

June 22, 2010 Ref. No. 31129-074

Mr. Jaspal Walia Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Subject: January 2010 Groundwater Monitoring Data

Leica Area C

Cheektowaga, New York

Inactive Hazardous Waste Disposal Site No. 915156

Dear Mr. Walia:

Enclosed you will find a copy of the "January 2010 Groundwater Monitoring Data, Leica Area C, Cheektowaga, New York" report prepared for Energy Solutions by Enviro Group Limited for your review. This report presents the second round of groundwater sampling results for the MW-25 and MW-26 well pairs, and is a follow-up to the "Rowan Road Groundwater Investigation Report, Leica, Area C, Cheektowaga, New York," forwarded to you on November 18, 2009.

If you have any questions regarding this report, please feel free to call me at 801-303-1092.

Sincerely,

Robert E. McPeak, Jr., P.E., LEP

EM Poli

Department Manager, Environmental Services

REM/lhc

Enclosure

cc: J. Egan (w/enclosure)

C. Grabinski (w/enclosure)

E. Lovenduski (w/out enclosure)

C. O'Connor, NYSDOH (w/enclosure)

June 17, 2010

LE-0614

Mr. Robert E. McPeak, JR., P.E., LEP Energy *Solutions, LLC*. 100 Mill Plain Road, Second Floor, Mail Box 106 Danbury, CT 06811

Re: January 2010 Groundwater Monitoring Data

Leica Area C

Cheektowaga, New York

Dear Bob:

The following letter presents groundwater data from samples collected on January 27, 2010 for the Leica Site. A site location map and Area C map are included as Figures 1 and 2 respectively. These data represent the second round of groundwater sampling pursuant to the *Vapor Intrusion Investigation Work Plan* (EnviroGroup, 2008) as approved by the New York State Department of Environmental Conservation (NYSDEC) on January 21, 2009. Monitoring well installation and an initial round of groundwater sampling were conducted during August and September, 2009. These results were summarized in the *Rowan Road Groundwater Investigation Report* (EnviroGroup, 2009).

For this sampling event, groundwater samples were collected from four monitoring wells (MW-25, 25A, 26, and 26A) on the south side of Rowan Road (Figure 3) on January 27, 2010.

The following sections of the letter present Sample Locations and Procedures, Results, Data Quality, and Conclusions.

1.0 Sample Locations and Procedures

On January 27, 2010, groundwater samples were collected from four wells (MW-25, MW-25A, MW-26, and MW-26A) located adjacent to Rowan Road and south of the Leica property (see Figure 1).

Field water quality parameters collected during this event included temperature, pH, electrical conductivity, and oxidation/reduction potential (ORP). Field water sampling sheets are

presented as an attachment to this letter report. Groundwater samples were collected using dedicated disposable polyethylene bailers and analyzed for volatile organic compounds (VOCs) by USEPA Method 8260; total and dissolved manganese by USEPA method 6010B; total and dissolved ferrous iron by method SM 3500-Fe B.4.c; total organic carbon (TOC) by method SM20 5310 C; chloride, nitrate, and sulfate by method 300.0; and pH by method SM 4500-H+B. Groundwater samples were analyzed by Columbia Analytical Services, Inc in Rochester, New York. Groundwater samples were collected in the same manner as described in the *Rowan Road Groundwater Investigation Report* (EnviroGroup, 2009).

2.0 Results

Compounds detected during this and/or the previous (September, 2009) sampling event are summarized in Table 1. Laboratory analytical reports for the January, 2010 samples are attached.

The groundwater analytical results are divided by well cluster and discussed below.

MW-25/25A Analytical Results

No VOCs were detected over the laboratory reporting limits in the shallow groundwater sample collected from overburden well MW-25. Detections of ferrous iron, manganese, TOC, chloride, nitrate, and sulfate were below the respective New York State Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Value (TOGS) values.

Chloroform, cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride were detected in the groundwater sample from bedrock well MW-25A at concentrations of 6.1, 6.4, and 23 micrograms per liter (μ g/L), respectively. The cis-1,2-DCE and vinyl chloride concentrations exceed the remedial action objectives (RAOs) of 5 μ g/L for these compounds. There is no RAO for chloroform, but the concentration detected in the sample collected from MW-25A is below the TOGS value for chloroform of 7 μ g/L.

No other VOCs were detected in the groundwater sample from well MW-25A. Detections of iron, manganese, TOC, chloride, nitrate, and sulfate were below the respective TOGS values.

MW-26/26A Analytical Results

Cis-1,2-DCE was detected in the groundwater sample from overburden well MW-26 at a concentration of 5.2 μ g/L. Additionally, cis-1,2-DCE was detected in the duplicate sample from this well at a concentration of 5.4 μ g/L. These concentrations slightly exceed the RAOs of 5 μ g/L for this compound. No other VOCs were detected in the samples collected from overburden well MW-26. Detections of iron, manganese, TOC, chloride, nitrate, and sulfate were below the respective TOGS values.

Vinyl chloride and cis-1,2-DCE were detected in the groundwater sample from bedrock well MW-26A at concentrations of 270 and 490 μ g/L, respectively, which are above the RAOs of 5 μ g/L. No other VOCs were detected in bedrock well MW-26A. Detections of iron, manganese, TOC, chloride, nitrate, and sulfate were below the respective TOGS values.

3.0 Data Quality

Data quality control procedures included the collection of one field duplicate and one trip blank during the sampling event.

Field procedures were conducted in accordance with the approved work plan (EnviroGroup, 2008). Procedures included sample documentation and collection of duplicate, replicate, and trip blank samples. Sample handling and chain of custody requirements were followed as outlined by USEPA guidance (USEPA, 2002).

The following is a summary of data validation results for the January 2010 groundwater sampling event.

The trip blank had non-detectable results for all VOCs.

For sample/sample duplicate pair results that were greater than 5 times the reporting limit, the calculated relative percent differences (RPD) were less than 16% for all analytes.

For sample/sample duplicate pair results that were less than 5 times the reporting limit, the calculated relative percent differences (RPD) were less than +/- the reporting limit for all analytes with the exception of dissolved ferrous iron.

Analyte	Sample ID	Results (mg/L)	RL
Dissolved	MW-26	0.2	0.1
Ferrous Iron	DUP 01/27/10	0.32	0.1

These results were flagged with an "&" on Table 1.

A data validation package is provided as an attachment to this letter report.

4.0 Conclusions

The results of this groundwater monitoring event generally confirm the results from the previous sampling event (September, 2009). The results indicate that VOCs from the Leica site may have migrated in bedrock groundwater to the location of the MW-25 well pair, and in both shallow and bedrock groundwater to the location of the MW-26 well pair, on the south side of Rowan Road.

VOC concentrations in bedrock groundwater were higher than concentrations in shallow groundwater in each well pair during both the September 2009 and January 2010 sampling events. This current groundwater data suggests that the potential for vapor intrusion in the vicinity of monitoring well pair MW-25/25A is low, based on the apparent presence of a shallow clean water lens as demonstrated by non-detectable concentrations from overburden well MW-25. Furthermore, the relatively low concentrations of vinyl chloride, cis-1,2-DCE, and chloroform in bedrock groundwater at well MW-25A also suggests that the risk of vapor intrusion is likely to be low in this area.

In addition, concentrations in overburden well MW-26 may be fluctuating with seasonal changes in the water table elevations. Concentrations of cis-1,2 DCE and vinyl chloride in overburden well MW-26 went from highs of 46 μ g/L and 28 μ g/L respectively in September of 2009 to lows of 5.2 μ g/L and non-detected in January of 2010. These variations could be indicative of a seasonal clean water lens, which would decrease the potential for vapor intrusion following spring snowmelt and during wetter seasons.

The presence of cis-1,2-DCE and vinyl chloride in overburden well MW-26 could increase the potential for vapor intrusion in structures in this vicinity, although the potential for vapor intrusion could vary seasonally based on the September 2009 and January 2010 sampling events. Indoor air and sub-slab vapor sampling has been conducted at the two residences (130 and 134 Preston Road) nearest to the MW-26 well pair. These results are summarized in a separate report. When compared to the New York State Department of Health decision matrices (Matrix 1 and 2), the sub-slab vapor and indoor air results suggest no further action is needed relative to the vapor intrusion pathway for these residences.

We understand that Energy *Solutions* will be conducting additional rounds of groundwater sampling from the MW-25 and MW-26 well pairs. Data collected during these continued monitoring events will be assessed in order to confirm these conclusions.

We hope you find this information useful. If you have any questions, please contact us at (518) 258-3859.

Sincerely,

EnviroGroup Limited

Eric Lovenduski

Senior Project Manager

Attachments:

Table 1: Groundwater Analytical Results Figures Field Sampling Sheets Laboratory Analytical Data Data Validation Memo

cc:

Carl Grabinski John Egan

REFERENCES

New York State Division of Water Technical and Operation Guidance Series (1.1.1). Ambient Water Quality Standards and Guidance Values. New York, June 1998.

Guidance on Environmental Data Verification and Data Validation, USEPA, November, 2002.

Vapor Intrusion Investigation Work Plan, Leica Area C, Cheektowaga, New York. Prepared by EnviroGroup Limited, December 23, 2008.

Rowan Road Groundwater Investigation Report, Leica Area C, Cheektowaga, New York. Prepared by EnviroGroup Limited, November 16, 2009.

Letter to Energy Solutions "Vapor Intrusion Study in Private Homes". From NYSDEC, January 21, 2009.

TABLE

TABLE 1

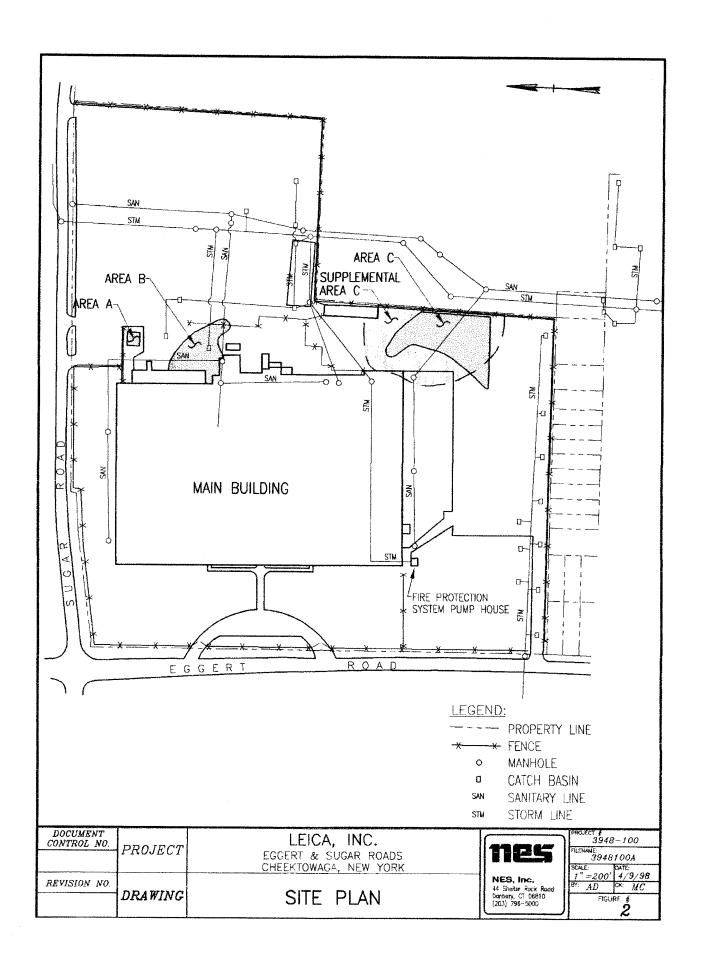
GROUNDWATER ANALYTICAL RESULTS

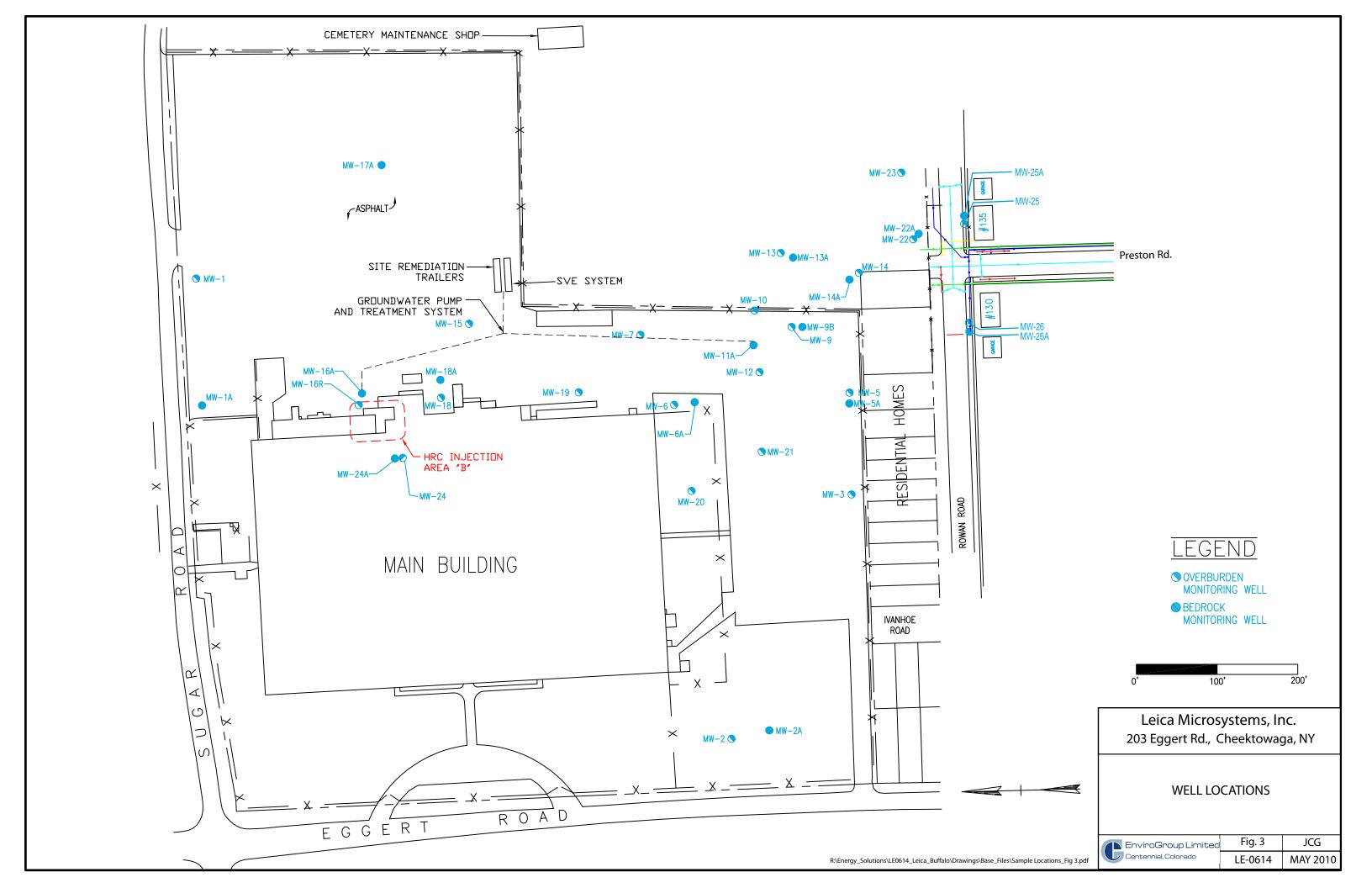
Leica Cheektowaga, NY

Analytical	Parameter	TOGS Value	RAO	SAMPLE IDENTIFICATIO	MW-25	MW-25	MW-26	MW-26	DUP 01/27/10 (MW-26)	MW-25A	DUP 09/02/09 (MW-25A)	MW-25A	MW-26A	MW-26A	TB090209	TRIP BLANK
Method	Parameter	(ug/L)	(ug/L)	SAMPLING DATE:	9/2/2009	1/27/2010	9/2/2009	1/27/2010	1/27/2010	9/2/2009	9/2/2009	1/27/2010	9/2/2009	1/27/2010	9/2/2009	1/27/2010
				Unit												
	Chloroform	7	NA	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	14	14	6.1	5.0 U	25 U	5.0 U	5.0 U
	cis-1,2-Dichloroethene	5	5	ug/L	5.0 U	5.0 U	46	5.2	5.4	5.0 U	5.0 U	6.4	740 D	490	5.0 U	5.0 U
8260B	trans-1,2-Dichloroethene	5	NA	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	16	25 U	5.0 U	5.0 U
020UD	Toluene	5	NA	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	8.7	8.7	5.0 U	5.0 U	25 U	5.0 U	5.0 U
	Vinyl Chloride	2	5	ug/L	5.0 U	5.0 U	28	5.0 U	5.0 U	9.1	9.9	23	560 D	270	5.0 U	5.0 U
	m,p-Xylenes	5	NA	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	8.3	8.1	5.0 U	5.0 U	25 U	5.0 U	5.0 U
	Iron, Dissolved		NA	ug/L	100 U	NA	100 U	NA	NA	100 U	100 U	NA	130	NA	NA	NA
6010B	Manganese, Total	500*	500* NA	ug/L	NA	153	NA	1110	1110	NA	NA	215	NA	257	NA	NA
	Manganese, Dissolved		NA	ug/L	110	124	217	164	159	10 U	10 U	10 U	10 U	38	NA	NA
SM 3500	Ferrous Iron, Total	-	NA	mg/L	NA	2.99	NA	0.59	0.68	NA	NA	0.13	NA	0.37	NA	NA
3IVI 3300	Ferrous Iron, Dissolved	-	NA	mg/L	NA	0.19	NA	0.2 &	0.32 &	NA	NA	0.1 U	NA	0.1 U	NA	NA
SM20 5310C	Carbon, Total Organic (TOC)	-	NA	mg/L	17.1	4.8	14.6	6.3	5.4	4.2	3.5	3.4	4.9	7.3	NA	NA
	Chloride	250	NA	mg/L	49.4	33.0	550	532	523	50.3	59.9	53.9	46.1	85.5	NA	NA
300.0	Nitrate as Nitrogen	10	NA	mg/L	0.88	0.50 U	0.50 U	0.50 U	0.50 U	0.91	0.91	0.50 U	0.50 U	0.50 U	NA	NA
	Sulfate	250	NA	mg/L	91.9	94.1	99.9	57.5	57.8	43.0	43.8	41.3	73.3	76.1	NA	NA
SM 4500-H+B	pH	-	NA	pH Units	7.15	7.15	7.18	7.22	7.28	7.69	8.34	9.26	8.49	8.02	NA	NA

- Notes:
 1. ug/L Microgram per liter.
 2. TOGS 1.1.1 Ambient Value from NYS Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.
 3. RAO: Remedial Action Objective value.
 4. "-" TOGS 1.1.1 standard or guidance value does not exist.
 5.'D" D flag; Sample re-analyzed at dilution.
 6. Bold Compound detected at or above TOGS 1.1.1 Ambient Value or RAO.

- 7. Indicates the value applies to the sum of iron and manganese.


 8. ** Indicates method reporting limit for cloride in the samples from MW-26 was 20 ug/L.


 9. NA indicates parameter not analyzed, or not applicable.

 10. & indicates sample/sample duplicate result relative percent difference exceeded quality assurance requirements.

FIGURES

ATTACHMENT A

PROJECT: Luica		LOCATION: Client towns 59 NT					
PROJECT NO. LE -26/9	•		PERSONNEL & Lovenouski				
INSTRUMENTS: (Conductivity,	·	Redox etc.)					
THO THOMESTO. (CONGUCTATION)	, remperature, pri,	110d0x, 0t0./		- 			
GENERAL							
WELL/LOCATION	MW-25	,					
WATER SOURCE							
DATE	1/27/10	1/27/10					
TIME	1057	1105					
SAMPLING CONDITIONS							
SAMPLING METHOD	Saller						
DEPTH OF SAMPLE (BGS / TOC)	~8'						
WELL DEPTH (BGS / TOC)	10.51						
WATER LEVEL (BGS / TOC)	6.68						
ONE WET CASING VOLUME		1.10 1		WL)x0.04=			
For 2 inch wells: (TD-WL)x0.16= APPEARANCE	gallons / >-	1.631	For 4 inch wells: (TD-	WL)x0.65=	gallons		
APPEARANCE	Stelany byson	el biorun	_1	<u>L</u>			
FIELD MEASUREMENTS	T						
VOLUME REMOVED (GAL)	0	3					
TOTAL VOLUME REMOVED (GAL)	0	3					
TEMPERATURE (C)or °F)	7.40	838					
CONDUCTIVITY (ATC, 25°C)	1.122	1.124					
рН	7.56	7.7/					
REDOX (mV)	-20.0	-58.7					
STHER Dong/l	5.12	4.63					
PURGE OR SAMPLE	Purse	Sample					
SAMPLES COLLECTED AND	SAMPLE ANALY	SIS					
GROSS UF/UP							
DISSOLVED METALS F/HNO3	y	X					
TOTAL METALS UF/HNO3	X	X					
PETROLEUM HCs UF/HCI	· ·						
VOLATILE UF/UP ORGANICS UF/HCI	X	X					
SEMIVOLATILE							
ORGANICS UF/UP	1.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
CH. CI, NO. 504, TOL	+1	1,-	+	+	+		
LAB/DATE SUBMITTED		1127/10	TER-LATS PILK		1		

EnviroGroup Limited

PROJECT: LETT		LOCATION: (1) Lex Klower & NT					
PROJECT NO. LE - 06/19	7	PERSONNEL E Lo renewski					
INSTRUMENTS: (Conductivity	/, Temperature, pl	I, Redox, etc.)					
GENERAL	MW-26	A					
WELL/LOCATION							
WATER SOURCE							
DATE	1/27/10	127/10					
TIME	0330	1240					
SAMPLING CONDITIONS					de la companya de la		
SAMPLING METHOD Page .	-1 Submusible	while pump;	Sample wildis	preble beiler			
DEPTH OF SAMPLE (BGS / TOC)	33						
WELL DEPTH (BGS / TOC)	54.4'				-		
WATER LEVEL (BGS / TOC)	4,48						
ONE WET CASING VOLUME			For 1 inch wells: (TD-		gallons		
For 2 inch wells: (TD-WL)x0.16=	gallons	T		WL)x0.65= <u>19.4</u>	gallons		
APPEARANCE	St. Clarty giry	5/2 beel of 500	Kuron				
FIELD MEASUREMENTS		, · · ·					
VOLUME REMOVED (GAL)	0	-20					
TOTAL VOLUME REMOVED (GAL)	0	120					
TEMPERATURE (°C or °F)	11.34	1062					
CONDUCTIVITY (ATC, 25°C)	1.1228	1.124					
рН	7.43	821					
REDOX (mV)	120.8	8.5					
OTHER DO 113/R	15.39	1512					
PURGE OR SAMPLE	Parge	Sample					
SAMPLES COLLECTED AND	SAMPLE ANALY	SIS					
GROSS UF/UP							
DISSOLVED METALS F/HNO3		X					
TOTAL METALS UF/HNO3		X					
PETROLEUM HCs UF/HCI	·						
VOLATILE UF/UP ORGANICS UF/HCI		X					
SEMIVOLATILE							
ORGANICS UF/UP		٠	 	<u> </u>			
pt, ci, No., 504, Toc		X	 	<u> </u>			
LAB/DATE SUBMITTED	1/27/10 "(001)			<u> L</u>			
EnviroGroup	CAS Pakisk Limited		ER'S INITIALS 51	DATE //	7-/1-		
			min\EGL STD Forms\Fi	•			
		GISCI VOI LEGE_AU	minacoc o romistri	SIG FORMSTERE ANSTOLE	woality Sampling		

* Well purged dig e I well ustume. With for sochuse to somple.

PROJECT: Leica		LOCATION: Class Ktowagg, NY					
PROJECT NO. LE-0614			PERSONNEL: ELovenduski				
INSTRUMENTS: (Conductivity		Peday eta.)					
	, remperature, pri	, Nedox, etc.)	<u> </u>	`			
GENERAL MW	-26 + D	JP 01/27	10				
WELL/LOCATION							
WATER SOURCE							
DATE	127/10	1/27/10					
TIME	57/7	0925					
SAMPLING CONDITIONS							
SAMPLING METHOD Ba.	le:						
DEPTH OF SAMPLE (BGS / TOC)	6.80 A.	8'					
WELL DEPTH (BGS / TOC)	10.74						
WATER LEVEL (BGS / TOC)	6.80						
ONE WET CASING VOLUME		- /	For 1 inch wells: (TD-V		gallons		
For 2 inch wells: (TD-WL)x0.16=APPEARANCE	gallons /_ @	<i>77-/</i>	For 4 inch wells: (TD-V	VL)x0.65=	gallons		
	Cloudy boun	clausy braces					
FIELD MEASUREMENTS			-				
VOLUME REMOVED (GAL)	C	2.5					
TOTAL VOLUME REMOVED (GAL)	0	25					
TEMPERATURE (*C) or *F)	8.77	8.47					
CONDUCTIVITY (ATC, 25°C)	2.244	2.635					
рН	7.61	7.65					
REDOX (mV)	703.9	57.0					
OTHER IN 15/4	4.23	7.68					
PURGE OR SAMPLE	Purge	Sample.					
SAMPLES COLLECTED AND		SIS					
GROSS UF/UP							
DISSOLVED METALS F/HNO3		X					
TOTAL METALS UF/HNO3		У					
PETROLEUM HCs UF/HCI							
VOLATILE UF/UP ORGANICS UF/HCI		У					
SEMIVOLATILE							
organics UF/UP		χ					
LAB/DATE SUBMITTED		127/10					
		CAS Rochast	er i besch e				

EnviroGroup Limited

CAS Rockester 1.6 pick, of
SAMPLER'S INITIALS 19 5 DATE 127/10


PROJECT: Letca		LOCATION: Cherkton-59,NT					
PROJECT NO. LE 06/5	•		PERSONNEL: E. / p. renciuski				
INSTRUMENTS: (Conductivity	. Temperature, pH	. Redox. etc.)					
	, , ,						
GENERAL							
WELL/LOCATION	Mw.	25 A					
WATER SOURCE							
DATE	1/27/10	1/27/10					
TIME	1028	1050					
SAMPLING CONDITIONS							
SAMPLING METHOD Purgo w	Sammersible	pump . Ser	note alberter				
DEPTH OF SAMPLE (BGS / TOC)	_	,	We drawn the decrease of the second s				
WELL DEPTH (BGS / TOC)	34.34						
WATER LEVEL (BGS / TOC) /	1.74						
ONE WET CASING VOLUME		For 1 inch wells: (TD-WL)x0.04=gallons For 4 inch wells: (TD-WL)x0.65= <u>Z/-/</u> gallons ょぷ どこと					
For 2 inch wells: (TD-WL)x0.16=	gallons	Clear - st. close'y	For 4 inch wells: (TD-1	WL)XU.65= <u>~~/~//</u>	gailons \$355 63. Z		
	हो. दुल्लाना दुल्लू	554					
FIELD MEASUREMENTS		1-	T	<u> </u>			
VOLUME REMOVED (GAL)	0	70					
TOTAL VOLUME REMOVED (GAL)		70					
TEMPERATURE (*C) or *F)	11. 21	10.13					
CONDUCTIVITY (ATC, 25°C)	0,547	0.387	-				
pH	7.62	1215					
REDOX (mV)	-156.Z	-35.6					
OTHER DO 44/4	2.95	3.47					
PURGE OR SAMPLE	Purgo	Sample					
SAMPLES COLLECTED AND	SAMPLE ANALY	SIS	T	T	T		
GROSS UF/UP							
DISSOLVED METALS F/HNO ₃		X					
TOTAL-METALS UF/HNO3		X					
PETROLEUM HCs UF/HCI VOLATILE UF/UP							
ORGANICS UF/HCI		X					
SEMIVOLATILE ORGANICS UF/UP							
ct. 01. No. 504 TOC		Y					
LAB/DATE SUBMITTED		1127/10					
		CAS Rochent					

EnviroGroup Limited

SAMPLER'S INITIALS DATE 1/2/10

NEglserver\EGL_Admin\EGL STD Forms\Field Forms\Field Water Quality Sampling

ATTACHMENT B

February 11, 2010

Service Request No: R1000483

Mr. Eric Lovenduski **Enviro Group Limited** 46 Lake Ave. Suite 102 Saratoga Springs, NY 12866

Laboratory Results for: LEICA LE-0614

Dear Mr. Lovenduski:

Enclosed are the results of the sample(s) submitted to our laboratory on January 27, 2010. For your reference, these analyses have been assigned our service request number R1000483.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 134. You may also contact me via email at KBunker@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Karen Bunker

Project Manager

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1000483

<u>Lab ID</u>	Client ID
R1000483-001	Trip Blank
R1000483-002	MW-26
R1000483-003	MW-26 Dissolved
R1000483-004	MW-25A
R1000483-005	MW-25A Dissolved
R1000483-006	MW-25
R1000483-007	MW-25 Dissolved
R1000483-008	MW-26A
R1000483-009	MW-26A Dissolved
R1000483-010	Dup 01/27/10
R1000483-011	Dup 01/27/10 Dissolved

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics-Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications1

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited
Navy Facilities Engineering Service Center Approved

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of

accredited analytes, refer to the certifications section at www.caslab.com.

Analytical Report

Client:

Lab Code:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Sample Name:

Trip Blank

Water

•

R1000483-001

Service Request: R1000483

Date Collected: 1/27/10

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Amarytical Method. 62005							
Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
Acetone	20		20	1	NA	2/4/10 17:34	
Benzene	5.0		5.0	1	NA	2/4/10 17:34	
Bromodichloromethane	5.0		5.0	î	NA	2/4/10 17:34	
Bromoform	5.0	Ū	5.0	1	NA	2/4/10 17:34	188649
Bromomethane	5.0	U	5.0	1	NA	2/4/10 17:34	188649
2-Butanone (MEK)	10	U	10	1	NA	2/4/10 17:34	188649
Carbon Disulfide	10	U	10	1	NA	2/4/10 17:34	188649
Carbon Tetrachloride	5.0		5.0	1	NA	2/4/10 17:34	
Chlorobenzene	5.0	U	5.0	1	NA	2/4/10 17:34	188649
Chloroethane	5.0		5.0	1	NA	2/4/10 17:34	
Chloroform	5.0		5.0	1	NA	2/4/10 17:34	
Chloromethane	5.0	U	5.0	1	NA	2/4/10 17:34	188649
Dibromochloromethane	5.0	U	5.0	1	NA	2/4/10 17:34	188649
1,1-Dichloroethane	5.0		5.0	1	NA	2/4/10 17:34	188649
1,2-Dichloroethane	5.0	Ŭ	5.0	1	NA	2/4/10 17:34	188649
1,1-Dichloroethene	5.0		5.0	1	NA	2/4/10 17:34	
cis-1,2-Dichloroethene	5.0		5.0	1	NA	2/4/10 17:34	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 17:34	188649
1,2-Dichloropropane	5.0		5.0	1	NA	2/4/10 17:34	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/4/10 17:34	188649
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/4/10 17:34	188649
Ethylbenzene	5.0		5.0	1	NA	2/4/10 17:34	
2-Hexanone	10		10	1	NA	2/4/10 17:34	188649
Methylene Chloride	5.0	U	5.0	1	NA	2/4/10 17:34	188649
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/4/10 17:34	188649
Styrene	5.0		5.0	1	NA	2/4/10 17:34	188649
1,1,2,2-Tetrachloroethane	5.0	Ŭ	5.0	1	NA	2/4/10 17:34	188649
Tetrachloroethene	5.0		5.0	1	NA	2/4/10 17:34	188649
Toluene	5.0		5.0	1	NA	2/4/10 17:34	188649
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/4/10 17:34	188649
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/4/10 17:34	188649
Trichloroethene	5.0		5.0	1	NA	2/4/10 17:34	188649
Vinyl Chloride	5.0	U	5.0	1	NA	2/4/10 17:34	188649

Comments:

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Sample Name:

Water

Lab Code:

Trip Blank R1000483-001 Service Request: R1000483

Date Collected: 1/27/10 **Date Received:** 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction Analysis		
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	2/4/10 17:34		188649	
m,p-Xylenes	5.0 U	5.0	1	NA	2/4/10 17:34		188649)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
4-Bromofluorobenzene	95	85-122	2/4/10 17:34			
Toluene-d8	102	87-121	2/4/10 17:34			
Dibromofluoromethane	104	89-119	2/4/10 17:34			

Comments:

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix: Sample Name:

Water

Lab Code:

MW-26 R1000483-002 Service Request: R1000483 Date Collected: 1/27/10 0925 Date Received: 1/27/10

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	6,3	mg/L	3.0	3	NA	2/5/10 17:01
Chloride	300.0	532	mg/L	20	100	NA	2/3/10 02:24
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.59	mg/L	0.10	1	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0.50 U	mg/L	0.50	10	NA	1/28/10 02:30
pH	SM 4500-H+B	7.22	pH Units		1	NA	1/27/10 15:45
Sulfate	300.0	57.5	mg/L	2.0	10	NA	1/28/10 02:30

Comments:	
-----------	--

Analytical Report

Client: Project: Enviro Group Limited

Sample Matrix:

LEICA LE-0614 Water

Service Request: R1000483 Date Collected: 1/27/10 0925 Date Received: 1/27/10

Sample Name: Lab Code:

MW-26 Dissolved

R1000483-003

Basis: NA

Iron, Divalent, Dissolved Phenanthroline Method 20th Ed.

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzed
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.20	mg/L	0.10	1	NA	1/27/10 16:10

Comments:					
		 	 		

Analytical Report

Client: Project: **Enviro Group Limited**

LEICA LE-0614

Date Received: 1/27/10

Service Request: R1000483 **Date Collected: 1/27/10 0925**

Sample Matrix:

Water

Sample Name: Lab Code:

MW-26 R1000483-002

Basis: NA

Manganese, Total, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Total	6010B	1110	μg/L	10	1 2/1/10 2/4/10 19:35

Comments:			

00008

Analytical Report

Client: Project:

Lab Code:

Enviro Group Limited

Sample Matrix:

Sample Name:

LEICA LE-0614

Water

MW-26 Dissolved

R1000483-003

Service Request: R1000483 Date Collected: 1/27/10 0925

Date Received: 1/27/10

Basis: NA

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Dissolved	6010B	164	μg/L	10	1 2/ 1/10 2/4/10 19:41

Comments:				
			······································	

Analytical Report

Client: Project: Enviro Group Limited

Sample Matrix:

LEICA LE-0614

Sample Name:

Water MW-26

Lab Code:

R1000483-002

Service Request: R1000483

Date Collected: 1/27/10 0925

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

•				Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MRL		Extracted	Analyzed	Extraction Analysis Lot Lot Not
Acetone	20	U	20	1	NA	2/4/10 18:01	188649
Вепzепе	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Bromodichloromethane	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Bromoform	5.0		5.0	1	NA	2/4/10 18:01	188649
Bromomethane	5.0		5.0	1	NA	2/4/10 18:01	
2-Butanone (MEK)	10	U	10	1	NA	2/4/10 18:01	188649
Carbon Disulfide	10		10	1	NA	2/4/10 18:01	
Carbon Tetrachloride	5.0		5.0	1	NA	2/4/10 18:01	
Chlorobenzene	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Chloroethane	5.0		5.0	1	NA	2/4/10 18:01	
Chloroform	5.0		5.0	1	NA	2/4/10 18:01	188649
Chloromethane	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Dibromochloromethane	5.0	U	5.0	1	NA	2/4/10 18:01	188649
1,1-Dichloroethane	5.0		5.0	1	NA	2/4/10 18:01	
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/4/10 18:01	188649
1,1-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 18:01	188649
cis-1,2-Dichloroethene	5.2		5.0	1	NA	2/4/10 18:01	188649
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 18:01	188649
1,2-Dichloropropane	5.0		5.0	1	NA	2/4/10 18:01	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/4/10 18:01	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Ethylbenzene	5.0		5.0	1	NA	2/4/10 18:01	188649
2-Hexanone	10		10	1	NA	2/4/10 18:01	
Methylene Chloride	5.0	U	5.0	1	NA	2/4/10 18:01	188649
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/4/10 18:01	
Styrene	5.0		5.0	1	NA	2/4/10 18:01	188649
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	2/4/10 18:01	188649
Tetrachloroethene	5.0		5.0	1	NA	2/4/10 18:01	
Toluene	5.0		5.0	1	NA	2/4/10 18:01	
1,1,1-Trichloroethane	5.0		5.0	1	NA	2/4/10 18:01	188649
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/4/10 18:01	
Trichloroethene	5.0		5.0	1	NA	2/4/10 18:01	
Vinyl Chloride	5.0	U	5.0	1	NA	2/4/10 18:01	188649

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix: Sample Name: Water

Lab Code:

MW-26 R1000483-002 Service Request: R1000483

Date Collected: 1/27/10 0925

Date Received: 1/27/10 0

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	Analys	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	2/4/10 18:01		188649	
m,p-Xylenes	5.0 U	5.0	1	NA	2/4/10 18:01		188649)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note
4-Bromofluorobenzene	97	85-122	2/4/10 18:01		
Toluene-d8	104	87-121	2/4/10 18:01		
Dibromofluoromethane	105	89-119	2/4/10 18:01		

Comments:				
		 	··· • ·	

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: MW-25A

R1000483-004

Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	3.4	mg/L	1.0	1	NA	2/2/10 04:47
Chloride	300.0	53.9	mg/L	2.0	10	NA	1/28/10 03:15
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.13	mg/L	0.10	1	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0.50 U	mg/L	0.50	10	NA	1/28/10 03:15
pH	SM 4500-H+ B	9.26	pH Units		1	NA	1/27/10 15:45
Sulfate	300.0	41.3	mg/L	2.0	10	NA	1/28/10 03:15

Comments:

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Sample Name:

MW-25A Dissolved

Lab Code:

R1000483-005

Water

Basis: NA

Iron, Divalent, Dissolved Phenanthroline Method 20th Ed.

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzcd
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.10 U	mg/L	0.10	1	NA	1/27/10 16:10

Comments:				

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: MW-25A

R1000483-004

Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Basis: NA

Manganese, Total, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Total	6010B	215	μg/L	10	1 2/1/10 2/4/10 19:47

Comments:			
			

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

MW-25A Dissolved

Sample Name: Lab Code:

R1000483-005

Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Basis: NA

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Dissolved	6010B	10 U	μg/L	10	1 2/1/10 2/4/10 20:04

Comments:	

Analytical Report

Client: Enviro Group Limited Project: LEICA LE-0614

Sample Matrix: Water

Sample Name: MW-25A Lab Code: R1000483-004 Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analytical Method. 6200B							
				Dilution	Date	Datc	Extraction Analysis
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot Lot Note
Acetone	20	U	20	1	NA	2/4/10 18:29	188649
Benzene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Bromodichloromethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Bromoform	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Bromomethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
2-Butanone (MEK)	10	U	10	1	NA	2/4/10 18:29	188649
Carbon Disulfide	10		10	1	NA	2/4/10 18:29	188649
Carbon Tetrachloride	5.0		5.0	1	NA	2/4/10 18:29	188649
Chlorobenzene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Chloroethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Chloroform	6.1		5.0	1	NA	2/4/10 18:29	188649
Chloromethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Dibromochloromethane	5.0		5.0	1	NA	2/4/10 18:29	188649
1,1-Dichloroethane	5.0		5.0	1	NA	2/4/10 18:29	188649
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
I, I-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
cis-1,2-Dichloroethene	6.4		5.0	1	NA	2/4/10 18:29	188649
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
1,2-Dichloropropane	5,0		5.0	1	NA	2/4/10 18:29	188649
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/4/10 18:29	188649
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Ethylbenzene	5.0		5.0	1	NA	2/4/10 18:29	188649
2-Hexanone	10		10	1	NA	2/4/10 18:29	188649
Methylene Chloride	5.0	U	5.0	1	NA	2/4/10 18:29	188649
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/4/10 18:29	188649
Styrene	5.0		5.0	1	NA	2/4/10 18:29	188649
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Tetrachloroethene	5.0		5.0	1	NA	2/4/10 18:29	188649
Toluene	5.0		5.0	1	NA	2/4/10 18:29	188649
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/4/10 18:29	188649
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/4/10 18:29	188649
Trichloroethene	5.0	U	5.0	1	NA	2/4/10 18:29	188649
Vinyl Chloride	23		5.0	1	NA	2/4/10 18:29	188649

Comments:

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Sample Name:

Water

Lab Code:

MW-25A R1000483-004 Service Request: R1000483

Date Collected: 1/27/10 1050

Date Received: 1/27/10

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	1 Analys	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5,0	1	NA	2/4/10 18:29)	188649	
m,p-Xylenes	5.0 U	5.0	1	NA	2/4/10 18:29)	188649)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
4-Bromofluorobenzene	99	85-122	2/4/10 18:29			· · · · · · · · · · · · · · · · · · ·
Toluene-d8	105	87-121	2/4/10 18:29			
Dibromofluoromethane	105	89-119	2/4/10 18:29			

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

R1000483-006

Sample Matrix: Sample Name: Water

Lab Code:

MW-25

Service Request: R1000483

Date Collected: 1/27/10 1105

Date Received: 1/27/10

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	4.8	mg/L	1.0	1	NA	2/2/10 05:05
Chloride	300.0	33.0	mg/L	2.0	10	NA	1/28/10 03:30
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	2.99	mg/L	0.20	2	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0.50 U	mg/L	0.50	10	NA	1/28/10 03:30
pH	SM 4500-H+ B	7.15	pH Units		1	NA	1/27/10 15:45
Sulfate	300.0	94.1	mg/L	2.0	10	NA	1/28/10 03:30

Analytical Report

Client:

Enviro Group Limited

Project:

Lab Code:

LEICA LE-0614

Sample Matrix: Sample Name: Water

MW-25 Dissolved

R1000483-007

Service Request: R1000483

Date Collected: 1/27/10 1105

Date Received: 1/27/10

Basis: NA

Iron, Divalent, Dissolved Phenanthroline Method 20th Ed.

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor		Date Analyzed
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.19	mg/L	0.10	1	NA	1/27/10 16:10

Comments:		

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix: W

Water

Sample Name: Lab Code: MW-25

R1000483-006

Service Request: R1000483

Date Collected: 1/27/10 1105

Date Received: 1/27/10

Basis: NA

Manganese, Total, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Manganese, Total	6010B	153	μg/L	10	1	2/ 1/10	2/4/10 20:10

Comments:		
		—

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Service Request: R1000483 **Date Collected: 1/27/10 1105**

Date Received: 1/27/10

Sample Name: Lab Code:

MW-25 Dissolved

R1000483-007

Basis: NA

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Manganese, Dissolved	6010B	124	μg/L	10	1	2/ 1/10	2/4/10 20:17

Comments:					
	 	 		 -	

Analytical Report

Client: Enviro Group Limited
Project: LEICA LE-0614

Sample Matrix: Water

Sample Name: MW-25 Lab Code: R1000483-006 Service Request: R1000483

Date Collected: 1/27/10 1105

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Tring tien interior. 0200D									
A saluda NTs ssa	D . 1/	^	MENT	Dilution	Date	Date	Extraction Ana		
Analyte Name	Result	Ų	MRL	Factor	Extracted	Analyzed	Lot I	ot	Note
Acetone	20	Ŭ	20	1	NA	2/4/10 18:56	188	649	
Benzene	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Bromodichloromethane	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Bromoform	5.0	U	5.0	1	N A	2/4/10 18:56	188	649	
Bromomethane	5.0		5.0	1	NA	2/4/10 18:56	188	649	
2-Butanone (MEK)	10	U	10	1	NA	2/4/10 18:56	188	649	
Carbon Disulfide	10		10	1	NA	2/4/10 18:56	188	649	
Carbon Tetrachloride	5.0		5.0	1	NA	2/4/10 18:56	188	649	
Chlorobenzene	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Chloroethane	5.0		5.0	1	NA	2/4/10 18:56	188	649	
Chloroform	5.0		5.0	1	NA	2/4/10 18:56	188	649	
Chloromethane	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Dibromochloromethane	5.0		5.0	1	NA	2/4/10 18:56	188	649	
1,1-Dichloroethane	5.0		5.0	1	NA	2/4/10 18:56	188	649	
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
1,1-Dichloroethene	5.0		5.0	1	NA	2/4/10 18:56	188	649	
cis-1,2-Dichloroethene	5.0		5.0	1	NA	2/4/10 18:56	188	649	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
1,2-Dichloropropane	5.0		5.0	1	NA	2/4/10 18:56		649	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/4/10 18:56		649	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Ethylbenzene	5.0		5.0	1	NA	2/4/10 18:56	188	649	
2-Hexanone	10		10	1	NA	2/4/10 18:56	188	649	
Methylene Chloride	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/4/10 18:56	188	649	
Styrene	5.0		5.0	1	NA	2/4/10 18:56	188	649	
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
Tetrachloroethene	5.0		5.0	1	NA	2/4/10 18:56	188	649	
Toluene	5.0		5.0	1	NA	2/4/10 18:56	188		
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/4/10 18:56	188		
Trichloroethene	5.0		5.0	1	NA	2/4/10 18:56	188		
Vinyl Chloride	5.0	U	5.0	1	NA	2/4/10 18:56	188	649	

Comments:	
-----------	--

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix: Sample Name: Water

Lab Code:

MW-25

R1000483-006

Service Request: R1000483

Date Collected: 1/27/10 1105

Date Received: 1/27/10 1

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	Analys	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5,0 U	5.0	1	NA	2/4/10 18:56		188649)
m,p-Xylenes	5.0 U	5.0	1	NA	2/4/10 18:56	ı	188649)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note
4-Bromofluorobenzene	99	85-122	2/4/10 18:56		
Toluene-d8	106	87-121	2/4/10 18:56		
Dibromofluoromethane	109	89-119	2/4/10 18:56		

Comments:			

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: MW-26A

R1000483-008

Service Request: R1000483

Date Collected: 1/27/10 1240
Date Received: 1/27/10

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	7.3	mg/L	1.0	1	NA	2/2/10 05:23
Chloride	300.0	85.5	mg/L	2.0	10	NA	1/28/10 03:45
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.37	mg/L	0.10	1	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0.50 U	mg/L	0.50	10	NA	1/28/10 03:45
pН	SM 4500-H+B	8.02	pH Units		1	NA	1/27/10 15:45
Sulfate	300.0	76.1	mg/L	2.0	10	NA	1/28/10 03:45

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Service Request: R1000483 Date Collected: 1/27/10 1240

Date Received: 1/27/10

Sample Name: Lab Code:

MW-26A Dissolved

R1000483-009

Basis: NA

Iron, Divalent, Dissolved Phenanthroline Method 20th Ed.

Analyte Name	Mcthod	Result Q	Units	MRL	Dilution Factor		Date Analyzed
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.10 U	mg/L	0.10	1	NA	1/27/10 16:10

Comments:			

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Service Request: R1000483

Date Collected: 1/27/10 1240

Date Received: 1/27/10

Sample Matrix: Sample Name: Water

Lab Code:

MW-26A

R1000483-008

Basis: NA

Manganese, Total, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Manganese, Total	6010B	257	μg/L	10	1	2/ 1/10	2/4/10 20:23

Comments:	

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Water

Sample Name:

Lab Code:

MW-26A Dissolved

R1000483-009

Service Request: R1000483

Date Collected: 1/27/10 1240

Date Received: 1/27/10

Basis: NA

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Dissolved	6010B	38	μg/L	10	1 2/ 1/10 2/4/10 20:28

Comments:		

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Sample Name:

Water

Lab Code:

MW-26A R1000483-008 Service Request: R1000483

Date Collected: 1/27/10 1240

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

·				Dilution	Datc	Date	Extraction Analysis
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot Lot Note
Acetone	100	U	100	5	NA	2/5/10 12:24	188813
Benzene	25	U	25	5	NA	2/5/10 12:24	188813
Bromodichloromethane	25	U	25	5	NA	2/5/10 12:24	188813
Bromoform	25		25	5	NA	2/5/10 12:24	
Bromomethane	25		25	5	NA	2/5/10 12:24	
2-Butanone (MEK)	50	Ŭ	50	5	NA	2/5/10 12:24	188813
Carbon Disulfide	50		50	5	NA	2/5/10 12:24	
Carbon Tetrachloride	25		25	5	NA	2/5/10 12:24	
Chlorobenzene	25	U	25	5	NA	2/5/10 12:24	188813
Chloroethane	25		25	5	NA	2/5/10 12:24	
Chloroform		U	25	5	NA	2/5/10 12:24	
Chloromethane	25	U	25	5	NA	2/5/10 12:24	188813
Dibromochloromethane	25		25	5	NA	2/5/10 12:24	188813
1,1-Dichloroethane	25	U	25	5	NA	2/5/10 12:24	188813
1,2-Dichloroethane	25	U	25	5	NA	2/5/10 12:24	188813
1,1-Dichloroethene	25	U	25	5	NA	2/5/10 12:24	188813
cis-1,2-Dichloroethene	490		25	5	NA	2/5/10 12:24	
trans-1,2-Dichloroethene	25	U	25	5	NA	2/5/10 12:24	188813
1,2-Dichloropropane	25		25	5	NA	2/5/10 12:24	
cis-1,3-Dichloropropene	25		25	5	NA	2/5/10 12:24	
trans-1,3-Dichloropropene	25	U	25	5	NA	2/5/10 12:24	188813
Ethylbenzene	25		25	5	NA	2/5/10 12:24	188813
2-Hexanone	50		50	5	NA	2/5/10 12:24	188813
Methylene Chloride	25	U	25	5	NA	2/5/10 12:24	188813
4-Methyl-2-pentanone (MIBK)	50		50	5	NA	2/5/10 12:24	188813
Styrene	25		25	5	NA	2/5/10 12:24	188813
1,1,2,2-Tetrachloroethane	25	U	25	5	NA	2/5/10 12:24	188813
Tetrachloroethene	25		25	5	NA	2/5/10 12:24	188813
Toluene	25		25	5	NA	2/5/10 12:24	188813
1,1,1-Trichloroethane	25	U	25	5	NA	2/5/10 12:24	188813
1,1,2-Trichloroethane	25		25	5	NA	2/5/10 12:24	188813
Trichloroethene	25	U	25	5	NA	2/5/10 12:24	188813
Vinyl Chloride	270		25	5	NA	2/5/10 12:24	188813

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: MW-26A R1000483-008 Service Request: R1000483

Date Collected: 1/27/10 1240

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analys: Lot	is Note
o-Xylene	25 U	25	5	NA	2/5/10 12:24		188813	3
m,p-Xylenes	25 U	25	5	NA	2/5/10 12:24		188813	}

Surrogate Namc	%Rec	Control Limits	Date Analyzed	Q	Note
4-Bromofluorobenzene	101	85-122	2/5/10 12:24		
Toluene-d8	109	87-121	2/5/10 12:24		
Dibromofluoromethane	107	89-119	2/5/10 12:24		

Comment	s:
---------	----

Analytical Report

Client:

Enviro Group Limited

Project:

Lab Code:

LEICA LE-0614

Sample Matrix: Sample Name:

Water

Dup 01/27/10 R1000483-010

Date Collected: 1/27/10 Date Received: 1/27/10

Service Request: R1000483

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	5.4	mg/L	3.0	3	NA	2/5/10 17:56
Chloride	300.0	523	mg/L	20	100	NA	2/3/10 03:13
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.68	mg/L	0.10	1	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0.50 U	mg/L	0.50	10	NA	1/28/10 04:00
pH	SM 4500-H+B	7.28	pH Units		1	NA	1/27/10 15:45
Sulfate	300.0	57.8	mg/L	2.0	10	NA	1/28/10 04:00

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Dup 01/27/10 Dissolved

Sample Name: Lab Code:

R1000483-011

Service Request: R1000483

Date Collected: 1/27/10
Date Received: 1/27/10

Basis: NA

Iron, Divalent, Dissolved Phenanthroline Method 20th Ed.

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Datc Analyzed
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.32	mg/L	0,10	1	NA	1/27/10 16:10

Comments:			
	 		

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code:

Dup 01/27/10 R1000483-010

Service Request: R1000483

Date Collected: 1/27/10 Date Received: 1/27/10

Basis: NA

Manganese, Total, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Total	6010B	1110	μg/L	10	1 2/ 1/10 2/4/10 20;34

Comments:

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Dup 01/27/10 Dissolved

Sample Name: Lab Code:

Date Collected: 1/27/10 Date Received: 1/27/10

Service Request: R1000483

Basis: NA

R1000483-011

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Dissolved	6010B	159	μg/L	10	1 2/1/10 2/4/10 20:40

Comments:			

Analytical Report

Client: Project: Enviro Group Limited

Sample Matrix:

LEICA LE-0614

Sample Name:

Water

Lab Code:

Dup 01/27/10 R1000483-010 Service Request: R1000483

Date Collected: 1/27/10

Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
Acetone	20	Ü	20	1	NA	2/5/10 11:56	188813
Benzene	5.0	U	5.0	1	NA	2/5/10 11:56	188813
Bromodichloromethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
Bromoform	5.0		5.0	1	NA	2/5/10 11:56	188813
Bromomethane	5.0		5.0	1	NA	2/5/10 11:56	
2-Butanone (MEK)	10	U	10	1	NA	2/5/10 11:56	188813
Carbon Disulfide	10		10	1	NA	2/5/10 11:56	188813
Carbon Tetrachloride	5.0		5.0	1	NA	2/5/10 11:56	188813
Chlorobenzene	5.0	U	5.0	l	NA	2/5/10 11:56	188813
Chloroethane	5.0		5.0	I	NA	2/5/10 11:56	188813
Chloroform	5.0		5.0	1	NA	2/5/10 11:56	188813
Chloromethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
Dibromochloromethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
1,1-Dichloroethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
1,1-Dichloroethene	5.0	U	5.0	1	NA	2/5/10 11:56	
cis-1,2-Dichloroethene	5.4		5.0	1	NA	2/5/10 11:56	
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/5/10 11:56	188813
1,2-Dichloropropane	5.0		5.0	1	NA	2/5/10 11:56	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/5/10 11:56	188813
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/5/10 11:56	188813
Ethylbenzene	5.0		5.0	1	NA	2/5/10 11:56	
2-Hexanone	10		10	1	NA	2/5/10 11:56	
Methylene Chloride	5.0	U	5.0	1	NA	2/5/10 11:56	188813
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/5/10 11:56	
Styrene	5.0		5.0	1	NA	2/5/10 11:56	188813
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
Tetrachloroethene	5.0		5.0	1	NA	2/5/10 11:56	188813
Toluene	5.0		5.0	1	NA	2/5/10 11:56	
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/5/10 11:56	188813
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/5/10 11:56	188813
Trichloroethene	5.0		5.0	1	NA	2/5/10 11:56	188813
Vinyl Chloride	5.0	U	5.0	1	NA	2/5/10 11:56	188813

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: Dup 01/27/10 R1000483-010 Service Request: R1000483

Date Collected: 1/27/10
Date Received: 1/27/10

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result O	MRL	Dilution	Date Extracted		Extraction	_ •	
Analyte Name	Kesuit Q	WIKL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	2/5/10 11:56		188813	3
m,p-Xylenes	5.0 U	5.0	1	NA	2/5/10 11:56		188813	3

Surrogate Name	%Rec	Control Limits	Date Analyzed Q) Note
4-Bromofluorobenzene	101	85-122	2/5/10 11:56	
Toluene-d8	110	87-121	2/5/10 11:56	
Dibromofluoromethane	107	89-119	2/5/10 11:56	

Comments:			

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank

R1000483-MB1

Service Request: R1000483

Date Collected: NA
Date Received: NA

Basis: NA

General Chemistry Parameters

Analyte Namc	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC)	SM20 5310 C	1.0	U	mg/L	1.0	1	NA	2/2/10 02:58
Chloride	300.0	0.20	U	mg/L	0.20	1	NA	1/27/10 23:14
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.10	U	mg/L	0.10	1	NA	1/27/10 16:10
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.10	U	mg/L	0.10	I	NA	1/27/10 16:10
Nitrate as Nitrogen	300.0	0,050	U	mg/L	0.050	1	NA	1/27/10 23:14
Sulfate	300.0	0.20	U	mg/L	0.20	1	NA	1/27/10 23:14

Analytical Report

Client:

Enviro Group Limited

Project:

Lab Code:

LEICA LE-0614

Sample Matrix:

Water

Sample Name:

Method Blank

R1000483-MB2

Service Request: R1000483

Date Collected: NA Date Received: NA

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Carbon, Total Organic (TOC) Chloride	SM20 5310 C 300.0	1.0 U 0.20 U	mg/L mg/L	1.0 0.20	1	NA NA	2/5/10 16:25 2/3/10 01:35

Comments:

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Date Collected: NA

Service Request: R1000483

Date Received: NA

Sample Name: Lab Code:

Method Blank

Basis: NA

R1000483-MB1

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed
Manganese, Dissolved	6010B	10 U	μg/L	10	1 2/1/10	2/4/10 17:50
Manganese, Total	6010B	10 U	μg/L	10	1 2/ 1/10	2/4/10 17:50

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Date Collected: NA

Service Request: R1000483

Date Received: NA

Sample Name: Lab Code:

Method Blank

R1000483-MB2

Basis: NA

Manganese, Dissolved, by Inductively Coupled Plasma-Atomic Emission Spectrometry

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Manganese, Dissolved	6010B	10 U	μg/L	10	1 2/ 1/10 2/4/10 17:56

Comments:			
	 	tal	

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix: Sample Name: Water

Lab Code:

Method Blank RQ1000868-03 Service Request: R1000483

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot	
Acetone	20		20		NA	2/4/10 12:30	188649	
Benzene	5.0	_	5.0	1	NA	2/4/10 12:30	188649	
Bromodichloromethane	5.0		5.0	ī	NA	2/4/10 12:30	188649	
Bromoform	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
Bromomethane	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
2-Butanone (MEK)	10	Ŭ	10	1	NA	2/4/10 12:30	188649	
Carbon Disulfide	10		10	1	NA	2/4/10 12:30	188649	
Carbon Tetrachloride	5.0	_	5.0	1	NA	2/4/10 12:30	188649	
Chlorobenzene	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
Chloroethane	5.0		5.0	1	NA	2/4/10 12:30	188649	
Chloroform	5.0		5.0	1	NA	2/4/10 12:30	188649	
Chloromethane	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
Dibromochloromethane	5.0	U	5.0	l	NA	2/4/10 12:30	188649	
1,1-Dichloroethane	5.0	Ŭ	5.0	1	NA	2/4/10 12:30	188649	
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
1,1-Dichloroethene	5.0		5.0	I	NA	2/4/10 12:30	188649	<u> </u>
cis-1,2-Dichloroethene	5.0		5.0	1	NA	2/4/10 12:30	188649	
trans-1,2-Dichloroethene	5.0	Ŭ	5.0	1	NA	2/4/10 12:30	188649	
1,2-Dichloropropane	5.0		5.0	1	NA	2/4/10 12:30	188649	
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/4/10 12:30	188649	
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
Ethylbenzene	5.0		5.0	1	NA	2/4/10 12:30	188649	
2-Hexanone	10		10	1	NA	2/4/10 12:30	188649	
Methylene Chloride	5.0	U	5.0	1	NA	2/4/10 12:30	188649	_
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/4/10 12:30	188649	
Styrene	5.0		5.0	1	NA	2/4/10 12:30	188649	
1,1,2,2-Tetrachloroethane	5.0	Ŭ	5.0	1	NA	2/4/10 12:30	188649	
Tetrachloroethene	5.0		5.0	1	NA	2/4/10 12:30	188649	
Toluene	5.0		5.0	1	NA	2/4/10 12:30	188649	
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/4/10 12:30	188649	
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/4/10 12:30	188649	
Trichloroethene	5.0		5.0	1	NA	2/4/10 12:30	188649	
Vinyl Chloride	5.0	U	5.0	1	NA	2/4/10 12:30	188649	

Comments:	
-----------	--

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Sample Name:

Lab Code:

Water

Method Blank RQ1000868-03

Service Request: R1000483

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	Analys	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	2/4/10 12:30		188649)
m,p-Xylenes	5.0 U	5.0	1	NA	2/4/10 12:30	ı	188649)

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	Note	
4-Bromofluorobenzene	96	85-122	2/4/10 12:30			
Toluene-d8	104	87-121	2/4/10 12:30			
Dibromofluoromethane	104	89-119	2/4/10 12:30			

Comments:		

Analytical Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Sample Name: Lab Code:

Method Blank RQ1000898-01 Service Request: R1000483

Date Collected: NA

Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analytical Mctilod. 6200B							
Associate Mosses	n14	^	MRL	Dilution	Date	Date	Extraction Analysis
Analyte Name	Result	Q	MIKL	Factor	Extracted	Analyzed	Lot Lot Note
Acetone	20	U	20	1	NA	2/5/10 11:29	188813
Benzene	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Bromodichloromethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Bromoform	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Bromomethane	5.0		5.0	1	NA	2/5/10 11:29	188813
2-Butanone (MEK)	10	U	10	1	NA	2/5/10 11:29	188813
Carbon Disulfide	10	U	10	1	NA	2/5/10 11:29	188813
Carbon Tetrachloride	5.0		5.0	1	NA	2/5/10 11:29	188813
Chlorobenzene	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Chloroethane	5.0		5.0	1	NA	2/5/10 11:29	188813
Chloroform	5.0		5.0	1	NA	2/5/10 11:29	188813
Chloromethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Dibromochloromethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
1,1-Dichloroethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
1,2-Dichloroethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
1,1-Dichloroethene	5.0		5.0	1	NA	2/5/10 11:29	188813
cis-1,2-Dichloroethene	5.0		5.0	1	NA	2/5/10 11:29	188813
trans-1,2-Dichloroethene	5.0	U	5.0	1	NA	2/5/10 11:29	188813
1,2-Dichloropropane	5.0		5.0	1	NA	2/5/10 11:29	188813
cis-1,3-Dichloropropene	5.0		5.0	1	NA	2/5/10 11:29	188813
trans-1,3-Dichloropropene	5.0	U	5.0	1	NA	2/5/10 11:29	188813
Ethylbenzene	5.0		5.0	1	NA	2/5/10 11:29	188813
2-Hexanone	10		10	1	NA	2/5/10 11:29	188813
Methylene Chloride	5.0	U	5.0	1	NA	2/5/10 11:29	188813
4-Methyl-2-pentanone (MIBK)	10		10	1	NA	2/5/10 11:29	188813
Styrene	5.0		5.0	1	NA	2/5/10 11:29	188813
1,1,2,2-Tetrachloroethane	5.0	Ŭ	5.0	1	NA	2/5/10 11:29	188813
Tetrachloroethene	5.0		5.0	1	NA	2/5/10 11:29	188813
Toluene	5.0		5.0	1	NA	2/5/10 11:29	188813
1,1,1-Trichloroethane	5.0	U	5.0	1	NA	2/5/10 11:29	188813
1,1,2-Trichloroethane	5.0		5.0	1	NA	2/5/10 11:29	188813
Trichloroethene	5.0		5.0	1	NA	2/5/10 11:29	188813
Vinyl Chloride	5.0	U	5.0	1	NA	2/5/10 11:29	188813

Analytical Report

Client:

Enviro Group Limited

Project: Sample Matrix: LEICA LE-0614

Sample Name:

Lab Code:

Water

Method Blank RQ1000898-01 Service Request: R1000483

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

			Dilution	Date	Date	Extraction	Analysi	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
o-Xylene	5.0 U	5.0	1	NA	2/5/10 11:29		188813	
m,p-Xylenes	5.0 U	5.0	1	NA	2/5/10 11:29		188813	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q) Note	
4-Bromofluorobenzene	101	85-122	2/5/10 11:29		
Toluene-d8	109	87-121	2/5/10 11:29		
Dibromofluoromethane	107	89-119	2/5/10 11:29		

QA/QC Report

Client: Project: Enviro Group Limited LEICA LE-0614

Sample Matrix:

Water

Service Request: R1000483 Date Analyzed: 1/27/10 -

2/2/10

Lab Control Sample Summary General Chemistry Parameters

> Units: mg/L Basis: NA

		Lab Control Sample				
		R10	00483-LC	S1	% Ree	
Analyte Name	Method	Result	Expected	l % Rec	Limits	
Carbon, Total Organic (TOC)	SM20 5310 C	9.64	10.0	96	86 - 117	
Chloride	300.0	1.97	2.00	98	90 - 110	
Iron, Divalent (Ferrous Iron)	SM 3500-Fe B.4.c	0.380	0.40	95	77 - 129	
Iron, Divalent (Ferrous Iron), Dissolved	SM 3500-Fe B.4.c	0.380	0.40	95	77 - 129	
Nitrate as Nitrogen	300.0	0.964	1.00	96	90 - 110	
Sulfate	300.0	2.08	2.00	104	90 - 110	

QA/QC Report

Client:

Enviro Group Limited LEICA LE-0614

Project: Sample Matrix:

Water

Q. 1 Q 0 100

Service Request: R1000483 Date Analyzed: 2/3/10 -

2/ 5/10

Lab Control Sample Summary General Chemistry Parameters

> Units: mg/L Basis: NA

		Lab Control Sample				
		R1000483-LCS2			% Rec	
Analyte Name	Method	Result	Expected	% Rec	Limits	
Carbon, Total Organic (TOC)	SM20 5310 C	9.75	10.0	97	86 - 117	
Chloride	300.0	1,90	2.00	95	90 - 110	

QA/QC Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Service Request: R1000483

Date Analyzed: 2/4/10

Lab Control Sample Summary **Inorganic Parameters**

> Units: µg/L Basis: NA

	Lab Control Sample						
	R1000483-LCS				% Rec		
Analyte Name	Method	Result	Expected	l% Rec	Limits		
Manganese, Dissolved	6010B	485	500	97	80 - 120		
Manganese, Total	6010B	485	500	97	80 - 120		

QA/QC Report

Client:

Enviro Group Limited LEICA LE-0614

Project: Sample Matrix:

Water

Service Request: R1000483

Date Analyzed: 2/4/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 188649

	Lab	% Rec		
Analyte Name	Result	Q1000868-0 Expected	% Rec	Limits
Асетопе	19.0	20.0	95	50 - 150
Benzene	20.0	20.0	100	70 - 130
Bromodichloromethane	19.7	20.0	99	70 - 130
Bromoform	21.0	20.0	105	70 - 130
Bromomethane	18.6	20.0	93	50 - 150
2-Butanone (MEK)	18. 7	20.0	94	50 - 150
Carbon Disulfide	18.1	20.0	90	70 - 130
Carbon Tetrachloride	18.8	20.0	94	70 - 130
Chlorobenzene	20.8	20.0	104	70 - 130
Chloroethane	18.2	20.0	91	70 - 130
Chloroform	18.8	20.0	94	70 - 130
Chloromethane	19.6	20.0	98	70 - 130
Dibromochloromethane	21.6	20.0	108	70 - 130
1,1-Dichloroethane	18.9	20.0	95	70 - 130
1,2-Dichloroethane	18.3	20.0	91	70 - 130
1,1-Dichloroethene	19.4	20.0	97	70 - 130
cis-1,2-Dichloroethene	18.6	20.0	93	70 - 130
trans-1,2-Dichloroethene	18.7	20.0	93	70 - 130
1,2-Dichloropropane	20.2	20.0	101	70 - 130
cis-1,3-Dichloropropene	19.6	20.0	98	70 - 130
trans-1,3-Dichloropropene	20.1	20.0	101	70 - 130
Ethylbenzene	20.9	20.0	105	70 - 130
2-Hexanone	19.3	20.0	97	70 - 130
Methylene Chloride	19,1	20.0	95	70 - 130
4-Methyl-2-pentanone (MIBK)	19.7	20.0	99	70 - 130
Styrene	20.5	20.0	103	70 - 130
1,1,2,2-Tetrachloroethane	20.4	20.0	102	70 - 130
Tetrachloroethene	22.9	20.0	114	70 - 130
Toluene	20.8	20.0	104	70 - 130
1,1,1-Trichloroethane	17.7	20.0	89	70 - 130
1,1,2-Trichloroethane	21.1	20.0	106	70 - 130
Trichloroethene	19.2	20.0	96	70 - 130
Vinyl Chloride	21.6	20.0	108	70 - 130
o-Xylene	20.1	20.0	100	70 - 130
m,p-Xylenes	41.6	40.0	104	70 - 130

QA/QC Report

Client:

Enviro Group Limited

Project:

LEICA LE-0614

Sample Matrix:

Water

Service Request: R1000483

Date Analyzed: 2/5/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 188813

	Lab	% Rec		
Analyte Name	Result	RQ1000898-0 Expected	% Rec	Limits
Acetone	17.3	20.0	86	50 - 150
Benzene	20.3	20.0	102	70 - 130
Bromodichloromethane	19.8	20.0	99	70 - 130
Bromoform	20.4	20.0	102	70 - 130
Bromomethane	16.0	20.0	80	50 - 150
2-Butanone (MEK)	17.9	20.0	89	50 - 150
Carbon Disulfide	18.8	20.0	94	70 - 130
Carbon Tetrachloride	18.2	20.0	91	70 - 130
Chlorobenzene	20.9	20.0	104	70 - 130
Chloroethane	18. 6	20.0	93	70 - 130
Chloroform	18.6	20.0	93	70 - 130
Chloromethane	17.0	20.0	85	70 - 130
Dibromochloromethane	21.3	20.0	107	70 - 130
1,1-Dichloroethane	18.4	20.0	92	70 - 130
1,2-Dichloroethane	18.0	20.0	90	70 - 130
1,1-Dichloroethene	19.0	20.0	95	70 - 130
cis-1,2-Dichloroethene	18. 7	20.0	94	70 - 130
trans-1,2-Dichloroethene	18.5	20.0	93	70 - 130
1,2-Dichloropropane	20.8	20.0	104	70 - 130
cis-1,3-Dichloropropene	19.5	20.0	97	70 - 130
trans-1,3-Dichloropropene	19.8	20.0	99	70 - 130
Ethylbenzene	20.7	20.0	104	70 - 130
2-Hexanone	19.4	20.0	97	70 - 130
Methylene Chloride	19.0	20.0	95	70 - 130
4-Methyl-2-pentanone (MIBK)	20.8	20.0	104	70 - 130
Styrene	20.4	20.0	102	70 - 130
1,1,2,2-Tetrachloroethane	20.2	20.0	101	70 - 130
Tetrachloroethene	23.3	20.0	117	70 - 130
Toluene	20.7	20.0	103	70 - 130
1,1,1-Trichloroethane	17.5	20.0	88	70 - 130
1,1,2-Trichloroethane	21.6	20.0	108	70 - 130
Trichloroethene	19.4	20.0	97	70 - 130
Vinyl Chloride	21.6	20.0	108	70 - 130
o-Xylene	20.3	20.0	101	70 - 130
m,p-Xylenes	41.3	40.0	103	70 - 130

Comments:

Lab Control Sample Summary

SuperSet Reference: 10-0000133479 rev 00

Columbia
Analytical Services CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact PAGE

Preservative Key 0. NONE HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION RECEIVED BY ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name 0 BILL TO: Signature Firm \times > IV. Data Validation Report with Raw Di V. Specialized Forms / Custom Report 0 II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration Summaries O HELINQUISHED BY O Edata X Yes I. Results Only 0 2 Printed Name Date/Time 0 5 day TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE One Mustard St., Suite 250 • Rochester, NY 14609-0859(585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 REQUESTED FAX DATE X STANDARD PRESERVATIVE Х * Report as for samples from Energy Solutions NUMBER OF CONTRINERS CUSTODY SEALS/ RELINQUISHED BY MATRIX <u>こ</u> <u>2</u> 1/21/10 0925 GW 1/27/10 1/050 GW 0,521 01/22/1 127/10 1105 Eric Lovenduski SAMPLING DATE TIM Sampler's Printed Name 127 10 1 27/10 FetMn Inlab Filter for dissolved Saratoga Springs Ny 12866 B 1E-0614 Distribution: White - Return to Originator; Yellow/Lab Copy/ Pink - Retained by Client FOR OFFICE USE ONLY COD COS 46 Lake Avenue Swite 102 SAMPLE RECEIPT: CONDITION/COOLER TEMP: 5:10 Project Number Report CC See quote# 14587 2 Leica site 4 nvirobis up LTD 518-256-3859 Sampler's Signapure grandle TRIP BLANK ONETHO SPECIAL INSTRUCTIONS/COMMENTS

Metals Eric Lovenduski **CLIENT SAMPLE ID** Emilo Group LTD RELINQUISHED BY Dug or 127/10 MW-26A MW-25A MW-25 92-MW See QAPP Project Name 00049

Cooler Receipt And Preservation Check Form

Project	/Client	Lu	ie.		Sı	ubmissior	ı Nun	nber	R10-483		1814 88144 88111 88111 81881 1 8 188 1
Cooler	received or	n_//	27/19	by: 💯	_COUF	NER: (C	AS	UPS	FEDEX	VELOC	CITY CLIENT
3. 4. 5. 6.	Were custo Did all bot Did any V Were Ice of Where did	ody partitles a OA wor Ice the t	oaper arrive vials e pac pottle	on outside of coors properly filled of in good condition have significant* ks present? es originate? ler(s) upon receip	out (ink, on (unbr air bub	oken)?	etc.)?		YES YES YES YES CAS/RO	NO NO NO NO NO O, CLI	N/A ENT ——
	Is the temp	erati	ıre w	rithin 0° - 6° C?:	<u>A</u>	<u>es</u>	Yes		Yes	Yes	Yes
	If No, Exp	olain	Belo)W	N	o	No		No	No	No
	Date/Time Temperatures Taken: //27//o /5/3.3										
	Thermome	eter II	D: II	R GUN#3 / (R Co	JUN#4	Readir				-	le Bottle
PC Seco	ondary Rev	/iew:	, HO	132/11	110	, Chefft A	zppro	ovai to	Kun Samj	oles:	
Cooler I 1. 2. 3.	Breakdown Were all bot Did all bott Were corre	n: Dottle lattle late	ate : label bels : ntair	s complete (i.e. a and tags agree with the sused for the t	nalysis, th custo	dy papersicated?	s?	tc.)?	(YES)	NO NO NO	
4. Evaloin	Air Sample	es: (Cass	ettes / Tubes Inta					Tedlar®	Bags Inf	lated N/A
Explain	any discre	panci	ies: _					,,,			
pН	Reagent	YES	NO	Lot Received	Exp	Sample	ID	Vol. Added	Lot Added	Final pH	Yes = Ali
≥12	NaOH										samples OK
≤2	HNO ₃	1		BDB 2698C	11/10	ļ					No =
≤2 Residual Chlorine (-)	H ₂ SO ₄ For TCN and Phenol	,		If present, contact add ascorbic acid	PM to						Samples were preserved at lab as listed
<u> </u>	Na ₂ S ₂ O ₃	-	-						re analysis – p		PM OK to
	Zn Aceta	-	<u>-</u>			tested an on a sepa			VOAs or Ge	nChem	Adjust:
	HCI	*	*	4109080	01/11	J on a sepa	naic W	OIKSHE	~ i		
Bottle lot Other Con	numbers:	7-30	P-00	or, BOB26971	0,011	110-ZB,	014	10-2	A		

PC Secondary Review: (3) 21110

*significant air bubbles are greater than 5-6 mm

H:\SMODOCS\Cooler Receipt 2.doc

ATTACHMENT C

Data Validation Status Report

Approved by:	M. Litasi N/A N/A	Date: 2 2 2 Date: Date:	<u> 10 </u>
Project Name/ No: Leice Task Manager: E. Covend Colored Data Package #: 2 - January Name of Laboratory: Calumbia Laboratory Job #'s: R1000	nki ng 2010 Gkonowa sia Analytical Ser	ner	······································
		nis package: (check if	applicable)
	N/A Split Samp	le(s) Report :	
		Laboratory:	- Control of the cont
		ry Job #:	
	QAP form		
	COC	_	
	Field Form N/A Field Notes		
		Analytical Results	
		rtical Report	

List of Samples included in Group

SAMPLES	QA/ac sames	
MW-26	TRIP BYANK	
MW-25A	DUP 01/27/10	
MW-25		
MW-26A	· ·	
•		

Data Validation Documentation

Project Name <u>Leica</u>	Validator <u>M. Uta si</u> Project/Task Mgr <u>E. Lovendusk</u>
Project No	Project/Task Mgr <u>E. Lovendusk</u>
Project No	Date of Validation 2/22/10
Data Package No. 2- Tanuary 2010 Groundwater	
Sample Custody and	Handling
Total number of samples analyzed in this data package (does not	t include QA samples)
Randomly select one in twenty samples.	. ,
Number of samples tracked for this data package	
List samples tracked MW-26	
For the selected samples:	
 Were all samples received by the lab under chain of customs. Were all sample identities maintained by the lab? (Evaluation listed on generator's chain of custody with fix custody and lab confirmation sheet, as applicable.) Were field calculations (e.g., conductivities and water lower the samples collected, preserved and shipped in a lower the samples analyzed within the required holding 	cluate by comparing sample IDs, and date and time of eld water quality forms, and the lab's chain of yesno levels) accurate?yesno lecordance with project specs?¹yesno
If any problems were detected in the review of selected samples evaluated. Was it necessary to evaluate all samples?	, all samples represented by the data package must beyesno
Provide any additional comments below and on attached sheets, exceptions noted in the laboratory narrative(s) and any flags place or issues associated with sample collection, site conditions, or determined to the conditions of t	ced by data validation personnel to denote problems
* Trip Blank sample collected 1/22/10 was given	a sample ID - "Trip Blank 01/27/10" on the
C-O-C. The blooding regarded the sample as "T	in Blank, omnitting the date after the
Sample ID. As it is a laboratory prepared RA/QC	sample and collected on the day that was on
the C-O-C + inthe sample ID, there is to ause	for concern + 10 Abagging is required.

¹ Refer to the Project Quality Assurance Specifications sheets.

Field QA Samples

Number of Trip Blanks required ^{1,2}			
Number of Trip Blanks collected			
		/	
Were a sufficient number of Trip Blanks collected?	<u>_l</u>	_yes	no
Were contaminants detected in any Trip Blank?	_	_yes	<u>✓</u> no
If contaminants ³ were reported for the Trip Blank(s), list the affected same			
Blank) and the concentration(s) of contaminant(s) reported in both the af			below
and on additional sheets, as necessary. Also, specify any flags placed by	data validation personnel to	denote	
problems or issues associated with the Trip Blank(s).			
			
			,
		73	
Number of Field Blanks required ¹	:	<u> </u>	
Number of Field Blanks collected			
Were a sufficient number of Field Blanks collected?	NA	yes	no
Were contaminants detected in any Field Blank?	'	yes	—no no
If contaminants were detected in the Field Blank(s), list the affected same	• •		
reported in both the affected samples and the field blank below and on a			
any flags placed by data validation personnel to denote problems or issu			
		``	
* Field Black requirement unived by took man	ુ ⊌∵		
, ·			

Field QA sample requirements are waived on special sampling events at the Task Manager's direction.

For purposes of data validation, contaminants are defined as compounds reported above the laboratory's reporting limits.

Field QA Samples (cont.)

Number of Field Duplicates required ¹	1
Number of Field Duplicates collected	
Were a sufficient number of Field Duplicates collected?	√yesno
Number of Replicates (Splits) required ¹	
Number of Replicates collected	
Were a sufficient number of Replicates collected?	ves no

Discuss Duplicate/Replicate sample results below and on attached sheets, as necessary. Specifically, include a discussion of the relative concentration relationship between the samples and their Duplicates/Replicates (i.e., the difference between the sample results and the Duplicate/Replicate results where the concentrations are less than 10 times the Reporting Limits and the calculated Relative Percent Difference where the concentrations are greater than 10 times the Reporting Limit). For Duplicate samples, also include a discussion of how the sample results and Duplicate results fall within the historic ranges for these sample locations. Finally, specify any flags placed by data validation personnel to denote problems or issues associated with the Duplicate/Replicate sample(s).

At the same collection time of 9:25 an on 1/27/10. The following is a result comparison:

a a Stample (ID)	Analyie Varie 11 - W. Amil	Sarin dae			Qual	BL
MW-26	Total Organic Carbon (TOC)	1/27/2010	6.3	mg/L		3
MW-26 DUP [₩]	Total Organic Carbon (TOC)	1/27/2010	5.4	mg/L		3
MW-26	Chloride	1/27/2010	532	mg/L		20
MW-26 DUP	Chloride	1/27/2010	523	mg/L		20
MW-26	Total Iron, Divalent (Ferrous Iron)	1/27/2010	0.59	mg/L		20 20 0.1 0.1
MW-26 DUP	Total Iron, Divalent (Ferrous Iron)	1/27/2010	0.68	mg/L		0.1
MW-26	рН	1/27/2010	7.22	s.u.		
MW-26 DUP	рН	1/27/2010	7.28	s.u.		
MW-26	Sulfate	1/27/2010	57.5	mg/L		2 0.1 0.1
MW-26 DUP	Sulfate	1/27/2010	57.8	mg/L		2
MW-26	Dissolved Iron, Divalent (Ferrous Iron)	1/27/2010	0.2	mg/L		0.1
MW-26 DUP	Dissolved Iron, Divalent (Ferrous Iron)	1/27/2010	0.32	mg/L		0.1
MW-26	Total Manganese	1/27/2010	1110	ug/L		10 10
MW-26 DUP	Total Manganese	1/27/2010	1110	ug/L		10
MW-26	Dissolved Manganese	1/27/2010	164	ug/L		10
MW-26 DUP	Dissolved Manganese	1/27/2010	159	ug/L		10
MW-26	cis-1,2-Dichloroethene	1/27/2010	5.2	ug/L		5
MW-26 DUP	cis-1,2-Dichloroethene	1/27/2010	5.4	ug/L		10 10 5

Lasa

* MW-76DUP = DUP 01/27/10

All sample/sample DUP results (where the sample results are < 5X R.L.) are +/- the R.L with the
exception of:

SAMPLE	ANALYTE ANALYTE	RESULTS	DТ
	TUNTISTIS	KESCETS	<u>K.L.</u>
MW-26 / DUP 01/27/10	Dissolved Iron	0.2/0.32	0.1/0.1

RPD's for all sample/sample DUP results (where the sample results are > 5X R.L.) are < 20%.

Sample/sample DUP results in bold will be flagged in the data report with an "&" indicating that all QA/QC requirements were not met.

Chemical Laboratory QA Verification

Laboratory Name: Columbia Analytical Services	Laboratory Job No. R 1000 493
List analytical methods included in report. Sign 4500 - H+B (PH); 6010 B (Total Posselued Mengagese). Verify that the lab QC tests met applicable specifications for the analy	ites of concern4.
Did the lab properly flag results not meeting the Acceptance Criteria?	N/A _yes _no
If not, identify the additional flagging requirements below, contact the appropriate replacement pages. Document telephone conversations we (i.e., e-mails, replacement pages).	lab to discuss the situation and required.
	l.
Discuss or document any other quality assurance issues not previously	addressed, if any.
·	
	·
	:

In addition to summary information on the Project QA Specifications sheet, details on method specified QC tests may be found in the associated method document.

Project Quality Assurance Specifications

Project No: <u>LE-0614</u>	Revision No:
Project Name: Lei(a	By: M. Citas;

Field QA/QC	Sample R	equirements	Star	ndard 🗹	C	ther	(Indicate Below)			
Frequency of Collection (Check if Applicable)										
QA/QC Sample		Groun	dwater		Soil					
Trip Blank		1 per Sampling E	vent (VOC's C	Only)*		1 per Samplii	per Sampling Event (VOC's Only)			
Field Blank	1 per D	ay per Sampler i	per Sampling T	Fechnique**	1 per	Day per Samp	ler per Sampling Ted	chnique**		
Duplicate	V	1 per 10 sample	es - Minimum	1			None			
Replicate		1 per 10 sample	es - Minimum 1	1. 光术						
Other										
Note: QA/QC Samp	le requirements	are waived at Tas	sk Manager's di	rection.						
Parameter/Met (check if ap		Matrix	Holding Time ¹	Sample Vol	ıme/Container²	Filtration ³	Preservation	Storage and Shipping		
VOCs	☑ 8260B	Soil	14 days	4 oz G	ass/Teflon	None	None	4 C/Overnigh		
VOCS	□ 624	Water	14 days	2-40 ml Glass/Teflon 4 oz Glass/Teflon		None	None(Colo.)HCI(other)	4 C/Overnigh		
SVOCs	□ 8270C	Soil	14 days			None	None	4 C/Overnigh		
30008	□ <u>625</u>	Water	7 days	2-1 liter Amb	er Glass/Teflon	None	None	4 C/Overnigh		
6010/6020 Soil			6 mo.	4 oz Plastic		None None		Any		
Metals	9000	Water	6 mo.	500 ml Plastic/ 250 to 500 ml Plastic (dissolved		0.45 μm (dissolved)	НМОз	Any		
					100110 (010001100	(4.000.004)				
Mercury	7470A	Water	28 Days		00 ml Plastic	None	HNO ₃	4° C/OvernigI		

4 oz Glass/Teflon

2 - 40 ml Glass/Teflon

4 oz Glass/Teflon

2-1 liter Glass/Teflon

4 oz Glass/Teflon

250 ml Plastic

4 oz Glass/Teflon

250 ml Plastic

2-40 ml Glass/Teflon

250 ml Amber/500ml Plastic

250 ml Plastic/125 ml Glass

250 ml Plastic/125 ml Glass

250 ml to 1 liter Plastic

500 ml Amber G/500 ml Plastic

500 ml Amber G/500 ml Plastic

500 ml to 1 liter Plastic

250 to 500 ml G/500 ml Plastic

250 to 500 ml Amber Glass

250 to 500 ml Plastic

None

None

None

None

None

None

None

Yes

None

HCl (Colo. and other)

None

HCI or H2SO4

None

None

None

None

HCI

H₂SO₄

None

None

None

H₂SO₄

H₂SO₄

None

H₂SO₄

H₂SO₄

None

4°C/Overnight

4 C/Overnight

۲	-	NTE	72	hours	in	the	field.
---	---	-----	----	-------	----	-----	--------

^{** -} None required based on the use of dedicated, disposable sampling equipment and PPE.

Soil

Water

Soil

Water

Soil

Water

Soil

Water

14 days

14 days

14 days

14 days

" >leached

28 days

48 hours

7 days

28 days

28 days

28 days

14 days

28 days

28 days

48 hours

28 days

28 days

14 days

>leached

8020/8021

602

418.1

8015

300.0A

365.3

RSK SOP-175

300.0A

300.0A

300.0A

310.1

350.1

351.2

405.1

410.4

3500-FÉ D

415.1/5130

BETX

TPH

Bromide

Orthophosphate

Ethane, Ethene,

Methane NO₂/NO₃

Chloride

Sulfate

Alkalinity

Diss. Ammonia

TKN

BOD

COD

DOC/TOC)

Ferrous/Ferric Iron

¹ - Holding time is the maximum time between sample collection and laboratory preparation.

² - Sample volumes and containers listed are general requirements only and may vary between laboratories.

³ - May vary between laboratories and if lab or field filtered.

Project Quality Assurance Specifications, Continued

Project No:	Revision No:
Project Name: <u>/ Lica.</u>	By: M. Utasi

Analytical QA/QC Requirements	s		Stand	ard		Other		(Indicate	Below)			
Parameter/Method (check if Applicable)	ICV % Recovery		CCV % Recovery		Lab Blanks		LCS % Recovery		Accuracy- % Recovery (Fortification)		Precision-RPD (Duplication)	
	Std.	Other	Std.	Other	Std.	Other	Std.	Other	Std.	Other	Std.	Other
VOCs-8260,624,Other	90-110		90-110		ND		80-120		80-120		0-20	
SVOCs-8270,625	90-110		90-110		ND		80-120		80-120		0-20	
Metals-6010/6020,9000, 200 Series	90-110		90-110		ND		80-120		80-120		0-20	
BETX-8020/8021,602	90-110		90-110		ND		80-120		80-120		0-20	
TPH-418.1,8015	90-110		90-110		ND		80-120		80-120		0-20	
Bromide, Nitrate, Nitrite, Chloride, Sulfate-300.0A	90-110		90-110		ND		80-120		80-120		0-20	
Orthophospate-365.3	90-110		90-110		ND		80-120		80-120		0-20	
Ethane, Ethene, Methane- RSK SOP-175	85-115		85-115		ND		85-115		85-115		0-20	
Alkalinity-310.1	90-110		90-110		ND		80-120		80-120		0-20	
Diss. Ammonia-350.1	90-110		90-110		ND		80-120		80-120		0-20	
TKN-351.2	90-110		90-110		ND		80-120		80-120		0-20	
BOD-405.1	90-110		90-110		ND		80-120		80-120		0-20	
COD-410.4	90-110		90-110		ND		80-120		80-120		0-20	Ì
DOC, TOC 415.1	90-110		90-110		ND		80-120		80-120		0-20	
Ferrous Iron, Ferric Iron- 3500-FE D	90-110		90-110		ND		80-120		80-120		0-20	

Note: Laboratory specific acceptance criteria are preferred by EPA, and will be used for verification assessments in each category during data validation. Criteria presented in this table are general guidelines and may vary for each laboratory based on internal QA/QC procedures.