

June 30, 2021

Megan Kuczka New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, NY 14203

Re: 320 Scajaquada St.

NYSDEC Site No. 915152

Saginaw - Buffalo

Site Management PRR Rev. 1 (May 4, 2020 – May 4, 2021

Dear Ms. Kuczka:

include:

On behalf of East Delavan Property, LLC, Inventum Engineering, P.C. (Inventum) is pleased to submit the attached revised Site Management (SM) Periodic Review Report (PRR) for the Saginaw – Buffalo site 320 Scajaquada St, Buffalo, New York. The PRR has been prepared pursuant to the February 2, 1995 Order on Consent and Administrative Settlement (Index No. B9-0410-92-09) and Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation*.

The attached (Attachment A) report summarizes the SM activities conducted on site between May 4, 2020 and May 4, 2021. The completed Institutional and Engineering Controls Certifications Forms are provided as Attachment B.

The revised PRR incorporates comments received from the New York Department of Environmental Conservation (NYSDEC) in an e-mail dated June 15, 2021. The NYSDEC's comments are reproduced in the bullets below followed by Inventum's response in *italics*.

- Please revise the footnote on Page 6 of the PDF to site numbers C915196B and 915196
 - The footnote has been revised in accordance with the comment.
- Please add the revisions requested in the June 17, 2020 PRR acceptance letter
 The PRR has been revised to include the edits requested in the acceptance letter, which

• Photos collected during the onsite inspection.

• A groundwater contour map with flow direction arrows. Inventum notes that routine sitewide groundwater sampling was not required during the reporting period, and as such, not all groundwater monitoring wells were gauged.

Inventum had included groundwater contours on Figure 1. These were generated with level data collected during the most recent (October 2019) biennial sampling. Flow direction arrows have been added to Figure 1 as requested.

• A table of historical data available to Inventum is provided as Table 3 in Appendix B of the PRR.

As noted on the September 2020 annual inspection form provided as Appendix A to the PRR, the monitoring well maintenance will be conducted concurrent with the next scheduled biennial sampling in October 2021.

- How is purge water disposed of onsite? Please detail this in the PRR
 Section 5.2 of the PRR has been revised to include purge water disposal details.
- The parcel identified on the IC/EC Certification does not match current SBL numbers. Is
 the site compromised of parcel 101.24-1-3.1 and parcel 101.24-1-3.2? If yes, please
 revise site boundary on Figure 1 and add the second SBL number to the IC/EC
 Certification.

The current SBL numbers and parcels as obtained from the Erie County Office of GIS Interactive Mapping show the PRR subject area identified in the IHWS registry and referenced in the 1998 ROD as parcel 101.24-1-3.1 (7.2478 Ac). This is the 7-acre parking lot referenced in the ROD and O&M plan and subject to the annual pavement inspection. Inventum does not believe the parcel identified as 101.24-1-3.2 (1.3835 Ac) is included in the registry listing. The confusion on the acreage on the IC/EC forms is likely due to the presence of offsite upgradient monitoring wells on parcel 101.24-1-3.2 (MW-1 and MW-201) that were, at one point in time, both included in the monitoring program. The IC/EC forms have been revised to reflect parcel 101.24-1-3.1 and an area of approximately 7.25 acres.

• Is a site inspection completed outside of OU-1 and OU-2? Please detail these areas in the PRR, including their current use and occupancy.

There is no site inspection completed outside of OU-1 and OU-2. These are the areas incorporated in the O&M plan subject to the biennial groundwater sampling and annual pavement inspection. The current site use is already defined in Section 1.1 of the PRR as being used by the City of Buffalo for training school bus drivers.

Should you have any questions or if you would like to discuss any aspect of this report, please feel free to contact me at 571.217.3627 or todd.waldrop@inventumeng.com

Sincerely,

Todd Waldrop

cc. J. Williams – East Delavan Property, LLC

J. Yensan – OSC, Inc.

Todallolety

D. Flynn, Phillips Lytle

Attachment A – Periodic Review Report

Saginaw – Buffalo Site 320 Scajaquada St Site Management Periodic Review Report

East Delavan Property, LLC NYSDEC Site Number 915152

Dates Covered by Report: May 4, 2020 to May 4, 2021

Table of Contents

1	Ex	ecutive	e Summary	. 4
	1.1	Site	Summary	. 4
	1.2	Effe	ctiveness of the Remedial Program	. 4
	1.2	2.1	Progress During the Reporting Period	. 5
	1.2	2.2	Progress to Remedial Objectives for the Site	. 5
	1.3	Com	pliance	. 5
	1.3	3.1	Potential Non-compliance	. 5
	1.3	3.2	Proposed Steps	. 6
	1.4	Reco	ommendations	. 6
	1.4	4.1	Recommended Changes to the SMP	. 6
	1.4	4.2	Recommend Changes to the Frequency for Submittal of PRRs	. 6
	1.4	4.3	Recommend Whether the Requirements for Discontinuing Site Management	. 6
2	Sit	te Over	view	. 6
	2.1	Site	Location	. 6
	2.2	Chro	onology of the Remedial Program	. 6
3	Ev	aluate	Remedy Performance, Effectiveness, and Protectiveness	. 7
4	IC.	/EC Pla	n Compliance Report	. 7
	4.1	IC/E	C Requirements and Compliance	. 7
	4.	1.1	Controls	. 7
	4.	1.2	Status	. 7
	4.	1.3	Corrective Measures	. 7
	4.2	IC/E	C Certification	. 7
5	M	onitori	ng Plan Compliance Report	. 7
	5.1	Mor	nitoring Plan Compliance Report	. 7
	5.2	Mor	nitoring Completed During Reporting Period	. 7
	5.3	Mor	nitoring Deficiencies	. 8
	5.4	Con	clusions and Recommendations for Changes	. 8
6	Op	peratio	n & Maintenance (O&M) Plan Compliance Report	. 8
7	O۱	verall P	RR Conclusions and Recommendations	. 9

Figures

Figure 1 – Emerging Contaminant Samling Results

Appendices

Appendix A – Engineering Controls – September 2020 Annual Site Wide Inspection Forms and Photographs

Appendix B – Supplemental Emerging Contaminant Sampling and Annual Storm Sewer Sampling Summary Tables – September 2020

Appendix C – Groundwater Sampling Forms

Appendix D - Laboratory Reports

1 Executive Summary

Inventum Engineering, P.C. (Inventum) has prepared this Site Management (SM) Periodic Review Report (PRR) for the Saginaw-Buffalo Site (Site) located at 320 Scajacuada Street in the City of Buffalo, Erie County. The Site is defined as the former Parking Lot #4 associated with the former General Motors and American Axle & Manufacturing (AAM) facility that manufactured axles and drive-train components for cars and trucks. The Site covers an area of approximately 7.2478 acres (SBL Parcel No. 101.24-1-3.1) and is included in the New York Registry of Inactive Hazardous Waste Sites (Site No. 915152). Site Institutional Controls (ICs) and Engineering Controls (ECs) were adhered to over the PRR reporting period and continue to be effective in maintaining the remedial objectives. No changes to the established SMP or recommended during the next PRR reporting period.

1.1 Site Summary

General Motors (GM) purchased several parcels in the mid-1960s and constructed Parking Lot #4 which is the current listed Site. In 1989 during a spill cleanup of industrial oil by GM, excavated soil was found to contain Polychlorinated Biphenyls (PCBs). The Site was sold to AAM in 1994 along with the main facility west of the railroad right of way¹. As part of this conveyance, a deed restriction was placed on the property limiting it for use for industrial purposes only. GM-Saginaw Division, the previous owner of the Site, entered into a Consent Order in 1995 and a Final Site Investigation Report and Engineering Evaluation Report of Alternatives was completed in 1997. A Record of Decision (ROD) was issued in March 1998 which required: 1) The further removal of PCB contaminated soil, water and oil; 2) Maintenance of the pavement to reduce infiltration and provided a barrier to lead contaminated soil; and 3) Long-term monitoring and maintenance. Remediation (the "removal of PCB contaminated soil, water and oil") of the Site was completed in 1998 and a long-term operation and maintenance (O&M) plan is in place.

The Site is currently utilized periodically by the City of Buffalo for training school bus drivers.

1.2 Effectiveness of the Remedial Program

Remediation of the Site was completed in 1998 and included:

- Dewatering of an approximately 1-acre area surrounding the former Wastewater Treatment Plant² and on-site water treatment, confirmatory effluent sampling and analysis, and batch discharge to the Buffalo Sewer Authority (BSA) sanitary sewer system;
- Excavating fill/soil containing greater than the site cleanup goal of 10 parts per million (ppm)
 PCBs in the OU1 area, and confirmatory sampling;
- Transporting excavated materials off-site for treatment and disposal;
- Backfilling of the OU1 excavation with clay soil; and
- Paving the excavation area (OU1) and repaving of the OU2 area which was the remainder of the Parking Lot No. 4.

¹ The former GM/AAM main facility is now compromised of the East Delavan Ave Brownfield Cleanup Program Site No. C915196B and the 250 Colorado Street Site No. 915196

² This 1-acre area was referred to as Operable Unit 1 (OU1) as was the original NYSDEC Registry Listing for the Site

The remedial program was effective and long-term site monitoring requirements were established requiring:

- Pavement inspection and maintenance conducted on an annual basis to ensure that the integrity of the asphalt surface has been maintained;
- Visual inspection of storm sewer manhole covers and manhole risers for structural damage;
- Groundwater sampling of Site monitoring wells for PCBs, Total Lead, and Soluble Lead; and
- Storm sewer sampling from Manhole #2 for PCBs and Total Lead.

Groundwater and storm sewer sampling were initially conducted on a semi-annual basis and have been conducted on a biennial basis since 2008. Three (3) monitoring wells (MW-1, MW-201, and MW-205) were removed from the groundwater sampling program in 2004 (Figure 1).

Pavement inspection, storm sewer visual inspection, and storm sewer sampling is conducted on an annual basis.

1.2.1 Progress During the Reporting Period

The cover system is intact and functioning. Inventum conducted the annual inspection September 2020 and completed the required inspection form (Appendix A). Photographs of the inspection are included in Appendix A.

Supplemental groundwater sampling of select site monitoring wells (MW-1, MW-202, MW-204, and MW-211) for per and polyfluoroalkyl substances (PFAS) and 1,4-Dioxane was completed in September 2020 in accordance with the June 25, 2020 approved work plan. These results were documented in an *Emerging Contaminant Sampling Report* submitted to the NYSDEC on January 5, 2021. The NYSDEC provided comments on the report in a letter dated March 19, 2021 and required additional biennial sampling for PFAS and 1,4-Dioxane at select monitoring wells (MW-204 [PFAS only], MW-211, and MW-202). A tabular summary of the supplemental groundwater sampling results is provided for reference in Appendix B (Table 1). Groundwater sampling forms are provided in Appendix C.

The annual storm sewer sampling from Manhole #2 for PCBs and Total lead was conducted in September 2020. A summary of the storm sewer results is provided in Appendix B (Table 2). Historical sampling data is provided in Table 3 (Appendix B).

The EQuIS formatted EDD from the September 2020 Emerging Contaminant sampling and annual storm sewer sampling was submitted to the NYSDEC on January 29, 2021. The laboratory report is provided as Appendix D.

1.2.2 Progress to Remedial Objectives for the Site

The Remedial Objectives (ROs) for the Site as established in the March 1998 Record of ROD) have been achieved and the Site has been in long-term monitoring since 2002.

1.3 Compliance

1.3.1 Potential Non-compliance

There were no areas of potential non-compliance identified during the reporting period.

1.3.2 Proposed Steps

There were no areas of potential non-compliance identified during the reporting period that would require a compliance plan.

1.4 Recommendations

1.4.1 Recommended Changes to the SMP

There are no recommended changes to the SMP at this time.

1.4.2 Recommend Changes to the Frequency for Submittal of PRRs

There is no recommended change to the frequency of the PRRs at this time.

1.4.3 Recommend Whether the Requirements for Discontinuing Site Management

It is appropriate to continue Site Management.

2 Site Overview

2.1 Site Location

The Site is located at 320 Scajacuada Street in the City of Buffalo, Erie County. The Site is defined as the former Parking Lot #4 associated with the former General Motors and American Axle & Manufacturing (AAM) facility that manufactured axles and drive-train components for cars and trucks. The Site covers an area of approximately 7.2478 acres and is included in the New York Registry of Inactive Hazardous Waste Sites (Site No. 915152).

2.2 Chronology of the Remedial Program

GM and NYSDEC entered on Order on Consent (Index #B9-0410-92-09), effective February 2, 1995, pursuant to which GM performed an Interim Remedial Measure (IRM) at OU1 and conducted a Site Investigation and Engineering Evaluation of Alternatives in both OU1 and OU2. Based upon the Engineering Evaluation of Alternatives Report prepared by Wehran-New York, Inc. (ENCOR), NYSDEC prepared a Proposed Remedial Action Plan, which it submitted for public comment in February 1998.

NYSDEC selected a final remedial alternative for the Site in a ROD that was issued in March 1998. A Remedial Design (RD) Report was prepared by EMCON to implement the ROD-selected remedial alternatives at the Site. The RD Report was approved by the NYSDEC, and remedial activities were conducted between July 1998 and March 2000.

Saginaw-Buffalo Site Management Periodic Review Report NYSDEC Site Number 915152

Dates Covered by Report: May 4, 2020 to May 4, 2021

3 Evaluate Remedy Performance, Effectiveness, and Protectiveness

The performance, effectiveness, and protectiveness of the remedy are verified through evaluating each of the primary remedial measures.

- The pavement and structural integrity of the sewer system remain in good condition at the Site. The next annual inspection will be conducted in October 2021.
- Groundwater samples in accordance with the O&M plan will be collected in October 2021. In addition to routine biennial sampling for PCBs, Total Lead, and Soluble Lead, MW-204 will also be sampled for PFAS and MW-211 and MW-202 will also be sampled for PFAS and 1,4-Dioxane.
- Sewer samples in accordance with the O&M plan will be collected in October 2021.

4 IC/EC Plan Compliance Report

4.1 IC/EC Requirements and Compliance

A series of IC have been developed and are being adhered to at the Site and include:

- Inspection and maintenance of Parking Lot #4.
- Groundwater and sewer monitoring in accordance with the April 2001 O&M Manual and subsequent modifications to the O&M Manual in January 2004 and September 2008.

4.1.1 Controls

Engineering controls (ECs) developed for the Site consist of an asphalt pavement cover system.

4.1.2 Status

The Site IC/ECs are all currently active and in force.

4.1.3 Corrective Measures

There are no corrective measures proposed at this time.

4.2 IC/EC Certification

The IC/EC certifications are provided in Enclosure A.

5 Monitoring Plan Compliance Report

5.1 Monitoring Plan Compliance Report

Routine Site Monitoring includes annual pavement inspection, annual visual inspection of sewer structure integrity, annual storm sewer sample collection, biennial groundwater sample collection, and periodic certification.

5.2 Monitoring Completed During Reporting Period

Inventum conducted the annual inspection September 2020 and completed the required inspection form (Appendix A).

Supplemental groundwater sampling of select site monitoring wells (MW-1, MW-202, MW-204, and MW-211) for the emerging contaminants PFAS and 1,4-Dioxane was completed in September 2020. The

supplemental sampling was conducted in response to exceedances of PFAS screening thresholds in samples collected in December 2019. PFAS and 1,4-Dioxane samplings results from both December 2019 and September 2020 are shown on Table 1 (Appendix B) and on Figure 1.

No PFAS analytes were detected at concentrations above their respective screening value in the sample from MW-1 (representative upgradient well) or MW-202 (representative downgradient property boundary well). PFOA was detected at concentrations above the 10 nanogram per liter (ng/L) screening value at MW-204 in both the primary and duplicate sample collected in September 2020; however, none of the other PFAS analytes were detected above their screening value. The supplemental sampling at MW-211 showed consistent results compared to the December 2019 sampling. PFPeA, PFOA, and 6:2FTS were detected in both the December 2019 and September 2020 samples within a similar order of magnitude. None of the wells sampled in September 2020 contained total concentrations of PFAS (including PFOA and PFOS) greater than 500 ng/L.

1,4-Dioxane was detected in MW-211 at concentrations above the 1 microgram per liter (μ g/L) screening value in the September 2020 (7.5 μ g/L) sample. None of the other well samples collected in September 2020 during the reporting period contained 1,4-Dioxane at concentrations above the screening value.

Storm sewer sampling from Manhole #2 for PCBs and Total lead was conducted in September 2020. All results for PCBs were non-detect. An estimated Total Lead concentration of 0.48 μ g/L was detected. A summary of the storm sewer results is provided in Table 2 of Appendix B.

Laboratory analytical results for samples collected during the reporting period are provided in Appendix D and the EDDs formatted for the NYSDEC Environmental Information Management System (EIMS) were submitted to the NYSDEC database on January 29, 2021.

There were no emergencies or unforeseen failures of established ECs that would require non-routine inspections. Purge water generated from groundwater sampling during the reporting period was contained in a DOT-compliant open topped 55-gallon steel drum, labeled as non-hazardous waste, and stored onsite pending additional accumulation prior to disposal.

5.3 Monitoring Deficiencies

There were no monitoring deficiencies during the reporting period.

5.4 Conclusions and Recommendations for Changes

As required by the NYSDEC in a letter dated March 19, 2021, the biennial sampling program will be modified to include additional sampling for PFAS and 1,4-Dioxane at select wells. In addition to routine biennial sampling for PCBs, Total Lead, and Soluble Lead, MW-204 will also be sampled for PFAS and MW-211 and MW-202 will also be sampled for PFAS and 1,4-Dioxane.

6 Operation & Maintenance (O&M) Plan Compliance Report

The Site remedy does not rely on any mechanical systems to protect public health and the environment; therefore, an O&M Plan Compliance Report is not applicable to this PRR.

7 Overall PRR Conclusions and Recommendations

Site IC/ECs remain in place and effective in maintaining the remedial objectives. No changes to the established SMP or recommended during the next PRR reporting period

Figure

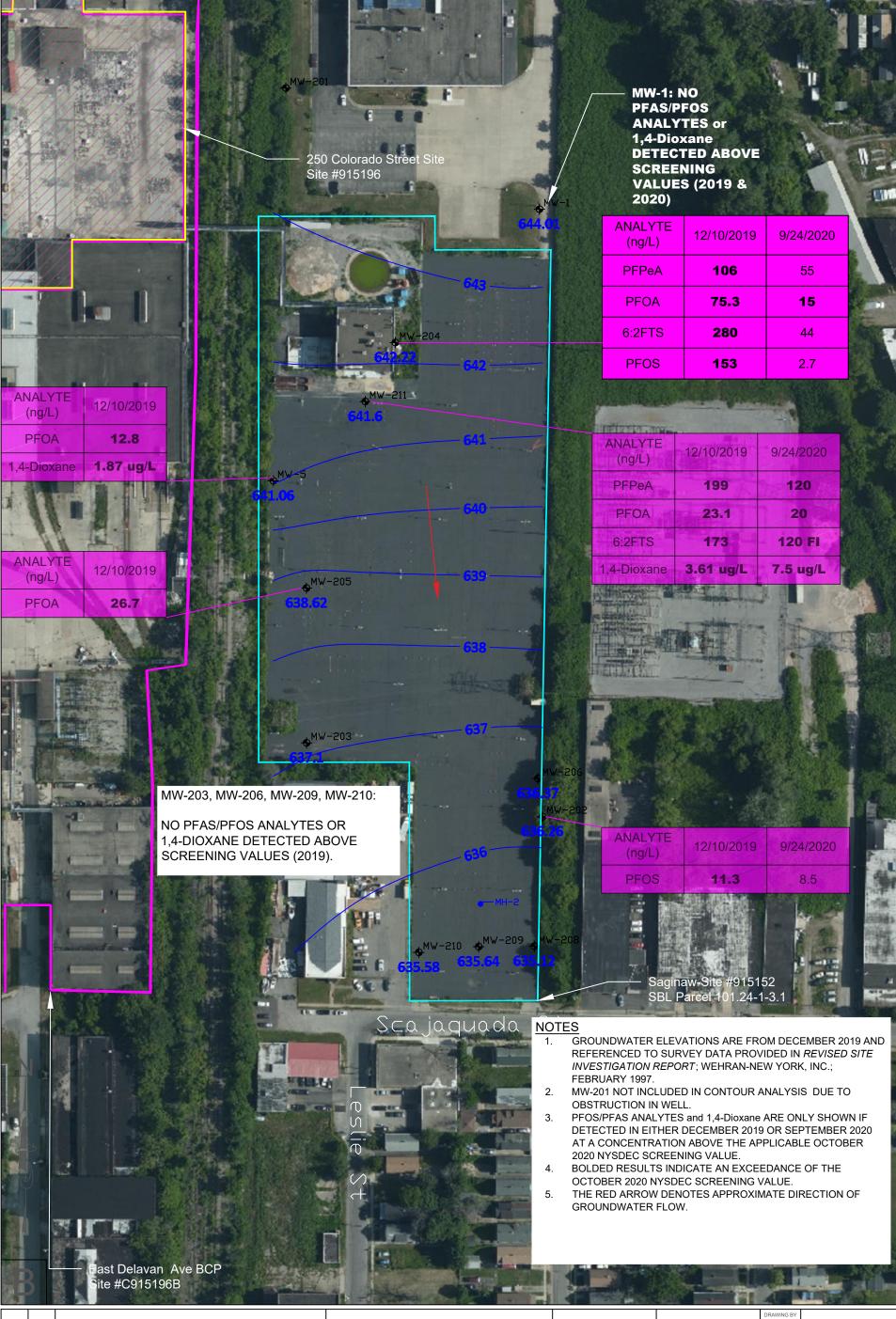


FIGURE 1

INVENTUM ENGINEERING

481 CARLISLE DRIVE SUITE 202 HERNDON, VIRGINIA 20170 (703) 722-6049 www.lnventumEng.com

FIGURE 1

EMERGING CONTAMINANT SAMPLING RESULTS Saginaw - Buffalo Site 320 Scajaquada St. NYSDEC Site No. 915152

DRAWING BY	
CHECKED	
APPROVED	

ORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL TANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIM MIMATION CONTAINED HEREIN IS NOT TO BE DISCLOSED O DUCCED IN ANY FORM FOR THE BENEFIT OF PARTIES OFFI HAN NECESSARY PARTMERS, FINANCIAL INSTITUTIONS.

IRECTION OF A LICENSED PROFESSIONAL ENGINEER. IT IS IOLATION OF STATE LAW FOR ANY PERSONS, UNLESS ACTIN UNDER THE DIRECTION OF A LICENSED PROFESSIONAL

Appendix A – Engineering Controls – September 2020 Annual Site-Wide Inspection Form and Photographs

ANNUAL INSPECTION FORM SAGINAW-RIFFALO STF

Inspection Date: 9/24/2020

Inspected By: Todd Waldrop (Inventum Engineering)

PAVEMENT (Identify any damaged areas on site sketch)

Cracked Areas	Yes	No x
2. Settled Areas	Yes	No x
3. Potholes	Yes	No x
4. Heaving	Yes	No x
5. Plow Damage	Yes	No x
6. Drainage	Good x	Poor
	Evolain-	

7. Condition of Surface Sealing Good x Poor

EX

Explain: Some linear cracking, but overall in good shape. No deep fissures in sealant. Photos collected

STORM SEWERS

1. Condition of Manhole Risers	Good	х	Poor	
	Explain:			
2 Sediment in Main	None	x	Avg (1-4")	High (>4")

MONITODING WELLS

IVIOINT ORTHO WELLS												
	MW-1	MW-5	MW-201	MW-202	MW-203	MW-204	MW-205	MW-206	MW-208	MW-209	MW-210	MW-211
Is protective casing in good condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Is flush mount casing in good condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Are casing labeled?	No	No	No	No	No	No	No	No	No	No	No	No
Is concrete surface seal in good condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Is protected pad in good condition?	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Are locks present?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Are lock in good condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Is riser in good condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Are J-plugs present?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Comments: No sediment visible in MH #1 or MH#2. Trickle flow.

Comments:

Casing survey/measurement markings are not visible. Re-mark and survey scheduled to coincide with similar scope of work in 2021 planned for the ongoing RI associated with 1001 East Delavan Ave BCP Site (Site No. 07.1516/M)

MW-206 - Pad and well can need replacement. Replacement/repair scheduled to coincide with similar scope of work in 2021 planned for the ongoing RI associated with 1001 East Delavan Ave BCP Site (Site No. C9151968)

MW-201 - Abovegrade concrete appears to have slipped and may be displaced. Above grade casing disconnected and displaced from belowgrade casing by at least 0.2°. Well is no longer part of the monitoring network. Recommend abandonment in 2021.

Appendix A – Annual Inspection Photolog

	T = 1 -	1
Client Name:	Photo Date:	Project:
East Delavan Avenue	Sept. 2020	Saginaw – Buffalo Site
LLC		Site No. 915152
Photo No. 1	_	
Direction Photo		
Taken:		
Looking North		
Description		
Description:		
Typical Dayomantin		
Typical. Pavement in		
good condition.		
Client Name	Photo Date:	Project.
Client Name:	Photo Date:	Project: Saginaw – Buffalo Site
East Delavan Avenue	Photo Date: Sept. 2020	Saginaw – Buffalo Site
East Delavan Avenue LLC		
East Delavan Avenue LLC Photo No. 2		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south.		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south.		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 2 Direction Photo Taken: Looking south. Description:		Saginaw – Buffalo Site

Appendix A – Annual Inspection Photolog

-	T .	
Client Name:	Photo Date:	Project:
East Delavan Avenue	Sept. 2020	Saginaw – Buffalo Site
LLC		Site No. 915152
Photo No. 3		
Direction Photo		
Taken:		
N/A		
5	_	
Description:		
Little flow in MH-2		
during annual		
sampling. No		
sediment build up		
noted.		
Client Name	Photo Date:	Project.
Client Name:	Photo Date:	Project: Saginaw - Buffalo Site
East Delavan Avenue	Photo Date: Sept. 2020	Saginaw – Buffalo Site
East Delavan Avenue LLC		
East Delavan Avenue LLC Photo No. 4		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest.		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description:		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site
East Delavan Avenue LLC Photo No. 4 Direction Photo Taken: Looking northwest. Description: Typical. Pavement in		Saginaw – Buffalo Site

Appendix A – Annual Inspection Photolog

Client Name:	Photo Date:	Project:
East Delavan Avenue	Sept. 2020	Saginaw – Buffalo Site
LLC		Site No. 915152
Photo No. 5		
Direction Photo		
Taken:		
Looking West.		
		re la state de la constantina della constantina
Description		
Description:		
Typical. Pavement in		the first the transfer of the second
good condition. Traffic		
cones for City of		
Buffalo school bus		
training.		
ti dii iii gi		
		A Company of the Comp

Appendix B – Supplemental Emerging Contaminant Sampling and Annual Storm Sewer Sampling Summary Tables – September 2020

Table 1 Saginaw Site (Site #915152) Emerging Contaminants Groundwater Sampling Results December 2019 and September 2020

				1					1									
	NYSDEC 1.4-																	I.
	Dioxane and	M	IW-1	MW-5	MW	V-202	MW-203	MW-204	MW-99 (a)	MW-204	MW-99 (a)	MW-205	MW-206	MW-208	MW-209	MW-210	1	MW-211
	PFAS Guidance (b)	12/10/2019	9/24/2020	12/10/2019	12/10/2019	9/24/2020	12/10/2019	12/1	0/2019	9/24	/2020	12/10/2019	12/10/2019	12/10/2019	12/10/2019	12/10/2019	12/10/2019	9/24/2020
SVOCs (µg/L)			•			•												
1,4-Dioxane	1	0.2 U	0.2 U	1.87	0.2 U	0.2 U	0.175 J	0.591	0.56	0.39	0.44	0.218	0.2 U	NS	0.2 U	0.2 U	3.61	7.5 E J L R
PFOS/PFAS (ng/L)																		
Perfluorobutanoic Acid (PFBA)	100	0.481 J	2.6 J	28.6	7.25	11	17.1	28.8	22.2	21	21	15.7	4.87	NS	2.73	3.3	40.8	28
Perfluoropentanoic Acid (PFPeA)	100	0.412 J	1.2 J	127	4.83	9.5	30.6	106	80.1	55	55	21.1	2.26	NS	1.79 J	1.24 J	199	120
Perfluorobutanesulfonic Acid (PFBS)	100	0.273 J	0.84 J	1.28 J	2.2	2.6	0.677 J	5.39	2.37	1.9 J	1.7 J	1.41 J	1.6 J	NS	1.85 J	2.98	2.03 U	0.73 J
Perfluorohexanoic Acid (PFHxA)	100	0.542 J	0.83 J	55	5.98	4.8	18.2	60.2	36.8	31	30	14.1	2.06	NS	1.24 J	1.52 J	84	55
Perfluoroheptanoic Acid (PFHpA)	100	1.92 U	0.77 J	32.8	1.92 J	2.8	13.4	42.3	28.5	29	28	7.21	1.19 J	NS	0.858 J	1.09 J	62.4	41
Perfluorohexanesulfonic Acid (PFHxS)	100	1.92 U	1.9 U	1.89 U	11.5	14	3.38 B	89.2	1.98 U	2 U	1.9 U	3.07	1.86 J	NS	1.87 U	0.901 J	2.03 U	1.8 U
Perfluorooctanoic Acid (PFOA)	10	0.588 J	1.2 J	12.8	6.24	5.6	8.22	75.3	17.6	15	16	26.7	4.36	NS	1.15 J	3.24	23.1	20
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	100	1.92 U	4.8 U	43.9 B	1.96 U	4.7 U	2.02 U	280	114	44	50	2.57	1.99 U	NS	1.87 U	2.14 U	173	120 F1 J MSH
Perfluoroheptanesulfonic Acid (PFHpS)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	4.2	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	1.87 U	2.14 U	2.03 U	1.8 U
Perfluoronanoic Acid (PFNA)	100	1.92 U	1.9 U	1.31 J	1.96 U	0.96 J	0.944 J	11.3	8.95	7.5	7.3	0.968 J	1.99 U	NS	1.87 U	0.738 J	7.72	9.3
Perfluorooctanesulfonic Acid (PFOS)	10	1.92 U	1.9 U	2.96 B	11.3	8.5	4.67 B	153	1.98 U	2.7	2.8	7.52	3.1	NS	0.936 J	2.14	9.65	6.3 J ISH
Perfluorodecanoic Acid (PFDA)	100	1.92 U	1.9 U	1.89 U	1.96 U	0.61 J	2.02 U	1.24 J	0.866 J	0.98 J	0.84 J	1.97 U	1.99 U	NS	1.87 U	2.14 U	0.598 J	1.4 J1 J ISH
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	50.1	39.9	34	34	1.97 U	1.99 U	NS	1.87 U	2.14 U	21.2	25
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	100	1.92 U	4.8 U	1.89 U	1.96 U	4.7 U	2.02 U	2 U	2.02	5.1 U	4.8 U	1.97 U	1.99 U	NS	2.37	2.14 U	2.03 U	4.6 U
Perfluoroundecanoic Acid (PFUnA)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	1.87 U	2.14 U	2.03 U	1.8 U
Perfluorodecanesulfonic Acid (PFDS)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	1.87 U	2.14 U	2.03 U	1.8 U
Perfluorooctanesulfonamide (FOSA)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	1.87 U	2.14 U	2.03 U	1.8 U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	100	1.92 U	4.8 U	1.89 U	1.96 U	4.7 U	2.02 U	2 U	1.98 U	5.1 U	4.8 U	1.97 U	1.99 U	NS	3.22	1.12 J	2.03 U	4.6 U
Perfluorododecanoic Acid (PFDoA)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	1.87 U	2.14 U	2.03 U	1.8 U
Perfluorotridecanoic Acid (PFTrDA)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	0.416 J	2.14 U	2.03 U	1.8 U
Perfluorotetradecanoic Acid (PFTA)	100	1.92 U	1.9 U	1.89 U	1.96 U	1.9 U	2.02 U	2 U	1.98 U	2 U	1.9 U	1.97 U	1.99 U	NS	0.491 J	2.14 U	2.03 U	1.8 U
PFOA/PFOS (Total)	500	2.3	7.4	305.7	51.2	60.4	97.2	907.0	353.3	242.1	246.6	100.3	21.3	NS	17.1	18.3	621.5	426.7

a/ Duplicate sample collected at MW-204.

b/ Ambient Water Quality Standards for PFAS are not available. Quidance values shown are from the October 2020 Sampling, Analysis, and Assessment of Per-and Polyfluorality Substances (PFAS). Under NYSDECS Part 375 Remedial Programs
U = Analyte not detected at reporting limit shown: J = estimated value; I =

U = Arrayler not detected at reporting immt shown: 1 = estimated value; 1 =

NE = Sample not collected. Insufficials sample volume post-purging and primary sample (SMP Constitutents) collection.

NE = Comparative standard not established

ypl(1 = mitrograms per liter: npl = nanograms per liter

B = Method Blank contained PFHsS, 62 FTS, and PFOS above reporting limits and sample lacked sufficient volume for re-extraction.

Third Party Data Validation Codes shown in italics: LR = linear range exceeded; MSH = matrix spike recovery greater than upper limit; ISH = internal standard response exceeded UCL

Table 2 Saginaw Site (Site #915152) Annual Storm Sewer Sampling Results September 2020 SMP Constituents

	MH-2	
	9/24/202	0
Metals (µg/L)		
Lead (Total)	0.48	J
PCBs (µg/L)		
PCB-1016	0.06	U
PCB-1221	0.06	U
PCB-1232	0.06	U
PCB-1242	0.06	U
PCB-1248	0.06	U
PCB-1254	0.06	U
PCB-1260	0.06	U
PCB-1262	0.06	U

Date:6/3/2021 Inventum Engineering, P.C.

Bold text indicates a reportable concentration.

"U" = analyte not detected at reporting limit shown.

"J" = Estimated value. Result less than Reporting Limit but greater than or equal to the Method Detection Limit.

Table 3 Saginaw Site (Site #915152) Semi-Annual GW Sampling Results Historical SMP Constituents

		MW-1	MW-1 MW-5 MW-202 MW				MW-20	MW-203 MW-204 MW-99 (a)				MW-205 MW-206		MW-208		MW-209		MW-210		MW-211					
	Class GA GW Standards	12/10/20	19	12/10/20	19	12/10/20)19	12/10/20	19		12/10	/2019		12/10/20	19	12/10/20	19	12/10/20	19	12/10/2	319	12/10/20	019	12/10/20	319
Metals (mg/L)																									
Lead (Total)	0.025	0.01	U	0.104		0.01	U	0.01	U	0.0487		0.037		0.0513		0.456		0.00746	J	0.01	U	0.01	U	0.256	
Lead (Dissolved)	0.025	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
PCBs (µg/L)							•		•	•	•														
PCB-1016		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1221		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1232		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1242		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1248	0.09 (b)	1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1254		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1260		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1262		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
PCB-1268		1.04	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U

a/ Duplicate sample collected at MW-204. Bold text indicates a reportable concentration. Green highlighted values indicate an exceedances of the standard shown. b/ Applicable standard is the sum of all cogeners.

Table 3 Saginaw Site (Site #915152) Annual Storm Sewer Sampling Results Historical

		H-2		
	12/16/201	9	9/24/202	0
Metals (µg/L)				
Lead (Total)	0.01	U	0.48	J
PCBs (µg/L)				
PCB-1016	1.03	U	0.06	U
PCB-1221	1.03	U	0.06	U
PCB-1232	1.03	U	0.06	U
PCB-1242	1.03	U	0.06	U
PCB-1248	1.03	U	0.06	U
PCB-1254	1.03	U	0.06	U
PCB-1260	1.03	U	0.06	U
PCB-1262	1.03	U	0.06	U

Date:6/30/2021 Inventum Engineering, P.C. Page1 of 1

Bold text indicates a reportable concentration.

"U" = analyte not detected at reporting limit shown.

"J" = Estimated value. Result less than Reporting Limit but greater than or equal to the Method Detection Limit.

Appendix C – Groundwater Sampling Forms

		GROUND	WATER MONITO		IRGE FORM					
				te:						
Well ID: MW-204 Depth to Water (ft BTOC): 4.25										
Inventum Sampler: Todd W. Depth to Product (ft BTOC): -										
		Date:	9/24/2020	Total Depth (ft BTOC): 7.2						
				Details						
	Time Start:			Comments/No	tes: Well condit	on and casing a	re in good shape.			
	Time Ended:		837			-	-			
Tot	al Purge Volume:		~1gal							
Time	DTW	pH	Temperature	Turbidity	Conductivity	ORP	DO			
8:28:00 AM	4.38	7.32	17.63	1	0.905	-108	0.1			
8:31:00 AM	4.4	7.4	17.71	0	0.879	-117				
8:34:00 AM	4.4	7.43		0.7	0.851	-128				
8:37:00 AM	4.4	7 44	17.8	0	0.856	-127				
				B 1 "	<u> </u>					
				Details	OC (DE 10 (E 07) (0.4			
							unpreserved); 1,			
Sample Date: 9/24/2020 Analysis: PCPFOS/PFAS (537) (250 mt, poly x 2 unpreserv Dioxane (8270SIM) (1-1. amber unpreserved). Sampled By: Todd W Collected duples labeled MW-99 w/false time 0848 for paramers listed above. Collected MS/MSD for same paralisted above.										

INVENTUM ENGINEERING Date: 12

INVENTUM ENGINEERING PRI

		GROUND	WATER MONITO		RGE FORM		
		147 11 15	Si		(CLDTOO)	1.45	
		Well ID: tum Sampler:	MW-211		Vater (ft BTOC):		
	inven	oduct (ft BTOC):					
		Date:	9/24/2020	l otal L	epth (ft BTOC):	8.67	
			Purge	Details			
	Time Start:		1020	Comments/No	tes: Well conditi	on and casing a	re in good shape.
	Time Ended:		1030			-	-
To	tal Purge Volume:		~1gal				
Time	DTW	pН	Temperature	Turbidity	Conductivity	ORP	DO
10:20:00 AM	4.23	7.28	20.84	56.6	1.24	-85	1.05
10:23:00 AM	4.25	7.31	21.8	6.9	1.21	-108	0
10:27:00 AM	4.25	7.36		0	1.18	-123	0
10:30:00 AM	4.25	7.36	23.26	0	1.17	-125	0
			l				
			Sample				
		Sample Date:					unpreserved); 1,4-
		Sample Time:		Dioxane (8270)	SIM) (1-L amber	unpreserved).	
		Sampled By:	Todd W				

Date: 12/2/2019
INVENTUM ENGINEERING Page 1 of 1

		GROUND	WATER MONITO		RGE FORM		
			Si				
			MW-202		Vater (ft BTOC):		
Inventum Sampler: Todd W. Depth to Product (ft BTOC): -							
Date: 9/24/2020 Total Depth (ft BTOC): 7.7							
			Purge	Details			
	Time Start:		1105	Comments/No	tes: Well condit	ion and casing a	re in good shape.
	Time Ended:		1125				
To	tal Purge Volume:		~1gal				
Time	DTW	рН	Temperature	Turbidity	Conductivity	ORP	DO
11:19:00 AM	6.25	7.41	21.58	46	0.476	-112	1.08
11:22:00 AM	7.13	7.09		19.7	0.501	-109	0
11:25:00 AM	7.5	7.07	19.02	6.6	0.564	-125	0
Well is purging	dry at minimum fle	ow rate. Purg	completely dry. S	hut off pump to	allow recovery	than sample.	
			Sample	Details			
		Sample Date:			OS/PFAS (537) {	250 mL poly x 2	unpreserved); 1,4-
		Sample Time:			SIM) (1-L amber		. ,
		Sampled By:				. ,	

Date: 12/2/2019
INVENTUM ENGINEERING Page 1 of 1

		GROUND	WATER MONITO		RGE FORM							
		Well ID:	Si:		(-4 (64 DTOC)	7.7/						
	le	tum Sampler:		Depth to Water (ft BTOC): 7.76 Depth to Product (ft BTOC): -								
	inven											
Date: 9/24/2020 Total Depth (ft BTOC): 8.05												
	Purge Details											
	Time Start:			Comments/No	tes: Well conditi	on and casing a	re in good shape.					
	Time Ended:		955				-					
To	tal Purge Volume:		~1gal									
Time	DTW	pН	Temperature	Turbidity	Conductivity	ORP	DO					
9:40:00 AM	7.62	7.3	18.49	24.6	1.01	-122	15.77					
9:43:00 AM	8.03			49.3	1.25	-122	1.05					
9:44:00 AM	*Well purged dry.	Shut off pump	& monitor Reco	very								
9:48:00 AM	7.97			29.7	1.25	-118	0					
9:50:00 AM	*Well purged dry.	Shut off pump	& monitor Reco	very								
9:55:00 AM	7.82	7.25	18.04	33.4	1.12	-123	0					
			Sample									
		Sample Date:	9/24/2020	Analysis: PCPF	OS/PFAS (537) {2	50 mL poly x 2	unpreserved); 1,4-					
		Sample Time:	958	Dioxane (8270)	SIM) (1-L amber	unpreserved).						
		Sampled By:	Todd W									

Date: 12/2/2019
INVENTUM ENGINEERING Page 1 of 1

Appendix D – Laboratory Report

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-175617-1 Client Project/Site: Saginaw site

For:

Inventum Engineering LLC 481 Carlisle Dr Suite 202 Herndon, Virginia 20170

Attn: Todd Waldrop

Authorized for release by: 10/7/2020 4:32:36 PM Rebecca Jones, Project Management Assistant I

Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian, Fischer@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	15
Isotope Dilution Summary	16
QC Sample Results	18
	25
Lab Chronicle	27
Certification Summary	29
-	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	35

Definitions/Glossary

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Qualifiers

GC/MS Semi VOA

Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

E Result exceeded calibration range.

GC Semi VOA

X Surrogate recovery exceeds control limits

LCMS

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Value is EMPC (estimated maximum possible concentration).

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Page 3 of 36 10/7/2020

3

Л

6

7

a

10

4.0

14

15

П

Case Narrative

Client: Inventum Engineering LLC

Job ID: 480-175617-1 Project/Site: Saginaw site

Job ID: 480-175617-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-175617-1

Comments

No additional comments.

Receipt

The samples were received on 9/24/2020 2:05 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS Semi VOA

Method 8270D SIM ID: The 1,4-Dioxane result reported for sample MW-211 (480-175617-4) have an E flag qualifier indicating the results are over the calibration range on the raw data. The actual amounts are within the calibration range; however, the E flag is generated based upon the bias corrected concentration. The LIMS system calculates a bias correction based on the recovery of the 1,4-Dioxane-d8 isotope. MW-211 (480-175617-4)

Method 8270D SIM ID: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-211 (480-175617-4), MW-211 (480-175617-4[MS]) and MW-211 (480-175617-4[MSD]). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 608.3: Surrogate recovery for the following sample was outside control limits: MH-2-92420 (480-175617-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

LCMS

Method 537 (modified): The method blank for preparation batch 200-159418 and analytical batch 200-159470 contained Perfluorooctanesulfonamide (PFOSA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method 537 (modified): Method 537 (modified): The "I" qualifier associated with sample MW-211 (480-175617-4) is applied because the transition mass ratio for the indicated analyte(s) was outside of the established ratio limits. The qualitative identification has some degree of uncertainty, however analyst judgment was used to positively identify the analyte(s).

Method 537 (modified): The matrix spike (MS) recoveries for preparation batch 200-159418 and analytical batch 200-159470 were outside control limits for 1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2). Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Inventum Engineering LLC

Client Sample ID: MW-204

Project/Site: Saginaw site

Lab Sample ID: 480-175617-1

Job ID: 480-175617-1

•								•	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,4-Dioxane	0.39		0.20	0.10	ug/L	1	_	8270D SIM ID	Total/NA
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	34		2.0	0.67	ng/L	1		537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	44		5.1	0.73	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.9	J	2.0	0.64	ng/L	1		537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	21		5.1	1.1	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.98	J	2.0	0.47	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	29		2.0	0.47	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	31		2.0	0.84	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	7.5		2.0	0.59	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.7		2.0	0.89	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	15		2.0	1.0	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	55		2.0	1.1	ng/L	1		537 (modified)	Total/NA
_									

Client Sample ID: MW-99

Lab Sample ID: 480-175617-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,4-Dioxane	0.44		0.20	0.10	ug/L	1	_	8270D SIM ID	Total/NA
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	34		1.9	0.63	ng/L	1		537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	50		4.8	0.69	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.7	J	1.9	0.60	ng/L	1		537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	21		4.8	1.1	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.84	J	1.9	0.44	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	28		1.9	0.44	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	30		1.9	0.79	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	7.3		1.9	0.55	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.8		1.9	0.83	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	16		1.9	0.94	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	55		1.9	1.0	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-1

Lab Sample ID: 480-175617-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	0.84	J	1.9	0.61	ng/L	1	537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	2.6	J	4.8	1.1	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.77	J	1.9	0.44	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	0.83	J	1.9	0.80	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.2	J	1.9	0.95	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	1.2	J	1.9	1.0	ng/L	1	537 (modified)	Total/NA

Client Sample ID: MW-211

Lab Sample ID: 480-175617-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
1,4-Dioxane	7.5	E	1.0	0.50	ug/L	5	8270D SIM ID	Total/NA
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	25		1.8	0.61	ng/L	1	537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	120	F1	4.6	0.66	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.73	J	1.8	0.58	ng/L	1	537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	28		4.6	1.0	ng/L	1	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.4	JI	1.8	0.42	ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 5 of 36

2

3

6

8

10

12

14

15

16

Detection Summary

Client: Inventum Engineering LLC

Client Sample ID: MW-211 (Continued)

Project/Site: Saginaw site

Lab Sample ID: 480-175617-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	41	1.8	0.42	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	55	1.8	0.77	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	9.3	1.8	0.53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.3 I	1.8	0.80	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	20	1.8	0.90	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	120	1.8	1.0	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-202

I ah	Samn	le ID:	480-1	75617-5
	Outto		- TOO 1	

Job ID: 480-175617-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	2.6	1.9	0.59	ng/L	1	_	537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	11	4.7	1.1	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.61 J	1.9	0.43	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8	1.9	0.43	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	14	1.9	0.62	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.8	1.9	0.77	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.96 J	1.9	0.54	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	8.5	1.9	0.81	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	5.6	1.9	0.91	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	9.5	1.9	1.0	ng/L	1		537 (modified)	Total/NA

Client Sample ID: EQS-092420

Lab Sample ID: 480-175617-6

No Detections.

Client Sample ID: MH-2-92420 Lab Sample ID: 480-175617-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	0.48 J	1.0	0.17 ug/L	1 200.8	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MW-204

Date Collected: 09/24/20 08:40

Lab Sample ID: 480-175617-1

Matrix: Water

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Date Received: 09/24/20 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.39		0.20	0.10	ug/L		09/28/20 15:00	09/29/20 17:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	30		15 - 110				09/28/20 15:00	09/29/20 17:02	1
Method: 537 (modified) - Fluor	•			MDI	1114	_	D	A	D'I F
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulf onic acid (8:2)	34		2.0	0.67	ng/L		10/01/20 08:45	10/01/20 19:10	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	44		5.1	0.73	ng/L		10/01/20 08:45	10/01/20 19:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.1	0.95	ng/L		10/01/20 08:45	10/01/20 19:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.1	0.80	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorobutanesulfonic acid (PFBS)	1.9	J	2.0	0.64	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorobutanoic acid (PFBA)	21		5.1		ng/L			10/01/20 19:10	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L			10/01/20 19:10	1
Perfluorodecanoic acid (PFDA)	0.98	J	2.0	0.47	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.47			10/01/20 08:45	10/01/20 19:10	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.40	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluoroheptanoic acid (PFHpA)	29		2.0	0.47	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.68	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorohexanoic acid (PFHxA)	31		2.0	0.84	ng/L			10/01/20 19:10	1
Perfluorononanoic acid (PFNA)	7.5		2.0	0.59	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorooctanesulfonamide (PFOSA)	ND		2.0		ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorooctanesulfonic acid (PFOS)	2.7		2.0	0.89	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorooctanoic acid (PFOA)	15		2.0	1.0	ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluoropentanoic acid (PFPeA)	55		2.0		ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L		10/01/20 08:45	10/01/20 19:10	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.74	ng/L		10/01/20 08:45	10/01/20 19:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	94		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C2 PFDoA	84		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C2 PFHxA	83		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C2 PFTeDA	82		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C2 PFUnA	85		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C3 PFBS	88		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C4 PFBA	76		25 - 150				10/01/20 08:45	10/01/20 19:10	1
13C4 PFHpA	85		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C4 PFOA	97		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C4 PFOS	104		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C5 PFNA	99		50 - 150				10/01/20 08:45	10/01/20 19:10	1
13C5 PFPeA	83		25 - 150				10/01/20 08:45	10/01/20 19:10	1
13C8 FOSA	72		25 - 150				10/01/20 08:45	10/01/20 19:10	1
1802 PFHxS	91		50 - 150				10/01/20 08:45	10/01/20 19:10	1
d3-NMeFOSAA	92		50 - 150				10/01/20 08:45	10/01/20 19:10	1
d5-NEtFOSAA	93		50 - 150				10/01/20 08:45	10/01/20 19:10	1

Eurofins TestAmerica, Buffalo

Page 7 of 36 10/7/2020

_

<u>ی</u>

9

8

11

13

15

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MW-204 Lab Sample ID: 480-175617-1

Date Collected: 09/24/20 08:40 Matrix: Water Date Received: 09/24/20 14:05

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-6:2 FTS	114		25 - 150	10/01/20 08:45	10/01/20 19:10	1
M2-8:2 FTS	108		25 - 150	10/01/20 08:45	10/01/20 19:10	1

Client Sample ID: MW-99 Lab Sample ID: 480-175617-2

Date Collected: 09/24/20 08:45 Date Received: 09/24/20 14:05

Date Received. 09/24/20 14:05

Method: 8270D SIM ID - Semiv	olatile Orga	anic Comp	ounds (GC/N	/IS SIM /	Isotope	Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.44		0.20	0.10	ug/L		09/28/20 15:00	09/29/20 17:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	28		15 - 110				09/28/20 15:00	09/29/20 17:25	1

1,4-Dioxane-d8	28		15 - 110				09/28/20 15:00	09/29/20 17:25	7
Method: 537 (modified) - Fluor Analyte	•	<mark>/I Substan</mark> Qualifier	ces RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulf	34	- Qualifier	1.9		ng/L			10/01/20 19:18	1
onic acid (8:2)	04		1.0	0.00	119/12		10/01/20 00:10	10/01/20 10:10	•
1H,1H,2H,2H-perfluorooctanesulfo	50		4.8	0.69	ng/L		10/01/20 08:45	10/01/20 19:18	1
nic acid (6:2)									
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	0.89	ng/L		10/01/20 08:45	10/01/20 19:18	1
N-methylperfluorooctanesulfonamidoa	ND		4.8	0.76	ng/L		10/01/20 08:45	10/01/20 19:18	1
cetic acid (NMeFOSAA)					3				
Perfluorobutanesulfonic acid	1.7	J	1.9	0.60	ng/L		10/01/20 08:45	10/01/20 19:18	1
(PFBS)									
Perfluorobutanoic acid (PFBA)	21		4.8	1.1	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.46	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorodecanoic acid (PFDA)	0.84	J	1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.37	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluoroheptanoic acid (PFHpA)	28		1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.64	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorohexanoic acid (PFHxA)	30		1.9	0.79	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorononanoic acid (PFNA)	7.3		1.9	0.55	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.9	0.55	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorooctanesulfonic acid (PFOS)	2.8		1.9	0.83	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorooctanoic acid (PFOA)	16		1.9	0.94	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluoropentanoic acid (PFPeA)	55		1.9	1.0	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.56	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.41	ng/L		10/01/20 08:45	10/01/20 19:18	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.70	ng/L		10/01/20 08:45	10/01/20 19:18	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	90		50 - 150				10/01/20 08:45	10/01/20 19:18	1
13C2 PFDoA	76		50 ₋ 150				10/01/20 08:45	10/01/20 19:18	1
12C2 DEUVA	95		50 150				10/01/20 00:45	10/01/20 10:19	1

icotope zinanon	, , , , , , , , , , , , , , , , , , , ,			, ,	
13C2 PFDA	90	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C2 PFDoA	76	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C2 PFHxA	85	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C2 PFTeDA	72	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C2 PFUnA	88	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C3 PFBS	84	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C4 PFBA	76	25 - 150	10/01/20 08:45	10/01/20 19:18	1

Eurofins TestAmerica, Buffalo

Matrix: Water

Page 8 of 36 10/7/2020

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MW-99 Lab Sample ID: 480-175617-2

Date Collected: 09/24/20 08:45 **Matrix: Water** Date Received: 09/24/20 14:05

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFHpA	85	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C4 PFOA	92	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C4 PFOS	92	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C5 PFNA	94	50 - 150	10/01/20 08:45	10/01/20 19:18	1
13C5 PFPeA	84	25 - 150	10/01/20 08:45	10/01/20 19:18	1
13C8 FOSA	69	25 - 150	10/01/20 08:45	10/01/20 19:18	1
18O2 PFHxS	86	50 - 150	10/01/20 08:45	10/01/20 19:18	1
d3-NMeFOSAA	87	50 - 150	10/01/20 08:45	10/01/20 19:18	1
d5-NEtFOSAA	92	50 - 150	10/01/20 08:45	10/01/20 19:18	1
M2-6:2 FTS	107	25 - 150	10/01/20 08:45	10/01/20 19:18	1
M2-8:2 FTS	99	25 - 150	10/01/20 08:45	10/01/20 19:18	1

Lab Sample ID: 480-175617-3 **Client Sample ID: MW-1 Matrix: Water**

Date Collected: 09/24/20 09:58

Date Received: 09/24/20 14:05

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

mothod of of one of	onni volutilo Organ		oundo (oo	, o o ,	iootopt	, Da	U ,		
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		09/28/20 15:00	09/29/20 17:48	1
Isotope Dilution	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	31		15 - 110				09/28/20 15:00	09/29/20 17:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulfonic	ND		1.9	0.64	ng/L		10/01/20 08:45	10/01/20 19:26	1
acid (8:2) 1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		4.8	0.69	ng/L		10/01/20 08:45	10/01/20 19:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	0.90	ng/L		10/01/20 08:45	10/01/20 19:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	0.76	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorobutanesulfonic acid (PFBS)	0.84	J	1.9	0.61	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorobutanoic acid (PFBA)	2.6	J	4.8	1.1	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.46	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.38	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluoroheptanoic acid (PFHpA)	0.77	J	1.9	0.44	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.65	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorohexanoic acid (PFHxA)	0.83	J	1.9	0.80	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.56	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.9	0.55	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.84	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorooctanoic acid (PFOA)	1.2	J	1.9	0.95	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluoropentanoic acid (PFPeA)	1.2	J	1.9	1.0	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.57	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.41	ng/L		10/01/20 08:45	10/01/20 19:26	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.70	ng/L		10/01/20 08:45	10/01/20 19:26	1

Eurofins TestAmerica, Buffalo

Page 9 of 36 10/7/2020

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MW-1 Lab Sample ID: 480-175617-3 Date Collected: 09/24/20 09:58 **Matrix: Water**

Date Received: 09/24/20 14:05

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDA	84		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C2 PFDoA	75		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C2 PFHxA	96		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C2 PFTeDA	74		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C2 PFUnA	76		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C3 PFBS	94		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C4 PFBA	84		25 - 150	10/01/20 08:45	10/01/20 19:26	1
13C4 PFHpA	96		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C4 PFOA	96		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C4 PFOS	90		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C5 PFNA	91		50 - 150	10/01/20 08:45	10/01/20 19:26	1
13C5 PFPeA	91		25 - 150	10/01/20 08:45	10/01/20 19:26	1
13C8 FOSA	75		25 - 150	10/01/20 08:45	10/01/20 19:26	1
1802 PFHxS	97		50 - 150	10/01/20 08:45	10/01/20 19:26	1
d3-NMeFOSAA	78		50 - 150	10/01/20 08:45	10/01/20 19:26	1
d5-NEtFOSAA	81		50 - 150	10/01/20 08:45	10/01/20 19:26	1
M2-6:2 FTS	101		25 - 150	10/01/20 08:45	10/01/20 19:26	1
M2-8:2 FTS	90		25 - 150	10/01/20 08:45	10/01/20 19:26	1

Client Sample ID: MW-211 Lab Sample ID: 480-175617-4 Date Collected: 09/24/20 10:40 **Matrix: Water**

Date Received: 09/24/20 14:05

Method: 8270D SIM ID - Se	mivolatile Orga	ınıc Comp	ounds (GC/N	IS SIM /	Isotope	Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	7.5	E	1.0	0.50	ug/L		09/28/20 15:00	09/30/20 18:48	5
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.4-Dioxane-d8			15 - 110				09/28/20 15:00	09/30/20 18:48	5

_1,4-Dioxane-d8	27		15 - 110				09/28/20 15:00	09/30/20 18:48	5
- Method: 537 (modified) - Fluorin	•		ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulf onic acid (8:2)	25		1.8	0.61	ng/L		10/01/20 08:45	10/01/20 19:34	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	120	F1	4.6	0.66	ng/L		10/01/20 08:45	10/01/20 19:34	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	0.86	ng/L		10/01/20 08:45	10/01/20 19:34	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	0.73	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorobutanesulfonic acid (PFBS)	0.73	J	1.8	0.58	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorobutanoic acid (PFBA)	28		4.6	1.0	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.44	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorodecanoic acid (PFDA)	1.4	JI	1.8	0.42	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.42	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.36	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluoroheptanoic acid (PFHpA)	41		1.8	0.42	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.62	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorohexanoic acid (PFHxA)	55		1.8	0.77	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorononanoic acid (PFNA)	9.3		1.8	0.53	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.8	0.53	ng/L		10/01/20 08:45	10/01/20 19:34	1

Page 10 of 36

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MW-211 Lab Sample ID: 480-175617-4

Date Collected: 09/24/20 10:40 Matrix: Water Date Received: 09/24/20 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	6.3	I	1.8	0.80	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorooctanoic acid (PFOA)	20		1.8	0.90	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluoropentanoic acid (PFPeA)	120		1.8	1.0	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.54	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.40	ng/L		10/01/20 08:45	10/01/20 19:34	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.67	ng/L		10/01/20 08:45	10/01/20 19:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	95		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C2 PFDoA	84		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C2 PFHxA	75		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C2 PFTeDA	85		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C2 PFUnA	98		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C3 PFBS	108		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C4 PFBA	76		25 - 150				10/01/20 08:45	10/01/20 19:34	1
13C4 PFHpA	87		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C4 PFOA	98		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C4 PFOS	87		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C5 PFNA	101		50 - 150				10/01/20 08:45	10/01/20 19:34	1
13C5 PFPeA	99		25 - 150				10/01/20 08:45	10/01/20 19:34	1
13C8 FOSA	51		25 - 150				10/01/20 08:45	10/01/20 19:34	1
1802 PFHxS	76		50 - 150				10/01/20 08:45	10/01/20 19:34	1
d3-NMeFOSAA	123		50 - 150				10/01/20 08:45	10/01/20 19:34	1
d5-NEtFOSAA	125		50 - 150				10/01/20 08:45	10/01/20 19:34	1
M2-6:2 FTS	150		25 - 150				10/01/20 08:45	10/01/20 19:34	1
M2-8:2 FTS	122		25 - 150				10/01/20 08:45	10/01/20 19:34	1

Client Sample ID: MW-202

Date Collected: 09/24/20 11:45

Lab Sample ID: 480-175617-5

Matrix: Water

Date Received: 09/24/20 14:05

Method: 8270D SIM ID - Semiv	_	Qualifier	RL		Unit	Diluti D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20		ug/L	— <u> </u>	09/28/20 15:00	09/29/20 18:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	23		15 - 110				09/28/20 15:00	09/29/20 18:10	1
- Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		1.9	0.62	ng/L		10/01/20 08:45	10/01/20 19:59	1
1H 1H 2H 2H-perfluorooctanesulfonic	ND		4 7	0.67	na/l		10/01/20 08:45	10/01/20 19:59	1

acid (8:2)					
1H,1H,2H,2H-perfluorooctanesulfonic	ND	4.7	0.67 ng/L	10/01/20 08:45 10/01/20 19:59	1
acid (6:2)					
N-ethylperfluorooctanesulfonamidoac	ND	4.7	0.87 ng/L	10/01/20 08:45 10/01/20 19:59	1
etic acid (NEtFOSAA)					
N-methylperfluorooctanesulfonamidoa	ND	4.7	0.74 ng/L	10/01/20 08:45 10/01/20 19:59	1
cetic acid (NMeFOSAA)					
Perfluorobutanesulfonic acid	2.6	1.9	0.59 ng/L	10/01/20 08:45 10/01/20 19:59	1
(PFBS)					
Perfluorobutanoic acid (PFBA)	11	4.7	1.1 ng/L	10/01/20 08:45 10/01/20 19:59	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	0.45 ng/L	10/01/20 08:45 10/01/20 19:59	1

Eurofins TestAmerica, Buffalo

Page 11 of 36

2

3

5

10

11

13

15

Millerica, Dullaic

Job ID: 480-175617-1

Client: Inventum Engineering LLC Project/Site: Saginaw site

Client Sample ID: MW-202

Lab Sample ID: 480-175617-5

Date Collected: 09/24/20 11:45 **Matrix: Water** Date Received: 09/24/20 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorodecanoic acid (PFDA)	0.61	J	1.9	0.43	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.43	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.36	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluoroheptanoic acid (PFHpA)	2.8		1.9	0.43	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorohexanesulfonic acid (PFHxS)	14		1.9	0.62	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorohexanoic acid (PFHxA)	4.8		1.9	0.77	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorononanoic acid (PFNA)	0.96	J	1.9	0.54	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.9	0.53	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorooctanesulfonic acid (PFOS)	8.5		1.9	0.81	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorooctanoic acid (PFOA)	5.6		1.9	0.91	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluoropentanoic acid (PFPeA)	9.5		1.9	1.0	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.55	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.40	ng/L		10/01/20 08:45	10/01/20 19:59	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.68	ng/L		10/01/20 08:45	10/01/20 19:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	94		50 - 150				10/01/20 08:45	10/01/20 19:59	1
13C2 PFDoA	84		50 - 150				10/01/20 08:45	10/01/20 19:59	1
13C2 PFHxA	103		50 - 150				10/01/20 08:45	10/01/20 19:59	1
12C2 DET-DA	0.4		EO 1EO				10/01/20 08:45	10/01/20 10:50	

				0.00g/_	10/01/20 00110	. 0, 0 ., 20 . 0.00	•
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C2 PFDA	94		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C2 PFDoA	84		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C2 PFHxA	103		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C2 PFTeDA	84		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C2 PFUnA	86		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C3 PFBS	99		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C4 PFBA	81		25 - 150		10/01/20 08:45	10/01/20 19:59	1
13C4 PFHpA	100		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C4 PFOA	96		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C4 PFOS	95		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C5 PFNA	98		50 - 150		10/01/20 08:45	10/01/20 19:59	1
13C5 PFPeA	95		25 - 150		10/01/20 08:45	10/01/20 19:59	1
13C8 FOSA	75		25 - 150		10/01/20 08:45	10/01/20 19:59	1
18O2 PFHxS	101		50 - 150		10/01/20 08:45	10/01/20 19:59	1
d3-NMeFOSAA	85		50 - 150		10/01/20 08:45	10/01/20 19:59	1
d5-NEtFOSAA	92		50 - 150		10/01/20 08:45	10/01/20 19:59	1
M2-6:2 FTS	111		25 - 150		10/01/20 08:45	10/01/20 19:59	1
M2-8:2 FTS	108		25 - 150		10/01/20 08:45	10/01/20 19:59	1

Client Sample ID: EQS-092420

Date Collected: 09/24/20 11:55

Date Received: 09/24/20 14:05

Lab Sample ID: 480-175617-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		09/28/20 15:00	09/29/20 18:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.4-Dioxane-d8	36		<u> 15 - 110</u>				09/28/20 15:00	09/29/20 18:33	

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulfonic	ND		1.8	0.61	ng/L		10/01/20 08:45	10/01/20 20:08	1
acid (8:2)									

Eurofins TestAmerica, Buffalo

Page 12 of 36

Project/Site: Saginaw site

Client Sample ID: EQS-092420

Date Collected: 09/24/20 11:55 Date Received: 09/24/20 14:05 Lab Sample ID: 480-175617-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		4.6	0.67	ng/L		10/01/20 08:45	10/01/20 20:08	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	0.86	ng/L		10/01/20 08:45	10/01/20 20:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	0.73	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.58	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorobutanoic acid (PFBA)	ND		4.6	1.0	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.44	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.43	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.43	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.36	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.43	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.62	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.77	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.54	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorooctanesulfonamide (PFOSA)	ND		1.8	0.53	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.80	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.91	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	1.0	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.55	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.40	ng/L		10/01/20 08:45	10/01/20 20:08	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.68	ng/L		10/01/20 08:45	10/01/20 20:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Periluorotifuecariote acid (PP IIIA)	ND		1.0	0.40	⊓g/L	10/01/20 06.45	10/01/20 20.06	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.68	ng/L	10/01/20 08:45	10/01/20 20:08	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C2 PFDA	100		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C2 PFDoA	72		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C2 PFHxA	102		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C2 PFTeDA	70		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C2 PFUnA	93		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C3 PFBS	99		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C4 PFBA	114		25 - 150			10/01/20 08:45	10/01/20 20:08	1
13C4 PFHpA	102		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C4 PFOA	100		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C4 PFOS	105		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C5 PFNA	98		50 - 150			10/01/20 08:45	10/01/20 20:08	1
13C5 PFPeA	109		25 - 150			10/01/20 08:45	10/01/20 20:08	1
13C8 FOSA	69		25 - 150			10/01/20 08:45	10/01/20 20:08	1
1802 PFHxS	102		50 - 150			10/01/20 08:45	10/01/20 20:08	1
d3-NMeFOSAA	89		50 - 150			10/01/20 08:45	10/01/20 20:08	1
d5-NEtFOSAA	82		50 - 150			10/01/20 08:45	10/01/20 20:08	1
M2-6:2 FTS	100		25 - 150			10/01/20 08:45	10/01/20 20:08	1
M2-8:2 FTS	108		25 - 150			10/01/20 08:45	10/01/20 20:08	1

Client Sample ID: MH-2-92420

Date Collected: 09/24/20 12:45 Date Received: 09/24/20 14:05 Lab Sample ID: 480-175617-7

Matrix: Water

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.060	0.038 ug/L		09/30/20 15:17	10/02/20 02:32	1

Eurofins TestAmerica, Buffalo

Page 13 of 36

9

3

5

7

9

10

12

14

15

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: MH-2-92420

Date Collected: 09/24/20 12:45 Date Received: 09/24/20 14:05 Lab Sample ID: 480-175617-7

Matrix: Water

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (G	SC) (Continued)
---	-----------------

Analyte	Result Qu	ualifier RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND ND	0.060	0.038	ug/L		09/30/20 15:17	10/02/20 02:32	1
PCB-1232	ND	0.060	0.038	ug/L		09/30/20 15:17	10/02/20 02:32	1
PCB-1242	ND	0.060	0.038	ug/L		09/30/20 15:17	10/02/20 02:32	1
PCB-1248	ND	0.060	0.038	ug/L		09/30/20 15:17	10/02/20 02:32	1
PCB-1254	ND	0.060	0.031	ug/L		09/30/20 15:17	10/02/20 02:32	1
PCB-1260	ND	0.060	0.031	ug/L		09/30/20 15:17	10/02/20 02:32	1
Curromoto	% Pagayany O	valifiar limita				Branarad	Analyzad	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	30	X	36 - 121	09/30/20 15:17	10/02/20 02:32	1
DCB Decachlorobiphenyl	32	X	36 - 121	09/30/20 15:17	10/02/20 02:32	1
Tetrachloro-m-xylene (Surr)	80		42 - 135	09/30/20 15:17	10/02/20 02:32	1
Tetrachloro-m-xylene (Surr)	90		42 - 135	09/30/20 15:17	10/02/20 02:32	1

Method:	200.8 - Metals	s (ICP/MS)

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Lead	0.48 J	1.0	0.17 ug/L	09/28/20 09:35	09/29/20 18:16	1

5

O

8

9

10

12

13

17

Surrogate Summary

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(36-121)	(36-121)	(42-135)	(42-135)
480-175617-7	MH-2-92420	32 X	30 X	90	80
LCS 480-551917/2-A	Lab Control Sample	41	39	84	78
LCSD 480-551917/3-A	Lab Control Sample Dup	47	44	85	80
MB 480-551917/1-A	Method Blank	45	42	91	85

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene (Surr)

6

9

10

12

14

15

Client: Inventum Engineering LLC

Job ID: 480-175617-1 Project/Site: Saginaw site

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Prep Type: Total/NA **Matrix: Water**

		DXE	Percent Isotope Dilution Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(15-110)	
480-175617-1	MW-204	30	
480-175617-2	MW-99	28	
480-175617-3	MW-1	31	
480-175617-4	MW-211	27	
480-175617-4 MS	MW-211	27	
480-175617-4 MSD	MW-211	29	
480-175617-5	MW-202	23	
480-175617-6	EQS-092420	36	
LCS 480-551539/2-A	Lab Control Sample	34	
MB 480-551539/1-A	Method Blank	31	
Surrogate Legend			

Method: 537 (modified) - Fluorinated Alkyl Substances

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDA	PFDoA	PFHxA	PFTDA	PFUnA	C3PFBS	PFBA	C4PFHA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(25-150)	(50-150)
480-175617-1	MW-204	94	84	83	82	85	88	76	85
480-175617-2	MW-99	90	76	85	72	88	84	76	85
480-175617-3	MW-1	84	75	96	74	76	94	84	96
480-175617-4	MW-211	95	84	75	85	98	108	76	87
480-175617-4 MS	MW-211	88	81	77	84	91	106	71	87
480-175617-4 MSD	MW-211	89	84	72	82	93	96	72	82
480-175617-5	MW-202	94	84	103	84	86	99	81	100
480-175617-6	EQS-092420	100	72	102	70	93	99	114	102
LCS 200-159418/2-A	Lab Control Sample	95	84	101	70	87	100	109	95
MB 200-159418/1-A	Method Blank	98	79	104	74	81	98	106	100
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFOA	PFOS	PFNA	PFPeA	PFOSA	PFHxS	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)
 480-175617-1	MW-204	97	104	99	83	72	91	92	93
480-175617-2	MW-99	92	92	94	84	69	86	87	92
480-175617-3	MW-1	96	90	91	91	75	97	78	81
480-175617-4	MW-211	98	87	101	99	51	76	123	125
480-175617-4 MS	MW-211	97	87	98	94	48	74	103	126
480-175617-4 MSD	MW-211	96	85	96	90	50	72	111	121
480-175617-5	MW-202	96	95	98	95	75	101	85	92
480-175617-6	EQS-092420	100	105	98	109	69	102	89	82
LCS 200-159418/2-A	Lab Control Sample	95	104	94	103	57	103	89	84
MB 200-159418/1-A	Method Blank	97	104	100	101	53	98	93	93
			Perce	nt Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		M262FTS	M282FTS	-		•	•	•	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
480-175617-1	MW-204	114	108						
480-175617-2	MW-99	107	99						
480-175617-3	MW-1	101	90						
480-175617-4	MW-211	150	122						

Eurofins TestAmerica, Buffalo

Page 16 of 36

Isotope Dilution Summary

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Total/NA

			Percent
		M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)
480-175617-4 MS	MW-211	126	115
480-175617-4 MSD	MW-211	126	114
480-175617-5	MW-202	111	108
480-175617-6	EQS-092420	100	108
LCS 200-159418/2-A	Lab Control Sample	93	96
MB 200-159418/1-A	Method Blank	97	100

Surrogate Legend

PFDA = 13C2 PFDA

PFDoA = 13C2 PFDoA

PFHxA = 13C2 PFHxA

PFTDA = 13C2 PFTeDA

PFUnA = 13C2 PFUnA

C3PFBS = 13C3 PFBS

PFBA = 13C4 PFBA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFOS = 13C4 PFOS

PFNA = 13C5 PFNA

PFPeA = 13C5 PFPeA

PFOSA = 13C8 FOSA

PFHxS = 18O2 PFHxS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Eurofins TestAmerica, Buffalo

2

3

6

10

111

13

14

11-5

10/7/2020

Project/Site: Saginaw site

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

MB MB

Lab Sample ID: MB 480-551539/1-A

Matrix: Water

Isotope Dilution

1,4-Dioxane-d8

1,4-Dioxane

Analysis Batch: 551674

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 551539

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 09/28/20 15:00 09/29/20 15:09 1,4-Dioxane ND 0.20 0.10 ug/L MB MB

%Recovery Qualifier Limits Prepared Analyzed Dil Fac 31 15 - 110 09/28/20 15:00 09/29/20 15:09

ug/L

Lab Sample ID: LCS 480-551539/2-A **Client Sample ID: Lab Control Sample**

1.15

Matrix: Water

Analysis Batch: 551674

Prep Type: Total/NA **Prep Batch: 551539**

40 - 140

115

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

1.00

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 15 - 110 1,4-Dioxane-d8 34

Lab Sample ID: 480-175617-4 MS Client Sample ID: MW-211

Matrix: Water

Analysis Batch: 551928

Prep Type: Total/NA **Prep Batch: 551539**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D 1,4-Dioxane 7.5 E 8.49 E 4 40 - 140 1.00 ug/L 95

MS MS Isotope Dilution %Recovery Qualifier Limits

1.4-Dioxane-d8 15 - 110 27

Lab Sample ID: 480-175617-4 MSD Client Sample ID: MW-211

Matrix: Water

Analysis Batch: 551928

Prep Type: Total/NA **Prep Batch: 551539**

MSD MSD %Rec. **RPD** Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 1,4-Dioxane 7.5 E 1.00 7.88 E 4 33 40 - 140 20 ug/L MSD MSD

Isotope Dilution Qualifier %Recovery Limits 1,4-Dioxane-d8 15 - 110 29

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-551917/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 552133 Prep Batch: 551917 MR ME

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND		0.060	0.038	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1221	ND		0.060	0.038	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1232	ND		0.060	0.038	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1242	ND		0.060	0.038	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1248	ND		0.060	0.038	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1254	ND		0.060	0.031	ug/L		09/30/20 15:17	10/02/20 00:10	1	
PCB-1260	ND		0.060	0.031	ug/L		09/30/20 15:17	10/02/20 00:10	1	

Eurofins TestAmerica, Buffalo

Page 18 of 36

Project/Site: Saginaw site

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: MB 480-551917/1-A

Matrix: Water

Analysis Batch: 552133

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 551917

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	42	36 - 121	09/30/20 15:17	10/02/20 00:10	1
DCB Decachlorobiphenyl	45	36 - 121	09/30/20 15:17	10/02/20 00:10	1
Tetrachloro-m-xylene (Surr)	85	42 - 135	09/30/20 15:17	10/02/20 00:10	1
Tetrachloro-m-xylene (Surr)	91	42 - 135	09/30/20 15:17	10/02/20 00:10	1

LCS LCS

Lab Sample ID: LCS 480-551917/2-A

Lab Sample ID: LCSD 480-551917/3-A

Matrix: Water

Analysis Batch: 552133

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 551917

%Rec.

Spike Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 1.00 1.00 ug/L 100 69 - 123 PCB-1260 1.00 0.911 ug/L 91 69 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	39		36 - 121
DCB Decachlorobiphenyl	41		36 - 121
Tetrachloro-m-xylene (Surr)	78		42 - 135
Tetrachloro-m-xylene (Surr)	84		42 - 135

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 552133

Prep Type: Total/NA **Prep Batch: 551917**

Spike LCSD LCSD %Rec. **RPD** Added Limits RPD Limit Analyte Result Qualifier Unit D %Rec PCB-1016 1.00 1.06 ug/L 106 69 - 123 6 30 PCB-1260 1.00 0.969 ug/L 97 69 - 120 6 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	44		36 - 121
DCB Decachlorobiphenyl	47		36 - 121
Tetrachloro-m-xylene (Surr)	80		42 - 135
Tetrachloro-m-xylene (Surr)	85		42 - 135

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-159418/1-A

Matrix: Water

Analysis Batch: 159470

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 159418

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		2.0	0.66	ng/L		10/01/20 08:45	10/01/20 18:53	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		5.0	0.72	ng/L		10/01/20 08:45	10/01/20 18:53	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	0.93	ng/L		10/01/20 08:45	10/01/20 18:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	0.79	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.63	ng/L		10/01/20 08:45	10/01/20 18:53	1

Eurofins TestAmerica, Buffalo

Page 19 of 36

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-159418/1-A **Matrix: Water**

Analysis Batch: 159470

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	1.1	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.48	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.46	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.46	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.39	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.46	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.67	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.83	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.58	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorooctanesulfonamide (PFOSA)	0.644	J	2.0	0.57	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.87	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.98	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	1.1	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.59	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.43	ng/L		10/01/20 08:45	10/01/20 18:53	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.73	ng/L		10/01/20 08:45	10/01/20 18:53	1

Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.73 ng/L	10/01/20 08:45	10/01/20 18:53	1
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C2 PFDA	98		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C2 PFDoA	79		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C2 PFHxA	104		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C2 PFTeDA	74		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C2 PFUnA	81		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C3 PFBS	98		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C4 PFBA	106		25 - 150		10/01/20 08:45	10/01/20 18:53	1
13C4 PFHpA	100		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C4 PFOA	97		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C4 PFOS	104		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C5 PFNA	100		50 - 150		10/01/20 08:45	10/01/20 18:53	1
13C5 PFPeA	101		25 - 150		10/01/20 08:45	10/01/20 18:53	1
13C8 FOSA	53		25 - 150		10/01/20 08:45	10/01/20 18:53	1
18O2 PFHxS	98		50 - 150		10/01/20 08:45	10/01/20 18:53	1
d3-NMeFOSAA	93		50 - 150		10/01/20 08:45	10/01/20 18:53	1
d5-NEtFOSAA	93		50 - 150		10/01/20 08:45	10/01/20 18:53	1
M2-6:2 FTS	97		25 - 150		10/01/20 08:45	10/01/20 18:53	1
M2-8:2 FTS	100		25 - 150		10/01/20 08:45	10/01/20 18:53	1

Lab Sample ID: LCS 200-159418/2-A

Matrix: Water Analysis Batch: 159470	Spike	Spike LCS					Prep Type: Total/NA Prep Batch: 159418 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	38.3	39.0		ng/L		102	50 - 150
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	37.9	37.4		ng/L		99	50 - 150
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	38.6		ng/L		96	70 - 130

Client Sample ID: Lab Control Sample

Page 20 of 36

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 159418

QC Sample Results

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Samp	le ID: I	_CS 20	0-15941	8/2-A
----------	----------	---------------	---------	-------

Matrix: Water

Analysis Batch: 159470

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 159418

Allarysis Batch. 100470	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits	
N-methylperfluorooctanesulfona	40.0	40.9	ng/L		70 - 130	
midoacetic acid (NMeFOSAA)			-			
Perfluorobutanesulfonic acid (PFBS)	35.4	35.9	ng/L	102	70 - 130	
Perfluorobutanoic acid (PFBA)	40.0	37.5	ng/L	94	50 - 150	
Perfluorodecanesulfonic acid (PFDS)	38.6	31.3	ng/L	81	50 - 150	
Perfluorodecanoic acid (PFDA)	40.0	36.8	ng/L	92	70 - 130	
Perfluorododecanoic acid (PFDoA)	40.0	34.1	ng/L	85	70 - 130	
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	35.7	ng/L	94	50 - 150	
Perfluoroheptanoic acid (PFHpA)	40.0	40.4	ng/L	101	70 - 130	
Perfluorohexanesulfonic acid (PFHxS)	36.4	33.8	ng/L	93	70 - 130	
Perfluorohexanoic acid (PFHxA)	40.0	37.8	ng/L	94	70 - 130	
Perfluorononanoic acid (PFNA)	40.0	40.0	ng/L	100	70 - 130	
Perfluorooctanesulfonamide (PFOSA)	40.0	41.0	ng/L	103	50 - 150	
Perfluorooctanesulfonic acid (PFOS)	37.1	34.2	ng/L	92	70 - 130	
Perfluorooctanoic acid (PFOA)	40.0	40.2	ng/L	101	70 - 130	
Perfluoropentanoic acid (PFPeA)	40.0	37.1	ng/L	93	50 - 150	
Perfluorotetradecanoic acid (PFTeA)	40.0	39.9	ng/L	100	70 - 130	
Perfluorotridecanoic acid (PFTriA)	40.0	34.2	ng/L	85	70 - 130	
Perfluoroundecanoic acid (PFUnA)	40.0	42.8	ng/L	107	70 - 130	

LCS LCS

LUS	LUS	
%Recovery	Qualifier	Limits
95		50 - 150
84		50 - 150
101		50 - 150
70		50 - 150
87		50 - 150
100		50 - 150
109		25 - 150
95		50 - 150
95		50 - 150
104		50 - 150
94		50 ₋ 150
103		25 - 150
57		25 - 150
103		50 - 150
89		50 - 150
84		50 - 150
93		25 - 150
96		25 - 150
	%Recovery 95 84 101 70 87 100 109 95 95 104 94 103 57 103 89 84 93	84 101 70 87 100 109 95 95 104 94 103 57 103 89 84

Eurofins TestAmerica, Buffalo

2

3

5

7

9

11

13

15

QC Sample Results

Snika

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Sample Sample

Lab Sam	ple ID:	480-1756	617-4 MS
----------------	---------	----------	----------

Matrix: Water

Analysis Batch: 159470

Client	Sam	ple	ID:	MW	<mark>/-211</mark>
	Dran	T		Tota	I/NI A

Prep	Type: Total/NA
Prep	Batch: 159418
0/ Doc	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1H,1H,2H,2H-perfluorodecanesul	25		34.6	58.6		ng/L		97	40 - 160	
fonic acid (8:2)										
1H,1H,2H,2H-perfluorooctanesulf	120	F1	34.3	180	F1	ng/L		169	40 - 160	
onic acid (6:2)										
N-ethylperfluorooctanesulfonami	ND		36.2	31.4		ng/L		87	40 - 160	
doacetic acid (NEtFOSAA)	<u></u> -							,		
N-methylperfluorooctanesulfona	ND		36.2	41.1		ng/L		114	40 - 160	
midoacetic acid (NMeFOSAA)	0.70		20.0	24.0		/1		0.5	40, 400	
Perfluorobutanesulfonic acid	0.73	J	32.0	31.0		ng/L		95	40 - 160	
(PFBS) Perfluorobutanoic acid (PFBA)	28		36.2	59.0		ng/L		86	40 - 160	
	ND		34.9	33.2						
Perfluorodecanesulfonic acid (PFDS)	ND		34.9	33.2		ng/L		95	40 - 160	
Perfluorodecanoic acid (PFDA)	1.4	JI	36.2	35.4		ng/L		94	40 - 160	
Perfluorododecanoic acid (PFDoA)	ND		36.2	35.0		ng/L		97	40 - 160	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.4	37.6		ng/L		109	40 - 160	
Perfluoroheptanoic acid (PFHpA)	41		36.2	74.5		ng/L		93	40 - 160	
Perfluorohexanesulfonic acid (PFHxS)	ND		32.9	30.0		ng/L		91	40 - 160	
Perfluorohexanoic acid (PFHxA)	55		36.2	88.0		ng/L		91	40 - 160	
Perfluorononanoic acid (PFNA)	9.3		36.2	43.3		ng/L		94	40 - 160	
Perfluorooctanesulfonamide	ND		36.2	39.1		ng/L		108	40 - 160	
(PFOSA)						Ü				
Perfluorooctanesulfonic acid (PFOS)	6.3	İ	33.6	38.5		ng/L		96	40 - 160	
Perfluorooctanoic acid (PFOA)	20		36.2	55.3		ng/L		98	40 - 160	
Perfluoropentanoic acid (PFPeA)	120		36.2	161		ng/L		105	40 - 160	
Perfluorotetradecanoic acid (PFTeA)	ND		36.2	37.2		ng/L		103	40 - 160	
Perfluorotridecanoic acid (PFTriA)	ND		36.2	32.5		ng/L		90	40 - 160	
Perfluoroundecanoic acid (PFUnA)	ND		36.2	35.9		ng/L		99	40 - 160	
· · · · · · · · · · · · · · · · · · ·										

	IVIS	INIS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C2 PFDA	88		50 - 150	
13C2 PFDoA	81		50 - 150	
13C2 PFHxA	77		50 - 150	
13C2 PFTeDA	84		50 - 150	
13C2 PFUnA	91		50 - 150	
13C3 PFBS	106		50 - 150	
13C4 PFBA	71		25 - 150	
13C4 PFHpA	87		50 - 150	
13C4 PFOA	97		50 - 150	
13C4 PFOS	87		50 - 150	
13C5 PFNA	98		50 - 150	
13C5 PFPeA	94		25 - 150	
13C8 FOSA	48		25 - 150	
1802 PFHxS	74		50 - 150	
d3-NMeFOSAA	103		50 - 150	

Eurofins TestAmerica, Buffalo

Page 22 of 36

10/7/2020

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

MS MS

Lab Sample ID: 480-175617-4 MS

Matrix: Water

Analysis Batch: 159470

Client Sample ID: MW-211

Prep Type: Total/NA

Prep Batch: 159418

Isotope Dilution %Recovery Qualifier Limits d5-NEtFOSAA 126 50 - 150 M2-6:2 FTS 126 25 - 150 M2-8:2 FTS 25 - 150 115

Lab Sample ID: 480-175617-4 MSD Client Sample ID: MW-211

Matrix: Water

Analysis Batch: 159470

Perfluoroundecanoic acid

(PFUnA)

Prep Type: Total/NA

Prep Batch: 159418 %Rec.

Analysis Baton: 100470	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1H,1H,2H,2H-perfluorodecanesul	25	Qualifier	34.8	59.0	- Guainioi	ng/L		98	40 - 160	1	30
fonic acid (8:2)	20		01.0	00.0		119/12		50	40 - 100		00
1H,1H,2H,2H-perfluorooctanesulf	120	F1	34.5	173		ng/L		147	40 - 160	4	30
onic acid (6:2)						-					
N-ethylperfluorooctanesulfonami	ND		36.4	34.9		ng/L		96	40 - 160	10	20
doacetic acid (NEtFOSAA)											
N-methylperfluorooctanesulfona	ND		36.4	34.0		ng/L		94	40 - 160	19	20
midoacetic acid (NMeFOSAA)											
Perfluorobutanesulfonic acid (PFBS)	0.73	J	32.2	33.5		ng/L		102	40 - 160	8	20
Perfluorobutanoic acid (PFBA)	28		36.4	60.8		ng/L		91	40 - 160	3	30
Perfluorodecanesulfonic acid (PFDS)	ND		35.1	36.8		ng/L		105	40 - 160	10	30
Perfluorodecanoic acid (PFDA)	1.4	JI	36.4	35.3		ng/L		93	40 - 160	0	20
Perfluorododecanoic acid (PFDoA)	ND		36.4	36.2		ng/L		100	40 - 160	3	20
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.6	36.5		ng/L		106	40 - 160	3	30
Perfluoroheptanoic acid (PFHpA)	41		36.4	77.0		ng/L		99	40 - 160	3	20
Perfluorohexanesulfonic acid (PFHxS)	ND		33.1	29.9		ng/L		90	40 - 160	1	20
Perfluorohexanoic acid (PFHxA)	55		36.4	91.0		ng/L		99	40 - 160	3	20
Perfluorononanoic acid (PFNA)	9.3		36.4	46.1		ng/L		101	40 - 160	6	20
Perfluorooctanesulfonamide (PFOSA)	ND		36.4	38.9		ng/L		107	40 - 160	1	30
Perfluorooctanesulfonic acid (PFOS)	6.3	I	33.8	39.1		ng/L		97	40 - 160	2	20
Perfluorooctanoic acid (PFOA)	20		36.4	54.6		ng/L		96	40 - 160	1	20
Perfluoropentanoic acid (PFPeA)	120		36.4	157		ng/L		95	40 - 160	2	30
Perfluorotetradecanoic acid (PFTeA)	ND		36.4	35.7		ng/L		98	40 - 160	4	20
Perfluorotridecanoic acid (PFTriA)	ND		36.4	37.2		ng/L		102	40 - 160	13	20

MSD MSD

ND

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFDA	89		50 - 150
13C2 PFDoA	84		50 - 150
13C2 PFHxA	72		50 - 150
13C2 PFTeDA	82		50 - 150
13C2 PFUnA	93		50 - 150
13C3 PFBS	96		50 ₋ 150

Eurofins TestAmerica, Buffalo

40 - 160

Page 23 of 36

36.4

36.1

ng/L

10/7/2020

QC Sample Results

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

MSD MSD

Lab Sample ID: 480-175617-4 MSD Client Sample ID: MW-211

Matrix: Water

Analysis Batch: 159470

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 551408

Prep Batch: 159418

	IVISD	IVISD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA	72		25 - 150	
13C4 PFHpA	82		50 - 150	
13C4 PFOA	96		50 - 150	
13C4 PFOS	85		50 - 150	
13C5 PFNA	96		50 - 150	
13C5 PFPeA	90		25 - 150	
13C8 FOSA	50		25 - 150	
1802 PFHxS	72		50 - 150	
d3-NMeFOSAA	111		50 - 150	
d5-NEtFOSAA	121		50 - 150	
M2-6:2 FTS	126		25 - 150	
M2-8:2 FTS	114		25 - 150	

Analysis Batch: 551800

Lab Sample ID: MB 480-551408/1-A

Matrix: Water

Analyte

Lead

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 1.0 0.17 ug/L 09/28/20 09:35 09/29/20 17:34

Lab Sample ID: LCS 480-551408/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 551408 Analysis Batch: 551800** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec 20.0 20.82 104 85 - 115 Lead ug/L

Client: Inventum Engineering LLC Job ID: 480-175617-1 Project/Site: Saginaw site

GC/MS Semi VOA

Prep Batch: 551539

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-1	MW-204	Total/NA	Water	3510C	
480-175617-2	MW-99	Total/NA	Water	3510C	
480-175617-3	MW-1	Total/NA	Water	3510C	
480-175617-4	MW-211	Total/NA	Water	3510C	
480-175617-5	MW-202	Total/NA	Water	3510C	
480-175617-6	EQS-092420	Total/NA	Water	3510C	
MB 480-551539/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-551539/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-175617-4 MS	MW-211	Total/NA	Water	3510C	
480-175617-4 MSD	MW-211	Total/NA	Water	3510C	

Analysis Batch: 551674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-1	MW-204	Total/NA	Water	8270D SIM ID	551539
480-175617-2	MW-99	Total/NA	Water	8270D SIM ID	551539
480-175617-3	MW-1	Total/NA	Water	8270D SIM ID	551539
480-175617-5	MW-202	Total/NA	Water	8270D SIM ID	551539
480-175617-6	EQS-092420	Total/NA	Water	8270D SIM ID	551539
MB 480-551539/1-A	Method Blank	Total/NA	Water	8270D SIM ID	551539
LCS 480-551539/2-A	Lab Control Sample	Total/NA	Water	8270D SIM ID	551539

Analysis Batch: 551928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-4 480-175617-4 MS	MW-211 MW-211	Total/NA Total/NA	Water Water	8270D SIM ID 8270D SIM ID	551539 551539
480-175617-4 MSD	MW-211	Total/NA	Water	8270D SIM ID	551539
	=				

GC Semi VOA

Prep Batch: 551917

Lab Sample ID 480-175617-7	Client Sample ID MH-2-92420	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-551917/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-551917/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-551917/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 552133

Lab Sample ID 480-175617-7	Client Sample ID MH-2-92420	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 551917
MB 480-551917/1-A	Method Blank	Total/NA	Water	608.3	551917
LCS 480-551917/2-A	Lab Control Sample	Total/NA	Water	608.3	551917
LCSD 480-551917/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	551917

LCMS

Prep Batch: 159418

Lab Sample ID 480-175617-1	Client Sample ID MW-204	Prep Type Total/NA	Matrix Water	Method 3535	Prep Batch
480-175617-2	MW-99	Total/NA	Water	3535	
480-175617-3	MW-1	Total/NA	Water	3535	
480-175617-4	MW-211	Total/NA	Water	3535	
480-175617-5	MW-202	Total/NA	Water	3535	

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: Inventum Engineering LLC

Project/Site: Saginaw site

Job ID: 480-175617-1

LCMS (Continued)

Prep Batch: 159418 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-6	EQS-092420	Total/NA	Water	3535	
MB 200-159418/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-159418/2-A	Lab Control Sample	Total/NA	Water	3535	
480-175617-4 MS	MW-211	Total/NA	Water	3535	
480-175617-4 MSD	MW-211	Total/NA	Water	3535	

Analysis Batch: 159470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-1	MW-204	Total/NA	Water	537 (modified)	159418
480-175617-2	MW-99	Total/NA	Water	537 (modified)	159418
480-175617-3	MW-1	Total/NA	Water	537 (modified)	159418
480-175617-4	MW-211	Total/NA	Water	537 (modified)	159418
480-175617-5	MW-202	Total/NA	Water	537 (modified)	159418
480-175617-6	EQS-092420	Total/NA	Water	537 (modified)	159418
MB 200-159418/1-A	Method Blank	Total/NA	Water	537 (modified)	159418
LCS 200-159418/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	159418
480-175617-4 MS	MW-211	Total/NA	Water	537 (modified)	159418
480-175617-4 MSD	MW-211	Total/NA	Water	537 (modified)	159418

Metals

Prep Batch: 551408

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-7	MH-2-92420	Total/NA	Water	200.8	
MB 480-551408/1-A	Method Blank	Total/NA	Water	200.8	
LCS 480-551408/2-A	Lab Control Sample	Total/NA	Water	200.8	

Analysis Batch: 551800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-175617-7	MH-2-92420	Total/NA	Water	200.8	551408
MB 480-551408/1-A	Method Blank	Total/NA	Water	200.8	551408
LCS 480-551408/2-A	Lab Control Sample	Total/NA	Water	200.8	551408

0-173017-1

10/7/2020

Job ID: 480-175617-1

Client: Inventum Engineering LLC Project/Site: Saginaw site

Client Sample ID: MW-204

Date Collected: 09/24/20 08:40 Date Received: 09/24/20 14:05 Lab Sample ID: 480-175617-1

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	551674	09/29/20 17:02	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 19:10	BWC	TAL BUR

Client Sample ID: MW-99 Lab Sample ID: 480-175617-2

Date Collected: 09/24/20 08:45 **Matrix: Water**

Date Received: 09/24/20 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	551674	09/29/20 17:25	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 19:18	BWC	TAL BUR

Client Sample ID: MW-1 Lab Sample ID: 480-175617-3

Date Collected: 09/24/20 09:58

Date Received: 09/24/20 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	551674	09/29/20 17:48	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 19:26	BWC	TAL BUR

Client Sample ID: MW-211 Lab Sample ID: 480-175617-4 **Matrix: Water**

Date Collected: 09/24/20 10:40

Date Received: 09/24/20 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		5	551928	09/30/20 18:48	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 19:34	BWC	TAL BUR

Client Sample ID: MW-202 Lab Sample ID: 480-175617-5

Date Collected: 09/24/20 11:45

Date Received: 09/24/20 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	551674	09/29/20 18:10	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 19:59	BWC	TAL BUR

Page 27 of 36

Matrix: Water

Lab Chronicle

Client: Inventum Engineering LLC Job ID: 480-175617-1

Project/Site: Saginaw site

Client Sample ID: EQS-092420

Date Received: 09/24/20 14:05

Lab Sample ID: 480-175617-6 Date Collected: 09/24/20 11:55 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551539	09/28/20 15:00	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	551674	09/29/20 18:33	PJQ	TAL BUF
Total/NA	Prep	3535			159418	10/01/20 08:45	ND	TAL BUR
Total/NA	Analysis	537 (modified)		1	159470	10/01/20 20:08	BWC	TAL BUR

Client Sample ID: MH-2-92420

Lab Sample ID: 480-175617-7 Date Collected: 09/24/20 12:45

Matrix: Water

Date Received: 09/24/20 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			551917	09/30/20 15:17	ATG	TAL BUF
Total/NA	Analysis	608.3		1	552133	10/02/20 02:32	W1T	TAL BUF
Total/NA	Prep	200.8			551408	09/28/20 09:35	ADM	TAL BUF
Total/NA	Analysis	200.8		1	551800	09/29/20 18:16	KMP	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Accreditation/Certification Summary

Client: Inventum Engineering LLC

Project/Site: Saginaw site

Job ID: 480-175617-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-21
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-16-21
Florida	NELAP	E87467	06-30-21
Minnesota	NELAP	050-999-436	12-31-20
New Hampshire	NELAP	2006	12-18-20
New Jersey	NELAP	VT972	06-30-21
New York	NELAP	10391	04-01-21
Pennsylvania	NELAP	68-00489	04-30-21
Rhode Island	State	LAO00298	12-30-20
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-17-00272	08-09-20 *
Vermont	State	VT4000	12-31-20
Virginia	NELAP	460209	12-14-20
Wisconsin	State	399133350	08-31-21

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Inventum Engineering LLC

Project/Site: Saginaw site

Job ID: 480-175617-1

Method	Method Description	Protocol	Laboratory
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL BUF
608.3	Polychlorinated Biphenyls (PCBs) (GC)	40CFR136A	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
200.8	Metals (ICP/MS)	EPA	TAL BUF
200.8	Preparation, Total Metals	EPA	TAL BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
3535	Solid-Phase Extraction (SPE)	SW846	TAL BUR

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: Inventum Engineering LLC Project/Site: Saginaw site

Job ID: 480-175617-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-175617-1	MW-204	Water	09/24/20 08:40	09/24/20 14:05
480-175617-2	MW-99	Water	09/24/20 08:45	09/24/20 14:05
480-175617-3	MW-1	Water	09/24/20 09:58	09/24/20 14:05
480-175617-4	MW-211	Water	09/24/20 10:40	09/24/20 14:05
480-175617-5	MW-202	Water	09/24/20 11:45	09/24/20 14:05
480-175617-6	EQS-092420	Water	09/24/20 11:55	09/24/20 14:05
480-175617-7	MH-2-92420	Water	09/24/20 12:45	09/24/20 14:05

16

ABLE to get and off N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3 + S - H2SO4
T - TSP Dodecahydrate Ver: 01/16/2019 Special Instructions/Note: Z - other (specify) Company 480-175617 Chain of Custody Houry Cours 480-150665-33450.1 1000 reservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 Job#: I - Ice J - DI Water K - EDTA L - EDA Sate/Time: 4 Total Number of containers Date/Time. Date/Time Method of Shipment Sample Disposal (A fee may be assessed if sample Programme To Client Disposal By Lab E-Mail: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: 3 - DERT BOR - S.808 90 Received by eceived by 8 3 7 - 01_2M_MI2_00728 R छ 3 8 8 R M / Ne som erform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) BT=Tissue, A=Air Preservation Code: Water Water Water Water Water Water Water Water Company Matrix Radiological Type (C=comp, G=grab) Sample haldag 5 0 2 V 5 Strangero 571.217.323 1245 6840 cho1 1/12/6 9/24/20 1640 Sample 9/24/20 6845 2560 145 127 124/20 Unknown Level Todd TAT Requested (days): Due Date Requested: 9/24/20 02/20/20 9/24/20 Sample Date 9/24/20 9/4/20 VY59EC Poison B Project #: SSOW#: WO# Skin Irritant Other (specify) Custody Seal No. Phone: 716-691-2600 Fax: 716-691-7991 92420 NW-211- MS/MJA Flammabl F218.712173027 Possible Hazard Identification todd.waldrop@inventumeng.com Deliverable Requested: 1, 11, 111, EQS- 92420 Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Inventum Engineering LLC 481 Carlisle Dr Suite 202 SAN NAV Sample Identification Client Information 1 MW-202 - Non-Hazard nventum- Saginaw 112-MW 17 WW-234 MW- 39 Relinquished by: linquished by Relinquished by Todd Waldrop MW S. State, Zip: VA, 20170 Herndon

Environment Testing

💸 eurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298

10 Hazelwood Drive

Ver: 01/16/2019

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Environment Testing America 💸 eurofins

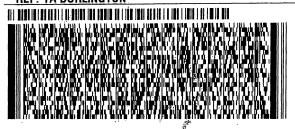
N - None
O - AsNaO2
P - Na2O45
Q - Na2SO3
R - Na2S2O3
S - H2SO4
I - TSP Dodecahydrate
U - Acetone Special Instructions/Note Z - other (specify) W - pH 4-5 V - MCAA Preservation Codes G - Amchlor H - Ascorbic Acid 480-175617-1 C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH COC No: 480-58839.1 Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA A - HCL B - NaOH 7 Total Mumber of containers N N N Carrier Tracking No(s): State of Origin: New York 480-175617 Chain of Custody **Analysis Requested** Accreditations Required (See note)
NELAP - New York E-Mail: Brian.Fischer@Eurofinset.com Lab PM: Fischer, Brian J × × × × × × × × (oN to seY) G2M/2M mnohen Preservation Code: (W=water, S=solid, O=waste/oil, Water Water Matrix Water Water Water Water Water Water Type (C=comp, G=grab) Sample MSD МS Eastern 09:58 Eastern 10:40 Eastern 11:55 Eastern 10:40 Eastern 11:45 Sample Eastern 08:45 Eastern 10:40 Eastern Time Due Date Requested: 10/6/2020 TAT Requested (days): Sample Date 9/24/20 9/24/20 9/24/20 9/24/20 9/24/20 9/24/20 9/24/20 9/24/20 Project #: 48022804 Phone: ₩O#: PO#: Client Information (Sub Contract Lab) ample Identification - Client ID (Lab ID) 802-660-1919(Fax) Suite 11, Sompany: FestAmerica Laboratories, Inc. MW-211 (480-175617-4MSD) EQS-092420 (480-175617-6) MW-211 (480-175617-4MS) MW-211 (480-175617-4) MW-202 (480-175617-5) AW-204 (480-175617-1) MW-99 (480-175617-2) MW-1 (480-175617-3) 30 Community Drive, 302-660-1990(Tel) Shipping/Receiving South Burlington Saginaw site State, Zip: VT, 05403

Possible Hazard Identification		Sar	nple Disposal (A fee may be assesse	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)
Unconfirmed			☐ Return To Client ☐ Disposal By Lab	By Lab Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	ads.	Requir		
Empty Kit Relinguished by:	Date:	Time:	WE	Method of Shipment:	
Reinquistredor	925/20 1725	Company	Received by:	Date/Time:	Company
. Kelinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by	Date/Tighe: / 6000	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) ^o C and Other Remarks:		

Do Not Lift Heing This To-

🗱 eurofins

Environment Testing TestAmerica


ORIGIN ID:DKKA (716) 691-2600 SAMPLE RECEIPT EUROFINS TESTAMERICA BUFFALO 10 HAZELWOOD DR

AMHERST, NY 14228 UNITED STATES US SHIP DATE: 25SEP20 ACTWGT: 23.20 LB CAD: 846654/CAFE3406 DIMS: 19x15x10 IN

BILL RECIPIENT

TA BURLINGTON
30 COMMUNITY DRIVE
SUITE 11
SOUTH BURLINGTON VT 05403

(802) 660 – 1990 REF: TA BURLINGTON

FedEx Express

Part # 159469-434 RIT2 EXP 12/20

TRK# 0201 1888 3861 7708

XO BTVA

SATURDAY 12:00P PRIORITY OVERNIGHT

05403 VT-US BTV

Job Number: 480-175617-1

Login Number: 175617 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Client: Inventum Engineering LLC

Greator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.8 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Client: Inventum Engineering LLC

Job Number: 480-175617-1

Login Number: 175617

List Number: 2

Creator: Dawicki, Don C

List Source: Eurofins TestAmerica, Burlington

List Creation: 09/26/20 12:46 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1149900
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	1.7C
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Attachment B – IC-EC Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details	Box 1						
Site No. 915152							
Site Name Saginaw - Buffalo							
Site Address: 320 Scajaquada St. Zip Code: 14215 City/Town: Buffalo County: Erie Site Acreage: 8.634 7.2478							
Reporting Period: May 04, 2020 to May 04, 2021							
	YES	NO					
Is the information above correct?	X						
If NO, include handwritten above or on a separate sheet.							
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X					
3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X					
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	I	X					
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form							
5. Is the site currently undergoing development?		X					
	Box 2						
	YES	NO					
Is the current site use consistent with the use(s) listed below? Industrial	X						
7. Are all ICs in place and functioning as designed?							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Corrective Measures Work Plan must be submitted along with this form to address	these iss	sues.					
Signature of Owner, Remedial Party or Designated Representative Date							

SITE NO. 915152 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

East Delavan Property, LLC

101.24-1-3.1

Monitoring Plan O&M Plan

i) Inspection and Maintenance of Parking Lot #4.

- ii) Groundwater and Sewer Monitoring according to the Operation and Maintenance Manual, dated April 2, 2001.
- iii) Modification to O&M Frequency Dated January 4, 2004.
- iv) Modification to O&M Frequency Dated September 22, 2008.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

101.24-1-9-

101.24-1-3.1 Cover System

Asphalt Parking Lot Cover.

R	ΛY	5

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;					
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted					
	engineering practices; and the information presented is accurate and compete. YES NO					
	X					
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:					
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;					
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;					
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	(e) if a financial assurance mechanism is required by the oversight document for the site, the $_{ m N/A}$ mechanism remains valid and sufficient for its intended purpose established in the document.					
	YES NO					
	X					
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. 915152

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law

Penal Law.		
	481 Carlisle Drive	
	Suite 202	
John. P. Black at F	Herndon, VA 20170	
print name	print business addı	ress
m certifying as Remedial Party		(Owner or Remedial Party)
or the Site named in the Site Details Section of	of this form.	
Soh H		6/30/2021
signature of Owner, Remedial Party, or Desig	nated Representative	Date
Rendering Certification	· ·	
·-····		

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is

punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. 481 Carlisle Drive Suite 202 John P. Black at Herndon, VA 20170 print business address print name am certifying as a Professional Engineer for the (Owner or Remedial Party) 6/30/2021 Signature of Professional Engineer, for the Owner or Date Remedial Party, Rendering Certification