

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER

368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844 RECEIVED

JAN 1 3 2005

NYSDEC REG 9
FOIL
**REL__UNREL

January 11, 2005

Mr. David Chiusano, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Construction Services 625 Broadway, 12th Floor Albany, New York 12233 - 7010

Re: Mr. C's Dry Cleaners Site, Contract # D004180, Site # 9-15-157

December 2004 O&M Report

Dear Mr. Chiusano:

Ecology and Environment Engineering, P.C. (EEEPC) is pleased to provide this December 2004 Operation and Maintenance (O&M) Report for the Mr. C's Dry Cleaners Site, Site # 9-15-157, located in East Aurora, New York. Copies of weekly inspection reports from EEEPC's subcontractor O&M Enterprises, Inc. (OMEI) are provided as Attachment A. Selected pages from the individual analytical data packages prepared by EEEPC's Analytical Services Center (ASC) are provided as Attachments B1, B2 and B3. All analytical results for the report were analyzed at the lowest detection limits in accordance with the method standard. Remedial treatment system utility costs are provided as Attachment D.

In review of the on-site treatment system operation, EEEPC offers the following comments and highlights:

Operational Summary

- The system was operational for approximately 97% of the period between 11/23/04 and 12/27/04. The system was down for approximately 24 hours from Monday, 12/6/04, to Tuesday, 12/7/04, due to cleaning and system modifications discussed below. The inlet flange on the stripper was broken on 12/6 and was replaced on 12/7. The system was re-started at that time. The system was fully operational otherwise. Table 1 is provided to indicate the monthly operational time of the treatment equipment from the time of system startup.
- The effluent totalizer readings for the month of December 2004 indicate that approximately 1,556,063 gallons of groundwater were processed through the treatment system from 11/23/04 through 12/27/04. Table 2 provides a summary of groundwater volume treated during the December 2004 monitoring period. Historical volumes are based on totalizer readings provided by the contractor's weekly inspection forms.

- Piezometer measurements were collected on 12/13/04 at the time of compliance sampling. These readings are provided in the weekly inspection reports provided in Attachment A.
- Filters in the bag filter unit were replaced during weekly inspections on 11/29/04, 12/13/04, 12/21/04 and 12/27/04.
- Checklists for weekly system inspections from OMEI are provided as
 <u>Attachment A</u> for 11/29/04, 12/6/04, 12/13/04, 12/21/04 and 12/27/04.
 Weekly system checks indicate that all operating equipment appear to be operating within normal ranges with any exceptions noted above.
- As a result of analytical results received from EEEPC's ASC on December 7, 2004, a non-compliance issue was reported and a letter issued to NYSDEC on December 7, 2004. This letter is provided as <u>Attachment C</u>. The non-compliance issue was regarding elevated levels of PCE above the effluent discharge criteria. The letter of December 7, 2004 outlined a corrective action plan and sampling/analysis program. All initial response actions were completed in December 2004. Additional corrective action response will be performed after the GAC vessels are removed on January 14, 2005.
- The granular carbon vessels were taken off-line and OMEI re-plumbed the air intake on the air stripper on 12/6/04, such that the blowers are now pulling air from the outside and pushing air through the stipper tower. EEEPC and OMEI believe this piping configuration will provide better treatment performance. The former air stripper piping configuration pulled fresh air through the air stipper tower and pushed the air stripper exhaust through the carbon vessels.
- Modern Disposal was onsite 12/13/04 with vacuum truck to remove granular carbon. The vessels will be removed in January 2005 and shipped to another NYSDEC site in Long Island, NY.
- A copy of the site utility costs from EEEPC operations starting October 2003 to date is provided as Attachment D.

Analytical Summary - Groundwater

- EEEPC and OMEI personnel collected weekly samples of influent and effluent groundwater on three separate occasions during the reporting period (12/8/04, 12/13/04 and 12/21/04) as part of the corrective action in response to the tetrachloroethene (PCE) discharge exceedance that occurred in November 2004. The groundwater samples collected on 12/8/04 and 12/21/04 were analyzed for VOCs only. The groundwater samples collected 12/13/04 were analyzed for volatile organic compounds (VOCs), metals, total suspended solids (TSS), total dissolved solids (TDS), and hardness. At the request of the Department the lowest possible method detection limits were used for the analysis. The results are discussed below.
- The VOCs detected in the <u>influent and effluent groundwater</u> during the December 2004 sampling events are presented in <u>Table 3</u>.
- The concentrations of Toluene, Xylene and Total Dissolved Solids in the effluent groundwater sampled on December 13, 2004 were above their

respective Daily Maximum Effluent Discharge Compliance Concentrations listed on <u>Table 4</u>. The concentrations of Toluene and Xylene were back in compliance on December 21, 2004 9only VOC analysis was performed on 12/21/04 samples). It is assumed that this is a one-time exceedance due to the presence of PVC solvent and glue used for the modifications made to the interior piping on December 8, 2004 described above. Also, Rydlime was used on December 3, 2004, which could account for the residues of Toluene and Xylene in the December 13, 2004 analytical results. The sample results from December 21, 2004 indicated no elevated readings for VOCs as noted in the previous week's analytical results. Once the GAC vessels are removed from the building, a complete teardown and cleaning of the stripper is scheduled.

- The December analytical results indicate that the treated groundwater effluent was in compliance with the Effluent Limitation Requirements for all metals Total Dissolved Solids (TDS) were detected above the compliance concentration of 850 mg/L for the month of December 2004. A comparison between the November 2004 analytical results and the Effluent Limitation Requirements for the site are provided in Table 4.
- Approximately 18.6 pounds of VOCs were removed from the influent groundwater based on calculations using the average of the 3 effluent discharge analytical results. A summary of the calculated removal volumes is located in <u>Table 5</u>. These values are calculated based on totalizer readings and assumes that non-detect values given in the analytical data package = 0 µg/L and that the monthly samples are indicative of the influent characteristics and system performance for the entire reporting period. These calculations indicate that approximately 814 pounds of VOCs have been removed from the groundwater at the site since system start-up in September 2002.

If you have any questions regarding the December 2004 O&M report summary submitted, please call me a 716-684-8060.

Very Truly Yours,

Michael G. Steffan Project Manager

Ecology and Environment Engineering, P. C.

cc: G. Sutton, Region 9, NYSDEC - Buffalo w/ attachments

R. Becken, O&M Enterprises w/attachments

D. Miller, E&E-Buffalo w/o attachments

G. Jones, Site Representative, E&E - Buffalo - w/ attachments

CTF- 000699.NY06.05

Michael D. Stoffen

Table 1
Mr. C's Dry Cleaners Site Remediation
Site #9-15-157
System Operational Time

Month	Reporting	Operational
	Hours	Up-time
September 2002	576	100%
October 2002	744	99.33%
November 2002	720	93.41%
December 2002	744	80.65%
January 2003	744	59.15%
February 2003	672	63.39%
March 2003	744	82.39%
April 2003	720	100%
May 2003	744	100%
June 2003	720	90.00%
July 2003	744	100%
August 2003	744	100%
September 1-4, 2003	96	100%
October 22 -29, 2003	168	100%
October 29 - November 25, 2003	648	99%
November 25 - December 29, 2003	816	100%
December 29, 2003 – January 26, 2004	672	100%
January 26 – February 24, 2004	696	100%
February 24 – March 29, 2004	816	99.97%
March 29 – April 26, 2004	672	99.70%
April 26 – May 24, 2004	696	73.70%
May 24 – June 21, 2004	696	99.43%
June 22 – July 26, 2004	840	100%
July 27 – August 23, 2004	672	100%
August 23 - September 27, 2004	840	97.62%
September 27 - October 25, 2004	672	90.33%
October 25 - November 23, 2004	696	92.17%
November 23 - December 27, 2004	816	97.06%

Average Operational Up-time = 93.47%

NOTES:

- 1. Up-time based as percentage of total reporting hours
- 2. Treatment system operated by the Tyree Organization Ltd. from 9/02-9/03.
- 3. Treatment system operated by 0&M Enterprises from 10/03 present.

Table 2
Mr. C's Dry Cleaners Site Remediation
Site #9-15-157
Monthly Process Water Volumes

Month	Actual Period	Gallons
September 2002 ¹	9/5/02 - 10/2/02	4,362,477
October 2002 ^I	10/2/02 - 11/4/02	4,290,429
November 2002 ¹	11/4/02 - 12/2/02	3,326,126
December 2002 ¹	12/2/02 - 1/7/03	3,349,029
January 2003 ¹	1/7/03 - 2/3/03	1,973,144
February 2003 ¹	2/3/03 - 3/10/03	2,158,771
March 2003 ¹	3/10/03 - 4/7/03	3,263,897
April 2003 ¹	4/7/03 - 5/2/03	2,574,928
May 2003 ¹	5/2/03 - 6/2/03	1,652,538
June 2003 ¹	6/2/03 - 6/30/03	2,002,990
July 2003 ¹	6/30/03 - 7/29/03	2,543,978
August 2003 ¹	7/29/03 - 8/25/03	2,042,424
September 2003 ¹	8/25/03 - 10/22/03	370,446
October 2003 ²	10/22/03 - 10/29/03	67,424
November 2003 ²	10/29/03 - 11/25/03	224,278
December 2003 ²	11/25/03 - 12/29/03	1,496,271
January 2004 ²	12/29/03 - 01/26/04	688,034
February 2004 ²	01/26/04 - 02/24/04	736,288
March 2004 ²	02/24/04 - 03/29/04	2,164,569
April 2004 ²	03/29/04 - 04/26/04	1,741,730
May 2004 ²	4/26/2004 - 5/24/2004	1,408,095
June 2004 ²	5/24/2004 - 6/21/2004	972,132
July 2004 ²	6/22/2004 - 7/26/2004	1,858,790
August 2004 ²	7 /27/04 - 8/23/04	1,289,960
September 2004 ²	8/23/04 - 9/27/04	1,201,913
October 2004 ²	9/27/04 - 10/25/04	937,560
November 2004 ²	10/25/04 - 11/23/04	1,098,158
December 2004 ²	11/23/04 - 12/27/04	1,556,063
	TOTAL GALLONS	51,352,442

NOTES:

- 1. System operated by Tyree Organization Ltd. From 9/02 9/03
- 2. System operated by O&M Enterprises from 10/03 present

Table 3
Mr. C's Dry Cleaners Site Remediation
NYSDEC Site #9-15-157
December 2004 VOC Analytical Summary

	Ď	December 8, 2004		Dec	December 13, 2004		Dec	December 21, 2004		December Averages	lverages
	Influent	EMuent	Cleanup	Influent	EMuent	Cleanup	Influent	Effluent	Cleanup	Influent	EMuent
Compound	Concentration	Concentration	Efficiency	Concentration	Concentration	Efficiency .	Concentration	Concentration	Efficiency	Concentration	Concentration
	(µg/L)	(µg/L)	(%)	(μg/L)	(μg/L)	(%)	(µg/L)	(μg/L)	(%)	(μg/L)	(µg/L)
2-Butanone	ND (<250)	8.19	NA	ND (<250)	178	NA	ND (<250)	I 876.0	ΑN	ND (<250)	62.39
4-Methyl-2-pentanone	ND (<250)	ND (<5.00)	NA	ND (<250)	1.47 J	NA	ND (<250)	ND (<5.00)	Ϋ́N	ND (<250)	0.49
Acetone	ND (<250)	3.94 J	NA	ND (<250)	155	NA	ND (<250)	4.73 J	ΑN	ND (<250)	54.56
cis-1,2-Dichloroethene	ND (<50.0)	ND (<1.00)	NA	ND (<50.0)	ND (<1.00)	NA	5.85 J	ND (<1.00)	%001	1.95	ND (<1.00)
Ethylbenzene	ND (<50.0)	ND (<5.00)	NA	ND (<50.0)	2.12	NA	ND (<50.0)	ND (<1.00)	٧X	ND (<50.0)	0.71
Methyl tert-butyl ether	12.3 J	1.13	61%	12.4 J	0.939 J	65%	13.2 J	1.47	%68	12.63	1.18
Methylene chloride	ND (<50.0)	ND (<1.00)	NA	ND (<50.0)	I 59:0	NA	ND (<50.0)	J 289.0	ΨN	ND (<50.0)	0.45
Styrene	ND (<50.0)	0.352 J	ΝA	ND (<50.0)	ND (<1.00)	NA	ND (<50.0)	0.322 J	Ϋ́	ND (<50.0)	0.22
Tetrachloroethene	1180	2.85	100%	1510	3.52	%001	1840	3.53	%001	1510.00	3.30
Toluene	ND (<50.0)	0.159 J	NA	ND (<50.0)	25.5	NA	ND (<50.0)	0.23 J	ΝA	ND (<50.0)	8.63
Trichloroethene	29.6 J	0.51 J	%86	37.5 J	ND (<1.00)	100%	46.1 J	0.352 J	%66	37.73	0.29
									TOTAL =	1562.32	132.21

Notes:

1. "NA" = Not applicable

2. "ND" = Non-detect and lists the detection limit in parentheses

3. "J" indicates an estimated value below the practical quantitation limit but above the method detection limit.

4. Non-detect values are assumed to be equal to zero for calculation of monthly average concentrations.

Table 4
Mr. C's Dry Cleaners Site Remediation
Site #9-15-157

Effluent Discharge Criteria & Analytical Compliance Results

			December 8, 2004	December 13, 2004	December 21, 2004
	Daily				Effluent Analytical
Parameter	Maximum ¹	Units	Values	Values	Values
Flow	216,000	gpd		47,153	
pН	6.0 - 9.0	standard units	NA	8.22	NA
1,1 Dichloroethene	10	ug/L	<1.00	<1.00	<1.00
1,2 Dichloroethane	10	ug/L	<1.00	<1.00	<1.00
Trichloroethene	10	ug/L	3.32	<1.00	0.352 J
Tetrachloroethene	10	ug/L	2.85	3.52	3.53
Vinyl Chloride	10	ug/L	<1.00	<1.00	<1.00
Benzene	5	ug/L	<1.00	<1.00	<1.00
Ethyl Benzene	5	ug/L	<1.00	2.12	<1.00
Methylene Chloride	10	ug/L	<1.00	0.650 J	0.687 J
1,1,1 Trichloroethane	10	ug/L	<1.00	<1.00	<1.00
Toluene	5	ug/L	0.159 J	25.5	0.230 J
o-Xylene ²	5	ug/L	<1.00	17.0	<1.00
m, p-Xylene ²	_10	ug/L	<1.00	17.0	<1.00
Iron, total	600	ug/L	NA	199 J	NA
Aluminum	4,000	ug/L	NA	<200	NA
Copper	48	ug/L	NA	<20.0	NA
Lead	11	ug/L	NA	<5.00	NA
Manganese	2,000	ug/L	NA	181	NA
Silver	100	ug/L	NA	4.67 J	NA
Vanadium	28	ug/L	NA	4.93 J	NA
Zinc	230	ug/L	NA	<20.0	NA
Total Dissolved Solids	850	mg/L	NA	990	NA
Total Suspended Solids	20	mg/L	NA	19	NA
Cyanide, Free	10	ug/L	NA	<10	NA

NOTES:

- 1. "Daily Maximum" excerpted from Attachment E of Addendum 1 to the Construction Contract Documents.
- 2. Analytical report did not differentiate between o-Xylene and m, p-Xylene. Total Xylene value reported is given in each line.
- 3. Shaded cells indicate that analytical value exceeds "Daily Maximum"
- 4. "NA" indicates that analyses were not performed and data is unavailable.
- 5. The average daily flow is given for the entire reporting period.

Table 5 Mr. C's Dry Cleaners Site Remediation Site #9-15-157

Monthly VOCs Removed From Groundwater

Month	Actual Period	Influent VOCs	Effluent VOCs	VOCs Removed
		(µg/L)	(μg/L)	(lbs.)
September 2002 ⁶	9/5/02 - 10/2/02	1297	1	47.2
October 2002 ⁶	10/2/02 - 11/4/02	2000	1	71.6
November 2002 ⁶	11/4/02 - 12/2/02	1685_	0	46.8
December 2002 ⁶	12/2/02 - 1/7/03	1586	9	44.1
January 2003 ⁶	1/7/03 - 2/3/03	1803	10	29.5
February 2003 ⁶	2/3/03 - 3/10/03	1985	3	35.7
March 2003 ⁶	3/10/03 - 4/7/03	1990	5	54.1
April 2003 ⁶	4/7/03 - 5/2/03	1656	3	35.5
May 2003 ⁶	5/2/03 - 6/2/03	1623	7	22.3
June 2003 ⁶	6/2/03 - 6/30/03	5787	6	96.6
July 2003 ⁶	6/30/03 - 7/29/03	1356	1	28.8
August 2003 ⁶	7/29/03 - 8/25/03	1263	3	21.5
September 2003 ⁶	8/25/03 - 10/22/03	1263	3	3.9
October 2003 ⁷	10/22/03 - 10/29/03	1693.69	1.47	1.0
November 2003 ⁷	10/29/03 - 11/25/03	2510.83	4.4	4.7
December 2003 ⁷	11/25/03 - 12/29/03	503.3	10.5	6.2
January 2004 ⁷	12/29/03 - 01/26/04	3667	15.8	21.0
February 2004 ⁷	01/26/04 - 02/24/04	3348.6	26.7	20.4
March 2004 ⁷	02/24/04 - 03/29/04	1939.3	4.96	34.9
April 2004 ⁷	03/29/04 - 04/26/04	2255	0.0	32.8
May 2004 ⁷	4/26/2004 - 5/24/2004	2641	13.3	30.9
June 2004 ⁷	5/24/2004 - 6/21/2004	1454	1.7	22.5
July 2004 ⁷	6/22/2004 - 7/26/2004	1313	3.6	20.3
August 2004 ⁷	7/27/04 - 8/23/04	2305	7.4	24.7
September 2004 ⁷	8/23/04 - 9/27/04	1453	6.7	14.5
October 2004 ⁷	9/27/04 - 10/25/04	1504	14.3	11.7
November 2004 ⁷	10/25/04- 11/23/04	1480	36.42	13.2
December 2004 ^{7,8}	11/23/04 - 12/27/04	1562	132.21	18.6
	Total pour	ids of VOCs remove	ed from inception =	814.7

NOTES:

- 1. Calculations are based on monthly water samples and assumes samples are representative of the entire reporting
- Calculations assume that non-detect values = 0 ug/L.
- 3. Calculations are based on totalizer readings.
- 4. "Influent VOCs" and "Effluent VOCs" values given above is the summation of values for individual compounds given in monthly analytical reports.
- 5. No samples were collected in September 2003. August 2003 values are used.
- 6. Treatment system operated by Tyree Organization, Ltd. from 9/02 to 9/03.
- 7. Treatment system operated by O&M Enterprises from 10/03 to present.
- 8. Average influent and effluent concentrations used for December 2004.

CONVERSIONS:

l pound = 453.5924 grams

1 gallon = 3.785 liters

Pounds of VOCs removed calculated by the following formula:

 $(1562\ ug/L-132.21ug/L)*(1g/10^6\ ug)*(1\ lb/453.5924\ g)*1,556,063\ gallons*(3.785\ L/gallon) \sim 18.6\ lbs$

where 1,556,063 gallons is the monthly process water volume.

Attachment A OMEI Weekly Inspection Reports December 2004

Date/Time	·	11\29\0	4 8	3:50		
Inspection	personne	<u> </u>	RC Becken			
Other pers	onnel on s	site	Jim Mays			
						
Weather C	conditions		38 degrees o	vercast		
Are all wei		_	in auto? (YE	S) N	10	
Provide wa	ater level re	eadings (on control pane	<u> </u>		
RW-1	(ON)	OFF	4	ft		
PW-2	(ON)	OFF	5	 ft		
PW-3	(ON)	OFF	6	ft		
PW-4	(ON)	OFF	5	ft		
PW-5	(ON)	OFF	6	ft		
PW-6	(ON)	OFF	14	ft		
PW-7	(ON)	OFF	7	ft		
PW-8	(ON)	OFF	7	ft		
	Equalizati	on tank	4	ft		
Influent Flo	w Rate		28.	.15 gpm		
Influent To	talizer Rea	ding		644	1299 gallons	
Sequesteri	ng agent o	irum leve	<u> </u>	24"	ft-in	
Amount of	sequester	ing agen	t remaining		25_ga	llons
Sequesteri	ng agent fo	eed rate			0 gpm	
Sequesteri	ng agent n	netering	Pump Pressure	·		0 psi
Bag filter to	p pressure	е			7 psi	
Bag filter b	ottom pres	sure		0	psi	

#1	(#2)				
		10) psi		
(#1)	#2				
re		0.12	inches	H ₂ O	
	18	inches H ₂	0		
(#1)	#2				
		7	_psi		
	~90	gpm			
		3801415	gallons		
(YES)	NO				
		54	degrees	F	
YES	(NO)				
YES	(NO)				
	2"				
d organiz	red?	(YES)	NO		
(NO)					
ole ID	Time of	Sampling	рН	Turbidity	Temp.
			NA	NA	
	-		NA	NA	
/vandali	sm of we	lls?	YES	(NO)	
			YES	NO	
				` '	
			. ,		llowing nage)
	(#1) re (#1) (YES) YES YES d organiz (NO) ole ID	(#1) #2 re	(#1) #2 re	#10 psi #2 #2 #3 inches H2O #1 #2 #3 inches H2O #1 #2 #4 #2 #5 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3	#10 psi #11 #2 #2

Other observations:
Describe any other system maintenance performed
Changed filters, afterwhich influent flow increased to 87.02 gpm.
Changed the pump in PW-6, last weeks cleaning of it had little or no effect on it's
pumping rate. New pump installed and I will take old pump to the shop to try and
clean. Installed new environmental power lead on the new PW-6 pump.
A Ar & A
Signature School -

Date/Time	>	12\6\04	9:00				
Inspection	personnel		RC Becken CD	Becken			
Other pers	sonnel on s	ite					
Weather (Conditions		light snow 31 de	egrees			
	ll pumps op ovide expla	_	n auto? (YES)	NO			
			• • • • • • • • • • • • • • • • • • •	,			
Provide ware RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	(ON) (ON) (ON) (ON) (ON) (ON) (ON)	OFF OFF OFF OFF OFF	on control panel 5 6 6 5 5 6 7 6	_ft _ft _ft _ft _ft _ft _ft _ft			
	Equalization	on tank	44	_ft			
Influent Flo	ow Rate		87.74	gpm			
Influent To	otalizer Rea	ding		7092536	gallons		
Sequester	ing agent d	rum leve	<u> </u>	13"	_ft-in		
Amount of	seques te ri	ng agen	t remaining		~18	gallons	
Sequester	ing agent fe	eed rate		0.01	_gpm		
Sequester	ing agent n	net erin g	Pump Pressure				1 psi
Bag filter t	op pressure	e	4		_psi		
Bag filter b	oottom pres	sure	C	<u> </u>	_psi		

Influent feed pump in use	#1	(#2)				
Influent Pump Pressure			10	psi		
Air stripper blower in use	(#1)	#2				
Air stripper differential pressu	ıre		0.1	inches	H₂O	
Air stripper vacuum		23	inches H ₂ 0)		
Effluent feed pump in use	#1	(#2)				
Effluent feed pump pressure			7	psi		
Effluent flow rate		~90	gpm			
Effluent Totalizer reading			4175586	gallons		
Are building heaters in use?	(YES)	NO				
Ambient air temperature			57	degrees	s F	
Are any leaks present?	YES	(NO)				
Is sump pump in use?	YES	(NO)				
Water level in sump		2"				
ls treatment building clean an	ıd organiz	ed?	(YES)	NO		
Samples collected? YES	(NO)					
Sam Air stripper influent Air stripper effluent	ple ID	Time of	Sampling	рН	Turbidity	Temp.
GAC influent				NA	NA	
GAC effluent				NA	NA	
Is there evidence of tampering	g/vandalis	sm of wel	ls?	YES	(NO)	
Were manholes inspected?				YES	NO	
Were electrical boxes inspect				YES	(NO)	
Is water present in any manho				(YES)	NO	llowing page

Other observations:
Describe any other system maintenance performed
Describe any other system maintenance performed Cleaned stripper tray with Rydlyme even though it looked pretty good prior to
cleaning. Changed the stripper blowers, they now blow the air stream through the
stripper trays instead of sucking the air through them. After cleaning the trays and
while reinstalling the tray cover I broke the water inlet flange, I could not purchase one
today so the system will be off until tomorrow when I get the flange.
Signature -

Date/Time	2 12/13/04	8:10							
Inspection	n personne	···	RC Becke	en					
Other pers	sonnel on s	site	Modern e	mploye	es 3	3	Jim May	es Mike	e Steffan
Weather (Conditions		light snow	/ 35 deg	grees				
									
	II pumps op ovide expla	-	in auto?	(YES)	٨	10			
				·· ·· · · · · · · · · · · · · · · · ·					
Provide w	ater level re	eadings OFF	on control إ	panel	ft				
PW-2	(ON)	OFF	6		ft				
PW-3	(ON)	OFF	6		ft				
PW-4	(ON)	OFF	6		ft				
PW-5	(ON)	OFF	5		ft				
PW-6	(ON)	OFF	6		ft				
PW-7	(ON)	OFF	7		.ft				
PW-8	(ON)	OFF	6		.ft				
	Equalizati	on tank	4		.ft				
influent Flo	ow Rate			97	gpm	l			
influent To	talizer Rea	ading			764	10943	gallons		
Sequester	ing agent o	irum leve	<u>el</u>		10"		ft-in		
Amount of	sequesteri	ing agen	t remaining]			~15	gallons	;
Sequester	ing agent fo	eed rate				0.01	gpm		
Sequester	ing agent n	netering	Pump Pres	ssure					1 psi
Bag filter to	op pressure	e	**************************************			2	psi		
Bag filter b	ottom pres	sure			Ja	an-00	psi		

Influent feed pump in use	#1	(#2)				
Influent Pump Pressure			8	psi		
Air stripper blower in use	(#1)	#2				
Air stripper differential pre	essure	· · · · · · · · · · · · · · · · · · ·	0.14	inches	H₂O	
Air stripper vacuum		3	inches H ₂ 0	0		er pressure
Effluent feed pump in use	(#1)	(#2)			20	
Effluent feed pump pressu	ure		7	psi		
Effluent flow rate		~90	_gpm			
Effluent Totalizer reading			449743	gallons		
Are building heaters in use	e? (YES)	NO				
Ambient air temperature			58	degrees	s F	
Are any leaks present?	YES	(NO)				
Is sump pump in use?	YES	(NO)				
Water level in sump	······································	2"	_			
Is treatment building clear	n and organ	ized?	(YES)	NO		
Samples collected? (YE	S) NO					
Air stripper influent Air stripper effluent GAC influent GAC effluent ——	ample ID		f Sampling 2:29 2:30	pH 7.41 8.22 NA NA	Turbidity 2.41 3.91 NA NA	Temp. 54.1 53.8
Is there evidence of tampe Were manholes inspected Were electrical boxes insp Is water present in any ma	l? pected? anholes or e	electrical t		YES YES YES (YES)	(NO) NO (NO) NO	

(If yes, provide manhole/electric box ID and description of any corrective measures on the following page.)

Other observations:
Describe any other system maintenance performed Changed filters. Madern Disposal on site to year earlier out of the earlier units, year truck had aprox
Modern Disposal on site to vac carbon out of the carbon units, vac truck had aprox.
5-10 gallons of an oily material in it. The truck operator said it would not affect
disposal. Jim Mays and I measured waterlevels in all monitoring wells.
·
Signature -

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157 Piezometer Water Level Log

Date 12/13/2004 Measurements taken by RC Becken J Mays

RW-124	4.6 ft	Comments	
PZ-1A11.	86 ft	Comments	
PZ-1B <u>11.</u>	47ft	Comments	
PZ-1C12.	<u>61</u> ft	Comments	
PZ-1D	ft	Comments car parked on well	
PW-223.	59ft	Comments	
PZ-2A11.	27ft	Comments	
PZ-2B11	1.6 ft	Comments	
PZ-2C11.	<u>12</u> ft	Comments	
PZ-2D	ft	Comments	
PW-319.	56ft	Comments	
PZ-3A11.	77ft	Comments	
PZ-3B11.	79ft	Comments	
PZ-3C12	2.3 ft	Comments	
PZ-3D11.8	82ft	Comments	
PW-422	2.9 ft	Comments	
PZ-4A11.9	91ft	Comments	
PZ-4B11.3	34ft	Comments	
PZ-4C 11.	52ft	Comments	
PZ-4D10.8	84ft	Comments	

RW-1 pump on during measurements?	(YES)	NO
PW-2 pump on during measurements?	(YES)	NO
PW-3 pump on during measurements?	(YES)	NO
PW-4 pump on during measurements?	(YES)	NO

Mr. C's Dry Cleaners Site NYSDEC Site #9-15-157 Piezometer Water Level Log

Date 12/13/2004

Measurements taken by RC Becken J Mays

PW-5 _	22.1	ft	Comments
PZ-5A _	10.77	ft	Comments
PZ-5B	11.05	ft	Comments
PZ-5C _	10.66	ft	Comments
PZ-5D _	11.49	ft	Comments
PW-6	21.6	ft	Comments
PZ-6A	11.76	ft	Comments
PZ-6B _	11.58	ft	Comments
PZ-6C _	11.91	ft	Comments
PZ-6D _	11.42	ft	Comments
PW-7 _	18.64	ft	Comments
PZ-7A _	11.55	ft	Comments
PZ-7B _	12.09	ft	Comments
MPI-6S	11.05	ft	Comments
PZ-7D _	11.55	ft	Comments
PW-8 _	23.3	ft	Comments
PZ-8A _	8.36	ft	Comments
PZ-8B _	8.28	ft	Comments
PZ-8C _	7.85	ft	Comments
PZ-8D _	8.27	ft	Comments

PW-5 pump on during measurements?	(YES)	NO
PW-6 pump on during measurements?	(YES)	NO
PW-7 pump on during measurements?	(YES)	NO
PW-8 pump on during measurements?	(YES)	NO

Date/Time 12\21\0	4 9:10			
Inspection personnel	RC Becken			
Other personnel on site	Jim Mayes			
Weather Conditions	overcast 26 deg	rees		
				·····
Are all well pumps operating If "NO", provide explanation	in auto? (YES)	NO		

· · · · · · · · · · · · · · · · · · ·				
Provide water level readings (RW-1 (ON) OFF PW-2 (ON) OFF PW-3 (ON) OFF PW-4 (ON) OFF PW-5 (ON) OFF PW-6 (ON) OFF PW-7 (ON) OFF	on control panel	ft - ft - ft - ft - ft - ft		
PW-8 (ON) OFF	4	ft		
Equalization tank	4	_ft		
Influent Flow Rate	22.11	gpm		
Influent Totalizer Reading		80298	99 gallons	
Sequestering agent drum leve	e <u>l</u>	2"	ft-in	
Amount of sequestering agen	t remaining		8-May gallon	s
Sequestering agent feed rate		0).1 gpm	
Sequestering agent metering	Pump Pressure			1 psi
Bag filter top pressure	Andrewson de Control of the Control		22 psi	
Bag filter bottom pressure		_	0 psi	

Influent feed pump in	use	#1	(#2)						
Influent Pump Pressu	re				8	psi			
Air stripper blower in u	ıse	(#1)	#2						
Air stripper differential	pressu	re		0).14 i	inches H	H ₂ O		
Air stripper vacuum _			3	inches	H ₂ C	, , , , , , , , , , , , , , , , , , ,	air stripp	er pressu	re 18
Effluent feed pump in	use	(#1)	#2						
Effluent feed pump pre	essure			····	<u>7</u>	osi			
Effluent flow rate		 	~95	_gpm					
Effluent Totalizer read	ing			47284	416 g	gallons			
Are building heaters in	use?	(YES)	NO						
Ambient air temperatu	re		·	 	<u>55</u> (degrees	F		
Are any leaks present	?	YES	(NO)						
Is sump pump in use?		YES	(NO)						
Water level in sump _			2"	-					
ls treatment building c	lean an	d organiz	zed?	(YES	S)	NO			
Samples collected?	(YES)	NO							
Air stripper influent Air stripper effluent	Samp	ole ID	9	f Sampli 9:50 9:55	ing	pН	Turbidity	Temp.	
GAC influent			-	2.00		NA	NA		
GAC effluent			-			NA	NA		
Is there evidence of ta Were manholes inspe	-	g/vandali	sm of we	ells?		YES YES	(NO) NO		
Were electrical boxes		ed?				YES	(NO)		
Is water present in any			ectrical b	oxes?		(YES)	NO		
(If yes, provide manhole/el	ectric box	(ID and de	escription o	of any cor	rectiv	e measui	res on the fo	ollowing pag	<i>g</i> e.)

Mr.C inspection

Other observations:
Describe any other system maintenance performed changed filter afterwhich the influent flow increased to 67 gpm. Installed the manhole covers on both carbon vessels.
Signature Ful Color -

Date/Time_		12\27\04	4 9:00					
Inspection p	personnel		RC Becken					
Other perso	onnel on s	ite						
Weather Co	onditions		cold, sunny,16 o	degre	es			
		 						
Are all well		•	in auto? (YES)		NO			
RW-1 PW-2 PW-3 PW-4 PW-5 PW-6 PW-7 PW-8	(ON) (ON) (ON) (ON) (ON) (ON) (ON)	OFF OFF OFF OFF OFF OFF	on control panel 4 5 7 5 3 3 7 4					
Ε	Equalization	on tank	4	_ft				
Influent Flov	v Rate _		60	gpn	n			
Influent Tota	alizer Rea	ding		85	79302	gallons		
Sequesterin	g agent d	rum leve	el	<1"		ft-in		
Amount of s	equesteri	ng agen	t remaining			~2	gallons	•
Sequesterin	g agent fe	eed rate			0.01	gpm		
Sequesterin	g agent n	netering	Pump Pressure					1 psi
Bag filter top pressure					16	psi		
Bag filter bottom pressure				J	lan-00	psi		

Influent feed pump in	use	#1	(#2)				
Influent Pump Pressu	re				8 psi		
Air stripper blower in ι	ıse	(#1)	#2				
Air stripper differential	pressu	re		C	0.16 inches	H₂O	
Air stripper vacuum _			···-	3 inches	s H₂O	Air press	ure in
Effluent feed pump in	use	(#1)	#2			sump 22	"H2O
Effluent feed pump pro	essure						
Effluent flow rate _			~90	_gpm			
Effluent Totalizer read	ing			5047	629 gallons		
Are building heaters ir	use?	(YES)	NO				
Ambient air temperatu	re				55 degrees	s F	
Are any leaks present	?	YES	(NO)				
Is sump pump in use?		YES	(NO)				
Water level in sump _		······································	2"	-			
ls treatment building c	lean and	d organiz	zed?	(YES	S) NO		
Samples collected?	YES	(NO)					
Air stripper influent	Samp	ole ID	Time o	of Sampl	ing pH	Turbidity	Temp.
Air stripper effluent GAC influent					NA	NA	
GAC effluent					NA	NA	
Is there evidence of ta		/vandali	sm of w	ells?	YES	(NO) NO	
Were manholes inspe Were electrical boxes	inspecte				YES YES	(NO)	
Is water present in any					(YES)	NO	llowing nage

(If yes, provide manhole/electric box ID and description of any corrective measures on the following page.)

Other observations:
entre de la composition de la composit L
Describe any other system maintenance performed
Changed filter
Signature Lichel Decler -

Attachment B1
Selected pages from
ASC Analytical Data Package #0412104
December 8, 2004

4493 Walden Avenue, Lancaster, New York 14086 Tel: 716/685-8080, 800/327-6534 • Fax: 716/685-0852 • Email: asc@ene.com

December 14, 2004

Mr. Mike Steffan E and E Buffalo Office 368 Pleasant View Dr. Lancaster, NY 14086

RE: Mr. Cs Dry Cleaners

CostPoint ID: **000699.NY06.05..**

Work Order No.: 0412104

Dear Mr. Mike Steffan,

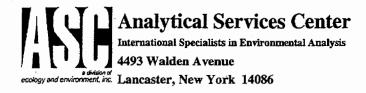
Analytical Services Center received 2 samples on Wednesday, December 08, 2004 for the analyses presented in the following report.

The ASC certifies that the test results in this report meet all requirements of NELAC for which it holds certification except as noted in this narrative and/or as flagged in the report.

The ASC is accredited in the Fields of Testing Potable water (SDWA), Solid and Chemical Materials (Solid Hazardous Wastes, RCRA), Water (CWA and other non-potable water) and Air and Emissions. Its primary accrediting authorities are New York State Department of Health and Florida Department of Health. The particular analytes/methods certified may be ascertained by requesting the laboratory's current certificates from your laboratory Project Manager.

E & E will retain the samples addressed in this report for 30 days, unless otherwise instructed by the client. If additional storage is requested, the storage fee is \$1.00 per sample container per month, to accrue until the client authorizes sample destruction.

This report is not to be reproduced, except in full, without the written approval of the laboratory.


Sincerely,

Barbara Krajewski

Project Manager

CC:

Enclosures as noted

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E AND E BUFFALO

Project:

Mr. Cs Dry Cleaners

Lab Order:

0412104

CASE NARRATIVE

GCMS VOLATILES

A DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

Sample analysis

Volatile samples were determined to be at a pH of 7. Samples were analyzed within hold time.

Calibration and Tunes

Initial and continuing calibrations were acceptable. Manual peak integration was not required.

QC

Surrogate recoveries were within acceptable limits.

Method blank analysis is acceptable.

Laboratory control sample (LCS) recoveries were acceptable.

Internal standard area responses were acceptable.

HIM (): HISTODY (15 HOLD) | Services Center services 4493 Walden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852

ASC

Labi

Cooler No:

TURNAROUND TIME: ŏ LAB PROJECT MANAGER: ~ <u>+</u> Page: REMARKS STANDARD 24-HOUR 48-HOUR 1-WEEK OTHER. ENDING DEPTH (FEFT BGS) FOR LABUSE ONLY) BEGINNING DEPTH (FEET BGS) LAB PROJECT No.: Work Oxder No: Temperature: OVA/HNUREADINGS (PPM) Date: CONTAINER TYPE AND PRESERVATIVE Date: REQUESTED ANALYSIS ž Temperature Blanklufo BL/Airbill Number: Enclosed: Ship Via: Thing! Date/Time: Date/Time: Date/Time: East Aurorea, NY) 84 No. OF CONTAINERS 3 3 LOCATION: (Include State) 3 Date/Time: \$2.30 Received By: (Signature) Received By: (Signature) Received By: (Signature) 2- 12/08/04/ Delenan MATHIXCODE MR C'S DRY CIBANCES Z EFFLURAT (SW) RICK BECKEN AND James HANG AS INFLUENT DEC SAMPLE ID Date/Time: Date/Time: M. STISTERM HONE NO.: の土 CLIENT: NOW YORK STATE OFFICE No. AS 10 Relinq(Ished By: (Signature) Relinquished By: (Signature) Relinquished By: (Signature) STOW I 12 08 103 103 TIME FIELD TEAM LEADER: PROJECT MANAGER: SAMPLERS: (PRINT) 12/08 lod PROJECT No: SITE NAME: DATE

Distribution: White - Lab original Yellow - Field team leader/Project Manager

	1	H	H
ŀ		-	-

Cooler Receipt Form

No. of Packages:		Date Received: '	12-8-04
Package Receipt No.:	15 172	Project or Site Name:	
Client:	MP C'S		

A.	Peliminary Examination and Receipt Phase	a	rde O	ne
1.	Did coolers come with airbill or packing slip?	Yes (NO)	NA
	Circle carrier here and print airbill number below: Fed Ex Airborne Client Other			
	Shipped as high hazard or dangerous goods?	Yes	No	JNA.
2.	Did cooler(s) have custody seals?	Yes	No	NA
3.	Were custody seals unbroken and intact on receipt?	Yes	No	NA
4.	Were custody seals dated and signed?	(e)	No	NA
5.	How was package secured? Not secured Fiberglass Tape GEAN 749			

	Hannaking Obaco				····		<u>-</u> -		
6.	Unpacking Phase Date cooler(s) opened:(2-	8-04	Cooler(s) opened I	oy: D.J.	lkolima	~~			
7.	Was a temperature blank vial ind	uded inside	e cooler(s)?				Yes	No	NA
	Please Recon	d Tempera	ature Vial or Cooler Temp	erature for Ea	ch Cooler, Ran	ge (2° - 6°C)	K		
\$\$ <u>\$</u> \$	and the second s	103 G	ATTIBLE OF	Tero. C	All	911 XIG		iyoù	(
								٠.	
·Th	ermometer No.: 23 (Correct	ion Factor: 🍎 🗸		e is outside of a orm indicating af			ere a P	М
8.	Were the C-O-C forms received?	<u> </u>				4	Yes	No	NA
	C-O-C forms numbers if present:								
9.	Was enough packing material use	d in coolen					Yes -	No	NA
	Type of material: Vermio	ulite	☐ Bubble Wrap ☐ C	otherA	JONE				
10.	If cooling was required, what was	the means	s (type ice) of cooling used:	Ø₩et □ D	y □ Blue □	Other			. NA
11.	Were all containers sealed in sepa	rate plastic	bags?			4	Yes	No	NA
12.	Did all containers arrive unbroken	and in goo	od condition?			1	Yes	No	NA
13.	Interim storage area if not logged			<u>:</u>					
•	In: Date	Time	Signati	re					
	Out: Date	Time	Signati	<i>x</i> re					

C. Login Phase		
Samples Logged in By Signature: Date:		
14. Were all container labels complete (e.g. date, time preserved)?	Yes No	NA
15. Were all C-O-C forms filled out properly in black ink and signed?	Yes No	. NA
16. Did the C-O-C form agree with containers received?	Yes No	NA
17. Were the correct containers used for the tests requested?	Yes No	,NA
18. Were the correct preservatives listed on the sample labels?	Yes No	NA)
19. Was a sufficient sample volume sent for the tests requested?	Yes No	NA
20. Were all volatile samples received without headspace?	Yes No	NA

Analytical Services Center
International Specialists in Environmental Analysis Lancaster, New York 14086-

and environment, inc. Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

Mr. Cs Dry Cleaners

Lab Order:

Date Received:

0412104 12/8/2004 **Work Order Sample Summary**

Lab Sample ID

Client Sample ID

Alt. Client Id

Collection Date

0412104-01A 0412104-02A

AS INFLUENT AS EFFLUENT 12/8/2004 11:01:00 AM 12/8/2004 11:01:00 AM

Analytical Services Center

International Specialists in Environmental Analysis

Lancaster, New York 14086-

Fax: (716) 685-0852 Phone: (716) 685-8080

NYS ELAP ID#: 10486

Laboratory Results

(716) 685-8080 Phone: DATES SUMMARY REPORT

Lab Order:

E and E Buffalo Office 0412104

Client:

	alytes Flag	48	alytes Flag	18
	Type DF #An	SAMP 1	Type DF #An	SAMP 50
	is/BatchID	1078284	is/BatchID	1078287
	Analyzed* - Analysis/BatchID Type DF #Analytes Flag	2/10/2004 5:47:00 PM	Analyzed* - Analysis/BatchID Type DF #Analytes Flag	2/10/2004 6:19:00 PM
	Received Date HT (Days) / HT Expire	8/2004 11:01:00 AM 12/8/2004 12:30:00 PM 7:R 12/15/2004 12:30:00 PM 12/10/2004 5:47:00 PM 1078284 SAMP 1 48	Received Date HT (Days) / HT Expire	16/2004 11:01:00 AM 12/8/2004 12:30:00 PM 7:R 12/15/2004 12:30:00 PM 12/10/2004 6:19:00 PM 1078287 SAMP 50 48
	Received Date H	12/8/2004 12:30:00 PM 7	Received Date H	12/8/2004 12:30:00 PM 7
	Collection Date	12/8/2004 11:01:00 AM	Collection Date	12/8/2004 11:01:00 AM
rs	Matrix Test Name	Water Low Level VOCs by Method 8260B	Matrix Test Name	Water Low Level VOCs by Method 8260B
Mr. Cs Dry Cleaners	Matrix	Water	Matrix	Water
Mr. Cs D	(LAB) Sample ID (CLIENT)	412104-02A AS EFFLUENT	LAB) Sample ID (CLIENT)	412104-01A AS INFLUENT
Project:	(LAB) Sample	0412104-02A	(LAB) Sample	0412104-01A

HT From: C-Collection / R- Receipt(VTSR) / P-Prep / T-TCLP Prep

* "Analyzed" reflects the analysis date and time or injection time for analytical tests. For preparation tests "Analyzed" reflects the start of the preparation except when "AFCEE criteria used"; fiag indicates date

and time of completion of the preparation.
For TCLP/SPLP Extraction of the preparation tests..."Analyzed" reflects the date of TCLP/SPLP Extraction/preparation. For Re-extracted (RE) samples: Preparation tests completed dates reflects the extraction from the original sample leacheate unless an "RE" Sample exists for the extraction from the original sample leacheate unless an "RE".

LIMS Version #: 041213_1930

Printed: Tuesday, December 14, 2004 9:37:34 AM

Analytical Services Center
International Specialists in Environmental Analysis Lancaster, New York 14086-

environment, inc. Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

Client:

E and E Buffalo Office

Project:

Mr. Cs Dry Cleaners

Work Order:

0412104

Method References

GCMS Volatiles

VOCs, Low Level by GCMS Method 8260B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Analytical Services Center International Specialists in Environmental Analysis

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone:

(716) 685-8080

Client:

Project:

E and E Buffalo Office

Lab Order: 0412104

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/8/2004 11:01:00 A % Moist:

Lab ID: 0412104-01A

Sample Type: SAMP

Matrix: Water

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
1,1,1-Trichloroethane	ND	50.0	μg/L	50	12/10/2004 6:19:00 PM	LINUS_041210B	RMJ
1,1,2,2-Tetrachloroethane	ND	50.0	μg/L	50			
1,1,2-Trichloro-1,2,2- trifluoroethane	ND	50.0	μg/L	50			
1.1.2-Trichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethene	ND	50.0	μg/L	50			
1,2,4-Trichlorobenzene	ND	50.0	μg/L	50			
1,2-Dibromo-3-chloropropane	ND	250	μg/L	50			
1,2-Dibromoethane	ND	50.0	µg/L	50			
1,2-Dichlorobenzene	ND	50.0	μg/L	50			
1,2-Dichloroethane	ND	50.0	μg/L	50			
1,2-Dichloropropane	ND	50.0	μg/L	50			
1,3-Dichlorobenzene	ND	50.0	μg/L	50			
1,4-Dichlorobenzene	ND	50.0	μg/L	50			
2-Butanone	ND	250	μg/L	50			
2-Hexanone	ND	250	μg/L	50			
4-Methyl-2-pentanone	ND	250	μg/L	50			
Acetone	ND	250	μg/L	50			
Benzene	ND	50.0	μg/L	50			
Bromodichloromethane	ND	50.0	μg/L	50			
Bromoform	ND	50.0	μg/L	50			
Bromomethane	ND	100	μg/L	50			
Carbon disulfide	ND	250	μg/L	50			
Carbon tetrachloride	ND	50.0	μg/L	50			
Chlorobenzene	ND	50.0	μg/L	50			
Chloroethane	ND	100	μ g /L	50			
Chloroform	ND	50.0	μg/L	50			
Chloromethane	ND	100	μg/L	50			
is-1,2-Dichloroethene	ND	50.0	μg/L	50			
is-1,3-Dichloropropene	ND	50.0	μg/L	50			
Cyclohexane	ND	50.0	μg/L	50			
Dibromochloromethane	ND	50.0	μg/L	50			
Dichlorodifluoromethane	ND	250	μg/L	50			
Ethylbenzene	ND	50.0	μg/L	50			
sopropylbenzene	ND	50.0	. μg/L	50			
Methyl acetate	ND	50.0	μg/L	50			•
Nethyl tert-butyl ether	12.3 J	50.0	μg/L	50			

Definitions:

* - Recovery outside QC limits

DF - Dilution Pactor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

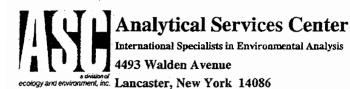
NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

P - Post Spike Recovery outside limits


D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Client Sample ID: AS INFLUENT

Lab Order: 0412104

Alt. Client ID:

Project:

Mr. Cs Dry Cleaners

Collection Date: 12/8/2004 11:01:00 A % Moist:

Lab ID: 0412104-01A

Sample Type: SAMP

Matrix: Water

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
Methylcyclohexane	ND		50.0	μg/L	50			
Methylene chloride	ND		50.0	μg/L	50			
Styrene	ND		50.0	μg/L	50	1		
Tetrachloroethene	1180		50.0	μg/L	50			
Toluene	ND		50.0	μg/L	50	•,		
trans-1,2-Dichloroethene	ND		50.0	μg/L	50			
trans-1,3-Dichloropropene	ND		50.0	μg/L	50			
Trichloroethene	29.6	J	50.0	μ g/ L	50			
Trichlorofluoromethane	ND .		50.0	µg⁄L	50			
Vinyl chloride	ND		50.0	µg/L	50		•	
Xylenes, Total	ND		50.0	μ g /L	50			
Surr:1,2-Dichloroethane-d4	102		70 - 128	%REC	50	12/10/2004 6:19:00 PM LIN	NUS_041210B	RMJ
Surr:4-Bromofluorobenzene	96		80 - 119	%REC	50			
Surr:Dibromofluoromethane	98		85 - 110	%REC	50			
Surr:Toluene-d8	90		83 - 110	%REC	5 0			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Muximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Mutrix Spike Recovery outside limits .

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

0486

Phone:

(716) 685-8080

CLIENT:

Project:

Lab ID:

E and E Buffalo Office

Lab Order: 0412104

Mr. Cs Dry Cleaners

0412104-01A

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/8/2004 11:01:00 AM

Matrix: WATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

RT EST. CONC. O

Sample Type: SAMP

O I

Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated
P - Post Spike Recovery outside limits

D - Diluted due to maxirix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Analytical Services Center
International Specialists in Environmental Analysis 4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client: E and E Buffalo Office

Client Sample ID: AS EFFLUENT

Lab Order: 0412104

Alt. Client ID:

Project:

Mr. Cs Dry Cleaners

Collection Date: 12/8/2004 11:01:00 A % Moist:

Lab ID: 0412104-02A

Sample Type: SAMP

Matrix: Water

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METH	OD 8260)B
------------------------	---------	----

Method:	SW8260B
meruoa:	2449500B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1 1 1 Triablaranthana	· ND		1.00			12/10/2004 5:47:00 PM	178US 041310B	DMI
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND		1.00 1.00	μg/L	1	12/10/2004 5:47:00 PIVI	LINUS_041210B	RMJ
1,1,2-Trichloro-1,2,2-	ND			µg/L	1			
trifluoroethane	ND		1.00	µg/∟	1			
1,1,2-Trichloroethane	ND		1.00	μg/L	1			
1,1-Dichloroethane	ND		1.00	μg/L	1			
1,1-Dichloroethene	ND		1.00	μg/L	1			
1,2,4-Trichlorobenzene	ND		1.00	μg/L	1		•	
1,2-Dibromo-3-chloropropane	ND		5.00	μg/L	1			
1,2-Dibromoethane	ND		1.00	μg/L	1			
1,2-Dichlorobenzene	ND		1.00	μg/L	1			
1,2-Dichloroethane	ND		1.00	μg/L	1	•	•	
1,2-Dichloropropane	ND		1.00	μ g/L	1			
1,3-Dichlorobenzene	ND		1.00	μg/L				•
1,4-Dichlorobenzene	ND		1.00	μ g/L	1			
2-Butanone	8.19		5.00	μg/L	1			
2-Hexanone	ND		5.00	μ g/L	1			
4-Methyl-2-pentanone	ND		5.00	μg/L	1			
Acetone	3.94	J	5.00	μ g/L	1			
Benzene	ND		1.00	μg/L	1			
Bromodichloromethane	ND		1.00	μg/L	. 1			
Bromoform	ND		1.00	μ g/L	1			
Bromomethane	ND		2.00	μ g/L	1			
Carbon disulfide	ND		5.00	μg/L	1			
Carbon tetrachloride	ND		1.00	μ g/L	1			
Chlorobenzene	ND		1.00	μg/L	1			
Chloroethane	ND		2.00	μg/L	1			
Chloroform	ND		1.00	μg/Ł	1			
Chloromethane	ND		2.00	μg/Ł	1			
cis-1,2-Dichloroethene	ND		1.00	μg/L	1			
cis-1,3-Dichloropropene	ND .		1.00	μg/L	1			
Cyclohexane	ND		1.00	μg/L	1			
Dibromochloromethane	ND		1.00	μg/L	1			
Dichlorodifluoromethane	ND		5.00	μg/L	1			
Ethylbenzene	ND		1.00	μg/L	1			
sopropylbenzene	ND		1.00	µg/L	1			
Methyl acetate	ND		1.00	μg/L	1			
Methyl tert-butyl ether	1.13		1.00	μ g/L	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor ...

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxifix or extended target compounds

 \boldsymbol{E} - Result above quantitation limit (high standard or ICP linear range).

M · Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Lunit

International Specialists in Environmental Analysis

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client: E and E Buffalo Office

Lab Order: 0412104

Project: Mr. Cs Dry Cleaners Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/8/2004 11:01:00 A % Moist:

Lab ID: 0412104-02A

Sample Type: SAMP

Matrix: Water

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
Methylcyclohexane	ND		1.00	μg/L	1			
Methylene chloride	ND		1.00	μg/L	1			
Styrene	0.352	J	1.00	μg/L	1			
Tetrachloroethene	2.85		1.00	μg/L	1			
Taluene	0.159	J	1.00	μ g/L	1			
trans-1,2-Dichloroethene	ND		1.00	μg/L	1			
trans-1,3-Dichloropropene	ND		1.00	µg/L	1			
Trichloroethene	0.510	J	1.00	μg/L	1	•.		
Trichlorofluoromethane	ND		1.00	μg/L	1			
Vinyl chloride	ND		1.00	μg/L	1			
Xylenes, Total	ND		1.00	μg/L	1			
Surr:1,2-Dichloroethane-d4	100		70 - 128	%REC	1 1	12/10/2004 5:47:00 PM LI	NUS_041210B	RMJ
Surr:4-Bromofluorobenzene	96		80 - 119	%REC	1			
Surr:Dibromofluoromethane	95		85 - 110	%REC	1			
Surr:Toluene-d8	93		83 - 110	%REC	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Aualysis

NP - Petroleum Puttern is not present

B - Analyte found in Method blank

DNI - Did not ignite

J · Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Analytical Services Center International Specialists in Environmental Analysis

ecology and environment inc Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

Phone:

(716) 685-8080

CLIENT:

E and E Buffalo Office

Lab Order: 0412104

Project: Lab ID:

0412104-02A

Mr. Cs Dry Cleaners

Sample Type: SAMP

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/8/2004 11:01:00 AM

Matrix: WATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC. Q Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminum Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

I - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and environment, inc. Phone: (716) 685-8080

E and E Buffalo Office

0412104

Work Order: CLIENT:

Project:

Mr. Cs Dry Cleaners

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs, Low Level by GCMS Method 8260B	8260B			Test Code: 1_8260B_5030B_TCL_LL_W	8260B_5030	B_TCL_LL	≥ ,	Units: µg/L		
Sample (D: MB-1851-37-3	Client Sample ID:						OF:	1 DL_No:	÷:	
Run Batch ID: LINUS_041210B	SeqNo: 1078285	•	Analysis Date: 12/10/2004 3:41:00 PM		Prep Batch ID: 041210411r	10411r		Prep Date:		
Analyte Type / Name	Result	t MDL	PL Spike Value	e Orlg Result	%REC L	LowLimit	HighLimit	RPD	RPD Limit 1 Qual	व
1,1,1-Trichloroethane	QN	0.1230	1.000							
1,1,2,2-Tetrachloroethane	QN	0.1710	1.000							
1,1,2-Trichtoro-1,2,2-trifluoroethane	QN	0.2720	1.000							
1,1,2-Trichloroethane	QN		1.000							
1,1-Dichloroethane	QN	0.1170	1.000							
1,1-Dichloroethene	ON.	0.1370	1.000							
1,2,4-Trichlorobenzene	QN	0.1450	1.000							
1,2-Dibromo-3-chloropropane	QN	0.3730	9.000							
1,2-Dibromoethane	QN	0.1260	1.000							
1,2-Dichlorobenzene	QN	0.08000	1.000							
1,2-Dichtoroethane	Q	0.1090	1.000							
1,2-Dichloropropane	QN	0.09610	1.000							
1,3-Dichlorobenzene	QN	0.09330	1.000							
1,4-Dichlorobenzene	QV	0.1010	1.000							
2-Butanone	Q	0.8150	5.000							
2-Hexanone	QN	0.1870	5.000							
4-Methyl-2-pentanone	Q	0.3930	5.000							
Acetone	QV.	1.730	2.000							
Benzene	g	0.1040	1.000							
Bromodichloromethane	QV	0.1410	1.000							
Bromoform	ON	0.09900	1.000							
Qualifier Definitions:										
* - Recovery outside OC limits	B - Analyte found	B - Analyte found in Method blank	D-Diluted	D - Diluted due to maximix or extended target commoneds	omed larget comp		DE - Dilution Earles			
DNI - Did not Ignite	E - Result above quantitation	quantitation limit (hig	limit (high standard or ICP linear H - Value Exceeds Maximum Contaminant Level	xceeds Maximum Con	taminant Level		Dr - Ditution racto J - Estimated value	=		
M - Matrix Spike Recovery outside limits	N - Single Column Analysis	n Analysis	NC - Not Calculated	alculated		Ē	D - Not Detected	ND - Not Detected at the Reporting Limit	Limit	
NP - Petroleum Pattern is not present	P - Post Spike Re	P - Post Spike Recovery outside limits		R - RPD outside recovery limits						

Analyte Types: S - Surrogate I - Internal Standard R . RPD outside recovery linits

RL - Reporting Limit

Footnotes: 1 - Represents RSD Limit for Quad Analysis

International Specialists in Environmental Analysis

Lancaster, New York 14086-

E and E Buffalo Office

0412104

Work Order: CLIENT:

Project:

Mr. Cs Dry Cleaners

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs, Low Level by GCMS Method 8260B	S Method 8260B				•	Test Code: 1_8260B_5030B_TCL_LL_W	8260B_503	10B_TCL_LL	W	Units: µg/L		
Sample ID: MB-1851-37-3	Client Sample ID:	mple ID:							OF:	1 DL_No:	.	
Run Batch (D: LINUS_041210B	SeqNo: 1078285	1078285	Analysis Da	ite: 12/10/	Analysis Date: 12/10/2004 3:41:00 PM Prep Batch ID: 041210411r	Prep Bate	ch ID: 041	2104i1r		Prep Date:		
Analyte Type / Name	3	Result	MDL	님	Spike Value Orig Result	Orig Result	%REC	LowLimit	HighLimit	PD	RPD Limit 1	Qual
Bromomethane		QN	0.1010	2.000								-
Carbon disulfide		Q	0.1180	5.000								
Carbon tetrachloride		Q N	0.1110	1.000								
Chlorobenzene		Q	0.1150	1.000								
Chloroethane		Q	0.1210	2.000								
Chloroform		2	0.1200	1.000								
Chloromethane		Q	0.1420	2.000			,					
cis-1,2-Dichloroethene		Q	0.09900	1.000								
cis-1,3-Dichloropropene		9	0.1040	1.000						•		
Cyclohexane		2	0.09990	1.000								
Dibromochloromethane		Q	0.08740	1.000								
Dichlorodifluoromethane		S	0.3040	5.000								
Ethylbenzene		S O	0.1640	1.000								
Isopropylbenzene		Q	0.1010	1.000								
Methyl acetate		N N	0.3870	1.000								
Methyl tert-butyl ether		Q	0.1090	1.000							,	
Methylcyclohexane		Q	0.1070	1.000								
Methylene chloride		Q	0.1280	1.000								
Styrene		Q	0.1180	1.000								
Tetrachloroethene		Q	0.1410	1.000								
Toluene		Q.	0.1190	1.000								
Qualifter Definitions:												
* - Recovery outside QC limits DNI - Did not Ignite	B - Ana E - Res	alyte found in all above qua	B - Analyte found in Method blank E - Result above quanttation limit (high st	andard or ICF	 B - Analyte found in Method blank D - Diluted due to maxerix or extended target con E - Result above quantitation limit (high standard or ICP linear H - Value Exceeds Maximum Confarminant Level 	D - Diluted due to maxtrix or extended target compounds H - Valve Exceeds Maximum Contaminant Level	ended target co	spunod	DF - Dilution Factor J - Estimated value			
M - Matrix Spike Recovery outside limits		N - Single Column Analysis	nalysis		NC - Not Cakulated	ılated			ND - Not Detected at the Reporting Limit	at the Reporting l	Jinit	
NP - Petroleum Pattern is not present	P - Post	Spike Recov	P - Post Spike Recovery outside limits		R - RPD outsid	R - RPD outside recovery limits						

RL - Reporting Limit Footnotes: 1 - Represents RSD Limit for Quad Analysis

Analyte Types: S - Surrogate 1 - Internal Standard R - RPD outside recovery limits

Monday, December 13, 2004 8:10:25 PM

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and environment, inc. ... Phone: (716) 685-8080

E and E Buffalo Office

0412104

Work Order: CLIENT:

Project:

Mr. Cs Dry Cleaners

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs, Low Level by GCMS Method 8260B	od 8260B				Test Code: 1_8260B_5030B_TCL_LL_W	8260B_503	10B_TCL_LI	_w_	Units: µg/L		
Sample ID: MB-1851-37-3	Client Sample ID:							OF:	1 DL_No:	Jo: 1	
Run Batch ID: LINUS_041210B	SeqNo: 1078285		s Date: 12/10/	Analysis Date: 12/10/2004 3:41:00 PM Prep Batch ID: 0412104l1r	Prep Bato	h ID: 041	210411r		Prep Date:		
Analyte Type / Name	Result	MDL	귵	Spike Value	Spike Value Orig Result %REC LowLimit HighLimit	%REC	LowLimit	HighLimit	RPD	RPD Limit 1 Qual	Sual
trans-1,2-Dichloroethene	Q	0.1280	1.000						-		
trans-1,3-Dichloropropene	QV	0.1120	1.000								
Trichtoroethene	2	0.1630	1.000								
Trichlorofluoromethane	QN	0.1850	1.000								
Vinyl chloride	₽ Q	0.1190	1.000								
Xylenes, Total	QN	0.3070	1.000					٠			
S 1,2-Dichloroethane-d4	9.953	0	0			100	20	128			
S 4-Bromofluorobenzene	9.324	0	0			83	8	119			
S Dibromofluoromethane	9.650	0	0			6	82	110			
S Toluene-d8	9.235	0	0			85	83	110			

Qualifier Definitions:

. - Recovery outside QC limits DNI - Did not Ignite

M - Matrix Spike Recovery outside limits NP - Petroleum Pattern is not present Footnotes: 1 - Represents RSD Limit for Quad Analysis

D - Dijuted due to maxtrix or extended target compounds E - Result above quantitation liniit (high standard or ICP linear H . Value Exceeds Maximum Contaminant Level NC - Not Calculated

ND - Not Detected at the Reporting Limit

DF - Dilution Factor J - Estimated value

R - RPD outside recovery limits

P - Post Spike Recovery outside limits

RL - Reporting Limit

N - Single Column Analysis

B - Analyte found in Method blank

Analyte Types: S · Surrogate 1 · Internal Standard

Ecology & Environment Inc. LIMS Version #: 041213_1930

International Specialists in Environmental Analysis

Lancaster, New York 14086-

and environment, inc. Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#: 10486

CLIENT:

E and E Buffalo Office

Lab Order: 0412104

Mr. Cs Dry Cleaners

Client Sample ID:

Alt. Client ID:

Collection Date:

Project: Lab ID: MB-1851-37-3

Sample Type: MBLK

Matrix: WATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC. Q

Units

DF

Date Analyzed

Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

ND - Not Detected at the Reporting Limit

J - Analyte detected below Reporting limits

B - Analyte detected in the associated Method Blank

H - Value exceeds Maximum Contaminant Level

* - Recovery outside limits

R - RPD outside recovery limits

E - Value above quantitation range

Surr - Denotes Surrogate Compound

M -Matrix Spike recovery outside limits

Q - Qualifier

D - Diluted Out

N - Single Column Analysis

LIMS Version #: 041213_1930

Monday, December 13, 2494 3:10:25 PM

International Specialists in Environmental Analysis

Lancaster, New York 14086-

Fax: (716) 685-0852

E and E Buffalo Office

Mr. Cs Dry Cleaners

0412104

Work Order: CLIENT:

Project:

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Laboratory Control Spike

VOCs, Low Level by GCMS Method 8260B	od 8260B				•	Test Code: 1_8260B_5030B_TCL_LL_W	8260B_50	30B_TCL_L	M-W	Units: µg/L	-	
Sample ID: LCS-1851-37-2	Client Sample ID:	mple (D:							OF:	1 DL_No:	lo: 1	
Run Batch ID: LINUS_041210B	SeqNo:	SeqNo: 1078286	Analysis	Date: 12/10/20	nalysis Date: 12/10/2004 2:37:00 PM	Prep Batc	Prep Batch ID: 0412104i1r	1210411r		Prep Date:		•
Analyte Type / Name		Result	MDL	చ	Spike Value	Orig Result	%REC	LowLimit	HighLimit	RPD	RPD Limit 1 Qual	75
1,1-Dichloraethene		9.404	0.1370	1.000	10.00	0	94	80	120			
Benzene		9.905	0.1040	1.000	10.00	0	66	88	120			
Chlarobenzene		10.09	0.1150	1.000	10.00	0	101	8	120			
Toluene		10.11	0.1190	1.000	10.00	0	101	8	120			
Trichloroethene		10.75	0.1630	1.000	10.00	0	107	80	120			
S 1,2-Dichloroethane-d4		9.713	0	0	10.00	0	. 97	20	128			
S 4-Bromofluorobenzene		9.215	0	0	10.00	0	92	8	119			
S Dibromofluoromethane		9.655	0	0	10.00	0	26	85	110			
S Toluene-d8		9.471	0	0	10.00	0	95	83	110			

	_
11	_

* - Recovery outside QC limits

M - Matrix Spike Recovery outside limits

NP - Petroleum Pattern is not present

Footnotes: 1 - Represents RSD Limit for Quad Analysis

E - Result above quantitation limit (high standard or ICP linear H - Value Exceeds Maximum Contaminant Level R - RPD outside recovery limits NC - Not Calculated

P - Post Spike Recovery outside limits

RL - Reporting Limit

N - Single Column Analysis

B - Analyte found in Method blank

Analyte Types: S - Surrogate 1 - Internal Standard

DF · Dilution Factor J - Estinated value

ND · Not Detected at the Reporting Limit

Ecology & Environment Inc. LIMS Versian #: 041213_1930

International Specialists in Environmental Analysis

Lancaster, New York 14086-

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Work Order:

0412104

Project:

Mr. Cs Dry Cleaners

Test Code:

1_8260B_5030B_TCL_LL_W

Batch ID:

LINUS_041210B

QC SUMMARY REPORT SURROGATE RECOVERIES

Low Level VOCs by Method 8260B

Sample ID	Type	BR4FBZ	BZMED8	DBFM	DCA12D4			
0412104-01A	SAMP	96	90	98	102			
0412 104-0 2A	SAMP	96	93	95	100			
LCS-1851-37-2	LCS	. 92	95	97	97			
MB-1851-37-3	MBLK	· 93	92	97	100			

Acronym	Surrogate	QC Limits
BR4FBZ	= 4-Bromofluorobenzene	80-119
BZMED8	= Toluene-d8	83-110
DBFM	 Dibromofluoromethane 	85-110
DCA12D4	= 1,2-Dichloroethane-d4	70-128
		,
	•	

^{*} Surrogate recovery outside acceptance limits

D - Diluted due to matrix or extended target compounds

Attachment B2
Selected pages from
ASC Analytical Data Package #0412166
December 13, 2004

4493 Walden Avenue, Lancaster, New York 14086

January 03, 2005

Mr. Mike Steffan E and E Buffalo Office 368 Pleasant View Dr. Lancaster, NY 14086

RE: Mr. Cs Dry Cleaners

CostPoint ID: 000699.NY06.05...

Work Order No.: **0412166**

Dear Mr. Mike Steffan,

Analytical Services Center received 2 samples on Monday, December 13, 2004 for the analyses presented in the following report.

The ASC certifies that the test results in this report meet all requirements of NELAC for which it holds certification except as noted in this narrative and/or as flagged in the report.

The ASC is accredited in the Fields of Testing Potable water (SDWA), Solid and Chemical Materials (Solid Hazardous Wastes, RCRA), Water (CWA and other non-potable water) and Air and Emissions. Its primary accrediting authorities are New York State Department of Health and Florida Department of Health. The particular analytes/methods certified may be ascertained by requesting the laboratory's current certificates from your laboratory Project Manager.

E & E will retain the samples addressed in this report for 30 days, unless otherwise instructed by the client. If additional storage is requested, the storage fee is \$1.00 per sample container per month, to accrue until the client authorizes sample destruction.

This report is not to be reproduced, except in full, without the written approval of the laboratory.

Sincerely,

Barbara Krajewski

Project Manager

CC:

Enclosures as noted

This report ends on page ___

Analytical Services Center
International Specialists in Environmental Analysis
4493 Walden Avenue

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E AND E BUFFALO

Project:

Mr. Cs Dry Cleaners

Lab Order:

0412166

CASE NARRATIVE

GCMS VOLATILES

A DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

Sample analysis

Volatile samples were determined to be at a pH of 7.

Samples were analyzed within hold time.

Samples AS INFLUENT was analyzed at a 50-fold dilution. Sample AS EFFLUENT required reanalysis at a 5fold dilution. Dilutions were required due to the levels of target compounds present.

Calibration and Tunes

Initial and continuing calibrations were acceptable.

No manual peak integration was required.

QC

Surrogate recoveries were within acceptable limits.

Method blank analyses were acceptable.

Matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable.

Laboratory control sample (LCS) recoveries were acceptable.

Internal standard area responses were acceptable.

METALS

Sample Analysis

The samples were digested and analyzed within hold time.

Calibrations

Calibration of the ICP utilizes a zero and one non-zero standard to determine the linear equation for quantitation. A low concentration standard (PQL) is analyzed at the reporting level.

The initial and continuing calibrations were acceptable.

OC

The calibration and preparation blank analyses were acceptable.

The matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were within the control limits.

The laboratory control sample (LCS) recoveries were within the control limits.

MERCURY

Sample Analysis

Samples were digested and analyzed within hold time.

Client:

E AND E BUFFALO

Project:

Mr. Cs Dry Cleaners

Lab Order:

0412166

CASE NARRATIVE

Calibrations

The initial and continuing calibrations were acceptable.

QC

The calibration and preparation blank analyses were acceptable.

The matrix spike/spike duplicate (MS/MSD) recoveries and RPD value were within the control limits.

Laboratory control sample (LCS) recovery was acceptable.

GENERAL ANALYTICAL CHEMISTRY

Sample Analysis

Samples were analyzed within hold time.

Calibrations

Initial and continuing calibration standards were acceptable.

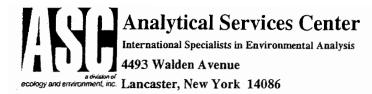
QC

Calibration and method blank analyses were acceptable.

Matrix duplicates, matrix spikes, and matrix spike duplicates (MD, MS, MSD) were acceptable except the cyanide MS was low at 61%. The acceptable range is 82-122%. The MSD was acceptable.

The TDS laboratory control sample (LCS) recovery was high at 121%. The acceptable range is 80-120%. The samples were not re-analyzed due to hold time constraints. The low level LCS for cyanide was slightly high at 111%. The acceptable range is 90-110%. Cyanide was not detected in the associated samples.

CHAIN OF CUSTODY RECORD


SEFVICES 4493 Walden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852

ASC Cooler No: COCID Lab:

TURNAROUND TIME: Page: | of LAB PROJECT MANAGER: REMARKS STANDARD ပံ 24-HOUR 48-HOUR 1-WEEK OTHER ENDING DEPTH (FEET BGS) LAB PROJECT NO.: (FOR LAB USE ONLY) BEGINNING DEPTH (FEET BGS) Temperature: Work Order No: OVA/HNU READINGS (PPM) CONTAINER TYPE AND PRESERVATIVE နိ REQUESTED ANALYSIS Date: Date/Time: TEMPERATURE BLANK INFO. Yes 105 HAMDINES BLA/Airbill Number: 2 Ship Via: 2 2 Date Time: 5 Date/Time: SAMPLE CODES 3 EAST AYRORA 3 OF CONTAINERS 0 CHECK FOR MS/MSD ٥ Received By: (Signature) Received By: (Signature) Received By: (Signature) و و LOCATION: (Include State) MATRIX CODE G 3 HP EXT 2528 45 Ext 2626 RICK BECKEN CLERNERS AS INFLUENT AS EFFLUENT PHONE No.: 13104 OFFICE No. Date/Time: 8 ロドク Date/Time: Date/Time SAMPLE ID STATE STE FFAN JAMES MAYS 4 MR. C'S JAMES MAYS CLIENT: NEW YORK 5090 N N 6900C Relinquished By: (Signature) Relipquished By: (Signature) Relinquished By: (Signature) 12/13/04/1430 12/13/04/1429 TIME FIELD TEAM LEADER: PROJECT MANAGER SAMPLERS:(PRINT) M. KE PROJECT NO: SITE NAME: DATE

Distribution: White-Lab Original Yellow-Field Team Leader/Project Manager

F1430602.cdr

Sample Type: SAMP

Laboratory Results

NYS ELAP ID#: Phone: (716) 685-8080

Client: E and E Buffalo Office Client Sample ID: AS INFLUENT

Alt. Client ID:

Lab Order: 0412166

Project: Mr. Cs Dry Cleaners Collection Date: 12/13/2004 2:29:00 P

Lab ID: 0412166-01A

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane	ND ·	50.0	μg/L	50	12/17/2004 6:45:00 AM	LINUS_041216D	GP
1,1,2,2-Tetrachloroethane	ND	50.0	μg/L	50			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	50.0	μg/L	50			
1,1,2-Trichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethene	· ND	50.0	μg/L	50			
1,2,4-Trichlorobenzene	ND.	50.0	μg/L	50			
1,2-Dibromo-3-chloropropane	. ND	250	μg/L	50			
1,2-Dibromoethane	ND	50.0	μg/L	50			
1,2-Dichlorobenzene	ND	50.0	μg/L	50	100		
1,2-Dichloroethane	ND.	50.0	μg/L	50			
1,2-Dichloropropane	ND	50.0	μg/L	50			
1,3-Dichlorobenzene	ND	50.0	μg/L	50			
1,4-Dichlorobenzene	ND	50.0	μg/L	50			
2-Butanone	, ND	250	μg/L	50			
2-Hexanone	ND	250	μg/L	50			
4-Methyl-2-pentanone	ND	250	μg/L	50			
Acetone	ND	250	μg/L	50			
Benzene	ND	50.0	μg/L	50			
Bromodichloromethane	ND	50.0	μg/L	50			
Bromoform	ND	50.0	μg/L	50			
Bromomethane	ND	100	μg/L	50			
Carbon disulfide	ND	250	μg/L	50			
Carbon tetrachloride	ND	50.0	μg/L	50	•		
Chlorobenzene	ND	50.0	μg/L	50			
Chloroethane	ND	100	μg/L	50			
Chloroform	ND	50.0	μg/L	50			
Chloromethane	ND	100	μg/L	50			
is-1,2-Dichloroethene	ND	50.0	μg/L	50			
eis-1,3-Dichloropropene	ND	50.0	μg/L	50			
Cyclohexane	ND	50.0	μg/L	50			
Dibromochloromethane	ND	50.0	μg/L	50			
Dichlorodifluoromethane	ND	250	μg/L	50			
thylbenzene	ND	50.0	μg/L	50			
sopropylbenzene	ND	50.0	μg/L	50			
Methyl acetate	ND	50.0	μg/L	50			
Methyl tert-butyl ether	12.4 J	50.0	μg/L	50			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

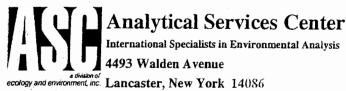
H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite


J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID: 0412166-01A

Lab Order: 0412166

Client:

Project:

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

E and E Buffalo Office

Mr. Cs Dry Cleaners

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Methylcyclohexane	ND		50.0	μg/L	50			
Methylene chloride	ND		50.0	μg/L	50			
Styrene	ND		50.0	μg/L	50			
Tetrachloroethene	1510		50.0	μg/L	50			
Toluëne	ND		50.0	μg/L	50			
trans-1,2-Dichloroethene	ND		50.0	μg/L	50			
trans-1,3-Dichloropropene	ND		50.0	μg/L	50			
Trichloroethene	37.5	J	50.0	μ g /L	50	•		
Trichlorofluoromethane	ND		50.0	μg/L	50			
Vinyl chloride	ND		50.0	μg/L	50			
Xylenes, Total	ND		50.0	μg/L	50			
Surr:1,2-Dichloroethane-d4	94		70 - 128	%REC	50 1	2/17/2004 6:45:00 AM LIN	NUS_041216D	GP
Surr:4-Bromofluorobenzene	92		80 - 119	%REC	50			
Surr:Dibromofluoromethane	94		85 - 110	%REC	50	*		
Surr:Toluene-d8	. 89		83 - 110	%REC	50			

Definitions:

. Recovery outside QC limits

H - Value Exceeds Maximum Contaminant Level

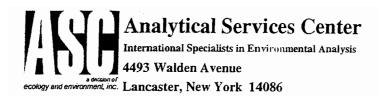
N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated


P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

E and E Buffalo Office

Mr. Cs Dry Cleaners

Client:

Project:

Lab Order: 0412166

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:30:00 P % Moist:

Lab ID: 0412166-02A Sample Type: SAMP Matrix: Groundwater Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B Method: SW8260B Prep Method: SW5030B_LL

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
ta en							
1,1,1-Trichloroethane	ND	1.00	μg/L	1	12/17/2004 4:33:00 AM	LINUS_041216D	GP
1,1,2,2-Tetrachloroethane	ND	1.00	μg/L	. 1			
1,1,2-Trichloro-1,2,2- trifluoroethane	ND	1.00	μg/L	1			
1,1,2-Trichloroethane	ND	1.00	μg/L	1			
1,1-Dichloroethane	ND	1.00	μg/L	1			
1,1-Dichloroethene	ND	1.00	μg/L	1			
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1			-
1,2-Dibromo-3-chloropropane	ND	5.00	μg/L	1			
1,2-Dibromoethane	ND	1.00	μg/L	1			
1,2-Dichlorobenzene	ND	1.00	μg/L	1			
1,2-Dichloroethane	ND	1.00	μg/L	1			-
1,2-Dichloropropane	ND	1.00	μg/L	1			
1,3-Dichlorobenzene	ND	1.00	μg/L	1			
1,4-Dichlorobenzene	ND	1.00	μg/L	1			
2-Butanone	178	25.0	μg/L	5	12/17/2004 1:27:00 PM	LINUS_041217C	DWW
2-Hexanone	ND	5.00	μg/L	1	12/17/2004 4:33:00 AM	LINUS_041216D	GP
4-Methyl-2-pentanone	1.47 J	5.00	μg/L	1			
Acetone	155	25.0	μg/L	5	12/17/2004 1:27:00 PM	LINUS_041217C	DWW
Benzene	ND	1.00	μg/L	1	12/17/2004 4:33:00 AM	LINUS_041216D	GP
Bromodichloromethane	NĎ	1.00	μg/L	1			
Bromoform	ND	1.00	μg/L	1			
Bromomethane	ND	2.00	μg/L	1			
Carbon disulfide	ND	5.00	μg/L	1			
Carbon tetrachloride	ND	1.00	μg/L	1			
Chlorobenzene	ND	1.00	μg/L	1			
Chloroethane	ND	2.00	μg/L	1			
Chloroform	NÔ	1.00	μg/L	1		•	
Chloromethane	ND	2.00	μg/L	1			
cis-1,2-Dichloroethene	ND	1.00	μg/L	1			
cis-1,3-Dichloropropene	ND	1.00	μg/L	1			
Cyclohexane	ND	1.00	μg/L	1			
Dibromochloromethane	ND	1.00	μg/L	1			
Dichlorodifluoromethane	ND	5.00	μg/L	1			
Ethylbenzene	2.12	1.00	μg/L	1		•	
sopropylbenzene	ND	1.00	μg/L	1			
Methyl acetate	ND	1.00	μg/L	1			
Methyl tert-butyl ether	0.939 J	1.00	μg/L	1		ry t	
	-						

Definitions:

· * - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

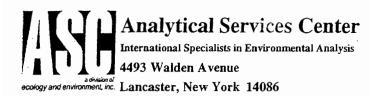
N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value


NC - Not Calculated

P - Post Spike Recovery outside limits

- D Diluted due to maxtrix or extended target compounds
- E Result above quantitation limit (high standard or ICP linear range).
- M Matrix Spike Recovery outside limits
- ND Not Detected at the Reporting Limit

R - RPD outside recovery limits

14

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Prep Method: SW5030B_LL

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Method: SW8260B

Collection Date: 12/13/2004 2:30:00 P % Moist:

Lab ID: 0412166-02A Sample Type: SAMP Matrix: Groundwater Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Client:

Project:

Lab Order: 0412166

Surr:Toluene-d8

E and E Buffalo Office

Mr. Cs Dry Cleaners

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
Methylcyclohexane	ND		1.00	μg/L	1			
Methylene chloride	0.650	J	1.00	μg/L	1			
Styrene	ND		1.00	μg/L	1			
Tetrachloroethene	3.52		1.00	μg/L	1			
Toluene	25.5		1.00	μg/L	1			
trans-1,2-Dichloroethene	ND		1.00	μg/L	1			
trans-1,3-Dichloropropene	ND		1.00	μg/L	1			
Trichloroethene	ND		1.00	μg/L	1			
Trichlorofluoromethane	ND		1.00	μg/L	1			
Vinyl chloride	ND		1.00	μg/L	1			
Xylenes, Total	17.0		1.00	μg/L	11			
Surr:1,2-Dichloroethane-d4	95		70 - 128	%REC	1	12/17/2004 4:33:00 AM LII	NUS_041216D	GP
Surr:4-Bromofluorobenzene	95		80 - 119	%REC	1			
Surr:Dibromofluoromethane	94		85 - 110	%REC	1			

%REC

83 - 110

Definitions:

• - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

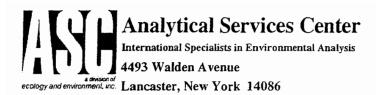
NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

89

I - Estimated value NC - Not Calculated


P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID: 0412166-01B

Lab Order: 0412166

Client:

Project:

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_6010B_TAL_W

ICP METALS ANALYSIS BY METHOD 6010B

Mr. Cs Dry Cleaners

E and E Buffalo Office

Method: SW6010B

Prep Method: SW3010A

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Aluminum	ND	200	μg/L	1	12/15/2004 9:52:57 PM	OPTIMA3300_041215C	SDP
Calcium	119000	1500	μg/L	1	12 10/2004 3.02.07 1 10		00.
Cobalt	ND	20.0	μg/L	1			
Copper	ND	20.0	μg/L	1			
Iron	ND	200	μg/L	1			
Lead	ND	5.00	μg/L	1			
Magnesium	19100	1500	μg/L	1			
Manganese	179	10.0	μg/L	1			
Nickel	ND	20.0	μg/L	1			
Potassium	5390	1500	μg/L	1			
Silver	ND	10.0	μg/L	1			
Sodium	214000	1500	μg/L	1 12	2/17/2004 12:58:57 AM	OPTIMA4300_041216G	
Vanadium	ND	20.0	μg/L	1 1	2/15/2004 9:52:57 PM	OPTIMA3300_041215C	
Zinc	ND	20.0	μg/L	1			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

32

International Specialists in Environmental Analysis
4493 Walden Avenue

and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Client: E and E Buffalo Office

Lab Order: 0412166

Project: Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Method: SW6010B

Collection Date: 12/13/2004 2:30:00 P %

% Moist:

Prep Method: SW3010A

Lab ID: 0412166-02B

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_6010B_TAL_W

ICP METALS ANALYSIS BY METHOD 6010B

Analyte	Result Q	RL	Units	\mathbf{DF}	Date Analyzed	Run Batch ID	Analyst
N	,						
Aluminum	ND	200	μg/L	1	12/15/2004 9:57:51 PM	OPTIMA3300_041215C	SDP
Calcium	122000	1500	μg/L	1			
Cobalt	ND	20.0	μg/L	1			
Copper	ND	20.0	μg/L	1			
Iron	ND	200	μg/L	1			
Lead	ND	5.00	μg/L	1			
Magnesium	19700	1500	μg/L	1			
Manganese	181	10.0	μg/L	1			
Nickel	ND	20.0	μg/L	1			
Potassium	5690	1500	μg/L	1			
Silver	ND	10.0	μg/L	1			
Sodium	209000	1500	μg/L	1	12/17/2004 1:04:46 AM	OPTIMA4300_041216G	
Vanadium	ND	20.0	μg/L	1 1	12/15/2004 9:57:51 PM	OPTIMA3300_041215C	
Zinc	ND	20.0	μg/L	1			

Definitions:

• - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

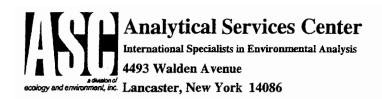
NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits


D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

B 1 1 2 22 2 25 1 31 30/12 413 / 2014

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

Project:

E and E Buffalo Office

Lab Order: 0412166

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID: 0412166-01B

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_7470A_HG_W

MERCURY ANALYSIS IN WATER BY METHOD 7470A

Method: SW7470A

Prep Method: SW7470A

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Mercury	ND	0.200	μg/L	1	12/29/2004 7:59:37 AM	LEEMAN_041229A	JLS

)efinitions:

* - Recovery outside QC limits

DF - Dilution Factor

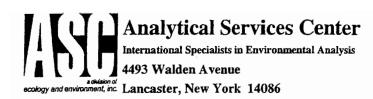
H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite


I - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

E and E Buffalo Office Client:

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Lab Order: 0412166

Alt. Client ID:

Project:

Collection Date: 12/13/2004 2:30:00 P % Moist:

Lab ID: 0412166-02B

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_7470A_HG_W

MERCURY ANALYSIS IN WATER BY METHOD 7470A

Method: SW7470A

Prep Method: SW7470A

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Mercury	ND	0.200	μg/L	1	12/29/2004 8:00:56 AM	LEEMAN_041229A	JLS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Lab Order: 0412166

Project:

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID 0412166-01D

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_130.2_HARD_W

HARDNESS, TOTAL BY METHOD EPA 130.2

Method: EPA130.2

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Hardness (As CaCO3)	320	1.00	mg/L	1	12/27/2004	WC_HARDNESS_041227A	PAN

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

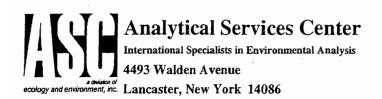
DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds


E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

50

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

Project:

E and E Buffalo Office

Lab Order: 0412166

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:30:00 P

% Moist:

Lab ID 0412166-02D

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_130.2_HARD_W

HARDNESS, TOTAL BY METHOD EPA 130.2

Method: EPA130.2

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Hardness (As CaCO3)	353	1.00	mg/L	1	12/27/2004	WC_HARDNESS_041227A	PAN

Definitions:

NP - Petroleum Pattern is not present

⁻ Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis 4493 Walden Avenue

and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

Project:

E and E Buffalo Office

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID 0412166-01D

Lab Order: 0412166

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_160.1_TDS_W

TOTAL DISSOLVED SOLIDS (TDS) BY METHOD EPA 160.1

Method: EPA160.1

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Total Dissolved Solids (Residue, Filterable)	930	10	mg/L	1	12/15/2004	SARTORIUS_TDS_041215A	LMW

Definitions:

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

^{• -} Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

International Specialists in Environmental Analysis 4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client: E and E Buffalo Office

Lab Order: 0412166

Project: Mr. Cs Dry Cleaners Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:30:00 P

Lab ID 0412166-02D

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_160.1_TDS_W

TOTAL DISSOLVED SOLIDS (TDS) BY METHOD EPA 160.1

Method: EPA160.1

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Total Dissolved Solids (Residue, Filterable)	990	10	mg/L	1	12/15/2004	SARTORIUS_TDS_041215A	LMW

Definitions:

. Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Client:

Project:

Analytical Services Center

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

E and E Buffalo Office

Lab Order: 0412166

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID 0412166-01D

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_160.2_TSS_W

TOTAL SUSPENDED SOLIDS, NON-FILTERABLE RESIDUE

Method: EPA160.2

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Total Suspended Solids (Residue, Non-Filterable)	8.0	4.0	mg/L	1	12/15/2004	SARTORIUS_TSS_041215A	LMW

Definitions:

- - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

60

International Specialists in Environmental Analysis 4493 Walden Avenue

and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client: E and E Buffalo Office

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

~ ...

Collection Date: 12/13/2004 2:30:00 P

% Moist:

Lab ID 0412166-02D

Lab Order: 0412166

Project:

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_160.2_TSS_W

TOTAL SUSPENDED SOLIDS, NON-FILTERABLE RESIDUE Method: EPA160.2 Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Total Suspended Solids (Residue, Non-Filterable)	19	4.0	mg/L	1	12/15/2004	SARTORIUS_TSS_041215A	LMW

Definitions:

• - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

Project:

E and E Buffalo Office

Lab Order: 0412166

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:29:00 P

% Moist:

Lab ID 0412166-01C

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_9012A_CN_W

CYANIDE, TOTAL BY METHOD 9012A

Method: SW9012A

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Cyanide	ND	0.01	mg/L	1	12/22/2004 9:44:56 AM	LACHAT_CN_041221C	MGR

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Aualyte found in Method blank

DNI - Did not Ignite

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

65

Project:

Analytical Services Center

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Lab Order: 0412166

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/13/2004 2:30:00 P

Lab ID 0412166-02C

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_9012A_CN_W

CYANIDE, TOTAL BY METHOD 9012A

Method: SW9012A

Prep Method: NA

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Cyanide	ND	0.01	mg/L	1	12/22/2004 9:47:54 AM	LACHAT_CN_041221C	MGR

Definitions:

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

^{* -} Recovery outside QC limits

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

Attachment B3
Selected pages from
ASC Analytical Data Package #0412255
December 21, 2004

4493 Walden Avenue, Lancaster, New York 14086 Tel: 716/685-8080, 800/327-6534 • Fax: 716/685-0852 • Email: asc@ene.com

January 03, 2005

Mr. Mike Steffan E and E Buffalo Office 368 Pleasant View Dr. Lancaster, NY 14086

RE: Mr. Cs Dry Cleaners

CostPoint ID: 000699.NY06.05..

Work Order No.: 0412255

Dear Mr. Mike Steffan.

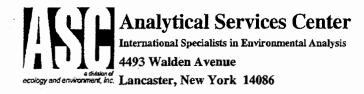
Analytical Services Center received 2 samples on Tuesday, December 21, 2004 for the analyses presented in the following report.

The ASC certifies that the test results in this report meet all requirements of NELAC for which it holds certification except as noted in this narrative and/or as flagged in the report.

The ASC is accredited in the Fields of Testing Potable water (SDWA), Solid and Chemical Materials (Solid Hazardous Wastes, RCRA), Water (CWA and other non-potable water) and Air and Emissions. Its primary accrediting authorities are New York State Department of Health and Florida Department of Health. The particular analytes/methods certified may be ascertained by requesting the laboratory's current certificates from your laboratory Project Manager.

E & E will retain the samples addressed in this report for 30 days, unless otherwise instructed by the client. If additional storage is requested, the storage fee is \$1.00 per sample container per month, to accrue until the client authorizes sample destruction.

This report is not to be reproduced, except in full, without the written approval of the laboratory.


Sincerely,

Barbara Krajewski

Project Manager

CC:

Enclosures as noted

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E AND E BUFFALO

Project:

Mr. Cs Dry Cleaners

Lab Order:

0412255

CASE NARRATIVE

GCMS VOLATILES

A DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

Sample analysis

Volatile samples were determined to be at a pH of 7.

Samples were analyzed within hold time.

Sample AS INFLUENT required analysis at a dilution due to the level of tetrachloroethene present.

Calibration and Tunes

Initial and continuing calibrations were acceptable.

Manual peak integration was not required.

OC

Surrogate recoveries were within acceptable limits.

Method blank analysis was acceptable.

Laboratory control sample (LCS) recoveries were acceptable.

Internal standard area responses were acceptable.

CHAIN OF CUSTODY RECORD

801 Services Center Services And Environment, Inc., Analytical Services Center 861 Wiens Wilden Avenue, Lancaster, New York, 14086, Tel: 716/685-8080, Fax 716/685-0852

Page: | of

Cooler No:

Lab:

COC ID:

Note: 1-Deek Turnaround TURNAROUND TIME: LAB PROJECT NO.: | LAB PROJECT REMARKS MANAGER: STANDARD 24-HOUR 48-HOUR 1-WEEK OTHER ENDING DEPTH (FEET BGS) BEGINNING DEPTH (FEET BGS) OVA/HNU READINGS (PPM) CONTAINER TYPE AND PRESERVATIVE REQUESTED ANALYSIS Date/Time: TEMPERATURE BLANK INFO Yes Enclosed: To Jail Ship Via: ERST AUROIGA NY Date/Time: 20N 08:// SAMPLE CODES M OF CONTAINERS 0 CHECK FOR MS/MSD Received By: (Signature) Received By: (Signature) 2 Jehner 3 LOCATION: (Include State) MATRIX CODE 49 EXT 2528 C'S DRY CHEANERS 3 1+0 Ext 2621 Rick Becken & James May RFFLUENT Date/Time; 130 AS INFLUENT O あ の PHONE No.: OFFICE No.: Date/Time: SAMPLE ID New YORK STATE STEFFON As 90069NY0605 Relinguished By: (Signature) Relinquished By: (Signature) 095e 8455 SAMPLERS:(PRINT) TIME FIELD TEAM LEADER: PROJECT MANAGER: MIKE MR 12 21 04 13/21/04 PROJECT NO: SITE NAME: DATE CLIENT

Distribution: White-Lab Original Yellow-Field Team Leader/Project Manager

F1430602.cdr

ပီ

Work Order No:

Temperature:

BLA/Airbill Number:

Date/Time:

Received By: (Signature)

Date/Time:

Relinquished By: (Signature)

Date:

FOR LAB USE ONLY)

Date:

1	L	4	
!	r	٠,	 1

Cooler Receipt Form

No. of Packages:	(Date Received:	12-21-04
Package Receipt No.:	15255	Project or Site Name:	
Client:	EE BUFF	ALU MR CIS	

A.	A. Peliminary Examination and Receipt Phase				
1.	Did coolers come with airbill or packing slip?	Yes	No)	NA	
	Circle carrier here and print airbill number below: Fed Ex Airborne Client Other EF				
	Shipped as high hazard or dangerous goods?	Yes	Nô)	NA	
2.	Did cooler(s) have custody seals?	(YB)	No	NA	
3.	Were custody seals unbroken and intact on receipt?	(Ye)	No	NA	
4.	Were custody seals dated and signed?	(No	NA	
5.	How was package secured? Not secured Fiberglass Tape CLEAR TAPE				

			·							
<u>B.</u>	Unpacking Phase									
6.	6. Date cooler(s) opened: 12-2(-0 4 Cooler(s) opened by: Market Cooler(s) opened by:									
7.	Was a temperature blank vial	Included insid	le cooler(s)?			Ye	s No	NA		
	Please Re	cord Temper	rature Vial or Cooler Temp	erature for Eac	h Cooler, Range	(2° - 6°C)*				
	- Autolino	Temp (c	alesza katállatos	e emil (s	All-billi	(10)	Feni	T- (C		
	· -	4-0								
Thermometer No.: 23 (Correction Factor: 0 < 0 *If temperature is outside of acceptable in Notification form indicating affected contributions of the contribution form indicating affected contribution for the contr								PM		
8.	Were the C-O-C forms receive	ed?			-	(Ye	§ No	NA		
	C-O-C forms numbers if prese	ent:								
9.	Was enough packing material	used in coole	r(s)?			Ye	s No	NA		
	Type of material: Ve	ermiculite	Bubble Wrap C	Other	NF-					
10.	If cooling was required, what	was the mean	s (type ice) of cooling used:	(Wet) Dry	Blue Othe	er 💮		NA		
11.	Were all containers sealed in	separate plasti	ic bags?			Ye	s) No	NA		
12.	Did all containers arrive unbro	ken and in go	od condition?			Te	S) No	NA		
13.	Interim storage area if not log	ged:								
,	In: Date	Time	Signat	ure						
	Out: Date	Time	Signate	ure	- · · · · · · · · · · · · · · · · · · ·			· ·		

C. Login Phase						
Samples Logged in By Signature: Date: 12-21-04						
14. Were all container labels complete (e.g. date, time preserved)?	Yes	No	NA			
15. Were all C-O-C forms filled out properly in black ink and signed?						
16. Did the C-O-C form agree with containers received?	(€	No	NA			
17. Were the correct containers used for the tests requested?	Yes	No	NA			
18. Were the correct preservatives listed on the sample labels?	¥S (No (NA)			
19. Was a sufficient sample volume sent for the tests requested?	Sex	No	NA			
20. Were all volatile samples received without headspace?	Yes	No	MA			
			7			

International Specialists in Environmental Analysis Lancaster, New York 14086-

ecology and environment, inc. Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

CLIENT:

E and E Buffalo Office

Project:

Mr. Cs Dry Cleaners

Lab Order:

0412255

Date Received:

12/21/2004

Lab Sample ID

Client Sample ID

0412255-01A

AS INFLUENT

0412255-02A

AS EFFLUENT

Alt. Client Id

Collection Date

Work Order Sample Summary

12/21/2004 9:50:00 AM

12/21/2004 9:55:00 AM

International Specialists in Environmental Analysis.

Lancaster, New York 14086-

Project: Client:

AS EFFLUENT

0412255-02A

(LAB) Sample ID (CLIENT)

AS INFLUENT

0412255-01A

(LAB) Sample ID (CLIENT)

0412255

Lab Order:

Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

10486 NYS ELAP ID#: (716) 685-8080 Phone:

E and E I	E and E Buffalo Office	Ď				DATES SIMMARV REPORT	M-MA 1	AV PE	'and'	<u>_</u>
Mr. Cs D	Mr. Cs Dry Cleaners									-
LIENT)	LIENT) Matrix Test Name	Test Name	Collection Date	Received Date	Received Date HT (Days) / HT Expire	Analyzed* - Analysis/BatchID Type DF #Analytes Flag	/BatchID	Type DF	#Analytes	Flag
FFLUENT	iroundwateLov	FFLUENT iroundwatcLow Level VOCs by Method 8260B	12/21/2004 9:55:00 AM	12/21/2004 11:30:00 A	12/21/2004 9:55:00 AM 12/21/2004 11:30:00 AM 7:R 12/28/2004 11:30:00 AM 12/21/2004 2:38:00 PM 1084173 SAMP 1 48	12/21/2004 2:36:00 PM	1084173	SAMP 1	48	· _
LIENT)	LIENT) Matrix Test Name	Test Name	Collection Date	Received Date	Collection Date Received Date HT (Days) / HT Expire	Analyzed* - Analysis/BatchID Type DF #Analytes Flag	/BatchID	Type DF	#Analytes	Flag
VFLUENT		iroundwateLow Level VOCs by Method 8260B	12/21/2004 9:50:00 AM	12/21/2004 11:30:00 A	12/21/2004 9:50:00 AM 12/21/2004 11:30:00 AM 7:R 12/28/2004 11:30:00 AM 12/21/2004 3:39:00 PM 1084174 SAMP 50 48	12/21/2004 3:39:00 PM	1084174	SAMP 50	48	

HT From: C-Collection / R- Receipt(VTSR) / P-Prep / T-TCLP Prep

* "Analyzed" reflects the analysts date and time or injection time for analytical tests. For preparation tests "Analyzed" reflects the start of the preparation except when "AFCEE criteria used"; flag indicates date

and time of completion of the preparation.

For TCLP/SPLP Extraction from the original sample extraction tests..."Analyzed" reflects the date of TCLP/SPLP Extraction/preparation. For Re-extracted (RE) samples: Preparation tests completed dates reflects the extraction from the original sample leacheate unless an "RE" Sample exists for the extraction (tumble) test.

LIMS Version #: 041220_1500

Printed: Monday, January 03, 2005 12:28:45 PM

Analytical Services Center
International Specialists in Environmental Analysis Lancaster, New York 14086-

a disision of not environment, inc. Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

Client:

E and E Buffalo Office

Project:

Mr. Cs Dry Cleaners

Work Order:

0412255

Method References

GCMS Volatiles

VOCs, Low Level by GCMS Method 8260B

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. 3rd ed. 1986. Volumes.1A, 1B, 1C & Volume 2. (Includes all Updates). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Analytical Services Center International Specialists in Environmental Analysis

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

10486

Phone:

(716) 685-8080

Client:

E and E Buffalo Office

Lab Order: 0412255

Project:

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/21/2004 9:50:00 A % Moist:

Lab ID: 0412255-01A

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane	ND	50.0	μg/L	50	12/21/2004 3:39:00 PM	LINUS_041221A	DWW
1,1,2,2-Tetrachloroethane	ND	50.0	μg/L	50			
1,1,2-Trichloro-1,2,2- trifluoroethane	ND	50.0	μg/L	50			
1,1,2-Trichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethane	ND	50.0	μg/L	50			
1,1-Dichloroethene	ND	50.0	μg/L	50			
1,2,4-Trichlorobenzene	ND	50.0	μg/L	50			
1,2-Dibromo-3-chloropropane	ND	250	μg/L	50			
1,2-Dibromoethane	ND	50.0	μg/L	50			
1,2-Dichlorobenzene	ND	50.0	μg/L	50			
1.2-Dichloroethane	ND	50.0	μg/L	50			
1,2-Dichloropropane	ND	50.0	μg/L	50			
1,3-Dichlorobenzene	ND	50.0	μg/L	50			
1,4-Dichlorobenzene	ND	50.0	µg/L	50			
2-Butanone	ND	250	μg/L	50			
2-Hexanone	ND	250	μg/L	50			
4-Methyl-2-pentanone	ND	250	μg/L	50			
Acetone	ND	250	μg/L	50			
Benzene	ND	50.0	μg/L	50			
Bromodichloromethane	ND	50.0	μg/L	50			
Bromoform	ND	50.0	μg/L	50			
Bromomethane	ND	100	μg/L	50			
Carbon disulfide	ND	250	μg/L	50			
Carbon tetrachloride	ND	50.0	μg/L	50			
Chlorobenzene	ND	50.0	µg/L	50			
Chloroethane	ND	100	μg/L	50			
Chloroform	ND	50.0	μg/L	50			
Chloromethane	ND	100	μg/L	50			
cis-1,2-Dichloroethene		J 50.0	μg/L	50			
cis-1,3-Dichloropropene	ND ND	50.0	μg/L	50			
Cyclohexane	ND	50.0	μg/L	50			
Dibromochloromethane	ND	50.0	μg/L	50			
Dichlorodifluoromethane	ND	250	μg/L	50			
Éthylbenzene	ND	50.0	μg/L	50			
sopropylbenzene	ND	50.0	μg/L μg/L	50			
	ND	50.0	μg/L	50 50			
Methyl acetate Methyl tert-butyl ether	13.2 J		μg/L	50			

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor .

H - Value Exceeds Maximum Contaminant Level

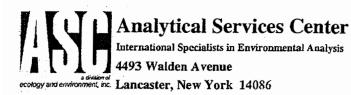
N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

3 - Estimated value


P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended turget compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

Project:

E and E Buffalo Office

Lab Order: 0412255

Mr. Cs Dry Cleaners

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 12/21/2004 9:50:00 A % Moist:

Lab ID: 0412255-01A

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method:

SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed Run Batch ID	Analyst
Methylcyclohexane	ND		50.0	μg/L	50		
Methylene chloride	ND		50.0	μg/L	50		
Styrene	ND		50.0	μg/L	50		
Tetrachloroethene	1840		50.0	μg/L	50		
Toluene	· ND		50.0	μg/L	50		
trans-1,2-Dichloroethene	ND		50.0	μg/L	50		
trans-1,3-Dichloropropene	ND		50.0	μg/L	50		
Trichloroethene	46.1	Ĵ	50.0	μg/L	50		
Trichlorofluoromethane	NÐ		50.0	μg/L	50		
Vinyl chloride	ND		50.0	μg/L	. 50		
Xylenes, Total	ND		50.0	μg/L	50		
Surr:1,2-Dichloroethane-d4	101		70 - 128	%REC	50	12/21/2004 3:39:00 PM LINUS_041221A	DWW
Surr:4-Bromofluorobenzene	94		80 - 119	%REC	50	-	
Surr:Dibromofluoromethane	97		85 - 110	%REC	50		
Surr:Toluene-d8	89		83 - 110	%REC	50		

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyse found in Method blank

DNI - Did not Ignite

I - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Analytical Services Center International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone:

(716) 685-8080

CLIENT:

Lab ID:

E and E Buffalo Office

Lab Order: 0412255

Project:

Mr. Cs Dry Cleaners

0412255-01A

Sample Type: SAMP

Client Sample ID: AS INFLUENT Alt. Client ID:

Collection Date: 12/21/2004 9:50:00 AM

Matrix: GROUNDWATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC. Q Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

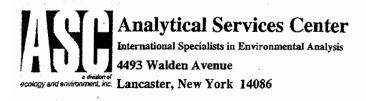
H - Value Exceeds Maximum Contempinant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite


J - Estimated value

NC - Not Calculated P - Post Spike Recovery outside limits D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Laboratory Results

NYS ELAP ID#: 10486

Prep Method: SW5030B LL

Phone:

(716) 685-8080

Client: E and E Buffalo Office

Lab Order: 0412255

Project:

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Method: SW8260B

Collection Date: 12/21/2004 9:55:00 A % Moist:

Lab ID: 0412255-02A

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

OW LEVEL	. VOCS E	Y METH	IOD 8260B
----------	----------	--------	-----------

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane	ND	1.00	µg/L	1	12/21/2004 2:36:00 PM	LINUS_041221A	DWW
1,1,2,2-Tetrachloroethane	ND	1.00	µg/∟	1			
1,1,2-Trichloro-1,2,2- trifluoroethane	ND **	1.00	μg/L	1			
1,1,2-Trichloroethane	ND	1.00	μg/L	1			
1,1-Dichloroethane	ND	1.00	µg/L	1			
1,1-Dichloroethene	ND	1.00	µ g∕L	1			
1,2,4-Trichlorobenzene	ND	1.00	μ g/L	1			
1,2-Dibromo-3-chloropropane	ND	5.00	μg/L	1			
1,2-Dibromoethane	ND	1.00	μg/L	1			
1,2-Dichlorobenzene	ND	1.00	μg/L	1			
1,2-Dichloroethane	ND	1.00	μg/L	1			
1,2-Dichloropropane	ND	1.00	µg/L	1			
1,3-Dichlorobenzene	ND	1.00	μg/L	1			
1,4-Dichlorobenzene	ND	1.00	μg/L	1			
2-Butanone	0.978 J	5.00	μg/L	1			
2-Hexanone	ND	5.00	μ g/L .	1			
4-Methyl-2-репtапопе	ND	5.00	μ g/L	1			
Acetone	4.73 J	5.00	μ g/L	1			
Benzene	ND	1.00	μg/L	1			
Bromodichloromethane	ND	1.00	μg/L	1			
Bromoform	ND	1.00	μg/L	1			
Bromomethane	ND	2.00	μg/L	1			
Carbon disulfide	ND	5.00	μg/L	1			
Carbon tetrachloride	ND	1.00	μg/L	1			
Chlorobenzene	ND	1.00	μg/L	1			
Chloroethane	ND	2.00	μg/L	1			
Chloroform	ND	1.00	μg/L	. 1			
Chloromethane	ND	2.00	µg/L	1			
is-1,2-Dichloroethene	ND	1.00	μ g/L	1			
is-1,3-Dichloropropene	ND	1.00	µg/L	1			
Cyclohexane	ND	1.00	μg/L	1			
Dibromochloromethane	ND	1.00	µg/L	1			
Dichlorodifluoromethane	ND	5.00	μg/L	1			
thylbenzene	ND	1.00	μg/L	1			
sopropylbenzene	ND	1.00	μg/L	1			
Methyl acetate	ND ·	1.00	μg/L	1			
Methyl tert-butyl ether	1.47	1.00	μg/L	1			

Definitions:

· * - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignite

J - Estimated value NC - Not Cakulated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

ecology and environment inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Lab Order: 0412255

Project:

Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/21/2004 9:55:00 A % Moist:

Lab ID: 0412255-02A

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Methylcyclohexane .	ND		1.00	µg/L	1.			
Methylene chloride	0.687	J	1.00	μ g /L	1			
Styrene	0.322	J	1.00	h g /L	1			
Tetrachloroethene	3.53		1.00	μg/L	1			
Toluene	0.230	J	1.00	µg/L	1			
trans-1,2-Dichloroethene	ND		1.00	μg/L	1			
trans-1,3-Dichloropropene	ND		1.00	µg/L	1			
Trichloroethene	0.352	J	1.00	µg/L	1			
Trichlorofluoromethane	ND		1.00	μg/L	1			
Vinyl chloride	ND		1.00	μg/L	1			
Xylenes, Total	ND		1.00	μg/L	1			
Surr:1,2-Dichtoroethane-d4	97		70 - 128	%REC	1	12/21/2004 2:36:00 PM LI	NUS_041221A	DWW
Surr:4-Bromofluorobenzene	98	z .	80 - 119	%REC	1			
Surr Dibromofluoromethane	95		85 - 110	%REC	1			
Surr:Toluene-d8	91		83 - 110	%REC	1			

Definitions:

· Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not ignite

J - Estimated value NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Analytical Services Center International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

10486

Phone:

(716) 685-8080

CLIENT:

E and E Buffalo Office

Lab Order: 0412255

Project: Lab ID:

0412255-02A

Mr. Cs Dry Cleaners

Sample Type: SAMP

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 12/21/2004 9:55:00 AM

Matrix: GROUNDWATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC. Q Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

* - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not lenite

J - Estimated value

P - Post Spike Recovery outside limits

D - Diluted due to maxtrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and anvironment, line Phone: (716) 685-8080 Fax:

E and E Buffalo Office

0412255

CLIENT: Work Order:

Project:

Mr. Cs Dry Cleaners

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs, Low Level by GCMS Method 8260B	8260B	; ;			Test Code: 1	Test Code: 1_8260B_5030B_TCL_LL_W	M_11_1	Units: µg/L	
Sample ID: MB-1851-50-2	Client Sample ID:						DF:	1 DL_No:	Jo: 1
Run Batch ID: LINUS_041221A	SeqNo: 1084162	Analysis D	Analysis Date: 12/21/2004 9:11:00 AM	4 9:11:00 AN		Prep Batch ID: 0412214I1r		Prep Date:	
Analyte Type / Name	Result	MDL	ద	Spike Value	Orlg Result	%REC LowLimit	nit HighLimit	RPD	RPD Limit 1 Qual
1,1,1-Trichloroethane	QN.	0.1230	1.000						
1,1,2,2-Tetrachloroethane	Q	0.1710	1.000						
1,1,2-Trichloro-1,2,2-trifluoroethane	Q.	0.2720	1.000						
1,1,2-Trichloroethane	Q	0.1390	1.000						
1,1-Dichloroethane	Q	0.1170	1.000						
1,1-Dichloroethene	Q	0.1370	1.000						
1,2,4-Trichlorobenzene	Q	0.1450	1.000						
1,2-Dibromo-3-chloropropane	ON .	0.3730	5.000						
1,2-Dibromoethane	Q	0.1260	1.000						
1,2-Dichlorobenzene	QN	0.08000	1.000						
1,2-Dichloroethane	QN	0.1090	1.000						
1,2-Dichloropropane	Q	0.09610	1.000						
1,3-Dichlorobenzene	QN .	0.09330	1.000						
1,4-Dichlorobenzene	QN	0.1010	1.000						-
2-Butanone	2	0.8150	5.000						
2-Hexanone	QN.	0.1870	5.000						
4-Methyl-2-pentanone	QN	0.3930	5.000						
Acetone	9	1.730	5.000						
Benzene	QN	0.1040	1,000						
Bromodichloromethane	QN	0.1410	1.000						
Bromoform	Q	0.09900	1.000						
Qualifier Definitions:									
* - Recovery outside QC limits	B - Analyte found in Method blank	Method blank		D - Diluted d	ue to maxtrix or ex	D. Diluted due to maxinx or extended larget compounds		actor	
DNI - Did not Ignite M - Matrix Spike Recovery outside limits	 E - Result above quantitation limit (high standard or ICT) linear H - Value Exceeds Maximum Confaminant Level N - Single Column Analysis 	ntitation limit (high s nalysis	tandard or ICP link	ear H - Value Exceeds M NC - Not Calculated	ceeds Maximum C culated	ontaminant Level	J · Estimated value ND · Not Detected	 J · Estimated value NO · Not Detected at the Reporting Limit 	Limit
NP - Petroleum Pattern is not present	P - Post Spike Recovery outside linuts	ery outside limits		R - RPD outs	R - RPD outside recovery limits				
Footnotes: 1 - Represents RSD Limit for Quad Analysis	RL · Reporting Linit		Analyte	Analyte Types: S -	S - Surrogate 1 - Internal Standard	ernal Standard			

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and environment, inc. Phone: (716) 685-8080

E and E Buffalo Office

0412255

Work Order: CLIENT:

Project:

Mr. Cs Dry Cleaners

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs. I ow Level by GCMS Method 8260B	Method 8260B		-	Tes	t Code: 1_8260	Test Code: 1_82608_50308_TCL_LL_W	.t_W	Units: µg/L		
Sample ID: MB-1851-50-2	Cllent Sample ID:				:		DF:	1 DL_No:	-	
Run Batch ID: LINUS_041221A	SeqNo: 1084162	Analysis Da	1/200	:11:00 AM	달	0412214llr		Prep Date:	:	
Analyte Type / Name	Hesuit	MUL	:	Spike Value O	Orig Hesuit %R	%REC LowLimit	HighLimit	RPD	RPD Limit 1	Qual
Bromomemane	2	0.101.0	2.000							
Carbon disuffide	QN	0.1180	5.000							
Carbon tetrachloride	QN	0.1110	1.000							
Chlorobenzene	QN	0.1150	1.000							
Chloroethane	QN	0.1210	2,000							
Chloroform	QN	0.1200	1.000							
Chloromethane	QN	0.1420	2.000							
cis-1,2-Dichloroethene	QN	0.09900	1.000							
cis-1,3-Dichloropropene	OZ	0.1040	1.000							
Cyclohexane	QN	0.09990	1.000							
Dibromochloromethane	QN	0.08740	1.000							
Dichlorodifluoromethane	Q	0.3040	5.000							
Ethylbenzene	Q	0.1640	1.000							
Isopropylbenzene	QN	0.1010	1.000							
Methyl acetate	QN	0.3870	1.000							
Methyl tert-butyl ether	QN.	0.1090	1.000							
Methylcyclohexane	Q	0.1070	1.000				:			
Methylene chloride	QN	0.1280	1.000							
Styrene ·	QN	0.1180	1.000							
Tetrachloroethene	QN	0.1410	1.000							
Toluene	QN	0.1190	1.000							
Qualiffer Definitions:			And the state of t							
* - Recovery outside QC limits	B - Analyte found in Method blank	n Method blank	od blank D - Dilw	- Diluted due to	D - Diluted due to maxtrix or extended target compounds	arget compounds	DF - Dilution Factor	tor		

E - Result above quantitation limit (high standard or ICP linear H - Value Exceeds Maximum Contaminant Level P - Post Spike Recovery outside limits B - Analyte found in Method blank N - Single Column Analysis RL - Reporting Limit Footnotes: 1 - Represents RSD Limit for Quad Analysis M - Matrix Spike Recovery outside limits NP - Petroleum Pattern is not present * · Recovery outside QC limits DNI - Did not Ignite

R - RPD outside recovery limits NC - Not Calculated

ND - Not Detected at the Reporting Limit J - Estimated value

Analyte Types: S -- Surrogate I - Internal Standard

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and environment, the. Phone: (716) 685-8080

E and E Buffalo Office

Mr. Cs Dry Cleaners

0412255

Work Order: CLIENT:

Project:

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Method Blank

VOCs, Low Level by GCMS Method 8260B	8260B				-	Test Code: 1_8260B_5030B_TCL_LL_W	8260B_50	30B_TCL_LL	W.	Units: µg/L		
Sample ID: MB-1851-50-2	Cilent Sample ID:	le ID:							DF:	1 DL_No:	- ö	
Run Batch ID: LINUS_041221A	SeqNo: 1084162	84162	Analysi	s Date: 12/21/28	Analysis Date: 12/21/2004 9:11:00 AM Prep Batch ID: 041221411r	Prep Bato	h 1D: 041	2214l1r		Prep Date:		
Analyte Type / Name	Œ	Result	MDL	료	Spike Value Orig Result %REC. LowLimit	Orig Result	%REC	LowLimit	HighLimit	RPD	RPD Limit 1 Qual	
trans-1,2-Dichloroethene		S	0.1280	1.000							· · · · · · · · · · · · · · · · · · ·	1
trans-1,3-Dichloropropene		Q	0.1120	1.000								
Trichloroethene		Q	0.1630	1.000								
Trichlorofluoromethane		S	0.1850	1,000								
Vinyl chloride		2	0.1190	1.000								
Xylenes, Total		S	0.3070	1.000								
S 1,2-Dichloroethane-d4	0,	9.810	0	0			88	70	128			
S 4-Bromofluorobenzene	O,	9.450	0	0			95	80	119			
S Dibromofluoromethane	J ,	9.585	0	0			9 6	82	110			
S Toluene-d8	O,	9.097	0	0			91	83	110			

	e
	ᆮ
	9
3	3
2	_
5	~
1	v

	* - Recovery outside QC limits	B - Analyte found in Method blank	D - Diluted due to maxtrix or extended target compo
	DNI - Did not Ignite	E - Result above quantitation limit (high standard or ICI	E - Result above quantitation limit (high standard or ICP linear H - Value Exceeds Maximum Contaminant Level
	M - Matrix Spike Recovery outside limits	N - Single Column Analysis	NC • Not Calculated
	NP - Petroleum Pattem is not present	P - Post Spike Recovery outside limits	R - RPD outside recovery limits
*	Footnotes: 1 - Represents RSD Limit for Quad Analysis RL - Reporting Limit		Analyte Types: S · Surrogate 1 · Internal Standard

Analyte Types: S · Surrogate 1 · Internal Standard

ND - Not Detected at the Reporting Limit

DF - Dilution Factor J - Estimated value

to maxtrix or extended target compounds

Wednesday, December 29, 2004 6:29:54 AM -

International Specialists in Environmental Analysis

Lancaster, New York 14086-

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#:

10486

CLIENT: E and E Buffalo Office Client Sample ID:

Lab Order: 0412255

Alt. Client ID:

Project:

Mr. Cs Dry Cleaners

Collection Date:

Lab ID:

MB-1851-50-2

Sample Type: MBLK

Matrix: WATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC.

Units

DF

Date Analyzed

Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

ND - Not Detected at the Reporting Limit

J - Analyte detected below Reporting limits

B - Analyte detected in the associated Method Blank

H - Value exceeds Maximum Contaminant Level

* - Recovery outside limits

R - RPD outside recovery limits

E - Value above quantitation range

Surr - Denotes Surrogate Compound

M -Matrix Spike recovery outside limits

Q - Qualifier

D - Diluted Out

N - Single Column Analysis

International Specialists in Environmental Analysis

Lancaster, New York 14086-

ecology and anvironment, inc. Phone: (716) 685-8080

E and E Buffalo Office

Mr. Cs Dry Cleaners

0412255

Work Order: CLIENT:

Project:

Fax: (716) 685-0852

NYS ELAP ID#: 10486

Laboratory Results

Phone: (716) 685-8080

OC SUMMARY REPORT

Laboratory Control Spike

VOCs, Low Level by GCMS Method 8260B	d 8260B	·				Test Code: 1_8260B_5030B_TCL_LL_W	8260B_50	30B_TCL_LL	, W	Units: µg/L		
Sample ID: LCS-1851-50-1	Client Sample ID:	mple ID:							HO	1 DL_No:	10: 1	
Run Batch ID: LINUS_041221A	SeqNo:	SeqNo: 1084161	Analysis D)ate: 12/21/20	Analysis Date: 12/21/2004 8:07:00 AM		Prep Batch ID: 041221411r	221411r		Prep Date:		
Analyte Type / Name		Result	MDL	료	Spike Value	Orig Result	%REC	LowLimit	HighLimit	RPD	RPD Limit 1 Qual	
1,1-Dichloroethene		9.317	0.1370	1.000	10.00	0	93	80	120			
Benzene		9.990	0.1040	1.000	10.00	0	5	80	120			
Chlorobenzene		10.20	0.1150	1.000	10.00	0	102	80	120			
Toluene		10.21	0.1190	1.000	10.00	0	102	80	120			
Trichloroethene		11.04	0.1630	1.000	10.00	0	110	8	120			
S 1,2-Dichloroethane-d4		9.550	0	0	10.00	0	96	2	128			
S 4-Bromofluorobenzene		9.219	0	0	10.00	0	85	80	119			
S Dibromofluoromethane		9.822	0	0	10.00	0	88	82	110			
S Toluene-d8		9.343	0	0	10.00	0	66	83	110			

Qualifier Definitions:

* - Recovery outside QC limits DNI - Did not Ignite

B - Analyte found in Method blank

N - Single Column Analysis

M - Matrix Spike Recovery outside limits NP - Petroleun Pattern is not present

P - Post Spike Recovery outside limits RL - Reporting Limit Foutnotes: 1 - Represents RSD Limit for Quad Analysis

D - Diluted due to maxtrix or extended target compounds E - Result above quantitation linut (lugh standard or ICP linear H - Value Exceeds Maximum Contaminant Level NC - Not Calculated

R - RPD outside recovery linits

Analyte Types: S · Surrogate I · Internal Standard

ND - Not Detected at the Reporting Limit J - Estimated value

DF - Dilution Factor

Ecology & Environment Inc. LIMS Version #: | 041 [35] 1500

International Specialists in Environmental Analysis

Lancaster, New York 14086-

Phone: (716) 685-8080

Fax: (716) 685-0852

Laboratory Results

NYS ELAP ID#: 10486

CLIENT:

E and E Buffalo Office

Work Order:

0412255

Project:

Mr. Cs Dry Cleaners

Test Code:

1_8260B_5030B_TCL_LL_W

Batch ID:

LINUS_041221A

QC	SUN	IMA I	RY I	REPO	RT
TRRC	CAT	F RI	TCC	VERI	TES

Low Level VOCs by Method 8260B

Sample ID	Type	BR4FBZ	BZMED8	DBFM	DCA12D4			
0412255-01A	SAMP	94	89	97	101			
0412255-02A	SAMP	98	91	95	97			
LCS-1851-50-1	LCS	92	93	98	96			
MB-1851-50-2	MBLK	95	91	96	98			

Acronym	Surrogate	QC Limits
BR4FBZ	= 4-Bromofluorobenzene	80-119
BZMED8	= Toluene-d8	83-110
DBFM	 Dibromofluoromethane 	85-110
DCA12D4	= 1,2-Dichloroethane-d4	70-128

^{*} Surrogate recovery outside acceptance limits

D - Diluted due to matrix or extended target compounds

Steffan, Mike

From:

David Chiusano [djchiusa@gw.dec.state.ny.us]

Sent:

Monday, January 03, 2005 11:55 AM

To:

Steffan, Mike

Subject:

Fwd: Re: Mr. C's Dry Cleaners, 9-15-157: Request for WorkAssignment Amendment

Conceptual Approval

memo.hw915157.2)04-12-07.MRCWA..

fyi

David J. Chiusano

Remedial Bureau E, Section A
Div. Environmental Remediation
NYSDEC

625 Broadway, 12th Floor, Albany, NY 12233-7013

Phone - (518) 402-9813 Fax - (518) 402-9819

E-Mail:djchiusa@gw.dec.state.ny.us

>>> Sal Ervolina 12/31/04 09:51AM >>>

I approve the conceptual approval memo for the work assignment amendment at the Mr. C's Dry Cleaners site.

>>> David Chiusano 12/07/04 02:09PM >>> Sal,

For your review and approval. Thank you for your time and attention. Please feel free to contact me should you have any follow questions.

David J. Chiusano

Remedial Bureau E, Section A Div. Environmental Remediation

NYSDEC

625 Broadway, 12th Floor, Albany, NY 12233-7013

Phone - (518) 402-9813 Fax - (518) 402-9819

E-Mail:djchiusa@gw.dec.state.ny.us

Attachment C December 7, 2004 Report of Non-Compliance

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER
368 Pleasantview Drive, Lancaster, New York 14086
Tel: 716/684-8060, Fax: 716/684-0844

December 7, 2004

Mr. Richard Rink
New York State Department of Environmental Conservation, Region 9
Division of Water
270 Michigan Avenue
Buffalo, New York 14203

Re: Mr. C's Dry Cleaners Site, Site No. 9-15-157, Contract D004180 Village of East Aurora (V), Erie County (C), New York Report of Noncompliance - Water Discharge Event

Dear Mr. Rink:

Attachment A in this letter is a completed "Report of Noncompliance Event" for the discharge of treated groundwater at the Mr. C's Dry Cleaners Site, a New York State Department of Environmental Conservation (NYSDEC) project located in East Aurora, New York. This report of Noncompliance event was prepared by Ecology and Environment Engineering, P. C. (EEEPC) and is being filed as a result of the exceedance of the volatile organic compound (VOC) - tetrachloroethene (PCE) in November 2004 above the permit requirement limit of 10 micrograms per liter (ug/L). The monthly analytical results indicate that the November 2004 effluent discharge was 24.8 ug/L. The influent and effluent analytical results are provided as Attachment B.

EEEPC has operated and maintained the remedial groundwater treatment system at the site for NYSDEC since October 2003, with subcontracted services provided by O&M Enterprises, Inc., of North Tonawanda, New York. A previous noncompliance event occurred at the site and was reported to your office on April 7, 2004.

Monthly samples for permit compliance were collected on November 9, 2004 with the maximum turn-around analysis time of 30 days. These results were received on December 3, 2004, prior to preparation and finalization of the operations, monitoring, and maintenance report for November 2004 which will be filed with Region 9 and NYSDEC's Central Office, Division of Environmental Remediation (DER) before December 10, 2004.

The remedial groundwater treatment system includes eight groundwater pumps from area collection sites, which pump into a 3,000-gallon equalization tank. The water from the tank is batched to an air stripper and then discharged through a force main to the receiving waters of Tannery Brook in the Village of Aurora, New York. VOCs released from the air stripping process are passed through activated vapor-phase carbon units and then the scrubbed air is then released to the atmosphere.

Mr. Richard Rink December 7, 2004 Page 2

During the past four months, the performance of the vapor-phase carbon units has been evaluated. Analytical and air-modeling results were submitted to Mr. Dave Chiusano, NYSDEC, DER, Project Manager, and Mr. Greg Sutton of NYSDEC Region 9. The internal review resulted in a decision to eliminate the vapor-phase carbon units from the treatment system and to replace the air-stripping unit as a blower unit instead of a vacuum unit which is expected to increase the liquid- phase cleanup efficiency. This changeover began Monday, December 6, 2004 and is expected to be completed on Tuesday, December 7, 2004. Influent and effluent water samples are expected to be taken on the next day at the completion of the changeover. The results are due in 7 days following sample receipt at EEEPC's Analytical Service Center (ASC) in Lancaster, New York. These analytical results will be reported to NYSDEC as soon as received by our office.

In response to this noncompliance event, corrective actions that will immediately be employed include:

- Disconnecting of the vapor-phase carbon vessels;
- Re-plumbing the air stripping unit as a blower unit and inspection of the air stripping unit for occluded trays and openings; and
- Re-sampling influent and effluent water for VOCs.

Additional actions to be taken after the initial corrective actions take place include:

- · Remove and dispose of the carbon and vessels;
- Shutdown the system and perform a complete inspection and cleaning of the airstripping unit;
- Reactivate the air-stripping unit and perform another round of influent and effluent water sampling; and
- Report the findings and results to the NYSDEC Project Manager and Region 9.

If you need further information or have any questions regarding this notice of violation and corrective action request, please call me at 716-684-8060.

Sincerely,

Michael G. Steffan Project Manager

cc: D. Miller, E & E Buffalo

R. Becken, O & M Enterprises

D. Chiusano, Project Manager, NYSDEC, Albany Central Office

G. Sutton, NYSDEC, Region 9

CTF - 000699.NY06.05

Attachment A

Report of Noncompliance Event

Mr. C's Site, Site #9-15-157 Village of East Aurora (V), Erie County (C), New York

New York State Department of Environmental Conservation Division of Water

Report of Noncompliance Event

To: DEC Water Contact Mr. Richard Rink DEC Region: 9
Report Type: 5 DayX Permit Violation Order Violation Anticipated Noncompliance Bypass/Overflow Other
SECTION 2
SPDES#: NY Facility: Mr. C's Dry Cleaners Site-NYSDEC Site #9-15-157
Date of noncompliance: 11 / 9 / 04 Location (Outfall, Treatment Unit, or Pump Station): Tannery-Brook-Outfall001
Description of noncompliance(s) and cause(s): Result of analytical samples of the effluent discharge af
reatment system in November 2004 exceeds the volatile organic limit for Tetrocnlorofthen
Results from Nov. 2004 were 24.8 ug/l. Permit limit is 10 ug/l. Turn-around time on
nalysis is 30 days
Has event ceased? (No) If so, when? 11/9/04 Was event due to plant upset? (Yes) (No) SPDES limits violated? (Yes)
Start date, time of event: 12 / 3 / 04, : (AND) (PM) End date, time of event: 12 / 7 / 04, : (AND) (PM)
Date, time oral notification made to DEC? 12/3 / 04, (AdM) (PM) DEC Official contacted: D. Chiusano/G. Sut
mmediate corrective actions: Inspect and clean the treatment system air stripping unit. Repiping
ir Stripping, Tower Blower. Preform additional sampling and analysis for compliance
fter cleaning.
Preventive (long term) corrective actions: Perform mid-month compliance sampling for compliance on functional table of the effluent discharge. Reduce mid-month analytical turn-around to 14 days. emonstrate compliance over the next three months.
ECTION 3
Complete this section if event was a bypass:
Bypass amount: Was prior DEC authorization received for this event? (Yes) (No)
DEC Official contacted: Date of DEC approval:/ _/
Describe event in "Description of noncompliance and cause" area in Section 2. Detail the start and end dates and times in Section 2 also.
ECTION 4
Facility Representative: Michael Steffan Title: Project Manager Date: 12 / 7 /04
Phone #: (716) 684 - 8060 Fax #: (716) 684 - 0844

I Certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature of Principal Executive

Officer or Authorized Agent

NYSDEC-DER

Attachment B

November 2004 Influent and Effluent Analytical Results

Mr. C's Site, Site #9-15-157 Village of East Aurora (V), Erie County (C), New York

Client:

Project:

☐ Analytical Services Center

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment he Lancaster, New York 14086

E and E Buffalo Office

Mr. Cs Dry Cleaners

Laboratory Results

NYS ELAP ID#: 10486

(716) 685-8080 Phone:

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 11/9/2004 12:00:00 P

Lab ID: 0411153-01A

Lab Order: 0411153

Sample Type: SAMP

Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOSS/ L	VOCS BY METHOD 8260F	•

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane	ND	•	50.0	μ g/L	50	11/16/2004 7:53:00 AM	LINU5_041115B	GP
1,1,2,2-Tetrachloroethane	. N D		50.0	µg/L	50			
1,1,2-Trichloro-1,2,2-	ND		50.0	μg/L	50			
trifluoroethane	ND.		50.0 '					
1,1,2-Trichloroethane	ND.		50.0	μg/L	50			•
1,1-Dichloroethane	ND		50.0	μg/L	50			
1,1-Dichloroethene	ND		50.0	μg/L	50			
1,2,4-Trichlorobenzene	. ND		50.0	μg/L	50			
,2-Dibromo-3-chioropropane	ND		250	μg/L	50			
1,2-Dibromoethane	ND		50.0	μg/L	50			
,2-Dichlorobenzene	ND		50.0	<i>μ</i> g/L	50			
1,2-Dichloroethane	ND		50.0	μg/L "	50			
1,2-Dichloropropane	. ND		50.0	μg/L	50			
,3-Dichlorobenzene	ND		50.0	µg/L	50			
,4-Dichlorobenzene	ND		50.0	μg/L	50			
2-Butanone	ND		250	μg/L	50			
2-Hexanone	ND		250	µg/L	50			
-Methyl-2-pentanone	ND		250	μg/L	50			
cetone	. ND		250	μg/L	50 ·	:		
Senzene	ND		50.0	μg/L	50			
romodichloromethane	ND		50.0	μg/L	50			
Bromoform	ND		50.0	μg/L	50			
romomethane	ND		100	μg/L	50			
Carbon disulfide	ND		250	μg/L	50			
arbon tetrachloride	ND		50.0	µg/L	50			
Chlorobenzene	ND		50.0	μg/L	50			
chloroethane	ND		100	μg/L	50			
Chloroform	· ND		50.0	μg/L	. 50			
hloromethane	ND		100	μg/L	50			•
is-1,2-Dichloraethene	5.40 J	l	50.0	µg/L	50		•	
is-1,3-Dichloropropene	ND		50.0	μg/L	50			
cyclohexane	ND		50. D	<i>µ</i> g/∟	50			
Ibromochioromethane	ND.		50.0	μg/L	50			
ichlorodifluoromethane	ND		250	μġ/L	50			
thylbenzene	ND		50.0	µg/L	50			
sopropylbenzene	ND		50.0	μg/L	50			
lethyl acetate	ND		50.0	μg/L	50			• •
Methyl tert-butyl ether	11.1J		50:0	μg/L	50			

Definitions:

* - Recovery outside QC limits

DF - Dilution Fugor

H - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

NP - Petroleum Portera is not present

B - Analyte found in Method blank

DNI - Did not lighte

J - Estimated value NC - No! Calculated

P - Post Spike Recovery outside limits

D - Diluted due to mextrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Mutrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

4493 Walden Avenue

ecology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client:

E and E Buffalo Office

Client Sample ID: AS INFLUENT

Lab Order: 0411153

Alt. Client ID:

Project:

Mr. Cs Dry Cleaners

LOW LEVEL VOCS BY METHOD 8260B

Collection Date: 11/9/2004 12:00:00 P

Method: SW8260B

Matrix: Groundwater

Lab ID: 0411153-01A

Sample Type: SAMP

Test Code: 1_8260B_5030B_TCL_LL_W

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
Methylcyciohexane	N D .		50.0	μg/L	50			
Methylene chloride	· ND		50.0	µg/L	50		•	
Styrene	ND		50.0	μg/L	50			
Tetrachloroethene	1430		50.0	μg/L	50			
Toluene	ND		50.0	μg/L	50			
trans-1,2-Dichloroethene	ND		50.0	μg/L	50			
trans-1,3-Dichloropropene	ND		50.0	μ g/ L	50			
Trichlomethene	33.5	J .	50.0	μg/L	50			
Trichlorofluoromethane	ND		50.0	μg/L	50			
Vinyl chloride	ND		50.0	μg/L	50			
Xylenes, Total	. ND		50.0	μg/L	50	•		
Surr.1,2-Dichloroethane-d4	102		70 - 128	%REC	50 1	11/16/2004 7:53:00 AM LIN	US_041115B	GP
Surr:4-Bromofluorobenzene	95		80 - 119	%REC	50			
Surr:Dipromofluoromethane	98		85 - 110	%REC	50			
Surr:Toluene-d8	. 93		83 - 110	%REC	50			

Definitions:

* - Recovery outside OC limits

DF - Dilution Festor

H - Value Breests Maximum Consuminant Level

N - Single Cokura Austyris

NP - Petroleum Pattern is not present

B - Analyte found in Method blant:

DNI - Did not Iguite

NC - Not Calculated

P - Post Spike Recovery outside limits

D - Diluted due to maxinix or extended target compounds

B - Result above quantization limit (righ standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

4493 Walden Avenue

ent inc Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

(716) 685-8080 Phone:

CLIENT: E and E Buffalo Office

Lab Order: 0411153

Mr. Cs Dry Cleaners

0411153-01A

Sample Type: SAMP

Client Sample ID: AS INFLUENT

Alt. Client ID:

Collection Date: 11/9/2004 12:00:00 PM

Matrix: GROUNDWATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

Project:

Lab ID:

COMPOUND NAME

EST. CONC. Q RT

Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Delinitions:

* - Recovery outside QC limits

DF - Dilution Factor

It - Value Exceeds Maximum Contaminant Level

N - Single Column Analysis

B - Analyte found in Medical blank

DNI - Did not Ignite

I - Estimated value NC - Not Calculated

D - Diluted due to maxurix or extended target compounds

B - Result above quantitation limit (high standard or ICP lim

M - Mutrix Splike Recovery outside limits

ND - Not Detected at the Reporting Limit

International Specialists in Environmental Analysis

4493 Walden Avenue

d and convious line Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

Client: E and E Buffalo Office

Lab Order: 0411153

Project: Mr. Cs Dry Cleaners

Client Sample ID: AS EFFLUENT

Alt. Client ID:

Collection Date: 11/9/2004 12:05:00 P % Moist:

Lab ID: 0411153-02A Sample Type: SAMP Matrix: Groundwater

Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B

Prep Method: SW5030B_LL

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroelhane	. · D	1.00	μ g/ L	1	11/16/2004 6:50:00 AM	LINU5_041115B	GP
1,1,2,2-Tetrachloroethane	ND	1.00	μg/L	1	111101111111111111111111111111111111111		Ξ,
1,1,2-Trichloro-1,2,2-	ND	1,00	μg/L	1			
trifluoroethane	5		74-	•			
1,1,2-Trichloroethane	ND	1.00	μg/L	1	·		
1,1-Dichloroethane	ND	1.00	μg/L	1			
1,1-Dichloroethene	· ND	1.00	μg/L	1			
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	•		
1,2-Dibromo-3-chloropropane	ND	5.00	μg/L	. 1	,		
1,2-Dibromoethane	ND	1.00	µg/L	1			
1,2-Dichlorobenzene	ND	1.00	μg/L	1			
1,2-Dichloroethane	ND	1.00	μg/L	1			
1,2-Dichloropropane	ND .	1.00	μg/L	1			
1,3-Dichlorobenzene	ND	1.00	μg/L	1			
1,4-Dichlorobenzene	ND	1.00	μg/L	7			
2-Butanone	ND	5.00	μg/L	1	•		•
2-Hexanone	ND	5.00	μg/L	1			
4-Methyl-2-pentanone	0.525 J	5.00	μg/L	1			
Acetone	5.87	5.00	μ g/ L	1			
Benzene ·	ND	1.00	μ g/L	1	•		
Bromodichloromethane	ND	1.00	μ g/ L	1			
Bromoform	ND	1.00	μg/L ·	1			
Bromomethane	ND	2.00	<i>μ</i> g/L	1			
Carbon disulfide	ND	5.00	μg/L	1			
Carbon tetrachloride	ND	1.00	μg/L	1			
Chlorobenzene	ND.	1.00	μg/L	1			
Chloroethane .	ND	2.00	μg/L	1			
Chloroform	ND	1.00	μg/L	1			:
Chloromethane	ND	2.00	μg/L	1			
ls-1,2-Dichloroethene	ND	1.00	μg/L	1			
ls-1,3-Dichloropropene	ND	1.00	μg/L	1			
Cyclohexane	ND	1.00	μg/L	1			
Dibromochloromethane	ND	1.00	μ0/Γ	_. 1			
Dichlorodifluoromethane	ND	5.00	μg/L	1			
thylbenzene	ND	1.00	μg/L	1			
sopropylbenzene	ND	1.00	μg/L	1	•		
lethyl acetate	ND .	1.00	μg/L	1			
lethyl tert-butyl ether	- 1.75 :	1:00	-μg/L	4			

Definitions:

* - Recovery outside QC limits

DF - Dilution Faster

H - Value Exceeds Maximum Contorninant Lavel

N - Single Column Analysis

NP - Petroleum Pattern'is not present

B - Analyse found in Method blank

DNI - Dk not Iguite

J - Estimated value

NC - No: Calculated
P - Post Spike Recovery outside limits

D-Diuted due to maxtrix or extended target compounds

 ${\bf E}$ - Result above quantitation limit (high standard or ICP linear range).

M - Marrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

R - RPD outside recovery limits

Printed: Monday, November 29, 2004 2:29:26 PM

Lab Order: 0411153

Analytical Services Center

International Specialists in Environmental Analysis

4493 Walden Avenue

omer no. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#:

10486

Phone:

(716) 685-8080

Client: E and E Buffalo Office Client Sample ID: AS EFFLUENT

Alt. Client ID:

Project: Mr. Cs Dry Cleaners Collection Date: 11/9/2004 12:05:00 P % M

Lab ID: 0411153-02A Sample Type: SAMP Matrix: Groundwater Test Code: 1_8260B_5030B_TCL_LL_W

LOW LEVEL VOCS BY METHOD 8260B

Method: SW8260B Prep Method

Prep Method: SW5030B_LL

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
Methylcyclohexane	ND		1.00	μg/L	1			
Methylene chloride	ND		1.00	μg/L	1			
Styrene	ND		1.00	μg/L	1			
Tetrachioroethene	24.8		1.00	μg/L	1			
Toluene	0.158	J	1.00	μg/L	1			
trans-1,2-Dichloroethene	ND		1.00	μg/L	1			•
trans-1,3-Dichloropropene	. ND		1.00	μg/L	1			
Trichlaroethene	3.32		1.00	μg/L	1			
Trichlorofluoromethane	ND		1.00	, μg/L	. 1			
Vinyl chloride	ND		1.00	μg/L	1			
Xyienes, Total	ND		1.00	μg/L	1			
Surr.1,2-Dichloroethane-d4	105		70 - 128	%REC	1 1	1/16/2004 6:50:00 AM LIN	IUS_041115B	GP
Surr,4-Bromofluorobenzene	97		80 - 119	%REC	1 .			
Surr:Dibromofluoromethane	100		85 - 110	%REC	1			
Sur;Toluene-d8	96		83 - 110	%REC	1			

Definitions:

· - Recovery outside QC limits

DF - Dilution Factor

H - Value Exceeds Maximum Comminant Level

N - Single Column Analysis

NP - Petroleum Pattern is not present

B - Analyte found in Method blank

DNI - Did not Ignue

J - Estimated value

NC - Not Calculated

P - Past Spike Recovery outside limits

D - Diluted the to mextrix or extended target compounds

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Reporting Limit

Analytical Services Center International Specialists in Environmental Analysis

nd anylronment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486

(716) 685-8080

CLIENT: E and E Buffalo Office

Lab Order: 0411153

Project: Mr. Cs Dry Cleaners

Lab ID: 0411153-02A Client Sample ID: AS EFFLUENT

Alt Client ID:

Collection Date: 11/9/2004 12:05:00 PM

Matrix: GROUNDWATER

% Moist:

TENTATIVELY IDENTIFIED COMPOUNDS

CAS NUMBER

COMPOUND NAME

EST. CONC. Q

Sample Type: SAMP

Units DF Quality(%) Date Analyzed Run Batch ID Analyst

LOW LEVEL VOCS BY METHOD 8260B

1_8260B_5030B_TCL_LL_W

NO TENTATIVELY IDENTIFIED COMPOUNDS

Definitions:

. - Recovery outside QC limits

DF - Dilatina Factor

H - Value Exceeds Maximum Contominant Level

N - Single Column Analysis

NP - Petrolewit Pettern is not present

B - Analyse found in Method blank

DNI - Did not Iguite

NC - Not Calculated

P - Post Spike Recovery outside lbruits

D - Diluted due to maxifix or extended target compounts

E - Result above quantitation limit (high standard or ICP linear range).

M - Matrix Spike Recovery outside limits

ND - Not Detected at the Roporting Limit

Attachment D Summary of Site Utility Costs and Projections October 2003 to December 2004

NYSDEC Work Assignment #27.4	Mr. C's Dry Cle	aners Si	te - Remed	Mr. C's Dry Cleaners Site - Remedial Treatment Util	ility Costs	sts						ATTA	ATTACHMENT D
System Operation and Maintenance System Operation and Maintenance 1 consistence 588000 Code Code <t< th=""><th>NYSDEC Work</th><th>Assignn</th><th>nent #27.4</th><th>7. 10. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14</th><th>A TO</th><th></th><th></th><th></th><th>Jtility Budg</th><th>Jet:</th><th>Electric:</th><th>\$24,024.00</th><th></th></t<>	NYSDEC Work	Assignn	nent #27.4	7. 10. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	A TO				Jtility Budg	Jet:	Electric:	\$24,024.00	
Account Elect Cost Central December Amount December Amount December Amount	12 Months of S	ystem 0	peration a	nd Maintenance							Telephone:	\$680.00	
Concess of the Care Natural Gas Costs State Costs St	December 2004	Report									Gas	\$1,100.00	
Account a Ear East Centrer Description October 194 November December January 195 February March 195 April 1949/195 1,531 47 \$ 1,581 49 \$ 1,531 47 \$ 1,581 89 \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$	Gas and Electric										Total:	\$25,804.00	
1,000,000,000,000,000,000,000,000,000,0	Utility Provider	Account #	E&E Cost Center	Description	October '04	November	December	January '05	February	March '05	April	May '05	
CODE	New York State E&G	06-311-11-	000699.NY06.05	Mr. C's Electric Costs	1		1						
Sei Jedez Sei Goodes NY 106		002616-26											
Mr. Cs. Flechic Costs July August September October November December September October November December September October November September October September September October September September October September October September October September October September September October O	National Fuel Gas	5819628-05	000699.NY06.05	Mr. C's Natural Gas Costs		٠.							
Aut. Co. Electric Costs Aut. Co. Electric Costs Aut. Co. Natural Gas Costs Aug. Co. Electric Costs Aug. Co. Electric Costs Aug. Co. Electric Costs Aug. Co. Natural Gas Costs To Date St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co				Totals	H	4	1,681.89			•			
Mr. Cs. Natural Gas Costs S						July	August	September	October	November	December		Ave. /Month
Mr. Cs. Natural Gas Costs S				Mr. C's Electric Costs									
Canad Total - NYSE&G/National Fuel Gas Costs To Date S				Mr. C's Natural Gas Costs									·
Grand Total - NYSE&G/National Fuel Gas Costs To Date \$ - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1						· •							
Grand Total - NYSE&G/National Fuel Gas Costs To Date \$ 4,230.20 Grand Total - NYSE&G/National Fuel Gas Costs To Date \$ 4,230.20 Grand Total - Verizon Costs to Date \$ 1,308.52 Grand Total - Verizon Costs To Date \$ 4,308.52				Totals									
Grand Total - NYSE&G/National Fuel Gas Costs To Date \$ 4,230.20 dider Phone # E&E Cost Center Location Description October '04 November December January '05 February '05 March '05 April '05 Miay '05 Mi													
Ider Phone # E&E Cost Center Location Description October '04 November Inventor September January '05 February '05 February '05 March '05 April '05 May '05 March '05 May '05 March '05 May '05 March '05 May '05 March '05 May '05 May '05 May '05 March '05 March '05 May '05 March '05 May '05 May '05 March '05 May '05 March '05 May '05 March '05 May '05 May '05 March '05 May '05	Grar	nd Total - NY	SE&G/National	Fuel Gas Costs To Date		4,230.20							
Ider Phone # E&E Cost Center Location Description October '04 November' November January '05 February '05 April '05 March '05 April '05 May '05 May '05 April '05 May '05 April '05 May '05 March '05 April '05 May '05 March '05 April '05 May '05 March '05 April '05 May '05 May '05 March '05 April '05 March '05 May '0	Phone												
716-652-0094 000699.NY06.05 Mr. C's Telephone Costs \$ 39-56 \$ 38.76	Utility Provider	Phone #	E&E Cost Center	Location Description	October '04	╄╼╬	December	January '05	February '05	March '05	April '05	May '05	
994 16 26 2 June '05 July '05 August September October November December Ave./Mor Grand Total - Verlzon Costs to Date \$ 78.32	Verizon	716-652-0094	000699.NY06.05	Mr. C's Telephone Costs		s							
Grand Total All Utilities To Date \$ 4,308.52 August September October November December September October November December September October November December September October November September October November September October September October November September October September September October September	Account#												
June '05 July '05 August September October November December Ave_/Mon \$ \$	716 652 0094 416 26 2												
\$This includes initial connection fees for the phone company of approximately \$180.				-	30, eunf	July '05	August	September	October	November	December		Ave./Month
\$ 78.32													
\$ 78.32													
w			Grand Total	Verizon Costs to Date	s	78.32		This include	s initial connecti	on fees for the	phone company	of approximately	\$180.
			Grand Total	All Utilities To Date	₩.	4,308.52							
							4						

			1	•						
NYSDEC Work Assignment #27.4	Assignm	ent #27.4								
12 Months of System Operation and Maintenance	ystem Op	eration an	d Maintenance		Buc	Budget Remaining:	Electric:	\$19,793.80		
					and the second		Telephone:	\$601.68		
							Gas	\$1,100.00		
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				Total:	\$21,495.48		
Monthly Treatment System	nt System		Operational Time by O&M Ser	rvices	ő	O&M Months Remaining:	6: B			
	Possible OP		Up-Time	Percent			1		7.04	
Month	Hours	Hours	Percent	Capacity*	General Ope	General Operation Comments				
September-03	96	96	100.00%	28%	Shutdown by Tyree	Shutdown by Tyree after Separable Part B inspection	spection			
October-03		168	100.00%	%9	Official Startup by O&M on 10/22/03	0&M on 10/22/03				
November-03		720	100.00%	2%						
December-03		744	100.00%	28%						
January-04		672	100.00%	16%						
February-04		969	100.00%	21%						
March-04		815	99.88%	51%						
April-04		029	99.70%	20%						
May-04		513	73.71%	43%	Equipment shutdow	Equipment shutdown- low flow of water to air stripper - 5/17-24/04	stripper - 5/17-2	4/04		
June-04		692	99.43%	30%	Individual pumps s	Individual pumps shutdown for inspection and cleaning	d cleaning			
July-04		840	100.00%	47%	100% operational	The state of the s				
August-04		672	100.00%	45%	100% operational			•		
September-04		820	97.62%	31%	Temporary Stripper Shutdown	Shutdown				
October-04		209	90.33%	33%	65 hour weekend s	65 hour weekend shutdown due to low pressure problems with the airstripper	ure problems wi	n the airstripper		
November-04		641.5	92.17%	37%						
December-04		792	92.06%	45%	GAC units removed					
Totals to Date	10512	10158.5	96.64%							
			* Percent Capacity is based on		d groundwater flows	initial operating groundwater flows from the eight installed pumps from 9/02	20/6 world sound			
A CONTRACTOR OF THE PARTY OF TH			Evaluated on total gallons discharged for monthly operating time		nthly operating time	0				
		2	Maximum pump discharges calculated as an average of 78 gpm as the total for all 8 pumps at the site if all pumps operate 100%.	lculated as an	average of 78 gpm	as the total for all 8 pump	s at the site if all	oumps operate 100%.		
Projected Hillity Costs for the O&M year (11/04 to 11/05)	for the O&M	(11/04 to 11	(90)							
man films manafar	Avo Month	2011	(22)							
Flootrio	Ave./Month									
Electric										
Telephone										
		_							_	