	9.06	110	19131	5.24 ug/L	100
67) C283 t-1,4-Dichloro-2-But	9.06	53	81560	22.37 ug/L #	79
68) C302 n-Propylbenzene	9.07	91	275674	5.23 ug/L	99
69) C303 2-Chlorotoluene	9.17	126	50638	5.20 ug/L	100
70) C289 4-Chlorotoluene	9.26	126	51201	5.14 ug/L	100
71) C304 1,3,5-Trimethylbenze	9.21	105	182964	5.21 ug/L	98
72) C306 tert-Butylbenzene	9.48	134	35720	5.44 ug/L	100
73) C307 1,2,4-Trimethylbenze	9.53	105	183322	5.17 ug/L	98
74) C308 sec-Butylbenzene	9.67	105	232221	5.26 ug/L	99
75) C260 1,3-Dichlorobenzene	9.81	146	91898	5.21 ug/L	96
76) C309 4-Isopropyltoluene	9.78	119	183000	5.19 ug/L	99
77) C267 1,4-Dichlorobenzene	9.88	146	92495	5.14 ug/L	99
78) C249 1,2-Dichlorobenzene	10.20	146	85430	5.07 ug/L	93
79) C310 n-Butylbenzene	10.13	91	187231	5.23 ug/L	100
80) C286 1,2-Dibromo-3-Chlord	10.89	75	13505	4.85 ug/L	95
81) C313 1,2,4-Trichlorobenze	11.55		56349	5.01 ug/L	98
82) C316 Hexachlorobutadiene	11.67		28131	5.19 ug/L	95
83) C314 Naphthalene	11.76		185297	4.92 ug/L	100
84) C934 1,2,3-Trichlorobenze	11.97	180	50935	4.90 ug/L	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\040610\T8329.D Acq On : 6 Apr 2010 18:05 Vial: 4 Operator: LH : 5975 T Inst : T001209-CAL2 Sample Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 09:58:38 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML

Last Update : Wed Apr 07 09:52:49 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Data File : H:\GCMS_VOA\T\040610\T8330.D Acq On : 6 Apr 2010 18:29 Vial: 5 Operator: LH Inst : 5975 T : T001209-CAL3 Sample

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 07 09:59:18 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010

Response via: Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Internal	. Standards	R.T.	QIon	Response	Conc Ur		ev(Min) cv(Ar)
1) CI10	1,4-Difluorobenzene	5.68	114	639867	25.00		0.00 100.36%
42) CI20	Chlorobenzene-D5	7.95	117	525688	25.00	ug/L	0.00 99.32%
61) CI30	1,4-Dichlorobenzene-	9.86	152	242695	25.00	ug/L	0.00
System M 30) CS15	Monitoring Compounds 5 1,2-Dichloroethane-D	5.38	65	119298	10.00	110/T.	0.00
Spiked	· ·		- 137			_	
43) CS05		6.80			10.42		0.00
Spiked			- 126			_	
	p-Bromofluorobenzene	8.90	174	89815	10.30		0.00
Spiked		ge 73		Recove	ery =		
	Compounds					-	Ovalue
2) C290			85	73953	10.44	_	100
3) C010) Chloromethane	1.72	50	105613	10.07		99
4) C020	<u></u>	1.85		78327	10.33		99
5) C015		2.22	94	18609	9.41		95
6) C025		2.35	64	24804	9.40		98
7) C275				74423	10.24		97
8) C045	•	3.15	96	92871		ug/L #	
9) 0030		3.64	84	98831		ug/L #	\$ 68 99
10) C040 11) C036		3.36 3.09	76 56	267732 107518	204.13	ug/L	100
12) C038		3.89		319948	50.25		95
13) C035		3.25		253912		ug/L #	
14) C300		3.53		848331	417.65	-	98
15) C276		3.31		86894		ug/L	96
16) C291				75865	10.48		93
17) C962		3.85	73	245475	9.11	-	94
18) C057		3.86	96	98238	10.13	ug/L #	† 87
19) C255		3.54	43	231236		ug/L #	‡ 85
20) C050	1,1-Dichloroethane	4.24	63	182160	10.03	ug/L	99
21) C125	Vinyl Acetate	4.27	43	1052416	46.11	ug/L #	[‡] 92
22) C051		4.70	77	103916		ug/L	91
23) C056		4.72	96	104288		ug/L #	
24) C272		4.95		274504		ug/L #	
25) C222		4.92				ug/L #	
26) C060		4.98	83	166320	9.79		98
27) C115		5.10	97	132979	10.04		94
28) C120			117	111228	10.03	ug/L	100 99
29) C116 31) C165		5.22 5.39	75 78	137094 390387	10.23		98
32) C065		5.43	62	142626	9.85		96
33) C110		4.73	43	432796		ug/L #	
34) C256		5.13	56	185780	10.07		90
35) C150		5.89	95	103110	10.06	_	98
36) C140		6.07	63	102598	9.78		96
37) C278	,	6.18	93	64213		ug/L	93
38) C130		6.29	83	113558		ug/L	100
39) C161		6.48	63	286699	42.12	ug/L #	
40) C012	Methylcycolhexane	6.00	83	169949	9.79	ug/L	. 88

(Not Reviewed) Quantitation Report

Multiplr: 1.00

Data File : H:\GCMS_VOA\T\040610\T8330.D

Vial: 5 Operator: LH Acq On : 6 Apr 2010 18:29 Sample : T001209-CAL3 Inst : 5975 T

Misc

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES Quant Time: Apr 07 09:59:18 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML
Last Update : Wed Apr 07 09:52:49 2010
Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal Standards	R.T	. QIon	Response	Conc Ur			y(Min) y(Ar)
							
41) C145 cis-1,3-Di	chloroprop 6.6	1 75	141996	9.53	ug/L		96
44) C230 Toluene	6.8	6 92	229490	10.01	ug/L		98
45) C170 trans-1,3-	Dichloropr 7.0	4 75	130882	9.70	ug/L		98
46) C284 Ethyl Meth	acrylate 7.0	6 69	151913	9.68		#	80
47) C160 1,1,2-Tric	hloroethan 7.1	9 83	75321	9.70			96
48) C210 4-Methyl-2	-pentanone 6.7	0 43	810239	49.96		#	89
49) C220 Tetrachlor	oethene 7.2	8 166	91033	10.41	-		93
50) C221 1,3-Dichlo	ropropane 7.3	3 76	151852	10.07	-		99
51) C155 Dibromochl	oromethane 7.5		78077	9.45			95
52) C163 1,2-Dibrom	oethane 7.6		92747	9.82			99
53) C215 2-Hexanone	7.3		640850	51.46			87
54) C235 Chlorobenz			240364	9.91			98
55) C281 1,1,1,2-Te			71076		ug/L		92
56) C240 Ethylbenze	ne 8.0		430784	10.14	_		98
57) C246 m,p-Xylene			326995	20.21			99
58) C247 o-Xylene	8.4		158811	10.06			97
59) C245 Styrene	8.4		262771		ug/L		99
62) C180 Bromoform	8.6		47936		ug/L		99
63) C966 Isopropylb			419243	10.36			99
64) C301 Bromobenze			92655	10.16	_		94
65) C225 1,1,2,2-Te			134883	10.15	_		100
66) C282 1,2,3-Tric			36980	10.48	_		100
67) C283 t-1,4-Dich			169400	48.08	_		77
68) C302 n-Propylbe			530353	10.42			99
69) C303 2-Chloroto			95532	10.15			100
70) C289 4-Chloroto			96575	10.04			100
71) C304 1,3,5-Trim	_		345992	10.19			100
72) C306 tert-Butyl			64626	10.19	,		100
73) C307 1,2,4-Trim			344959	10.07			95
74) C308 sec-Butylb			438558	10.28			99
75) C260 1,3-Dichlo					ug/L		96
76) C309 4-Isopropy			348068	10.21			99
77) C267 1,4-Dichlo			172646		ug/L		95
78) C249 1,2-Dichlo			163662	10.05			93
79) C310 n-Butylben			354453	10.24			99
	o-3-Chloro 10.8		26573		ug/L		96
	hlorobenze 11.5				ug/L		99 95
82) C316 Hexachloro				10.29	_		100
83) C314 Naphthalen			361351		ug/L ug/L		95
84) C934 1,2,3-Tric	hlorobenze 11.9	6 180	97546 	9./1 	ug/L	· 	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\040610\T8330.D Acq On : 6 Apr 2010 18:29

Sample

Misc

: T001209-CAL3

Operator: LH : 5975 T Inst Multiplr: 1.00

Vial: 5

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 09:59:18 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

Data File : H:\GCMS_VOA\T\040610\T8331.D Acq On : 6 Apr 2010 18:53 Sample : T001209-CAL4

Operator: LH Inst : 5975 T Multiplr: 1.00

Vial: 6

Misc MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 09:47:18 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML
Last Update : Wed Apr 07 09:47:06 2010

Response via: Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal	Standards	R.T.	QIon	Response	Conc Ur		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.68	114	637566	25.00	_	0.00
42) CI20	Chlorobenzene-D5	7.95	117	529272	25.00	_	0.00 %00.0
61) CI30	1,4-Dichlorobenzene-	9.86	152	247858	25.00	ug/L	0.00
	nitoring Compounds 1,2-Dichloroethane-D mount 25.000 Rang		65 - 137	240792 Recove	20.26 erv =	ug/L 81.04%	0.00
43) CS05	Toluene-D8	6.80	98	732835	21.31		0.00
Spiked A			- 126	Recov	_	85.24%	
60) CS10 Spiked A	-	8.90 19 73	174 - 120	179922 Recove	20.49 ery =	ug/L 81.96%	0.00
m						O**	ou fe
Target Co	mpounds Dichlorodifluorometh	1.51	85	179761	25.46		alue 100
3) C010	Chloromethane	1.71	50	270865	25.92	-	98
4) C020	Vinyl chloride	1.84	62	192760	25.51		99
5) C015	Bromomethane	2.22	94	59568	30.22	ug/L	99
6) C025	Chloroethane	2.35	64	70576	26.85	ug/L	98
7) C275	Trichlorofluorometha	2.61	101	188098	25.98	-	97
8) C045	1,1-Dichloroethene	3.15	96	226901		ug/L #	73
9) C030	Methylene chloride	3.64	84	246521		ug/L #	70
10) C040	Carbon disulfide	3.36	76	701138	25.76	-	100
11) C036	Acrolein	3.09	56	264259	503.51 127.14	_	99 95
12) C038	Acrylonitrile	3.88 3.24	53 43	806540 619524		ug/L ug/L #	86
13) C035 14) C300	Acetone Acetonitrile	3.53	41	2083353	1029.37		98
15) C276	Iodomethane	3.31	142	240325	25.63		97
16) C291	1,1,2 Trichloro-1,2,	3.14	101	188591	26.13		94
17) C962	T-butyl Methyl Ether	3.85	73	681425	25.37		93
18) C057	trans-1,2-Dichloroet	3.86	96	245510		ug/L #	87
19) C255	Methyl Acetate	3.54	43	528259		ug/L #	85
20) C050	1,1-Dichloroethane	4.24	63	454716	25.14		99
21) C125	Vinyl Acetate	4.27	43	2898596		ug/L #	92
22) C051	2,2-Dichloropropane	4.70	77	266650	25.47		96
23) C056	cis-1,2-Dichloroethe	4.72	96	260140		ug/L #	84 79
24) C272	Tetrahydrofuran	4.94		679077 122926		ug/L # ug/L #	79 78
25) C222	Bromochloromethane Chloroform	4.92 4.98	128 83	415009	24.52		73 97
26) C060 27) C115	1,1,1-Trichloroethan	5.10	97	334577	25.36	-	94
28) C120	Carbon tetrachloride	5.22	117	282533	25.58		99
29) C116	1,1-Dichloropropene	5.22	75	338159	25,37		97
31) C165	Benzene	5.39		972508	25.04	ug/L	99
32) C065	1,2-Dichloroethane	5.43	62	362117	25.10	ug/L	96
33) C110	2-Butanone	4.73	43	1068309		ug/L #	86
34) C256	Cyclohexane	5.13	56	459510		ug/L #	87
35) C150	Trichloroethene	5.88	95	257553	25.21		96
36) C140	1,2-Dichloropropane	6.07	63	262825	25.13		99
37) C278	Dibromomethane	6.18	93	165298 294518	24.69 24.92		92 95
38) C130 39) C161	Bromodichloromethane 2-Chloroethylvinyl E	6.29 6.48	83 63	887139		ug/L ug/L #	93 86
40) C012	Methylcycolhexane	6.00		434673	25.14		86

Quantitation Report (QT Reviewed)

Data File : H:\GCMS_VOA\T\040610\T8331.D Acq On : 6 Apr 2010 18:53 Sample : T001209-CAL4 Operator: LH Inst : 5975 T Multiplr: 1.00

Misc MS Integration Params: RTEINT.P Quant Time: Apr 07 09:47:18 2010

Results File: R10D026-6PT.RES

Vial: 6

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update: Wed Apr 07 09:47:06 2010 Response via: Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Internal	Standards	R.T.	QIon	Response	Conc Units Dev(
41) 6145	cis-1,3-Dichloroprop	6.61	 75	381125	25.66 ug/L	99
41) C145 44) C230	Toluene	6.86	92	583451	25.27 ug/L	99
45) C170	trans-1,3-Dichloropr	7.04	75	355503	26.17 ug/L	97
46) C284	Ethyl Methacrylate	7.06	69	387873	24.56 ug/L #	81
47) C160	1,1,2-Trichloroethan	7.19	83	195544	25.02 ug/L	98
48) C210	4-Methyl-2-pentanone	6.70	43	2075181	127.08 ug/L	91
49) C220	Tetrachloroethene	7,28	166	223853	25.44 ug/L	94
50) C221	1,3-Dichloropropane	7.33	76	387554	25.53 ug/L	99
51) C155	Dibromochloromethane	7.51	129	214862	25.83 ug/L	98
52) C163	1,2-Dibromoethane	7.61	107	238556	25.10 ug/L	97
53) C215	2-Hexanone	7.34	43	1579770	126.00 ug/L	88
54) C235	Chlorobenzene	7.97	112	619073	25.35 ug/L	97
55) C281	1,1,1,2-Tetrachloroe	8.03	131	197286	26.09 ug/L	99
56) C240	Ethylbenzene	8.03	91	1090460	25.50 ug/L	100
57) C246	m,p-Xylene	8.12	106	831781	51.06 ug/L	100
58) C247	o-Xylene	8.45	106	406217	25.56 ug/L	98
59) C245	Styrene	8.47	104	669234	25.24 ug/L	100
62) C180	Bromoform	8.67	173	132740	25.81 ug/L	100
63) C966	Isopropylbenzene	8.73	105	1046170	25.30 ug/L	98
64) C301	Bromobenzene	9.03	156	236247	25.36 ug/L	94
65) C225	1,1,2,2-Tetrachloroe	9.02	8.3	347224	25.59 ug/L	98
66) C282	1,2,3-Trichloropropa	9.06	110	91460	25.37 ug/L	100
67) C283	t-1,4-Dichloro-2-But	9.06	53	477967	132.83 ug/L #	76
68) C302	n-Propylbenzene	9.07	91	1345520	25.88 ug/L	99
69) C303	2-Chlorotoluene	9.17	126	244884	25.46 ug/L	100
70) C289	4-Chlorotoluene	9.26		248070	25.25 ug/L	100
71) C304	1,3,5-Trimethylbenze	9.21	105	880619	25.39 ug/L	99
72) C306	tert-Butylbenzene	9.48	134	168220	25.97 ug/L	100
73) C307	1,2,4-Trimethylbenze	9.53		890095	25.44 ug/L	95
74) C308	sec-Butylbenzene	9.67	105	1119320	25.70 ug/L	100
75) C260	1,3-Dichlorobenzene	9.81		443513	25.50 ug/L	99
76) C309	4-Isopropyltoluene	9.78		893784	25.68 ug/L	99
77) C267	1,4-Dichlorobenzene	9.88		456073	25.69 ug/L	96
78) C249	1,2-Dichlorobenzene	10.20		425356	25.57 ug/L	96
79) C310	n-Butylbenzene	10.13		906239	25.64 ug/L	100
80) C286	1,2-Dibromo-3-Chloro	10.88		71329	25.98 ug/L	96
81) C313	1,2,4-Trichlorobenze	11.55		289120	26.06 ug/L	100
82) C316	Hexachlorobutadiene	11.66		139042	26.02 ug/L	100
83) C314	Naphthalene	11.76		968523	26.05 ug/L	100 98
84) C934	1,2,3-Trichlorobenze	11.96	180	269293 	26.24 ug/L	90

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data File: H:\GCMS_VOA\T\040610\T8331.D Vial: 6

Acq On: 6 Apr \(\frac{7}{2}\)010 18:53 Operator: LH

Sample: T001209-CAL4 Inst: 5975 T

Misc: Ms Integration Params: RTEINT.P

Quant_Time: Apr 07 09:47:18 2010 Possible File: P10D026-6PT PFC Results File: R10D026-6PT.RES Quant Time: Apr 07 09:47:18 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:47:06 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Data File : H:\GCMS_VOA\T\040610\T8332.D Acq On : 6 Apr 2010 19:17 Sample : T001209-CAL5 Vial: 7 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 07 09:59:44 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 09:52:49 2010

Response via: Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

	_						
Internal	Standards	R.T.	QIon	Response	Conc Ur		
						R	cv(Ar)
				670051	25.00		0.00
1) CI10	1,4-Difluorobenzene	5.68	114	672951	25.00		105.55%
42) CI20	Chlorobenzene-D5	7.95	117	583496	25.00		0.00
42) CI20	Ciliotobelizene-bo	7.95	711	303430	20.00		110.25%
61) CI30	1,4-Dichlorobenzene-	9.86	152	283137	25.00		0.00
01, 0100	2, 1. 22 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						114.23%
System Mo	nitoring Compounds						
	1,2-Dichloroethane-D	5.37					
Spiked A	mount 25.000 Ran		- 137			190.7	
43) CS05	Toluene-D8	6.80		1802267	47.54		0.00
Spiked A		-	- 126	Recov		190.1	
	p-Bromofluorobenzene	8.90			48.27		0,00
Spiked A	mount 25.000 Ran	ige 73	- 120	Recov	ery =	193.0	844
m d	a d.a						Qvalue
Target Co	mpounds Dichlorodifluorometh	1 51	85	371243	49.82		100
2) C290 3) C010	Chloromethane	1.71	50	532657	48.30		99
	Vinyl chloride	1.84		388609	48.72	- ·	98
5) C015	Bromomethane	2.22	94	109450	52.61	-	99
6) C025	Chloroethane	2.35		137561	49.59		100
7) C275	Trichlorofluorometha	2.61		393822	51.53		100
8) C045	1,1-Dichloroethene	3.14	96	468256	49.49		
9) C030	Methylene chloride	3.64	84	515826	48.14		
10) C040	Carbon disulfide	3.36	76	1455723	50.67		99
11) C036	Acrolein	3.08	56	543798	981.66	ug/L	98
12) C038	Acrylonitrile	3.88	53	1647172	246.00	ug/L	96
13) C035	Acetone	3.24	43	1264410	241.79	ug/L	# 87
14) C300	Acetonitrile	3.53	41	4133669	1935.02	ug/L	98
15) C276	Iodomethane	3.31	142	484044	48.91	ug/L	97
16) C291	1,1,2 Trichloro-1,2,	3.14	101	373399	49.02	${\tt ug/L}$	94
17) C962	T-butyl Methyl Ether	3.84	73	1397927	49.32	ug/L	93
18) C057	trans-1,2-Dichloroet	3.86	96	506731	49.67		
19) C255	Methyl Acetate	3.54		1074948	47.99		
20) C050	1,1-Dichloroethane	4.24	63	965639	50.58		99
21) C125	Vinyl Acetate	4.27		6235041	259.77	-	
22) C051	2,2-Dichloropropane	4.70		550566	49.82		96
23) C056	cis-1,2-Dichloroethe	4.72	96	546800		ug/L	
24) C272	Tetrahydrofuran	4.94		1410975			
25) C222	Bromochloromethane	4.92	128	263087		ug/L	
26) C060	Chloroform	4.98	83	886525	49.63		98 94
27) C115	1,1,1-Trichloroethan	5.10	97	714010	51.28		100
28) C120	Carbon tetrachloride	5.22	117	613507	52.62 51.05		98
29) C116	1,1-Dichloropropene	5.22	75 70	718140	50.70	-	100
31) C165 32) C065	Benzene 1,2-Dichloroethane	5.39 5.43	78 62	2078632 783922	51.48		97
•	2-Butanone	4.73	43	2225648	243.02		
33) C110 34) C256	Cyclohexane	5.13		960545	49,51		# 89
35) C150	Trichloroethene	5.89		550055	51.02		99
36) C140	1,2-Dichloropropane	6.07		567813	51.44		99
37) C278	Dibromomethane	6.18	93	352207	49.85		92
38) C130	Bromodichloromethane	6.29		661358	53.01		96
39) C161	2-Chloroethylvinyl E	6.48	63	1734651	242.31		87
40) C012	Methylcycolhexane	6.00		893584	48.96		87
,						-	

Quantitation Report (Not Reviewed)

Data File : H:\GCMS_VOA\T\040610\T8332.D Vial: 7 Acq On : $6 \text{ Apr } \overline{2010} \quad 19:17$ Operator: LH Inst : 5975 T

: T001209-CAL5 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 07 09:59:44 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010 Response via : Initial Calibration DataAcq Meth : VOA.M

IS QA File : H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal Standards	R.T.	QIon	Response	Conc Ur		ev(Min) ev(Ar)
41) C145 cis-1,3-Dichlore	prop 6.61	75	848171	54.10	ug/L	98
44) C230 Toluene	6.86	92	1279797	50.28	ug/L	100
45) C170 trans-1,3-Dichlo		75	808908	54.00	ug/L	97
46) C284 Ethyl Methacryla	-	69	863780	49.61	ug/L #	8 1
47) C160 1,1,2-Trichloroe	ethan 7.20	83	434838	50.47	ug/L	98
48) C210 4-Methyl-2-penta		43	4419254	245.48	ug/L	91
49) C220 Tetrachloroether		166	495020	51.02	ug/L	96
50) C221 1,3-Dichloroprop	pane 7.33	76	873271	52.18		97
51) C155 Dibromochloromet	thane 7.51	129	504943	55.06		98
52) C163 1,2-Dibromoethan	ne 7.61	107	544985	52.01		98
53) C215 2-Hexanone	7.34	43	3452023	249.75		
54) C235 Chlorobenzene	7.97	112	1390757	51.66		98
55) C281 1,1,1,2-Tetrach	loroe 8.04	131	440789	52.88		99
56) C240 Ethylbenzene	8.03	91	2414386	51.21		99
57) C246 m,p-Xylene	8.12	106	1849985	103.01	~	98
58) C247 o-Xylene	8.45	106	893917	51.03		95
59) C245 Styrene	8.47	104	1513940	51.79	.	.100
62) C180 Bromoform	8.67	173	326718	55.62		100
63) C966 Isopropylbenzene	e 8.73	105	2338669	49.52		99
64) C301 Bromobenzene	9.03	156	533068	50.10		95
65) C225 1,1,2,2-Tetrach		83	781409	50.41		99
66) C282 1,2,3-Trichloro	propa 9.06	110	199768	48.52		100
67) C283 t-1,4-Dichloro-2		53	1126843	274.14		
68) C302 n-Propylbenzene	9.07	91	3006118	50.62		99
69) C303 2-Chlorotoluene	9.17	126	554818	50.51		100
70) C289 4-Chlorotoluene	9.26	126	573604	51.12		100
71) C304 1,3,5-Trimethyll		105	1973852	49.82		98
72) C306 tert-Butylbenzer		134	360203	48.69		100
73) C307 1,2,4-Trimethyll		105	2008408	50.25		96
74) C308 sec-Butylbenzen		105	2500463	50.25		100
75) C260 1,3-Dichloroben		146	1018110	51.24		96
76) C309 4-Isopropyltolu		119	2000773	50.32		99
77) C267 1,4-Dichloroben		146	1037489	51.16		96
78) C249 1,2-Dichlorobens		146	982863	51.72		95
79) C310 n-Butylbenzene	10.13	91	2056431	50.94		98
80) C286 1,2-Dibromo-3-C		75	167530	53.41		96
81) C313 1,2,4-Trichlorol		180	672110	53.03		99
82) C316 Hexachlorobutad		225	309371	50.68		98
83) C314 Naphthalene	11.76	128	2248682	52.95		100 99
84) C934 1,2,3-Trichloro	benze 11.96	180	626450	53.43	ug/ь 	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\040610\T8332.D Acq On : 6 Apr 2010 19:17

: T001209-CAL5 Sample Misc

Vial: 7 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 09:59:44 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Data File : H:\GCMS_VOA\T\040610\T8333.D Acq On : 6 Apr 2010 19:41 Vial: 8 Operator: LH Inst : 5975 T : T001209-CAL6 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 10:00:04 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML
Last Update : Wed Apr 07 09:52:49 2010
Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal Standards		к.т.	QIon	Response	Conc Ur		ev(Min)
1) CI10 1,4-Difluor	obenzene	5.68	114	784908	25.00	ug/L	0.00 123.11%
42) CI20 Chlorobenze	ne-D5	7.95	117	686223	25.00		0.00 129.65%
61) CI30 1,4-Dichlor	obenzene-	9.86	152	320403	25.00		0.00 129.27%
System Monitoring Com	nounds						
30) CS15 1,2-Dichlor	- "	5.37	.65	1495332	102.22	ug/L	0.00
	.000 Rang	re 66	- 137		ery =	408.8	88#
43) CS05 Toluene-D8		6.80	98	4450079	99.80		0.00
Spiked Amount 25	.000 Rang	e 71	- 126	Recov		399.2	0%#
60) CS10 p-Bromofluc	robenzene	8.90	174	1149681	100.97		0.00
Spiked Amount 25	.000 Rang	re 73	- 120	Recov	ery =	403.8	8%#
Target Compounds							Qvalue
2) C290 Dichlorodif		1.52	85	748427	86.12	_	100
3) C010 Chlorometha		1.72	50	1061034	82.49	_	100
4) C020 Vinyl chlor		1.85	62	792959	85.23	_	96
5) C015 Bromomethan		2.23	94	261313	107.69	_	99
6) C025 Chloroethan		2.35	64	309226	95.58		99
7) C275 Trichlorofl		2.61	101	843862	94.67		100
8) C045 1,1-Dichlor		3.15	96	968530	87.76		
9) C030 Methylene c		3.64	84	1136410	90.92 93.88		98
10) C040 Carbon disu	ıırıae	3.36	76 50	3146203	1848.23		98
11) C036 Acrolein 12) C038 Acrylonitri	1 ^	3.09 3.88	56 53	1194177 3727953	477.35	-	96
12) C038 Acrylonitri 13) C035 Acetone	те	3.24	53 43	2762567	452.92	_	
14) C300 Acetonitril	0	3.53	41	9055424	3634.32		98
15) C276 Iodomethane		3.31	142	1049602	90.93		97
16) C291 1,1,2 Trich		3.14	101	786397	88.52		93
17) C962 T-butyl Met		3.84	73	3172101	95.94		94
18) C057 trans-1,2-D		3.87	96	1105171	92.88	-	
19) C255 Methyl Acet		3.54	43	2356269	90.19	_	
20) C050 1,1-Dichlor		4.24	63	2146689	96.40		99
21) C125 Vinyl Aceta		4.27		14453511	516.28		# 93
22) C051 2,2-Dichlor		4.70	77	1213921	94.18	ug/L	95
23) C056 cis-1,2-Dic	chloroethe	4.72	96	1219639	95,61	ug/L	# 85
24) C272 Tetrahydrof	uran	4.94	42	3283126	477.35	ug/L	# 81
25) C222 Bromochlord		4.92	128	601976	100.37		# 78
26) C060 Chloroform		4.98	83	2035474	97.70		100
27) C115 1,1,1-Trich	loroethan	5.10	97	1604078	98.77	ug/L	94
28) C120 Carbon tetr		5.22	117	1414827	104.03		97
29) C116 1,1-Dichlor	opropene	5.23	75	1621988	98.86		99
31) C165 Benzene		5.39	78	4782551	100.01		99
32) C065 1,2-Dichlor	coethane	5.43	62	1849423	104.12	_	97
33) C110 2-Butanone		4.73	43	5147541	481.89		
34) C256 Cyclohexane		5.12	56	2190368	96.80		90
35) C150 Trichloroet		5.89	95	1251856	99.55		99
36) C140 1,2-Dichlor		6.07	63	1333770	103.60		99
37) C278 Dibromometh		6.18	93	818188	99.28		92
38) C130 Bromodichlo		6.29	83	1561865	107.33		96
39) C161 2-Chloroeth		6.48	63	3995764	478.54	-	87
40) C012 Methylcycol	nexane	6.00	83	2027831	95.25	ug/ь	88

Data File : H:\GCMS_VOA\T\040610\T8333.D Acq On : 6 Apr 2010 19:41 Sample : T001209-CAL6 Vial: 8 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 10:00:04 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML Last Update : Wed Apr 07 09:52:49 2010

Response via: Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Inte	ernal	Standards	R.T.	QIon	Response	Conc Ui			y(Min) y(Ar)
41)	C145	cis-1,3-Dichloroprop	6.61	75	2017336	110.32	ug/L		99
44)	C230	Toluene	6.86	92	2971540	99.27	ug/L		98
45)	C170	trans-1,3-Dichloropr	7.04	75	1921892	109.10	ug/L		97
46)	C284	Ethyl Methacrylate	7.06	69	2022883	98.79	ug/L	#	82
47)	C160	1,1,2-Trichloroethan	7.20	83	1010314	99.72	ug/L		98
48)	C210	4-Methyl-2-pentanone	6.70	43	10361216	489.38	ug/L		93
49)	C220	Tetrachloroethene	7.28	166	1125919	98.68	ug/L		94
50)	C221	1,3-Dichloropropane	7.33	76	2006424	101.94			97
51)	C155	Dibromochloromethane	7.51	129	1220150	113.12			97
52)	C163	1,2-Dibromoethane	7.61	107	1282861	104.10			98
53)	C215	2-Hexanone	7.34	43	7971512	490.38			88
54)	C235	Chlorobenzene	7.97	112	3195485	100.93			97
55)	C281	1,1,1,2-Tetrachloroe	8.04	131	1018321	103.88	-		98
56)	C240	Ethylbenzene	8.03	91	5436659	98.05	-		100
57)	C246	m,p-Xylene	8.12	106	4151904	196.58			98
58)	C247	o-Xylene	8.45	106	2018156	97.96	_		95
59)	C245	Styrene	8.47	104	3428820	99.73			99
62)	C180	Bromoform	8.67	173	800113	120.37			98
63)	C966	Isopropylbenzene	8.73	105	5270147	98.61			100
64)	C301	Bromobenzene	9.03	156	1198111	99.50			95
65)	C225	1,1,2,2-Tetrachloroe	9.03	83	1754421	100.02	-		98
•	C282	1,2,3-Trichloropropa	9.07	110	435332	93.43			100
	C283	t-1,4-Dichloro-2-But	9.06	53	2644991	568.63			76
68)	C302	n-Propylbenzene	9.08	91	6501087	96.75			99
69)	C303	2-Chlorotoluene	9.17	126	1242496	99.95			100
	C289	4-Chlorotoluene	9.26		1279984	100.80			100
71)	C304	1,3,5-Trimethylbenze	9.21	105	4346961	96.95			97
72)	C306	tert-Butylbenzene	9.48	134	804595	96.11			100
,	C307	1,2,4-Trimethylbenze	9.53	105	4435404	98.06			97
74)	C308	sec-Butylbenzene	9.67	105	5472008	97.17			100
75)	C260	1,3-Dichlorobenzene	9.81	146	2244869	99.84	-		97
	C309	4-Isopropyltoluene	9.78	119	4355062	96.79			99
	C267	1,4-Dichlorobenzene	9.88	146	2319460	101.08	-		98
78)	C249	1,2-Dichlorobenzene	10.20	146	2163929	100.63	-		95
79)	C310	n-Butylbenzene	10.13	91	4486609	98.21	_		99
80)	C286	1,2-Dibromo-3-Chloro	10.88	75	378838	106.74			96
•	C313	1,2,4-Trichlorobenze	11.55		1470882	102.55			94
82)	C316	Hexachlorobutadiene	11.66		669171	96.86			99
83)	C314	Naphthalene	11.76		5020109	104.46			100
84)	C934	1,2,3-Trichlorobenze	11.96	180	1413538 	106.54	ug/L		98

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\040610\T8333.D Acq On : 6 Apr 2010 19:41

Sample

Misc

: T001209-CAL6

Vial: 8 Operator: LH : 5975 T Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 10:00:04 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Wed Apr 07 09:52:49 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Data File : H:\GCMS_VOA\T\040610\T8343.D
Acq On : 6 Apr 2010 23:49
Sample : T001209-SCV1 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Time: Apr 07 10:09:34 2010

Results File: R10D026-6PT.RES

Vial: 18

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML Last Update : Wed Apr 07 10:08:11 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53)

Internal Standards	R.T.	QIon	Response	Conc Ur		ev(Min) cv(Ar)
1) CI10 1,4-Difluorobenzene	5.68	114	661630	25.00		0.00
42) CI20 Chlorobenzene-D5	7.95	117	558266	25.00	ug/L	0.00
61) CI30 1,4-Dichlorobenzene-	9.86	152	263442	25.00	ug/L	0.00 106.29%
System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D	5.37	65	261784	21.23	~	0.00
Spiked Amount 25.000 Rang		- 137	Recove		84.9	
43) CS05 Toluene-D8	6.80	98 126	771059	21.26		0.00
Spiked Amount 25.000 Rang	8.90	- 126 174	Recove 194564	21.00		0.00
60) CS10 p-Bromofluorobenzene Spiked Amount 25.000 Rang		- 120	Recove		84.0	
Manual Company de						Qvalue
Target Compounds 2) C290 Dichlorodifluorometh	1.51	85	173776	23.72		97
3) C010 Chloromethane	1.72	50	253266	23.36		100
4) C020 Vinyl chloride	1.84		186421	23.77		96
5) C015 Bromomethane	2.22		33304	15.11	ug/L	95
6) C025 Chloroethane	2.35		61105	22.41	ug/L	98
7) C275 Trichlorofluorometha	2.61	101	192570	25.63	_	99
8) C045 1,1-Dichloroethene	3.14	96	203422		ug/L	
9) C030 Methylene chloride	3.64	84	247582		ug/L	
10) C040 Carbon disulfide	3.36		677445	23.98		100
11) C036 Acrolein	3.09		357123	655.71		97
12) C038 Acrylonitrile	3.88	53	720900	109.51	-	96 # 87
13) C035 Acetone	3.24		589264	114.61 955.64		# 67 98
14) C300 Acetonitrile	3.53		2007127 330832	34.00		98
15) C276 Iodomethane 16) C291 1,1,2 Trichloro-1,2,	3.31 3.14		177699	23.73		94
16) C291 1,1,2 Trichloro-1,2, 17) C962 T-butyl Methyl Ether	3.85		646018	23.18		94
18) C057 trans-1,2-Dichloroet	3.86		238735		ug/L	
19) C255 Methyl Acetate	3,54		490815		ug/L	and the second s
20) C050 1,1-Dichloroethane	4.24		453590	24.16	_	99
21) C125 Vinyl Acetate	4.27		3208437	135.96	ug/L	# 92
22) C051 2,2-Dichloropropane	4.70	77	247352	22.77	ug/L	95
23) C056 cis-1,2-Dichloroethe	4.72	96	262969		ug/L	
24) C272 Tetrahydrofuran	4.95		685485	118.24		
25) C222 Bromochloromethane	4.92		121685		ug/L	
26) C060 Chloroform	4.98		411412	23.43	~	98
27) C115 1,1,1-Trichloroethan	5.10		321352	23.47		94
28) C120 Carbon tetrachloride	5.22	117	269184	23.48 23.69		100 98
29) C116 1,1-Dichloropropene	5.22		327653 95 4 021	23.67	_	99
31) C165 Benzene 32) C065 1,2-Dichloroethane	5.39 5.43		369789	24.70		96
32) C065 1,2-Dichloroethane 33) C110 2-Butanone	4.73		1010308	112.20		
34) C256 Cyclohexane	5.13		438323		ug/L	
35) C150 Trichloroethene	5.89		249545	23.54	_	98
36) C140 1,2-Dichloropropane	6.07		261883	24.13		. 99
37) C278 Dibromomethane	6.18		162759	23.43		90
38) C130 Bromodichloromethane	6.29		297979	24.29		97
39) C161 2-Chloroethylvinyl E	6.48		980701	139.33		
40) C012 Methylcycolhexane	6.00	83	421668	23.50	ug/L	87

(QT Reviewed) Quantitation Report

Data File : H:\GCMS_VOA\T\040610\T8343.D Acq On : 6 Apr 2010 23:49 Sample : T001209-SCV1 Vial: 18 Operator: LH Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES Quant Time: Apr 07 10:09:34 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML Last Update : Wed Apr 07 10:08:11 2010

Response via: Initial Calibration

DataAcq Meth : VOA.M

: H:\GCMS_VOA\T\040610\T8331.D (6 Apr 2010 18:53) IS QA File

Internal	Standards	R.T.	QIon	Response	Conc Units D R	ev(Min) cv(Ar)
41) C145	cis-1,3-Dichloroprop	6.61	75	371997	24.13 ug/L	100
44) C230	Toluene	6.86	92	574271	$23.58~\mathrm{ug/L}$	98
45) C170	trans-1,3-Dichloropr	7.04	75	346220	24.16 ug/L	97
46) C284	Ethyl Methacrylate	7.06	69	395685	23.75 ug/L	
47) C160	1,1,2-Trichloroethan	7.19	83	192556	23.36 ug/L	96
48) C210	4-Methyl-2-pentanone	6.70	43	2006533	116.50 ug/L	91
49) C220	Tetrachloroethene	7.28	166	211300	22.76 ug/L	92
50) C221	1,3-Dichloropropane	7.33	76	395377	24.69 ug/L	99
51) C155	Dibromochloromethane	7.51	129	208575	23.77 ug/L	97
52) C163	1,2-Dibromoethane	7.61	107	242533	24.19 ug/L	97
53) C215	2-Hexanone	7.34	43	1521818	115.08 ug/L	
54) C235	Chlorobenzene	7.97	112	615732	23.91 ug/L	99
55) C281	1,1,1,2-Tetrachloroe	8.04	131	193697	24.29 ug/L	99
56) C240	Ethylbenzene	8.03	91	1064470	23.60 ug/L	100
57) C246	m,p-Xylene	8.12	106	812243	47.27 ug/L	97
58) C247	o-Xylene	8.45	106	397989	23.75 ug/L	96
59) C245	Styrene	8.47	104	649129	23.21 ug/L	100
62) C180	Bromoform	8.67	173	128614	23.53 ug/L	97
63) C966	Isopropylbenzene	8.73	105	982517	22.36 ug/L	98
64) C301	Bromobenzene	9.03	156	237896	24.03 ug/L	94
65) C225	1,1,2,2-Tetrachloroe	9.03	83	340745	23.63 ug/L	99
66) C282	1,2,3-Trichloropropa	9.06	110	102366	26.72 ug/L	100
67) C283	t-1,4-Dichloro-2-But	9.06	53	501142	131.03 ug/L	
68) C302	n-Propylbenzene	9.07	91	1341001	24.27 ug/L	98
69) C303		9.17	126	243764	23.85 ug/L	100
70) C289		9.26	126	248651	23.82 ug/L	100
71) C304		9.21	105	862484	23.39 ug/L	97
72) C306		9.48	134	164380	23.88 ug/L	100 97
73) C307	1,2,4-Trimethylbenze	9.53	105	885163	23.80 ug/L	99
74) C308	→	9.67	105	1094054	23.63 ug/L	98
75) C260		9.81	146	441971	23.91 ug/L	99
76) C309		9.78	119	890183	24.06 ug/L 24.02 ug/L	98
77) C267		9.88	146	453199	24.02 ug/L 24.28 ug/L	94
78) C249		10.20	146	429339		100
79) C310		10.13	91	897802 70093	23.90 ug/L 24.02 ug/L	97
80) C286	·	10.89			24.02 ug/L 24.19 ug/L	96
81) C313		11.55		285323 130420	24.19 ug/L 22.96 ug/L	98
82) C316		11.67		946970	23.96 ug/L	100
83) C314	*	11.76		264423	23.96 ug/L 24.24 ug/L	97
84) C934	1,2,3-Trichlorobenze	11.96	TRO	204423		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : H:\GCMS_VOA\T\040610\T8343.D Acq On : 6 Apr 2010 23:49

Sample : T001209-SCV1

Misc

Vial: 18 Operator: LH : 5975 т Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 07 10:09:34 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 10:08:11 2010 Response via : Initial Calibration

DataAcq Meth : VOA.M

Vial: 8 Data File : H:\GCMS_VOA\T\041310\T8493.D Acq On : 13 Apr 2010 17:52 Sample : LL CAL Operator: JRS Inst : 5975 T Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES Quant Time: Apr 13 19:08:54 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Apr 13 19:06:41 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS OA File : H:\GCMS VOA\T\040910\T8447.D (9 Apr 2010 21:40)

IS QA Fi	le : H:\GCMS_VOA\T\0409)10\T84	447.D	(9 Apr 201	0 21:40))	
Interna	l Standards	R.T.	QIon	Response	Conc Ur	nits Dev Rcv	(Min) (Ar)
1) CI1	0 1,4-Difluorobenzene	5.68	114	1128408	25.00		0.00
42) CI2	O Chlorobenzene-D5	7.95	117	934959	25.00		0.00
61) CI3	0 1,4-Dichlorobenzene-	9.86	152	435595	25.00		0.00 5.01%
30) CS1 Spiked 43) CS0 Spiked 60) CS1	Amount 25.000 Rang	ge 66 6.80 ge 71 8.90	- 137 98 - 126	Recove 1261864 Recove 322219	20.77 ry = 20.77	84.08% ug/L 83.08% ug/L	0.00
opinos		5 ·					alue
2) C29 3) C01 4) C02 5) C01 6) C02 7) C27 8) C04 9) C03 10) C04 11) C03 12) C03 13) C3 14) C30 15) C27 16) C29 17) C96 18) C05 21) C12 22) C05 23) C05 24) C27 25) C22 26) C01 28) C12 29) C11 31) C16 32) C06	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2 Trichloro-1,2, T-butyl Methyl Ether trans-1,2-Dichloroet Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 1,2-Dichloropropane cis-1,2-Dichloroethe Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroethan Carbon tetrachloride 1,1-Dichloropropane 6 c1,1-Dichloropropane Carbon tetrachloride 1,1-Dichloropropane Benzene	1.72 1.85 2.25 2.36 2.61 3.15 3.64 3.09 3.89 3.53 3.13 3.85 4.24 4.27 4.70	50 64 101 944 1064 76633 4121 1073 4633 79628 128	11258 19927 11768 7908m 7050 12589 16218 21352 43247 19336 68714 61603 194012 13295 8427 50278 17968 44088 34433 193544 18537 71857 9051 30797 218749 25145 71374 26915	1.52 0.98 1.02 1.19 0.90 20.82 6.12 7.03 54.16 0.80 0.66 1.05 1.17 1.08 4.81 1.00 1.07 7.27 1.05 1.03 0.94 0.91	ug/L ug/L ug/L # ug/L ug/L # ug/L # ug/L ug/L ug/L ug/L	94563636298627059578998877999909 19956363636298627059978999999999999999999999999999999999
33) C11 34) C25 35) C15 36) C14 37) C27 38) C13 39) C16 40) C01	6 Cyclohexane 0 Trichloroethene 0 1,2-Dichloropropane 8 Dibromomethane 0 Bromodichloromethane 1 2-Chloroethylvinyl E	4.74 5.13 5.88 6.07 6.18 6.29 6.48 6.00	93 83 63	96038 26199 19774 18827 11519 18403 72987 26995	0.81 1.09 1.02 0.97 0.88 6.08	ug/L # ug/L ug/L ug/L ug/L ug/L ug/L ug/L	87 80 83 96 86 87 89

Data File : H:\GCMS_VOA\T\041310\T8493.D

Vial: 8 Operator: JRS Acq On : 13 Apr 2010 17:52 Sample : LL CAL Inst : 5975 T

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 19:08:54 2010

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Apr 13 19:06:41 2010

Response via : Initial Calibration
DataAcq Meth : VOA.M
IS QA File : H:\GCMS_VOA\T\040910\T8447.D (9 Apr 2010 21:40)

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Rcv(
41) C145 cis-1,3-Dichloroprop	6.61	75	22614	0.86 ug/L	99
44) C230 Toluene	6.86	92	43922	1.08 ug/L	100
45) C170 trans-1,3-Dichloropr	7.04	75	20310	0.85 ug/L	97
46) C284 Ethyl Methacrylate	7.06	69	25924	0.93 ug/L #	80
47) C160 1,1,2-Trichloroethan	7.20	83	13856	1.00 ug/L #	87
48) C210 4-Methyl-2-pentanone	6.71	43	161589	$5.60~\mathrm{ug/L}$	93
49) C220 Tetrachloroethene	7.28	166	15603	1.00 ug/L	85
50) C221 1,3-Dichloropropane	7.33	76	27703	1.03 ug/L	95
51) C155 Dibromochloromethane	7.52	129	11296	0.77 ug/L	79
52) C163 1,2-Dibromoethane	7.61	107	17237	1.03 ug/L	99
53) C215 2-Hexanone	7.35	43	118223	5.34 ug/L #	89
54) C235 Chlorobenzene	7.97	112	43344	1.00 ug/L	97
55) C281 1,1,1,2-Tetrachloroe	8.04	131	13011	0.97 ug/L	96
56) C240 Ethylbenzene	8.03	91	77303	1.02 ug/L	99
57) C246 m,p-Xylene	8.12	106	58714	2.04 ug/L	96
58) C247 o-Xylene	8.45	106	27664	0.99 ug/L	95
59) C245 Styrene	8,47	104	44688	0.95 ug/L	98
62) C180 Bromoform	8.67	173	6622	0.73 ug/L	99
63) C966 Isopropylbenzene	8.73	105	72354	1.00 ug/L	97
64) C301 Bromobenzene	9.03	156	16531	1.01 ug/L #	83
65) C225 1,1,2,2-Tetrachloroe	9.03	83	24884	1.04 ug/L	100
66) C282 1,2,3-Trichloropropa	9.07	110	6841	1.08 ug/L	100
67) C283 t-1,4-Dichloro-2-But	9.06	53	16339	2.58 ug/L #	56
68) C302 n-Propylbenzene	9.08	91	89148	0.98 ug/L	98
69) C303 2-Chlorotoluene	9.17	126	17035	1.01 ug/L	100
70) C289 4-Chlorotoluene	9.26	126	16845	0.98 ug/L	100
71) C304 1,3,5-Trimethylbenze	9.21	105	58476	0.96 ug/L	100
72) C306 tert-Butylbenzene	9.48	134	11350	1.00 ug/L	100
73) C307 1,2,4-Trimethylbenze	9.53	105	59426	0.97 ug/L	98
74) C308 sec-Butylbenzene	9.67	105	72694	0.95 ug/L	99
75) C260 1,3-Dichlorobenzene	9.81	146	31237	1.02 ug/L	97
76) C309 4-Isopropyltoluene	9.78	119	58151	0.95 ug/L	98
77) C267 1,4-Dichlorobenzene	9.88	146	32784	1.05 ug/L	91
78) C249 1,2-Dichlorobenzene	10.20	146	30772	1.05 ug/L	97
79) C310 n-Butylbenzene	10.13	91	61659	0.99 ug/L	93
80) C286 1,2-Dibromo-3-Chloro	10.89	75	4924	1.02 ug/L	91
81) C313 1,2,4-Trichlorobenze	11.56	180	20990	1.08 ug/L	90
82) C316 Hexachlorobutadiene	11.67	225	11168	1.19 ug/L	84
83) C314 Naphthalene	11.76	128	73137	1.12 ug/L	100
84) C934 1,2,3-Trichlorobenze	11.97	180	20232	1.12 ug/L	92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: H:\GCMS VOA\T\041310\T8493.D

Vial: 8 : 13 Apr 2010 17:52 Operator: JRS Acq On : 5975 T Inst Sample : LL CAL

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 13 19:08:54 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

: Tue Apr 13 19:06:41 2010 Last Update

Response via : Initial Calibration DataAcq Meth : VOA.M

Quantitation Report (Qedit)

Data File : H:\GCMS_VOA\T\041310\T8493.D

Vial: 8

Multiplr: 1.00

Acq On : 13 Apr 2010 17:52

Operator: JRS
Inst: 5975 T

Sample Misc : LL CAL

__ ----

MS Integration Params: RTEINT.P Quant Time: Apr 13 19:06:40 2010

Method

: C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator)

Title : 82

: 8260 5ML

Last Update : Tue Apr 13 19:06:41 2010 Response via : Multiple Level Calibration

Quantitation Report (Qedit)

Vial: 8

Multiplr: 1.00

Inst

: 5975 т

Data File: H:\GCMS VOA\T\041310\T8493.D

Operator: JRS

Acq On Sample

Misc

: 13 Apr $\overline{2}$ 010 17:52

: LL CAL

MS Integration Params: RTEINT.P Quant Time: Apr 13 19:07:28 2010

: C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator) Method

: 8260 5ML Title

: Tue Apr 13 19:06:41 2010 Last Update

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5975T

Calibration:

R10D026

Lab File ID:

T8563.D

Calibration Date:

04/06/10 17:41

Sequence:

T001413

Injection Date:

04/15/10

Lab Sample ID:

Form Rev: 11/23/09

T001413-CCV1

Injection Time:

<u>10:39</u>

		CONC	. (ug/L)	RESI	PONSE FACTO	OR .	% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)	
1,1,1-Trichloroethane	A	25.0	21.0	0.5172914	0.435112		-15.9	100	
1,1,2,2-Tetrachloroethane	A	25.0	26.5	1.368592	1.449469	0.3	5.9	100	
1,1,2-Trichloro-1,2,2-trifluoroethane	A	25.0	24.3	0.282959	0.2749148		-2.8	100	
1,1,2-Trichloroethane	A	25.0	24.7	0.3691165	0.3646995		-1.2	100	
1,1-Dichloroethane	A	25.0	24.1	0.7092547	0.6827466	0.1	-3.7	100	
1,1-Dichloroethene	A	25.0	23.1	0.3515264	0.3253871		-7.4	20	
1,2,4-Trichlorobenzene	A	25.0	24.0	1.11916	1.073861		-4.0	100	
1,2-Dibromo-3-chloropropane	A	25.0	20.6	0.2769422	0.2279425		-17.7	100	
1,2-Dibromoethane	A	25.0	24.6	0.4489656	0.4410913		-1.8	100	
1,2-Dichlorobenzene	Α	25.0	25.0	1.677853	1.675192		-0.2	100	
1,2-Dichloroethane	Α	25.0	24.4	0.5657408	0.5510344		-2.6	100	
1,2-Dichloroethane-d4	A	25.0	20.9	0.4659219	0.3897122		-16.4	100	
1,2-Dichloropropane	A	25.0	24.3	0.4100442	0.3980248		-2.9	20	
1,3-Dichlorobenzene	A	25.0	24.8	1.754493	1.741245		-0.8	100	
1,4-Dichlorobenzene	Α	25.0	24.9	1.790417	1.785004		-0.3	100	
2-Butanone	A	125	138	0.340227	0.374955		10.2	100	
2-Hexanone	Α	125	131	0.5922142	0.621928		5.0	100	
4-Bromofluorobenzene	A	25.0	20.6	0.4148163	0.3422588		-17.5	100	
4-Methyl-2-pentanone	Α	125	130	0.7713227	0.8027415		4.1	100	
Acetone	A	125	139	0.1942722	0.215431		10.9	100	
Benzene	A	25.0	25.5	1.523188	1.554374		2.0	100	
Bromodichloromethane	A	25.0	21.2	0.4635079	0.3926062		-15.3	100	
Bromoform	Α	25.0	18.9	0.5186621	0.3924191	0.1	-24.3	100	
Bromomethane	L0	25.0	19.7	7.810883E-02	6.568552E-02		-21.2	100	
Carbon disulfide	A	25.0	20.0	1.067373	0.8554944		-19.9	100	
Carbon Tetrachloride	Α	25.0	19.6	0.4331732	0.3387713		-21.8	100	
Chlorobenzene	A	25.0	23.7	1.153376	1.093104	0.3	-5.2	100	
Chloroethane	A	25.0	20.5	0.1030502	.8.458154E-02		-17.9	100	
Chloroform	A	25.0	23.8	0.6636038	0.6325172		-4.7	20	

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

<u>TestAmerica Buffalo</u>

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5975T

Calibration:

R10D026

Lab File ID:

T8563.D

Calibration Date:

04/06/10 17:41

Sequence:

T001413

Injection Date:

04/15/10

Lab Sample ID:

Form Rev: 11/23/09

T001413-CCV1

Injection Time:

<u>10:39</u>

		CONC	C. (ug/L)	RESI	PONSE FACT	OR	% DIFF	/DRIFT
COMPOUND	ТҮРЕ	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Chloromethane	A	25.0	21.4	0.4096889	0.3514541	0.1	-14.2	100
cis-1,2-Dichloroethene	A	25.0	24.8	0.4062981	0.4036381		-0.7	100
cis-1,3-Dichloropropene	A	25.0	23.0	0.5824508	0.5368722		-7.8	100
Cyclohexane	A	25.0	22.1	0.7207398	0.6379084		-11.5	100
Dibromochloromethane	A	25.0	19.4	0.3929472	0.3051047		-22.4	100
Dichlorodifluoromethane	A	25.0	24.3	0.2768032	0.2687032		-2.9	100
Ethylbenzene	A	25.0	24.3	2.020082	1.963453		-2.8	20
Isopropylbenzene	A	25.0	23.6	4.170177	3.942801		-5.5	100
Methyl Acetate	A	25.0	25.3	0.8321469	0.8413945		1.1	100
Methylcyclohexane	A	25.0	23.7	0.6780947	0.6422128		-5.3	100
Methylene Chloride	A	25.0	24.9	0.3980938	0.3963806		-0.4	100
Methyl-t-Butyl Ether (MTBE)	A	25.0	25.5	1.053078	1.073665		2.0	100
Styrene	A	25.0	23.4	1.252495	1.173905		-6.3	100
Tetrachloroethene	A	25.0	23.1	0.415686	0.3839748		-7.6	100
Toluene	A	25.0	24.2	1.090581	1.05486		-3.3	20
Toluene-d8	A	25.0	21.0	1.624448	1.367177		-15.8	100
trans-1,2-Dichloroethene	A	25.0	24.9	0.3790055	0.3770244		-0.5	100
trans-1,3-Dichloropropene	A	25.0	22.4	0.6417621	0.5751984		-10.4	100
Trichloroethene	A	25.0	23.8	0.400524	0.3809119		-4.9	100
Trichlorofluoromethane	A	25.0	22.7	0.2839118	0.2582954		-9.0	. 100
Vinyl chloride	A	25.0	20.9	0.2963189	0.247925		-16.3	20
Xylenes, total	A	75.0	71.5	0.763167	0.7278375		-4.6	100

Printed: 04/21/2010

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF

L: Linear through Intercept

Q: Quadratic

L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero

L02: 1/x2 Weighted Linear forced through Zero

Form Rev: 11/23/09 Printed: 04/21/2010

Results File: R10D026-6PT.RES

Vial: 45 Data File : H:\GCMS_VOA\T\041510\T8563.D Acq On : 15 Apr 2010 10:39 Sample : T001413-CCV1 Operator: LH Inst : 5975 T

Multiplr: 1.00 Misc MS Integration Params: RTEINT.P

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML
Last Update : Thu Apr 15 10:03:25 2010
Response via : Initial Calibration
DataAcq Meth : VOA.M

Quant Time: Apr 15 13:42:54 2010

IS QA File : H:\GCMS_VOA\T\041410\T8521.D (14 Apr 2010 11:52)

	1 Standards			Response			
							(Ar)
l) CI1	0 1,4-Difluorobenzene	5,68	114	1201787	25.00	ug/L 10	0.00
42) CI2	O Chlorobenzene-D5	7.95	117	1028932	25.00	ug/L	0.00
61) CI3	0 1,4-Dichlorobenzene-	9.86	152	470395	25.00	ug/L	0.00
						11	2.16%
	Monitoring Compounds 5 1,2-Dichloroethane-D	5 3Ω	65	468351	20 91	ug/L	0.00
Sniked	Amount 25.000 Ran	ae 66	- 137	Recov			
	5 Toluene-D8		98	1406732	21.04	ug/L	0.00
Spiked	Amount 25.000 Ran	ae 71	- 126	Recov	ery =	84.16%	
60) CS1	0 p-Bromofluorobenzene	8.90	174	352161	20.63	ug/L	0.00
Spiked	Amount 25.000 Ran	ge 73	- 120	Recov	ery =	82.52%	i
Target	Compounds						ralue
2) C29	O Dichlorodifluorometh			322924	24.27		98
3) C01	O Chloromethane	1.72				ug/L	99
4) CO2	O Vinyl chloride		62	297953 78940	20.92	ug/L ug/L	95 92
5) C01	5 Bromomethane 5 Chloroethane 5 Trichlorofluorometha 5 1,1-Dichloroethene 0 Methylene chloride 0 Carbon disulfide	2.23	94	78940	19.71		
	5 Chloroethane	2,35	101	101649	20.52	ug/L	100 100
7) C27	5 Trichlorofluorometha	2.60	101	310416	22.74	ug/L ug/L #	
8) C04	5 1,1-Dichloroethene	3.15	96	391046	23.14	ug/L #	62
9) C03	O Methylene Chioride	3.04	76	476365 1028122	20.04	ug/L "	99
10) CO4	O Carbon disulfide 6 Acrolein	3.30	56	490901	496 22	ug/L	98
11) C03		3.09	53		129.91		95
13) C03	5 Acetone	3.25	43	1294511	138.61	ug/L #	83
14) C30		3.53	41				91
15) C27	6 Iodomethane	3.31	142				93
16) C29		3.14	101	399400 330389	24.29	ug/L	95
17) C96	2 T-butyl Methyl Ether	3.85	73		25.49	ug/L	91
18) C05		3.86	96	453103	24.87	ug/L #	80
19) C25	5 Methyl Acetate	3.54	43	1011177	25.28	ug/L #	81
20) C05			63	820516	24.07	ug/L	98
21) C12			43	820516 5079659	118.51	ug/L #	91
22) CO5	1 2 2-Dichlerenzenze	4.70	77	387152	19.62	uα/ξ.	94
23) C05	6 cis-1,2-Dichloroethe	4.72	96	485087	24.84	ug/L #	83
24) C27	6 cis-1,2-Dichloroethe 2 Tetrahydrofuran 2 Bromochloromethane	4.95	42	1408458	133.75	ug/L #	71
25) C22	2 Bromochloromethane	4.92	128	226188	24.63	ug/L #	72
26) C06	O Chloroform	4.98	83	7,60121	23.83	ug/L	98
	5 1,1,1-Trichloroethan				21.03		95
28) C12		5.22		407131	19.55		100
29) C11		5.23		602270	23.97	-	98
31) C16		5.39		1868027	25.51		100
32) C06		5.43		662226	24.35		96 80
33) C11		4.73		2253080		ug/L # ug/L #	85
34) C25		5.13		766630 457775	23.78		98
35) C15		5.89 6.07		478341	24.27		99
36) C14		6.18		294217	23.32		92
37) C27 38) C13		6.29		471829	21.18		99
39) C13		6.48		1910347		ug/L #	84
40) C01		6.00		771803		ug/L #	84
10) 001	. Tie city i cy contitonatio	0.00				2	-

Data File : H:\GCMS_VOA\T\041510\T8563.D Acq On : 15 Apr 2010 10:39 Sample : T001413-CCV1 Vial: 45 Operator: LH Inst : 5975 T Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:42:54 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 10:03:25 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS On File : The Property of the Property

Misc

IS QA File : H:\GCMS_VOA\T\041410\T8521.D (14 Apr 2010 11:52)

Internal	Standards	R.T.	QIon	Response	Conc Un			(Min)
41) C145	cis-1,3-Dichloroprop	6.61	 75	645206	23.04	 ua/L		98
44) C230	Toluene	6,86	92	1085379	24.18			96
45) C170	trans-1,3-Dichloropr	7.04	75	591840	22.41			97
46) C284	Ethyl Methacrylate	7.06	69	743076	24.20		#	77
47) C160	1,1,2-Trichloroethan	7.20	83	375251	24.70			96
48) C210	4-Methyl-2-pentanone	6.70	43	4129832	130.09	ug/L		92
49) C220	Tetrachloroethene	7.28	166	395084	23.09			92
50) C221	1,3-Dichloropropane	7.33	76	754426	25.56			98
51) C155	Dibromochloromethane	7.51	129	313932	19.41			97
52) C163	1,2-Dibromoethane	7.61	107	453853	24.56	ug/L		100
53) C215	2-Hexanone	7.35	43	3199608	131.27	ug/L	#	88
54) C235	Chlorobenzene	7.97	112	1124730	23.69	ug/L		99
55) C281	1,1,1,2-Tetrachloroe	8.04	131	320961	21.84	ug/L		98
56) C240	Ethylbenzene	8.03	91	2020260	24.30	ug/L		99
57) C246	m,p-Xylene	8.12	106	1513426	47.79	ug/L		99
58) C247	o-Xylene	8.45	106	733260	23.74	ug/L		95
59) C245	Styrene	8.47	104	1207868	23.43	ug/L		100
62) C180	Bromoform	8.67	173	184592	18.91	ug/L		95
63) C966	Isopropylbenzene	8.73	105	1854674	23.64	ug/L		100
64) C301	Bromobenzene	9.03	156	439413	24.86	-		95
65) C225	1,1,2,2-Tetrachloroe	9.02	83	681823	26.48			99
66) C282	1,2,3-Trichloropropa	9.06	110	181476	26.53	ug/L		100
67) C283	t-1,4-Dichloro-2-But	9.06	53	840102	123.02	-		79
68) C302	n-Propylbenzene	9.07	91	2454831	24.88	_		98
69) C303	2-Chlorotoluene	9.17	126	440450	24.13			100
70) C289	4-Chlorotoluene	9,26	126	454036	24.36			100
71) C304	1,3,5-Trimethylbenze	9.21	105	1546814	23.50			99
72) C306	tert-Butylbenzene	9.48	134	276772	22.52			100
73) C307	1,2,4-Trimethylbenze	9.53		1564602	23.56			97
74) C308	sec-Butylbenzene	9.67		1947301	23.55			98
75) C260	1,3-Dichlorobenzene	9.80		819073	24.81			97
76) C309	4-Isopropyltoluene	9.78		1520999	23.02			100
77) C267	1,4-Dichlorobenzene	9.88		839657	24.92	-		99
78) C249	1,2-Dichlorobenzene	10.20		788002	24.96	_		95
79) C310	n-Butylbenzene	10.13		1626992	24.26			99
80) C286	1,2-Dibromo-3-Chloro	10.88		107223	20.58	_		97
81) C313	1,2,4-Trichlorobenze	11.54		505139	23.99			95
82) C316	Hexachlorobutadiene	11.66		226152	22.30			99
83) C314	Naphthalene	11.76		1789569	25.36			100
84) C934	1,2,3-Trichlorobenze	11.96	180	471377	24.20	ug/L		96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: H:\GCMS_VOA\T\041510\T8563.D

: 15 Apr 2010 10:39 Acq On

Sample

Misc

: T001413-CCV1

MS Integration Params: RTEINT.P

Vial: 45 Operator: LH

: 5975 T Inst Multiplr: 1.00

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:42:54 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Thu Apr 15 10:03:25 2010

Response via : Initial Calibration DataAcq Meth : VOA.M

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG: Project:

Client:

AECOM - Amherst, NY

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5973S

Calibration:

R10C101

Lab File ID:

S5591.D

Calibration Date:

03/31/10 13:37

Sequence:

T001440

Injection Date:

04/16/10

Lab Sample ID:

T001440-CCV1

Injection Time:

<u>10:09</u>

		CONC	CONC. (ug/L) RESPONSE FACTOR				% DIFF	/ DRIFT
COMPOUND	ТҮРЕ	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,1,1-Trichloroethane	A	25.0	23.8	0.4663617	0.4442286		-4.7	100
1,1,2,2-Tetrachloroethane	A	25.0	22.1	0.845459	0.7467265	0.3	-11.7	100
1,1,2-Trichloro-1,2,2-trifluoroethane	A	25.0	23.2	0.2771322	0.2575776		-7.1	100
1,1,2-Trichloroethane	A	25.0	24.0	0.4404651	0.4232482		-3.9	100
1,1-Dichloroethane	A	25.0	24.7	0.5778407	0.5699877	0.1	-1.4	100
1,1-Dichloroethene	Α	25.0	24.3	0.251998	0.2448918		-2.8	20
1,2,4-Trichlorobenzene	A	25.0	21.8	0.7435277	0.6485312		-12.8	100
1,2-Dibromo-3-chloropropane	A	25.0	17.7	0.162749	0.1150016		-29.3	100
1,2-Dibromoethane	A	25.0	23.4	0.5661002	0.5299785		-6.4	100
1,2-Dichlorobenzene	A	25.0	22.1	1.350593	1.195845		-11.5	100
1,2-Dichloroethane	A	25.0	24.3	0.4419109	0.4302375		-2.6	100
1,2-Dichloroethane-d4	A	25.0	27.3	0.3172666	0.3467093		9.3	100
1,2-Dichloropropane	A	25.0	25.5	0.3277577	0.3347073		2.1	20
1,3-Dichlorobenzene	A	25.0	22.6	1.356361	1.224463		-9.7	100
1,4-Dichlorobenzene	A	25.0	22.2	1.402155	1.24735		-11.0	100
2-Butanone	A	125	115	0.1950726	0.1802378		-7.6	100
2-Hexanone	A	125	110	0.498362	0.438529		-12.0	100
4-Bromofluorobenzene	A	25.0	28.1	0.578472	0.6495965		12.3	100
4-Methyl-2-pentanone	A	125	112	0.7005876	0.630185		-10.0	100
Acetone	A	125	112	0,1276734	0.1144274		-10.4	100
Benzene	A	25.0	25.2	1.271609	1.279416		0.6	100
Bromodichloromethane	A	25.0	23.3	0.3822098	0.356223		-6.8	100
Bromoform	A	25.0	19.3	0.3029528	0.2338817	0.1	-22.8	100
Bromomethane	Α	25.0	24.8	0.0625063	6.210213E-02		-0.6	100
Carbon disulfide	A	25.0	18.5	0.8011637	0.5941545		-25.8	100
Carbon Tetrachloride	A	25.0	22.8	0.3909364	0.3564753		-8.8	100
Chlorobenzene	A	25.0	23.2	1.693389	1.57125	0.3	-7.2	100
Chloroethane	A	25.0	31.3	5.546911E-02	6.936357E-02		25.0	100
Chloroform	A	25.0	25.1	0.5193422	0.5215998		0.4	20

Form Rev: 11/23/09

355/416

Printed: 04/21/2010

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5973S

Calibration:

R10C101

Lab File ID:

S5591.D

Calibration Date:

03/31/10 13:37

Sequence:

T001440

Injection Date:

04/16/10

Lab Sample ID:

Form Rev: 11/23/09

T001440-CCV1

Injection Time:

<u>10:09</u>

		CONC	C. (ug/L)	RES	PONSE FACT	OR	% DIFF / DRIFT		
COMPOUND	ТҮРЕ	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)	
Chloromethane	A	25.0	27.1	0.3888059	0.4209572	0.1	8.3	100	
cis-1,2-Dichloroethene	A	25.0	25.2	0.3365655	0.3395293		0.9	100	
cis-1,3-Dichloropropene	A	25.0	23.8	0.4879012	0.4641405		-4.9	100	
Cyclohexane	A	25.0	23.0	0.6104677	0.5624495		-7.9	100	
Dibromochloromethane	A	25.0	20.7	0.5161264	0.4268719		-17.3	100	
Dichlorodifluoromethane	A	25.0	21.3	0.2940128	0.2510027		-14.6	100	
Ethylbenzene	A	25.0	24.0	2.969239	2.84802		-4.1	20	
Isopropylbenzene	A	25.0	22.2	3.177784	2.827082		-11.0	100	
Methyl Acetate	A	25.0	36.6	0.4367834	0.6399075		46.5	100	
Methylcyclohexane	A	25.0	22.7	0.5946834	0.5399081		-9.2	100	
Methylene Chloride	A	25.0	24.7	0.3205278	0.3165537		-1.2	100	
Methyl-t-Butyl Ether (MTBE)	A	25.0	20.6	0.976401	0.8062775		-17.4	100	
Styrene	A	25.0	24.1	1.786955	1.720947		-3.7	100	
Tetrachloroethene	A	25.0	23.9	0.5583878	0.5337205		-4.4	100	
Toluene	A	25.0	23.8	1.560667	1.486508		-4.8	20	
Toluene-d8	A	25.0	29.0	1.872215	2.171913		16.0	100	
trans-1,2-Dichloroethene	A	25.0	24.6	0.2973576	0.2924059		-1.7	100	
trans-1,3-Dichloropropene	A	25.0	21.7	0.8907726	0.7723255		-13.3	100	
Trichloroethene	A	25.0	24.6	0.3157157	0.3104536		-1.7	100	
Trichlorofluoromethane	A	25.0	29.6	0.3231544	0.3822648		18.3	100	
Vinyl chloride	A	25.0	24.9	0.3629817	0.3609011	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-0.6	20	
Xylenes, total	A	75.0	72.4	1.113965	1.07518		-3.5	100	

Printed: 04/21/2010

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF

L: Linear through Intercept

Q: Quadratic

L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero

L02: 1/x2 Weighted Linear forced through Zero

Printed: 04/21/2010 Form Rev: 11/23/09

Data File : D:\MSDChem\S\Data\041610\S5591.D
Acq On : 16 Apr 2010 10:09
Sample : T001440-CCV1 Vial: 2 Operator: DHC Inst : HP5973S

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 16 10:40:09 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 16 09:42:28 2010
Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041510\S5563.D (15 Apr 2010 20:20)

13 QA 1.	LIE . D. (HDDOLLELL (D)						
T 4	. I Standards	יי ע	OTon	Response	Conc Un	its D	ev(Min)
Interna	al Standards	14.1.	Q1011			R	cv(Ar)
		4 00	111	368522	25 00	ua/L	0.00
1) CI	10 1,4-Difluorobenzer	ne 4.99	T T 4	300322	20.00		96.34%
	_		~ ~	000000	25 00	33 C / T	0.00
42) CI:	20 Chlorobenzene-D5	7.19	82	202829	23.00	ug/ n	95.46%
					05 00	/*	
62) CI	30 1,4-Dichlorobenzer	ne- 9.05	152	192606	25.00	ug/L	98.48%
							90.400
							•
System	Monitoring Compounds					,_	0.00
30) CS	15 1,2-Dichloroethan	e-D 4.68	65	127770			
	d Amount 25.000		- 137	Recove	ery =	109.2	
43) CS		6.07	98	440527	29.00		0.00
	d Amount 25.000	Range 71	- 126	Recove	ery =	116.0	
61) CS	10 p-Bromofluorobenz		174	131757	28.07		0.00
Snike	d Amount 25.000				ery ≔	112.2	8%
Spike	a Amount 25.500						
	Compounds						Qvalue
Target	Compounds 90 Dichlorodifluorom	eth 1.29	85	92500	21.34	ug/L	# 100
2) 02	30 Chlemethane	1.50					100
3) 00	10 Chloromethane			133000	24.86		85
	20 Vinyl chloride	1.80		22886			87
5) C0				25562	31.26		91
6) CO				25562 140873	29.57		97
7) C2		tha 2.08	101	140073	24.30		98
8) C0	45 1,1-Dichloroethen	e 2.58	96	90248			99
9) CO	30 Methylene chlorid			116657 218959	24.09		100
10) CO		2.75 2.56	76				
11) CO	36 Acrolein	2.56	56	96003			98
12) CO	38 Acrylonitrile	3.29		287351		-	92
13) CO	35 Acetone	2.72		210845		-	96
14) C3		2.98	41	928697	1011.19		98
15) C2	76 Iodomethane	2.72		123784			99
16) C2		,2, 2.56	101	94923	23.24		89
17) C9		her 3.25	73	297131	20.64	ug/L	91
18) CO	-			297131 107758	24.58		99
19) C2		2.97		235820	50.05		99
20) CO				210053	24.66	ug/L	98
21) C1		3.65		210053 1098688	94.68	ug/L	99
21) C1 22) C0	_	ne 4 03	77	149887	21.81	ug/L	96
	51 2,2-Dichloropa	the 4.06	96	149887 125124 219157	25.22	ug/L	98
23) CO		4.29	42	219157	114.68	ug/L	94
24) C2		- 4.25	128	54652	25.51	ua/L	85
25) C2		4.31	83	54652 192221	25.11		99
26) CO	60 Chloroform			163708	23.11		99
	15 1,1,1-Trichloroet				22.80		95
28) C1				131369	24.21		99
29) Cl		ne 4.53		151116			99
31) C1		4.69		471493	25.15		
32) Ç0	65 1,2-Dichloroethan			158552	24.34		96
33) C1	10 2-Butanone	4.10		332108	115.49		96
34) C2		4.42		207275	23.03		93
35) C1	50 Trichloroethene	5.17	95	114409	24.58		91
	40 1,2-Dichloropropa	ne 5.36	63	123347	25.53		99
37) C2	• -	5.46	93	68466		ug/L	
38) C1		ane 5.58	83	131276	23.30		99
39) C1			63	438575	118.06		95
	12 Methylcyclohexane			198968	22.70	ug/L	93
10, 00							

Data File : D:\MSDChem\S\Data\041610\S5591.D Acq On : 16 Apr 2010 10:09 Sample : T001440-CCV1 Vial: 2 Operator: DHC Inst : HP59735

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 16 10:40:09 2010

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 16 09:42:28 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDCHEM\S\DATA\041510\S5563.D (15 Apr 2010 20:20)

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min) Rcv(Ar)
41) C145 cis-1,3-Dichloroprop	5.90	75	171046	23.78 ug/L 98
44) C230 Toluene	6.12	92	301507	23.81 ug/L 95
45) C170 trans-1,3-Dichloropr	6.32	75	156650	21.68 ug/L 94
46) C284 Ethyl Methacrylate	6.35	69	152388	20.31 ug/L # 96
47) C160 1,1,2-Trichloroethan	6.46	83	85847	24.02 ug/L 98
48) C210 4-Methyl-2-pentanone	6.00	43	639099	112.44 ug/L 94
49) C220 Tetrachloroethene	6.53	166	108254	23.90 ug/L 93
50) C221 1,3-Dichloropropane	6.59	76	190188	23.50 ug/L 99
51) C155 Dibromochloromethane	6.77	129	86582	20.68 ug/L 99
52) C163 1,2-Dibromoethane	6.85	107	107495	23.40 ug/L 96
53) C215 2-Hexanone	6.63	43	444732	109.99 ug/L 92
54) C235 Chlorobenzene	7.21	112	318695	23.20 ug/L 99
55) C281 1,1,1,2-Tetrachloroe	7.28	131	98342	23.22 ug/L 98
56) C240 Ethylbenzene	7.27	91	577661	23.98 ug/L 99
57) C246 m,p-Xylene	7.36	106	442887	48.54 ug/L 97
58) C247 o-Xylene	7.68	106	211346	23.84 ug/L 95
59) C245 Styrene	7.70	104	349058	24.08 ug/L 99
60) C180 Bromoform	7.89	173	47438	19.30 ug/L 94
63) C966 Isopropylbenzene	7.97	105	544513	22.24 ug/L 96
64) C301 Bromobenzene	8.24	156	123194	22.37 ug/L 87
65) C225 1,1,2,2-Tetrachloroe	8.26	83	143824	22.08 ug/L 99
66) C282 1,2,3-Trichloropropa	8.30	110	46897	22.57 ug/L 100
67) C283 t-1,4-Dichloro-2-But	8.30	51	122853	104.31 ug/L # 61
68) C302 n-Propylbenzene	8.30	91	724358	23.06 ug/L 92
69) C303 2-Chlorotoluene	8.39	126	129366	22.76 ug/L 100
70) C289 4-Chlorotoluene	8.47	126	133717	22.86 ug/L 100
71) C304 1,3,5-Trimethylbenze	8.44	105	477737	22.80 ug/L 95
72) C306 tert-Butylbenzene	8.70	134	100704	22.92 ug/L # 85
73) C307 1,2,4-Trimethylbenze	8.74	105	485282	22.80 ug/L 96
74) C308 sec-Butylbenzene	8.87	105	607493	23.45 ug/L 94 22.57 ug/L 97
75) C260 1,3-Dichlorobenzene	8.99	146	235839	22.4g,
76) C309 4-Isopropyltoluene	8.99	119	494012	23.45 ug/L 98
77) C267 1,4-Dichlorobenzene	9.07	146	240247	22.24 ug/L 95
78) C249 1,2-Dichlorobenzene	9.38	146	230327	22.14 ug/L 97
79) C310 n-Butylbenzene	9.33	91	432258	24.03 ug/L 95
00, 0200 4,	10.04	75	22150	17.67 ug/L # 72
	10.70	180	124911	21.81 ug/L 96
02, 0010	10.81	225	49555	22.86 ug/L 94
	10.90	128	330340	20.18 ug/L 99
84) C934 1,2,3-Trichlorobenze	11.10	180	113543	21.39 ug/L 99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDChem\S\Data\041610\S5591.D

Acq On : 16 Apr 2010 10:09

Sample : T001440-CCV1

Misc :

MS Integration Params: RTEINT.P

Vial: 2
Operator: DHC

Inst : HP5973S Multiplr: 1.00

Quant Time: Apr 16 10:40:09 2010 Results File: R10Cl01-SIXPT.RES

Quant Method : D:\MSDCHEM\s...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 16 09:42:28 2010

Response via : Initial Calibration

DataAcq Meth : VOA

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG: Project:

Client:

AECOM - Amherst, NY

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5973S

Calibration:

R10C101

Lab File ID:

S5618.D

Calibration Date:

03/31/10 13:37

Sequence:

T001461

Injection Date:

04/17/10

Lab Sample ID:

Form Rev: 11/23/09

T001461-CCV1

Injection Time:

11:27

		CONC	CONC. (ug/L) RESPONSE FACTOR								
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)			
1,1,1-Trichloroethane	Α	25.0	24.7	0.4663617	0.4614821		-1.0	100			
1,1,2,2-Tetrachloroethane	A	25.0	20.9	0.845459	0.7073895	0.3	-16.3	100			
1,1,2-Trichloro-1,2,2-trifluoroethane	Α	25.0	22.8	0.2771322	0.2525327		-8.9	100			
1,1,2-Trichloroethane	Α	25.0	23.8	0.4404651	0.4187827		-4.9	100			
1,1-Dichloroethane	A	25.0	25.6	0.5778407	0.5916455	0.1	2.4	100			
1,1-Dichloroethene	Α	25.0	25.3	0.251998	0.2554071		1.4	20			
1,2,4-Trichlorobenzene	Α	25.0	21.5	0.7435277	0.6385458		-14.1	100			
1,2-Dibromo-3-chloropropane	A	25.0	16.5	0.162749	0.1076798		-33.8	100			
1,2-Dibromoethane	A	25.0	23.3	0.5661002	0.526761		-6.9	100			
1,2-Dichlorobenzene	A	25.0	21.7	1.350593	1.173595		-13.1	100			
1,2-Dichloroethane	A	25.0	24.6	0.4419109	0.4356548		-1.4	100			
1,2-Dichloroethane-d4	A	25.0	27.9	0.3172666	0.3545691		11.8	100			
1,2-Dichloropropane	A	25.0	25.4	0.3277577	0.3332409		1.7	20			
1,3-Dichlorobenzene	A	25.0	22.5	1.356361	1.222877		-9.8	100			
1,4-Dichlorobenzene	A	25.0	22.2	1.402155	1.244998		-11.2	100			
2-Butanone	A	125	113	0.1950726	0.1766027		-9.5	100			
2-Hexanone	A	125	107	0.498362	0.424914		-14.7	100			
4-Bromofluorobenzene	A	25.0	28.6	0.578472	0.6623682		14.5	100			
4-Methyl-2-pentanone	·A	125	109	0.7005876	0.6106472		-12.8	100			
Acetone	A	125	112	0.1276734	0.1141618		-10.6	100			
Benzene	Α	25.0	25.9	1.271609	1.31757		3.6	100			
Bromodichloromethane	A	25.0	24.1	0.3822098	0.3690273		-3.4	100			
Bromoform	A	25.0	20.4	0.3029528	0.2472611	0.1	-18.4	100			
Bromomethane	Α	25.0	30.0	0.0625063	7.513943E-02		20.2	100			
Carbon disulfide	A	25.0	19.2	0.8011637	0.6157338		-23.1	100			
Carbon Tetrachloride	Α	25.0	23.8	0.3909364	0.3728399		-4.6	100			
Chlorobenzene	Α	25.0	23.5	1.693389	1.590769	0.3	-6.1	100			
Chloroethane	A	25.0	32.7	5.546911E-02	7.263107E-02		30.9	100			
Chloroform	A	25.0	26.2	0.5193422	0.5441038		4.8	20			

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Instrument ID:

HP5973S

Calibration:

R10C101

Lab File ID:

S5618.D

Calibration Date:

03/31/10 13:37

Sequence:

Injection Date:

04/17/10

Lab Sample ID:

Form Rev: 11/23/09

T001461

Lab Sample ID: T001461-CC	<u>V1</u>		Inje	ection Time:	<u>11:27</u>			
		CONC	C. (ug/L)	RESI	PONSE FACT	OR	% DIFF	/DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Chloromethane	A	25.0	26.9	0.3888059	0.418122	0.1	7.5	100
cis-1,2-Dichloroethene	A	25.0	25.9	0.3365655	0.3481023		3.4	100
cis-1,3-Dichloropropene	A	25.0	24.3	0.4879012	0.4745874		-2.7	100
Cyclohexane	A	25.0	23.0	0.6104677	0.5617052		-8.0	100
Dibromochloromethane	A	25.0	21.4	0.5161264	0.4425164		-14.3	100
Dichlorodifluoromethane	A	25.0	20.6	0.2940128	0.2426079		-17.5	100
Ethylbenzene	A	25.0	24.5	2.969239	2.908399		-2.0	20
Isopropylbenzene	A	25.0	21.9	3.177784	2.78488		-12.4	100
Methyl Acetate	A	25.0	37.0	0.4367834	0.6454881		47.8	100
Methylcyclohexane	A	25.0	22.9	0.5946834	0.5442811		-8.5	100
Methylene Chloride	A	25.0	25.0	0.3205278	0.3210365		0.2	100
Methyl-t-Butyl Ether (MTBE)	A	25.0	20.6	0.976401	0.8064954		-17.4	100
Styrene	A	25.0	24.3	1.786955	1.734917		-2.9	100
Tetrachloroethene	A	25.0	24.8	0.5583878	0.5528686		-1.0	100
Toluene	A	25.0	24.0	1.560667	1.499234		-3.9	20
Toluene-d8	A	25.0	28.7	1.872215	2.147436		14.7	100
trans-1,2-Dichloroethene	A	25.0	25.9	0.2973576	0.3078483		3.5	100
trans-1,3-Dichloropropene	A	25.0	22.1	0.8907726	0.7870095		-11.6	100
Trichloroethene	A	25.0	25.4	0.3157157	0.3214541		1.8	100
Trichlorofluoromethane	A	25.0	30.1	0.3231544	0.3888511		20.3	100
Vinyl chloride	A	25.0	24.8	0.3629817	0.3603037		-0.7	20
Xylenes, total	A	75.0	73.8	1.113965	1.096602		-1.6	100

Printed: 04/21/2010

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF

L: Linear through Intercept

Q: Quadratic

Form Rev: 11/23/09

L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero

L02: 1/x2 Weighted Linear forced through Zero

363/416

Printed: 04/21/2010

Vial: 2 Data File : D:\MSDChem\S\Data\041710\S5618.D Acq On : 17 Apr 2010 11:27 Sample : T001461-CCV1 Operator: DHC Inst : HP5973S Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 11:43:05 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 09:28:27 2010

Response via : Initial Calibration

DataAcq Meth : VOA
IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Internal Standards	R.T.	QIon	Response	Conc Ur		v(Min) v(Ar)
1) CI10 1,4-Difluorobenzene	4.99	114	349630	25.00		0.00 94.87%
42) CI20 Chlorobenzene-D5	7.19	82	195882	25.00	ug/L	0.00 96.57%
62) CI30 1,4-Dichlorobenzene-	9.05	152	192218	25.00		0.00 808.99
System Monitoring Compounds	4.68	65	123968	27.94	ua/L	0.00
30) CS15 1,2-Dichloroethane-D Spiked Amount 25.000 Rang		- 137	Recove		111.76	
43) CS05 Toluene-D8	6.07	98		28.68	ug/L	0.00
Spiked Amount 25.000 Rang		- 126	Recove		114.72	8
61) CS10 p-Bromofluorobenzene	8.12	174		28.63		0.00
Spiked Amount 25.000 Rang	e 73	- 120	Recove	ery =	114.52	8
-						value
Target Compounds	1 20	85	84823	20 63	ug/L #	
2) C290 Dichlorodifluorometh	1.29 1.49	50	146188	26.89		99
3) C010 Chloromethane4) C020 Vinyl chloride	1.53	62	125973	24.82		85
4) CO20 Vinyl chloride 5) CO15 Bromomethane	1.80	94	26271	30.05	ug/L	86
6) CO25 Chloroethane	1.88	64	25394	32.73	-	93
7) C275 Trichlorofluorometha	2.08	101	135954	30.08		100
8) CO45 1,1-Dichloroethene	2.58	96	89298	25.34		91
9) C030 Methylene chloride	3.04	84	112244	25.04		97 100
10) C040 Carbon disulfide	2.75		215279	19.21 277.21		99
11) C036 Acrolein	2.56		87053 269316	120.76		91
12) C038 Acrylonitrile	3.29 2.72		199572	111.77		95
13) C035 Acetone 14) C300 Acetonitrile	2.72		885853	1016.66		97
14) C300 Acetonitrile 15) C276 Iodomethane	2.72		120339	27.26		98
16) C291 1,1,2-Trichloro-1,2,	2.56		88293	22.78	ug/L	91
17) C962 T-butyl Methyl Ether	3.25		281975	20.65		90
18) C057 trans-1,2-Dichloroet	3.24	96	107633	25.88		99
19) C255 Methyl Acetate	2.97		225682	36.95		100 99
20) C050 1,1-Dichloroethane	3.60		206857	25.60 93.42		99
21) C125 Vinyl Acetate	3.65		1028505 149381	22.91		99
22) CO51 2,2-Dichloropropane	4.03 4.06		121707	25.86		99
23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran	4.29		205287	113.22		95
25) C222 Bromochloromethane	4.25		52940	26.05		87
26) C060 Chloroform	4.31		190235	26.19		98
27) C115 1,1,1-Trichloroethan	4.41	97	161348	24.74		96
28) C120 Carbon tetrachloride	4.52		130356		ug/L	100 99
29) C116 1,1-Dichloropropene	4.53		148449		ug/L	100
31) C165 Benzene	4.69		460662	20.90	ug/L ug/L	97
32) C065 1,2-Dichloroethane	4.74		152318 308728	113.16	ug/L	96
33) C110 2-Butanone 34) C256 Cyclohexane	4.10		196389	23.00	ug/L	94
34) C256 Cyclohexane 35) C150 Trichloroethene	5.17		112390		ug/L	94
36) C140 1,2-Dichloropropane	5.36		116511	25.42	ug/L	99
37) C278 Dibromomethane	5.46		65063	24.73	ug/L	# 82
38) C130 Bromodichloromethane	5.58		129023		ug/L	98
39) C161 2-Chloroethylvinyl E	5.78		416421	118.16		96 93
40) C012 Methylcyclohexane	5.27	83	190297	22.88	ug/L	. 93

Data File : D:\MSDChem\S\Data\041710\S5618.D Vial: 2 Operator: DHC Acq On : 17 Apr 2010 11:27 Sample : T001461-CCV1 Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 17 11:43:05 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 09:28:27 2010
Response via : Initial Calibration
DataAcq Meth : VOA
IS OA File IS QA File : D:\MSDCHEM\S\DATA\041610\S5591.D (16 Apr 2010 10:09)

Inte	rnal	Standards	R.T.	QIon	Response	Conc Units Dev(Rcv(
		cis-1,3-Dichloroprop	5.89	75	165930	24.32 ug/L	99
	C145		6.12	92	293673	24.02 ug/L	92
	C230	Toluene trans-1,3-Dichloropr	6.32	75	154161	22.09 ug/L	99
	C170	Ethyl Methacrylate	6.35	69	143595	19.82 ug/L #	97
	C284	1,1,2-Trichloroethan	6.46	83	82032	23.77 ug/L	99
	C160	1,1,2-Trichioloechan	6.00	43	598074	108.95 ug/L	95
	C210	4-Methyl-2-pentanone	6.52	166	108297	24.75 ug/L	90
	C220	Tetrachloroethene	6.59	76	180956	23.15 ug/L	100
	C221	1,3-Dichloropropane	6.77	129	86681	21.43 ug/L	98
	C155	Dibromochloromethane	6.85	107	103183	23.26 ug/L	98
	C163	1,2-Dibromoethane	6.63	43	416165	106.58 ug/L	92
	C215	2-Hexanone	7.21	112	311603	23.48 ug/L	99
	C235	Chlorobenzene	7.21	131	96684	23.64 ug/L	95
	C281	1,1,1,2-Tetrachloroe	7.27	91	569703	24.49 ug/L	99
	C240		7.27	106	437475	49.65 ug/L	96
•	C246		7.68	106	206939	24.17 ug/L	94
•	C247		7.70	104	339839	24.27 ug/L	99
59)	C245	Styrene	7.70	173	48434	20.40 ug/L	97
60)	C180			105	535304	21.91 ug/L	96
63)	C966	Isopropylbenzene	7.96	156	121625	22.13 ug/L	88
	C301		8.24	83	135973	20.92 ug/L	99
	C225		8.26		45214	21.81 ug/L	100
66)	C282	1,2,3-Trichloropropa	8.30	51	120558	102.57 ug/L #	61
67)	C283		8.30		709952	22.65 ug/L	93
68)	C302	n-Propylbenzene	8.30	91	126118	22.23 ug/L	100
69)	C303	2-Chlorotoluene	8.39		131973	22.61 ug/L	100
70)	C289	4-Chlorotoluene	8.47		468164	22.39 ug/L	97
71)	C304	1,3,5-Trimethylbenze	8.44		97470	22.23 ug/L #	88
72)	C306	tert-Butylbenzene	8.70		471084	22.18 ug/L	96
73)	C307	1,2,4-Trimethylbenze	8.74		589904	22.82 ug/L	93
74)	C308	sec-Butylbenzene	8.87		235059	22.54 ug/L	98
75)	C260	1,3-Dichlorobenzene	8.99		474643	22.58 ug/L	97
76)	C309	4-Isopropyltoluene	8.99	_		22.20 ug/L	96
77)	C267	1,4-Dichlorobenzene	9.07	_	239311 225586	21.72 ug/L	95
	C249	1,2-Dichlorobenzene	9.38			22.79 ug/L	95
	C310	n-Butylbenzene	9.33	_	409074	16.54 ug/L	76
80)	C286	1,2-Dibromo-3-Chloro	10.04		20698	21.47 ug/L	96
	C313	1,2,4-Trichlorobenze	10.70		122740	21.47 dg/L 22.79 ug/L	98
	C316	6 Hexachlorobutadiene	10.81		49313	19.86 ug/L	98
	C314	Naphthalene	10.91		324497	20.91 ug/L	99
	C934		11.10	180	110795	20.91 ug/l	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo

(Not Reviewed)

Data File : D:\MSDChem\S\Data\041710\S5618.D

Acq On : 17 Apr 2010 11:27 Sample : T001461-CCV1

Operator: DHC : HP5973S Inst Multiplr: 1.00

Vial: 2

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES

Quant Time: Apr 17 11:43:05 2010 Results File: R10C101-SQuant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 09:28:27 2010 Response via : Initial Calibration

DataAcq Meth : VOA

Misc

Vial: 1

Data File : D:\MSDCHEM\S\DATA\033110\S5057.D

Operator: DHC Acq On : 31 Mar 2010 12:43

: HP5973S Inst Sample : T001101-TUN1 Multiplr: 1.00

Misc MS Integration Params: NA

: D:\MSDCHEM\S\MET...\R10C101-SIXPT.M (RTE Integrator) Method

: 8260 5ML WATER

Last Update : Fri Apr 02 11:46:34 2010

Response via : Initial Calibration

Spectrum Information: Scan 386

50		Target Mass	1	Rel. to Mass	 	Lower Limit%	!	Upper Limit%		Rel. Abn%	 	Raw Abn	 	Result Pass/Fail	
	1 1 1 1 1 1 1	75 95 96 173 174		95 95 95 174 95	 	30 100 5 0.00 50 5	1	60 100 9 2 100 9		50.8 100.0 6.9 0.0 61.9 7.7 98.2		19080 37528 2583 0 23240 1800 22816		PASS PASS PASS PASS PASS PASS PASS	

Scan 386 (3.927 min): S5057.D (-381)

T001101-TUN1

1001202 202	_						
Modified:sul	btracted					,	
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.00	367	59.90	358	78.90	881	175.90	22816
37.00	1628	61.00	1654	80.90	799	176.90	1523
38.00	1523	62.00	1535	86.90	1491	207.00	179
39.00	762	63.00	1291	87.90	1207		
44.00	142	68.00	3485	92.00	1102		
46.90	672	69.00	3393	93.00	1527		
49.00	1396	70.00	412	94.00	3931		
50.00	7543	73.00	1553	95.00	37528		
•	2312	74.00	6021	96.00	2583		
51.00		75.00	19080	173.90	23240		
56.00	482				1800		
57.00	899	76.00	1622	174.90	1000		

BFB Tune Evaluation

Data File : D:\MSDChem\S\Data\041610\S5590.D

Acq On 9:48

: 16 Apr 2010 : T001440-TUN1 Sample

Misc

MS Integration Params: RTEINT.P

Vial: 1 Operator: DHC

: HP5973S Inst

Multiplr: 1.00

: D:\MSDCHEM\S\MET...\R10C101-SIXPT.M (RTE Integrator) Method

Title : 8260 5ML WATER

Peak Apex is scan: 387 (3.93 min)

A ⁻	verage Target Mass		3 scans: Rel. to Mass	-	386,387,3 Lower Limit,%	1	Upper	ì	Rel. Abn,%	 	can 367 Raw Abn	1	.81 min) Result Pass/Fail	1
	 50		95		15		40		19.0		5319		PASS	-
1		1	· ·	- 1		1		1				•		1
-	75	- 1	95		30	1	60	1	47.1	1	13176	- 1	PASS	1
- 1	95		95	-1	100		100	1	100.0	1	27994	- 1	PASS	1
1	96	- 1	95	1	5	l	9	ļ	6.9	1	1941	1	PASS	1
1	173	- 1	174	1	0	1	2	ĺ	0.0	1	0	1	PASS	1
1	174	1	95	1	50	1	1.00	1	67.6	1	18915	1	PASS	1
1	175	1	174	l	5	İ	9	l	7.1	1	1334	1	PASS	1
. 1	176	1	174	ı	95	1	101	1	99.4	1	18795	1	PASS	-1
1	177	1	176	1	5	l	9	1	5.9	1	1108	1	PASS	ĺ

Average of 3.927 to 3.939 min.: S5590.D T001440-TUN1

1001440 1014	-						
Modified:sul	btracted				_	,	
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
37.00	1205	61.95	1113	87.90	1031		
38.05	1132	63.00	858	92.00	744		
39.00	310	68.00	2524	92.95	1050		
44.00	443	69.00	2461	94.00	3125		
47.00	410	73.00	1025	95.00	27994		
49.00	1123	74.00	4226	96.00	1941		
50.00	5319	75.00	13176	173.90	18915		
51.00	1687	76.00	1216	174.95	1334		
55.90	150	78.90	527	175.90	18795		
56.95	710	80.85	562	176.90	1108		
61.00	1194	86.95	1142		* •		

Data Path : D:\MSDChem\S\Data\041710\

Data File : S5617.D

Acq On : 17 Apr 2010 11:00

Operator : DHC

Sample : T001461-TUN1

Misc

ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method: D:\MSDCHEM\S\METHODS\82605MLLOW\R10C101-SIXPT.M

Title : 8260 5ML WATER

Last Update : Sat Apr 17 09:28:27 2010

Spectrum Information: Scan 389

l I	Target Mass		Rel. to Mass	l l	Lower Limit%	 	Upper Limit%	1	Rel. Abn%	 	Raw Abn	1	Result Pass/Fail	1
	50 75 95 96 173 174 175 176		95 95 95 95 174 95 174 174		15 30 100 5 0.00 50 5 95		40 60 100 9 2 100 9		19.6 48.7 100.0 7.2 0.0 82.0 6.7 97.8 6.4		3143 7813 16054 1154 0 13158 887 12865 823		PASS PASS PASS PASS PASS PASS PASS PASS	
								. سد م						

Scan 389 (3.946 min): S5617.D (-396) T001461-TUN1

Т.	101461-TUN	T						
Mo	odified:su	btracted						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	37.00	644	73.00	444	95.00	16054		
	38.00	628	73.90	2390	96.00	1154		
	49.00	545	75.00	7813	173.90	13158		
	50.00	3143	76.00	851	175.00	887		
	51.00	854	78.90	410	175.90	12865		
	56.90	500	80.90	466	176.90	823		
	61.00	690	86.90	637				
	61.90	715	87.90	612				
	63.00	558	91.90	494				
	67.90	1632	92.90	674				
	68.90	1431	93.90	1856				

Data File : H:\GCMS_VOA\T\040610\T8326.D Acq On : 6 Apr 2010 15:00 Vial: 1 Operator: LH

Sample : T001209-TUN1

Inst : 5975 T Multiplr: 1.00

Misc :

MS Integration Params: NA

Method : C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Apr 07 10:05:13 2010

Response via : Initial Calibration

Spectrum Information: Scan 664

 	Target Mass		Rel. to Mass	l 	Lower Limit%		Upper Limit%	 	Rel. Abn%		Raw Abn		Result Pass/Fail	
	50	- -	95	- - .	15	1	40	- - -	19.5		19672	1	PASS	ļ
i	75	ĺ	95	i	30	ì	60	Ĺ	45.5		45784	1	PASS	1
Ĺ	95	i	95	i	100	i	100	Ĺ	100.0	Ì	100704	1	PASS	1
į	96	ì	95	İ	5	i	9	Ì	7.0	ĺ	7043	1	PASS	1
į	173	Ì	174	i	0.00	i	2	j	0.0	ĺ	0	1	PASS	1
i	174	i	95	i	50	Ĺ	100	i	66.2	-	66712	1	PASS	1
i	175	i	174	i	5	i	9	Ĺ	7.2	İ	4826	1	PASS	1
i	176	i	174	Ĺ	95	Ĺ	101	į	97.9	ļ	65320	1	PASS	- 1
İ	177	ĺ	176	j.	5	I	9	Ì	7.3	1	4752	J	PASS	ı

Scan 664 (5.	535 min):	T8326.D	(-656)				
T001209-TUN1	L						
Modified:suk	tracted						_
m/z	abund.	m/z	abund,	m/z	abund.	m/z	abund.
36.00	789	49.00	3589	64.00	467	76.90	460
37.00	4176	50.00	19672	65.00	354	77.90	666
38.00	4902	51.00	6516	67.00	648	78.90	1654
39.10	1033	55.00	111	68.00	8515	79.90	669
40.00	77	56.00	1612	69.00	7437	80.90	2017
42.05	22	57.00	2993	70.00	790	81.90	378
43.10	99	58.00	397	71.90	512	86.90	3592
44.00	188	60.00	881	73.00	3401	87.90	3762
45.00	996	61.00	4237	74.00	14389	91.05	139
47.00	1352	62.00	4402	75.00	45784	92.00	2926
48.00	486	63.00	3244	76.00	4461	93.00	3730
Scan 664 (5.	.535 min):	T8326.D	(-656)				
T001209-TUN	L						
Modified:suk	tracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
94.00	9174	143.00	446				
95.00	100704	173.90	66712				
96.00	7043	174.90	4826				
104.00	362	175.90	65320				
115.00	537	176.90	4752				
116.00	442	207.00	415				
116.95	462						
118.00	384	**					
119.00	699						
134.05	252						
140.90	531						

BFB Tune Evaluation

Vial: 44 Operator: LH Inst : 5975 T Multiplr: 1.00

Data File : H:\GCMS_VOA\T\041510\T8562.D
Acq On : 15 Apr 2010 10:17
Sample : T001413-TUN1

Misc

MS Integration Params: RTEINT.P

Method : C:\MSDCHEM\1\DAT...09\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Peak .	Ape	x:	is	scan:	664	(5.53)	mır	n)	
Avera	αe	of	3	scans:	663	,664,	665	minus	back

A 	verage Target Mass		3 scans Rel. to Mass	1	663,664, Lower Limit,%	1	minus Upper Limit,%	}	Rel. Abn,%	 -	scan 644 Raw Abn	(5	.41 min) Result Pass/Fail	
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	50 75 95 96 173 174 175		95 95 95 95 174 95	· · · · · · · · · · · · · · · · · ·	15 30 100 5 0 50		40 60 100 9 2		22.4 46.9 100.0 6.9 0.3 78.0 7.3 99.9		31960 66850 142677 9894 337 111285 8120	 	PASS PASS PASS PASS PASS PASS PASS	
1	176 177		174	 	95 5	 	101 9		99.9 6.5	1	7179		PASS	_ i _

Average of 5.529 to 5.541 min.: T8562.D

TO	01	41	3-	TUN1
----	----	----	----	------

	_						
Modified:su	btracted					_	
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
35.95	1291	56.00	2061	75.00	66850	94.00	14315
37.00	8274	56.95	4249	76.00	5688	95.00	142677
38.05	7120	59.95	1206	76.95	1041	96.00	9894
39.00	3101	61.00	6781	77.95	808	116,85	885
44.00	983	62.00	6339	78.85	3028	140.90	1007
45.00	1539	63.00	5048	80.90	2840	142.90	1126
47.00	1969	68.00	12853	81.85	715	173.90	111285
47.95	. 803	69.00	13278	86.90	5751	174.90	8120
49.00	6480	69.95	1287	87.90	6299	175.90	111226
50.00	31960	72.95	5251	91.95	3323	176.90	7179
51.00	9910	74.00	20346	92.95	5250		

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

10D1339-BLK1

File ID:

T8565.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 11:41

Solids:

Form Rev: 11/23/09

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1339</u> Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	5.0	υ
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	U
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	. 1	5.0	U

377/416

Printed: 04/21/2010

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

10D1339-BLK1

File ID:

T8565.D

Sampled:

Water

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 11:41

Solids:		Prepar	ration:	5030B N	<u>MS</u>	Initial/Final:	5 mL / 5 mL	
Batch:	10D1339	Sequence:	T001413		Calibration:	<u>R10D026</u>	Instrument:	HP5975T
CAS NO.	COMPOUND				DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene				1	5	5.0	U
127-18-4	Tetrachloroeth	ene			1	5	5.0	U
108-88-3	Toluene				1	5	5.0	U
156-60-5	trans-1,2-Dich	loroethene			1	5	5.0	U
10061-02-6	trans-1,3-Dich	loropropene			11	5	5.0	U
79-01-6	Trichloroethen	e			1	5	5.0	Ū
75-69-4	Trichlorofluor	omethane			1	5	5.0	U
75-01-4	Vinyl chloride				1		5.0	U
1330-20-7	Xylenes, total				1		15	U
SYSTEM MON	ITORING COM	POUND	ADDEI	D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4		25	5.0	21.4	86	66 - 137	
4-Bromofluorob	enzene		25	5.0	19.8	79	73 - 120	
Toluene-d8			25	5.0	21.2	85	71 - 126	
INTERNAL ST	ANDARD		AF	REA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		354	913	9.86	470395	9.86	
1,4-Difluoroben	1,4-Difluorobenzene		987919		5.68	1201787 5.68		
Chlorobenzene-c	1 5		812	2801	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : H:\GCMS_VOA\T\041510\T8565.D Vial: 47 Acq On : 15 Apr 2010 11:41 Sample : 10D1339-BLK1 Operator: LH Inst : 5975 T Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Time: Apr 15 13:43:56 2010 Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010
Response via : Initial Calibration
DataAcq Meth : VOA.M
IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010

Internal Standards	R.T.	QIon	Response	Conc Ur		(Min)
1) CI10 1,4-Difluorobenzene				25.00		0.00
			0.0001	05 00		32.20%
42) CI20 Chlorobenzene-D5	7.95	117	812801	25.00		0.00 8.99%
	0.00	. 150	354913	25.00		0.00
61) CI30 1,4-Dichlorobenzene-	9.00	152	224912	23.00		75.45%
System Monitoring Compounds			204301	21.42	12.00 / T	0.00
30) CS15 1,2-Dichloroethane-D	5.37	65	394381 Recove		· · · · · · · · · · · · · · · · · · ·	
	.ge 6.80	5 - 137 98	1119849	21.20	_	0.00
43) CS05 Toluene-D8 Spiked Amount 25.000 Ran		, 33 L - 126				
T	8.90			19.77		0.00
Spiked Amount 25.000 Ran		- 120				\$
bpined immedia	· •					_
Target Compounds					Ğ,	zalue
2) C290 Dichlorodifluorome	0.00	85	0	N.D.		
C010 Chloromethane	1.72	50	255	N.D.		
4) C020 Vinyl chloride	1.85	62	277	N.D.		
	2.24	94	535	N.D.		
6) CO25 Chloroethane	2.34	64	516	N.D. N.D.		
.,	0.00	101	0	N.D.		
-7	0.00	96 84	915	N.D.		
· • · · · · · · · · · · · · · · · · · ·	3.64 3.36	76	875	N.D.		
10) C040 Carbon disulfide 11) C036 Acrolein	3.09	56	589	N.D.		
11) C036 Acrolein 12) C038 Acrylonitrile	3.90	53	203	N.D.		
13) CO35 Acetone	3.26	43	1649	N.D.		
14) C300 Acetonitrile	3.53	41	931	N.D.		
15) C276 Iodomethane	0.00	142	0	N.D.		
	0.00	101	0	N.D.		
17) C962 T-butyl Methyl Eth	0.00	73	0	N.D.		
18) C057 trans-1,2-Dichloro	0.00	96	0	N.D.		
19) C255 Methyl Acetate	3.54	43	1097	N.D.		
20) C050 1,1-Dichloroethane	0.00	63	0	N.D.		
21) C125 Vinyl Acetate	4.25	43	87	N.D.		
22) C051 2,2-Dichloropropan	4.63	77	93	N.D.		
23) C056 cis-1,2-Dichloroet	0.00	96	0	N.D.		
24) C272 Tetrahydrofuran	4.96	42	4686	N.D. N.D.		
25) C222 Bromochloromethane	0.00	128 83	0 1838	N.D.		
26) C060 Chloroform	4.98	97	1030	N.D.		
27) Cl15 1,1,1-Trichloroeth 28) Cl20 Carbon tetrachlori	5.16	117	94	· N.D.		
28) C120 Carbon tetrachlori 29) C116 1,1-Dichloropropen	0.00	75	ō	N.D.		
31) C165 Benzene	5.39	78	483	N.D.		
32) C065 1,2-Dichloroethane	5.39	62	73	N.D.		
33) C110 2-Butanone	4.74	43	895	N.D.		
34) C256 Cyclohexane	5.10	56	74	N.D.	•	
35) C150 Trichloroethene	0.00	95	0	N.D.		
36) C140 1,2-Dichloropropan	0.00	63	0	N.D.		
37) C278 Dibromomethane	0.00	93	0	N.D.		_
38) C130 Bromodichlorometha	0.00	83	0	N.D.		Un
39) C161 2-Chloroethylvinyl	0.00	63	0	N.D.		Un.
40) C012 Methylcycolhexane	0.00	83	0	N.D.		•

Page: 1

Data File : H:\GCMS_VOA\T\041510\T8565.D

Vial: 47

Operator: LH Inst : 5975 T Multiplr: 1.00 Acq On : 15 Apr 2010 11:41 Sample : 10D1339-BLK1 Misc

MS Integration Params: RTEINT.P Results File: R10D026-6PT.RES Quant Time: Apr 15 13:43:56 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Thu Apr 15 13:43:37 2010
Response via : Initial Calibration
DataAcq Meth : VOA.M
IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41) C145	cis-1,3-Dichloropr	0,00	75	0	N.D.	
44) C230	Toluene	6.84	92	308	N.D.	
45) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C284	Ethyl Methacrylate	0.00	69	0	N.D.	
47) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C210	4-Methyl-2-pentano	6.71	43	970	N.D.	
49) C220	Tetrachloroethene	0.00	166	0	N.D.	
50) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
51) C155	Dibromochlorometha	0.00	129	0	N.D.	
52) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
53) C215	2-Hexanone	7.35	43	642	N.D.	
54) C235	Chlorobenzene	7.97	112	230	N.D.	
55) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C240	Ethylbenzene	8.04	91	115	N.D.	
57) C246	m,p-Xylene	0.00	106	0	N.D.	
58) C247	o-Xylene	0.00	106	0	N.D.	
59) C245	Styrene	0.00	104	0	N.D.	
62) C180	Bromoform	0.00	173	0	N.D.	
63) C966	Isopropylbenzene	8.90	105	258	N.D.	
64) C301	Bromobenzene	0.00	156	0	N.D.	
65) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
66) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
68) C302	n-Propylbenzene	9.08	91	491	N.D.	
69) C303	2-Chlorotoluene	0.00	126	0	N.D.	
70) C289	4-Chlorotoluene	0.00	126	0	N.D.	
71) C304	1,3,5-Trimethylben	9.20	105	116	N.D.	
72) C306	tert-Butylbenzene	0.00	134	0	N.D.	
73) ¢307	1,2,4-Trimethylben	9.52	105	84	n.D.	
74) C308	sec-Butylbenzene	9.67	105	91	N.D.	
75) C260	1,3-Dichlorobenzen	0.00	146	0	n.D.	
76) C309	4-Isopropyltoluene	9.79	119	425	N.D.	
77) C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78) C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C310	n-Butylbenzene	10.13	91	575	N.D.	
80) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81) C313		0.00	180	0	N.D.	
82) C316		0.00	225	0	N.D.	
83) C314		11.77	128	664	N.D.	
84) C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: H:\GCMS VOA\T\041510\T8565.D

Vial: 47 : 15 Apr 2010 11:41 Operator: LH

Acq On : 5975 T Sample : 10D1339-BLK1 Inst Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:43:56 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

: 8260 5ML Title

Last Update : Thu Apr 15 13:43:37 2010 Response via : Initial Calibration DataAcq Meth : VOA.M

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

10D1488-BLK1

File ID:

S5595.D

Sampled:

vv atti

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 12:13

Solids:

Preparation:

5030B MS

Initial/Final:

<u>5 mL / 5 mL</u>

Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	· U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	5.0	υ
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	· U
107-06-2	1,2-Dichloroethane	1	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	Ū
71-43-2	Benzene	1	5.0	U
75-27-4	Bromodichloromethane	1	5.0	U
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	5.0	U
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	υ
108-87-2	Methylcyclohexane	1	5.0	υ
75-09-2	Methylene Chloride	1	5.0	υ
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

10D1488-BLK1

S5595.D File ID:

Sampled:

Water

04/16/10 12:13

Prepared:

04/16/10 09:48

Analyzed:

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1488	Sequence:	T001440	Calibration:	R10C101	Instrument:	<u>HP5973S</u>	
CAS NO.	COMPOUND			DILUTION	CONG	C. (ug/L)	Q	
100-42-5	Styrene			1		5.0	U	
127-18-4	Tetrachloroetl	iene		1		5.0	υ	
108-88-3	Toluene			1		5.0	U	
156-60-5	trans-1,2-Dich	loroethene		1		5.0	U	
10061-02-6	trans-1,3-Dichloropropene			1		5.0		
79-01-6	Trichloroethene		1	5.0		U		
75-69-4	Trichlorofluoromethane		1	<u>:</u>	5.0	U		
75-01-4	Vinyl chloride		1		5.0	U		
1330-20-7	Xylenes, total			1		15	U	
SYSTEM MON	IITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroeth	ane-d4		25.0	28.1	113	66 - 137		
4-Bromofluorol	enzene		25.0	27.0	108	73 - 120		
Toluene-d8			25.0	28.7	115	71 - 126		
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichlorobe	nzene-d4		165326	9.05	192606	9.05		
1,4-Difluorober	nzene		356882	4.99	368522	4.99		
Chlorobenzene	-d5		192850	7.19	202829	7.19		

^{*} Values outside of QC limits

Form Rev: 11/23/09

Multiplr: 1.00

Data File : D:\MSDChem\S\Data\041610\S5595.D

Vial: 6 Operator: DHC : 16 Apr 2010 12:13 : 10D1488-BLK1 Acq On Inst : HP5973S

Sample

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 16 15:38:08 2010

Quant Method : D:\MSDCHEM\s...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 16 11:57:01 2010

Response via : Initial Calibration

DataAcq Meth : VOA

10:09) IS QA File : D:\MSDChem\S\Data\041610\S5591.D (16 Apr

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev Rcv	(Min) (Ar)
1) CI10 1,4-Difluorobenzene	4.99	114	356882	25.00		0.00 6.84 %
42) CI20 Chlorobenzene-D5	7.19	82	192850	25.00	_	0.00 5.08%
62) CI30 1,4-Dichlorobenzene-	9.05	152	165326	25.00	ug/L	0.00 5.84%
System Monitoring Compounds						
30) CS15 1,2-Dichloroethane-D	4.69		127405	28.13	_	0.00
251111111111111111111111111111111111111	-	5 - 137 98	Recove 414917	ry = 28.73	112.52%	0.00
43) CS05 Toluene-D8 Spiked Amount 25.000 Ran	6.07 11 07	126	Recove		114.92%	
61) Cs10 p-Bromofluorobenzene	8.12		120423	26.99		0.00
Spiked Amount 25.000 Ran		- 120	Recove	ery =	107.96%	
Target Compounds					Qv	alue
2) C290 Dichlorodifluorome	0.00	85	0	N.D.		
3) C010 Chloromethane	0.00	50	0	N.D.		
4) C020 Vinyl chloride	0.00	62	0 .	N.D.		
5) CO15 Bromomethane	1.82	94	160	N.D. N.D.		
6) CO25 Chloroethane	0.00	64 101	0	N.D.		
7) C275 Trichlorofluoromet 8) C045 1,1-Dichloroethene	0.00	96	0	N.D.		
8) C045 l,l-Dichloroethene 9) C030 Methylene chloride	0.00	84	Ö	N.D.		
10) C040 Carbon disulfide	2.77	76	795	N.D.		
11) C036 Acrolein	0.00	56	0	N.D.		
12) C038 Acrylonitrile	0.00	53	. 0	N.D.		
13) CO35 Acetone	0.00	43	0	N.D.		
14) C300 Acetonitrile	2,98	4.1	1502	N.D.		
15) C276 Iodomethane	0.00	142	0	И.D. И.D.		
16) C291 1,1,2-Trichloro-1,	0.00	101 73	0 0	N.D.		
17) C962 T-butyl Methyl Eth 18) C057 trans-1,2-Dichloro	0.00	73 96	0	N.D.		
19) C255 Methyl Acetate	0.00	43	Ö	N.D.		
20) C050 1,1-Dichloroethane	0.00	63	0	N.D.		
21) C125 Vinyl Acetate	0.00	43	0	N.D.		
22) C051 2,2-Dichloropropan	0.00	7 7	0	N.D.		
23) C056 cis-1,2-Dichloroet	0.00	96	0	N.D.		
24) C272 Tetrahydrofuran	4.33	42	149	N.D.		
25) C222 Bromochloromethane	0,00	128 83	0	И.D. И.D.		
26) C060 Chloroform 27) C115 1,1,1-Trichloroeth	0.00	97	. 0	N.D.		
27) C115 1,1,1-Trichloroeth 28) C120 Carbon tetrachlori	0.00	117	Ŏ	N.D.		
29) C116 1,1-Dichloropropen	0.00	75	0	N.D.		
31) C165 Benzene	0.00	78	0	N.D.		
32) C065 1,2-Dichloroethane	0.00	62	0	N.D.		
33) C110 2-Butanone	0.00	43	0	И.D.		
34) C256 Cyclohexane	0.00	56	0	N.D. N.D.		
35) C150 Trichloroethene	0.00	95 63	0 0	N.D.		
36) C140 1,2-Dichloropropan 37) C278 Dibromomethane	0.00	63 93	0	N.D.		٠
37) C278 Dibromomethane 38) C130 Bromodichlorometha	0.00	83	ő	N.D.		, nd
39) C161 2-Chloroethylvinyl	0.00	63	Ö	N.D.		$\mathcal{M}_{i,j}$
40) C012 Methylcyclohexane	0.00	83	0	N.D.		ON

Data File : D:\MSDChem\S\Data\041610\S5595.D
Acq On : 16 Apr 2010 12:13
Sample : 10D1488-BLK1 Vial: 6 Operator: DHC Inst : HP5973S

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 16 15:38:08 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 16 11:57:01 2010
Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041610\S5591.D (16 Apr 2010 10:09)

Inter	nal	Standards	R.T	. QIon	Response	Conc Unit	Rcv(Ar)
41) C	145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
44) C		Toluene	0.00	92	, O	N.D.	
45) C		trans-1,3-Dichloro	0.00	75	0	N.D.	
46) C	284	Ethyl Methacrylate	0.00	69	0	N.D.	
	160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
48) C	210	4-Methyl-2-pentano	6.07	43	1790	N.D.	
49) C	220	Tetrachloroethene	0.00	166	0	и.D.	
50) C	221	1,3-Dichloropropan	0.00	76	0	N.D.	
51) C	155	Dibromochlorometha	0.00	129	0	N.D.	
52) C	163	1,2-Dibromoethane	0.00	107	0	N.D.	
53) C	215	2-Hexanone	0.00	43	0	N.D.	
54) C	235	Chlorobenzene	0.00	112	0	N.D.	
55) C	281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
56) C	240	Ethylbenzene	7.19	91	360	N.D.	
57) C		m,p-Xylene	0.00	106	0	N.D.	
58) C		o-Xylene	0.00	106	0	N.D.	
59) C	245	Styrene	0.00	104	0	N.D.	
60) C		Bromoform	0.00	173	0	N.D.	
63) C		Isopropylbenzene	0.00	105	. 0	N.D.	
64) C	301	Bromobenzene	0.00	156	. 0	N.D.	
65) C	225	1,1,2,2-Tetrachlor	0.00	83	0	и. D.	
66) C		1,2,3-Trichloropro	0.00	110	0	N.D.	
67) C	283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	V.
68) C	302	n-Propylbenzene	8.12	91	291	N.D.	
69) C	303	2-Chlorotoluene	0.00	126	0	N.D.	
70) C	289	4-Chlorotoluene	0.00	126	0	N.D.	
71) C	304	1,3,5-Trimethylben	0.00	105	0	N.D.	
72) C	306	tert-Butylbenzene	0.00	134	0	N.D.	
73) C	307	1,2,4-Trimethylben	0.00	105	0	N.D.	
74) C	308	sec-Butylbenzene	0.00	105	0	N.D.	
75) C	260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
76) C	309	4-Isopropyltoluene	0.00	119	0	N.D.	
77) C	267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
78) C	249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
79) C	310	n-Butylbenzene	0.00	91	0	N.D.	
80) C	286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
81) C	313	1,2,4-Trichloroben	0.00	180	0	N.D.	
82) C	316	Hexachlorobutadien	0.00	225	0	N.D.	
	314	Naphthalene	10.91	128	1277	N.D.	
84) C	934	1,2,3-Trichloroben	0.00	180	0	И.Д.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed)

Data File : D:\MSDChem\S\Data\041610\S5595.D

Acq On : 16 Apr 2010 12:13

Sample : 10D1488-BLK1

Misc :

MS Integration Params: RTEINT.P

Vial: 6
Operator: DHC

Inst : HP5973S Multiplr: 1.00

Quant Time: Apr 16 15:38:08 2010 Results File: R10C101-SIXPT.RES

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Apr 16 11:57:01 2010

Response via : Initial Calibration

DataAcq Meth : VOA

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

10D1581-BLK1

File ID:

S5621.D

Sampled:

Water

Analyzed:

04/17/10 12:47

Prepared:

04/17/10 10:20

Solids:	Pi	reparation: 503	0B MS	Initial/Final: 5 mL / 5 mL	
Batch:	10D1581 Sequence:	<u>T001461</u>	Calibration:	R10C101 Instrument:	HP5973S
CAS NO.	COMPOUND	-	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		. 1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	ethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane		1	5.0	U
75-34-3	1,1-Dichloroethane		1	5.0	U
75-35-4	1,1-Dichloroethene		1	5.0	U
120-82-1	1,2,4-Trichlorobenzene		1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1	5.0	U
106-93-4	1,2-Dibromoethane		1	5.0	U
95-50-1	1,2-Dichlorobenzene		1	5.0	U
107-06-2	1,2-Dichloroethane	•	1	5.0	U
78-87-5	1,2-Dichloropropane		1	5.0	U
541-73-1	1,3-Dichlorobenzene		1	5.0	U
106-46-7	1,4-Dichlorobenzene		1	5.0	U
78-93-3	2-Butanone		1	25	U
591-78-6	2-Hexanone		1	25	U
108-10-1	4-Methyl-2-pentanone		1	25	U
67-64-1	Acetone		1	25	U ··
71-43-2	Benzene		1	5.0	ט
75-27-4	Bromodichloromethane		1	5.0	U
75-25-2	Bromoform		1	5.0	U
74-83-9	Bromomethane		1	5.0	U
75-15-0	Carbon disulfide		11	5.0	U
56-23-5	Carbon Tetrachloride		11	5.0	U
108-90-7	Chlorobenzene		1	5.0	U
75-00-3	Chloroethane		11	5.0	U
67-66-3	Chloroform		1	5.0	U
74-87-3	Chloromethane		1	5.0	U
156-59-2	cis-1,2-Dichloroethene		1	5.0	U
10061-01-5	cis-1,3-Dichloropropene		1	5.0	U
110-82-7	Cyclohexane		1	5.0	U
124-48-1	Dibromochloromethane		1	5.0	υ
75-71-8	Dichlorodifluoromethane		1	5.0	U
100-41-4	Ethylbenzene		1	5.0	U
98-82-8	Isopropylbenzene		1	5.0	U
79-20-9	Methyl Acetate		1	5.0	U
108-87-2	Methylcyclohexane		1 .	5.0	U
75-09-2	Methylene Chloride	·	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1	5.0	U

387/416 Form Rev: 11/23/09

Blank

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

10D1581-BLK1

File ID:

S5621.D

Sampled:

Water

04/17/10 12:47

Prepared:

04/17/10 10:20

Analyzed:

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1581</u>	Sequence:	<u>T001461</u>	Calibration:	R10C101	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND)		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene	<u></u>		1	4	5.0	U
127-18-4	Tetrachloroetl	hene		1	4	5.0	U
108-88-3	Toluene			1	4	5.0	U
156-60-5	trans-1,2-Dick	loroethene		1	4	5.0	U
10061-02-6	trans-1,3-Dicl	lloropropene		1	4	5.0	U
79-01-6	Trichloroethe			1	4	5.0	U
75-69-4	Trichlorofluo	romethane		1		5.0	U
75-01-4	Vinyl chloride	•		1		5.0	U
1330-20-7	Xylenes, total			1		15	U
SYSTEM MON	NITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	27.9	112	66 - 137	
4-Bromofluorol	enzene		25.0	27.4	109	73 - 120	
Toluene-d8			25.0	28.7	115	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		155336	9.05	192218	9.05	
1,4-Difluorober	ızene		336065	4.99	349630	4.99	
Chlorobenzene	-d5		182223	7.19	195882	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : D:\MSDChem\S\Data\041710\S5621.D

Vial: 5 Operator: DHC Acq On : 17 Apr 2010 12:47 Sample : 10D1581-BLK1 Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 17 13:01:55 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 13:00:56 2010
Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010

Internal	Standards	Ŗ.T	. QIon	Response	Conc Ur		ev(Min) cv(Ar)
1) CI10	1,4-Difluorobenzene	4.9	9 114	336065	25.00	ug/L	0.00 96.12%
42) CI20	Chlorobenzene-D5	7.1	9 82	182223	25.00	ug/L	0.00 93.03%
62) CI30	1,4-Dichlorobenzene-	9.0	5 152	155336	25.00	ug/L	0.00 80.81%
	onitoring Compounds 1,2-Dichloroethane-I) 4.6	9 65	119110	27.93	ua/L	0.00
Spiked A			6 - 137	Recove		111.72	2%
43) CS05		6.0		392067	28.73	ug/L	0.00
Spiked i		ange 7	1 - 126	Recove		114.92	
	p-Bromofluorobenzene	8.1	2 174		27.37	-	0.00
Spiked .	Amount 25.000 Ra	ange 7	3 - 120	Recove	ery =	109.48	3%
						(Qvalue
Target C		0.00	85	0	N.D.	,	2varue
2) C290		0.00	50	0	N.D.		
	Chloromethane Vinyl chloride	0.00	62	. 0	N.D.		
5) C015		0.00	94	. 0	N.D.		
	Chloroethane	0.00	64	0	N.D.		
7) C275		0.00	101	0	N.D.		
8) C045		0.00	96	0	N.D.		
9) C030		0.00	84	0	N.D.		
10) C040	Carbon disulfide	2.77	76	495	N.D.		
11) C036		0.00	56	. 0	N.D.		
12) C038		0.00	53	0	N.D.		
13) C035		0.00	43	0 498	N.D.		
14) C300		2.98 0.00	41 142	0	N.D.		
15) C276 16) C291		0.00	101	Ö	N.D.		
17) C962		0.00	73	0	N.D.		
18) C057		0.00	96	0	N.D.		
19) C255	, , , , , , , , , , , , , , , , , , ,	0.00	43	0	N.D.		
20) 0050		0.00	63	0	N.D.		
21) C125		0.00	43	0	N.D.		
22) C051		0.00	77	0	N.D.		
23) C056		0.00	96	0	N.D.		
24) C272		0.00	42	0	N.D.		
25) C222		0.00	128 83	0	N.D.		
26) C060 27) C115		0.00	97	0	N.D.		
28) C120	• • •	0.00	117	Ö	N.D.		
29) C116		0.00	75	0	N.D.		
31) C165		0.00	78	0	N.D.		
32) C065		0.00	62	0	N.D.		
33) C110	•	0.00	43	0	$N \cdot D$.		
34) C256		0.00	56	0	N.D.		
35) C150		0.00	95	0	N.D.		
36) C140	•	0.00	63	0	N.D. N.D.		
37) C278	•	0.00	93	0 0	N.D.		. v
38) C130		0.00	83 . 63	0	N.D.		~ Wi
39) C161 40) C012		0.00	83	0	N.D.		m ^{7/3}

Data File : D:\MSDChem\S\Data\041710\S5621.D

Vial: 5 Operator: DHC

Acq On : 17 Apr 2010 12:47 Sample : 10D1581-BLK1

Inst : HP5973S

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 13:01:55 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 13:00:56 2010
Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	5	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41) C145 cis-1,3-	-Dichloropr	0.00	75	0	N.D.	
44) C230 Toluene	. -	6.12	92	149	N.D.	
	,3-Dichloro	0.00	75	0	N.D.	
,	ethacrylate	0.00	69	0	N.D.	
	richloroeth	0.00	83	0	N.D.	
	l-2-pentano	6.07	43	1590	N.D.	
	loroethene	0.00	166	0	N.D.	
	nloropropan	0.00	76	0	N.D.	
	chlorometha	0.00	129	0	N.D.	
	romoethane	0.00	107	0	N.D.	
53) C215 2-Hexano		0.00	43	0	N.D.	
54) C235 Chlorobe	enzene	7.21	112	728	N.D.	
	-Tetrachlor	0.00	131	0	N.D.	
56) C240 Ethylber	nzene	7.19	91	316	N.D.	
57) C246 m,p-Xyl	ene	0.00	106	0	N.D.	
58) C247 o-Xylen		0.00	106	0	N.D.	•
59) C245 Styrene		0.00	104	. 0	N.D.	
60) C180 Bromofo:	rm	0.00	173	0	N.D.	
	ylbenzene	0.00	105	0	N.D.	
64) C301 Bromober		0.00	156	0	N.D.	
	-Tetrachlor	0.00	83	0	N.D.	
	richloropro	0.00	110	0	N.D.	
	ichloro-2-B	0.00	51	0	N.D.	
	lbenzene	8.12	91	143	N.D.	
69) C303 2-Chlor	otoluene	0.00	126	0	N.D.	
	otoluene	0.00	126	0	N.D.	
	rimethylben	0.00	105	0	N.D.	
	tylbenzene	0.00	134	0	N.D.	
	rimethylben	0.00	105	0	N.D.	•
	ylbenzene	0.00	105	0	N.D.	
	hlorobenzen	0.00	146	0	N.D.	
	opyltoluene	0.00	119	0	N.D.	
_	hlorobenzen	0.00	146	0	N.D.	
,	hlorobenzen	0.00	146	0	N.D.	
79) C310 n-Butyl		0.00	91	0	N.D.	
	romo-3-Chlo	0.00	75	0	N.D.	
	richloroben	0.00	180	0	N.D.	
	orobutadien	0.00	225	0	N.D.	
83) C314 Naphtha		10.90	128	1002	N.D.	
	richloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

(Not Reviewed) Quantitation Report TA Buffalo

Data File : D:\MSDChem\S\Data\041710\S5621.D

Vial: 5 Operator: DHC : 17 Apr 2010 12:47 : HP5973S Inst

Acq On : 10D1581-BLK1

Sample

Misc MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES

Multiplr: 1.00

Quant Time: Apr 17 13:01:55 2010 Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 13:00:56 2010 Response via : Initial Calibration DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

10D1339-BS1

File ID: T8564.D

Sampled:

Prepared:

Analyzed:

04/15/10 11:17

04/15/10 10:24

5 mL / 5 mL

Solius:	Solids	3:
---------	--------	----

Preparation:

5030B MS

Initial/Final:

Batch:	10D1339 Sequence: <u>T001413</u>	Calibration:	R10D026 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U
79-00-5	1,1,2-Trichloroethane	1	5.0	U
75-34-3	1,1-Dichloroethane	1	5.0	U
75-35-4	1,1-Dichloroethene	1	22.8	
120-82-1	1,2,4-Trichlorobenzene	1	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U
106-93-4	1,2-Dibromoethane	1	5.0	U
95-50-1	1,2-Dichlorobenzene	1	5.0	U
107-06-2	1,2-Dichloroethane	1	5.0	U
78-87-5	1,2-Dichloropropane	1	5.0	U
541-73-1	1,3-Dichlorobenzene	1	5.0	U
106-46-7	1,4-Dichlorobenzene	1	5.0	U
78-93-3	2-Butanone	1	25	U
591-78-6	2-Hexanone	1	25	U
108-10-1	4-Methyl-2-pentanone	1	25	U
67-64-1	Acetone	1	25	U
71-43-2	Benzene	1	25.5	
75-27-4	Bromodichloromethane	1	5.0	υ
75-25-2	Bromoform	1	5.0	U
74-83-9	Bromomethane	1	5.0	U
75-15-0	Carbon disulfide	1	5.0	U
56-23-5	Carbon Tetrachloride	1	5.0	U
108-90-7	Chlorobenzene	1	24.2	
75-00-3	Chloroethane	1	5.0	U
67-66-3	Chloroform	1	5.0	U
74-87-3	Chloromethane	1	5.0	U
156-59-2	cis-1,2-Dichloroethene	1	5.0	U
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U
110-82-7	Cyclohexane	1	5.0	U
124-48-1	Dibromochloromethane	1	5.0	U
75-71-8	Dichlorodifluoromethane	1	5.0	U
100-41-4	Ethylbenzene	1	5.0	U
98-82-8	Isopropylbenzene	1	5.0	U
79-20-9	Methyl Acetate	1	5.0	υ
108-87-2	Methylcyclohexane	1	5.0	U
75-09-2	Methylene Chloride	1	5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U

Form Rev: 11/23/09

LCS

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

Water

10D1339-BS1

File ID:

T8564.D

Sampled:

Prepared:

04/15/10 10:24

Analyzed:

04/15/10 11:17

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

ounus.		r repai	auon. <u>5050B</u>	IVIO	mitial i mai.	<u> </u>	
Batch:	<u>10D1339</u>	Sequence:	T001413	Calibration:	R10D026	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUNI)		DILUTION	CONC	C. (ug/L)	Q
100-42-5	Styrene			1		5.0	U
127-18-4	Tetrachloroet	hene		1		5.0	U
108-88-3	Toluene			1	2	4.7	
156-60-5	trans-1,2-Dic	hloroethene	1	1		5.0	U
10061-02-6	trans-1,3-Dic	hloropropene		1	:	5.0	U
79-01-6	Trichloroethe	ne		1	2	3.7	
75-69-4	Trichlorofluo	romethane		1		5.0	U
75-01-4	Vinyl chlorid	Vinyl chloride		1	5.0		U
1330-20-7	Xylenes, total	<u> </u>		11	<u> </u>	15	
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	21.3	85	66 - 137	
4-Bromofluorol	enzene		25.0	19.8	79	73 - 120	
Toluene-d8			25.0	21.4	85	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		381918	9.86	470395	9.86	
1,4-Difluorober	nzene		1076400	5.68	1201787	5.68	
Chlorobenzene-	-d5		883995	7.95	1028932	7.95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Data File : H:\GCMS_VOA\T\041510\T8564.D

Acq On : 15 Apr 2010 11:17 Sample : 10D1339-BS1

Misc MS Integration Params: RTEINT.P Quant Time: Apr 15 13:43:44 2010 Operator: LH Inst : 5975 T Multiplr: 1.00

Vial: 46

Results File: R10D026-6PT.RES

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Inter	nal	Standards	R.T.	QIon	Response	Conc Ur	nits De	ev(Min) cv(Ar)
1) C	I10	1,4-Difluorobenzene	5.68	114	1076400	25.00	ug/L	0.00 89.57%
42) C	120	Chlorobenzene-D5	7.95	117	883995	25.00	ug/L	0.00 85.91%
61) C	130	1,4-Dichlorobenzene-	9.86	152	381918	25.00	ug/L	0.00 81.19%
		nitoring Compounds 1,2-Dichloroethane-D	5.38	65	427137	21.29	ug/L	0.00
30) C		mount 25.000 Ra	nge 66				85.1	
43) C		Toluene-D8	6.81		1226870	21.36	ug/L	0.00
			nge 71	- 126	Recove	ery =	85.4	
		p-Bromofluorobenzene		174	290753	19.82	_	0.00
			inge 73	- 120	Recove	ery =	79.2	8%
Тагде	t Co	mpounds						Qvalue
2) C		Dichlorodifluorome	0.00	85	0	N.D.		
3) C		Chloromethane	1.71	50	766	N.D.		
4) C	020	Vinyl chloride	1.85	62	604	N.D.		
5) C		Bromomethane	2.21	94	541	N.D.		
6) C		Chloroethane	2.34	64	396	N.D.		
2) C		Trichlorofluoromet	0.00	101 5 96	0 344819	N.D. 22 78	ug/L	# 73
(8)		1,1-Dichloroethene	3.15 3.64	84	4010	N.D.	ug/ D	, , ,
10) C		Methylene chloride Carbon disulfide	3.36	76	1718	N.D.		
10) C		Acrolein	3.09	56	3189	N.D.		
12) C		Acrylonitrile	3.91	53	211	N.D.		
13) C		Acetone	3.25	43	2513	N.D.		
14) C		Acetonitrile	3.54	41	2043	N.D.		
15) C		Iodomethane	0.00	142	0	и.р.		
16) C		1,1,2 Trichloro-1,	3.16	101	694	И.D. И.D.		
17) C		T-butyl Methyl Eth	0.00	73 96	0	N.D.		
18) C		trans-1,2-Dichloro	0.00 3.54	43	1148	N.D.		
19) C 20) C		Methyl Acetate 1,1-Dichloroethane	0.00	63	0	N.D.		
20) C		Vinyl Acetate	4.27	43	422	N.D.		
22) C		2,2-Dichloropropan	4.72	77	81	N.D.		
23) C		cis-1,2-Dichloroet	0.00	96	0	N.D.		
24) C	272	Tetrahydrofuran	4.95	42	7556	N.D.		
25) C		Bromochloromethane	0.00	128	0 .	N.D.		
26) C		Chloroform	4.98	83	1704 0	N.D. N.D.		
_ ,	115	1,1,1-Trichloroeth	0.00 5.20	97 117	282	N.D.		
28) C 2 <u>9)</u> C		Carbon tetrachlori 1,1-Dichloropropen	0.00	75	0	N.D.		
31)		Benzene	5.39		1673620	25.52	ug/L	99
(32/)°		1,2-Dichloroethane	5.39		-13361-		ug/b-	- # 1
33) C		2-Butanone	4.74	43	3530	N.D.		
3A) C		Cyclohexane	5.12	56	107	N.D.	/_	0.0
	150	Trichloroethene	5.89		408490		ug/L	98
361 0		1,2-Dichloropropan	0.00	63	0	И.D. И.D.		
	278	Dibromomethane	0.00	93 83	0	N.D.		
	:130 :161	Bromodichlorometha 2-Chloroethylvinyl	6.47	63	155	N.D.		
	012	Methylcycolhexane	6.01	83	432	N.D.		
, -		· · · · · · · · · · · · · · · · · · ·						

Data File: H:\GCMS_VOA\T\041510\T8564.D

Vial: 46 Acq On : 15 Apr 2010 11:17 Sample : 10D1339-BS1 Operator: LH Inst : 5975 T Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:43:44 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

IS QA File : H:\GCMS_VOA\T\041510\T8563.D (15 Apr 2010 10:39)

Internal Standards	R.T. QIon	Response	Conc Units Dev(Rcv(Min) Ar)
41) C145 cis-1,3-Dichloropr	0.00 75	0	N.D.	
(44) 2230 Toluene	6,86 92	951632	24.68 ug/L	98
45) C170 trans-1,3-Dichloro	0.00 75	0	и.р.	
46) C284 Ethyl Methacrylate	7.05 69	75	N.D.	
47) C160 1,1,2-Trichloroeth	0.00 83	0	N.D.	
48) C210 4-Methyl-2-pentano	6.71 43	3640	N.D.	
49) C220 Tetrachloroethene	0.00 166	0	N.D.	
50) C221 1,3-Dichloropropan	0.00 76	0	N.D.	
51) C155 Dibromochlorometha	0.00 129	0	N.D.	
52) C163 1,2-Dibromoethane	0.00 107	0	N.D.	
537 C215 2-Hexanone	7.36 43	2789	N.D.	97
54) £235 Chlorobenzene	7.98 112	988397	24.24 ug/L	97
55 C281 1,1,1,2-Tetrachlor	0.00 131	0	N.D.	
56) C240 Ethylbenzene	8.03 91	1551	N.D.	
57) C246 m,p-Xylene	8.12 106	819	N.D.	
58) C247 o-Xylene	8.46 106	223	N.D.	
59) C245 Styrene	8.47 104	616	N.D.	
62) C180 Bromoform	0.00 173	0	N.D.	
63) C966 Isopropylbenzene	8.73 105	719	N.D.	
64) C301 Bromobenzene	9.04 156	88	N.D.	
65) C225 1,1,2,2-Tetrachlor	9.02 83	86	N.D.	
66) C282 1,2,3-Trichloropro	0.00 110	0	N.D.	
67) C283 t-1,4-Dichloro-2-B	0,00 53	0	N.D.	
68) C302 n-Propylbenzene	9.08 91	1582	N.D.	
69) C3O3 2-Chlorotoluene	9.26 126	87	N.D.	
70) C289 4-Chlorotoluene	9.26 126	87	N.D.	
71) C304 1,3,5-Trimethylben	9.21 105	1013	N.D.	
72) C306 tert-Butylbenzene	9.48 134	177	N.D.	
73) C307 1,2,4-Trimethylben	9.53 105	795	N.D.	
74) C308 sec-Butylbenzene	9.67 105	1145	N.D.	
75) C260 1,3-Dichlorobenzen	9.82 146	525	N.D.	
76) C309 4-Isopropyltoluene	9.78 119	1850	N.D.	
77) C267 1,4-Dichlorobenzen	9.88 146	728	N.D.	
78) C249 1,2-Dichlorobenzen	10.21 146	575	N.D.	
79) C310 n-Butylbenzene	10.14 91	1838	N.D.	
80) C286 1,2-Dibromo-3-Chlo	0.00 75	0	N.D.	
81) C313 1,2,4-Trichloroben	11.56 180	1209	N.D.	
82) C316 Hexachlorobutadien	11.68 225	555	N.D.	
83) C314 Naphthalene	11.77 128	6018	N.D.	
84) C934 1,2,3-Trichloroben	11.98 180	1026	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Multiplr: 1.00

Data File : H:\GCMS_VOA\T\041510\T8564.D Acq On : 15 Apr 2010 11:17 Vial: 46 Operator: LH : 5975 т Inst : 10D1339-BS1 Sample

Misc

MS Integration Params: RTEINT.P

Results File: R10D026-6PT.RES Quant Time: Apr 15 13:43:44 2010

Quant Method : C:\MSDCHEM\1...\R10D026-6PT.M (RTE Integrator)

Title : 8260 5ML

Last Update : Thu Apr 15 13:43:37 2010

Response via : Initial Calibration

DataAcq Meth : VOA.M

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client: AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

10D1488-BS1

File ID:

S5592.D

Sampled:

Prepared:

Preparation:

04/16/10 09:48

Analyzed:

04/16/10 11:00

Solids:

Form Rev: 11/23/09

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D1488</u> Sequence: <u>T001440</u>	Calibration: <u>I</u>	R10C101 Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	24.7	
79-34-5	1,1,2,2-Tetrachloroethane	1	21.9	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	22.4	
79-00-5	1,1,2-Trichloroethane	1	24.2	
75-34-3	1,1-Dichloroethane	1	25.6	
75-35-4	1,1-Dichloroethene	1	25.2	
120-82-1	1,2,4-Trichlorobenzene	1	23.0	
96-12-8	1,2-Dibromo-3-chloropropane	1	17.4	
106-93-4	1,2-Dibromoethane	1	23.4	
95-50-1	1,2-Dichlorobenzene	1	22.8	
107-06-2	1,2-Dichloroethane	1	24.7	
78-87-5	1,2-Dichloropropane	1	25.9	
541-73-1	1,3-Dichlorobenzene	1	23.4	
106-46-7	1,4-Dichlorobenzene	1	23.2	
78-93-3	2-Butanone	1	109	
591-78-6	2-Hexanone	1	105	
108-10-1	4-Methyl-2-pentanone	1	107	
67-64-1	Acetone	1	107	
71-43-2	Benzene	1	25.9	
75-27-4	Bromodichloromethane	1	23.9	
75-25-2	Bromoform	1	19.5	
74-83-9	Bromomethane	1	34.8	
75-15-0	Carbon disulfide	1	18.8	
56-23-5	Carbon Tetrachloride	1	23.7	
108-90-7	Chlorobenzene	1	23.9	
75-00-3	Chloroethane	1	30.5	
67-66-3	Chloroform	1	25.7	
74-87-3	Chloromethane	1 .	26.4	
156-59-2	cis-1,2-Dichloroethene	1	25.8	
10061-01-5	cis-1,3-Dichloropropene	1	24.6	
110-82-7	Cyclohexane	1	22.8	
124-48-1	Dibromochloromethane	1	21.5	
75-71-8	Dichlorodifluoromethane	1	20.1	
100-41-4	Ethylbenzene	1	24.6	
98-82-8	Isopropylbenzene	1	23.3	
79-20-9	Methyl Acetate	1	34.7	
108-87-2	Methylcyclohexane	1	22.6	
75-09-2	Methylene Chloride	1	24.9	
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	20.2	

LCS

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

10D1488-BS1

File ID:

S5592.D

Sampled:

Water

Prepared:

04/16/10 09:48

Analyzed:

04/16/10 11:00

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:		Prepa	ation: <u>5030B MS</u>		Initial/Final:	3 mL / 3 mL	
Batch:	10D1488	Sequence:	<u>T001440</u>	Calibration:	R10C101	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUNI)		DILUTION	CON	C. (ug/L)	Q
100-42-5	Styrene			1		24.4	
127-18-4	Tetrachloroet	hene		1	2	25.0	
108-88-3	Toluene			1	2		
156-60-5	trans-1,2-Dic	hloroethene		1	. 2		
10061-02-6	trans-1,3-Dic	hloropropene		1			
79-01-6	Trichloroethe	ne		1	2		
75-69-4	Trichlorofluoromethane			1	2	9.5	
75-01-4	Vinyl chlorid	Vinyl chloride		11	2	24.7	
1330-20-7	Xylenes, total			11	74.6		
SYSTEM MON	NITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	27.6	110	66 - 137	
4-Bromofluorol	oenzene		25.0	28.4	114	73 - 120	
Toluene-d8	Toluene-d8		25.0	29.5	118	71 - 126	<u> </u>
INTERNAL STANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichlorobe	nzene-d4		190817	9.05	192606	9.05	
1,4-Difluorober	nzene		373394	4.99	368522	4.99	
Chlorobenzene	-d5		206161	7.19	202829	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Printed: 04/21/2010

Data File : D:\MSDChem\S\Data\041610\S5592.D
Acq On : 16 Apr 2010 11:00
Sample : 10D1488-BS1 Vial: 3 Operator: DHC Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 16 11:57:11 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Apr 16 11:57:01 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041610\S5591.D (16 Apr 2010 10:09)

nzene D5 nzene- nds hane-D Ranc O Ranc oenzene O Ranc orometh	4.99 7.19 9.05 4.68 ge 66 6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	114 82 152 65 - 137 98 - 126 174 - 120 85 50 62	130901 Recove 454909 Recove 135580	25.00 25.00 25.00 27.62 27.62 29.46 29.46 29.46 29.41 26.38 24.67	ug/L ug/L 110 ug/L 117 ug/L 113.	101 101 99 48% 84% 68% Qva	0.32% 0.00 .64% 0.00 .07% 0.00 0.00 0.00 lue 100 97
enzene- inds chane-D 0 Rance 00 Rance 00 Rance cometh	9.05 4.68 ge 66 6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	152 65 - 137 98 - 126 174 - 120 85 50 62	130901 Recove 454909 Recove 135580 Recove 88300 153213 133752	27.62 27.62 29.46 29.46 28.42 27.7 = 20.11 26.38 24.67	ug/L 110 ug/L 117 ug/L 113	101 99 48% 84% 68% Qva	0.00 .64% 0.00 .07% 0.00 0.00 0.00
inds hane-D Rang Rang Rang Rang Rang Rang Rang	4.68 ge 66 6.07 ge 71 8.12 ge 73	65 - 137 - 98 - 126 174 - 120 85 50 62	130901 Recove 454909 Recove 135580 Recove 88300 153213 133752	27.62 ery = 29.46 ery = 28.42 ery = 20.11 26.38 24.67	ug/L 110 ug/L 117 ug/L ug/L ug/L	99 48% 84% 68% Qva #	0.00 .07% 0.00 0.00 0.00
hane-D 00 Rand 00 Rand 00 Rand 00 Rand 00 Rand 00 Rand	ge 66 6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	- 137 98 - 126 174 - 120 85 50 62	Recove 454909 Recove 135580 Recove 88300 153213 133752	29.46 ery = 28.42 ery = 20.11 26.38 24.67	110 ug/L 117 ug/L 113 ug/L ug/L	48% 84% 68% Qva #	0.00 0.00 lue 100 97
hane-D 00 Rand 00 Rand 00 Rand 00 Rand 00 Rand 00 Rand	ge 66 6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	- 137 98 - 126 174 - 120 85 50 62	Recove 454909 Recove 135580 Recove 88300 153213 133752	29.46 ery = 28.42 ery = 20.11 26.38 24.67	110 ug/L 117 ug/L 113 ug/L ug/L	48% 84% 68% Qva #	0.00 0.00 lue 100 97
00 Range of the company of the compa	ge 66 6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	98 - 126 174 - 120 85 50 62	454909 Recove 135580 Recove 88300 153213 133752	29.46 ery = 28.42 ery = 20.11 26.38 24.37	ug/L 117.3 ug/L 113. ug/L ug/L	84% 68% Qva #	0.00 lue 100 97
00 Ranger of the company of the comp	6.07 ge 71 8.12 ge 73 1.29 1.49 1.52	98 - 126 174 - 120 85 50 62	454909 Recove 135580 Recove 88300 153213 133752	29.46 ery = 28.42 ery = 20.11 26.38 24.37	ug/L 117.3 ug/L 113. ug/L ug/L	84% 68% Qva #	0.00 lue 100 97
00 Rangerene 00 Rangerene 00 Rangerene	ge 71 8.12 ge 73 1.29 1.49 1.52	174 - 120 85 50 62	135580 Recove 88300 153213 133752	28.42 ery = 20.11 26.38 24.67	ug/L 113. ug/L ug/L	68% Qva #	lue 100 97
enzene Rand rometh	8.12 ge 73 1.29 1.49 1.52	- 120 85 50 62	88300 153213 133752	20.11 26.38 24.67	ug/L	68% Qva #	lue 100 97
orometh	1.29 1.49 1.52	- 120 85 50 62	88300 153213 133752	20.11 26.38 24.67	ug/L ug/L	Qva #	100 97
cometha	1.49 1.52	50 62	153213 133752	26.38 24.67	ug/L	#	100 97
cometha	1.49 1.52	50 62	153213 133752	26.38 24.67	ug/L		97
cometha	1.49 1.52	50 62 94 64	133752	24.67			
ometha	1.52 1.80 1.88	62 94 64	20111	74 75	ug/L		
ometha	1.80	94 64	32444	34.75			85
ometha	1.88	64	05050		ug/L		83
ometha	2 09		25252	30.48	ug/L		88
	2.00	101	142184	29.46	ug/L		98
hene	2.58	96	94681	25.16	ug/L		95
oride Lde	3.04	84	119392	24.94	ug/L		96
de	2.75	76		18.79	ug/L		99
	2.56	56	93756				98
	3.29	53	277056				91
	2.72	43	204139 900957	107.05			95
	2.97	41	900957	968.18	ug/L		98
	2.72	142	128758	27.31	ug/L		98
0-1,2,	2.56	101	92700	22.40 20.19	ug/L		90
l Ether	3.25	73	294483	20.19	ug/L		90
nloroet	3.24	96	114878	25.87	ug/L		98
3	2.97		226079	34.66 25.57	ug/L		99
thane	3.60	63	220716	25.57	ug/L		98
	3.65		1087152 159525	92.46	ug/L		98
copane	4.03	77	159525	22.91	ug/L		96
oroethe	4.06	96	129535	25.77	ug/L		99 96
an	4.29	42	210982 55575	108.96	ug/L	, 11	85
thane	4.25		55575	25.61	ug/L	' #	97
	4.31			25.68	ug/L		97 97
roethan	4.41			24.68			96
nloride			138314	23.69	ug/1	1	97
ropene	4.53		159288	25.18			99
	4.69		491713	25.89			96
chane							97
							94
							92
ae							99
							81
ropane							98
ropane e							95
ropane e methane							93 94
ropane e methane vinyl E	E 07	0.3	200092	22.01	~9/ L	•	
	thane ne ropane e methane vinyl E	thane 4.74 4.10 4.42 ne 5.17 ropane 5.36 e 5.46 methane 5.58 vinyl E 5.78	thane 4.74 62 4.10 43 4.42 56 ne 5.17 95 ropane 5.36 63 e 5.46 93 methane 5.58 83 vinyl E 5.78 63 xane 5.27 83	thane 4.74 62 163227 4.10 43 316992 4.42 56 208062 ne 5.17 95 119596 ropane 5.36 63 126975 e 5.46 93 70737 methane 5.58 83 136275 vinyl E 5.78 63 436657	thane 4.74 62 163227 24.73 4.10 43 316992 108.80 4.42 56 208062 22.82 ne 5.17 95 119596 25.36 ropane 5.36 63 126975 25.94 e 5.46 93 70737 25.18 methane 5.58 83 136275 23.87 vinyl E 5.78 63 436657 116.01 xane 5.27 83 200842 22.61	thane 4.74 62 163227 24.73 ug/I 4.10 43 316992 108.80 ug/I 4.42 56 208062 22.82 ug/I ne 5.17 95 119596 25.36 ug/I ropane 5.36 63 126975 25.94 ug/I e 5.46 93 70737 25.18 ug/I methane 5.58 83 136275 23.87 ug/I vinyl E 5.78 63 436657 116.01 ug/I	thane 4.74 62 163227 24.73 ug/L 4.10 43 316992 108.80 ug/L 4.42 56 208062 22.82 ug/L ne 5.17 95 119596 25.36 ug/L ropane 5.36 63 126975 25.94 ug/L e 5.46 93 70737 25.18 ug/L # methane 5.58 83 136275 23.87 ug/L vinyl E 5.78 63 436657 116.01 ug/L

Data File : D:\MSDChem\S\Data\041610\S5592.D
Acq On : 16 Apr 2010 11:00
Sample : 10D1488-BS1 Vial: 3 Operator: DHC

Misc

Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 16 11:57:11 2010

Quant Method: D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)
Title: 8260 5ML WATER
Last Update: Fri Apr 16 11:57:01 2010

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041610\S5591.D (16 Apr 2010 10:09)

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min) Rcv(Ar)
41) C145 cis-1,3-Dichloroprop	5.90	75	179268	24.60 ug/L 99
44) C230 Toluene	6.12	92	315384	24.51 ug/L 95
45) C170 trans-1,3-Dichloropr	6.32	75	164350	22.37 ug/L 97
46) C284 Ethyl Methacrylate	6.35	69	152297	19.97 ug/L # 96
47) C160 1,1,2-Trichloroethan	6.46	83	87802	24.17 ug/L 99
48) C210 4-Methyl-2-pentanone	6.00	43	616898	106.78 ug/L 94
49) C220 Tetrachloroethene	6.53	166	114946	24.96 ug/L 96
50) C221 1,3-Dichloropropane	6.59	76	193165	23.48 ug/L 100
51) C155 Dibromochloromethane	6.77	129	91423	21.48 ug/L 97
52) C163 1,2-Dibromoethane	6.85	107	109011	23.35 ug/L 95
53) C215 2-Hexanone	6.63	43	430351	104.72 ug/L 92
54) C235 Chlorobenzene	7.21	112	333337	23.87 ug/L 99
55) C281 1,1,1,2-Tetrachloroe	7.28	131	101990	23.70 ug/L 97
56) C240 Ethylbenzene	7.27	91	602619	24.61 ug/L 100
57) C246 m,p-Xylene	7.36	106	464842	50.13 ug/L 96
58) C247 o-Xylene	7.68	106	220090	24.42 ug/L 94
59) C245 Styrene	7.70	104	359705	24.41 ug/L 99
60) C180 Bromoform	7.89	173	48775	19.52 ug/L 97
63) C966 Isopropylbenzene	7.97	105	566212	23.34 ug/L 97
64) C301 Bromobenzene	8.24	156	128171	23.50 ug/L 88
65) C225 1,1,2,2-Tetrachloroe	8.26	83	141203	21.88 ug/L 99
66) C282 1,2,3-Trichloropropa	8.30	110	46189	22.44 ug/L 100
67) C283 t-1,4-Dichloro-2-But	8.30	51	122128	104.67 ug/L # 61
68) C302 n-Propylbenzene	8.30	91	753060	24.20 ug/L 92
69) C303 2-Chlorotoluene	8.39	126	133153	23.65 ug/L 100
70) C289 4-Chlorotoluene	8.47	126	137270	23.69 ug/L 100
71) C304 1,3,5-Trimethylbenze	8.44	105	490913	23.65 ug/L 96
72) C306 tert-Butylbenzene	8.70	134	103676	23.82 ug/L # 88
73) C307 1,2,4-Trimethylbenze	8.74	105	493693	23.41 ug/L 96
74) C308 sec-Butylbenzene	8.87	105	625702	24.38 ug/L 94
75) C260 1,3-Dichlorobenzene	8.99	146	242275	23.40 ug/L 96
76) C309 4-Isopropyltoluene	8.99	119	505976	24.25 ug/L 98
77) C267 1,4-Dichlorobenzene	9.07	146	247825	23.16 ug/L 96
78) C249 1,2-Dichlorobenzene	9.38	146	235344	22.83 ug/L 94
79) C310 n-Butylbenzene	9.33	91	441682	24.79 ug/L 94
80) C286 1,2-Dibromo-3-Chloro	10.04	75	21670	17.44 ug/L # 71
81) C313 1,2,4-Trichlorobenze	10.70	180	130588	23.01 ug/L 96
82) C316 Hexachlorobutadiene	10.81	225	53597	24.95 ug/L 92
83) C314 Naphthalene	10.91	128	345929	21.33 ug/L 98
84) C934 1,2,3-Trichlorobenze	11.10	180	118779	22.58 ug/L 100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDChem\S\Data\041610\S5592.D

: 16 Apr 2010 11:00 Acq On

Sample Misc

: 10D1488-BS1

Operator: DHC : HP5973S Inst Multiplr: 1.00

Vial: 3

MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 16 11:57:11 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

5ML WATER : 8260 Title

: Fri Apr 16 11:57:01 2010 Last Update

Response via : Initial Calibration

DataAcq Meth : VOA

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Water

Laboratory ID:

10D1581-BS1

S5620.D File ID:

Sampled:

Analyzed:

04/17/10 12:22

Solids:

Prepared: Preparation: 04/17/10 10:20

Initial/Final:

5 mL / 5 mL

5030B MS

Batch:	<u>10D1581</u> Sequence: <u>T001461</u>	Calibration:	R10C101 Instrument:	HP5973S	
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	
71-55-6	1,1,1-Trichloroethane	1	5.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	1	5.0	U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	5.0	U	
79-00-5	1,1,2-Trichloroethane	1	5.0	U	
75-34-3	1,1-Dichloroethane	1	5.0	U	
75-35-4	1,1-Dichloroethene	1	30.0		
120-82-1	1,2,4-Trichlorobenzene	1	5.0	υ	
96-12-8	1,2-Dibromo-3-chloropropane	1	5.0	U	
106-93-4	1,2-Dibromoethane	1	5.0	U	
95-50-1	1,2-Dichlorobenzene	1	5.0	U	
107-06-2	1,2-Dichloroethane	1	5.0	U	
78-87-5	1,2-Dichloropropane	1	5.0	U	
541-73-1	1,3-Dichlorobenzene	1	5.0	U	
106-46-7	1,4-Dichlorobenzene	1	5.0	U	
78-93-3	2-Butanone	1	25	U	
591-78-6	2-Hexanone	1	25	U	
108-10-1	4-Methyl-2-pentanone	1	25	U	
67-64-1	Acetone	1	25	U	
71-43-2	Benzene	1	27.4		
75-27-4	Bromodichloromethane	1	5.0	U	
75-25-2	Bromoform	1	5.0	U U	
74-83-9	Bromomethane	1	1 5.0		
75-15-0	Carbon disulfide	1	5.0	U	
56-23-5	Carbon Tetrachloride	11	5.0	U	
108-90-7	Chlorobenzene	1	25.6		
75-00-3	Chloroethane	1	5.0	U	
67-66-3	Chloroform	1	5.0	U	
74-87-3	Chloromethane	1	5.0	U	
156-59-2	cis-1,2-Dichloroethene	1	5.0	U	
10061-01-5	cis-1,3-Dichloropropene	1	5.0	U	
110-82-7	Cyclohexane	1	5.0	U	
124-48-1	Dibromochloromethane	1	5.0	Ü	
75-71-8	Dichlorodifluoromethane	1	5.0	U	
100-41-4	Ethylbenzene	1	5.0	U	
98-82-8	Isopropylbenzene	1	5.0	U	
79-20-9	Methyl Acetate	1	5.0	U	
108-87-2	Methylcyclohexane	1	5.0	U	
75-09-2	Methylene Chloride	1	5.0	U	
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	5.0	U	

LCS

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Matrix:

Laboratory ID:

Water

10D1581-BS1

File ID:

S5620.D

Sampled:

Prepared:

04/17/10 10:20

Analyzed:

04/17/10 12:22

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D1581	Sequence:	<u>T001461</u>	Calibration:	R10C101	Instrument:	HP5973S
CAS NO.	COMPOUNI)		DILUTION	CONC	Q	
100-42-5	Styrene			1		U	
127-18-4	Tetrachloroet	hene		1		บ	
108-88-3	Toluene			1	2		
156-60-5	trans-1,2-Dic	hloroethene		1	:	U	
10061-02-6	trans-1,3-Dic	hloropropene		1		U	
79-01-6	Trichloroethe	ene		11	. 2		
75-69-4	Trichlorofluoromethane			1		U	
75-01-4	Vinyl chlorid	Vinyl chloride				5.0	U
1330-20-7	Xylenes, tota	<u> </u>		11	15		U
SYSTEM MON	NITORING CON	APOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	27.4	110	66 - 137	
4-Bromofluorol	enzene		25.0	27.8	111	73 - 120	
Toluene-d8			25.0	28.9	116	71 - 126	
INTERNAL STANDARD		AREA	RT	REF AREA	REF RT	Q	
1,4-Dichlorober	nzene-d4		159598	9.05	192218	9.05	
1,4-Difluorober	nzene		345725	4.99	349630	349630 4.99	
Chlorobenzene	-d5		183551	7.19	195882	7.19	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Vial: 4
Operator: DHC
Inst : HP5973S Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 13:01:33 2010

Quant Method : D:\MSDCHEM\s...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Sat Apr 17 13:00:56 2010

Response via : Initial Calibration DataAcq Meth : VOA

IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

ID ON LITE	. 2. (
Internal S			QIon	Response	Conc Un	nits I	Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene		114	345725	25.00	ug/L	0.00 888.89
42) CI20	Chlorobenzene-D5	7.19	82	183551	25.00	ug/L	0.00 93.70%
62) CI30	1,4-Dichlorobenzene-	9.05	152	159598	25,00	ug/L	
System Mo	nitoring Compounds			100037	27.40	11 <i>0</i> /T	0.00
30) CS15	1,2-Dichloroethane-I	D 4.68 ange 66	65 - 137		ry =	109.	60%
Spiked A 43) CS05		6.07	98	397062	28.89		
Spiked A	mount 25.000 Ra		- 126		ry = 27.82	115.	
61) CS10		e 8.12				111.	
Spiked A	mount 23.000 R	ange .s			_		Qvalue
Target Co	mpounds	0.00	85	0	N.D.		Ovarue
2) C290	Dichlorodifluorome Chloromethane	0.00 1.50	50	930	N.D.		
4) CO10	Vinyl chloride	1.53	62	975	N.D.		2.5
5) C015	Bromomethane	1.81	94	747-	0.86	ug/L	86
6) C025	Chloroethane	0.00	64	0	И.D. И.D.		
7) C275	Trichlorofluoromet		101 96	0 104663	30.03	ua/L	, 95
8) C045	1,1-Dichloroethene	2.59 3.04	84	1029	N.D.	5	
(a) C0/30	Methylene chloride Carbon disulfide	2.77	76	3169	N.D.		•
10) C040 11) C036	Acrolein	0.00	56	0	N.D.		
12) C038	Acrylonitrile	0.00	53	0	N.D.		
13) C035	Acetone	2.72	43	314	N.D.		
14) C300	Acetonitrile	2.98	41	1246 312	И.D. И.D.		
15) C276	Iodomethane	2.74 0.00	142 101	0	N.D.		
16) C291	1,1,2-Trichloro-1, T-butyl Methyl Eth	0.00	73	Ö	N.D.		
17) C962 18) C057	trans-1,2-Dichloro	3.25	96	892	N.D.		
19) C255	Methyl Acetate	0.00	43	0	N.D.		
20) C050	1,1-Dichloroethane	3.60	63	1655	N.D.		
21) C125	Vinyl Acetate	0.00	43	0	N.D. N.D.		
22) C051	2,2-Dichloropropan	0.00	77	0 511	N.D.		
23) C056		4.06 4.33	96 42	291	N.D.		
24) C272 25) C222		0.00	128	0	N.D.		
26) C060	Chloroform	4.32	83	1384	N.D.		
27) C115	1,1,1-Trichloroeth	4.41	97	902	N.D.		
28) C120	Carbon tetrachlori	4.53	117	496	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0 482773	N.D. 27.45	i na/ī	լ 100
31) £165	Benzene	4.69 4.6 9		4024		ug/I	
32) C065	1,2-Dichloroethane 2-Butanone	4.15	43	128	N.D.		
33) C110 34) C256	Cyclohexane	0.00	56	0	N.D.		
(35) C150	Trichloroethene	5.17		117949	27.02	: ug/1	և 94
367-6140	1,2-Dichloropropan	5.35	63	284	N.D.		
37) C278	Dibromomethane	0.00	93	0	N.D. N.D.		
38) C130	Bromodichlorometha	0.00	83 63	0	N.D.		
39) C161 40) C012	2-Chloroethylvinyl Methylcyclohexane	5.17	83	1294	N.D.		
40) C012	110 011 4 20 4 0 20 011 0 11 411 0						

Vial: 4 Data File : D:\MSDChem\S\Data\041710\S5620.D Operator: DHC Acq On : 17 Apr 2010 12:22 Sample : 10D1581-BS1 Inst : HP59738 Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Results File: R10C101-SIXPT.RES Quant Time: Apr 17 13:01:33 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Sat Apr 17 13:00:56 2010

Response via : Initial Calibration

DataAcq Meth : VOA
IS QA File : D:\MSDChem\S\Data\041710\S5618.D (17 Apr 2010 11:27)

Internal Standards	R.T. QIon	Response	Conc Units Dev	(Min) (Ar)
41) C145 cis-1,3-Dichloropr	5.90 75	272	N.D.	0.4
(44) C230 Toluene	6.12 92	304276	26.55 ug/L	94
45) c170 trans-1,3-Dichloro	0.00 75	0	N.D.	
46) C284 Ethyl Methacrylate	0.00 69	0	N.D.	
47) C160 1,1,2-Trichloroeth	0.00 83	0	N . D -	
48) C210 4-Methyl-2-pentano	6.07 43	1559	N.D.	
49) C220 Tetrachloroethene	6.53 166	771	И. D.	
50) C221 1,3-Dichloropropan	0.00 76	0	и. D.	
51) C155 Dibromochlorometha	0.00 129	0	N.D.	
52) C163 1,2-Dibromoethane	0.00 107	0	N.D.	
53) C215 2-Hexanone	0.00 43	0	N.D.	99
541 C235 Chlorobenzene	7.21 112	318163	25.59 ug/L	22
551 2281 1,1,1,2-Tetrachlor	0.00 131	0	и. р.	
56) C240 Ethylbenzene	7.27 91	4860	И.D.	
57) C246 m,p-Xylene	7.36 106	3320	N.D.	
58) C247 o-Xylene	7.69 106	1033	N.D.	
59) C245 Styrene	7.70 104	926	N - D .	
60) C180 Bromoform	0.00 173	0	N . D .	
63) C966 Isopropylbenzene	7.97 105	3538	N.D.	
64) C301 Bromobenzene	0.00 156	0	N.D.	
65) C225 1,1,2,2-Tetrachlor	0.00 83	0	N.D.	
66) C282 1,2,3-Trichloropro	0.00 110	0	N.D.	
67) C283 t-1,4-Dichloro-2-B	0.00 51	0	N.D.	
68) C302 n-Propylbenzene	8.43 91	987	N.D.	
69) C303 2-Chlorotoluene	8.43 126	141	N.D.	
70) C289 4-Chlorotoluene	8.43 126	141	N.D.	
71) C304 1,3,5-Trimethylben	0.00 105	0	N.D.	
72) C306 tert-Butylbenzene	0.00 134	0	N.D.	
73) C307 1,2,4-Trimethylben	0.00 105	0	N.D.	
74) C308 sec-Butylbenzene	9.09 105	1601	N.D.	
75) C260 1,3-Dichlorobenzen	8.99 146	1135	N.D.	
76) C309 4-Isopropyltoluene	0.00 119	0	N.D.	
77) C267 1,4-Dichlorobenzen	9.07 146	1073	N.D.	
78) C249 1,2-Dichlorobenzen	9.38 146	433	N.D.	
79) C310 n-Butylbenzene	0.00 91	0	N.D.	
80) C286 1,2-Dibromo-3-Chlo	0.00 75	0	N.D.	
81) C313 1,2,4-Trichloroben	10.70 180	411	N.D.	
82) C316 Hexachlorobutadien	10.81 225	285	N.D.	77
83) C314 Naphthalene	<u> 10.90 128</u>	2770	0.20 ug/L	, ,
84) C934 1,2,3-Trichloroben	11.10 180	488	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\MSDChem\S\Data\041710\S5620.D

: 17 Apr 2010 12:22 Acq On

: 10D1581-BS1 Sample

Misc MS Integration Params: RTEINT.P Operator: DHC : HP5973S Inst Multiplr: 1.00

Vial: 4

Results File: R10C101-SIXPT.RES Quant Time: Apr 17 13:01:33 2010

Quant Method : D:\MSDCHEM\S...\R10C101-SIXPT.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Sat Apr 17 13:00:56 2010 Response via : Initial Calibration DataAcq Meth : VOA

HOLDING TIME SUMMARY 8260B

Laboratory:

Form Rev: 11/23/09

TestAmerica Buffalo

SDG:

DRAFT

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

	Date	Date	Date	Days to	Max Days to	Date	Days to	Max Days to	0
Sample Name MW-8R	04/08/10 15:40	04/08/10 17:15	Prepared 04/15/10 10:24	Prep 7	Prep 14	Analyzed 04/15/10 13:18	Analysis 7	Analysis 14	Q
MW-8R	04/08/10 15:40	04/08/10 17:15	04/16/10 09:48	8	14	04/16/10	8	14	
MW-9	04/07/10 15:20	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 13:42	8	14	
MW-13S	04/07/10 17:10	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 14:06	8	14	
MW-13S	04/07/10 17:10	04/08/10 17:15	04/16/10 09:48	9	14	04/16/10 17:59	9	14	
MW-13D	04/07/10 16:20	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 14:30	8	14	
MW-14S	04/08/10 09:40	04/08/10 17:15	04/15/10 10:24	7	14	04/15/10 14:54	7	14	
MW-14D	04/08/10 08:55	04/08/10 17:15	04/15/10 10:24	7	14	04/15/10 15:18	7	14	
MW-15S	04/08/10 13:50	04/08/10 17:15	04/15/10 10:24	7	14	04/15/10 15:43	7	14	
MW-15D	04/08/10 13:00	04/08/10 17:15	04/15/10 10:24	7	14	04/15/10 16:07	7	14	
MW-15D	04/08/10 13:00	04/08/10 17:15	04/17/10 12:23	9	14	04/17/10 13:17	9	14	
MW-16D	04/08/10 11:40	04/08/10 17:15	04/16/10 09:48	8	14	04/16/10 18:48	8	14	
MW-16D	04/08/10 11:40	04/08/10 17:15	04/17/10 12:20	9	14	04/17/10 13:42	9	14	
FIELD BLANK	04/07/10 11:15	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 16:55	8	14	
DUPLICATE	04/08/10 15:30	04/08/10 17:15	04/16/10 09:48	8	14	04/16/10 19:12	8	14	
MW-10	04/07/10 13:25	04/08/10 17:15	04/16/10 09:48	9	14	04/16/10 19:37	9	14	-
MW-11	04/07/10 14:15	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 18:07	8	14	
MW-2	04/07/10 09:50	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 18:31	8	14	
MW-3	04/07/10 10:45	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 18:55	8	14	
MW-4	04/08/10 14:45	04/08/10 17:15	04/16/10 09:48	8	14	04/16/10 20:01	8	14	
MW-6	04/07/10 12:35	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 20:32	8	14	
MW-16S	04/08/10 10:40	04/08/10 17:15	04/15/10 10:24	7	14	04/15/10 20:56	7	14	

407/416

Printed: 04/21/2010

HOLDING TIME SUMMARY 8260B

Laboratory:

TestAmerica Buffalo

SDG:

<u>DRAFT</u>

Client:

AECOM - Amherst, NY

Project:

AECOM, Inc. - Scott Aviation site - NY3A9023

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
MW-16S	04/08/10 10:40	04/08/10 17:15	04/16/10 09:48	8	14	04/16/10 20:25	8	14	
MW-12	04/07/10 11:45	04/08/10 17:15	04/15/10 10:24	8	14	04/15/10 21:20	8	14	
TRIP BLANK	04/07/10 00:00	04/08/10 17:15	04/16/10 09:48	9	14	04/16/10 20:50	9	14	

^{*} Indicates a Holding Time violation.

Form Rev: 11/23/09 408/416 Printed: 04/21/2010

COMB VOLATILE IN COLOR COLOR STORY COL	א רספ	X X X X X X X X X X X X X X X X X X X	PAGE 000132
15, Vol. Ext. Wt. D.F.	GC/MS VOLATILE INJECTIC Logbook # Arthorns Rev. 1,1009	\$10 # \$10 \$565\$ K105565	REVIEWED BY
Sample ID Sample ID STC (2013 - 01 - 10 - 10 - 10 - 10 - 10 - 10 -			

GC/MS VOLATILE INJECTION LOG Logbook # A10-02-10 Rev 1, 1709	Is/ss Mix # ReRun? pH <2 Comments	/	Arosso V			. //		V (P.4 roan / 1740 Arge	\(\frac{1}{2}\)	4	(Procest 428)			X (Sulfamely)	A X (a) X (c) X	<i>X</i>	1000	X	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	X			***	<i>\(\)</i>	<u> </u>		X	\	***	X 10.63	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	N X Contract Color	T T X X X		British Sale (KIUCICA)	OTODOS
GCIM	STD#								K103365	14/14/21/23	FICHORE	(Y[\(\alpha\))																						15(7) (2160	127.7.7.E	N(02205)	1.11.01.11 CC2P01.18	
27.76	Ext. Wt. D.F.							97 1			, ,			5	7	(12.	46						1, 327										2	0		de de		666600
GC/MS VOLATILE INJECTION LOG Logbook # A10-02-10 Rev. 1: 11/08	Sample ID Job# Inj. Vol.	15 (P) 100F35	7 7	RTD0963-01 00063	7 89	RTD0991-01 D0991	Ŕ	RTD 1238-01 (E) DATE 4	01 30 12/12 Sth102	-CEV! Sim L	- COV2	ON431-851	1 -644	7751020-08 DW.	RIDGAGO 10 MOSTE	1.	17	12120001-10-1120011	, O.V.		18 VOLON (19 VOLON) 40 -		_		1 0	1 Pine 1 10.000	1	£(0,	7,0	4	70-	494	(03	7	JON 1910 - 024 1001	100:1188 - BCi	ı İ
OC/WS VC	Time Analyst File#	 	95 1	5	M3 1 58	5.4	09	119 +	T 63555 JW	1	I SSTU	SAF	111 556		19663			333	150 PG10		1,	235 A	1 F C	+	1000 05年	SAS	1353) 300 (5578)	553	ţ	CON 850	030 646 SECRE	730	7355 555	758 J. 1856	\$3.45 TOO	State 1915 S2570	- 6	-
	_	01/251/2	F	1=			H	╁	-	\vdash			Г	ł	i	01/91/19	[1			`		- 1	- I		1	1 ~	_			777	J.M.	7		- 1	\ I	SUPUC	ı	- 1

GC/MS VOLATILE INJECTION LOG Legbook # A10-02-10 Rev. 1, 11/09

	Education Englished		ya.v				3	2000	·			1			esserv Protis		a constant					× = 2		eesta a	. \				%±4.	1	read and a second			243	Farrier day			342
H. 1	I	1	<u></u>	ନ	_	7	-	-	_	-	R	-		-	S	G	R	Ç	3		දු	Labo		į				7	99	5	-	-	-		_		<u> </u>	
EXT. W.																		_						7	/												7	
년. Vo.												_		_	-							_	-1	140	5M1	. 1											7	1000
#doc C/C	_		DC970	D1138	_									<u> </u>	Dieze								/	ac				1	DIUSH	Ť	DIISY	-		DIISS			4	
Sample ID +00 (44) -CCV2	TEX	10 DIMSS - BLK	RTD9180-101	RTD 1135 - 022	50	0)	-	<u>Ģ</u>	()	h)	5	91	Ţ.	Œ	RTD 1634 - 21 RE!	5	1	હ		۲)	91	18 प्रम	R	TOUME! -TOW!	CVV.	CUI	1001581-051	BLKI	RTD1034-08 REI	CP REI	RTD1154-01	Ġ	B	RTD 1155-CI	C))	ઈ	04	Sa chiving ac
55593	hb 1	36	7.	163	84	1 bb T	00955	Ü	Q	(3)	ļ.	-50	30	也	2	8	5) -	Ι	l G	ነ)	15	ф П	556 P	81	19	96	G	122	123	ηć	136	1 36	1 27	X	स	30	
Analyst U.K.	-									_						_	_							¥	-	_	Ą				_						7	
- NC ()	(5 <u>-</u>)	(1313	Sy6.	この	131	1356	9673	lipp)	1,20%	(63)	F137	1633	1646	1HC	(735	1756	1803	1848	(11)	16137	100E	2005	2000	1100	401	?S.	(A)	545	1317	1342	1406	1430	1455	1575	1543	1608	1632	
2/16/10																	411						4	oy/EL/A							_						+	

GC/MS VOLATILE INJECTION LOG Legbook # A10-02-10 Rev 1, 11/09

Comments RIDCLU - A-LJ														-	- 1	- e	RFI ESTX						P455	5-60 (RIOCIBI)	AJJ (RICCIDI-AJZ)										
H 4	1	X	4	4	\ \ \	×	Х.	X	X	<	7	<u>ب</u>	X	×		X	<u> </u>	×	X	X.	X	×	\parallel	1	-		`×	×	×	X	`*	×	<u> </u>	X	×
15/55 MIX# REPURT	A7035SD															7	<u> </u>					4		RIO3578/	- R10350 -	1									-
\$10 \$10%0] \rightarrow\$,														.`							+	RT02585	RTOUGH	RT04048	RT03369				The state of the s					

RIODODG-6pt 00000 ADD-N.G. PAGE 1 GCMS VOLATILE INJECTION LOG Logbook # A10-02-07 Rev 1, 15/09 Paroto मिल व्यच्यार्थ 15315070 REVIEWED BY. टिन्छा । इस्ट PILPOTA SCI NOT S 2+04120 RT03585 **E104113** 2TOY (23 2704121 R704116 RT04114 2724118 P. TO4119 RTD4115 # CLLS 000003 H 3 23 Ę¥ ¥ 7 inj. Vol. PAGE D 0549 Job# GC/MS VOLATILE INJECTION LOG Logbook # A10-12-07 Rev. 1, 11/09 444 933 1557 2557 2000--043 -CAC1 -CA2 18326 TODIZOG-TUNI 18321 -CALI -5851 Sample ID 130% PTC1531 D4 3 4 3 970 PTD 0545 DI 90 09 3 REVIEWED BY. 78332 78333 78334 18335 18336 18331 18338 T8316 T8317 T8339 T8346 78322 78323 T8324 78331 T8342 21834 18309 T8313 18328 78319 T6320 78324 18341 72897 ¥ 3, 1500 LA (Z4/ N) 1554 1839 1953 1741 1805 1420 0731 142 1507 7791 1727 1817 1301 1332 1356 1706 1753 1531 ۱ 군 9 41310 Date 4

	Comments		2137.46)												7								175-100	Park notused	7	W.	0 (181017026)	4										000014
GC/MS VOLATILE INJECTION LOG Legbook # A10-02-07 Rev 1, 1108	15/53 MIX# Refund pH <2	JAN JAN JAN JAN JAN JAN JAN JAN JAN JAN	1 2 2 1			6731.	7	7	· MEN /	7 /	\	1000	5:30 A A	\	イントイント	7 R54M	`	T F. 200	7	1 10AM		37.00		\sqcup	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	tanatatal - tanatatal	1,0041 - 1404				*	X	*	7	<u> </u>	*	X	
GC/MS VOLAT	STD#	401 M 5130	(10 <5.7)	- 11501A	11 14/13																			I CIDULA.		121 025X	07.45.70		QTO4171									mid
				- 1	-	٠ ١	ì	1	1	- [ı	ı	- 1	1	- 1 -	1				1												1	ㅗ	L				_,
		₽-				, , , , , , , , , , , , , , , , , , ,		511	. 0		, ,		2			£			よい	3		-1		200		0						20	la		103			
	Job# Ini. Vol. Ext. Wi. D.e	1 2 2	Ţ	3,4				D2/C6			_					21			140 (40 (20) (20 (20 (20) (20 (20) (20 (20) (20 (20) (20 (20) (20) (20 (20) (20) (20) (20) (20) (20) (20) (20 (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) 			, , , , , , , , , , , , , , , , , , ,	1.4	DON'S		7	1 5 5 W 1 7 1					58900	D0865	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	170888	10188		
	Job# Inf. Vol. Ext. Wt.		127 129 (25-17)	(20)	10 J. 15 J.	•	だ(乙) 以	Do406		10	()		-			1. Dodris	7,0		0.873			, , , ,		DOSIS	DXXX5117 1 1 12 .	705/-	T001380-TUHI -7	\$ P	- 1	1001212	7 7/20-	12-17-0683-0712E1 DO683	12th 0865-05/201 D0865	10-8980 (5)	13210-8880 CM	201038-01 D1038	-02	763 1 7 1 7 1 1
וסא ויספ	Job# Inf. Vol. Ext. Wt.	- 1/2/ - 1 Sm - 1 Sm - 1 Sm - 1	100 Hard Tensor Tou 120 1.10 1.1	1 1-3445 1 - 0001 . 3-4	17544/4, (AD1639-135)	1 - 172467 1 - 1824/	75162 1218-0911001	74206c301 Dougs 1	7-0-	125% 12十分285-21 1238日 1	5			一	-/3; -/-	17897 1770 868-01 DOGS	12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	T-CA-7 (-C2)	0 Rib(1878-01 DOSTS	1891	C	1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	37 37 484	2 TTD 12-32-01 DOBY	17827 100125MS 288611 1 12 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T001380-TUHI -7	(T820 GEV.	12821	18522 1001212	T8523 -BUL 1-	12-Th 0683-0712E1 DO683	178525 12+00865-05/281 D08651	10-8980 (22) 97582	888-01 12010-8888-CT21 12888	78528 QTD 1038-01 D1638	78529 -02	7 78530 -63 1 1 1 1 1

GC/MS VOLATILE INJECTION LOG Logbook # A10-02-07 Rev. 1, 11/109

Date	Time	Analyst	t File#	Sample ID	.lob#	й 707 Е	151	ı G	1200
4140	1630	王	18531	1200 H-61	-	-	<u> </u>	- 25	
	1653	-	18532	20-	_			Γ_	See X
	118		18533	1	-1			T_	
	1741		18237	PATO 1195	01195	_	-	T_	
	1805		18535		,		-	Γ.	
	1824		78536			-	Ë	Ι,	
	1853		T8537	•			-	16	
	1917		78538	-05 (A				1/	
	1941		78534				-	1	
	12005		18240	10DIZIZ-		_	-	11/	`
	12029		171581					J.	
	2053		T4547	109		-		2 -	
	2117		18543				-	Τ_	
	2412		74587	-			-	Γ_	237.1
	1226		T8545	71-		-			
	2230		18246	21-		_		Γ	iki m
_4	7254		1788T	11				L	
14	18182		T8548	151	-1	-	-	Τ_	
41	2342		1884	12-01911911-01	Dirigh			Ι_	
41510	book		1855	-07.				Ι_	
-	00 30		1855	-03				Γ_	
	1002rt		78552		7				1
	0118		18553	12m11971-01 (B)	51197		-	<u>.</u>	723
	0143		1828L	1001212-MSZ@	-			4	
	1020		19555	- MSOZ(年			13	t.	
	0231		18556	国 to-			-	1	
	0255		18887	202				Γ	1
\sigma_2^*	103191		18558	-06					
	0343		78555	707				<u> </u>	
	10407		18560	-08				_	
-(16432	_1	1856	18	7	-1	- - -	Γ	!
4100	67	Ż	18562	T001413-TUN1	7 5	Swl -	1	_	
-	1639	-	18563	122-				Γ-	
	Ξ		十25%上	10D1339-1551				<u> </u>	
	当	_	T85165	150XI	7		7	1	
	170%	_	18576	KTD 0926-01 Grup	D8426				4
	1229	4	18567	-02 Comp	-		3	(4	
1	1254	7	18569	-13	_	7 7	_		1
			_	REVIEWED BY	Ą	PAGE	000015	Z)	
					ı				

GC/MS VOLATILE INJECTION LOG Logbook # A10-02-07 Rev 1, 11/09

000018

REVIEWED BY

GC/MS VOLATILE INJECTION LOG Logbook # A10-02-07 Rev. 1, 11/08

10000 10000											200					14.00 10.00	P.			A STATE OF THE STA			DI.				No.	1000	ters:		1200		
Λt. D.F.	L	-	(<u></u>		<u> </u>	20	-	-	-	200	-	_	ln	-	200	200	200	_	7007	-	_	707	100		_							
Inj. Vol. Ext. Wt.																								-		7							. •
#qop	D1034	_					(1)							(a)										7 7	,	FCIपेडा							
Sample ID	ATD1034-61	70-	-03	TIO	-65	90-) 69-	89-	70-		Ŧ	71-	-13) †1	5)-	91-	10D1339-MS1	-msD		81-	-19	-20	10D1339-MS2	- MSID2	12M	5							.,
st File#	T851A	01287T	1857	T8572	78573	18574	78575	18576	Trsst	18518	TXS79	TESS	18581	178587	T&S 83	18284	18585	T\$586	T&S&7	18588	18289	T8596	18591	78592	178593	T859412T							
Time Analyst	1218 14	1342	1400	1430	1454	8151	1543	1007	1621	11055	1119	1743	1807	1831	1855	1919	18-18-	2008	2632	2054	2120	1 1 1	2207	222	7255	7 1982							
Date	4 15 10																415	5/41	16							1							

GC/MS VOLATILE INJECTION LOG Logbook # A10-02-07 Rev 1, 11/08

V V V <th>STD#</th> <th>L-</th> <th>Ę.</th> <th></th> <th>Comments</th>	STD#	L-	Ę.		Comments
メソメメメメメメメメメメ ア ファ ファ ファ ファ ファ ファ ファ ファ ファ ファ ファ ファ ファ	7	<u>अविवर्</u>	7	×	@ 40×
** ** ** ** ** ** ** ** ** ** ** ** **		1404	-		
*** *** <td></td> <td>1</td> <td>7</td> <td>_</td> <td>025x</td>		1	7	_	025x
× メ				メ	
メスタースタースタースタースタースタースタースタースタースタースタースタースタース				×	
				メ	
マース・マース・マース・マース・マース・マース・マース・マース・マース・マース・					
メ			\langle		@20×
************************************			7		Co?/@2x
				_	
**** ****			7		@ 100x
**************************************			7		Swerens
x x y x x x y x y x y x 1 y 1 1 1 1 1 1			-	X	
メ				X	
*** *** <td></td> <td></td> <td></td> <td>X</td> <td></td>				X	
- - - - - -			7		のしのメ
*** *** <td>Rossit</td> <td></td> <td>1</td> <td></td> <td>Base Not used</td>	Rossit		1		Base Not used
x x x x x x x x x x x x x x x x x x x	-1				
*** *** </td <td></td> <td></td> <td></td> <td>X</td> <td></td>				X	
**************************************			7	<u>አ</u>	0 400×
7-1			-	X	
7217	7		7	×	をつい
	(203414		-	7	NO ON 12HR
	_			×	12Mrg-
7	<u></u>			1	
		7		X	•
				7	

000018

PAGE

REVIEWED BY_

PAGE 000017

REVIEWED BY_

Volatile Organic Example Calculation METHOD 8260/624/OLM04.3 Aqueous Matrix

 $\frac{\text{Amt (ug/L)}}{\text{ X}} \qquad \frac{\text{DF}}{\text{ = ug/l}} = \frac{\text{ug/l}}{\text{ }}$

Amt = ug/L on column DF=Dilution Factor (no units)

METHOD 8260/OLM04.3 Medium-Level Soil Matrix

 $\frac{\text{Amt (UG/L} \quad X \quad DF \quad X \quad FV}{\text{SW} \quad X \quad DDW \quad X \quad \text{ini Vol}} \quad X \quad 1000 \quad = \quad \text{ug/kg}$

Amt = Amount on column

 $(ug/L \times 5 = ng)$

DF=Dilution Factor (no units)

FV= Final Volume (ml)

(FV /50)

Inj Vol= injection volume(ul)

SW = Sample Weight (g)

DDW = Decimal Dry Weight (no units, dry wgt/100)

METHOD 8260/OLM04.3 Low-Level Soil Matrix

 $\frac{Amt (ng)}{SW} \frac{X}{X} \frac{DF}{DDW} = ug/kg$

Amt = ng on column
DF=Dilution Factor (no units)
SW = Sample Weight (g)
DDW = Decimal Dry Weight (no units; dry wgt/100)

Analytical Report

Work Order: RTD1209

Project Description
Scott Aviation site - Influent/Effluent

For:

Dino Zack

AECOM - Amherst, NY 100 Corporate Pkwy-Univ Centre Amherst, NY 14226

Brian Fischer

Project Manager
Brian.Fischer@testamericainc.com
Tuesday, May 4, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Work Order: RTD1209

Received: 04/09/10 Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

TestAmerica Buffalo Current Certifications

As of 12/21/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RTD1209

Received:

04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 166 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

NR

Work Order: RTD1209

Received:

04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

DATA QUALIFIERS AND DEFINITIONS

Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

Work Order: RTD1209

Received:

04/09/10 Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: **EARTH**

Executive	Summary	- Detections
------------------	---------	--------------

		-	-xccative oa	illillary - Detect	10110				
Amabata	Sample	Data	DI.	11-4-	Dil	Date	Lab	Detel	
Analyte	Result	Qualifiers	RL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1209-01	(AS Effluent	- Air)		Samp	oled: 04/	07/10 12:00	Recv	/d: 04/14/10)
TO-14A									
Carbon disulfide	13		1.6	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
cis-1,2-Dichloroethene	17		0.79	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Toluene	2.8		0.75	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Trichloroethene	64		1.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Trichlorofluoromethane	1.3		1.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Vinyl Chloride	0.51		0.51	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Sample ID: RTD1209-02	(LRP Effluen	t - Air)		Samp	oled: 04/	07/10 12:00	Recv	/d: 04/14/10)
TO-14A									
cis-1,2-Dichloroethene	16000		560	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
Toluene	530		530	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
Trichloroethene	110000		750	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A

Work Order: RTD1209

Received:

04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
AS Effluent	RTD1209-01	Air	04/07/10 12:00	04/09/10 09:37	
LRP Effluent	RTD1209-02	Air	04/07/10 12:00	04/09/10 09:37	

Work Order: RTD1209

Received: 04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1209-01 (A						/07/10 12:00		vd: 04/14/10	
TO-14A					•				
1,1,1-Trichloroethane	ND		1.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
1,1,2,2-Tetrachloroethane	ND		1.4	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,1,2-Trichloroethane	ND		1.1	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,1-Dichloroethane	ND		0.81	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,1-Dichloroethene	ND		0.79	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2,4-Trichlorobenzene	ND		3.7	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2,4-Trimethylbenzene	ND		0.98	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2-Dibromoethane	ND		1.5	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2-Dichlorobenzene	ND		1.2	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2-Dichloroethane	ND		0.81	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2-Dichloropropane	ND		0.92	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,2-Dichlorotetrafluoroeth	ND		1.4	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
ane 1,3,5-Trimethylbenzene	ND		0.98	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,3-Butadiene	ND		1.1	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04	TO-14A
1,3-Dichlorobenzene	ND		1.2	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
1,4-Dichlorobenzene	ND		1.2	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
2,2,4-Trimethylpentane	ND		0.93	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
2-Chlorotoluene	ND		1.0	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
3-Chloropropene	ND		1.6	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
4-Ethyltoluene	ND		0.98	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Benzene	ND		0.64	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Bromodichloromethane	ND		1.3	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Bromoethene	ND		0.87	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Bromoform	ND		2.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Bromomethane	ND		0.78	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Carbon disulfide	13		1.6	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1209

Received: 04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

Ana	lytical	Report

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1209-01 (A	S Effluent	- Air) - cont.		Sam	pled: 04	/07/10 12:00	Recv	vd: 04/14/10)
TO-14A - cont.									
Carbon tetrachloride	ND		1.3	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Chlorobenzene	ND		0.92	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Chloroethane	ND		1.3	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Chloroform	ND		0.98	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Chloromethane	ND		1.0	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
cis-1,2-Dichloroethene	17		0.79	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
cis-1,3-Dichloropropene	ND		0.91	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Cyclohexane	ND		0.69	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Dibromochloromethane	ND		1.7	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Dichlorodifluoromethane	ND		2.5	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Ethylbenzene	ND		0.87	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Freon TF	ND		1.5	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Hexachlorobutadiene	ND		2.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Methylene chloride	ND		1.7	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
n-Heptane	ND		0.82	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
n-Hexane	ND		1.8	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Styrene	ND		0.85	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Tetrachloroethene	ND		1.4	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
Toluene	2.8		0.75	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
trans-1,2-Dichloroethene	ND		0.79	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A
trans-1,3-Dichloropropen	ND		0.91	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Trichloroethene	64		1.1	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Trichlorofluoromethane	1.3		1.1	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Vinyl Chloride	0.51		0.51	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04	TO-14A
Xylene (m,p)	ND		1.7	ug/m3	1.00	04/21/10 01:53	wrd	2 MBLK04 2	TO-14A
Xylene (o)	ND		0.87	ug/m3	1.00	04/21/10 01:53	wrd	MBLK04 2	TO-14A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1209

Received: 04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	_	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1209-02 (L	RP Effluen	t - Air)			Samp	oled: 04	/07/10 12:00	Recv	/d: 04/14/10	
<u>TO-14A</u>										
1,1,1-Trichloroethane	ND		760		ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
1,1,2,2-Tetrachloroethane	ND		960		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,1,2-Trichloroethane	ND		760		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,1-Dichloroethane	ND		570		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,1-Dichloroethene	ND		560		ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
1,2,4-Trichlorobenzene	ND		2500		ug/m3	684	04/21/10 07:49	wrd	2 MBLK04 2	TO-14A
1,2,4-Trimethylbenzene	ND		690		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,2-Dibromoethane	ND		1100		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,2-Dichlorobenzene	ND		840		ug/m3	684	04/21/10 07:49	wrd	2 MBLK04 2	TO-14A
1,2-Dichloroethane	ND		570		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,2-Dichloropropane	ND		650		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,2-Dichlorotetrafluoroeth ane	ND		980		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,3,5-Trimethylbenzene	ND		690		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,3-Butadiene	ND		750		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,3-Dichlorobenzene	ND		840		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
1,4-Dichlorobenzene	ND		840		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
2,2,4-Trimethylpentane	ND		650		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
2-Chlorotoluene	ND		720		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
3-Chloropropene	ND		1100		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
4-Ethyltoluene	ND		690		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Benzene	ND		450		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Bromodichloromethane	ND		940		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Bromoethene	ND		610		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Bromoform	ND		1400		ug/m3	684	04/21/10 07:49	wrd	2 MBLK04 2	TO-14A
Bromomethane	ND		540		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Carbon disulfide	ND		1100		ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A

Work Order: RTD1209

Received: 04/09/10

Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: EARTH

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1209-02 (I	LRP Effluen	t - Air) - cont.		Sam	pled: 04	/07/10 12:00	Recv	vd: 04/14/10)
TO-14A - cont.									
Carbon tetrachloride	ND		880	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
Chlorobenzene	ND		640	ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Chloroethane	ND		900	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
Chloroform	ND		680	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
Chloromethane	ND		700	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
cis-1,2-Dichloroethene	16000		560	ug/m3	684	04/21/10 07:49	wrd	MBLK04 2	TO-14A
cis-1,3-Dichloropropene	ND		640	ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Cyclohexane	ND		480	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Dibromochloromethane	ND		1200	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Dichlorodifluoromethane	ND		1700	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Ethylbenzene	ND		610	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Freon TF	ND		1100	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Hexachlorobutadiene	ND		1500	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Methylene chloride	ND		1200	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
n-Heptane	ND		570	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04 2	TO-14A
n-Hexane	ND		1200	ug/m3	684	04/21/10 07:49	wrd	MBLK04	TO-14A
Styrene	ND		600	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Tetrachloroethene	ND		950	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Toluene	530		530	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
trans-1,2-Dichloroethene	ND		560	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
trans-1,3-Dichloropropen	ND		640	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
e Trichloroethene	110000		750	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Trichlorofluoromethane	ND		790	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Vinyl Chloride	ND		360	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Xylene (m,p)	ND		1200	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04	TO-14A
Xylene (o)	ND		610	ug/m3	684	04/21/10 07:49	wrd	2 MBLK04 2	TO-14A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1209

Received:

04/09/10 Reported: 05/04/10 16:30

Project: Scott Aviation site - Influent/Effluent

Project Number: **EARTH**

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	Units	Result	% REC	% REC Limits	% RP RPD Lim	D Data it Qualifiers
TO-14A									
LCS Analyzed: 04/20/10	(Lab Numb	er:FA0420	10LCS, Batch: MBLK042)						
1,1,1-Trichloroethane		55.0	1.1	ug/m3	60	110	70-130		
1,1,2,2-Tetrachloroethane		69.0	1.4	ug/m3	65	95	70-130		
1,1,2-Trichloroethane		55.0	1.1	ug/m3	51	93	70-130		
1,1-Dichloroethane		40.0	0.81	ug/m3	39	97	70-130		
1,1-Dichloroethene		40.0	0.79	ug/m3	44	110	70-130		
1,2,4-Trichlorobenzene		74.0	3.7	ug/m3	72	97	70-130		
1,2,4-Trimethylbenzene		49.0	0.98	ug/m3	48	98	70-130		
1,2-Dibromoethane		77.0	1.5	ug/m3	77	100	70-130		
1,2-Dichlorobenzene		60.0	1.2	ug/m3	59	98	70-130		
1,2-Dichloroethane		40.0	0.81	ug/m3	40	99	70-130		
1,2-Dichloropropane		46.0	0.92	ug/m3	42	90	70-130		
1,2-Dichlorotetrafluoroeth ane		70.0	1.4	ug/m3	70	100	70-130		
1,3,5-Trimethylbenzene		49.0	0.98	ug/m3	49	100	70-130		
1,3-Butadiene		22.0	1.1	ug/m3	19	88	70-130		
1,3-Dichlorobenzene		60.0	1.2	ug/m3	60	99	70-130		
1,4-Dichlorobenzene		60.0	1.2	ug/m3	60	100	70-130		
2,2,4-Trimethylpentane		47.0	0.93	ug/m3	43	92	70-130		
2-Chlorotoluene		52.0	1.0	ug/m3	52	100	70-130		
3-Chloropropene		31.0	1.6	ug/m3	28	89	70-130		
4-Ethyltoluene		49.0	0.98	ug/m3	49	100	70-130		
Benzene		32.0	0.64	ug/m3	31	96	70-130		
Bromodichloromethane		67.0	1.3	ug/m3	74	110	70-130		
Bromoethene		44.0	0.87	ug/m3	44	100	70-130		
Bromoform		100	2.1	ug/m3	110	110	70-130		
Bromomethane		39.0	0.78	ug/m3	38	98	70-130		
Carbon disulfide		31.0	1.6	ug/m3	31	100	70-130		
Carbon tetrachloride		63.0	1.3	ug/m3	69	110	70-130		
Chlorobenzene		46.0	0.92	ug/m3	45	97	70-130		
Chloroethane		26.0	1.3	ug/m3	23	88	70-130		
Chloroform		49.0	0.98	ug/m3	49	100	70-130		
Chloromethane		21.0	1.0	ug/m3	18	85	70-130		
cis-1,2-Dichloroethene		40.0	0.79	ug/m3	40	100	70-130		
cis-1,3-Dichloropropene		45.0	0.91	ug/m3	43	95	70-130		
Cyclohexane		34.0	0.69	ug/m3	34	98	70-130		
Dibromochloromethane		85.0	1.7	ug/m3	94	110	70-130		
Dichlorodifluoromethane		49.0	2.5	ug/m3	49	100	70-130		
Ethylbenzene		43.0	0.87	ug/m3	43	100	70-130		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1209

Received:

04/09/10

Reported:

05/04/10 16:30

EARTH

Project Number:

LABORATO	RY Q)C	DATA	
----------	------	----	------	--

Project: Scott Aviation site - Influent/Effluent

Hexachlorobutadiene 110 2.1 ug/m3 110 100 70-130 Methylene chloride 35.0 1.7 ug/m3 33 96 70-130 n-1-leptane 41.0 0.82 ug/m3 35 86 70-130 n-1-leptane 41.0 0.82 ug/m3 35 86 70-130 n-1-leptane 35.0 1.8 ug/m3 32 91 70-130 n-1-leptane 41.0 0.85 ug/m3 32 91 70-130 n-1-leptane 41.0 0.85 ug/m3 32 91 70-130 n-1-leptane 43.0 0.85 ug/m3 41 96 70-130 n-1-leptane 68.0 1.4 ug/m3 86 96 70-130 n-1-leptane 68.0 1.4 ug/m3 86 96 70-130 n-1-leptane 68.0 0.75 ug/m3 86 96 70-130 n-1-leptane 70-leptane 70-leptane 70-leptane 70-1-leptane 70-leptane 70-1-leptane 70-1-le		Source	Spike	ы				%	% REC	%	RPD	Data
CLS Analyzed: 04/20/10 (Lab Number:FA042010 LCS, Batch: MBLK042) Freen TF		Result	Levei	KL		Units	Result	REC	Limits	RPD	Limit	Qualifiers
Freen TF	<u>TO-14A</u>											
Freen TF	LCS Analyzed: 04/20/10	(Lab Numb	er:FA0420	010LCS	Batch: MBLK042)							
Methylene chloride 35.0 1.7 ug/m3 33 96 70-130 n-Heplane 41.0 0.82 ug/m3 35 86 70-130 n-Heplane 41.0 0.82 ug/m3 35 86 70-130 n-Heplane 43.0 0.85 ug/m3 32 91 70-130 styrene 43.0 0.85 ug/m3 41 96 70-130 n-Heblane 86.0 1.4 ug/m3 88 100 70-130 n-Heplane 40.0 0.75 ug/m3 88 96 70-130 n-Heplane 40.0 0.79 ug/m3 88 96 70-130 n-Heplane 45.0 0.91 ug/m3 88 96 70-130 n-Heplane 45.0 0.91 ug/m3 88 96 70-130 n-Heplane 45.0 0.91 ug/m3 88 96 70-130 n-Heplane 45.0 0.91 ug/m3 88 96 70-130 n-Heplane 45.0 0.91 ug/m3 89 97 70-130 n-Heplane 45.0 0.91 ug/m3 85 99 70-130 n-Heplane 45.0 0.91 ug/m3 85 99 70-130 n-Heplane 45.0 0.81 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.0 0.87 ug/m3 87 100 70-130 n-Heplane 45.1 ug/m3 80 0 0 70-130 n-Heplane 45.1 ug/m3	Freon TF	•			•	ug/m3	84	110	70-130			
n-Heptane	Hexachlorobutadiene		110	2.1		ug/m3	110	100	70-130			
Nelexane 35.0 1.8 ug/m3 32 91 70-130 Styrene 43.0 0.85 ug/m3 41 96 70-130 Tetrachloroethene 68.0 1.4 ug/m3 68 100 70-130 Tetrachloroethene 36.0 0.75 ug/m3 36 96 70-130 trans-1,2-Dichloroptopen 45.0 0.91 ug/m3 38 96 70-130 trans-1,2-Dichloroptopen 45.0 0.91 ug/m3 53 99 70-130 Tichloroftuoromethane 54.0 1.1 ug/m3 53 99 70-130 Tichloroftuoromethane 56.0 1.1 ug/m3 23 89 70-130 Vinyl Chloride 26.0 0.51 ug/m3 23 89 70-130 Vinyl Chloride 26.0 0.51 ug/m3 23 89 70-130 Vinyl Chloride 43.0 0.87 ug/m3 23 89 70-130 Vinyl Chloride 43.0 0.87 ug/m3 23 89 70-130 Vinyl Chloride 1.1 ug/m3 23 89 70-130 Vinyl Chloride 1.1 ug/m3 0.0 70-130 Vinyl Chloride 1.1 ug/m3 0.0 70-130 Vinyl Chloride 1.1 ug/m3 ND 1.1,1-Trichloroethane 1.4 ug/m3 ND - 1.1,2-Trichloroethane 1.1 ug/m3 ND - 1.1,2-Trichloroethane 1.1 ug/m3 ND - 1.2,2-Trichloroethane 0.98 ug/m3 ND - 1.2,4-Trichloroethane 0.98 ug/m3 ND - 1.2,2-Timethylbenzene 0.98 ug/m3 ND - 1.2,2-Dichloroethane 0.81 ug/m3 ND - 1.2,2-Dichloroethane 0.81 ug/m3 ND - 1.2,2-Dichloroethane 0.99 ug/m3 ND - 1.2,2-Dichloroethane 0.99 ug/m3 ND - 1.2,2-Dichloroethane 0.99 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,5-Timethylbenzene 1.2 ug/m3 ND - 1.3,6-Timethylbenzene 1.0 ug/m3 ND - 1.3,6-Timethylbenzene 1.0	Methylene chloride		35.0	1.7		ug/m3	33	96	70-130			
Styrene 43.0 0.85 ug/m3 41 96 70-130 Tetrachloroethene 68.0 1.4 ug/m3 68 100 70-130 Toluene 38.0 0.75 ug/m3 36 96 70-130 trans-1.3-Dichloroptropen 45.0 0.91 ug/m3 38 96 70-130 trichloroethene 54.0 1.1 ug/m3 53 99 70-130 Trichlorofluoromethane 56.0 1.1 ug/m3 23 89 70-130 Vinyl Chioride 26.0 0.51 ug/m3 23 89 70-130 Vilylene (m,p) 47.0 1.7 ug/m3 42 97 70-130 Wylene (m,p) 47.0 87.0 0.7 1.7 ug/m3 80 70-130 Tylcheloroethane 1.1 ug/m3 ND - - - 1,1,2-Trichloroethane 1.4 ug/m3 ND - - 1,2-Erithloroethane	n-Heptane		41.0	0.82		ug/m3	35	86	70-130			
Tetrachloroethene 68.0 1.4 ug/m3 68 100 70-130 Toluene 38.0 0.75 ug/m3 36 96 70-130 trans-1,2-Dichloroethene 40.0 0.79 ug/m3 38 96 70-130 trans-1,3-Dichloropropen 45.0 0.99 ug/m3 8 97 70-130 Trichloroethene 54.0 1.1 ug/m3 62 110 70-130 Trichloroethene 56.0 1.1 ug/m3 62 110 70-130 Trichlorofundehane 56.0 1.1 ug/m3 62 110 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 87 100 70-130 Trichlorofundehane 56.0 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.2 ug/m3 80 87 100 70-130 Trichloroethane 1.2 ug/m3 80 87 100 70-130 Trichloroethane 1.2 ug/m3 80 87 100 70-130 Trichloroethane 1.2 ug/m3 80 87 100 70-130 Trichloroethane 1.2 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100 70-130 Trichloroethane 1.1 ug/m3 80 87 100	n-Hexane		35.0	1.8		ug/m3	32	91	70-130			
Toluene 38.0 0.75 ug/m3 36 96 70-130 trans-1.2-Dichloroethene 40.0 0.79 ug/m3 38 96 70-130 trans-1.3-Dichloropropen 45.0 0.91 ug/m3 44 97 70-130 trans-1.3-Dichloropropen 56 0.91 ug/m3 53 99 70-130 Trichlorofluoromethane 56.0 1.1 ug/m3 53 99 70-130 Trichlorofluoromethane 56.0 1.1 ug/m3 62 110 70-130 Vilving Chloride 26.0 0.51 ug/m3 23 89 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 87 100 70-130 Vilving Chloride 43.0 0.87 ug/m3 ND 5 5 5 11.1,12-2-Etrachloroethane 1.1 ug/m3 ND 5 5 5 1.1,12-2-Etrachloroethane	Styrene		43.0	0.85		ug/m3	41	96	70-130			
trans-1,2-Dichloroethene	Tetrachloroethene		68.0	1.4		ug/m3	68	100	70-130			
trans-1,3-Dichloropropene e	Toluene		38.0	0.75		ug/m3	36	96	70-130			
E Trichioroethene 54.0 1.1 ug/m3 53 99 70-130 Trichioroethene 56.0 1.1 ug/m3 62 110 70-130 Vinyl Chloride 26.0 0.51 ug/m3 23 89 70-130 Xylene (m,p) 87.0 1.7 ug/m3 87 100 70-130 Xylene (o) 43.0 0.87 ug/m3 87 100 70-130 Blank Analyzed: 04/20/10 (Lab Number: MBLK042/2010FA, Batch: MBLK042) Lipidicroethane 1.1 ug/m3 ND - 1,1,1,2,2-Tetrachloroethane 1.4 ug/m3 ND - 1,1-1,2-Trichloroethane 1.4 ug/m3 ND - 1,1-1,2-Trichloroethane 0.81 ug/m3 ND - 1,2-4-Trichlorobenzene 0.98 ug/m3 ND - 1,2-Dichloroethane 1.5 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND -	trans-1,2-Dichloroethene		40.0	0.79		ug/m3	38	96	70-130			
Trichloroethene	trans-1,3-Dichloropropen		45.0	0.91		ug/m3	44	97	70-130			
Vinyl Chloride 26,0 0.51 ug/m3 23 89 70-130 Xylene (m,p) 87,0 1.7 ug/m3 87 100 70-130 Xylene (o) 43.0 0.87 ug/m3 42 97 70-130 Blank Analyzed: 04/20/10 (Lab Number: MBLK042010FA, Batch: MBLK042) 1.1,1-Trichloroethane 1.1 ug/m3 ND - 1,1,2-Trichloroethane 1.4 ug/m3 ND - 1,1-Dichloroethane 1.1 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,2-A-Trichlorobenzene 0.79 ug/m3 ND - 1,2-A-Trichlorobenzene 3.7 ug/m3 ND - 1,2-Dichlorobenzene 1.5 ug/m3 ND - 1,2-Dichlorobenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 0.92 ug/m3 ND - 1,2-Dichlorobenzene 0.99 ug/m3 ND	Trichloroethene		54.0	1.1		ug/m3	53	99	70-130			
Xylene (m,p) 87,0 1.7 ug/m3 87 100 70-130 Xylene (o) 43,0 0.87 ug/m3 42 97 70-130 Blank Analyzed: 04/20/10 (Lab Number:MBLK042010FA, Batch: MBLK042) Ug/m3 ND - 1,1,1-Trichloroethane 1.4 ug/m3 ND - 1,1,2,2-Tetrachloroethane 1.4 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,2-Hrinchlorobenzene 0.79 ug/m3 ND - 1,2-Hrinchlorobenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 0.98 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropenpane 0.81 ug/m3 ND - 1,2-Dichloropetrafluoroeth 1.4 ug/m3 ND - 1,3-Britadiene 1.4 ug/m3 ND	Trichlorofluoromethane		56.0	1.1		ug/m3	62	110	70-130			
Xylene (o) 43.0 0.87 ug/m3 42 97 70-130 Blank Analyzed: 04/20/10 (Lab Number:MBLK042010FA, Batch: MBLK042) Ug/m3 ND - 1,1,1-Trichloroethane 1.1 ug/m3 ND - 1,1,2-Trichloroethane 1.4 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 1.5 ug/m3 ND - 1,2-Dichlorotetrafluoroethane 1.2 ug/m3 ND - 1,2-Dichlorotetrafluoroethane 0.81 ug/m3 ND - 1,2-Dichlorotetrafluoroethane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroethane 0.93 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - <td>Vinyl Chloride</td> <td></td> <td>26.0</td> <td>0.51</td> <td></td> <td>ug/m3</td> <td>23</td> <td>89</td> <td>70-130</td> <td></td> <td></td> <td></td>	Vinyl Chloride		26.0	0.51		ug/m3	23	89	70-130			
Blank Analyzed: 04/20/10 (Lab Number:MBLK042010FA, Batch: MBLK042) 1,1,1-Trichloroethane 1.1 ug/m3 ND - 1,1,2-Trichloroethane 1.4 ug/m3 ND - 1,1-2-Trichloroethane 1.1 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.79 ug/m3 ND - 1,2-4-Trichlorobenzene 3.7 ug/m3 ND - 1,2-4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 1.5 ug/m3 ND - 1,2-Dichloroethane 1.2 ug/m3 ND - 1,2-Dichloroptopane 0.81 ug/m3 ND - 1,2-Dichloroptopane 0.92 ug/m3 ND - 1,3-5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND	Xylene (m,p)		87.0	1.7		ug/m3	87	100	70-130			
1,1,1-Trichloroethane 1.1 ug/m3 ND - 1,1,2-Tetrachloroethane 1.4 ug/m3 ND - 1,1,2-Trichloroethane 1.1 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 1.5 ug/m3 ND - 1,2-Dichloroethane 1.2 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth 1.4 ug/m3 ND - 1,3-S-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 <td>Xylene (o)</td> <td></td> <td>43.0</td> <td>0.87</td> <td></td> <td>ug/m3</td> <td>42</td> <td>97</td> <td>70-130</td> <td></td> <td></td> <td></td>	Xylene (o)		43.0	0.87		ug/m3	42	97	70-130			
1,1,2,2-Tetrachloroethane 1.4 ug/m3 ND - 1,1,2-Trichloroethane 1.1 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichlorobenzene 1.5 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3-Frimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.6 <td< td=""><td>Blank Analyzed: 04/20/1</td><td>0 (Lab Nun</td><td>nber:MBL</td><td>(042010</td><td>FA, Batch: MBLK042</td><td>2)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Blank Analyzed: 04/20/1	0 (Lab Nun	nber:MBL	(042010	FA, Batch: MBLK042	2)						
1,1,2,2-Tetrachloroethane 1,4 ug/m3 ND - 1,1,2-Trichloroethane 1,1 ug/m3 ND - 1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethane 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichloroethane 1.5 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloroethane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth 1,4 ug/m3 ND - 1,2-Dichlorotetrafluoroeth 1,4 ug/m3 ND - 1,3-Frimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 <t< td=""><td>1,1,1-Trichloroethane</td><td>•</td><td></td><td>1.1</td><td></td><td>ug/m3</td><td>ND</td><td></td><td>-</td><td></td><td></td><td></td></t<>	1,1,1-Trichloroethane	•		1.1		ug/m3	ND		-			
1,1-Dichloroethane 0.81 ug/m3 ND - 1,1-Dichloroethene 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dibromoethane 1.5 ug/m3 ND - 1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetraffuoroeth 1.4 ug/m3 ND - 1,2-Dichlorotetraffuoroeth 1.4 ug/m3 ND - 1,3-Brimethylbenzene 0.98 ug/m3 ND - 1,3-Bichlorobenzene 1.1 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.6 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 <td>1,1,2,2-Tetrachloroethane</td> <td></td> <td></td> <td>1.4</td> <td></td> <td>ug/m3</td> <td>ND</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	1,1,2,2-Tetrachloroethane			1.4		ug/m3	ND		-			
1,1-Dichloroethene 0.79 ug/m3 ND - 1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dichorobethane 1.5 ug/m3 ND - 1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloropropane 0.81 ug/m3 ND - 1,2-Dichlorotetrafluoroeth 1.4 ug/m3 ND - 1,3-5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,1,2-Trichloroethane			1.1		ug/m3	ND		-			
1,2,4-Trichlorobenzene 3.7 ug/m3 ND - 1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dibromoethane 1.5 ug/m3 ND - 1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloropethane 0.81 ug/m3 ND - 1,2-Dichloroperopane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth and and an an an an an an an an an an an an an	1,1-Dichloroethane			0.81		ug/m3	ND		-			
1,2,4-Trimethylbenzene 0.98 ug/m3 ND - 1,2-Dibromoethane 1.5 ug/m3 ND - 1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,1-Dichloroethene			0.79		ug/m3	ND		-			
1,2-Dibromoethane 1.5 ug/m3 ND - 1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2,4-Trichlorobenzene			3.7		ug/m3	ND		-			
1,2-Dichlorobenzene 1.2 ug/m3 ND - 1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2,4-Trimethylbenzene			0.98		ug/m3	ND		-			
1,2-Dichloroethane 0.81 ug/m3 ND - 1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2-Dibromoethane			1.5		ug/m3	ND		-			
1,2-Dichloropropane 0.92 ug/m3 ND - 1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2-Dichlorobenzene			1.2		ug/m3	ND		-			
1,2-Dichlorotetrafluoroeth ane 1.4 ug/m3 ND - 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2-Dichloroethane			0.81		ug/m3	ND		-			
ane 1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	1,2-Dichloropropane			0.92		ug/m3	ND		-			
1,3,5-Trimethylbenzene 0.98 ug/m3 ND - 1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -				1.4		ug/m3	ND		-			
1,3-Butadiene 1.1 ug/m3 ND - 1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -				0.98		ug/m3	ND		_			
1,3-Dichlorobenzene 1.2 ug/m3 ND - 1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	•								_			
1,4-Dichlorobenzene 1.2 ug/m3 ND - 2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	,								-			
2,2,4-Trimethylpentane 0.93 ug/m3 ND - 2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	·					_			-			
2-Chlorotoluene 1.0 ug/m3 ND - 3-Chloropropene 1.6 ug/m3 ND -	2,2,4-Trimethylpentane					_			-			
3-Chloropropene 1.6 ug/m3 ND -	2-Chlorotoluene								-			
						_			-			
	4-Ethyltoluene			0.98		ug/m3	ND		-			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RTD1209

Received:

04/09/10

Reported:

05/04/10 16:30

Project Number: **EARTH**

LABORATORY QC D	ATA	١
-----------------	-----	---

Project: Scott Aviation site - Influent/Effluent

Analyte	Source Result	Spike Level	RL	U	nits	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
<u>TO-14A</u>											
Blank Analyzed: 04/20/10	0 (Lab Nun	nber:MBLk	(042010FA. E	Batch: MBLK042)							
Benzene			0.64		g/m3	ND		-			
Bromodichloromethane			1.3	ug	g/m3	ND		-			
Bromoethene			0.87	ug	g/m3	ND		-			
Bromoform			2.1	ug	g/m3	ND		-			
Bromomethane			0.78	ug	g/m3	ND		-			
Carbon disulfide			1.6	ug	g/m3	ND		-			
Carbon tetrachloride			1.3	ug	g/m3	ND		-			
Chlorobenzene			0.92	ug	g/m3	ND		-			
Chloroethane			1.3	ug	g/m3	ND		-			
Chloroform			0.98	ug	g/m3	ND		-			
Chloromethane			1.0	ug	g/m3	ND		-			
cis-1,2-Dichloroethene			0.79	ug	g/m3	ND		-			
cis-1,3-Dichloropropene			0.91	ug	g/m3	ND		-			
Cyclohexane			0.69	ug	g/m3	ND		-			
Dibromochloromethane			1.7	ug	g/m3	ND		-			
Dichlorodifluoromethane			2.5	ug	g/m3	ND		-			
Ethylbenzene			0.87	ug	g/m3	ND		-			
Freon TF			1.5	ug	g/m3	ND		-			
Hexachlorobutadiene			2.1	ug	g/m3	ND		-			
Methylene chloride			1.7	ug	g/m3	ND		-			
n-Heptane			0.82	ug	g/m3	ND		-			
n-Hexane			1.8	ug	g/m3	ND		-			
Styrene			0.85	ug	g/m3	ND		-			
Tetrachloroethene			1.4	ug	g/m3	ND		-			
Toluene			0.75	ug	g/m3	ND		-			
trans-1,2-Dichloroethene			0.79	ug	g/m3	ND		-			
trans-1,3-Dichloropropen e			0.91	ug	g/m3	ND		-			
Trichloroethene			1.1	นดู	g/m3	ND		-			
Trichlorofluoromethane			1.1	นดู	g/m3	ND		-			
Vinyl Chloride			0.51	ug	g/m3	ND		-			
Xylene (m,p)			1.7	ug	g/m3	ND		-			
Xylene (o)			0.87	ug	g/m3	ND		-			

TestAmerica South Burlington, VT

Sample Data Summary Package

RTD1209

TestAmerica Laboratories, Inc.

May 4, 2010

Mr. Brian Fischer TestAmerica, Inc. 10 Hazelwood Drive Suite 106 Amherst, NY 14228

Re: Laboratory Project No. 29012 Case: SCOTTAVI; SDG: RTD1209

Dear Mr. Fischer:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on April 10th, 2010. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	Sample ID	<u>Date</u>	<u>Matrix</u>
	Received: 04/10/10 ETR No:	136859	
826455	RTD1209-01	04/07/10	AIR
826456	RTD1209-02	04/07/10	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

Volatile Organics by TO-14A

The sample, RTD1209-02 was diluted 684 fold to get the response of the analyte with the highest concentration within the initial calibration range. Only the results for the dilution analysis were provided.

The practice of the laboratory is to analyze one canister from each batch of canisters that have been cleaned for re-use in order to certify the batch. The canisters that were used for this sampling event were from multiple batches. The certifying analyses were free of target analytes down to the concentration levels that are contractually required (nominally 0.2 PPBV). In order to provide for the lower level of detection required for canister certification, the laboratory analyzed a 500 milliliter volume. The laboratory's established practice for the analysis of field samples is based on the analysis of a 200 milliliter sample volume. Documentation of the analytical work supporting canister certification is included in the "Clean Can Certification" section of this submittal. Documentation of canister vacuum as delivered to, and received from, the field is included in the "Clean Can Certification" section of this submittal.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports, and extracted ion current profiles are included in the data package.

The following details the column type and trap design that were used in the performance of the analytical work for the sample in this sample set:

Chromatography Column - Restek RTX-624
Length - 60 meters
Inner Diameter - 0.32 millimeters
Film thickness - 1.8 micrometers
Trap Design - Entech Model 7100A (glass bead and Tenax with cryo-focusing)

A summary of the laboratory's current Method Detection Limits (MDLs) has been provided as part of this submittal, immediately following this transmittal letter.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Joseph Carabillo Project Manager

cc:

Continuation...

Field ID Number: 235 FORSGATE-SG-1

Laboratory ID Number: 826251

TARGET ANALYTES -AIR RESULTS Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	300		710		
Benzene	71-43-2	78.108	2.7		8.6		
Bromodichloromethane	75-27-4	163.83	2.0	U	13		
Bromoethene	593-60-2	106.96	2.0	U	8.7		
Bromoform	75-25-2	252.75	2.0	U	21		
Bromomethane (Methyl bromide)	74-83-9	94.94	2.0	U	7.8		
1,3-Butadiene	106-99-0	54.09	5.0	U	11		n (************************************
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	26		77		
Carbon disulfide	75-15-0	76.14	5.0	U	16		***************************************
Carbon tetrachloride	56-23-5	153.81	2.0	U	13		
Chlorobenzene	108-90-7	112.55	2.0	U	9.2		### ##################################
Chloroethane	75-00-3	64.52	5.0	U	13	***************************************	
Chloroform	67-66-3	119.38	2.0	U	9.8	and control of the co	#
Chloromethane (Methyl chloride)	74-87-3	50.49	5.0	U	10		
3-Chloropropene (allyl chloride)	107-05-1	76.53	5.0	U	16	***************************************	An #2000000000000000000000000000000000000
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	2.0	U	10		
Cyclohexane	110-82-7	84.16	2.0	U	6.9		***************************************
Dibromochloromethane	124-48-1	208.29	2.0	U	17		***************************************
1,2-Dibromoethane	106-93-4	187.87	2.0	U	15	**************************************	A MANUARI CON A CAN TORCOCCO, ACCOUNT ON TOROGRAPHICA
1,2-Dichlorobenzene	95-50-1	147.00	2.0	U	12		
1,3-Dichlorobenzene	541-73-1	147.00	2.0	U	12		A MARIO COMPANIO MARIO M
1,4-Dichlorobenzene	106-46-7	147.00	2.0	U	12		
Dichlorodifluoromethane	75-71-8	120.91	5.0	U	25	***************************************	\$ (\$40.00) \$0.000 0000 0000000000000000000000000000
1,1-Dichloroethane	75-34-3	98.96	2.0	U	8.1		
1,2-Dichloroethane	107-06-2	98.96	2.0	U	8.1		**************************************
1,1-Dichloroethene	75-35-4	96.94	2.0	U	7.9		a firefriggeringsfightenangan. Vangsverengen en Mittenantistets
1,2-Dichloroethene (cis)	156-59-2	96.94	2.0	U	7.9		######################################
1,2-Dichloroethene (trans)	156-60-5	96.94	2.0	U	7.9		
1,2-Dichloropropane	78-87-5	112.99	2.0	U	9.2	**************************************	***************************************
1,3-Dichloropropene (cis)	10061-01-5	110.97	2.0	U	9.1		
1,3-Dichloropropene (trans)	10061-02-6	110.97	2.0	U	9.1	Test. 11 commonwealthan commission of the second of the se	AND REPORTED AND THE PROPERTY OF THE PROPERTY
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	2.0	U	14		
Ethylbenzene	100-41-4	106.17	2.0	U	8.7	Arranga menener erroranorroran internacionalità additi editetti ed	And the second s
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	2.0	U	9.8		
n-Heptane	142-82-5	100.21	2.7	***************************************	11	***************************************	
Hexachlorobutadiene	87-68-3	260.76	2.0	U	21		711111111111111111111111111111111111111
n-Hexane	110-54-3	86.172	5.0	U	18	***************************************	William Committee Committe
Methylene Chloride	75-09-2	84.93	5.0	U	17		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

Field ID Number: 235 FORSGATE-SG-1

Laboratory ID Number: 826251

TARGET ANALYTES - AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	5.0	U	20		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	5.0	U	18		
Styrene	100-42-5	104.15	2.0	U	8.5		
Tertiary butyl alcohol (TBA)	75-65-0	74.12	50	U	150		
1,1,2,2-Tetrachloroethane	79-34-5	167.85	2.0	U	14		
Tetrachloroethene (PCE)	127-18-4	165.83	2.0	U	14	***************************************	
Toluene	108-88-3	92.14	9.1		34	no di montro con mante con con con con con di montro con con mante accessiva mentione del con cincida di	- Band dia di dia managana anno di di tra di si con di si con common di dia con con di si colo di di di mana di
1,2,4-Trichlorobenzene	120-82-1	181.45	5.0	U	37		
1,1,1-Trichloroethane	71-55-6	133.41	2.0	U	11		
1,1,2-Trichloroethane	79-00-5	133.41	2.0	U	11		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	2.0	U	15		
Trichloroethene (TCE)	79-01-6	131.39	2.0	U	11		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	2.0	U	11		Transcringgenogenogenour - autologen-in-innener , till in 1,11
1,2,4-Trimethylbenzene	95-63-6	120.20	2.0	U	9.8	PARAMETER OF THE PROPERTY OF T	**************************************
1,3,5-Trimethylbenzene	108-67-8	120.20	2.0	U	9.8		
2,2,4-Trimethylpentane	540-84-1	114.23	2.0	U	9.3	. , , , , , , , , , , , , , , , , , , ,	
Vinyl Chloride	75-01-4	62.50	2.0	U	5.1	Control Contro	
Xylene (m,p)	1330-20-7	106.17	4.0	U	17		
Xylene (o)	95-47-6	106.17	2.0	U	8.7		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont master QA form for air Page 2

Field ID Number: 235 FORSGATE-SG-2

Laboratory ID Number: 826252

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	240		570		
Benzene	71-43-2	78.108	2.0	U	6.4		
Bromodichloromethane	75-27-4	163.83	2.0	U	13		n_2000000000000000000000000000000000000
Bromoethene	593-60-2	106.96	2.0	U	8.7		
Bromoform	75-25-2	252.75	2.0	U	21		***************************************
Bromomethane (Methyl bromide)	74-83-9	94.94	2.0	U	7.8		, , , , , , , , , , , , , , , , , , , ,
1,3-Butadiene	106-99-0	54.09	5.0	U	11	***************************************	**************************************
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	15		44	***************************************	
Carbon disulfide	75-15-0	76.14	5.0	Ū	16	**************************************	e verrousiere enouver-væreden i vertrom i die dermel de trele de bild
Carbon tetrachloride	56-23-5	153.81	2.0	U	13	***************************************	
Chlorobenzene	108-90-7	112.55	2.0	U	9.2	***************************************	v ************************************
Chloroethane	75-00-3	64.52	5.0	U	13		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chloroform	67-66-3	119.38	2.0	U	9.8	***************************************	- VAROUNDE 1-4000000000000000000000000000000000000
Chloromethane (Methyl chloride)	74-87-3	50.49	5.0	U	10		
3-Chloropropene (allyl chloride)	107-05-1	76.53	5.0	U	16	The second contract of the second contract of	etronomene romane govern en en common en de la common en de la common en de la common en de la common en de la
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	2.0	U	10		THE PERSON NAMED OF THE PE
Cyclohexane	110-82-7	84.16	2.0	U	6.9	and the second s	**************************************
Dibromochloromethane	124-48-1	208.29	2.0	U	17		
1,2-Dibromoethane	106-93-4	187.87	2.0	U	15	***************************************	*******************************
1,2-Dichlorobenzene	95-50-1	147.00	2.0	υ	12		
1,3-Dichlorobenzene	541-73-1	147.00	2.0	υ	12	AND THE STREET OF THE STREET STREET	THE R. LANCETHONNESS OF SHIPS AND PROPERTY AND
1,4-Dichlorobenzene	106-46-7	147.00	2.0	U	12	***************************************	
Dichlorodifluoromethane	75-71-8	120.91	5.0	U	25	and the state of t	
1,1-Dichloroethane	75-34-3	98.96	2.0	U	8.1		
1,2-Dichloroethane	107-06-2	98.96	2.0	U	8.1	······································	
1,1-Dichloroethene	75-35-4	96.94	2.0	U	7.9		. ,
1,2-Dichloroethene (cis)	156-59-2	96.94	2.0	U	7.9	***************************************	ACHIER DE MARCONOMICONINA, I SUN COMPONOCO
1,2-Dichloroethene (trans)	156-60-5	96.94	2.0	U	7.9		***************************************
1,2-Dichloropropane	78-87-5	112.99	2.0	U	9.2		
1,3-Dichloropropene (cis)	10061-01-5	110.97	2.0	U	9.1		
1,3-Dichloropropene (trans)	10061-02-6	110.97	2.0	U	9.1		
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	2.0	U	14		
Ethylbenzene	100-41-4	106.17	2.0	Ū	8.7	***************************************	90090000000000000000000000000000000000
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	2.0	U	9.8		
n-Heptane	142-82-5	100.21	2.0	U	8.2	**************************************	akkindin kuncu Piranookookaa Kubi Kabupun Jumba (ka
Hexachlorobutadiene	87-68-3	260.76	2.0	U	21		
n-Hexane	110-54-3	86.172	5.0	U	18	***************************************	W 0000100100000000000000000000000000000
Methylene Chloride	75-09-2	84.93	5.0	U	17		

Laboratory Name: TAL-Burlington
Laboratory City: South Burlington, Vermont

Field ID Number: 235 FORSGATE-SG-2

Laboratory ID Number: 826252

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	5.0	U	20		_
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	5.0	U	18		
Styrene	100-42-5	104.15	2.0	U	8.5	**************************************	
Tertiary butyl alcohol (TBA)	75-65-0	74.12	50	U	150		
1,1,2,2-Tetrachloroethane	79-34-5	167.85	2.0	U	14	***************************************	* ************************************
Tetrachloroethene (PCE)	127-18-4	165.83	2.0	U	14		
Toluene	108-88-3	92.14	2.0	U	7.5	опического менениция по постоя по постоя по постоя по постоя по постоя по постоя по постоя по постоя по постоя	e delenio nel conferencio noncocción e con como esconario en el
1,2,4-Trichlorobenzene	120-82-1	181.45	5.0	U	37		
1,1,1-Trichloroethane	71-55-6	133.41	2.0	U	11	and an overland the second second second second second second second second second second second second second	talence control of the eight of the control of the terminal
1,1,2-Trichloroethane	79-00-5	133.41	2.0	U	11		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	2.0	U	15	***************************************	- 49 *** · · · · · · · · · · · · · · · · ·
Trichloroethene (TCE)	79-01-6	131.39	2.0	U	11		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	2.0	U	11	of executation and consequences of the consequ	2010-1000000000000000000000000000000000
1,2,4-Trimethylbenzene	95-63-6	120.20	2.0	U	9.8		
1,3,5-Trimethylbenzene	108-67-8	120.20	2.0	U	9.8		######################################
2,2,4-Trimethylpentane	540-84-1	114.23	2.0	U	9.3		
Vinyl Chloride	75-01-4	62.50	2.0	U	5.1		WARRANT A CONT. M
Xylene (m,p)	1330-20-7	106.17	4.0	U	17		
Xylene (o)	95-47-6	106.17	2.0	U	8.7	CONTRACTOR CONTRACTOR	AND AMOUNTAIN AN ARRANGE AND A REAL PROPERTY OF A R

Laboratory Name: TAL-Burlington
Laboratory City: South Burlington, Vermont

master QA form for air

Field ID Number: FA042010LCS Laboratory ID Number: FA042010LCS TARGET ANALYTES -AIR RESULTS Sampling Date:

Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	9.7		23	1	
Benzene	71-43-2	78.108	9.6		31		
Bromodichloromethane	75-27-4	163.83	11	o conceptional and a conception and a co	74	***************************************	** ***********************************
Bromoethene	593-60-2	106.96	10		44		
Bromoform	75-25-2	252.75	11		110	***************************************	***************************************
Bromomethane (Methyl bromide)	74-83-9	94.94	9.8		38	***************************************	
1,3-Butadiene	106-99-0	54.09	8.8	n en en en en en en en en en en en en en	19	A ZACKATARIANIONA, ACCRETIVENTO CONTROL VERTICARE PRESENTATIVA	AN AND CONTRACTOR OF THE PROPERTY OF THE PROPE
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	9.7		29	***************************************	
Carbon disulfide	75-15-0	76.14	10	• •••• •••••••••••••••••••••••••••••••	31		AT THE E CONTINUES CO. CO. CO. CO.
Carbon tetrachloride	56-23-5	153.81	11		69		
Chlorobenzene	108-90-7	112.55	9.7	************	45	CONTRACTOR AND AND AND AND AND AND AND AND AND AND	h
Chloroethane	75-00-3	64.52	8.8		23		
Chloroform	67-66-3	119.38	10	**************************************	49		TO This wild the contract of t
Chloromethane (Methyl chloride)	74-87-3	50.49	8.5		18		
3-Chloropropene (allyl chloride)	107-05-1	76.53	8.9		28	***************************************	D. BARRATTANIANS NICE ACCORDED TO THE TOTAL CONTROL OF THE TOTAL CONTROL
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	10	***************************************	52		
Cyclohexane	110-82-7	84.16	9.8		34	**************************************	* ************************************
Dibromochloromethane	124-48-1	208.29	11	********************	94		
1,2-Dibromoethane	106-93-4	187.87	10	******************************	77		CAMBOON V. JANA . WOOLDWY - JA TOODOOK
1,2-Dichlorobenzene	95-50-1	147.00	9.8	***************************************	59	***************************************	
1,3-Dichlorobenzene	541-73-1	147.00	9.9	***************************************	60		Commence of the Commence of th
1,4-Dichlorobenzene	106-46-7	147.00	10		60		
Dichlorodifluoromethane	75-71-8	120.91	10	*****************	49	•••••	***************************************
1,1-Dichloroethane	75-34-3	98.96	9.7		39		
1,2-Dichloroethane	107-06-2	98.96	9.9	**************************************	40		**************************************
1,1-Dichloroethene	75-35-4	96.94	11		44		***************************************
1,2-Dichloroethene (cis)	156-59-2	96.94	10		40	e-allianaer on trouver out our outstands all the days on or and outstands and	e delenar en en antario en elemente en entre en en en en en en entre en en en en en en en en en en en en en
1,2-Dichloroethene (trans)	156-60-5	96.94	9.6		38	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1,2-Dichloropropane	78-87-5	112.99	9.0	************	42	***************************************	**********************************
1,3-Dichloropropene (cis)	10061-01-5	110.97	9.5		43		
1,3-Dichloropropene (trans)	10061-02-6	110.97	9.7	occonensense angeleseles y	44		***************************************
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	10		70		
Ethylbenzene	100-41-4	106.17	10	*********************	43	discrete en en estas la las las estas acada la electrica de la colonidad de la colonidad de la colonidad de la	mellemberederin vor en derene en monte en verte en verte de desenbelder.
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	10		49		
n-Heptane	142-82-5	100.21	8.6	**************************************	35	CONTRACTOR CONTRACTOR	######################################
Hexachlorobutadiene	87-68-3	260.76	10		110		
n-Hexane	110-54-3	86.172	9.1		32	CARCAMATACCCCCCARACCCCCCCCCCCCCCCCCCCCCC	**************************************
Methylene Chloride	75-09-2	84.93	9.6		33		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

Field ID Number: FA042010LCS Laboratory ID Number: FA042010LCS

TARGET ANALYTES -AIR RESULTS

Sampling Date: Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	9.0		37		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	10		36		
Styrene	100-42-5	104.15	9.6		41	nni franconna coma na conscio con con a camado se como camado se como como como como como como como com	
Tertiary butyl alcohol (TBA)	75-65-0	74.12	9.1		28		1 10
1,1,2,2-Tetrachloroethane	79-34-5	167.85	9.5		65		The second commence of the second of the sec
Tetrachloroethene (PCE)	127-18-4	165.83	10		68		
Toluene	108-88-3	92.14	9.6		36	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1,2,4-Trichlorobenzene	120-82-1	181.45	9.7	***************************************	72		
1,1,1-Trichloroethane	71-55-6	133.41	11		60	- Comment - Comm	***************************************
1,1,2-Trichloroethane	79-00-5	133.41	9.3		51		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	11		84		- Voyage to the control of the contr
Trichloroethene (TCE)	79-01-6	131.39	9.9		53		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	11	***************************************	62		***************************************
1,2,4-Trimethylbenzene	95-63-6	120.20	9.8		48		
1,3,5-Trimethylbenzene	108-67-8	120.20	10		49	***************************************	490000000000000000000000000000000000000
2,2,4-Trimethylpentane	540-84-1	114.23	9.2		43		
Vinyl Chloride	75-01-4	62.50	8.9		23		reconstant and recons
Xylene (m,p)	1330-20-7	106.17	20	*************************	87		
Xylene (o)	95-47-6	106.17	9.7		42	Announce variables, consideration and considerat	**************************************

Laboratory Name: TAL-Burlington
Laboratory City: South Burlington, Vermont master QA form for air

Field ID Number: MBLK042010FA

Laboratory ID Number: MBLK042010FA

TARGET ANALYTES -AIR RESULTS Sampling Date:

Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	5.0	U	12		
Benzene	71-43-2	78.108	0.20	U	0.64	-	
Bromodichloromethane	75-27-4	163.83	0.20	U	1.3	***************************************	• • • • • • • • • • • • • • • • • • •
Bromoethene	593-60-2	106.96	0.20	U	0.87		
Bromoform	75-25-2	252.75	0.20	U	2.1	***************************************	ar terrorinamento con esta esta esta esta esta esta esta esta
Bromomethane (Methyl bromide)	74-83-9	94.94	0.20	U	0.78		
1,3-Butadiene	106-99-0	54.09	0.50	U	1.1		
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	0.50	U	1.5		
Carbon disulfide	75-15-0	76.14	0.50	U	1.6	***************************************	WWW. A. A. A. A. W
Carbon tetrachloride	56-23-5	153.81	0.20	U	1.3		
Chlorobenzene	108-90-7	112.55	0.20	U	0.92	e Caracana de Cara	A (Anna Caralle Carall
Chloroethane	75-00-3	64.52	0.50	U	1.3	AMAGAMENTAL PROPERTY OF THE PR	
Chloroform	67-66-3	119.38	0.20	U	0.98		PERSONALISMAN AND PROPERTIES AND AND PROPERTIES
Chloromethane (Methyl chloride)	74-87-3	50.49	0.50	U	1.0		
3-Chloropropene (allyl chloride)	107-05-1	76.53	0.50	U	1.6		
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	0.20	U	1.0		
Cyclohexane	110-82-7	84.16	0.20	U	0.69		
Dibromochloromethane	124-48-1	208.29	0.20	U	1.7		
1,2-Dibromoethane	106-93-4	187.87	0.20	U	1.5	- CARROTTON, OF his his description of the second s	a differentiable of the section of t
1,2-Dichlorobenzene	95-50-1	147.00	0.20	U	1.2		
1,3-Dichlorobenzene	541-73-1	147.00	0.20	U	1.2		**************************************
1,4-Dichlorobenzene	106-46-7	147.00	0.20	U	1.2		
Dichlorodifluoromethane	75-71-8	120.91	0.50	U	2.5	***************************************	
1,1-Dichloroethane	75-34-3	98.96	0.20	U	0.81		14.119111111111111111111111111111111111
1,2-Dichloroethane	107-06-2	98.96	0.20	U	0.81	***************************************	and the second decrease of the second decreas
1,1-Dichloroethene	75-35-4	96.94	0.20	U	0.79		
1,2-Dichloroethene (cis)	156-59-2	96.94	0.20	U	0.79	-anceson on common common sendo debido en la crai el 6 dels cuele 6 del	##000000000000000000000000000000000000
1,2-Dichloroethene (trans)	156-60-5	96.94	0.20	U	0.79		
1,2-Dichloropropane	78-87-5	112.99	0.20	U	0.92	***************************************	*******************************
1,3-Dichloropropene (cis)	10061-01-5	110.97	0.20	U	0.91	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	//::::::::::::::::::::::::::::::::::::
1,3-Dichloropropene (trans)	10061-02-6	110.97	0.20	U	0.91		**************************************
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	0.20	U	1.4		***************************************
Ethylbenzene	100-41-4	106.17	0.20	U	0.87		THE RESIDENCE OF THE PROPERTY
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	0.20	U	0.98	***************************************	
n-Heptane	142-82-5	100.21	0.20	U	0.82	and are to the terminate and an are the terminate and the terminate and the terminate and terminate	ATTENDED TO THE STATE OF THE ST
Hexachlorobutadiene	87-68-3	260.76	0.20	U	2.1		
n-Hexane	110-54-3	86.172	0.50	U	1.8	**************************************	
Methylene Chloride	75-09-2	84.93	0.50	U	1.7	A1441111111111111111111111111111111111	

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

Field ID Number: MBLK042010FA Laboratory ID Number: MBLK042010FA TARGET ANALYTES -AIR RESULTS Sampling Date:

Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	0.50	U	2.0		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	0.50	U	1.8		
Styrene	100-42-5	104.15	0.20	U	0.85	•	
Tertiary butyl alcohol (TBA)	75-65-0	74.12	5.0	U	15		
1,1,2,2-Tetrachioroethane	79-34-5	167.85	0.20	U	1.4	where the transfer of the second second	* ************************************
Tetrachloroethene (PCE)	127-18-4	165.83	0.20	U	1.4		
Toluene	108-88-3	92.14	0.20	U	0.75		delicarration en l'innée de la constitut
1,2,4-Trichlorobenzene	120-82-1	181.45	0.50	U	3.7		
1,1,1-Trichloroethane	71-55-6	133.41	0.20	U	1.1	**************************************	***************************************
1,1,2-Trichloroethane	79-00-5	133.41	0.20	U	1.1		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	0.20	U	1.5	en en englandererendereren en en en en en en en en en en en en e	
Trichloroethene (TCE)	79-01-6	131.39	0.20	U	1.1		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	0.20	U	1.1		au dest 14, 1800egenomen an ageny 1 aouai ar 107 an
1,2,4-Trimethylbenzene	95-63-6	120.20	0.20	U	0.98		
1,3,5-Trimethylbenzene	108-67-8	120.20	0.20	U	0.98	***************************************	**************************************
2,2,4-Trimethylpentane	540-84-1	114.23	0.20	U	0.93		
Vinyl Chloride	75-01-4	62.50	0.20	U	0.51		**************************************
Xylene (m,p)	1330-20-7	106.17	0.40	U	1.7		
Xylene (o)	95-47-6	106.17	0.20	U	0.87	namento di necessita de secondo neco di necessita con manamento della consecue di Mi	

Deyette, Julie

From: Boitnott, Jessica

Sent: Monday, May 03, 2010 11:45 AM

To: Gratton, Kathy

Cc: Deyette, Julie; Tarosky, Steve; Cicero, William

Subject: Shaw E & I Inc. - Account 522706 / Disputed Invoice # 20096889

Good Morning Kathy -

Please forward this email to the PM that works with Shaw.

I received the following explanation from the client on invoice 20096889. "Invoice in dispute, have contacted vendor several times with no response per Denise Simpson". Please contact Denise Simpson so we can resolve this past due balance with the client.

Thank you,

Jessica Boitnott

Director of Collections

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

4101 Shuffel Drive NW North Canton, OH 44720 Tel 330-966-9335 | Fax 330-966-9593 www.testamerica.com

TO-14/15 Result Summary

CLIENT SAMPLE NO.

RTD1209-01

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 826455

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20		0.20	0.51	************	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.23		0.20	1.3		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Carbon disulfide	75-15-0	4.1		0.50	13		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
cis-1,2-Dichloroethene	156-59-2	4.3		0.20	17		0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	12		0.20	64		1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.75		0.20	2.8		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1

TO-14/15 Result Summary

CLIENT SAMPLE NO.

RTD1209-01

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 826455

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

Printed: 5/4/2010 9:20:53 AM Page 2 of 2

CLIENT SAMPLE NO.

RTD1209-02

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 684.00

Sample Matrix: AIR

Lab Sample No.: 826456

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	340	U	340	1700	U	1700
1,2-Dichlorotetrafluoroethane	76-14-2	140	U	140	980	U	980
Chloromethane	74-87-3	340	U	340	700	U	700
Vinyl Chloride	75-01-4	140	U	140	360	U	360
1,3-Butadiene	106-99-0	340	U	340	750	U	750
Bromomethane	74-83-9	140	U	140	540	U	540
Chloroethane	75-00-3	340	U	340	900	U	900
Bromoethene	593-60-2	140	U	140	610	U	610
Trichlorofluoromethane	75-69-4	140	U	140	790	U	790
Freon TF	76-13-1	140	U	140	1100	U	1100
1,1-Dichloroethene	75-35-4	140	U	140	560	U	560
Carbon disulfide	75-15-0	340	U	340	1100	U	1100
3-Chloropropene	107-05-1	340	U	340	1100	U	1100
Methylene chloride	75-09-2	340	U	340	1200	U	1200
trans-1,2-Dichloroethene	156-60-5	140	U	140	560	U	560
n-Hexane	110-54-3	340	U	340	1200	U	1200
1,1-Dichloroethane	75-34-3	140	U	140	570	U	570
cis-1,2-Dichloroethene	156-59-2	4000		140	16000		560
Chloroform	67-66-3	140	U	140	680	U	680
1,1,1-Trichloroethane	71-55-6	140	U	140	760	U	760
Cyclohexane	110-82-7	140	U	140	480	U	480
Carbon tetrachloride	56-23-5	140	U	140	880	U	880
2,2,4-Trimethylpentane	540-84-1	140	U	140	650	U	650
Benzene	71-43-2	140	U	140	450	U	450
1,2-Dichloroethane	107-06-2	140	U	140	570	U	570
n-Heptane	142-82-5	140	U	140	570	U	570
Trichloroethene	79-01-6	21000		140	110000		750
1,2-Dichloropropane	78-87-5	140	U	140	650	U	650
Bromodichloromethane	75-27-4	140	U	140	940	U	940
cis-1,3-Dichloropropene	10061-01-5	140	U	140	640	U	640
Toluene	108-88-3	140		140	530	~~~	530
trans-1,3-Dichloropropene	10061-02-6	140	U	140	640	U	640
1,1,2-Trichloroethane	79-00-5	140	U	140	760	U	760

CLIENT SAMPLE NO.

RTD1209-02

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 684.00

Sample Matrix: AIR

Lab Sample No.: 826456

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	140	U	140	950	U	950
Dibromochloromethane	124-48-1	140	U	140	1200	U	1200
1,2-Dibromoethane	106-93-4	140	U	140	1100	U	1100
Chlorobenzene	108-90-7	140	U	140	640	U	640
Ethylbenzene	100-41-4	140	U	140	610	U	610
Xylene (m,p)	1330-20-7	270	U	270	1200	U	1200
Xylene (o)	95-47-6	140	U	140	610	U	610
Styrene	100-42-5	140	U	140	600	U	600
Bromoform	75-25-2	140	U	140	1400	U	1400
1,1,2,2-Tetrachloroethane	79-34-5	140	U	140	960	U	960
4-Ethyltoluene	622-96-8	140	U	140	690	U	690
1,3,5-Trimethylbenzene	108-67-8	140	U	140	690	U	690
2-Chlorotoluene	95-49-8	140	U	140	720	U	720
1,2,4-Trimethylbenzene	95-63-6	140	U	140	690	υ	690
1,3-Dichlorobenzene	541-73-1	140	U	140	840	U	840
1,4-Dichlorobenzene	106-46-7	140	U	140	840	U	840
1,2-Dichlorobenzene	95-50-1	140	U	140	840	U	840
I,2,4-Trichlorobenzene	120-82-1	340	U	340	2500	U	2500
	87-68-3	140	U	140	1500	U	1500

CLIENT SAMPLE NO.

FA042010LCS

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: FA042010

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	10		0.20	70		1.4
Chloromethane	74-87-3	8.5		0.50	18		1.0
Vinyl Chloride	75-01-4	8.9		0.20	23	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.51
1,3-Butadiene	106-99-0	8.8		0.50	19		1.1
Bromomethane	74-83-9	9.8		0.20	38		0.78
Chloroethane	75-00-3	8.8		0.50	23		1.3
Bromoethene	593-60-2	10	e totales en en en en en en en en en en en en en	0.20	44	* *** ***** ***** *** **** **** ****	0.87
Trichlorofluoromethane	75-69-4	11		0.20	62		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
Carbon disulfide	75-15-0	10		0.50	31	termentalist e e entrementalis.	1.6
3-Chloropropene	107-05-1	8.9		0.50	28		1.6
Methylene chloride	75-09-2	9.6		0.50	33		1.7
trans-1,2-Dichloroethene	156-60-5	9.6		0.20	38		0.79
n-Hexane	110-54-3	9.1		0.50	32		1.8
1,1-Dichloroethane	75-34-3	9.7		0.20	39		0.81
cis-1,2-Dichloroethene	156-59-2	10		0.20	40		0.79
Chloroform	67-66-3	10		0.20	49		0.98
1,1,1-Trichloroethane	71-55-6	11		0.20	60	, , , , , , , , , , , , , , , , , , , ,	1.1
Cyclohexane	110-82-7	9.8		0.20	34		0.69
Carbon tetrachloride	56-23-5	11		0.20	69		1.3
2,2,4-Trimethylpentane	540-84-1	9.2		0.20	43		0.93
Benzene	71-43-2	9.6	***************************************	0.20	31	• • • • • • • • • • • • • • • • • • • •	0.64
1,2-Dichloroethane	107-06-2	9.9		0.20	40	•••••••••••••••••••••••••••••••••••••••	0.81
n-Heptane	142-82-5	8.6		0.20	35		0.82
Trichloroethene	79-01-6	9.9		0.20	53	***************************************	1.1
1,2-Dichloropropane	78-87-5	9.0		0.20	42	\$10,454,4 \$10,000,000,000,000,000,000,000,000	0.92
Bromodichloromethane	75-27-4	11		0.20	74		1.3
cis-1,3-Dichloropropene	10061-01-5	9.5		0.20	43		0.91
Toluene	108-88-3	9.6		0.20	36		0.75
rans-1,3-Dichloropropene	10061-02-6	9.7		0.20	44		0.91
1.1.2-Trichloroethane	79-00-5	9.3		0.20	51		1.1

CLIENT SAMPLE NO.

FA042010LCS

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: FA042010

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	10		0.20	68		1.4
Dibromochloromethane	124-48-1	11		0.20	94		1.7
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Chlorobenzene	108-90-7	9.7		0.20	45		0.92
Ethylbenzene	100-41-4	10		0.20	43		0.87
Xylene (m,p)	1330-20-7	20		0.40	87		1.7
Xylene (o)	95-47-6	9.7		0.20	42		0.87
Styrene	100-42-5	9.6		0.20	41		0.85
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	9.5		0.20	65		1.4
4-Ethyltoluene	622-96-8	10		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0,20	49		0.98
2-Chlorotoluene	95-49-8	10		0.20	52		1.0
1,2,4-Trimethylbenzene	95-63-6	9.8		0.20	48		0.98
1,3-Dichlorobenzene	541-73-1	9,9		0.20	60		1.2
1,4-Dichlorobenzene	106-46-7	10		0.20	60		1.2
1,2-Dichlorobenzene	95-50-1	9.8		0.20	59		1.2
1,2,4-Trichlorobenzene	120-82-1	9.7		0.50	72		3.7
Hexachlorobutadiene	87-68-3	10		0.20	110		2.1

Printed: 5/4/2010 9:20:54 AM Page 2 of 2

CLIENT SAMPLE NO.

MBLK042010FA

Lab Sample No.: MBLK0420

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00 Date Analyzed: 4/20/2010

Sample Matrix: AIR Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1,3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1,1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Carbon disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1

Printed: 5/4/2010 9:20:54 AM Page 1 of 2

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: MBLK0420

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	υ	2.1

Printed: 5/4/2010 9:20:54 AM Page 2 of 2

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

TestAmerica Burlington

30 Community Drive

Suite 11

South Burlington, VT 05403

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Canister Samples Chain of Custody Record

phone 802-660-1990 fax 802-660-1919

pnone 802-660-1990 fax 802-660-1919							ļ	l	ĺ						
Client Contact Information	Project Manager:	Jm 2	200		Samples Collected By:		21/	. 1		_		cocs			
Τ"	Phone: 7,6, 83/-	5	tra 9	15											
Т		4					┝	ŀ		ŀ	30000		L	L	
City/State/Zin 4 M M M M M M M M M M M M M M M M M M	Elliall. (1/10), Co	נע ני	1	رثي							4				(u
Т	Site Contact: 1 24c 6	300								- Cita					ctio
	TA Contact: Q	Fischer									20.00		_		es s
Project Name:		sis Turna	Analysis Turnaround Time										_		əton
Site:	Standard	Standard (Specify)								L i /			_		ui V
# Od	Rush (Specify)	pecify)								,,004					peci
Sample Identification	Sample Date(s) Time Start	tart Time Stop	Canister Vacuum In Field, "Hg top (Start)	r Canister In Vacuum in Ig Fleid, 'Hg (Stop)	Flow Controller ID	Canister ID	21-OT	TO-14A DE AG	EPA 25C	8461-G MTSA	Other (Please s	hidoot Air	Ambient Air	Soil Gas Landfill Gas	Other (Please s
and the figure in National Property and the second			!	"	-	9 Mh	×							-	
LRP Effluent	co21 01/4/b	C 0 21 C	-29.4	1	١	h/8h	×								
								<u> </u>							
												,			
			Tempera	Temperature (Fahrenheit)	٥							ĺ			
	Interior		Ambient												
	Start														
	Stop														
			Pressure	Pressure (inches of Hg)											
	Interior		Ambient												
	Start														
	Stop														
Special Instructions/QC Requirements & Comments:															
Samples Shipped by:	Date/Time: 4/7/10	0//	1706rs	Samples	Samples Received by:		1/2/1	2	900						
	Date/Time: ψ/q	01/	MI)	Received by	by Out	7115	1	Sec Hidio	20						
Relinquished by:	Date/Time:			Received by	by:										
Lab Use Only Shipper Name:			Opened by:		Condition:										

Sample Data Summary – TO-14A Volatile

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826455

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 826455

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

75-71-8Dichlorodifluoromethane	0.50	тт
76-14-21,2-Dichlorotetrafluoroethan	0.30	
74-87-3Chloromethane		
75 01 4 Vinal Oblasid	0.50	ı
75-01-4Vinyl Chloride	0.20	
106-99-01,3-Butadiene	0.50	
74-83-9Bromomethane	0.20	
75-00-3Chloroethane	0.50	1
593-60-2Bromoethene	0.20	U
75-69-4Trichlorofluoromethane	0.23	
76-13-1Freon TF	0.20	1
75-35-41,1-Dichloroethene	0.20	U
75-15-0Carbon disulfide	4.1	
107-05-13-Chloropropene	0.50	U
75-09-2Methylene chloride	0.50	U
156-60-5trans-1,2-Dichloroethene	0.20	U
110-54-3n-Hexane	0.50	U
75-34-31,1-Dichloroethane	0.20	U
156-59-2cis-1,2-Dichloroethene	4.3	
67-66-3Chloroform	0.20	U
71-55-61,1,1-Trichloroethane	0.20	
110-82-7Cyclohexane	0.20	
56-23-5Carbon tetrachloride	0.20	l
540-84-12,2,4-Trimethylpentane	0.20	l
71-43-2Benzene	0.20	l
107-06-21,2-Dichloroethane	0.20	
142-82-5n-Heptane	0.20	
79-01-6Trichloroethene	12	
78-87-51,2-Dichloropropane	0.20	TT
75-27-4Bromodichloromethane	0.20	
10061-01-5cis-1,3-Dichloropropene	0.20	
108-88-3Toluene	0.75	
10061-02-6trans-1,3-Dichloropropene	0.20	
79-00-51,1,2-Trichloroethane	0.20	
	0.20	

STLNYB SAMPLE NO.

RTD1209-01

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826455

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 826455

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. ___ Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: _____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

127-18-4-----Tetrachloroethene 0.20 U 124-48-1-----Dibromochloromethane 0.20 U 106-93-4----1,2-Dibromoethane 0.20 U 108-90-7-----Chlorobenzene 0.20 U 100-41-4-----Ethylbenzene 0.20 U 1330-20-7-----Xylene (m,p) 0.40 U 95-47-6-----Xylene (o) 0.20 U 100-42-5----Styrene 0.20 U 75-25-2-----Bromoform 0.20 U 79-34-5----1,1,2,2-Tetrachloroethane 0.20 U 622-96-8----4-Ethyltoluene 0.20 U 108-67-8-----1,3,5-Trimethylbenzene 0.20 U 95-49-8----2-Chlorotoluene 0.20 U 95-63-6----1,2,4-Trimethylbenzene 0.20 U 541-73-1----1,3-Dichlorobenzene 0.20 U 106-46-7----1,4-Dichlorobenzene 0.20 U 95-50-1-----1,2-Dichlorobenzene 0.20 U 120-82-1----1,2,4-Trichlorobenzene 0.50 U 87-68-3-----Hexachlorobutadiene 0.20 U

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826456

Sample wt/vol: 16.00 (g/mL) ML Lab File ID: 826456D2

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 684.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

0.10 1.01	(-3,		~
	h] 4: 6]	240	
	hlorodifluoromethane	340	1 -
	-Dichlorotetrafluoroethan		
74-87-3Chl		340	
75-01-4Vin		140	1
106-99-01,3		340	_
74-83-9Bro		140	-
75-00-3Chl		340	1 -
593-60-2Bro		140	U
	chlorofluoromethane	140	U
76-13-1Fre		140	U
75-35-41,1		140	U
75-15-0Car		340	U
107-05-13-C	hloropropene	340	U
75-09-2Met		340	U
156-60-5tra	ns-1,2-Dichloroethene	140	U
110-54-3n-H	exane	340	U
75-34-31,1	-Dichloroethane	140	U
156-59-2cis	-1,2-Dichloroethene	4000	
67-66-3Chl	oroform	140	Ū
71-55-61,1		140	U
110-82-7Cyc		140	U
56-23-5Car	bon tetrachloride	140	U
540-84-12,2	,4-Trimethylpentane	140	U
71-43-2Ben		140	U
107-06-21,2	-Dichloroethane	140	U
142-82-5n-H		140	U
79-01-6Tri		21000	
78-87-51,2		140	
75-27-4Bro	modichloromethane	140	_
	-1,3-Dichloropropene	140	_
108-88-3Tol		140	_
	ns-1,3-Dichloropropene	140	
79-00-51,1	,2-Trichloroethane	140	
	,		
		I	

STLNYB SAMPLE NO.

RTD1209-02

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826456

Sample wt/vol: 16.00 (g/mL) ML Lab File ID: 826456D2

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. _____ Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 684.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: _____(uL)

CONCENTRATION UNITS:

		i
127-18-4Tetrachloroethene	140	ט
124-48-1Dibromochloromethane	140	U
106-93-41,2-Dibromoethane	140	U
108-90-7Chlorobenzene	140	ש
100-41-4Ethylbenzene	140	ע
1330-20-7Xylene (m,p)	270	U
95-47-6Xylene (o)	140	U
100-42-5Styrene	140	U
75-25-2Bromoform	140	U
79-34-51,1,2,2-Tetrachloroethane	140	Ū
622-96-84-Ethyltoluene	140	Ŭ
108-67-81,3,5-Trimethylbenzene	140	Ü
95-49-82-Chlorotoluene	140	U
95-63-61,2,4-Trimethylbenzene	140	U
541-73-11,3-Dichlorobenzene	140	U
106-46-71,4-Dichlorobenzene	140	U
95-50-11,2-Dichlorobenzene	140	U
120-82-11,2,4-Trichlorobenzene	340	U
87-68-3Hexachlorobutadiene	140	U

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

CLIENT SAMPLE NO.

MBLK042010FA

\<u>-----</u>

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: MBLK042010FA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDNB01L

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. ____ Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV CAS NO. COMPOUND 0 75-71-8-----Dichlorodifluoromethane 0.50 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.20 U 74-87-3-----Chloromethane 0.50 U 75-01-4-----Vinyl Chloride 0.20 U 0.50 U 106-99-0----1,3-Butadiene 74-83-9-----Bromomethane _____ 0.20 U 75-00-3-----Chloroethane 0.50 U 593-60-2----Bromoethene 0.20 U 75-69-4-----Trichlorofluoromethane 0.20 U 76-13-1----Freon TF 0.20 U 75-35-4----1,1-Dichloroethene 0.20 U 75-15-0-----Carbon disulfide____ 0.50 U 107-05-1----3-Chloropropene 0.50 U 75-09-2----Methylene chloride 0.50 U 156-60-5-----trans-1,2-Dichloroethene 0.20 U 110-54-3----n-Hexane 0.50 U 75-34-3-----1,1-Dichloroethane 0.20 U 156-59-2----cis-1,2-Dichloroethene 0.20 0 67-66-3-----Chloroform 0.20 U 71-55-6----1,1,1-Trichloroethane 0.20 U 110-82-7-----Cyclohexane 0.20 U 56-23-5-----Carbon tetrachloride 0.20 U 540-84-1----2,2,4-Trimethylpentane 0.20 U 71-43-2----Benzene 0.20 U 107-06-2----1,2-Dichloroethane 0.20 U 142-82-5----n-Heptane 0.20 U 79-01-6----Trichloroethene 0.20 U 78-87-5-----1,2-Dichloropropane 0.20 U 75-27-4-----Bromodichloromethane 0.20 ប 10061-01-5----cis-1,3-Dichloropropene 0.20 U 108-88-3-----Toluene 0.20 U 10061-02-6----trans-1,3-Dichloropropene 0.20 U 79-00-5-----1,1,2-Trichloroethane 0.20 U

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: MBLK042010FA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDNB01L

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

·————			
107 10 4	Tetrachloroethene	0.00	,,,
		0.20	1
	Dibromochloromethane	0.20	U
	1,2-Dibromoethane	0.20	Ŭ
	Chlorobenzene	0.20	U
	Ethylbenzene	0.20	U
1330-20-7	Xylene (m,p)	0.40	U
95-47-6	Xylene (o)	0.20	U
100-42-5		0.20	U
75-25-2		0.20	U
	1,1,2,2-Tetrachloroethane	0.20	Ū
622-96-8	4-Ethyltoluene	0.20	U
108-67-8	1,3,5-Trimethylbenzene	0.20	U
	2-Chlorotoluene	0.20	U
95-63 - 6	1,2,4-Trimethylbenzene	0.20	ן ט
541-73-1	1,3-Dichlorobenzene	0.20	שׁ
106-46-7	1,4-Dichlorobenzene	0.20	U
95-50-1	1,2-Dichlorobenzene	0.20	ַ
120-82-1	1,2,4-Trichlorobenzene	0.50	ַ ט
	Hexachlorobutadiene	0.20	U

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

CLIENT SAMPLE NO.

FA042010LCS

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: FA042010LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDN10LQ

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

		(49/2 02 49/2		*
75-71-8	Dichlorodifluorom	ethane	10	
	1,2-Dichlorotetra		10	
	Chloromethane	11dolocciidii	8.5	
75-01-4	Vinyl Chloride		8.9	
	1,3-Butadiene		8.8	
	Bromomethane		9.8	
	Chloroethane		8.8	
593-60-2			10	
	Trichlorofluorome	thane	11	
76-13-1	Freon TF		11	[
	1,1-Dichloroethen	e e	11	
75-15-0	Carbon disulfide		10	
107-05-1	3-Chloropropene		8.9	
75-09-2	Methylene chlorid	e	9.6	
156-60-5	trans-1,2-Dichlor	oethene	9.6	
110-54-3			9.1	
	1,1-Dichloroethan		9.7	
156-59-2	cis-1,2-Dichloroe	thene	10	
67-66-3			10	
71-55-6	1,1,1-Trichloroet	hane	11	
110-82-7	Cyclohexane		9.8	
	Carbon tetrachlor		11	
	2,2,4-Trimethylpe	ntane	9.2	
71-43-2		_	9.6	
107-06-2	1,2-Dichloroethan	e	9.9	l
142-82-5	n-Heptane		8.6	
	Trichloroethene_		9.9	
78-87-5	1,2-Dichloropropa	ne	9.0	
75-27-4	Bromodichlorometh	ane	11	
	cis-1,3-Dichlorop	ropene	9.5	
108-88-3			9.6	
70.00 5	trans-1,3-Dichlor	opropene	9.7	
/9-00-5	1,1,2-Trichloroet	nane	9.3	
				l

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

CLIENT SAMPLE NO.

FA042010LCS

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: FA042010LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDN10LQ

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. _____ Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

127-18-4Tetrachloroethene	10
124-48-1Dibromochloromethane	11
106-93-41,2-Dibromoethane	10
108-90-7Chlorobenzene	9.7
100-41-4Ethylbenzene	10
1330-20-7Xylene (m,p)	20
95-47-6Xylene (o)	9.7
100-42-5Styrene	9.6
75-25-2Bromoform	11
79-34-51,1,2,2-Tetrachloroethane	9.5
622-96-84-Ethyltoluene	10
108-67-81,3,5-Trimethylbenzene	10
95-49-82-Chlorotoluene	10
95-63-61,2,4-Trimethylbenzene	9.8
541-73-11,3-Dichlorobenzene	
106-46-71,4-Dichlorobenzene	9.9
95-50-11,4-Dichlorobenzene	10
120-82-11,2-Dichlorobenzene	9.8
87-68-3Hexachlorobutadiene	9.7
o/-os-3hexachlorobutadiene	10
	l

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix Spike - Sample No.: FA042010LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
Distance 2: 61	=======	===========	=======================================	======	=====
Dichlorodifluoromethane	10		10	100	70-130
1,2-Dichlorotetrafluoro	10		10	100	70-130
Chloromethane	10		8.5	85	70-130
Vinyl Chloride	10		8.9	89	70-130
1,3-Butadiene	10		8.8	88	70-130
Bromomethane	10		9.8	98	70-130
Chloroethane	10		8.8	88	70-130
Bromoethene	10		10	100	70-130
Trichlorofluoromethane	10		11	110	70-130
Freon TF	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
Carbon disulfide	10		10	100	70-130
3-Chloropropene	10		8.9	89	70-130
Methylene chloride	10		9.6	96	70-130
trans-1,2-Dichloroethen	10		9.6	96	70-130
n-Hexane	10		9.1	91	70-130
1,1-Dichloroethane	10		9.7	97	70-130
cis-1,2-Dichloroethene	10		10	100	70-130
Chloroform	10		10	100	70-130
1,1,1-Trichloroethane	10		11	110	70-130
Cyclohexane	10		9.8	98	70-130
Carbon tetrachloride	10		11	110	70-130
2,2,4-Trimethylpentane	10		9.2	92	70-130
Benzene	10		9.6	96	70~130
1,2-Dichloroethane	10		9.9	99	70-130
n-Heptane	10		8.6	86	70-130
Trichloroethene	10		9.9	99	70-130
1,2-Dichloropropane	10		9.0	90	70-130
Column to be used to file		and DDDlu			

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:					
	_				

^{*} Values outside of QC limits

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix Spike - Sample No.: FA042010LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	==========	=========	=====	=====
Bromodichloromethane	10		11	110	70-130
cis-1,3-Dichloropropene	10		9.5	95	70-130
Toluene	10		9.6	96	70-130
trans-1,3-Dichloroprope	10		9.7	97	70-130
1,1,2-Trichloroethane	10		9.3	93	70-130
Tetrachloroethene	10		10	100	70-130
Dibromochloromethane	10		11	110	70-130
1,2-Dibromoethane	10		10	100	70-130
Chlorobenzene	10		9.7	97	70-130
Ethylbenzene	10		10	100	70-130
<pre>Xylene (m,p)</pre>	20		20	100	70-130
Xylene (o)	10		9.7	97	70-130
Styrene	10		9.6	96	70-130
Bromoform	10		11	110	70-130
1,1,2,2-Tetrachloroetha	10		9.5	95	70-130
4-Ethyltoluene	10		10	100	70-130
1,3,5-Trimethylbenzene	10		10	100	70-130
2-Chlorotoluene	10		10	100	70-130
1,2,4-Trimethylbenzene	10		9.8	98	70-130
1,3-Dichlorobenzene	10		9.9	99	70-130
1,4-Dichlorobenzene	10		10	100	70-130
1,2-Dichlorobenzene	10		9.8	98	70-130
1,2,4-Trichlorobenzene	10		9.7	97	70-130
Hexachlorobutadiene	10		10	100	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limi	しと
-----------------------------	----

RPD: 0 out of 0 outside limits

Spike Recovery: 0 out of 52 outside limits

COMMENTS:		

FORM 4 VOLATILE METHOD BLANK SUMMARY

MBLK042010FA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDNB01L

Lab Sample ID: MBLK042010FA

Date Analyzed: 04/20/10

Time Analyzed: 1312

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================		==========	=========
01	FA042010LCS	FA042010LCS	FDN10LQ	1221
02	RTD1209-01	826455	826455	0153
03	RTD1209-02	826456	826456D2	0749
04	KID1209-02	828438	626436D2	0745
05				
06				
07				
80				
09 10				
11				
12				
13			[
14				
15				
16]	l	
17				
18				
19				
20		l — — —		
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDN01PV BFB Injection Date: 04/07/10

Instrument ID: F BFB Injection Time: 0919

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	8.0 - 40.0% of mass 95	17.6
75	30.0 - 66.0% of mass 95	47.4
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.5 (0.5)1
174	50.0 - 120.0% of mass 95	87.9
175	4.0 - 9.0% of mass 174	6.1 (6.9)1
176	93.0 - 101.0% of mass 174	85.3 (97.1)1
177	5.0 - 9.0% of mass 176	5.5 (6.5)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	=======================================		========	========
01	ASTD0.2	ASTD0.2	FDN002V	04/07/10	1104
02	ASTD0.5	ASTD0.5	FDN005V	04/07/10	1157
03	ASTD05	ASTD05	FDN05V	04/07/10	1251
04	ASTD010	ASTD010	FDN10V2	04/07/10	1437
05	ASTD015	ASTD015	FDN15V	04/07/10	1528
06	ASTD020	ASTD020	FDN20V	04/07/10	1619
07	ASTD040	ASTD040	FDN40V	04/07/10	1709
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDN13PV BFB Injection Date: 04/20/10

Instrument ID: F BFB Injection Time: 0912

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======================================
50	8.0 - 40.0% of mass 95	18.5
75	30.0 - 66.0% of mass 95	49.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.4 (0.6)1
174	50.0 - 120.0% of mass 95	78.4
175	4.0 - 9.0% of mass 174	5.4 (7.0)1
176	93.0 - 101.0% of mass 174	76.1 (97.1)1
177	5.0 - 9.0% of mass 176	4.8 (6.3)2
	1-Value is % mass 174 2-Value is % mass	176

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	===========	===========	=======================================	=========	========
01	ASTD010	ASTD010	FDN10LV2	04/20/10	1130
02	FA042010LCS	FA042010LCS	FDN10LQ	04/20/10	1221
03	MBLK042010FA	MBLK042010FA	FDNB01L	04/20/10	1312
04	RTD1209-01	826455	826455	04/21/10	0153
05	RTD1209-02	826456	826456D2	04/21/10	0749
06					
07					
08					
09					
10					
11					
12					
13					
14					
15 16					
17					
18					
19					
20					
21					
22					

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

	2=FDN002 =FDN10			.5=FDN00 5 =FDN19			
COMPOUND	RRF0.2			RRF10	RRF15	RRF	RSD
======================================	=====	2.339	2.320	l	2.118	======	====
	2.460	2.339					
1,2-Dichlorotetrafluoroethan	2.460	1	ı				
Chloromethane		0.773			0.657		
Vinyl Chloride	0.909	0.922			0.882		
l,3-Butadiene	0.743	0.747					
Bromometnane	1.089	1.072			1.009		
Chloroethane		0.591			0.547		
Bromoethene	1.101	1.096					
Trichlorofluoromethane	2.922	2.948			2.766		
Freon TF	2.049	2.077			2.018		
1,1-Dichloroethene	1.013	0.973					
Carbon disulfide		3.110			3.102		
3-Chloropropene	1.307	1.316					
Methylene chloride		1.375			1.150		
trans-1,2-Dichloroethene	1.734	1.709	1.724		1.661		
n-Hexane	1.885	1.828	1.827	1.773	1.750		
1,1-Dichloroethane	* 2.092	2.068	2.074	2.055	2.008		_
cis-1,2-Dichloroethene	1.189	1.161	1.161	1.137	1.149		
Chloroform	2.426	2.346	2.363	2.327	2.300		
1,1,1-Trichloroethane	0.506	0.484	0.498	0.491	0.496		
Cyclohexane	0.319	0.310			0.325		
Carbon tetrachloride	0.508	0.504	0.520		0.531		
2,2,4-Trimethylpentane	1.164	1.138			1.123		
Benzene	0.743	0.719			0.700		
1,2-Dichloroethane	0.328	0.333					
n-Heptane	0.449	0.443			0.411		
Trichloroethene	0.322	0.314			0.319		
1,2-Dichloropropane	0.264	0.270			0.265		
Bromodichloromethane	0.510	0.493					
cis-1,3-Dichloropropene	0.405						
Toluene	0.562	0.536			0.561		
trans-1,3-Dichloropropene	0.402	0.414			0.447		
1,1,2-Trichloroethane	0.279	0.261					
Tetrachloroethene	0.466	0.451			0.486		
Dibromochloromethane	0.506	0.431			0.600		
1 2-Dibromoethane	0.306						
1,2-DibromoethaneChlorobenzene	* 0.766						
THIOLODGHZGHG	~ U./66	0.749	0.735	0.741	0.779		

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

	2=FDN002 =FDN10			.5=FDN00 5 =FDN1!			
COMPOUND	RRF0.2		I	RRF10	RRF15	RRF	RSD
			I	=====		=====	====:
EthylbenzeneXylene (m,p)	1.234						
<pre>Xylene (m,p)</pre>	0.488						
Xylene (o)	0.456						
Xylene (o)	0.716						
Bromotorm	0.472						
1,1,2,2-Tetrachloroethane	0.705						
4-Ethyltoluene	1.415						
1,3,5-Trimethylbenzene	1.129						
2-Chlorotoluene	1.307						
1,2,4-Trimethylbenzene	1.170	1.113					
1,3-Dichlorobenzene	0.814	0.782	0.805	0.820	0.876		
1,4-Dichlorobenzene	0.803	0.767	0.802	0.821	0.877		
1,2-Dichlorobenzene	0.763	0.725	0.763	0.777	0.823		
1,2,4-Trichlorobenzene		0.573	0.641	0.649	0.720		
Hexachlorobutadiene	0.587	0.553		0.592	0.642		
				l			
							
							
							
						[———	
				[
			[
	l ———						
		l ———					

^{*} Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF20	=FDN20	V	RRF4	0 =FDN4	V		
	<u> </u>						
COMPOUND	RRF20	RRF40	 			RRF	RSD
Dichlorodifluoromethane	2.027		=====			2.157	9.
1,2-Dichlorotetrafluoroethar						2.295	9.
Chloromethane	0.627					0.680	10.
Vinyl Chloride	0.833					0.888	6.
1,3-Butadiene	0.631	0.597				0.687	8.
Bromomethane	0.986	0.931				1.021	5.
Chloroethane	0.524					0.550	6.
Bromoethene	1.035	0.990			ļ——	1.056	3.
Trichlorofluoromethane	2.694			-		2.806	5.
Freon TF	2.001					2.013	2.
1,1-Dichloroethene	0.961					0.964	2.
Carbon disulfide	3.050		l ———			3.069	
3-Chloropropene	1.294					1.312	4.
Methylene chloride	1.122					1.185	9.
trans-1,2-Dichloroethene	1.632					1.669	4.
n-Hexane	1.722					1.768	5.
1,1-Dichloroethane	* 1.971					2.015	4.
cis-1,2-Dichloroethene	1.140	1.080				1.145	2.
Chloroform	2.260]		I	3.
1,1,1-Trichloroethane	0.492		l			2.310	$\begin{vmatrix} 3.\\ 1. \end{vmatrix}$
Cyclohexane	0.492	0.480	l ———			0.492	1.
Carbon tetrachloride						0.318	
2,2,4-Trimethylpentane	0.532	0.530]		0.521	2.
z,z,4-irimethyipehtane Benzene		1.036				1.120	
1 2 Diablementhana	0.694		l ———			0.702	3.
1,2-Dichloroethane	0.321					0.326	2.
n-Heptane	0.403	0.373	l			0.418	6.
Trichloroethene	0.318	0.311	l			0.316	1.
1,2-Dichloropropane	0.261	0.251				0.263	2.
Bromodichloromethane	0.528	0.516				0.519	2.
cis-1,3-Dichloropropene	0.420	0.411				0.413	2.
Toluene	0.563	0.509				0.542	3.
trans-1,3-Dichloropropene	0.449					0.434	4.
1,1,2-Trichloroethane	0.277					0.268	2.
Tetrachloroethene	0.505	1				0.473	5.
Dibromochloromethane	0.618	0.610				0.562	8.
1,2-Dibromoethane	0.534	1				0.504	4.
Chlorobenzene	* 0.796	0.773				0.763	2.
Compounds with morning win	.						

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

LAB FILE ID: RRF20	=FDN20	V	RRF4	=FDN4(V		
COMPOUND	RRF20	RRF40				RRF	RSD
Ethylhenzene			=====	=====	=====	1.189	3.9
Ethylbenzene Xylene (m,p)	0.508	1				0.484	4.9
Yylone (a)	0.504	0.468				0.477	3.9
Xylene (o) Styrene	0.804	0.742				0.747	5.3
Bromoform	0.683	0.742				0.590	14.8
1,1,2,2-Tetrachloroethane	0.735	0.666				0.708	3.2
	1.484		l			1.409	3.5
4-Ethyltoluene 1,3,5-Trimethylbenzene	1.234	1.121				1.163	3.8
1,3,5-111methylbenzene			l ———		l ————		3.5
2-Chlorotoluene	1.316	1.189				1.274	1
1,2,4-Trimethylbenzene	1.248	1.153				1.178	3.9
1,3-Dichlorobenzene	0.907	0.884				0.841	5.6
1,4-Dichlorobenzene	0.911	0.883				0.838	6.3
1,2-Dichlorobenzene	0.858	0.837				0.792	6.0
1,2,4-Trichlorobenzene	0.777					0.686	11.4
Hexachlorobutadiene	0.693	0.663]			0.617	8.1
	1					1	
	-						
	-		_ 			[— —	
	·	[
	-		ļ ———				
	·]		l			
	- — ——						
	-		l ———		l ———		
		l					
	.						
					- 		
	-						

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date: 04/20/10 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1104 1709

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
	=======	=======	=======	=====	====
Dichlorodifluoromethane	2.157	2.403	0.01	11.4	30.0
1,2-Dichlorotetrafluoroethan	2.295	2.451	0.01		30.0
Chloromethane	0.680	0.624	0.01		30.0
Vinyl Chloride	0.888	0.869	0.01		30.0
1,3-Butadiene	0.687	0.649	0.01	5.5	30.0
Bromomethane	1.021	1.088	0.01	6.6	30.0
Chloroethane	0.550	0.529	0.01	3.8	30.0
Bromoethene	1.056	1.121	0.01	6.2	30.0
Trichlorofluoromethane	2.806	3.109	0.01	10.8	30.0
Freon TF	2.013	2.135	0.01	6.1	30.0
1,1-Dichloroethene	0.964	1.000	0.01	3.7	30.0
Carbon disulfide	3.069	3.159	0.01	2.9	30.0
3-Chloropropene	1.312	1.204	0.01	8.2	30.0
Methylene chloride	1.185	1.102	0.01	7.0	30.0
trans-1,2-Dichloroethene	1.669	1.637	0.01	1.9	30.0
n-Hexane	1.768	1.652	0.01	6.6	30.0
1,1-Dichloroethane	2.015	1.978	0.1	1.8	30.0
cis-1,2-Dichloroethene	1.145	1.146	0.01	0.1	30.0
Chloroform	2.310	2.394	0.01	3.6	30.0
1,1,1-Trichloroethane	0.492	0.530	0.01	7.7	30.0
Cyclohexane	0.318	0.315	0.01	0.9	30.0
Carbon tetrachloride	0.521	0.570	0.01	9.4	30.0
2,2,4-Trimethylpentane	1.120	1.058	0.01	5.5	30.0
Benzene	0.702	0.681	0.01	3.0	30.0
1,2-Dichloroethane	0.326	0.330	0.01		30.0
n-Heptane	0.418	0.372	0.01	11.0	30.0
Trichloroethene	0.316	0.323	0.01	2.2	30.0
1,2-Dichloropropane	0.263	0.250	0.01	4.9	30.0
Bromodichloromethane	0.519	0.545	0.01	5.0	30.0
cis-1,3-Dichloropropene	0.413	0.409	0.01	1.0	30.0
Toluene	0.542	0.544	0.01	0.4	30.0
trans-1,3-Dichloropropene	0.434	0.442	0.01	1.8	30.0
1,1,2-Trichloroethane	0.268	0.270	0.01	0.7	30.0
Tetrachloroethene	0.473	0.497	0.01	5.1	30.0
Dibromochloromethane	0.562	0.613	0.01	9.1	30.0
1,2-Dibromoethane	0.504	0.530	0.01	5.2	30.0
Chlorobenzene	0.763	0.777	0.3	1.8	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date: 04/20/10 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1104 1709

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
	=======	=======	=======	======	====
Ethylbenzene	1.189	1.228	0.01	3.3	30.0
<pre>Xylene (m,p)</pre>	0.484	0.495	0.01	2.3	30.0
Xylene (o)	0.477	0.485	0.01	1.7	30.0
Styrene	0.747	0.749	0.01	0.3	30.0
Bromoform	0.590	0.677	0.01	14.7	30.0
1,1,2,2-Tetrachloroethane	0.708	0.719	0.01	1.6	30.0
4-Ethyltoluene	1.409	1.468	0.01	4.2	[30.0]
1,3,5-Trimethylbenzene	1.163	1.218	0.01	4.7	30.0
2-Chlorotoluene	1.274	1.338	0.01	5.0	30.0
1,2,4-Trimethylbenzene	1.178	1.223	0.01	3.8	30.0
1,3-Dichlorobenzene	0.841	0.888	0.01	5.6	30.0
1,4-Dichlorobenzene	0.838	0.888	0.01	6.0	30.0
1,2-Dichlorobenzene	0.792	0.844	0.01	6.6	30.0
1,2,4-Trichlorobenzene	0.686	0.711	0.01	3.6	30.0
Hexachlorobutadiene	0.617	0.680	0.01	10.2	30.0

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID (Standard): FDN10LV2 Date Analyzed: 04/20/10

Instrument ID: F Time Analyzed: 1130

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1(BCM)		IS2(DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	12 HOUR STD	526728	9.61	2548272	11.00	2406262	15.11
	UPPER LIMIT	737419	9.94	3567581	11.33	3368767	15.44
	LOWER LIMIT	316037	9.28	1528963	10.67	1443757	14.78
	==========	========	======	========		========	======
	CLIENT						
	SAMPLE NO.						1
	=========					========	
01	FA042010LCS	533123	9.61	2596072	11.00	2461812	15.11
02	MBLK042010FA	542763	9.61	2691332	11.00	2481496	15.10
03	RTD1209-01						
		525926	9.61	2586734	11.00	2401240	15.10
04	RTD1209-02	423049	9.61	2101562	11.00	1932456	15.10
05							
06							
07							
08							
09							
10							
11							
12							(
13							
14							
15							
16							
17	[— —						
18							
19		_ 					
20							
21							
22							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

TestAmerica South Burlington, VT

Extended Data Package

RTD1209

TestAmerica Laboratories, Inc.

May 4, 2010

Mr. Brian Fischer TestAmerica, Inc. 10 Hazelwood Drive Suite 106 Amherst, NY 14228

Re: Laboratory Project No. 29012 Case: SCOTTAVI; SDG: RTD1209

Dear Mr. Fischer:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on April 10th, 2010. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	Sample ID	<u>Date</u>	<u>Matrix</u>
	Received: 04/10/10 ETR No:	136859	
826455	RTD1209-01	04/07/10	AIR
826456	RTD1209-02	04/07/10	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

Volatile Organics by TO-14A

The sample, RTD1209-02 was diluted 684 fold to get the response of the analyte with the highest concentration within the initial calibration range. Only the results for the dilution analysis were provided.

The practice of the laboratory is to analyze one canister from each batch of canisters that have been cleaned for re-use in order to certify the batch. The canisters that were used for this sampling event were from multiple batches. The certifying analyses were free of target analytes down to the concentration levels that are contractually required (nominally 0.2 PPBV). In order to provide for the lower level of detection required for canister certification, the laboratory analyzed a 500 milliliter volume. The laboratory's established practice for the analysis of field samples is based on the analysis of a 200 milliliter sample volume. Documentation of the analytical work supporting canister certification is included in the "Clean Can Certification" section of this submittal. Documentation of canister vacuum as delivered to, and received from, the field is included in the "Clean Can Certification" section of this submittal.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports, and extracted ion current profiles are included in the data package.

The following details the column type and trap design that were used in the performance of the analytical work for the sample in this sample set:

Chromatography Column - Restek RTX-624
Length - 60 meters
Inner Diameter - 0.32 millimeters
Film thickness - 1.8 micrometers
Trap Design - Entech Model 7100A (glass bead and Tenax with cryo-focusing)

A summary of the laboratory's current Method Detection Limits (MDLs) has been provided as part of this submittal, immediately following this transmittal letter.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Joseph Carabillo Project Manager

cc:

Continuation...

Chain of Custody	18	
QC Summary TO-14A Volatile	20	
Supportive Documentation TO-14A Volatile	27	
Standards TO-14A Volatile	47	
Raw QC Data TO-14A Volatile	93	
Sample Preparation TO-14A Volatile	110	
Sample Handling	117	

Project: 29000

Field ID Number: 235 FORSGATE-SG-1

Laboratory ID Number: 826251

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	300		710		
Benzene	71-43-2	78.108	2.7		8.6		
Bromodichloromethane	75-27-4	163.83	2.0	U	13		
Bromoethene	593-60-2	106.96	2.0	U	8.7		
Bromoform	75-25-2	252.75	2.0	U	21		** ***********************************
Bromomethane (Methyl bromide)	74-83-9	94.94	2.0	U	7.8		
1,3-Butadiene	106-99-0	54.09	5.0	U	11	And the companies of the common and common and the	A CONTRACTOR OF THE PARTY OF TH
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	26		77		The same services of the same
Carbon disulfide	75-15-0	76.14	5.0	U	16	и в при в при в при в при в при в при в при в при в при в при в при в при в при в при в при в при в при в при	The control of the co
Carbon tetrachloride	56-23-5	153.81	2.0	U	13		
Chlorobenzene	108-90-7	112.55	2.0	U	9.2	***************************************	### ##################################
Chloroethane	75-00-3	64.52	5.0	U	13	***************************************	
Chloroform	67-66-3	119.38	2.0	U	9.8		
Chloromethane (Methyl chloride)	74-87-3	50.49	5.0	U	10		
3-Chloropropene (allyl chloride)	107-05-1	76.53	5.0	U	16		and and the second seco
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	2.0	U	10		
Cyclohexane	110-82-7	84.16	2.0	U	6.9		***************************************
Dibromochloromethane	124-48-1	208.29	2.0	U	17		
1,2-Dibromoethane	106-93-4	187.87	2.0	U	15		
1,2-Dichlorobenzene	95-50-1	147.00	2.0	U	12		
1,3-Dichlorobenzene	541-73-1	147.00	2.0	U	12		MARION MA
1,4-Dichlorobenzene	106-46-7	147.00	2.0	U	12	, , , , , , , , , , , , , , , , , , ,	
Dichlorodifluoromethane	75-71-8	120.91	5.0	U	25	Anterior materior (contractive) of the minimum contractive of the second contractive of the seco	amon promises and commence and
1,1-Dichloroethane	75-34-3	98.96	2.0	U	8.1		
1,2-Dichloroethane	107-06-2	98.96	2.0	U	8.1		Toppe up 1, go go de commence a la de viga e manor monte a la de la desarra de la della de
1,1-Dichloroethene	75-35-4	96.94	2.0	U	7.9		
1,2-Dichloroethene (cis)	156-59-2	96.94	2.0	U	7.9	***************************************	***************************************
1,2-Dichloroethene (trans)	156-60-5	96.94	2.0	U	7.9		
1,2-Dichloropropane	78-87-5	112.99	2.0	U	9.2	· · · · · · · · · · · · · · · · · · ·	######################################
1,3-Dichloropropene (cis)	10061-01-5	110.97	2.0	U	9.1		and the second s
1,3-Dichloropropene (trans)	10061-02-6	110.97	2.0	U	9.1		ANGEL ANGELOGICAL ANGEL SERVICE SERVICE ANGELOGICA ANGE
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	2.0	U	14		
Ethylbenzene	100-41-4	106.17	2.0	Ū	8.7		
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	2.0	U	9.8		4 -1-1
n-Heptane	142-82-5	100.21	2.7	······································	11		
Hexachlorobutadiene	87-68-3	260.76	2.0	U	21		
n-Hexane	110-54-3	86.172	5.0	U	18		
Methylene Chloride	75-09-2	84.93	5.0	U	17		

Laboratory Name: TAL-Burlington Laboratory City: South Burlington, Vermont

master QA form for air

Page 1

Project: 29000

Field ID Number: 235 FORSGATE-SG-1

Laboratory ID Number: 826251

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	5.0	U	20		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	5.0	U	18		
Styrene	100-42-5	104.15	2.0	U	8.5	***************************************	
Tertiary butyl alcohol (TBA)	75-65-0	74.12	50	U	150		
1,1,2,2-Tetrachloroethane	79-34-5	167.85	2.0	U	14		******************************
Tetrachloroethene (PCE)	127-18-4	165.83	2.0	U	14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Toluene	108-88-3	92.14	9.1		34	***************************************	
1,2,4-Trichlorobenzene	120-82-1	181.45	5.0	U	37		
1,1,1-Trichloroethane	71-55-6	133.41	2.0	U	11		
1,1,2-Trichloroethane	79-00-5	133.41	2.0	U	11		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	2.0	U	15		
Trichloroethene (TCE)	79-01-6	131.39	2.0	U	11		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	2.0	U	11		**************************************
1,2,4-Trimethylbenzene	95-63-6	120.20	2.0	U	9.8		
1,3,5-Trimethylbenzene	108-67-8	120.20	2.0	U	9.8	***************************************	
2,2,4-Trimethylpentane	540-84-1	114.23	2.0	U	9.3		
Vinyl Chloride	75-01-4	62.50	2.0	U	5.1		
Xylene (m,p)	1330-20-7	106.17	4.0	U	17		and the same of th
Xylene (o)	95-47-6	106.17	2.0	U	8.7		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

master QA form for air

Page 2

Project: 29000

Field ID Number: 235 FORSGATE-SG-2

Laboratory ID Number: 826252

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	240		570		
Benzene	71-43-2	78.108	2.0	U	6.4		
Bromodichloromethane	75-27-4	163.83	2.0	U	13	**************************************	W - Newscaper Warner Ar HeroControl Control Co
Bromoethene	593-60-2	106.96	2.0	U	8.7	Annual at the state of the state of the state of	ANTICATION OF THE PROPERTY OF STREET
Bromoform	75-25-2	252.75	2.0	U	21	and the state of t	TO WE SEED AND THE CONTROL OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY ADMIN
Bromomethane (Methyl bromide)	74-83-9	94.94	2.0	U	7.8	and the second second second second second	The state of the s
1,3-Butadiene	106-99-0	54.09	5.0	U	11		0 1000000000 or 10000
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	15		44		
Carbon disulfide	75-15-0	76.14	5.0	U	16	40 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er 140 er	e victorialescentinescentinescentinescentinescentinescentinescentinescentinescentinescentinescentinescentinesc
Carbon tetrachloride	56-23-5	153.81	2.0	U	13		
Chlorobenzene	108-90-7	112.55	2.0	U	9.2		
Chloroethane	75-00-3	64.52	5.0	U	13		
Chloroform	67-66-3	119.38	2.0	U	9.8	water and the state of the stat	e lyngojonine in programanine
Chloromethane (Methyl chloride)	74-87-3	50.49	5.0	U	10		
3-Chloropropene (allyl chloride)	107-05-1	76.53	5.0	U	16	Accessoration and an accessoration of the accessoration and accessoration accessoration and accessoration accessoration and accessoration accessor	**************************************
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	2.0	U	10		
Cyclohexane	110-82-7	84.16	2.0	U	6.9	AND THE PROPERTY OF THE PARTY O	- variations was a colored man and an artificial field block
Dibromochloromethane	124-48-1	208.29	2.0	U	17		
1,2-Dibromoethane	106-93-4	187.87	2.0	U	15		
1,2-Dichlorobenzene	95-50-1	147.00	2.0	U	12	***************************************	
1,3-Dichlorobenzene	541-73-1	147.00	2.0	U	12	CONTRACTOR CONTRACTOR CONTRACTOR OF THE CONTRACTOR CONTRACTOR OF THE CONTRACTOR CONTRACTOR OF THE CONTRACTOR C	THE R L METERSON OF STREET PRODUCTION
1,4-Dichlorobenzene	106-46-7	147.00	2.0	U	12		
Dichlorodifluoromethane	75-71-8	120.91	5.0	U	25	***************************************	. ####################################
1,1-Dichloroethane	75-34-3	98.96	2.0	U	8.1		
1,2-Dichloroethane	107-06-2	98.96	2.0	U	8.1		entre de responsable de la companya de la companya de la companya de la companya de la companya de la companya
1,1-Dichloroethene	75-35-4	96.94	2.0	υ	7.9		II pittilladeesseedite Mikeliyatedayaasiyiiiiiii
1,2-Dichloroethene (cis)	156-59-2	96.94	2.0	U	7.9	* accompanient de la constante	AND STREET, ST
1,2-Dichloroethene (trans)	156-60-5	96.94	2.0	U	7.9		
1,2-Dichloropropane	78-87-5	112.99	2.0	U	9.2	***************************************	
1,3-Dichloropropene (cis)	10061-01-5	110.97	2.0	U	9.1		
1,3-Dichloropropene (trans)	10061-02-6	110.97	2.0	U	9.1	***************************************	
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	2.0	U	14		
Ethylbenzene	100-41-4	106.17	2.0	U	8.7		TOTAL PROPERTY OF THE PROPERTY
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	2.0	U	9.8		MATERIAL PROPERTY AND ADDRESS OF THE PERSONS OF THE
n-Heptane	142-82-5	100.21	2.0	U	8.2		
Hexachlorobutadiene	87-68-3	260.76	2.0	U	21		
n-Hexane	110-54-3	86.172	5.0	U	18		encentral contract the statement of the contract of the contra
Methylene Chloride	75-09-2	84.93	5.0	U	17		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

master QA form for air

Page 1

Field ID Number: 235 FORSGATE-SG-2

Laboratory ID Number: 826252

TARGET ANALYTES -AIR RESULTS

Sampling Date: 4/6/2010 Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	5.0	U	20		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	5.0	U	18		
Styrene	100-42-5	104.15	2.0	U	8.5		
Tertiary butyl alcohol (TBA)	75-65-0	74.12	50	U	150		
1,1,2,2-Tetrachloroethane	79-34-5	167.85	2.0	U	14	en en en en en en en en en en en en en e	**************************************
Tetrachloroethene (PCE)	127-18-4	165.83	2.0	U	14		
Toluene	108-88-3	92.14	2.0	U	7.5	**************************************	COMMUNICACION DE COMPONICACIÓN DE COMPON
1,2,4-Trichlorobenzene	120-82-1	181.45	5.0	U	37		
1,1,1-Trichloroethane	71-55-6	133.41	2.0	U	11	Accession and the second second second second second	SMARONINARIA DE TELEFONIA DE SOCIEMAÇÃO E TOMOS
1,1,2-Trichloroethane	79-00-5	133.41	2.0	U	11		.,
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	2.0	U	15		_8/10/10/10/10/10/10/10/10/10/10/10/10/10/
Trichloroethene (TCE)	79-01-6	131.39	2.0	U	11		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	2.0	U	11		2000.0000000000000000000000000000000000
1,2,4-Trimethylbenzene	95-63-6	120.20	2.0	U	9.8		
1,3,5-Trimethylbenzene	108-67-8	120.20	2.0	U	9.8		***************************************
2,2,4-Trimethylpentane	540-84-1	114.23	2.0	U	9.3		
Vinyl Chloride	75-01-4	62.50	2.0	U	5.1		Managarana A come en
Xylene (m,p)	1330-20-7	106.17	4.0	U	17		
Xylene (o)	95-47-6	106.17	2.0	U	8.7	The second secon	***************************************

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

master QA form for air

Field ID Number: FA042010LCS Laboratory ID Number: FA042010LCS TARGET ANALYTES -AIR RESULTS Sampling Date: Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	9.7		23		
Benzene	71-43-2	78.108	9.6		31		
Bromodichloromethane	75-27-4	163.83	11		74	Martin Company of the	
Bromoethene	593-60-2	106.96	10		44		
Bromoform	75-25-2	252.75	11	100 TONOROS (100 TONOROS)	110		* Vierania (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.) (III.)
Bromomethane (Methyl bromide)	74-83-9	94.94	9.8		38		
1,3-Butadiene	106-99-0	54.09	8.8	···	19	A MORROSCOCIO, ACORDO MESTORIO ESTA ESTA ESTA ESTA ESTA ESTA ESTA ESTA	p yeprotryyyaaaa aagaanna oo aaanna
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	9.7		29		
Carbon disulfide	75-15-0	76.14	10	* Special concentrations	31	**************************************	W * * :::::::::::::::::::::::::::::::::
Carbon tetrachloride	56-23-5	153.81	11		69	***************************************	
Chlorobenzene	108-90-7	112.55	9.7	*******************	45	An America Colo. Commission and and the fection of the commission and the commission of the commission	A COSA CONTRACEMBER PROPERTY AND CONTRACE OF CONTRACE
Chloroethane	75-00-3	64.52	8.8		23	***************************************	
Chloroform	67-66-3	119.38	10	***************************************	49	CONTRACTOR CONTRACTOR	
Chloromethane (Methyl chloride)	74-87-3	50.49	8.5		18		
3-Chloropropene (allyl chloride)	107-05-1	76.53	8.9		28		. #####################################
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	10		52		.,
Cyclohexane	110-82-7	84.16	9.8	te sustant del comunitario anno albanh.	34		The second secon
Dibromochloromethane	124-48-1	208.29	11		94	***************************************	
1,2-Dibromoethane	106-93-4	187.87	10		77	AND AND AND AND AND AND AND AND AND AND	ANDRONE VILLIA - NOOLANT AT 100000
1,2-Dichlorobenzene	95-50-1	147.00	9.8		59		
1,3-Dichlorobenzene	541-73-1	147.00	9.9	***************************************	60	***************************************	PROGRAMOTOR AND CONTRACTOR OF THE CONTRACTOR OF
1,4-Dichlorobenzene	106-46-7	147.00	10		60		
Dichlorodifluoromethane	75-71-8	120.91	10		49	······································	#1 VE. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,1-Dichloroethane	75-34-3	98.96	9.7		39		
1,2-Dichloroethane	107-06-2	98.96	9.9	***************************************	40		Table (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)
1,1-Dichloroethene	75-35-4	96.94	11		44	***************************************	
1,2-Dichloroethene (cis)	156-59-2	96.94	10		40		
1,2-Dichloroethene (trans)	156-60-5	96.94	9.6		38		
1,2-Dichloropropane	78-87-5	112.99	9.0	***************************************	42		***************************************
1,3-Dichloropropene (cis)	10061-01-5	110.97	9.5		43		
1,3-Dichloropropene (trans)	10061-02-6	110.97	9.7		44		***************************************
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	10	***********************	70	eregeringer sitt steadige andigementermette form	
Ethylbenzene	100-41-4	106.17	10		43		
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	10		49		
n-Heptane	142-82-5	100.21	8.6		35	WORKERSON, CONCORDERATION A WORKERSON	Annon
Hexachlorobutadiene	87-68-3	260.76	10		110		ntok
n-Hexane	110-54-3	86.172	9.1	·····	32		TOTAL STREET TOTAL STREET, STREET STREET, STREET STREET, STREE
	75-09-2	84.93	9.6		33	***************************************	

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

master QA form for air

Field ID Number: FA042010LCS Laboratory ID Number: FA042010LCS TARGET ANALYTES -AIR RESULTS Sampling Date: Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	9.0		37		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	10		36		
Styrene	100-42-5	104.15	9.6		41		
Tertiary butyl alcohol (TBA)	75-65-0	74.12	9.1		28		
1,1,2,2-Tetrachloroethane	79-34-5	167.85	9.5		65		
Tetrachloroethene (PCE)	127-18-4	165.83	10		68		
Toluene	108-88-3	92.14	9.6		36		
1,2,4-Trichlorobenzene	120-82-1	181.45	9.7		72		Antonia de la consensa del la consensa de la consen
1,1,1-Trichloroethane	71-55-6	133.41	11		60	Junto material control of material and analysis of the control of	######################################
1,1,2-Trichloroethane	79-00-5	133.41	9.3		51	***************************************	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	11		84		5. WILEY TO FERROMONIA PROVINCE AND THE
Trichloroethene (TCE)	79-01-6	131.39	9.9		53		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	11		62		
1,2,4-Trimethylbenzene	95-63-6	120.20	9.8		48		
1,3,5-Trimethylbenzene	108-67-8	120.20	10		49		AND THE PROPERTY OF THE PROPER
2,2,4-Trimethylpentane	540-84-1	114.23	9.2		43		
Vinyl Chloride	75-01-4	62.50	8.9		23	**************************************	AND THE REAL PROPERTY OF THE P
Xylene (m,p)	1330-20-7	106.17	20		87		
Xylene (o)	95-47-6	106.17	9.7	*****************	42		

Laboratory Name: TAL-Burlington Laboratory City: South Burlington, Vermont

master QA form for air

Field ID Number: MBLK042010FA Laboratory ID Number: MBLK042010FA

TARGET ANALYTES -AIR RESULTS

Sampling Date: Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
Acetone (2-propanone)	67-64-1	58.078	5.0	U	12		
Benzene	71-43-2	78.108	0.20	U	0.64	**************************************	
Bromodichloromethane	75-27-4	163.83	0.20	U	1.3	Partie in the appropriate confidence of the American Confidence of the American Confidence of the American Confidence of the American Confidence of the American Confidence of the American Confidence of the American Conf	## \$##################################
Bromoethene	593-60-2	106.96	0.20	U	0.87	***************************************	-
Bromoform	75-25-2	252.75	0.20	U	2.1	***************************************	and the second s
Bromomethane (Methyl bromide)	74-83-9	94.94	0.20	U	0.78		
1,3-Butadiene	106-99-0	54.09	0.50	U	1.1	A CONTRACTOR OF THE PROPERTY O	
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	0.50	U	1.5		***************************************
Carbon disulfide	75-15-0	76.14	0.50	U	1.6	er erikulari dalam kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan kanan k	William of the second of the s
Carbon tetrachloride	56-23-5	153.81	0.20	U	1.3		
Chlorobenzene	108-90-7	112.55	0.20	U	0.92		A STREET, STRE
Chloroethane	75-00-3	64.52	0.50	U	1.3		references and a second
Chloroform	67-66-3	119.38	0.20	U	0.98	***************************************	
Chloromethane (Methyl chloride)	74-87-3	50.49	0.50	U	1.0		
3-Chloropropene (allyl chloride)	107-05-1	76.53	0.50	U	1.6		
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.59	0.20	U	1.0		
Cyclohexane	110-82-7	84.16	0.20	U	0.69	- marketine fraktissessen mensen ditt milde (ditt fin sjun 40 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1	Autority and Autority of Autority of
Dibromochloromethane	124-48-1	208.29	0.20	U	1,7	The state of the s	
1,2-Dibromoethane	106-93-4	187.87	0.20	U	1.5	- Andrews of the Announce of Angel about the	Methodological de Later de Lat
1,2-Dichlorobenzene	95-50-1	147.00	0.20	U	1.2		
1,3-Dichlorobenzene	541-73-1	147.00	0.20	U	1.2		**************************************
1,4-Dichlorobenzene	106-46-7	147.00	0.20	U	1.2	***************************************	
Dichlorodifluoromethane	75-71-8	120.91	0.50	U	2.5		
1,1-Dichloroethane	75-34-3	98.96	0.20	U	0.81		The Auditorian Auditorian Property and Auditorian Control
1,2-Dichloroethane	107-06-2	98.96	0.20	U	0.81		The state of the s
1,1-Dichloroethene	75-35-4	96.94	0.20	U	0.79	***************************************	
1,2-Dichloroethene (cis)	156-59-2	96.94	0.20	U	0.79		ARCONOMICA ARRESTANCIONOS (C. A. A. A. A.C.A.)
1,2-Dichloroethene (trans)	156-60-5	96.94	0.20	U	0.79		
1,2-Dichloropropane	78-87-5	112.99	0.20	U	0.92	***************************************	W/20/2000
1,3-Dichloropropene (cis)	10061-01-5	110.97	0.20	U	0.91		ET: (HEREEREEREEREEREEREEREEREEREEREEREEREERE
1,3-Dichloropropene (trans)	10061-02-6	110.97	0.20	U	0.91		
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	170.92	0.20	U	1.4		PRESIDENT AND ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PRESIDENT ADMINISTRATION OF THE PR
Ethylbenzene	100-41-4	106.17	0.20	U	0.87		NAMES OF THE PROPERTY OF THE P
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.20	0.20	U	0.98	***************************************	
n-Heptane	142-82-5	100.21	0.20	Ū	0.82	NAMES OF THE PARTY	######################################
Hexachlorobutadiene	87-68-3	260.76	0.20	U	2.1		
n-Hexane	110-54-3	86.172	0.50	U	1.8	er from the common control control of the the the the the the the the the the	Market 100 1 1 - 2004 127 1207 127 127 127 127
Methylene Chloride	75-09-2	84.93	0.50	U	1.7		

Laboratory Name: TAL-Burlington

Laboratory City: South Burlington, Vermont

master QA form for air

Field ID Number: MBLK042010FA Laboratory ID Number: MBLK042010FA

TARGET ANALYTES -AIR RESULTS

Sampling Date: Analysis Date: 4/20/2010

Chemical	CAS Number	Molecular Weight	Results in ppbv	Q	Results in ug/m3	QAS Decision	Footnotes
4-Methyl-2-pentanone (MIBK)	108-10-1	100.16	0.50	U	2.0		
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	0.50	U	1.8		
Styrene	100-42-5	104.15	0.20	U	0.85		A AMERICAN MANAGEMENT CAT JULI
Tertiary butyl alcohol (TBA)	75-65-0	74.12	5.0	U	15	AMERICAN PROPERTY OF PERSONS ASSESSMENT ASSESSMENT ASSE	
1,1,2,2-Tetrachioroethane	79-34-5	167.85	0.20	U	1.4	of his hair years consider any various sources	**************************************
Tetrachloroethene (PCE)	127-18-4	165.83	0.20	U	1.4		
Toluene	108-88-3	92.14	0.20	U	0.75	***************************************	Salahiran mereki mereki incoloristan semeni incolorista
1,2,4-Trichlorobenzene	120-82-1	181.45	0.50	U	3.7		
1,1,1-Trichloroethane	71-55-6	133.41	0.20	U	1.1		
1,1,2-Trichloroethane	79-00-5	133.41	0.20	U	1.1		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	76-13-1	187.38	0.20	U	1.5	And the time of time of the time of time of the time of ti	
Trichloroethene (TCE)	79-01-6	131.39	0.20	U	1.1		
Trichlorofluoromethane (Freon 11)	75-69-4	137.37	0.20	U	1.1	- Andrews (Andrews Control Con	and the second contract of the second contract of
1,2,4-Trimethylbenzene	95-63-6	120.20	0.20	U	0.98		
1,3,5-Trimethylbenzene	108-67-8	120.20	0.20	U	0.98		***************************************
2,2,4-Trimethylpentane	540-84-1	114.23	0.20	U	0.93		
Vinyl Chloride	75-01-4	62.50	0.20	U	0.51	- Philippine Communication of the Communication of	***************************************
Xylene (m,p)	1330-20-7	106.17	0.40	U	1.7	***************************************	ACCOMMENSATION OF THE PROPERTY
Xylene (o)	95-47-6	106.17	0.20	U	0.87	en en en en en en en en en en en en en e	

Laboratory Name: TAL-Burlington
Laboratory City: South Burlington, Vermont

master QA form for air

CLIENT SAMPLE NO.

RTD1209-01

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 826455

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20		0.20	0.51	************	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.23		0.20	1.3		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Carbon disulfide	75-15-0	4.1	or a nor nor nannar na	0.50	13		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
cis-1,2-Dichloroethene	156-59-2	4.3		0.20	17		0.79
Chloroform :	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	12		0.20	64		1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
3romodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.75		0.20	2.8		0.75
rans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1

Printed: 5/4/2010 9:20:53 AM Page 1 of 2

CLIENT SAMPLE NO.

RTD1209-01

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 826455

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

Printed: 5/4/2010 9:20:53 AM Page 2 of 2

CLIENT SAMPLE NO.

RTD1209-02

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 684.00

Sample Matrix: AIR

SDG: RTD1209

Lab Sample No.: 826456

Date Analyzed: 4/21/2010

Date Received: 4/10/2010

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	340	U	340	1700	U	1700
1,2-Dichlorotetrafluoroethane	76-14-2	140	U	140	980	U	980
Chloromethane	74-87-3	340	U	340	700	U	700
Vinyl Chloride	75-01-4	140	U	140	360	U	360
1,3-Butadiene	106-99-0	340	U	340	750	U	750
Bromomethane	74-83-9	140	U	140	540	U	540
Chloroethane	75-00-3	340	U	340	900	U	900
Bromoethene	593-60-2	140	U	140	610	U	610
Trichlorofluoromethane	75-69-4	140	U	140	790	U	790
Freon TF	76-13-1	140	U	140	1100	U	1100
1,1-Dichloroethene	75-35-4	140	U	140	560	U	560
Carbon disulfide	75-15-0	340	U	340	1100	U	1100
3-Chloropropene	107-05-1	340	U	340	1100	U	1100
Methylene chloride	75-09-2	340	U	340	1200	U	1200
trans-1,2-Dichloroethene	156-60-5	140	U	140	560	U	560
n-Hexane	110-54-3	340	U	340	1200	U	1200
1,1-Dichloroethane	75-34-3	140	U	140	570	U	570
cis-1,2-Dichloroethene	156-59-2	4000		140	16000	***************************************	560
Chloroform	67-66-3	140	U	140	680	U	680
1,1,1-Trichloroethane	71-55-6	140	U	140	760	U	760
Cyclohexane	110-82-7	140	U	140	480	U	480
Carbon tetrachloride	56-23-5	140	U	140	880	U	880
2,2,4-Trimethylpentane	540-84-1	140	U	140	650	U	650
Benzene	71-43-2	140	U	140	450	U	450
1,2-Dichloroethane	107-06-2	140	U	140	570	U	570
n-Heptane	142-82-5	140	U	140	570	U	570
Trichloroethene	79-01-6	21000		140	110000	,	750
1,2-Dichloropropane	78-87-5	140	U	140	650	U	650
Bromodichloromethane	75-27-4	140	U	140	940	U	940
cis-1,3-Dichloropropene	10061-01-5	140	U	140	640	U	640
Toluene	108-88-3	140	1	140	530	**************	530
trans-1,3-Dichloropropene	10061-02-6	140	υ	140	640	U	640
1,1,2-Trichloroethane	79-00-5	140	υ	140	760	U	760

Printed: 5/4/2010 9:20:53 AM Page 1 of 2

CLIENT SAMPLE NO.

RTD1209-02

Lab Name:

TAL Burlington

SDG Number: RTD1209

SDG: RTD1209

Sample Matrix: AIR

Dilution Factor: 684.00

Lab Sample No.: 826456

Date Analyzed:

4/21/2010 4/10/2010

Date Received:

RL Results RL Results CAS Q in Q in **Target Compound** in Number ppbv ppbv ug/m3 ug/m3 Tetrachloroethene 127-18-4 140 U 140 950 U 950 U U Dibromochloromethane 124-48-1 140 140 1200 1200 U 1,2-Dibromoethane 106-93-4 140 140 1100 U 1100 Chlorobenzene 108-90-7 U 140 U 640 140 640 U 610 Ethylbenzene 100-41-4 140 140 610 U 1330-20-7 U U Xylene (m,p) 270 270 1200 1200 95-47-6 140 U 140 610 U 610 Xylene (o) 100-42-5 140 U 140 600 U 600 Styrene U 1400 75-25-2 140 1400 Bromoform 140 U 1,1,2,2-Tetrachloroethane 79-34-5 140 U 140 960 U 960 U U 4-Ethyltoluene 622-96-8 140 140 690 690 108-67-8 140 U 140 690 U 1,3,5-Trimethylbenzene 690 95-49-8 140 U 140 U 720 2-Chlorotoluene 720 1,2,4-Trimethylbenzene 95-63-6 140 U 140 690 U 690 1,3-Dichlorobenzene 541-73-1 140 U 140 840 U 840 1,4-Dichlorobenzene 106-46-7 140 U 140 840 U 840 U 1,2-Dichlorobenzene 95-50-1 140 140 840 U 840 1,2,4-Trichlorobenzene 120-82-1 340 U 340 2500 U 2500 Hexachlorobutadiene 87-68-3 140 U 140 1500 1500

Page 2 of 2 Printed: 5/4/2010 9:20:53 AM

CLIENT SAMPLE NO.

FA042010LCS

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: FA042010

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10		0.50	49		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	10		0.20	70		1.4
Chloromethane	74-87 - 3	8.5		0.50	18		1.0
Vinyl Chloride	75-01-4	8.9		0.20	23		0.51
1,3-Butadiene	106-99-0	8.8		0.50	19		1.1
Bromomethane	74-83-9	9.8		0.20	38		0.78
Chloroethane	75-00-3	8.8		0.50	23		1.3
Bromoethene	593-60-2	10	***********	0.20	44	***************************************	0.87
Trichlorofluoromethane	75-69-4	11		0.20	62		1.1
Freon TF	76-13-1	11		0.20	84		1.5
1,1-Dichloroethene	75-35-4	11		0.20	44		0.79
Carbon disulfide	75-15-0	10	******************	0.50	31	tanamanan e e manandata.	1.6
3-Chloropropene	107-05-1	8.9		0.50	28		1.6
Methylene chloride	75-09-2	9.6		0.50	33		1.7
trans-1,2-Dichloroethene	156-60-5	9.6		0.20	38		0.79
n-Hexane	110-54-3	9.1		0.50	32		1.8
1,1-Dichloroethane	75-34-3	9.7		0.20	39		0.81
cis-1,2-Dichloroethene	156-59-2	10		0.20	40		0.79
Chloroform	67-66-3	10		0.20	49		0.98
1,1,1-Trichloroethane	71-55-6	11		0.20	60	1, T T T, T T, T, T, T, T, T, T, T, T T, T T, T T, T T, T	1.1
Cyclohexane	110-82-7	9.8		0.20	34		0.69
Carbon tetrachloride	56-23-5	11		0.20	69		1.3
2,2,4-Trimethylpentane	540-84-1	9.2		0.20	43		0.93
Benzene	71-43-2	9.6		0.20	31	***************************************	0.64
1,2-Dichloroethane	107-06-2	9.9		0.20	40	******************	0.81
n-Heptane	142-82-5	8.6		0.20	35		0.82
Trichloroethene	79-01-6	9.9		0.20	53	***************************************	1.1
1,2-Dichloropropane	78-87-5	9.0		0.20	42	, 45, 45, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48	0.92
Bromodichloromethane	75-27-4	11		0.20	74		1.3
cis-1,3-Dichloropropene	10061-01-5	9.5		0.20	43		0.91
Toluene	108-88-3	9.6		0.20	36		0.75
trans-1,3-Dichloropropene	10061-02-6	9.7		0.20	44		0.91
1,1,2-Trichloroethane	79-00-5	9.3		0.20	51		1.1

Printed: 5/4/2010 9:20:54 AM Page 1 of 2

CLIENT SAMPLE NO.

FA042010LCS

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

SDG: RTD1209

Lab Sample No.: FA042010

Date Analyzed: 4/20/2010

Date Received: //

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	10		0.20	68		1.4
Dibromochloromethane	124-48-1	11		0.20	94		1.7
1,2-Dibromoethane	106-93-4	10		0.20	77		1.5
Chlorobenzene	108-90-7	9.7		0.20	45		0.92
Ethylbenzene	100-41-4	10		0.20	43		0.87
Xylene (m,p)	1330-20-7	20		0.40	87		1.7
Xylene (o)	95-47-6	9.7		0.20	42		0.87
Styrene	100-42-5	9.6		0.20	41		0.85
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	9.5		0.20	65		1.4
4-Ethyltoluene	622-96-8	10		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	10		0.20	49	******	0.98
2-Chlorotoluene	95-49-8	10		0.20	52		1.0
1,2,4-Trimethylbenzene	95-63-6	9.8		0.20	48		0.98
1,3-Dichlorobenzene	541-73-1	9,9		0.20	60		1.2
1,4-Dichlorobenzene	106-46-7	10		0.20	60		1.2
1,2-Dichlorobenzene	95-50-1	9.8		0.20	59		1.2
1,2,4-Trichlorobenzene	120-82-1	9.7		0.50	72		3.7
Hexachlorobutadiene	87-68-3	10		0.20	110		2.1

Printed: 5/4/2010 9:20:54 AM Page 2 of 2

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

SDG: RTD1209

Lab Sample No.: MBLK0420

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.20	U	0.20	1,1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Carbon disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	U	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0.82
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Toluene	108-88-3	0.20	U	0.20	0.75	U	0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1

Printed: 5/4/2010 9:20:54 AM Page 1 of 2

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TAL Burlington

SDG Number: RTD1209

Dilution Factor: 1.00

Sample Matrix: AIR

SDG: RTD1209

Lab Sample No.: MBLK0420

Date Analyzed: 4/20/2010

Date Received: / /

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
	127-18-4	0.20	U	0.20	1.4	U	1.4
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.20	U	0.20	0.87	U	0.87
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.20	U	0.20	0.87	U	0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.20	U	0.20	0.98	U	0.98
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1,0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.20	U	0.20	0.98	U	0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1

Printed: 5/4/2010 9:20:54 AM Page 2 of 2

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

SDG: RTD1209

Chain of Custody

TestAmerica Burlington

SDG: RTD1209

30 Community Drive

South Burlington, VT 05403

phone 802-660-1990 fax 802-660-1919

Suite 11

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Manager: ∂_{μ}	mo Zac	7	S	Samples Collected By:	cted By:	27(_	of	SOOO	s			
	Phone: > 16, 836.	9054	ext 15													
scate Parkway, Suite	dino.	e deco	2000				_					ř. koji				Г
City/State/ZipAm/es+, NY 14226 34/											(uc	i de la			(00	(uc
Phone: 716-836-4506 ert 15		4									ectio	-04-7 SEC-7			vit20	ກາວຄ
FAX:	TA Contact: B Fischer	74									s s				73 31	25 26
Project Name:	Analysis	Analysis Turnaround Time	d Time								əjou	Tari			9104	anou
Site:	Standard (Specify)	ecify)									ui y	Argust Argust			uj A	uı ƙ
PO#	Rush (Specify)	(A)						,							,,,,,,,	becu
Sample Identification	Sample Date(s) Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum In Fleld, 'Hg F (Stop)	Flow Controller ID	Canister ID	61-01	TO-14A EPA 3C	EPA 25C	9461-Q MT2A	other (Please s	iA 100bn	Ambient Air	SaS lios	Landfill Gas	other (Please s
D< 55F/4024		11	4.PS-	7-		HIVE	╂-			'	888944		2000		+	
TRP EFFIUOR	co21 01/4/h	0	-29.4	1	1	h/8h	×	1								Τ
							\vdash		_							1
												(3.48)				
			Temperature (Fahrenheit)	(Fahrenheit)			ľ			1	l			ĺ	ĺ	Т
	Interior		Ambient													
	Start															
	Stop															
			Pressure (Inches of Hg)	hes of Hg)												Т
	Interior		Ambient													
	Start															
	Stop															
Special Instructions/QC Requirements & Comments:	ii															
Samples Shipped by: Um. 2 fack	Date/Time: 4/7/10		17065	Samples Received by	ceived by:		1/8/1	3	Colo							7
ished	Date/Time: $\sqrt{q/l}$	_	M	Received by	"Ourth	3	3950 HIND	美	2							
Relinquished by: $/\!\!/$	Date/Time:			Received by	×											
	961															
Lab Use Only Shipper Name:			Opened by:		Condition:											

QC Summary – TO-14A Volatile

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix Spike - Sample No.: FA042010LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	==========	==========	======	======
Dichlorodifluoromethane	10		10	100	70-130
1,2-Dichlorotetrafluoro	10		10	100	70-130
Chloromethane	10		8.5	85	70-130
Vinyl Chloride	10		8.9	89	70-130
1,3-Butadiene	10		8.8	88	70-130
Bromomethane	10		9.8	98	70-130
Chloroethane	10		8.8	88	70-130
Bromoethene	10		10	100	70-130
Trichlorofluoromethane	10		11	110	70-130
Freon TF	10		11	110	70-130
1,1-Dichloroethene	10		11	110	70-130
Carbon disulfide	10		10	100	70-130
3-Chloropropene	10		8.9	89	70-130
Methylene chloride	10		9.6	96	70-130
trans-1,2-Dichloroethen	10		9.6	96	70-130
n-Hexane	10		9.1	91	70-130
1,1-Dichloroethane	10		9.7	97	70-130
cis-1,2-Dichloroethene	10		10	100	70-130
Chloroform	10		10	100	70-130
1,1,1-Trichloroethane	10		11	110	70-130
Cyclohexane	10	l	9.8	98	70-130
Carbon tetrachloride	10		11	110	70-130
2,2,4-Trimethylpentane	10		9.2	92	70-130
Benzene	10		9.6	96	70-130
1,2-Dichloroethane	10		9.9	99	70-130
n-Heptane	10		8.6	86	70-130
Trichloroethene	10		9.9	99	70-130
1,2-Dichloropropane	10		9.0	90	70-130
Column to be used to fla		1.555			

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:				

page 1 of 2

FORM III VOA

^{*} Values outside of QC limits

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix Spike - Sample No.: FA042010LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	==========	==========	=====	=====
Bromodichloromethane	10		11	110	70-130
cis-1,3-Dichloropropene	10		9.5	95	70-130
Toluene	10		9.6	96	70-130
trans-1,3-Dichloroprope	10		9.7	97	70-130
1,1,2-Trichloroethane	10		9.3	93	70-130
Tetrachloroethene	10		10	100	70-130
Dibromochloromethane	10		11	110	70-130
1,2-Dibromoethane	10		10	100	70-130
Chlorobenzene	10		9.7	97	70-130
Ethylbenzene	10		10	100	70-130
<pre>Xylene (m,p)</pre>	20		20	100	70-130
Xylene (o)	10		9.7	97	70-130
Styrene	10		9.6	96	70-130
Bromoform	10		11	110	70-130
1,1,2,2-Tetrachloroetha	10		9.5	95	70-130
4-Ethyltoluene	10		10	100	70-130
1,3,5-Trimethylbenzene	10		10	100	70-130
2-Chlorotoluene	10		10	100	70-130
1,2,4-Trimethylbenzene	10		9.8	98	70-130
1,3-Dichlorobenzene	10		9.9	99	70-130
1,4-Dichlorobenzene	10		10	100	70-130
1,2-Dichlorobenzene	10		9.8	98	70-130
1,2,4-Trichlorobenzene	10		9.7	97	70-130
Hexachlorobutadiene	10		10	100	70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 52 outside limits

COMMENTS:						

page 2 of 2

FORM III VOA

^{*} Values outside of QC limits

FORM 4 VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDNB01L Lab Sample ID: MBLK042010FA

Date Analyzed: 04/20/10 Time Analyzed: 1312

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: F

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=======================================	=======================================	========
01	FA042010LCS	FA042010LCS	FDN10LQ	1221
02	RTD1209-01	826455	826455	0153
03	RTD1209-02	826456	826456D2	0749
04				
05				
06				
07				
80				
09				
10				
11		_		
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:				
	 	 	 	_
	 		_	

page 1 of 1

FORM IV VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDN01PV BFB Injection Date: 04/07/10

Instrument ID: F BFB Injection Time: 0919

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=========
50	8.0 - 40.0% of mass 95	17.6
75	30.0 - 66.0% of mass 95	47.4
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.5 (0.5)1
174	50.0 - 120.0% of mass 95	87.9
175	4.0 - 9.0% of mass 174	6.1 (6.9)1
176	93.0 - 101.0% of mass 174	85.3 (97.1)1
177	5.0 - 9.0% of mass 176	5.5 (6.5)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	==========	==========	========	========
01	ASTD0.2	ASTD0.2	FDN002V	04/07/10	1104
	ASTD0.5	ASTD0.5	FDN005V	04/07/10	1157
	ASTD05	ASTD05	FDN05V	04/07/10	1251
	ASTD010	ASTD010	FDN10V2	04/07/10	1437
	ASTD015	ASTD015	FDN15V	04/07/10	1528
	ASTD020	ASTD020	FDN20V	04/07/10	1619
07	ASTD040	ASTD040	FDN40V	04/07/10	1709
08					
09					
10					
11					
12					
13					
14					
15					
16 17					
18					
19 20					
21		l———			
22					
22		l			

page 1 of 1

FORM V VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab File ID: FDN13PV BFB Injection Date: 04/20/10

Instrument ID: F BFB Injection Time: 0912

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		==========
50	8.0 - 40.0% of mass 95	18.5
75	30.0 - 66.0% of mass 95	49.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.4 (0.6)1
174	50.0 - 120.0% of mass 95	78.4
175	4.0 - 9.0% of mass 174	5.4 (7.0)1
176	93.0 - 101.0% of mass 174	76.1 (97.1)1
177	5.0 - 9.0% of mass 176	4.8 (6.3)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	=========	==========	=========	========
01	ASTD010	ASTD010	FDN10LV2	04/20/10	1130
02	FA042010LCS	FA042010LCS	FDN10LQ	04/20/10	1221
03	MBLK042010FA	MBLK042010FA	FDNB01L	04/20/10	1312
04	RTD1209-01	826455	826455	04/21/10	0153
05	RTD1209-02	826456	826456D2	04/21/10	0749
06					
07					
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Date Analyzed: 04/20/10 Lab File ID (Standard): FDN10LV2

Instrument ID: F Time Analyzed: 1130

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		# C 1 (D C) ()		TGO (DED)		TG2 (GDR)	
		IS1 (BCM)		IS2(DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	12 HOUR STD	526728	9.61	2548272	11.00	2406262	15.11
	UPPER LIMIT	737419	9.94	3567581	11.33	3368767	15.44
	LOWER LIMIT	316037	9.28	1528963	10.67	1443757	14.78
	========	========	======	========	======	========	======
	CLIENT						
	SAMPLE NO.						
	==========	=========	======	========	======	=======	======
01	FA042010LCS	533123	9.61	2596072	11.00	2461812	15.11
02	MBLK042010FA	542763	9.61	2691332	11.00	2481496	15.10
03	RTD1209-01	525926	9.61	2586734	11.00	2401240	15.10
04	RTD1209-02	423049	9.61	2101562	11.00	1932456	15.10
05	KIDI205-02	423047	J.01	2101302	11.00	1732430	13.10
06							
07		<u> </u>					
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
					· — — ·		

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII VOA

Supportive Documentation – TO-14A Volatile

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

STLNYB SAMPLE NO.

RTD1209-01

0

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

COMPOUND

CAS NO.

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826455

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 826455

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. _____ Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

75-71-8-----Dichlorodifluoromethane 0.50 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.20 U 74-87-3-----Chloromethane 0.50 U 75-01-4-----Vinyl Chloride 0.20 106-99-0----1,3-Butadiene 0.50 T 74-83-9-----Bromomethane 0.20 U 75-00-3-----Chloroethane 0.50 U 593-60-2----Bromoethene 0.20 U 75-69-4-----Trichlorofluoromethane 0.23 76-13-1----Freon TF 0.20 U 75-35-4-----1,1-Dichloroethene 0.20 U 75-15-0-----Carbon disulfide 4.1 107-05-1----3-Chloropropene 0.50 U 75-09-2-----Methylene chloride 0.50 U 156-60-5-----trans-1,2-Dichloroethene 0.20 U 110-54-3----n-Hexane 0.50 U 75-34-3-----1,1-Dichloroethane 0.20 U 156-59-2----cis-1,2-Dichloroethene_ 4.3 67-66-3-----Chloroform 0.20 Ū 71-55-6----1,1,1-Trichloroethane 0.20 U 110-82-7-----Cyclohexane 0.20 U 56-23-5-----Carbon tetrachloride 0.20 U 540-84-1----2,2,4-Trimethylpentane_ 0.20 U 71-43-2-----Benzene 0.20 U 107-06-2----1,2-Dichloroethane 0.20 U 142-82-5----n-Heptane 0.20 U 79-01-6-----Trichloroethene 12 78-87-5----1,2-Dichloropropane 0.20 T 75-27-4-----Bromodichloromethane 0.20 U 10061-01-5----cis-1,3-Dichloropropene 0.20 U 108-88-3-----Toluene 0.75 10061-02-6----trans-1,3-Dichloropropene 0.20 U 79-00-5----1,1,2-Trichloroethane 0.20 U

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

STLNYB SAMPLE NO.

RTD1209-01

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826455

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 826455

Level: (low/med) LOW Date Received: 04/10/10

% Moisture: not dec. _____ Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

107 10 4	0.00	
127-18-4Tetrachloroethene	0.20	_
124-48-1Dibromochloromethane	0.20	U
106-93-41,2-Dibromoethane	0.20	U
108-90-7Chlorobenzene	0.20	U
100-41-4Ethylbenzene	0.20	U
1330-20-7Xylene (m,p)	0.40	U
95-47-6Xylene (o)	0.20	U
100-42-5Styrene	0.20	U
75-25-2Bromoform	0.20	U
79-34-51,1,2,2-Tetrachloroethane	0.20	U
622-96-84-Ethyltoluene	0.20	U
108-67-81,3,5-Trimethylbenzene	0.20	U
95-49-82-Chlorotoluene	0.20	U
95-63-61,2,4-Trimethylbenzene	0.20	U
541-73-11,3-Dichlorobenzene	0.20	U
106-46-71,4-Dichlorobenzene	0.20	U
95-50-11,2-Dichlorobenzene	0.20	U
120-82-11,2,4-Trichlorobenzene	0.50	U
87-68-3Hexachlorobutadiene	0.20	U

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d

Report Date: 03-May-2010 23:27

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/F.i/Fsvr.p/fdnlto15.b/826455.d

Lab Smp Id: 826455 Client Smp ID: RTD1209-01

Inj Date : 21-APR-2010 01:53

Inst ID: F.i

Misc Info: 826455;042010FA;1;200

Comment:

Method: /chem/F.i/Fsvr.p/fdnlto15.b/to15v4.m

Meth Date: 03-May-2010 23:27 sv Quant Type: ISTD

Cal Date: 07-APR-2010 17:09 Cal File: fdn40v.

Als bottle: 1 Cal File: fdn40v.d

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: TO14trans.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
	===		
2 Dichlorodifluoromethane	85	Compound Not Detected.	
4 1,2-Dichlorotetrafluoroethane	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
7 Vinyl Chloride	62	3.804 3.809 (0.396) 9365	0.20043 0.20
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Bromoethene	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	5.264 5.275 (0.548) 33467	0.22673 0.23
17 Freon TF	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
21 Carbon disulfide	76	6.724 6.730 (0.700) 660161	4.08953 4.1
23 3-Chloropropene	41	Compound Not Detected.	
25 Methylene chloride	49	Compound Not Detected.	
28 trans-1,2-Dichloroethene	61	Compound Not Detected.	

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
	2222	#E ===== #E#### #######################	====== ######
30 n-Hexane	57	Compound Not Detected.	
31 1,1-Dichloroethane	63	Compound Not Detected.	
34 cis-1,2-Dichloroethene	96	9.244 9.260 (0.962) 258538	4.29261 4.3
* 37 Bromochloromethane	128	9.608 9.619 (1.000) 525926	10.0000 (0
39 Chloroform	83	Compound Not Detected.	
41 1,1,1-Trichloroethane	97	Compound Not Detected.	
40 Cyclohexane	84	Compound Not Detected.	
42 Carbon tetrachloride	117	Compound Not Detected.	
43 2,2,4-Trimethylpentane	57	Compound Not Detected.	
44 Benzene	78	Compound Not Detected.	
45 1,2-Dichloroethane	62	Compound Not Detected.	
46 n-Heptane	43	Compound Not Detected.	
* 47 1,4-Difluorobenzene	114	10.999 11.015 (1.000) 2586734	10.0000
49 Trichloroethene	95	11.363 11.373 (1.033) 949799	11.6145 12
50 1,2-Dichloropropane	63	Compound Not Detected.	
54 Bromodichloromethane	83	Compound Not Detected.	
55 cis-1,3-Dichloropropene	75	Compound Not Detected.	
58 Toluene	92	13.144 13.160 (0.870) 97820	0.75122 0.75
59 trans-1,3-Dichloropropene	75	Compound Not Detected.	
60 1,1,2-Trichloroethane	83	Compound Not Detected.	
61 Tetrachloroethene	166	Compound Not Detected.	
63 Dibromochloromethane	129	Compound Not Detected.	
64 1,2-Dibromoethane	107	Compound Not Detected.	
* 65 Chlorobenzene-d5	117	15.102 15.113 (1.000) 2401240	10.0000
66 Chlorobenzene	112	Compound Not Detected.	
68 Ethylbenzene	91	Compound Not Detected.	
69 Xylene (m,p)	106	Compound Not Detected.	
71 Xylene (o)	106	Compound Not Detected.	
72 Styrene	104	Compound Not Detected.	
73 Bromoform	173	Compound Not Detected.	
76 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
80 4-Ethyltoluene	105	Compound Not Detected.	
82 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
81 2-Chlorotoluene	91	Compound Not Detected.	
85 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
88 1,3-Dichlorobenzene	146	Compound Not Detected.	
89 1,4-Dichlorobenzene	146	Compound Not Detected.	
93 1,2-Dichlorobenzene	146	Compound Not Detected.	
95 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
96 Hexachlorobutadiene	225	Compound Not Detected.	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d Page 4 Date : 21-APR-2010 01:53 Client ID: RTD1209-01 Instrument: F.i Sample Info: RTD1209-01 :[]04/07/10 @1200(AIR) Purge Volume: 200.0 Operator: wrd Column diameter: 0.32 Column phase: RTX-624 7 Vinyl Chloride Concentration: 0.20 ppbv Ion 62.00 Scan 135 (3,804 min) of 826455.d 4.5-4.0. 4.2-3.6 3.9-3,2 3.6-2,8 3.3-Y (x10^3) 2.4 3.0-2.0 2.7-1.6 (x10^3) 2.4-207 1.2 2.1-0.8 1.8-0.4 1.5-0.0] 60 100 120 140 160 180 200 1,2-0.9-Scan 135 (3,804 min) of 826455,d (Subtracted) 0.6-4.4. 0.3-4.0-0.0-3,6 3. <u>Min</u> 4.2 3.9 4.5 3,6 3,2 Ion 64.00 2.8 1.6 2.4 1.5 2.0 1.6 1.4 1.3-1.2 0.8 1.2-1,1 0.4 1.0-0.0 40 60 80 100 120 140 160 180 200 0.9-(x10^3) ۰.8 7 Vinyl Chloride (Reference Spectrum) 0.7-10.0-**6**2 0.6-9.0 0.5 8.0 0.4 7.0 0.3-6.0 0.2-5.0 0.1 4.0 3,3 4.2 4.5 3.6 3.9 3.0 2.0 1.0 19207 0.0 160 200 40 60 100 120 140 180 80 Scan 135 (3,804 min) of 826455,d (% DIFFERENCE) 100 80 60 40 20 ٥ -20 -40 -60 -80 -100 40 60 80 100 120 140 160 180 200

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d

Date : 21-APR-2010 01:53

Client ID: RTD1209-01 Instrument: F.i

Sample Info: RTD1209-01 :[104/07/10 @1200(AIR)

Purge Volume: 200.0 Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d Page 6 Date : 21-APR-2010 01:53 Client ID: RTD1209-01 Instrument: F.i Sample Info: RTD1209-01 :[]04/07/10 @1200(AIR) Purge Volume: 200.0 Operator: wrd Column phase: RTX-624 Column diameter: 0.32 21 Carbon disulfide Concentration: 4.1 ppbv Ion 76,00 Scan 681 (6,724 min) of 826455,d 2.4 2,1 2,2 1.8 1.5 1.8-Y (x10^5) 1.2 1.6-0.9 1.4-1,2 0.6 1.0-0.3 207209 0.0 60 100 140 160 180 200 40 80 120 0.6 Scan 681 (6,724 min) of 826455.d (Subtracted) 0.4-0.2-2.4 6.4 <u>Min</u> 2.1 6.8 1.8 1.5 Y (x10^5) 1.2 0.9 0.6 0.3 208209 0.0 40 60 80 100 120 140 160 180 200 21 Carbon disulfide (Reference Spectrum) 10.0 9.0 8.0 7.0 6.0 5.0 4.0. 3.0. 2.0 1.0 19**12**07 0.0. 40 60 120 140 160 180 200 100 Scan 681 (6.724 min) of 826455.d (* DIFFERENCE) 100 80 60 40 20 -20 -40 -60 -80 -100 40 60 80 100 120 140 160 180 200

SDG: RTD1209

Data File: /chem/F,i/Fsvr.p/fdnlto15,b/826455.d

Client ID: RTD1209-01

Date : 21-APR-2010 01:53

Instrument: F.i

Sample Info: RTD1209-01 :[104/07/10 @1200(AIR)

Purge Volume: 200.0 Column phase: RTX-624

Column diameter: 0.32

Operator: wrd

Page 7

34 cis-1,2-Dichloroethene

Concentration: 4.3 ppbv

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d

Page 8

Date : 21-APR-2010 01:53

Client ID: RTD1209-01

Instrument: F.i

Sample Info: RTD1209-01 :[]04/07/10 @1200(AIR)

Operator: wrd

Column phase: RTX-624

Purge Volume: 200.0

Column diameter: 0.32

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826455.d Page 9
Date: 21-APR-2010 01:53

Client ID: RTD1209-01 Instrument: F.i

Sample Info: RTD1209-01 :[104/07/10 @1200(AIR)

Purge Volume: 200.0 Operator: wrd

Column phase: RTX-624 Column diameter: 0,32

VOLATILE ORGANICS ANALYSIS DATA SHEET FORM 1

STLNYB SAMPLE NO.

RTD1209-02

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: 826456

Sample wt/vol: 16.00 (g/mL) ML Lab File ID: 826456D2

Level: (low/med) LOW Date Received: 04/10/10

Date Analyzed: 04/21/10 % Moisture: not dec. _____

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 684.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or			Q
75-71-8	Dichlorodifluc	romethane		340	U
76-14-2	1,2-Dichlorote	trafluoroeth	nan	140	U
74-87-3	Chloromethane			340	U
75-01-4	Vinyl Chloride			140	U
	1,3-Butadiene_			340	U
	Bromomethane			140	U
75-00-3	Chloroethane			340	U
593-60-2	Bromoethene		_	140	U
75-69-4	Trichlorofluor	omethane		140	U
76-13-1	Freon TF			140	U
75-35-4	1,1-Dichloroet	hene	_	140	U
75-15-0	Carbon disulfi		— l	340	U
107-05-1	3-Chloropropen	e		340	U
75-09-2	Methylene chlo	ride	_	340	ı
156-60-5	trans-1,2-Dich	loroethene		140	U
110-54-3			_	340	U
75-34-3	1,1-Dichloroet	hane	_	140	U
	cis-1,2-Dichlo		—]	4000	
67-66-3	Chloroform		_	140	Ū
	1,1,1-Trichlor	oethane		140	U
	Cyclohexane		_	140	-
56-23-5	Carbon tetrach	loride		140	I
540-84-1	2,2,4-Trimethy	lpentane	_	140	_
71-43-2	Benzene	<u> </u>		140	
	1,2-Dichloroet	hane		140	U
	n-Heptane			140	U
	Trichloroethen	e		21000	
78-87-5	1,2-Dichloropr	opane		140	Ū
75-27-4	Bromodichlorom	ethane		140	1
10061-01-5	cis-1,3-Dichlo	ropropene		140	
108-88-3	Toluene			140	_
	trans-1,3-Dich	loropropene		140	U —
79-00-5	1,1,2-Trichlor	oethane		140	

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

STLNYB SAMPLE NO.

RTD1209-02

Q

Contract: 29012 Lab Name: TESTAMERICA BURLINGTON

COMPOUND

SDG No.: RTD1209 Lab Code: STLV Case No.: SCOTTAVI SAS No.:

Lab Sample ID: 826456 Matrix: (soil/water) AIR

Sample wt/vol: 16.00 (g/mL) ML Lab File ID: 826456D2

Date Received: 04/10/10 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 04/21/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 684.0

Soil Extract Volume:____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

CAS NO. 127-18-4----Tetrachloroethene 140 U 124-48-1-----Dibromochloromethane 140 U 106-93-4----1,2-Dibromoethane 140 U 108-90-7-----Chlorobenzene 140 U 100-41-4-----Ethylbenzene 140 U 1330-20-7-----Xylene (m,p)____ 270 U 95-47-6-----Xylene (o)___ 140 U 100-42-5-----Styrene 140 U 75-25-2-----Bromoform 140 U 79-34-5----1,1,2,2-Tetrachloroethane 140 U 622-96-8-----4-Ethyltoluene 140 U 108-67-8-----1,3,5-Trimethylbenzene 140 U 95-49-8----2-Chlorotoluene 140 U 95-63-6----1,2,4-Trimethylbenzene 140 U 541-73-1----1,3-Dichlorobenzene_ 140 U 106-46-7-----1,4-Dichlorobenzene 140 U 95-50-1----1,2-Dichlorobenzene_ 140 U 120-82-1----1,2,4-Trichlorobenzene 340 U 87-68-3-----Hexachlorobutadiene 140 U

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826456d2.d

Report Date: 03-May-2010 23:27

Page 1

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/F.i/Fsvr.p/fdnlto15.b/826456d2.d

Lab Smp Id: 826456 Client Smp ID: RTD1209-02

Inj Date : 21-APR-2010 07:49

Inst ID: F.i

Misc Info: 826456;042010FA;684;16;cdf 54.7

Comment:
Method: /chem/F.i/Fsvr.p/fdnlto15.b/to15v4.m
Meth Date: 03-May-2010 23:27 sv Quant Ty Quant Type: ISTD Cal File: fdn40v.d Cal Date : 07-APR-2010 17:09

Als bottle: 2

Dil Factor: 684.00000

Integrator: HP RTE Compound Sublist: T014trans.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	684.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	16.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
	====		******
2 Dichlorodifluoromethane	85	Compound Not Detected.	
4 1,2-Dichlorotetrafluoroethane	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
7 Vinyl Chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Bromoethene	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 Freon TF	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
21 Carbon disulfide	76	Compound Not Detected.	
23 3-Chloropropene	41	Compound Not Detected.	
25 Methylene chloride	49	Compound Not Detected.	
28 trans-1,2-Dichloroethene	61	Compound Not Detected.	

	OULDER OTO				CONCENTRA	
g	QUANT SIG	D.M.	nun nm nni nm	Phanovan	ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
30 n-Hexane	==== 57	Comp	ound Not Detect			
		-				
31 1,1-Dichloroethane	63 96	9.249	ound Not Detect	ea. 283997	5.86199	4000
34 cis-1,2-Dichloroethene			9.260 (0.963)			4000
* 37 Bromochloromethane	128	9.608	9.619 (1.000)	423049	10.0000	
39 Chloroform	83	-	ound Not Detect			
41 1,1,1-Trichloroethane	97	-	ound Not Detect			
40 Cyclohexane	84	_	ound Not Detect			
42 Carbon tetrachloride	117	-	ound Not Detect			
43 2,2,4-Trimethylpentane	57	Compo	ound Not Detect	ed.		
44 Benzene	78	-	ound Not Detect			
45 1,2-Dichloroethane	62	Comp	ound Not Detect	ed.		
46 n-Heptane	43	Compo	ound Not Detect	ed.		
* 47 1,4-Difluorobenzene	114	10.999	11.015 (1.000)	2101562	10.0000	
49 Trichloroethene	95	11.363	11.373 (1.033)	2084318	31.3720	21000
50 1,2-Dichloropropane	63	Compo	ound Not Detect	ed.		
54 Bromodichloromethane	83	Comp	ound Not Detect	ed.		
55 cis-1,3-Dichloropropene	75	Comp	ound Not Detect	ed.		
58 Toluene	92	13.144	13.160 (0.870)	21056	0.20093	140
59 trans-1,3-Dichloropropene	75	Compo	ound Not Detect	ed.		
60 1,1,2-Trichloroethane	83	Compo	ound Not Detect	ed.		
61 Tetrachloroethene	166	Comp	ound Not Detect	ed.		
63 Dibromochloromethane	129	Comp	ound Not Detect	ed.		
64 1,2-Dibromoethane	107	Compo	ound Not Detect	ed.		
* 65 Chlorobenzene-d5	117	15.102	15.113 (1.000)	1932456	10.0000	
66 Chlorobenzene	112	Compo	ound Not Detect	ed.		
68 Ethylbenzene	91	Compo	ound Not Detect	ed.		
69 Xylene (m,p)	106	Compo	ound Not Detect	ed.		
71 Xylene (o)	106	Compo	ound Not Detect	ed.		
72 Styrene	104	-	ound Not Detect			
73 Bromoform	173	-	ound Not Detect			
76 1,1,2,2-Tetrachloroethane	83	-	ound Not Detect			
80 4-Ethyltoluene	105	-	ound Not Detect			
82 1,3,5-Trimethylbenzene	105	_	ound Not Detect			
81 2-Chlorotoluene	91	-	ound Not Detect			
85 1,2,4-Trimethylbenzene	105	_	ound Not Detect			
88 1,3-Dichlorobenzene	146	_	ound Not Detect			
89 1,4-Dichlorobenzene	146	-	ound Not Detect			
93 1,2-Dichlorobenzene	146	-	ound Not Detect			
95 1,2,4-Trichlorobenzene	180	_				
22 1,2,4-111CHIOTODEHZEHE	190	Compo	ound Not Detect	eu.		

SDG: RTD1209

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826456d2.d

Date : 21-APR-2010 07:49

Client ID: RTD1209-02 Instrument: F.i

Sample Info: RTD1209-02 :[]04/07/10 @1200(AIR)

Purge Volume: 16.0 Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/826456d2.d Page 6

Date : 21-APR-2010 07:49

Client ID: RTD1209-02 Instrument: F.i

Sample Info: RTD1209-02 :[]04/07/10 @1200(AIR)

Purge Volume: 16.0 Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

Standards - TO-14A Volatile

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

	2=FDN002			.5=FDN00			
RRF5 =FDN05V RRF10	=FDN107	<i>J</i> 2	RRF1!	5 =FDN15	5V		
COMPOUND	DDD0 0	nnno e	nnne.	nnni o	DDD15	777	%
COMPOUND 		RRF0.5			RRF15	RRF	RSD
Dichlorodifluoromethane	=====	ı	ı	2.300		=====	====
l,2-Dichlorotetrafluoroethan	2.460	2.339	2.320 2.452				
Chloromethane	2.460		0.723				
Minul Chlorida	0.909						
/inyl Chloride	1	0.922					
1,3-Butadiene	0.743	0.747					
Bromomethane	1.089	1.072					
Chloroethane		0.591					
Bromoethene	1.101	1.096		1.051	1.054		
richlorofluoromethane	2.922	2.948					
Freon TF	2.049	2.077					
,1-Dichloroethene	1.013	0.973	0.968				
Carbon disulfide		3.110					
3-Chloropropene	1.307	1.316					
Methylene chloride		1.375		1.195			
rans-1,2-Dichloroethene	1.734	1.709			1.661		
n-Hexane	1.885	1.828	1.827	1.773	1.750		
,1-Dichloroethane	* 2.092	2.068	2.074	2.055	2.008		-
ris-1,2-Dichloroethene	1.189	1.161	1.161	1.137	1.149		
Chloroform	2.426	2.346	2.363	2.327	2.300		
,1,1-Trichloroethane	0.506	0.484			0.496		
Cyclohexane	0.319			0.317			
Carbon tetrachloride	0.508	0.504					
2,2,4-Trimethylpentane	1.164	1.138		1.128	1.123		
Benzene	0.743	0.719	0.702	0.688			
,2-Dichloroethane	0.328	0.333					
n-Heptane	0.449	0.443	0.427		0.411		
richloroethene	0.322	0.314		0.313			
,2-Dichloropropane	0.264	0.270		0.263	0.265		
Bromodichloromethane	0.510	0.493	0.527	0.529	0.532		
cis-1,3-Dichloropropene	0.405	0.398		0.329			
Coluene	0.403	0.536		0.419	0.424		
rans-1,3-Dichloropropene	0.362	0.414		0.332	0.361		
.,1,2-Trichloroethane	0.402	0.261		0.261	0.447		
Petrachloroethero	0.279	0.451		0.450			
Tetrachloroethene	0.466						
2 Dibromoethane	0.506	0.498		0.562			
.,2-Dibromoethane	0.495 0.766	0.478					
Chlorobenzene	. 0.766	0.749	0.735	0.741	0.779		

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

page 1 of 4

FORM VI VOA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

	2=FDN002 =FDN10			.5=FDN00 5 =FDN19			
	-121110						
COMPOUND	RRF0.2	RRF0.5	RRF5	RRF10	RRF15	RRF	RS:
	=====	=====	=====	=====	======	======	===:
Ethylbenzene	1.234	1.192	1.176	1.182	1.220		
Ethylbenzene	0.488	0.481	0.478	0.487	0.506		
Tylene (o)	0.456	0.463			0.499		
Styrene	0.716	0.691	0.732	0.752	0.792		
Bromoform	0.472	0.477	0.576	0.606	0.656		
,1,2,2-Tetrachloroethane	0.705	0.700	0.706	0.712	0.729		
-Ethyltoluene	1.415	1.362	1.380	1.405	1.460		
1,3,5-Trimethylbenzene	1.129		1.144	1.170	1.213		
2-Chlorotoluene	1.307	1.253	1.266	1.279	1.309		
,2,4-Trimethylbenzene	1.170	1.113	1.157	1.178	1.224		
,3-Dichlorobenzene	0.814	0.782	0.805		0.876		
,4-Dichlorobenzene	0.803	0.767					
,2-Dichlorobenzene	0.763	0.725					
,2,4-Trichlorobenzene		0.573					
Mexachlorobutadiene	0.587	0.553		0.592			
	01007	01000	0.220	0.332	0.012		
		_					
					[——		
		[
					ł		
					[——		

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 2 of 4

FORM VI VOA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

							
COMPOUND	RRF20	RRF40				RRF	% RSD
oichlorodifluoromethane	2.027		=====	=====	=====	2.157	9.
1,2-Dichlorotetrafluoroethan						2.295	
Chloromethane	0.627					0.680	
Jinyl Chloride	0.833					0.888	6.
1,3-Butadiene	0.631					0.687	8.
Bromomethane	0.986					1.021	5.
Chloroethane	0.524	I				0.550	6.
Bromoethene	1.035		[1.056	3.
Frichlorofluoromethane	2.694				ا — — —	2.806	5.
Freon TF	2.001					2.013	2.
1,1-Dichloroethene	0.961					0.964	2.
Carbon disulfide	3.050					3.069	
3-Chloropropene	1.294					1.312	4.
Methylene chloride	1.122					1.185	9.
rans-1,2-Dichloroethene	1.632					1.669	4.
n-Hexane	1.722					1.768	5.
L,1-Dichloroethane	* 1.971	1.840				2.015	4.
cis-1,2-Dichloroethene	1.371			l ———		1.145	2.
Chloroform	2.260	2.149				2.310	3.
l,1,1-Trichloroethane	0.492	0.480				0.492	1.
Cyclohexane	0.324					0.318	1.
Carbon tetrachloride	0.532					0.521	2.
2,2,4-Trimethylpentane	1.108					1.120	3.
Benzene	0.694					0.702	3.
1,2-Dichloroethane	0.321	0.312	_			0.326	2.
n-Heptane	0.403		l			0.418	6.
Trichloroethene	0.318					0.316	1.
L,2-Dichloropropane	0.261	0.251				0.263	2.
Bromodichloromethane	0.528	1				0.519	2.
cis-1,3-Dichloropropene	0.320					0.313	2.
Toluene	0.563					0.542	3.
rans-1,3-Dichloropropene	0.449					0.434	4.
1,1,2-Trichloroethane	0.277					0.268	2.
Tetrachloroethene	0.505	0.506				0.473	5.
Dibromochloromethane	0.618	1				0.562	8.
1,2-Dibromoethane	0.534					0.504	4.
Chlorobenzene	* 0.796	0.773				0.763	2.

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

page 3 of 4

FORM VI VOA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date(s): 04/07/10 04/07/10

Heated Purge: (Y/N) N Calibration Time(s): 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF20	=FDN20V	V	RRF4(=FDN4()V		
COMPOUND	RRF20	RRF40				RRF	% RSD
	=====		=====	=====	======	======	=====
Ethylbenzene Xylene (m,p)	1.224					1.189	3.9
Xylene (m,p)	0.508					0.484	4.9
Ayrene (0)	0.501	0.468				0.477	3.9
Styrene	0.804					0.747	5.3
Bromoform	0.683	0.662				0.590	14.8
1,1,2,2-Tetrachloroethane	0.735	0.666				0.708	3.2
4-Ethyltoluene	1.484				l	1.409	3.5
1,3,5-Trimethylbenzene	1.234	1.121				1.163	3.8
2-Chlorotoluene	1.316	1.189				1.274	3.5
1,2,4-Trimethylbenzene	1.248	1.153					
1,3-Dichlorobenzene	0.907	0.884				0.841	5.6
1,4-Dichlorobenzene	0.911	0.883				0.838	6.3
1,2-Dichlorobenzene	0.858					0.792	
1,2,4-Trichlorobenzene	0.777					0.686	11.4
Hexachlorobutadiene	0.693	0.663				0.617	8.1
	l						
		·				l	
			ĺ				
	- 		' 	DGD.			

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

page 4 of 4

FORM VI VOA

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn002v.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn002v.d

Lab Smp Id: ASTD0.2 Client Smp ID: ASTD0.2

Inj Date : 07-APR-2010 11:04

Operator : wrd Inst ID: F.i

Smp Info : ic 022289

Misc Info : ASTD0.2;040710FA;1;200

Comment

Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Meth Date : 12-Apr-2010 21:34 sv Quant T Quant Type: ISTD Cal Date : 07-APR-2010 11:04 Als bottle: 2 Cal File: fdn002v.d

Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=====		====	==				======
1	Propene	41	3.167	3.167 (0.329)	5378	0.20000	0.23(a)
2	Dichlorodifluoromethane	85	3.226	3.226 (0.335)	23169	0.20000	0.22(a)
3	Chlorodifluoromethane	51	3.263	3.263 (0.339)	12804	0.20000	0.23(a)
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.451	3.456 (0.359)	24158	0.20000	0.21
5	Chloromethane	50	3.590	3.584 (0.373)	7371	0.20000	0.22(a)
6	Butane	43	3.766	3.766 (0.392)	13220	0.20000	0.22(a)
7	Vinyl chloride	62	3.809	3.809 (0.396)	8928	0.20000	0.20
8	Butadiene	54	3.873	3.879 (0.403)	7298	0.20000	0.22(a)
9	Bromomethane	94	4.569	4.563 (0.475)	10700	0.20000	0.21
10	Chloroethane	64	4.788	4.788 (0.498)	5698	0.20000	0.21(a)
11	2-Methylbutane	43	4.863	4.868 (0.506)	13293	0.20000	0.23
12	Vinyl bromide	106	5.178	5.179 (0.538)	10812	0.20000	0.21
13	Trichlorofluoromethane	101	5.275	5.275 (0.548)	28698	0.20000	0.21
14	Pentane	43	5.398	5.403 (0.561)	19122	0.20000	0.23(a)
15	Ethanol	45	5.751	5.730 (0.598)	10369	0.20000	0.51(a)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=:	************	====	==			*=====	******
	16 Ethyl ether	59	5.885	5.863 (0.612)	8041	0.20000	0.20
	17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	20121	0.20000	0.20
	18 Acrolein	5 6	6.227	6.216 (0.647)	5765	0.20000	0.27(a)
	19 1,1-Dichloroethene	96	6.329	6.323 (0.658)	9952	0.20000	0.21
	20 Acetone	43	6.505	6.489 (0.676)	38841	0.20000	0.48(a)
	21 Carbon disulfide	76	6.730	6.730 (0.700)	31155	0.20000	0.21(a)
	22 Isopropyl alcohol	45	6.714	6.693 (0.698)	18533	0.20000	0.30(a)
	23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	12836	0.20000	0.20(a)
	24 Acetonitrile	41	7.094	7.078 (0.737)	8591	0.20000	0.22(a)
	25 Methylene chloride	49	7.249	7.254 (0.754)	15585	0.20000	0.27(a)
	26 2-Methyl-2-propanol	59	7.393	7.372 (0.769)	18929	0.20000	0.20(a)
	27 Methyl tert-butyl ether	73	7.613	7.602 (0.791)	31735	0.20000	0.21(a)
	28 trans-1,2-Dichloroethene	61	7.639	7.645 (0.794)	17029	0.20000	0.21
	29 Acrylonitrile	53	7.736	7.730 (0.804)	8318	0.20000	0.21(a)
	30 Hexane	57	7.966	7.966 (0.828)	18515	0.20000	0.21(a)
	31 1,1-Dichloroethane	63	8.372	8.372 (0.870)	20551	0.20000	0.21
	32 Vinyl acetate	43	8.394	8.388 (0.873)	28511	0.20000	0.21(a)
M	33 1,2-Dichloroethene,Total	61			28705	0.40000	0.42
	34 cis-1,2-Dichloroethene	96	9.250	9.260 (0.962)	11676	0.20000	0.21
	35 Ethyl acetate	8.8	9.276	9.271 (0.964)	732	0.20000	0.15(aQ)
	36 2-Butanone (MEK)	72	9.276	9.260 (0.964)	5566	0.20000	0.21(aQ)
*	37 Bromochloromethane	128	9.619	9.619 (1.000)	491070	10.0000	
	38 Tetrahydrofuran	42	9.662	9.640 (0.878)	13355	0.20000	0.22(a)
	39 Chloroform	83	9.688	9.694 (1.007)	23830	0.20000	0.21
	40 Cyclohexane	84	9.950	9.956 (0.904)	15527	0.20000	0.20
	41 1,1,1-Trichloroethane	97	9.940	9.950 (0.903)	24634	0.20000	0.21
	42 Carbon tetrachloride	117	10.148	10.148 (0.922)	24712	0.20000	0.20
	43 Isooctane	57	10.432	10.432 (0.948)	56624	0.20000	0.21
	44 Benzene	78	10.469	10.475 (0.951)	36129	0.20000	0.21
	45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	15983	0.20000	0.20
	46 n-Heptane	43	10.678	10.678 (0.970)	21843	0.20000	0.21
*	47 1,4-Difluorobenzene	114	11.010	11.015 (1.000)	2432532	10.0000	
	48 n-Butanol	56	11.229	11.208 (1.020)	6706	0.20000	0.20(aQ)
	49 Trichloroethene	95	11.373	11.373 (1.033)	15682	0.20000	0.20
	50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	12840	0.20000	0.20
	51 Methyl methacrylate	69	11.796	11.791 (1.071)	12492	0.20000	0.20(a)
	52 Dibromomethane	174	11.924	11.930 (1.083)	15114	0.20000	0.20
	53 1,4-Dioxane	88	11.914	11.882 (1.082)	5310	0.20000	0.21(a)
	54 Dichlorobromomethane	83	12.101	12.101 (1.099)	24810	0.20000	0.20
	55 cis-1,3-Dichloropropene	75	12.727	12.727 (1.156)	19699	0.20000	0.20
	56 4-Methyl-2-pentanone (MIBK)	43		12.887 (1.172)	24181	0.20000	0.19(a)
	57 n-Octane	43	13.144	13.144 (1.194)	28501	0.20000	0.21
	58 Toluene	92		13.160 (0.870)	26144	0.20000	0.21
	59 trans-1,3-Dichloropropene	75		13.519 (1.228)	19584	0.20000	0.19(a)
	60 1,1,2-Trichloroethane	83	13.791	13.792 (0.913)	13005	0.20000	0.21(Q)
	61 Tetrachloroethene	166		13.925 (0.921)	21682	0.20000	0.20
	62 2-Hexanone	43	14.070	14.064 (0.931)	24308	0.20000	0.20(a)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==		====	==	========	=======	======	======
	63 Chlorodibromomethane	129	14.342	14.343 (0.949)	23571	0.20000	0.18(a)
	64 Ethylene Dibromide	107	14.546	14.546 (0.962)	23062	0.20000	0.20
*	65 Chlorobenzene-d5	117	15.113	15.113 (1.000)	2327300	10.0000	
	66 Chlorobenzene	112	15.150	15.150 (1.002)	35682	0.20000	0.20
	67 n-Nonane	57	15.247	15.247 (1.009)	28786	0.20000	0.22
	68 Ethylbenzene	91	15.220	15.225 (1.007)	57462	0.20000	0.21
	69 Xylene (m,p)	106	15.370	15.375 (1.017)	45445	0.40000	0.40
M	70 Xylenes, Total	106			66674	0.20000	0.60
	71 o-Xylene	106	15.883	15.883 (1.051)	21229	0.20000	0.19(a)
	72 Styrene	104	15.910	15.910 (1.053)	33325	0.20000	0.19(a)
	73 Bromoform	173	16.199	16.199 (1.072)	21968	0.20000	0.16(a)
	74 Isopropylbenzene	105	16.300	16.301 (1.079)	63282	0.20000	0.20
	76 1,1,2,2-Tetrachloroethane	83	16.707	16.707 (1.105)	32838	0.20000	0.20
	77 n-Propylbenzene	91	16.777	16.782 (1.110)	76078	0.20000	0.20
	78 1,2,3-Trichloropropane	75	16.787	16.793 (1.111)	26899	0.20000	0.21(a)
	79 n-Decane	57	16.852	16.852 (1.115)	35318	0.20000	0.21(a)
	80 4-Ethyltoluene	105	16.905	16.905 (1.119)	65866	0.20000	0.20
	81 2-Chlorotoluene	91	16.942	16.943 (1.121)	60835	0.20000	0.21
	82 1,3,5-Trimethylbenzene	105	16.969	16.975 (1.123)	52538	0.20000	0.19(a)
	83 Alpha Methyl Styrene	118	17.242	17.242 (1.141)	25151	0.20000	0.18(a)
	84 tert-butylbenzene	119	17.344	17.344 (1.148)	50774	0.20000	0.19(a)
	85 1,2,4-Trimethylbenzene	105	17.413	17.413 (1.152)	54449	0.20000	0.20
	86 sec-Butylbenzene	105	17.600	17.601 (1.165)	74786	0.20000	0.19(a)
	87 4-Isopropyltoluene	119	17.750	17.750 (1.175)	63662	0.20000	0.19(a)
	88 1,3-Dichlorobenzene	146	17.820	17.820 (1.179)	37896	0.20000	0.19(a)
	89 1,4-Dichlorobenzene	146	17.932	17.932 (1.187)	37382	0.20000	0.19(a)
	90 Benzyl chloride	91	18.087	18.087 (1.197)	40170	0.20000	0.17(a)
	91 Undecane	57	18.221	18.221 (1.206)	38583	0.20000	0.20(a)
	92 n-Butylbenzene	91	18.253	18.253 (1.208)	58434	0.20000	0.19(a)
	93 1,2-Dichlorobenzene	146	18.414	18.414 (1.218)	35525	0.20000	0.19(a)
	94 Dodecane	57	19.671	19.671 (1.302)	34232	0.20000	0.18(a)
	95 1,2,4-Trichlorobenzene	180	20.757	20.752 (1.373)	28390	0.20000	0.18(a)
	96 Hexachlorobutadiene	225	20.923	20.923 (1.384)	27331	0.20000	0.19(a)
	97 Naphthalene	128	21.228	21.233 (1.405)	66206	0.20000	0.20(a)
	98 1,2,3-Trichlorobenzene	180	21.698	21.704 (1.436)	28844	0.20000	0.20

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q - Qualifier signal failed the ratio test.

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn005v.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn005v.d Lab Smp Id: ASTD0.5 Client Smp I Client Smp ID: ASTD0.5

Inj Date : 07-APR-2010 11:57

Operator : wrd Smp Info : ic 022287 Inst ID: F.i

Misc Info : ASTD0.5;040710FA;1;200

Comment

: /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m

Quant Type: ISTD Meth Date : 12-Apr-2010 21:34 sv Cal Date : 07-APR-2010 11:57 Cal File: fdn005v.d

Calibration Sample, Level: 2 Als bottle: 3 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		====	==		EE=====	======	x=====
1	Propene	41	3.167	3.167 (0.329)	12398	0.50000	0.55
2	Dichlorodifluoromethane	85	3.226	3.226 (0.335)	55796	0.50000	0.54
3	Chlorodifluoromethane	51	3.263	3.263 (0.339)	31293	0.50000	0.57
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.450	3.456 (0.359)	59034	0.50000	0.54
5	Chloromethane	50	3.584	3.584 (0.373)	18436	0.50000	0.57
6	Butane	43	3.766	3.766 (0.392)	32899	0.50000	0.57
7	Vinyl chloride	62	3.804	3.809 (0.395)	22011	0.50000	0.52
8	Butadiene	54	3.878	3.879 (0.403)	17824	0.50000	0.54
9	Bromomethane	94	4.563	4.563 (0.474)	25577	0.50000	0.53
10	Chloroethane	64	4.788	4.788 (0.498)	14109	0.50000	0.54
11	2-Methylbutane	43	4.857	4.868 (0.505)	29030	0.50000	0.52
12	Vinyl bromide	106	5.178	5.179 (0.538)	26146	0.50000	0.52
13	Trichlorofluoromethane	101	5.264	5.275 (0.547)	70340	0.50000	0.53
14	Pentane	43	5.403	5.403 (0.562)	43789	0.50000	0.53
15	Ethanol	45	5.729	5.730 (0.596)	102301	5.00000	5.2

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==		=======	=======	#EE====
16 Ethyl ether	59	5.868	5.863 (0.610)	19856	0.50000	0.52
17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	49548	0.50000	0.52
18 Acrolein	56	6.227	6.216 (0.647)	12550	0.50000	0.60(a)
19 1,1-Dichloroethene	96	6.318	6.323 (0.657)	23216	0.50000	0.50
20 Acetone	43	6.500	6.489 (0.676)	71062	0.50000	0.89(a)
21 Carbon disulfide	76	6.730	6.730 (0.700)	74213	0.50000	0.51
22 Isopropyl alcohol	45	6.708	6.693 (0.697)	37735	0.50000	0.62(a)
23 3-Chloro-1-propene	41	6.997	7.003 (0.727)	31397	0.50000	0.50
24 Acetonitrile	41	7.083	7.078 (0.736)	19504	0.50000	0.51(a)
25 Methylene chloride	49	7.249	7.254 (0.754)	32813	0.50000	0.58
26 2-Methyl-2-propanol	59	7.393	7.372 (0.769)	47826	0.50000	0.52(a)
27 Methyl tert-butyl ether	73	7.607	7.602 (0.791)	75214	0.50000	0.50
28 trans-1,2-Dichloroethene	61	7.639	7.645 (0.794)	40773	0.50000	0.51
29 Acrylonitrile	53	7.730	7.730 (0.804)	18588	0.50000	0.49(a)
30 Hexane	57	7.966	7.966 (0.828)	43602	0.50000	0.52
31 1,1-Dichloroethane	63	8.367	8.372 (0.870)	49346	0.50000	0.51
32 Vinyl acetate	43	8.388	8.388 (0.872)	63714	0.50000	0.49(a)
M 33 1,2-Dichloroethene,Total	61			68474	1.00000	1.0
34 cis-1,2-Dichloroethene	96	9.255	9.260 (0.962)	27701	0.50000	0.51
35 Ethyl acetate	88	9.276	9.271 (0.964)	2245	0.50000	0.48(aQ)
36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	13457	0.50000	0.51
* 37 Bromochloromethane	128	9.619	9.619 (1.000)	477162	10.0000	
38 Tetrahydrofuran	42	9.656	9.640 (0.877)	31124	0.50000	0.53(a)
39 Chloroform	83	9.694	9.694 (1.008)	55962	0.50000	0.51
40 Cyclohexane	84	9.956	9.956 (0.904)	36900	0.50000	0.49
41 1,1,1-Trichloroethane	97	9.950	9.950 (0.904)	57571	0.50000	0.49
42 Carbon tetrachloride	117	10.148	10.148 (0.922)	59958	0.50000	0.48
43 Isooctane	57	10.426	10.432 (0.947)	135189	0.50000	0.51
44 Benzene	78	10.469	10.475 (0.951)	85424	0.50000	0.51
45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	39545	0.50000	0.51
46 n-Heptane	43	10.683	10.678 (0.970)	52623	0.50000	0.53
* 47 1,4-Difluorobenzene	114	11.010	11.015 (1.000)	2376868	10.0000	
48 n-Butanol	56	11.224	11.208 (1.019)	16773	0.50000	0.52(a)
49 Trichloroethene	95	11.368	11.373 (1.033)	37359	0.50000	0.50
50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	32128	0.50000	0.51
51 Methyl methacrylate	69	11.796	11.791 (1.071)	29341	0.50000	0.47(a)
52 Dibromomethane	174	11.930	11.930 (1.084)	34632	0.50000	0.48
53 1,4-Dioxane	88	11.903	11.882 (1.081)	12540	0.50000	0.51(a)
54 Dichlorobromomethane	83	12.101	12.101 (1.099)	58589	0.50000	0.47
55 cis-1,3-Dichloropropene	75	12.727	12.727 (1.156)	47343	0.50000	0.48
56 4-Methyl-2-pentanone(MIBK)	43	12.893	12.887 (1.171)	60070	0.50000	0.49(a)
57 n-Octane	43	13.144	13.144 (1.194)	73560	0.50000	0.55
58 Toluene	92	13.160	13.160 (0.871)	61473	0.50000	0.49
59 trans-1,3-Dichloropropene	75	13.519	13.519 (1.228)	49153	0.50000	0.48
60 1,1,2-Trichloroethane	83		13.792 (0.913)	29912	0.50000	0.49
61 Tetrachloroethene	166	13.925	13.925 (0.921)	51696	0.50000	0.48

62 2-Hexanone

43 14.070 14.064 (0.931) 56916 0.50000 0.47(a)

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	****		==		=======	ZZ====E	======
	63 Chlorodibromomethane	129	14.342	14.343 (0.949)	57147	0.50000	0.44
	64 Ethylene Dibromide	107	14.546	14.546 (0.962)	54786	0.50000	0.47
*	65 Chlorobenzene-d5	117	15.113	15.113 (1.000)	2293887	10.0000	
	66 Chlorobenzene	112	15.156	15.150 (1.003)	85951	0.50000	0.49
	67 n-Nonane	57	15.247	15.247 (1.009)	68656	0.50000	0.53
	68 Ethylbenzene	91	15.225	15.225 (1.007)	136686	0.50000	0.50
	69 Xylene (m,p)	106	15.375	15.375 (1.017)	110277	1.00000	0.99
М	70 Xylenes, Total	106			163394	0.50000	1.5
	71 o-Xylene	106	15.883	15.883 (1.051)	53117	0.50000	0.49
	72 Styrene	104	15.910	15.910 (1.053)	79287	0.50000	0.46
	73 Bromoform	173	16.199	16.199 (1.072)	54672	0.50000	0.40
	74 Isopropylbenzene	105	16.300	16.301 (1.079)	150621	0.50000	0.48
	76 1,1,2,2-Tetrachloroethane	83	16.707	16.707 (1.105)	80247	0.50000	0.49
	77 n-Propylbenzene	91	16.777	16.782 (1.110)	185739	0.50000	0.50
	78 1,2,3-Trichloropropane	75	16.793	16.793 (1.111)	64879	0.50000	0.51
	79 n-Decane	57	16.851	16.852 (1.115)	85828	0.50000	0.51
	80 4-Ethyltoluene	105	16.905	16.905 (1.119)	156224	0.50000	0.48
	81 2-Chlorotoluene	91	16.942	16.943 (1.121)	143743	0.50000	0.49
	82 1,3,5-Trimethylbenzene	105	16.974	16.975 (1.123)	129625	0.50000	0.49
	83 Alpha Methyl Styrene	118	17.242	17.242 (1.141)	62536	0.50000	0.44
	84 tert-butylbenzene	119	17.344	17.344 (1.148)	123265	0.50000	0.48
	85 1,2,4-Trimethylbenzene	105	17.413	17.413 (1.152)	127661	0.50000	0.47
	86 sec-Butylbenzene	105	17.600	17.601 (1.165)	185357	0.50000	0.49
	87 4-Isopropyltoluene	119	17.750	17.750 (1.175)	156477	0.50000	0.47
	88 1,3-Dichlorobenzene	146	17.820	17.820 (1.179)	89685	0.50000	0.46
	89 1,4-Dichlorobenzene	146	17.932	17.932 (1.187)	88019	0.50000	0.46
	90 Benzyl chloride	91	18.087	18.087 (1.197)	100215	0.50000	0.43
	91 Undecane	57	18.221	18.221 (1.206)	96407	0.50000	0.52(a)
	92 n-Butylbenzene	91	18.253	18.253 (1.208)	146863	0.50000	0.50
	93 1,2-Dichlorobenzene	146	18.414	18.414 (1.218)	83117	0.50000	0.46
	94 Dodecane	57	19.676	19.671 (1.302)	85596	0.50000	0.46(a)
	95 1,2,4-Trichlorobenzene	180	20.751	20.752 (1.373)	65715	0.50000	0.42(a)
	96 Hexachlorobutadiene	225	20.917	20.923 (1.384)	63432	0.50000	0.45
	97 Naphthalene	128	21.233	21.233 (1.405)	146232	0.50000	0.44(a)
	98 1,2,3-Trichlorobenzene	180	21.698	21.704 (1.436)	62391	0.50000	0.43

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q - Qualifier signal failed the ratio test.

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn05v.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn05v.d

Lab Smp Id: ASTD05 Client Smp ID: ASTD05

Inj Date : 07-APR-2010 12:51

Operator : wrd Smp Info : ic 021996 Inst ID: F.i

Misc Info : ASTD05;040710FA;1;2000 Comment

Comment :
Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m
Meth Date : 12-Apr-2010 21:34 sv Quant 7 Quant Type: ISTD Cal Date : 07-APR-2010 12:51 Cal File: fdn05v.d

Als bottle: 4 Calibration Sample, Level: 3

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF Uf Vo	1.00000 1.00000 2000.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL)
Cpnd Variable		Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
~====	******		==		=======	*****	
1	Propene	41	3.167	3.167 (0.329)	120455	5.00000	5.4
2	Dichlorodifluoromethane	85	3.226	3.226 (0.335)	548165	5.00000	5.4
3	Chlorodifluoromethane	51	3.263	3.263 (0.339)	289440	5.00000	5.3
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.450	3.456 (0.359)	579597	5.00000	5.3
5	Chloromethane	50	3.584	3.584 (0.373)	170971	5.00000	5.3
6	Butane	43	3.766	3.766 (0.392)	306245	5.00000	5.3
7	Vinyl chloride	62	3.804	3.809 (0.395)	224756	5.00000	5.4
8	Butadiene	54	3.878	3.879 (0.403)	168458	5.00000	5.2
9	Bromomethane	94	4.563	4.563 (0.474)	245707	5.00000	5.1
10	Chloroethane	64	4.788	4.788 (0.498)	134919	5.00000	5.2
11	2-Methylbutane	43	4.863	4.868 (0.506)	288954	5.00000	5.2
12	Vinyl bromide	106	5.178	5.179 (0.538)	252386	5.00000	5.1
13	Trichlorofluoromethane	101	5.269	5.275 (0.548)	682969	5.00000	5.1
14	Pentane	43	5.403	5.403 (0.562)	434881	5.00000	5.4
15	Ethanol	45	5.724	5 730 (0.595)	196300	10 0000	10

					AMOUN	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	4520	==		100500		
16 Ethyl ether	59	5.863	5.863 (0.610)	192523	5.00000	5.1
17 1,1,2-Trichloro-1,2,2-trifluo	101	6.254	6.259 (0.650)	478075	5.00000	5.0
18 Acrolein	56	6.216	6.216 (0.646)	106758	5.00000	5.2
19 1,1-Dichloroethene	96	6.323	6.323 (0.657)	228752	5.00000	5.0
20 Acetone	43	6.484	6.489 (0.674)	422110	5.00000	5.4
21 Carbon disulfide	76	6.730	6.730 (0.700)	746114	5.00000	5.1
22 Isopropyl alcohol	45	6.692	6.693 (0.696)	321946	5.00000	5.3
23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	324353	5.00000	5.2
24 Acetonitrile	41	7.078	7.078 (0.736)	198112	5.00000	5.2
25 Methylene chloride	49	7.249	7.254 (0.754)	288649	5.00000	5.2
26 2-Methyl-2-propanol	59	7.372	7.372 (0.766)	475605	5.00000	5.2
27 Methyl tert-butyl ether	73	7.596	7.602 (0.790)	750109	5.00000	5.1
28 trans-1,2-Dichloroethene	61	7.645	7.645 (0.795)	407444	5.00000	5.2
29 Acrylonitrile	53	7.730	7.730 (0.804)	197279	5.00000	5.2
30 Hexane	57	7.966	7.966 (0.828)	431741	5.00000	5.2
31 1,1-Dichloroethane	63	8.372	8.372 (0.870)	490055	5.00000	5.1
32 Vinyl acetate	43	8.383	8.388 (0.872)	682110	5.00000	5.2
M 33 1,2-Dichloroethene,Total	61			681821	10.0000	10
34 cis-1,2-Dichloroethene	96	9.255	9.260 (0.962)	274377	5.00000	5.1
35 Ethyl acetate	88	9.271	9.271 (0.964)	23567	5.00000	5.0
36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	133990	5.00000	5.2
* 37 Bromochloromethane	128	9.619	9.619 (1.000)	472643	10.0000	
38 Tetrahydrofuran	42	9.640	9.640 (0.876)	301671	5.00000	5.2
39 Chloroform	83	9.694	9.694 (1.008)	558401	5.00000	5.1
40 Cyclohexane	84	9.956	9.956 (0.904)	378045	5.00000	5.0
41 1,1,1-Trichloroethane	97	9.945	9.950 (0.903)	585330	5.00000	5.1
42 Carbon tetrachloride	117	10.143	10.148 (0.921)	611713	5.00000	5.0
43 Isooctane	57	10.432	10.432 (0.948)	1344495	5.00000	5.1
44 Benzene	78	10.469	10.475 (0.951)	826438	5.00000	5.0
45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	396228	5.00000	5.2
46 n-Heptane	43	10.678	10.678 (0.970)	502371	5.00000	5.1
* 47 l,4-Difluorobenzene	114	11.010	11.015 (1.000)	2352647	10.0000	
48 n-Butanol	56	11.208	11.208 (1.018)	156752	5.00000	4.9(a
49 Trichloroethene	95	11.373	11.373 (1.033)	370275	5.00000	5.0
50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	314647	5.00000	5.1
51 Methyl methacrylate	69	11.791	11.791 (1.071)	308545	5.00000	5.0
52 Dibromomethane	174	11.930	11.930 (1.084)	342271	5.00000	4.8
53 1,4-Dioxane	88	11.882	11.882 (1.079)	125122	5.00000	5.1
54 Dichlorobromomethane	83		12.101 (1.099)	620283	5.00000	5.1
55 cis-1,3-Dichloropropene	75		12.727 (1.156)	489727	5.00000	5.0
56 4-Methyl-2-pentanone (MIBK)	43	12.887		635184	5.00000	5.2
57 n-Octane	43	13.144		705661	5.00000	5.4
58 Toluene	92		13.160 (0.871)	624277	5.00000	4.9
59 trans-1,3-Dichloropropene	75	13.524		519353	5.00000	5.1
60 1,1,2-Trichloroethane	83		13.792 (0.913)	307742	5.00000	4.9
61 Tetrachloroethene	166		13.925 (0.921)	524621	5.00000	4.7

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn05v.d Report Date: 12-Apr-2010 21:34

AMOTINTS CAL-AMT ON-COL OTTANT STG RT EXP RT REL RT RESPONSE (ppbv) (ppbv) Compounds MASS ----------==== 4.8 129 14.342 14.343 (0.949) 638509 5.00000 63 Chlorodibromomethane 107 14.546 14.546 (0.962) 575142 5.00000 4.9 64 Ethylene Dibromide 15.113 15.113 (1.000) 2346886 10.0000 * 65 Chlorobenzene-d5 117 66 Chlorobenzene 112 15.150 15.150 (1.002) 862730 5.00000 57 15.247 15.247 (1.009) 690954 5.00000 5.2 67 n-Nonane 68 Ethylbenzene 15.225 15.225 (1.007) 1380251 5.00000 4.9 91 106 15.375 15.375 (1.017) 1121283 10.0000 9.9 69 Xylene (m,p) 5.00000 M 70 Xylenes, Total 106 1670952 106 15.883 15.883 (1.051) 104 15.910 15.910 (1.053) 549669 5.00000 71 o-Xylene 859103 5.00000 72 Styrene 4.9 16.199 16.199 (1.072) 5.00000 4.9 1552421 5.00000 4 9 173 73 Bromoform
 73 Bromotorm
 173

 74 Isopropylbenzene
 105

 76 1,1,2,2-Tetrachloroethane
 83

 77 n-Propylbenzene
 91
 16.300 16.301 (1.079) 16.707 16.707 (1.105) 828909 5.00000 5.0 16.782 16.782 (1.110) 1908794 5.00000 77 n-Propylbenzene 91
78 1,2,3-Trichloropropane 75
70 n Pocano 57 5.1 16.793 16.793 (1.111) 664142 5.00000 5.1 57 16.851 16.852 (1.115) 893274 5.00000 5.2 79 n-Decane 16.905 16.905 (1.119) 1618898 5.00000 105 80 4-Ethvltoluene 81 2-Chlorotoluene 91 16.942 16.943 (1.121) 1485507 5.00000 5.0 82 1,3,5-Trimethylbenzene 105 83 Alpha Methyl Styrene 118 84 tert-butylbenzene 119 16.969 16.975 (1.123) 1342390 5.00000 4.9 17.242 17.242 (1.141) 704393 5.00000 4.9 17.344 17.344 (1.148) 1285604 5.00000 4.9 85 1,2,4-Trimethylbenzene 105
86 sec-Butylbenzene 105 17.413 17.413 (1.152) 1357357 5.00000 4.9 105 119 146 146 17.600 17.601 (1.165) 1929902 5.00000 5.0 17.750 17.750 (1.175) 1655193 5.00000 4.9 87 4-Isopropyltoluene 88 1,3-Dichlorobenzene 17.820 17.820 (1.179) 944233 5.00000 4.8 89 1,4-Dichlorobenzene 17.932 17.932 (1.187) 940972 5.00000 4.8 90 Benzyl chloride 91 57 18.087 18.087 (1.197) 1189712 5.00000 5.0 1035060 91 Undecane 18.221 18.221 (1.206) 5.00000 5.4 92 n-Butylbenzene 91 1538263 5.00000 18.253 18.253 (1.208) 5.1 146 93 1,2-Dichlorobenzene 895655 5.00000 18.414 18.414 (1.218) 4.8 57 19.671 19.671 (1.302) 1002055 5.00000 94 Dodecane 57 180 5.3 20.751 20.752 (1.373) 752648 5.00000 95 1,2,4-Trichlorobenzene 4.7 96 Hexachlorobutadiene
 225
 20.923
 20.923
 (1.384)
 692189
 5.00000

 128
 21.233
 21.233
 (1.405)
 1617769
 5.00000

 180
 21.698
 21.704
 (1.436)
 705639
 5.00000
 4.8 97 Naphthalene 4.7 98 1,2,3-Trichlorobenzene 4.8

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10v2.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10v2.d

Lab Smp Id: ASTD010 Client Smp ID: ASTD010

Inj Date : 07-APR-2010 14:37

Operator : wrd Smp Info : icis 021990 Inst ID: F.i

Misc Info : ASTD010;040710FA;1;200

Comment

Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Meth Date : 12-Apr-2010 21:34 sv Quant 5 Quant Type: ISTD Cal File: fdn10v2.d Cal Date : 07-APR-2010 14:37

Als bottle: 6 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
====	=======================================		==		=======		
1	Propene	41	3.167	3.167 (0.329)	240620	10.0000	11
2	Dichlorodifluoromethane	85	3.226	3.226 (0.335)	1091350	10.0000	11
3	Chlorodifluoromethane	51	3.263	3.263 (0.339)	575040	10.0000	11
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.456	3.456 (0.359)	1151671	10.0000	11
5	Chloromethane	50	3.584	3.584 (0.373)	339790	10.0000	11
6	Butane	43	3.766	3.766 (0.392)	611086	10.0000	11
7	Vinyl chloride	62	3.809	3.809 (0.396)	443423	10.0000	11
8	Butadiene	54	3.879	3.879 (0.403)	336253	10.0000	10
9	Bromomethane	94	4.563	4.563 (0.474)	482917	10.0000	10
10	Chloroethane	64	4.788	4.788 (0.498)	267989	10.0000	10
11	2-Methylbutane	43	4.868	4.868 (0.506)	575947	10.0000	10
12	Vinyl bromide	106	5.179	5.179 (0.538)	498652	10.0000	9.9
13	Trichlorofluoromethane	101	5.275	5.275 (0.548)	1361163	10.0000	10
14	Pentane	43	5.403	5.403 (0.562)	864385	10.0000	11
15	Ethanol	45	5.730	5.730 (0.596)	291208	15.0000	15

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=:		====	==	***** =====			======
	16 Ethyl ether	59	5.863	5.863 (0.610)	382581	10.0000	10
	17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	948630	10.0000	9.9
	18 Acrolein	56	6.216	6.216 (0.646)	213282	10.0000	10
	19 1,1-Dichloroethene	96	6.323	6.323 (0.657)	450638	10.0000	9.9
	20 Acetone	43	6.489	6.489 (0.675)	874961	10.0000	11
	21 Carbon disulfide	76	6.730	6.730 (0.700)	1468703	10.0000	10
	22 Isopropyl alcohol	45	6.693	6.693 (0.696)	624296	10.0000	10
	23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	649832	10.0000	10
	24 Acetonitrile	41	7.078	7.078 (0.736)	396271	10.0000	10
	25 Methylene chloride	49	7.254	7.254 (0.754)	566751	10.0000	10
	26 2-Methyl-2-propanol	59	7.372	7.372 (0.766)	931628	10.0000	10
	27 Methyl tert-butyl ether	73	7.602	7.602 (0.790)	1497963	10.0000	10
	28 trans-1,2-Dichloroethene	61	7.645	7.645 (0.795)	805584	10.0000	10
	29 Acrylonitrile	53	7.730	7.730 (0.804)	392167	10.0000	10
	30 Hexane	57	7.966	7.966 (0.828)	841032	10.0000	10
	31 1,1-Dichloroethane	63	8.372	8.372 (0.870)	974755	10.0000	10
	32 Vinyl acetate	43	8.388	8.388 (0.872)	1363151	10.0000	10
М	33 1,2-Dichloroethene, Total	61			1345063	20.0000	20
	34 cis-1,2-Dichloroethene	96	9.260	9.260 (0.963)	539479	10.0000	9.9
	35 Ethyl acetate	88	9.271	9.271 (0.964)	47006	10.0000	10
	36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	264497	10.0000	10
*	37 Bromochloromethane	128	9.619	9.619 (1.000)	474417	10.0000	
	38 Tetrahydrofuran	42	9.640	9.640 (0.875)	597858	10.0000	10
	39 Chloroform	83	9.694	9.694 (1.008)	1104155	10.0000	10
	40 Cyclohexane	84	9.956	9.956 (0.904)	746630	10.0000	10
	41 1,1,1-Trichloroethane	97	9.950	9.950 (0.903)	1154883	10.0000	10
	42 Carbon tetrachloride	117	10.148	10.148 (0.921)	1224766	10.0000	10
	43 Isooctane	57	10.432	10.432 (0.947)	2655629	10.0000	10
	44 Benzene	78	10.475	10.475 (0.951)	1619131	10.0000	9.8
	45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	774436	10.0000	10
	46 n-Heptane	43	10.678	10.678 (0.969)	990057	10.0000	10
*	47 l,4-Difluorobenzene	114	11.015	11.015 (1.000)	2353546	10.0000	
	48 n-Butanol	56	11.208	11.208 (1.017)	308387	10.0000	9.7
	49 Trichloroethene	95	11.373	11.373 (1.033)	737740	10.0000	9.9
	50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	619430	10.0000	10
	51 Methyl methacrylate	69	11.791	11.791 (1.070)	619884	10.0000	10
	52 Dibromomethane	174	11.930	11.930 (1.083)	691331	10.0000	9.7
	53 1,4-Dioxane	88	11.882	11.882 (1.079)	242636	10.0000	9.9(M)
	54 Dichlorobromomethane	83	12.101	12.101 (1.099)	1244570	10.0000	10
	55 cis-1,3-Dichloropropene	75	12.727	12.727 (1.155)	986661	10.0000	10
	56 4-Methyl-2-pentanone (MIBK)	43	12.887	12.887 (1.170)	1269724	10.0000	10
	57 n-Octane	43	13.144	13.144 (1.193)	1370578	10.0000	10
	58 Toluene	92	13.160	13.160 (0.871)	1235144	10.0000	9.8
	59 trans-1,3-Dichloropropene	75	13.519	13.519 (1.227)	1049835	10.0000	10
	60 1,1,2-Trichloroethane	83	13.792	13.792 (0.913)	605232	10.0000	9.7
	61 Tetrachloroethene	166	13.925	13.925 (0.921)	1044696	10.0000	9.5
	62 2-Hexanone	43	14.064	14.064 (0.931)	1249114	10.0000	10

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10v2.d Report Date: 12-Apr-2010 21:34

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
******************	====	==	EEEE22 22252		======	
63 Chlorodibromomethane	129	14.343	14.343 (0.949)	1303471	10.0000	10
64 Ethylene Dibromide	107	14.546	14.546 (0.962)	1150516	10.0000	9.8
* 65 Chlorobenzene-d5	117	15.113	15.113 (1.000)	2319359	10.0000	
66 Chlorobenzene	112	15.150	15.150 (1.002)	1719380	10.0000	9.7
67 n-Nonane	57	15.247	15.247 (1.009)	1346176	10.0000	10
68 Ethylbenzene	91	15.225	15.225 (1.007)	2742676	10.0000	9.9
69 Xylene (m,p)	106	15.375	15.375 (1.017)	2259205	20.0000	20
M 70 Xylenes, Total	106			3370890	10.0000	30
71 o-Xylene	106	15.883	15.883 (1.051)	1111685	10.0000	10
72 Styrene	104	15.910	15.910 (1.053)	1744658	10.0000	10
73 Bromoform	173	16.199	16.199 (1.072)	1405091	10.0000	10
74 Isopropylbenzene	105	16.301	16.301 (1.079)	3117984	10.0000	9.9
76 1,1,2,2-Tetrachloroethane	83	16.707	16.707 (1.105)	1650741	10.0000	10
77 n-Propylbenzene	91	16.782	16.782 (1.110)	3807852	10.0000	10
78 1,2,3-Trichloropropane	75	16.793	16.793 (1.111)	1319336	10.0000	10
79 n-Decane	57	16.852	16.852 (1.115)	1751541	10.0000	10
80 4-Ethyltoluene	105	16.905	16.905 (1.119)	3258029	10.0000	10
81 2-Chlorotoluene	91	16.943	16.943 (1.121)	2966867	10.0000	10
82 1,3,5-Trimethylbenzene	105	16.975	16.975 (1.123)	2714936	10.0000	10
83 Alpha Methyl Styrene	118	17.242	17.242 (1.141)	1448201	10.0000	10
84 tert-butylbenzene	119	17.344	17.344 (1.148)	2590746	10.0000	9.9
85 1,2,4-Trimethylbenzene	105	17.413	17.413 (1.152)	2732382	10.0000	10
86 sec-Butylbenzene	105	17.601	17.601 (1.165)	3882031	10.0000	10
87 4-Isopropyltoluene	119	17.750	17.750 (1.175)	3349171	10.0000	10
88 1,3-Dichlorobenzene	146	17.820	17.820 (1.179)	1900807	10.0000	9.7
89 1,4-Dichlorobenzene	146	17.932	17.932 (1.187)	1903453	10.0000	9.8
90 Benzyl chloride	91	18.087	18.087 (1.197)	2422363	10.0000	10
91 Undecane	57	18.221	18.221 (1.206)	1990871	10.0000	11
92 n-Butylbenzene	91	18.253	18.253 (1.208)	3047504	10.0000	10
93 1,2-Dichlorobenzene	146	18.414	18.414 (1.218)	1802359	10.0000	9.8
94 Dodecane	57	19.671	19.671 (1.302)	1928635	10.0000	10
95 1,2,4-Trichlorobenzene	180	20.752	20.752 (1.373)	1505904	10.0000	9.5
96 Hexachlorobutadiene	225	20.923	20.923 (1.384)	1372890	10.0000	9.6
97 Naphthalene	128	21.233	21.233 (1.405)	3242066	10.0000	9.6
98 1,2,3-Trichlorobenzene	180	21.704	21.704 (1.436)	1398488	10.0000	9.6

QC Flag Legend

M - Compound response manually integrated.

MANUAL INTEGRATION REPORT

Data File Name: fdn10v2.d Client Sample ID: ASTD010

Compound Name: 1,4-Dioxane

Inj. Date and Time: 07-APR-2010 14:37 Target Version: Target 3.50 Instrument ID: F.i

CAS #: 123-91-1

Report Version: 1.1

Report Date: 04/12/2010 21:34

Original Integrations:

383581 Area =

Area = 5815

Final Integrations:

Area = 242636

Manual Integration Reason: MI3 - Mis-identification of peak

169510 Area =

Page 1 Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn15v.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn15v.d

Lab Smp Id: ASTD015 Client Smp ID: ASTD015

Inj Date : 07-APR-2010 15:28

Operator : wrd Smp Info : ic 021989 Inst ID: F.i

Misc Info : ASTD015;040710FA;1;200 Comment

Comment :
Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m
Meth Date : 12-Apr-2010 21:34 sv Quant Color Color Fig. Quant Type: ISTD Cal File: fdn15v.d Cal Date : 07-APR-2010 15:28

Als bottle: 7 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		====	==		=======		======
1	Propene	41	3.167	3.167 (0.329)	361235	15.0000	15
2	Dichlorodifluoromethane	85	3.226	3.226 (0.335)	1658397	15.0000	15
3	Chlorodifluoromethane	51	3.263	3.263 (0.339)	865597	15.0000	14
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.456	3.456 (0.359)	1749288	15.0000	15
5	Chloromethane	50	3.584	3.584 (0.373)	514703	15.0000	15
6	Butane	43	3.771	3.766 (0.392)	941152	15.0000	15
7	Vinyl chloride	62	3.809	3.809 (0.396)	690668	15.0000	15
8	Butadiene	54	3.878	3.879 (0.403)	523082	15.0000	15
9	Bromomethane	94	4.563	4.563 (0.474)	789696	15.0000	15
10	Chloroethane	64	4.788	4.788 (0.498)	428086	15.0000	15
11	2-Methylbutane	43	4.868	4.868 (0.506)	893758	15.0000	15
12	Vinyl bromide	106	5.178	5.179 (0.538)	825257	15.0000	15
13	Trichlorofluoromethane	101	5.275	5.275 (0.548)	2165828	15.0000	15
14	Pentane	43	5.408	5.403 (0.562)	1335402	15.0000	15
15	Ethanol	45	5.724	5.730 (0.595)	428930	20.0000	20

						AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL	
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
==		====	==		=======		======	
	16 Ethyl ether	59	5.863	5.863 (0.610)	624770	15.0000	15	
	17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	1580154	15.0000	15	
	18 Acrolein	56	6.216	6.216 (0.646)	348275	15.0000	15	
	19 1,1-Dichloroethene	96	6.323	6.323 (0.657)	749368	15.0000	15	
	20 Acetone	43	6.484	6.489 (0.674)	1282266	15.0000	15	
	21 Carbon disulfide	76	6.730	6.730 (0.700)	2428387	15.0000	15	
	22 Isopropyl alcohol	45	6.692	6.693 (0.696)	1001504	15.0000	15	
	23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	1030309	15.0000	15	
	24 Acetonitrile	41	7.078	7.078 (0.736)	651530	15.0000	15	
	25 Methylene chloride	49	7.249	7.254 (0.754)	900655	15.0000	15	
	26 2-Methyl-2-propanol	59	7.372	7.372 (0.766)	1522078	15.0000	15	
	27 Methyl tert-butyl ether	73	7.596	7,602 (0.790)	2462865	15.0000	15	
	28 trans-1,2-Dichloroethene	61	7.645	7.645 (0.795)	1300505	15.0000	15	
	29 Acrylonitrile	53	7.730	7.730 (0.804)	633448	15.0000	15	
	30 Hexane	57	7.966	7.966 (0.828)	1369805	15.0000	15	
	31 1,1-Dichloroethane	63	8.372	8.372 (0.870)	1571718	15.0000	15	
	32 Vinyl acetate	43	8.388	8.388 (0.872)	2189432	15.0000	15	
М	33 1,2-Dichloroethene,Total	61			2200006	30.0000	30	
	34 cis-1,2-Dichloroethene	96	9.260	9.260 (0.963)	899501	15.0000	15	
	35 Ethyl acetate	88	9.271	9.271 (0.964)	78776	15.0000	15	
	36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	438543	15.0000	15 (Q)	
*	37 Bromochloromethane	128	9.619	9.619 (1.000)	521911	10.0000		
	38 Tetrahydrofuran	42	9.640	9.640 (0.875)	942646	15.0000	15	
	39 Chloroform	83	9.694	9.694 (1.008)	1801049	15.0000	15	
	40 Cyclohexane	84	9.956	9.956 (0.904)	1234905	15.0000	15	
	41 1,1,1-Trichloroethane	97	9.945	9.950 (0.903)	1886409	15.0000	15	
	42 Carbon tetrachloride	117	10.148	10.148 (0.921)	2019784	15.0000	15	
	43 Isooctane	57	10.432	10.432 (0.947)	4268865	15.0000	15	
	44 Benzene	78	10.469	10.475 (0.950)	2660923	15.0000	15	
	45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	1234641	15.0000	15	
	46 n-Heptane	43	10.678	10.678 (0.969)	1563566	15.0000	15	
*	47 1,4-Difluorobenzene	114	11.015	11.015 (1.000)	2534933	10.0000		
	48 n-Butanol	56	11.202	11.208 (1.017)	506776	15.0000	15	
	49 Trichloroethene	95	11.373	11.373 (1.033)	1211661	15.0000	15	
	50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	1007076	15.0000	15	
	51 Methyl methacrylate	69	11.791	11.791 (1.070)	1018019	15.0000	15	
	52 Dibromomethane	174	11.930	11.930 (1.083)	1172958	15.0000	15	
	53 1,4-Dioxane	88	11.882	11.882 (1.079)	400417	15.0000	15	
	54 Dichlorobromomethane	83	12.101	12.101 (1.099)	2025058	15.0000	15	
	55 cis-1,3-Dichloropropene	75		12.727 (1.155)	1610977	15.0000	15	
	56 4-Methyl-2-pentanone(MIBK)	43	12.887	12.887 (1.170)	2014811	15.0000	15	
	57 n-Octane	43	13.144	13.144 (1.193)	2102484	15.0000	15	
	58 Toluene	92		13.160 (0.871)	2046030	15.0000	16	
	59 trans-1,3-Dichloropropene	75		13.519 (1.227)	1700672	15.0000	15	
	60 1,1,2-Trichloroethane	83		13.792 (0.913)	992269	15.0000	15	
	61 Tetrachloroethene	166		13.925 (0.921)	1773493	15.0000	15	
	62 2-Hexanone	43	14.064	14.064 (0.931)	1981154	15.0000	15	

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn15v.d Report Date: 12-Apr-2010 21:34

AMOUNTS QUANT SIG CAL-AMT ON-COL RT EXP RT REL RT RESPONSE (ppbv) (ppbv) MASS Compounds ------==== ----------====== 63 Chlorodibromomethane 129 14.342 14.343 (0.949) 2188444 107 1901962 15.0000 64 Ethylene Dibromide 14.546 14.546 (0.962) 10.0000 117 15.113 15.113 (1.000) 2431336 * 65 Chlorobenzene-d5 112 2839677 15.0000 66 Chlorobenzene 15.150 15.150 (1.002) 15.247 15.247 (1.009) 2091135 15.0000 67 n-Nonane 57 15.225 15.225 (1.007) 15.0000 68 Ethylbenzene 91 4451279 15 15.370 15.375 (1.017) 3691522 30.0000 106 69 Xylene (m,p) 31 M 70 Xylenes, Total 5511262 15.0000 106 48 15.883 15.883 (1.051) 1819740 15.0000 71 o-Xylene 106 16 72 Styrene 104 15.910 15.910 (1.053) 2887048 15.0000 73 Bromoform 173 16.199 16.199 (1.072) 2393201 15.0000 17 73 Bromoform 173
74 Isopropylbenzene 105
76 1,1,2,2-Tetrachloroethane 83 16.300 16.301 (1.079) 5100328 15.0000 15 16.707 16.707 (1.105) 2658458 15.0000 15 77 n-Propylbenzene 91 78 1,2,3-Trichloropropane 75 16.777 16.782 (1.110) 6084095 15.0000 16 16.793 16.793 (1.111) 2083368 15.0000 16 57 16.851 16.852 (1.115) 2732828 15.0000 105 16.905 16.905 (1.119) 5324368 15.0000 79 n-Decane 15 80 4-Ethyltoluene 16 81 2-Chlorotoluene 91
82 1,3,5-Trimethylbenzene 105
83 Alpha Methyl Styrene 118
84 tert-butylbenzene 119
85 1,2,4-Trimethylbenzene 15.0000 15 16.942 16.943 (1.121) 4774393 16.974 16.975 (1.123) 4425084 15.0000 16 17.242 17.242 (1.141) 2402287 15.0000 16 84 tert-butylbenzene 105 1,2,4-Trimethylbenzene 105 17.344 17.344 (1.148) 4257116 15.0000 16 17.413 17.413 (1.152) 4463371 15.0000 16 17.600 17.601 (1.165) 6321904 15.0000 16 119 146 87 4-Isopropyltoluene 17.750 17.750 (1.175) 5527756 15.0000 16 88 1,3-Dichlorobenzene 17.820 17.820 (1.179) 3195164 15.0000 16 89 1,4-Dichlorobenzene 146 17.932 17.932 (1.187) 3197633 15.0000 16 90 Benzyl chloride 91 18.087 18.087 (1.197) 4001884 15.0000 16 91 Undecane 57 18.221 18.221 (1.206) 3074378 15.0000 16 92 n-Butylbenzene 91 18.253 18.253 (1.208) 4910757 15.0000 146 93 1,2-Dichlorobenzene 18.414 18.414 (1.218) 3001534 15.0000 16 94 Dodecane 57 19.671 19.671 (1.302) 3013903 15.0000 15 95 1,2,4-Trichlorobenzene 20.751 20.752 (1.373) 2624964 15.0000 180 16 96 Hexachlorobutadiene 20.923 20.923 (1.384) 2342548 15.0000 225 16 21.233 21.233 (1.405) 5572421 97 Naphthalene 128 15.0000 16

QC Flag Legend

98 1,2,3-Trichlorobenzene

Q - Qualifier signal failed the ratio test.

180

SDG: RTD1209

21.698 21.704 (1.436) 2400255

15.0000

16

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn20v.d Page 1

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn20v.d

Lab Smp Id: ASTD020 Client Smp ID: ASTD020

Inj Date : 07-APR-2010 16:19

Operator : wrd Smp Info : ic 021985 Inst ID: F.i

Misc Info : ASTD020;040710FA;1;200

Comment

Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Meth Date : 12-Apr-2010 21:34 sv Quant Quant Type: ISTD Cal Date : 07-APR-2010 16:19 Cal File: fdn20v.d

Als bottle: 8 Calibration Sample, Level: 6

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name Value		Description				
DF	1.00000	Dilution Factor				
Uf	1.00000	ng unit correction factor				
Vo	200.00000	Sample Volume purged (mL)				

Cpnd Variable Local Compound Variable

						AMOUNTS	
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
			==		======		======
1	Propene	41	3.162	3.167 (0.329)	476131	20.0000	19
2	Dichlorodifluoromethane	85	3.220	3.226 (0.335)	2177025	20.0000	19
3	Chlorodifluoromethane	51	3.258	3.263 (0.339)	1138844	20.0000	18
4	1,2-Dichloro-1,1,2,2-tetraflu	85	3.450	3.456 (0.359)	2284277	20.0000	19
5	Chloromethane	50	3.579	3.584 (0.372)	673334	20.0000	18
6	Butane	43	3.766	3.766 (0.392)	1199507	20.0000	18
7	Vinyl chloride	62	3.803	3.809 (0.395)	895058	20.0000	19
8	Butadiene	54	3.873	3.879 (0.403)	677621	20.0000	18
9	Bromomethane	94	4.558	4.563 (0.474)	1058955	20.0000	19
10	Chloroethane	64	4.782	4.788 (0.497)	562293	20.0000	19
11	2-Methylbutane	43	4.863	4.868 (0.506)	1145389	20.0000	18
12	Vinyl bromide	106	5.173	5.179 (0.538)	1111623	20.0000	20
13	Trichlorofluoromethane	101	5.269	5.275 (0.548)	2894054	20.0000	19
14	Pentane	43	5.398	5.403 (0.561)	1698195	20.0000	18
15	Ethanol	45	5.724	5.730 (0.595)	886257	40.0000	40

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
**	a complete and a state of	EE22	==		040405	20.0000	
	16 Ethyl ether	59	5.858	5.863 (0.609)	848425		20
	17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	2149092	20.0000	20
	18 Acrolein	56	6.216	6.216 (0.646)	468687	20.0000	20
	19 1,1-Dichloroethene	96	6.323	6.323 (0.657)	1032543	20.0000	20
	20 Acetone	43	6.484	6.489 (0.674)	1709195	20.0000	19
	21 Carbon disulfide	76	6.730	6.730 (0.700)	3275579	20.0000	20
	22 Isopropyl alcohol	45	6.692	6.693 (0.696)	1356455	20.0000	20
	23 3-Chloro-1-propene 24 Acetonitrile	41	6.997	7.003 (0.727)	1389802	20.0000	20
		41 49	7.077 7.249	7.078 (0.736) 7.254 (0.754)	855843 1205317	20.0000	20 19
	25 Methylene chloride 26 2-Methyl-2-propanol	59	7.249	7.372 (0.766)	2072328	20.0000	20
	27 Methyl tert-butyl ether	73	7.596	7.602 (0.790)	3344174	20.0000	20
					1753358	20.0000	20
	28 trans-1,2-Dichloroethene	61	7.645	7.645 (0.795)			
	29 Acrylonitrile	53	7.730	7.730 (0.804)	854100	20.0000	20
	30 Hexane 31 1.1-Dichloroethane	57	7.966	7.966 (0.828)	1849541 2116897		19
	32 Vinyl acetate	63 43	8.372 8.388	8.372 (0.870) 8.388 (0.872)	2911727	20.0000	20 20
м	33 1,2-Dichloroethene, Total	43 61	8.388	8.388 (0.872)	2911727	40.0000	39
I*I	34 cis-1,2-Dichloroethene	96	9.260	9.260 (0.963)	1223945	20.0000	20
	35 Ethyl acetate	88	9.271	9.271 (0.964)	107337	20.0000	20
	36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	591167	20.0000	20 (Q)
	37 Bromochloromethane	128	9.619	9.619 (1.000)	537032	10.0000	20 (Q)
	38 Tetrahydrofuran					20.0000	20
	39 Chloroform	42	9.635 9.693	9.640 (0.875) 9.694 (1.008)	1257158	20.0000	20
		83			2427216		20
	40 Cyclohexane	84	9.956	9.956 (0.904)	1675115	20.0000	20
	41 1,1,1-Trichloroethane 42 Carbon tetrachloride	97	9.945	9.950 (0.903)	2549134 2752690	20.0000	20 20
	43 Isooctane	117 57	10.148	10.148 (0.922) 10.432 (0.948)	5737620	20.0000	20
	44 Benzene	78	10.469	10.475 (0.951)	3595600	20.0000	20
	45 1,2-Dichloroethane	62	10.405		1662109	20.0000	20
	46 n-Heptane	43	10.678	10.678 (0.970)	2086422	20.0000	19
*	47 1,4-Difluorobenzene	114	11.010	11.015 (1.000)	2588644	10.0000	19
	48 n-Butanol	56	11.202	11.208 (1.007)	711880	20.0000	20
	49 Trichloroethene	95	11.373	11.373 (1.033)	1648629	20.0000	20
	50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	1352103	20.0000	
	51 Methyl methacrylate	69	11.748		1352103	20.0000	20
	52 Dibromomethane	174	11.791	11.791 (1.071)	1625567	20.0000	20 21
	53 1,4-Dioxane	88	11.876	11.882 (1.079)	540562	20.0000	20
	54 Dichlorobromomethane	83		12.101 (1.099)	2736009	20.0000	20
	55 cis-1,3-Dichloropropene	75		12.727 (1.156)	2175444	20.0000	20
	56 4-Methyl-2-pentanone (MIBK)	43		12.887 (1.171)	2683571	20.0000	20
	57 n-Octane	43	13.144		2729726	20.0000	19
	58 Toluene	92	13.144		2740702	20.0000	21
	59 trans-1,3-Dichloropropene	75		13.519 (1.228)	2323489	20.0000	21
	60 1,1,2-Trichloroethane	83		13.792 (0.913)	1345960	20.0000	21
	61 Tetrachloroethene	166		13.792 (0.913)	2455269	20.0000	21
	62 2-Hexanone	43		14.064 (0.931)	2644085	20.0000	21
	Z I I I I I I I I I I I I I I I I I I I	3.5	14.004	11.001 (0.731)	2044003	20.0000	21

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn20v.d Report Date: 12-Apr-2010 21:34

						AMOUN	TS
		OUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		====	==	=======================================		======	
	63 Chlorodibromomethane	129	14.342	14.343 (0.949)	3004728	20.0000	22
	64 Ethylene Dibromide	107	14.546	14.546 (0.962)	2598980	20.0000	21
*	65 Chlorobenzene-d5	117	15.113	15.113 (1.000)	2432561	10.0000	
	66 Chlorobenzene	112	15.150	15.150 (1.002)	3872480	20.0000	21
	67 n-Nonane	57	15.246	15.247 (1.009)	2724462	20.0000	20
	68 Ethylbenzene	91	15.225	15.225 (1.007)	5956621	20.0000	21
	69 Xylene (m,p)	106	15.375	15.375 (1.017)	4942236	40.0000	42
М	70 Xylenes, Total	106			7396356	20.0000	64
	71 o-Xylene	106	15.883	15.883 (1.051)	2454120	20.0000	21
	72 Styrene	104	15.910	15.910 (1.053)	3911424	20.0000	22
	73 Bromoform	173	16.199	16.199 (1.072)	3323044	20.0000	23
	74 Isopropylbenzene	105	16.300	16.301 (1.079)	6925349	20.0000	21
	76 1,1,2,2-Tetrachloroethane	83	16.707	16.707 (1.105)	3574383	20.0000	21
	77 n-Propylbenzene	91	16.782	16.782 (1.110)	8052835	20.0000	21
	78 1,2,3-Trichloropropane	75	16.793	16.793 (1.111)	2741721	20.0000	20
	79 n-Decane	57	16.851	16.852 (1.115)	3605118	20.0000	20
	80 4-Ethyltoluene	105	16.905	16.905 (1.119)	7221362	20.0000	21
	81 2-Chlorotoluene	91	16.942	16.943 (1.121)	6401434	20.0000	21
	82 1,3,5-Trimethylbenzene	105	16.974	16.975 (1.123)	6001660	20.0000	21
	83 Alpha Methyl Styrene	118	17.242	17.242 (1.141)	3317835	20.0000	22
	84 tert-butylbenzene	119	17.344	17.344 (1.148)	5809913	20.0000	21
	85 1,2,4-Trimethylbenzene	105	17.413	17.413 (1.152)	6074357	20.0000	21
	86 sec-Butylbenzene	105	17.600	17.601 (1.165)	8554520	20.0000	21
	87 4-Isopropyltoluene	119	17.755	17.750 (1.175)	7529457	20.0000	22
	88 1,3-Dichlorobenzene	146	17.820	17.820 (1.179)	4411702	20.0000	22
	89 1,4-Dichlorobenzene	146	17.932	17.932 (1.187)	4432622	20.0000	22
	90 Benzyl chloride	91	18.087	18.087 (1.197)	5484366	20.0000	22
	91 Undecane	57	18.221	18.221 (1.206)	4031841	20.0000	20
	92 n-Butylbenzene	91	18.253	18.253 (1.208)	6596316	20.0000	21
	93 1,2-Dichlorobenzene	146	18.413	18.414 (1.218)	4171857	20.0000	22
	94 Dodecane	57	19.671	19.671 (1.302)	4166547	20.0000	21
	95 1,2,4-Trichlorobenzene	180	20.751	20.752 (1.373)	3780922	20.0000	23
	96 Hexachlorobutadiene	225	20.923	20.923 (1.384)	3371844	20.0000	22
	97 Naphthalene	128	21.233	21.233 (1.405)	7960253	20.0000	22
	98 1,2,3-Trichlorobenzene	180	21.698	21.704 (1.436)	3481117	20.0000	23

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn40v.d

Report Date: 12-Apr-2010 21:34

Page 1

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn40v.d
Lab Smp Id: ASTD040 Client Smp
Inj Date: 07-APR-2010 17:09
Operator: wrd Inst ID: F.
Smp Info: ic 021958 Client Smp ID: ASTD040

Inst ID: F.i

Misc Info : ASTD040;040710FA;1;200

Comment

: /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Method

Quant Type: ISTD Meth Date : 12-Apr-2010 21:34 sv Cal File: fdn40v.d Cal Date : 07-APR-2010 17:09

Als bottle: 9 Calibration Sample, Level: 7

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF Uf Vo	1.00000 1.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL)
Cpnd Variable		Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==		========		======
1 Propene	41	3.167	3.167 (0.329)	904747	40.0000	34
2 Dichlorodifluoromethane	85	3.226	3.226 (0.335)	4110440	40.0000	34
3 Chlorodifluoromethane	51	3.263	3.263 (0.339)	2163372	40.0000	34
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.456	3.456 (0.359)	4227578	40.0000	33
5 Chloromethane	50	3.584	3.584 (0.372)	1305208	40.0000	34
6 Butane	43	3.772	3.766 (0.392)	2322666	40.0000	34
7 Vinyl chloride	62	3.809	3.809 (0.396)	1758485	40.0000	35
8 Butadiene	54	3.879	3.879 (0.403)	1335317	40.0000	35
9 Bromomethane	94	4.563	4.563 (0.474)	2083246	40.0000	36
10 Chloroethane	64	4.793	4.788 (0.498)	1123766	40.0000	37
11 2-Methylbutane	43	4.868	4.868 (0.506)	2281094	40.0000	35
12 Vinyl bromide	106	5.184	5.179 (0.539)	2214173	40.0000	37
13 Trichlorofluoromethane	101	5.275	5.275 (0.548)	5718122	40.0000	36
14 Pentane	43	5.409	5.403 (0.562)	3399354	40.0000	35
15 Ethanol	45	5.735	5.730 (0.596)	2195665	100.000	95

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
		==			======	*******
16 Ethyl ether	59	5.863	5.863 (0.609)	1664050	40.0000	37
17 1,1,2-Trichloro-1,2,2-triflu		6.259	6.259 (0.650)	4309459	40.0000	38
18 Acrolein	56	6.216	6.216 (0.646)	913673	40.0000	37
19 1,1-Dichloroethene	96	6.329	6.323 (0.658)	2066948	40.0000	38
20 Acetone	43	6.489	6.489 (0.674)	3273240	40.0000	35
21 Carbon disulfide	76	6.735	6.730 (0.700)	6490571	40.0000	38
22 Isopropyl alcohol	45	6.703	6.693 (0.696)	2601631	40.0000	36
23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	2713009	40.0000	37
24 Acetonitrile	41	7.083	7.078 (0.736)	1659384	40.0000	37
25 Methylene chloride	49	7.254	7.254 (0.754)	2347803	40.0000	35
26 2-Methyl-2-propanol	59	7.377	7.372 (0.767)	4063835	40.0000	38
27 Methyl tert-butyl ether	73	7.597	7.602 (0.789)	6641655	40.0000	38
28 trans-1,2-Dichloroethene	61	7.650	7.645 (0.795)	3417481	40.0000	37
29 Acrylonitrile	53	7.736	7.730 (0.804)	1679146	40.0000	38
30 Hexane	57	7.971	7.966 (0.828)	3567642	40.0000	36
31 1,1-Dichloroethane	63	8.378	8.372 (0.870)	4115655	40.0000	37
32 Vinyl acetate	43	8.394	8.388 (0.872)	5560478	40.0000	36
M 33 1,2-Dichloroethene,Total	61			5833151	80.0000	74
34 cis-1,2-Dichloroethene	96	9.260	9.260 (0.962)	2415670	40.0000	38
35 Ethyl acetate	88	9.276	9.271 (0.964)	212297	40.0000	38
36 2-Butanone (MEK)	72	9.266	9.260 (0.963)	1114613	40.0000	36 (Q)
* 37 Bromochloromethane	128	9.624	9.619 (1.000)	559323	10.0000	
38 Tetrahydrofuran	42	9.640	9.640 (0.875)	2408261	40.0000	37
39 Chloroform	83	9.699	9.694 (1.008)	4808470	40.0000	37
40 Cyclohexane	84	9.956	9.956 (0.904)	3279964	40.0000	39
41 1,1,1-Trichloroethane	97	9.950	9.950 (0.903)	5022856	40.0000	39
42 Carbon tetrachloride	117	10.148	10.148 (0.921)	5553161	40.0000	41(A)
43 Isooctane	57	10.432	10.432 (0.947)	10848582	40.0000	37
44 Benzene	78	10.475	10.475 (0.951)	7023898	40.0000	38
45 1,2-Dichloroethane	62	10.576	10.571 (0.960)	3270399	40.0000	38
46 n-Heptane	43	10.683	10.678 (0.970)	3908105	40.0000	36
* 47 1,4-Difluorobenzene	114	11.015	11.015 (1.000)	2617478	10.0000	
48 n-Butanol	56	11.208	11.208 (1.017)	1483077	40.0000	42 (A)
49 Trichloroethene	95	11.374	11.373 (1.033)	3255758	40.0000	39
50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	2625479	40.0000	38
51 Methyl methacrylate	69	11.796	11.791 (1.071)	2701090	40.0000	40
52 Dibromomethane	174	11.930	11.930 (1.083)	3353385	40.0000	42 (A)
53 1,4-Dioxane	88	11.882	11.882 (1.079)	1039828	40.0000	38
54 Dichlorobromomethane	83		12.101 (1.099)	5401760	40.0000	40
55 cis-1,3-Dichloropropene	75		12.727 (1.156)	4304364	40.0000	40
56 4-Methyl-2-pentanone (MIBK)	43		12.887 (1.170)	5062934	40.0000	37
57 n-Octane	43		13.144 (1.193)	4641650	40.0000	32
58 Toluene	92		13.160 (0.871)	5057702	40.0000	38
59 trans-1,3-Dichloropropene	75		13.519 (1.228)	4570105	40.0000	40(A)
60 1,1,2-Trichloroethane	83		13.792 (0.913)	2632924	40.0000	40
61 Tetrachloroethene	166		13.925 (0.921)	5021679	40.0000	43 (A)
62 2-Hexanone	43		14.064 (0.931)	4980642	40.0000	38
				1,00042	10.0000	20

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn40v.d Report Date: 12-Apr-2010 21:34

						AMOUN	TS
		OUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=======================================		====	==			======	======
63 Chlorod:	ibromomethane	129	14.348	14.343 (0.949)	6060180	40.0000	43 (A)
64 Ethylene	Dibromide	107	14.551	14.546 (0.963)	5127664	40.0000	41 (A)
* 65 Chlorobe		117	15.113	15.113 (1.000)	2482119	10.0000	
66 Chlorobe	enzene	112	15.156	15.150 (1.003)	7676263	40.0000	41 (A)
67 n-Nonane	2	57	15.252	15.247 (1.009)	4635956	40.0000	33
68 Ethylber	nzene	91	15.225	15.225 (1.007)	10888115	40.0000	37
69 Xylene	(m,p)	106	15.375	15.375 (1.017)	8674179	80.0000	72
M 70 Xylenes	. Total	106			13319851	40.0000	110
71 o-Xylene	•	106	15.889	15.883 (1.051)	4645672	40.0000	39
72 Styrene		104	15.910	15.910 (1.053)	7370565	40.0000	40
73 Bromofo	rm	173	16.199	16.199 (1.072)	6578548	40.0000	45 (A)
74 Isoprop	ylbenzene	105	16.301	16.301 (1.079)	13098853	40.0000	39
76 1,1,2,2	-Tetrachloroethane	83	16.713	16.707 (1.106)	6611291	40.0000	38
77 n-Propy	lbenzene	91	16.782	16.782 (1.110)	13682174	40.0000	34
78 1,2,3-T	richloropropane	75	16.798	16.793 (1.111)	4672380	40.0000	34
79 n-Decan	2	57	16.852	16.852 (1.115)	6115704	40.0000	34
80 4-Ethyl	coluene	105	16.905	16.905 (1.119)	13453605	40.0000	38
81 2-Chlore	otoluene	91	16.943	16.943 (1.121)	11808266	40.0000	37
82 1,3,5-T	rimethylbenzene	105	16.975	16.975 (1.123)	11130226	40.0000	39
83 Alpha M	ethyl Styrene	118	17.242	17.242 (1.141)	6464250	40.0000	42 (A)
84 tert-bu	ylbenzene	119	17.344	17.344 (1.148)	11143216	40.0000	40
85 1,2,4-T	rimethylbenzene	105	17.413	17.413 (1.152)	11443746	40.0000	39
86 sec-But	ylbenzene	105	17.601	17.601 (1.165)	15783515	40.0000	38
87 4-Isopre	opyltoluene	119	17.756	17.750 (1.175)	14087614	40.0000	39
88 1,3-Dic	nlorobenzene	146	17.825	17.820 (1.179)	8775403	40.0000	42 (A)
89 1,4-Dic	nlorobenzene	146	17.938	17.932 (1.187)	8771340	40.0000	42 (A)
90 Benzyl	chloride	91	18.087	18.087 (1.197)	10660350	40.0000	42 (A)
91 Undecan	•	57	18.227	18.221 (1.206)	6492917	40.0000	32
92 n-Butyl	penzene	91	18.259	18.253 (1.208)	11651574	40.0000	36
93 1,2-Dic	nlorobenzene	146	18.414	18.414 (1.218)	8308515	40.0000	42 (A)
94 Dodecan	•	57	19.671	19.671 (1.302)	6732921	40.0000	34
95 1,2,4-T	richlorobenzene	180	20.752	20.752 (1.373)	7494777	40.0000	44 (A)
	orobutadiene	225	20.923	20.923 (1.384)	6581203	40.0000	43 (A)
97 Naphtha	lene	128	21.233	21.233 (1.405)	15214475	40.0000	42 (A)
98 1,2,3-T	richlorobenzene	180	21.698	21.704 (1.436)	6602532	40.0000	42 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Q - Qualifier signal failed the ratio test.

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d

Lab Smp Id: FA040710ICV Client Smp ID: FA040710ICV

Inj Date : 07-APR-2010 18:50

Operator : wrd Smp Info : icv 21407 Inst ID: F.i

Misc Info : ICV;040710FA;1;200

Comment

Method : /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Meth Date : 12-Apr-2010 21:34 sv Quant 7 Quant Type: ISTD Cal File: fdn40v.d Cal Date : 07-APR-2010 17:09 Als bottle: 10 QC Sample: METHSPIKE

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: full.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Local Compound Variable Cpnd Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*======================================	EEE	==	SISSE SISSE	=======	======	======
1 Propene	41	3.167	3.167 (0.329)	248586	9.79100	9.8
2 Dichlorodifluoromethane	85	3.231	3.226 (0.336)	1165594	10.0951	10
3 Chlorodifluoromethane	51	3.263	3.263 (0.339)	596369	9.71338	9.7
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.456	3.456 (0.359)	1233160	10.0374	10
5 Chloromethane	50	3.584	3.584 (0.373)	358619	9.85120	9.9
6 Butane	43	3.772	3.766 (0.392)	640229	9.80295	9.8
7 Vinyl chloride	62	3.809	3.809 (0.396)	488070	10.2624	10
8 Butadiene	54	3.879	3.879 (0.403)	380216	10.3414	10
9 Bromomethane	94	4.563	4.563 (0.474)	543092	9.93933	9.9
10 Chloroethane	64	4.788	4.788 (0.498)	295055	10.0219	10
11 2-Methylbutane	43	4.868	4.868 (0.506)	618955	9.82875	9.8
12 Vinyl bromide	106	5.179	5.179 (0.538)	590214	10.4370	10
13 Trichlorofluoromethane	101	5.275	5.275 (0.548)	1518045	10.1039	10
14 Pentane	43	5.403	5.403 (0.562)	919478	10.0017	10
15 Ethanol	45	5.730	5.730 (0.596)	286639	13.0102	13

CONCENTRATIONS

						CONCENTR	ATTONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==	**====================================	====	==		*****	======	
	16 Ethyl ether	59	5.863	5.863 (0.610)	417836	9.74998	9.7
	17 1,1,2-Trichloro-1,2,2-trifluo	101	6.259	6.259 (0.651)	1199913	11.1330	11
	18 Acrolein	56	6.222	6.216 (0.647)	194739	8.30189	8.3
	19 1,1-Dichloroethene	96	6.323	6.323 (0.657)	582602	11.2919	11
	20 Acetone	43	6.489	6.489 (0.675)	947461	10.6328	11
	21 Carbon disulfide	76	6.730	6.730 (0.700)	1737777	10.5761	11
	22 Isopropyl alcohol	45	6.692	6.693 (0.696)	647193	9.46986	9.5
	23 3-Chloro-1-propene	41	7.003	7.003 (0.728)	720329	10.2518	10
	24 Acetonitrile	41	7.078	7.078 (0.736)	438938	10.1370	10
	25 Methylene chloride	49	7.249	7.254 (0.754)	676057	10.6522	11
	26 2-Methyl-2-propanol	59	7.372	7.372 (0.766)	997069	9.63424	9.6
	27 Methyl tert-butyl ether	73	7.597	7.602 (0.790)	1730652	10.3130	10
	28 trans-1,2-Dichloroethene	61	7.645	7.645 (0.795)	912167	10.2067	10
	29 Acrylonitrile	53	7.730	7.730 (0.804)	443079	10.3560	10
	30 Hexane	57	7.966	7.966 (0.828)	959063	10.1310	10
	31 1,1-Dichloroethane	63	8.372	8.372 (0.870)	1104128	10.2343	10
	32 Vinyl acetate	43	8.388	8.388 (0.872)	1488130	10.1067	10
М	33 1,2-Dichloroethene, Total	61			1556943	20.7242	21
	34 cis-1,2-Dichloroethene	96	9.260	9.260 (0.963)	644776	10.5176	11
	35 Ethyl acetate	88	9.271	9.271 (0.964)	53877	10.1813	10
	36 2-Butanone (MEK)	72	9.260	9.260 (0.963)	308537	10.4877	10(Q)
*	37 Bromochloromethane	128	9.619	9.619 (1.000)	535323	10.0000	
	38 Tetrahydrofuran	42	9.640	9.640 (0.876)	647954	10.0914	10
	39 Chloroform	83	9.694	9.694 (1.008)	1252128	10.1244	10
	40 Cyclohexane	84	9.956	9.956 (0.904)	859643	10.3494	10
	41 1,1,1-Trichloroethane	97	9.945	9.950 (0.903)	1297129	10.1014	10
	42 Carbon tetrachloride	117	10.148	10.148 (0.922)	1378723	10.1512	10
	43 Isooctane	57	10.432	10.432 (0.948)	3004130	10.2870	10
	44 Benzene	78	10.469	10.475 (0.951)	1848759	10.0936	10
	45 1,2-Dichloroethane	62	10.571	10.571 (0.960)	856907	10.0663	10
	46 n-Heptane	43	10.678	10.678 (0.970)	1096461	10.0565	10
*	47 1,4-Difluorobenzene	114	11.010	11.015 (1.000)	2607499	10.0000	
	48 n-Butanol	56	11.208	11.208 (1.018)	299013	8.47284	8.5
	49 Trichloroethene	95	11.373	11.373 (1.033)	829844	10.0668	10
	50 1,2-Dichloropropane	63	11.748	11.748 (1.067)	681459	9.93326	9.9
	51 Methyl methacrylate	69	11.791	11.791 (1.071)	680610	10.0111	10
	52 Dibromomethane	174	11.930	11.930 (1.084)	800264	10.0884	10
	53 1,4-Dioxane	88	11.882	11.882 (1.079)	238947	8.83699	8.8
	54 Dichlorobromomethane	83	12.101	12.101 (1.099)	1416105	10.4554	10
	55 cis-1,3-Dichloropropene	75	12.727	12.727 (1.156)	1072577	9.95026	10
	56 4-Methyl-2-pentanone (MIBK)	43	12.887	12.887 (1.171)	1392227	10.2788	10
	57 n-Octane	43	13.144	13.144 (1.194)	1480606	10.1643	10
	58 Toluene	92	13.155	13.160 (0.870)	1374636	10.3630	10
	59 trans-1,3-Dichloropropene	75	13.519	13.519 (1.228)	1129455	9.98630	10
	60 1,1,2-Trichloroethane	83	13.792	13.792 (0.913)	637643	9.71977	9.7
	61 Tetrachloroethene	166	13.920	13.925 (0.921)	1165126	10.0707	10
	62 2-Hexanone	43	14.064	14.064 (0.931)	1344599	10.4549	10

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d Page 3
Report Date: 12-Apr-2010 21:34

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
==		====	==	=======================================	****	======	
	63 Chlorodibromomethane	129	14.343	14.343 (0.949)	1500313	10.9001	11
	64 Ethylene Dibromide	107	14.546	14.546 (0.962)	1248222	10.1146	10
*	65 Chlorobenzene-d5	117	15.113	15.113 (1.000)	2446135	10.0000	
	66 Chlorobenzene	112	15.150	15.150 (1.002)	1867970	10.0098	10
	67 n-Nonane	57	15.247	15.247 (1.009)	1454545	10.4410	10
	68 Ethylbenzene	91	15.225	15.225 (1.007)	2993086	10.2866	10
	69 Xylene (m,p)	106	15.370	15.375 (1.017)	2445906	20.6801	21
M	70 Xylenes, Total	106			3634330	31.1547	31
	71 o-Xylene	106	15.883	15.883 (1.051)	1188424	10.1876	10
	72 Styrene	104	15.910	15.910 (1.053)	1870455	10.2353	10
	73 Bromoform	173	16.199	16.199 (1.072)	1602107	11.0946	11
	74 Isopropylbenzene	105	16.301	16.301 (1.079)	3451365	10.4169	10
	76 1,1,2,2-Tetrachloroethane	83	16.707	16.707 (1.105)	1734505	10.0217	10
	77 n-Propylbenzene	91	16.777	16.782 (1.110)	4169630	10.6310	11
	78 1,2,3-Trichloropropane	75	16.793	16.793 (1.111)	1432857	10.6313	11
	79 n-Decane	57	16.852	16.852 (1.115)	1883991	10.5721	11
	80 4-Ethyltoluene	105	16.905	16.905 (1.119)	3651339	10.5964	11
	81 2-Chlorotoluene	91	16.943	16.943 (1.121)	3282394	10.5308	11
	82 1,3,5-Trimethylbenzene	105	16.969	16.975 (1.123)	2906024	10.2145	10
	83 Alpha Methyl Styrene	118	17.242	17.242 (1.141)	1572115	10.4576	10
	84 tert-butylbenzene	119	17.344	17.344 (1.148)	2887795	10.5112	11
	85 1,2,4-Trimethylbenzene	105	17.413	17.413 (1.152)	2897843	10.0606	10
	86 sec-Butylbenzene	105	17.601	17.601 (1.165)	4283502	10.5465	11
	87 4-Isopropyltoluene	119	17.750	17.750 (1.175)	3737005	10.6209	11
	88 1,3-Dichlorobenzene	146	17.820	17.820 (1.179)	2053586	9.98228	10
	89 1,4-Dichlorobenzene	146	17.932	17.932 (1.187)	2054690	10.0262	10
	90 Benzyl chloride	91	18.087	18.087 (1.197)	2463743	9.93943	9.9
	91 Undecane	57	18.221	18.221 (1.206)	2147572	10.7959	11
	92 n-Butylbenzene	91	18.253	18.253 (1.208)	3346134	10.5963	11
	93 1,2-Dichlorobenzene	146	18.414	18.414 (1.218)	1902048	9.81496	9.8
	94 Dodecane	57	19.671	19.671 (1.302)	2081978	10.5170	11
	95 1,2,4-Trichlorobenzene	180	20.752	20.752 (1.373)	1646531	9.81356	9.8
	96 Hexachlorobutadiene	225	20.923	20.923 (1.384)	1471737	9.74844	9.7
	97 Naphthalene	128	21.233	21.233 (1.405)	3692345	10.3530	10
	98 1,2,3-Trichlorobenzene	180	21.698	21.704 (1.436)	1626641	10.5633	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d

Report Date: 12-Apr-2010 21:34

TestAmerica Burlington

RECOVERY REPORT

Client SDG: fdnto15

SampleType: METHSPIKE

Client Smp ID: FA040710ICV

Fraction: VOA

Operator: wrd

Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Lab Smp Id: FA040710ICV

Level: LOW

Data Type: MS DATA

SpikeList File: all.spk Quant Typ Sublist File: full.sub Method File: /chem/F.i/Fsvr.p/fdnto15.b/to15v4.m Misc Info: ICV;040710FA;1;200

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d Report Date: 12-Apr-2010 21:34

ppbv ppbv ppbv		•			
SPIKE COMPOUND ADDED PybV RECOVERED DybV	T	٥/٥	CONC	CONC	
Pybv	LIMITS	RECOVERED	RECOVERED		SPIKE COMPOUND
35 Ethyl acetate					
34 cis²1,2-Dichloroethene 10 11 105.18 7 39 Chloroform 10 10 101.24 7 38 Tetrahydrofuran 10 10 100.91 7 41 1,1,1-Trichloroeth 10 10 100.91 7 40 Cyclohexane 10 10 103.49 7 42 Carbon tetrachlori 10 10 102.87 7 43 Isooctane 10 10 102.87 7 44 Benzene 10 10 100.287 7 44 Benzene 10 10 100.66 7 45 1,2-Dichloroethane 10 10 100.66 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.67 7 52 Dibromomethane 10 9.9 99.33 7 53 1,4-Dioxane 10 10 100.88 7 </td <td></td> <td></td> <td>PP≈.</td> <td>PP2 v</td> <td></td>			PP≈.	PP2 v	
34 cis²1,2-Dichloroethene 10 11 105.18 7 39 Chloroform 10 10 101.24 7 38 Tetrahydrofuran 10 10 100.91 7 41 1,1,1-Trichloroeth 10 10 100.91 7 40 Cyclohexane 10 10 103.49 7 42 Carbon tetrachlori 10 10 102.87 7 43 Isooctane 10 10 102.87 7 44 Benzene 10 10 100.287 7 44 Benzene 10 10 100.66 7 45 1,2-Dichloroethane 10 10 100.66 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.67 7 52 Dibromomethane 10 9.9 99.33 7 53 1,4-Dioxane 10 10 100.88 7 </td <td>70-130</td> <td>101.81</td> <td>10</td> <td>10</td> <td>35 Fthyl acetate</td>	70-130	101.81	10	10	35 Fthyl acetate
M 33 1,2-Dichloroethene 20 21 105.00 7 39 Chloroform 10 10 101.24 7 38 Tetrahydrofuran 10 10 100.91 7 41 1,1,1-Trichloroeth 10 10 10 101.01 7 42 Carbon tetrachlori 10 10 10 101.51 7 43 Isooctane 10 10 10 102.87 7 45 1,2-Dichloroethane 10 10 100.66 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 49 Trichloroethene 10 10 100.67 7 10 10 10 10 10 10 10	70-130				
39 Chloroform 38 Tetrahydrofuran 41 1,1,1-Trichloroeth 40 Cyclohexane 41 2 Carbon tetrachlori 43 Isooctane 44 Benzene 45 1,2-Dichloroethane 46 n-Heptane 47 Trichloroethene 48 n-Butanol 49 Trichloroethene 51 Methyl methacrylat 50 1,2-Dichloropropan 51 1,4-Dichloropropan 53 1,4-Dichloropropan 54 Dichlorobromometha 55 Cis-1,3-Dichloropr 56 4-Methyl-2-pentano 57 n-Octane 58 Toluene 59 trans-1,3-Dichloro 60 1,1,2-Trichloroeth 61 Tetrachloroethene 62 2-Hexanone 63 Chlorodibromometha 64 Ethylene Dibromide 65 Thouse 66 Chlorobenzene 66 Chlorobenzene 66 Chlorobenzene 66 Chlorobenzene 67 n-Nonane 66 Chlorobenzene 67 n-Nonane 68 Ethylbenzene 69 Xylene (m,p) 70 xylenes 70 n-Decane 10 10 100.22 7 70 n-Decane 10 10 100.385 7 71 Isopropylbenzene 70 10 10 100.11 71 10 100.22 7 71 n-Decane 10 10 100.303 71 Bromoform 10 10 100.303 71 Isopropylbenzene 70 10 10 100.22 7 71 n-Decane 10 10 10 100.22 7 77 n-Decane 10 10 10 100.305 71 In 100.305 71 In 100.305 71 In 100.305 72 Styrene 10 10 10 10 10 10 10 10 10 10 10 10 10 1	70-130				
38 Tetrahydrofuran 10 100 101.01.01 7 41 1,1,1-Trichloroeth 10 10 101.01.01 7 40 Cyclohexane 10 10 103.49 7 42 Carbon tetrachlori 10 10 101.51 7 43 Isooctane 10 10 100.94 7 44 Benzene 10 10 100.94 7 45 1,2-Dichloroethane 10 10 100.66 7 48 n-Butanol 10 10 100.67 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 52 Dibromomethane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 102.79 7 55 Cis-1,3-Dichlorop 10 10 102.79					
### 1,1,1-Trichloroeth	70-130				
40 Cyclohexane 41 Carbon tetrachlori 42 Carbon tetrachlori 43 Isooctane 44 Benzene 44 Benzene 45 1,2-Dichloroethane 46 n-Heptane 10 10 10 100.66 7 48 n-Butanol 49 Trichloroethene 10 10 10 100.67 7 48 n-Butanol 10 10 10 100.67 7 49 Trichloroethene 10 10 10 100.67 7 51 Methyl methacrylat 50 1,2-Dichloropropan 53 1,4-Dioxane 54 Dichlorobromomethane 54 Dichlorobromometha 55 cis-1,3-Dichloropr 56 4-Methyl-2-pentano 57 n-Octane 58 Toluene 59 trans-1,3-Dichloro 60 1,1,2-Trichloroeth 61 Tetrachloroethene 62 2-Hexanone 63 Chlorodibromometha 64 Ethylene Dibromide 65 Chlorobenzene 66 Chlorobenzene 67 n-Nonane 66 Chlorobenzene 67 n-Nonane 68 Ethylbenzene 69 Xylenes, Total 70 Styrene 71 O-Xylene 72 Styrene 73 Bromoform 74 Isopropylbenzene 75 10 10 10 10 10.23 5 75 Bromoform 74 Isopropylbenzene 75 10 10 10 10 10.23 5 75 Bromoform 76 1,1,2,2-Tetrachlor 76 1,1,2,2-Tetrachlor 76 1,1,2,2-Tetrachlor 77 n-Decane	70-130				
42 Carbon tetrachlori 10 10 101.51 7 43 Isooctame 10 10 102.87 7 44 Benzene 10 10 100.66 7 45 1,2-Dichloroethane 10 10 100.66 7 48 n-Butanol 10 10 100.57 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.61 7 51 Methyl methacrylat 10 10 100.11 7 50 1,2-Dichloropropan 10 9.9 99.33 7 53 1,4-Dioxane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 roctane 10 10 10.54 7 58 Toluene 10 10 10.54 7 <	70-130	101.01	10	10	41 1,1,1-Trichloroeth
43 Isooctane 10 10 102.87 7 44 Benzene 10 10 100.94 7 45 1,2-Dichloroethane 10 10 100.66 7 46 n-Heptane 10 10 100.57 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 50 1,2-Dichloropropan 10 9.9 99.33 7 53 1,4-Dioxane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 104.55 7 57 n-Octane 10 10 102.79 7 58 Toluene 10 10 10.64 7 59 trans-1,3-Dichloro 10 10 10.64 7 60 1,1,2-Trichloroethene 10 10 10.77 7 97.20	70-130	103.49	10	10	40 Cyclohexane
44 Benzene 10 10 100.94 7 45 1,2-Dichloroethane 10 10 100.66 7 46 n-Heptane 10 10 100.67 7 48 n-Butanol 10 10 100.67 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 51 Methyl methacrylat 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 52 Dibromomethae 10 9.9 99.33 7 53 1,4-Dioxane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 T-Octane 10 10 102.79 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7	70-130	101.51	10	10	42 Carbon tetrachlori
44 Benzene 10 10 100.94 7 45 1,2-Dichloroethane 10 10 100.66 7 46 n-Heptane 10 10 100.67 7 48 n-Butanol 10 10 100.67 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 51 Methyl methacrylat 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 52 Dibromomethae 10 9.9 99.33 7 53 1,4-Dioxane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 T-Octane 10 10 102.79 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7	70-130	102.87	10	10	43 Isooctane
45 1,2-Dichloroethane 10 10 100.66 7 46 n-Heptane 10 10 100.57 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 51 Archilloropt 10 8.8 88.37 7 52 Dibromomethane 10 10 104.55 7 55 Cis-1,3-Dichloropr 10 10 102.79 7 57 n-Octane 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 103.63 7 59	70-130				
46 n-Heptane 10 10 100.57 7 48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 50 1,2-Dichloropropan 10 9.9 99.33 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 102.79 7 57 trans-1,3-Dichloro 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 61 Tetrachloroethene 10 10 10.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 10 104.55 7 67 n-Nonane 10 10 101.15 7	70-130				
48 n-Butanol 10 8.5 84.73 7 49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 51 Methyl methacrylat 10 9.9 99.33 7 51 Nethyl methacrylat 10 9.9 99.33 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 102.79 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 103.63 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 10 104.45 7	70-130				
49 Trichloroethene 10 10 100.67 7 51 Methyl methacrylat 10 10 100.11 7 50 1,2-Dichloropropan 10 9.9 99.33 7 51 1,4-Dioxane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 102.79 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 102.79 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 103.63 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 10 104.55 7 64 Ethylene Dibromide 10 10 104.17 <td< td=""><td>70-130</td><td></td><td></td><td></td><td></td></td<>	70-130				
51 Methyl methacrylat 10 10 100.11 7 50 1,2-Dichloropropan 10 9.9 99.33 7 53 1,4-Dioxane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 99.50 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 102.79 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 61 Tetrachloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 63 Chlorodibromometha 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 104.55 7 65 Xylene (m,p) 20 21 103.40	70-130				
50 1,2-Dichloropropan 10 9.9 99.33 7 53 1,4-Dioxane 10 8.8 88.37 7 52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 99.50 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 104.41 7 66 Chlorobenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7					
S3 1,4-Dioxane	70-130				
52 Dibromomethane 10 10 100.88 7 54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 99.50 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 10 104.55 7 64 Ethylene Dibromide 10 10 104.41 7 67 n-Nonane 10 10 104.41 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 102.35 7 <t< td=""><td>70-130</td><td></td><td></td><td></td><td></td></t<>	70-130				
54 Dichlorobromometha 10 10 104.55 7 55 cis-1,3-Dichloropr 10 10 99.50 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 102.35 7 73 Bromoform 10 10 104.17 7	70-130				53 1,4-Dioxane
55 cis-1,3-Dichloropr 10 99.50 7 56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 101.15 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 72 Styrene 10 10 102.35 7 74 Isopropylbenzene 10 10 104.17 7 75 1,1,2,2-Tet	70-130				
56 4-Methyl-2-pentano 10 10 102.79 7 57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 10 104.17 7 74 Isopropylbenzene 10 10 104.17 7 75	70-130	104.55			
57 n-Octane 10 10 101.64 7 58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 Z-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 73 Bromoform 10 10 10.2.35 7 74 Isopropylbenzene 10 10 104.17 7 75 1,1,2,2-Tetrachlor 10 10 105.72 7 <	70-130		10	10	55 cis-1,3-Dichloropr
58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 73 Bromoform 10 10 102.35 7 74 Isopropylbenzene 10 10 104.17 7 75 1,1,2,2-Tetrachlor 10 10 105.72 7	70-130	102.79	10	10	56 4-Methyl-2-pentano
58 Toluene 10 10 103.63 7 59 trans-1,3-Dichloro 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 73 Bromoform 10 10 102.35 7 74 Isopropylbenzene 10 10 104.17 7 75 1,1,2,2-Tetrachlor 10 10 105.72 7	70-130	101.64	10	10	57 n-Octane
59 trans-1,3-Dichloro 10 99.86 7 60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 73 Bromoform 10 10 10.2.35 7 74 Isopropylbenzene 10 10 10.2.2 7 75 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70~130			10	58 Toluene
60 1,1,2-Trichloroeth 10 9.7 97.20 7 61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				59 trans-1.3-Dichloro
61 Tetrachloroethene 10 10 100.71 7 62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
62 2-Hexanone 10 10 104.55 7 63 Chlorodibromometha 10 11 109.00 7 64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
63 Chlorodibromometha 64 Ethylene Dibromide 67 n-Nonane 66 Chlorobenzene 68 Ethylbenzene 69 Xylene (m,p) 71 o-Xylene M 70 Xylenes, Total 72 Styrene 73 Bromoform 74 Isopropylbenzene 76 1,1,2,2-Tetrachlor 79 n-Decane 10 11 109.00 7 10 10 10 10 10 10 10 10 10 10 10 10 10	70-130				
64 Ethylene Dibromide 10 10 101.15 7 67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	1				
67 n-Nonane 10 10 104.41 7 66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
66 Chlorobenzene 10 10 100.10 7 68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
68 Ethylbenzene 10 10 102.87 7 69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
69 Xylene (m,p) 20 21 103.40 7 71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
71 o-Xylene 10 10 101.88 7 M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				68 Ethylbenzene
M 70 Xylenes, Total 30 31 103.85 7 72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130	103.40			
72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130	101.88		10	71 o-Xylene
72 Styrene 10 10 102.35 7 73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130	103.85	31	30	M 70 Xylenes, Total
73 Bromoform 10 11 110.95 7 74 Isopropylbenzene 10 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130		10	10	
74 Isopropylbenzene 10 10 104.17 7 76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
76 1,1,2,2-Tetrachlor 10 10 100.22 7 79 n-Decane 10 11 105.72 7	70-130				
79 n-Decane 10 11 105.72 7	70-130				
	70-130				
	70-130				
	70-130				
	70-130				
	70-130				
81 2-Chlorotoluene 10 11 105.31 7	70-130				
	70-130				
84 tert-butylbenzene 10 11 105.11 7	70-130	105.11	11	10	84 tert-butylbenzene
	.				

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn10q.d Report Date: 12-Apr-2010 21:34

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
85 1,2,4-Trimethylben	10	10	100.61	70-130
86 sec-Butylbenzene	10	11	105.47	70-130
87 4-Isopropyltoluene	10	11	106.21	70-130
88 1,3-Dichlorobenzen	10	10	99.82	70-130
89 1,4-Dichlorobenzen	10	10	100.26	70-130
91 Undecane	10	11	107.96	70-130
90 Benzyl chloride	10	9.9	99.39	70-130
92 n-Butylbenzene	10	11	105.96	70-130
93 1,2-Dichlorobenzen	10	9.8	98.15	70-130
94 Dodecane	10	11	105.17	70-130
95 1,2,4-Trichloroben	10	9.8	98.14	70-130
96 Hexachlorobutadien	10	9.7	97.48	70-130
97 Naphthalene	10	10	103.53	70-130
98 1,2,3-Trichloroben	10	11	105.63	70-130
				1

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F

Calibration Date: 04/20/10 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
	=======	=======	=======	=====	====
Dichlorodifluoromethane	2.157	2.403	0.01	11.4	30.0
1,2-Dichlorotetrafluoroethan		2.451	0.01	6.8	30.0
Chloromethane	0.680	0.624	0.01	8.2	30.0
Vinyl Chloride	0.888	0.869	0.01		30.0
1,3-Butadiene	0.687	0.649	0.01	5.5	30.0
Bromomethane	1.021	1.088		6.6	30.0
Chloroethane	0.550	0.529	0.01	3.8	30.0
Bromoethene	1.056	1.121	0.01	6.2	30.0
Trichlorofluoromethane	2.806	3.109	0.01	10.8	30.0
Freon TF	2.013	2.135	0.01	6.1	30.0
1,1-Dichloroethene	0.964	1.000			30.0
Carbon disulfide	3.069	3.159	0.01		30.0
3-Chloropropene	1.312	1.204	0.01	8.2	30.0
Methylene chloride	1.185	1.102	0.01	7.0	30.0
trans-1,2-Dichloroethene	1.669	1.637	0.01	1.9	30.0
n-Hexane	1.768	1.652		6.6	30.0
1,1-Dichloroethane	2.015	1.978	0.1	1.8	30.0
cis-1,2-Dichloroethene	1.145	1.146	0.01	0.1	30.0
Chloroform	2.310	2.394	0.01	3.6	30.0
1,1,1-Trichloroethane	0.492	0.530	0.01	7.7	30.0
Cyclohexane	0.318	0.315	0.01	0.9	30.0
Carbon tetrachloride	0.521	0.570	0.01	9.4	30.0
2,2,4-Trimethylpentane	1.120	1.058	0.01	5.5	30.0
Benzene	0.702	0.681	0.01		30.0
1,2-Dichloroethane	0.326	0.330	0.01	1.2	30.0
n-Heptane	0.418	0.372	0.01	11.0	30.0
Trichloroethene	0.316	0.323	0.01	2.2	30.0
1,2-Dichloropropane	0.263	0.250	0.01	4.9	30.0
Bromodichloromethane	0.519	0.545	0.01	5.0	30.0
cis-1,3-Dichloropropene	0.413	0.409	0.01		30.0
Toluene	0.542	0.544	0.01		30.0
trans-1,3-Dichloropropene	0.434	0.442	0.01	1.8	30.0
1,1,2-Trichloroethane	0.268	0.270	0.01	1	30.0
Tetrachloroethene	0.473	0.497			30.0
Dibromochloromethane	0.562	0.613			30.0
1,2-Dibromoethane	0.504	0.530			30.0
Chlorobenzene	0.763	0.777	0.3	1.8	30.0

page 1 of 2

FORM VII VOA

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Instrument ID: F Calibration Date: 04/20/10 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1104 1709

GC Column: RTX-624 ID: 0.32 (mm)

			MIN		MAX
COMPOUND	RRF	RRF10	RRF	%D	%D
=======================================	=======	=======	=======	=====	====
Ethylbenzene	1.189	1.228	0.01	3.3	30.0
<pre>Xylene (m,p)</pre>	0.484	0.495	0.01	2.3	30.0
Xylene (o)	0.477	0.485	0.01	1.7	30.0
Styrene	0.747	0.749	0.01	0.3	30.0
Bromoform	0.590	0.677	0.01	14.7	30.0
1,1,2,2-Tetrachloroethane	0.708	0.719	0.01	1.6	30.0
4-Ethyltoluene	1.409	1.468	0.01	4.2	30.0
1,3,5-Trimethylbenzene	1.163	1.218	0.01	4.7	30.0
2-Chlorotoluene	1.274	1.338	0.01	5.0	30.0
1,2,4-Trimethylbenzene	1.178	1.223	0.01	3.8	30.0
1,3-Dichlorobenzene	0.841	0.888	0.01	5.6	30.0
1,4-Dichlorobenzene	0.838	0.888	0.01	6.0	30.0
1,2-Dichlorobenzene	0.792	0.844	0.01	6.6	30.0
1,2,4-Trichlorobenzene	0.686	0.711	0.01	3.6	30.0
Hexachlorobutadiene	0.617	0.680	0.01	10.2	30.0

page 2 of 2

FORM VII VOA

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lv2.d

Report Date: 03-May-2010 23:27

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lv2.d Lab Smp Id: ASTD010 Client Smp Client Smp ID: ASTD010

Inj Date : 20-APR-2010 11:30

Operator : wrd Inst ID: F.i

Smp Info :

Misc Info : ASTD010;042010FA;1;200

Method : /chem/F.i/Fsvr.p/fdnlto15.b/to15v4.m Meth Date : 03-May-2010 23:27 sv Quant Ty Cal Date : 07-APR-2010 17:09 Cal File Als bottle: 1 Quant Type: ISTD Cal File: fdn40v.d

Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: TO14trans.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Local Compound Variable Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
=====		====	==		=======	======	
2	Dichlorodifluoromethane	85	3.220	3.226 (0.335)	1265866	10.0000	11
4	1,2-Dichlorotetrafluoroethane	85	3.450	3.456 (0.359)	1291072	10.0000	11
5	Chloromethane	50	3.579	3.584 (0.372)	328510	10.0000	9.2
7	Vinyl Chloride	62	3.804	3.809 (0.396)	457626	10.0000	9.8
8	1,3-Butadiene	54	3.873	3.879 (0.403)	341901	10.0000	9.5
9	Bromomethane	94	4.558	4.563 (0.474)	572966	10.0000	11
10	Chloroethane	64	4.783	4.788 (0.497)	278615	10.0000	9.6
12	Bromoethene	106	5.173	5.179 (0.538)	590517	10.0000	11
13	Trichlorofluoromethane	101	5.269	5.275 (0.548)	1637660	10.0000	11
17	Freon TF	101	6.248	6.259 (0.650)	1124826	10.0000	11
19	1,1-Dichloroethene	96	6.318	6.323 (0.657)	526854	10.0000	10
21	Carbon disulfide	76	6.724	6.730 (0.699)	1663817	10.0000	10
23	3-Chloropropene	41	6.992	7.003 (0.727)	634485	10.0000	9.2
25	Methylene chloride	49	7.243	7.254 (0.753)	580391	10.0000	9.3
28	trans-1,2-Dichloroethene	61	7.634	7.645 (0.794)	862110	10.0000	9.8

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lv2.d Page 2
Report Date: 03-May-2010 23:27

					AMOUN	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
*****************	====	==		********		======
30 n-Hexane	57	7.960	7.966 (0.828)	870422	10.0000	9.3
31 1,1-Dichloroethane	63	8.367	8.372 (0.870)	1042005	10.0000	9.8
34 cis-1,2-Dichloroethene	96	9.250	9.260 (0.962)	603871	10.0000	10
* 37 Bromochloromethane	128	9.613	9.619 (1.000)	526728	10.0000	(Q)
39 Chloroform	83	9.683	9.694 (1.007)	1261075	10.0000	10
41 1,1,1-Trichloroethane	97	9.940	9.950 (0.903)	1351277	10.0000	11
40 Cyclohexane	84	9.950	9.956 (0.904)	801878	10.0000	9.9
42 Carbon tetrachloride	117	10.138	10.148 (0.921)	1453331	10.0000	11
43 2,2,4-Trimethylpentane	57	10.421	10.432 (0.947)	2696195	10.0000	9.4
44 Benzene	78	10.464	10.475 (0.951)	1736028	10.0000	9.7
45 1,2-Dichloroethane	62	10.566	10.571 (0.960)	839913	10.0000	10
46 n-Heptane	43	10.673	10.678 (0.970)	948322	10.0000	8.9
* 47 1,4-Difluorobenzene	114	11.004	11.015 (1.000)	2548272	10.0000	
49 Trichloroethene	95	11.363	11.373 (1.033)	823121	10.0000	10
50 1,2-Dichloropropane	63	11.737	11.748 (1.067)	637341	10.0000	9.5
54 Bromodichloromethane	83	12.090	12.101 (1.099)	1387860	10.0000	10
55 cis-1,3-Dichloropropene	75	12.721	12.727 (1.156)	1042078	10.0000	9.9
58 Toluene	92	13.149	13.160 (0.870)	1309196	10.0000	10
59 trans-1,3-Dichloropropene	75	13.513	13.519 (1.228)	1127029	10.0000	10
60 1,1,2-Trichloroethane	83	13.781	13.792 (0.912)	649827	10.0000	10
61 Tetrachloroethene	166	13.914	13.925 (0.921)	1196616	10.0000	11
63 Dibromochloromethane	129	14.337	14.343 (0.949)	1475782	10.0000	11
64 1,2-Dibromoethane	107	14.540	14.546 (0.962)	1276059	10.0000	11
* 65 Chlorobenzene-d5	117	15.107	15.113 (1.000)	2406262	10.0000	
66 Chlorobenzene	112	15.145	15.150 (1.002)	1870407	10.0000	10
68 Ethylbenzene	91	15.214	15.225 (1.007)	2956190	10.0000	10
69 Xylene (m,p)	106	15.364	15.375 (1.017)	2384132	20.0000	20
71 Xylene (o)	106	15.878	15.883 (1.051)	1167450	10.0000	10
72 Styrene	104	15.905	15.910 (1.053)	1801474	10.0000	10
73 Bromoform	173	16.188	16.199 (1.072)	1629173	10.0000	11
76 1,1,2,2-Tetrachloroethane	83	16.702	16.707 (1.106)	1730247	10.0000	10
80 4-Ethyltoluene	105	16.900	16.905 (1.119)	3533481	10.0000	10
82 1,3,5-Trimethylbenzene	105	16.964	16.975 (1.123)	2931719	10.0000	10
81 2-Chlorotoluene	91	16.937	16.943 (1.121)	3218387	10.0000	10
85 1,2,4-Trimethylbenzene	105	17.408	17.413 (1.152)	2942538	10.0000	10
88 1,3-Dichlorobenzene	146	17.814	17.820 (1.179)	2136628	10.0000	11
89 1,4-Dichlorobenzene	146	17.927	17.932 (1.187)	2135916	10.0000	11
93 1,2-Dichlorobenzene	146	18.403	18.414 (1.218)	2032117	10.0000	11
95 1,2,4-Trichlorobenzene	180	20.741	20.752 (1.373)	1711384	10.0000	10
96 Hexachlorobutadiene	225	20.912	20.923 (1.384)	1635725	10.0000	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Raw QC Data - TO-14A Volatile

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn01pv.d

Page 3

Date : 07-APR-2010 09:19

Client ID: FBFB

Instrument: F.i

Sample Info: FBFB

Operator: wrd

Column phase: RTX-624

Column diameter: 0.32

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn01pv.d

Date : 07-APR-2010 09:19

Client ID: FBFB

Instrument: F.i

Page 4

Sample Info: FBFB

Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

	Data File			92 (5,64),	Backgrou	and Scan 2	78
Location	of Maximum		Jans 270 2.	/L \ 0.04//	Daung, or	and oddin E	.,,
	of points						
	•						
m/z				m/z			
36.00		71,00		112.00		148.00	1630
37.00				113,00		149.00	493
38.00	20872	73,00	23928	114,00	209	150,00	672
39.00	8822	74,00	100760	115,00	747	152,00	212
40.00	104	75,00		116.00		153,00	513
				117.00		154.00	
42.00	32	77,00	3098	118.00	2186	155.00	1637
43,00	557	78.00	2190	119.00	2827	156.00	191
44.00	2385	79,00		120.00		157.00	1133
45,00		80.00		123.00		159.00	684
46.00	300		12750	124.00		161.00	802
47.00				125,00		163.00	36
48.00		83.00		126.00		165.00	
49,00				127.00		172.00	
50.00				128.00		173.00	
				+			
51.00	34424			129.00		174,00	
52,00		87.00		130,00		175.00	
53,00				131.00			
55.00	1347			132.00		177.00	
56.00		92,00	16424	133.00 +		178.00	1062
57,00	15086	93.00	25512	134.00	269	179,00	82
58,00	708	94,00	72048	135,00	943	193,00	203
60.00	4720	95,00	670400	136.00	175	207,00	918
61.00	24832	96,00		137.00		209,00	84
62,00	25216			139.00 +		219.00	86
63,00	19152			140.00			
64.00	1638	103.00		141.00		249,00	253
65,00	240	104,00	2296	142.00	682	253.00	113
66,00	77	105.00	812	143,00	5878	254.00	72
67.00	1460	106.00	2318	144.00	371	260,00	114
68,00	63096	107,00	712	145.00	579		
69,00	62008	110,00		146.00	920		
70.00		111.00		1 147.00	475		

Data File: /var/chem/F.i/Fsvr.p/fdnto15.b/fdn01pv.d

Page 2

Date : 07-APR-2010 09:19

Client ID: FBFB

Instrument: F.i

Sample Info: FBFB

Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn13pv.d

Date : 20-APR-2010 09:12 Client ID: VBFB

Instrument: F.i

Sample Info: VBFB

Operator: wrd

Column phase: RTX-624

Column diameter: 0.32

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn13pv.d

Date : 20-APR-2010 09:12

Client ID: VBFB

Instrument: F.i

Sample Info: VBFB

Operator: wrd

Column phase: RTX-624

Column diameter: 0.32

	Nata File	e: fdn13pv	ı. d				
				2 (5,64),	. Backgrou	und Scan 2	280
Location	of Maximum				- Basing, s		
	of points						
	. ,						
m/z	Y	m/z	Y	m/z	Y	m/z	Y
+		·				+	
1 36,00	3832	71.00	264	114.00	83	149,00	386
1 37,00	22248	72,00	2923	115.00	744	150.00	576
1 38,◊◊	19896	73,00	23120	116.00	2152	152.00	305
1 39,00	8753	74.00	98904	117.00	3480	153,≎≎	414
1 40.00		75,00		118.00		154,00	380
1 42,00	 54	+ 76 . ≎≎	26144	119,00		+ 1 55 . 00	154¢
I 43.00		77.00		120,00		156.00	440
1 44.00				123.00		157.00	1075
I 45.00	4619			124.00		158.00	272
1 46.00		•		125.00		159.00	692
+						+	
1 47,00	6474	81.00	13296	126.00	259	161.00	744
I 48,00	2740	82,00	3459	127.00	5	163,00	86
1 49,00	21760	83.00	481	128,00	2362	172,00	553
1 50,00	115568	86,00		129,00		173,00	2689
I 51.00	34704	87.00	21352	130.00	2429	174.00	488512
+		+				+	
I 52,≎≎	1237	88,≎≎	20856 (131.00	891	175.00	33952
1 53,◊◊	24	91,00	1942	132,00	86	176.00	474176
I 55₊≎≎	1383	92,00	1597 2	133.00	177	177.00	29920
I 56₊≎≎	7386	93,00	24608	134.00	262	178.00	907
I 57₊00		94.00		135.00	1040	191.00	6
1 58.00		95,00	623040	136.00	179	192.00	100
1 60.00				137.00		207.00	759
I 61.00				139.00		208.00	451
1 62,00			436			209.00	345
1 63.00		104.00		141.00		219.00	70
	4707			440.00			
				142.00			155
•	584			143,00		233.00	74
1 66.00		107.00		144.00		255,00	79
1 67,00		110.00		145.00		260.00	99
I 68,00 +	63600	111.00	489 I ++	146.00	987	 	
	62016	112.00	307 1	147.00	394	ı	
1 69.00	62016						

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn13pv.d

Page 2

Date : 20-APR-2010 09:12

Client ID: VBFB Instrument: F.i

Sample Info: VBFB

Operator: wrd

Column phase: RTX-624 Column diameter: 0.32

FORM 1 CLIENT SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

MBLK042010FA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Lab Sample ID: MBLK042010FA Matrix: (soil/water) AIR

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDNB01L

Date Received: _____ Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND		ug/Kg) PPBV	7	Q
75-71-8 76-14-2 74-87-3 75-01-4 106-99-0 74-83-9 75-00-3 75-69-4 75-35-4 75-15-0 107-05-1 156-60-5 110-54-3 75-34-3 156-59-2 110-82-7	Dichlorodifluor1,2-DichlorotetChloromethaneVinyl Chloride1,3-ButadieneBromomethaneChloroethaneTrichlorofluoroFreon TF1,1-DichloroethCarbon disulfice3-ChloropropeneMethylene chlorotrans-1,2-Dichloroeth	(ug/L or comethane_crafluoroethene_crafluoroet	ug/Kg) PPBV	0.50 0.20 0.50 0.20 0.50 0.20 0.20 0.20 0.50 0.20 0.50 0.20 0.20 0.20 0.20 0.20	מממממממממממממ
67-66-3 71-55-6 110-82-7	Chloroform 1,1,1-Trichloro Cyclohexane	oethane		0.20 0.20 0.20	U U
540-84-1 71-43-2 107-06-2	2,2,4-Trimethyl Benzene 1,2-Dichloroeth	pentane		0.20 0.20 0.20	U U
78-87-5 75-27-4	n-Heptane Trichloroethene 1,2-Dichloropro Bromodichlorome cis-1,3-Dichlor	pane ethane		0.20 0.20 0.20 0.20 0.20	U U
108-88-3 10061-02-6	Toluene trans-1,3-Dichl	oropropene		0.20 0.20 0.20 0.20	U U

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

MBLK042010FA

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

CAS NO. COMPOUND

95-50-1-----1,2-Dichlorobenzene_

87-68-3-----Hexachlorobutadiene

120-82-1----1,2,4-Trichlorobenzene

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: MBLK042010FA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDNB01L

Level: (low/med) LOW Date Received:

% Moisture: not dec. _____ Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume:____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

0.20 U

0.20 U

0.50 \

0.20 U

127-18-4----Tetrachloroethene 0.20 U 124-48-1-----Dibromochloromethane 0.20 U 106-93-4-----1,2-Dibromoethane 0.20 U 108-90-7-----Chlorobenzene 0.20 U 100-41-4-----Ethylbenzene 0.20 U 1330-20-7-----Xylene (m,p) 0.40 U 95-47-6-----Xylene (o) -0.20 U 100-42-5-----Styrene_ 0.20 U 75-25-2-----Bromoform 0.20 U 79-34-5----1,1,2,2-Tetrachloroethane_ 0.20 0 622-96-8----4-Ethyltoluene 0.20 ប 108-67-8-----1,3,5-Trimethylbenzene 0.20 U 95-49-8----2-Chlorotoluene 0.20 U 95-63-6-----1,2,4-Trimethylbenzene 0.20 U 541-73-1----1,3-Dichlorobenzene_ 0.20 U 106-46-7----1,4-Dichlorobenzene

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdnb011.d

Report Date: 03-May-2010 23:27

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/F.i/Fsvr.p/fdnlto15.b/fdnb011.d

Lab Smp Id: MBLK042010FA Client Smp ID: MBLK042010FA

Inj Date : 20-APR-2010 13:12

Operator : wrd Inst ID: F.i

Smp Info :

Misc Info: MBLK042010FA;042010FA;1;200

Comment

Method : /chem/F.i/Fsvr.p/fdnlto15.b/to15v4.m

Meth Date : 03-May-2010 23:27 sv Quant Type: ISTD Cal Date : 07-APR-2010 17:09 Cal File: fdn40v.d Als bottle: 3 QC Sample: BLANK

Als bottle: 3 QC Sample: BLANK
Dil Factor: 1.00000
Integrator: HP RTE Compound Sublist: TO14trans.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)
*======================================			
2 Dichlorodifluoromethane	85	Compound Not Detected.	
4 1,2-Dichlorotetrafluoroethane	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
7 Vinyl Chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Bromoethene	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 Freon TF	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
21 Carbon disulfide	76	Compound Not Detected.	
23 3-Chloropropene	41	Compound Not Detected.	
25 Methylene chloride	49	Compound Not Detected.	
28 trans-1,2-Dichloroethene	61	Compound Not Detected.	

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
	====	
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
34 cis-1,2-Dichloroethene	96	Compound Not Detected.
* 37 Bromochloromethane	128	9.608 9.619 (1.000) 542763 10.0000 (Q)
39 Chloroform	83	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.999 11.015 (1.000) 2691332 10.0000
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane	63	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 cis-1,3-Dichloropropene	75	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 trans-1,3-Dichloropropene	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	15.102 15.113 (1.000) 2481496 10.0000
66 Chlorobenzene	112	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.
72 Styrene	104	Compound Not Detected.
73 Bromoform	173	Compound Not Detected.
76 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
80 4-Ethyltoluene	105	Compound Not Detected.
82 1,3,5-Trimethylbenzene	105	Compound Not Detected.
81 2-Chlorotoluene	91	Compound Not Detected.
85 1,2,4-Trimethylbenzene	105	Compound Not Detected.
88 1,3-Dichlorobenzene	146	Compound Not Detected.
89 1,4-Dichlorobenzene	146	Compound Not Detected.
93 1,2-Dichlorobenzene	146	Compound Not Detected.
95 1,2,4-Trichlorobenzene	180	Compound Not Detected.
96 Hexachlorobutadiene	225	Compound Not Detected.

QC Flag Legend

Q - Qualifier signal failed the ratio test.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

FA042010LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: FA042010LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDN10LQ

Level: (low/med) LOW Date Received: ____

% Moisture: not dec. _____ Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV 0 75-71-8-----Dichlorodifluoromethane 10 76-14-2----1,2-Dichlorotetrafluoroethan 10 74-87-3-----Chloromethane 8.5 75-01-4-----Vinyl Chloride 8.9 106-99-0----1,3-Butadiene_ 8.8 74-83-9-----Bromomethane 9.8 75-00-3-----Chloroethane 8.8 593-60-2----Bromoethene 10 75-69-4-----Trichlorofluoromethane 11 76-13-1-----Freon TF 11 75-35-4-----1,1-Dichloroethene 11 75-15-0------Carbon disulfide_ 10 107-05-1----3-Chloropropene 8.9 75-09-2-----Methylene chloride 9.6 156-60-5----trans-1,2-Dichloroethene 9.6 110-54-3----n-Hexane 9.1 75-34-3-----1,1-Dichloroethane 9.7 156-59-2----cis-1,2-Dichloroethene 10 67-66-3-----Chloroform 10 71-55-6----1,1,1-Trichloroethane 11 110-82-7-----Cyclohexane 9.8 56-23-5-----Carbon tetrachloride 11 540-84-1----2,2,4-Trimethylpentane 9.2 71-43-2-----Benzene 9.6 107-06-2----1, 2-Dichloroethane 9.9 142-82-5----n-Heptane 8.6 79-01-6-----Trichloroethene 9.9 78-87-5-----1,2-Dichloropropane 9.0 75-27-4-----Bromodichloromethane 11 10061-01-5----cis-1,3-Dichloropropene 9.5 108-88-3-----Toluene 9.6 10061-02-6----trans-1,3-Dichloropropene 9.7 79-00-5-----1,1,2-Trichloroethane 9.3

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

FA042010LCS

Q

Lab Name: TESTAMERICA BURLINGTON Contract: 29012

COMPOUND

CAS NO.

Lab Code: STLV Case No.: SCOTTAVI SAS No.: SDG No.: RTD1209

Matrix: (soil/water) AIR Lab Sample ID: FA042010LCS

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: FDN10LQ

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. Date Analyzed: 04/20/10

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

127-18-4----Tetrachloroethene 10 124-48-1-----Dibromochloromethane 11 106-93-4-----1,2-Dibromoethane 10 108-90-7-----Chlorobenzene 9.7 100-41-4-----Ethylbenzene 10 1330-20-7-----Xylene (m,p) 20 95-47-6-----Xylene (o) 9.7 9.6 100-42-5-----Styrene 75-25-2-----Bromoform 11 79-34-5-----1,1,2,2-Tetrachloroethane 9.5 622-96-8-----4-Ethyltoluene 10 108-67-8-----1,3,5-Trimethylbenzene 10 95-49-8----2-Chlorotoluene 10 95-63-6-----1,2,4-Trimethylbenzene 9.8 541-73-1-----1,3-Dichlorobenzene__ 9.9 106-46-7----1,4-Dichlorobenzene_ 10 95-50-1-----1,2-Dichlorobenzene_ 9.8 120-82-1----1,2,4-Trichlorobenzene 9.7 87-68-3------Hexachlorobutadiene 10

FORM I VOA

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lq.d

Report Date: 03-May-2010 23:27

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lq.d Lab Smp Id: FA042010LCS Client Sm Client Smp ID: FA042010LCS

Inj Date : 20-APR-2010 12:21

Operator : wrd Inst ID: F.i

Smp Info

Misc Info : FA042010LCS;042010FA;1;200

Comment

: /chem/F.i/Fsvr.p/fdnlto15.b/to15v4.m

Meth Date : 03-May-2010 23:27 sv Quant Type: ISTD Cal Date : 07-APR-2010 17:09 Cal File: fdn40v.d Als bottle: 2 QC Sample: LCS

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: TO14trans.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo) * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)

Cpnd Variable Local Compound Variable

						CONCENTRATIONS		
		QUANT SIG				ON-COLUMN	FINAL	
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)	
====			==		=======	×======	z=====	
2	Dichlorodifluoromethane	85	3.220	3.226 (0.335)	1190388	10.3524	10	
4	1,2-Dichlorotetrafluoroethane	85	3.450	3.456 (0.359)	1219355	9.96594	10	
5	Chloromethane	50	3.579	3.584 (0.372)	308471	8.50862	8.5	
7	Vinyl Chloride	62	3.798	3.809 (0.395)	419378	8.85447	8.9	
8	1,3-Butadiene	54	3.868	3.879 (0.402)	321603	8.78328	8.8	
9	Bromomethane	94	4.558	4.563 (0.474)	533042	9.79566	9.8	
10	Chloroethane	64	4.777	4.788 (0.497)	257306	8.77581	8.8	
12	Bromoethene	106	5.173	5.179 (0.538)	578691	10.2755	10	
13	Trichlorofluoromethane	101	5.264	5.275 (0.548)	1592730	10.6447	11	
17	Freon TF	101	6.248	6.259 (0.650)	1222441	11.3888	11	
19	1,1-Dichloroethene	96	6.312	6.323 (0.657)	580316	11.2940	11	
21	Carbon disulfide	76	6.724	6.730 (0.699)	1668035	10.1936	10	
23	3-Chloropropene	41	6.992	7.003 (0.727)	623963	8.91693	8.9	
25	Methylene chloride	49	7.243	7.254 (0.753)	607016	9.60382	9.6	
28	trans-1.2-Dichloroethene	61	7 634	7 645 (0 794)	851269	9 56456	9.6	

Data File: /chem/F.i/Fsvr.p/fdnlto15.b/fdn10lq.d Report Date: 03-May-2010 23:27

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppbv)	(ppbv)
	====	==	=======			======
30 n-Hexane	57	7.960	7.966 (0.828)	861882	9.14199	9.1
31 1,1-Dichloroethane	63	8.361	8.372 (0.870)	1037313	9.65469	9.7
34 cis-1,2-Dichloroethene	96	9.249	9.260 (0.962)	622061	10.1889	10
37 Bromochloromethane	128	9.613	9.619 (1.000)	533123	10.0000	(+
39 Chloroform	83	9.683	9.694 (1.007)	1258663	10.2193	10
41 1,1,1-Trichloroethane	97	9.940	9.950 (0.903)	1353813	10.5892	11
40 Cyclohexane	84	9.945	9.956 (0.904)	811909	9.81775	9.8
42 Carbon tetrachloride	117	10.137	10.148 (0.921)	1454399	10.7555	11
43 2,2,4-Trimethylpentane	57	10.421	10.432 (0.947)	2687062	9.24172	9.2
44 Benzene	78	10.464	10.475 (0.951)	1744123	9.56423	9.6
45 1,2-Dichloroethane	62	10.565	10.571 (0.960)	836938	9.87503	9.9
46 n-Heptane	43	10.672	10.678 (0.970)	936562	8.62778	8.6
47 1,4-Difluorobenzene	114	11.004	11.015 (1.000)	2596072	10.0000	
49 Trichloroethene	95	11.363	11.373 (1.033)	815817	9.94023	9.9
50 1,2-Dichloropropane	63	11.737	11.748 (1.067)	616907	9.03190	9.0
54 Bromodichloromethane	83	12.090	12.101 (1.099)	1421455	10.5411	11
55 cis-1,3-Dichloropropene	75	12.721	12.727 (1.156)	1014283	9.45089	9.5
58 Toluene	92	13.149	13.160 (0.870)	1287561	9.64471	9.6
59 trans-1,3-Dichloropropene	75	13.513	13.519 (1.228)	1094751	9.72206	9.7
60 1,1,2-Trichloroethane	83	13.781	13.792 (0.912)	614604	9.30892	9.3
61 Tetrachloroethene	166	13.914	13.925 (0.921)	1179647	10.1313	10
63 Dibromochloromethane	129	14.337	14.343 (0.949)	1531914	11.0588	11
64 1,2-Dibromoethane	107	14.540	14.546 (0.962)	1240540	9.98838	10
65 Chlorobenzene-d5	117	15.107	15.113 (1.000)	2461812	10.0000	
66 Chlorobenzene	112	15.145	15.150 (1.002)	1824253	9.71325	9.7
68 Ethylbenzene	91	15.214	15.225 (1.007)	2925471	9.99019	10
69 Xylene (m,p)	106	15.364	15.375 (1.017)	2326354	19.5440	20
71 Xylene (o)	106	15.878	15.883 (1.051)	1133714	9.65668	9.7
72 Styrene	104	15.904	15.910 (1.053)	1769608	9.62180	9.6
73 Bromoform	173	16.188	16.199 (1.072)	1666881	11.4697	11
76 1,1,2,2-Tetrachloroethane	83	16.702	16.707 (1.106)	1652801	9.48884	9.5
80 4-Ethyltoluene	105	16.900	16.905 (1.119)	3591899	10.3575	10
82 1,3,5-Trimethylbenzene	105	16.964	16.975 (1.123)	2858231	9.98250	10
81 2-Chlorotoluene	91	16.937	16.943 (1.121)	3250032	10.3606	10
85 1,2,4-Trimethylbenzene	105	17.408	17.413 (1.152)	2837738	9.78921	9.8
88 1,3-Dichlorobenzene	146	17.814	17.820 (1.179)	2059330	9.94646	9.9
89 1,4-Dichlorobenzene	146	17.927	17.932 (1.187)	2066975	10.0219	10
93 1,2-Dichlorobenzene	146	18.403	18.414 (1.218)	1919728	9.84311	9.8
95 1,2,4-Trichlorobenzene	180	20.741	20.752 (1.373)	1631989	9.66495	9.7
96 Hexachlorobutadiene	225	20.912	20.923 (1.384)	1558093	10.2547	10

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Sample Preparation – TO-14A Volatile

Post-Sampling Air Canister Pressure Check Record

Client ID	SDG	ETR	Date	Time (Military)	Lab BP	Lab (°	Temp C)	Pressure Gague ID	Analyst
STLNYB	136859	136859	4-16-10	1118	29.7	2	2	G5	J.J.
Sampling Information	n and Return E	quipment Che	eck			Yes	Νo	C	omments
(1) Is a Field Test Data	Sheet (FTDS)	or similar sam	pling documer	ntation present	?	~			
(2) Is the flow controller ID used for each canister recorded?							1	NA	
(3) Is visible sign of damage to canister and/or flow controller (FC) present?							V		
If domage sheepend li	st squipment ID	a and doo as iba	oondition:						

If damage observed, list equipment IDs and describe condition:

st-Sampling Retur	ii riessure Gii						
Lab ID	Canister ID	Pressure ¹	Anomaly ²	FC 5	FC Return	Can Cert	Comments
A Commence	and the second	("Hg)	(Y/N)	ID ⁵	(Y/N)	Batch ID 👵 🤝	7.4
2,26455	41146	0.0	N _	NA	NA	3434 BJOA	Grab
726456	4814	0.0	N	NA	NA	4814 FDMG	Grab
		<u> </u>					
						· · ·	
		2.5	<i>√</i>				
		7,					
							
					 	/	
					1		
				1216-20	10/		
				20			
				11-10			
			- 0				
			1-3.7				ļ
			<u> </u>				
			/				
							
					<u> </u>		-

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg)

Page 113 of 200

BR-FAI033:02.01.08:5 TestAmerica

 $^{^{\}rm 2}$ If return pressure is not within criteria, initiate anomaly report.

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

SUMMA Canister Dilution Spreadsheet

						54.7																			
-			Dilution factor	3.88	3.78	3.73	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-		04/20/10	Adjusted Volume Dilution factor (L)	22.33	22.69	22.37	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	00.9	6.00	6.00	00:9	6.00	6.00	00:9	00.9	6.00	6.00
Page:	Analyst:	Date:	Adjusted Pressure (atm)	3.72	3.78	3.73	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			п	н	ıı	=	11	ш	н	=	11	=	=	н	=	П	11	н	II	п	II	II	11	H	н
	stlnyb	136859	Adjusted Pressure (psig)	40	40.9	40.1																			
	Client:	ETR:	Preadjusted Volume (L)	5.76	90.9	6.00	00.9	00.9	0.00	6.00	00.9	00.9	6.00	6.00	6.00	6.00	00.9	6.00	00.9	6.00	00.9	00.9	00.9	6.00	00.9
sheet			Preadjusted Pressure (atm)	96.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
read			11	=	11	11	=	=	н	11	=	ш	II	II	ıı	ш	11	=	=	п	II	=	=	11	II
SUMMA Canister Dilution Spreadsheet			Preadjusted Pressure ("Hg)	-1.2	0	0																			
SUMMA Canis			LabiD	826456A	826456B	826456C																			

Preadjusted Pressure("Hg) + 29.92" Hg \times 6L = Preadjusted Volume (L) 29.92" Hg

CALCULATION:

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig).

6 L = Volume of SUMMA canister at atmospheric pressure.

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg).

Where:

14.7psig

= Dilution Factor Preadjusted Volume (L) Adjusted Volume (L)

BR-FAI035A:06.24.09:1 TestAmerica

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403

phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Manager: () 12. 26. 6	() ()	200	7		Samples Collected Bv:	ı	21/1	١.		_	-	SOOS	 ဗ			ı
	Phone: > /6,	836	836-4506	+	15												
te Parkerny, Suite	Email: 011		e dec	00.00	2			_					1				
Phone: 7/4. 424. J. 4726 34/	Site Contact	7.6.	7									(uoŋ:		_		_	(uoi):
	TA Contact:		7					_	_				. di				e sec
Project Name:		Analysis	Analysis Turnaround Time	nd Time				_				səjou		_		_	notes
Site:	S	Standard (Specify)	ecify)						_			ı ui Y	A private		_	_	ı ui V
PO#	4	Rush (Specify)	ífy)								_	2003	253				lioeqi
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Fleid, 'Hg (Stop)	Flow Controller ID	Canister ID	\$1-OT A41-OT	EPA 3C	EPA 25C	8461-Q MTSA	Other (Please s	IN 100bnl	Ambient Air	ss9 lio2	Landfill Gas	Other (Please s
AS EFFWent	0/14/1/2	(503)			#		9 <i>b</i> Jh	×					negli sapatico				
LRP Effluent	01/4/h	(62)	1200	-29.4	١	1	h/8h	~									
													2.30				
													J 89				_
				Temperatur	Temperature (Fahrenhelt)									l			
		Interior		Amblent													_
	Start																_
	Stop																
				Pressure (i	Pressure (inches of Hg)												
		Interior		Ambient													_
	Start																
Special Instructions/QC Requirements & Comments:	otop S:												1				Т
	ı																
Samples Shipped by: Um. & Jack	Date/Time:	1//	101	1700/2	Samples F	Samples Received by:		1/8/1	9	gus							1
ished	Date/Time: U	/6/	1 01	M	Received by	by Orall	alle,	OPSO 411011C	¥ = 1	alo							
Relinquished by:	Date/Time:				Received by	by:											
200																30	
Lab Use Only.				Opened	by:	Opened by: Condition:											

TestAmerica Burlington - Manual Integration Summary SDG: fdntol5 Fraction: Volatile Client Sample ID

Filename

Analysis Date

Column

Inst.

Sample Type

Sample ID Lab

	Peak RT	Compound	Manual Integration Flag	Analyst Date-Time	Sign-Off
ASTD010	ASTD010 INIT. (11.882 1,4-Dioxane	INIT. CALIB. F RTX-624	07-APR-2010 14:37 FDN10V2 MI3 - Mis-identification of peak	0V2 sv 04/12/10 21:32 <u>śv 04/12/10</u>	01/21/10 15
Summary Generat	Summary Generated: sv 04/12/2010 21:38	1:38 Secondary Review(1): PAD 4/12/10	PA 4/12/10 secondary Review(2):	ew(2):	Page 1

C
ō
τ-
ţ
_
95
6
ď
Ö
π
~

FD N		Instrument Information
10 10 10 10 10 10 10 10	Inst	Instrument ID: F
Manager Mana	Inst	Instrument: 5973
Manager Mana	Coli	Column Type: RTX-624
Pr. D. Carlo Prince Prin	Ana	Analyst
Cab ID Summa ETR Dilution Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet Volume Operator Inlet In		
Fabrica Fall Summa ETR Dilution Inlet Volume Operator Internal Study Art	Individual Sample Review	
File Name Can ID Factor # (mL) WRD WL FON VELO	Result Primary	Comments /
Fold Pold	Conc. Anal.	Standard Traceability
FON BO 4983 3964 3964 2 2 2 2 2 2 2 2 2	14 500	
FONCO21/ 336, Gould 2. 3 FONCO21/ 354/ Gould 2. 3 FONCO31/ 354/ Gould 3. 3 FONCO31/ 354/ Gould 3. 3 FONCO31/ 354/ Gould 5. 5 FONCO31/ 354/ Gould 5. 5 FONCO31/ 353/ Gould 5. 5 FONCO31/ 353/ Gould 5. 5 FONCO31/ 353/ Gould 6. 5 FONCO31/ 353/ Gould 6. 5 FONCO31/ 4783 ECLK 1. 200 FONCO31/ 4783 ECK 1.	•	
Follows 3646 Serial 3 4 4 4 4 4 4 4 4 4	7	2289
Forcest 3/42 Samels 4 1 120 N5W 120 N5W 120 N5W 120 N5W 120 N5W 120 N5W 12	1 1	22.87
Secondary 353 June 15 Secondary	7 1	9351
FON 55 \$63 \$6000 55 55 55 55 55 55 55	A	190 Value (Lough
Fon 20V 35-35 Level 6 8 500 10	7	1989
FON-40V 2.691 Level 7 9 500 500 500 500 500 500 500 500 500 5	7 WW 2	1935
FOW 10V2 3551 Janualy & 500	7	955
FoN haz 4983 ±64K 200 1	C MM /	0551
FON 10Q 3643 ICV	time	
723 423 423 423 425 3322 425 335 335 335 335 335 325 335 325 335 325 32	- 1 1 3	40HC
42.23 45.74 42.77 22.872 23.74 23.74 2.740 2		
45.7 42.7 42.7 25.72 25.72 25.70 27.	01m / 1	
33.22 42.73 23.71 2.510 2.	-	
2582 3351 2582 2582 2596 4283 2796 273 273 2736 273 2736 273 2736 2737 2736 2737 2736 2736 2736 2736 2736 2736 2736 2736 2736 2736 2737	7	
2582 3351 2506 2506 4282 3405 273 273 2736 1050 N50	7	
3351 2570 2570 3206 3405 273 273 273 273 273 273 273 273	7	
23 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6)	
2.2% 42.83 3.405 2.735 2.866 45.81 1.150 Nite		
2737 2737 2866 4581 74 M Dile 1 1120 NEW C		
3465 22/37 28/66 4581 74 M D.IL 1 1120 N5W C		
2866 1 150 NEW C		
2866 1 J J 7 1 150		
74 M Dile 1 1150		
, 11	7	
1	Will sometimes to the second	UK//X
Legend: C=Complete • K=Reanalyze •	alyze = = High • √= Low • √£	✓£Reviewed and Acceptable
BR-FAI027:10:29:08:2		

00
of O
ae 10
Pa

Seguence					Standard	Standard Traceability	2				Instrument Information
Batch ID:	F0.4/1	Start Date: 4	T Off och	Time. ASh.	ISTD Lot #:	#	14661				Instrument ID: F
Test Method			5 5	Time: 0.7//	CAL STD Lot #	1. tot # 7	2 A				Instrument: 5973
ICAL Date:	0//C/h				ICV / LCS Lot #	S Lot # 2	1407				Column Type: RTX-624
	Manager		Analyst		Analyst			Analyst			Analyst
Name/Initial											
Signature											
		Sequence	Sequence Information		11.75			Individ	Individual Sample Review	Review	
Injection	Lab ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
250	FDN13PV		6P8	\$	4	4	200	4	77	3	
600/	FONIOLV	352	\$	٠	`	200		4			Value closed put the
1/30	下の人のしい	3152	Ser.		`	200		7	1		46
1251	FONIUL &	3643	3		7	2007		7	/		46
1312	FONBUIL	49.83	MEK	7	3	200		7	1	_	
201/tag		4023	136833	0/	1	20		7	/;		C 44471ES
454	826252	3008		-	ح	,		7	7		ار د
1544	かられる	3007	136858	0)	9	20		/;	1	4	C 162/719
1635	82625	4325	136835	0/	7	20		/	.\	3	<i>\</i>
9-66!	826536	2,845	136821	0/	\$	20	_)	7	1	Ú
18/1	826539	4515	1		G	-		7	7	+	v
1902	826540	4372			Q			7	/	4	V
1958	8265 41	6004			77			7	/	-	C
8048	8265-46	4250			7			7	/	-	
2/40	8265-43	3535		_,	3		_	7	7		·\
131	からつろ	4340		•	7	ggz		>	7		
3321	といる	3033	- [17	~	-	7	7	-	
3012	625550	3347	156 71	19.9	9/	900		7	1	+	CDF952
3/02	825350	3307	7	99.7	Ų	20		'	7	-	77
5/53	15, 6455	7614	136859	, /	/	200		7	7		V
4470)	h/2 h	7	967	1	37		7	Ļ		COP 54.7 A1:600
	426511	2574	136817	/	3	200		<i>\</i>	7		
7645	Secto	3276		,	<i>h</i>	,		'	/	_	C
(1.50	826513	4338			5			>	7		0
300g	SICSM	3457			7			>	7		J
2659	826515	4328			2	1	,	/	7		J
7	1	1.44.1	2000	, ,,,,			V/-	\		_	

BR-FAI027:10.29.08:2 TestAmerica

Sample Handling

<u> </u>							
		Test	America Bu	rlingte	on		
	SAMPI		EIPT & LO	-		CLIST	
Client: STI NYR	OAIII E		eceived: 04	1161	176	_	, , , , , , , , , , , , , , , , , , , ,
		_		ĮΨĮ	<u> ΤΦ</u>	Log In	Date: 44/15/14
ETR: 136859			eceived:	bda	P	By:	K Aliza oz Ali
SDG: 136859		Receive		-		Signatu	0-1000
Project 29012	<u> </u>		rs Received:	<u> </u>	201	_	gnature:
Samples Delivered By. Ship			Other (specify)			Date:	9:16:10
List Air bill Number(s) or Attac	h a photocopy of the Air	r Bill:			_		
				. —			·
COOLER SCREEN	2007年時間の1700年			YES	NO	NA	COMMENTS
There is no evidence to indica	te tampering			X			
Custody seals are present and	l intact			X			
Custody seal numbers are pre-	sent				1		
If yes, list custody seal number	rs:						
Thermal Preservation Type: o	Wet Ice o Blue Ice	None o	Other (specify)				_
IR Gun ID: 46	Correction Factor (CF)= -2	°C				•
Cooler 1: ALIZ °C	Cooler 6	°C	Cooler 11		°C	Cooler	16 °C
Cooler 2: °C	Cooler 7	°C	Cooler 12	,	°C	Cooler	17 °C
	Cooler 8	°C	Cooler 13		°C	Cooler	
	Cooler 9	°C				Cooler	
	Cooler 10		Cooler 15			Cooler	
Unless otherwise documented,				readings			-
EPA Criteria: 0-6°C, except for							
			_	_		_	when alternate criteria is specified.
SAMPLE CONDITION		7000					COMMENTS
3 41 - 4 - 17 - 14 - 14 - 14 - 14 - 14 -	1000 401 1 401 200		. 5 [5 10]	YES	: NO :	MA.	THE PARTY OF THE P
Sample containers were receiv				-			
Legible sample labels are affixed	ed to each container		- : :	<u> </u>		10.00	1 - N.W. ATRO & PARTING ACCUMANCE OF A REPORT OF
CHAIN OF CUSTODY (COC)				YES	NO	NA	COMMENTS
COC is present and includes the		for each	container:		_	_	1
Sample ID / Sample Descripti	on			X			
- Date of Sample Collection	<u> </u>		_	X			
Time of Sample Collection				X			
- Identification of the Sampler				^			
Preservation Type						Δ	14mbient
Requested Tests Method(s)				X			
Necessary Signatures				λ_			
Internal Chain of Custody (ICO	C) Required				X		
If yes to above, ICOC Record in		heet				×	
SAMPLE INTEGRITY / USABI	LITY AND THE		1	YES	NO	NA	COMMENTS
The sample container matches	the COC			X			
Appropriate sample containers	were received for the te	sts reque	ested	X			
Samples were received within h	olding time			X			
Sufficient amount of sample is p	provided for requested a	analyses		入			
VOA vials do not have headspa	ice or a bubble >6mm (1/4" diam	eter)			\sim	
Appropriate preservatives were	used for the tests requi	ested				X	
pH of inorganic samples checke	ed and is within method	specifica	tion			X	
If no, attach Inorganic Sample p	H Adjustment Form					ス	
ANOMALY / NCR SUMMARY	er stranger	,			,		
		_	_				
	_						
				_			
			_		_		·

FSR002:12.19.07:3 TestAmerica Burlington

SDG: RTD1209

MONITORING WELL MW-2 SUMMARY OF VOCs IN GROUNDWATER

		Aı	nalytical R	esults (µg/	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/14/2005	< 10	< 10	< 10	29	< 10	<10
1/5/2006	< 25	< 25	< 25	16	< 25	< 25
4/14/2006	< 25	< 25	< 25	27	< 25	< 25
7/10/2006	< 25	< 25	< 25	23	< 25	< 25
10/19/2006	< 5	< 5	< 5	20	< 5	< 5
1/9/2007	< 5	< 5	< 5	42	< 5	< 5
4/16/2007	< 20	< 20	< 20	45	< 20	< 20
7/2/2007	< 5	< 5	< 5	< 5	< 5	< 5
10/15/2007	< 5	< 5	< 5	19	< 5	< 5
1/8/2008	< 5	< 5	< 5	26	< 5	< 5
4/2/2008	< 5	0.48	< 5	23	1	< 5
7/1/2008	< 5	< 5	< 5	46	0.65	< 5
10/1/2008	< 5	< 5	< 5	21	<5	< 5
1/20/2009	< 5	0	< 5	16	<5	< 5
4/15/2009	< 5	0	< 5	14	<5	< 5
7/22/2009	< 5	< 5	< 5	12	<5	< 5
10/12/2009	< 5	< 5	< 5	12	<5	< 5
1/18/2010	< 25	< 25	< 25	18	< 25	< 25
4/7/2010	< 25	< 25	< 25	21	< 25	< 25

MONITORING WELL MW-3 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/14/2005	< 10	4	22	16	8	<10
1/5/2006	< 25	4.4	4.6	< 25	10	< 25
4/14/2006	< 25	< 25	< 25	2.8	4.9	< 25
7/10/2006	< 25	2.6	6.5	4.8	7	< 25
10/18/2006	< 5	1.3	9.8	8.2	4.3	< 5
1/10/2007	< 5	2.8	9.8	12	7	< 5
4/16/2007	< 20	< 20	< 20	< 20	5.3	< 20
7/2/2007	< 5	2	5.7	< 5	7.5	< 5
10/17/2007	5	12	4	25	14	25
1/9/2008	< 5	0.9	4.2	1.2	9.7	<5
4/3/2008	<5	3	19	4.1	11	<5
7/1/2008	<5	2	15	6	5.3	<5
10/1/2008	<5	3.2	73	16	8.4	<5
1/21/2009	<5	4.5	21	3.6	17	<5
4/15/2009	<5	1.3	6	1.4	6.9	<5
7/22/2009	<5	2.5	23	4.5	10	<5
10/12/2009	<5	2.5	23	4.5	10	<5
1/18/2010	<5	3.4	31	4.6	15	<5
4/7/2010	<5	1.7	4.6	<5	10	<5

MONITORING WELL MW-4 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
11/7/2003	270	9,100	3,700	< 10	320	28
10/13/2004	8,100	26,000	3,300	< 1000	560	220
1/7/2005	20,000	57,000	5,500	< 2000	1,600	4,400
1/6/2006	6,500	22,000	1,000	< 2000	370	520
4/14/2006	3,200	6,800	280	< 500	120	< 500
7/10/2006	2,400	7,600	250	< 500	120	68
10/18/2006	2,600	9,800	600	<5	130	52
1/10/2007	2,800	4,500	220	<400	56	66
4/17/2007	4,900	6,200	360	< 500	< 500	< 500
7/3/2007	1,100	2,900	260	< 200	37	< 200
10/17/2007	4,800	5,800	280	< 500	68	460
1/9/2008	9,200	21,000	1,700	< 500	320	660
4/3/2008	5,800	16,000	940	<1200	250	400
7/2/2008	500	6,600	530	< 500	120	57
10/2/2008	6,300	16,000	1,200	< 500	260	210
1/22/2009	1,800	27,000	1,800	72	520	970
4/15/2009	4,100	7,600	710	<200	160	380
7/22/2009	2,300	4,700	410	<250	<250	110
1/19/2010	7,400	1,100	670	<1000	230	410
4/8/2010	3,000	7,200	560	< 500	110	< 500

MONITORING WELL MW-6 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
11/7/2003	< 10	< 10	< 10	< 10	< 10	< 6
10/12/2004	< 10	< 10	< 10	< 10	< 10	< 10
1/6/2005	< 10	< 10	< 10	< 10	< 10	< 10
4/14/2005	< 10	< 10	< 10	< 10	< 10	< 10
7/21/2005	< 5	< 5	< 5	< 5	< 5	< 5
10/4/2005	< 5	< 5	< 5	< 5	< 5	< 5
1/5/2006	< 5	< 5	< 5	< 5	< 5	< 5
4/14/2006	< 5	< 5	< 5	< 5	< 5	< 5
7/10/2006	< 5	< 5	< 5	< 5	< 5	< 5
10/18/2006	< 5	< 5	< 5	< 5	< 5	< 5
1/10/2007	< 5	< 5	< 5	< 5	< 5	< 5
4/16/2007	< 5	< 5	< 5	< 5	< 5	< 5
7/2/2007	< 5	< 5	< 5	< 5	< 5	< 5
10/17/2007	0.63	1.4	< 5	< 5	< 5	< 5
1/8/2008	<5	<5	<5	< 5	< 5	< 5
4/3/2008	<5	0.42	<5	<5	<5	<5
7/1/2008	<5	<5	<5	<5	<5	<5
10/1/2008	<5	<5	<5	<5	<5	<5
1/20/2009	<5	<5	<5	<5	<5	<5
4/15/2009	<5	<5	<5	<5	<5	<5
7/21/2009	<5	<5	<5	<5	<5	<5
10/13/2009	<5	<5	<5	<5	<5	<5
1/18/2010	<5	<5	<5	<5	<5	<5
4/7/2010	<5	<5	<5	<5	<5	<5

MONITORING WELL MW-8R SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
10/13/2004	35,000	22,000	3,400	160	< 5,000	810
1/7/2005	23,000	28,000	4,000	< 2,000	1,100	1,300
4/14/2005	15,000	11,000	1,300	380	360	240
7/21/2005	9,200	6,200	600	390	200	52
10/5/2005	13,000	10,000	830	< 1,000	300	<1,000
1/6/2006	42,000	38,000	2,300	150	1100	820
4/14/2006	14,000	7,400	1,200	220	200	< 1,000
7/10/2006	16,000	13,000	2,200	300	320	< 1,000
10/18/2006	13,000	8,900	1,400	300	200	32
1/10/2007	1,600	2,500	120	24	52	26
4/17/2007	19,000	11,000	670	< 1,000	< 1,000	< 1,000
7/3/2007	29,000	12,000	890	< 1,000	290	< 1,000
10/15/2007	2,200	1,600	60	< 200	33	< 200
1/8/2008	38,000	22,000	2,000	76	620	740
4/3/2008	12,000	8,100	820	77	140	72
7/2/2008	7,400	6,000	790	100	130	72
10/2/2008	22,000	15,000	1,200	70	320	340
1/22/2009	8,400	4,600	510	56	76	<100
4/15/2009	13,000	6,800	700	49	99	27
10/13/2009	13,000	6,800	700	49	99	27
4/8/2010	2,500	1,300	84	<100	19	<100

MONITORING WELL MW-9 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
11/7/2003	6	21	140	130	60	< 10
10/13/2004	< 10	4	190	110	47	< 10
1/6/2005	< 10	19	220	180	90	< 10
4/14/2005	< 10	5	51	190	80	< 10
7/21/2005	< 5	2	92	220	70	< 5
10/5/2005	< 5	8	38	58	96	0.68
7/10/2006	1.3	56	250	280	150	< 5
10/17/2007	2.6	60	170	410	140	< 25
1/21/2009	<5	59	87	33	140	0.81
4/7/2010	<5	17	19	16	99	< 5

MONITORING WELL MW-10 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/14/2005	< 10	< 10	< 10	< 10	< 10	<10
1/5/2006	< 5	< 5	< 5	< 5	< 5	< 5
4/14/2006	< 5	< 5	< 5	< 5	< 5	< 5
7/10/2006	< 5	< 5	< 5	< 5	< 5	< 5
10/18/2006	< 5	< 5	< 5	< 5	< 5	< 5
1/9/2007	< 5	< 5	< 5	< 5	< 5	< 5
4/16/2007	< 5	< 5	< 5	< 5	< 5	< 5
7/2/2007	< 5	< 5	< 5	< 5	< 5	< 5
10/17/2007	< 5	< 5	< 5	< 5	< 5	< 5
1/9/2008	< 5	< 5	< 5	< 5	< 5	< 5
4/3/2008	< 5	< 5	< 5	< 5	< 5	< 5
7/1/2008	< 5	< 5	< 5	< 5	< 5	< 5
10/1/2008	< 5	< 5	< 5	< 5	< 5	< 5
1/20/2008	< 5	< 5	< 5	< 5	< 5	< 5
4/15/2009	< 5	< 5	< 5	< 5	< 5	< 5
7/21/2009	< 5	< 5	< 5	< 5	< 5	< 5
10/13/2009	< 5	< 5	< 5	< 5	< 5	< 5
1/18/2010	< 5	< 5	< 5	< 5	< 5	< 5
4/7/2010	< 5	< 5	< 5	< 5	< 5	< 5

MONITORING WELL MW-11 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (μg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/14/2005	< 10	7	< 10	33	3	< 10
1/5/2006	2.2	6.7	3.9	31	6.7	<20
4/14/2006	< 20	9	4	16	4.1	< 20
7/10/2006	< 20	7.8	3.9	23	3.6	< 20
10/19/2006	6.8	23	7.9	25	5.7	1.7
1/9/2007	2.6	31	6.7	38	8.5	2.3
4/16/2007	0.89	9.8	4.1	22	3.4	<5
7/2/2007	< 5	13	6.1	< 5	4.8	0.84
10/16/2007	0.71	27	11	27	8.6	1.7
1/8/2008	1.1	38	18	29	12	3.4
4/2/2008	0.49	30	4.3	16	7.4	1.6
7/1/2008	1	42	14	32	11	2.8
10/2/2008	0.81	42	13	23	10	2.4
1/20/2009	0.77	36	11	16	8.7	1.9
4/14/2009	0.95	45	17	21	11	3
7/22/2009	0.69	37	9.9	16	<5	2
10/13/2009	0.69	37	9.9	16	<5	2
1/18/2010	0.77	51	1.7	25	13	2.9
4/7/2010	0.95	60	17	25	13	2.4

MONITORING WELL MW-12 SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
10/12/2004	13	3	24	52	4	< 10
1/6/2005	< 10	< 10	39	82	6	< 10
4/14/2005	< 10	< 10	5	170	4	< 10
7/21/2005	< 5	< 5	14	87	3	<
10/5/2005	< 5	< 5	1.2	78	0.43	< 5
1/5/2006	< 25	< 25	7.2	43	5.8	< 25
4/14/2006	< 25	< 25	6.3	28	6.9	< 25
7/10/2006	< 25	< 25	15	69	5	< 25
1/9/2007	< 5	< 5	0.83	38	< 5	< 5
4/16/2007	< 20	< 20	< 20	29	< 20	< 20
7/2/2007	< 5	< 5	45	82	4.6	< 5
10/15/2007	< 5	< 5	42	87	5.2	< 5
1/8/2008	< 5	< 5	< 5	26	< 5	< 5
4/2/2008	< 5	< 5	< 5	23	< 5	< 5
7/1/2008	< 5	< 5	0.64	14	0.55	< 5
10/1/2008	< 5	< 5	7.8	20	2.1	< 5
4/14/2009	<5	<5	6.8	23	<5	<5
7/22/2009	<5	<5	3.6	9.2	0.79	<5
10/12/2009	<5	<5	3.6	9.2	0.79	<5
1/18/2010	<5	<5	3.6	33	<5	<5
4/7/2010	<5	<5	< 5	23	<5	<5

PIEZOMETER MW-13D SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	Ĺ)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	17	2	< 10	< 10	< 10	< 10
10/12/2004	7	2	< 10	< 10	< 10	< 10
1/6/2005	< 10	< 10	< 10	< 10	< 10	< 10
4/15/2005	8	4	< 10	< 10	< 10	< 10
7/20/2005	1	2	< 5	< 5	< 5	< 5
10/4/2005	1.4	1.5	< 5	< 5	< 5	<5
7/10/2006	2	1.6	2.6	< 5	< 5	< 5
10/18/2007	< 5	0.55	1.1	< 5	< 5	< 5
1/20/2009	<5	<5	<5	<5	<5	<5
4/7/2010	<5	<5	<5	<5	<5	<5

PIEZOMETER MW-13S SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	10,000	9,000	320	< 100	< 100	< 100
10/12/2004	2,100	2,300	< 200	< 200	< 200	56
1/6/2005	10,000	9,400	720	< 200	75	62
4/15/2005	760	700	28	< 50	9	20
7/20/2005	870	990	37	< 40	16	49
10/4/2005	410	280	9.1	< 40	< 40	3.4
7/10/2006	17,000	9,400	300	9	65	88
10/19/2006	1,300	1,700	50	<100	19	36
1/10/2007	1,500	1,800	58	<100	24	41
4/17/2007	4,400	2,200	90	< 250	< 250	250
7/3/2007	220	410	11	< 25	5.7	7.2
10/18/2007	570	800	14	< 25	8.5	15
1/9/2008	1800	2300	330	7.3	32	68
4/3/2008	580	610	21	< 50	8.5	9.5
7/2/2008	1,800	1,500	38	<120	14	13
10/2/2008	5,800	5,000	190	<120	36	27
1/20/2009	3,400	2,500	150	<10	30	28
4/15/2009	3,400	3,700	290	<40	<40	30
10/13/2009	3,400	3,700	290	<40	<40	30
4/7/2010	1,400	1,600	45	< 50	16	10

PIEZOMETER MW-14D SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	21	8	< 10	4	< 10	< 10
10/12/2004	4	4	< 10	< 10	< 10	< 10
1/6/2005	20	190	45	3	8	2
4/15/2005	10	140	18	6	4	< 10
7/20/2005	26	200	31	4	7	2
10/5/2005	< 10	460	42	7.2	9.9	<10
7/10/2006	0.96	7.2	12	0.82	< 5	< 5
10/15/2007	< 5	47	66	1.8	2.2	< 5
1/21/2009	<5	2	1.4	0.91	1.3	<5
4/8/2010	9.4	99	21	1.5	2	<5

PIEZOMETER MW-14S SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	Ĺ)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	21	78	290	530	80	< 20
10/12/2004	< 10	100	140	640	94	< 10
1/6/2005	< 10	59	22	82	48	< 10
4/15/2005	< 10	35	15	180	27	< 10
7/20/2005	< 5	39	36	76	42	< 5
10/5/2005	< 5	35	59	160	56	<5
7/10/2006	5.7	17	13	36	20	< 25
10/15/2007	< 5	63	16	5.7	52	1.3
1/21/2009	0.38	36	7.9	0.87	33	0.63
4/8/2010	< 5	4	< 5	0.62	5.9	<5

PIEZOMETER MW-15D SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	21	740	180	180	120	< 10
10/12/2004	14	730	150	120	120	< 50
1/7/2005	18	590	200	140	100	< 50
4/15/2005	< 50	460	170	1,400	150	< 50
7/21/2005	15	610	230	1,200	190	< 25
10/5/2005	10	520	260	1,000	180	< 50
7/10/2006	4.9	280	320	1,400	140	< 5
10/16/2007	3.6	210	99	620	66	< 5
1/21/2009	<25	22	32	1000	<25	<25
4/8/2010	<5	1700	19	<5	12	<5

PIEZOMETER MW-15S SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	280	1,700	770	240	1,500	< 250
10/12/2004	460	2,300	940	170	1,700	< 250
1/7/2005	340	2,000	760	170	1,300	< 250
4/15/2005	400	2,000	790	700	1,400	< 200
7/21/2005	430	2,600	1,000	490	1,800	< 120
10/5/2005	330	2,700	750	330	1,400	<100
7/10/2006	400	3,800	1,500	100	2,600	< 25
10/16/2007	400	3400	1300	190	2000	< 200
1/21/2009	180	1300	360	240	840	<5
4/8/2010	270	1900	690	700	1400	<10

PIEZOMETER MW-16D SUMMARY OF VOCs IN GROUNDWATER

		A	nalytical R	esults (µg/l	L)	
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	6,900	490	< 500	< 500	< 500	< 500
10/12/2004	12,000	1,000	< 500	< 500	91	< 500
1/6/2005	9	27	39	22	15	< 10
4/15/2005	32	36	17	100	10	< 10
7/21/2005	25	12	4	84	2	< 10
10/5/2005	1.3	16	10	41	5	<5
7/10/2006	6.1	27	21	1,000	9.7	< 5
10/18/2007	6	48	39	250	16	< 20
1/22/2009	52	92	39	90	21	1.9
4/8/2010	12	6.9	3.6	240	8.7	< 10

PIEZOMETER MW-16S SUMMARY OF VOCs IN GROUNDWATER

	Analytical Results (μg/L)					
Sample Date	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	Chloroethane	1,1-Dichloroethane	1,1,1-Trichloroethane
4/8/2004	860,000	62,000	< 20,000	< 20,000	5,000	14,000
10/12/2004	200,000	46,000	< 10,000	< 10,000	2,900	< 10,000
1/7/2005	420,000	64,000	< 10,000	< 10,000	3,800	3,300
4/15/2005	400,000	71,000	< 25,000	< 25,000	< 25,000	< 25,000
7/21/2005	480,000	76,000	1,500	2,200	4,400	2,700
10/5/2005	440,000	74,000	< 25,000	< 25,000	4,100	< 25,000
1/6/2006	470,000	82,000	2,600	< 20,000	3,300	5,200
4/14/2006	260,000	56,000	3,900	< 20,000	2,600	< 20,000
7/10/2006	310,000	78,000	4,000	< 20,000	3,500	< 20,000
10/19/2006	77,000	22,000	1,300	< 5,000	940	< 5,000
1/10/2007	44,000	18,000	1,900	< 2,500	840	< 2,500
4/17/2007	94,000	36,000	3,300	1,800	1,500	< 5,000
7/3/2007	86,000	38,000	3,000	< 5,000	1,400	< 5,000
10/18/2007	130000	47000	2800	2600	1600	820
1/8/2008	67000	30000	3200	< 5000	1100	< 5000
4/3/2008	76,000	35,000	2,900	710	1,300	500
7/2/2008	58,000	26,000	2,400	570	830	< 5000
10/2/2008	63,000	26,000	3,100	690	920	< 5000
1/22/2009	92,000	51,000	4,200	730	1,800	490
4/15/2009	130,000	61,000	4,200	<2000	1,800	900
7/22/2009	87,000	45,000	3,000	650	1,500	740
1/19/2010	22,000	18,000	2,600	1,100	670	340
4/8/2010	220,000	99,000	6,800	1,100	3,000	2,000

