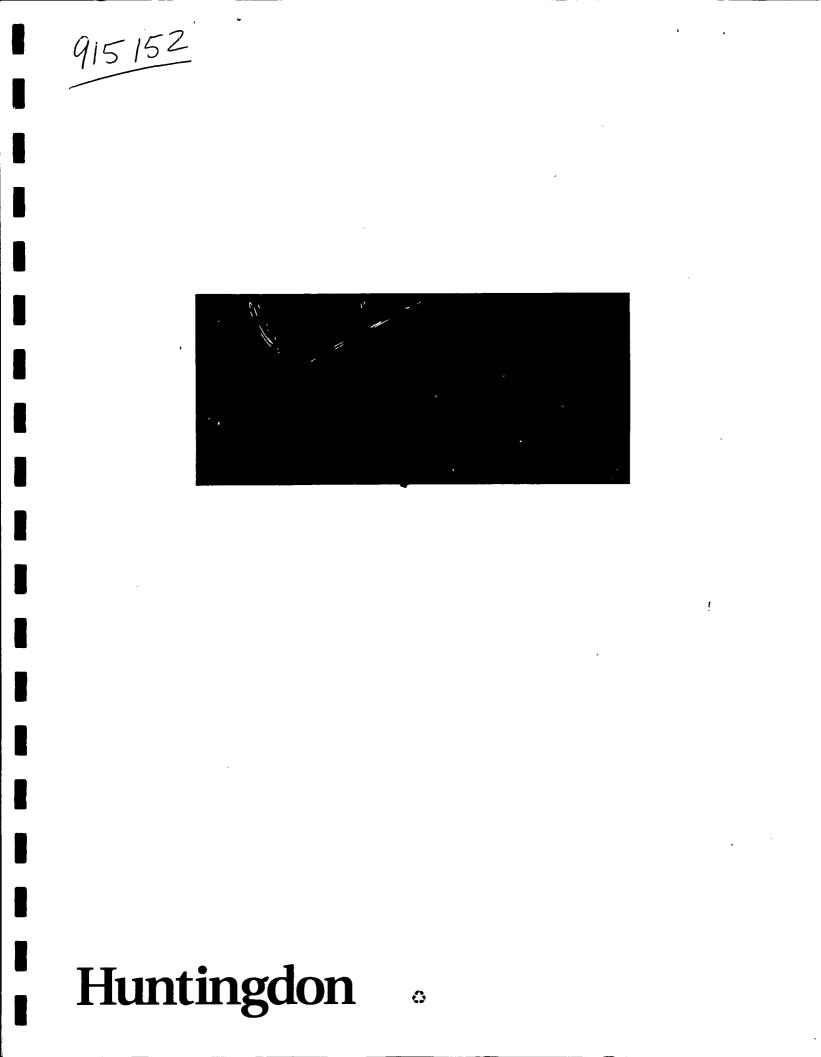
The electronic version of this file/report should have the file name:


letter.\_\_\_\_\_\_-.File spillfile .pdf report.<u>hw.915152 1695 - 06-26 PHASE II-</u>.pdf ENVIRONMENTAL EVALUATION

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp ERP - e VCP - v BCP - c

non-releasable - put .nf.pdf Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf



**Empire Soils Investigations, Inc.** 

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716) 649-8110 Fax:(716) 649-8051

#### RECEIVED

JUL 2 6 1995

N.Y.S. DEPT. OF ENVIRONMENTAL CONSERVATION REGION 9

#### PHASE II ENVIRONMENTAL EVALUATION CONRAIL RAILROAD PROPERTY BUFFALO AXLE AND LINKAGE FACILITY BUFFALO, NEW YORK

#### **PREPARED FOR:**

AMERICAN AXLE AND MANUFACTURING, INC. P.O. BOX 972 BUFFALO, NEW YORK

#### **PREPARED BY:**

HUNTINGDON/EMPIRE SOILS INVESTIGATION, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK

#### BE-94-150

**Empire Soils Investigations, Inc.** 

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716) 649-8110 Fax:(716) 649-8051

#### TABLE OF CONTENTS

| I.  | INTRO<br>A.<br>B. | DDUCTION       1         General       1         Purpose and Scope       1                                                                                                                                                                                     |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| П.  | SUBST<br>A.       | URFACE EXPLORATIONS       3         Test Borings       3         1.       General       3         2.       Test Boring Procedure       3         3.       Groundwater Monitoring Well Installation       3         And Groundwater Sampling Procedures       4 |
|     | B.                | Subsurface Conditions                                                                                                                                                                                                                                          |
| Ш.  | FIELD             | TESTING AND RESULTS 6                                                                                                                                                                                                                                          |
| IV. | LABO<br>A.<br>B.  | RATORY TESTING AND RESULTS       6         Soil Analytical Testing And Results       6         Groundwater Analytical Testing And Results       11                                                                                                             |
| V.  | SUMN              | MARY AND CONCLUSIONS 13                                                                                                                                                                                                                                        |

#### **APPENDICES**

| Appendix A - Drawings                                                  |
|------------------------------------------------------------------------|
| Appendix B - Limitations                                               |
| Appendix C - Test Boring Logs And Monitoring Well Installation Reports |
| Appendix D - Groundwater Sampling Parameters                           |
|                                                                        |

Appendix E - Analytical Test Results

Empire Soils Investigations, Inc. S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716) 649-8110 Fax:(716) 649-8051

#### PHASE II ENVIRONMENTAL EVALUATION CONRAIL RAILROAD PROPERTY BUFFALO AXLE AND LINKAGE FACILITY BUFFALO, NEW YORK

#### I. INTRODUCTION

#### A. General

The following report represents the results of Huntingdon/Empire Soils Investigations, Inc. (ESI) Phase II Environmental Evaluation on the Conrail Railroad property. The property is located east of the American Axle & Manufacturing (AAM) East Delevan Avenue Facility in the City of Buffalo, County of Erie, New York. Based on the site survey map provided, the Conrail property is approximately 2.69 acres and measures about 99 feet wide and 1182 feet long. It is understood that the Phase II Environmental Evaluation was requested by AAM for a possible purchase of the land parcel. It is also understood that the land parcel would be used as either additional parking or related access roadways to existing land owned by AAM. The Phase II Environmental Evaluation included the collection of subsurface data, groundwater monitoring well installations and soil/groundwater analytical testing. The Phase II Environmental Evaluations was requested by Mr. Charles E. Bernd, CPE, representing American Axle & Manufacturing and authorized in the form of a purchase order (TFM 94176). A project location plan is presented on Drawing No. 1 in Appendix A.

#### **B.** Purpose And Scope

ESI was engaged by American Axle & Manufacturing (AAM), to complete a limited Phase II Environmental Evaluation to better define the potential of environmental liability associated with the past land use (i.e. railroad tracks). AAM has also requested that the subsurface explorations determine the material used to construct the elevated berm below the Conrail track bed. To accomplish this purpose, ESI completed the following scope of services:

- o Planned a limited subsurface exploration and analytical testing program based on discussions with Mr. Charles E. Bernd, CPE, of American Axle & Manufacturing (AAM);
- o Coordinated test boring layout and underground utility checks;
- Monitored the drilling of five (5) test borings and the construction of one (1) ground water monitoring well at the subject property;
- o Measured organic vapor concentrations during the limited subsurface exploration phase of the project;
- o Prepared test boring logs and well installation diagrams;
- o Engaged the services of Huntingdon Analytical Services, Inc., a New York State Department of Health (NYSDOH) certified analytical testing laboratory, to analyze composite soil samples and a ground water sample collected from the test borings and monitoring well installed at the site;
- o Evaluated the data collected, and;
- o Summarized the information collected in this report.

The opinions rendered in this report are based solely on the above limited scope of services. Limitations to this report are presented in Appendix B.

February, 1995 Page 3

#### II. SUBSURFACE EXPLORATIONS A. TEST BORINGS

#### 1. General

ESI advanced five (5) test borings (ESI-1, ESI-2, ESI-3, ESI-4 and ESI-5) and installed a ground water monitoring well at test boring location ESI-3 in the Conrail railroad track berm (Refer to Drawing No. 2 in Appendix A, for test boring and monitoring well location). The test borings and monitoring well installations were completed on January 10 and 11, 1995.

The test borings were advanced to evaluate the general subsurface conditions at the site and the presence of potential contamination which may be present in the soil and ground water beneath the site and in the elevated railroad berm material. Test borings ESI-1 through ESI-5 were generally spaced approximately 260 feet apart on the elevated Conrail railroad berm. Generally the test borings were advanced through the berm materials and into the natural soils below. The test borings were advanced to a depth of approximately 20 to 22 feet below existing ground surface grade on the conrail railroad berm (Refer to Drawing No. 1 present in Appendix A, for test boring locations).

#### 2. Test Boring Procedures

ESI used a track mounted CME 850 rotary drill rig to advance the test borings and install the monitoring wells. The test borings were advanced using 4-1/4 inch inside diameter (I.D.) hollow stem augers equipped with a center plug to prevent soil from entering the augers during drilling. Disturbed soil samples were recovered by driving a 24-inch long by 2-inc outside diameter (O.D.) split-spoon sampler into the soil below the bottom of the augers. A 140-pound hammer free falling 30-inches (ASTM D-1586) was used to advance the sampler. The number of blows required to drive the split spoon for the second and third six-inch intervals is the Standard Penetration Test (SPT) N-value and this value is recorded on the appropriate space on the test boring log. Representative soils samples are stored in 8-ounce glass jars with screw-on lids denoting hole, sample number, sample interval and blow count.

February, 1995 Page 4

Soil sampling was done continuously from existing ground surface to the bottom of the test boring. ESI monitored the subsurface explorations and prepared boring logs based on visual observations of the recovered soil samples. The soil samples were generally described using ASTM D-2488 for identification of soils. Features such as relative density or consistency (obtained from the SPT), color, grain size, moisture, etc., were recorded on the boring logs. Boring logs are presented in Appendix C.

A composite soil sample was collected from test borings ESI-2, ESI-3 and ESI-4. The soil samples were collected from split-spoon samples S-3 through S-8 in each of the test borings. The soil samples were combined in a precleaned stainless steel bowl and thoroughly mixed in the field. The samples were then placed in the appropriate precleaned containers, cooled and shipped to HAS in Middleport, New York for analytical testing. Sampling details, analytical testing procedures and test results are discussed later in this report.

#### 3. Groundwater Monitoring Well Installation and Groundwater Sampling Procedures

A groundwater monitoring well (ESI-3) was installed in one (1) of the five (5) test borings upon completion of drilling. The well consisted of 2-inch I.D. schedule 40 polyvinyl chloride (PVC) threaded riser pipe with a section of slotted (0.010-inch slot) schedule 40 PVC well screen placed at the bottom of the borehole. The annular space between the borehole wall and the well screen was backfilled with No. 1 morie sand to a minimum 1.0-feet above the top of the well screen. A minimum 1.0-foot thick bentonite pellet seal was constructed above the sand pack to prevent surface water from running into the well. A curb box was installed from ground surface to the top of the well. The annular space between the borehole wall and the curb box was filled with grout from the top of the bentonite seal to ground surface. A locking protective cap was installed on the top of the well riser pipe. A monitoring well completion report is presented in Appendix C.

February, 1995 Page 5

Groundwater samples were collected from monitoring well ESI-3 on February 10, 1995. The monitoring well was developed prior to sampling using a dedicated disposable bailer. The monitoring well was developed by evacuating approximately five gallons of water (5 well volumes). The well water volumes were calculated by subtracting the groundwater depth from the total length of the monitoring well, which would give the height of the groundwater column in the monitoring well. The groundwater well column was then multiplied by 0.17, which is the gallon per linear foot in a two inch diameter monitoring well, this result is equal to one well volume of water. After evacuating five well volumes, the well was allowed to recover to a sufficient water volume before sampling. Also, during well development, pH and conductivity were recorded (refer to Well Development Parameters presented in Appendix D.

Groundwater was then sampled by carefully lowering a 3-foot long, disposable bailer equipped with a bottom filling check valve into the groundwater and allowing the bailer to fill. The bailer was then slowly removed and the contents emptied into the appropriate precleaned containers. The samples were then placed in an iced cooler and delivered to HAS for testing. The analytical testing parameters and results are discussed later in this report.

#### **B. SUBSURFACE CONDITIONS**

Interpretation of the subsurface conditions is based on the soils sampled at the test boring locations. Variations from the inferred soil characterization and ground water observations should be expected. The subsurface logs should be referred to for a specific description of the subsurface conditions at each boring location. The following description of the subsurface conditions is general in nature.

Test borings ESI-1 through ESI-5 encountered railroad ballast type material (gravel to stone size material) from ground surface to a depth of approximately one (1) foot. Railroad berm fill material (sand, gravel, cinders, slag, etc.) was encountered from beneath the railroad ballast material to a depth of approximately fourteen (14) to eighteen (18) feet. Beneath the railroad berm fill material are natural soils consisting of a medium to stiff, grey-brown and red-brown silty clay with little to trace amounts of gravel and sand, were encountered from the fill material to test boring completion. Bedrock was not encountered in the test borings drilled at the site.

February, 1995 Page 6

#### **III. FIELD TESTING AND RESULTS**

In conjunction with the exploration program, field measurements were taken by ESI to evaluate the presence of organic vapor concentrations in the air near the test borings and on the soil samples recovered. Organic vapor monitoring was done during the test boring program and compared to ambient air background measurements to indicate the potentially hazardous substances below the ground surface. Organic vapor measurements were taken during test boring drilling, at the top of the hollow stem augers with the augers set at various depths during drilling, on soil samples as they were removed from the split-spoon sampler and in the jar headspace after the soils samples were placed in the sample jar.

Organic vapor measurements were taken using a photoionization detector (PID). The PID used to measure total organic vapors was an Hnu PI 101 with a 10.2 eV ultraviolet light source. The PID was calibrated daily before field use.

Ambient background organic vapor measurements were taken upwind of each borehole location prior to drilling to establish site conditions. The range of these "background" readings during the monitoring period (January 10 and 11, 1995) were 0.2 to 0.4 parts per million (ppm). No organic vapor measurements were detected above background at the top of the hollow stem augers with the augers set at various depths during drilling.

Organic vapor measurements on soil samples as they were removed from the split-spoon sampler and in the headspace after the soils samples were placed in the sample jars were detected at concentrations of 2 ppm to 5 ppm above ambient air background in all test boring samples. These measurements are determined to be background soil measurements. All PID measurements are recorded on the test boring logs (Refer to Appendix C for Test Boring Logs).

#### IV. LABORATORY TESTING AND RESULTS A. Soil Analytical Testing and Results

Representative composite soil samples were collected from test borings ESI-2, ESI-3 and ESI-4. The soil samples were analyzed for United States Environmental Protection Agency (USEPA) Target Compound List (TCL) Volatile Organics (Test Method 8270), Semi-Volatiles Organics (Test Method 8270), Pesticides and Polychlorinated Biphenyl (PCB) (Test Method

8080), Metals (Series 6010/7000) and Total Cyanide. The results of the chemical analyses are presented in Appendix E and are summarized below.

The composite soil collected from the test boring split spoon samples S-3 (4 to 6') through S-8 (14' to 16') for test borings ESI-2, ESI-3 and ESI-4, were individually composited in a stainless steel mixing bowl. The representative composite soil samples were then placed in a 125 ml glass vial with teflon septum cap for TCL Volatiles and a 950ml amber glass jar for TCL Semi-volatiles, PCB's, Pesticides, Metals and Total Cyanide. The samples were then cooled and shipped to Huntingdon Analytical Services, Inc. (HAS) in Middleport, New York for analytical testing.

The inorganic (metals) analytical test results for the soil samples collected from the test borings are presented in Table 1. Metals which were detected were compared to soil cleanup guidelines presented in a NYSDEC Memorandum entitled "Determination Of Soil Cleanup Objectives And Cleanup Levels" (January 24, 1994). Soil cleanup levels for heavy metals are the published ranges for metals typically found in soils in New York State and Eastern United States. This information was obtained from a New York State Department of Environmental Conservation (NYSDEC) document which summarizes the typical background concentrations of naturally occurring elements in New York State soils.

|           | *************************************** | TABL<br>GANIC ANA<br>ULTS FOR SO | LYTICAL TE          |                                              |
|-----------|-----------------------------------------|----------------------------------|---------------------|----------------------------------------------|
|           | *************************************** | Sample Locat<br>Incentration (n  | NYSDEC Soil Cleanup |                                              |
| Metal     | ESI-2                                   | ESI-3                            | ESI-4               | Guidelines To Protect<br>Groundwater (mg/Kg) |
| Aluminum  | 21,800                                  | 11,300                           | 14,100              | 33,000                                       |
| Antimony  | 50.2                                    | 38.5                             | 30.6                | ND                                           |
| Arsenic   | 6.67                                    | 6.86                             | 6.55                | 3 - 12                                       |
| Barium    | 239                                     | 211                              | 492                 | 15 - 600                                     |
| Beryllium | 2.78                                    | 1.96                             | 2.94                | 0 - 1.75                                     |

|           | *************************************** |                                | E 1<br>LYTICAL TES<br>DIL SAMPLES |                                              |
|-----------|-----------------------------------------|--------------------------------|-----------------------------------|----------------------------------------------|
| Matal     |                                         | Sample Locat<br>ncentration (n | NYSDEC Soil Cleamp                |                                              |
| Metal     | ESI-2                                   | ESI-3                          | ESI-4                             | Guidelines To Protect<br>Groundwater (mg/Kg) |
| Cadmium   | 4.36                                    | 3.58                           | 2.48                              | 0.01 - 1.0                                   |
| Calcium   | 46,300                                  | 58,500                         | 59,100                            | 130 - 35,000                                 |
| Chromium  | 14.4                                    | 7.79                           | 7.06                              | 1.5 - 40                                     |
| Cobalt    | 13.5                                    | 8.85                           | 6.08                              | 2.5 - 60                                     |
| Copper    | 28.5                                    | 36.5                           | 19.4                              | 1 - 50                                       |
| Iron      | 26,010                                  | 20,000                         | 7,790                             | 2,000 - 550,000                              |
| Lead      | 27.9                                    | 69.8                           | 41                                | 200 - 500                                    |
| Magnesium | 10,900                                  | 5,610                          | 7,950                             | 100 - 5,000                                  |
| Manganese | 647                                     | 447                            | 762                               | 50 - 5,000                                   |
| Mercury   | < 0.12                                  | < 0.12                         | < 0.12                            | 0.001 - 0.2                                  |
| Nickel    | 25.6                                    | 13.9                           | 12.8                              | 0.5 - 25                                     |
| Potassium | 1,730                                   | 369                            | 996                               | 8,500 - 43,000                               |
| Selenium  | < 0.61                                  | < 1.22                         | 0.95                              | 0.1 - 3.9                                    |
| Silver    | 3.24                                    | 3.41                           | 3.27                              | ND                                           |
| Sodium    | 204                                     | 301                            | 382                               | 6,000 - 8,000                                |
| Thallium  | < 2.45                                  | < 2.45                         | < 2.41                            | ND                                           |
| Vanadium  | 31.5                                    | 16.8                           | 14.6                              | 1 - 300                                      |
| Zinc      | 63.3                                    | 26.3                           | · 16.5                            | 9 - 50                                       |

-- mg/Kg = Parts Per Million (ppm) -- No Data. 1

ND

Six (6) metals were reported to be present in the soil samples collected were above the NYSDEC Soil Cleanup Guidelines To Protect Groundwater. Concentrations of beryllium, cadmium, calcium, magnesium, nickel and zinc were detected in the test boring samples in the Conrail Railroad property. Of these metals listed, cadmium and mercury are the inorganic compounds that pose the greatest environmental concern. These concentrations are above the guidance limit that may require remediation in accordance with current NYSDEC soil cleanup guidelines. Considering the planned use of the site (i.e. roadways and paved parking areas), it is ESI's opinion that remediation would be unlikely. Analytical test results are presented in Appendix E.

The analytical test results for volatile and semi-volatile compounds indicates that several of these organic compounds were detected in the fill material at the test boring locations. The volatile and semi-volatile analytical results for the fill material sampled in the test borings are presented in Table 2. The volatile and semi-volatile organic compounds were compared to soil cleanup guidelines presented in a NYSDEC Memorandum entitled "Determination Of Soil Cleanup Objectives And Cleanup Levels" (January 24, 1994).

| VOLATILE AND S<br>DETECTED IN                 | EMI-VOL |       |       |                                                                        |
|-----------------------------------------------|---------|-------|-------|------------------------------------------------------------------------|
| Volatile & Semi-volatile<br>Organic Compounds | ESI-2   | ESI-3 | ESI-4 | NYSDEC Soil<br>Cleanup Guidelines<br>To Protect<br>Groundwater (ug/Kg) |
| Toluene                                       | 12      | < 10  | < 10  | 1,500                                                                  |
| Xylene                                        | 15      | 20    | < 10  | 1,200                                                                  |
| Benzo (a) Anthracene                          | 950     | < 330 | < 330 | 3,000                                                                  |
| Benzo (b) Fluoranthene                        | 1,100   | < 330 | < 330 | 1,100                                                                  |
| Benzo (k) Fluoranthene                        | 540     | < 330 | < 330 | 1,100                                                                  |
| Benzo (a) Pyrene                              | 1,100   | < 330 | < 330 | 11,000                                                                 |
| Benzo (g,h,i) Perylene                        | 810     | < 330 | < 330 | 800,000                                                                |
| Bis (2-Ethyhexyl) Phthalate                   | 540     | 900   | 900   | 435,000                                                                |

February, 1995 Page 10

| TABLE 2<br>VOLATILE AND SEMI-VOLATILE ORGANIC COMPOUNDS<br>DETECTED IN COMPOSITE SOIL SAMPLES (ug/Kg) |       |       |       |                                                                        |
|-------------------------------------------------------------------------------------------------------|-------|-------|-------|------------------------------------------------------------------------|
| Volatile & Semi-volatile<br>Organic Compounds                                                         | ES1-2 | ESI-3 | ESI-4 | NYSDEC Soil<br>Cleanup Guidelines<br>To Protect<br>Groundwater (ug/Kg) |
| Chrysene                                                                                              | 1,000 | < 330 | < 330 | 400                                                                    |
| Fluoranthene                                                                                          | 1,100 | < 330 | < 330 | 1,900,000                                                              |
| Indeno (1,2,3,cd) Pyrene                                                                              | 710   | < 330 | < 330 | 3,200                                                                  |
| Phenanthrene                                                                                          | 590   | < 330 | < 330 | 220,000                                                                |
| Pyrene                                                                                                | 1,400 | 340   | < 330 | 665,000                                                                |

1 -- ug/Kg = Parts Per Billion (ppb)

Thirteen (13) volatile and semi-volatile compounds were detected in the samples collected from the fill material encountered in the test borings. Eleven (11) of the detected volatile and semi-volatile compounds were below NYSDEC soil cleanup guidelines to protect groundwater and would likely be considered insignificant. Two (2) chemical compounds, Benzo (b) Fluoranthene and Chrysene, were found in the fill material collected on the Conrail railroad property. The detected concentrations of these two (2) compounds are above the NYSDEC soil cleanup guidelines to protect groundwater. These compounds are derivatives of coal tars which are typically present in railroad embankment fill and on railroad property. These compounds were not significantly above the NYSDEC guidelines to protect groundwater.

The were no pesticides or PCB's detected in the composite soil samples collected. According to Mr. Stan Radon of the NYSDEC, the action level/corrective action level of the USEPA is 2,000 ppm for cyanide. The total cyanide detected in the samples was well below the USEPA Action Levels.

February, 1995 Page 11

#### **B.** Groundwater Analytical Testing and Results

Groundwater samples were collected from one (1) monitoring well, ESI-3, installed at the subject site. The groundwater samples collected were analyzed for the same parameters as the composite soil samples collected.

No volatile or semi-volatile organic compounds, pesticides, PCB's or cyanide were detected in the groundwater samples collected for analysis.

Detectable concentrations of aluminum, antimony, arsenic, barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, silver, sodium, vanadium and zinc were present in the ground water sample collected from the site as shown in Table 3. The levels reported were compared to the NYSDEC Class GA Groundwater Quality Standards. Of the metals detected, concentrations of aluminum, cadmium, iron, lead, manganese and sodium were present above the NYSDEC Groundwater Standards, however, based on the proposed site use (i.e. parking area/roadway) and that the area is supplied with municipal drinking water, it is unlikely remediation of the groundwater would be required for the elevated metal concentrations. In addition, the presence of iron, manganese and sodium may be naturally occurring and would be considered insignificant. Analytical test results for the ground water sample are presented in Appendix E.

| TABLE 3<br>INORGANIC ANALYTICAL TEST<br>RESULTS FOR GROUND WATER SAMPLES |                                                          |                                             |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|--|--|
| Metal                                                                    | Ground Water Sample Location<br>and Concentration (ug/l) | NYSDEC Class GA<br>Ground Water<br>Standard |  |  |
|                                                                          | ESI-3                                                    |                                             |  |  |
| Aluminum                                                                 | 4,060                                                    | 100                                         |  |  |
| Antimony                                                                 | 114                                                      | NS                                          |  |  |
| Arsenic                                                                  | 9.9                                                      | 25                                          |  |  |
| Barium                                                                   | 120                                                      | 1,000                                       |  |  |
| Beryllium                                                                | < 5.0                                                    | 11 to 1100                                  |  |  |

| RE        | TABLE 3<br>INORGANIC ANALYTICAL TEST<br>RESULTS FOR GROUND WATER SAMPLES |                                 |  |  |  |  |
|-----------|--------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Metal     | Ground Water Sample Location<br>and Concentration (ug/l)                 | NYSDEC Class GA<br>Ground Water |  |  |  |  |
| Calcium   | 285,000                                                                  | Standard<br>NS                  |  |  |  |  |
| Cadmium   | 18                                                                       | 10                              |  |  |  |  |
| Chromium  | 10.6                                                                     | 50                              |  |  |  |  |
| Cobalt    | < 10.0                                                                   | NS                              |  |  |  |  |
| Copper    | 59.5                                                                     | 200                             |  |  |  |  |
| Iron      | 9,890                                                                    | 300 to 500                      |  |  |  |  |
| Lead      | 92.7                                                                     | 25                              |  |  |  |  |
| Magnesium | 71,700                                                                   | NS                              |  |  |  |  |
| Manganese | 2,430                                                                    | 300                             |  |  |  |  |
| Mercury   | < 0.2                                                                    | 2                               |  |  |  |  |
| Nickel    | 40.4                                                                     | NS                              |  |  |  |  |
| Potassium | < 3,000                                                                  | NS                              |  |  |  |  |
| Selenium  | < 5.0                                                                    | 10                              |  |  |  |  |
| Silver    | 11.9                                                                     | 50                              |  |  |  |  |
| Sodium    | 20,800                                                                   | 20,000                          |  |  |  |  |
| Thallium  | < 10                                                                     | NS                              |  |  |  |  |
| Vanadium  | 39.1                                                                     | NS                              |  |  |  |  |
| Zinc      | 68.8                                                                     | 300                             |  |  |  |  |

1

-- ug/1 = Parts Per Billion (ppb)-- NYSDEC Water Quality Regulations. 2

-- No Standard. NS

February, 1995 Page 13

#### VI. SUMMARY AND CONCLUSIONS

A Phase II Environmental Evaluation was completed for American Axle & Manufacturing (AAM) on a parcel of Conrail property located east of the American Axle & Manufacturing East Delevan Facility in the City of Buffalo, County of Erie, New York. This evaluation was limited to subsurface exploration and analytical testing of soil and groundwater samples. The conclusions presented below are subject to the limitations contained in Appendix B. Based on the limited scope of services and information made available to ESI, the relevant findings are summarized below:

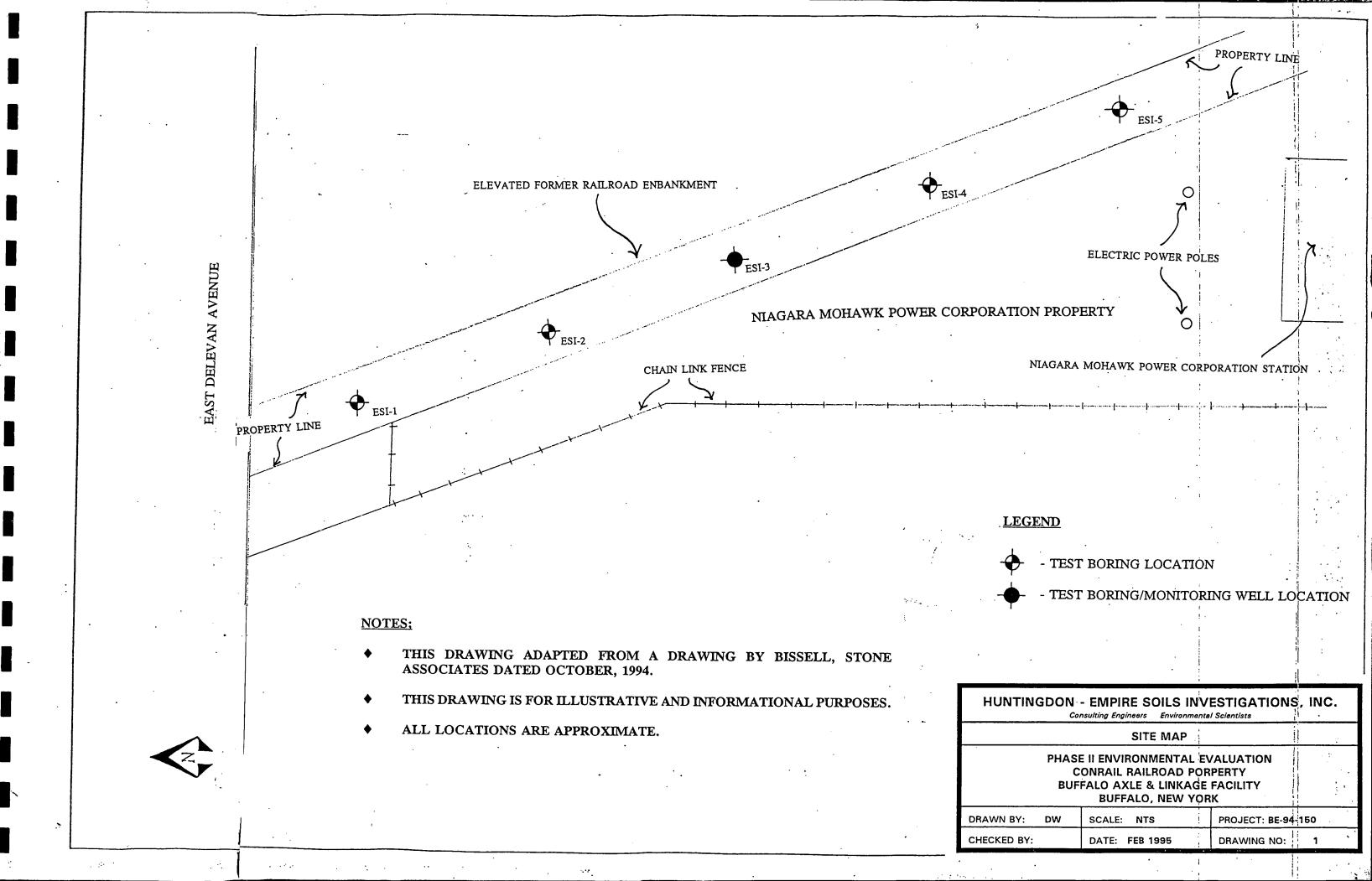
- o The subject site is a former railroad embankment which occupies approximately 2.69 acres of land east of the American Axle & Manufacturing (AAM) East Delevan Facility located in the City of Buffalo, New York. The dimensions of the subject site is approximately ninety-nine (99) feet wide by one thousand, one hundred and eighty-two (1,182) feet long.
- o Miscellaneous fill material (i.e. gravel, sand, cinders, etc.) was encountered in the elevated area of the former railroad embankment at a depth of approximately fourteen (14) to eighteen (18) feet.
- O Concentrations of beryllium, cadmium, calcium, magnesium, nickel and zinc were detected in the test boring samples in the Conrail Railroad property. Of these metals listed, cadmium and mercury in the Conrail property fill materials are the inorganic compounds that pose the greatest environmental concern. These concentrations are above the limit that will require remediation in accordance with current NYSDEC soil cleanup guidelines. Considering the planned use of the site (i.e. roadways and paved parking areas), it is ESI's opinion that remediation is unlikely for cadmium and mercury under current NYSDEC soil cleanup guidelines.
- O Thirteen (13) compounds from the volatile and semi-volatile fraction were detected in the samples analyzed of the fill material from the test borings. Eleven (11) of the detected volatile and semi-volatile compounds were below NYSDEC soil cleanup guidelines to protect groundwater and would likely be considered insignificant. Two (2) compounds, Benzo(b)Fluoranthene and Chrysene, were found in the fill material located on the Conrail railroad property to be present at concentrations above the NYSDEC soil cleanup guidelines to protect groundwater. These compounds are derivatives of coal tars which are typically present in railroad embankment and on railroad property. These compounds were not significantly above the NYSDEC guidelines to protect groundwater.

Detectable concentrations of aluminum, antimony, arsenic, barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, silver, sodium, vanadium and zinc were present in the ground water sample collected from the site as shown in Table 3. The levels reported were compared to the Class GA Groundwater Quality Standards established by the NYSDEC. Of the metals detected, concentrations of aluminum, cadmium, iron, lead, manganese and sodium were present above the NYSDEC standards, however, based on the proposed site use (i.e. parking area/roadway) and that the area is supplied with municipal drinking water, it is unlikely remediation of the groundwater would be required for these elevated metal concentrations. In addition, the presence of iron, manganese and sodium may be naturally occurring and would be considered insignificant.

In summary, due to the elevated concentrations of inorganic compounds (metals), volatile and semi-volatile compounds, the berm fill material should not be removed from the site unless the material is disposed of at a solid waste landfill as a non-hazardous waste. However, due to the proposed use of the site (i.e. parking area and roadway) the berm fill material may be used on-site as fill material beneath roadways, parking lots and/or beautification berms around the parking lots or on the AAM property. To use the material as fill on-site, it would have to be presented to the NYSDEC for approval. If the fill material is used on site ESI could provide services to AAM for design of proposed berms, roadway/parking lot subgrades and necessary approvals by the NYSDEC to use this material on-site. No further field explorations are recommended at this time.

We trust that this report presented herein satisfied your current requirements. Should you have any questions or comments, please do not hesitate to contact our office. We have appreciated the opportunity to work with you on this project.

Respectfully submitted, EMPIRE SOILS INVESTIGATIONS, INC.


and L. I.S.

Donald C. Wartinger Environmental Scientist

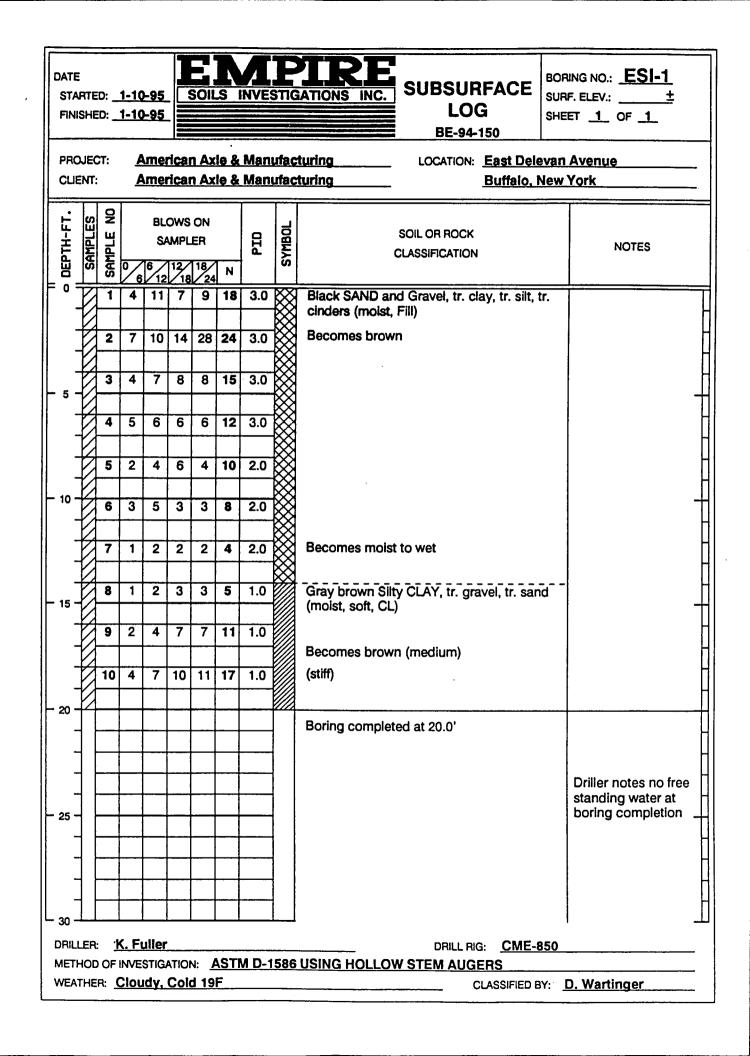
and B. Alrand

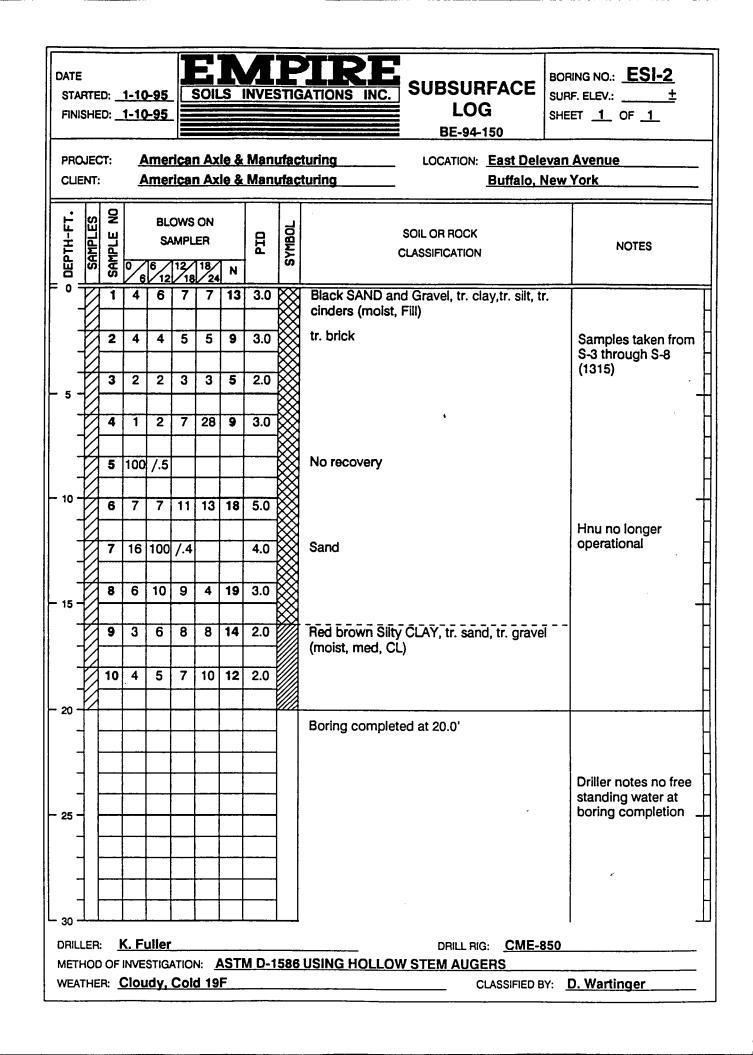
Donald B. Abrams Senior Environmental Geologist

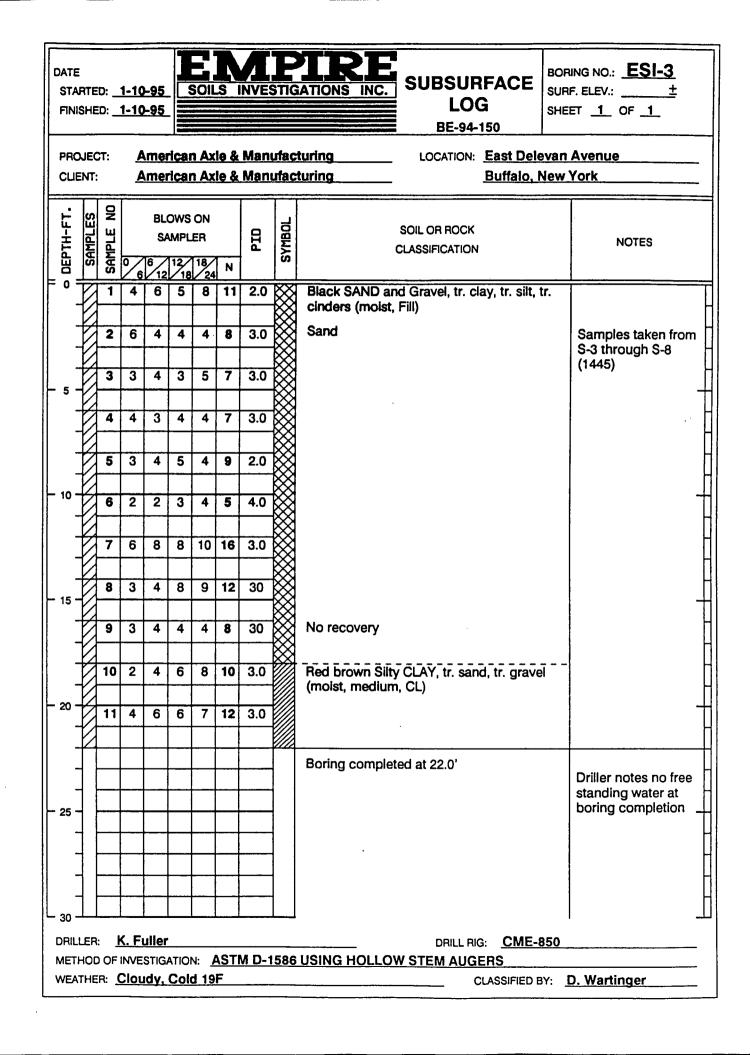
## **APPENDIX** A

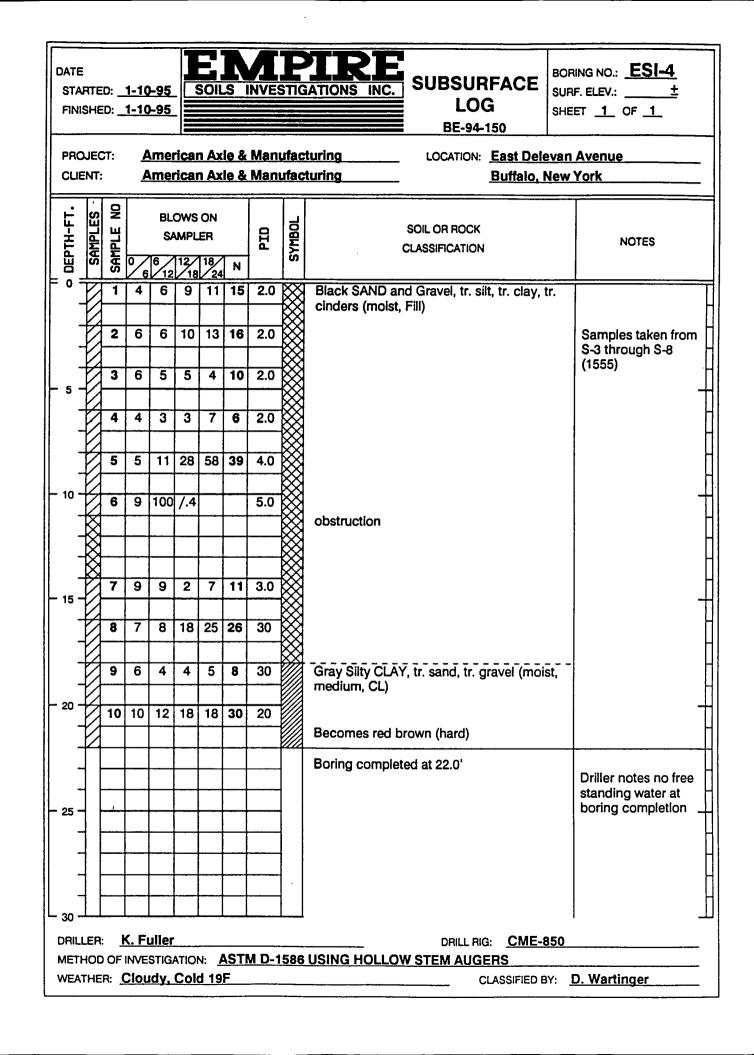


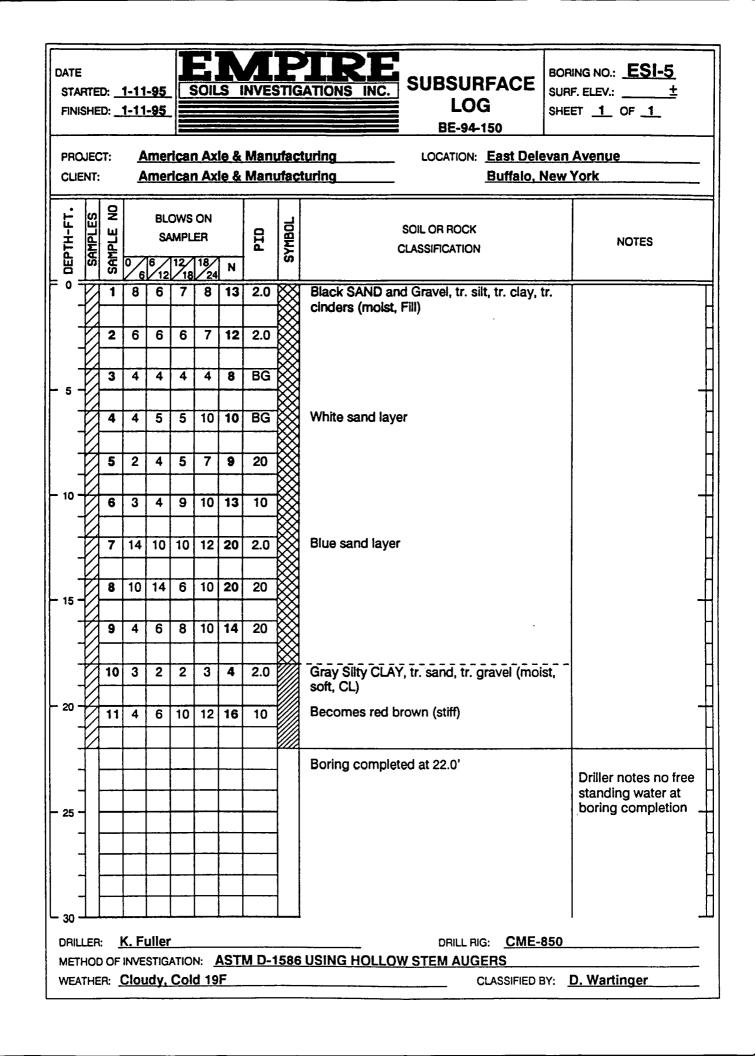
# **APPENDIX B**


#### APPENDIX B LIMITATIONS


- 1. Empire Soils Investigations, Inc. (ESI's), completed this Phase I Environmental Site Assessment in accordance with generally accepted current practices of other consultants undertaking similar studies. ESI observed that degree of care and skill generally exercised by other consultants under similar circumstances and conditions. ESI's findings and conclusions must be considered not as scientific certainties but as probabilities based on our professional judgement concerning the significance of the limited data gathered during the course of the investigation. Specifically, ESI does not and cannot represent that the site contains no hazardous material, petroleum products, or other latent conditions beyond that observed by ESI during this Phase I Environmental Site Assessment.
- 2. The observations described in this report were made under conditions stated therein. The conclusions presented in the report were based solely upon the services described therein and not tasks and procedures beyond the scope of described services or the time and budgetary constraints imposed by the client.
- 3. In preparing this report, ESI has relied on certain information provided by other consultants, the State, County and Town officials and other parties referenced herein and on information contained in the files of state and local agencies made available to ESI at the time of the study.
- 4. Observations were made of the subject site and on adjacent sites as indicated within the report. Where access to portions of the site or the structures on adjacent sites were limited or unavailable, ESI renders no opinion as to the presence of hazardous materials or to the presence of indirect evidence relating to hazardous material in that portion of the site or adjacent structures.
- 5. Unless otherwise specified in the report, ESI did not perform testing or analyses to determine the presence or concentrations of hazardous chemical compounds, petroleum products or asbestos.


#### APPENDIX B LIMITATIONS


- 6. The generalized subsurface profiles described on the test boring logs and the geologic profile sheets are intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples. Actual soil and rock transitions are probably more gradual. For specified information, refer to the test boring and test excavation logs.
- 7. Ground water level readings have been made in the explorations and monitoring wells at times and under conditions stated. It should be noted that fluctuations in the level of the ground water may occur due to variations in rainfall, temperature and other factors occurring from the time measurements were made.
- 8. It should be noted that the samples collected were from various depths and from widely spaced test excavations/test borings and that subsurface conditions should be expected to vary in both type and chemical composition.
- 9. This report has been prepared for the exclusive use of American Axle & Manufacturing and their designated agents for the specific application to the subject property in accordance with generally accepted engineering practice. No other warranty, expressed or implied, is made. The environmental concerns noted in this report, if any, are applicable to the current identified proposed usage of the property.


# **APPENDIX C**









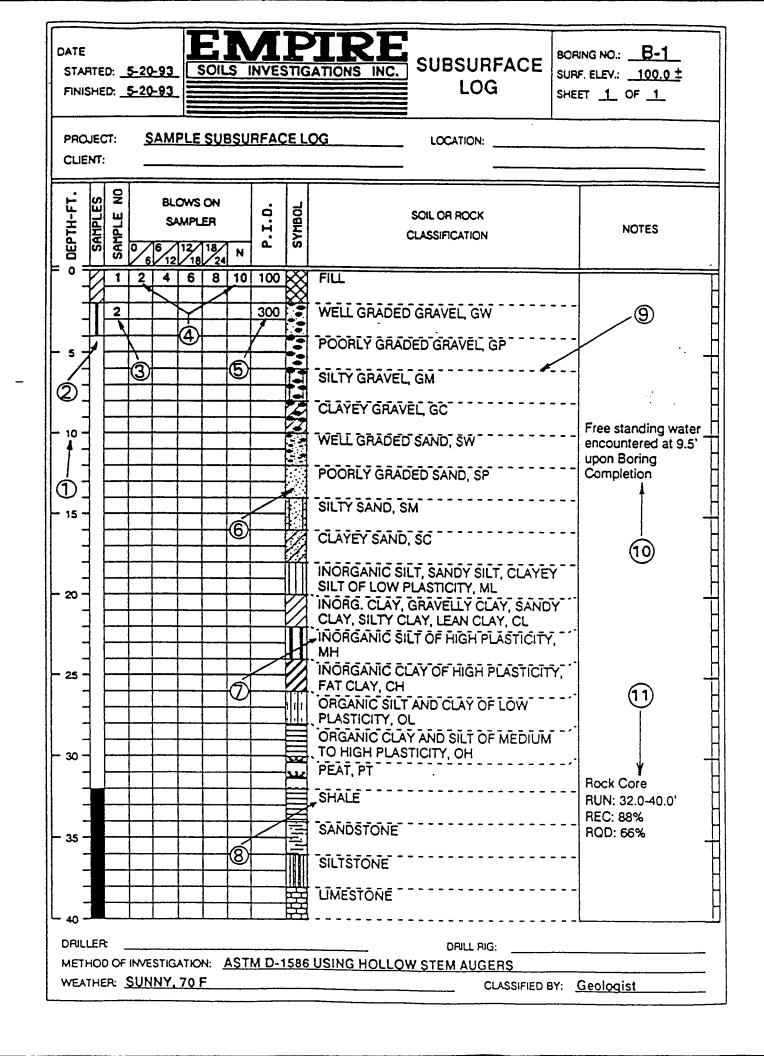


#### **GENERAL INFORMATION & KEY TO SUBSURFACE LOGS**

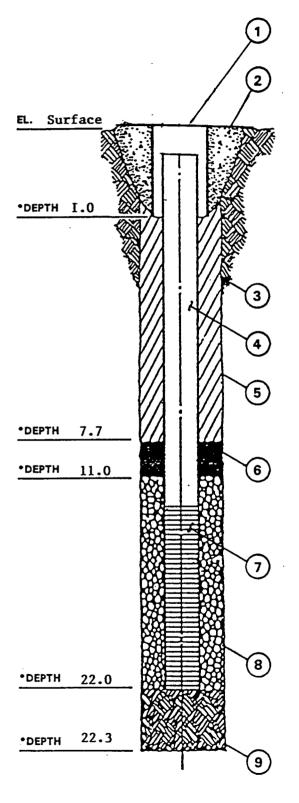
The Subsurface Logs present the observations and mechanical data collected by the driller at the site, supplemented by laboratory visual identification of the materials recovered from the borings. The materials from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. Analyses of standard boring data often indicate the need for additional testing or sampling procedures to better evaluate the subsurface conditions. Any evaluation of the Subsurface Logs and the recovered samples must be performed by Professionals. The information presented herein defines some of the procedures and terms used on the Subsurface Logs.

- 1. The figures in the Depth column define the scale of the Subsurface Log.
- 2. The sample column graphically shows the depth range from which a sample was recovered. See Table I for a description of the symbols used to represent various types of samples.
- 3. The Sample No. is used for identification on sample containers and/or Laboratory Test Reports.
- 4. Blows on Sampler indicate the number of blows required to drive a split spoon sampler into the soil for each six inches of penetration during the "Standard Penetration Test". The first 6 inches of penetration is considered as a seating drive. The total number of blows required for the second and third 6 inches of penetration is termed the penetration resistance, N.
- 5. PID Organic vapor measurements taken with a Photoionization Detector (PID) and recorded in parts per million (ppm).
- 6. Symbol indicates the soil type noted at the approximate depth.
- 7. The recovered soil samples are reviewed in the laboratory by an engineering technician, geologist, or geotechnical engineer, unless noted otherwise. The visual descriptions are made on the basis of a combination of the driller's field descriptions and observations and the samples as received in the laboratory. The method of visual classification is based primarily on the Unified Soil Classification (ASTM D 2487) with regard to the particle size and plasticity (See Table II). Additionally, the relative portion, by weight, of two or more soil types is based on Burmister, ASTM Special Technical Publication 479, June 1970 (See Table III). The description of the relative soil density or consistency is based upon the penetration records as defined in Table IV. The description of the soil moisture is based upon relative wetness of the soils as recovered. Water introduced in the boring either naturally or during the drilling may have affected the moisture condition of the recovered samples. Special terms are used as required to describe materials in detail; several such terms are listed in Table V. When sampling gravelly soils with a standard 2-inch diameter split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing and sampler blows or through the "action" of the drill rig as reported by the driller.
- 8. The description of the rock is based on the recovered rock core and the driller's observations. The terms frequently used in the description are included in-Table VI.
- 9. The stratification lines represent the approximate boundary between soil types and the transition may be gradual.
- 10. Miscellaneous observations and procedures noted by the driller are shown in this column, including water level observations. The reliability of the water level observations depends upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the boring may have influenced the observations. The ground water level typically will fluctuate seasonally. Perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or water observation wells.
- 11. Core run is defined as the length of penetration of the core barrel. Core recovery is the length of core recovered divided by the core run. The RQD (Rock Quality Designation) is the total length of core pieces exceeding 4 inches in size divided by the core run. The size of the core barrel used is noted.

| Split Spoon<br>Sample<br>Shelby Tube<br>Sample                                |                                                  | an est                                                                          | fication of so<br>imate of parti<br>rained soils a                           | icle sizes,                | and in the                           | case of                                      |
|-------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|--------------------------------------|----------------------------------------------|
|                                                                               |                                                  | Soil                                                                            | Туре So                                                                      | oil Particle<br>Size       | 3                                    |                                              |
|                                                                               | <b>r</b>                                         | Boulde:<br>Cobble<br>Gravel<br>Coar:<br>Fine<br>Sand-<br>Coar:<br>Mediv<br>Fine | - 3<br>se 3<br>3/4<br>se \$4<br>um \$10                                      | ) - #40                    | G                                    | Coarse<br>Grained<br>Granular)               |
| ABLE III<br>The following terms<br>classifying soils c<br>of two or more soil | consisting of                                    | Clay: 1                                                                         | Non-Plastic (G<br>Plastic (Cohes<br>TABLE IV<br>The relative<br>described in | compactnes                 | s or consis                          | Fine<br>crained<br>stency is<br>owing terms. |
| is based on weight                                                            |                                                  |                                                                                 | Granular                                                                     | Soils                      | Cohes                                | sive Soils                                   |
| Term                                                                          | Percent of<br>Sampl                              |                                                                                 | Term                                                                         | Blows<br>per foot,<br>N    | Term                                 | Blows<br>per foot<br>N                       |
| "and"<br>"some"<br>"little"<br>"trace"                                        | 35% -<br>20% -<br>10% -<br>less tha              | 35%<br>20%<br>n 10%                                                             | Loose<br>Firm<br>Compact<br>Very Compact                                     | < 11<br>11 - 30<br>31 - 50 | Very Soft<br>Soft<br>Medium<br>Stiff |                                              |
|                                                                               | velly soils wi<br>on, the true<br>el is often no |                                                                                 | I                                                                            |                            | Hard<br>soils will                   | > 25<br>l often                              |


| مم  | عد | v |  |
|-----|----|---|--|
|     |    |   |  |
| ••. |    | • |  |

| Varved -   | Horizontal uniform<br>layers or seams of<br>soil(s).                   |
|------------|------------------------------------------------------------------------|
| Layer -    | Soil deposit more than 6" thick.                                       |
| Seam -     | Soil deposit less than 6" thick.                                       |
| Parting-   | Soil deposit less than 1/8" thick.                                     |
| Laminated- | Irregular, horizontal<br>and angled seams and<br>partings of soils(s). |


#### TABLE VI

5

| Rock Classification Terms<br>Hardness: Soft<br>Medium Hard<br>Hard<br>Very Hard<br>Weathering: Very Weathered<br>Weathered<br>Sound |  | Meaning<br>Scratched by fingernail.<br>Scratched easily by penknife.<br>Scratched with difficulty by penknife.<br>Cannot be scratched by penknife. |                                                               |                                                                                                    |                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                                                     |  |                                                                                                                                                    |                                                               |                                                                                                    | Judged from the relative amounts of disintegration, iron staining, core recovery, clay seams, etc. |
|                                                                                                                                     |  | Bedding:                                                                                                                                           | Laminated<br>Thin Bedded<br>Bedded<br>Thick Bedded<br>Massive | Natural Breaks in ( < 1" )<br>Rock Layers ( 1" - 4" )<br>( 4" - 12")<br>( 12" - 36")<br>( > - 36") |                                                                                                    |



#### MONITORING WELL COMPLETION REPORT



| •••                                  |                                  |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| WELL NOESI-3                         |                                  |  |  |  |  |  |  |  |
| PROJECT NOBE-94-150                  |                                  |  |  |  |  |  |  |  |
| DATE INSTALLED                       |                                  |  |  |  |  |  |  |  |
| PROJECTAmerican Axle & Manufacturing |                                  |  |  |  |  |  |  |  |
| East Delevan Ave., Buffalo, NY       |                                  |  |  |  |  |  |  |  |
|                                      |                                  |  |  |  |  |  |  |  |
| 1.                                   | PROTECTIVE CASING I.D. (INCHES)9 |  |  |  |  |  |  |  |
| 2.                                   | SURFACE SEAL TYPE <u>Sakrete</u> |  |  |  |  |  |  |  |
| 3.                                   | BOREHOLE DIAMETER (INCHES)8      |  |  |  |  |  |  |  |
| 4.                                   | RISER PIPE                       |  |  |  |  |  |  |  |
|                                      | TYPE Schedule 40 PVC             |  |  |  |  |  |  |  |
|                                      | I.D. (INCHES) 2                  |  |  |  |  |  |  |  |
|                                      | LENGTH (FEET) 11.9               |  |  |  |  |  |  |  |
|                                      | JOINT TYPE Flush Threaded        |  |  |  |  |  |  |  |
| 5.                                   | BACKFILL                         |  |  |  |  |  |  |  |
|                                      | TYPE Portland Cement             |  |  |  |  |  |  |  |
|                                      | INSTALLATIONSurface              |  |  |  |  |  |  |  |
| 6.                                   | TYPE OF SEAL Bentonite Chips     |  |  |  |  |  |  |  |
| 7.                                   | SCREEN                           |  |  |  |  |  |  |  |
|                                      | TYPE Schedule 40 PVC             |  |  |  |  |  |  |  |
|                                      | I.D. (INCHES)2                   |  |  |  |  |  |  |  |
|                                      | SLOT SIZE (INCHES) 0.020         |  |  |  |  |  |  |  |
|                                      | LENGTH 10.0'                     |  |  |  |  |  |  |  |
| 8.                                   | SCREEN FILTER TYPE               |  |  |  |  |  |  |  |
|                                      |                                  |  |  |  |  |  |  |  |
| 9.                                   | BACKFILL TYPE#1 Morie Sand       |  |  |  |  |  |  |  |
|                                      | ·                                |  |  |  |  |  |  |  |

\*DEPTH IN FEET BELOW GRADE



# **APPENDIX D**



### WELL DEVELOPMENT PARAMETERS

S-5167 S. Park Avenue, Hamburg, NY 14075

| PROJECTS:    | American Axle and Man  | ufacturing | 3           |          |         |
|--------------|------------------------|------------|-------------|----------|---------|
| LOCATION:    | East Delevan Avenue,   | Buffalo,   | New York    |          |         |
| WELL NO      | ESI-3                  |            | DATE:       | 2-10-95  | `       |
| WATER LEVEL  | PRIOR TO DEVELOPMENT:  |            |             | 14.80    | •       |
|              |                        |            | (elevation  | in feet) |         |
| WATER LEVEL  | AFTER DEVELOPMENT:     | •          |             | 20.05    |         |
|              |                        |            | (elevation  | in feet) |         |
| DEVELOPMENT  | STARTED:               |            | •           | 1310     |         |
| DEVELOPMENT  | COMPLETED:             |            |             | 1310     | <u></u> |
| TOTAL VOLUME | C OF WATER PRODUCED: _ |            |             | 5.0      | gallons |
| SCREENED INT |                        |            |             |          |         |
|              |                        | (elevati   | on in feet) |          |         |
| PID PPM:     |                        |            |             |          |         |

... ...

. .

| DATE    | pH<br>(STANDARD_UNITS) | CONDUCTIVITY<br>(uMHOS/cm) | TEMP.<br>(°F) | VOLUME<br>EVACUATED<br>(GALLONS) | COMMENTS       |
|---------|------------------------|----------------------------|---------------|----------------------------------|----------------|
| 2-10-95 | 7.26                   | 1.285                      |               | 3.0                              | very<br>turbid |
| 11      | 7.23                   | 1.272                      |               | 4.0                              | 11             |
| 11      | 7.21                   | 1.265                      |               | 5.0                              | Sample 1400    |
|         |                        |                            |               |                                  |                |
|         |                        |                            |               |                                  |                |
|         |                        |                            |               |                                  |                |
|         |                        |                            |               |                                  |                |
|         |                        |                            |               |                                  |                |

Well Calculations

 Bottom Of Well 20.75

 Water Level
 14.80

 Water Column
 5.95

 x .17
 0ne Well Vol

Five Well Volumns = 5.0

# **APPENDIX E**

ENVIRONMENTAL ANALYTICAL REPORT

REPORT NUMBER: 95-0060

PREPARED FOR:

HUNTINGDON ENGINEERING & ENVIRONMENTAL S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

RE: AMERICAN AXLE & MANUFACT (BE-94-150)

PREPARED BY:

HUNTINGDON ANALYTICAL SERVICES P.O. BOX 250 MIDDLEPORT, NEW YORK 14105 TELEPHONE: 716/735-3400; FAX: 716/735-3653

JANUARY 19, 1995

# Huntingdon

#### HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

Report Number: 95-0060

STATEMENT OF WORK PERFORMED

I HEREBY DECLARE THAT THE WORK WAS PERFORMED UNDER MY SUPERVISION ACCORDING TO THE PROCEDURES OUTLINED BY THE FOLLOWING REFERENCES AND THAT THIS REPORT PROVIDES A CORRECT AND FAITHFUL RECORD OF THE RESULTS OBTAINED.

- 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act", October 26, 1984 (Federal Register) U. S. Environmental Protection Agency.
  - U.S. ENVIRONMENTAL PROTECTION AGENCY, "TEST METHODS OF EVALUATING SOLID WASTE - PHYSICAL/CHEMICAL METHODS", OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, SW-846, 2ND EDITION AND 3RD EDITION.

THIS REPORT CONTAINS ANALYTICAL DATA BASED ON OUR EXAMINATION OF THE SAMPLE(S) PRESENTED TO US. THIS REPORT CONTAINS (EXCEPT WHERE EXPLICITLY STATED) A COMPLETE ACCOUNT OF THE ANALYSES REQUESTED TO BE PERFORMED ON THE SAMPLE(S). INFORMATION WHICH WAS NOT REQUESTED TO BE REPORTED IS NOT INCLUDED.

lar

PHILLIP A. KUYKENDALL JANUARY 19, 1995 ENVIRONMENTAL LABORATORY MANAGER

#### REPORT CODE LEGEND:

- < DL = LESS THAN DETECTION LIMIT
- ND = NOT DETECTED
- NA = NOT APPLICABLE
- INP = INFORMATION NOT PROVIDED

Huntingdon

MB = METHOD BLANK

,

WET CHEMISTRY

| SAMPLE IDENTIFICATION : |               |                  | ESI-2           | ESI-3           | ESI-4           | METHOD<br>BLANK |
|-------------------------|---------------|------------------|-----------------|-----------------|-----------------|-----------------|
| HAS SAMPLE #950060      |               |                  | 01              | 02              | 03              |                 |
| ANALYTE                 | EPA<br>METHOD | DATE<br>ANALYZED | RESULT<br>mg/kg | RESULT<br>mg/kg | RESULT<br>mg/kg | RESULT<br>mg/L  |
| TOTAL CYANIDE           | 9010          | 01/16/95         | 15.5            | 12.5            | 11.2            | <0.01           |
| DATE SAMPLED:           |               |                  | 01/10/95        | 01/10/95        | 01/10/95        |                 |

#### METALS

| SAMPLE IDENTIFICATION : |               |                  | ESI-2           | ESI-3           | ESI-4           | METHOD<br>BLANK |
|-------------------------|---------------|------------------|-----------------|-----------------|-----------------|-----------------|
| HAS SAMPLE #950060      |               |                  | 01              | 02              | 03              |                 |
| ANALYTE                 | EPA<br>METHOD | DATE<br>ANALYZED | RESULT<br>mg/kg | RESULT<br>mg/kg | RESULT<br>mg/kg | RESULT<br>mg/kg |
| ALUMINUM                | 6010          | 01/18/95         | 21,800          | 11,300          | 14,100          | 8.93            |
| ANTIMONY                | 6010          | 01/17/95         | 50.2            | 38.5            | 30.6            | <5.0            |
| ARSENIC                 | 7060          | 01/18/95         | 6.66            | 6.86            | 6.55            | <1.0            |
| BARIUM                  | 6010          | 01/17/95         | 239             | 211             | 492             | <1.0            |
| BERYLLIUM               | 6010          | 01/17/95         | 2.78            | 1.96            | 2.94            | < 0.5           |
| CADMIUM                 | 6010          | 01/17/95         | 4.36            | 3.58            | 2.48            | < 0.5           |
| CALCIUM                 | 6010          | 01/17/95         | 46,300          | 58,500          | 59,100          | 12.8            |
| CHROMIUM                | 6010          | 01/17/95         | 14.4            | 7.79            | 7.06            | <1.0            |
| COBALT                  | 6010          | 01/17/95         | 13.5            | 8.85            | 6.08            | <1.0            |
| COPPER                  | 6010          | 01/17/95         | 28.5            | 36.5            | 19.4            | <1.0            |
| IRON                    | 6010          | 01/18/95         | 26,010          | 20,000          | 7,790           | 51.2            |
| LEAD                    | 6010&7421     | 01/17-18/95      | 27.9            | 69.8            | 41.0            | <4.0            |
| MERCURY                 | 7471          | 01/18/95         | < 0.12          | < 0.12          | < 0.12          | < 0.1           |
| MAGNESIUM               | 6010          | 01/17-18/95      | 10,900          | 5,610           | 7,950           | <4.0            |
| MANGANESE               | 6010          | 01/17/95         | 647             | 447             | 762             | 2.77            |
| NICKEL                  | 6010          | 01/17/95         | 25.6            | 13.9            | 12.8            | <4.0            |
| POTASSIUM               | 6010          | 01/17/95         | 1730            | 369             | 996             | <300            |
| SELENIUM                | 7740          | 01/17-18/95      | < 0.61          | <1.22           | 0.95            | <1.0            |
| SILVER                  | 6010          | 01/17/95         | 3.24            | 3.41            | 3.27            | <1.0            |
| SODIUM                  | 6010          | 01/17/95         | 204             | 301             | 382             | 12.1            |
| THALLIUM                | 7841          | 01/17/95         | <2.45           | <2.45           | <2.41           | <2.0            |
| VANADIUM                | 6010          | 01/17/95         | 31.5            | 16.8            | 14.6            | <1.0            |
| ZINC                    | 6010          | 01/17/95         | 63.3            | 26.3            | 16.5            | <2.0            |
| DATE SAMPLED:           |               |                  | 01/10/95        | 01/10/95        | 01/10/95        |                 |

SOIL SAMPLES CALCULATED ON A DRY WEIGHT BASIS.

•

#### EPA METHOD 8080 ORGANOCHLORINE PESTICIDES

POLYCHLORINATED BIPHENYLS

| SAMPLE IDENTIFICATION : | ESI-2           | ESI-3           | ESI-4           | METHOD<br>BLANK |             |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-------------|
| HAS SAMPLE #950060      | 01              | 02              | 03              |                 |             |
| COMPOUND                | RESULT<br>mg/Kg | RESULT<br>mg/Kg | RESULT<br>mg/Kg | RESULT<br>mg/Kg | DL<br>mg/Kg |
|                         |                 |                 |                 |                 |             |
| ALDRIN                  | < 0.002         | < 0.002         | < 0.002         | < 0.002         | 0.002       |
| A-BHC                   | < 0.002         | < 0.002         | < 0.002         | <0.002          | 0.002       |
| B-BHC                   | < 0.002         | < 0.002         | < 0.002         | <0.002          | 0.002       |
| D-BHC                   | < 0.002         | <0.002          | <0.002          | < 0.002         | 0.002       |
| G-BHC                   | < 0.002         | < 0.002         | < 0.002         | < 0.002         | 0.002       |
| CHLORDANE               | < 0.03          | <0.03           | <0.03           | < 0.03          | 0.03        |
| 4,4-DDD                 | < 0.002         | < 0.002         | < 0.002         | <0.002          | 0.002       |
| 4,4-DDE                 | < 0.002         | < 0.002         | <0.002          | <0.002          | 0.002       |
| 4;4-DDT                 | < 0.002         | < 0.002         | <0.002          | < 0.002         | 0.002       |
| DIELDRIN                | < 0.002         | < 0.002         | <0.002          | <0.002          | 0.002       |
| ENDOSULFAN I            | < 0.002         | < 0.002         | <0.002          | <0.002          | 0.002       |
| ENDOSULFAN II           | <0.002          | < 0.002         | <0.002          | < 0.002         | 0.002       |
| ENDOSULFAN SULFATE      | <0.002          | < 0.002         | <0.002          | <0.002          | 0.002       |
| ENDRIN                  | <0.002          | < 0.002         | < 0.002         | <0.002          | 0.002       |
| ENDRIN ALDEHYDE         | < 0.002         | <0.002          | <0.002          | <0.002          | 0.002       |
| ENDRIN KETONE           | <0.002          | <0.002          | < 0.002         | < 0.002         | 0.002       |
| HEPTACHLOR              | <0.002          | < 0.002         | < 0.002         | <0.002          | 0.002       |
| HEPTACHLOR EPOXIDE      | < 0.002         | <0.002          | <0.002          | <0.002          | 0.002       |
| METHOXYCHLOR            | < 0.002         | < 0.002         | < 0.002         | <0.002          | 0.002       |
| TOXAPHENE               | < 0.03          | < 0.03          | <0.03           | < 0.03          | 0.03        |
| PCB-1016                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| PCB-1221                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| PCB-1232                | < 0.05          | < 0.05          | < 0.05          | <0.05           | 0.05        |
| PCB-1242                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| PCB-1248                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| PCB-1254                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| PCB-1260                | < 0.05          | < 0.05          | < 0.05          | < 0.05          | 0.05        |
| DATE EXTRACTED:         | 1/13/95         | 1/13/95         | 1/13/95         | 1/13/95         |             |
| DATE ANALYZED:          | 1/13/95         | 1/14/95         | 1/14/95         | 1/14/95         |             |

.

#### EPA METHOD 8240 VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :         | ESI-2           | ESI-3           | ESI-4           | METHOD<br>BLANK |             |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-------------|
| HAS SAMPLE #950060              | 01              | 02              | 03              |                 |             |
| COMPOUND                        | RESULT<br>ug/Kg | RESULT<br>ug/Kg | RESULT<br>ug/Kg | RESULT<br>ug/Kg | DL<br>ug/Kg |
| CHLOROMETHANE                   | < 10            | <10             | <10             | <10             | 10          |
| BROMOMETHANE                    | <10             | <10             | <10             | <10             | 10          |
| VINYL CHLORIDE                  | <10             | <10             | <10             | <10             | 10          |
| CHLOROETHANE                    | <10             | <10             | <10             | <10             | 10          |
| METHYLENE CHLORIDE              | <10             | <10             | < 10            | <10             | 10          |
| ACETONE                         | 25              | 33              | 20              | 11              | 10          |
| TRICHLOROFLUOROMETHANE          | <10             | <10             | <10             | <10             | 10          |
| CARBON DISULFIDE                | <10             | <10             | <10             | <10             | 10          |
| 1,1-DICHLOROETHENE              | <10             | <10             | <10             | <10             | 10          |
| 1,1-DICHLOROETHANE              | <10             | <10             | <10             | < 10            | 10          |
| 1,2-DICHLOROETHENE (TOTAL)      | <10             | <10             | <10             | <10             | 10          |
| CHLOROFORM                      | <10             | <10             | <10             | <10             | 10          |
| 1,2-DICHLOROETHANE              | <10             | <10             | <10             | <10             | 10          |
| 2-BUTANONE                      | <10             | <10             | <10             | <10             | 10          |
| 1,1,1-TRICHLOROETHANE           | <10             | <10             | <10             | <10             | 10          |
| CARBON TETRACHLORIDE            | <10             | <10             | <10             | <10             | 10          |
| VINYL ACETATE                   | <10             | <10             | <10             | <10             | 10          |
| BROMODICHLOROMETHANE            | <10             | <10             | <10             | <10             | 10          |
| 1,2-DICHLOROPROPANE             | <10             | <10             | <10             | < 10            | 10          |
| cis-1,3-DICHLOROPROPENE         | <10             | <10             | <10             | <10             | 10          |
| TRICHLOROETHENE                 | <10             | <10             | <10             | <10             | 10          |
| DIBROMOCHLOROMETHANE            | <10             | <10             | <10             | <10             | 10          |
| 1,1,2-TRICHLOROETHANE           | <10             | <10             | <10             | <10             | 10          |
| BENZENE                         | < 10            | <10             | <10             | < 10            | 10          |
| trans-1,3-DICHLOROPROPENE       | <10             | <10             | < 10            | < 10            | 10          |
| 2-CHLOROETHYLVINYL ETHER        | <10             | <10             | <10             | < 10            | 10          |
| BROMOFORM                       | <10             | <10             | <10             | < 10            | 10          |
| 4-METHYL-2-PENTANONE            | <10             | <10             | <10             | <10             | 10          |
| 2-HEXANONE<br>TETRACHLOROETHENE | <10             | <10             | <10             | <10             | 10          |
|                                 | <10             | <10             | <10             | <10             | 10          |
| 1,1,2,2-TETRACHLOROETHANE       | <10<br>12       | <10             | <10             | <10             | 10          |
| CHLOROBENZENE                   |                 | <10             | <10             | <10             | 10<br>10    |
| ETHYL BENZENE                   | <10<br><10      | <10             | <10             | <10             | 10          |
| STYRENE                         |                 | <10             | <10             | <10             | 10          |
| XYLENE (TOTAL)                  | <10<br>15       | <10             | <10             | <10             | 10          |
| 1,3-DICHLOROBENZENE             | 15<br><10       | 20<br>10        | <10             | <10             | 10          |
| 1,3-DICHLOROBENZENE             | < 10<br>< 10    | <10             | <10             | <10             | 10          |
| 1,4-DICHLOROBENZENE             | < 10<br>< 10    | <10             | < 10            | <10             | 10          |
| 1,4-DIGITOROBENZENE             | < 10            | <10             | <10             | < 10            | 10          |

DATE ANALYZED:

1-17-95 1-17-95 1-17-95 1-17-95

# HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8270 SEMI-VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :     | ESI-2  | ESI-3  | ESI-4  | METHOD<br>BLANK |       |
|-----------------------------|--------|--------|--------|-----------------|-------|
| HAS SAMPLE #950060          | 01     | 02     | 03     |                 |       |
| BASE/NEUTRAL                | RESULT | RESULT | RESULT | RESULT          | MDL   |
| COMPOUNDS                   | ug/Kg  | ug/Kg  | ug/Kg  | ug/Kg           | ug/Kg |
| ACENAPHTHENE                | <330   | <330   | <330   | <330            | 330   |
| ACENAPHTHYLENE              | <330   | <330   | <330   | <330            | 330   |
| ANTHRACENE                  | <330   | <330   | <330   | <330            | 330   |
| BENZO(a)ANTHRACENE          | 950    | <330   | <330   | <330            | 330   |
| BENZO(b)FLUORANTHENE        | 1,100  | <330   | <330   | <330            | 330   |
| BENZO(k)FLUORANTHENE        | 540    | <330   | <330   | <330            | 330   |
| BENZO(a)PYRENE              | 1,000  | <330   | <330   | <330            | 330   |
| BENZO(g,h,i)PERYLENE        | 810    | <330   | <330   | <330            | 330   |
| BENZYL ALCOHOL              | <330   | <330   | <330   | <330            | 330   |
| BIS(2-CHLOROETHOXY)METHANE  | <330   | <330   | <330   | <330            | 330   |
| BIS(2-CHLOROETHYL)ETHER     | <330   | <330   | <330   | <330            | 330   |
| BIS(2-CHLOROISOPROPYL)ETHER | <330   | <330   | <330   | <330            | 330   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 540    | 900    | 900    | <330            | 330   |
| BUTYLBENZYL PHTHALATE       | <330   | <330   | <330   | <330            | 330   |
| 4-BROMOPHENYL-PHENYL ETHER  | <330   | <330   | <330   | <330            | 330   |
| 4-CHLOROANILINE             | <330   | <330   | <330   | <330            | 330   |
| 2-CHLORONAPHTHALENE         | <330   | <330   | <330   | <330            | 330   |
| 4-CHLOROPHENYL-PHENYL ETHER | <330   | <330   | <330   | <330            | 330   |
| CHRYSENE                    | 1,000  | <330   | <330   | <330            | 330   |
| DIBENZ(a,h)ANTHRACENE       | <330   | <330   | <330   | <330            | 330   |
| DIBENZOFURAN                | <330   | <330   | <330   | <330            | 330   |
| DI-N-BUTYLPHTHALATE         | <330   | <330   | <330   | <330            | 330   |
| 1,2-DICHLOROBENZENE         | <330   | <330   | <330   | <330            | 330   |
| 1,3-DICHLOROBENZENE         | <330   | <330   | <330   | <330            | 330   |
| 1,4-DICHLOROBENZENE         | <330   | <330   | <330   | <330            | 330   |
| 3,3-DICHLOROBENZIDINE       | <660   | <660   | <660   | <660            | 660   |
| DIETHYL PHTHALATE           | <330   | <330   | <330   | <330            | 330   |
| DIMETHYL PHTHALATE          | <330   | <330   | <330   | <330            | 330   |
| 2,4-DINITROTOLUENE          | <330   | <330   | <330   | <330            | 330   |
| 2,6-DINITROTOLUENE          | <330   | <330   | <330   | <330            | 330   |
| DI-N-OCTYL PHTHALATE        | <330   | <330   | <330   | <330            | 330   |
| FLUORANTHENE                | 1,100  | <330   | <330   | <330            | 330   |
| FLUORENE                    | <330   | <330   | <330   | <330            | 330   |
| HEXACHLOROBENZENE           | <330   | <330   | <330   | <330            | 330   |
| HEXACHLOROBUTADIENE         | <330   | <330   | <330   | <330            | 330   |
| HEXACHLOROCYCLOPENTADIENE   | <330   | <330   | <330   | <330            | 330   |
| HEXACHLOROETHANE            | <330   | <330   | <330   | <330            | 330   |
| INDENO(1,2,3-cd)PYRENE      | 710    | <330   | <330   | <330            | 330   |
|                             |        |        |        |                 |       |

# HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8270 SEMI-VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :                                                                                                                                                                                                                      | ESI-2                                                                                                                                                     | ESI-3                                                                                                                               | ESI-4                                                                                                                                     | METHOD<br>BLANK                                                                                                                             |                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| HAS SAMPLE #950060                                                                                                                                                                                                                           | 01                                                                                                                                                        | 02                                                                                                                                  | 03                                                                                                                                        |                                                                                                                                             |                                                                                                              |
| BASE/NEUTRAL                                                                                                                                                                                                                                 | RESULT                                                                                                                                                    | RESULT                                                                                                                              | RESULT                                                                                                                                    | RESULT                                                                                                                                      | MDL                                                                                                          |
| COMPOUNDS                                                                                                                                                                                                                                    | ug/Kg                                                                                                                                                     | ug/Kg                                                                                                                               | ug/Kg                                                                                                                                     | ug/Kg                                                                                                                                       | ug/Kg                                                                                                        |
| ISOPHORONE                                                                                                                                                                                                                                   | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| 2-METHYL NAPHTHALENE                                                                                                                                                                                                                         | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| NAPHTHALENE                                                                                                                                                                                                                                  | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| 2-NITROANILINE                                                                                                                                                                                                                               | <1,600                                                                                                                                                    | <1,600                                                                                                                              | <1,600                                                                                                                                    | <1,600                                                                                                                                      | 1,600                                                                                                        |
| 3-NITROANILINE                                                                                                                                                                                                                               | <1,600                                                                                                                                                    | <1,600                                                                                                                              | <1,600                                                                                                                                    | <1,600                                                                                                                                      | 1,600                                                                                                        |
| 4-NITROANILINE                                                                                                                                                                                                                               | <1,600                                                                                                                                                    | <1,600                                                                                                                              | <1,600                                                                                                                                    | <1,600                                                                                                                                      | 1,600                                                                                                        |
| NITROBENZENE                                                                                                                                                                                                                                 | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                       | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| N-NITROS-DI-N-PROPYLAMINE                                                                                                                                                                                                                    | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| PHENANTHRENE                                                                                                                                                                                                                                 | 590                                                                                                                                                       | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| PYRENE                                                                                                                                                                                                                                       | 1,400                                                                                                                                                     | 340                                                                                                                                 | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                       | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
| CARBAZOLE                                                                                                                                                                                                                                    | <330                                                                                                                                                      | <330                                                                                                                                | <330                                                                                                                                      | <330                                                                                                                                        | 330                                                                                                          |
|                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                                                                     |                                                                                                                                           |                                                                                                                                             |                                                                                                              |
|                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                                                                     |                                                                                                                                           |                                                                                                                                             |                                                                                                              |
| ACID COMPOUNDS                                                                                                                                                                                                                               | RESULT                                                                                                                                                    | RESULT                                                                                                                              | RESULT                                                                                                                                    | RESULT                                                                                                                                      | MDL                                                                                                          |
| ACID COMPOUNDS                                                                                                                                                                                                                               | RESULT<br>ug/Kg                                                                                                                                           | RESULT<br>ug/Kg                                                                                                                     | RESULT<br>ug/Kg                                                                                                                           | RESULT<br>ug/Kg                                                                                                                             | MDL<br>ug/Kg                                                                                                 |
|                                                                                                                                                                                                                                              | ug/Kg                                                                                                                                                     | ug/Kg                                                                                                                               | ug/Kg                                                                                                                                     | ug/Kg                                                                                                                                       | ug/Kg                                                                                                        |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600                                                                                                                                           | ug/Kg<br><1,600                                                                                                                     | ug/Kg<br>< 1,600                                                                                                                          | ug/Kg<br><1,600                                                                                                                             | ug/Kg<br>1,600                                                                                               |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL                                                                                                                                                                                                      | ug/Kg<br><1,600<br><330                                                                                                                                   | ug/Kg<br><1,600<br><330                                                                                                             | ug/Kg<br><1,600<br><330                                                                                                                   | ug/Kg<br><1,600<br><330                                                                                                                     | ug/Kg<br>1,600<br>330                                                                                        |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL                                                                                                                                                                                    | ug/Kg<br><1,600<br><330<br><330                                                                                                                           | ug/Kg<br><1,600<br><330<br><330                                                                                                     | ug/Kg<br><1,600<br><330<br><330                                                                                                           | ug/Kg<br><1,600<br><330<br><330                                                                                                             | ug/Kg<br>1,600<br>330<br>330                                                                                 |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL                                                                                                                                                              | ug/Kg<br><1,600<br><330<br><330<br><330                                                                                                                   | ug/Kg<br><1,600<br><330<br><330<br><330                                                                                             | ug/Kg<br><1,600<br><330<br><330<br><330                                                                                                   | ug/Kg<br><1,600<br><330<br><330<br><330                                                                                                     | ug/Kg<br>1,600<br>330<br>330<br>330                                                                          |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL                                                                                                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330                                                                                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><330                                                                                     | ug/Kg<br><1,600<br><330<br><330<br><330<br><330                                                                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><330                                                                                     | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>330                                                            |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL<br>2,4-DINTTROPHENOL                                                                                                                  | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600                                                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><330<br><1,600                                                                           | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>330<br>1,600                                                   |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINTTROPHENOL<br>4,6-DINTTRO-2-METHYLPHENOL                                                                                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600                                                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600                                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600                                                                         | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600                                                 |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINTROPHENOL<br>4,6-DINTRO-2-METHYLPHENOL<br>2-METHYL PHENOL                                                                                          | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                                                               | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                                         | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                                               | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                                                 | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330                                          |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>2-METHYL PHENOL<br>4-METHYL PHENOL                                                                     | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330                                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330                                                         | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330                                   |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>2-METHYL PHENOL<br>4-METHYL PHENOL<br>2-NITROPHENOL                                                    | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330                                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330                                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330                                         | ug/Kg<br>1,600<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>330<br>330                            |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINETHYL PHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>4-METHYL PHENOL<br>4-METHYL PHENOL<br>4-NITROPHENOL<br>4-NITROPHENOL            | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330<br><1,600                                             | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330<br><1,600                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330<br><1,600                             | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><330<br><1,600                                       | ug/Kg<br>1,600<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>330<br>330<br>1,600                   |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DINTTROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>2-METHYL PHENOL<br>4-METHYL PHENOL<br>4-NITROPHENOL<br>PENTACHLOROPHENOL | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><1,600                                         | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><1,600                   | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><1,600                         | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><1,600                           | ug/Kg<br>1,600<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>330<br>1,600<br>1,600<br>1,600        |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><1,600<br><330                   | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><1,600<br><330                         | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330                             | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>1,600<br>1,600<br>330          |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600       | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600<br><330 | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>1,600<br>1,600<br>330<br>1,600 |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330                                           | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><1,600<br><330                   | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><1,600<br><330                         | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330                             | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>1,600<br>1,600<br>330          |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><330<br><330<br><330<br><330 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><330   | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><330<br><330 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><330<br><330   | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>1,600<br>1,600<br>330<br>1,600 |
| BENZOIC ACID                                                                                                                                                                                                                                 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600                       | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600 | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600       | ug/Kg<br><1,600<br><330<br><330<br><330<br><1,600<br><1,600<br><330<br><330<br><1,600<br><1,600<br><330<br><1,600<br><330<br><1,600<br><330 | ug/Kg<br>1,600<br>330<br>330<br>330<br>330<br>1,600<br>1,600<br>330<br>330<br>1,600<br>1,600<br>330<br>1,600 |

PAGE 2 OF

.

# Huntingdon

140 Telegraph Road Middleport, NY 14105 Phone (716) 735-3400 Fax (716) 735-3653

# CHAIN OF CUSTODY RECORD AND ANALYTICAL REQUEST FORM

| Client Name: | Empire Soils Investigations |
|--------------|-----------------------------|
| Address:     |                             |
|              | HAmburg                     |
| Contact:     | DON WARTINGER               |
| Phone:       | 649-8110                    |

Project No.: BE-94-150 Pro Sai

| oject Site/Name | : AMERICAN | ALLE + | MANUFACT |
|-----------------|------------|--------|----------|
| mpler's Signatu | re:        |        |          |

|          | Page  | _ of |
|----------|-------|------|
| Ref.#95  | -0060 |      |
| P.O.#    |       |      |
| Quote# _ |       |      |

Donw

|                        |          |                    | C.                     |                    |              |              |                      | (          | Contai   | ner S  | ize & | Туре | 9 | Analysis Requested/Remarks                                      |                |
|------------------------|----------|--------------------|------------------------|--------------------|--------------|--------------|----------------------|------------|----------|--------|-------|------|---|-----------------------------------------------------------------|----------------|
| Sample<br>I.D.         | Date     | Time               | Comp<br>or<br>Grab     | Sample<br>Location | HAS<br>Seq.# | Matrix       | No.<br>of<br>Cont.   |            | AST NC   | 500 71 |       |      |   | 125ml                                                           | 500 ml         |
| ESI-2                  | 1/10/95  | 1315               | C                      | ESI-2              | 01           | Soil         | . 4                  | \$         | 2        | 2      |       |      |   | TCL VOIS, Semi VOIS,<br>PCB, PESTICIDES,<br>METALS, TOTAL WARNE |                |
| ESI-3                  | 1/10/95  | 1445               | C                      | ESI-3              | 02           | $\langle$    | 4                    |            | 2        | 2      |       |      |   | (                                                               |                |
| ESI-4                  | 1/10/95  | 1555               | С                      | ESI-Y              | 03           |              | 4                    |            | 2        | 2      |       |      |   |                                                                 |                |
| ESI-7                  | 1/11/95  | 1345               | C                      | ESI-7              | 04           | $\downarrow$ | 4                    |            | 2        | 2      |       |      |   |                                                                 |                |
|                        |          |                    |                        |                    | M            |              |                      |            |          |        |       |      |   |                                                                 |                |
|                        |          |                    |                        |                    |              |              |                      |            |          |        |       |      |   | * TCL -                                                         | RUSH 5         |
|                        |          |                    |                        |                    |              |              |                      |            |          |        |       |      |   | OAT TURN                                                        |                |
|                        | <br>     |                    |                        |                    |              | DW           |                      |            |          |        |       |      |   | (FAR RES                                                        | UITS to ESI)   |
|                        |          |                    |                        |                    | /            |              |                      |            |          |        |       |      |   | XX TCLP-,                                                       |                |
|                        | <u> </u> | ·                  |                        |                    |              |              |                      |            | <u> </u> |        |       |      |   | Authorizat<br>ANAL                                              | -622 +0<br>12E |
| Relinquished<br>Don Wt |          |                    | e/Tim<br>/55           | e:<br>- /3         | 145          | Received by  | A Gradu              |            |          |        |       |      |   |                                                                 |                |
| Relinguished           | Saund    | Date/Tin<br>4/12/9 | ne:<br>5 <u>16</u> :30 | Received           | i by:        | F            | Relinquished         | by:        |          | Date   | :/Tim | e:   |   | Received by                                                     |                |
| Relinquished           | sy:      | Date/Tin           | ne:                    |                    | for Lab      |              | Date/Time:<br>112/95 | <u>16:</u> | 30       | Rem    | arks: |      | 4 | toc                                                             |                |
|                        |          |                    |                        |                    | 0            |              |                      |            | •        |        |       |      |   | ·                                                               |                |

ENVIRONMENTAL ANALYTICAL REPORT

**Report Number: 95-0196** 

PREPARED FOR:

HUNTINGDON ENGINEERING & ENVIRONMENTAL S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

RE: AMERICAN AXLE (BE-94-150)

PREPARED BY:

HUNTINGDON ANALYTICAL SERVICES P.O. BOX 250 MIDDLEPORT, NEW YORK 14105 TELEPHONE: 716/735-3400; FAX: 716/735-3653

FEBRUARY 24, 1995

Huntingdon

#### HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

**REPORT NUMBER: 95-0196** 

STATEMENT OF WORK PERFORMED

I HEREBY DECLARE THAT THE WORK WAS PERFORMED UNDER MY SUPERVISION ACCORDING TO THE PROCEDURES OUTLINED BY THE FOLLOWING REFERENCES AND THAT THIS REPORT PROVIDES A CORRECT AND FAITHFUL RECORD OF THE RESULTS OBTAINED.

- 40 CFR PART 136, "GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS UNDER THE CLEAN WATER ACT", OCTOBER 26, 1984 (FEDERAL REGISTER) U. S. ENVIRONMENTAL PROTECTION AGENCY.
- U.S. ENVIRONMENTAL PROTECTION AGENCY, "TEST METHODS OF EVALUATING SOLID WASTE - PHYSICAL/CHEMICAL METHODS", OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, SW-846, 2ND EDITION AND 3RD EDITION.

THIS REPORT CONTAINS ANALYTICAL DATA BASED ON OUR EXAMINATION OF THE SAMPLE(S) PRESENTED TO US. THIS REPORT CONTAINS (EXCEPT WHERE EXPLICITLY STATED) A COMPLETE ACCOUNT OF THE ANALYSES REQUESTED TO BE PERFORMED ON THE SAMPLE(S). INFORMATION WHICH WAS NOT REQUESTED TO BE REPORTED IS NOT INCLUDED.

PHILLIP A. KUYKENDALL FEBRUARY 24, 1995 ENVIRONMENTAL LABORATORY MANAGER

#### **REPORT CODE LEGEND:**

- < DL = LESS THAN DETECTION LIMIT
- ND = NOT DETECTED
- NA = NOT APPLICABLE
- INP = INFORMATION NOT PROVIDED

Huntingdon

MB = METHOD BLANK

#### WET CHEMISTRY

| SAMPLE IDENTIFICATION : |               |                  | ESI-3          | METHOD<br>BLANK |
|-------------------------|---------------|------------------|----------------|-----------------|
| HAS SAMPLE #950196      |               |                  | 02             |                 |
| ANALYTE                 | EPA<br>METHOD | DATE<br>ANALYZED | RESULT<br>mg/L | RESULT<br>mg/L  |
| TOTAL CYANIDE           | 335.2         | 02/13/95         | <0.01          | < 0.01          |
| DATE SAMPLED:           |               |                  | 02/10/95       |                 |

•

METALS

| SAMPLE IDENTIFICATION : |               |                  | ESI-3          | METHOD<br>BLANK |
|-------------------------|---------------|------------------|----------------|-----------------|
| HAS SAMPLE #950196      |               |                  | 02             |                 |
| ANALYTE                 | EPA<br>METHOD | DATE<br>ANALYZED | RESULT<br>ug/L | RESULT<br>ug/L  |
| ALUMINUM                | 6010          | 02/15&23/95      | 4,060          | <70.0           |
| ANTIMONY                | 6010          | 02/15/95         | 114            | <50.0           |
| ARSENIC                 | 7060          | 02/14/95         | 9.90           | <10.0           |
| BARIUM                  | 6010          | 02/15/95         | 120            | <10.0           |
| BERYLLIUM               | 6010          | 02/15/95         | <5.0           | <5.0            |
| CADMIUM                 | 6010          | 02/15/95         | 18.0           | <5.0            |
| CALCIUM                 | 6010          | 02/15/95         | 285,000        | <50.0           |
| CHROMIUM                | 6010          | 02/15/95         | 10.6           | <10.0           |
| COBALT                  | 6010          | 02/15/95         | <10.0          | <10.0           |
| COPPER                  | 6010          | 02/15/95         | 59.5           | <10.0           |
| RON                     | 6010          | 02/15&23/95      | 9,890          | <20.0           |
| LEAD                    | 7421          | 02/14/95         | 92.7           | <3.00           |
| MERCURY                 | 7471          | 02/14/95         | < 0.20         | < 0.20          |
| MAGNESIUM               | 6010          | 02/15&23/95      | 71,700         | <40.0           |
| MANGANESE               | 6010          | 02/15/95         | 2,430          | <10.0           |
| NICKEL                  | 6010          | 02/15/95         | 40.4           | <40.0           |
| POTASSIUM               | 6010          | 02/15/95         | <3000          | <3000           |
| SELENIUM                | 7740          | 02/15/95         | <5.0           | <5.0            |
| SILVER                  | 6010          | 02/15/95         | 11.9           | <10.0           |
| SODIUM                  | 6010          | 02/15&23/95      | 20,800         | <60.0           |
| THALLIUM                | 7841          | 02/18/95         | <10.0          | <10.0           |
| VANADIUM                | 6010          | 02/15/95         | 39.1           | <20.0           |
| ZINC                    | 6010          | 02/15/95         | 68.8           | <20.0           |
| DATE SAMPLED:           |               |                  | 02/10/95       | ••••            |

.

METHOD 8080 ORGANOCHLORINE PESTICIDES POLYCHLORINATED BIPHENYLS

| SAMPLE IDENTIFICATION : | ESI-3          | METHOD<br>BLANK |            |
|-------------------------|----------------|-----------------|------------|
| HAS SAMPLE #950196      | 02             |                 |            |
| ANALYTE                 | RESULT<br>ug/L | RESULT<br>ug/L  | DL<br>ug/L |
| ALDRIN                  | < 0.05         | < 0.05          | 0.05       |
| A-BHC                   | < 0.05         | < 0.05          | 0.05       |
| B-BHC                   | < 0.05         | < 0.05          | 0.05       |
| D-BHC                   | < 0.05         | < 0.05          | 0.05       |
| G-BHC                   | < 0.05         | < 0.05          | 0.05       |
| CHLORDANE               | <1.0           | <1.0            | 1.0        |
| 4,4-DDD                 | < 0.05         | < 0.05          | 0.05       |
| 4,4-DDE                 | < 0.05         | < 0.05          | 0.05       |
| 4,4-DDT                 | < 0.05         | < 0.05          | 0.05       |
| DIELDRIN                | < 0.05         | < 0.05          | 0.05       |
| ENDOSULFAN I            | < 0.05         | < 0.05          | 0.05       |
| ENDOSULFAN II           | < 0.05         | < 0.05          | 0.05       |
| ENDOSULFAN SULFATE      | < 0.05         | < 0.05          | 0.05       |
| ENDRIN                  | < 0.05         | < 0.05          | 0.05       |
| ENDRIN ALDEHYDE         | < 0.05         | < 0.05          | 0.05       |
| HEPTACHLOR              | < 0.05         | < 0.05          | 0.05       |
| HEPTACHLOR EPOXIDE      | < 0.05         | < 0.05          | 0.05       |
| METHOXYCHLOR            | < 0.05         | < 0.05          | 0.05       |
| TOXAPHENE               | <1.0           | <1.0            | 1.0        |
| PCB-1016                | <1.0           | <1.0            | 1.0        |
| PCB-1221                | <1.0           | <1.0            | 1.0        |
| PCB-1232                | <1.0           | <1.0            | 1.0        |
| PCB-1242                | <1.0           | <1.0            | 1.0        |
| PCB-1248                | <1.0           | <1.0            | 1.0        |
| PCB-1254                | <1.0           | <1.0            | 1.0        |
| PCB-1260                | <1.0           | <1.0            | 1.0        |
| DATE EXTRACTED:         | 2/13/95        | 2/13/95         |            |
| DATE ANALYZED:          | 2/22/95        | 2/22/95         |            |

٩

EPA METHOD 8240 VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :    | ESI-3          | METHOD<br>BLANK | •          |
|----------------------------|----------------|-----------------|------------|
| HAS SAMPLE #950196         | 02             |                 |            |
| COMPOUND                   | RESULT<br>ug/L | RESULT<br>ug/L  | DL<br>ug/L |
| CHLOROMETHANE              | <10            | <10             | 10         |
| BROMOMETHANE               | <10            | < 10            | 10         |
| VINYL CHLORIDE             | <10            | < 10            | 10         |
| CHLOROETHANE               | <10            | <10             | 10         |
| METHYLENE CHLORIDE         | <10            | <10             | 10         |
| ACETONE                    | <10            | <10             | 10         |
| TRICHLOROFLUOROMETHANE     | <10            | <10             | 10         |
| CARBON DISULFIDE           | <10            | <10             | 10         |
| 1,1-DICHLOROETHENE         | <10            | <10             | 10         |
| 1,1-DICHLOROETHANE         | <10            | <10             | 10         |
| 1,2-DICHLOROETHENE (TOTAL) | <10            | <10             | 10         |
| CHILOROFORM                | <10            | <10             | 10         |
| 1,2-DICHLOROETHANE         | <10            | <10             | 10         |
| 2-BUTANONE                 | <10            | <10             | 10         |
| 1,1,1-TRICHLOROETHANE      | <10            | <10             | 10         |
| CARBON TETRACHLORIDE       | <10            | <10             | 10         |
| VINYL ACETATE              | <10            | <10             | 10         |
| BROMODICHLOROMETHANE       | <10            | <10             | 10         |
| 1,2-DICHLOROPROPANE        | <10            | <10             | 10         |
| cis-1,3-DICHLOROPROPENE    | <10            | <10             | 10         |
| TRICHLOROETHENE            | <10            | <10             | 10         |
| DIBROMOCHLOROMETHANE       | < 10           | <10             | 10         |
| 1,1,2-TRICHLOROETHANE      | < 10           | <10             | 10         |
| BENZENE                    | <10            | < 10            | 10         |
| trans-1,3-DICHLOROPROPENE  | < 10           | <10             | 10         |
| 2-CHLOROETHYLVINYL ETHER   | <10            | <10             | 10         |
| BROMOFORM                  | <10            | <10             | 10         |
| 4-METHYL-2-PENTANONE       | <10            | <10             | 10         |
| 2-HEXANONE                 | < 10           | <10             | 10         |
| TETRACHLOROETHENE          | <10            | <10             | 10         |
| 1,1,2,2-TETRACHLOROETHANE  | <10            | <10             | 10         |
| TOLUENE                    | < 10           | <10             | 10         |
| CHILOROBENZENE             | <10            | <10             | 10         |
| ETHYL BENZENE              | < 10           | <10             | 10         |
| STYRENE                    | <10            | <10             | 10         |
| XYLENE (TOTAL)             | <10            | < 10            | 10         |
| 1,3-DICHLOROBENZENE        | <10            | < 10            | 10         |
| 1,2-DICHLOROBENZENE        | < 10           | < 10            | 10         |
| 1,4-DICHLOROBENZENE        | < 10           | < 10            | 10         |
|                            |                |                 |            |

DATE ANALYZED:

1

Į,

2-15-95

2-15-95

.

# METHOD 8270

l,

ſ

SEMI-VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :     | ESI-3  | METHOD<br>BLANK |      |
|-----------------------------|--------|-----------------|------|
| HAS SAMPLE #950196          | 02     |                 |      |
| BASE/NEUTRAL                | RESULT | RESULT          | MDL  |
| COMPOUNDS                   | ug/L   | ug/L            | ug/L |
| ACENAPHTHENE                | <10    | <10             | 10   |
| ACENAPHTHYLENE              | <10    | <10             | 10   |
| ANTHRACENE                  | <10    | <10             | 10   |
| BENZO(a)ANTHRACENE          | < 10   | <10             | 10   |
| BENZO(b)FLUORANTHENE        | <10    | <10             | 10   |
| BENZO(k)FLUORANTHENE        | <10    | <10             | 10   |
| BENZO(a)PYRENE              | <10    | <10             | 10   |
| BENZO(g,h,i)PERYLENE        | <10    | <10             | 10   |
| BENZYL ALCOHOL              | <10    | <10             | 10   |
| BIS(2-CHLOROETHOXY)METHANE  | <10    | <10             | 10   |
| BIS(2-CHLOROETHYL)ETHER     | <10    | <10             | 10   |
| BIS(2-CHLOROISOPROPYL)ETHER | <10    | <10             | 10   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | <10    | <10             | 10   |
| BUTYLBENZYL PHTHALATE       | <10    | <10             | 10   |
| 4-BROMOPHENYL-PHENYL ETHER  | <10    | <10             | 10   |
| 4-CHLOROANILINE             | <10    | <10             | 10   |
| 2-CHLORONAPHTHALENE         | <10    | <10             | 10   |
| 4-CHLOROPHENYL-PHENYL ETHER | <10    | <10             | 10   |
| CHRYSENE                    | <10    | <10             | 10   |
| DIBENZ(a,b)ANTHRACENE       | <10    | <10             | 10   |
| DIBENZOFURAN                | <10    | <10             | 10   |
| DI-N-BUTYLPHTHALATE         | <10    | <10             | 10   |
| 1,2-DICHLOROBENZENE         | <10    | <10             | 10   |
| 1,3-DICHLOROBENZENE         | <10    | <10             | 10   |
| 1,4-DICHLOROBENZENE         | <10    | <10             | 10   |
| 3,3-DICHLOROBENZIDINE       | <20    | <20             | 20   |
| DIETHYL PHTHALATE           | < 10   | <10             | 10   |
| DIMETHYL PHTHALATE          | < 10   | <10             | 10   |
| 2,4-DINTIROTOLUENE          | < 10   | < 10            | 10   |
| 2,6-DINITROTOLUENE          | <10    | <10             | 10   |
| DI-N-OCTYL PHTHALATE        | <10    | <10             | 10   |
| FLUORANTHENE                | <10    | <10             | 10   |
| FLUORENE                    | <10    | <10             | 10   |
| HEXACHLOROBENZENE           | <10    | <10             | 10   |
| HEXACHLOROBUTADIENE         | <10    | <10             | 10   |
| HEXACHLOROCYCLOPENTADIENE   | <10    | <10             | 10   |
| HEXACHLOROETHANE            | <10    | <10             | 10   |
| INDENO(1,2,3-cd)PYRENE      | <10    | <10             | 10   |
|                             |        | - 40            | ••   |

# METHOD 8270

.

1

SEMI-VOLATILE ORGANICS

| SAMPLE IDENTIFICATION :                                                                                                                                                                         | ESI-3                                                                                                                              | METHOD<br>BLANK                                                                                                                                                      |                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| HAS SAMPLE #950196                                                                                                                                                                              | 02                                                                                                                                 |                                                                                                                                                                      |                                                                                    |
| BASE/NEUTRAL                                                                                                                                                                                    | RESULT                                                                                                                             | RESULT                                                                                                                                                               | MDL                                                                                |
| COMPOUNDS                                                                                                                                                                                       | ug/L                                                                                                                               | ug/L                                                                                                                                                                 | ug/L                                                                               |
|                                                                                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                      |                                                                                    |
| ISOPHORONE                                                                                                                                                                                      | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| 2-METHYL NAPHTHALENE                                                                                                                                                                            | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| NAPHTHALENE                                                                                                                                                                                     | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| 2-NITROANILINE                                                                                                                                                                                  | <50                                                                                                                                | <50                                                                                                                                                                  | 50                                                                                 |
| 3-NTTROANILINE                                                                                                                                                                                  | <50                                                                                                                                | <50                                                                                                                                                                  | 50                                                                                 |
| 4-NITROANILINE                                                                                                                                                                                  | <50                                                                                                                                | <50                                                                                                                                                                  | 50                                                                                 |
| NITROBENZENE                                                                                                                                                                                    | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| N-NITROSODIPHENYLAMINE<br>N-NITROS-DI-N-PROPYLAMINE                                                                                                                                             | <10                                                                                                                                | < 10                                                                                                                                                                 | 10                                                                                 |
|                                                                                                                                                                                                 | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| PHENANTHRENE                                                                                                                                                                                    | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| PYRENE                                                                                                                                                                                          | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                          | <10                                                                                                                                | <10                                                                                                                                                                  | 10                                                                                 |
| CARBAZOLE                                                                                                                                                                                       | <10                                                                                                                                | < 10                                                                                                                                                                 | 10                                                                                 |
|                                                                                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                      |                                                                                    |
|                                                                                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                      |                                                                                    |
| ACID COMPOLINDS                                                                                                                                                                                 | RESIDT                                                                                                                             | RESITT                                                                                                                                                               | MDI                                                                                |
| ACID COMPOUNDS                                                                                                                                                                                  | RESULT                                                                                                                             | RESULT                                                                                                                                                               | MDL                                                                                |
| ACID COMPOUNDS                                                                                                                                                                                  | RESULT<br>ug/L                                                                                                                     | RESULT<br>ug/L                                                                                                                                                       | MDL<br>ug/L                                                                        |
| ACID COMPOUNDS BENZOIC ACID                                                                                                                                                                     |                                                                                                                                    |                                                                                                                                                                      |                                                                                    |
| BENZOIC ACID                                                                                                                                                                                    | ug/L                                                                                                                               | ug/L                                                                                                                                                                 | ug/L                                                                               |
|                                                                                                                                                                                                 | ug/L<br><50                                                                                                                        | ug/L<br><50                                                                                                                                                          | ug/L<br>50                                                                         |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL                                                                                                                                                         | ug/L<br><50<br><10                                                                                                                 | ug/L<br><50<br><10                                                                                                                                                   | ug/L<br>50<br>10                                                                   |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL                                                                                                                                       | ug/L<br><50<br><10<br><10                                                                                                          | ug/L<br><50<br><10<br><10                                                                                                                                            | ug/L<br>50<br>10<br>. 10                                                           |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL                                                                                                                 | ug/L<br><50<br><10<br><10<br><10                                                                                                   | ug/L<br><50<br><10<br><10<br><10                                                                                                                                     | ug/L<br>50<br>10<br>10<br>10<br>10<br>10                                           |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL                                                                                          | ug/L<br><50<br><10<br><10<br><10<br><10<br><10                                                                                     | ug/L<br><50<br><10<br><10<br><10<br><10<br><10                                                                                                                       | ug/L<br>50<br>10<br>10<br>10                                                       |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL<br>2,4-DINITROPHENOL                                                                     | ug/L<br><50<br><10<br><10<br><10<br><10<br><50                                                                                     | ug/L<br><50<br><10<br><10<br><10<br><10<br><50                                                                                                                       | ug/L<br>50<br>10<br>10<br>10<br>10<br>50                                           |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL                                       | ug/L<br><50<br><10<br><10<br><10<br><10<br><50<br><50                                                                              | ug/L<br><50<br><10<br><10<br><10<br><50<br><50                                                                                                                       | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50                                     |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>2-METHYL PHENOL                    | ug/L<br><50<br><10<br><10<br><10<br><10<br><50<br><50<br><10                                                                       | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10                                                                                                                | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>50<br>10                         |
| BENZOIC ACID<br>4-CHLORO-3-METHYLPHENOL<br>2-CHLOROPHENOL<br>2,4-DICHLOROPHENOL<br>2,4-DIMETHYL PHENOL<br>2,4-DINITROPHENOL<br>4,6-DINITRO-2-METHYLPHENOL<br>2-METHYL PHENOL<br>4-METHYL PHENOL | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10                                                                       | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10                                                                                                         | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10                         |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10                                                                | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10                                                                                                  | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>10                   |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><50<br><50                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50                                                                                           | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>10<br>50<br>50<br>50 |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><50<br><50                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50                                                                                    | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>10<br>50             |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><50<br><10                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><10                                                                             | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>50<br>50<br>10       |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><50<br><50<br><10<br><50<br><50        | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><50<br><50<br><50                                                               | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>50<br>50<br>10<br>50 |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><50<br><50<br><10<br><50<br><50        | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><50<br><50<br><50                                                               | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>50<br>50<br>10<br>50 |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><50<br><50<br><10<br><50<br><50        | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><50<br><50<br><50                                                               | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>50<br>50<br>10<br>50 |
| BENZOIC ACID                                                                                                                                                                                    | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><10<br><50<br><10<br><50<br><10<br><50<br><10 | ug/L<br><50<br><10<br><10<br><10<br><50<br><50<br><10<br><10<br><50<br><50<br><50<br><10<br><50<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><1 | ug/L<br>50<br>10<br>10<br>10<br>10<br>50<br>50<br>10<br>10<br>50<br>50<br>10<br>50 |

# Huntingdon

140 Telegraph Road

| Middleport, NY 14105 |
|----------------------|
| Phone (716) 735-3400 |
| Fax (716) 735-3653   |

Relinquished by:

### CHAIN OF CUSTODY RECORD AND ANALYTICAL REQUEST FORM

| Client Name: | Empire Soils  |  |
|--------------|---------------|--|
| Address:     |               |  |
|              | (HAMbury)     |  |
| Contact:     | DON WHRTINGFR |  |
| Phone:       | 649-6110      |  |

Date/Time:

Project No.: <u>BE-94-150</u> Project Site/Name: MMERICHN AYLE Sampler's Signature:

Page \_\_\_\_ of \_\_\_\_

'.\$

 $(\mathbf{x})$ 

Ref.#9

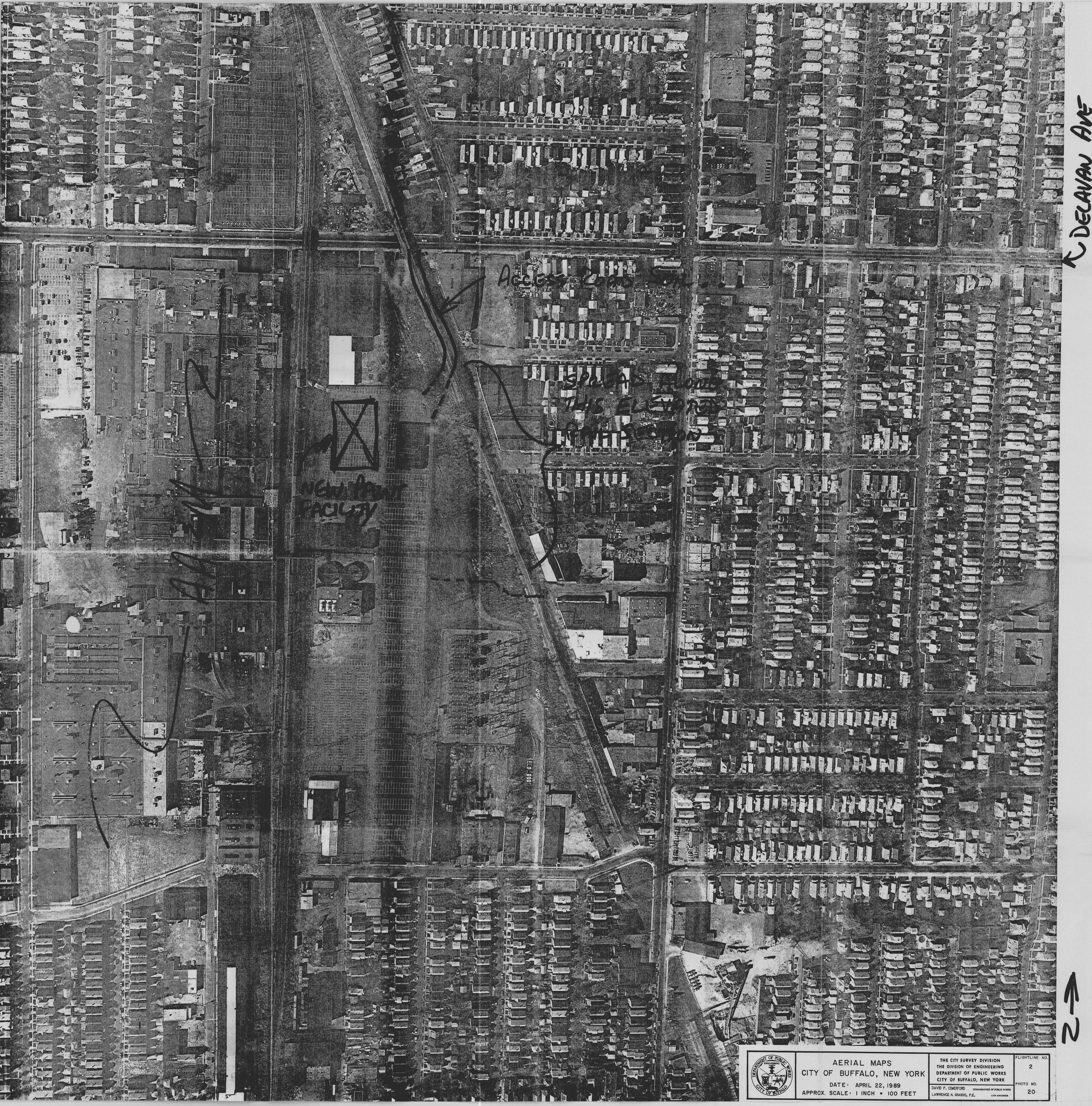
P.O.#

Quote#

1 .

| Phone:         | 6.7     | 9-8110                           | ×                  |                    |                  | Ŀ    | <u>&gt;</u> | Wit                         | ð      |     |                     |               |                                                     |        |                                                    |
|----------------|---------|----------------------------------|--------------------|--------------------|------------------|------|-------------|-----------------------------|--------|-----|---------------------|---------------|-----------------------------------------------------|--------|----------------------------------------------------|
| Sample<br>I.D. | Date    | Time                             | Comp<br>or<br>Grab | Sample<br>Location | HAS<br>Seq.#     | Matr | ·ix         | No.<br>of<br>Cont.          |        | 1   | iner S<br>7 5 5 2/1 |               | Type                                                | 2      | Analysis Requested/Remarks                         |
| <i>ESI-7</i>   |         | 1230                             | 6                  | ESI-7              | 01               | W    |             | 6                           |        | 2   | 1                   | 1             | Z                                                   | 2      | (8240) (8270) (BUBO)                               |
| E5.I - 3       | 3/10/15 | 1400                             | 6                  | ESI-3              | 02-fil           | W    | r ·         | 5                           |        | 2   | 1                   |               | X                                                   |        | METALS, TOTAL CUMNINE<br>(335.2/9010) (335.2/9010) |
|                |         |                                  |                    |                    | - Par            |      |             | ~                           |        |     | $\frown$            | ,<br>,        | $\left( \begin{array}{c} \\ \\ \end{array} \right)$ |        |                                                    |
|                |         |                                  |                    |                    |                  |      |             |                             |        | 2   |                     |               | -                                                   | {}     | FESI-3 Limited Volum                               |
|                |         |                                  |                    |                    |                  |      | 、           |                             |        | Ŀ.  | <u> </u><br>-<br>   | J.            |                                                     | $\Box$ | For SEMI VULS, Festin part 19                      |
|                |         |                                  |                    |                    |                  |      |             |                             |        | . 1 | ±≠[                 |               | //                                                  | 7      | X-X PLENDE FAX                                     |
|                |         |                                  |                    |                    |                  |      |             |                             | )<br>/ |     |                     |               |                                                     | $\Box$ | RESUITS                                            |
|                |         |                                  |                    |                    |                  |      | •           |                             |        |     |                     |               |                                                     |        |                                                    |
|                |         |                                  |                    |                    |                  |      |             |                             |        |     |                     |               |                                                     |        |                                                    |
|                |         |                                  |                    |                    |                  |      |             |                             |        |     |                     |               |                                                     |        |                                                    |
| Relinquished   |         | Date/Tin<br>$\partial / 10 / 95$ | ne:<br>- /600      | Received<br>EST    | l by:<br>- ( 0 0 | 1    |             | iquished  <br><i>L ( 00</i> | •      |     |                     | :/Tim<br>//75 |                                                     | 605    | Received by:<br>Sun Jones                          |
| Relinquished   | -       | Date/Tin                         | ne: 2/10/<br>18:43 |                    | l by:            |      |             | quished                     |        |     |                     | :/Tim         |                                                     | •      | Received by:                                       |

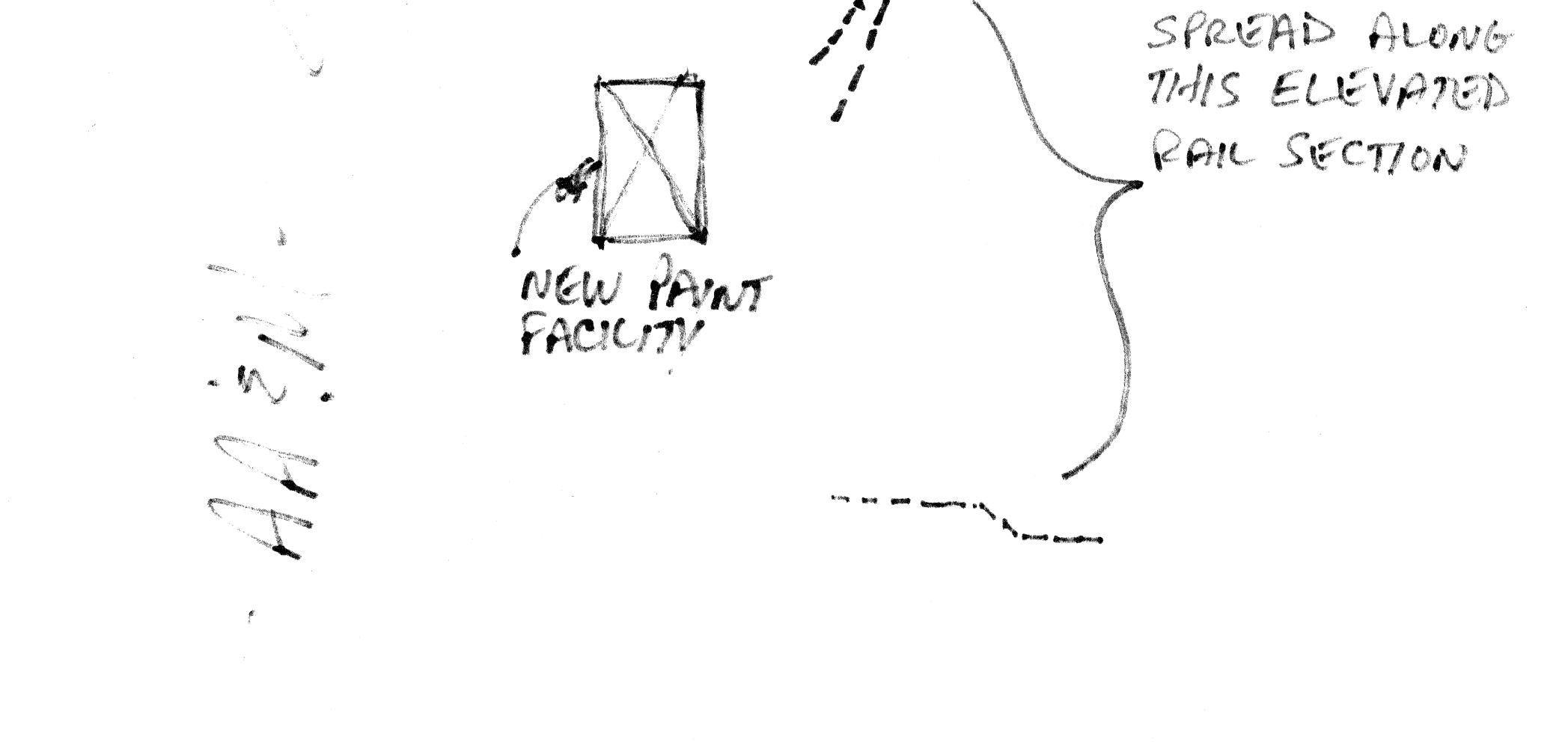
Date/Time:


2/10/95

Remarks:

Received for Lab by:

ICUNE


Khil



- Access Road Soll,...

Street Street

forthe care and



ng s gati gati

.

RECEIVED JUI 2 6 1995 NYS DENI NYS DENI REGIONSERVATION REGIONS