The electronic version of this file/report should have the file name:

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

915156

REMEDIAL INVESTIGATION REPORT

VOLUME II - Appendices

Leica Inc. Cheektowaga, New York Site Code: 915156

PRINTED ON

OCT 3 1994

REMEDIAL INVESTIGATION REPORT

VOLUME II - Appendices

Leica Inc. Cheektowaga, New York Site Code: 915156

OCTOBER 1994 REF. NO. 3967 (7) This report is printed on recycled paper.

CONESTOGA-ROVERS & ASSOCIATES

APPENDICES

.

· · ·

.

ı

APPENDIX A

HISTORICAL ANALYTICAL DATABASE

3967 (7)

Parameter	Sample: Sample Date: Units:	SW11193K 11/10/93 ug/L	SED11193 11/10/93 ug/kg
Volatiles			
Chloromethane		ND (10)	ND (31)
Bromoethane		ND (10)	ND (31)
Vinyl chloride	•	ND (10)	ND (31)
Chloroethane		ND (10)	ND (31)
Methylene chloride		ND (10)	ND (31)
Acetone		5J	ND (31)
Carbon disulfide		ND (10)	ND (31)
1,1-Dichloroethene		ND (10)	ND (31)
1,1-Dichloroethane		ND (10)	ND (31)
1,2-Dichloroethene (total)	ND (10)	ND (31)
Chloroform		ND (10)	ND (31)
1,2-Dichloroethane		ND (10)	ND (31)
2-Butanone		ND (10)	ND (31)
1,1,1-Trichloroethane		ND (10)	ND (31)
Carbon tetrachloride		ND (10)	ND (31)
Bromodichloromethane		ND (10)	ND (31)
1,2-Dichloropropane		ND (10)	ND (31)
cis-1,3-Dichloropropene		ND (10)	ND (31)
Trichloroethene		ND (10)	. 8J
Dibromochloromethane		ND (10)	ND (31)
1,1,2-Trichloroethane		ND (10)	ND (31)
Benzene		ND (10)	ND (31)
trans-1,3-Dichloroproper	ne	ND (10)	ND (31)
Bromoform		ND (10)	ND (31)
4-Methyl-2-pentanone	•	ND (10)	ND (31)
2-Hexanone		ND (10)	ND (31)
Tetrachloroethene		ND (10)	ND (31)
1,1,2,2-Tetrachloroethan	e	ND (10)	ND (31)
Toluene		ND (10)	ND (31)
Chlorobenzene		ND (10)	ND (31)
Ethylbenzene		ND (10)	ND (31)
Styrene		ND (10)	ND (31)
Xylene (total)	· .	ND (10)	ND (31)
1,1,2-Trichlorotrifluoroe	thane	ND (10)	ND (31)

Parameter	Sample: Sample Date:	SW11193K 11/10/93	SED11193 11/10/93
	Units:	ug/L	ug/kg
<u>Semi-Volatiles</u>		0	5 5
Phenol		ND (10)	ND (1,100)J
bis(2-Chloroethyl)ether		ND (10)	ND (1,100)
2-Chlorophenol		ND (10)	ND (1,100)J
1,3-Dichlorobenzene		ND (10)	ND (1,100)
1,4-Dichlorobenzene		ND (10)	ND (1,100)
1,2-Dichlorobenzene		ND (10)	ND (1,100)
2-Methylphenol		ND (10)	ND (1,100)
2,2'-oxybis(1-Chloroprop	pane)	ND (10)	ND (1,100)
4-Methylphenol		ND (10)	ND (1,100)
N-Nitroso-di-n-propyla	mine	ND (10)	ND (1,100)J
Hexachloroethane		ND (10)	ND (1,100)
Nitrobenzene		ND (10)	ND (1,100)
Isophorone		ND (10)	ND (1,100)
2-Nitrophenol		ND (10)	ND (1,100)
2,4-Dimethylphenol		ND (10)	ND (1,100)
bis(2-Chloroethoxy)met	hane	ND (10)	ND (1,100)
2,4-Dichlorophenol		ND (10)	ND (1,100)
1,2,4-Trichlorobenzene		ND (10)	ND (1,100)
Naphthalene		ND (10)	2,700
4-Chloroaniline		ND (10)	ND (1,100)
Hexachlorobutadiene	· ·	ND (10)	ND (1,100)
4-Chloro-3-methylphene	ol .	ND (10)	ND (1,100)J
2-Methylnaphthalene		ND (10)	3,500
Hexachlorocyclopentad	iene	ND (10)	ND (1,100)
2,4,6-Trichlorophenol		ND (10)	ND (1,100)
2,4,5-Trichlorophenol		ND (25)	ND (2,700)
2-Chloronaphthalene		ND (10)	ND (1,100)
2-Nitroaniline		ND (25)	ND (2,700)
Dimethylphthalate		ND (10)	ND (1,100)
Acenaphthylene		ND (10)	330J
2,6-Dinitrotoluene		ND (10)	ND (1,100)
3-Nitroaniline		ND (25)	ND (2,700)
Acenaphthene		ND (10)	560J
2,4-Dinitrophenol		ND (25)	ND (2,700)
4-Nitrophenol		ND (25)	ND (2,700)

Parameter	Sample: Sample Date: Units:	SW11193K 11/10/93 ug/L	SED11193 11/10/93 ug/kg
<u>Semi-Volatiles (cont.)</u>			
Dibenzofuran		ND (10)	1,200
2,4-Dinitrotoluene		ND (10)	ND (1,100)
Diethylphthalate		ND (10)	ND (1,100)
4-Chlorophenyl-phenyle	ther	ND (10)	ND (1,100)
Fluorene		ND (10)	660J
4-Nitroaniline		ND (25)	ND (2,700)
4,6-Dinitro-2-methylphe	nol	ND (25)	ND (2,700)
N-Nitrosodiphenylamin	e	ND (10)	ND (1,100)
4-Bromophenyl-phenyle	ther	ND (10)	ND (1,100)
Hexachlorobenzene		ND (10)	ND (1,100)
Pentachlorophenol	•	ND (25)	ND (2,700)
Phenanthrene		ND (10)	13,000D
Anthracene		ND (10)	1,500
Carbazole		ND (10)	5,200J
Di-n-butylphthalate		ND (10)	320J
Fluoranthene		ND (10)	25,000D
Pyrene		ND (10)	18,000D
Butylbenzylphthalate		ND (10)	600J
3,3'-Dichlorobenzidine		ND (10)	ND (1,100)
Benzo(a)anthracene		ND (10)	8,400JD
Chrysene		ND (10)	8,100
bis(2-Ethylhexyl)phthala	ite	1J	7,700U
Di-n-octylphthalate		ND (10)	ND (1,100)
Benzo(b)fluoranthene		ND (10)	24,000D
Benzo(k)fluoranthene		ND (10)	11,000UD
Benzo(a)pyrene		ND (10)	12,000D
Ideno(1,2,3-cd)pyrene		ND (10)	4,700
Dibenz(a,h)anthracene		ND (10)	2,100
Benzo(g,h,i)perylene		ND (10)	4,400

Parameter ⁻	Sample: Sample Date: Units:	SW11193K 11/10/93 ug/L	SED11193 11/10/93 ug/kg
<u>Metals</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10,10
Aluminum		611	11,000
Antimony		ND (8.2)	18.5UJ
Arsenic		18.5	109
Barium		233	832
Beryllium		ND (0.30)	1.0
Cadmium		6.8	9.8
Calcium		70,700	14,700
Chromium		ND (8.3)	99
Cobalt		ND (2.6)	14.7
Copper		27	280
Iron		899	26,700
Lead		56.2J	1,830
Magnesium		7,970	3,160
Manganese		344	838
Mercury		ND (0.10)	1.1
Nickel		ND (20.5)	102
Potassium		3,190	1,850
Selenium		ND (1.0)J	2.0
Silver		ND (1.8)	ND (0.53)
Sodium		31,100	241
Thallium		ND (1.3)	ND (0.39)
Vanadium		ND (2.0)	65.7
Zinc		208	1,500
Wet Chemistry			
Total Petroleum Hydroca	irbons	ND (2.5)	ND (94)

Notes:

D Value quantitated from a dilution.

J Associated value is estimated.

U Non-detect at the associated value.

Depth: 0.0-3.0 Ft. 1.5-3.0 Ft. 1.5-3.0 Ft. 1.5-2.5 Ft. 0.5-4.0 Ft. Collection date: 12/03/93 12/08/93 12/13/93 12/03/93 Velatiles (ug/kg) Chicromethane ND (12) ND (14) ND (13) ND (12) NA Bromomethane ND (12) ND (14) 42 ND (12) NA Chicrostehane ND (12) ND (14) ND (13) ND (12) NA Chicrostehane ND (12) ND (14) ND (13) ND (12) NA Acton 10 2 49 45 NA Acetone ND (12) ND (14) ND (13) ND (12) NA 1,1-Dickhorosthane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickhorosthane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickhorosthane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickhorosthane ND (12) ND (14) ND (13) ND (12) NA<	Parameter	Sample ID:	BH-1-93	BH-2-93	BH-3-93	BH-3C-93	BH-4-93
Valatiles (ug/kg) Chloromethane ND (12) ND (14) ND (13) ND (12) NA Bromomethane ND (12) ND (14) ND (13) 31 NA Wind Ichloride ND (12) ND (14) ND (13) ND (12) NA Chlorosethane ND (12) ND (14) ND (13) ND (12) NA Acetone 10] 2] 49] 45] NA Acetone ND (12) ND (14) ND (12) NA 1.1-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlorosethane ND (12) ND (14) ND (13) ND (12) NA		Depth:	0.0-3.0 Ft.	0.0-3.0 Ft.	1.5-3.0 Ft.	1.5-2.5 Ft.	0.5-4.0 Ft.
Valatiles (ug/kg) ND (12) ND (14) ND (13) ND (12) NA Bromomethane ND (12) ND (14) ND (13) 31 NA Bromomethane ND (12) ND (14) ND (13) ND (12) NA Chioroethane ND (12) ND (14) ND (13) ND (12) NA Actone 10] 2] 49] 45] NA Acetone 10] 2] 49] 45] NA Carbon disulfide ND (12) ND (14) ND (13) ND (12) NA 1.1-Dickhoroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dickhoroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dickhoroethane ND (12) ND (14) ND (13) ND (12) NA 1.1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.1.		Collection date:	12/03/93	12/08/93	12/08/93	12/13/93	12/03/93
Choromethane ND (12) ND (14) ND (13) ND (12) NA Bromomethane ND (12) ND (14) ND (13) 3 NA Vinyl chlorode ND (12) ND (14) ND (13) ND (12) NA Actoroe 10] 2 49] 45] NA Carbon disulfide ND (12) ND (14) ND (13) ND (12) NA Acetone 10] 2 49] 45] NA Carbon disulfide ND (12) ND (14) ND (13) ND (12) NA 1.1-Dickhoroethane ND (12) ND (14) ND (13) ND (12) NA Chloroform ND (12) ND (14) ND (13) ND (12) NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 1.1.1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.1.2-Dichloropro	.						
Bromomethane ND ND ND ND ND ND ND ND Vinyl cluoride ND (12) ND (14) ND (13) NA Chloroethane ND (12) ND (14) ND (13) ND (12) NA Acetone 10 2 49 45 NA Carbon disulfide ND (12) ND (14) ND (13) ND (12) NA 1,1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					
Vinyl chlorade ND (12) ND (14) 42 ND (12) NA Chloroethane ND (12) ND (14) ND (13) ND (12) NA Methylene chloride ND (12) ND (14) ND (13) ND (12) NA Acetone 10 2 49J 45J NA Carbon disulfide ND (12) ND (14) ND (12) NA 1.1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane (total) 55 6 160D 19 NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlororothane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichlor							
Chicroethane ND (12) ND (14) ND (13) ND (12) NA Methylene chloride ND (12) ND (14) ND (13) ND (12) NA Acetone 10 2 49 45 NA Carbon disulfide ND (12) ND (14) 2J ND (12) NA 1,1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroepropane ND (12) ND (14) ND (13) ND (12) NA <td></td> <td>!</td> <td></td> <td></td> <td></td> <td></td> <td></td>		!					
Methylene chloride ND (12) ND (12) NA Acetone 10 2 49 45 NA Carbon disulfide ND (12) ND (14) ND (12) NA 1,1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Bitanone ND (12) ND (14) ND (13) ND (12) NA 2-Bitanone ND (12) ND (14) ND (13) ND (12) NA 2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 3-Ji-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1-2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA Dibromochloromethane ND (12)<	•					• •	
Acetone 10 2 49 45 NA Carbon disulfide ND (12) ND (14) 2 ND (12) NA 1.1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12) ND (14) ND (13) ND (12) NA 2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 3-2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 12-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 12-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA		• •					
Carbon disulfide ND (12) ND (14) 21 ND (12) NA 1.1-Dichloroethene ND (12) ND (14) ND (13) ND (12) NA 1.1-Dichloroethene ND (12) ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethene (total) 55 6 160D 19 NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12) ND (14) 9 ND (12) NA 2-Butanone ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12) ND (14) ND (13) ND (12) NA Scarbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA 1.1.2-Trichloroethane ND (12) ND (14) ND (13) ND (12) <td>•</td> <td>ride</td> <td></td> <td>· · · ·</td> <td></td> <td></td> <td></td>	•	ride		· · · ·			
1,1-Dickloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1-Dickloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickloroethane (total) 55 6j 160D 19 NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 1,1-Trickloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,1-Trickloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1-Trickloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1-Trickloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickloropropane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickloropropane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickloropropane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dickloroethane ND (12) ND (14) ND (13)		•	-			-	
1,1-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane (total) 55 6 160D 19 NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Bitanone ND (12) ND (14) ND (13) ND (12) NA 1,1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Carbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloropropene ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13)							
1.2-Dichloroethene (total) 55 6J 160D 19 NA Chloroform ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12) ND (14) ND (13) ND (12) NA 1.1-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 12-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 12-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA 12-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA 112-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA 12-Textachloropropene ND (12) ND (14) ND (13) ND (
Chloroform ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloroethane ND (12) ND (12) ND (12) NA 2-Butanone ND (12) ND (14) 91 ND (12) NA 1,1,1-Trichloroethane ND (12) ND (14) ND (13) 8 NA Garbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.1.2-Trichloroethane ND (12) ND (14) ND (13) ND (12)							
1.2-Dichloroethane ND (12) ND (14) ND (13) ND (12) NA 2-Butanone ND (12)I ND (14)I 9 ND (12)I NA 1.1,1-Tichloroethane ND (12) ND (14) ND (13) ND (12) NA Garbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA Berzene ND (12) ND (14) ND (13) ND (12) NA Berzene ND (12) ND (14) ND (13) ND (12) NA Herzene ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12)		ene (total)		-			
2-Butanone ND (12) ND (14) 9 ND (12) NA 1,1,1-Trichloroethane ND (12) ND (14) ND (13) 8 NA Carbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA Hortoropropene ND (12) ND (14) ND (13) ND (12) NA Hortoropropene ND (12) ND (14) ND (13) ND (12) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,1,1-Trichloroethane ND (12) ND (14) ND (13) 8j NA Carbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Trichloroethane 150j 5j ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA 1,1.2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) <td>•</td> <td>ane</td> <td></td> <td></td> <td>• •</td> <td></td> <td></td>	•	ane			• •		
Carbon tetrachloride ND (12) ND (14) ND (13) ND (12) NA Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 1,2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Trichloroethene 150J 5J ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 7-Hexanone ND (12) ND (14) ND (13) ND (12) NA 7-Hexanone ND (12) ND (14) ND (13) ND (12) NA </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>		_					
Bromodichloromethane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA 1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA richloroptopropene ND (12) ND (14) ND (13) ND (12) NA Trichloroethene 150J 5J ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA niarene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 1.1.2.2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 1.1.2.2-Tetrachloroethane ND (12) ND (14) ND (13)							
1.2-Dichloropropane ND (12) ND (14) ND (13) ND (12) NA cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Trichloroethene 150] 5] ND (13) ND (12) NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA All-2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
cis-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Trichloroethene 150J 5J ND (13) 8J NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND							
Trichloroethene 150/ 5/ ND (13) 8/ NA Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND (12)			• •			• •	
Dibromochloromethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2-Trichloroethane ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) MD (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) MD (13) ND (12) NA Ethylbenzene ND (12) ND (14) MD (13) ND (12) </td <td></td> <td>• • ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>		• • ·					
1,1,2-Trichloroethane ND (12) ND (12) ND (13) ND (12) NA Benzene ND (12) ND (14) ND (13) ND (12) NA trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND (12) NA Ethylbenzene ND (12) ND (14) ND (13) ND (12) NA Xytene (total) ND (12) ND (14) ND (13) ND (12) NA Yinyl chloride NA NA NA ND (10) NA			=			-	
Benzene ND (12) ND (14) ND (13) ND (12) NA trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND (12) NA Styrene ND (12) ND (14) ND (13) ND (12) NA Ylene (total) ND (12) ND (14) ND (13) ND (12) NA							
trans-1,3-Dichloropropene ND (12) ND (14) ND (13) ND (12) NA Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) GJ ND (12) NA 2-Hexanone ND (12) ND (14) ND (13) ND (12) NA 7etrachloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) 39 ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND (12) NA Styrene ND (12) ND (14) ND (13) ND (12) NA Yipene (total) ND (12) ND (14) ND (10) NA 6J 1,1-Dichloroethene NA NA ND (10) NA ND (10)		ethane					
Bromoform ND (12) ND (14) ND (13) ND (12) NA 4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) 6J ND (12) NA 2-Hexanone ND (12) ND (14) MD (13) ND (12) NA Tetrachloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) 39 ND (12) NA Chlorobenzene ND (12) ND (14) ND (13) ND (12) NA Styrene ND (12) ND (14) ND (13) ND (12) NA Yelene (total) ND (12) ND (14) ND (13) ND (12) NA Yelene (total) ND (12) ND (14) ND (13) ND (12) NA Yelene (total) NA NA NA ND (10) NA ND (10)							
4-Methyl-2-pentanone ND (12) ND (14) ND (13) ND (12) NA 2-Hexanone ND (12) ND (14) 6J ND (12) NA Tetrachloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) ND (13) ND (12) NA Chlorobenzene ND (12) ND (14) 39 ND (12) NA Ethylbenzene ND (12) ND (14) ND (13) ND (12) NA Styrene ND (12) ND (14) ND (13) ND (12) NA Xylene (total) ND (12) ND (14) ND (13) ND (12) NA Yinyl chloride NA NA NA NA NA A Vinyl chloride NA NA ND (10) NA A A Vinyl chloride NA NA ND (10) NA ND (10) NA		propropene					
2-Hexanone ND (12) ND (14) 6J ND (12) NA Tetrachloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12) ND (14) ND (13) ND (12) NA Toluene ND (12) ND (14) 39 ND (12) NA Chlorobenzene ND (12) ND (14) 39 ND (12) NA Ethylbenzene ND (12) ND (14) MD (13) ND (12) NA Styrene ND (12) ND (14) 42 ND (12) NA Xylene (total) ND (12) ND (14) MD (13) ND (12) NA Yeing chloride NA NA ND (13) ND (12) NA Yingl chloride NA NA ND (10) NA 6J 1,1-Dichloroethene NA NA ND (10) NA ND (10) Chloroform NA NA NA ND (10) NA ND (10) 1,2-Dichloroethane				ND (14)			
Tetrachloroethene ND (12) ND (14) ND (13) ND (12) NA 1,1,2,2-Tetrachloroethane ND (12)] ND (14)] ND (13)] ND (12) NA Toluene ND (12) ND (14) 39 ND (12) NA Chlorobenzene ND (12) ND (14) 39 ND (12) NA Ethylbenzene ND (12) ND (14) 42 ND (12) NA Styrene ND (12) ND (14) 42 ND (12) NA Xylene (total) ND (12) ND (14) 190D ND (12) NA TCLP Volatiles (ug/L) Vinyl chloride NA NA NA ND (10)] NA 6J 1,1-Dichloroethene NA NA NA ND (10)] NA ND (10) Chloroform NA NA NA ND (10)] NA ND (10) 1,2-Dichloroethene NA NA NA ND (10) NA ND (10) 2-Butanone NA NA NA		tanone			ND (13)	ND (12)	NA
1,1,2,2-TetrachloroethaneND (12)JND (14)JND (13)JND (12)NATolueneND (12)ND (12)ND (14)39ND (12)NAChlorobenzeneND (12)ND (12)ND (14)ND (13)ND (12)NAEthylbenzeneND (12)ND (14)42ND (12)NAStyreneND (12)ND (14)ND (13)ND (12)NAXylene (total)ND (12)ND (14)190DND (12)NATCLP Volatiles (ug/L)NANANAND (10)JNA6JVinyl chlorideNANANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANAND (10)JNAND (10)2-ButanoneNANANAND (10)NAND (10)Carbon tetrachlorideNANANAND (10)NA14BenzeneNANANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)TrichloroetheneNANAND (10)NAND (10)TrichloroetheneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)			ND (12)				NA
TolueneND (12)ND (14)39ND (12)NAChlorobenzeneND (12)ND (14)ND (13)ND (12)NAEthylbenzeneND (12)ND (14)42ND (12)NAStyreneND (12)ND (14)ND (13)ND (12)NAXylene (total)ND (12)ND (14)ND (13)ND (12)NATCLP Volatiles (µg/L)NANANAND (10)NA6J1,1-DichloroetheneNANANAND (10)NAND (10)ChloroformNANANAND (10)NAND (10)1,2-DichloroethaneNANANAND (10)NAND (10)2-ButanoneNANANAND (10)NAND (10)Carbon tetrachlorideNANANAND (10)NA14BenzeneNANANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)						ND (12)	NA
ChlorobenzeneND (12)ND (14)ND (13)ND (12)NAEthylbenzeneND (12)ND (14)42ND (12)NAStyreneND (12)ND (14)ND (13)ND (12)NAXylene (total)ND (12)ND (12)ND (14)190DND (12)NATCLP Volatiles (µg/L)Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANAND (10)JNAND (10)2-ButanoneNANANAND (10)JNAND (10)Carbon tetrachlorideNANANAND (10)NA14BenzeneNANANAND (10)NAND (10)TetrachloroetheneNANANAND (10)NAND (10)		oroethane		ND (14)J	ND (13)J		
EthylbenzeneND (12)ND (14)42ND (12)NAStyreneND (12)ND (12)ND (14)ND (13)ND (12)NAXylene (total)ND (12)ND (12)ND (14)190DND (12)NATCLP Volatiles (µg/L)Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANAND (10)JNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANANAND (10)NA14BenzeneNANANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)						ND (12)	NA
StyreneND (12)ND (14)ND (13)ND (12)NAXylene (total)ND (12)ND (12)ND (14)190DND (12)NATCLP Volatiles (ug/L)Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANAND (10)JNAND (10)1,2-DichloroethaneNANAND (10)JNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)							
Xylene (total)ND (12)ND (14)190DND (12)NATCLP Volatiles (µg/L.)Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANAND (10)JNAND (10)2-ButanoneNANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)							
TCLP Volatiles (µg/L)Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANAND (10)JNAND (10)2-ButanoneNANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)	Styrene		ND (12)				
Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANA3JNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)	Xylene (total)		ND (12)	ND (14)	190D	ND (12)	NA
Vinyl chlorideNANAND (10)JNA6J1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANA3JNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)	TCLP Volatiles	<u>; (μg/L)</u>					
1,1-DichloroetheneNANAND (10)JNAND (10)ChloroformNANANAND (10)JNAND (10)1,2-DichloroethaneNANANA3JNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)			NA	NA	ND (10)]	NA	61
ChloroformNANAND (10)JNAND (10)1,2-DichloroethaneNANANA3JNAND (10)2-ButanoneNANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)	•	ene					
1,2-DichloroethaneNANASJNAND (10)2-ButanoneNANANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)JNAND (10)	Chloroform		•				
2-ButanoneNANAND (10)JNAND (10)JCarbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)JNAND (10)	1,2-Dichloroeth	ane	•				
Carbon tetrachlorideNANAND (10)NAND (10)TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)JNAND (10)	2-Butanone	. •		•			
TrichloroetheneNANAND (10)NA14BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)JNAND (10)		loride					
BenzeneNANAND (10)NAND (10)TetrachloroetheneNANAND (10)JNAND (10)					• •		
Tetrachloroethene NA NA ND (10)J NA ND (10)	Benzene						
	Tetrachloroethe	ene					
	Chlorobenzene						

Parameter	Sa mp le ID: Depth:	BH-1-93 0.0-3.0 Ft.	BH-2-93 0.0-3.0 Ft.	BH-3-93 1.5-3.0 Ft.	BH-3C-93 1.5-2.5 Ft.	BH-4-93 0.5-4.0 Ft.
	Collection date:	12/03/93	12/08/93	12/08/93	12/13/93	12/03/93
<u>Semi-Volatiles</u>	(µg/kg)					
Phenol		ND (390)	NA	ND (440)	NA	NA ·
bis(2-Chloroeth	yl)ether	ND (390)	NA	ND (440)	NA	NA
2-Chloropheno	1	ND (390)	NA	ND (440)	NA	NA
1,3-Dichlorober	nzene	ND (390)	NA	ND (440)	NA	NA
1,4-Dichlorober	nzene	ND (390)	NA	ND (440)	NA	NA
1,2-Dichlorober	nzene	ND (390)	NA	ND (440)	NA	NA
2-Methylpheno	1	ND (390)	NA	ND (440)	NA	NA
2,2'-oxybis(1-Cl	hloropropane)	ND (390)	NA	ND (440)	NA	NA
4-Methylpheno	1	ND (390)J	NA	ND (440)	NA	NA
N-Nitroso-di-n-	-propylamine	ND (390)	NA	ND (440)	NA	NA
Hexachloroetha	ane	ND (390)	NA	ND (440)	NA	NA
Nitrobenzene		ND (390)	NA	ND (440)	NA	NA
Isophorone		ND (390)	NA	ND (440)	NA	NA
2-Nitrophenol		ND (390)	NA	ND (440)	NA	NA
2,4-Dimethylph	nenol	ND (390)	NA	ND (440)	NA	NA
bis(2-Chloroeth	oxy)methane	ND (390)	NA	ND (440)	NA	NA
2,4-Dichloroph	•	ND (390)	NA	ND (440)	NA	NA
1,2,4-Trichlorob	penzene	ND (390)	NA	ND (440)	NA	NA
Naphthalene		ND (390)	NA	ND (440)	NA	NA
4-Chloroaniline	9	ND (390)	NA	ND (440)	NA	NA
Hexachlorobut	adiene	ND (390)J	NA	ND (440)	NA	NA
4-Chloro-3-met	hylphenol	ND (390)	NA	ND (440)	NA	NA
2-Methylnaphtl	halene	ND (390)	NA	ND (440)	NA	NA
Hexachlorocycl		ND (390)J	NA	ND (440)	NA	NA
2,4,6-Trichlorop	-	ND (390)	NA	ND (440)	NA	NA
2,4,5-Trichlorop	ohenol .	ND (980)	NA	ND (1,100)	NA	NA
2-Chloronaphth	nalene	ND (390)	NA	ND (440)	NA	NA
2-Nitroaniline		ND (980)	NA	ND (1,100)	NA	NA
Dimethylphtha	late	ND (390)	NA .	ND (440)	NA	NA
Acenaphthylen	e	ND (390)	NA	ND (440)	, NA	NA
2,6-Dinitrotolue	ene	ND (390)	NA	ND (440)	NA	NA
3-Nitroaniline		ND (980)	NA	ND (1,100)	NA	NA
Acenaphthene		ND (390)	NA	ND (440)	NA	NA
2,4-Dinitropher	nol	ND (980)	NA	ND (1,100)J	NA	NA
4-Nitrophenol		ND (980)	NA	ND (1,100)	NA	NA
Dibenzofuran		ND (390)	NA	ND (440)	NA	NA
2,4-Dinitrotolue	ene	ND (390)	NA	ND (440)	NA	NA
Diethylphthala	te	ND (390)	NA	ND (440)	NA	NA

Semi-Volatiles (ug/kg) Cont'd.	03/93 1 0 (390) 0 (390) 0 (980) 0 (980) 0 (980) 1 (390)]	NA NA NA NA NA	12/08/93 ND (440) ND (440) ND (1,100)J	12/13/93 NA NA	12/03/93 NA NA
• •	9 (390) 9 (980) 9 (980)	NA NA	ND (440)		
• •	9 (390) 9 (980) 9 (980)	NA NA	ND (440)		
	9 (390) 9 (980) 9 (980)	NA	ND (440)		NA
	(980)				11/1
4-Nitroaniline NE	• • •	NA		NA	NA
4,6-Dinitro-2-methylphenol NE	(390)J		ND (1,100)	NA	NA
N-Nitrosodiphenylamine(1) ND		NA	ND (440)	NA	NA
	(390)	NA	ND (440)	NA	NA
Hexachlorobenzene NE	(390)	NA	ND (440)	NA	NA
·	(980)	NA	ND (1,100)	NA	NA
Phenanthrene NE	(390)	NA	ND (440)	NA	NA
Anthracene NE	(390)	NA	ND (440)	NA	NA
	(390)	NA	ND (440)J	NA	NA
•	(390)	NA	ND (440)	NA	NA
	100J	NA	130J	NA	NA
Pyrene	66J	NA	150J	NA	NA
Butylbenzylphthalate NE	(390)	NA	ND (440)	NA	NA
3,3'-Dichlorobenzidine NE	(390)	NA	ND (440)	NA	NA
Benzo(a)anthracene NE	(390)	NA	ND (440)	NA	NA
Chrysene NE	(390)	NA	ND (440)	NA	NA
	(660)	NA	ND (440)	NA	NA
Di-n-octylphthalate ND	(390)J	NA	ND (440)J	NA	· NA
Benzo(b)fluoranthene NE	(390)	NA	ND (440)J	NA	NA
	(390)	ŅA	ND (440)	NA	NA
Benzo(a)pyrene NE	(390)	NA	ND (440)	NA	NA
Ideno(1,2,3-cd)pyrene NE	(390)	NA	ND (440)	NA	NA
Dibenz(a,h)anthracene NE	(390)	NA	ND (440)	NA	NA
Benzo(g,h,i)perylene NE	9 (390)	NA	ND (440)	NA	NA
<u>Petroleum Products (mg/kg)</u>					
0.0-	NA	NA	Not Present J	NA	Not Present
•	NA	NA	ND (33)J	NA	ND (1,300)
	NA	NA	180]	NA	55,000
	NA	NA	Present	NA	Not Present

.

Parameter	Sample ID: Depth:	BH-1-93 0.0-3.0 Ft.	BH-2-93 0.0-3.0 Ft.	BH-3-93 1.5-3.0 Ft.	BH-3C-93 1.5-2.5 Ft.	BH-4-93 0.5-4.0 Ft.
	Collection date:	12/03/93	12/08/93	12/08/93	12/13/93	12/03/93
TCLP Semi-Vol	latiles (µg/L)			·		
1,4-Dichlorober	nzene	NA	NA	ND (11)J	NA	ND (10)
2-Methylpheno	1	NA	NA	ND (11)J	NÅ	1J
Hexachloroetha	ane	NA	NA ·	ND (11)J	ŇĂ	ND (10)
Nitrobenzene		NA	NA	ND (11)J	NA	ND (10)
Hexachlorobut	adiene	NA	NA	ND (11)J	NA	ND (10)
2,4,6-Trichlorop	ohenol	NA	NA	ND (11)J	NA	ND (10)
2,4,5-Trichlorop	ohenol	NA	NA	ND (26)J	NA	ND (26)
2,4-Dinitrotolue	ene	NA	NA	ND (11)J	NA	ND (10)
Hexachloroben	zene	NA	NA	ND (11)J	NA	ND (10)
Pentachlorophe	enol	NA	' NA	ND (26)J	NA	ND (26)
Pyridine		NA	NA	ND (11)J	NA	ND (10)J
3/4-Methylphe	nol	NA	· NA	ND (11)J	NA	1J
3-Methylpheno	ol de la constante de la consta	-	NA	-	-	-
4-Methylpheno	61	-	NA	-	-	-
<u>Metals (mg/kg)</u>	!					
Aluminum		12,800	18,100	29,600	17,000	NA
Antimony		ND (1.9)J	ND (2.3)	ND (2.2)	ND (4.3)	NA
Arsenic		8.0	8.3	0.88	6.1	NA
Barium		92.4	137	235	233	NA
Beryllium		ND (0.47)	ND (0.85)	ND (1.0)	0.88	NA
Cadmium		ND (1.4)	2.0	ND (1.3)	ND (0.78)	NA
Calcium		57,400	11,900	3,730	3,660	NA
Chromium		18.8	26.6	30.0	23.1	NA
Cobalt		12.5	12.5	8.3	13.1	NA
Copper		24.4J	26.1	9.7	21.3	NA
Iron		19,600	32,000	20,000	31,900	NA
Lead		60.0J	20.3	13.9	16.3	NA
Magnesium		19,400	8,730	5,690	5,650	NA
Manganese		475	408	182	999	NA
Mercury		ND (0.050)	ND (0.11)	ND (0.17)	ND (0.060)	NA
Nickel		21.8	29.6	31.0	33.0	NA
Potassium		2,140	2,720	2,620	1,980	NA
Selenium		ND (0.24)J	ND (0.28)J	ND (0.27)	ND (0.38)	NA
Silver		ND (0.42)J	ND (0.51)	ND (0.48)	ND (0.73)	NA
Sodium		362J	ND (219)	347	ND (159)	NA
Thallium		ND (0.31)	0.62	ND (0.77)	ND (0.31)	NA
Vanadium		25.0	41.3	27.3	31.7	NA
Zinc		74.6J	89.6	159	102	NA

Parameter	Sample ID:	BH-1-93	BH-2-93	BH-3-93	BH-3C-93	BH-4-93
۰.	Depth:	0.0-3.0 Ft.	0.0-3.0 Ft.	1.5-3.0 Ft.	1.5-2.5 Ft.	0.5-4.0 Ft.
	Collection date:	12/03/93	12/08/93	12/08/93	12/13/93	12/03/93
<u>TCLP Metals (µ</u>	<u>g/L)</u>					
Arsenic		NA	NA	ND (41.5)	NA	ND (41.5)
Barium		NA	NA	1,830	NA	4,660
Cadmium		NA	NA	ND (3.3)	NA	ND (3.3)
Chromium		NA	· NA	ND (8.9)	NA	· ND (8.9)
Lead		NA	NA	ND (17.5)	' NA	ND (85)
Mercury		NA	NA	ND (0.10)	NA	ND (0.10)
Selenium		NA	NA	ND (59.9)	NA	ND (59.9)
Silver		NA	NA	ND (20)	NA	ND (20)
Wet Chemistry	(mg/kg)					
Total Organic C	arbon	NA	NA	15,900	NA	NA
Total Petroleum	Hydrocarbons	ND (36.8)	ND (44.3)	ND (41.7)	ND (37.0)	NA

Notes:

CRA 3967 (7) APPA

D Value quantitated from a dilution

Dup Field Duplicate

J Associated value is estimated

NA Not analyzed

U Non-detect at the associated value

•

·

· · · ·

.

Parameter	Sa mp le ID: Depth:	BH-5-93 8.0-12.8 Ft.	BH-6-93 1.0-4.0 Ft.	BH-6-93 8.0-11.0 Ft.	BH-AST1-93 2.0-3.5 Ft.	BH-D2-93 2.0 - 3.5 Ft. (Dup. of BH-AST1-93)
	Collection date:	12/01/93	12/01/93	12/01/93	12/15/93	(Dup: 0) BN-X311-33) 12/15/93
<u>Volatiles (µg/k</u>	<u>g)</u>					
Chloromethane	-	ND (11)J	ND (12)J	ND (12)J	ND (12)	ND (12)
Bromomethane)	ND (11)J	ND (12)J	ND (12)J	ND (12)	ND (12)
Vinyl chloride		ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Chloroethane		ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Methylene chlo	oride	ND (11)	ND (12)	ND (12)	1J	2J
Acetone		ND (11)J	73J	ND (12)J	8J	· 8J
Carbon disulfic	de	3J	ND (12)	ND (12)	ND (12)J	ND (12)J
1,1-Dichloroeth	nene	ND (11)	ND (12)	ND (12)	ND (12)J	7 J
1,1-Dichloroeth	ane	ND (11)	ND (12)	ND (12)	83J	18 0J
1,2-Dichloroeth	nerne (total)	140	ND (12)	ND (12)	570D	660JD
Chloroform		ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
1,2-Dichloroeth	nane	ND (11)	. ND (12)	ND (12)	ND (12)	ND (12)
2-Butanone		ND (11)J	2J	ND (12)J	ND (12)J	ND (12)J
1,1,1-Trichloroe	ethane	ND (11)	ND (12)	ND (12)	22J	71J
Carbon tetrach	lo r ide	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Bromodichloro	methane	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
1,2-Dichloropro	opane	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
cis-1,3-Dichloro	opropene	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Trichloroethen	e	220D	ND (12)	ND (12)	360DJ	850JD
Dibromochloro	omethane	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
1,1,2-Trichloroe	ethane	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Benzene		ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
trans-1,3-Dichle	oropropene	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Bromoform	•	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
4-Methyl-2-per	ntanone	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
2-Hexanone		ND (11)J	ND (12)J	ND (12)J	ND (12)	ND (12)
Tetrachloroeth		ND (11)	ND (12)	ND (12)	3J	5J
1,1,2,2-Tetrach	loroethane	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Toluene		ND (11)	ND (12)	ND (12)	4J	7J
Chlorobenzene	9	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Ethylbenzene		35	ND (12)	ND (12)	ND (12)	ND (12)
Styrene		ND (11)	ND (12)	ND (12)	ND (12)	ND (12)
Xylene (total)		6J	ND (12)	ND (12)	3J	ND (12)
TCLP Volatile	<u>s (μg/L)</u>					•
Vinyl chloride		ND (10)J	NA	NA	NA	NA
1,1-Dichloroeth	nene	ND (10)	NA	NA	NA	ŇA
Chloroform		ND (10)	NA	NA	NA	NA
1,2-Dichloroeth	nane	ND (10)	NA	NA	NA	NA
2-Butanone		ND (10)J	NA	NA	NA	NA
Carbon tetrach		ND (10)	NA	NA	NA	NA
Trichloroethen	e	11	NA	NA	NA	NA
Benzene		ND (10)	NA	NA	NA	NA
Tetrachloroeth		ND (10)	NA	NA	NA	NA
Chlorobenzene	2	ND (10)	ŅA	NA	NA	NA

Parameter	Sample ID: Depth:	BH-5-93 8.0-12.8 Ft.	BH-6-93 1.0-4.0 Ft.	BH-6-93 8.0-11.0 Ft.	BH-AST1-93 2.0-3.5 Ft.	BH-D2-93 2.0 - 3.5 Ft. (Dup. of BH-AST1-93)
·	Collection date:	12/01/93	12/01/93	12/01/93	12/15/93	12/15/93
Semi-Volatiles	(u a lka)					•
Phenol	7490.94	ND (380)	NA	NA	NA	NA
bis(2-Chloroeth	vl)ether	ND (380)	NA	. NA	NA	NA
2-Chlorophenol	• •	ND (380)	NA	NA	NA	NA
1,3-Dichlorober		ND (380)	NA	NA	NA	NA
1,4-Dichlorober		ND (380)	NA	NA	NA	NA
1,2-Dichlorober		ND (380)	NA	NA	NA	NA
2-Methylpheno		ND (380)	NA	NA	NA	NA
2,2'-oxybis(1-Cl		ND (380)	NA	NA	NA	NA
4-Methylpheno		ND (380)J	NA	NA	NA	NA
N-Nitroso-di-n-		ND (380)	NA	NA	NA	NA
Hexachloroetha		ND (380)	NA	NA	NA	NA
Nitrobenzene		ND (380)	NA	NA	NA	NA
Isophorone		ND (380)	NA	NA	NA	NA
2-Nitrophenol		ND (380)	NA	NA	· NA	NA
2,4-Dimethylph	nenol	ND (380)	NA	NA	NA	NA
bis(2-Chloroeth		ND (380)	NA	NA	NA	NA
2,4-Dichloroph		ND (380)	NA	NA	NA	NA
1,2,4-Trichlorob		ND (380)	NA	NA	NA	NA
Naphthalene		ND (380)	NA	NA	NA	NA
4-Chloroaniline	e .	ND (380)	NA	NA	NA	NA
Hexachlorobuta	adiene	ND (380)	NÁ	NA	NA	NA
4-Chloro-3-met	hylphenol	ND (380)	NA	NA	NA	NA
2-Methylnaphtl		ND (380)	NA	' NA	NA	NA
Hexachlorocycl	-	ND (380)J	NA	NA	NA NA	NA
2,4,6-Trichlorop		ND (380)	NA	NA	NA	NA
2,4,5-Trichlorop		ND (960)	NA	NA	NA	NA ·
2-Chloronaphth		ND (380)	NA	NA	NA	· NA
2-Nitroaniline		ND (960)	NA	NA	NA	NA
Dimethylphtha	late	ND (380)	NA	NA	NA	NA
Acenaphthylen		ND (380)	NA	NA	NA	NA
2,6-Dinitrotolu		ND (380)	NA	· · NA	NA	NA
3-Nitroaniline	<i>,</i>	ND (960)	NA	NA	NA	NA
Acenaphthene		ND (380)	NA	NA	NA	NA
2,4-Dinitropher	nol	ND (960)	NA	NA	NA	NA
4-Nitrophenol		ND (960)	NA	NA	NA	NA
Dibenzofuran		ND (380)	NA	NA	NA	NA
2,4-Dinitrotolu	ene	ND (380)	NA	NA	NA	NA
Diethylphthala		ND (380)	NA	NA	NA	NA

Parameter	Sample ID: Depth:	BH-5-93 8.0-12.8 Ft.	BH-6-93 1.0-4.0 Ft.	BH-6-93 8.0-11.0 Ft.	BH-AST1-93 2.0-3.5 Ft.	BH-D2-93 2.0 - 3.5 Ft. (Dup. of BH-AST1-93)
	Collection date:	12/01/93	12/01/93	12/01/93	12/15/93	(Dup. 6) BH-AS11-33) 12/15/93
Semi-Volatiles	: (µg/kg) Cont'd.	·				·
4-Chloropheny		ND (380)	NA	NA	NA	NA
Fluorene		ND (380)	ŃА	NA	NA	NA
4-Nitroaniline		ND (960)	NA	NA	NA	NA
4,6-Dinitro-2-n	nethylphenol	ND (960)	NA	NA	NA	NA
N-Nitrosodiph		ND (380)J	NA	NA	NA	NA
4-Bromopheny		ND (380)	NA	· NA	NA	NA
Hexachlorober		ND (380)	NA	NA	NA	NA
Pentachloroph	enol	ND (960)	NA	NA	NA	NA
Phenanthrene		130]	NA	NA	NA	NA
Anthracene		ND (380)	NA	NA	NA	NA
Carbazole		ND (380)	NA	NA	NA	· NA
Di-n-butylphth	nalate	99]	NA	NA	NA	NA
Fluoranthene		190J	NA	NA	NA	NA
Pyrene		110J	NA	NA	NA	NA
Butylbenzylph	thalate	ND (380)	NA	NA	NA	NA
3,3'-Dichlorobe		ND (380)	NA	NA	NA	NA
Benzo(a)anthra	acene	55J	NA	NA	NA	NA
Chrysene		73J	NA	NA	NA	NA
bis(2-Ethylhexy	yl)phthalate	ND (960)	NA	NA	NA	NA
Di-n-octylphth	alate	ND (380)J	NA	NA	NA	NA
Benzo(b)fluora		ND (380)	NA	NA .	NA	NA
Benzo(k)fluora	inthene	ND (380)	NA	NA	NA	NA
Benzo(a)pyren	e	61J	NA	NA	NA	NA
Ideno(1,2,3-cd)	pyrene	ND (380)	· NA	NA	NA	NA
Dibenz(a,h)ant	thracene	ND (380)	NA	NA	NA	NA
Benzo(g,h,i)pe	rylene	ND (380)	NA	NA	NA	NA
			,*			
<u>Petroleum Pro</u>	ducto (malka)					
Gasoline	HHCIS (IIISIKS)	Not Present	NA	NA	NA	NA
Kerosene		NOT Present ND (33)	NA	NA NA	NA NA	NA NA
Fuel oil		23J	NA	NA	NA	NA
Lubricating oil	1	23) Present	NA	NA	NA	NA
Lubricating of	L	rresent	INA	INA	INA	INA

.

Parameter	Sample ID: Depth:	BH-5-93 8.0-12.8 Ft.	BH-6-93 1.0-4.0 Ft.	BH-6-93 8.0-11.0 Ft.	BH-AST1-93 2.0-3.5 Ft.	BH-D2-93 2.0 - 3.5 Ft. (Dup. of BH-AST1-93)
	Collection date:	12/01/93	12/01/93	12/01/93	12/15/93	12/15/93
TCLP Semi-Vol	latiles (µg/L)					
1,4-Dichlorober	nzene	ND (10)	NA	NA	NA	NA
2-Methylpheno	1	ND (10)	NA	NA	NA	NA
Hexachloroetha	ine	ND (10)	NA	NA	NA	NA
Nitrobenzene		ND (10)	NA	NA	NA	NA
Hexachlorobuta	adiene	ND (10)	NA	NA	NA	NA
2,4,6-Trichlorop	ohenol	ND (10)	NA	NA	NA	NA
2,4,5-Trichlorop	ohenol	ND (26)	NA	NA	NA	NA
2,4-Dinitrotolue	ene	ND (10)	NA	NA	NA	NA
Hexachloroben	zene	ND (10)	NA	NA	NA	NA
Pentachlorophe	enol	ND (26)	NA	NA	NA	NA
Pyridine		ND (10)J	NA	NA	NA	NA
3/4-Methylphe	nol	ND (10)	NA	NA ·	NA	NA
3-Methylpheno	1	_`	NA	· NA	-	-
4-Methylpheno	1	-	NA	NA	-	-
<u>Metals (mg/kg)</u>						
Aluminum		4,310	15,500	3,810	12,900	13,300
Antimony		ND (1.9)	ND (1.9)	ND (1.9)	ND (4.3)	ND (4.3)
Arsenic		1.3	4.6	2	3.5J	5.7]
Barium		39.5	110	35 .	120	157
Beryllium		ND (0.070)	ND (0.70)	ND (0.070)	0.72	0.81
Cadmium		ND (0.84)	1.9	ND (0.70)	ND (0.77)	ND (0.78)
Calcium		71,000	56,000	81,800	81,900	88,400
Chromium		9.7	22.2	6.7	19.2	19.6
Cobalt		3.9	10.3	3.1	9.5	8.0
Copper		9.4	20.7	8.4	545J	42.3J
Iron		9,430	25,300	8,250	19,300	22,800
Lead		6.8	14.3	12.4	41.2J	84.7J
Magnesium	•	28,300	17,200	37,500	19,800	19,900
Manganese		317	456	273	685	704
Mercury		ND (0.060)	ND (0.060)	ND (0.060)	0.24J	0.10J
Nickel		ND (6.5)	25.2	ND (5.3)	27.9	28.8
Potassium		1,180	2,490	1,040	2,100	2,340
Selenium		ND (0.23)	ND (0.23)	ND (0.23)	ND (0.37)	ND (0.38)J
Silver		ND (0.41)	ND (0.42)	ND (0.42)	ND (0.72)	ND (0.73)
Sodium		ND (197)	269	ND (148)	420	417
Thallium		ND (0.30)	ND (0.30)	ND (0.30)	ND (0.30)	ND (0.31)
Vanadium		11.1	31.6	10.4	23.7	27.9
Zinc		52.8	70.4	44.9	152J	96.1J

Paramete r	Sample ID: Depth: Collection date:	BH-5-93 8.0-12.8 Ft. 12/01/93	BH-6-93 1.0-4.0 Ft. 12/01/93	BH-6-93 8.0-11.0 Ft. 12/01/93	BH-AST1-93 2.0-3.5 Ft. 12/15/93	BH-D2-93 2.0 - 3.5 Ft. (Dup. of BH-AST1-93) 12/15/93
TCLP Metals (ug/L)					
Arsenic		ND (41.5)	NA	NA	NA	NA
Barium		917	NA	NA	NA	NA
Cadmium		ND (3.3)	NA	NA	NA	NA
Chromium		ND (8.9)	NA	' NA	NA	NA
Lead		ND (17.5)	NA	NA	NA	NA
Mercury		ND (0.10)	NA	NA	NA	NA
Selenium		ND (59.9)	NA	NA	NA	NA
Silver		ND (20)	NA	NA	NA	NA
<u>Wet Chemistry</u>	(mg/kg)					
Total Organic (Carbon	9,600	NA	NA	NA	NA
Total Petroleur	n Hydrocarbons	ND (36.1)	ND (36.8)	ND (36.7)	358J	· 522J

Notes:

D Value quantitated from a dilution

Dup Field Duplicate

J Associated value is estimated

NA Not analyzed

U Non-detect at the associated value

Parameter	Sample ID: Depth:	BH-DS1-93 1.0-4.0 Ft.	BH-DS2-93 0.5-3.0 Ft.	BH-DS3-93 0.5-1.2 Ft.	BH-EDW1-93 8.0-11.0 Ft.	BH-T1-93 0.5-1.5 Ft.
	Collection date:	12/13/93	12/13/93	12/13/93	12/14/93	12/14/93
<u>Volatiles (µg/k</u>	<u>z)</u>					
Chloromethane	-	ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Bromomethane	!	ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Vinyl chloride		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Chloroethane		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Methylene chlo	ride	3J	ND (11)J	93	ND (2,900)	ND (12)
Acetone	,	12J .	29J	ND (11)	ND (2,900)	ND (12)J
Carbon disulfic	le	ND (12)	18J	ND (11)J	ND (2,900)	ND (12)J
1,1-Dichloroeth	iene	4 J	ND (1,400)D	ND (11)	ND (2,900)	120
1,1-Dichloroeth	ane	19	ND (1,400)D	7 <u>J</u>	ND (2,900)	6J
1,2-Dichloroeth	ene (total)	ND (12)	ND (11)J	ND (11)	ND (2,900)	ND (12)
Chloroform		ND (12)	ND (11)J	ND (11)	ND (2,900)	ND (12)
1,2-Dichloroeth	ane	ND (12)	ND (11)J	ND (11)	ND (2,900)	ND (12)
2-Butanone		ND (12)J	15J	ND (11)J	ND (2,900)	ND (12)J
1,1,1-Trichloroe		25	16,000D	180J	21,000D	1,200JD
Carbon tetrach		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Bromodichloro		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
1,2-Dichloropro	-	[,] ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
cis-1,3-Dichloro		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Trichloroethen		47	4J	ND (11)J	1,700JD	ND (1,500)D
Dibromochloro		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
1,1,2-Trichloroe	ethane	ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Benzene		ND (12)	ND (11)J	1J	ND (2,900)	ND (12)
trans-1,3-Dichle	oropropene	ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Bromoform		ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
4-Methyl-2-per	ntanone	ND (12)	ND (11)J	11J	ND (2,900)	ND (12)
2-Hexanone		ND (12)	ND (11)J	. 4J	ND (2,900)	ND (12)
Tetrachloroeth		ND (12)	ND (11)J	8J	ND (2,900)	ND (12)
1,1,2,2-Tetrachl	loroethane	ND (12)	ND (11)J	ND (11)J	ND (2,900)	ND (12)
Toluene		ND (12)	23J	25J	1,800JD	160JD
Chlorobenzene		ND (12)	ND (11)J	ND (11)J	ND (2,900) 17,000D	ND (12) 1,100JD
Ethylbenzene		7J	48J ND (11)J	37J ND (11)J	ND (2,900)	ND (12)
Styrene Xylene (total)		ND (12) 2J	560JD	240J	92,000D	7,000D
		•	·	-	· .	
<u>TCLP Volatile</u>	<u>s (µg/L)</u>			_		
Vinyl chloride		NA	NA	NA	ND (10)J	NA
1,1-Dichloroeth	nene	NA	NA	NA	26	NA
Chloroform		NA	NA	NA	ND (10)	NA
1,2-Dichloroeth	nane	NA	NA	NA	ND (10)	NA
2-Butanone		NA	NA	NA	ND (10)J	NA
Carbon tetrach		NA	NA.	NA	ND (10)	• NA
Trichloroethen	e٠	NA	NA	NA	130	NA
Benzene	•	NA	NA	NA	ND (10)	NA
Tetrachloroeth		NA	NA	NA	ND (10)	NA
Chlorobenzene	5	NA	NA	NA	ND (10)	NA

Parameter	Sample ID: Depth:	BH-DS1-93 1.0-4.0 Ft.	BH-DS2-93 0.5-3.0 Ft.	BH-DS3-93 0.5-1.2 Ft.	BH-EDW1-93 8.0-11.0 Ft.	BH-T1-93 0.5-1.5 Ft.
	Collection date:	12/13/93	12/13/93	12/13/93	12/14/93	12/14/93
<u>Semi-Volatiles</u>	(µg/kg)		· ·			
Phenol		NA	NA	NA	ND (380)	NA
bis(2-Chloroeth	yl)ether	NA	NA	NA	ND (380)	NA
2-Chlorophenol	1	NA	NA	NA	ND (380)	NA
1,3-Dichlorober	nzene	NA	NA	NA	ND (380)	NA
1,4-Dichlorober	nzene	NA	· NA	NA	ND (380)	NA
1,2-Dichlorober	izene	NA	NA	NA	ND (380)	NA
2-Methylpheno	1	NA	NA	NA	ND (380)	NA
2,2'-oxybis(1-Cl	nloropropane)	NA	NA	NA	ND (380)	NA
4-Methylpheno		NA	NA	NA	ND (380)	NA
N-Nitroso-di-n-	-propylamine	NA	NA	NA	ND (380)	NA
Hexachloroetha	ine	NA	NA	NA	ND (380)	NA
Nitrobenzene		NA	NA	NA	ND (380)	NA
Isophorone		NA	NA	NA	ND (380)	NA
2-Nitrophenol		NA	NA	NA	ND (380)	NA
2,4-Dimethylph		NA	NA	NA	ND (380)	NA
bis(2-Chloroeth		NA	NA	NA	ND (380)	NA
2,4-Dichloroph	enol	NA	NA	NA	ND (380)	NA
1,2,4-Trichlorob	penzene	NA	NA	NA	ND (380)	NA
Naphthalene		NA	NA	NA	ND (380)	NA
4-Chloroaniline	9	NA	NA	NA	ND (380)	NA
Hexachlorobut	adiene	. NA	NA	NA	ND (380)	NA
4-Chloro-3-met		NA	NA	NA	ND (380)	NA
2-Methylnaphtl	halene	NA	NA	NA	ND (380)	NA
Hexachlorocycl	-	NA	NA	NA	ND (380)	NA
2,4,6-Trichlorop	ohenol	NA	NA	NA	ND (380)	NA
2,4,5-Trichlorop		NA	NA	NA	ND (950)	NA
2-Chloronaphth	nalene	NA	NA	NA	ND (380)	NA
2-Nitroaniline		NA	NA	NA	ND (950)	NA
Dimethylphtha		NA	NA	NA	ND (380)	NA
Acenaphthylen	e	NA	NA	NA	ND (380)	NA
2,6-Dinitrotolue	ene	NA	NA	NA	ND (380)	NA
3-Nitroaniline		NA	' NA	NA	ND (950)	NA
Acenaphthene		NA	NA	NA	ND (380)	NA
2,4-Dinitropher	nol	NA	NA	NA	ND (950)J	NA
4-Nitrophenol		NA	NA	NA	ND (950)	NA
Dibenzofuran		NA	NA	NA	ND (380)	NA
2,4-Dinitrotolue		NA	NA	NA	ND (380)	NA
Diethylphthala	te	NA	NA	NA	ND (380)	NA

Parameter	Sample ID: Ďepth:	BH-DS1-93 1.0-4.0 Ft.	BH-DS2-93 0.5-3.0 Ft.	BH-DS3-93 0.5-1.2 Ft.	BH-EDW1-93 8.0-11.0 Ft.	BH-T1-93 0.5-1.5 Ft.
	Deptin	1.0 1.0 1.0	0.0-0.0 10.	VI 1.2 1 7.	0.0-11.0 1 0.	0.0 1.0 11.
•	Collection date:	12/13/93	12/13/93	12/13/93	12/14/93	12/14/93
Semi-Volatiles	s (µg/kg) Cont'd.					
4-Chloropheny	yl-phenylether	NA	NA	NA	ND (380)	NA
Fluorene		NA	NA	NA	ND (380)	NA
4-Nitroaniline		NA	NA	NA	ND (950)J	NA
4,6-Dinitro-2-n	nethylphenol	NA	NA	NA	ND (950)	NA
N-Nitrosodiph	nenylamine(1)	NA	NA	NA	ND (380)	NA
4-Bromopheny	l-phenylether	NA	NA	NA	ND (380)	NA
Hexachlorober	nzene	NA	NA	NA	ND (380)	NA
Pentachloroph	enol	NA	NA	NA	ND (950)	NA
Phenanthrene		NA	NA	NA	ND (380)	NA
Anthracene		NA	NA	NA	ND (380)	NA
Carbazole		NA	NA	NA	ND (380)J	NA
Di-n-butylphtl	nalate	NA	NA	NA	• ND (380)	NA
Fluoranthene		NA	NA	NA	ND (380)	NA
Pyrene		NA	NA	NA	ND (380)	NA
Butylbenzylph	thalate	NA	NA	NA	ND (380)	NA
3,3'-Dichlorob	enzidine	NA	NA	NA	ND (380)	NA
Benzo(a)anthr	acene	NA	NA	NA	ND (380)	NA
Chrysene		NA	NA	NA	ND (380)	NA
bis(2-Ethylhex	yl)phthalate	NA	NA	NA	ND (380)	NA
Di-n-octylphth		NA	NA	NA	ND (380)J	NA
Benzo(b)fluora		NA	NA	NA.	ND (380)J	NA
Benzo(k)fluora		NA	NA	NA	ND (380)	NA
Benzo(a)pyren	le ·	NA	NA	NÄ	ND (380)	NA
Ideno(1,2,3-cd)		NA	NA	NA	ND (380)	NA
Dibenz(a,h)an		NA	NA	NA	ND (380)	NA
Benzo(g,h,i)pe	rylene	NA	NA	NA	ND (380)	NA
<u>Petroleum Pro</u>	ducts (mg/kg)					
Gasoline	0.00	NA	NA	NA	NA	NA
Kerosene		NA	NA	NA	NA	NA
Fuel oil	·	NA	NA	NA	NA	NA
Lubricating oi	1	NA	NA	NA	NA	NA

Parameter	Sample ID: Depth:	BH-DS1-93 1.0-4.0 Ft.	BH-DS2-93 0.5-3.0 Ft.	BH-DS3-93 0.5-1.2 Ft.	BH-EDW1-93 8.0-11.0 Ft.	BH-T1-93 0.5-1.5 Ft.
	Collection date:	12/13/93	12/13/93	12/13/93	12/14/93	12/14/93
<u>TCLP Semi-Vol</u>	latiles (µg/L)	• •				
1,4-Dichlorober	nzene	NA	NA	NA	ND (10)J	NA
2-Methylpheno	1	NA	NA	NA	ND (10)J	NA
Hexachloroetha	ane	NA	NA	NA	ND (10)J	NA
Nitrobenzene		NA	NA	ŇA	ND (10)J	NA
Hexachlorobuta	adiene	NA	NA	NA	ND (10)J	NA
2,4,6-Trichlorop	ohenol	NA	NA	NA	ND (10)J	NA
2,4,5-Trichlorop	ohenol	NA	NA	NA	ND (26)J	NA
2,4-Dinitrotolue	ene	NA	NA	NA	ND (10)J	NA
Hexachloroben	zene	NA	NA	NA	ND (10)J	NA
Pentachlorophe	enol	NA	NA	NA	ND (26)J	NA
Pyridine		NA	NA	NA	ND (10)J	NA
3/4-Methylphe	nol	• NA	NA	NA	ND (10)J	NA
3-Methylpheno	1	-	-	-	-	-
4-Methylpheno	1	-	-	-	-	-
<u>Metals (mg/kg)</u>						
Aluminum		13,900	11,700	17,800	1,600	NA
Antimony		ND (4.4)	ND (4.2)	ND (4.1)J	ND (4.2)	NA
Arsenic		1.8B	4.9	2.6	0.98	NA
Barium		151	113	296	15.9	NA
Beryllium		0.85	0.63	1.3	ND (0.21)	NA
Cadmium		ND (0.79)	ND (0.77)	ND (0.73)	ND (0.76)	NA
Calcium		120,000	76,700	26,00ÒJ	52,000	NA
Chromium		17.7	19.4	20.6	ND (2.0)	NA
Cobalt		7.8	8.4	11.7	ND (1.6)	NA
Copper		25.2	21.1	53.4J	5.3	NA
Iron		17,300	19,400	27,200	4,150	NA
Lead		12.3	13.2	64.9J	6.9	NA
Magnesium		19,500	19,100	6,770	22,100	NA
Manganese		703	509	1,220J	213	NA
Mercury		ND (0.050)	ND (0.050)	0.07	ND (0.050)	ŅA
Nickel		208	41.6	22.8	ND (4.5)	NA
Potassium		2,250	1,540	1,620	398	NA
Selenium		ND (0.38)J	ND (0.37)	0.99J	ND (0.37)J	NA
Silver		ND (0.74)	ND (0.72)	ND (0.69)	ND (0.71)	NA
Sodium		ND (254)	ND (221)	1,010	ND (192)	NA
Thallium		ND (0.31)J	ND (0.30)	ND (0.29)J	ND (0.30)J	NA
Vanadium		20.6	21.3	28.6	5.6	NA
Zinc		74.9	77.7	115J	56.2	NA

.

		•				
Parameter	Sample ID:	BH-DS1-93	BH-DS2-93	BH-DS3-93	BH-EDW1-93	BH-T1-93
	Depth:	1.0-4.0 Ft.	0.5-3.0 Ft.	0.5-1.2 Ft.	8.0-11.0 Ft.	0.5-1.5 Ft.
•	Collection date:	12/13/93	12/13/93	12/13/93	12/14/93	12/14/93
TCLP Metals	(µg/L)	•				
Arsenic		NA	NA	NA	ND (12.8)	NA
Barium		NA	NA	NA	694	NA
Cadmium		NA	NA	NA	ND (2.9)	NA
Chromium	•	NA	NA	NA	4.4	NA
Lead		NA	NA	NA	ND (8.2)	NA
Mercury		NA	· NA	· NA	ND (0.10)	NA
Selenium		NA	NA	NA	127	NA
Silver	·	NA	NA	NA	ND (20)	NA
Wet Chemistr	<u>y (mg/kg)</u>					
Total Organic		NA	NA	NA	NA	NA
-	m Hydrocarbons	ND (37.4)	1,420	624	ND (35.8)	236

Notes:

D Value quantitated from a dilution

Dup Field Duplicate

J Associated value is estimated

NA Not analyzed

U Non-detect at the associated value

.

Parameter	Sample ID: Depth:	BH-T2-93 0.0-2.0 Ft.	BH-T3-93 2.0-4.0 Ft.	BH-WDW1-93 0.7-0.9 Ft.	MW-13 2.0-4.0 Ft.	MW-13 8.0-11.0 Ft.
	Collection date:	12/14/93	12/14/93	12/15/93	12/08/93	12/08/93
Volatiles (µg/k	σ)			•		
Chloromethane		ND (11)	ND (13)J	ND (11)J	ND (12)	ND (11)
Bromomethane		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Vinyl chloride		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Chloroethane		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Methylene chlo	oride	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Acetone		13J	58J	ND (11)J	3J	7)
Carbon disulfic	le	ND (11)J	5J	ND (11)J	ND (12)	1j
1,1-Dichloroeth	nene	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,1-Dichloroeth	ane	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,2-Dichloroeth	nene (total)	ND (11)	ND (13)	ND (11)	ND (12)J	ND (11)J
Chloroform		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,2-Dichloroeth	ane	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
2-Butanone		ND (11)J	15J	ND (11)J	ND (12)J	ND (11)J
1,1,1-Trichloroe	ethane	54	2J	ND (11)	ND (12)	ND (11)
Carbon tetrach	loride	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Bromodichloro	methane	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,2-Dichloropro	opane	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
cis-1,3-Dichloro	opropene	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Trichloroethene	e	2J	ND (13)	ND (11)	ND (12)	ND (11)
Dibromochloro		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,1,2-Trichloroe	ethane	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Benzene		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
trans-1,3-Dichlo	oropropene	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Bromoform		ND (11)	NĎ (13)J	ND (11)J	ND (12)	ND (11)
4-Methyl-2-pen	itanone	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
2-Hexanone		ND (11)	ND (13)J	ND (11)J	ND (12)	ND (11)
Tetrachloroethe		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
1,1,2,2-Tetrachl	oroethane	ND (11)	ND (13)	ND (11)	ND (12)J	ND (11)J
Toluene		8J	ND (13)	ND (11)	ND (12)	ND (11)
Chlorobenzene	9	ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Ethylbenzene		8J	ND (13)	ND (11)	ND (12)	ND (11)
Styrene		ND (11)	ND (13)	ND (11)	ND (12)	ND (11)
Xylene (total)		41	ND (13)	ND (11)	ND (12)	ND (11)
TCLP Volatiles	<u>s (μg/L)</u>					
Vinyl chloride	C C	NA	NA	NA	NA	NA
1,1-Dichloroeth	nene	NA	NA	NA	NA	NA
Chloroform		NA	NA	NA	NA	NĂ
1,2-Dichloroeth	ane	NA	NA	NA	NA	NA
2-Butanone		NA	NA	NA	NA	NA
Carbon tetrach	loride	NA	NA	NA	NA	NA
Trichloroethen	e	NA	NA	NA	NA	NA
Benzene		NA	NA	NA	NA	NA
Tetrachloroethe	ene	NA	NA	NA	NA	NA
Chlorobenzene		NA	NA	NA	NA	NA

Parameter	Sa mp le ID: Depth:	BH-T2-93 0.0-2.0 Ft.	BH-T3-93 2.0-4.0 Ft.	BH-WDW1-93 0.7-0.9 Ft.	MW-13 2.0-4.0 Ft.	MW-13 8.0-11.0 Ft.
	Collection date:	12/14/93	12/14/93	12/15/93	12/08/93	12/08/93
<u>Semi-Volatiles</u>	(µg/kg)					
Phenol		NA	NA	NA	NA.	NA
bis(2-Chloroeth	yl)ether	NA	NA	NA	NA	NA
2-Chlorophenol	l ·	NA	NA	NA	NA	NA
1,3-Dichlorober	zene	NA	NA	NA	NA	· NA
1,4-Dichlorober	zene	NA	NA	NA	NA	NA
1,2-Dichlorober	zene	NA	NA	NA	ŇA	NA
2-Methylpheno	1 '	NA	NA	NA	NA	NA
2,2'-oxybis(1-Ch	loropropane)	NA	NA .	NA	NA	NA
4-Methylpheno	1	NA	NA	NA	NA	NA
N-Nitroso-di-n-	propylamine	NA	NA	NA	NA	NA
Hexachloroetha	ine	NA	NA	NA	NA	NA
Nitrobenzene		NA	NA	NA	NA	NA
Isophorone		NA	NA	NA	· NA	NA
2-Nitrophenol		NA	NA	NA	NA	NA
2,4-Dimethylph	enol	NA	NA	NA	NA	NA
bis(2-Chloroeth		NA	NA	NA	NA	NA
2,4-Dichlorophe	enol	NA	NA	NA	NA	NA
1,2,4-Trichlorob	enzene	NA	NA	NA	NA	NA
Naphthalene		NA	· NA	NA	NA	NA
4-Chloroaniline	2	NA	NA	NA	NA	NA
Hexachlorobuta		NA	NA	NA	NA	NA
4-Chloro-3-met	hylphenol	NA	NA	NA	NA	NA
2-Methylnaphtl		NA	NA	NA	NA	NA
Hexachlorocycl		NA	NA	NA	NA	NA
2,4,6-Trichlorop		NA	NA	NA	NA	NA
2,4,5-Trichlorop		NA	NA	NA	NA	NA
2-Chloronaphth	nalene	NA	NA	NA	NA	NA
2-Nitroaniline		NA	NA	NA	NA	NA
Dimethylphtha		NA	· NA	NA	NA	NA
Acenaphthylen		NA	NA	NA	NA	NA
2,6-Dinitrotolue	ene	NA	· NA	NA	NA	NA
3-Nitroaniline		NA	NA	NA	NA	NA
Acenaphthene	9	NA	NA	NA	NA	NA
2,4-Dinitropher	nol	NA	NA	NA	NA	NA
4-Nitrophenol		NA	NA	NA	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA
2,4-Dinitrotolue		NA	NA	NA	NA	NA
Diethylphthala	te	NA	NA	NA	NA	NA

Parameter	Sample ID: Depth:	BH-T2-93 0.0-2.0 Ft.	BH-T3-93 2.0-4.0 Ft.	BH-WDW1-93 0.7-0.9 Ft.	MW-13 2.0-4.0 Ft.	MW-13 8.0-11.0 Ft.
·	Collection date:	12/14/93	12/14/93	12/15/93	12/08/93	12/08/93
<u>Semi-Volatiles</u>	(µg/kg) Cont'd.					
4-Chloropheny	1-phenylether	NA	NA	NA	NA	NA
Fluorene		NA	NA	NA	NA	NA
4-Nitroaniline		NA	NA	NA	NA	NA
4,6-Dinitro-2-m	nethylphenol	NA	NA	NA	NA	NA
N-Nitrosodiph	enylamine(1)	NA	ŅA	NA	NA	NA
4-Bromopheny	•	NA	NA	NA	NA	NA
Hexachloroben	izene	NA	NA	NA	NA	NA
Pentachlorophe	enol	NA	NA	NA	NA	NA
Phenanthrene		NA	NA	NA	NA	NA
Anthracene		NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA
Di-n-butylphth	nalate	NA	NA	NA	NA	NA
Fluoranthene		NA	NA	NA	NA	NA
Pyrene		NA	NA	NA	NA	NA
Butylbenzylph	thalate	NA	NA	NA	NA	NA
3,3'-Dichlorobe	enzidine	NA	ŇA	NA	NA	NA
Benzo(a)anthra	icene	NA	NA	NA	NA	NA
Chrysene	•	NA	NA	NA	NA	NA
bis(2-Ethylhexy	yl)phthalate	NA	NA	NA	NA	NA
Di-n-octylphth		NA	NA	NA	NA	NA
Benzo(b)fluora		NA	NA	NA	NA	NA
Benzo(k)fluora	nthene	NA	NA	NA	NA	NA
Benzo(a)pyren	e	NA	NA	NA	NA	NA
Ideno(1,2,3-cd)		NA	NA	NA	NA	NA
Dibenz(a,h)ant		NA	NA	NA	NA	NA
Benzo(g,h,i)per		NA	NA	NA	NA	NA
<u>Petroleum Pro</u>	ducts (mg/kg)					
Gasoline		NA	NA	NA	NA	NA
Kerosene		NA	NA	NA	NA	NA
Fuel oil		NA	NA	NA	NA	NA
Lubricating oil		NA	NA	NA	NA	NA

Parameter	Sample ID: Depth:	BH-T2-93 0.0-2.0 Ft.	BH-T3-93 2.0-4.0 Ft.	BH-WDW1-93 0.7-0.9 Ft.	MW-13 2.0-4.0 Ft.	MW-13 8.0-11.0 Ft.
	Collection date:	12/14/93	12/14/93	12/15/93	12/08/93	12/08/93
<u>TCLP Semi-Vo</u>	latiles (µg/L)					
1,4-Dichlorobe	-	NA	NA	NA	NA	NA
2-Methylpheno		NA	NA	NA	NA	NA
Hexachloroeth		NA	NA	NA	NA	NA
Nitrobenzene	• •	NA	NA	NA	NA	NA
Hexachlorobut	adiene	NA	NA	NA	NA	NA
2,4,6-Trichloro	phenol	NA	NA	ŇA	NA	NA
2,4,5-Trichloro		NA	NA	NA	NA	NA
2,4-Dinitrotolu	ene	NA	NA ·	NA	NA	NA
Hexachloroben	zene	NA	NA	NA	NA	NA
Pentachloroph	enol	NA	NA	NA	NA	NA
Pyridine		NA	` NA	NA	NA	NA
3/4-Methylphe	enol	NA	NA	NA	NA	NA
3-Methylphend	ol ·	-	-	-	NA	· NA
4-Methylpheno	bl ·	-	-	-	NA	NA
<u>Metals (mg/kg)</u>	Σ					
Aluminum		NA	NA	23,500	13,200	3,350
Antimony		NA	NA	ND (4.2)	ND (1.9)	ND (1.8)
Arsenic		NA	NA	5.6	1.8	1.2J
Barium		NA	NA	357	185	30.9
Beryllium		NA	NA	2.6	ND (0.48)	ND (0.070)
Cadmium		NA	NA	ND (0.75)	2.0	ND (0.85)
Calcium		NA	NA	92,900	91,200	66,200
Chromium		· NA	NA	17.5	19.5	· 6.9
Cobalt		NA	NA	5.5	10.7	2.8
Copper		NA	NA	71.8	24.5	6.8
Iron		NA	NA	14,200	23,900	7,580
Lead		NA ·	NA	54.3	13.1	6.8
Magnesium		NA	NA	13,200	19,300	27,700
Manganese		NA	NA	2,700	655	257
Mercury		NA	NA	ND (0.050)	ND (0.060)	ND (0.050)
Nickel		NA	NA	22.9	24.5	ND (5.6)
Potassium		NA	NA	1,790	2,190	924J
Selenium		NA	NA	ND (0.36)	ND (0.24)	ND (0.22)
Silver	•	NA	NA	ND (0.71)	ND (0.42)	ND (0.40)
Sodium	•	NA	NA	459	ND (130)	ND (137)
Thallium		NA	NA	ND (0.30)	ND (0.31)	ND (0.29)
Vanadium		NA	NA	15.4	25.6	10.6
Zinc		NA	NA	132	69.2	51.2

.

Parameter	Sample ID: Depth:	BH-T2-93 0.0-2.0 Ft.	BH-T3-93 2.0-4.0 Ft.	BH-WDW1-93 0.7-0.9 Ft.	MW-13 2.0-4.0 Ft.	MW-13 8.0-11.0 Ft.
	Collection date:	12/14/93	12/14/93	12/15/93	12/08/93	12/08/93
TCLP Metals ()	ug/L)					·
Arsenic		NA	NA	NA	NA	NA
Barium		NA	NA	NA	NA	NA
Cadmium		NA	NA	. NA .	NA	NA
Chromium		NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA
Mercury		NA	NA	NA	NA	NA
Selenium		NA	NA	NA	NA	NA
Silver	·	NA	NA	NA	NA	NA
<u>Wet Chemistry</u>	(mg/kg)					
Total Organic C		NA	NA	NA	' NA	NA
Total Petroleun	n Hydrocarbons	54.8	ND (40.0)	ND (35.9)	ND (36.9)	ND (34.9)

Notes:

D Value quantitated from a dilution

Dup Field Duplicate

J Associated value is estimated

NA Not analyzed

U Non-detect at the associated value

	·	i.				
Parameter e	Sample ID:	BH-D1-93	MW-14	MW-14	MW-5A-93	MW-5A-93
	Depth:	8.0 - 11.0 Ft.	0.0-2.0 Ft.	10.0-11.0 Ft.	1.0-4.5 Ft.	8.0-11.8 Ft.
		(Dup. of MW-13)				
	Collection date:	12/08/93	12/06/93	12/06/93	12/01/93	12/01/93
<u>Volatiles (µg/k</u>	σ)	•				
Chloromethan	÷	ND (11)	ND (12)	ND (12)	ND (11)J	ND (12)
Bromomethane		2J	ND (12)	ND (12)	ND (11)J	ND (12)
Vinyl chloride	-	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Chloroethane	,	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Methylene chic	oride	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Acetone		2J	ND (12)J	4J	14J	5J
Carbon disulfic	de	2J	ND (12)	ND (12)	ND (11)	1J
1,1-Dichloroeth		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,1-Dichloroeth		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloroeth		ND (11)J	ND (12)J	150J	ND (11)	ND (12)
Chloroform		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloroeth	nane	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
2-Butanone		ND (11)J	ND (12)J	ND (12)J	ND (11)J	ND (12)J
1,1,1-Trichloro	ethane	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Carbon tetrach		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Bromodichloro		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloropro		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
cis-1,3-Dichlor		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Trichloroethen		ND (11)	ND (12)	5j	ND (11)	ND (12)
Dibromochloro		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,1,2-Trichloro		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Benzene	•	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
trans-1,3-Dichl	oropropene	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Bromoform	•••	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
4-Methyl-2-per	ntanone	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
2-Hexanone		ND (11)	ND (12)	ND (12)	ND (11)J	ND (12)
Tetrachloroeth	ene	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
1,1,2,2-Tetrach	loroethane	ND (11)J	ND (12)J	ND (12)J	ND (11)	ND (12)
Toluene		ND (11)	ND (12)	1J	ND (11)	ND (12)
Chlorobenzene	e .	ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Ethylbenzene		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Styrene		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
Xylene (total)		ND (11)	ND (12)	ND (12)	ND (11)	ND (12)
<u>TCLP Volatile</u>	s (µg/L)					
Vinyl chloride		NA	• NA	ND (10)	NA	NA
1,1-Dichloroetl		NA	NA	ND (10)	NA	NA
Chloroform		NA	NA	ND (10)	NA	NA
1,2-Dichloroet	hane	NA	NA	ND (10)	NA	NA
2-Butanone		NA	NA	ND (10)J	NA	NA
Carbon tetrach	loride	NA	NA	ND (10)	NA	NA
Trichloroethen		NA	NA	ND (10)	NA	NA
Benzene		NA	NA	ND (10)	NA	NA
Tetrachloroeth	iene	NA	NA	ND (10)	NA	NA
Chlorobenzene		NA	NA	ND (10)	NA	NA
				· · ·		

Collection date: 12/08/93 12/06/93 12/01/93 12/01/93 Semi-Volatiles (ug/kg) Fhenol NA NA NA NA NA NA bis(2-Chloroetryl)lether NA NA NA ND (400) NA NA 1,4-Dicklorobenzene NA NA NA ND (400) NA NA 1,2-Dichlorobenzene NA NA NA ND (400) NA NA 2,2-crybic/l-Chloroperpane) NA NA ND (400) NA NA 2,2-crybic/l-Chloropropane) NA NA ND (400) NA NA 2,2-crybic/l-Chloropropane) NA NA ND (400) NA NA Nitroso-di-n-propylamine NA NA ND (400) NA NA Na NA NA ND (400) NA NA Nitrobenzene NA NA ND (400) NA NA 2-Nitrophenol NA NA ND (400) NA NA	Parameter	Sample ID: Depth:	BH-D1-93 8.0 - 11.0 Ft. (Dup. of MW-13)	MW-14 0.0-2.0 Ft.	MW-14 10.0-11.0 Ft.	MW-5A-93 1.0-4.5 Ft.	MW-5A-93 8.0-11.8 Ft.
PhenolNANANAND (400)NANAbis(2-ChlorophenolNANANANANA1.3-DichlorophenzeneNANAND (400)NANA1.3-DichlorobenzeneNANAND (400)NANA1.2-DichlorobenzeneNANAND (400)NANA1.2-DichlorobenzeneNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANANANAND (400)NANANAN-Nitroso-di-n-propylamineNANAND (400)NANANitrobenzeneNANAND (400)NANAIsophoroneNANAND (400)NANA2-DirethylphenolNANAND (400)NANAIsitosphoroneNANAND (400)NANA2-DirethylphenolNANAND (400)NANAbis(2-Chloroethoxy)methaneNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA2-ChiorophenolNA<		Collection date:	12/08/93	12/06/93	12/06/93	12/01/93	12/01/93
PhenolNANANAND (400)NANAbis(2-ChlorophenolNANANANANA1.3-DichlorophenzeneNANAND (400)NANA1.3-DichlorobenzeneNANAND (400)NANA1.2-DichlorobenzeneNANAND (400)NANA1.2-DichlorobenzeneNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANANANAND (400)NANANAN-Nitroso-di-n-propylamineNANAND (400)NANANitrobenzeneNANAND (400)NANAIsophoroneNANAND (400)NANA2-DirethylphenolNANAND (400)NANAIsitosphoroneNANAND (400)NANA2-DirethylphenolNANAND (400)NANAbis(2-Chloroethoxy)methaneNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA1.2-FrichlorophenolNANAND (400)NANA2-ChiorophenolNA<	Semi-Volatiles	(ug/kg)					
bis(2-Chloroethyl)etherNANANAND (400)NANA2-ChlorophenolNANANAND (400)NANA1.3-DichlorobenzeneNANAND (400)NANA1.4-DichlorobenzeneNANAND (400)NANA1.4-DichlorobenzeneNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-WethylphenolNANAND (400)NANA2-WethylphenolNANAND (400)NANA4-MethylphenolNANAND (400)NANA4-MethylphenolNANAND (400)NANAN-Nitroso-di-n-propylamineNANAND (400)NANANaNANAND (400)NANANA1/exachloroethaneNANAND (400)NANA2-NitrophenolNANAND (400)NANA2/a-DichlorophenolNANAND (400)NANA2/a-DichlorophenolNANAND (400)NANA2/a-DichlorophenolNANAND (400)NANA2/a-DichlorophenolNANAND (400)NANA2/a-DichlorophenolNANAND (400)NANA1/a-DichlorophenolNANAND (400)NANA1/a-DichlorophenolNANAND (400)NANA <td></td> <td></td> <td>NA</td> <td>NA</td> <td>ND (400)</td> <td>NA</td> <td>NA</td>			NA	NA	ND (400)	NA	NA
2-ChlorophenolNANANAND (400)NANA1.4-DichlorobenzeneNANANAND (400)NANA1.4-DichlorobenzeneNANAND (400)NANA2.2-DichlorobenzeneNANAND (400)NANA2.4-DichlorobenzeneNANAND (400)NANA2.4-DichlorobenzeneNANAND (400)NANA2.4-Oxybis(1-Chloropropane)NANAND (400)NANA4-MethylphenolNANAND (400)NANANANAND (400)NANANAN-Nitroso-di-n-propylamineNANAND (400)NANANitrobenzeneNANAND (400)NANASophoroneNANAND (400)NANA2.4-DimethylphenolNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA1.2.4-TrichlorobenzeneNANAND (400)NANA4-Chloro-sinethylphenolNANAND (400)NANA4-Chloro-sinethylphenolNANAND (400)NANA4-Chloro-sinethylphenolNANAND (400)NANA4-Chloro-sinethylphenolNANAND (400)NANA4-Chloro-sinethylphenolNANAND (400	bis(2-Chloroethyl)ether						
1.3-DichlorobenzeneNANANAND (400)NANA1.4-DichlorobenzeneNANANANANA1.2-DichlorobenzeneNANANANANA2.4-DichlorobenzeneNANANANANA2.4-ethylphenolNANANAND (400)NANA2.4-oxybis(1-Chloropropane)NANANAND (400)NANA4-MethylphenolNANANAND (400)NANA4-MethylphenolNANANAND (400)NANA1.Nitroso-di-n-propylamineNANANAND (400)NANA1.5ophoroneNANANAND (400)NANA1.5ophoroneNANANAND (400)NANA2NitrophenolNANANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA1.2.4-TrichlorobenzeneNANAND (400)NANA1.2.4-TrichlorobenzeneNANAND (400)NANA1.2.4-TrichlorophenolNANAND (400)NANA1.2.4-TrichlorophenolNANAND (400)NANA1.2.4-TrichlorophenolNANAND (400)NANA1.2.4-TrichlorophenolNANANAND (400) <td colspan="2">•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
1.4-DichlorobenzeneNANAND (400)NANA1.2-DichlorobenzeneNANANAND (400)NANA2-MethylphenolNANANAND (400)NANA2-Coxybis(1-Chloropropane)NANAND (400)NANA2-oxybis(1-Chloropropane)NANAND (400)NANA4-MethylphenolNANANAND (400)NANANitroso-di-n-propylamineNANANAND (400)NANAHexachloroethaneNANANAND (400)NANANitrobenzeneNANANAND (400)NANA2-NitrophenolNANANAND (400)NANA2-Dichloroethoxy)methaneNANAND (400)NANA2-DichlorophenolNANANAND (400)NANA2-Chloroethoxy)methaneNANAND (400)NANA12.4-TichlorobenzeneNANAND (400)NANA12.4-TichlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)	-						
1.2-DichlorobenzeneNANANAND (400)NANA2.4-bithylphenolNANANAND (400)NANA2.2'-oxybis(1-Chloropropane)NANANAND (400)NANA4-MethylphenolNANANAND (400)NANAN-Nitroso-di-n-propylamineNANAND (400)NANANaNANAND (400)NANANaNANAND (400)NANANatcobenzeneNANAND (400)NANASophoroneNANAND (400)NANA2-NitrophenolNANAND (400)NANA2-DichlorophenolNANAND (400)NANA2-DichlorophenolNANAND (400)NANA2-DichlorophenolNANAND (400)NANA2-DichlorophenolNANAND (400)NANA12,4-TrichlorobenzeneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-ChlorophenolNANAND (400)NANA2-A-S-TrichlorophenolNANAND (400)NANA					• •		
2-MethylphenolNANANAND (400)NANA2.2'-oxybis(1-Chloropropane)NANANANANA4-MethylphenolNANANANANA4-MethylphenolNANANANANAN-Nitroso-di-n-propylamineNANANANANAHexachloroethaneNANANAND (400)NANAHexachloroethaneNANANAND (400)NANAIsophoroneNANAND (400)NANA2-NitrophenolNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA1.2.4-TrichlorophenolNANAND (400)NANANaphthaleneNANAND (400)NANAA-ChloroanlineNANAND (400)NANA4-ChloroanlineNANAND (400)NANA4-ChloroanlineNANAND (400)NANA4-ChloroanlineNANAND (400)NANA4-ChloroanlineNANAND (400)NANA2.4.5-TrichlorophenolNANAND (400)NANA2.4.5-TrichlorophenolNANAND (400)NANA2.4.5-Trichlo							
2.2'-oxybis(1-Chloropropane)NANANAND (400)NANA4-MethylphenolNANANANANAN-Nitroso-di-n-propylamineNANANANANAN-Nitroso-di-n-propylamineNANANANANAHexachloroethaneNANANAND (400)NANANitrobenzeneNANANAND (400)NANAIsophoroneNANANAND (400)NANA2-NitrophenolNANANAND (400)NANA2-LinethylphenolNANAND (400)NANAbis(2-Chloroethoxy)methaneNANAND (400)NANA2.4-DirehylphenolNANAND (400)NANA12.4-TirchlorobenzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA2-MethylphenolNANANAND (400)NANA2-MethylphenolNANANAND (40					• · •		
4-MethylphenolNANANAND (400)NANAN-Nitroso-din-propylamineNANANAND (400)NANAHexachloroethaneNANANAND (400)NANAHexachloroethaneNANANAND (400)NANAIsophoroneNANANAND (400)NANAIsophoroneNANAND (400)NANA2-NitrophenolNANAND (400)NANA24-DimethylphenolNANAND (400)NANA1sig2-Chloroethoxy)methaneNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA1.2.4-TrichlorobenzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-Chloroo-simethylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylphthaleneNANAND (400)NANA2-MethylphthaleneNANAND (400)NANA2-MethylphthaleneNANAND (4	• •			NA		NA	NA
N-Nitroso-di-n-propylamineNANANAND (400)NANAHexachloroethaneNANANAND (400)NANANitrobenzeneNANAND (400)NANASophoroneNANANAND (400)NANA2-NitrophenolNANANAND (400)NANA2-ADimethylphenolNANANAND (400)NANA2,4-DinethylphenolNANANAND (400)NANA2,4-DichlorophenolNANAND (400)NANA1,2,4-TrichlorophenolNANAND (400)NANA1,2,4-TrichlorobenzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-AdethylnaphthaleneNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphenolNANAND (400)NANA2-MethylphethaleneNANAND (400)NANA2-MethylphetholNANAND (400)NANA2-MethylphetholNANAND (400)NANA2-MethylphetheleNANA <t< td=""><td>• •</td><td></td><td>NA</td><td>NA</td><td>• •</td><td>NA</td><td>NA</td></t<>	• •		NA	NA	• •	NA	NA
HexachloroethaneNANANAND (400)NANANitrobenzeneNANANAND (400)NANAIsophoroneNANAND (400)NANA2-NitrophenolNANAND (400)NANA2.4-DimethylphenolNANAND (400)NANAbis(2-Chloroethoxy)methaneNANAND (400)NANA2.4-DichlorophenolNANAND (400)NANA1.2.4-TrichloroberzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-Chloro-3-methylphenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)NANA2.4-StrichlorophenolNANAND (400)	N-Nitroso-di-n	-propylamine	NA	NA		NA	NA
IsophoroneNANANDNDNA2-NitrophenolNANANANANA2.4-DimethylphenolNANANANANA2.4-DimethylphenolNANANANANAbis(2-Chloroethoxy)methaneNANANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA1.2,4-TrichlorobenzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANAHexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2.4,6-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,6-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,6-TrichlorophenolNANAND (400)NANA2.6-DimitrotolueneNANAND (400)	Hexachloroeth	ane	NA	NA		NA	NA
2-NitrophenolNANANAND (400)NANA2.4-DimethylphenolNANANAND (400)NANAbis(2-Chloroethoxy)methaneNANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA1.2.4-TrichlorobenzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,5-TrichlorophenolNANAND (400)NANA2.4,6-DinitrotolueneNANAND (400)NANA2.4,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNA <td>Nitrobenzene</td> <td></td> <td>NA</td> <td>NA</td> <td>ND (400)</td> <td>NA</td> <td>NA</td>	Nitrobenzene		NA	NA	ND (400)	NA	NA
2.4-DimethylphenolNANANANANANANAbis(2-Chloroethoxy)methaneNANANAND (400)NANA2.4-DichlorophenolNANANAND (400)NANA1.2.4-TrichloroberzeneNANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANA4-Chloro-s-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-Alef-TrichlorophenolNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-Ge-DinitrotolueneNA <td< td=""><td>Isophorone</td><td></td><td>NA</td><td>NA</td><td>ND (400)</td><td>NA</td><td>NA</td></td<>	Isophorone		NA	NA	ND (400)	NA	NA
bis(2-Chloroethoxy)methaneNANANANANANA2,4-DichlorophenolNANANANANANA1,2,4-TrichlorobenzeneNANANAND (400)NANANaphthaleneNANANAND (400)NANANaphthaleneNANAND (400)NANA4-ChloroanilineNANAND (400)NANAHexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2,4,6-TrichlorophenolNANAND (400)NANA2,4,5-TrichlorophenolNANAND (1000)NANA2,4,5-TrichlorophenolNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNA <td< td=""><td>2-Nitrophenol</td><td></td><td>NA</td><td>NA</td><td>ND (400)</td><td>NA</td><td>NA</td></td<>	2-Nitrophenol		NA	NA	ND (400)	NA	NA
2,4-DichlorophenolNANANAND (400)NANA1,2,4-TrichlorobenzeneNANANAND (400)NANANaphthaleneNANANAND (400)NANAA-ChloroanilineNANAND (400)NANA4-ChloroanilineNANAND (400)NANAHexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-AfefTrichlorophenolNANAND (400)NANA2,4,6-TrichlorophenolNANAND (1000)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA3-NitroanilineNANAND (400)NANA4-DinitrophenolNANAND (400)NANA3-NitroanilineNANAND (400)NANA4-DinitrophenolNANAND (400)NANA4-DinitrophenolNANAND (400)NA <t< td=""><td>2,4-Dimethylpl</td><td>henol</td><td>NA</td><td>NA</td><td>ND (400)</td><td>NA</td><td>NA</td></t<>	2,4-Dimethylpl	henol	NA	NA	ND (400)	NA	NA
1,2,4-TrichlorobenzeneNANANAND (400)NANANaphthaleneNANANAND (400)NANA4-ChloroanilineNANANAND (400)NANAHexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA4-Chloro-yclopentadieneNANAND (400)NANA2-4,6-TrichlorophenolNANAND (400)NANA2-ChloronaphthaleneNANAND (1,000)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANA2-G-DinitrotolueneNANAND (400)NANA2-A-DinitrophenolNANAND (1,000)NANA2-A-DinitrophenolNANAND (1,000)NANA2-A-DinitrophenolNANAND (400)NANA2-A-DinitrophenolNANAND (1,000)NANA2-A-DinitrophenolNANAND (400)NANA2-A-DinitrophenolNANAND (400)NANA2-A-DinitrophenolNANA	bis(2-Chloroeth	hoxy)methane	NA	NA	ND (400)	NA	NA
NaphthaleneNANANAND (400)NANA4-ChloroanilineNANANAND (400)NANAHexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA1-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA1-MethylophenolNANAND (400)NANA2-4,6-TrichlorophenolNANAND (400)NANA2,4,5-TrichlorophenolNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (400)NANA4-CenaphtheneNANAND (400)NANA2,4-DinitrophenolNANAND (400)NANA4-DinitrophenolNANAND (400)NANA4-DinitrophenolNANAND (400)NANA4-DinitrophenolNANAND (400)NANA4-NitrophenolNANAND (400)NANA<	2,4-Dichloroph	enol	NA	NA	ND (400)	NA	NA
4-ChloroanilineNANAND (400)NANAHexachlorobutadieneNANANAND (400)NANA4-Chloro-3-methylphenolNANANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA4-Chloro-3-methylphenolNANAND (400)NANA2-MethylnaphthaleneNANAND (400)NANA2-Af-TrichlorophenolNANAND (400)NANA2,4,5-TrichlorophenolNANAND (1000)NANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (400)NANAAcenaphtheneNANAND (400)NANA2,4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NA	1,2,4-Trichloro	benzene	· NA	NA	ND (400)	NA	NA
HexachlorobutadieneNANAND (400)NANA4-Chloro-3-methylphenolNANANANANA2-MethylnaphthaleneNANANANANA2-MethylnaphthaleneNANANANANA4-Chloro-3-methylphenolNANANANANA2-MethylnaphthaleneNANANANANA4-ChlorocyclopentadieneNANANANANA2,4,6-TrichlorophenolNANANANANA2,4,5-TrichlorophenolNANANANANA2-ChloronaphthaleneNANAND (400)NANA2-ChloronaphthaleneNANAND (1,000)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANA2,6-DinitrotolueneNANAND (1,000)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (1,000)NANA4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	Naphthalene		NA	NA	ND (400)	NA	NA
4-Chloro-3-methylphenolNANANAND (400)NANA2-MethylnaphthaleneNANANAND (400)NANAHexachlorocyclopentadieneNANAND (400)NANA2,4,6-TrichlorophenolNANAND (400)NANA2,4,5-TrichlorophenolNANAND (400)NANA2,4,5-TrichlorophenolNANAND (1,000)NANA2,4,5-TrichlorophenolNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANA4-CenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (1,000)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANANA<	4-Chloroanilin	e	NA	NA	ND (400)	NA	NA
2-MethylnaphthaleneNANANAND (400)NANAHexachlorocyclopentadieneNANANAND (400)NANA2,4,6-TrichlorophenolNANANAND (400)NANA2,4,5-TrichlorophenolNANAND (1,000)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANA4-cenaphtheneNANAND (1,000)NANA4-DinitrotolueneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (1,000)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (40	Hexachlorobut	tadiene	NA	NA	ND (400)	NA	NA
HexachlorocyclopentadieneNANANAND (400)NANA2,4,6-TrichlorophenolNANANAND (400)NANA2,4,5-TrichlorophenolNANAND (1,000)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (400)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (400)NANA4-CenaphtheneNANAND (1,000)NANA4-NitrophenolNANAND (1,000)NANA2,4-DinitrotolueneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA2,4-DinitrophenolNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA2,4-DinitrotolueneNANANANANA	4-Chloro-3-me	thylphenol	NA	NA	ND (400)	NA	· NA
2,4,6-TrichlorophenolNANANANANA2,4,5-TrichlorophenolNANANAND (1,000)NANA2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANAND (1,000)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANA4.cenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANANAND (400)NANA2,4-DinitrotolueneNANANANANAAcenaphtenolNANANANANA2,4-DinitrophenolNANANANANA2,4-DinitrotolueneNANANANANA2,4-DinitrotolueneNANANANANA2,4-DinitrotolueneNANANANANA2,4-DinitrotolueneNANANANANA	2-Methylnapht	halene	NA	NA	ND (400)	NA	NA
2,4,5-TrichlorophenolNANANANANA2-ChloronaphthaleneNANANAND (400)NANA2-NitroanilineNANANAND (1,000)NANADimethylphthalateNANANAND (400)NANADimethylphthalateNANAND (400)NANAAcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)NANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANANAND (400)NANA2,4-DinitrotolueneNANANANANAAcenaphtenolNANANANANA4-NitrophenolNANANANANADibenzofuranNANANANANA2,4-DinitrotolueneNANANANANA	Hexachlorocyc	lopentadiene	NA	NA	ND (400)	NA	NA
2-ChloronaphthaleneNANAND (400)NANA2-NitroanilineNANANAND (1,000)NANADimethylphthalateNANANAND (400)NANAAcenaphthyleneNANANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	2,4,6-Trichloro	phenol	NA	NA	ND (400)	NA	NA
2-NitroanilineNANANANANADimethylphthalateNANANAND (400)NANAAcenaphthyleneNANANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)JNANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	2,4,5-Trichloro	phenol	ΝΛ	NA	ND (1,000)	NA	NA
DimethylphthalateNANANANAAcenaphthyleneNANANANANA2,6-DinitrotolueneNANANANANA3-NitroanilineNANANAND (400)NANA3-NitroanilineNANANAND (1,000)NANAAcenaphtheneNANAND (1,000)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	2-Chloronapht	halene	NA	NA	ND (400)	NA	NA
AcenaphthyleneNANAND (400)NANA2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (400)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)JNANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	2-Nitroaniline		NA	NA		NA	NA
2,6-DinitrotolueneNANAND (400)NANA3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANAND (400)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)JNANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	Dimethylphtha	alate	NA	NA	ND (400)	NA	NA
3-NitroanilineNANAND (1,000)NANAAcenaphtheneNANANAND (400)NANA2,4-DinitrophenolNANANAND (1,000)JNANA4-NitrophenolNANANAND (1,000)NANADibenzofuranNANANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA			NA	NA	ND (400)	NA	NA
AcenaphtheneNANAND (400)NANA2,4-DinitrophenolNANAND (1,000)JNANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	2,6-Dinitrotolu	lene	NA	NA	ND (400)	NA	NA
2,4-DinitrophenolNANANANANA4-NitrophenolNANAND (1,000)NANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA			NA	NA	ND (1,000)	NA	NA
4-NitrophenolNANAND (1,000)NANADibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA			NA	NA	ND (400)	NA	NA
DibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA	•		NA	NA	ND (1,000)J	NA	NA
DibenzofuranNANAND (400)NANA2,4-DinitrotolueneNANAND (400)NANA			NA	NA			NA
2,4-Dinitrotoluene NA NA ND (400) NA NA			NA				
					• •		•
	Diethylphthala	ite	NA	NA	• •		

Parameter	Sample ID: Depth:	BH-D1-93 8.0 - 11.0 Ft.	MW-14 0.0-2.0 Ft.	MW-14 10.0-11.0 Ft.	MW-5A-93 1.0-4.5 Ft.	MW-5A-93 8.0-11.8 Ft.
	Collection date:	(Dup. of MW-13) 12/08/93	12/06/93	12/06/93	12/01/93	12/01/93
<u>Semi-Volatiles (</u>	(ug/kg) Cont'd.			· · ·		
4-Chlorophenyl	-phenylether	NA	NA	ND (400)	NA	NA
Fluorene		NA	NA	ND (400)	NA	NA
4-Nitroaniline		NA	NA	ND (1,000)J	NA	NA
4,6-Dinitro-2-me	ethylphenol	NA	NA	ND (1,000)	NÁ	NA
N-Nitrosodiphe	nylamine(1)	NA	NA	ND (400)	NA	NA
4-Bromophenyl	-phenylether	NA	NA	ND (400)	NA	NA
Hexachlorobenz	zene	NA	NA	ND (400)	NA	NA
Pentachlorophe	nol	NA	NA	ND (1,000)	NA	NA
Phenanthrene		NA	NA	ND (400)	NA	NA
Anthracene		NA	NA	ND (400)	NA	NA
Carbazole		. NA	NA	ND (400)J	NA	NA
Di-n-butylphtha	alate	NA	NA	ND (400)	NA	NA
Fluoranthene		NA	NA	ND (400)	NA	NA
Pyrene		NA	NA	ND (400)	NA	NA
Butylbenzylphtl	halate	NA	NA	ND (400)	NA	NA
3,3'-Dichlorobenzidine		NA	NA	ND (400)	NA	NA
Benzo(a)anthracene		NA	NA	ND (400)	NA	NA
Chrysene		NA	NA	ND (400)	NA	NA
bis(2-Ethylhexy	l)phthalate	NA	NA	ND (530)	NA	NA
Di-n-octylphtha	late	NA	NA	ND (400)J	NA	NA
Benzo(b)fluoran	thene	NA	NA	ND (400)J	NA	NA
Benzo(k)fluoran	thene	NA	NA	ND (400)	NA	NA
Benzo(a)pyrene		NA	NA	ND (400)	NA	NA
Ideno(1,2,3-cd)p		NA	NA	ND (400)	NA	NA
Dibenz(a,h)anth	racene	NA	NA	ND (400)	NA	NA
Benzo(g,h,i)perylene		NA	NA	ND (400)	NA	NA
<u>Petroleum Prod</u>	ucts (mølkø)					
Gasoline		NA	NA	Not Present	NA	NA
Kerosene		NA ·	NA	ND (33)	NA	NA
. Fuel oil		NA	NA	ND (33)	NA	NA
Lubricating oil		NA	NA	Present	NA	NA

.

Paramete r	Sample ID: Depth:	BH-D1-93 8.0 - 11.0 Ft. (Dup. of MW-13)	MW-14 0.0-2.0 Ft.	MW-14 10.0-11.0 Ft.	MW-5A-93 1.0-4.5 Ft.	MW-5A-93 8.0-11.8 Ft.
	Collection date:	12/08/93	12/06/93	12/06/93	12/01/93	12/01/93
TCLP Semi-Vol	atiles (µg/L)					
1,4-Dichloroben		NA	NA	ND (10)J	NA	NA
2-Methylphenol		NA	NA	ND (10)J	NA	NA
Hexachloroethane		NA	NA	ND (10)	NA	NA
Nitrobenzene		NA	NA	ND (10)	NA	NA
Hexachlorobuta	diene	NA	NA	ND (10)J	NA	NA
2,4,6-Trichlorop	henol	NA	NA	ND (10)J	NA	NA
2,4,5-Trichlorop		NA	NA	ND (26)J	NA	NA
2,4-Dinitrotolue	ne	NA	NA	ND (10)J	NA	NA
Hexachlorobenz	ene	NA	NA	ND (10)J	NA	NA
Pentachloropher	nol	NA	NA	ND (26)J	NA	NA
Pyridine		NA	NA	ND (10)J	NA	NA
3/4-Methylpher	nol	NA	NA	-	NA	NA
3-Methylphenol		NA	NA	ND (10)J	NA	NA
4-Methylphenol		NA	NA	ND (10)J	NA	NA
Motols (malka)						
<u>Metals (mg/kg)</u> Aluminum		2 590	15 000	4 1 0 0	0.540	F 000
Antimony		2,580	15,200	4,100	9,540	5,800
Arsenic		ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.9)
Barium		2.8J	4.6	1.7	5.9	1.5
Beryllium		26.3	167	37.9	40.4	43.3
Cadmium		ND (0.070)	0.68	ND (0.070)	ND (0.46)	ND (0.070)
Calcium		ND (0.89)	2.9	ND (0.81)	1.5	ND (0.79)
Chromium		64,500 7 5	29,500	61,100	12,500	74,100
Cobalt		7.5 2.5	35.4	7.4	12.4	9.6
		2.3 6.2	10.9	3.4	. 7.3	4.8
Copper Iron		8,500	33.1	10.0	29.6	10.9
Lead		5.3	26,900 346	9,240	20,000	11,200
Magnesium		25,800		6.3 25.200	9.6	6.8
Manganese		23,800	12,500 624	25,300 285	3,750	29,700
Mercury		ND (0.050)	0.37	ND (0.060)	716	346
Nickel		ND (4.6)	31.0	ND (6.4)	ND (0.050)	ND (0.050)
Potassium		666J			25.1	ND (9.7)
Selenium		ND (0.22)	2,940 ND (0.25)	1,010	911 NID (0.22)	1,530
Silver				ND (0.24)	ND (0.23)	ND (0.23)
Sodium		ND (0.40) ND (128)	ND (0.46) ND (113)	ND (0.43)	ND (0.41)	ND (0.84)
		ND (128) ND (0.29)	0.35	ND (161)	ND (196)	ND (209)
Thallium Vanadium		ND (0.29) 10.9	0.35 33.1	ND (0.31)	0.39	ND (0.30)
Zinc				10.4	20.4	13.6
201C		45.6	193	57.0	76.7	51.3

Parameter	Sample ID:	BH-D1-93	MW-14	MW-14	MW-5A-93	MW-5A-93
	Depth:	8.0 - 11.0 Ft.	0.0-2.0 Ft.	10.0-11.0 Ft.	1.0-4.5 Ft.	8.0-11.8 Ft.
		(Dup. of MW-13)				
	Collection date:	12/08/93	12/06/93	12/06/93	12/01/93	12/01/93
TCLP Metals (1	<u>ug/L)</u>					
Arsenic		NA	NA	ND (41.5)	NA	NA
Barium		NA	NA	810	NA	NA
Cadmium		NA	NA	ND (3.3)	NA	NA
Chromium		NA	NA	ND (8.9)	NA	NA
Lead		NA	NA	ND (17.5)	NA	NA
Mercury		ŃA	NA	ND (0.10)	NA	NA
Selenium		NA	NA	ND (59.9)	NA	NA
Silver		NA	NA ·	ND (20)	NA	NA
Wet Chemistry	(mg/kg)					
Total Organic C	0 0	NA	NA	17,300	NA	NA
Total Petroleum	Hydrocarbons	ND (34.6)	288	ND (37.7)	ND (35.7)	ND (36.4)

D Value quantitated from a dilution

Dup Field Duplicate

J Associated value is estimated

NA Not analyzed

U Non-detect at the associated value

CRA 3967 (7) APPA

Parameter Sample ID:		BH-DS-E1	BH-DS-E1		BH-DS-N1
	Collection Date:	04/07/94	04/07/94	04/07/94	04/07/94
<u>TCL Volatiles (j</u>	ualka)				
Chloromethane	STORY	ND (12)	ND (12)	ND (11)	ND (12)
Bromomethane		ND (12)	ND (12)	ND (11)	ND (12)
Vinyl chloride		ND (12)	ND (12)	ND (11)	ND (12)
Chloroethane		ND (12)	ND (12)	ND (11)	ND (12)
Methylene chlor	ide	ND (12)	ND (12)	ND (11)	ND (12)
Acetone		ND (12)	14U	ND (11)	ND (12)
Carbon disulfide	e	ND (12)J	ND (12)J	ND (11)J	ND (12)J
1,1-Dichloroethe	ene	ND (12)	ND (12)	ND (11)	ND (12)
1,1-Dichloroetha		ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloroethe		ND (12)	ND (12)	ND (11)	4J
Chloroform		ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloroetha	ane	ND (12)	ND (12)	ND (11)	ND (12)
2-Butanone		2J	2J	ND (11)	ND (12)
1,1,1-Trichloroe	thane	ND (12)	ND (12)	ND (11)	ND (12)
Carbon tetrachle	oride	ND (12)	ND (12)	ND (11)	ND (12)
Bromodichloror	nethane	ND (12)	ND (12)	ND (11)	ND (12)
1,2-Dichloropro	pane	ND (12)	ND (12)	ND (11)	ND (12)
cis-1,3-Dichloro	propene	ND (12)	ND (12)	ND (11)	ND (12)
Trichloroethene		ND (12)	ND (12)	ND (11)	6J
Dibromochloror	nethane	ND (12)	ND (12)	ND (11)	ND (12)
1,1,2-Trichloroe	thane	ND (12)	ND (12)	ND (11)	ND (12)
Benzene		ND (12)	ND (12)	ND (11)	ND (12)
trans-1,3-Dichlo	ropropene	ND (12)	ND (12)	ND (11)	ND (12)
Bromoform		ND (12)	ND (12)	ND (11)	ND (12)
4-Methyl-2-pent	anone	ND (12)	ND (12)	ND (11)	ND (12)
2-Hexanone		ND (12)	ND (12)		• ND (12)
Tetrachloroethe		ND (12)	ND (12)	ND (11)	ND (12)
1,1,2,2-Tetrachlo	proethane	ND (12)	ND (12)	ND (11)	ND (12)
Toluene		ND (12)	ND (12)	ND (11)	ND (12)
Chlorobenzene		ND (12)	ND (12)	ND (11)	ND (12)
Ethylbenzene		ND (12)	ND (12)	ND (11)	ND (12)
Styrene		ND (12)	ND (12)	ND (11)	ND (12)
Xylene (total)		ND (12)	ND (12)	ND (11)	ND (12)
<u>Wet Chemistry</u>					
Total Petroleum	Hydrocarbons	4,170J	1,310J	2,010	3,930

Notes:

Dup. Field duplicate.

J The associated value is estimated.

NA Not analyzed.

TCL Target Compound List.

TABLE A.3 SUPPLEMENTAL SOIL SAMPLES REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

Parameter Sample ID:		BH-DS-N2	BH-8-94	BH-10-94	BH-14A-94 (Dup. of BH-10-94)
	Collection Date:	04/07/94	04/07/94	04/08/94	04/08/94
<u>TCL Volatiles (</u>	<u>µg/kg)</u>		. ·		
Chloromethane	÷ -	ND (12)	ND (13)	ND (11)	ND (11)
Bromomethane		ND (12)	ND (13)	ND (11)	ND (11)
Vinyl chloride		ND (12)	5J	ND (11)	ND (11)
Chloroethane		ND (12)	ND (13)	ND (11)	ND (11)
Methylene chlo	ride	ND (12)	ND (13)	ND (11)	ND (11)
Acetone		ND (13)	ND (13)	ND (11)	6J
Carbon disulfid	le	ND (12)J	1J	ND (11)J	ND (11)
1,1-Dichloroeth	ene	ND (12)	ND (13)	ND (11)	ND (11)
1,1-Dichloroeth	ane	ND (12)	ND (13)	ND (11)	ND (11)
1,2-Dichloroeth	ene (total)	1J	32	1J	ND (11)
Chloroform		ND (12)	ND (13)	ND (11)	ND (11)
1,2-Dichloroeth	ane	ND (12)	ND (13)	ND (11)	ND (11)
2-Butanone		4J	1J	ND (11)	ND (11)
1,1,1-Trichloroe	thane	ND (12)	ND (13)	ND (11)	ND (11)
Carbon tetrachl	oride	ND (12)	ND (13)	ND (11)	ND (11)
Bromodichloro	methane	ND (12)	ND (13)	ND (11)	ND (11)
1,2-Dichloropro	pane	ND (12)	ND (13)	ND (11)	ND (11)
cis-1,3-Dichloro	propene	ND (12)	ND (13)	ND (11)	ND (11)
Trichloroethene	3	ND (12)	ND (13)	ND (11)	ND (11)
Dibromochloro	methane	ND (12)	ND (13)	ND (11)	ND (11)
1,1,2-Trichloroe	thane	ND (12)	ND (13)	ND (11)	ND (11)
Benzene		ND (12)	20	2J	ND (11)
trans-1,3-Dichlo	propropene	ND (12)	ND (13)	ND (11)	ND (11)
Bromoform		ND (12)	ND (13)	ND (11)	ND (11)
4-Methyl-2-pen	tanone	ND (12)	ND (13)	ND (11)	ND (11)
2-Hexanone		ND (12)	ND (13)	ND (11)	ND (11)
Tetrachloroethe	ene	ND (12)	ND (13)	ND (11)	ND (11)
1,1,2,2-Tetrachle	oroethane	ND (12)	ND (13)	ND (11)	ND (11)
Toluene		ND (12)	ND (13)	ND (11)	ND (11)
Chlorobenzene		ND (12)	ND (13)	23	17
Ethylbenzene		ND (12)	ND (13)	ND (11)	ND (11)
Styrene		ND (12)	ND (13)	ND (11)	ND (11)
Xylene (total)		ND (12)	1J	2J	1J _
<u>Wet Chemistry</u>	00				
Total Petroleum	n Hydrocarbons	2,200	ND (38.7)	ND (35.2)	ND (35.4)

Notes:

J

Dup. Field duplicate.

The associated value is estimated.

NA Not analyzed.

TCL Target Compound List.

TABLE A.3 SUPPLEMENTAL SOIL SAMPLES REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

.

Parameter	Sample ID:	BH-11-94	MW-1A	MW-18	MW-19	MW-20
C	Collection Date:	04/08/94	03/31/94	03/29/94	03/29/94	04/05/94
TCL Volatiles (µ	<u>(g/kg)</u>					
Chloromethane		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Bromomethane		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Vinyl chloride		3J	ND (12)J	ND (12)	ND (11)J	ND (11)
Chloroethane		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Methylene chlor	ide	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Acetone		ND (12)	ND (12)J	ND (12)	ND (11)J	ND (11)
Carbon disulfide	e	ND (12)J	ND (12)J	ND (12)	ND (11)J	ND (11)
1,1-Dichloroethe	ene	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,1-Dichloroetha	ine	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,2-Dichloroethe	ene (total)	3J	8J	ND (12)	8J	ND (11)
Chloroform		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,2-Dichloroetha	ine	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
2-Butanone		ND (12)	ND (12)J	ND (12)J	ND (11)J	ND (11)J
1,1,1-Trichloroet	hane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Carbon tetrachlo	oride	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Bromodichloron	nethane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,2-Dichloroprop	pane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
cis-1,3-Dichlorop	propene	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Trichloroethene		ND (12)	2J	ND (12)	ND (11)J	ND (11)
Dibromochloror	nethane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,1,2-Trichloroet	hane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Benzene		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
trans-1,3-Dichlor	ropropene	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Bromoform		ND (12)	ND (12)J	ND (12)	ND (11)J	ND (11)
4-Methyl-2-pent	anone	ND (12)	ND (12)J	ND (12)	ND (11)J	ND (11)
2-Hexanone		ND (12)	ND (12)J	ND (12)	ND (11)J	ND (11)
Tetrachloroether	ne	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
1,1,2,2-Tetrachlo	proethane	ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Toluene		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Chlorobenzene		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Ethylbenzene		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Styrene		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Xylene (total)		ND (12)	ND (12)	ND (12)	ND (11)J	ND (11)
Wet Chemistry						
Total Petroleum	Hydrocarbons	ND (35.7)	NA	NA	ND (35.9)	NA

Notes:

Dup. Field duplicate.

J The associated value is estimated.

NA Not analyzed.

TCL Target Compound List.

TABLE A.3 SUPPLEMENTAL SOIL SAMPLES REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

Parameter	Sample ID:	MW-21	MW-22	MW-23
Co	ellection Date:	04/04/94	03/29/94	03/29/94
<u>TCL Volatiles (μα</u>	<u>(kg)</u>			
Chloromethane	-	ND (11)	ND (11)	ND (11)
Bromomethane	x	ND (11)	ND (11)	ND (11)
Vinyl chloride		ND (11)	ND (11)	ND (11)
Chloroethane		ND (11)	ND (11)	ND (11)
Methylene chlorid	le	ND (11)	2J	2J
Acetone		ND (11)	ND (11)	ND (11)
Carbon disulfide		ND (11)	ND (11)	ND (11)
1,1-Dichloroethen	e ·	ND (11)	ND (11)	ND (11)
1,1-Dichloroethan	e -	ND (11)	ND (11)	ND (11)
1,2-Dichloroethen	e (total)	ND (11)	ND (11)	ND (11)
Chloroform		ND (11)	ND (11)	ND (11)
1,2-Dichloroethan	e	ND (11)	ND (11)	ND (11)
2-Butanone		ND (11)J	ND (11)J	ND (11)J
1,1,1-Trichloroetha	ane	ND (11)	ND (11)	ND (11)
Carbon tetrachlori	ide	ND (11)	ND (11)	ND (11)
Bromodichlorome	thane	ND (11)	ND (11)	ND (11)
1,2-Dichloropropa	ine	ND (11)	ND (11)	ND (11)
cis-1,3-Dichloropr	opene	ND (11)	ND (11)	ND (11)
Trichloroethene		ND (11)	ND (11)	ND (11)
Dibromochlorome	ethane	ND (11)	. ND (11)	ND (11)
1,1,2-Trichloroetha	ane	ND (11)	ND (11)	ND (11)
Benzene		ND (11)	ND (11)	ND (11)
trans-1,3-Dichloro	propene	ND (11)	• ND (11)	ND (11)
Bromoform		ND (11)	ND (11)	ND (11)
4-Methyl-2-pentar	none	ND (11)	ND (11)	ND (11)
2-Hexanone		ND (11)	ND (11)	ND (11)
Tetrachloroethene		ND (11)	ND (11)	ND (11)
1,1,2,2-Tetrachloro	bethane	ND (11)	ND (11)	ND (11)
Toluene		120	ND (11)	ND (11)
Chlorobenzene		ND (11)	ND (11)	ND (11)
Ethylbenzene		ND (11)	ND (11)	ND (11)
Styrene		ND (11)	ND (11)	ND (11)
Xylene (total)		ND (11)	ND (11)	ND (11)
<u>Wet Chemistry (m</u>				
Total Petroleum H	Iydrocarbons	NA	NA	NA

Notes:

J

Dup. Field duplicate.

The associated value is estimated.

NA Not analyzed.

TCL Target Compound List.

CRA 3967 (7) APPA

	NYS SCG	MW-1 01/07/94	MW-2 01/05/94	MW-3 01/05/94	MW-4 01/10/94	MW-5 01/05/94
<u>Volatiles (µg/L)</u>						
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)J	ND (10)J	ND (10)	ND (10)J
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	. 66	ND (10)
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	2J	2J	ND (10)	180,000D	6J
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)	ND (10)J	ND (10)J	ND (10)	ND (10)J
2-Hexanone	50 (G)	ND (10)	ND (10)J	ND (10)J	ND (10)	ND (10)J
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	ND (10)	ND (10)J	ND (10)J	13	13J
Benzene	0.7 (S)	ND (10)	ND (10)	ND (10)	2J	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon disulfide	-	ND (10)	ND (10)	ND (10)	3J	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	ND (10)	13	ND (10)
Methylene chloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	1	ND (10)	ND (10)	ND (22)	ND (10)
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	3J	39	ND (10)	110,000D	ND (10)
Vinyl chloride	2 (S)	ND (10)	ND [*] (10)	ND (10)	28,000D	ND (10)
Xylene (total)	5 (S)	ND (10)	2J	2J	69	1J
<u>Petroleum Products (µg/L)</u>						
Gasoline	-	NA	[·] NA	NA	NA	NA
Kerosene	-	NA	NA	NA	NA	NA
Fuel oil	-	NA	NA	NA	NA	NA
Lubricating oil	-	NA	NA	NA	NA	NA

	NYS SCG	MW-1 01/07/94	MW-2 01/05/94	MW-3 01/05/94	MW-4 01/10/94	MW-5 01/05/94
Phenol	-	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	1.0 (S)	NA	NA	NA	NA	NA
2-Chlorophenol		NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5.(S)	NA	NA	NA	• NA	· NA
1,4-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA
2-Methylphenol	-	NA	NA	NA	NA	NA
2,2'-oxybis(1-Chloropropane)		NA	NA	NA	NA	NA
4-Methylphenol	_	NA	NA	NA	NA	NA
N-Nitro-di-n-propylamine	<u>-</u> :	NA	NA	NA	NA	NA
Hexachloroethane	-	NA	NA	NA	NA	NA
Nitrobenzene	5 (S)	NA	NA	NA	NA	NA
Isophorone	50 (G)	NA	NA	NA	NA	NĄ
2-Nitrophenol	-	NA	NA	NA	NA	NA
2,4-Dimethylphenol	· _	NA	NA	NA	NA	NA
bis(2-Chloroethoxy)methane	·_	NA	NA	NA	NA	NA
2,4-Dichlorophenol	-	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5 (S)	NA	NA	NA	NA	NA
Naphthalene	10 (G)	NA	NA	NA	NA	NA
4-Chloroaniline	(-)	NA	NA	NA	NA	NA
Hexachlorobutadiene	5 (S)	NA	NA	NA	NA	NA
4-Chloro-3-methylphenol	-	NA	NA	NA	NA	NA
2-Methylnaphthalene	-	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	5 (S)	NA	NA	ŃA	NA	NA
2,4,6-Trichlorophenol	-	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	-	NA	NA	NA	NA	NA
2-Chloronaphthalene	10 (G)	NA	NA	NA	NA	NA
2-Nitroaniline	(,	NA	NA	NA	NA	NA
Dimethylphthalate	50 (G)	NA .	NA	NA	NA	NA
Acenaphthylene	-	NA	NA	NA	NA	NA
2,6-Dinitrotoluene	5 (S)	NA	NA	NA	NA	NA
3-Nitroaniline	-	NA	NA	NA	NA	NA
Acenaphthene	20 (G)	NA	NA	NA	NA	NA
2,4-Dinitrophenol	-	NA	NA	NA	NA	NA
4-Nitrophenol	-	NA	NA	NA	NA	NA
Dibenzofuran	-	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	-	NA	NA	NA	NA	NA
Diethylphthalate	50 (G)	NA	NA	NA	NA	NA

	NYS SCG	MW-1 01/07/94	MW-2 01/05/94	MW-3 01/05/94	MW-4 01/10/94	MW-5 01/05/94
<u>Semi-Volatiles (µg/L) (cont'd.)</u>		NIA	NIA	·	NA	NA
4-Chlorophenyl-phenylether	-	NA	NA NA	NA NA	NA	NA
Fluorene 4-Nitroaniline	50 (G)	NA NA	NA NA	NA	NA	NA
	-	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	-	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine(1)	50 (G)	NA	NA	NA	NA	NA
4-Bromophenyl-phenylether Hexachlorobenzene	0.35 (S)	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA
Pentachlorophenol Phenanthrene	- 50 (G)	NA	NA	NA	NA	NA
Anthracene		NA	NA	NA	NA	NA
Carbazole	50 (G)	NA	NA	NA	NA NA	NA
	-		NA	NA	NA	NA
Di-n-butylphthalate Fluoranthene	50 (S)	NA NA	NA	NA	NA	NA
	50 (G)	NA	· NA	NA	NA	NA
Pyrene Butulhan gulahaha lata	50 (G)	NA	NA	NA	NA	NA
Butylbenzylphthalate 3,3'-Dichlorobenzidine	50 (G)	NA	NA	NA	NA	NA
•	-		NA	NA	NA	NA
Benzo(a)anthracene	0.002 (G)	NA	NA	NA NA	NA	NA
Chrysene	0.002 (G)	NA NA	NA	NA NA	NA	NA
bis(2-Ethylhexyl)phthalate	50 (S)	NA	NA	NA	NA	NA
Di-n-octylphthalate	50 (G)	· NA	NA	NA	NA	NA
Benzo(b)fluoranthene Benzo(k)fluoranthene	0.002 (G)	NA	NA	NA	NA	NA
	0.002 (G) 0.002 (G)	NA	NA	NΛ	NA	NA
Benzo(a)pyrene.		NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	0.002 (G)	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	-	NA	NA	NA	NA	NA
Der 120(g,h,t,)perytene	-	INA	NA	NA	INA	ING
<u>Metals (µg/L)</u>						
Aluminum	-	NA	NA	NA	NA	NA
Antimony	3 (G)	NA	NA	NA	NA	NA
Arsenic	25 (S)	NA	NA	NA	NA	NA
Barium	1,000 (S)	NA	NA	NA	NA	NA
Beryllium	3 (G)	NA	NA	NA	NA	NA
Cadmium	10 (S)	NA	NA	NA	NA	NA
Calcium	-	NA	NA	NA	NA	NA
Chromium	50 (S)	NA	NA	NA	NA	NA
Cobalt	-	NA	NA	NA	NA	NA
Copper	200 (S <u>)</u>	NA	NA	NA	NA	. NA
Iron	300 (S) *	NA	NA	NA	NA	NA
Lead	25 (S)	NA	NA	NA	NA	NA
Magnesium	35,000 (G)	NA	NA	NA	NA	NA
Manganese	300 (S) *	NA	NA	NA	NA	NA
Mercury	2 (S)	NA	NA	NA	NA	NA
Nickel	-	NA	NA	NA	NA	NA
Potassium	-	NA	NA	NA	NA	NA

		NYS SCG	MW-1 01/07/94	MW-2 01/05/94	MW-3 01/05/94	MW-4 01/10/94	MW-5 01/05/94
	<u>Metals (µg/L) Cont'd.</u>						
	Selènium	10 (S)	NA	NA	NA	NA	NA
	Silver	50 (S)	NA	NA	NA	NA	NA
	Sodium	20,000 (S)	NA	NA	NA	NA	NA .
	Thallium	4 (G)	NA	NA	NA	NA	NA
	Vanadium	-	NA	NA	NA	NA	NA
	Zinc	300 (S)	NA	NA	NA	NA	NA
	<u>Wet Chemistry (mg/L)</u>				• •		
	Total Petroleum Hydrocarbons	-	ND (2.5)				
Notes:							
(G)	Guidance value						
(S)	Standard value						
*	Manganese and iron < 500 μg/L						
-	Not Available	•					
APL	Aqueous Phase Liquid						
D	Value quantitated from a dilution					•	
Dup	Field Duplicate						
J	Associated value is estimated						
NA	Not analyzed				•		
NAPL	Non-Aqueous Phase Liquid						
R	Rejected value						
U	Non-detect at the associated value						

	NYS SCG	MW-6 01/05/94	MW-7 01/07/94	MW-8 01/11/94	MW-8 01/11/94	MW-9 01/07/94
						•
<u>Volatiles (µg/L)</u> 1.1.1 Trichloroothono	E (C)		NID (1 000)			NTD (10)
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5 (S) 5 (S)	ND (10)	ND (1,000) ND (1,000)	ND (10)J R	ND (10)J R	ND (10) ND (10)
1,1,2,2-Trichloroethane		ND (10)J	• • •		ND (10)J	ND (10) ND (10)
	5 (S)	ND (10)	ND (1,000)	ND (10)J R		
1,1-Dichloroethane	5 (S)	ND (10) 22	ND (1,000)		ND (10)J	ND (10)
1,1-Dichloroethene	5.(S)	• ND (10)	ND (1,000)	ND (50,000)D	ND (50,000)D	ND (10)
1,2-Dichloroethane	5 (S)		ND (1,000)	R 270 000D	ND (10)J	ND (10) 63
1,2-Dichloroethene (total)	5 (S)	4,000D	6,500	370,000D	390,000D	
1,2-Dichloropropane	5 (S)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
2-Butanone 2-Hexanone	50 (G)	ND (10)	ND (1,000)	R R	ND (10)J	ND (10)
	50 (G)	ND (10)	ND (1,000)		R	ND (10)
4-Methyl-2-pentanone	-	ND (10)J	ND (1,000)	R	R	ND (10)
Acetone	50 (G)	ND (10)	ND (1,000)	ND (50,000)DJ	ND (50,000)DJ	ND (10)
Benzene	0.7 (S)	4J	190J	8J	7J	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Bromoform	50 (G)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Bromomethane	5 (S)	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
Carbon disulfide	-	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (1,000)	R	R	ND (10)
Chloroethane	5 (S)	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
Chloroform	7 (S)	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
Chloromethane	-	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Ethylbenzene	5 (S)	ND (10)	120J	130J	84J	ND (10)
Methylene chloride	5 (S)	ND (10)	ND (1,000)	R	ND (10)J	ND (10)
Styrene	5 (S)	ND (10)	ND (1,000)	R	R	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (1,000)	R	23J	ND (10)
Toluene	5 (S)	3J	210J	ND (50,000)D	ND (50,000)D	1J
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (1,000)	ND (10)J	ND (10)J	ND (10)
Trichloroethene	5 (S)	890D	ND (1,000)	71,000D	36,000DJ	2J
Vinyl chloride	2 (S)	450JD	4,400D	54,000DJ	54,000DJ	140
Xylene (total)	5 (S)	ND (10)	240J	21,000JD	ND (50,000)D	3J
<u>Petroleum Products (µg/L)</u>						
Gasoline	-	NA	NA	NA	NA	NA
Kerosene	-	NA	NA	ŇA	NA	NA
Fuel oil	-	NA	NA	NA	NA	. NA
Lubricating oil	-	NA	NA	NA	NA	NA

.

	NYS SCG	MW-6 01/05/94	MW-7 01/07/94	MW-8 01/11/94	MW-8 01/11/94	MW-9 01/07/94
<u>Semi-Volatiles (µg/L)</u>		•				
Phenol	-	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	1.0 (S)	NA	NA	NA	NA	NA
2-Chlorophenol	-	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5 (S)	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	· NA
1,2-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA
2-Methylphenol	-	NA	NA	NA	NA	NA
2,2'-oxybis(1-Chloropropane)	-	NA	NA	NA	NA	NA
4-Methylphenol	-	NA	NA	NA	NA	NA
N-Nitro-di-n-propylamine	-	NA	NA	NA	NA	NA
Hexachloroethane	-	NA	NA	NA	NA	NA
Nitrobenzene	5 (S)	NA	NA	NA	NA	NA
Isophorone	50 (G)	NA	NA	NA	NA	NA
2-Nitrophenol	-	NA	NA .	NA	NA	NA
2,4-Dimethylphenol		NA	· NA	NA	NA	NA
bis(2-Chloroethoxy)methane	-	NA	NA	NA	NA	NA
2,4-Dichlorophenol	-	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5 (S)	NA	NA	NA	NA	NA
Naphthalene	10 (G)	NA	NA	NA	NA	NA
4-Chloroaniline	-	NA	NA	NA	NA ·	NA
Hexachlorobutadiene	5 (S)	NA	NA	NA	NA	· NA
4-Chloro-3-methylphenol	. -	NA	NA	NA .	NA	NA
2-Methylnaphthalene	-	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	5 (S)	NA	· NA	NA	NA	NA
2,4,6-Trichlorophenol	-	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	-	NA	NA	NA	NA	NA
2-Chloronaphthalene	10 (G)	NA	NA	NA	NA	NA
2-Nitroaniline	-	NA	NA	NA	NA	NA
Dimethylphthalate	50 (G)	NA	NA	' NA	ŇA	NA
Acenaphthylene	-	NA	NA	NA	NA	NA
2,6-Dinitrotoluene	5 (S)	NA	NA	NA	- NA	NA
3-Nitroaniline	-	NA	NA	NA	NA	NA
Acenaphthene	20 (G)	NA	NA	NA	NA	NA
2,4-Dinitrophenol	-	NA	NA	NA	NA	NA
4-Nitrophenol	-	NA	NA	NA	NA	NA
Dibenzofuran	-	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	-	NA	NA	NA	NA	NA
Diethylphthalate	50 (G)	NA	NA	NA	NA	NA

.

· .

		MW-6	MW-7	MW-8	MW-8	MW-9
	NYS SCG	01/05/94	01/07/94	01/11/94	01/11/94	01/07/94
<u>Semi-Volatiles (µg/L) (cont'd.)</u>						
4-Chlorophenyl-phenylether	· _	NA	NA	NA	NA .	NA
Fluorene	50 (G)	NA	NA	· NA	NA	NA
4-Nitroaniline	(/	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	-	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine(1)	50 (G)	NA	NΛ	NA	NA	NA
4-Bromophenyl-phenylether	-	NA	NA	NA	. NA	NA
Hexachlorobenzene	0.35 (S)	NA	NA	NA	NA	NA
Pentachlorophenol	-	NA	NA	NA	NA	NA
Phenanthrene	50 (G)	NA	NA	NA	NA	NA
Anthracene	50 (G)	NA	NA	NA	NA	NA
Carbazole	-	NA	NA	NA	NA	NA
Di-n-butylphthalate	50 (S)	NA	NA	NA	NA	NA
Fluoranthene	50 (G)	NA	NA	NA	NA	NA
Pyrene	50 (G)	NA	NA	NA	NA	NA
Butylbenzylphthalate	50 (G)	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	-	NA	NA	NA	NA	NA
Benzo(a)anthracene	0.002 (G)	NA	NA	NA	NA	NA
Chrysene	0.002 (G)	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	50 (S)	NA	NA	NA	NA	NA
Di-n-octylphthalate	50 (G)	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	0.002 (G)	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	0.002 (G)	NA	NA	NA	NA	NA
Benzo(a)pyrene	0.002 (G)	NA .	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002 (G)	NA	NA	NA	ŇA	NA
Dibenzo(a,h)anthracene	-	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	-	NA	NA	NA	NA	NA
<u>Metals (µg/L)</u>			٥			
Aluminum	-	NA	NA	NA	NA	NA
Antimony	3 (G)	NA	NA	NA	NA	NA
Arsenic	25 (S)	NA	NA	NA	NA	NA
Barium	1,000 (S)	NΛ	ΝΛ	NΛ	NA	NA
Beryllium	3 (G)	NA	NA	NA	NA	NA
Cadmium	10 (S)	NA	NA	NA	NA	NA
Calcium	-	NA	NA	NA	NA	NA
Chromium	50 (S)	NA	NA	NA	NA	NA
Cobalt	-	NA	NA	NA	NA	NA
Copper	200 (S)	NA	NA	NA	NA	NA
Iron	300 (S) *	NA	NA	NA	NA	NA
Lead	25 (S)	NA	NA	NA	NA	NA
Magnesium	35,000 (G)	NA	NA	NA	NA	NA
Manganese	300 (S) *	NA	NA	NA	NA	NA
Mercury	2 (S)	NA	NA	NA	NA	NA
Nickel	-	NA	NA	NA	NA	NA
Potassium	-	NA	NA	NA	NA	NA

.

.

		NYS SCG	MW-6 01/05/94	MW-7 01/07/94	MW-8 01/11/94	MW-8 01/11/94	MW-9 01/07/94
	<u>Metals (µg/L) Cont'd.</u>						
	Selenium	10 (S)	NA	NA	NA	NA	NA
	Silver	50 (S)	NA	'NA	NA	NA	NA
	Sodium	20,000 (S)	NA	NA	NA	NA	NA
	Thallium	20,000 (3) 4 (G)	NA	NA	NA	NA	
	Vanadium						NA
		-	NA	NA	NA	NA	NA
	Zinc	300 (S)	NA	NA	NA	NA	· NA
	<u>Wet Chemistry (mg/L)</u>	÷					
	Total Petroleum Hydrocarbons	-	ND (2.5)	ND (2.5)	67.4	NA	ND (2.5)
Notes:							

(G)	Guidance value
(S)	Standard value
*	Manganese and iron < 500 μg/L
-	Not Available
APL	Aqueous Phase Liquid
D	Value quantitated from a dilution
Dup	Field Duplicate
_ J _	Associated value is estimated
NA	Not analyzed
NAPL	Non-Aqueous Phase Liquid
R	Rejected value

U Non-detect at the associated value

	NYS SCG	MW-10 01/11/94	MW-19C 01/11/94	MW-11 01/10/94	MW-11-NAPL 01/10/94	MW-12 01/10/94
						·
<u>Volatiles (µg/L)</u>						
1,1,1-Trichloroethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)J	ND (10)J	R -	ND (1,000,000)J	ND (10)J
1,1,2-Trichloroethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
1,1-Dichloroethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
1,1-Dichloroethene	5 (S)	160J	180J	ND (50,000)D	ND (1,000,000)	ND (10)J
1,2-Dichloroethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
1,2-Dichloroethene (total)	5 (S)	51,000DJ	90,000DJ	470,000D	22,000,000	53,000D
1,2-Dichloropropane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
2-Butanone	50 (G)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
2-Hexanone	50 (G)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
4-Methyl-2-pentanone	-	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Acetone	50 (G)	18U	ND (10)J	ND (50,000)DJ	ND (1,000,000)	ND (10)J
Benzene	0.7 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Bromodichloromethane	50 (G)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Bromoform	50 (G)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Bromomethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Carbon disulfide	-	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Carbon tetrachloride	-5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Chlorobenzene	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Chloroethane	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Chloroform	7 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Chloromethane	-	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
cis-1,3-Dichloropropene	5 (S)	ND (10)J	ND (10)J	R .	ND (1,000,000)	ND (10)J
Dibromochloromethane	50 (G)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Ethylbenzene	5 (S)	17J	19J	ND (50,000)D	920,000J	17J
Methylene chloride	5 (S)	ND (10)J	ND (10)J	120J	ND (1,000,000)	ND (10)J
Styrene	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Tetrachloroethene	5 (S)	ND (10)J	ND (10)J	. 50J	160,000J	ND (10)J
Toluene	5 (S)	4 9J	54J	ND (50,000)D	ND (1,000,000)	69J
trans-1,3-Dichloropropene	5 (S)	ND (10)J	ND (10)J	R	ND (1,000,000)	ND (10)J
Trichloroethene	5 (S)	ND (50,000)DJ	38,000JD	250,000D	330,000,000D	86,000D
Vinyl chloride	2 (S)	ND (50,000)DJ	15,700JD	48,000JD	1,400,000	ND (10)J
Xylene (total)	5 (S)	100J	100J	ND (50,000)D	6,600,000	140J
<u>Petroleum Products (µg/L)</u>						
Gasoline	• ••	Not Present	NA	NA	NA	NA
Kerosene	-	100U	NA	NA	NA	NA
Fuel oil	-	590	NA	NA	NA	NA
Lubricating oil	-	Present	NA	NA	NA	NA

	NYS SCG	MW-10 01/11/94	MW-19C 01/11/94	MW-11 01/10/94	MW-11-NAPL 01/10/94	MW-12 01/10/94
<u>Semi-Volatiles (µg/L)</u>						
Phenol	-	NA	NA	NA	NA	NĄ
bis(2-Chloroethyl)ether	1.0 (S)	NA	NA	NA	NA	NA
2-Chlorophenol	- ·	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5 (S)	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	4.7 (S)	NA	NA	. NA	NA	NA
1,2-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA ·
2-Methylphenol	-	NA ·	NA	' NA	NA	NA
2,2'-oxybis(1-Chloropropane)	-	NA	NA	· NA	NA	NA
4-Methylphenol	-	NA	NA	NA	NA	NA
N-Nitro-di-n-propylamine	-	· NA	NA	NA	NA	NA
Hexachloroethane	-	NA	NA	NA	NA	NA
Nitrobenzene	5 (S)	NA	NA	NA	NA	NA
Isophorone	50 (G)	NA	` NA	NA	NA	NA
2-Nitrophenol	-	NA	NA	NA	NA	NA
2,4-Dimethylphenol		NA	NA	NA	NA	NA.
bis(2-Chloroethoxy)methane	-	· NA	NA	NA	NA	NA
2,4-Dichlorophenol	-	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5 (S)	NA	NA	NA	NA	NA
Naphthalene	10 (G)	NA	NA	NA	NA	NA
4-Chloroaniline	-	NA	NA	NA	NA	NA
Hexachlorobutadiene	5 (S)	NA	' NA	NA	NA	NA
4-Chloro-3-methylphenol	-	NA	NA	NA	NA	NA
2-Methylnaphthalene	-	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	5 (S)	NA	NA	NA	NA	NA
2,4,6-Trichlorophenol	-	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	· -	NA	NA	NA	NA	NA
2-Chloronaphthalene	10 (G)	NA	NA	NA	NA	NA
2-Nitroaniline	-	NA	NA	NA	NA	NA
Dimethylphthalate	50 (G)	NA	NA	NA	NA	NA
Acenaphthylene	-	NA	· NA	NA	NA	NA
2,6-Dinitrotoluene	5 (S)	NA	NA	NA	NA	NA
3-Nitroaniline	-	NA	NA	NA	NA	NA
Acenaphthene	20 (G)	NA	NA	NA	NA	NA
2,4-Dinitrophenol	-	NA	NA	NA	NA	NA
4-Nitrophenol	-	NA	NA	NA	NA	NA
Dibenzofuran	-	NA	NA	NA	NA	ŇA
2,4-Dinitrotoluene	-	NA	NA	NA	· NA	NA
Diethylphthalate	50 (G)	NA	NA	NA	NA	NA

CRA 3967 (7) APPA

	NYS SCG	MW-10 01/11/94	MW-19C 01/11/9 4	MW-11 01/10/94	MW-11-NAPL 01/10/94	MW-12 01/10/94
					0	01/10/01
<u>Semi-Volatiles (µg/L) (cont'd.)</u>						
4-Chlorophenyl-phenylether	-	NA	NA	NA	NA	NA
Fluorene	50 (G)	NA	NA	NA	NA	NA
4-Nitroaniline	-	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	-	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine(1)	50 (G)	NA	NA	NA	NA	NA
4-Bromophenyl-phenylether	-	NA	NA	NA	NA	NA
Hexachlorobenzene	0.35 (S)	NA	NA	NA	NA	NA
Pentachlorophenol	-	NA	NA	NA	NA	NA
Phenanthrene	50 (G)	NA	NA	NA	NA	NA
Anthracene	50 (G)	NA	NA	NA	NA	NA
Carbazole	-	NA	NA	NA	NA	NA
Di-n-butylphthalate	50 (S)	NA	NA	NA	· NA	NA
Fluoranthene	50 (G)	NA	NA	NA	NA	NA
Pyrene	50 (G)	NA	NA	NA	NA	NA
Butylbenzylphthalate	50 (G)	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	-	NA	NA	NA	NA	NA
Benzo(a)anthracene	0.002 (G)	NA	NA	NA	NA	NA
Chrysene	0.002 (G)	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	50 (S)	NA	NA	NA	NA	NA
Di-n-octylphthalate	50 (G)	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	0.002 (G)	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	0.002 (G)	NA	NA	NA	NA	NA
Benzo(a)pyrene	0.002 (C)	NΛ	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002 (G)	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	-	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	-	NA	NA	NA	NA	NA
<u>Metals (µg/L)</u>						
Aluminum	-	NA	NA	NA	NA	NA
Antimony	3 (G)	NA	NA	NA	NA	NA
Arsenic	25 (S)	NA	NA	NA	NA	NA
Barium	1,000 (S)	NA	NA	NA	NA	NA
Beryllium	3 (G)	NA	NA	NA	NA	NA
Cadmium	10 (S)	NA	NA	NA	NA	NA
Calcium	-	NA	NA	NA	NA	NA
Chromium	50 (S)	NA	NA	NA	NA	NA
Cobalt	-	NA	NA	NA	NA	NA
Copper	200 (S)	NA	NA	NA	NA	NA
Iron	300 (S) *	NA	NA	NA	NA	NA
Lead	25 (S)	NA	NA	NA	NA	NA
Magnesium	35,000 (G)	NA	NA	NA	NA	NA
Manganese	300 (S) *	NA	NA	NA	NA	NA
Mercury	2 (S)	NA	NA	NA	NA	NA
Nickel	-	NA	NA	NA	NA	NA
Potassium	-	NA	NA	NA	NA	NA

.

.

		NYS SCG	MW-10 01/11/94	MW-19C 01/11/94	MW-11 01/10/94	MW-11-NAPL 01/10/94	MW-12 01/10/94
×	<u>Metals (µg/L) Cont'd.</u>						
	Selenium	10 (S)	NA	NA	NA	NA	NA
	Silver	50 (S)	NA	NA	NA	NA	NA
	Sodium	20,000 (S)	NA	NA	NA	NA	NA
	Thallium	4 (G)	NA	NA	NA	NA	NA
	Vanadium	÷	NA	NA	NA	NA	NA
	Zinc	300 (S)	NA	NA	NA	NA	NA
	<u>Wet Chemistry (mg/L)</u>					•	
	Total Petroleum Hydrocarbons	-	3.2	ND (2.5)J	192 .00	NA	ND (2.5)J
Notes:	· ·						
(G)	Guidance value						•
(S)	Standard value						
*	Manganese and iron < 500 µg/L Not Available			•			
APL	Aqueous Phase Liquid						
D	Value quantitated from a dilution						
Dup	Field Duplicate						
. 1	Associated value is estimated				•		
NA	Not analyzed						
NAPL							
R	Rejected value						
U	Non-detect at the associated value	•					

	NYS SCG	MW-13 01/06/94	MW-14 01/06/94	MW-18C 01/06/94	MW-15 01/06/94	MW-16 01/07/94
<u>Volatiles (µg/L)</u>						
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	87J
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	14	6,500D
1,1-Dichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	630JD
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	2J	580D	650D	3J	8,200D
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)	ND (10)J	ND (10)J	ND (10)	ND (10)
2-Hexanone	50 (G)	ND (10)J	ND (10)J	ND (10)J	ND (10)	ND (10)
4-Methyl-2-pentanone	-	ND (10)J	ND (10)	ND (10)	ND (10)J	ND (10)J
Acetone	50 (G)	ND (14)	ND (10)	ND (10)	74	ND (10)
Benzene	0.7 (S)	ND (10)	2J	1J	ND (10)	1J
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon disulfide	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	2,000D
Methylene chloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	3J
Toluene	· 5 (S)	ND (10)	ND (10)	ND (10)	1J	1,100JD
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	6,800D
Vinyl chloride	2 (S)	ND (10)	8J	8J	ND (10)	75J
Xylene (total)	5 (S)	ND (10)	ND (10)	ND (10)	1J	5,200D
<u>Petroleum Products (µg/L)</u>						
Gasoline	-	NA	NA	NA	NA	NA
Kerosene	-	NA	NA	NA	NA	NA
Fuel oil	-	NA	NA	NA	NA	NA
Lubricating oil	-	NA	NA	NA	NA	NA

	NYS SCG	MW-13 01/06/94	MW-14 01/06/94	MW-18C 01/06/94	MW-15 01/06/94	MW-16 01/07/94
Sawi Walatilaa (uall)						
<u>Semi-Volatiles (µg/L)</u> Phenol	_	ND (10)	ND (10)	ND (10)	NA	ND (10)
bis(2-Chloroethyl)ether	1.0 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
2-Chlorophenol	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
1,3-Dichlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
1,4-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
1,2-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
2-Methylphenol	(-)	ND (10)	ND (10)	ND (10)	NA	4J
2,2'-oxybis(1-Chloropropane)	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
4-Methylphenol	-	ND (10)	ND (10)	ND (10)	NA	5 j '
N-Nitro-di-n-propylamine	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Hexachloroethane	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Nitrobenzene	5 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Isophorone	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
2-Nitrophenol	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
2,4-Dimethylphenol	-	ND (10)	ND (10)	ND (10)	NA	26
bis(2-Chloroethoxy)methane	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
2,4-Dichlorophenol	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
1,2,4-Trichlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Naphthalene	10 (G)	ND (10)	ND (10)	ND (10)	NA	42
4-Chloroaniline	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Hexachlorobutadiene	5 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
4-Chloro-3-methylphenol	-	ND (10)	ND (10)	ND (10)	NA	. 19J
2-Methylnaphthalene	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Hexachlorocyclopentadiene	5 (S)	ND (10)J	ND (10)J	ND (10)J	NA	ND (10)J
2,4,6-Trichlorophenol	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
2,4,5-Trichlorophenol	· -	ND (25)	ND (25)	ND (25)	NA	ND (25)
2-Chloronaphthalene	10 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
2-Nitroaniline	-	ND (25)	ND (25)	ND (25)	NA	ND (25)
Dimethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Acenaphthylene	~ -	ND (10)	ND (10)	_ ND (10)	NA	ND (10)
2,6-Dinitrotoluene	5 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
3-Nitroaniline	-	ND (25)J	ND (25)J	ND (25)J	NA	ND (25)J
Acenaphthene	20 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
2,4-Dinitrophenol	-	ND (25)J	ND (25)J	ND (25)J	NA	ND (25)J
4-Nitrophenol	-	ND (25)J	ND (25)J	ND (25)J	NA	ND (25)J
Dibenzofuran	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
2,4-Dinitrotoluene	-	ND (10)	ND (10)	ND (10)	. NA	ND (10)
Diethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)

CRA 3967 (7) APPA

· .	NYS SCG	MW-13 01/06/94	MW-14 01/06/94	MW-18C 01/06/94	MW-15 01/06/94	MW-16 01/07/94
<u>Semi-Volatiles (µg/L) (cont'd.)</u>						
4-Chlorophenyl-phenylether	-	ND (10)	ND (10)	ND (10)	· NA	ND (10)
Fluorene	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
4-Nitroaniline	(,	ND (25)J	ND (25)J	ND (25)J	NA	ND (25)J
4,6-Dinitro-2-methylphenol	-	ND (25)	ND (25)	ND (25)	NA	ND (25)
N-Nitrosodiphenylamine(1)	50 (G)	ND (10)J	ND (10)J	ND (10)J	NA	ND (10)J
4-Bromophenyl-phenylether	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Hexachlorobenzene	0.35 (S)	ND (10)	ND (10)	ND (10)	ŅA	ND (10)
Pentachlorophenol	-	ND (25)	ND (25)	ND (25)	NA	ND (25)
Phenanthrene	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Anthracene	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Carbazole	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Di-n-butylphthalate	50 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Fluoranthene	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Pyrene	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Butylbenzylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
3,3'-Dichlorobenzidine	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Benzo(a)anthracene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Chrysene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
bis(2-Ethylhexyl)phthalate	50 (S)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Di-n-octylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Benzo(b)fluoranthene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Benzo(k)fluoranthene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Benzo(a)pyrene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Indeno(1,2,3-cd)pyrene	0.002 (G)	ND (10)	ND (10)	ND (10)	NA	ND (10)
Dibenzo(a,h)anthracene	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
Benzo(g,h,i)perylene	-	ND (10)	ND (10)	ND (10)	NA	ND (10)
<u>Metals (µg/L)</u>						
Aluminum	-	6,970	27,200J	39,800J	NA	9,250
Antimony	3 (G)	ND (7.9)	ND (7.9)	ND (10.7)	NA	ND (7.9)
Arsenic	25 (S)	2	9	14	NA	6
Barium	1,000 (S)	245	251	352	NA	266
Beryllium	3 (G)	ND (0.77)	ND (1.7)	ND (2.0)	NA	ND (0.77)
Cadmium	10 (S)	ND (1.8)	ND (2.2)	ND (3.3)	· NA	ND (2.7)
Calcium	-	186,000	466,000	584,000	NA	168,000
Chromium	50 (S)	53	73	92	NA	83
Cobalt	-	8	16	24	NA	10
Copper	200 (S)	22	· 75	88	NA	53.0
Iron	300 (S) *	12,700	41,600J	60,900J	NA	21,600
Lead	25 (S)	ND (10.4)	65.6J	112J	NA	18
Magnesium	35,000 (G)	81,900	251,000	290,000	NA	55,700
Manganese	300 (S) *	254	1,390	1,850	NA	599
Mercury	2 (S)	ND (0.10)	ND (0.10)	ND (0.10)	NA	ND (0.10)
Nickel	-	70.0	128	138	NA	175
Potassium	-	3,970	10,900	13,800	NA	6,850

.

		NYS SCG	MW-13 01/06/94	MW-14 01/06/94	MW-18C 01/06/94	MW-15 01/06/94	MW-16 01/07/94
	<u>Metals (µg/L) Cont'd.</u>				· · ·	x	
	Selenium	10 (S)	ND (2.2)J	ND (2.2)J	ND (11.0)J	NA	ND (2.2)J
	Silver	50 (S)	ND (2.1)	ND (2.1)	ND (2.1)	NA	ND (2.1)
	Sodium	20,000 (S)	16,200	78,800	77,100	NA	361,000
	Thallium	4 (G)	ND (1.2)	ND (1.2)	ND (1.2)	NA	ND (1.2)
	Vanadium	-	9.0B	38.3B	62	NA	12
	Zinc	300 (S)	35.7J	207]	257J	NA	132J
	<u>Wet Chemistry (mg/L)</u>						
	Total Petroleum Hydrocarbons	-	3.50.	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
Notes:							

	(G)	Guidance value
	(S)	Standard value
	*	Manganese and iron < 500 μg/L
	-	Not Available
	APL	Aqueous Phase Liquid
	D	Value quantitated from a dilution
	Dup	Field Duplicate
Ó	J	Associated value is estimated
	NA	Not analyzed
	NAPL	Non-Aqueous Phase Liquid
	R	Rejected value
	U	Non-detect at the associated value

		East Well	East Well	MW-2A	MW-5A	MW-6A
	NYS SCG	01/14/94	01/14/94	01/13/94	01/13/94	01/12/94
<u>Volatiles (µg/L)</u>						
1,1,1-Trichloroethane	5 (S)	ND (10)	13	ND (10)	ND (10)	ND (10)J
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
1,1-Dichloroethane	5 (S)	ND (10)	49	ND (10)	ND (10)	6J
1,1-Dichloroethene	5 (S)	ND (10)	7]	ND (10)	ND (10)	140j
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
1,2-Dichloroethene (total)	5 (S)	6J	640D	ND (10)	ND (10)	390,000D
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
2-Butanone	50 (G)	ND (10)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
2-Hexanone	50 (G)	ND (10)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)	ND (10)	7J
Acetone	50 (G)	ND (10)	ND (10)J	ND (10)J	3J	16J
Benzene	0.7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	38J
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Bromomethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Carbon disulfide	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Carbon tetrachloride	5 (S)	ND (10)J	ND (10)	ND (10)	ND (10)	ND (10)J
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Chloromethane	-	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Ethylbenzene	5 (S)	ND (10)	1J	ND (10)	ND (10)	140J
Methylene chloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	2J	ND (10)	ND (10)	180J
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Trichloroethene	5 (S)	3J	360D	8J	ND (10)	90J
Vinyl chloride	2 (S)	ND (10)	170D	ND (10)J	ND (10)J	110,000D
Xylene (total)	5 (S)	ND (10)	3J	ND (10)	ND (10)	7,000JD
<u>Petroleum Products (µg/L)</u>						
Gasoline	-	NA	NA	NA	NA	, NA
Kerosene	-	NA	NA	NA	NA	NA
Fuel oil	-	NA	NA.	NA	NA	NA
Lubricating oil	-	NA	NA	NA	NA	NA

.

.

	NYS SCG	East Well 01/14/94	East Well 01/14/94	MW-2A 01/13/94	MW-5A 01/13/94	MW-6A 01/12/94
<u>Semi-Volatiles (µg/L)</u>						
Phenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
bis(2-Chloroethyl)ether	1.0 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Chlorophenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,3-Dichlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,4-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	4J
2-Methylphenol	-	ND (10)	ND (10)	ND (10)	ND (10)	20
2,2'-oxybis(1-Chloropropane)	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Methylphenol	-	ND (10)	ND (10)	ND (10)	ND (10)	62
N-Nitro-di-n-propylamine	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Hexachloroethane	. -	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Nitrobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Isophorone	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Nitrophenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,4-Dimethylphenol	-	ND (10)	ND (10)	ND (10)	ND (10)	11
bis(2-Chloroethoxy)methane	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,4-Dichlorophenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2,4-Trichlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Naphthalene	10 (G) ·	ND (10)	ND (10)	ND (10)	ND (10)	3J
4-Chloroaniline	-	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
Hexachlorobutadiene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Chloro-3-methylphenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Methylnaphthalene	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Hexachlorocyclopentadiene	5 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
2,4,6-Trichlorophenol	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,4,5-Trichlorophenol	-	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
2-Chloronaphthalene	10 (G)	ND (10)	ND (10)	ND (10)	, ND (10)	ND (10)
2-Nitroaniline		ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
Dimethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Acenaphthylene		ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,6-Dinitrotoluene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
3-Nitroaniline	-	ND (25)J	ND (25)J	ND (25)J	ND (25)J	ND (25)J
Acenaphthene	20 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,4-Dinitrophenol	-	ND (25)J	ND (25)J	ND (25)J	ND (25)J	ND (25)J
4-Nitrophenol	-	ND (25)J	ND (25)J	ND (25)J	ND (25)J	ND (25)J
Dibenzofuran	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2,4-Dinitrotoluene	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Diethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)

	17/2 000	East Well	East Well	MW-2A	MW-5A	MW-6A
	NYS SCG	01/14/94	01/14/94	01/13/94	01/13/94	01/12/94
<u>Semi-Volatiles (µg/L) (cont'd.)</u>						
4-Chlorophenyl-phenylether	-	ND (10)				
Fluorene	50 (G)	ND (10)				
4-Nitroaniline	-	ND (25)J				
4,6-Dinitro-2-methylphenol	-	ND (25)				
N-Nitrosodiphenylamine(1)	50 (G)	ND (10)J				
4-Bromophenyl-phenylether	· -	ND (10)				
Hexachlorobenzene	0.35 (S)	ND (10)				
Pentachlorophenol	-	ND (25)				
Phenanthrene	50 (G)	ND (10)J				
Anthracene	50 (G)	ND (10)				
Carbazole	-	ND (10)				
Di-n-butylphthalate	50 (S)	ND (10)				
Fluoranthene	50 (G)	ND (10)				
Pyrene	50 (G)	ND (10)				
Butylbenzylphthalate	50 (G)	ND (10)				
3,3'-Dichlorobenzidine	-	ND (10)				
Benzo(a)anthracene	0.002 (G)	ND (10)				
Chrysene	0.002 (G)	ND (10)				
bis(2-Ethylhexyl)phthalate	50 (S)	ND (10)	ND (10)	40	3J	2J
Di-n-octylphthalate	50 (G)	ND (10)				
Benzo(b)fluoranthene	0.002 (G)	ND (10)				
Benzo(k)fluoranthene	0.002 (G)	ND (10)				
Benzo(a)pyrene	0.002 (G)	ND (10)				
Indeno(1,2,3-cd)pyrene	0.002 (G)	ND (10)				
Dibenzo(a,h)anthracene	-	ND (10)				
Benzo(g,h,i)perylene	-	ND (10)				
<u>Metals (µg/L)</u>						
Aluminum	-	ND (49.7)	NA	732	8,810	231
Antimony	3 (G)	ND (7.9)	NA	ND (7.9)	ND (7.9)	ND (7.9)
Arsenic	25 (S)	4.8J	NA	3.6J	4	2.0J
Barium	1,000 (S)	95	NA	59	296	458
Beryllium	3 (G)	ND (0.50)	NA	ND (0.50)	ND (0.50)	ND (0.50)
Cadmium	10 (S)	ND (1.3)	NA	ND (1.3)	ND (1.3)	ND (1.9)
Calcium	-	80,500	NA	105,000	179,000	134,000
Chromium	50 (S)	ND (6.4)	NA	9	14	10
Cobalt	-	ND (3.2)	NA	32	4	3
Copper	200 (S)	ND (3.6)	NA	ND (8.5)	ND (12.3)	25
Iron	300 (S) *	5,620	NA	8,330	13,800	3,750
Lead	25 (S)	ND (2.6)	NA	ND (2.7)	13	ND (5.2)
Magnesium	35,000 (G)	32,300	NA	38,400	147,000	93,000
Manganese	300 (S) *	145	NA	93	414	80
Mercury	2 (S)	ND (0.10)	NA	ND (0.10)	ND (0.10)	ND (0.10)
Nickel	-	ND (4.8)	NA	7	7	18
Potassium	-	1,630	NA	3,740	10,500	6,360

		NYS SCG	East Well 01/14/94	East Well 01/14/94	MW-2A 01/13/94	MW-5A 01/13/94	MW-6A 01/12/94
	<u>Metals (µg/L) Cont'd.</u>						
	Selenium	10 (S)	ND (2.2)J	NA	ND (2.2)J	ND (2.2)J	ND (2.2)J
	Silver	50 (S)	ND (2.1)	NA	ND (2.1)	ND (2.1)	ND (2.1)
	Sodium	20,000 (S)	133,000	NA	11,600	52,700	99,200
	Thallium	4 (G)	ND (1.2)	NA	ND (1.2)	ND (1.2)	ND (1.2)
	Vanadium	-	ND (2.0)	NA	ND (2.0)	7	ND (2.0)
	Zinc	300 (S)	91.1J	NA	ND (22.3)	66.8J	596J
	Wet Chemistry (mg/L)	•					
	Total Petroleum Hydrocarbons	-	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
Notes:				٢			
(G)	Guidance value					•	
(S)	Standard value						
*	Manganese and iron $< 500 \mu g/L$						
-	Not Available				·		
APL	Aqueous Phase Liquid					• •	
D	Value quantitated from a dilution						
Dup	Field Duplicate		· ·				
J	Associated value is estimated						
NA	Not analyzed						

NAPL Non-Aqueous Phase Liquid

Rejected value R

U Non-detect at the associated value

	NYS SCG	MW-13A 01/13/94	MW-14A 01/13/94	MW-15A 01/14/94
¥7-¥-4*¥ - 4 4¥ \				
<u>Volatiles (µg/L)</u>	E (C)			NID (10)
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)J	ND (10)J	ND (10)J
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	19 5J
1,1-Dichloroethene	5 (S)	ND (10)	ND (10)	-
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	25	46	650D
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)	ND (10)J	ND (10)J
2-Hexanone	50 (G)	ND (10)	ND (10)J	ND (10)J
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	ND (10)	ND (10)J	4J
Benzene	0.7 (S)	ND (10)	ND (10)	1J
Bromodichloromethane	50 (G) ·	()	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)	ND (10)	ND (10)
Carbon disulfide	-	ND (10)	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)J	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	ND (10)J	ND (10)J
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)J	ND (10)J	ND (10)J
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	ND (10)
Methylene chloride	5 (S)	ND (10)	ND (10)	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	3J	3J
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	3J	ND (10)	· 8J
Vinyl chloride	2 (S)	ND (10)	28J	300D
Xylene (total)	5 (S)	3J	3J	4J
<u>Petroleum Products (µg/L)</u>				
Gasoline	-	NA	NA	NA
Kerosene	-	NA	NA	NA
Fuel oil	- .	NA	NA	NA
Lubricating oil	-	NA	NA	NA

		MW-13A	MW-14A	MW-15A
· · ·	NYS SCG	01/13/94	01/13/94	01/14/94
<u>Semi-Volatiles (µg/L)</u>				
Phenol	-	ND (10)	ND (10)	ND (10)
bis(2-Chloroethyl)ether	1.0 (S)	ND (10)	ND (10)	ND (10)
2-Chlorophenol	-	ND (10)	ND (10)	ND (10)
1,3-Dichlorobenzene	⊴ 5 (S)	ND (10)	ND (10)	ND (10)
1,4-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)
1,2-Dichlorobenzene	4.7 (S)	ND (10)	ND (10)	ND (10)
2-Methylphenol	-	ND (10)	ND (10)	ND (10)
2,2'-oxybis(1-Chloropropane)	-	ND (10)	ND (10)	ND (10)
4-Methylphenol	-	ND (10)	ND (10)	ND (10)
N-Nitro-di-n-propylamine	-	ND (10)	ND (10)	ND (10)
Hexachloroethane	-	ND (10)	ND (10)	ND (10)
Nitrobenzene	5 (S)	ND (10)	ND (10)	ND (10)
Isophorone	50 (G)	ND (10)	ND (10)	ND (10)
2-Nitrophenol	- '	ND (10)	ND (10)	ND (10)
2,4-Dimethylphenol	-	ND (10)	ND (10)	ND (10)
bis(2-Chloroethoxy)methane	-	ND (10)	ND (10)	ND (10)
2,4-Dichlorophenol	-	ND (10)	ND (10)	ND (10)
1,2,4-Trichlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)
Naphthalene	10 (G)	ND (10)	ND (10)	ND (10)
4-Chloroaniline	-	ND (10)J	ND (10)J	ND (10)J
Hexachlorobutadiene	5 (S)	ND (10)	ND (10)	ND (10)
4-Chloro-3-methylphenol	-	ND (10)	ND (10)	ND (10)
2-Methylnaphthalene	· -	ND (10)	ND (10)	ND (10)
Hexachlorocyclopentadiene	5 (S)	ND (10)J	ND (10)J	ND (10)J
2,4,6-Trichlorophenol	-	ND (10)	ND (10)	ND (10)
2,4,5-Trichlorophenol	-	ND (25)	ND (25)	ND (25)
2-Chloronaphthalene	10 (G)	ND (10)	ND (10)	ND (10)
2-Nitroaniline	-	ND (25)	ND (25)	ND (25)
Dimethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)
Acenaphthylene	-	ND (10)	ND (10)	ND (10)
2,6-Dinitrotoluene	5 (S)	ND (10)	ND (10)	ND (10)
3-Nitroaniline	-	ND (25)J	ND (25)J	ND (25)J
Acenaphthene	20 (G)	ND (10)	ND (10)	ND (10)
2,4-Dinitrophenol	-	ND (25)J	ND (25)J	ND (25)J
4-Nitrophenol	-	ND (25)J	ND (25)J	ND (25)J
Dibenzofuran	-	ND (10)	ND (10)	ND (10)
2,4-Dinitrotoluene	-	ND (10)	ND (10)	ND (10)
Diethylphthalate	50 (G)	ND (10)	ND (10)	ND (10)
			•••	

Semi-Volatiles (ugl.) (cont.d.) 4-Chlorophenyl-phenylether - ND (10) ND (10) ND (10) Fluorene 50 (G) ND (10) ND (25) ND (25) 4-Ghirtoaniline - ND (25) ND (25) ND (25) 4-Birtoaniline - ND (25) ND (25) ND (25) 4-Birtoaniline 50 (G) ND (10) ND (10) ND (10) Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Pentachlorophenol - ND (25) ND (25) ND (25) Phonanthrene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (C) ND (10) ND (10) ND (10) Benzo(b)fluoranthene		NYS SCG	MW-13A 01/13/94	MW-14A 01/13/94	MW-15A 01/14/94
4-Chlorophenyl-phenylether - ND (10) ND (10) ND (10) Fluorene 50 (G) ND (10) ND (25) ND (25) 4-Nitroaniline - ND (25) ND (25) ND (25) 4-Formorphenyl-phenol - ND (25) ND (25) ND (25) N-Nitrosodiphenyl-phenylether - ND (10) ND (10) ND (10) Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Phenanthrene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Pluoranthene 50 (G) ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (C) ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (C) ND (10) ND (10) ND (10) Di-n-crylphthalate 50 (G) ND (10)					
Fluorene 50 (G) ND (10) ND (10) ND (10) 4-Nitroaniline - ND (25) ND (25) ND (25) 4.6-Dinitro-2-methylphenol - ND (10) ND (10) ND (10) N-Nitrosodiphenylamine(1) 50 (G) ND (10) ND (10) ND (10) Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Pentachlorophenol - ND (10) ND (10) ND (10) Antracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) bis(-				
4-Nitroaniline - ND (25) ND (25) ND (25) 4,6-Dinitro-2-methylphenol - ND (25) ND (25) ND (25) N-Nitrosodiphenylamine(1) 50 (G) ND (10) ND (10) ND (10) Heronophenyl-phenylether - ND (25) ND (10) ND (10) Pentachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Phenanthrene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Di-n-butylphthalate 50 (G) ND (10) ND (10) ND (10) Fluoranthene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) S3-Dichlorobenzidine - ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Di-noctylphthalate 50 (G) ND (10) ND (10) ND (10) Benzo(a)pyrene 0.		-	• •		
4,6-Dinitro-2-methylphenol - ND (25) ND (25) ND (25) N-Nitrosodiphenylamine(1) 50 (G) ND (10) ND (10) ND (10) 4-Bromophenyl-phenylether - ND (25) ND (25) ND (10) Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Pentachlorobenol - ND (25) ND (25) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Garbazole - ND (10) ND (10) ND (10) Fuoranthene 50 (G) ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Benzo(a)phithalate 50 (S) IJ 2J ND (10) Benzo(a)phithalate 50 (S) IJ 2J ND (10) Benzo(a)phithalate 50 (S) ND (10)		50 (G)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	-			
4-Bromophenyl-phenylether - ND (10) ND (10) ND (10) Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Pentachlorophenol - ND (25) ND (25) ND (25) Phenanthrene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Di-n-butylphthalate 50 (G) ND (10) ND (10) ND (10) Fluoranthene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) S.3-'Dichlorobenzidine - ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Di-n-octylphthalate 50 (G) ND (10) ND (10) ND (10) Benzo(a)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(k)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyr		-			
Hexachlorobenzene 0.35 (S) ND (10) ND (10) ND (10) Pentachlorophenol - ND (25) ND (25) ND (25) Phenanthrene 50 (G) ND (10) ND (10) ND (10) Anthracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Fluoranthene 50 (G) ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Chrysene 0.002 (G) ND (10) ND (10) ND (10) Di-n-octylphthalate 50 (G) ND (10) ND (10) ND (10) Benzo(k)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(b)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(k)fluoranthene 0.002 (G) <		50 (G)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.35 (5)			
Anthracene 50 (G) ND (10) ND (10) ND (10) Carbazole - ND (10) ND (10) ND (10) Di-n-butylphthalate 50 (S) ND (10) ND (10) ND (10) Fluoranthene 50 (G) ND (10) ND (10) ND (10) Pyrene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) S3-Dichlorobenzidine - ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Chrysene 0.002 (G) ND (10) ND (10) ND (10) bis(2-Ethylnexyl)phthalate 50 (S) I 2] ND (10) Di-n-octylphthalate 50 (G) ND (10) ND (10) ND (10) bis(2-Ethylnexyl)phthalate 50 (G) ND (10) ND (10) ND (10) Di-n-octylphthalate 50 (G) ND (10) ND (10) ND (10) Benzo(a)apyrene 0.002 (G) <	-	-			• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccc} Di-n-butylphthalate & 50 (S) & ND (10) & ND (10) & ND (10) \\ Fluoranthene & 50 (G) & ND (10) & ND (10) & ND (10) \\ Pyrene & 50 (G) & ND (10) & ND (10) & ND (10) \\ Butylbenzylphthalate & 50 (G) & ND (10) & ND (10) & ND (10) \\ 3.3-Dichlorobenzidine & - & ND (10) & ND (10) & ND (10) \\ Benzo(a)anthracene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Chrysene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ bis (2-Ethylhexyl)phthalate & 50 (S) & IJ & 2J & ND (10) \\ Benzo(b)fluoranthene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(b)fluoranthene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(a)pyrene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(a)pyrene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Indeno(1,2,3-cd)pyrene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Cdriminm & 100 (S) & ND (-50) & ND (0.50) & ND (0.50) \\ Cadmium & 100 (S) & ND (1.3) & ND (1.3) & ND (1.3) \\ Clobalt & - & 436,000 & 165,000 & 135,000 \\ Chromium & 50 (S) & ND (6.4) & 11 & ND (6.4) \\ Cobalt & - & ND (3.2) & ND (3.2) & ND (3.2) \\ Copper & 200 (S) & ND (2.9) & ND (3.0) & ND (2.1) \\ Magnesium & 35,000 (G) & 68,100 & 75,900 & 60,800 \\ Manganese & 300 (S)^* & 173 & 102 & 66.0 \\ Mercury & 2 (S) & ND (0.10) & ND (0.10) & ND (0.10) \\ Nickel & - & 6 & 6.0 & ND (4.8) \\ \end{array} $		50 (G)			
$\begin{array}{cccccc} Fluoranthene & 50 (G) & ND (10) & ND (10) & ND (10) \\ Pyrene & 50 (G) & ND (10) & ND (10) & ND (10) \\ Butylbenzylphthalate & 50 (G) & ND (10) & ND (10) & ND (10) \\ 3.3^-Dichlorobenzidine & - & ND (10) & ND (10) & ND (10) \\ 3.3^-Dichlorobenzidine & - & ND (10) & ND (10) & ND (10) \\ Benzo(a)anthracene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Chrysene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ bis(2-Ethylhexyl)phthalate & 50 (S) & 1J & 2J & ND (10) \\ Benzo(b)fluoranthene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(b)fluoranthene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(a)pyrene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Indeno(1,2,3-cd)pyrene & 0.002 (G) & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(a,h)anthracene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Benzo(g,h,i)perylene & - & ND (10) & ND (10) & ND (10) \\ Chromium & 100 (S) & ND (-50) & ND (0.50) & ND (0.50) \\ Cadmium & 100 (S) & ND (1.3) & ND (1.3) & ND (1.3) \\ Calcium & - & 436,000 & 165,000 & 135,000 \\ Chromium & 50 (S) & ND (6.4) & 11 & ND (6.4) \\ Cobalt & - & ND (3.2) & ND (3.2) & ND (3.2) \\ Copper & 200 (S) & ND (0.50) & ND (0.50) & ND (2.1) \\ Magnesium & 35,000 (G) & 68,100 & 75,900 & 60,800 \\ Manganese & 300 (S)^* & 173 & 102 & 66.0 \\ Mercury & 2 (S) & ND (0.10) & ND (0.10) & ND (0.10) \\ Nickel & - & 6 & 6.0 & ND (4.8) \\ \end{array} \right)$		-			
Pyrene 50 (G) ND (10) ND (10) ND (10) Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) $3,3$ -Dichlorobenzidine - ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Chrysene 0.002 (G) ND (10) ND (10) ND (10) Di-n-octylphthalate 50 (S) I 2 ND (10) Benzo(b)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(b)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(a)pyrene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyrene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyrene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyrene 0.002 (G) ND (10) ND (10) ND (10) Benzo(a,h,i)perylene - ND (10) ND (10) ND (10) Aluminum					
Butylbenzylphthalate 50 (G) ND (10) ND (10) ND (10) 3,3'-Dichlorobenzidine - ND (10) ND (10) ND (10) Benzo(a)anthracene 0.002 (G) ND (10) ND (10) ND (10) Chrysene 0.002 (G) ND (10) ND (10) ND (10) Di-n-octylphthalate 50 (S) 1J 2J ND (10) Benzo(b)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(k)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Benzo(k)fluoranthene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyrene 0.002 (G) ND (10) ND (10) ND (10) Indeno(1,2,3-cd)pyrene 0.002 (G) ND (10) ND (10) ND (10) Benzo(g,h,i)perylene - ND (10) ND (10) ND (10) Benzo(g,h,i)perylene - ND (10) ND (10) ND (10) Aluminum - 480 636 450 Antimony 3 (G)					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50 (G)		• •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
Benzo(b)fluoranthene 0.002 (G)ND (10)ND (10)ND (10)Benzo(k)fluoranthene 0.002 (G)ND (10)ND (10)ND (10)Benzo(a)pyrene 0.002 (G)ND (10)ND (10)ND (10)Indeno(1,2,3-cd)pyrene 0.002 (G)ND (10)ND (10)ND (10)Dibenzo(a,h)anthracene-ND (10)ND (10)ND (10)Benzo(g,h,i)perylene-ND (10)ND (10)ND (10)Metals (ug/L)ND (10)ND (7.9)Aluminum-480636450Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (8.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (9.3)1417Iron300 (S)*4,67052102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Magnesium25 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)			•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Benzo(a)pyrene 0.002 (G)ND (10)ND (10)ND (10)Indeno(1,2,3-cd)pyrene 0.002 (G)ND (10)ND (10)ND (10)Dibenzo(a,h)anthracene-ND (10)ND (10)ND (10)Benzo(g,h,i)perylene-ND (10)ND (10)ND (10)Metals (ug/L)Aluminum-480636450Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (9.3)1417Iron300 (S) *4,6705,2102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Marganese300 (S) *17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)		• •			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene-ND (10)ND (10)ND (10)Metals (ug/L)Aluminum-480636450Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Magnese300 (S)*17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)					
Benzo(g,h,i)perylene - ND (10) ND (10) ND (10) Metals (ug/L) Aluminum - 480 636 450 Antimony 3 (G) ND (7.9) ND (7.9) ND (7.9) Arsenic 25 (S) 2.0 3 5 Barium 1,000 (S) 230 214 139 Beryllium 3 (G) ND (1.3) ND (1.3) ND (1.3) Cadmium 10 (S) ND (6.50) ND (1.3) ND (1.3) Calcium - 436,000 165,000 135,000 Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (C) 68,100 75,900 60,800 Magnesium 35,000 (C) 68,100 75,900 60,800 Magnesium 35,000 (C) 68,100 75,900 60,800 Magnesium </td <td></td> <td>0.002 (G)</td> <td></td> <td></td> <td></td>		0.002 (G)			
Metals (uglL)Aluminum-480636450Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Manganese300 (S)*17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)		-			
Aluminum-480636450Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (9.3)1417Iron300 (S)*4,6705,2102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Marganese300 (S)*17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)	Benzo(g,h,i)perylene	-	ND (10)	ND (10)	ND (10)
Antimony3 (G)ND (7.9)ND (7.9)ND (7.9)Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (9.3)1417Iron300 (S)*4,6705,2102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Marganese300 (S)*17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)	<u>Metals (µg/L)</u>		· .		
Arsenic25 (S)2.035Barium1,000 (S)230214139Beryllium3 (G)ND (0.50)ND (0.50)ND (0.50)Cadmium10 (S)ND (1.3)ND (1.3)ND (1.3)Calcium-436,000165,000135,000Chromium50 (S)ND (6.4)11ND (6.4)Cobalt-ND (3.2)ND (3.2)ND (3.2)Copper200 (S)ND (9.3)1417Iron300 (S) *4,6705,2102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Marganese300 (S) *17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)	Aluminum	-	480	636	450
Barium 1,000 (S) 230 214 139 Beryllium 3 (G) ND (0.50) ND (0.50) ND (0.50) Cadmium 10 (S) ND (1.3) ND (1.3) ND (1.3) Calcium - 436,000 165,000 135,000 Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S)* 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Manganese 300 (S)* 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Anțimony	3 (G)	ND (7.9)	NĎ (7.9)	ND (7.9)
Beryllium 3 (G) ND (0.50) ND (0.50) ND (0.50) Cadmium 10 (S) ND (1.3) ND (1.3) ND (1.3) Calcium - 436,000 165,000 135,000 Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S) * 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Marganese 300 (S) * 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Arsenic	25 (S)	2.0	3	5
Cadmium 10 (S) ND (1.3) ND (1.3) ND (1.3) Calcium - 436,000 165,000 135,000 Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S)* 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Marganese 300 (S)* 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Barium	1,000 (S)	230	214	139
Calcium - 436,000 165,000 135,000 Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S) * 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Marganese 300 (S) * 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Beryllium	3 (G)	ND (0.50)	ND (0.50)	ND (0.50)
Chromium 50 (S) ND (6.4) 11 ND (6.4) Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S)* 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Marganese 300 (S)* 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Cadmium	10 (S)	ND (1.3)	ND (1.3)	ND (1.3)
Cobalt - ND (3.2) ND (3.2) ND (3.2) Copper 200 (S) ND (9.3) 14 17 Iron 300 (S) * 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Marganese 300 (S) * 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Calcium	-	436,000	165,000	135,000
Copper 200 (S) ND (9.3) 14 17 Iron 300 (S) * 4,670 5,210 2,610 Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Manganese 300 (S) * 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Chromium	50 (S)	ND (6.4)	11	ND (6.4)
Iron300 (S)*4,6705,2102,610Lead25 (S)ND (2.9)ND (3.0)ND (2.1)Magnesium35,000 (G)68,10075,90060,800Manganese300 (S)*17310266.0Mercury2 (S)ND (0.10)ND (0.10)ND (0.10)Nickel-66.0ND (4.8)	Cobalt	-	ND (3.2)	ND (3.2)	ND (3.2)
Lead 25 (S) ND (2.9) ND (3.0) ND (2.1) Magnesium 35,000 (G) 68,100 75,900 60,800 Manganese 300 (S)* 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Copper	200 (S)	ND (9.3)	14	17
Magnesium 35,000 (G) 68,100 75,900 60,800 Manganese 300 (S) * 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Iroņ	300 (S) *	4,670	5,210	2,610
Manganese 300 (S)* 173 102 66.0 Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)		25 (S)	ND (2.9)	ND (3.0)	ND (2.1)
Mercury 2 (S) ND (0.10) ND (0.10) ND (0.10) Nickel - 6 6.0 ND (4.8)	Magnesium	35,000 (G)	68,100	75,900	60,800
Nickel - 6 6.0 ND (4.8)	Manganese	300 (S) *		102	
	Mercury	2 (S)	ND (0.10)	ND (0.10)	ND (0.10)
Potassium - 2,150 3,450 3,130		-		6.0	ND (4.8)
	Potassium	-	2,150	3,450	3,130

NYS SCG	MW-13A 01/13/94	MW-14A 01/13/94	MW-15A 01/14/94
:			
10 (S)	ND (2.2)J	ND (2.2)J	ND (2.2)J
50 (S)	ND (2.1)	ND (2.1)	ND (2.1)
20,000 (S)	10,400	20,400	154,000
4 (G)	ND (1.2)	ND (1.2)	ND (1.2)
-	ND (2.0)	ND (2.0)	ND (2.0)
.300 (S)	ND (15.7)	24.6J	ND (20.4)
			•
, -	ND (2.5)	ND (2.5)	ND (2.5)
	10 (S) 50 (S) 20,000 (S) 4 (G)	NYS SCG 01/13/94 10 (S) ND (2.2)J 50 (S) ND (2.1) 20,000 (S) 10,400 4 (G) ND (1.2) - ND (2.0) 300 (S) ND (15.7)	NYS SCG 01/13/94 01/13/94 10 (S) ND (2.2)J ND (2.2)J 50 (S) ND (2.1) ND (2.1) 20,000 (S) 10,400 20,400 4 (G) ND (1.2) ND (1.2) - ND (2.0) ND (2.0) 300 (S) ND (15.7) 24.6J

Notes:	
(G)	Guidance value
·(S)	Standard value
*	Manganese and iron < 500 μ g/L
-	Not Available
APL	Aqueous Phase Liquid
D	Value quantitated from a dilution
Dup	Field Duplicate
J	Associated value is estimated
NA	Not analyzed
NAPL	Non-Aqueous Phase Liquid
R	Rejected value
U	Non-detect at the associated value

CRA 3967 (7) APPA

		MW-1	MW-2	MW-18C (Dup of MW-2)	MW-3	MW-5	MW-13
	NYS SCG	03/24/ 94	03/22/94	03/22/94	03/22/94	03/22/94	03/23/94
<u>TCL Volatiles (µg/L)</u>				۰.			
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	ND (10)	4J	4J	ND (10)	ND (10)	ND (10)
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
2-Hexanone	50 (G)	ND (10)J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	ND (10)J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Benzene	0.7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)J
Carbon disulfide	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethanc	5 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene chloride	5 (S)	ND (10)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
trans-1,3-Dichloropropene	- 5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	ND (10)	40	41	ND (10)	ND (10)	ND (10)
Vinyl chloride	2 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
Xylene (total)	5 (S) .	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)

Notes:

(G) Guidance value

(S) Standard value

- Not available

D Value quantitated from a dilution.

Dup. Field Duplicate

J Associated value is estimated.

TCL Target Compound List

U Non-detect at the associated value.

		MW-14	MW-15	MW-16	MW-19C	MW-2A	MW-5A
				(D	up of MW-16)		
	NYS SCG	03/23/94	03/24/94	03/24/94	03/24/94	03/22/94	03/24/94
TCL Volatiles (µg/L)							•
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	77J	79J	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	3,000D	3,300D	ND (10)	ND (10)
1,1-Dichloroethene	5 (S)	2J	ND (10)	240JD	280JD	ND (10)	· ND (10)
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	690D	ND (10)	3,900D	4,200D	4J	3J
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	7JD	ND (10)J	ND (10)J	ND (10)J	ND (10)	ND (10)J
2-Hexanone	50 (G)	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)	ND (10)J
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	3J	4J	ND (10)J	ND (10)J	ND (10)	ND (10)J
Benzene	0.7 (S)	1J	ND (10)	1J	2J	ND (10)	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	16JD	ND (10)J	ND (10)J	ND (10)J	ND (10)	ND (10)J
Carbon disulfide	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)J	ND (10)J	5J	ND (10)J	ND (10)J	ND (10)Ĵ
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	25JD	ND (10)J	ND (10)J	ND (10)J	ND (10)J	ND (10)J
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	620D	670D	ND (10)	ND (10)
Methylene chloride	5 (S)	ND (10)	ND (10)	9J	9J	ND (10)J	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	3J	3J	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	ND (10)	160JD	180JD	ND (10)	ND (10)
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	ND (10)	ND (10)	2,100D	2,400D	42	ND (10)
Vinyl chloride	2 (S)	11J	ND (10)J	ND (500)D	ND (500)D	ND (10)J	ND (10)J
Xylene (total)	5 (S)	ND (10)	ND (10)	1,300D	1,500D	ND (10)	ND (10)

Notes:

(G) Guidance value

(S) Standard value

- Not available

D Value quantitated from a dilution.

Dup. Field Duplicate

J

Associated value is estimated.

TCL Target Compound List

U Non-detect at the associated value.

		MW-6A	MW-13A	MW-14A	MW-15A
	NYS SCG	03/24/94	03/23/94	03/23/94	03/24/94
<u>TCL Volatiles (µg/L)</u>					
1,1,1-Trichloroethane	5 (S)	18J	ND (10)	ND (10)	8J
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	14J	ND (10)	ND (10)	25
1,1-Dichloroethene	5 (S)	140J	ND (10)	ND (10)	4J
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	69,000D	19	64	490D
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
2-Hexanone	50 (G)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
4-Methyl-2-pentanone	-	12J	ND (10)	ND (10)	ND (10)
Acetone	. 50 (G)	15J	ND (10)J	ND (10)J	ND (10)J
Benzene	0.7 (S)	67J	ND (10)	ND (10)	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)J	ND (10)J	ND (10)J	5JD
Carbon disulfide	-	3J	ND (10)	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)J	ND (10)J	ND (10)J	ND (10)J
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)J	ND (10)J	ND (10)J	8JD
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (5,000)D	ND (10)	ND (10)	2J
Methylene chloride	5 (S)	2J	ND (10)	ND (10)	1J
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (5,000)D	ND (10)	ND (10)	1 J
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	160J	ND (10)	ND (10)	14
Vinyl chloride	2 (S)	19,000D	1J	25J	200D
Xylene (total)	5 (S)	ND (5,000)D	2J	ND (10)	· 2J

Notes:

(G) Guidance value

- (S) Standard value
- Not available
- D Value quantitated from a dilution.
- Dup. Field Duplicate
- J Associated value is estimated.
- TCL Target Compound List
- U Non-detect at the associated value.

TABLE A.6 SUPPLEMENTAL GROUNDWATER SAMPLES REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

		MW-1A	MW-16A	MW-17A	MW-26C	MW-18	MW-19
	•			(D	up. of MW-17	'A)	
	NYS SCG	04/15/94	04/18/94	04/15/94	04/15/94	04/15/94	04/14/94
<u>TCL Volatiles (µg/L)</u>							
1,1,1-Trichloroethane	5 (S)	ND (10)	110,000D	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2-Trichloroethane	5 (S)	ND (10)	13	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	4,400JD	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethene	5 (S)	ND (10)	1,200JD	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	14	34,000D	31	33	ND (10)	52
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)	43	ND (10)	ND (10)	ND (10)	ND (10)
2-Hexanone	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Methyl-2-pentanone	_`	ND (10)	91	ND (10)	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	ND (10)	ND (10000)D	ND (10)	ND (10)	ND (10)	ND (10)J
Benzene	0.7 (S)	ND (10)	18	ND (10)	ND (10)	ND (10)	1.0J
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	`5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon disulfide	-	ND (10)	7.0J	9.0J	9.0J	ND (10)	ND (10)J
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	2.0J	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	160	ND (10)	ND (10)	ND (10)	ND (10)
Chloroform	7 (S)	ND (10)	8.0J	ND (10)	ND (10)	1.0J	ND (10)
Chloromethane	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	3,000JD	ND (10)	ND (10)	ND (10)	ND (10)
Methylene chloride	5 (S)	ND (10)	18	ND (10)	1.0J	ND (10)	ND (10)J
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	33	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	2,700JD	ND (10)	ND (10)	ND (10)	ND (10)
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	1.0J	88,000D	32	35	ND (10)	ND (10)
Vinyl chloride	2 (S)	ND (10)	4,700JD	ND (10)	ND (10)	ND (10)	17
Xylene (total)	5 (S)	ND (10)	15,000D	ND (10)	ND (10)	ND (10)	ND (10)

Notes:

(G) Guidance value.

(S) Standard value

- Not Available

D Value quantitated from a dilution.

Dup. Field Duplicate

J Associated value is estimated.

TCL Target Compound List

TABLE A.6 SUPPLEMENTAL GROUNDWATER SAMPLES REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

		MW-20	MW-25C Dup of MW-20	MW-21))	MW-22	MW-23
	NYS SCG	04/14/94	04/14/94	04/14/ 94	04/14/94	04/14/94
<u>TCL Volatiles (ug/L)</u>						
1,1,1-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2,2-Tetrachloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1,2-Trichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,1-Dichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dichloroethene (total)	5 (S)	ND (10)	ND (10)	ND (10)	15	ND (10)
1,2-Dichloropropane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Butanone	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
2-Hexanone	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
4-Methyl-2-pentanone	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Acetone	50 (G)	ND (10)J	• ND (10)	ND (10)J	ND (10)	ND (10)
Benzene	0.7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromodichloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromoform	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Bromomethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon disulfide	-	ND (10)J	ND (10)	ND (10)J	ND (10)	ND (10)
Carbon tetrachloride	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chlorobenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroform	7 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloromethane	-	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
cis-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Dibromochloromethane	50 (G)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Ethylbenzene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene chloride	5 (S)	ND (10)J	• ND (10)	ND (10)J	1.0J	ND (10)
Styrene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Tetrachloroethene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Toluene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
trans-1,3-Dichloropropene	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Trichloroethene	5 (S)	ND (10)	ND (10)	ND (10)	16	ND (10)
Vinyl chloride	2 (S)	ND (10)	ND (10)	5.0J	ND (10)	ND (10)
Xylene (total)	5 (S)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)

Notes:

- (G) Guidance value
- (S) Standard value
- Not Available
- D Value quantitated from a dilution.
- Dup. Field Duplicate

J Associated value is estimated.

TCL Target Compound List

SUBSURFACE SOIL SAMPLES - DRUM STORAGE AREA REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS	· ·	
	Cleanup	TB-1	TB-1
	Objective	0-6 Ft.	6-12 Ft.
<u>Volatile Organics (ppb)</u>			
Acetone	200	7 J	10J
Benzene	60	ND (6)	ND (5)
Bromodichloromethane	-	ND (6)	ND (5)
Bromoform	· -	ND (6)	ND (5)
Bromomethane	-	ND (11)	ND (11)
2-Butanone	300	ND (11)	ND (11)
Carbon Disulfide	2,700	ND (6)	ND (5)
Carbon Tetrachloride	600	ND (6)	ND (5)
Chlorobenzene	1,700	ND (6)	ND (5)
Chloroethane	1,900	ND (11)	ND (11)
Chloroform	300	ND (6)	ND (5)
Chloromethane	-	ND (11)	ND (11)
Dibromochloromethane	- '	ND (6)	ND (5)
1,1-Dichloroethane	200	6	9
1,2-Dichloroethane	100	ND (6)	ND (5)
1,1-Dichloroethene	400	1J	ND (5)
1,2-Dichloroethene (Total)	300	ND (6)	ND (5)
1,2-Dichloropropane	-	ND (6)	ND (5)
cis-1,3-Dichloropropene	-	· ND (6)	ND (5)
trans-1,3-Dichloropropene		ND (6)	ND (5)
Ethylbenzene	-	ND (6)	ND (5)
2-Hexanone	-	ND (11)	ND (11)
Methylene Chloride	100	1J	2J
4-Methyl-2-Pentanone	1,000	ND (11)	ND (11)
Styrene	· · -	ND (6)	ND (5)
1,1,2,2-Tetrachloroethane	600	ND (6)	ND (5)
Tetrachloroethene	1,400	ND (6)	ND (5)
Toluene	1,500	9	2J
1,1,1-Trichloroethane	800	38	8
1,1,2-Trichloroethane	-	ND (6)	ND (5)
Trichloroethene	. 700	3J	2J
Vinyl Acetate	-	ND (11)	ND (11)
Vinyl Chloride	200	ND (11)	ND (11)
Xylenes (Total)	1,200	ND (6)	2J
			•

SUBSURFACE SOIL SAMPLES - DRUM STORAGE AREA REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS			
· .	Cleanup	TB-1	TB-1	
	Objective	0-6 Ft.	6-12 Ft.	
Polychlorinated Biphenyls (ppb)				
Aroclor 1016	+	ND (50)	ND (46)	
Aroclor 1221	*	ND (50)	ND (46)	
Aroclor 1232	*	ND (50)	ND (46)	
Aroclor 1242	*	ND (50)	ND (46)	
Aroclor 1248	*	ND (50)	ND (46)	
Aroclor 1254	+	ND (100)	ND (92)	
Aroclor 1260	*	ND (100)	ND (92)	
<u>Inorganics (ppm)</u>				
Cadmium	1	ND (0.59)	0.89	
Chromium	10	9.1	8.5	
Nickel	13	12	7.8	
Zinc	20	24	61	
Hexavalent Chromium	-	ND (0.078)	ND (0.073)	
Cyanide (total)	SB	ND (0.47)	0.83	
TRPH	-	323	86	

Notes:	
--------	--

Total PCBs < 10,000 ppb (subsurface)

- Not Available

- J Estimated value Result is less than detection limit
- ND (X) Not detected at method detection limit shown

SB Site Background

TRPH Total Recoverable Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

SOIL SAMPLE RESULTS - FUEL OIL STORAGE AREA REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup Objective	TB-2 1 to 7 Ft.	TB-2 7 to 9 Ft.	TB-3 1 to 7 Ft.	TB-3 7 to 11 Ft.	TB-4 1 to 7 Ft.	TB-4 7 to 11 Ft.	TB-5 1 to 7 Ft.	TB-5 7 to 11 Ft.	TB-6 0 to 6 Ft.	TB-6 8 to 10 Ft.
Compounds (mg/kg)											
Benzene	0.060	0.08	0.14	ND (0.02)	ND (0.02)						
Toluene	1.5	ND (0.01)	1.50	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	0.15	0.022
Xylenes (Total)	1.2	0.1	0.4	ND (0.03)	ND (0.03)						
Ethylbenzene	-	ND (0.01)	0.21	ND (0.01)	ND (0.01)						
TPH (ppm)	-	122	93	7,370	130	1,150	374	178	177	110	42

Notes:

- Not Available

ND Not detected at method detection limit shown

TPH Total Petroleum Hydrocarbons

SHALLOW SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup Objective	BH-G 4.0-6.0 Ft.	BH-Q 4.5-6.0 Ft.
VOCs (ug/kg)			
Benzene	60	ND (31,000)	ND (1,600)
Bromodichloromethane	NA	ND (31,000)	ND (1,600)
Bromoform	NA	ND (31,000)	ND (1,600)
Bromomethane	NA	ND (31,000)	ND (1,600)
2-Butanone	300	ND (31,000)	ND (1,600)
Carbon Disulfide	2,700	ND (31,000)	ND (1,600)
Carbon Tetrachloride	600	ND (31,000)	ND (1,600)
Chlorobenzene	1,700	ND (31,000)	ND (1,600)
Chloroethane	1,900	ND (31,000)	ND (1,600)
Chloroform	300	ND (31,000)	ND (1,600)
Chloromethane	NA	ND (31,000)	ND (1,600)
Dibromochloromethane	NA	ND (31,000)	ND (1,600)
1,1-Dichloroethane	200	ND (31,000)	ND (1,600)
1,2-Dichloroethane	100	ND (31,000)	ND (1,600)
1,1-Dichloroethene	400	ND (31,000)	ND (1,600)
1,2-Dichloroethene (Total)	300	9,100J	1,400J
1,2-Dichloropropane	NA	ND (31,000)	ND (1,600)
cis-1,3-Dichloropropene	NA	ND (31,000)	ND (1,600)
trans-1,3-Dichloropropene	NA	ND (31,000)	ND (1,600)
Ethylbenzene	NA	ND (31,000)	1,200J
2-Hexanone	NA	ND (31,000)	ND (1,600)
Methylene Chloride	100	ND (31,000)	ND (1,600)
4-Methyl-2-Pentanone	1,000	ND (31,000)	ND (1,600)
Styrene	NA	ND (31,000)	ND (1,600)
1,1,2,2-Tetrachloroethane	600	ND (31,000)	ND (1,600)
Tetrachloroethene	1,400	ND (31,000)	ND (1,600)
Toluene	1,500	ND (31,000)	500J
1,1,1-Trichloroethane	. 800	ND (31,000)	ND (1,600)
1,1,2-Trichloroethane	NA	ND (31,000)	ND (1,600)
Trichloroethene	700	320,000	ND (1,600)
Vinyl Acetate	NA	ND (31,000)	ND (1,600)
Vinyl Chloride	200	ND (6,200)	ND (1,600)
Xylenes (Total)	1,200	29,000J	24,000

SHALLOW SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup Objective	BH-G 4.0-6.0 Ft.	BH-Q 4.5-6.0 Ft.
	00/10100	1.0 0.0 1 0.	1.0 0.0 1.0
<u>SVOCs (ug/kg)</u>			
Acenaphthene	50,000	ND (330)	ND (330)
Acenaphthylene	41,000	ND (330)	ND (330)
Anthracene	50,000	ND (330)	ND (330)
Benzo (a) anthracene	224	200J	ND (330)
Benzo (b) fluoranthene	1,100	140J	ND (330)
Benzo (k) fluoranthene	1,100	37 j	ND (330)
Benzo (g,h,i) perylene	50,000	130J	ND (330)
Benzo (a) pyrene	61	ND (330)	ND (330)
Benzyl alcohol	NA	ND (330)	ND (330)
Bis (2-chloroethoxy) methane	• NA	ND (330)	ND (330)
Bis (2-chloroethyl) ether	NA	ND (330)	ND (330)
Bis (2-chloroisopropyl) ether	NA	ND (330)	ND (330)
Bis (2-ethylhexyl) phthalate	50,000	ND (330)	ND (330)
4-Bromophenyl phenyl ether	NA	ND (330)	ND (330)
Butyl benzyl phthalate	50,000	ND (330)	ND (330)
4-Chloroaniline	220	ND (330)	ND (330)
2-Chloronaphthalene	NA	ND (330)	ND (330)
4-Chlorophenyl phenyl ether	NA	ND (330)	ND (330)
Chrysene	400	130J	ND (330)
Dibenzo (a,h) anthracene	14	ND (330)	ND (330)
Dibenzofuran	6,200	ND (330)	ND (330)
Di-n-butyl phthalate	8,100	1,700	ND (330)
1,2-Dichlorobenzene	7,900	ND (330)	ND (330)
1,3-Dichlorobenzene	1,600	ND (330)	ND (330)
1,4-Dichlorobenzene	8,500	ND (330)	ND (330)
3,3'-Dichlorobenzidine	NA	ND (660)	ND (660)
Diethyl phthalate	7,100	ND (330)	ND (330)
Dimethyl phthalate	2,000	ND (330)	ND (330)
2,4-Dinitrotoluene	NA	ND (330)	ND (330)
2,6-Dinitrotoluene	1,000	ND (330)	ND (330)
Di-n-octyl phthalate	50,000	ND (330)	ND (330)
Fluoranthene	50,000	410	ND (330)
Fluorene	50,000	ND (330)	ND (330)
Hexachlorobenzene	410	ND (330)	ND (330)

.

SHALLOW SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY I.FICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup	BH-G	BH-Q
	Objective	4.0-6.0 Ft.	4.5-6.0 Ft.
SVOCs Cont'd.			
Hexachlorobutadiene	NA	ND (330)	ND (330)
Hexachlorocyclopentadiene	NA	ND (330)	ND (330)
Hexachloroethane	NA	ND (330)	ND (330)
Indeno (1,2,3-cd) pyrene	3,200	140J	ND (330)
Isophorone	4,400	ND (330)	ND (330)
2-Methylnaphthalene	36,400	120J	ND (330)
Naphthalene	13,000	290J	ND (330)
Nitrobenzene	200	ND (330)	ND (330)
2-Nitroaniline	430	ND (1,600)	ND (1,600)
3-Nitroaniline	500	ND (1,600)	ND (1,600)
4-Nitroaniline	NA	ND (1,600)	ND (1,600)
N-Nitrosodiphenylamine	NA	ND (330)	ND (330)
N-Nitroso-di-n-propylamine	NA	ND (330)	ND (330)
Phenanthrene	50,000	190J	ND (330)
Pyrene	50,000	210J	ND (330)
1,2,4-Trichlorobenzene	3,400	ND (330)	ND (330)
<u>Acid Extractables (ug/kg)</u>			
Benzoic acid	2,700	ND (1,600)	ND (1,600)
4-Chloro-3-methylphenol	240	ND (330)	ND (330)
2-Chlorophenol	800	ND (330)	ND (330)
2,4-Dichlorophenol	400	ND (330)	ND (330)
2,4-Dimethylphenol	NA	750	ND (330)
2,4-Dinitrophenol	200	ND (1,600)	ND (1,600)
4,6-Dinitro-2-methylphenol	NA	ND (1,600)	ND (1,600)
2-Methylphenol	100	570	ND (330)
4-Methylphenol	900	380	ND (330)
2-Nitrophenol	330	ND (330)	ND (330)
4-Nitrophenol	100	ND (1,600)	ND (1,600)
Pentachlorophenol	1,000	ND (1,600)	ND (1,600).
Phenol	30	270J	ND (330)
2,4,5-Trichlorophenol	100	ND (330)	ND (330)
2,4,6-Trichlorophenol	NA	ND (330)	ND (330)

.

SHALLOW SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup Objective	BH-G 4.0-6.0 Ft.	BH-Q 4.5-6.0 Ft.
· · · · · · · · · · · · · · · · · · ·	,		
Pesticides and PCBs (ug/kg)			
alpha-BHC	110	ND (1.7)	ND (1.7)
beta-BHC	200	ND (1.7)	ND (1.7)
delta-BHC	300	ND (1.7)	ND (1.7)
Lindane	60	ND (1.7)	ND (1.7)
Heptachlor	100	ND (1.7)	ND (1.7)
Aldrin	41	ND (1.7)	ND (1.7)
Heptachlor epoxide	20	ND (1.7)	ND (1.7)
Endosulfan I	900	ND (1.7)	ND (1.7)
Dieldrin	44	ND (3.3)	ND (3.3)
4,4'-DDE	210	ND (3.3)	ND (3.3)
Endrin	100	ND (3.3)	ND (3.3)
Endosulfan II	900	ND (3.3)	ND (3.3)
4,4'-DDE	290	ND (3.3)	ND (3.3)
Endosulfan sulfate	. 1,000	ND (3.3)	ND (3.3)
4,4'-DDT	210	ND (3.3)	ND (3.3)
Methoxychlor	*	ND (17)	ND (17)
Endrin ketone	NA	ND (3.3)	ND (3.3)
alpha-Chlordane	540	ND (17)	ND (3.3)
gamma-Chlordane	540	ND (17)	ND (3.3)
Toxaphene	NA	ND (170)	ND (33)
Aroclor-1016	**	ND (17)	ND (17)
Aroclor-1221	**	ND (67)	ND (17)
Aroclor-1232	**	ND (17)	ND (17)
Aroclor-1242	· **	ND (17)	ND (17)
Aroclor-1248	**	ND (17)	ND (17)
Aroclor-1254	择分	ND (33)	ND (33)
Aroclor-1260	**	ND (33)	ND (33)

SHALLOW SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	NYS Cleanup Objective	BH-G 4.0-6.0 Ft.	BH-Q 4.5-6.0 Ft.
<u>Metals (mg/kg)</u>			
Silver	SB	ND (0.5)	ND (0.5)
Aluminum	SB	9,400	8,600
Barium	300	100 .	76
Beryllium	0.16	0.6	0.4
Calcium	SB	61,000	63,000
Cadmium	1	ND (0.5)	ND (0.5)
Cobalt	30	6.2	7.5
Chromium	10	14	16
Copper	25	16	16
Iron	2,000	18,000	17,000
Potassium	SB	1,800	1,600
Magnesium	SB	16,000	16,000
Manganese	SB	47 0	420
Sodium	SB	380	410
Nickel	13	14	17
Antimony	SB	ND (10)	ND (10)
Vanadium	150	20	20
Zinc	20	58	96
Arsenic	7.5	1.4	1.4
Lead	SB ***	11	9
Mercury	0.1	ND (0.25)	ND (0.25)
Selenium	2	ND (0.5)	ND (0.5)
Thallium	SB	ND (0.5)	0.3J
Cyanide (total)	SB	ND (0.1)	ND (0.1)
TRPH	NA	2,200	140

Notes:

*	As per TAGM #4046, total pesticides <10 ppm
**	Total PCBs <10,000 (sub-surface)
***	4-61 ppm (rural), 200-500 ppm (suburban or metropolitan)
J	Estimated value - Result is less than detection limit
NA	Not Available
ND (X)	Not detected at stated method detection limit
PCBs	Polychlorinated Biphenyls
SB	Site Background
SVOCs	Semi-Volatile Organic Compounds
TRPH	Total Recoverable Petroleum Hydrocarbons
VOCs	Volatile Organic Compounds

CRA 3967 (7) APPA

DEEP SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

VOCs (ug/kg)	NYS Cleanup Objective	MW-8 / BH-A 11.5-12.0 Ft.	MW-11 / BH-D 10.8-11.4 Ft.	MW-11 / BH-D 12.0-12.6 Ft.	MW-12 10.0-12.0 Ft.	BH-5 (Deep) 11.0-12.5 Ft. (NAPL in soil)
Acetone	200	90B	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Benzene	60	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Bromodichloromethane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Bromoform	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Bromomethane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
2-Butanone	300	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Carbon Disulfide	2,700	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Carbon Tetrachloride	600	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Chlorobenzene	1,700	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Chloroethane	1,900	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Chloroform	300	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Chloromethane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Dibromochloromethane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,1-Dichloroethane	200	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,2-Dichloroethane	100	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,1-Dichloroethene	400	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,2-Dichloroethene (Total)	300	180	ND (1,200)	37,000J	260J	ND (120,000)
1,2-Dichloropropane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
cis-1,3-Dichloropropene	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
trans-1,3-Dichloropropene	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Ethylbenzene	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
2-Hexanone	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Methylene Chloride	100	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)

DEEP SOIL SAMPLE RESULTS - TCL/TAL JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

VOCs (ug/kg)	NYS Cleanup Objective	MW-8 / BH-A 11.5-12.0 Ft.	MW-11 / BH-D 10.8-11.4 Ft.	MW-11 / BH-D 12.0-12.6 Ft.	MW-12 10.0-12.0 Ft.	BH-5 (Deep) 11.0-12.5 Ft. (NAPL in soil)
4-Methyl-2-Pentanone	1,000	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Styrene	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,1,2,2-Tetrachloroethane	600	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Tetrachloroethene	1,400	10J	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Toluene	1,500	10J	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,1,1-Trichloroethane	800	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
1,1,2-Trichloroethane	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Trichloroethene	700	410	17,000	570,000	18,000	2,000,000
Vinyl Acetate	NA	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Vinyl Chloride	200	ND (33)	ND (1,200)	ND (42,000)	ND (1,200)	ND (120,000)
Xylenes (Total)	1,200	880	1,600	58,000	ND (1,200)	64,000J
TRPH (mg/kg)	NA	9,000	83	NT	3,300	1,600

Notes:

B Compound also detected in the method blank associated with this sample

Estimated value - Result is less than detection limit

NA Not Available

ND(X) Not detected at stated method detection limit

NT Not Tested

TRPH Total Recoverable Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

SHALLOW SOIL SAMPLE RESULTS JANUARY 1992 SAMPLING EVENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

	Compound (mg/kg)		BH-C (Dup) 3.8-4.1 Ft.		BH-N 0.5-1.5 Ft.	BH-P 2.0-4.0 Ft.	BH-Q 3.0-4.0 Ft.	BH-Q 4.5-6.0 Ft.		MW-11 / BH-D 4.0-6.0 Ft.
<u>\</u>	TRPH	2000	3200	2200	750	820	14000	140	13000	240

Notes:

TRPH Total Recoverable Petroleum Hydrocarbons

	NYS SCG	MW-4 5/91 (1020)	MW-4 5/91 (1535)	MW-1 07/01/91	MW-4 07/02/91	MW-4 (Dup) 07/03/91	MW-5 07/04/91	MW-4 01/01/92	MW-6 01/01/92
<u>VOCs (ug/L)</u>									
Acetone	50 (G)	ND (13,000)	ND (13,000)	ND (50)	ND (25,000)	ND (17,000)	ND (50)	ND (8,300)	ND (670)
Benzene	0.7 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Bromodichloromethane	50 (G)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Bromoform	50 (G)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Bromomethane	5 (S)	ND (2,600)	ND (2,600)	ND (10)	ND (5,000)	ND (3,400)	ND (10)	ND (8,300)	ND (670)
2-Butanone	50 (G)	ND (13,000)	ND (13,000)	ND (50)	ND (25,000)	ND (17,000)	ND (50)	ND (8,300)	ND (670)
Carbon Disulfide	(-)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Carbon Tetrachloride	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Chlorobenzene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Chloroethane	5 (S)	ND (2,600)	ND (2,600)	ND (10)	ND (5,000)	ND (3,400)	ND (10)	ND (8,300)	ND (670)
Chloroform	7 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Chloromethane	-	ND (2,600)	ND (2,600)	ND (10)	ND (5,000)	ND (3,400)	ND (10)	ND (8,300)	ND (670)
Dibromochloromethane	50 (G)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,1-Dichloroethane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,2-Dichloroethane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,1-Dichloroethene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,2-Dichloroethene (Total)	5 (S)	42,000	52,000	ND (5)	49,000	47,000	ND (5)	64,000	5,800
1,2-Dichloropropane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
cis-1,3-Dichloropropene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
trans-1,3-Dichloropropene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Ethylbenzene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
2-Hexanone	50 (G)	ND (13,000)	ND (13,000)	ND (50)	ND (25,000)	ND (17,000)	ND (50)	ND (8,300)	ND (670)
Methylene Chloride	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
4-Methyl-2-Pentanone	· –	ND (13,000)	ND (13,000)	ND (50)	ND (25,000)	ND (17,000)	ND (50)	ND (8,300)	ND (670)
Styrene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,1,2,2-Tetrachloroethane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Tetrachloroethene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Toluene	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,1,1-Trichloroethane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
1,1,2-Trichloroethane	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)
Trichloroethene	5 (S)	22,000	40,000	ND (5)	22,000	16,000	ND (5)	23,000	4,400
Vinyl Acetate	-	ND (13,000)	ND (13,000)	ND (50)	ND (2,500)	ND (1,700)	ND (50)	ND (8,300)	ND (670)
Vinyl Chloride	2 (S)	18,000	16,000	ND (10)	11,000	7,100	ND (10)	15,000	1,100
Xylenes (Total)	5 (S)	ND (1,300)	ND (1,300)	ND (5)	ND (2,500)	ND (1,700)	ND (5)	ND (8,300)	ND (670)

CRA 3967 (7) APP

Page 1 of 10

~

of 10

	NYS SCG	MW-4 5/91 (1020)	MW-4 5/91 (1535)	MW-1 07/01/91	MW-4 07/02/91	MW-4 (Dup) 07/03/91	MW-5 07/04/91	MW-4 01/01/92	MW-6 01/01/92
	NID DEC	5/51 (1020)	5751 (1565)	0//01/01	07702/01	orroorox,	07701701	02/02/02	
SVOCs (ug/L)									,
Acenaphthene	20 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	-	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (a) anthracene	0.002 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (b) fluoranthene	0.002 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (k) fluoranthene	0.002 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (g,h,i) perylene	-	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (a) pyrene	· -	NA	NA	NA	NA	NA	NA	NA	NA
Benzyl alcohol	-	NA	NA	NA	NA	NA	NA	NA	NA
Bis (2-chloroethoxy) methane	-	NA	NA	NA	NA	NA	NA	NA	NA
Bis (2-chloroethyl) ether	1.0 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Bis (2-chloroisopropyl) ether	-	ⁱ NA	NA	NA	NA	NA	NA	NA	NA
Bis (2-ethylhexyl) phthalate	50 (S)	' NA	NA	NA	NA	NA	NA	NA	NA
4-Bromophenyl phenyl ether	-	NA	· NA	NA	NA	NA	NA	NA	NA
Butyl benzyl phthalate	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
4-Chloroaniline	-	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10 (G)	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenyl phenyl ether	-	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo (a,h) anthracene	-	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	-	NA	NA	· NA	NA	NA	NA	NA	NA
Di-n-butyl phthalate	50 (S)	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA	NA	NA	ŃÁ
1,3-Dichlorobenzene	5 (S)	NA	NA	NA	NA	NA	NA	NA	• NA
1,4-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	-	NA	NA	NA	NA	NA	NA	NA	NA
Diethyl phthalate	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA .
Dimethyl phthalate	50 (G)	NA	NA	NA	NA	NA	NA	NA	ŇA
2,4-Dinitrotoluene	-	NA	NA	NA	NA	NA	NA	NA	NA
2.6-Dinitrotoluene	5 (S)	NA	NA	NA	NA	NA .	NA	NA	NA
Di-n-octyl phthalate	50 (G)	NA	NA	NA	NA	NA	NA .	NA	NA
Fluoranthene	50 (G)	NA	NA	NA	NA	NA	NA	ŇA	NA
Fluorene	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorobenzene	0.35 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	5 (S)	ŃA	NA	NA	NA	NA	NA	NA	NÁ

CRA 3967 (7) APPA

	NYS SCG	MW-4 5/91 (1020)	MW-4 5/91 (1535)	MW-1 07/01/91	MW-4 07/02/91	MW-4 (Dup) 07/03/91	MW-5 07/04/91	MW-4 01/01/92	MW-6 01/01/92
		. ,							
SVOCS Cont'd.									N7.4
Hexachlorocyclopentadiene	5 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Hexachloroethane	-	NA	NA	NA	NA	NA	NA	NA	NA
Indeno (1,2,3-cd) pyrene	0.002 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Isophorone	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	-	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	5 (S)	NA	NA	NA	NA	NA	NA	NA	NA
2-Nitroaniline	-	NA	NA	NA	NA	NA	NA	NA	NA
3-Nitroaniline	-	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	-	NA	NA	NA	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
N-Nitroso-di-n-propylamine	-	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	50 (G)	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Acid Extractables (ug/L)									
Benzoic acid	-	NA	NA	NA	NA	NA	NA	NA	NA
4-Chloro-3-methylphenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA
2-Chlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dichlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dimethylphenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	5 (S) (2)	NA	NA	NA ·	NA	NA	NA	NA	NA
2-Nitrophenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
4-Nitrophenol	5 (S) (2)	NA	NA	NA	NA	NA	NA	NA	NA
Pentachlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	· 1 (S) (1)	NA .	NA	NA	NA	NA	NA	NA	NA
2,4,6-Trichlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	NA	NA	NA

CRA 3967 (7) APPA

Page 3 of 10

TABLEA.12 GROUNDWATER SAMPLE RESULTS REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. of 10

CHEEKTOWAGA, NEW YORK

· .	NYS SCG	MW-4 5/91 (1020)	MW-4 5/91 (1535)	MW-1 07/01/91	MW-4 07/02/91	MW-4 (Dup) 07/03/91	MW-5 07/04/91	MW-4 01/01/92	MW-6 01/01/92
						•			
Pesticides and PCBs (ug/L)									
alpha-BHC	-	NA	NA	NA	NA	NA	NA	NA	NA
beta-BHC	-	NA	NA	NA	NA	NA	NA	NA	NA
delta-BHC	-	NA	NA	NA	NA	· NA	NA	NA	NA
Lindane	-	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor	-	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	-	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor epoxide	-	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan I	-	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	-	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	-	NA	NA	NA	NA	NA	NA	NA	NA
Endrin	-	NA	NA	Í NA	NA	NA	NA	NA	NA
Endosulfan II	-	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	-	NA	' NA	NA	NA	NA	NA	NA	NA
Endosulfan sulfate		NA	NA	NA	NA	NA	. NA	NA	NA
4,4'-DDT	-	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor	35 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Endrin ketone	-	NA	NA	NA	NA	NA	NA	NA	NA
alpha-Chlordane	0.1 (S)	NA	NA	NA	NA	NA	NA	NA	NA
gamma-Chlordane	0.1 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Toxaphene	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1016	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232	-	NA	NA	NA	ŇA	NA	NA	NA	NA
Aroclor-1242	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1248	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1254	-	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260	-	NA	NA	NA	NA	NA	NĄ	NA	NA
<u>Metals (ug/L)</u>									
Silver	50 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Aluminum	-	NA	NA	NA	NA	NA	NA	NA	NA
Barium	1,000 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	3 (G)	NA	NA	NA	NA	ŅA	NA	NA	NA
Calcium	-	NA	NA	NA	NA	ŇA	NA	NA	NA
Cadmium	10 (S)	NA	NA	NA	NA	NA	ŇA	NA	NA
Cobalt	-	NA	NA	NA	NA	NA	NA	NA	NA

CRA 3967 (7) APPA

Page 5 of 10

	NYS SCG	MW-4 5/91 (1020)	MW-4 5/91 (1535)	MW-1 07/01/91	MW-4 07/02/91	MW-4 (Dup) 07/03/91	MW-5 07/04/91	MW- 4 01/01/92	MW-6 01/01/92
<u>Metals (µg/L) Cont'd.)</u>									
Chromium	50 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300 (S) *	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	-	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	35,000 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300 (S) *	NA	NA	NA	NA	NĄ	NA	NA	NA
Sodium	20,000 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	-	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	3 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	-	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	300 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	25 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Lead	25 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	10 (S)	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	4 (G)	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide (total)	100 (S)	NA	NA	NA	NA	NA	NA	NA	NA
TRPH (ppm)	-	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

(1) Refers to total phenols (Phenolic compounds)

(2) Refers to total unchlorinated phenols

(G) Guidance Value

(S) Standard Value

* Manganese and Iron < 500ug/L

- Not Available

J Estimated value - Result is less than detection limit

NA Not Analyzed

ND (X) Not detected at method detection limit shown

PCBs Polychlorinated Biphenyls

SVOCs Semi-Volatile Organic Compounds

TRPH Total Recoverable Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

5 of 10

· · · · · · · · · · · · · · · · · · ·	NYS SCG	MW-7 01/01/92	MW-8 01/01/92	MW-8 (Dup) 01/01/92	MW-9 01/02/92	MW-10 01/03/92	MW-11 01/04/92	MW-12 01/05/92
<u>VOCs (ug/L)</u>								
Acetone	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Benzene	0.7 (S)	110J	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Bromodichloromethane	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Bromoform	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Bromomethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
2-Butanone	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Carbon Disulfide	-	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Carbon Tetrachloride	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Chlorobenzene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Chloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Chloroform	7 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Chloromethane	-	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Dibromochloromethane	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,1-Dichloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,2-Dichloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,1-Dichloroethene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,2-Dichloroethene (Total)	5 (S)	5,500	300,000	430,000	600	74,000	370,000	5,200
1,2-Dichloropropane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
cis-1,3-Dichloropropene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
trans-1,3-Dichloropropene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Ethylbenzene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
2-Hexanone	50 (G)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Methylene Chloride	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
4-Methyl-2-Pentanone	-	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Styrene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,1,2,2-Tetrachloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Tetrachloroethene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Toluene	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,1,1-Trichloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
1,1,2-Trichloroethane	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Trichloroethene	5 (S)	ND (330)	110,000	150,000	160	93,000	350,000	54,000
Vinyl Acetate	· -	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)
Vinyl Chloride	2 (S)	2,100	31,000	46,000	99	9,700	51,000	ND (1,000)
Xylenes (Total)	5 (S)	ND (330)	ND (25,000)	ND (25,000)	ND (77)	ND (6,200)	ND (25,000)	ND (5,000)

	NYS SCG	MW-7 01/01/92	MW-8 01/01/92	MW-8 (Dup) 01/01/92	MW-9 01/02/92	MW-10 01/03/92	MW-11 01/04/92	MW-12 01/05/92
<u>SVOCs (ug/L)</u>	20 (0)	NT A	N T A	NTA	NT A	NT A		bt a
Acenaphthene	20 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Acenaphthylene	-	NA	NA	NA	NA	NA	ND (50)	NA
Anthracene	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Benzo (a) anthracene	0.002 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Benzo (b) fluoranthene	0.002 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Benzo (k) fluoranthene	0.002 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Benzo (g,h,i) perylene	-	NA	NA	NA	NA	NA	ND (50)	NA
Benzo (a) pyrene	-	NA	NA	NA	NA	NA	ND (50)	NA
Benzyl alcohol	•	NA	NA	NA	NA	NA	ND (50)	NA
Bis (2-chloroethoxy) methane	-	NA	NA	NA	NA	NA	ND (50)	NA
Bis (2-chloroethyl) ether	1.0 (S)	NA	NA	NA	NA	NA	ND (50)	NA
Bis (2-chloroisopropyl) ether	•	NA	NA	NA	NA	NA	ND (50)	NA
Bis (2-ethylhexyl) phthalate	50 (S)	NA	NA	NA	NA	NA	ND (50)	NA
4-Bromophenyl phenyl ether	•	NA	NA	NA	NA	NA	ND (50)	NA
Butyl benzyl phthalate	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
4-Chloroaniline	-	NA	NA	NA	NA	NA	ND (50)	NA
2-Chloronaphthalene	10 (G)	NA	NA	NA	NA	NA	ND (50)	NA
4-Chlorophenyl phenyl ether	-	NA	NA	NA	NA	NA	ND (50)	NA
Chrysene	0.002 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Dibenzo (a,h) anthracene	-	NA	NA	NA	NA	NA	ND (50)	NA
Dibenzofuran	-	NA	NA	NA	NA	NA	ND (50)	NA
Di-n-butyl phthalate	50 (S)	NA	NA	NA	NA	NA	ND (50)	NA
1,2-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA	ND (50)	NA
1,3-Dichlorobenzene	5 (S)	NA	NA	NA	NA	NA	ND (50)	NA
1,4-Dichlorobenzene	4.7 (S)	NA	NA	NA	NA	NA	ND (50)	NA
3,3'-Dichlorobenzidine	-	NA	NA	NA	NA	NA	ND (100)	NA
Diethyl phthalate	50 (G)	NA	NA ·	NA	NA	NA	ND (50)	NA
Dimethyl phthalate	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
2,4-Dinitrotoluene	-	NA	NA	NA	NA	NA	ND (50)	NA
2,6-Dinitrotoluene	5 (S)	NA	NA	NA	NA	NA	ND (50)	NA
Di-n-octyl phthalate	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Fluoranthene	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Fluorene	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Hexachlorobenzene	0.35 (S)	NA	NA	NA	NA	NA	ND (50)	NA
Hexachlorobutadiene	5 (S)	NA	ŃA	NA	NA	NA	ND (50)	NA

8 of 10

	NYS SCG	MW-7 01/01/92	MW-8 01/01/92	MW-8 (Dup) 01/01/92	MW-9 01/02/92	MW-10 01/03/92	MW-11 01/04/92	MW-12 01/05/92
						01.00.02		01.00/01
SVOCS Cont'd.								
Hexachlorocyclopentadiene	5 (S)	NA	NA	NA	NA	NA	ND (50)	NA
Hexachloroethane	-	NA	NA	NA	NA	NA	ND (50)	NA
Indeno (1,2,3-cd) pyrene	0.002 (G)	NA	NA	NA	NA	NA	ND (50)	NA
Isophorone	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
2-Methylnaphthalene	-	NA	NA	NA	NA	NA	ND (50)	NA
Naphthalene	10 (G)	NA	NA	· NA	NA	NA	24J	NA
Nitrobenzene	5 (S)	NA	NA	NA	NA	NA	ND (50)	NA
2-Nitroaniline	-	NA	NA	NA	NA	NA	ND (250)	NA
3-Nitroaniline	-	NA	NA	NA	NA	NA	ND (250)	NA
4-Nitroaniline	-	NA	NA	NA	NA	NA	ND (250)	NA
N-Nitrosodiphenylamine	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
N-Nitroso-di-n-propylamine	-	NA	ŇA	NA	NA	NA	ND (50)	NA
Phenanthrene	50 (G)	NA	ŇA	• NA	NA	NA	ND (50)	NA
Pyrene	50 (G)	NA	NA	NA	NA	NA	ND (50)	NA
1,2,4-Trichlorobenzene	5 (S)	NA	NA	NA	NA	NA	ND (50)	NA
Acid Extractables (ug/L)						· .		
Benzoic acid	-	NA	NA	NA	NA	NA	ND (250)	NA
4-Chloro-3-methylphenol	1 (S) (1)	NA	NA	NA	NA	NA	ND (50)	NA
2-Chlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	ND (50)	NA
2,4-Dichlorophenol	· 1 (S) (1)	NA	NA	NA	NA	NA	ND (50)	NA
2,4-Dimethylphenol	5 (S) (2)	NA	NA	NA	NA	NA	38J	NA
2,4-Dinitrophenol	.5 (S) (2)	NA	NA	NA	NA	NA	ND (250)	NA
4,6-Dinitro-2-methylphenol	5 (S) (2)	NA	NA	NA	NA	NA	ND (250)	NA
2-Methylphenol	5 (S) (2)	NA	NA	NA	NA	NA	65	NA
4-Methylphenol	5 (S) (2)	NA	NA	NA	NA	NA	550	NA
2-Nitrophenol	5 (S) (2)	NA	NA	NA	NA	NA	ND (50)	NA
4-Nitrophenol	5 (S) (2)	NA	NA	NA	NA	NA	ND (250)	NA
Pentachlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	ND (250)	NA
Phenol	1 (S) (1)	NA	· NA	NA	NA	NA	980	NA
2,4,5-Trichlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	ND (50)	NA
2,4,6-Trichlorophenol	1 (S) (1)	NA	NA	NA	NA	NA	ND (50)	NA

	NYS SCG	MW-7 01/01/92	MW-8 01/01/92	MW-8 (Dup) 01/01/92	MW-9 01/02/92	MW-10 01/03/92	MW-11 01/04/92	MW-12 01/05/92
Pesticides and PCBs (ug/L)								
alpha-BHC	•	NA	NA	NA	NA	NA	ND (0.05)	· NA
beta-BHC	-	NA	NA	NA	NA	NA	ND (0.05)	NA
delta-BHC	-	NA	NA	NA	NA	NA	ND (0.05)	NA
Lindane	-	NA	ŇA	NA	NA	NA	ND (0.05)	NA
Heptachlor	-	NA	NA	NA	NA	NA	ND (0.05)	NA
Aldrin	**	NA	NA	. NA	NA	NA	ND (0.05)	NA
Heptachlor epoxide	-	NA	NA	NA	NA	NA	ND (0.05)	NA
Endosulfan I	-	NA	NA	NA	NA	NA	ND (0.05)	NA
Dieldrin	•	NA	NA	NA	NA	NA	ND (0.1)	NA
4,4'-DDE	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Endrin	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Endosulfan II	•	NA	NA	NA	NA	NA	ND (0.1)	NA
4,4'-DDE	•	NA	NA	NA	NA	NA	ND (0.1)	NA
Endosulfan sulfate	-	NA	NA	NA	NA	NA	ND (0.1)	NA
4,4'-DDT	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Methoxychlor	35 (S)	NA	NA	NĄ	NA	NA	ND (0.5)	NA
Endrin ketone	•	NA	NA	NA	NA	NA	ND (0.1)	NA
alpha-Chlordane	0.1 (S)	NA	NA	NA	NA	NA	ND (0.1)	NA
gamma-Chlordane	0.1 (S)	NA	NA	NA	NA	NA	ND (0.1)	NA
Toxaphene	-	NA	NA	NA	NA	NA	ND (5)	NA
Aroclor-1016	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1221	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1232	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1242	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1248	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1254	-	NA	NA	NA	NA	NA	ND (0.1)	NA
Aroclor-1260	-	NA	NA	NA	NA	NA	ND (0.1)	NA
<u>Metals (ug/L)</u>								
Silver	50 (S)	NA	NA	NA	NA	NA	ND (10)	NA
Aluminum	-	NA	NA	NA	NA	NA	5,000	NA
Barium	1,000 (S)	NA	NA	NA	NA	NA	270	NA
Beryllium	3 (G)	NA	NA	NA	NA	NA	ND (5)	NA
Calcium	-	NA	NA	NA	NA	NA	380,000	NA
Cadmium	10 (S)	NA	NA	NA	NA	NA	ND (5)	NÁ
Cobalt	-	NA	NA	NA	NA	NA	ND (50)	NA

CRA 3967 (7) APPA

Page 9 of 10

of 10

		MW-7	MW-8	MW-8 (Dup)	MW-9	MW-10	MW-11	MW-12
	NYS SCG	01/01/92	01/01/92	01/01/92	01/02/92	01/03/92	01/04/92	01/05/92
<u>Metals (µg/L) Cont'd.)</u>								
Chromium	50 (S)	NA	NA	NA	NA	NA	30	NA
Copper	200 (S)	NA	NA	NA	NA	NA	22	NA
Iron	300 (S) *	NA	' NA	NA	NA	NA	10,000	NA
Potassium	•	NA	NA	NA	NA	NA	11,000	NA
Magnesium	35,000 (G)	NA	NA	NA	NA	NA	310,000	NA
Manganese	300 (S) *	NA	NA	NA	NA	NA	450	NA
Sodium	20,000 (S)	NA	NA	NA	NA	NA	490,000	NA
Nickel	•	NA	NA	· NA	NA	NA	ND (40)	NA
Antimony	3 (G)	NA	NA	NA	NA	NA	ND (60)	NA
Vanadium	-	NA	NA	NA	NA	NA	ND (50)	NA
Zinc	300 (S)	NA	NA	NA	NA	NA	320	NA
Arsenic	25 (S)	NA	NA	NA	NA	NA	7	NA
Lead	25 (S)	NA	NA	NA	NA	NA	6	ŇA
Mercury	2 (S)	NA	NA	NA	. NA	NA	ND (0.2)	NA
Selenium	10 (S)	NA	NA	NA	NA	NA	ND (5)	NA
Thallium	4 (G)	NA	NA	NA	NA	NA	ND (10)	NA
Cyanide (total)	100 (S)	NA	NA	: NA	NA	NA	ND (5)	NA
TRPH (ppm)	-	1.2	NA	NA	NA	2.2	8	NA

Notes:

(1) Refers to total phenols (Phenolic compounds)

(2) Refers to total unchlorinated phenols

(G) Guidance Value

(S) Standard Value

Manganese and Iron < 500ug/L

- Not Available

J Estimated value - Result is less than detection limit

NA Not Analyzed

ND (X) Not detected at method detection limit shown

PCBs Polychlorinated Biphenyls

SVOCs Semi-Volatile Organic Compounds

TRPH Total Recoverable Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

PLATING ROOM ANALYTICAL RESULTS STORM SEWER ANALYTICAL RESULTS REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK

Analyte	PR-1	PR-2	SS-1	SS-2	SS-1 (Water) *	SS-2 (Water) *
(mg/kg)	10/17/90	10/17/90	10/17/90	10/17/90	10/17/90	10/17/90
Total Cadmium	81	37	1180	7.2	0.012	0.014
Total Chromium	41	446	746	68	0.024	0.023
Total Nickel	2680	508	1406	48	0.16	0.06
Total Zinc	3060	1060	3160	1160	0.16	0.049
Hexavalent Chromium	0.14	1.8	0.082	0.12	NA	NA
Total Cyanide	2.8	5.1	0.4	1.1	NA	NA
pH (Leachable)	8.44	7.94	6.53	7.45	NA	NA

Notes:

CRA 3967 (7) APPA

NA Not analyzed

* Results in mg/L

TRANSFORMER AREA / MACHINING AREA WIPE SAMPLE RESULTS

REMEDIAL INVESTIGATION/FEASIBILITY STUDY

s:*

LEICA INC.

CHEEKTOWAGA, NEW YORK

Compound (ug/kg)	T-1A 10/17/90	T-1B 10/17/90	W-1 10/17/90	W-2 10/17/90	MW-1 ** 10/17/90	MW-2 ** 10/17/90	T-2 ** 10/17/90	T-3 ** 10/17/90
Aroclor 1016	ND (48)	ND (48)	ND (9000)*	ND (6000)*	ND (100)*	ND (10)	ND (40)	ND (40)
Aroclor 1221	ND (48)	ND (48)	ND (9000)*	ND (6000)*	ND (100)*	ND (10)	ND (40)	ND (40)
Aroclor 1232	ND (48)	ND (48)	ND (9000)*	ND (6000)*	ND (100)*	ND (10)	ND (40)	ND (40)
Aroclor 1242	ND (48)	ND (48)	ND (9000)*	ND (6000)*	ND (100)*	ND (10)	ND (40)	ND (40)
Aroclor 1248	ND (48)	ND (48)	ND (9000)*	ND (6000)*	ND (100)*	ND (10)	ND (40)	ND (40)
Aroclor 1254	ND (97)	ND (96)	ND (18000)*	ND (12000)*	ND (200)*	ND (20)	ND (80)	ND (80)
Aroclor 1260	ND (97)	ND (82)J	ND (18000)*	ND (12000)*	ND (200)*	ND (20)	ND (33)J	84

Location Key Outside Transformer Area: T-1A, T-1B Inside Transformer: T-2, T-3 Machining Area: W-1, W-2, MW-1, MW-2

Notes:

* Elevated detection limits are the result of a dilution necessitated by sample matrix.

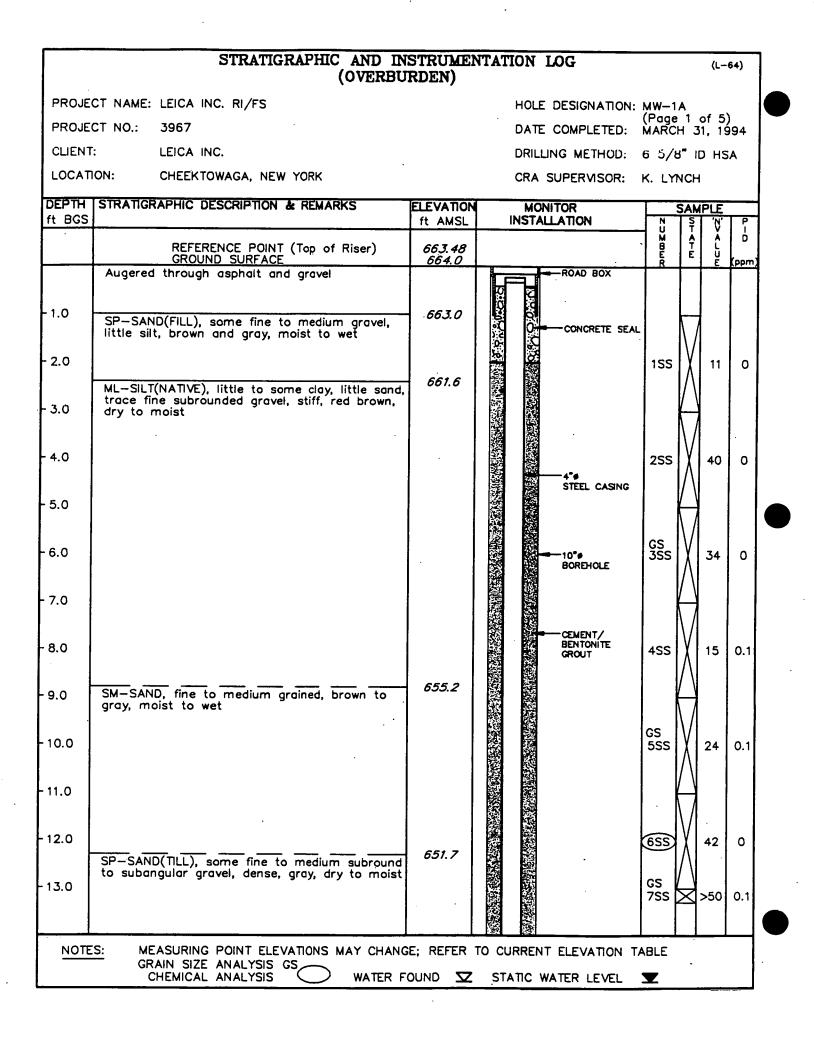
** Units are ug/wipe.

B

•

>

.


•

APPENDIX B

STRATIGRAPHIC AND INSTRUMENTATION LOGS

BOREHOLE LOG	PROJECT:	90-821				B	OR	EH	OLE: MWI
PHASE II SUBSOIL INVESTIGATION CHEEKTOWAGA, NEW YORK FOR: Leica Inc.	1					1	DAT GEO		23 November 1990 GIST TEJ
ХН	·	α		5	SAM	PLE	2		
DEPTH		MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	X REC.	× RQD	COMMENTS
0.4 ASPHALT			1	GS				_	
1.0 1 Grey sandy gravel.			2	SS	7		0		NO RECOVERY DURING THIS INTERVAL
SILTY CLAY TILL 2 Grey silty clay, trace fine sand, D -Interlaminated with red silty sea								4	
3								-	
5 - 27									
6	• •		3	SS	10		60	,	OVA rdg.= NIL
7							•	-	
8 8.5	,	-				•			
9 SILTY SAND Brownish grey silty fine sand, trac saturated, loose.	e fine gravel,			SS	9		25		OVA rdg.= NIL
			- Alternation	1-14, n) 21 , (21 1.,			. / .		
12 -Occasional limestone fragments e	ncountered at		- 5	SS	50/				OVA rdg.= NIL
12.6 bottom of hole. Borehole terminated at 12.6 ft in a	· · · · · · · · · · · · · · · · · · ·				<u>1in.</u>				AUGER REFUSAL AT 12.6 FT.
NOTE: ELEVATION RESURVE	YED MARCH 1994	1 .							•
	•								·

Gartner Lee Inc.

T NAME: LEICA INC. RI/FS T NO.: 3967							
T NO.: 3967		HOLE DESIGNATION:	: MW-	1 A			:
		DATE COMPLETED:	(Page	e 2	of 5) 1, 19) 94	
LEICA INC.		DRILLING METHOD:	65/	8" (о нѕ	A	
N: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LY	псн			· .
STRATIGRAPHIC DESCRIPTION & REMARKS		MONITOR	<u> </u>	SAM	PLE		
	ft AMSL	INSTALLATION		S T	'N'	P I D	
		· . ·	BER	न E			
BEDROCK - wet rotary to 14.3 ft BGS	650.7	BOREHOLE	1.	\square			
		STEEL CASING					
END OF OVERBURDEN HOLE @ 14.3 FT BGS	649.7	BOREHOLE					
		BENTONITE					!
drilling.		3"0					
for grain size anglysis.		NX COREHOLE			Ň		
3. Soil sample retained for chemical analysis of TCL VOCs.							
		•					
			1				
		,					
	-						
		· · ·					
		•					
		•					, .
		•					•
							,
		•••					
	ĺ						
	BEDROCK — wet rotary to 14.3 ft BGS END OF OVERBURDEN HOLE @ 14.3 FT BGS NOTES: - 1. At completion a 4" steel casing was installed to 14.3 ft. BGS for bedrock	ft AMSL BEDROCK - wet rotary to 14.3 ft BGS 650.7 END OF OVERBURDEN HOLE @ 14.3 FT BGS NOTES: - 1. At completion a 4" steel casing was installed to 14.3 ft. BGS for bedrock drilling. 2. Bulk soil samples collected from 5.0 to 7.0, 9.0 to 11.0 and 12.5 to 13.3 ft BGS for grain size analysis.	STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION ft AMSL MONITOR INSTALLATION BEDROCK - wet rotary to 14.3 ft BGS 650.7 BOREHOLE 4*9 END OF OVERBURDEN HOLE @ 14.3 FT BGS 649.7 BOREHOLE 4*9 Installed to 14.3 ft. BGS for bedrock drilling. 649.7 BOREHOLE 9*9 2. Bulk soil samples collected from 5.0 to 7.0, 9.0 to 11.0 and 12.5 to 13.3 ft BGS NX COREHOLE	STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION ft AMSL MONITOR INSTALLATION BEDROCK - wet rotary to 14.3 ft BGS 650.7 BOREHOLE STEEL CASING 8'9 END OF OVERBURDEN HOLE @ 14.3 FT BGS 649.7 Installed to 14.3 ft. BGS for bedrock drilling. 649.7 2. Bulk soil samples collected from 5.0 to 7.0, 9.0 to 11.0 and 12.5 to 13.3 ft BGS 649.7	STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION ft AMSL MONITOR INSTALLATION SAM BEDROCK - wet rotary to 14.3 ft BGS 650.7 BOREHOLE BOREHOLE 4*6 STEEL CASING 6*6 BOREHOLE END OF OVERBURDEN HOLE @ 14.3 FT BGS 649.7 BOREHOLE GROUT BOREHOLE BOREHOLE 1. At completion a 4" steel casing was installed to 14.3 ft. BGS for bedrock drilling. 649.7 649.7 2. Bulk soil samples collected from 5.0 to 7.0, 9.0 to 11.0 and 12.5 to 13.3 ft BGS for grain size analysis. NX COREHOLE NX COREHOLE	STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION ft AMSL MONITOR INSTALLATION SAMPLE BEDROCK - wet rotary to 14.3 ft BGS 650.7 BOREHOLE BOREHOLE N	STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION ft AMSL MONITOR INSTALLATION SAMPLE INSTALLATION N S N P U A A D BEDROCK - wet rotary to 14.3 ft BGS 650.7 BOREHOLE Image: Street casing BOREHOLE Image: Street casing BOREHOLE 10's END OF OVERBURDEN HOLE @ 14.3 FT BGS 649.7 649.7 Image: Street casing BOREHOLE CEMENT/ BOREHOLE 1. At completion g 4" steel casing was: installed to 14.3 ft. BGS for bedrock drilling. 3's NX COREHOLE 3's 2. Bulk soil samples collected from 5.0 to 7.0, 9.0 to 11.0 and 12.5 to 13.3 ft BGS for grain size gnglysis. S.0 to 13.3 ft BGS NX COREHOLE NX COREHOLE

	STRATIGRAPHIC AND INSTRU (BEDROCK)		(L-65)
PROJE	CT NAME: LEICA INC, RI/FS	HOLE DESIGNATION:	MW-1A
	CT NO.: 3967	DATE COMPLETED:	(Page 3 of 5) MARCH 31, 199
CLIENT		DRILLING METHOD:	6 5/8" ID HSA
LOCATI		CRA SUPERVISOR:	K. LYNCH
DEPTH	DESCRIPTION OF STRATA	MONITOR INSTALLATION	CR Q ATE CORE D ER CORE VER Y
ft BGS	ft. AMSL		% % %
	Overburden	10"	
14.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine to coarse grained, slightly to heavily weathered, trace vertical fractures, massively bedded, trace coral, some chert, stylolites, some carbonaceous	BOREHOLE BOREHOLE CASING BOREHOLE CEMENT/	
15.0	partings — moderately weathered carbonaceous parting (@ 15.2 and 15.5 ft BGS) — dark chert (15.2 to 15.7 ft BGS)	BENTONITE GROUT	
16.0	— carbonaceous parting (@ 15.9, 16.0, 16.2, 16.8 and 17.0 ft BGS)		
17.0	— brachiopod (@ 17.1 ft BGS)		
18.0	— weathered joint (🏽 18.0 ft BGS)		100 69.0 80
	— carbonaceous parting (@ 18.4, 19.4 and 19.7 ft BGS)		
19.0	·		
20.0	- moderately weathered zone, vertical fracture (19.7 to 20.5 ft BGS)		
21.0	— moderately weathered break (20.7 and 22.1 ft BGS)		
22.0	- small closed fracture, small crystal lined vug (@ 22.3 ft BGS)		
23.0	— dark chert zone (22.6 to 22.7 and 23.1 to 23.3 ft BGS)		
24.0	 slightly weathered vertical fracture (23.6 to 24.2 ft BGS) dark, short lawren interpreted with 	2	100 71.0 0
25.0	 dark chert layers interspersed with limestone (24.2 to 25.4 ft BGS) rubble zone, moderately weathered (24.6 to 24.9 ft BGS) 		
HOTES: ME	EASURING POINT ELEVATIONS MAY CHANGE; REFER TO CUR	RENT ELEVATION TABLE	

PROJECT NAME: LEICA INC, RI/FS HOLE DESIGNATION: MW-1A (Page 4 of 5) DATE COMPLETED: MARCH 31, 199 PROJECT NO.: 3967 DATE COMPLETED: MARCH 31, 199 CLIENT: LEICA INC. DRILLING METHOD: 6 5/8" ID HSA LOCATION: CHEEKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH DESCRIPTION OF STRATA V Y N INSTALLATION V K, LYNCH V Y V K, LYNCH DESCRIPTION OF STRATA Y V MONITOR N R V K, LYNCH V Y V N V N DESCRIPTION OF STRATA Y N R V N V N V N V N V N V N V N V N V N V N V N V N V N <th></th> <th>STRATIGRAPHIC AND</th> <th>INSTR DROCK)</th> <th></th> <th></th> <th></th> <th></th> <th>(L</th> <th>65)</th>		STRATIGRAPHIC AND	INSTR DROCK)					(L	65)
PROJECT NO:3967DATE COMPLETED:MARCH 31, 195CUENT:LEICA INC.DRILLING METHOD:6 5/8" ID HSALOCATION:CHEEKTOWAGA, NEW YORKCRA SUPERVISOR:K. LYNCHDEPTHDESCRIPTION OF STRATA $\begin{bmatrix} c & c & c & c & c & c & c & c & c & c $	PROJEC	•			GNA1	NON			
LOCATION: CHECKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DESCRIPTION OF STRATA T BGS CATON: CHECKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DESCRIPTION OF STRATA T CRA SUPERVISOR: K. LYNCH CRA SUPERVISOR: K. LYNCH CRA SUPERVISOR: K. LYNCH CRA SUPERVISOR: K. LYNCH T T SUBJECT STRATA T SUBJECT STRATA SUBJECT STRATA SUBJECT STRATA T SUBJECT STRATA SUBJECT SUBJECT	PROJEC	CT NO.: 3967	•	DATE COM	PLET	ED:	(Pac MAR	3e 4 of CH 31,	5) 199
DEPTH DESCRIPTION OF STRATA MONITOR INSTALLATION Image: Figure Figur	CLIENT	ELEICA INC.		DRILLING M	ETH	OD:	65	/8" ID	HSA
N N	LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPER	RVISC	DR:	K. L	YNCH	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DEPTH	DESCRIPTION OF STRATA	E V A T 0		BEDTERVAL		CORCOVERY	R Q D	
- trace coral and solution pitting (26.3 to 26.5 ft BGS) - small calcite mass (@ 26.5 ft BGS) - adrk chert zone (26.9 to 27.1 and 27.3 to 27.6 ft BGS) - coral between moderately weathered breaks (27.7 to 27.8 ft BGS) - closed vertical fracture (28.2 to 28.0 breaks (27.7 to 27.8 ft BGS) - closed vertical fracture (28.7 to to 29.6 ft BGS) - rugose coral autine (29.8 to 29.0 29.6 ft BGS) - rugose coral autine (29.8 to 29.9 ft BGS) - weathered break (@ 30.5 ft BGS) - weathered coral (31.4 to 31.8 ft BGS) 31.0 - dark chert (32.7 to 33.5 ft BGS) 32.0 - dark chert (32.7 to 33.5 ft BGS) 33.0 - slightly weathered carbonaceous parting (@ 33.5 ft BGS) 35.0 - slightly weathered carbonaceous parting 34.0 - doundart light gray and buff colored chert (34.0 to 38.7 ft BGS) 35.0 - 36.0 - 36.0 - 0	ft BGS		ft. AMSL	······································			%	%	. %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		 trace coral and solution pitting (26.3 to 26.5 ft BGS) 			-				1
$\begin{array}{ c c c c c c }\hline & - & \text{gray and buff colored chert (28.7 to} \\ to 29.6 & \text{ft BGS}) \\ & - & \text{rugose coral outline (29.8 to} \\ 29.9 & \text{ft BGS}) \\ & - & \text{weathered break (@ 30.5 ft BGS}) \\ & - & \text{buff colored chert (30.5 to 31.0 ft BGS}) \\ & - & \text{weathered coral (31.4 to 31.8 ft BGS}) \\ & - & \text{weathered coral (31.4 to 31.8 ft BGS}) \\ \hline & - & \text{dark chert (32.7 to 33.5 ft BGS}) \\ & - & \text{dark chert (32.7 to 33.5 ft BGS}) \\ & - & \text{slightly weathered carbonaceous parting} \\ & (@ 33.5 ft BGS) \\ & - & \text{obundant light gray and buff colored} \\ & \text{chert (34.0 to 38.7 ft BGS}) \\ \hline & & 3 & 100 & 86.0 \\ \hline & & 3 & 100 & 86.0 \\ \hline \end{array}$	28.0	— coral between moderately weathered breaks (27.7 to 27.8 ft BGS) — closed vertical fracture (28.2 to				2	100		0
30.0 to 29.6 ft BGS) -rugose coral outline (29.8 to 29.9 ft BGS) - weathered break (@ 30.5 ft BGS) - weathered coral (31.4 to 31.8 ft BGS) 31.0 - weathered coral (31.4 to 31.8 ft BGS) 32.0 - dark chert (32.7 to 33.5 ft BGS) 33.0 - slightly weathered carbonaceous parting (@ 33.5 ft BGS) - abundant light gray and buff colored chert (34.0 to 38.7 ft BGS) 35.0 - 3 100 36.0 - 3 100	29.0	- aroy and buff colored opert (28.7 to					-		
31.0 - weathered coral (31.4 to 31.8 ft BGS) 32.0 - 100 - dark chert (32.7 to 33.5 ft BGS) 33.0 - slightly weathered carbonaceous parting (@ 33.5 ft BGS) 34.0 - abundant light gray and buff colored chert (34.0 to 38.7 ft BGS) 35.0 36.0		to 29.6 ft BGS) — rugose coral outline (29.8 to 29.9 ft BGS) — weathered break (@ 30.5 ft BGS)							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31.0	— weathered coral (31.4 to 31.8 ft BGS)							
33.0 - slightly weathered carbonaceous parting (@ 33.5 ft BGS) 34.0 - abundant light gray and buff colored chert (34.0 to 38.7 ft BGS) 35.0 35.0 36.0 0	32.0	- dark chert (32.7 to 33.5 (t. P.C.S.)							
34.0 - abundant light gray and buff colored chert (34.0 to 38.7 ft BGS) 35.0 36.0	33.0 _.	 slightly weathered carbonaceous parting 							1
36.0	34.0	(@ 33.5 ft BGS) — abundant light gray and buff colored chert (34.0 to 38.7 ft BGS)							
36.0	35.0					3	100	86.Ö	0
37.0	36.0		-						•
	37.0								

í

	STRATIGRAPHIC AN	ND INSTR BEDROCK				(L	-65)
PROJE	CT NAME: LEICA INC, RI/FS		HOLE DESI	GNATION:	M ₩—1	A	
PROJE	CT NO.: 3967		DATE COM	PLETED:	(Page MARC	:5 of ∺H 31 ,	5) 1994
CLIENT	LEICA INC.		DRILLING M			6" ID I	•
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPER	NISOR:	K. LY	NCH	
<u> </u>		Ε			CR		
DEPTH	DESCRIPTION OF STRATA		MONITOR INSTALLATION	BINTER RUN RECTER BER CVAL	CORE ERY	ROD	WR AET ER N
ft BGS		ft. AMSL			%	%	%
- 38.0	— brachiopod (@ 37.4 ft BGS) — moderately weathered break (@ 37.5 ft BGS)			3	100	86.0	0
- 39.0	- carbonaceous parting (@ 39.0 and 39.4 ft BGS) END OF HOLE @ 39.4 FT. BGS	624.6					
- 40.0							
- 41.0							
- 42.0							
- 43.0							
- 44.0							
- 45.0							
- 46.0							
- 47.0			,				
- 48.0							
- 49.0	·						

BOR	EHO	OLE LOG	PROJECT:	90-821				8	BOR	EH	OLE:	MW2	
1	κто	SUBSOIL INVESTIGATION WAGA, NEW YORK ca Inc.	J .						DAT GEC		23 No GIST	vember I TEJ	990
	ΥН		· · ·	œ			SAM	IPL	E				
DEPTH (ft)		STRATIGRAPHIC D		MONITOR DETAILS & NUMBER	BER	TYPE	VALUE	WATER	REC	RQD		COMMEN	rs
(11)	STRA	REFERENCE POINT (Top of R GROUND SURFACE	iser) 657.01 657.45		NUMBER		z	й х	×	ж 8			
0.5		TOPSOIL Dark brown silty clay with rootle matter, moist.	ts and organic	ſ	-	SS	6		80		NO RI	EADINGS	TAKEN
^{2.0} 2		SILTY CLAY TILL Brown silty clay, trace fine sand,	DTPL, firm.		-				-		-		
3		SILTY SAND Brown silty fine sand, trace fine g becoming saturated below about (
4		-Trace orange colored staining ob about 4.0 and 5.0 ft.	served between		-	SS	14		75		.•		·
6.0 6										-			
7		-Becoming a sand and gravel belo	ow about 6.0 ft.			SS	50/ 1in.		16				
8		-Occasional limestone and chert f	ragments observed		-								
8.5		at bottom of hole. Borehole terminated at 8.5 ft in s	and and gravel.								AUGE FT.	RREFUSA	L AT i
		NOTE: ELEVATION RESURVE	EYED MARCH 1994										
·									•			-	
		· · ·					4					. •	
-												· · ·,	

.

🗄 Gartner Lee Inc.

PROJE	(OVERBU) CT NAME: LEICA INC. RI/FS	,			
	CT NO.: 3967		HOLE DESIGNATION: N	Pone 1 of	3)
			DATE COMPLETED:		
CLIENT			DRILLING METHOD: 8	3 1/4" ID	HSA
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K	LYNCH	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SA	MPLE
11 863		ft AMSL	INSTALLATION		S 'N'
	REFERENCE POINT (Top of Riser) GROUND SURFACE	657.02 657.1		8	
	SM/ML-SAND and SILT(FILL), little vegetation, topsoil, loose, dark brown, moist		ROAD BOX		
	ML-SILT(NATIVE), little sand and clay, stiff, red	656.6			/
1.0	brown, moist		CONCRETE SE	1SS)	8
				~ /	
2.0					-
			4*4		
3.0	 very stiff, mottled, gray, buff, brown and red brown , dry 		STEEL CASING	255	29
				1	\ .
4.0					
			BOREHOLE		7
	SM/ML-SAND and SILT, trace fine rounded	652.4			/
5.0	gravel, dense, brown, dry	Í		355	50
			GROUT		
6.0	,			_ 	
					/
7.0	GP-GRAVEL, some sand, shaly, dense, fine, dry	650.1		4SS X	62
	SM/ML-SAND and SILT, trace fine rounded	649.8			
8.0 L	grável, r dium dense, brown, wet	649.0	6.0	5SS 🗪	D100
ŀ	BEDROC poon refusal at 8.1 ft BGS, auger refusal 3.4 ft BGS	648.7	BOREHOLE		Ting
9.0	END OF JERBURDEN HOLE @ 8.4 FT BGS		BORCHULE		
	NOTES: 1. At completion a 4" steel casing was		3"¢ NX COREHOLE		
10.0	installed to 8.4 ft. BGS for bedrock drilling.				
	 Soil samples retained for geologic record. 				
11.0					
2.0					
3.0	• .				
	· · ·				

.

٠

.

	STRATIGRAPHIC AND) INSTR		NTATION LOG				(L	67)
PROJE	CT NAME: LEICA INC. RI/FS	· · · · · · · · · · · · · · · · · · ·		HOLE DESIGN		1: Ņ	W-2A		
PROJE	CT NO.: 3967			DATE COMPLE	TED:		Page IOVEME	2 of 3) BER 30,	1993
CLIENT	LEICA INC.			DRILLING MET	HOD:	8	1/4"	ID HSA	
LOCATI	ON: CHEEKTOWAGA, NEW YORK			CRA SUPERV	SOR:	ĸ	LYNC	CH,	
DEPTH	DESCRIPTION OF STRATA	ELEVAT-		MONITOR NSTALLATION	BIN DT RE OCV		RECOVERY	R Q D	WR AET ERN N
		Ň							
ft BGS		ft. AMSL					%	%	78
	Overburden			BOREHOLE			<u> </u>		
8.0	LIMESTONE(Onondaga Formation, Moorehouse	649.0		CASING CEMENT/			<u></u>		<u> </u>
	Member): light gray to dark gray, fine to medium grained, very thin to medium			BENTONITE GROUT		WR			
9.0	Member): light gray to dark gray, fine to medium grained, very thin to medium bedded, carbonaceous, trace coral, sparsley fossiliferous, little chert - numerous moderately weathered fractures (9.0 to 10.1 ft BGS)			BOREHOLE					
10.0									
	 moderately weathered carbonaceous parting (@ 10.5 and 11.1 ft BGS) 								
11.0						1	100	67.0	80
	— very light gray, finer grained (11.9 to								
12.0	 very light gray, finer grained (11.9 to 14.3 and 15.9 to 18.0 ft BGS) 								
	· ·								
13.0									
14.0									
15.0						2	96	44.0	60
^a									
16.0		i -							
17.0	madana dala da basa di								
	 moderately to heavily weathered interval (17.5 to 18.3 ft BGS) 				}				
18.0									
						3	100	53.0	50
19.0						·			
			·	4					

. . .

1	CT NAME: LEICA INC. RI/FS		HOLE DESIGNA		(Page 3	3 of 3))
	CT NO.: 3967		DATE COMPLE		Ň	IOVEME	BER 30,	•
CLIENT			DRILLING METH	IOD:	8	3 1/4"	ID HSA	٩
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVIS	OR:	ĸ	LYNC	СН	
DEPTH	DESCRIPTION OF STRATA	ELEVAT-OZ	MONITOR INSTALLATION	BEDROCKL	RUZ®⊮R	RECOVERY CORE	RQD	
ft BGS		ft. AMSL				%	%	┦
	— abundant carbonaceous partings (19.3 to 20.3 ft BGS)							╪
- 20.0	— light gray fine grained, weathered (20.2 to 22.3 ft BGS)							
- 21.0						·		
- 22.0	— detrital, coarser grained, infrequent small coral (22.3 to 26.0 ft BGS)				4	98	65.0	
- 23.0								
- 24.0								
- 25.0			COREHOLE					
- 26.0								
- 27.0	— coral (26.7 to 26.9 ft BGS) — rugose coral (27.2 to 27.4 ft BGS)							
- 28.0	 brown gray chert nodule, fine grained, hard (27.9 to 28.5 ft BGS) 1/2" thick shaly band (@ 28.6 ft BGS) 				5	100	61.0 -	
- 29.0								
- 30.0	END OF HOLE @ 29.9 FT. BGS	627.1						
- 31.0								ļ
	EASURING POINT ELEVATIONS MAY CHANGE; REF							L

.

W.

. -

.

		DLE LOG	PROJECT:	90-821	l 		<u> </u>	+-'	ROL	EH	OLE: MW3
	то	SUBSOIL INVESTIGATIO WAGA, NEW YORK ca Inc.	N				•				22 November 1990 GIST TEJ
		· · · · · · · · · · · · · · · · · · ·			<u> </u>		SAM	101	<u> </u>		Г
DEPTH (ft)	STRATIGRAPHY	STRATIGRAPHIC D REFERENCE POINT (Top of GROUND SURFACE		MONITOR DETAILS 4 NUMBER	NUMBER	TYPE	N VALUE	WATER	X REC	x RQD	COMMENTS
0.4	0,	ASPHALT			1	KGS	1		<u> </u>		NO READINGS TAKEN
1.0 1 2		SUB-BASE Grey sand and gravel. SILTY CLAY TILL Brown silty clay, numerous fractu	ures, trace fine sand,		2	X X SS SS	10		50	- - -	
3 -		DTPL, stiff to very stiff. -Grey colored alteration observed fractures between about 1.0 and			-	alau Accelota June					
5		•			- 3	SS	20		, O	-	NO RECOVERY DURING
6 7 7.5			, *		-					-	THIS INTERVAL
8 -		SILTY SAND Brown silty fine sand, trace fine g	ravel, moist, loose.							•	
10 - 11.0 ₁₁		-Saturated below about 9.0 ft.	. · · ·				5	•	71	-	
		Borehole terminated at 11.0 ft in a	•			₽					AUGER REFUSAL AT 11 FT.
·											
			· ·								

Gartner Lee Inc.

BOREHOLE LOG	PROJECT:	90-821				E	BOR	EH	OLE: MW4
PHASE II SUBSOIL INVEST CHEEKTOWAGA, NEW YO FOR: Leica Inc.							DAT Geo		20 November 1990 GIST TEJ
X H	······································	α		S	SAM	PL	£		
DEPTH B STRATIGRA (ft) GROUND SURFAC		MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	X REC	X RQD	COMMENTS
medium gravel, firm.	silty clay, some sand and fine to black colored staining			GS	6		45		AUGERED DIRECTLY TO 1.0 FT. OVA rdg.= 2-4
SILTY CLAY TILL	trace fine sand and gravel,		3	SS	16		83	-	OVA rdg. = 60 OVA rdg. = 400 IN AUGERS
6 7 8.0 8 SILTY SAND(inferred								-	
9 -	trace fine gravel, saturated.			SS .	46		24		NO RECOVERY DUE TO CASING INSTALLATION
12 -Occasional limestone	gravel below about 11.0 ft. fragments observed		2 2	•					
12.8 1111 Borehole terminated a	t 11.0 ft in sand and gravel. nferred from surrounding 7.0 to 11.0 ft.		5	SS	<u>50/</u> 1in.				AUGER REFUSAL AT 12 8 FT.
NOTE: ELEVATION	RESURVEYED MARCH 1994.								

1

•~•

Gartner Lee Inc.

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

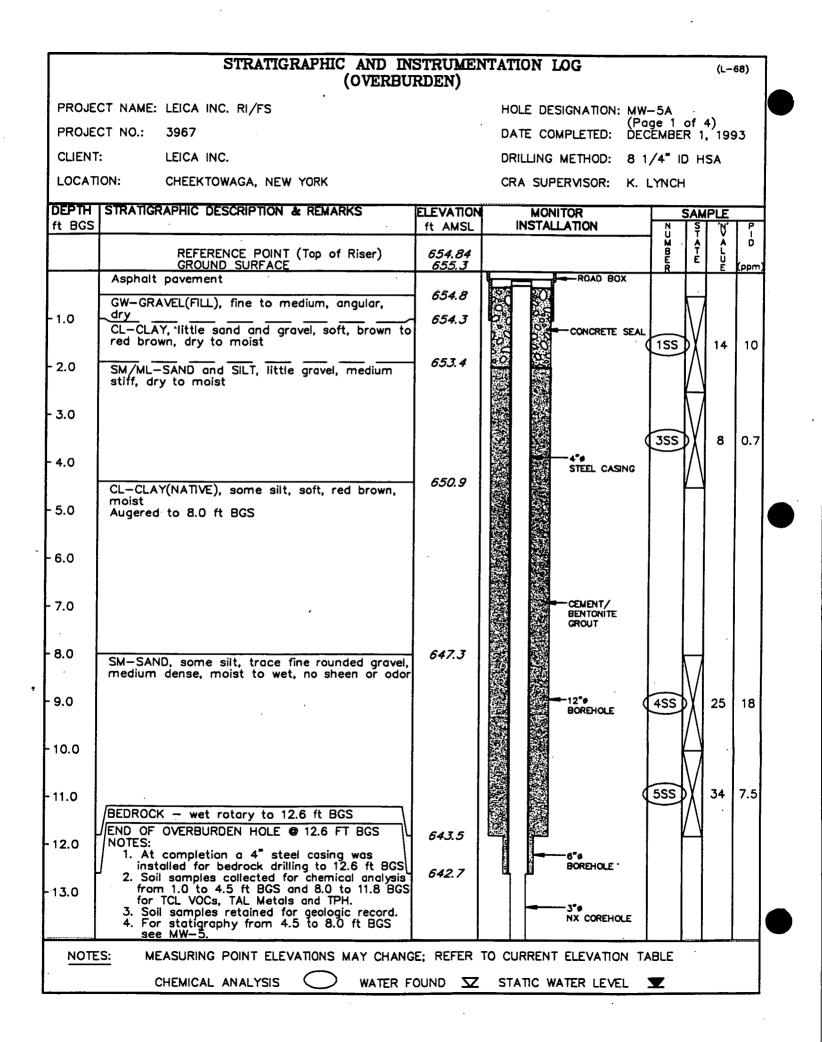
PROJECT NAME: LEICA

PROJECT NO .: 3967

CLIENT:

LOCATION: CHEEKTOWAGA, N.Y.

LEICA


GRAIN SIZE ANALYSIS

HOLE DESIGNATION: MW-5 DATE COMPLETED: JULY 1, 1991 DRILLING METHOD: 4 1/4" ID HSA CRA SUPERVISOR: K. LYNCH

РΉ	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			SAN	IPLE	•
BGS		ft AMSL	INSTALLATION	N U	ST		
	REFERENCE POINT (Top of Riser)	654.80	61	B	A	1 ĉ	
	GROUND SURFACE	655.24		BER	Ē	ΪŪ	k PI
•	Augered through asphalt to 0.5 ft BGS	-0.5			F		T
	Gray fine to medium SAND, little fine to		CONCRETE SEAL	155	IX	11	0
5	medium angular gravel, moist, FILL Same, except dry to moist				H		
5	Red brown CLAY, some silt, little sand,	-2.9	2"# BLACK	255	IX	14	1
	trace fine round gravel, hard, dense, dry				Щ		
0	to moist, NATIVE			355	M	24	1
Ŭ				555	Μ	24	1'
		-6.4			\mathbf{k}		
5	Red brown SILT, some fine to medium sand, little clay, moist		BENTONITE PELLET SEAL	4 SS	IX	15	2
Ŭ	Interbedded silt, fine sand and clay lenses,	-80			\vdash		
	$\frac{1}{7.4} \text{ to } 7.6 \text{ ft BGS}$	-80 -84 -89	SAND PACK	555	IX	8	1
0.0	Red brown CLAY, little silt, soft, moist				\bigtriangleup		ľ
-	Gray fine to medium SAND, moist to wet		WELL SCREEN	655	N	12	
	Same, with some silt	-11.9		033	\mathbb{N}	12	
.5	Gray fine to coarse SAND, little fine round	-11.3					
	Same, except hard, dry		<u>SCREEN_DETAILS:</u> Screened Interval:				
	END OF HOLE @ 11.9 FT. BGS		9.4 to 11.5' BGS				
.0	NOTES: 1. No soil samples taken for chemical		Length -2.1				1
	analysis. Geologic record samples		Diameter – 2.0"				
	were collected.		Slot # 10 Material —Stainless Steel				
.5	 At completion a monitoring well was installed to 11.9 ft BGS. 		Sand pack interval:				
			7.5 to 11.9' BGS				
			Material — # 4 Sand				
0.0							
2.5							
	,						
			•	,			
5.0	,						
		1		· ·			
.5							
	·		· · ·				
	· · ·						
0.0							
-		ł					
.5							
			· .	,			
				·		•	

WATER FOUND 🔽 STATIC WATER LEVEL 🗶

(L-01)

	STRATIGRAPHIC AND	INSTR DROCK	UMENTATION LOG				(L	69)
PROJE	CT NAME: LEICA INC. RI/FS	DROON	HOLE DESIGNA				2 of 4)	
PROJE	CT NO.: 3967		DATE COMPLE	TED:	ò	DECEME	IER 1, 1	1993
CLIENT	LEICA INC.		DRILLING METH	IOD:	8	3 1/4"	ID HSA	•
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERMS	OR:	۲	K. LYNG	ЭН	
DEPTH	DESCRIPTION OF STRATA		MONITOR INSTALLATION	BEDTERVAL		RECOVERY Core	R Q D	W ATER
ft BGS		ft. AMSL				%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 %
	Overburden	•	BOREHOLE EMENT/					
12.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray to gray, thin to medium bedded, fine to medium grained, little coral	643.7	GROUT GROUT 4°9 STEEL CASING 6°9					
13.0	and fossils, carbonaceous, little chert, stylolites, slightly to moderately weathered — rubble, heavily weathered (12.6 to 12.8 ft BCS)		BOREHOLE					
14.0	 small closed slightly weathered vertical 60° fracture (14.3 to 14.7 ft BGS) brown to dark brown chert nodule (14.6 to 14.8 ft BGS) 							
15.0	- slightly weathered break (@ 15.1 ft BGS) (17.5 to 18.3 ft BGS)		N		1	91	52.0	90
16.0			3"# NX COREHOLE					
17.0	— dark gray chert nodule (16.6 to 17.3 ft BGS) — light gray (17.3 to 19.3 ft BGS)							
18.0								
19.0	— dark gray, detrital layer, fossil fragments. little chert (19.3 to 20.0 ft BGS)				2	93	70.0	9(
20.0	– brown chert (20.3 to 20.4 ft BGS)							
21.0			;					
22.0	 coral (20.6 to 20.7, 21.6 to 21.8, 22.2 to 22.3 ft BGS) numerous slightly weathered fractures, occasional coral (22.0 to 25.8 ft BGS) 							
23.0					3	98	55.0	90

	-	EDRO		 						
	CT NAME: LEICA INC. RI/FS			HOL	E DESIGNA	NIO	N: 1	W-5A	3 of 4)	•
PROJE	CT NO.: 3967			DAT	E COMPLE	TED:	ĺ	DECEME	BER 1,	1
CLIENT	EICA INC.			DRII	LLING METH	HOD:	8	3 1/4"	ID HSA	4
LOCATI	ON: CHEEKTOWAGA, NEW YORK			CRA	SUPERMS	SOR:	ł	K. LYNG	СН	
DEPTH	DESCRIPTION OF STRATA	E1E>≪102			· · · · · · · · · · ·	- NT UR V 4 L		CECOVERY	RQD	
ft BGS		ft. Al	NSL	 	······			%	%	
- 24.0										
24.0							3	98	55.0	
- 25.0										
- 26.0	– buff to light brown chert (25.8 to 27.8 ft BGS)									
- 27.0										
28.0	— gray detrital layer, medium to coarse grained, numerous small coral and fossil fragments (27.8 to 29.9 ft BGS)									
· 29.0							4	100	88.0	
30.0	— dark gray chert (29.9 to 30.6, 30.8 to 32.1, 32.5 to 33.2, 33.3 to 33.4 and 33.5 to 34.0 ft BGS)									
31.0										
32.0										╞
33.0										
34.0	- buff to light brown chert (34.5 to						5	100	85.0	
35.0	 buff to light brown chert (34.5 to 34.8, 35.0 to 35.2, 36.0 to 36.2, 37.1 to 37.2, 37.3 to 37.7, 38.4 to 38.6, 39.2 to 40.0 and 40.5 to 41.6 ft BGS) 									
	EASURING POINT ELEVATIONS MAY CHANGE; REFI	FR TO								L

-

• • •

•

.

-

	STRATIGRAPHIC ANI	D INSTR EDROCK)	UMENTATION LOG		`		(L	L-69
PROJE	CT NAME: LEICA INC. RI/FS	-	HOLE DESIGNA	TION	: м	₩-5A		
PROJE	CT NO.: 3967		DATE COMPLET	ED:	(P DE	age 4 CEMB	of 4) ER 1, 1	199
CLIENI	f: LEICA INC.		DRILLING METH	OD:	8	1/4"	ID HSA	•
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVIS	OR:	К.	LYNC	H	
DEP.TH	DESCRIPTION OF STRATA	ELEVAT-OZ	MONITOR INSTALLATION	BINTERV ROCK	RN UU NM B E R	CECOVER Y	RQD	
ft BGS		ft. AMSL				%	%	
36.0								
37.0	· ·							
38.0					5	100	85.0	
39 .0	· ·		COREHOLE			·		
40.0							•	
41.0						. ,		
42.0	END OF HOLE @ 42 FT. BGS	612.8						
43.0								
44.0							-	•
45.0								
46.0								
47.0								.

·

STRATIGRAPHIC AND INSTRUMENTATION LOG (L-02) (OVERBURDEN) PROJECT NAME: LEICA HOLE DESIGNATION: MW-6 PROJECT NO .: 3967 DATE COMPLETED: JULY 1, 1991 CLIENT: LEICA DRILLING METHOD: 4 1/4" ID HSA LOCATION: CHEEKTOWAGA, N.Y. CRA SUPERVISOR: K. LYNCH DEPTH I STRATIGRAPHIC DESCRIPTION & REMARKS MONITOR ELEVATION SAMPLE INSTALLATION ft BGS ft AMSL NU S Ņ HNU MBER A T E 660.84 **REFERENCE POINT (Top of Riser)** ð ь U 661.16 GROUND SURFACE ppm Dark brown fine SAND, some silt, trace coal, glass and vegetation, dry, FILL Same, except brown, little fine to medium **1SS** 16 0.4 CONCRETE SEAL -2.0 concrete 2.5 n Black with white fine SAND, some fine coal, -0 2SS 4 0.8 8"¢ dry BOREHOLE Black SLAG, some coal and sand, moist -4.5 2"# BLACK 6.0 5.0 Red brown SILT, little fine sand, some clay, -4.8 **3**SS 7 0.6 IRON PIPE dry. NATIVE Gray fine SAND, little silt, trace clay, -6.8 dry to moist, some black discoloration Same, except moist **4SS** 11 0.8 7.5 Red brown CLAY, some silt, little fine sand and fine round gravel, dry, TILL Same, except little fine to medium rounded **5**SS 18 0.4 - 10.0 **BENTONITE** to subrounded gravel PELLET SEAL 6SS 18 0.4 -11.2 Red brown, gray and brown SILT, some fine SAND PACK sand, little clay, laminated, dry to moist - 12.5 -12.7 Same, except gray and pink **7**SS 6 0.4 Gray fine SAND, little silt and clay, stiff, WELL SCREEN moist Gray fine to medium SAND, trace fine round **8**SS >100 1.8 15.0 gravel, soft, moist to wet SUMP -15.5 END OF HOLE @ 15.5 FT. BGS NOTES: SCREEN DETAILS: Screened Interval: No soil samples taken for chemical 17.5 1. 13.0 to 15.1 BGSanalysis. Geologic record samples were collected. Length -2.1 2. At completion a monitoring well Diameter -2.0' was installed to 15.5 ft BGS. 20.0 Slot # 10 Material -Stainless Steel Sand pack interval: 11.0 to 15.5 BGS 22.5 Material -# 4 Sand 25.0 27.5 30.0 32.5 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: GRAIN SIZE ANALYSIS WATER FOUND V STATIC WATER LEVEL

:	STRATIGRAPHIC	CAND IN (OVERBU	NSTRUME JRDEN)	NTATION LA	DG			(L-1	70)
PROJE	CT NAME: LEICA INC. RI/FS	·	·	HOLE DESI	GNATION: MW	-6A			
PROJE	CT NO.: 3967			DATE COM	(Pa PLETED: DEC	ge 1 EMBE	of 4 R 1	4) 7, 19	993
CLIENT	: LEICA	-			ETHOD: 8 1	/4" [[о н	SA /	
LOCAT	ON: CHEEKTOWAGA, NEW YORK				RVISOR: K. L	ROT/	AR Y		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMAI	RKS	ELEVATION		OR		SAM	PLE	
11_003	REFERENCE POINT (Top. of GROUND SURFACE	Riser)	ft AMSL 659.38 659.8	INSTALL		NU M B E	ST A T E	'N ▲ ↓ ∪	Р 1 D
· · · · · — .	For overburden stratigraphy see MW-	-6	039.0		-ROAD BOX	R_		<u> </u>	(ррл
- 1.0					CONCRETE SEAL				
2.0									
	· · ·								
3.0									
							·	•	
4.0	× •							-	
		•			4"ø STEEL CASING				
5.0									
6.0	•				12"¢ BOREHOLE				
7.0	• •								
8.0					CEMENT/ BENTONITE GROUT				
	· .		· .		GROUT				
9.0								•	
10.0	· .								
11.0	··· 、				Í				
12.0	· · · ·								
13.0								ĺ	
NOTE	S: MEASURING POINT ELEVATIONS I								

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG			(L-1	70)
PROJE	CT NAME: LEICA INC. RI/FS	-	HOLE DESIGNATION:				
PROJE	CT NO.: 3967		DATE COMPLETED:	Page 2 DECEMBE	of R 1	4) 7, 19	93
CLIENT	LEICA INC.		DRILLING METHOD: 8	3 1/4"	DH	SA /	,
LOCATI	ON: CHEEKTOWAG, NEW YORK		CRA SUPERMSOR: K	MET ROT	ARY		
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			SAM	PLE	
ft BGS	·	ft AMSL	INSTALLATION		S T	'N'	P I D
				E E	Â E	ι υ Ε	(ppm)
			BOREHOLE				
14.0	BEDROCK — wet rotary to 14.9 ft BGS	646.2	BENTONITE				
14.0	-		GROUT G*# BOREHOLE 4*#				
15.0	END OF OVERBURDEN HOLE @ 14.9 FT BGS	644.9		.			
, 0. 0	NOTES:			 			
16.0	 At completion a 4" steel casing was installed for bedrock drilling to 14.9 ft BGS 		NX COREHOLE				!
							-
17.0							
18.0							
							1
19.0							
20.0	· · ·						
	· .						
21.0							
	· · · ·						
22.0	interna a successive successive and an and an and a successive and a successive successive and a successive success	: <u> </u>		27 • 1 • • • • • •		-	-
23.0							
		}					
24.0		1					
25.0	·						
25.0							
26.0							
20.0		-					
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE			
	CHEMICAL ANALYSIS 🔘 WATER FO	DUND 🔽	STATIC WATER LEVEL	T			

.

.

	STRATIGRAPHIC AND) INSTR DROCK)				(71)
	CT NAME: LEICA INC. RI/FS CT NO.: 3967		HOLE DESIGN		(Page	3 of 4)	
CLIENT	, ,		DATE COMPLE			BER 17,	
LOCAT			DRILLING MET		8 1/4	" ID HSA	• .
LUCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVI	SOR:	K. LYN	NCH	
DEPTH	DESCRIPTION OF STRATA	ELEVATION	MONITOR INSTALLATION	BI EN DT RR OCV KA	RN CECOVER UUNBER R	R Q D	WRETUR ATERN
ft BGS		ft. AMSL		╋╼╁	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%
	Overburden						ļ .
14.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine to medium grained, thinly bedded, carbonaceous, little chert, ocassional fossils and coral, numerous	646.2	BOREHOLE CEMENT/ BENTONITE GROUT 6° BOREHOLE ** STEEL				
15.0	stylolites		4° STEEL CASING	╎┝			
16.0	— slightly weathered carbonaceous parting (@ 15.9 and 16.0 FT BGS)						
17.0							
18.0	 slightly weathered 80° vertical fracture (18.3 to 18.7 ft BGS) 				-		
19.0	— small coral (@ 18.9 and 19.0 ft BGS)						
20.0	— numerous slightly weathered carbonaceous partings (@ 20.2 to 20.6 ft BGS)				1 98	64.0	60
21.0	- moderately weathered carbonaceous partings (@ 20.6, 20.9, 22.0, 22.4, 23.6 and 24.9 ft BGS)						
22.0	· · · · · · · · · · · · · · · · · · ·						
23.0							
24.0							
25.0	 brachiopod fragments, coral fragments, moderately weathered break (@ 24.5 ft BGS) rugose coral outline (@ 25.0 ft BGS) brachiopod (@ 25.2 ft BGS) 				2 100	88.0	0

	STRATIGRAPHIC AND (BE	INSTR DROCK					(L	71)
PROJE	ECT NAME: LEICA INC. RI/FS		HOLE DESIGNA	TION	: M	W-6A		
PROJE	CT NO.: 3967		DATE COMPLET	ED:	(I D	^p age ECEME	4 of 4) BER 17,	1993
CLIEN	T: LEICA INC.		DRILLING METH	OD:	8	1/4"	ID HSA	•
LOCAT	TON: CHEEKTOWAGA, NEW YORK		CRA SUPERVIS	OR:		. LYN		
DEPTH	DESCRIPTION OF STRATA	E LEVAT - O;	MONITOR	BI EN DRE CVA L	RN UU NB E R	RECOVERY	R Q D	WR AET ER R N
ft BGS		N ft. AMSL		·		%	%	%
- 26.0 - 27.0 - 28.0	 brachiopod and coral fragments, coarser grained matrix (@ 25.7 ft BGS) slightly to moderately weathered carbonaceous parting (@ 25.9, 26.6 and 29.9 ft BGS) coral, slight petroleum oil odor, fossil fragments in matrix (25.9 to 26.1 ft BGS) several small rugose coral autlines (27.0 to 27.2 ft BGS) medium to dark gray mottled, some limestone remineralization (27.4 to 27.9 ft BGS) brachiopod fossil (@ 27.8 ft BGS) 				2	100	88.0	
29.0 30.0 31.0	 small gypsum mass and gypsum filled veinlets (@ 29.3 ft BGS) coral, coral fragments, detrital layer, coarser grained (30.0 to 30.1, 30.3 to 32.1, 34.2 to 34.4 ft BGS) finer grained (30.1 to 30.3 ft BGS) 				2		88.0	U
32.0 33.0	 brown gray chert nodules, slight HCl reaction, fine grained, hard (32.1 to 32.8, 33.5 to 34.0, 34.1 to 34.2 and 34.4 to 36.0 ft BGS) small coral, open veins (32.8 to 32.9 ft BGS) 	د						-
-34.0					3	100	100.0	0
35.0								J
36.0	END OF HOLE @ 36.0 FT. BGS	623.8		_		~		

	(OVERBUI	RDEN)	· · · ·			1
PROJEC	CT NAME: LEICA	-	HOLE DESIGNATION:	MW-7		
PROJEC	CT NO.: 3967		DATE COMPLETED:	JULY :	2. 1991	
CLIENT	LEICA		DRILLING METHOD:	4 1/4	" ID HS	5A
LOCATI	ON: CHEEKTOWAGA, N.Y.		CRA SUPERVISOR:	K. LYN	ICH	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		SAMPLE	
1 803	REFERENCE POINT (Top of Riser)	658.21		N U M	T V	H N J
	GROUND SURFACE	658.51	والمعالية المحالية المح	E R	Ê Ŭ E	(ppm)
	Augered through asphalt to 0.5 ft BGS	-0.5				
	Gray medium SAND, some medium gravel and graphalt, dry to moist, FILL	-1.1 -1.4	CONCRETE SEAL	1SS	X 14	2.2
2.5	Black fine COAL, some silt and sand, moist,		BOREHOLE	255	\sum_{5}	55
	Some brown discoloration	-3.8	2** BLACK	233	Δ	
5.0	trace gravel, moist, some black discoloration, fuel oil and gasoline odor Same, with trace wood, gasoline odor	-5.1	CONCRETE SEAL BOREHOLE CONCRETE SEAL BOREHOLE CONCRETE SEAL BOREHOLE CONCRETE SEAL	355	14	35
7.5	Black SILT, some clay, little fine sand, moist gasoline and septic odor Same, except grading to gray			4SS	30	55
	Red brown CLAY, some silt, moist, NATIVE Same, except little silt, hard, dense, dry	-8.6	PELLET SEAL	555	27	10- 12
10.0	to moist Red brown and gray SILT and CLAY, some sand, laminated	-10.6		6SS	26	1 1
12.5	Gray medium SAND, trace fine to medium gravel, moist to wet	-13.0	WELL SCREEN	755	>50	0 1.5
	Brown to red brown SILT, some clay, little fine to medium sand, hard, dense, dry to moist	-13.6	BENTONITE PELLET SEAL			
15.0	END OF HOLE @ 13.6 FT. BGS NOTES: 1. No soil samples taken for chemical		SCREEN DETAILS: Screened Interval: 10.7 to 12.8' BGS			
17.5	analysis. Geologic record samples were collected. 2. At completion a monitoring well		Length -2.1° Diameter -2.0° Slot # 10			
20.0	was installed to 13.2 ft BGS.		Material —Stainless Steel Sand pack interval:			
20.0	· ·		8.6 to 13.2' BGS Material —# 4 Sand			
22.5						
		\mathbf{N}	•			
25.0						
∠J.U						
27.5	· · · · · ·					
30.0						
22 5						
32.5	· · · · · · · · · · · · · · · · · · ·					
I						
NOTE				ABLE		
	GRAIN SIZE ANALYSIS 🔾 WATER FO	OUND 🔽	STATIC WATER LEVEL	T		

	STRATIGRAPHIC AND IN (OVERBU		MIATION ING		(L-	-05)
PROJE	CT NAME: LEICA		HOLE DESIGNATION:	BH-A /	/ MW{	8
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUAR	Y 22.	199
CLIENT	: LEICA		DRILLING METHOD:	8 1/4"		
LOCATI	ON: CHEEKTOWAGA		CRA SUPERVISOR:	4 1/4" K. LYNC	ID HSA	Ϋ́,
					п 	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION		SAMPLE	
	REFERENCE POINT (Top of Riser)	656.11		N U M B E	S N A A	
	GROUND SURFACE	656.43		Ē	A A T L E U	k
	Black and brown ASPHALT, some gravel, dry, \int	-0.5				Ť
	Dark gray CINDERS, some brick, clay and	-2.0	BOREHOLE	1SS	23	
2.5	\gravel, moist, fuel oil odor Dark gray CLAY, some coal, some white fibrous		BUNEHOLE	255	15	3
	waste, red discoloration, moist, fuel oil / //	-3.2	PVC PIPE		Δ"	ľ
5.0	\petroleum_odor	-4.8	DENTONITE	355	X 22	2
	Same, except dry to moist	-6.0	GROUT 2°∌ BLACK IRON		()]	ſ
7.5	Red brown SILT, some sand, little clay, dry to moist, sour odor, NATIVE	-7.0	BENTONITE	4SS	X 13	
	Red brown CLAY, little silt and fine round	-7.8	PELLET SEAL		()	
	Gray and brown SILT, some clay, little	-9.2	BOREHOLE	5 SS	Хэ	
10.0	Gray CLAY, some silt, dry to moist, sour		SAND PACK			
ŀ	lodor	-11.5	WELL SCREEN	(6SS	39	
12.5	Gray SAND, little silt and clay, moist	-12.6	BENTONITE PELLET SEAL	755	⊠>50	
	Same, except fine to medium grained, trace to little fine round gravel, moist to wet, sour odor		SCREEN DETAILS:			
15.0	Same, with clay lens, some sheen NAPL (@ 11.5 to 11.8 ft BGS)		Screened Interval: 9.9 to 11.9' BGS			
	Gray fine SAND, some fine gravel, hard,		Length -2.0'			
17.5	dense, dry to moist, petroleum odor END OF HOLE @ 12.6 FT. BGS		Diameter -2.0" Slot # 10			
17.5	NOTES: 1. At completion a monitoring well was		Material —Stainless Ste	el		
`[installed to 11.9 ft BGS. 2. bil samples were collected for chemical		Sand pack interval: 8.2 to 12.0' BGS			
20.0	unalysis from 11.5 to 12.0 ft BGS for	-	Material —# 2 QROC		-	
	VOCs and TPH.					
22.5						
25.0					}	
27.5					1	
					.	[
30.0						
32.5						l
·						
			.			
NOTES	S: MEASURING POINT ELEVATIONS MAY CHANGE	E: REFFR	TO CURRENT FLEVATION			<u> </u>
	\frown		STATIC WATER LEVEL			

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: LEICA

PROJECT NO .: 3967

CLIENT: LEICA

LOCATION: CHEEKTOWAGA

HOLE DESIGNATION: BH-B / MW-9 DATE COMPLETED: JANUARY 22, 1992 DRILLING METHOD: 8 1/4" ID HSA-/ 4 1/4" ID HSA CRA SUPERVISOR: K. LYNCH

DEPTH	-	ELEVATION			<u>SAM</u>	PLE	
ft BGS		ft AMSL	INSTALLATION	N U U	S S	'N'	
	REFERENCE POINT (Top of Riser)	654.99		M B	1	Â	P
	GROUND SURFACE	655.36		Ē	ε	Ū	Срргг
	Black and gray ASPHALT, some gravel, dry	-0.5		155	\mathbf{N}	11	0
- 2.5	Red brown SAND, some silt, little gravel, dry to moist Dark brown and gray CLAY, some gravel, moist	-1.7 -2.8 -3.1	BOREHOLE BOREHOLE B' PVC CASING	255	i	18	0
- 5.0	to wet, slight petroleum odor Red brown and gray CLAY, some silt, little Isand, dry to moist, NATIVE	-4.0 -5.0	CASING CASING CEMENT/ BENTONITE GROUT	355	$\left(\begin{array}{c} \\ \end{array} \right)$	19	2.2
	Red brown and gray SAND, some silt, little fine gravel, trace clay, dry to moist, dense, slight sour odor		BENTONITE PELLET SEAL	455		14	2.4
- 7.5	Red brown SILT, some clay, little sand and fine gravel, dry to moist, no odor	-7.3 -8.3	BOREHOLE 2° BLACK IRON PIPE	555	\emptyset	5	2.8 2.2
- 10.0	Red brown CLAY, some silt, trace fine to medium gravel and sand, dry to moist, no odor	-9.4	SAND PACK	655	$\left(\right)$	•	2.2 2.6 2.7
- 12.5	Same, except little sand in lenses Same, except gray, little_silt and fine_sand Gray SAND, little silt and clay, moist, no	-11.1 -11.8	BENTONITE PELLET SEAL SCREEN DETAILS:	035	А	58	2.7 2.7
- 15.0	odor Same, with trace fine rounded gravel, moist to wet Gray CLAY, little sand seams (1/8" or less),		Screened Interval: 9.0 to 11.0' BGS Length -2.0'				
	Gray fine to medium SAND, trace silt and clay, moist to wet, no odor		Diameter —2.0" Slot # 10 Material —Stainless Steel		ŕ		
- 17.5	Gray fine SAND, some silt, trace gravel, dense, dry to moist, no odor		Sand pack interval: 6.8 to 11.0' BGS Material -#2 QROC		4		
- 20.0	END OF HOLE @ 11.8 FT. BGS NOTES: 1. At completion a monitoring well was installed to 11.0 ft BGS.		#= 1				
- 22.5			. :				
- 25.0							
ľ							
- 27.5			•				
- 30.0							
- 32.5							
NOTE			• •	BLE			
	CHEMICAL ANALYSIS WATER FO	DUND 🔽	STATIC WATER LEVEL				

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: LEICA

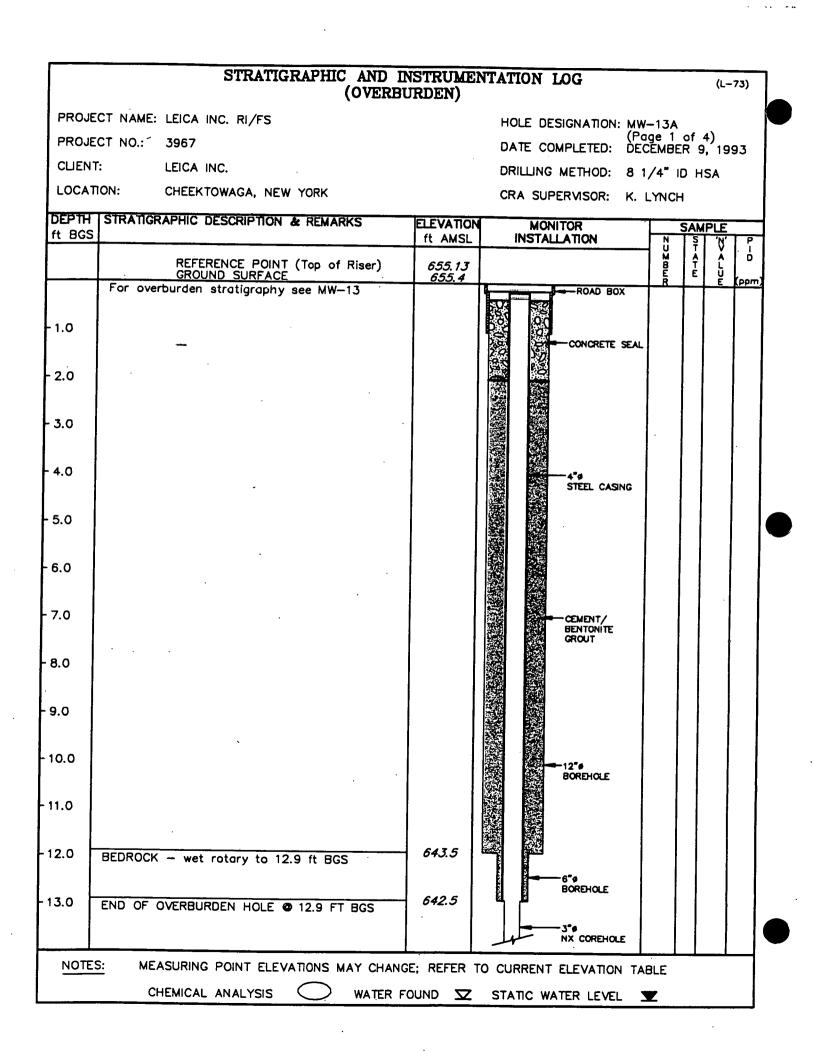
PROJECT NO.: 3967

CLIENT:

LOCATION: CHEEKTOWAGA

LEICA

HOLE DESIGNATION: BH-C / MW-10 DATE COMPLETED: JANUARY 22, 1992 DRILLING METHOD: 8 1/4" ID HSA / 4 1/4" ID HSA CRA SUPERVISOR: K. LYNCH


DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			N PLE	
ft BGS		ft AMSL	INSTALLATION	N S U.T	.₩.	P
	REFERENCE POINT (Top of Riser) GROUND SURFACE	655.48			L L	0
		655.82	ROAD BOX		Ē	ppm)
	Dark brown and red brown SiLT, some clay and sand, trace coal, brick, slag, concrete and plastic, dry to moist, no odor, FILL			1SS X	6	0
- 2.5	Red brown SILT, some clay, little sand and gravel, dry to moist Black and dark gray SILT, some sand and	-3.0	BENTONITE GROUT	255	7	4 19.3
- 5.0	Organic matter, moist, NATIVE Black and dark gray fine to medium SAND, little silt, moist, gasoline odor	-3.8 -4.3	RON PIPE	355	24	23 9.2
- 7.5	Red brown SILT, some clay and sand, dry to moist Red brown CLAY, some silt, little sand, trace	-6.0	BENTONITE PELLET SEAL	4SS 🛛		46 79.2
	gravel, dry to moist, slight odor \Same, except little sand in interbedded lenses,/ some odor	-8.7	BOREHOLE BOREHOLE	555	12	23.9 94.9
- 10.0	Same, with some gravel, musty odor Gray SAND, little silt and clay, trace round gravel, moist	-10.5 -11.6	WELL SCREEN	6SS 🛛	69	39.7 14
- 12.5	Same, except medium grained, poorly graded, wet Gray fine SAND, some fine gravel, hard, dense		<u>SCREEN DETAILS:</u> Screened Interval:			
- 15.0	dry to moist END OF HOLE @ 11.6 FT. BGS NOTES:	i	8.6 to 10.6' BGS Length -2.0' Dia'eter -2.0''			
- 17.5	 At completion a monitoring well was installed to 11.9 ft BGS. Soil sample submitted for chemical analysis for TPH from 3.8 to 4.1 ft BGS. 		Slot # 10 Material —Stainless Steel Sand pack interval: 7.0 to 11.0' BGS Material —#2 QROC			
- 20.0			<i>u</i>			
- 22.5						
- 25.0						
- 27.5						
- 30.0						
- 32.5						
			-			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION TA	ABLE		
	CHEMICAL ANALYSIS O WATER F	OUND 🔽	STATIC WATER LEVEL	T		
• • • • • • • • • • • • • • • • • • • •						

(L-07)

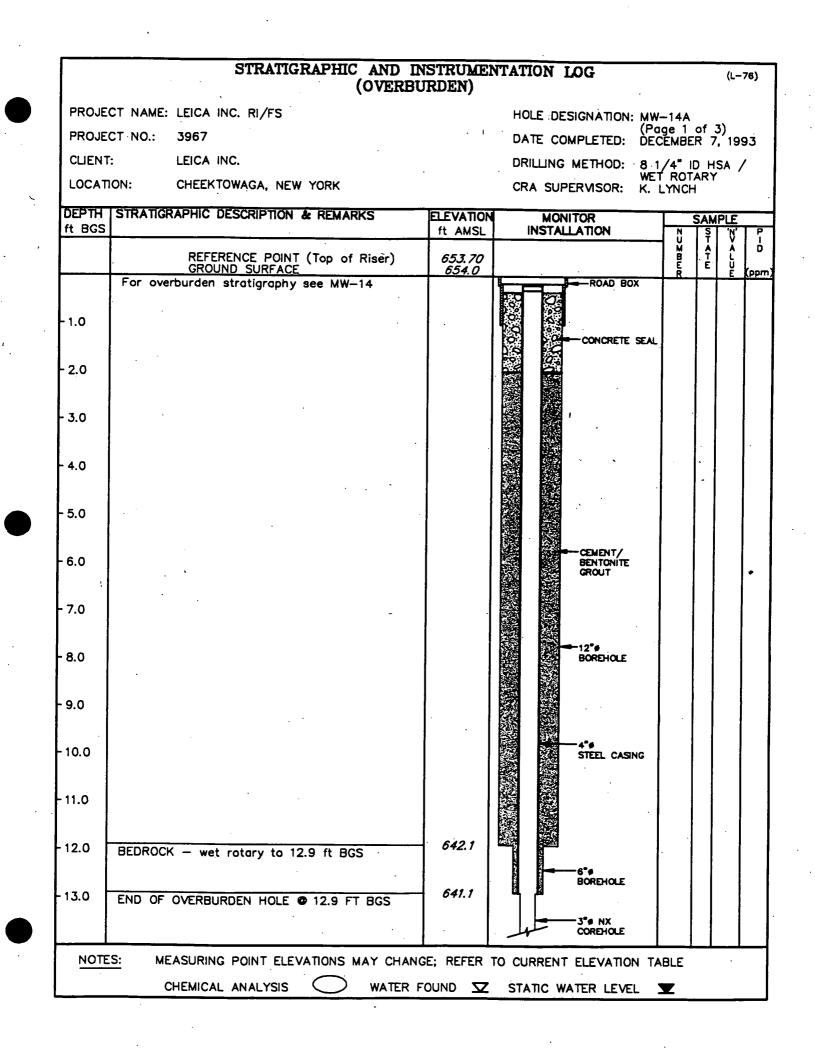
	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L	08)
PROJE	CT NAME: LEICA		HOLE DESIGNATION:	вн-р / м	W -11	
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY 2	23, 1	992
CLIENT	: LEICA		DRILLING METHOD:	8 1/4" ID	HSA	/
LOCATI	ON: CHEEKTOWAGA			4 1/4" ID K. LYNCH	HSA	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			IPLE	
ft BGS		ft AMSL 656.08	INSTALLATION		N.	
	REFERENCE POINT (Top of Riser) GROUND SURFACE	656.58		B T E E		(ppm
	Black and gray ASPHALT, some sand and gravel, dry to moist, FILL	-0.5		155	24	0
	Red brown SAND, some silt, little clay, trace			$ \sim \land$		
- 2.5	gravel, dry Dark brown and red brown CLAY, dry to moist	-3.0	BOREHOLE 8"4 PVC	2SS 🗙	7	0
1	Gray fine to medium SAND, little silt, moist,	-3.8 -4.3	CASING		ł	
- 5.0	\slight odor, NATIVE Red brown SILT, some clay, little sand and	~ ~ ~	BENTONITE SALE GROUT	(JSS)	21	14 20
1	<u>gravel, dry to moist, sour odor</u> Red brown CLAY, some silt, little sand, trace	-6.0		4SS X	70	40
- 7.5	gravel, dry to moist, slight sour odor Same, except gray, some sand in alternating		BENTONITE PELLET SEAL	↓ ³³	32	46.1
	layers		2°ø Black IRON PIPE	5SS 🗙	11	100 42.6
- 10.0	Gray SAND, little silt and clay, well graded,	-9.8	BOREHOLE			
	moist, slight petroleum odor \Same, with some fine to medium gravel, little /	-11.2		(6SS)X	14	260 293
- 12.5	Silt, no clay Gray fine SAND, trace fine gravel, dense, moist,	-12.6	WELL SCREEN	7SS	>50	169
	gravel content increases with depth, slight		SCREEN DETAILS:			
- 15.0	END OF HOLE @ 12.6 FT. BGS		Screened Interval: 10.5 to 12.5' BGS			
	NOTES: 1. At completion a monitoring well was		Length -2.0' Dia'eter -2.0''		-	
- 17.5	installed to 12.5 ft BGS. 2. Soil samples were collected for chemical		Slot # 10			
	analysis from 4.0 to 6.0 ft and from 10.8 to 11.4 ft BGS for VOCs and TPH.		Material —Stainless Ste Sand pack interval:	e		
- 20.0	A sample containing a dark brown NAPL mixed into the soil was collected for		8.6 to 12.6' BGS Material —#2 QROC			
	chemical analysis from the auger plug after augering from 12.0 to 12.5 ft BGS.					
- 22.5	to 12.5 ft BGS.					
	·					
- 25.0			1			
25.0						
						•
- 27.5						
- 30.0						
- 32.5						
		1				
NOTE			•	TABLE		
	CHEMICAL ANALYSIS WATER FO	DUND 🔽	STATIC WATER LEVEL	T		

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-09)
PROJE	CT NAME: LEICA		HOLE DESIGNATION: M	W-12
PROJE	CT NO.: 3967		DATE COMPLETED: J/	ANUARY 29, 1992
CLIENT	T: LEICA		DRILLING METHOD: 8	1/4" ID HSA / 1/4" ID HSA
LOCAT	ION: CHEEKTOWAGA		CRA SUPERVISOR: K.	LYNCH
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS	REFERENCE POINT (Top of Riser)	ft AMSL	INSTALLATION	NUMBEEU
	GROUND SURFACE	656.93 657.30		MAAU BTL EEEU REQPT
	Augered to 6.0 ft BGS		ROAD BOX	R E (ppm)
- 2.5			BOREHOLE BOREHOLE BENTONITE GROUT	
- 5.0			BENTONITE PELLET SEAL	
- 7.5	Red brown SILT, some clay, little sand and fine gravel, dry to moist, no odor, NATIVE	-6.0	2°€ BLACK IRON PIPE 	1SS 34 0
- 10.0	Brown and gray with red brown CLAY, some silt and interbedded sand lenses, dry to moist, no odor	-8.9 -10.2	SAND PACK	2SS 18 0
- 12.5	Same, except little sand Gray SAND, some silt, little fine gravel, moist to wet, slight petroleum odor	-13.4	WELL SCREEN	3SS X 11 0 4SS >50 42
- 15.0	 END OF HOLE @ 13.4 FT. BGS NOTES: 1. At completion a monitoring well was installed to 13.2 ft BGS. 2. Soil samples were collected for chemical 	75.7	<u>SCREEN DETAILS:</u> Screened Interval: 8.2 to 13.2' BGS	
- 17.5	analysis from 10.0 to 12.0 ft BGS for VOCs and TPH.		Length —5.0' Diameter —2.0" Slot # 10 Material —Stainless Steel	
- 20.0	,		Sand pack interval: 6.8 to 13.4' BGS Material —#2 QROC	
- 22.5				
- 25.0				
- 27.5	·			
· 30.0				
32.5			· · ·	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION TA	ABLE

	STRATIGRAPHIC AND IN (OVERBU		VTATION LOG			(L-72)]
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: MW	-13			
PROJE	CT NO.: 3967	ŕ	DATE COMPLETED: DEC	СЕМВЕ	R 8,	1993	
CLIENT	: LEICA INC.	,	DRILLING METHOD: 4 1	/ 4" I	D HSA	N N	l l
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K.	LYNCF	4		
DEPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR		SAMPI	E N P	1
	REFERENCE POINT (Top of Riser) GROUND SURFACE	654.66 654.9		- U M B E R	A T E	V I A D L U E (PPT	• • •
	ML—SILT(FILL), some clay, little sand, dark brown, moist, no odor, no sheen		ROAD BOX		M		1
1.0				155	V	4 2	
	ML—SILT(NATIVE), some clay, little sand, trace	653.5	CONCRETE SEAL	133	$ \Lambda $	* 2	
2.0	gravel and rootlets, stiff to very stiff, laminated, red brown, dry to moist				\square		
					N A		
3.0			CEMENT/	255	IVI,	4 4	
	· · ·		BENTONITE GROUT		IVI -		
4.0			8.0		\square		
·			BOREHOLE		N A		j –
5.0				355	2	2 0.6	
		, i	BENTONITE PELLET SEAL		$ \Lambda ^{-}$		
6.0			FELLET SEAL		\square		
			205 200		N A		
7.0	SM—SAND, little silt, trace fine round gravel, trace intermittant clay, fine to medium grained, gray with brown, moist to wet	648.1	2"9 BLACK IRON PIPE	4SS	2	4 1	
8.0		1			\Box		1
			SAND PACK		Λ		
9.0 \				555	2	5 0	
			WELL SCREEN		AL.		
10.0					$(\square $		
					$\mathbb{V}_{\mathbb{N}}$		
11.0	SP-SAND(TILL), little to some subrounded gravel,	643.9	BENTONITE	6SS	Å >6	0 0	
┢	trace silt, dense, fine grained, gray, moist END OF HOLE @ 11.4 FT. BGS	643.5	PELLET SEAL	i K	4	· ·	ł
2.0	NOTES: 1. At completion a 2° monitoring well was		SCREEN DETAILS: Screened Interval: San	d paci	 kinte	rval:	
	installed to 10.5 ft BGS. 2. Soil samples collected for chemical analysis		8.5 to 10.5' BGS 6.5	5 to 1	0.7'E		
3.0	from 2.0 to 4.0 ft BGS and 8.0 to 11.0 ft BGS for TCL VOCs, TAL Metals and TPH.		Diameter -2.0" Slot # 10		″		
	3. Shelby tube sample collected from adjacent borehole from 3.5 to 5.5 ft BGS for grain		Material -Stainless Steel				
NOTE:	size, permeability, porosity, atterberg limits S: MEASURING POINT ELEVATIONS MAY CHANGE						

	STRATIGRAPHIC ANI (BB) INSTR EDROCK	:UME)	NTATION LOG				(1	L-74)
	CT NAME: LEICA INC. RI/FS	, •		HOLE DESIGNA		(W-13 Page	2 of 4)	
	· · · · · · · · · · · · · · · · · · ·			DATE COMPLE		-		BER 9,	
				DRILLING METH		V	8 1/4" MET RC K. LYN(ID HSA TARY CH	< /
DEPTH	DESCRIPTION OF STRATA	E E V A T O N		MONITOR	BI DE DE CCV KL		RECOVERY	R Q D	WATER
ft BGS		ft. AMSL			\vdash		%	78	2
		1							.
	Overburden			BOREHOLE					
12.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine grained, slightly to moderately weathered, trace vertical fractures, massively bedded, trace coral,	643.5		BENTONITE GROUT BOREHOLE BOREHOLE CASING		WR			
	partings – heavily weathered rubble (12.9 to 13.3 ft BGS)			Chaine					
14.0	 moderately weathered break (@ 13.7 ft BGS) slightly weathered vertical break (14.0 to 14.3 ft BGS) 					1	95	19.0	9
15.0	— moderately weathered break (@ 14.5, 14.7 and 16.4 ft BGS)								
16.0									
17.0									
18.0	– 40° inclined moderately weathered break (@ 17.5 ft BGS) – stylolite (@ 17.7 ft BGS)								
	— small coral (@ 18.6 ft BGS)							•	· .
19.0	 stylolite break, slightly weathered (@ 19.1 ft BGS) abundant small coral, pitting due to 								
20.0	coral erosion (19.1 to 20.0 ft BGS) — coral (20.0 to 20.2 and 20.3 to 20.5 ft BGS)					2	99	98.0	80
21.0	 massive coral, open veined, brown stained, fuel oil odor (20.6 to 21.1 ft BGS) black carbon depoits in openings of coral, 1/4" layer (@ 21.1 ft BGS) abundant small coral (21.1 to 								
22.0	21.7 ft BGS) — no staining (below 21.7 ft BGS) — abundant small coral, mostly small rugose and fan (@ 21.7 to 45.0 ft BGS)			•					
23.0									

. .


	STRATIGRAPHIC AND	D INSTRU EDROCK)				(L	74)
PROJE	CT NAME: LEICA INC. RI/FS	••• /	HOLE DESIGNAT	10N:	<u>м</u> w–13	<u>A</u>	
PROJE	CT NO.: 3967		DATE COMPLETE	ED:	(Page DECEMI	3 of 4) BER 9, 1	1993
CLIENT	EICA INC.		DRILLING METHO	DD:	8 1/4"	ID HSA	. /
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISO	R:	WET ROK		
DEPTH	DESCRIPTION OF STRATA		MONITOR	BI R En U Dt n Re OC CV KA	NUXBER	RQD	WR AE TT EU R N
ft BGS		ft. AMSL			%	%	%
- 24.0	— fans coral (23.7 to 23.9 ft BGS)			2	99	98.0	80
- 25.0	— large rugose coral (25.1 to 25.2 ft BGS)			-			
- 26.0	 moderately weathered break (@ 26.4 ft BGS) 						
- 27.0 - 28.0	– open veined fan coral (27.6 to 27.8 ft BGS) – small brachlopod fossils (@ 27.9 ft BGS) – coral (28.3 to 28.4 ft BGS)		3°# NX COREHOLE				
- 29.0	— rugose coral (29.2 to 29.3 ft BGS)						
- 30.0				3	100	100.0	70
- 31.0							
- - 32.0	— moderately weathered coral zone, abundant coral (31.6 to 33.2 ft BGS)						
- 33.0	- stylolytic zone, finer grained, no coral						
- 34.0	(33.5 to 33.8 ft BGS) — massive coral zone, heavily weathered, yellow brown color, slight odor (34.2 to 34.6 ft BGS)						
- 35.0	— weathered break (@ 35.0, 35.8 and 37.0 ft BGS)			4	100	100.0	80
NOTES; M	EASURING POINT ELEVATIONS MAY CHANGE; REFI		RENT ELEVATION TABLE		1		
	WATER FOUND STATIC WATER	LEVEL	NM - NOT MEA	SURE	D		

-

	STRATIGRAPHIC AND (BE	DROCK	() ()	MIATION LOG				v	L-7
PROJE	CT NAME: LEICA INC. RI/FS			HOLE DESIGN		1:	MW-13	A	
PROJE	CT NO.: 3967			DATE COMPLE	TED:	ہ ا.	(Page DECEMI	4 of 4) BER 9,	199
CLIEN	T: LEICA INC.			DRILLING METH	HOD:	1	B 1/4"	ID HSA	
LOCAT	TON: CHEEKTOWAGA, NEW YORK			CRA SUPERVIS	SOR:	۱	WET RO	DTARY	•
DEPTH	DESCRIPTION OF STRATA			MONITOR	BI DT RCV KA	RN UU NM E R	CRE CRE CORE VERY	RQD	
ft BGS		N N ft. AMSL					Y X	76	\downarrow
				•			. /0	10	
36.0	— lighter gray, abundant small coral (35.3 to 37.9 ft BGS)								
37.0								·	
38.0	— darker gray, coarser grained, slight odor (38.0 to 40.6 ft BGS)								
39.0	— large rugose coral (@ 39.0 to 39.2 ft BGS)	· . ·					1		
40.0						4	100	100.0	8
41.0	— lighter gray, less coral, no staining, finer grained stylolites (40.6 to 44.5 ft BGS)								
42.0				· .					
43.0									
44.0	– large stylolites (44.5 ft BGS)								
45.0	 large stylolites (44.5 ft BGS) abundant fan coral, darker gray matrix, brown staining, slight odor (44.5 to 45.0 ft BGS) END OF HOLE @ 45.0 FT. BGS 	610.4	. [
46.0									I
47.0									

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-75)
PROJE	•	,	HOLE DESIGNATION: MW-14	ŧ
PROJE	CT NO.: 3967		DATE COMPLETED: DECEM	
CLIENT	ELICA INC.		DRILLING METHOD: 4 1/4	
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K. LYN	ICH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
't BGS		ft AMSL	INSTALLATION	S S V F
	(OVERE JECT NAME: LEICA INC. RI/FS JECT NO.: 3967 NT: LEICA INC. TION: CHEEKTOWAGA, NEW YORK I STRATIGRAPHIC DESCRIPTION & REMARKS S REFERENCE POINT (Top of Riser) GROUND SURFACE ML-SILT(FILL), some clay, little sand, trace vegetation, medium stiff, red brown, dry to moist ML-SILT(NATIVE), little sand, trace clay, roots loose, loamy, dark brown, moist - some sand, little clay, soft, red brown, moi CL-CLAY, little silt, trace fine to medium subrounded gravel, laminated, stiff to very sti red brown, dry to moist - soft, red brown and gray SM-SAND, trace clay and silt, trace fine subrounded gravel, medium dense, gray, moist SP-SAND(TILL), little to some fine subrounded gravel, dense, gray SDO or Flue 11.8 ft BGS, auger refusal 0 12.0 ft BGS 1. At completion a 2" monitoring well was installed to 11.0 ft BGS 2. Sold soft TCL TCLP Medias, BNAs.	653.38 653.7		A A A C B T L E E U E E OP
	CT NAME: LEICA INC. RI/FS CT NO.: 3967 : LEICA INC. ION: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMARKS REFERENCE POINT (Top of Riser) GROUND SURFACE ML-SILT(FILL), some clay, little sand, trace vegetation, medium stiff, red brown, dry to moist ML-SILT(NATIVE), little sand, trace clay, roc loose, loamy, dark brown, moist - some sand, little clay, soft, red brown, m CL-CLAY, little silt, trace fine to medium subrounded gravel, laminated, stiff to very s red brown, dry to moist - soft, red brown and gray SM-SAND, trace clay and silt, trace fine subrounded gravel, medium dense, gray, moi SP-SAND(TILL), little to some fine subround gravel, dense, gray /Spoon refusal @ 11.8 ft BGS, auger refusal @ 12.0 ft BGS) END OF HOLE @ 12.0 FT. BGS NOTES: 1. At completion a 2" monitoring well was installed to 11.0 ft BGS. and 10.0 to 11.0 ft BGS for TCL/TCLP Metals, BNAS, VOCs and TOC, TPH AND 310.13.		ROAD BOX	
1.0	ML—SILT(NATIVE), little sand, trace clay, roots, loose, loamy, dark brown, moist	652.7	CONCRETE SEAL	55 7 6.
2.0 3.0	— some sand, little clay, soft, red brown, moist			\square
4.0	CL-CLAY, little silt, trace fine to medium	649.9	2S BENTONITE GROUT	
5.0	red brown, dry to moist		3S	is 33 40
.0			BENTONITE PELLET SEAL	$\left(\right)$
' .0		646.0	4S	S 10 3
.0	SM—SAND, trace clay and silt, trace fine subrounded gravel, medium dense, gray, moist	040.0		\mathbf{M}
.0			55	S X 21 37
0.0		642.9	BOREHOLE	
1.0	gravel, dense, gray	042.9		S) 40 24
2.0	END OF HOLE @ 12.0 FT. BGS NOTES:	641.9 641.7	SCREEN DETAILS:	
3.0	installed to 11.0 ft BGS. 2. Soil samples collected for chemical analysis from 0.0 to 2.0 ft BGS and 10.0 to 11.0 ft BGS for TCL/TCLP Metals. BNAs.		Screened Interval: Material 8.5 to 10.5' BGS Steel Length -2.0' Sand pa Diameter -2.0" 7.0 to	–Stainless ick interval: 11.0' BGS –# 0 Morey
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER T	O CURRENT ELEVATION TABLE	-
	CHEMICAL ANALYSIS 🔿 WATER FO		STATIC WATER LEVEL	

·

•	STRATIGRAPHIC ANI) INSTR EDROCK		NTATION LOG				(L	-77)
PROJE	CT NAME: LEICA INC. RI/FS			HOLE DESIGNA	TION	l: Ņ	W-14	4	
PROJE	CT NO.: 3967			DATE COMPLET	ED:	(D	Page 2 ECEMB	2 of 3) IER 7, 1	1993
CLIENT	EICA INC.	• .		DRILLING METH	OD:		1/4"	ID HSA	1
LOCAT	ION: CHEEKTOWAGA, NEW YORK			CRA SUPERVIS	OR:	۷ K	VET RO . LYNC	TARY CH	·
	I	Ε			Тві	RN	CR	I R	WR
DEPTH	DESCRIPTION OF STRATA			MONITOR	BENTE DTE ROCVAL		CORE RECOVERY	R Q D	AE TT EU R N
ft BGS		ft. AMSL					%	%	7.
	Overburden			BOREHOLE					
12.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine grained, slightly to moderately weathered, trace vertical	642.1		GROUT GROUT GROUT BOREHOLE		WR			
13.0	some chert, stylolites, some carbonaceous partings – slightly weathered break (@ 13.0 ft BGS)			Gasing					
14.0	 weathered zone, dark chert (13.4 to 13.6 ft BGS) brachiopod fossil (@ 14.0 ft BGS) coral (14.4 to 14.5 ft BGS) 					1	90	52.0	90
15.0	 medium grained, buff, pink and gray, trace coral (15.0 to 15.4 ft BGS) dark chert nodule (15.7 to 15.9 and 16.4 to 16.7 ft BGS) 								
16.0				3"¢ NX COREHOLE					
17.0	— small crystal filled vug (@ 16.8 ft BGS) — shale layer, banding (@ 17.0 ft BGS)					1 1 1	,		
18.0	— stylolite parting (@ 18.4 ft BGS)								
19.0	 − coral (18.8 to 18.9 ft BGS) − stylolite parting (@ 19.2 ft BGS) 								
20.0	— dark detrital layer between two stylolites (19.7 to 19.9 ft BGS)					2	100	74.0	40
21.0	 moderately weathered break (@ 20.7 ft BGS) 								
22.0	— slightly weathered break (@ 21.7 ft BGS) — fan coral (22.1 to 22.4 ft BGS)								
23.0	— heavily weathered zone, rubble (23.2 to 23.4 and 23.6 to 23.8 ft BGS)								
<u>NOTES</u> : M	EASURING POINT ELEVATIONS MAY CHANGE; REF	ER TO CU	RRENT	ELEVATION TABLE				_	

•

,

•

	STRATIGRAPHIC ANI (BE	DINSTR DROCK)					(L	L-77)
	CT NAME: LEICA INC. RI/FS CT NO.: 3967 : LEICA INC.	-	HOLE DESIGNA DATE COMPLE DRILLING METH CRA SUPERVIS	TED: IOD:	() C 8 V	DECEMB	3 of 3) IER 7, 1 ID HSA ITARY	199:
DEPTH	DESCRIPTION OF STRATA	ELE>4T-OZ	MONITOR	BIN DT RER CCV KAL	RU NM E R		R Q D	W A TER
ft BGS		ft. AMSL			_	%	%	7
24.0					2	100	74.0	4
25.0				╞	\dashv			<u> </u>
26.0	— slightly weathered break (@ 25.7 and 25.9 ft BGS)		•					
27.0	 moderately weathered break (@ 26.5 ft BGS) rugose coral (26.8 to 27.0 ft BGS) 							
28.0	 slightly weathered break (@ 27.6 ft BGS) solution pitting (28.4 to 28.5 ft BGS) 					· .		
29.0	— smali coral (@ 29.0 ft BGS)	· 1	COREHOLE					
30.0	 − slightly weathered break (@ 29.5, 29.6, 30.3 ft BGS) − coral (29.8 to 30.0 ft BGS) 				3	101	95.0 ·	
31.0	— massive fan coral, open veins, weathered, stained, fuel oil odor (31.1 to 32.0 ft BGS)							
32.0								
33.0	- coral break, moderately weathered, open veins, fuel oil odor (@ 32.7 ft BGS)							
34.0	- frequent small coral, open veins, slight fuel oil odor (33.4 to 35.0 ft BGS)							
35.0 -	END OF HOLE @ 35.0 FT. BGS	619.0						

.

· ·

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L-	78)
PROJE	CT NAME: LEICA INC. RI/FS	-	HOLE DESIGNATION: MW	-15		I
PROJE	CT NO.: 3967			CEMBER	14. 19	993
CLIENT	EICA INC.			/4" ID H	•	
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K.	•		
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		NPLE	
ft BGS		ft AMSL	INSTALLATION		<u> '\</u>	P
	REFERENCE POINT (Top of Riser) GROUND SURFACE	658.35 658.7		M A B T E E R		Ú (ppm)
	Augered through asphalt and pavement	658.2	ROAD BOX		Ι	
- 1.0	SP-SAND(FILL), some gravel, brown, moist		CONCRETE SEAL	155	9	ο
- 2.0	ML-SILT, little sand and clay, brown, moist ML-SILT(NATIVE), little to some clay, little sand, trace fine subrounded gravel, very stiff, laminated, red brown, dry to moist	657.0 656.7				
- 3.0			GROUT	255	21	0
- 4.0 - 5.0	,		BENTONITE PELLET SEAL	355	22	0.6
- 6.0			2"# BLACK IRON PIPE			
- 7.0	- softer		SAND PACK	455	23	ο
- 8.0	SM—SAND, little silt, trace fine rounded gravel, fine to medium grained, gray, moist to wet, no sheen, no odor	651.1				
- 9.0			WELL SCREEN	555	6	0
- 10.0 - 11.0			WELL SCREEN	655	52	0
- 12.0	SM—SAND(TILL), some silt, little gravel, very dense, brown, dry	647.4 646.7	BENTONITE PELLET SEAL	•••• \	52	
-13.0	 END OF HOLE @ 12.0 FT. BGS NOTES: 1. At completion a 2" monitoring well was installed to 11.3 ft BGS. 2. Soil samples retained for geologic record. 		6.3 to 11.3' BGS Sta Length -5.0' San Diameter -2.0" 5.3	erial —St eel d pack i 5 to 11.3 erial —#	ntervo ' BGS	al: 5
NOTE				BLE	•	
	CHEMICAL ANALYSIS WATER FO		STATIC WATER LEVEL	Y		

			(OVERBU	JRDEN)					, L	,
		S			HOLE D	DESIGNATION:	MW-15	5A	A)	
ECT NO.:	3967				DATE C	COMPLETED:	DECEM	BER	4) 16, 19	993
T: I	LEICA INC.					G METHOD:	8 1/4	ID F	ISA ,	/ .
TION:	CHEEKTOWAGA,	NEW YORK			CRA SU	JPERMSOR:	WEIR K. LYN		ř.	
STRATIGRA	APHIC DESCRIPT	ION & REMA	RKS				F			T P
		DINT (Top of	f Riser)	658.51			1 1		V A LU	
For overb	ourden stratigra	phy see MW	15	050.0		ROAD BO	F	<u> </u>	Ē	(ppm)
					0202					
							SEAL			
				· ·		2 2				
	•							ĺ	ľ	
	• .									
		、				4"4			ĺ	
						STEEL CASIN	16			
								1		
									· ·	
						GROUT				
			•							
								- (
										· . · .
1		-				-12.0				
						DURCHOLE				
								·		
			,			,				
	4 									
BEDROCK	— wet.rotary t	o 14.4 ft BC	GS	646.0		i				
	•				-	BOREHOLE			I. (1
1	CT NO.: T: TON: STRATIGRA For overt	CT NAME: LEICA INC. RI/F CT NO.: 3967 T: LEICA INC. TON: CHEEKTOWAGA, STRATIGRAPHIC DESCRIPT REFERENCE PA GROUND SURF For overburden stratigra	CT NAME: LEICA INC. RI/FS CT NO.: 3967 T: LEICA INC. NON: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMA REFERENCE POINT (Top of GROUND SURFACE For overburden stratigraphy see MW	(OVERBU CT NAME: LEICA INC. RI/FS CT NO.: 3967 T: LEICA INC. TON: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMARKS	(OVERBURDEN)	(OVERBURDEN)	CT NAME: LEICA INC. RI/FS DATE COMPLETED: CT NO:: 3967 DATE COMPLETED: DATE COMPLETED: DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR: STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION REFERENCE POINT (Top of Riser) 658.57 For overburden stratigraphy see MW-15 For overburden stratigraphy see MW-15 CONCRETE S STEEL CASH COMPANY BOTTONIE GROUND SURFACE COMPANY BOTTONIE CONCRETE S COMPANY BOTTONIE CONCRETE S	(OVERBURDEN) ICT NAME: LEICA INC. RI/FS HOLE DESIGNATION: MW-15 CT NO.: 3957 DATE COMPLETED: DECEM DRILLING METHOD: 8 1/4 R ICT NO.: SUPERVISOR: K. LYN ICT NO.: SUP NO.: SUP NO.: SUP NO.: SUP NO.: SUP	(OVERBURDEN) HOLE DESIGNATION: MW-15A (Poge 1 of DATE COMPLETED: DECEMBER CCT NO.: 3957 CALLING METHOD: 8 1/4" ID HOLE DESCRIPTION & REMARKS ELEVATION (REFERENCE POINT (Top of Riser) COMORETE SEL GROUND SURFACE For overburden stratigraphy see MW-15	(OVERBURDEN)

· ·

· .

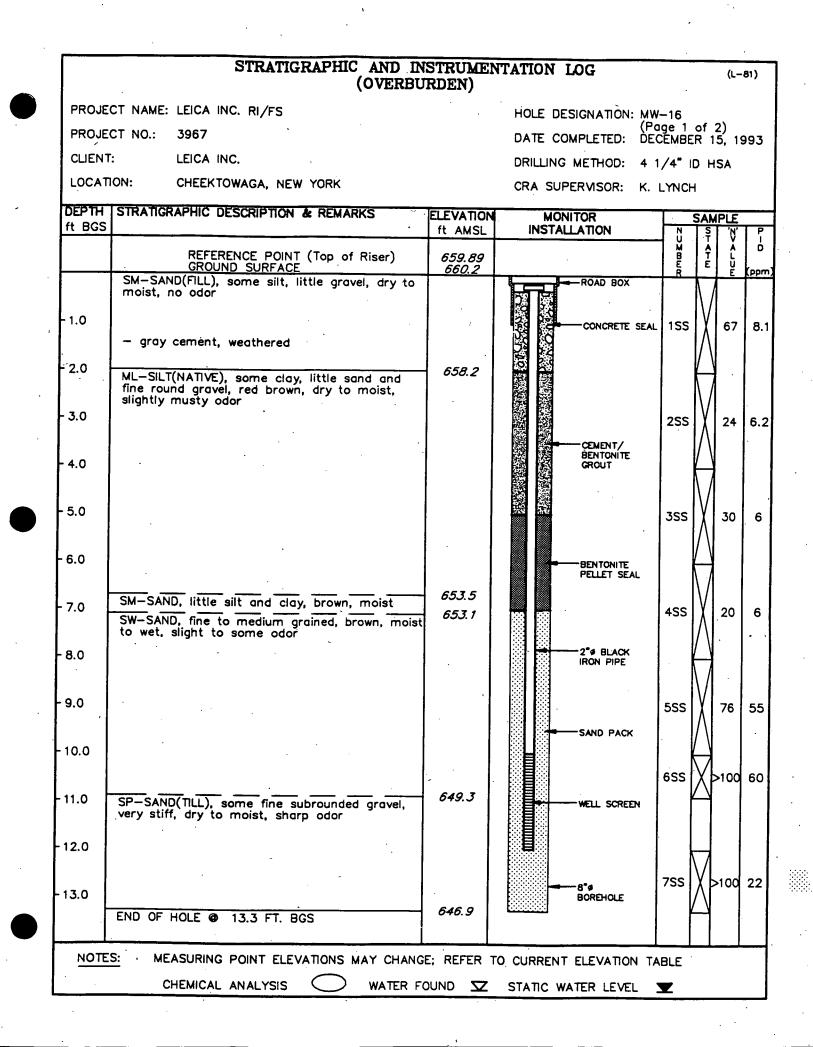
	STRATIGRAPHIC AND INSTRUM (OVERBURDEN)								TATI	ON 1	DG			_		(L`	79)	
PROJEC	T NAME:	LEICA	INC. RI	/FS		•			•	HOL	E DE	SIGNA						
PROJEC	T NO.:	3967								DAT	E CO	MPLET	ED:	(Pac DEC	je 2 EMBE	of 4 R 16	4) 5, 19	93
CLIENT:		LEICA	INC.									METH	DD:	8 1,	/4"	р не	5A /	
LOCATIO	DN:	CHEEK	TOWAGA	, NEW	YORK							ERMSC		WET	ROT	ARY	·	
DEPTH ft BGS	STRATIGR	APHIC	DESCRIP	TION &	REMA	RKS		ELEV ft A			MON	ITOR				SAM		P
1005		·							MOL						NUNBER	A T	ľ A L	l b
										8					R R	É	U E	(ppm
14.0											-	6"ø BORE						
14.0	<u></u>							64	4.4	2 and 1								
15.0	END OF	OVERB	URDEN	HOLE	9 14.4	FTB	GS											
10.0											-		IX HOLE					
16.0																		
														ĺ			ĺ	
17.0																		
18.0																		Į
19.0																		I
																		1
20.0																		
21.0	• .																·	
22.0																		
										•		(
23.0																		
								·										i
24.0																		ĺ
		•								-								
25.0																		
26.0																		

-.

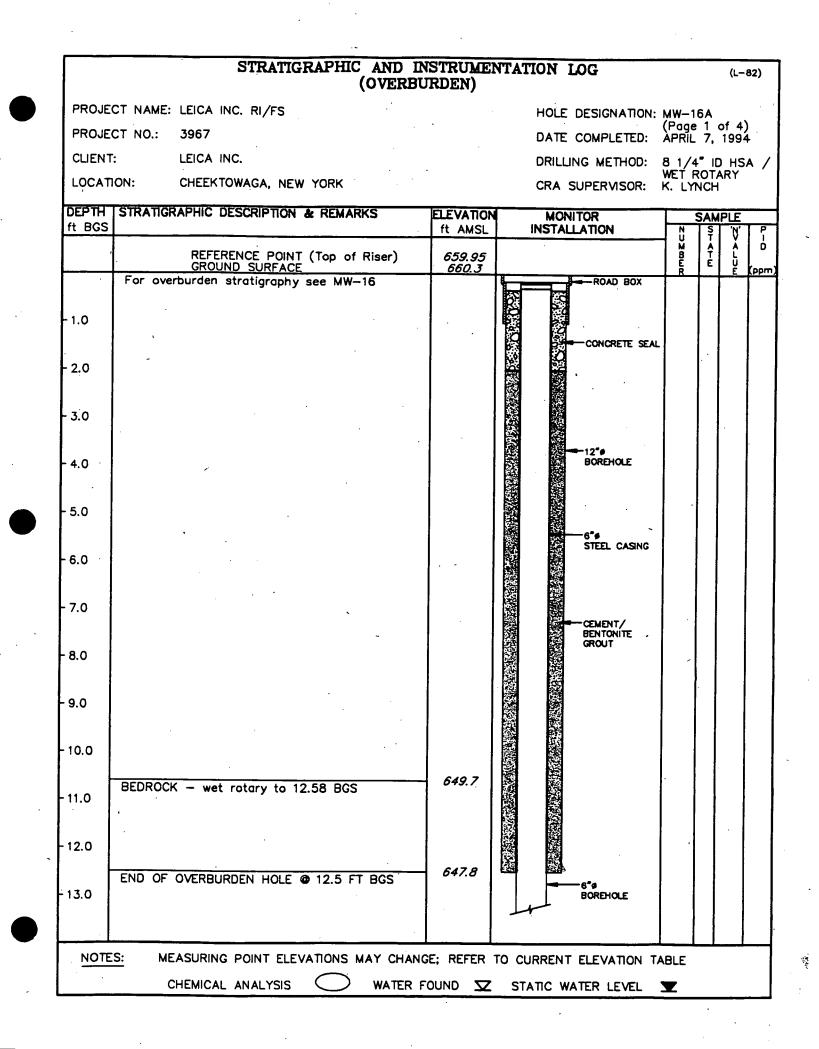
٩,

.

•


. .

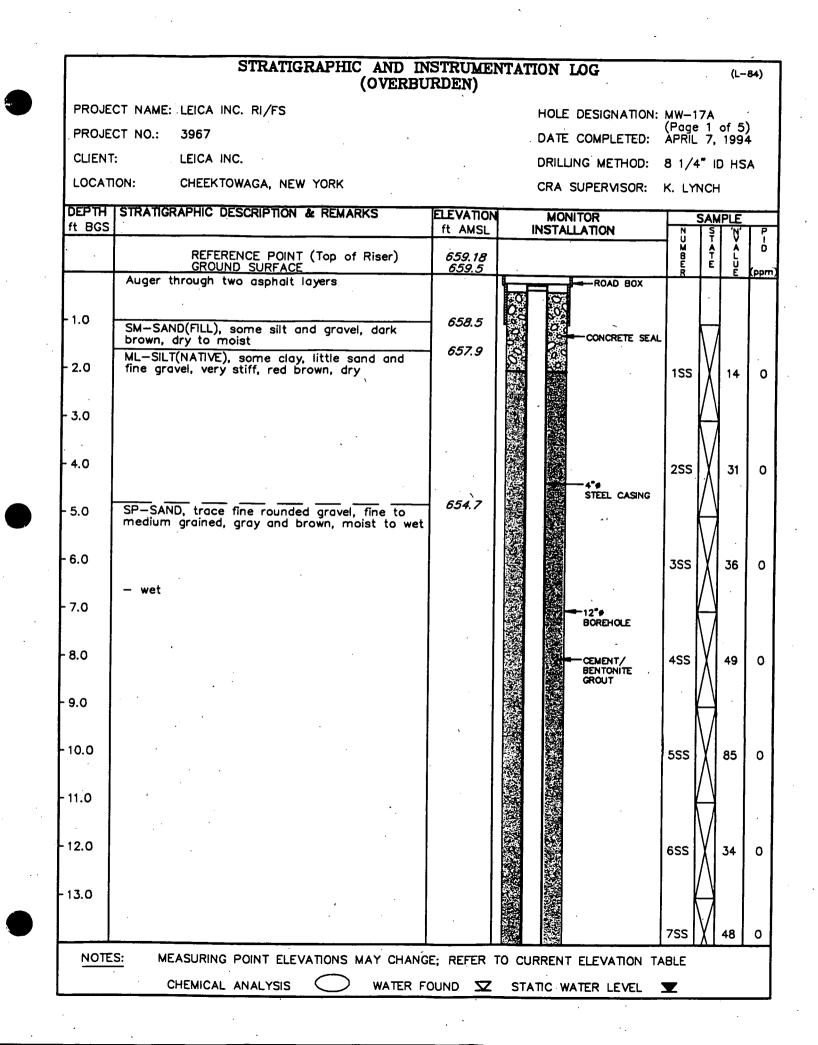
	STRATIGRAPHIC AND (BE	D INSTR DROCK)				(1	L∸80
PROJE	CT NAME: LEICA INC. RI/FS	•		TION:			
PROJE	CT NO.: 3967		DATE COMPLET	ED:	(Page) DECEME	3 of 4) BER 6,	199
CLIENT	EICA INC.		DRILLING METH	OD:	8 1/4"	ID HSA	× /
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMS	OR:	WET ROK	DTARY CH	•
DEPTH	DESCRIPTION OF STRATA	E LEVAT-OZ	MONITOR INSTALLATION	BI RI En UI Dt Ni Rer CV KA L		RQD	V T E F
ft BGS		ft. AMSL			%	%	
	Overburden		6.0				+
14.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine grained, slightly to moderately weathered, trace vertical fractures, massively bedded, trace coral, some chert, stylolites, some carbonaceous	640.U	BOREHOLE SENTONITE GROUT CASING	wr	2		
15.0	partings — moderately weathered, some rubble, trace coral (14.4 to 15.0 ft BGS) — moderately weathered fracture (@ 15.8 and 17.9 ft BGS)				,		
16.0	 detrital layers, medium grained, little fossil/coral fragments (15.8 to 16.0, 16.4 to 16.6 and 16.8 to 17.6 ft BGS) large brachiopod (@ 16.6 ft BGS) 						
17.0	 moderately weathered caronaceous parting (@ 16.8 ft BGS) slightly weathered carbonaceous parting (@ 17.6 ft BGS) brown chert nodule, calcite veinlets 						
18.0	(17.8 to 18.6 ft BGS) — light gray, medium grained, frequent coral fragments (17.9 to 20.2 ft BGS) — moderately weathered carbonaceous	`		1	78	78.0	e
19.0	 parting (@ 18.1 and 18.2 ft BGS) heavily weathered fracture (@ 18.5 ft BGS) brown and white calcite (18.6 to 18.8 ft BGS) 				•	5A 3 of 4) IBER 6, 1 * ID HSA OTARY NCH R D %	
20.0	 coral, opén veins, white (18.8 to 19.0 ft BGS) rugose coral (19.0 to 19.1 ft BGS) brachiopods (@ 19.2 ft BGS) 						
21.0	 rugose coral outline, open pores, crescent shaped (19.3 to 19.4 ft BGS) coral (19.9 to 20.2 ft BGS) weathered fracture, rubble (@ 21.1 ft BGS) 		COREHOLE				
22.0	 heavily weathered zone (21.1 to 22.0 ft BGS) lighter colored, medium grained, detrital, trace small coral (22.0 to 26.0 ft BGS) 						
23.0	- moderately weathered carbonaceous parting (@ 24.0 to 24.3 ft BGS)						
24.0	•	invision invis					
25.0	— coral, slight yellow discoloration, weathered (24.8 to 25.0 ft BGS)						
	· · · · · · · · · · · · · · · · · · ·			1			


	STRATIGRAPHIC AND	DROCK)					(1	L-
PROJE	CT NAME: LEICA INC. RI/FS	DIOCK	HOLE DESIGN		: N	w -15/	4	
PROJE	CT NO.: 3967		DATE COMPLE		(Page 4	4 of 4) BER 6,	19
CLIENT			DRILLING MET				ID HSA	
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVIS		- V	MET RO	TARY	•
DEPTH	DESCRIPTION OF STRATA	ELEV AT - OR	MONITOR INSTALLATION	BENTERVAL		CORE VERY	R Q D	
ft BGS		ft. AMSL				7.	%	
- 26.0	darker gray, medium grained, detrital layers, occasional coral, fossil fragments, numerous slightly weathered breaks (25.6 to 28.5 ft BGS)				2	100	69.0	
- 27.0	— vertical fractures, slightly weathered (27.3 to 27.7 ft BGS)							
- 28.0					3	100	71.0	
- 29.0					-			
- 30.0	 slightly weathered fracture(@ 29.9 ft BGS) light brown to buff chert, fine grained, several calcite filled veinlets (29.9 to 30.7 ft BGS) 		3"# NX COREHOLE					
- 31.0	- medium gray, trace stylolites, light to dark gray mottling (30.7 to 34.3 ft BGS)							
- 32.0	 35 to 45[*] inclined carbonaceous partings and bedding (@ 31.8, 32.3 and 32.4 ft BGS) 							
- <u>33.0</u>					4	100	94.0	
- 34.0	- brown chert nodule (34.3 to 34.6 ft BGS)				г		0.1.0	
35.0	— buff chert nodules (35.2 to 36.0 ft BGS)							
36.0	END OF HOLE @ 36.0 FT. BGS	622.8		┝─┼				
37.0								
	EASURING POINT ELEVATIONS MAY CHANGE; REFI		RRENT ELEVATION TABLE NM - NOT M					L

•

•

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L	-81)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: MW			
PROJE	CT NO.: 3967		(Po DATE COMPLETED: DEC	ige 2 c EMBER	of 2) 16, 1	993
CLIENT	EICA INC.		DRILLING METHOD: 4 1	/4" ID	HSA	
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K.	LYNCH		
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		S	AMPLE	<u>.</u>
ft BGS		ft AMSL	INSTALLATION	N.	ST A LU	P - 0
				M B E R	T L E U E	
- 14.0	 NOTES: 1. At completion a 2" monitoring well was installed to 12.0 ft BGS. 2. Soil samples retained for geologic record. Chemical analysis sample collected from BH-EDW1-93, 16.0 ft northwest. 		SCREEN DETAILS: Screened Interval: 10.0 to 12.0' BGS Length -2.0' Diameter -2.0" Slot # 10			
- 15.0			Material —Stainless Steel Sand pack interval: 7.0 to 13.3' BGS Material —# 0 Morey			
- 16.0						
17.0						
18.0						
19.0						
20.0						
21.0						
22.0						
23.0	· -					
24.0						
25.0						
26.0						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION TA	BLE	<u>.</u>	↓
	- CHEMICAL ANALYSIS - WATER FU	•				



	STRATIGRAPHIC ANI (BI) INSTR	UMENTA)	ATION LOG	ł			
PROJE	CT NAME: LEICA INC. RI/FS		,	HOLE DES	SIGNA	TION		-16A
PROJE	CT NO.: 3967			DATE CON	IPLE1	TED:	(Pa APf	ige 2 (RIL 7,
CLIENT	EICA INC.		•	DRILLING	метн	OD:	8 1	/4" 10
LOCAT	ION: CHEEKTOWAGA, NEW YORK			CRA SUPE	ERVIS	OR:		Í ROTA LYNCH
DEPTH	DESCRIPTION OF STRATA	ELEVAT-OZ		ONITOR ALLATION	BI EN DT RR CV KA		CECOVERY	RQD
ft BGS		ft. AMSL					%	%
	Overburden -			12.0				
- 12.0	LIMESTONE(Onondaga Formation, Moorehouse Member): light gray, fine grained, slightly to moderately weathered, trace vertical fractures, massively bedded, trace corol	649.7		BOREHOLE CEMENT/ BENTONITE GROUT 6*9 STEEL		WR		
13.0	fractures, massively bedded, trace coral, some chert, stylolites, some carbonaceous partings — heavily weathered zone, rubble (12.5 to 17.0 ft BGS)			CASING				
14.0								
15.0								
16.0				€ ~ 6*ø				
17.0	- rock more intact, good RQD (17.0 to 20.8 ft BGS)			BOREHOLE		1	59	39.0
18.0	– buff colored chert (17.9 to 18.4 ft BGS)							
19.0							i	
20.0								
21.0	— heavily weathered zone, rubble, little dark chert, mud zone (20.8 to 22.0 ft BGS)							
22.0	— rubble zone, heavily weathered, trace to little dark chert (22.0 to 24.0 ft BGS)							
23.0						2	85	0.0

	•	EDROCK						
	CT NAME: LEICA INC. RI/FS			HOLE DESI	ĠNAT	ION: МУ (Р	V—16A age 3 of	f4)
	CT NO.: 3967			DATE COM	PLETE	ED: ÀP	PRIL 7, 1	994
CLIENT				DRILLING M	IETHC		1/4" ID T ROTAR	
LOCATI	ION: CHEEKTOWAGA, NEW YORK		<i>.</i> .	CRA SUPER	RNSO	R: K.	LYNCH	(1
DEPTH	DESCRIPTION OF STRATA	ELEVAT-OR		ONITOR ALLATION	BI EN DT RE OR CV KA L	RUUMBER RUT	R Q D	WATER
ft BGS		ft. AMSL	·		† †	~ ~	~ ~	2
	· · · · · · · · · · · · · · · · · · ·		ļ					
24.0	 mud filled vertical fracture, chemical odor (23.5 to 23.7 ft BGS) rubble zone, heavily weathered, trace coral, little dark chert (24.0 to 25.3 ft BGS) 					2 85	0.0	C
25.0	— dark chert (25.3 to 25.9 ft BGS)							
26.0	- light gray chert (25.9 to 26.3 ft BGS)							
27.0	— trace clacite and coral (@ 26.7 ft BGS)							
	 brachiopod (@ 27.4 ft BGS) dark chert (27.4 to 28.6 ft BGS) 							
28.0				6"4		3 89	71.0	· (
29.0	 rugose coral, solitary, closed vein, detrital layer (28.6 to 29.2 ft BGS) dark to buff chert, carbonaceous partings (29.2 to 29.8 ft BGS) 	5		BOREHOLE				
30.0								.
	— coral (30.4 to 30.5 ft BGS)							
31.0	- buff colored chert (30.8 to 32.0 ft BGS))						
32.0	— medium gray chert (32.0 to 33.0 ft BGS) — chert, light to medium gray (32.0 to 33.5 ft BGS)) -		· .		<u></u>		.
33.0	— carbonaceous parting (@ 33.3 ft BGS)		-		· · · ·			
34.0	— coral, open veins (33.9 to 34.0 ft BGS)			· ,	•	4 106	87.0	0
35.0						×		
Ĩ					·] -			.

••

		STRATIGRAPHIC	AND INSTRU (BEDROCK)	JMENTATION	LOG			(L	83)			
PROJE	CT NAME:	LEICA INC. RI/FS	(,	HOL	E DESIGNA	ΠΟΝ	: мм-	-16A				
PROJE	CT NO.:	(Page 4 of 4) DATE COMPLETED: APRIL 7, 1994										
CLIENT	:	LEICA INC.	DRIL	DRILLING METHOD: 8 1/4" ID HSA, WET ROTARY								
LOCATI	ION:	CHEEKTOWAGA, NEW YORK		CRA	SUPERVIS	OR:	K. L	YNCH	T			
рертн		DESCRIPTION OF STRATA	ELEVAT-OR	MONITOR	DN KAL		CORE VERY	RQD	WR AETUR RN			
ft BGS			ft. AMSL				%	%	%			
	- buff	colored chert (35.5 to 40.0 ft E	BGS)									
36.0												
37.0				6*4	REHOLE	4	106	87.0	· o			
38.0												
39.0												
40.0	END OF	HOLE @ 40.0 FT. BGS	620.3				i					
41.0												
42.0												
43.0								·				
44.0												
45.0				· ·								
46.0												
47.0												

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-84	•
PROJE	CT NAME: LEICA INC. RI/FS	•	HOLE DESIGNATION	· MW-174	
PROJE	CT NO.: 3967		DATE COMPLETED:	(Page 2 of 5)	
CLIENT	EICA INC.		DRILLING METHOD:		l
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	•	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE	
ft BGS		ft AMSL	INSTALLATION		P
					Ď
			-12"		opm)
	CL-CLAY, some silt, very stiff, gray, moist SM-SAND(TILL), some silt, little fine gravel,	646.1 645.9		7SS 48	0
-14.0	very dense, brown and gray, dry to moist		BENTONITE GROUT		
	BEDROCK - wet rotary to 15.6 ft BGS	645.0	STEEL CASING		
- 15.0			6°6 BOREHOLE		
- 16.0	END OF OVERBURDEN HOLE @ 15.6 FT BGS	643.9	BOREHOLE		
- 10.0	NOTES: 1. Soil samples retained for geologic record. 2. Bulk samples collected for grain size		3*9		
- 17.0	 analysis form 9.0 to 13.0 ft BGS. At completion a 4" thick steel casing was installed to 15.2 ft BGS for bedrock 		NX COREHOLE		
17.0	was installed to 15.2 ft BGS for bedrock drilling.				
- 18.0					
10.0		7			
- 19.0		ł			
- 20.0					
21.0	·				
· 22.0		· · ·	<u> </u>		
23.0					
24.0					
25.0					
26.0					
		•			
					- `
NOTES				TABLE	
	CHEMICAL ANALYSIS 💛 WATER FO		STATIC WATER LEVEL	¥	

· .

PROJE	CT NAME:	LEICA INC. R	RI/FS					HOLE DESI	GNA	TION			
PROJECT NO.: 3967			DATE CON				TED:	· (Pa APR	ge 3 of IL 7, 1	f 5 994			
CLIENT: LEICA INC.					DRILLING N	IETH	IOD:		/4" ID	нs			
LOCAT	10N:	CHEEKTOWAG	A, NEW YORK					CRA SUPE	RMS	OR:	WET K. L	ROTAF YNCH	₹¥:
DEPTH		DESCRIPTIC	DN OF STRAT		E LEVAT - ON		MONI NSTALL		BINTER DTER CCA	NM B E R	CORE CORE	RQD	
ft BGS					ft. AMSL			<u> </u>			%	%	┢
	Overburg	den				- <u>19</u>		-12"#		\square			
15.0	LIMESTO Member to mode fracture some cl	NE(Onondaga): light gray, erately weathe s, massively b nert, stylolites	Formation, Mo fine grained, red, trace ve bedded, trace	orehouse slightly rtical coral,	643.9			BOREHOLE -4°Ø STEEL CASING -6°Ø BOREHOLE 		WR			
16.0 17.0	partings – coral – brach – mode fracture	fossil, rugose iopod (@ 16.6 rately weather (16.6 to 17.4 praceous parti	(16.1 ft BGS) ft BGS) red zone, vert ft BGS)	i) tical				GROUT					
18.0	10.0 10		<u>ч</u>	-				-		1	100	67.0	ε
19.0													
20.0													
21.0		(20.7 to 20.9 int small coral		ft BGS)								· ·	
22.0	— carbo @ 22.8 — dark 24.0 ft	naceous partii ft BGS) chert (22.2 to BGS)	ng (21.8, 22.2 o 22.4 and 23	2, 22.4, 3.8 to									
23.0													
24.0	— carbo 26.2 and	naceous partir 1 26.7 ft BGS	ng (24.3, 24.8	8, 25.8,									
25.0	·	•	• •					,			,	-	
26.0	— dark (26.7 to	chert (25.8 to 27.2 and 27.8	26.0, 26.2 ft 3 to 28.0 ft	to 26.3, BGS)						2	100	86.0	9

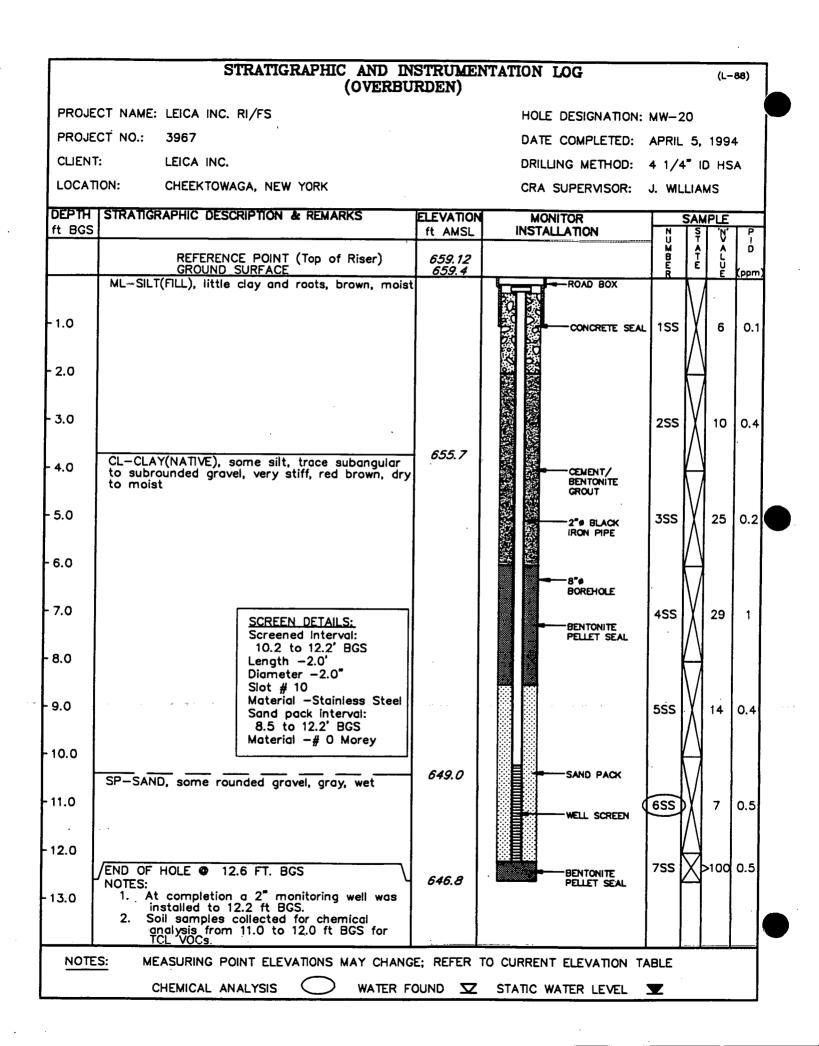
•

	CT NAME: LEICA INC. RI/FS CT NO.: 3967		HOLE DES DATE COM		(Pa	–17A ige:4 o RIL 7, 1
CLIENT	T: LEICA INC.		DRILLING I	METHOD	: 81 WE1	/4" ID ROTAI
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPE	RMSOR:		LYNCH
DEPTH	DESCRIPTION OF STRATA	E TE XEL	MONITOR	BI RN ENT UN RE B OCV R KA L	COREOVERY	RQD
ft BGS		ft. AMSL			%	%
- 27.0						
- 28.0 <u>.</u>				2	100	86.0
- 29.0	 carbonaceous parting (@ 28.7 ft BGS) dark chert (28.8 to 28.9 ft BGS) small vug (@ 29.0 ft BGS) dark chert (29.1 to 29.4 ft BGS) coral (29.7 to 29.9 ft BGS) 					
- 30.0						
- 31.0	 dark chert (30.6 to 30.9 ft BGS) carbonaceous parting (@ 30.6, 32.2, 32.5, 32.7, 32.9 and 33.0 ft BGS) carbonaceous partings (@ 33.6, 34.1, 34.5, 34.8, 35.3, 35.8, 36.0, 37.2 and 40.0 ft BGS) 					
- 32.0						
33.0					;	
34.0	— darker bands (33.9 to 34.0, 34.1 to to 34.5, 34.7 to 35.1, and 35.3 to 35.6)					
35.0				3	99	87.0
36.0						•
37.0	— abundant light gray to buff colored chert (36.7 to 40.0 ft BGS)					
38.0						
	EASURING POINT ELEVATIONS MAY CHANGE; REF Z WATER FOUND Z STATIC WATER		RENT ELEVATION TABLE NM - NOT ME			

	in a start where the start whe	S	TRATIGR	APHIC) INSTR EDROCK)		NTAT	ION LOG					(L-8
		LEICA INC.	RI/FS						HOLE DES	IGNA	TION	: MW-	-17A ae 5 o	of 5)
	CT NO.:	3967		·		·			DATE CON	IPLET	ED:		ge 5 o RL 7, 1	
CLIENT		LEICA INC.					i		DRILLING	•		8 1 WET	/4" ID ROTAF	HS/ RY
LOCATI	ON:	CHEEKTOW	AGA, NEW	YORK	_				CRA SUPE	RMS		κ. ι	YNCH	
DEPTH		DESCRIP	TION OF S	TRATA		E LEV A∓-OZ		MON NSTAL	IITOR LATION	BINDE DTE OCVAL	¥ 202 802 802 802 802 80	RECOVERY	RQD	
ft BGS			· · · · ·			ft. AMSL	-		- <u>-</u> .			%	%	
39.0	, ,				-									•
40.0	END OF	HOLE @	40 FT. B	GS		619.5	L]				<u> </u>		+
41.0	•		•				·							
42.0						ι.			i					
43.0			1											
44.0						•		1						
45.0	·					-								
46.0									• •					
47.0		·												
48.0	,											-		
49.0				•					•					
50.0			;	•										

•

1


PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:			
PROJE	CT NO.: 3967		DATE COMPLETED:	(Page MARCI	1 of 1 30,	2) 1994
CLIENT	ELEICA INC.		DRILLING METHOD:	4 1/4		HSA
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	J. WL	LIAMS	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	N	SAMPL	E N' P
	REFERENCE POINT (Top of Riser) GROUND SURFACE	662.51 663.1	,	U M B E R	S T A T E	V Ι Α Ο U Ε (ppm)
-1.0	ML—SILT(FILL), some angular gravel, some medium to coarse sand, trace clay, stiff, dark brown and gray		CONCRETE SEAL	. 15S	2	4 0
2.0 3.0			2"# BLACK IRON PIPE	255	1	4 0
4.0	CL-CLAY(NATIVE), some silt, trace rootlets, trace large gravel, soft to firm, gray and brown, moist	659.1				-
5.0			CEMENT/ BENTONITE GROUT	355	\bigwedge 1	0 0
6.0 7.0				4 S S		2 0
8.0	ML-SILT, some clay, some fine sand, brown and gray, moist	655.0	BOREHOLE			
9.0				555		6 0-
10.0	CL-CLAY, little silt, very stiff, red brown, moist	653.1	PELLET SEAL			
11.0	SM—SAND, little silt and subrounded gravel, fine to medium grained, brown and gray, wet	652.0	SAND PACK	6SS	X 1.	3 0
12.0			WELL SCREEN	755		0
					\mathbb{N}	
NOTE	<u>S:</u> MEASURING POINT ELEVATIONS MAY CHANGE CHEMICAL ANALYSIS O WATER FO		O CURRENT ELEVATION T. STATIC WATER LEVEL			

	STRATIGRAPHIC AND IN (OVERBU	STRUMEN RDEN)	NTATION LOG	(L-84
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	MW-18
PROJE	CT NO.: 3967		DATE COMPLETED:	(Page 2 of 2) MARCH 30, 199
CLIEN	ELEICA INC.		DRILLING METHOD:	
LOCAT	ION: CHEEKTOWAGA, NEW YORK			J. WILLIAMS
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE
		· .	· · ·	UTV MAAA BTL EEU
-14.0			BOREHOLE BOREHOLE BENTONITE PELLET SEAL	855 X>100
- 15.0	END OF HOLE @ 14.8 FT. BGS NOTES:	648.3	SCREEN DETAILS:	
- 16.0	 At completion a 2" monitoring well was installed to 13.4 ft BGS. Soil samples collected for chemical analysis from 13.5 to 14.3 ft BGS for TCL VOCs. 		Screened Interval: 11.4 to 13.4' BGS Length -2.0' Diameter -2.0"	
- 17.0			Slot # 10 Material —Stainless Steel Sand pack interval:	
- 18.0			10.7 to 13.4' BGS Material —# 0 Morey	
- 19.0			· · · ·	
- 20.0	ť			
- 21.0	· · · ·	-	•	
- 22.0				
- 23.0	•		· · ·	
- 24.0				
- 25.0				
- 26.0				

	STRATIGRAPHIC AND IN (OVERBUI		TATION LOG		(L	87)
PROJE	CT NAME: LEICA INC. RI/FS	,	HOLE DESIGNATION			2)
PROJE	CT NO.: 3967		DATE COMPLETED:	APRIL	1 of 3 7, 199	2) 94
CLIENT	T: LEICA INC.		DRILLING METHOD:	4 1/4	ID H	SA
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LY	ИСН	
DEPTH ft BGS		ELEVATION ft AMSL	MONITOR	N	SAMPLE	
	REFERENCE POINT (Top of Riser) GROUND SURFACE	660.84 661.3				(ppm)
	Auger though asphalt		ROAD BOX	1		
1.0	GP-GRAVEL(FILL), some coarse sand, black, wet	660.8				
1.0	SM-SAND(FILL), some silt, little fine to medium subrounded gravel, red brown to buff, dry to	660.2	C S S S S S S S S S S S S S S S S S S S	L 155	15	5 0
2.0	moist — red brown and gray				\mathbb{N}	
3.0			2° BLACK IRON PIPE		\square	
4.0				255	5	0
5.0	OH-SILT(NATIVE), some loam, rootlets, dark gray, moist	656.4	CEMENT/ BENTONITE GROUT	355	10	0.2
6.0	ML—SILT, some clay, little sand and fine gravel, very stiff, laminated, red brown, dry	655.1			<u>N</u>	
7.0			8"9 BOREHOLE	4SS	W 32	0
8.0					\bigwedge	
9.0			BENTONITE PELLET SEAL			
10.0	— some sand, little clay, very stiff, gray and brown, dry			555	31	0
11.0					\mathbb{N}_{-}	
12.0	SM—SAND, little silt, little fine rounded gravel, gray, moist to wet	. 649.7	SAND PACK	6SS	23	0
13.0			WELL SCREEN	755	>60	
				\square	ΔΙ	1
NOTE	-	; REFER 1		ABLE		
	CHEMICAL ANALYSIS 💛 WATER FO		STATIC WATER LEVEL	×		

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L	87
PROJE	CT NAME: LEICA INC. RI/FS	· · ·	HOLE DESIGNATION	MW-1	Q	
	CT NO.: 3967		DATE COMPLETED:	(Paae	2 of	2)
CLIENT	LEICA INC.		DRILLING METHOD:			
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:			57
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION				
ft BGS		ft_AMSL	INSTALLATION			
	· · · ·					, ;
14.0	Spoon refusal @ 13.7, auger refusal @ 14.3 ft BGS	647.0	BOREHOLE WELL SCREEN SAND PACK	755	>6	0
15.0	 END OF HOLE @ 14.3 FT. BGS NOTES: 1. At completion a 2" monitoring well was installed to 13.9 ft BGS. 2. Soil samples collected for chemical analysis from 12.5 to 13.7 ft BGS for TCL VOCs and TPH. 	047.0	SCREEN DETAILS: Screened Interval: 11.9 to 13.9' BGS Length -2.0'			
16.0	TCL VOCs and TPH.		Diameter —2.0" Slot # 10 Material —Stainless Stee			
17.0			Sand pack interval: 9.5 to 14.3' BGS Material —# 0 Morey			
18.0						
19.0				·		
			,			
20.0			•			
21.0						
21.0						
22.0			<i>·</i> · ·			
23.0	· •					
	X					
24.0	· · ·	, ·	•			
			· .			·
25.0						
					·	
26.0						
					ľ	
NOTE						
	-		· ·	_		
	CHEMICAL ANALYSIS WATER F		STATIC WATER LEVEL			

·

LEICA INC. RI/FS 3967 LEICA INC. CHEEKTOWAGA, NEW YORK RAPHIC DESCRIPTION & REMARKS REFERENCE POINT (Top of Riser) GROUND SURFACE hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist clay, trace sand and fine round gravel, ff, red brown, dry to moist	ELEVATION ft AMSL 657.72 658.0 657.5 656.5	HOLE DESIGNATION: DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION ROAD BOX CONCRETE SEAL	(Page 1 of 2) APRIL 4, 1994 4 1/4" ID HSA K. LYNCH SAMPLE N S N' M A B T L R E U R E U
LEICA INC. CHEEKTOWAGA, NEW YORK RAPHIC DESCRIPTION & REMARKS REFERENCE POINT (Top of Riser) GROUND SURFACE hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	ft AMSL 657,72 658.0 657.5 656.5	DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION CONCRETE SEAL	(Page 1 of 2) APRIL 4, 1994 4 1/4" ID HSA K. LYNCH
CHEEKTOWAGA, NEW YORK RAPHIC DESCRIPTION & REMARKS REFERENCE POINT (Top of Riser) <u>GROUND SURFACE</u> hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	ft AMSL 657,72 658.0 657.5 656.5	DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION ROAD BOX CONCRETE SEAL	4 1/4" ID HSA K. LYNCH SAMPLE N A B E C 1SS 18 3SS 11
REFERENCE POINT (Top of Riser) GROUND SURFACE hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	ft AMSL 657,72 658.0 657.5 656.5	CRA SUPERVISOR:	K. LYNCH
REFERENCE POINT (Top of Riser) GROUND SURFACE hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	ft AMSL 657,72 658.0 657.5 656.5	MONITOR INSTALLATION	SAMPLE N S V R E U 1SS 18 3SS 11
REFERENCE POINT (Top of Riser) GROUND SURFACE hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	ft AMSL 657,72 658.0 657.5 656.5	INSTALLATION	
GROUND SURFACE hrough asphalt pavement VEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	658.0 657.5 656.5	CONCRETE SEAL	
hrough asphalt pavement AVEL(FILL), some fine to medium sand, gular gravel, gray, moist (NATIVE), little clay, trace fine sand, d brown, moist	657.5 656.5	CONCRETE SEAL	1SS 18 3SS 11
(NATIVE), little clay, trace fine sand, d brown, moist	656.5	2" BLACK IRON PIPE	1SS 18 3SS 11
d brown, moist			3SS 11
clay, trace sand and fine round gravel, ff, red brown, dry to moist	-		
	-	BENTONITE	355 27
			3SS 27
		BOREHOLE	
•	· ·		4SS 35
		BENTONITE PELLET SEAL	
sand and clay, trace fine gravel, medium ft, gray and brown, dry to moist	648.3		5SS 24 0
r, little silt, little sand, soft, gray, noist			
D, little silt, and fine subrounded pray, moist to wet	647.1	SAND PACK	655 9 0
			755 X>100 C
HOLE @ 12.8 FT. BGS	645.2	BENTONITE PELLET SEAL	
	t, gray and brown, dry to moist (, little silt, little sand, soft, gray, hoist D, little silt, and fine subrounded ray, moist to wet HOLE @ 12.8 FT. BGS	t, gray and brown, dry to moist 648.3 (, little silt, little sand, soft, gray, noist 647.1 (), little silt, and fine subrounded ray, moist to wet 647.1 HOLE © 12.8 FT. BGS 645.2	t, gray and brown, dry to moist 648.3 f, little silt, little sand, soft, gray, noist 647.1 D, little silt, and fine subrounded ray, moist to wet 647.1

•

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG			(L-4	89)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	MW-2	21		
PROJE	CT NO.: 3967		DATE COMPLETED:	(Page APRIL	2 4.	of 2) 1994) ‡
CLIENT	EICA INC.		DRILLING METHOD:	4 1/4	r . 10) HS	A
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LY	ΝСΗ		
		ELEVATION	MONITOR	_	SAM	PLE	
ft BGS		ft AMSL	INSTALLATION		ST	Ŋ.	
				N U X B L A	A E	Î U E	(PP
- 14.0 - 15.0	 NOTES: 1. At completion a 2" monitoring well was installed to 12.7 ft BGS. 2. Soil samples collected for chemical analysis from 11.0 to 12.0 ft BGS for TCL VOCS. 		SCREEN DETAILS: Screened Interval: 10.7 to 12.7' BGS Length —2.0' Diameter —2.0" Slot # 10 Material —Stainless Steel Sand pack interval:			E	
- 16.0			9.0 to 12.7' BGS Material —# 0 Morey				
- 17.0							
- 18.0							
- 19.0							
- 20.0		•	•				
- 21.0							
= 22.0 ⁻		÷	<u>ـ</u> ـــــــــــــــــــــــــــــــــــ	د عندم		.a.a	
- 23.0							
- 24.0							
- 25.0							
- 26.0							
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	F REFER	TO CURRENT FLEVATION T				
	-	$\frac{1}{2} \frac{1}{2} \frac{1}$					

-

ic.

	STRATIGRAPHIC AND (OVERE	INSTRUME (URDEN)	NTATION LOG			(L-
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	MW-2	2	
PROJE	CT NO.: 3967		DATE COMPLETED:	MARC	H 2	9, 1
CLIENT	: LEICA INC.		DRILLING METHOD:	4 1/4	F 10	н н
LOCAT	ION: CHEEKTOWAGA, NEW YORK	•	CRA SUPERMSOR:	K. LY	ИСН	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			SAM	PLE
ft BGS		ft AMSL	INSTALLATION		S T	Ŭ
	REFERENCE POINT (Top of Riser) GROUND SURFACE	652.51 652.9		Ë	Ē	
	ML-SILT(FILL), some sand, little clay, loose		ROAD BOX		\mathbf{T}	-
	brown, moist				IVI	
1.0			CONCRETE SEA	. 1SS	X	3
			CONCRETE SEA		/	
2.0	ML-SILT(NATIVE), some clay, trace sand, very dense, red brown, dry to moist	651.1			H	
	dense, rea brown, ary to moist				ΝA	
3.0				255	IVI	14
			2°\$ BLACK		I۸I	
			BENTONITE		٧V	
4.0			PELLET SEAL			
					IVI	
5.0				355	ΙXΙ	18
		647.3	BOREHOLE	,		
6.0	SM—SAND, little silt and clay, trace fine roun gravel, gray, moist to wet				(-)	
					N A	
7.0				455	IVI	9
					IΛI	
8.0					VV	
0.0					\square	
					IVI	
9.0	- soft, wet, no sheen, no odor	643.6		555	PXI	4(
	SP—SAND(TILL), some fine round gravel, very stiff, gray, dry to moist, no odor	0.0	WELL SCREEN		I/	
10.0			WELL SCREEN		H	
•		6122		6SS	М	>10
11.0	END OF HOLE @ 10.7 FT. BGS NOTES:	642.2	BENTONITE PELLET SEAL SCREEN DETAILS:			
	1. At completion a 2" monitoring well was installed to 10.5 ft BGS.	;	Screened Interval:			
12.0	Soil samples collected for chemical analy	sis	8.5 to 10.5' BGS Length -2.0'			
· - · V	from 8.5 to 9.5 ft BGS for TCL VOCS. 3. Bulk soil samples collected from 2.0		Diameter -2.0"	-		
	to 4.0 ft BGS and 7.0 to 9.0 ft BGS, fo grain size analysis.		Slot # 10 Material —Stainless Stee			
13.0	4. PID not operative due to wet snow/rai	1.	Sand pack interval: 5.6 to 10.6' BGS			
·			Material —# 0 Morey	-		
NOT	ES: MEASURING POINT ELEVATIONS MAY CHA	NGE: RFFFR	TO CURRENT FLEVATION 1		<u> I</u>	
		FOUND Σ	_			
`						

PROJE	CT NAME: LEICA INC. RI/FS	URDEN)			
	CT NO.: 3967		HOLE DESIGNATION:	(Page 2	l of
CLIEN			DATE COMPLETED:		
LOCAT	··		DRILLING METHOD:	-	
			CRA SUPERVISOR:	K. LYNC	Н
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SA N 1 S	MPL
- 14.0			BOREHOLE	755	6.
- 15.0			PELLET SEAL	855	58
- 16.0 - 17.0	 END OF HOLE @ 16.0 FT. BGS NOTES: 1. At completion a 2[*] monitoring well was installed to 13.5 ft BGS. 2. Soil samples collected for chemical analysis from 12.5 to 13.5 ft BGS for 	- 640.5	SCREEN DETAILS: Screened Interval: 11.5 to 13.5' BGS Length -2.0'		
- 18.0	vocš.		Diameter —2.0" Slot # 10 Material —Stainless Steel Sand pack interval: 9.3 to 13.5' BGS		
- 19.0			Material —# O Morey		
- 20.0					
- 21.0					
- 22.0				й. н к р	- 1.72.2
- 23.0					
- 24.0					
- 25.0					

BORE	H	DLE LOG	PROJECT:	90-816				E	BOR	EH	OLE: 1
	TO	SUBSOIL INVESTIGATION WAGA, NEW YORK ca Inc.			·			1	DAT GEO		22 October 1990 GIST TEJ
	ΥΥ	· · ·	······································	α		5	SAM	PLI	Ξ		· · ·
DEPTH (ft)	STRATIGRAPHY	STRATIGRAPHIC DE		MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	X REC	א פסס	COMMENTS
0.4	ِي ا	ASPHALT			-	 .				``	
1 - 1.5 -		SUB-BASE Grey sandy gravel, moist, loose. SILTY CLAY TILL Red silty clay, trace fine to medium	n gravel and fine	-	1		6		45		
3		sand, DTPL, firm.			2		6		45		OVA rdg.= 0.1
4 - ^{5.0} 5 -		FINE SAND Brown fine sand, trace gravel, mois	t to wet compact	-	- 3		10		85	1	OVA rdg.= NIL
.5.9 6 7.0 7' -		Trace orange colored staining betw 7.0 ft. -Very high fine gravel content from 5.9 ft.	een about 5.9 and	-							OVA rdg.= 2.0
8 -		SILTY SAND Brownish grey silty fine sand, some very dense. Occasional grey limesto encountered. -High fine to medium gravel fraction	one fragments		4		41		60	-	OVA rdg.= 4.0
9 -		7.0 and 11.0 ft.	· ·		- 5	SS	81		90		
10 –										_	OVA rdg.= 2.0
11 -					6	SS	137/ 11in		65		
13 -		-Becomes grey below about 13.0 ft.					100				OVA.rdg.= 5.0
3.8					1	00	100/ 4in				
		Borehole terminated at 13.8 ft in si	lty sand.								AUGER REFUSAL AT

· .

•

BORE	HOLE LOG	PROJECT: 9	0-816	-			E	BOR	EH	OLE: 2		
CHEEKT	I SUBSOIL INVESTIGATION TOWAGA, NEW YORK eica Inc.					-	DATE: 22 October 1990 GEOLOGIST TEJ					
	And a second sec		· ~		S	SAM	PLI	E	•			
DEPTH	GROUND ELEVA		MONITOR DETAILS	NUMBER	TYPE	N VALUE	% WATER	% REC	× RQD	COMMENTS		
	ASPHALT	ATION: 659.70		-	╞╴	-	~	~				
0.4 1.0 1 2 -	SUB-BASE(inferred) Grey sandy gravel, moist. SILTY CLAY TILL Brown silty clay, some fine gravel,	trace fine sand,		1	SŞ	7		60	, 1.			
3	DTPL, soft to firm. -Becomes red with decreased fine g and some orange colored staining 3.0 ft.			2	SS	3		40		OVA rdg.= NIL		
5.0 5	-Laminated red to brown silty clay medium gravel and trace fine sand 5.0 ft.			_ 3	SS	16		80		OVA rdg.= NIL OVA rdg.= 5.0		
6.G 7 - 8.0 8	SILTY SAND Brown silty fine sand, wet, compact				SS	23		80	•			
9.0 9	-Brown fine sand seam, trace fine g with trace orange colored staining 8.0 to 9.0 ft. -Grey below about 9.0 ft. with grey between about 9.0 and 10.5 ft.	from about		5	. SS	79		80		OVA rag. = 2.0		
10.5 11.3 12	-Brown silty clay till layer with tra and gravel from about 10.5 to 11.3 -Becomes gravelly below about 11.5	ft.		6	SS	78		90		OVA rdg.= 1.0 OVA rdg.= 1.0		
13.0 ₁₃	Borehole terminated at 13.0 ft in sil gravel. NOTE: ELEVATION RESURVEY											

•

·

-

Gartner Lee Inc.

BOREH	OLE LOG	PROJECT:	90-816	5			I	BOR	REH	OLE: 3
CHEEKTO	SUBSOIL INVESTIGATION WAGA, NEW YORK ca Inc.									22 October 1990 GIST TEJ
Ϋ́			~			SAM	IPL	E		
STRATIGRAPHY	STRATIGRAPHIC DE	SCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	VALUE	WATER	REC	RQD	COMMENTS
STF	GROUND ELEVA	ATION 660.39		Ñ	TYPE	z			*	
0.4	ASPHALT			·						· ·
1.0 1	SUB-BASE(inferred) Grey sandy gravel, moist. FILL	ʃ		1	SS	27		60	-	
2 -	Grey to black sand and gravel. trac loose to compact.	ce silty clay, moist,		- 2		7		40	-	OVA rdg. = 10.0
4 -	-Silty clay fraction increases with d	lepth.		-				4U	-	OVA rdg.= 10.0
5 -				- 3	SS	3		80	-	
6 - 1	SILTY CLAY TILL Red to brown silty clay, trace fine s APL, soft to firm.	and and gravel,							-	OVA rdg.= 3.0 4.0
7.5 8.0 8	-Brown silty sand seam, wet, from a 8.0 ft.	about 7.5 to			33	7	2	80		OVA rdg.= 2.0 - 3.0
9	SILTY SAND			1997 1997 1997 1997 1997 1997 1997 1997	SS	6		80		
10	Brown silty fine sand, wet, loose.								• -	OVA rdg.= NIL
12				6	SS	153/ 11in		90		OVA rdg.= 1.0
12.9	· · ·									OVA rdg = 1.0
	Borehole terminated at 12.9 ft in silt	ty sand.								
	NOTE: ELEVATION RESURVE	YED MARCH 1994								

-,

•

Gartner Lee Inc.

BOREH	OLE LOG	PROJECT:	90-816				1	BOR	EH	OLE: 4
	SUBSOIL INVESTIGATION DWAGA, NEW YORK ica Inc.							DAT Geo		22 October 1990 GIST TEJ
 }						SA	IPL	E		
DEPTH (ft)	STRATIGRAPHIC DE		MONITOR DETAILS & NUMBER	NUMBER	TYPE			REC	RQD	COMMENTS
ST	GROUND ELEVA	TION 660.51		ž		Z	: ×	×	*	
0.4	ASPRALT		-							
1.0 1	SUB-BASE(inferred) Grey sandy gravel, moist.		d	- 1	INTER SS	16		25	-	
2	FILL Red brown silty clay, DTPL, stiff. -Becoming a black sand and grave clay, compact, below about 2.2 ft.			-	C.ANARGARA & JANOS, JANOS				-	- OVA rdg.= NIL
4	SILTY CLAY TILL Red brown silty clay, some fine gra stiff.	wel, DTPL, very		2		3 23		45		OVA rdg.= 10.0
5 -				- 3	ADARTANA RUDUL JULI	3 22		75		
6	-Grey with some fine sand from ab	out 6.7 to 7.0 ft.		-					-	OVA rdg.= 6.0
7	-Trace sand below about 7.0 ft.			4		18		90		
8.2 0	SILTY SAND Brown silty fine sand, wet, compac colored staining between about 9.0	-		- 5		5 15		80		OVA rdg. = 70.0
10 -		and 10.0 N.		5						OVA rdg.= 10.0
11.0 11	-Grey below about 10.8 ft.			- 6		66		75		
12	Brown silty fine sand, some fine to trace clay, wet, very dense.	medium gravel,		-	an gangera mangera				-	OVA rdg.= 1.0
13.0 13	Borehole terminated at 13.0 ft in si	ilty sand till.								
	NOTE: ELEVATION RESURVE	YED MARCH 1994	.							

		DLE LOG SUBSOIL INVESTIGATION	PROJECT: 9						DAT		OLE: 5 22 October 1990
CHEEK		WAGA, NEW YORK		<u> </u>		_			GEC	LO	GIST TEJ
	¥			α	SAN				E		· · · · · · · · · · · · · · · · · · ·
	STRATIGRAPHY	STRATIGRAPHIC DES	SCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE		WATER	REC	RQD	COMMENTS
	ST	GROUND ELEVA	ATION 660.32		ź		<u> </u> 2		*	×	·
0.4	• • • •	ASPHALT SUB-BASE(inferred) Grey sand and gravel, trace silty cla	ay, moist.		- 1		12		70	-	
1.9 2 3		FILL Red brown silty clay, some fine to n DTPL, stiff. -Becoming grey with trace fine sand staining below about 2.2 ft.			2		21		80		OVA rdg.= 10.0
3.6 4 5		SILTY CLAY TILL Red brown silty clay; some fine grav sand, DTPL, very stiff. -Weathered from about 3.6 to 5.0 ft containing grey alteration.			-	T		-			OVA rdg.=300.0 (bottom of fill)
6		· ·	· ·		.3				85	-	OVA rdg.= 5.0
7 8.2 ⁸			~		4		15		95	4	OVA rdg.= 4.0(silty clay
9.3		SAND and GRAVEL Brown fine sand and gravel, wet, co -4 in. silty fine sand seam at about i -Becoming fine sand with some grav	8.2 ft.		5	SS	13		85	-	OVA rdg.= 10.0(silty sand
10 - 11 11.3		9.3 ft.			-					-	OVA rdg.= NIL
11.3		SILTY SAND Brown silty fine sand, trace gravel, v	wet, compact.		6	SS	26		75		OVA rdg.= 1.0
13.0 13	•	Borehole terminated at 13.0 (t in silf									- <u>-</u>
		NOTE: ELEVATION RESURVEY	ED MARCH 1994.								

	OLE LOG SUBSOIL INVESTIGATIO	PROJECT: 9	0-816					OR DAT		OLE: 6
	OWAGA, NEW YORK									22 October 1990 GIST TEJ
DEPTH (ft) TRATIGRAPH	STRATIGRAPHIC D		MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	X WATER	X REC	X RQD	COMMENTS
1 2.3	FILL Brown fine to coarse sand, some loose to compact. -7 in. grey sand and gravel layer	•		- 2		8		80	4	OVA rdg.= NIL
3	SILTY CLAY TILL Red brown silty clay, trace sand stiff to very stiff. Trace grey alter about 2.3 to 3.4 ft.			- 3		25	· · ·	100		OVA rdg.=100.0
5 -	-Weathered from about 4.0 to 6.0 containing grey alteration.	D ft. with fractures							-	OVA rdg.= 30.0
7	-Becomes grey with some fine gra 7.1 ft.	avel below about				20		100	4	OVA rdg.= 10.0
8.7 9	SILTY SAND Brown silty sand, trace fine grave	al wet loose to		5		12		85	4	- OVA rdg.= 40.0
10 -	compact.	n, wet, 100se to		6		2			-	
12	Borehole terminated at 12.6 ft. in	silty sand.		7		100/ 1in			•	
	NOTE: ELEVATION RESURV									-

. .

-

•

. .

BOREHO	LE LOG	PROJECT:	90-816	;			В	OR	EHO	DLE: 7
	UBSOIL INVESTIGA VAGA, NEW YORK a Inc.	TION				_		EO		22 Octobér 1990 GIST TEJ
ХНе	· · · · · · · · · · · · · · · · · · ·				5	SAM	PLE	:		· · · · · · · · · · · · · · · · · · ·
DEPTH (ft)	STRATIGRAPH	IC DESCRIPTION	MONITOR DETAILS 4 NUMBER	NUMBER	TYPE	VALUE	WATER.	REC	RQD	COMMENTS .
	GROUND	ELEVATION 660.	0	Z		Z	×	×	×	·
	SUB-BASE Grey sand and gravel, trace	e silty clay, moist, loose.		-	- SS	7		60	-	· . -
	FILL Brown silty clay, some fine	to medium sand, trace		-				,	-	OVA rdg = 10.0
3	 fine gravel, firm. Grey with tar-like substants to 3.0 ft. Becomes a black silt and colored staining, some fine 	clay with some orange		2	SS SS	5		40	4	OVA rdg.= >100.0 STRONG PETROLEU ODOR
4	below 3.0 ft.			-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				4	OVA rdg.=_80.0
	SILTY CLAY TILL Red brown silty clay, some very stiff.	fine gravel, APL, firm to		1 1	SS SS	6		40		· · · · · · · · · · · · · · · · · · ·
7	-Some black colored stainir	ng observed.			S S	24		70		
8	•			-	in the statement of the second		-			OVA rdg. = 2.0
9.0 9	Borehole terminated at 9.0	ft. in silty clay till.								
	NOTE: ELEVATION RES	URVEYED MARCH 19	94.							
		· ·)	
		•								
	· · · ·					-				

BOREH	OLE LOG	PROJECT:	90-821				E	BOR	EH	OLE: 8
	SUBSOIL INVESTIGATION DWAGA, NEW YORK ca Inc.	4						DAT GEO		19 November 1990 GIST TEJ
(lt) (lt)	STRATIGRAPHIC D		MONITOR DETAILS & NUMBER	NUMBER	TYPE	N UALUE N	X WATER	× REC	X RQD	COMMENTS
0.4 1.0 2 3	ASPHALT SUB-BASE Grey sandy gravel. SILTY CLAY TILL Red brown silty clay, numerous fr colored alteration, trace fine sand	actures with grey , DTPL, very stiff.				18		71		OVA rdg.= NIL
4.0 4 5	SILTY SAND Brown silty fine sand, moist, comp -Silty clay layer from about 5.5 to				SS	12		83		OVA rdg.= 1
8 - 9 - 10 -	-Saturated below about 7.0 ft. -Grey brown below about 8.0 ft.			18.00m, 788007.1, 71 au	SS	32		79		OVA rdg.= 1
	Borehole terminated at 11.0 ft in si NOTE: ELEVATION RESURVE			Γ ÷t _{uu} (m) i						
		•								

1

PHASE CHEEK	HOLE LOG II SUBSOIL IN TOWAGA, NE Leica Inc.	VESTIGATION	PROJECT:	90-821 -				D.	ATE:	IOLE: 19 No DGIST	9 vember 1990' TEJ
DEPTH (ft)	RATI	FIGRAPHIC DESC		MONITOR DETAILS & NUMBER	NUMBER		N VALUE	WATER	X REC		COMMENTS
0.4 1.0 1 2 -		GROUND ELEVAT d gravel. d gravel with orange co]			SS	5		63		rdg.= 30
^{3.0} 3	staining below	rey silty clay with some w about 2.2 ft. TILL ay, trace fine sand and p	/				11		57	• • • •	rdg = 300
5.0 s		inated at 5.0 ft in silty o									
		· · · ·									· •
			,								

	STRATIGRAPHIC AND IN (OVERBU		HALION LUG			(L-1	0)
PROJE	CT NAME: LEICA		HOLE DESIGNATION	BH-E			
PROJE	CT NO.: 3967		DATE COMPLETED:	JANU	ARY 2	23, 19	992
CLIENT	LEICA	•	DRILLING METHOD:	4 1/4	." ID	HSA	
LOCATI	ON: CHEEKTOWAGA		CRA SUPERMSOR:	K. LY	NCH		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	N		IPLE \\\	P
					A T E	A L U E	Ď
	GROUND ELEVATION Black and gray ASPHALT, some sand and	656.01		Ř	-+-	Ĕ	(ppm)
2.5	∖gravel, moist, no odor, FILL	-0.8	8°¢ BOREHOLE	15	(A)	26 6	
	No recovery; auger cuttings are moist to wet with some sheen and petroleum odor Red brown CLAY, some silt, little sand and fine gravel, dry to moist, strong sour odor,	-4.0	GROUT		K		
5.0	fine gravel, dry to moist, strong sour odor, NATIVE END OF HOLE @ 6.0 FT. BGS	-6.0		35	۶Å	23	
7.5	NOTES: 1. At completion the borehole was backfilled to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis.						
10.0	chemical and ysis.						
12.5							
15.0	· ·	_ · ·					
13.0			.)				
17.5	•						
20.0							
<u>2</u> 2.5	-					- Ar()	
25.0							
27.5							
30.0							
32.5							
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABL	Ξ		
· ·	CHEMICAL ANALYSIS 🔘 WATER F		STATIC WATER LEVE	L 工			

	STRATIGRAPHIC AND I (OVERB	NSTRUMEN URDEN)	ITATION LOG		(L-11)
PROJE	CT NAME: LEICA	•	HOLE DESIGNATION:	BH-F	
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUAR	Y 23, 199
CLIENT	: LEICA		DRILLING METHOD:	4 1/4"	ID HSA
LOCAT	ION: CHEEKTOWAGA		CRA SUPERVISOR:	K. LYNC	н
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR		AMPLE
	GROUND ELEVATION	656.04		H B E	
	Black and gray ASPHALT, some sand and gravel, moist to wet, no odor, FiLL	-0.6	8"0		
0.5	Dark gray SILT, some gravel, little brick, sand			155	19
- 2.5	Dark gray SILT, some gravel, little brick, sand and clay, moist to wet, no odor Same, with no brick, wet, no odor	<u></u>	CEMENT/ BENTONITE GROUT	255	X 9
- 5.0	Red brown SILT, some clay, little sand and gravel, dry to moist, no odor, NATIVE	ſ -4.0			4
5.0	END OF HOLE @ 4.0 FT. BGS NOTES:				
- 7.5	 At completion the borehole was backfilled to surface with cement / bentonite grou No soil samples were collected for chemical analysis. 	t			
	chemical analysis.		· ·		
- 10,0					
			•		
- 12.5	· · · · ·		· 1		
- 15.0		· · ·			
	• ·				
17.5					
- 20.0					-
20.0	· · · ·				
22.5					
25.0			•		
27.5			Ŕ		
			•		
30.0					
32.5					
	• .	1 · 1			

. •

	STRATIGRAPHIC AND IN (OVERBU			(L-12)
PROJE	CT NAME: LEICA		HOLE DESIGNATION	: BH-G
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY 24, 199
CLIENT	: LEICA		DRILLING METHOD:	4 1/4" ID HSA
LOCAT	ION: CHEEKTOWAGA		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	
	GROUND ELEVATION	657.25		
	Black and aray ASPHALT, some sand and aravel	-0.8		
	dry to moist, FILL Black and green SILT, some cinders, trace brick and gravel, dry to moist, petroleum	0.0	BOREHOLE	1SS X 20 13
- 2.5	odor			255 10 8.
	Same, except black, some clay and gravel, trace roots, sheen, petroleum odor	-4.3 -4.8	BENTONITE GROUT	
- 5.0	Brown SAND. little silt, moist, some petroleum	-4.8 -6.0		3SS 9 14. 42
	Red brown SILT, some clay, little sand and gravel, dry to moist	-0.0		
- 7.5 .	END OF HOLE @ 6.0 FT. BGS			
- 10.0	 At completion the borehole was backfilled to surface with cement / bentonite grout. Soil samples collected for chemical analysis of TCL/TAL parameters and TPH from 4.0 to 6.0 ft BGS. 			
- 12.5	from 4.0 to 6.0 ft BGS.			
12.5				
- 15.0				
- 17.5				
- 20.0		-		
- 22.5				
- 25.0				
- 27.5				
- 30.0				
32.5				
	S: MEASURING POINT ELEVATIONS MAY CHANG			
	CHEMICAL ANALYSIS O WATER F			
			STATIC WATER LEVEL	

,	STRATIGRAPHIC AND IN (OVERBU		TATION LOG		(L-	13)
PROJE	CT NAME: LEICA	· ,	HOLE DESIGNATION	: BH-H		
PROJE	CT NO.: 3967		DATE COMPLETED:		24.	199
CLIENT			DRILLING METHOD:			
LOCATI	· · ·		CRA SUPERVISOR:	•		•
	•••• •••••••••••••••••••••••••••••••••					
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION		APLE N	Τ
		657 77			A L L	
	GROUND ELEVATION Black and gray ASPHALT, some sand and	657.77 <u>.</u>			Ĕ	Kр
	gravel, FILL	-8.8		1SS X	24	
2.5	White and green pasty material, moist Black SILT, some cinders and brick, trace		8"0	2ss 🛛	15	
	gravel, red and green mottling, dry to moist Same, with some white pasty material, moist	-3.1 -4.0	BOREHOLE			
5.0	Red brown SILT, some sand and clay, dry to moist, slight odor	-4.7	BENTONITE GROUT	355 🗙	7	1
	Same, except black, some clay, little sand, moist	-5.8		I K	k	ŀ
7.5	Red brown SAND, some silt, moist, some	-8.0		4SS X	30	9
	Brown and gray SAND, little silt, trace gravel, moist to wet, some gasoline odor,	-0.0			1	
10.0	NATIVE				•	ľ
	Red brown SILT, some clay, little sand and gravel, dry to moist, no odor					
12.5	END OF HOLE @ 8.0 FT. BGS NOTES:					
15.0	 At completion the borehole was backfilled to surface with cement / bentonite grout. No soil samples were collected for chemical analysis. 					
					1	
17.5					·	
20.0		-				
22.5						
			· ·		·	
25.0						
27.5						
30.0					·	
					-	
32.5	· · · ·					
	· · · · · · · · · · · · · · · · · · ·					L
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE		
	CHEMICAL ANALYSIS 🔘 WATER F		STATIC WATER LEVEL	¥		

١

PROJECT NAME: LEICA HOLE DESIGNATION: BH-I PROJECT NO: 3967 DATE COMPLETED: JANUARY 24, 1992 CLIENT: LEICA LOCATION: CHEEKTOWAGA CRA SUPERVISOR: K. LYNCH BEDRY STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION GROUND ELEVATION Block and gray ASPHALT, some sond and grade drawn of gray, some sond little clay and gravel, no brick or discoloration, drawn some brick, black discoloration, drawn some silt, ra ondar -2.5 Block GRAVEL, some clay, little sond, soft, it aussilt, NATVE -7.5 Block GRAVEL, some clay, little sond, soft, it aussilt, some solid, soft, no addr. -7.5 The bray of gravel, no brick or discoloration, NOTES: 10.0 At completion the borehole was backfilled to surface with cernent / benchalte gravel. 12.5 14.00 -15.0 15.0 15.0 15.0 16.0 16.0 17.5 16.0 16.0 16.0 17.5 16.0 16.0 16.0 17.5 16.0 17.5 16.0 17.5 16.0		STRATIGRAPHIC AND IN (OVERBUI		ITATION LOG			(L-14)
CLIENT: LECA DRILLING METHOD: 4.1/4" ID HSA LOCATION: CHEEKTOWAGA CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE It acs GROUND ELEVATION 657.87 MONITOR SAMPLE Red brown SUT, some sond and gravel. dry to moist, no addr. fill -0.6 Its 9 24 2 Some, except red brown and gray, some sond, little clay and gravel, and brok social discolaration, dry to moist, no addr -3.7	PROJE	CT NAME: LEICA		HOLE DESIGNATION:	BH-I		
LOCATION: CHERKTOWAGA CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION INSTALLATION MONITOR It AUSL MONITOR INSTALLATION SAMPLE INSTALLATION Black and gray ASPHAIT, some sond and Gravel, dry to moist, no ador, PLL Red brown SILT, some clay, little sand, and Some write the bore black discolaration, Some, except red brown and gray, some sond little clay and gravel, no brick or discolaration, Some write the bore black discolaration, Some write, NATKE 1SS 224 2 7.5 Black GRAVEL, some clay, little sand, soft, NOTES:	PROJE	CT NO.: 3967		DATE COMPLETED:	JANUA	RY 2	4, 1992
DEPTH It BGS STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION (ft AMSL MONITOR INSTALLATION SAMPLE Black and gray ASPHALT, some said and gravel, dry to moist, no ador, FILL Red brawn SUT, some torick, black discoloration, dry to moist, no ador Some, with some brick, black discoloration, dry to moist, no ador Some, except red brawn and gray, some sand, disck GRAVEL some silt, wet, no ador NOTES: -0.6	CLIENT	LEICA		DRILLING METHOD:	4 1/4	" ID I	HSA
ft BGS ft AMSL INSTALLATION No No <t< td=""><td>LOCATI</td><td>ON: CHEEKTOWAGA</td><td></td><td>CRA SUPERVISOR:</td><td>K. LYN</td><td>ЮН</td><td></td></t<>	LOCATI	ON: CHEEKTOWAGA		CRA SUPERVISOR:	K. LYN	ЮН	
GROUND ELEVATION 657.87 # # A U W Black and gray ASPHALT, some sand and gravel, dry to moist some with some brick, black discoloration, dry to moist no adar structure, except red brows and gray, some sand little clay and gravel, no brick with sand, soft, most, NATVE -0.6 -3.7 -3.7 -3.7 5.0 Since, except red brows and gray, some sand, little clay and gravel, no brick with sand, soft, most, NATVE -3.7 -3.7 -3.7 -3.7 7.5 Most, NATVE A.0 FT. BGS -3.7 -3.7 -3.7 -3.7 10.0 1. At completion the borehole was backfilled to surface with cernet / benchile gravt. -3.7 -3.7 -3.7 11.5 1. At completion the collected for chemical analysis. -3.7 -3.7 -3.7 12.5 1. At completion the borehole was backfilled to surface with cernet / benchile gravt. -3.7 -3.7 12.5 1. At completion the borehole was backfilled to surface with cernet / benchile gravt. -3.7 -3.7 12.5 20.0 -3.7 -3.7 -3.7 25.0 -3.7 -3.7 -3.7 25.0 -3.7 -3.7 -3.7 25.0 -3.7 -3.7 -3.7 25.0 -3.7 -3.7 -3.7		STRATIGRAPHIC DESCRIPTION & REMARKS					'N' H
Black and grav ASPHALT, some send and gravel, dry to moist, no ador. Fill -0.6 155 24 2 Red brown SLT, some clay, little sand and gravel, dry to moist in a odor Same, except red brown and gray, some sand Black GRAVEL, some slit, wet, no ador Red brown SLT, some clay, little sand, soft, END OF HOLE @ 4.0 FT. BGS NOTES:			657 87		Ň B E	 †	
Varavel, ary to moist, no addr, rill		Black and gray ASPHALT, some sand and			R	$\mathbf{k}\mathbf{r}$	
 2.5 gravel, dry to moist mome brick, black discoloration, dry to moist no odor some except red brown and gray, some sond, little clay and gravel, no brick or discoloration. Hardwell, some silt, wet, no odor soft, moist, NATIVE 7.5 END OF HOLE @ 4.0 FT. BGS NOTES: 10.0 2.5 No Soil somples were collected for chemical analysis. 12.5 15.0 22.5 25.0 27.5 30.0 	r		0.0		1SS	Ň.	24 2
dry to moist, no odor -30 5.0 Biack GRAVEL, some silt, wet, no odor Biack GRAVEL, some clay, little sond, soft, moist, NATIVE 10.0 A to completion the borehole was backfilled to surface with cement / bentonite grout. 10.0 A to completion the borehole was backfilled to surface with cement / bentonite grout. 11.0 No soil samples were collected for chemical analysis. 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	· 2.5	gravel, dry to moist Same with some brick black discoloration		CEMENT/	255	\square	9 0
5.0 little clay and gravel, no brick or discoloration Black GRAVEL, some silt, wet, no dor Red brown Silt, some clay, little sond, soft, moist, NATIVE 17.5 END OF HOLE @ 4.0 FT. BGS 10.0 11.0 2. No soil samples were collected for chemical analysis. 11.0 2. No soil samples were collected for chemical analysis. 12.5 15.0 22.5 25.0 27.5 30.0		dry to moist, no odor Same, except red brown and aray, some sand.	-3.7 -3.9			\square	
Red brown SILT, some clay, little sand, soft, moist, NATVE END OF HOLE @ 4.0 FT. BGS NOTES: 10.0 1. At completion the borehole was backfilled to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis. 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	5.0		-7.0				
7.5 Imoist, NATIVE END OF HOLE • 4.0 FT. BGS NOTES: 10.0 1. At completion the borehole was backfilled to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis. 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0							
NOTES: 1. At completion the borehole was backfilled to surface with cement / bentonite grout. 10.0 2. No soil samples were collected for chemical analysis. 12.5 15.0 15.0 15.0 20.0 22.5 25.0 25.0 27.5 30.0	7.5	moist, NATIVE		-			
10.0 to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis. 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0		NOTES:					
12.5	10.0	to surface with cement / bentonite grout. 2. No soil samples were collected for					
15.0 17.5 20.0 22.5 25.0 27.5 30.0	12.5						
17.5 20.0 22.5 25.0 27.5 30.0							
17.5 20.0 22.5 25.0 27.5 30.0	15.0						
20.0 22.5 25.0 27.5 30.0	10.0						
20.0 22.5 25.0 27.5 30.0	17.5			•			
22.5 25.0 27.5 30.0	17.5						
22.5 25.0 27.5 30.0	20.0						
25.0 27.5 30.0	20.0						
25.0 27.5 30.0	00 E						
27.5 30.0	22.5	· · · · · · · · · · · · · · · · · · ·	· - yr =	- · · · ·		: _ ·	
27.5 30.0							
30.0	25.0						
30.0							
	27.5						
32.5	30.0						
32.5							
	32.5				•		
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE		S: MEASURING POINT FLEVATIONS MAY CHANG				L	
CHEMICAL ANALYSIS WATER FOUND V STATIC WATER LEVEL		-			· · · ·	·	

	STRATIGRAPHIC AN (OVE	d Instrumen Erburden)	NTATION LOG		(L-
PROJE	CT NAME: LEICA INC. R1/FS	x ⁻¹	HOLE DESIGNATION	BH-J	
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUAR	Y 24, 1
CLIENT	EICA INC.		DRILLING METHOD:	4 1/4°	ID HSA
LOCATI	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	K. LYNC	н
DEPTH ft_BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	S N	AMPLE § N
	GROUND SURFACE	658.2		B E	
		657.9		155	× 19
2.5	Gray SAND, some asphalt, little gravel, tro brick and clay, dry to moist, slight odor, Gray and red brown SILT, some clay, trace		BOREHOLE		\ominus
	gravel and brick, moist Same, except black, little clay, no gravel brick, petroleum odor		CEMENT/ BENTONITE GROUT	255	∆ ⁴
5.0	Same, with some sand, petroleum odor			355	13
	Red brown SILT, some sand and clay, little gravel, dry to moist, NATIVE	e <i>f 652.2</i>		l K	Δ
7.5	END OF HOLE @ 6.0 FT. BGS NOTES: 1. At completion the borehole was backt				
10.0	to surface with cement / bentonite 2. No soil samples were collected for chemical analysis.	grout.			
12.5	,				
15.0	,		·		
	-				
17.5			•		
20.0					
20.0					
22.5					
	•	·			
25.0					
	; -				
27.5					
	· · ·				
30.0			, <i>'</i>		
			· · · · ·		
32.5			· .		
			· · ·		
	S: MEASURING POINT ELEVATIONS MAY C				

· .

· .

Ì

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: LEICA INC. RI/FS

PROJECT NO .: 3967

CLIENT: LEICA INC.

LOCATION: CHEEKTOWAGA, NEW YORK

HOLE DESIGNATION: BH--K DATE COMPLETED: JANUARY 24, 1992 DRILLING METHOD: 4 1/4" ID HSA CRA SUPERVISOR: K. LYNCH

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		SAM	PLE	
BGS	GROUND SURFACE	ft AMSL 657.4	INSTALLATION	NU MBE	ST ATE	,× × × LU	1ZJ
	Black and brown ASPHALT, some sand and gravel, dry, no odor, FILL	656.3		155	ľ	<u>د</u> 18	(ppm) 0
2.5	Black CINDERS, some coal, bottom ash and clinkers, dry to moist, slight aromatic odor Same, except moist to wet, petroleum odor	654.0	BOREHOLE BOREHOLE CEMENT/ BENTONITE	255	$\left \right\rangle$	3	16.5 15.6
5.0	Black and dark gray SILT, some fine sand, little clay, moist, some petroleum odor, NATIVE Brown CLAY, some silt, little sand, soft, moist, slight musty odor	653,4 653.0 652.2 651.4	GROUT	355	\square	6	114 14 9
7.5	Brown medium to coarse SAND, some silt and clay, moist, soft, plastic, slight odor Red brown SILT, some clay, trace sand, stiff dry	031.4					
10.0	END OF HOLE @ 6.0 FT. BGS NOTES: 1. At completion the boreole was backfilled to surface with cement / bentonite grout.						
12.5	 No soil samples were collected for chemical analysis. 			-			
15.0							
17.5							
20.0							-
22.5		••••••	-		:		
25.0							
27.5							
30.0							
32.5							
		·					

(L-27)

	STRATIGRAPHIC AND IN (OVERBU	STRUMEN RDEN)	TATION LOG		(L-28)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	: BH-L	
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY	24, 199
CLIENT	ELEICA INC.		DRILLING METHOD:	4 1'/4"	D HSA
LOCAT	ON: CHEEKTOWAGA, NEW YORK	·	CRA SUPERMSOR:	K. LYNCH	4
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	N	MPLE S 'N' I I
	GROUND SURFACE	658.8		U M B E	
	Black and brown SAND, some gravel and asphalt, FILL				
- 2.5	Black CINDERS, some bottom ash, clinkers and coal, moist, slight odor	657.4 656.8	BOREHOLE	1SS	X 54 1.
• 2.5 -	Black fine to medium SAND, some cinders, dry		CEMENT/ BENTONITE	255	X 9 9.
- 5.0	to moist, some odor Same, except moist to wet, sheen, petroleum	654.5 654.1	GROUT		5.
	Brown SAND, some silt and clay, moist, some	652.8		355	12 29 14
- 7.5	Red brown SILT, some clay, little sand, dry to		· .		
	END OF HOLE @ 6.0 FT. BGS				
- 10.0	 NOTES: 1. At completion the boreole was backfilled to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis. 				
12.5	chemical analysis.			·	
	· ·		· .		
· 15.0			· · · · · · · · · · · · · · · · · · ·		
17.5					
	·				
- 20.0					
	· · ·				
- 22.5					
- 25.0					
	•		· · ·		
27.5					
30.0					
32.5			· · ·		
1 NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG				
	CHEMICAL ANALYSIS O WATER F		STATIC WATER LEVEL		

· · ·

	STRATIGRAPHIC AND IN (OVERBU		VIATION LOG		(L-	16)
PROJE	CT NAMË: LÊIĈA INC. R1/FS		HOLE DESIGNATION:	вн-м		
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUAR	Y 27,	1992
CLIENT	EICA INC.		DRILLING METHOD:	4 1/4"	ID HSA	
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNC	н	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	S.		
t BGS		ft AMSL	INSTALLATION		ş V	HN
•	GROUND SURFACE	659.9		Й В Е	Î Û	Ľ,
	Black and brown ASPHALT, some sand and gravel, FILL	658.9			<u> </u>	(ppm)
2.5	Black CINDERS, little clinkers, gravel and glass, dry to moist			1SS	15	0 22 51
2.5	Black SILT, little clay, moist, slight odor	· <i>657.3</i>	BOREHOLE CEMENT/	K	\rightarrow	
5.0	Same, with some red and gray pasty material, slight odor Brown SILT, some sand, moist, slight odor,	655.6	BENTONITE GROUT	255	6	15.7 10
7.5	NATIVE Same, except red brown, some clay, little sand, dry to moist, slight odor Same, with trace gravel, slight odor	652.9		355	19	6.7
0.0	NOTES: 1. At completion the borehole was backfilled to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis.					
2.5						
5.0	· ·					
	· ·					
7.5						
0.0						
0.0						
2.5						
		1		· . /12		ند ا نا ما ه
5.0						
7.5						
0.0						
2.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFER T	O CURRENT FLEVATION		<u> </u>	
	CHEMICAL ANALYSIS WATER FO		STATIC WATER LEVEL			

r•

, .

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG		(L-	-17)
PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION	: 8H-N		
PROJE	CT NO.: 3967		DATE COMPLETED:		Y 27.	19
CLIENT	: LEICA INC.		DRILLING METHOD:			
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:			
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		AMPLE	
ft BGS	· · · · · · · · · · · · · · · · · · ·	ft AMSL			S N	Т
	GROUND SURFACE	661.4		M B E	A A T L E U	
	Black and gray ASPHALT, some sand and \gravel, dry to moist	660.7		- R	Ε	╇
,	Black and red brown SILT, some sond, gravel r	659.6	BOREHOLE	(1SS	16	
2.5	and clay, trace cinders, dry to moist, no odor Brown fine to medium SAND, little silt, moist,	658.6	CEMENT/	255	$\sqrt{5}$	
	hino odor	657.4	BENTONITE GROUT		Δ	
5.0	Red brown CLAY, some silt, little sand and gravel, dry to moist, no odor, NATIVE					
	END OF HOLE @ 4.0 FT. BGS NOTES:					
7.5	 At completion the borehole was backfilled to surface with cement / bentonite grout. Soil sample submitted for chemical analysis from 0.5 to 1.5 ft BGS for TPH. 					
	 Soil sample submitted for chemical analysis from 0.5 to 1.5 ft BGS for TPH. 					
10.0				-	2 .	
12.5						
15.0	· .			·		
;						
17.5	· · · · · · · · · · · · · · · · · · ·					
20.0						
20.0						
						I
22.5						
25.0						
27.5	, · · · ·					
30.0						
32.5						
ł						1

- .:

:

.....

STRATIGRAPHIC AND INSTRUMENTATION LOG (L-18) (OVERBURDEN) PROJECT NAME: LEICA INC. R1/FS HOLE DESIGNATION: BH-O PROJECT NO .: 3967 DATE COMPLETED: JANUARY 27, 1992 CLIENT: LEICA INC. DRILLING METHOD: 4 1/4" ID HSA LOCATION: CHEEKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE INSTALLATION ft BGS ft AMSL HNU Ņ UMBER A T E A GROUND SURFACE 662.0 Ľ (ppm Black and gray ASPHALT, some sand and gravel, dry to moist, FILL 661.5 661.0 8"¢ **1**SS 24 0 BOREHOLE Black COAL, dry 660.0 CEMENT/ BENTONITE 2.5 Red brown SILT, some sand and clay, little gravel and glass, dry to moist, no odor **2SS** 8 0 GROUT 658.7 Red brown SILT, some clay, little sand, trace gravel, dry to moist, no odor, NATIVE 658.0 - 5.0 Red CLAY, some silt, little sand, dry to moist, no odor END OF HOLE @ 4.0 FT. BGS - 7.5 NOTES: At completion the borehole was backfilled to surface with cement / bentonite grout. No soil samples were collected for 1. 2. chemical analysis. - 10.0 - 12.5 - 15.0 - 17.5 20.0 22.5 25.0 27.5 30.0 - 32.5 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS WATER FOUND 🔽 STATIC WATER LEVEL T

	(OVERBU	KDEN)		1		
PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION:	BH-P		
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUAF	RY 27, ⁻	992
CLIENT	LEICA INC.		DRILLING METHOD:	4 1/4"	ID HSA	
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYN	СН	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION			SAMPLE	_
ft BGS		ft AMSL	INSTALLATION		S N T V	HN
	GROUND SURFACE	660.1		8		(ppm)
	Black and gray ASPHALT, some sand and gravel, dry, FILL	659.6 659.3 658.7 658.5 658.3		155	35	0
2.5	Black COAL, dry, no odor	658.5 658.3	8"\$ BOREHOLE	133	\square	
د.ي	Brown ASH, some clinkers, trace coal, dry to	656.6		255	5	0
5.0	Green and gray SLAG or WEATHERED CONCRETE, dry, no odor		BENTONITE GROUT	\square	()	
5.0	Light brown SAND, dry, no odor	655.1 654.2 654.1		3SS	X ⁴	0
7 -	Light gray CONCRETE, dry, no odor Same, with some brick, vitreous tile and sand, moist to wet; wet below 3.3 ft BGS	654.1				
7.5	Brown and red brown CLAY, some silt, little					
	fine sand, soft, dry to moist, no odor, NATIVE Dark gray SILT, little fine sand, soft, slight					
10.0	odor					
	Gray CLAY, soft, dry to moist END OF HOLE @ 6.0 FT. BGS					
12.5	NOTES: . 1. At completion the borehole was backfilled					
	to surface with cement / bentonite grout. 2. Soil sample submitted for chemical analysis from 2.0 to 4.0 ft BGS for TPH.					
15.0	from 2.0 to 4.0 ft BGS for TPH.					
17.5						
20.0						
22.5						
			· .			
25.0						
27.5						
	· · · · · · · · · · · · · · · · · · ·					
30.0		·				
32.5			•			

· . ·

.

• •

PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION	: BH-Q
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY 27, 1992
CLIENT	LEICA INC.		DRILLING METHOD:	
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE N S N H
	GROUND SURFACE	657.0		
	Black ASPHALT, some sand and gravel, dry to moist, FILL	656.7		1SS X 36 31
- 2.5	Red brown SILT, some clay, trace gravel and coal, soft, moist, slight petroleum odor	655.0	BOREHOLE	\square
	Black CINDERS, some silt, gravel, coal and clinkers, moist to wet, petroleum odor	654.2 653.3	CEMENT/ BENTONITE GROUT	2SS 2 48 42
- 5.0	Dark gray SILT. little clay and sand, moist,	652.7	Groot	3SS 15 19
	Brown SAND, moist, petroleum odor Same, except moist to wet, some petroleum	651.0	0229-5-5524	
- 7.5	odor Red brown SILT, some clay, little fine sand and gravel, dry to moist, slight to no odor, NATIVE			
- 10.0	END OF HOLE @ 6.0 FT. BGS NOTES:			
	 At completion the borehole was backfilled to surface with cement / bentonite arout. 			
- 12.5	 Soil samples submitted for chemical analysis from 3.0 to 4.0 ft BGS for TPH and from 4.5 to 6.0 ft BGS for TCL/TAL and TPH. 			
- 15.0				
- 17.5				
-17.5				
20.0				
22.5		····	-	an an an star grand an Ara an a' tha an an an tar
25.0				
27.5				
70.0				
30.0				
32.5				
NOTE:	S: MEASURING POINT ELEVATIONS MAY CHANG			

.

.

•

	OVERBUT		HOLE DESIGNATION	- <u>Ru</u> _ P		
	CT NO.: 3967		DATE COMPLETED:		דר אם	100
			DRILLING METHOD:			
CLIENT	· · · ·					A
LOCAT		`	CRA SUPERVISOR:	K. LTN		
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR		SAMPLE SAMPLE	
	GROUND SURFACE	657.7			A A T L E U	(P
	Black and gray ASPHALT, some sand and gravel, dry to moist, no odor	657.1		155	14	
2.5	Black CINDERS, some clinkers, little coal, moist, no odor	655.7	8°9 BOREHOLE		(\mathbf{H})	
	Black to dark gray SILT, little white vitreous tile, moist to wet, petroleum odor	653.7	CEMENT/ BENTONITE	255	∦ ∐	E
5.0	Red brown SILT, some clay, little sand and fine round gravel, dry to moist, no odor, NATIVE	000.7	GROUT	355	13	
	END OF HOLE @ 6.0 FT. BGS	651.7			Á	
7.5	NOTES: 1. At completion the borehole was backfilled to surface with cement / bentonite grout.					
	 Soil sample submitted for chemical analysis from 2.0 to 4.0 ft BGS for TPH. 					
10.0						
、 ·	· · · ·		,			
12.5	· · ·		,			
15.0			, · · ·			
17.5						
17.5						
20.0	<i>'</i>			i I		
22.5						
25.0	,		•			
27.5			•			
					· .	
30.0						
	· · · ·					
32.5			•			
			·			
NOT	ES: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE		
	CHEMICAL ANALYSIS 🔘 WATER F	OUND 🔽	STATIC WATER LEVEL			

. .

•

/

PROJE	CT NAME: LEICA INC. R1/FS		HOLE D	ESIGNATION:	BH-S	-1		
	CT NO.: 3967			OMPLETED:			30 1	100
CLIENT	£.			G METHOD:				
LOCATI	· · · · · · · · · · · · · · · · · · ·			PERVISOR:			пэн	
					K. LTI	NCH	_	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONI	TOR ATION	N	SAN Is		— —
	GROUND SURFACE	659.9				T A T E		(PI
	Gray GRAVEL—some=sand=and trace=asphalt, dry, no odor, FILL			n and a second	155		36	
	Same, except moist to wet		-	8"¢ BOREHOLE	133	,Ν	30	
- 2.5				BUREHULE	255	۶IV	5	
	Same, except brown, trace brick, silt and sand, wet, no odor		-	BENTONITE		\mathbb{H}		
- 5.0				GROUT	355	۶IX	3	
	Red brown SILT, some clay, trace fine round	653.5			455	\mathbb{N}	24	
- 7.5	_ gravel, dry to moist, no odor, NATIVE END OF HOLE @ 7.5 FT. BGS	652.4	1512 Sec. 4	•		\mathbb{T}		
- 10.0	 NOTES: At completion the borehole was backfilled to surface with cement / bentonite grout. Sample of bedding material submitted for chemical analysis from 6.0 to 7.0 ft BGS for VOCs and TPH. 					-		
12.5	for VOCs and TPH.							
			,					
- 15.0					ļ			
17.5								
· 20.0								
22.5								
25.0				-				
27.5								
30.0								
32.5				• •				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG						l	-

, a⊪.≖

.

1

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L-
PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION:	BH-S-2
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY 30,
CLIENT	EICA INC.		DRILLING METHOD:	
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	SAMPLE N S I'N
	GROUND SURFACE	659.9		
	Gray GRAVEL, some sand, little white brick, little asphalt, dry, no odor, FILL			
2.5	No recovery	657.9	BOREHOLE	
	Dark gray SILT, some clay, little brick, trace gravel, wet, petroleum odor		CEMENT/ BENTONITE GROUT	255 5
5.0	Red brown SILT, some clay, dry to moist, NATIVE	654.9 653.9		3SS X 13
7.5	END OF HOLE @ 6.0 FT. BGS		· · ·	
7.5	 At completion the borehole was backfilled to surface with cement / bentonite grout Insufficient volume of bedding material recovered for chemical sample. 			
· 10.0	recovered for chemical sample.			
- 12.5				
12.0				
15.0	· · · · · · · · · · · · · · · · · · ·		-	
	· ·			
17.5			•	
20.0				
22.5				
25.0				
20.0	· · ·			
27.5				
	· · · · · · · · · · · · · · · · · · ·	•		
30.0				
32.5	•		· .	
NOTE	S: MEASURING POINT ELEVATIONS MAY CHAN	GE: REFER T	O CURRENT ELEVATION	
	CHEMICAL ANALYSIS WATER F		STATIC WATER LEVEL	

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG		(L-2	24)
PROJE	CT NAME: LEICA INC. R1/FS	•	HOLE DESIGNATION:	BH-S-3		
	CT NO.: 3967		DATE COMPLETED:			992
CLIENT			DRILLING METHOD:			
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:			
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION				
ft BGS		ft AMSL	MONITOR INSTALLATION			H
	GROUND SURFACE	656.3				
	Gray and brown GRAVEL, some sand, dry to moist				27	0
- 2.5	Dark gray CINDERS, some brick, coal and clinkers, little wood, moist to wet, slight petroluem odor	654.7 654.3 653.7 653.2		255	6	0
- 5.0	Dark gray GRAVEL, some glass and brick, moist to wet Black CINDERS, some fibrous material, moist to wet, strong odor	652.5 652.3 651.5 650.3	GROUT	355	19	0
- 7.5	Gray and brown mottled SILT, some clay and fine sand, moist Red brown SILT, some clay, hard, dense, dry to moist, NATIVE					
- 10.0	Brown and red brown SAND, some gravel and clay, moist to wet, slight odor Red brown SILT, some clay, little fine gravel.	,				
- 12.5	dry to moist, no odor END OF HOLE @ 6.0 FT. BGS NOTES: 1. At completion the borehole was backfilled					
- 15.0	to surface with cement / bentonite grout. 2. No soil samples were collected for chemical analysis as soil from interval corresponding to sewer invert is not bedding material.					
- 17.5						
- 20.0					-	
- 22.5						
- 25.0						
- 27.5						
- 30.0						
- 32.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E REFER 1			<u>1</u>	
			•			
	CHEMICAL ANALYSIS WATER FO		STATIC WATER LEVEL			

,

.

	STRATIGRAPHIC AND IN (OVERBU		MATION LOG	(L-25)
PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION	: 8H-S-4
PROJE	CT NO.: 3967		DATE COMPLETED:	JANUARY 30, 19
CLIENT	EICA INC.		DRILLING METHOD:	4 1/4" ID HSA
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAMPLE
ft BGS		ft AMSL	INSTALLATION	
	GROUND SURFACE	656.4	1	
- 2.5 - 5.0	Gray GRAVEL, some sand, little brick and glass, dry to moist, no odor No recovery Dark gray coarse SAND, some gravel, wet, sheen, slight petroleum odor	. 651.8	BOREHOLE BOREHOLE CEMENT/ BENTONITE GROUT	1SS 27 2SS 11 3SS 2/1"
7.5	 END OF HOLE 4.6 FT. BGS NOTES: 1. Borehole was abandoned because of concerns that if the sewer pipe was hit and broken the groundwater in the pipe trench would be introduced into the flow stream of the sewer. 2. At completion the borehole was backfilled 			
10.0	 At completion the borehole was backfilled to surface with cement / bentonite grout. No soil samples were collected for chemical analysis due to low soil recoveries. 			
12.5				
15.0				
17.5				
20.0				
22.5				
25.0				
27.5				
	- ,		· , ·	
30.0				
32.5				

PROJ	ECT NAME: LEICA INC. R1/FS		HOLE DESIGNATION	BH-S-	-DEE	P	
PROJ	ECT NO.: 3967		DATE COMPLETED:	JANUA	RY	30, ⁻	199
CLIEN	T: LEICA INC.		DRILLING METHOD:	4 1/4	' ID	HSA	•
LOCA	TION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYN	СН		
DEPTH ft BG		ELEVATION ft AMSL	MONITOR		SAN		
	GROUND SURFACE	655.0					
	Auger only to 8.0 ft BGS			<u> </u>	+	Ē	Kpr
- 2.5 - 5.0			BOREHOLE				
- 7.5		647.0	CEMENT/ BENTONITE GROUT				
- 10.0	Red brown with gray SILT, some clay and sand in interbedded lenses, dry to moist Gray CLAY, little silt, stiff, moist Same, except soft	646.2 645.1		1SS 2SS	$\left \right\rangle$	13 13	
12.5	Gray SAND, trace silt, moist to wet, no odor Same, with some fine to medium sand in pockets, little fine round gravel, moist to wet Same, with some gravel, wet, possible NAPL, some odor	642.3		355			
- 15.0	END OF HOLE @ 12.7 FT. BGS NOTES: 1. At completion the borehole was backfilled to surface with cement / bentonite grout.						
17.5	to surface with cement / bentonite grout. 2. Soil sample collected for chemical analysis from 11.0 to 12.5 ft BGS. for VOCs and TPH.						
- 20.0							
22.5		••••••			. .		- '
- 25.0							
[.] 27.5							
30.0							
32.5							

:∎-**-**-.

PROJE	CT NAME: LEICA	•	HOLE DESIGNATION:	BH-7A	
PROJE	CT NO.: 3967	·	DATE COMPLETED:	JULY 2.	991
CLIENT	· · · ·		DRILLING METHOD:		
			CRA SUPERVISOR:	•	
LOCATI	ON: CHEEKTOWAGA, N.Y.			K. LINCH	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR		
11 803	· · · · · · · · · · · · · · · · · · ·			U T M A	N.
	GROUND ELEVATION	658.41	•	M A B T E E R	ŬĒ
	Augered through asphalt to 0.5 ft BGS	-0.5			
	Dark brown to black CLAY, some silt, little gravel and fine sand, trace white brick,	-1.9		1SS X	16
2.5	Moist, FILL Black coarse SAND, some brick, moist to wet,	-2.0		255 X	6 ·
	fuel_oil_odor	15			
5.0	Black SILT, little fine sand and clay, moist	-4.5	8°	3SS 🗙	10
	Red brown SILT, some clay, little fine rounded gravel, dry to moist, no odor, NATIVE	-6.7	BURCHULE		
7.5	Red brown CLAY, some silt, little fine sand	-0./	CEMENT/	4SS X	31
	and fine round gravel, dry to moist		BENTONITE GROUT	$\int_{\mathcal{L}} \nabla$	
10.0	Brown medium SAND, little silt and fine	-9.0		555	24 [.]
10.0	round gravel, moist, slight fuel oil odor Gray to light brown SAND, very wet			655 X	54
	Same, except brown and gray			$ \square \square $	
12.5				755	26
	Gray fine to medium SAND, some fine to			855	>100
15.0	medium round gravel, hard, dense, moist	-14.9	JEAN DECK		-100
	NOTES: 1. At completion this borehole was		-		
17.5	grouted to ground surface due to the observed presence of fuel oil in the		. *		
	borehole soils.				
20.0	analysis. Geologic record samples were				
20.0	collected.		· ·		
22.5					ŕ
25.0					
			· ·		
27.5					
			'		
30.0					
50.0			•		
32.5					
<u>х</u>			, ·		

· . ·

1

.

:

	STRATIGRAPHIC AND IN (OVERBUI		ITATION LOG	(L-29)
PROJEC	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: BI	H-EDW1-93
PROJEC	CT NO.: 3967		DATE COMPLETED: DI	ECEMBER 14, 1993
CLIENT:	EICA INC.		DRILLING METHOD: 4	1/4" ID HSA
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR: K.	LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft AMSL	INSTALLATION	N S 'N' P U T V I M A A D
	GROUND SURFACE	660.3		NU A A D B T L E E U R E (ppm)
	Augered through asphalt pavement	659.8		
	SP—SAND(FILL), some gravel and cement, brown, 	658.5		1SS X 62
2.5	ML—SILT(NATIVE), some clay, trace fine rounded gravel, very stiff, laminated, red brown and gray, slight odor increasing with depth			255 29
5.0			BOREHOLE	355 24
		653.3		455 23
7.5	SM—SAND, some silt, trace to little fine rounded gravel, moist to wet, strong odor		GROUT	555
10.0				6SS X 94
12.5		6479		7SS X>100
12.5	SM—SAND(TILL), some silt, little subrounded gravel, very stiff, brown and gray, dry to	647.9 647.4		
15.0	Imoist, slight odor END OF HOLE @ 12.9 FT. BGS			
	NOTES: 1. Soil sample collected from 8.0 to	-		
17.5	11.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals, and TPH. 2. Borehole backfilled with cement/bentonite			
	grout to surface 3. PID fault; instrument checked, lamp		•	
20.0	changed - still inoperative.			
22.5				
25.0				
27.5				
30.0			·	
32.5				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE

	STRATIGRAPHIC AND IN (OVERBUI		TATION	LOG			(L-	30)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DI	ESIGNATION: B	EDW	-SE		
PROJE	CT NO.: 3967				NUARY			94
CLIENT	: LEICA INC.		DRILLING	METHOD: 4	1/4" 1	о н	SA	
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SU	PERMSOR: K.		4		
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		NITOR		SAM	PLE	
t BGS		ft AMSL	INSTA			S T	Ϊ,	Ι
	GROUND SURFACE	660.7	~		BER	A T E		KPI
	Augered to 6.0 ft BGS			·				
2.5								
5.0				BOREHOLE				
-	MI-SILT(NATIVE) some clay and cand york	654.7	-					
7.5	ML—SILT(NATIVE), some clay and sand, very stiff, laminated, red brown, dry to moist, no odor or sheen			BENTONITE	1SS	X	22	
	SW-SAND, gray, moist to wet, no odor or sheen	652.2			255	\square	13	
10.0					255	Д	13	
					355	Х	44	
12.5	END OF HOLE @ 12.0 FT. BGS NOTES:	648.7	BCSW2255			H		
	 Soil samples retained for geologic record. Borehole backfilled with cement/bentonite 							
15.0	grout to surface 3. PID fault due due to cold weather/heavy							
	snow.			`			•	
17.5								
								ļ
20.0								
			•					
22.5							1	
25.0			•					
25.0						•		
27.5								;
_,								
30.0								
32.5								
	· · · · · · · · · · · · · · · · · · ·							

•

•

PROJECT NAME: LEICA INC. RI/FS HOLE DESIGNATION: BH-EDW-NE. PROJECT NO: 3967 DATE COMPLETED: JANUARY 17, 19 CLIENT: LEICA INC. LOCATION: CHECKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS LOCATION: CHECKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS LOCATION: GROUND SURFACE GROUND SURFACE 659.4 Augered to 6.0 ft BGS HAMSL LOC-CLAY(NATIVE), some silt, red brown, dry S31.5 SW-SAND, trace silt, brown to gray, moist to 831.5 Via most free or odor 549.4 I.S. Soil somples retained for geologic record. 549.4 J.S. POLE @ 10.0 FT. BGS 549.4 I.S. Soil somples retained for geologic record. 549.4 J.S. POLE @ 10.0 FT. BGS 549.4 J.S. POLE @ 10.0 CT. BGS 549.4 J. PID foult due due to cold weather/heavy snow. 10.5 J.S. POLE @ 10.0 CT. BGS 10.5 J. Soil somples retained for geologic record. 10.6 J. P.D. Toult due due to cold weather/heavy snow. 10.7 J.S. J. Soil somples retained for geologic record. 10.7 J. Soil somples retained for	-31)	(L-			log	TATION		STRATIGRAPHIC AND IN (OVERBU	
CLENT: LEICA INC. DRILLING METHOD: 4 1/4* ID HSA LOCATION: CHEEKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR GROUND SURFACE 659.4 MONITOR SAMPLE Augered to 6.0 ft BCS		NE .	EDW-I	: BH-6	SIGNATION	HOLE DE	-	NAME: LEICA INC. RI/FS	PROJE
LOCATION: CHEEKTOWAGA, NEW YORK CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS CRA SUPERVISOR: K. LYNCH DEPTH GROUND SURFACE GROUND SURFACE Augered to 6.0 ft BGS 1 CL-CLAY(NATIVE), some silt, red brown, dry to moist CL-CLAY(NATIVE), some silt, red brown, dry to moist CL-CLAY(NATIVE), some silt, red brown, dry to moist SWEFES: 1.50 CL-CLAY(NATIVE), some silt, red brown, dry to moist SWEFES: 1.50 SWEFES: 1.50 SWEFES: 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	994	17, 19	JARY	JANU	MPLETED:	DATE CO		NO.: 3967	PROJE
DEPTH t BCS STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION t AMSL MONITOR INSTALLATION SAMPLE GROUND SURFACE 659.4 Augered to 6.0 ft BGS 659.4 Image: Second state s		HSA	'4" ID	4 1/	METHOD:	DRILLING		LEICA INC.	CLIENT
ft BGS ft AMSL INSTALLATION GROUND SURFACE 659.4 Augered to 6.0 ft BGS 2.5 5.0 (CL-CLAY(MATIVE), some silt, red brown, dry to moist wet, no sheen or odor 10.0 END of HOLE @ 10.0 FT. BGS NOTES: 1. Soil samples retained for geologic record. 2.5 3. PID foult due due to coid weather/heavy snow.			NCH	K. Lì	PERMSOR:	CRA SUF		CHEEKTOWAGA, NEW YORK	LOCATI
GROUND SURFACE 659.4 Augered to 6.0 ft BGS 2.5 5.0 (CL-CLAY(INATIVE), some silt, red brown, dry/ to moist 7.5 SW-SAND, trace silt, brown to groy, moist to wet, no sheen or odor 10.0 END OF HOLE • 10.0 FT. BGS NITES: Soli samples retained for geologic record. 2. Borehole bockfiled with cement/bentonite 3. PID foult due due to cold weather/heavy 15.0 17.5 20.0 22.5 23.0 27.5 30.0				J				RATIGRAPHIC DESCRIPTION & REMARKS	
Augered to 6.0 ft BGS 2.5 5.0 7.5 WCL-CLAY(NATIVE), some silt, red brown, dry 15.0 10.0 END OF HOLE @ 10.0 FT. BGS 1. Soli somples retained for geologic record. 2.5 2.8 Derehole backfilled with cement/bentonite 3. PD foult due due to cold weather/heavy snow. 15.0 17.5 20.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	P D	S N T V A A	N U M R		LLATION		· · · · · · · · · · · · · · · · · · ·		IT BGS
 2.5 5.0 CL-CLAY(NATIVE), some silt, red brown, dry to moist SW-SAND, trace silt, brown to gray, moist to wet, no sheen or odor END OF HOLE 10.0 END OF HOLE 10.0 FT. BGS 12.5 2.5 Borehole backfilled with cement/bentonite grout to surface 3. PID fault due due to cold weather/heavy snow. 17.5 20.0 22.5. 25.0 27.5 30.0 	(ррлт		Ĕ				639.4		
7.5 CL-CLAY((NATIVE), some silt, red brown, dry to moist SW-SAND, trace silt, brown to gray, moist to wet, no sheen or odor 553.4 (533.3) 155 8 10.0 END OF HOLE • 10.0 FT. BGS NOTES: 1. Soil samples retained for geologic record. group to surface 3. PID foult due due to cold weather/heavy snow. 649.4 649.4 17.5 2.5. 25.0 27.5 30.0					BOREHOLE				
10.0 END OF HOLE • 10.0 FT. BGS 649.4 12.5 1. Soil samples retained for geologic record. grout to surface 649.4 12.5 3. PilD foult due due to cold weather/heavy snow. 649.4 12.5 2. Borehole backfilled with cement/bentonite grout to surface 649.4 12.5 3. PilD foult due due to cold weather/heavy snow. 649.4 12.5 2. Borehole backfilled with cement/bentonite grout to surface 649.4 12.5 30.0 10.0 FT. BGS			K		BENTONITE		653.4 653.3	W-SAND, trace silt, brown to gray, moist to	
3. PID foult due due to cold weather/heavy snow. 15.0 20.0 22.5. 25.0 27.5 30.0		7	K					OTES:	10.0
17.5 20.0 22.5 25.0 27.5 30.0								grout to surface 3. PID fault due due to cold weather/heavy	12.5
20.0 22.5 22.5 25.0 27.5 30.0 1									15.0
22.5. 25.0 27.5 30.0								,	17.5
25.0 27.5 30.0			-						20.0
27.5 30.0		et.s					·		22.5
30.0									25.0
									27.5
32.5									30.0
									32.5
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE					T ELEVATIO	TO CURREN	E; REFER	MEASURING POINT ELEVATIONS MAY CHANG	

•

PROJECT I CLIENT: LOCATION: DEPTH STI ft BGS Au 2.5 5.0 7.5 -	LEICA INC. : CHEEKTOWAGA, NEW YORK	ELEVATION ft AMSL 660.8	HOLE DESIGNATION: DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION	JANUARY 4 1/4" II K. LYNCH	′17, D HS	A
CLIENT: LOCATION: DEPTH STI ft BGS 2.5 5.0 7.5 -	LEICA INC. : CHEEKTOWAGA, NEW YORK TRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE Augered to 6.0 ft BGS	ft AMSL 660.8	DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION	4 1/4" II K. LYNCH	D HS I SAMP	
LOCATION: DEPTH STI ft BGS Au 2.5 5.0 7.5 - 10.0	CHEEKTOWAGA, NEW YORK	ft AMSL 660.8	CRA SUPERVISOR: MONITOR INSTALLATION		SAMP	
2.5 5.0 7.5 10.0	GROUND SURFACE	ft AMSL 660.8	MONITOR INSTALLATION		SAMP	'N' ∧
ft BGS Au 2.5 Au 5.0 Sh 7.5 - 10.0 -	GROUND SURFACE Augered to 6.0 ft BGS	ft AMSL 660.8	INSTALLATION		S	'N' ∧
2.5 5.0 7.5 -	Augered to 6.0 ft BGS	660.8	BOREHOLE CEMENT/		T A T E	
2.5 5.0 7.5 -		654.8	BOREHOLE	<u> </u>		<u>E</u> (
5.0 7.5 -	M—SAND, little silt and clay, trace gravel, rown with gray, moist to wet, no sheen	654.8	BOREHOLE			
7.5 –	M—SAND, little silt and clay, trace gravel, rown with gray, moist to wet, no sheen	654.8			1	
^{7.5} –	rown with gray, moist to wet, no sheen		GROUT			
	- slight to moderate odor (below 8.0 ft BGS)			1SS 2SS	()	20 69
	ND OF HOLE @ 10.0 FT. BGS OTES:	650.8			Æ)	
2.5	 Soil samples retained for geologic record. Borehole backfilled with cement/bentonite grout to surface PID fault due due to cold weather/heavy snow. 		· ·			
15.0						
17.5						
20.0						
22.5			•			
25.0	- 					
27.5	•					
30.0			· ·			
32.5						

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG		(L-33)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	BH-T1-93	3
PRÓJE	CT NO.: 3967		DATE COMPLETED:		
CLIENT	ELEICA INC.		DRILLING METHOD:		
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH	
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		
1 005	GROUND SURFACE	ft AMSL 659.2	INSTALLATION		
	Augered through asphalt	658.7		Ř	ÈŪ E(ppm)
2.5	SP—SAND(FILL), little gravel and silt, trace deteriorated concrete, dark brown, moist, slight petroleum odor	657.8	BOREHOLE	155	7 NA
5.0	ML—SILT(NATIVE), little clay and fine sand, trace gravel, red brown, dry, no odor END_OF HOLE @ 4.0 FT. BGS	655.2	BENTONITE	255	X 26 NA
5.0	NOTES: 1. Soil sample collected 0.5 to 1.5 ft BGS for chemical analysis of TCL VOCs and				
7.5	TPH. 2. Borehole backfilled with cement/bentonite grout to surface.				
10.0					
2.5					
5.0					
7.5					
20.0					
,	*				
2.5					
25.0					
27.5					
0.0					
2.5					
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER 1	O CURRENT ELEVATIO	N TABLE	
	CHEMICAL ANALYSIS O WATER FO		STATIC WATER LEVE	L 🗶	

• •

PROJEC						
	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	: BH-T2-9	3	
PROJEC	CT NO.: 3967		DATE COMPLETED:	DECEMBER	R 14, 1	99
CLIENT:	LEICA INC.		DRILLING METHOD:	4 1/4" IC) HSA	
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		SAMPLE	
IL BUS	GROUND SURFACE	ft AMSL	INSTALLATION		ST A LU	
	SP—SAND(FILL), some gravel, black and gray, moist to wet, no odor, no sheen		8's BOREHOLE		35	K
- 2.5	ML—SILT(NATIVE), some clay, little sand and fine rounded gravel, stratified, red brown, \dry to moist, no sheen, no odor	656.7 655.3	CEMENT/ BENTONITE GROUT	255	21	
5.0	END OF HOLE @ 4.0 FT. BGS NOTES: 1. Soil sample collected 0.0 to 2.0 ft BGS for chemical analysis of TCL VOCs and TPH.					
· 7.5	TPH. 2. Borehole backfilled with cement/bentonite grout to surface.		· .	· ·		
10.0			·			
12.5			· .			
15.0						
17.5	· · · · ·					
20.0						
22.5						
25.0						
27.5	· . ·					
30.0						
32.5			•			

· .

•

-

,

•

`

.

ft BGS	LEICA INC. N: CHEEKTOWAGA, NEW YORK	ELEVATION	HOLE DESIGNATION: DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR:	DECEMBE	R 14,	1993
LOCATION DEPTH S ft BGS	N: CHEEKTOWAGA, NEW YORK		DRILLING METHOD:			
2.5	STRATIGRAPHIC DESCRIPTION & REMARKS					
ft BGS				K. LYNCH		
2.5	GROUND SURFACE		MONITOR		SAMPLE	
2.5	GROUND SURFACE	ft AMSL	INSTALLATION		S '	P I
2.5		659.8		N U 11 11 11 11 11 11 11 11 11 11 11 11 1		D
2.5	Augered through asphalt and pavement			Ř		
2.5	compate deteriors to deteriors and second and second		BOREHOLE	1ŜŜ	20	
	- cement, deteriorated, trace sond and gravel, dry to moist	657.1		255	10	
	ML—SILT(NATIVE), little sand and clay, dark gray, moist		BENTONITE GROUT		K)	
	- some sand, little clay, trace rounded gravel, red brown	653.8		355	27	7 NA
	END OF HOLE @ 6.0 FT. BGS NOTES:	000.0				
7.5	 Soil sample collected 2.0 to 4.0 ft BGS for chemical analysis of TCL VOCs and TPH. 					
10.0	 Borehole backfilled with cement/bentonite grout to surface. 					
	-					
12.5						
15.0						
					i .	
17.5						
20.0						Ĩ
22.5				-	-	
25.0						
					Î	
27.5						
30.0						
32.5						

٠

•

ft BGS ft A GROUND SURFACE 65 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen 65	HOLE DESIGNATION: BH-1-93 DATE COMPLETED: DECEMBER 1, 199 DRILLING METHOD: HAND DRIVER / 2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH ATION MONITOR NAMPLE INSTALLATION M A A B E U R E U R A A B C UTINGS 2SS >40
CLIENT: LEICA INC. LOCATION: CHEEKTOWAGA, NEW YORK DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEV ft JGS GROUND SURFACE 65 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen 65 - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 - 5.0 NOTES: 1. Soil somple collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. 65 - 7.5 2. Borehole backfilled with cuttings to surface -10.0 - 12.5 - - - 17.5 20.0 - - 22.5 - -	DRILLING METHOD: HAND DRIVER / 2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH ATION MONITOR SAMPLE INSTALLATION 5.2 4.4 CRA SUPERVISOR: K. LYNCH MONITOR SAMPLE N T L BOREHOLE CUTTINGS (255) >40
LOCATION: CHEEKTOWAGA, NEW YORK DEPTH ft BGS STRATIGRAPHIC DESCRIPTION & REMARKS ELEV ft / GROUND SURFACE 63 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen 65 -2.5 Some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 -5.0 NOTES: 1. Soil sample collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL V0Cs, TCL BNAs, TAL Metals and TPH. 65 -7.5 2. Borehole backfilled with cuttings to surface 10.0 12.5 15.0 15.0 22.5 20.0 22.5	DRILLING METHOD: HAND DRIVER / 2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH ATION MONITOR SAMPLE INSTALLATION 5.2 4.4 CRA SUPERVISOR: K. LYNCH MONITOR SAMPLE N T L BOREHOLE CUTTINGS (255) >40
DEPTH ft BGS STRATIGRAPHIC DESCRIPTION & REMARKS ELEV ft GROUND SURFACE 65 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 -2.5 Some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 -5.0 NOTES: 1. Soil sample collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. 65 -7.5 2. Borehole backfilled with cuttings to surface 10.0 12.5 15.0 17.5 20.0 22.5 17.5	2" SPLIT SPOON CRA SUPERVISOR: K. LYNCH ATION MONITOR INSTALLATION 5.2 4.4 4.4
ft BGS ft / GROUND SURFACE 65 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 -2.5 ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen 65 - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 - Some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 - Some clay, little sand, stiff, red brown, dry to moist, no color, no sheen 65 - Some clay, little sand, stiff, red brown, dry to moist, no color, no sheen 65 - Some clay, little sand, stiff, red brown, dry to moist, no color, no sheen 65 - Some clay, little sand, stiff, red brown, dry to moist, no color, no sheen 65 - Soli sample collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. 7.5 - 7.5 2. Borehole backfilled with cuttings to surface 10.0 112.5 15.0 17.5 20.0 22.5 17.5	INSTALLATION N S N 5.2 H H T A 4.4 2*# ISS 5 GUTTINGS 2SS 240
GROUND SURFACE 65 OL-SILT(FILL), loam, rotting leaves, rootlets, black, moist, no odor, no sheen 65 -2.5 brown, moist, no odor, no sheen 65 -2.5 some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 65 -5.0 NOF HOLE © 3.2 FT. BGS -5.0 NOTES: 1. Soil sample collected form 0.0 to 3.0 ft BCS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. -7.5 2. Borehole backfilled with cuttings to surface -10.0 -12.5 -17.5 2.00	5.2 4.4 (
 black, moist, no odor, no sheen ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen - some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen END OF HOLE @ 3.2 FT. BGS NOTES: 1. Soil sample collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. 7.5 2. Borehole backfilled with cuttings to surface 10.0 12.5 15.0 22.5 	BOREHOLE 155 5
 ML-SILT(NATIVE), some sand, trace roots, gray brown, moist, no odor, no sheen some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen some clay, little sand, stiff, red brown, dry to moist, no odor, no sheen 5.0 NOTES: Soil sample collected form 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. 7.5 2. Borehole backfilled with cuttings to surface 	BOREHOLE 155 5
 10.0 Molecular for a streen in the streen in the strength in the stre	
 5.0 NOTES: Soil sample collected farm 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals and TPH. Borehole backfilled with cuttings to surface 10.0 12.5 15.0 20.0 22.5 	
10.0 12.5 15.0 17.5 20.0 22.5	
10.0 12.5 15.0 17.5 20.0 22.5	
12.5 15.0 17.5 20.0 22.5	
12.5 15.0 17.5 20.0 22.5	
15.0 17.5 20.0 22.5	
15.0 17.5 20.0 22.5	
17.5 20.0 22.5	
17.5 20.0 22.5	
20.0 22.5	
20.0 22.5	
22.5	
22.5	
25.0	
20.0	
27.5	
30.0	
32.5	

	STRATIGRAPHIC AND IN (OVERBU			(L-3
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	BH-2-93
PROJE	CT NO.: 3967		DATE COMPLETED:	DECEMBER 8, 199
CLIENT	EICA INC.		DRILLING METHOD:	HAND DRIVER /
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	2" SPLIT SPOÓN K. LYNCH
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAMPLE
ft BGS		ft AMSL	INSTALLATION	U T V M A A
	GROUND SURFACE	654.7 [.]		M A A B E E U R E E
	TOPSOIL(FILL), loamy, loose, black, moist to wet			155 X 7
- 2.5	ML—SILT(NATIVE), medium stiff, brown, moist — little sand, little clay, trace fine gravel, stiff to very stiff, laminated, red brown			
	END OF HOLE @ 3.0 FT. BGS NOTES:	651.7	PELLET SE CUTTINGS	AL/ 233 740
- 5.0	1. Soil sample collected from 0.0 to 3.0 ft BGS for chemical analysis of TCL VOCs, TAL Metals and TPH.			
	 Z. Borehole backfilled with cuttings and 			
- 7.5	bentonite pellets.			
- 10.0				
- 12.5				
- 15.0			·	
- 17.5				
-17.5				
- 20.0			÷	
- 22.5		، بعد بد		· · · · · · · · · · · · · · · · · · ·
- 25.0				
- 27.5				
	, ,			
- 30.0				
	· · · · · · · · · · · · · · · · · · ·			
- 32.5				

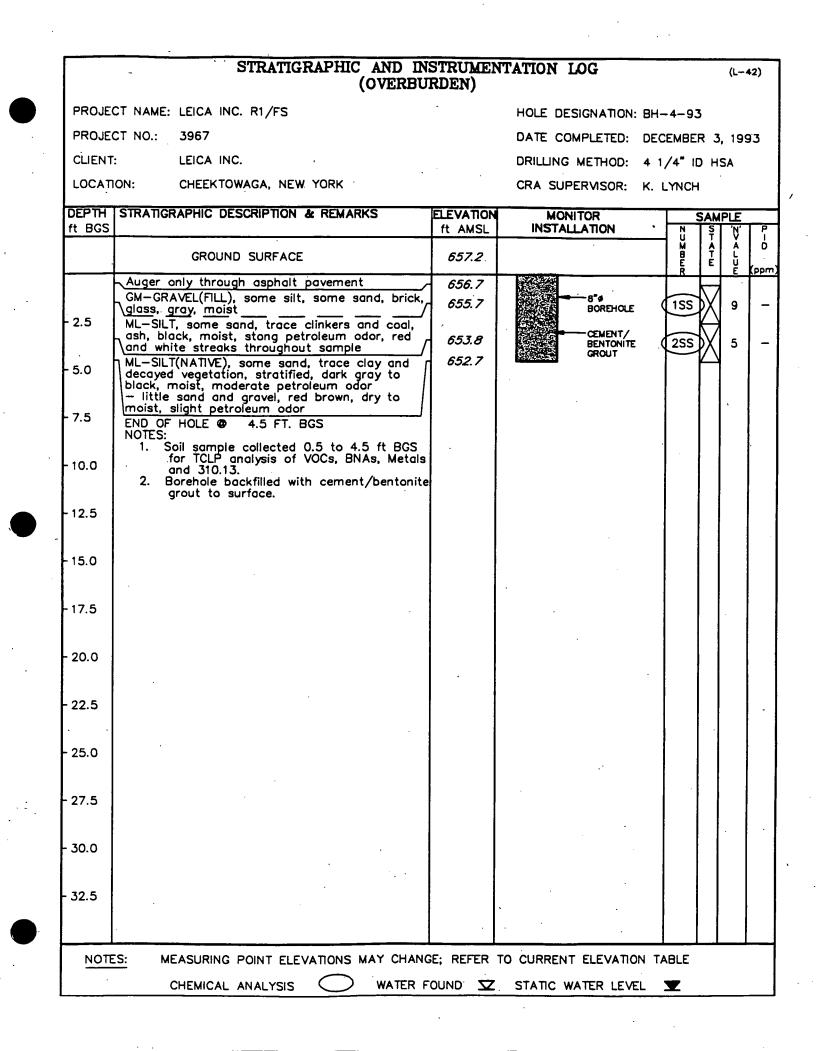
.

÷ .

PROJE	CT NAME: LEICA INC. RIVES		HOLE DESIGNATION: BH	-3-93
PROJE	CT NO.: 3967		DATE COMPLETED: DE	CEMBER 8, 1993
CLIENT	ELEICA INC.		DRILLING METHOD: HA	ND DRIVER /
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR: K.	SPLIT SPOON LYNCH
EPTH t BGS		ELEVATION ft AMSL	MONITOR INSTALLATION	
	GROUND SURFACE	654.0		M A A D B T L E E U
	TOPSOIL(FILL), loamy, loose, dark gray to black moist ML-SILT, little gravel, trace brick, soft, brown,	653.5		R Ε [Ppm] 1SS 10 0
2.5	ML-SILT, fittle grave, trace brick, soft, brown, moist <u>— little clay, dark gray, dry to moist, odor</u> <u>ML-SILT(NATIVE), some clay, dense, laminated,</u>	651.5 651.0	BENTONITE PELLET SEAL	255 >38 .34
5.0	Index, dry to moist, slight odor END OF HOLE @ 3.0 FT. BGS NOTES:			
7.5	1. Soil sample collected from 1.5 to 3.0 ft BGS for chemical analysis of TCL VOCs, TCL BNAs, TAL Metals, TPH, TOC and 310.13.			
10.0	2. Borehole backfilled with bentonite pellets			
2.5				
			· .	
5.0		-		
7.5				
20.0			•	
22.5				
25.0			•	
:			•	
27.5				
30.0			•	
32.5				

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG			(L-	39)
PROJEC	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION:	: BH3A-	93		
PROJEC	CT NO.: 3967		DATE COMPLETED:	DECEMB	ER 1	3, 19	993
CLIENT	LEICA INC.	·	DRILLING METHOD:				
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNC	н		
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		SAN	IPLE	
ft BGS		ft AMSL	INSTALLATION	U M	S T	ΪŅ.	P 0
	GROUND SURFACE	654.2		BER	A T E	Ļ	(ppm
	TOPSOIL(FILL), loamy, black, maist to wet ML-SILT(FILL), little sand and clay, red brown	653.7	5"0		\top		
2.5		652.2	BOREHOLE				
- 2.5	ML—SILT(NATIVE), little sand and clay, gray — some clay, stiff, red brown, dry to moist, 	651.2	CUTTINGS				
- 5.0	END OF HOLE @ 3.0 FT. BGS NOTES:						
· · ·	1. Location is 20' east of BH-3-93.						
- 7.5	 Soil sample retained for geologic record. Borehole backfilled with cuttings. 						
10.0							
12.5							
15.0							
17.5							
20.0							
22.5							
		i .					
25.0							
27.5							
							·
30.0							
32.5							
-			· · · · · · · · · · · · · · · · · · ·				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER T	O CURRENT ELEVATIO	N TABLE			

•


• .

	STRATIGRAPHIC AND (OVER	BURDEN)	NTATION LOG	
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: BH	-38-9
PROJE	CT NO.: 3967		DATE COMPLETED: DE	CEMBEF
CLIENT	EICA INC.		DRILLING METHOD: HA	ND AU
LOCATI	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR: K.	LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	S
	GROUND SURFACE	654.4		U M E
	TOPSOIL(FILL), loamy, black, moist	<u> </u>	5'9	<u> </u>
2.5	ML—SILT(FILL), red and yellow brick, cotton fil trace coal, clinkers, gravel, moist to wet, musty odor ML—SILT(NATIVE), some sand, medium dense gray, moist to wet, musty odor		BOREHOLE BENTONITE PELLET SEAL	
- 5.0 - 7.5	 END OF HOLE 2.0 FT. BGS NOTES: Location is 12' east of BH-3-93. Fill may be from trench for 8" sewer which is very close to borehole locati Water at 1.0 ft BGS at completion. Borehole backfilled with bentonite pello 	ion.		
10.0	4. Dorenole backfilled with bentonite pell	ets.		
12.5			· · · · · ·	
12.5				
15.0				
17.5			· · ·	
20.0				
	· .			
22.5				
25.0			· .	
27.5	• • •			
30.0			· .	
32.5	`			
	·	•	•	

. ..

PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: BH	-3C-93	ĺ	
PRÓJE	CT NO.: 3967		DATE COMPLETED: DEC	CEMBER	13, 1	993
CLIENT	: LEICA INC.		DRILLING METHOD: HAI	ND AUĞ	ERED	
LOCAT	ION: CHEEKTOWAGA, NEW YORK	·	CRA SUPERVISOR: K.	LYNCH		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	<u></u>	MPLE	
11 003	GROUND SURFACE	654.2		U M B E		
	TOPSOIL(FILL), loamy, dark black, moist to wet,	653.7		R R		
	ML-SILT(FILL), little sand and clay, red brown,	652.7	BOREHOLE			
- 2.5	∖ <u>moist</u> ∖ML—SILT(NATIVE), little clay, medium stiff, red ſ	651.7	BENTONITE PELLET SEAL/			
	brown and gray, moist		CUTTINGS			
	END OF HOLE @ 2.5 FT. BGS NOTES:				1	
- 5.0	1. Location is 17 feet east of BH-3-93					
	 Soil sample collected from 1.5 to 2.5 ft BGS from analysis of TCL VOCs, TAL Metals, and TPH. Borehole backfilled with bentonite pellets 					
- 7.5	 Borehole backfilled with bentonite pellets and cuttings. 					
10.0						
12.5						
15.0						
-17.5						
- 20.0						
22.5					· ·	
• 25.0	,					
27.5						
30.0						
32.5						
					1	
		l				1
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER 1	TO CURRENT ELEVATION T	ABLE		

. . . .

	STRATIGRAPHIC AND IN (OVERBU		NTATION LOG	(L-4	3)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	: BH-5-93	
PROJE	CT NO.: 3967		DATE COMPLETED:	DECEMBER 1, 199	3
CLIENT	ELICA INC.		DRILLING METHOD:	4 1/4" ID HSA	
LOCATI	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH	
DEPTH ft BGS		ELEVATION	MONITOR	SAMPLE	
	GROUND SURFACE	656.5		N S N U T A A B E E U R	
- 2.5	Augered to 8.0 ft BGS			<u> </u>	(<u>ppm)</u>
- 5.0 - 7.5 -	ML—SILT(NATIVE), some sand, medium dense, red brown to brown, moist	648.5	BOREHOLE BOREHOLE CEMENT/ BENTONITE GROUT		75
- 10.0 - 12.5 - 15.0	SM-SAND, little silt, trace fine subrounded gravel, moist to wet - discolored lense, dark, petroleum odor END OF HOLE @ 12.8 FT. BGS NOTES:	644.9 643.7		2SS 17 3SS >100	60 10
- 17.5	 Location is adjacent to MW-11. See MW-11 for stratigraphy from 0.0 to 8.0 ft BGS. Soil sample collected for chemical analysis from 8.0 to 12.8 ft BGS for TCL and TCLP VOCs, BNAs, Metals, TRPH, TOC and 310.13. Borehole backfilled with cement/bentonite grout to surface. 				
- 20.0 - 22.5					
- 25.0					
- 27.5					
- 30.0					
- 32.5					
NOTES		E; REFER			

-

	(OVERBU	KDEN)			
	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	BH-6-93	
PROJE	CT NO.: 3967		DATE COMPLETED:	DECEMBER 1	, 199
CLIENT	ELEICA INC.		DRILLING METHOD:	4 1/4" ID H	SA
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYNCH	
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION		SAM	PLE
ft BGS		ft AMSL			.ĭŇ.
	GROUND SURFACE	656.3		N A B E P	
	Auger only through asphalt pavement	655.8 655.3			
	<u>GP-GRAVEL(FILL)</u> , <u>some</u> <u>sand</u> , <u>gray</u> , <u>moist</u> ML-SILT(NATIVE), some sand, little clay, trace				16
2.5	gravel, laminated, stiff, red brown, dry to mois	t		255	29
			BOREHOLE	\square	
5.0				3ss 🗙	28
			GROUT		
7.5	SM—SAND, little silt, trace to little fine to	649.0		4SS 🗙	15
	medium rounded gravel, gray, moist to wet			555	8
10.0	·				
	END OF HOLE @ 11.1 FT. BGS	645.2		6SS X	>100
12.5	NOTES:				
12.0	1. Soil sample collected from 1.0 to 4.0 ft and 8.0 to 11.0 ft BGS for chemical				
	analysis of TCL VOCs, TAL Metals and TPH 3. Borehole backfilled with cement/bentonite	4			
15.0	grout to surface.				
17.5					
	·				
20.0	-				
	`				
22.5			· · ·		
25.0			`		
-					
27.5					
30.0					
32.5					
	· · ·				
				<u></u>	

•

.

·

•

STRATIGRAPHIC AND (OVERI	BURDEN)	TATION LOG	(L-45)
ROJECT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: E	3H-7-93
ROJECT NO.: 3967		DATE COMPLETED:	DÉCEMBER 13, 1993
LIENT: LEICA INC.		DRILLING METHOD: H	AND AUGER
OCATION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	LYNCH
PTH STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	SAMPLE
GROUND SURFACE	653.3		
TOPSOIL(FILL), loamy, some rootlets, black,	r 652.8		
 .5 M—SAND, little silt, soft, brown, moist to we slight musty odor .5 ML—SILT(NATIVE), some clay, little sand, red brown, moist 	/	BOREHOLE BOREHOLE BENTONITE PELLETS	2SS X (3SS X (
.0 END OF HOLE @ 2.5 FT. BGS NOTES: 1. Location is 18.0 ft south of BH-3-93.			
 Soil samples retained for geologic reco Borehole backfilled with bentonite pelle 	ts.	·	
0.0			
2.5			
5.0			
7.5	,		
0.0			
2.5.	. s	<u>-</u>	A +≠ 0472 ;
5.0			
7.5			
0.0			
2.5			
NOTES: MEASURING POINT ELEVATIONS MAY CHA			

PROJEC CLIENT: LOCATIO	LEICA INC. DN: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE Auger through asphalt GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist – some clay, trace to little fine gravel and sand, red brown, dry, trace glass	ELEVATION ft AMSL 660.1 659.1 658.0	HOLE DESIGNATION: DATE COMPLETED: DRILLING METHOD: CRA SUPERVISOR: MONITOR INSTALLATION	APRIL 4 1/4 K. LYN	7, 199 7, 199	5A
CLIENT: LOCATIC DEPTH S ft BGS	LEICA INC. DN: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE Auger through asphalt GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist – some clay, trace to little fine gravel and sand, red brown, dry, trace glass	ft AMSL 660.1 659.1	DRILLING METHOD: CRA SUPERVISOR: MONITOR	4 1/4 K. LYN V U B E R		SA
LOCATIO	DN: CHEEKTOWAGA, NEW YORK STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE Auger through asphalt GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist - some clay, trace to little fine gravel and sand, red brown, dry, trace glass	ft AMSL 660.1 659.1	CRA SUPERVISOR:	K. LYN		
2.5	STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE Auger through asphait GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist - some clay, trace to little fine gravel and sand, red brown, dry, trace glass	ft AMSL 660.1 659.1	MONITOR	S NU BB ER		
ft BGS	GROUND SURFACE Auger through asphalt GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist - some clay, trace to little fine gravel and sand, red brown, dry, trace glass	ft AMSL 660.1 659.1			S N T V	
2.5	Auger through asphalt GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist - some clay, trace to little fine gravel and sand, red brown, dry, trace glass	660.1 659.1		Ŕ		
	GP-GRAVEL(FILL), some sand, black and brown, moist to wet, slight petroleum odor ML-SILT(FILL), little sand and gravel, dark brown, dry to moist - some clay, trace to little fine gravel and sand, red brown, dry, trace glass			<u>R</u> 199		J
	moist to wet, slight petroleum odor ML—SILT(FILL), little sand and gravel, dark brown, dry to moist — some clay, trace to little fine gravel and sand, red brown, dry, trace glass			199		1
5.0	brown, dry to moist — some clay, trace to little fine gravel and sand, red brown, dry, trace glass			1.33	X 15	
.5.0		· ·		2SS	7	
	ML-SILT(NATIVE), some clay, little sand, trace	654.2	8°¢ BOREHOLE	3SS	22	
7.5	fine gravel, verý stiff, red brown, dry to moist			4SS	41	
10.0				5SS	32	
12.5		647.9		6SS		
12.5 Ā	CH—CLAY, little silt and fine sand, soft, plastic, gray and brown, moist CL—CLAY, little silt and fine sand, gray and F	646.6 646.3 646.0		755	>50	,
15.0	brown, moist SP—SAND, little silt, trace fine subangular gravel, gray, moist	040.0				
17.5	END OF HOLE @ 14.1 FT. BGS NOTES: 1. Soil sample collected from 13.0 to					
20.0	14.1 ft BGS for chemical analysis of TCL VOCs and TPH.2. Borehole backfilled with cement/bentonite					
20.0	grout.		• ·	•		
22.5						
	-					
25.0					•	
27.5			·			
•						
30.0						
32.5						
	,		•			
NOTES	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFFR 1	TO CURRENT ELEVATION 1			┸

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

PROJECT NAME: LEICA INC. R1/FS

PROJECT NO .: 3967

CLIENT: LEICA INC.

LOCATION: CHEEKTOWAGA, NEW YORK

HOLE DESIGNATION: BH-10-94 DATE COMPLETED: APRIL 7, 1994 DRILLING METHOD: 4 1/4" ID HSA

CRA SUPERVISOR: K. LYNCH

		ELEVATION	MONITOR		SAM		
t BGS	GROUND SURFACE	ft AMSL 658.9	INSTALLATION		S T ▲ T E	,×× < ∟ ∪	P
	ر Auger through asphalt	658.4		Ŕ		£	(ppm
	GM-GRAVEL(FILL), some sand, little brick and slag, brown, black and white, wet			155	М	15	0
2.5	FILL: cinders, clinkers, trace rusted metal, brick, coal, black, brown, gray and white, moist to wet, slight musty odor		5.0	255	Ø	13	0
5.0	CL-CLAY(FILL), some sand, little gravel, gray, moist to wet	654.4		355	Ø	19	0
7.5	ML—SILT(NATIVE), some sand, little clay, red brown, dry to moist	652.4	BENTONITE GROUT	4SS	Ø	41	0
10.0	SP—SAND, little to some gravel and silt, gray, moist	650.0		555	M	29	0
12.5		646.7		6SS	\square	35	٥
12.5	END OF HOLE @ 12.2 FT. BGS NOTES: 1. Soil sample collected from 10.5 to						
15.0	 12.5 ft BGS for chemical analysis for TCL VOCs and TPH. 2. Borehole backfilled with cement/bentanite grout. 						
17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							

(L-47)

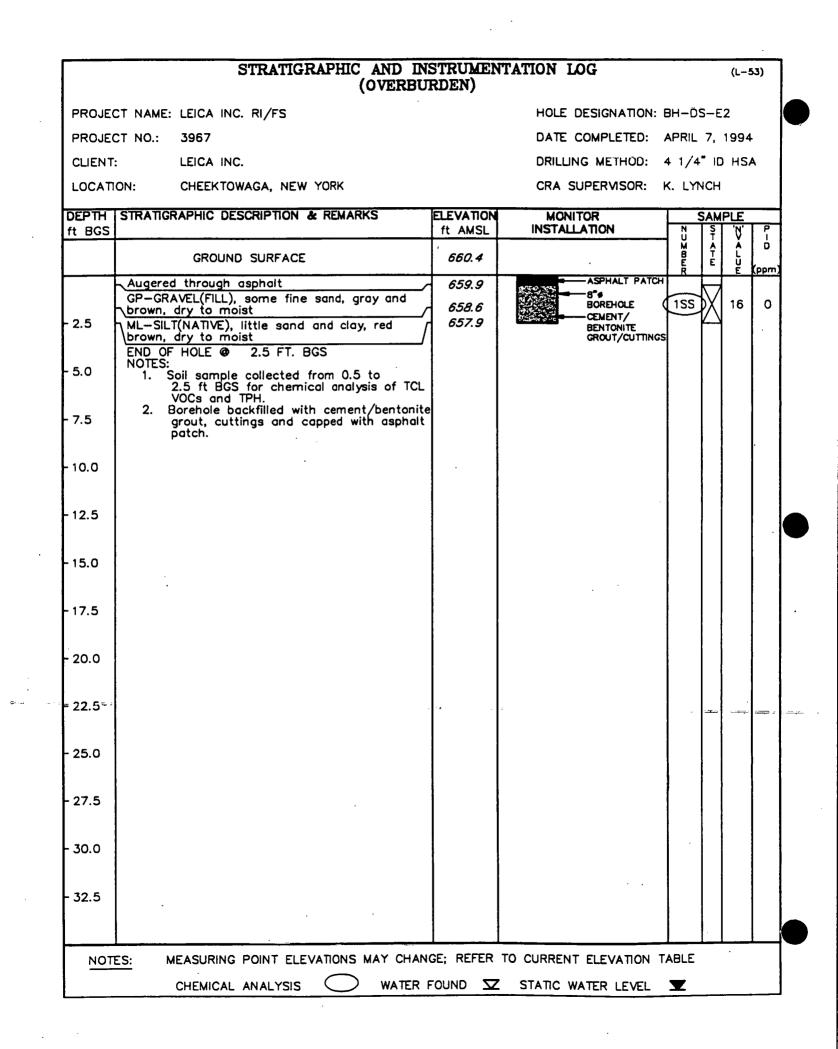
STRATIGRAPHIC AND INSTRUMENTATION LOG (L-48) (OVERBURDEN) PROJECT NAME: LEICA INC. R1/FS HOLE DESIGNATION: BH-11-94 PROJECT NO .: 3967 DATE COMPLETED: APRIL 7, 1994 CLIENT: LEICA INC. DRILLING METHOD: 4 1/4" ID HSA CHEEKTOWAGA, NEW YORK LOCATION: CRA SUPERVISOR: K. LYNCH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS ELEVATION MONITOR SAMPLE ft BGS ft AMSL INSTALLATION N Ŋ Ü M 5 A T E GROUND SURFACE B 659.9 Ũ ppm Auger through asphait 659.4 GM-GRAVEL(FILL), some coal, little silt and 658.6 **1SS** 15 0 sand, black and gray, moist, slight sweet odor 2.5 ML-SILT(NATIVE), little to some clay, trace to little sand, trace gravel, stiff to very stiff, brown and red brown with gray, dry to moist **2SS** 9 0 8"ø BOREHOLE 5.0 **3**SS 19 NA CEMENT/ 4SS BENTONITE 30 NA 7.5 GROUT — little sand, trace subangular gravel, stiff, mottled green, gray, brown, pink and red brown, **5**SS 17 NA dry 10.0 649.4 SP-SAND, fine to medium grained, moist to wet, red brown, dry to moist **6**SS 17 NA SP—SAND(TILL), little subrounded gravel, silt, and clay, fine to medium grained, gray, moist 12.5 **7**SS >50 NA 647.0 END OF HOLE @ 12.9 FT. BGS NOTES: Soil sample collected from 10.0 to 12.0 ft BGS for chemical analysis for TCL 15.0 1. VOCs and TPH. 2. Borehole backfilled with cement/bentonite grout to surface. 17.5 20.0 22.5 25.0 27.5 30.0 32.5 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS WATER FOUND STATIC WATER LEVEL X

PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION: BH	1-DS1-93
PROJE	CT NO.: 3967		DATE COMPLETED: DE	CEMBER 13, 1993
CLIENT	EICA INC.		DRILLING METHOD: 4	1/4" ID HSA
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR: K.	LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE N S N P
	GROUND SURFACE	661.4		
	Auger through concrete	660.9	CONCRETE SEA	
	SP—SAND(FILL), some fine to medium grained angular gravel, trace concrete, dark brown,	659.4	BOREHOLE	1SS 23 0
- 2.5	Moist, slight sulphur odor ML—SILT(NATIVE), some clay, little sand, trace fine rounded gravel, dense, red brown, dry		BENTONITE PELLET SEAL	255 20 0
- 5.0	END OF HOLE @ 4.0 FT. BGS NOTES: 1. Soil sample collected from 1.0 to	657.4		
- 7.5	 4.0 ft BGS for chemical analysis of TCL VOCs, TAL METALS, TPH. 2. Borehole backfilled with bentonite pellets and concrete surface seal 			
- 10.0				
12.5				
• 15.0				
17.5				
20.0				
22.5 -	ч.			د بوجود ، د موجد ه
25.0				
27.5				
30.0				
32.5				
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER 1	TO CURRENT ELEVATION T	ABLE
· .	- CHEMICAL ANALYSIS - WATER FO		STATIC WATER LEVEL	▼

•

	STRATIGRAPHIC AND I (OVERB	NSTRUMEN URDEN)	TATION LOG	
PROJE	CT NAME: LEICA INC. R1/FS	· ·	HOLE DESIGNATION	: BH-DS2-9
PROJE	CT NO.: 3967		DATE COMPLETED:	DECEMBER
CLIENT	EICA INC.		DRILLING METHOD:	
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	K. LYNCH
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR	SA N S
	GROUND SURFACE	661. <u>1</u>		
	Augered to 0.5 ft BGS	660.6	CONCRETE	
	SP—SAND(FILL), some gravel, brown, moist, aromatic odor	659.1	8°¢ BOREHOLE	
- 2.5	ML—SILT(NATIVE), some clay, very stiff, red brown, dry to moist, no odor below 2.2 ft BG		BENTONITE PELLET SE	
- 5.0	END OF HOLE @ 4.0 FT. BGS NOTES:	657.1		
į	 Soil sample collected from 1.0 to 4.0 ft BGS for chemical analysis of TCL 			
7.5	 Soil sample collected from 1.0 to 4.0 ft BGS for chemical analysis of TCL VOCs, TAL Metals and TPH. 2. Borehole backfilled with bentonite pellets and concrete surface seal 	3		
10.0				
·12.5				
- 15.0				
17.5				
20.0				
22.5				
25.0				
25.0				
27.5				
21.5				
70.0	· .			
30.0				х.
- 32.5				

. .


PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: BH-DS3-93					
PROJE	ROJECT NO.: 3967 DAT		DATE COMPLETED:	DEC	EMBE	R 1	3, 19	9:
CLIENT	EICA INC.		DRILLING METHOD:	4 1	/4" II	о на	SA	
LOCAT	LOCATION: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	к. เ		1		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR			SAM	IPLE	
11 003	GROUND SURFACE	ft AMSL 660.7				ST A T E	Ì> ▲ Lu	
	Augered through asphalt	660.2 659.7	8.		Ř		Ĕ	(P)
- 2.5 - 5.0	SP-SAND(FILL), some gravel, trace asphalt, green slag, dark brown, moist to wet, slight oily odor, slight sheen ML-SILT(NATIVE), some clay, very stiff, red brown, dry, no odor or sheen. END OF HOLE @ 2.0 FT. BGS NOTES: 1. Soil sample collected from 0.5 to	659.7 658.7	BOREHOLE CEMENT/ BENTONITE GROUT		155	\mathbb{X}	19	
7.5	 1.2 ft BGS for chemical analysis of TCL VOCs, TAL Metals and TPH. 2. Borehole backfilled with cement/bentonite grout and concrete. 							
- 10.0								
12.5								
- 15.0								
17.5								
· 20.0								
22.5		##x		; c.		18.C. T		<u> </u>
25.0								
27.5								
30.0								
32.5	· · · · · · · · · · · · · · · · · · ·							

•

.

. .

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG		(L-	-52)
PROJEC	T NAME: LEICA INC. RI/FS	· ·	HOLE DESIGNATION:	BH-DS	5-E1	
PROJEC	CT NO.: 3967		DATE COMPLETED:	APRIL	7, 199)4 [`]
CLIENT:	LEICA INC.	.`	DRILLING METHOD:	4 1/4	• ID HS	SA
LOCATIO	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LYN	СН	
EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	S	AMPLE	
t BGS		ft AMSL	INSTALLATION		S N T V	T
	GROUND SURFACE	660.5 ⁻		B E	A A T L E U	
	Augered through asphalt	660.3	ASPHALT PATC		$\overline{\Box}$	Ť
Ē	GP-GRAVEL(FILL), some sand, trace slag, dark	659.4 659.2 658.5	BOREHOLE CEMENT/		₩ 7	
2.5	ML—SILT, some clay, little sand, gray, dry to moist		BENTONITE GROUT/CUTTING	s		
	ML-SILT(NATIVE), little sand and clay, trace					
5.0	Gravel, brown, dry to moist					
	NOTES: 1. Soil sample collected from 0.2 to					
7.5	2.2 ft BGS for chemical analysis of TCL VOCs and TPH.					
	Borehole backfilled with cement/bentonite grout and cuttings and capped with					ŀ
10.0	asphalt patch.					
12.5		-				
15.0						
			•		1	
17.5	•					
20.0						
22.5						
			•			
25.0						
20.0						
07 E						
27.5					1	
					·	
30.0						
	· · · · ·					
32.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG					1
HUIE	. MEASONING FUILT ELEVATIONS MAT CHANG		O CONCERT ELEVATION			

PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	8H-DS-	-N1	
PROJE	CT NO.: 3967		DATE COMPLETED:	APRIL 7	′ , 1994	4
CLIENT	: LEICA INC.		DRILLING METHOD:	4 1/4"	ID HS	A
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	K. LYNC	н	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS				MPLE	
11 003		ft AMSL	INSTALLATION			
	GROUND SURFACE	661.3		8	A A T L E U E	(ppr
	Augered through asphalt SP-SAND(FILL), some gravel, little silt, trace	660.8 659.9	ASPHALT PATC		7,	0
- 2.5	\pottery, brown, wet \ML-SILT(NATIVE), little clay, very stiff, red	659.3	CEMENT/ BENTONITE	1 K	Ύ	
	brown		GROUT/CUTTING	s		
- 5.0	END OF HOLE @ 2.0 FT. BGS NOTES:					
	 Soil sample collected from 0.5 to 1.5 ft BGS for chemical analysis of TCL VOCs and TPH. 					
- 7.5	2. Borehole backfilled with cement/bentonite grout, cuttings and capped with asphalt patch.					
- 10.0						ŀ
	· · · ·					
- 12.5						
	•					
- 15.0						
- 17.5						
- 20.0			,			
- 22.5						
			·			
- 25.0						
- 27.5						
i	· · · · · · · · · · · · · · · · · · ·				·	
30.0						1
32.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANGE	; REFER 1	TO CURRENT ELEVATION T	ABLE	<u>ı </u>	
	CHEMICAL ANALYSIS - WATER FO		STATIC WATER LEVEL	T		

·

.

•

PROJ	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION:	84	S_N2	
	CT NO.: 3967		DATE COMPLETED:			
CLIEN			DRILLING METHOD:			
LOCA			CRA SUPERVISOR:	•		34
ft BGS		ELEVATION ft AMSL	MONITOR INSTALLATION		SAMPLE	: '
	GROUND SURFACE	<i>662.0</i>		M B E	A A T L E U	
- 2.5 - 5.0	Augered through asphalt SM-SAND(FILL), little silt, gravel and clay, brown, wet ML-SILT, little clay and sand, gray, dry to moist SM-SAND(NATIVE), little silt, trace gravel, very stiff, brown to red brown, dry to moist END OF HOLE @ 2.5 FT. BGS NOTES:	661.5 660.6 660.0 659.5	SPHALT PATC		7	
- 7.5	 NOTES: Soil sample collected from 0.5 to 2.0 ft BGS for chemical analysis of TCL VOCs and TPH. Borehole backfilled with bentonite pellets and capped with asphalt patch. 					
- 10.0	and capped with asphalt patch.					
- 12.5						
- 15.0						
- 17.5						
- 20.0						
· 22.5	e mente a superior de		· · · · ·			-
- 25.0						
- 27.5						14
- 30.0			••			
- 32.5						

000 10	(OVERBUI					_	
	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION				
	CT NO.: 3967		DATE COMPLETED:				93,
CLIENT			DRILLING METHOD:	-		ISA	
LOCAT		-	CRA SUPERVISOR:	K. LY	NCH		
DEPTH ft BGS		ELEVATION ft AMSL	MONITOR		N S	MPLE	P
·=·	GROUND SURFACE	660.3			U T M A B E R	V L L L	
• .	GM—GRAVEL(FILL), some silt, little sand, trace brick, little cement, black, dry to moist, no odor				ss	38	0.3
2.5	ML—SILT(NATIVE), some clay, little gravel, laminated, red brown, dry, no odor	658.3		L	ss	30	11
· 5.0	END OF HOLE @ 4.0 FT. BGS NOTES: 1. Soil sample collected from 0.0 to	656.3	GROUT			L L	
7.5	 Soil sample collected from 0.0 to 4.0 ft BGS for chemical analysis of TCL VOCs, TAL Metals and TPH. Borehole backfilled with cement/bentonite grout. 						
10.0	- -						
12.5							
15.0							
17.5							
20.0							
22.5	י י ו						
25.0			• •				
27.5			•				
30.0							·
32.5							
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFER 1			F		-
	CHEMICAL ANALYSIS O WATER FO		STATIC WATER LEVE				

· · ·

PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION:	BH-W		93	
PROJE	CT NO.: 3967		DATE COMPLETED:	DECEM	BER	15, 19	993
CLIENT	EICA INC.		DRILLING METHOD:	HAND	AUGE	R	
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	K. LYN	СН		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR			IPLE	
		ft AMSL	INSTALLATION				
		NA					(ppm)
	OL—SILT(TOPSOIL), some sand, roots, dark \brown, moist, no odor	-0.7	5*4				0
2.5	ML—SILT(NATIVE), little to some clay, little sand, trace fine gravel, very stiff, red brown, no odor, no obvious contamination		BOREHOLE CEMENT/ BENTONITE				0
5.0	END OF HOLE @ 4.0 FT. BGS	-4.0	GROUT				
7.5	 Soil sample collected form borehole 3 ft east of BH-WDWA-93. Below 0.7 ft BGS was a gravel and stone filled dry well sump. 						
10.0	 Soil sample collected from 0.7 to 0.9 ft BGS of fines from stone/gravel for chemical analysis of TCL VOCs, TAL Metals, TPH. 					ŀ	
10.0	 Borehole backfilled to 0.5 ft BGS with cement/bentonite grout, grass and topsoil replaced. 						
12.5							,
15.0							
17.5							
20.0							
22.5	ال الم الم الم الم الم الم الم الم الم ا	<u></u>	.		· · .		
25.0							
27.5			ſ				
30.0							
32.5							

*

	STRATIGRAPHIC AND IN (OVERBU		TATION LOG	(L- 58)
PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION: B	
	CT NO.: 3967		DATE COMPLETED: DE	-
CLIENT			DRILLING METHOD: 4	
LOCAT			CRA SUPERVISOR: K.	•
	STRATIGRAPHIC DESCRIPTION & REMARKS		· · · · · · · · · · · · · · · · · · ·	
ft BGS		ELEVATION ft AMSL	MONITOR INSTALLATION	SAMPLE N S N P
	GROUND SURFACE	656.3	,	
	Augered through asphalt	655.8		
	ML—SILT(FILL), some clay, trace gravel and clinkers, loose, dark gray, moist to wet,			1SS X 13 33
2.5	slight petroluem odor ML-SILT(NATIVE), some clay, little sand,	. 653.8	BOREHOLE	
	ML—SILT(NATIVE), some clay, little sand, laminated, dark gray, dry to moist Moved 1 ft north and augered to 2.5 ft BGS	651.8	CEMENT/ BENTONITE	2SS 7 40
5.0	GM—GRAVEL, trace brick, fine to medium, angular, gray, wet, sheen, petroleum odor	651.1 650.4	GROUT	355 23 61
7.5	SM—SAND, trace silt, fine to medium grained, dark gray, moist to wet, sheen, petroleum odor	649.8		
7.5	GM-GRAVEL, little sand, fine to medium, angular, dark gray, wet, sheen, petroleum odor			
10.0	ML-SILT(NATIVE), some clay, little sand, red brown, dry to moist			
10.0	END OF HOLE @ 6.5 FT. BGS			
12.5	NOTES: 1. Soil samples retained for geologic record only.			
12.0	 Borehole backfilled with cement/bentonite grout to surface. 			
15.0				
17.5				
20.0	· · ·	, .		
22.5				
25.0			~	
27.5				
30.0				
32.5	· · ·			
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E; REFER	TO CURRENT ELEVATION	TABLE
	CHEMICAL ANALYSIS 🚫 WATER F		STATIC WATER LEVEL	T

	STRATIGRAPHIC AND IN (OVERBU	RDEN)			(L-59)
PROJE	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION: B	U2-94	
PROJE	CT NO.: 3967		DATE COMPLETED: JA	NUARY 17,	1994
CLIENT	LEICA INC.		DRILLING METHOD: 4		
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR: K.	-	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR	SAM	PLE
11 863		ft AMSL	INSTALLATION	NU ST NU A B E E	N P D
	GROUND SURFACE Augered only to 4.0 ft BGS	657.8	M351741	M A B T E E R	À Ď L U E (ppn
2.5	Augered only to 4.0 ft BGS		8"¢ BOREHOLE CEMENT/ BENTONITE		
5.0	CL-CLAY(NATIVE), some silt and fine sand, red brown, dry to moist	653.8	GROUT		
	SM-SAND, trace silt and clay, brown, moist,	652.5 651.8		155	11 1.6
7.5	END OF HOLE @ 6.0 FT. BGS NOTES:	00.0			
Ì	 Soil samples retained for geologic record only. 				
10.0	 Boréhole backfilled with cement/bentonite grout to surface. Sewer invert at 6.0 ft BGS 				
12.5					
15.0					
17.5					
20.0					
22.5					
25.0					
27.5					
30.0					
32.5					
NOTES	MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER T	O CURRENT ELEVATION T	ABLE	
				X .	-
			······································	· · · · · ·	

•

.

	STRATIGRAPHIC AND IN (OVERBU	ISTRUMEN IRDEN)	TATION LOG				(L-	60)
PROJE	CT NAME: LEICA INC. RI/FS	• •	HOLE DESIGNATION:	BH-L	J3-9	94		
PROJE	CT NO.: 3967		DATE COMPLETED:				, 199	€
CLIENT	ELEICA INC.		DRILLING METHOD:					
LOCAT	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	-				
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR			SAM	PLE	
ft BGS		ft AMSL	INSTALLATION		NUM	S T	ĽŊ.	P
	GROUND SURFACE	658.3			BER	Ê	L U E	(ppm)
	Augered only to 6.0 ft BGS				-0			
- 2.5								
			BOREHOLE					
- 5.0								
	ML—SILT, some sand, little clay, trace gravel,	652.3	CEMENT/ BENTONITE GROUT			\vdash		
7.5	brown, moist	650.7		_ 1	SS	Х	3	NA
	SP-SAND(NATIVE), fine to medium grained, gray, moist to wet, no sheen, no odor				255	\bigtriangledown	45	
10.0	END OF HOLE @ 10.0 FT. BGS	648.3				Д		- i - i
	NOTES: 1. Soil samples retained for geologic record							
12.5	only. 2. Borehole backfilled with cement/bentonite							
	grout to surface. 3. PID fault due to cold weather/heavy snow. 4. Sewer invert at 9.0 ft BGS.				·		•	
15.0	T. Sewer invert dt 9.0 it bos.							1
17.5						,		
20.0	·							-
20.0								·
22.5								1
25.0								
27.5								
30.0			. •					.
32.5								
			_ · · · ·					

.

:

• •

PROJE	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	1: BH-U	J4-9	94
PROJE	CT NO.: 3967		DATE COMPLETED:			
	EICA INC.		DRILLING METHOD:			
LOCAT	ION: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:			
DEDTU	STRATIGRAPHIC DESCRIPTION & REMARKS					
ft BGS		ELEVATION ft AMSL	MONITOR	N		
	GROUND SURFACE	653.5			A E	
	ML—SILT(FILL), some clay, little sand, coal, brick, glass			<u> </u>	1-	
	– no coal, brick or glass, red brown, dry 	651.5 651.0	BOREHOLE			
- 2.5	SP-SAND, little silt, trace gravel, medium to coarse grained, white with red brown, dry to	651.0	CEMENT/ BENTONITE			
	moist, no odor or sheen	649.0	GROUT	ľ		
- 5.0	ML-SILT(NATIVE), some clay, little sand and gravel, red brown and gray, moist to wet - wet	043.0				
- 7.5	END OF HOLE @ 4.5 FT. BGS NOTES:				-	
	1. Soil samples retained for geologic record only.					
- 10.0	 Borehole backfilled with cement/bentonite grout to surface. 					
12.5						
15.0						
17.5						
- 17.5						
· 20.0						
22.5	· =		·			
25.0						
· 27.5						
30.0						
2.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	F. REFER T	O CURRENT ELEVATION			

.

.

	STRATIGRAPHIC AND IN OVERBU				(L-	-62)
PROJEC	CT NAME: LEICA INC. RI/FS		HOLE DESIGNATION	: BH-U	5-94	•
PROJEC	CT NO.: 3967		DATE COMPLETED:	APRIL	13, 19	94
CLIENT:	LEICA INC.		DRILLING METHOD:	HÀND	AUGER	
LOCATI	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERMSOR:	K. LY	NCH	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION ft AMSL	MONITOR INSTALLATION		SAMPLE	
	GROUND SURFACE	653.3			A A T L E U	
	OL-LOAM, dark brown, moist, no odor	650 7			┟╶┼─┶	
2.5	ML—SILT, little to some clay and sand, trace coal and brick, stiff, red brown, dry to moist	652.3	5°6 BOREHOLE CEMENT/ BENTONITE GROUT			
5.0	ML-SILT(NATIVE), little clay, laminated, red	648.3 647.8				
7.5	END OF HOLE @ 5.5 FT. BGS NOTES: 1. Soil samples retained for geologic record					
10.0	only. 2. Borehole backfilled with cement/bentonite grout to surface.		•			
12.5						
15.0						
			、			
17.5	•					
20.0	· · ·		· · · ·			
22.5						
25.0						
27.5						
	· · · ·					
30.0		·	• • • •			
32.5	· · · · · · · · · · · · · · · · · · ·		· ·			
5.5						
NOTE	S: MEASURING POINT ELEVATIONS MAY CHANG	E: REFER 1	TO CURRENT ELEVATION			_
				T		

•

.

	STRATIGRAPHIC AND IN (OVERBUI					(L	J
PROJEC	CT NAME: LEICA INC. R1/FS		HOLE DESIGNATION:	вн–и	6-9)4	
PROJEC	CT NO.: 3967		DATE COMPLETED:	APRIL	13,	199)4
CLIENT:	EICA INC.		DRILLING METHOD:	HAND	AU	GER	
LOCATIO	ON: CHEEKTOWAGA, NEW YORK		CRA SUPERVISOR:	K. LY	NCH		
	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEVATION	MONITOR		SAM	PLE	
ft BGS		ft AMSL	INSTALLATION	NUMBE	ST .	, ×<,	P - D
	GROUND SURFACE	652.5		BER	Ē	L U E	(ppm
2.5 5.0	ML—SILT(FILL), some clay and sand, little gravel, trace coal and brick, red brown, gray, and dark brown, no odor GM—GRAVEL, some silt, red brown, moist to wet- ML—SILT(NATIVE), trace gravel, laminated, red brown, dry to moist END OF HOLE @ 4.0 FT. BGS NOTES: 1. Soil samples retained for geologic record	649.5 649.0 648.5	BOREHOLE BOREHOLE CEMENT/ BENTONITE GROUT				
7.5	only.2. Borehole backfilled with cement/bentonite grout to surface.						
10.0							
12.5							
15.0							
17.5							
20.0							
22.5	2	· • •			_		N = 54
25.0							
27.5							
30.0							
			· · · .				

.

.

GRAPHICS, SYMBOLS AND ABBREVIATIONS ON LOGS

SAMPLE TYPES and TESTS

- Split Spoon Sample 🗷 SS
- Non-Standard Split Spoon Sample **3** SN
- T ST Shelby Tube Sample : (unconfined compression or unconsolidated undrained test)
- **Ⅲ** DS Denision Type Sample
- D PS **Piston Type Sample**
- ∃ CS Continuous Sample
- Grab Sample 7 GS
- ≣ WS Wash Sample
- **BQ** Core Sample S BQ
- S HQ HQ Core Sample
- 🛣 NQ NQ Core Sample
- 7 DT **Dynamic Penetration Test**
- VT Field Vane Test (undisturbed) + ⊕
- Field Vane Test (remoulded) VT

PENETRATION RESISTANCES

Dynamic Penetration Resistance

The number of blows by a 63.6 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60[°] cone ' cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

Standard Penetration Resistance (N Value)

The number of blows by a 63.6 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split spoon sampler for a distance of 300 mm (12 in.).

ABBREVIATIONS

DTPL: Drier Than Plastic Limit APL: About Plastic Limit WTPL: Wetter Than Plasic Limit **K**: Hydraulic Conductivity (m/s) Undrained Shear Strength (kPa) Cu:

GRAIN SIZE CLASSIFICATION %

"trace", eg. trace sand	1 - 10
"some", eg. some sand	10 - 20
adjective, eg. sandy	20 - 35
"and", eg. and sand	35 - 50
noun, eg. sand	>50
Note: Classification Divisio Modified M.I.T. Gra	ons Based on in Size Scale

SOIL DESCRIPTIONS

Cohesionless Soils

Relative Density	N Value
Very loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	over 50

Cohesive Soil	S	
Consistency	C _u (kPa)	N Value
Very soft	0 to 12	0 to 2
Soft	12 to 25	2 to 4

25

to 50

50 to 100

100 to 200

over 200

N Value

to 8

to 15

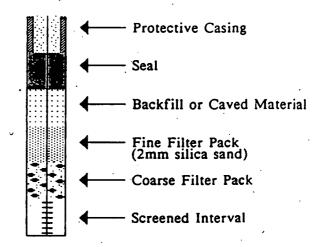
15 to 30

over 30

Gartner Lee Inc.

4

8


MONITOR DETAILS

Firm

Stiff

Hard

Very Stiff

Ň

- •

• ~

• *

APPENDIX C

WELL DEVELOPMENT RECORDS

3967 (7)

WELL DEVELOPMENT DATA SHEET

Project Name: LEICA INC RIFS	Project Number: <u>3967</u>
Monitoring Well Number: <u>MW-23</u>	Date of Development: 4/12/94
Well Type: 🔄 Overburden 🗔	Bedrock
Development Crew Members :	ICH, J. RANER
WELL DEVELOPMENT INFORMATION	
Ground Elevation: feet	Initial Depth to Water: 3.18 feet
Groundwater Elevation: feet	Casing Depth: feet
	Casing Diameter: inches
Screen/Corehole Diameter: 2 inches	· · · · · · · · · · · · · · · · · · ·
One Well Volume: <u>172</u> gallons	Required Number of Well Volumes: 10
Required Development Volume: 17.5	gallons NIA DI annual D in 1/
Development Method: Peristaltic Pump	* Teflon Tubing
	0

DEVELOPMENT FIELD MEASUREMENTS

Well Voli Volume	ume Number Total	ipH	Required Field Meas Specific Conductance	Temperature	
Volume	Gallons	(S.U.)	(umhos cm ³)	(°C)	Comments
<u> </u>	1.7	6.20	1530	NM	BROWN, CLOUDY, Nic Shawn
<u>Z'</u>	3.4	6.44	1660		
3	5.0	6.73	1440.		Clearer Clarity, white gray, no
DRY					Shon, nooler!
4	6.7	×		NM	Closen to SI. cloudy in Steen, no ciden
5	8.4		·		Sheen, no ester
6	10.0		·		<u>_</u>
$\overline{\gamma}$	1/.7		1450		
8	13.5		/380		
9	15.0		1440		
10	16.7	J	1400	¥ I	
·.		·			

Comments: <u>* Meter Frided</u> Dauglopment complete, well suged other volume Lubing sing

-

,

APPENDIX D

RISING HEAD TEST CALCULATIONS

TABLE X

SINGLE WELL RESPONSE TEST RESULTS LEICA INC. CHEEKTOWAGA, NEW YORK

Well Designation	Static Water Elevation (ft AMSL)	Test Type	Analysis Method	Transmissivity (ft ² /sec)	Saturated Thickness (ft) (3)	Hydraulic Conductivity (ft/sec)	Hydraulic Conductivity (cm/sec) (4)	Generalized Lithological Description of Screened Material
MW-1	654.64	Rising Head	Bower & Rice (1)		4.10	4.56E-06	1.39E-04	Silty clay till, silty sand, trace gravel
MW-2	650.45 650.43	Rising Head Rising Head	Bower & Rice Bower & Rice		1.94 1.92	2.73E-04 3.45E-04	8.32E-03 1.05E-02	Silty sand, gravel Silty sand, gravel
MW-3	650.09	Rising Head	Cooper et al (2)	2.74E-05	3.50	7.83E-06	2.39E-04	Silty clay till, silty sand, trace gravel
MW-5	650.52	Rising Head	Bower & Rice	_	3.00	3.55E-07	1.08E-05	Silty clay, sand, trace gravel
MW-13	652.27	Rising Head	Cooper et al	6.30E-06	4.60	1.37E-06	4.18E-05	Silt, sand, trace gravel
MW-14	651.50	Rising Head	Cooper et al	3.63 E-06	4.10	8.85E-07	2.70E-05	Sand, trace gravel, trace clay (dense)
MW-15	653.03	Rising Head	Cooper et al	2.41E-05	4.40	5.48E-06	1.67E-04	Silt, sand, some clay, trace gravel
MW-19	648.89 648.84	Rising Head Rising Head	Bower & Rice Bower & Rice	-	1.75 1.70	1.02E-04 2.64E-05	3.11E-03 8.05E-04	Silt, sand, some clay, trace gravel Silt, sand, some clay, trace gravel
MW-22	643.21	Rising Head	Bower & Rice		1.40	2.55E-0 6	7.77E-05	Sand, little silt, trace gravel
MW-23	646.20	Rising Head	Bower & Rice	` `	6.02	2.26E-05	6.89E-04	Silt, sand, little clay, trace gravel

Notes:

(1) Bower & Rice solution generally used for unconfined aquifer situations, where the screen straddle the water table - solution yields hydraulic conductivity value.

(2) Cooper et al. solution generally used for confined aquifer situations - solution yields transmissivity value.

(3) The saturated thickness of the bedrock aquifer was assumed to be 35 feet, based on depth of penetration of the deepest well. The actual saturated thickness is likely greater than 35 feet.

(4) Hydraulic Conductivity for Cooper et al. solutions calculated as transmissivity divided by the saturated thickness of aquifer.

TABLE X

SINGLE WELL RESPONSE TEST RESULTS LEICA INC. CHEEKTOWAGA, NEW YORK

Well Designation	Static Wate r Elevation (ft AMSL)	Test Type	Analysis Method	Transmissivity (ft ² /sec)	Saturated Thickness (ft) (3)	Hydraulic Conductivity (ft/sec)	Hydraulic Conductivity (cm/sec) (4)	Generalized Lithological Description of Screened Material
MW-1A	643.34	Rising Head	Bower & Rice		28.16	1.80E-04	5.49E-03	Limestone, trace vertical fractures
	643.34	Rising Head	Bower & Rice		28.16	8.49E-05	2.59E-03	Limestone, trace vertical fractures
MW-2A	650.34	Rising Head	Cooper et al	9.41E-04	35.0	2.69E-05	8.20E-04	Limestone, trace fractures
	650.34	Rising Head	Cooper et al	5.40E-03	35.0	1.54E-04	4.69E-03	Limestone, trace fractures
	650.34	Rising Head	Cooper et al	3.91E-03	35.0	1.12E-04	3.41E-03	Limestone, trace fractures
MW-5A	650.05	Rising Head	Cooper et al	1.07E-04	35.0	3.06E-06	9.33E-05	Limestone, trace vertical fractures
MW-6A	643.32	Rising Head	Bower & Rice		32.6	7.23E-05	2.20E-03	Limestone, weathered fractures
MW-13A	649.06	Rising Head	Cooper et al	1.21E-04	35.0	3.46E-06	1.05E-04	Limestone, weathered fractures
MW-14A	648.69	Rising Head	Cooper et al	1.75E-02	35.0	5.00E-04	1.52E-02	Limestone, weathered fractures
	648.69	Rising Head	Cooper et al	2.07E-02	35.0	5.91E-04	1.80E-02	Limestone, weathered fractures
MW-15A	649.31	Rising Head	Cooper et al	3.77E-03	35.0	1.08E-04	3.28E-03	Limestone, weathered fractures
	649.30	Rising Head		t Data to Perform A	nalysis			
	649.31	Rising Head		t Data to Perform A	•			
MW-17A	652.72	Rising Head	Insufficien	t Data to Perform A	nalysis			

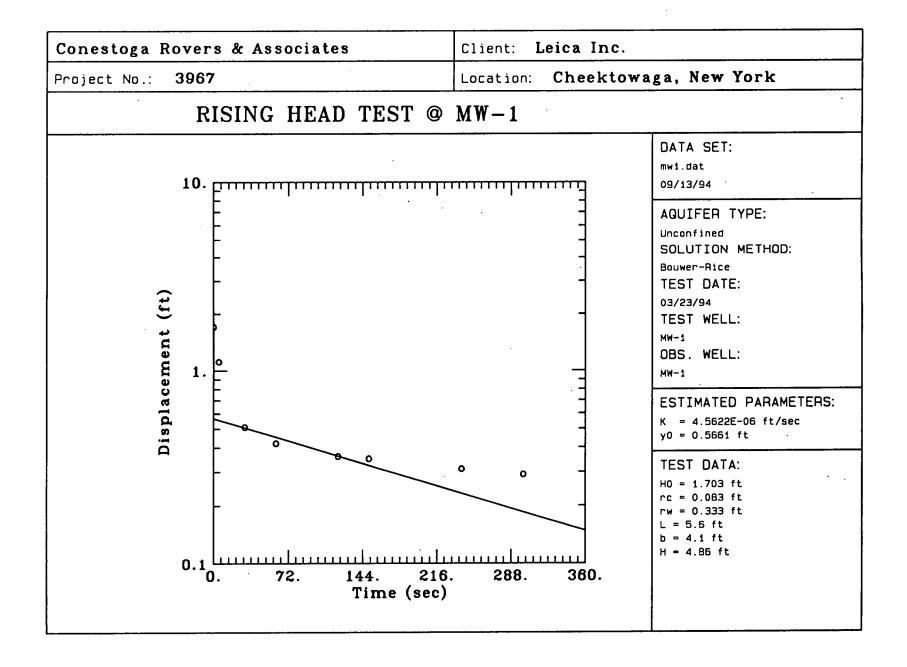
652.72 Rising Head Insufficient Data to Perform Analysis

Notes:

(1) Bower & Rice solution generally used for unconfined aquifer situations, where the screen straddle the water table - solution yields hydraulic conductivity value.

(2) Cooper et al. solution generally used for confined aquifer situations - solution yields transmissivity value.

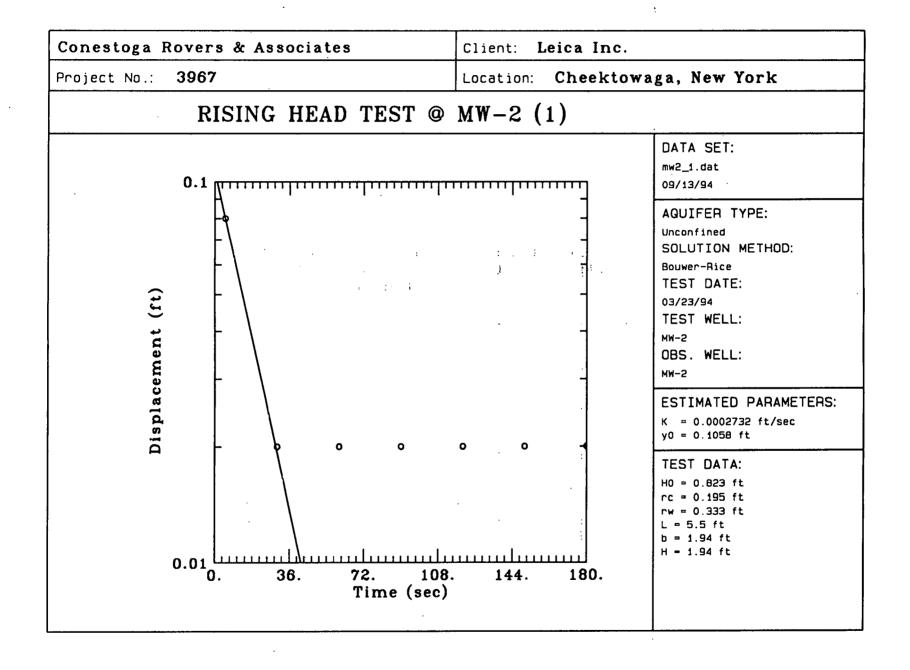
(3) The saturated thickness of the bedrock aquifer was assumed to be 35 feet, based on depth of penetration of the deepest well. The actual saturated thickness is likely greater than 35 feet.


(4) Hydraulic Conductivity for Cooper et al. solutions calculated as transmissivity divided by the saturated thickness of aquifer.

Page: 1/1

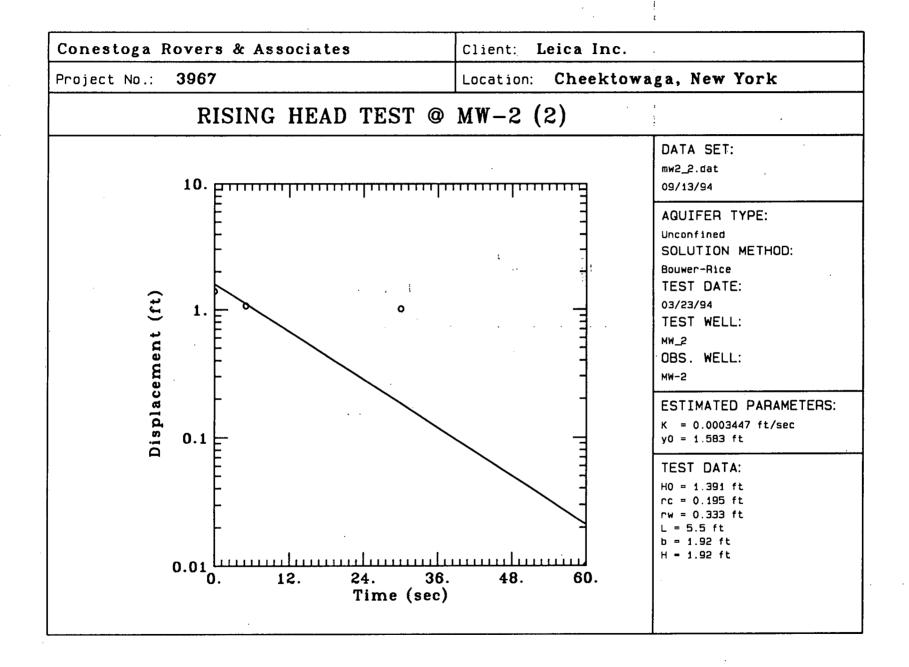
Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-1
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 662.38 ft AMSL
Reference Elevation	: 662.38 IT AMSL

Static Water Level : 7.74 ft


WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
8.85	653.53	1.11
8.25	654.13	0.51
8.16	654.22	0.42
8.12	654.26	0.38
8.10	654.28	0.36
8.09	654.29	0.35
8.08	654.30	0.34
8.05	654.33	0.31
8.03	654.35	0.29
8.02	654.36	0.28
	LEVEL (ft) 8.85 8.25 8.16 8.12 8.10 8.09 8.08 8.05 8.03	LEVEL ELEV. (ft) (ft AMSL) 8.85 653.53 8.25 654.13 8.16 654.22 8.12 654.26 8.10 654.28 8.09 654.29 8.08 654.30 8.05 654.33 8.03 654.35

Observation Well: MW-2Start Date/Time: 03/23/Reference Description: Top of	G HEAD TEST /94 00:00:00 f Casing Elevation 1 ft AMSL
--	--

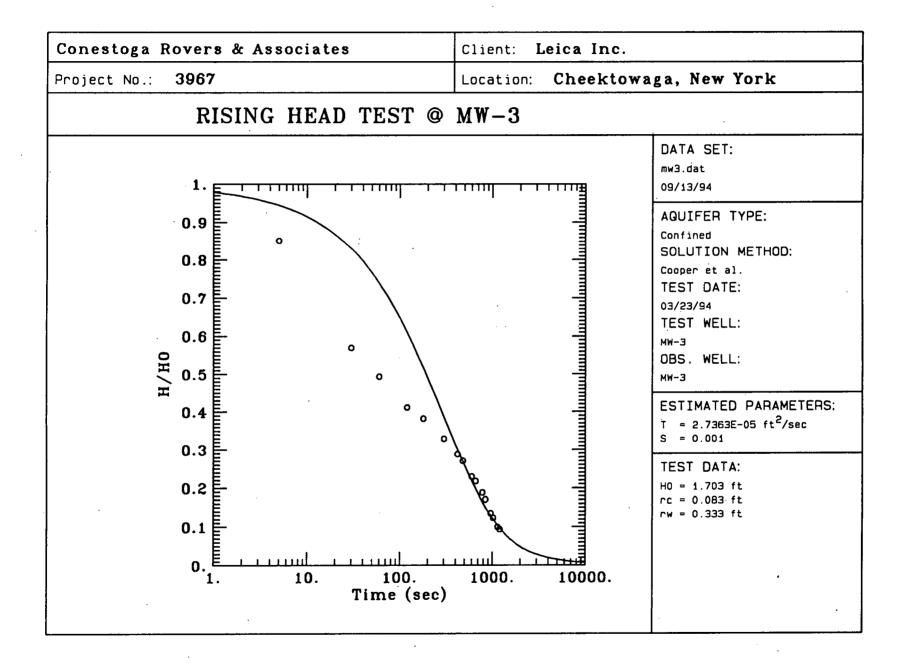
Static Water Level : 6.56 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 150 180	6.64 6.58 6.58 6.58 6.58 6.58 6.58	650.37 650.43 650.43 650.43 650.43 650.43 650.43	0.08 0.02 0.02 0.02 0.02 0.02 0.02 0.02

MW2_2

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-2
Start Date/Time	: 03/23/94 00:00:00
Peference Description	: Top of Casing Elevation
Reference Description	: Top of Casing Elevation
Reference Elevation	: 657.01 ft AMSL
Static Water Level	6.58 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	7.65	649.36	1.07
30	7.59	649.42	1.01
60	6.59	650.42	0.01
90	6.58	650.43	0.00

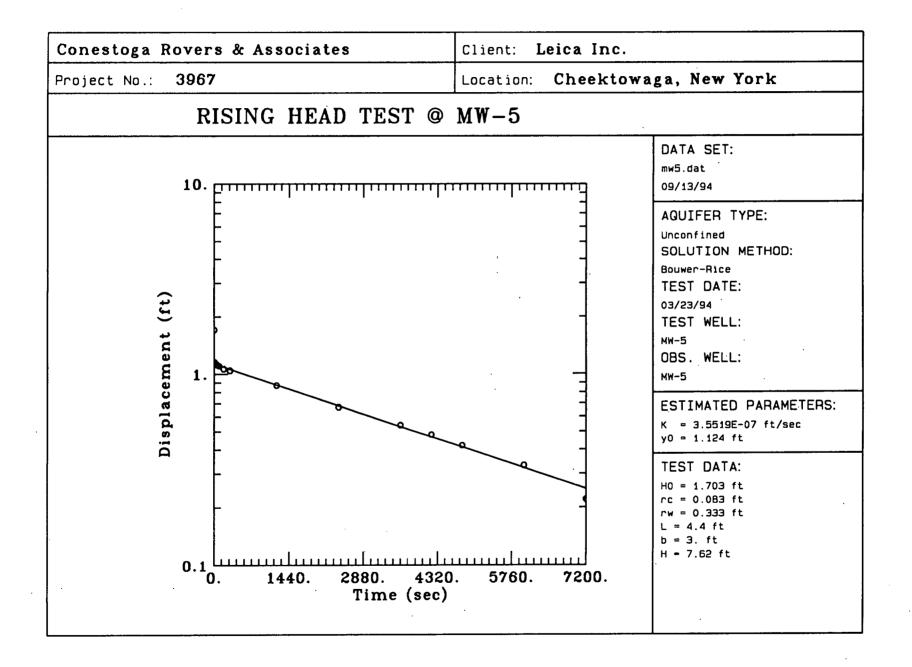


.

Client Site Location Project No Test Type Observation Well Start Date/Time Reference Description Reference Elevation	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-3 : 03/23/94 00:00:00 : Top of Casing Elevation : 655.94 ft AMSL
Reference Elevation	: 655.94 It AMSL
_	

Static Water Level : 5.85 ft

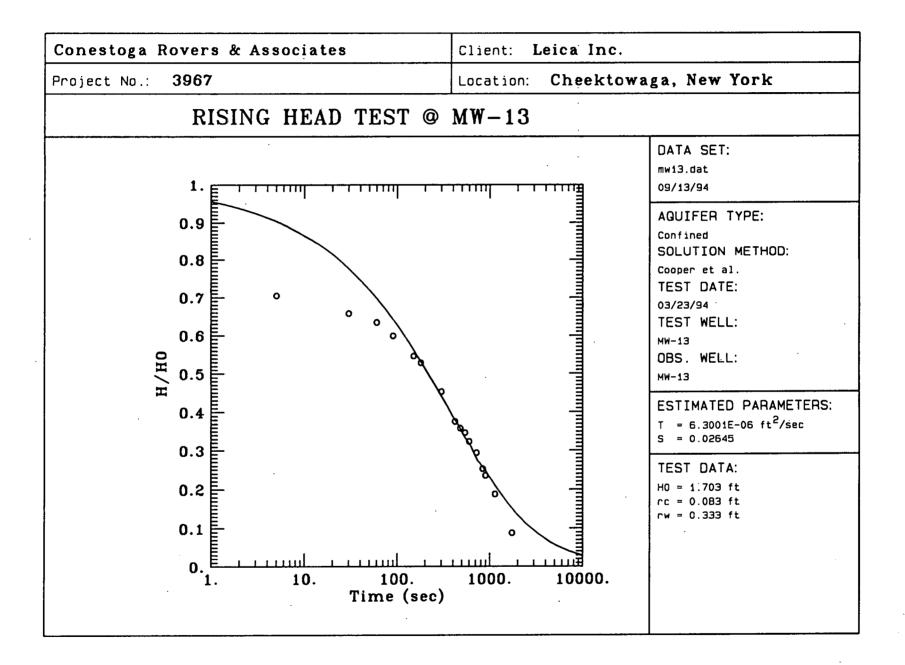
30 6.82 649.12 0	1.45 0.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.84 0.77 0.66 0.65 0.60 0.56 0.49 0.43 0.39 0.37 0.34 0.32 0.29 0.26 0.23 0.21 0.17 0.16 0.14


MW5

Date: 09/13/94 Page: 1/1

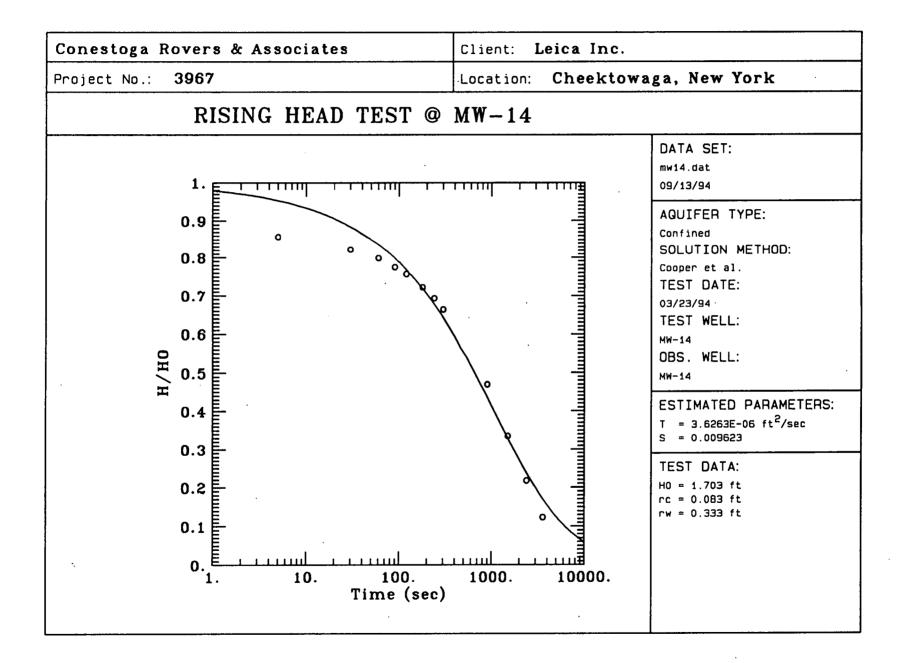
Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-5
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 654.80 ft AMSL
Reference Elevation	: 654.80 ft AMSL

Static Water Level : 4.28 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 180 300 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 12000 12000 1800 24000 36000 6000 36000 6000 36000 6000 6000 36000 6000 36000 6000 36000 6000 36000 6000 6000 36000 6000 6000 36000 6000 6000 36000 6000 6000 6000 36000 6000 6000 6000 36000 60000 6000 6000 6000 6000 6000 6000 6000 6	5.43 5.39 5.38 5.37 5.34 5.32 5.15 5.06 4.95 4.82 4.82 4.76 4.70 4.65 4.61 4.56	649.37 649.41 649.42 649.43 649.43 649.46 649.53 649.53 649.65 649.74 649.85 649.92 649.92 649.98 650.04 650.10 650.19 650.24	1.15 1.13 1.11 1.00 1.09 1.06 1.04 0.99 0.87 0.78 0.67 0.60 0.54 0.48 0.42 0.37 0.33 0.28
7200	4.50	650.30	0.22

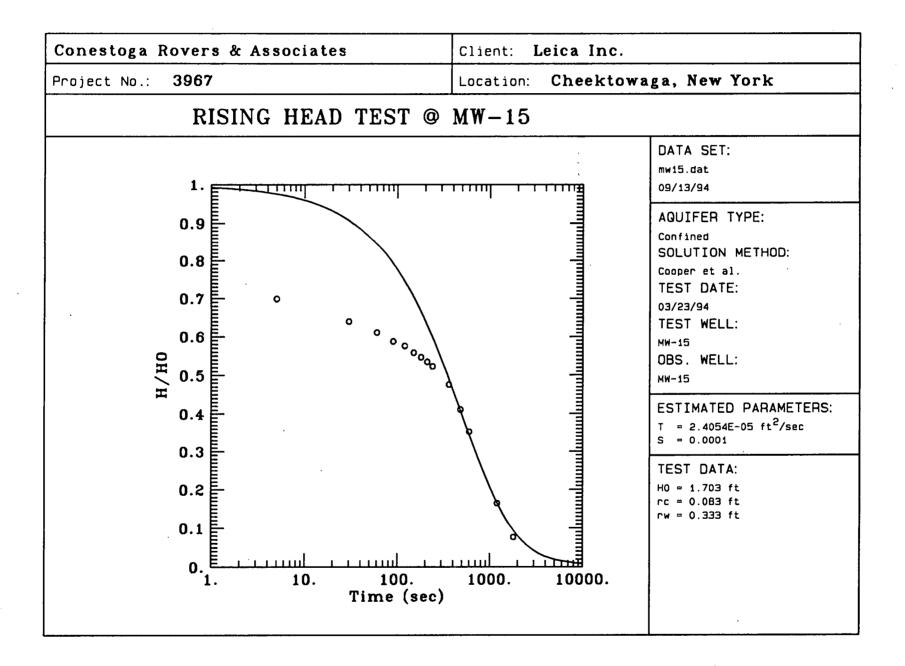
Date: 09/13/94 Page: 1/1

Static Water Level : 2.39 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
$\begin{array}{c} 5\\ 30\\ 60\\ 90\\ 120\\ 150\\ 180\\ 240\\ 300\\ 360\\ 420\\ 480\\ 540\\ 600\\ 660\\ 720\\ 780\\ 840\\ 900\\ 1020\\ 1140\\ 1440\\ 1740\end{array}$	3.59 3.51 3.47 3.41 3.37 3.29 3.22 3.16 3.07 3.03 3.00 2.98 2.94 2.91 2.89 2.85 2.82 2.79 2.75 2.71 2.62 2.54	651.07 651.15 651.25 651.29 651.29 651.34 651.37 651.44 651.59 651.63 651.63 651.68 651.68 651.72 651.77 651.81 651.81 651.81 651.91 651.95 652.04 652.12	1.20 1.12 1.08 1.02 0.98 0.93 0.90 0.83 0.77 0.68 0.64 0.61 0.59 0.55 0.52 0.55 0.52 0.55 0.46 0.43 0.40 0.36 0.32 0.23 0.15
1920	2.50	652.16	0.11

Client Site Location Project No Test Type Observation Well Start Date/Time Reference Description	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-14 : 03/23/94 00:00:00 : Top of Casing Elevation
Reference Elevation	: 653.38 ft AMSL

Static Water Level : 1.88 ft

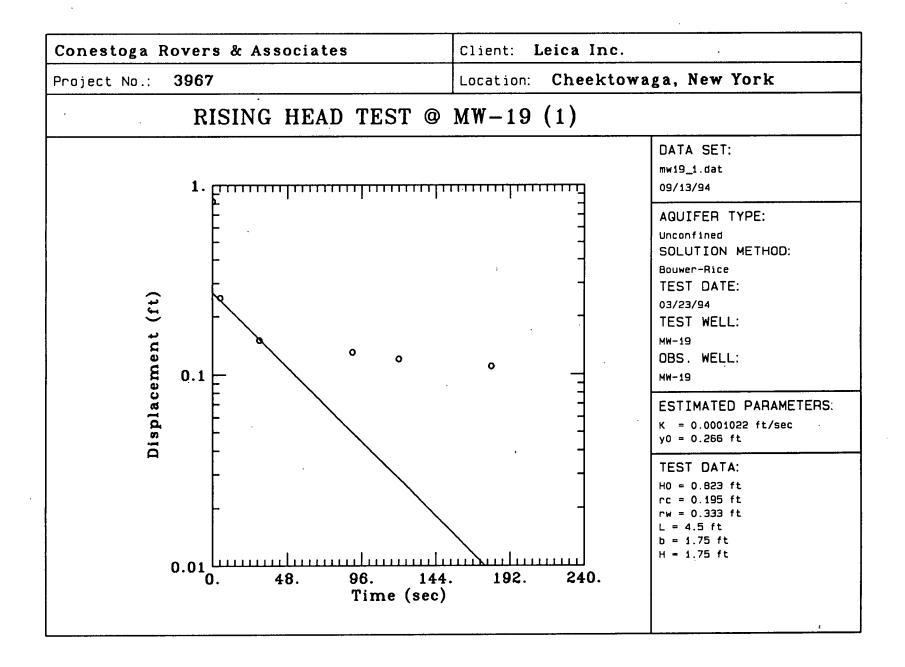

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 180 240 300 600 900 1200 1500 1800 2400 3000	3.34 3.28 3.24 3.20 3.17 3.11 3.06 3.01 2.82 2.68 2.54 2.45 2.36 2.25 2.12	650.04 650.10 650.14 650.21 650.27 650.32 650.37 650.56 650.70 650.84 650.93 651.02 651.13 651.26	1.46 1.40 1.36 1.32 1.29 1.23 1.18 1.13 0.94 0.80 0.66 0.57 0.48 0.37 0.24
3600	2.09	651.29	0.24

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-15
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 658.35 ft AMSL
Reference Elevation	: 658.35 ft AMSL

Static Water Level : 5.32 ft

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
15005.51652.840.1918005.45652.900.1321005.41652.940.09	$\begin{array}{c} 30\\ 60\\ 90\\ 120\\ 150\\ 180\\ 210\\ 240\\ 300\\ 360\\ 420\\ 480\\ 540\\ 600\\ 900\\ 1200\\ 1500\\ 1800\end{array}$	6.41 6.36 6.32 6.27 6.25 6.23 6.21 6.17 6.13 6.08 6.02 5.96 5.92 5.73 5.60 5.51 5.45	651.94 651.99 652.03 652.05 652.08 652.10 652.12 652.14 652.18 652.22 652.27 652.33 652.39 652.43 652.62 652.75 652.84 652.90	1.09 1.04 1.00 0.98 0.95 0.93 0.91 0.89 0.85 0.81 0.76 0.70 0.64 0.60 0.41 0.28 0.19 0.13

ţ.

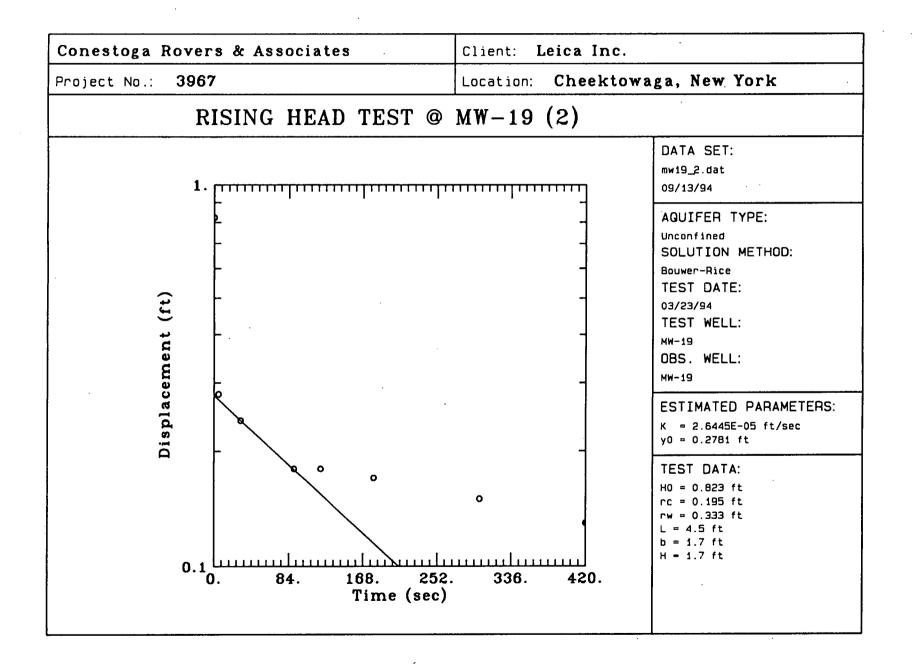

MW19_1

Date: 09/13/94 Page: 1/1

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-19
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 660.84 ft AMSL
	,

Static Water Level : 11.95 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	12.20	648.64	0.25
30	12.10	648.74	0.15
60	12.08	648.76	0.13
90	12.08	648.76	0.13
120	12.07	648.77	0.12
150	12.06	648.78	0.11
180	12.06	648.78	0.11
240	12.04	648.80	0.09

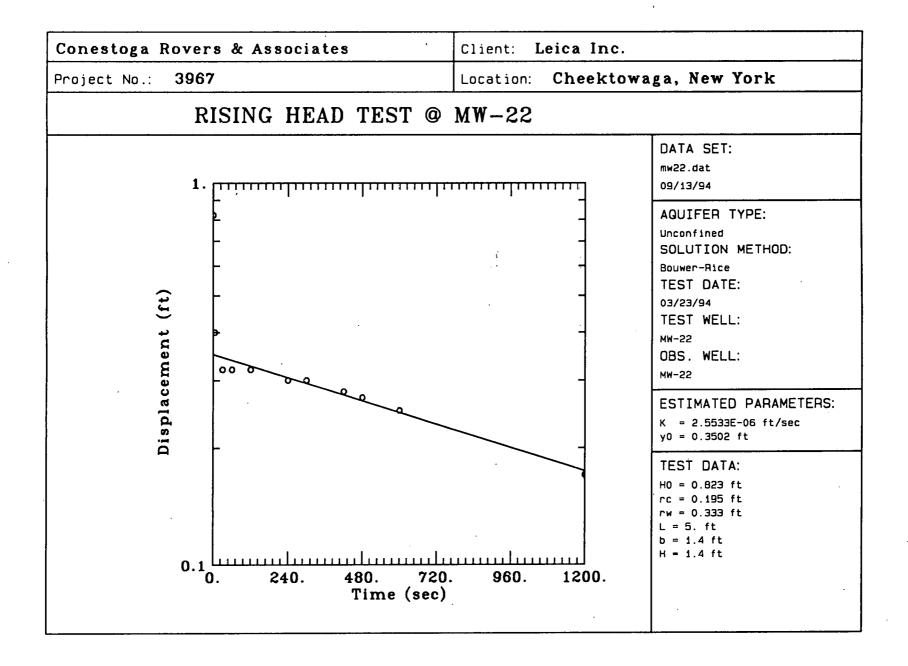

MW19_2

Date: 09/13/94 Page: 1/1

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-19
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 660.84 ft AMSL

Static Water Level : 12.00 ft

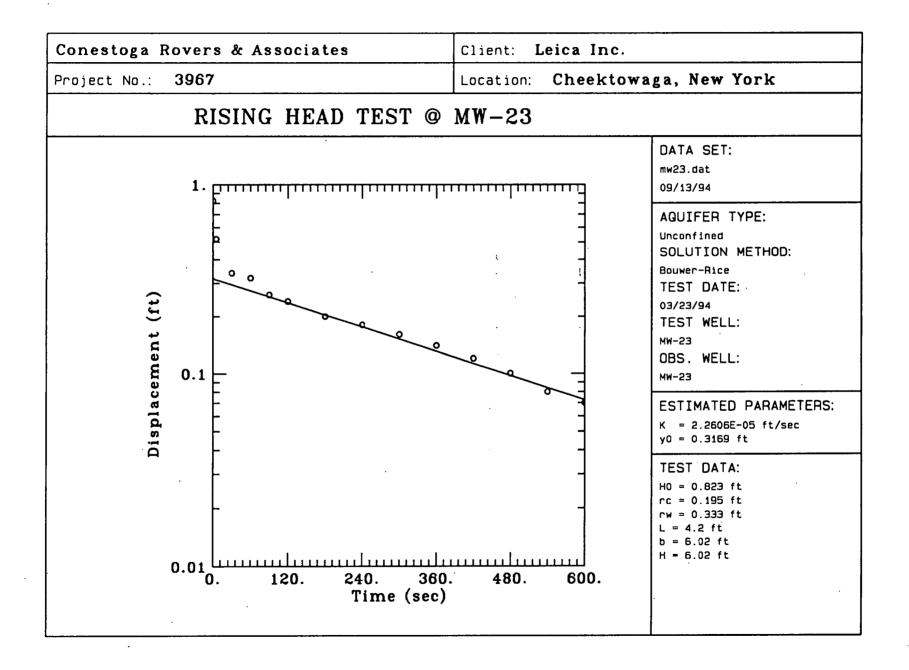
ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	12.28	648.56	0.28
30	12.24	648.60	0.24
60	12.20	648.64	0.20
90	12.18	648.66	0.18
120	12.1812.1712.1712.1612.1512.1412.13	648.66	0.18
150		648.67	0.17
180		648.67	0.17
240		648.68	0.16
300		648.69	0.15
360		648.70	0.14
420		648.71	0.13



MW22

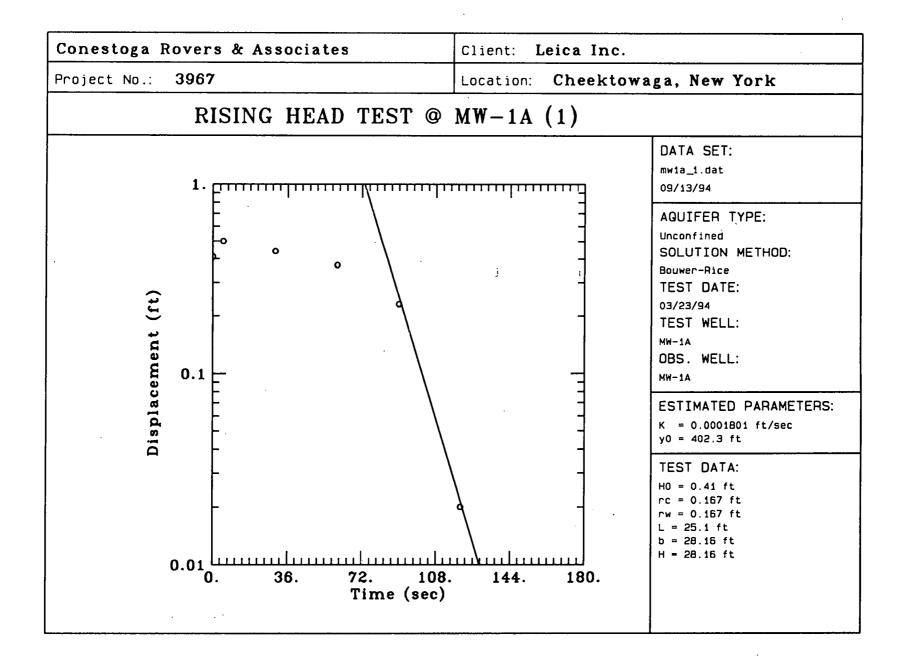
	•
Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-22
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 652.51 ft AMSL

Static Water Level : 9.30 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 120 180	9.70 9.62 9.62 9.62 9.60	642.81 642.89 642.89 642.89 642.91	0.40 0.32 0.32 0.32 0.32 0.30
240	9.60	642.91	0.30
300	9.60	642.91	0.30
360	9.58	642.93	0.28
420	9.58	642.93	0.28
480	9.57	642.94	0.27
540	9.57	642.95	0.26
600	9.55	642.96	0.25
900	9.51	643.00	0.21
1200	9.47	643.04	0.17

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-23
Start Date/Time	: 03/23/94 00:00:00
	: 03/23/94 00:00:00 : Top of Casing Elevation
Reference Description	: Top of Casing Elevation
Reference Elevation	: 656.18 ft AMSL
Static Water Level	• 0 00 F+

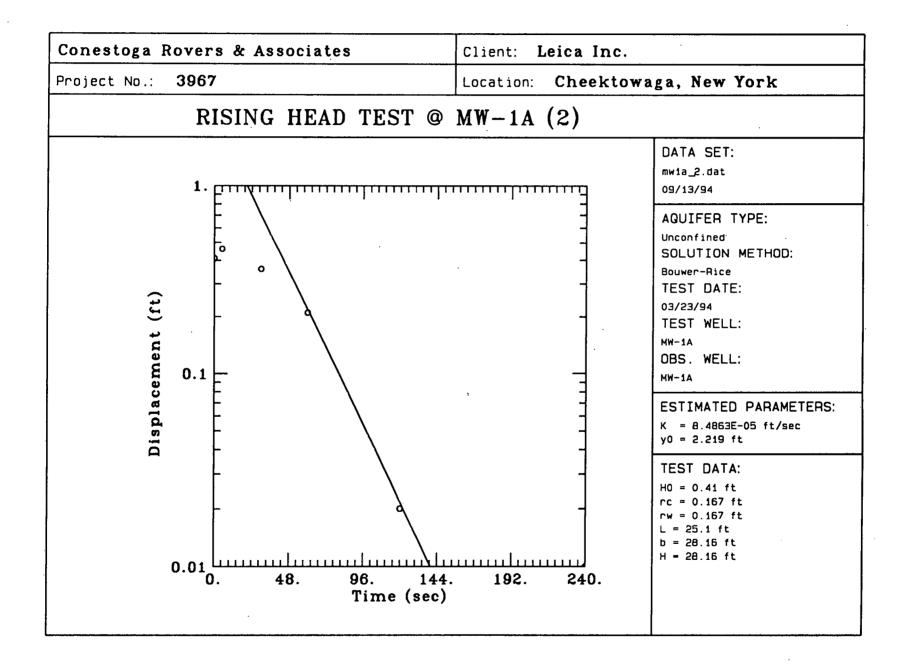
Static Water Level : 9.98 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	10.50	645.68	0.52
30	10.32	645.86	0.34
60	10.30	645.88	0.32
· 90	10.24	645.94	0.26
120	10.22	645.96	0.24
180	10.18	646.00	0.20
240	10.16	646.02	0.18
300	10.14	646.04	0.16
360	10.12	646.06	0.14
420	10.10	646.08	0.12
480	10.08	646.10	0.10
540	10.06	646.12	0.08
600	10.05	646.13	0.07

Page: 1/1

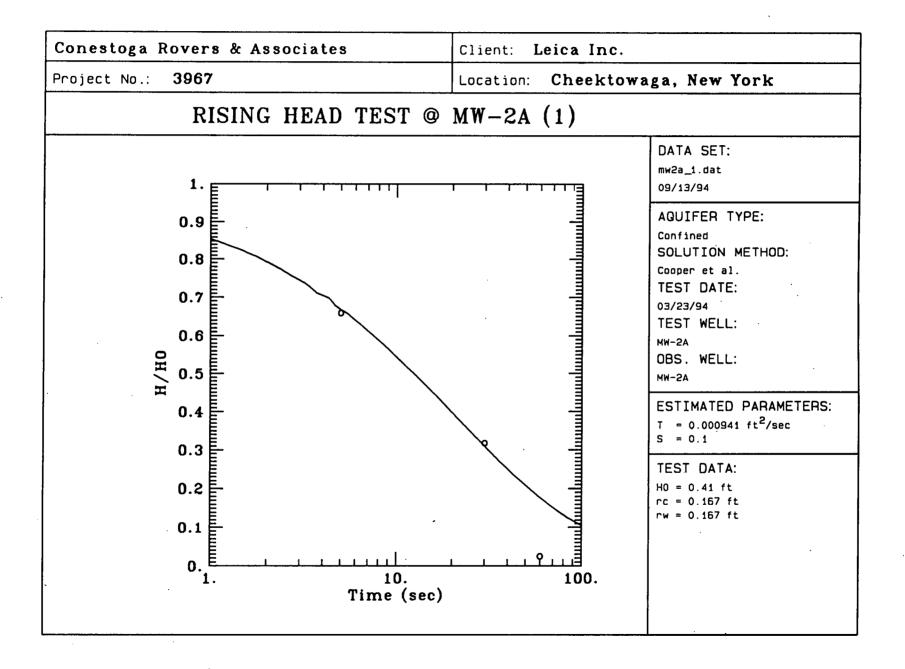
Static Water Level : 20.14 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	20.64	642.84	0.50
30	20.58	642.90	0.44
60	20.51	642.97	0.37
90	20.37	643.11	0.23
120	20.16	643.32	0.02
180	20.15	643.33	0.01



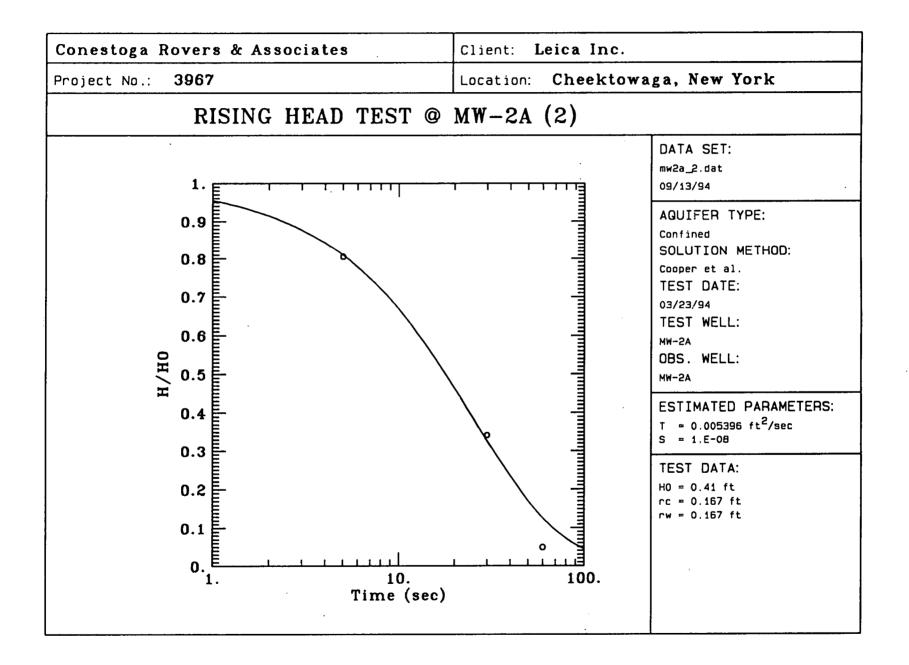
MW1A 2

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-1A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 663.48 ft AMSL
•	


Static Water Level : 20.14 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 180 240	20.60 20.50 20.35 20.20 20.16 20.15	642.88 642.98 643.13 643.28 643.32 643.33	0.46 0.36 0.21 0.06 0.02 0.01

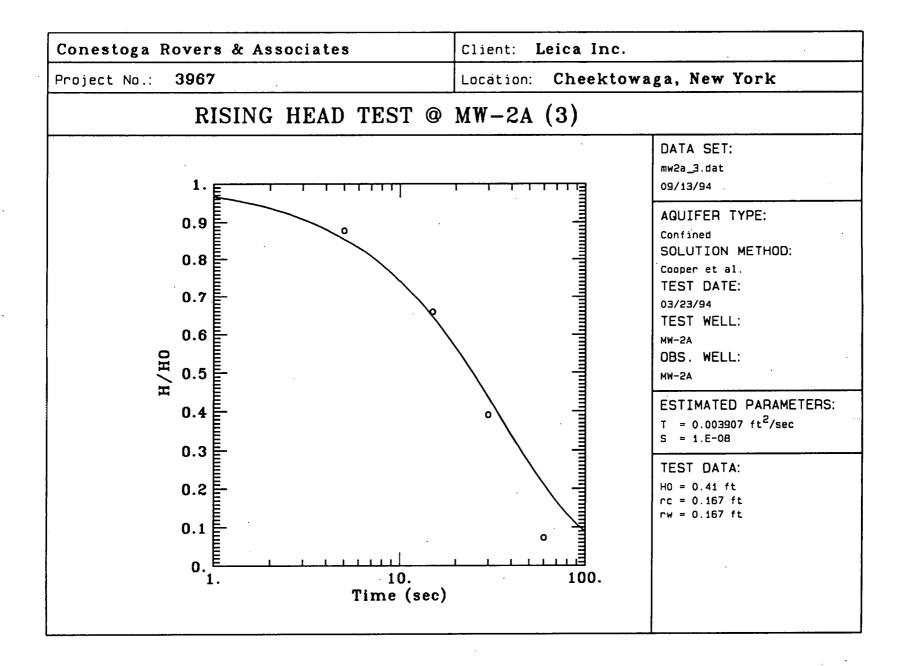
Client	:	Leica Inc.
Site Location	:	Cheektowaga, New York
Project No	:	3967
Test Type	:	RISING HEAD TEST
		MW-2A
	:	03/23/94 00:00:00
•		Top of Casing Elevation
· —		657.02 ft AMSL
	·	
Static Water Level	:	6.68 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	6.95	650.07	0.27
30	6.81	650.21	0.13
60	6.69	650.33	0.01
90	6.68	650.34	0.00

Client Site Location Project No Test Type Observation Well	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-2A
-	
	: RISING HEAD TEST
	: MW-2A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 657.02 ft AMSL
•	

Static Water Level : 6.68 ft

ELAPSED TIME (sec)	WAI LEV (f	YEL 1	WATER ELEV. I AMSL)	DRAWDOWN
5 30 60 90	6. 6.	82 65 70 65	50.01 50.20 50.32 50.34	0.33 0.14 0.02 0.00

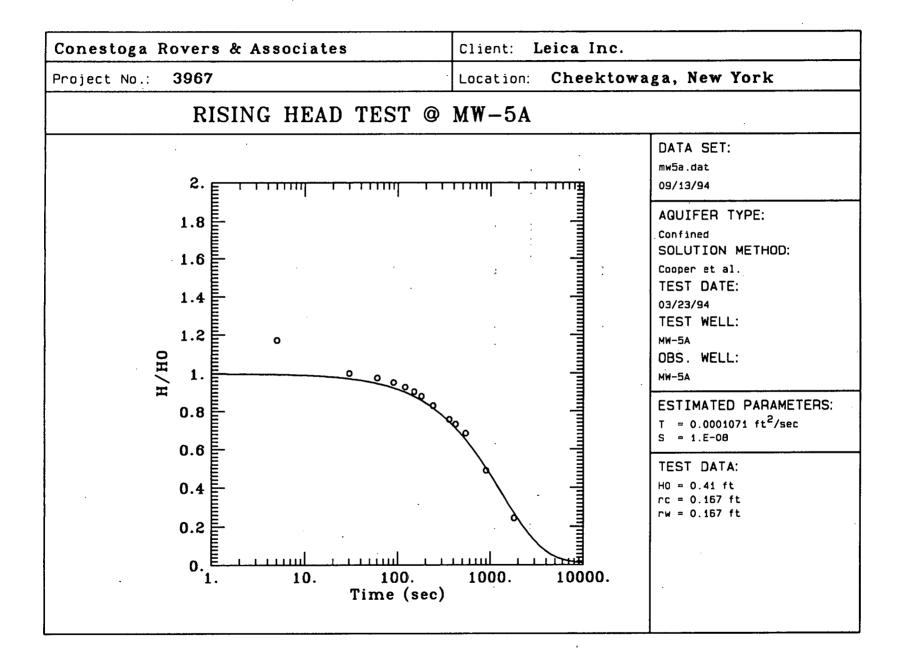


MW2A 3

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-2A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 657.02 ft AMSL

Static Water Level : 6.68 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 15 30 45 60 75	7.04 6.95 6.84 6.75 6.71 6.69	649.98 650.07 650.18 650.27 650.31 650.33	0.36 0.27 0.16 0.07 0.03 0.01
90	6.68	650.34	0.00

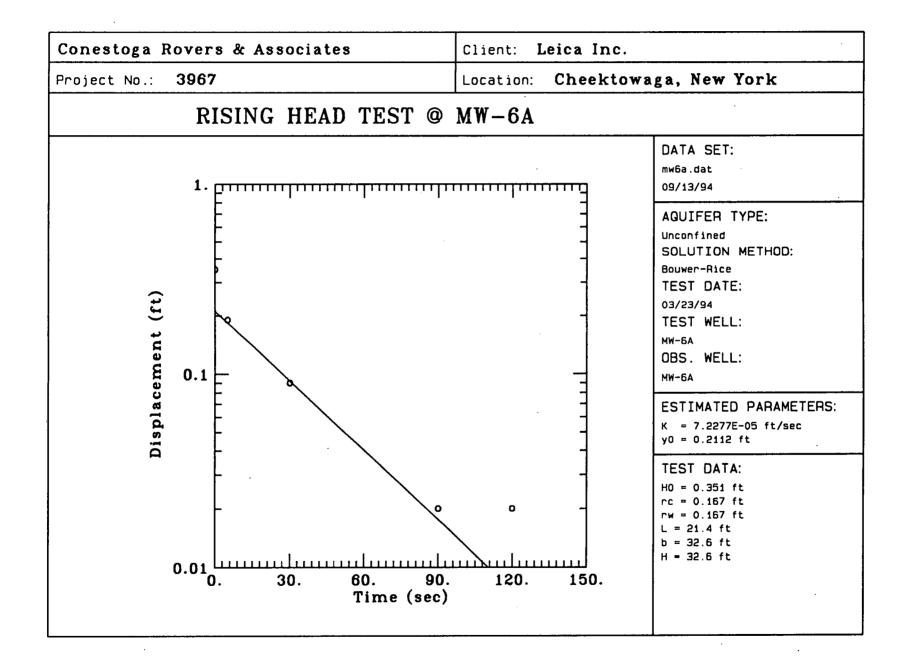

MW5A

Test Type Observation Well Start Date/Time Reference Description	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-5A : 03/23/94 00:00:00 : Ground Surface Elevation
Reference Elevation	: 654.84 ft AMSL

Static Water Level : 5.27 ft

Water level measured from : GROUND SURFACE ELEVATION

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 150 180 240 300 360 420 480 540 600 900 1200 1800	5.75 5.68 5.67 5.66 5.63 5.61 5.58 5.57 5.56 5.55 5.55 5.50 5.47 5.45 5.37	649.09 649.16 649.17 649.18 649.20 649.21 649.23 649.24 649.26 649.27 649.28 649.29 649.34 649.37 649.39 649.47	$\begin{array}{c} 0.48\\ 0.41\\ 0.40\\ 0.39\\ 0.38\\ 0.37\\ 0.36\\ 0.34\\ 0.33\\ 0.31\\ 0.30\\ 0.29\\ 0.28\\ 0.23\\ 0.20\\ 0.18\\ 0.10\\ \end{array}$
2400	5.32	649.52	0.05

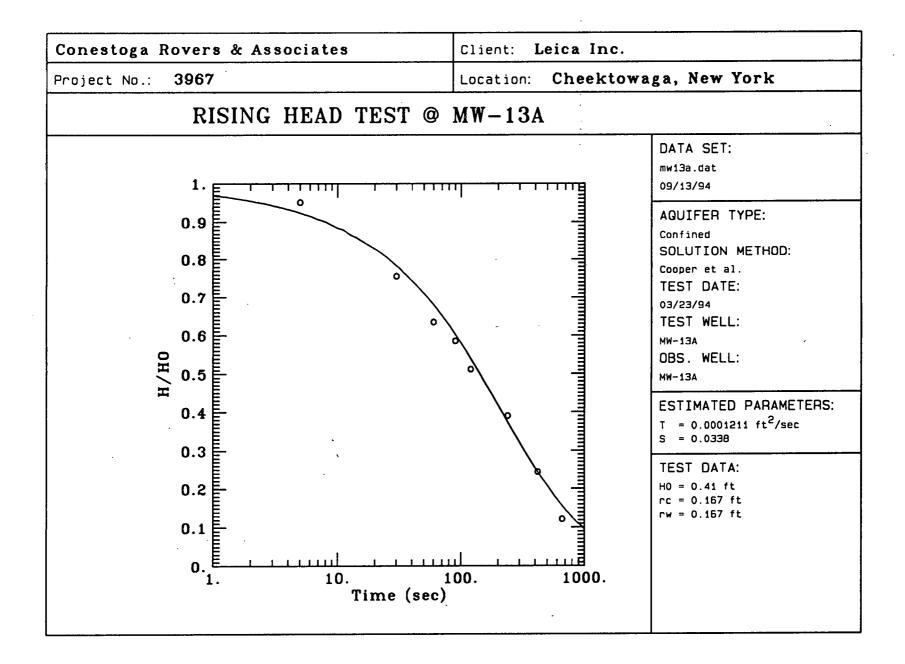

MW6A

Page: 1/1

-1.1	
Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-6A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 659.38 ft AMSL
	. ?

Static Water Level : 16.06 ft

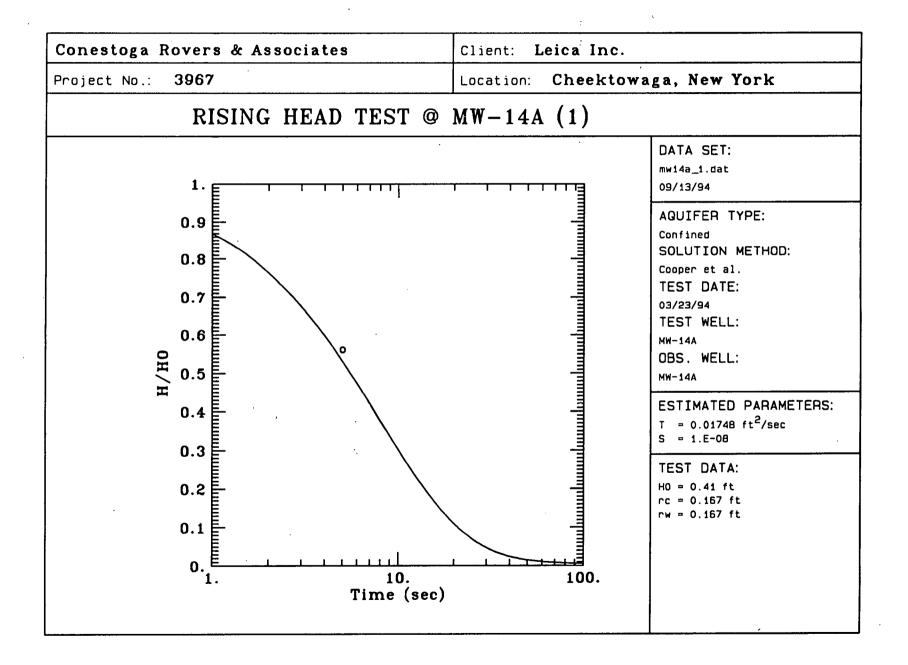
ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	16.25	643.13	0.19
30	16.15	643.23	0.09
60	16.10	643.28	0.04
90	16.08	643.30	0.02
120	16.08	643.30	0.02
150	16.07	643.31	0.01
180	16.06	643.32	0.00
240	16.06	643.32	0.00


MW13A .

Client Site Location	: Leica Inc. : Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-13A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 655.13 ft AMSL

Static Water Level : 6.07 ft

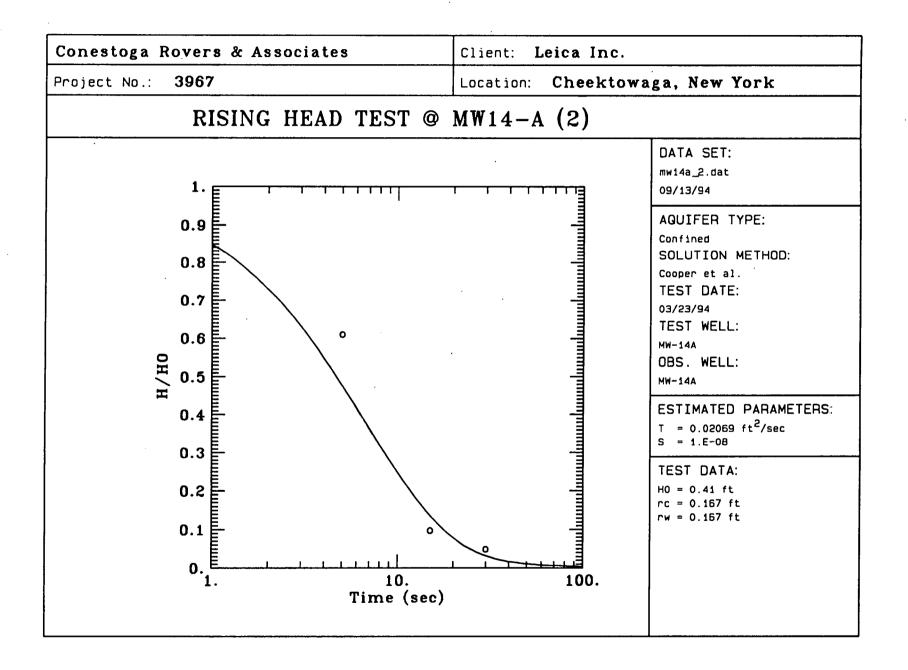
· ·


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 180 240 300 420 540 660 780	6.46 6.38 6.33 6.21 6.23 6.23 6.21 6.17 6.15 6.09	648.67 648.75 648.80 648.82 648.85 648.88 648.90 648.92 648.92 648.98 648.98 649.01 649.04	$\begin{array}{c} 0.39\\ 0.31\\ 0.26\\ 0.24\\ 0.21\\ 0.18\\ 0.16\\ 0.14\\ 0.10\\ 0.08\\ 0.05\\ 0.02\end{array}$
•			

MW14A_1

Static Water Level : 5.01 ft

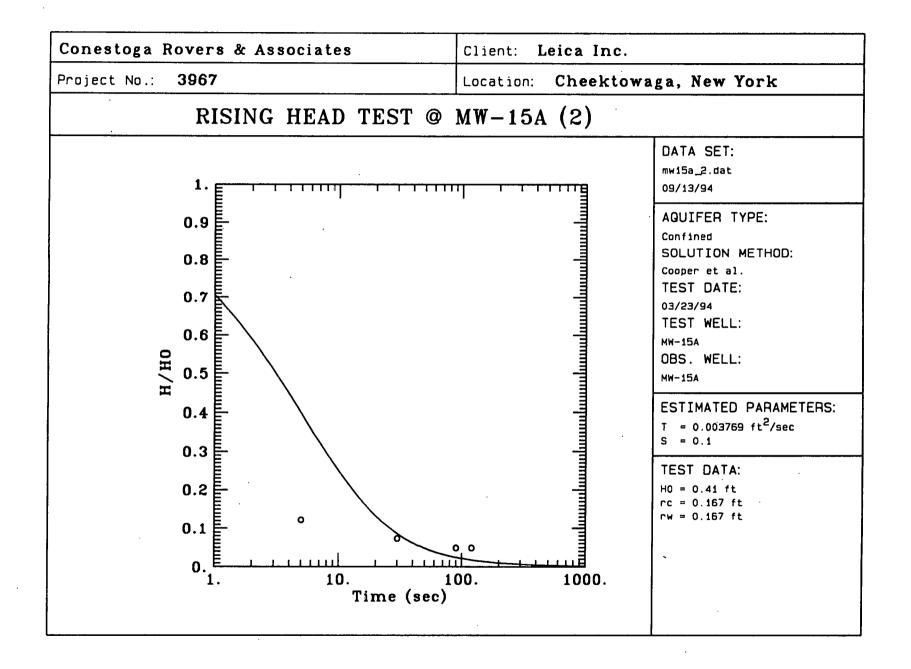
ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	5.24	648.46	0.23
30	5.02	648.68	0.01
60	5.02	648.68	0.01


MW14A_2

Date: 09/13/94 Page: 1/1

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-14A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 653.70 ft AMSL
Ctatic Water Ierrel	

Static Water Level : 5.01 ft


ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	5.26	648.44	0.25
15	5.05	648.65	0.04
30	5.03	648.67	0.02
60	5.02	648.68	0.01

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-15A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 658.51 ft AMSL

Static Water Level : 9.20 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5 30 60 90 120 180	9.25 9.23 9.22 9.22 9.22 9.22 9.21	649.26 649.28 649.29 649.29 649.29 649.30	0.05 0.03 0.02 0.02 0.02 0.02 0.01

· ·

MW15A_1

Client Site Location Project No Test Type Observation Well	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-15A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 658.51 ft AMSL

Static Water Level : 9.21 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	9.20	649.31	-0.01
30	9.20	649.31	-0.01
60	9.20	649.31	-0.01

Client Site Location Project No Test Type Observation Well Start Date/Time Reference Description Reference Elevation	: Leica Inc. : Cheektowaga, New York : 3967 : RISING HEAD TEST : MW-15A : 03/23/94 00:00:00 : Top of Casing Elevation : 658 51 ft AMSI
Reference Elevation	: 658.51 ft AMSL
Static Water Level	: 9.20 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	9.25	649.26	0.05
30	9.21	649.30	0.01
60	9.20	649.31	0.00

MW17A_1

Client	: Leica Inc.
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-17A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 659.18 ft AMSL

Static Water Level : 6.46 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	7.04	652.14	0.58
30	6.47	652.71	0.01
60	6.46	652.72	0.00

MW17A_2

Client	<pre>: Leica Inc.</pre>
Site Location	: Cheektowaga, New York
Project No	: 3967
Test Type	: RISING HEAD TEST
Observation Well	: MW-17A
Start Date/Time	: 03/23/94 00:00:00
Reference Description	: Top of Casing Elevation
Reference Elevation	: 659.18 ft AMSL
	: 659.18 ft AMSL

Static Water Level : 6.46 ft

ELAPSED TIME (sec)	WATER LEVEL (ft)	WATER ELEV. (ft AMSL)	DRAWDOWN (ft)
5	7.01	652.17	0.55
30	6.49	652.69	0.03
60	6.46	652.72	0.00

• · · ·

· . .

· · ·

APPENDIX E

GEOTECHNICAL TESTING REPORTS

GEOTECHNICAL TESTING REPORT LEICA, INC. CHEEKTOWAGA, NEW YORK

C

Ç

FOR: CONESTOGA-ROVERS & ASSOCIATES NIAGARA FALLS, NEW YORK

> JOB NO. G047.010 APRIL, 1994

Empire Soils Investigations, Inc.

Corporate Offices 140 Telegraph Road Box 297 Middleport, New York 14105 (716)735-3502 Fax: (716)735-9027

May 5, 1994

(

į

Mr. Kevin P. Lynch, PE Conestoga-Rovers & Associates 7703 Niagara Falls Blvd. Niagara Falls, NY 14304

SUBJECT: GEOTECHNICAL TESTING LEICA, INC., CHEEKTOWAGA, NEW YORK CRA PROJECT NO. 3967

Dear Mr. Lynch:

Transmitted herewith are the results of geotechnical laboratory testing performed on eight (8) jar samples from the subject project, which were delivered to our laboratory in Middleport, New York, on April 11, 1994.

The samples were identified and catalogued as follows:

BORING NO.	SAMPLE DEPTH(FT)
MW-1A	5.0 - 7.0
MW-1A	13.0 - 13.6
MW-1A	9.0 - 11.0
MW-17A	9.0 - 13.0
MW-21	3.0 - 6.0
MW-21	10.0 - 12.0
MW-22	2.0 - 4.0
MW-22	7.0 - 9.0
	MW-1A MW-1A MW-1A MW-17A MW-21 MW-21 MW-22

As requested on Chain-of-Custody Record No. NF-0159, we have performed Grain Size Distribution Analysis (ASTM D422) to define the diameter of grains for which 10 percent of the particles were smaller, D_{10} .

A member of the HIH art up of companies

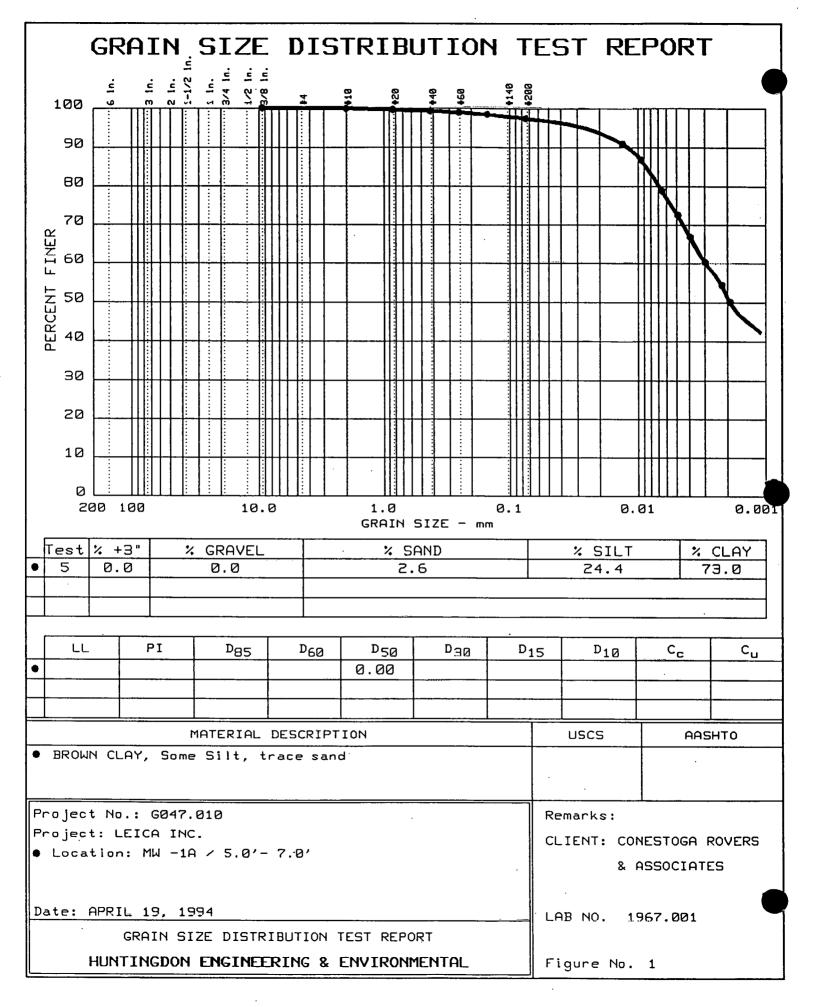
Some of the samples were too fine grained to define D_{10} within the limitations of our computer generated report format. With your consent we terminated the hydrometer analysis after 1800 minutes of sedimentation and calculated the following particle diameters and percent finer at the final reading:

LAB NO.	DIAMETER(mm)	PERCENT_FINER		
1967.001	0.0009	38.5		
1967.003	0.0011	11.0		
1967.005	0.0010	29.6		
1967.006	0.0011	12.0		
1967.007	0.0011	24.3		

The individual Grain Size Distribution Test Reports are attached.

Should you have any questions or in case we may be of further service, do not hesitate to contact the undersigned at 716-735-3400.

Respectfully submitted,


EMPIRE SOILS INVESTIGATIONS, INC.

ndlausen

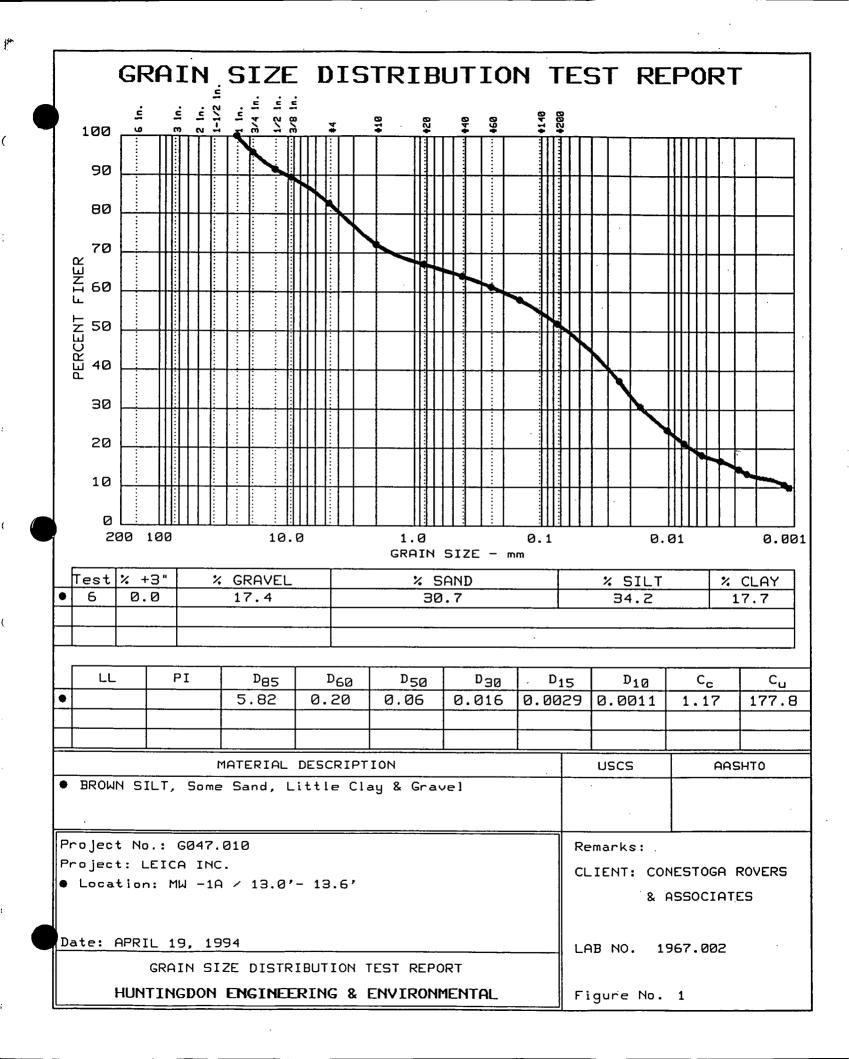
Jorgen F. Christiansen, PE Director, of Geotechnical Testing

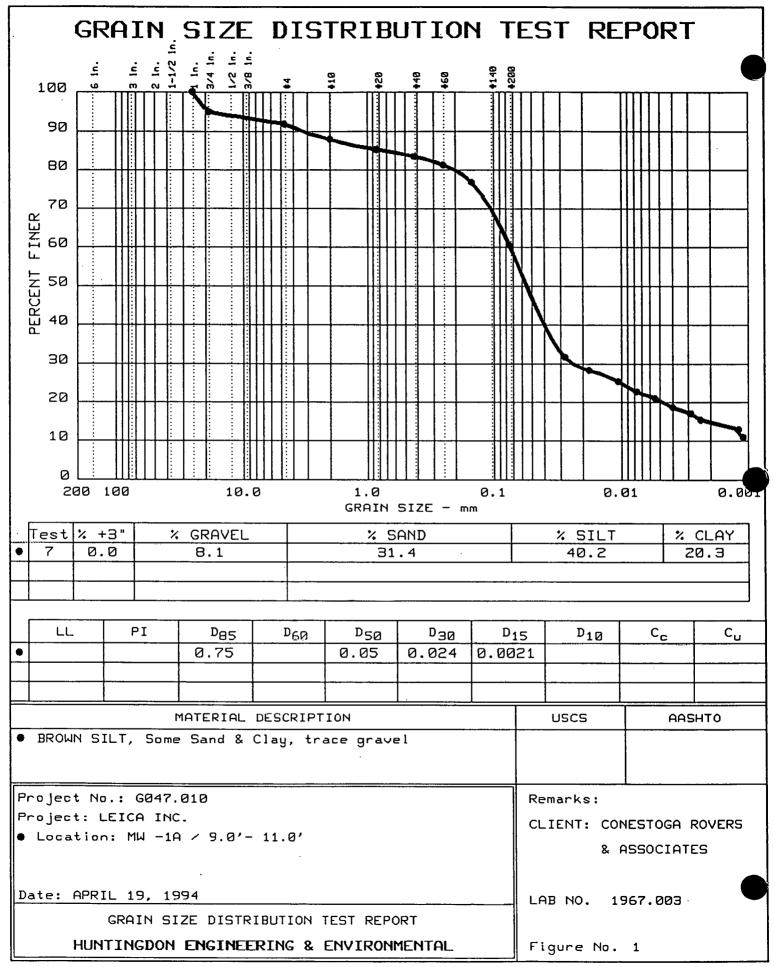
JFC/tas

Attachments

ł			

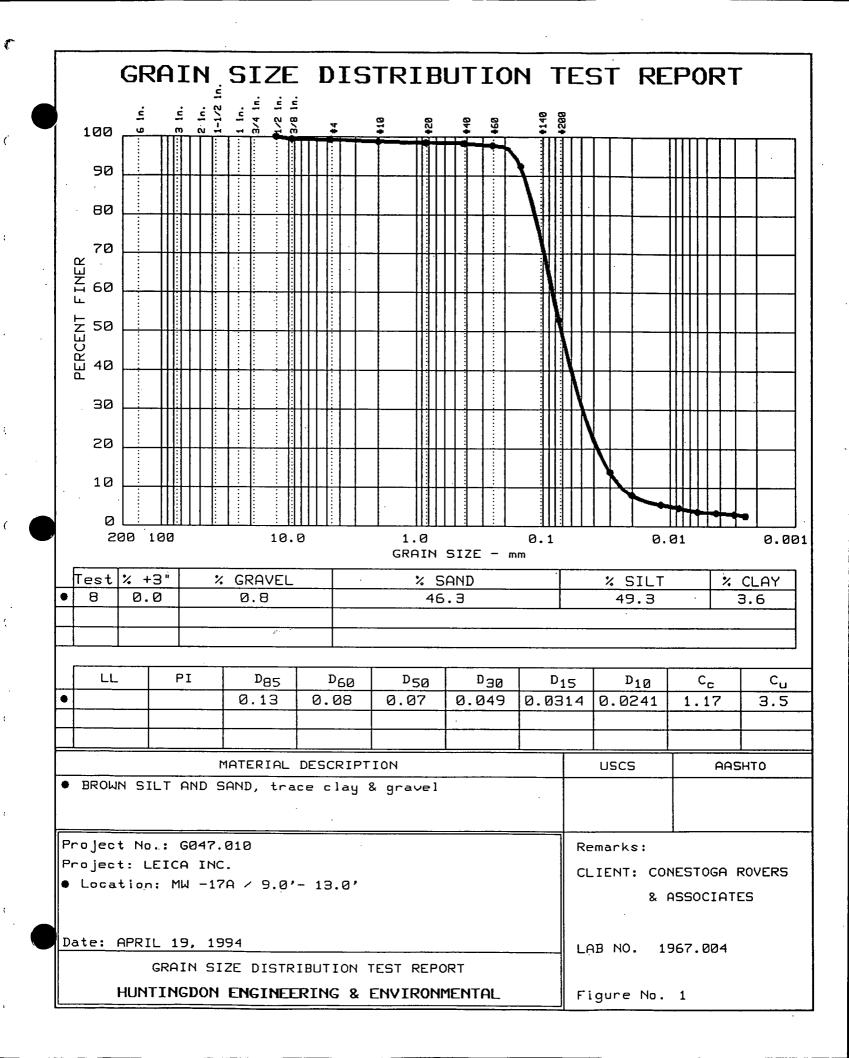
€

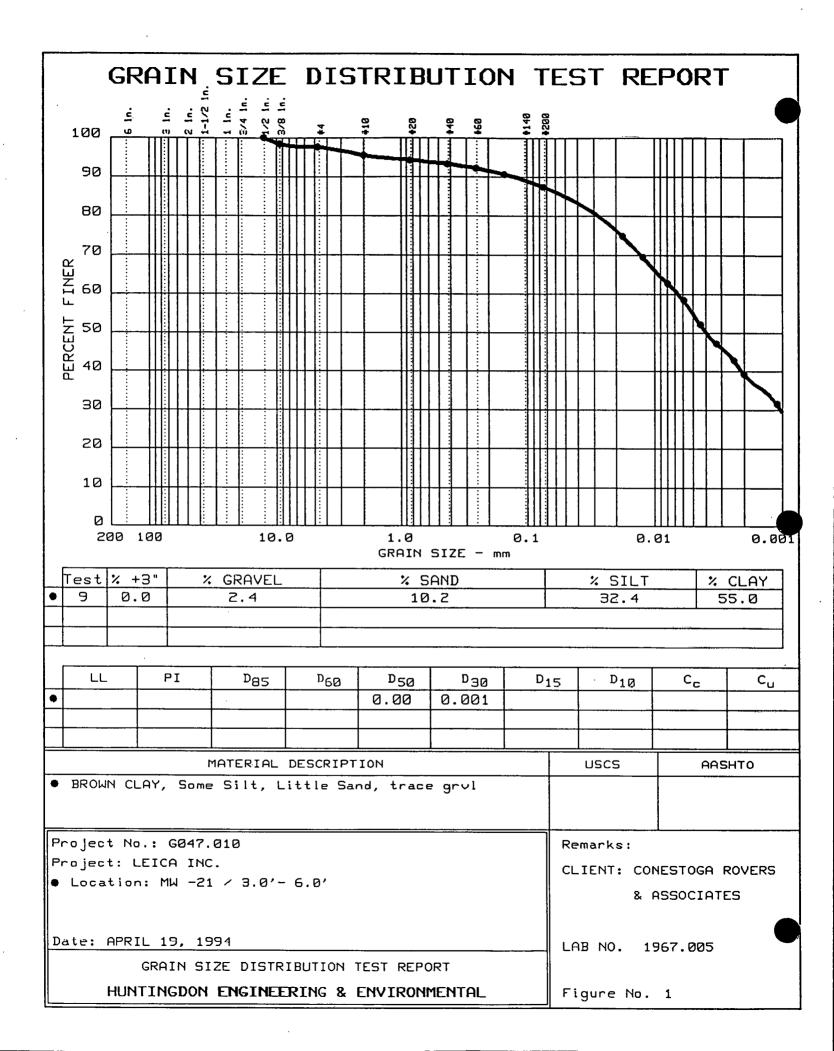

Ć

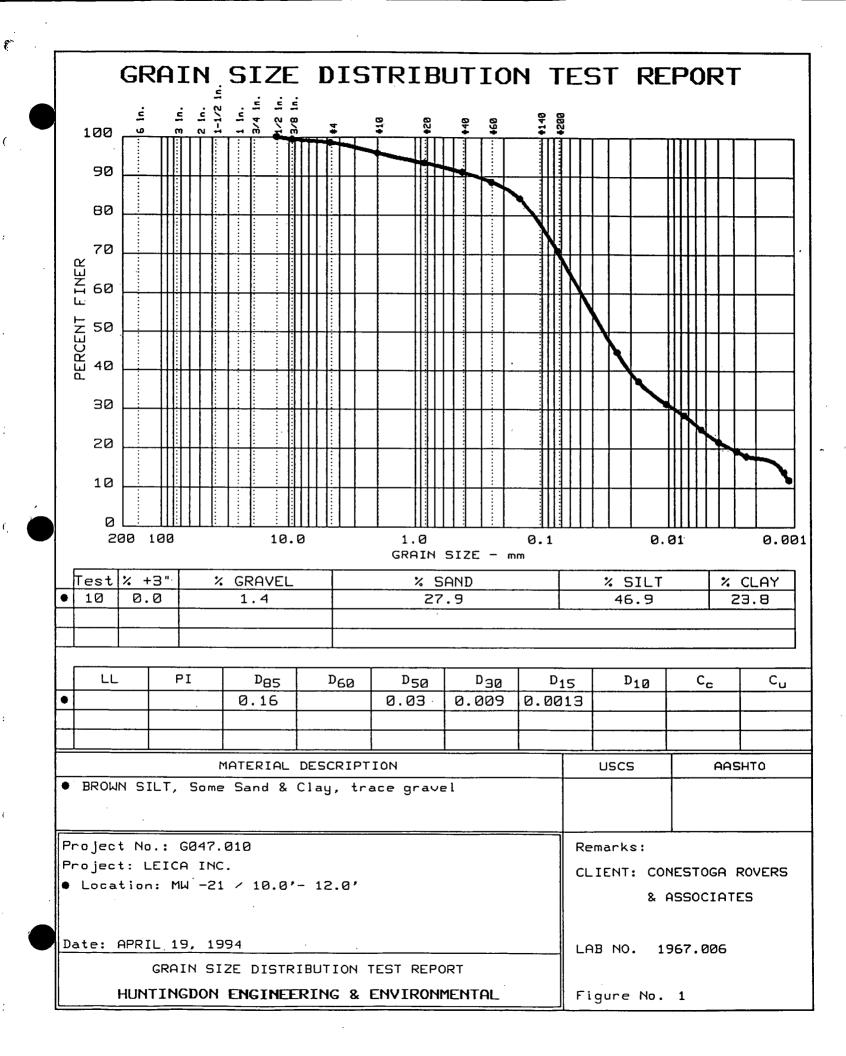

£

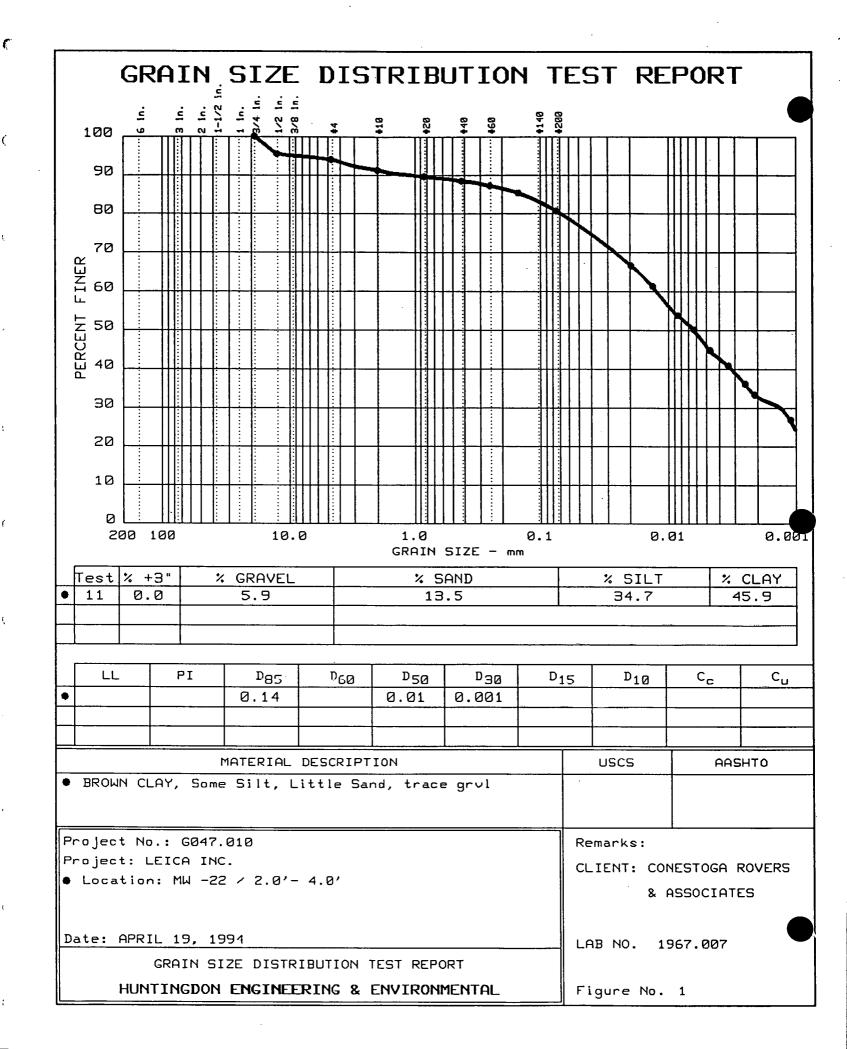
(.

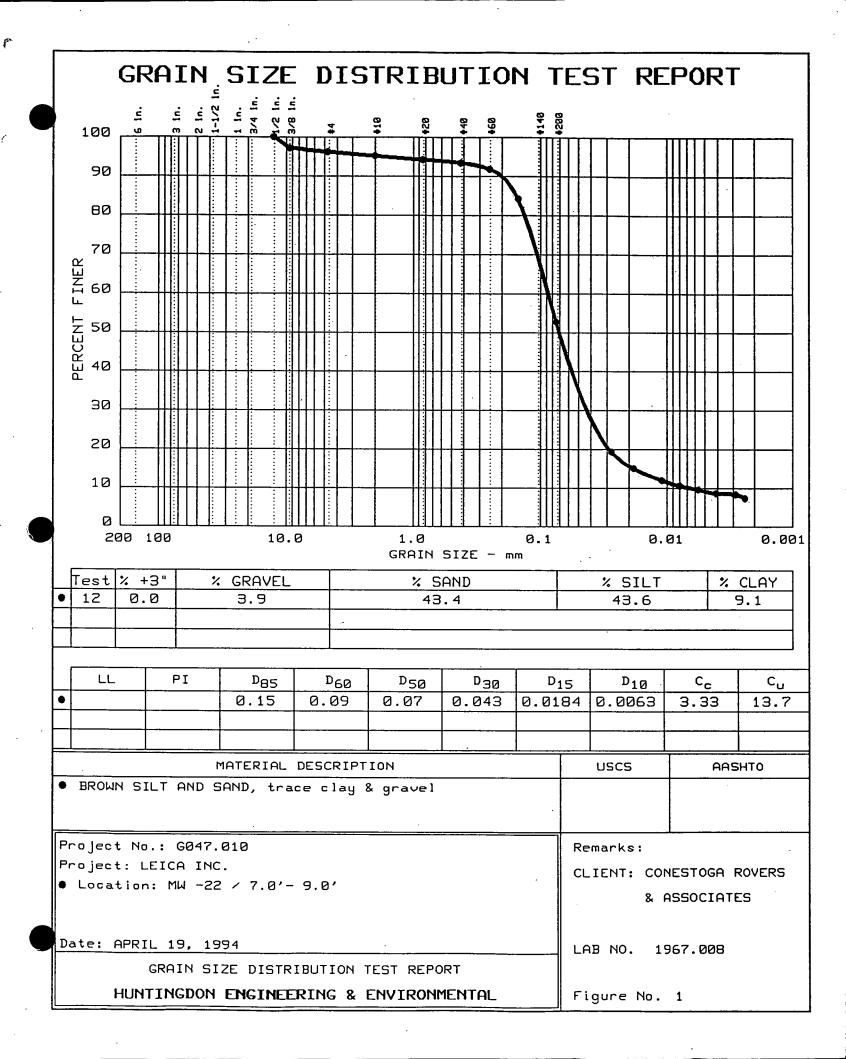
(


i




(


Ċ


(

Ć

Ę

GEOTECHNICAL TESTING REPORT LEICA, INC. CHEEKTOWAGA, NEW YORK

ſ

FOR: CONESTOGA-ROVERS & ASSOCIATES NIAGARA FALLS, NEW YORK

> JOB NO. G047.010 FEBRUARY, 1994

£

Empire Soils Investigations, Inc.

Corporate Offices 140 Telegraph Road Box 297 Middleport, New York 14105 (716)735-3502 Fax: (716)735-9027

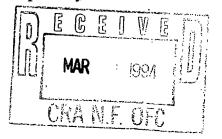
February 28, 1994

Mr. Kevin P. Lynch, PE Conestoga-Rovers & Associates 7703 Niagara Falls Boulevard Niagara Falls, NY 14304

SUBJECT: GEOTECHNICAL TESTING LEICA, INC., CHEEKTOWAGA, NEW YORK CRA PROJECT NO. 3967

Dear Mr. Lynch:

Transmitted herewith are the results of geotechnical laboratory testing performed on one (1) thin wall tube sample from the subject project, which was delivered to our laboratory in Middleport, New York, on February 9, 1994.


The sample was identified and catalogued as follows:

<u>LAB NO.</u>	BORING NO.	<u>SAMPLE DEPTH (FT)</u>		
1945.001	MW-13	3.0 - 5.0		

As requested on Chain-of-Custody Record NO. NF-0536, we have performed Grain Size Distribution Analysis (ASTM D422), Atterberg Limits (ASTM D4318), Permeability (ASTM D5084), and Specific Gravity (ASTM D854) as part of the determination of the porosity of the permeability specimen.

Individual test reports for Grain Size Distribution test, Atterberg Limits test, and Permeability test are attached.

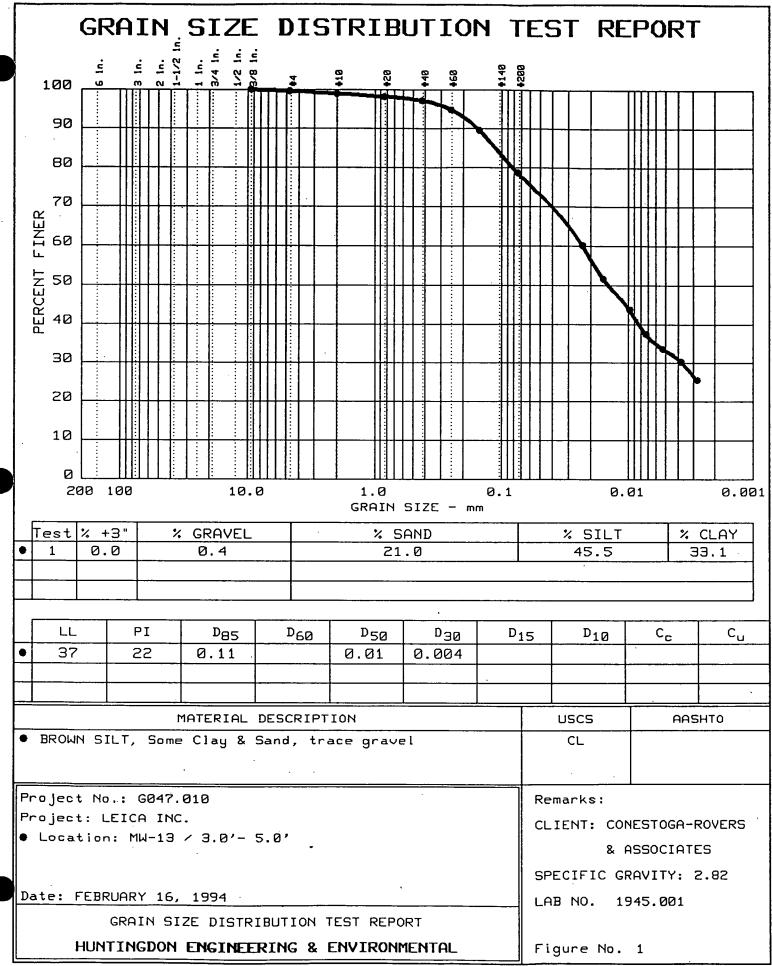
The result of the Specific Gravity test was G=2.82. This value applied to the dry mass and measured dimensions of the permeability specimen resulted in a calculated porosity n=0.373.

Should you have any questions or in case we may be of further service, do not hesitate to contact the undersigned at 716-735-3400.

Respectfully submitted,

EMPIRE SOILS INVESTIGATIONS, INC.

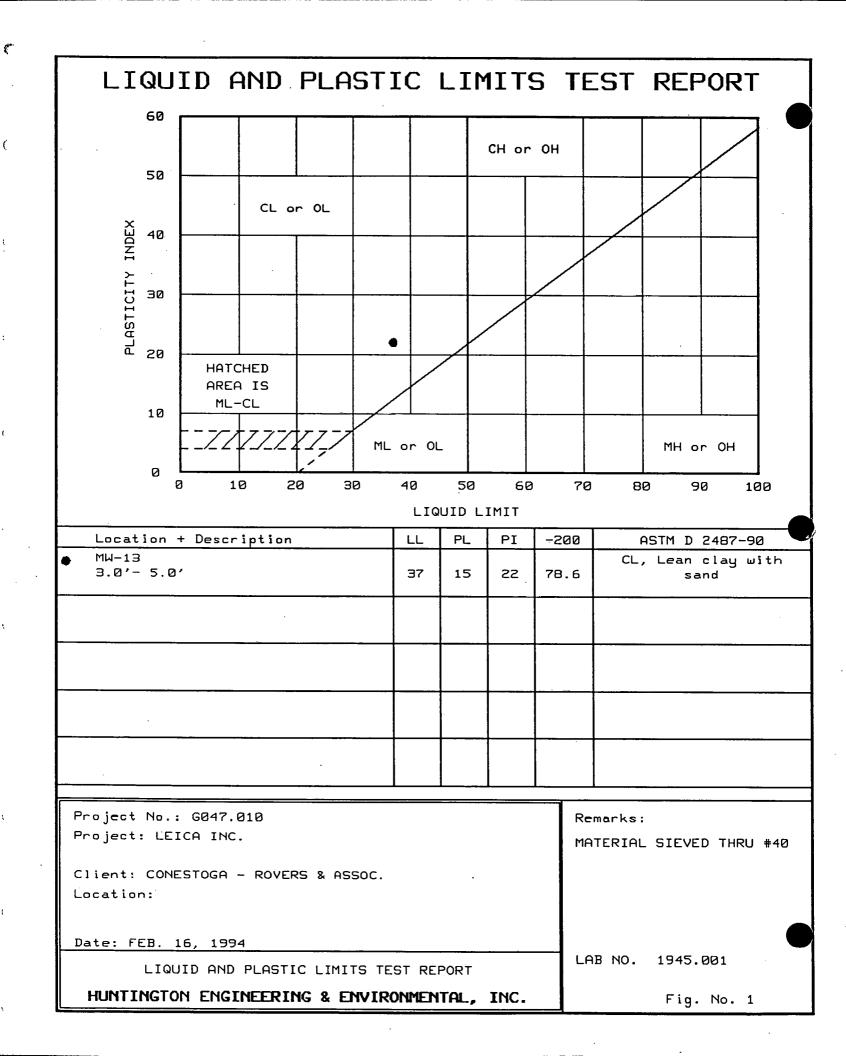
ristinusur Joi 57. qui


Jorgen F. Christiansen, PE Director, Geotechnical Laboratory

JFC/tas

(

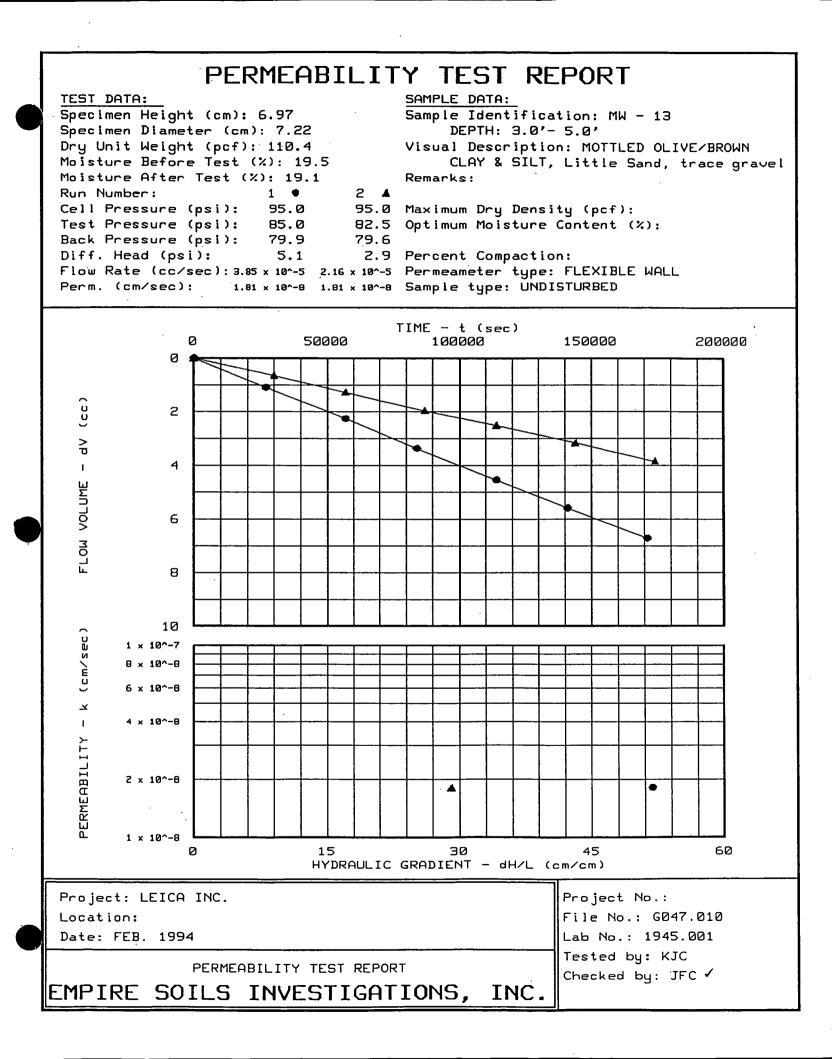
Ć


Attachments

C

í

ŧ


(

ŝ

t

K

ţ

C

Ć

(

PERMEABILITY TEST DATA

PROJECT DATA

		LEICA INC. G047.010					
Sample Identi	fication:		MW - 13 DEPTH: 3.0'- 5.0' 1945.001 MOTTLED OLIVE/BROWN CLAY & SILT, Little Sand, trace gravel				
Lab No.: Description:		1945.001 MOTTLED OLI					
Sample Type: Max. Dry Dens.: Method (D1557/D698): Opt. Water Content:		UNDISTURBED		Cana,			
Date: Remarks:		FEB. 1994	FEB. 1994				
Permeameter Type: Tested by:		FLEXIBLE WALL KJC					
	P	ERMEABILITY	TEST SPE	CIMEN D	ATA		
		Before test:			Af	ter test:	
Diameter: Top: Middle: Bottom: Average:	2.839 in 2.838 in 2.851 in	2.853 in 2.847 in 2.841 in		2. 2.	827 in	2 2.821 in 2.854 in 2.850 in 7.22 cm	
Length:	1 2 741 in	2 2.755 in	3 2 731 i		1 711 in	2 2 699 in	
Average:		6.97 cm	2.731 1		71 in		
Moisture, De Specific G			eters:				
Wet Wt. &						830.61	

Wet Wt. & Tare:	832.79	830.61
Dry Wt. & Tare:	734.40	734.40
Tare Wt.:	229.59	229.59
Moisture Content:	19.5 %	19.1 %
Dry Unit Weight:	110.4 pcf	111.9 pcf
Porosity:	0.3731	0.3641
Saturation:	92.4 %	93.9 %

PAGE 1

====

Ċ

{

EMPIRE SOILS INVESTIGATIONS, INC.

DATA SET 203

3 2.718 in

PERMEABILITY TEST CONDITIONS DATA

Cell No.: FP-10 Panel	No.: 5	Positions: 4 & 3
Run Number:	1	2
Cell Pressure:	95.0 psi	95.0 psi
Saturation Pressure:	80.0 psi	80.0 psi
Inflow Buret Factor:	1.00	1.00
Outflow Buret Factor:	1.00	1.00
Test Temperature:	20.0 °C	20.0 °C

PERMEABILITY TEST READINGS DATA

CASE X or	DATE	TIME (24 hr)	ELAPSED TIME (sec)	GAUGE PRESSU	RE (psi)	BURET READIN	G (CC)	FLOW VOLUME (CC)
R		· ·		IN	OUT	IN	OÙT	AVERAGE
x	2/14/94	8: 2	· 0	85.0	80.3	0.00	24.60	0.00
х	2/14/94	15:32	27,000	85.0	80.1	1.10	23.50	1.10
X	2/14/94	23:52	57,000	85.0	80.0	2.25	22.30	2.28
	2/15/94	7:22	84,000	84.9	80.0	3.35	21.20	3.38
	2/15/94	15:42	114,000	84.9	80.1	4.55	20.05	4.55
	2/15/94	23:12	141,000	85.1	80.1	5.60	19.00	5.60
	2/16/94	7:32	171,000	85.0	80.1	6.75	17.90	6.73

Test Pressure = 85.0 psi Differential Head = 5.1 psi, 361.0 cm H2O Gradient = 5.182E 01 Flow rate = 3.854E-05 cc/sec R squared = 0.99989Permeability, K20.0° = 1.814E-08 cm/sec², K20° = 1.814E-08 cm/sec²

SECOND RUN PERMEABILITY TEST READINGS DATA

CASE X or	DATE	TIME (24 hr)	ELAPSED TIME (sec)	GAUGE PRESSU	RE (psi)	BURET READIN	G (CC)	FLOW VOLUME (CC)
R				IN	OUT	IN	OUT	AVERAGE
x	2/17/94	7:42	0	82.6	80.0	0.05	24.70	0.00
Х	2/17/94	16: 2	30,000	82.5	79.9	0.70	24.05	0.65
х	2/17/94	23:32	57,000	82.6	79.9	1.30	23.40	1.28
	2/18/94	7:52	87,000	82.5	79.9	2.00	22.70	1.98
	2/18/94	15:22	114,000	82.4	79.8	2.55	22.15	2.53
	2/18/94	23:42	144,000	82.5	79.9	3.20	21.50	3.18
	2/19/94	8: 2	174,000	82.4	79.9	3.85	20.80	3.85

Test Pressure = 82.5 psi Differential Head = 2.9 psi, 202.5 cm H2O Gradient = 2.907E 01 Flow rate = 2.157E-05 cc/sec R squared = 0.99954 Permeability, K20.0° = 1.810E-08 cm/sec², K20° = 1.810E-08 cm/sec²

=====			=======				=====	====
PAGE	2	EMPIRE	SOILS	INVESTIGATIONS,	INC.	DATA	SET	203

l . . • •

,

b.

. • .

.

.

, · · · ·

APPENDIX F

WELL PURGING RECORDS

3967 (7)

ANUARY 1994

Monitoring Well Number:	MW-1	MW-2	. MW-3
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	12.27 Ft.	8.10 Ft.	10.8 Ft.
Depth to Water Table (below top of casing)	7.05 Ft.	7.26 Ft.	6.8 Ft.
Height of Water Column	5.22 Ft.	0.84 Ft.	4.0 Ft.
Volume of Water in Well	0.84 Gallons	0.13 Gallons	0.67 Gallons
Water Removed per Volume	0.9 Gallons	0.15 Gallons	0.7 Gallons
Purge/Sample Record Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°F): Total Purge Volume: Sample Number:	1 2 3 4 5 0.9 0.9 0.9 0.9 0.9 0.9 7.10 7.16 7.11 7.03 7.14 1640 1590 1600 1560 1560 45.2 49.3 49.5 48.9 49.1 4.5 Gallons MW-1-194-I	1 2 3 0.15 0.15 0.15 7.31 7.4 7.39 600 560 560 NM NM NM 0.45 Gallons MW-2-194-1	1 2 3 4 5 0.75 0.75 0.75 0.75 0.75 0.75 7.77 7.62 7.52 7.56 7.53 1040 1080 1100 1100 1080 NM 46.4 45.8 45.6 46.0 3.75 Gallons MW-3-194-I MW-3-194-I
Sample Description: pH Conductivity Temperature (°F)	7.24 1610 NM Clear, colorless, no sheen, no odor	7.38 550 NM Light brown, little fine sediment,	7.55 1090 NM Clear to slightly cloudy, colorless,
Parameters:	TCL VOCs, TPH	TCL VOCs, TPH	TCL VOCs, TPH

Page 2 of 9

WELL PURGING AND SAMPLE COLLECTION SUMMARY LOG GROUNDWATER ROUND I REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK JANUARY 1994

Monitoring Well Number:	MW-4	MW-5	• MW-6		
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	12.80 Ft.	11.4 Ft.	15.1 Ft.		
Depth to Water Table (below tcp of casing)	9.10 Ft.	6.7 Ft.	11.9 Ft.		
Height of Water Column	3.70 Ft.	4.7 Ft.	3.2 Ft.		
Volume of Water in Well	0.60 Gallons	0.75 Gallons	0.51 Gallons		
Water Removed per Volume	0.60 Gallons	0.75 Gallons	0.50 Gallons		
<i>Purge/Sample Record</i> Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°F):	1 2 3 0.6 0.6 0.6 6.52 6.85 6.98 1590 1330 1220 45.8 49.6 49.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 3 4 5 0.5 0.5 0.5 0.5 0.5 0.5 7.34 7.47 7.58 7.43 7.40 1140 1150 1150 1130 1120 46.6 46.2 45.8 46.8 46.8		
Total Purge Volume:	2.0 Gallons	3.75 Gallons			
Sample Number:	MW-4-194-I	MW-5-194-I	MW-6-194-I		
Sample Description: pH Conductivity Temperature (°F)	6.90 1200 NM Clear, slightly dark color, slight sulfide odor, black floating particles	7.91 1560 47.6 Clear, slight sulfide odor, colorless, no sheen	7.34 1610 NM Clear, slight sulfide odor, no sheen, colorless		
Parameters:	TCL VOCs, TPH	TCL VOCs, TPH	TCL VOCs, TPH		

Monitoring Well Number:	MW-7	MW-8	MW-9		
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	13.00 Ft.	11.90 Ft.	11.0 Ft.		
Depth to Water Table (below top of casing)	8.05 Ft.	7.6 Ft.	6.51 Ft.		
Height of Water Column	4.95 Ft.	4.3 Ft.	4.49 Ft.		
Volume of Water in Well	0.79 Gallons	0.72 Gallons	0.72 Gallons		
Water Removed per Volume	0.8 Gallons	0.75 Gallons	0.75 Gallons		
<u>Purge/Sample Record</u> Purge Volume Number:	1 2 3 4 5		1 2 3 4 5		
Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°F):	0.80.80.80.80.87.597.227.397.237.312340249026102550260047.348.148.448.248.0		0.750.750.750.750.758.237.877.607.507.441650174018501820180046.945.746.047.747.3		
Total Purge Volume:	4.0 Gallons	1.5 Gallons	3.75 Gallons		
Sample Number:	MW-7-194-1	MW-11-194-I plus Whiter APL Sample	MW-9-194-I		
Sample Description: pH Conductivity Temperature (°F) odd	7.20 2610 47.8 Clear to slight dark color, sulfide or, no sheen, trace black floating particles	6.60 1770 NM Some floating LNAPL present, no purge measurements due to LNAPL. Clear, slightly dark color, some odor, distinctly whiter color at bottom of water column. White liquid also sampled.	7.54 1880 47.0 Clear with slight dark color, sulfide odor, no sheen, trace black floating particles		
Parameters:	TCL VOCs, TPH	TCL VOCs, TPH	TCL VOCs, TPH		

CRA 3967 (7) APPF/Rd I

Monitoring Well Number:	MW-10	MW-11	MW-12	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	10.60 Ft.	12.50 Ft.	13.20 Ft.	
Depth to Water Table (below top of casing)	7.75 Ft.	9.60 Ft.	9.38 Ft.	
Height of Water Column	2.85 Ft.	2.90 Ft.	3.82 Ft.	
Volume of Water in Well	0.48 Gallons	0.40 Gallons	0.63 Gallons	
Water Removed per Volume	0.50 Gallons	0.50 Gallons	0.7 Gallons	
Purge/Sample RecordPurge Volume Number:Volume Purged (Gal.):pH (standard units):Conductivity (mmho/cm):Temperature (*F):Total Purge Volume:Sample Number:Sample Description:	1 2 3 4 5 0.5 0.5 0.5 0.5 0.5 0.5 6.45 7.00 7.26 7.22 7.18 990 920 910 910 950 35.1 44.1 48.0 47.1 47.3 2.5 Gallons MW-10-194-I and Duplicate	1 2 3 4 1 2 3 4 2 3 4 4 2 0 Gallons MW-11-194-I and NAPL Sample	1 2 3 4 5 0.7 0.7 0.7 0.7 0.7 6.57 7.13 7.36 7.40 7.42 2740 2600 2660 2700 2680 40.7 49.1 48.9 49.0 49.1 3.5 Gallons MW-12-194-I	
pH Conductivity Temperature (°F)	NM NM NM Clear, colorless to slightly dark colored, some black floating particles	6.60 - APL 3400 - APL NM Clear, chemical odor, trace oily globules, floating	6.70 2620 38.8 Clear, colorless, no odor, no sheen	
Parameters:	TCL VOCs, TPH, 310.13 (no duplicate)	NAPL - TCL VOCs APL - TCL VOCs, TPH	TCL VOCs, TPH	

CRA 3967 (7) F/Rd I

Monitoring Well Number:	MW-13	MW-14	MW-15	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	10.60 Ft.	10.80 Ft.	11.20 Ft.	
Depth to Water Table (below top of casing)	2.9 Ft.	3.46 Ft.	7.53 Ft.	
Height of Water Column	7.7 Ft.	7.34 Ft.	3.67 Ft.	
Volume of Water in Well	1.23 Gallons	1.17 Gallons	0.58 Gallons	
Water Removed per Volume	1.25 Gallons	1.2 Gallons	0.60 Gallons	
<u>Purge/Sample Record</u> Purge _. Volume Number:	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	
Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (*F):	1.251.251.251.251.257.037.147.227.287.3610401040102010101000NMNMNM41.240.8	1.21.21.21.21.26.857.106.967.047.1114901530151014801460NMNM41.142.641.1	0.600.600.600.600.608.638.318.338.288.261850202020002000198044.143.844.043.742.9	
Total Purge Volume:	6.25 Gallons	6.0 Gallons	3.0 Gallons	
Sample Number:	MW-13-194-I and NYSDEC Split Sample (VOCs Only)	MW-14-194-I and Duplicate and NYSDEC Split Sample (VOCs Only)	MW-15-194-I	
Sample Description: pH Conductivity Temperature (*F)	7.28 990 NM Clear to slightly cloudy, colorless, trace sediments, no sheen, no odor, trace black floating particles	7.21 1490 42.1 Clear to slightly cloudy, colorless, H2S odor, no sheen	8.21 1980 NM Clear, slight brown color, no sheen, no odor	
Parameters:	TCL VOCs, TCL BNAs, TAL Metals, TPH	TCL VOCs, TCL BNAs, TAL Metals, TPH	TCL VOCs, TPH	

of 9

Monitoring Well Number:	MW-16	MW-2A	MW-5A	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	11.80 Ft.	29.9 Ft.	42.0 Ft.	
Depth to Water Table (below top of casing)	8.06 Ft.	10.7 Ft.	6.26 Ft.	
Height of Water Column		19.2 Ft.	35.74 Ft.	
Volume of Water in Well	0.59 Gallons	6.9 Gallons	12.9 Gallons	
Water Removed per Volume	0.60 Gallons	7.0 Gallons	13 Gallons	
Purge/Sample Record Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (*F): Total Purge Volume: Sample Number:	1 2 3 4 5 0.6 0.6 0.6 0.6 0.6 8.04 7.88 7.68 7.84 7.82 1660 1660 1700 1780 1750 48.5 48.4 48.1 49.0 NM 3.0 Gallons MW-16-194-I and MS/MSD	1 2 3 4 7.0 7.0 7.0 7.0 8.12 8.22 7.95 7.96 440 440 450 450 NM NM NM NM 28 Gallons MW-2A-194-I	1 2 3 4 5 13.0 13.0 13.0 13.0 13.0 13.0 7.09 7.05 7.28 7.60 7.65 1210 1160 1020 1020 1000 NM NM NM NM NM 65 Gallons MW-5A-194-I	
Sample Description: pH 8.08 Conductivity 1760 Temperature (*F) 43.8 Clear, colorless, sulfide odor, no sediments Parameters: TCL VOCs, TCL BNAs, TAL Metals, TPH, 310.3		7.83 460 NM Clear to slightly cloudy, light brown color, no sheen, no odor TCL VOCs, TCL BNAs, TAL Metals, TPH	7.60 990 NM Cloudy, light brown color, no sheen, no odor TCL VOCs, TCL BNAs, TAL Metals, TPH	

JANUARY 1994

Monitoring Well Number:	MW-6A	MW-13A	MW-14A	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	36.05 Ft.	45.0 Ft.	36.0 Ft.	
Depth to Water Table (below top of casing)	13.88 Ft.	8.85 Ft.	9.07 Ft.	
Height of Water Column	22.17 Ft.	36.0 Ft.	27.0 Ft.	
Volume of Water in Well	8.0 Gallons	13.0 Gallons	10 Gallons	
Water Removed per Volume	8.0 Gallons	13.0 Gallons	10 Gallons	
<i>PurgelSample Record</i> Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°F):	1 2 3 4 5 8.0 8.0 8.0 8.0 8.0 7.05 7.00 6.80 6.80 6.79 1250 1230 1240 1230 1230 NM NM NM NM NM	1 2 3 4 5 13.0 13.0 13.0 13.0 13.0 7.02 7.06 6.89 6.89 7.00 650 660 650 640 660 NM NM NM NM NM	1 2 3 4 5 10.0 10.0 10.0 10.0 10.0 6.92 7.10 7.15 6.93 7.00 740 730 730 720 710 NM NM NM NM NM	
Total Purge Volume:	40 Gallons	70 Gallons	50 Gallons	
Sample Number:	MW-6A-194-I	MW-13A-194-I and NYSDEC Split Sample (VOCs only)	MW-14A-194-I and NYSDEC Split Sample (VOCs only)	
Sample Description: pH Conductivity Temperature (°F)	6.78 1250 NM Clear, colorless, no sheen, sulfide odor	7.05 660 NM Clear to slightly cloudy, colorless to white colored, no sheen, no odor	· · · · · · · · · · · · · · ·	
Parameters:	TCL VOCs, TCL BNAs, TAL Metals, TPH	TCL VOCs, TCL BNAs, TAL Metals, TPH	TCL VOCs, TCL BNAs, TAL Metals, TPH	

of 9

Monitoring Well Number:	MW-15A	East Well	East Well
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	36.0 Ft.	178 Ft.	178 Ft.
Depth to Water Table (below top of casing)	13.6 Ft.	21.33 Ft.	21.33 Ft.
Height of Water Column	22.4 Ft.	157 Ft.	157 Ft.
Volume of Water in Well	8 Gallons	408 Gallons	408 Gallons
Water Removed per Volume	8 Gallons	0 Gallons	0 Gallons
<u>Purge/Sample Record</u> Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°F): Total Purge Volume:	1 2 3 8.0 8.0 8.0 7.14 7.16 7.20 1120 1120 1130 NM NM NM 24 Gallons 24	0 Gallons	0 Gallons
Sample Number:	MW-15A-194-I	East Well - Top	East Well - Bottom
Sample Description: pH Conductivity Temperature (°F)	7.16 1110 NM Clear, colorless, no sheen, no odor	7.60 810 NM Clear, colorless, trace sheen, slight petroleum odor	7.10 1180 NM Clear, colorless, suspended brown solids, petroleum odor, some sheen
Parameters:	TCL VOCs, TCL BNAs, TAL Metals, TPH	TCL VOCs, TAL Metals, TCL BNAs, TPH	TCL VOCs, TCL BNAs, TPH

of 9

WELL PURGING AND SAMPLE COLLECTION SUMMARY LOG GROUNDWATER ROUND I REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK JANUARY 1994

1

Notes:	
APL	Aqueous Phase Liquid.
BNAs	Base/Neutral Acid Extractable.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
LNAPL	Light Non-Aqueous Phase Liquid.
NM	Not Measured.
NYSDEC	New York State Department of Environmental Conservation.
TAL .	Target Analyte List.
TCL	Target Compound List.
ТРН	Total Petroleum Hydrocarbon.
VOCs	Volatile Organic Compound.

Monitoring Well Number:	MW-1	<i>MW-2</i>	MW-3		
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	12.27 Ft.	8.10 Ft.	10.80 Ft.		
Depth to Water Table (below top of casing)	5.30 Ft.	7.08 Ft.	5.40 Ft.		
Height of Water Column	6.97 Ft.	1.02 Ft.	5.40 Ft.		
Volume of Water in Well	1.12 Gallons	0.16 Gallons	0.86 Gallons		
Water Removed per Volume	1.1 Gallons	0.2 Gallons	0.9 Gallons		
Purge/Sample Record Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature ('C):	1 2 3 4 5 1.1 1.1 1.1 1.1 1.1 pH Meter Failed.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 0.9 1.1 1.0 1.0 1.0 7.18 7.33 NM 7.46 7.38 1430 1530 NM 1450 1430 7.1 7.5 NM 7.6 7.5 5.0 Gallons		
Total Purge Volume:	6.0 Gallons				
Sample Number:	MW-1-394-II	MW-2-394-II	MW-3-394-II		
Sample Description: pH Conductivity Temperature (°C)	NM NM NM Clear to slightly cloudy, tan color, no sheen, no odor	6.96 640 4.5 Clear to slightly cloudy, brown color, no sheen, no odor	7.91 1420 7.7 Clear, colorless, no sheen, no odor		
Parameters:	TCL VOCs	TCL VOCs	TCL VOCs		

MW-14 **MW-5** MW-13 Monitoring Well Number: Well Measurements 10.80 Ft. Well Depth (Sounded) . 10.60 Ft. 11.4 Ft. (below top of casing) 2.15 Ft. 1.85 Ft. 4.5 Ft. Depth to Water Table (below top of casing) 8.95 Ft. 8.45 Ft. Height of Water Column 6.9 Ft. 1.43 Gallons 1.35 Gallons Volume of Water in Well 1.10 Gallons 1.4 Gallons 1.4 Gallons 1.10 Gallons Water Removed per Volume Purge/Sample Record 2 3 4 5 1 2 3 5 Purge Volume Number: 1 2 3 4 1 1.4 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.1 1.1 1.1 Volume Purged (Gal.): 1.1 7.19 7.38 7.34 7.20 7.92 8.65 8.48 6.08 6.28 6.82 7.19 8.22 8.12 pH (standard units): 1908 1909 1849 380 510 777 1286 1271 1272 1321 190 240 440 Conductivity (mmho/cm): 7.7 8.4 7.9 8.1 6.8 8.2 8.4 8.7 8.0 8.2 6.4 6.7 7.8 Temperature (°C): 4.5 Gallons 7.0 Gallons **Total Purge Volume:** 5.5 Gallons MW-14-394-II MW-5-394-II MW-13-394-II Sample Number: Sample Description: 7.74 7.08 8.39 pН 1874 1460 490 Conductivity 8.5 6.8 8.0 Temperature (°C) Some suspended solids, no sheen, Clear, no odor, no sheen Brown, cloudy, no odor, no odor no sheen TCL VOCs **TCL VOCs** TCL VOCs Parameters:

2 of 6

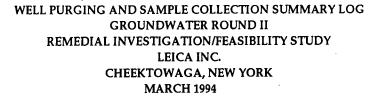
Monitoring Well Number:	MW-15	MW-16	MW-2A	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	11.20 Ft.	11.80 Ft.	29.9 Ft.	
Depth to Water Table (below top of casing)	3.66 Ft.	5.93 Ft.	7.2 Ft.	
Height of Water Column	7.54 Ft.	5.87 Ft.	22.7 Ft.	
Volume of Water in Well	1.21 Gallons	0.94 Gallons	8.2 Gallons	
Water Removed per Volume	1.2 Gallons	1.0 Gallons	8 Gallons	
<u>Purge/Sample Record</u> Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°C): Total Purge Volume:	1 2 3 4 5 1.2 1.2 1.2 1.2 1.2 1.2 5.53 6.60 7.50 7.83 8.11 230 210 410 460 290 6.8 7.8 8.1 7.9 8.9	1 2 3 4 5 pH Meter Failed. 5.0 Gallons	1 2 3 8.0 8.0 8.0 6.75 6.80 6.93 590 620 620 5.7 5.6 5.6 24 Gallons 24 Gallons	
2	MW-15-394-II and MS/MSD	MW-16-394-II	MW-2A-394-II	
Sample Number: Sample Description: PH Conductivity Temperature (°C)	8.60 220 10.0 Slightly cloudy, brown, no sheen, no odor	NM NM NM Slightly cloudy, gray, trace dark floating particles, trace sheen, chemical odor	7.02 630 5.2 Clear to slightly cloudy, colorless, no sheen, no odor	
Parameters:	TCL VOCs TCL VOCs		TCL VOCs	

MW-5A Monitoring Well Number: MW-6A **MW-13A** Well Measurements Well Depth (Sounded) 42.0 Ft. 36.05 Ft. 45.0 Ft. (below top of casing) Depth to Water Table 4.46 Ft. 9.68 Ft. 4.95 Ft. (below top of casing) Height of Water Column 37.54 Ft. 26.37 Ft. 39.05 Ft. Volume of Water in Well 13.9 Gallons 12.0 Gallons 17.0 Gallons Water Removed per Volume 14.0 Gallons 12.0 Gallons 17.0 Gallons Purge/Sample Record Purge Volume Number: 2 3 4 5 2 3 4 5 6 7 2 3 4 5 1 1 Volume Purged (Gal.): 14.0 14.0 14.0 14.0 14.0 20 20 20 20 20 20 20 17.0 17.0 17.0 17.0 17.0 6.88 7.42 7.48 NM 7.36 pH (standard units): 6.61 NM NM NM 6.23 6.63 6.70 6.73 6.49 6.75 7.03 7.65 1565 2050 1109 1118 Conductivity (mmho/cm): 987 1110 1190 1450 NM NM NM 2120 2060 2040 1140 1107 1170 11.9 12.7 11.0 11.6 11.3 NM NM NM 13.5 13.5 13.5 13.5 11.9 13.6 Temperature (°C): 11.2 13.4 14.2 **Total Purge Volume:** 70 Gallons 150 Gallons 85 Gallons Sample Number: MW-5A-394-II MW-6A-394-II MW-13A-394-II Sample Description: NM 6.21 7.79 pН 1970 1120 NM · Conductivity NM 12.8 10.3 Temperature (°C) Clear, slightly dark color, Slightly cloudy, some suspended Cloudy, light brown, no sheen, no odor some sulfide odor solids, no sheen, sulfide odor

TCL VOCs

TCL VOCs

TCL VOCs


CRA 3967 (7) APPF/Rd II

Parameters:

Monitoring Well Number:	Aonitoring Well Number: MW-14A			
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	36.0 Ft.	36.0 Ft.		
Depth to Water Table (below tcp of casing)	5.07 Ft. 7.93 Ft.			
Height of Water Column	30.93 Ft.	28.07 Ft.		
Volume of Water in Well	11.44 Gallons	11.5 Gallons		
Water Removed per Volume	12.0 Gallons	12 Gallons		
<u>Purge/Sample Record</u> Purge Volume Number:	1 2 3	1 2 3 4 5		
Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°C):	11.511.5127.547.767.6312321248139010.410.610.3	2020202020-5.606.176.706.85-3040302030302980-12.312.512.712.2		
Total Purge Volume:	35 Gallons	100 Gallons		
Sample Number:	MW-14A-394-II	MW-15A-394-II and MS/MSD		
Sample Description: pH Conductivity Temperature (°C)	7.63 1390 10.3 Clear, sulfide odor, no sheen	6.78 2890 12.4 Clear, slight brown color, no sheen, sulfide odor		
Parameters:	TCL VOCs	TCL VOCs		

CRA 3967 (7) PF/Rd II

Notes: MS/MSD NM NYSDEC TCL VOC

Matrix Spike/Matrix Spike Duplicate. Not Measured. New York State Department of Environmental Conservation. Target Compound List. Volatile Organic Compound.

.

Monitoring Well Number:	MW-18	MW-19	MW-20	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	13.40 Ft.	13.90 Ft.	12.20 Ft.	
Depth to Water Table (below top of casing)	11.20 Ft.	7.38 Ft.	3.52 Ft.	
Height of Water Column	2.20 Ft.	6.52 Ft.	8.68 Ft.	
Volume of Water in Well	0.35 Gallons	1.04 Gallons	1.39 Gallons	
Water Removed per Volume	0.35 Gallons	1.0 Gallons	1.4 Gallons	
Purge/Sample Record Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°C): Total Purge Volume: Sample Number:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 3 4 5 1.4 1.4 1.4 1.4 1.4 1.4 6.89 7.05 7.05 7.19 7.15 1210 1180 1210 1220 1220 9.2 9.2 9.4 9.4 9.6 7.0 Gallons MW-20-494-III and Duplicate NYSDEC Split Sample	
Sample Description: pH Conductivity Temperature (°C)	6.21 1340 №M Slightly cloudy, no sheen, no odor	7.30 1520 12.0 Slightly cloudy, no sheen, no odor	7.21 1170 9.3 Clear to very slightly cloudy, no sheen, no odor	
Parameters:	TCL VOCs	TCL VOCs	TCL VOCs	

2 of 4

WELL PURGING AND SAMPLE COLLECTION SUMMARY LOG GROUNDWATER ROUND III REMEDIAL INVESTIGATION/FEASIBILITY STUDY LEICA INC. CHEEKTOWAGA, NEW YORK APRIL 1994

Monitoring Well Number:	MW-21		MW-22	MW-23
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	12.7 Ft.		10.50 Ft.	13.5 Ft.
Depth to Water Table (below top of casing)	6.96 Ft.		2.40 Ft.	3.1 Ft.
Height of Water Column	5.74 Ft.		8.10 Ft.	10.4 Ft.
Volume of Water in Well	0.92 Gallons		1.30 Gallons	1.6 Gallons
Water Removed per Volume	1.0 Gallons		1.30 Gallons	1.6 Gallons
Purge/Sample RecordPurge Volume Number:Volume Purged (Gal.):pH (standard units):Conductivity (mmho/cm):Temperature (°C):Total Purge Volume:Sample Number:Sample Description:	1 2 3 4 1.0 1.0 1.0 1.0 6.93 7.08 7.20 7.27 1480 1750 1690 1770 9.6 9.4 10.2 10.1 4.0 Gallons MW-21-494-III and NYSDEC Split Sample		1 2 3 4 5 1.3 1.3 1.3 1.3 1.3 7.31 7.16 7.19 7.40 7.34 1570 1580 1520 550 1530 8.2 7.8 8.3 8.0 8.0 6.5 Gallons MW-22-494-III and NYSDEC Split Sample	1 2 3 4 5 1.6 1.6 1.6 1.6 1.6 7.48 7.27 7.24 7.56 7.35 1210 1180 1190 1180 7.9 8.0 8.1 8.0 8.0 8.0 Gallons MW-23-494-III and NYSDEC Split Sample
pH Conductivity Temperature (°C) Parameters:	7.26 1790 10.6 Slightly cloudy, light brown color, no sheen, no odor TCL VOCs		7.20 1450 8.4 Clear to slightly cloudy, no odor, no sheen TCL VOCs	7.34 1080 8.20 Clear, colorless, no sheen, no odor TCL VOCs

CRA 3967 (7) APPF/Rd III

.

Monitoring Well Number:	MW-1A	MW-16A	MW-17A	
<u>Well Measurements</u> Well Depth (Sounded) (below top of casing)	39.4 Ft.	40.0 Ft.	40.0 Ft.	
Depth to Water Table (below top of casing)	13.4 Ft.	10.0 Ft.	2.6 Ft.	
Height of Water Column	26.0 Ft.	30.0 Ft.	37.4 Ft.	
Volume of Water in Well	8.9 Gallons	45.0 Gallons	17.0 Gallons	
Water Removed per Volume	9.0 Gallons	45.0 Gallons	17.0 Gallons	
<i>PurgelSample Record</i> Purge Volume Number: Volume Purged (Gal.): pH (standard units): Conductivity (mmho/cm): Temperature (°C):	1 2 3 4 5 9.0 9.0 9.0 9.0 9.0 NM NM NM NM NM 1925 1186 1213 1268 1240 12.6 13.3 13.1 13.4 13.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 17.0 17.0 17.0 17.0 17.0 7.24 7.37 7.02 NM 6.93 1105 1098 1086 1116 1118 11.6 12.1 12.8 13.4 13.5	
Total Purge Volume:	45 Gallons	250 Gallons	85 Gallons	
Sample Number:	MW-1A-494-III	MW-16A-494-III	MW-17A-494-111	
		6.47 2050 12.9 Odor, sheen, gray color, slightly cloudy	6.94 1118 13.3 Clear, no sheen, no odor	
Parameters:	TCL VOCs	TCL VOCs	TCL VOCs	

Notes: MS/MSD NM NYSDEC TAL VOC

Matrix Spike/Matrix Spike Duplicate. Not Measured. New York State Department of Environmental Conservation. Target Analyte List. Volatile Organic Compound. •

.

.

.

APPENDIX G

RISK CALCULATION TABLES

· · ·

3967 (7)

TABLE: 1

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

EXPOSURE SCENARIO : CEMETARY WORKER SITE : LEICA SITE

SECTOR : SECTOR A SOIL

LOCATION : ON-SITE

E	QUATION : INTAKE (mg/kg-day) =_	CSxC	Fx SA x AF x MF x	AB5 X EF X ED		CS x IR x ABS x CF x EF x E	
			AT x BW		+	AT x BW	x PTF
where :		,					
	Concentration in Soil (mg/kg)						
	Rate (mg soil/day)		•				
-	ace Area Available for Contact (cm2/e	vent)					
CF = Conversi	on Factor (10E-06 kg/mg)	-					
	Frequency (days/years)						· .
ED = Exposure	Duration (years)			•			•
BW = Body We	eight (kg)						
AT = Averagir	ng Time (period over which exposure is	averaged -	days)				•
	in Adherence Factor (mg/cm2)						
ABS = Absorp	tion Factor (unitless)	•		•			
	actor; part of chemical on soil that is in			·	•		
PTF = Percent	of Time Factor: Percent of time in conta	minated area	a. (%/100)				
·.							
VARIABLE	,	MEAN	RME	REFERENCE	s		
CS (mg/kg)		MEAN	95% UCL	RAGS (1,2)			
IR - ADULT (n	ng/exposure)	50	50	RAGS (1,2)			•
0 DITT.	a :		50 20				
SA - ADULT (cm2)	5300	5300	DEAP (3)			
CF (kg/mg)		0.000001	0.000001	RAGS (1,2)	•		
		0.00001	0.00001	KAG5 (1,2)			
	· ·	5	20	PROFESSION	NAL JUDGEM	ENT	
							•
ED - ADULT (CARCINOGEN) (yrs)	10	25 .	RAGS (1,2)		· .	
ED (NON-CA	RCINOGEN) (yrs)	1	1	RAGS (1,2)			
-						•	
BW - ADULT	(kg)	70	70 .	RAGS (1,2)			

			()
AT (CARCINOGEN) (yrs x days /yr)	25550	25550	RAGS (1,2)
AT (NON - CARCINOGEN) (yrs x days /yr)	365	365	RAGS (1,2)
AF (mg/cm2)	0.2	1	DEAP (3)
MF ABS ORAL (CHEMICAL SPECIFIC) DERMAL (CHEMICAL SPECIFIC)	0.15	0.15	HAWLEY (4)
PTF	1	1	PROFESSIONAL JUDGEMENT

NOTE :

(1) EPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND MANUAL, DECEMBER 1989, EPA/540/1-89/002.
 (2) SUPPLEMENTAL GUIDANCE: "STANDARD DEFAULT EXPOSRE FACTORS", OSWER DIRECTIVE: 9285.6-03, MARCH 25, 1991.
 (3) EPA DERMAL EXPOSURE ASSESSMENT: PRINCIPLES AND APPLICATIONS, EPA/600/8-89/011B, JANUARY 1992.
 (4) HAWLEY, J.K., "ASSESSMENT OF HEALTH RISK FROM EXPOSURE TO CONTAMINATED SOIL", RISK ANALYSIS, VOL 5 NO.4, 1985.

TABLE: 2

MEDIA CONCENTRATIONS/CONSTANTS

EXPOSURE SCENARIO : CEMETARY WORKER SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

PARAMETER VOCs ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL) ETHYLBENZENE	MEDIA CONO MEAN mg/kg 1.36E-02 6.27E-03 7.09E-03	CENTRATION RME mg/kg 2.50E-02	N ORAL CSF 1/(mg/kg/d)	ORAL RfD mg/kg/d	OR BIOAVAIL MEAN	RME		MAL FACTOR RME
VOCs ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	MEAN mg/kg 1.36E-02 6.27E-03	RME mg/kg	ORAL CSF	RſD	MEAN	RME		
VOCs ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	mg/kg 1.36E-02 6.27E-03	mg/kg	CSF	RſD			MEAN	RME
VOCs ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	mg/kg 1.36E-02 6.27E-03	mg/kg						
ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	1.36E-02 6.27E-03				%/100	%/100	%/100	%/100
ACETONE BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	6.27E-03	2.50E-02						
BROMOMETHANE 2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	6.27E-03	2.50E-02				•		
2-BUTANONE CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)			NA	1.00E-01	1	1	0.25	0.25
CARBON DISULFIDE 1,2-DICHLOROETHENE (TOTAL)	7.09E-03	3.00E-03	NA	1.40E-03	1	1	0.25	0.25
1,2-DICHLOROETHENE (TOTAL)		9.00E-03	NA	6.00E-01	1	1	0.25	0.25
	6.09E-03	2.00E-03	NA	1.00E-01	1	1	0.25	0.25
ETLIVI RENIZENIE	3.95E-02	7.91E-02	NA	9.00E-03	1	1	0.25	0.25
•	1.01E-02	1.75E-02	NA	1.00E-01	1	1	0.25	0.25
2-HEXANONE	6.82E-03	6.00E-03	NA	NA	1	1	0.25	0.25
METHYLENE CHLORIDE	6.23E-03	2.00E-03	7.50E-03	6.00E-02	1	1	0.25	0.25
TOLUENE	9.36E-03	1.63E-02	NA	2.00E-01	1	1	0.25	0.25
TRICHLOROETHENE	1.92E-02	4.83E-02	NA	NA	1	1	0.25	0.25
VINYL CHLORIDE	1.01E-02	1.75E-02	1.90E+00	NA	1	1	0.25	0.25
XYLENES (TOTAL)	2.35E-02	6.07E-02	NA	2.00E+00	1	1	0.25	0.25
SVOCs								
ACENAPHTHENE	2.94E-01	5.60E-01	NA	6.00E-02	1	1	0.1	0.1
ACENAPHTHYLENE	2.36E-01	3.30E-01	NA	NA	1	1	0.1	0.1
ANTHRACENE	5.29E-01	1.50E+00	NA	3.00E-01	1	1	0.1	0.1
BENZO (a) ANTHRACENE	2.25E+00	8.40E+00	7.30E-01	NA	1	1	0.1	0.1
BENZO (b) FLUORANTHENE	6.15E+00	2.40E+01	7.30E-01	NA	1	1	0.1	0.1
BENZO (k) FLUORANTHENE	2.90E+00	1.10E+01	7.30E-02	NA	1	1	0.1	0.1
BENZO (g.h.i) PERYLENE	1.25E+00	4.40E+00	NA	NA	1	1	0.1	0.1
BENZO (a) PYRENE	3.15E+00	1.20E+01	7.30E+00	NA	1	1	0.1	0.1
BIS (2-ETHYLHEXYL) PHTHALATE	2.13E+00	7.70E+00	1.40E-02	2.00E-02	1	1	0.1	0.1
BUTYL BENZYL PHTHALATE	3.04E-01	6.00E-01	NA	2.00E-01	1	1	0.1	0.1
CARBAZOLE	1.45E+00	5.20E+00	2.00E-02	NA	1	1	0.1	0.1
CHRYSENE	2.18E+00	8.10E+00	7.30E-03	NA	1	1	0.1	0.1
DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	7.30E+00	NA	1	1	0.1	0.1
DIBENZOFURAN	4.54E-01	1.20E+00	NA	NA	1	1	0.1	0.1
DI-n-BUTYL PHTHALA'IE	2.34E-01	3.20E-01	NA	1.00E-01	1	1	0.1	0.1
FLUORANTHENE	6.36E+00	2.50E+01	NA	4.00E-02	1	1	0.1	0.1
FLUORENE	3.19E-01	6.60E-01	NA	4.00E-02	1	1	0.1	0.1
INDENO (1,2,3-cd) PYRENE	1.33E+00	4.70E+00	7.30E-01	NA	1	1	0.1	0.1
2-METHYLNAPHTHALENE	1.03E+00	3.50E+00	NA	NA	1	1	0.1	0.1
NAPHTHALENE	8.29E-01	2.70E+00	NA	NA	1	1	0.1	0.1
PHENANTHRENE	3.40E+00	1.30E+01	NA	NA	1	1	0.1	0.1
PYRENE	4.60E+00	1.80E+01	NA	3.00E-02	1	1	0.1	0.1
METALS ALUMINUM	1.38E+04	1.81E+04	NA	NA	1	1	0.01	0.01
ARSENIC	1.58E+01	4.28E+01	1.75E+00	3.00E-04	1	1	0.01	0.01
BARIUM	2.16E+02	4.03E+02	NA	7.00E-02	1	1	0.01	0.01
BERYLLIUM	4.48E-01	7.17E-01	4.30E+00	5.00E-03	1	1	0.01	0.01
CADMIUM	2.14E+00	4.46E+00	NA	5.00E-04	1	1	0.01	0.01
CALCIUM	3.76E+04	6.21E+04	NA	NA	1	1	0.01	0.01
CHROMIUM	2.97E+01	5.09E+01	NA	NA.	1	1	0.01	0.01
COBALT	9.86E+00	1.31E+01	NA	NA	1	1	0.01	0.01
COPPER	4.84E+01	1.16E+02	NA	3.70E-02	1	1	0.01	0.01
IRON	2.20E+04	2.88E+04	NA	NA	1	1	0.01	0.01
LEAD	2.57E+02	7.18E+02	NA	1.40E-03	1	1	0.01	0.01
MAGNESIUM	1.41E+04	2.09E+04	NA	NA	1	1	0.01	0.01
MANGANESE	5.23E+02	7.37E+02	NA	5.00E-03	1	1	0.01	0.01
MERCURY	1.94E-01	4.69E-01	NA	NA	1	1	0.01	0.01
NICKEL	3.10E+01	4.89E-01 5.33E+01	NA	2.00E-02	1	·1	0.01	0.01
POTASSIUM	2.03E+03	2.59E+01	NA	2.00E-02 NA	1	1	0.01	0.01
SELENIUM	3.40E-01	2.39E+03 8.19E-01	NA	5.00E-03	1	1	0.01	0.01
SODIUM	1.56E+02	2.53E+02	NA	5.00E-05 NA	1	1	0.01	0.01
	2.57E-01	2.55E+02 3.83E-01	NA	7.00E-05	1	1	0.01	0.01
THALLIUM VANADIUM	3.01E+01	4.29E+01	NA	7.00E-03	1	1	0.01	0.01
ZINC	2.55E+02	4.29E+01 6.16E+02	NA	3.00E-01	1	1	0.01	0.01

TABLE: 3

EXPOSURE, RISK AND HAZARD CALCULATIONS

EXPOSURE SCENARIO : CEMETARY WORKER SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

	DAILY	LIFETIME AVERAGE DAILY INTAKE (mg/kg/day)		LIFETIME UPPER BOUND EXCESS CANCER RISK		ANNUAL AVERAGE DAILY INTAKE (mg/kg/day)		QUOTIENT /RfD
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
VOCs								
ACETONE	3.41E-11	1.74E-09	0.00E+00	0.00E+00	2.39E-10	4.87E-09	2.39E-09	4.87E-08
BROMOMETHANE	1.57E-11	2.09E-10	0.00E+00	0.00E+00	1.10E-10	5.84E-10	7.87E-08	4.17E-07
2-BUTANONE	1.78E-11	6.26E-10	0.00E+00	0.00E+00	1.25E-10	1.75E-09	2.08E-10	2.92E-09
CARBON DISULFIDE	1.53E-11	1.39E-10	0.00E+00	0.00E+00	1.07E-10	3.89E-10	1.07E-09	3.89E-09
1,2-DICHLOROETHENE (TOTAL)	9.91E-11	5.50E-09	0.00E+00	0.00E+00	6.94E-10	1.54E-08	7.71E-08	1.71E-06
ETHYLBENZENE	2.53E-11	1.22E-09	0.00E+00	0.00E+00	1.77E-10	3.41E-09	1.77E-09	3.41E-08
2-HEXANONE	1.71E-11	4.17E-10	0.00E+00	0.00E+00	1.20E-10	1.17E-09	0.00E+00	0.00E+00
METHYLENE CHLORIDE	1.56E-11	1.39E-10	1.17E-13	1.04E-12	1.09E-10	3.89E-10	1.82E-09	6.49E-09
TOLUENE	2.35E-11	1.13E-09	0.00E+00	0.00E+00	1.64E-10	3.17E-09	8.22E-10	1.59E-08
TRICHLOROETHENE	4.82E-11	3.36E-09	0.00E+00	0.00E+00	3.37E-10	9.40E-09	0.00E+00	0.00E+00
VINYL CHLORIDE	2.53E-11	1.22E-09	4.81E-11	2.31E-09	1.77E-10	3.41E-09	0.00E+00	0.00E+00
XYLENES (TOTAL)	5.90E-11	4.22E-09	0.00E+00	0.00E+00	4.13E-10	1.18E-08	2.06E-10	5.91E-09
SVOCs								
ACENAPHTHENE	5.42E-10	2.03E-08	0.00E+00	0.00E+00	3.79E-09	5.68E-08	6.32E-08	9.46E-07
ACENAPHTHYLENE	4.35E-10	1.19E-08	0.00E+00	0.00E+00	3.04E-09	3.35E-08	0.00E+00	0.00E+00
ANTHRACENE	9.75E-10	5.43E-08	0.00E+00	0.00E+00	6.82E-09	1.52E-07	2.27E-08	5.07E-07
BENZO (a) ANTHRACENE	4.15E-09	3.04E-07	3.03E-09	2.22E-07	2.90E-08	8.52E-07	0.00E+00	0.00E+00
BENZO (b) FLUORANTHENE	1.13E-08	8.69E-07	8.27E-09	6.34E-07	7.93E-08	2.43E-06	0.00E+00	0.00E+00
BENZO (k) FLUORANTHENE	5.34E-09	3.98E-07	3.90E-10	2.91E-08	3.74E-08	1.12E-06	0.00E+00	0.00E+00
BENZO (g.h.i) PERYLENE	2.30E-09	1.59E-07	0.00E+00	0.00E+00	1.61E-08	4.46E-07	0.00E+00	0.00E+00
BENZO (a) PYRENE	5.80E-09	4.34E-07	4.24E-08	3.17E-06	4.06E-08	1.22E-06	0.00E+00	0.00E+00
BIS (2-ETHYLHEXYL) PHTHALATE	3.92E-09	2.79E-07	5.49E-11	3.90E-09	2.75E-08	7.81E-07	1.37E-06	3.90E-05
UTYL BENZYL PHTHALATE	5.60E-10	2.17E-08	0.00E+00	0.00E+00	3.92E-09	6.08E-08	1.96E-08	3.04E-07
CARBAZOLE	2.67E-09	1.88E-07	5.34E-11	3.77E-09	1.87E-08	5.27E-07	0.00E+00	0.00E+00
CHRYSENE DIRENIZO (2 K) ANIT IT A CENT	4.02E-09	2.93E-07	2.93E-11	2.14E-09	2.81E-08	8.21E-07	0.00E+00	0.00E+00
DIBENZO (a,h) ANTHRACENE DIBENZOFURAN	1.25E-09	7.60E-08	9.13E-09	5.55E-07	8.76E-09	2.13E-07	0.00E+00	0.00E+00
DIBENZOFORAN DI-n-BUTYL PHTHALATE	8.36E-10	4.34E-08	0.00E+00	0.00E+00	5.85E-09	1.22E-07	0.00E+00	0.00E+00
FLUORANTHENE	4.31E-10	1.16E-08	0.00E+00	0.00E+00	3.02E-09	3.24E-08	3.02E-08	3.24E-07
FLUORENE	1.17E-08 5.88E-10	9.05E-07	0.00E+00	0.00E+00	8.20E-08	2.53E-06	2.05E-06	6.34E-05
INDENO (1,2,3-cd) PYRENE		2.39E-08	0.00E+00	0.00E+00	4.11E-09	6.69E-08	1.03E-07	1.67E-06
2-METHYLNAPHTHALENE	2.45E-09 1.90E-09	1.70E-07 1.27E-07	1.79E-09 0.00E+00	1.24E-07	1.72E-08	4.76E-07	0.00E+00	0.00E+00
NAPHTHALENE	1.53E-09	9.77E-08	0.00E+00	0.00E+00 0.00E+00	1.33E-08 1.07E-08	3.55E-07 2.74E-07	0.00E+00 0.00E+00	0.00E+00
PHENANTHRENE	6.26E-09	4.71E-07	0.00E+00	0.00E+00	4.38E-08	1.32E-06	0.00E+00 0.00E+00	0.00E+00 0.00E+00
PYRENE	8.47E-09	6.52E-07	0.00E+00	0.00E+00	5.93E-08	1.82E-06	1.98E-06	6.08E-05
METALS								
ALUMINUM	1.99E-05	2.93E-04	0.00E+00	0.00E+00	1.39E-04	8.21E-04	0.00E+00	0.00E+00
ARSENIC	2.28E-08	6.93E-07	3.99E-08	1.21E-06	1.60E-07	1.94E-06	5.32E-04	6.47E-03
BARIUM	3.12E-07	6.53E-06	0.00E+00.	0.00E+00	2.18E-06	1.83E-05	3.12E-05	2.61E-04
BERYLLIUM	6.46E-10	1.16E-08	2.78E-09	4.99E-08	4.52E-09	3.25E-08	9.05E-07	6.50E-06
CADMIUM	3.09E-09	7.23E-08	0.00E+00	0.00E+00	2.16E-08	2.02E-07	4.32E-05	4.05E-04
CALCIUM	5.42E-05	1.01E-03	0.00E+00	0.00E+00	3.80E-04	2.82E-03	0.00E+00	0.00E+00
CHROMIUM	4.28E-08	8.25E-07	0.00E+00	0.00E+00	3.00E-07	2.31E-06	0.00E+00	0.00E+00
COBALT	1.42E-08	2.12E-07	0.00E+00	0.00E+00	9.95E-08	5.94E-07	0.00E+00	0.00E+00
COPPER	6.98E-08	1.88E-06	0.00E+00	0.00E+00	4.89E-07	5.26E-06	1.32E-05	1.42E-04
IRON	3.17E-05	4.67E-04	0.00E+00	0.00E+00	2.22E-04	1.31E-03	0.00E+00	0.00E+00
LEAD	3.71E-07	1.16E-05	0.00E+00	0.00E+00	2.59E-06	3.26E-05	1.85E-03	2.33E-02
MAGNESIUM	2.03E-05	3.39E-04	0.00E+00	0.00E+00	1.42E-04	9.48E-04	0.00E+00	0.00E+00
MANGANESE	7.54E-07	1.19E-05	0.00E+00	0.00E+00	5.28E-06	3.34E-05	1.06E-03	6.69E-03
MERCURY	2.80E-10	7.60E-09	0.00E+00	0.00E+00	1.96E-09	2.13E-08	0.00E+00	0.00E+00
NICKEL	4.47E-08	8.63E-07	0.00E+00	0.00E+00	3.13E-07	2.42E-06	1.56E-05	1.21E-04
POTASSIUM	2.93E-06	4.20E-05	0.00E+00	0.00E+00	2.05E-05	1.17E-04	0.00E+00	0.00E+00
SELENIUM	4.90E-10	1.33E-08	0.00E+00	0.00E+00	3.43E-09	3.72E-08	6.87E-07	7.43E-06
SODIUM	2.25E-07	4.10E-06	0.00E+00	0.00E+00	1.57E-06	1.15E-05	0.00E+00	0.00E+00
HALLIUM	3.71E-10	6.20E-09	0.00E+00	0.00E+00	2.59E-09	1.74E-08	3.71E-05	2.48E-04
ANADIUM	4.34E-08	6.95E-07	·0.00E+00	0.00E+00	3.04E-07	1.95E-06	4.34E-05	2.78E-04
ZINC	3.68E-07	9.98E-06	0.00E+00	0.00E+00	2.57E-06	2.79E-05	8.58E-06	9.31E-05
	TOTAL ADD	ITIONAL ES	STIMATED CA		:		HAZARDI	
			1.08E-07	6.01E-06			3.64E-03	3.82E-02

CRA 3%7(7)

SUMMARY TABLE

EXPOSURE SCENARIO : CEMETARY WORKER SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

	LIFETIME UPPER BOUND HAZARD QUOTIENT								
	MEDIA CON		EXCESS CA	NCER RISK	CDI,	(RfD			
·	MEAN	RME							
PARAMETER	mg/kg	mg/kg	MEAN	RME	MEAN	RME			
VOCs									
ACETONE	1.36E-02	2.50E-02	0.00E+00	0.00E+00	2.39E-09	4.87E-08			
BROMOMETHANE	6.27E-03	3.00E-03	0.00E+00	0.00E+00	7.87E-08	4.17E-07			
2-BUTANONE	7.09E-03	9.00E-03	0.00E+00	0.00E+00	2.08E-10	2.92E-09			
CARBON DISULFIDE	6.09E-03	2.00E-03	0.00E+00	0.00E+00	1.07E-09	3.89E-09			
1,2-DICHLOROETHENE (TOTAL)	3.95E-02	7.91E-02	0.00E+00	0.00E+00	7.71E-08	1.71E-06			
ETHYLBENZENE	1.01E-02	1.75E-02	0.00E+00	0.00E+00	1.77E-09	3.41E-08			
2-HEXANONE	6.82E-03	6.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
METHYLENE CHLORIDE	6.23E-03	2.00E-03	1.17E-13	1.04E-12	1.82E-09	6.49E-09			
TOLUENE	9.36E-03	1.63E-02	0.00E+00	0.00E+00	8.22E-10	1.59E-08			
TRICHLOROETHENE	1.92E-02	4.83E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
VINYL CHLORIDE	1.01E-02	1.75E-02	4.81E-11	2.31E-09	0.00E+00	0.00E+00			
XYLENES (TOTAL)	2.35E-02	6.07E-02	0.00E+00	0.00E+00	2.06E-10	5.91E-09			
SV00-									
SVOCs ACENAPHTHENE	2.94E-01	5.60E-01	0.005.00	0.000.00	6 335 00	0.465.07			
ACENAPHTHYLENE			0.00E+00	0.00E+00	6.32E-08	9.46E-07			
ACENAPHIHILENE	2.36E-01	3.30E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	5.29E-01	1.50E+00	0.00E+00	0.00E+00	2.27E-08	5.07E-07			
BENZO (a) ANTHRACENE	2.25E+00	8.40E+00	3.03E-09	2.22E-07	0.00E+00	0.00E+00			
BENZO (b) FLUORANTHENE BENZO (k) FLUORANTHENE	6.15E+00	2.40E+01	8.27E-09	6.34E-07	0.00E+00	0.00E+00			
	2.90E+00	1.10E+01	3.90E-10	2.91E-08	0.00E+00	0.00E+00			
BENZO (g.h.i) PERYLENE	1.25E+00	4.40E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
BENZO (a) PYRENE	3.15E+00	1.20E+01	4.24E-08	3.17E-06	0.00E+00	0.00E+00			
BIS (2-ETHYLHEXYL) PHTHALATE	2.13E+00	7.70E+00	5.49E-11	3.90E-09	1.37E-06	3.90E-05			
BUTYL BENZYL PHTHALATE	3.04E-01	6.00E-01	0.00E+00	0.00E+00	1.96E-08	3.04E-07			
CARBAZOLE	1.45E+00	5.20E+00	5.34E-11	3.77E-09	0.00E+00	0.00E+00			
CHRYSENE	2.18E+00	8.10E+00	2.93E-11	2.14E-09	0.00E+00	0.00E+00			
DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	9.13E-09	5.55E-07	0.00E+00	0.00E+00			
DIBENZOFURAN	4.54E-01	1.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
DI-n-BUTYL PHTHALATE	2.34E-01	3.20E-01	. 0.00E+00	0.00E+00	3.02E-08	3.24E-07			
FLUORANTHENE	6.36E+00	2.50E+01	0.00E+00	0.00E+00	2.05E-06	6.34E-05			
FLUORENE	3.19E-01	6.60E-01	0.00E+00	0.00E+00	1.03E-07	1.67E-06			
INDENO (1,2,3-cd) PYRENE	1.33E+00	4.70E+00	1.79E-09	1.24E-07	0.00E+00	0.00E+00			
2-METHYLNAPHTHALENE	1.03E+00	3.50E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
NAPHTHALENE	8.29E-01	2.70E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PHENANTHRENE PYRENE	3.40E+00	1.30E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
FIRENE	4.60E+00	1.80E+01	0.00E+00	0.00E+00	1.98E-06	6.08E-05			
METALS									
ALUMINUM	1.38E+04	1.81E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
ARSENIC	1.58E+01	4.28E+01	3.99E-08	1.21E-06	5.32E-04	6.47E-03			
BARTUM	2.16E+02	4.03E+02	0.00E+00	0.00E+00	3.12E-05	2.61E-04			
BERYLLIUM	4.48E-01	7.17E-01	2.78E-09	4.99E-08	9.05E-07	6.50E-06			
CADMIUM	2.14E+00	4.46E+00	0.00E+00	0.00E+00	4.32E-05	4.05E-04			
CALCIUM	3.76E+04	6.21E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CHROMIUM	2.97E+01	5.09E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
COBALT	9.86E+00	1.31E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
COPPER	4.84E+01	1.16E+02	0.00E+00	0.00E+00	1.32E-05	1.42E-04			
IRON	2.20E+04	2.88E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
LEAD	2.57E+02	7.18E+02	0.00E+00	0.00E+00	1.85E-03	2.33E-02			
MAGNESIUM	1.41E+04	2.09E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
MANGANESE	5.23E+02	7.37E+02	0.00E+00	0.00E+00	1.06E-03	6.69E-03			
MERCURY	1.94E-01	4.69E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
NICKEL	3.10E+01	5.33E+01	0.00E+00	0.00E+00	1.56E-05	1.21E-04			
POTASSIUM	2.03E+03	2.59E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
SELENIUM	3.40E-01	8.19E-01	0.00E+00	0.00E+00	6.87E-07	7.43E-06			
SODIUM	1.56E+02	2.53E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
THALLIUM	2.57E-01	3.83E-01	0.00E+00	0.00E+00	3.71E-05	2.48E-04			
VANADIUM	3.01E+01	4.29E+01	0.00E+00	0.00E+00	4.34E-05	2.78E-04			
ZINC	2.55E+02	6.16E+02	0.00E+00	0.00E+00	8.58E-06	9.31E-05			
			TIMATED CA						
			1.08E-07	6.01E-06	3.64E-03	3.82E-02			
						0.022 V2			

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

EXPOSURE SCENARIO : TRESPASSER SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

CS x CF x SA x AF x MF x ABS x EF x ED AT x BW		CS x IR x ABS x CF x EF x	ED
AT x BW			
	+	AT x BW	x PTF
nt)			
		•	
veraged – days)			
		•	
ntact with skin (%/100)		•	
inated area. (%/100)			
	nt) veraged – days) ntact with skin (%/100) inated area. (%/100)	veraged – days) ntact with skin (%/100)	veraged — days) ntact with skin (%/100)

			•
VARIABLE	MEAN	RME	REFERENCES
CS (mg/kg)	MEAN	95% UCL	RACS (1.2)
IR - CHILD (mg/exposure)	200	200	RAGS (1,2)
SA - CHILD (cm2)	1325	1325	DEAP (3)
CF (kg/mg)	0.000001	0.000001	RAGS (1.2)
EF (days/year)	24	48	PROFESSIONAL JUDGEMENT
ED - CHILD (CARCINOGEN) (yrs)	5	5	RAGS (1.2)
ED (NON-CARCINOGEN) (yrs)	1	1	RAGS (1,2)
BW - CHILD (kg)	16	16	RAGS (1.2)
AT (CARCINOGEN) (yrs x days /yr)	25550	25550	RAGS (1.2)
AT (NON - CARCINOGEN) (yrs x days /yr)	365	365	RAGS (1,2)
AF (mg/cm2)	0.2	- 1	DEAP (3)
MF	0.15	0.15	HAWLEY (4)
ABS ORAL (CHEMICAL SPECIFIC)			
DERMAL (CHEMICAL SPECIFIC) PTF	1	1	PROFESSIONAL JUDGEMENT
r ir	1	. .	TROPESIONAL JODGEWENT

NOTE :

(1) EPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND MANUAL, DECEMBER 1989, EPA/540/1-89/002.
 (2) SUPPLEMENTAL GUIDANCE: "STANDARD DEFAULT EXPOSRE FACTORS", OSWER DIRECTIVE: 9285.6-03, MARCH 25, 1991.
 (3) EPA DERMAL EXPOSURE ASSESSMENT: PRINCIPLES AND APPLICATIONS, EPA/600/8-89/011B, JANUARY 1992.
 (4) HAWLEY, J.K., "ASSESSMENT OF HEALTH RISK FROM EXPOSURE TO CONTAMINATED SOIL", RISK ANALYSIS, VOL.5 NO.4, 1985.

MEDIA CONCENTRATIONS/CONSTANTS

• • •

EXPOSURE SCENARIO : TRESPASSER-CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL

LOCATION : ON-SITE

LOCATIÓ	N: ON-SITE							
					OR		DER	
	MEDIA CONC	EN IKA IIU	ORAL	ORAL	BIOAVAIL	FACTOR	BIOAVAIL	FACTOR
	MEAN	RME	CSF	RfD	MEAN	RME	MEAN	RME
PARAMETER	mg/kg	mg/kg	1/(mg/kg/d)		%/100	%/100	%/100	%/100
		0			· · · ·		· · · · · ·	
VOCs								
ACETONE	1.36E-02	2.50E-02	NA	1.00E-01	1	1	0.25	0.25
BROMOMETHANE	6.27E-03	3.00E-03	NA	1.40E-03	1	1	0.25	0.25
2-BUTANONE	7.09E-03	9.00E-03	' NA	6.00E-01	1	1	0.25	0.25
CARBON DISULFIDE	6.09E-03	2.00E-03	NA	1.00E-01	1	1	0.25	0.25
1,2-DICHLOROETHENE (TOTAL)	3.95E-02	7.91E-02	NA	9.00E-03	1	1	0.25	0.25
ETHYLBENZENE	1.01E-02	1.75E-02	NA	1.00E-01	1	1	0.25	0.25
2-HEXANONE	6.82E-03	6.00E-03	NA 7.50E-03	NA 6.00E-02	1 . 1	1 1	0.25 0.25	0.25 0.25
METHYLENE CHLORIDE TOLUENE	6.23E-03 9.36E-03	2.00E-03 1.63E-02	7.50E-05 NA	8.00E-02 2.00E-01	1	1	0.25	0.25
TRICHLOROETHENE	1.92E-02	4.83E-02	NA	2.00E-01 NA	1	1	0.25	0.25
VINYL CHLORIDE	1.01E-02	1.75E-02	1.90E+00	NA	1	1	0.25	0.25
XYLENES (TOTAL)	2.35E-02	6.07E-02	NA	2.00E+00	1	1	0.25	0.25
					- •			
SVOCs								
ACENAPHTHENE .	2.94E-01	5.60E-01	NA	6.00E-02	1	1	0.1	0.1
ACENAPHTHYLENE	2.36E-01	3.30E-01	NA	NA	1	1	0.1	0.1
ANTHRACENE	5.29E-01	1.50E+00	NA	3.00E-01	1	1	0.1	0.1
BENZO (a) ANTHRACENE	2.25E+00	8.40E+00	7.30E-01	NA	1	1	0.1	0.1
BENZO (b) FLUORANTHENE	6.15E+00	2.40E+01	7.30E-01	NA	1	1	0.1	0.1
BENZO (k) FLUORANTHENE	2.90E+00	1.10E+01	7.30E-02	NA	1	1	0.1	0.1
BENZO (g,h,i) PERYLENE	1.25E+00	4.40E+00	NA	NA	1	1	0.1	0.1
BENZO (a) PYRENE	3.15E+00	1.20E+01	7.30E+00	NA	1	1	0.1	0.1
BIS (2-ETHYLHEXYL) PHTHALATE	2.13E+00	7.70E+00	1.40E-02	2.00E-02	1	1	0.1	0.1
BUTYL BENZYL PHTHALATE CARBAZOLE	3.04E-01 1.45E+00	6.00E-01 5.20E+00	NA 2.00E-02	2.00E-01 NA	1	1	0.1 0.1	0.1 0.1
CHRYSENE	2.18E+00	8.10E+00	7.30E-02	NA	1	1	0.1	0.1
DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	7.30E+00	NA	1	1	0.1	0.1
DIBENZOFURAN	4.54E-01	1.20E+00	NA	NA	1	1	0.1	0.1
DI-n-BUTYL PHTHALATE	2.34E-01	3.20E-01	NA	1.00E-01	1	1	0.1	0.1
FLUORANTHENE	6.36E+00	2.50E+01	NA	4.00E-02	1	1	0.1	0.1
FLUORENE	3.19E-01	6.60E-01	NA	4.00E-02	1	1	0.1	0.1
INDENO (1,2,3-cd) PYRENE	1.33E+00	4.70E+00	7.30E-01	NA	1	1	0.1	0.1
2-METHYLNAPHTHALENE	1,03E+00	3.50E+00	NA	NA	1	1	0.1	0.1
NAPHTHALENE	8.29E-01	2.70E+00	NA	NA	1	1	0.1	0.1
PHENANTHRENE	3.40E+00	1.30E+01	NA	NA	1	1	0.1	0.1
PYRENE	4.60E+00	1.80E+01	NA	3.00E-02	1	1	0.1	0.1
METALS ALUMINUM	1.38E+04	1.81E+04	NA	NA	1	1	0.01	0.01
ARSENIC	1.58E+04	4.28E+01	1.75E+00	3.00E-04	1	1	0.01	0.01
BARIUM	2.16E+02	4.03E+02	NA	7.00E-02	1	1	0.01	0.01
BERYLLIUM	4.48E-01	7.17E-01	4.30E+00	5.00E-03	1	1	0.01	0.01
CADMIUM	2.14E+00	4.46E+00	NA	5.00E-04	1	1	0.01	0.01
CALCIUM	3.76E+04	6.21E+04	NA	NA	1	1	0.01	0.01
CHROMIUM	2.97E+01	5.09E+01	NA	NA	1	1	0.01	0.01
COBALT	9.86E+00	1.31E+01	NA	NA	1	1	0.01	0.01
COPPER	4.84E+01	1.16E+02	NA	3.70E-02	1	1	0.01	0.01
IRON	2.20E+04	2.88E+04	NA	NA	1	1	0.01	0.01
MAGNESIUM	1.41E+04	2.09E+04	NA	NA	- 1	1	0.01	0.01
MANGANESE	5.23E+02	7.37E+02	NA	5.00E-03	1	1	0.01	0.01
MERCURY	1.94E-01	4.69E-01	NA		1	1	0.01	0.01
NICKEL POTASSIUM	3.10E+01 2.03E+03	5.33E+01 2.59E+03	NA NA	2.00E-02 NA	1 1	1 1	0.01 0.01	0.01 0.01
SELENIUM	2.03E+03 3.40E-01	2.59E+03 8.19E-01	NA	5.00E-03	1	1	0.01	0.01
SODIUM	1.56E+02	2.53E+02	NA	5.002-05 NA	1	1	0.01	0.01
THALLIUM	2.57E-01	3.83E-01	NA	7.00E-05	1	1	0.01	0.01
VANADIUM	3.01E+01	4.29E+01	NA	7.00E-03	1	1	0.01	0.01
ZINC	2.55E+02	6.16E+02		3.00E-01	1	1	0.01	0.01

EXPOSURE, RISK AND HAZARD CALCULATIONS

EXPOSURE SCENARIO : TRESPASSER-CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

	LIFETIME DAILY I (mg/k	NTAKE	LIFETIME UP EXCESS CAI		DAILY	AVERAGE NTAKE g/day)	HAZARD (CDI)	-
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
VOCs								
ACETONE	8.38E-10	3.66E-09	0.00E+00	0.00E+00	1.17E-08	5.13E-08	1.17E-07	5.13E-07
BROMOMETHANE	3.86E-10	4.40E-10	0.00E+00	0.00E+00	5.41E-09	6.16E-09	3.86E-06	4.40E-06
2-BUTANONE	4.37E-10	1.32E-09	0.00E+00	0.00E+00	6.12E-09	1.85E-08	1.02E-08	3.08E-08
CARBON DISULFIDE	3.75E-10	2.93E-10	0.00E+00	0.00E+00	5.25E-09	4.10E-09	5.25E-08	4.10E-08
1,2-DICHLOROETHENE (TOTAL)	2.43E-09	1.16E-08	0.00E+00	0.00E+00	3.41E-08	1.62E-07	3.79E-06	1.80E-05
ETHYLBENZENE	6.22E-10	2.57E-09	0.00E+00	0.00E+00	8.71E-09	3.59E-08	8.71E-08	3.59E-07
2-HEXANONE	4.20E-10	8.80E-10	0.00E+00	0.00E+00	5.88E-09	1.23E-08	0.00E+00	0.00E+00
METHYLENE CHLORIDE	3.84E-10	2.93E-10	2.88E-12	2.20E-12	5.37E-09	4.10E-09	8.96E-08	6.84E-08
TOLUENE	5.77E-10	2.39E-09	0.00E+00	0.00E+00	8.08E-09	3.35E-08	4.04E-08	1.67E-07
TRICHLOROETHENE	1.18E-09	7.08E-09	0.00E+00	0.00E+00	1.66E-08	9.91E-08	0.00E+00	0.00E+00
VINYL CHLORIDE	6.22E-10	2.57E-09	1.18E-09	4.87E-09	8.71E-09	3.59E-08	0.00E+00	0.00E+00
XYLENES (TOTAL)	1.45E-09	8.90E-09	0.00E+00	0.00E+00	2.03E-08	1.25E-07	1.01E-08	6.23E-08
SVOCs								
ACENAPHTHENE	1.76E-08	7.23E-08	0.00E+00	0.00E+00	2.46E-07	1.01E-06	4.11E-06	1.69E-05
ACENAPHTHYLENE	1.41E-08	4.26E-08	0.00E+00	0.00E+00	1.98E-07	5.96E-07	0.00E+00	0.00E+00
ANTHRACENE	· 3.17E-08	1.94E-07	0.00E+00	0.00E+00	4.43E-07	2.71E-06	1.48E-06	9.04E-06
BENZO (a) ANTHRACENE	1.35E-07	1.08E-06	9.83E-08	7.92E-07	1.89E-06	1.52E-05	0.00E+00	0.00E+00
BENZO (b) FLUORANTHENE	3.68E-07 1.74E-07	3.10E-06	2.69E-07	2.26E-06	5.16E-06	4.34E-05	0.00E+00	0.00E+00
BENZO (k) FLUORANTHENE BENZO (g.h.i) PERYLENE	7.48E-07	1.42E-06 5.68E-07	1.27E-08 0.00E+00	1.04E-07 0.00E+00	2.43E-06 1.05E-06	1.99E-05 7.95E-06	0.00E+00 0.00E+00	0.00E+00 0.00E+00
BENZO (g.i.) FERTLEINE BENZO (a) PYRENE	1.89E-07	1.55E-06	1.38E-06	1.13E-05	2.64E-06	2.17E-05	0.00E+00	0.00E+00
BIS (2-ETHYLHEXYL) PHTHALATE	1.39E-07	9.94E-07	1.38E-08	1.39E-08	1.79E-06	1.39E-05	8.93E-05	6.96E-04
BUTYL BENZYL PHTHALATE	1.82E-08	7.75E-08	0.00E+00	0.00E+00	2.55E-07	1.08E-06	1.27E-06	5.42E-06
CARBAZOLE	8.68E-08	6.71E-07	1.74E-09	1.34E-08	1.22E-06	9.40E-06	0.00E+00	0.00E+00
CHRYSENE	1.31E-07	1.05E-06	9.53E-10	7.63E-09	1.83E-06	1.46E-05	0.00E+00	0.00E+00
DIBENZO (a,h) ANTHRACENE	4.07E-08	2.71E-07	2.97E-07	1.98E-06	5.69E-07	3.80E-06	0.00E+00	0.00E+00
DIBENZOFURAN	2.72E-08	1.55E-07	0.00E+00	0.00E+00	3.81E-07	2.17E-06	0.00E+00	0.00E+00
DI-n-BUTYL PHTHALATE	1.40E-08	4.13E-08	0.00E+00	0.00E+00	1.96E-07	5.78E-07	1.96E-06	5.78E-06
FLUORANTHENE	3.81E-07	3.23E-06	0.00E+00	0.00E+00	5.33E-06	4.52E-05	1.33E-04	1.13E-03
FLUORENE	1.91E-08	8.52E-08	0.00E+00	0.00E+00	2.67E-07	1.19E-06	6.69E-06	2.98E-05
INDENO (1,2,3-cd) PYRENE	7.96E-08	6.07E-07	5.81E-08	4.43E-07	1.11E-06	8.49E-06	0.00E+00	0.00E+00
2-METHYLNAPHTHALENE	6.17E-08	4.52E-07	0.00E+00	0.00E+00	8.63E-07	6.33E-06	0.00E+00	0.00E+00
NAPHTHALENE	4.96E-08	3.49E-07	0.00E+00	0.00E+00	6.95E-07	4.88E-06	0.00E+00	0.00E+00
PHENANTHRENE	2.04E-07	1.68E-06	0.00E+00	0.00E+00	2.85E-06	2.35E-05	0.00E+00	0.00E+00
PYRENE	2.75E-07	2.32E-06	0.00E+00	0.00E+00	3.86E-06	3.25E-05	1.29E-04	1.08E-03
METALS								
ALUMINUM	8.12E-04	2.15E-03	0.00E+00	0.00E+00	1.14E-02	3.00E-02	0.00E+00	0.00E+00
ARSENIC	9.29E-07	5.08E-06	1.63E-06	8.88E-06	1.30E-05	7.11E-05	4.34E-02	2.37E-01
BARIUM	1.27E-05	4.78E-05	0.00E+00	0.00E+00	1.78E-04	6.69E-04	2.54E-03	9.56E-03
BERYLLIUM	2.64E-08	8.50E-08	1.13E-07	3.66E-07	3.69E-07	1.19E-06	7.38E-05	2.38E-04
CADMIUM CALCIUM	1.26E-07 2.21E-03	5.29E-07	0.00E+00	0.00E+00 0.00E+00	1.76E-06	7.40E-06	3.52E-03 0.00E+00	1.48E-02 0.00E+00
CHROMIUM	1.75E-06	7.36E-03 6.04E-06	0.00E+00 0.00E+00	0.00E+00 0.00E+00	3.10E-02 2.45E-05	1.03E-01 8.45E-05	0.00E+00 0.00E+00	0.00E+00
COBALT	5.80E-07	1.55E-06	0.00E+00	0.00E+00	8.12E-06	2.17E-05	0.00E+00	0.00E+00
COPPER	2.85E-06	1.38E-05	0.00E+00	0.00E+00	3.99E-05	1.93E-04	1.08E-03	5.20E-03
IRON	1.29E-03	3.42E-03	0.00E+00	0.00E+00	1.81E-02	4.78E-02	0.00E+00	0.00E+00
MAGNESIUM	8.29E-04	2.48E-03	0.00E+00	0.00E+00	1.16E-02	3.47E-02	0.00E+00	0.00E+00
MANGANESE	3.08E-05	8.74E-05	0.00E+00	0.00E+00	4.31E-04	1.22E-03	8.61E-02	2.45E-01
MERCURY	1.14E-08	5.56E-08	0.00E+00	0.00E+00	1.60E-07	7.79E-07	0.00E+00	0.00E+00
NICKEL	1.82E-06	6.32E-06	0.00E+00	0.00E+00	2.55E-05	8.85E-05	1.28E-03	4.42E-03
POTASSIUM	1.19E-04	3.07E-04	0.00E+00	0.00E+00	1.67E-03	4.30E-03	0.00E+00	0.00E+00
SELENIUM	2.00E-08	9.71E-08	0.00E+00	0.00E+00	2.80E-07	1.36E-06	5.60E-05	2.72E-04
SODIUM	9.18E-06	3.00E-05	0.00E+00	0.00E+00	1.28E-04	4.20E-04	0.00E+00	0.00E+00
THALLIUM	1.51E-08	4.54E-08	0.00E+00	0.00E+00	2.12E-07	6.36E-07	3.02E-03	9.08E-03
VANADIUM	1.77E-06	5.09E-06	0.00E+00	0.00E+00	2.48E-05	7.12E-05	3.54E-03	1.02E-02
ZINC	1.50E-05	7.30E-05	0.00E+00	0.00E+00	2.10E-04	1.02E-03	7.00E-04	3.41E-03
	IUIAL ADI	DITIONAL	ESTIMATED C. 3.86E-06	2.62E-05			HAZARD 1.46E-01	5.42E-01
			3.002-00	2.0215-03			1.406-01	J.44C-01

SUMMARY TABLE

EXPOSURE SCENARIO : TRESPASSER-CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

	LIFETIME UPPER BOUND HAZARD QUOTIEN MEDIA CONCENTRATION EXCESS CANCER RISK CDI/RfD								
	MEAN	RME	EACESSCAL	NCER RISK	CDI/	ND			
PARAMETER	mg/kg	mg/kg	MEAN	RMĒ	MEAN	RME			
				14110					
VOCs									
ACETONE	1.36E-02	2.50E-02	0.00E+00	0.00E+00	1.17E-07	5.13E-07			
BROMOMETHANE	6.27E-03	3.00E-03	0.00E+00	0.00E+00	3.86E-06	4.40E-06			
2-BUTANONE	7.09E-03	9.00E-03	0.00E+00	0.00E+00	1.02E-08	3.08E-08			
CARBON DISULFIDE	6.09E-03	2.00E-03	0.00E+00	0.00E+00	5.25E-08	4.10E-08			
1,2-DICHLOROETHENE (TOTAL)	3.95E-02	7.91E-02	0.00E+00	0.00E+00	3.79E-06	1.80E-05			
ETHYLBENZENE	1.01E-02	1.75E-02	0.00E+00	0.00E+00	8.71E-08	3.59E-07			
2-HEXANONE	6.82E-03	6.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
METHYLENE CHLORIDE	6.23E-03	2.00E-03	2.88E-12	2.20E-12	8.96E-08	6.84E-08			
TOLUENE	9.36E-03	1.63E-02	0.00E+00	0.00E+00	4.04E-08	1.67E-07			
TRICHLOROETHENE	1.92E-02	4.83E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
VINYL CHLORIDE	1.01E-02	1.75E-02	1.18E-09	4.87E-09	0.00E+00	0.00E+00			
XYLENES (TOTAL)	2.35E-02	6.07E-02	0.00E+00	0.00E+00	1.01E-08	6.23E-08			
SVOCs			•						
ACENAPHTHENE	2.94E-01	5.60E-01	0.00E+00	0.00E+00	4.11E-06	1.69E-05			
ACENAPHTHYLENE	2.36E-01	3.30E-01	0.00E+00	0.00E+00	0.00E+00	0.00Ê+00			
ANTHRACENE	5.29E-01	1.50E+00	0.00E+00	0.00E+00	1.48E-06	9.04E-06			
BENZO (a) ANTHRACENE	2.25E+00	8.40E+00	9.83E-08	7.92E-07	0.00E+00	0.00E+00			
BENZO (b) FLUORANTHENE	6.15E+00	2.40E+01	2.69E-07	2.26E-06	0.00E+00	0.00E+00			
BENZO (k) FLUORANTHENE	2.90E+00	1.10E+01	1.27E-08	1.04E-07	0.00E+00	0.00E+00			
BENZO (g,h,i) PERYLENE	1.25E+00	4.40E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
BENZO (a) PYRENE	3.15E+00	1.20E+01	1.38E-06	1.13E-05	0.00E+00	0.00E+00			
BIS (2-ETHYLHEXYL) PHTHALATE	2.13E+00	7.70E+00	1.79E-09	1.39E-08	8.93E-05	6.96E-04			
BUTYL BENZYL PHTHALATE	3.04E-01	6.00E-01	0.00E+00	0.00E+00	1.27E-06	5.42E-06			
CARBAZOLE	1.45E+00	5.20E+00	1.74E-09	1.34E-08	0.00E+00	0.00E+00			
CHRYSENE	2.18E+00	8.10E+00	9.53E-10	7.63E-09	0.00E+00	0.00E+00			
DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	2.97E-07	1.98E-06	0.00E+00	0.00E+00			
DIBENZOFURAN	4.54E-01	1.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
DI-n-BUTYL PHTHALATE	2.34E-01	3.20E-01	0.00E+00	0.00E+00	1.96E-06	5.78E-06			
FLUORANTHENE	6.36E+00	2.50E+01	0.00E+00	0.00E+00	1.33E-04	1.13E-03			
FLUORENE	3.19E-01	6.60E-01	0.00E+00	0.00E+00	6.69E-06	2.98E-05			
INDENO (1,2,3-cd) PYRENE	1.33E+00	4.70E+00	5.81E-08	4.43E-07 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00			
2-METHYLNAPHTHALENE NAPHTHALENE	1.03E+00 8.29E-01	3.50E+00 2.70E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PHENANTHRENE	3.40E+00	2.70E+00 1.30E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PYRENE	4.60E+00	1.30E+01 1.80E+01	0.00E+00	0.00E+00	1.29E-04	1.08E-03			
FIRENE	4.002+00	1.002+01	0.002+00	0.002400	1.270-04	1.002-03			
METALS			•						
ALUMINUM	1.38E+04	1.81E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
ARSENIC	1.58E+01	4.28E+01	1.63E-06	8.88E-06	4.34E-02	2.37E-01			
BARIUM	2.16E+02	4.03E+02	0.00E+00	0.00E+00	2.54E-03	9.56E-03			
BERYLLIUM	4.48E-01	7.17E-01	1.13E-07	3.66E-07	7.38E-05	2.38E-04			
CADMIUM	2.14E+00	4.46E+00	0.00E+00	0.00E+00	3.52E-03	1.48E-02			
CALCIUM	3.76E+04	6.21E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CHROMIUM	2.97E+01	5.09E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
COBALT	9.86E+00	1.31E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
COPPER	4.84E+01	1.16E+02	0.00E+00	0.00E+00	1.08E-03	5.20E-03			
IRON	2.20E+04	2.88E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
MAGNESIUM	1.41E+04	2.09E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
MANGANESE	5.23E+02	7.37E+02	0.00E+00	0.00E+00	8.61E-02	2.45E-01			
MERCURY	1.94E-01	4.69E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
NICKEL	3.10E+01	5.33E+01	0.00E+00	0.00E+00	1.28E-03	4.42E-03			
POTASSIUM	2.03E+03	2.59E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
SELENTUM	3.40E-01	8.19E-01	0.00E+00	0.00E+00	5.60E-05	2.72E-04			
SODIUM	1.56E+02	2.53E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
THALLIUM	2.57E-01	3.83E-01	0.00E+00	0.00E+00	3.02E-03	9.08E-03			
VANADIUM	3.01E+01	4.29E+01	0.00E+00	0.00E+00	3.54E-03	1.02E-02			
ZINC	2.55E+02	6.16E+02	0.00E+00	0.00E+00	7.00E-04	3.41E-03			
	TOTAL ADI	DITIONAL E	STIMATED C						
			3.86E-06	2.62E-05	1.46E-01	5.42E-01			

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

EXPOSURE SCENARIO : TRESPASSER SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

EQUATION : INTAKE (mg/kg-day) =	GxC	<u>F x SA x AF x MF x A</u> AT x BW		+	IR x ABS x CF x EF x E AT x BW	× PTF	
where :						•	·
CS = Chemical Concentration in Soil (mg/kg)			. 2		· ·		•
IR = Ingestion Rate (mg soil/day)							
SA = Skin Surface Area Available for Contact (cm2/	event)						
CF = Conversion Factor (10E-06 kg/mg)		i i			•		
EF = Exposure Frequency (days/years)							
ED = Exposure Duration (years)							
BW = Body Weight (kg)						· · ·	
AT = Averaging Time (period over which exposure i	is averaged	days)					
AF = Soil to Skin Adherence Factor (mg/cm2)	,	•	•		•	•	
ABS = Absorption Factor (unitless)							
MF = Matrix Factor; part of chemical on soil that is in	n contact with	skin (%/100)	w	•	,		•
PIF = Percent of Time Factor: Percent of time in cont			•	•		•.	
·							
						•	
VARIABLE	MEAN	RME	REFERENCES				
						•	
CS (mg/kg)	MEAN	95% UCL	RAGS (1,2)		· .		
IR - OLDER CHILD (mg/exposure)	100	100	RAGS (1,2)				
					•		
SA - OLDER CHILD (cm2)	5300	5300	DEAP (3)		•		
CF (kg/mg)	0.000001	0.000001	RAGS (12)				
			• • • •				
EF (days/year)	24	48	PROFESSIONA	L JUDGEMENT			
				•			
ED - OLDER CHILD (CARCINOGEN) (yrs)	12	12	RAGS (1,2)				
ED (NON-CARCINOGEN) (yrs)	1	1	RAGS (1,2)				N
			•				
BW - OLDER CHILD (kg)	45	45	RAGS (1,2)				
AT (CARCINOGEN) (yrs x days /yr)	25550	25550	RAGS (1,2)				
AT (NON - CARCINOGEN) (yrs x days /yr)	365	365	RAGS (1,2)				
		•					
AF (mg/cm2)	0.2	1	DEAP (3)				
MF	0.15	0.15	HAWLEY (4)				
ABS ORAL (CHEMICAL SPECIFIC)			2-7				
DERMAL (CHEMICAL SPECIFIC)				•			
PTF	1	1	PROFESSIONA	L JUDGEMENT			
	-	-			•		
					•		

NOTE :

(1) EPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND MANUAL, DECEMBER 1989, EPA/540/1-89/002.
 (2) SUPPLEMENTAL GUIDANCE: "STANDARD DEFAULT EXPOSRE FACTORS", OSWER DIRECTIVE: 9285.6-03, MARCH 25, 1991.
 (3) EPA DERMAL EXPOSURE ASSESSMENT: PRINCIPLES AND APPLICATIONS, EPA/600/8-89/011B, JANUARY 1992.
 (4) HAWLEY, J.K., "ASSESSMENT OF HEALTH RISK FROM EXPOSURE TO CONTAMINATED SOIL", RISK ANALYSIS, VOL.5 NO.4, 1985.

MEDIA CONCENTRATIONS/CONSTANTS

EXPOSURE SCENARIO : TRESPASSER-OLDER CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

MEDIA CONCENTRATION DRAWAL FACTOR BIOAVAL FACTOR BIOAVAL FACTOR MEAN RME CRA RCD MEAN RME RCD RCD REAN RME REAN RME REAN RME REAN RME REAN			ORAL		DERMAL				
MEAN RNE CSP R.D MEAN RME RMA N.ME MEAN RME MEAN RME MEAN RME MEAN RME MEAN RME MEAN RME MA MODE VOCL ACETONE 1.364672 2.50673 MA 1.00560 1 1 0.25 0.25 2.0170NE 7.07643 9.00673 NA 1.00600 1 1 0.25 0.25 2.0170LORCENTENE 7.07643 9.00673 NA 1.00601 1 1 0.25 0.25 2.0170LORCENTENE 1.02612 1.78640 0.06740 1 1 0.25 0.25 2.1201CHILDRE 1.02612 1.78640 0.06740 1 1 0.25 0.25 VINC 0.01012 1.388.00 NA 1.001 1 0.25 0.25 VINC 0.0100F 1.0101 1.001 0.1 0.1 0.1 0.1 0.1 0.1 0.	•	MEDIA CON	CENTRATIO			BIOAVAIL	. FACTOR	BIOAVAIL	. FACTOR
PARAMETER mg/hg		MEAN	DMC			1 CTAN	D) (7		
VOCs Job 2011 Job 2011 <thjob 2011<="" th=""> Job 2011 <thj< td=""><td>PARAMETER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thj<></thjob>	PARAMETER								
ACETONE 1.34E-02 2.50E-02 NA 1.00E-01 1 1 0.05 0.25 2HOMOMETHANE 2.70F2-03 9.00E-03 NA 6.00E-01 1 1 0.25 0.25 2-HOTANONE 7.07E-03 9.00E-03 NA 6.00E-01 1 1 0.25 0.25 2-HOLALONCTHENE 1.01E-02 1.75E-02 NA 1.00E-01 1 1 0.25 0.25 2-HEXANONE 6.47E-03 6.00E-03 NA NA 1 1 0.25 0.25 2-HEXANONE 5.47E-03 NA NA 1 1 0.25 0.25 2-HEXANONE 6.47E-03 1.08E-02 NA 2.00E-01 1 1 0.15 0.25 0.25 VILLENE 2.47E-12 1.57E-02 1.30E-00 NA 1 1 0.1 0.1 0.1 CHANAPHTHENE 2.47E-02 1.57E-02 1.30E-00 NA 1 0.1 0.1 0.1				_1/(g/kg/u)	IIIg/ Kg/ G	/0/100	/8/ 100	/8/100	/0/100
BROMOMETHANE 6.27E-03 3.00E-03 NA 1.00E-03 1 1 0.25 0.25 CARBON DISULFIDE 6.09F-03 2.00E-06 NA 1.00E-01 1 1 0.25 0.25 L2OICH CONCETHENE (TOTAL) 1.01E-02 1.27E-02 NA 0.00E-01 1 1 0.25 0.25 ETHYLERNZENE 1.01E-02 1.27E-02 NA NA 1 1 0.25 0.25 METHYLENNE CHLORIDE 6.28E-03 2.00E-00 NA 1 1 0.25 0.25 VINCL CHLORIDE 1.92E-02 4.8E-02 NA 2.00E-00 1 1 0.25 0.25 VINCL CHLORIDE 1.92E-02 4.8E-02 NA 2.00E-00 1 1 0.1 0.1 ACENAPTITHENE 2.94E-01 5.46E-01 NA NA 1 1 0.1 0.1 ACENAPTITHENE 2.94E-01 3.94E-01 NA 1 1 0.1 0.1 ACEN	VOCs								
2+BUTANONE 7.07E-30 9.00E+30 NA 6.00E+01 1 1 0.25 0.25 CARBON DOLUTIPE 5.07E+02 NA 9.00E+03 1 1 0.25 0.25 1_2-DICHLORORTHENE (10TAL) 3.97E+02 NA NA 1 1 0.25 0.25 2-HEXANONE 6.02E+03 6.00E+02 NA NA 1 1 0.25 0.25 2-HEXANONE 6.02E+03 7.95E+02 NA 2.00E+01 1 1 0.25 0.25 VIDULINE 9.42E+03 1.85E+02 NA 2.00E+01 1 1 0.25 0.25 VIDULINE 1.92E+02 4.85E+02 NA 2.00E+01 1 1 0.1 0.1 0.1 ACENAPHTHENE 2.94E>1 5.45E>1 NA 5.00E+02 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1<	ACETONE	1.36E-02	2.50E-02	NA	1.00E-01	1	1	0.25	0.25
CARBON DESULFIDE 6.096-30 2.00E43 NA 1.00E-01 1 0.025 0.25 L-2NICHLONCENTENE 1.01E-02 1.75E-02 NA 1.00E-01 1 0.025 0.25 ETHYLENNCENE 1.01E-02 1.75E-02 NA NA 1 1 0.25 0.25 METHYLENNE CHLORIDE 6.28E-03 2.00E43 7.50E-03 6.00E-02 1 1 0.25 0.25 TICLENCODE 1.98E-02 4.88E-02 NA NA 1 1 0.25 0.25 SVCO ACENAPITHENE 1.98E-02 6.67E-02 NA 2.09E-00 1 1 0.1 <td>BROMOMETHANE</td> <td>6.27E-03</td> <td>3.00E-03</td> <td>NA</td> <td>1.40E-03</td> <td>1</td> <td>1</td> <td>0.25</td> <td>0.25</td>	BROMOMETHANE	6.27E-03	3.00E-03	NA	1.40E-03	1	1	0.25	0.25
1.2.DICHLOROETHENE (107AL) 3.95E-02 NA 9.06E-03 1 1 0.25 0.25 2.HEXANONE 6.02E-03 0.00E-03 NA NA 1 1 0.25 0.25 2.HEXANONE 6.02E-03 0.00E-03 0.00E-03 0.00E-01 1 1 0.25 0.25 DETHYLISENCE 9.36E-03 1.0E-02 1.75E-02 NA 2.00E-00 1 1 0.25 0.25 TRICHLOROETHENE 1.91E-02 1.75E-02 NA 2.00E-00 1 1 0.25 0.25 XYLENES (TOTAL) 2.35E-02 6.07E-02 NA 2.00E-00 1 1 0.1 0.1 ACSINAPHTHENE 2.94E-01 5.64E-01 NA 8.00E-00 1 1 0.1 0.1 ACSINAPHTHENE 2.94E-01 1.90E-00 NA 3.00E-00 1 1 0.1 0.1 ACSINAPHTHENE 2.94E-01 1.90E-00 NA 1 0.1 0.1 0.1 BEV20 (a) INTRACENE 2.94E-00 1.72.0E-01 NA 1 0.1						1		0.25	
FITHUBENZENE 1016-20 1756-62 NA NA ND 1 1 0.25 0.25 METHULNNE CHLORIDE 6.287-03 2.006-03 7.596-03 6.006-02 1 1 0.25 0.25 METHULNNE CHLORIDE 1.982-02 4.585-02 NA NA 1 1 0.25 0.25 VINU CHLORODE 1.982-02 4.585-02 NA NA 1 1 0.25 0.25 VINU CHLORODE 2.385-02 6.075-02 NA NA NA 1 1 0.25 0.25 VINU CHLORODE 2.385-01 S.405-01 NA NA NA 1 1 0.1 0.1 ACENARTHTENE 2.385-01 S.406-01 NA NA 1 1 0.1 0.1 BENZO (A) FLUCARATTENE 2.386-01 NA NA 1 1 0.1 0.1 BENZO (A) FLUCARATTENE 2.386-00 NA NA 1 0.1 0.1									
2-HEXANONE 6.6EC-03 FOR A NA NA 1 1 0.25 0.25 METHYLENE (ELORIDE 6.3E4-03 1.0EF02 NA 2.0DE-01 1 1 0.25 0.25 TOLLENE 9.3E4-03 1.6EF02 NA NA 1 1 0.25 0.25 YILENES (TOTAL) 2.3E4-02 6.0F2-02 NA 2.00E-00 1 1 0.25 0.25 SVOCO									
METHYLENE CHLORIDE 6.226-03 2.00E-03 7.50E-03 6.00E-02 1 1 0.25 0.25 TRICHLOROFTHENE 1.92E-02 4.85E-02 NA NA 1 1 0.25 0.25 VICUENE 1.01E-02 1.57E-02 NA 2.00E-00 1 1 0.25 0.25 VICUENES (TOTAL) 2.35E-02 NA 2.00E-00 1 1 0.25 0.25 VICO-									
TOLUNNE 9.366.03 1.458.62 NA 2.005.01 1 1 0.25 0.25 VINCLAIDENTENE 1.016.02 1.758.62 NA NA 1 1 0.25 0.25 XYLENES (TOTAL) 2.356.22 6.756.22 NA 2.006.00 1 1 0.25 0.25 SVOCs ACENAPHTHENE 2.946.01 5.666.01 NA 6.006.42 1 1 0.1 0.1 ACENAPHTHENE 2.946.01 5.666.01 NA 8.006.01 1 1 0.1 0.1 ACENAPHTHENE 2.946.01 5.666.01 NA 1 1 0.1 0.1 BENZO (a) LUCAANTHENE 2.057.00 1.066.01 7.302.01 NA 1 1 0.1 0.1 BENZO (a) LUCAANTHENE 2.156.00 4.066.00 NA NA 1 1 0.1 0.1 BENZO (a) LUCAANTHENE 2.136.00 7.306.00 NA 1 1 0.1 0.1 >									
TRICHCORDETHENE 1926-02 4 488-02 NA NA I 1 0.25 0.25 VINU GH.ORDIDE 1016-02 1756-02 1906-00 NA 1 1 0.25 0.25 SVOCs	•								
NINYLENES (TOTAL) 1.0E-d2 1.27E-d2 1.96E-d3 NA 1 1 0.25 0.25 XYUENES (TOTAL) 2.35E-d2 6.67E-d2 NA 2.00E-d0 1 1 0.25 0.25 SYOCS ACENAPHTHENE 2.94E-d1 5.68E-d1 NA 6.00E-d2 1 1 0.1 0.1 ACENAPHTHENE 2.94E-d1 5.68E-d1 NA NA 1 1 0.1 0.1 ACENAPHTHENE 2.94E-d01 3.30E-d1 NA 1 1 0.1 0.1 BENZO (a) LUCRANTHENE 2.95E-d0 8.40E+d0 7.30E-d1 NA 1 1 0.1 0.1 BENZO (a) LUCRANTHENE 2.95E-d0 2.06E-d1 NA 1 1 0.1 0.1 BENZO (a) LUCRANTHENE 3.15E-d0 1.20E-d0 NA 1 1 0.1 0.1 BENZO (a) LUCRANTHENC 3.15E-d0 7.30E-d0 NA 1 1 0.1 0.1 0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
XYLENES (TOTAL) 2.35E-02 6.97E-02 NA 2.00E+00 1 1 0.25 0.25 SVOCs									
SVOCS ACENAPHTHENE 2.94E-01 5.66E-01 NA 6.00E-02 1 1 0.1 0.1 ACENAPHTHYLENE 2.36E-01 3.30E-01 NA NA 1 1 0.1 0.1 ACENAPHTHYLENE 2.32E-01 NA NA 1 1 0.1 0.1 BENZO (b) FULORANTHENE 2.42E-01 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FULORANTHENE 2.02E-01 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FULORANTHENE 2.02E-01 1.30E-01 7.30E-00 NA 1 1 0.1 0.1 BENZO (a) PYRENE 3.15E-00 1.20E-00 NA 1 1 0.1 0.1 BE /-2T (FITHALATE 2.15E-00 1.20E-00 NA 1 1 0.1 0.1 BE /-2T (FITHALATE 2.16E+00 5.20E+00 NA 1 1 0.1 0.1 DIENENO /// C/RAN 4.51E-01 1.20E-00									
ACEMAPHTHENE 294E-01 5.66E-01 NA 6.00E-02 1 1 0.1 ACEMAPHTHYLENE 2.36E-01 3.30E-01 NA NA 1 1 0.1 ANTHRACENE 2.32E-01 1.50E-00 NA 3.00E-01 NA 1 1 0.1 BENZO (b) FLUORANTHENE 2.52E-00 8.46E-00 7.30E-01 NA 1 1 0.1 BENZO (b) FLUORANTHENE 2.52E-00 1.40E-01 7.30E-01 NA 1 1 0.1 BENZO (b) FJERYLENE 1.35E-00 1.40E-02 2.00E-02 NA 1 1 0.1 0.1 BUG (E-HTYLHESYL) FHTHALATE 2.38E-00 7.70E-00 NA 1 1 0.1 0.1 BUG (E-HTYLHESYL) FHTHALATE 2.38E-00 2.00E-02 NA 1 1 0.1 0.1 BUG (E-HTYLHESYL) FHTHALATE 2.38E-00 1.40E-02 NA 1 1 0.1 0.1 DIENEXOCIURAN 4.58E-01 1.20E-00	······································					-	-		·
ACEMAPHTEMISE 2.362-01 3.302-01 NA NA I									
ANTHRACENE 5.29E-01 1.59E-00 NA 3.00E-01 1 1 0.1 0.1 BENZO (a) ANTHRACENE 2.25E+00 8.40E+00 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 2.40E+00 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 2.35E+00 1.40E+01 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 1.35E+00 1.40E+00 NA 1 1 0.1 0.1 BEVZO (b, PTRENE 3.35E+00 1.40E+00 2.00E+00 NA 1 1 0.1 0.1 BUTYL BENZYL PHTHALATE 2.38E+00 7.00E+00 NA 1 1 0.1 0.1 DIENZO (LA) ANTHACENE 6.39E+01 2.20E+00 NA 1 1 0.1 0.1 DIENZO (LA) ANTHACENE 2.38E+01 2.20E+00 NA 1 1 0.1 0.1 DIENZO (LA) ANTHACENE 2.3									
BENZO (a) ANTHRACENE 225E-00 8.07E-00 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 6.15E+00 2.04E+01 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 2.09E+00 1.05E+00 1.07E+00 NA NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 1.25E+00 4.00E+00 NA NA 1 1 0.1 0.1 BENZO (b) FLUORANTHENE 1.35E+00 7.20E+00 1.40E+02 2.00E-02 1 1 0.1 0.1 BENZO (b) FUNCANTHENA 2.13E+00 5.07E+00 2.00E-02 NA 1 1 0.1 0.1 CHRYSENE 2.18E+00 5.02E+00 2.00E-01 NA 1 1 1.0 1 1 0.1 0.1 DIE-NUTYL PHTHALATE 2.38E+01 1.00E+00 NA NA 1 1 1.0 1 1 0.1 0.1 0.1									
BENZO (b) FLUCKANTHENE 615E-00 2.40E-01 7.30E-01 NA 1 1 0.1 0.1 BENZO (b) FLUCKANTHENE 2.20E+00 1.00E+01 7.30E-02 NA 1 1 0.1 0.1 BENZO (b) FUCKANTHENE 1.20E+01 7.30E+00 NA 1 1 0.1 0.1 BENZO (b) FURENE 3.15E+00 1.20E+01 7.30E+00 NA 1 1 0.1 0.1 BUC THYLHEXYL) FITHALATE 2.30E+00 1.40E-02 2.00E+02 1 1 0.1 0.1 CHRYSENE 1.40E-00 7.30E+00 NA 1 1 0.1 0.1 CHRYSENE 1.20E+00 7.30E+00 NA 1 1 0.1 0.1 DIBENZO (LA) ANTHEACENE 6.79E+01 2.20E+00 NA 1.00E-01 1 1 0.1 0.1 DIBENZO (LA) ANTHEACENE 6.39E+01 2.20E+00 NA 1.00E-01 1 0.1 0.1 DIBENZO (LA) ANTHEACENE <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
BENZO (A) FLUCRANTHENE 2.96E-00 1.0E-01 7.30E-02 NA 1 1 0.1 0.1 BENZO (g.h.) PERYLENE 1.25E+00 4.40E+00 NA NA 1 1 0.1 0.1 BIS /2 Cip/YRENE 3.15E+00 7.20E+00 1.40E+02 2.00E-02 1 1 0.1 0.1 BIS /2 CiP/YRENE 3.04E+00 5.02E+00 2.00E-02 NA 1 1 0.1 0.1 CARBAZOLE 1.45E+00 5.02E+00 2.00E-02 NA 1 1 0.1 0.1 DIBENZO (s.h) ANTHRACENE 6.79E+01 2.10E+00 NA NA 1 1 0.1 0.1 DIBENZO (s.h) ANTHRACENE 5.36E+00 2.30E+00 NA NA 1 1 0.1 0.1 DIF-0UTYL PHTHALATE 2.34E+01 1.20E+00 NA NA 1 1 0.1 0.1 PUCORANTHENE 3.39E+01 SAGE+00 7.30E+01 NA 1 1 0.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BENZO (gh.i) FERVIENE 125E+00 4.40E+00 NA NA 1 1 0.1 0.1 BENZO (a) PTRENE 3.15E+00 1.20E+01 7.20E+00 NA 1 0.1 0.1 0.1 BUTC (a) PTRENE 3.15E+00 7.20E+01 1.40E+02 2.00E+02 1 1 0.1 0.1 0.1 BUTC (ETRYLENT) 1.40E+00 5.20E+00 1.40E+00 2.00E+02 NA 1 1 0.1 0.1 CHRYSENE 2.18E+00 8.10E+00 7.30E+00 NA 1 1 0.1 0.1 DIBENZO (A) ANTHRACENE 6.79E+01 2.10E+00 NA NA 1 1 0.1 0.1 DIBENZO (RAN 4.54E+01 1.20E+00 NA 1.00E+01 1 1 0.1 0.1 0.1 FUDGRANTHENE 6.36E+00 2.50E+01 NA 4.00E+02 1 0.1 0.1 0.1 FUDGRANTHENE 1.33E+00 4.70E+00 7.30E+01 NA	• •								
BENZQ (a) PYRENE 315E+00 120E+01 730E+00 NA 1 1 0.1 0.1 BIS (2-ETHYLHEXYL) PHTHALATE 213E+00 7.70E+00 1.40E-02 200E+02 1 1 0.1 0.1 BIS (2-ETHYLHEXYL) PHTHALATE 3040-1 6.00E+01 NA 1 1 0.1 0.1 CARBAZOLE 1.45E+00 5.20E+00 2.00E+02 NA 1 1 0.1 0.1 CHRYSENE 2.18E+00 8.10E+00 7.30E+00 NA 1 1 0.1 0.1 DIBENZO (u,b) ANTHRACENE 6.370E+00 NA NA 1 0.1 0.1 DI8UTYL PHTHALATE 2.34E+01 2.30E+01 NA 4.00E+02 1 1 0.1 0.1 PLUORENE 3.19E+01 6.60E+01 NA 4.00E+02 1 1 0.1 0.1 PLUORENE 3.30E+01 NA NA 1 1 0.1 0.1 PULUDRINEN 3.30E+01									
BIS CETHYULEXU, PHTHALATE 2.13E+00 7.70E+00 1.40E+02 2.00E+02 1 1 0.1 0.1 BUTYL BENZYL PHTHALATE 3.04E+01 5.20E+00 2.00E+02 NA 1 1 0.1 0.1 CARBAZOLE 1.45E+00 5.20E+00 2.00E+02 NA 1 1 0.1 0.1 CARBAZOLE 2.18E+00 5.20E+00 7.30E+03 NA 1 1 0.1 0.1 DIBENZOCUAN 4.54E+01 1.20E+00 NA NA 1 1 0.1 0.1 DIBENZOFURAN 4.54E+01 1.20E+00 NA MODE+01 1 0.1 0.1 0.1 PLUORANTHENE 6.376+00 2.50E+01 NA 4.00E+02 1 1 0.1 0.1 0.1 PLUORANTHENE 1.33E+00 4.70E+00 7.30E+01 NA 1 1 0.1									
BUTYL BENZYL PHTHALATE 3.04E-01 6.00E-01 NA 2.00E-01 1 1 0.1 0.1 CARBAZOLE 1.45E+00 5.20E+00 2.00E-02 NA 1 1 0.1 0.1 CHRYSENE 2.18E+00 8.10E+00 7.30E+00 NA 1 1 0.1 0.1 DIBENZOFURAN 4.54E+01 1.20E+00 NA NA 1 1 0.1 0.1 DI-n-BUTYL PHTHALATE 2.34E+01 3.20E+01 NA 1.00E+02 1 1 0.1 0.1 PLUORNNE 3.32E+01 7.30E+01 NA 4.00E+02 1 1 0.1 0.1 PLUORNNE 1.33E+00 4.70E+00 7.30E+01 NA 1 1 0.1 0.1 PLUORNNE 1.32E+01 1.20E+01 NA NA 1 1 0.1 0.1 PLUORNNE 3.40E+00 1.80E+01 NA NA 1 1 0.1 0.1 PHENANTHENE 3.40E+00 1.80E+01 NA NA 1 1 0.1									
CARBAZOLE 1.45E+00 5.20E+00 2.00E-02 NA 1 1 0.1 0.1 CHRYSENE 2.18E+00 8.10E+00 7.30E+03 NA 1 1 0.1 0.1 DIBENZOCURAN 4.54E+01 1.20E+00 7.30E+00 NA 1 1 0.1 0.1 DIH-BUTYL PHTHALATE 2.34E+01 3.20E+01 NA 1.00E+02 1 1 0.1 0.1 0.1 FUUORANTHENE 6.36E+00 2.34E+01 3.20E+01 NA 4.00E+02 1 1 0.1 0.1 0.1 FUUORANTHENE 6.36E+00 2.34E+01 NA 4.00E+02 1 1 0.1 0.1 0.1 FUUORANTHENE 3.32E+00 3.50E+00 NA NA 1 1 0.1 0.1 0.1 PATENTYLNAPHTHALENE 3.30E+01 NA NA 1 1 0.1 0.1 0.1 PHENANTHENE 3.40E+00 1.80E+01 NA NA <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	. ,								
CHRYSENE 2.18E+00 8.10E+00 7.30E-03 NA 1 1 0.1 DIBENZO (a,b) ANTHRACENE 6.77E+01 2.10E+00 7.30E+00 NA 1 1 0.1 0.1 DIBENZO (a,b) ANTHRACENE 6.77E+01 2.10E+00 NA NA 1 1 0.1 0.1 DIFADRATHENE 2.34E+01 3.20E+01 NA 1.00E+01 1 1 0.1 0.1 FULORENE 3.07E+01 NA 4.00E+02 1 1 0.1 0.1 INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 7.30E+01 NA 1 1 0.1 0.1 AMETHYLNAPHTHALENE 3.30E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 3.40E+00 1.30E+01 NA NA 1 1 0.01 0.01 ALUMINUM 1									
DIBENZO (a,b) ANTHRACENE 6.79E-01 2.10E-00 7.30E+00 NA 1 1 0.1 0.1 DIBENZOFURAN 4.54E-01 1.20E-00 NA NA 1 1 0.1 0.1 DIBENZOFURAN 4.54E-01 3.20E-01 NA 1.0E-01 1 1 0.1 0.1 FUDGRANTHENE 3.30E-01 NA 4.00E-02 1 1 0.1 0.1 FUDGRANTHENE 3.35E-00 NA NA 1 1 0.1 0.1 INDENO (1,2.3-cd) PYRENE 1.33E+00 3.50E+00 NA NA 1 1 0.1 0.1 NAMTITHENE 8.29E-01 2.70E+00 NA NA 1 1 0.1 0.1 PHENANTHENE 3.00E+00 1.80E+01 NA NA 1 1 0.1 0.1 PHENANTHENEN 1.38E+04 1.81E+04 NA NA 1 1 0.01 0.01 ALUMINUM 1.38E+04	CHRYSENE								
DI-r-BUTYL PHTHALATE 2.34E-01 3.20E-01 NA 1.00E-01 1 1 0.1 0.1 FLUDRANTHEINE 6.36E-00 2.50E+01 NA 4.00E+02 1 1 0.1 0.1 FLUDRENE 3.19E-01 6.60E-01 NA 4.00E+02 1 1 0.1 0.1 INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 7.30E-01 NA 1 1 0.1 0.1 0.1 2-METHYLNAPHTHALENE 1.33E+00 3.50E+00 NA NA 1 1 0.1 0.1 0.1 NAPHTHALENE 1.33E+00 1.30E+01 NA NA 1 1 0.1 0.1 PHENANTHRENE 4.60E+00 1.80E+01 NA NA 1 1 0.1 0.1 PHENANTHENE 1.38E+04 1.81E+04 NA NA 1 1 0.01 0.01 ALUMINUM 1.38E+04 1.81E+04 NA NA 1 0.01 0.01 </td <td>DIBENZO (a,h) ANTHRACENE</td> <td>6.79E-01</td> <td>2.10E+00</td> <td>7.30E+00</td> <td>NA</td> <td>1</td> <td></td> <td></td> <td></td>	DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	7.30E+00	NA	1			
FLUORANTHENE 6.36E+00 2.50E+01 NA 4.00E+02 1 1 0.1 0.1 FUUORENE 3.19E-01 6.60E+01 NA 4.00E+02 1 1 0.1 0.1 INDENO (1,2,3-cd) PYENE 1.33E+00 4.70E+00 7.30E-01 NA 1 1 0.1 0.1 VACTIHYLNAPHTHALENE 1.03E+00 3.50E+00 NA NA 1 1 0.1 0.1 NAPHTHALENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 3.40E+00 1.30E+01 NA NA 1 1 0.01 0.1 ALUMINUM 1.38E+04 1.81E+04 NA NA 1 1 0.01 0.01 ARSENIC 1.58E+01 4.28E+01 1.75E+00 3.00E+04 1 0.01 0.01 BERYLLIUM 4.48E+01 7.17E+01 4.30E+05 5.00E+03 1 0.01 0.01	DIBENZOFURAN	4.54E-01	1.20E+00	NA	NA	1	1	0.1	0.1
FLUORENE 3.19E-01 6.60E-01 NA 4.00E-02 1 0.1 0.1 INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 7.30E+01 NA 1 1 0.1 0.1 2-METHYLNAPHTHALENE 1.33E+00 4.70E+00 7.30E+00 NA NA 1 1 0.1 0.1 APHTHALENE 3.29E-01 2.70E+00 NA NA 1 1 0.1 0.1 PHENANTHRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYEENE 4.00E+00 1.30E+01 NA NA 1 1 0.1 0.1 METALS 4.00E+00 1.30E+01 NA NA 1 1 0.01 0.01 ARSENIC 1.58E+01 4.28E+01 1.75E+00 3.00E+02 1 1 0.01 0.01 BARUM 2.16E+02 4.03E+02 NA 7.00E+02 1 1 0.01 0.01 CADMIUM 2.14E+04 4.6E+04 NA NA 1 1 0.01	DI-n-BUTYL PH'IHALATE	2.34E-01	3.20E-01	NA	1.00E-01	1	1	0.1	0.1
INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 7.30E-01 NA 1 1 0.1 2-METHYLNAPHTHALENE 1.03E+00 3.50E+00 NA NA 1 1 0.1 0.1 NAPHTHALENE 8.29E+01 2.70E+00 NA NA 1 1 0.1 0.1 PHENANTHRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PHENANTHRENE 4.60E+00 1.80E+01 NA NA 1 1 0.01 0.01 METALS 1.58E+01 4.28E+01 1.75E+00 3.00E-02 1 1 0.01 0.01 BRYLLUM 2.16E+02 4.03E+00 S.00E-03 1 1 0.01 0.01 CADMTUM 2.16E+02 4.03E+00 NA 5.00E-03 1 1 0.01 0.01 CALCTUM 2.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CALCTUM 2.20E+04		6.36E+00	2.50E+01	NA	4.00E-02	1	1	0.1	0.1
2-METHYLNAPHTHALENE 1.03E+00 3.50E+00 NA NA 1 1 0.1 NAPHTHALENE 8.29E-01 2.70E+00 NA NA 1 1 0.1 0.1 PHENANTHRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 4.60E+00 1.80E+01 NA NA 1 1 0.1 0.1 METALS . . . NA NA 1 1 0.01 0.01 AKENNC 1.58E+01 4.28E+01 1.75E+00 3.00E-02 1 1 0.01 0.01 BARIUM 2.16E+02 4.03E+02 NA 7.00E-02 1 1 0.01 0.01 CADMTUM 2.16E+02 4.03E+00 5.00E-03 1 1 0.01 0.01 CALCTUM 2.76E+01 5.09E+01 NA NA 1 1 0.01 0.01 CALCTUM 2.76E+04 SABE+04 NA NA 1 1 0.01 0.01 CALCTUM								0.1	0.1
NAPHTHALENE 8.29E-01 2.70E+00 NA NA 1 1 0.1 0.1 PHENANTHRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYENE 4.60E+00 1.80E+01 NA NA 1 1 0.1 0.1 METALS									
PHENANTHRENE 3.40E+00 1.30E+01 NA NA 1 1 0.1 0.1 PYRENE 4.60E+00 1.80E+01 NA NA 1 1 0.1 0.1 METALS	_								
PYRENE 4.60E+00 1.80E+01 NA 3.00E+02 1 0.1 0.1 METAL S 1.38E+04 1.81E+04 NA NA 1 1 0.01 0.01 ARSENIC 1.58E+01 4.28E+01 1.75E+00 3.00E-04 1 1 0.01 0.01 BARIUM 2.16E+02 4.03E+02 NA 7.00E+02 1 1 0.01 0.01 BERYLLTUM 4.48E+01 7.17E+01 4.30E+00 5.00E+03 1 1 0.01 0.01 CALCTUM 3.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CHROMIUM 2.97E+01 5.09E+01 NA NA 1 1 0.01 0.01 COPFER 4.84E+01 1.16E+02 NA 3.70E+02 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
METALS NA NA NA NA 1 1 0.0 0.01 ALUMINUM 1.38E+04 1.81E+04 NA NA 1 1 0.01 0.01 ARSENIC 1.58E+01 1.75E+00 3.00E-04 1 1 0.01 0.01 BARIUM 2.16E+02 4.03E+02 NA 7.00E+02 1 1 0.01 0.01 BERYLLIUM 4.48E-01 7.17E-01 4.30E+00 5.00E-03 1 1 0.01 0.01 CADMIUM 2.14E+00 4.46E+00 NA 5.00E-04 1 1 0.01 0.01 CALCIUM 3.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CHROMIUM 2.97E+01 5.09E+01 NA NA 1 1 0.01 0.01 COBALT 9.86E+00 1.31E+01 NA NA 1 1 0.01 0.01 IRON 2.20E+04 2.88E+04									
ALUMINUM1.38E+041.81E+04NANA110.010.01ARSENIC1.58E+014.28E+011.75E+003.00E-04110.010.01BARUM2.16E+024.08E+02NA7.00E-02110.010.01BERYLLIUM4.48E-017.17E-014.30E+005.00E-03110.010.01CADMTUM2.14E+004.46E+00NA5.00E-04110.010.01CALCIUM3.76E+046.21E+04NANA110.010.01CALCIUM2.97E+015.09E+01NANA110.010.01COBALT9.86E+001.31E+01NANA110.010.01COPFER4.84E+011.16E+02NA3.70E-02110.010.01IRON2.20E+042.39E+04NANA110.010.01MACNESIUM1.41E+042.09E+04NANA110.010.01MARCANESE5.23E+027.37E+02NA5.00E+03110.010.01MERCURY1.94E-014.69E-01NANA110.010.01NICKEL3.10E+015.33E+01NANA110.010.01SODIUM1.56E+022.53E+02NANA110.010.01NICKEL3.00E+018.19E+01NA5.00E+031<	TINENE	4.00E+00	1.000+01	NA	3.00E-02	1	1	0.1	0.1
ARSENIC1.58E+014.28E+011.75E+003.00E-04110.010.01BARIUM2.16E+024.03E+02NA7.0QE-02110.010.01BERYLLIUM4.48E-017.17E-014.30E+005.00E-03110.010.01CADMTUM2.14E+004.46E+00NA5.00E-04110.010.01CALCIUM3.76E+046.21E+04NANA110.010.01CHROMIUM2.97E+015.09E+01NANA110.010.01COBALT9.86E+001.31E+01NANA110.010.01COPPER4.84E+011.16E+02NA3.70E+02110.010.01IRON2.20E+042.88E+04NANA110.010.01MAGANESE5.23E+027.37E+02NA5.00E-03110.010.01MARCANESE5.23E+027.37E+02NANA110.010.01MARCANESE5.23E+027.37E+02NAS.00E-03110.010.01MARCANESE5.23E+027.37E+02NANA110.010.01MARCANESE5.23E+027.37E+02NANA110.010.01MARCANESE5.23E+027.37E+02NANA110.010.01MARCANESE5.23E+02NANA1	METALS								
BARIUM 2.16E+02 4.03E+02 NA 7.00E+02 1 1 0.01 0.01 BERYLLIUM 4.48E-01 7.17E-01 4.30E+00 5.00E+03 1 1 0.01 0.01 CADMIUM 2.14E+00 4.46E+00 NA 5.00E+04 1 1 0.01 0.01 CALCIUM 3.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CHROMIUM 2.97E+01 5.09E+01 NA NA 1 1 0.01 0.01 COBALT 9.86E+00 1.31E+01 NA NA 1 1 0.01 0.01 COPPER 4.84E+01 1.16E+02 NA 3.70E+02 1 1 0.01 0.01 IRON 2.20E+04 2.88E+04 NA NA 1 1 0.01 0.01 MAGNESEIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MERCURY 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01	ALUMINUM	1.38E+04	1.81E+04	NA	NA	1	1	0.01	0.01
BERYLLIUM 4.48E-01 7.17E-01 4.30E+00 5.00E-03 1 1 0.01 0.01 CADMIUM 2.14E+00 4.46E+00 NA 5.00E-04 1 1 0.01 0.01 CALCIUM 3.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CALCIUM 3.76E+04 6.21E+04 NA NA 1 1 0.01 0.01 CHROMIUM 2.97E+01 5.09E+01 NA NA 1 1 0.01 0.01 COBALT 9.86E+00 1.31E+01 NA NA 1 1 0.01 0.01 COPPER 4.84E+01 1.16E+02 NA 3.70E-02 1 1 0.01 0.01 MACNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MACNESIUM 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 MERCURY 1.94E-0		1.58E+01	4.28E+01	1.75E+00	3.00E-04	1	1	0.01	0.01
CADMIUM2.14E+004.46E+00NA5.00E-04110.010.01CALCIUM3.76E+046.21E+04NANA110.010.01CHROMIUM2.97E+015.09E+01NANA110.010.01COBALT9.86E+001.31E+01NANA110.010.01COPPER4.84E+011.16E+02NA3.70E-02110.010.01IRON2.20E+042.88E+04NANA110.010.01MACNESIUM1.41E+042.09E+04NANA110.010.01MARCANESE5.23E+027.37E+02NA5.00E-03110.010.01MERCURY1.94E-014.69E-01NANA110.010.01POTASSIUM2.03E+032.55E+03NANA110.010.01SELENIUM3.40E-018.19E-01NA5.00E-03110.010.01SODIUM1.56E+022.53E+02NANA110.010.01VANADIUM3.01E+014.29E+01NA7.00E-05110.010.01						1 ·	1		
CALCIUM3.76E+046.21E+04NANA110.010.01CHROMIUM2.97E+015.09E+01NANA110.010.01COBALT9.86E+001.31E+01NANA110.010.01COPPER4.84E+011.16E+02NA3.70E-02110.010.01IRON2.20E+042.88E+04NANA110.010.01MACNESIUM1.41E+042.09E+04NANA110.010.01MANGANESE5.23E+027.37E+02NA5.00E-03110.010.01MERCURY1.94E-014.69E-01NANA110.010.01NICKEL3.10E+015.33E+01NANA110.010.01SELENIUM3.40E-018.19E-01NANA110.010.01SODIUM1.56E+022.53E+02NANA110.010.01VANADIUM3.01E+014.29E+01NA7.00E-05110.010.01						1	1		
CHROMIUM 2.97E+01 5.09E+01 NA NA 1 1 0.01 0.01 COBALT 9.86E+00 1.31E+01 NA NA 1 1 0.01 0.01 COPPER 4.84E+01 1.16E+02 NA 3.70E-02 1 1 0.01 0.01 IRON 2.20E+04 2.88E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 NICKEL 3.10E+01 5.33E+01 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01									
COBALT 9.86E+00 1.31E+01 NA NA 1 1 0.01 0.01 COPPER 4.84E+01 1.16E+02 NA 3.70E-02 1 1 0.01 0.01 IRON 2.20E+04 2.88E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MARCANESE 5.23E+02 7.37E+02 NA 5.00E-03 1 1 0.01 0.01 MERCURY 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 NICKEL 3.10E+01 5.33E+01 NA 2.00E-02 1 1 0.01 0.01 POTASSIUM 2.03E+03 2.59E+03 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01 8.19E-01 NA SODE-03 1 1 0.01 0.01 SODIUM 1.56E+02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
COPPER4.84E+011.16E+02NA3.70E-02110.010.01IRON2.20E+042.88E+04NANA110.010.01MACNESIUM1.41E+042.09E+04NANA110.010.01MANGANESE5.23E+027.37E+02NA5.00E-03110.010.01MERCURY1.94E-014.69E-01NANA110.010.01NICKEL3.10E+015.33E+01NANA110.010.01POTASSIUM2.03E+032.59E+03NANA110.010.01SELENIUM3.40E-018.19E-01NA5.00E-03110.010.01SODIUM1.56E+022.53E+02NANA110.010.01THALLIUM2.57E-013.83E-01NA7.00E-05110.010.01VANADIUM3.01E+014.29E+01NA7.00E-03110.010.01									
IRON 2.20E+04 2.88E+04 NA NA 1 1 0.01 0.01 MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MANGANESE 5.23E+02 7.37E+02 NA 5.00E-03 1 1 0.01 0.01 MERCURY 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 NICKEL 3.10E+01 5.33E+01 NA NA 1 1 0.01 0.01 POTASSIUM 2.03E+03 2.59E+03 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01 8.19E-01 NA 5.00E-03 1 1 0.01 0.01 SODIUM 1.56E+02 2.53E+02 NA NA 1 1 0.01 0.01 THALLIUM 2.57E-01 3.83E-01 NA 7.00E-05 1 1 0.01 0.01 VANADIUM 3.01E+01 4.29E+01 NA 7.00E-03 1 1 0.01 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
MAGNESIUM 1.41E+04 2.09E+04 NA NA 1 1 0.01 0.01 MANGANESE 5.23E+02 7.37E+02 NA 5.00E-03 1 1 0.01 0.01 MERCURY 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 NICKEL 3.10E+01 5.33E+01 NA NA 1 1 0.01 0.01 POTASSIUM 2.03E+03 2.59E+03 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01 8.19E-01 NA 5.00E-03 1 1 0.01 0.01 SODIUM 1.56E+02 2.53E+02 NA NA 1 1 0.01 0.01 THALLIUM 2.57E-01 3.83E-01 NA 7.00E-05 1 1 0.01 0.01									
MANGANESE5.23E+027.37E+02NA5.00E-03110.010.01MERCURY1.94E-014.69E-01NANA110.010.01NICKEL3.10E+015.33E+01NA2.00E-02110.010.01POTASSIUM2.03E+032.59E+03NANA110.010.01SELENIUM3.40E-018.19E-01NA5.00E-03110.010.01SODIUM1.56E+022.53E+02NANA110.010.01THALLIUM2.57E-013.83E-01NA7.00E-05110.010.01VANADIUM3.01E+014.29E+01NA7.00E-03110.010.01									
MERCURY 1.94E-01 4.69E-01 NA NA 1 1 0.01 0.01 NICKEL 3.10E+01 5.33E+01 NA 2.00E-02 1 1 0.01 0.01 POTASSIUM 2.03E+03 2.59E+03 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01 8.19E-01 NA 5.00E-03 1 1 0.01 0.01 SODIUM 1.56E+02 2.53E+02 NA NA 1 1 0.01 0.01 THALLIUM 2.57E-01 3.83E-01 NA 7.00E-05 1 1 0.01 0.01 VANADIUM 3.01E+01 4.29E+01 NA 7.00E-03 1 1 0.01 0.01									
NICKEL 3.10E+01 5.33E+01 NA 2.00E-02 1 1 0.01 0.01 POTASSIUM 2.03E+03 2.59E+03 NA NA 1 1 0.01 0.01 SELENIUM 3.40E-01 8.19E-01 NA 5.00E-03 1 1 0.01 0.01 SODIUM 1.56E+02 2.53E+02 NA NA 1 1 0.01 0.01 THALLIUM 2.57E-01 3.83E-01 NA 7.00E-05 1 1 0.01 0.01 VANADIUM 3.01E+01 4.29E+01 NA 7.00E-03 1 1 0.01 0.01	MERCURY								
POTASSIUM2.03E+032.59E+03NANA110.010.01SELENIUM3.40E-018.19E-01NA5.00E-03110.010.01SODIUM1.56E+022.53E+02NANA110.010.01THALLIUM2.57E-013.83E-01NA7.00E-05110.010.01VANADIUM3.01E+014.29E+01NA7.00E-03110.010.01	NICKEL	3.10E+01							
SELENIUM 3.40E-01 8.19E-01 NA 5.00E-03 1 1 0.01 0.01 SODIUM 1.56E+02 2.53E+02 NA NA 1 1 0.01 0.01 THALLIUM 2.57E-01 3.83E-01 NA 7.00E-05 1 1 0.01 0.01 VANADIUM 3.01E+01 4.29E+01 NA 7.00E-03 1 1 0.01 0.01	POTASSIUM								
THALLIUM2.57E-013.83E-01NA7.00E-05110.010.01VANADIUM3.01E+014.29E+01NA7.00E-03110.010.01	SELENIUM	3.40E-01	8.19E-01	NA	5.00E-03	1			
VANADIUM 3.01E+01 4.29E+01 NA 7.00E-03 1 1 0.01 0.01			2.53E+02	NA		1	1	0.01	0.01
ZINC 2.55E+02 6.16E+02 NA 3.00E-01 1 1 0.01 0.01									
	ZINC	2.55E+02	6.16E+02	NA	3.00E-01	1	1	0.01	0.01

EXPOSURE, RISK AND HAZARD CALCULATIONS

EXPOSURE SCENARIO : TRESPASSER-OLDER CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

	DAILY INTAKE LIFETIME UPPER BOUND DA		DAILY	AVERAGE INTAKE g/day)	HAZARD (CDI/	-		
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
VOCs								
ACETONE	4.76E-10	3.74E-09	0.00E+00	0.00E+00	2.78E-09	2.18E-08	2.78E-08	2.18E-07
BROMOMETHANE	2.19E-10	4.49E-10	0.00E+00	0.00E+00	1.28E-09	2.62E-09	9.15E-07	1.87E-06
2-BUTANONE	2.48E-10	1.35E-09	0.00E+00	0.00E+00	1.45E-09	7.86E-09	2.41E-09	1.31E-08
CARBON DISULFIDE	2.13E-10	2.99E-10	0.00E+00	0.00E+00	1.24E-09	1.75E-09	1.24E-08	1.75E-08
1,2-DICHLOROETHENE (TOTAL)	1.38E-09	1.18E-08	0.00E+00	0.00E+00	8.07E-09	6.91E-08	8.96E-07	7.67E-06
ETHYLBENZENE	3.54E-10	2.62E-09	0.00E+00	0.00E+00	2.06E-09	1.53E-08	2.06E-08	1.53E-07
2-HEXANONE	2.39E-10	8.98E-10	0.00E+00	0.00E+00	1.39E-09	5.24E-09	0.00E+00	0.00E+00
METHYLENE CHLORIDE	2.18E-10	2.99E-10	1.64E-12	2.25E-12	1.27E-09	1.75E-09	2.12E-08	2.91E-08
TOLUENE	3.28E-10	2.44E-09	0.00E+00	0.00E+00	1.91E-09	1.42E-08	9.56E-09	7.12E-08
TRICHLOROETHENE	6.72E-10	7.23E-09	0.00E+00	0.00E+00	3.92E-09	4.22E-08	0.00E+00	0.00E+00
VINYL CHLORIDE	3.54E-10	2.62E-09	6.72E-10	4.98E-09	2.06E-09	1.53E-08	0.00E+00	0.00E+00
XYLENES (TOTAL)	8.23E-10	9.08E-09	0.00E+00	0.00E+00	4.80E-09	5.30E-08	2.40E-09	2.65E-08
SVOCs		5.0.00.00					0.007.07	100000
ACENAPHTHENE	8.54E-09	5.04E-08	0.00E+00	0.00E+00	4.98E-08	2.94E-07	8.30E-07 0.00E+00	4.90E-06 0.00E+00
ACENAPHTHYLENE ANTHRACENE	6.85E-09 1.54E-08	2.97E-08 1.35E-07	0.00E+00 0.00E+00	0.00E+00 0.00E+00	4.00E-08 8.96E-08	1.73E-07 7.87E-07	2.99E-07	0.00E+00 2.62E-06
BENZO (a) ANTHRACENE	6.53E-08	7.55E-07	4.77E-08	5.51E-07	3.81E-07	4.41E-06	0.00E+00	0.00E+00
BENZO (b) FLUORANTHENE	1.79E-07	2.16E-06	1.30E-07	1.58E-06	1.04E-06	1.26E-05	0.00E+00	0.00E+00
BENZO (k) FLUORANTHENE	8.42E-08	9.89E-07	6.15E-09	7.22E-08	4.91E-07	5.77E-06	0.00E+00	0.00E+00
BENZO (g,h,i) PERYLENE	3.63E-08	3.96E-07	0.00E+00	0.00E+00	2.12E-07	2.31E-06	0.00E+00	0.00E+00
BENZO (a) PYRENE	9.14E-08	1.08E-06	6.68E-07	7.88E-06	5.33E-07	6.29E-06	0.00E+00	0.00E+00
BIS (2-ETHYLHEXYL) PHTHALATE	6.18E-08	6.92E-07	8.66E-10	9.69E-09	3.61E-07	4.04E-06	1.80E-05	2.02E-04
JTYL BENZYL PHTHALATE	8.83E-09	5.40E-08	0.00E+00	0.00E+00	5.15E-08	3.15E-07	2.57E-07	1.57E-06
ARBAZOLE	4.21E-08	4.68E-07	8.42E-10	9.35E-09	2.46E-07	2.73E-06	0.00E+00	0.00E+00
CHRYSENE	6.33E-08	7.28E-07	4.62E-10	5.32E-09	3.69E-07	4.25E-06	0.00E+00	0.00E+00
DIBENZO (a,h) ANTHRACENE	1.97E-08	1.89E-07	1.44E-07	1.38E-06	1.15E-07	1.10E-06	0.00E+00	0.00E+00
DIBENZOFURAN	1.32E-08	1.08E-07	0.00E+00	0.00E+00	7.69E-08	6.29E-07	0.00E+00	0.00E+00
DI-n-BUTYL PHTHALATE	6.79E-09	2.88E-08	0.00E+00	0.00E+00	3.96E-08	1.68E-07	3.96E-07	1.68E-06
FLUORANTHENE	1.85E-07	2.25E-06	0.00E+00	0.00E+00	1.08E-06	1.31E-05	2.69E-05	3.28E-04
FLUORENE	9.26E-09	5.94E-08 4.23E-07	0.00E+00 2.82E-08	0.00E+00 3.09E-07	5.40E-08 2.25E-07	3.46E-07 2.47E-06	1.35E-06 0.00E+00	8.66E-06 0.00E+00
INDENO (1,2,3-cd) PYRENE 2-METHYLNAPHTHALENE	3.86E-08 2.99E-08	4.23E-07 3.15E-07	2.82E-08 0.00E+00	0.00E+00	1.74E-07	2.47 E-06 1.84E-06	0.00E+00	0.00E+00
NAPHTHALENE	2.41E-08	2.43E-07	0.00E+00	0.00E+00	1.40E-07	1.42E-06	0.00E+00	0.00E+00
PHENANTHRENE	9.87E-08	1.17E-06	0.00E+00	0.00E+00	5.76E-07	6.82E-06	0.00E+00	0.00E+00
PYRENE	1.34E-07	1.62E-06	0.00E+00	0.00E+00	7.79E-07	9.44E-06	2.60E-05	3.15E-04
METALS								
ALUMINUM	3.51E-04	9.79E-04	0.00E+00	0.00E+00	2.05E-03	5.71E-03	0.00E+00	0.00E+00
ARSENIC	4.02E-07	2.31E-06	7.04E-07	4.05E-06	2.35E-06	1.35E-05	7.82E-03	4.50E-02
BARIUM	5.50E-06	2.18E-05	0.00E+00	0.00E+00	3.21E-05	1.27E-04	4.58E-04	1.82E-03
BERYLLIUM	1.14E-08	3.88E-08	4.90E-08	1.67E-07	6.65E-08	2.26E-07	1.33E-05	4.52E-05
CADMIUM	5.45E-08	2.41E-07	0.00E+00	0.00E+00	3.18E-07	1.41E-06	6.35E-04	2.81E-03
CALCIUM	9.57E-04	3.36E-03	0.00E+00	0.00E+00	5.58E-03	1.96E-02	0.00E+00	0.00E+00
CHROMIUM	7.56E-07	2.75E-06	0.00E+00	0.00E+00	4.41E-06	1.61E-05	0.00E+00	0.00E+00 0.00E+00
COBALT COPPER	2.51E-07 1.23E-06	7.08E-07 6.27E-06	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.46E-06 7.18E-06	4.13E-06 3.66E-05	0.00E+00 1.94E-04	9.89E-04
IRON	5.60E-04	1.56E-03	0.00E+00	0.00E+00	3.27E-03	9.09E-03	0.00E+00	0.00E+00
MAGNESIUM	3.59E-04	1.13E-03	0.00E+00	0.00E+00	2.09E-03	6.59E-03	0.00E+00	0.00E+00
MANGANESE	1.33E-05	3.99E-05	0.00E+00	0.00E+00	7.76E-05	2.33E-04	1.55E-02	4.65E-02
MERCURY	4.94E-09	2.54E-08	0.00E+00	0.00E+00	2.88E-08	1.48E-07	0.00E+00	0.00E+00
NICKEL	7.89E-07	2.88E-06	0.00E+00	0.00E+00	4.60E-06	1.68E-05	2.30E-04	8.41E-04
POTASSIUM	5.17E-05	1.40E-04	0.00E+00	0.00E+00	3.01E-04	8.17E-04	0.00E+00	0.00E+00
SELENIUM	8.65E-09	4.43E-08	0.00E+00	0.00E+00	5.05E-08	2.58E-07	1.01E-05	5.17E-05
SODIUM	3.97E-06	1.37E-05	0.00E+00	0.00E+00	2.32E-05	7.98E-05	0.00E+00	0.00E+00
HALLIUM	6.54E-09	2.07E-08	0.00E+00	0.00E+00	3.81E-08	1.21E-07	5.45E-04	1.73E-03
ÅNADIUM	7.66E-07	2.32E-06	0.00E+00	0.00E+00	4.47E-06	1.35E-05	6.38E-04	1.93E-03
LINC	6.49E-06	3.33E-05	0.00E+00	0.00E+00	3.79E-05	1.94E-04	1.26E-04	6.48E-04
	TOTAL ADDITIONAL ESTIMATED CANCER RISKS :						HAZARD	
			1.78E-06	1.60E-05			2.63E-02	1.03E-01

SUMMARY TABLE

EXPOSURE SCENARIO : TRESPASSER-OLDER CHILD SITE : LEICA SITE SECTOR : SECTOR A SOIL LOCATION : ON-SITE

DE 0 DE 0 ACETONE 1.36E-02 2.50E-02 0.00E+00 0.00E+00 2.78E-08 2.18E-08 BROMOMETHANE 6.77E-03 3.00E-00 0.00E+00 0.00E+00 2.18E-08 2-BUTANONE 7.97E-03 3.00E-00 0.00E+00 0.00E+00 2.18E-08 2-BUTANONE 6.00E+00 0.00E+00 0.00E+00 <t< th=""><th></th><th colspan="9">LIFETIME UPPER BOUND HAZARD QUOTIENT</th></t<>		LIFETIME UPPER BOUND HAZARD QUOTIENT								
PARAMETER mg/kg mg/kg MEAN RME MEAN RME VOCG ACETONE 1366-40 2506-42 0008-00 0.008-00 9,156-40 1,870-40 BROMOMETHANE 6276-03 3006-43 0.008-00 0.008-00 1,870-00 1,870-00 BROMOMETHANE 6276-03 2,006-40 0.008-00 0.008-00 2,415-00 1,356-00 CARBON DISULFIDE 6.096-30 2,008-40 0.008-00 0.008-		MEDIA CONC	MEDIA CONCENTRATION EXCESS CANCER RISK							
NUMBER 126E-02 126E-02 126E-03 126E-04 126E-04 <th< td=""><td></td><td>MEAN</td><td>RME</td><td></td><td></td><td></td><td></td></th<>		MEAN	RME							
ACETONE 1.36F.02 2.50F.42 0.00F.40	PARAMETER	mg/kg	mg/kg	MEAN	RMĒ	MEAN	RME			
ACETONE 1.36F.02 2.50F.42 0.00F.40										
BROMOMETHANNE 6.27E-03 3.00E-30 0.00E-00 0.00E-00 9.15E-07 1.87E-02 CARBON DISULFIDE 6.09C-03 2.00E-40 0.00E+00 2.41E-04 1.31E-02 L_ADICI LONGETHENE (TOTAL) 3.95E-02 7.91E-02 0.00E+00 0.00	VOCs									
2-BUTANONE 7.09E-30 9.00E-40 0.00E+00 0.00E+00 1.21E-00 CARRON DISULTPIE 0.09E-40 0.00E+00 0.00E+00 0.00E+00 1.24E-04 1.75E-02 L,2-DIGLIONOETHENE (TOTAL) 3.95E-02 7.91E-02 0.00E+00 0.00E+0	ACETONE	1.36E-02	2.50E-02	0.00E+00	0.00E+00	2.78E-08	2.18E-07			
CARBON DISULFIDE 609E-03 200E-03 0.00E-00	BROMOMETHANE	6.27E-03	3.00E-03	0.00E+00	0.00E+00	9.15E-07	1.87E-06			
1.2-DICILOROCTHENE (TOTAL) 355E-02 7.91E-02 0.00E+00 0.00	2-BUTANONE	7.09E-03	9.00E-03	0.00E+00	0.00E+00	2.41E-09	1.31E-08			
ETH-TLEENZENE 1.01E-02 1.75E-02 0.00E+00	CARBON DISULFIDE	6.09E-03	2.00E-03	0.00E+00	0.00E+00	1.24E-08	1.75E-08			
2+HEXANONE 6.00E-03 0.00E-00 0.00E+00	1,2-DICHLOROETHENE (TOTAL)	3.95E-02	7.91E-02	0.00E+00	0.00E+00	8.96E-07	7.67E-06			
METHYLENE CHLORIDE 4.23E-03 2.00E-03 1.46E-12 2.25E-12 2.12E-08 2.112E-08	ETHYLBENZENE	1.01E-02	1.75E-02	0.00E+00	0.00E+00	2.06E-08	1.53E-07			
TOLLIENE 9.46E-03 1.68E-02 0.00E+00	2-HEXANONE	6.82E-03	6.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
TRICHLOROETHENE 1.92E-02 4.82E-02 0.007E+00 0.007E+00 </td <td>METHYLENE CHLORIDE</td> <td>6.23E-03</td> <td>2.00E-03</td> <td>1.64E-12</td> <td>2.25E-12</td> <td>2.12E-08</td> <td>2.91E-08</td>	METHYLENE CHLORIDE	6.23E-03	2.00E-03	1.64E-12	2.25E-12	2.12E-08	2.91E-08			
VINTLCHLORIDE 1.01E-02 1.75E-02 6.72E-10 4.96E-00 0.00E+00	TOLUENE	9.36E-03	1.63E-02	0.00E+00	0.00E+00	9.56E-09	7.12E-08			
XYLENES (TOTAL) 2.35E-02 6.07E-02 0.00E+00 0.00E+00 2.40E-09 2.45E-02 SVOCS	TRICHLOROETHENE	1.92E-02	4.83E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
XYLENES (TOTAL) 2.35E-02 6.07E-02 0.00E+00 0.00E+00 2.40E-09 2.45E-02 SVOCS ACENAPITHENE 2.94E-01 5.60E-01 0.00E+00	VINYL CHLORIDE	1.01E-02	1.75E-02	6.72E-10	4.98E-09	0.00E+00	0.00E+00			
SVOC3 ACENAPHTHENE 2.94E-01 5.60E-01 0.00E+00 8.30E-07 4.90E-4 ACENAPHTHYLENE 2.36E-01 3.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+07 2.52E-7 5.55E-7 2.52E-7 5.55E-7 2.52E-7 5.57E-7 5.57E-7 5.57E-7 1.57E-7 5.57E-7 5.57E-7 </td <td>XYLENES (TOTAL)</td> <td></td> <td></td> <td>0.00E+00</td> <td>0.00E+00</td> <td>2.40E-09</td> <td>2.65E-08</td>	XYLENES (TOTAL)			0.00E+00	0.00E+00	2.40E-09	2.65E-08			
ACENAPHTHENE 2.94E-01 5.68E-01 0.00E-00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ACENAPHTHYLENE 2.36E-01 3.30E-01 0.00E+00										
ACENAPHTHENE 2.94E-01 5.68E-01 0.00E-00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ACENAPHTHYLENE 2.36E-01 3.30E-01 0.00E+00	SVOCs									
ACENAPHTEYLENE 2.36E-01 3.30E-01 0.00E+00		2.94E-01	5.60E-01	0.00E+00	0.00E+00	8.30E-07	4.90E-06			
ANTHRACENE 529E-01 1.50E-00 0.00E+00 2.99E-07 2.62E-4 BENZO (c) FURCANTHENE 2.25E+00 8.40E+01 1.30E-07 1.58E-60 0.00E+00 0.00E+0 BENZO (c) FULORANTHENE 2.90E+00 1.10E+01 6.15E-07 7.25E-08 0.00E+00 0.00E+0 BENZO (c) FULORANTHENE 2.90E+00 1.10E+01 6.15E-07 7.25E-08 0.00E+00 0.00E+0 BENZO (c) FYRENE 1.25E+00 4.40E+00 0.00E+00 0.00E+00 0.00E+0 0.00E+0 BENZO (c) FYRENE 1.125E+00 7.70E+00 8.65E-10 9.35E-09 1.80E-05 2.025E BENZO (c) FYRENE 1.35E+00 7.70E+00 8.65E-10 9.35E-09 0.00E+00 0.00E+0 BIS 0.5THYLHEXYL) FHTHALATE 2.13E+00 7.70E+00 8.65E-10 9.35E-09 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.79E-01 2.10E+00 4.62E-10 9.35E-09 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.79E-01 2.10E+00 4.62E-10 9.35E-09 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.79E-01 2.10E+00 1.46E-7 1.38E-66 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.79E-01 2.10E+00 1.46E-7 1.38E-66 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.79E-01 2.10E+00 1.46E-7 1.38E-66 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.39E-01 2.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.39E-01 2.30E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+0 DIBENZO (c) A) ANTHRACENE 6.39E-01 2.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+0 PURENE 3.19E-01 6.60E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+0 PURENE 3.19E-01 6.60E-01 0.00E+00 0.00E+00 0.00E+0 0.00E+0 PURENE 8.29E-01 2.70E+00 2.82E-8 3.99E-67 0.00E+00 0.00E+0 PURENE 8.29E-01 2.70E+00 2.82E-8 3.99E-67 0.00E+00 0.00E+0 PURENE 8.29E-01 2.70E+00 2.82E-8 3.99E-67 0.00E+00 0.00E+0 PURENE 8.29E-01 2.70E+00 2.82E-8 3.99E-67 0.00E+0 0.00E+0 PURENE 8.29E-01 2.70E+00 0.00E+00 0.00E+0 0.00E+0 0.00E+0 0.00E+0 PURENE 8.29E-01 2.70E+00 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 PURENE 8.29E-01 1.38E+01 0.30E+01 0.00E+0 0.00E+0 0.00E+0 0.00E+0 PURENE 8.29E-01 1.38E+01 0.30E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 PURENE 8.29E-01 1.38E+01 0.48E+01 7.48E+01 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 PURENE 8.29E-01 2.38E+01 0.00E+0 0.							0.00E+00			
DENZO (a) ANTHRACENE 2.25E+00 8.40E+00 4.77E-08 5.51E-07 0.00E+00 0.00E+00 BENZO (b) FLUORANTHENE 2.90E+01 1.10E+16 1.55E-07 7.22E-08 0.00E+00 0.										
BENZO (b) FLUORANTHENE 6.15E+00 2.40E+01 1.30E+07 1.58E+06 0.00E+00 0.00E+0										
BENZO (b) FLUORANTHENE 2.90E+00 1.10E+01 6.15E-09 7.22E-08 0.00E+00 0.00E+0	• •									
BENZO (g,h.) PERYLENE 1.25E+00 4.40E+00 0.00E+00										
BENZO (a) PYRENE 315E-00 1.20E-01 6.68E-07 7.88E-06 0.00E+00 0.00E BIS (2-ETHYLHEXYL) PHTHALATE 2.13E+00 7.70E+00 8.66E-10 9.69E-09 1.80E-65 2.02E-4 BIS (2-ETHYLHEXYL) PHTHALATE 2.04E-01 6.00E+00 0.00E+00	.,									
BIS Q-ETHYLHEXYL) PHTHALATE 2.13E+00 7.70E+00 8.66E+10 9.69E-09 1.80E-05 2.02E4 BUTYL BENZYL PHTHALATE 3.04E+01 6.00E+10 0.00E+00 0.00E+01 3.50E+06 8.66E+10 0.00E+00 <										
BUTYL BENZYL PHTHALATE 3.04E-01 6.00E-01 0.00E+00 0.00E+00 0.00E+01 0.00E+0										
CARBAZOLE 1.45E+00 5.20E+00 8.42E+10 9.35E-09 0.00E+00 0.00E+00 CHRYSENE 2.18E+00 8.10E+00 4.62E+10 5.32E+09 0.00E+00 0.00E+00 DIBENZOFURAN 4.54E+01 1.20E+00 0.00E+00 0.00										
CHRYSENE 2.18E+00 8.10E+00 4.62E+10 5.32E-09 0.00E+00 0.00E+00 DIBENZO (a,h) ANTHRACENE 6.79E+01 2.10E+00 1.44E-77 1.38E+06 0.00E+00 0.00E+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
DIBENZO (a,h) ANTHRACENE 6.79E-01 2.10E+00 1.44E-07 1.38E-06 0.00E+00 0.00E					-					
DIBENZOFURAN 4.54E-01 1.20E+00 0.00E+00	CHRYSENE	2.18E+00	8.10E+00	4.62E-10	5.32E-09	0.00E+00	0.00E+00			
Di-n-BUTYL PHTHALATE 2.34E-01 3.20E-01 0.00E+00 0.00E+00 2.96E-05 3.28E FLUORANTHENE 6.30E+00 2.50E+01 0.00E+00 0.00E+00 2.69E-05 3.28E FLUORENE 3.19E-01 6.60E-01 0.00E+00 0.00E+00 <td< td=""><td>DIBENZO (a,h) ANTHRACENE</td><td>6.79E-01</td><td>2.10E+00</td><td>1.44E-07</td><td>1.38E-06</td><td>0.00E+00</td><td>0.00E+00</td></td<>	DIBENZO (a,h) ANTHRACENE	6.79E-01	2.10E+00	1.44E-07	1.38E-06	0.00E+00	0.00E+00			
FLUORANTHENE 6.36E+00 2.50E+01 0.00E+00 0.00E+00 1.35E+05 3.28E4 FLUORENE 3.19E+01 6.60E+01 0.00E+00 0.	DIBENZOFURAN	4.54E-01	1.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
FLUORENE 3.19E-01 6.60E-01 0.00E+00 1.35E-06 8.66E-4 INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 2.82E-08 3.09E-07 0.00E+00 0.00E+40 2-METHYLNAPHTHALENE 1.03E+00 3.50E+00 0.00E+00 0.00E+00<	DI-n-BUTYL PHTHALATE	2.34E-01	3.20E-01	0.00E+00	0.00E+00	3.96E-07	1.68E-06			
INDENO (1,2,3-cd) PYRENE 1.33E+00 4.70E+00 2.82E-08 3.09E-07 0.00E+00 0.00E+ 2-METHYLNAPHTHALENE 1.03E+00 3.50E+00 0.00E+00 0.0	FLUORANTHENE	6.36E+00	2.50E+01	0.00E+00	0.00E+00	2.69E-05	3.28E-04			
2-METHYLNAPHTHALENE 1.03E+00 3.50E+00 0.00E+00 0.00E+00 </td <td>FLUORENE</td> <td>3.19E-01</td> <td>6.60E-01</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>1.35E-06</td> <td>8.66E-06</td>	FLUORENE	3.19E-01	6.60E-01	0.00E+00	0.00E+00	1.35E-06	8.66E-06			
NAPIHTIALENE 8.29E-01 2.70E+00 0.00E+00 0.00E+01	INDENO (1,2,3-cd) PYRENE	1.33E+00	4.70E+00	2.82E-08	3.09E-07	0.00E+00	0.00E+00			
PHENANTHRENE 3.40E+00 1.30E+01 0.00E+00	2-METHYLNAPHTHALENE	1.03E+00	3.50E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PYRENE 4.60E+00 1.80E+01 0.00E+00 0.00E+00 2.60E-05 3.15E4 METALS ALUMINUM 1.38E+01 1.81E+04 0.00E+07 4.05E-06 7.42E-03 4.50E-01 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 6.58E-04 1.82E-01 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-01 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CALCIUM 2.14E+00 4.46E+00 0.00E+00	NAPHTHALENE	8.29E-01	2.70E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
METALS ALUMINUM 1.38E+04 1.81E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ARSENIC 1.58E+01 4.28E+01 7.04E-07 4.05E-06 7.82E-03 4.50E-04 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-01 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E-04 2.81E-04 CALCIUM 3.76E+04 6.21E+04 0.00E+00	PHENANTHRENE	3.40E+00	1.30E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
METALS ALUMINUM 1.38E+04 1.81E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ARSENIC 1.58E+01 4.28E+01 7.04E-07 4.05E+06 7.82E+03 4.50E+04 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E+01 BERYLLIUM 4.48E-01 7.17E+01 4.90E+08 1.67E+07 1.33E+05 4.52E+04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E+04 2.81E+04 CALCIUM 3.76E+04 6.21E+04 0.00E+00 0.00E+00 <td>PYRENE</td> <td>4.60E+00</td> <td>1.80E+01</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>2.60E-05</td> <td>3.15E-04</td>	PYRENE	4.60E+00	1.80E+01	0.00E+00	0.00E+00	2.60E-05	3.15E-04			
ALUMINUM 1.38E+04 1.81E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ARSENIC 1.58E+01 4.28E+01 7.04E-07 4.05E-06 7.82E-03 4.50E-04 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-04 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
ALUMINUM 1.38E+04 1.81E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ARSENIC 1.58E+01 4.28E+01 7.04E-07 4.05E-06 7.82E-03 4.50E-04 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-04 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 <t< td=""><td>METALS</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	METALS									
ARSENIC 1.58E+01 4.28E+01 7.04E-07 4.05E-06 7.82E-03 4.50E-04 BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-04 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E-04 2.81E-01 CALCIUM 3.76E+04 6.21E+04 0.00E+00 0.00E+00 <td< td=""><td></td><td>1.38E+04</td><td>1.81E+04</td><td>0.00E+00</td><td>0.00E+00</td><td>0.00E+00</td><td>0.00E+0</td></td<>		1.38E+04	1.81E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+0			
BARIUM 2.16E+02 4.03E+02 0.00E+00 0.00E+00 4.58E-04 1.82E-01 BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E-04 CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E-04 2.81E-01 CALCIUM 3.76E+04 6.21E+04 0.00E+00							4.50E-02			
BERYLLIUM 4.48E-01 7.17E-01 4.90E-08 1.67E-07 1.33E-05 4.52E- CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E-04 2.81E- CALCIUM 3.76E+04 6.21E+04 0.00E+00							1.82E-03			
CADMIUM 2.14E+00 4.46E+00 0.00E+00 0.00E+00 6.35E-04 2.81E-CALCIUM CALCIUM 3.76E+04 6.21E+04 0.00E+00 0.00E+00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
CALCIUM 3.76E+04 6.21E+04 0.00E+00										
CHROMIUM 2.97E+01 5.09E+01 0.00E+00										
COBALT 9.86E+00 1.31E+01 0.00E+00 <										
COPPER 4.84E+01 1.16E+02 0.00E+00 0.00E+00 1.94E-04 9.89E- IRON 2.20E+04 2.88E+04 0.00E+00 0.00E+00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
IRON 2.02E+04 2.88E+04 0.00E+00 0.00E+00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
MAGNESIUM 1.41E+04 2.09E+04 0.00E+00										
MANGANESE 5.23E+02 7.37E+02 0.00E+00 0.00E+00 1.55E+02 4.65E- 4.65E- 0.00E+01 MERCURY 1.94E-01 4.69E-01 0.00E+00										
MERCURY 1.94E-01 4.69E-01 0.00E+00										
NICKEL 3.10E+01 5.33E+01 0.00E+00 0.00E+00 2.30E-04 8.41E- POTASSIUM 2.03E+03 2.59E+03 0.00E+00 1.73E- VANADIUM 3.01E+01 4.29E+01 0.00E+00 0.00E+00 6.38E-04 1.93E- ZINC 2.55E+02 6.16E+02 0.00E+00 0.00E+00 1.26E-04 6.48E- TUTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX : 1.01TAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX : 1.01E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01							4.65E-0.			
POTASSIUM 2.03E+03 2.59E+03 0.00E+00							0.00E+0			
SELENIUM 3.40E-01 8.19E-01 0.00E+00 0.00E+00 1.01E-05 5.17E- SODIUM 1.56E+02 2.53E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+01 1.73E- VANADIUM 3.01E+01 4.29E+01 0.00E+00 0.00E+00 6.38E-04 1.93E- ZINC 2.55E+02 6.16E+02 0.00E+00 0.00E+00 1.26E-04 6.48E- TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX : 1.01E+01							8.41E-0			
SODIUM 1.56E+02 2.53E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+01 <	POTASSIUM		2.59E+03	0.00E+00	0.00E+00		0.00E+0			
THALLIUM 2.57E-01 3.83E-01 0.00E+00 0.00E+00 5.45E-04 1.73E- VANADIUM 3.01E+01 4.29E+01 0.00E+00 0.00E+00 6.38E-04 1.93E- ZINC 2.55E+02 6.16E+02 0.00E+00 0.00E+00 1.26E-04 6.48E- TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX :	SELENIUM	3.40E-01		0.00E+00	0.00E+00	1.01E-05	5.17E-0			
VANADIUM 3.01E+01 4.29E+01 0.00E+00 6.38E-04 1.93E- 1.93E- 2.55E+02 ZINC 2.55E+02 6.16E+02 0.00E+00 1.26E-04 6.48E- 6.48E- TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX :	SODIUM	1.56E+02	2.53E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+0			
ZINC 2.55E+02 6.16E+02 0.00E+00 0.00E+00 1.26E-04 6.48E- TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX :	THALLIUM	2.57E-01	3.83E-01	0.00E+00	0.00E+00	5.45E-04	1.73E-0			
ZINC 2.55E+02 6.16E+02 0.00E+00 0.00E+00 1.26E-04 6.48E- TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX :	VANADIUM	3.01E+01	4.29E+01	0.00E+00	0.00E+00	6.38E-04	1.93E-0			
TOTAL ADDITIONAL ESTIMATED CANCER RISK HAZARD INDEX :							6.48E-0-			
							1.03E-0			

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

EXPOSURE SCENARIO : CONSTRUCTION WORKER

SITE : LEICA SITE SECTOR : SECTOR C SOIL

LOCATION : ON-SITE

	=C\$xC	<u>F x SA x AF x MF x AB</u> AT x BW	÷		R x ABS x CF x 1 AT x BW		× PIF
			•		11.00		×. 11.
here :							
S = Chemical Concentration in Soil (mg/kg)			÷				
= Ingestion Rate (mg soil/day)			,				
A = Skin Surface Area Available for Contact (cm2	2/event)						
F = Conversion Factor (10E-06 kg/mg)							
F = Exposure Frequency (days/years)							
D = Exposure Duration (years)			•				
W = Body Weight (kg)							
T = Averaging Time (period over which exposur	re is averaged -	days)					
F = Soil to Skin Adherence Factor (mg/cm2)							
BS = Absorption Factor (unitless)							
F = Matrix Factor; part of chemical on soil that is							
IF = Percent of Time Factor: Percent of time in co	ontaminated are	a. (76/100)				•	
			•		•		
ARIABLE	MEAN	RME	REFERENCES				
S (mg/kġ)	MEAN	95% UCL	RACS (1,2)				
R - ADULT (mg/exposure)	50	50	RAGS (1.2)				
			10100 (12)				
A - ADULT (cm2)	5300	5300	DEAP (3)				
F (kg/mg)	0.000001	0.000001	RAGS (1,2)				
F (days/year)	20	80	PROFESSIONAL JU	DGEMENT			
D - ADULT (CARCINOGEN) (yrs)	1	1.	RAGS (1,2)				
D (NON-CARCINOGEN) (yrs)	1	1	RAGS (1,2)				
	• -	-	()	•			
W - ADULT (kg)	70	70	RAGS (12)				
T (CARCINOGEN) (yrs x days /yr)	25550	25550	RAGS (1,2)			•	
T (NON - CARCINOGEN) (yrs x days /yr)	365	365	RAGS (1,2)	•			
			1100 (12)				
F (mg/cm2)	0.2	1	DEAP (3)				
Œ	0.15	0.15	HAWLEY (4)				
BS ORAL (CHEMICAL SPECIFIC)		•	.,				
DERMAL (CHEMICAL SPECIFIC)							
TF	1	1	PROFESSIONAL JU	DCEMENT			

NOTE :

(1) EPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND MANUAL, DECEMBER 1989, EPA/540/1-89/002.
 (2) SUPPLEMENTAL GUIDANCE: "STANDARD DEFAULT EXPOSRE FACTORS", OSWER DIRECTIVE: 9285.6-03, MARCH 25, 1991.
 (3) EPA DERMAL EXPOSURE ASSESSMENT: PRINCIPLES AND APPLICATIONS, EPA/600/8-89/011B, JANUARY 1992.
 (4) HAWLEY, J.K., "ASSESSMENT OF HEALTH RISK FROM EXPOSURE TO CONTAMINATED SOIL", RISK ANALYSIS, VOL 5 NO.4, 1985.

MEDIA CONCENTRATIONS/CONSTANTS

EXPOSURE SCENARIO : CONSTRUCTION WORKER SITE : LEICA SITE SECTOR : SECTOR C SOIL LOCATION : ON-SITE

				ORAL		DERMAL		
	MEDIA CON	ENTRATIO			BIOAVAIL	FACTOR	BIOAVAIL	. FACTOR
· .	· _ · · ·		ORAL	ORAL				
DADALOTOD	MEAN	RME	CSF	RfD	MEAN	RME	MEAN	RME %/100
PARAMETER	mg/kg	mg/kg	1/(mg/kg/d)	mg/kg/d	%/100	%/100	%/100	76/100
VOCs		-						
ACETONE	3.24E+00	9.00E-02	NA .	1.00E-01	1	1	0.25	0.25
BENZENE	3.23E+00	2.00E-02	2.90E-02	NA	1	1	0.25	0.25
2-BUTANONE	3.23E+00	1.50E-02	NA	6.00E-01	1	1	0.25	0.25
CARBON DISULFIDE	3.23E+00	1.80E-02	NA	1.00E-01	1	1	0.25	0.25
1,1-DICHLOROETHANE	3.26E+00	1.32E-01	NA	1.00E-01	1	1	0.25	0.25
1,1-DICHLOROETHENE	3.26E+00	1.20E-01	6.00E-01	9.00E-03 9.00E-03	.1	1	0.25	0.25
1,2-DICHLOROETHENE (TOTAL) ETHYLBENZENE	3.58E+00 3.78E+00	8.15E+00 8.09E+00	NA NA	9.00E-03	1	1	0.25 0.25	0.25 0.25
METHYLENE CHLORIDE	3.23E+00	9.30E-02	7.50E-03	6.00E-01	1	1	0.25	0.25
TETRACHLOROETHENE	3.23E+00	1.00E-02	5.10E-02	1.00E-02	1	1	0.25	0.25
TOLUENE	3.24E+00	1.80E+00	NA	2.00E-01	1	1	0.25	0.25
1,1,1-TRICHLOROETHANE	4.42E+00	8.85E+00	NA	9.00E-02	1	1	0.25	0.25
TRICHLOROETHENE	9.45E+01	2.31E+02	NA	NA	1	1	0.25	0.25
VINYL CHILORIDE	3.23E+00	5.00E-03	1.90E+00	NA	1	1	0.25	0.25
XYLENES (TOTAL)	8.97E+00	1.71E+01	NA	2.00E+00	1	1	0.25	0.25
	1 525 01	0.005.01	7 995 01				••	
BENZO (a) ANTHRACENE BENZO (b) FLUORANTHENE	1.53E-01 1.71E-01	2.00E-01 1.40E-01	7.30E-01 7.30E-01	NA NA	1 1	1 1	0.1 0.1	0.1 0.1
BENZO (k) FLUORANTHENE	1.46E-01	3.70E-02	7.30E-01 7.30E-02	NA	1	1	0.1	0.1
BENZO (g,h,i) PERYLENE	1.69E-01	1.30E-01	7.50E-02 NA	NA	1	1	0.1	0.1
BENZO (a) PYRENE	1.45E-01	6.10E-02	7.30E+00	NA	1	1	0.1	0.1
CHRYSENE	1.40E-01	1.30E-01	7.30E-03	NA	1	1	0.1	0.1
DI-n-BUTYL PHTHALATE	5.39E-01	1.70E+00	NA	1.00E-01	1	1	0.1	0.1
FLUORANTHENE	2.39E-01	4.10E-01	NA	4.00E-02	1	1	0.1	0.1
INDENO (1,2,3-cd) PYRENE	1.71E-01	1.40E-01	7.30E-01	NA	1	1	0.1	0.1
2-METHYLNAPHTHALENE	1.66E-01	1.20E-01	NA	NA	1	1	0.1	0.1
NAPHTHALENE	2.09E-01	2.90E-01	NA	. NA	1	1	0.1	0.1
PHENANTHRENE	1.69E-01	1.90E-01	NA	NA	1	1	0.1	0.1
PYRENE	1.69E-01	2.10E-01	NA	3.00E-02	1	1	0.1	0.1
ACID EXTRACTABLES								
2,4-DIMETHYLPHENOL	3.24E-01	7.50E-01	NA	2.00E-02	1	1	0.1	0.1
2-METHYLPHENOL	2.79E-01	5.70E-01	NA	5.00E-02	1	1	0.1	0.1
4-METHYLPHENOL	2.31E-01	3.80E-01	NA	5.00E-03	1	1	0.1	0.1
FI IENOL	2.04E-01	2.70E-01	NA	6.00E-01	1	1	0.1	0.1
	0.505.02	1.28E+04	NA	N1.4		1	0.01	0.01
ALUMINUM ARSENIC	9.59E+03 2.75E+00	3.85E+04	1.75E+00	NA 3.00E-04	1	1	0.01 0.01	0.01 0.01
BARIUM	9.66E+01	1.45E+02	NA	7.00E-04	1	1	0.01	0.01
BERYLLIUM	4.45E-01	6.97E-01	4.30E+00	5.00E-02	1	1	0.01	0.01
CADMIUM	5.81E-01	9.20E-01	NA	5.00É-04	i	1	0.01	0.01
CALCIUM	6.49E+04	8.26E+04	NA	NA	1	1	0.01	0.01
CHROMIUM	1.41E+01	1.81E+01	NA	NA	1	1	0.01	0.01
COBALT	6.71E+00	8.69E+00	NA	NA	1	1	0.01	0.01
COPPER	4.25E+01	9.34E+01	NA	3.70E-02	1	1	0.01	0.01
IRON	1.65E+04	2.10E+04	NA	NA	1	1	0.01	0.01
LEAD	1.92E+01	3.26E+01	NA	1.40É-03	1	1	0.01	0.01
MAGNESIUM	1.96E+04	2.56E+04	NA	NA	1	1	0.01	0.01
MANGANESE	5.28E+02	7.03E+02	NA	5.00E-03	1	1	0.01	0.01
MERCURY NICKEL	5.88E-02 3.29E+01	9.16E-02 6.88E+01	NA NA	NA 2.00E-02	1	1 1	0.01	0.01
POTASSIUM	1.55E+03	1.93E+01	NA	2.00E-02 NA	1 1	1	0.01 0.01	0.01 0.01
SELENIUM	2.34E-01	3.89E-01	NA	5.00E-03	1	1	0.01	0.01
SODIUM	2.66E+02	4.38E+02	NA	NA	1	1	0.01	0.01
THALLIUM	1.91E-01	2.42E-01	NA	7.00E-05	1	1	0.01	0.01
VANADIUM	1.91E+01	2.40E+01	NA	7.00E-03	1	1	0.01	0.01
ZINC	7.48E+01	9.09E+01	NA	3.00E-01	1	1	0.01	0.01

EXPOSURE, RISK AND HAZARD CALCULATIONS

.

EXPOSURE SCENARIO : CONSTRUCTION WORKER SITE : LEICA SITE SECTOR : SECTOR C SOIL LOCATION : ON-SITE

	LIFETIME / DAILY I (mg/kj	NTAKE	LIFETIME UP EXCESS CAN		ANNUAL DAILY I (mg/k	NTAKE	HAZARD (CDI/	-
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
VOCs								
ACETONE	3.25E-09	1.00E-09	0.00E+00	0.00E+00	2.28E-07	7.01E-08	2.28E-06	7.01E-07
BENZENE	3.24E-09	2.23E-10	9.40E-11	6:45E-12	2.27E-07	1.56E-08	0.00E+00	0.00E+00
2-BUTANONE	3.24E-09	1.67E-10	0.00E+00	0.00E+00	2.27E-07	1.17E-08	3.78E-07	1.95E-08
CARBON DISULFIDE	3.24E-09	2.00E-10	0.00E+00	0.00E+00	2.27E-07	1.40E-08	2.27E-06	1.40E-07
1,1-DICHLOROETHANE	3.27E-09	1.47E-09	0.00E+00	0.00E+00	2.29E-07	1.03E-07	2.29E-06	1.03E-06
1,1-DICHLOROETHENE	3.27E-09	1.34E-09	1.96E-09	8.01E-10	2.29E-07	9.35E-08	2.54E-05	1.04E-05
1,2-DICHLOROETHENE (TOTAL)	3.59E-09	9.07E-08	0.00E+00	0.00E+00 0.00E+00	2.52E-07 2.66E-07	6.35E-06 6.30E-06	2.79E-05 2.66E-06	7.05E-04 6.30E-05
ETHYLBENZENE	3.79E-09	9.00E-08	0.00E+00 2.43E-11	7.76E-12	2.00E-07 2.27E-07	7.24E-08	2.08E-06 3.78E-06	1.21E-06
METHYLENE CHLORIDE TETRACHLOROETHENE	3.24E-09 3.24E-09	1.03E-09 1.11E-10	1.65E-10	5.67E-12	2.27E-07	7.79E-09	2.27E-05	7.79E-07
TOLUENE	3.25E-09	2.00E-08	0.00E+00	0.00E+00	2.28E-07	1.40E-06	1.14E-06	7.01E-06
1,1,1-TRICHLOROETHANE	4.44E-09	9.85E-08	0.00E+00	0.00E+00	3.11E-07	6.89E-06	3.45E-06	7.66E-05
TRICHLOROETHENE	9.48E-08	2.57E-06	0.00E+00	0.00E+00	6.64E-06	1.80E-04	0.00E+00	0.00E+00
VINYL CHLORIDE	3.24E-09	5.56E-11	6.16E-09	1.06E-10	2.27E-07	3.89E-09	0.00E+00	0.00E+00
XYLENES (TOTAL)	9.00E-09	1.90E-07	0.00E+00	0.00E+00	6.30E-07	1.33E-05	3.15E-07	6.66E-06
SVOCs				o			0.000 -0	0.007
BENZO (a) ANTHRACENE	1.13E-10	1.16E-09	8.23E-11	8.46E-10	7.89E-09	8.11E-08	0.00E+00	0.00E+00
BENZO (b) FLUORANTHENE	1.26E-10	8.11E-10	9.20E-11	5.92E-10	8.82E-09	5.68E-08	0.00E+00	0.00E+00
BENZO (k) FLUORANTHENE	1.08E-10	2.14E-10	7.85E-12	1.56E-11	7.53E-09 8.72E-09	1.50E-08 5.27E-08	0.00E+00 0.00E+00	0.00E+00 0.00E+00
BENZO (g,h,i) PERYLENE	1.25E-10 1.07E-10	7.53E-10 3.53E-10	0.00E+00 7.80E-10	0.00E+00 2.58E-09	8.72E-09 7.48E-09	5.27E-08 2.47E-08	0.00E+00	0.00E+00
BENZO (a) PYRENE HRYSENE	1.03E-10	7.53E-10	7.53E-13	5.50E-12	7.22E-09	5.27E-08	0.00E+00	0.00E+00
DI-n-BUTYL PHTHALATE	3.97E-10	9.85E-09	0.00E+00	0.00E+00	2.78E-08	6.89E-07	2.78E-07	6.89E-06
FLUORANTHENE	1.76E-10	2.37E-09	0.00E+00	0.00E+00	1.23E-08	1.66E-07	3.08E-07	4.16E-06
INDENO (1,2,3-cd) PYRENE	1.26E-10	8.11E-10	9.20E-11	5.92E-10	8.82E-09	5.68E-08	0.00E+00	0.00E+00
2-METHYLNAPHIHALENE	1.22E-10	6.95E-10	0.00E+00	0.00E+00	8.56E-09	4.87E-08	0.00E+00	0.00E+00
NAPHTHALENE	1.54E-10	1.68E-09	0.00E+00	0.00E+00	1.08E-08	1.18E-07	0.00E+00	0.00E+00
PHENANTHRENE	1.25E-10	1.10E-09	0.00E+00	0.00E+00	8.72E-09	7.70E-08	0.00E+00	0.00E+00
PYRENE	1.25E-10	1.22E-09	0.00E+00	0.00E+00	8.72E-09	8.52E-08	2.91E-07	2.84E-06
ACID EXTRACTABLES	A 0.017 4.0			0.007 00	1 (77) 00	0.047.07		1 505 05
2,4-DIMETHYLPHENOL	2.39E-10	4.34E-09	0.00E+00	0.00E+00	1.67E-08	3.04E-07	8.36E-07	1.52E-05
2-METHYLPHENOL	2.06E-10 1.70E-10	3.30E-09 2.20E-09	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.44E-08 1.19E-08	2.31E-07 1.54E-07	2.88E-07 2.38E-06	4.62E-06 3.08E-05
4-METHYLPHENOL PHENOL	1.50E-10	1.56E-09	0.00E+00	0.00E+00	1.05E-08	1.09E-07	1.75E-08	1.82E-07
METALS								
ALUMINUM	5.53E-06	3.32E-05	0.00E+00	0.00E+00	3.87E-04	2.32E-03	0.00E+00	0.00E+00
ARSENIC	1.59E-09	9.98E-09	2.78E-09	1.75E-08	1.11E-07	6.99E-07	3.70E-04	2.33E-03
BARIUM	5.57E-08	3.76E-07	0.00E+00	0.00E+00	3.90E-06	2.63E-05	5.57E-05	3.76E-04
BERYLLIUM	2.57E-10	1.81E-09	1.10E-09	7.77E-09	1.80E-08	1.26E-07	3.59E-06	
CADMIUM	3.35E-10	2.38E-09	0.00E+00	0.00E+00	2.35E-08	1.67E-07	4.69E-05	3.34E-04
CALCIUM	3.74E-05	2.14E-04		0.00E+00	2.62E-03	1.50E-02	0.00E+00	0.00E+00
CHROMIUM	8.13E-09	4.69E-08		0.00E+00	5.69E-07	3.28E-06	0.00E+00	0.00E+00 0.00E+00
COBALT COPPER	3.87E-09 2.45E-08	2.25E-08 2.42E-07		0.00E+00 0.00E+00	2.71E-07 1.72E-06	1.58E-06 1.69E-05	0.00E+00 4.64E-05	4.58E-04
IRON	2.45E-08 9.52E-06	2.42E-07 5.44E-05		0.00E+00 0.00E+00	6.66E-04	3.81E-03	4.04E-03 0.00E+00	4.58E-04 0.00E+00
LEAD	1.11E-08	8.45E-08		0.00E+00	7.75E-07	5.92E-06	5.54E-04	4.23E-03
MAGNESIUM	1.13E-05	6.64E-05		0.00E+00	7.92E-04	4.65E-03	0.00E+00	0.00E+00
MANGANESE	3.05E-07	1.82E-06		0.00E+00	2.13E-05	1.28E-04	4.26E-03	2.55E-02
MERCURY	3.39E-11	2.37E-10		0.00E+00	2.37E-09	1.66E-08	0.00E+00	0.00E+00
NICKEL	1.90E-08	1.78E-07	0.00E+00	0.00E+00	1.33E-06	1.25E-05	6.64E-05	6.24E-04
POTASSIUM	8.94E-07	5.00E-06	0.00E+00	0.00E+00	6.26E-05	3.50E-04	0.00E+00	0.00E+00
SELENIUM	1.35E-10	1.01E-09	0.00E+00	0.00E+00	9.45E-09	7.06E-08	1.89E-06	1.41E-05
ODIUM	1.53E-07	1.14E-06	0.00E+00	0.00E+00	1.07E-05	7.95E-05	0.00E+00	0.00E+00
THALLIUM	1.10E-10	6.27E-10		0.00E+00	7.71E-09	4.39E-08	1.10E-04	6.27E-04
VANADIUM	1.10E-08	6.22E-08		0.00E+00	7.71E-07	4.35E-06	1.10E-04	6.22E-04
ZINC	4.32E-08	2.36E-07		0.00E+00	3.02E-06	1.65E-05	1.01E-05	5.50E-05
	TOTAL AD	DITIONAL	ESTIMATED C		(5 :		HAZARD	
CRA 3%7 (7)			1.33E-08	3.08E-08			5.74E-03	3.61E-02

CRA 3967 (7)

SUMMARY TABLE

.

.

EXPOSURE SCENARIO : CONSTRUCTION WORKER SITE : LEICA SITE SECTOR : SECTOR C SOIL LOCATION : ON-SITE

.

			LIFETIME UP		-	VINTENT
	MEDIA CONO	•			CDI	· .
	MEAN	RME	DICES CI			MD
PARAMETER	mg/kg	mg/kg	MEAN	RME	MEAN	RME
·········						
VOCs						
ACETONE	3.24E+00	9.00E-02	0.00E+00	0.00E+00	2.28E-06	7.01E-07
BENZENE	3.23E+00	2.00E-02	9.40E-11	6.45E-12	0.00E+00	0.00E+00
2-BUTANONE	3.23E+00	1.50E-02	0.00E+00	0.00E+00	3.78E-07	1.95E-08
CARBON DISULFIDE	3.23E+00	1.80E-02	0.00E+00	0.00E+00	2.27E-06	1.40E-07
1.1-DICHLOROETHANE	3.26E+00	1.32E-01	0.00E+00	0.00E+00	2.29E-06	1.03E-06
1,1-DICHLOROETHENE	3.26E+00	1.20E-01	1.96E-09	8.01E-10	2.54E-05	1.04E-05
1,2-DICHLOROETHENE (TOTAL)	3.58E+00	8.15E+00	0.00E+00	0.00E+00	2.79E-05	7.05E-04
ETHYLBENZENE	3.78E+00	8.09E+00	0.00E+00	0.00E+00	2.66E-06	6.30E-05
METHYLENE CHLORIDE	3.23E+00	9.30E-02	2.43E-11	7.76E-12	3.78E-06	1.21E-06
TETRACHLOROETHENE	3.23E+00	1.00E-02	1.65E-10	5.67E-12	2.27E-05	7.79E-07
TOLUENE	3.24E+00	1.80E+00	0.00E+00	0.00E+00	1.14E-06	7.01E-06
1,1,1-TRICHLOROETHANE	4.42E+00	8.85E+00	0.00E+00	0.00E+00	3.45E-06	7.66E-05
TRICHLOROETHENE	9.45E+01	2.31E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
•						
VINYL CHLORIDE	3.23E+00	5.00E-03	6.16E-09	1.06E-10	0.00E+00	0.00E+00
XYLENES (TOTAL)	8.97E+00	1.71E+01	0.00E+00	0.00E+00	3.15E-07	6.66E-06
SVOC-						
SVOCs		0.007.01	0.0077 11	0.467.40	0.007 00	0.007 00
BENZO (a) ANTHRACENE	1.53E-01	2.00E-01	8.23E-11	8.46E-10	0.00E+00	0.00E+00
BENZO (b) FLUORANTHENE	1.71E-01	1.40E-01	9.20E-11	5.92E-10	0.00E+00	0.00E+00
BENZO (k) FLUORANTHENE	1.46E-01	3.70E-02	7.85E-12	1.56E-11	0.00E+00	0.00E+00
BENZO (g,h,i) PERYLENE	1.69E-01	1.30E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BENZO (a) PYRENE	1.45E-01	6.10E-02	7.80E-10	2.58E-09	0.00E+00	0.00E+00
CHRYSENE	1.40E-01	1.30E-01	7.53E-13	5.50E-12	0.00E+00	0.00E+00
DI-n-BUTYL PHTHALATE	5.39E-01	1.70E+00	0.00E+00	0.00E+00	2.78E-07	6.89E-06
FLUORANTHENE	2.39E-01	4.10E-01	0.00E+00	0.00E+00	3.08E-07	4.16E-06
INDENO (1,2,3-cd) PYRENE	1.71E-01	1.40E-01	9.20E-11	5.92E-10	0.00E+00	0.00E+00
2-METHYLNAPHTHALENE	1.66E-01	1.20E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NAPHTHALENE	2.09E-01	2.90E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PHENANTHRENE	1.69E-01	1.90E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PYRENE	1.69E-01	2.10E-01	0.00E+00	0.00E+00	2.91E-07	2.84E-06
ACID EXTRACTABLES						
2,4-DIMETHYLPHENOL	3.24E-01	7.50E-01	0.00E+00	0.00E+00	8.36E-07	1.52E-05
2-METHYLPHENOL	2.79E-01	5.70E-01	0.00E+00	0.00E+00	2.88E-07	4.62E-06
4-METHYLPHENOL	2.31E-01	3.80E-01	0.00E+00	0.00E+00	2.38E-06	3.08E-05
PHENOL	2.04E-01	2.70E-01	0.00E+00	0.00E+00	1.75E-08	1.82E-07
METALS						
ALUMINUM	9.59E+03	1.28E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ARSENIC	2.75E+00	3.85E+00	2.78E-09	1.75E-08	3.70É-04	2.33E-03
BARIUM	9.66E+01	1.45E+02	0.00E+00	0.00E+00	5.57E-05	3.76E-04
BERYLLIUM	4.45E-01	6.97E-01	1.10E-09	7.77E-09	3.59E-06	2.53E-05
CADMIUM	5.81E-01	9.20E-01	0.00E+00	0.00E+00	4.69E-05	3.34E-04
CALCIUM	6.49E+04	8.26E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CHROMJUM	1.41E+01	1.81E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COBALT	6.71E+00	8.69E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COPPER	4.25E+01	9.34E+01	0.00E+00	0.00E+00	4.64E-05	4.58E-04
IRON	1.65E+04	2.10E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
LEAD	1.92E+01	3.26E+01	0.00E+00	0.00E+00	5.54E-04	4.23E-03
MAGNESIUM	1.96E+04	2.56E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MANGANESE	5.28E+02	7.03E+02	0.00E+00	0.00E+00	4.26E-03	2.55E-02
MERCURY	5.88E-02	9.16E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NICKEL	3.29E+01	6.88E+01	0.00E+00	0.00E+00	6.64E-05	6.24E-04
POTASSIUM	1.55E+03	1.93E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SELENIUM	2.34E-01	3.89E-01	0.00E+00	0.00E+00	1.89E-06	1.41E-05
SODIUM	2.66E+02	4.38E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
THALLUM	1.91E-01	2.42E-01	0.00E+00	0.00E+00	1.10E-04	6.27E-04
VANADIUM	1.91E+01	2.40E+01	0.00E+00	0.00E+00	1.10E-04	6.22E-04
ZINC	7.48E+01	9.09E+01	0.00E+00	0.00E+00	1.01E-05	5.50E-05
			STIMATED C			
			1.33E-08	3.08E-08	5.74E-03	3.61E-02
			1.002-00	0.000-00	5.7 HL-00	0.012-02

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

RESIDENTIAL EXPOSURE SCENARIO : DRINKING WATER INGESTION OF CHEMICALS IN DRINKING WATER

EQUATION : INTAKE (mg/kg-day) =

CW x IR x EF x ED BW x AT

where :

CW = Chemical Concentration in Water (mg/liter) IR = Ingestion Rate (liters/day) EF = Exposure Frequency (days/year) ED = Exposure Duration (years) BW = Body Weight (kg) AT = Averaging Time (period over which exposure is averaged)

VARIABLE	MEAN	RME	REFERENCE
CW (mg/liter)	MEAN	95% UCL	
IR child (L)	· 1	1	RAGS (1)
BW CHILD (kg)	16	16	RAGS (1)
EF (days/yr)	350	350	RAGS (2)
ED - carcinogen (years)	5	5	RAGS (1)
ED - non-carcinogen (years)	1	1	RAGS (1)
T - carcinogen (years x days)	25550	25550	RAGS (1)
AT - non-carcinogen (years x days)	365	365	RAGS (1)

NOTE:

(1) USEPA RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, EPA/540/1-89/002, DECEMBER 1989.

(2) USEPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION

MANUAL, SUPPLEMENTAL GUIDANCE, STANDARD EXPOSURE FACTORS", OSWER DIRECTIVE 9285.6-03, MARCH 25, 1991.

MEDIA CONCENTRATIONS/CONSTANTS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

	MEDIA CONCENTRATION					
	·····		ORAL	ORAL		
· ·	MEAN	RME	CSF	RfD		
PARAMETER	mg/L	mg/L	1/(mg/kg/d)	mg/kg/d		
· · · · · · · · · · · · · · · · · · ·						
VOCs						
ACETONE	1.21E+01	7.40E-02	NA	1.00E-01		
BENZENE	1.03E+01	1.90E-01	2.90E-02	NA		
1,1-DICHLOROETHANE	1.08E+01	6.50E+00	NA	1.00E-01		
1,1-DICHLOROETHENE	1.16E+01	1.20E+00	6.00E-01	9.00E-03		
1,2-DICHLOROETHENE (TOTAL)	4.73E+02	1.30E+03	NA	9.00E-03		
ETHYLBENZENE	1.87E+01	5.34E+01	NA	1.00E-01		
METHYLENE CHLORIDE	1.04E+01	1.20E-01	7.50E-03	6.00E-02		
TETRACHLOROETHENE	3.82E+00	9.98E+00	5.10E-02	1.00E-02		
TOLUENE	1.17E+01	2.70E+00	NA	2.00E-01		
1,1,1-TRCHLOROETHANE	1.25E+01	3.21E+01	NA	9.00E-02		
TRICHLOROETHENE	6.25E+03	1.87E+04	NA	NA		
VINYL CHLORIDE	3.59E+01	8.86E+01	1.90E+00	NA		
XYLENES (TOTAL)	1.27E+02	3.76E+02	NA	2.00E+00		
SVOCs						
BIS(2-ETHYLHEXYL) PHTHALATE	1.00E-02	1.89E-02	1.40E-02	2.00E-02		
1,2-DICHLOROBENZENE	6.90E-03	4.00E-03	NA	9.00E-02		
NAPHTHALENE	1.04E-02	1.95E-02	NA	NA		
	1.012 02	1.702 02				
ACID EXTRACTABLES						
4-CHLORO-3-METHYLPHENOL	8.40E-03	1.36E-02	NA ·	NA		
2,4-DIMETHYLPHENOL	1.10E-02	1.93E-02	NA	2.00E-02		
2-METHYLPHENOL	1.24E-02	2.61E-02	NA	5.00E-02		
4-METHYLPHENOL	6.52E-02	1.88E-01	NA	5.00E-03		
PHENOL	1.03E-01	3.23E-01	NA	6.00E-01		
	1.002-01	5.252-01	nn i	0.002-01		
METALS						
ALUMINUM	7.22E+00	1.53E+01	NA	NA		
ARSENIC	5.06E-03	7.32E-03	1.75E+00	3.00E-04		
BARIUM	2.37E-01	3.31E-01	NA	7.00E-02		
CALCIUM	2.10E+02	3.23E+02	NA	NA		
CHROMIUM	3.19E-02	5.71E-02	NA	NA		
COBALT	1.17E-02	2.04E-02	NA	NA		
COPPER	2.59E-02	4.58E-02	NA	3.70E-02		
IRON	1.44E+01	4.50E-02 2.59E+01	NA	NA		
LEAD		3.70E-02		1.40E-03		
MAGNESIUM	1.53E-02		' NA	1.40E-03 NA		
	1.21E+02	2.00E+02	NA			
MANGANESE NICKEL	4.13E-01	7.90E-01	NA	5.00E-03		
	4.84E-02	9.77E-02	NA	2.00E-02		
POTASSIUM	6.61E+00	9.59E+00	NA	NA		
SODIUM	1.55E+02	2.81E+02	NA	NA		
VANADIUM	1.19E-02	2.45E-02	NA	7.00E-03		
ZINC	1.66E-01	3.14E-01	NA	3.00E-01		

EXPOSURE, RISK AND HAZARD CALCULATIONS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

		AVERAGE	·		ANNUAL AVERAGE			
		INTAKE	LIFETIME UP			INTAKE	HAZARD	
	(mg/k	g/day)	EXCESS CA	NCER RISK	(mg/k	g/day)	CDI,	/RfD
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
		•						
VOCs								
ACETONE	5.18E-02	3.17E-04	0.00E+00	0.00E+00	7.25E-01	2.22E-02	7.25E+00	2.22E-01
BENZENE	4.41E-02	8.13E-04	1.28E-03	2.36E-05	6.17E-01	5.69E-02	0.00E+00	0.00E+00
1,1-DICHLOROETHANE	4.62E-02	2.78E-02	0.00E+00	0.00E+00	6.47E-01	1.95E+00	6.47E+00	1.95E+01
1,1-DICHLOROETHENE	4.97E-02	5.14E-03	2.98E-02	3.08E-03	6.95E-01	3.60E-01	7.72E+01	4.00E+01
1,2-DICHLOROETHENE (TOTAL)	2.02E+00	5.57E+00	0.00E+00	0.00E+00	2.83E+01	3.90E+02		4.33E+04
ETHYLBENZENE	8.01E-02	2.29E-01	0.00E+00	0.00E+00	1.12E+00	1.60E+01		1.60E+02
METHYLENE CHLORIDE	4.45E-02	5.14E-04	3.34E-04	3.85E-06	6.23E-01	3.60E-02	1.04E+01	5.99E-01
TETRACHLOROETHENE	1.64E-02	4.27E-02	8.34E-04	2.18E-03	2.29E-01	2.99E+00		2.99E+02
TOLUENE	5.01E-02	1.16E-02	0.00E+00	0.00E+00	7.01E-01	8.09E-01	3.51E+00	4.05E+00
1,1,1-TRCHLOROETHANE	5.35E-02	1.37E-01	0.00E+00	0.00E+00	7.49E-01	9.62E+00		1.07E+02
TRICHLOROETHENE	2.68E+01	8.01E+01	0.00E+00	0.00E+00	3.75E+02	5.60E+03	0.00E+00	0.00E+00
VINYL CHLORIDE	1.54E-01	3.79E-01	2.92E-01	7.21E-01	2.15E+00	2.65E+01		0.00E+00
XYLENES (TOTAL)	5.44E-01	1.61E+00	0.00E+00	0.00E+00	7.61E+00	1.13E+02	3.81E+00	5.63E+01
SVOC s								
IS(2-ETHYLHEXYL) PHTHALATE	4.28E-05	8.09E-05	5.99E-07	1.13E-06	5.99E-04	5.66E-03	3.00E-02	2.83E-01
1,2-DICHLOROBENZENE	4.20E-05 2.95E-05	0.09E-05	0.00E+00	0.00E+00	4.14E-04	1.20E-03	4.59E-02	1.33E-02
NAPHTHALENE	2.95E-05	8.35E-05	0.00E+00	0.00E+00	4.14E-04 6.23E-04	5.84E-03	4.39E-03	1.55E-02 0.00E+00
INAFIIIIALEINE	4.43E-03	0.33E-03	0.002+00	0.002+00	0.23E-04	3.04E-03	0.002+00	0.002+00
ACID EXTRACTABLES								
4-CHLORO-3-METHYLPHENOL	3.60E-05	5.82E-05	0.00E+00	0.00E+00	5.03E-04	4.08E-03	0.00E+00	0.00E+00
2,4-DIMETHYLPHENOL	4.71E-05	8.26E-05	0.00E+00	0.00E+00	6.59E-04	5.78E-03	3.30E-02	2.89E-01
2-METHYLPHENOL	5.31E-05	1.12E-04	0.00E+00	0.00E+00	7.43E-04	7.82E-03	1.49E-02	1.56E-01
4-METHYLPHENOL	2.79E-04	8.05E-04	0.00E+00	0.00E+00	3.91E-03	5.63E-02	7.82E-01	1.13E+01
PHENOL	4.41E-04	1.38E-03	0.00E+00	0.00E+00	6.17E-03	9.68E-02	1.03E-02	1.61E-01
METALS								
ALUMINUM	3.09E-02	6.55E-02	0.00E+00	0.00E+00	4.33E-01	4.58E+00	0.00E+00	0.00E+00
ARSENIC	2.17E-05	3.13E-05	3.79E-05	5.48E-05	3.03E-04	2.19E-03	1.01E+00	7.31E+00
BARIUM	1.01E-03	1.42E-03	0.00E+00	0.00E+00	1.42E-02	9.92E-02	2.03E-01	1.42E+00
CALCIUM	8.99E-01	1.38E+00	0.00E+00	0.00E+00	1.26E+01	9.68E+01	0.00E+00	0.00E+00
CHROMIUM	1.37E-04	2.44E-04	0.00E+00	0.00E+00	1.91E-03	1.71E-02	0.00E+00	0.00E+00
COBALT	5.01E-05	8.73E-05	0.00E+00	0.00E+00	7.01E-04	6.11E-03	0.00E+00	0.00E+00
COPPER	1.11E-04	1.96E-04	0.00E+00	0.00E+00	1.55E-03	1.37E-02	4.20E-02	3.71E-01
IRON	6.16E-02	1.11E-01	0.00E+00	0.00E+00	8.63E-01	7.76E+00	0.00E+00	0.00E+00
LEAD	6.55E-05	1.58E-04	0.00E+00	0.00E+00	9.17E-04	1.11E-02	6.55E-01	7.92E+00
MAGNESIUM	5.18E-01	8.56E-01	0.00E+00	0.00E+00	7.25E+00	5.99E+01	0.00E+00	0.00E+00
MANGANESE	1.77E-03	3.38E-03	0.00E+00	0.00E+00	2.48E-02	2.37E-01	4.95E+00	4.73E+01
NICKEL	2.07E-04	4.18E-04	0.00E+00	0.00E+00	2.90E-03	2.93E-02	1.45E-01	1.46E+00
POTASSIUM	2.83E-02	4.11E-02	0.00E+00	0.00E+00	3.96E-01	2.87E+00	0.00E+00	0.00E+00
SODIUM	6.64E-01	1.20E+00	0.00E+00	0.00E+00	9.29E+00	8.42E+01		0.00E+00
VANADIUM	5.09E-05	1.05E-04	0.00E+00	0.00E+00	7.13E-04	7.34E-03	1.02E-01	1.05E+00
INC	7.11E-04	1.34E-03	0.00E+00	0.00E+00	9.95E-03	9.41E-02	3.32E-02	3.14E-01
			STIMATED CA			HAZARD		
			3.24E-01	7.26E-01			3.31E+03	4.40E+04
·								

SUMMARY TABLE

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

		CENTRATION		NCER RISK		/RfD
	MEAN	RME	EACESSCA	INCER RISK		
PARAMETER	(mg/L)	(mg/L)	MEAN	RME	MEAN	RME
	(116) 2)	(
VOCs					•	
ACETONE	1.21E+01	7.40E-02	0.00E+00	0.00E+00	7.25E+00	2.22E-01
BENZENE	1.03E+01	1.90E-01	1.28E-03	2.36E-05	0.00E+00	0.00E+00
1,1-DICHLOROETHANE	1.08E+01	6.50E+00	0.00E+00	0.00E+00	6.47E+00	1.95E+01
1,1-DICHLOROETHENE	1.16E+01	1.20E+00	2.98E-02	3.08E-03	7.72E+01	4.00E+01
1,2-DICHLOROETHENE (TOTAL)	4.73E+02	1.30E+03	0.00E+00	0.00E+00	3.15E+03	4.33E+04
ETHYLBENZENE	1.87E+01	5.34E+01	0.00E+00	0.00E+00	1.12E+01	1.60E+02
METHYLENE CHLORIDE	1.04E+01	1.20E-01	3.34E-04	3.85E-06	1.04E+01	5.99E-01
TETRACHLOROETHENE	3.82E+00	9.98E+00	8.34E-04	2.18E-03	2.29E+01	2.99E+02
TOLUENE	1.17E+01	2.70E+00	0.00E+00	0.00E+00	3.51E+00	4.05E+00
1,1,1-TRCHLOROETHANE	1.25E+01	3.21E+01	0.00E+00	0.00E+00	8.32E+00	1.07E+02
TRICHLOROETHENE	6.25E+03	1.87E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
VINYL CHLORIDE	3.59E+01	8.86E+01	2.92E-01	7.21E-01	0.00E+00	0.00E+00
XYLENES (TOTAL)	1.27E+02	3.76E+02	0.00E+00	0.00E+00	3.81E+00	
			-			
SVOCs						
BIS(2-ETHYLHEXYL) PHTHALATE	1.00E-02	1.89E-02	5.99E-07	1.13E-06	3.00E-02	2.83E-01
1,2-DICHLOROBENZENE	6.90E-03	4.00E-03	0.00E+00	0.00E+00	4.59E-03	1.33E-02
NAPHTHALENE	1.04E-02	1.95E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ACID EXTRACTABLES			•			
4-CHLORO-3-METHYLPHENOL	8.40E-03	1.36E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.4-DIMETHYLPHENOL	8.40E-03 1.10E-02	1.93E-02	0.00E+00	0.00E+00 0.00E+00	3.30E-02	2.89E-01
2-METHYLPHENOL	1.10E-02 1.24E-02	2.61E-02	0.00E+00	0.00E+00 0.00E+00	3.30E-02 1.49E-02	2.89E-01 1.56E-01
4-METHYLPHENOL	6.52E-02	2.81E-02 1.88E-01	0.00E+00	0.00E+00 0.00E+00	1.49E-02 7.82E-01	1.38E-01 1.13E+01
PHENOL	0.52E-02 1.03E-01	3.23E-01	0.00E+00	0.00E+00	1.03E-02	1.61E-01
	1.002 01	0.202-01	0.002+00	0.002+00	1.002-02	1.012-01
METALS						
ALUMINUM	7.22E+00	1.53E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ARSENIC	5.06E-03	7.32E-03	3.79E-05	5.48E-05	1.01E+00	7.31E+00
BARIUM	2.37E-01	3.31E-01	0.00E+00	0.00E+00	2.03E-01	1.42E+00
CALCIUM	2.10E+02	3.23E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CHROMIUM	3.19E-02	5.71E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COBALT	1.17E-02	2.04E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COPPER	2.59E-02	4.58E-02	0.00E+00	0.00E+00	4.20E-02	3.71E-01
IRON	1.44E+01	2.59E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
LEAD	1.53E-02	3.70E-02	0.00E+00	0.00E+00	6.55E-01	7.92E+00
MAGNESIUM	1.21E+02	2.00E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MANGANESE	4.13E-01	7.90E-01	0.00E+00	0.00E+00	4.95E+00	4.73E+01
NICKEL	4.84E-02	9.77E-02	0.00E+00	0.00E+00	1.45E-01	1.46E+00
POTASSIUM	6.61E+00	9.59E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SODIUM	1.55E+02	2.81E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
VANADIUM	1.19E-02	2.45E-02	0.00E+00	0.00E+00	1.02E-01	
ZINC	1.66E-01	3.14E-01	0.00E+00	0.00E+00	3.32E-02	3.14E-01
	TOTAL ADI	DITIONAL ES	TIMATED CA	NCER RISK	S HAZARD	INDEX :
			3.24E-01	7.26E-01	3.31E+03	4.40E+04

MEDIA CONCENTRATION LIFETIME UPPER BOUND HAZARD QUOTIENT

í.

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

RESIDENTIAL EXPOSURE SCENARIO : DRINKING WATER INGESTION OF CHEMICALS IN DRINKING WATER

EQUATION : INTAKE (mg/kg-day) = CW x IR x EF x ED

where :

CW = Chemical Concentration in Water (mg/liter)

IR = Ingestion Rate (liters/day)

EF = Exposure Frequency (days/year)

ED = Exposure Duration (years)

BW = Body Weight (kg)

AT = Averaging Time (period over which exposure is averaged)

VARIABLE	MEAN	RME	REFERENCE
CW (mg/liter)	MEAN	95% UCL	
IR ADULT (L)	2	2	RAGS (1)
BW ADULT (kg)	70	70	RAGS (1)
EF (days/yr)	350	350	RAGS (2)
ED - carcinogen (years)	5	25	RAGS (1)
ED - non-carcinogen (years)	.1	1	RAGS (1)
T - carcinogen (years x days)	25550	25550	RAGS (1)
AT - non-carcinogen (years x days)	365	365	RAGS (1)

BW x AT

NOTE:

(1) USEPA RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, EPA/540/1-89/002, DECEMBER 1989.

(2) USEPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, SUPPLEMENTAL GUIDANCE, STANDARD EXPOSURE FACTORS", OSWER DIRECTIVE 9285.6-03, MARCH 25, 1991.

MEDIA CONCENTRATIONS/CONSTANTS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

	MEDIA CONO	CENTRATIO	N	
			ORAL	ORAL
	MEAN	RME	CSF	RfD
PARAMETER	mg/L	mg/L	1/(mg/kg/d)	mg/kg/d
· · ·	•*			
VOCs				
ACETONE	1.21E+01	7.40E-02	NA .	1.00E-01
BENZENE	1.03E+01	1.90E-01	2.90E-02	NA
1,1-DICHLOROETHANE	1.08E+01	6.50E+00	NA	1.00E-01
1,1-DICHLOROETHENE	1.16E+01	1.20E+00	6.00E-01	9.00E-03
1,2-DICHLOROETHENE (TOTAL)	4.73E+02	1.30E+03	NA	9.00E-03
ETHYLBENZENE	1.87E+01	5.34E+01	NA	1.00E-01
METHYLENE CHLORIDE	1.04E+01	1.20E-01	7.50E-03	6.00E-02
TETRACHLOROETHENE	3.82E+00	9.98E+00	5.10E-02	1.00E-02
TOLUENE	1.17E+01	2.70E+00	NA	2.00E-01
1,1,1-TRCHLOROETHANE	1.25E+01	3.21E+01	NA	9.00E-02
TRICHLOROETHENE	6.25E+03	1.87E+04	NA	NA
VINYL CHLORIDE	3.59E+01	8.86E+01	1.90E+00	NA
XYLENES (TOTAL)	1.27E+02	3.76E+02	NA	2.00E+00
SVOCs				
BIS(2-ETHYLHEXYL) PHTHALATE	1.00E-02	1.89E-02	1.40E-02	2.00E-02
1,2-DICHLOROBENZENE	6.90E-03	4.00E-03	NA	9.00E-02
NAPHTHALENE	1.04E-02	1.95E-02	NA	NA
ACID EXTRACTABLES				
4-CHLORO-3-METHYLPHENOL	8.40E-03	1.36E-02	NA	NA
2,4-DIMETHYLPHENOL	1.10E-02	1.93E-02	NΛ	2.00E-02
2-METHYLPHENOL	1.24E-02	2.61E-02	NA	5.00E-02
4-METHYLPHENOL	6.52E-02	1.88E-01	NA	5.00E-03
PHENOL	1.03E-01	3.23E-01	NA	6.00E-01
METALS				
ALUMINUM	7.22E+00	1.53E+01	NA	NA
ARSENIC	5.06E-03	7.32E-03	1.75E+00	3.00E-04
BARIUM	2.37E-01	3.31E-01	NA	7.00E-02
CALCIUM	2.10E+02	3.23E+02	NA	NA
CHROMIUM	3.19E-02	5.71E-02	NA	NA
COBALT	1.17E-02	2.04E-02	NA	NA
COPPER	2.59E-02	4.58E-02	NA .	3.70E-02
IRON	1.44E+01	4.50E-02 2.59E+01	NA	NA
LEAD	1.53E-02	3.70E-02	NA	1.40E-03
MAGNESIUM	1.33E-02 1.21E+02	3.70E-02 2.00E+02	NA	1.40E-03 NA
MAGNESIOM	4.13E-01	7.90E+02	NA	5.00E-03
NICKEL				
	4.84E-02	9.77E-02	NA	2.00E-02
POTASSIUM	6.61E+00	9.59E+00	NA	NA
SODIUM	1.55E+02	2.81E+02	NA	NA T 00E 02
VANADIUM	1.19E-02	2.45E-02	NA	7.00E-03
ZINC	1.66E-01	3.14E-01	NA	3.00E-01

EXPOSURE, RISK AND HAZARD CALCULATIONS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

	LIFETIME	AVERAGE			ANNUAL AVERAGE			
	DAILY	INTAKE	LIFETIME UF	PER BOUND	DAILY	INTAKE	HAZARD	QUOTIENT
· · ·	(mg/k	g/day)	EXCESS CA	NCER RISK	(mg/k	g/day)	CDI,	-
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
• <u>••••</u> •••••••••••••••••••••••••••••••		,						
VOCs								
ACETONE	2.37E-02	7.24E-04	0.00E+00	0.00E+00	3.32E-01	5.07E-02	3.32E+00	5.07E-01
BENZENE	2.02E-02	1.86E-03	5.85E-04	5.39E-05	2.82E-01	1.30E-01	0.00E+00	0.00E+00
1,1-DICHLOROETHANE	2.11E-02	6.36E-02	0.00E+00	0.00E+00	2.96E-01	4.45E+00	2.96E+00	4.45E+01
1,1-DICHLOROETHENE	2.27E-02	1.17E-02	1.36E-02	7.05E-03	3.18E-01	8.22E-01	3.53E+01	9.13E+01
1,2-DICHLOROETHENE (TOTAL)	9.26E-01	1.27E+01	0.00E+00	0.00E+00	1.30E+01	8.90E+02		9.89E+04
ETHYLBENZENE	3.66E-02	5.23E-01	0.00E+00	0.00E+00	5.12E-01	3.66E+01		3.66E+02
METHYLENE CHLORIDE	2.04E-02	1.17E-03	1.53E-04	8.81E-06	2.85E-01	8.22E-02	4.75E+00	1.37E+00
TETRACHLOROETHENE	7.48E-03	9.77E-02	3.81E-04	4.98E-03	1.05E-01	6.84E+00		6.84E+02
TOLUENE	2.29E-02	2.64E-02	0.00E+00	0.00E+00	3.21E-01	1.85E+00		9.25E+00
1,1,1-TRCHLOROETHANE	2.45E-02	3.14E-01	0.00E+00	0.00E+00	3.42E-01	2.20E+01		2.44E+02
TRICHLOROETHENE	1.22E+01	1.83E+02	0.00E+00	0.00E+00	1.71E+02	1.28E+04		0.00E+00
VINYL CHLORIDE	7.03E-02	8.67E-01	1.33E-01	1.65E+00	9.84E-01	6.07E+01	0.00E+00	0.00E+00
XYLENES (TOTAL)	2.49E-01	3.68E+00	0.00E+00	0.00E+00	3.48E+00	2.58E+02	1.74E+00	1.29E+02
SVOCs			• •					
S(2-ETHYLHEXYL) PHTHALATE	1.96E-05	1.85E-04	2.74E-07	2.59E-06	2.74E-04	·1.29E-02	1.37E-02	6.47E-01
1,2-DICHLOROBENZENE	1.35E-05	3.91E-05	0.00E+00	0.00E+00	1.89E-04	2.74E-03	2.10E-03	3.04E-02
NAPHTHALENE	2.04E-05	1.91E-04	0.00E+00	0.00E+00	2.85E-04	1.34E-02	0.00E+00	0.00E+00
ACID EXTRACTABLES								
4-CHLORO-3-METHYLPHENOL	1.64E-05	1.33E-04	0.00E+00	• 0.00E+00	2.30E-04	9.32E-03	0.00E+00	0.00E+00
2,4-DIMETHYLPHENOL	2.15E-05	1.89E-04	0.00E+00	0.00E+00	3.01E-04	1.32E-03	1.51E-02	6.61E-01
2-METHYLPHENOL	2.43E-05	2.55E-04	0.00E+00	0.00E+00	3.40E-04	1.52E-02 1.79E-02	6.79E-02	3.58E-01
4-METHYLPHENOL	1.28E-04	1.84E-03	0.00E+00	0.00E+00	1.79E-03	1.79E-02	3.57E-01	
PHENOL	2.02E-04	3.16E-03	0.00E+00	0.00E+00	2.82E-03	2.21E-01	4.70E-03	3.69E-01
METALS								
ALUMINUM	1.41E-02	1.50E-01	0.00E+00	0.00E+00	1.98E-01	1.05E+01	0.00E+00	0.00E+00
ARSENIC	9.90E-06	7.16E-05	1.73E-05	1.25E-04	1.39E-04	5.01E-03	4.62E-01	1.67E+01
BARIUM	4.64E-04	3.24E-03	0.00E+00	0.00E+00	6.49E-03	2.27E-01	9.28E-02	3.24E+00
CALCIUM	4.11E-01	3.16E+00	0.00E+00	0.00E+00	5.75E+00	2.21E+02		0.00E+00
CHROMIUM	6.24E-05	5.59E-04	0.00E+00	0.00E+00	8.74E-04	3.91E-02	0.00E+00	0.00E+00
COBALT	2.29E-05	2.00E-04	0.00E+00	0.00E+00	3.21E-04	1.40E-02	0.00E+00	0.00E+00
COPPER	5.07E-05	4.48E-04	0.00E+00	0.00E+00	7.10E-04	3.14E-02	1.92E-02	8.48E-01
IRON	2.82E-02	2.53E-01	0.00E+00	0.00E+00	3.95E-01	1.77E+01		0.00E+00
LEAD	2.99E-05	3.62E-04	0.00E+00	0.00E+00	4.19E-04	2.53E-02	2.99E-01	1.81E+01
MAGNESIUM	2.37E-01	1.96E+00	0.00E+00	0.00E+00	3.32E+00	1.37E+02		0.00E+00
MANGANESE	8.08E-04	7.73E-03	0.00E+00	0.00E+00	1.13E-02	5.41E-01	2.26E+00	1.08E+02
NICKEL	9.47E-05	9.56E-04	0.00E+00	0.00E+00	1.33E-03	6.69E-02	6.63E-02	3.35E+00
POTASSIUM	1.29E-02	9.38E-02	0.00E+00	0.00E+00	1.81E-01	6.57E+00		0.00E+00
SODIUM	3.03E-01	2.75E+00	0.00E+00	0.00E+00	4.25E+00	1.92E+02		0.00E+00
VANADIUM	2.33E-05	2.40E-04	0.00E+00	0.00E+00	3.26E-04	1.68E-02	4.66E-02	2.40E+00
INC	3.25E-04	3.07E-03	0.00E+00	0.00E+00	4.55E-03	2.15E-01	1.52E-02	7.17E-01
	TOTAL ADD	DITIONAL E	STIMATED CA	NCER RISKS	:	HAZARD	INDEX :	•
			1.48E-01	1.66E+00			1.51E+03	1.01E+05

SUMMARY TABLE

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : ON-SITE MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

MEDIA CONCENTRATION LIFETIME UPPER BOUND HAZARD Q	UOTIENT
EXCESS CANCER RISK CDI/F	CDS CDS

			EXCESS CA	NCER RISK	CDI,	/RfD
	MEAN	RME			· ·	.
PARAMETER	(mg/L)	(mg/L)	MEAN	RME	MEAN	RME
VOCs						
ACETONE	1.21E+01	7.40E-02	0.00E+00	0.00E+00	3.32E+00	5.07E-01
BENZENE	1.03E+01	1.90E-01	5.85E-04	5.39E-05	0.00E+00	0.00E+00
1,1-DICHLOROETHANE	1.08E+01	6.50E+00	0.00E+00	0.00E+00	2.96E+00	4.45E+01
1,1-DICHLOROETHENE	1.16E+01	1.20E+00	1.36E-02	7.05E-03	3.53E+01	9.13E+01
1,2-DICHLOROETHENE (TOTAL)	4.73E+02	1.30E+03	0.00E+00	0.00E+00	1.44E+03	9.89E+04
ETHYLBENZENE	1.87E+01	5.34E+01	0.00E+00	0.00E+00	5.12E+00	3.66E+02
METHYLENE CHLORIDE	1.04E+01	1.20E-01	1.53E-04	8.81E-06	4.75E+00	1.37E+00
TETRACHLOROETHENE	3.82E+00	9.98E+00	3.81E-04	4.98E-03	1.05E+01	6.84E+02
TOLUENE	1.17E+01	2.70E+00	0.00E+00	0.00E+00	1.60E+00	9.25E+00
1,1,1-TRCHLOROETHANE	1.25E+01	3.21E+01	0.00E+00	0.00E+00	3.81E+00	2.44E+02
TRICHLOROETHENE	6.25E+03	1.87E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
VINYL CHLORIDE	3.59E+01	8.86E+01	1.33E-01	1.65E+00	0.00E+00	0.00E+00
XYLENES (TOTAL)	1.27E+02	3.76E+02	0.00E+00	0.00E+00	1.74E+00	1.29E+02
·						
SVOCs						
BIS(2-ETHYLHEXYL) PHTHALATE	1.00E-02	1.89E-02	2.74E-07	2.59E-06	1.37E-02	6.47E-01
1,2-DICHLOROBENZENE	6.90E-03	4.00E-03	0.00E+00	0.00E+00	2.10E-03	3.04E-02
NAPHTHALENE	1.04E-02	1.95E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ACID EXTRACTABLES						
4-CHLORO-3-METHYLPHENOL	8.40E-03	1.36E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2,4-DIMETHYLPHENOL	1.10E-02	1.93E-02	0.00E+00	0.00E+00	1.51E-02	6.61E-01
2-METHYLPHENOL	1.24E-02	2.61E-02	0.00E+00	0.00E+00	6.79E-03	3.58E-01
4-METHYLPHENOL	6.52E-02	1.88E-01	0.00E+00	0.00E+00	3.57E-01	2.58E+01
PHENOL	1.03E-01	3.23E-01	0.00E+00	0.00E+00	4.70E-03	3.69E-01
	1.002-01	0.202-01	0.002+00	0.002+00	4.701-00	5.072-01
METALS			•			
ALUMINUM	7.22E+00	1.53E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ARSENIC	5.06E-03	7.32E-03	1.73E-05	1.25E-04	4.62E-01	1.67E+01
BARIUM	2.37E-01	3.31E-01	0.00E+00	0.00E+00	9.28E-02	3.24E+00
CALCIUM	2.10E+02	3.23E+02	0.00E+00	0.00E+00	9.28E-02 0.00E+00	0.00E+00
CHROMIUM	3.19E-02	5.71E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COBALT	1.17E-02	2.04E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COPPER						
IRON	2.59E-02	4.58E-02	0.00E+00	0.00E+00	1.92E-02	8.48E-01
LEAD	1.44E+01	2.59E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	1.53E-02	3.70E-02	0.00E+00	0.00E+00	2.99E-01	1.81E+01
MAGNESIUM	1.21E+02	2.00E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MANGANESE	4.13E-01	7.90E-01	0.00E+00	0.00E+00	2.26E+00	1.08E+02
NICKEL	4.84E-02	9.77E-02	0.00E+00	0.00E+00	6.63E-02	3.35E+00
POTASSIUM	6.61E+00	9.59E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SODIUM	1.55E+02	2.81E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
VANADIUM	1.19E-02	2.45E-02	0.00E+00	0.00E+00	4.66E-02	2.40E+00
ZINC	1.66E-01	3.14E-01	0.00E+00	0.00E+00	1.52E-02	7.17E-01
	TOTAL ADD	DITIONAL ES	TIMATED CA			
			1.48E-01	1.66E+00	1.51E+03	1.01E+05

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

RESIDENTIAL EXPOSURE SCENARIO : DRINKING WATER INGESTION OF CHEMICALS IN DRINKING WATER

EQUATION : INTAKE (mg/kg-day) = CW x IR x EF x ED

where :

CW = Chemical Concentration in Water (mg/liter) IR = Ingestion Rate (liters/day) EF = Exposure Frequency (days/year)

ED = Exposure Duration (years)

BW = Body Weight (kg)

AT = Averaging Time (period over which exposure is averaged)

VARIABLE	MEAN	RME	REFERENCE
CW (mg/liter)	MEAN	95% UCL	
IR child (L)	1	1	RAGS (1)
BW CHILD (kg)	16	16	RAGS (1)
EF (days/yr)	350	350	RAGS (2)
ED - carcinogen (years)	5	5	RAGS (1)
ED - non-carcinogen (years)	1	1	RAGS (1)
F - carcinogen (years x days)	25550	25550	RAGS (1)
AT - non-carcinogen (years x days)	365	365	RAGS (1)

BW x AT

NOTE:

(1) USEPA RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, EPA/540/1-89/002, DECEMBER 1989.

(2) USEPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, SUPPLEMENTAL GUIDANCE, STANDARD EXPOSURE FACTORS", OSWER DIRECTIVE 9285.6-03, MARCH 25, 1991.

MEDIA CONCENTRATIONS/CONSTANTS

.

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

~

			ORAL	ORAL
	MEAN	RME	CSF	RfD
PARAMETER	mg/L	mg/L	1/(mg/kg/d)	mg/kg/c
VOCs				
ACETONE	4.50E-03	3.00E-03	NA	1.00E-01
1,2-DICHLOROETHENE (TOTAL)	4.25E-03	4.00E-03	NA	9.00E-03
TRICHLOROETHENE	1.50E-02	4.20E-02	NA	NA
SVOC ₉				
BIS(2-ETHYLHEXYL) PHTHALATE	2.15E-02	4.00E-02	1.40E-02	2.00E-02
METALS				
ALUMINUM	4.77E+00	8.81E+00	NA	NA
ARSENIC	3.60E-03	3.60E-03		3.00E-04
BARIUM	1.77E-01	2.96E-01	NA	7.00E-02
CALCIUM	1.42E+02	1.79E+02	NA	NA
CHROMIUM	1.12E-02	1.35E-02	NA	NA
COBALT	1.80E-02	3.22E-02	NA	NA
IRON	1.11E+01	1.38E+01	NA	NA
LEAD	7.38E-03	1.34E-02	NA	1.40E-03
MAGNESIUM	9.27E+01	1.47E+02	NA	NA
MANGANESE	2.53E-01	4.14E-01	· NA	5.00E-03
NICKEL	7.25E-03	7.40E-03	ΝΛ	2.00E-02
POTASSIUM	7.12E+00	1.05E+01	NA	NA
SODIUM	3.22E+01	5.27E+01	NA	NA
VANADIUM	4.00E-03	6.70E-03	NA	7.00E-03
ZINC	3.90E-02	6.68E-02	NA	3.00E-01

EXPOSURE, RISK AND HAZARD CALCULATIONS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

	DAILY	AVERAGE INTAKE g/day)		ANNUAL AVI ME UPPER BOUND DAILY INT. SS CANCER RISK (mg/kg/d			KE HAZARD QUOTIENT		
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME	
VOCs									
ACETONE	1.93E-05	1.28E-05	0.00E+00	0.00E+00	2.70E-04	8.99E-04	2.70E-03	8.99E-03	
1,2-DICHLOROETHENE (TOTAL)	1.82E-05	1.71E-05	0.00E+00	0.00E+00	2.55E-04	1.20E-03	2.83E-02	1.33E-01	
TRICHLOROETHENE	6.42E-05	1.80E-04	0.00E+00	0.00E+00	8.99E-04	1.26E-02	0.00E+00	0.00E+00	
SVOC₅									
BIS(2-ETHYLHEXYL) PHTHALATE	9.20E-05	1.71E-04	1.29E-06	2.40E-06	1.29E-03	1.20E-02	6.44E-02	5.99E-01	
METALS	·								
ALUMINUM	2.04E-02	3.77E-02	0.00E+00	0.00E+00	2.86E-01	2.64E+00	0.00E+00	0.00E+00	
ARSENIC	1.54E-05	1.54E-05	2.70E-05	2.70E-05	2.16E-04	1.08E-03	7.19E-01	3.60E+00	
BARIUM	7.58E-04	1.27E-03	0.00E+00	0.00E+00	1.06E-02	8.87E-02	1.52E-01	1.27E+00	
CALCIUM	6.08E-01	7.66E-01	0.00E+00	0.00E+00	8.51E+00	5.36E+01	0.00E+00	0.00E+00	
CHROMIUM	4.79E-05	5.78E-05	0.00E+00	0.00E+00	6.71E-04	4.05E-03	0.00E+00	0.00E+00	
COBALT	7.71E-05	1.38E-04	0.00E+00	0.00E+00	1.08E-03	9.65E-03	0.00E+00	0.00E+00	
IRON	4.75E-02	5.91E-02	0.00E+00	0.00E+00	6.65E-01	4.14E+00	0.00E+00	0.00E+00	
EAD	3.16E-05	5.74E-05	0.00E+00	0.00E+00	4.42E-04	4.02E-03	3.16E-01	2.87E+00	
AGNESIUM	3.97E-01	6.29E-01	0.00E+00	0.00E+00	5.56E+00	4.40E+01	0.00E+00	0.00E+00	
MANGANESE	1.08E-03	1.77E-03	0.00E+00	0.00E+00	1.52E-02	1.24E-01	3.03E+00	2.48E+01	
NICKEL	3.10E-05	3.17E-05	0.00E+00	0.00E+00	4.35E-04	2.22E-03	2.17E-02	1.11E-01	
POTASSIUM	3.05E-02	4.49E-02	0.00E+00	0.00E+00	4.27E-01	3.15E+00	0.00E+00	0.00E+00	
SODIUM	1.38E-01	2.26E-01	0.00E+00	0.00E+00	1.93E+00	1.58E+01	0.00E+00	0.00E+00	
VANADIUM	1.71E-05	2.87E-05	0.00E+00	0.00E+00	2.40E-04	2.01E-03	3.42E-02	2.87E-01	
ZINC	1.67E-04	2.86E-04	0.00E+00	0.00E+00	2.34E-03	2.00E-02	7.79E-03	6.67E-02	
	TOTAL ADD	ITIONAL ES	STIMATED CA	NCER RISKS	:	HAZARD	INDEX :		
			2.83E-05	2.94E-05			4.38E+00	3.37E+01	

SUMMARY TABLE

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-CHILD

MEDIA CONCENTRATION LIFETIME UPPER BOUND HAZARD QUOTIENT EXCESS CANCER RISK CDI/RfD

			EXCESS CA	INCER RISK	CDI/ND		
	MEAN	RME			B. 1 B. 1		
PARAMETER	(mg/L)	(mg/L)	MEAN	RME	MEAN	RME	
VOCs							
ACETONE	4.50E-03	3.00E-03	0.00E+00	0.00E+00	2.70E-03	8.99E-03	
1,2-DICHLOROETHENE (TOTAL)	4.25E-03	4.00E-03	0.00E+00	0.00E+00	2.83E-02	1.33E-01	
TRICHLOROETHENE	1.50E-02	4.20E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
SVOCs							
BIS(2-ETHYLHEXYL) PHTHALATE	2.15E-02	4.00E-02	1.29E-06	2.40E-06	6.44E-02	5.99E-01	
METALS							
ALUMINUM	4.77E+00	8.81E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ARSENIC	3.60E-03	3.60E-03	2.70E-05	2.70E-05	7.19E-01	3.60E+00	
BARIUM	1.77E-01	2.96E-01	0.00E+00	0.00E+00	1.52E-01	1.27E+00	
CALCIUM	1.42E+02	1.79E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CHROMIUM	1.12E-02	1.35E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
COBALT	1.80E-02	3.22E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
IRON	1.11E+01	1.38E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
LEAD	7.38E-03	1.34E-02	0.00E+00	0.00E+00	3.16E-01	2.87E+00	
MAGNESIUM	9.27E+01	1.47E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MANGANESE	2.53E-01	4.14E-01	0.00E+00	0.00E+00	3.03E+00	2.48E+01	
NICKEL	7.25E-03	7.40E-03	0.00E+00	0.00E+00	2.17E-02	1.11E-01	
POTASSIUM	7.12E+00	1.05E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
SODIUM	3.22E+01	5.27E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
VANADIUM	4.00E-03	6.70E-03	0.00E+00	0.00E+00	3.42E-02	2.87E-01	
ZINC	3.90E-02	6.68E-02	0.00E+00	0.00E+00	. 7.79E-03	6.67E-02	
	TOTAL ADD	DITIONAL ES	TIMATED CA	NCER RISK	S HAZARD	INDEX :	
			2.83E-05	2.94E-05	4.38E+00	3.37E+01	

EXPOSURE SCENARIO FORMULA AND ASSUMPTIONS

RESIDENTIAL EXPOSURE SCENARIO : DRINKING WATER INGESTION OF CHEMICALS IN DRINKING WATER

EQUATION : INTAKE (mg/kg-day) =

CW x IR x EF x ED BW x AT

where :

CW = Chemical Concentration in Water (mg/liter)

IR = Ingestion Rate (liters/day)

-EF = Exposure Frequency (days/year)

ED = Exposure Duration (years)

BW = Body Weight (kg)

AT = Averaging Time (period over which exposure is averaged)

VARIABLE	MEAN	RME	REFERENCE
CW (mg/liter)	MEAN	95% UCL	
IR ADULT (L)	2	2	RAGS (1)
BW ADULT (kg)	70	70	RAGS (1)
EF (days/yr)	350	350	RAGS (2)
ED - carcinogen (years)	5	25	RAGS (1)
ED - non-carcinogen (years)	1	1	RAGS (1)
'- carcinogen (years x days)	25550	25550	RAGS (1)
AT - non-carcinogen (years x days)	365	365	RAGS (1)

NOTE:

(1) USEPA RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, EPA/540/1-89/002, DECEMBER 1989.

(2) USEPA "RISK ASSESSMENT GUIDANCE FOR SUPERFUND (RAGS), VOLUME I, HUMAN HEALTH EVALUATION MANUAL, SUPPLEMENTAL GUIDANCE, STANDARD EXPOSURE FACTORS", OSWER DIRECTIVE 9285.6-03, MARCH 25, 1991.

MEDIA CONCENTRATIONS/CONSTANTS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

	MEDIA CONCENTRATION					
. •			ORAL	ORAL		
	MEAN	RME	CSF	RfD		
PARAMETER	mg/L	mg/L	1/(mg/kg/d)	mg/kg/d		
VOCs						
ACETONE	4.50E-03	3.00E-03	NA	1.00E-01		
1,2-DICHLOROETHENE (TOTAL)	4.25E-03	4.00E-03	NA	9.00E-01		
TRICHLOROETHENE	4.23E-03	4.00E-03 4.20E-02	NA	9.00E-05 NA		
INCHLOROETHENE	1.50E-02	4.206-02	NA	INA		
SVOC ₃						
BIS(2-ETHYLHEXYL) PHTHALATE	2.15E-02	4.00E-02	1.40E-02	2.00E-02		
METALS						
ALUMINUM	4.77E+00	8.81E+00	NA	NA		
ARSENIC	3.60E-03	3.60E-03	1.75E+00	3.00E-04		
BARIUM	1.77E-01	2.96E-01	NA	7.00E-02		
CALCIUM	1.42E+02	1.79E+02	NA	NA		
CHROMIUM	1.12E-02	1.35E-02	NA	NA		
COBALT	1.80E-02	3.22E-02	NA	NA		
IRON	1.11E+01	1.38E+01	NA	NA		
LEAD	7.38E-03	1.34E-02	NA	1.40E-03		
MAGNESIUM	9.27E+01	1.47E+02	NA	NA		
MANGANESE	2.53E-01	4.14E-01	NA	5.00E-03		
NICKEL	7.25E-03	7.40E-03	NA	2.00E-02		
POTASSIUM	• 7.12E+00	1.05E+01	NA	NA		
SODIUM	3.22E+01	5.27E+01	NA	NA		
VANADIUM	4.00E-03	6.70E-03	NA	7.00E-03		
ZINC	3.90E-02	6.68E-02	NA	3.00E-01		

EXPOSURE, RISK AND HAZARD CALCULATIONS

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

	DAILY	AVERAGE INTAKE g/day)				HAZARD	D QUOTIENT DI/RfD	
PARAMETER	MEAN	RME	MEAN	RME	MEAN	RME	MEAN	RME
VOCs								
ACETONE	8.81E-06	2.94E-05	0.00E+00	0.00E+00	1.23E-04	2.05E-03	1.23E-03	2.05E-02
1,2-DICHLOROETHENE (TOTAL)	8.32E-06	3.91E-05	0.00E+00	0.00E+00	1.16E-04	2.74E-03	1.29E-02	3.04E-01
TRICHLOROETHENE	2.94E-05	4.11E-04	0:00E+00	0.00E+00	4.11E-04	2.88E-02	0.00E+00	0.00E+00
SVOCs								
BIS(2-ETHYLHEXYL) PHTHALATE	4.21E-05	3.91E-04	5.89E-07	5.48E-06	5.89E-04	2.74E-02	2.95E-02	1.37E+00
METALS	· ·		,					
ALUMINUM	7.05E-06	3.52E-05	0.00E+00	0.00E+00	9.86E-05	2.47E-03	0.00E+00	0.00E+00
ARSENIC	3.46E-04	2.90E-03	6.06E-04	5.07E-03	4.85E-03	2.03E-01	1.62E+01	6.76E+02
BARIUM	2.78E-01	1.75E+00	0.00E+00	0.00E+00	3.89E+00	1.23E+02	5.56E+01	1.75E+03
CALCIUM	2.19E-05	1.32E-04	0.00E+00	0.00E+00	3.07E-04	9.25E-03	0.00E+00	0.00E+00
CHROMIUM	3.52E-05	3.15E-04	0.00E+00	0.00E+00	4.93E-04	2.21E-02	0.00E+00	0.00E+00
COBALT	2.17E-02	1.35E-01	0.00E+00	0.00E+00	3.04E-01	9.45E+00	0.00E+00	0.00E+00
IRON	1.44E-05	1.31E-04	0.00E+00	0.00E+00	2.02E-04	9.18E-03	0.00E+00	0.00E+00
EAD	1.81E-01	1.44E+00	0.00E+00	0.00E+00	2.54E+00	1.01E+02	1.81E+03	7.19E+04
MAGNESIUM	4.95E-04	4.05E-03	0.00E+00	0.00E+00	6.93E-03	2.84E-01	0.00E+00	0.00E+00
MANGANESE	1.42E-05	7.24E-05	0.00E+00	0.00E+00	1.99E-04	5.07E-03	3.97E-02	1.01E+00
NICKEL	1.39E-02	1.03E-01	0.00E+00	0.00E+00	1.95E-01	7.19E+00	9.75E+00	3.60E+02
POTASSIUM	6.30E-02	5.16E-01	0.00E+00	0.00E+00	8.82E-01	3.61E+01	0.00E+00	0.00E+00
SODIUM	7.83E-06	6.56E-05	0.00E+00	0.00E+00	1.10E-04	4.59E-03	0.00E+00	0.00E+00
VANADIUM	7.63E-05	6.54E-04	0.00E+00	0.00E+00	1.07E-03	4.58E-02	1.53E-01	6.54E+00
ZINC	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
•	TOTAL ADD	ITIONAL ES	STIMATED CA	MATED CANCER RISKS :			INDEX :	
·			6.07E-04	5.07E-03			1.90E+03	7.47E+04

CRA 3967 (7)

SUMMARY TABLE

SITE : LEICA INC. SECTOR : GROUNDWATER LOCATION : PERIMETER WELLS MEDIA : GROUNDWATER EXPOSURE SCENARIO : DRINKING WATER-OLDER CHILD AND ADULT

,	MEDIA CONO	CENTRATION	LIFETIME UPPER BOUND HAZARD QUOTIE				
	EXCESS CANCER RI			NCER RISK	ISK CDI/RfD		
	MEAN	RME					
PARAMETER	(mg/L)	(mg/L)	MEAN	RME	MEAN	RME	
100							
VOCs							
ACETONE	4.50E-03	3.00E-03	0.00E+00	0.00E+00	1.23E-03	2.05E-02	
1,2-DICHLOROETHENE (TOTAL)	4.25E-03	4.00E-03	0.00E+00	0.00E+00	1.29E-02	3.04E-01	
TRICHLOROETHENE	1.50E-02	4.20E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
SVOCs							
BIS(2-ETHYLHEXYL) PHTHALATE	2.15E-02	4.00E-02	5.89E-07	5.48E-06	2.95E-02	1.37E+00	
METALS							
ALUMINUM	4.77E+00	8.81E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ARSENIC	3.60E-03	3.60E-03	6.06E-04	5.07E-03	1.62E+01	6.76E+02	
BARIUM	1.77E-01	2.96E-01	0.00E+00	0.00E+00	5.56E+01	1.75E+03	
CALCIUM	1.42E+02	1.79E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CHROMIUM	1.12E-02	1.35E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
COBALT	1.80E-02	3.22E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
IRON	1.11E+01	1.38E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
LEAD	7.38E-03	1.34E-02	0.00E+00	0.00E+00	1.81E+03	7.19E+04	
MAGNESIUM	9.27E+01	1.47E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MANGANESE	2.53E-01	4.14E-01	0.00E+00	0.00E+00	3.97E-02	1.01E+00	
NICKEL	7.25E-03	7.40E-03	0.00E+00	0.00E+00	9.75E+00	3.60E+02	
POTASSIUM	7.12E+00	1.05E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+02	
SODIUM	3.22E+01	5.27E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
VANADIUM	4.00E-03	6.70E-03	0.00E+00	0.00E+00	1.53E-01	6.54E+00	
ZINC	3.90E-02	6.68E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
			TIMATED CA				
	IOIALADU		6.07E-04	5.07E-03	1.90E+03	7.47E+04	
			0.07 6-04	J.07 E-03	1.706403	7.47 6+04	

.

· · •

.

APPENDIX H

TOXICITY SUMMARIES

3967 (7)

TABLE OF CONTENTS

Page

VOLATILE ORGANIC COMPOUNDS.....1 1.0 ACETONE......1 1.1 BENZENE......4 1.2 1.3 1,1-DICHLOROETHENE (1,1-DCE)......13 1.4 1.5 ETHYLBENZENE.....19 1.6 1.7 TETRACHLOROETHYLENE (PCE)......29 1.8 1.9 1.10 TRICHLOROETHENE (TCE)46 1.11 1.12 1.13 2.02.1 2.2 2.3 2.4

1.0 VOLATILE ORGANIC COMPOUNDS

1.1 <u>ACETONE</u>

General Properties

Atomic Weight: 58.08 g/mol Melting Point: -95.35°C Boiling Point: 56.2°C Specific Density: 0.79 (@ 20°C) Water Solubility: miscible Vapour Pressure: 180 mm Hg (@ 20°C) Henry's Law Constant: 3.97x10⁻⁵ atm-m³/mol (@ 25°C) Reference: Montgomery and Welkom, 1990.

Uses

Acetone is used in the manufacture of methacrylates, as a solvent, and as a chemical intermediate in the manufacture of methyl isobutyl ketone and other chemicals (Howard, 1990).

Sources

Natural: Acetone has been identified in vegetation, insects and mammals as a naturally occurring, volatile metabolite. It is also emitted from volcanoes and forest fires (Howard, 1990).

Anthropogenic: Acetone is produced in large quantities and may be released as stack emissions, fugitive emissions, and in wastewater in its production and use as a chemical intermediate and solvent. It is a byproduct in the manufacturing of acetaldehyde, acetic acid and wood pulping. Acetone is also emitted from wood-burning fireplaces and tobacco smoke (Howard, 1990).

Environmental Concentrations

The levels of acetone in ambient air and water are generally low. The concentration of acetone in the atmosphere in remote areas is <1 ppb. In the atmosphere of rural areas, the mean concentration is >3 ppb. Urban air in the United States has a mean acetone concentration of 6.9 ppb (ATSDR, 1993).

H-1

Acetone has been detected as a volatile component of several fruits and vegetables (ATSDR, 1993), baked potatoes, roasted filberts, dried beans and legumes, and French cognac (Howard, 1990).

Acetone doesn't bioconcentrate in aquatic organisms, and there is no data on acetone biomagnification in aquatic and terrestrial food chains (ATSDR, 1993).

Environmental Fate

Terrestrial: Due to its miscibility with water, acetone does not adsorb appreciably to soil. Also, since acetone has a high vapour pressure and a high Henry's Law constant, it will readily volatize from the soil surface. Therefore, if released on soil, acetone will both volatize and leach into the ground (Howard, 1990).

Aquatic: Again, due to acetone's high vapour pressure and high Henry's Law constant, it will be lost from this medium due to volatization. Adsorption to sediments shouldn't be significant (Howard, 1990).

Atmospheric: Acetone will be lost by photolysis and by reaction with photochemically-produced hydroxyl radicals. Loss by these two processes results in an annual average half-life of 22 days for acetone. Due to its miscibility with water, acetone is also washed out of the atmosphere by rain. This is an important removal process (Howard, 1990).

Absorption, Metabolism and Excretion

Acetone is rapidly and passively absorbed from the lungs and gastrointestinal tract. It can also be absorbed from the skin. After uptake by the lungs, acetone is readily absorbed into the blood stream (ATSDR, 1993).

Due to its high water solubility, acetone is widely distributed to tissues and organs throughout the body, especially to tissues with high water content (ATSDR, 1993). Metabolism takes place primarily in the liver. The metabolic fate of acetone is independent of route of exposure and involves three separate gluconeogenic pathways. Ultimately carbon atoms are incorporated into glucose and other products of intermediary metabolism, with the production of CO₂ and ATP (ATSDR, 1993).

Excretion of acetone is mainly via the lungs with little excreted in the urine, regardless of the route of exposure. It is excreted both unchanged and, following metabolism, mainly as CO₂ (ATSDR, 1993).

Toxicity

Occupational exposure to acetone will be via dermal contact with solvents containing the chemical and via inhalation of the vapour. The general population is exposed to acetone in the atmosphere from sources such as auto exhaust, solvents, tobacco smoke, and fireplaces, as well as from dermal contact with consumer products containing acetone as a solvent. In addition, there will be exposure via ingestion of food items that naturally contain acetone. The average daily intake via air (assuming an air concentration of 0.05 to 20 ppb) is 24 to 960 mg/person/day (Howard, 1990).

Acetone doesn't appear to produce respiratory effects in humans or animals after oral or dermal exposure. As is common with solvent exposure, the respiratory effects of acetone observed in humans exposed by inhalation are related to the irritating properties of acetone. It is unlikely that people would experience respiratory irritation after exposure to acetone at ambient air, soil, or water levels, or at levels present at hazardous waste sites (ATSDR, 1993).

Acute inhalation of acetone exceeding concentrations of 900 ppm causes lung and throat irritation, as well as dizziness, headache and unsteadiness in workers. Rats exposed to acetone at concentrations of 19,000 ppm via inhalation for 2 to 8 weeks showed no adverse effects on the hepatic, renal or neurological systems. In a 6-week study with humans, no effects were found on respiratory, cardiovascular, hematological, hepatic and renal systems at concentrations < 1,250 ppm. Chronic inhalation of acetone at

H-3

concentrations greater than 1,006 ppm can again result in lung and throat irritation, headache and lightheadedness in workers (ATSDR, 1993).

Regulatory Levels

Chronic RfD: oral - 0.1 mg/kg-day (IRIS, April, 1994).

inhalation - 3 mg/kg-day (SPHEM, 1986).

TLV-TWA: 750 ppm or 1,780 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group D (not classified as a human carcinogen) (IRIS, April, 1994).

1.2 <u>BENZENE</u>

General Properties

Atomic Weight: 78.11 g/mol Melting Point: 5.533°C Boiling Point: 80.1°C Specific Density: 0.8765 (@ 20°C) Water Solubility: 1780 mg/L (@ 25°C) Vapour Pressure: 76 mm Hg (@ 20°C) Henry's Law Constant: 5.48x10⁻³ atm-m³/mol (@ 25°C) Reference: Montgomery and Welkom, 1990.

Uses

Benzene recovered from petroleum and coal sources is used primarily as an intermediate in the manufacture of other chemicals and end products. The major uses of benzene are in the production of ethylbenzene, cumene, and cyclohexane. Benzene is especially important for unleaded gasoline because of its anti-knock characteristics. The percentage by volume of benzene in unleaded gasoline is approximately 1 to 2%. In the past, benzene was widely used as a solvent, but this is decreasing. Less than 2% of the amount produced is used as a solvent in such products as trade and industrial paints, rubber cements, adhesives, paint removers, artificial leather, and rubber goods (ATSDR, 1992).

Sources

Natural: Natural sources of benzene include volcanic eruptions, crude oil seeps, forest fires, and plant volatiles (Howard, 1990).

Anthropogenic: Benzene enters the environment from production, storage, transport, venting, and combustion of gasoline, and from production, storage, and transport of benzene itself. Other sources result from its use as an intermediate in the production of other chemicals, and as a solvent; from spills, including oil spills; from its indirect production in coke ovens; from nonferrous metal manufacture, ore mining, wood processing, coal mining and textile manufacture; and from cigarette smoke (Howard, 1990).

Environmental Concentrations

Benzene is ubiquitous in the atmosphere. It has been identified in outdoor air samples of both rural and urban environments and in indoor air. The following daily median benzene air concentrations were reported by the Volatile Organic Compound National Ambient Database (1975-85): remote (0.16 ppb), rural (0.47 ppb), suburban (1.8 ppb), urban (1.8 ppb), indoor air (1.8 ppb), and workplace air (2.1 ppb) (ATSDR, 1992).

Benzene was detected in 15% of the surface water samples collected at 1271 observation stations at a median concentration of 5 ppb. Benzene levels in water in the vicinity of five industrial facilities using or producing benzene ranged from < 1 ppb to a high of 179 ppb (ATSDR, 1992).

Benzene levels ranging from < 2 to 191 ppb were recorded in the vicinity of five industrial facilities using or producing benzene. Benzene was detected in sediment samples taken at 9% of 355 observation stations with a median level of < 5 ppb (ATSDR, 1992).

Environmental Fate

Terrestrial: If benzene is released to soil, it will be subject to rapid volatization near the surface, and that which doesn't evaporate will be highly to very highly mobile in soil and may leach to the environment (Howard, 1990). Factors influencing benzene's leaching potential include the soil type (e.g., sand versus soil), the amount of rainfall, the depth of the groundwater,

and the extent of degradation. Benzene is biodegraded in soil under aerobic conditions (ATSDR, 1992).

Aquatic: When benzene is released to water, it will be subject to rapid volatization. It has been estimated that the volatization half-life for benzene is 4.81 hours for a 1-metre-deep body of water at 25°C. It is not expected to significantly adsorb to sediment, bioconcentrate in aquatic organisms, or hydrolyze (Howard, 1990). Benzene is biodegradable in surface water and groundwater. Microbial degradation in aquatic environments is influenced by the microbial population, dissolved oxygen, nutrients, other sources of carbon, inhibitors, temperature, and pH (ATSDR, 1992).

Atmospheric: When released to the atmosphere, benzene will exist predominantly in the vapour phase. Gas-phase benzene will not be subject to direct photolysis but will react with photochemically produced hydroxyl radicals. The reaction time in polluted atmospheres that contain nitrogen oxides or sulphur dioxide is accelerated. Benzene is quite water soluble and is removed from the atmosphere in rain (Howard, 1990).

Absorption, Metabolism and Excretion

Existing evidence indicates that benzene is rapidly absorbed by humans following inhalation exposure. Case studies of accidental or intentional poisoning indicates that benzene is absorbed by the oral route. Benzene can be absorbed dermally, but absorption by this route is not as substantial as that following inhalation or oral exposure (ATSDR, 1992).

Benzene is excreted both unchanged via the lungs and as metabolites in the urine. The rate and percentage of excretion via the lungs are dependent on exposure dose and route. Absorbed benzene is excreted via metabolism to phenol followed by urinary excretion of conjugated derivatives (sulphates and glucuronides) (ATSDR, 1992).

Toxicity

Benzene is widely distributed in the environment. The exposure scenario of most concern to the general public is low level

inhalation over long periods. This is due to the fact that the general population is exposed to benzene mainly through inhalation of contaminated air, particularly in areas of heavy traffic and around gas stations, and through tobacco smoke from both active and passive smoking (ATSDR, 1992).

Generally, dermal absorption of benzene is secondary to benzene absorption through the respiratory system in the occupational environment. Benzene is an irritant to the skin and, by defatting the keratin layer, may cause erythema, vesiculation, and dry and scaly dermatities. Therefore, it is important to avoid skin contact (ATSDR, 1992).

Chronic low-level exposures have been associated with peripheral nervous system effects. Abnormalities in motor conduction velocity were noted in four out of six individuals occupationally exposed to adhesives containing benzene (ATSDR, 1992).

The most noted systemic effect resulting from intermediate and chronic benzene exposure is hematotoxicity. Human studies showed that inhalation of 210 to 650 ppm benzene for several months to 15 years resulted in pancytopenia, which is a decrease in the number of all three major types of blood cells (erythrocytes or red blood cells, thrombocytes or platelets, and leukocytes or white blood cells). Continued exposure to benzene can also result in aplastic anemia or leukemia. Aplastic anemia is a more severe effect of benzene and occurs when the bone marrow ceases to function and the stem cells never reach maturity. A causal relationship exists between benzene exposure and aplastic anemia in humans (ATSDR, 1992).

Both gastrointestinal (i.e., toxic gastritis and pyloric stenosis) and dermal effects (i.e., swelling and edema) have been reported to occur in a human who has swallowed benzene (ATSDR, 1992).

Damage to both the humoral and cellular components of the immune system has been known to occur in humans following inhalation exposure. This is manifested by decreased levels of antibodies and decreased levels of leukocytes in workers (ATSDR, 1992).

H-7 ·

Data from both humans and animals indicate that benzene and/or its metabolites are genotoxic. Chromosomal aberrations in peripheral lymphocytes and bone marrow cells are the predominant effects seen in humans (ATSDR, 1992).

Many epidemiological and case studies correlate benzene exposure with leukemia (ATSDR, 1992). This indicates that benzene is carcinogenic.

Benzene is classified by USEPA as a known human carcinogen (Group A). The USEPA Cancer Slope Factor (CSF) for benzene, used to estimate additional lifetime cancer risk, is 2.9x10⁻² (mg/kg-day)⁻¹ via both oral and inhalation route. A final Reference Dose (RfD) is under review. All of the aforementioned toxicity values were taken from the Integrated Risk Information System (IRIS) database, April 1994.

Regulatory Levels

Chronic CSF: oral - 2.9x10⁻² (mg/kg-day)⁻¹

inhalation - $2.9 \times 10^{-2} (mg/kg-day)^{-1}$

MCL: 5x10⁻³ mg/L

AWQC: water and fish - 6.6x10⁻⁴ mg/L

fish only - $4x10^{-2}$ mg/L

TLV-TWA: 10 ppm or 32 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group A (known human carcinogen) Reference: IRIS, April 1994 (unless otherwise noted).

1.3 <u>1,1-DICHLOROETHANE (1,1-DCA)</u>

General Properties

Atomic Weight: 98.96 g/mol

Melting Point: -97.4°C

Boiling Point: 57.3°C

Specific Density: 1.1757 (@ 20°C)

Water Solubility: 5,500 mg/L (@ 20°C)

Vapour Pressure: 182.1 mm Hg (@ 20°C)

Henry's Law Constant: 5.87x10⁻³ atm-m³/mol (@ 25°C) Reference: Montgomery and Welkom, 1990.

Uses

The largest individual use of 1,1-DCA is as an intermediate in the manufacture of other products such as vinyl chloride, 1,1,1-trichloroethane, and to a lesser extent high vacuum rubber. It also has limited use as a solvent for plastics, oils, and fats, and thus is employed as both a cleaning agent and a degreaser. Other uses of 1,1-DCA include fabric spreading, varnish and finish removers, organic synthesis, ore flotation, in fire extinguishers, and as a fumigant and insecticide spray (ATSDR, 1990).

Sources

Natural: 1,1-DCA does not occur as a natural product (Howard, 1990). *Anthropogenic:* The primary disposition of 1,1-DCA in the environment is related to the production, storage, consumption, transport, and disposal of 1,1-DCA used as a chemical intermediate, solvent, finish remover, and degreaser (ATSDR, 1990).

Environmental Concentrations

The tabulated atmospheric levels at urban, rural, and industrial sites across the United States report a median concentration of 55 ppt (ATSDR, 1990).

Data has been summarized from EPA's STORET database, where concentrations of 1,1-DCA in water range from undetected (<10 ppb) to 1,900 ppb. However, it was noted that monitoring results reported for 1,1-DCA in surface waters are almost always below the detection limit (generally 10 ppb). Concentrations in domestic surface waters used as drinking water sources have been reported to range from trace amounts to 4.8 ppb. As well, domestic groundwater supplies used for drinking water have reported concentrations ranging from trace amounts to 400 ppb of 1,1-DCA (ATSDR, 1990).

No information was found on the ambient concentrations of 1,1-DCA in soil, or on the current disposal of waste products containing the

compound in landfills. The compound has more commonly been detected in ambient air and groundwater samples taken at hazardous waste sites, and it is expected that the lack of available soil monitoring data is at least in part due to rapid partitioning of 1,1-DCA released to soils to these other media (ATSDR, 1990).

Environmental Fate

Terrestrial: 1,1-DCA released to land surfaces in spills would rapidly volatize to the atmosphere, but 1,1-DCA remaining on soil surfaces would be available for transport into groundwater, since the compound does not sorb to soil particulates unless the organic content of the soil is high. Direct photolysis on soil surface is not expected. The rate of biodegradation of 1,1-DCA in soils is unknown (ATSDR, 1990).

Aquatic: 1,1-DCA released to surface waters in effluent streams is expected to partition rapidly to the atmosphere as a result of the high vapour pressure of the compound. Evaporation half-life depends on a number of factors. Wind speed and mixing conditions of the receiving waters are particularly important (ATSDR, 1990). Adsorption to sediment, biodegradation and hydrolysis should be insignificant by comparison (Howard, 1990).

Atmospheric: 1,1-DCA released to the atmosphere may be transported long distances before being washed out in precipitation. Increased atmospheric losses due to washout in frequent, heavy rains could occur, although much of the 1,1-DCA could be revolatized. In the atmosphere, 1,1-DCA is oxidized by reaction with hydroxyl radicals to form products such as monochloroacetyl chloride, chloroacetic acid, hydrochloric acid, and chlorine. The half-life of the compound has been estimated to be 44 days. Photolysis is not an important removal process for 1,1-DCA since it does not absorb strongly within the solar radiation region (ATSDR, 1990).

Absorption, Metabolism and Excretion

No studies were located in humans or animals regarding the absorption of inhaled or ingested 1,1-DCA or following dermal exposure to 1,1-DCA. However, its use as a gaseous anesthetic agent in humans provides evidence of its absorption. Furthermore, the volatile and lipophilic nature of 1,1-DCA favours pulmonary absorption. The total amount absorbed from the lungs will be directly proportional to the concentration in inspired air, the duration of exposure, the blood/air partition coefficient of 1,1-DCA, its solubility in tissues, and the individual's ventilation rate and cardiac output. When 700 mg [¹⁴C]-1,1-DCA/kg was orally administered to rats and mice, absorption was evidenced by the presence of radiolabel in expired air and the presence of radiolabeled metabolites in urine, though there was no quantitative assessment made of the extent or rate of absorption (ATSDR, 1990).

The metabolism of 1,1-DCA has not been extensively characterized. Large portions of orally administered 1,1-DCA are excreted unchanged by mice and rats in the expired air. The compound not excreted unchanged in the expired air was probably largely metabolized in the liver, followed by subsequent redistribution of labeled metabolites to other organs prior to their excretion (ATSDR, 1990).

One study was located in animals regarding the extent or rate of 1,1-DCA excretion. They reported that 59% of the 1,1-DCA inhaled was metabolized and excreted in the urine and 41% was excreted in expired air. A study conducted indicated that more than 90% of an oral dose in rats (700 mg/kg) and mice (1,800 mg/kg) was excreted unchanged or as carbon dioxide within 48 hours after administration. However, no blood, urine, or tissue concentrations were monitored over time to determine the elimination kinetic parameters (ATSDR, 1990).

Toxicity

No fatalities have been reported in humans following exposure to 1,1-DCA. However, death has been observed in laboratory animals following inhalation and oral exposure. No reliable LD₅₀ or LC₅₀ values were found but lethal doses of 1,1,-DCA have been noted to be 5 to 10 times higher than those required to produce death following exposure to 1,2-DCA or tetrachloroethane. Therefore, it is likely that 1,1-DCA can be fatal to humans, if exposure to high enough levels occurs (ATSDR, 1990). The use of 1,1-DCA as an anesthetic was discontinued when it was discovered that it induced cardiac arrhythmias in humans by an unknown mechanism of action at anesthetic doses (approximately 105,000 mg/m³ or 26,000 ppm) (ATSDR, 1990).

No reports of adverse renal effects in humans following exposure to 1,1-DCA were found. Nephrotoxicity has been observed in cats following subchronic inhalation exposure to 1,000 ppm 1,1-DCA for 13 weeks following 13 weeks of intermittent exposure to 500 ppm 1,1-DCA. However, rats, rabbits, and guinea pigs exposed under the same conditions failed to exhibit any toxic effects on the kidney (ATSDR, 1990).

Chlorinated aliphatics as a class are known to cause central nervous system depression following high level exposure in humans and animals (ATSDR, 1990).

There is suggestive evidence that 1,1-DCA may be carcinogenic in humans. A significant positive dose-related trend was observed for the incidence of hemangiosarcomas and mammary adenocarcinomas in female rats, hepatocellular carcinomas in male mice and endometrial stromal polyps in female mice. There is limited evidence that neither confirms or dispels the carcinogenic potential of 1,1-DCA. Thus, these results are inconclusive as to whether it poses a cancer threat for humans (ATSDR, 1990).

Regulatory Levels

Chronic RfD: oral - 0.1 mg/kg-day (HEAST, 1994).

inhalation - 0.14 mg/kg-day (HEAST, 1994).

TLV-TWA: 100 ppm or 405 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group C (probable human carcinogen limited evidence in animal studies) (IRIS, April 1994). Reference: IRIS, April, 1994 (unless otherwise stated).

(7) 3967

1.4 <u>1,1-DICHLOROETHENE (1,1-DCE)</u>

General Properties

Atomic Weight: 96.94 g/mol Melting Point: -122.1°C Boiling Point: 37°C Specific Density: 1.218 (@ 20°C) Water Solubility: 400 mg/L (@ 20°C) Vapour Pressure: 495 mm Hg (@ 20°C) Henry's Law Constant: 2x10⁻² atm-m³/mol Reference: Montgomery and Welkom, 1990.

Uses

Monomeric 1,1-DCE is used as an intermediate for captive organic chemical synthesis, and in the production of polyvinylidene chloride copolymers. These polymers are used extensively in many types of flexible packing materials, as flame retardant coatings for fiber and carpet backing, and in piping, coating for steel pipes, and adhesive applications. The major application of polyvinylidene chloride copolymers is the production of flexible films for food packaging (SARAN and VELON wraps) (ATSDR, 1993).

Sources

Natural: 1,1-DCE is a man-made chemical, and thus it is not present naturally in the environment (ATSDR, 1993).

Anthropogenic: The primary sources of 1,1-DCE in the environment are related to the synthesis, fabrication, and transport of 1,1-DCE and the fabrication of its polymer products. Releases to the atmosphere are the greatest source of ambient 1,1-DCE. Smaller amounts of the chemical are released to surface water and soil, primarily as a result of waste disposal (ATSDR, 1993).

Environmental Concentrations

The National Ambient Volatile Organic Compound Database reports an ambient daily average concentration for 1,1-DCE of 4.6 ppb. The ambient average daily concentration represents contributions from rural, suburban, urban, and source-dominated sites (ATSDR, 1993).

1,1-DCE concentrations >5 mg/L have been measured in raw wastewater from the metal finishing and nonferrous metals manufacturing industries. Lower concentrations (<1 mg/L) have been measured in raw wastewater from industries involving paint and ink formulation, soap and detergent manufacturing, coil coating, battery manufacturing, coal mining, and laundries (EPA, 1981). According to the STORET database maintained by the EPA, 1,1-DCE has been detected in 3.3% of 1,350 effluent samples and in 6% of 8,714 surface water samples monitored nationwide (ATSDR, 1993).

No information is available on ambient concentrations of 1,1-DCE in soil, although this chemical is often found at hazardous waste sites (ATSDR, 1993).

Environmental Fate

Terrestrial: 1,1-DCE spilled onto surface soil will tend to partition to the atmosphere, while some of the chemical may percolate into the subsurface soil. Once in the subsurface soil, 1,1-DCE will partition between soil and water. With a high water solubility and low log soil organic carbon sorption coefficient (Koc), 1,1-DCE will migrate through the soil without significant retardation by adsorption to organic carbon. Similarly, 1,1-DCE will migrate relatively freely within groundwater (ATSDR, 1993).

Aquatic: As the magnitude of the Henry's law constant for 1,1-DCE indicates, 1,1-DCE is likely to partition readily into the atmosphere from water. Therefore, 1,1-DCE is generally not found in surface water in high concentrations. Biotransformation under anaerobic conditions is believed to be the dominant transformation process for 1,1-DCE in groundwater. However, the importance of this process under aerobic conditions, such as those found in ambient surface water, has not been determined. Photolysis and hydrolysis of 1,1-DCE in natural aquatic media are not significant processes (ATSDR, 1993). *Atmospheric:* Atmospheric degradation of 1,1-DCE is expected to be dominated by gas-phase oxidation with photochemically produced hydroxyl radicals. The products from this reaction are phosgene, formaldehyde, and chloroacetyl chloride. Atmospheric degradation may also occur by a gas-phase reaction with other atmospheric oxidants, namely ozone and nitrate radicals, although these processes are too slow to successfully compete with the reaction of 1,1-DCE with hydroxyl radicals. Studies on atmospheric removal processes indicate that once in the atmosphere, 1,1-DCE is unlikely to be removed by physical processes such as wet deposition (e.g. rain) or by adsorption to atmospheric particulates (ATSDR, 1993).

Absorption, Metabolism and Excretion

Data regarding toxicokinetics of 1,1-DCE in humans are not available. Studies in animals indicate that 1,1-DCE is readily absorbed and rapidly distributed in the body following inhalation and oral exposure (ATSDR, 1993).

The oral absorption rate depends on the type of vehicle used. Oily vehicles facilitate uptake. Uptake of 1,1-DCE vapours is duration and dose-dependent. However, the percentage of 1,1-DCE uptake decreases as the exposure concentration increases, until equilibrium is reached. 1,1-DCE distributes mainly to the liver and kidney and does not appear to be stored or accumulated in the tissues (ATSDR, 1993).

1,1-DCE is metabolized by the hepatic microsomal cytochrome P-450 system. This process gives rise to several possible reactive intermediates thought to be responsible for 1,1-DCE toxicity (ATSDR, 1993).

Excretion of metabolites and parent compound occurs primarily via the urine and exhaled air. At high doses or exposures, greater percentages of the dose are exhaled as unchanged 1,1-DCE (ATSDR, 1993).

The physical/chemical properties of 1,1-DCE indicate that absorption of the liquid form of 1,1-DCE via dermal exposure is possible in humans. Information on the disposition and metabolism of 1,1-DCE following long-term exposures were not available (ATSDR, 1993).

Toxicity

Exposure to 1,1-DCE by the general population would likely occur by inhalation and oral consumption of affected food and water, while occupational exposures could occur by inhalation and dermal routes. Available information indicates that short-term exposure to acute levels of 1,1-DCE can cause adverse neurological effects, and severe liver and kidney toxicity after repeated, low-level exposure in humans (ATSDR, 1993).

Though no deaths have been reported in humans following 1,1-DCE exposure, 1,1-DCE was lethal to animals following acute exposures to high levels via the inhalation or oral routes. 1,1-DCE-induced lethality appeared to be influenced by the nutritional status of the animal regardless of exposure route. Males appeared to be affected to a greater extent by fasting than females. Experimental evidence suggests that this enhanced toxicity in fasted animals resulted from increased levels of the reactive intermediate of 1,1-DCE available for binding to macromolecules in target tissues after fasting (ATSDR, 1993).

Irritation of the mucous membrane of the upper respiratory tract and pulmonary congestion, hyperemia, and morphological changes were seen at necropsy in rats and mice acutely exposed to high levels (500 to 15,000 ppm) via inhalation. Longer-term inhalation exposure to 1,1-DCE was associated with similar adverse respiratory effects. For example, nasal irritation was observed in rats exposed to 200 ppm for 4 weeks. Inflammation of the trachea was seen in rats exposed to 72 ppm of 1,1-DCE for 6 months. These effects appeared to be rather nonspecific and most likely resulted from 1,1-DCE's irritating properties. Therefore, these data suggest that any possible respiratory effects associated with inhalation exposure to 1,1-DCE (particularly acute) in humans may be a consequence of local, nonspecific irritation (ATSDR, 1993).

Hepatotoxicity has been observed in humans following repeated exposure to 1,1-DCE, presumably by the inhalation route. Results from animal studies indicate that the liver is a primary target organ for 1,1-DCE-induced toxicity. Hepatotoxicity following both inhalation and oral

exposure to 1,1-DCE was manifested by biochemical changes (i.e., increases in serum enzyme markers of liver dysfunction and induction of hepatic enzymes), and mild to marked histological changes (e.g., midzonal and/or centrilobular vacuolization, swelling, degeneration and necrosis). Mice inhaling 50 ppm 1,1-DCE for 6 hours exhibited only slight centrilobular swelling, whereas continuous inhalation exposure of mice to 15 ppm 1,1-DCE for 5 days resulted in an increase in serum enzymes indicative of liver dysfunction and hepatic degeneration was seen at 60 ppm. More severe hepatotoxic effects were seen in fasted animals as compared to fed animals. Increases in liver weight have been observed in acutely exposed rats at doses of 50 mg/kg body weight and above, and severe histological evidence of liver damage was noted following the oral administration of 200 mg 1,1-DCE/kg body weight to rats (ATSDR, 1993).

Renal toxicity has been observed following both inhalation and oral exposure to 1,1-DCE in animals. Though data on kidney toxicity in humans following exposure to 1,1-DCE do not currently exist, , evidence from animal studies in two species suggest that nephrotoxicity may also result in humans, particularly following acute exposure. Following acute exposure, the range of 1,1-DCE concentrations that produced effects in rats is 50 to 300 ppm, with the severity of kidney lesions increasing with increasing dose and duration of exposure. Severe histological lesions of the kidney are often seen in mice following acute inhalation exposure to 10 to 50 ppm of 1,1-DCE. Histopathological changes were seen in rats following oral exposure of 400 mg 1,1-DCE/kg body weight. The renal effects of long-term exposure to 1,1-DCE in humans are not known (ATSDR, 1993).

Central nervous system toxicity has been observed in humans acutely exposed to high concentrations (approximately 4,000 ppm) of inhaled 1,1-DCE. Complete recovery occurred if exposure was not prolonged. Effects on the central nervous system have not been observed following oral or repeated inhalation exposures to 1,1-DCE in animals (ATSDR, 1993).

1,1-DCE has demonstrated weak teratogenic effects in laboratory animals. Developmental toxicology was enhanced following inhalation exposure to 1,1-DCE as compared to oral exposure. After

inhalation exposure at 80 and 160 ppm for 7 hours/day on gestation days 6 through 18, 1,1-DCE produced maternal toxicity and increased resorption and skeletal alterations (ATSDR, 1993).

The carcinogenicity of 1,1-DCE following inhalation, oral, and dermal exposure has been evaluated in mice, rats, and hamsters. Evidence of a positive carcinogenic effect from 1,1-DCE exposure has been seen in Swiss mice exposed by inhalation to 25 ppm 1,1-DCE. There were increases in renal adenocarcinomas (ATSDR, 1993).

Regulatory Levels

Chronic RfD: oral - 0.009 mg/kg-day Chronic CSF: oral - 0.6 (mg/kg-day)⁻¹ inhalation - 0.175 (mg/kg-day)⁻¹

MCL: 0.007 mg/L

AWQC: water and fish - 3.3x10⁻⁵ mg/L

fish only - 1.85x10⁻³ mg/L

TLV-TWA: 5 ppm or 20 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group C (probable human carcinogen - limited evidence in animal studies)

Reference: IRIS, April 1994 (unless otherwise stated).

1.5 <u>1,2-DICHLOROETHENE</u>

1,2-DCE is a colourless liquid with a sharp, harsh odour that is readily flammable. There are two forms of 1,2-DCE: cis-1,2-DCE and trans-1,2-DCE. 1,2-DCE is widely used as a low-temperature extraction solvent for organic materials such as dyes, perfumes, lacquers and thermoplastics. Primary use of 1,2-DCE is as an intermediate in the synthesis of other chlorinated solvents and other chemical production. It is often the by-product in the manufacture of chlorinated compounds. Direct chlorination of acetylene at about 40°C can also produce 1,2-DCE.

1,2-DCE is released to the environment from its production and use, emissions from contaminated wastewaters, waste

disposal sites and from pyrolysis/combustion of polyvinyl chloride and some vinyl copolymers.

DCE is easily absorbed into the body from ingested food and water, or from inhaled air. Dermal absorption is minimal since most of the material on the skin would volatilize before absorption would occur.

The general population may be exposed to low levels (0.013-0.076 ppb) of 1,2-DCE through inhalation of affected air in urban areas. These exposure levels correspond to an average daily intake of 1-6 μ g/day assuming an average daily intake of 20 m³ of air.

Inhalation of high levels of 1,2-DCE causes nausea, drowsiness, fatigue, and death at very high levels. The health effects resulting from short- and long-term human exposure to specific levels of 1,2-DCE are unknown. Additionally, the health effects resulting from long-term exposure to low concentrations (ie. environmental levels) of 1,2-DCE are unknown.

Laboratory animals subjected to 1,2-DCE in air showed liver, lung and heart damage after short-term (200-3,000 ppm for 8 hours) and long-term exposure (200 ppm for 16 weeks); increasing severity with the length of exposure duration. Liver and lung damage were observed in animals that were fed 1,2-DCE and extremely high doses of 1,2-DCE (66,000 ppm to 433,000 ppm in food) caused death.

1,2-DCE is not classified by USEPA and has an oral RfD of 0.009 mg/kg-day (IRIS, 1993).

1.6 ETHYLBENZENE

General Properties

Atomic Weight: 106.17 g/mol Melting Point: -95.0°C Boiling Point: 136.2°C

Specific Density: 0.8670 (@ 20°C) Water Solubility: 152 mg/L (@ 20°C) Vapour Pressure: 7.08 mm Hg (@ 20°C) Henry's Law Constant: 8.68x10⁻³ atm-m³/mol (@ 25°C) Reference: Montgomery and Welkom, 1990.

Uses

Ethylbenzene is used primarily in the production of styrene. Other uses of ethylbenzene include use as a solvent, as a constituent of asphalt and of naphtha, and in fuels. It is used in the manufacture of acetophenone, cellulose acetate, diethylbenzene, ethyl anthraquinone, ethylbenzene sulphonic acids, propylene oxide, and α -methylbenzyl alcohol (ATSDR, 1990).

Sources

Natural: Ethylbenzene is naturally present in crude petroleum (ATSDR, 1990).

Anthropogenic: Ethylbenzene is released to the atmosphere during manufacture and handling. Releases to the air can also occur with the use of consumer products such as pesticides, solvents, carpet glue, and varnishes. It has also been measured in cigarette smoke. Releases to water occur as a result of industrial discharges, the use of gasoline fuel for boating, fuel spillage, leaking underground storage tanks, landfill leachate, and the inappropriate disposal of waste. Ethylbenzene can be released to soils through the spilling of gasoline and other fuels, the disposal of solvents and household products such as paint, cleaning and degreasing solvents, varnishes, and pesticides, and emissions from leaking underground storage tanks (ATSDR, 1990).

Environmental Concentrations

Because ethylbenzene is a component of automotive emissions, it is widely present in urban and rural atmospheres. Median concentrations for 6 remote and 122 rural locations are reported as 0.156 and 0.013 ppb, respectively. Higher median concentrations were reported for 886 suburban (0.62 ppb) and 1,532 urban (0.62 ppb) locations (ATSDR, 1990). The median ethylbenzene concentration in ambient surface waters in the United States in 1980 - 1982 was less than $5.0 \ \mu g/L$ according to EPA's STORET water quality data base. The chemical was detected in 10% of the 1,101 samples collected during that period. Ethylbenzene was detected in 7.4% of the 1,368 industrial effluent samples collected during 1980 to 83 at a median concentration of less than $3.0 \ \mu g/L$. The median ethylbenzene concentration in sediment was $5.0 \ \mu g/kg$, the compound was detected in 11% of 350 samples. The 1982 Ground Water Supply Survey conducted by the EPA reported ethylbenzene in only 3 out of 466 random samples at a mean concentration of $0.8 \ \mu g/L$ and a maximum concentration of $1.1 \ \mu g/L$ (ATSDR, 1990).

Ethylbenzene has been detected in soil samples collected at 25% of the 2,783 hazardous waste sites that have had samples analyzed by the CLP. The geometric mean concentration in the positive samples was 0.067 mg/kg (ATSDR, 1990).

Environmental Fate

Terrestrial: When released onto soil, part of the ethylbenzene will evaporate into the atmosphere. It has a moderate adsorption in soil but will probably leach into the groundwater, especially in soil with a low organic content. It is likely that it will biodegrade slowly after acclimation. There is evidence that ethylbenzene slowly biodegrades in groundwater. It will not hydrolyze in soil or groundwater (Howard, 1989).

Aquatic: When released into water, ethylbenzene will evaporate fairly rapidly into the atmosphere with a half-life ranging from hours to a few weeks. Biodegradation will also be rapid (half-life 2 days) after a population of degrading microorganisms becomes established, which will depend on the particular body of water and the temperature. Some ethylbenzene may be adsorbed by sediment, but significant bioconcentration in fish is not expected to occur based upon its octanol/water partition coefficient. It will not significantly photolyze or hydrolyze (Howard, 1989).

Atmospheric: If ethylbenzene is released to the atmosphere it will exist predominantly in the vapour phase based on its vapour pressure. It will be

removed from the atmosphere principally by reaction with photochemically produced hydroxyl radicals (half-life 0.5 hours to 2 days). Additional quantities will be removed by rain. It will not be expected to directly photolyze (Howard, 1989).

Absorption, Metabolism and Excretion

Inhalation studies in humans demonstrate that ethylbenzene is rapidly and efficiently absorbed via this route. Human volunteers exposed for 8 hours to ethylbenzene at concentrations of 23 to 85 ppm were shown to retain 64% of the inspired vapour, with only trace amounts detected in expired air. No studies were located regarding the absorption of ethylbenzene in humans following oral exposure. Studies in animals, however, indicate that ethylbenzene is quickly and effectively absorbed by this route. 84% of the radioactivity from a single oral dose of 30 mg ethylbenzene/kg administered to rats was recovered within 48 hours. Studies in humans dermally exposed to liquid ethylbenzene demonstrate rapid absorption through the skin, but absorption of ethylbenzene vapours through the skin appears to be minimal (ATSDR, 1990).

The metabolism of ethylbenzene has been studied in humans and other mammalian species. The data demonstrate that ethylbenzene rapidly undergoes a complex series of biotransformations from which numerous metabolites have been isolated (ATSDR, 1990).

Excretion of ethylbenzene has been studied in humans and in a number of animal species. Ethylbenzene has been shown to be rapidly metabolized and then eliminated from the body, primarily as urinary metabolites (ATSDR, 1990).

Toxicity

No deaths have been reported in humans following ethylbenzene exposure, but death has occurred in laboratory animals following acute exposure to high levels of ethylbenzene administered via the inhalation, oral and dermal routes. The concentrations of ethylbenzene necessary to cause death in animals have been shown to be relatively high (1,200 to 13,367 ppm, inhalation exposure; 4,728 mg/kg/day, oral exposure; 15,415 mg ethylbenzene/kg body weight, dermal exposure). Given this information, death in humans resulting from chronic low-level exposure to ethylbenzene is unlikely (ATSDR, 1990).

Moderate upper respiratory irritation accompanied by chest constriction has been reported in humans exposed by inhalation to ethylbenzene concentrations as low as 460 ppm. Symptoms become more extreme following exposure to higher doses. Animal studies support these findings. The available data suggest that severe respiratory effects in humans could result following inhalation exposure to high doses of ethylbenzene (ATSDR, 1990).

Renal effects, manifested as enzyme changes, increases in organ weight, and tubular swelling, have been observed in rats and mice. These studies suggest that renal effects may occur in humans exposed to high doses of ethylbenzene (ATSDR, 1990).

The principal effect in humans acutely exposed to high concentrations (460 to 1,200 ppm) of ethylbenzene has been central nervous system toxicity (dizziness, vertigo). Complete recovery has been shown to occur if the exposure is not prolonged. There is considerable likelihood that human populations acutely exposed to high concentrations of ethylbenzene are unknown (ATSDR, 1990).

No association between increased cancer incidence in humans and exposure to ethylbenzene has been reported in current literature. The only chronic bioassay located showed a significant increase in tumors in rats orally exposed to ethylbenzene. These results are inconclusive, given the weakness of the study. Therefore, the relevance of ethylbenzene induced carcinogenicity to public health cannot be ascertained (ATSDR, 1990).

Regulatory Levels

Chronic RfD: oral - 0.1 mg/kg-day inhalation - 0.286 mg/kg-day MCL: 0.7 mg/L (USEPA, July 1992). AWQC: water and fish - 1.4 mg/L

fish only - 3.28 mg/L

TLV-TWA: 100 ppm or 434 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group D (not classified - inadequate evidence in animal studies)

Reference: IRIS, April 1994 (unless otherwise indicated).

1.7 METHYLENE CHLORIDE

General Properties

Atomic Weight: 84.93 g/mol Melting Point: -95.1°C Boiling Point: 40°C Specific Density: 1.3266 (@ 20°C) Water Solubility: 20,000 mg/L (@ 20°C) (ATSDR, 1992). Vapour Pressure: 349 mm Hg (@ 20°C) (ATSDR, 1992). Henry's Law Constant: 2.03x10⁻³ atm-m³/mol (ATSDR, 1992). Reference: Weast, 1986 (unless otherwise indicated).

Uses

Methylene chloride is used as a solvent in paint strippers and removers (25%), as a propellant in aerosols (25%), as a process solvent in the manufacture of drugs, pharmaceutical and film coatings (20%), as a metal cleaning and finishing solvent (10%), in electronics manufacturing (10%), and as an agent in urethane foam blowing (10%). Aerosol products in which methylene chloride may be found include paints, automotive products, and insect sprays. However, because of labeling regulations and concerns over health and environmental issues, the use of methylene chloride in consumer aerosol products has declined (ATSDR, 1992).

Methylene chloride is also used as an extraction solvent for spice oleoresins, hops, and for the removal of caffeine from coffee. However, because of concern over residual solvent, most decaffeinators no longer use methylene chloride (ATSDR, 1992).

Sources

Natural: Methylene chloride does not appear to occur naturally in the environment (ATSDR, 1992).

Anthropogenic: Methylene chloride is released to the atmosphere during its production, storage, and transport, but most (more than 99%) of the atmospheric releases result from industrial and consumer uses. Wastewater containing methylene chloride may occur primarily from the following industries: paint and ink, aluminum forming, coal mining, photographic equipment and supplies, pharmaceutical, organic chemical/plastics, rubber processing, foundries, and laundries (Howard, 1990). The principal sources of methylene chloride releases to land are disposal of methylene chloride products and containers to landfills (ATSDR, 1992).

Environmental Concentrations

Methylene chloride has been detected in ambient air samples taken from around the world. Background levels are usually at about 50 ppt ($0.17 \,\mu\text{g/m}^3$). Concentrations in urban areas and in the vicinity of hazardous waste sites are generally one to two orders of magnitude higher (ATSDR, 1992).

Methylene chloride has been detected in surface water, groundwater, and finished drinking water throughout the United States. It was detected in 30% of 8,917 surface water samples recorded in the STORET database, at a median concentration of $0.1 \,\mu$ g/L. Since volatization is restricted in groundwater, concentrations of methylene chloride are often higher there than in surface water. Occurrence of methylene chloride in groundwater has been reported in several surveys across the United States, with concentrations ranging from 0 to 3,600 μ g/L. Reported mean concentrations in drinking water are generally less than 1 μ g/L (ATSDR, 1992).

Methylene chloride was detected in 20% of 338 sediment samples recorded in the STORET database, at a median concentration of $13 \mu g/kg$ (ATSDR, 1992).

Environmental Fate

Terrestrial: When spilled on land, methylene chloride is expected to evaporate from near-surface soil into the atmosphere because of its high vapour pressure. It is probable that it will leach through soil into groundwater. Hydrolysis in soil or groundwater is not an important process under normal environmental conditions (Howard, 1990).

Aquatic: Methylene chloride will be primarily lost by evaporation to the atmosphere which should take several hours, depending on wind and mixing conditions. Biodegradation is possible in natural waters but will probably be very slow compared with evaporation. Little is known about adsorption to sediment or bioconcentration in aquatic organisms but these are not likely to be significant processes. Hydrolysis is not an important process under normal environmental conditions (Howard, 1990).

Atmospheric: Methylene chloride released into the atmosphere will degrade by reaction with hydroxyl radicals with a half-life of several months. It will not be subject to direct photolysis. A small fraction of the chemical will diffuse to the stratosphere where it will rapidly degrade by photolysis and reaction with chlorine radicals. A moderately water-soluble chemical such as methylene chloride will be expected to partially return to earth in rain (Howard, 1990).

Absorption, Metabolism and Excretion

The principal route of human exposure to methylene chloride is inhalation. Evaluation of pulmonary uptake in humans indicated that 70 to 75% of inhaled methylene chloride vapour was absorbed. Once exposure ceased, methylene chloride was rapidly cleared from the blood. No studies were located regarding absorption in humans after oral exposure to methylene chloride but in animals, the limited available data suggest that methylene chloride is easily absorbed from the gastrointestinal tract, particularly if exposed via aqueous media (ATSDR, 1992).

Available data suggest that there are two pathways by which methylene chloride is metabolized. One pathway utilizes the mixed function oxidase (MFO) enzymes and produces carbon monoxide (CO). The

other pathway involves the glutathione transferase (GST) and produces , carbon dioxide (CO₂) (ATSDR, 1992).

Methylene chloride is removed from the body primarily in expired air and urine (ATSDR, 1992).

Toxicity

Acute inhalation exposure of humans (usually during paint stripping) has caused death. Exposure levels were not known and the biologic cause of death was not certain. However, myocardial infarction was reported in one case. Mortality risk was not increased in humans chronically exposed occupationally to 30 to 120 ppm methylene chloride (ATSDR, 1992).

No studies were located regarding respiratory effects in humans or in animals for any duration. No information was found on the respiratory effects of low levels of methylene chloride in humans near hazardous waste sites or industrial urban areas (ATSDR, 1992).

Studies in humans exposed to 75 to 475 ppm did not reveal an association between occupational exposure to methylene chloride and cardiac abnormalities. These findings suggest that the cardiovascular system is not a sensitive target for methylene chloride in humans (ATSDR, 1992).

Human data are limited on the effects of methylene chloride on the liver. However, the liver appears to be a major target organ following methylene chloride exposure in animals. Histomorphological and biochemical changes of the liver occur following acute inhalation (6 hours to 7 days) at high dose levels (5,200 ppm), while fatty changes and biochemical alterations (altered cytochrome levels) were also observed at lower concentrations (100 ppm) for continuous, 24 hour intermediate-duration exposure (100 days). Cytoplasmic vacuolization was observed in rats at 25 ppm (ATSDR, 1992).

No studies were found regarding renal effects in humans by any route of exposure. In rats, methylene chloride produced non-specific

renal tubular and degenerative changes after continuous intermediateduration exposure to methylene chloride vapours (100 to 5,000 ppm) (ATSDR, 1992).

Studies in humans and animals indicate that the central nervous system is a potentially important target for methylene chloride. For the most part, anesthetic responses were reported and effects subsided once exposure ceased. A decrease in behavioural performance and various psychomotor tasks was evident in humans acutely exposed to methylene chloride (300 ppm or greater) in experimental studies. Studies in factory workers chronically exposed to methylene chloride revealed no evidence of neurological or behavioural impairment at exposure levels of 75 to 100 ppm. There was a decrease in succinic dehydrogenase activity in the cerebellum in rats exposed to vapours of methylene chloride at concentrations of 500 ppm or greater and signs of increased protein breakdown in the cerebellum at 1,000 ppm. Based on behavioural or sensory responses which were reported in humans following acute inhalation exposure of 300 ppm or greater, it seems likely that methylene chloride produces nonspecific anesthetic effects similar to those produced by other halogenated hydrocarbons (ATSDR, 1992).

No studies were located regarding developmental effects in humans after inhalation, oral, or dermal exposure. Animal studies demonstrated that inhalation of methylene chloride vapours at concentrations of 1,250 ppm produced minor skeletal effects. Fetal weight was reduced and behavioural changes occurred in rat pups following exposure to 4,500 ppm methylene chloride. Although fetal body weights were decreased, the absence of other fetotoxic effects, including embryo lethality and major malformations, suggest that methylene chloride is not likely to cause developmental effects and behavioural changes at levels encountered at hazardous waste sites (ATSDR, 1992).

Data on reproductive toxicity in humans are limited to one case series study reporting low sperm counts in workers who inhaled vapours of methylene chloride and who had direct contact with the liquid. It is uncertain if effects were due to methylene chloride since workers may have had multiple compound exposures and the study group was small. Animal

studies were negative. Therefore, methylene chloride doesn't appear to pose a hazard to human reproduction (ATSDR, 1992).

Epidemiology studies have not revealed a causal relationship between deaths due to cancer and occupational exposure to methylene chloride (475 ppm or less). Studies in animals exposed via inhalation have demonstrated that methylene chloride is probably carcinogenic. When administered by inhalation, methylene chloride (at concentrations of 2,000 ppm or greater) increased the incidence of alveolar/bronchiolar neoplasms in mice of both sexes. Concentrations of 500 ppm or greater increased the incidence of benign mammary glands tumours per animal in females and male rats (ATSDR, 1992).

Regulatory Levels

Chronic RfD: oral - 0.06 mg/kg-day inhalation - 0.857 mg/kg-day (HEAST, 1994). Chronic CSF: oral - 7.5x10⁻³ (mg/kg-day)⁻¹ inhalation - 1.65x10⁻³ (mg/kg-day)⁻¹ MCL: 0.005 mg/L (USEPA, May 1993). AWQC: water and fish - 1.9x10⁻⁴ mg/L fish only - 1.57x10⁻² mg/L TLV-TWA: 50 ppm or 174 mg/m³ (ACGIH, 1993-94). EPA Carcinogen Classification: Group B2 (probable human carcinogen sufficient evidence in animal studies) Reference: IRIS, April 1994 (unless otherwise indicated).

1.8 <u>TETRACHLOROETHYLENE (PCE)</u>

General Properties

Atomic Weight: 165.83 g/mol Melting Point: -19°C Boiling Point: 121.2°C Specific Density: 1.6227 (@ 20°C) Water Solubility: 150 mg/L (@20°C) Vapour Pressure: 14 mm Hg (@ 20°C)

Henry's Law Constant: 1.53x10⁻² atm-m³/mol

Reference: Montgomery and Welkom, 1990.

Note: PCE as a short form comes from the synonym for tetrachloroethylene, PERCHLOROETHYLENE.

Uses

PCE is commercially important as a chlorinated hydrocarbon solvent and as a chemical intermediate. An estimate of the current end-use pattern for PCE is as follows: 50% for dry cleaning and textile processing, 28% as a chemical intermediate (for the synthesis of fluorocarbon 113, 114, 115 and 116), 9% for industrial metal cleaning, 10% for exports, and 3% for other uses (ATSDR, 1992).

Sources

Natural: PCE is not known to occur in nature (Howard, 1990).

Anthropogenic: PCE is a man-made volatile organic compound that is widely distributed in the environment. PCE is released to the environment via industrial emissions, and building and consumer products. Releases are primarily to the atmosphere, but the compound is also released to surface water and land in sewage sludges and in other liquid and solid waste (ATSDR, 1992).

Environmental Concentrations

A compilation of available U.S. ambient air monitoring data for PCE prior to 1981 has been published. This compilation, which includes more than 2,500 monitoring points, reported mean PCE concentrations of 160 ppt in rural and remote areas, 790 ppt in urban and suburban areas, and 1,300 ppt in areas near emission sources (ATSDR, 1992).

PCE has been detected in drinking water sources throughout the United States. Median concentrations of 0.3 and 3.0 ppb were found in water samples from 180 U.S. cities using surface water supplies and 36 cities using groundwater supplies, respectively. Roughly 25% of all samples were positive for PCE. Results from an EPA Groundwater Supply Survey of 945 water supplies nationwide, using groundwater sources, showed PCE in 75 water supplies; the median concentration of the positive samples was about 0.75 ppb, with a maximum level of 69 ppb (ATSDR, 1992).

An analysis of the EPA STORET Data Base showed that PCE had been positively detected in 5% of 359 sediment observation stations, with median levels <5 ng/g (ATSDR, 1992).

Environmental Fate

Terrestrial: If PCE is released to soil, it will evaporate fairly rapidly into the atmosphere due to its high vapour pressure and low adsorption to soil. It can leach rapidly through sandy soil and therefore may reach groundwater. Biodegradation may be an important process in anaerobic soils. Slow biodegradation may occur in groundwater where acclimated populations of microorganisms exist. There is some evidence of slow degradation in subsurface soils. PCE should not hydrolyze under normal environmental conditions (Howard, 1990).

Aquatic: If PCE is released in water, the primary loss will be by evaporation. The half-life for evaporation from water will depend on wind and mixing conditions, and is estimated to range from 3 hours to 14 days in rivers, lakes, and ponds. Chemical and biological degradation are expected to be very slow. PCE will not be expected to significantly bioconcentrate in aquatic organisms or to adsorb to sediment. In a natural pond, PCE disappeared in 5 and 36 days at low (25 ppm) and high (250 ppm) dose levels, respectively (Howard, 1990).

Atmospheric: If PCE is released to the atmosphere, it will be expected to exist in the vapour phase based upon its relatively high vapour pressure. Vapour phase PCE will be expected to degrade by reaction with photochemically produced hydroxyl radicals or chlorine atoms produced by photooxidation of PCE. Estimated photooxidation time scales range from an approximate half-life of 2 months to complete degradation in an hour. Some of the PCE in the atmosphere may be subject to washout in rain based on the solubility of PCE in water; PCE has been detected in rain (Howard, 1990).

Absorption, Metabolism and Excretion

The primary route of exposure to PCE is inhalation. PCE is readily absorbed by humans through the lungs into the blood. Pulmonary uptake of PCE is proportional to ventilation rate, duration of exposure, and, at lower atmospheric concentrations of PCE, to the concentration of PCE in the inspired air. PCE was found in the blood of a 6-year-old boy who ingested 12 to 16 g of the compound, indicating that PCE is absorbed following oral administration in humans. Dermal absorption in humans following exposure to vapours of PCE is apparently not as important as absorption via inhalation. Results from studies in animals indicate that absorption via the dermal route is relatively unimportant compared to absorption following inhalation (ATSDR, 1992).

The metabolism of PCE is believed to be mediated by a cytochrome P-450 catalyzed oxidation reaction involving the formation of an epoxide intermediate. Following inhalation or ingestion of PCE in humans, the primary metabolites identified in urine and blood were trichloroacetic acid and trichloroethanol (ATSDR, 1992).

Exhalation of unmetabolized parent compound appears to be the primary route of excretion of an absorbed dose of PCE in humans, regardless of the route of exposure (ATSDR, 1992).

Toxicity

The major exposure routes to PCE by the general public are by inhalation and ingestion. Occupational exposure to PCE (i.e., dry cleaners, chemical workers) is generally by inhalation. The primary targets of toxicity include the brain, liver, and kidneys. There is some evidence that suggest reproductive effects may be induced in women exposed to PCE (ATSDR, 1992).

Exposure to high concentrations (> 1,000 ppm) of PCE vapour results in collapse, unconsciousness, and death in humans. The cause of death may be related to depression of respiratory centers of the central nervous system and possibly due to cardiac arrhythmia and heart block. Animal studies of oral exposure suggest that anesthesia and death

would be likely occurrences in humans if high concentrations were swallowed. There are no reports of fatalities in humans or animals exposed solely by the dermal route (ATSDR, 1992).

Intense upper respiratory tract irritation occurred in humans exposed acutely by inhalation to high concentrations (> 1,000 ppm) of PCE. Respiratory irritation (irritation of the nasal passages) was reported in workers exposed to PCE vapors at levels of 232 ppm to 385 ppm in a degreasing operation and in volunteers exposed to concentrations as low as 216 ppm for 45 minutes to 2 hours. Volunteers exposed to concentrations as high as 1,060 ppm could tolerate no more than 1 to 2 minutes of exposure before leaving the chamber (ATSDR, 1992).

Despite the relatively large number of people occupationally exposed to PCE, there are few cases of PCE-associated cardiotoxicity. A patient experienced cardiac arrhythmia; he had been employed in a dry cleaning facility for 7 months where he treated clothes with PCE. There is no strong evidence that people exposed to environmental levels of PCE or levels at hazardous waste sites would develop cardiovascular effects (ATSDR, 1992).

PCE has been shown to cause hepatotoxic effects in humans and animals by inhalation and oral routes of exposure. The types of PCE-induced hepatic effects in humans are not well documented, and the exposures or doses producing these effects are not adequately characterized. In most cases, hepatic effects in humans have been reported as transient in nature. The liver is also a target organ in animals, with hepatic lesions induced in experimental animals by inhalation exposure to PCE. Mice appear to be the most sensitive species to this effect. Hepatocellular vacuolization occurred after a single 4-hour exposure of mice to 200 ppm or greater concentrations of PCE. This lesion was also reported in male mice exposed to 875 or 1,750 ppm PCE for 14 days and in females exposed to the highest dose. Vacuolization was not present at 425 ppm. A number of lesions reported in rats after acute exposure to PCE were relatively nonspecific (ATSDR, 1992).

Reversible kidney damage has been reported in humans accidentally exposed to acutely toxic amounts of PCE vapour. There are also data that suggest that occupational exposure to hydrocarbon solvents as a class may contribute to chronic renal disease. Subtle renal perturbations have been detected in at least one study of chronically exposed workers in dry cleaning workshops. They were exposed for an average of 14 years to an estimated time-weighted average of 10 ppm of PCE (ATSDR, 1992).

Skin damage (burns) and intense ocular irritation have been reported in humans exposed to concentrations of PCE liquid or vapours (> 1,000 ppm) high enough to cause anesthetic effects. Burning or stinging sensations in the eyes occurred after exposure to 600 or 280 ppm: very mild irritation was reported by four subjects at exposure to 216 or 106 ppm. No damage to skin has been reported in animals exposed acutely or chronically. Dermal/ocular effects are unlikely in environmentally exposed humans (ATSDR, 1992).

There is a suggestion that exposure to solvents in drinking water can produce some immunological effects. Effects of mixed solvents on the immune system are supported by a study in mice exposed to a mixture of solvents in drinking water (ATSDR, 1992).

Symptoms of acute inhalation exposure to high levels of PCE is well documented in humans and includes headaches, dizziness, and drowsiness. Neurological symptoms of dizziness and drowsiness occurred at exposure to 216 ppm for 45 minutes to 2 hours: loss of motor coordination occurred at exposure to 280 ppm for 2 hours or 600 ppm for 10 minutes. Human data suggest that the threshold for acute effects may be in the concentration range of 100 to 200 ppm with preanesthetic/anesthetic effects occurring at a threshold of 1,000 ppm. These values are supported by animal studies. There is a suggestion that long-term inhalation exposure of workers to organic solvents, including PCE, causes irreversible neurological impairment. There are no data in humans to indicate that structural brain damage is associated with PCE exposure (ATSDR, 1992).

Some epidemiological studies of dry cleaning workers suggest a possible association between chronic PCE exposure and increased cancer risk. The results of these studies are inconclusive because of the likelihood of concomitant exposure to petroleum solvents, the effects of other confounding factors, such as smoking and other life-style variables, and methodological limitations in choosing control population and maintaining complete follow-up. Occupational exposure to PCE and other solvents did not generally result in increased risk of hematopoietic neoplasms (ATSDR, 1992).

Regulatory Levels

Chronic RfD: oral - 0.01 mg/kg-day* Chronic CSF: oral - 0.051 (mg/kg-day)^{-1**} inhalation - 1.5x10⁻⁷ (mg/kg-day)^{-1**} MCL: 0.005 mg/L *** AWQC: water and fish - 8x10⁻⁴ mg/L * fish only - 8.85x10⁻³ mg/L * TLV-TWA: 50 ppm or 339 mg/m³ (ACGIH, 1993-94). EPA Carcinogen Classification: Group B2 (probable human carcinogen-sufficient evidence in animal studies) (under review). References: * IRIS, April 1994 ** HEAST, 1994 *** USEPA, July 1992.

1.9 <u>TOLUENE</u>

General Properties

Atomic Weight: 92.14 g/mol Melting Point: -95°C Boiling Point: 110.6°C Specific Density: 0.8669 (@ 20°C) Water Solubility: 515 mg/L (@ 20°C) Vapour Pressure: 22 mm Hg (@ 20°C) Henry's Law Constant: 6.74x10⁻³ atm-m³/mol (@ 25°C) Reference: Montgomery and Welkom, 1990.

Uses

The major use of nonisolated toluene (100%) is as a mixture added to gasoline (BTX) to improve octane ratings. Nearly half of the isolated toluene which is not back-blended into gasoline is used to produce benzene. About one-third of the isolated toluene is used as a solvent in paints, coatings, adhesives, inks, and cleaning agents. A portion of the isolated toluene goes into the production of polymers used to make nylon, plastic soda bottles, and polyurethanes. Toluene is also used as a starting material in the synthesis of trinitrotoluene (TNT). The remainder is used for pharmaceuticals, dyes, cosmetic nail products, and the synthesis of organic chemicals (ATSDR, 1993).

Sources

Natural: Natural sources of toluene include volcanoes, forest fires, and crude oil (Howard, 1990).

Anthropogenic: Anthropogenic sources of toluene include the following: motor vehicle exhaust; emissions from gasoline storage tanks, filling stations, carburetors, etc.; emissions and wastewater from its use as a solvent and thinner for paints, lacquers, etc.; emissions from its production from petroleum, coal, and as a by-product from styrene production; emissions from its use as a chemical intermediate; and tobacco smoke (Howard, 1990).

Environmental Concentrations

The concentrations of toluene in air tend to be quite low in remote areas, but levels of 5 to 25 g/m³ are common in suburban and urban areas. Automobile emissions are the principal source of toluene in ambient air, with levels fluctuating in proportion to automobile traffic. Toluene is also a common indoor contaminant, and indoor air concentrations are often several times higher (averaging 30 g/m³) than outside air. This is believed to be due to release of toluene from common household products (paints, paint thinners, and adhesives) and from cigarette smoke (ATSDR, 1993).

Toluene is occassionally detected in drinking water supplies, but occurrence is not widespread and levels are generally below

3 g/L. In contrast, toluene is a very common contaminant of water and soil in the vicinity of hazardous waste sites, with average concentrations in water of 7 to 20 g/L, and average concentrations in soil of over 70 g/kg (ATSDR, 1993).

Environmental Fate

Terrestrial: If toluene is released to soil, it will be lost by evaporation from near-surface soil and microbial degradation. Since it is relatively mobile in soil, it may leach into the groundwater where slow biodegradation may occur. It will not significantly hydrolyze under normal environmental conditions (Howard, 1990).

Aquatic: If toluene is released into water, it will be lost by both volatization to the atmosphere and biodegradation. The predominant process will depend on water temperature, mixing conditions, and the existence of acclimated microorganisms at the site. The half-life will range from days to several weeks. It will not significantly hydrolyze, directly photolyze, adsorb to sediment, or bioaccumulate in aquatic organisms (Howard, 1990).

Atmospheric: If toluene is released to the atmosphere, it will exist predominantly in the vapour phase. It degrades moderately rapidly by reaction with photochemically produced hydroxyl radicals. Its half-life ranges from 3 hours to somewhat over a day. It is very effectively washed out by rain. It will not be subject to direct photolysis in sunlight (Howard, 1990).

Absorption, Metabolism and Excretion

Toluene is readily absorbed from the respiratory and gastrointestinal tracts and to a lesser extent through the skin. Animals given toluene orally or by inhalation had high concentrations of toluene in their adipose tissue and bone marrow, and moderately high concentrations of toluene and its metabolites in the liver and kidney. The initial step in metabolism is side-chain hydroxylation followed by oxidation to benzoic acid. Benzoic acid is then conjugated with glycine to form hippuric acid. In both humans and animals, 60 to 75% of inhaled toluene that is absorbed can be accounted for as hippuric acid in the urine. Much of the remaining toluene is exhaled unchanged. The excretion of toluene and its metabolites is rapid, with the major portion occurring within 12 hours of exposure (ATSDR, 1993).

Toxicity

The primary target of toluene appears to be the central nervous system. Occupational data suggests that chronic toluene exposure impairs behavioural function as determined by measurements of cognitive performane, neurasthenic complaints, visual acuity, neuromuscular function, and odour discrimination (ATSDR, 1993).

Mortality reports in humans due to exposure to toluene have generally not provided information on dose and thus, do not provide a basis for quantitative estimates. In one fatal case following oral ingestion of toluene, the cause of death appeared to be a profound disruption of central nervous system function (ATSDR, 1993).

The primary effect of toluene on the respiratory tract following inhalation is irritation. Studies with human volunteers and exposed workers have demonstrated that toluene is a mild to moderate respiratory irritant. Individuals exposed once to moderate concentrations of toluene (800 ppm) for 7 to 8 hours or 1,890 ppm for 2 hours experienced no respiratory effects. However, irritation of the upper respiratory tract was observed in workers exposed for several years to 200 to 800 ppm toluene. Animal studies reported respiratory irritation and pulmonary lesions in rats exposed to high concentrations of toluene. Rats exposed to 600 ppm for 5 weeks (7 hours/day) had irritated tissue in the upper airway and rats exposed to 2,500 to 5,000 ppm had pulmonary lesions. Inflammation of the nasal mucosa, erosion and metaplasia of the olfactory epithelium, and degeneration of the respiratory epithelium was reported in rats exposed to toluene at 600 to 1,200 ppm for 2 years (6.5 hours/day, 5 days/week). These effects were not observed in mice at the same concentrations. In rats exposed chronically (24 months) to lower doses of toluene (300 ppm), no histopathological lung lesions attributable to toluene exposure were observed (ATSDR, 1993).

Toluene inhalation is associated with alterations of the heart rhythm for both humans and animals. There may be individual differences in the cardiac response to toluene that make some individuals more susceptible than others to potentially fatal arrhythmias; the degree of hypoxia may also be important. One person exposed for 2 hours to less than 1,890 ppm toluene exhibited a rapid heartbeat (sinus tachycardia), while the second person, exposed for 3 hours, exhibited a slow heartbeat (bradycardia). Increased relative heart weights were seen in rats exposed to toluene at 1,250 mg/kg/day for 13 weeks and myocardial degeneration was seen in mice exposed to 5,000 mg/kg/day. All of the mice receiving 5,000 mg/kg/day died during the first weeks of exposure. The exposures associated with cardiac rhythm disturbances were of the short-term, high-level type experienced by substance abusers. Therefore, cardiovascular responses are not expected to occur following toluene exposure at or near hazardous waste sites, unless some occurrence releases a high concentration of toluene into an enclosed area (ATSDR, 1993).

The only gastrointestinal effects reported after exposure to toluene by either inhalation, oral, or dermal routes has been ulceration of the forestomach of rats exposed to 600 and 1,200 ppm for 2 years. Similar effects were not seen in mice exposed under the same conditions or to rats or mice orally exposed to 2,500 mg/kg/day for 13 weeks. Therefore, it is unlikely that toluene exposure resulting from the contamination of hazardous waste sites would cause gastrointestinal effects in any exposed population (ATSDR, 1993).

Humans have reported eye irritation following exposure to toluene vapours. Human subjects exposed acutely to toluene concentrations of 100 ppm and greater developed irritation of the eyes. No effects were observed at lower doses. This is probably the result of direct contact of toluene vapour with the outer surface of the eye. Slight to moderately severe irritation of rabbit eyes has been reported following direct application of toluene to the conjunctiva. Skin irritation can also occur in humans and animals dermally exposed to toluene. This appears to be due to the degreasing action of toluene and its removal of protective skin oils (ATSDR, 1993). Weight loss has been reported to occur in rats exposed to toluene via inhalation for periods of 11 to 23 weeks. In case studies of toluene abusers, nausea and anorexia have been reported. These symptoms may explain the weight loss observed in animal studies (ATSDR, 1993).

The primary effect associated with inhalation exposure of humans to toluene is depression of the central nervous system. Inhalation exposures of humans to toluene in the range of 100 to 500 ppm have elicited central nervous system effects such as fatigue, confusion, and uncoordination, as well as impairments in reaction time, perception, and motor control and function. Occupational exposures to high concentrations of toluene and prolonged abuse of toluene have led to several case reports of residual or permanent central nervous system effects. Examinations reveal changes in the intensity of the white matter signal and a breakdown of the grey matter-white matter boundary, which correlates with the degree of brain disfunction (ATSDR, 1993).

Human and animal studies do not support a concern for the carcinogenicity of toluene. The only available human epidemiological studies were negative but inconclusive due to limitation in design and the animal bioassays were all negative (ATSDR, 1993).

Regulatory Levels

Chronic RfD: oral - 0.2 mg/kg-day

inhalation - 0.114 mg/kg-day

MCL: 1.0 mg/L

AWQC: water and fish - 14.3 mg/L

fish only - 424 mg/L

TLV-TWA: 50 ppm or 180 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group D (not classified - inadequate evidence of carcinogenicity in animals)

Reference: IRIS, April 1994 (unless otherwise indicated).

1.10 <u>1,1,1-TRICHLOROETHANE (1,1,1-TCA)</u>

Ceneral Properties

Atomic Weight: 133.4 g/mol Melting Point: -30.4°C Boiling Point: 74.1°C Specific Density: 1.3390 (@ 20°C) Water Solubility: 4,400 mg/L (@ 20°C) Vapour Pressure: 100 mm Hg (@ 20°C) Henry's Law Constant: 8x10⁻³ atm-m³/mol (Howard, 1990). Reference: Montgomery and Welkom, 1990 (unless otherwise indicated).

Uses

1,1,1-TCA is used as a solvent for adhesives (including food packaging adhesives) and in metal degreasing, pesticides, textile processing, cutting fluids, aerosols, lubricants, cutting oil formulations, drain cleaners, shoe polishes, spot cleaners, printing inks, and stain repellents, among other uses. It is used in industry primarily for cold-cleaning, dip cleaning, bucket cleaning, and vapour degreasing operations of items such as precision instruments, molds, electrical equipment, motors, electronic components and instruments, missile hardware, paint masks, photographic film, printed circuit boards, generators, switchgears, semiconductors, and high vacuum equipment, fabrics, and wigs. It is also used for on-site cleaning of printing presses, food packaging machinery, and molds. 1,1,1-TCA was formerly used as a food and grain fumigant (ATSDR, 1994).

Sources

Natural: 1,1,1-TCA is not known to occur as a natural product (Howard, 1990).

Anthropogenic: 1,1,1-TCA is a man-made compound that is released to the environment by anthropogenic activity. It may be released to the environment by process and fugitive emissions during its manufacture, formulation, and use in both consumer and industrial products. Because 1,1,1-TCA is used as a solvent, volatization to the atmosphere is a likely result of its use (ATSDR, 1994).

Environmental Concentrations

The measured concentration of 1,1,1-TCA in urban air usually ranges from 0.1 to 1 ppb; however, levels < 1,000 ppb have been observed in large urban areas or near hazardous waste sites. Rural levels of 1,1,1-TCA are typically < 0.2 ppb. The long atmospheric lifetime of 1,1,1-TCA allows the compound to be carried a considerable distance from its initial point of release; detectable levels have been measured in numerous remote areas throughout the world (ATSDR, 1994).

1,1,1-TCA has been identified in surface water, groundwater, drinking water, effluent, rain, snow, and urban runoff. The amount of the chemical detected in surface and groundwater depends upon the location of the sampling point. Concentrations in surface water removed from point-source emissions such as industrial wastewater, hazardous waste sites, and spill locations are usually < 1 ppb. Random samples of groundwater taken in the United States have ranged from 0 to 18 ppb. Groundwater samples obtained near sources of release have been as high as 11,000 ppb. Drinking water from surface or groundwater sources contained 1,1,1-TCA concentrations of 0.01 to 3.5 ppb (ATSDR, 1994).

The reported frequency of 1,1,1-TCA in soil samples was 12 of 357 CLP sites with concentrations of 3.5 to 6.6x10⁶ ppb (ATSDR, 1994).

Environmental Fate

Terrestrial: If 1,1,1-TCA is released onto soil, it will evaporate fairly rapidly because of its high vapour pressure. It will pass rapidly through soil into groundwater (Howard, 1990).

Aquatic: The primary loss of 1,1,1-TCA from the aquatic environment will be by evaporation into the atmosphere. The half-life will range from hours to a few weeks depending on wind and mixing conditions. Biodegradation and adsorption onto particulate matter will be insignificant relative to volatization (Howard, 1990).

Atmospheric: The dominant atmospheric fate process for 1,1,1-TCA is predicted to be degradation by interaction with photochemically-produced hydroxyl radicals. Direct photochemical degradation of 1,1,1-TCA in the troposphere is not expected to be an important fate process. Because of 1,1,1-TCA's moderate water solubility and its identification in rainwater, rain washout from the atmosphere might occur. 1,1,1-TCA removed by this process would be expected to re-volatize rapidly to the atmosphere. The relatively long tropospheric residence time for 1,1,1-TCA suggests that migration to the stratosphere should be important. Destruction of the compound in the stratosphere is then expected to occur. For 1,1,1-TCA emissions up to 1976, the estimated total ozone loss due to atmospheric 1,1,1-TCA was 0.2%. An estimated 11 to 12% of 1,1,1-TCA released to the atmosphere is expected to survive and migrate to the stratosphere. The estimated atmospheric lifetime of 1,1,1-TCA, which incorporates all removal processes, was 6.2 to 6.3 years. However, these data were obtained by estimating total global production and release, a process that may introduce significant error into the calculations. In a later study, the estimated atmospheric lifetime of 1,1,1-TCA was 5.7 years (ATSDR, 1994).

Absorption, Metabolism and Excretion

Upon first exposure, 1,1,1-TCA rapidly and efficiently absorbed by the lung, the skin (under conditions to prevent evaporation), and the gastrointestinal tract of humans and animals. As the duration of inhalation exposure increases, the percentage not absorbed decreases because steady-state levels are approached in the blood and tissues, and 1,1,1-TCA is metabolized at a low rate (ATSDR, 1994).

Animal studies have demonstrated that, once absorbed, 1,1,1-TCA is distributed by the blood to tissues and organs throughout the body, including developing fetuses, with preferential distribution to fatty tissues (ATSDR, 1994).

1,1,1-TCA is metabolized oxidatively, at low rates, to trichloroethanol and trichloroacetic acid by the cytochrome P-450 mixed-function oxidase system. These metabolites are excreted in the urine; other minor metabolites (CO₂ and acetylene) are excreted in expired air. Experiments with animals and humans have demonstrated that only small fractions of absorbed 1,1,1-TCA doses (< 10%) are metabolized, regardless of the route of exposure (ATSDR, 1994).

The predominant pathway of elimination of 1,1,1-TCA in humans and animals, regardless of route of exposure, is exhalation of the unchanged compound. When exposure ceases, the compound is rapidly cleared from the body (ATSDR, 1994).

Toxicity

The volatility of 1,1,1-TCA makes acute inhalation the most likely lethal exposure scenario in humans. The acute lethal air concentration for humans in unknown; however, simulations of several lethal exposures suggest that it may be as low as 6,000 ppm. The results of animal studies indicate that the lethal exposure concentration decreases substantially with increasing exposure duration. Human deaths after inhalation exposure have been attributed to respiratory failure secondary to central nervous system depression and cardia arrhythmias. Very little is known about lethality due to ingestion of 1,1,1-TCA. Accidental ingestion of 600 mg/kg was not fatal. Human deaths involving dermal exposure have not been reported and it is extremely unlikely due to the high volatility of 1,1,1-TCA (ATSDR, 1994).

1,1,1-TCA can lower blood pressure (mildly to severely) in humans, but these effects are likely only after exposure to high concentrations of the vapour. Daily exposure to low levels for < 6 years did not affect blood pressure, heart rate, or electrocardiogram results in humans. Reduced blood pressure accompanies exposure to anesthetic conditions of 1,1,1-TCA vapour (10,000 to 26,000 ppm). The effects are not permanent and subside shortly after exposure (ATSDR, 1994).

Nausea, vomiting and diarrhea reportedly occur in humans after acute oral or inhalation exposure to high 1,1,1-TCA levels (ATSDR, 1994). 1,1,1-TCA may be a hepatotoxicant in humans, although the evidence is not conclusive. Mild hepatic changes have been found by liver biopsy in exposed individuals, and at autopsy in individuals who died after acute inhalation exposure to high concentrations of 1,1,1-TCA. Animal studies indicate that exposure to relatively high 1,1,1-TCA concentrations in air (> 1,000 ppm) or high oral doses (> 1,334 ppm) are required to produce liver injury (ATSDR, 1994).

1,1,1-TCA is mildly irritating when applied undiluted to the skin. Effects include mild, transient, reversible erythema and edema. Exposure to 1,1,1-TCA vapour is associated with mild eye irritation in humans (ATSDR, 1994).

Neurological effects are the preeminent signs of acute inhalation exposure to 1,1,1-TCA in humans. The severity of effects in humans during acute inhalation exposure increases as the exposure duration and level are increased. Impaired performance of psychophysiological function tests has been observed in individuals exposed to low concentrations (> 175 ppm). Dizziness, lightheadedness, and loss of coordination are caused by exposure to moderate concentrations (> 500 ppm). General anesthesia occurs at high levels (> 10,000 ppm). There are no reports of irreversible neurological impairment in humans (ATSDR, 1994).

Evidence for or against an association between exposure to 1,1,1-TCA and cancer in humans has not been established. Among animals, no effects were found in well-designed inhalation study at exposure levels <1,500 ppm (ATSDR, 1994).

Regulatory Levels

Chronic RfD: oral - 0.09 mg/kg-day * inhalation - 0.3 mg/kg-day * MCL: 0.2 mg/L ** AWQC: water and fish - 18.4 mg/L *** fish only - 1 x 10⁻³ mg/L *** TLV-TWA: 350 ppm or 1910 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group D (not classified - inadequate evidence of carcinogenicity in animals studies) **

References: *HEAST, 1994 **IRIS, April, 1994 ***USEPA, 1986.

1.11 TRICHLOROETHENE (TCE)

General Properties

Atomic Weight: 131.39 g/mol Melting Point: -73°C Boiling Point: 87.2°C Specific Density: 1.4642 (@ 20°C) Water Solubility: 1,00 mg/L Vapour Pressure: 57.8 mm Hg (@ 20°C) Henry's Law Constant: 1.17x10⁻³ atm-m³/mol Reference: Montgomery and Welkom, 1990.

Uses

TCE is an excellent extraction solvent for greases, oils, fats, waxes, and tars and is used by the textile processing industry to scour cotton, wool, and other fabrics. The textile industry also uses TCE as a solvent in waterless dying and finishing operations. As a general solvent or as a component of solvent blends, TCE is used with adhesives, lubricants, paints, varnishes, paint strippers, pesticides, and cold metal cleaners (ATSDR, 1992).

Approximately 10 million pounds of TCE is used annually as a chain transfer agent in the production of polyvinyl chloride. Other chemical intermediate uses of TCE include production of pharmaceuticals, polychlorinated aliphatics, flame retardant chemicals, and insecticides. TCE is used as a refrigerant for low temperature heat transfer and in the aerospace industry for flushing liquid oxygen (ATSDR, 1992).

Various products found to contain TCE include typewriter correction fluids, paint removers/strippers, adhesives, spot removers, and rug-cleaning fluids (ATSDR, 1992).

Sources

Natural: TCE is a man-made chemical that does not occur naturally in the environment (ATSDR, 1992).

Anthropogenic: The major TCE emission source is vapour degreasing operations, which eventually release most of the TCE used in this application to the atmosphere. Other emission sources to the atmosphere include relatively minor releases from TCE manufacture, manufacture of other chemicals (similar chlorinated hydrocarbons and polyvinyl chloride), and solvent evaporation losses from adhesives, paints, coatings, and miscellaneous uses. Release of TCE at publicly owned treatment works or waste treatment facilities occurs through volatization from industrial discharges of wastewater containing TCE. TCE is also released to the atmosphere through gaseous emissions from landfills. TCE is released to aquatic systems from industrial discharges of wastewater streams. TCE can also leach to groundwater from landfills. TCE can be released into the soil through industrial discharges and through landfill leachate (ATSDR, 1992).

Environmental Concentrations

Monitoring data for TCE in ambient air in the United States, prior to 1981, were compiled. This compilation, which includes over 2,300 monitoring points, reports mean TCE concentrations of 0.03 ppb in rural/remote areas, 0.460 ppb in urban/suburban areas, and 1.2 ppb in areas near emission sources of TCE (ATSDR, 1992).

TCE has been detected in many drinking water samples collected throughout the United States. Mean and median concentrations of 0.47 and 0.26 ppb of TCE were found in drinking water from 133 U.S. cities using finished surface water supplies. Mean and median concentrations of 6.76 and 0.31 ppb were found in drinking water from 25 U.S. cities using finished groundwater supplies. The EPA Groundwater Supply Survey of 945 drinking water systems nationwide using groundwater sources found TCE in 91 water systems; the median level of the positive samples was approximately 1 ppb, with a single maximum level of 130 ppb (ATSDR, 1992). An analysis of the EPA STORET Data Base (1980 - 1982) found that TCE had been positively detected in sediment samples taken at 6% of 338 observation stations, with median levels < 5 ppb (ATSDR, 1992).

Environmental Fate

Terrestrial: Spills or releases of TCE to soil will evaporate rapidly due to its reasonably high vapour pressure. TCE appears to be fairly stable in soil although one field study of groundwater contamination from a leaking TCE tank has detected cis- and trans-1,2-dichloroethylene, which suggests that degradation in groundwater can occur. Hydrolysis in not an important process (Howard, 1990). Soil organic carbon sorption coefficients (K_{OC} values) for TCE range from 106 to 460, indicating high-to-medium soil mobility. The components of soil organic matter had widely varying affinities for TCE, with the fats-waxes-resins fraction (K_{OC}=460) being responsible for stronger adsorption of TCE (ATSDR, 1992).

Aquatic: If TCE is released to water, the primary removal process will be evaporation, with a half-life of minutes to hours, depending upon turbulence (Howard, 1990). Oxidation in the aquatic environment does not appear to be a significant fate process, although there is evidence of some oxidation of TCE in aqueous closed systems in the presence of sunlight. In addition, hydrolysis, another potential transformation process for compounds in the aquatic environment, does not occur at a sufficient rate to be important for TCE. TCE has been detected in fruits and vegetables indicating potential bioconcentration by plants. Concentrations measured in tomatoes. potatoes, apples, and pears were 1.7, 0 to 3, 5, and 4 ppb, respectively (ATSDR, 1992). Adsorption to sediment and bioconcentration in aquatic organisms are not important processes (Howard, 1990).

Atmospheric: The atmosphere is the primary recipient of environmental releases of TCE. TCE released to the atmosphere will exist primarily in the vapour phase based on its relatively high vapour pressure (Howard, 1990). The dominant transformation process for TCE in the atmosphere is reaction with sunlight-produced hydroxyl radicals. The degradation products of this reaction include phosgene, dichloroacetyl chloride, and formyl chloride. Direct photolysis of TCE is not an important reaction. TCE was detected in a

number of rainwater samples collected in the United States. Physical removal by means of wet deposition is an important environmental fate process with respect to TCE. TCE can be expected to revolatize back to the atmosphere after being deposited by wet deposition (ATSDR, 1992).

Absorption, Metabolism and Excretion

Absorption of TCE is very rapid upon inhalation exposure in humans. Blood and breath levels increased rapidly after initiation of a 4-hour exposure to 100 ppm, peaking within an hour from the start of the exposure. Although no actual rates of absorption have been measured in humans, cases of poisoning following ingestion indicated that absorption of TCE across the gastrointestinal mucosa is extensive. It would be expected to be readily absorbed across the gastrointestinal mucosal barrier in humans because it is an uncharged, nonpolar, and highly lipophilic compound. Rapid dermal absorption of TCE is evident from a study in which peak blood and exhaled air concentrations occurred within 5 minutes after the subject immersed one hand in an unspecified amount of TCE for 30 minutes (ATSDR, 1992).

Inhaled doses of TCE are metabolized extensively in humans. The principal metabolites of TCE are trichloroethanol, trichloroethanol-glucoronide ("urochloralic acid"), and trichloroacetic acid (ATSDR, 1992).

Following inhalation exposure to TCE in humans, the unmetabolized parent compound in exhaled, whereas its metabolites are primarily eliminated in the urine. Excretion of TCE in the bile apparently represents a minor pathway of elimination (ATSDR, 1992). No studies were located regarding excretion after oral exposure of humans to TCE but 72 hours after a single dose of 2, 20, or 200 mg/kg (¹⁴C)-TCE in mice and rats was eliminated unchanged in exhaled air and urine, whereas the metabolites are excreted primarily in the urine. Elevated TCE levels in expired air were measured in subjects who immersed one hand in an unspecified concentration of TCE for 30 minutes. No studies were located for humans or animals regarding excretion after dermal exposure to TCE (ATSDR, 1992).

Toxicity

Cases of human deaths have been reported as a result of acute accidental exposure in an occupational setting or by intentionally drinking or breathing large amounts of TCE (i.e., suicides). No deaths due to dermal exposure have been reported. Death is not likely to result from exposure to environmental levels or to levels of TCE found at hazardous waste sites (ATSDR, 1992).

Acute, intermediate, or chronic exposure to TCE by workers or laboratory animals did not result in respiratory irritation or disease. Environmental exposure to TCE in air, water, or soil is not expected to pose a risk to the human respiratory system (ATSDR, 1992).

Chronic cardiovascular disease had not been reported in workers chronically exposed to TCE, although deaths following acute highlevel exposures to TCE were attributed to cardiac arrhythmias. One case study is available which indicated that a woman who had accidentally consumed about 20 mL of TCE suffered a myocardial infarction. It is not known whether cardiovascular effects could result from exposure to levels of TCE found at or near hazardous waste sites (ATSDR, 1992).

There are inadequate human data regarding the possible hepatic effects of TCE. People who have been acutely exposed during surgical anesthesia, and most people exposed chronically in the workplace have not had adverse liver effects. However, a few case reports do show minor effects on serum or urinary measures of liver function. There are also a few case reports of persons showing hepatorenal failure following exposure to very large amounts of TCE. It has been suggested that liver damage may result from prolonged exposure but not acute exposures and it is unknown whether exposure to levels of TCE found in and around hazardous waste sites may result in hepatic injury. Liver enlargement is the primary hepatic effect seen in TCE-exposed animals, indicating that TCE may not be as potent a liver toxin as a number of other chlorinated hydrocarbons. Liver weights increased in various strains of mice exposed to 37 to 300 ppm continuously for 30 days. In related studies, mice, rats, and gerbils were exposed to 150 ppm of TCE for up to 30 days. Relative liver weights were increased in all species and treatment groups, but effects were more pronounced in mice (60 to 80% enlargement) than the rats or gerbils (20 to 30% enlargement) (ATSDR, 1992).

People who have been acutely exposed to high levels during surgical anesthesia, or chronically in the workplace, have not had renal toxicity. However, minor changes in urinary and serum indicators of renal function have been found in other workers. In animals, renal enlargement is associated with acute- or intermediate-duration inhalation or oral exposure to TCE. Kidney enlargement appears to be less pronounced and occurs less consistently than liver enlargement (ATSDR, 1992).

Some humans experience dry throats and mild eye irritation following acute inhalation exposure (200 ppm for 7 hours) to TCE. Persons working with TCE for intermediate periods sometimes develop skin burns or rashes and dermatitis. TCE is not known to cause dermal effects when given via the oral route. It is possible that exposure to TCE in the air or soil at hazardous waste sites would be irritating to human eyes or skin (ATSDR, 1992).

In the past, TCE was used as an anesthetic, so it obviously can cause acute central nervous system depression in humans. People have become unconscious after acute exposure to very high levels occasionally present in the workplace. However, the evidence for the critical threshold for acute effects is equivocal and there is no good information on the effects from long-term low-level exposure. Human experimental studies revealed mild effects on motor coordination, visual perception, and cognition. Nonspecific neurological effects from TCE exposure in the workplace have been reported, and include dizziness and drowsiness. Adverse effects at the lowest doses showed drowsiness at < 27 ppm and headache at < 81 ppm for exposures of 1 to 4 hours. Acute and chronic inhalation exposures, as well as chronic oral exposures have led to dysfunction of cranial nerves V and VII (ATSDR, 1992).

Workers who have been exposed to TCE show no higher incidence of cancer than controls. The few studies that did show some association were complicated by exposures to known human carcinogens. Animal studies have shown increases in cancers of various types following

inhalation or oral exposure to TCE. The significance of these studies for humans cannot be determined due to other circumstances. Acute oral exposure to TCE or its metabolites preferentially induces peroxisome proliferation in mouse liver, which may be related to the carcinogenic response in mouse liver (ATSDR, 1992).

Regulatory Levels

MCL: 5x10⁻³ mg/L (IRIS, April 1994). AWQC: water and fish - 2.7x10⁻³ mg/L (USEPA, 1986). fish only - 8.7x10⁻² mg/L (USEPA, 1986). TLV-TWA: 50 ppm or 269 mg/m³ (ACGIH, 1993-94).

1.12 VINYL CHLORIDE

Vinyl chloride is a man-made product with a mild, sweet: odour. It is widely used in the production of polyvinyl chloride (PVC) which is a component of plastic products such as automotive parts, accessories, furnitures, pipes, wires, cable coatings, and packaging materials. At one time, vinyl chloride was used as a coolant, a propellant in spray cans, and in some cosmetics. It is no longer used for these purposes.

Vinyl Chloride is released to the environment from its production and use, emissions from contaminated wastewaters, waste disposal sites and from pyrolysis/combustion of polyvinyl chloride and some vinyl copolymers.

Segments of the general population living in the vicinity of emission sources may be exposed to low levels of vinyl chloride through inhalation of affected air. These exposure levels correspond to an average daily intake of 2100 μ g/day assuming an average daily intake of 20 m³ of air.

Environmental Fate

If vinyl chloride is released to the atmosphere, it can be expected to exist mainly in the vapor phase based on the reported high vapor

pressure of 2660 mm Hg at 25°C. Gas phase vinyl chloride is expected to degrade rapidly in air by reaction with photochemically-produced hydroxyl radicals with an estimated half-life of 1.5 days (Howard, 1989).

The predominant removal process of vinyl chloride from water will be by evaporation based on a high Henry's Law constant of 1.07×10^{-2} atm-m³/mol. A half-life of 0.805 hrs was estimated for evaporation of vinyl chloride from a river 1 m deep with a current of 3 m/sec and a wind velocity of 3 m/sec (Howard, 1989). Adsorption to sediments and bioconcentration in aquatic organisms are not expected to be significant removal processes for vinyl chloride in rivers, lakes and ponds (Howard, 1989). Limited existing data indicates that vinyl chloride is resistant to biodegradation in aerobic systems and therefore, it may not be subject to biodegradation in natural waters.

When released to soil, vinyl chloride will be subject to rapid volatilization based on the high reported vapor pressure of 2660 mm Hg at 25°C. Half-lives of 0.2 and 0.5 days were reported for volatilization from soil at 1 and 10 cm incorporation, respectively. Any vinyl chloride which does not evaporate will be expected to be highly mobile in soil and may leach to groundwater, as indicated by a low K_{OC} value of 29.73 mL/g and a high solubility of 2,763 mg/L.

Toxicity

Human exposure to vinyl chloride occurs primarily through inhalation and less frequently through skin absorption. Acute inhalation exposure to high concentrations of vinyl chloride causes light headedness, some nausea, and possible dulling of visual and auditory responses. These effects may occur within 5 minutes at about 10,000 ppm of vinyl chloride (ATSDR, 1992).

Chronic high level skin exposure may result in the triad of acroosteolysis, Raynaud's phenomenon, and sclerodermatous skin changes. These skin changes occur almost exclusively on workers who are

exposed to high concentrations and are not relevant to low level environmental exposures.

Chronic exposure to vinyl chloride has also been associated with hepatic damage. A number of animal studies revealed characteristic hepatic lesions produced by vinyl chloride exposure. The incidence and severity of the effects correlated well with the duration of exposure (ATSDR, 1992).

Acute exposure of animals to extremely high concentrations of vinyl chloride via inhalation has been demonstrated to cause hepatic damage such as increased liver to weight body ratio, liver congestion, fatty degeneration and hypertrophy. Acute exposure (30 minutes) of guinea pigs, mice and rats at 300,00 ppm of vinyl chloride caused liver congestion or severe fatty degeneration (ATSDR, 1992). Exposure of rats to 50,000 ppm for 4 to 6 hours produced no observable effects in the liver.

A single 1-hour exposure of mice to 500, 5,000 or 50,000 ppm of vinyl chloride, followed by an 18-month observation period, resulted in an increased incidence of hepatocellular hypertrophy in the animals at terminal sacrifice (ATSDR, 1992). The hypertrophy was not dose-dependent, thus, the significance of this effect is uncertain.

Chronic exposure studies to low concentrations of vinyl chloride via inhalation have produced hepatic toxicity such as degeneration, swelling of hepatocytes with compression of sinusoids, dilation of rough endoplasmic reticulum, proliferation of smooth endoplastic reticulum, changes in metabolic enzymic activities and increased liver to body weight ratio (ATSDR, 1992). For example, exposure of rats to 500 ppm for 7 hours per day, 5 days per week, for 4.5 months resulted in an increase in liver to body weight ratio and granular degeneration. Exposure of rats to 500 ppm for 5 hours per day, 5 days per week for 10 months caused swelling of hepatocytes and proliferation of reticuloendothelial cells, increased liver weight, and degeneration. An increased 10 ppm of vinyl chloride for 6 hours per day, 6 days per week for 6 months. Following a 6-month exposure to vinyl chloride, the relative NOAELS for a number of species fall in this order: mice and rats (NOAEL = 50 ppm) < rabbits (NOAEL = 100 ppm) < guinea pigs and dogs (NOAEL >200 ppm).

Vinyl chloride is regarded as a human carcinogen. The most compelling evidence for the carcinogenic potential of vinyl chloride in humans comes from the cluster of reports of greater than expected incidences of angiosarcoma of the liver in workers occupationally exposed to vinyl chloride.

Vinyl chloride is classified as ("A") a known human carcinogen and has an oral CSF of 1.9 $(mg/kg-day)^{-1}$ (IRIS, 1993).

1.13 <u>XYLENE</u>

General Properties

Atomic Weight: 106.17 g/mol Melting Point - p-xylene: 13.3°C *m*-xylene: -47.9°C o-xylene: -25.2°C Boiling Point - p-xylene: 138.3°C *m*-xylene: 139.1°C o-xylene: 144.4°C Specific Density - p-xylene: 0.8611 (@ 20°C) *m*-xylene: 0.8642 (@ 20°C) o-xylene: 0.8802 (@ 20°C) Vapour Pressure - p-xylene: 10 mm Hg (@ 27.3°C) *m*-xylene: 10 mm Hg (@ 28.3°C) o-xylene: 10 mm Hg (@ 20°C) Henry's Law Constant - p-xylene: 7.66x10⁻³ atm-m³/mol (ATSDR, 1994). *m*-xylene: 7.66x10⁻³ atm-m³/mol (ATSDR, 1994). *o*-xylene: 5.19x10⁻³ atm-m³/mol (ATSDR, 1994). Reference: Montgomery and Welkom, 1990 (unless otherwise indicated). Uses

Approximately 70% of mixed xylene is used in the production of ethylbenzene and the m-, o-, and p-isomers. The remaining mixed xylene is used in solvents, in products such as paints and coatings, or blended into gasoline (ATSDR, 1994).

The xylene isomers are used as industrial solvents and serve as intermediates in synthetic reactions. *m*-Xylene is a chemical intermediate in the production of isophthalic acid, *m*-toluic acid, and isophthalonitrile. *o*-Xylene is a chemical intermediate in the synthesis of phthalic anhydride (for plasticizers), phthalonitrile, 4,4-(trifluoro-1-(trifluoromethyl)ethylidene), diphthalic anhydride (for polyimide polymers), terephthalic acid (for polyesters), isophthalic acid, vitamins, and pharmceuticals. *p*-Xylene is a chemical intermediate for the synthesis of dimethyl terephthalate, terephthalic acid (for polyesters), dimethyl tetrachloroterephthalate, vitamins, and pharmaceuticals. Both *o*- and *p*xylene are used as components of insecticides (ATSDR, 1994).

Sources

Natural: Xylenes do not occur in the environment naturally except in smoke from forest fires or as constituents of petroleum which may seep into oceans from underground deposits (ATSDR, 1994).

Anthropogenic: Xylenes are released to the atmosphere primarily as fugitive emissions from industrial sources (e.g., petroleum refineries, chemical plants), in automobile exhaust, and through volatization from their use as solvents. Discharges into waterways and spills on land result primarily from use, storage, and transport of petroleum products and waste disposal (ATSDR, 1994).

Environmental Concentrations

Xylenes are ubiquitously distributed in the environment. They have been detected in the atmosphere, rainwater, soils, surface waters, sediments, drinking water, aquatic organisms, and human blood, urine, and expired breath (ATSDR, 1994). Since one of the largest sources of xylene release into the atmosphere is auto emissions, atmospheric concentrations are related to urbanization. Ambient air concentrations of xylene in industrial and urban areas of the United States have been reported to range from 0.003 to 0.38 mg/m³ (0.001 to 0.088 ppm). Median *o*-xylene concentrations calculated from a compilation of atmospheric data on organic chemicals were 0.41 g/m³ (0.094 ppb) in rural/remote areas (114 observations), 5.2 g/m³ (1.2 ppb) in urban/suburban areas (1,885 observations), and 3.5 g/m³ (0.81 ppb) in source-dominated areas (183 observations) (EPA, 1983). The median concentrations for the combined m- and p-isomers were 0.38 g/m³ (0.088 ppb) in rural/remote areas (115 observations), 12 g/m³ (2.8 ppb) in urban/suburban areas (1,911 observations), and 7.4 g/m³ (1.7 ppb) in source-dominated areas (186 observations) (ATSDR, 1994).

Surface waters generally contain average xylene concentrations of < 1 ppb total xylenes except in areas where there are fuel processing activities, such as petroleum refining. Typical surface water concentrations range from not detected to 2 g/L. Less than 6% of the groundwater and surface water systems sampled contained detectable levels of xylenes. Typical xylene concentrations (all isomers) ranged from 0.2 to 9.9 g/L (ppb) with mean concentrations of less than 2 g/L (ppb) (ATSDR, 1994).

Virtually no data are available on actual measurements of xylene in soil. While no quantitative data on the presence of xylene in soil were found in the available literature, the rapid volatization of this chemical makes its presence in surface soils unlikely (ATSDR, 1994).

Environmental Fate

Terrestrial: When spilled on land, xylene will volatize and leach into the ground. Xylene degrades in soil under aerobic or anaerobic denitrifying conditions. Under aerobic conditions, 70% degradation after 10 days have occurred. Under anaerobic conditions, a lag period of several months may be required before degradation commences. The extent of xylene degradation will depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Biodegradation has generally only been observed under aerobic conditions,

although recently it has also been observed under denitrifying conditions when oxygen is lacking. As aresult of these factors, xylene may biodegrade fairly readily in the subsurface or it may persist for many years (Howard, 1990).

Aquatic: In surface waters, volatization appears to be the dominant removal process (half-life 1 to 5.5 days). Some adsorption to sediment will occur. Although xylene is biodegradable and has been observed to degrade in seawater, there are insufficient data to assess the rate of this process (Howard, 1990).

Atmospheric: When released into the atmosphere, xylene may degrade by reaction with photochemically produced hydroxyl radicals (half-life 1.7 hours in summer and 18 hours in winter). It will also be scavenged by rain (Howard, 1990).

Absorption, Metabolism and Excretion

Studies in humans and animals have shown that xylenes are well asorbed by the inhalation and oral routes. Approximately 60% of inspired xylene is retained and approximately 90% of ingested xylene is absorbed. Absorption of xylene also occurs by the dermal route, but to a much lesser extent than by the inhalation and oral routes (ATSDR, 1994).

Following absorption, xylene is rapidly distributed throughout the body by way of the systemic circulation. In the blood, xylene is primarily bound to serum proteins. Xylene accumulates primarily in adipose tissue (ATSDR, 1994).

Xylene is primarily metabolized by oxidation of a methyl group and conjugation with glycine to yield methylhippuric acid. All three isomers of xylene are metabolized in this way (ATSDR, 1994).

In humans exposed to xylene, greater than 90% of xylene is excreted in the urine as methylhippuric acid. Aromatic hydroxylation of xylene to xylenol occurs only to a limited extent in humans. Less than 2% of an absorbed dose is excreted in the urine as xylenol. Other minor metabolites found in urine include methylbenzyl alcohol and glucoronic acid conjugates of the oxidized xylene. In humans, about 95% of the absorbed xylene is excreted in the urine, with about 5% excreted unchanged in the exhaled air (ATSDR, 1994).

Toxicity

Xylene can be fatal to both humans and animals following acute exposure via inhalation and/or oral route to very high amounts. Death has been observed in animals following dermal exposure to 3,228 mg/kg/day of mixed xylene, but no cases regarding death from dermal exposure have been reported in humans. The amount of xylene necessary to cause death is relatively large in both animals and humans, and reports of death in humans following inhalation exposure to 10,000 ppm xylene occurred in areas of poor ventilation. Therefore, it is unlikely that inhalation, ingestion or dermal contact of the small amounts of xylene likely to be present in contaminated water, air, or soil would pose a risk of death (ATSDR, 1994).

In humans, acute inhalation of 200 ppm mixed xylene for 3 to 5 minutes produced nose and throat irritation. Severe lung congestion with pulmonary hemorrhages and edema was noted in a worker who died following acute inhalation of paint fumes containing about 10,000 ppm xylene. In addition, chronic occupational exposure to xylene vapours (concentration unspecified) has been associated with laboured breathing and impaired pulmonary function. It is possible that persons exposed to xylene vapours at hazardous waste sites may experience some nose and throat irritation. Insufficient evidence is available to conclude whether chronic lowlevel exposure may result in impaired pulmonary function (ATSDR, 1994).

In some reports, chronic occupational exposure of workers to xylene (concentration unspecified) by inhalation has been associated with increased heart palpitation and abnormal ECGs. These reports provide no conclusive evidence that xylene causes cardiovascular effects in humans because exposure conditions were not well characterized and workers may have been exposed to other chemical agents as well. Cardiovascular effects observed in rats following acute and intermediate inhalation exposure to very high levels (unspecified) of xylene have included ventricular

repolarization disturbances, atrial fibrillation, arrythmias, occasional cardiac arrest, and changes in ECG. Morphological changes in coronary microvessels have also been observed in rats exposed to 230 ppm xylene (composition unspecified) (ATSDR, 1994).

Nausea, vomiting, and gastic discomfort have been noted in workers following inhalation of high concentrations of xylene; however, the exposure concentrations of xylene were not reported. If sufficiently high levels of exposure occur at hazardous waste sites, some degree of nausea may occur (ATSDR, 1994).

Human data regarding the hepatic effects following inhalation of xylene are limited to several case and occupational studies. These studies provide limited evidence for evaluating the hepatic effects of xylene in humans because these subjects were concurrently exposed to other chemical agents in addition to xylene. Available animal studies indicate that acute exposure to 2,000 ppm and intermediate exposure to 345 or 800 ppm mixed xylene and/or individual isomers produce a variety of mild hepatic effects, and they provide evidence that humans might be at increased risk of developing such effects following xylene exposure to high concentrations. Effects seen in animals include: increased hepatic cytochrome P-450 and b5 content, increased hepatic weight, increased changes in the distribution of hepatocellular nuclei, congestion of liver cells, and/or degeneration of the liver. Many of the observed hepatic effects in animals following inhalation and oral exposure to xylene were probably caused by an increased rate of metabolism of the liver induced by the solvent and were not necessarily adverse effects. Therefore, it is unlikely that hepatotoxicity would result from exposures at hazardous waste sites (ATSDR, 1994).

There is suggestive evidence that subjects exposed by inhalation to solvent mixtures containing xylene may be at an increased risk of developing renal dysfunction and/or renal damage at high concentrations. No human data were available regarding the renal toxicity of xylene following oral or dermal exposure (ATSDR, 1994). Dermal exposure of humans to xylene causes skin irritation, dryness and scaling of the skin, and vasodilation of the skin. Exposure of humans to 460 ppm xylene vapours causes ocular irritation (ATSDR, 1994).

Decreased lymphocyte count and decreased serum complement were reported in workers exposed to 0.13 ppm xylene and other solvents for 0.25 to 18 years (ATSDR, 1994).

Neurological effects in humans following oral or dermal exposure to xylene have not been studied. Results from experimental studies with humans indicate that acute inhalation exposure to 100 ppm mixed xylene causes impaired short-term memory, impaired reaction time, performance decrements in numerical ability, and alterations in equilibrium and body balance. Available case and occupational studies together provide suggestive evidence that acute and chronic inhalation exposure to xylene or solvent mixtures containng xylene may be associated with many neurological effects and symptoms (ATSDR, 1994).

Findings in animal studies suggest that adverse effects might occur in the offspring exposed to xylene or its isomers. Results of studies with rats and mice indicate that inhalation exposure to 500 ppm mixed xylene or 700 ppm *m*-xylene, 350 *o*-xylene, or 691 ppm *p*-xylene may induce increased fetal death, decreased fetal weight, delayed skeletal development, skeletal anomalies, enzymatic changes in fetal organs, and maternal toxicity. Dermal exposure of rats to xylene has been associated with biochemical changes in fetal and maternal brain tissue (ATSDR, 1994).

Very limited data were available regarding the development of cancer in humans following inhalation, oral, or dermal exposure to mixed xylene or individual isomers. Animal carcinogenicity data for the xylenes are limited to oral studies with 500 or 1,000 mg/kg/day mixed xylene and dermal studies in which the isomeric composition of the xylene was not specified, exposure durations were less than lifetime, and exposures involved multiple chemicals. No animal carcinogenicity data for xylene were available for inhalation exposure. Because of the limited data, no conclusions

can be drawn regarding the relationship between xylene exposure and cancer in humans (ATSDR, 1994).

USEPA has not classified xylenes as a carcinogen (Group D) due to inadequate evidence of carcinogenicity in animal studies. The chronic oral Reference Dose (RfD) is 2 mg/kg-day taken from the Integrated Risk Information System (IRIS) database, April 1994.

Regulatory Levels

Chronic RfD: oral - 2 mg/kg-day (IRIS, April 1994). MCL: 10 mg/L (USEPA, July 1992). TLV-TWA: 100 ppm or 434 mg/m³ (ACGIH, 1993-94). EPA Carcinogen Classification: Group D (not classified - inadequate evidence of carcinogenicity in animal studies) (IRIS, April 1994).

2.0 <u>METALS</u>

2.1 <u>CADMIUM</u>

General Properties

Atomic Number: 48 Atomic Weight: 112.41 g/mol Melting Point: 320.9°C Boiling Point: 765°C Specific Density: 8.65 (@ 20°C) Vapour Pressure: 1 mm Hg (@ 394°C) Oxidation State: +2 Reference: Weast, 1986-87.

Uses

Cadmium is currently used primarily for the production of nickel-cadmium batteries (35%) and for metal plating (30%). Cadmium is also used for pigments (15%), for plastics and synthetics (10%), and for alloys and other miscellaneous uses (10%) (ATSDR, 1992).

Sources

Natural: Cadmium is an element found in the earth's crust at concentrations of about 1 to 2 ppm, therefore it is released to the environment by natural processes. It may be released to the air from entrainment of dust particles, volcanic eruptions or other natural processes. Cadmium may be released to water by natural weathering processes (ATSDR, 1992).

Anthropogenic: Major industrial sources of cadmium emissions include zinc, lead, and cadmium smelting operations, coal and oil-fired boilers, pigment manufacturing plants, and municipal and sewage sludge incineration. Releases to water include discharge from industrial facilities or sewage treatment plants, or by leaching from landfills or soils. Land-disposal of cadmium-containing wastes, land application of sewage sludge, and the use of phosphate fertilizers are the principal sources of cadmium releases to soil (ATSDR, 1992).

Environmental Concentrations

Mean levels of cadmium in ambient air range from less than $1x10^{-6} \text{ mg/m}^3$ in remote areas to $5x10^{-6}$ to $4x10^{-5}\text{mg/m}^3$ in U.S. urban areas. Atmospheric concentrations of cadmium are generally highest in the vicinity of cadmium-emitting industries such as smelters, municipal incinerators, or fossil fuel combustion facilities (ATSDR, 1992).

The cadmium concentration of natural surface water and groundwater is usually less than 1 g/L. Most drinking water supplies in the U.S. probably do not contain more than 1 g cadmium/L. Cadmium has been detected in water samples collected from all of the Great Lakes (ATSDR, 1992).

Cadmium concentrations in nonpolluted soil is highly variable, depending upon sources of minerals and organic material. Mean levels in uncontaminated topsoil in the United States are approximately 0.25 ppm. Topsoil concentrations are often more than twice as high as subsoil levels as the result of atmospheric fallout and contamination (ATSDR, 1992).

Environmental Fate

Terrestrial: Cadmium in soils may leach into water, especially under acidic conditions. Cadmium-containing soil particles may also be entrained into the air or eroded into water, resulting in dispersion of cadmium into these media. Transformation processes for cadmium in soil are mediated by sorption and desorption from water, and include precipitation, dissolution, complexation, and ion exchange. Important factors affecting transformation in soil include the cation exchange capacity, the pH, and the content of clay minerals, carbonate minerals, oxides, organic matter, and oxygen (ATSDR, 1992).

Aquatic: Cadmium is more mobile in aquatic environments than most other heavy metals, such as lead. In natural waters, most cadmium will exist as the hydrated ion (Cd(+2) \pm 6H₂O). Cadmium complexed with humic substances is also an important form of cadmium in polluted waters. Cadmium concentration in water is inversely related to the pH and the concentration of organic material in the water. Since cadmium exists only in the +2 oxidation state, aqueous cadmium is not strongly influenced by the oxidizing or

reducing potential of the water. However, under reducing conditions, cadmium may form cadmium sulphide, which is poorly soluble and tends to precipitate. Precipitation and sorption to mineral surfaces and organic materials are the most important removal processes for cadmium compounds. Cadmium is not known to form volatile compounds, so partitioning from water to the atmosphere does not occur. Photolysis is not an important mechanism in the aquatic fate of cadmium compounds, nor is biological methylation likely to occur (ATSDR, 1992).

Atmospheric: Cadmium and its compounds may exist in air as suspended particulate matter derived from sea spray, industrial emissions, combustion of fossil fuels, or the erosion of soils. Cadmium emitted to the atmosphere from combustion processes is usually associated with very small particulates that are in the respirable range (< 10 m) and are subject to long-range transport. These cadmium pollutants may be transported from 100 to a few thousand kilometres and have a typical atmospheric residence time of about 1-10 days before deposition occurs. Larger cadmium-containing particles from smelters and other pollutant sources are also removed from the atmosphere by gravitational settling, with substantial deposition in areas downwind of the pollutant source. Cadmium-containing particulates may dissolve in atmospheric water droplets and be removed by wet deposition. The reported median concentration in precipitation is about 0.7 g/L in rural and urban areas (ATSDR, 1992).

Absorption, Metabolism and Excretion

After inhalation, large particles (> 10 m in diameter) tend to be deposited in the upper airway, while small particles (≈ 0.1 m) tend to penetrate into the alveoli. Particle size, which controls alveolar deposition, is a key determinant of cadmium absorption in the lung. Most ingested cadmium passes through the gastrointestinal tract without being absorbed. Although dermal absorption is slow, it may be of concern in situations where concentrated solutions may contact the skin for several hours or longer or where the potential for dermal exposure is considerably greater than for inhalation or oral exposure (ATSDR, 1992).

Cadmium is widely distributed in the body, with the major portion of the body burden located in the liver and kidney. Cadmium is not known to undergo any direct metabolic conversions such as oxidation, reduction, or alkylation. The cadmium (+2) ion does bind to anionic groups (especially sulfhydryl groups) in proteins (especially albumin and metallothionein). Cadmium is circulated bound to these two proteins (ATSDR, 1992).

Most cadmium that is inhaled or ingested is excreted in the feces. However, almost all excreted cadmium represents material that was not absorbed from the gastrointestinal tract. Most absorbed cadmium is excreted very slowly, with urinary and fecal excretion being approximately equal (ATSDR, 1992).

Toxicity

Cadmium is a cumulative toxicant, and the human exposure conditions of most concern are long-term exposure to elevated levels in the diet. For populations surrounding hazardous waste sites, increased dietary consumption could occur from cadmium-contaminated dust on food or hands, from garden vegetables or fruit grown in cadmiumcontaminated soil, and from cadmium-contaminated water used for drinking or garden irrigation. Fugitive dust emissions from cadmium-contaminated soil would expose such populations by the inhalation route (ATSDR, 1992).

High levels of exposure to cadmium by the inhalation or oral routes can cause death in humans and animals. It has been estimated that exposure via inhalation to 1 mg/m³ for 8 hours could cause some deaths among exposed humans. The doses ingested in 2 known fatal cases were estimated to be 25 mg/kg and 1500 mg/kg. The cause of death is pulmonary edema following inhalation exposure and massive fluid imbalance and widespread gastrointestinal, liver, and other organ damage following oral exposure (ATSDR, 1992).

Acute inhalation exposure to cadmium at concentrations above 0.5 mg/m^3 may cause destruction of lung epithelial cells, resulting in pulmonary edema, tracheobronchitis, and pneumonitis in both humans and animals. Longer-term inhalation exposure at lower levels can also lead to decreased lung function and emphysema. Some tolerance to cadmiuminduced lung irritation develops in exposed humans. Lung damage has also been seen following intermediate duration oral cadmium exposure in rats at a dose of 1 to 2 mg/kg/day, but the lung effects are likely to be related to liver or kidney damage and subsequent changes in metabolism. Nonoccupational exposure to cadmium is unlikely to be high enough to cause respiratory effects (ATSDR, 1992).

In examining effects of cadmium on the cardiovascular system, conflicting evidence is seen. In some studies on rats and rabbits, cadmium exposure was shown to increase blood pressure or to cause cardiac lesions. However, studies of exposed humans have found positive, negative, and no association between cadmium exposure and hypertension. This suggests that if cadmium does affect blood pressure, the magnitude of the effect is small compared to other determinants of hypertension (ATSDR, 1992).

The gastrointestinal tract is the largest target organ for high level, acute oral exposure to cadmium in both humans and animals. The main symptoms following ingestion of cadmium at doses above about 0.07 mg/kg in humans are nausea, vomiting, and abdominal pain. Gastrointestinal toxicity is not observed in humans or animals after lower levels of oral or inhalation exposure to cadmium, indicating that gastrointestinal effects are not likely to occur from environmental exposures to cadmium (ATSDR, 1992).

Both oral and inhalation exposure to cadmium can cause anemia in humans and animals. Prolonged exposure of humans to cadmium at levels causing renal dysfunction can lead to painful and debilitating bone disease after inhalation or oral exposure. Human and animal studies suggest that lower level chronic exposure to cadmium causes alterations in renal metabolism of vitamin D, which then may cause milder bone effects (osteoporosis). Cadmium accumulates in the liver following inhalation or oral exposure in humans, but there is little evidence for liver damage in humans exposed to cadmium (ATSDR, 1992).

The kidney is the main target organ for cadmium toxicity following intermediate- or chronic-duration exposure by the inhalation or oral routes (ATSDR, 1992).

Cadmium has been shown to be a developmental toxin by the inhalation, oral, and parenteral routes in animals. The most sensitive indicator of developmental toxicity appears to be impaired neurological development. The lowest exposures shown to cause these effects in animals are 0.02 mg/m^3 , 5 hours per day, 5 day per week, by inhalation and 0.04 mg/kg/day, 5 days per week, orally (ATSDR, 1992).

The evidence that cadmium inhalation can cause lung cancer in humans is rather weak, but strong evidence exists that cadmium inhalation can cause lung cancer in rats. No studies were located providing evidence that humans or animals orally exposed to cadmium had increased incidences of cancer (ATSDR, 1992).

USEPA classifies cadmium as a probable human carcinogen (Group B1) with limited evidence in humans. As previously stated, there is strong evidence which suggests that cadmium inhalation can cause lung cancer in rats.

The USEPA Cancer Slope Factor (CSF) for cadmium is 6.3 (mg/kg-day)⁻¹ by the inhalation route. The USEPA final Reference Dose (RfD) (chronic) for cadmium is 5x10⁻⁴ mg/kg-day for water and 1x10⁻³ mg/kg-day for food. These values were taken from the Integrated Risk Information System (IRIS) database, April 1994.

Regulatory Levels

Chronic RfD: oral - 5x10⁻⁴ mg/kg-day (water) - 1x10⁻³ mg/kg-day (food) Chronic CSF: inhalation - 5.14x10⁻⁷ (mg/kg-day)⁻¹ MCL: 5x10⁻³ mg/L AWQC: water and fish - 0.01 mg/L TLV-TWA: 0.002 mg/m³ (ACGIH, 1993-94). EPA Carcinogen Classification: Group B1 (probable human carcinogen limited evidence in humans) Reference: IRIS, April 1994 (except where otherwise noted).

2.2 <u>CHROMIUM</u>

General Properties

Atomic Number: 24 Atomic Weight: 51.996 g/mol Melting Point: 1,857°C Boiling Point: 2,672°C Specific Density: 7.19 (@ 20°C) Vapour Pressure: 1 mm Hg (@ 1,616°C) Oxidation State: +2, +3, +6 Reference: Weast, 1986.

Uses

The metallurgical, refractory, and chemical industries are the fundamental users of chromium. In the metallurgical industry, chromium is used to produce stainless steels, alloy cast irons, nonferrous alloys, and other miscellaneous materials. Ferrochromiums are the main intermediates used by the metallurgical industry. In the refractory industry, chromium is a component in chrome and chrome-magnesite, magnesite-chrome bricks, granular chrome-bearing, and granular chromite. In the chemical industry, chromium is used primarily in pigments (both chromium [III] and chromium [VI]), metal finishing (chromium [VI]), leather tanning (chromium [III]), and wood preservatives (chromium [VI]). Smaller amounts are used in drilling muds, water treatment as rust and corrosion inhibitors, chemical manufacturing, textiles, toners for copying machines, magnetic tapes, and as catalysts (ATSDR, 1992).

Sources

Natural: Chromium occurs naturally in the earth's crust. Continental dust is the main natural source of chromium in the environment; volcanic dust and gas flux are minor natural sources of chromium (ATSDR, 1992).

Anthropogenic: Of the total atmospheric chromium emissions from man-made sources in the United States, $\approx 64\%$ is due to chromium (III) from coal and oil combustion and steel production, and 32% is due to chromium (VI) from chemical manufacture, primary metal production, chrome plating, and cooling towers. Electroplating, leather tanning, and textile industries release large amounts of chromium to surface waters (Fishbein, 1981). Disposal of chromium-containing commercial products and coal ash from electric utilities and other industries are the major sources of chromium released to soil. Solid waste and slag produced during the roasting and leaching processes of chromate manufacturing can be potential sources of chromium exposure when disposed of improperly in landfill sites (ATSDR, 1992).

Environmental Concentrations

The arithmetic mean concentration of total chromium in the ambient air in U.S. urban and nonurban areas monitored during 1977-1980 ranged from 0.005 to $0.16 \,\mu\text{g/m}^3$. The chromium concentrations in U.S. river waters usually range from < 1 to 30 $\mu\text{g/L}$, with a median value of 10 $\mu\text{g/L}$ (EPA, 1984). The total chromium concentrations in U.S. drinking water range from 0.4 to 8.0 $\mu\text{g/L}$, with a mean value of 1.8 $\mu\text{g/L}$. Total chromium concentrations in conterminous U.S. soils range from 1.0 to 2,000 mg/kg, with a mean of 37.0 mg/kg. The typical chromium levels in most fresh foods are < 50 $\mu\text{g/kg}$ (ATSDR, 1992).

Environmental Fate

Terrestrial: Chromium in soil is present mainly as the insoluble oxide Cr₂O₃•nH₂O (EPA, 1984). Therefore, it is not very mobile in soil. Flooding of soils and the subsequent anaerobic decomposition of plant detritus matters may increase the mobilization of chromium (III) in soils due to formation of soluble complexes. This complexation may be facilitated by a lower soil pH. The mobility of soluble chromium in soil will depend on the sorption characteristics of the soil. The sorption of chromium to soil depends primarily on the clay content of the soil and, to a lesser extent, on Fe₂O₃ and the organic content of the soil. Chromium in soil may be transported to the atmosphere as an aerosol. Surface runoff from soil can transport both soluble and bulk precipitate of chromium to surface water. Soluble and unabsorbed chromium (VI) and chromium (III) complexes in soil will leach into groundwater (ATSDR, 1992).

Aquatic: Since chromium compounds cannot volatize from water, transport of chromium from water to the atmosphere is not likely. Most of the chromium released into water will ultimately be deposited in the sediment. Soluble chromium generally accounts for a very small percentage of the total chromium. Soluble forms and suspended chromium can undergo intramedia transport. Chromium (VI) in water will eventually be reduced to chromium (III) by organic matter in the water. It has been estimated that the residence time of chromium (total) in lake water ranges from 4.6 to 18 years (ATSDR, 1992).

Atmospheric: Chromium is present in the atmosphere primarily in particulate form. Naturally occurring gaseous forms of chromium are rare. The transport and partitioning of particulate matter in the atmosphere depend largely on particle size and density. Atmospheric particulate matter is deposited on land and in water via wet and dry deposition. The wet deposition ratio increases with particle size and decreases with precipitation intensity. Chromium particles of aerodynamic diameter < $20 \,\mu$ m may remain airborne for a longer period of time and be transported for greater distances than larger particles. In the atmosphere, chromium (VI) may be reduced to chromium (III) and conversely chromium (III) may be oxidized to chromium (VI) by reaction with various atmospheric compounds (ATSDR, 1992).

Absorption, Metabolism and Excretion

The absorption of inhaled chromium compounds depends on a number of factors, including physical and chemical properties (oxidation state, size, solubility) and the activity of alveolar macrophages. The identification of chromium in urine and serum of humans occupationally exposed to soluble chromium (III) or chromium (VI) compounds in air indicates that chromium can be absorbed from the lungs. In most cases, chromium (VI) compounds are more readily absorbed from the lungs than chromium (III) compounds, due in part to differences in the capacity to penetrate biological membranes. Approximately 0.5 to 2.0% of chromium is absorbed via the gastrointestinal tract. The absorption efficiency is dependent upon dietary intake. At low levels of dietary intake (10 µg), \approx 2.0% of the chromium is absorbed. When intake increases to > 40 µg, the absorption efficiency drops to \approx 0.5%. Both chromium (III) and chromium (VI) can penetrate human skin to some extent. Systemic toxicity has been observed in humans following dermal exposure to chromium compounds, indicating significant cutaneous absorption (ATSDR, 1992).

Chromium (III) compounds are essential to normal glucose, protein, and fat metabolism. In addition, chromium (III) is capable of forming complexes with nucleic acids and proteins. Chromium (VI) does not combine with nucleic acids and proteins unless it is first converted to chromium (III). In the lungs, chromium (VI) can be reduced to chromium (III) by ascorbate (ATSDR, 1992).

Following inhalation exposure, the majority of chromium was excreted in the urine, with a short half-time for excretion. Excretion following oral exposure was mainly in the feces, with very small amounts excreted in the urine. Following dermal exposure, it appears that chromium is excreted in the urine shortly after exposure and in the feces later (ATSDR, 1992).

Toxicity

In general, chromium (VI) compounds are more toxic than chromium (III) compounds.

Human death has resulted from accidental or intentional ingestion or dermal exposure to chromium (VI) compounds. In addition, a man died after being immersed in a vat of a solution containing chromium (III) sulfate. Although no studies were located regarding death in humans after acute inhalation exposure to chromium compounds, occupational exposure to chromium via inhalation has been associated with increased mortality due to lung cancer and noncancer lung disease (ATSDR, 1992).

The respiratory tract is the major target of inhalation exposure to chromium (III) and chromium (VI) compounds in humans and animals. Human exposure to either chromium (III) or chromium (VI) compounds has resulted in perforations and ulceration of the nasal septum, bronchitis, pneumoconiosis, decreased pulmonary function, pneumonia, rhinorrhea, nasal itching and soreness, and epistaxis. Nasal irritation and atrophy and decreases in pulmonary function can occur at occupational exposure levels as low as 0.002 mg chromium (VI)/m³. The effects of chromium (III) and chromium (VI) on the respiratory system have been observed in animals. Chronic exposure of rats to a 3:2 mixture of chromium (VI) and chromium (III) oxides caused interstitial fibrosis and thickening of the septa of the alveolar lumens. It is possible that inhalation exposure to chromium (VI) or chromium (III) compounds could result in respiratory effects in people living near or working at hazardous waste sites (ATSDR, 1992).

Cardiovascular effects, such as changes in the bioelectric and mechanical activity of the myocardium, were reported in potassium dichromate production workers in Russia, but studies of chromate workers in Italy and the United States found no electrocardiogram abnormalities or association with heart disease or blood pressure. No histopathological cardiac lesions were observed in rats exposed chronically to diets containing chromium (III) oxide or drinking water containing chromium (III) acetate. Based on the limited information in humans, the possibility that inhalation, oral, and dermal exposure to chromates can result in some cardiovascular effects cannot be ruled out (ATSDR, 1992).

Workers in chromate plant exposed to high levels of atmospheric chromium (III) and chromium (VI) have developed gastric ulcers and gastritis as a result of swallowing chromium dust during mouth breathing. Stomach pain, duodenal ulcer, gastritis, and stomach cramps have also been reported in other studies of workers engaged in chromate production and electroplating but not in workers engaged in chromium (III) production. Abdominal pain, vomiting, and gastrointestinal hemorrhage have occurred in humans who eventually died after ingesting chromium (VI) as various chromium compounds. It is reasonable that gastrointestinal

irritation can occur in humans exposed to chromium (VI) compounds at hazardous waste sites by any route (ATSDR, 1992).

Hematological evaluations of workers occupationally exposed to chromium compounds have yielded equivocal results. Leukocytosis or leukopenia has been observed in workers exposed to chromium (III) and chromium (VI) in a chromate plant. Other studies examined hematological parameters of chromate and dichromate production workers and stainless steel welders, however, the only hematological effect observed was increased sedimentation rate of red blood cells. Chronic exposure of rats to 0.1 mg chromium/m³ as a 3:2 mixture of chromium (VI) and chromium (III) oxides, however, resulted in increased red and white blood cell counts, hemoglobin content, and hematocrit. No hematological effects were observed in rats exposed orally to chromium compounds. It is possible that inhalation, oral and dermal exposure to chromium compounds at hazardous waste sites could change the hematological profiles of humans (ATSDR, 1992).

The production of chromium compounds does not appear to be associated with liver effects. Some workers in a chromate production plant had hepatobiliary disorders, and slight impairment was found in liver function testing in a few cases. These disorders could not be attributed solely to chromate exposure. However, liver effects, such as jaundice, increased bilirubin, increased levels of serum lactic dehydrogenate, and necrosis have been observed in humans after ingestion of lethal doses of potassium dichromate of chromium trioxide. Only mild liver effects (increase in triglycerides and phospholipids) were observed in rats exposed to 0.2 mg chromium (VI)/m³ as sodium dichromate for 90 days. Although liver effects in animals exposed to chromium compounds by inhalation, oral and dermal routes appear to be mild, studies in which animals were exposed by other routes indicate more serious effects, i.e., subcutaneously or intraperitoneally. While these studies indicate that the liver is a target organ of chromium toxicity in animals, the method of administration are not predictive of effects or doses by environmentally relevant routes. Therefore, adverse liver effects are not expected to occur in humans exposed to chromium or its compounds present at hazardous waste sites. It is unlikely that oral exposure to the low

levels of chromium (III) or chromium (VI) compounds detected in drinking water would cause hepatic effects in humans (ATSDR, 1992).

Renal function has been studied with equivocal results in workers occupationally exposed to chromium compounds. Some studies of workers exposed to chromium (VI) and chromium (III) in the chromate production industry have found increased levels of low molecular weight proteins indicative of liver damage. Other studies of renal function in chromate production workers found negative or inconclusive results. Severe renal impairment, renal failure, and necrosis of renal tubules have been reported in cases of fatal or near fatal ingestion of chromium (VI) compounds by humans. Acute nephritis has also been reported in cases of dermal exposure of chromium (VI) compounds. Exposure to high levels of chromium (VI) compounds by any route may result in kidney effects in humans, but it seems less likely that exposure levels at hazardous waste sites would cause renal effects in humans (ATSDR, 1992).

Chromium compounds produce effects on the skin and mucous membranes. These include irritation, burns, ulcers, and an allergic type of dermatitis. Acute dermal exposure to chromium (VI) compounds can cause skin burns. Although skin contact with chromate salts may cause rashes, the ulcers or sores (also called chrome holes) on the skin are a major problem because they can deeply penetrate the skin with prolonged exposure. In addition, irritation and ulceration of mouth structures and buccal mucosa can occur from exposure to chromium (VI) compounds. High incidences of inflammation of oral structures, keratosis of the lips, gingiva, and palate, gingivitis, and peridontis were observed in chromate production workers. Ocular effects can occur as a result of direct contact of eyes with chromium compounds. These include corneal vesication in a man who got a drop or a crystal of potassium dichromate in his eye and congestion of the conjunctiva, discharge, corneal scar, and burns in chromate production workers as a result of accidental splashes. It is possible that dermal effects could occur in humans exposed to chromium (VI) compounds at hazardous waste sites, particularly from dermal contact with contaminated soil (ATSDR, 1992).

Information regarding neurological effects after exposure to chromium or its compounds is limited. Dizziness, headache, and weakness were experienced by workers in a chrome plating plant were poor exhaust resulted in excessively high concentrations of chromium trioxide. Brain enlargement and cerebral edema were observed upon autopsy of boy who died after ingesting potassium dichromate. Furthermore, a 14-month-old girl who ate paint containing a chromite ore pigment experienced convulsions and became unconscious. Motor activity and ponderal balance decreased in rats given 98 mg chromium (VI)/kg/day as sodium chromate. It is unlikely that members of the general populations would be exposed to concentrations of chromium (VI) in air or drinking water high enough to cause neurological effects (ATSDR, 1992).

The only information regarding developmental effects of chromium exposure in humans is that female employees at dichromate manufacturing factories in Russia had greater incidences of complications during pregnancy and childbirth, toxicosis during pregnancy, and post-natal hemorrhage than did controls. Chromium (VI) compounds caused severe developmental effects in mice after oral exposure. Effects occurred at doses > 57 mg chromium (VI)/kg/day as potassium dichromate. The results of animal studies indicate that chromium (VI) compounds are development toxicants in mice by the oral route. The possibility that concentrations of chromium (VI) compounds in drinking water at hazardous waste sites would be high enough to cause developmental effects in humans cannot be ruled out (ATSDR, 1992).

Epidemiology studies clearly indicate an increased respiratory cancer risk in chromate production workers. Increased risks of respiratory cancer are also reported in some studies of chrome pigment workers, chrome plating workers, and ferrochromium workers. The epidemiology studies do not clearly implicate specific compounds, but do implicate chromium (VI) compounds. Chromium (VI) compounds are considered to be carcinogenic for humans (ATSDR, 1992).

Regulatory Levels

Chromium (III) -	Chronic RfD: oral - 1.0 mg/kg-day.
	AWQC: water and fish - 170 mg/L.
	fish only - 3433 mg/L.
	TLV-TWA: 0.5 ppm (ACGIH, 1993-94).
Chromium (VI) -	Chronic RfD: oral - 0.005 mg/kg-day.
	Chronic CSF: inhalation - 42 (mg/kg-day) ⁻¹ .
	AWQC: water and fish - 0.05 mg/L.
	TLV-TWA: 0.5 ppm (ACGIH, 1993-94).
	EPA Carcinogen Classification: Group A (known human
carcinogen.	

Total chromium: MCL-0.1 mg/L (USEPA, July 1992). Reference: IRIS, April 1994 (unless otherwise indicated).

2.3 NICKEL

General Properties

Atomic Number: 28 Atomic Weight: 58.69 g/mol Melting Point: 1,453°C Boiling Point: 2,732°C Specific Density: 8.902 (@ 25°C) Vapour Pressure: 1 mm Hg (@ 1,810°C) Oxidation States: +1, +2, +3 Reference: Weast, 1986.

Uses

Nickel is primarily used in alloys because it imparts desirable properties such as corrosion resistance, heat resistance, hardness, and strength to a product. These alloys have a wide variety of uses, including the following: industrial plumbing, marine and petrochemical equipment, heat exchangers, pumps, electrodes for welding, coinage metal, gas-turbine engines, coatings on tableware, electrical contacts, catalyst, alloy steels, stainless steels, cast irons, and permanent magnets. Nickel salts are used in

electroplating, ceramics, pigments, and as catalysts. Nickel is also used in alkaline batteries (ATSDR, 1992).

Sources

Natural: Nickel and its compounds are naturally present in the earth's crust, and releases to the atmosphere occur from natural discharges such as windblown dust, volcanoes, and vegetation. Nickel is transported into streams and waterways in runoff either due to natural weathering or from disturbed soil (ATSDR, 1992).

Anthropogenic: The burning of residual and fuel oil is responsible for the majority of anthropogenic emissions, followed by nickel metal refining, municipal incineration, steel production, other nickel alloy production, and coal combustion (ATSDR, 1992).

Environmental Concentrations

The nickel concentrations in particulate matter in the U.S. atmosphere ranged from 0.01 to 60, 0.6 to 78, and 1 to 328 ng/m^3 in remote, rural, and urban areas, respectively (ATSDR, 1992).

The nickel content of fresh surface water has been reported to average between 15 and 20 μ g/L. The mean nickel concentration in 16 major river basins in the United States ranged from 3 μ g/L in the Western Gulf to 56 μ g/L in Lake Erie (overall mean of 9 μ g/L). However, the detection frequencies ranged from 2.1% to 56%, and only detectable levels were used in calculating the means. Drinking water generally contains < 10 μ g/L. Elevated nickel levels may exist in drinking water due to the corrosion of nickel-containing alloys used as valves and other components in the water distribution system as well as nickel-plated faucets (ATSDR, 1992).

Nickel occurs naturally in the earth's crust with an average concentration of 0.0086% (86 ppm). The nickel content of soil may vary depending on local geology. Typical nickel levels reported in soil range from 4 to 80 ppm. A soil survey by the U.S. Geological Survey throughout the conterminous United States reported that nickel concentrations ranged from < 5 to 700 ppm, with a geometric mean of 12 ± 2.31 ppm. Cultivated

soils contain 5 to 500 ppm of nickel, with a typical concentration of 50 ppm. Nickel concentrations in Canadian soils are generally 5 to 50 ppm (ATSDR, 1992).

Environmental Fate

Terrestrial: Nickel is strongly adsorbed by soil. There are many adsorbing species in soil, and many factors affect the extent to which nickel is adsorbed, so the adsorption of nickel by soil is site specific. Most soils have an extremely high affinity for nickel and that once sorbed, nickel is difficult to desorb. An analysis of the thermodynamic stability models of various nickel minerals and solution species indicates that nickel ferrite is the solid species that will most likely precipitate in soil. Ni²⁺ and Ni(OH)⁺ are major components of the soil solution in alkaline soils. In acid soils, the predominant solution species will probably be Ni²⁺, NiSO4, and NiHPO4 (ATSDR, 1992).

Aquatic: The fate of heavy metals in aquatic systems depends on partitioning between soluble and particulate solid phases. Adsorption, precipitation, coprecipitation, and complexation are processes that affect partitioning. Much of the nickel released into waterways as runoff is associated with particulate; it is transported and settles out in areas of active sedimentation such as the mouth of a river. In natural waters, nickel primarily exists as the hexahydrate. Precipitation can remove soluble nickel from water (ATSDR, 1992).

Atmospheric: Nickel is released to the atmosphere in the form of particulate matter or adsorbed to particulate matter. It is dispersed by wind and removed by gravitational settling, dry deposition, washout by rain, and rainout. Removal of coarse particules may occur in a matter of hours. Very small particles may have an atmospheric half-life as long as 30 days and may, therefore, be transported over long distances (ATSDR, 1992).

Absorption, Metabolism and Excretion

In humans, $\approx 35\%$ of inhaled nickel is absorbed into the blood from the respiratory tract. The remainder is either swallowed or expectorated. Absorption studies in humans report that 40 times more nickel

H-79

was absorbed from the gastrointestinal tract when nickel sulphate was given in the drinking water (27%) than when it was given in food (0.7%). Several studies in humans indicate that nickel can penetrate the skin. Of the radioactive dose of nickel sulphate applied to occluded skin, 55 to 77% was absorbed within 24 hours, with most being absorbed in the first few hours. It could not be determined whether the nickel has been absorbed into the deep layers of the skin or into the bloodstream (ATSDR, 1992).

The metabolism of nickel consists of ligand exchange reactions. In human serum, nickel binds to albumin, L-histidine, and α -2-macroglobulin. Once inside the cell, nickel interacts with deoxyribonecleic acid (DNA), resulting in crosslinks and strand breaks (ATSDR, 1992).

Absorbed nickel is excreted in the urine, regardless of the route of exposure. In humans, most ingested nickel that is not absorbed is excreted in the feces (ATSDR, 1992).

Toxicity

The primary causes of death in workers exposed to nickel were nonmalignant respiratory disease and nasal and lung cancers. A child who accidentally ingested nickel sulfate (570 mg nickel/day) died from cardiac arrest. In lethality studies in animals, soluble nickel compounds were more toxic than the insoluble nickel compounds clinical signs observed prior to death from oral exposure included lethargy, ataxia, irregular breathing, cool body temperature, salivation, squinting and loose stools. Both the human and animal data indicate that it is unlikely that exposure to nickel in the environment or at hazardous waste sites will result in human deaths. Accidental exposure to high levels of nickel, however, may cause death (ATSDR, 1992).

Effects on the respiratory system of workers exposed to nickel dust included chronic bronchitis, emphysema, and reduced vital capacity. The workers, however, were also exposed to other toxic metals including uranium, lead, and chromium. Therefore, it should not be concluded that nickel was the sole causative agent (ATSDR, 1992). No increase in numbers of deaths from cardiovascular diseases were reported in nickel workers. Changes in heart weight were observed in animals after longer-term oral exposure to nickel, but the significance of these effects is not known. For example, rats showed decreased heart weight when exposed to 8.6 mg nickel/kg/day as nickel chloride for 91 days or increased heart weight when exposed to 50 mg nickel/kg/day as nickel sulphate for 2 years. Exposure to nickel at environmental levels or at hazardous waste sites is unlikely to result in cardiovascular effects (ATSDR, 1992).

Gastrointestinal effects including nausea, cramps, diarrhea, and vomiting were reported by workers exposed to nickel at estimated doses of 7.1 to 35.7 mg/kg in a contaminated water fountain. Gastrointestinal effects also were observed in animals orally exposed to nickel at concentrations > 1.2 mg/kg/day for 91 days. These effects included discoloration of the gastrointestinal contents, ulcerative gastritis, and enteritis. Although the dose of nickel in the human study was relatively high, it indicates that exposure to low doses of nickel over time may result in gastrointestinal effects (ATSDR, 1992).

A transient increase in blood reticulocytes and serum bilirubin was observed in workers exposed to nickel in a contaminated water fountain. Hematological effects were observed in animals after either inhalation of 0.2 mg/m³ for 28 days or > 0.8 mg/m³ for 21 days or oral exposure of > 0.35 mg/kg/day. Overall, the results indicate that nickel exposure results in hematological effects in both humans and animals. It is unlikely, however, that exposure to environmental levels or at hazardous waste sites will result in hematological effects (ATSDR, 1992).

Muscular effects were not observed in animals exposed to nickel by any route. It is unlikely that exposure of humans to nickel in the environment or at hazardous waste sites will result in adverse muscular effects (ATSDR, 1992).

H-81

No studies were located regarding hepatic effects in humans after exposure to nickel by any route. Liver weight changes were found in animals following both inhalation (> 0.8 mg/m^3 for 21 to 28 days) and oral exposure (> 1.4 mg/kg/day for < 2 years) to nickel and liver atrophy was observed following short-term inhalation exposure to nickel subsulfide (3.6 mg/m^3 for 16 days). It is unlikely, however, that exposure of humans to nickel in the environment or at hazardous waste sites will result in hepatic effects (ATSDR, 1992).

In nickel workers, a significant association was found between nickelemia and increased levels of urinary β -2-microglobulin. A transient increase in urine albumin was found in workers exposed to nickel in a contaminated drinking fountain. Renal tubular damage (damage to the convoluted tubules and necrosis) and nephrosis were observed in animals after oral exposure to nickel at concentrations of > 108 mg/kg/day for 180 days. Changes in kidney weight were also observed in animals after inhalation or. oral exposure to nickel is possible that nickel exposure will cause renal effects in occupationally-exposed individuals. It is possible that nickel exposure will cause renal effects in occupationally-exposed individuals. It is unlikely, however, that environmental exposure or exposure at hazardous waste sites will result in renal effects (ATSDR, 1992).

Contact dermatitis, resulting from dermal exposure to nickel, is the most prevalent effect of nickel in the general population. Once an individual is sensitized, even minimal contact with nickel by any route of exposure will elicit a reaction (ATSDR, 1992).

Occupational transitory exposure to nickel in a contaminated drinking fountain caused giddiness and weariness. Loss of vision for 2 hours was found in one man following ingestion of nickel sulfate at a concentration of 0.05 mg/kg. Lethargy, ataxia, and prostration were seen following oral exposure of rats for 90 days to concentrations of > 1.2 mg/kg/day. Both the human and animal data suggest that neurological effects may result from short- or long-term exposure to nickel (ATSDR, 1992).

H-82

The carcinogenic effect of nickel has been well documented in occupationally exposed workers. The respiratory cancers were primarily related to exposure to soluble nickel compounds at > 1 mg nickel/m³ and to exposure to less soluble compounds at > 10 mg nickel/m³.

Regulatory Levels

Chronic RfD: oral - 0.02 mg/kg-day

Chronic CSF: inhalation - 1.19 (mg/kg-day)⁻¹ (SPHEM, October 1986). MCL: 0.1 mg/L (USEPA, May 1993).

AWQC: water and fish - $1.34 \times 10^{-2} \text{ mg/L}$

fish only - $0.102 \text{ mg/L}^{\circ}$

TLV-TWA: 1 mg/m³ (ACGIH, 1993-94).

EPA Carcinogen Classification: Group A (known human carcinogen) Reference: IRIS, April 1994 (unless otherwise indicated).

2.4 <u>ZINC</u>

Zinc is widely distributed in nature, consisting of 0.027 percent (by weight) of the earth's crust (Merck 1983), but it is usually not found free in nature. The primary sources of Zinc in the environment are related to metallurgic wastes from smelter and refining operations. Releases to surface and groundwater are probably the greatest source of ambient Zinc. Zinc is not volatilized to any significant extent, but is primarily deposited on sediments as a result of discharge from industrial operations and weathering processes.

Environmental Fate

Zinc is released to the atmosphere as dust and fumes from Zinc production facilities. Total releases of Zinc to air account for only a small portion of the total environmental release. Volatilization does not appear to be an important process for Zinc. No estimate for the atmospheric lifetime of Zinc is available at this time. Atmospheric emissions of Zinc, consisting primarily of Zinc sorbed to submicron particulate matter and the oxide of Zinc are expected to be short-lived, due to surface deposition (EPA 1980).

In aquatic environments, sorption of Zinc is its dominant fate. Zinc partitions to sediments or suspended solids in surface waters through sorption onto hydrous iron and manganese oxides, clay minerals and organic material.

Zinc is likely to be strongly sorbed in soil. The mobility of Zinc in soil depends on the solubility of the speciated forms of the compound and on soil properties such as sorption potential, pH and salinity. No information specifically related to transformation and degradation in soil was identified in the available literature; however, chemical speciation of Zinc in soil is probably affected by the same factors affecting its fate in water.

Toxicity

Zinc concentration in soils varies from 10 to 300 mg/kg. Zinc is found in foods; protein rich foods being higher. Zinc is an essential element, necessary for the function of various enzymes. 15 mg/day has been recommended as the daily requirement for adults by the NAS, Food and Nutrition Board. Chronic poisoning from zinc ingestion has not been described in humans. Doses of 135 mg/day in human patients for up to 6 months did not cause any adverse effects (Friberg, Nordberg, and Vouk, 1986).

Zinc is not a suspect carcinogen and has an oral RfD of 0.3 mg/kg/day (IRIS, 1992).

H-84

REFERENCES

- (ACGIH, 1993-94) 1993-1994 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. American Conference of Governmental Industrial Hygienist (ACGIH).
- (ATSDR, 1990) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for 1,1-Dichloroethane". February 16, 1990.
- (ATSDR, 1990) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Ethylbenzene". February 16, 1990.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Benzene". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Cadmium". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Chromium". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Methylene Chloride". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Nickel". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Tetrachloroethene". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Trichloroethene". February 18, 1992.
- (ATSDR, 1992) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health

Service. "Toxicological Profile for Vinyl Chloride". February 18, 1992.

- (ATSDR, 1993) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for 1,1,1-Trichloroethane". February 21, 1994.
- (ATSDR, 1993) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for 1,1-Dichloroethene". February 19, 1993.
- (ATSDR, 1993) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Acetone". February 19, 1993.
- (ATSDR, 1993) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Toluene". February 19, 1993.
- (ATSDR, 1994) Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services - Public Health Service. "Toxicological Profile for Xylenes". February 21, 1994.
- Friberg, L., Nordberg, G.F., and Vouk, V.B. "Handbook on the Toxicity of Metals". Elsevier North Holland Biomedical Press. 1986.
- (HEAST, 1994) Health Effects Assessment Summary Tables FY-1994 Annual. EPA 540/R-94/020. March 1994.
- (Howard, 1989) Howard, Philip H. 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals: Volume I - Large Production and Priority Pollutants. Lewis Publishers, Inc.
- (Howard, 1990) Howard, Philip H. 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals: Volume II - Solvents. Lewis Publishers, Inc.
- Howard, Philip H. 1991. Handbook of Environmental Fate and Exposure Data for Organic Chemicals: Volume III - Pesticides. Lewis Publishers, Inc.
- (IRIS, 1994) USEPA Integrated Risk and Information System Database, April 1994.
- Montgomery, John H. and Linda M. Welkom. 1990. Groundwater Chemicals Desk Reference. Lewis Publishers, Inc.

(SPHEM, 1986) USEPA Superfund Health Evaluation Manual EPA/540-1-86/060, October 1986 - Values from this document are only included where no IRIS value has been confirmed.

Weast, Robert C., ed. 1986. CRC Handbook of Chemistry and Physics, 67th Ed. CRC Press, Inc.

· ·

,

.

APPENDIX I

FISH AND WILDLIFE IMPACT ASSESSMENT PHASE I

FISH AND WILDLIFE IMPACT ASSESSMENT PHASE 1

LEICA INC. CHEEKTOWAGA, NEW YORK

Prepared by: Fine Line Technical Services July 1994

TABLE OF CONTENTS

<u>Page</u>

1.0	INTR	ODUCTION1	
2.0	SITE	DESCRIPTION1	
	2.1 2.1.1	NATURAL RESOURCES MAP	
	2.1.2 2.2	Fish and Wildlife Resources More than Two Miles From the Site4 VEGETATION COVERTYPE MAPPING5	
3.0	FISH 3.1 3.2 3.3	AND WILDLIFE RESOURCES	5 7
4.0	FAUI	NA EXPECTED WITHIN EACH COVERTYPE1	1
5.0	SITE	RELATED EFFECTS1	2
6.0	FISH 6.1 6.2	AND WILDLIFE RESOURCE VALUES	12

REFERENCES

APPENDICES

APPENDIX A AGENCY RESOURCE INFORMATION

APPENDIX B FIELD DATA SHEETS AND PHOTOGRAPHS

PLANS

FIGURE 2.1	NATURAL	RESOURCE	MAP

FIGURE 2.2 VEGETATION COVERTYPE MAP

1.0 INTRODUCTION

A biotic survey of selected areas in the vicinity of the Leica Inc. Cheektowaga, New York (Site) was conducted during July 1994. The Site is identified on the New York State Department of Environmental Conservation Registry of Inactive Hazardous Waste Sites as Site No. 915156. The purpose of the survey was to provide a qualitative description of fish and wildlife resources that may be or may have been significantly affected by site conditions, and to provide appropriate information to support a qualitative risk assessment relative to any identified natural resources in the Site vicinity. The survey was conducted in accordance with Step I of the New York State Department of Environmental Conservation (NYSDEC) guidance document titled "Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites", dated June 18, 1991, except as noted.

2.0 SITE DESCRIPTION

The Site is located on approximately 24 acres of land in the Town of Cheektowaga, Erie County, New York. The Site area is included in the Lake Erie drainage basin described as the "Erie-Ontario Plain". Soils of the area are deep, gently sloping to nearly level, and moderately well drained to somewhat poorly drained soils formed in glacial till. The area is located in the "Elm-Red Maple-Northern Hardwood Forest Zone" of Western New York. The character of this forest zone has been strongly influenced by historical and ongoing human activities.

Community types found on the entire Site area are "culturally" developed as industrial buildings, pavement, and mowed lawn. Likewise, major areas adjacent to the Site are developed urban land and exhibit cultural land use patterns including single and multi-family residential, mowed lawn (cemetary), and vacant urban land.

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 1 JULY 1994

One off-site area of approximately 6 acres adjacent to the eastern boundary of the Site contains undeveloped wooded, shrub, and open land. Though this area is considered to be "natural" for the purposes of this survey, natural community structure of the area has been significantly altered by historical and on-going human disturbances.

Disturbances in this undeveloped area have included; excavation for installation of underground sewers, alterations of surface water drainage patterns, ongoing placement of soil fill material and woody debris, removal of vegetation by bush-hog, and un-authorized disposal of trash and construction/demolition debris. Evidence of historical and ongoing disturbance and its location within a densely urbanized area severely limit the area's potential as a wildlife resource.

Evidence of soil disturbance resulting from the installation of underground sewer lines was observed during field reconnaissance conducted during July 1994. Evidence of this disturbance includes the presence of sidecast soil piles near manholes and adjacent to the sewer line route.

Evidence of other soil disturbance was observed as historic and ongoing placement of fill material in some areas adjacent to developed cemetary land.

Other alterations to natural conditions in the area included partial removal of woody shrub vegetation by bush hogging and unauthorized disposal of household trash, construction/demolition, and yard debris in the northern portion of the area adjacent to an un-secured gate.

Surface water drainage patterns in this low lying area are not well developed and have likely been effected by placement of fill material and surface run-off from adjacent paved areas. Indirect evidence of

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 2 JULY 1994

saturated soil conditions and temporary inundation of the area were observed as sediment deposits on vegetation, debris drift, and water stained leaves.

2.1 NATURAL RESOURCES MAP

The Natural Resources Map (Figure 2.1) indicates the location of the Site and documented fish and wildlife resources that are known to occur on and within a two mile radius of the Site perimeter. The potential presence of regulated freshwater wetland areas within a two mile radius of the Site was determined from review of New York State Department of Environmental Conservation (NYSDEC) Freshwater Wetland, and US Fish and Wildlife Service (USFWS) National Wetland Inventory maps titled "Buffalo NE, New York".

Federally jurisdictional wetlands identified in this survey include only those identified from USFWS resources. No attempt was made to identify other potentially jurisdictional areas that may occur in the survey area.

Regulated open water areas within two miles of the Site were identified from NYSDEC stream classification maps, through consultation with NYSDEC Division of Waters staff, and review of other existing agency resource information.

2.1.1 Fish and Wildlife Resources Within Two Miles of the Site

No New York State freshwater wetlands occur on the Site or in the area within two miles of the Site perimeter.

A portion of one mapped federally jurisdictional wetland associated with Scajaquada Creek occurs within two miles of the perimeter of the Site. This area is shown on Figure 2.1 Natural Resources Map and is identified as exhibiting; palustrine, forested, broad leaf deciduous,

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 3 JULY 1994

seasonally saturated, and; palustrine scrub/shrub, broad leaf deciduous, seasonally saturated conditions. Contact with the US Army Corps of Engineers, Buffalo District indicates that portions of this wetland have been altered as the result of commercial development.

The area within two miles of the Site perimeter contains channelized open water and culverted underground portions of Scajaquada Creek. Scajaquada Creek is a tributary of Lake Erie and is identified by NYSDEC as Waters Index Number O-158-15. All portions of this stream within a two mile radius of the Site are identified as Class C Standard C.

NYSDEC "Water Quality Regulations" (NYS, CRR Title 6, Chapter 10, Parts 700-705) describe Class C surface waters by suitability for use:

> "The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation; although other factors may limit the use for these purposes."

2.1.2 <u>Fish and Wildlife Resources More than Two Miles</u> From the Site

Information from the New York State Department of Environmental Conservation Natural Heritage Program indicates that two Natural Heritage Sites occur within <u>five</u> (5) miles of the Site. Historical observations from these locations have indicated the occurrence of Stiff-leaf Goldenrod (<u>Solidago rigida</u>) and Clinton's Clubrush (<u>Scirpus clintonii</u>). These two plant species are considered to be "threatened" and "endangered" respectively. These species were not observed on the Site or in the Site vicinity during field reconnaissance conducted during July, 1994.

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 4 JULY 1994

Due to the nature and extent of known contamination, natural resources existing more than two miles downstream of the Site area are not likely to be affected by Site related conditions or activities.

2.2 VEGETATION COVERTYPE MAPPING

The Vegetation Covertype Map presented as Figure 2.2 indicates general vegetation covertypes and locations of field survey observation points in the undeveloped off-site area adjacent to the Site. The map was prepared from interpretation of aerial photographs and observations made during field reconnaissance conducted during July 1994. Field data sheets and photographs for each observation point are presented in Appendix B.

Mapping units for the Vegetation Covertype Map are based upon community types described by the dominant vegetation type observed during field reconnaissance. Due to the nature and extent of physical site disturbances, vegetation covertypes in the area do not conform closely to descriptions and classifications used by the New York Natural Heritage Program (Reschke, 1990). It should be noted that covertype boundary locations are based on interpretation of recent aerial photographs and are approximate.

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 5 JULY 1994

3.0 FISH AND WILDLIFE RESOURCES

Due to the disturbed nature of the 6 acre off-site area vegetation covertypes observed do not conform entirely with natural covertypes described by the Natural Heritage Program. Potential wildlife resources in the vicinity of the Site are limited to the 6 acre area adjacent to the Site. As noted above this relatively small area has been both significantly disturbed and is surrounded by urban land.

No unique covertypes, not described by the Natural Heritage Program, were identified through review of agency resource information or during field reconnaisance. The following describes potential wildlife resources that occur within the 6 acre off-site area.

3.1 Open Field

Areas of the off-site area containing fill piles and recently graded fill areas exhibit mixed covertypes composed of species typical of disturbed land and successional open field communities. Vegetation of these areas is dominated by shrubs, grasses and forbs. Shrub and tree species present comprise less than fifty percent of cover. Many of the plant species found in the area are opportunistic non-native species that can tolerate poor soil conditions characteristic of disturbed soils. Though not dominated by hydrophytic vegetation, wetland plant species occur in poorly drained locations that may be temporarily impounded due to the placement of fill material. Plant species characteristic of these areas are presented below:

Common Name

Scientific Name

Shrubs

Eastern Cottonwood Quaking Aspen Populus deltoides Populus tremula

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 6 JULY 1994

Open Field (Cont.)

Herbs

Spreading Dogbane Tall Goldenrod Grass-leaved Goldenrod Rough Cinquefoil Wild Strawberry **Oueen Anns Lace** Red Clover Timothy Red Top **Broadleaf** Cattail Rough Avens Teasle Common Milkweed Curly Dock Sow Thistle **Jerusalem Artichoke** Black Mustard **Evening Primrose** Field Bindweed Daisy Fleabane **Field Horsetail** Dandelion Common Burdock

Apocynum androsaemifolium Solidago altissima Euthamia graminifolia Potentila recta Fragaria virginiana Daucus carota Trifolium pratense Phleum pratense Agrostis alba Typha latifolia Geum laciniatum Dipsacus sylvestris Asclepius syriaca Rumex crispus Sonchus arvensis Helianthus tuberosus Brassica nigra Oenothera biennis Convulvus arvensis Erigeron annuus Equisetum arvense Taraxicum officinale Arctium minus

3.2 <u>Shrubland</u>

Conditions characteristic of successional shrubland communities occur in locations that may have been filled but have not been subjected to recent soil disturbance. Observations made during July 1994 field reconnaissance indicate that vegetation of these areas has been partially removed by "bush- hogging".

This community type is broadly defined and is often a transitional stage between old field and wooded communities. Successional shrublands are typified by covertypes containing more than fifty

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 7 JULY 1994

percent shrub species and less than fifty percent trees. Plant species representative of successional shrubland in the off-site area adjacent to the Site are presented below:

Common Name

Scientific Name

Eastern Cottonwood Green Ash

Populus deltoides Fraxinus pennsylvanica

Shrubs

Trees

Gray-stemmed Dogwood Green Ash Cornus foemina Fraxinus pennsylvanica

Herbs

Tall Goldenrod Grass-leaved Goldenrod Wild Strawberry **Rough Avens** Rough Cinquefoil Common Cinquefoil Red Top Queen Anns Lace Timothy Cow vetch Moneywort Soft Rush Broadleaf Cattail Woolgrass Bristlebract Sedge **Tussock Sedge** Wild Onion

Solidago altissima Euthania graminifolia Fragaria virginiana Geum laciniatum Potentilla recta Potentilla simplex Agrostis alba Daucus carota Phleum pratense Vicia cracca Lysimachia nummularia Juncus effusus Typha latifolia Scirpus cyperinus Carex tribuloides Carex stricta Allium vineale

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 8 JULY 1994

3.3 <u>Woodland</u>

The wooded portion of the undeveloped off-site area includes mixed tree species typical of both successional northern hardwood forest and forested wetland communities found through out much of Western New York. It is likely that this mixed community composition is the result of soil disturbances coupled with poor drainage and the potential for frequent temporary inundation. The dominant tree species of the wooded area is Black Willow (*Salix nigra*), typical of wetland conditions. Other tree species include sun-tolerant species with wind dispersed seeds which are adapted to survive on disturbed soils. Likewise the shrub and herb strata include mixed upland and facultative hydrophytic species characteristic of successional shrub communities. Herbs present include species typical of recently disturbed soils. Plant species characteristic of the wooded undeveloped off-site area are presented below:

Common Name

Scientific Name

Trees

Black Willow Eastern Cottonwood Red Maple Hawthorn Salix nigra Populus deltoides Acer rubrum Crataegus spp.

Shrubs

Silky Dogwood Gray-stemmed Dogwood Red-osier Dogwood Honeysuckle Grape Cornus amomum Cornus foemina Cornus stolonifera Lonicera tartarica Vitis riparia

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 9 JULY 1994

Woodland (Cont.)

Herbs

Tall Goldenrod Narrow-leaf Goldenrod Aster species Moneywort Wild Strawberry Rough Avens **Daisy Fleabane** Wild Onion Curly Dock Common Plantain Dandelion Common Burdock Field Bindweed Ragweed Day Lily Jerusalem Artichoke Common Milkweed **Oueen Anne's Lace**

Solidago altissima Euthamia graminifolia Aster spp. Lysimachia nummularia Fragaria virginiana Geum laciniatum Erigeron annuus Allium vineale Rumex crispus Plantago major Taraxicum officinale Arctium minus Convulvus arvensis Ambrosia artemisiifolia Hemerocallis fulva Helianthus tuberosus Asclepias syriaca Daucus carota

4.0 FAUNA EXPECTED WITHIN EACH COVERTYPE

Wildlife species that may be associated with habitats within the vicinity of the Site were determined through review of NYSDEC file information, standard natural history references, and from observations made during field reconnaissance. NYSDEC information sources included, Region 9 Bureau of Wildlife, and the New York Natural Heritage Program, Wildlife Resources Center. No aquatic habitat was observed or has been mapped within the Site vicinity. Agency correspondence is contained in Appendix A. References used are presented in Appendix C.

All covertypes in the off-site area can be considered to be terrestrial, these covertypes include: wooded, shrub, and open land. Wildlife species that can be expected to utilize these covertypes, in this location, are limited to those species that can tolerate human presence and

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 10 JULY 1994

site resident species that do not require a large territorial range to complete their life cycles. Due to past and on-going disturbances and the dominantly urbanized land use patterns of surrounding areas, the potential for utilization of the area by large mammals is limited.

Due to the small area available for utilization, the wildlife species that can be expected to occur in the off-site area are limited. Species listed below can be expected to utilize all vegetative covertypes of the area during some part of the year. Wildlife species potentially utilizing this area could include:

Common Name

Scientific Name

NY State Protective <u>Status</u>

Game species

Protected

Protected

Protected

Protected

Protected

Protected

Game species

Game species

Game species

Unprotected

Unprotected

Unprotected

Unprotected

Birds

American Crow Black-capped Chickadee American Robin Mourning Dove Mockingbird House Sparrow Comon Grackle

Parus atricapillus Turdus migratorius Zenaida macroura Mimus polyglottos Passer domesticus Quiscalus Quiscula

Corvus brachyrhynchos

Mammals

Gray Squirrel Raccoon Eastern Cottontail Rabbit Norway Rat House Mouse Deer Mouse Meadow Vole Sciurus carolinensis Procyon lotor

Sylvilagus floridanus Rattus norvegicus Mus musculus Peromyscus maniculatus Microtus pennsylvanicus

Amphibians/Reptiles

American Toad Rat Snake

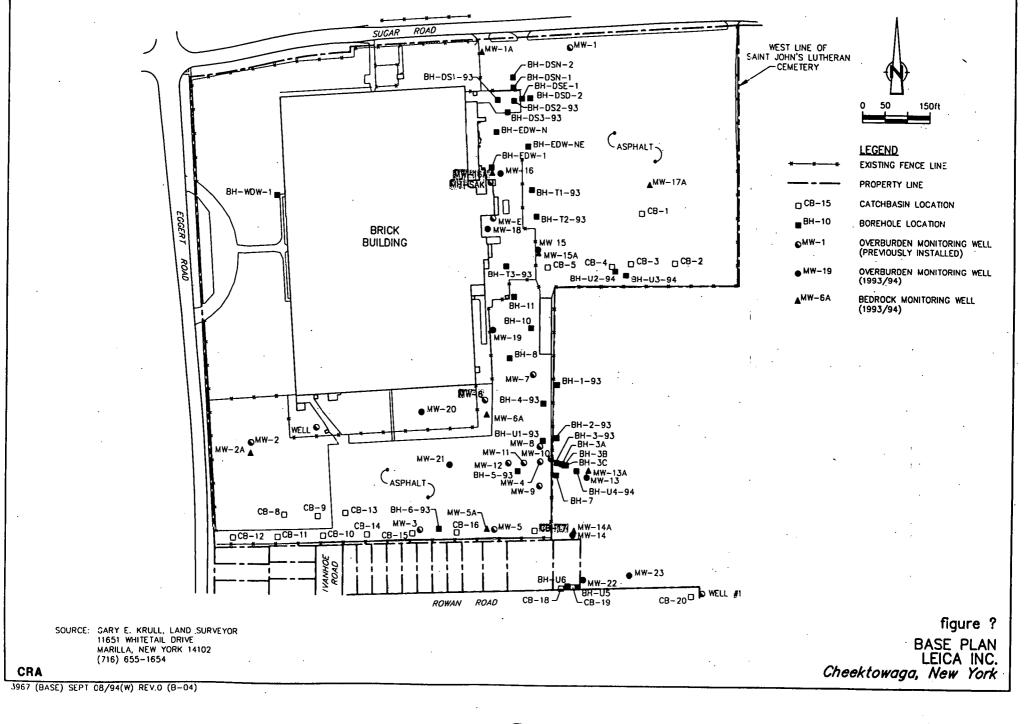
Buffo americanus Elaphe obsoleta Unprotected Unprotected

LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 11 JULY 1994

5.0 SITE RELATED EFFECTS

No obviously contaminated areas were observed on the Site or in the area within the Site vicinity. No stressed vegetation, wildlife mortality, or other abnormal changes in biota were observed. No records of wildlife mortality associated with the Site area were found during review of file information by NYSDEC Region 9 Staff.

6.0 FISH AND WILDLIFE RESOURCE VALUES


6.1 VALUE OF HABITATS TO WILDLIFE

The wildlife resources in the vicinity of the Site have been largely influenced by development of the Site and surrounding areas for residential and industrial uses. The limited area of undeveloped land adjacent to the Site appears to be influenced by historical and on-going physical disturbances. As a result, wildlife species that can be expected to utilize the area are common species that are adaptable to culturally influenced conditions. There are no known rare, threatened, or endangered species in the Site area, nor are there any unusual or exemplary ecological communities present.

6.2 VALUE OF RESOURCES TO HUMANS

Natural resources in the Site vicinity have limited recreational or economic value to humans. Current and potential economic activities of the area are not dependant on natural resources. It is likely that currently proposed expansion of adjacent cemetary holdings represents a suitable use of the area.

> LEICA INC. PHASE 1 FISH AND WILDLIFE IMPACT ASSESSMENT PAGE 12 JULY 1994

. •

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER:	WOODED	PHOTO NO.	953
OBS POINT	OBSERVATION POINT NO. 1	FACING:	EAST

VEGETATION

SALIX NIGRA CRATAEGUS SPP. CORNUS FOEMINA CORNUS AMOMUM	<u>т</u> <u>т</u> S	80
CORNUS FOEMINA	<u> </u>	20
	S	
CORNUS AMOMUM		. 30
	S	5
VITIS RIPARIA	S	5
FRAXINUS PENNSYLVANICA	T/S	5
FRAGARIA VIRGINIANA	Н	10
GEUM LACINIATUM	Н	20
ASTER SPP.	Н	10
LYSIMACHIA NUMMULARIA	Н	30
ERIGERON ANNUUS	Н	5
ALLIUM VINEALE	Н	5

HYDROLOGY

	•		
STAINED LEAVES	X	BUTTRESSING	x
SED. DEPOSITS	X	ADV. ROOTS	. X
WATER MARKS:	X	DEBRIS DRIFT	. X
TOPOGRAPHY	X	INUNDATED	NO
OTHER	DEPRESSIONS/POOLS		

WILDLIFE

.

OBSERVED:

TRACKS/SCAT

SYLVILAGUS FLORIDANUS

COMMENTS:

DETAILED FIELD DATA SHEET

SPECIES

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER:	WOODED	PHOTO NO.	956
OBS POINT	OBSERVATION POINT NO. 2	FACING:	EAST

VEGETATION

% COVER

STRATA

SALIX NIGRA	T	60
CORNUS FOEMINA	S	10
LONICERA TATARICA	S	5
VITIS RIPARIA	S	5
SOLIDAGO ALTISSIMA	н	5
LYSIMACHIA NUMMULARIA	н	15
ERIGERON ANNUUS	Н	5
RUMEX CRISPUS	Н	5
PLANTAGO MAJOR	Н	10
ARCTIUM MINUS	н	10
CONVOLVULUS ARVENSIS	Н	5
TARAXACUM OFFICINALE	. <u> </u>	5

HYDROLOGY

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS
WATER MARKS:	DEBRIS DRIFT
TOPOGRAPHY	INUNDATED NO
OTHER	

WILDLIFE

OBSERVED: TRACKS/SCAT

COMMENTS:

FILL MATERIAL INCLUDING: SOIL, BRICKS, WOODY DEBRIS, AND TRASH.

DETAILED FIELD DATA SHEET

LEICA INCORPORATED	DATE:	7/8/94
CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
OPEN FIELD	PHOTO NO.	1001
OBSERVATION POINT NO. 3	FACING:	EAST
	CHEEKTOWAGA, NEW YORK OPEN FIELD	CHEEKTOWAGA, NEW YORKCREW:OPEN FIELDPHOTO NO.

VEGETATION

SPECIES	STRATA	% COVER	
POPULUS DELTOIDES	T/S	5	
SOLIDAGO ALTISSIMA	H	10	
DIPSACUS SYLVESTRIS	Н	10	
HELIANTHUS TUBEROSUS	н	5	
RUMEX CRISPUS	Н	5	
SONCHUS ASPER	Н	10	
DAUCUS CAROTA		10	
TRIFOLIUM PRATENSE	Н	10	
BRASSICA NIGRA	н	10	
OENOTHERA BIENNIS	Н	5	
CONVOLVULUS ARVENSIS	н	5	
ERIGERON ANNUUS	н	5	

HYDROLOGY

STAINED LEAVES	S	BUTTR
SED. DEPOSITS	· · · · · ·	ADV. F
WATER MARKS:		DEBRI
TOPOGRAPHY		INUND
OTHER	NONE	

UNDATED NO

WILDLIFE

OBSERVED:

CORVUS BRACHYRHYNCHOS

TRACKS/SCAT

COMMENTS:

AREA HAS BEEN AND IS CURRENTLY BEING FILLED. FILL MATERIAL APPEARS TO BE 4+ FT ABOVE NATURAL GRADE. FILL INCLUDES SOIL AND BROKEN CONCRETE.

DETAILED FIELD DATA SHEET

CORPORATED	DATE:	7/8/94
TOWAGA, NEW YORK	CREW:	MALINDBERG
)	PHOTO NO.	1038
ATION POINT NO. 4	FACING:	WEST
	CORPORATED TOWAGA, NEW YORK D ATION POINT NO. 4	TOWAGA, NEW YORKCREW:DPHOTO NO.

VEGETATION

SPECIES	STRATA	% COVER
SALIX NIGRA	T	30
ACER RUBRUM	T	20
POPULUS DELTOIDES	т	20
LONICERA TATARICA	· S	5
CORNUS FOEMINA		30
CORNUS STOLONIFERA	S	5
GEUM LACINIATUM	н	20
ASTER SPP.	Н	10
LYSIMACHIA NUMMULARIA	н	30
ALLIUM VINEALE	H	5

HYDROLOGY

STAINED LEAVES	X	
SED. DEPOSITS		
WATER MARKS:	Х	
TOPOGRAPHY	X	
OTHER		

x
X
POOLED WATEF

WILDLIFE

OBSERVED:	STURNUS VULGARIS, PASSER DOMESTICUS
TRACKS/SCAT	
۱.	·
COMMENTS:	DISCARDED MATERIAL INCLUDING: TIRES, HOUSEHOLD FURNITURE;
	AND TRASH.

DETAILED FIELD DATA SHEET

SPECIES

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED	PHOTO NO.	1028
OBS POINT	OBSERVATION POINT NO. 5	FACING:	SW

VEGETATION

STRATA

% COVER

POPULUS DELTOIDES	T	30
SALIX NIGRA	Т	20
FRAXINUS PENNSYLVANICA	Т	10
CORNUS FOEMINA	S	20
LONICERA TATARICA	S	20
VITIS VULPINA	S	10
LYSIMACHIA NUMMULARIA	· H	30
GEUM LACINIATUM	Н	20
ASTER SPP.	Н	10
ALIUM VINEALE	Н	5
ASTER SPP.	H	5
•		
•		
· · · · · · · · · · · · · · · · · · ·		

HYDROLOGY

BUTTRESSING ADV. ROOTS

· · · · · · · · · · · · · · · · · · ·	DEBRIS DRIFT	NO	
WILDLIFE			
TURDUS MIGRATORIUS	······		- - -
AREA HAS BEEN PARTIALLY FILLED			•
	TURDUS MIGRATORIUS AREA HAS BEEN PARTIALLY FILLED	INUNDATED WILDLIFE TURDUS MIGRATORIUS AREA HAS BEEN PARTIALLY FILLED	INUNDATED NO WILDLIFE TURDUS MIGRATORIUS AREA HAS BEEN PARTIALLY FILLED

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	SHRUB	PHOTO NO.	1017
OBS POINT	OBSERVATION POINT NO. 6	FACING:	EAST

VEGETATION

SPECIES	STRATA	% COVER
POPULUS DELTOIDES	S	40
CORNUS FOEMINA	<u></u> S	20
FRAXINUS PENNSYLVANICA	<u> </u>	. 5
DIPSACUS SYLVESTRIS	н	10
SOLIDAGO ALTISSIMA	н	15
EUTHANIA GRAMINIFOLIA	H	5
FRAGARIA VIRGINIANA	——————————————————————————————————————	10
GEUM LACINIATUM	Н	5
POTENTILLA RECTA	н	5
AGROSTIS ALBA	Н	10
PHLEUM PRATENSE	н	5
VICIA CRACCA	H	5
CAREX SPP.	Н	10
DAUCUS CAROTA	<u> </u>	5

HYDROLOGY

STAINED LEAVES SED. DEPOSITS WATER MARKS: TOPOGRAPHY OTHER	}		BUTTRESSING ADV. ROOTS DEBRIS DRIFT INUNDATED	NO
		WILDLIFE		
OBSERVED:	•			
TRACKS/SCAT	PROCYONLOTOR			
COMMENTS:	BUSHHOGGED	· · · · · · · · · · · · · · · · · · ·		
	•			
	· · · ·			

DETAILED FIELD DATA SHEET

ODECIE

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED/CLEARED	PHOTO NO.	1051
OBS POINT	OBSERVATION POINT NO. 7	FACING:	NORTHWEST

VEGETATION

11

SPECIES	STRATA	% COVER
POPULUS DELTOIDES	T	15
FRAXINUS PENNSYLVANICA	T/S	10
CORNUS FOEMINA	S	10
LYSIMACHIA NUMMULARIA	Н	30
AMBROSIA ARTEMISIIFOLIA	Н	10
HEMEROCALLIS FULVA	Н	5
HELIANTHUS TUBEROSUS	н	5
ASCLEPIUS SYRIACA	н	5
DAUCUS CAROTA	н	5
ALLIUM VINEALE	——————————————————————————————————————	5
		• • • • • • • • • • • • • • • • • • • •

.

STAINED LEAVES SED. DEPOSITS WATER MARKS: TOPOGRAPHY OTHER	X X XX DEPRESSIONS/POOLS WILDLIFE	BUTTRESSING ADV. ROOTS DEBRIS DRIFT INUNDATED	X NO
OBSERVED:			
TRACKS/SCAT	PROCYONLOTOR	·····	· ····································
COMMENTS:			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · ·		
DETAILED FIELD DAT	ASHEET		
PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER OBS POINT	WOODED OBSERVATION POINT NO. 8	PHOTO NO. FACING:	1100 WEST
	VEGETATION		······································
	VEGETATION		
	SPECIES	STRATA	% COVER

POPULUS DELTOIDES	т	15
SALIX NIGRA	Т	15
POPULUS TRMULA	T	10
CORNUS FOEMINA	S	5
LYSIMACHIA NUMMULARIA	н	30
ALLIUM VINEALE	<u> </u>	10

STAINED LEAVESXSED. DEPOSITSXWATER MARKS:XTOPOGRAPHYXOTHERWATER IMPOUNDED BY FILL

BUTTRESSING ADV. ROOTS DEBRIS DRIFT INUNDATED

•	Х	

WILDLIFE

OBSERVED: TRACKS/SCAT QUISCALUS QUISCULA

COMMENTS:

AREA HAS BEEN BUSH HOGGED

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG, COVER	SHRUB/HERBACEOUS	PHOTO NO.	1104
OBS POINT	OBSERVATION POINT NO. 9	FACING:	NORTHWEST

VEGETATION

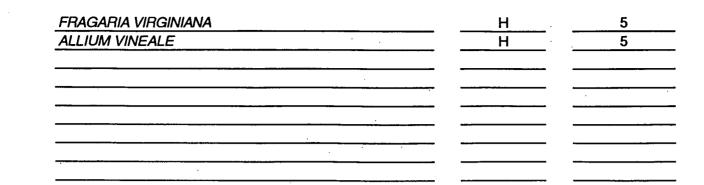
SPECIES	STRATA	% COVER	
POPULUS DELTOIDES	S	15	
FRAXINUS PENNSYLVANICA		10	
JUNCUS EFFUSUS	н	20	
TYPHA LATIFOLIA	<u> </u>	10	
LYSIMACHIA NUMMULARIA	н	5	
EUTHANIA GRAMINIFOLIA	Н	10	
SCIRPUS CYPERINUS	Н	5	
CAREX TRIBULOIDES	——————————————————————————————————————	5	
CAREX STRICTA	H	5	

AGROSTIS ALBA	н	5
GEUM LACINIATUM	<u> </u>	5
ALLIUM VINEALE	<u> </u>	5
	· · · · · · · · · · · · · · · · · · ·	
,		

STAINED LEAVES	Χ	BUTTRESSING	
SED. DEPOSITS		ADV. ROOTS	
WATER MARKS:	X	DEBRIS DRIFT	
TOPOGRAPHY	X	INUNDATED	X
OTHER	WATER IMPOUNDED BY FILL		

.

WILDLIFE


OBSERVED: TRACKS/SCAT	 - 		 	
COMMENTS:	 		 	
· · · · · · · · · · · · · · · · · · ·	 • •	<u> </u>	 	

DETAILED FIELD DATA SHEET

NCORPORATED	DATE:	7/8/94
KTOWAGA, NEW YORK	CREW:	MALINDBERG
ED/SHRUB	PHOTO NO.	1055
VATION POINT NO. 10	FACING:	EAST
	NCOHPOHATED KTOWAGA, NEW YORK ED/SHRUB IVATION POINT NO. 10	KTOWAGA, NEW YORKCREW:ED/SHRUBPHOTO NO.

VEGETATION

SPECIES	STRATA	% COVER	
SALIX NIGRA		30	
FRAXINUS PENNSYLVANICA		20	
CORNUS FOEMINA	S	15	
VÍTIS RIPARIA	<u> </u>	5	
LYSIMACHIA NUMMULARIA	<u> </u>	15	
GEUM LACINIATUM	<u> </u>	5	

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS
WATER MARKS:	DEBRIS DRIFT
TOPOGRAPHY	INUNDATED NO
OTHER	

WILDLIFE

OBSERVED: TRACKS/SCAT		 		
		 	,	
COMMENTS:	BUSH HOGGED			

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED	PHOTO NO.	1111
OBS POINT	OBSERVATION POINT NO. 11	FACING:	NORTHWEST

VEGETATION

SPECIES

STRATA % COVER

SALIX NIGRA	T	40
FRAXINUS PENNSYLVANICA		15
ACER RUBRUM	<u> </u>	10

POPULUS TREMULA	т	5
LONICERA TATARICA	S	10
LYSIMACHIA NUMMULARIA	<u> </u>	20
ALLIUM VINEALE	н	5
SOLIDAGO ALTISSIMA	н	5
HEMEROCALLIS FULVA	н	5
DAUCUS CAROTA	Н	5

STAINED LEAVES	Х	BUTTRESSING	
SED. DEPOSITS	X	ADV. ROOTS	
WATER MARKS:	X .	DEBRIS DRIFT	
TOPOGRAPHY	X	INUNDATED	
OTHER	WATER IMPOUNDED BY FILL		

WILDLIFE

OBSERVED: TRACKS/SCAT		· · · · · · · · · · · · · · · · · · ·
COMMENTS:	BUSH HOGGED, FILL PILES	

DETAILED FIELD DATA SHEET

+

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	OPEN FIELD	PHOTO NO.	1108
OBS POINT	OBSERVATION POINT NO. 12	FACING:	EAST
	VEGETATION	STRATA	% COVER

POPULUS DELTOIDES	T/S	10
POPULUS TREMULA		5
SOLIDAGO ALTISSIMA	<u>н</u>	1.5
EUTHANIA GRAMINIFOLIA	<u> </u>	5
DIPSACUS SYLVESTRIS	н	• 5
EQUISETUM ARVENSE	<u> </u>	10
TARAXACUM OFFICINALE	— <u> </u>	5
APOCYNUM ANDROSAEMIFOLIUM	<u> </u>	-5
FRAGARIA VIRGINIANA	<u> </u>	5
ARCTIUM MINUS	— н	5
TRIFOLIUM PRATENSE	Н	5
PHLEUM PRATENSE	Н	5
POTENTILLA RECTA	н	5
SONCHUS ARVENSIS	<u>— </u>	5
ASCLEPIAS SYRIACA	— н	5

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS
WATER MARKS:	DEBRIS DRIFT
TOPOGRAPHY	INUNDATED NO
OTHER	

WILDLIFE

OBSERVED: TRACKS/SCAT .

COMMENTS:

AREA HAS BEEN FILLED AND GRADED

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
COMMUNITY:		PHOTO NO.	
OBS POINT		FACING:	

VEGETATION

STRATA % COVER SPECIES HYDROLOGY **STAINED LEAVES** BUTTRESSING SED. DEPOSITS ADV. ROOTS WATER MARKS: **DEBRIS DRIFT** TOPOGRAPHY INUNDATED OTHER WILDLIFE **OBSERVED:** TRACKS/SCAT COMMENTS:

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER:	WOODED	PHOTO NO.	951
OBS POINT	TRANSECT 1 NO. 1	FACING:	EAST

VEGETATION

SALIX NIGRAT80CRATAEGUS SPP.T20CORNUS FOEMINAS30CORNUS AMOMUMS5VITIS RIPARIAS5FRAXINUS PENNSYL VANICAT/S5FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5ALLIUM VINEALEH5	SPECIES	STRATA -	- % COVER
CORNUS FOEMINAS30CORNUS AMOMUMS5VITIS RIPARIAS5FRAXINUS PENNSYL VANICAT/S5FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	SALIX NIGRA	<u> </u>	80
CORNUS AMOMUMS5VITIS RIPARIAS5FRAXINUS PENNSYL VANICAT/S5FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	CRATAEGUS SPP.	Т	20
VITIS RIPARIAS5FRAXINUS PENNSYL VANICAT/S5FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	CORNUS FOEMINA	S	30
FRAXINUS PENNSYL VANICAT/S5FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	CORNUS AMOMUM	S	5
FRAGARIA VIRGINIANAH10GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	VITIS RIPARIA	S	5
GEUM LACINIATUMH20ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	FRAXINUS PENNSYLVANICA	T/S	5.
ASTER SPP.H10LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	FRAGARIA VIRGINIANA	H	10
LYSIMACHIA NUMMULARIAH30ERIGERON ANNUUSH5	GEUM LACINIATUM	Н	20
ERIGERON ANNUUS H 5	ASTER SPP.	Н	10
	LYSIMACHIA NUMMULARIA	Н	30
ALLIUM VINEALE H 5	ERIGERON ANNUUS	Н	5
	ALLIUM VINEALE	Н	5
	·····		
······································			

HYDROLOGY

STAINED LEAVES	X	BUTTRESSING	Х
SED. DEPOSITS	X	ADV. ROOTS	X
WATER MARKS:	X	DEBRIS DRIFT	Х
TOPOGRAPHY	X	INUNDATED	NO
OTHER	DEPRESSIONS/POOLS		

WILDLIFE

OBSERVED:	
TRACKS/SCAT	

SYLVILAGUS FLORIDANUS

COMMENTS:

DETAILED FIELD DATA SHEET

.

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER:	WOODED	- PHOTO NO.	956
OBS POINT	TRANSECT 1 NO. 2	FACING:	EAST
			,

VEGETATION

SPECIES	STRATA	% COVER
SALIX NIGRA		60
CORNUS FOEMINA	<u></u>	10
LONICERA TATARICA	S	5
VITIS RIPARIA		5
SOLIDAGO ALTISSIMA	н	5
LYSIMACHIA NUMMULARIA	н	15
ERIGERON ANNUUS	Н	5
RUMEX CRISPUS	<u> </u>	5
PLANTAGO MAJOR	Н	10
ARCTIUM MINUS		10
CONVOLVULUS ARVENSIS	н	5
TARAXACUM OFFICINALE	H	5

HYDROLOGY

STAINED LEAVES	BUTTRESSING	
SED. DEPOSITS	ADV. ROOTS	
WATER MARKS:	DEBRIS DRIFT	
TOPOGRAPHY	INUNDATED	NO
OTHER		

WILDLIFE

OBSERVED: TRACKS/SCAT .

COMMENTS:

FILL MATERIAL INCLUDING: SOIL, BRICKS, WOODY DEBRIS, AND TRASH.

DETAILED FIELD DATA SHEET

ODEOIEO

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	OPEN FIELD	PHOTO NO.	1001
OBS POINT	TRANSECT 1 NO. 3	FACING:	EAST

VEGETATION

SPECIES	STRATA	% COVER
POPULUS DELTOIDES	T/S	5
SOLIDAGO ALTISSIMA	Н	10
DIPSACUS SYLVESTRIS	Н	10
HELIANTHUS TUBEROSUS	Н	5
RUMEX CRISPUS	Н	5
SONCHUS ASPER	Н	10
DAUCUS CAROTA	H	10
TRIFOLIUM PRATENSE	Н	10
BRASSICA NIGRA	н	10
OENOTHERA BIENNIS	Н	5
CONVOLVULUS ARVENSIS	H	5
ERIGERON ANNUUS	. <u>H</u>	5

HYDROLOGY

STAINED LEAVES	\$	BUTTRESSING	
SED. DEPOSITS		ADV. ROOTS	
WATER MARKS:		DEBRIS DRIFT	
TOPOGRAPHY		INUNDATED	NO
OTHER	NONE		

WILDLIFE

OBSERVED: TRACKS/SCAT CORVUS BRACHYRHYNCHOS

COMMENTS:

AREA HAS BEEN AND IS CURRENTLY BEING FILLED. FILL MATERIAL APPEARS TO BE 4+ FT ABOVE NATURAL GRADE. FILL INCLUDES SOIL AND BROKEN CONCRETE.

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG.COVER	WOODED	 PHOTO NO.	1038
OBS POINT	TRANSECT 2 NO. 4	FACING:	WEST

VEGETATION

SPECIES	STRATA	% COVER
	· · · · · · · · · · · · · · · · · · ·	
SALIX NIGRA	T	30
ACER RUBRUM	T	20
POPULUS DELTOIDES	Т	20
LONICERA TATARICA	S	5
CORNUS FOEMINA	S	30
CORNUS STOLONIFERA	S	5
GEUM LACINIATUM	Н	20
ASTER SPP.	н	10
LYSIMACHIA NUMMULARIA	н	30
ALLIUM VINEALE	н	5
	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		

STAINED LEAVES	X	BUTTRES
SED. DEPOSITS	·	ADV. RO
WATER MARKS:	X	DEBRIS [
TOPOGRAPHY	X	INUNDAI
OTHER		

UTTRESSING	. X
DV. ROOTS	X
EBRIS DRIFT	
NUNDATED	POOLED WATEF

WILDLIFE

OBSERVED:	STURNUS VULGARIS, PASSER DOMESTICUS
TRACKS/SCAT	
	· · · · · · · · · · · · · · · · · · ·
COMMENTS:	DISCARDED MATERIAL INCLUDING: TIRES, HOUSEHOLD FURNITURE,
	AND TRASH.

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED	PHOTO NO.	1028
OBS POINT	TRANSECT 2 NO. 5	FACING:	SW

VEGETATION

SPECIES

STRATA

% COVER

POPULUS DELTOIDES	T	30
SALIX NIGRA	<u> </u>	20
FRAXINUS PENNSYLVANICA	Т	10
CORNUS FOEMINA	S	20
LONICERA TATARICA	S	20
VITIS VULPINA	S	10
LYSIMACHIA NUMMULARIA	н	30
GEUM LACINIATUM	<u> </u>	20
ASTER SPP.	Н	10
ALIUM VINEALE	Н	5
ASTER SPP.	н	5
		· · ·

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS

WATER MARKS: TOPOGRAPHY OTHER		DEBRIS DRIFT INUNDATED	NO
· .	WILDLIFE		
OBSERVED: TRACKS/SCAT	TURDUS MIGRATORIUS		
COMMENTS:	AREA HAS BEEN PARTIALLY FILLED		······································
•			

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	SHRUB	PHOTO NO.	1017
OBS POINT	TRANSECT 2 NO. 6	FACING:	EAST

VEGETATION

SPECIES	STRATA	% COVER
POPULUS DELTOIDES		40
CORNUS FOEMINA		20
FRAXINUS PENNSYLVANICA		5
DIPSACUS SYLVESTRIS	Н	10
SOLIDAGO ALTISSIMA	н	15
EUTHANIA GRAMINIFOLIA	H	5
FRAGARIA VIRGINIANA	H	10
GEUM LACINIATUM	H	. 5
POTENTILLA RECTA	Н	5
AGROSTIS ALBA	Н	10
PHLEUM PRATENSE	Н	5
VICIA CRACCA	——————————————————————————————————————	5
CAREX SPP.	——————————————————————————————————————	10
DAUCUS CAROTA	——————————————————————————————————————	5

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS
WATER MARKS:	DEBRIS DRIFT
TOPOGRAPHY	INUNDATED NO
OTHER	

WILDLIFE

PROCYONLOTOR	-
BUSHHOGGED	· ·
	· · · · · · · · · · · · · · · · · · ·

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED/CLEARED	PHOTO NO.	1051
OBS POINT	TRANSECT 3 NO. 7	FACING:	NORTHWEST

VEGETATION

____ ____ -----

SPECIES	STRATA	% COVER
POPULUS DELTOIDES	<u> </u>	. 15
FRAXINUS PENNSYLVANICA	T/S	10
CORNUS FOEMINA	S	10
LYSIMACHIA NUMMULARIA	н	30
AMBROSIA ARTEMISIIFOLIA	Н	10
HEMEROCALLIS FULVA	н	5
HELIANTHUS TUBEROSUS	Н	5
ASCLEPIUS SYRIACA	н	5
DAUCUS CAROTA	Н	5
ALLIUM VINEALE	н	5

STAINED LEAVES	X	BUTTRESSING	
SED. DEPOSITS		ADV. ROOTS	
WATER MARKS:	X	DEBRIS DRIFT	Χ
TOPOGRAPHY	XX	INUNDATED	NO
OTHER	DEPRESSIONS/POOLS	·	•

WILDLIFE

OBSERVED:		
TRACKS/SCAT	PROCYONLOTOR	· · · · · · · · · · · · · · · · · · ·
COMMENTS:		
	•	
•		

DETAILED FIELD DATA SHEET

SPECIES

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED	PHOTO NO.	1100
OBS POINT	TRANSECT 3 NO. 8	FACING:	WEST

VEGETATION

STRATA

% COVER

.

POPULUS DELTOIDES	T	15
SALIX NIGRA		15
POPULUS TRMULA		10
CORNUS FOEMINA		5
LYSIMACHIA NUMMULARIA		30
ALLIUM VINEALE	H	10

STAINED LEAVES	x	BUTTRESSING	
SED. DEPOSITS	X	ADV. ROOTS	
WATER MARKS:	X	DEBRIS DRIFT	Χ.
TOPOGRAPHY	X	INUNDATED	
OTHER	WATER IMPOUNDED BY FILL	· _	

WILDLIFE

OBSERVED: TRACKS/SCAT	QUISCALUS QUISCULA
COMMENTS:	AREA HAS BEEN BUSH HOGGED

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG, COVER	SHRUB/HERBACEOUS	PHOTO NO.	1104
OBS POINT	TRANSECT 3 NO. 9	FACING:	NORTHWEST

VEGETATION

SPECIES	STRATA	% COVER
POPULUS DELTOIDES	<u></u> S	15
FRAXINUS PENNSYLVANICA	S	10
JUNCUS EFFUSUS	Н	20
TYPHA LATIFOLIA	н	10
LYSIMACHIA NUMMULARIA	——————————————————————————————————————	5
EUTHANIA GRAMINIFOLIA	н	10
SCIRPUS CYPERINUS	—— н	5
CAREX TRIBULOIDES	н	5
CAREX STRICTA	Н	5

AGROSTIS ALBA		<u> </u>	5
GEUM LACINIATUM		<u> </u>	5
ALLIUM VINEALE	·	<u> </u>	5
<u> </u>	······································	- ' <u></u>	
	· · · · · · · · · · · · · · · · · · ·	•	
	HYDROLOGY		
STAINED LEAVES	x	BUTTRESSING	
SED. DEPOSITS		ADV. ROOTS	
WATER MARKS:	X	DEBRIS DRIFT	
TOPOGRAPHY	X	INUNDATED	×
OTHER	WATER IMPOUNDED BY FILL		
		-	
•	WILDLIFE		
OBSERVED:			
TRACKS/SCAT			
			•
· .			
COMMENTS:	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
			•
			· ·
ETAILED FIELD DAT	A SHEET		
PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	WOODED/SHRUB	PHOTO NO.	1055
OBS POINT	TRANSECT 4 NO. 10	FACING:	EAST
	VEGETATION	I ·	·
	SPECIES	STRATA	% COVER
SALIX NIGRA	· · · · · · · · · · · · · · · · · · ·	T	30
FRAXINUS PENNS	/LVANICA	T	20
CORNUS FOEMINA		S	15
VITIS RIPARIA	· · · · · · · · · · · · · · · · · · ·	<u> </u>	5
LYSIMACHIA NUMN		<u> </u>	15
GEUM LACINIATUM	1	Н	5

FRAGARIA VIRGINIANA	н	5
ALLIUM VINEALE	<u> </u>	5
· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		<u> </u>
	<u> </u>	<u> </u>
••••••••••••••••••••••••••••••••••••••		

STAINED LEAVES	BUTTRESSING
SED. DEPOSITS	ADV. ROOTS
WATER MARKS:	DEBRIS DRIFT
TOPOGRAPHY	INUNDATED NO
OTHER	

WILDLIFE

		·	
	÷ · `		
BUSH HOGGED		· · · · · · · · · · · · · · · · · · ·	
<u></u>			
	BUSH HOGGED		

DETAILED FIELD DATA SHEET

PROJECT: PROJ. LOCATION VEG. COVER OBS POINT	LEICA INCORPORATED CHEEKTOWAGA, NEW YORK WOODED TRANSECT 4 NO. 11 VEGETATION	DATE: CREW: PHOTO NO. FACING:	7/8/94 MALINDBERG 1111 NORTHWEST
	SPECIES	STRATA	% COVER
SALIX NIGRA		Т	40
FRAXINUS PENNS	YLVANICA	Т	15
ACER RUBRUM		Т	10

POPULUS TREMULA	Т	5
LONICERA TATARICA	S	10
LYSIMACHIA NUMMULARIA	Η	20
ALLIUM VINEALE	Н	5
SOLIDAGO ALTISSIMA	H	5
HEMEROCALLIS FULVA	Н	5
DAUCUS CAROTA	Н	5
	·	•

STAINED LEAVES	X .	BUTTRESSING	
SED. DEPOSITS	X	ADV. ROOTS	_
WATER MARKS:	X	DEBRIS DRIFT	-
TOPOGRAPHY	X	INUNDATED	-
OTHER	WATER IMPOUNDED BY FILL		-

WILDLIFE

OBSERVED: TRACKS/SCAT	·	
COMMENTS:	BUSH HOGGED, FILL PILES	

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
VEG. COVER	OPEN FIELD	ΡΗΟΤΟ ΝΟ.	1108
OBS POINT	TRANSECT 4 NO. 12	FACING:	EAST

VEGETATION

SPECIES	STRATA	% COVER
· ·	· · · · · · · · · · · · · · · · · · ·	

POPULUS DELTOIDES	T/S	10
POPULUS TREMULA	T/S	5
SOLIDAGO ALTISSIMA	Н	15
EUTHANIA GRAMINIFOLIA	Н	5
DIPSACUS SYLVESTRIS	Н	5
EQUISETUM ARVENSE	Н	10
TARAXACUM OFFICINALE	Н	5
APOCYNUM ANDROSAEMIFOLIUM	Н	5
FRAGARIA VIRGINIANA	Н	5
ARCTIUM MINUS	· H	5
TRIFOLIUM PRATENSE	Н	5
PHLEUM PRATENSE	Н	5
POTENTILLA RECTA	Н	5
SONCHUS ARVENSIS	Н	5
ASCLEPIAS SYRIACA	Н	5

STAINED LEAVES	BUTTRESSING	
SED. DEPOSITS	ADV. ROOTS	
WATER MARKS:	DEBRIS DRIFT	
TOPOGRAPHY	INUNDATED NO	
OTHER		

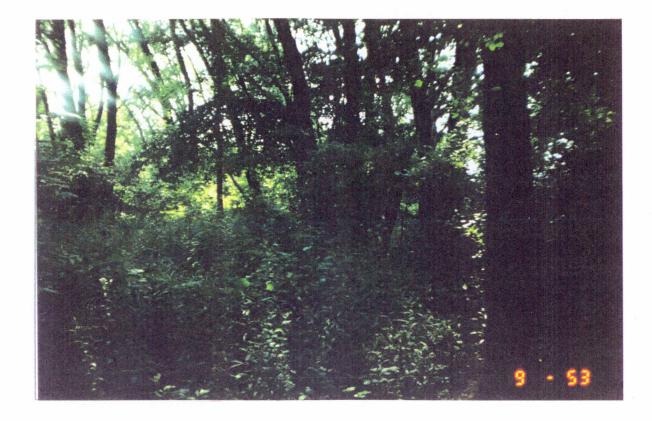
WILDLIFE

OBSERVED: TRACKS/SCAT		
COMMENTS:	AREA HAS BEEN FILLED AND GRADED	
		· · · · · · · · · · · · · · · · · · ·

DETAILED FIELD DATA SHEET

PROJECT:	LEICA INCORPORATED	DATE:	7/8/94
PROJ. LOCATION	CHEEKTOWAGA, NEW YORK	CREW:	MALINDBERG
COMMUNITY:		PHOTO NO.	
OBS POINT		FACING:	

VEGETATION

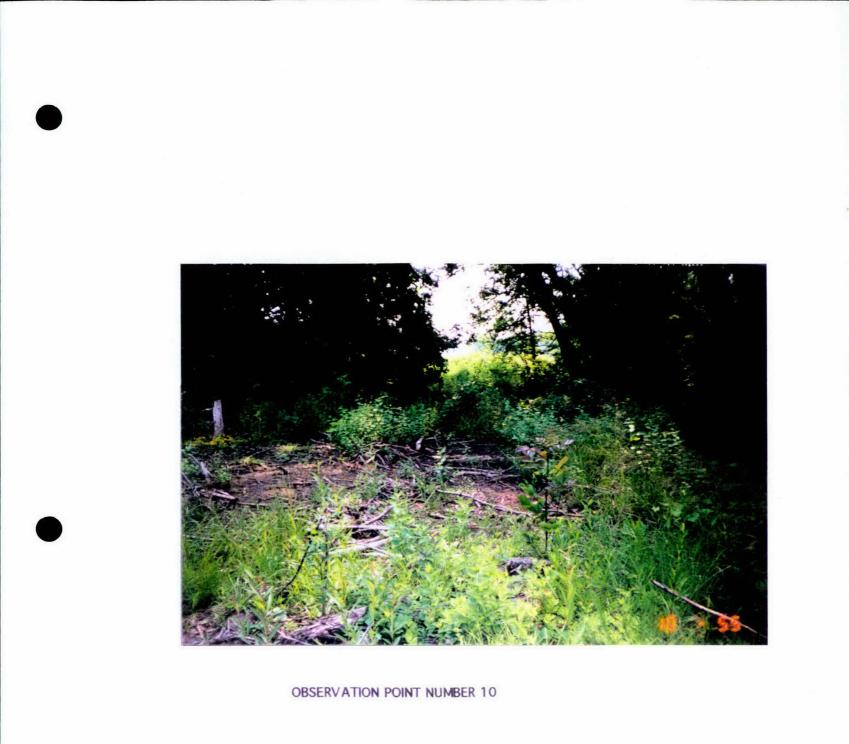

SPECIES

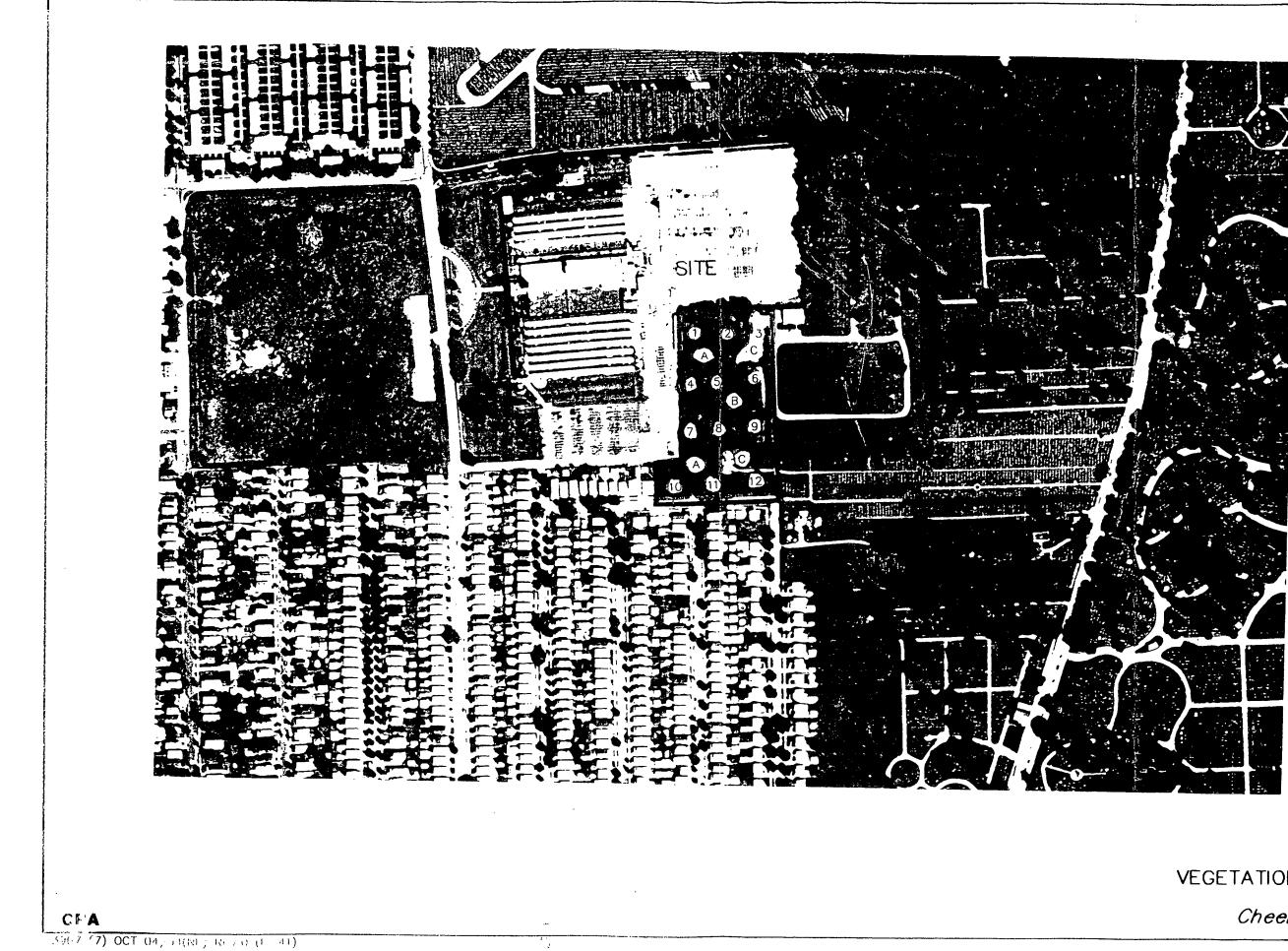
STRATA

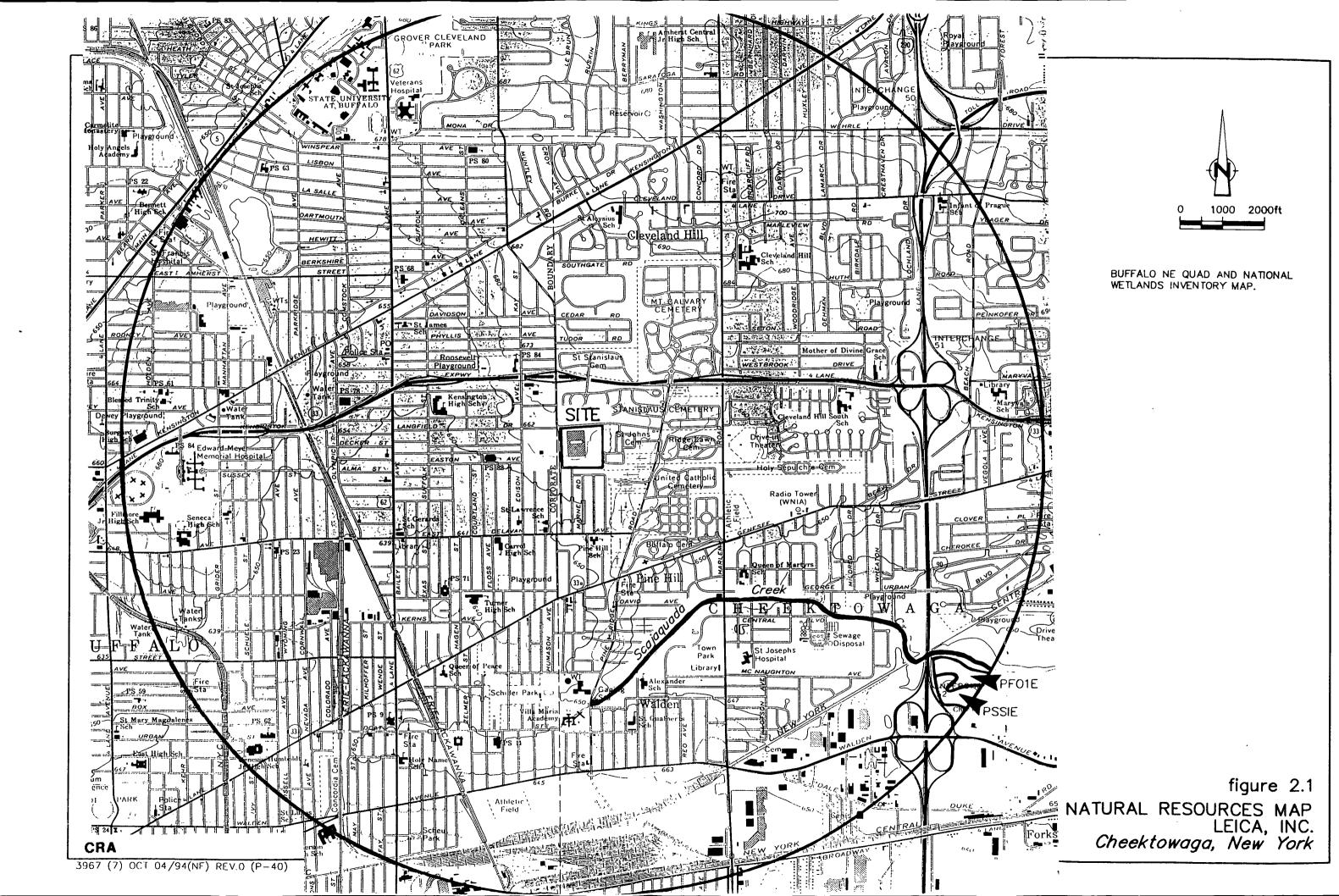
% COVER

STAINED LEAVES SED. DEPOSITS WATER MARKS:	HYDROLOGY	BUTTRESSING ADV. ROOTS DEBRIS DRIFT	
TOPOGRAPHY OTHER	WILDLIFE	INUNDATED	
COMMENTS:			









<u>LEGEND</u>

- A WOODED
- B SHRUB
- C OPEN
- 4 OBSERVATION POINT

figure 2.2 VEGETATION COVERTYPE MAP LEICA, INC. Cheektowaga, New York

APPENDIX J

AIR PATHWAY ANALYSIS REPORT

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODUCTION	
	J1.1 GENERAL	1
• .	J1.2 BACKGROUND	2
		' 1
2.0	PRELIMIANRY AIR PATHWAY ANALYSES	
	J2.1 GENERAL	
	J2.2 POTENTIAL SOURCE AREA	
	12.3 ANALYSES USING USEPA GUIDELINE	4
	J2.4 ANALYSES USING NYSDEC AIR GUIDE 1	6
3 ก่	CONICULISION	. 8

3967 (7) APPJ

LIST OF FIGURES (Following Report)

FIGURE J.1 SITE LOCATION

ï

- FIGURE J.2 SITE LAYOUT
- FIGURE J.3 SITE MAP
- FIGURE J.4 SOURCE AREA OF EMISSIONS

LIST OF TABLES (Following Report)

TABLE J.1	ESTIMATED AMBIENT AIR CONCENTRATIONS	1.
TABLE J.2	AREA #1 - BULK SOIL CONCENTRATIONS	
TABLE J.3	PHYSICAL CONSTANTS USED IN AIR PATHWAY ANALY	'SIS

LIST OF ATTACHMENTS (Following Report)

ATTACHMENT J-1

CALCULATIONS

1.0

INTRODUCTION

1.1 GENERAL

Preliminary air pathway analyses have been performed as part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted at the Leica Inc., Cheektowaga, New York facility (Site). The RI/FS is being performed in accordance with the terms and conditions of an Administrative Order on Consent (AOC), Index No. B9-0396-92-01, entered into by Leica Inc. and the New York State Department of Environmental Conservation (NYSDEC) and the RI/FS Work Plan dated June 1993. Figure J.1 presents a Site location map. Figure J.2 shows the layout of the Site.

This report presents the results of the preliminary air pathway analyses which involved the mathematical evaluation of potential air discharges of selected compounds as agreed upon by the NYSDEC in a telephone conversation between Greg Sutton (NYSDEC) and Mark Kleiman (Conestoga-Rovers & Associates [CRA]) in July 1994. The compounds included in the air pathway analyses consisted of the following:

i) total 1,2-dichloroethene (Total 1,2-DCE);

ii) ethylbenzene;

iii) toluene;

iv) trichloroethene (TCE);

v) 1,1,1-trichloroethane;

vi) vinyl chloride; and

vii) xylenes.

The analyses were performed to predict the annual average ambient air concentration/emission rate. The results are summarized in Table J.1.

Figure J.3 presents a Site map which displays the ground surface cover at the Site. Only sample locations in grassy or vegetated areas of the Site were included in these analyses. Sample locations which are covered with asphalt/concrete were not included in the air pathway analyses as these

types of surface covers eliminate or greatly reduce the potential releases of volatile contaminants to the air pathway. The preliminary air pathway analyses were conducted to determine the need for further air pathway analyses at the Site.

1.2 BACKGROUND

The Site occupies 24 acres of land and is located on the flat Lake Erie Plain in the Town of Cheektowaga, New York, as shown on Figure J.1. In 1990, as a prelude to the possible sale of the property, an environmental audit and Site assessment were conducted. The Site assessment included the installation of four overburden wells and nine boreholes, and the collection and analysis of soil' and overburden groundwater samples. The results of the Site assessment showed volatile organic compound (VOC) presence in the soils and overburden groundwater at the Site, primarily ethylbenzene, 1,2-DCE, xylene, acetone, and vinyl chloride. Reported total VOC concentration ranged from 35 micrograms/kilogram (µg/kg) to 9,390 µg/kg.

CRA was retained in 1991 to verify the results of the Site assessment and to conduct a Site Investigation (SI) to determine the nature and extent of contaminants on the Site. Additional overburden monitoring wells were installed and additional soil and overburden groundwater samples were collected for analysis in 1991 and 1992. Results of the SI confirmed the Assessment results and showed TCE to be a major Site contaminant in addition to the ones listed above. It was also determined that contaminants were present at the eastern property line and may be present under an adjacent six acre wooded parcel located east of the Site. An AOC was negotiated with the NYSDEC in October 1993 whereby an RI/FS of the Site and the adjacent off-Site parcel would be conducted to characterize the complete nature and extent of residual contamination at the Site and the associated risks posed by such residential contamination at the Site which is or may be present as a result of historic operations.

2.0 PRELIMIANRY AIR PATHWAY ANALYSES

2.1 GENERAL

The Preliminary Air Pathway Analysis involved the mathematical evaluation of potential air discharge of total 1,2-DCE, ethylbenzene, toluene, TCE, 1,1,1-TCA, vinyl chloride, and xylene from the potential source area defined by ground surface cover and bulk soil concentrations. Predictive emissions modeling techniques were used to calculate theoretical emission rates of the volatile organic compounds from the soil due to diffusion. Diffusion emission rate models predict emission rates as a function of contaminant concentrations and contaminant physical and chemical properties within surrounding media (i.e., within soils, surface water, etc.) and through measured or theoretically derived mass transfer coefficients. A summary of the sample locations and maximum observed contaminant concentrations are presented in Table J.2.

The air pathway analyses were conducted as specified in the RI/FS Work Plan and as directed by the NYSDEC. The analyses were performed using both United States Environmental Protection Agency (USEPA) and NYSDEC guidance documents. All calculations, formulas, and assumptions are presented as Attachment J.1 of this Preliminary Air Pathways Analysis report. Physical constants are presented in Table J.3.

The maximum observed concentration of each VOC was used for each sample location. The guidance document (USEPA Air/Superfund National Technical Guidance Study Series, "Guideline for Predictive Baseline Emissions Estimation Procedures for Superfund Sites", Interim-Final, USEPA Report No. EPA/1-92-002, dated January 1992, herein referred to as USEPA Guideline) specifies that values equal to one-half of the quantitation limit are to be included in the analyses for sample locations which contained no detectable compounds. This was done for each location. The mean bulk concentration of each VOC used in the emissions and dispersion modeling are summarized in Table J.2.

3967 (7) APPJ

2.2 POTENTIAL SOURCE AREA

Preliminary air pathway analyses were performed for the area of the Site shown on Figure J.4. This area is approximately 225 feet by 75 feet and is covered with a variety of vegetation including mature hardwood trees, shrubs, and open meadow vegetation.

2.3 ANALYSES USING USEPA GUIDELINE

Estimates of the saturation concentration (C_{sat}) for each contaminant were calculated as outlined in the USEPA Guideline, using the equation:

 $C_{sat} = (K_d \times S \times n_m) + (S \times \theta_m)$

Where:

Csat	=	Saturation Concentration, mg/kg (ppm)
Kd	=	Soil/water partition coefficient, l/kg (or ml/g)
S.	=	Solubility of contaminant in water, mg/l-water
nm	=	Soil moisture content expressed as a weight fraction
	•	Kg = water/Ky = soil
θm	=	Soil moisture content, l-water/kg - soil (or ml/g).

K_d was determined as outlined in the USEPA Guideline using the equation:

 $K_d = K_{OC} \times f_{OC}$

Where:

 K_d = Soil/water partition coefficient, l/kg (or ml/g)

 K_{OC} = Organic carbon partition coefficient, 1/kg (or ml/g)

 f_{OC} = Fraction of organic carbon in soil, mg/mg (default = 0.02)

All contaminants were present at concentrations below

saturated levels.

The emission rate to ambient air for each contaminant in grams per second (g/s) from subsurface soils using bulk concentrations (at levels below saturation) was calculated as outlined in the USEPA Guideline using the equation:

$$E_i = \frac{A2 D_{ei} \sum K_{as} C_i}{(\pi \gamma t)^{1/2}}$$

Where:

Ei	• =	Average emission rate of component i for exposure interval t, g/s
D _{ei}	=	Effective diffusivity of component i, cm^2/s^2 (D _i $\Sigma^{0.33}$)
Di	=	Molecular diffusivity of component in air, cm ² /s
Kas	_	Soil/air partition coefficient, g/cm ³

 $K_{as} = (H/k_d) \times 41$

Where:

Kas	=	Soil/air partition coefficient, g/cm ³
Н	=	Henry's Law constant of component i, atm-m ³ /mode
k _d	=	Soil/water partition coefficient m/g or cm ³ /g
41	=	Conversion factor change H to dimensionless form
-		

Ci = Bulk soil concentration of component i, g/g= Exposure interval, s (exposure time x exposure frequency x t exposure duration in seconds) Σ

= Soil porosity, dimensionless Σ = pt for dry soil

 $\Sigma = 1 - \frac{\beta}{2}$

Where:

Soil bulk density, g/cm^3 (default = $1.5 g/cm^3$) Particle density, g/cm^3 (default = 2.65 g/cm³) ρ =

Exposed surface area, cm2 Α

$$\gamma = \frac{\text{Dei }\Sigma}{\Sigma + (\rho)(1 - \Sigma)/\text{Kas}}$$

The estimated emission rates of VOCs from the source area are summarized in Table J.1. Detailed calculations are provided in Attachment J.1.

2.4 ANALYSES USING NYSDEC AIR GUIDE 1

The emission rate for each contaminant was calculated as described in Section 2.3.

The resultant emission rate was then used as input in air dispersion models to determine the estimated actual annual impact, maximum potential annual impact, and maximum short-term impact for each contaminant from an area source at a specified downwind distance as outlined the NYSDEC Air Guide 1. These concentrations were compared to the NYSDEC Annual Guidelines Concentration (AGC) and Short-Term Guideline Concentration (SGC) standards for each compound.

The maximum actual annual impact was obtained from NYSDEC Air Guide 1 using the following equation:

$$C_a (\mu g/m^3) = \frac{104 Q_a}{(D+S)^{1.6} h_A^{0.368}}$$

Where:

Ca	=	Maximum actual annual impact in $(\mu g/m^3)$
Qa	=	Is the annual emission rate (Ei from USEPA Guideline
		calculations converted from g/s to lbs/year)
Q _a (lb/year)	=	$E_{i} \frac{\text{grams}}{\text{second}} \times 2.205 \times 10^{-3} \frac{\text{lb}}{\text{gram}} \times 3,600 \frac{\text{seconds}}{\text{hour}} \times 24 \frac{\text{hours}}{\text{day}} \times 365 \frac{\text{days}}{\text{year}}$
D	=	Distance from the center of the area source to the desired
A	۰.	point of impact in feet
S	=	Side length of the area source in feet
hA	=	Height of the area source in feet
		•

The maximum potential annual impact was obtained from the NYSDEC Air Guide 1 using the following equation:

$$Cp \ (\mu g/m^3) = \frac{914,000 \ Q}{(D+S)^{1.6} h_A^{0.368}}$$

Where:

Cp = Maximum potential annual impact ($\mu g/m^3$)

Q = The hourly emission rate (Ei from USEPA Guideline calculations converted from g/s to lb/hr)

 $Q_{hr}^{lb} = E_i \frac{grams}{second} \times 2.205 \times 10^{-3} \frac{lb}{gram} \times 3,600 \frac{seconds}{hour}$

and D, S and h_A are as defined above.

The maximum short-term impact was obtained from NYSDEC Air Guide I:

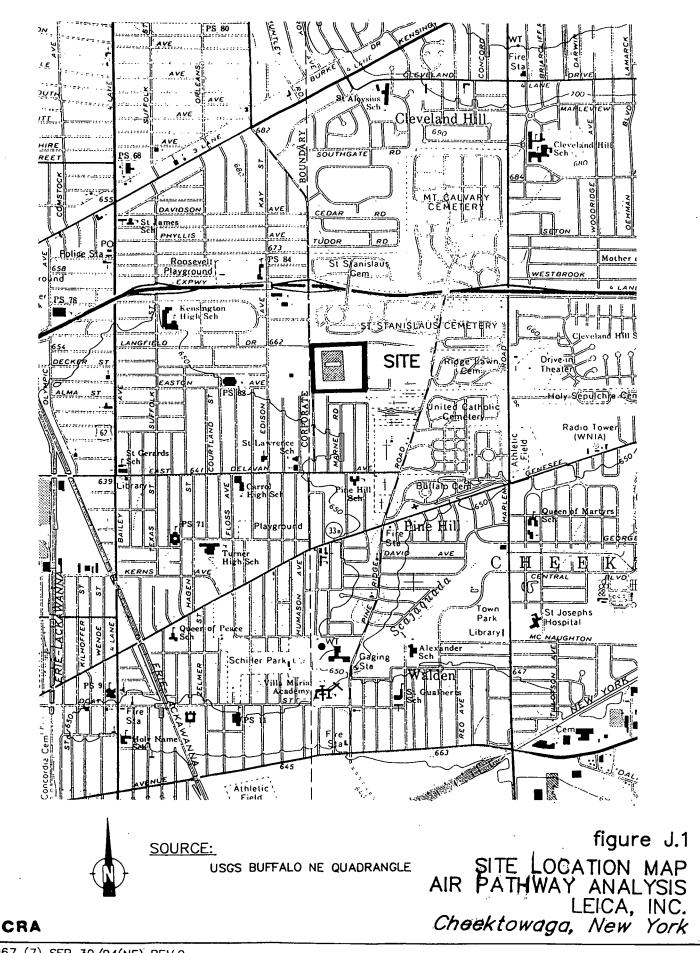
$$C_{ST}(\mu g/m^3) = Cp \ 100$$

Where:

 C_{ST} = Maximum short-term impact ($\mu g/m^3$)

Cp = Maximum potential annual impact as defined above $(\mu g/m^3)$

The estimated maximum actual annual impact, potential annual impact and short term impact concentrations for each VOC are summarized in Table J.1. Detailed dispersion calculations for each compound are provided in Attachment J.1.

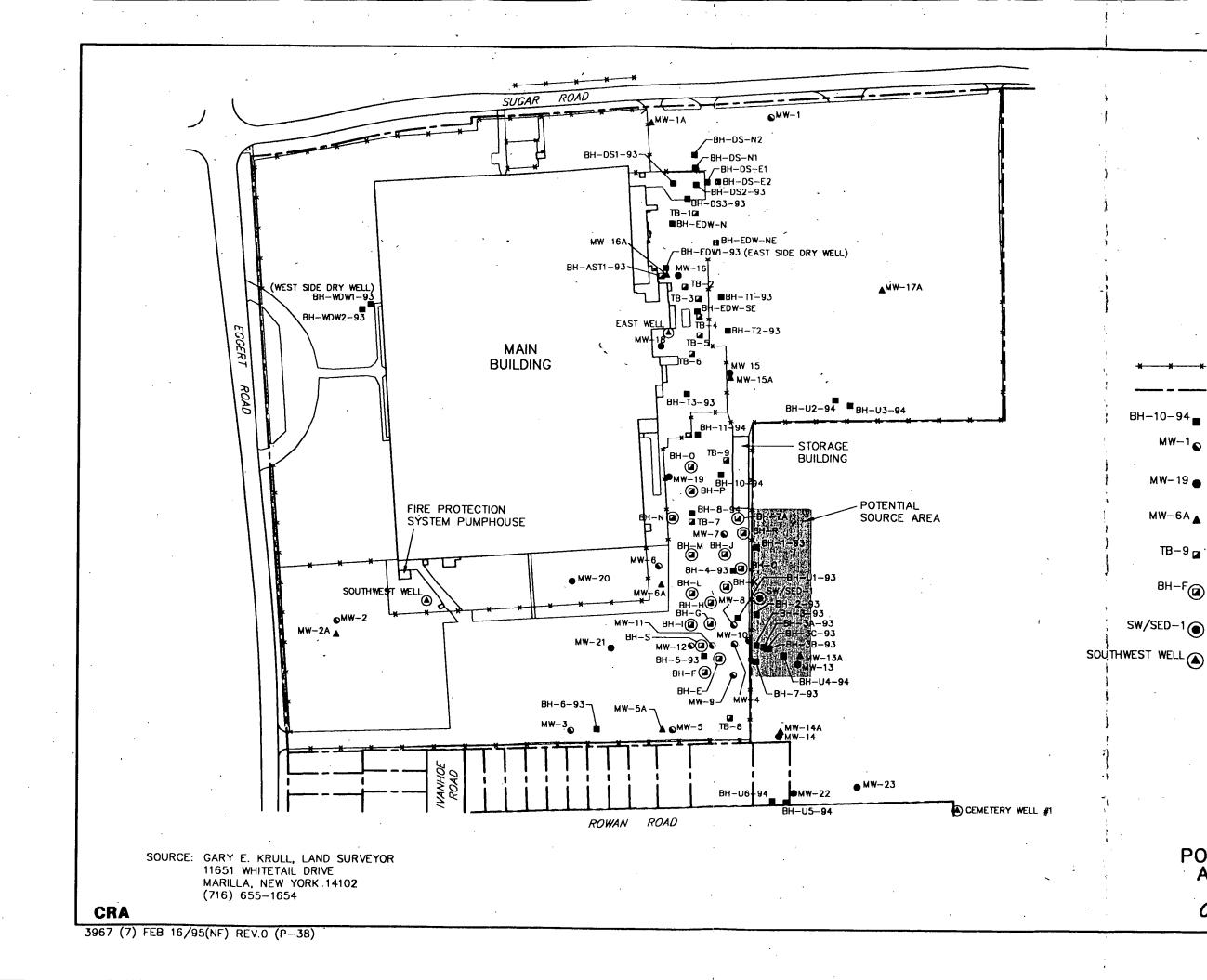

3.0 <u>CONCLUSION</u>

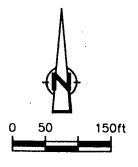
The values calculated in the Preliminary Air Pathway Analyses may be compared with the NYSDEC AGC and SGC concentration standards summarized for each compound in Table J.1. Table J.1 demonstrates that the estimated maximum annual and short-term impact concentrations are at least one order of magnitude lower than their respective AGC and SGC standards. Therefore, it is concluded that the air emission of each component at the Site warrants no further air sampling or analysis.

3967 (7) APPj

FIGURES

3967 (7) APPJ




AREA #1 - BULK SOIL CONCENTRATIONS (µg/kg) PRELIMINARY AIR PATHWAY ANALYSIS LEICA INC., CHEEKTOWAGA, NEW YORK

Sample Location	Sample Depth	Total 1,2-DCE	Ethylbenzene	Toluene	TCE	Vinyl Chloride	Total Xylenes	1,1,1-TCA
BH-1-93	0.0 - 3.0	. 55	ND(12)	ND(12)	150J	ND(12)	ND(12)	ND(12)
BH-2-93	0.0 - 3.0	6J	ND(14)	ND(14)	5J	ND(14)	ND(14)	ND(14)
BH-3-93	1.5 - 3.0	160D	42	39	ND(13)	42	190D	ND(13)
BH-3C-93	1.5 - 2.5	19	ND(12)	ND(12)	8J	ND(12)	ND(12)	8J
MW-13	2.0 - 4.0	ND(12)J	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)
MW-13	8.0 - 11.0	ND(11)J	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)
BH-10-94	10.5 - 12.5	1J	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)
Total Bulk Con	centration (µg/kg)	253	79	76	188	79	227	44
Mean Bulk Cor	ncentration (µg/kg)	37	12	11	27 .	12	33	7

Notes:		
D	Analyzed at a dilution.	
J	Estimated value - result is less than detection limit.	
ND(x)	Not detected at or above associated value.	
Total and mean l	ulk concentrations calculated using one-half of stated detection limit.	
• • •		
Key:		
1,1,1-TCA	1,1,1-Trichloroethane.	
1,2-DCE	1,2-Dichloroethene.	
TCE	Trichloroethene.	

CRA 3967 (7)

LEGEND

BH-10-94

MW−1

MW-19 🍙

MW-6A▲

ТВ−9 д ′

BH-F

SW/SED-1

EXISTING FENCE LINE

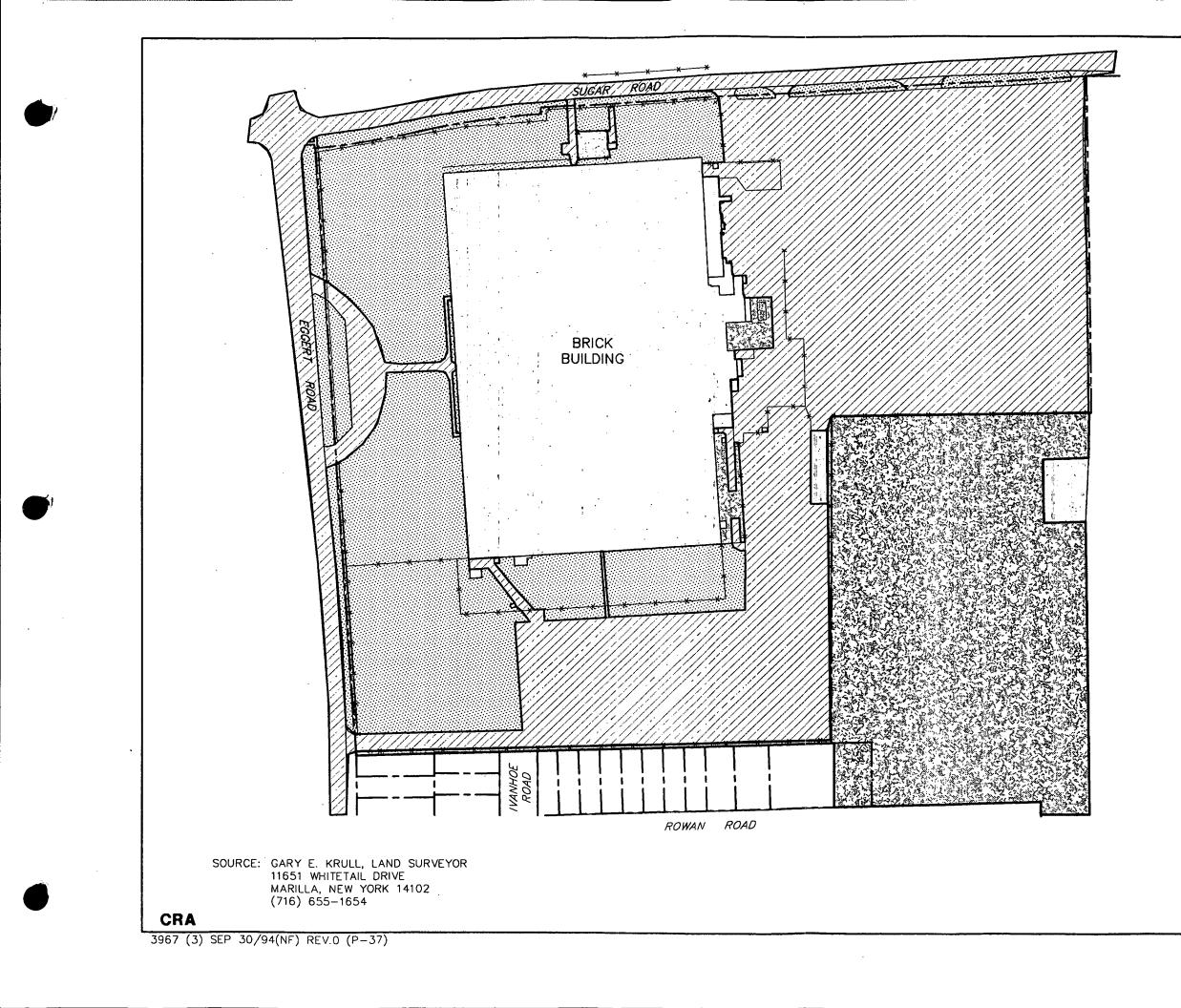
PROPERTY LINE

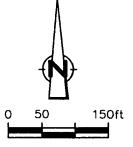
BOREHOLE LOCATION

OVERBURDEN MONITORING WELL (PREMOUSLY INSTALLED)

OVERBURDEN MONITORING WELL (1993/94)

BEDROCK MONITORING WELL (1993/94)


RECRA BOREHOLE (PREMOUSLY INSTALLED)


SI BOREHOLE (PREVIOUSLY INSTALLED)

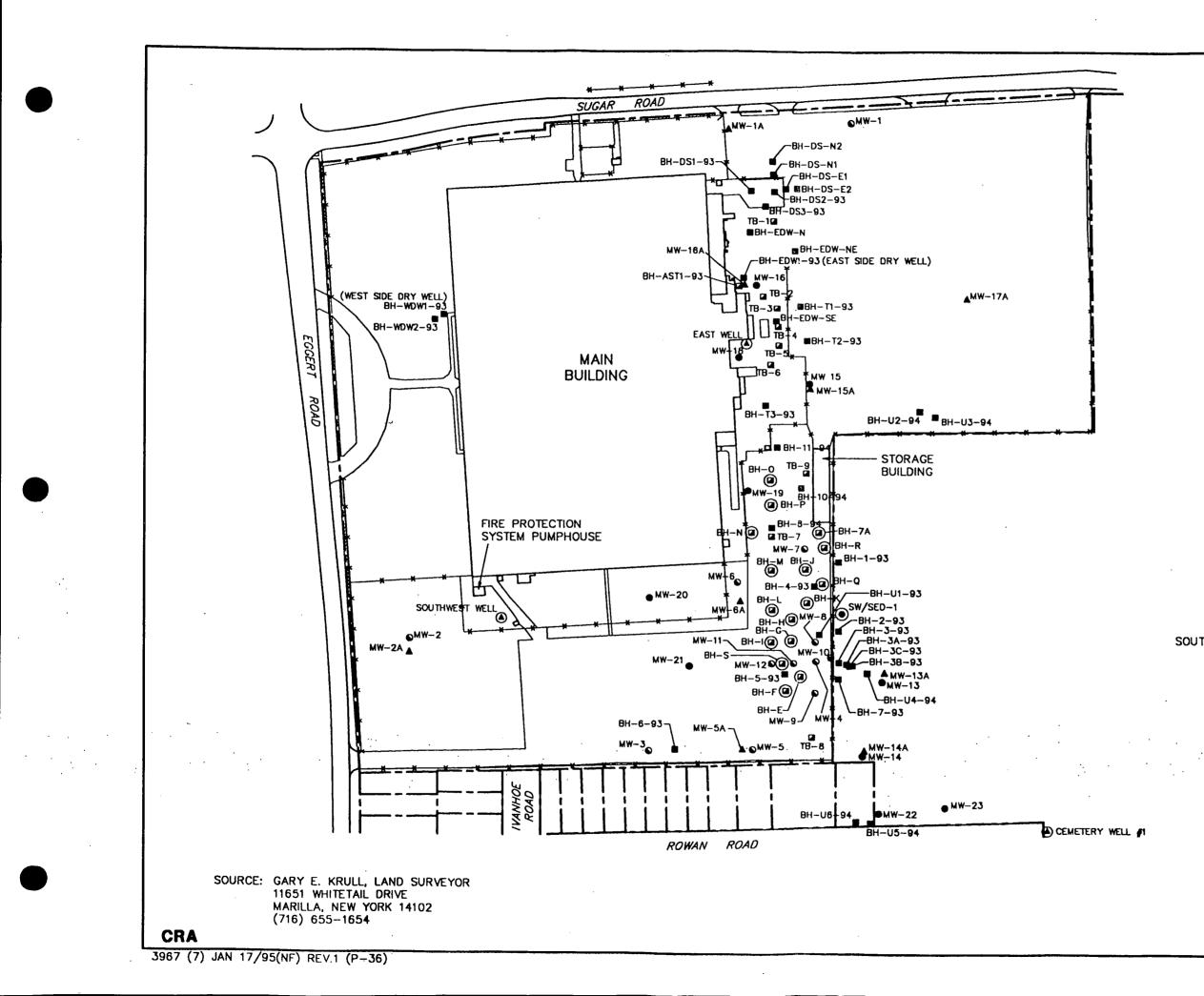
SURFACE WATER/SEDIMENT SAMPLE LOCATION

NON-POTABLE WATER SUPPLY WELL

LEGEND

BUILDING

EXISTING FENCE LINE PROPERTY LINE


MIXED VEGETATION

ASPHALT/CONCRETE

GRASS

GRAVEL/COMPACTED SOIL

figure J.3 SURFACE CHARACTERISTICS AIR PATHWAY ANALYSIS LEICA, INC. Cheektowaga, New York

	<u>LEGEND</u>
**	EXISTING FENCE LINE
	PROPERTY LINE
BH-10-94	BOREHOLE LOCATION
MW−1 ●	OVERBURDEN MONITORING WELL (PREVIOUSLY INSTALLED)
₩₩-19 ●	OVERBURDEN MONITORING WELL (1993/94)
MW-6A ▲	BEDROCK MONITORING WELL (1993/94)
TB−9 д	RECRA BOREHOLE (PREVIOUSLY INSTALLED)
BH-F	SI BOREHOLE (PREVIOUSLY INSTALLED)
SW/SED-1	SURFACE WATER/SEDIMENT SAMPLE LOCATION
HWEST WELL	NON-POTABLE WATER SUPPLY WELL

figure J.2 SITE LAYOUT AIR PATHWAY ANALYSIS LEICA, INC. Cheektowaga, New York

. . .

3967 (7) APPJ

TABLES

ESTIMATED AMBIENT AIR CONCENTRATIONS PRELIMINARY AIR PATHWAY ANALYSIS LEICA INC., CHEEKTOWAGA, NEW YORK

	Emission Rate	Maximum Actual Impact	Maximum Potential Impact	Maximum Short Term Impact		SDEC ncentrations (2)
Component	Ei (g/s) ⁽¹⁾	Ca (µg/m ³) (1)	Ср (µg/m ³) (1)	Cst (µg/m ³) (1)	AGC (μg/m ³)	SGC (µg/m ³)
Total 1,2-Dichloroethene	2.22E-06	8.88E-04	8.92E-04	8.92E-02	0.039	190,000
Ethylbenzene	1.40E-07	5.62E-05	5.63E-05	5.63E-03	1,000	100,000
Toluene	2.64E-06	1.06E-03	1.07E-03	1.07E-01	2,000	89,000
Trichloroethene	1.15E-06	4.62E-04	4.63E-04	4.63E-02	0.45	33,000
Vinyl chloride	3.32E-06	1.33E-03	1.34E-03	1.34E-01	0.02	1,300
Xylenes	8.46E-07	3.39E-04	3.41E-04	3.41E-02	300	100,000
1,1,1-Trichloroethane	3.41E-07	1.37E-04	1.37E-04	1.37E-02	1,000	450,000

Notes:

(1) Calculated.

(2) Annual and Short-Term Guidance Concentrations from NYSDEC Divison of Air Resources "Air Guide 1".

AREA #1 - BULK SOIL CONCENTRATIONS (µg/kg) PRELIMINARY AIR PATHWAY ANALYSIS LEICA INC., CHEEKTOWAGA, NEW YORK

Sample Location	Sample Depth	Total 1,2-DCE	Ethy lbenzene	Toluene	TCE	Vinyl Chloride	Total Xylenes	1,1,1-TCA
BH-1-93	0.0 - 3.0	55	ND(12)	ND(12)	150J	ND(12)	ND(12)	ND(12)
BH-2-93	0.0 - 3.0	6J	ND(14)	ND(14)	5J	ND(14)	ND(14)	· ND(14)
BH-3-93	1.5 - 3.0	160D	42	39	ND(13)	42	190D	ND(13)
BH-36-93	1.5 - 2.5	19	ND(12)	ND(12)	8 J	ND(12)	ND(12)	8J
MW-13	2.0 - 4.0	ND(12)J	ŃD(12)	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)
MW-13	8.0 - 11.0	ND(11)J	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)
BH-10-94	10.5 - 12.5	<u> </u>	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)	ND(11)
Total Bulk Con	centration (µg/kg)	253	79	76	188	79	227	44
Mean Bulk Con	centration (µg/kg)	37	. 12	11	27	12	33	· 7

Notes:	·
D	Analyzed at a dilution.
J	Estimated value - result is less than detection limit.
ND(x)	Not detected at or above associated value.
Total and mean	bulk concentrations calculated using one-half of stated detection limit.

incy.	
1,1,1-TCA	1,1,1-Trichloroethane.
1,2-DCE	1,2-Dichloroethene.
TCE	Trichloroethene.

PHYSICAL CONSTANTS USED IN AIR PATHWAY ANALYSIS PRELIMINARY AIR PATHWAY ANALYSIS LEICA INC., CHEEKTOWAGA, NEW YORK CHEEKTOWAGA, NEW YORK

Compounds ,	Log Kow (1)	Unitless Kow **	Koc (1) (mLlg)	S (mg/L)	Di (25 °C) (3) (cm2/s)	Csi (25 °C) (4) (g/cm3)	P (1) (mm/hg)	R (2) (<u>mm Hg•cm2</u> mol•n)	MWi (1) (g/mol)	H (6) (atm m3/mole)
cis(1,2)Dichloroethene	0.70	5.01	49	3,500	0.1* (5)	0.0011	208	62,361	97	7.58 E-03
trans(1,2)Dichloroethene	0.48	3.02	59	6,300	0.1* (5)	0.0017	324	62,361	97	6.56 E-03
Ethylbenzene	3.15	1,413	1,100	152	0.0750	0.0000399	7.00	62,361	106	6.43 E-03
Toluene	2.73	537.0	300	535	0.0870	0.00014	28.1	62,361	92	6.37 E-03
1,1,1-Trichloroethane	2.5	316	152	1,500	0.0780	0.000880	123	62,361	133	1.44E - 02
Trichloroethene	2.38	239.9	126	1,100	0.0790	0.000408	57.9	62,361	131	9.10 E-03
Vinyl chloride	1.38	23.99	57	2,670	0.106 (5)	0.0090	2,660	62,361	· 63	8.19 E-02
Xylenes (total) Mixed	3.26	1820	240	198	0.0717	0.0000570	10.0	ر 62,361	106	7.04 E-03

Notes:

(1) OSWER Directive 9285.4-1.

(2) Perry's Chemical Engineers Handbook.

(3) Air/Superfund National Technical Guidance Study Series, Pg. A-4.

(4) Air/Superfund National Technical Guidance Study Series, Pg. 14 (formula was used - see Page 15 for sample calculations and description).

(5) Telephone conversation with Gordon Reusing (CRA) for results.

(6) Superfund Pubic Health Evaluation Manual (October 1986).

* Result was estimated using known values for dichloromethane (0.1), dichloroethane (0.1), and trichloroethene (0.0790).

** Calculated from log Kow value given in OSWER Directive 9285.4-1.

ATTACHMENT J.1

CALCULATIONS

. . .

3967 (7) APPJ

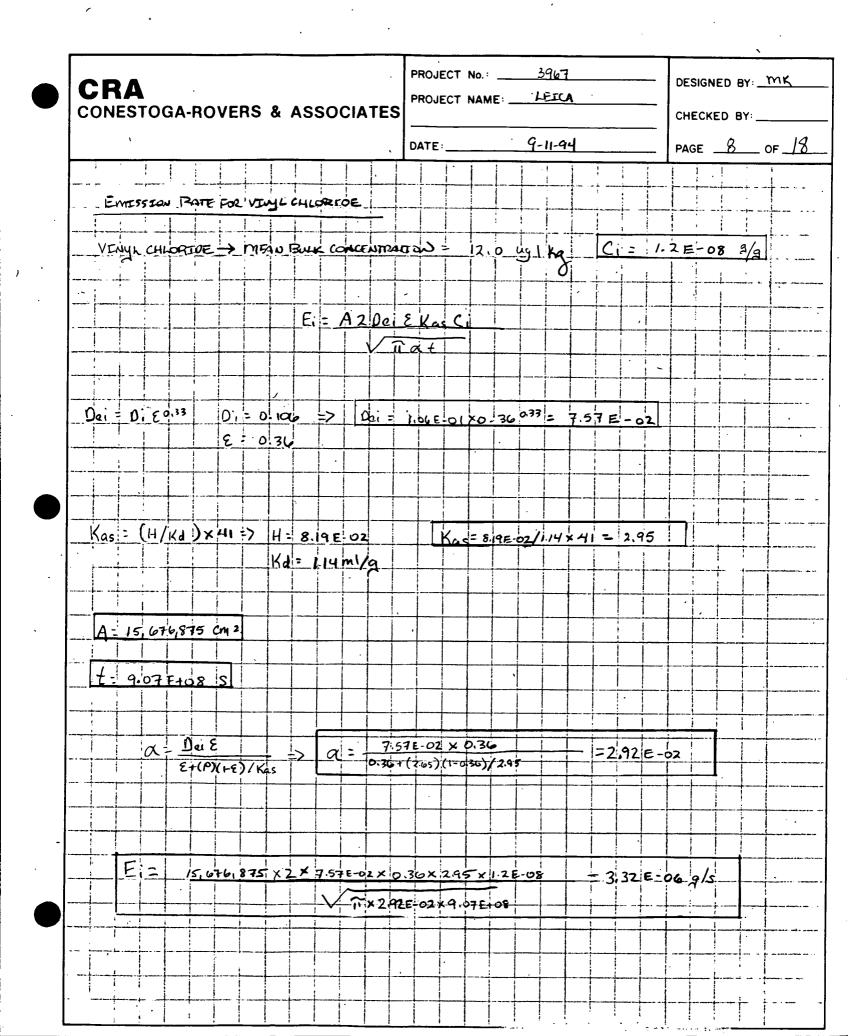
CRA CONESTOGA-ROVERS & ASSOCIATES	PROJECT		3967 -EIG	DESIGNED BY:K
	DATE:	9-	11-94	PAGE OF
TRICHLOROETHENE				
Ka = Kac X-for		· · ·	·	
Kd = 126 ml/g × 0.02 mg/mg = 2.52	- m1/g			
Csat = (KdxS X Nm)+ (SXOm)				
Csut = (2-52 ml/g × 1, 100 mg/L × 00	,2)+(1	100 X	0.02) = 77.4	ry rpm
			77,44	^{ΠO} MB
VENYA CHLORIDE				
	421			
$Kd = K_{oc} \times f_{oc}$				
Kd = 57 m/g × 0.02 mg/mg = 1.14	m l/a	•		
Csat - (KdxSXNm) + (SXOm)				
Csat = (1.14 m1/q × 2,670 mg/4 ×	0.02)+	(7632	× 0.02) =	114-274 pm
				114,276 pr/6
			-	
XYLENES				
Kd = Kocxfoc				
Kd = 2.0 ml/g x D 02 mg/mg = 4.8	m/g			
Csut=(Kd x SX Mm) + (SX Gm)				
Csut = (4.8 ml/g × 198 mg/2 × 0.0	2170	48 × 6.	021= 22.96	8 grb
			227101	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m			

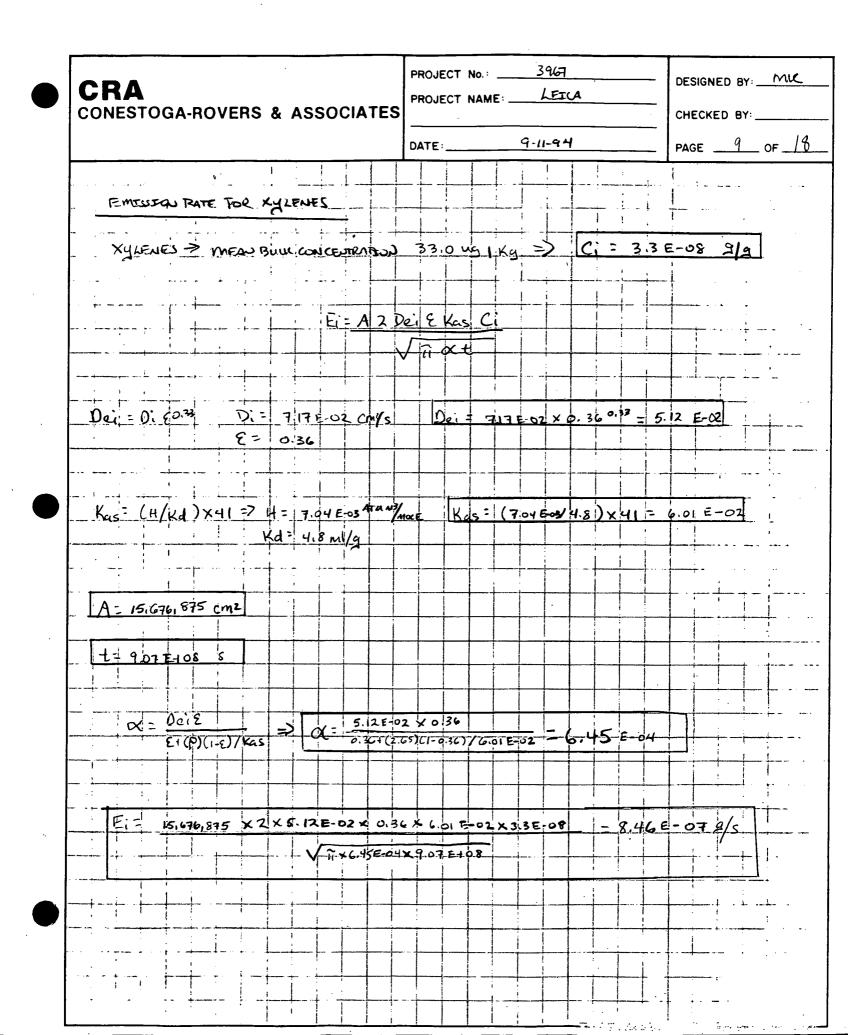
PROJECT No. : 3967 DESIGNED BY: MK CRA LEIL PROJECT NAME: CONESTOGA-ROVERS & ASSOCIATES CHECKED BY: _ 9-11-94 PAGE _ 3_ OF 18 DATE 1,1,1- TRICHLORDETHANE Kd = Koc x foc , Kd= 152 ml/g ×0.02 Mg/mg = 3.04 ml/g - $Csat = (Kd \times S \times Nm) + (S \times Om)$ Csat = 3.04 ml/g x 1500 mg/e x 0.20) + (1500 x 0.20) = 1212.0 ppm = 1,212,000 ppb TOLUENE KA = Kocxfoc Kd = 300 m 1/g × 0.02 ms/mg/mg = 6.0 m1/g Csut = (Kdx Sx nm) + (SXOn) Csat = (6.0 ml/g × 535 Mg/L × 01.20)+ (535 × 0.20) = 749 p/m 1749,000 1000

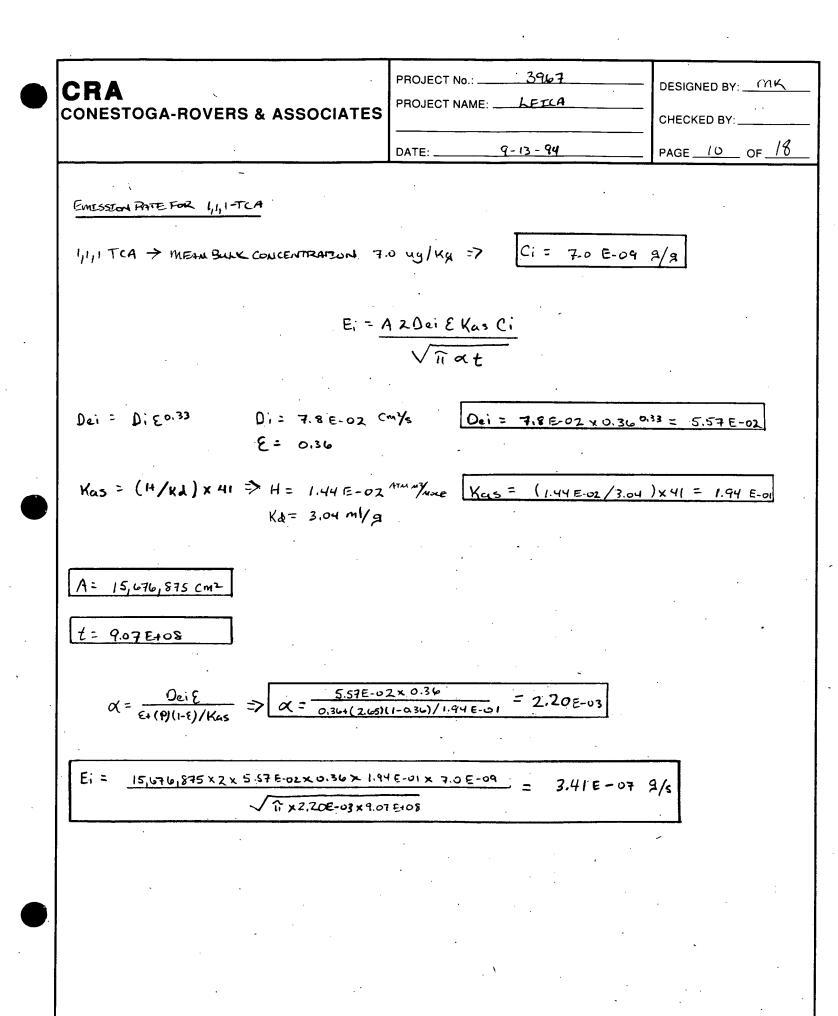
	C				GA-	RO	VE	RS	&	AS	so	CIA	TE	F		ECT				396 Erca				_			ED BY		<u>тқ</u>
										•				D	ATE			_	8-2	6-94	<u> </u>			_	PAC	θE _	4	c	0F_18
_				1 	 -	L			-			1		ļ		 		,					; ;	<u> </u>				1 1 7 ~	;
	<u></u>	Fir	LL2	: stan	R	TTE F	5R	Fac	4 0	<u>umi</u>	<u>nine</u>	-14-				<u> </u>				ļ	<u>}</u>	<u>.</u>		 					! f=
		- <u>E</u>	MI	55 Ju	5.	PAT	R.F	R	1,2	100	Ė	<u>.</u>	-		<u> </u>			· 			·		' 		<u> </u>		<u> </u>	i ī	
		Το	TAL	<u></u>	2	DC	i i i	ž n	iea/	ų B	urk	<u>, co</u>	NCE	NIN-	yan.	-1-	3	7	ig/	kg_	=	<u> </u>	<i>i =</i>	3	75	-0	8 9	12	
-			•••• ·		ļ			i 	-	. 	 :			<u> </u>				 		: 	<u> </u>			;		i 		•	; ; ;
	_		<u> </u>	i 		<u> </u>	1		<u> </u>		Ei	=	<u>A2</u>	-		as (<u> </u>	 	·	ļ	<u> </u>	
				;		+	+	<u> </u>						<u> </u>	îα	t		<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	1			
					22		+		<u> </u>	<u> </u>	-	 .					 		+		ļ			<u> </u>			<u> </u>	 	
		0	1 =	_ع	1	? :	SOTE !!	POR		1 00	hcu	CATTO	A LIC	<u>ssu r</u>	ES	يعو	50	Te '	<u>'ω</u>	RST (ASE	<u> </u>	CEN	ART	<u>o</u>			; ; ;	
				· C			· _								<u> </u>				<u>+</u>	<u> </u>				+ 					
					0	<u>. 36</u>	BA	SEO	001	6E01	ECH	ATT CA	\mathcal{D}_{i}	π <u>4</u>	mon	<u>m</u>	<u>1- 1</u>	<u>3</u> ,	<u>3-5</u>	BG	ś(INI	ERV	ar.b	ORC	<u>ser</u>	(.)	1	
	<u> </u>	<u>. </u>			<u> </u>	i i		<u> </u>			1	+		1		<u> </u>					ļ	·		 	ļ	<u> </u>		 	
				ע,	<u>=_</u> (<u>2,10</u>	Cm	%s_(FRO	 й"ЬН	শ্বস্থ	<u>i</u> an i	ions 	TANI	TA	the l	<u>`</u>	1		<u>;</u>	i	i				<u>.</u>			
		+ ا		<u> </u>	<u> </u>		<u> .</u> 	!			1		<u> </u>	1	-		}					 	1	<u> </u>	 	<u> </u>			
	ļ !	4 	[Da	=	,					0.33	: =	7.1	4 -	07	C	h2/		1			<u> </u> 	 · .			1			
						1 7.	1					1		1-				<u> </u>			-	 	<u> </u>	<u> </u>	 	}	h		
,	i , 1	Ка	5		T 1	LATS	2 20	A 177	1-1	COTE		ጉፍጉ		Icm	3	<u> </u>			<u> </u> .	1							یبند		
									1				1-2				· · ·			 .			<u> </u>						
	1	Ka	ς ^Ξ	- (Н	12d	1),	८ म।		1	ŀ	+= 0	56	F-0	2	trn.	x3/m	LF.	(F	Rom	Sut	605		Ruger	454				N MAI
			~					Ī	1		1	(d =	1	1		1		1	1				1		Hea	UNE		00	ONER
·	Ī	·							1					Ī						Ī						ŀ			
	ľ			Kas	-	6	SUE	-03	/1.	8)	×4	41 =	2.2	SE-	01					ļ									
	1			1		1																		ľ		ŀ			
				<u>A =</u>	27	5'	X	75'		16,	875	FT ²	×	929	=	15	674	,87	50	m2									
	1	ļ 																							,				
			-	<u> </u>	6	<u> </u>	Ex X	60	NORA Ha	i ×	24	His	×	350	GEAG	×	<u>30 y</u>	SEAR	5 =	9,0	ŦE	<u>+ 0 8</u>	<u>s</u> :	≯ ⊤	HIS	REPF	FSEN	<u>hurs -</u>	THE
-				upr	ERB	JUN	o Re	STOF	NT	HE	×105	ARE	. (<u>)</u>	mon	EPA	PB	92-	1719	109)									. I
			•		 		ļ	ļ]		
				χ=	10	12		/Ka	Ļ	>	ά	=	7.	19	2-0-	¥ ¥ }(+-`	0.3	6		=	3.	30	E	-03				ĺ	
								/ 24			Ⅰ	<u> </u>		<u> </u>						[
)			 	•	ļ	1	1	-				 																, 	
	: 1		Ē			15,6	76,8	75	x 2	X	.14	E-0.2	×	3	E-0	I × Z	28 E	01×	1 <u>3.7</u> 1	E -08	2	 <u>-</u> -	7.2	.2E	-0	G	4/5) ب_ ب_	
		1			1	1	[ŀ	$\langle \rangle$	i îi v	2 3/) E-0	2 X	9.0	7E+	20	-				ł				1	:	1	· · ·	

•

	ES	ТО	GA.	R	עכ	EP	ŔS	& .	AS	so	CIA	TE			ECT ECT						b			1)Y: Y:		
				ı								•		DATE	:			9-	11-9	વન				PA	GE .	5	c)F	Ľ
	1 1			 							-									. 	ł	-				1	1	ì	
	IIS	STON	RA	TE.	FD	R	En	 +ycl	BEN	RE	JE					ļ		_				-				1	. 1	[-
	1							<u> </u>		1			-		1	<u> </u>				j					ţ	!		: :	
<u>}</u>	ET	HYLB	ENZ	EN		⇒	ME	AN	BUL		xce	ITT	MIT	لمد		12	<u>u</u>	⊴∕ Kg		C	:=	1.2	E-	08	a/a	;	T	•	
	i i	1 1 1			 	1		<u> </u>	Ĺ			1						-			I.	-	1				, .	} 	
			-	l		ĺ		ĺ	! E			12	Dei	۶	Kas	c:								1	i –		1		
		1			;							,		<u> </u>	k t	1								1			1	1	~
												1			<u> </u>				1			-			1	1		 	
Dei	=	D	٤	0.3	3 =	>	D		0.	075	- cn	7/5	=>	, Ir	Xei :		5F	- 07		0.	36	0.33	' =	5.3	5 E	-02	'cm	²/s	
l		1			1			1	0.1	1			1		T					Ì				1		1	; ;		,a
			1		·	ĺ			1	Ī		1		1	†.					1	-		1	1	<u> </u> .		1		
		<u> </u>	1	Ì		[1	1	1	1		1	1	1	1	<u> </u>	1	1	1	1		1	†			·	
Ka	: =	(н	10	<u>i</u>)	×	41	->	Ц	t ·	- 112			tn 1	u=/			11	<u>as</u> =	<u> </u>	112	-		1	$\frac{1}{1}$		<u> </u>	-	!	-
		- <u> </u>	100	1				1	1	1	0 7	1		YM	YE_	<u> </u>	<u>†₽</u>	<u>as -</u>			1	<u>87</u>	22.0		41	$\frac{-1}{2}$	2015	- 02	•
			1	+				Ke	<u>, -</u>	22.	0	18_	<u> </u>		<u> </u>	1	<u> </u>	1		<u> </u>	1.			+	;	 		<u>-</u>	
	<u>.</u>	1	+						<u> </u>			+		<u> </u>		<u> </u>		+	<u> </u>					<u> </u>	! !	1			
			1	-	i	1	7	 	<u> </u>		+	+	†	┨───	<u> </u>	<u> </u>	<u> </u>	┼──	1			<u> </u>		<u> </u>	1	1	<u>.</u>		-
<u> A =</u>		<u>5,6</u>	76,	87: i	<u>s i c</u>	<u>m</u> •	-		i		<u> </u> ,	1	<u> </u>	1				+		 		┼		.	ļ	<u> </u>	1 -		
		<u> </u>	1		- -			ļ		<u> </u>			1						<u> </u>		<u> </u>		<u> </u>		<u> </u> _		i		
[t-		1.07	E+	08	╉┈					<u> </u>			<u> </u>	<u> </u>		<u> </u>			ļ	 	_		1	<u> </u>	 	ļ			
+			<u> </u>	+					<u> </u>	1		1	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>	 					~~
d	=	5.1	<u>3</u> (1)	C):/	Va		>	<u>_</u> α	<u> </u>	÷	SE-	÷	: f							36-	E -«				 			
				Ľ.	4	~7	>		L	<u> </u>	<u>o</u> .	\$6+	(2.6	\$)(1	0.3	، / (غ	• 20	E-02	l 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	 				
						_			ļ	ļ	 	_	ļ	_	 	 	ļ	<u> </u> .			ļ	<u> </u>	<u> </u>	ļ	ļ				
			-	ļ					ļ	ļ	ļ	 	ļ	 	ļ	ļ	 				 	<u> </u>	ļ	 	i 	ļ		··	
		<u> </u>	<u> </u>	<u> </u>	_							<u> </u>		 	ļ						-	<u> </u>						\ 	
			E	1 =		5,4	076	187	5x:	2 ×	5.35	E-02	× c	.36	<u>×1.2</u>	JE-	oz;	(1.2	<u> </u>	08	ļ	l		L/	40	-E-	07		
		<u> </u>	ļ	<u> </u>		1						Î	í×.	1.36	E -	24 ×	9.0	7E-	801					Ī_	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F 1	/5		
		<u> </u>	<u> </u>	1						<u> </u>				<u> </u>															
														ŀ															•
					1	1																1							• • •
					ļ	Ì					1										 .	1							• •
				İ											†	·													(
		;	1		1						<u>†</u>	 	 	 	İ.			i{			<u> </u>	 		<u> </u>			<u>+</u>		• .
			 	<u>.</u>	1						 	<u> </u>			<u>.</u>						! 			 			· _ '	•	
		 		<u>.</u>						L		 .		<u> </u>	ŀ														8
	*********			ļ							 	<u> </u>		ļ	ļ			├ ───-						1			'.		

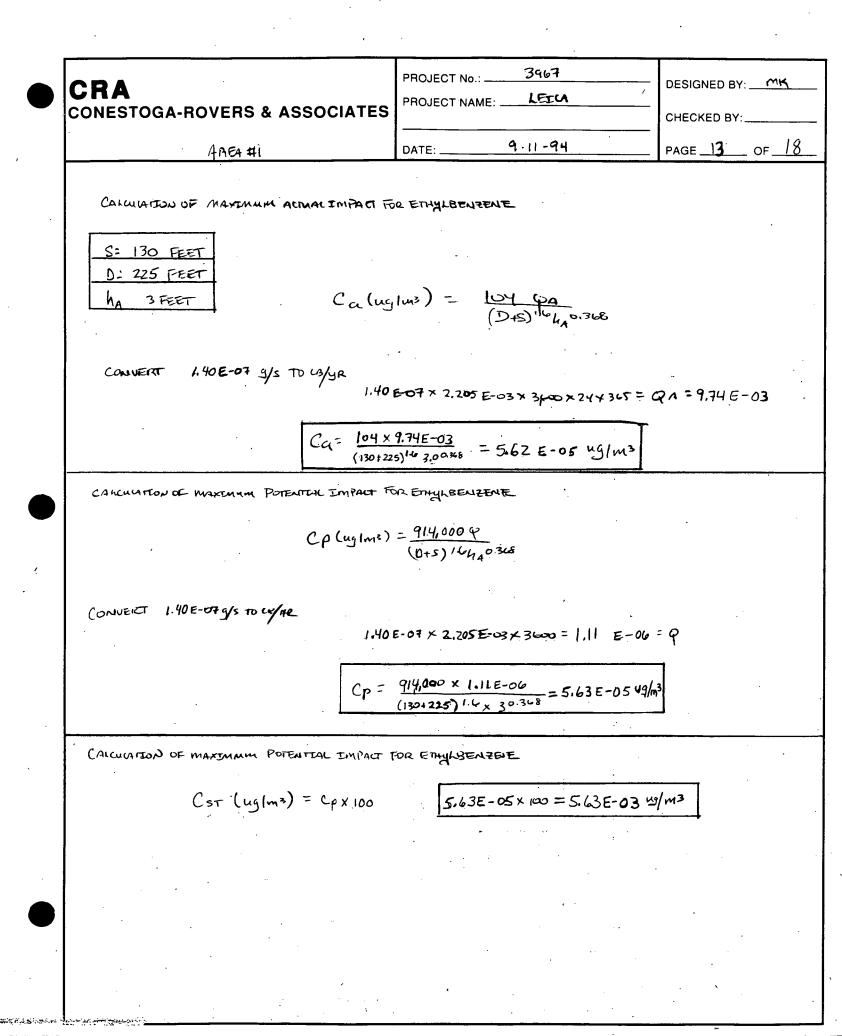

•


$$\frac{CRA}{CONESTOGA-ROVERS & ASSOCIATES} \xrightarrow{PROJECT NO.: 2947}{PROJECT NAME: LEXA} \xrightarrow{DESCRED BY: ML} CHECKED BY: ML} CHECKED BY: ML} CHECKED BY: ML} = CONESTOGA-ROVERS & ASSOCIATES $\xrightarrow{PROJECT NAME: LEXA}{DATE: 9.11.94} \xrightarrow{PROJE C. 07.18} PROJECT NAME: LEXA}$$$


.

ر. رو^ر کر روب کر . مراجع کر میں کر ا

372**5**7 -



			GA	RO	VE	RS	&	AS	SO	CIA	TE			ECT				396 EIC						SIGN			mκ
												C	DATE	:			9-1	1-91	4			_	PA	GE _	11	,	of
1					ļ	•			-		.					1	Ì	1		Ī		1	1		1	!	
2.)	۲ •	N	0_5	URF	ACE		nlo	UND	ME	ULZ VILZ	OB	Pa	ULE!	a D	tu	LE.	voi	LALI	LE	5 4	- τ Τ	1=5	uR	FAC	E	• • •	1
		•	_						ł	ļ							Ī			1	1		Ţ				· }
3.)	i	N	5 7 6	1 c	001	sros	AL	4A	1011	u		ĺ		•		ļ	ļ			1		1			i		• F
			_	;	ļ ļ		ļ			<u> </u>			ļ.		<u> </u>	ļ		1			!	į		1	i	:	•
4.)	_	NO	TRE	E F	i as	EV	bes	TU	s	DIR	ELTI	4	Exi3	SE	\$					1						·	
		1 ′ , 		1.	<u> </u>	ļ		<u> </u>	ļ	ļ	_	1.	ļ	ļ			ļ	<u> </u>	 	<u> </u>	ļ .					1	į
<u>5.</u>)		<u> 50</u>	202	+	<u>Śen</u>	TVU	AU	UES.		hr.	<u>A (</u>	- by c	ER	4	ļ	ļ	ļ		 				<u> </u> .		1		1
					1		. 	ļ	<u> </u>		. 					· ·	<u> </u>	ļ	ļ		ļ	<u> </u>				1	1
		<u>, </u>	-	<u> </u>			ļ	<u> </u>			 		<u> </u>			1			 								
	<u> </u> <i>C1</i>	<u>nicu i</u>	ATTA	<u>אל</u> מ	PF-A	AK	<u>Env</u>	m	ACI	TLA	I	mpa	T	FR	m	NY	SOE	<u>c</u>	TR	Gu	DE	I	(19	$\frac{41}{1}$			ļ <u>.</u>
	1	1		1	1		<u> </u>	<u> </u>	·						ļ							 		<u> </u>			
	S:	1	30		1	1	1	;	İ		1	1	1	RE)	1	<u> </u>		Ļ				ļ	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>
	1):	<u>'</u> Z	25	FEE	7		DIST	ANCE	Fro	n c	ENSTE	Ro	Ęтн	E A4	3-A 9	Jaik	ET	DTH	E H	hne	1.10	 r	1		47	HE S	1
	1	1	1	1			t		1	r	1	1	1	1	1	1	1			- ·				1.1.1.1	· · · · ·		HE.).
1.	مم		s FE	ET_	<u> </u>			1			1	1	1	1	1	1	1			4	:	4	1	10,2 -	1	1	<u></u>
						(не	LHT C	F So	ur) C	e ar		<u>)-></u>	ñor	nys	DEC A	516	<u>nse</u>		4	:	4	1		1	1	
						(не	LHT C	F So	ur) C	e ar		<u>)-></u>	ñor	nys	1	516	<u>nse</u>		4	:	4	1		1	1	
						(не	LHT C	F So	u1) C.		J Tr)-) R	no*	TAL	DEC A	20	<u>nse</u>		4	:	4	1		1	1	
						(не	LHT C	F So	u1) C.		J Tr	<u>)-></u>	no*	NY) TAL	PEC A	20 20 2	KE	<u>1</u> ->	4	:	4	1		1	1	
						(не	LHT C	F So	u1) C.		J Tr)-) R	no*	NY) TAL	DEC A	20 20 2	10)E XE ,368	⊥ →	6.0.		ELG		100 -	3F	-	
						(не	LHT C	F So	u1) C.		J Tr)-) R	no*	NY) TAL	PEC A	20 20 2	10)E XE ,368	⊥ →	6.0.		ELG		100 -	3F	-	
				Aċ			HEI APA	LT ()	<u>A</u> LU	u1) C.		J Tr)-) R	no*	NY) TAL	PEC A	20 20 2	10)E XE ,368	⊥ →	6.0.		ELG		100 -	3F	-	
Cor				Aċ		(HEI APA	LT ()	<u>A</u> LU	u1) C.		J Tr)-) R	no*	NY) TAL	PEC A	20 20 2	10)E XE ,368	⊥ →	6.0.		ELG	un.	100 -	3F	-	
Cor		AT	2.72	A c	6 9	J. J.M.	APA ·	CT C	ALU	<u>uv</u>) c. Cc		> Tr)-> R 	100m	1045 1045	9 EC A - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	20 20 40	ко E (368	<u>т</u> ->	6.0.2		A.M.	uncu	Em3	3 F		= (8)
Cor		AT	2.72	A c	6 9		APA ·	CT C	ALU	<u>uv</u>) c. Cc		> Tr)-> R 	100m	NY) TAL	9 EC A - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	20 20 40	ко E (368	<u>т</u> ->	6.0.2		A.M.	uncu	100 -	3 F		= (8)
		AT	2.72	A c	6 9	J. J.M.	APA ·	CT C	ALU	<u>uv</u>) c. Cc		> Tr)-> R 	100m	1045 1045	9 EC A - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	20 20 40	(1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		6.0.2		A.M.	uncu	Em3	3 F		= (8)
Cor		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)
Cor		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	CT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	9 EC A - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)
Cor		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)
		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)
		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)
		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (3
		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= 49
		AT	2.72	A c	6 9	J. J.M.	HEI APA - - - - - - - - - - - - -	LT C	≥F 5¢ Δμ		× :	2) Fr)) R (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D15 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a A A A A	10 E		6.0.2		A.M.	uncu	Em3	3 F		= (8)

3967 PROJECT No.: _ DESIGNED BY: MK CRA L'EICA PROJECT NAME: **CONESTOGA-ROVERS & ASSOCIATES** CHECKED BY:__ PAGE 12 OF 18 DATE: 9-11-94 TUTAL 12 OCE CALLULATION OF MAXIMUM POTENTIAL IMPACE FROM NYSOEL AIR GODE I (1991) $Cp(u_{5}/m_{3}) = \frac{q_{14,000} \times q}{(0+5)^{16} ha^{\alpha_{3} \cup 8}}$ WHERE Q IS THE HOURLY EMISSION RATE I LA/HR Q= 2.22E-06 GRAMS × 2,205E-03 (BRAM × 3600 SECONDS = 1.76 E-05 49/13 $Cp = \frac{914,000 \times 1.76E - 05}{(225 + 130)^{1.6} 3.0^{\circ.348}} = 8.92E - 04 \text{ ug/m}^3$ CALLULATION OF MAKINUM SHOLT TERM INPACT, CST FOM MYSDEL AIR LUISE I (1991) Csi uglm3 = (px100 CSr = 8.92E-04 × 100 = 8.92E-0243/113

CRA
CONESTOGA-ROVERS & ASSOCIATES
$$\begin{array}{c}
PROJECT NO: \underline{39427} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJECT NAME: \underline{LEXCA} \\
PROJE$$

CRA
CONESTOGA-ROVERS & ASSOCIATES
 PROJECT NOME:

$$\frac{3362}{100}$$
 DESIGNED BY:
 NK

 PROJECT NAME:
 $\frac{1260}{100}$
 $\frac{126}{100}$
 CRA
CONESTOGA-ROVERS & ASSOCIATESPROJECT NAME:3407
PROJECT NAME:DESIGNED BY:MK
CHECKED BY:PROJECT NAME:
$$AEECA$$

PROJECT NAME: $AEECA$
CHECKED BY:CHECKED BY:MK
CHECKED BY:CHECKED BY:CALCULATED CF MATTANAN AREAL ENTPORT FOR USUNG CHECEDE 55 : 130 , FEFT
($2-225$, ZET
La = 3, FEET $C_{A}(u_{3}/m^{2}) = 1044$ PA
($(0+5)^{1+6}A_{-0}$, R.S.CONVERT 3.32.E-00 GIS TO ($4/yE$ $332E-06$ YZ.205E-03 X 3600 A 24 X 365 = $PAZE231$ Fo1 19/18CALCUNATED OF MATCHINA POTENTENENIZATING FALSON $C_{A} = 1044$ YZ.31 E-01
($130+2231^{1+}X_{2}0^{-7}M$ $= 1/33E-03$ W/mCALCUNATED OF MATCHINA POTENTENENIZATING FALSON $C_{A} = 1044$ YZ.31 E-01
($(130+223)^{1+}X_{2}0^{-7}M$ $= 1/32E-03$ W/mCALCUNATED OF MATCHINA POTENTENENIZATING FALSON $C_{A} = 1044$ YZ.31 E-03 W/m $C_{A} = 1044$ YZ.31 E-03 W/mCALCUNATED OF MATCHINA POTENTENENIZATION FALSON $C_{A} = 1044$ YZ.31 E-03 W/m $C_{A} = 1044$ YZ.31 E-03 W/mCALCUNATED OF MATCHINA POTENTENENIZATING FALSON $C_{A} = 1044$ YZ.31 E-03 W/m $C_{A} = 1044$ YZ.31 E-03 W/mCALCUNATED OF MATCHINA POTENTENIZATIONE X.2005 E 2.200 X Z 205 E-03 X 3650 E 2.200 YZ.200 W/m $C_{A} = 3.32E-06$ YZ.200 E -03 YZ.200 E -03 YZ.200 W/mCALCUNATED OF MATCHINA POTENTENIZATING YZ.2005 E 00 YZ.2005 E 2.200 YZ.2005 E 00 YZ.2005 E 2.200 YZ.2005 E 00 YZ.2005 E 2.200 YZ.2005 E 0.2005 W/m $C_{A} = 2.004 \times 2.205 \times 2.005 \times 2.2005 \times$

CRA	PROJECT No.:3967	DESIGNED BY:K_
CONESTOGA-ROVERS & ASSOCIATES	PROJECT NAME: LEICA	CHECKED BY:
	·	<u> </u>
	DATE: 9-11-94	PAGE OF
CALLULATION OF MAXIMUM ACTUM IMPA	or for yyleves	
	2.	
S = 130 FEET	· ·	
D= 225 FEET		
ha= 3FEET		· ·
	2a (ug/m) = 104 Qa (0+5) 1.6ha 0.368	
	(0+5) 1 6 ha 0.368	
CONVERT 8,46 E- OF g/s TO LB/YR		
	KE-U7 × 2.295 E-03× 3,600×24×36	5 = QA = 5,88E-02 LA/J
		(
C = 104 × 5.8	88 E-02 = = 7 7 8 E all 110 1 3	· ·
(130+225)	88 E-02 =3.39 E-04 49 lm3	
Janian 1997		<u></u>
		······································
	· · · · ·	
CALCULATION OF MAXIMUM POTENTIAL SMIPACE	FOR XYLEVES	
,	S giuma	· ·
CpL	-uglms) = 914,000 Q (D+S)16 ha 0.368	
		· ·
CONVERT 8.46E-07 g/s TO US/14R		
8,46	E-07 x 2.205 E -03 x 3600 = 6,72	E=06 Le/1+2=9
· · · · · · · · · · · · · · · · · · ·		
$C\rho = \frac{q_{12}}{c_{12}}$	4,000×6,72E-06 30+225)16 30363 = 3,41E-04 691	rn 3
(13	30+ 225) 10 30 30 9 11 - 0 1 3	
		<u> </u>
CALLINGTION OF MAXDMUM PARTICAL IN PAG	For typeses	
C5T (ug/m3) = Cp 100 C5T =.	3.41E-04 × 100 = 3,41 E-02 4/m3	
Cst (ug/m3) = Cp 100 Cst =.	3.41E-04 × 100 = 3,41 E-0244/m3	· ·
C5T (ug/m3) = Cp 100 C5T =	3.41E-04 × 100 = 3,41 E-0244/m3	

APPENDIX K

MANHOLE AND CATCHBASIN INSPECTION LOGS

3967 (7)

M.H./C.B.# SAN-A

TABLE 1

CLIENT: <u>LEICA</u> INC. LOCATION: <u>SUGAR RD</u>		DATE:	8/1/94
M.H./C.B. LOCATION:	SUGAR RD.		DE FACILITY SIDE FACILITY
TYPE OF FRAME:			· * .
TYPE OF LID:	VENTED	SOLID	
MARKINGS ON LID: _	." MANHOLE	······	
CONDITION OF FRAM CONDITION OF LID:	CA GOOD	FAIR FAIR	POORPOOR
FRAME OPENING DIM	ENSION:24'		•
RUNGS INSTALLED: RUNG CONDITION:	V YES GOOD	□ NO □ FAIR	Ø POOR
	OF M.H./C.B.:) DLE / SEWER B SET FROM TOP	GOOD GAIR	DI POOR
SKETCH:	•	EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIF OUTGOING LIN IN DIAGRAM.	MBER 3 NES AS WN IN 2 TO 2

M.H./ CAM SAN B

 $\mathbf{1}$

TABLE 1

CLIENT: <u>LEICA</u> II LOCATION: <u>CHEEKT</u>		DATE:	8/1/94
M.H./C.B. LOCATION	E PARKING LOT		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	· · · · · · ·
TYPE OF LID:	X VENTED	SOLID	· ·
MARKINGS ON LID:	SANITARY SE	WER_	
CONDITION OF FRAN CONDITION OF LID:	Æ: XÍ GOOD XÍ GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DI	MENSION: 24°	· · · · · · · · · · · · · · · · · · ·	
RUNGS INSTALLED: RUNG CONDITION:	⊠ YES □ GOOD	D NO D FAIR	D POOR
OUTGOING LINE: SIZE #1 10" INCOMING LINE: SIZE #2 10" #3 #4	From M.H./C.B. #	Designation Distance	Invert Depth
#5 #6 GENERAL CONDITION COMMENTS: VERY 	LOW FLOW. M	COOD D FAIR JO OBSERVED CO	
SKETCH:	-> (Ì)	EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIF OUTGOING LIN IN DIAGRAM.	NES AS WN IN TO

M.H./C.B.# SAN BI

CLIENT: LEICA I LOCATION: <u>CHEEK</u>		DATE:	8/1/94
M.H./C.B. LOCATION	E. PARKING LOT		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	X CIRCULAR	
TYPE OF LID:	🕱 VENTED	SOLID	
MARKINGS ON LID:	None		
CONDITION OF FRAM CONDITION OF LID:	A GOOD	G FAIR G FAIR	POORPOOR
FRAME OPENING DI	MENSION: 24		
RUNGS INSTALLED: RUNG CONDITION:	,⊠ YES □ GOOD	□ NO □ FAIR	De poor
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4	То М.Н./С.В. # or D <u>МН SAN C</u> From M.H./C.B. # or <u>МН SAN A</u>	·	8.15
#5 #6 GENERAL CONDITION COMMENTS: <u>Assum</u> VERY SLIGHT	NOFM.H./C.B.: DE ED BUND CONNECTION FLOM IN MH. BO	(GOOD D FAIL ON BETWEEN RICK MH	R D POOR MH A & MH BI
SKETCH:		EXAMPLE: NU INCOMING LI SHOWN. DRA RELATIONSHI OUTGOING LI IN DIAGRAM.	NES AS WN IN P TO NE AS SHOWN
1	·. ·		1

M.H./25. SAN C

TABLE 1

CLIENT: LEICA INC LOCATION: CHEEKTOWAGA	DATE: 8/1/94
M.H./C.B. LOCATION: S.EDGE E. PARKING	□ INSIDE FACILITY Ø OUTSIDE FACILITY
TYPE OF FRAME: SQUARE	
TYPE OF LID: X VENTED	SOLID
MARKINGS ON LID: <u>SEWER</u>	
CONDITION OF FRAME: GOOD CONDITION OF LID: GOOD	□ FAIR □ POOR □ FAIR □ POOR
FRAME OPENING DIMENSION: 24"	
RUNGS INSTALLED: X YES RUNG CONDITION: GOOD	□ NO Ø FAIR □ POOR
OUTGOING LINE: SIZE To M.H./C.B. # or Definition M .H./C.B. # or Definition M .H./C.B. # or M .H./M.H./M.H./M.H./M.H./M.H./M.H./M.H.	Designation Distance Invert Depth <u>S'5''</u> Designation Distance Invert Depth <u>S'5''</u> <u>S'5''</u>
#6 GENERAL CONDITION OF M.H./C.B.: COMMENTS: 1/2 FOOT STANDING EVIDENCE OF FLOODING BRICK MH LIGHT SHEEN, SEPTIL ODOR	GOOD I FAIR I POOR
3	
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

.

M.H./ & B. # SAN - D

Ϊ

CLIENT: LEICA INC. LOCATION: CHEEK-TOWAGA		DATE: 8	194
M.H./C.B. LOCATION: DEFSITE A	HEEA NU	□ INSIDE FA Ø OUTSIDE I	CILITY FACILITY
TYPE OF FRAME: SQUAF		CULAR	
TYPE OF LID: KVENTE		D	
MARKINGS ON LID:	-		
	GOOD X F GOOD X F	AIR 🗆	POOR POOR
FRAME OPENING DIMENSION:	24"	. · · ·	· · ·
	YES 🗆 N GOOD 🙇 F.	-	POOR
OUTGOING LINE:	• .*	•	
SIZE To M.H./(#1 <u>10"</u> <u>SAN - (</u> INCOMING LINE:	C.B. # or Designation	Distance Inve	ert Depth
	./C.B. # or Designatio	on Distance In	vert Depth
#4	······		<u> </u>
#6			
GENERAL CONDITION OF M.H./C COMMENTS: FRAME & LID BE	ELOW GROUND (I FLAN
THROUGH MANHOLE; S	EDIMENTS PRE	SENT ; BRIG	CK MH,
SKETCH:			
N N		MPLE: NUMBER	
	SHOV	WN. DRAWN I	- /
		TIONSHIP TO GOING LINE AS	
		IAGRAM.	
		•	

M.H./@ * SAN - E

TABLE 1

CLIENT: LEICA LOCATION: OFFSITE		DATE:	8/1/94
M.H./C.B. LOCATION	OFESITE AREA CENTER PART		IDE FACILITY ISIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	· · · · · · · · · · · · · · · · · · ·
TYPE OF LID:	VENTED & OVER	G SOLID	
MARKINGS ON LID:	NONE		
CONDITION OF FRAN CONDITION OF LID:	AE: 🐲 GOOD 🛛 GOOD	A FAIR FAIR	POORPOOR
FRAME OPENING DI	MENSION:24 ''	· · .	
RUNGS INSTALLED: RUNG CONDITION:	⊠ YES □ GOOD	D NO FAIR	DOOR
OUTGOING LINE: SIZE #1 <u>ID</u> " INCOMING LINE: SIZE #2 <u>ID</u> " #3 #4 #5 #6 GENERAL CONDITION COMMENTS: BRICK AT GROUND LEV WRITER; SEDIMENT	IOFM.H./C.B.: D MH: RIM & COVER EL: MH SURCHARG	GOOD X FAIL	$\frac{7'5''}{7'5''}$ $\frac{7'5''}{7'5''}$ $\frac{7'5''}{7'5''}$ $\frac{7'5''}{7'5''}$ $\frac{7'5''}{7'5''}$
SKETCH:		EXAMPLE: NU INCOMING LII SHOWN. DRA RELATIONSHI OUTGOING LII IN DIAGRAM.	NES AS WN IN P TO NE AS SHOWN

M.H./C.B.# SANF F

,

CLIENT: LEICA INC. LOCATION: CHEEKTOWAGA	DATE: 8/1/94
M.H./C.B. LOCATION: OFFSITE AREA	□ INSIDE FACILITY ☑ OUTSIDE FACILITY
TYPE OF FRAME: SQUARE	
TYPE OF LID:	🕅 SOLID
MARKINGS ON LID: STORM "	
CONDITION OF FRAME: CONDITION OF LID: CONDITION OF LID: CONDITION OF LID:	□ FAIR □ POOR □ FAIR □ POOR
FRAME OPENING DIMENSION:	
RUNGS INSTALLED: YES RUNG CONDITION: GOOD	□ NO □ FAIR
OUTGOING LINE: SIZE To M.H./C.B. # or 1 #1 10 INCOMING LINE:	7,41
#3 <u>10"</u> #4 #5	or Designation Distance Invert Depth <u>4.31</u> <u>7.46</u>
#6 GENERAL CONDITION OF M.H./C.B.: COMMENTS: <u>PARTLY</u> <u>HIDDEN</u> BY CO SURCHARGED/FLOODED 1.8' Was	
SKETCH: 3	EXAMPLE: NUMBER 3, INCOMING LINES AS
	SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.
(1)	· (1

M.H. / 28 # SAN-6

CLIENT: <u>LEICA</u> LOCATION: <u>CHEEK</u>	NC.	DATE: _	8/1/94
M.H./C.B. LOCATION			E FACILITY DE FACILITY
TYPE OF FRAME:	SQUARE	X CIRCULAR	• •
TYPE OF LID:	X VENTED	SOLID	
MARKINGS ON LID:	SEWER MANHOLE	<u> </u>	
CONDITION OF FRAM CONDITION OF LID:	1E: XX GOOD XX GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIN	MENSION:	·	
RUNGS INSTALLED: RUNG CONDITION:	⊠ YES □ GOOD	D NO FAIR	A POOR
OUTGOING LINE: SIZE #1 10" INCOMING LINE: SIZE #2 10" #3 #4 #5	To M.H./C.B. # or De TOWN SYSTEM From M.H./C.B. # or MH-SAN-F	signation Distance Designation Distance	Invert Depth <u> $7'8''$</u> Invert Depth <u> $7'5''$</u>
#6 GENERAL CONDITION COMMENTS:	OF M.H./C.B.:	GOOD D FAIR	D POOR E BOTTOM
			A
SKETCH:		EXAMPLE: NUM INCOMING LINE SHOWN. DRAW RELATIONSHIP OUTGOING LINE IN DIAGRAM.	IS AS

M.H./ 2.18. #_ SAN-H

CLIENT: LEICA INCLOCATION: CHEEK		DATE:	81,194
M.H./C.B. LOCATION:	SE CORNER OF BLDG	INSIDE INSIDE	E FACILITY DE FACILITY
TYPE OF FRAME:	SQUARE	X CIRCULAR	
TYPE OF LID:	VENTED	SOLID	· •
MARKINGS ON LID: 5	ANITARY NH	· ·	
CONDITION OF FRAME CONDITION OF LID:	ः र्द्र GOOD ख. GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIM	ENSION:24 "		
RUNGS INSTALLED: RUNG CONDITION:	Ø YES □ GOOD	□ NO ⊠ FAIR	D POOR
OUTGOING LINE: SIZE #1 8" INCOMING LINE: SIZE #2 8" #3 #4 #5 #6 GENERAL CONDITION (COMMENTS: CONCRETE AREAS WET, G	DF M.H./C.B.:	GOOD GAIR	<u> </u>
SKETCH:	.e T	EXAMPLE: NUM INCOMING LINE SHOWN. DRAW RELATIONSHIP 1 OUTGOING LINE IN DIAGRAM.	SAS NIN O 2

M.H./C.B.# SAN-I

CLIENT: LEICA INC. LOCATION: CHEEKTOWAGD	DATE:	8/1/94
M.H./C.B. LOCATION: <u>CENTRAL PAR</u> T.		DE FACILITY SIDE FACILITY
TYPE OF FRAME: SQUARE		
TYPE OF LID: X VENTED	SOLID	
MARKINGS ON LID: SANITARY SEWE	R	
CONDITION OF FRAME: CONDITION OF LID: 2 GOOD	□ FAIR □ FAIR	POORPOOR
FRAME OPENING DIMENSION: 24"	· · · · · · · · · · · · · · · · · · ·	
RUNGS INSTALLED: XES RUNG CONDITION: GOOD	M NO FAIR	POOR
#2 #3 #4 #5 #6 COMMENTS: Moderate flow #3 , OBEL BLDG	Pesignation Distance r Designation Distan	$\frac{4'7''}{3'6''}$
SKETCH: $2 \rightarrow 0$	EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHII OUTGOING LIN IN DIAGRAM.	VES AS WN IN TO

M.H./0.5 # 5A - J

OUTGOING LINE AS SHOWN

IN DIAGRAM.

TABLE 1

MANHOLE/CATCHBASIN INSPECTION LOG DATE: 8/1/94 LEICA INC CLIENT: LOCATION: CHEEKTOWAGA M.H./C.B. LOCATION: Near Main Fire □ INSIDE FACILITY **L** OUTSIDE FACILITY 🖄 CIRCULAR TYPE OF FRAME: **G** SQUARE X VENTED TYPE OF LID: □ SOLID MARKINGS ON LID: SANITARY SEWER K GOOD CONDITION OF FRAME: **G** FAIR D POOR CONDITION OF LID: GOOD **G** FAIR POOR FRAME OPENING DIMENSION: _ 24" RUNGS INSTALLED: **O** YES X NO RUNG CONDITION: GOOD **D** FAIR **D** POOR OUTGOING LINE: , SIZE To M.H./C.B. # or Designation Distance Invert Depth #1 MH SA-I 3'7" **INCOMING LINE:** SIZE 3'' PLASTIC From M.H./C.B. # or Designation Distance Invert Depth #2 BLIG 3'4" <u>ኒ ።</u> . #3 PVC BLDG 19" #4 #5 #6 GENERAL CONDITION OF M.H./C.B.: GOOD G FAIR D POOR COMMENTS: BRICK MU. BU INVERT 317 ote bottom Conco Low Plow from 4" SKETCH: EXAMPLE: NUMBER (3) **INCOMING LINES AS** (2, SHOWN. DRAWN IN (ħ) **RELATIONSHIP TO**

M.H./ MUNLABELED SAN MARY

	CLIENT: LEICA I	INC.	DATE: _	8/1/94
	M.H./C.B. LOCATION	E. SIDE DE BIDE		E FACILITY IDE FACILITY
	TYPE OF FRAME:	G SQUARE	CIRCULAR	
	TYPE OF LID:		SOLID	
	MARKINGS ON LID:	STORM SEWE	<u>۶</u>	
	CONDITION OF FRAM CONDITION OF LID:	ME: X GOOD X GOOD	□ FAIR □ FAIR	POORPOOR
	FRAME OPENING DI	MENSION:	·	
	RUNGS INSTALLED: RUNG CONDITION:	COOD	D FAIR	D POOR
	OUTGOING LINE: SIZE #1 <u>4" VT</u> INCOMING LINE:	To M.H./C.B. # or Unknown	Designation Distance	Invert Depth
A	#2 <u>6</u> SIZE #3 <u>6</u> VT #3 <u>6</u> VT		BATHROOMS	e Invert Depth $\underline{5'3''}$ $\underline{4'10''}$ 5'2''
	#5 #6		· · · · · · · · · · · · · · · · · · ·	
	GENERAL CONDITION COMMENTS: Newer No Frow B	- MH - Aum F	GOOD D FAIR	
.•				
			· · · · · · · · · · · · · · · · · · ·	
	SKETCH:	ç-3	EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO 2+
	N T			· (

M.H./CAM MH STM-A

TABLE 1

MANHOLE/CATCHBASIN INSPECTION LOG DATE: 8/1/94 CLIENT: LEICA INC. LOCATION: CHEEKTOWAGA M.H./C.B. LOCATION: SUGAR RD. □ INSIDE FACILITY OUTSIDE FACILITY TYPE OF FRAME: CIRCULAR □ SQUARE TYPE OF LID: VENTED G SOLID MARKINGS ON LID: NONE CONDITION OF FRAME: XI GOOD **G** FAIR **D** POOR CONDITION OF LID: GOOD **G** FAIR D POOR FRAME OPENING DIMENSION: Z4 **RUNGS INSTALLED: U** YES M NO **RUNG CONDITION:** GOOD **D** FAIR **D** POOR OUTGOING LINE: SIZE To M.H./C.B. # or Designation Distance Invert Depth 30'' #1 MH STM-B 9:6" **INCOMING LINE:** From M.H./C.B. # or Designation Distance Invert Depth SIZE 24" #2 SUGAR RD SYSTEM (W) 9:6" #3 20' SUGAR ۵Ŋ SYSTEM (E) 8' 12" #4 SUGAR RD CATCH BASINS 4:6" #5 SUGAR RD CATCH BASINS 4'6" #6 GENERAL CONDITION OF M.H./C.B.: A GOOD **D** FAIR D POOR COMMENTS: Low FLOW FROM W. BRICK MH .: oncrete bottom

SKETCH: 1 2 5

EXAMPLE: NUMBER 3 INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

M.H./

CLIENT: <u>LEICA INC.</u> LOCATION: <u>CHEEK</u>	DATE:
M.H./C.B. LOCATION: E PARKING LOT	□ INSIDE FACILITY Ø OUTSIDE FACILITY
TYPE OF FRAME: SQUARE	A CIRCULAR
TYPE OF LID: 12 VENTED	□ SOLID
MARKINGS ON LID: SECTOR NO	DNE
CONDITION OF FRAME: CONDITION OF LID:	□ FAIR □ POOR □ FAIR □ POOR
FRAME OPENING DIMENSION: 24"	
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	⊠ NO □ FAIR □ POOR
#2	Signation Distance Invert Depth Oesignation Distance Invert Depth
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

M.H./STM-C

TABLE 1

7

IVL	ANNOLE/CAICHBASIN	INSPECTION LOG	
CLIENT: LEICA /		DATE:	8/1/94
M.H./C.B. LOCATION	ENTER OF EAST PARKING RD.		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	
TYPE OF LID:	Ø VENTED	SOLID	· · ·
MARKINGS ON LID:	STORM SEWER		
CONDITION OF FRAN CONDITION OF LID:	A GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DI	MENSION: <u>24</u> "		
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	A NO FAIR	D POOR
OUTGOING LINE: SIZE #1 <u>30</u> " INCOMING LINE:	To M.H./C.B. # or De	signation Distance	Invert Depth
SIZE #2 _≥○'' #3 _3@" #4	From M.H./C.B. # or BLDG MH ST B	Designation Distan	$\frac{6'3' z''}{7'3' z''}$
#5 #6	·		
GENERAL CONDITION COMMENTS: CONCA # 3 to # 1 STAGN, # 2 LOW FLOW	NOFM.H./C.B.: DA R. PIPE, BRICK M ANT	GOOD G FAIR	D POOR
·		· · ·	
SKETCH:	TOP BROKEN of 30" PIPE	EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIP OUTGOING LIN IN DIAGRAM.	NES AS WN IN TO 2 (
(1)	•		1

M.H./OB STM-D

CLIENT: <u>LEICA</u> LOCATION: <u>CHEEK</u>	TOWAGA	DATE:	8)1/94
M.H./C.B. LOCATION	SOUTH EDGE OF EAST PARKING LOT.		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	
TYPE OF LID:		SOLID	
MARKINGS ON LID:	NONE		
CONDITION OF FRAM CONDITION OF LID:	र्घ GOOD	G FAIR G FAIR	D POOR POOR
FRAME OPENING DI	MENSION: <u>36</u> "		
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	I NO FAIR	D POOR
OUTGOING LINE: SIZE #1 <u>30</u> " INCOMING LINE:	To M.H./C.B. # or D <u>STM E.</u>	esignation Distance	Invert Depth
$ \begin{array}{c} $	Building CB#40	Designation Distan	<u> </u>
#6	<u>STM C</u> <u>CB#2¢CB#3</u>	<u>CONCRETE</u>	<u>6'6''</u> 3'2"
GENERAL CONDITION COMMENTS:	N OF M.H./C.B.:	L GOOD D FAIR	
#7 6"	Catch basins?	Tile	6'3"
<u> </u>	coarse Sediment le bottom.	s in MH; Br	ICK MH; NO
SKETCH	۩ €-①	EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIF OUTGOING LIN IN DIAGRAM.	NES AS WN IN TO
<u>۸</u>	· · ·	. `	

M.H./2.8. #_STM-E

CLIENT: LEICA INC. LOCATION: CHEEKTOWAGE	<u>२</u>	DATE:	11/94
M.H./Q.B. LOCATION: NORTH	E AREA <u>END</u>		ACILITY FACILITY
TYPE OF FRAME: SQU	ARE 🙇 CI	RCULAR	
TYPE OF LID:	TED SO	LID	
MARKINGS ON LID:STORN	٨		
CONDITION OF LID:	X GOOD	FAIR (FAIR (D POOR POOR
FRAME OPENING DIMENSION	:		
		NO FAIR [D POOR
INCOMING LINE:	1.H./C.B. # or Designat D /C.B.: COOD C.H.APEGED WITH	tion Distance I	5 '6 " I POOR
SKETCH:	INC SHC REL OUT	MPLE: NUMBE OMING LINES A OWN. DRAWN ATIONSHIP TO GOING LINE AS DIAGRAM.	

M.H./2.8 # STM-F

·			
CLIENT: LEICA LOCATION: <u>CHEEK</u>	NC. TOWAGA	DATE:	8194
M.H./C.B. LOCATION:	OFFORTE AREA CENTER PART		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	
TYPE OF LID:	VENTED	SOLID	
MARKINGS ON LID:	None	• • • • • • • • • • • • • • • • • • •	
CONDITION OF FRAM CONDITION OF LID:	IE: XQ GOOD XQ GOOD	□ FAIR □ FAIR	POORPOOR
FRAME OPENING DIM	IENSION:	·	
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	NO G FAIR	D POOR
OUTGOING LINE: SIZE #1 _30" INCOMING LINE: SIZE #2 _30" #3 #4 #5 #6 GENERAL CONDITION COMMENTS: SURCH Some Sedument	ARGED WITH 1	GOOD GAIR	
SKETCH:		EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIP OUTGOING LIN IN DIAGRAM.	TO 2+

M.H./258.#_STM-G

TABLE 1

₽

N

CLIENT: LEICA LOCATION: CHEEL	NC.	DATE:	8/1/94
M.H./C.B. LOCATION	1: ROWAN & PRESTON		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	G SQUARE	CIRCULAR	. ·
TYPE OF LID:	VENTED	SOLID	
MARKINGS ON LID:	Mc Coy ; CANAD	A ; STORM	
CONDITION OF FRAM CONDITION OF LID:		□ FAIR □ FAIR	POORPOOR
FRAME OPENING DI	MENSION: 24		· · · · · · · · · · · · · · · · · · ·
RUNGS INSTALLED: RUNG CONDITION:	反 YES 风 GOOD	□ NO □ FAIR	D POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #4 #5 #6 GENERAL CONDITION COMMENTS: LOW FLOW ;	STM-F ROWAN RD (EAST)	Concrete TILE, CONCRETE TILE	$\frac{5'8''}{5'3''}$
SKETCH:	~~~ 4	EXAMPLE: NUI INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS WN IN TO 2+

M.H. BERH 3. STA-H

TABLE 1

,

CLIENT: LEICA L. LOCATION: CHEEK		DATE: _	8/1/94
M.H./C.B. LOCATION	Shel CORNER		E FACILITY IDE FACILITY
TYPE OF FRAME:	G SQUARE	CIRCULAR	
TYPE OF LID:		SOLID	·
MARKINGS ON LID:	None SEWER	,	
CONDITION OF FRAN CONDITION OF LID:	AE: X GOOD X GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DI	MENSION: 24"	<u> </u>	
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	D FAIR	D POOR
OUTGOING LINE: SIZE #1 $24''$ INCOMING LINE: SIZE #2 16''	To M.H./C.B. # or De <u>MH ST. D</u> From M.H./C.B. # or <u>ST-I MH</u>	IT TILE	
#3 <u>\6"</u> #4 8"	ST-J MH	VIT TILE	<u><u><u>S'</u>10"</u> <u><u><u>S'</u>10"</u></u></u>
#5	CB WSIDE E	. LOT. <u>T</u> ILE	<u> </u>
GENERAL CONDITION COMMENTS:	INVERT 6.0';	4" STANDING	D POOR WATER
BRICK MH.	SLOW DRIP FROM	<u>M 8"</u>	
SKETCH:	->1)	EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO

M.H./CAR. STA-I

CLIENT: LEICA IN LOCATION: <u>CHEEKI</u>		DATE:	8/1/94
M.H./C.B. LOCATION:	E. SIDE OF BUDG		DE FACILITY
TYPE OF FRAME:	G SQUARE	Ø CIRCULAR	. ·
TYPE OF LID:	• VENTED	SOLID	
MARKINGS ON LID:			
CONDITION OF FRAM CONDITION OF LID:	A GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIM	IENSION: <u>74</u> "		
RUNGS INSTALLED: RUNG CONDITION:	GOOD	NOFAIR	D POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3; PVC. #4 #4 #5 #6 GENERAL CONDITION COMMENTS:	To M.H./C.B. # or De: <u>ST H</u> From M.H./C.B. # or I <u>BLDG; FIRE PUMP</u> VAULT (BLINDOWN OF M.H./C.B.:	Designation Distance	Invert Depth 8'''' Invert Depth 8''''''''''''''''''''''''''''''''''''
	······································		
SKETCH:	7	EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO 2+

M.H./008.#_STA-J

CLIENT: LEICA INC. LOCATION: <u>CHEEKTOWACA</u>	DATE:	81,194
M.H./C.B. LOCATION: E. SIDE OF BLDG	□ INSIE Ø OUTS	DE FACILITY SIDE FACILITY
TYPE OF FRAME: D SQUARE	CIRCULAR	
TYPE OF LID:	G SOLID	
MARKINGS ON LID:		
CONDITION OF FRAME: GOOD CONDITION OF LID: GOOD	□ FAIR □ FAIR	POORPOOR
FRAME OPENING DIMENSION:		
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	□ NO □ FAIR	D POOR
INCOMING LINE: SIZE From M.H./C.B. # of #2 #3 #4 #5 #6 GENERAL CONDITION OF M.H./C.B.:		e Invert Depth
SKETCH:	EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO 2+

M.H./008.#_<u>STM-K</u>

TABLE 1

CLIENT: LEICA INC. LOCATION: <u>CHEEKTOWAGA</u>	DATE: 8/1/94
M.H./C.B. LOCATION: EGGERT RD NORTH OF S. PARKING LOT EXIT	INSIDE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR
TYPE OF LID:	X SOLID
MARKINGS ON LID:	
CONDITION OF FRAME: GOOD CONDITION OF LID: GOOD	□ FAIR □ POOR □ FAIR □ POOR
FRAME OPENING DIMENSION:Z4"	
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	A NO FAIR POOR
OUTGOING LINE: SIZE To M.H./C.B. # or D. bNTO PROPERTY INCOMING LINE: SIZE From M.H./C.B. # or bNTO PROPERTY INCOMING LINE: SIZE From M.H./C.B. # or bNTO PROPERTY LINE: SIZE From M.H./C.B. # or bNTO PROPERTY LINE: SIZE JO' VT ECCEPT TO CATCHBA UNKNOWN #4	Designation Distance Invert Depth
#5	
#6 GENERAL CONDITION OF M.H./C.B.: C COMMENTS: 20" IS DROP PIPE FOR CA FLOW SOUNDS APPARENT FROM 20 20" UNKNOWN ;	TON BACING IN & BARMANG LET
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

,

M.H./SE.#_STM-

CLIENT: LEICA LOCATION: CHEEK		DATE:	8/1/94
M.H./C.S. LOCATION	Rowan d IVANHOE		DE FACILITY IDE FACILITY
TYPE OF FRAME:	G SQUARE	X CIRCULAR	
TYPE OF LID:	X VENTED	SOLID	
MARKINGS ON LID:	McCoy Canada	Storm	
CONDITION OF FRAM CONDITION OF LID:	S GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIN	1ENSION: 24"		
RUNGS INSTALLED: RUNG CONDITION:	友 YES 凤 GOOD	□ NO □ FAIR	D POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: #2O'' #3 #4 #5 #6 GENERAL CONDITION COMMENTS:No de ad-ends to no	OF M.H./C.B.:	Dr Designation Distance Intersection	$= \frac{3 \cdot 2''}{3' \circ ''}$
SKETCH:	<€ `3	EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO 2

MH./C.B.#____

MANHOLE/CATCHBASIN INSPECTION LOG DATE: 8/1/94 CLIENT: LEICA INC LOCATION: CHEEKTOWAGA MAH./C.B. LOCATION: CENTER OF E. **__INSIDE FACILITY_** PARKING LOT A OUTSIDE FACILITY SQUARE TYPE OF FRAME: **CIRCULAR** TYPE OF LID: VENTED G SOLID MARKINGS ON LID: CONDITION OF FRAME: OK GOOD G FAIR POOR CONDITION OF LID: A GOOD **G** FAIR D POOR FRAME OPENING DIMENSION: 26" **RUNGS INSTALLED: O** YES A NO **RUNG CONDITION:** GOOD **G** FAIR D POOR OUTGOING LINE: SIZE To M.H./C.B. # or Designation Distance Invert Depth #1 UNKNOWN **INCOMING LINE:** SIZE From M.H./C.B. # or Designation Distance Invert Depth 211 #2 ALEST (unknown) #3 3" AST unkno #4 #5 #6 GENERAL CONDITION OF M.H./C.B.: A GOOD **G** FAIR D POOR COMMENTS: BATTOM 54" d Sediments to 38" below top: Outlet canno SKETCH: EXAMPLE: NUMBER 3 **INCOMING LINES AS** SHOWN. DRAWN IN (2) d **RELATIONSHIP TO** OUTGOING LINE AS SHOWN IN DIAGRAM.

7

1414./C.B.#____

CLIENT: <u>LEICA</u> NC LOCATION: <u>CHEEKTOWAGA</u>		DATE: 8/1/94	
M.H./C.B. LOCATION: SE	CORNER . PARKING		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	🕅 CIRCULAR	
TYPE OF LID:	VENTED	SOLID	
MARKINGS ON LID:	NONE	·	
CONDITION OF FRAME: CONDITION OF LID:	X GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIMENS	$SION: 30^{\circ}$	·	
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	NO G FAIR	D POOR
INCOMING LINE:	om M.H./C.B. # o	Designation Distance	
SKETCH:		EXAMPLE: NU INCOMING LIN SHOWN. DRA RELATIONSHIF OUTGOING LIN IN DIAGRAM.	IES AS WN IN TO

3 MAL./C.B.#

CLIENT: LEICH INC. LOCATION: CHEEKTOWAGA	DATE: _	8/1/94
S. CENTER M.H./C.B. LOCATION: E. PARKING LOT		E FACILITY IDE FACILITY
TYPE OF FRAME: SQUARE	A CIRCULAR	• • • • •
TYPE OF LID:	SOLID	
MARKINGS ON LID: None		
CONDITION OF FRAME: IS GOOD CONDITION OF LID: S GOOD	FAIRFAIR	D POOR D POOR
FRAME OPENING DIMENSION: 30 "		
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	DÍ NO D FAIR	D POOR
OUTGOING LINE: SIZE To M.H./C.B. # or De #1 INCOMING LINE:		Invert Depth
size From M.H./C.B. # or #2 $B^{(l)}$ #3 $CB \neq 2$ #4 $B^{(l)}$	Designation Distanc	e Invert Depth
#5		
CENTERAL CONTRACTOR	GOOD G FAIR	
	<u>.</u>	
SKETCH:	EXAMPLE: NUN INCOMING LIN	
	SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	

М. / С.В. #____

CLIENT: LEICA INC. LOCATION: <u>CHEEKTOWAGA</u>		DATE:	DATE: 8/1/94	
MATI./C.B. LOCATION: DE E. PARKING LOT		 INSIDE FACILITY OUTSIDE FACILITY 		
TYPE OF FRAME:	🕱 SQUARE	CIRCULAR		
TYPE OF LID:	VENTED	SOLID		
MARKINGS ON LID:		·		
CONDITION OF FRAI CONDITION OF LID:	ME: DX GOOD DX GOOD	FAIRFAIR	D POOR D POOR	
FRAME OPENING DI	$MENSION: \underline{26''}$	· · ·		
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	Ø NO G FAIR	D POOR	
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #5 #6 GENERAL CONDITION COMMENTS: Sediment j		CMP Designation Distan	<u>1' 8"</u>	
SKETCH:	•	EXAMPLE: NU INCOMING LI SHOWN. DRA RELATIONSHI OUTGOING LI IN DIAGRAM.	NES AS WN IN P TO 2 (

TABLE 1

,

ми./с.в.#___5

CLIENT: <u>LEICA</u> LOCATION: <u>CHEE</u>	NC KTOWAGA	DATE: _	8/1/94
M.H./C.B. LOCATION	E. PARKING LOT		E FACILITY IDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	· ·
TYPE OF LID:		SOLID	
MARKINGS ON LID:	· · · · · · · · · · · · · · · · · · ·		
CONDITION OF FRAM CONDITION OF LID:	ME: X GOOD GOOD	FAIRFAIR	D POOR S POOR
FRAME OPENING DI	MENSION: 29"	· . ·	
RUNGS INSTALLED: RUNG CONDITION:	U YES U GOOD	D NO D FAIR	
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #4 #5 #6 GENERAL CONDITION COMMENTS: Vitreous Tile	To M.H./C.B. # or Des <u>STM-Hordroppi</u> From M.H./C.B. # or D	GOOD & FAIR	<u> </u>
SKETCH:		EXAMPLE: NUN INCOMING LINI SHOWN. DRAW RELATIONSHIP OUTGOING LINI IN DIAGRAM.	ES AS VN IN TO 2+

MKH./C.B.#_____

CLIENT: LEICA INC. LOCATION: <u>CHEEKTOWAGA</u>		DATE: 8/1/94	
M.H./C.B. LOCATION	EAST OF SOUTH I: LOADING DOCKS	INSII I OUTS	DE FACILITY SIDE FACILITY
TYPE OF FRAME:	SQUARE	CIRCULAR	
TYPE OF LID:	VENTED	G SOLID	
MARKINGS ON LID:	·		
CONDITION OF FRAM CONDITION OF LID:	ME: 🗖 GOOD	□ FAIR □ FAIR	POORPOOR
FRAME OPENING DI	MENSION: $26''$		
RUNGS INSTALLED: RUNG CONDITION:	□ YES □ GOOD	Ø NO □ FAIR	D POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #5 #6 GENERAL CONDITION	From M.H./C.B. # or	r Designation Distanc	
COMMENTS: Inver		GOOD □ FAIR crete sides € b	ottom
SVETCH			(
SKETCH:		EXAMPLE: NUN INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS VN IN TO 2+

М.Н./С.В.#____

TABLE 1.

,

CLIENT: <u>LEICA</u> LOCATION: <u>CHEE</u> R		DATE:	8/1/94
MH./C.B. LOCATION	Near Gate East of North Loading Docks		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	G SQUARE	CIRCULAR	. · ·
TYPE OF LID:	U VENTED	G SOLID	
MARKINGS ON LID:			
CONDITION OF FRAM CONDITION OF LID:	GOOD	□ FAIR □ FAIR	D POOR D POOR
FRAME OPENING DIN	$\text{MENSION: } \underline{21''}$		
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	□ NO □ FAIR	D POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #5	To M.H./C.B. # or De <u>EAST (CB#24</u>) From M.H./C.B. # or West (UNKNOWN)	TILE	
#6 GENERAL CONDITION COMMENTS:		GOOD D FAIL wert is 1'B"	R D POOR
SKETCH:	\rightarrow (1)	EXAMPLE: NU INCOMING LII SHOWN. DRA RELATIONSHI OUTGOING LII IN DIAGRAM.	NES AS

,

CLIENT: LEICA INC. LOCATION: CHEEKTOWAGA	DATE: 8/1/94
MAL/C.B. LOCATION: IN GRASS IN SW CORNER OF SITE	□ INSIDE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR
TYPE OF LID: 🖉 VENTED	SOLID
MARKINGS ON LID:	
CONDITION OF FRAME: X GOOD CONDITION OF LID: X GOOD	G FAIR G POOR
FRAME OPENING DIMENSION: 23)
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	I FAIR □ POOR
INCOMING LINE:	r Designation Distance Invert Depth + or Designation Distance Invert Depth
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

9

M.H./C.B.#

CLIENT: LEICA INC LOCATION: CHEEKTOWAGA	DATE: 8/1/94
IN GRASS IN NAME /C.B. LOCATION: SW CORNER O SITE	F INSIDE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR
TYPE OF LID: VENTED	SOLID
MARKINGS ON LID:	
CONDITION OF FRAME: X GO CONDITION OF LID: X GO	
FRAME OPENING DIMENSION:	<u>B"</u>
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GO	
INCOMING LINE:	# or Designation Distance Invert Depth <u>C pice</u> .B. # or Designation Distance Invert Depth
#3 #4 #5 #6 GENERAL CONDITION OF M.H./C.B.:	
COMMENTS: INVERT 1'2";	Vitreous tile Sides; Flow
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

M.X./C.B.#_10

CLIENT: LEICA INC LOCATION: CHEEKTOWAGA	DATE:	8/1/94
MAR./C.B. LOCATION: <u>FROM S. PAR</u> LING LO		FACILITY DE FACILITY
TYPE OF FRAME: 🙀 SQUARE		
TYPE OF LID: VENTED	SOLID	
MARKINGS ON LID:	· .	
CONDITION OF FRAME: DO GOOD CONDITION OF LID: DO GOOD FRAME OPENING DIMENSION: 20'	□ FAIR □ FAIR	POORPOOR
RUNGS INSTALLED: RUNG CONDITION: OUTGOING LINE:	A NO D FAIR	D POOR
#1 SIZE To M.H./C.B. # or De INCOMING LINE: (Drop fipe)		nvert Depth 2'11"
#2 From M.H./C.B. # or #3 #4 #5	Designation Distance	Invert Depth
#6 GENERAL CONDITION OF M.H./C.B.: 2 COMMENTS: <u>Concrete Structure</u> ; 3'1" B" pipe;		D POOR ads from
SKETCH:	EXAMPLE: NUM	
	INCOMING LINES SHOWN. DRAWN RELATIONSHIP TO OUTGOING LINE	SAS NIN 2
	IN DIAGRAM.	

NKH./C.B.#_ ŦĬ

	CLIENT: <u>LEICA</u> LOCATION: <u>CHEER</u>	KTOWAGA	DATE: _	8/1/94
	M.H./C.B. LOCATION	EXIT TO EGGERT RD, I: FROM S. PARKING LOT,	INSID	E FACILITY IDE FACILITY
	TYPE OF FRAME:	🕅 SQUARE		
	TYPE OF LID:	VENTED	SOLID	
	MARKINGS ON LID:			
	CONDITION OF FRAM CONDITION OF LID: FRAME OPENING DI	S GOOD	G FAIR G FAIR	D POOR D POOR
	RUNGS INSTALLED: RUNG CONDITION:	U YES U GOOD	A NO G FAIR	POOR
	OUTGOING LINE: SIZE #1	To M.H./C.B. # or Des NORTH (DROP PIPE)	ignation Distance	Invert Depth
	SIZE #2 #3 #4 #5	From M.H./C.B. # or [Designation Distance	e Invert Depth
1	#6 GENERAL CONDITION COMMENTS: <u>3'3"</u> apparent fro	NOFM.H./C.B.: A Invert; Concrete S m 8" pipe.	GOOD D FAIR tructure; Flow	D POOR Sounds
•				(4)
	SKETCH:		EXAMPLE: NUN INCOMING LINI SHOWN. DRAW RELATIONSHIP OUTGOING LINI IN DIAGRAM.	ES AS VN IN TO 2+

,

М. И.С.В. #_12_

CLIENT: LEICA LOCATION: <u>CHEEK</u>	INC.	DATE: _	8/1/94
	EXIT TO EGGERT R I: FROM S. PARKING	Lor D INSID	E FACILITY IDE FACILITY
TYPE OF FRAME:	X SQUARE	CIRCULAR	
TYPE OF LID:	VENTED	SOLID	"
MARKINGS ON LID:			
CONDITION OF FRAM CONDITION OF LID:	ME: X GOOD X GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DI	MENSION:	l	· .
RUNGS INSTALLED: RUNG CONDITION:	YESGOOD	D FAIR	D POOR
OUTGOING LINE: #1	To M.H./C.B. # or D. NORTH (Drop Pipe	esignation Distance	Invert Depth
SIZE #2 #3 #4 #5	From M.H./C.B. # or	Designation Distance	Invert Depth
#6 GENERAL CONDITION COMMENTS: Invert APPARENT FRO	3'9"; CONCRETE	(GOOD D FAIR structure; From ne Sediment in	D POOR N SOUNDS Bottom
SKETCH:		EXAMPLE: NUM INCOMING LINE SHOWN. DRAW RELATIONSHIP OUTGOING LINE IN DIAGRAM.	ES AS

М.н./с.в.#_13

CLIENT: LEICA LOCATION: CHEET	NC. KTOWAGA	DATE:	8/1/94
M.H./C.B. LOCATION	C P (DE FACILITY SIDE FACILITY
TYPE OF FRAME:	M SQUARE		
TYPE OF LID:	X VENTED	SOLID	
MARKINGS ON LID:	·		
CONDITION OF FRAM CONDITION OF LID: FRAME OPENING DI	S GOOD	□ FAIR □ FAIR	POORPOOR
RUNGS INSTALLED: RUNG CONDITION:	GOOD	∠ NO □ FAIR	D POOR
OUTGOING LINE: SIZE #1	NOF M.H./C.B.:)	Designation Distance or Designation Distance	
SKETCH:		EXAMPLE: NUI INCOMING LIN SHOWN. DRAY RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS WN IN TO 2+

M.H./C.B.#___ 12

CLIENT: LEICA INC LOCATION: <u>CHEEKTOWAGA</u>	DATE: _	8/1/94
M.H./C.B. LOCATION: South PARKING LOT ALONG SOUTH FENCE	. /	E FACILITY DE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR	- 1
TYPE OF LID: 🖉 VENTED	SOLID	T
MARKINGS ON LID:		
CONDITION OF FRAME: ^(A) GOOD CONDITION OF LID: ^(B) GOOD	FAIRFAIR	POORPOOR
FRAME OPENING DIMENSION: $20^{\prime\prime}$		· · · ·
RUNGS INSTALLED: RUNG CONDITION: GOOD	NO G FAIR	D POOR
COMMENTE have 1		Invert Depth 2 ¹ 9 ⁱⁱ Invert Depth
SKETCH:	EXAMPLE: NUM INCOMING LINE SHOWN. DRAW RELATIONSHIP 1 OUTGOING LINE IN DIAGRAM.	IS AS

M.H./С.В.#_15_

CLIENT: <u>LEICA</u> LOCATION: <u>CHEEF</u>		DATE:	8/1/94
	South PARKING LO N: ALONO SOUTH FEN		DE FACILITY SIDE FACILITY
TYPE OF FRAME:	🕱 SQUARE	CIRCULAR	
TYPE OF LID:	X VENTED	G SOLID	
MARKINGS ON LID:			
CONDITION OF FRA CONDITION OF LID:	A GOOD	G FAIR G FAIR	POORPOOR
FRAME OPENING DI	MENSION:20		
RUNGS INSTALLED: RUNG CONDITION:	G YES GOOD	⊠ NO □ FAIR	□ POOR
OUTGOING LINE: SIZE #1 INCOMING LINE: SIZE #2 #3 #4 #5 #6 GENERAL CONDITION COMMENTS: <u>hver</u>	<u>NORTH</u> (<u>Огор Рір</u> From M.H./C.B. # or	Designation Distance	2'8"
SKETCH:)	EXAMPLE: NUI INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN IN DIAGRAM.	ES AS WN IN TO 2

MKH_/C.B.#_16

CLIENT: LEICA INC, LOCATION: <u>CHEEKTOWAGA</u> M.H./C.B. LOCATION: <u>ALONE SOUTH</u> FENCE		8/1/94 E FACILITY
TYPE OF FRAME: ZC SQUARE		IDE FACILITY
TYPE OF LID: A VENTED	G SOLID	
MARKINGS ON LID:		•
CONDITION OF FRAME: CONDITION OF LID: CONDITION OF LID:	□ FAIR □ FAIR	 POOR POOR
FRAME OPENING DIMENSION: 20		
RUNGS INSTALLED: RUNG CONDITION: GOOD	Ø NO □ FAIR	D POOR
OUTGOING LINE: SIZE To M.H./C.B. # or Dest #1 SIZE INCOMING LINE: SIZE From M.H./C.B. # or 1 #2 #3 #4 	ie)	Invert Depth <u>2'6'</u> Invert Depth
#5 #6		
GENERAL CONDITION OF M.H./C.B.: COMMENTS: <u>Concrete structure</u> ; <u>Some</u>	GOOD D FAIR Sediments; In	D POOR ver+ 3'-7"
	· · · · · · · · · · · · · · · · · · ·	
SKETCH:	EXAMPLE: NUN INCOMING LINI SHOWN. DRAW RELATIONSHIP OUTGOING LINI IN DIAGRAM.	ES AS VN IN TO 2+

M.H./C.B.#____

MANHOLE/CATCHBASIN INSPECTION LOG

CLIENT: LEICA INC, LOCATION: CHEEKTOWAGA	DATE: 8/1/94
SE CORNER OF M.H./C.B. LOCATION: <u>S PARKING</u> LOT	O INSIDE FACILITY
TYPE OF FRAME: SQUARE	
TYPE OF LID: 🖉 VENTED	SOLID
MARKINGS ON LID:	
CONDITION OF FRAME: CONDITION OF LID: CONDITION OF LID:	□ FAIR □ POOR □ FAIR □ POOR
FRAME OPENING DIMENSION:	<u></u>
RUNGS INSTALLED:IRUNG CONDITION:IGOOD	Ø NO □ FAIR □ POOR
#3 #4 #5 #6 GENERAL CONDITION OF M.H./C.B.:	r Designation Distance Invert Depth
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

C

МА./С.В.#_18_

CLIENT: LEICA NC. LOCATION: CHEEKTDWAGA	DATE:	8/1/94
M.H./C.B. LOCATION: Rowan Ro AT PRESTON (NORTH TO		DE FACILITY SIDE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR	~ 1.02 m/s 2 T
TYPE OF LID: D VENTED	SOLID	
MARKINGS ON LID:MISSING		算承受在
CONDITION OF FRAME: DS GOOD CONDITION OF LID: GONE D GOOD	□ FAIR □ FAIR	D POOR
FRAME OPENING DIMENSION:20"		
RUNGS INSTALLED:Image: YESRUNG CONDITION:Image: GOOD	D FAIR	D POOR
#3 #4 #5 #6 GENERAL CONDITION OF M.H./C.B.: COMMENTS: <u>Receiver / CATCH BASIN</u> ON NORTH SIDE OF ROWAN R	GOOD GAIR	OF TURN OFF
SKETCH:	EXAMPLE: NU INCOMING LIN SHOWN. DRAY RELATIONSHIP OUTGOING LIN IN DIAGRAM.	TO 2

19 19 19 19

MANHOLE/CATCHBASIN INSPECTION LOG

CLIENT: LEICA INC. LOCATION: CHEEKTOWAGA	DATE: 8/1/94
MEH./C.B. LOCATION: ROWAN RD AT	RTH TURNOFF) I INSIDE FACILITY
TYPE OF FRAME: SQUARE	
TYPE OF LID: MISSING D VENTED	SOLID
MARKINGS ON LID: NISSING	
CONDITION OF FRAME: S GOOD CONDITION OF LID: MESINE D GOOD	
FRAME OPENING DIMENSION: 2	0"
RUNGS INSTALLED: RUNG CONDITION: GOOD	Ø NO □ FAIR □ POOR
#3 #4 #5 #6 GENERAL CONDITION OF M.H./C.B.:	# or Designation Distance Invert Depth
SKETCH:	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.

(Ē

M.H./C.B.#_20

MCR./C.B. LOCATION: Rewan # CARBL RDS INSIDE FACILITY & OUTSIDE FACILITY & OUTSIDE FACILITY TYPE OF FRAME: SQUARE ICIRCULAR IFO PATT TYPE OF LID: VENTED SOLID SOLID IFO PATT MARKINGS ON LID: JAMESTOWN IEON ISOLID IFAIR POOR CONDITION OF FRAME: SCOOD FAIR POOR RUNGS INSTALLED: YES M NO POOR OUTGOING LINE: SIZE TO M.H./C.B. # or Designation Distance Invert Depth *1 <u>B'' CMP</u> CAMP CAMP Z' II'' Z' II'' *2 <u>B'' CMP</u> NORTH (cemetrae) Z' II'' Z' II'' *3 <u>B'' CMP</u> KENTH (cemetrae) Z' II'' Z' II'' *4 <u>SIZE</u> From M.H./C.B.: COOD FAIR POOR GENERAL CONDITION OF M.H./C.B.:	CLIENT: LEICA LA LOCATION: CHEEK		DATE:	8/1/94
TYPE OF LID: Image: VENTED SOLID		ROWAN &		DE FACILITY SIDE FACILITY
MARKINGS ON LID: Jamestown Iron Works, Jamestown, NY WARAM CONDITION OF FRAME: Image: Second image:	TYPE OF FRAME:	SQUARE	CIRCULAR	LI TO ETYT
MARKINGS ON LID: JAMESTOWN IRON WORKS JAMESTOWN, NY, WAATAM CONDITION OF FRAME: X GOOD FAIR POOR CONDITION OF LID: X GOOD FAIR POOR FRAME OPENING DIMENSION: 26 " POOR RUNGS INSTALLED: YES X NO RUNG CONDITION: GOOD FAIR POOR OUTGOING LINE: YES X NO SIZE To M.H./C.B. # or Designation Distance Invert Depth 2 CMP CMP CMP Z'II" #1 B" CMP NORTH (CEMETARY) Z'II" Z'II" #2 B" CMP NORTH (CEMETARY) Z'II" Z'II" #3 B" CMP KORTH (CEMETARY) Z'II" Z'II" #4 EAST (CEMETARY) Z'II" Z'II" Z'II" #4 EAST (CEMETARY) Z'II" Z'II" Z'II" #5	TYPE OF LID:	VENTED	SOLID SOLID M	TYPE OF LIT
CONDITION OF FRAME: Image: Section of the secting the section of the section of the section of	MARKINGS ON LID:	JAMESTOWN IRON WO	and the second se	
FRAME OPENING DIMENSION: 26" RUNGS INSTALLED: YES RUNG CONDITION: GOOD GOOD FAIR POOR OUTGOING LINE: To M.H./C.B. # or Designation Distance Invert Depth 2'11" CMP CB # 21 Distance Invert Depth 2'11" SIZE From M.H./C.B. # or Designation Distance Invert Depth 2'11" SIZE From M.H./C.B. # or Designation Distance Invert Depth 2'11" SIZE From M.H./C.B. # or Designation Distance Invert Depth 2'11" SIZE From M.H./C.B. # or Designation Distance Invert Depth 2'11" EAST (CEMETARY) 2'11" 2'11" ************************************	CONDITION OF FRAI	ME: XX GOOD	G FAIR	
RUNG CONDITION: GOOD FAIR POOR OUTGOING LINE: SIZE To M.H./C.B. # or Designation Distance Invert Depth #1 <u>B</u> " <u>CMP</u> <u>CB</u> # 21 <u>Z'11"</u> INCOMING LINE: SIZE From M.H./C.B. # or Designation Distance Invert Depth #2 <u>B</u> " <u>CMP</u> <u>NORTH</u> <u>CEMETARY</u> <u>Z'11"</u> #3 <u>B</u> " <u>CMP</u> <u>NORTH</u> <u>CEMETARY</u> <u>Z'11"</u> #4 <u>EAST</u> <u>CEMETARY</u> <u>Z'11"</u> <u>Z'11"</u> #4 <u>EAST</u> <u>CEMETARY</u> <u>Z'11"</u> #5	FRAME OPENING DI	MENSION:		
OUTGOING LINE: #1 B" CMP INCOMING LINE: #2 B" CMP SIZE From M.H./C.B. # or Designation Distance Invert Depth #3 B" CMP NORTH (CEMETARY) Z' 11" #4 Size From M.H./C.B. # or Designation Distance Invert Depth #5 Structure: NORTH (CEMETARY) Z' 11" Z' 11" #6 Structure: NORTH (CEMETARY) Structure: POOR GENERAL CONDITION OF M.H./C.B: Structure: NORTH LINE INCOM POOR COMMENTS: CONCRETE STRUCTURE: NORTH LINE INCELLY FROM STI. SKETCH: SKETCH: EXAMPLE: NUMBER 3' (a'12" SKETCH: Structure (S) SHOWN. DRAWN IN Structure (S) SHOWN. DRAWN IN COMING LINES AS SHOWN. DRAWN IN SHOWN. OUTGOING LINE AS SHOWN. SHOWN.	RUNGS INSTALLED: RUNG CONDITION:	_	•	D POOR
Image: Construction of the second	#1 <u>8</u> " <u>CMP</u> INCOMING LINE: SIZE #2 <u>8</u> " <u>CMP</u> #3 <u>8</u> " <u>CMP</u> #4 #5 #6 GENERAL CONDITION COMMENTS: <u>CONCRE</u> JUHNS <u>CEMETARY</u>	NORTH (CEMETARY) From M.H./C.B. # or NORTH (CEMETARY) EAST (CEMETARY) NOF M.H./C.B.:	GOOD G FAIR	Invert Depth 2' 11'' e Invert Depth 2' 11'' 3' 0'' 0 POOR $2' FRom 5T_{1}$
	SKETCH:	<u>←</u> (3)	INCOMING LIN SHOWN. DRAV RELATIONSHIP OUTGOING LIN	ES AS VN IN TO 2.

M.H./C.B.#_ Z

MANHOLE/CATCHBASIN INSPECTION LOG

DATE:	8/1/94
INSIDI	E FACILITY DE FACILITY
CULAR	
.ID	-
MESTOWN, 1	YL
AIR AIR	POORPOOR
NO AIR	D POOR
AN)	Invert Depth <u>2'8''</u> Invert Depth <u>2'7''</u>
FAIR	D POOR
	······
	(
MPLE: NUM DMING LINE WN. DRAW ATIONSHIP 1 GOING LINE IAGRAM.	SAS NIN
	MING LINE WN. DRAW TIONSHIP 1 GOING LINE

G

ALL H. S. A.

,	
CLIENT: LEICA INC. LOCATION: <u>CHEEKTOWAGA</u>	DATE: 8/1/94
MPH./C.B. LOCATION: S. SIDE OF ROWA EAST OF PRESTO	N INSIDE FACILITY
TYPE OF FRAME: SQUARE	CIRCULAR TYPE OF FRAME
TYPE OF LID: VENTED	
MARKINGS ON LID: JAMESTOWN /RON	MARKINGS ON LID. MARKINGS ON LID.
CONDITION OF FRAME: Ø GOOD CONDITION OF LID: Ø GOOD	
FRAME OPENING DIMENSION: 26	
RUNGS INSTALLED:IRUNG CONDITION:IGOOD	
OUTGOING LINE: "SIZE To M.H./C.B. # of #1 8 cmp west INCOMING LINE:	
SIZE From M.H./C.B. # #2 8'' cm? #3 #4 #5	# or Designation Distance Invert Depth
#6	
GENERAL CONDITION OF M.H./C.B.: COMMENTS: CONCRETE STRUCTURE	X GOOD FAIR POOR
	and a second sec
SKETCH:	EXAMPLE: NUMBER (3)
	INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO
	OUTGOING LINE AS SHOWN

MHL/C.B.# 24

CLIENT: LEICA INC LOCATION: CHEEKTOWAGA	DATE: 8/1/94
E. PARKING LOT MEL./C.B. LOCATION: <u>E. OF GUARD</u> HOUSE	□ INSIDE FACILITY ☑ OUTSIDE FACILITY
TYPE OF FRAME: 🖉 SQUARE	
TYPE OF LID: XENTED	SOLID
MARKINGS ON LID:	
CONDITION OF FRAME: CONDITION OF LID: GOOD FRAME OPENING DIMENSION 26"	□ FAIR □ POOR □ FAIR □ POOR
	i
RUNGS INSTALLED:I YESRUNG CONDITION:I GOOD	
OUTGOING LINE: #1 SIZE To M.H./C.B. # or Des SOUTH (MH ST-H?	signation Distance Invert Depth
#2 4" SIZE From M.H./C.B. # or 1 #3	Designation Distance Invert Depth
#5	
GENERAL CONDITION OF M.H./C.B.:	GOOD G FAIR G POOR
SKETCH:	EXAMPLE: NUMBER (3)
	EXAMPLE: NUMBER INCOMING LINES AS SHOWN. DRAWN IN RELATIONSHIP TO OUTGOING LINE AS SHOWN IN DIAGRAM.
Ť	