

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER

368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

March 10, 2004

Mr. David Chiusano, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Construction Services 625 Broadway, 12th Floor Albany, New York 12233 - 7010 RECEIVED

MAR 1 1 2004 NYSDEC REG 9 FOIL VREL UNREL

Re: Mr. C's Dry Cleaners Site, Contract # D004180, Site # 9-15-157
January 2004 O&M Report

Dear Mr. Chiusano:

Ecology and Environment Engineering, P.C. (E&E) is pleased to provide this February 2004 Operation and Maintenance (O&M) Report for the Mr. C's Dry Cleaners Site, Site # 9-15-157, located in East Aurora, New York. Copies of weekly inspection reports from E&E's subcontractor O&M Enterprises (OME) are provided as Attachment A. The analytical data package from E&E's Analytical Services Center is provided as Attachment B.

In review of the on-site treatment system operation, E&E offers the following comments and highlights:

Operational Summary

- No system shutdowns occurred and the treatment system was operational for 100% of the period between 01/26/04 and 02/24/04. Table 1 is provided to indicate the monthly operational time of the treatment equipment from the time of system startup.
- The pump in pumping well RW-1 was not operational on February 2, 2004, due to the fact that OME disconnected the RW-1 pump on January 26, 2004 to diagnose problem, but was unsuccessful. Thus, the groundwater pumping system was not operating at full pumping capacity. Carrier Controls was recruited to diagnose the problem with RW-1 pump and arrived onsite on February 2, 2004. Carrier Controls determined that both pump motors were faulty and suggested replacing the single-phase pump motors with a three-phase pump motors. Carrier Controls rewired the control panel to allow installation of a three-phase pump motor. On February 9, 2004 E&E personnel met with R.C. Becken at E&E headquarters to discuss pump RW-1, the control panel and various other issues. On February 26, 2004, R.C. Becken installed and restarted a new three-phase pump motor for RW-1. Carrier Controls was onsite to inspect the control panel. Carrier Controls also removed the starter overload from the sump pump and installed it on the

• starter for RW-1, due to the fact that the original starter overload used on RW-1 was too large for the new three-phase motor.

The influent totalizer for the month indicates that approximately 736,288 gallons of groundwater were processed through the treatment system from 01/26/04 02/24/04. Because of questionable accuracy, the effluent totalizer readings are not used. OME is preparing a proposal in March 2004 for repair and replacement of the effluent totalizer for consistency in reporting. Table 2 provides a summary of groundwater volume treated to date. Historical volumes are based on influent totalizer readings provided by the previous contractor's weekly inspection forms.

Table 1
Mr. C's Dry Cleaners Site, Site # 9-15-157
Monthly Operational Uptime of the Treatment Equipment

Month (reporting hours)	Operational Up-time (%) ¹
September 2002 (576)	100%
October 2002 (744)	99.33%
November 2002 (720)	93.41%
December 2002 (744)	80.65%
January 2003 (744)	59.15%
February 2003 (672)	63.39%
March 2003 (744)	82.39%
April 2003 (720)	100%
May 2003 (744)	100%
June 2003 (720)	90.0%
July 2003 (744)	100%
August 2003 (744)	100%
September 1-4, 2003 (96)	100%
October 22 -29, 2003 (168)	100%
October 29 - November 25, 2003 (648)	99%
November 25 - December 29, 2003 (816)	100%
December 29, 2003 – January 26, 2004 (672)	100%
January 26, 2004 February 24, 2004 (696)	100%

¹ Based on total hours for the month in the reporting period.

Treatment system operated by the Tyree Organization Ltd. From 9/02 - 9/03.

Treatment system operated by O&M Enterprises from 10/03 - present.

• Piezometer measurements were collected on 02/09/04. These readings are provided in the weekly inspection reports provided in Attachment A. Measurements were not collected at RW-1 and the surrounding piezometers, as the submersible well pump in RW-1 was not operational at that time. Measurements were also not collected at PW-5 and the piezometers surrounding this well, as well as PW-6, PW-7, and piezometers PZ-6A, PZ-6C, PZ-7A and PZ-7D, due to the presence of deep snow and ice in the areas noted. These measurements indicate that a cone of depression exists around three of the four wells measured. The water level in PW-4 was equal to or

- slightly below the surrounding piezometers except for PZ-4A and PZ-4C (depth to water in PZ-4A exceeded depth to water in PW-4 by 0.62 feet; depth to water in PZ-4C exceeded depth to water in PW-4 by 0.09 feet).
- On February 9, 2004, Bob Liddell (local HVAC subcontractor to OME) completed installation of the gas heating system. This modification was performed as a result of the evaluation of energy savings by switching to gas heat. National Fuel Gas was onsite on February 9, 2004 and inspected the natural gas line to the heater and installed the gas meter. Bob Liddell purchased a new heater exhaust fan that was installed on February 16, 2004. The electric heaters were turned off once the gas heating system was fully operational. E&E will evaluate the savings after review of the monthly invoice from National Fuel Gas.
- On February 2, 2004, Carrier Control installed photoelectric eyes on both exterior building lights to reduce electrical consumption when not needed.
- A 50-micron filter has been used in series with a 25-micron filter during January 2004 through February 15, 2004. The 50-micron filters were changed out on February 9, 2004. On February 16, 2004, R.C. Becken installed 25-micron filters in series with 10-micron filters. The sequestering agent metering pump was turned off on 1/19/04 to help determine if it is contributing to the binding of the filters and has been off since that time. This evaluation period will continue into March 2004.
- The auto dialer malfunctioned on February 9, 2004 while R.C. Becker was onsite. It sent out a power failure call, despite there being power present in the treatment building. Upon closer inspection of the auto dialer, R.C. Becker determined that the fuse was blown, and there weren't any replacement fuses available onsite. R.C. Becker purchased new fuses and replaced the blown fuse in the auto dialer. Auto dialer was fully operational after fuse was replaced.
- Checklists for weekly system inspections are provided as Attachment A for 2/2/04, 2/9/04, 2/16/04 and 2/24/04. Weekly system checks indicate that all operating equipment appear to be operating within normal ranges, aside from pump RW-1, which wasn't operational until 2/24/04, when the old motors were replaced with a single three-phase motor. Pump PW-4 was discovered to be not operational on 2/24/04. Pump and motor in PW-4 were removed and replaced with a new pump and motor. The water level in the well started descending immediately as a result.

Analytical Summary - Groundwater

- E&E and OME personnel sampled influent and effluent groundwater on February 9, 2004. The groundwater samples were analyzed for volatile organic compounds (VOCs), metals, total suspended solids (TSS), total dissolved solids (TDS), and hardness. The air samples were analyzed for VOCs only. The results are discussed below.
- Methyl tert-butyl ether (MTBE) (64.6 μg/L), Trichloroethene (114 μg/L) and Tetrachloroethene (3170 μg/L) were the only compounds detected in the influent groundwater. Tetrachloroethene was the only compound detected in the effluent groundwater at 26.7 μg/L, in exceedance of the Effluent Limitation of 10 μg/L given in Addendum #1 of the Construction Contract

- Documents. E&E will attempt to remedy this situation by running the second blower (#1) in conjunction with the blower currently in operation (#2) to increase air flow through the air stripper. A comparison between the analytical values and the limitations set forth is presented as Table 3.
- On March 2, 2004, E&E collected influent and effluent groundwater samples to determine if effluent concentrations of tetrachlorethene were still in exceedance of the Effluent Limitation of 10 μg/L given in Addendum #1 of the Construction Contract Documents. As the laboratory results show, tetrachloroethene was detected in the influent groundwater at a concentration of 1850 μg/L and in the effluent groundwater at a concentration of approximately 4.96 μg/L, which is in compliance with the Effluent Limitations of 10 μg/L given in Addendum #1 of the Construction Contract Documents. E&E believes that this drop in concentration is a result from pump RW-1 being in operation at the time of sampling, which diluted the groundwater and thus reducing the concentration of tetrachloroethene in the influent and effluent groundwater samples.
- Approximately 20.4 pounds of VOCs were collected in the influent groundwater, as calculated in Table 4. These values are calculated based on influent totalizer readings and assumes that non-detect values given in the analytical data package = 0 μg/L and that the monthly samples are indicative of the influent characteristics and system performance for the entire month of February 2004.
- The treated groundwater effluent results for metals were all in compliance with the Effluent Limitations. TSS was in compliance while TDS returned above the compliance concentration of 850 mg/L with an actual concentration of 1200 mg/L during the month of February 2004. E&E believes the elevated levels of TDS stem from the high metals concentrations in the groundwater, which are not currently being removed by the treatment system. The air stripper was further evaluated as a result of the exceedence and found to be clean and fully operational.

Analytical Summary - Air

- E&E and OME personnel sampled the air stripper exhaust before and after the granular activated carbon (GAC) vessels on February 9, 2004. Air samples were collected using pre-evacuated SUMMA canisters calibrated to continuously collect a one-hour sample.
- Tetrachloroethene and trichloroethene were the only compounds detected in the influent samples, whereas tetrachloroethene was the only compound detected in the effluent air samples. The granular activated carbon reduced the tetrachloroethene concentration from 1100 ppbv to 35.6 ppbv and reduced the trichloroethene concentration from 68.8 ppbv to <5.00 ppbv, indicating approximately 96.8% VOC adsorption in the GAC. Assuming that the blowers are only operational 50% of the total reporting period time, this efficiency calculates to approximately 4.60 lbs of VOCs removed during the February 2004 reporting period. All other compounds were below the detection limit.

If you have any questions regarding the O&M report summary submitted, please call me a 716-684-8060

Very Truly Yours,

Michael G. Steffan Michael G. Steffan Project Manager

cc: D. Miller, E&E-Buffalo w/o attachments

G. Jones, Site Representative, E&E - Buffalo - w/ attachments

G. Sutton, Region 9, NYSDEC - Buffalo w/ attachments

R. Becken, O&M Enterprises w/attachments

CTF-000699.NY06.05

Attachment A Weekly Inspection Reports

Date/Time		2/2/04	1:00					
Inspection	personnel		RC Becken			,	·****	· · · · · · · · · · · · · · · · · · ·
Other personnel on site			Andy Murphy	y				
				· · · · · · · · · · · · · · · · · · ·				
Weather C	Conditions		sunny 32 de	egrees		···	······································	· · · · · · · · · · · · · · · · · · ·
Are all well pumps operating in auto? YES (NO) If "NO", provide explanation								
			RW-1					
Provide wa RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	ater level re ON (ON) (ON) (ON) (ON) (ON) (ON) (ON) ((OFF) OFF OFF OFF OFF	on control par 15 6 5 16 10 4 7 6 4	nel				
Influent Flo	ow Rate		1	9.39 gp	m			
Influent To	talizer Rea	ading	***************************************	9	19141	5 gallons		
Sequester	ing agent o	trum leve	<u> </u>	2"		_ft-in		
Amount of	sequester	ing agen	t remainin <u>g</u>			~85	gallons	
Sequester	ing agent f	eed rate	***		(<u>g</u> pm		
Sequestering agent metering Pump Pressure 0					······································	_psi		
Bag filter to	op pressur	е		10	11	_psi		
Bag filter b	Bag filter bottom pressure				0	_psi		

Influent feed pump in	use	(#1)	#2				
Influent Pump Pressu	re			6	osi		
Air stripper blower in	use	#1	(#2)				
Air stripper differentia	i pressu	re		18 i	nches l	H₂O	
Air stripper vacuum	····· = ±8/3/16/16/16/19/19/19/19/19/19/19/19/19/19/19/19/19/		17	inches H ₂ O)		
Effluent feed pump in	use	(#1)	#2				
Effluent feed pump pr	essure			30	osi		
Effluent flow rate	· · ,· · · · · · · · · · · · · · · · ·		109	gpm			
Effluent Totalizer read	ding			987006 (gailons	708090	
Are building heaters in	n use?	(YES)	NO				
Ambient air temperatu	ure			60	degrees	s F	
Are any leaks present	t?	YES	(NO)				
Is sump pump in use?	?	YES	(NO)				
Water level in sump _		1"					
Is treatment building of	clean an	d organiz	ed?	(YES)	NO		
Samples collected?	YES	(NO)					
Air stripper influent Air stripper effluent	Sam	ple ID	Time of	Sampling	рН	Turbidity	Temp.
GAC influent			_		NA	NΑ	
GAC effluent	**	······································	-		NA	NA	
Is there evidence of ta	ampering	g/vandali:	sm of wel	ls?	YES	(NO)	
Were manholes inspe					YES	(NO)	
Were electrical boxes	•			_	YES	(NO)	
Is water present in an	-				YES	NO	
(If yes, provide manhole/electric box ID and description of any corrective measures on the following page.)							

Other observations:
Describe any other system maintenance performed
changed filters (50 micron only). Carrier Controls on site to check RW-1 both motors
bad, suggested replacing with three phase motor as soon of the drawings
indicate and then eliminate the capacitor used with the single phase motor. Three
phase would be more ecomonical to run. He rewired the control panel so I could
install a three phase motor and also connected photo electric eyes on both
exterior lights so they were not on 24 / 7. Bob liddell working on the heating system
but did not finish, he will return next Monday.
Signature -

Date/Time		2/9/04	13:15	····				
Inspection personnel RC Becken								
Other pers	sonnel on s	site	Bob Liddell And	dy Murphy	,			
Weather Conditions overcast 41 degrees								
Are all well pumps operating in auto? YES (NO) If "NO", provide explanation RW-1								
		-	on control panel			_		
RW-1	ON	(OFF)	15	ft				
PW-2	(ON)	OFF	5	ft				
PW-3	(ON)	OFF	6	ft				
PW-4	(ON)	OFF	16	ft				
PW-5	(ON)	OFF	9	ft				
PW-6	(ON)	OFF	3	ft				
PW-7	(ON)	OFF	10	ft				
PW-8	(ON)	OFF	4	ft				
	Equalizati	ion tank	4	ft				
Influent Flo	ow Rate		20.2	3 gpm				
Influent To	otalizer Rea	ading		94012	40 gallons			
Sequester	ing agent o	drum lev	el	2"	ft-in			
Amount of	sequester	ing ager	nt remaining	~85		gallons		
Sequester	ing agent f	feed rate			<u>0</u> gpm			
Sequestering agent metering Pump Pressure					0		_psi	
Bag filter t	op pressur	е		25/18	psi			
Bag filter b	Bag filter bottom pressure ten zero psi							

Influent feed pump in use	(#1)	#2				
Influent Pump Pressure			5	osi		
Air stripper blower in use	#1	(#2)				
Air stripper differential pressu	re		17 i	nches H	H ₂ O	
Air stripper vacuum	,	17	inches H ₂ O			
Effluent feed pump in use	(#1)	#2				
Effluent feed pump pressure			25	osi		
Effluent flow rate		105	gpm			
Effluent Totalizer reading			124378 (gallons	111406	
Are building heaters in use?	(YES)	NO				
Ambient air temperature			60	degrees	F	
Are any leaks present?	YES	(NO)				
Is sump pump in use?	YES	(NO)				
Water level in sump		1"				
Is treatment building clean an	d organiz	ed?	(YES)	NO		
Samples collected? (YES)	NO					
Sam Air stripper influent Air stripper effluent GAC influent GAC effluent	ple ID	Time of	Sampling	pH 7.92 8.34 NA NA	Turbidity 0 39.36 NA NA	Temp. 52.6 50.7
Is there evidence of tampering/vandalism of wells? Were manholes inspected? Were electrical boxes inspected? Is water present in any manholes or electrical boxes?				YES YES YES YES	(NO) (NO) (NO) NO	Waying page

Other observations:
Proceedings of the control of the co
Describe any other system maintenance performed
Sampling done, water levels gauged in wells that scould be located, deep snow
has many buried. Bob Liddell on site to finish installation of gas heater, unfortunately
there is a problem with the exaust fan on the heater therefore it will not operate, a new
fan will be installed next week. National Fuel Gas on site to inspect the gas line to
the heater and install the gas meter. While on site the auto dailer started dailing
out with a power failure alarm, after investigation I found the fuse in the auto dailer
had blown, no fuses left on site, will purchase and install next week.
I placed a jumper cable across the fuse terminal and the alarm cleared, I'm not
sure why the fuse blew but I know E&E personnel had problems in October
similar to this.
Signature
SIGNOTHIC STANDARD AND AND AND AND AND AND AND AND AND AN

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157 Piezometer Water Level Log

Date	2/9/04	Measurements taken by RC Becken
RW-1	ft	Comments
PZ-1A	ft	Comments
PZ-1B	ft	Comments
PZ-1C	ft	Comments
PZ-1D	ft	Comments
PW-224.83	3ft	Comments
PZ-2A10.91	<u>1ft</u>	Comments
PZ-2B <u>11.22</u>	2ft	Comments
PZ-2C10.71	<u>1ft</u>	Comments
PZ-2D10.54	<u>4</u> ft	Comments
PW-319.9	9ft	Comments
PZ-3A <u>11.3</u> 1	<u>1</u> ft	Comments
PZ-3B <u>11.39</u>	9ft	Comments
PZ-3C11.86	<u>6</u> ft	Comments
PZ-3D11.4	4 ft	Comments
PW-411.11	1ft	Comments
PZ-4A 11.73	3 ft	Comments

RW-1 pump on during measurements?	YES	(NO)
PW-2 pump on during measurements?	(YES)	NO
PW-3 pump on during measurements?	(YES)	NO
PW-4 pump on during measurements?	(YES)	NO

PZ-4B 10.96 ft

PZ-4C ____ft

PZ-4D 10.59 ft

Comments

Comments_

Comments

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157

Piezometer Water Level Log

Measurements taken by RC Becken

Date 2/9/04

PW-5 _____ft Comments _____ PZ-5A ft Comments PZ-5B ft Comments PZ-5C _____ft Comments _____ PZ-5D _____ft Comments PW-6 _____ft Comments _____ PZ-6A _____ft Comments _____ PZ-6B 11.72 ft Comments PZ-6C ft Comments PZ-6D 11.89 ft Comments PW-7 _____ft Comments PZ-7A ft Comments PZ-7B 12.23 ft Comments PZ-7C 11.71 ft Comments PZ-7D _____ft Comments _____ PW-8 21.03 ft Comments PZ-8A 8.46 ft Comments PZ-8B <u>8.5</u> ft Comments _____ PZ-8C 8.04 ft Comments _____ PZ-8D 8.36 ft Comments

(YES)

(YES)

(YES)

(YES)

NO NO

NO

NO

PW-5 pump on during measurements?

PW-6 pump on during measurements?

PW-7 pump on during measurements?

PW-8 pump on during measurements?

Date/Time	2/16/04	9:30						
Inspection person	inel	RC Becken						
Other personnel of	on site	Bob Liddell	Greg					
Weather Conditions clear 11 degrees								
Are all well pumps operating in auto? YES (NO) If "NO", provide explanation RW-1								
Provide water level RW-1 ON PW-2 (ON PW-3 (ON PW-4 (ON PW-5 (ON PW-6 (ON PW-7 (ON PW-8 (ON Equalis	(OFF)) OFF) OFF) OFF) OFF) OFF) OFF zation tank	on control pa	15 ft 9 ft 5 ft 16 ft 8 ft 6 ft 12 ft 14 ft 4 ft					
Influent Totalizer	Reading		9555	613 gallons				
Sequestering age	nt drum leve		2"	ft-in				
Amount of seques	stering agen	t remaining	~85		_gallons			
Sequestering age	nt feed rate			0 gpm				
Sequestering age	nt metering	Pump Press	ure		0 psi			
Bag filter top pres	sure		50/20	psi				
Bag filter bottom	oressure		18/0	psi				

Influent feed pump in use	(#1)	#2				
Influent Pump Pressure			5	osi		
Air stripper blower in use	#1	(#2)				
Air stripper differential pre	ssur <u>e</u>		17 i	nches H	I ₂ O	
Air stripper vacuum		19	inches H ₂ O			
Effluent feed pump in use	(#1)	#2				
Effluent feed pump pressu	ire		20	osi		
Effluent flow rate		105.6	gpm			
Effluent Totalizer reading			214767	gailons	201786	
Are building heaters in use	e? (YES)	NO				
Ambient air temperature			52	degrees	F	
Are any leaks present?	YES	(NO)				
Is sump pump in use?	YES	(NO)				
Water level in sump	0					
Is treatment building clear	n and organiz	ed?	(YES)	NO		
Samples collected? YE	S (NO)					
S Air stripper influent	Sample ID	Time of	Sampling	рН	Turbidity T	emp.
Air stripper effluent GAC influent GAC effluent				NA NA	NA NA	
Is there evidence of tampering/vandalism of wells? Were manholes inspected? Were electrical boxes inspected? Is water present in any manholes or electrical boxes?					(NO) (NO) (NO) NO	owing posses

Attachment B E&E ASC Analytical Data Package

Date/Time 2/24/04	1:30							
Inspection personnel	RC Becken							
Other personnel on site	Andy Murphy	Dave Ca	arrier, Steve	e Franks				
Weather Conditions clear sunny 28 degrees								
Are all well pumps operating in auto? (YES) NO If "NO", provide explanation								
Provide water level readings of RW-1 (ON) OFF PW-2 (ON) OFF PW-3 (ON) OFF PW-4 (ON) OFF PW-5 (ON) OFF PW-6 (ON) OFF PW-7 (ON) OFF PW-7 (ON) OFF PW-8 (ON) OFF Equalization tank	on control panel 13 4 5 6 7 9 5 8 4	ft ft ft ft ft ft						
Influent Flow Rate	56	gpm						
Influent Totalizer Reading		974803	1 gallons					
Sequestering agent drum leve	el	2"	ft-in					
Amount of sequestering agent	t remaining	~85		gallons				
Sequestering agent feed rate			<u>0</u> gpm					
Sequestering agent metering	Pump Pressure		0	···	_psi			
Bag filter top pressure	8///8	· ·	psi					
Bag filter bottom pressure		psi						

■ Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

Analytical Services Center

4493 Walden Avenue

14086 Lancaster, New

0402090

Mr. C's Dry Cleaners Project:

E and E Buffalo Office

Client Sample AS INFLUENT

Alt. Client ID:

% Moist: Collection 2/9/2004 9:22:00 AM

Test 1_ASP_4.2_VOA_W Matrix Water DL Lab ID: 0402090-01A Sample Method: OLM04.2_VOA **Prep Method: VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2**

							-	
Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
Dichlorodifluoromethane	ND		250	μg/L	25 :	2/13/2004 10:09:00 AM	I PERRY 040213A	DWW
Chloromethane	ND		250	μg/L	25	D 10/2001 10:00:00 1		,
	ND		250	μg/L	25			
Vinyl chloride	ND		250	μg/L	25			
Bromomethane	ND		250	μg/L	25			
Chloroethane	ND		250	μg/L μg/L	25			
Trichlorofluoromethane	ND		250	μg/L μg/L	25			
1,1-Dichloroethene	ND		250		25			
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		230	μg/L	25			
ne	ND		050	/1	25			
Acetone	ND		250	μg/L	25 25			
Carbon disulfide	ND		250	μg/L				
Methyl acetate	ND		250	μg/L	25			
Methylene chloride	ND		250	μg/L	25			
trans-1,2-Dichloroethene	ND		250	μg/L	25			,
Methyl tert-butyl ether	ND		250	μg/L	25			
1,1-Dichloroethane	ND		250	μg/L	25			
cis-1,2-Dichloroethene	ND		250	μg/L	25			
2-Butanone	ND		250	μg/L	25			
Chloroform	ND		250	μg/L	25			
1,1,1-Trichioroethane	ND		250	μg/L	25			
Cyclohexane	ND		250	μ g/L	25			
Carbon tetrachloride	ND		250	μg/L	25			
E ne	ND		250	μg/L	25			
1,2 bichloroethane	ND		250	μg/L	25			
Trichloroethene	ND		250	μ g/L	25			
Methylcyclohexane	ND		250	μg/L	25			
1,2-Dichloropropane	ND		250	μg/L	25			
Bromodichloromethane	ND		250	μg/L	25			
cis-1,3-Dichloropropene	ND		250	μg/L	25			
4-Methyl-2-pentanone	ND		250	μg/L	25			
Toluene	ND		250	μg/L	25			
trans-1,3-Dichloropropene	ND		250	μ g/L	25			
1,1,2-Trichloroethane	ND		250	μg/L	25			
Tetrachloroethene	3170		250	μ g/L	25			
2-Hexanone	ND		250	μg/L	25			
Dibromochloromethane	ND		250	μg/L	25			
1,2-Dibromoethane	ND		250	μ g/L	25			
Chlorobenzene	ND		250	μ g/L	25			
Ethylbenzene	ND		250	μg/L	25			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:52 PM

Laboratory Results

Analytical Services Center

4493 Walden Avenue

Lancaster, New

Project:

14086

Mr. C's Dry Cleaners

NYS ELAP ID#:

10486

Phone

(716)

E and E Buffalo Office Client Sample AS INFLUENT

0402090 Alt. Client ID:

Collection 2/9/2004 9:22:00 AM % Moist:

Lab ID: 0402090-01A Sample DL Matrix Water Test 1_ASP_4.2_VOA_W

VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2

Method: OLM04.2_VOA Prep Method:

Analyte	Result	Q	Limit	Units	DF	Date Run	Batch	Analyst
Xylenes, Total	ND		250	μg/L	25			
Styrene	ND		250	μg/L	25			
Bromoform	ND		250	μg/L	25			
Isopropylbenzene	ND		250	μg/L	25			
1,1,2,2-Tetrachloroethane	ND		250	μg/L	25			
1,3-Dichlorobenzene	ND		250	μg/L	25			
1,4-Dichlorobenzene	ND		250	μg/L	25			
1,2-Dichlorobenzene	ND		250	μg/L	25			
1,2-Dibromo-3-chloropropane	ND		250	μg/L	25			
1,2,4-Trichlorobenzene	ND		250	μg/L	25			
Surr:Toluene-d8	99		88 - 110	%REC	25 2	2/13/2004 10:09:00 AM PERRY_0402	213A	DWW
Surr:4-Bromofluorobenzene	96		86 - 115	%REC	25			
Surr:1,2-Dichloroethane-d4	97		76 - 114	%REC	25			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Printed: Monday, March 01, 2004 4:01:53 PM

Laboratory Results

Phone

NYS ELAP ID#:

(716)

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

E and E Buffalo Office

(t: Lab 0402090

Lab ID: 0402090-01A

Project:

Mr. C's Dry Cleaners

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM

Matrix Water Test 1_ASP_4.2_VOA_W

VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2

Sample

SAMP

Method: OLM04.2_VOA Prep Method:

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
Dichlorodifluoromethane	ND		10.0	μg/L	1	2/13/2004 4:19:00 AN	1 PERRY_040212A	MRD
Chloromethane	ND		10.0	μ g/L	1			
Vinyl chloride	ND		10.0	μ g/L	1			
Bromomethane	ND		10.0	μg/L	1			
Chloroethane	ND		10.0	μg/L	1			
Trichlorofluoromethane	ND		10.0	μ g/L	1			
1,1-Dichloroethene	ND		10.0	μg/L	1			
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		10.0	μ g/L	1			
ne								
Acetone	ND		10.0	μg/L	1			
Carbon disulfide	ND		10.0	μg/L	1			
Methyl acetate	ND		10.0	μg/L	1			
Methylene chloride	ND		10.0	μg/L	1			
trans-1,2-Dichloroethene	ND		10.0	μg/L	1			
Methyl tert-butyl ether	64.6		10.0	μg/L	1			
1,1-Dichloroethane	ND		10.0	μg/L	1			
cis-1,2-Dichtoroethene	ND		10.0	μg/L	1			
2-Butanone	ND		10.0	μg/L	1			
Chloroform	ND		10.0	μg/L	1			
1,1,1-Trichloroethane	ND		10.0	μg/L	1			
Cyclohexane	ND		10.0	μg/L	1			
Cr 'con tetrachloride	ND		10.0	μg/L	1			
L /ne	ND		10.0	μg/L	i			
1,2-Dichloroethane	ND		10.0	μg/L	1			
Trichloroethene	114		10.0	μg/L	1			
Methylcyclohexane	ND		10.0	μg/L	1			
1,2-Dichloropropane	ND		10.0	μg/L	1			
Bromodichloromethane	ND		10.0	μg/L	i			
cis-1,3-Dichloropropene	ND		10.0	μg/L	i			
4-Methyl-2-pentanone	ND		10.0	μg/L	i			
Toluene	ND		10.0	μg/L	i			
trans-1,3-Dichloropropene	ND		10.0	μg/L	i			
1,1,2-Trichloroethane	ND		10.0	μg/L	i			
Tetrachloroethene	8170	E	10.0	μg/L	i			
2-Hexanone	ND	_	10.0	μg/L	i			
Dibromochloromethane	ND		10.0	μg/L	1			
1,2-Dibromoethane	ND		10.0	μg/L	1			
Chlorobenzene	ND		10.0	μg/L	i			
Ethylbenzene	ND		10.0	μg/L	i			
Definitions:								
* - Recovery outside QC limits	B - A	Analyte foun	d in Method blank			D - Diluted due to maxt	rix or extended target compounds	
DF - Dilution Factor	DNI	l - Did not Ig	nite			E - Result exceeds High	est Calibration Standard	

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Printed: Monday, March 01, 2004 4:01:54 PM

Laboratory Results

Analytical Services Center

0402090

4493 Walden Avenue

Lancaster, New

Lab ID: 0402090-01A

C Lab

Project:

14086

Mr. C's Dry Cleaners

NYS ELAP ID#:

10486

Phone

(716)

E and E Buffalo Office Client Sample AS INFLUENT

Matrix Water

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM

Test 1_ASP_4.2_VOA_W

VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2

Sample

SAMP

Method: OLM04.2_VOA

Prep Method:

Analyte	Result (Q Limit	Units	DF	Date	Run Batch	Analyst
Xylenes, Total	ND	10.0	μg/L	1			
Styrene	ND	10.0	μ g/L	1			
Bromoform	ND	10.0	μ g/L	1			
Isopropylbenzene	ND	10.0	μ g/L	1			
1,1,2,2-Tetrachloroethane	ND	10.0	μ g/L	1			
1,3-Dichlorobenzene	ND	10.0	μ g/L	1			
1,4-Dichlorobenzene	ND	10.0	μ g/L	1			
1,2-Dichlorobenzene	ND	10.0	$\mu g/L$	1			
1,2-Dibromo-3-chloropropane	ND	10.0	μg/L	1			
1,2,4-Trichlorobenzene	ND	10.0	μg/L	1			
Surr:Toluene-d8	108	88 - 110	%REC	1	2/13/2004 4:19:00 AM	PERRY_040212A	MRD
Surr:4-Bromofluorobenzene	100	86 - 115	%REC	1		-	
Surr:1,2-Dichloroethane-d4	105	76 - 114	%REC	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:55 PM

Analytical Services Center

0402090

4493 Walden Avenue

Lancaster, New

Lab ID: 0402090-01B

Project:

14086

Sample

SAMP

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM % Moist:

Matrix Water

Test 1_ILM04.1_HG_W

MERCURY ANALYSIS BY METHOD ILM04.1

Mr. C's Dry Cleaners

E and E Buffalo Office

Method: ILM04.1_HG

Prep Method: ILM04.1_HG

Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

Analyte Limit Units DF Date **Run Batch** Analyst ND Mercury 0.200 μ g/L 1 2/25/2004 11:41:53 AM LEEMAN_040225A JLS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

"lue Exceeds Maximum Contaminant Level de Column Analysis

etroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM Printed: Monday, March 01, 2004 4:01:56 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New

Lab ID: 0402090-01B

14086

E and E Buffalo Office 0402090

Project:

Mr. C's Dry Cleaners

Sample

SAMP

Matrix Water

Laboratory Results

NYS ELAP ID#:

10486

Phone

(716)

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM

% Moist:

Test 1_ILM04.1_TAL_W

ICP METALS ANALYSIS BY METHOD ILM04.1 Method: ILM04.1_MET Prep Method: ILM04.1_MET

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Aluminum	ND	200	μg/L	1	2/25/2004 10:09:30	PM OPTIMA3300_040225D	СМО
Calcium	153000	5000	μ g/L	1			
Cobalt	ND	50.0	μ g/L	1			
Copper	ND	25.0	μ g/L	1			
Iron	299	100	μg/L	1			
Lead	ND	3.00	μ g/L	1			
Magnesium	24800	5000	μg/L	1			
Manganese	370	15.0	μg/L	1			
Nickel	ND	40.0	μg/L	1			
Potassium	7610	5000	μg/L	1			
Silver	ND	10.0	μg/L	1			
Sodium	234000	5000	μg/L	1			
Vanadium	ND	50.0	μg/L	1			
Zinc	ND	20.0	μg/L	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

LP*** Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

1 - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:56 PM

Analytical Services Center

4493 Walden Avenue

Lab ID: 0402090-01C

Lancaster, New

Lab

Project:

14086

Sample

E and E Buffalo Office

Mr. C's Dry Cleaners

NYS ELAP ID#:

Laboratory Results

10486 Phone (716)

Client Sample AS INFLUENT Alt. Client ID:

> Collection 2/9/2004 9:22:00 AM % Moist:

Test 1_ILM04.1_CN_W

TOTAL CYANIDE BY ILM04.1

0402090

Method: ILM04.1_CN

Prep Method: ILM04.1_CN

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Cyanide	ND	10	μg/L	1	2/16/2004 1:28:58 PM	LACHAT_CN_040216A	LMW

Matrix Water

SAMP

Definitions:

* - Recovery outside QC limits DF - Dilution Factor

lue Exceeds Maximum Contaminant Level ale Column Analysis

Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:57 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New

Lab ID: 0402090-01D

Project:

New 14086
E and E Buffalo Office

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM % **Moist:**

_, Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

0402090Alt. CliMr. C's Dry CleanersCol

SAMP

Sample

Test 1_130.2_HARD_W

HARDNESS, TOTAL BY METHOD EPA 130.2

Method: EPA130.2 Prep Method:

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Hardness (As CaCO3)	492	1.00	mg/L	1	2/27/2004	WC_HARDNESS_040227A	LMW

Matrix Water

Definitions:

• - Recovery outside QC limits

DF - Dilution Factor

H Value Exceeds Maximum Contaminant Level

tetroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:58 PM

Analytical Services Center

0402090

4493 Walden Avenue

Lancaster, New

Project:

14086

E and E Buffalo Office

Mr. C's Dry Cleaners

Laboratory Results

NYS ELAP ID#:

10486

Phone

(716)

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM

% Moist:

Lab ID: 0402090-01D

Sample

SAMP

Matrix Water

Test 1_160.1_TDS_W

TOTAL DISSOLVED SOLIDS (TDS) BY METHOD EPA 160.1

Method: EPA160.1

Prep Method:

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Total Dissolved Solids (Residue, Filterable)	1200	10	mg/L	1	2/12/2004	SARTORIUS_TDS_040212	2 LMH

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H ''nlue Exceeds Maximum Contaminant Level

ıle Column Analysis troleum Pattern is not present B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:01:59 PM

Analytical Services Center

4493 Walden Avenue

Lab ID: 0402090-01D

Lancaster, New 14086

E and E Buffalo Office

0402090

Project: Mr. C's Dry Cleaners **Laboratory Results**

NYS ELAP ID#: 10486

Phone

(716)

Client Sample AS INFLUENT

Alt. Client ID:

Collection 2/9/2004 9:22:00 AM % Moist:

Test 1_160.2_TSS_W

TOTAL SUSPENDED SOLIDS, NON-FILTERABLE RESIDUE

Sample

SAMP

Method: EPA160.2

Prep Method:

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Total Suspended Solids (Residue, Non-Filterable)	7.0	4.0	mg/L	1	2/12/2004	SARTORIUS_TSS_040212	LMH

Matrix Water

Definitions:

* - Recovery outside QC limits DF - Dilution Factor

'alue Exceeds Maximum Contaminant Level ngle Column Analysis

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:00 PM

Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

Analytical Services Center

4493 Walden Avenue

Lab ID: 0402090-02A

Lancaster, New 14086

E and E Buffalo Office

0402090 **Project:**

Mr. C's Dry Cleaners

Matrix Water SAMP Sample

Client Sample AS EFFLUENT

Alt. Client ID:

Method: OLM04.2_VOA

% Moist: Collection 2/9/2004 9:27:00 AM

Test 1_ASP_4.2_VOA_W

Prep Method:

VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
Dichlorodifluoromethane	ND		10.0	μg/L	1	2/13/2004 3:49:00 AM	PERRY_040212A	MRD
Chloromethane	ND		10.0	μ g/L	1			
Vinyl chloride	ND		10.0	μ g/L	1			
Bromomethane	ND		10.0	μg/L	1			
Chloroethane	ND		10.0	μ g/L	1			
Trichlorofluoromethane	ND		10.0	μ g/L	1			
1,1-Dichloroethene	ND		10.0	μ g/L	1			
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		10.0	μ g/L	1			
ne								
Acetone	ND		10.0	μ g/L	1			
Carbon disulfide	ND		10.0	μ g/L	1			
Methyl acetate	ND		10.0	μ g/L	1			
Methylene chloride	ND		10.0	μ g/L	1			
trans-1,2-Dichloroethene	ND		10.0	μg/L	1			
Methyl tert-butyl ether	ND		10.0	μ g/L	1			
1.1-Dichloroethane	ND		10.0	·µg/L	1			
cis-1,2-Dichloroethene	ND		10.0	μ g/L	1			
2-Butanone	ND		10.0	μ g/L	1			
Chloroform	ND		10.0	μ g/L	1			
1,1,1-Trichloroethane	ND		10.0	μ g/L	1			
Cyclohexane	ND		10.0	μ g/L	1			
Carbon tetrachloride	ND		10.0	μg/L	1			
[ne	ND		10.0	μg/L	. 1			
1,2-Jichloroethane	. ND		10.0	μg/L	1			
Trichloroethene	ND		10.0	μg/L	1			
Methylcyclohexane	ND		10.0	μg/L	1			
1,2-Dichloropropane	ND		10.0	μg/L]			
Bromodichloromethane	ND		10.0	μg/L	1			
cis-1,3-Dichloropropene	ND		10.0	μg/L	1			
4-Methyl-2-pentanone	ND		10.0	μg/L]			
Toluene	ND		10.0	μg/L	1			
trans-1,3-Dichloropropene	ND		10.0	μg/L	1			
1,1,2-Trichloroethane	ND		10.0	μg/L	1			
Tetrachloroethene	26.7		10.0	μg/L]			
2-Hexanone	ND		10.0	μg/L	1			
Dibromochloromethane	ND		10.0	μg/L	1			
1,2-Dibromoethane	ND		10.0	μg/L	1			
Chlorobenzene	ND		10.0	μg/L	1			
Ethylbenzene	ND		10.0	μ g/L	'			
Definitions:								

Definitions:

- * Recovery outside QC limits
- DF Dilution Factor
- H Value Exceeds Maximum Contaminant Level
- N Single Column Analysis
- NP Petroleum Pattern is not present

- B Analyte found in Method blank
- DNI Did not Ignite
- J Estimated value
- NC Not Calculated
- P Post Spike Recovery outside limits

- D Diluted due to maxtrix or extended target compounds
- E Result exceeds Highest Calibration Standard
- M Mutrix Spike Recovery outside limits
- ND Not Detected at the Reporting Limit
- R RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:01 PM

E and E Buffalo Office

Mr. C's Dry Cleaners

Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

Analytical Services Center

4493 Walden Avenue

Project:

Lancaster, New 14086

0402090

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM

Lab ID: 0402090-02A Test 1_ASP_4.2_VOA_W Sample SAMP Matrix Water

VOLATILE ORGANIC COMPOUNDS BY METHOD OLM04.2

Method: OLM04.2_VOA Prep Method:

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
Xylenes, Total	ND		10.0	μg/L	1			
Styrene	ND		10.0	μ g/L	1			
Bromoform	ND		10.0	μg/L	1			
isopropylbenzene	ND		10.0	μg/L	1			
1,1,2,2-Tetrachloroethane	ND		10.0	μg/L	1			
1,3-Dichlorobenzene	ND		10.0	μg/L	1			
1,4-Dichlorobenzene	ND		10.0	μg/L	1			
1,2-Dichlorobenzene	ND		10.0	μg/L	1			
1,2-Dibromo-3-chloropropane	ND		10.0	μg/L	1			
1,2,4-Trichlorobenzene	ND		10.0	μg/L	1			
Surr:Toluene-d8	103		88 - 110	%REC	1	2/13/2004 3:49:00 AM PI	ERRY_040212A	MRD
Surr:4-Bromofluorobenzene	96		86 - 115	%REC	1			
Surr:1,2-Dichloroethane-d4	99		76 - 114	%REC	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis NP - Petroleum Pattern is not present B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

3 Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM Printed: Monday, March 01, 2004 4:02:02 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

E and E Buffalo Office

MERCURY ANALYSIS BY METHOD ILM04.1

Lab 0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-02B

Sample

SAMP

Matrix Water

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM

M % Moist:

10486

(716)

JLS

Laboratory Results

Phone

NYS ELAP ID#:

Test 1_ILM04.1_HG_W

Method: ILM04.1_HG Prep Method: ILM04.1_HG

Analyte Result Q Limit Units DF Date Run Batch Analyst

Mercury ND 0.200 μ g/L 1 2/25/2004 11:43:19 AM LEEMAN_040225A

Definitions:

Recovery outside QC limits
DF - Dilution Factor
 Value Exceeds Maximum Contaminant Level
 ingle Column Analysis
 Petroleum Pattern is not present

B - Analyte found in Method blank
DNI - Did not Ignite
J - Estimated value
NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:02 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

t: E and E Buffalo Office

Lab 0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-02B Sa

Sample SAMP Matrix Water

, Laboratory Results

NYS ELAP ID#:

10486

Phone (716)

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM % Moist:

Test 1_ILM04.1_TAL_W

ICP METALS ANALYSIS BY METHOD ILM04.1 Method: ILM04.1_MET Prep Method: ILM04.1_MET

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Aluminum Calcium	ND 155000	200 5000	μg/L μg/L	1	2/26/2004 6:05:37 PM	OPTIMA3300_040226C	СМО
Cobalt	ND	50.0	μg/L	1			
Copper	25.3	25.0	μ g/L	1			
Iron	399	100	μ g/L	1			
Lead	4.07	3.00	µg/L	1		OPTIMA3300_040227B	
Magnesium	24600	5000	µg/L	1	2/26/2004 6:05:37 PM	OPTIMA3300_040226C	
Manganese	381	15.0	µg/L	1			
Nickel	ND	40.0	µg/L	1			
Potassium	7630	5000	µg/L	1			
Silver	ND	10.0	μ g/L	1			
Sodium	238000	5000	μ g/L	1			
Vanadium	ND	50.0	µg/L	1			
Zinc	ND	20.0	μ g/L	1			

Definitions:

Recovery outside QC limits

DF - Dilution Factor
H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated
P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

48 Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Printed: Monday, March 01, 2004 4:02:03 PM

Analytical Services Center

0402090

4493 Walden Avenue

Lancaster, New

14086

E and E Buffalo Office

Mr. C's Dry Cleaners

Laboratory Results

NYS ELAP ID#:

10486

Phone

(716)

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM

% Moist:

Lab ID: 0402090-02C

Sample

SAMP

Matrix Water

μg/L

Method: ILM04.1_CN

Test 1_ILM04.1_CN_W

Prep Method: ILM04.1_CN

TOTAL CYANIDE BY ILM04.1

Result Q

Limit Units

DF

Date

Run Batch

Analyst

Analyte Cyanide

Project:

ND

10

1 2/16/2004 1:31:50 PM LACHAT_CN_040216A

LMW

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

" - Value Exceeds Maximum Contaminant Level

Single Column Analysis

- Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:04 PM

Analytical Services Center

0402090

4493 Walden Avenue

Lancaster, New

Lab

Project:

New 14086
E and E Buffalo Office

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM % **Moist:**

Laboratory Results

NYS ELAP ID#:

Phone

10486

(716)

Lab ID: 0402090-02D

Sample SAMP Matrix Water

Test 1_130.2_HARD_W

HARDNESS, TOTAL BY METHOD EPA 130.2

Mr. C's Dry Cleaners

Method: EPA130.2

30.2 Prep Method:

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Hardness (As CaCO3)	488	1.00	mg/L	1	2/27/2004	WC_HARDNESS_040227A	LMW

Definitions:

- * Recovery outside QC limits DF - Dilution Factor
- ' Value Exceeds Maximum Contaminant Level Single Column Analysis
- P Petroleum Pattern is not present

- B Analyte found in Method blank
- DNI Did not Ignite
- J Estimated value
- NC Not Calculated
- P Post Spike Recovery outside limits

- D Diluted due to maxtrix or extended target compounds
- E Result exceeds Highest Calibration Standard
- M Matrix Spike Recovery outside limits
- ND Not Detected at the Reporting Limit
- R RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:05 PM

Analytical Services Center

0402090

4493 Walden Avenue

Lab ID: 0402090-02D

14086 Lancaster, New

Mr. C's Dry Cleaners

Laboratory Results

NYS ELAP ID#:

10486

Phone

(716)

E and E Buffalo Office Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM

Matrix Water Test 1_160.1_TDS_W Sample SAMP

Method: EPA160.1 TOTAL DISSOLVED SOLIDS (TDS) BY METHOD EPA 160.1

Prep Method:

DF Result Q Limit Units Date Run Batch Analyst Total Dissolved Solids (Residue, 1200 10 SARTORIUS_TDS_040212 mg/L 2/12/2004 LMH

Filterable)

Lab

Project:

Definitions:

* - Recovery outside QC limits DF - Dilution Factor

Value Exceeds Maximum Contaminant Level

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:06 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

E and E Buffalo Office

0402090 Lab

Lab ID: 0402090-02D

Mr. C's Dry Cleaners Project:

Client Sample AS EFFLUENT

Alt. Client ID:

Collection 2/9/2004 9:27:00 AM % Moist:

Laboratory Results

Phone

NYS ELAP ID#:

10486

(716)

SAMP Matrix Water Test 1_160.2_TSS_W Sample

TOTAL SUSPENDED SOLIDS, NON-FILTERABLE RESIDUE Method: EPA160.2 **Prep Method:**

Result Q DF Date Run Batch Limit Units Analyst Analyte Total Suspended Solids (Residue, 7.0 4.0 mg/L 2/12/2004 SARTORIUS_TSS_040212 LMH Non-Filterable)

Definitions:

. Recovery outside QC limits

DF - Dilution Factor

- Value Exceeds Maximum Contaminant Level

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:06 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

E and E Buffalo Office

0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-03A Sample DL

Test 1_TO14_A

NYS ELAP ID#:

Laboratory Results

(716)

Phone

10486

Client Sample PRE-GAC

Alt. Client ID:

Collection 2/9/2004 10:18:00

% Moist:

VOLATILE ORGANICS IN AIR BY METHOD TO-14A

Method: EPATO14 Prep Method: NA

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
1,1,1-Trichloroethane	ND		125	ppbv	25	2/12/2004 3:27:00 PM	JAKE 040212A	DWW
1,1,2,2-Tetrachloroethane	ND		125	ppbv	25			
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		125	ppbv	25			
ne				• •				
1,1,2-Trichloroethane	ND		125	ppbv	25			
1,1-Dichloroethane	ND		125	ppbv	25			
1,1-Dichloroethene	ND		125	ppbv	25			
1,2,4-Trichlorobenzene	ND		125	ppbv	25			
1,2,4-Trimethylbenzene	ND		125	ppbv	25			
1,2-Dibromoethane	ND		125	ppbv	25			
1,2-Dichloro-1,1,2,2-tetrafluoroet	ND		125	ppbv	25			
hane								
1,2-Dichlorobenzene	ND		125	ppbv	25			
1,2-Dichloroethane	ND		125	ppbv	25			
1,2-Dichloropropane	ND		125	ppbv	25			
1,3,5-Trimethylbenzene	ND		125	ppbv	25			
1,3-Dichlorobenzene	ND		125	ppbv	25			
1,4-Dichlorobenzene	ND		125	ppbv	25			
Benzene	ND		125	ppbv	25			
Benzyl chloride	ND		125	ppbv	25			
Bromomethane	ND		125	ppbv	25			
C bon tetrachloride	ND		125	ppbv	25			
robenzene	ND		125	ppbv	25			
Chioroethane	ND		125	ppbv	25			
Chloroform	ND		125	ppbv	25			
Chloromethane	ND		125	ppbv	25			
cis-1,2-Dichloroethene	ND		125	ppbv	25			
cis-1,3-Dichloropropene	ND		125	ppbv	25			
Dichlorodifluoromethane	ND		125	ppbv	25			
Ethylbenzene	ND		125	ppbv	25			
Hexachlorobutadiene	ND		125	ppbv	25			
m,p-Xylene	ND		250	ppbv	25			
Methylene chloride	ND		125	ppbv	25			
o-Xylene	ND ND		125 125	ppbv	25 25			
Styrene Tetrachloroethene	1100		125	ppbv ppbv	25 25			
Toluene	ND		125	ppbv	25 25			
trans-1,2-Dichloroethene	ND ND		125	ppbv	25			
trans-1,3-Dichloropropene	ND		125	ppbv	25			
Talle 115 Storiloroproporto	,,,,		5	PP				
Definitions:								

Matrix Air

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Puttern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:07 PM

Analytical Services Center

4493 Walden Avenue

14086 Lancaster, New

E and E Buffalo Office

0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-03A

Sample DL

Matrix Air

Client Sample PRE-GAC

Alt. Client ID:

Collection 2/9/2004 10:18:00

% Moist:

10486

(716)

Laboratory Results

NYS ELAP ID#:

Phone

Test 1_TO14_A

VOLATILE ORGANICS IN AIR BY METHOD TO-14A Method: EPATO14 Prep Method: NA

Analyte	Result Q	Limit	Units	DF	Date	Run Batch	Analyst
Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes, Total	ND ND ND ND	125 125 125 375	ppbv ppbv ppbv ppbv	25 25 25 25			
Surr:1,2-Dichloroethane-d4 Surr:4-Bromofluorobenzene Surr:Toluene-d8	102 103 98	80 - 120 80 - 120 80 - 120	%REC %REC %REC	25 25 25	2/12/2004 3:27:00 PM	JAKE_040212A	DWW

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

N - Single Column Analysis

'P - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:08 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New

14086

E and E Buffalo Office

0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-03A Sample **SAMP**

Matrix Air

NYS ELAP ID#:

Laboratory Results

10486

Phone

Prep Method: NA

(716)

Client Sample PRE-GAC

Alt. Client ID:

Method: EPATO14

Collection 2/9/2004 10:18:00

% Moist:

Test 1_TO14_A

VOLATILE ORGANICS IN AIR BY METHOD TO-14A

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
1,1,1-Trichloroethane	ND		25.0	ppbv		2/12/2004 12:16:00	PM JAKE_040212A	DWW
1,1,2,2-Tetrachloroethane	ND		25.0	ppbv	5			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		25.0	ppbv	5			
1,1,2-Trichloroethane	ND		25.0	ppbv	5			
1,1-Dichloroethane	ND		25.0	ppbv	5			
1,1-Dichloroethene	ND		25.0	ppbv	5			
1,2,4-Trichlorobenzene	ND		25.0	ppbv	5			
1,2,4-Trimethylbenzene	ND		25.0	ppbv	5			
1,2-Dibromoethane	ND		25.0	ppbv	5			
1,2-Dichloro-1,1,2,2-tetrafluoroet	ND		25.0	ppbv	5			
hane								
1,2-Dichlorobenzene	ND		25.0	ppbv	5			
1,2-Dichloroethane	ND		25.0	ppbv	5			
1,2-Dichloropropane	ND		25.0	ppbv	5			
1,3,5-Trimethylbenzene	ND		25.0	ppbv	5			
1,3-Dichlorobenzene	ND		25.0	ppbv	5			
1,4-Dichlorobenzene	ND		25.0	ppbv	5			
Benzene	ND		25.0	ppbv	5			
Benzyl chloride	ND		25.0	ppbv	5			
Bromomethane	ND		25.0	ppbv	5			
Carbon tetrachloride	ND		25.0	ppbv	5			
robenzene	ND		25.0	ppbv	5			
Chioroethane	ND		25.0	ppbv	5			
Chloroform	ND		25.0	ppbv	5			
Chloromethane	ND		25.0	ppbv	5			
cis-1,2-Dichloroethene	ND		25.0	ppbv	5			
cis-1,3-Dichloropropene	ND		25.0	ppbv	5			
Dichlorodifluoromethane	ND		25.0	ppbv	5			
Ethylbenzene	ND		25.0	ppbv	5			
Hexachlorobutadiene	ND		25.0	ppbv	5			
m,p-Xylene	ND		50.0	ppbv	5			
Methylene chloride	ND		25.0	ppbv	5			
o-Xylene	ND		25.0	ppbv	5			
Styrene	ND		25.0	ppbv	5			
Tetrachloroethene	955	Ε	25.0	ppbv	5			
Toluene	ND		25.0	ppbv	5			
trans-1,2-Dichloroethene	ND		25.0	ppbv	5			
trans-1,3-Dichloropropene	ND		25.0	ppbv	5			
Definitions:								
• - Recovery outside OC limits	В -	Analyte four	nd in Method blank			D - Diluted due to a	maxtrix or extended target compounds	

• - Recovery outside QC limits

DF - Dilution Factor H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:09 PM

Analytical Services Center

4493 Walden Avenue

Lancaster, New 14086

E and E Buffalo Office

VOLATILE ORGANICS IN AIR BY METHOD TO-14A

Lab 0402090

Lab ID: 0402090-03A

ct:

Project: Mr. C's Dry Cleaners

Sample SAMP Matrix Air

Collection 2/9/2004 10:18:00

% Moist:

10486

(716)

_ Laboratory Results

Phone

NYS ELAP ID#:

Test 1_TO14_A

Method: EPATO14 Prep Method: NA

Client Sample PRE-GAC

Alt. Client ID:

Analyte	Result Q	Limit	Units	DF Date	Run Batch	Analyst
Trichloroethene	68.8	25.0	ppbv	5		
Trichlorofluoromethane	ND	25.0	ppbv	5		
Vinyl chloride	ND	25.0	ppbv	5		
Xylenes, Total	ND	75.0	ppbv	5		
Surr:1,2-Dichloroethane-d4	104	80 - 120	%REC	5 2/12/2004 12	2:16:00 PM JAKE 040212A	DWW
Surr:4-Bromofluorobenzene	117	80 - 120	%REC	5		2
Surr:Toluene-d8	98	80 - 120	%REC	5		

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

N - Single Column Analysis

P - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:10 PM

Analytical Services Center

4493 Walden Avenue

Ct:

Lancaster, New

14086

E and E Buffalo Office Client S

Lab 0402090

Project: Mr. C's Dry Cleaners

Lab ID: 0402090-04A Sample SAMP Matrix Air

Phone

_ Laboratory Results

Prep Method: NA

NYS ELAP ID#:

10486

(716)

Client Sample POST-GAC

Alt. Client ID:

Method: EPATO14

Collection 2/9/2004 10:18:00 % **Moist:**

Test 1_TO14_A

VOLATILE ORGANICS IN AIR BY METHOD TO-14A

Analyte	Result	Q	Limit	Units	DF	Date	Run Batch	Analyst
1,1,1-Trichloroethane	ND		5.00	ppbv	1	2/12/2004 2:14:00 PM	JAKE_040212A	DWW
1,1,2,2-Tetrachloroethane	ND		5.00	ppbv	1			
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		5.00	ppbv	1			
ne								
1,1,2-Trichloroethane	ND		5.00	ppbv	1			
1,1-Dichloroethane	ND		5.00	ppbv	1			
1,1-Dichloroethene	ND		5.00	ppbv	1			
1,2,4-Trichlorobenzene	ND		5.00	ppbv	1			
1,2,4-Trimethylbenzene	ND		5.00	ppbv	1			
1,2-Dibromoethane	ND		5.00	ppbv	1			
1,2-Dichloro-1,1,2,2-tetrafluoroet	ND		5.00	ppbv	1			
hane								
1,2-Dichlorobenzene	ND		5.00	ppbv	1			
1,2-Dichloroethane	ND		5.00	ppbv	1			
1,2-Dichloropropane	ND		5.00	ppbv	1			
1,3,5-Trimethylbenzene	ND		5.00	ppbv	1			
1,3-Dichlorobenzene	ND		5.00	ppbv	1			
1,4-Dichlorobenzene	ND		5.00	ppbv	1			
Benzene	ND		5.00	ppbv	1			
Benzyl chloride	ND		5.00	ppbv	1			
Bromomethane	ND		5.00	ppbv	1			
non tetrachloride	ND		5.00	ppbv	1			
robenzene	ND		5.00	ppbv]			
Chloroethane	ND		5.00	ppbv	1			
Chioroform	ND		5.00	ppbv	1			
Chloromethane	ND		5.00	ppbv				
cis-1,2-Dichloroethene	ND		5.00	ppbv				
cis-1,3-Dichloropropene	ND		5.00	ppbv	1			
Dichlorodifluoromethane	ND		5.00 5.00	ppbv	-			
Ethylbenzene	ND ND		5.00	ppbv ppbv	1			
Hexachlorobutadiene	ND		10.0	ppbv	- ;			
m,p-Xylene	ND		5.00	ppbv				
Methylene chloride	ND		5.00	ppbv				
o-Xylene	ND		5.00	ppbv	i			
Styrene Tetrachloroethene	35.6		5.00	ppbv	i			
Toluene	ND		5.00	ppbv	i			
trans-1,2-Dichloroethene	ND		5.00	ppbv	i			
trans-1,3-Dichloropropene	ND		5.00	ppbv	1			
Definitions:								
• - Recovery outside QC limits		•	l in Method blank				ix or extended target compounds	
DF - Dilution Factor	DN	VI - Did not Igi	rite			E - Result exceeds High	est Cambration Standard	

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

LIMS Version #: 3.1.9.6 - 2/25/2004 10:00:00 PM

Printed: Monday, March 01, 2004 4:02:13 PM

Analytical Services Center

4493 Walden Avenue

Lab ID: 0402090-04A

Surr:Toluene-d8

Lancaster, New

14086

E and E Buffalo Office

ut: Lab

0402090

Project: Mr. C's Dry Cleaners

Sample

99

SAMP

Matrix Air

Laboratory Results

Prep Method: NA

NYS ELAP ID#:

10486

Phone

(716)

Client Sample POST-GAC

Alt. Client ID:

Method: EPATO14

Collection 2/9/2004 10:18:00

% Moist:

Test 1_TO14_A

VOLATILE ORGANICS IN AIR BY METHOD TO-14A

Result Q Limit Units DF Date Run Batch Analyst Analyte Trichloroethene ND 5.00 ppbv ND Trichlorofluoromethane 5.00 ppbv 1 ppbv Vinyl chloride ND 5.00 1 ND 1 Xylenes, Total 15.0 ppbv Surr:1,2-Dichloroethane-d4 104 80 - 120 %REC 1 2/12/2004 2:14:00 PM JAKE_040212A DWW Surr:4-Bromofluorobenzene 99 80 - 120 %REC

%REC

80 - 120

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

™P - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result exceeds Highest Calibration Standard

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, March 01, 2004 4:02:14 PM