

September 3, 2010 Ref. No. 31129-077

Mr. Jaspal Walia Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Subject: Indoor Air and Sub-Slab Soil Vapor Sampling Results Leica, Inc. Site; Erie County, Cheektowaga, New York Inactive Hazardous Waste Disposal Site No. 915156

Dear Mr. Walia:

Enclosed you will find the results of the indoor air and sub-slab soil vapor sampling event conducted at the Leica, Inc. facility on March 23, 2010. This date is within the acceptable time frame for the winter heating season as recommended in the New York State Department of Health (NYSDOH) guidance. The samples were collected from four locations inside the building at the main warehouse area, loading dock, basement, and main entry areas. In addition, one vapor sample was collected at a background location east of the building. See the attached Figure 1 for sample locations.

Indoor air and sub-slab vapor samples were collected to evaluate the effectiveness of the HRC compound injected in the area in 2008, and as a follow up to a previous sampling event conducted in December 2008. Based on the fact that a NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form was completed during past sampling events, and the effects of ancillary stored chemicals are expected to be relatively insignificant compared to the effects from the existing contamination, we did not complete another survey for this sampling event.

Samples were collected in approximately the same location as the December 2008 samples, and in substantial accordance with the September 2006 "Supplemental Area B Indoor Air and Sub-Slab Soil Gas Sampling Plan" and in compliance with NYSDOH guidance. Six liter SUMMA canisters were used for sample collection and sampling occurred over a twenty-four hour period using an appropriate regulator provided by the laboratory. TeflonTM tubing was used for sample collection with the end of the tubing connected to a 3-way valve.

Mr. Jaspal Walia Page 2 September 3, 2010

A length of the TeflonTM tubing was connected to the SUMMA canister and one length connected to a photoionization detection (PID) with a low-flow vacuum air pump. The 3-way valve was opened towards the PID and vacuum pump to allow for purging of three volumes of the tubing and monitoring of the air. Following purging activities, the vacuum pump was turned off and the 3-way valve opened to allow airflow towards the SUMMA canister.

The SUMMA canisters were relinquished under chain-of-custody to Columbia Analytical Services for analysis on March 24, 2010. The samples were analyzed using United States Environmental Protection Agency (EPA) Method TO-15. A copy of the Sampling Plan is included as Appendix A.

Sample results were compared to published guidance values. The (NYSDOH) has established indoor air and sub-slab vapor concentration action levels for several volatile organic compounds (VOCs) in the guidance document entitled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," published in October 2006. A copy of the summary table showing the results of the vapor survey is included as Table 1.

Trichloroethylene (TCE) the contaminant most frequently detected during the vapor intrusion survey, was detected in all samples collected from within the building. The highest TCE concentration of 190,000 micrograms per cubic meter ($\mu g/m^3$), was detected in the Entryway sub-slab sample (SB-1). The highest indoor air concentration of TCE was also detected in the Entryway air sample (IA-1). The TCE concentrations are above the NYSDOH mitigation action levels for all four areas tested.

The NYSDOH Guidance Matrix values are included in Table 1. The Guidance matrix uses two values from the sub-slab and ambient air samples at each location to determine the recommended action. The most recent data has been color coded to show which component, the sub-slab or ambient air data, is the driving component for the recommended action. In general, the sub-slab concentrations are elevated such that they are the driving component in the matrix. All seven compounds (carbon tetrachloride, 1,1-dichloroethene [1,1-DCE], cis-1,2-dichloroethene [1,2-DCE], tetrachloroethene [PCE], 1,1,1-trichloroethane [TCA], TCE, and vinyl chloride) detected in the entryway sub-slab data are the driving component for mitigation. In concert with the sub-slab data, ambient air data for the 1,1,1-trichloroethane (TCA) and TCE were also driving components for the entryway samples.

The basement area had the next highest concentration of TCE in the sub-slab at 25,000 μ g/m³ (22,000 μ g/m³) followed by the loading dock sub-slab sample at 12,000 μ g/m³, and the warehouse area sub-slab sample at 260 μ g/m³ (190 μ g/m³ for the duplicate). For the warehouse area, the ambient air concentration of 9 μ g/m³ was the driving component for mitigation in the matrix. The second result for the basement area sample was due to a result that exceeded the calibration range and thus required a dilution and reanalysis of the sample by the laboratory. The laboratory data is included as Appendix B.

Mr. Jaspal Walia Page 3 September 3, 2010

TCA was an additional driving component for mitigation in the loading dock and basement area sub-slab samples.

Carbon tetrachloride was present in the background outdoor air sample at a concentration of 0.63 μ g/m³, above the NYSDOH minimum indoor air action threshold of 0.25 μ g/m³. PCE, TCA, and TCE were all detected at estimated concentrations in the background air sample, but all concentrations were below the minimum action threshold concentrations.

Though many of the VOC concentrations remain elevated, most VOC concentrations have decreased since the December 2008 sampling event. All indoor air concentrations are below the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) in every case.

As required by NYSDOH guidance, a mitigation plan for the detected VOCs will be prepared for the SamSon facility and submitted to the NYSDEC for approval. As proposed during our telephone conversation on July 30, 2010, we anticipate submitting the mitigation plan by September 30, 2010.

Please let me know when you have had an opportunity to review this information. I would like to review our general mitigation approach with you before beginning final preparation of the plan. In the interim, if you have any questions regarding this report, please feel free to call me at 801-303-1092.

Sincerely,

. Inc Pala

Robert E. McPeak, Jr., P.E., LEP Department Manager, Environmental Services

Enclosure cc: J. Egan C. Grabinski C. O'Connor, NYSDOH

FIGURE 1

MARCH 2010 INDOOR AIR AND SUB SLAB VAPOR SAMPLING LOCATIONS AREA "B"

TABLE 1

SUMMARY OF SUB-SLAB AND INDOOR AIR SAMPLES

Sample location	Minimun	n Action T	hreshold	s (ug/m³)		SS3	SB-1	SB-1	SB-1	AA3C	IA-1	IA-1	IA-1
Sample Area:	Matrix 1	Matrix 1	Matrix 2	Matrix 2			ENTRYWAY	SUB SLAB			ENTRYWAY A	AMBIENT AIR	
Lab ID#	Indoor	Sub Slab	Indoor	Sub Slab	USHA PELS	965225	1106315	1162643	R1001548-001	965236	1106317	1162645	R1001548-002
Sample Collection Date:	Air	Vapor	Air	Vapor	(ug/m3)	12/20/2006	6/12/2008	12/12/2008	3/23/2010	12/20/2006	6/12/2008	12/12/2008	3/23/2010
Analitical Dilution:		-				3143	14900	781	1.36	2	1.52	1.41	1.54
Volatile Organic Compounds (mcg/m	3)												
carbon tetrachloride	0.25	5			62700	ND	2100 U	110 U	320 U	0.5	0.61	0.64	0.57
1,1-dichloroethene			3	100	400000	3300	6500 D	340 U	2000	1.2 U	0.66 U	0.61 U	0.2 J
cis-1,2-dichloroethene			3	100	NE	5500	23000 D	1900 D	8800	ND	1.2	0.64	0.69
tetrachloroethene			3	100	678000	ND	2200 U	120 U	740	ND	0.27	0.22	0.18
1,1,1-trichloroethane			3	100	1900000	180000	260000 D	13000 D	91000	9.3	12	4.3	8.2
trichloroethene	0.25	5			537000	91000	480000 D	32000 D	19000	16	18	12	17
vinyl chloride	0.25	5			1280	ND	4200 U	220 U	270 U	ND	0.43 U	0.4 U	0.092 <mark>U</mark>

NOTES: Bold = Exceeds applicable air matricies

ND = Not Detected

B = Analyte detected in method blank

D = Sample reanalyzed and quantified at higher dilution

E = Exceeds calibration range

J = Estimated concentration

U = Analyte was not detected

NE = Not Established

NYSDOH Guidance Matrix Recommended Actions Legend

* Driving Matrix Component for	** Secondary Matrix Component	Action
Action	for Action	
		No Further Action
		Monitor
		Mitigate

* At this concentration, the specified action is required, at a minimum, regardless of the concentrations in the alternate media (subslab or ambient air).

** At this concentration, a less aggressive action might be acceptable if the concentrations in the alternate media (subslab or ambient air) are reduced.

Sample location	Minimur	m Action	Threshold	ds (ug/m³)			SS7		SB-3		SB-3		SB-3		SB-3		SB-3		AA7A		IA-3		IA-3		IA-3	
Sample Area:	Matrix 1	Matrix 1	Matrix 2	Matrix 2							WAREHOUS	SE A	REA SUB SL	.AB						v	WAREHOUSE	ARE		r aif	R	
Lab ID#	Indoor	Sub Slab	Indoor	Sub Slab	USHA PELS		965232		1106320		1162648		R1001548-0	05	R1001548-0	005	Duplicate		965233		1106321		1162649		R1001548-	012
Sample Collection Date:	Air	Vapor	Air	Vapor	(ug/m3)	1	12/20/2006	6	6/12/2008		12/12/200	8	3/23/2010)	3/23/2010)	3/23/2010		12/20/2006	Т	6/12/2008		12/12/2008	3	3/23/2010	0
Analitical Dilution:		-					36.7		59.2		14.5		1.49		1.49		1		4	_	2.92		1.42		1.38	
Volatile Organic Compounds (mcg/m	3)																									
carbon tetrachloride	0.25	5			62700		ND		8.2	U	2	U	13	U	26	U	22	U	ND		0.64		0.6		0.62	
1,1-dichloroethene			3	100	400000		22	U	26	U	6.3	U	84	U	160	U	140	U	2.4	U	1.3	U	0.62	U	0.03	J
cis-1,2-dichloroethene			3	100	NE		220	D	300	D	110		43	J	44	DJ	33	J	ND		1.3	U	0.62	U	0.35	J
tetrachloroethene			3	100	678000		31		64	D	18		36		31	D	29		ND		0.44	U	0.21	U	0.14	
1,1,1-trichloroethane			3	100	1900000		ND		48	D	9.7		14	J	42	DJ	13	J	ND		1.8	U	0.85	U	0.57	J
trichloroethene	0.25	5			537000		1500	D	3100	D	660		220		260	D	190		8.1		4.9		5.7		9	
vinyl chloride	0.25	5			1280		ND		17	U	8.4		11	U	22	U	19	U	ND		0.82	U	0.4	U	0.083	U
NOTES:																										

Bold = Exceeds applicable air matricies

ND = Not Detected

B = Analyte detected in method blank

D = Sample reanalyzed and quantified at higher dilution

E = Exceeds calibration range

J = Estimated concentration

U = Analyte was not detected

NE = Not Established

NYSDOH Guidance Matrix Recommended Actions Legend

* At this concentration, the specified action is required, at a minimum, regardless of the concentr

Sample location	Minimun	n Action T	hreshold	s (ug/m³)		SS2		SB-2		SB-2		SB-2		AA1A		IA-2		IA-2		IA-2	
Sample Area:	Matrix 1	Matrix 1	Matrix 2	Matrix 2				LOADING I	DOC	CK SUB SLAI	в					LOADING	DOC	K AMBIENT A	IR		
Lab ID#	Indoor	Sub Slab	Indoor	Sub Slab	USHA PELS	965237		1106318		1162647		R1001548-00	03	965235		1106319	1	1162646		R1001548-00)4
Sample Collection Date:	Air	Vapor	Air	Vapor	(ug/m3)	12/20/2006		6/12/2008		12/12/2008	3	3/23/2010		12/20/20	06	6/12/200	8	12/12/2008	3	3/23/2010	
Analitical Dilution:				•		100		1788		141		1.46		2		2.98		1.41		1.42	
Volatile Organic Compounds (mcg/m	3)																				
carbon tetrachloride	0.25	5			62700	ND		250	U	20	U	16	U	0.51		0.75		0.59		0.57	
1,1-dichloroethene			3	100	400000	60	U	780	U	61	U	100	U	1.2	U	1.3	U	0.61	U	0.62	U
cis-1,2-dichloroethene			3	100	NE	ND		780	U	77	D	130		ND		1.3	U	0.61	U	0.19	J
tetrachloroethene			3	100	678000	28		1200	D	77	D	190		0.55		0.58		0.21	U	0.27	
1,1,1-trichloroethane			3	100	1900000	430		11000	D	920	D	1900		ND		1.8	U	0.85	U	0.22	J
trichloroethene	0.25	5			537000	5000	D	75000	D	5100	D	12000		5.5		5.1		4.7		4.4	
vinyl chloride	0.25	5			1280	ND		500	U	62	D	14	U	ND		0.84	U	0.4	U	0.085	U
NOTER.																					

NOTES: Bold = Exceeds applicable air matricies

ND = Not Detected

B = Analyte detected in method blank

D = Sample reanalyzed and quantified at higher dilution

E = Exceeds calibration range

J = Estimated concentration

U = Analyte was not detected

NE = Not Established

NYSDOH Guidance Matrix Recommended Actions Legend

* Driving Matrix Component for	** Secondary Matrix Component for Action	Action
Action	IOI Action	No Further Action
		Monitor
		Mitigate

* At this concentration, the specified action is required, at a minimum, regardless of the concentr

Sample location	Minimur	n Action 1	Threshold	s (ug/m³)		SS5		SB-4		SB-4		SB-4		SB-4		AA5A		IA-4		IA-4		١A·	4
Sample Area:	Matrix 1	Matrix 1	Matrix 2	Matrix 2				BASI	EM	IENT AREA SU	JB S	SLAB						BASEMENT	ARE		T AIR		
Lab ID#	Indoor	Sub Slab	Indoor	Sub Slab	OSHA PELS	965229		1106322		1162650		R1001548-00	17	R1001548-0	07	965230		1106323	3	116265	1	R100154	8-008
Sample Collection Date:	Air	Vapor	Air	Vapor	(ug/ms)	12/20/200	6	6/12/2008		12/12/2008		3/23/2010		3/23/2010		12/20/200	6	6/12/200	8	12/12/20	08	3/23/2	010
Analitical Dilution:		-		-		1571		1430		633.6		1.4		1.4		1		1.47		1.35		1.4	4
Volatile Organic Compounds (mcg/m	3)																						
carbon tetrachloride	0.25	5			62700	ND		200 L	J	88	U	25	U	49	U	0.61		0.6		0.6		0.71	
1,1-dichloroethene			3	100	400000	3200		1000 E	D	280	U	520		440	D	0.6	υ	0.64	U	0.59	U	0.63	U
cis-1,2-dichloroethene			3	100	NE	3200		870 E	D	520	D	460		390	D	ND		0.64	U	0.59	U	0.11	J
tetrachloroethene			3	100	678000	16000		430	D	250	D	340		290	D	0.28		0.22	U	0.2	U	0.076	J
1,1,1-trichloroethane			3	100	1900000	110000		15000 E	D	3900	D	5100		4400	D	1.1		1.2		1.2		0.19	J
trichloroethene	0.25	5			537000	110000		59000 E	D	25000	D	25000	Е	22000	D	1.4		1.1		0.92		0.35	
vinyl chloride	0.25	5			1280	ND		400 L	J	180	U	22	U	42	U	ND		0.41	U	0.38	U	0.086	U
NOTES:																							

Bold = Exceeds applicable air matricies

ND = Not Detected

B = Analyte detected in method blank

D = Sample reanalyzed and quantified at higher dilution

E = Exceeds calibration range

J = Estimated concentration

U = Analyte was not detected

NE = Not Established

NYSDOH Guidance Matrix Recommended Actions Legend

* At this concentration, the specified action is required, at a minimum, regardless of the concentration

Sample location	Minimur	n Action 1	Threshold	ls (ug/m³)		SS4		OA-1		QA-1		QA	
Sample Area:	Matrix 1	Matrix 1	Matrix 2	Matrix 2		OUTDOOR AIR SAMPLE (BACKGROUND)						JND)	
Lab ID#	Indoor	Sub Slab	Indoor	Sub Slab	OSHA PELS	965228		1106351		1162652		R1001548-0	010
Sample Collection Date:	Air	Vapor	Air	Vapor	(ug/m3)	12/20/200	ô	6/12/2008		12/12/200	В	3/23/2010)
Analitical Dilution:						20		1.57		1.36		1.39	
Volatile Organic Compounds (mcg/m	3)												
carbon tetrachloride	0.25	5			62700	ND		0.59		0.63		0.1	Т
1,1-dichloroethene			3	100	400000	12	U	0.68	U	0.59	U	0.61	U
cis-1,2-dichloroethene			3	100	NE	120		0.68	U	0.59	U	0.15	U
tetrachloroethene			3	100	678000	5.6		3.2		0.2	U	0.1	J
1,1,1-trichloroethane			3	100	1900000	55		0.94	U	0.82	U	0.011	J
trichloroethene	0.25	5			537000	890		8.1		0.23		0.0058	J
vinyl chloride	0.25	5			1280	ND		0.44	U	0.38	U	0.33	U
NOTES:													

Bold = Exceeds applicable air matricies

ND = Not Detected

B = Analyte detected in method blank

D = Sample reanalyzed and quantified at higher dilution

E = Exceeds calibration range

J = Estimated concentration

U = Analyte was not detected

NE = Not Established

NYSDOH Guidance Matrix Recommended Actions Legend

* At this concentration, the specified action is required, at a minimum, regardless of the concentr

APPENDIX A

SUPPLEMENTAL AREA B INDOOR AIR AND SUB-SLAB SOIL GAS SAMPLING PLAN

SUPPLEMENTAL AREA B INDOOR AIR AND SUB-SLAB SOIL GAS SAMPLING PLAN

FOR THE

LEICA, INC. SITE CHEEKTOWAGA, NEW YORK

Prepared for:

LEICA, INC. OPTICAL PRODUCTS DIVISION 2345 WAUKEGAN ROAD BANNOCKBURN, IL 60015

> PREPARED BY Energy*Solutions*, LLC 143 West Street New Milford, CT 06776

> > SEPTEMBER 2006

SUPPLEMENTAL AREA B INDOOR AIR AND SUB-SLAB SOIL GAS SAMPLING PLAN

FOR THE

LEICA, INC. SITE CHEEKTOWAGA, NEW YORK

Prepared for:

LEICA, INC. OPTICAL PRODUCTS DIVISION 2345 WAUKEGAN ROAD BANNOCKBURN, IL 60015

> PREPARED BY Energy*Solutions*, LLC 143 WEST STREET NEW MILFORD, CT 06776

> > **SEPTEMBER 2006**

Robert E. McPeak, Jr., P.E., LEP Department Manager, Environmental Services Date

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION	.1
	1.1 Objectives	.1
20	SCORE OF WORK	C
2.0	2.1 Test 1 Dro Compling Duilding Surger and Droduct Inventory	.2
	2.1 Task 1 – Pre-Sampling Bunding Survey and Product Inventory	.2
	2.2 Task 2 – Sample Collection and Analysis	.4

FIGURES

- 1. Site Location Map, Outdoor Air Sample Location
- 2. Sample Location Map, Indoor Air Quality Samples

ATTACHMENT 1

Indoor Air Quality Questionnaire and Building Inventory Form

ATTACHMENT 2

Soil Gas Survey

1.0 INTRODUCTION

Energy*Solutions* has prepared this scope of work on behalf of Leica, Inc. (Leica) for the completion of a Vapor Intrusion Investigation at the Samson Distributing warehouse facility located at the intersection of Eggert and Sugar Roads in Cheektowaga, NY (the Site). The facility was formerly operated by Leica for the manufacturing of optical instruments. Samson currently utilizes the facility for warehousing of a variety of manufactured household goods. A Site Location map is provided as Figure 1.

1.1 Objectives

Vapor intrusion is the process by which volatile chemicals migrate through the soil column from a subsurface source (subsurface vapor) into the indoor air of a building. The scope of work presented in this Work Plan was designed to facilitate the collection of vapor data to evaluate the potential for vapor intrusion at the Site. Contaminants of concern detected in soils beneath the building at concentrations above the site Remedial Action Objectives (RAOs) include trichloroethylene, 1,1,1 trichloroethane, and Xylene as well as other VOCs detected in soils and soil vapor beneath the Samson facility at lower concentrations. The objective of the sampling effort will be to assess the concentrations of these contaminants within the sub-slab soil gas and also within the indoor air at the facility.

Specifically, eight sub-slab vapor samples, four indoor air samples and an outdoor air sample will be collected as part of this scope of work to characterize soil vapor below the building, and the air within, and surrounding the building. This vapor intrusion survey will be conducted in accordance with the New York State Department of Health (NYSDOH) Draft document titled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated February 2005 (NYSDOH, 2005). Sub-slab vapor samples will be collected in the locations specified in this plan which were selected based on available soil gas data, knowledge of the specific sensitive uses of the building (areas where employees congregate) and knowledge of the location of soil contamination beneath the building floor.

2.0 SCOPE OF WORK

In order to meet the objectives of this scope of work, the following tasks will be completed:

- Task 1 Pre-Sampling Building Survey and Product Inventory; and
- Task 2 Sample Collection and Analysis.

A detailed description of each is provided below.

2.1 Task 1 – Pre-Sampling Building Survey and Product Inventory

In accordance with the NYSDOH Draft Guidance (NYSDOH, 2005), a pre-sampling building survey will be performed prior to sampling within the building. The purpose of this pre-sampling building survey is to identify, and minimize conditions that may interfere with the collection of accurate and representative samples. Potential conditions that may interfere with sample collection may include, but are not limited to the storage of products containing volatile organic compounds (VOCs), freshly painted surfaces, new carpet, the use of petroleum products, etc. The building survey will evaluate the type of building structure, floor layout, airflow patterns, and the physical condition of the building. Additionally, a product inventory will be completed to identify any potential sources of indoor air contamination by characterizing the occurrence and use of chemicals and products throughout the building. All information gathered during the pre-sampling building survey and the product inventory will be recorded on the NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form (provided as Attachment 1). As shown on Attachment 1, the following information will be recorded:

- Owner or landlord information;
- Building characteristics (e.g., residential type, number of units, number of floors, building age, etc.);
- Construction characteristics, including foundation cracks and utility penetrations, ceiling construction and firewall separations, or other openings that may serve as preferential pathways for gas intrusion;
- Heating, ventilation, and air conditioning systems, including the type of heating system(s), type of fuel used, presence of a boiler/furnace, presence of aboveground or underground storage tanks, type(s) of air conditioning, and the presence of air distribution ducts;

- Factors that may influence indoor air quality, petroleum-powered machines stored in the basement, workshop area, smoking in the basement, exhaust fans in the basement, new carpets, fresh paints, chemical storage, etc.; and
- Type of water supply and sewage disposal.

As part of the product inventory, if available, specific chemical ingredients for each product will be listed. If specific chemical ingredients are not presented on the product label, the products full name, and the manufacturer's name and contact information will be recorded. Photographs will be taken as appropriate to document the building survey and product inventory activities.

A portable photoionization detector (PID) will be used as part of the pre-sampling building survey and product inventory to help identify potential sources of VOCs. If any chemicals onsite are found to be stored in a questionable manner (i.e., open container, yield positive PID screening results, emit odor, etc.) they will be controlled to eliminate potential interference. Control options may include removal of the container or ensuring containers are tightly closed. If corrective actions are required, sampling will not be conducted for a period of 24-hours following the corrective action to allow the building to equilibrate. Additionally, as specified in the NYSDOH Draft Guidance (NYSDOH, 2005), it will be requested that building occupants refrain from the activities listed below for a period of 24-hours prior to, and during the sampling activities:

- Opening any windows, openings or vents within the building;
- Operating any ventilation fans within the building;
- Smoking in the building;
- Painting within the building;
- Using air fresheners or scented candles;
- Allowing containers of gasoline or oil to remain within the building, except for fuel oil tanks;
- Cleaning, waxing or polishing furniture, floors or other woodwork with petroleum or oilbased products within the building;

- Engaging in any activities that use materials containing VOCs within the building;
- Lawn mowing or paving;
- Applying pesticides; and
- Using building repair or maintenance products, such as caulk or roofing tar.

2.2 Task 2 – Sample Collection and Analysis

The collection of eight sub-slab vapor samples and four indoor air samples is proposed from within the approximate 6000 square foot footprint of the building in the immediate vicinity of the contaminated sub-surface soils. Additionally, one outdoor air sample will be collected from a representative unaffected location, near the building structure. All samples will be collected in 6 litre SUMA canisters equipped with a pre-calibrated regulator designed to restrict flow to allow sample collection over a 24-hour period.

Specific Q/A procedure normally used to maintain the samples at 4°C are not required with SUMMA canisters. Valves on the canisters will be closed tight and the canisters will be transported to the Columbia Analytical Services of Rochester, NY via courier under standard chain of custody. A description of the sampling methods, Q/A samples and analysis for each type of sample is provided below.

2.2.1 Sub-Slab Vapor Samples

Sub-Slab vapor samples will be collected in the locations shown on Figure 2. Sample locations are focused in the general vicinity of the loading dock at the northeast corner of the facility. This area is known to be the locus of elevated contaminant concentrations in soil and soil gas based on previous sampling. A soil gas survey which provided contaminant results in total mass was performed in June of 2005. Results of this survey are included in Attachment 2. Based on these results, it is clear that the concentrations of soil gas are highest near the south end of the loading dock and the basement and are significantly reduce within approximately 50 feet to the west toward the central areas of the building. Based on these results, areas of the building which are of particular concern include Areas 1, 2, 3, 4, 5, 6, 7 and 8 as shown on Figure 2. Most of the

areas are representative of smaller confined rooms within the building located above the detected elevated concentrations. Areas were also selected based on knowledge regarding locations of foundation walls and other sub-floor structures such as the loading dock and the basement. Interior walls dividing these rooms are shown in the Figure. Areas 1 and 7 are representative of larger open warehousing areas to the west of these smaller rooms.

In addition to the soil gas survey completed in June of 2005, additional sampling of soils beneath the building and the paved area to the east of the loading dock was also completed in December of 2005 and March of 2006. Results of this sub-slab soil sampling are shown on Figure 2 in light text. Soil sampling results corroborated the results of the soil gas survey, indicating that contaminant concentrations were focused in the vicinity of the south end of the loading dock and the basement and declined significantly within about 50 feet to the west. These results confirmed our conclusions that Areas 1, 2, 3, 4, 5, 6, 7 and 8 were of greatest concern, and that areas to the west further into the facility should not be problematic. Samples collected at Areas 1 and 7 will be collected in large open areas of the building and should be representative of a significant area of the building to the west of the smaller rooms represented by Areas 2, 3, 4, 5, 6 and 8.

Sub-slab vapor samples will be collected from the two-inch soil or aggregate interval located immediately below the slab in the various areas of the building. Sub-slab vapor samples will not be collected in close proximity to cracks or drains in order to minimize potential ambient air infiltration. Temporary sub-slab vapor probe installations will be constructed by first drilling a one-inch diameter borehole through the concrete slab using an electric rotary hammer drill. TeflonTM tubing will then be inserted through the borehole, to a maximum of two inches into the sub-slab soil or aggregate. The annular space will then be backfilled with clean, coarse sand to within approximately 1-inch of the floor slab. The borehole will then be sealed to the surface elevation with non-VOC emitting modeling clay. This seal will ensure that the sub-slab vapor sample is not diluted with air from within the building. The end of the tubing located above grade will be connected to a 3-way valve assembly. One length of TeflonTM tubing coming off of the 3-way valve will be connected to a PID with a low-flow vacuum air pump, and the other

length of Teflon[™] tubing will be connected to a laboratory cleaned and evacuated SUMMA canister. The SUMMA canister will be equipped with a laboratory provided flow regulator calibrated to allow sample collection over a 24-hour period of time.

The 3-way valve will be opened towards the PID vacuum pump, and the vacuum pump will be turned on to purge the tubing. PID readings will be monitored during this purging process. Approximately three volumes of the tubing will be purged. Following purging activities, the vacuum pump will be turned off, and the 3-way valve will be opened to allow airflow towards the SUMMA canister. The valve on the SUMMA canister will then be opened to allow for the sub-slab vapor sample collection. The pre-calibrated regulator on the SUMMA canister will restrict flow to allow sample collection over a 24-hour period.

Following sample collection, the valves on the SUMMA canisters will be tightly closed, and the sub-slab vapor samples will be submitted to a NYSDOH Environmental Laboratory Approved Program (ELAP) certified laboratory under chain-of-custody procedures for analysis. Sub-slab vapor samples will be analyzed for VOCs using United States Environmental Protection Agency (USEPA) Method TO-15. One field duplicate sample will be collected using a pre-cleaned, laboratory provided stainless steel "T" assembly. This stainless steel "T" assembly will allow two SUMMA canisters to collect samples from the same sub-slab installation.

Following the collection of sub-slab vapor samples, the sample tubing will be removed from both locations, and the borings will be backfilled with clean sand. The penetration through the concrete slab will be patched and sealed with a shallow topping of mortar so that it will easy to regain access to the hole in the future if necessary.

2.2.2 Indoor and Outdoor Air Samples

Both indoor and outdoor air samples will be collected concurrently with the sub-slab vapor samples. The up gradient outdoor ambient air sample is used to establish background regional air quality conditions. The indoor air samples will be collected from selected locations in close proximity to four of the sub-slab vapor sample collection locations, at a height approximately

three feet above the floor (the height at which occupants are normally seated). These sample locations are shown on Figure 2. The outdoor air sample will be collected from a representative, upwind location at a height of approximately four feet above the ground (a height representing the approximate breathing zone). The outdoor air sample location will be away from active motor vehicle areas, such as parking areas, driveways, etc as shown on Figure 1.

Both the indoor air and outdoor air samples will be collected using a pre-cleaned 6-liter SUMMA canister equipped with a laboratory provided regulator, calibrated to collect samples over a continuous 24-hour period. Both the indoor and outdoor air sample will be submitted for analysis for VOCs using USEPA Method TO-15.

During the sub-slab sampling, indoor, and outdoor air sampling activities, the following observations will be documented:

- Uses or presence of volatile chemicals during building maintenance will be identified;
- The use of heating or air conditioning systems during sampling will be noted;
- Floor plan sketches that include the floor layout with sample locations, chemical storage areas, garages, doorways, stairways, location of basement sumps or subsurface drains and utility perforations through building foundations, HVAC system air supply and return registers, compass orientation (north), and any other pertinent information should be noted;
- If possible, photographs will accompany floor plan sketches;
- Weather conditions (e.g., precipitation, indoor and outdoor temperature, and barometric pressure) and ventilation conditions (e.g., heating system active and windows closed) will be reported; and

Any pertinent observations, such as spills, floor stains, and odors will be recorded.

The field sampling team will maintain a sample log sheet summarizing the sample identification, date and time of sample collection, identity of samplers, sampling methods and devices utilized, vacuum of canisters before and after samples are collected, and sample analyses.

FIGURES

FIGURE 1 Site Location Map

FIGURE 2 Sample Location Map

ATTACHMENTS

ATTACHMENT 1 Indoor Air Quality Questionnaire And Building Inventory Form

INDOOR AI	NEW YORK ST R QUALITY QU CENTER FO	ATE DEPARTMENT OF HEALTH JESTIONNAIRE AND BUILDING INVENTORY R ENVIRONMENTAL HEALTH
This for	n must be comple	ted for each residence involved in indoor air testing.
Preparer's Name		Date/Time Prepared
Preparer's Affiliation		Phone No
Purpose of Investigation		
1. OCCUPANT:		
Interviewed: Y / N		
Last Name:		First Name:
Address:		
County:		
Home Phone:	Offic	ce Phone:
Number of Occupants/pers	ons at this locatio	n Age of Occupants
2. OWNER OR LANDLO	DRD: (Check if s	ame as occupant)
Interviewed: Y / N		
Last Name:		First Name:
Address:		
County:		
Home Phone:	Offi	ce Phone:
3. BUILDING CHARAC	TERISTICS	
Type of Building: (Circle	appropriate respon	nse)
Residential Industrial	School Church	Commercial/Multi-use Other:

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:
If multiple units, how mar	ıy?	
If the property is commer	cial, type?	
Business Type(s)		
Does it include residen	ces (i.e., multi-use)? Y / Y	If yes, how many?
Other characteristics:		
Number of floors	_ Build	ling age
Is the building insulated	I? Y / N How	air tight? Tight / Average / Not Tight
4. AIRFLOW Use air current tubes or tr	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source	acer smoke to evaluate a	irflow patterns and qualitatively describe:
 AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source Outdoor air infiltration 	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source Dutdoor air infiltration	acer smoke to evaluate a	irflow patterns and qualitatively describe:
4. AIRFLOW Use air current tubes or tr Airflow between floors Airflow near source Outdoor air infiltration Infiltration into air ducts	acer smoke to evaluate a	irflow patterns and qualitatively describe:

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y/N			
k. Water in sump? Y /	N / not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	ump 1 radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used	l is:			
Natural Gas Electric Wood	Fuel O Propan Coal	il ne	Kerosene Solar	
Domestic hot water tank fuel	ed by:			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied?		Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fa	amilyroom, bedro	om, laundry,	workshop, storage)
Basement	:				
1 st Floor	1				
2 nd Floor					
3 rd Floor					
4 th Floor					

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?		Y/N
b. Does the garage have a separate heating unit?		Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has the building ever had a fire?		Y / N When?
e. Is a kerosene or unvented gas space heater present?		Y/N Where?
f. Is there a workshop or hobby/craft area?	Y/N	Where & Type?
g. Is there smoking in the building?	Y/N	How frequently?
h. Have cleaning products been used recently?	Y/N	When & Type?
i. Have cosmetic products been used recently?	Y/N	When & Type?

j. Has painting/staining been done in the last 6 months?				Where & Wh	en?	
k. Is there new carpet, drapes or other textiles?				Where & Wh	en?	
l. Have air fresheners been used recently? Y				When & Type	e?	
m. Is there a kitchen exhaust fan? Y / N				If yes, where vented?		
n. Is there a bathroom exhaust fan? Y / N				If yes, where vented?		
o. Is there a clothes dryer? Y /				If yes, is it ve	nted outside? Y / N	
p. Has there been a	a pesticide appli	cation?	Y / N	When & Type	?	
Are there odors in the building? Y / N If yes, please describe:						
Do any of the buildin (e.g., chemical manufa boiler mechanic, pesti-	g occupants use acturing or labora cide application,	solvents at wor ttory, auto mech cosmetologist d?	*k? Y / N anic or auto body	shop, painting	, fuel oil delivery,	
If yes, are their clot	res washed at wo	u	V / N			
ii yes, are then clou	ies washed at wo	ak.	1719			
Do any of the buildin response)	g occupants reg	ularly use or w	ork at a dry-clea	ning service?	(Circle appropriate	
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service				No Unknown		
Is there a radon mitigation system for the building/structure? Y / N Date of Installation:						
9. WATER AND SEV	WAGE					
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION I	NFORMATION	l (for oil spill re	esidential emerge	ency)		
a. Provide reason	s why relocation	is recommend	ed:			
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel						
c. Responsibility for costs associated with reimbursement explained? Y / N						
d. Relocation package provided and explained to residents? Y / N						

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
			04 (1493) 4 (1580)			
					A CONTRACTOR OF A CONTRACTOR A	
				H. P. David		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX B

LABORATORY DATA

April 14, 2010

Service Request No: R1001548

Mr. Robert McPeak Energy Solutions, Inc. 100 Mill Plain Rd 2nd Floor Mailbox 106 Danbury, CT 06811

Laboratory Results for: Leica Airs

Dear Mr. McPeak:

Enclosed are the results of the sample(s) submitted to our laboratory on March 24, 2010. For your reference, these analyses have been assigned our service request number **R1001548**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 134. You may also contact me via email at KBunker@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lacen Burker

Karen Bunker Project Manager

Page 1 of 44
Client: Energy Solutions Project: Leica Sample Matrix: Air Service Request No.: R1001548 Date Received: 3/24/10

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses.

Sample Receipt

Eleven (11) air samples were collected in 6 Liter canisters by the client on 3/23/10 and were received on the same day at Columbia Analytical Services via the CAS Courier.

Volatile Organic Compounds by EPA Method 8260B

Ten (10) air samples and one (1) Trip Blank were analyzed for a client specified List of Volatile Organics by Method TO-15. All data is reported in ug/m3 and ppby units.

The initial and continuing calibrations criteria were met for all samples.

All BFB Tune requirements were met for the method.

Surrogate standard recoveries were within acceptance limits.

Hits between the Method Reporting Limit (MRL) and Minimum Detection Limit (MDL) are flagged as "J", estimated.

Hits above the calibration range of the standards are flagged as "E", estimated. The sample is then repeated at the appropriate dilution for the hit. Both sets of data are included in the report. The subsequent hits on the diluted sample are flagged as "D".

Laboratory Method Blank contained low level contamination for various compounds. Affected samples are flagged as "B" for these compounds.

Batch QC is included in the report. All Laboratory Control Sample (LCS) recoveries were acceptable.

All samples were analyzed within the 28 day holding time from collection to analysis.

No other analytical or QC problems were encountered.

aren Bunker Date Approved by

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1001548

<u>Lab ID</u>	<u>Client ID</u>
R1001548-001	SB-1
R1001548-002	lA-1
R1001548-003	SB-2
R1001548-004	IA-2
R1001548-005	SB-3
R1001548-007	SB-4
R1001548-008	IA-4
R1001548-009	DUP
R1001548-010	QA
R1001548-011	TRIP
R1001548-012	IA-3

Columbia Analytical Services[™]

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

Analytical Report

-1.3

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:SB-1Lab Code:R1001548-001

Service Request: R1001548 Date Collected: 3/23/10 1130 Date Received: 3/24/10

Date Analyzed: 4/7/10 1053

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	0.300	2000	2000	59	990	990	29	U
75-01-4	Vinyl Chloride	0.300	270	270	39	110	110	15	U
74-83-9	Bromomethane	0.300	1900	1900	110	500	500	27	U
75-00-3	Chloroethane	0.300	2600	2600	140	1000	1000	51	U
67-64-1	Acetone	0.300	23000	23000	850	9500	9500	360	U
75-69-4	Trichlorofluoromethane (CFC 11)	0.300	2800	2800	140	500	500	26	U
75-35-4	1,1-Dichloroethene	0.300	2000	2000	72	520	500	18	
75-09-2	Methylene Chloride	0.300	110	1700	95	31	500	27	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.300	770	770	100	100	100	13	U
75-15-0	Carbon Disulfide	0.300	1500	1500	32	500	500	10	U
156-60-5	trans-1,2-Dichloroethene	0.300	1300	2000	71	330	500	18	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	0.300	25000	2000	91	6100	500	22	
1634-04-4	Methyl tert-Butyl Ether	0.300	3600	3600	28	990	990	7.8	U
108-05-4	Vinyl Acetate	0.300	23000	23000	42	6400	6400	12	U
78-93-3	2-Butanone (MEK)	0.300	62	2900	60	21	1000	20	J
156-59-2	cis-1,2-Dichloroethene	0.300	8800	2000	120	2200	500	31	
67-66-3	Chloroform	0.300	180	2400	100	36	500	21	J
107-06-2	1,2-Dichloroethane	0.300	2000	2000	84	500	500	21	U
71-55-6	1,1,1-Trichloroethane (TCA)	0.300	91000	2700	83	17000	500	15	
71-43-2	Benzene	0.300	78	1600	51	24	500	16	J
56-23-5	Carbon Tetrachloride	0.300	320	320	110	50	50	18	U
78-87-5	1,2-Dichloropropane	0.300	2300	2300	120	500	500	26	U
75-27-4	Bromodichloromethane	0.300	680	680	130	100	100	19	U
79-01-6	Trichloroethene (TCE)	0.300	190000	270	96	35000	51	18	
10061-01-5	cis-1,3-Dichloropropene	0.300	4500	4500	63	1000	1000	14	U
108-10-1	4-Methyl-2-pentanone	0.300	4100	4100	76	1000	1000	18	U
10061-02-6	trans-1,3-Dichloropropene	0.300	2300	2300	97	500	500	21	U
79-00-5	1,1,2-Trichloroethane	0.300	2700	2700	160	500	500	30	U
108-88-3	Toluene	0.300	1600	1900	43	430	490	11	J
591-78-6	2-Hexanone	0.300	2000	2000	91	500	500	22	U
124-48-1	Dibromochloromethane	0.300	860	860	190	100	100	22	U
106-93-4	1,2-Dibromoethane	0.300	770	770	140	100	100	18	U
127-18-4	Tetrachloroethene (PCE)	0.300	740	360	140	110	54	21	

Analytical Report

ł

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-1
Lab Code:	R1001548-001

Service Request: R1001548 Date Collected: 3/23/10 1130 Date Received: 3/24/10

Date Analyzed: 4/7/10 1053

Analytical Method: TO-15

Initial Pressure (psig):

Canister Dilution Factor: 1.36 Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	0.300	2300	2300	110	500	500	23	U
100-41-4	Ethylbenzene	0.300	4300	4300	42	990	990	9.6	U
179601-23-1	m,p-Xylenes	0.300	8700	8700	83	2000	2000	19	U
75-25-2	Bromoform	0.300	5200	5200	130	500	500	13	U
100-42-5	Styrene	0.300	4300	4300	39	1000	1000	9.3	U
95-47-6	o-Xylene	0.300	4300	4300	54	990	990	12	U
79-34-5	1,1,2,2-Tetrachloroethane	0.300	680	680	130	99	99	18	U
541-73-1	1,3-Dichlorobenzene	0.300	6000	6000	99	1000	1000	17	U
106-46-7	1,4-Dichlorobenzene	0.300	6000	6000	120	1000	1000	21	U
95-50-1	1,2-Dichlorobenzene	0.300	6000	6000	140	1000	1000	23	U

-1.3

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	94	70-130	4/7/10 1053	

Analytical Report

-2.9

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-1
Lab Code:	R1001548-002

Service Request: R1001548 Date Collected: 3/23/10 1135 Date Received: 3/24/10

Date Analyzed: 4/5/10 1642

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.54

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	1.2	0.69	0.020	0.58	0.34	0.0097	
75-01-4	Vinyl Chloride	1000	0.092	0.092	0.013	0.036	0.036	0.0052	U
74-83-9	Bromomethane	1000	0.060	0.66	0.036	0.015	0.17	0.0092	J
75-00 - 3	Chloroethane	1000	0.89	0.89	0.046	0.34	0.34	0.017	U
67-64-1	Acetone	1000	9.3	7.7	0.29	3.9	3.2	0.12	
75-69-4	Trichlorofluoromethane (CFC 11)	1000	1.5	0.95	0.049	0.27	0.17	0.0087	
75-35-4	1,1-Dichloroethene	1000	0.20	0.68	0.024	0.049	0.17	0.0061	J
75-09-2	Methylene Chloride	1000	0.38	0.59	0.032	0.11	0.17	0.0093	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.67	0.26	0.034	0.087	0.034	0.0045	
75-15-0	Carbon Disulfide	1000	0.029	0.52	0.011	0.0094	0.17	0.0035	$\mathbf{B}\mathbf{J}$
156-60-5	trans-1,2-Dichloroethene	1000	0.19	0.68	0.024	0.048	0.17	0.0061	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	2.1	0.69	0.031	0.52	0.17	0.0076	
1634-04-4	Methyl tert-Butyl Ether	1000	1.2	1.2	0.0095	0.34	0.34	0.0026	U
108-05-4	Vinyl Acetate	1000	7.7	7.7	0.014	2.2	2.2	0.0041	U
78-93-3	2-Butanone (MEK)	1000	1.0	1.0	0.020	0.35	0.34	0.0069	
156-59-2	cis-1,2-Dichloroethene	1000	0.69	0.68	0.041	0.18	0.17	0.010	
67-66-3	Chloroform	1000	0.10	0.83	0.035	0.021	0.17	0.0072	J
107-06-2	1,2-Dichloroethane	1000	0.11	0.69	0.028	0.028	0.17	0.0070	J
71-55-6	1,1,1-Trichloroethane (TCA)	1000	8.2	0.92	0.028	1.5	0.17	0.0052	
71-43-2	Benzene	1000	0.85	0.54	0.017	0.27	0.17	0.0054	
56-23-5	Carbon Tetrachloride	1000	0.57	0.11	0.039	0.091	0.017	0.0061	
78-87-5	1,2-Dichloropropane	1000	0.79	0.79	0.041	0.17	0.17	0.0088	U
75-27-4	Bromodichloromethane	1000	0.23	0.23	0.044	0.034	0.034	0.0066	U
79-01-6	Trichloroethene (TCE)	1000	17	0.092	0.033	3.2	0.017	0.0061	
10061-01-5	cis-1,3-Dichloropropene	1000	1.5	1.5	0.022	0.34	0.34	0.0048	U
108-10-1	4-Methyl-2-pentanone	1000	0.077	1.4	0.026	0.019	0.34	0.0063	J
10061-02-6	trans-1,3-Dichloropropene	1000	0.77	0.77	0.033	0.17	0.17	0.0072	U
79-00-5	1,1,2-Trichloroethane	1000	0.92	0.92	0.056	0.17	0.17	0.010	U
108-88-3	Toluene	1000	1.7	0.63	0.014	0.46	0.17	0.0038	
591-78-6	2-Hexanone	1000	0.085	0.69	0.031	0.021	0.17	0.0076	J
124-48-1	Dibromochloromethane	1000	0.29	0.29	0.065	0.034	0.034	0.0076	U
106-93-4	1,2-Dibromoethane	1000	0.26	0.26	0.047	0.034	0.034	0.0062	U
127-18-4	Tetrachloroethene (PCE)	1000	0.18	0.12	0.048	0.026	0.018	0.0070	

SuperSet Reference: 10-0000139738rev 00

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-1
Lab Code:	R1001548-002

Service Request: R1001548 Date Collected: 3/23/10 1135 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/5/10 1642 Canister Dilution Factor: 1.54

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS #	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.79	0.79	0.036	0.17	0.17	0.0079	U
100-41-4	Ethylbenzene	1000	0.40	1.5	0.014	0.092	0.34	0.0033	J
179601-23-1	m,p-Xylenes	1000	0.65	2.9	0.028	0.15	0.68	0.0065	J
75-25-2	Bromoform	1000	1.8	1.8	0.045	0.17	0.17	0.0043	U
100-42-5	Styrene	1000	0.22	1.4	0.013	0.052	0.34	0.0031	J
95-47-6	o-Xylene	1000	0.21	1.5	0.018	0.049	0.34	0.0042	J
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.23	0.23	0.043	0.034	0.034	0.0062	U
541-73-1	1,3-Dichlorobenzene	1000	2.0	2.0	0.034	0.34	0.34	0.0056	U
106-46-7	1,4-Dichlorobenzene	1000	0.047	2.0	0.042	0.0079	0.34	0.0070	BJ
95-50-1	1,2-Dichlorobenzene	1000	2.0	2.0	0.048	0.34	0.34	0.0079	U

-2.9

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	100	70-130	4/5/10 1642		

Analytical Report

-2.2

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-2
Lab Code:	R1001548-003

 Service Request:
 R1001548

 Date Collected:
 3/23/10 1140

 Date Received:
 3/24/10

Date Analyzed: 4/7/10 1140

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.46

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	6.3	100	100	3.0	51	51	1.5	U
75-01-4	Vinyl Chloride	6.3	14	14	2.0	5.4	5.4	0.78	U
74-83-9	Bromomethane	6.3	100	100	5.4	26	26	1.4	U
75-00-3	Chloroethane	6.3	130	130	6.9	51	51	2.6	U
67-64-1	Acetone	6.3	120	1200	43	51	490	18	J
75-69-4	Trichlorofluoromethane (CFC 11)	6.3	140	140	7.3	26	26	1.3	U
75-35-4	1,1-Dichloroethene	6.3	100	100	3.7	26	26	0.92	U
75-09-2	Methylene Chloride	6.3	5.9	88	4.8	1.7	25	1.4	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	6.3	120	39	5.2	15	5.1	0.68	
75-15-0	Carbon Disulfide	6.3	79	79	1.6	25	25	0.53	U
156-60-5	trans-1,2-Dichloroethene	6.3	76	100	3.6	19	26	0.92	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	6.3	1000	100	4.6	250	26	1.1	
1634-04-4	Methyl tert-Butyl Ether	6.3	180	180	1.4	51	51	0.40	U
108-05-4	Vinyl Acetate	6.3	1200	1200	2.2	330	330	0.61	U
78-93-3	2-Butanone (MEK)	6.3	21	150	3.1	7.1	51	1.0	J
156-59-2	cis-1,2-Dichloroethene	6.3	130	100	6.2	33	26	1.6	
67-66-3	Chloroform	6.3	20	130	5.3	4.1	26	1.1	J
107-06-2	1,2-Dichloroethane	6.3	100	100	4.3	26	26	1.1	U
71-55-6	1,1,1-Trichloroethane (TCA)	6.3	1900	140	4.3	350	25	0.78	
71-43-2	Benzene	6.3	5.4	81	2.6	1.7	25	0.81	J
56-23-5	Carbon Tetrachloride	6.3	16	16	5.8	2.6	2.6	0.92	U
78-87-5	1,2-Dichloropropane	6.3	120	120	6.1	26	26	1.3	U
75-27-4	Bromodichloromethane	6.3	35	35	6.6	5.2	5.2	0.99	U
79-01-6	Trichloroethene (TCE)	6.3	12000	14	4.9	2200	2.6	0.91	
10061-01-5	cis-1,3-Dichloropropene	6.3	230	230	3.2	51	51	0.71	U
108-10-1	4-Methyl-2-pentanone	6.3	210	210	3.9	51	51	0.94	U
10061-02-6	trans-1,3-Dichloropropene	6.3	120	120	4.9	26	26	1.1	U
79-00-5	1,1,2-Trichloroethane	6.3	140	140	8.4	25	25	1.5	U
108-88-3	Toluene	6.3	1900	95	2.2	510	25	0.58	
591-78-6	2-Hexanone	6.3	100	100	4.7	25	25	1.1	U
124-48-1	Dibromochloromethane	6.3	44	44	9.8	5.2	5.2	1.1	U
106-93-4	1,2-Dibromoethane	6.3	39	39	7.1	5.1	5.1	0.93	U
127-18-4	Tetrachloroethene (PCE)	6.3	190	19	7.2	28	2.7	1.1	

SuperSet Reference: 10-0000139738 rev 00

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-2
Lab Code:	R1001548-003

Service Request: R1001548 Date Collected: 3/23/10 1140 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1140 **Canister Dilution Factor:** 1.46

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS #	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	6.3	120	120	5.5	26	26	1.2	U
100-41-4	Ethylbenzene	6.3	8.2	220	2.1	1.9	51	0.49	J
179601-23-1	m,p-Xylenes	6.3	22	440	4.3	5.0	100	0.98	J
75-25-2	Bromoform	6.3	260	260	6.7	26	26	0.65	U
100-42-5	Styrene	6.3	220	220	2.0	51	51	0.47	U
95-47-6	o-Xylene	6.3	7.9	220	2.8	1.8	51	0.64	J
79-34-5	1,1,2,2-Tetrachloroethane	6.3	35	35	6.4	5.1	5.1	0.94	U
541-73-1	1,3-Dichlorobenzene	6.3	310	310	5.1	51	51	0.84	U
106-46-7	1,4-Dichlorobenzene	6.3	310	310	6.3	51	51	1.1	U
95-50-1	1,2-Dichlorobenzene	6.3	310	310	7.2	51	51	1.2	U

-2.2

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	96	70-130	4/7/10 1140		

Analytical Report

-1.9

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:IA-2Lab Code:R1001548-004

Service Request: R1001548 Date Collected: 3/23/10 1142 Date Received: 3/24/10

Date Analyzed: 4/5/10 1732

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.42

CAS #	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	1.2	0.64	0.018	0.56	0.31	0.0089	
75-01-4	Vinyl Chloride	1000	0.085	0.085	0.012	0.033	0.033	0.0048	U
74-83-9	Bromomethane	1000	0.61	0.61	0.033	0.16	0.16	0.0085	U
75-00-3	Chloroethane	1000	0.82	0.82	0.042	0.31	0.31	0.016	U
67-64-1	Acetone	1000	12	7.1	0.27	5.2	3.0	0.11	
75-69-4	Trichlorofluoromethane (CFC 11)	1000	1.5	0.88	0.045	0.26	0.16	0.0080	
75-35-4	1,1-Dichloroethene	1000	0.62	0.62	0.022	0.16	0.16	0.0057	U
75-09-2	Methylene Chloride	1000	0.50	0.54	0.030	0.14	0.16	0.0085	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.80	0.24	0.032	0.10	0.032	0.0042	
75-15-0	Carbon Disulfide	1000	0.038	0.48	0.010	0.012	0.16	0.0032	BJ
156-60-5	trans-1,2-Dichloroethene	1000	0.033	0.62	0.022	0.0084	0.16	0.0056	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.074	0.64	0.028	0.018	0.16	0.0070	J
1634-04-4	Methyl tert-Butyl Ether	1000	1.1	1.1	0.0088	0.31	0.31	0.0024	U
108-05-4	Vinyl Acetate	1000	0.056	7.1	0.013	0.016	2.0	0.0038	J
78-93-3	2-Butanone (MEK)	1000	1.4	0.92	0.019	0.46	0.31	0.0064	
156-59-2	cis-1,2-Dichloroethene	1000	0.19	0.62	0.038	0.049	0.16	0.0096	J
67-66-3	Chloroform	1000	0.094	0.77	0.032	0.019	0.16	0.0066	J
107-06-2	1,2-Dichloroethane	1000	0.13	0.64	0.026	0.032	0.16	0.0065	J
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.22	0.85	0.026	0.040	0.16	0.0048	J
71-43-2	Benzene	1000	1.3	0.50	0.016	0.42	0.16	0.0050	
56-23-5	Carbon Tetrachloride	1000	0.57	0.099	0.036	0.090	0.016	0.0056	
78-87-5	1,2-Dichloropropane	1000	0.72	0.72	0.037	0.16	0.16	0.0081	U
75-27-4	Bromodichloromethane	1000	0.21	0.21	0.041	0.032	0.032	0.0061	U
79-01-6	Trichloroethene (TCE)	1000	4.4	0.085	0.030	0.83	0.016	0.0056	
10061-01-5	cis-1,3-Dichloropropene	1000	1.4	1.4	0.020	0.31	0.31	0.0044	U
108-10-1	4-Methyl-2-pentanone	1000	0.067	1.3	0.024	0.016	0.31	0.0058	J
10061-02-6	trans-1,3-Dichloropropene	1000	0.71	0.71	0.030	0.16	0.16	0.0067	U
79-00-5	1,1,2-Trichloroethane	1000	0.85	0.85	0.051	0.16	0.16	0.0094	U
108-88-3	Toluene	1000	3.9	0.58	0.013	1.0	0.15	0.0035	
591-78-6	2-Hexanone	1000	0.089	0.64	0.029	0.022	0.16	0.0070	J
124-48-1	Dibromochloromethane	1000	0.27	0.27	0.060	0.032	0.032	0.0070	U
106-93-4	1,2-Dibromoethane	1000	0.24	0.24	0.044	0.031	0.031	0.0057	U
127-18-4	Tetrachloroethene (PCE)	1000	0.27	0.11	0.044	0.039	0.017	0.0065	

SuperSet Reference: 10-0000139738 rev 00

Analytical Report

-1.9

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-2
Lab Code:	R1001548-004

Service Request: R1001548 Date Collected: 3/23/10 1142 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/5/10 1732 **Canister Dilution Factor:** 1.42

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.72	0.72	0.034	0.16	0.16	0.0073	U
100-41-4	Ethylbenzene	1000	0.97	1.3	0.013	0.22	0.31	0.0030	J
179601-23-1	m,p-Xylenes	1000	1.7	2.7	0.026	0.38	0.62	0.0060	J
75-25-2	Bromoform	1000	1.6	1.6	0.041	0.16	0.16	0.0040	U
100-42-5	Styrene	1000	0.52	1.3	0.012	0.12	0.31	0.0029	J
95-47-6	o-Xylene	1000	0.55	1.3	0.017	0.13	0.31	0.0039	J
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.21	0.21	0.039	0.031	0.031	0.0058	U
541-73-1	1,3-Dichlorobenzene	1000	1.9	1.9	0.031	0.31	0.31	0.0052	U
106-46-7	1,4-Dichlorobenzene	1000	0.045	1.9	0.039	0.0075	0.31	0.0065	$\mathbf{B}\mathbf{J}$
95-50-1	1,2-Dichlorobenzene	1000	1.9	1.9	0.044	0.31	0.31	0.0073	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	101	70-130	4/5/10 1732	

Analytical Report

-2.5

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-3
Lab Code:	R1001548-005

Service Request: R1001548 Date Collected: 3/23/10 1200 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1226 **Canister Dilution Factor:** 1.49

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	7.8	86	86	2.5	42	42	1.2	U
75-01-4	Vinyl Chloride	7.8	11	11	1.6	4.5	4.5	0.64	U
74-83-9	Bromomethane	7.8	82	82	4.4	21	21	1.1	U
75-00-3	Chloroethane	7.8	110	110	5.7	42	42	2.2	U
67-64-1	Acetone	7.8	150	960	36	63	400	15	J
75-69-4	Trichlorofluoromethane (CFC 11)	7.8	120	120	6.0	21	21	1.1	U
75-35-4	1,1-Dichloroethene	7.8	84	84	3.0	21	21	0.76	U
75-09-2	Methylene Chloride	7.8	5.7	73	4.0	1.6	21	1.1	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	7.8	32	32	4.3	4.2	4.2	0.56	U
75-15-0	Carbon Disulfide	7.8	2.9	65	1.4	0.95	21	0.44	J
156-60-5	trans-1,2-Dichloroethene	7.8	30	84	3.0	7.5	21	0.76	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	7.8	86	86	3.8	21	21	0.94	U
1634-04-4	Methyl tert-Butyl Ether	7.8	150	150	1.2	42	42	0.33	U
108-05-4	Vinyl Acetate	7.8	960	960	1.8	270	270	0.50	U
78-93-3	2-Butanone (MEK)	7.8	22	120	2.5	7.6	42	0.86	J
156-59-2	cis-1,2-Dichloroethene	7.8	43	84	5.1	11	21	1.3	J
67-66-3	Chloroform	7.8	100	100	4.4	21	21	0.89	U
107-06-2	1,2-Dichloroethane	7.8	86	86	3.5	21	21	0.87	U
71-55-6	1,1,1-Trichloroethane (TCA)	7.8	14	110	3.5	2.5	21	0.64	J
71-43-2	Benzene	7.8	2.9	67	2.1	0.91	21	0.67	J
56-23-5	Carbon Tetrachloride	7.8	13	13	4.8	2.1	2.1	0.76	U
78-87-5	1,2-Dichloropropane	7.8	97	97	5.0	21	21	1.1	U
75-27-4	Bromodichloromethane	7.8	29	29	5.5	4.3	4.3	0.82	U
79-01-6	Trichloroethene (TCE)	7.8	220	11	4.0	42	2.1	0.75	
10061-01-5	cis-1,3-Dichloropropene	7.8	190	190	2.7	42	42	0.59	U
108-10-1	4-Methyl-2-pentanone	7.8	170	170	3.2	42	42	0.78	U
10061-02-6	trans-1,3-Dichloropropene	7.8	96	96	4.1	21	21	0.90	U
79-00-5	1,1,2-Trichloroethane	7.8	110	110	6.9	21	21	1.3	U
108-88-3	Toluene	7.8	8900	78	1.8	2400	21	0.48	E
591-78-6	2-Hexanone	7.8	86	86	3.8	21	21	0.94	U
124-48-1	Dibromochloromethane	7.8	36	36	8.0	4.3	4.3	0.94	U
106-93-4	1,2-Dibromoethane	7.8	32	32	5.9	4.2	4.2	0.77	U
127-18-4	Tetrachloroethene (PCE)	7.8	36	15	5.9	5.2	2.3	0.87	

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-3
Lab Code:	R1001548-005

Service Request: R1001548 Date Collected: 3/23/10 1200 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1226 **Canister Dilution Factor:** 1.49

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS #	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	7.8	97	97	4.5	21	21	0.98	U
100-41-4	Ethylbenzene	7.8	28	180	1.8	6.4	42	0.40	J
179601-23-1	m,p-Xylenes	7.8	99	360	3.5	23	84	0.81	J
75-25-2	Bromoform	7.8	220	220	5.5	21	21	0.54	U
100-42-5	Styrene	7.8	180	180	1.7	42	42	0.39	U
95-47-6	o-Xylene	7.8	30	180	2.3	6.9	42	0.52	J
79-34-5	1,1,2,2-Tetrachloroethane	7.8	29	29	5.3	4.2	4.2	0.77	U
541-73-1	1,3-Dichlorobenzene	7.8	250	250	4.2	42	42	0.70	U
106-46-7	1,4-Dichlorobenzene	7.8	250	250	5.2	42	42	0.87	U
95-50-1	1,2-Dichlorobenzene	7.8	250	250	5.9	42	42	0.99	U

-2.5

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	95	70-130	4/7/10 1226		

Analytical Report

-2.5

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:SB-3Lab Code:R1001548-005Run Type:DilutionAnalytical Method:TO-15

Service Request: R1001548 Date Collected: 3/23/10 1200 Date Received: 3/24/10

Date Analyzed: 4/7/10 1313 **Canister Dilution Factor:** 1.49

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	4.0	170	170	4.8	81	81	2.3	U
75-01-4	Vinyl Chloride	4.0	22	22	3.2	8.7	8.7	1.3	U
74-83-9	Bromomethane	4.0	160	160	8.6	41	41	2.2	U
75-00-3	Chloroethane	4.0	220	220	11	82	82	4.2	U
67-64-1	Acetone	4.0	140	1900	70	59	780	29	DJ
75-69-4	Trichlorofluoromethane (CFC 11)	4.0	230	230	12	41	41	2.1	U
75-35-4	1,1-Dichloroethene	4.0	160	160	5.9	41	41	1.5	U
75-09-2	Methylene Chloride	4.0	9.1	140	7.8	2.6	41	2.2	DJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	4.0	63	63	8.3	8.3	8.3	1.1	U
75-15-0	Carbon Disulfide	4.0	3.8	130	2.6	1.2	41	0.85	DJ
156-60-5	trans-1,2-Dichloroethene	4.0	30	160	5.8	7.6	41	1.5	DJ
75-34-3	1,1-Dichloroethane (1,1-DCA)	4.0	14	170	7.5	3.4	41	1.8	DJ
1634-04-4	Methyl tert-Butyl Ether	4.0	290	290	2.3	82	82	0.64	U
108-05-4	Vinyl Acetate	4.0	1900	1900	3.5	530	530	0.98	U
78-93-3	2-Butanone (MEK)	4.0	22	240	5.0	7.3	82	1.7	DJ
156-59-2	cis-1,2-Dichloroethene	4.0	44	160	10	11	41	2.5	DJ
67-66-3	Chloroform	4.0	200	200	8.5	41	41	1.7	U
107-06-2	1,2-Dichloroethane	4.0	170	170	6.9	41	41	1.7	U
71-55-6	1,1,1-Trichloroethane (TCA)	4.0	42	220	6.9	7.7	41	1.3	DJ
71-43-2	Benzene	4.0	130	130	4.2	41	41	1.3	U
56-23-5	Carbon Tetrachloride	4.0	26	26	9.3	4.1	4.1	1.5	U
78-87-5	1,2-Dichloropropane	4.0	190	190	9.8	41	41	2.1	U
75-27-4	Bromodichloromethane	4.0	56	56	11	8.3	8.3	1.6	U
79-01-6	Trichloroethene (TCE)	4.0	260	22	7.9	49	4.2	1.5	D
10061-01-5	cis-1,3-Dichloropropene	4.0	370	370	5.2	82	82	1.1	U
108-10-1	4-Methyl-2-pentanone	4.0	340	340	6.2	82	82	1.5	U
10061-02-6	trans-1,3-Dichloropropene	4.0	190	190	7.9	41	41	1.7	U
79-00-5	1,1,2-Trichloroethane	4.0	220	220	13	41	41	2.5	U
108-88-3	Toluene	4.0	7300	150	3.5	1900	41	0.93	D
591-78-6	2-Hexanone	4.0	170	170	7.5	41	41	1.8	U
124-48-1	Dibromochloromethane	4.0	71	71	16	8.3	8.3	1.8	U
106-93-4	1,2-Dibromoethane	4.0	63	63	11	8.2	8.2	1.5	U
127-18-4	Tetrachloroethene (PCE)	4.0	31	30	12	4.6	4.4	1.7	D

SuperSet Reference: 10-0000139738 rev 00

Analytical Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:SB-3Lab Code:R1001548-005Run Type:DilutionAnalytical Method:TO-15

Service Request: R1001548 Date Collected: 3/23/10 1200 Date Received: 3/24/10

Date Analyzed: 4/7/10 1313 **Canister Dilution Factor:** 1.49

Initial Pressure (psig):

Final Pressure (psig):

3	.5
-	

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	4.0	190	190	8.8	41	41	1.9	U
100-41-4	Ethylbenzene	4.0	18	350	3.4	4.2	82	0.79	DJ
179601-23-1	m,p-Xylenes	4.0	61	710	6.9	14	160	1.6	DJ
75-25-2	Bromoform	4.0	420	420	11	41	41	1.0	U
100-42-5	Styrene	4.0	350	350	3.2	82	82	0.76	U
95-47-6	o-Xylene	4.0	19	350	4.4	4.3	82	1.0	DJ
79-34-5	1,1,2,2-Tetrachloroethane	4.0	56	56	10	8.1	8.1	1.5	U
541-73-1	1,3-Dichlorobenzene	4.0	490	490	8.2	82	82	1.4	U
106-46-7	1,4-Dichlorobenzene	4.0	490	490	10	82	82	1.7	U
95-50-1	1,2-Dichlorobenzene	4.0	490	490	12	82	82	1.9	U

-2.5

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	97	70-130	4/7/10 1313	

Analytical Report

-1.7

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:SB-4Lab Code:R1001548-007

Service Request: R1001548 Date Collected: 3/23/10 1230 Date Received: 3/24/10

Date Analyzed: 4/7/10 1401

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.40

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	3.9	160	160	4.7	78	78	2.3	U
75-01-4	Vinyl Chloride	3.9	22	22	3.1	8.4	8.4	1.2	U
74-83-9	Bromomethane	3.9	150	150	8.3	40	40	2.1	U
75-00-3	Chloroethane	3.9	210	210	11	79	79	4.1	U
67-64-1	Acetone	3.9	1800	1800	67	760	760	28	U
75-69-4	Trichlorofluoromethane (CFC 11)	3.9	220	220	11	40	40	2.0	U
75-35-4	1,1-Dichloroethene	3.9	520	160	5.7	130	40	1.4	
75-09-2	Methylene Chloride	3.9	9.2	140	7.5	2.7	39	2.2	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	3.9	27	61	8.0	3.5	8.0	1.0	J
75-15-0	Carbon Disulfide	3.9	120	120	2.5	39	39	0.82	U
156-60-5	trans-1,2-Dichloroethene	3.9	320	160	5.6	81	40	1.4	, <u></u> i.
75-34-3	1,1-Dichloroethane (1,1-DCA)	3.9	3900	160	7.2	950	40	1.8	
1634-04-4	Methyl tert-Butyl Ether	3.9	280	280	2.2	79	79	0.62	υ
108-05-4	Vinyl Acetate	3.9	1800	1800	3.3	510	510	0.95	U
78-93-3	2-Butanone (MEK)	3.9	230	230	4.8	79	79	1.6	U
156-59-2	cis-1,2-Dichloroethene	3.9	460	160	9.7	120	40	2.4	
67-66-3	Chloroform	3.9	20	190	8.2	4.1	40	1.7	J
107-06-2	1,2-Dichloroethane	3.9	160	160	6.6	40	40	1.6	U
71-55-6	1,1,1-Trichloroethane (TCA)	3.9	5100	220	6.6	940	39	1.2	
71-43-2	Benzene	3.9	130	130	4.0	39	39	1.3	U
56-23-5	Carbon Tetrachloride	3.9	25	25	9.0	4.0	4.0	1.4	U
78-87-5	1,2-Dichloropropane	3.9	180	180	9.5	40	40	2.1	U
75-27-4	Bromodichloromethane	3.9	54	54	10	8.0	8.0	1.5	U
79-01-6	Trichloroethene (TCE)	3.9	25000	22	7.6	4600	4.0	1.4	E
10061-01-5	cis-1,3-Dichloropropene	3.9	360	360	5.0	79	79	1.1	U
108-10-1	4-Methyl-2-pentanone	3.9	320	320	6.0	79	79	1.5	U
10061-02-6	trans-1,3-Dichloropropene	3.9	180	180	7.6	40	40	1.7	U
79-00-5	1,1,2-Trichloroethane	3.9	220	220	13	39	39	2.4	U
108-88-3	Toluene	3.9	3600	150	3.4	950	39	0.90	
591-78-6	2-Hexanone	3.9	160	160	7.2	39	39	1.8	U
124-48-1	Dibromochloromethane	3.9	68	68	15	8.0	8.0	1.8	U
106-93-4	1,2-Dibromoethane	3.9	61	61	11	7.9	7.9	1.4	U
127-18-4	Tetrachloroethene (PCE)	3.9	340	29	11	49	4.2	1.6	

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-4
Lab Code:	R1001548-007

Service Request: R1001548 Date Collected: 3/23/10 1230 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1401 **Canister Dilution Factor:** 1.40

Initial Pressure (psig): -1.7

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	3.9	180	180	8.5	40	40	1.8	U
100-41-4	Ethylbenzene	3.9	10	340	3.3	2.4	79	0.76	J
179601-23-1	m,p-Xylenes	3.9	32	690	6.6	7.3	160	1.5	J
75-25-2	Bromoform	3.9	410	410	10	40	40	1.0	U
100-42-5	Styrene	3.9	340	340	3.1	79	79	0.73	U
95-47-6	o-Xylene	3.9	12	340	4.3	2.8	79	0.98	J
79-34-5	1,1,2,2-Tetrachloroethane	3.9	54	54	10	7.8	7.8	1.5	U
541-73-1	1,3-Dichlorobenzene	3.9	470	470	7.9	79	79	1.3	U
106-46-7	1,4-Dichlorobenzene	3.9	470	470	9.8	79	79	1.6	U
95-50-1	1,2-Dichlorobenzene	3.9	470	470	11	79	79	1.9	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note			
4-Bromofluorobenzene	93	70-130	4/7/10 1401			<u>-</u> -	

Analytical Report

-1.7

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-4
Lab Code:	R1001548-007
Run Type:	Dilution
Analytical Method:	TO-15

Service Request: R1001548 Date Collected: 3/23/10 1230 Date Received: 3/24/10

Date Analyzed: 4/7/10 1448 **Canister Dilution Factor:** 1.40

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	2.0	320	320	9.1	150	150	4.4	U
75-01-4	Vinyl Chloride	2.0	42	42	6.0	16	16	2.4	U
74-83-9	Bromomethane	2.0	300	300	16	78	78	4.2	U
75-00-3	Chloroethane	2.0	410	410	21	150	150	7.9	U
67-64-1	Acetone	2.0	3500	3500	130	1500	1500	55	'U
75-69-4	Trichlorofluoromethane (CFC 11)	2.0	430	430	22	77	77	3.9	U
75-35-4	1,1-Dichloroethene	2.0	440	310	11	110	78	2.8	D
75-09-2	Methylene Chloride	2.0	270	270	15	77	77	4.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	2.0	23	120	16	3.0	16	2.0	DJ
75-15-0	Carbon Disulfide	2.0	240	240	5.0	76	76	1.6	U
156-60-5	trans-1,2-Dichloroethene	2.0	280	310	11	70	78	2.8	DJ
75-34-3	1,1-Dichloroethane (1,1-DCA)	2.0	3600	320	14	880	78	3.5	D
1634-04-4	Methyl tert-Butyl Ether	2.0	550	550	4.3	150	150	1.2	U
108-05-4	Vinyl Acetate	2.0	3500	3500	6.5	990	990	1.8	U
78-93 - 3	2-Butanone (MEK)	2.0	460	460	9.3	150	150	3.2	U
156-59-2	cis-1,2-Dichloroethene	2.0	390	310	19	100	78	4.8	D
67-66-3	Chloroform	2.0	18	380	16	3.7	77	3.3	DJ
107-06-2	1,2-Dichloroethane	2.0	320	320	13	78	78	3.2	U
71-55-6	1,1,1-Trichloroethane (TCA)	2.0	4400	420	13	810	77	2.4	D
71-43-2	Benzene	2.0	250	250	7.8	77	77	2.5	U
56-23-5	Carbon Tetrachloride	2.0	49	·49	18	7.8	7.8	2.8	υ
78-87-5	1,2-Dichloropropane	2.0	360	360	18	77	77	4.0	U
75-27-4	Bromodichloromethane	2.0	110	110	20	16	16	3.0	U
79-01-6	Trichloroethene (TCE)	2.0	22000	42	15	4200	7.8	2.8	D
10061-01-5	cis-1,3-Dichloropropene	2.0	700	700	9.8	150	150	2.2	U
108-10-1	4-Methyl-2-pentanone	2.0	630	630	12	150	150	2.9	U
10061-02-6	trans-1,3-Dichloropropene	2.0	350	350	15	77	77	3.3	U
79-00-5	1,1,2-Trichloroethane	2.0	420	420	25	77	77	4.6	U
108-88-3	Toluene	2.0	3100	290	6.6	830	76	1.7	D
591-78-6	2-Hexanone	2.0	320	320	14	77	77	3.4	U
124-48-1	Dibromochloromethane	2.0	130	130	29	16	16	3.5	U
106-93-4	1,2-Dibromoethane	2.0	120	120	22	15	15	2.8	U
127-18-4	Tetrachloroethene (PCE)	2.0	290	56	22	42	8.3	3.2	D

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	SB-4
Lab Code:	R1001548-007
Run Type:	Dilution
Analytical Method:	TO-15

Service Request: R1001548 Date Collected: 3/23/10 1230 Date Received: 3/24/10

Date Analyzed: 4/7/10 1448 **Canister Dilution Factor:** 1.40

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL µg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	2.0	360	360	17	78	78	3.6	U
100-41-4	Ethylbenzene	2.0	670	670	6.4	150	150	1.5	U
179601-23-1	m,p-Xylenes	2.0	29	1300	13	6.7	310	3.0	DJ
75-25-2	Bromoform	2.0	800	800	20	77	77	2.0	U
100-42-5	Styrene	2.0	660	660	6.1	150	150	1.4	U
95-47-6	o-Xylene	2.0	12	670	8.3	2.7	150	1.9	DJ
79-34-5	1,1,2,2-Tetrachloroethane	2.0	110	110	19	15	15	2.8	U
541-73-1	1,3-Dichlorobenzene	2.0	920	920	15	150	150	2.6	U
106-46-7	1,4-Dichlorobenzene	2.0	920	920	19	150	150	3.2	U
95-50-1	1,2-Dichlorobenzene	2.0	920	920	22	150	150	3.6	U

-1.7

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	96	70-130	4/7/10 1448	

Analytical Report

-2.1

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-4
Lab Code:	R1001548-008

 Service Request:
 R1001548

 Date Collected:
 3/23/10 1230

 Date Received:
 3/24/10

Date Analyzed: 4/6/10 1817

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS #	Analyte Name	Sample Amount mL	Result µg∕m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	1.3	0.65	0.019	0.62	0.31	0.0091	· · · ·
75-01-4	Vinyl Chloride	1000	0.086	0.086	0.012	0.034	0.034	0.0048	U
74-83-9	Bromomethane	1000	0.62	0.62	0.033	0.16	0.16	0.0086	U
75-00-3	Chloroethane	1000	0.84	0.84	0.043	0.32	0.32	0.016	U
67-64-1	Acetone	1000	4.0	7.2	0.27	1.7	3.0	0.11	J
75-69-4	Trichlorofluoromethane (CFC 11)	1000	2.6	0.89	0.046	0.47	0.16	0.0081	
75-35-4	1,1-Dichloroethene	1000	0.63	0.63	0.023	0.16	0.16	0.0057	U
75-09-2	Methylene Chloride	1000	0.43	0.55	0.030	0.12	0.16	0.0087	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.70	0.24	0.032	0.091	0.032	0.0042	
75-15-0	Carbon Disulfide	1000	0.025	0.49	0.010	0.0082	0.16	0.0033	J
156-60-5	trans-1,2-Dichloroethene	1000	0.63	0.63	0.023	0.16	0.16	0.0057	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.18	0.65	0.029	0.043	0.16	0.0071	J
1634-04-4	Methyl tert-Butyl Ether	1000	1.1	1.1	0.0089	0.32	0.32	0.0025	U
108-05-4	Vinyl Acetate	1000	7.2	7.2	0.013	2.0	2.0	0.0038	U
78-93-3	2-Butanone (MEK)	1000	0.80	0.94	0.019	0.27	0.32	0.0065	J
156-59-2	cis-1,2-Dichloroethene	1000	0.11	0.63	0.039	0.027	0.16	0.0098	J
67-66-3	Chloroform	1000	0.12	0.78	0.033	0.025	0.16	0.0067	J
107-06- 2	1,2-Dichloroethane	1000	0.10	0.65	0.027	0.025	0.16	0.0066	J
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.19	0.86	0.026	0.035	0.16	0.0049	J
71-43-2	Benzene	1000	0.67	0.50	0.016	0.21	0.16	0.0051	
56-23-5	Carbon Tetrachloride	1000	0.71	0.10	0.036	0.11	0.016	0.0057	
78-87-5	1,2-Dichloropropane	1000	0.043	0.73	0.038	0.0094	0.16	0.0082	J
75-27-4	Bromodichloromethane	1000	0.22	0.22	0.041	0.032	0.032	0.0061	U
79-01-6	Trichloroethene (TCE)	1000	0.35	0.086	0.031	0.066	0.016	0.0057	
10061-01-5	cis-1,3-Dichloropropene	1000	1.4	1.4	0.020	0.32	0.32	0.0044	U
108-10-1	4-Methyl-2-pentanone	1000	1.3	1.3	0.024	0.32	0.32	0.0059	U
10061-02-6	trans-1,3-Dichloropropene	1000	0.72	0.72	0.031	0.16	0.16	0.0068	U
79-00-5	1,1,2-Trichloroethane	1000	0.86	0.86	0.052	0.16	0.16	0.0096	U
108-88-3	Toluene	1000	0.63	0.59	0.014	0.17	0.16	0.0036	
591-78-6	2-Hexanone	1000	0.061	0.65	0.029	0.015	0.16	0.0071	J
124-48-1	Dibromochloromethane	1000	0.27	0.27	0.061	0.032	0.032	0.0071	U
106-93-4	1,2-Dibromoethane	1000	0.24	0.24	0.044	0.032	0.032	0.0058	U
127-18-4	Tetrachloroethene (PCE)	1000	0.076	0.12	0.045	0.011	0.017	0.0066	J

10-0000139738 rev 00

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-4
Lab Code:	R1001548-008

Service Request: R1001548 Date Collected: 3/23/10 1230 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/6/10 1817 **Canister Dilution Factor:** 1.44

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS #	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.73	0.73	0.034	0.16	0.16	0.0074	U
100-41-4	Ethylbenzene	1000	0.12	1.4	0.013	0.027	0.32	0.0031	J
179601-23-1	m,p-Xylenes	1000	0.33	2.8	0.026	0.076	0.63	0.0061	J
75-25-2	Bromoform	1000	1.6	1.6	0.042	0.16	0.16	0.0040	U
100-42-5	Styrene	1000	1.4	1.4	0.013	0.32	0.32	0.0029	U
95-47-6	o-Xylene	1000	0.10	1.4	0.017	0.024	0.32	0.0039	J
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.22	0.22	0.040	0.031	0.031	0.0058	U
541-73-1	1,3-Dichlorobenzene	1000	1.9	1.9	0.032	0.32	0.32	0.0052	U
106-46-7	1,4-Dichlorobenzene	1000	0.054	1.9	0.039	0.0091	0.32	0.0065	BJ
95-50-1	1,2-Dichlorobenzene	1000	1.9	1.9	0.045	0.32	0.32	0.0074	U

-2.1

a (b)	84 D	Control	Date		
Surrogate Name	%Rec	Limits	Analyzed	Note	
4-Bromofluorobenzene	91	70-130	4/6/10 1817		

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	DUP
Lab Code:	R1001548-009

Service Request: R1001548 Date Collected: 3/23/10 1225 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1536 Canister Dilution Factor: 1.41

Initial Pressure (psig): -1.8

Final Pressure (psig):

3.5

		Sample Amount	Result	MRL	MDL	Result	MRL	MDL	Data
CAS #	Analyte Name	mL	μg/m³	μg/m ³	μg/m³	ppbv	ppbv	ppbv	Qualifier
74-87-3	Chloromethane	4.5	140	140	4.1	68	68	2.0	U
75-01-4	Vinyl Chloride	4.5	19	19	2.7	7.4	7.4	1.1	U
74-83-9	Bromomethane	4.5	130	130	7.3	35	35	1.9	U
75-00-3	Chloroethane	4.5	180	180	9.4	69	69	3.6	U
67-64-1	Acetone	4.5	160	1600	59	68	660	25	J
75-69-4	Trichlorofluoromethane (CFC 11)	4.5	190	190	9.9	35	35	1.8	U
75-35-4	1,1-Dichloroethene	4.5	140	140	5.0	35	35	1.2	U
75-09-2	Methylene Chloride	4.5	7.9	120	6.5	2.3	34	1.9	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	4.5	53	53	7.0	7.0	7.0	0.92	U
75-15-0	Carbon Disulfide	4.5	110	110	2.2	34	34	0.71	U
156-60-5	trans-1,2-Dichloroethene	4.5	25	140	4.9	6.3	35	1.2	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	4.5	140	140	6.3	35	35	1.5	U
1634-04-4	Methyl tert-Butyl Ether	4.5	250	250	1.9	69	69	0.54	U
108-05-4	Vinyl Acetate	4.5	1600	1600	2.9	450	450	0.83	U
78-93-3	2-Butanone (MEK)	4.5	35	200	4.2	12	69	1.4	J
156-59-2	cis-1,2-Dichloroethene	4.5	33	140	8.4	8.3	35	2.1	J
67-66-3	Chloroform	4.5	170	170	7.1	35	35	1.5	U
107-06-2	1,2-Dichloroethane	4.5	140	140	5.8	35	35	1.4	U
71-55-6	1,1,1-Trichloroethane (TCA)	4.5	13	190	5.8	2.5	34	1.1	J
71-43-2	Benzene	4.5	110	110	3.5	34	34	1.1	U
56-23-5	Carbon Tetrachloride	4.5	22	22	7.8	3.5	3.5	1.2	U
78-87-5	1,2-Dichloropropane	4.5	160	160	8.3	35	35	1.8	U
75-27-4	Bromodichloromethane	4.5	47	47	9.0	7.0	7.0	1.3	U
79-01-6	Trichloroethene (TCE)	4.5	190	19	6.6	36	3.5	1.2	
10061-01-5	cis-1,3-Dichloropropene	4.5	310	310	4.4	69	69	0.97	U
108-10-1	4-Methyl-2-pentanone	4.5	280	280	5.2	69	69	1.3	U
10061-02-6	trans-1,3-Dichloropropene	4.5	160	160	6.7	35	35	1.5	U
79-00-5	1,1,2-Trichloroethane	4.5	190	190	11	34	34	2.1	U
108-88-3	Toluene	4.5	8000	130	2.9	2100	34	0.78	
591-78-6	2-Hexanone	4.5	140	140	6.3	34	34	1.5	U
124-48-1	Dibromochloromethane	4.5	60	60	13	7.0	7.0	1.5	U
106-93-4	1,2-Dibromoethane	4.5	53	53	9.7	6.9	6.9	1.3	U
127-18-4	Tetrachloroethene (PCE)	4.5	29	25	9.7	4.3	3.7	1.4	

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	DUP
Lab Code:	R1001548-009

Service Request: R1001548 Date Collected: 3/23/10 1225 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/7/10 1536 **Canister Dilution Factor:** 1.41

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	4.5	160	160	7.4	35	35	1.6	U
100-41-4	Ethylbenzene	4.5	19	300	2.9	4.3	69	0.66	J
179601-23-1	m,p-Xylenes	4.5	64	600	5.8	15	140	1.3	J
75-25-2	Bromoform	4.5	360	360	9.1	35	35	0.88	U
100-42-5	Styrene	4.5	290	290	2.7	69	69	0.64	U
95-47-6	o-Xylene	4.5	21	300	3.7	4.7	69	0.86	J
79-34-5	1,1,2,2-Tetrachloroethane	4.5	47	47	8.7	6.8	6.8	1.3	U
541-73-1	1,3-Dichlorobenzene	4.5	410	410	6.9	69	69	1.1	U
106-46-7	1,4-Dichlorobenzene	4.5	410	410	8.6	69	69	1.4	U
95-50-1	1,2-Dichlorobenzene	4.5	410	410	9.7	69	69	1.6	U

-1.8

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	95	70-130	4/7/10 1536		

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	QA
Lab Code:	R1001548-010

Service Request: R1001548 Date Collected: 3/23/10 1245 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/6/10 1908 Canister Dilution Factor: 1.39

Initial Pressure (psig): -1.6

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg∕m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	1.2	0.63	0.018	0.59	0.30	0.0088	
75-01-4	Vinyl Chloride	1000	0.083	0.083	0.012	0.033	0.033	0.0047	U
74-83-9	Bromomethane	1000	0.039	0.60	0.032	0.010	0.15	0.0083	J
75-00-3	Chloroethane	1000	0.81	0.81	0.042	0.31	0.31	0.016	U
67-64-1	Acetone	1000	3.3	7.0	0.26	1.4	2.9	0.11	J
75-69-4	Trichlorofluoromethane (CFC 11)	1000	1.4	0.86	0.044	0.26	0.15	0.0078	
75-35-4	1,1-Dichloroethene	1000	0.61	0.61	0.022	0.15	0.15	0.0055	U
75-09-2	Methylene Chloride	1000	0.27	0.53	0.029	0.078	0.15	0.0084	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.65	0.24	0.031	0.085	0.031	0.0041	
75-15-0	Carbon Disulfide	1000	0.017	0.47	0.0099	0.0054	0.15	0.0032	J
156-60-5	trans-1,2-Dichloroethene	1000	0.61	0.61	0.022	0.15	0.15	0.0055	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.63	0.63	0.028	0.15	0.15	0.0069	U
1634-04-4	Methyl tert-Butyl Ether	1000	1.1	1.1	0.0086	0.30	0.30	0.0024	U
108-05-4	Vinyl Acetate	1000	7.0	7.0	0.013	2.0	2.0	0.0037	U
78-93-3	2-Butanone (MEK)	1000	0.54	0.90	0.018	0.18	0.31	0.0063	J
156-59-2	cis-1,2-Dichloroethene	1000	0.61	0.61	0.037	0.15	0.15	0.0094	U
67-66-3	Chloroform	1000	0.079	0.75	0.032	0.016	0.15	0.0065	J
107-06-2	1,2-Dichloroethane	1000	0.088	0.63	0.026	0.022	0.15	0.0064	J
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.061	0.83	0.026	0.011	0.15	0.0047	J
71-43-2	Benzene	1000	0.51	0.49	0.016	0.16	0.15	0.0049	
56-23-5	Carbon Tetrachloride	1000	0.63	0.097	0.035	0.10	0.015	0.0055	
78-87-5	1,2-Dichloropropane	1000	0.71	0.71	0.037	0.15	0.15	0.0079	U
75-27-4	Bromodichloromethane	1000	0.21	0.21	0.040	0.031	0.031	0.0059	U
79-01-6	Trichloroethene (TCE)	1000	0.031	0.083	0.029	0.0058	0.016	0.0055	J
10061-01-5	cis-1,3-Dichloropropene	1000	1.4	1.4	0.019	0.31	0.31	0.0043	U
108-10-1	4-Methyl-2-pentanone	1000	1.3	1.3	0.023	0.31	0.31	0.0057	U
10061-02-6	trans-1,3-Dichloropropene	1000	0.70	0.70	0.030	0.15	0.15	0.0065	U
79 - 00-5	1,1,2-Trichloroethane	1000	0.83	0.83	0.050	0.15	0.15	0.0092	U
108-88-3	Toluene	1000	0.41	0.57	0.013	0.11	0.15	0.0035	J
591-78-6	2-Hexanone	1000	0.63	0.63	0.028	0.15	0.15	0.0068	U
124-48-1	Dibromochloromethane	1000	0.26	0.26	0.059	0.031	0.031	0.0069	U
106-93-4	1,2-Dibromoethane	1000	0.24	0.24	0.043	0.031	0.031	0.0056	U
127-18-4	Tetrachloroethene (PCE)	1000	0.070	0.11	0.043	0.010	0.016	0.0064	J

Analytical Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:QALab Code:R1001548-010

Service Request: R1001548 Date Collected: 3/23/10 1245 Date Received: 3/24/10

Analytical Method: TO-15

Date Analyzed: 4/6/10 1908 **Canister Dilution Factor:** 1.39

Initial Pressure (psig):

Final Pressure (psig):

3.5

CAS #	Analyte Name	Sample Amount mL	Result μg/m³	MRL µg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.71	0.71	0.033	0.15	0.15	0.0071	U
100-41-4	Ethylbenzene	1000	0.062	1.3	0.013	0.014	0.30	0.0029	J
179601-23-1	m,p-Xylenes	1000	0.17	2.7	0.026	0.039	0.61	0.0059	J
75-25-2	Bromoform	1000	1.6	1.6	0.040	0.15	0.15	0.0039	U
100-42-5	Styrene	1000	1.3	1.3	0.012	0.31	0.31	0.0028	U
95-47-6	o-Xylene	1000	0.059	1.3	0.017	0.014	0.30	0.0038	J
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.21	0.21	0.039	0.030	0.030	0.0056	U
541-73-1	1,3-Dichlorobenzene	1000	1.8	1.8	0.030	0.31	0.31	0.0051	U
106-46-7	1,4-Dichlorobenzene	1000	0.039	1.8	0.038	0.0064	0.31	0.0063	BJ
95-50-1	1,2-Dichlorobenzene	1000	1.8	1.8	0.043	0.31	0.31	0.0072	U

-1.6

Control Date ogate Name %Rec Limits Analyzed Note
mofluorobenzene 99 70-130 4/6/10 1908

Analytical Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:TRIPLab Code:R1001548-011

Analytical Method: TO-15

Service Request: R1001548 Date Collected: 3/23/10 Date Received: 3/24/10

Date Analyzed:	4/5/10 1551
Canister Dilution Factor:	1.00

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	0.45	0.45	0.013	0.22	0.22	0.0063	U
75-01-4	Vinyl Chloride	1000	0.060	0.060	0.0086	0.023	0.023	0.0034	U
74-83-9	Bromomethane	1000	0.43	0.43	0.023	0.11	0.11	0.0060	U
75-00-3	Chloroethane	1000	0.58	0.58	0.030	0.22	0.22	0.011	U
67-64-1	Acetone	1000	0.43	5.0	0.19	0.18	2.1	0.079	BJ
75-69-4	Trichlorofluoromethane (CFC 11)	1000	0.62	0.62	0.032	0.11	0.11	0.0056	U
75-35-4	1,1-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-09-2	Methylene Chloride	1000	0.028	0.38	0.021	0.0081	0.11	0.0060	BJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.17	0.17	0.022	0.022	0.022	0.0029	U
75-15-0	Carbon Disulfide	1000	0.34	0.34	0.0071	0.11	0.11	0.0023	U
156-60-5	trans-1,2-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
1634-04-4	Methyl tert-Butyl Ether	1000	0.79	0.79	0.0062	0.22	0.22	0.0017	U
108-05-4	Vinyl Acetate	1000	5.0	5.0	0.0093	1.4	1.4	0.0026	U
78-93-3	2-Butanone (MEK)	1000	0.088	0.65	0.013	0.030	0.22	0.0045	BJ
156-59-2	cis-1,2-Dichloroethene	1000	0.44	0.44	0.027	0.11	0.11	0.0068	U
67-66-3	Chloroform	1000	0.54	0.54	0.023	0.11	0.11	0.0047	U
107-06-2	1,2-Dichloroethane	1000	0.45	0.45	0.019	0.11	0.11	0.0046	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.60	0.60	0.018	0.11	0.11	0.0034	U
71-43-2	Benzene	1000	0.013	0.35	0.011	0.0041	0.11	0.0035	BJ
56-23-5	Carbon Tetrachloride	1000	0.070	0.070	0.025	0.011	0.011	0.0040	U
78-87-5	1,2-Dichloropropane	1000	0.51	0.51	0.026	0.11	0.11	0.0057	U
75-27-4	Bromodichloromethane	1000	0.15	0.15	0.029	0.022	0.022	0.0043	U
79-01-6	Trichloroethene (TCE)	1000	0.060	0.060	0.021	0.011	0.011	0.0039	U
10061-01-5	cis-1,3-Dichloropropene	1000	1.0	1.0	0.014	0.22	0.22	0.0031	U
108-10-1	4-Methyl-2-pentanone	1000	0.90	0.90	0.017	0.22	0.22	0.0041	U
10061-02-6	trans-1,3-Dichloropropene	1000	0.50	0.50	0.021	0.11	0.11	0.0047	U
79-00-5	1,1,2-Trichloroethane	1000	0.60	0.60	0.036	0.11	0.11	0.0066	U
108-88-3	Toluene	1000	0.41	0.41	0.0094	0.11	0.11	0.0025	U
591-78-6	2-Hexanone	1000	0.026	0.45	0.020	0.0064	0.11	0.0049	J
124-48-1	Dibromochloromethane	1000	0.19	0.19	0.042	0.022	0.022	0.0049	U
106-93-4	1,2-Dibromoethane	1000	0.17	0.17	0.031	0.022	0.022	0.0040	U
127-18-4	Tetrachloroethene (PCE)	1000	0.080	0.080	0.031	0.012	0.012	0.0046	U

Analytical Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:AirSample Name:TRJPLab Code:R1001548-011

Analytical Method: TO-15

Service Request: R1001548 Date Collected: 3/23/10 Date Received: 3/24/10

Date Analyzed: 4/5/10 1551 Canister Dilution Factor: 1.00

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.51	0.51	0.024	0.11	0.11	0.0051	U
100-41-4	Ethylbenzene	1000	0.95	0.95	0.0092	0.22	0.22	0.0021	U
179601-23-1	m,p-Xylenes	1000	1.9	1.9	0.018	0.44	0.44	0.0042	U
75-25-2	Bromoform	1000	1.1	1.1	0.029	0.11	0.11	0.0028	U
100-42-5	Styrene	1000	0.94	0.94	0.0087	0.22	0.22	0.0020	U
95-47-6	o-Xylene	1000	0.95	0.95	0.012	0.22	0.22	0.0027	U
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.15	0.15	0.028	0.022	0.022	0.0040	U
541-73-1	1,3-Dichlorobenzene	1000	1.3	1.3	0.022	0.22	0.22	0.0036	U
106-46-7	1,4-Dichlorobenzene	1000	1.3	1.3	0.027	0.22	0.22	0.0045	U
95-50-1	1,2-Dichlorobenzene	1000	1.3	1.3	0.031	0.22	0.22	0.0052	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	99	70-130	4/5/10 1551	

Analytical Report

-1.5

Energy Solutions
Leica Airs
Air
IA-3
R1001548-012

Service Request: R1001548 **Date Collected:** 3/23/10 1200 **Date Received:** 3/24/10

Date Analyzed: 4/6/10 2000

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	1.1	0.62	0.018	0.53	0.30	0.0087	
75-01-4	Vinyl Chloride	1000	0.083	0.083	0.012	0.032	0.032	0.0046	U
74-83-9	Bromomethane	1000	0.056	0.59	0.032	0.014	0.15	0.0082	J
75-00-3	Chloroethane	1000	0.80	0.80	0.041	0.30	0.30	0.016	U
67-64-1	Acetone	1000	11	6.9	0.26	4.6	2.9	0.11	
75-69-4	Trichlorofluoromethane (CFC 11)	1000	1.6	0.86	0.044	0.28	0.15	0.0078	
75-35-4	1,1-Dichloroethene	1000	0.030	0.61	0.022	0.0076	0.15	0.0055	J
75-09-2	Methylene Chloride	1000	0.41	0.52	0.029	0.12	0.15	0.0083	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.72	0.23	0.031	0.094	0.031	0.0040	
75-15-0	Carbon Disulfide	1000	0.041	0.47	0.0098	0.013	0.15	0.0031	J
156-60-5	trans-1,2-Dichloroethene	1000	0.094	0.61	0.022	0.024	0.15	0.0055	J
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.17	0.62	0.028	0.043	0.15	0.0068	J
1634-04-4	Methyl tert-Butyl Ether	1000	1.1	1.1	0.0086	0.30	0.30	0.0024	U
108-05-4	Vinyl Acetate	1000	0.24	6.9	0.013	0.068	2.0	0.0036	J
78-93-3	2-Butanone (MEK)	1000	4.4	0.90	0.018	1.5	0.30	0.0062	
156-59-2	cis-1,2-Dichloroethene	1000	0.35	0.61	0.037	0.088	0.15	0.0094	J
67-66-3	Chloroform	1000	0.099	0.75	0.031	0.020	0.15	0.0064	J
107-06-2	1,2-Dichloroethane	1000	0.20	0.62	0.026	0.050	0.15	0.0063	J
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.57	0.83	0.025	0.10	0.15	0.0047	J
71-43-2	Benzene	1000	2.0	0.48	0.015	0.61	0.15	0.0048	
56-23-5	Carbon Tetrachloride	1000	0.62	0.097	0.035	0.098	0.015	0.0055	
78-87-5	1,2-Dichloropropane	1000	0.70	0.70	0.036	0.15	0.15	0.0079	U
75-27-4	Bromodichloromethane	1000	0.21	0.21	0.039	0.031	0.031	0.0059	U
79-01-6	Trichloroethene (TCE)	1000	9.0	0.083	0.029	1.7	0.015	0.0054	
10061-01-5	cis-1,3-Dichloropropene	1000	1.4	1.4	0.019	0.30	0.30	0.0043	U
108-10-1	4-Methyl-2-pentanone	1000	0.11	1.2	0.023	0.028	0.30	0.0056	J
10061-02-6	trans-1,3-Dichloropropene	1000	0.69	0.69	0.029	0.15	0.15	0.0065	U
79-00-5	1,1,2-Trichloroethane	1000	0.83	0.83	0.050	0.15	0.15	0.0092	U
108-88-3	Toluene	1000	9.0	0.57	0.013	2.4	0.15	0.0034	
591-78-6	2-Hexanone	1000	0.077	0.62	0.028	0.019	0.15	0.0068	J
124-48-1	Dibromochloromethane	1000	0.26	0.26	0.058	0.031	0.031	0.0068	U
106-93-4	1,2-Dibromoethane	1000	0.23	0.23	0.043	0.031	0.031	0.0055	U
127-18-4	Tetrachloroethene (PCE)	1000	0.14	0.11	0.043	0.021	0.016	0.0063	

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	IA-3
Lab Code:	R1001548-012

Service Request: R1001548 Date Collected: 3/23/10 1200 Date Received: 3/24/10

Date Analyzed: 4/6/10 2000

Analytical Method: TO-15

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS #	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.70	0.70	0.033	0.15	0.15	0.0071	U
100-41-4	Ethylbenzene	1000	2.2	1.3	0.013	0.51	0.30	0.0029	
179601-23-1	m,p-Xylenes	1000	3.9	2.6	0.025	0.89	0.61	0.0058	
75-25-2	Bromoform	1000	1.6	1.6	0.040	0.15	0.15	0.0039	U
100-42-5	Styrene	1000	5.7	1.3	0.012	1.3	0.30	0.0028	
95-47-6	o-Xylene	1000	1.3	1.3	0.016	0.30	0.30	0.0038	
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.21	0.21	0.038	0.030	0.030	0.0056	U
541-73-1	1,3-Dichlorobenzene	1000	1.8	1.8	0.030	0.30	0.30	0.0050	U
106-46-7	1,4-Dichlorobenzene	1000	0.063	1.8	0.038	0.011	0.30	0.0063	BJ
95-50-1	1,2-Dichlorobenzene	1000	1.8	1.8	0.043	0.30	0.30	0.0071	U

-1.5

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	100	70-130	4/6/10 2000	·······

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	Method Blank
Lab Code:	RQ1002546-01

Analytical Method: TO-15

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/5/10 1500

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	0.45	0.45	0.013	0.22	0.22	0.0063	U
75-01-4	Vinyl Chloride	1000	0.060	0.060	0.0086	0.023	0.023	0.0034	U
74-83-9	Bromomethane	1000	0.43	0.43	0.023	0.11	0.11	0.0060	U
75-00-3	Chloroethane	1000	0.58	0.58	0.030	0.22	0.22	0.011	U
67-64-1	Acetone	1000	0.24	5.0	0.19	0.10	2.1	0.079	J
75-69-4	Trichlorofluoromethane (CFC 11)	1000	0.62	0.62	0.032	0.11	0.11	0.0056	U
75-35-4	1,1-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-09-2	Methylene Chloride	1000	0.032	0.38	0.021	0.0093	0.11	0.0060	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.17	0.17	0.022	0.022	0.022	0.0029	U
75-15-0	Carbon Disulfide	1000	0.013	0.34	0.0071	0.0040	0.11	0.0023	J
156-60-5	trans-1,2-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
1634-04-4	Methyl tert-Butyl Ether	1000	0.79	0.79	0.0062	0.22	0.22	0.0017	U
108-05-4	Vinyl Acetate	1000	5.0	5.0	0.0093	1.4	1.4	0.0026	U
78-93-3	2-Butanone (MEK)	1000	0.054	0.65	0.013	0.018	0.22	0.0045	J
156-59-2	cis-1,2-Dichloroethene	1000	0.44	0.44	0.027	0.11	0.11	0.0068	U
67-66-3	Chloroform	1000	0.54	0.54	0.023	0.11	0.11	0.0047	U
107-06-2	1,2-Dichloroethane	1000	0.45	0.45	0.019	0.11	0.11	0.0046	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.60	0.60	0.018	0.11	0.11	0.0034	U
71-43-2	Benzene	1000	0.022	0.35	0.011	0.0070	0.11	0.0035	J
56-23-5	Carbon Tetrachloride	1000	0.070	0.070	0.025	0.011	0.011	0.0040	U
78-87-5	1,2-Dichloropropane	1000	0.51	0.51	0.026	0.11	0.11	0.0057	U
75-27-4	Bromodichloromethane	1000	0.15	0.15	0.029	0.022	0.022	0.0043	U
79-01-6	Trichloroethene (TCE)	1000	0.060	0.060	0.021	0.011	0.011	0.0039	U
10061-01-5	cis-1,3-Dichloropropene	1000	1.0	1.0	0.014	0.22	0.22	0.0031	U
108-10-1	4-Methyl-2-pentanone	1000	0.90	0.90	0.017	0.22	0.22	0.0041	U
10061-02-6	trans-1,3-Dichloropropene	1000	0.50	0.50	0.021	0.11	0.11	0.0047	U
79-00-5	1,1,2-Trichloroethane	1000	0.60	0.60	0.036	0.11	0.11	0.0066	U
108-88-3	Toluene	1000	0.024	0.41	0.0094	0.0064	0.11	0.0025	J
591-78-6	2-Hexanone	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
124-48-1	Dibromochloromethane	1000	0.19	0.19	0.042	0.022	0.022	0.0049	U
106-93-4	1,2-Dibromoethane	1000	0.17	0.17	0.031	0.022	0.022	0.0040	U
127-18 - 4	Tetrachloroethene (PCE)	1000	0.080	0.080	0.031	0.012	0.012	0.0046	U

00031

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	Method Blank
Lab Code:	RQ1002546-01

Analytical Method: TO-15

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/5/10 1500

CAS #	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.51	0.51	0.024	0.11	0.11	0.0051	U
100-41-4	Ethylbenzene	1000	0.95	0.95	0.0092	0.22	0.22	0.0021	U
179601-23-1	m,p-Xylenes	1000	0.019	1.9	0.018	0.0043	0.44	0.0042	J
75-25-2	Bromoform	1000	1.1	1.1	0.029	0.11	0.11	0.0028	U
100-42-5	Styrene	1000	0.94	0.94	0.0087	0.22	0.22	0.0020	U
95-47-6	o-Xylene	1000	0.95	0.95	0.012	0.22	0.22	0.0027	U
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.15	0.15	0.028	0.022	0.022	0.0040	U
541-73-1	1,3-Dichlorobenzene	1000	1.3	1.3	0.022	0.22	0.22	0.0036	U
106-46-7	1,4-Dichlorobenzene	1000	0.034	1.3	0.027	0.0057	0.22	0.0045	J
95-50-1	1,2-Dichlorobenzene	1000	1.3	1.3	0.031	0.22	0.22	0.0052	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	99	70-130	4/5/10 1500		

Analytical Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Sample Name:Method BlankLab Code:RQ1002588-01

Analytical Method: TO-15

.

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/6/10 1312

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	0.45	0.45	0.013	0.22	0.22	0.0063	U
75-01-4	Vinyl Chloride	1000	0.060	0.060	0.0086	0.023	0.023	0.0034	U
74-83-9	Bromomethane	1000	0.43	0.43	0.023	0.11	0.11	0.0060	U
75-00-3	Chloroethane	1000	0.58	0.58	0.030	0.22	0.22	0.011	U
67-64-1	Acetone	1000	0.23	5.0	0.19	0.097	2.1	0.079	J
75-69-4	Trichlorofluoromethane (CFC 11)	1000	0.62	0.62	0.032	0.11	0.11	0.0056	U
75-35-4	1,1-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-09-2	Methylene Chloride	1000	0.026	0.38	0.021	0.0073	0.11	0.0060	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.17	0.17	0.022	0.022	0.022	0.0029	U
75-15-0	Carbon Disulfide	1000	0.34	0.34	0.0071	0.11	0.11	0.0023	U
156-60-5	trans-1,2-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
1634-04-4	Methyl tert-Butyl Ether	1000	0.79	0.79	0.0062	0.22	0.22	0.0017	U
108-05-4	Vinyl Acetate	1000	5.0	5.0	0.0093	1.4	1.4	0.0026	U
78-93-3	2-Butanone (MEK)	1000	0.044	0.65	0.013	0.015	0.22	0.0045	J
156-59-2	cis-1,2-Dichloroethene	1000	0.44	0.44	0.027	0.11	0.11	0.0068	υ
67-66-3	Chloroform	1000	0.54	0.54	0.023	0.11	0.11	0.0047	U
107-06-2	1,2-Dichloroethane	1000	0.45	0.45	0.019	0.11	0.11	0.0046	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.60	0.60	0.018	0.11	0.11	0.0034	U
71-43-2	Benzene	1000	0.019	0.35	0.011	0.0059	0.11	0.0035	J
56-23-5	Carbon Tetrachloride	1000	0.070	0.070	0.025	0.011	0.011	0.0040	U
78-87-5	1,2-Dichloropropane	1000	0.51	0.51	0.026	0.11	0.11	0.0057	U
75-27-4	Bromodichloromethane	1000	0.15	0.15	0.029	0.022	0.022	0.0043	U
79-01-6	Trichloroethene (TCE)	1000	0.060	0.060	0.021	0.011	0.011	0.0039	U
10061-01-5	cis-1,3-Dichloropropene	1000	1.0	1.0	0.014	0.22	0.22	0.0031	U
108-10-1	4-Methyl-2-pentanone	1000	0.90	0.90	0.017	0.22	0.22	0.0041	U
10061-02-6	trans-1,3-Dichloropropene	1000	0.50	0.50	0.021	0.11	0.11	0.0047	U
79-00-5	1,1,2-Trichloroethane	1000	0.60	0.60	0.036	0.11	0.11	0.0066	U
108-88-3	Toluene	1000	0.027	0.41	0.0094	0.0072	0.11	0.0025	J
591-78-6	2-Hexanone	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
124-48-1	Dibromochloromethane	1000	0.19	0.19	0.042	0.022	0.022	0.0049	U
106-93-4	1,2-Dibromoethane	1000	0.17	0.17	0.031	0.022	0.022	0.0040	U
127-18-4	Tetrachloroethene (PCE)	1000	0.080	0.080	0.031	0.012	0.012	0.0046	U

SuperSet Reference: 10-0000139738 rev 00

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	Method Blank
Lab Code:	RQ1002588-01

Analytical Method: TO-15

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/6/10 1312

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.51	0.51	0.024	0.11	0.11	0.0051	U
100-41-4	Ethylbenzene	1000	0.95	0.95	0.0092	0.22	0.22	0.0021	U
179601-23-1	m,p-Xylenes	1000	0.018	1.9	0.018	0.0042	0.44	0.0042	J
75-25-2	Bromoform	1000	1.1	1.1	0.029	0.11	0.11	0.0028	U
100-42-5	Styrene	1000	0.94	0.94	0.0087	0.22	0.22	0.0020	U
95-47-6	o-Xylene	1000	0.95	0.95	0.012	0.22	0.22	0.0027	U
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.15	0.15	0.028	0.022	0.022	0.0040	U
541-73-1	1,3-Dichlorobenzene	1000	1.3	1.3	0.022	0.0036	0.22	0.0036	U
106-46-7	1,4-Dichlorobenzene	1000	0.033	1.3	0.027	0.0055	0.22	0.0045	J
95-50-1	1,2-Dichlorobenzene	1000	1.3	1.3	0.031	0.22	0.22	0.0052	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	97	70-130	4/6/10 1312		

Analytical Report

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	Method Blank
Lab Code:	RQ1002594-01

Analytical Method: TO-15

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/7/10 0914

CAS #	Analyte Name	Sample Amount mL	Result µg∕m³	MRL µg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
74-87-3	Chloromethane	1000	0.45	0.45	0.013	0.22	0.22	0.0063	U
75-01-4	Vinyl Chloride	1000	0.060	0.060	0.0086	0.023	0.023	0.0034	U
74-83-9	Bromomethane	1000	0.43	0.43	0.023	0.11	0.11	0.0060	U
75-00-3	Chloroethane	1000	0.58	0.58	0.030	0.22	0.22	0.011	U
67-64-1	Acetone	1000	5.0	5.0	0.19	2.1	2.1	0.079	U
75-69-4	Trichlorofluoromethane (CFC 11)	1000	0.62	0.62	0.032	0.11	0.11	0.0056	U
75-35-4	1,1-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-09-2	Methylene Chloride	1000	0.026	0.38	0.021	0.0074	0.11	0.0060	J
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	0.17	0.17	0.022	0.022	0.022	0.0029	U
75-15-0	Carbon Disulfide	1000	0.34	0.34	0.0071	0.11	0.11	0.0023	U
156-60-5	trans-1,2-Dichloroethene	1000	0.44	0.44	0.016	0.11	0.11	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.45	0.45	0.020	0.11	0.11	0.0049	U
1634-04-4	Methyl tert-Butyl Ether	1000	0.79	0.79	0.0062	0.22	0.22	0.0017	U
108-05-4	Vinyl Acetate	1000	5.0	5.0	0.0093	1.4	1.4	0.0026	U
78-93-3	2-Butanone (MEK)	1000	0.034	0.65	0.013	0.011	0.22	0.0045	J
156-59-2	cis-1,2-Dichloroethene	1000	0.44	0.44	0.027	0.11	0.11	0.0068	U
67-66-3	Chloroform	1000	0.54	0.54	0.023	0.11	0.11	0.0047	U
107-06-2	1,2-Dichloroethane	1000	0.45	0.45	0.019	0.11	0.11	0.0046	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.60	0.60	0.018	0.11	0.11	0.0034	U
71-43-2	Benzene	1000	0.018	0.35	0.011	0.0056	0.11	0.0035	J
56-23-5	Carbon Tetrachloride	1000	0.070	0.070	0.025	0.011	0.011	0.0040	U
78-87-5	1,2-Dichloropropane	1000	0.51	0.51	0.026	0.11	0.11	0.0057	U
75-27-4	Bromodichloromethane	1000	0.15	0.15	0.029	0.022	0.022	0.0043	U
79-01-6	Trichloroethene (TCE)	1000	0.021	0.060	0.021	0.0040	0.011	0.0039	J
10061-01-5	cis-1,3-Dichloropropene	1000	0.016	1.0	0.014	0.0035	0.22	0.0031	J
108-10-1	4-Methyl-2-pentanone	1000	0.027	0.90	0.017	0.0066	0.22	0.0041	J
10061-02-6	trans-1,3-Dichloropropene	1000	0.50	0.50	0.021	0.11	0.11	0.0047	U
79 - 00-5	1,1,2-Trichloroethane	1000	0.60	0.60	0.036	0.11	0.11	0.0066	U
108-88-3	Toluene	1000	0.053	0.41	0.0094	0.014	0.11	0.0025	J
591-78-6	2-Hexanone	1000	0.038	0.45	0.020	0.0093	0.11	0.0049	J
124-48-1	Dibromochloromethane	1000	0.051	0.19	0.042	0.0059	0.022	0.0049	J
106-93-4	1,2-Dibromoethane	1000	0.033	0.17	0.031	0.0043	0.022	0.0040	J
127-18-4	Tetrachloroethene (PCE)	1000	0.080	0.080	0.031	0.012	0.012	0.0046	U

Analytical Report

.

Client:	Energy Solutions
Project:	Leica Airs
Sample Matrix:	Air
Sample Name:	Method Blank
Lab Code:	RQ1002594-01

Analytical Method: TO-15

Service Request: R1001548 Date Collected: NA Date Received: NA

Date Analyzed: 4/7/10 0914

CAS #	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL µg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
108-90-7	Chlorobenzene	1000	0.51	0.51	0.024	0.11	0.11	0.0051	U
100-41-4	Ethylbenzene	1000	0.015	0.95	0.0092	0.0035	0.22	0.0021	J
179601-23-1	m,p-Xylenes	1000	0.034	1.9	0.018	0.0078	0.44	0.0042	J
75-25-2	Bromoform	1000	0.045	1.1	0.029	0.0044	0.11	0.0028	J
100-42-5	Styrene	1000	0.011	0.94	0.0087	0.0026	0.22	0.0020	J
95-47-6	o-Xylene	1000	0.017	0.95	0.012	0.0040	0.22	0.0027	J
79-34-5	1,1,2,2-Tetrachloroethane	1000	0.043	0.15	0.028	0.0063	0.022	0.0040	J
541-73-1	1,3-Dichlorobenzene	1000	0.027	1.3	0.022	0.0045	0.22	0.0036	J
106-46-7	1,4-Dichlorobenzene	1000	0.053	1.3	0.027	0.0088	0.22	0.0045	J
95-50-1	1,2-Dichlorobenzene	1000	1.3	1.3	0.031	0.22	0.22	0.0052	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	96	70-130	4/7/10 0914	

QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³ Basis: NA

Analysis Lot: 196049

Service Request: R1001548

Date Analyzed: 4/5/10

	Lab Control Sample					
	I	% Rec				
Analyte Name	Result	Expected	% Rec	Limits		
Chloromethane	5.17	5.11	101	70 - 130		
Vinyl Chloride	6.67	6,33	105	70 - 130		
Bromomethane	9.86	9,60	103	70 - 130		
Chloroethane	6.43	6.53	98	70 - 130		
Acetone	5,70	6.06	94	70 - 130		
Trichlorofluoromethane (CFC 11)	14.9	13.8	109	70 - 130		
1,1-Dichloroethene	10.8	10.5	102	70 - 130		
Methylene Chloride	9.17	9.12	101	70 - 130		
1,1,2-Trichloro-1,2,2-trifluoroethane	20.4	19.9	102	70 - 130		
Carbon Disulfide	7.98	8.09	99	70 - 130		
trans-1,2-Dichloroethene	9.97	10.0	100	70 - 130		
1,1-Dichloroethane (1,1-DCA)	10.6	10.5	101	70 - 130		
Methyl tert-Butyl Ether	8.40	9.19	91	70 - 130		
Vinyl Acetate	8.87	9.06	98	70 - 130		
2-Butanone (MEK)	7.57	7.74	98	70 - 130		
cis-1,2-Dichloroethene	10.2	10.5	97	70 - 130		
Chloroform	13.0	12.1	107	70 - 130		
1,2-Dichloroethane	10.6	10.6	100	70 - 130		
1,1,1-Trichloroethane (TCA)	14.2	14.0	101	70 - 130		
Benzene	8.37	8.38	100	70 - 130		
Carbon Tetrachloride	17.0	16.5	103	70 - 130		
1,2-Dichloropropane	11.8	12.0	99	70 - 130		
Bromodichloromethane	18.5	17.1	108	70 - 130		
Trichloroethene (TCE)	14.5	13.7	106	70 - 130		
cis-1,3-Dichloropropene	11.5	11.2	103	70 - 130		
4-Methyl-2-pentanone	10.1	10.8	94	70 - 130		
trans-1,3-Dichloropropene	11.5	12.1	95	70 - 130		
1,1,2-Trichloroethane	14.8	14.0	105	70 - 130		
Toluene	9.95	9.98	100	70 - 130		
2-Hexanone	11.1	10.8	103	70 - 130		
Dibromochloromethane	23.8	21.9	108	70 - 130		
1,2-Dibromoethane	20.2	19.8	102	70 - 130		
Tetrachloroethene (PCE)	17.6	17.8	99	70 - 130		
Chlorobenzene	11.9	12.1	98	70 - 130		
Ethylbenzene	11.0	11.3	98	70 - 130		
m,p-Xylenes	21.3	22.1	96	70 - 130		

Comments:
QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³ Basis: NA

Analysis Lot: 196049

Service Request: R1001548

Date Analyzed: 4/ 5/10

Lab Control Sample						
h Decult	(Q1002546-0	2 0/ Dec	% Rec			
Result	Expected	% Rec	Limits			
26.0	26.3	99	70 - 130			
10.1	11.0	92	70 - 130			
10.8	11.3	96	70 - 130			
17.0	17.8	95	70 - 130			
14.5	15.3	95	70 - 130			
13.8	15.5	89	70 - 130			
13.5	15.0	90	70 - 130			
	Lab F Result 26.0 10.1 10.8 17.0 14.5 13.8 13.5	Lab Control Sar RQ1002546-0 Result Expected 26.0 26.3 10.1 11.0 10.8 11.3 17.0 17.8 14.5 15.3 13.8 15.5 13.5 15.0	Lab Control Sample RQ1002546-02 Result Expected % Rec 26.0 26.3 99 10.1 11.0 92 10.8 11.3 96 17.0 17.8 95 14.5 15.3 95 13.8 15.5 89 13.5 15.0 90			

QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: μg/m³ Basis: NA

Analysis Lot: 196217

Service Request: R1001548

Date Analyzed: 4/6/10

	Lab	Control San	nple	
	F	RQ1002588-0	2	% Rec
Analyte Name	Result	Expected	% Rec	Limits
Chloromethane	5.27	5.11	103	70 - 130
Vinyl Chloride	6.88	6.33	109	70 - 130
Bromomethane	10.2	9.60	106	70 - 130
Chloroethane	6.64	6,53	102	70 - 130
Acetone	6.18	6.06	102	70 - 130
Trichlorofluoromethane (CFC 11)	15.7	13.8	114	70 - 130
1,1-Dichloroethene	10.8	10,5	103	70 - 130
Methylene Chloride	9.29	9.12	102	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane	20.4	19.9	102	70 - 130
Carbon Disulfide	8.22	8.09	102	70 - 130
trans-1,2-Dichloroethene	10.2	10.0	101	70 - 130
1,1-Dichloroethane (1,1-DCA)	11.1	10.5	106	70 - 130
Methyl tert-Butyl Ether	8,80	9.19	96	70 - 130
Vinyl Acetate	9.94	9.06	110	70 - 130
2-Butanone (MEK)	8.05	7,74	104	70 - 130
cis-1,2-Dichloroethene	10.4	10.5	99	70 - 130
Chloroform	13.5	12.1	112	70 - 130
1,2-Dichloroethane	10.8	10.6	102	70 - 130
1,1,1-Trichloroethane (TCA)	14.4	14.0	103	70 - 130
Benzene	8.58	8.38	102	70 - 130
Carbon Tetrachloride	17.9	16.5	109	70 - 130
1,2-Dichloropropane	12.8	12.0	107	70 - 130
Bromodichloromethane	19.2	17.1	113	70 - 130
Trichloroethene (TCE)	14.3	13.7	104	70 - 130
cis-1,3-Dichloropropene	11.9	11.2	106	70 - 130
4-Methyl-2-pentanone	10.3	10.8	96	70 - 130
trans-1,3-Dichloropropene	12.0	12.1	99	70 - 130
1,1,2-Trichloroethane	15.2	14.0	108	70 - 130
Toluene	10.3	9.98	103	70 - 130
2-Hexanone	11.4	10.8	106	70 - 130
Dibromochloromethane	24.9	21.9	114	70 - 130
1,2-Dibromoethane	20.8	19.8	105	70 - 130
Tetrachloroethene (PCE)	17.5	17.8	98	70 - 130
Chlorobenzene	12.2	12.1	101	70 - 130
Ethylbenzene	11.6	11.3	102	70 - 130
m,p-Xylenes	22.2	22.1	100	70 - 130

QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³ Basis: NA

Analysis Lot: 196217

Service Request: R1001548

Date Analyzed: 4/6/10

	Lab Control Sample							
	RQ1002588-02							
Analyte Name	Result	Expected	% Rec	Limits				
Bromoform	27.6	26.3	105	70 - 130				
Styrene	10.5	11.0	95	70 - 130				
o-Xylene	11.3	11.3	100	70 - 130				
1,1,2,2-Tetrachloroethane	18.2	17.8	102	70 - 130				
1,3-Dichlorobenzene	14.6	15.3	95	70 - 130				
1,4-Dichlorobenzene	14.0	15,5	91	70 - 130				
1,2-Dichlorobenzene	13.5	15.0	90	70 - 130				

Comments:

SuperSet Reference: 10-0000139738 rev 00

00040

QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: μg/m³ Basis: NA

Analysis Lot: 196246

Service Request: R1001548

Date Analyzed: 4/7/10

	Lab	Control San	nple	
	F	RQ1002594-0	2	% Rec
Analyte Name	Result	Expected	% Rec	Limits
Chloromethane	5.53	5.11	108	70 - 130
Vinyl Chloride	7.23	6.33	114	70 - 130
Bromomethane	10.4	9.60	108	70 - 130
Chloroethane	6.84	6.53	105	70 - 130
Acetone	6.02	6,06	99	70 - 130
Trichlorofluoromethane (CFC 11)	16.3	13.8	118	70 - 130
1,1-Dichloroethene	11.3	10,5	107	70 - 130
Methylene Chloride	9.60	9.12	105	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane	20.8	19.9	104	70 - 130
Carbon Disulfide	8.60	8.09	106	70 - 130
trans-1,2-Dichloroethene	10.4	10.0	104	70 - 130
1,1-Dichloroethane (1,1-DCA)	11.2	10.5	107	70 - 130
Methyl tert-Butyl Ether	8.48	9.19	92	70 - 130
Vinyl Acetate	9.53	9.06	105	70 - 130
2-Butanone (MEK)	8.00	7.74	103	70 - 130
cis-1,2-Dichloroethene	10.2	10.5	97	70 - 130
Chloroform	13.6	12.1	112	70 - 130
1,2-Dichloroethane	11.4	10.6	108	70 - 130
1,1,1-Trichloroethane (TCA)	15.4	14.0	110	70 - 130
Benzene	9,02	8.38	108	70 - 130
Carbon Tetrachloride	19,4	16.5	118	70 - 130
1,2-Dichloropropane	13.3	12.0	111	70 - 130
Bromodichloromethane	20.6	17.1	121	70 - 130
Trichloroethene (TCE)	15.1	13.7	110	70 - 130
cis-1,3-Dichloropropene	12.2	11.2	108	70 - 130
4-Methyl-2-pentanone	11.5	10.8	107	70 - 130
trans-1,3-Dichloropropene	12.2	12.1	100	70 - 130
1,1,2-Trichloroethane	15.6	14.0	111	70 - 130
Toluene	10.5	9.98	105	70 - 130
2-Hexanone	12.7	10.8	118	70 - 130
Dibromochloromethane	25.7	21.9	117	70 - 130
1,2-Dibromoethane	21.1	19.8	107	70 - 130
Tetrachloroethene (PCE)	18.1	17.8	101	70 - 130
Chlorobenzene	12.4	12.1	103	70 - 130
Ethylbenzene	11.7	11.3	104	70 - 130
m,p-Xylenes	22.7	22.1	102	70 - 130

QA/QC Report

Client:Energy SolutionsProject:Leica AirsSample Matrix:Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³ Basis: NA

Analysis Lot: 196246

Service Request: R1001548

Date Analyzed: 4/7/10

	Lab Control Sample RQ1002594-02					
Analyte Name	Result	Expected	% Rec	Limits		
Bromoform	27.9	26.3	106	70 - 130		
Styrene	10,6	11.0	97	70 - 130		
o-Xylene	11.5	11.3	102	70 - 130		
1,1,2,2-Tetrachloroethane	19.1	17.8	107	70 - 130		
1,3-Dichlorobenzene	14.7	15.3	96	70 - 130		
1,4-Dichlorobenzene	13.9	15.5	90	70 - 130		
1,2-Dichlorobenzene	13.6	15.0	90	70 - 130		

		Air - Cha	in of Custo	dy Record & Analytic	al Service Request	Page	of the factor
Columbia	1 Mustard Street, Suite Rochester, New York 1.	250 4609-6925				[
A LANE CARLY LOGIN	Phone (585) 288-5380 Fax (585) 288-8475		Requested Turn	around Time in Business Days 3 Day 4 Day 5 Day 10 Day-	From Receipt, please circle	CAS Project No.	
Company Name & Address (Re)	porting information)	ING	Project Name		CAS Contact:		
The mail Blein	A anall	ALII Dex		21012	Analysis Methoo	1 and/or Analytes	
Dandury C	7 0681		Project Number				1
Project Manager Bob 1	Mether		P.O. # / Billing Int	ormation			
Phone 801-303-1092	Fax 203~797-8°	794	0		51-02		Comments Specific Instructions
Email Address for Result Reporting			Sampler (Print & Sig Wayne O	abolicr Wayulle	tell		Call Call
Client Sample ID	Laboratory Date ID Number Collected	Time Collected	Canister ID Flow	r Controlier			Faul
s8-1	-001 3bali	01,30	SLCOOH FC	<u>60749</u>			801-202-0180
TA-1	, ap	11,35	SLCOOL45 R	00710			Endled -
56-3 2	-013 -	11:40	SLCOOID H	007.57			La Martin
IA-2	- 100-	<u>E111</u>	SLEDOINT R.	00774			1
<u>58-3</u>	S.	00;11	SLCODIN3 PC	00730			
LA-3-012	-989-	13,00	SLEDOLS	11200			
SB-4 324	587	12,30	215 0011350	20739			
オイート	Å	12:30	Sleemert Fr	200721			
Dup	₽ ₽	13,25	SLEBUIGO PC	<i>P</i> 07ä\$			
QA.	2010	12,45	SLCOOUTYEC	6100			
Trip	¥ F		SLC0040PC	ereson			
-							
Report Tier Levels - please se						Project Re	guirements (MRLs, QAPP)
Tier II (Results + QC)	Tier IV (Data	Validation)	\		equired Yes / No EDD Units:		
Reliquished by: (Signature)	, }	Jay 10	Time: 12:30	iver by (Signature)	Date / C	Time: 7230	
Relignizhed by (Signature)		Date//10	Time: Rece ノイイク ノ	ived by: (Signature)	Batey	Time R100	1548
Reliquished by: (Signature)		bate:∠	Time: Rece	ived by: (Signature)	Date:	Time: Leica Airs	ns, inc. 11

Projec Cooler 1. 2. 3.	t/Client	Слел п_3	ingy land	Solu.	S	ubmissi	on Nu	mbei []	nergy Solutions, Inc. Elca Airs	- I III I II P ITT II JAA	Al Murt futit futur f
Cooler 1. 2. 3.	r received o	n_ <i>3</i>	hul								
1. 2. 3.	117		124/1	2 by:	COU	RIER:	EAS) UPS	FEDEX	VELO	CITY CLIENT
4. 5. 6. 7.	Were cust Were cust Did all bo Did any V Were Ice Where did Temperatu	ody s ody j ttles OA or Ic the l tre of	seals paper arrive vials e pac bottle f cool	on outside of coo s properly filled c e in good conditio have significant* ks present? es originate? er(s) upon receipt	ler? out (ink on (unbr air bub	, signed coken)? obles?	, etc.)?		YES YES YES CAS/RO	NO NO NO C, CLI	€ 7230 ENT
	Is the temp	peratu	ure w	ithin 0° - 6° C?:	Y	es	Yes	1	Yes	Yes	Yes
	If No, Exp	olain	Belo	W	N	lo	No		No	No	No
	Date/Time	Tem	pera	tures Taken:	/7	4R	Саны	iten			
	Thermome	eter II	D: IF	R GUN#3 / IR G	UN#4	Read	ling Fr	om: T	emp Blank	/ Samp	le Bottle
Cooler 1. 2. 3. 4. Explain	Breakdown Were all bo Did all both Were corre Air Sample any discrep	tiew: tie la tie la ct co es: (panci	ate :_ labels bels a ntain Casse	s complete (<i>i.e.</i> and tags agree with ers used for the textes / Tubes Intac	5/1c malysis, th custo ests ind t	preserv dy pape icated? anisters	by: ation, o ers? Pressu	etc.)?	YES YES YES Tedlar®	NO NO Bags Inf	lated MA 7/25
pH	Reagent	YES	NO	Lot Received	Exp	Sampl	e ID	Vol. Added	Lot Added	Final	Yes = All
≥12	NaOH			· · · · · · · · · · · · · · · · · · ·	-						samples OK
\$2	HNO3										No =
≤2 Residual Chlorine (-)	H_2SO_4 For TCN and Phenol			If present, contact add ascorbic acid	PM to						Samples were preserved at lab as listed
	$Na_2S_2O_3$	-	-			*Not to	be test	ted befor	e analysis – pł	H Cham	PM OK to
	Zn Aceta HCl	- *	- *			on a se	parate v	vorkshee	t voas of Gen	Chem	Adjust:
Bottle lot Other Cor	numbers: nments: 	1		c, labeled	01] 4 :'∽	sterd	cf	QA. :	th u	is matched

KAB 4/14/10 PC Secondary Review: _

*significant air bubbles are greater than 5-6 mm

H:\SMODOCS\Cooler Receipt 2.doc

80844

Ŀ