

June 11, 2010 Ref. No. 31129-072

Mr. Jaspal Walia Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Addendum to 2009 Annual Status Report Leica, Inc. Site; Erie County, Cheektowaga, NY Inactive Hazardous Waste Disposal Site No. 915156

Dear Mr. Walia:

As requested in your e-mail correspondence of June 9, 2010, please find an Addendum to the 2009 Annual Status Report forwarded to you on April 26, 2010. This Addendum outlines Energy*Solutions*' activities, on behalf of our client Leica, Inc., regarding the operations of the on-site groundwater treatment system.

To address the contaminated bedrock aquifer, well pumps were installed in each of the two bedrock wells, MW-11A on July 12, 1999, and MW-16A on April 7, 1994. One pump was installed in well MW-16A, and a second pump was installed in well MW-11A. Each bedrock well is 6 inches in diameter and was completed to a total depth of approximately 40 feet below grade. Bedrock was encountered at 13.5 feet in MW-11A, and at 12.5 feet in MW-16A. The pumps installed in MW-11A and MW-16A are each set at approximately 28 feet below grade.

Pneumatic pumps were installed in each well and each with a design capacity of removing seven to ten gallons per minute of groundwater from the bedrock aquifer. An air injection compressor supplies compressed air to the pneumatic pumps. Treatment is conducted by a multi-stage diffuser (MSD) designed to remove contaminants from groundwater prior to discharge into the local sanitary sewer. The air discharge from the MSD is treated using activated carbon and is monitored quarterly to gauge its performance. A sketch of the treatment system layout is included as Attachment A. The contaminated air will then pass through catalytic oxidation unit or activated carbon vessels for treatment prior to discharge into the atmosphere, as required.

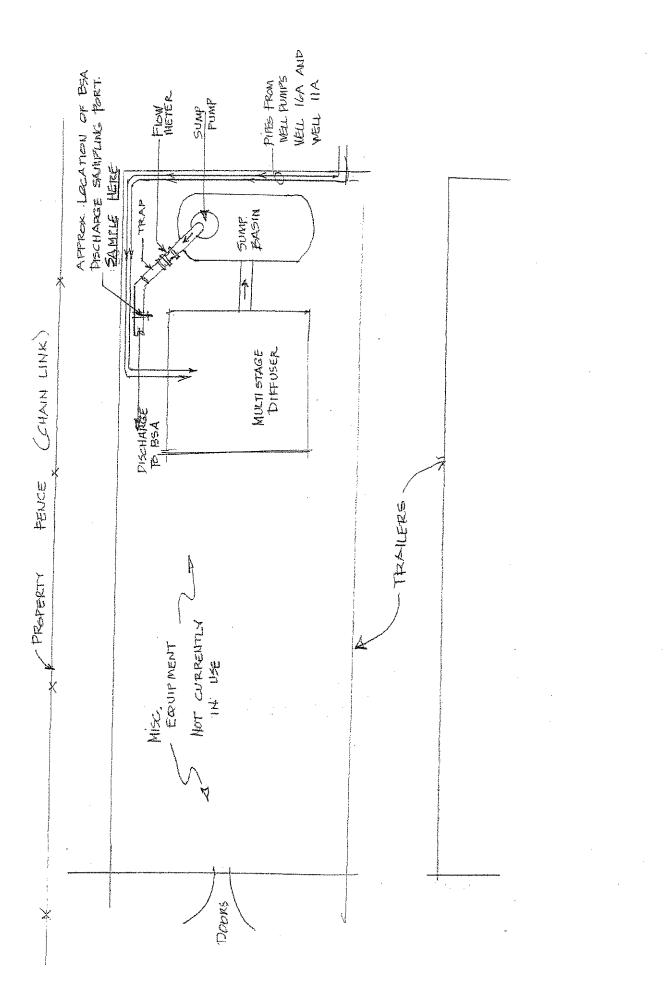
The system is designed to run continuously (excluding periods when undergoing repairs, as required) until the Remedial Action Objectives (RAOs), or other criteria, approved by the NYSDEC, have been met. System and equipment maintenance is routinely performed in accordance with manufacturers' recommendations.

Water discharge system samples are collected and analyzed quarterly to asses the system's performance and to provide data to the Buffalo Sewer Authority. The samples are run for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and Total Oil and Grease. Air monitoring for VOCs and meter readings are logged at each sampling event and are provided to the Buffalo Sewer Authority on a quarterly basis. A copy of the Permit allowing discharge to the Buffalo sewer system is included as Attachment B. During the 2009 the pumping system ran intermittently from January 2, 2009 until a new meter was installed on August 31, 2009. The system pumped a total of 2,793,535 gallons during 2009. A summary of the flow for 2009 is included in Table 1. A flow rate of approximately 13 gallons per minute has been observed over time at the MSD, and is considered the average pumping rate. Based on the average pumping rate, approximately 6.8 million gallons of water are expected to be treated in 2010.

The above information will be incorporated, and updated as appropriate, in future Annual Reports. In addition, included are the data tables with a larger format size for ease in reading. If you have any questions please feel free to call me at 801-303-1092.

Sincerely,

9 Mc Plater


Robert E. McPeak, Jr., P.E., LEP Department Manager, Environmental Services

REM/lhc Enclosures cc: J. Egan C. Grabinski

Attachment A

Treatment System Layout

.

Attachment B

Discharge Permit to the Buffalo Sewer System

Administrative Offices 1038 City Hall 65 Niagara Square Buffalo, NY 14202-3378 Phone: (716) 851-4664 Fax: (716) 856-5810

WASTEWATER TREATMENT PLANT

Foot of West Ferry 90 West Ferry Street Buffalo, NY 14213-1799 Phone: (716) 883-1820

January 31, 2007

Al Szklany Controller Leica, Inc. 3364 Walden Ave. Depew, New York 14043

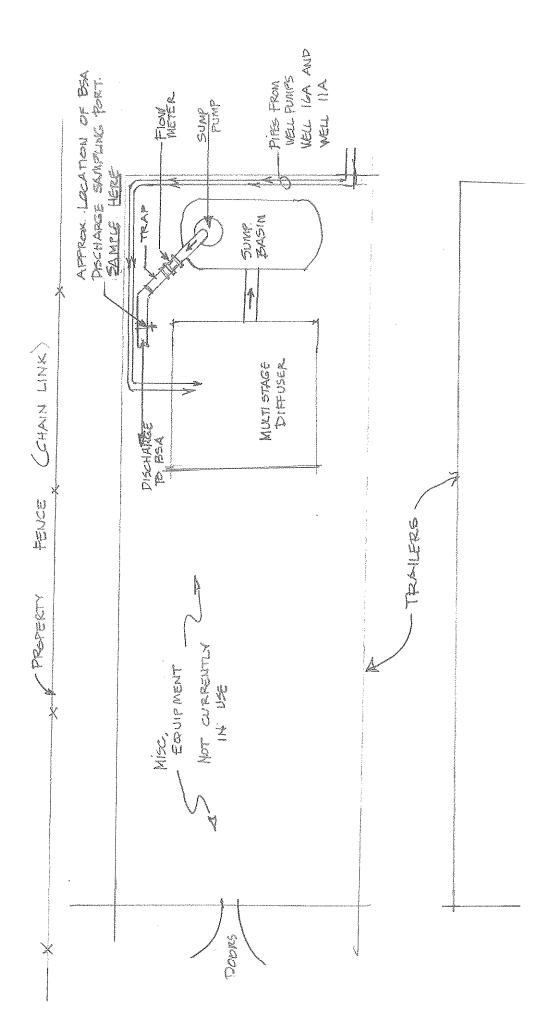
RE: TC/B.P.D.E.S.Permit #07-01-CH014

Dear Mr. Szklany:

Enclosed is your new TC/BPDES Permit #07-01-CH014. This permit is jointly issued by the BSA and the Town of Cheektowaga and replaces all prior permits to discharge process wastes to the sanitary sewers.

This original permit must be maintained at your Eggert Rd. Remediation Site facility and must be available for inspection at all times. It is your responsibility to assure continual compliance with the terms and conditions of this permit. Finally, you must apply for renewal at least six months before this permit expires.

If you have any questions, please call James L. Kruszka at 883-1830 ext. 256.


Very truly yours,

BUFALO SEWER AUTHORITY

she sede

Leslie Sedita Industrial Waste Administrator

LS:bs Enc. cc: James Keller William Pugh (with permit) Robert McPeak, Energy Solutions FILE:L/WPDOCS/LS/PERMITS/LEICAREMEDIATIONSITEFINALPERMITTOVENDOR.DOC CERTIFIED:70060810000501907015

AUTHORIZATION TO DISCHARGE UNDER THE TOWN OF CHEEKTOWAGA/ BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NO. 07-01-CH014 EPA 40CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority and the Town of Cheektowaga Sewer Use Ordinance authorization is hereby granted to:

Leica, Inc

to discharge wastewater from a facility located at:

203 Eggert Road, Cheektowaga, New York 14225

to the Town of Cheektowaga and the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **November 27**, 2006 and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

Effective this 1st day of February, 2007 To Expire the 31st day of January, 2010

W_A. A. Town Engineer, Town of Cheektowaga

Signed this 23 day of JANUARY, 2007

General Manager, Buffalo Sewer Authority

Signed this 25th day of January, 2007

PART I: SPECIFIC CONDITIONS

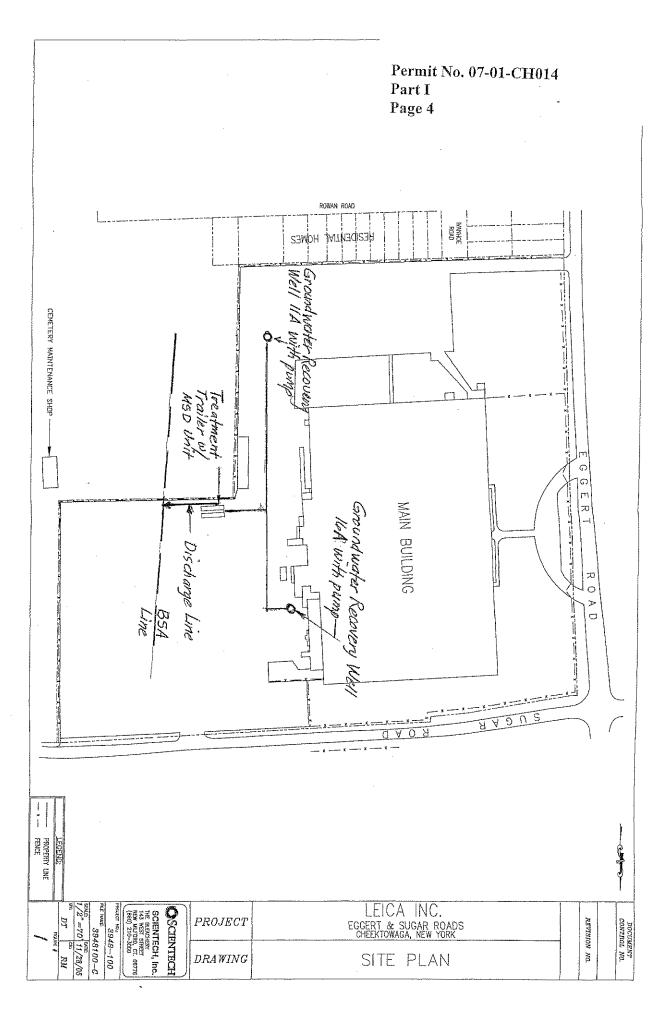
A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored **monthly** by the permittee as specified below:

Sample Point	Parameter	Discharge Limitations (mg/L except pH) Daily Max	Samplii Period	1g Requirements Type
001	pH Total Extractable	5.0 – 12.0 S.U.	1 day	Composite
	Hydrocarbons EPA Test Method 624 EPA Test Method 625 Total Daily Flow	100 No Limit ⁽¹⁾ No Limit ⁽¹⁾ 10,100 gallons	1 day 1 day 1 day 1 day	Composite Grab ⁽²⁾ Grab ⁽²⁾ Discharge flow meter readings ⁽³⁾

- 1. The permittee must report any compound whose concentration is greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by this test procedure, which may cause or contribute to a violation of water quality standards or harm the sewerage system. Any parameter detected may, at the discretion of the Buffalo Sewer Authority or the Town of Cheektowaga be specifically limited and incorporated into this permit.
- 2. Four grab samples must be collected at equally spaced intervals through out the discharge day. The four grab samples must be composited by a NYSDOH certified laboratory prior to analysis.
- 3. The discharge flow meter must be calibrated annually by a factory certified technician. A copy of the most recent certificate of calibration must be submitted with each monitoring report.

Permit No. 07-01-CH014 Part I Page 3


PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported by the permittee on the days specified below:

Sample		Reporting	Requirements
Point 001	Parameter All Parameters	Initial Report March 31, 2007	Subsequent Reports* Every June 30 th , Sept. 30 th , Dec. 31 st and March 31 st

* If any monitoring report shows a violation of any BSA pollutant limit, the permittee shall immediately commence monitoring on a monthly basis. Reports will then be due on the last day of each month, for the previous month's samples. (eg. Report on samples collected in Jan. must be submitted by the last day of Feb). When the permittee shows consisted compliance with all BSA pollutant limits, the permittee may request a return to quarterly monitoring. Such permission will not be unreasonably, withheld.

TOWN OF CHEEKTOWAGA/BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

PART II GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes of the Clean Water Act

2. Definitions

Definitions of terms contained in this permit are as defined in the Town of Cheektowaga Local Law No. 2 and the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet."

4. Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the Permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet."

5. Additional Monitoring by Permittee

If the Permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Mr. William Pugh, P.E. Town Engineer 275 Alexander Ave. Cheektowaga, New York, 14211

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet." These reporting requirements shall not relieve the Permittee of any other reports, which may be required by the

N.Y.S.D.E.C. or the U.S.E.P.A.

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the TC/BPDES Permit Application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new TC/BPDES Permit Application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager and/or Town Engineer.

3. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the Permittee to immediately notify the B.S.A. Treatment Plant at 883-1820 of the quantity and character of such discharge. If requested by the B.S.A., within five (5) days following all such discharges, the Permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

4. Noncompliance Notification

If, for any reason, the Permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the Permittee or their assigns must verbally notify the Industrial Waste Section at 883-1820 within twenty-four (24) hours of becoming aware of the violation. The Permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

5. Adverse Impact

The Permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo and Town Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

6. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo or Town Sewer System.

7. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the Permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the Permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

8. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status.
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the noncompliance is continuing, the time by which compliance is reasonably expected to be restored
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section/Town Engineer for any noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

9. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon delivery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated; but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a. above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The Permittee shall allow the representatives of the Buffalo Sewer Authority or Town of Cheektowaga upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Town of Cheektowaga/ Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

Nothing in this permit shall relieve the Permittee from any requirements, liabilities, or penalties under provisions of the Town of Cheektowaga Local Law No. 2, the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

4. **Penalties for Violations of Permit Conditions**

The "Sewer Regulations of the Buffalo Sewer Authority" and Town of Cheektowaga Local Law No. 2, provide that any person who violates a B.P.D.E.S. permit condition is liable to the Authority and/or the Town for a civil penalty of up to \$10,000 per day for each violation. Any person who willfully or negligently violates permit conditions will be referred to the New York State Attorney General.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the Permittee is required to notify the Industrial Waste Section/Town Engineer in writing as soon as an anticipated closure date is determined, but in no case later than five (5) days of the actual closure.

G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority or Town Engineer of the Town of Cheektowaga. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

Attachment C

Flow Summary for 2009

	Leica Annu	al Groundwater	Treatment System Discharge Summary 2009
Date	Meter Reading	Flow (gal)	Comments
1/1/2000	no rooding		
1/1/2009	no reading	0	System down between 1/1/2009 and 2/13/2009
2/13/2009	no reading		System resumed operation, but meter not operating properly
		74,880	Estimated based on 13 gpm flow as referenced in DMR report dated 7/14/2009
2/17/2009	no reading		System down on 2/17/2009
		0	System down between 2/17/2009 and 4/3/2009
4/3/2009	no reading		System resumed operation, but meter not operating properly
		1,404,000	Estimated based on 13 gpm flow as referenced in DMR report dated 7/14/2009
6/16/2009	12,503,874		System down on 6/16/2009
		0	System down between 6/16/2009 and 9/19/2009
8/31/2009			New Meter Installed as requested by BSA and Town of Cheektowaga
		0	System down between 6/16/2009 and 9/19/2009
9/16/2009	0		System operation resumed
9/22/2009	91,025	91,025	
9/30/2009	227,565	136,540	
10/5/2009	307,533	79,968	
10/3/2003	507,555	16,407	
10/6/2009	323,940		
10/8/2009	357,230	33,290	
10/14/2009	448,559	91,329	
10/28/2009	633,074	184,516	
10/20/2003	000,074	341,515	
11/23/2009	974,590	279,159	
12/14/2009	1,253,749		
12/28/2009	1,314,655	60,907	System shut down, not in operation till 2010
		0 700 505 7	Tatal Callena Discharmad in 2000
		2,193,535	Total Gallons Discharged in 2009

Attachment D

Data Tables with Larger Format

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method								MW-1/	4					
Sample Collection Date:	CAS	Detection	RAOs GW	Mar-25-05	June 26-05	Oct-24-05	Jan-05-06	Mar-17-06	July-13-06	May-02-0	7 Mar-31-08	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10
Dilution:		Limit		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND	ND	ND	8.3
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10 5.0	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
styrene	100425		-													
1,1,2,2-tetrachloroethane tetrachloroethene	79345 127184	5.0 5.0	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
toluene	108883	5.0	- 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	- J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79005	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75010	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	100303/10042	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	0	0.0	, , , , , , , , , , , , , , , , , , ,	0	0	0	5.3	0	0	0	0	0	0	0.00	0.00	8.3
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	100%	0	0	0	0	0	0	0	0	100%
Percent VC				0	0	0	0	0	0	0	0	0	0	0	0	0
Chemistry (mg/L)										MW-1/				. <u>.</u> .		
Chloride				NA	NA	NA	NA	NA	NA	NA	69.1	NA	57.3	46.6	99.8	82.1
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	0.107	NA	<0.100	0.26	0.61	0.41
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	<0.500	NA	<0.500	0.50 U	0.74	0.50 U
Sulfate			1	NA	NA	NA	NA	NA	NA	NA	36.3	NA	39.1	39.70	41.4	46.7
Total Organic Carbon		1	1	NA	NA	NA	NA	NA	NA	NA	3.11	NA	3.00	4.90	5.4	8.1
Ferrous Iron Dissolved		1	1	NA	NA	NA	NA	NA	NA	NA	,0.100	NA	0.288	0.28	0.35	0.29
Manganese				NA	NA	NA	NA	NA	NA	NA	0.058	NA	0.0408	66	278	61
Manganese Dissolved		1	1	NA	NA	NA	NA	NA	NA	NA	0.066	NA	0.0396	56	201	63
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	11.32	NA	7.2	17.6
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA	7.29	NA	7.3	7.02
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	-53.00	NA	-336.2	5.1

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluent)

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method			MW-3						M	N-4				
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-07	May-14-0	8 Apr-15-09	Base	Jun-22-00	Aug-21-00	Nov-30-00	Dec-19-01	Mar-20-02	Jun-25-02	Jan-20-03	Mar-27-03	Oct-21-03
Dilution:		Limit		1.00	1.00	1.00	1,000.00	4.00	2.00	2.00	5.00	1.00	5.00	1 or 20	10.00	2.00
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	ND	ND	ND	110000	460	280	940	580	190	480	2200	1700	260
trans-1.2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	26	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	ND	41000	130	200	120	62	24	36	70	ND	ND
vinyl chloride	75014	5.0	5	ND	ND	ND	ND	27	ND	25	ND	ND	ND	340	570	130
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	100303/10042	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	0		-	0	0	0.00	151000	617	480	1085	642	216.2	516	2636	2270	390
Percent TCE				0	0	0	27%	21%	42%	11%	10%	11%	7%	3%	0	0
Percent DCE				0	0	0	73%	75%	58%	87%	90%	88%	93%	83%	75%	67%
Percent VC				0	0	0	0	4%	0	2%	0	0	0	13%	25%	33%
Chemistry (mg/L)					MW-3						-	N-4				
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron		1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved		1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese		1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)		1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential		1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
oxygen neudelloir i otentiai		1	1	11/1		11/7	11/1	11/1		11/1	11/1		11/1	11/7	11/1	11/1

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method						MW-4 (C	continued)						
Sample Collection Date:	CAS	Detection	RAOs GW	Feb-05-04	May-25-04	Sept-26-04	Dec-21-04	March-24-05	June-26-05	Oct-24-05	Jan-4-06	Mar-17-	06	Mar-17-	06
Dilution:		Limit		2.00	5.00	1.00	5.00	2.50	1.00	2.00	2.00	2.00		2.50	
Volatile Organic Compounds (ug/l)															
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	Г
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	1
cis-1,2-dichloroethene	156592	5.0	5	310	560	180	330	320	79	180	320	420	Е	420	D
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	T
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
trichloroethene	79016	5.0	5	20	ND	8.8	ND	ND	6.8	ND	ND	ND		ND	
vinyl chloride	75014	5.0	5	100	270	120	220	200	93	190	220	180		170	
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
m+p xylene	100303/10042	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
TOTAL VOCs				430	830	308.8	550	520	178.8	370	540	600		590	
Percent TCE				5%	0	3%	0	0	4%	0	0	0		0	
Percent DCE				72%	67%	58%	60%	62%	44%	49%	59%	70%		71%	
Percent VC				23%	33%	39%	40%	38%	52%	51%	41%	30%		29%	
Chemistry (mg/L)									continued)						
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	\perp
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method				Ν	IW-5					М	W-5A		
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-0	7 May-14-08	Jul-30-08	Apr-15	-09 Oct-6-0	9 Jan-14-10) May-02	-07 May-14-08	Jul-30-08	Apr-15-09	Oct-16-09	Jan-14-10
Dilution:		Limit		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)						•						•	•		
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	31	85	26
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	81	72
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	ND	ND	ND	ND	ND	ND	12	10	9	ND	ND	ND
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5.0	5	ND	ND	ND	ND	ND	ND	16	14	9.6	16	18	19
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	100303/10042	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	.,			0	0	0	0.00	0.00	0.00	28	24	18.6	71	184	117
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	0	0	0	43%	42%	48%	0	0	0
Percent VC				0	0	0	0	0	0	57%	58%	52%	23%	10%	16%
Chemistry (mg/L)						Ν	IW-5					M	W-5A		
Chloride				NA	18.1	23.8	3.7	2	U 4	NA	115.0	78.6	150	138	126
Ferrous Iron			l	NA	0.174	<0.100	0.1	U 0.1		U NA	<0.100	<0.100	2.67	1.03	1.5
Nitrate Nitrogen				NA	<0.500	<0.500	0.5	U 0.88	0.91	NA	<0.500	< 0.500	0.5 l		0.5 U
Sulfate			l	NA	38.8	52.9	19.9	15	13	NA	89.5	60.0	81.5	55.2	44.9
Total Organic Carbon				NA	2.11	2.71	2.7	2.3	2.6	NA	3.03	17.80	130	280	476
Ferrous Iron Dissolved			l	NA	<0.100	<0.100	0.1	U 0.5		U NA	<0.100	<0.100	3.8	0.84	14.9
Manganese				NA	0.0476	0.0217	65	39	22	NA	0.0932	0.0903	195	512	175
Manganese Dissolved				NA	<0.0100	< 0.0100	10	U 10	10	NA	0.0735	0.0405	151	502	171
Dissolved Oxygen (DO)				NA	NA	0.70	NA	28.5	15.5	NA	NA	1.17	NA	11.2	29.8
pH				NA	NA	8.53	8.53	8.29	8.73	NA	NA	8.68	7.14	6.81	6.82
Oxygen Reduction Potential		1	1	NA	NA	-131.00	-99.00	-207.4	-157.8	NA	NA	-124.0	-122.0	-207.4	-90.9
oxygen neudotion i otential		1		11/1	11/1	101.00	-33.00	-207.4	-107.0	11/1	11/1	127.0	122.0	-207.4	-30.3

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method								MW-6						
Sample Collection Date:	CAS	Detection	RAOs GW	Base	Mar-29-00	Mar-29-00	Jun-22-00	Mar-27-01	Jun-13-01	Dec-19-01	Mar-20-02	Jun-25-02	Jan-20-03	Mar-27-03	Feb-05-04	May-25-04
Dilution:		Limit		10.00	1.00	2.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-		ND											
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	1200	450	420	190	48	60	41	44	42	53	53	75	89
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	61	63	34	11	18	14	17	15	18	16	19	18
vinyl chloride	75014	5.0	5	120	ND											
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	0	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				1320	961	483	224	59	78	55	62.2	57	71	69	94	107
Percent TCE				0	6%	13%	15%	19%	23%	25%	27%	26%	25%	23%	20%	17%
Percent DCE				91%	47%	87%	85%	81%	77%	75%	71%	74%	75%	77%	80%	83%
Percent VC				9%	0	0	0	0	0	0	0	0	0	0	0	0
Chemistry (mg/L)							1		1	MW-6					-	
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen			ļļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate			↓ ↓	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			ļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese			↓ ↓	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved			↓ ↓	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)			ļļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH			ļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method							MW-6 Cor	nt.						
Sample Collection Date:	CAS	Detection	RAOs GW	Sept-26-04	Dec-21-04	Mar-24-05	Jan-04-06	Mar-17-06	6 Dec-18-06	May-02-07	May-14-08	Apr-15-09	Oct-6-0	9.	Jan-14-10	j l
Dilution:		Limit		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
cis-1,2-dichloroethene	156592	5.0	5	92	78	110	110	120	130	190	120	110	110		120	
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
trichloroethene	79016	5.0	5	19	19	20	20	20	23	22	15	18	21		20	
vinyl chloride	75014	5.0	5	ND	ND	5	6.6	6	7.8	5.8	8.1	13	14		28	
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
m+p xylene	0	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	
TOTAL VOCs				111	97	135	136.6	146	160.8	217.8	143.1	141	145		168	
Percent TCE				17%	20%	15%	15%	14%	14%	10%	10%	13%	14%		12%	
Percent DCE				83%	80%	81%	81%	82%	81%	87%	84%	78%	76%		71%	
Percent VC				0	0	4%	5%	4%	5%	3%	6%	9%	10%		17%	
Chemistry (mg/L)									MW-6 Cor	-						
Chloride				NA	NA	NA	NA	NA	NA	NA	7.3	8.0	8.0		8.1	
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	<0.100	0.1 U	0.1	U		U
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	<0.500	0.5 U	-			U
Sulfate				NA	NA	NA	NA	NA	NA	NA	172	203	222		193	
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	6.12	6.2	5.6		7.7	
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	<0.100	0.1 U	0.1	U		U
Manganese				NA	NA	NA	NA	NA	NA	NA	0.0397	34	20		115	
Manganese Dissolved		ļ		NA	NA	NA	NA	NA	NA	NA	0.0301	27	13		77	
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	35.5		19.5	
pH				NA	NA	NA	NA	NA	NA	NA	NA	7.04	7.47		7.39	
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	-24.0	-178.9		7.4	

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	1						MW	-6A (Deep V	Vell)					
Sample Collection Date:	CAS	Detection	RAOs GW	Base	Jun-22-00	Mar-27-01	Jun-13-01	Jun-13-01	Dec-19-01	Mar-20-02	Jun-25-02	Sept-19-02	Jan-20-03	Mar-27-03	Jul-11-03	Oct-21-03
Dilution:		Limit		20.00	2.50	5.00	5.00	10.00	5.00	5.00	10.00	5.00	2.00	2.00	2.00	2.00
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	5.2	ND	ND	ND	12	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	3900	380	780	1,400	1400	460	590	930	950	250	410	310	380
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	34	40	ND	ND	26	ND	45	11	17	11	19
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND	ND	7.6	ND	ND	ND	19	ND	ND
vinyl chloride	75014	5.0	5	240	ND	230	690	750	230	290	140	820	65	260	92	120
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	0	5.0	5	120	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				4260	380	1044	2130	2150	690	918.8	1070	1815	326	718	413	519
Percent TCE				0	0	0	0	0	0	1%	0	45%	20%	36%	22%	23%
Percent DCE				92%	100%	75%	66%	65%	67%	64%	87%	2%	3%	2%	3%	4%
Percent VC				6%	0	22%	32%	35%	33%	32% -6A (Deep V	13%	0	0	0	0	0
Chemistry (mg/L)																
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron			ļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)			ļ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential		1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method							MW-6	A (Deep We	ell) Cont.						
Sample Collection Date:	CAS	Detection	RAOs GW	Feb-05-04	May-25-04	Sept-26-04	Dec-21-04	Mar-24-05	Mar-24-05	June 26-05	Oct-24-05	Oct-24-05	Jan-04-06	Mar-17-06	Mar-17-0	δJ	July-13-06
Dilution:		Limit		2.00	2.00	2.00	2.00	2.00	2.50	2.50	2.50	5.00	1.00	1.00	5.00		2.50
Volatile Organic Compounds (ug/l)		-			• •		• •	• •	• •	•							
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-dichloroethane	75343	5.0	-	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND		ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
cis-1,2-dichloroethene	156592	5.0	5	350	380	360	370	440	420	390	510	500	91	650 E		D	390
trans-1,2-dichloroethene	156605	5.0	5	18	12	12	16	17	20	17	18	ND	ND	17	ND		14
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,2-trichloroethane	79005	5.0	-	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
trichloroethene	79016	5.0	5	ND	28	18	16	32	33	ND	ND	ND	ND	21	ND		ND
vinyl chloride	75014	5.0	5	99	96	120	150	140	140	96	240	230	23	250 E			110
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
m+p xylene		5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
TOTAL VOCs				467	526	510	552	629	613	503	768	730	114	943.1	800	\perp	514
Percent TCE				0	5%	4%	3%	5%	5%	0	0	0	0	2%	0		0
Percent DCE				75%	72%	71%	67%	70%	69%	78%	66%	68%	80%	69%	73%		76%
Percent VC				21%	18%	24%	27%	22%	23%	19%	31%	32%	20%	27%	28%		21%
Chemistry (mg/L)					-		-	-		A (Deep We	,						
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Dissolved Oxygen (DO)		1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Oxygen Reduction Potential		1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method										MW-6A (Dee	p Well) C	ont.					MW-7	
Sample Collection Date:	CAS	Detection	RAOs GW	Dec-18-06	May-02-07	May-02-0	7 Nov-1	4-07	Nov-14-	07	May-14-08		Apr-15-0		Oct-6-09	Jan-14-10	M	ar-29-00	Mar-29-00	Jun-13-01
Dilution:		Limit		1.00	1.00	2.50	1.0	0	2.50		2.50	2.50	1.00		1.00	1.00		1.00	2.50	1.00
Volatile Organic Compounds (ug/l)					•															
acetone	67641	20	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		8.7	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	140	380 E		D 400	E		D	380	460	370		110	130		330	310	160
trans-1,2-dichloroethene	156605	5.0	5	ND	11	ND	11		ND		ND	ND	ND		ND	ND		8.6	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		ND	ND	ND
trichloroethene	79016	5.0	5	ND	10	ND	ND		ND		ND	22	ND		ND	ND		10	ND	12
vinyl chloride	75014	5.0	5	47	160	170	280	E		D	220	120	350		170	51		7.8	ND	ND
o-xylene	95476	5.0	5	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND		19	18	ND
m+p xylene	0	5.0	5	ND	ND	ND	ND	_	ND	+	ND	ND	ND		ND	ND		29	29	ND
TOTAL VOCs				187	561	530	691		600		600	602	720		280	181		743.1	357	172
Percent TCE				0	2%	0	0		0		0	4%	0		0	0		1%	0	7%
Percent DCE				75%	68%	68%	58%		58%		63%	76%	51%		39%	72%		44%	87%	93%
Percent VC				25%	29%	32%	41%		42%		37%	20%	49%		61%	28%		1%	0	0
Chemistry (mg/L)												MW-6A (Dee		ont.					MW-7	
Chloride				NA	NA	NA	NA		NA		8.8	51.5	13.2		9.1	6.4		NA	NA	NA
Ferrous Iron				NA	NA	NA	NA		NA		0.412	1.340	2.38		0.39	0.25		NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA		NA		<0.500	<0.500	0.50	U	0.85		U	NA	NA	NA
Sulfate		ļ		NA	NA	NA	NA		NA	ĻĮ	125	135	169		95.1	56.7		NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA		NA		7.36	5.38	11.6		5.6	3.4		NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA		NA		0.298	1.050	2.78		0.24	0.10		NA	NA	NA
Manganese				NA	NA	NA	NA		NA		0.0600	0.0944	54		434	206		NA	NA	NA
Manganese Dissolved		ļ		NA	NA	NA	NA		NA		0.0532	0.1040	104		423	96		NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA		NA		NA	2.67	NA		5.2	16.3		NA	NA	NA
рН				NA	NA	NA	NA		NA		NA	7.37	7.22		7.36	7.68		NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA		NA		NA	-89	-157		-259.6	11.5		NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method							MW-7						
Sample Collection Date:	CAS	Detection	RAOs GW	Mar-20-02	Jun-25-02	Jan-20-03	Mar-27-03	Feb-05-04	May-25-04	Sept-26-04	Dec-21-04	Mar-24-05	Jan-4-06	Mar-17-06	6
Dilution:		Limit		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Volatile Organic Compounds (ug/l)															
acetone	67641	20	-	ND	ND	ND	ND	ND							
benzene	71432	5.0	-	ND	ND	ND	ND	ND							
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND							
bromoform	75252	5.0	-	ND	ND	ND	ND	ND							
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND							
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND							
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND							
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND							
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND							
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND							
chloroform	67663	5.0	-	ND	ND	ND	ND	ND							
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND							
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND							
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND							
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND							
1,1-dichloroethene	75354	5.0	-	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	_
cis-1,2-dichloroethene	156592	5.0	5	52	23	43	27	25	50	53	54	64	110	100	
trans-1,2-dichloroethene	156605	5.0	5	22	ND	ND	ND	ND	ND	ND	ND	ND	5.4	5.9	
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND							
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND							
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND							
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND							
2-hexanone	591786	10	-	ND	ND	ND	ND	ND							
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND							
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND							
styrene	100425	5.0	-	ND	ND	ND	ND	ND							
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND							
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND							
toluene	108883	5.0	5	ND	ND	ND	ND	ND							
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND							
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND							
trichloroethene	79016	5.0	5	12	ND	6.1	5.4	ND	5.6	6.4	6	6.5	5	ND	
vinyl chloride	75014	5.0	5	56	ND	ND	ND	ND	8	11	8	11	17	13	
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND							
m+p xylene		5.0	5	ND	ND	ND	ND	ND							
TOTAL VOCs				149	23	49.1	32.4	25	63.6	70.4	68	81.5	137.4	118.9	
Percent TCE				8%	0	12%	17%	0	9%	9%	9%	8%	4%	0	
Percent DCE				35%	100%	88%	83%	100%	79%	75%	79%	79%	80%	84%	
Percent VC				38%	0	0	0	0	13%	16%	12%	13%	12%	11%	
Chemistry (mg/L)									MW-7						
Chloride				NA	NA	NA	NA	NA							
Ferrous Iron				NA	NA	NA	NA	NA							
Nitrate Nitrogen				NA	NA	NA	NA	NA							
Sulfate				NA	NA	NA	NA	NA							
Total Organic Carbon				NA	NA	NA	NA	NA							
Ferrous Iron Dissolved				NA	NA	NA	NA	NA							
Manganese				NA	NA	NA	NA	NA							
Manganese Dissolved				NA	NA	NA	NA	NA							
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA							
pH				NA	NA	NA	NA	NA							
Oxygen Reduction Potential	-			NA	NA	NA	NA	NA							

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method		MW-10												
Sample Collection Date:	CAS	Detection	RAOs GW	Base	Mar-27-01 ¹	Jun-13-01	Jun-13-01	Dec-19-01	Mar-20-02	Mar-20-02	Jun-25-02	Jan-20-03	Mar-27-03	Oct-21-03	Oct-21-03	Feb-05-04
Dilution:		Limit		100.0	50.00	2.00	10.00	1.00	1.00	2.00	1.00	2.00	2.00	2.00	10.00	5.00
Volatile Organic Compounds (ug/l)		•	•						•							
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	16000	6300	450	460	96	220	220	160	210	360	1,500	1600	850
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	2.8	2.7	ND	ND	ND	13	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	1500	460	470	30	47	48	57	78	130	ND	ND	ND
vinyl chloride	75014	5.0	5	5800	ND	27	ND	ND	ND	ND	ND	ND	21	110	110	480
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	0	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				21800	7800	937	930	126	269.8	270.7	217	288	511	1623	1710	1330
Percent TCE				0	19%	49%	51%	24%	17%	18%	26%	27%	25%	0	0	0
Percent DCE				73%	81%	48%	49%	76%	82%	81%	74%	73%	70%	92%	94%	64%
Percent VC				27%	0	3%	0	0	0	0 MW	0	0	4%	7%	6%	36%
Chemistry (mg/L)																
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Manganese Disastrad				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH Commun Backwetter Backwetter				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE	Method MW-10 cont.														
Sample Collection Date:	CAS	Detection	RAOs GW	May-25-04	Sept-26-04	Dec-21-04	Mar-24-05	June-26-05	Oct-23-05	Jan-04-06	Jan-04-06	Mar-17-06	Mar-17-0	06	Dec-18-06
Dilution:		Limit		5.00	2.00	2.50	2.50	5.00	2.50	1.00	2.00	2.00	2.50		2.00
Volatile Organic Compounds (ug/l)											•				
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	LТ	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
cis-1,2-dichloroethene	156592	5.0	5	540	130	300	270	760	320	210 E	200	270	260		220
trans-1,2-dichloroethene	156605	5.0	5	ND	12	ND	14	ND	ND	7.8	ND	ND	ND		ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
vinyl chloride	75014	5.0	5	420	270	150	360	750	150	140	140	430 E	430	D	72
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
m+p xylene	0	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	\vdash	ND
TOTAL VOCs				960	412	450	644	1510	470	357.8	340	700	690		292
Percent TCE				0	0	0	0	0	0	0	0	0	0	\vdash	0
Percent DCE				56%	32%	67%	42%	50%	68%	59%	59%	39%	38%		75%
Percent VC				44%	66%	33%	56%	50%	32%	39%	41%	61%	62%		25%
Chemistry (mg/L)									MW-	10 cont.					
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
pH				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Table 4A (Wells 1-10 Treated Discharge) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method		MW-10 cont.							
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-07	Nov-14-07	May-14-08	Apr-15-09	Oct-6-09			
Dilution:		Limit		1.00	1.00	1.00	1.00	2.00			
Volatile Organic Compounds (ug/l)					•		•	•			
acetone	67641	20	-	ND	ND	ND	150	160			
benzene	71432	5.0	-	ND	ND	ND	ND	ND			
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND			
bromoform	75252	5.0	-	ND	ND	ND	ND	ND			
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND			
2-butanone (MEK)	78933	10	-	ND	ND	ND	180	270			
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND			
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND			
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND			
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND			
chloroform	67663	5.0	-	ND	ND	ND	ND	ND			
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND			
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND			
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND			
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND			
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND			
cis-1,2-dichloroethene	156592	5.0	5	160	110	190	120	ND			
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND			
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND			
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND			
trans-1.3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND			
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND			
2-hexanone	591786	10	-	ND	ND	ND	ND	ND			
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND			
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND			
styrene	100425	5.0	-	ND	ND	ND	ND	ND			
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND			
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND			
toluene	108883	5.0	5	ND	ND	ND	ND	ND			
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND			
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND			
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND			
vinyl chloride	75014	5.0	5	71	38	73	38	ND			
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND			
m+p xylene	100303/10042	5.0	5	ND	ND	ND	ND	ND			
TOTAL VOCs				231	148	263	488	430			
Percent TCE				0	0	0	0	0			
Percent DCE				69%	74%	72%	25%	0			
Percent VC				31%	26%	28%	8%	0			
Chemistry (mg/L)				51/6	2078	MW-10 cor	0				
Chloride				NA	NA	NA	NA	NA			
Ferrous Iron				NA	NA	NA	NA	NA			
Nitrate Nitrogen			1	NA	NA	NA	NA	NA			
Sulfate			 	NA	NA	NA	NA	NA			
Total Organic Carbon				NA	NA	NA	NA	NA			
Ferrous Iron Dissolved			 	NA	NA	NA	NA	NA			
Manganese			1	NA	NA	NA	NA	NA			
Manganese Dissolved			1	NA	NA	NA	NA	NA			
Dissolved Oxygen (DO)			1	NA	NA	NA	NA	NA			
pH			1	NA	NA	NA	NA	NA			
Oxygen Reduction Potential				NA	NA	NA	NA	NA			
engen noudonon i otontual				1.1.1	1 17 1	1.47.1	1	1			

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment System Effluer

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.