

May 11, 2012 Ref. No. 31129-102

Mr. Jaspal Walia Project Manager New York State Department of Environmental Conservation, Region 9 270 Michigan Avenue Buffalo, NY 14203-2999

Subject: Annual Status Report for 2011 Leica, Inc. Site; Erie County, Cheektowaga, New York Inactive Hazardous Waste Disposal Site No. 915156

Dear Mr. Walia:

As required by Section VII of the Order of Consent (the "Order") for the subject site, and as specified in Section 6 of the Site Management Plan, dated September 2011, Energy*Solutions*, LLC will prepare progress reports during the performance phase of the remedial action. This letter shall serve as the written progress report as required by the Order, and as the Periodic Review Report (PRR) as required by the Site Management Plan dated September 2011. The report format is consistent with the items specified in Section VII (i)-(vii) of the Order and the information provided is consistent with the requirements of Section 6.3 of the Site Management Plan.

1. Actions Taken During the Previous Months (January 2011 – December 2011)

Groundwater Remediation System

To address the contaminated bedrock aquifer, one well pump was installed in each of the two bedrock wells, MW-11A on July 12, 1999, and MW-16A on April 7, 1999. Each bedrock well is 6 inches in diameter and was completed to a total depth of approximately 40 feet below grade. Bedrock was encountered at 13.5 feet in MW-11A, and at 12.5 feet in MW-16A. The pumps installed in MW-11A and MW-16A are each set at approximately 28 feet below grade.

Pneumatic pumps were installed in each well and each with a design capacity of recovering 7 to 10 gallons per minute of groundwater from the bedrock aquifer. The original system design included an air injection compressor which supplied compressed air to the pneumatic pumps. Treatment was conducted by a multi-stage diffuser (MSD) designed to remove contaminants from groundwater prior to discharge into the local sanitary sewer. The air discharge from the MSD was treated using activated carbon and was monitored quarterly to gauge its performance. A sketch of the groundwater system layout as originally installed and operated is included as Appendix A. A copy of the Permit allowing discharge to the Buffalo sewer system is also included in Appendix A.

The pumping system is designed to run continuously (excluding periods when undergoing repairs, as required) until the Remedial Action Objectives (RAOs), or other criteria, approved by the NYSDEC, have been met. System and equipment maintenance is routinely performed in accordance with manufacturers' recommendations.

The current permit allowing discharge to the Buffalo sewer system is a revised version of the original permit. On March 18, 2011 NYSDEC, the Buffalo Sewer Authority (BSA) and the Town of Cheektowaga authorized direct discharge of the recovered groundwater to the BSA system without pre-treatment in the MSD system. Direct discharge was permitted based on the fact that the total concentration of VOCs in the recovered groundwater was below the discharge limits and therefore treatment was no longer needed. System piping was reconfigured in April of 2011 in order to allow the recovered groundwater discharge to bypass the MSD and flow directly to the BSA system.

Water discharge system samples are collected and analyzed quarterly to assess the system's performance and to provide data to the BSA. The samples are analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and Total Oil and Grease.

During 2011 the pumping system ran throughout the year with only minor down time for maintenance. The system pumped a total of 3,934,830 gallons during 2011. A summary of the flow for 2011 is included in Appendix A. An average flow rate of approximately 10 gallons per minute was observed during 2010, and is considered the average pumping rate. Based on the average pumping rate and minimal anticipated downtime for repairs, approximately 4 to 6 million gallons of water are expected to be recovered and discharged in 2012.

General Maintenance

Operations, maintenance and monitoring of the overburden and bedrock remediation systems was conducted in accordance with Section 6, System Operations, Maintenance, and Monitoring Plan included within the "Construction and Operation of Remedial System Project Design, Final Submittal" prepared by Scientech NES, Inc. (now Energy*Solutions*) dated March 1999 and submitted to the New York State Department of Environmental Conservation (NYSDEC), Region 9. Operations and Maintenance activities were also performed in accordance with the Site Management Plan prepared by Energy*Solutions* dated September 2011.

The Energy*Solutions* field crew continued to conduct routine scheduled maintenance of the groundwater pump and treatment system from January 2011 through December 2011. During the routine maintenance visits, the Energy*Solutions* field crew also inspected the site remediation system trailers, and other site items. Site equipment was in satisfactory working condition throughout 2011 with the exception of periods when maintenance and repairs were performed as specified in Table 1-1 below.

A summary of the results of the periodic inspections is included in Table 1-1 below. The inspection forms, detailed notes and other records prepared by the field inspectors are included in Appendix B as required in Section 6.3 of the Site Management Plan.

Table 1-1
2011 Annual System Maintenance and Repair Summary
Former Leica Facility, Cheektowaga, NY
Inactive HWDS 915156

	Date			Date System
	Deficiency			Returned to
Component	Detected	Deficiency noted	Maintenance/Repair action	operation

Compressor	3/7/2011	Oil leak on air compressor. Both pumps down	Repair flex coupler	3/30/2011
System	4/26/2011	Revise system piping for new permit.	Realign system piping in accordance with new permit. Install new meter and flow sensor on discharge line and bypass treatment	4/29/2011
Pump 11A	5/2/2011	Air lines and regulator filled with water	Clean regulator and water trap. Drain water from main air line.	5/2/2011
Pump 11A	5/5/2011	Air lines and regulator filled with water	Add water trap pipe and valve in main air line before air regulator trap.	5/5/2011
Pump 11A	6/28/2011	Air line broken under ground at well 11A	Shut system down, repair air line 8/3, 8/4 and 8/5.	8/5/2011

Submission of the Site Management Plan, Institutional Controls Certifications and Declaration

In response to requests from the NYSDEC, Energy*Solutions* prepared a Site Management Plan for the Leica site. The Site Management Plan (SMP) was prepared to incorporate and consolidate information related to Site Operation, Maintenance, Monitoring and Soil Management, topics which had previously been covered in separate documents. The SMP included Sections related to Site Background and Remedial Actions, Soils Management, Engineering and Institutional Controls, Site Monitoring, Operations and Maintenance and Inspections, Reporting and Certification. The SMP was completed and submitted to the NYSDEC in September of 2011 and officially approved by the department on November 17, 2011.

In conjunction with the submittal of the SMP in 2011, Energy*Solutions* also prepared and submitted requested NYSDEC Institutional and Engineering Controls Certification Forms for calendar year 2010 (included as Appendix E to the SMP). Certification Forms for calendar year 2011 are included in this submittal in Appendix H. The Certification Forms are intended to provide confirmation that all required Institutional and Engineering Controls are in place and functioning properly. Based on the fact that all controls are now in place, forms submitted this year for calendar year 2011 do not contain negative declarations.

Certification Forms for calendar year 2010 submitted in 2011 were originally submitted with a negative declaration indicating that all controls were not "in place and functioning as designed", based on the fact that the required groundwater use restrictions were not in place. As required by the Certification Forms in response to the negative declaration, a Corrective Measures Work Plan was prepared and submitted to the department on June 10, 2011. The Corrective Measures Work Plan included a description of actions needed to resolve the negative declaration. Subsequent to the submission of that work plan, the appropriate surveys, property descriptions and covenants were secured and the deed restrictions were filed in the office of the Erie County Clerk on February 28, 2012 thus fulfilling the requirements of the Corrective Measures Work Plan. We are still awaiting the Certificate of Completion as of this writing.

Systematic Groundwater Sampling

Groundwater elevation measurements were collected on March 23, 2011, June 2, 2011, October 5, 2011, and December 14, 2011. Groundwater samples were collected for all four quarters from shallow wells MW-5, MW-6, MW-10, MW-14, MW-16R, MW-18, MW-22, MW-24, MW-25, MW-26, MW-27, and MW-28 and bedrock wells MW-5A, MW-6A, MW-14A, MW-18A, MW-22A, MW-24A, MW-25A, MW-26A, MW-27A, MW-28A, and MW-29A. Energy *Solutions* attempted to collect samples of the overburden well MW-2 during the October 5th and December 14th sampling rounds, but were unable to due to the well being dry. Energy*Solutions* also attempted to collect samples of the bedrock well MW-2A during the October 5th and December 14th sampling rounds, but were only able to collect a sample during the December 14th round, due to very poor recharge of the well. Samples of groundwater from MW-11A and MW-16A were collected in the discharge piping at the treatment facility. These samples were collected in each of the four quarterly sampling events, and were intended to provide information regarding continuing groundwater quality and the effects of the HRC injection on the groundwater at the site. A schedule of the sampling is provided in Table 1-2 below.

Well Number	Quarter 1, March	Quarter 2, June	Quarter 3 October	Quarter 4 December
2			Dry No Sample	Dry No Sample
2A			Poor Recovery	December 15
5A	March 23	June 8	October 6	December 14
6A	March 23	June 8	October 5	December 14
6	March 23	June 8	October 5	December 14
10	March 23	June 8	October 5	December 14
11A	March 31	June 2	October 5	December 14
14	March 23	June 8	October 5	December 14
14A	March 23	June 8	October 5	December 14
16A	March 31	June 2	October 5	December 14
16R	March 30	June 8	October 10	December 15
18	March 30	June 2	October 5	December 14
18A	March 30	June 2	October 5	December 14
22	March 23	June 2	October 5	December 14
22A	March 23	June 8	October 5	December 15
24	March 30	June 8	October 10	December 15

Table 1-2 Sampling Schedule

24A	March 30	June 8	October 10	December 15
25	March 29	June 8	October 11	December 15
25A	March 29	June 8	October 11	December 15
26	March 29 ¹	June 8	October 11	December 15
26A	March 29	June 8	October 11	December 15
27	March 29	June 8	October 11	December 15
27A	March 29	June 8	October 11	December 15
28	March 29	June 8	October 11	December 15
28A	March 29	June 8	October 11	December 15
29A	March 29	June 8	October 11	December 15

Note 1: Subsequent sample collected on April 22, 2011

Groundwater depth measurements were collected from most of the available wells at the site during the March, June, October, and December sampling rounds. A listing of groundwater elevation information is included in Table 1 through Table 4 in Appendix C.

All samples collected were submitted under chain of custody to Columbia Analytical Services, Inc., located in Rochester, New York, for volatile organic compound (VOC) analysis using EPA Method 8260.

The four rounds of groundwater sampling were performed in March, June, October and December 2011, in accordance with the current sampling program.

Vapor Mitigation Work Plan and Supplemental Groundwater Grab Sampling

Chlorinated VOCs were detected in the sub-slab and indoor air (SS/IA) samples collected from within the northeast portion of the facility in December 2006 and July 2008. In response to these results, Energy*Solutions* implemented a remedial action which included the injection of Hydrogen Release Compound (HRC) in the area in an effort to reduce these SS/IA VOC concentrations. Following this HRC injection, SS/IA samples were collected from the area again in March 2010, in order to assess the success of the supplemental remediation.

Samples collected in 2010 were collected using methods specified in the September 2006 "Supplemental Area B Indoor Air and Sub-Slab Soil Gas Sampling Plan" and in compliance with NYSDOH guidance. Data was compared to NYSDEC Soil Vapor/Indoor Air Matrices 1 and 2 as published in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York." Comparison with the Matrix guidelines indicated that the HRC injection had not reduced the VOC concentrations in the area sufficiently and supplemental mitigation was still required in several portions of the building. The results were transmitted to the NYSDEC in a letter dated September 3, 2010.

In response to these results, Energy*Solutions* prepared a mitigation plan entitled "Vapor Mitigation Work Plan" which was approved by the NYSDEC on March 15th 2011. The Work Plan proposed three main remedial components which included:

- sealing cracks in the basement floor,
- design and installation of a Sub-slab Depressurization System (SSDS) in the loading dock area, and
- the possible implementation of supplemental HRC injection in the vicinity of MW-24 and MW-24A, depending on the water quality of supplemental groundwater grab samples collected from the groundwater beneath the central, western and southern areas of the building.

Energy*Solutions* initiated implementation of the Vapor Mitigation Work Plan in 2011, and has completed the following portions of the plan.

- Section 2.1 Basement Area Mitigation; Energy*Solutions* cleaned the floor slab in the basement area and sealed all major cracks in the basement in accordance with the mitigation plan during the week of September 12, 2011;
- Section 2.2 Main Entryway/Loading Dock Mitigation; Energy*Solutions* completed the SSDS pilot test proposed in the Mitigation Work Plan during the weeks of May 9 and June 11, 2011. Information regarding air flow and vacuum influence collected during the pilot test was used to complete the design of the SSDS. The SSDS design was completed in September, 2011, and a copy was provided to the Department on September 19, 2011. The system design covered an area of approximately 4,000 square feet in the vicinity of the loading dock and entryway. The system was designed for the use of two blowers and two extraction points. The original design completed in September 2011, proposed the installation of the blowers inside the building, located directly above the two extraction points. The original design was revised in March 2012 when the blowers were moved from the interior of the building to the exterior.

Section 2.4 - Main Warehouse Groundwater Investigation; Energy*Solutions* installed and sampled six (locations INT-1 thru 5 and EXT-1) temporary small diameter groundwater wells on June 6th through 8th 2011 as proposed in the mitigation plan.

The results of the "Main Warehouse Groundwater Investigation" *supplem*ental grab sampling event and the SSDS Pilot Test are detailed in Section 2. "Results of Data Generated".

Supplemental Sub-Slab Gas Investigation Work Plan

Concentrations of chlorinated VOCs in the Main Warehouse Groundwater Investigation grab samples collected on June 8, 2011 to the west and south of MW-24 and MW-24A were elevated. Based on these results, it appeared that the extent of these elevated VOC concentrations in the groundwater extended further to the west and south than originally anticipated. These results indicated that further investigation in these areas radiating out from MW-24 and MW-24A was warranted.

In response to this need for further investigation, the "Supplemental Sub-Slab Gas Investigation Work Plan" CS-OP-PN-060, Rev. 0, was prepared and submitted to the NYSDEC on July 29th 2011. The Work Plan was subsequently approved by the NYSDEC and implemented in September, 2011.

The work plan included the use of SUMA canisters for the collection of approximately 36 subslab and indoor air samples for laboratory analysis. Some samples were collected for 30 minutes and were used strictly for screening purposes in order to assess the potential for groundwater contamination below the sampling point. Other samples were collected for 8 hours. These samples were used to assess compliance with the NYSDOH Indoor Air/Sub-Slab matrices. The results of laboratory analyses indicated that VOC concentrations in the vapors beneath the slab were elevated in multiple areas throughout the building to the west north and south of the main facility loading dock. The results of the Supplemental Sub-Slab Gas Investigation are detailed in Section 2, "results of Data Generated.

Discharge Permit Monitoring/Permit Modification

A request for a discharge permit modification was submitted to the Town of Cheektowaga and the Buffalo Sewer Authority (BSA) on December 15, 2010. Current VOC concentrations are much lower than the concentrations present when the application was first submitted. Based on these reduced concentrations, a request was made to revise the permit and eliminate the operation of the treatment system so that the groundwater would be recovered and pumped to the BSA system directly without treatment. The BSA, the Town of Cheektowaga and the NYSDEC approved this permit modification and the new discharge permit (Permit Number 11-02-CH014) was issued on March 18th 2011, and is attached in Appendix A.

Effluent samples were collected from the groundwater treatment system discharge on February 3rd, May 9th, August 9th, and November 3rd of 2011. Sample analysis indicated that there were no exceedances of the newly permitted maximum discharge concentrations (2140 ug/L) during the period of January 2011 through December 2011.

2. Results of Data Generated

Groundwater Sampling (Regular Monitoring Program)

The results of data collected during the March, June, October and December 2011 rounds of groundwater sampling are included in this report. Samples collected in March, June, October, and December were intended to serve as the quarterly groundwater sampling and also as post HRC injection sampling for the site.

During the March, June, October and December sampling events, all wells scheduled for sampling provided sufficient water for sample collection, with the exception of MW-2 in the October and December sampling events and MW-2A in October when they did not produce sufficient water. During all four sampling events, three well volumes were purged from monitoring wells with sufficient water volume using a dedicated bailer or pump prior to sample collection. Samples were collected from site wells in 2011 based on the schedule with sampling dates as shown in Table 1-2 in Section 1 - Actions Taken During the Previous Months *Systematic Groundwater Sampling*.

Area B (Area surrounding the former drywell near the loading dock at the NE corner of the facility) Comparison

Groundwater quality frequently varies at the site from season to season. In order to compare data quality during the same successive season, concentrations of total VOCs in the spring of 2010 (March 23) were compared to concentrations in the spring of 2011 (March 23-31). When comparing the total VOC concentrations in individual wells in Area B during these two seasons, they ranged as follows.

Concentrations in MW-16A ranged from 2240 to 1274 micrograms per liter (ug/l), MW-16R from 736 to 495.7 ug/l, MW-18A from 155 to 86 ug/l and MW-18 was non-detect for both sampling dates. These changes in concentrations are thought to be associated with continued degradation of chlorinated solvents following the injection of HRC in this area, as well as seasonal fluctuations and the natural movement of the contaminants in the local groundwater. Concentrations in all wells were reduced.

Results from the spring sampling round indicated that concentrations of TCE remained at nondetectable concentrations from 2010 to 2011 in all wells in the vicinity of Area B with the exception of MW-18A where TCE concentrations ranged from 54 to 60 ug/l. For monitoring well MW-16R, the TCE concentrations were at non-detectable levels for three of the four quarters. The June concentration was estimated at 1.3 ug/l. These low concentrations are still likely attributable to the 2008 HRC injection program. Concentrations of DCE and vinyl chloride in MW-16R, which are byproducts of the natural/biological degradation of TCE, remained very low in 2011, all below 6 ug/l. Chloroethane, a degradation product of DCE, continues to be detected in the groundwater samples collected from MW-16R indicating reductive de-chlorination is still in progress. In addition, associated concentrations of the chlorinated solvent 1,1,1-trichloroethane (TCA) at MW-16A showed a significant decrease to non-detectable levels when compared to concentrations from 2009 as high as 420 ug/l. Concentrations of the degradation product 1,1-dichloroethane (DCA) are also decreasing in MW-16A. A similar response was also noted in MW-16R, with continued non-detectable concentrations of TCA in three of four quarters. DCA concentrations in 16R remained relatively consistent.

The June 2011 results show very minor concentrations of TCE in groundwater samples collected from two of the overburden monitoring wells in Area B, with MW-16R at 1.3 ug/l(J) and MW-24 at 1.6 ug/l (J) and non-detectable concentrations in MW-18. DCE and vinyl chloride concentrations were at either non-detectable or non-quantifiable levels in monitoring wells MW-16R and MW-18. The DCE and vinyl chloride concentrations in MW-24 remained relatively consistent for this sampling event when compared to concentrations in the summer of 2010. TCE concentrations increased in bedrock monitoring well MW-18A and vinyl chloride concentrations slightly decreased. DCE concentrations decreased at MW-18A, MW-16A and MW-24A, when compared to concentrations in the summer of 2010.

The October 2011 results continue to show very low (non-quantifiable) concentrations of TCE in groundwater samples collected from the three overburden monitoring wells in Area B. DCE and vinyl chloride concentrations also remain non-detect in monitoring well MW-16R, MW-18 and 24. The DCA and chloroethane concentrations showed slight increases in the groundwater sample collected from MW-16R when compared to the September 2010 sample, while the TCA concentrations

remained non-detect. TCE concentrations in the groundwater sample collected from bedrock monitoring well MW-18A were higher than concentrations in 2010, but remained not detected at MW-24A. DCE concentrations decreased at MW-24A, and MW-18A when compared to 2010 levels along with decreased concentrations of vinyl chloride for MW-24A and for MW-18A.

The December 2010 results continue to show no detectable concentrations of TCE in groundwater samples collected from the three overburden monitoring wells in Area B. DCE and vinyl chloride concentrations remain non-detect in monitoring wells MW-16R and MW-18. The DCE and vinyl chloride concentrations reported for MW-24 are both less than the December 2009 sample. Both DCA and chloroethane concentrations were similar in the groundwater sample collected from MW-16R when compared to the January 2010 sample, while the TCA concentrations remained non-detect. TCE concentrations, when compared to 2010 levels, increased in the groundwater sample collected from bedrock monitoring well MW-18A, and were not detected at MW-24A. The DCE concentrations increased at MW-18A, but decreased at MW-24A. Vinyl chloride concentrations decreased at both wells.

These results indicate continued biological degradation of the chlorinated solvents present in Area B as a result of the HRC injection. The highest overburden concentrations in the area are now at 140 ug/l (vinyl chloride in MW-24, March) and the highest bedrock concentrations are now at 690 ug/l (cis 1,2 DCE in MW-16A, October); significantly lower than concentrations present when the HRC injection occurred in 2008. Future rounds of groundwater samples will provide additional evidence to aid in confirming that reductive dechlorination is in progress in Area B.

Area C (Area surrounding former burial area at the SE corner of the property) Comparison

In order to assess potential trends in the contaminant concentrations in Area C, we have compared concentrations of total VOCs in the spring of 2010 with concentrations in the spring of 2011. When comparing the concentrations in individual wells in Area C during these two seasons, they ranged as follows: MW-3 and MW-5 from ND to ND, MW-22 from ND to 12 ug/l, MW-5A from 59 to 7.9 ug/l, MW-6 from 175 to 180 ug/l, MW-6A from 690 to 1,060 ug/l, MW-10 from (no sample 2010) to 22 ug/l, MW-14, from 234 to 300 ug/l, MW-14A, from 149 to 80 ug/l, and MW-22A from 14 to 6 ug/l. These slight variations in concentrations are thought to be associated with seasonal fluctuations and the natural movement of the contaminants in the local groundwater and do not appear to be representative of any significant trends. Future rounds of groundwater samples will provide additional evidence to assess the success of the HRC injection in this area.

Very low levels of TCE still remain in Area C with the highest TCE concentrations in MW-6 at 19 ug/l, but the vast majority of the total VOC concentrations in the area are comprised of DCE and vinyl chloride. This data suggests that significant reductive dechlorination has occurred in the area over time. During the spring sampling round, concentrations of DCE and vinyl chloride remained relatively constant in most wells in the area with slight increases in some cases. Slight increases in DCE and vinyl chloride were noted in the 2011 samples for MW-10. DCE and vinyl chloride were also detected more frequently in 2011 groundwater samples collected from MW-22 and MW-22A; however, the concentrations remain low with a maximum of 28 ug/l vinyl chloride in MW-22A and 82 ug/l vinyl chloride in MW-22. Although concentrations are fluctuating in these wells, the variations do not appear to be reflective of any major trends.

Concentrations of the TCE daughter products cis 1,2 DCE and vinyl chloride in Area C during 2011 remained relatively consistent with previous rounds of sampling. Available data shows some decrease in concentrations, but does not demonstrate declines as significant as those observed in Area B. This consistency in the data, and the fact that changes in Area C have not been as dramatic as those in Area B, indicate that a significant portion of the reduction to daughter products had already occurred in Area C, prior to the HRC injection in 2008.

Results indicate effective chlorinated VOC reduction has been observed in Area B overburden wells over time with the virtual elimination of TCE, DCE and vinyl chloride in MW-16R, and the elimination of TCE and a reduction in DCE and vinyl chloride concentrations in MW-24. In Tables 5A through 5F, Appendix C, we have compared the total concentration of TCE, DCE and vinyl chloride to the total VOC concentration in each well, providing a percentage of the total VOC concentration for each constituent. In Area B, the percentage of vinyl chloride (in relation to the total VOC concentration) now ranges from a minimum of 0 percent to a maximum of 4 percent (MW-24) and DCE percentages ranging from 0 percent to a maximum of 3 percent. With the majority of the chlorinated VOCs reduced to near ND concentrations, the aromatic hydrocarbons have now become the most predominant contaminant in the Area B overburden wells.

Vinyl Chloride percentages range from 2 percent to 17 percent in Area B bedrock wells, suggesting that the dechlorination process has occurred in the deeper groundwater, but to a lesser degree when compared to the overburden groundwater. Also as expected, chlorinated VOCs are present at higher percentages in the bedrock groundwater due to the lower concentrations of the aromatic hydrocarbons in the deeper groundwater zones.

Relative percentages of vinyl chloride in Area C overburden wells range from a minimum of 30 percent to a maximum of 100 (MW-10) percent with the vinyl chloride component in most wells in the 50 to 100 percent range suggesting higher percentages of vinyl chloride and thus more attenuation in the area.

Off Site Wells

The nine offsite groundwater monitoring wells installed in 2009 and 2010 on Rowan Road were sampled during all four quarters in 2011. Results were relatively consistent throughout the year and with past sampling results. Well pairs MW-5, MW-25, MW-27 and MW-29 continue to delineate the boundaries of the contaminant plume. No VOCs were detected in MW-5 during the year and only vinyl chloride was detected in MW-5A at a maximum concentration of 7.9 ug/l. MW-25 contained only vinyl chloride in one sample during the year (June) at a concentration of 7.3 ug/l. MW-25A contained detectable concentrations of DCE and vinyl chloride during the year but at the low maximum concentrations of 7 ug/l and 24 ug/l respectively. MW-27 and MW-27A did not contain quantifiable concentrations of any VOCs during the year and MW-29A did not contain detectable concentrations of chlorinated VOCs during the year.

Data from the remainder of the wells in the area (MW-26 and MW-28 well pairs) indicate that the center of the contaminant plume is located in the vicinity of the MW-26 well pair with the extent bounded to the east by the MW-25 well pair, to the west by the MW-27 well pair and to the south by MW-29A.

Tables and Figures

Groundwater chemistry data tables (Tables 5A, 5B, 5C, 5D, 5E, & 5F) and groundwater elevation tables (Tables 1 through 4) for March, June, October, and December 2011 are included in Appendix C. Bedrock and overburden groundwater contours are shown on Figures 1 and 2; 7 and 8; 13 and 14; and 19 and 20 in Appendix D. Groundwater contaminant concentration isopleths are shown on Figures 3 through 6 (March 2011), 9 through 12 (June 2011), 15 through 18 (October 2011) and 21 through 24 (December 2011) in Appendix D. Laboratory data is included in Appendix E.

Groundwater Sampling (Supplemental Grab Samples, June 8, 2011)

As an integral part of the implementation of the Vapor Mitigation Plan submitted in 2010, Energy*Solutions* collected six groundwater grab samples during 2011. Five of the six samples were collected from locations inside the building and the sixth sample was collected from a location just outside the south eastern corner of the building. Figure 25 and Figure 26 show the concentrations of VOCs and the locations of the six grab samples (INT-1 through INT-5 and EXT-1).

The samples were collected on June 8, 2011. The samples were collected in order to provide additional information regarding the western and southern extent of the groundwater plume generated by the former drywell located outside the main facility loading dock. The six supplemental samples were collected from temporary wells cased with 1" PVC piping and screened at an approximate depth of five to fifteen feet below the building floor, or the ground surface in the case of sample EXT-1. The wells INT-1 through INT-5 were installed on June 7th and EXT-1 was installed on June 8th 2011. The five interior wells were allowed to equilibrate overnight and then one sample was collected from each of the six temporary wells on June 8th 2011.

Data collected from these supplemental groundwater grab samples indicated that elevated contaminant concentrations were present in the groundwater to the west and south of monitoring well pair MW-24 the most downgradient well pair located within the building footprint as of the date the samples were collected.

TCE concentrations ranged from a low of non-detectable in INT-1 to a high of 82,000 ug/l in INT-2. Cis 1,2 DCE concentrations ranged from a low of non-detectable in INT-1 to a high of 9,100 ug/l in INT-2. Vinyl Chloride concentrations ranged from a low of non-detectable in INT-1, INT-2 and EXT-1 to a high of 140 ug/l in EXT-1. TCE and cis 1,2 DCE data and concentration isopleths are also presented on a Figure 25 and Figure 26.

Based on these results, it appears that the groundwater plume from the former drywell has migrated to the west as far as location INT-2 and to the south as far as location INT-4. Lower concentrations at location INT-3 suggest that location INT-2 represents the limits to the west of the major elevated VOC concentrations in the groundwater. Based on the locations of these two samples (INT-2 and INT-3), the data collected in June of 2011 suggests that releases have impacted the groundwater to the west approximately 300 feet. Energy*Solutions* is currently planning supplemental sampling in the area to confirm this conclusion.

Concentrations of TCE in samples INT-1 and INT-4 collected more directly to the south of the former drywell confirm that the majority of the groundwater flow travels to the southwest, not directly to the

south. The TCE concentration in INT-1 was non-detect, and the TCE concentration in INT-4 was 830 ug/l. Concentrations in the southern most sampling points INT-5 and EXT-1 were very low and nonquantifiable at 0.36 ug/l (J) and 0.35 ug/l (J) respectively suggesting that the limits of the southern impact of the drywell release is located somewhere between samples INT-4 and INT-5.

The June groundwater grab sample locations are shown on Figures 25 and 26 in Appendix D. Laboratory data is summarized in Table 6 in Appendix C.

Supplemental Sub-slab Gas Investigation

The high VOC concentrations detected in some of the groundwater grab samples collected during the June 8, 2011 sampling event, particularly sample INT-2 with TCE concentrations at 82,000 ug/l, presented the potential for elevated sub-slab vapor concentrations to be present beneath the building floor slab. The Supplemental Sub-Slab Gas Investigation was implemented in order to confirm whether the sub-slab vapors contained elevated VOC concentrations, and if so, to delineate the extent of these elevated concentrations and thus reveal a more thorough picture of areas with the potential for elevated VOC concentrations in the groundwater.

Sub-slab and indoor air samples were collected in September, 2011 using Suma Canisters in accordance with the Supplemental Sub-Slab Gas Investigation Work Plan. Two types of sub-slab samples were collected. Thirty one (31) 30 minute screening samples were collected in order to provide data that might be used to assess the potential locations of groundwater contamination beneath the floor slab. To compliment these screening samples, four additional locations were selected for the collection of 8-hour indoor air and subslab samples which would provide data that could be compared to the NYSDOH Soil Vapor/Indoor Air Matrices 1 or 2 as appropriate.

The majority of the samples were collected from the central portion of the building with some additional locations added near the northern, western and southern perimeters of the building. Sampling locations and associated laboratory results are shown on Figure 27. Summary Tables (Tables 7 and 8) of the results are also included in Appendix C.

Results of this additional sub-slab vapor investigation indicated that there are additional areas within the building with elevated concentrations of chlorinated VOCs and aromatic VOCs in the sub-slab vapors. The locations of the highest sub-slab concentrations detected coincided well with the locations of the highest groundwater grab sample concentrations, suggesting that in some locations VOCs in the groundwater are evaporating and migrating through the vados zone and becoming trapped under the floor slab. Sub-Slab sample 8hr-002, the sub-slab sample with the highest TCE concentrations (TCE at 420,000 ug/m³) was collected directly above groundwater sample INT-2, the groundwater grab sample with the highest concentrations (TCE at 82,000 ug/l). Correlation between groundwater sample results and sub-slab sample results were also good in the areas immediately to the west of groundwater sample INT-3. This sample was thought to represent the western boundary of the groundwater contamination, and sub-slab samples to the west of INT-3 seem to confirm this conclusion. Sub-slab vapor concentrations of TCE in samples 011, 012, 013, 025, 026, 018, 017 and 015 all to the south and west of INT-3 were less than 250 ug/m³ in all cases. These results are significantly less than the concentrations of sub-slab samples 8hr-002 (TCE at 420,000 ug/m³), 8hr-003 (TCE at 11,000 ug/m³), 010 (TCE at 6,200 ug/m³), 009 (TCE at 79,000 ug/m³), 020 (TCE at 2,300 ug/m³) and 021 (TCE at 200,000 ug/m³), all located to the north and or east of INT-3.

Although the results revealed this zone of lower concentrations in the central building area just south and west of groundwater grab sample INT-3, higher subslab VOC concentrations were detected once again further to the south and west represented by samples 007 (TCE at 1,400 ug/m³), 008 (TCE at 3600 ug/m³), 027 TCE at 3,500 ug/m³) and 028 (TCE at 60,000 ug/m³). The data therefore suggests that the extent of the impacts from the drywell release may end in the vicinity of sample INT-3, and these elevated concentrations further to the south and west may have resulted from separate small surface releases unrelated to the former dry well.

Energy*Solutions* is currently planning additional investigation of the sub-slab and groundwater beneath the building to further define the extent and sources of the elevated TCE concentrations discovered during this Supplemental Sub-Slab Gas Investigation, particularly in the areas to the south and west of the central building area.

The September 2011 sub-slab and indoor air sample locations are shown on Figure 27 in Appendix D. Figure 28 also included in Appendix D, shows TCE concentration isopleths for this September 2011 data. Laboratory data is summarized in Tables 7 & 8 in Appendix C.

3. Required Deliverables Submitted to NYSDEC

The following deliverables were submitted during the period:

- 2010 Annual Report dated March 21, 2011 with Addendum dated July 8, 2011.
- Site Management Plan with applicable Engineering and Institutional Controls Certifications for calendar year 2010, dated September 2011, signed September 6, 2011 and submitted on September 7, 2011.
- **Corrective Measures Work Plan** signed dated and submitted on June 10, 2011 and in response to negative declarations in the 2010 Certifications signed on April 18, 2011 and submitted with the Site Management Plan.
- Supplemental Sub-Slab Gas Investigation Work Plan CS-OP-PN-060, Rev. 0 dated July 2011, signed on July 29, 2011 and submitted on July 29, 2011.
- Sub Slab Depressurization System Installation Work Plan (Including pilot testing Information) (Rev. 0 dated September 2011 and signed September 14, 2011, Rev. 1 submitted in March 2012).

4. Actions Scheduled for the Upcoming Months (January 2012 – December 2012)

System Maintenance

The Energy*Solutions* field crew will continue with routine scheduled maintenance to the groundwater pumping system as specified in the new permit (Permit Number 11-02-CH014) that was issued on April 1st 2011. Samples of this discharge system will be taken quarterly in accordance with this new permit.

Groundwater Monitoring

Future groundwater monitoring will be performed on quarterly basis in accordance with the latest monitoring program schedule attached in Appendix G. As of this writing the spring sampling event is complete. The next scheduled quarterly groundwater sampling event will be conducted during the summer of 2012, scheduled for June 2012, as indicated in the current monitoring program. Also as indicated in Section 2, under the paragraph entitled <u>Supplemental Sub-slab Gas Investigation</u>, Energy Selutions will collect additional groundwater graph complex for groundwater and sub slab

Energy*Solutions* will collect additional groundwater grab samples from groundwater and sub-slab vapor samples beneath the building in order to further assess the extent of the groundwater contamination and elevated VOC concentrations in sub-slab vapors and indoor air.

<u>Remediation</u>

Energy*Solutions* is currently awaiting authorization from Sam-Son to install the proposed Sub-Slab depressurization system in the main facility loading dock area. Once the approval has been received, Energy*Solutions* will initiate the activities associated with the installation of the system. Other possible remediation activities including the use of HRC injections as proposed in the Vapor Mitigation Plan or additional vapor mitigation of the newly discovered areas with elevated VOC concentrations in the sub-slab vapors will be considered and planned in the future based on the results of the additional sampling of the groundwater and subslab vapors under the building now in the planning stages.

5. Schedule Information

No scheduling conflicts are anticipated at this time.

6. Modifications to the Work Plan

Additional work plans submitted, approved and/or implemented in 2011 are noted in Section 3 above.

7. Actions Taken in Support of the Citizen Participation Plan

No private residents visited the site in 2011.

In response to a request from the management at the Sam-Son facility, a new Informational Notice (fact sheet) was created for posting at the Sam-Son facility. The fact sheet was prepared in order to provide information about the vapors present in the sub-slab and indoor air for the workers at the facility. The fact sheet, which was transmitted to Sam-Son on November 27, 2011 via email, summarized the data which had been collected in 2006, 2008 and 2010 and compared this available data to the OSHA PEL standards. The fact sheet also included the phone numbers of several project personnel including the NYSDEC project manager, Mr. Jaspal Walia, the NYSDOH project representative Mr. Matt Forcucci and the Energy*Solutions* project manager Mr. Robert McPeak. A copy of the Informational Notice (fact sheet) is included in Appendix F.

If you have any questions regarding this report, please feel free to call me at 801.303.1092. Sincerely,

Rover & Mc Plat

Robert E. McPeak, Jr., P.E., LEP Project Manager, Environmental Services

REM/pm Enclosures cc: M. Forcucci (NYSDOH) C. Grabinski J. Egan (electronic copy only)

Enclosures:

Appendix A Groundwater Recovery System Documents

Treatment System Layout Discharge Permit Annual Groundwater Treatment System Discharge Summary

Appendix B Field Inspection Documents

Inspection Forms Inspection Notes

Appendix C Data Tables for Groundwater and Sub-Slab and Indoor Air

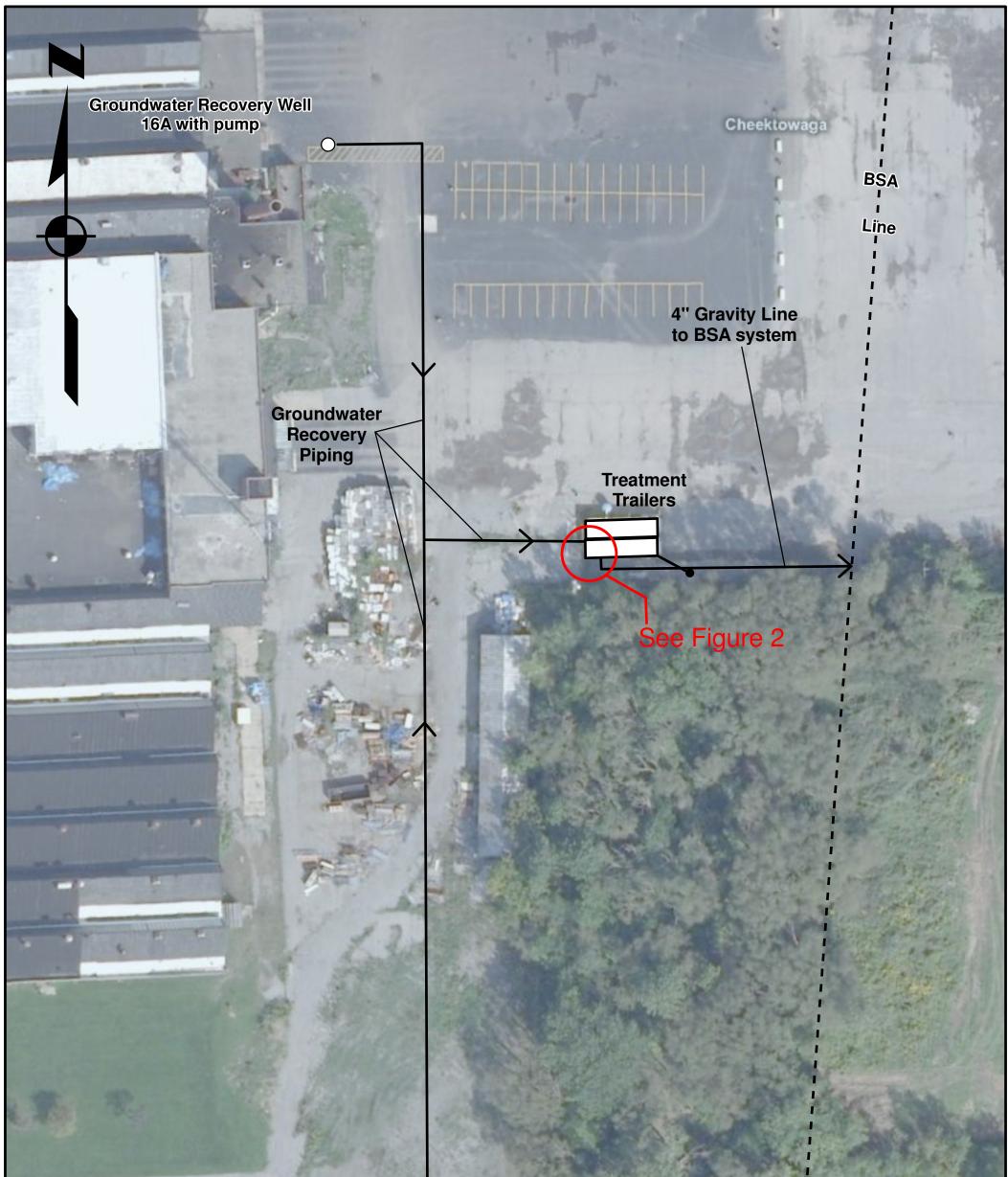
- Table 1Groundwater Elevation Data (March, 2011)
- Table 2Groundwater Elevation Data (June, 2011)
- Table 3Groundwater Elevation Data (October, 2011)
- Table 4Groundwater Elevation Data (December, 2011)
- Table 5Quarterly Groundwater Data (A (Wells 1-3), B (Wells 5-10), C (Wells
11A-14A), D (Wells 16A-16R), E (Wells 18-22A) & F (Wells 23-29A)
- Table 6Groundwater Grab Sample Data (June, 2011)
- Table 7Summary of 8hr Indoor Air and Sub Slab Samples (September, 2011)
- Table 8Summary of 30 Min Sub Slab Samples (September, 2011)

Appendix D Groundwater Monitoring Figures

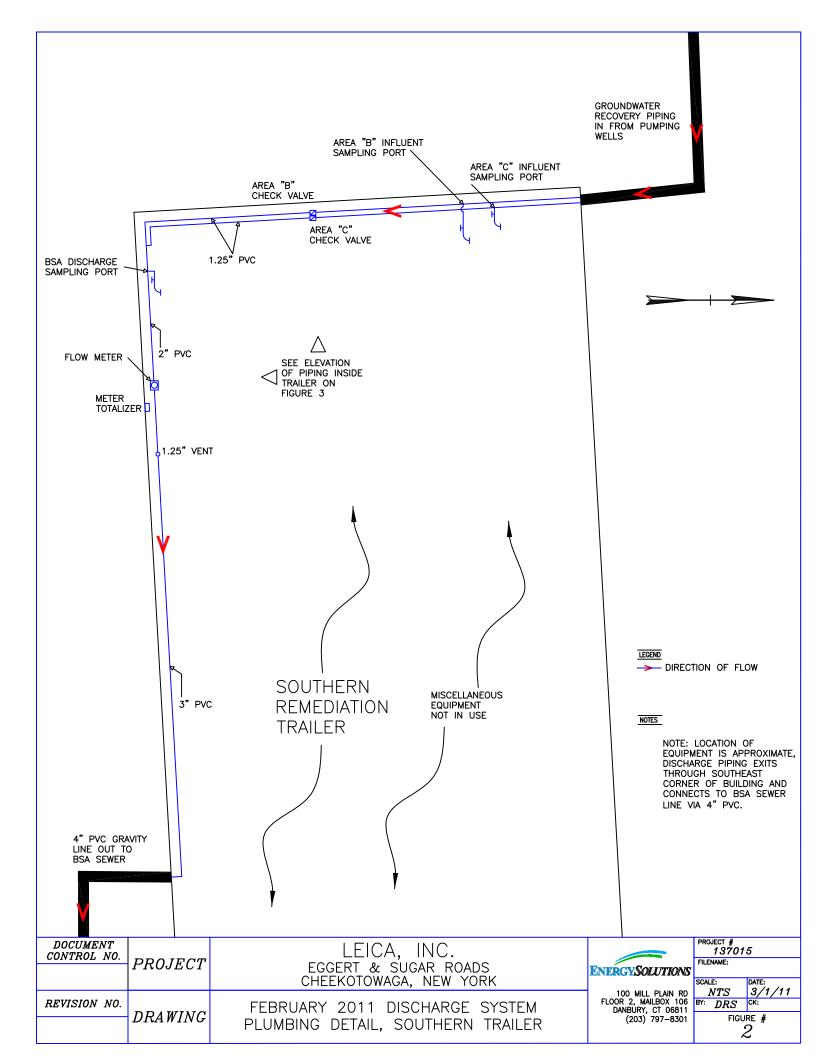
- Figure 1 Groundwater Contours, March 2011, Overburden Wells
- Figure 2 Groundwater Contours, March 2011, Bedrock Wells
- Figure 3 Vinyl Chloride Contaminant Concentration Isopleths, March 2011, Overburden Wells
- Figure 4 Vinyl Chloride Contaminant Concentration Isopleths, March 2011, Bedrock Wells
- Figure 5 CIS 1,2 DCE Contaminant Concentration Isopleths, March 2011, Overburden Wells
- Figure 6 CIS 1,2 DCE Contaminant Concentration Isopleths, March 2011, Bedrock Wells
- Figure 7 Groundwater Contours, June 2011, Overburden Wells
- Figure 8 Groundwater Contours, June 2011, Bedrock Wells
- Figure 9 Vinyl Chloride Contaminant Concentration Isopleths, June 2011, Overburden Wells
- Figure 10 Vinyl Chloride Contaminant Concentration Isopleths, June 2011, Bedrock Wells
- Figure 11 CIS 1,2 DCE Contaminant Concentration Isopleths, June 2011, Overburden Wells
- Figure 12 CIS 1,2 DCE Contaminant Concentration Isopleths, June 2011, Bedrock Wells
- Figure 13 Groundwater Contours, October 2011, Overburden Wells
- Figure 14 Groundwater Contours, October 2011, Bedrock Wells

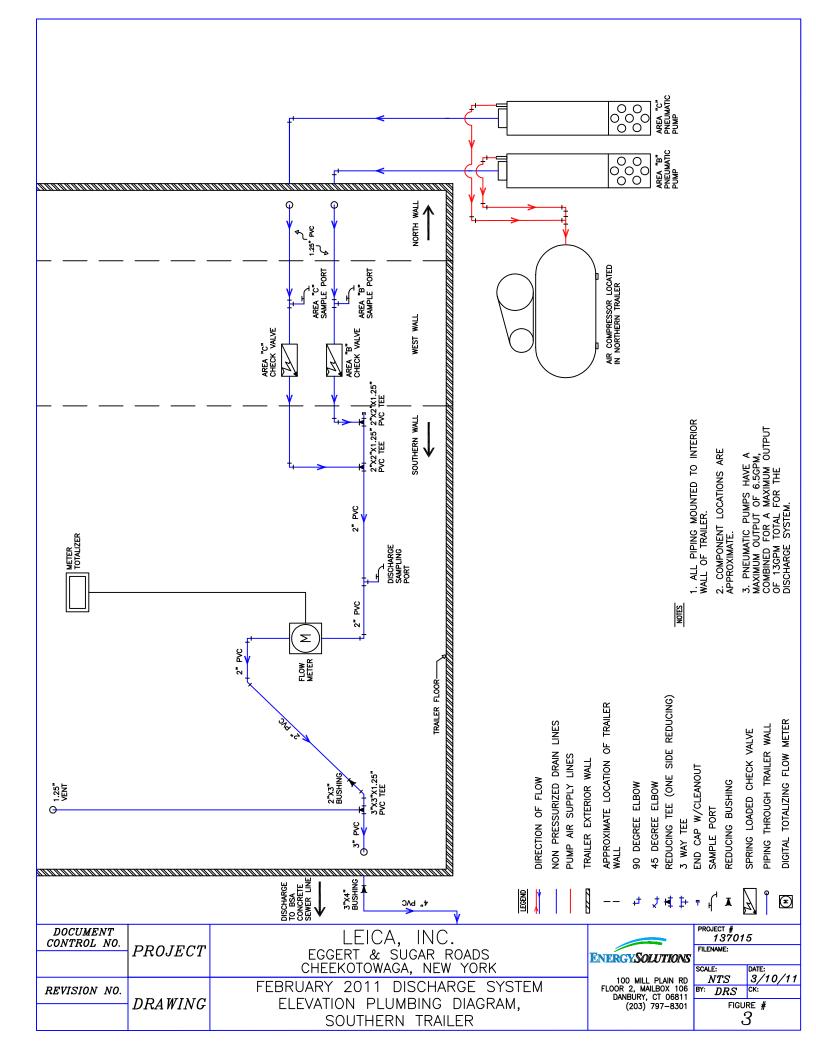
- Figure 15 Vinyl Chloride Contaminant Concentration Isopleths, October 2011, Overburden Wells
- Figure 16 Vinyl Chloride Contaminant Concentration Isopleths, October 2011, Bedrock Wells
- Figure 17 CIS 1,2 DCE Contaminant Concentration Isopleths, October 2011, Overburden Wells
- Figure 18 CIS 1,2 DCE Contaminant Concentration Isopleths, October 2011, Bedrock Wells
- Figure 19 Groundwater Contours, December 2011, Overburden Wells
- Figure 20 Groundwater Contours, December 2011, Bedrock Wells
- Figure 21 Vinyl Chloride Contaminant Concentration Isopleths, December 2011, Overburden Wells
- Figure 22 Vinyl Chloride Contaminant Concentration Isopleths, December 2011, Bedrock Wells
- Figure 23 CIS 1,2 DCE Contaminant Concentration Isopleths, December 2011, Overburden Wells
- Figure 24 CIS 1,2 DCE Contaminant Concentration Isopleths, December 2011, Bedrock Wells
- Figure 25 Interior Groundwater Grab Sample Locations, cis 1,2 DCE Concentrations, June 2011
- Figure 26 Interior Groundwater Grab Sample Locations, TCE Concentrations, June 2011
- Figure 27 September 2011 Sub-Slab Soil Vapor and Indoor Air Sample Data
- Figure 28 Estimated Sub-Slab Soil Vapor TCE Concentration Isopleths, September 2011

Appendix E Analytical Data


Analytical Data	March, June, October, and December 2011
	Groundwater Analytical Data
Analytical Data	June 2011Groundwater Grab Samples
	Groundwater Analytical Data
Analytical Data	September 2011
	Sub-Slab and Indoor Air Analytical Data

- Appendix F Samson Informational Notice
- Appendix G Monitoring Program Schedule
- Appendix H Certification Forms


APPENDIX A


Groundwater Recovery System Documents

Treatment System Layout Discharge Permit Annual Flow Summary

0 60	120 Fee	Groundwater Recovery Well 11A with pump		
DOCUMENT CONTROL NO.	PROJECT	LEICA MICROSYSTEMS INC. 203 EGGERT ROAD CHEEKTOWAGA, NY	ENERGYSOLUTIONS	
REVISION NO.	DRAWING	2011 Discharge System Layout	100 Mill Plain Road Danbury, CT 06811 203-797-8301	SEE SCALEBAR 3/1/11 BY: MT CK: FIGURE # 1

	Leica Annua	al Groundwater	Treatment System Discharge Summary
Data			0 Through December 15th, 2011
Date 12/27/2010	Meter Reading 5688569.9	Flow (gal)	Comments
12/21/2010	5000509.9	264575.3	
1/13/2011	5953145.2	305680	
2/3/2011	6258825.2	164366.2	Water level low, area C lines frozen.
3/7/2011	6423191.4	0	System was shut down, low oil in compressor
3/30/2011	6423191.4	22800.3	Repair compressor, re-start system.
3/31/2011	6445991.7	116593.8	High water levels, running good.
4/7/2011	6562585.5	271527.1	
4/21/2011	6834112.6	96433	
4/26/2011	6930545.6		Final Reading on old totalizing meter, system shut down.
4/29/2011	0	2605.9	New meter installed
4/29/2011	2605.9	49960.5	End of day reading on new meter
5/2/2011	52566.4	37631.4	
5/5/2011	90197.8	14005.2	Air line to area C filled with water and was not pumping
5/6/2011	104203	35448.8	
5/9/2011	139651.8	34923.4	Quarterly discharge sample taken
5/11/2011	174575.2	299091.6	
6/1/2011	473666.8	14490.1	
6/2/2011	488156.9 601199.9	113043	
6/8/2011	001199.9	17475.1	
6/9/2011	618675	232863.7	
6/28/2011	851538.7	4657.8	
8/5/2011	856196.5	57728.9	
8/8/2011	913925.4	16509.6	
8/9/2011	930435	1249940	
11/3/2011	2180375.4	376918.2	
12/5/2011	2557293.6	35236.8	
12/8/2011	2592530.4	49494.9	
12/12/2011	2642025.3	40829.4	
12/15/2011	2682854.7	2024920 -	tal Gallons Discharged 12/27/2010 Through 12/15/2011
		3324030 10	

Administrative Offices 1038 City Hall 65 Niagara Square Buffalo, NY 14202-3378 Phone: (716) 851-4664 Fax: (716) 856-5810

WASTEWATER TREATMENT PLANT Foot of West Ferry 90 West Ferry Street Buffalo, NY 14213-1799 Phone: (716) 883-1820

March 18, 2011

CERTIFIED

Robert McPeak, P.E. Energy Solutions 100 Mill Road Second Floor, Mailbox 106 Danbury, CT 06811

Re: CHEEK/BPDES Permit No. 11-02-CH014

Dear Mr. McPeak:

Enclosed is your renewed CHEEK/BPDES Permit No. 11-02-CH014. This permit is jointly issued by the BSA and the Town of Cheektowaga and replaces all prior permits to discharge process wastes to the sanitary sewers.

This original permit must be maintained at your Lancaster facility and must be available for inspection at all times. It is your responsibility to assure continual compliance with the terms and conditions of this permit. Finally, you must apply for renewal at least six (6) months before this permit expires.

If you have any questions, please call Dennis W. Young at 883-1820, ext. 256.

Very truly yours,

of Sedit, "

By:

Leslie Sedita Industrial Waste Administrator Industrial Waste Section

cc: J. Keller W. Pugh

I\WPD\JK\pugh\leicafina;permitltr

AUTHORIZATION TO DISCHARGE UNDER THE TOWN OF CHEEKTOWAGA/ **BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM**

PERMIT NO. 11-02-CH014 EPA 40CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Sewer Regulations of the Buffalo Sewer Authority and the Town of Cheektowaga Sewer Use Ordinance authorization is hereby granted to:

Leica, Inc

to discharge groundwater from a facility located at:

203 Eggert Road, Cheektowaga, New York 14225

to the Town of Cheektowaga and the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **January 5**, 2011 and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Parts I and II hereof.

> Effective this 1st day of April, 2011 To Expire the 31st day of March, 2014

W_ M. M Town Engineer, Town of Cheektowaga

Signed this $15^{\frac{1}{2}}$ day of MARCH , 2011

General Manager, Buffalo Sewer Authority

Signed this 17th day of March , 2011

PART I: SPECIFIC CONDITIONS

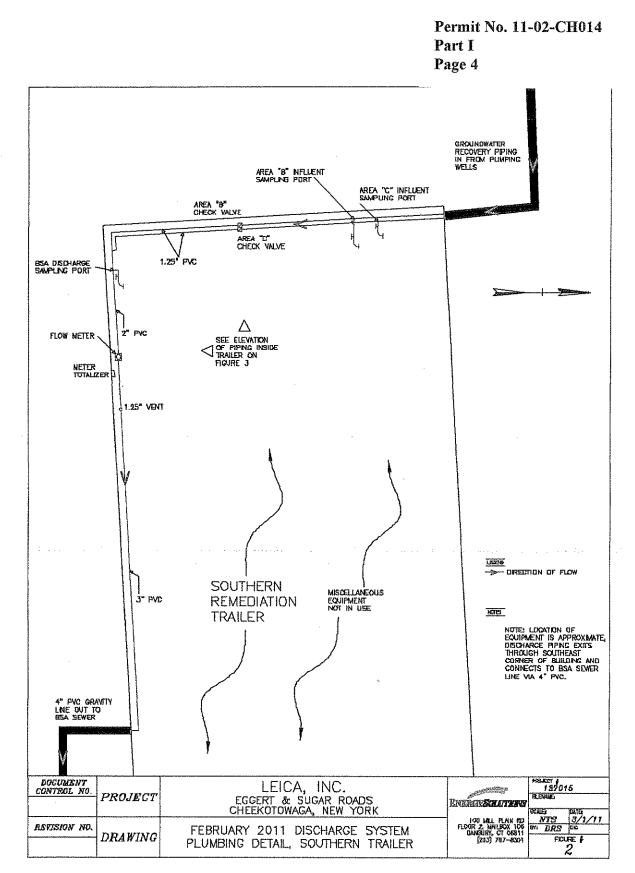
A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall (see attached map) shall be limited and monitored **Quarterly** by the permittee as specified below:

Sample		Discharge Limitations	Samplir	ig Requirements
Point	Parameter	(mg/L except pH) Daily Max	Period	Туре
001	pH	5.0 - 12.0 S.U.	1 day	Composite
	Total Extractable			
	Hydrocarbons EPA 1664	100	1 day	Composite
	EPA Test Method 624	2.14 mg/L ⁽¹⁾⁽⁴⁾	1 day	Grab ⁽²⁾
	EPA Test Method 625	$2.14 \text{ mg/L}^{(1)(4)}$	1 day	Grab ⁽²⁾
	Total Daily Flow	18,000 gallons	1 day	Discharge flow meter readings ⁽³⁾

- 1. The permittee must report any compound whose concentration is greater than 0.01 mg/L. The permittee is not authorized to discharge any of the parameters evaluated by this test procedure, which may cause or contribute to a violation of water quality standards or harm the sewerage system. Any parameter detected may, at the discretion of the Buffalo Sewer Authority or the Town of Cheektowaga be specifically limited and incorporated into this permit.
- 2. A single grab sample must be collected quarterly of the discharge and analyzed by a NYSDOH certified laboratory.
- 3. The discharge flow meter must be calibrated bi-annually by a factory certified technician. A copy of the most recent certificate of calibration must be submitted with each monitoring report.
- 4. Should any violation of the daily limits for EPA Test Methods 624 and 625 occur, permittee will be required to pretreat the groundwater prior to discharge.

Permit No. 11-02-CH014 Part I Page 3


PART I: SPECIFIC CONDITIONS

B. DISCHARGE MONITORING REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported by the permittee on the days specified below:

Sample		Reporting	Requirements
Point 001	Parameter All Parameters	Initial Report June 30, 2011	Subsequent Reports* Every June 30 th , Sept. 30 th , Dec. 31 st and March 31 st

* If any monitoring report shows a violation of any BSA pollutant limit, the permittee shall immediately commence monitoring on a monthly basis. Reports will then be due on the last day of each month, for the previous month's samples. (eg. Report on samples collected in Jan. must be submitted by the last day of Feb). When the permittee shows consistent compliance with all BSA pollutant limits, the permittee may request a return to quarterly monitoring. Such permission will not be unreasonably withheld.

...

TOWN OF CHEEKTOWAGA/BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

PART II GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes of the Clean Water Act

2. Definitions

Definitions of terms contained in this permit are as defined in the Town of Cheektowaga Local Law No. 2 and the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet."

4. **Recording of Results**

For each measurement or sample taken pursuant to the requirements of the permit, the Permittee shall record the information as required in the "Sampling Measurement" and Analytical Guidelines Sheet."

5. Additional Monitoring by Permittee

If the Permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Mr. William Pugh, P.E. Town Engineer 275 Alexander Ave. Cheektowaga, New York, 14211

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet." These reporting requirements shall not relieve the Permittee of any other reports, which may be required by the

N.Y.S.D.E.C. or the U.S.E.P.A.

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the TC/BPDES Permit Application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new TC/BPDES Permit Application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager and/or Town Engineer.

3. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the Permittee to immediately notify the B.S.A. Treatment Plant at 883-1820 of the quantity and character of such discharge. If requested by the B.S.A., within five (5) days following all such discharges, the Permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

4. Noncompliance Notification

If, for any reason, the Permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the Permittee or their assigns must verbally notify the Industrial Waste Section at 883-1820 within twenty-four (24) hours of becoming aware of the violation. The Permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

. .

5. Adverse Impact

The Permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo and Town Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

6. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo or Town Sewer System.

7. **Power Failures**

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the Permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the Permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

8. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - (i) A description of the upset, its cause(s) and impact on the discharger's compliance status.
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the noncompliance is continuing, the time by which compliance is reasonably expected to be restored
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section/Town Engineer for any noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

9. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon delivery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a. above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The Permittee shall allow the representatives of the Buffalo Sewer Authority or Town of Cheektowaga upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Town of Cheektowaga/ Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

Nothing in this permit shall relieve the Permittee from any requirements, liabilities, or penalties under provisions of the Town of Cheektowaga Local Law No. 2, the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

4. **Penalties for Violations of Permit Conditions**

The "Sewer Regulations of the Buffalo Sewer Authority" and Town of Cheektowaga Local Law No. 2, provide that any person who violates a B.P.D.E.S. permit condition is liable to the Authority and/or the Town for a civil penalty of up to \$10,000 per day for each violation. Any person who willfully or negligently violates permit conditions will be referred to the New York State Attorney General.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the Permittee is required to notify the Industrial Waste Section/Town Engineer in writing as soon as an anticipated closure date is determined, but in no case later than five (5) days of the actual closure.

G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority or Town Engineer of the Town of Cheektowaga. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

APPENDIX B

Field Inspection Documents

Inspection Forms Inspection Notes

	. 1		-824	Sewei Leica, Inc.,	Sewer Discharge Totalizer Flo , Inc., 203 Eggert Road, Cheek Permit NO 07-01-CH014	r Discharge Totalizer Flow Log 203 Eggert Road, Cheektowaga, NY Permit NO 07-01-CH014	ÅN	
Date	Reading 1 Time	Totalizer Reading 1 (Gal)	Reading 2 Time	Totalizer Reading 2 (Gal)	Total Flow from Time 1 to Time 2	Total Recording Time (Time 1 to Time 2)	Average Flow (GPM)	Observations and Comments
	10:00	5951784.8	13,00	12:00 5753145,2	1360.4	2 45	11.33	Drain water traps at wells and compressor.
भवा	10:00	6257784.2	00:61	6.358835.2	1041.0	SARS	8 .67	Little Low Water Trop for Air line in Area C Froze up.
				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		-						
				· · · · · · · · · · · · · · · · · · ·			· · ·	
anarova i i i i i i i i i i i i i i i i i i i	representation of the second o	y BABCY VIEW BY BUT AND		n son an an ann an an an an an an an an an a	a se			an en an anna an an an an an an Arrien a chuir an

C theorems and Settings way red state Settings Temporary lefement Fidek Content (ESUREXC4410.1001atzer, 1.00, Found)

Page 1 of 1

ĸç

ú_{ng}

Sewer Discharge Field Sampling Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit No. 07-01-CH014

Sample Point <u>MSD Discharge</u>
Sample Number GWD 020311
Date of Sampling
Time In (Reading 1): 10.00 Time Out (Reading 2): 13.00
Meter Reading 1: 6257784, 2 Meter Reading 2: 6258825, 2
Estimated 8 Hour Flow: 4/64 Estimated 24 Hour Flow: 12,49,2
pH reading: Sample To Lab
Sampler Initials WTD
Physical Observations Air line Water Trap Froze at
Area C Well Lower Flow Rate
Weather Conditions 15° Partly Swiny
Sampling Supervisor Signature Wayn Da Gol Date 2/3/11
Comments
Analyses required on chain of custody
 TPH 1664 √ EPA 624 √
• EPA 625 V

Scheduled sampling dates

- April 30
- July 31
- Oct 31
- Jan 31

		normalization and the second	North Contraction Contraction	wernennennennennen Sei Leica, in	wer Discharge Totalizer Flo rc., 203 Eggert Road, Cheek Permit NO 07-01-CH014	Sewer Discharge Totalizer Flow Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit NO 07-01-CH014	Å N	
Date	Reading 1 Time	Totalizer Reading 1 (Gal)	Reading 2 Time	Totalizer Reading 2 (Gal)	Total Flow from Time 1 to Time 2	Total Recording Time (Time 1 to Time 2)	Average Flow (GPM)	Observations and Comments
11/40	001,90	3/1/11 09.00 6423191.4	Solution of the second s					System was shutdown.
								Compressor. Have Oil
un forman an a faire an an								leak on Compressor. Ordering Parts
3/30/11		6433191.14	:					d
				- - -				Systems.
3/31/11	09,00	331/11 O91,00 6439653,3 171,00 6445991,	17,00	5	633814	8 MU	13,3	High Water levels.
17/24	09,00	4/1/11 09100 6560082101 12:00 65625855 250216	12,00	6563585.5	asoare	JH S	13,9	Water levels at Well
- Indh		C11428900:910.20182300:01111/104	V6\00	90114889	G 4965.6	ب ک	5.2	Head are High
	<u>}</u>	2)		نې د د	
H Sel H	17:00	436/11/11/00 6930545.6	-	Final Rea	Reading Od Meter	A METER		System shurdown To
	- 14							حسيعه
								Senso C.
				- - -				
ca=¥Ley1He3te≠Ci			5 Kirt Sint		<u></u>		-	
				and a second	والمعاريبة والمراجب والمراجب والمراجب والمراجب والمراجب والمراجب والمراجب والمراجب	والمراجع والمراجع والمراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	and the second secon	

۰.

Citheouments and Settingsiveryredt.orsh Settingsi'Tserpretary britenet. FiloyiContext (ESK)REXE4077518182rer_bog, Fornf13

Page 1 of 1

ċ

Sewer Discharge Field Sampling Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit No. 07-01-CH014

Sample Point Dischar	rge Sample Point
Sample Number <u>GW</u>	D 0 509 11
Date of Sampling _5	19/11
Time In (Reading 1):	Time Out (Reading 2): <u>\3;00</u>
Meter Reading 1: 13	7270.9 Meter Reading 2: 139651.8
Estimated 8 Hour Flow:	349,06 Estimated 24 Hour Flow: 19047,19
pH reading: <u>Somp</u>	e To Lab
Sampler Initials	0
	gh water levels at well Heads th Pumps Running Good
Weather Conditions	nnny 60°
	ture Wayn Nathal Date 5/9/11
Comments	*
ĸŔĸIJŦĸŦĿŴĊĸĿĸŦĸĬĸĊĸĊĸĸĸŢĸĊĸŦĿĊŗĿĊŖĿŎŖĊijĸĿĊĊĊĹĊĸĊĸĬĸŦŴĊĊĬġĸĸĿĸŦĸĿĬĊĸĊĸĸĊĸĹĸŢĿĬĿĸĸĸĸĸĹĸĿ	
New New York Construction and the second	
Analyses required on chain • TPH 1664 • EPA 624 • EPA 625 • P\ Scheduled sampling dates	of custody
April 30 July 31	

- Oct 31
- Jan 31

C:Documents and Settings/wayne/Local Settings/Temporary Internet Files/Content.HS:SLBHWQOE2/Sewer_Discharge_Field_Sempling_Log_(REV1)[1].doc

**

C:Docurrants and Settings/waynest.oral Entitings/Tensporary Internet PhosiContent.ESUREXREFUETotalizer_Log_Form[1]

Page 1 of 1

	Observations and Comments			System down For Air Leak Repairs Made Startup	Water in airline To Arcel C Pump	
λN	Average Flow (GPM)	12.61	14.83 181 181	15,53	14.33 10.69	
Sewer Discharge Totalizer Flow Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit NO 07-01-CH014	Total Recording Time (Time 1 to Time 2)	5.hr 3.hr	1072	L 1 1 2	345	
wer Discharge Totalizer Flo c., 203 Eggert Road, Cheek Permit NO 07-01-CH014	Total Flow from Time 1 to Time 2	3806.4 23.6.0	8901.5 622017	4657.8	1719.5	
Leica, In	Totalizer Reading 2 (Gal)	473668	618675,0	856196.5	9.3359.4	
	Reading 2 Time	15:00	17.30	14:00	12,30 12,00	
resource of the second s	Totalizer Reading 1 (Gal)	11:15 469860.4 16:15 47 3666 8 10:00 485940.9 13:00 488156.9	6/8/11 07:30 59 23 98:4 17.30 601/99.9	6/38/11/08/00 85153877 14:00 856196.5	8/8/11 10:30 91220519 12:30 913925.4 8/9/11 09:00 930435.0 12:00 932359.4	
	Reading 1 Time	1:15	07:30	03,60	001100	
	Date	610/m	6/9/11 6/9/11	11/2/8 11/9	8/8/11 8/9/11	

• •

C.Wocuments and Settingstweigneit. usel SettingelTemporary Internet Files/Content (ESI/OREXR4HUITotalizer_Log_Form[1]

Page 1 of 1

ť

Sewer Discharge Field Sampling Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit No. 07-01-CH014

Sample Point Olscharge
Sample Number GWD080911
Date of Sampling $\frac{8/9/11}{11}$
Time In (Reading 1): <u>09:00</u> Time Out (Reading 2): <u>12:00</u>
Meter Reading 1: <u>930435.0</u> Meter Reading 2: <u>932359.4</u>
Estimated 8 Hour Flow: 5/3/.2 Estimated 24 Hour Flow: 15393.6
pH reading: <u>Sample To Lab</u>
Sampler Initials wTD
Physical Observations Area C Pump not pumping 09:00
Drain water at airline and starts Pumping
Weather Conditions Survey 75°
Sampling Supervisor Signature Way Dettel Date 8/9/11
Comments
Analyses required on chain of custody
• TPH 1664
• EPA 624
• EPA 625
• PW Scheduled sampling dates
• April 30
• July 31
 Oct 31 Jan 31

Date Reading 1 Totalizer Reading Totalizer Reading Reading 2 $Time$ Time 1 (Gal) Time Time Time $g 7 _{ 1 }$ $ 1/3/l_1 $ $ 0.000 $ $ 14 _5$ $ 14 _5$ $ 14 _5$ $g 7 _{ 1 }$ $ 0.000 $ $ 14 _5$ $ 14 _5$ $ 14 _5$ $ 14 _5$ $g 12/l_1 $ $g:00 $ $ 14 _5$ $ 123 _4$ $ 16:00 $ $ 14 _5$ $g 16/l_1 $ $g:00 $ $ 17954 _13.4$ $ 16:00 $ $ 16:00 $ $g 14/l_1 $ $ 11:00 $ $17954 _13.4 $ $ 5:00 $ $ 16:00 $

C:Ubcuments and Settings\wayne\Local Settings\Temporary internet Files\Content.IE5iCREXR4HUITcraitzer_Log_Form[1]

Page 1 of 1

Sewer Discharge Field Sampling Log Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit No. 07-01-CH014

Sample Point <u>Oischarge</u>
Sample Number GWO 110311
Date of Sampling $\frac{1\sqrt{3}/11}{1}$
Time In (Reading 1): <u>09,00</u> Time Out (Reading 2): <u>12,00</u>
Meter Reading 1: <u>2178854.6</u> Meter Reading 2: <u>2180375.4</u>
Estimated 8 Hour Flow: 40.55.4 Estimated 24 Hour Flow: 12166.4
pH reading: <u>Sample To Lab</u>
Sampler Initials WTD
Physical Observations Lower Flow Than mormal
Both Pumps Running
Weather Conditions Partly Sunny 60°
Sampling Supervisor Signature Wough Detteli Date 11/3/11
Comments
Analyses required on chain of custody
• TPH 1664
• EPA 624
• EPA 625 Pト
Scheduled sampling dates
• April 30
• July 31
(Oct 3]
• Jan 31

		,				congramme and second		berimisko-limitek	-x		/					waankin ornikon o		анунгаана мөлө		en management and a state of the	1.
		5	1/	:	. '	•			:									:			تعمد المالية فالرابي
	<i>\$</i> 2	4	16						1				:		:			:			
	ment	54	S Q														• .				and the second
	Com	32	2		:																
	and	23	T L													:		:			al a proprie de la commune
	ions	Pumps running	Water Traps of	·				:		:			:		:			:			V. C.
	Observations and Comments	à	3			:		1 									r.	1			adam in state in the former
	obs	ک	4	e N				•									: :				or the second second
		BOTH	Drain	wells.			:									:	:	:			a y Ghanna y na mah ku
		12	Ő	3				. google de state de s						-				omerouir	-	ويوس و معيارة إنحادة ووادارة بإن المعيد و المعيد	
	ge PM)	1					•	•	:							:	· ·				1) Providence and a second
	Average Flow (GPM)	8.44	:			:															وتناريحه والمراجع
2			-		ана дуна алу мала мала ж					wani			- Collegence	pamanganan par	- 			an a	2016-1110-112-1179	212722120700707070700000000000000000000	
og a	ing 1 to					•	• •	• • •					;		;						
iow i aktov	al Recorc le (Time ⁻ Time 2)	S							:												When a Second
CHO CHE	Total Recording Time (Time 1 to Time 2)	3455					2		i			:									
er Discharge Totalizer Flow Log ., 203 Eggert Road, Cheektowaga, NY Permit NO 07-01-CH014	2 <u>=</u>		1			›	;		-						:			:			
NO 0 P	1 € 10	₿ B										;						:			
Scha E gc mit gc	Total Flow om Time 1 Time 2	Ś				!		÷				:					: .				
Ø) .	Total Flow from Time 1 to Time 2	1520.3	:						:						•			1			والمعادرة والمراجعة
Sew Leica, Inc		7		-,	ana ini a di ma dan mbana ka ini ka)											: •				
ပို့ခ	Totalizer Reading 2 (Gal)	375												:			: · ·				- Course Interview days
	Totalizer ading 2 (G	80					:									• • •					-1/6 Mandalansara
	*	11/3/11/09:00 2178254.6 12:00 2180375.4			1420-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			1. ()	namenalisee menseered				-							MIRING THE STREET	
	Reading 2 Time	00							. 1			•					:				vine bAD for many Villa
	Read	191					:								:	:		:			V-100
		é	-		-CARMON CRAWN								<u></u>	<u>.</u>			÷	«—————————————————————————————————————		AN IN A REAL PROPERTY OF A STREET	
	2 (ad	ЪS				÷								:					:		And a second second second
	izer Rea 1 (Gal)	88										•				;					Ann - Almada Si da reniz An
	Totalizer Reading 1 (Gal)	511	1 - -			÷						2									
		Q				ຜູ້ຫາວການກາະຄວ	-	-							:	: -	: 			2010) 137-021-137-147-15 ⁹ 9	
	Reading 1 Time	9.6					:									:					يتحكمهما ويعمل لحر
		0 1.		6.44166-42010.02-5-4	dat tanàna dia milandri dia kaominina dia	føð satt sont i def á taribana t			bernewseen.		por management of the				Alamatanga panta ang		işçûn unarteriye		iebraumorten.	1969-1970 (1997) (1997) (1997) (1997) (1997)	
	Date	3/1	•									[:							and an and a second second second
						ومردوب معتودتها	محمود محمود م				*******		:	: is-estructure					: •••••••••••••••••		e of a contract of

* 9

• •

CADocuments and SettingsWayneLocal SettingsTemporary Internet Pilas/Content.ES/CREXR4HUTDdaltzer_Log_Form[1]

Page 1 of 1

ł

	-			0-4 (A.S.)	innerga perioren nek haleban kiran eta en	****		 манаральная карколи				4)	and the second
	Observations and Comments	Both Pumps running	Area C Pump is not Working right. Drain	Water trom air line. Drain Water Traps	Drain Water Traps								
Å	Average Flow (GPM)	16.8	7.58	d'Ho	11.66								
Leica, Inc., 203 Eggert Road, Cheektowaga, NY Permit NO 07-01-CH014	Total Recording Time (Time 1 to Time 2)	6 Y L	Ghr	345	647								
ic., 203 Eggert Road, Cheek Permit NO 07-01-CH014	Total Flow from Time 1 to Time 2	395614	2732.1	0.10011	4301.1				-				
Leica, ir	Totalizer Reading 2 (Gal)	25573936	a592530.4	act acuses	2682854.7			- -					
	Reading 2 Time	H .30	16:00	15:00	(6,00	· · · · · · · · · · · · · · · · · · ·	-	-		· ·	:		tinnanue, ti∵égr = 00000 − ferméner – de fermé
	Totalizer Reading 1 (Gal)	3554337,3 M. 30	00:01 11/stel	Balin 12:00 3640316, 3 15:00	a/12/11/10.00 a678653.6/6:00	· · · · · · · · · · · · · · · · · · ·							
	Reading 4 Time	ia/5/11 08:30	00:00	13,00	000								
	Date	11/s/e)	11/stei	ଜ୍ଞାର୍ଯ୍ୟା	(a)15/11								

Sewer Discharge Totalizer Flow Log

• •

C/Documents and Settings/waynell.ocal Settings/Temporary Internet Files/Content/155/CREXR4HU/Totalizer_Log_Form[1]

Page 1 of 1

ć

8hr MainT.

3/21/11 Partly Cloudy 450 Work on air Compressor. Orain oil and Take apart coupler between compressor and oil Tank. Pull apart Fan shroud and degreess and presure wash Radiator for oil cooler. New parts are not here yet. presure wash part of Floor and vacume with shop vac. 5hr MainT. 5hr Romodiation Partly cloudy 40° 3/22/11 Start Taking water level measure ments and bailing wells in area C. Lab droped of Bottlos. Made pickup Time For Tomorrow 12:00. All wells bailed in area c . All water depths Taken in area C. Mark Bottles for samples and start chain. Take Samples from 9 wells in mourning For pickupo No parts yet 4hr Maint. 4hr Remediation 3/23/11 Gin Wetsnow freezing rain 32° Take samples in area C. Finishehain Samples pick up by Lab at 12:00. No parts, Talk To Paul on phone. Call Tomlin about parts and They should arrive on Monday 3/28. Freezing rain is steady. Write field notes. Take some water depth measurments in area B.

8 hr Remediation Partly Sunny 250 3/24/11 Take Field poramiters DO%, ORP, pH, Temp, and Conductivity at 10 Locations For HRC sampling. Used YSI 556 from Field Environmental, Decon downhole cable, repark and Take To Feder for return. Take water lovel measurements in residential area (9 wells) in afternoon, showel snow and ice away from well heads, will finish sampling 3/28+3/29 . 3/28/11 Sunny 25° Mourning Teens Use Kerosene Heater in Treatment Trailer To Thaw out water. Everything is Froze solid. Use Trailer and 55Gal drums To contain water bailed in residential area, Bail all nine wells , many of These wells do not recover good at all. Most I have To Take samples The next day and even Then I have some That The water is still at Bottom of well. Will Take samples in mourning for noon Dickup. Pump water off Trailer To drums in Trailer for Treatment. Unload Trailer and clean up.

the Remediation 4hr Maint. Sunny Cold 29° High 3/29/11 Take samples in residential area and Ice. Fill out chain . Samples picked up by lab at 12:00. Kerosens Heater on in Treatment do work on air compressor. STart compressor and it is running good. Now I will have heat from compressor over night. Hopfully we will get Thawed out Tomorrow. Can't start pumps until Them . 4hr Remodiation 4hr Hrs MainT. Partly Sunny 350 3/30/11 Kerosene Heater running in Treatment Trailer. Almost Thawed out. Bail remaining wells Area B. 18's, 24's and 16 Start up pumps and Treatment at Noon. Still a Block of ice in sump Tank put is not bothering sump pump and it is Thawing , Take samples from Area B and lie for Tomorrow pickup by lab. Will take samples in mourning from

pumping wells 11A and 16A .

8hr Maint.

Sunny 40° 3 31/11 Take samples From 11A and 16A. Take discharge meter reading , Ice samples and fill out chain. Samples picked up by lab at 12:00 . Air Compressor running good. Drain water from air lines and traps at Well Heads . Get Warehouse To bring out 55 Gal drum from 24A To Treatment Trailer. Do clean up from Sampling and close Wells. Take afternoon discharge meter reading . 3hr MainT. 4/4/11 To send to Paul, Print Discharge Permit, To Keep at site, Read emails and Permit. 4/7/11 Ghr Maint Check Systems over. Drain Water at well Heads Air Supply. Record Discharge meter readings. Make list for parts To change Discharge Piping. Shr Maint Sunny 450 4/21/11 Check over Systems. Drain Water at well Hoads Air Supply. Open up some of the vents in Trailers. Take down plywood That covers vents for Winter. Clean up in Trailers and sort Through Fillings That May Ro 11 cad In Diving New Directory

HallII Bail MW26 well in residential area for resampling.

4/22/11 4 hr Maint. Sunny 450 Resample MW26 well. Do chain and lab picked up at 11:00, Email Paper work to Paul.

4/26/11 Shr MainT.

Running Water from Some storage Orums Through Treatment. The Water Drums were used For water contained from bailing residential wells and the Two wells in side warehouse. Drums needed to be moved to change over discharge to do away with Treatment system. Shut down wells 11A and 16A and empty out MSD Box and sump Tank. Take final meter reading at discharge meter. We will be installing New Mater.

4/27/11 8hr Maint. Disassemble Treatment System Piping and Sump Pump System and Tank. Work on new piping for discharge To City Sewer.

Shr Maint. 4/28/11 Changing Discharge Piping and installing New Meter + Sonsor All Piping is PUC 12 + 2" Piping Save Thestall Discharge Sampling Point and Value. All piping Glued Today except vent Pipe. Piping all secured to wall of Trailor Box, Meter mounted To wall also. 8hr Maint. 4/29/11 Install Ground and Power wireing For Meter and Sensor, Starting Air Compressor and Well Pumps. Water is running, Meter working and Taking readings. Finish vent Pipe To The Roof of Trailer 5/2/11 6hr Maint, Check Systems and New Discharge. Area C Pump not working right. Air line is Water logged. Remove Regulator and Water Trap. Clean Trap and Blow of water from Air line. Main Air line could be Taking on Ground Water. Pump is working now.

8hr MainT. 5511 Area C Pump Air line has a lot of water in it. Pump is not working right. Shut down Pumps and Build a water drop pipe with drain at the Area C well Head. I can't locate any sign of leak anywhere. The drop pipe and drain will let water blow off if Todas get loaded up. RESTART Pumps and drain water Traps and compressor, 6hr Maint. 5/6/11 Quarterly Discharge sample Bottles dropped off By lab. Check over systems and drain water Traps at wells. Talk To Samsons about working in warehouse next week. We are all set for Tuesday Thur week. 9/11 6hr Maint. Sunny 60° Quarterly Discharge Sampling. Do chain and Lab pickup at 12:00. Take Discharge Meter Readings and Systems are running good. Drain water Traps at Well Heads and Air Compressor. 5/9/11

9 hr Remedication Sunny Warm 70° 5/10/11 work on pilot Test for warehouse. Dan is onsite. Main Entrance of warehouse is closed to all until We complete Pilot Test. 9 hr Remediation Sunny Warm 70° 5/1/1 Work on Pilot Test for Vapor Miligation Work Plan, Dan is onsite 8hr Remodiation Sunny Warm 70 5/12/11 Will finish Pilot test Today. Check over systems and Drain water Traps at Well Heads 4hr Maint Hhr Remediation 5/19/11 Working on paper work + Billing. Talk with Bob on phone about High Water level and Discharge output.

5/27/11 8hr MainT.

Check over Systems. Drain water Traps at well heads and compressor. Order Glass from Lab For Quarterly sampling. Order supplies and YSI for next week.

Will be sampling a little early this Quarter. Pauls request

5/31/11 8hr MainT.

Check over Systems. All running Good. STAFT Taking ground water measurements. Lab defievers Coolers and Glass. Talk To Samsons about work in building next week 7th-9th. Dan will be here with Geoprobe.

6/1/11 4hr Maint 4hr Remediation

Finish Taking Ground water measurements. Bail Wells MW18, 18A, 22 and 22A. also Took discharge meter readings.

6/2/11 3hr Maint 3hr Remediation

Take Discharge meter readings. Take Samples from MW 18, 18A, 22, 22A, 11A and 16A. Pack in Cooler with ICE and fill out COC and paper work. Lab pickup at 12:00. Take discharge meter readings.

6/7/11 5hr Maint. 5hr Remediation

Onsite with Dan for GeoProbe work in building. Mark out locations. Drillers running Late. Go to Home Depot for ear plugs.

ear plugs. SET up Trailer with barrels and pumps for bailing residential area wells Tomorrow.

6/8/11 6hr Maint, 6hr Remediation

Dan is with Geoprobe. I am bailing wells starting in residential area mourning. Back onsite bailing wells for afternoon. Taking some Samples and packing Coolers with Icc. Fill out COC. Get Peramiters For HRC Sampling wells with YSI 556. Decon YSI cable and ship back To Feild Environmental by Fedex. Also Took discharge meter readings.

6/9/11 5hr Maint. 5hr Remediation

Take discharge meter readings. Dan is Finishing his sampling and checking some more points for Vapor Mitigation . I am finishing Sampling from residential area wells, Packing Coolers with Ice. Finish COC for hab pickup at 12:00. Get warehouse To move drum of water from MW 24 A To our discharge. Close all wells up. Discharge water from drums on Trailer and clean up. Asternoon discharge meter readings. 4hr MainTe 6/16/11 Do paperwork for Sampling round last week and Email To office, work on feild notes and billing . Shr MainT. 6/28/11

Check over Systems. Air line To Area C Well IIA is broke . Shut down compressor. Take pictures and Email To Bob in Office. Take with Bob about repairs. Take measurements on MW 24 and 24A wells for Survey Maps and Email To Moises.

7/14/11 2hr Remediation Order Pump and Tubing For MW2A. Order Glass from Lab For MW2 and wells. AG Paul wants to redevelop these wells and Sample Them. 4hr Maint. 4hr Remediation 7/15/11 Taking measurements in warehouse for Geoprobe points That Dan Took Samples from. Talking with Dan giving him measurements on phone so he has enough to make locations on map. Also going over measurements for the Two MW at wells. Work on shoveling out air line at MWIIA well. Shovel about 2 Peet and pipe is Split deeper. This is waiting until its not 90° out.

Shr Remediation 7/18/11

Work on redeveloping MW 2 and 24 wells. Build PVC weighted Pipes To Surge well and redevelop. MW2 well is dry no work done on it. MW2A is very slow recover Time and cloudy. Tried 3" PVC pipe To surge and it wouldn't drop into rock. Built 2in Pipe To Surge 2A well.

MW2 Dry TD 7.68 MW2A DTW 8.0 TD 29.34 TW 21.34 Three Volumes of water To punge is 41.80Gal. Only got about 24 Gals Today. Still Gloudy,

7/19/11 Shr Remediation

Working on MW2A redeveloping, Surge and pump bail 4 Times, Water is clear. Pumped about 32 Gal water, Will Take Sample in mourning Por pickup by lab at 12:00.

7/20/11 4hr Remediation

Take sample from MW2A well. Pack cooker and ice. fill out coc for Pickup at 12:00 by lab.

8hr Mainti 83/11 Order Glass from Lab for Quarterly Discharge Sampling. Shoueling up air line at MWILA well To repair leak. Upright air line (12 PVC) is cracked to the 90° coupler 3 Poot in ground. Pickup parts at Home Depot To make repair. Air line is full of water. Run Compressor long enough To Blow off water. Roplace 90° compler and up right Pipe . Shr Maint. 8/4/11 Fill in hole around pipe and finish glusing fittings on Top. STAFT Compressor To Blow off water. We get alot of water in This air line. I still Think it is getting surface water somewhere. let repair cure until Tomorrow. Presure wash Compressor Radiator and change Oil Filter and service.

8/5/11 Shr MainT. STATT Air Compressor and pumps at Deep Wells. Drain water Traps at well heads and compressor. Both wells are Pumping. High water lovels. Take discharge méter readings. Rebuild 2X4 Frame for Compressor Vent in side wall of building. Wood was all rotten and vent were all lose. This is also for Duck work To oTher Building for Heat in The winter. 4hr MainT. 8/8/11 Check over Systems. Take Discharge meter readings , Drain water Traps at well heads . Call for pickup for Tomorrow by Lab for The Quarterly Discharge Sample. 8/9/11 Ghr MainT. Take Méter readings. Drain water Traps at Wells. Take Quarterly Discharge Sample, Pack in cooler and Ice. Fill out COC and paper work for Sample. Lab pickup at 12:00.

8/30/11 6hr MainT.

Take Discharge Meter Readings, Check over systems. Drain water at Air Compresson and Water Traps at well Heads.

9/7/11 8hr MainT.

Check over Systems, Drain water Traps at well pumps. Take Dischargo moter readings. Talk with Jim and mark about work in warehouse and Basement starting on 9/13/11.

9/13/11 10 hr Remediation Work in Basement of Wavehouse, Ckaning Floor to seal cracks and Seams. Dan is here for 2 weeks. Take Discharge meter Readings. 9/14/11 10 hr Remediation Work in Basement of Wavehouse. 9/15/11 10 hr Remediation Work in Basement of Wavehouse.

9/16/11 10hr Remediction Working in Basement of Warehouse Sealing cracks and seams in floor. Take Discharge meter readings. check over systems and Drain water Traps and Air Compressor. 11hr Romediation 9/19/11 Air Sampling in main warehouse. 11hr Remediation 9/20/11 Air Sampling in main Warehouse. 9/21/11 11.5 hr Remediation Air Sampling in main Warehouse. 9/22/12 11 hr Remediation Air Sampling in main Warehouse,

9/23/11 8hr Remediation Air Sampling in Warehouse Complete. The last of samples picked up by Lab. Check over Systems all running. Clean up work in warehouse after This week's Sampling. 8 hr MainT 10/4/11 Check over systems, Take Discharge meter readings. Orain water Traps at air compressor and wells. Take water level measuments and figure Purge Volumes for bailing. Set up for Sampling water round. 6 hr Maint. 6hr Remodiation 10/3/11 Bailing and sampling water. Bailed 13 wells and Took 12 samples. MW5A Sample will be Taken in mourning. Pickup Ice and pack Samples in Cooler, Make out COC for Lab pickup Tomorrow.

10/6/11 4hr Maint 4 hr Remediation Clean up and close wells. Take Sample at MW5A. Finish Paper Work for sampling + Lab Pickup at 12:00. Meet with Samson Guys about concerns for Their Employed's. Talk with Bob and Dan on phone after meeting with Samson Reschude Sampling and Lab for next week. I will not be able to finish Sampling by Friday 12:00. 5hr MainT, 5hr Remediation 10/10/11 Bailing Wells in resident area and 24 Pair in warshouse. Contain water in drums on Trailer . Have samson Guy bring drum from warehouse out to our discharge. Bailed 9 Wells and discharge water at our site discharge. Take 3 samples and ice will collect sample from resident area Tomorrow mourning. 7 wells in residentail area have very slow recovery. STart Paper work and COC for hab pickup Tomorrow noon.

4hr Maint, 4hr Remediction 10/11/11 Pickup Ice. Take samples from residential area. Pack Cooler and Pinish COC For Lab Pickup Moon . Bail 3 more wells in residentail area Take Sample from 25 pair and 29A will Take Tomorrow. Pump off contained Water from Trailer. Fill out Paper work and COC for Lab pickup Tomorrow at theon 10/12/11 4hr Maint, 4hr Remediation Pickup Ice . Take sample at 29 A. Pack in Cooker. Leave mark a message about going in front yard of warehouse to sample 2A well. Was unable to get 2A sampled because it was 11:00 Before I was able To Talk To mark. I now need permission To be in front office area because nobody in front office Knows who Iam. And we have never really workship There. Finish COC Lab pickup at noon. Clean up from sampling and unload Trailor. Close all wells and work on feild notes.

8hr Maint. 10/26/11 Shut down Air Compressor For MainT, Oil Filter change, add oil and Grease Motors. Drain water Air storage Tark and restart compressor Blow of water from air lines at the well heads and restart Water Pumps. Order Glass from lab For Quarterly discharge samples Next work. Clean up inside Boxs and get rid of Garbage. Old Pipo + Wood. 8hr Maint 11/3/11 Take Quartely discharge Samples. Pack in ico coolor. Do COC For Lab pickupat 12:00 . Check over Systems, Drain water at the Well head water Traps and stir Storage Tank. Water Flow levels are lower Than normal. Unenre what is causing That. Making list of Thing To do To winterize Trailer Boxs and pump well heads. Will need To get That done.

Shr MainT. 12/5/11 Check over SysTems, Drain water Traps for air compressor and pumps. Take Meter readings for discharge water. STAFT winterizing Trailer Boxs, Plywood over air vents and Exhaust Fans. Talk To mark with samsons about upcoming work. Shr Maint. 11/7/11 Check over Systems Shut down Compressor and pumps for Oil Filter change and Maint' Oil Filter change, add oil and Grease Mators, Blow out airfilter and change inTake from outside To inside Trailor. Drain water on Air storege Tank, Restart Compressor and pumps, Blow off water at well head main 'air supply pipes. And water Traps . Air Compressor is starting To use more oil. And Area C air line still seems To have alot of water.

8hr MainTi 12/8/11 Check over Systems, Take Meter readings for discharge water. Work on winterzing Trailer Boxs. Duck work Between Trailers for Heat from Compressor To heat South Trailore All The wood Framing was rotted out, I replaced all Framing, Also worked on The little shed That was build between The Trailers To enclose all The piping That comes into and between Both Trailers 4 hr Maint. 12/9/11 Order supplies bailon, rope and YSI meter for next week Quarterly Ground water sampling Order Glass and Coolers from Lab delovery next week. For Schudle sample pickups with lab. Work on field notes and billing. Get Paper work and forms Togethen for sampling next week.

Bliall HAR MainT 4hr Romed. Sunny 40° Check over Systems, Take discharge meter readings. Drain Water Traps at well heads. Take ground water depth measurements and figure Purge Vol for sampling all monitoring wells. Lab dropped off sample Glass + coolers 12/13/11 5hr MainT. 5hr Romed, Sunny 40° Bailing wells in Area C and The MW18 pairs Confirm Lab Pickup For Tomorrow and Label Sample Glass Baîled II wells Today. Will Pull sample in mourning For pickup by lab. 12/14/11 5hr Maint. 5hr Remod. Cloudy + Rain 450 Taking samples for pickup by Lab at 12:00 13 samples packed in ice and coolers, Fill out paper work and COC For Lab. Ofter noon bailing wells in residential area. containing water in drums on Trailen To discharge at site discharge. 9 weils pailed Do field motes and label glass for Samples Tomorrow

12/15/11 5hr Maint, 5hr Remed. Rain 50° Check over Systems, Take discharge meter readings. Bailing MWIBR, 24, 24A and 2A. Contain water from 24 pair inside warehouse and get warehouse To move Drum outside To our Trailers for discharge. Take Samples from 24's and 16R. 2A will have To pull Tomorrow mourning. Take peramiter readings on Ten wells That were HRC injection areas. Discharge Drum of water from warehouse. Take samples from residential area bailed yesterday some Deep wells in That area do not recover in 24 hours. All samples packed in cookratice. 4hr MainT. Hhr Remed. 12/16/11 cloudy 35° Take Sample at 2A Well. Pack in cooler and reice cooler. Fill out COC for Lab and field motes. Lab pickup at noon. Decon VSI cable and repack. Ship from Fedex at airport. Clean up from sampling and make sure all wells are closed up.

APPENDIX C

Data Tables for Groundwater and Sub-Slab and Indoor Air

Table 1	Groundwater Elevation Data (March, 2011)
Table 2	Groundwater Elevation Data (June, 2011)
Table 3	Groundwater Elevation Data (October, 2011)
Table 4	Groundwater Elevation Data (December, 2011)
Table 5	Quarterly Groundwater Data (A (Wells 1-3), B (Wells 5-10), C
	(Wells 11A-14A), D (Wells 16A-16R), E (Wells 18-22A) & F (Wells
	23-29A)
Table 6	Groundwater Grab Sample Data (June, 2011)
Table 7	Summary of 8hr Indoor Air and Sub Slab Samples (September, 2011)
Table 8	Summary of 30 Min Sub Slab Samples (September, 2011)

Prepared by: DRS Date: 4/11/2012 Checked by: MT Date: 4/23/2012

Table 1 Groundwater Elevation Data March 2011

Number Wat MW-1 5 MW-1A 8 MW-2 7 MW-2A 7 MW-3 4 MW-4 3 MW-5 2	pth to ler (ft.) 5.48 3.56 7.30 7.24 4.64 3.50 2.50 3.32	Depth to Bottom (ft.) NM 25.80 7.70 NM 10.24 NM	Top of PVC Elevation 662.38 663.48 657.01 657.02 655.94	Water Column (ft.) NM 17.24 0.40	Well ID (inches) 2 4	One Well Volume (gal.) NA 2.81	Water Elevation (ft.) 656.90	Notes
MW-1A 8 MW-2 7 MW-2A 7 MW-3 4 MW-4 3 MW-5 2	3.56 7.30 7.24 4.64 3.50 2.50	25.80 7.70 NM 10.24	663.48 657.01 657.02	17.24 0.40			656.90	
MW-2 7 MW-2A 7 MW-3 4 MW-4 3 MW-5 2	7.30 7.24 4.64 3.50 2.50	7.70 NM 10.24	657.01 657.02	0.40	4	2.81		
MW-2A 7 MW-3 4 MW-4 3 MW-5 2	7.24 4.64 3.50 2.50	NM 10.24	657.02			2.01	654.92	
MW-3 4 MW-4 3 MW-5 2	4.64 3.50 2.50	10.24		A 10 1	2	0.07	649.71	
MW-4 3 MW-5 2	3.50 2.50		655.94	NM	4	NA	649.78	
MW-5 2	2.50	NM		5.60	2	0.91	651.30	
			655.57	NM	2	NA	652.07	
	2 2 2	11.00	654.80	8.50	2	1.39	652.30	
	5.32	38.94	654.84	35.62	4	5.81	651.52	Slow Recovery
MW-6 6	6.34	14.80	660.84	8.46	2	1.38	654.50	
MW-6A 6	6.52	20.62	659.38	14.10	4	2.30	652.86	
<u>MW-7</u> 3	3.86	NM	658.21	NM	2	NA	654.35	
<u>MW-9</u> 2	2.22	10.45	654.99	8.23	2	1.34	652.77	
MW-9A 2	2.84	NM	654.67	NM	4	NA	651.83	
MW-10 2	2.94	10.04	655.48	7.10	2	1.16	652.54	
MW-11A 4	4.30	35.14	656.60	30.84	6	NA	652.30	Pumping Well
MW-13 2	2.58	NM	654.66	NM	2	NA	652.08	
MW-13A 3	3.02	NM	655.13	NM	4	NA	652.11	
MW-14 4	1.22	10.50	653.38	6.28	2	1.02	649.16	
MW-14A 2	2.16	33.92	653.70	31.76	4	5.18	651.54	
MW-16R ² 4	4.12	11.98	660.04	7.86	2	1.28	655.92	
	5.54	26.8	659.95	NA	6	NA	654.41	Pumping Well
MW-17A 1	1.90	NM	659.18	NM	4	NA	657.28	
MW-18	7.6	12.70	662.51	5.10	2	0.83	654.91	
MW-18A 9	9.32	34.52	662.72	25.20	4	4.11	653.40	
MW-19 5	5.96	NM	660.84	NM	2	NA	654.88	
MW-20 3	3.50	NM	659.12	NM	2	NA	655.62	
MW-22 2	2.66	11.04	652.51	8.38	2	1.37	649.85	
MW-22A 2	2.56	45.96	654.45	43.40	6	7.07	651.89	
MW-23 3	3.14	13.18	655.99	NM	2	NA	652.85	
MW-24 6	6.90	13.34	662.74	6.44	2	1.05	655.84	
MW-24A 8	3.68	34.18	662.85	25.50	4	4.16	654.17	
	.24	10.52	653.20	9.28	2	1.51	651.96	
MW-25A 1	.60	34.34	653.28	32.74	4	5.34	651.68	
MW-26 4	1.58	10.94	653.60	6.36	2	1.04	649.02	
	2.08	34.40	653.70	32.32	4	5.27	651.62	Slow Recovery
	5.50	10.88	654.68	10.88	2	1.77	649.18	
	3.02	34.30	654.81	34.30	4	5.59	651.79	Slow Recovery
	6.92	12.20	653.21	12.20	2	1.99	646.29	
	4.88	34.46	652.97	34.46	4	5.62	648.09	Slow Recovery
	3.36	39.58	652.99	39.58	4	6.45	649.63	Slow Recovery

Notes

1 Monitoring well accidently damaged or removed during excavation activities in Area C

2 Monitoring well MW-16R installed to replace MW-16

3 NL = Not Located

4 NM = Not Measured

5 NA = Not Available

Table 2 Groundwater Elevation Data June 2011

					-			
Well Number	Depth to Water (ft.)	Depth to Bottom (ft.)	Top of PVC Elevation	Water Column (ft.)	Well ID (inches)	One Well Volume (gal.)	Water Elevation (ft.)	Notes
MW-1	6.08	NM	662.38	NM	2	NA	656.30	
MW-1A	9.58	25.80	663.48	16.22	4	2.64	653.90	
MW-2	7.34	7.70	657.01	0.36	2	0.06	649.67	
MW-2A	7.30	NM	657.02	NM	4	NA	649.72	
MW-3	5.04	10.24	655.94	5.20	2	0.85	650.90	
MW-4	4.80	NM	655.57	NM	2	NA	650.77	
MW-5	2.84	11.00	654.80	8.16	2	1.33	651.96	
MW-5A	3.24	38.94	654.84	35.70	4	5.82	651.60	Slow Recovery
MW-6	6.76	14.80	660.84	8.04	2	1.31	654.08	
MW-6A	8.28	20.62	659.38	12.34	4	2.01	651.10	
MW-7	4.40	NM	658.21	NM	2	NA	653.81	
MW-9	4.66	10.45	654.99	5.79	2	0.94	650.33	
MW-9A	2.60	NM	654.67	NM	4	NA	652.07	
MW-10	3.16	10.04	655.48	6.88	2	1.12	652.32	
MW-11A	12.88	35.14	656.60	22.26	6	NA	643.72	Pumping Well
MW-13	2.92	NM	654.66	NM	2	NA	651.74	
MW-13A	2.70	NM	655.13	NM	4	NA	652.43	
MW-14	1.32	10.50	653.38	9.18	2	1.50	652.06	
MW-14A	1.88	33.92	653.70	32.04	4	5.22	651.82	
MW-16R ²	4.66	11.98	660.04	7.32	2	1.19	655.38	
MW-16A	15.90	26.8	659.95	NA	6	NA	644.05	Pumping Well
MW-17A	1.80	NM	659.18	NM	4	NA	657.38	
MW-18	6.48	12.70	662.51	6.22	2	1.01	656.03	
MW-18A	9.68	34.52	662.72	24.84	4	4.05	653.04	
MW-19	5.82	NM	660.84	NM	2	NA	655.02	
MW-20	3.00	NM	659.12	NM	2	NA	656.12	
MW-22	0.20	11.04	652.51	10.84	2	1.77	652.31	
MW-22A	1.98	45.96	654.45	43.98	6	7.17	652.47	
MW-23	2.82	13.18	655.99	NM	2	NA	653.17	
MW-24	7.52	13.34	662.74	5.82	2	0.95	655.22	
MW-24A	9.80	34.18	662.85	24.38	4	3.97	653.05	
MW-25	4.10	10.52	653.20	6.42	2	1.05	649.10	
MW-25A	2.20	34.34	653.28	32.14	4	5.24	651.08	
MW-26	5.52	10.94	653.60	5.42	2	0.88	648.08	
MW-26A	2.96	34.40	653.70	31.44	4	5.12	650.74	Slow Recovery
MW-27	6.30	10.88	654.68	10.88	2	1.77	648.38	
MW-27A	4.80	34.30	654.81	34.30	4	5.59	650.01	Slow Recovery
MW-28	7.30	12.20	653.21	12.20	2	1.99	645.91	
MW-28A	4.68	34.46	652.97	34.46	4	5.62	648.29	Slow Recovery
MW-29A	2.84	39.58	652.99	39.58	4	6.45	650.15	Slow Recovery

Notes

1 Monitoring well accidently damaged or removed during excavation activities in Area C

2 Monitoring well MW-16R installed to replace MW-16

3 NL = Not Located

4 NM = Not Measured

5 NA = Not Available

Table 3 Groundwater Elevation Data October 2011

Date: 4/23/2012				Octobe				
Well Number	Depth to Water (ft.)	Depth to Bottom (ft.)	Top of PVC Elevation	Water Column (ft.)	Well ID (inches)	One Well Volume (gal.)	Water Elevation (ft.)	Notes
MW-1	5.46	NM	662.38	NM	2	NA	656.92	
MW-1A	13.06	25.80	663.48	12.74	4	2.08	650.42	
MW-2	0.00	7.70	657.01	7.70	2	1.26	657.01	Dry
MW-2A	8.04	29.40	657.02	21.36	4	3.48	648.98	
MW-3	6.88	10.24	655.94	3.36	2	0.55	649.06	
MW-4	8.46	NM	655.57	NM	2	NA	647.11	
MW-5	5.68	11.00	654.80	5.32	2	0.87	649.12	
MW-5A	5.60	38.94	654.84	33.34	4	5.43	649.24	
MW-6	10.92	14.80	660.84	3.88	2	0.63	649.92	
MW-6A	11.58	20.62	659.38	9.04	4	1.47	647.80	
MW-7	7.56	NM	658.21	NM	2	NA	650.65	
MW-9	7.40	10.45	654.99	3.05	2	0.50	647.59	
MW-9A	6.08	NM	654.67	NM	4	NA	648.59	
MW-10	7.24	10.04	655.48	2.80	2	0.46	648.24	
MW-11A	11.16	35.14	656.60	23.98	6	NA	645.44	
MW-13	10.28	NM	654.66	NM	2	NA	644.38	Not Monitored
MW-13A	7.22	NM	655.13	NM	4	NA	647.91	Not Monitored
MW-14	7.58	10.50	653.38	2.92	2	0.48	645.80	
MW-14A	5.00	33.92	653.70	28.92	4	4.71	648.70	
MW-16R ²	6.96	11.98	660.04	5.02	2	0.82	653.08	
MW-16A		26.8	659.95	NA	6	NA	659.95	Not Monitored
MW-17A	3.94	NM	659.18	NM	4	NA	655.24	
MW-18	8.98	12.70	662.51	3.72	2	0.61	653.53	
MW-18A	13.02	34.52	662.72	21.50	4	3.50	649.70	
MW-19	7.44	NM	660.84	NM	2	NA	653.40	
MW-20	8.72	NM	659.12	NM	2	NA	650.40	
MW-22	7.64	11.04	652.51	3.40	2	0.55	644.87	
MW-22A	5.82	45.96	654.45	40.14	6	6.54	648.63	
MW-23	9.22	13.18	655.99	NM	2	NA	646.77	
MW-24	9.74	13.34	662.74	3.60	2	0.59	653.00	
MW-24A	14.62	34.18	662.85	19.56	4	3.19	648.23	
MW-25	6.52	10.52	653.20	4.00	2	0.65	646.68	
MW-25A	5.94	34.34	653.28	28.40	4	4.63	647.34	
MW-26	7.50	10.94	653.60	3.44	2	0.56	646.10	
MW-26A	5.94	34.40	653.70	28.46	4	4.64	647.76	
MW-27	7.86	10.88	654.68	10.88	2	1.77	646.82	
MW-27A	7.80	34.30	654.81	34.30	4	5.59	647.01	
MW-28	7.88	12.20	653.21	12.20	2	1.99	645.33	
MW-28A	6.32	34.46	652.97	34.46	4	5.62	646.65	
MW-29A	5.58	39.58	652.99	39.58	4	6.45	647.41	
Notes			•			•	•	

Notes

1 Monitoring well accidently damaged or removed during excavation activities in Area C

2 Monitoring well MW-16R installed to replace MW-16

3 NL = Not Located

4 NM = Not Measured

5 NA = Not Available

Table 4 Groundwater Elevation Data December 2011

				Decemb				
Well Number	Depth to Water (ft.)	Depth to Bottom (ft.)	Top of PVC Elevation	Water Column (ft.)	Well ID (inches)	One Well Volume (gal.)	Water Elevation (ft.)	Notes
MW-1	5.90	NM	662.38	NM	2	NA	656.48	
MW-1A	9.52	25.80	663.48	16.28	4	2.65	653.96	
MW-2	6.82	7.68	657.01	0.86	2	0.14	650.19	
MW-2A	6.88	29.34	657.02	22.46	4	3.66	650.14	
MW-3	4.84	NM	655.94	NM	2	NA	651.10	
MW-4	5.02	NM	655.57	NM	2	NA	650.55	
MW-5	3.48	11.02	654.80	7.54	2	1.23	651.32	
MW-5A	3.82	38.96	654.84	35.14	4	5.73	651.02	Slow Recovery
MW-6	6.96	14.78	660.84	7.82	2	1.27	653.88	
MW-6A	7.90	20.64	659.38	12.74	4	2.08	651.48	
MW-7	4.66	NM	658.21	NM	2	NA	653.55	
MW-9	3.64	NM	654.99	NM	2	NA	651.35	
MW-9A	2.98	NM	654.67	NM	4	NA	651.69	
MW-10	3.62	10.04	655.48	6.42	2	1.05	651.86	
MW-11A	6.80		656.60	-6.8	6	NA	649.80	Pumping Well
MW-13	3.02	NM	654.66	NM	2	NA	651.64	
MW-13A	3.38	NM	655.13	NM	4	NA	651.75	
MW-14	4.42	10.52	653.38	6.10	2	0.99	648.96	
MW-14A	2.32	33.90	653.70	31.58	4	5.15	651.38	
MW-16R ²	4.26	11.98	660.04	7.72	2	1.26	655.78	
MW-16A		NM	659.95	NA	6	NA	659.95	Not Measured
MW-17A	2.60	NM	659.18	NM	4	NA	656.58	
MW-18	7.96	12.70	662.51	4.74	2	0.77	654.55	
MW-18A	10.02	34.54	662.72	24.52	4	4.00	652.70	
MW-19	6.24	NM	660.84	NM	2	NA	654.60	
MW-20	2.74	NM	659.12	NM	2	NA	656.38	
MW-22	1.94	11.04	652.51	9.10	2	1.48	650.57	Dark water - Clear
MW-22A	2.78	45.96	654.45	43.18	6	7.04	651.67	
MW-23	3.56	13.18	655.99	NM	2	NA	652.43	
MW-24	7.12	13.34	662.74	6.22	2	1.01	655.62	
MW-24A	8.82	34.18	662.85	25.36	4	4.13	654.03	Drum
MW-25	4.24	10.52	653.20	6.28	2	1.02	648.96	
MW-25A	1.82	34.34	653.28	32.52	4	5.30	651.46	Drum+
MW-26	5.30	10.90	653.60	5.60	2	0.91	648.30	
MW-26A	2.52	34.38	653.70	31.86	4	5.19	651.18	Slow Recovery
MW-27	6.00	10.88	654.68	10.88	2	1.77	648.68	
MW-27A	5.28	34.30	654.81	34.30	4	5.59	649.53	Slow Recovery
MW-28	7.02	12.20	653.21	12.20	2	1.99	646.19	
MW-28A	4.66	34.44	652.97	34.46	4	5.62	648.31	Slow Recovery
MW-29A	2.46	39.56	652.99	39.58	4	6.45	650.53	Slow Recovery

Notes

1 Monitoring well accidently damaged or removed during excavation activities in Area C

2 Monitoring well MW-16R installed to replace MW-16

3 NL = Not Located

4 NM = Not Measured

5 NA = Not Available

Table 5A (Wells 1-3) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

Sample Collection Date: Dilution: Volatile Organic Compounds (ug/l) acetone benzene bromodichloromethane bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride chlorobenzene	CAS 67641 71432 75274 75252 74839	Detection Limit 20 5.0 5.0	RAOs GW	Mar-31-08 1.00	May-14-08 1.00	Jul-30-08 1.00	Apr-15-09	Oct-6-09	Jan-14-10	Dec-17-10	Dec-15-11	Dec-15-11	May-02-07	May-14-08	Apr-15-09	Dec-15-10
Volatile Organic Compounds (ug/l) acetone benzene bromodichloromethane bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride	71432 75274 75252	20 5.0	-		1.00	1.00	1.00									
acetone benzene bromodichloromethane bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride	71432 75274 75252	5.0					1.00	1.00	1.00	1.00	1.00	2.50	1.00	1.00	1.00	1.00
benzene bromodichloromethane bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride	71432 75274 75252	5.0														
bromodichloromethane bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride	75274 75252			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane 2-butanone (MEK) carbon disulfide carbon tetrachloride			-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK) carbon disulfide carbon tetrachloride	7/830	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide carbon tetrachloride		5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	ND	ND	ND	ND	ND	8.3	7.1	46	31 D	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																ND
,																ND
																ND ND
																ND
			-													ND
																ND
																ND
												-				ND
																ND
			-													ND
	100000/100420	0.0									1 1		1			0
				ů	ů	÷	-	-			-		-	-	-	0
				-				-								0
				0	0				0	0	0	0	0	0	0	0
Chemistry (mg/L)					v l		MW-1A			· · · · ·	Ű	N-2A		-	/W-3	
Chloride				69.1	NA	57.3	46.6	99.8	82.1	NA	NA	NA	NA	NA	NA	NA
	İ	1		0.107			0.26		0.41							NA
					NA			1	-	NA	NA	NA	NA	NA	NA	NA
				36.3	NA	39.1	39.70	41.4	46.7	NA	NA	NA	NA	NA	NA	NA
				3.11	NA	3.00	4.90	5.4	8.1	NA	NA	NA	NA	NA	NA	NA
				0.1	NA			-	-	NA	NA	NA	NA	NA	NA	NA
Manganese				0.058	NA	0.0408	66	278	61	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				0.066	NA	0.0396	56	201	63	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	11.32	NA	7.2	17.6	NA	NA	NA	NA	NA	NA	NA
				NA	NA	7.29	NA	7.3	7.02	NA	NA	NA	NA	NA	NA	NA
pH		1		NA	NA	-53.00	NA	-336.2	5.1	NA	NA	NA	NA	NA	NA	NA
Chloride Ferrous Iron Nitrate Nitrogen Sulfate Total Organic Carbon Ferrous Iron Dissolved Manganese Manganese Dissolved	108101 100425 79345 127184 108883 71556 79005 79016 75014 95476 108383/106423	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	- - - 5 5 - 5 5 5 5 - - - - - - - - - -	69.1 0.107 <0.500 36.3 3.11 0.1 0.058 0.066 NA NA	NA NA NA NA NA NA NA NA NA	 <0.100 <0.500 39.1 3.00 0.288 0.0408 0.0396 11.32 7.29 	46.6 0.26 0.50 U 39.70 4.90 0.28 66 56 NA NA	0.61 0.74 41.4 5.4 0.35 278 201 7.2 7.3	82.1 0.41 0.50 U 46.7 8.1 0.29 61 63 17.6 7.02	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	W-3 NA NA NA NA NA NA NA NA NA	

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

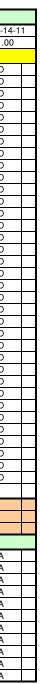
Table 5B (Wells 5-10) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method									MW-5						
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-07	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-24-1	0 Jul-6-10	Sept-29-10	Dec-16-10	Mar-23-11	Jun-8-11	Oct-5-11	Dec-14-
Dilution:	:	Limit	GW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)					•				•				•	•		•	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	J ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
methylene chloride	75092 108101	5.0 10	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
4-methyl-2-pentanone (MIBK) styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				0	0	0	0	0	0	0	0	0	0	0	1.9	0	0
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent VC				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemistry (mg/L)					<u> </u>			<u> </u>	, v		MW-5		<u> </u>	, ,			
Chloride	1	1	1	NA	18.1	23.8	3.7	2 U	4	5.5	2	41.5	6.4	5	NA	NA	NA
Ferrous Iron				NA	0.174	<0.100	0.1 U	-			NA	41.5 NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	<0.500	<0.500	0.1 U		0.91	0.58		J 0.5 L				NA	NA
Sulfate			1	NA	38.8	<0.300 52.9	19.9	15	13	17.2	9.8	12.9	16.3	15.6	NA	NA	NA
Total Organic Carbon	1	1	1	NA	2.11	2.71	2.7	2.3	2.6	1.9	3.8	11.6	4.5	1.9	NA	NA	NA
Ferrous Iron Dissolved	1	1	1	NA	<0.100	<0.100	0.1 U		-		U 160	1180	100 U	-	J NA	NA	NA
Manganese	1	1	1	NA	0.0476	0.0217	65	39	22	NA	NA	NA	NA	NA NA	NA	NA	NA
Manganese Dissolved	1	1		NA	<0.0100	<0.0100	10 U	10	10	10	U 33	277	55	10 L	J NA	NA	NA
Dissolved Oxygen (DO)	1		1	NA	NA	0.70	NA	28.5	15.5	NA	33.6	NA	45.4	135.4	3.8	NA	NA
pH	1		1	NA	NA	8.53	8.53	8.29	8.73	NA	8.43	NA	8.70	8.27	7.62	NA	NA
Oxygen Reduction Potential		1	1	NA	NA	-131.00	-99.00	-207.4	-157.8	NA	-109.7	NA	-106.5	3.4	-30.2	NA	NA
	1		1				00.00							5	00.2		

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number


Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

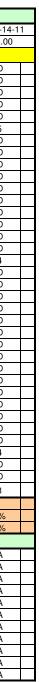
Table 5B (Wells 5-10) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method								MV	V-5A						
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-07	May-14-08	Jul-30-08	Apr-15-09	Oct-16-09	Jan-14-10	Mar-24-10	Jul-6-10	Sept-29-20	Dec-16-10	Mar-23-11	Jun-8-11	Oct-6-11	Dec-14-
Dilution	:	Limit	GW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																	
acetone	67641	20	-	ND	ND	ND	31	85	26	ND	32	ND	ND	ND	12 .	J ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	24	81	72	43	120	45	58	ND	36	14	45
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	12	10	9	ND	ND	ND	ND	ND	ND	ND	ND	4.6	J ND	14
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0 10	-	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
4-methyl-2-pentanone (MIBK)	108101 100425	5.0	-	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
styrene	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75010	5.0	5	16	14	9.6	16	18	19	16	7	15	ND	7.9	7.7	ND	14
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs			-	28	24	18.6	71	184	117	59	159	60	58	7.9	60.3	14	73
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				43%	42%	48%	0	0	0	0	0	0	0	0	8%	0	19%
Percent VC				57%	58%	52%	23%	10%	16%	27%	4%	25%	0	100%	13%	0	19%
Chemistry (mg/L)				5778	5078	JZ /8	2378	1078	1078		470 W-5A	2378	0	10078	1078		13/0
	1	1	1	NA	115.0	70.0	150	100	100	-		00.0	CO 4	00.4	NIA		NIA.
Chloride				NA NA	115.0	78.6 <0.100	150 2.67	138 1.03	126 1.5	110 NA	96 NA	82.9 NA	62.4 NA	83.4 NA	NA	NA NA	NA NA
Ferrous Iron				NA	<0.100							0.5	U 1 1		U NA	NA	NA
Nitrate Nitrogen Sulfate	-			NA	<0.500 89.5	<0.500 60.0	0.5 U 81.5	55.2	44.9	46.9	0.5 U 8.5	13.2	6.5	62.5	NA NA	NA	NA
Total Organic Carbon	-			NA	3.03	17.80	130	280	44.9	312	8.5 176	13.2	85.2	13.9	NA	NA	NA
Ferrous Iron Dissolved				NA	<0.100	<0.100	3.8	0.84	14.9	11200	12500	11000	5050	910	NA	NA	NA
	+		-	NA	0.0932	0.0903	3.8 195	512	175	NA	NA	NA	5050 NA	NA	NA	NA	NA
Manganese Manganese Dissolved				NA	0.0932	0.0903	151	502	175	109	87	49	56	75	NA	NA	NA
Dissolved Oxygen (DO)	+		-	NA	0.0735 NA	1.17	NA	11.2	29.8	NA	24.9	49 NA	29.8	119.2	5.3	NA	NA
pH	+		-	NA	NA	8.68	7.14	6.81	6.82	NA	6.79	NA	6.82	7.28	7.62	NA	NA
Oxygen Reduction Potential	+		-	NA	NA	-124.0	-122.0	-207.4	-90.9	NA	-114.2	NA	-99.4	2.3	-37.9	NA	NA
CAYGEII REDUCTION POTENTIAL	1			N/A	N/A	-124.0	-122.0	-201.4	-90.9	N/A	-114.2	INA	-39.4	۷.۵	-31.9	INA	INA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number


Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 5B (Wells 5-10) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs							MW-6						
Sample Collection Date:	CAS	Detection	GW	May-02-07	May-14-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	Jul-6-10	Sept-29-10	Dec-16-10	Mar-23-11	Jun-8-11	Oct-5-11	Dec-14-11
Dilution:		Limit		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6 J	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	190	120	110	110	120	130	120	74	92	110	140	140	170
trans-1,2-dichloroethene	156605	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5 J	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883 71556	5.0 5.0	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-trichloroethane	79005	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane trichloroethene	79005	5.0	5	22	15	18	21	20	17	15	17	21	19	21	20	21
vinyl chloride	75016	5.0	5	5.8	8.1	13	14	20	28	53	ND	31	51	42	69	63
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	100000/100120	0.0		217.8	143.1	141	145	168	175	188	91	144	180	207.1	229	254
					-		-		-		-			-	-	-
Percent TCE				10%	10%	13%	14%	12%	10%	8%	19%	15%	11%	10%	9%	8%
Percent DCE				87% 3%	84%	78% 9%	76%	71%	74% 16%	64% 28%	<u>81%</u>	64% 22%	61%	68% 20%	61% 30%	67% 25%
Percent VC				3%	6%	9%	10%	17%	10%		U	22%	28%	20%	30%	23%
Chemistry (mg/L)			-						T	MW-6		T T		T T	T T	
Chloride				NA	7.3	8.0	8.0	8.1	7.4	8.2	NA	11.4	9.6	NA	NA	NA
Ferrous Iron				NA	<0.100			J 0.1 U		NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	< 0.500		J 0.7	0.5 U		U 0.5	U NA	1.0 L		1473	NA	NA
Sulfate				NA	172	203	222	193	168	196	NA	273	172	NA	NA	NA
Total Organic Carbon				NA	6.12	6.2	5.6 1 0.1	7.7	6.6	7.8	5.3	6.9	5.6	NA	NA	NA
Ferrous Iron Dissolved				NA	<0.100	0	0	0.1 0		U 860	NA	100 L		101	NA	NA
Manganese Manganaga Dissolved				NA	0.0397	34	20	115	NA	NA FC	NA	NA 10	NA 54	NA	NA	NA
Manganese Dissolved				NA NA	0.0301	27 NA	13 35.5	77	26	56 37.4	NA	19 42.3	54 129.4	NA 5.7	NA NA	NA NA
Dissolved Oxygen (DO)				NA	NA	NA 7.04	7.47	19.5 7.39	NA	7.37	NA	7.41	7.34	5.7	NA	NA
pH Ovumen Reduction Retential					NA	-			NA							
Oxygen Reduction Potential				NA	NA	-24.0	-178.9	7.4	NA	-21.8	NA	-15.8	3.1	13.0	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	RAOs								MV	N-6A (Deep	Well)						
Sample Collection Date:	CAS	Detection	GW GW	May-02-07	May-02-07	Nov-14-	07	Nov-14-0)7	May-14-08	8	Jul-30-08		Apr-15-09	Oct-6-0	9	Jan-14-10	Mar-23-10	Jul-6-10
Dilution:	:	Limit	aw	1.00	2.50	1.00		2.50		2.50		2.50		1.00	1.00		1.00	2.50	2.50
Volatile Organic Compounds (ug/l)																			
acetone	67641	20	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
benzene	71432	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
chloroform	67663	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	380 E		D 400	Е	350	D	380		460		370	110		130	410	380
trans-1,2-dichloroethene	156605	5.0	5	11	ND	11		ND		ND		ND		ND	ND		ND	ND	ND
1,2-dichloropropane	78875	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
cis-1,3-dichloropropene	542756	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
trans-1,3-dichloropropene	542756	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
methylene chloride	75092	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
trichloroethene	79016	5.0	5	10	ND	ND		ND		ND		22		ND	ND		ND	ND	ND
vinyl chloride	75014	5.0	5	160	170	280	Е	250	D	220		120		350	170		51	280	360
o-xylene	95476	5.0	5	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
m+p xylene	108383/106423	5.0	5	ND	ND	ND		ND		ND		ND		ND	ND		ND	ND	ND
TOTAL VOCs				561	530	691		600		600		602		720	280		181	690	740
Percent TCE				2%	0	0		0		0		4%		0	0		0	0	0
Percent DCE				68%	68%	58%		58%		63%		76%		51%	39%		72%	59%	51%
Percent VC				29%	32%	41%		42%		37%		20%		49%	61%		28%	41%	49%
Chemistry (mg/L)											MV	N-6A (Deep V	Well)						
Chloride				NA	NA	NA	11	NA		8.8		51.5		13.2	9.1		6.4	9.5	11.7
Ferrous Iron	1			NA	NA	NA		NA		0.412		1.340		2.38	0.39		0.25	NA	NA
Nitrate Nitrogen	1			NA	NA	NA		NA		<0.500		<0.500			U 0.85		0.50 U	0.50 U	0.50 U
Sulfate	1			NA	NA	NA		NA		125		135		169	95.1		56.7	117.0	67.6
Total Organic Carbon	1			NA	NA	NA		NA		7.36		5.38		11.6	5.6		3.4	6.1	5.8
Ferrous Iron Dissolved	1			NA	NA	NA		NA		0.298		1.050		2.78	0.24		0.10	3550.00	230
Manganese	1			NA	NA	NA		NA		0.0600		0.0944		54	434		206	NA	NA
Manganese Dissolved				NA	NA	NA		NA		0.0532		0.1040		104	423		96	86	103
Dissolved Oxygen (DO)				NA	NA	NA		NA		NA		2.67		NA	5.2		16.3	NA	21.2
pH	1			NA	NA	NA		NA		NA		7.37		7.22	7.36		7.68	NA	7.40
Oxygen Reduction Potential				NA	NA	NA		NA		NA		-89		-157	-259.6		11.5	NA	-63.2
							_		-		_		_			_			

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	RAOs				1	MW-6A (Deep \	Well)									MW-10					
Sample Collection Date:	CAS	Detection	GW	Sept-29-10	Dec-16-10	Mar-23-11	Mar-23-11	Jun-8-11	Oct-5-11	Oct-5-11	Dec-14-11	Dec-14-11	May-02-07	Nov-14-07	May-14-08	Apr-15-09	Oct-6-09	Jul-6-10	Dec-15-10	Mar-23-11	Jun-8-11	Oct-5-11	Dec-14-11
Dilution:		Limit	u	2.50	2.50	1.00	10.00	2.50	2.50	5.00	2.50	5.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																							
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	150	160	46	ND	ND	5.5 J	I ND	ND
benzene	71432	5.0	-	ND	ND	ND	ND	0.95	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	180	270	110	ND	ND	1 J	I ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79 J	I ND	ND
chloroform	67663	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5.0	-	ND	ND	21	ND	6	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5.0	-	ND	ND 500	6.2	ND	2.1	J ND	ND	ND	ND D	ND	ND	ND 100	ND	ND	ND 0.5	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5.0	5	410	500	850	E 840 D	450	600 E	E 550 D	500 E	490 D	160	110	190	120	ND	9.5	ND	ND	4.6 J	J ND	ND
trans-1,2-dichloroethene	156605 78875	5.0 5.0	5	ND ND	ND ND	10 ND	ND ND	11 ND	J ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloropropane	542756	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene trans-1,3-dichloropropene	542756	5.0 5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5.0		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5.0	5	ND	ND	7.1	ND	2.1	J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5.0	5	400	380	250	E 220 D	150	190	180 D	200	190 D	71	38	73	38	ND	24	23	22	72	ND	5.2
o-xylene	95476	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5.0	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				810	880	1144.3	1060	622.15	790	730	700	680	231	148	263	488	430	189.5	23	22	83.89	0	5.2
Percent TCE				0	0	1%	0	0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				51%	57%	74%	79%	72%	76%	75%	71%	72%	69%	74%	72%	25%	0	5%	0	0	5%	0	0
Percent VC				49%	43%	22%	21%	24%	24%	25%	29%	28%	31%	26%	28%	8%	0	13%	100%	100%	86%	0	100%
Chemistry (mg/L)							I	WW-6A (Deep \	Well)									MW-10					
Chloride				32.8	16.0	109.0	109.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	33.5	24.4	40.8	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				0.50 U	1.00 U	1.00	U 1.00 L	J NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.5 U	J 1	U 1 U	NA	NA	NA
Sulfate				98.6	62.8	172.0	72.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.1	7.7	13.7	NA	NA	NA
Total Organic Carbon				6.1	6.9	3.4	3.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	152	24.7	16.9	NA	NA	NA
Ferrous Iron Dissolved				3280	1010	590	590	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2510	6830	1070	NA	NA	NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				63	210	122	122	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	30	55	50	NA	NA	NA
Dissolved Oxygen (DO)				NA	36.7	131.7	131.7	3.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	125.3	5.5	NA	NA
pH				NA	7.19	7.29	7.29	7.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.13	7.12	NA	NA
Oxygen Reduction Potential				NA	-56.2	4.2	4.2	10.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.1	-49.9	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

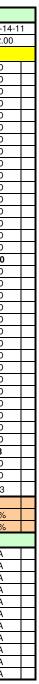
D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	DAGe							MW-11A	(Deep Well)						
Sample Collection Date	CAS	Detection	RAOs GW	May-02-07	' Nov-14-07	Jul-1-08	Apr-15-09	Oct-6-09	Mar-23-10	Jul-6-10	Sep-29-10	Sep-29-1	0 Dec-15-10	Mar-31-11	Jun-2-11	Oct-5-11	Dec-14-
Dilution	:	Limit	GW	5.00	2.50	2.50	1.00	1.00	2.50	2.50	1.00	2.50	2.50	2.50	2.50	2.50	2.00
Volatile Organic Compounds (ug/l)		•				•	•			•			·			•	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6 J	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	490	290	290	250	210	280	270	190	180	D 350	400	390	350	240
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 J	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND
tetrachloroethene	127184 108883	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
toluene 1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79005	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J	ND	ND
vinyl chloride	75014	5	5	500	320	300	260	290	290	280		210	D 310	470	260	280	73
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	100000/100420		3	990	610	590	510	500	570	550	420	390	660	870	660.5	630	313
											-						
Percent TCE				0	0	0	0	0	0	0 49%	0	0 46%	0	0	0%	0	0
Percent DCE				49% 51%	48% 52%	49% 51%	49%	42%	49% 51%	49%	45% 55%	46%	53% 47%	46%	59% 39%	56% 44%	77%
Percent VC				51%	52%	51%	51%	58%	51%	.,.		54%	47%	54%	39%	44%	23%
Chemisrty (mg/L)	1	T	-					_			(Deep Well)	-					
Chloride				NA	NA	NA	120	87.4	NA	107	96	96	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	0.13	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen		l		NA	NA	NA	0.5 U	J 0.5	U NA		J 0.5 L		U NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	91.1	87.8	NA	74.8	80.1	80.1	NA	NA	NA	NA	NA
Total Organic Carbon	ł	1		NA	NA	NA	3.9	3.3	NA	3.9	4	4	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	0.12	0.1	U NA	160	260	260	NA	NA	NA	NA	NA
Manganese	ł	1		NA	NA	NA	73	74	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved	ł	1		NA	NA	NA	74	69	NA	67	66	66	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	96.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	7.21	7.22	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential			1	NA	NA	NA	-216	-283	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number


Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method										MW-14								
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-07	May-14-08	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	Jul-6-10	Jul-6-10	Dec-15-10	Dec-15-10	Mar-23-11	Jun-8-11	Jun-8-11	Oct-5-11	Dec-14-11
Dilution:		Limit	GW	2.00	1.00	2.00	1.00	1.00	2.00	2.00	2.00	2.00	1.00	1.00	2.00	1.00	1.00	2.00	2.00	2.00
Volatile Organic Compounds (ug/l)								1												
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.61	J ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062 75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene		5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 100	0.75	J ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	270	230 ND	E 220 D		190	230	200	190		D 280 E	210 E	180 D	160	230	E 210 D) 270 J ND	240
trans-1,2-dichloroethene	156605 78875	5	5	ND ND	ND	ND ND	ND ND	6.9 ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	5.3 ND	6.5 D	J ND ND	ND ND
1,2-dichloropropane	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42	J ND	ND	ND
vinyl chloride	75014	5	5	86	26	25 D	48	38	270	20	44	83	D 91	230 E	200 D	140	250	E 210 D	360	320
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				356	256	245	198	234.9	500	220	234	343	378	440	380	300	487.08	426.5	630	560
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0%	0	0	0
Percent DCE				76%	90%	90%	76%	81%	46%	91%	81%	76%	74%	48%	47%	53%	47%	49%	43%	43%
Percent VC				24%	10%	10%	24%	16%	54%	9%	19%	24%	24%	52%	53%	47%	51%	49%	57%	57%
Chemisrty (mg/L)												MW-14								
Chloride				NA	NA	62.4	49.3	64.2	39	26.4	45	55.1	55.1	32.3	32.3	42.7	NA	NA	NA	NA
Ferrous Iron				NA	NA	0.384	0.861	1.67	0.1 l	J 0.86	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	<0.500	<0.500	0.5 l	J 0.5 l	J 0.5 U	0.5 U	0.5	U 0.5 U	1 U	1 U	1 U	I NA	NA	NA	NA
Sulfate				NA	NA	379	288	314	71.1	152	218	327	327	213	213	238	NA	NA	NA	NA
Total Organic Carbon				NA	NA	3.8	4.58	3.1	7.3	3.3	3.8	4.5	4.5	4	4	3.3	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	0.326	0.918	1.36	0.1 l	J 0.74	140	200	200	130	130	270	NA	NA	NA	NA
Manganese				NA	NA	0.11	0.0829	110	57	76	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	0.106	0.0732	112	51	68	59	63	63	115	115	118	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	2.84	NA	17.8	15.9	NA	20.9	20.9	24.3	24.3	132.4	9.9	9.9	NA	NA
рН				NA	NA	NA	6.07	6.99	7.05	7.07	NA	7.04	7.04	7	7	7.17	7.27	7.27	NA	NA
Oxygen Reduction Potential				NA	NA	NA	-24	-272	-278.4	-18.3	NA	-71.8	-71.8	-63.5	-63.5	3.9	-22.7	-22.7	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	RAOs							N	IW-14A (Deep W	/ell)						
Sample Collection Date:	CAS	Detection	GW	May-02-07	Nov-14-07	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	Jul-6-10	Sept-30-10	Dec-16-10	Mar-23-11	Jun-8-11	Oct-5-11	Dec-14-11
Dilution:		Limit	GW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)							•		•	•			•	•	•		·	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	J ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	39	ND	160	6.2	100	12	38	96	31	5.9	16	41	5.3	5.8	7.6
trans-1,2-dichloroethene	156605	5	5	ND	ND	6.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	29	7.2	56	8.2	57	16	ND	53	24	6.8	19	39	17	19	17
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				68	7.2	222.1	14.4	157	28	38	149	55	12.7	35	80	23.9	24.8	24.6
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				57%	0	72%	43%	64%	43%	100%	64%	56%	46%	46%	51%	22%	23%	31%
Percent VC				43%	100%	25%	57%	36%	57%	0	36%	44%	54%	54%	49%	71%	77%	69%
Chemisrty (mg/L)										N	IW-14A (Deep W	/ell)						
Chloride				NA	NA	27.1	15.2	27.8	15.1	15.9	21.7	15	17.3	15.2	18.7	NA	NA	NA
Ferrous Iron				NA	NA	0.126	0.613	2.74	0.1 U	0.1 L	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	<0.500	<0.500	0.5	U 0.71	0.5 L	0.5 U	0.5	U 0.5 L	J 1 L	J 1 U	NA	NA	NA
Sulfate				NA	NA	224	54.1	210	41.6	82.5	146	115	34.9	28.8	105	NA	NA	NA
Total Organic Carbon				NA	NA	3.48	3.53	2.9	2.6	3.4	4.5	3.9	2.9	2.8	3	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	<0.100	1.29	4.17	0.1 U	0.1 L	1250	830	1120	230	1360	NA	NA	NA
Manganese				NA	NA	0.105	0.116	113	79	39	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	0.0992	0.114	108	63	37	97	83	65	52	104	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	1.42	NA	9	17.3	NA	15.2	NA	27.2	124.8	7.6	NA	NA
pH				NA	NA	NA	6.74	6.99	7.53	7.58	NA	7.17	NA	7.1	7.06	7.26	NA	NA
Oxygen Reduction Potential				NA	NA	NA	-205	-280	-276.2	26.4	NA	-104.7	NA	-70.9	3.2	-29.8	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	D 40.									MV	V-16A (Deep Well	I)							
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-0	7 Nov-14-07	Nov-14-0	7 Mar-31-2008	Mar-31-20	08 July-01-08	3 Jul-30-08	Apr-15-09	Oct-6-09	Mar-23-1010	Jul-6-10	Jul-6-10	Sept-29-10	Dec-15-10	Mar-31-11	Jun-2-11	Oct-5-11	Dec-14-11
Dilution:		Limit	GW	5.00	1.00	10.00	5.00	10.00	10.00	10.00	1.00	1.00	10.00	5.00	1.00	5.00	5.00	5.00	5.00	5.00	5.00
Volatile Organic Compounds (ug/l)							•						•	•	•	•	•	•		•	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	30	9.5	J ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	74	88	87	150	150	D 140	120	130	220	280	78 C	00	100	91	98	55	64	44
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	ND	ND	ND	2.9	J ND	ND
cis-1,2-dichloroethene	156592	5	5	860	980	E 960	D 1100 E	1100	D 1400	1400	950	1300	1100	850 D		E 850	740	650	490	690	490
trans-1,2-dichloroethene	156605 78875	5	5	ND	12	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	11 ND	ND	ND ND	ND	5.1	J ND ND	ND ND
1,2-dichloropropane		5	-	ND ND	ND	ND	ND	ND		ND	ND		ND ND			ND ND		ND	ND ND		
cis-1,3-dichloropropene	542756 542756	5	-	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
trans-1,3-dichloropropene ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	ND	ND	ND	5.1	J ND	ND
2-hexanone	591786	10	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2	J ND	ND
1,1,1-trichloroethane	71556	5	5	190	210	E 200	D 730	750	D 580	330	370	420	140	39 E	43	48	44	46		J ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	160	370	E 330	D 920	930	D 260	200	300	420	400	160 D	180	380	110	160	58	50	34
vinyl chloride	75014	5	5	170	240	E 210	D 250	260	D 290	350	260	290	320	160 D	200	E 250	190	290	100	140	130
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	J ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.5	ND	ND	ND	6.9	J ND	ND
TOTAL VOCs				1454	1910	1787	3150	3190	2670	2400	2010	2650	2240	1287	1372.7	1628	1175	1274	759.7	944	698
Percent TCE				11%	19%	18%	29%	29%	10%	8%	15%	16%	18%	12%	13%	23%	9%	13%	8%	5%	5%
Percent DCE				59%	51%	54%	35%	34%	52%	58%	47%	49%	49%	66%	60%	52%	63%	51%	64%	73%	70%
Percent VC				12%	13%	12%	8%	8%	11%	15%	13%	11%	14%	12%	15%	15%	16%	23%	13%	15%	19%
Chemisrty (mg/L)												MV	V-16A (Deep Well	I)							
Chloride				NA	NA	NA	NA	306	NA	242	225	197	273	216	216	219	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	< 0.100	NA	0.412	0.24	0.34	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	<0.500	NA	<0.500	0.5 U	0.5 U	0.5 U	0.5 L		ป 0.5 เ	J NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	83.1	NA	93.3	66.9	80	79.2	79.7	79.7	90.2	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	2.3	NA	7.62	5	4.5	4.5	3.6	3.6	3.4	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	<0.100	NA	0.288	0.3	0.23	130	130	130	240	NA	NA	NA	NA	NA
Manganese				NA	NA	NA	NA	0.102	NA	0.0963	79	84	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	NA	NA	0.098	NA	0.0896	71	79	100	68	68	72	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	8.57	NA	15.5	NA	47.8	47.8	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	NA	NA	NA	7.33	NA	7.19	NA	7.02	7.02	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	-172	NA	-262	NA	-25.4	-25.4	NA	NA	NA	NA	NA	NA

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	D 40-									MW-16	R							
Sample Collection Date:	CAS	Detection	RAOs GW	May-02-0	07 May-02-	07	Nov-15-07	Nov-15-07	Mar-31-0)8 May-14	-08	May-14-	08	Jul-30-08	Jul-30-0)8	Apr-15-09	Oct-6-0	9 Jan-14-10	Mar-23-10
Dilution:		Limit	GW	10.00	20.00		10.00	25.00	10.00	10.0		20.00		10.00	20.00		1.00	1.00	1.00	5.00
Volatile Organic Compounds (ug/l)	•	•			•		•										•		•	•
acetone	67641	20	-	ND	ND		ND	ND	ND	ND		ND		ND	ND	1	ND	ND	ND	ND
benzene	71432	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
bromoform	75252	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND		ND	ND	ND	ND		ND		280	230	D	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND		68	ND	70	ND		ND		ND	ND		520	280	290	500
chloroform	67663	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	1900	2000		1400	1400	1700	1800		1800	D	1700	1700	D	170	130	140	110
1,2-dichloroethane	107062	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND	1	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND		66	66	ND	ND		ND		ND	ND		ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	2900	E 3000	D	2700 E	2600 I	D 1100	2000	E	2000	D	2000 E	2100	D	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	26	31	34
2-hexanone	591786	10	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
styrene	100425	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
toluene	108883	5	5	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	280	290		280	270	84	130		130	D	100	100	D	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	ND	ND	ND
trichloroethene	79016	5	5	2900	E 3000	D	3800 E	3600	D 210	280		290	D	85	ND		ND	ND	ND	ND
vinyl chloride	75014	5	5	72	ND		110	ND	ND	ND		ND		240	240		ND	ND	ND	ND
o-xylene	95476	5	5	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	12	35	37
m+p xylene	108383/106423	5	5	ND	ND		ND	ND	ND	ND		ND		ND	ND		ND	28	45	55
TOTAL VOCs				8052	8290		8424	7936	3164	4210		4220		4405	4370		690	476	541	736
Percent TCE				36%	36%		45%	45%	7%	7%		7%		2%	0		0	0	0	0
Percent DCE				36%	36%		32%	33%	35%	48%		47%		45%	48%		0	0	0	0
Percent VC				1%	0		1%	0	0	0		0		5%	5%		0	0	0	0
Chemisrty (mg/L)												MW-16	R							
Chloride	1	1	1	NA	NA		NA	NA	1060	NA	1	NA		NA	745	1	652	983	503	339
Ferrous Iron				NA	NA		NA	NA	0.107	NA	_	NA		NA	31.7		0.28	2.85	1.49	NA
Nitrate Nitrogen				NA	NA		NA	NA	<0.500	NA		NA		NA	<0.500		0.20 0.5 U	0.5	U 0.5 L	
Sulfate				NA	NA	+	NA	NA	31.7	NA		NA		NA	9.1	\vdash	2.7	7.8	6.3	11.7
Total Organic Carbon				NA	NA	+	NA	NA	4.8	NA		NA		NA	1080	\vdash	65.7	39.8	71.9	43
Ferrous Iron Dissolved				NA	NA	+	NA	NA	<0.100	NA	+	NA		NA	30.1	+	0.38	2.35	1.52	280
Manganese				NA	NA	+	NA	NA	0.346	NA	+	NA		NA	1.05	+	184	175	156	NA
Manganese Dissolved				NA	NA	+	NA	NA	0.346	NA	+	NA		NA	0.854	+	123	167	73	64
Dissolved Oxygen (DO)		1		NA	NA	+	NA	NA	0.366 NA	NA	_	NA	+	NA	3.97	+	NA	7.9	21.1	NA
pH				NA	NA	+	NA	NA	NA	NA	+	NA		NA	6.43	+	NA	7.09	7.36	NA
Oxygen Reduction Potential		1		NA	NA		NA	NA	NA	NA	_	NA		NA	-101	+	NA	-297	-77.8	NA
oxygen neuuclion rolential		1	1	INA	INA	1	INA	INA	INA	N/A		INA		INA	-101	1	IN/A	-231	-//.0	INA

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

		Method	RAOs									MW-16R C	ont.							
Sample Collection Date:	CAS	Detection	GW	Jul-6-10)	Jul-6-10)	Sept-29-	10	Dec-17-1	0	Mar-30-1	1	Jun-8-1	1	Oct-10-1	1	Oct-10-1	1	Dec-15-11
Dilution:		Limit	GW	2.00		1.00		2.00		2.50		1.00		1.00		2.00		5.00		1.00
Volatile Organic Compounds (ug/l)																				
acetone	67641	20	-	ND		ND		ND		ND		ND		4.7	J	ND		ND		ND
benzene	71432	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
bromodichloromethane	75274	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
bromoform	75252	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
bromomethane	74839	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
2-butanone (MEK)	78933	10	-	ND		14		ND		ND		ND		4.7	J	ND		ND		ND
carbon disulfide	75150	10	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
carbon tetrachloride	56235	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
chlorobenzene	108907	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
chloroethane	75003	5	-	320	D	340	Е	330		320		150		170		500	Е	390	D	170
chloroform	67663	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
chloromethane	74873	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
dibromochloromethane	124481	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
1,1-dichloroethane	75343	5	-	110	D	130		89		98		120		110		110		100	D	120
1,2-dichloroethane	107062	5	-	ND	<u>ا</u>	ND		ND		ND		ND		ND		ND		ND	F	ND
1,1-dichloroethene	75354	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
cis-1,2-dichloroethene	156592	5	5	ND		ND		ND		ND		ND		1.3	J	ND		ND		ND
trans-1,2-dichloroethene	156605	5	5	ND		ND		ND		ND		ND		0.42	J	ND		ND		ND
1,2-dichloropropane	78875	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
cis-1,3-dichloropropene	542756	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
trans-1,3-dichloropropene	542756	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
ethylbenzene	100414	5	5	47	D	52		70		42		46		33		60		64	D	44
2-hexanone	591786	10	-	ND	_	ND		ND		ND		ND		2.2	J	ND		ND	_	ND
methylene chloride	75092	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND		ND		ND		ND		ND		0.49	J	ND		ND		ND
styrene	100425	5	-	ND		ND		ND		ND		ND		ND	-	ND		ND		ND
1,1,2,2-tetrachloroethane	79345	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
tetrachloroethene	127184	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
toluene	108883	5	5	ND		ND		ND		ND		ND		1.1	J	ND		ND		ND
1,1,1-trichloroethane	71556	5	5	ND		ND		ND		ND		ND		3.2	J	ND		ND		ND
1,1,2-trichloroethane	79005	5	-	ND		ND		ND		ND		ND		ND		ND		ND		ND
trichloroethene	79016	5	5	ND		ND		ND		ND		ND		1.3	J	ND		ND		ND
vinyl chloride	75014	5	5	ND		ND		ND		ND		5.7		3.5	J	ND		ND		ND
o-xylene	95476	5	5	47		52		100		56		54		19		72		82	D	59
m+p xylene	108383/106423	5	5	90		110		140		93		120		69		140		170	D	120
TOTAL VOCs				614		698		729		609		495.7		423.91		882		806		513
Percent TCE				0		0		0		0		0		0%		0		0		0
Percent DCE				0		0		0		0		0		0%		0		0		0
Percent VC				0		0		0		0		1%		1%		0		0		0
Chemisrty (mg/L)				Ŭ		Ŭ		Ŭ		Ŭ		MW-16R C	ont.	. , 0		Ŭ		Ŭ		, i i i i i i i i i i i i i i i i i i i
Chloride				511		511		835		399		370		NA		NA		NA		NA
Ferrous Iron				NA		NA		NA		NA		NA		NA		NA		NA		NA
Nitrate Nitrogen				0.5	u	0.5	U	0.5	U	1	U	1	U	NA		NA		NA		NA
Sulfate				8.9		8.9		7.3		7.1		9.7		NA		NA		NA		NA
Total Organic Carbon				22.5		22.5		12.6		14.4		8.7		NA		NA		NA		NA
Ferrous Iron Dissolved				940		940		870		400		130		NA		NA		NA		NA
Manganese				NA		NA		NA		NA		NA		NA		NA		NA		NA
Manganese Dissolved				82		82		129		58		67		NA		NA		NA		NA
Dissolved Oxygen (DO)				35.2		35.2		NA		42.8		3.2		20.1		NA		NA		NA
pH				7.18		7.18		NA		7.23		7.44		7.08		NA		NA		NA
Oxygen Reduction Potential				-103.2		-103.2		NA		-87.8		128.6		-0.4		NA		NA		NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 5E (Wells 18-22A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs							Ν	/W-18						
Sample Collection Date:	CAS	Detection	GW	May-02-07	7 Mar-31-08	May-14-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	July-2-10	Sept-30-10	Dec-17-10	Mar-30-11	Jun-2-11	Oct-5-11	Dec-14-
Dilution:		Limit	aw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND
1,1,2,2-tetrachloroethane	79345 127184	5 5	-	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND
tetrachloroethene toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75010	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs		-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent VC				0	0	0	0	0	0	0	0	0	0	0	0	0	0
				0	0	0	0	0	0		/W-18	0	0	0	0	0	0
Chemistry (mg/L)		1	1						07			1 NA 1					
Chloride				NA	29.6	NA	25.6	19.1	8.7	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	<0.100	NA	0.79	0.64	0.98	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	<0.500	NA	0.5 L	0.0	U 0.5 U		NA	NA	NA	NA	NA	NA	NA
Sulfate	<u> </u>			NA NA	76.7 3.98	NA NA	74.8 6.6	73.9 4	64.8 5.8	NA	NA	NA NA	NA	NA	NA	NA	NA NA
Total Organic Carbon	<u> </u>	1	+	NA	<0.100	NA	0.92	4	0.78	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved	<u> </u>	1	+	NA	0.162	NA	274	163	164	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Manganese Dissolved	<u> </u>	1	+	NA	0.162	NA	199	163	164	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved Dissolved Oxygen (DO)	<u> </u>	1	+	NA	0.165 NA	NA	199 NA	7.4	169	NA	NA	NA	NA	NA	NA	NA	NA
pH	<u> </u>	1	+	NA	NA	NA	NA	7.14	7.59	NA	NA	NA	NA	NA	NA	NA	NA
рп Oxygen Reduction Potential	<u> </u>	1	+	NA	NA	NA	NA	-296.9	-90.1	NA	NA	NA	NA	NA	NA	NA	NA
oxygen neulolion Polential			1	INA	INA	INA	INA	-290.9	-90.1	INA	INA	INA	INA	INA	INA	NA	INA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

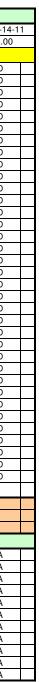


Table 5E (Wells 18-22A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs								MV	V-18A							
Sample Collection Date:	CAS	Detection	GW	Mar-31-08	May-14-08	Jul-30-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	July-23-10	Sept-30-10	Dec-17-10	Mar-30-11	Jun-2-11	Jun-2-11	Oct-5-11	Dec-14-11
Dilution:		Limit	u	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.50	1.00	1.00
Volatile Organic Compounds (ug/l)																			
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5 J	4.4	DJ ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	19	DJ 8.6	8.4
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND TO T	ND	ND	ND	ND	ND	ND	ND	ND	0.42 J	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	18	26	83	76) 56	33	57	67	140	170	190	26	88	92	D 86	56
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	1.6	DJ ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414 591786	5 10	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-hexanone	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	1.8	DJ ND	ND
methylene chloride 4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	30	15	200 E	-	0 140	44	8.8	54	83	100	190	60	350 E		D 200	100
vinyl chloride	75014	5	5	ND	11	ND	ND	11	6.2	44	34	21	13	21	ND	3.4 J	3.1	DJ 5.4	ND
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				48	52	283	256	207	83.2	109.8	155	244	283	401	86	471.22	421.9	300	164.4
Percent TCE				63%	29%	71%	70%	68%	53%	8%	35%	34%	35%	47%	70%	74%	71%	67%	61%
Percent DCE				38%	50%	29%	30%	27%	40%	52%	43%	57%	60%	47%	30%	19%	22%	29%	34%
Percent VC				0	21%	0	0	5%	7%	40%	22%	9%	5%	5%	0	1%	1%	2%	0
Chemistry (mg/L)											MV	V-18A							
Chloride				134	NA	NA	167	98.6	46.2	20.7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				<0.100	NA	NA	<0.100	0.7	0.49	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				<0.500	NA	NA	0.531	0.5	U 0.79	0.5 U		NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				98.2	NA	NA	63.3	128	95.5	119	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				3.11	NA	NA	3.08	4	5	6.9	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved			1	<0.100	NA	NA	<0.100	0.89	0.25	0.1 U		NA	NA	NA	NA	NA	NA	NA	NA
Manganese				0.066	NA	NA	< 0.0100	111	273	66	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				0.0486	NA	NA	<0.0100	74	235	63	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	4.27	NA	7.4	31	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	7.48	NA	7.14	7.59	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	-18	NA	-296.9	-90.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
· · · · · · · · · · · · · · · · · · ·			•																· · · · · · · · · · · · · · · · · · ·

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 5E (Wells 18-22A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs							Ν	IW-22						
Sample Collection Date:	CAS	Detection	GW	May-02-07	Nov-14-07	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	July-2-10	Dec-15-10	Mar-23-11	Jun-2-11	Oct-5-11	Dec-14-
Dilution:		Limit	GW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)							• •					• •					
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	17	ND	ND	ND	24	ND	ND	ND	ND	ND	5.2	32	9.2
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756 100414	5 5	- 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND
ethylbenzene 2-hexanone	591786	5 10	5	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	34	12	ND	ND	ND	96	ND	ND	ND	9.1	12	19	82	31
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				34	29	0	0	0	120	0	0	0	9.1	12	24.2	114	40.2
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	59%	0	0	0	20%	0	0	0	0	0	21%	28%	23%
Percent VC				100%	41%	0	0	0	80%	0	0	0	100%	100%	79%	72%	77%
Chemistry (mg/L)										N	IW-22						
Chloride				NA	NA	70.2	50.6	71.7	32.1	64.8	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	2.83	1.53	1.29	0.55	5.12	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	<0.500	<0.500	-	U 0.5 U	-	U NA	NA	NA	NA	NA	NA	NA
Sulfate			1	NA	NA	407	302	514	276	454	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	3.88	3.81	4.5	5	4.1	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved		1		NA	NA	2.62	1.08	2.47	0.48	4.18	NA	NA	NA	NA	NA	NA	NA
Manganese			1	NA	NA	0.368	0.125	328	208	231	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	0.351	0.0929	273	156	241	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	2.04	NA	26	25.2	NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	6.48	6.94	6.91	6.89	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	-112	-279	-273.8	-45.8	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

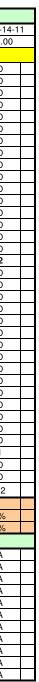


Table 5E (Wells 18-22A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs								MW-22A							
Sample Collection Date:	CAS	Detection	GW	May-3-07	Nov-22-07	May-14-08	Jul-30-08	Apr-15-09	9 Oct-6-09	Jan-14-10	Mar-23-10	July-2-10	Sept-30-10	Dec-15-10) Mar-23-11	Jun-8-11	Oct-5-11	Dec-14-11
Dilution:		Limit	aw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																·		
acetone	67641	20	-	ND	ND	160	110	46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND	2.4 J	ND	8.2
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345 127184	5	-	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
tetrachloroethene	127184	5 5	5	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND
toluene 1.1.1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79005	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	5	ND	ND	ND	ND	17	7.7	14	ND	8	22	6	7.4	12	28
	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
o-xylene m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	100000/100420	<u> </u>	<u> </u>	5	0	160	110	46	22.1	7.7	14	0	8	22	6	9.8	12	36.2
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	0	0	23%	0	0	0	0	0	0	24%	0	23%
Percent VC				100%	0	0	0	0	77%	100%	100%	0	100%	100%	100%	76%	100%	77%
Chemistry (mg/L)											MW-22A			<u> </u>				
Chloride				NA	NA	17.7	16.8	10.1	25.4	12.8	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	1.28	0.737		U 0.12	0.1 U		NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	<0.500	<0.500	0.5	U 0.5 U	0.5 U	NA NA	NA	NA	NA	NA	NA	NA	NA
Sulfate		1		NA	NA	77.7	79.3	15.2	74	27.8	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon		1		NA	NA	7.96	6.18	3.8	3.3	4.1	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved		1		NA	NA	0.126	<0.100	0.13	0.1 U	0.1 U		NA	NA	NA	NA	NA	NA	NA
Manganese		1		NA	NA	0.3	0.139	67	55	70	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved		1		NA	NA	0.163	0.131	64	52	66	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)		1		NA	NA	NA	2.46	NA	30.1	17.7	NA	NA	NA	NA	NA	NA	NA	NA
pH		1		NA	NA	NA	7.02	7.02	7.06	7.02	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	-283	-337	-294.8	-249.7	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 5F (Wells 23-29A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs		MW-23										MW-24								
Sample Collection Date:	CAS	Detection	GW	Apr-15-09	Oct-6-09	Dec-15-10	Mar-31-08	Mar-31-08	May-14-08	Jul-30-08	Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	Jul-6-10	Jul-6-10	Sept-30-10	Dec-17-10	Mar-30-1	1 Jun-8-11	Jun-8-11	Oct-10-11	Dec-15-11
Dilution:		Limit	an	1.00	1.00	1.00	10.00	50.00	25.00	25.00	1.00	1.00	1.00	25.00	20.00	1.00	20.00	10.00	5.00	5.00	10.00	5.00	10.00
Volatile Organic Compounds (ug/l)																							
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	650	750	470 D	500 E	ND	300	240	370	380	D 330	190
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120 D	140	120	170	160	160	160	D 160	180
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4 J	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	1100	3700	3700	2600 D	2600 E	2300	930	670	1000 E	920	D 800	310
carbon disulfide	75150	10	-	24	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17 J	17 [J 34	82
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	270	98	250	510	510	D 500	300
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	5.9 E	J 38	ND
dibromochloromethane	124481 75343	5	-	ND ND	ND ND	ND	ND 300	ND 220	ND D 240	ND 100	ND 350	ND 370	ND 470	ND	ND P	ND E	ND	ND 840	ND 270	ND 44	ND	ND DJ ND	ND 320
1,1-dichloroethane 1,2-dichloroethane	107062	5	-	ND ND	ND	ND ND	ND 300	330 ND	D 240 ND	190 ND	350 ND	370 ND	470 ND	680 ND	830 D ND	860 E	420 ND	840 ND	370 ND	44 4.2 J	34 C 4.5 C	DJ ND DJ ND	320 ND
1,1-dichloroethene	75354	5	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.2 J	4.5 L ND	ND ND	ND
cis-1.2-dichloroethene	156592	5	5	ND	ND	ND	4600 E	4800	D 3600	2900	3200	2600	200	850	ND	85	ND	67	100	4.6 J	6.4 [DJ ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	72	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200	170	130	130	D 320	890
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4 J	7.4 [)J ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184 108883	5	- 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND 670	ND	ND 610	ND D 860	ND 1900
toluene 1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	900 ND	ND	600 ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	620	640	D 490	380	370	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND
vinyl chloride	75014	5	5	ND	ND	ND	2200 E	2300	D 2000	1300	1800	2600	1500	2300	1200 D	1200 E	150	1100	140	24 J	22 [DJ ND	ND
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	40	29	33 [)J 79	310
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	470	330	370	D 770	2800
TOTAL VOCs				24	14	0	7792	8070	6330	4770	5720	6670	6520	8280	5220	5412	3260	4975	3280	3274.1	3210.2	3891	7282
Percent TCE				0	0	0	8%	8%	8%	8%	6%	0	0	0	0	0	0	0	0	0%	0	0	0
Percent DCE				0	0	0	59%	59%	57%	61%	56%	39%	3%	10%	0	2%	0	1%	3%	0%	0%	0	0
Percent VC				0	0	0	28%	29%	32%	27%	31%	39%	23%	28%	23%	22%	5%	22%	4%	1%	1%	0	0
Chemistry (mg/L)					MW-23										MW-24								
Chloride				NA	NA	NA	90.1	NA	NA	380	194	191	200	239	237	237	286	267	230	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	0.164	NA	NA	1.4	0.1	0.38	1 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	<0.500	NA	NA	<0.500	0.5	U 0.5	U 0.5 U	0.51	0.5 U	0.5 L	I 0.5 U	1 U	1	U NA	NA	NA	NA
Sulfate		+		NA	NA	NA	46.7	NA	NA	69.1	37.3	12.8	5.7	8.6	5.8	5.8	2 U	2 U	26	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	6.4	NA	NA	5.46	7	249	1370	1670	1430	1430	1590	881	570	NA	NA	NA	NA
Ferrous Iron Dissolved				NA NA	NA NA	NA	<0.100	NA	NA	1.22	0.18	0.25 81	12.9	15400	6000	6000	32000 NA	21200	11900	NA	NA NA	NA	NA
Manganese Manganese Dissolved				NA NA	NA	NA NA	0.175 0.16	NA NA	NA	0.0814 0.0723	45 40	78	213 159	NA 289	NA 167	NA 167	NA 134	NA 117	NA 239	NA	NA	NA	NA
Manganese Dissolved Dissolved Oxygen (DO)		+		NA NA	NA	NA	0.16 NA	NA	NA	4.58	40 NA	78	48	289 NA	41.3	41.3	134 NA	52.4	239	22.7	NA 22.7	NA	NA
pH		1		NA	NA	NA	NA	NA	NA	4.58 6.79	NA	6.85	6.59	NA	6.48	6.48	NA	6.37	5.4 6.75	6.8	6.8	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	-62	NA	-249.8	-8.2	NA	-10.8	-10.8	NA	-12.4	98.6	-19.2	-19.2	NA	NA
oxygen neddellon i olendal	1		l	11/1	19/3	11/1	19/3	11/1	11/3	02	11/3	270.0	0.2	19/3	10.0	10.0	19/3	16.7	50.0	10.4	10.2	11/1	19/3

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 5F (Wells 23-29A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method											MW-24A								
Sample Collection Date:	CAS	Detection	RAOs	Mar-31-08	B May-14-	-08	May-14-08	B Jul-30-0	8 Jul-30-0	8 Apr-15-09	Oct-6-09	Jan-14-10	Mar-23-10	Jul-6-10	Sept-30-10	Sept-30-10	Dec-17-10	Mar-30-11	Jun-8-11	Oct-10-11	Dec-15-11
Dilution:		Limit	GW	2.00	2.00		20.00	2.00	20.00		1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)					•			•	•	•	•	•	·	·		•				·	
acetone	67641	20	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	31	38	45	D 21	ND	1.8	J 44	ND
benzene	71432	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42	J ND	ND
2-butanone (MEK)	78933	10	-	ND	ND		ND	ND	ND	ND	ND	ND	27	130	200	E 220	D 93	44	1.9	J 170	ND
carbon disulfide	75150	10	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND		ND	ND	ND	ND	280	ND	11	8.1	27	24	D 12	11	4.3	J 21	5.3
chloroform	67663	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	26	61		ND	72	73	D 84	130	67	60	69	39	35	D 27	37	29	31	39
1,2-dichloroethane	107062	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	13		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	380	1800	E	1700	D 750	E 760	D 540	ND	140	77	36	23	21	D 16	14	18	5.2	19
trans-1,2-dichloroethene	156605	5	5	ND	19		ND	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	J ND	ND
1,2-dichloropropane	78875	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND		ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	J ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	23	110		110	D 48	49	D 26	ND	ND	ND	ND	ND	ND	ND	ND	1.8	J ND	ND
vinyl chloride	75014	5	5	94	590	Е	560	D 390	400	D 320	ND	190	110	64	27	24	D 40	14	12	26	38
o-xylene	95476	5	5	ND	ND		ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND		ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				523	2593		2370	1272	1282	970	476	397	285	338.1	354	369	209	120	71.02	297.2	101.3
Percent TCE				4%	4%		5%	4%	4%	3%	0	0	0	0	0	0	0	0	3%	0	0
Percent DCE				73%	69%		72%	59%	59%	56%	0	35%	27%	11%	6%	6%	8%	12%	25%	2%	19%
Percent VC				18%	23%		24%	31%	31%	33%	0	48%	39%	19%	8%	7%	19%	12%	17%	9%	38%
Chemistry (mg/L)													MW-24A								
Chloride				95.8	NA		NA	NA	218	231	186	183	256	288	222	222	228	220	NA	NA	NA
Ferrous Iron				0.155	NA		NA	NA	<0.100	2.63	2.67	4.97	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				<0.500	NA		NA	NA	< 0.500	0.5 U	0.5 L	J 0.5 U	0.55	0.5 U		J 0.5	U 1 U	1	U NA	NA	NA
Sulfate				94.5	NA		NA	NA	78.5	26.2	51.7	28.5	24.5	2.0 U	J 7.2	7.2	16.2	19.1	NA	NA	NA
Total Organic Carbon				2.21	NA		NA	NA	3.73	5.9	19.6	10	19.1	73.2	120	120	95	18.8	NA	NA	NA
Ferrous Iron Dissolved				<0.100	NA		NA	NA	<0.100	2.85	1.78	3.6	3380	16500	2060	2060	12500	10900	NA	NA	NA
Manganese				0.116	NA		NA	NA	0.142	186	254	129	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				0.148	NA		NA	NA	0.133	176	247	254	160	171	132	132	191	174	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA		NA	NA	7.08	NA	15.7	20.1	NA	19.9	NA	NA	29.3	95.2	9.5	NA	NA
pH				NA	NA		NA	NA	7.3	NA	7.2	7.45	NA	7.1	NA	NA	7.05	7.24	6.81	NA	NA
Oxygen Reduction Potential				NA	NA		NA	NA	-3	NA	-304.5	-119.8	NA	-72.3	NA	NA	-64.3	4.8	-49.2	NA	NA
				1 11/1	11/1		11/1			11/5	001.0	110.0	11/1	12.0	11/1	11/1	07.0	1.0	ŦŲ.L	17/1	1973

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	RAOs						MW-25				
Sample Collection Date:	CAS	Detection	GW	Sept-9-09	Jan-27	-10 Mar-24-	10 July-2-	-10 Sept-30-	10 Dec-15-1	10 Mar-29-1	1 Jun-8-11	Oct-11-11	Dec-15-11
Dilution:		Limit	aw	1.00	1.	00 1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)													
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	ND	ND	ND	ND	ND	ND	ND	7.3	ND	ND
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				0	0	0	0	0	0	0	7.3	0	0
Percent TCE				0	0	0	0	0	0	0	0	0	0
Percent DCE				0	0	0	0	0	0	0	0	0	0
Percent VC				0	0	0	0	0	0	0	100%	0	0
Chemistry (mg/L)									MW-25				
Chloride				49.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				0.88	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				91.9	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				17.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				100	U NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				110	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН				7.15	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	DAGe								MV	V-25A					
Sample Collection Date:	CAS	Detection	RAOs GW	Sept-9-09	Sept-9-09		Jan-27-10	Mar-24-10	July-2	2-10	Sept-30-10	Dec-15-10	Mar-29-11	Jun-8-11	Oct-11-11	Oct-11-11	Dec-15-11
Dilution:		Limit	GW	1.00	1.00 Dup		1.00	1.00	1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)												·					
acetone	67641	20	-	ND	ND		ND	ND	ND		ND	ND	ND	2.7	J ND	ND	ND
benzene	71432	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	14	14		6.1	ND	ND		ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND		6.4	ND	ND		ND	ND	ND	6.9	7	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND		ND	ND	ND		ND	ND	ND	0.42	J ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	8.7	8.7		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	9.1	9.9		23	15	14		7.9	5.6	9.1	18	24	ND	ND
o-xylene	95476	5	5	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	8.3	8.1		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				40.1	40.7		35.5	15	14		7.9	5.6	9.1	28.02	31	0	0
Percent TCE				0	0		0	0	0		0	0	0	0	0	0	0
Percent DCE				0	0		18%	0	0		0	0	0	25%	23%	0	0
Percent VC				23%	24%		65%	100%	100%	b	100%	100%	100%	64%	77%	0	0
Chemistry (mg/L)											MV	V-25A					
Chloride				50.3	59.9		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				0.91	0.91		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Sulfate				43	43.8		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				4.2	3.5		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				100 U	100	U	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Manganese				NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				10 U	10	U	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
pH				7.69	8.34		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method	D 40-						MW-26					
Sample Collection Date:	CAS	Detection	RAOs GW	Sept-9-09	Jan-27-10	Mar-24-10	July-2-10	Sept-30-10	Dec-15-10	Mar-29-11	Apr-22-11	Jun-8-11	Oct-11-11	Dec-15-11
Dilution:		Limit	aw	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)						•		•	•	•		•		
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND	ND	2.1 J	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	0.34 J	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	46	5.2	12	ND	ND	ND	55	41	26	ND	20
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	0.5 J	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	28	ND	8	ND	ND	ND	100	37	37	ND	17
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				74	5.2	20	0	0	0	155	78	65.94	0	37
Percent TCE				0	0	0	0	0	0	0	0	0	0	0
Percent DCE				62%	100%	60%	0	0	0	35%	53%	39%	0	54%
Percent VC				38%	0	40%	0	0	0	65%	47%	56%	0	46%
Chemistry (mg/L)									MW-26					
Chloride				550	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				0.5 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				99.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				14.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				100 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				217	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH				7.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

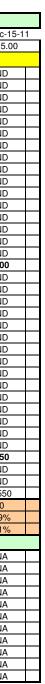
Table 5F (Wells 23-29A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs											M	W-26A									
Sample Collection Date:	CAS	Detection	GW	Sept-9-09	9 Sept-9-09	9	Jan-27-10	Ma	r-24-10	July-2	2-10	July-2-1	0	Sept-30-10	Dec-15-10	Mar-29-11	Mar-29-1	1	Jun-8-11		Oct-11-11	1	Oct-11-1	1 Dec-15
Dilution:		Limit		1.00	10.00		10.00		5.00	1.0	0	5.00		2.50	5.00	1.00	10.00		5.00		1.00		2.00	5.00
Volatile Organic Compounds (ug/l)																								
acetone	67641	20	-	ND	ND		ND	1	00	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
benzene	71432	5	-	ND	ND		ND	١	1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
bromodichloromethane	75274	5	-	ND	ND		ND	١	1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
bromoform	75252	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
bromomethane	74839	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
2-butanone (MEK)	78933	10	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
carbon disulfide	75150	10	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
carbon tetrachloride	56235	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
chlorobenzene	108907	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
chloroethane	75003	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
chloroform	67663	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
chloromethane	74873	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
dibromochloromethane	124481	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,1-dichloroethane	75343	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,2-dichloroethane	107062	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,1-dichloroethene	75354	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
cis-1,2-dichloroethene	156592	5	5	750	E 740	D	490		40	710	E	680	D	410	560	490 E	490	D	520		160		140	D 600
trans-1,2-dichloroethene	156605	5	5	16	ND		ND		1D	7.1		ND		ND	ND	5.2	ND		7.3	J	ND		ND	ND
1,2-dichloropropane	78875	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
ethylbenzene	100414	5	5	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
2-hexanone	591786	10	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
methylene chloride	75092	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
styrene	100425	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND		ND		1D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
tetrachloroethene	127184	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
toluene	108883	5	5	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
trichloroethene	79016	5	5	ND	ND		ND		١D	ND		ND		ND	ND	ND	ND		ND		ND		ND	ND
vinyl chloride	75014	5	5	560	E 560	D	270		50	590	E	590	D	480	630	820 E	790	D	710		340	Е	290	D 950
o-xylene	95476	5	5	ND	ND	\square	ND		1D	ND		ND	_	ND	ND	ND	ND	Ш	ND		ND	\square	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	\square	ND		1D	ND		ND	_	ND	ND	ND	ND	Ш	ND		ND	\square	ND	ND
TOTAL VOCs				1326	1300		760		90	1307.	1	1270		890	1190	1315.2	1280		1237.3		500		430	1550
Percent TCE				0	0		0		0	0		0		0	0	0	0		0		0		0	0
Percent DCE				57%	57%		64%		5%	54%		54%		46%	47%	37%	38%		42%		32%		33%	39%
Percent VC				42%	43%		36%	3	5%	45%		46%		54%	53%	62%	62%		57%		68%		67%	61%
Chemistry (mg/L)															W-26A									
Chloride				46.1	NA		NA	1	JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Ferrous Iron				NA	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Nitrate Nitrogen				0.5	U NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Sulfate				73.3	NA		NA	1	JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Total Organic Carbon				4.9	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Ferrous Iron Dissolved				130	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Manganese				NA	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Manganese Dissolved				10	U NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Dissolved Oxygen (DO)				NA	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
рН				8.49	NA		NA		JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA
Oxygen Reduction Potential				NA	NA		NA	1	JA	NA		NA		NA	NA	NA	NA		NA		NA		NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number


Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method					MW-27			
Sample Collection Date:	CAS	Detection	RAOs GW	July-2-10	Sept-30-10	Dec-15-10	Mar-29-11	Jun-8-11	Oct-11-11	Dec-15-11
Dilution:		Limit	GW	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)			1						1	
acetone	67641	20	-	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND	ND	ND	0.98 J	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	ND	ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	ND	ND	ND	ND	1.7 J	ND	ND
o-xylene	95476	5	5	ND	ND	ND	ND	ND	ND	ND
m+p xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs				0	0	0	0	2.68	0	0
Percent TCE				0	0	0	0	0	0	0
Percent DCE				0	0	0	0	37%	0	0
Percent VC				0	0	0	0	63%	0	0
Chemistry (mg/L)							MW-27			
Chloride				NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA
Manganese				NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved				NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	NA	NA	NA	NA	NA	NA
pH				NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range D = Sample reanalyzed and quantified at higher dilution

Table 5F (Wells 23-29A) Quarterly Groundwater Data Leica Microsystems, Eggert Road Cheektowaga, NY

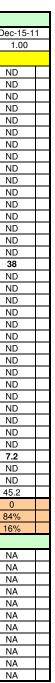
ANALYTE		Method	RAOs				MW-27	4						MW-28			
Sample Collection Date:	CAS	Detection	GW	July-2-10	Sept-30-1	0 Dec-15-10	Mar-29-1	1 Jun-8-1	1 Oct-11	-11 Dec-15-11	July-2-10	Sept-30-1	0 Dec-15-1	0 Mar-29-11	l Jun-8-11	Oct-11-1	1 Dec-15
Dilution:		Limit	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)																	
acetone	67641	20	-	ND	ND	ND	ND	5.1	J ND	ND	ND	ND	ND	ND	ND	ND	ND
benzene	71432	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	75274	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	ND	ND	ND	1.1	J ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon disulfide	75150	10	-	ND	ND	ND	ND	0.94	J ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	67663	5	-	7.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.37	J ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	ND	ND	ND	ND	ND	ND	27	39	28	28	27	49	38
trans-1,2-dichloroethene	156605	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	J ND	ND
1,2-dichloropropane	78875	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	591786	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
styrene	100425	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	108883	5	5	ND	ND	ND	ND	0.38	J ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005 79016	5	-	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
trichloroethene	79016	5	5 5	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND		J 7.7	ND 7.0
vinyl chloride	95476	5 5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 ND	J 7.7 ND	7.2 ND
o-xylene	108383/106423	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m+p xylene TOTAL VOCs	100303/100423	5	5	7.7	0	0	0	7.52	0	0	27	39	28	28	30.67	56.7	45.2
Percent TCE				0	0	0	0	0	0	0	0	0	0	0	0	0	45.2
Percent DCE				0	0	0	0	0	0	0	100%	100%	100%	100%	88%	86%	84%
Percent VC				0	0	0	0	0	0	0	0	0	0	0	6%	14%	16%
		I		0	0	U	MW-27#	Ũ			0	0	0	MW-28	0 /8	1470	1078
Chemistry (mg/L)			1						1 1 1.4				N				
Chloride				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Manganese Disastast				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese Dissolved			-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Oxygen (DO)			-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH Common Destantion Determined				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment


System Effluent)

ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

ANALYTE		Method						MW-28A									MW-29A			
Sample Collection Date:	CAS	Detection	RAOs GW	July-2-10	Sep	-30-10	Dec-15-10	Mar-29-11	Jun-8-11	1	Oct-11-11	Dec-15-11	July-2-10) Sept-3	0-10	Dec-15-10	Mar-29-11	Jun-8-11	Oct-11-	11 Dec-15-
Dilution:		Limit	GW	1.00		.00	1.00	1.00	1.00		1.00	1.00	1.00	1.0		1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (ug/l)												1		-						
acetone	67641	20	-	ND	N)	ND	ND	2.2	J	ND	ND	ND	ND		ND	ND	7.6	J ND	ND
benzene	71432	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	0.63	J ND	ND
bromodichloromethane	75274	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
bromoform	75252	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
bromomethane	74839	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
2-butanone (MEK)	78933	10	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	2.3	J ND	ND
carbon disulfide	75150	10	-	ND	N)	ND	ND	0.36	J	ND	ND	ND	ND		ND	ND	ND	ND	ND
carbon tetrachloride	56235	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
chlorobenzene	108907	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
chloroethane	75003	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
chloroform	67663	5	-	7.6	N)	ND	ND	ND		ND	ND	9.4	ND		ND	ND	ND	ND	ND
chloromethane	74873	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
dibromochloromethane	124481	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1-dichloroethane	75343	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,2-dichloroethane	107062	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1-dichloroethene	75354	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
cis-1,2-dichloroethene	156592	5	5	ND	11		8.9	ND	3.2	J	5.3	ND	ND	ND		ND	ND	ND	ND	ND
trans-1,2-dichloroethene	156605	5	5	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,2-dichloropropane	78875	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
cis-1,3-dichloropropene	542756	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
trans-1,3-dichloropropene	542756	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
ethylbenzene	100414	5	5	ND	N)	ND	ND	ND		ND	ND	10	12		6	ND	2.7	J ND	ND
2-hexanone	591786	10	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
methylene chloride	75092	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
4-methyl-2-pentanone (MIBK)	108101	10	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
styrene	100425	5	-	ND	N)	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	79345	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
tetrachloroethene	127184	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
toluene	108883	5	5	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1,1-trichloroethane	71556	5	5	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1,2-trichloroethane	79005	5	-	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
trichloroethene	79016	5	5	ND	N		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
vinyl chloride	75014	5	5	ND	14		13	6.9	5.6		7.9	7.9	ND	ND		ND	ND	ND	ND	ND
o-xylene	95476	5	5	ND	N		ND	ND	ND	+ $+$	ND	ND	19	23		13	7.6	5.6	8.6	5.6
	108383/106423	5	5	ND	N		ND	ND	ND	\parallel	ND	ND	16	16	\square	7.8	ND	2.7	J 5.3	ND
TOTAL VOCs			 '	7.6	25		21.9	6.9	11.36		13.2	7.9	54.4	51		26.8	7.6	21.53	13.9	5.6
Percent TCE				0	0		0	0	0		0	0	0	0		0	0	0	0	0
Percent DCE				0	44		41%	0	28%		40%	0	0	0		0	0	0	0	0
Percent VC				0	56	%	59%	100%	49%		60%	100%	0	0		0	0	0	0	0
Chemistry (mg/L)								MW-28A									MW-29A			
Chloride				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Ferrous Iron				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Nitrate Nitrogen				NA	N	4	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Sulfate				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Total Organic Carbon				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Ferrous Iron Dissolved				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Manganese				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Manganese Dissolved				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Dissolved Oxygen (DO)				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
рН				NA	N		NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA
Oxygen Reduction Potential				NA	N		NA	NA	NA		NA	NA	NA	NA	1 T	NA	NA	NA	NA	NA

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent) ND = Not Detected

NA = Not Analyzed

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Table 6 Groundwater Grab Sample Data (June 2011) Leica Microsystems, Eggert Road Cheektowaga, NY

ANALYTE		Method	RAOs	INT-1			IN	Г-2			INT	ſ - 3		INT-4		INT-5		EXT-1	
Sample Collection Date:	CAS	Detection	GW	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1	Jun-8-1	1
Dilution:		Limit	un	1.00		250.00		500.00		1.00		2.00		1.00		1.00		1.00	
Volatile Organic Compounds (ug/l)			-					-											
acetone	67641	20	-	3	J	ND		ND		2.5	J	5	DJ	ND		15	J	4.1	J
benzene	71432	5.0	-	ND		ND		ND		0.34	J	ND		ND		ND		ND	
bromodichloromethane	75274	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
bromoform	75252	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
bromomethane	74839	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
2-butanone (MEK)	78933	10	-	ND		ND		ND		ND		ND		ND		2.8	J	ND	
carbon disulfide	75150	10	-	ND		ND		ND		ND		ND		ND		ND		ND	
carbon tetrachloride	56235	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
chlorobenzene	108907	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
chloroethane	75003	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
chloroform	67663	5.0	-	ND		ND		ND		0.34	J	ND		ND		ND		ND	
chloromethane	74873	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
dibromochloromethane	124481	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
1,1-dichloroethane	75343	5.0	-	ND		ND		ND		1.3	J	1.1	DJ	ND		0.72	J	ND	
1,2-dichloroethane	107062	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
1,1-dichloroethene	75354	5.0	-	ND		ND		ND		2	J	1.6	DJ	5.7	J	ND		ND	
cis-1,2-dichloroethene	156592	5.0	5	ND		8200		9100	D	140		120	D	1300		0.84	J	0.43	J
trans-1,2-dichloroethene	156605	5.0	5	ND		520	J	600	DJ	3.6	J	3	DJ	73		ND		ND	
1,2-dichloropropane	78875	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
cis-1,3-dichloropropene	542756	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
trans-1,3-dichloropropene	542756	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
ethylbenzene	100414	5.0	5	ND		ND		ND		ND		ND		ND		ND		ND	
2-hexanone	591786	10	-	ND		ND		ND		ND		ND		ND		ND		ND	
methylene chloride	75092	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
4-methyl-2-pentanone (MIBK)	108101	10	-	ND		ND		ND		ND		ND		ND		ND		ND	
styrene	100425	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
1,1,2,2-tetrachloroethane	79345	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
tetrachloroethene	127184	5.0	-	ND		160	J	ND		ND		ND		ND		ND		ND	
toluene	108883	5.0	5	ND		ND		ND		0.56	J	ND		ND		ND		0.56	J
1,1,1-trichloroethane	71556	5.0	5	ND		ND		ND		0.68	J	0.68	DJ	ND		ND		ND	
1,1,2-trichloroethane	79005	5.0	-	ND		ND		ND		ND		ND		ND		ND		ND	
trichloroethene	79016	5.0	5	ND		75000	Е	82000	D	230	Е	200	D	830		0.36	J	0.35	
vinyl chloride	75014	5.0	5	ND		ND		ND		1.7	J	1.4	DJ	140		2.4	J	ND	
o-xylene	95476	5.0	5	ND		ND	1	ND	1	ND		ND		ND		ND		ND	
m+p xylene	108383/106423	5.0	5	ND	1	ND	1	ND	1	ND	1	ND		ND		ND		ND	
TOTAL VOCs				3		83880		91700		383.02		332.78		2348.7		22.12		5.44	
Percent TCE				0		89%		89%		60%		60%		35%		2%		6%	
Percent DCE				0		10%		10%		37%		36%		55%		4%		8%	
Percent VC				0		0		0		0%		0%		6%		11%		0	

NOTES:

RAOs GW = Remedial Action Objectives for Groundwater

CAS = Chemical Abstract Service registry number

Bold = Exceeds RAOs for groundwater (Not applicable to Treatment

System Effluent)

ND = Not Detected

E = Exceeds Calibration Range

D = Sample reanalyzed and quantified at higher dilution

Well MW-11 was removed during excavation and is no longer sampled.

Well MW-15A was filled with gravel and is no longer sampled.

Table 7 Summary of 8 hr Indoor Air and Sub-Slab Samples Leica Microsystems, Eggert Road Cheektowaga, NY

Sample location						SS-8H	R-001		AA-8HR-001		SS-8HR-002	2	SS-8HR-002 DUP		AA-8HR-002		SS-8HR-003			AA-8HF	3-003		SS-8HR-004	1	AA-8HR-004	
Lab ID:	Matrix 1	Matrix 1	Matrix 2	Matrix 2 Sub Slab	R1105237-00)4	R1105237-00)4	R1105237-005	5	R1105237-00	01	R1105237-002		R1105237-003	+	R1105237-006	B	1105237-00	7	R1105237-00	7	R1105237-00)8	R1105237-009	-
Sample Collection Date:		Sub Slab Vapor	Indoor Air	Vapor	9/19/2011		9/19/2011		9/19/2011		9/20/2011		9/20/2011		9/20/2011		9/21/2011		9/21/2011		9/21/2011		9/22/2011		9/22/2011	
Analytical Dilution Factor:	All	vapor	All	vapor	1.36		1.36		2.57		1.71		1.69		1.7		1.71		1.58		1.58		1.55		1.52	
Volatile Organic Compounds (ug/m3)																										
CHLOROMETHANE					1.2	U	2	U	1	J	5100	U	5100	U	0.95	J	91 L	u	0.93		1	DJ	2.5	J	0.87	
VINYL CHLORIDE	0.25	5			0.16	U	0.27	Ŭ	0.15	U	680	U	680	U.	0.15 U	Ú.	12 L	U I	0.095	U	0.16	U	11	Ŭ	0.091	U
BROMOMETHANE					1.2	Ū	1.9	Ū	1.1	U	4900	U	4800	Ū	1 1	Ū	87 L	U	0.68	U	1.1	Ū	78	Ŭ		Ū
CHLOROETHANE					1.6	Ū	2.6	Ū	1.5	Ū	6600	Ū		Ū	1.4 U	Ū	120 L	-	0.92	Ŭ	1.5	Ū	110	Ū		Ĵ
ACETONE					47		41	D	26		2800	J	2900	J	32		220	J	45	E	64	D	190	J	20	_
TRICHLOROFLUOROMETHANE (CFC 11)					1.6	J	1.1	DJ	1.9		7100	U	7000	Ü	2.1		120 L	U	1.7		1.9	D	110	U	1.7	_
1,1-DICHLOROETHENE (1,1-DCE)					1.2	U	2	U	1.1	U	5000	U	5000	U	1.1 l	U	89 L	U	0.7	U	1.2	U	80	U	0.67	U
DICHLOROMETHANE (METHYLENE CHLORIDE)					1	U	1.7	U	0.63	J	260	J	2600	J	1		76 L	U	0.64		0.73	DJ	61	J	1.1	
1,1,2-TRICHLOROTRIFLUOROETHANE (CFC 113)					0.95		0.87	D	0.61		1900	U	1900	U	0.63		13 .	J	16		16	D	44		7.3	_
CARBON DISULFIDE					4.7		4.4	D	0.12	J	3900	U	3800	U	0.31	J	14 ,	J	0.15	BJ	0.18	DJ	23	J	0.93	_
TRANS-1,2-DICHLOROETHENE					0.27	J	0.25	DJ	0.078	J	20000		18000		0.14	J	77	J	0.041	J	0.04	DJ	12	J	0.056	J
1,1-DICHLOROETHANE (1,1-DCA)			3	100	11		9.9	D	0.17	Л	5100	U	5100	U	0.11	J	91 L	U I	0.079	J	0.068	DJ	82	Ŭ	0.09	Ĵ
METHYL TERT-BUTYL ETHER					2.1	U	3.6	1U	2	U	9000	Ŭ		U	1.9 U	ú	160 L	-	1.2	Ŭ	2.1	U	140	U.		Ŭ
VINYL ACETATE					14	Ŭ	23	Ŭ	0.084	.1	57000	U U		ŭ	0.24	J	1000 L		0.16	J	13	U	910	Ŭ		J
2-BUTANONE (MEK)					7.2	-	6.5	D	6.2	Ŭ	290	J	310	.i	13	- -	32 .	J	7.6	Ŭ	9.8	D	29	.1	6.9	-
CIS-1.2-DICHLOROETHENE			3	100	2.1		2	D	0.25	J	11000	-	9800	Ů	0.45	1	100	-	0.34		0.34	DJ	8.6	- U	0.29	1
CHLOROFORM					4.7		4.1	D	0.14	1	7300		6900	-	0.26	1	7.4	1	0.3	.1	0.32	DJ	5.3	1	0.20	J
1.2-DICHLOROETHANE					1.2	U	2	11	1.2	11	5100	11			1.1 U	J 11	91 U		0.71	Ŭ	1.2	U	82	11		J
1.1.1-TRICHLOROETHANE (TCA)			3	100	19	0	15	D	0.34	1	6800	11	0.00	U I	0.38	1	560	-	0.42		0.48	DJ	41	1		J
BENZENE					4.7		4.2	D	4.3	J	4000	0	0000	11	4.4	5	100		3.6	3	3.8	D	13		3	-
					4.7	_		D	0.52		800	11			0.58	-	100 14 L		0.51		0.57	D	-	J	0.51	—
CARBON TETRACHLORIDE	0.25	5					0.41	U										-					13	U		
1,2-DICHLOROPROPANE					1.4	U	2.3	U	1.3	U	5800	0	0100	<u> </u>	1.2	0	100 L	0	0.81	U	1.3	U	93	U		U
BROMODICHLOROMETHANE					3.2		2.7	D	0.39	U	1700	U	1100	U	0.00	U	30 L	U	0.082	J	0.4	U	27	U	0.20	U
TRICHLOROETHENE (TCE)	0.25	5			56		47	D	7.1		420000		400000		19		11000		8.2		8.7	D	5000		9.2	
CIS-1,3-DICHLOROPROPENE					2.7	U	4.5	U	2.6	U	11000	U		U	2.4 l	U	200 L	0	1.6	U	2.6	U	180	U		U
4-METHYL-2-PENTANONE					0.81	J	0.57	DJ	0.53	J	10000	U		U	0.92	J	180 L	-	0.52	J	0.54	DJ	160	U	1.9	
TRANS-1,3-DICHLOROPROPENE					1.4	U	2.3	U	1.3	U	5700	U		U	=	U	100 L	-	0.79	U	1.3	U	91	U		U
1,1,2-TRICHLOROETHANE					1.6	U	2.7	U	1.5	U	6800	U	0000	U	1.5 l	U	120 L	J	0.95	U	1.6	U	110	U		U
TOLUENE					120	E	99	D	27		430	J	400	J	42		330		25		27	D	58	J	60	
2-HEXANONE					1.2	U	2	U	0.42	J	5100	U	0100	U	0.29	J	91 L		0.34	J	0.38	DJ	82	U		BJ
DIBROMOCHLOROMETHANE 1.2-DIBROMOETHANE					0.57	U	0.41	DJ	0.49	U	2200 1900	U	2100	U	0.40	U	38 L 34 L		0.3	U	0.5	U	35 31	U		U
TETRACHLOROETHANE			3	100	0.46 4.8	U	3.6	D	0.21	J	910	U			0.41	U	5.7		0.27	U	0.45	D	13	1	0.26	U
CHLOROBENZENE					0.094	J	2.3		1.3	U	5800	11		U	1.2 U		100 L	-	0.81	U	1.3	U	93	J		U
ETHYLBENZENE					2.5	J	2.2		8	0	11000	U		U	13	0	59	1	9.9	0	9.8	D	8.6	1	11	0
M.P.XYLENES					8.4	0	7.4	DI	19		22000	1		U	26	-	250	1	21		20	D	32	1	19	-
BROMOFORM					3.1	U	5.2	11	2.9	11	13000	11		U	2.8 1		230 1		1.8	11	3	U	210	11	-	U
STYRENE					2.6	U	4.3	U U	6.7	0	11000	Ŭ		11	19	~	190 L	Ŭ	11	0	10	D	9.2	1	14	-
O-XYLENE					3.5		4.5	D,I	7.7		11000	Ŭ		U	10	+	92	J	8.8		8.7	D	11	J	7.7	-
1,1,2,2-TETRACHLOROETHANE					0.41	U	0.68	0	0.39	U	1700	1 U		U	0.36 1	υ	30 L	-	0.24	U	0.4	U	27	Ŭ		U
1,3-DICHLOROBENZENE	1	1			3.6	U	6	Ŭ	3.4	U	15000	U	15000	Ũ	3.2 1	ũ	270 U		2.1	U	3.5	U	240	Ŭ		U
1.4-DICHLOROBENZENE					0.1	J	0.086	D,I	0.11	1	15000	U U		U	0.15	J	270 1	•	0.14	1	0.13	DJ	240	U U	-	J
1.2-DICHLOROBENZENE	1	1			3.6	Ŭ	6	U	3.4	U	15000	U U		Ŭ	3.2 1	ŭ	270 1	0	2.1	Ŭ	3.5	U	240	Ŭ		Ŭ
TOTAL VOCs					303.724	-	255.696		119.112	1.2	462080	10	440910	-	187.34	-	12860.1		162.672	1.2	158.928	1.5	5561.2		167.502	-
TOTAL VOUS	1	1	1	1	303.724		200.090		113.112		402000		440310		107.04		12000.1		102.072		130.320		3301.2		107.302	

NOTES:

Bold = Exceeds Laboratory MRL Red = Exceeds one or more NYDOH Matricies

B = Analyte detected in method blank D = Sample reanalyzed and quantified at higher dilution E = Exceeds calibration range

J = Estimated concentration

Sample location					SS-30min-001	SS-30min-002	SS-30min-003	SS-30min-004	SS-30min-005	SS-30min-006	SS-30min-007	SS-30min-008	SS-30min-009	SS-30min-010	SS-30min-011	SS-30min-012
	Matrix 1	Matrix 1	Matrix 2	Matrix 2												
Lab ID:	Indoor	Sub Slab	Indoor	Sub Slab	R1105236-011	R1105236-012	R1105236-013	R1105236-014	R1105236-015	R1105236-016	R1105236-017	R1105236-018	R1105236-001	R1105236-002	R1105236-003	R1105236-004
Sample Collection Date:	Air*	Vapor*	Air*	Vapor*	9/19/2011	9/19/2011 2.59	9/19/2011 1.53	9/19/2011 1.61	9/19/2011 1.49	9/19/2011 1.55	9/19/2011 1.74	9/19/2011	9/20/2011 1.58	9/20/2011	9/20/2011	9/20/2011
Analytical Dilution Factor:					1.58	2.59	1.53	1.01	1.49	1.00	1./4	1.57	1.08	1.5	1.61	1.65
Volatile Organic Compounds (mcg/m3)																
CHLOROMETHANE					12 U	2.6 U	10 U	4.5 L	J 6.7 U	, 0		38 U	920 U	110 U	3.6 U	5.7 U
VINYL CHLORIDE	0.25	5			1.6 U	0.35 U	1.4 U	0.6 L				5.1 U		15 U	0.48 U	0.76 U
BROMOMETHANE					11 U	2.5 U	9.7 U	4.3 L			10 0	36 U		110 U	3.5 U	5.5 U
CHLOROETHANE					15 U	3.3 U	13 U	5.8 L	0.0 0			49 U		140 U	4.7 U	7.4 U
ACETONE					130 U	61	110 U	50 L	J 75 U		100 0	420 U	10000 U	1200 U	45	63 U
TRICHLOROFLUOROMETHANE (CFC 11)					16 U	3.6 U	14 U	6.2 L	J 9.2 U		10 0	53 U		150 U	5 U	7.9 U
1,1-DICHLOROETHENE (1,1-DCE)					12 U	2.5 U	9.9 U	4.4 L	0.0 0	0.0	10 0	37 U		110 U	3.5 U	5.6 U
DICHLOROMETHANE (METHYLENE CHLORIDE)					10 U	2.2 U	8.6 U	3.8 L	J 5.7 U	0.0 0		32 U		93 U	3.1 U	4.8 U
1,1,2-TRICHLOROTRIFLUOROETHANE (CFC 113)					4.5 U	0.98 U	3.8 U	5.3	24	2.6 U	÷ •	14 U		42 U	1.4 U	2.2 U
CARBON DISULFIDE					120	180	13	26	5.1 U	0.0	10 0	29 U		84 U	17	21
TRANS-1,2-DICHLOROETHENE					12 U	2.5 U	9.9 U	4.4 L	J 6.6 U	0.0	10 0	140	900 U	110 U	3.5 U	5.6 U
1,1-DICHLOROETHANE (1,1-DCA)			3	100	12 U	2.6 U	10 U	4.5 L	J 6.7 U		10 0	38 U		110 U	3.6 U	5.7 U
METHYL TERT-BUTYL ETHER					21 U	4.5 U	18 U	7.9 L			20	67 U		190 U	6.4 U	10 U
VINYL ACETATE					130 U	29 U	110 U	50 L	.0 0			420 U		1200 U	40 U	63 U
2-BUTANONE (MEK)					17 U	7.8	15 U	6.5 L	J 9.7 U			55 U	1300 U	160 U	13	8.3 U
CIS-1,2-DICHLOROETHENE			3	100	12 U	2.5 U	9.9 U	6.1	6.6 U	0.0 0	.0 0	240	900 U	110 U	3.5 U	5.6 U
CHLOROFORM					14 U	3.1 U	12 U	5.4 L	J 8 U	8.4 U	16 U	46 U	1100 U	130 U	4.3 U	6.9 U
1,2-DICHLOROETHANE					12 U	2.6 U	10 U	4.5 L	J 6.7 U	7 U	10 0	38 U	920 U	110 U	3.6 U	5.7 U
1,1,1-TRICHLOROETHANE (TCA)			3	100	16 U	6	14 U	8.9	18	9.3 U	72	130	1200 U	150 U	4.8 U	7.6 U
BENZENE					72	55	23	12	65	5.4 U	39	30 U	720 U	86 U	46	120
CARBON TETRACHLORIDE	0.25	5			1.8 U	0.45	1.6 U	0.7 L	J 1 U	1.1 U	2.1 U	5.9 U	140 U	17 U	0.56 U	0.89 U
1,2-DICHLOROPROPANE					13 U	2.9 U	11 U	5.1 L	J 7.6 U	7.9 U	15 U	43 U	1000 U	130 U	4.1 U	6.5 U
BROMODICHLOROMETHANE					4 U	0.86 U	3.4 U	1.5 L	J 2.2 U	2.3 U	4.4 U	13 U	310 U	37 U	1.2 U	1.9 U
TRICHLOROETHENE (TCE)	0.25	5			950	180	670	490	14	54	1400	3600	79000	6200	130	23
CIS-1,3-DICHLOROPROPENE					26 U	5.8 U	23 U	10 L	J 15 U	16 U	29 U	85 U	2100 U	250 U	8.1 U	13 U
4-METHYL-2-PENTANONE					24 U	5.2 U	20 U	9.1 L	J 13 U	14 U	27 U	76 U	1800 U	220 U	7.2 U	11 U
TRANS-1,3-DICHLOROPROPENE					13 U	2.9 U	11 U	5 L	J 7.5 U	7.8 U	15 U	42 U	1000 U	120 U	4 U	6.3 U
1,1,2-TRICHLOROETHANE					16 U	3.5 U	14 U	6 L	J 8.9 U	9.3 U	18 U	51 U		150 U	4.8 U	7.6 U
TOLUENE					140	86	81	33	150	16	66	35 U		210	150	320
2-HEXANONE					12 U	2.6 U	10 U	4.5 L	0.1 0		10 0	38 U		110 U	3.6 U	5.7 U
DIBROMOCHLOROMETHANE					5 U	1.1 U	4.3 U	1.9 L	J 2.8 U			16 U		47 U	1.5 U	2.4 U
1,2-DIBROMOETHANE					4.5 U	0.98 U	3.8 U	1.7 L	J 2.5 U	2.0 0		14 U	000	42 U	1.4 U	2.2 U
TETRACHLOROETHENE (PCE)			3	100	17	3.7	2.2	8.4	8.7	1.6	7.8	21	160 U	20 U	1.2	3
CHLOROBENZENE					13 U	2.9 U	11 U	J.1 C	7.0 0	1.5 0	13 0	43 U		130 U	4.1 U	6.5 U
ETHYLBENZENE					27	22	21 U	9.6 L	22	24	28 U	81 U 160 U		230 U	36	61
M,P-XYLENES					86	100	94	22	140	450	56 U			470 U	180	350
BROMOFORM					30 U 25 U	6.6 U	26 U	11 L	,			97 U 80 U		280 U	9.2 U	14 U
STYRENE O-XYLENE						5.4 U 34	21 U	9.5 L		15 U 140	20 0			230 U	7.6 U	12 U
0-XYLENE 1.1.2.2-TETRACHLOROETHANE					29 4	34 0.86 U	31 3.4 U	9.6 L 1.5 L			28 U 4.4 U	81 U 13 U		230 U 37 U	62 1.2 U	110 1.9 U
1,1,2,2-TETRACHLOROETHANE 1,3-DICHLOROBENZENE					4 U 35 U	0.86 U 7.6 U	3.4 U 30 U	1.5 L				13 U 110 U		37 U 320 U	1.2 U 11 U	1.9 U 17 U
1.4-DICHLOROBENZENE					35 U 35 U	7.6 U	30 U	13 L			00	110 U		320 U	11 U	17 U
1,2-DICHLOROBENZENE					35 U	7.6 U	30 U	13 1	J 20 U			110 U	2700 U	320 U	11 U	17 U
					1441		914.2	611.7	490.7	685.6	1584.8	4131	79920		680.2	1008
TOTAL VOCs					1441	674.95	914.2	011.7	490.7	0.660	1584.8	4131	79920	6410	o80.2	1008

* 30 minute data provides a general comparison with NYSDOH standards, but should not be compared directly with published Matrix 1 and Matrix 2 concentrations.
 Bold = Exceeds Laboratory MRL

B = Analyte detected in method blank D = Sample reanalyzed and quantified at higher dilution E = Exceeds calibration range

J = Estimated concentration

Sample location				1	SS-30min-013	55-3	30min-014		SS-30min-015		SS-30min-016		SS-30min-017	SS-30min-018		SS-30min-019	SS-30min-02	,	SS-30min-021		SS-30min-022		55.1	30min-	-023
	Matrix 1	Matrix 1	Matrix 2	Matrix 2						-												-			
Lab ID:	indoor	Sub Slab	Indoor	Sub Slab	R1105236-005 9/20/2011)5236-006 20/2011	,	R1105236-00 9/20/2011	'	R1105236-008 9/20/2011	5	R1105236-009 9/20/2011	R1105236-010 9/20/2011	,	R1105236-019 9/21/2011	R1105236-02 9/21/2011	20	R1105236-02 9/21/2011	1	R1105236-022 9/21/2011	н	1105236-023 9/21/2011	1 1	R1105236-023 9/21/2011
Sample Collection Date: Analytical Dilution Factor:	Air*	Vapor*	Air*	Vapor*	1.62		1.56		2.91		1.5		1.57	1.52		1.55	1.52		1.54		1.63		1.54		1.54
					1.02		1.50	_	2.91	_	1.5	_	1.57	1.52	-	1.55	1.52		1.34	_	1.03	-	1.34	_	1.34
Volatile Organic Compounds (mcg/m3)																		_							
CHLOROMETHANE					6.6 U		,	U	13	U	0.0	U	3.5 U	6.8	U	17 U	32	U		U	4.3 U			U	7.7 U
VINYL CHLORIDE	0.25	5			0.88 U	0.		U	1.7	U		U	0.47 U	0.91	U	2.3 U	13			U	0.58 U			U	1 U
BROMOMETHANE					6.3 U		6.7	U	13	U	0.2	U	3.4 U	0.0	U	17 U	30	U	=	U	4.1 U			U	7.4 U
CHLOROETHANE					8.5 U		-	U	17	U	1-	U	4.6 U	8.8	U	22 U	41	U		U	5.6 U			U	9.9 U
ACETONE					74 U		70		360		110	U	130	76 1	U	190 U	350	U		U	75			E	310 D
TRICHLOROFLUOROMETHANE (CFC 11)					9.1 U		9.7	U	18	U	10	U	4.9 U	0.1	U	24 U	44	U		U	6 U			U	11 U
1,1-DICHLOROETHENE (1,1-DCE)					6.5 U		6.9	U	13	U	5.4	U	3.5 U	6.7	U	17	270		2400	U	4.2 U			U	7.5 U
DICHLOROMETHANE (METHYLENE CHLORIDE)					5.6 U		5.9	U	11	U	0.1	U	3 U	5.8	U	15 U	27	U	2100	U	3.7 U			U	6.5 U
1,1,2-TRICHLOROTRIFLUOROETHANE (CFC 113)					2.5 U		2.7	U	4.9	U	0.0	U	26	92		10	12	U	940	U	12			U	2.9 U
CARBON DISULFIDE					28		13		9.9	U	1.0	U	2.8	8.6		13 U	24	U	1000	U	9.6			U	5.8 U
TRANS-1,2-DICHLOROETHENE					6.5 U	6	6.9	U	13	U	22		3.5 U	6.7	U	76	1100		4000		4.2 U		3.4	U	7.5 U
1,1-DICHLOROETHANE (1,1-DCA)			3	100	6.6 U		7	U	13	U	0.0	U	``` U	6.8	U	17 U	32	U	2500	U	4.3 U			U	7.7 U
METHYL TERT-BUTYL ETHER					12 U		12	U	23	U		U	6.2 U	12 1	U	31 U	56	U		U	7.6 U			U	14 U
VINYL ACETATE					74 U	7	78	U	150	U	110	U	39 U	76 1	U	190 U	350	U	28000	U	48 U		39	U	86 U
2-BUTANONE (MEK)					9.6 U	1	11		25		14	U	25	10		25 U	46	U	3600	U	7.6		12		11 U
CIS-1,2-DICHLOROETHENE			3	100	6.5 U	6	6.9	U	13	U	11		3.5 U	6.7	U	1100	1200		19000		4.2 U		3.4	U	7.5 U
CHLOROFORM					8 U	8	3.4	U	16	U	12	U	4.2 U	8.2	U	21 U	1900		3200		5.2 U		4.2	U	9.2 U
1,2-DICHLOROETHANE					6.6 U		7	U	13	U	9.6	U	3.5 U	6.8	U	17 U	32	U	2500	U	4.3 U		3.5	U	7.7 U
1,1,1-TRICHLOROETHANE (TCA)			3	100	31	5	54		17	U	13	U	14	26		52	42	U	3300	U	36		63		58 D
BENZENE					83	1	20		100		22		31	58		62			1900	U	39		170		150 D
CARBON TETRACHLORIDE	0.25	5			1 U	1	.1	U	2	U	1.5	U	0.55 U	1.1	U	2.7 U	4.9	U	390	U	0.68 U		0.54	U	1.2 U
1.2-DICHLOROPROPANE					7.5 U		8	Û	15	Ū		Ū	4 U	7.8	Û	20 U	36	Ū	2800	Ū	4.9 U		3.9	Ú.	8.7 U
BROMODICHLOROMETHANE					2.2 U	2	2.3	Ú	4.4	U	3.2	Ú	1.2 U	2.3	Ú	5.8 U	11	Ŭ	830	Ú	1.4 U		1.2	U	2.6 U
TRICHLOROETHENE (TCE)	0.25	5			6.9	3	40		18		1000	-	220	65		1700	2300		200000		0.89		140	-	120 D
CIS-1,3-DICHLOROPROPENE					15 U	1	16	U	29	U	21	U	7.9 U	15 1	U	39 U	70	U	5500	U	9.6 U		7.7	U	17 U
4-METHYL-2-PENTANONE					13 U	1	14	Ŭ	26	Ū	19	Ū	7.1 U	14	Ú	35 U	63	Ū	5000	Ū	8.7 U		6.9	Ŭ	15 U
TRANS-1,3-DICHLOROPROPENE					7.4 U	7	7.8	U	15	U	11	U	3.9 U	7.6	Ú	19 U	35	U	2800	U	4.8 U		3.9	U	8.6 U
1,1,2-TRICHLOROETHANE					8.8 U	9	9.4	U	17	U	13	U	4.7 U	9.1 I	U	23 U	42	U	3300	U	5.8 U		4.6	U	10 U
TOLUENE					270	3	50		270		61		120	170		170	140		2300	U	150		480	E	410 D
2-HEXANONE					6.6 U		7	U	13	U	9.6	U	3.5 U	6.8	U	17 U	32	U	2500	U	4.3 U		3.5	U	14 D
DIBROMOCHLOROMETHANE					2.8 U		3	U	5.5	U	4.1	U	1.5 U	2.9	U	7.4 U	13	U	1000	U	1.8 U		1.5	U	3.3 U
1,2-DIBROMOETHANE					2.5 U	2	2.7	U	4.9	U	3.6	U	1.3 U	2.6	U	6.6 U	12	U		U	1.6 U		1.3	U	2.9 U
TETRACHLOROETHENE (PCE)			3	100	6.9		21		4.1		1.7		4	5.6		4.6	110		110	U	4.8		9.3		8.2 D
CHLOROBENZENE					7.5 U		0	U	15	U		U	4 U	7.8	U	20 U	36	U	2000	U	4.9 U		0.0	U	8.7 U
ETHYLBENZENE					65		B6		120		20	U	11	14 I	U	37 U	67	U	5200	U	40		63		53 D
M,P-XYLENES					360		30		620		49		77	58		160	220			U	200		380		310 D
BROMOFORM					17 U		18	U	33	U		U	8.9 U	17 0	U	44 U	80	U		U	11 U			U	20 U
STYRENE					14 U		15	U	27	U	20	U	7.4 U	14 1	U	36 U	66	U	0200	U	9.1 U	I	=	U	16 U
O-XYLENE					130		40		190		20	U	26	20		50	67	U	0200	U	65	I	120		100 D
1,1,2,2-TETRACHLOROETHANE					2.2 U		2.3	U	4.4	U	0.2	U	1.2 U	2.3	U	5.8 U	11	U	000	U	1.4 U	I		U	2.6 U
1,3-DICHLOROBENZENE	-				19 U	2		U	38	U	20	U	10 U	20 1	U	51 U	93	U	1000	U	13 U			U	23 U
1,4-DICHLOROBENZENE	-				19 U		21	U	38	U	20	U	10 U	20 0	U	51 U	93	U	1000	U	13 U			U	23 U
1,2-DICHLOROBENZENE	1				19 U		21	U	38	U	20	U	10 U	20	U	51 U	93	U	1000	U	13 U	<u> </u>		U	23 U
TOTAL VOCs	1	1			980.8		1544		1347.1		1166.7		556.8	513.2		3401.6	7240		226200		564.89	1	1797.3		1533.2

* = 30 minute data provides a general comparison with NYSDOH standards, but should not be compared directly with published Matrix 1 and Matrix 2 concentrations.

Bold = Exceeds Laboratory MRL

B = Analyte detected in method blank D = Sample reanalyzed and quantified at higher dilution E = Exceeds calibration range

J = Estimated concentration

Sample location	Matrix 1	Matrix 1	Matrix 2	Matrix 2	SS-30min-024	Ļ	SS-30min-025		SS-30min-026	SS-30min-	027	SS-30min-028	3	SS-30	mir	n-029		SS-30min-030		SS-	-30miı	n-031	
Lab ID:	Indoor	Sub Slab	Indoor	Matrix 2 Sub Slab	R1105236-02	24	R1105236-025	;	R1105236-026	R1105236	-027	R1105236-02	28	R1105236-029	Т	R1105236-029	•	R1105236-030	R110	5236-03 ⁻	1	R1105236-0	31
Sample Collection Date:	Air*	Vapor*	Air*	Vapor*	9/21/2011		9/22/2011		9/22/2011	9/22/20	ii -	9/22/2011		9/22/2011		9/22/2011		9/22/2011	9/2	2/2011		9/22/2011	<u> </u>
Analytical Dilution Factor:	~	vapoi	All	vapoi	1.57		1.64		1.66	1.57		1.52		1.51		1.51		1.61		1.58		1.58	
Volatile Organic Compounds (mcg/m3)															-								
CHLOROMETHANE					540	U	7.4 L	υ	7.5 U	41	U	800	U	2.6 U	π	9.1	U	32 U	7.	.1	U	36	U
VINYL CHLORIDE	0.25	5			72	U	0.98 L	Ú	1 U	5.4	U	110	U		+	1.2	U	4.2 U	0.9	95	U	4.7	U
BROMOMETHANE					520	U	7.1 L	U	7.1 U		U		U		亡	8.7	U	30 U	6.	.8	U	34	U
CHLOROETHANE					700	U	9.5 L	U	9.6 U	52	U		U			12	U	41 U	9.	2	U	46	U
ACETONE					6000	U	82 L	U	110	450	U	8900	U	370 E		300	D	430	67	70	E	640	D
TRICHLOROFLUOROMETHANE (CFC 11)					750	U	10 L	U	10 U	56	U	1100	U	3.5 U	i T	12	U	43 U	9.	.8	U	49	U
1,1-DICHLOROETHENE (1,1-DCE)					530	U	7.2 L	U	7.3 U	40	U	790	U	5.1	T	8.9	U	31 U	7	7	U	35	U
DICHLOROMETHANE (METHYLENE CHLORIDE)					460	U	6.2 L	U	6.3 U	34	U	680	U	3.6	1	7.7	U	27 U	6	6	U	30	U
1,1,2-TRICHLOROTRIFLUOROETHANE (CFC 113)					210	U	61		110	75		300	U	29	-	25	D	18	2.	.7	U	13	U
CARBON DISULFIDE					410	U	25		50	31	U	610	Ū		1		D	24 U	9.		-	27	Ū
TRANS-1,2-DICHLOROETHENE					1100	É	7.2 L	υ	7.3 U	-	Ŭ	5300	-	2.5 U	ıt		U	31 U	7	-	U	35	Ū
1.1-DICHLOROETHANE (1.1-DCA)			3	100	8400		7.4 U	ú	7.5 U	-	U U	800	U		+		D	32 U	7.		ŭ	36	U
METHYL TERT-BUTYL ETHER					950	U	13 L	•	13 U		U		U		+		U	55 U			U	62	U
VINYL ACETATE					6000	U	82 1	ü	83 U		Ŭ	8900	U				U	350 U			ŭ	400	U
2-BUTANONE (MEK)					790	U U	11 1	ii l	13	59	U U	1200	U		+		ŭ	46 U	11			95	D
CIS-1.2-DICHLOROETHENE			3	100	760	0	7.2 U	<u> </u>	7.3 U		U	3400	0	2.5 U	+	8.9	U	31 U	7	-	U	35	U
CHLOROFORM					650	U	8.9 L	<u> </u>	9 U		U		U				U	38 U	8.		U	43	U
1.2-DICHLOROETHANE					540	U	7.4 L	-	7.5 U		11		U				U	38 U	7.	-	U	43	U
1.1.1-TRICHLOROETHANE (TCA)			3	100	1900	U	9.8 L	•	14	62	0		U				D	150	9		U	47	U
,,			-				0.0	U							+						U		-
BENZENE					420	U	20		25	32	U	630	U		+		D	51	27	-		230	D
CARBON TETRACHLORIDE	0.25	5				U	1.1 L	-	1.2 U		U		U				U	4.9 U	1.		U	5.5	U
1,2-DICHLOROPROPANE					0=0	U	8.4 l	<u> </u>	8.5 U		U	910	U				U	36 U	8.		U	40	U
BROMODICHLOROMETHANE					100	U	2.5 l	U	2.5 U		U	270	U		4		U	11 U	2.		U	12	U
TRICHLOROETHENE (TCE)	0.25	5			39000		3.5		13	3500		60000		200	+		D	2800		8		40	D
CIS-1,3-DICHLOROPROPENE						U	16 L	-	17 U		U		U				U	70 U			U	79	U
4-METHYL-2-PENTANONE						U	15 l		15 U		U		U				U	63 U			U	71	U
TRANS-1,3-DICHLOROPROPENE						U	8.2 L	-	8.3 U		U		U				U	35 U	7.		U	40	U
1,1,2-TRICHLOROETHANE					. = .	U	9.8 l	U	10 U		U		U				U	42 U	9.		U	47	C
TOLUENE						U	93		78	53		730	U				D	280	19		E	1600	D
2-HEXANONE						U	7.4 L	-	7.5 U 3.2 U		U		U U				U	32 U 13 U	7.		U	36	U
DIBROMOCHLOROMETHANE 1.2-DIBROMOETHANE						U	3.1 L 2.8 L	-	3.2 U 2.8 U		U		U				U	13 U 12 U	2	-	U	15	U
TETRACHLOROETHENE (PCE)				100	97		2.8	U	6.2	15	U	300	U		+		D	12 0		8	U	13	D
CHLOROBENZENE				100			8.4 L		8.5 U		11		U		╓┼╴			36 U	8.		11	40	U
ETHYLBENZENE						11	16 L	<u> </u>	16 U		U		U		+		D	67 U	51		0	440	D
M.P-XYLENES					2300	11	61	0	57	170	11	3400	U		+		D	190	22		Е	1900	D
BROMOFORM						U	19 L		19 U		U		U		+		U	80 U			U	90	U
STYRENE						U	15 L	•	16 U		Ū		U				ŭ	66 U			ŭ	74	Ŭ
O-XYLENE					1100	U	19	-	19	86	U U		U		+		D	250	80		F	700	D
1.1.2.2-TETRACHLOROETHANE						U	2.5 L	υ	2.5 U		U		U		т		U	11 U	2.		U	12	U
1.3-DICHLOROBENZENE		1				U	22.0 L	-	22 U		U U		U				ŭ	92 U	2		ŭ	100	U
1.4-DICHLOROBENZENE		1				U	22 1		22 U		Ū		U				Ŭ	92 U	2		Ŭ	100	Ŭ
1,2-DICHLOROBENZENE		1			1600	U	22 1	-	22 U		Ŭ	2400	U				U	92 U	2		Ŭ	100	Ŭ
TOTAL VOCs					51160	-	284.7	1	385.2	3705		68700		2236.19	t	1821	1	4183		526	-	5660	+ -
.0	1			1	21100				2201L	0.00		20100		2250.10	┶							2000	

 NO 155:

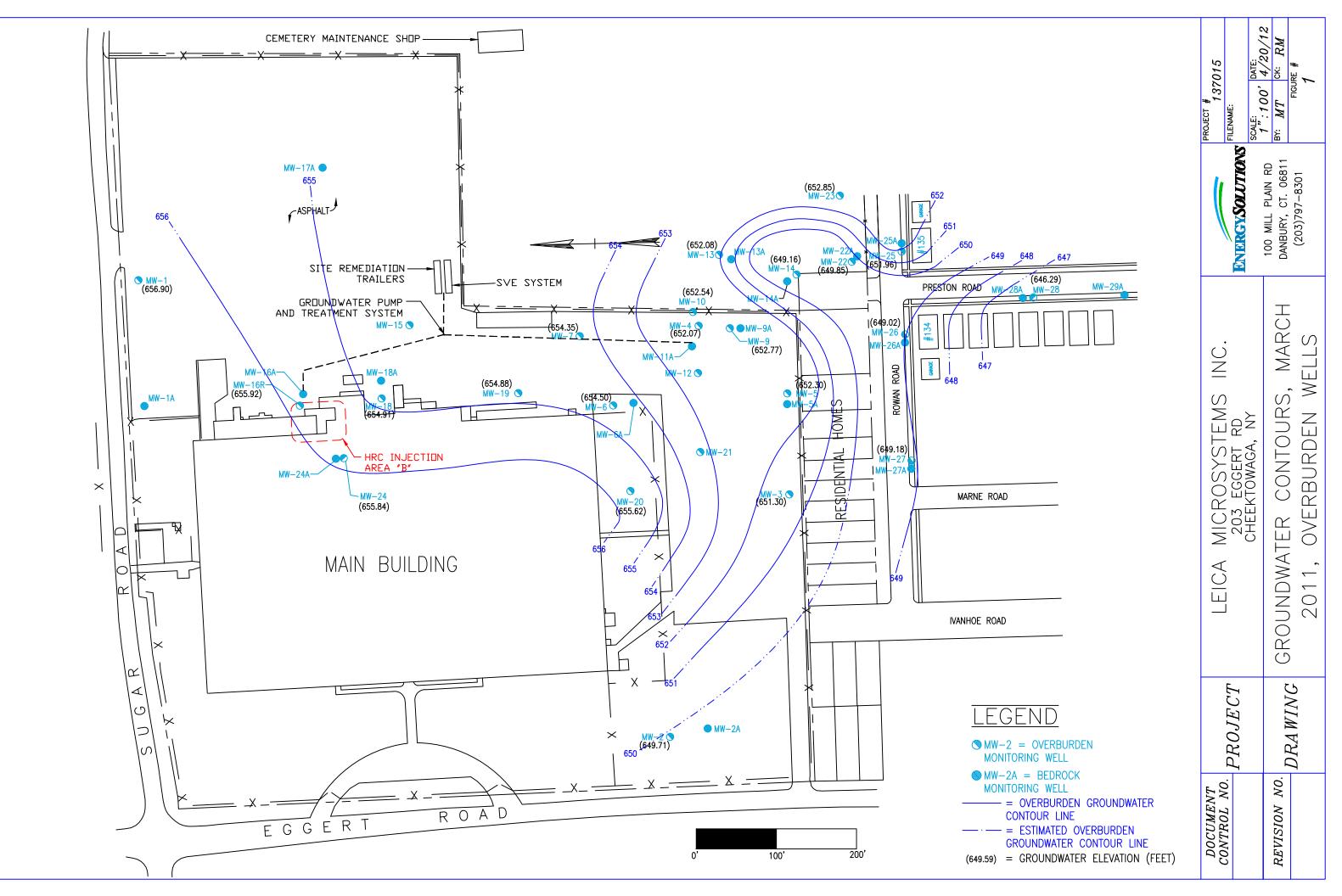
 * = 30 minute data provides a general comparison with NYSDOH standards, but should not be compared directly with published Matrix 1 and Matrix 2 concentrations.

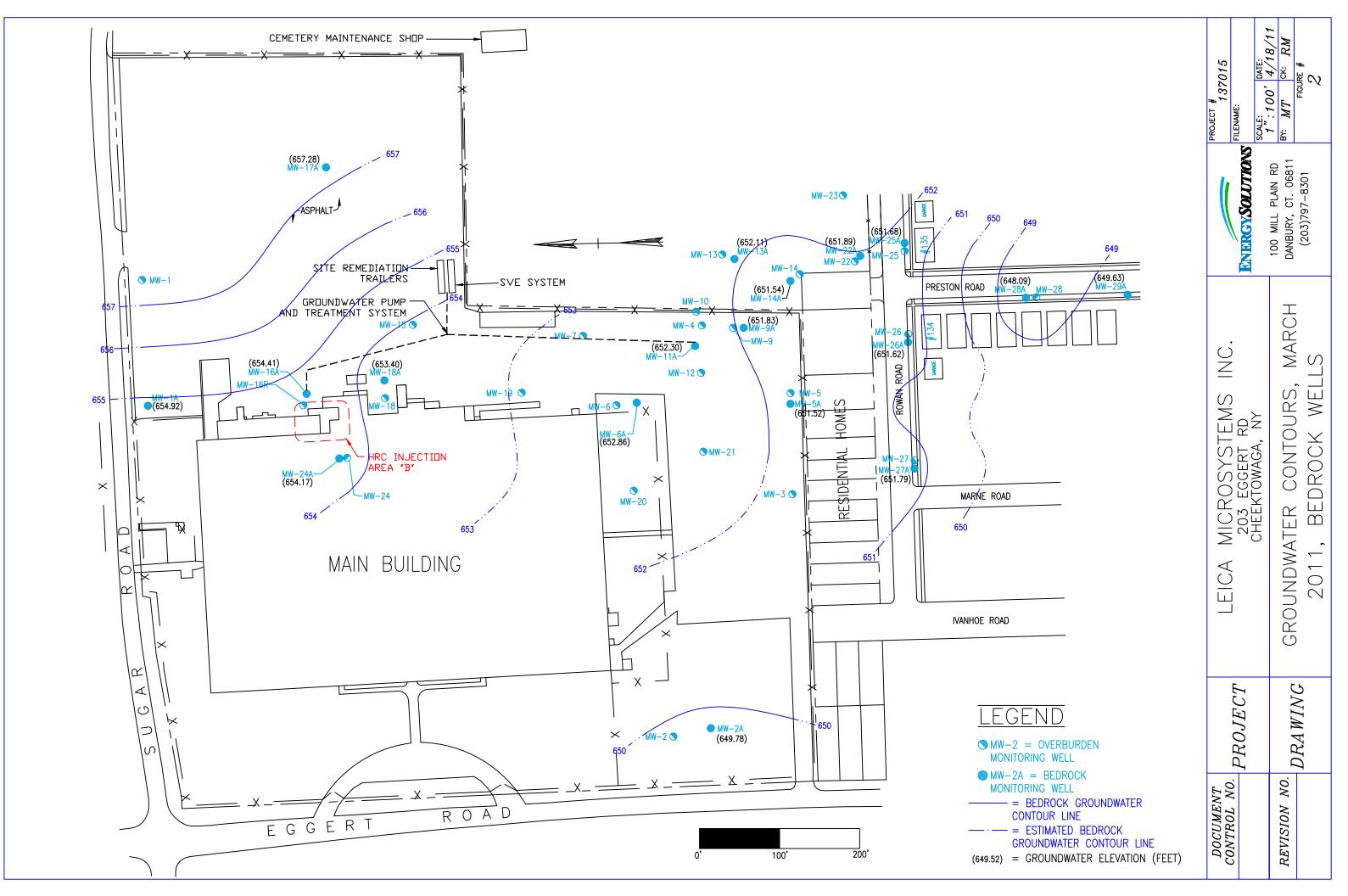
 Bold = Exceeds Laboratory MRL

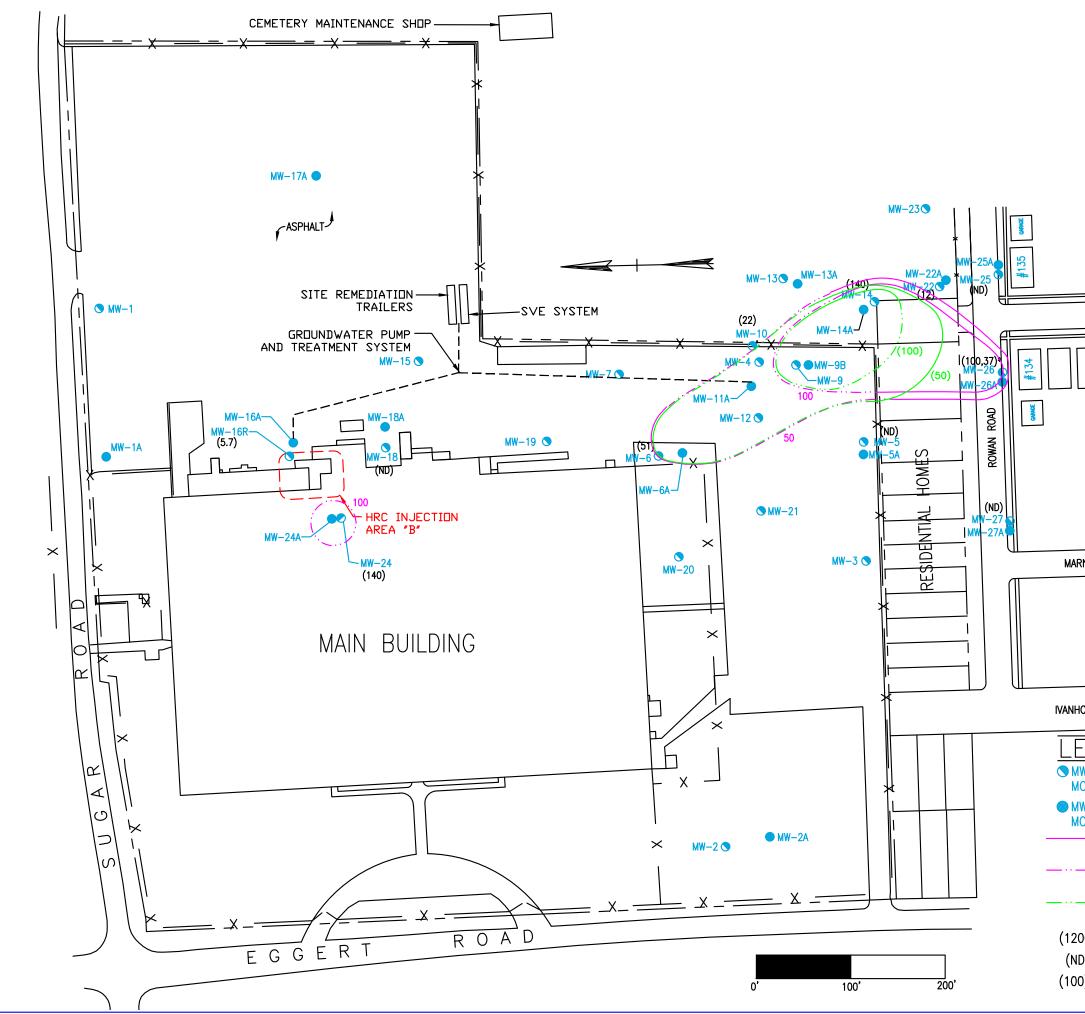
 B = Analyte detected in method blank

 D = Sample reanalyzed and quantified at higher dilution

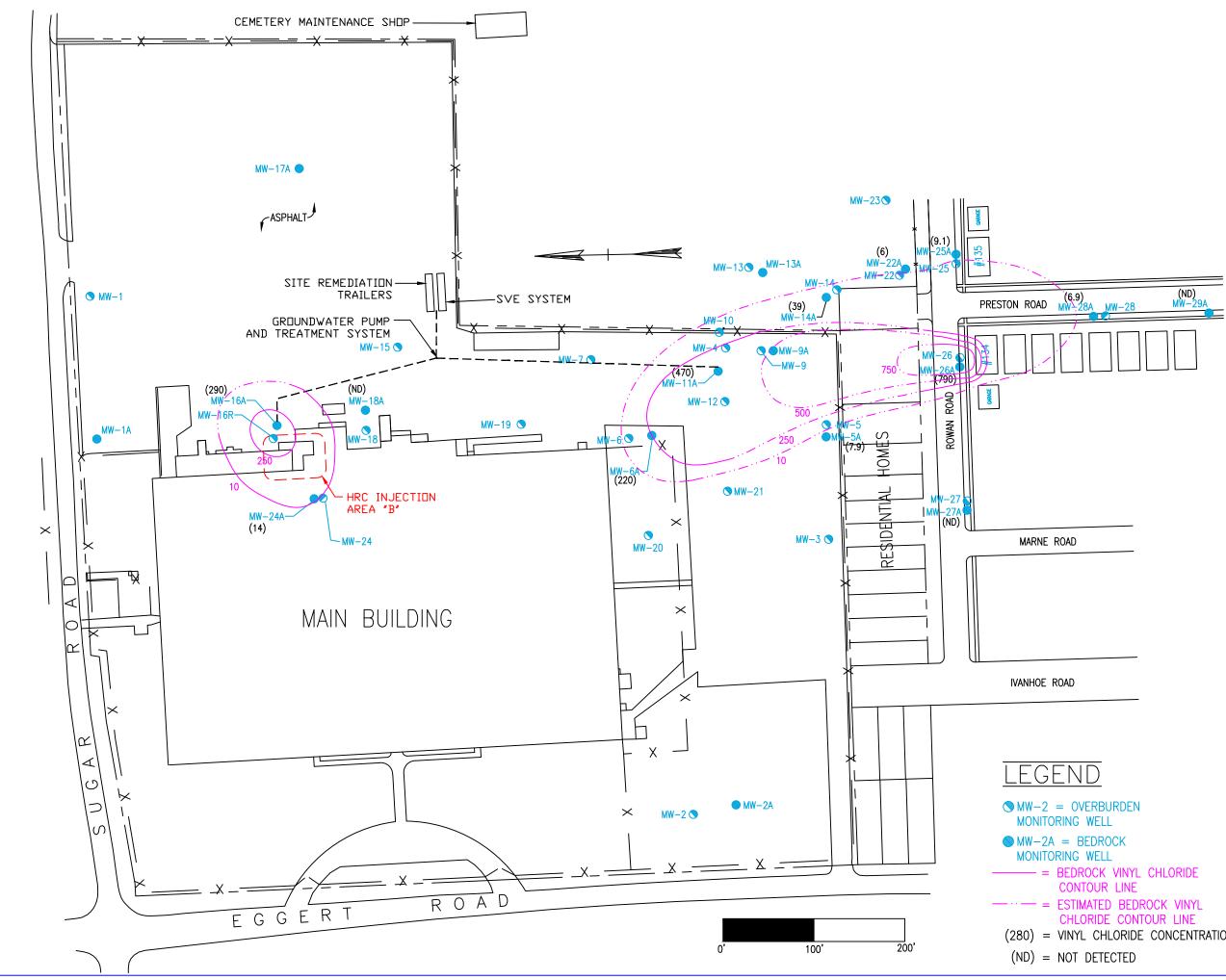
 E = Exceeds calibration range

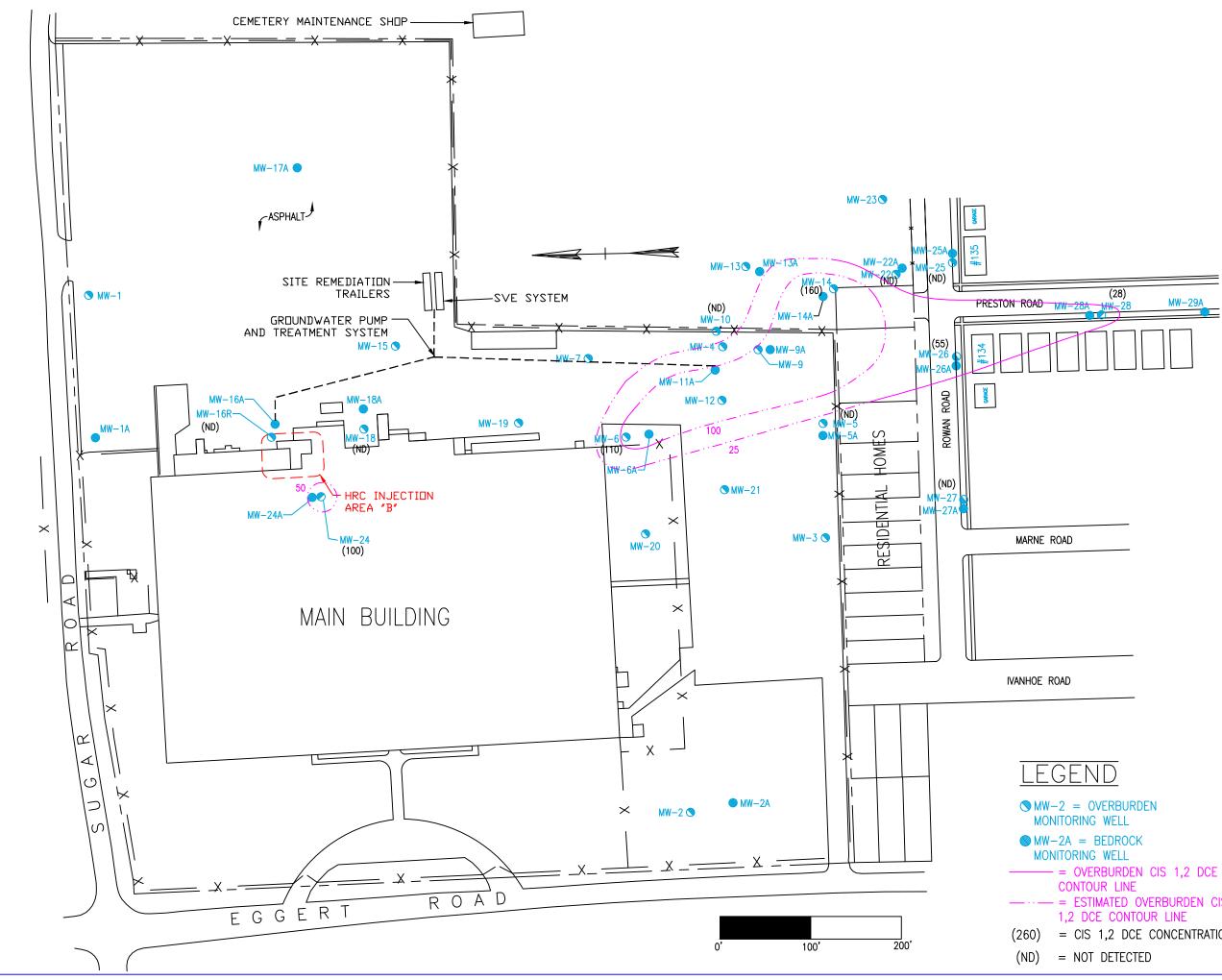

J = Estimated concentration


APPENDIX D

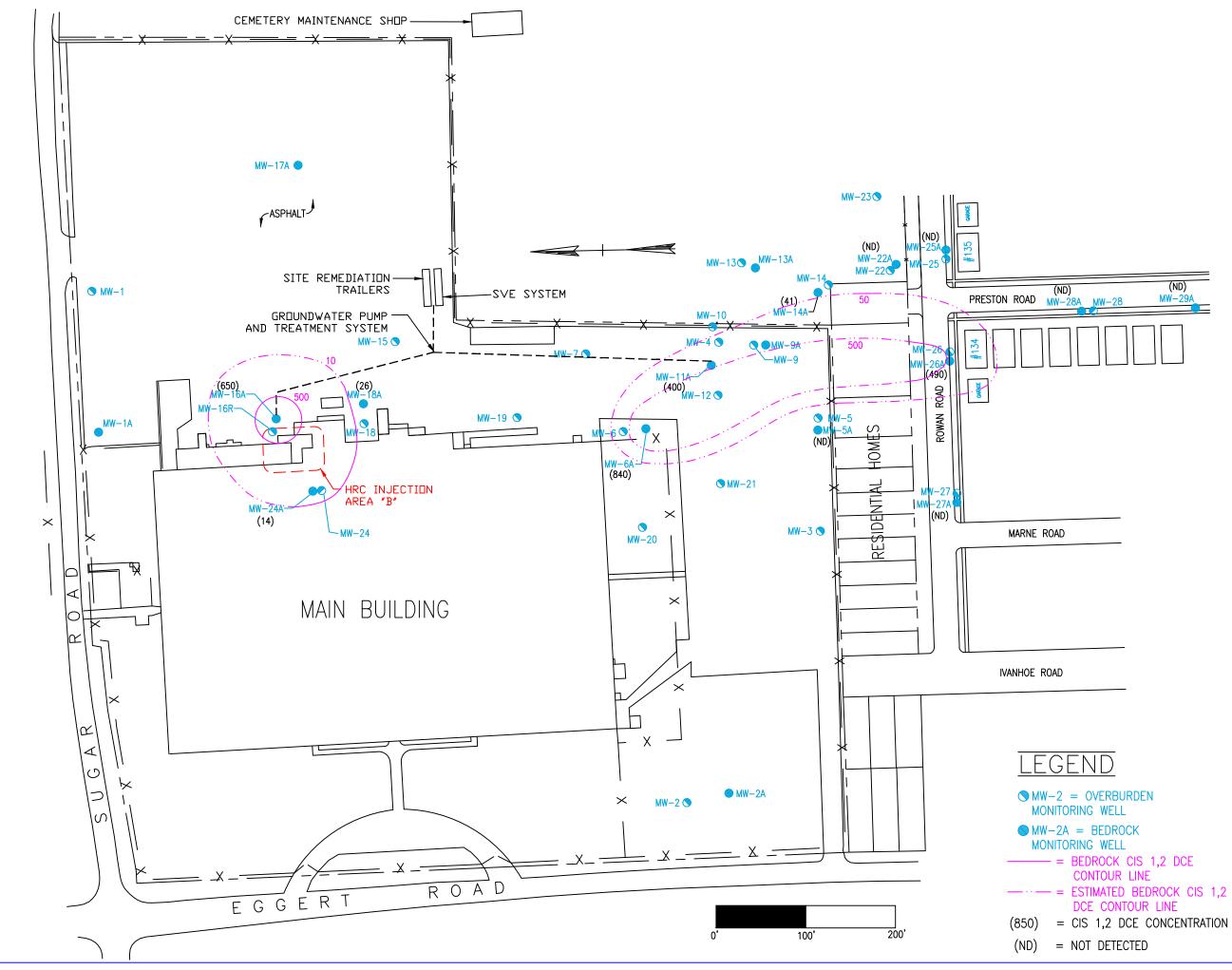

Groundwater Monitoring Figures

- Figure 1 Groundwater Contours, March 2011, Overburden Wells
- Figure 2 Groundwater Contours, March 2011, Bedrock Wells
- Figure 3 Vinyl Chloride Contaminant Concentration Isopleths, March 2011, Overburden Wells
- Figure 4 Vinyl Chloride Contaminant Concentration Isopleths, March 2011, Bedrock Wells
- Figure 5 CIS 1,2 DCE Contaminant Concentration Isopleths, March 2011, Overburden Wells
- Figure 6 CIS 1,2 DCE Contaminant Concentration Isopleths, March 2011, Bedrock Wells
- Figure 7 Groundwater Contours, June 2011, Overburden Wells
- Figure 8 Groundwater Contours, June 2011, Bedrock Wells
- Figure 9 Vinyl Chloride Contaminant Concentration Isopleths, June 2011, Overburden Wells
- Figure 10 Vinyl Chloride Contaminant Concentration Isopleths, June 2011, Bedrock Wells
- Figure 11 CIS 1,2 DCE Contaminant Concentration Isopleths, June 2011, Overburden Wells
- Figure 12 CIS 1,2 DCE Contaminant Concentration Isopleths, June 2011, Bedrock Wells
- Figure 13 Groundwater Contours, October 2011, Overburden Wells
- Figure 14 Groundwater Contours, October 2011, Bedrock Wells
- Figure 15 Vinyl Chloride Contaminant Concentration Isopleths, October 2011, Overburden Wells
- Figure 16 Vinyl Chloride Contaminant Concentration Isopleths, October 2011, Bedrock Wells
- Figure 17 CIS 1,2 DCE Contaminant Concentration Isopleths, October 2011, Overburden Wells
- Figure 18 CIS 1,2 DCE Contaminant Concentration Isopleths, October 2011, Bedrock Wells
- Figure 19 Groundwater Contours, December 2011, Overburden Wells
- Figure 20 Groundwater Contours, December 2011, Bedrock Wells
- Figure 21 Vinyl Chloride Contaminant Concentration Isopleths, December 2011, Overburden Wells
- Figure 22 Vinyl Chloride Contaminant Concentration Isopleths, December 2011, Bedrock Wells
- Figure 23 CIS 1,2 DCE Contaminant Concentration Isopleths, December 2011, Overburden Wells
- Figure 24 CIS 1,2 DCE Contaminant Concentration Isopleths, December 2011, Bedrock Wells
- Figure 25 Interior Groundwater Grab Sample Locations cis 1,2 DCE Concentrations, June 2011

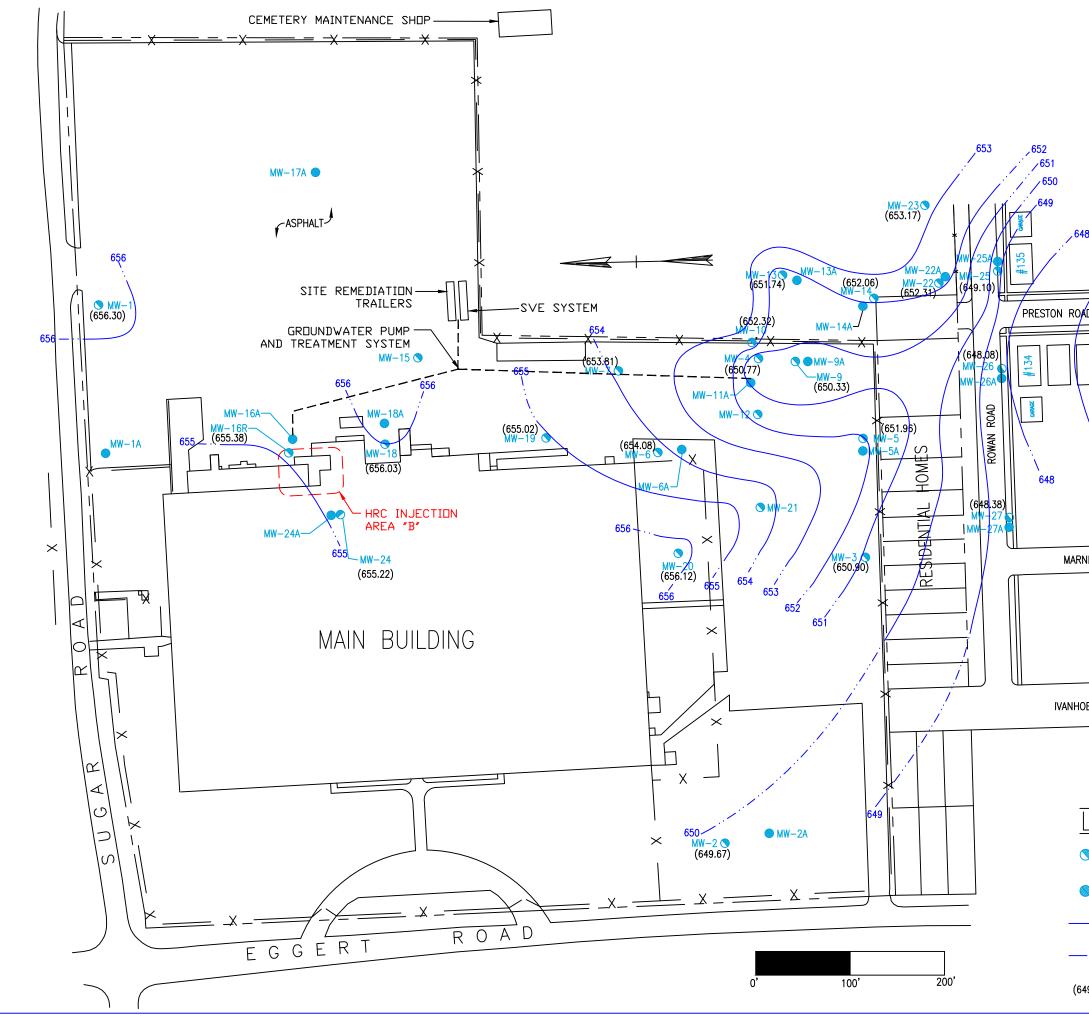

- Figure 26 Interior Groundwater Grab Sample Locations, TCE Concentrations, June 2011
- Figure 27 Figure 28 September 2011 Sub-Slab Soil Vapor and Indoor Air Sample Data Estimated Sub-Slab Soil Vapor TCE Concentration Isopleths, September 2011



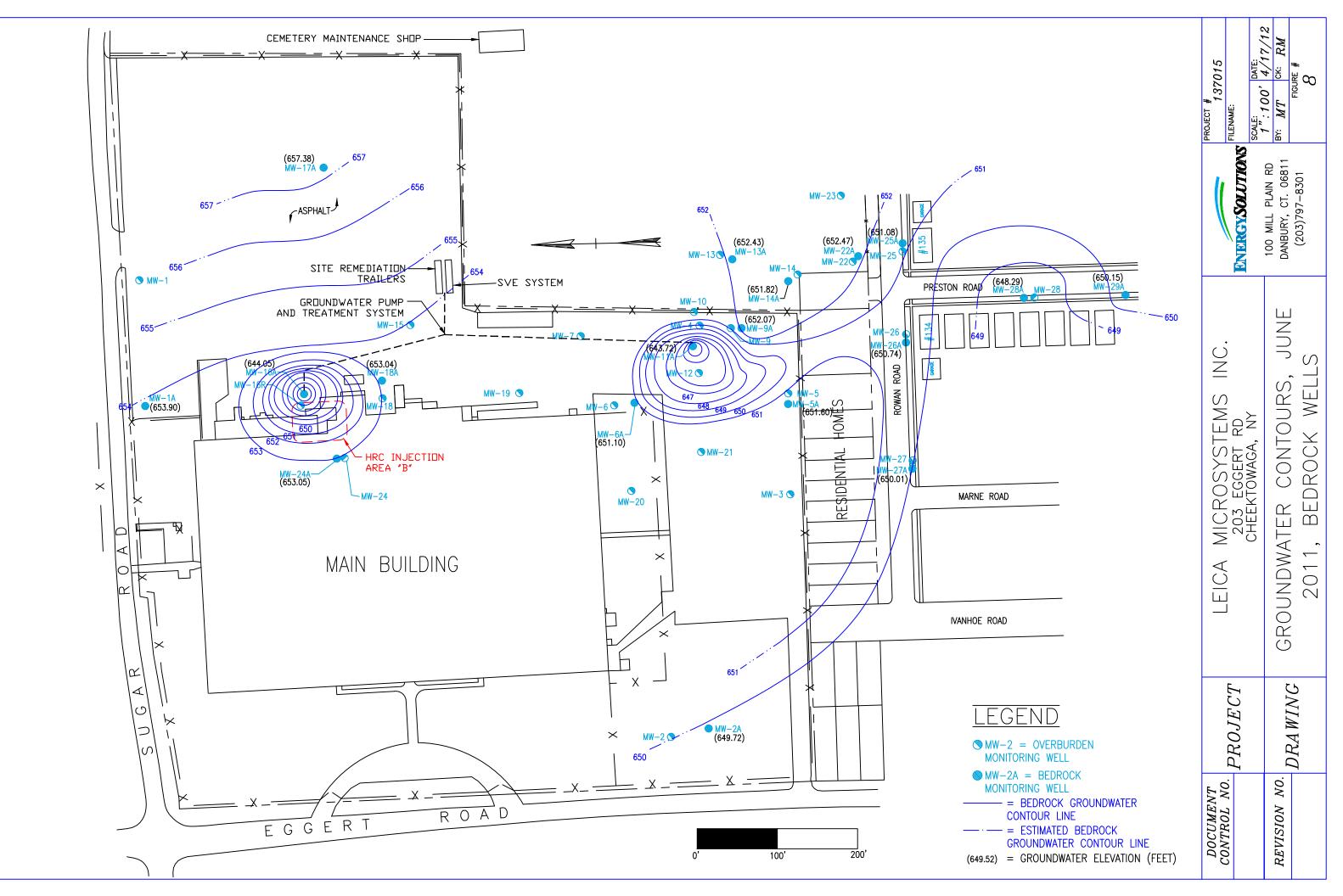
HOE ROAD 			
Image: State of the second state of			
MW-2A = BEDROCK O VIM VIA MW-2A = BEDROCK O VIM VIA MULTORING WELL	RNE ROAD	LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	IDE CONTAMII ISOPLETHS, BURDEN WEL
	MW-2A = BEDROCK MONITORING WELL 	PROJECT	DRAWING
			REVISION NO.

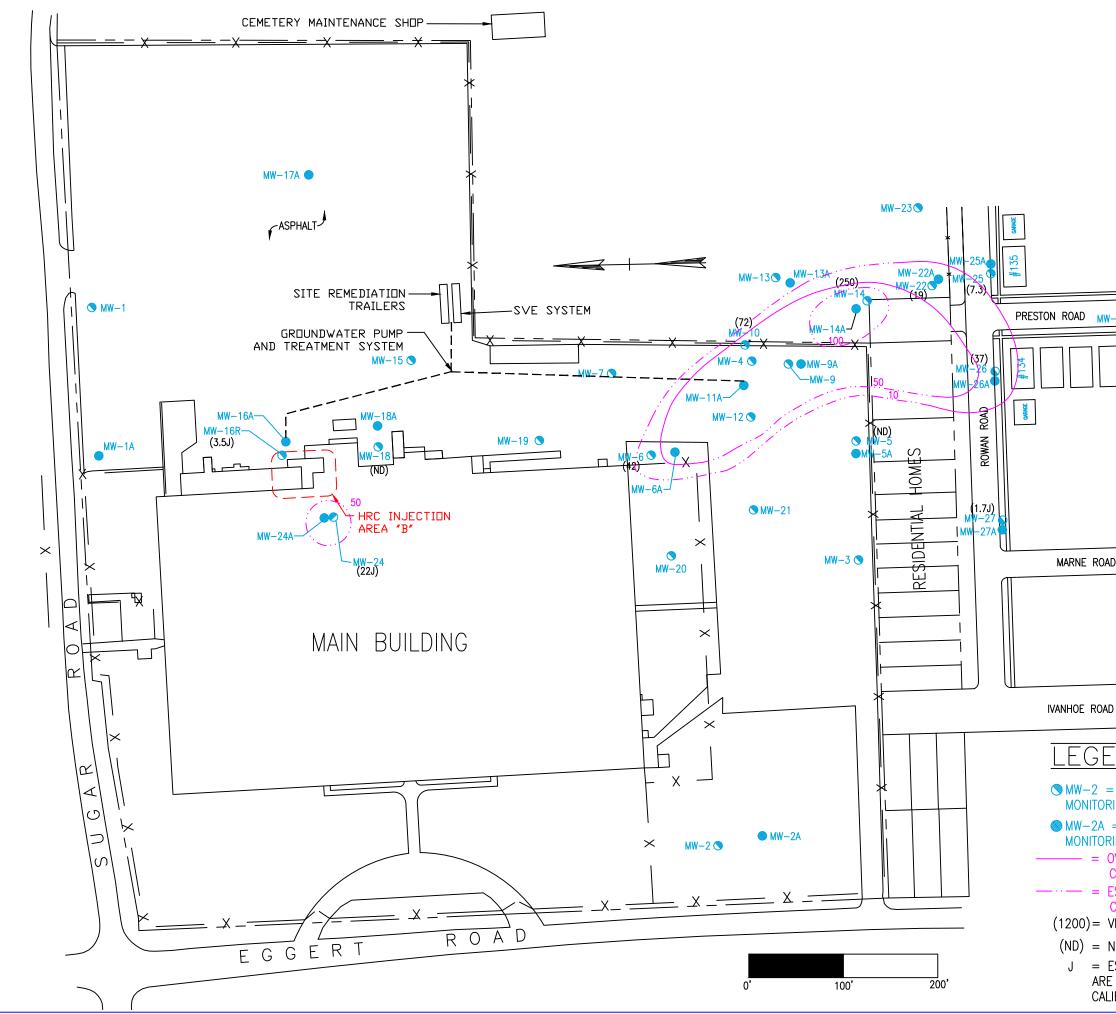

- (280) = VINYL CHLORIDE CONCENTRATION (ug/L)

PROJECT # 137015 FILENAME: SCALE: IDATE:	1 ": 100' 1/3/12 BY: MT CK: RM FIGURE #
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	DRAWING CONCENTRATION ISOPLETHS, MARCH 2011, BEDROCK WELLS
PROJECT	DRAWING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.


MW-2 = OVERBURDEN MONITORING WELL	
MW-2A = BEDROCK MONITORING WELL	
 = OVERBURDEN CIS 1,2 DCE CONTOUR LINE = ESTIMATED OVERBURDEN CIS 1,2 DCE CONTOUR LINE 	
0) = CIS 1,2 DCE CONCENTRATION	(ug/L)
D) = NOT DETECTED	

DOCUMENT		LEICA MICR		PROJECT # 137015
CUNTANT NO. PROJECT	PROJECT	203 EGGERT RD CHEEKTOWAGA, NY	ENERGYSOLUTIONS	FILENAME: Scal F. Date.
REVISION NO.		U - -	100 MILL PLAIN RD DANBURY, CT. 06811	1":100' 4/06/12 BY: MT CK: RM
	DKAWING	DRAWING CUNCENTRATION ISUPLETES, MARCH 2011, OVERBURDEN WELLS	(203)797–8301	FIGURE # \mathcal{S}



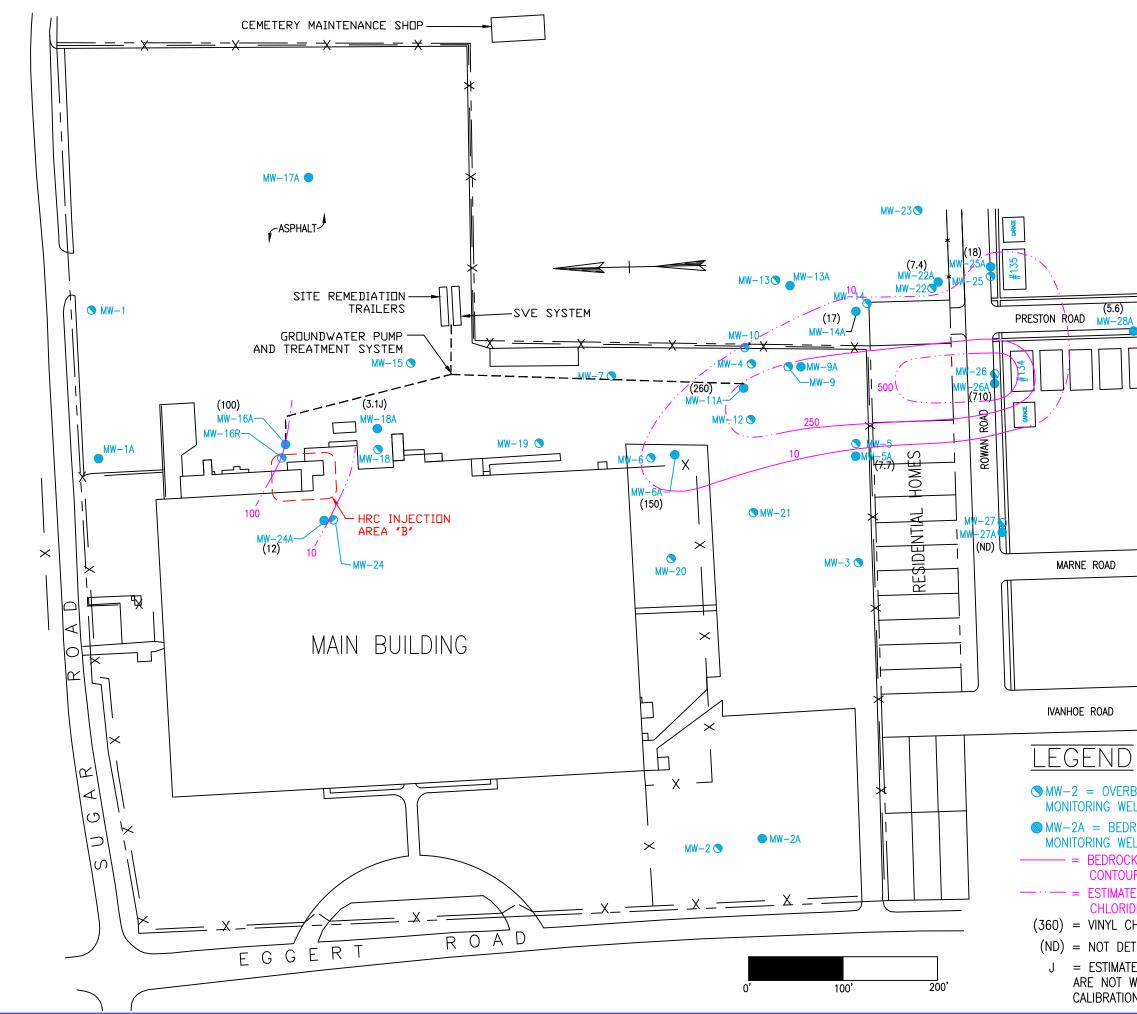

- (850) = CIS 1,2 DCE CONCENTRATION (ug/L)

PROJECT # 137015 FILENAME:	SCALF.	1":100' 4/06/12	BY: MT CK: RM	FIGURE #	9
	ENERGYSOLUTIONS	100 MILL PLAIN RD	DANBURY, CT. 06811	(203)797—8301	
LEICA N	CHEEKTOWAGA, NY	CIS 1 2 DCF CONTAMINANT		UKAWING CUNCENIKAHUN ISUFLEIMS, MARUM	2011, BEDROCK WELLS
רידי היידי המת	LNUJEU1			DKAWING	
DOCUMENT CONTROL NO. IECT		REVISION NO			

	PROJECT # 137015 FILENAME: SCALE: SCALE: SCALE:	и : 100 4/10/12 ВY: MT СК: RM FIGURE #
48 	ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
MW-28A MW-29A MW-28A MW-29A MW-29A 646 647 646 647 646 647 646 0E ROAD	LEICA MICROSYSTEMS INC. 203 Eggert RD CHEEKTOWAGA, NY	GROUNDWATER CONTOURS, JUNE 2011, OVERBURDEN WELLS
<u>LEGEND</u> MW-2 = OVERBURDEN MONITORING WELL	PROJECT	DRA WING
 MW-2A = BEDROCK MONITORING WELL — = OVERBURDEN GROUNDWATER CONTOUR LINE — = ESTIMATED OVERBURDEN GROUNDWATER CONTOUR LINE GROUNDWATER ELEVATION (FEET) 	DOCUMENT CONTROL NO.	REVISION NO.

AD	MW-28A	(1.9J) MW-28	MW-	29A

MARNE ROAD

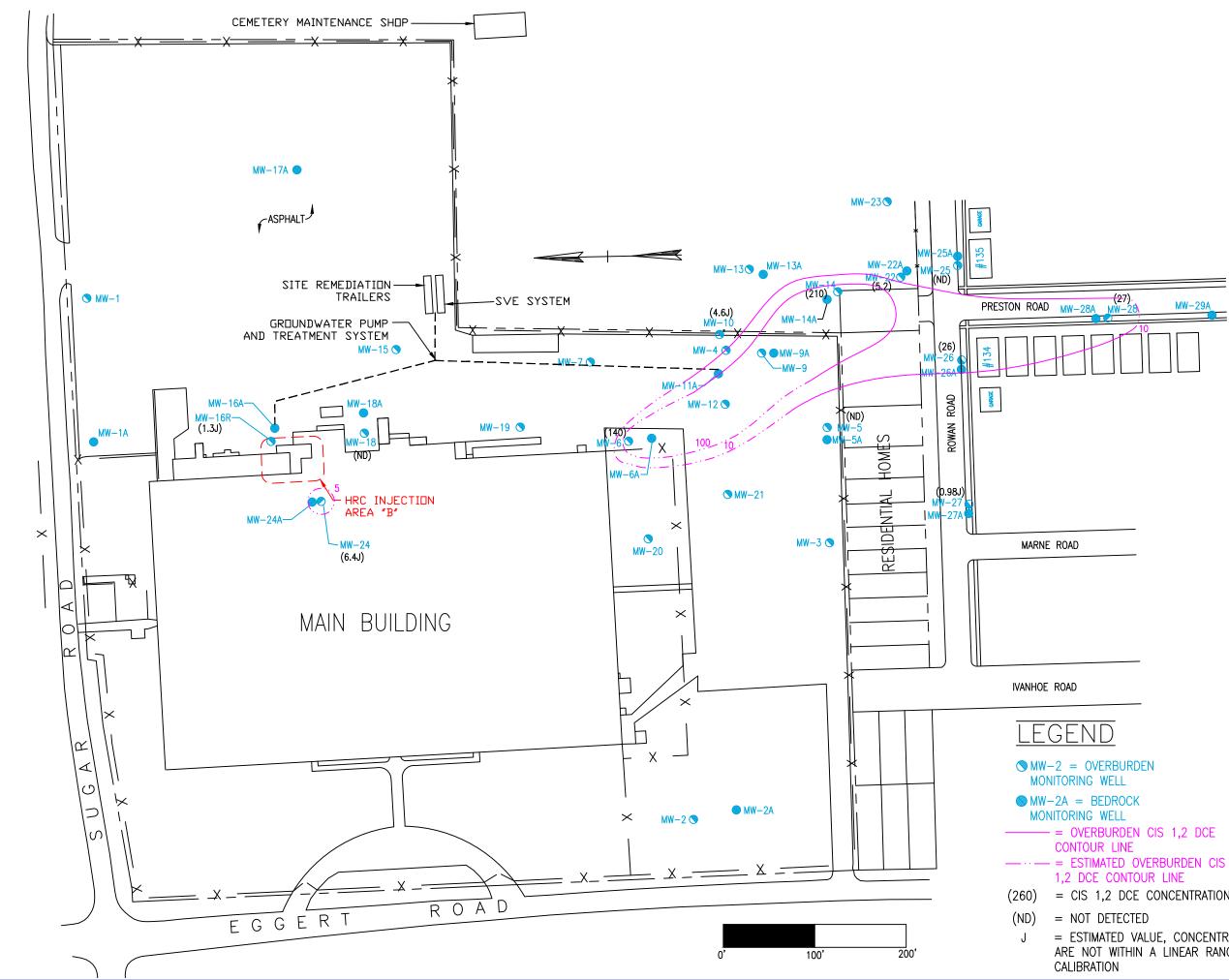

 \otimes MW-2 = OVERBURDEN MONITORING WELL

 \otimes MW-2A = BEDROCK MONITORING WELL

- = OVERBURDEN VINYL
- CHLORIDE CONTOUR LINE
- = ESTIMATED OVERBURDEN VINYL CHLORIDE CONTOUR LINE
- (1200) = VINYL CHLORIDE CONCENTRATION (ug/L)

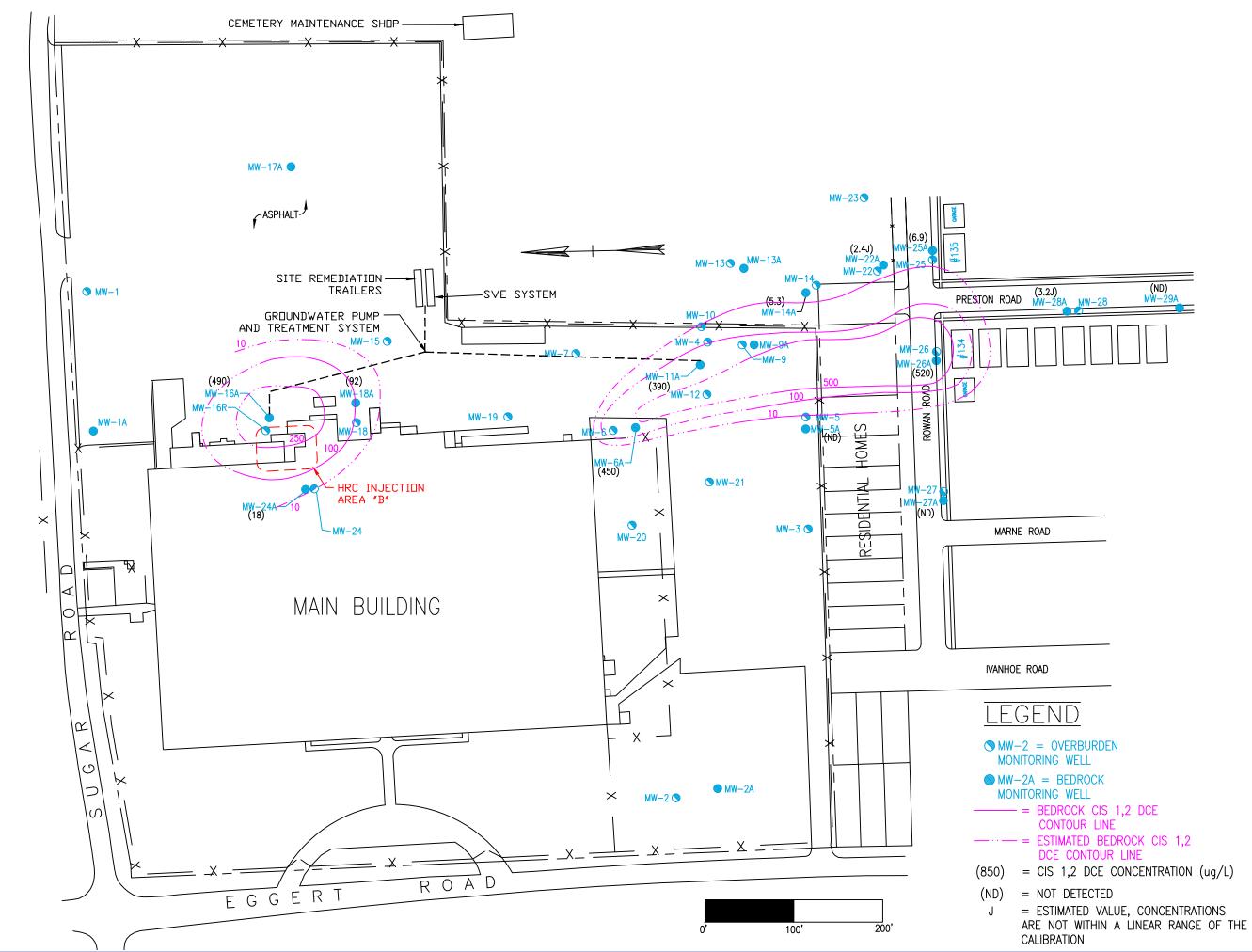
(ND) = NOT DETECTEDJ = ESTIMATED VALUE, CONCENTRATIONS ARE NOT WITHIN A LINEAR RANGE OF THE CALIBRATION

DOCUMENT		LEICA		PROJECT # 137015
VIRUL NU.	CUNIAUL NU. PROJECT	203 EGGERT RD CHEEKTOWAGA, NY	ENERGYSOLUTIONS	FILENAME:
REVISION NO.	DRAWING	VINYL CHLORIDE CONTAMINANT CONCENTRATION ISOPLETHS, JUNE 2011, OVERBURDEN WELLS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301	Dute: 1":100' 4/06/12 BY: MT CK: RM FIGURE #

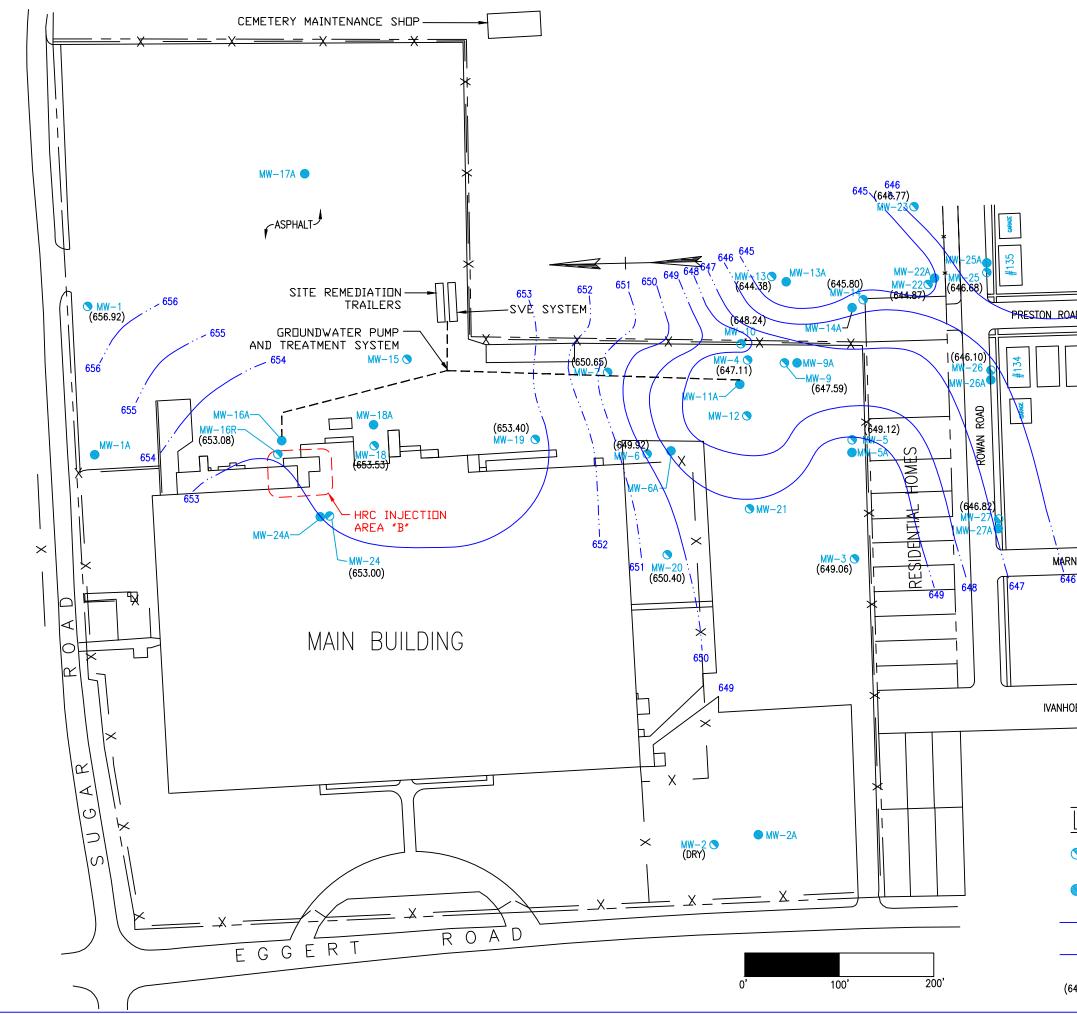


HOE ROAD
GEND
2 = OVERBURDEN ITORING WELL
2A = BEDROCK ITORING WELL
 BEDROCK VINYL CHLORIDE CONTOUR LINE ESTIMATED BEDROCK VINYI
= ESTIMATED BEDROCK VINTL CHLORIDE CONTOUR LINE = VINYL CHLORIDE CONCENTRATION (ug/L)
= NOT DETECTED
= ESTIMATED VALUE, CONCENTRATIONS ARE NOT WITHIN A LINEAR RANGE OF THE CALIBRATION

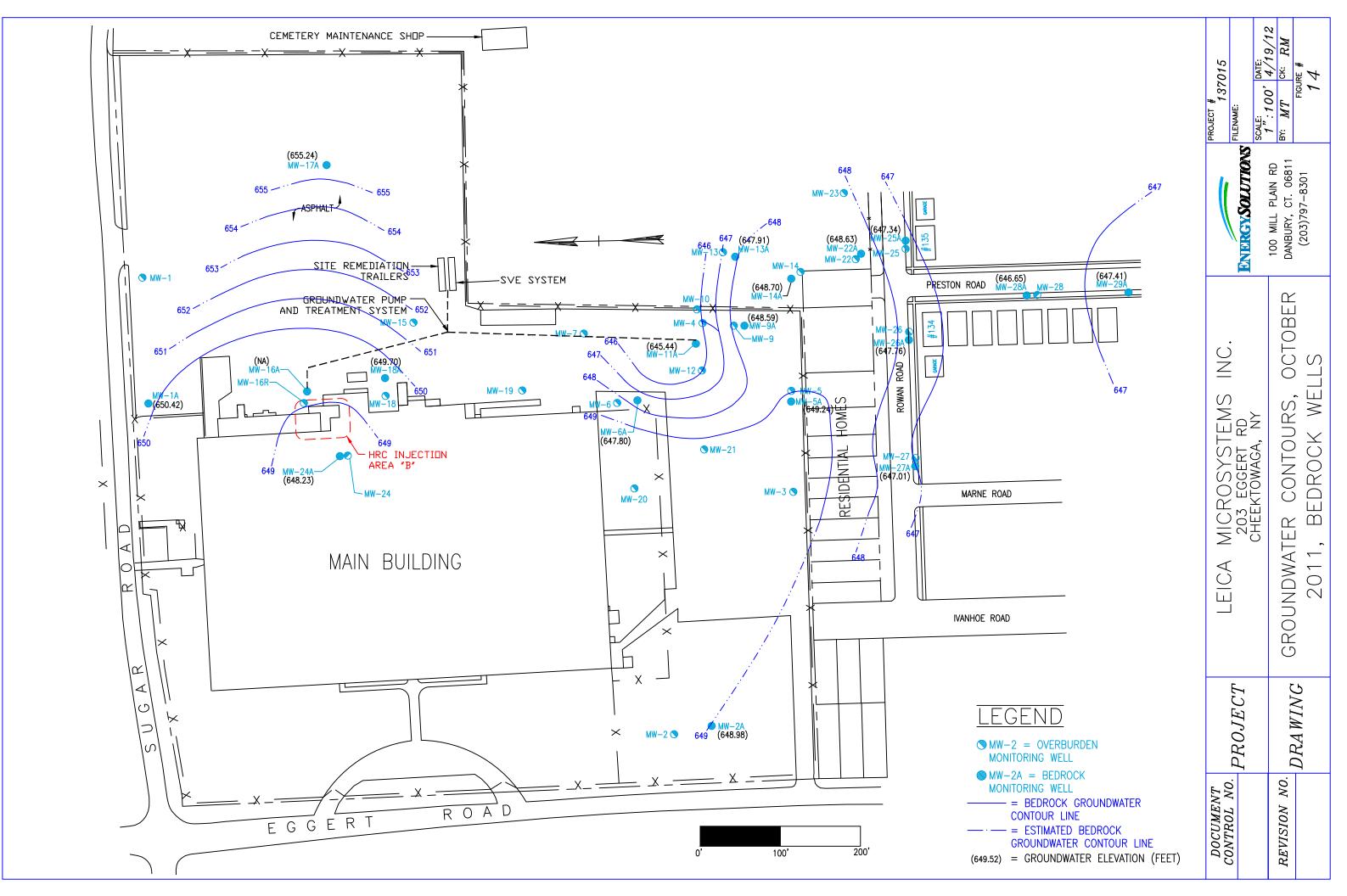
(ND) MW-29A

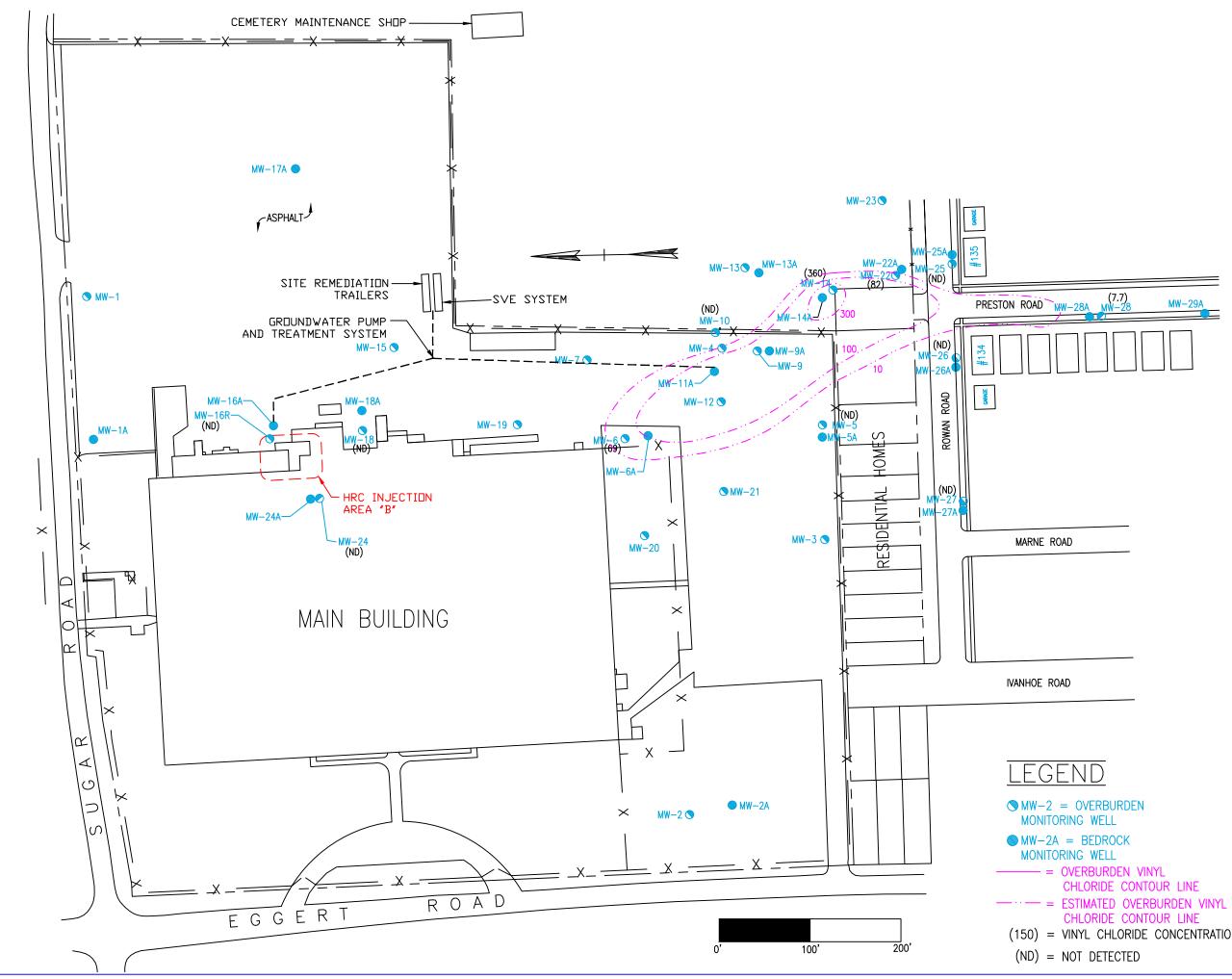

<u>MW-28</u>

PROJECT # 137015 FILENAME: SCALE: DATE:	1":100' 4/06/12 BY: MT CK: RM FIGURE # 1 0
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 Eggert Rd cheektowaga, ny	VINYL CHLORIDE CONTAMINANT CONCENTRATION ISOPLETHS, JUNE 2011, BEDROCK WELLS
PROJECT	DRA WING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.

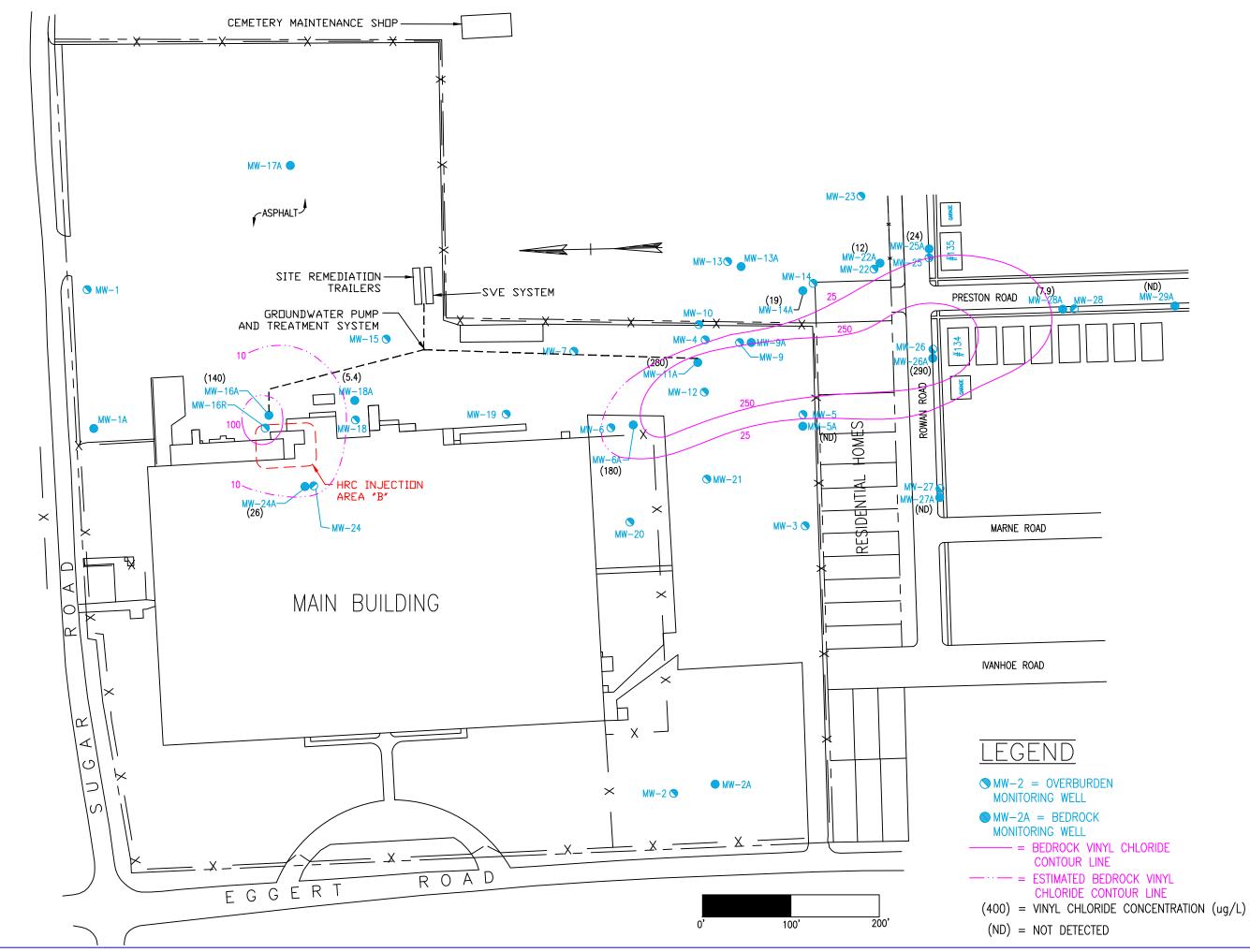


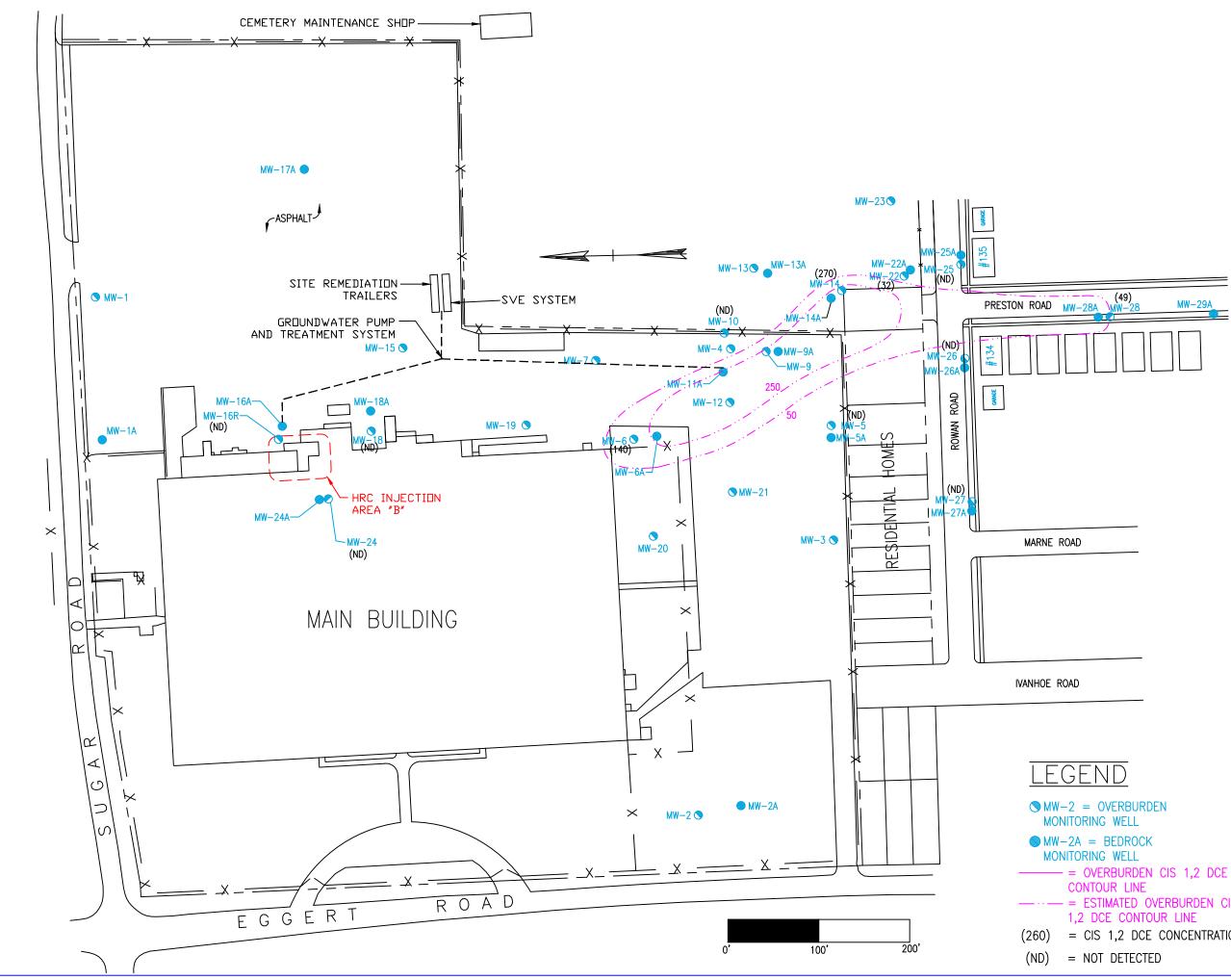
W-2 = OVERBURDEN ONITORING WELL
W-2A = BEDROCK ONITORING WELL
— = OVERBURDEN CIS 1,2 DCE CONTOUR LINE
 — = ESTIMATED OVERBURDEN CIS 1,2 DCE CONTOUR LINE
= CIS 1,2 DCE CONCENTRATION (ug/L) = NOT DETECTED
= ESTIMATED VALUE, CONCENTRATIONS ARE NOT WITHIN A LINEAR RANGE OF THE CALIBRATION


DOCUMENT		LEICA MICF		PROJECT # 137015
CONT WOR TOO.	PROJECT	203 EGGERT RD CHEEKTOWAGA, NY	ENERGYSOLUTIONS	FILENAME: SCAI F. DATF.
REVISION NO.		CIS 1,2 DCE (100 MILL PLAIN RD DANBURY, CT. 06811	1":100' 5/03/12 BY: MT CK: RM
	DKAWING	CUNCENTRATION ISUFLETTS, JUNE 2011, OVERBURDEN WELLS	(203)797–8301	FIGURE # 7 7



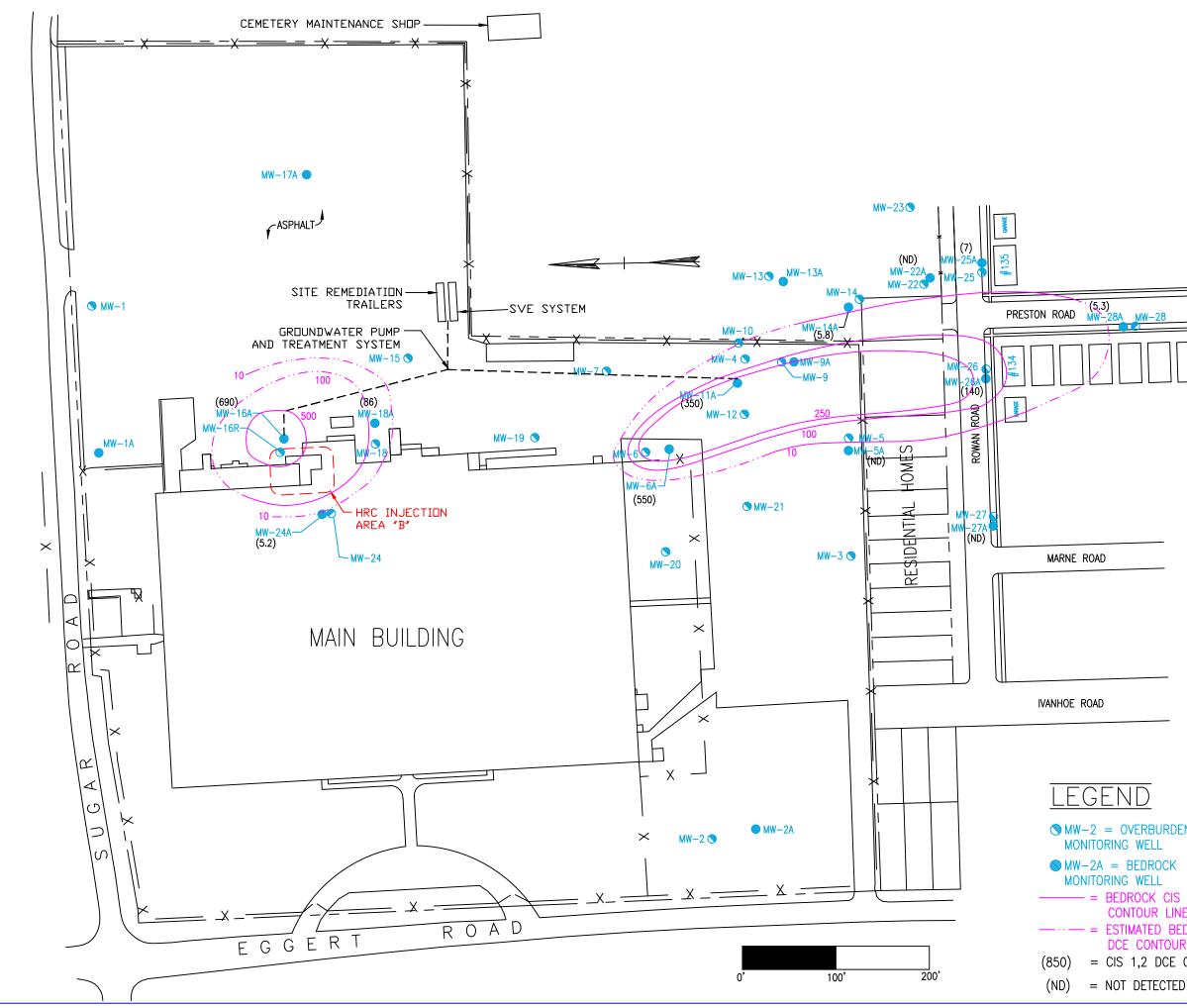
PROJECT # 137015 PILENAME: SCALF: IDATE:	D 11. 1100' 4/06/12 11 FIGURE # 12
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	CIS 1,2 DCE CONTAMINANT CONCENTRATION ISOPLETHS, JUNE 2011, BEDROCK WELLS
PROJECT	DRAWING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.


	PROJECT # 137015 FILENAME: SCALE: SCALE: 7.7.100' DATE: /100'	1.:100 4/24/12 BY: MT CK: PM FIGURE # 13
646	ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
AD WW-28A (645.33) WW-29A	LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	GROUNDWATER CONTOURS, OCTOBER 2011, OVERBURDEN WELLS
<u>LEGEND</u> MW-2 = OVERBURDEN MONITORING WELL	PROJECT	DRAWING
 MW-2A = BEDROCK MONITORING WELL = OVERBURDEN GROUNDWATER CONTOUR LINE = ESTIMATED OVERBURDEN GROUNDWATER CONTOUR LINE 649.79) = GROUNDWATER ELEVATION (FEET) 	DOCUMENT CONTROL NO.	REVISION NO.



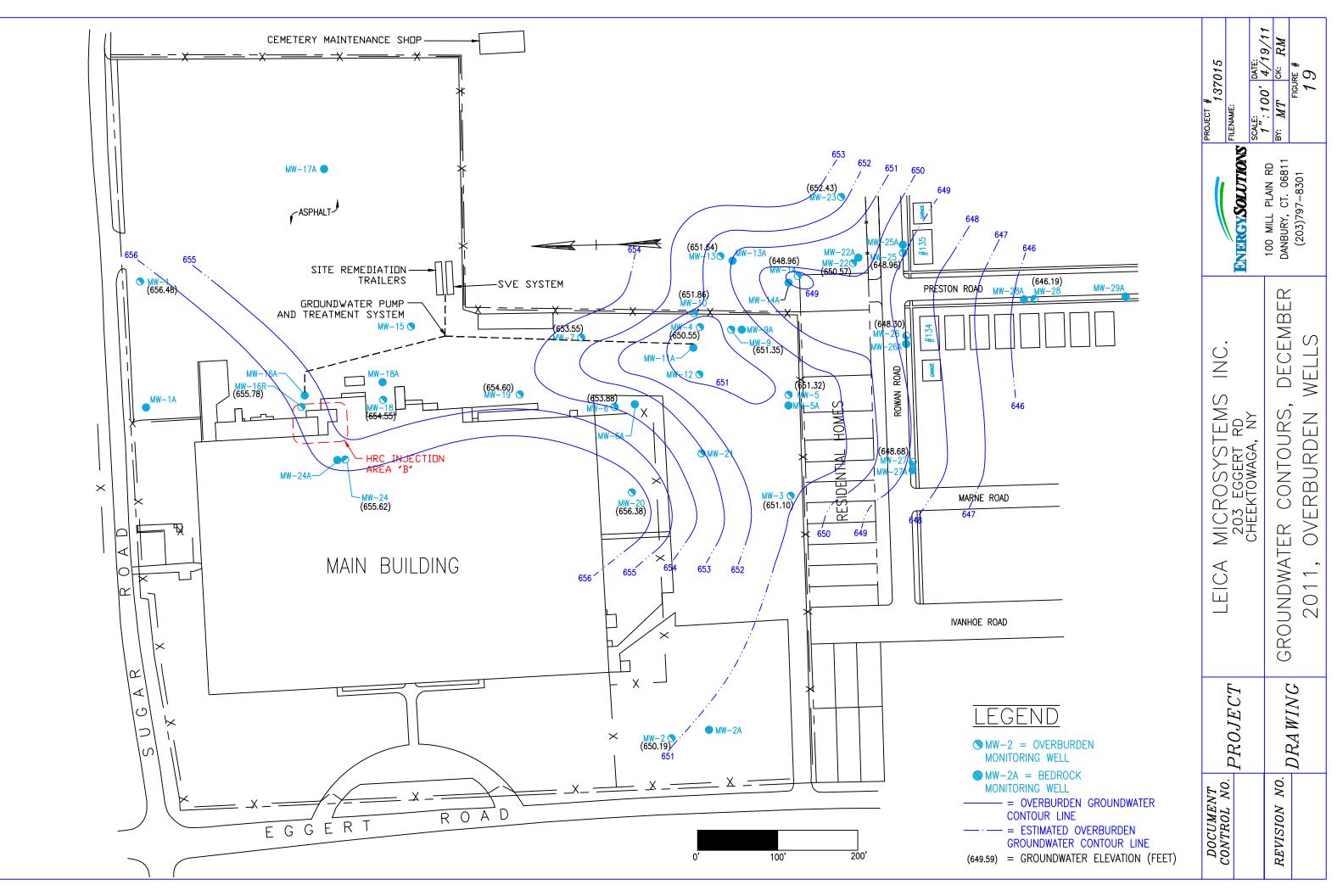
- (150) = VINYL CHLORIDE CONCENTRATION (ug/L)

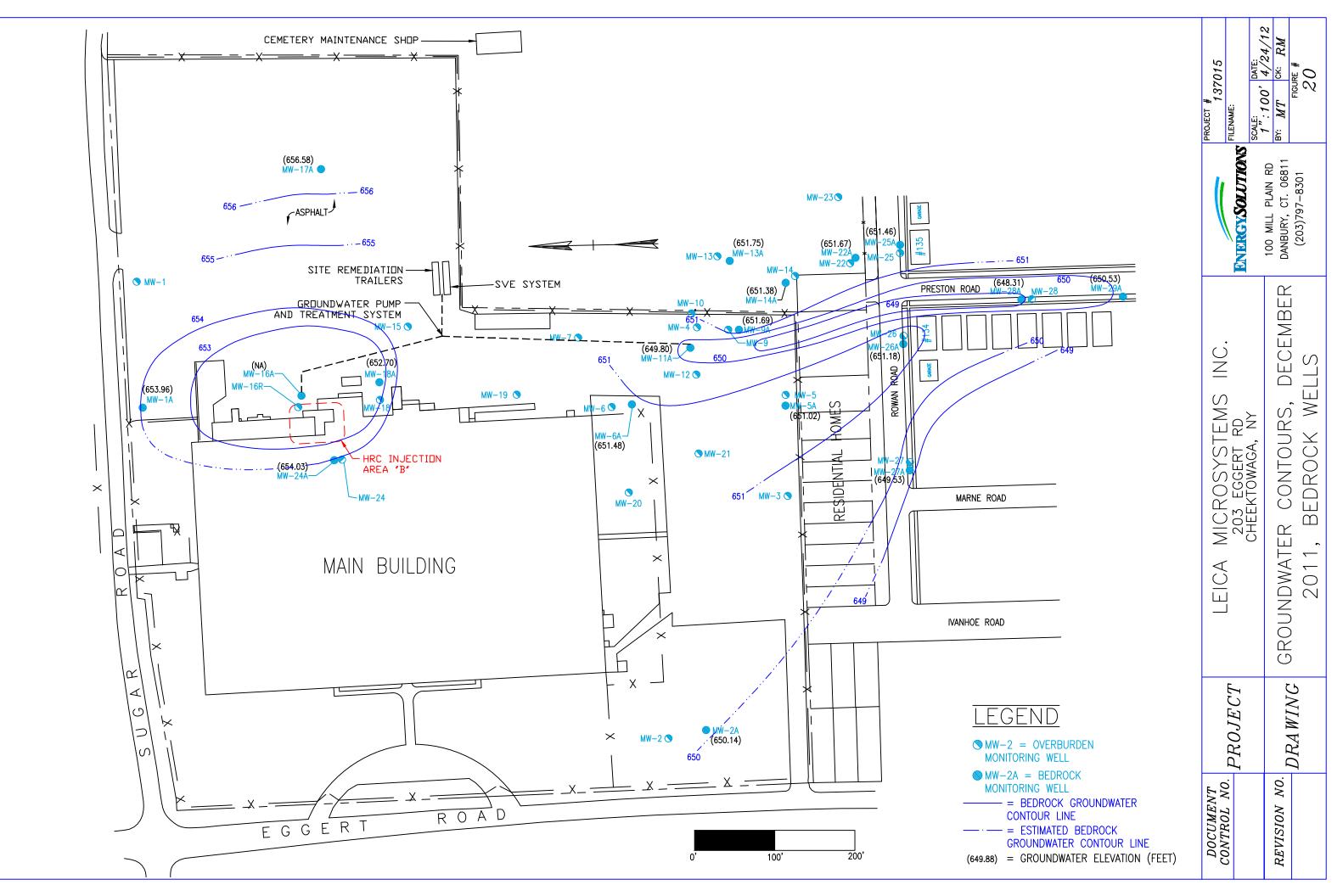
PROJECT # 137015 FILENAME:	BY: MT CK: RM FIGURE #
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	DRAWING CONCENTRATION ISOPLETHS, OCTOBER 2011, OVERBURDEN WELLS
PROJECT	DRAWING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.

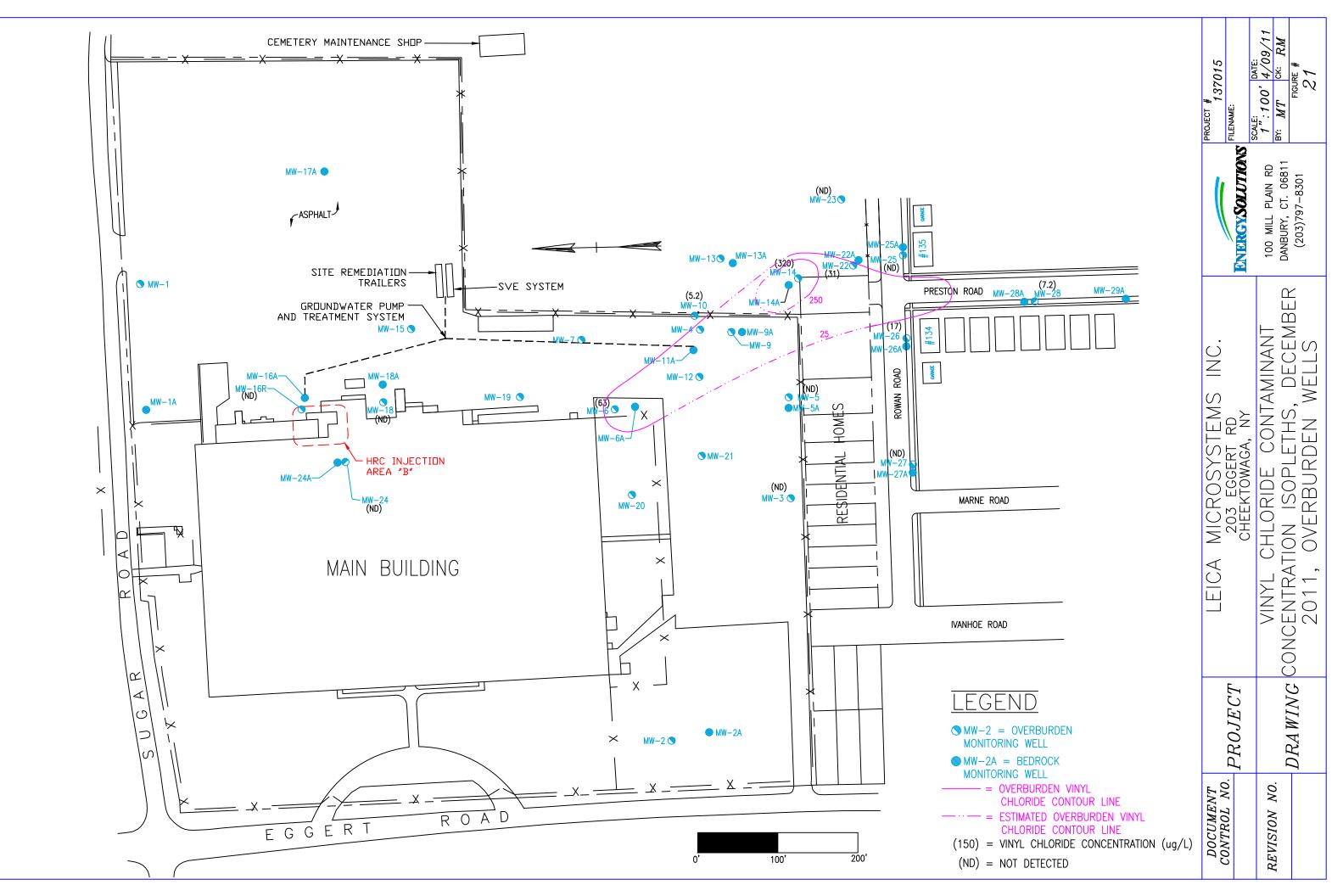


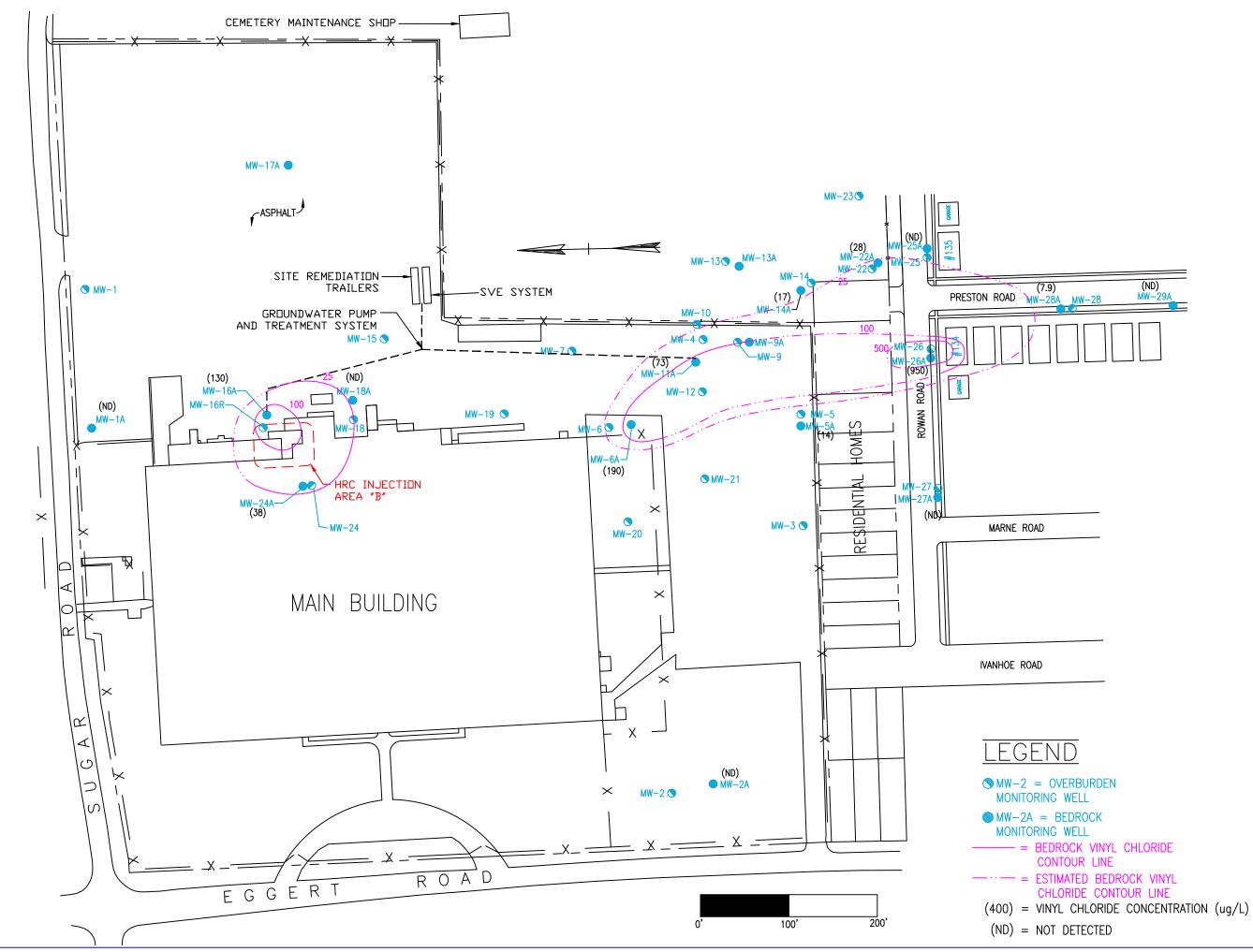
PROJECT # 137015 FILENAME:	SCALE: 1":100' 4/09/11	BY: MT CK: RM FIGURE #	16
ENERGYSOLITIONS	100 MILL PLAIN RD	DANBURY, CT. 06811 (203)797-8301	
LEICA MICROSYSTEMS INC. 203 EGGERT RD	VINYI	DRAWING CONCENTRATION ISOPLETHS, OCTOBER	2011, BEDROCK WELLS
PROJECT		DRAWING	
DOCUMENT CONTROL NO. PROJECT	REVISION NO.		

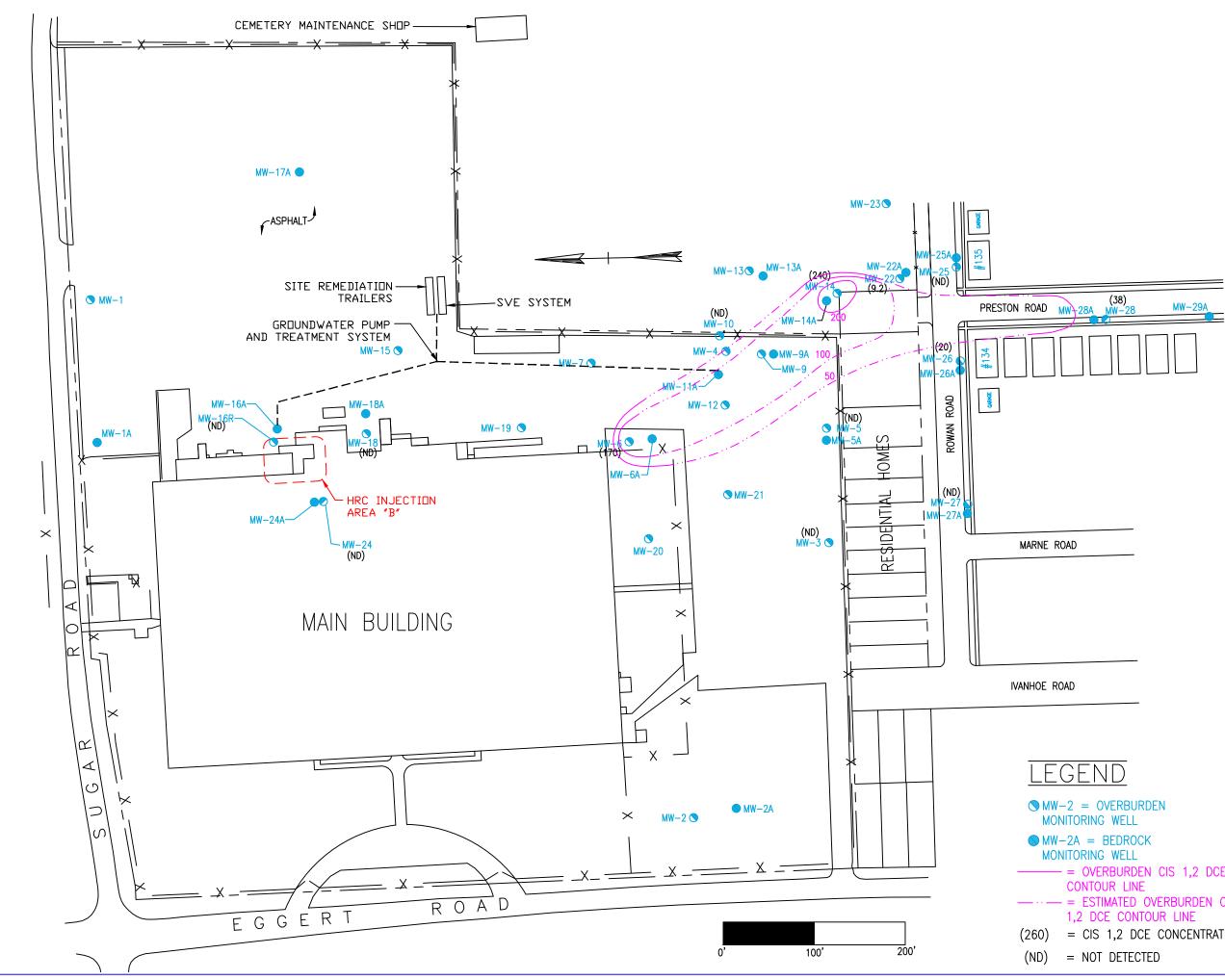


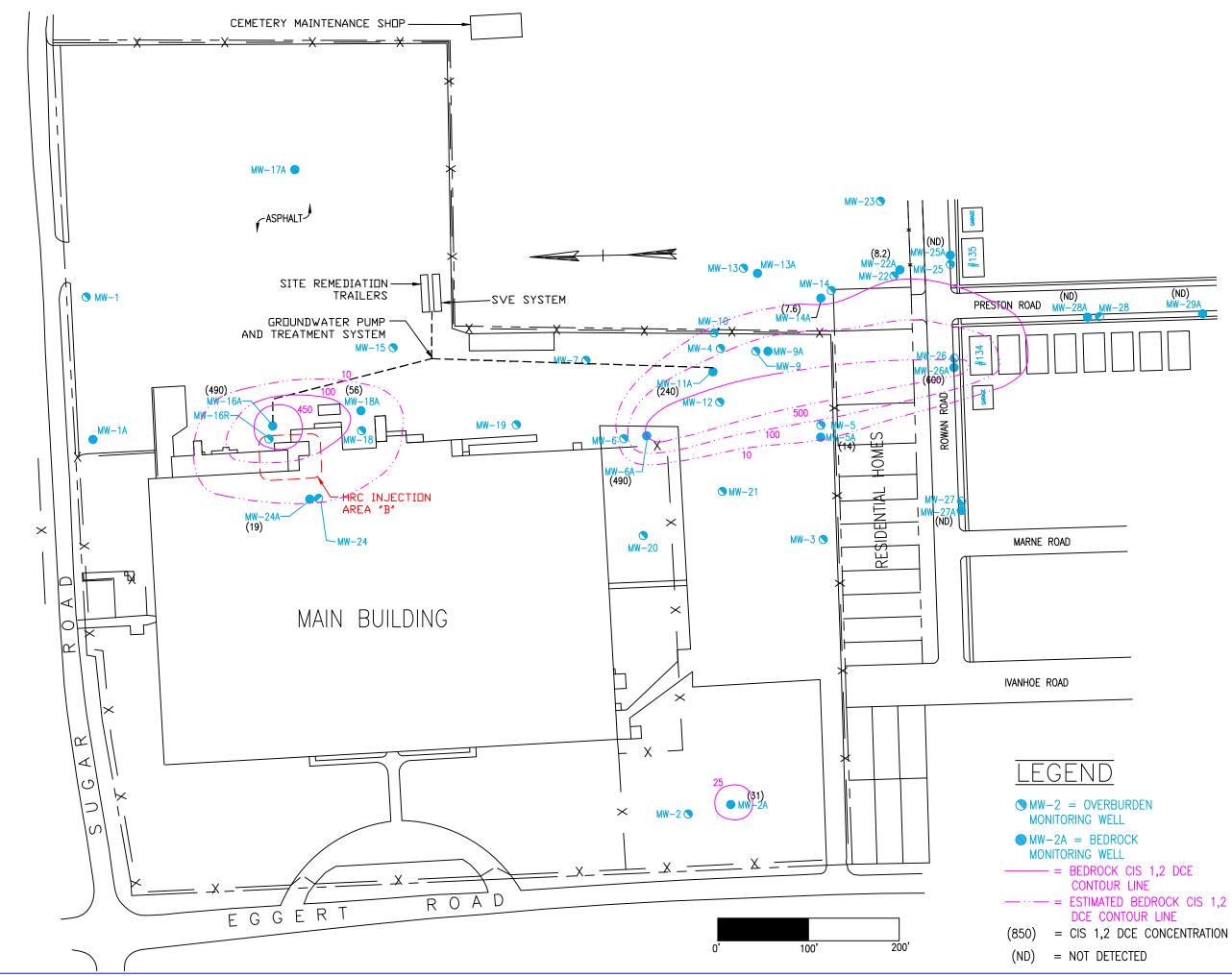

MW-2 = OVERBURDEN MONITORING WELL	
MW-2A = BEDROCK MONITORING WELL	
= OVERBURDEN CIS 1,2 DCE CONTOUR LINE = ESTIMATED OVERBURDEN CIS	
 1,2 DCE CONTOUR LINE 0) = CIS 1,2 DCE CONCENTRATION D) = NOT DETECTED 	(ug/L)


DOCUMENT CONTPOL NO		LEICA	PROJECT #	# 137015
CONTINUE INO.	PROJECT	203 EGGERT RD CHEEKTOWAGA, NY	ENERGYSOLUTIONS RELEVANE:	 Date:
REVISION NO.		DEAL CONCENTRATION ISODIFTHS OCTORER	100 MILL PLAIN RD DANBURY, CT. 06811	1":100' 4/09/11 BY: MT CK: RM
	DVAMING		(203)797–8301 FI	FIGURE # 17




(5.3) DAD <u>MW-28A MW-28</u>	(ND) MW-29A	
RNE ROAD		
	_	
OE ROAD	_	
EGEND		
MW-2 = OVERBUI MONITORING WELL	RDEN	
MW-2A = BEDROO MONITORING WELL		
= BEDROCK (CONTOUR = ESTIMATED DCE CONTO	LINE BEDROCK CIS 1,2	
	COR LINE CE CONCENTRATION	(ug/L)

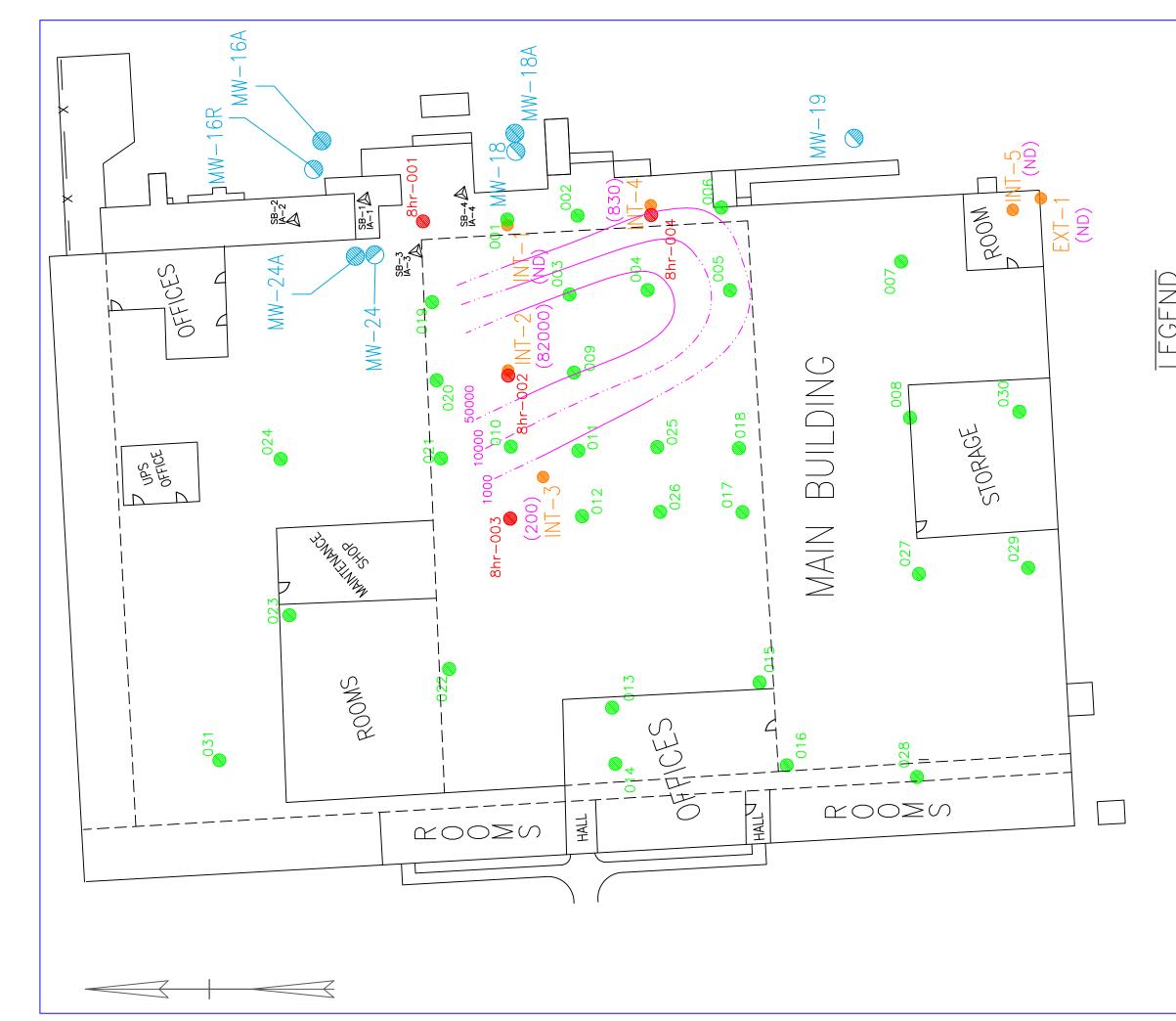




	1":100' 4/09/12 BY: MT CK: RM	FIGURE #
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811	(203)797–8301
LEICA MICROSYSTEMS INC. 203 Eggert RD CHEEKTOWAGA, NY	DETINITION SOUCENTER CONTAMINANT	
PROJECT		DVAMING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.	

MW-2 = OVERBURDEN MONITORING WELL	
MW-2A = BEDROCK MONITORING WELL	
= OVERBURDEN CIS 1,2 DCE CONTOUR LINE = ESTIMATED OVERBURDEN CIS	
1,2 DCE CONTOUR LINE0) = CIS 1,2 DCE CONCENTRATION	(ug/L)
D) = NOT DETECTED	

<u> </u>	1":100' 4/09/11 BY: MT CK: RM FIGURE #
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	DRAWING CONCENTRATION ISOPLETHS, DECEMBER 2011, OVERBURDEN WELLS
PROJECT	DRA WING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.



- (850) = CIS 1,2 DCE CONCENTRATION (ug/L)

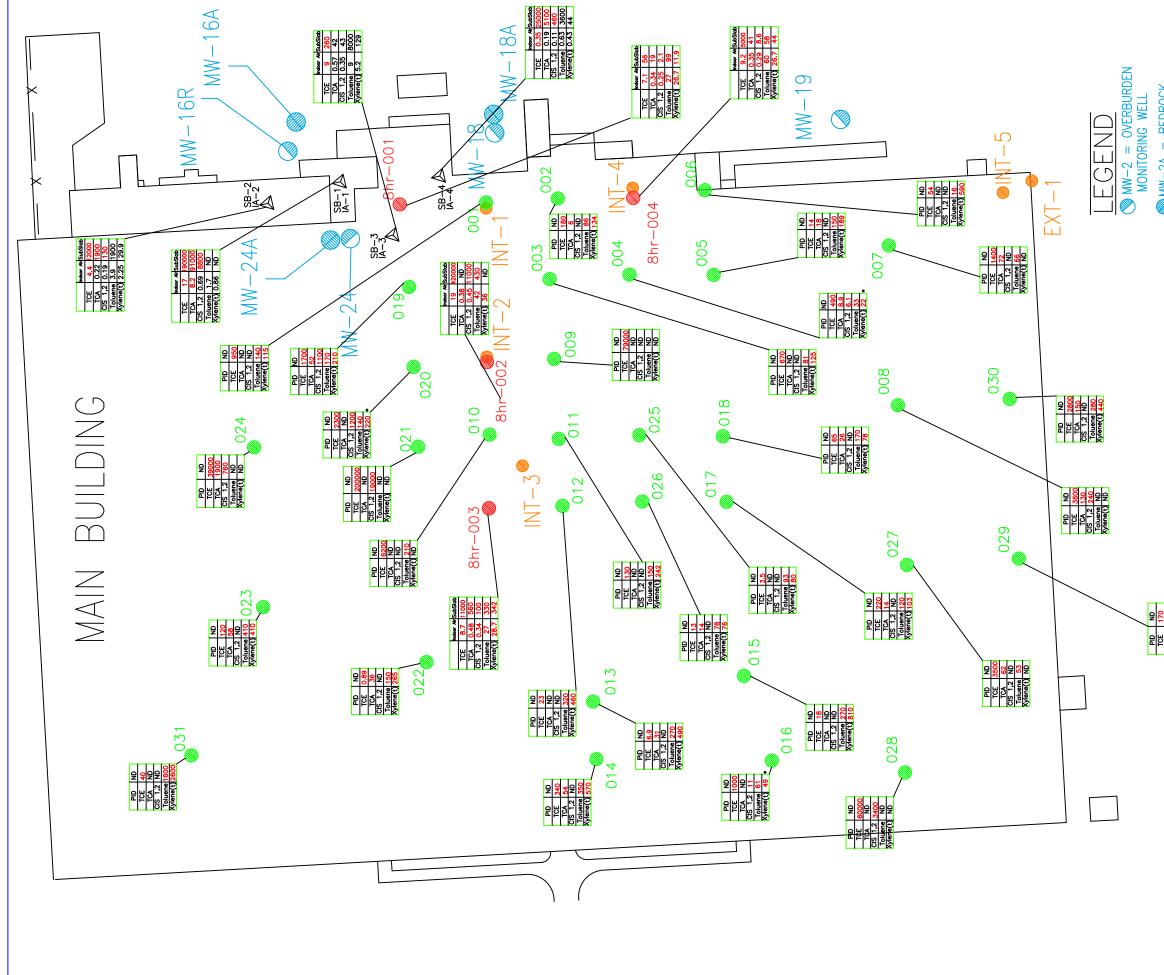

PROJECT # 137015 FILENAME:	SCALE: 1.::100' 4/09/12 BY: MT CK: RM FIGURE # 24
ENERGYSOLUTIONS	100 MILL PLAIN RD DANBURY, CT. 06811 (203)797–8301
LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY	DRAWING CONCENTRATION ISOPLETHS, DECEMBER 2011, BEDROCK WELLS
PROJECT	DRAWING
DOCUMENT CONTROL NO. PROJECT	REVISION NO.

Image: Solution Section Monitoring Well Possible Foundation Image: Solution Woll Well Possible Foundation Image: Solution Woll Well Possible Foundation Image: Solution Well Non-support Image: Solution Well Grab Sample CIS Image: Solution Solut GAS Estimated Grab Image: Solution Solut GAS Estimated Grab Image: Solution Solut CAS	SN	100 MILL PLAIN RD See Scalebar 3/2/12 DANBURY, CT. 06811 BY: MT CK: RM (203)797-8301 25
	LEICA MICROSYSTEMS INC. 203 Eggert RD cheektowaga, ny	Interior Groundwater Grab Sample Locations DCE Concentrations, June 2011
, 00, 00,	PROJECT	DRAWING
MW-2 MW-2A	DOCUMENT CONTROL NO.	REVISION NO.

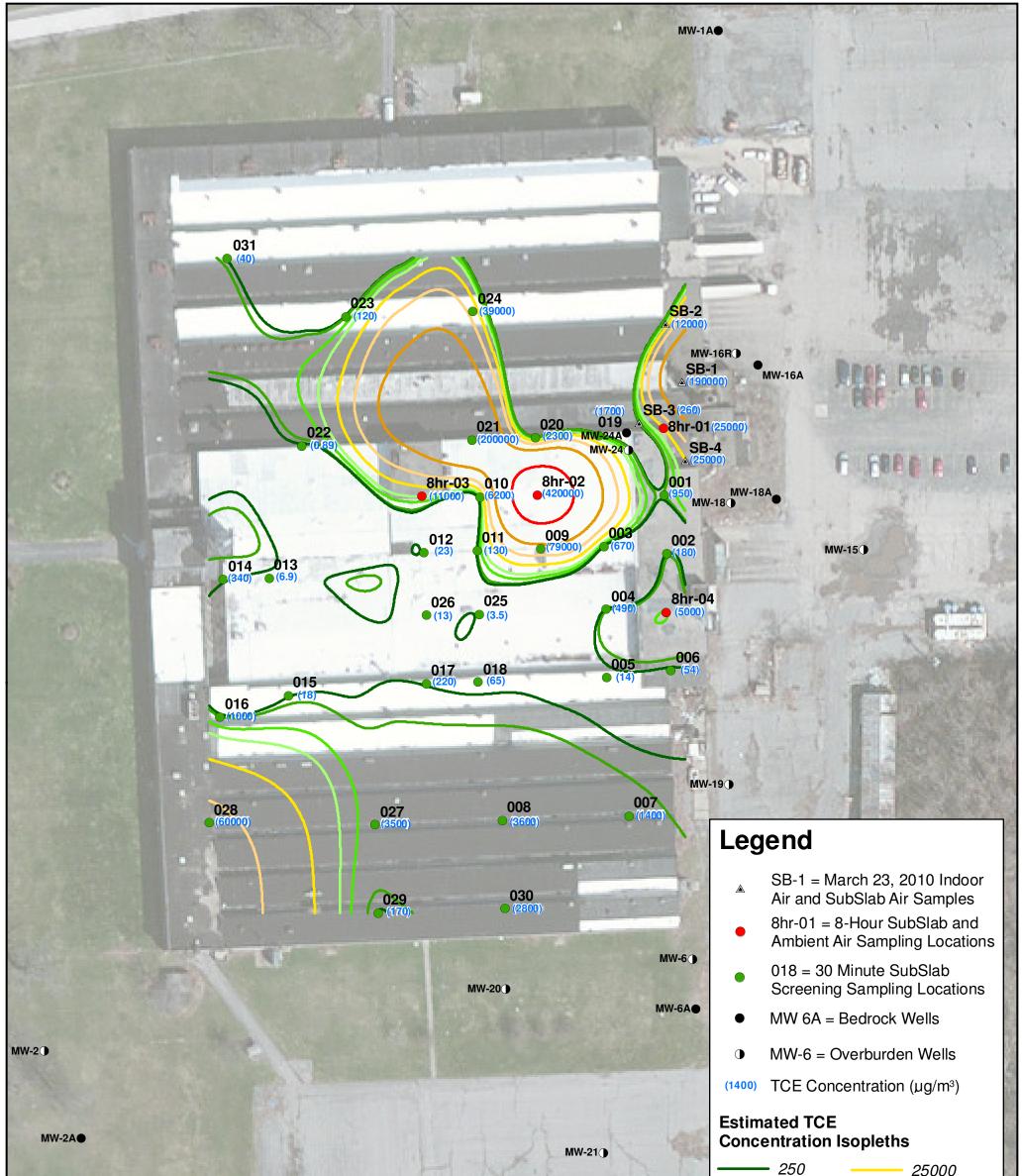


Image: Solution Section Monitoring Well Possible Foundation Image: Solution Well Resport Image: Solution Well Grab Sample TCE Image: Solution Solution Solution Solution Estimated Grab Image: Solution Solution Solution Estimated Grab Image: Solution Solution	Image: Construction of the state of the
	LEICA MICROSYSTEMS INC. 203 EGGERT RD 203 EGGERT RD CHEEKTOWAGA, NY Interior Groundwater Grab Sample Locations TCE Concentrations, June 2011
	PROJECT DRAWING
MW-2 MW-2A	DOCUMENT CONTROL NO. REVISION NO.

 \exists

 MW-2A = BEDROCK MONITORING WELL 025 = EXISTING 30 MINUTE SOIL GAS SCREENING SAMPLING LOCATIONS Bhr-002 = EXISTING PROPOSED DOH COMPLIANT INDOOR AIR AND SUBSLAB SAMPLES INT-1 = EXISTING DIRECT PUSH GROUNDWATER SAMPLE LOCATIONS SB-4 = MARCH 23, 2010 EXISTING INDOOR AIR AND SUBSLAB AIR SAMPLES 400 DETECTIONS 	$MS = \frac{PROJECT \#}{137015}$ FILENAME: SCALE: DATE: Sce Scalebar $5/1/12$ BY: MT CK: RM FIGURE #
ers total s are ie for L	ENERGYSOLUTIONS 100 MILL PLAIN RD DANBURY, CT. 06811 (203)797-8301
) 120' 120' 120' 120' 120' 120' 120' 120'	LEICA MICROSYSTEMS INC. 203 EGGERT RD CHEEKTOWAGA, NY September 2011 SubSlab Soil Vapor & Indoor Air Sample Data
	PROJECT DRAWING
MW-2 MW-2A MW-2A	DOCUMENT CONTROL NO. REVISION NO.

		MW-3()		25000 50000 100000 250000 MW-14A MW-14
DOCUMENT CONTROL NO.	PROJECT	LEICA MICROSYSTEMS INC. 203 EGGERT ROAD CHEEKTOWAGA, NY	ENERGYSOLUTIONS	PROJECT # 137015 FILENAME: SCALE: DATE:
REVISION NO.	DRAWING	Estimated SubSlab Soil Vapor TCE Concentration Isopleths, September 2011	100 Mill Plain Road Danbury, CT 06811 203-797-8301	SEE SCALEBAR 5/3/12 BY: MT CK: RM FIGURE # 28

APPENDIX E

Analytical Data

Analytical Data	March, June, October, and December 2011
	Groundwater Analytical Data
Analytical Data	June 2011Groundwater Grab Samples
	Groundwater Analytical Data
Analytical Data	September 2011
	Sub-Slab and Indoor Air Analytical Data

APPENDIX F

Samson Informational Notice

INFORMATIONAL NOTICE

SamSon Facility Remedial Activities

October 2011

Energy*Solutions* is the environmental consultant for Leica, Inc, the former facility owner. Historical waste management practices may have included the disposal of fluids such as chemical solvents in a dry well located to the east of the facility's main loading docks. Some fluids that were disposed of in the drywell have migrated through the soil to the groundwater. Energy*Solutions* is conducting an investigation to evaluate the extent of the impact on the groundwater, as well as the potential impacts to other receptors, including to the Sam-Son facility. The evaluation includes sampling of the groundwater, the vapors trapped below the floor slab of the facility and inside the facility. The air samples collected inside the facility assist in evaluating if any potential worker exposure exists.

Energy*Solutions* began collecting samples in December 2006. The sampling was repeated in 2008 and in 2010. Groundwater data collected this past summer suggests that the influence to the groundwater from the dry well may extend further under the building to the west. Energy*Solutions* has recently collected and analyzed additional sub-slab vapor and indoor air samples in order to assess potential impacts from the groundwater in these western portions of the facility. Data from this sampling effort will be available in November, 2011.

The results from the 2006, 2008 and 2010 sampling efforts demonstrate that although volatile chemicals can be detected both in the groundwater and in the vapors below the facility floors (sub-slab), there has been minimal (no harmful) impact on the air in occupied areas of the facility. All results are below the Occupational Safety and Health Administrations (OSHA) permissible exposure limits (PELs), **both** in the sub-slab samples and in the indoor air samples/. One of these chemicals of concern is trichloroethene (TCE). Below is a table of the most recent sample results available for TCE, which were collected in 2010:

Location	OSHA Limits (PELs)(ug/m3)	Sub-slab (ug/m3)	Indoor air (ug/m3)
Entryway	537000	190000	17
Warehouse	537000	190	9
Basement	537000	25000	0.35
Loading	537000	12000	4.4
Dock			

All companies involved in these investigations are working closely with the New York State Department of Health (NYSDOH) and with the New York State Department of Environmental Conservation (NYSDEC) for evaluation of the data and subsequent remediation activities. The representatives overseeing the project are:

Jaspal Walia	NYSDEC Project Manager	716-851-7220
Matt Forcucci	NYSDOH Technical Representative	716-847-4501

Energy*Solutions* is continuing to address issues at the facility. Small cracks in the basement floor have already been sealed, to minimize the potential for chemicals to migrate into the building. While all indoor air concentrations are far below OSHA PELs, additional future mitigation approved by the NYSDEC and the NYSDOH will include the installation of a vapor removal system ,designed to remove the sub- slab presence of these chemicals and to therefore eliminate any further impacts inside the building.

If you have further questions please feel free to contact your supervisor, the above representatives, or myself.

Sincerely,

Robert E. McPeak, Jr., P.E., LEP EnergySolutions 100 Mill Plain Road 2nd Floor Mail Box 106 Danbury, CT 06811 801-303-1092 Desk phone

APPENDIX G

Monitoring Program Schedule

Well No.	VOCs, 8260	Field
		Parameters
MW-1A	annual	
MW-2	semi-annual	
MW-2A	semi-annual	
MW-3	annual	
MW-5	semi-annual	Х
MW-5A	semi-annual	Х
MW-6	semi-annual	Х
MW-6A	semi-annual	х
MW-10	semi-annual	х
MW-11A	semi-annual	
MW-14	semi-annual	Х
MW-14A	semi-annual	Х
MW-16R	semi-annual ¹	Х
MW-16A	semi-annual ¹	
MW-18	semi-annual ¹	Х
MW-18A	semi-annual ¹	Х
MW-19	annual	
MW-22	semi-annual	Х
MW-22A	semi-annual	Х
MW-23	semi-annual	
MW-24	semi-annual ¹	х
MW-24A	semi-annual ¹	Х
MW-25	semi-annual	
MW-25A	semi-annual	
MW-26	semi-annual	
MW-26A	semi-annual	
MW-27	semi-annual	
MW-27A	semi-annual	
MW-28	semi-annual	
MW-28A	semi-annual	
MW-29A	semi-annual	

Field Parameters include: Dissolved Oxygen (DO), pH, and Oxygen Reduction Potential (ORP) Notes

1.) Includes Semi-annual and two additional rounds collected simultaneously with other filed activites.

APPENDIX H

Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No.	Site Details 915156	Box 1	
Site	Name	Leica, Inc.		
City/ Cour				
Repo	orting P	eriod: April 30, 2011 to April 30, 2012		
			YES	NO
1.	Is the ir	formation above correct?	X	:
	If NO; ii	nclude handwritten above or on a separate sheet.		
		me or all of the site property been sold, subdivided, merged, or undergone a amendment during this Reporting Period?		X
		ere been any change of use at the site during this Reporting Period IYCRR 375-1.11(d))?		\mathbf{X}
		ny federal, state, and/or local permits (e.g., building, discharge) been issued t the property during this Reporting Period?		\boxtimes
		answered YES to questions 2 thru 4, include documentation or evidence cumentation has been previously submitted with this certification form.		
5.	Is the s	ite currently undergoing development?		
			Box 2	
			YES	NO
		urrent site use consistent with the use(s) listed below? ercial and Industrial	X	
7.	Are all	ICs/ECs in place and functioning as designed?	\mathbf{X}	
	IF	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Co	orrectiv	e Measures Work Plan must be submitted along with this form to address these	issues.	
Sign	nature of	Owner, Remedial Party or Designated Representative Date		

	of Institutional Controls	
<u>Parcel</u>	Owner	Institutional Control
91.00-1-26.11	Leica, Inc.	
		Ground Water Use Restriction
		Landuse Restriction Monitoring Plan Site Management Plan Soil Management Plan
91.00-1-26.12	Calypso Development	
		Ground Water Use Restriction
		Landuse Restriction
		Monitoring Plan
		Site Management Plan Soil Management Plan
	Engineering Con	
<u>Parcel</u> 91.00-1-26.11	Alternate Water Fencing/Access Groundwater Tre	Supply Control
91.00-1-26.11	Alternate Water S Fencing/Access	Supply Control
	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre	Supply Control eatment System Supply Control
91.00-1-26.11 91.00-1-26.12	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access	Supply Control eatment System Supply Control
91.00-1-26.11 91.00-1-26.12 Engineering Co	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation ontrol Details for Site No. 915156	Supply Control eatment System Supply Control
91.00-1-26.11 91.00-1-26.12 Engineering Co Parcel: 91.00-1-26.	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation ontrol Details for Site No. 915156	Supply Control eatment System Supply Control
91.00-1-26.11 91.00-1-26.12 Engineering Co Parcel: 91.00-1-26 As per Declaration of required : 1) Implementation of 2) Prohibition of use	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation ontrol Details for Site No. 915156	Supply Control eatment System Supply Control eatment System n February 28, 2012), the following controls are ember 2011.
91.00-1-26.11 91.00-1-26.12 Engineering Co Parcel: 91.00-1-26 As per Declaration of required : 1) Implementation of 2) Prohibition of use	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Introl Details for Site No. 915156 11 of Covenants and Restrictions (filed or of Site Management Plan, dated Septe e of groundwater without treatment. operty use other than commercial or in	Supply Control eatment System Supply Control eatment System n February 28, 2012), the following controls are ember 2011.
91.00-1-26.11 91.00-1-26.12 91.00-1-26.12 Engineering Co Parcel: 91.00-1-26. As per Declaration of required : 1) Implementation of 2) Prohibition of use 3) Prohibition of pro Parcel: 91.00-1-26. As per Declaration of required :	Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Alternate Water S Fencing/Access Groundwater Tre Vapor Mitigation Introl Details for Site No. 915156 11 of Covenants and Restrictions (filed or of Site Management Pian, dated Septe e of groundwater without treatment. operty use other than commercial or in 12	Supply Control eatment System Supply Control eatment System A February 28, 2012), the following controls are ember 2011. dustrial.

Periodic Review Report (PRR) Certification Statements	
1. I certify by checking "YES" below that:	
a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;	
b) to the best of my knowledge and belief, the work and conclusions described in this certificat are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES	tion NO
2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institut or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	tional
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the Control was put in-place, or was last approved by the Department;	date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including evaluate the continued maintenance of this Control;	access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site Managemen Control; and	nt Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanis and sufficient for its intended purpose established in the document.	sm remains valid
YES	NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative	Date	
---	------	--

IC CERTIFICATIONS SITE NO. 915156

		Box 6
SITE OWNER OR DESI ertify that all information and statements i herein is punishable as a Class "A" misde	n Boxes 1,2, and 3 are	true. I understand that a false statement
CARL S. GRABINSKI at	1500 MITTEL BL	VD., WOOD DALE, ILL. 60191 ess address
n certifying as _ REMEDIAL PART	1 OWNER	(Owner or Remedial Party)
r the Site named in the Site Details Sectio	n of this form.	
land Anabimhi, for	LEICA	5/10/12
gnature of Owner, Remedial Party, or Des endering Certification	signated Representative	e Date

19)

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Robert F. McPeak. On at 100 Mill Plain Rd. Danburg CT, 06811, print name print business address

am certifying as a Professional Engineer for the _______

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Krud E. Milgan

Stand Date

(Required for PE)