ecology and environment engineering, p.c.

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

May 14, 2018

Mr. William Welling, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 - 7013

Re: Mr. C's Dry Cleaners Site, Contract # D007617, Site # 915157 April 2018 Operations, Maintenance, and Monitoring Report

Dear Mr. Welling:

Ecology and Environment Engineering, P.C. (EEEPC) is pleased to provide the April 2018 Operations, Maintenance, and Monitoring (OM&M) Report for the Mr. C's Dry Cleaners Site, NYSDEC Site # 915157, located in the Village of East Aurora, New York.

A summary of field activities prepared by EEEPC's subcontractor, IYER Environmental Group, PLLC (IEG), is provided in <u>Attachment A</u>. The treatment system was re-activated in normal pumping and treatment mode on November 8, 2017, after completion of the Phased Pulsing plan as recommended from the Remedial Site Optimization (RSO) plan in October 2016. The east pumping wells (RW-1, PW-2, and PW-3) remain off while the west pumping wells (PW-4, PW-5, PW-6, PW-7, and PW-8) remain on. Selected pages from the groundwater treatment system and groundwater pumping well analytical data packages prepared by Spectrum Analytical Inc. (SAI), Warwick, Rhode Island, are provided as <u>Attachments B and C</u>, respectively. The current annual site utility cost information is provided in <u>Attachment D</u>.

During the April 2018 reporting period, the treatment system was in operation from March 28 to April 18, 2018. The monthly OM&M sampling was performed on April 18, 2018, and results were received from SAI on April 23, 2018.

In response to the 2017 Periodic Review Report, NYSDEC requested on March 6, 2018 that quarterly testing of the groundwater from the pumping wells in operation be performed. Quarterly testing of pumping wells began in April 2018, and sampling took place on April 18, 2018. Subsequent testing of the groundwater from the pumping wells shall occur in July 2018, October 2018, and January 2019.

In review of the on-site treatment system operations, monitoring and maintenance from IEG for April 2018, EEEPC offers the following comments and highlights:

Operational Summary:

• Based on inspection reports prepared by IEG, the remedial treatment system for the period of March 28 through April 18, 2018, had a 100% operational up-time (Table 1),

Mr. William Welling, Project Manager January 17, 2018 Page 2 of 5

and the treatment of contaminated groundwater during that period totaled 103,285 gallons (Table 1).

- The compliance samples for the April OM&M report are based on the April 18, 2018 influent/effluent sampling event. The discharge effluent concentrations for cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, and vinyl chloride were below the daily SPDES Equivalency permit requirements of 10 µg/L for each contaminant. All other requirements of the SPDES Equivalency permit were also met. The effluent results are provided in Table 2.
- The analytical summary results of the April 2018 samples revealed the total volatile organic contaminant concentrations of the influent to be 4625.0 µg/L. In review of the effluent concentrations, the total volatile organic contaminant concentrations were 6.32 µg/L. The summary of influent and effluent contaminant concentrations for the April 2018 sampling are presented in Table 3. Figure 1 shows the influent and effluent VOC concentrations during each sampling event in 2017 and 2018.
- The Mr. C's treatment system, based on the total flows from the uptime operations, removed 3.98 lbs. of targeted contaminants from the groundwater in April 2018, and the cleanup effectiveness was 99.86%. The calculations and data for the month are presented in Table 3. The mass of VOCs removed each month throughout 2017 and 2018 is shown in Figure 2.

Figure 1: Influent and Effluent VOC concentrations during each sampling event in 2017 and 2018.

Mr. William Welling, Project Manager January 17, 2018 Page 3 of 5

Figure 2: The mass of VOCs removed each month throughout 2017 and 2018.

Pumping Wells:

- Pumping wells PW-4, PW-5, PW-6, PW-7, and PW-8 were sampled on April 18, 2018. Results of the April 2018 pumping well sampling event are provided in Table 4. Figures 3 through 7 show the historical concentrations of cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) throughout 2017 and 2018.
- Individual pumping well sampling will continue to be completed on a quarterly basis to monitor VOC concentrations.

Figure 3: Influent concentrations of cis-1,2-DCE, PCE, and TCE throughout 2017 and 2018 for Pumping Well 4.

Figure 4: Influent concentrations of cis-1, 2-DCE, PCE, and TCE throughout 2017 and 2018 for Pumping Well 5.

Influent Concentrations for PW-6

Figure 5: Influent concentrations of cis-1, 2-DCE, PCE, and TCE throughout 2017 and 2018 for Pumping Well 6.

Figure 6: Influent concentrations of cis-1, 2-DCE, PCE, and TCE throughout 2017 and 2018 for Pumping Well 7.

Influent Concentrations for PW-8

Figure 7: Influent concentrations of cis-1, 2-DCE, PCE, and TCE throughout 2017 and 2018 for Pumping Well 8.

Subslab Depressurization Systems (SSDS):

• SSDS installation designs at 23 and 31 Paine Street are currently in process.

Status of RSO and Pulsed Pumping Work Plan:

• The treatment system was re-activated on the west portion of Whaley Avenue on November 8, 2017. The reason for re-activation of the west portion only was due to the higher concentrations of VOCs found in pumping wells PW-4, PW-5, PW-6, PW-7, and PW-8.

If you have questions regarding the April 2018 OM&M report summary, please do not hesitate to contact me at 716-684-8060.

Very Truly Yours, Ecology and Environment Engineering, P. C.

Ashlue Chatnode

Ashlee Patnode Project Manager

cc: D. Szymanski, Region 9, NYSDEC – Buffalo w/ attachments
D. Iyer, IEG w/ attachments
M. Mooney, EEEPC Buffalo w/ attachments
CTF - 10C3074.0011.11

Table 1Mr. C's Dry Cleaners Site RemediationSite #915157System Operation and Management

		Up-time (Reporting Period)				VOC Removal			
		Reporting	Operational	Treated Effluent	Influent VOCs	Effluent	VOCs Removed		
Month	Sample Date	Hours	Up-time	(gallon)	(µg/L)	VOCs(µg/L)	(lbs.)		
(Treatment System Up-time from 9/5/02 to 01/08/18)		118,453.50	91.67%	131,261,841	NA	NA	1,680.06		
January 8, 2018 - February 5,2018	February 5, 2018	672	100.00%	200,566	5695.00	136.76	9.30		
February 5, 2018 - March 5,2018	March 5, 2018	624	92.86%	171,953	5670.00	12.76	8.12		
March 5, 2018 - March 28, 2018	March 28, 2018	552	100.00%	143,120	5494.50	7.44	6.55		
March 28, 2018 - April 18, 2018	April 18, 2018	504	100.00%	103,285	4625.00	6.32	3.98		
Total in 2017		2,352.00	98.00%	618,924	21,484.50	163.28	27.95		
Total from startup		120,805.50	91.79%	131,880,765	NA	NA	1,708.01		

NOTES:

1. Up-time based as percentage of total reporting hours.

2. Treatment system operated by Iyer Environmental Group from 07/07/2016 to present.

3. VOC removal calculations are based on monthly water samples and assumes samples are representative of the entire reporting period.

4. VOC removal calculations assume that non-detect values = 0 ug/L.

5. Total VOCs summations include estimated "J" values.

6. VOC removal calculations are based on effluent totalizer readings.

7. "Influent VOCs" and "Effluent VOCs" values given above is the summation of values for individual compounds given in monthly analytical reports.

8. Unit conversion: 1 pound = 453.5924 grams, 1 gallon = 3.785 liters

9. Formula for the VOC removal calculation:

 $(VOCs_{Influent} - VOCs_{Effluent})(ug/L) \cdot (1g/10^{6}ug) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (1 lb/453.5924 g) \cdot (Monthly process water)(gal) \cdot (3.785 L/gallon) \cdot (3.785$

Table 2Mr. C's Dry Cleaners Site RemediationSite #915157Effluent Discharge Criteria & Analytical Compliance Results

			April 18 2018 Effluent Analytical Values
Parameter/Analyte	Daily Maximum ¹	Units	Compliance
Flow (Average) ²	N/A	gpd	4,918
pH	6.0 - 9.0	standard units	8.5
1,1 Dichloroethene	10	μg/L	ND
1,1 Dichloroethane	10	μg/L	ND
cis-1,2-dichloroethene	10	μg/L	2.56
Trichloroethene	10	μg/L	ND
Tetrachloroethene	10	μg/L	ND
Vinyl Chloride	10	μg/L	ND
Benzene	5	μg/L	ND
Ethylbenzene	5	μg/L	ND
Methylene Chloride	10	μg/L	ND
1,1,1 Trichloroethane	10	μg/L	ND
Toluene	5	μg/L	ND
Methyl-t-Butyl Ether (MTBE)	NA	ug/L	ND
o-Xylene ³	5	μg/L	ND
m, p-Xylene ³	10	μg/L	ND
Total Xylenes	NA	ug/L	ND
Iron, total ⁴	600	μg/L	NA ⁴
Aluminum ⁴	4,000	μg/L	NA ⁴
Copper ⁴	48	μg/L	NA ⁴
Lead ⁴	11	μg/L	NA ⁴
Manganese ⁴	2,000	μg/L	NA ⁴
Silver ⁴	100	μg/L	NA^4
Vanadium ⁴	28	μg/L	NA^4
Zinc ⁴	230	μg/L	NA^4
Total Dissolved Solids ⁴	850	mg/L	NA^4
Total Suspended Solids ⁴	20	mg/L	NA ⁴
Hardness	N/A		468
Cyanide, Free ⁴	10	μg/L	NA ⁴

NOTES:

1. "Daily Maximum" excerpted from Attachment E of Addendum 1 to the Construction Contract Documents dated October 2000.

2. Average flows based on effluent readings:

March 28 - April 18, 2018 = 4,918 gallons per day.

3. Analytical report did not differentiate between o-Xylene and m, p-Xylene. Total Xylene value reported is given in each line.

- 4. Removed from the required analysis list by NYSDEC Region 9 in February 2005.
- 5. Dark shaded cells indicate that analytical value exceeds the "Daily Maximum."
- 6. "ND" indicates that the compound was not detected and lists the practical quantitation limit in parentheses.
- 7. "NA" indicates that analyses were not performed and data is unavailable.
- 8. "J" indicates an estimated value below the detection limit.
- 9. "B" indicates analyte found in the associated blank.
- 10. "NS" indicates that the parameter analysis was not sampled.

40 Indicates non-compliance with the NYSDEC effluent discharge requirements NR Indicates Not Reported by Lab

Table 3 Mr. C's Dry Cleaners Site Remediation NYSDEC Site #915157 April 2018 VOC Analytical Summary

		3			
Compound	Influe Concentra	nt ntion*	Efflue Concentra	nt tion**	Cleanup Efficiency***
	(ug/L)		(ug/L)	(%)
Acetone	ND (<500) U		3.76		NA
Benzene	ND (<50)	U	ND (<1.0)	U	NA
2-Butanone	ND (<100)	U	ND (<2.0)	U	NA
cis-1, 2-Dichloroethene	2,850		2.56		99.91%
Chloroform	ND (<50)	U	ND (<1.0)	U	NA
Chloromethane	ND (<100)	U	ND (<2.0)	U	NA
Methylene chloride	ND (<100)	U	ND (<2.0)	U	NA
Methyl tert-butyl ether (MTBE)	ND (<50)	U	ND (<1.0)	U	NA
Methyl acetate	ND (<250)	U	ND (<5.0)	U	NA
Tetrachloroethene (PCE)	1,310		ND (<1.0)	U	100.00%
Toluene	ND (<50)	U	ND (<1.0)	U	NA
Trichloroethene (TCE)	329		ND (<1.0)	U	100.00%
Carbon Disulfide	ND (<100)	U	ND (<2.0)	U	NA
1,1,2 Trichloro-1,2,2-trifluororethane	ND (<50)	U	ND (<1.0)	U	NA
2-Hexanone	ND (<100)	U	ND (<2.0)	U	NA
4-Methyl-2-pentanone	ND (<100)	U	ND (<2.0)	U	NA
Cyclohexane	ND (<250)	U	ND (<5.0)	U	NA
trans-1,2-dichloroethene	ND (<50)	U	ND (<1.0)	U	NA
Chlorobenzene	ND (<50)	U	ND (<1.0)	U	NA
Methylcyclohexane	ND (<250)	U	ND (<5.0)	U	NA
Ethylbenzene	ND (<50)	U	ND (<1.0)	U	NA
Vinyl Chloride	136		ND (<1.0)	U	100.00%
Total Xylenes	ND (<150)	U	ND (<3.0)	U	NA
TOTAL:	4625.0		6.32		99.86%

Notes:

1. "NA" = Not applicable

2. "U" = Compound analyzed, but was not detected. Detection limit in parentheses.

3. "DJ" or "J" indicates an estimated value below the practical quantitation limit but above the method detection limit.

4. Non-detect values are assumed to be equal to zero for calculation of monthly average concentrations.

5. "D" indicates the compound concentration was obtained form a secondary dilution analysis.

* Detection Limits (<50), (<100), (<150), (<250), and (<500)

** Detection Limits (<1.0), (<2.0), (<3.0), (<5.0), and (<10.0)

*** Contaminants of Concern only

Table 4 Mr. C's Dry Cleaners Site Remediation NYSDEC Site #915157 April 2018 Analytical Summary of Groundwater from Pumping Wells

	Based on the April 18, 2018 Applytical Results									
Compound*	Puming Well PW-04** (ug/L)		Puming PW-05	Well **	Puming V PW-06	Puming Well PW-06**		Well **	Puming Well PW-08**	
			(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Acetone	ND (<500)	U	ND (<500) U		ND (<500)	U	ND (<500)	U	ND (<500)	U
Benzene	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
2-Butanone	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
cis-1, 2-Dichloroethene	53.5		180		67.5		5,880		302	
Chloroform	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Chloromethane	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
Methylene chloride	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
Methyl tert-butyl ether (MTBE)	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Methyl acetate	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U
Tetrachloroethene (PCE)	2,030		2,200		2,640		2,840		76	
Toluene	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Trichloroethene (TCE)	138		72.5		114		419		5.3	J
Carbon Disulfide	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
1,1,2 Trichloro-1,2,2-trifluororethane	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
2-Hexanone	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
4-Methyl-2-pentanone	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U	ND (<100)	U
Cyclohexane	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U
trans-1,2-dichloroethene	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Chlorobenzene	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Methylcyclohexane	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U	ND (<250)	U
Ethylbenzene	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U	ND (<50)	U
Vinyl Chloride	ND (<50)	U	47	J	ND (<50)	U	375		32.3	
Total Xylenes	ND (<150)	U	ND (<150)	U	ND (<150)	U	ND (<150)	U	ND (<150)	U
TOTAL:	2221.5		2499.50		2821.50		9514.00		415.60	

 Notes:

 1. "NA" = Not applicable

 2. "U" = Compound analyzed, but was not detected. Detection limit in parentheses.

3. "DJ" or "J" indicates an estimated value below the practical quantitation limit but above the method detection limit.

4. Non-detect values are assumed to be equal to zero for calculation of monthly average concentrations.

5. "D" indicates the compound concentration was obtained form a secondary dilution analysis.

6. "Bold" - exceeds the SPDES Equilavency Permit Requirements.

7. Detection Limits (<50), (<100), (<150), (<250), and (<500)

<u>Attachment A</u> IEG Summary of Field Activities April 2018

04/05/2018 04/18/2018 05/02/2018

MR. C's DRY CLEANERS SITE NYSDEC Site #9-15-157 OM&M: SITE INSPECTION FORM

DATE: 5-Apr-18	ACTIVITIES:	Site Inspection	
INSPECTION PERSONNEL: D. lyer		OTHER PERSONNEL:	
WEATHER CONDITIONS: snow, windy			OUTSIDE TEMPERATURE (° F): <u>30</u>
ARE WELL PUMPS OPERATING IN AUTO:	YES:	NO: $$	If "NO", provide explanation below
RW-1, PW-2 and PW-3 are manually se	et to OFF position	; PW-4 thro' PW-8 are in AUTO	
PRO	VIDE WATER LEV	EL READINGS ON CONTROL PA	ANEL
RW-1 ON: OFF:√	13 ft	PW-5 ON:	OFF:√4ft
PW-2 ON: OFF:√	<u>11</u> ft	PW-6 ON:	OFF:√4ft
PW-3 ON: OFF: $$	12 ft	PW-7 ON:	OFF:√4ft
PW-4 ON: OFF: $$	<u>6</u> ft	PW-8 ON:	OFF:√ 6 ft
EQUALIZATION TANK:	3 ft	Last Alarm D/T/Conditio	on: none
NOTES:			
INFLUENT FLOW RATE: 20.9	gpm	INFLUENT TOTALIZER READIN	G: 15,302,160 gallons
[
SEQUESTERING AGENT DRUM LEVEL:	8.5 inches	(x 1.7=) AMOUNT O	F AGENT REMAINING: <u>14</u> gallons
SEQUESTERING AGENT FEED RATE:	<u></u> ml/min	METERI	NG PUMP PRESSURE:psi
[Тор	Bottom	Top Bottom
BAG FILTER PRESSURES:	LEFT: 0	0 psi RIGHT:	7_0psi
INFLUENT FEED PUMP IN USE: #1	#2	2 INFLUENT PUMP	PRESSURE: 7 psi
AIR STRIPPER BLOWER IN USE: #1	√ #2	2 AIR STRIPPER	PRESSURE: 28 (25 w/o water in trays) in. H ₂ O
AIR STRIPPER DIFFERENTIAL PRESSURE:	broken	in. H ₂ O DISCHARGE	<i>PRESSURE:</i> 2.1 in. H ₂ O
AIR FLOW : 1677 fpm X 1.4 =	2348		-t <u>7.5 <i>right</i> 3.5 </u> cfm
AIR TEMP: 82 °F			new blower exchanged blower
EFFLUENT PUMP IN USE: #1	#2 <u>√</u>	EFFLUENT FEED PUMP	PRESSURE: 10 psi
EFFLUENT FLOW RATE: 133 gpm	EFFLUENT	TOTALIZER READING:	83,497,166 147900 gallons
ARE BUILDING HEATERS IN USE? YES: _	NO	:√	INSIDE TEMPERATURE (° F): 64
IS SUMP PUMP IN USE: YES: _ $$	NO:	_ ARE ANY LEAKS PRESENT	7? YES:√NO:
WATER LEVEL IN SUMP: <u>6.5</u> in.	TREATMENT E	BUILDING CLEAN & ORGANIZED	0? YES: <u>√</u> NO:

MR. C's DRY CLEANERS SITE NYSDEC Site #90150157 SITE INSPECTION FORM

						5-Apr-18
SAMPLES COLLECTED? YES: NO: $$						
Sample ID Time of Sample	ling	pН	Turbidity	Temp.	Sp. Cond.	
AIR STRIPPER INFLUENT:						
AIR STRIPPER EFFLUENT:						
IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS: ?	YES:		NO:	\checkmark		
WERE MANHOLES INSPECTED?	YES:	\checkmark	NO:			
WERE ELECTRICAL BOXES INSPECTED?	YES:		NO:			
IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES?	YES:		NO:	\checkmark		
If yes, provide manhole/electric box ID and description	n of any corre	ective meas	sures below:			
RW-1 inner ring is corroded. Reduced amount of snow piles over PW-2 and PW	/-3.					
SUBSLAB S	YSTEMS					
TREATMENT	ROOM	NOTES	ofm 0.0F	v form (2" F		
(Fan Inlet) FLOW (fpm):	east	NOTES:	cim = 0.05	х ірпі (З Р	-vc)	
CONDENSATE 0.2 gallon FLOW (cfm):		-				
DRAINED Yes VACUUM GAUGE (in WC)		-				
OTHER LOCA	TIONS					
586 Building SVE CONDENSATE drained: YES $_$ NO $_$	VOLUME:	1.0	gallon			
INCLUDE REMARKS & DESCRIBE ANY OTHER SYSTEM	I MAINTENA	NCE PER	FORMED ON	MR. C's S	SITE	
Remarks: Slow drip in Effluent Pipe at EQ Tank fitting - dries quickly	- continuing	to monito	r			
Slow drip in effluent pipe at anti-siphon air vent - to be repa	aired					
Other Actions: - Took delivery of 3 Redux drums: made up 1 drum with 1	nart Redux/	2 narts wa	iter			
Installed a new Mede blawar (Medel LAM200) on left side	for Air Strip		for higher	nir flow (7	E ofm)	
		Jei Suiilp			.5 6111)	
- Moved AirMax LR50 from left to right - (getting 3.5 cfi	m)					

AGWAY

Remarks: Site is empty of materials and has been graded and graveled.

Other Actions:

MR. C's DRY CLEANERS SITE NYSDEC Site #9-15-157 OM&M: SITE INSPECTION FORM

DATE:	18	B-Apr-	18		ACTI	/ITIES:	Site Ins	spection	۱				
INSPEC	TION PER	SONNEL	:	R. Allen			_OTHER	PERSON	NEL:				
WEATH	ER CONDI	TIONS:	Cloudy,	cold						OUTS	IDE TEMPE	RATURE (° F)	32
					VE0.			. 1					
ARE WE					YES:					IT "NO", p	rovide exp	lanation below	/
	<u>RW-1, PV</u>		w-s are ma	inually se		osition	; PVV-4 thr	0 910-8	are in AUTO				
				PRO	VIDE WAT	ER LEV	EL READ	INGS ON	CONTROL	PANEL			
RW-1	ON:	\checkmark	OFF:		14 _f	t	PW-	5	ON:	OFF	:√_	7	_ft
PW-2	ON:		OFF:		12 _f	t	PW-	6	ON:	OFF	:√_	5	_ft
PW-3	ON:	\checkmark	OFF:		13 _f	t	PW-	7	ON:	OFF	: <u>√</u>	7	_ft
PW-4	ON:		OFF:		3 _f	t	PW-	8	ON:	OFF	: <u>√</u>	6	_ft
		EQU	ALIZATION	TANK:	4 _ft	t		Last Ala	m D/T/Condi	ition: <u>4/15/18</u>	Air Stripper	Low Pressure	
	NOTES:												
INFLU	JENT FLO	W RATE:		0	g	ıpm	INFLUE	NT TOTA	LIZER READ	DING: 154	139931		gallons
SE	OUESTER		או וסח או		15 ii	achae		(v 1 7_)				26	gallons
32	QUESTER				<u>15</u> "	iches		(x 1.7=)	AMOONT				_gallons
	=====			RATE:	n	ni/min	Detter				RESSURE:		_psi
	BAG FIL	TER PRE	SSURES:		LEFT:	төр О	0	psi	RIGH	T:	10p 8	0	psi
INFLU	UENT FEE	D PUMP I	IN USE:	#1		#2	2		LUENT PUM	IP PRESSURE	:	7	_psi
AIR	STRIPPER	BLOWE	R IN USE:	#1		#2	2		IR STRIPPE	R PRESSURE	:	26	in. H₂O
AIR STF	RIPPER DII	FERENT	TAL PRESS	SURE:	brok	en	in. H₂O		DISCHARG	E PRESSURE	:	2.0	in. H₂O
AIR	FLOW :	1300	fpm X	1.4 =	182	20	CFM	SPA	AIR RGER L	<i>EFT</i> 7.0	RIGHT	3.3	 CFM
Alf	R TEMP:	84	°F	_ 									
EFFLU	UENT PUM	P IN USE:	#1		#2		E	FLUEN	FEED PUM	IP PRESSURE	:	9.5	psi
EFFL	LUENT FLO	W RATE:	134	gpm	EFF	LUENT	TOTALIZ	ER REAL	DING:	83,556,2	254	208490	gallons
<u> </u>													
ARE	BUILDING	HEATERS	IN USE?	YES:		NO	: <u> </u>			INS.		:RATURE (``F)	: 0/
ıs su	IMP PUMP	IN USE:	YES:		NO:		ARE	ANY LEA	AKS PRESE	NT? YES	:√	NO	:
WATE	R LEVEL II	N SUMP:	6.5	in.	TREAT	MENT E	BUILDING	CLEAN	& ORGANIZ	ED? YES	:√	NO	:

MR. C's DRY CLEANERS SITE NYSDEC Site #90150157 SITE INSPECTION FORM

								1	8-Apr-18		
SAMPLES COLLECTED?	YES:	 √NC):								
		Sample	ID Time of S	ampling	рН	Turbidity	Temp.	Sp. Cond.			
AIR STRIPPER INFL	.UENT:	INF	5:00	pm	8.0	11.9	11.1	2424	_		
AIR STRIPPER EFFL	AIR STRIPPER EFFLUENT: EFF5:00 pm				9.6	14.2	9.7	2498	_		
IS THERE EVIDENC	E OF TAI	MPERING/VANI	DALISM OF WELL	S: ? YES:		NO:	√				
		WERE MAN	IHOLES INSPECT	ED? YES:		 NO:		,			
	WERE	ELECTRICAL	BOXES INSPECT	ED? YES:		 NO:		,			
IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOYES? VES: NO. $$											
lf ye	es. provid	e manhole/elect	ric box ID and desc	ription of any corre	ective mea	sures below:					
RW-1 inner ring is corroded.	, , , , , , , , , ,	•									
····											
			SUBSLA	B SYSTEMS							
			TREATM	ENT ROOM							
MANOMETER:	<u>1.3</u> ir	n. WC	we	st east	NOTES:	cfm = 0.05	x fpm (3" F	VC)			
(Fan Inlet)	10	F	LOW (fpm):		-						
	<u>1.0</u> g	jallon ⊦	LOW (cfm):	<u> </u>	-						
DRAINED	NO V	ACUUM GAUG	E (in WC)								
586 Building SV/E		NGATE drainer	OTHER L ⊣ VES √ NO		10	gallon					
JOD BUILDING SVE	CONDLI		<u>]</u> 120 <u>-</u> 10_		1.0	gallon					
INCLUDE	REMARK	S & DESCRIBE	E ANY OTHER SY	STEM MAINTENA	NCE PER	FORMED ON		SITE			
Bomerke, Slow drip in I			L fitting drive qu								
Remarks. Slow unp in i		пре агеод тап	K lluing - unes qu	CKly - will monitor	<u> </u>						
Other Actions: Increased Je	esco Pum	ip to: 15.									
			AG	WAY							
Remarks: Site is empty	/ of mater	rials and has b	een graded and g	raveled.							
Other Actions:											

MR. C's DRY CLEANERS SITE NYSDEC Site #9-15-157 OM&M: SITE INSPECTION FORM

DATE:	2-May-1	18	ACTIVITIES:	Site Inspectio	n			
INSPECT	TION PERSONNEL	D. lyer		OTHER PERSO	NNEL:			
WEATHE	ER CONDITIONS:	Clear, calm, cool				OUTSIDE TEM	PERATURE (° F):	60
ARE WE	LL PUMPS OPERA	TING IN AUTO:	YES:	NO:	V I	f "NO", provide e	xplanation below	
-	RW-1, PW-2 and P	W-3 are manually se	t to OFF position;	; PW-4 thro' PW-8	are in AUTO			
-		PRO	VIDE WATER LEV	EL READINGS OI		EL		
RW-1	ON:	off:√	14 ft	PW-5	ON:	off: $$	5	ft
PW-2	ON:	off:√	<u>11</u> ft	PW-6	ON:	OFF: $$	7	_ft
PW-3	ON:	off:√	12 ft	PW-7	on:√	OFF:	7	ft
PW-4	ON:	off:√	4 ft	PW-8	ON:	off: $$	4	_ft
	EQU	ALIZATION TANK:	3 ft	Last Ala	arm D/T/Condition:	4/15/18 Air Stripp	er Low Pressure	
	NOTES:							
INFLU	ENT FLOW RATE:	31.7	gpm	INFLUENT TOT	ALIZER READING:	1554	5191	gallons
SEC	QUESTERING AGE	NT DRUM LEVEL:	22.3 inches	(x 1.7=)	AMOUNT OF A	GENT REMAININ	G: <u>38</u>	gallons
SI	EQUESTERING AG	ENT FEED RATE:	ml/min	Filled Redu	IX 1:2 METERING	PUMP PRESSUR	?E:	_psi
			Тор	Bottom	DIQUT	Top	Bottom	
	BAG FILTER PRE			psi		10		_psi
INFLU	IENT FEED PUMP	IN USE: #1	√ #2	2 INF	FLUENT PUMP PR	ESSURE:	7	psi
AIR S	STRIPPER BLOWE	R IN USE: #1	√ #2	2	AIR STRIPPER PR	ESSURE:	29	in. H₂O
AIR STR	NPPER DIFFERENT	TIAL PRESSURE:	broken	in. H₂O	DISCHARGE PR	ESSURE:	1.7	in. H₂O
AIR	FLOW : 1500	fpm X 1.4 =	2100	_ CFM SPA	AIR NRGER LEFT	7.0 RIGH	т <u>3.5</u>	CFM
AIR	R TEMP: 89.5	°F						
EFFLU	IENT PUMP IN USE:	#1	#2 <u>√</u>	EFFLUEN	T FEED PUMP PR	ESSURE:	8.5	psi
EFFL	UENT FLOW RATE:	134 gpm	EFFLUENT	TOTALIZER REA	DING: 83	636,107	290100	gallons
ARE I	BUILDING HEATERS	IN USE? YES:	NO:			INSIDE TEM	PERATURE (° F):	69.5
ıs su	MP PUMP IN USE:	YES:√	NO:	ARE ANY LE	AKS PRESENT?	YES:	NO	. √
WATER	R LEVEL IN SUMP:	<u>6.5</u> in.	TREATMENT E	BUILDING CLEAN	& ORGANIZED?	YES:√	NO	:

MR. C's DRY CLEANERS SITE NYSDEC Site #90150157 SITE INSPECTION FORM

						<u>2-May-18</u>
SAMPLES COLLECTED? YES: NO: Sample ID	Time of Sampling	 pl	H Turbidity	Temp.	Sp. Cond.	
AIR STRIPPER INFLUENT:						
AIR STRIPPER EFFLUENT:						
IS THERE EVIDENCE OF TAMPERING/VANDALIS	SM OF WELLS: ?	YES:	NO:		-	
WERE MANHOL	ES INSPECTED?	YES: 1	NO:		-	
WERE ELECTRICAL BOX	ES INSPECTED?	YES: 1	NO:		-	
IS WATER PRESENT IN ANY MANHOLES OR ELEC	TRICAL BOXES?	YES:	NO:		-	
If yes, provide manhole/electric bo	ox ID and description of a	ny corrective r	neasures below:			
RW-1 inner ring is corroded.						
	SUBSLAB SYST	EMS				
MANOMETER: 1.3 in. WC	west e	east NOT	ES: cfm = 0.05	x fpm (3" F	PVC)	
(Fan Inlet) FLOW	(fpm):					
CONDENSATE 0.1 gallon FLOW	/ (cfm):					
DRAINED Yes VACUUM GAUGE (in						
586 Building SVE CONDENSATE drained: YE	$\frac{1}{1000} = \frac{1}{1000} = 1$	DLUME: 0.	3 gallon			
INCLUDE REMARKS & DESCRIBE AN	Y OTHER SYSTEM MAI	NTENANCE P	ERFORMED ON	IMR. C's S	SITE	
Remarks: Slow drip in Effluent Pipe at EQ Tank fitti	ng - dries quickly - con	tinuing to mo	nitor			
Reset Redux feed pump setting to "10"						
Other Actions: Replaced Treatment room hose nozzle						
	AGWAY					
Remarks: Site is empty of materials and has been g	graded and graveled.					

Site is empty of materials and has been

Other Actions:

<u>Attachment B</u> Excerpts from the Groundwater Treatment System Analytical Report from Spectrum Analytical Laboratories

Analytical Data Package Work Order ID: SC45851 Sampled by IEG: April 18, 2018 Report Received: April 23, 2018

Eurofins Spectrum Analytical, Inc.

T | 413-789-9018 F | 413-789-4076 www.EurofinsUS.com/Spectrum

Page 1 of 16

identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our

Eurofins Spectrum Analytical, Inc, is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

website for specific certification holdings in each state.

Ecology and Environment, Inc.

368 Pleasant View Drive

Spectrum Analytical

Project #: 1703074.0011

Jawn & Wojcik

Laboratory Report SC45851

Authorized by:

Dawn Wojcik

Laboratory Director

Project: Mr. C's - East Aurora, NY

Final Report Revised Report

Report Date: 23-Apr-18 16:49

🛟 eurofins

Sample Summary

Work Order:	SC45851
Project:	Mr. C's - East Aurora, NY

Project Number: 1703074.0011

Laboratory ID **Client Sample ID** SC45851-01

SC45851-02

Influent Effluent

<u>Matrix</u> Ground Water Ground Water

Date Sampled 18-Apr-18 12:30 18-Apr-18 12:30 **Date Received**

19-Apr-18 09:30 19-Apr-18 09:30

Summary of Hits

Lab ID: SC45851-01			Client ID: Influent				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method		
Hardness (CaCO3)	450		0.1	mg/l	E200.7		
cis-1,2-Dichloroethene	2850	D	50.0	μg/l	SW846 8260C		
Tetrachloroethene	1310	D	50.0	μg/l	SW846 8260C		
Trichloroethene	329	D	50.0	μg/l	SW846 8260C		
Vinyl chloride	136	D	50.0	µg/l	SW846 8260C		
Lab ID: SC45851-02			Client ID: Effluent				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method		
Hardness (CaCO3)	468		0.1	mg/l	E200.7		
Acetone	3.76	J	10.0	μg/l	SW846 8260C		
cis-1,2-Dichloroethene	2.56		1.00	μg/l	SW846 8260C		

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id	Sample Identification				Client Project #	<u># Matrix C</u>		Colle	Collection Date/Time			Received		
Influent SC45851-01 CAS No. Analyte(s) Result Fla				1703074.0011			Ground Wa	ater 18	-Apr-18 12	:30	<u>19-</u>	Apr-18		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile Or	ganic Compounds													
Volatile Or	ganic Compounds by SW	<u>846 8260</u>	GS1											
Prepared	by method SW846 5030 V	Vater MS												
/6-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	U, D	µg/l	50.0	26.6	50	SW846 8260C	20-Apr-18	20-Apr-18	GMA	1805409	Х	
67-64-1	Acetone	< 500	U, D	µg/l	500	40.2	50		"	"			Х	
71-43-2	Benzene	< 50.0	U, D	µg/l	50.0	14.2	50		"	"			Х	
75-27-4	Bromodichloromethane	< 25.0	U, D	µg/l	25.0	20.8	50		"	"			Х	
75-25-2	Bromoform	< 50.0	U, D	µg/l	50.0	21.2	50		"	"			Х	
74-83-9	Bromomethane	< 100	U, D	µg/l	100	44.8	50		"	"			Х	
78-93-3	2-Butanone (MEK)	< 100	U, D	µg/l	100	53.5	50		"	"			Х	
75-15-0	Carbon disulfide	< 100	U, D	µg/l	100	20.6	50		"	"		"	Х	
56-23-5	Carbon tetrachloride	< 50.0	U, D	µg/l	50.0	21.8	50		"	"			Х	
108-90-7	Chlorobenzene	< 50.0	U, D	µg/l	50.0	12.4	50		"	"		"	Х	
75-00-3	Chloroethane	< 100	U, D	µg/l	100	29.4	50		"				х	
67-66-3	Chloroform	< 50.0	U, D	µg/l	50.0	16.3	50		"	"			х	
74-87-3	Chloromethane	< 100	U, D	µg/l	100	18.4	50		"	"			х	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	U, D	µg/l	100	43.2	50	"	"	"		"	х	
124-48-1	Dibromochloromethane	< 25.0	U, D	µg/l	25.0	15.8	50		"	"			х	
106-93-4	1,2-Dibromoethane (EDB)	< 25.0	U, D	µg/l	25.0	10.1	50		"	"			х	
95-50-1	1,2-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.8	50		"	"			х	
541-73-1	1,3-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	15.7	50		"	"			х	
106-46-7	1,4-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.6	50		"	"			х	
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	U, D	µg/l	100	29.2	50	"	"	"	"	"	х	
75-34-3	1,1-Dichloroethane	< 50.0	U, D	µg/l	50.0	16.2	50		"	"			х	
107-06-2	1,2-Dichloroethane	< 50.0	U, D	µg/l	50.0	13.8	50		"				х	
75-35-4	1,1-Dichloroethene	< 50.0	U, D	µg/l	50.0	34.6	50		"				х	
156-59-2	cis-1,2-Dichloroethene	2,850	D	µg/l	50.0	16.4	50		"				х	
156-60-5	trans-1,2-Dichloroethene	< 50.0	U, D	µg/l	50.0	18.8	50		"	"			х	
78-87-5	1,2-Dichloropropane	< 50.0	U, D	µg/l	50.0	14.6	50		"	"			х	
10061-01-5	cis-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	18.0	50		"	"			х	
10061-02-6	trans-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	17.4	50		"				х	
100-41-4	Ethylbenzene	< 50.0	U, D	µg/l	50.0	16.4	50		"				х	
591-78-6	2-Hexanone (MBK)	< 100	U, D	µg/l	100	26.4	50		"				х	
98-82-8	Isopropylbenzene	< 50.0	U, D	µg/l	50.0	18.0	50		"	"			х	
1634-04-4	Methyl tert-butyl ether	< 50.0	U, D	µg/l	50.0	11.8	50		"				х	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 100	U, D	µg/l	100	25.8	50	"	"	"		"	х	
75-09-2	Methylene chloride	< 100	U, D	µg/l	100	33.0	50	•	"	"	"		х	
100-42-5	Styrene	< 50.0	U, D	µg/l	50.0	20.2	50		"	"			х	
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	U, D	µg/l	25.0	16.5	50	"	"			"	х	
127-18-4	Tetrachloroethene	1,310	D	µg/l	50.0	28.5	50	"	"			"	х	
108-88-3	Toluene	< 50.0	U, D	µg/l	50.0	15.0	50	"	"	"			х	
120-82-1	1,2,4-Trichlorobenzene	< 50.0	U, D	µg/l	50.0	18.9	50	"	"	"	"	"	х	
71-55-6	1,1,1-Trichloroethane	< 50.0	U, D	µg/l	50.0	25.4	50	"	"	"			х	
79-00-5	1,1,2-Trichloroethane	< 50.0	U, D	µg/l	50.0	16.5	50	"	"		"	"	х	
79-01-6	Trichloroethene	329	D	µg/l	50.0	24.8	50	"	"	"		"	х	

Sample Id Influent SC45851-	mple Identification fluent C45851-01 IS No. Analyta(s) Result Ele			<u>Client Project #</u> 1703074.0011		<u>Matrix</u> Ground Wa		<u>x</u> <u>Collection Date/Time</u> Vater 18-Apr-18 12:30		<u>/Time</u> 2:30	<u>Received</u> 19-Apr-18		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile O	rganic Compounds by SV	V846 8260	GS1										
75-01-4	Vinyl chloride	136	D	µg/l	50.0	23.6	50	SW846 8260C	20-Apr-18	20-Apr-18	GMA	1805409	Х
1330-20-7	Total Xylenes	< 150	U, D	µg/l	150	150	50			"	"	"	Х
110-82-7	Cyclohexane	< 250	U, D	µg/l	250	39.4	50			"	"	"	Х
79-20-9	Methyl acetate	< 250	U, D	µg/l	250	32.4	50			"	"	"	Х
108-87-2	Methylcyclohexane	< 250	U, D	µg/l	250	37.1	50	"			"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %				"	"		
2037-26-5	Toluene-d8	97			70-13	0 %				"	"		
17060-07-0	1,2-Dichloroethane-d4	103			70-13	0 %				"	"		
1868-53-7	Dibromofluoromethane	99			70-13	0 %				"	"		
General C	hemistry Parameters												
	рН	7.24	рН	pH Units			1	ASTM D 1293-99B	19-Apr-18 14:57	23-Apr-18 10:23	TN	1805385	
Subcontra	cted Analyses												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, I	Inc. * - CT0	07									
	Hardness (CaCO3)	450		mg/l	0.1	0.1	1	E200.7	18-Apr-18 12:30	20-Apr-18 07:59	11301	'[none]'	

Sample Ic	Sample Identification			Client F	Project #	<u>Matrix</u> Ground Wa		rix <u>Collection Date/Time</u>			Received		
Effluent SC45851-	Effluent SC45851-02			1703074.0011 Ground Wa			ater 18	-Apr-18 12	:30	<u>19-</u>	Apr-18		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O Prepared	rganic Compounds by SW by method SW846 5030 V	<u>846 8260</u> Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	20-Apr-18	20-Apr-18	GMA	1805409	Х
67-64-1	Acetone	3.76	J	µg/l	10.0	0.80	1		"	"		"	х
71-43-2	Benzene	< 1.00	U	µg/l	1.00	0.28	1		"	"		"	х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1		"		"	"	х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1		"	"		"	х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1				"	"	х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1						х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1				"	"	х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1				"	"	х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1				"	"	х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1		"		"	"	х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1		"		"	"	х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1		"		"	"	х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1		"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1						х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1						х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1						х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1						х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1						х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1		"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1		"	"	"	"	х
156-59-2	cis-1,2-Dichloroethene	2.56		µg/l	1.00	0.33	1		"	"	"	"	х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1		"				х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1		"				х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1		"	"	"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1		"	"	"	"	х
100-41-4	Ethylbenzene	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	µg/l	2.00	0.53	1		"	"	"	"	х
98-82-8	Isopropylbenzene	< 1.00	U	µg/l	1.00	0.36	1		"	"	"	"	х
1634-04-4	Methyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.24	1		"		"		Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	u	"	"		"	х
75-09-2	Methylene chloride	< 2.00	U	µg/l	2.00	0.66	1		"		"	"	Х
100-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1		"			"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1	"	"			"	Х
127-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1	"	"			"	Х
108-88-3	Toluene	< 1.00	U	µg/l	1.00	0.30	1	"	"			"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"	"	Х
71-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1	"	"			"	Х
79-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1	"	"			"	Х
79-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1		"				Х

Sample Id Effluent SC45851-	Imple Identification Gluent C45851-02		<u>Client Project #</u> 1703074.0011			<u>Matrix</u> Ground Wa	<u>Colle</u> ater 18	Collection Date/Time er 18-Apr-18 12:30		Received 19-Apr-18			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile O	rganic Compounds by SV	<u>V846 8260</u>											
75-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1	SW846 8260C	20-Apr-18	20-Apr-18	GMA	1805409	Х
1330-20-7	Total Xylenes	< 3.00	U	µg/l	3.00	3.00	1			"	"	"	Х
110-82-7	Cyclohexane	< 5.00	U	µg/l	5.00	0.79	1			"	"	"	Х
79-20-9	Methyl acetate	< 5.00	U	µg/l	5.00	0.65	1		"	"	"	"	Х
108-87-2	Methylcyclohexane	< 5.00	U	µg/l	5.00	0.74	1	"		"	"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	96			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %				"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	0 %		"	"	"	"	"	
General C	hemistry Parameters												
	рН	8.50	рН	pH Units			1	ASTM D 1293-99B	19-Apr-18 14:57	23-Apr-18 10:23	TN	1805385	
Subcontra	cted Analyses												
Analysis pe	erformed by Phoenix Enviro	nmental Labs,	Inc. * - CT00)7									
	Hardness (CaCO3)	468		mg/l	0.1	0.1	1	E200.7	18-Apr-18 12:30	20-Apr-18 07:59	11301	'[none]'	

Ontainers # of VOA Vials # of Amber Glass # of Amber Glass # of Clear Glass # of Plastic Image: Image: # of Plastic Image: Image: Image: # of Plastic Image: Image: Image: # of Plastic Image: Image: Image: Image: # of Plastic Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 April&, 2018 12:30 PM 6 6 6 4 C 7 7 7 C	x1= x2= G= Grab Lab ID: Sample ID: US95/Lool INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT Relinquished by: Relinquished by: INFLUENT
Date: Image: Solution Date: Image: Solution Image: Solution Image: Solution </th <th>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April& 2018 12:30 PM 6 6 6 4 C 6 6 6 C 6 6 4 C 6 6 6 C 6 6 6 6 6 C</th> <th>x1= x2= G= Grab Lab ID: YSS/Lol INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT EFFLUENT EFFLUENT Relinquished by: Rulinguished by:</th>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April& 2018 12:30 PM 6 6 6 4 C 6 6 6 C 6 6 4 C 6 6 6 C 6 6 6 6 6 C	x1= x2= G= Grab Lab ID: YSS/Lol INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT INFLUENT EFFLUENT EFFLUENT Relinquished by: Rulinguished by:
Date: Image: Second	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April& 2018 12.30 PM 6 6 6 4 C 6 6 6 C 6 6	Relinquished by:
Image: Containers Image: Containers <td>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td> <td>Lab ID: Sample ID: US OSLO INFLUENT US OSLO INFLUENT OU INFLUENT OU EFFLUENT EFFLUENT EFFLUENT</td>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Lab ID: Sample ID: US OSLO INFLUENT US OSLO INFLUENT OU INFLUENT OU EFFLUENT EFFLUENT EFFLUENT
Image: Containers Image: Containers <td>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April& 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td> <td>Lab ID: G= Grab Lab ID: USOS/201 INFLUENT UNFLUENT OU EFFLUENT EFFLUENT EFFLUENT EFFLUENT</td>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April& 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Lab ID: G= Grab Lab ID: USOS/201 INFLUENT UNFLUENT OU EFFLUENT EFFLUENT EFFLUENT EFFLUENT
W W W # of VOA Vials I I I I # of Amber Glass I I I I I I I I I <td>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td> <td>x1= x2= G= Grab Lab ID: Sample ID: USOSID: INFLUENT USOSID: INFLUENT USOSID: INFLUENT USOSID: EFFLUENT EFFLUENT EFFLUENT</td>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	x1= x2= G= Grab Lab ID: Sample ID: USOSID: INFLUENT USOSID: INFLUENT USOSID: INFLUENT USOSID: EFFLUENT EFFLUENT EFFLUENT
Image: Containers Image: Containers <td>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018, 12:30 PM C C C M C C C M April & C C M C C C M</td> <td>G= Grab G= Grab Lab ID: Sample ID: USOS/20 INFLUENT UNFLUENT DINFLUENT EFFLUENT EFFLUENT</td>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018, 12:30 PM C C C M C C C M April & C C M C C C M	G= Grab G= Grab Lab ID: Sample ID: USOS/20 INFLUENT UNFLUENT DINFLUENT EFFLUENT EFFLUENT
Image: Containers Image: Containers <td>ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 4 Matrix</td> <td>G= Grab G= Grab Lab ID: Sample ID: USBS/20 INFLUENT UNFLUENT NFLUENT OU EFFLUENT</td>	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type April&, 2018 12:30 PM 6 6 6 4 6 6 4 Matrix	G= Grab G= Grab Lab ID: Sample ID: USBS/20 INFLUENT UNFLUENT NFLUENT OU EFFLUENT
Image: With the second sec	ent Air SG=Soil Gas X.3= C=Compsite Date: Time: Type Matrix Matrix	G= Grab G= Grab Lab ID: Sample ID: USBS/201 INFLUENT UNFLUENT
# of VOA Vials # of Amber Glass # of Amber Glass # of Clear Glass # of Plastic # of Pla	ent Air SG=Soil Gas X3= C=Compsite Date: Time: Type Matrix Matrix	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
# of VOA Vials # of Amber Glass # of Amber Glass # of Clear Glass # of Plastic Analysis VOCS Analysis	ent Air SG=Soil Gas X3= C=Compsite Date: Time: Type Matrix Matrix	$x_{1} = x_{2} = Grab$ $G = Grab$ $Lab ID: Sample ID: Sample ID: T$
# of VOA Vials # of Amber Glass Ontainers # of Clear Glass # of Clear Glass # of Plastic PHH Hardness VOCS Analysis	ent Air SG=Soil Gas X3= C=Compsite Type Matrix	X1=X2= G=Grab Lab ID: Sample ID:
VOA Vials Amber Glass Clear Glass Plastic PH Charless VOCs Analysis Analysis	ent Air SG=Soil Gas X.3= C=Compsite ptrix	$X1= \underbrace{\qquad \qquad X2=}^{}$ $G= Grab$
Vials or Glass Glass Glass Containers Conta	ent Air SG=Soil Gas X3=	X1= X2=
5 Containers Analysis	ent Air SG=Soil Gas	
Containers Analysis		O=Oil SO=Soil SL=Sludge A=Indoor/Ambien
	rrface Water WW=Waste Water	DW=Drinking Water GW=Groundwater SW=Surf
$\frac{d}{2}$ List Preservative Code below:	h_4 4=HNO ₃ 5=NaOH 6=Ascorbic Acia h_4 11= 12= 12=	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄
Quote #: Sampler(s): K; Allen	P.O No.:	Project Mgr: (116) 684-8060 Wille Steffan
Location: East Avie		
Site Name: MrCS C	980	Lan caster NY 140
E Inc Project No:	Invoice To:	Report To: E&E Inc
All TATs subject Min. 24-hr notific Samples disposed	nalytical Page	Spectrum An
CUSTODY RECORD	CHAIN OF	eurofins
Spec		

<u>Attachment C</u> Excerpts from the Groundwater Pumping Wells Analytical Report from Spectrum Analytical Laboratories

Analytical Data Package Work Order ID: SC45900 Sampled by IEG: April 18, 2018 Report Received: April 26, 2018

Eurofins Spectrum Analytical, Inc.

T | 413-789-9018 F | 413-789-4076 www.EurofinsUS.com/Spectrum

Page 1 of 34

eport)

Project: Mr. C's - East Aurora, NY Project #: 1703074.0011

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 34 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Report Date: 26-Apr-18 13:19

Final Report

Revised Report

🛟 eurofins Spectrum Analytical

Ecology and Environment, Inc.

368 Pleasant View Drive Lancaster, NY 14086

Attn: Mike Steffan

Laboratory Report SC45900

Dawn Wojcik Laboratory Director

Authorized by:

Jawn & Wojcik

Sample Summary

Work Order:	SC45900
Project:	Mr. C's - East Aurora, NY
Project Number:	1703074.0011

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC45900-01	PW-4	Ground Water	18-Apr-18 00:00	19-Apr-18 09:39
SC45900-02	PW-5	Ground Water	18-Apr-18 00:00	19-Apr-18 09:39
SC45900-03	PW-6	Ground Water	18-Apr-18 00:00	19-Apr-18 09:39
SC45900-04	PW-7	Ground Water	18-Apr-18 00:00	19-Apr-18 09:39
SC45900-05	PW-8	Ground Water	18-Apr-18 00:00	19-Apr-18 09:39
SC45900-06	ТВ	Water	18-Apr-18 00:00	19-Apr-18 09:39

Summary of Hits

Lab ID: SC45900-01			Client ID: PW-4		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	53.5	D	50.0	μg/l	SW846 8260C
Tetrachloroethene	2030	D	50.0	μg/l	SW846 8260C
Trichloroethene	138	D	50.0	µg/l	SW846 8260C
Lab ID: SC45900-02			Client ID: PW-5		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	180	D	50.0	μg/l	SW846 8260C
Tetrachloroethene	2200	D	50.0	μg/l	SW846 8260C
Trichloroethene	72.5	D	50.0	µg/l	SW846 8260C
Vinyl chloride	47.0	J, D	50.0	µg/l	SW846 8260C
Lab ID: SC45900-03			Client ID: PW-6		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	67.5	D	50.0	μg/l	SW846 8260C
Tetrachloroethene	2640	D	50.0	µg/l	SW846 8260C
Trichloroethene	114	D	50.0	µg/l	SW846 8260C
Lab ID: SC45900-04			Client ID: PW-7		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	5880	D	100	μg/l	SW846 8260C
Tetrachloroethene	2840	D	100	µg/l	SW846 8260C
Trichloroethene	419	D	100	µg/l	SW846 8260C
Vinyl chloride	375	D	100	µg/l	SW846 8260C
Lab ID: SC45900-05			Client ID: PW-8		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	302	D	10.0	μg/l	SW846 8260C
Tetrachloroethene	76.0	D	10.0	μg/l	SW846 8260C
Trichloroethene	5.30	J, D	10.0	μg/l	SW846 8260C
Vinyl chloride	32.3	D	10.0	μg/l	SW846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Ic	Sample Identification				Client Project #		Matrix		Collection Date/Time			Received		
PW-4 SC45900-	PW-4 SC45900-01 CAS No. Analyte(s) Result Flag			170307	74.0011		Ground Wa	ater 18	-Apr-18 00	:00	<u>19-</u>	Apr-18		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile O	rganic Compounds													
Volatile O	rganic Compounds by SW	<u>846 8260</u>	GS1											
Prepared	by method SW846 5030 V	Vater MS												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	U, D	µg/l	50.0	26.6	50	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	Х	
67-64-1	Acetone	< 500	U, D	µg/l	500	40.2	50	"	"	"	"	"	Х	
71-43-2	Benzene	< 50.0	U, D	µg/l	50.0	14.2	50	"	"	"	"		Х	
75-27-4	Bromodichloromethane	< 25.0	U, D	µg/l	25.0	20.8	50		"	"	"	"	Х	
75-25-2	Bromoform	< 50.0	U, D	µg/l	50.0	21.2	50		"	"	"	"	Х	
74-83-9	Bromomethane	< 100	U, D	µg/l	100	44.8	50		"	"		"	Х	
78-93-3	2-Butanone (MEK)	< 100	U, D	µg/l	100	53.5	50		"	"		"	Х	
75-15-0	Carbon disulfide	< 100	U, D	µg/l	100	20.6	50		"			"	Х	
56-23-5	Carbon tetrachloride	< 50.0	U, D	µg/l	50.0	21.8	50		"			"	Х	
108-90-7	Chlorobenzene	< 50.0	U, D	µg/l	50.0	12.4	50		"	"	"	"	Х	
75-00-3	Chloroethane	< 100	U, D	µg/l	100	29.4	50		"				х	
67-66-3	Chloroform	< 50.0	U, D	µg/l	50.0	16.3	50		"				х	
74-87-3	Chloromethane	< 100	U, D	µg/l	100	18.4	50		"				х	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	U, D	µg/l	100	43.2	50	"	"	"	"	"	х	
124-48-1	Dibromochloromethane	< 25.0	U, D	µg/l	25.0	15.8	50		"			"	х	
106-93-4	1,2-Dibromoethane (EDB)	< 25.0	U, D	µg/l	25.0	10.1	50		"			"	х	
95-50-1	1,2-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.8	50		"			"	х	
541-73-1	1,3-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	15.7	50		"			"	х	
106-46-7	1,4-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.6	50		"			"	х	
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	U, D	µg/l	100	29.2	50		"	"	"	"	х	
75-34-3	1,1-Dichloroethane	< 50.0	U, D	µg/l	50.0	16.2	50		"			"	х	
107-06-2	1,2-Dichloroethane	< 50.0	U, D	µg/l	50.0	13.8	50		"			"	х	
75-35-4	1,1-Dichloroethene	< 50.0	U, D	µg/l	50.0	34.6	50		"			"	х	
156-59-2	cis-1,2-Dichloroethene	53.5	D	µg/l	50.0	16.4	50		"			"	х	
156-60-5	trans-1,2-Dichloroethene	< 50.0	U, D	µg/l	50.0	18.8	50		"			"	х	
78-87-5	1,2-Dichloropropane	< 50.0	U, D	µg/l	50.0	14.6	50		"			"	х	
10061-01-5	cis-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	18.0	50		"				х	
10061-02-6	trans-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	17.4	50		"				х	
100-41-4	Ethylbenzene	< 50.0	U, D	µg/l	50.0	16.4	50		"			"	х	
591-78-6	2-Hexanone (MBK)	< 100	U, D	µg/l	100	26.4	50						х	
98-82-8	Isopropylbenzene	< 50.0	U, D	µg/l	50.0	18.0	50						х	
1634-04-4	Methyl tert-butyl ether	< 50.0	U, D	µg/l	50.0	11.8	50						х	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 100	U, D	µg/l	100	25.8	50	u	"	"	"	"	х	
75-09-2	Methylene chloride	< 100	U, D	µg/l	100	33.0	50		"				х	
100-42-5	Styrene	< 50.0	U, D	µg/l	50.0	20.2	50		"				х	
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	U, D	μα/l	25.0	16.5	50	"	"				х	
127-18-4	Tetrachloroethene	2,030	, D	ua/l	50.0	28.5	50	"	"				х	
108-88-3	Toluene	< 50.0	U. D	ua/l	50.0	15.0	50	"	"				х	
120-82-1	1,2,4-Trichlorobenzene	< 50.0	, U. D	ua/l	50.0	18.9	50	"	"				х	
71-55-6	1.1.1-Trichloroethane	< 50.0	, U. D	ua/l	50.0	25.4	50	"	"				х	
79-00-5	1.1.2-Trichloroethane	< 50.0	U. D	ua/l	50.0	16.5	50	"	"				x	
79-01-6	Trichloroethene	138	, D	ua/l	50.0	24.8	50	"	"				х	
				-3.										

Sample Id PW-4	entification		<u>Client Project #</u> 1703074 0011			<u>Matrix</u> Ground Water		Collection Date/Time 18-Apr-18 00:00			<u>Received</u> 19-Apr-18		
SC45900-	01			1/030/	4.0011		Ground wa	ater 18	-Apr-18 00	:00	19-2	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SV	<u> W846 8260</u>	GS1										
75-01-4	Vinyl chloride	< 50.0	U, D	µg/l	50.0	23.6	50	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	X
1330-20-7	Total Xylenes	< 150	U, D	µg/l	150	150	50		"	"	"	"	Х
110-82-7	Cyclohexane	< 250	U, D	µg/l	250	39.4	50		"	"	"	"	Х
79-20-9	Methyl acetate	< 250	U, D	µg/l	250	32.4	50		"	"	"	"	Х
108-87-2	Methylcyclohexane	< 250	U, D	µg/l	250	37.1	50	"	"			"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %			"		"	"	
2037-26-5	Toluene-d8	95			70-13	0 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	88			70-13	0 %			"		"	"	
1868-53-7	Dibromofluoromethane	94			70-13	0 %		"	"	"	"	"	

Sample Ic	Sample Identification				Client Project #		Matrix		Collection Date/Time		Received		
PW-5 SC45900-02				170307	74.0011		Ground Wa	ater 18	-Apr-18 00):00	<u>19-</u>	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>	GS1										
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	U, D	µg/l	50.0	26.6	50	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	Х
67-64-1	Acetone	< 500	U, D	µg/l	500	40.2	50		"	"	"		Х
71-43-2	Benzene	< 50.0	U, D	µg/l	50.0	14.2	50		"	"	"	"	Х
75-27-4	Bromodichloromethane	< 25.0	U, D	µg/l	25.0	20.8	50		"	"	"	"	Х
75-25-2	Bromoform	< 50.0	U, D	µg/l	50.0	21.2	50		"	"	"	"	Х
74-83-9	Bromomethane	< 100	U, D	µg/l	100	44.8	50			"	"	"	х
78-93-3	2-Butanone (MEK)	< 100	U, D	µg/l	100	53.5	50			"	"	"	х
75-15-0	Carbon disulfide	< 100	U, D	µg/l	100	20.6	50		"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 50.0	U, D	µg/l	50.0	21.8	50		"	"	"	"	Х
108-90-7	Chlorobenzene	< 50.0	U, D	µg/l	50.0	12.4	50		"	"	"	"	Х
75-00-3	Chloroethane	< 100	U, D	µg/l	100	29.4	50			"	"	"	х
67-66-3	Chloroform	< 50.0	U, D	µg/l	50.0	16.3	50			"	"		х
74-87-3	Chloromethane	< 100	U, D	µg/l	100	18.4	50			"		"	х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	U, D	µg/l	100	43.2	50	"	"	"		"	х
124-48-1	Dibromochloromethane	< 25.0	U, D	µg/l	25.0	15.8	50			"	"	"	х
106-93-4	1,2-Dibromoethane (EDB)	< 25.0	U, D	µg/l	25.0	10.1	50			"	"	"	х
95-50-1	1,2-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.8	50			"	"	"	х
541-73-1	1,3-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	15.7	50			"		"	х
106-46-7	1,4-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.6	50			"	"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	U, D	µg/l	100	29.2	50	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 50.0	U, D	µg/l	50.0	16.2	50			"	"		х
107-06-2	1,2-Dichloroethane	< 50.0	U, D	µg/l	50.0	13.8	50			"	"		х
75-35-4	1,1-Dichloroethene	< 50.0	U, D	µg/l	50.0	34.6	50			"	"		х
156-59-2	cis-1,2-Dichloroethene	180	D	µg/l	50.0	16.4	50			"	"	"	х
156-60-5	trans-1,2-Dichloroethene	< 50.0	U, D	µg/l	50.0	18.8	50			"	"		х
78-87-5	1,2-Dichloropropane	< 50.0	U, D	µg/l	50.0	14.6	50			"	"		х
10061-01-5	cis-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	18.0	50			"	"		х
10061-02-6	trans-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	17.4	50			"	"	"	х
100-41-4	Ethylbenzene	< 50.0	U, D	µg/l	50.0	16.4	50			"	"	"	х
591-78-6	2-Hexanone (MBK)	< 100	U, D	µg/l	100	26.4	50			"	"	"	х
98-82-8	Isopropylbenzene	< 50.0	U, D	µg/l	50.0	18.0	50			"	"	"	х
1634-04-4	Methyl tert-butyl ether	< 50.0	U, D	µg/l	50.0	11.8	50			"	"		х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 100	U, D	µg/l	100	25.8	50	"	"	"	"	"	х
75-09-2	Methylene chloride	< 100	U, D	µg/l	100	33.0	50			"	"		х
100-42-5	Styrene	< 50.0	U, D	µg/l	50.0	20.2	50			"	"		х
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	U, D	µg/l	25.0	16.5	50	"	"	"	"		х
127-18-4	Tetrachloroethene	2,200	D	µg/l	50.0	28.5	50		"	"	"		х
108-88-3	Toluene	< 50.0	U, D	µg/l	50.0	15.0	50		"	"	"		х
120-82-1	1,2,4-Trichlorobenzene	< 50.0	U, D	µg/l	50.0	18.9	50		"	"	"		х
71-55-6	1,1,1-Trichloroethane	< 50.0	U, D	µg/l	50.0	25.4	50	"	"	"	"		х
79-00-5	1,1,2-Trichloroethane	< 50.0	U, D	µg/l	50.0	16.5	50	"	"	"	"		х
79-01-6	Trichloroethene	72.5	D	µg/l	50.0	24.8	50	"	"	"	"	"	х

Sample Id	entification		Client Project #			Matrix		Collection Date/Time		Received			
SC45900-	02			1703074.0011			Ground Wa	ater 18	-Apr-18 00	:00	19-2	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SV	<u>V846 8260</u>	GS1										
75-01-4	Vinyl chloride	47.0	J, D	µg/l	50.0	23.6	50	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	X
1330-20-7	Total Xylenes	< 150	U, D	µg/l	150	150	50		"	"	"	"	Х
110-82-7	Cyclohexane	< 250	U, D	µg/l	250	39.4	50		"	"	"	"	Х
79-20-9	Methyl acetate	< 250	U, D	µg/l	250	32.4	50		"	"	"	"	Х
108-87-2	Methylcyclohexane	< 250	U, D	µg/l	250	37.1	50	"	"			"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	0%			"		"	"	
2037-26-5	Toluene-d8	96			70-13	0%			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	94			70-13	0%			"		"	"	
1868-53-7	Dibromofluoromethane	98			70-13	0 %		"	"	"	"	"	

Sample Ic	lentification			Client F	Project #		Matrix	Colle	ection Date	/Time	Ree	ceived	
PW-6 SC45900-	-03			170307	74.0011		Ground Wa	ater 18	-Apr-18 00	:00	<u>19-</u>	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>	GS1										
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	U, D	µg/l	50.0	26.6	50	SW846 8260C	24-Apr-18	24-Apr-18	GMA	1805546	Х
67-64-1	Acetone	< 500	U, D	µg/l	500	40.2	50	"	"	"	"	"	Х
71-43-2	Benzene	< 50.0	U, D	µg/l	50.0	14.2	50	"	"	"	"		Х
75-27-4	Bromodichloromethane	< 25.0	U, D	µg/l	25.0	20.8	50		"	"			Х
75-25-2	Bromoform	< 50.0	U, D	µg/l	50.0	21.2	50		"	"			Х
74-83-9	Bromomethane	< 100	U, D	µg/l	100	44.8	50		"	"			Х
78-93-3	2-Butanone (MEK)	< 100	U, D	µg/l	100	53.5	50		"	"			Х
75-15-0	Carbon disulfide	< 100	U, D	µg/l	100	20.6	50		"				х
56-23-5	Carbon tetrachloride	< 50.0	U, D	µg/l	50.0	21.8	50		"				х
108-90-7	Chlorobenzene	< 50.0	U, D	µg/l	50.0	12.4	50		"	"	"		х
75-00-3	Chloroethane	< 100	U, D	µg/l	100	29.4	50		"	"			х
67-66-3	Chloroform	< 50.0	U, D	µg/l	50.0	16.3	50		"				х
74-87-3	Chloromethane	< 100	U, D	µg/l	100	18.4	50		"				х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	U, D	µg/l	100	43.2	50	"	"	"	"	"	х
124-48-1	Dibromochloromethane	< 25.0	U, D	µg/l	25.0	15.8	50		"				х
106-93-4	1,2-Dibromoethane (EDB)	< 25.0	U, D	µg/l	25.0	10.1	50		"				х
95-50-1	1,2-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.8	50		"				х
541-73-1	1,3-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	15.7	50		"	"			х
106-46-7	1,4-Dichlorobenzene	< 50.0	U, D	µg/l	50.0	13.6	50		"	"			х
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	U, D	µg/l	100	29.2	50		"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 50.0	U, D	µg/l	50.0	16.2	50		"				х
107-06-2	1,2-Dichloroethane	< 50.0	U, D	µg/l	50.0	13.8	50		"				х
75-35-4	1,1-Dichloroethene	< 50.0	U, D	µg/l	50.0	34.6	50		"				х
156-59-2	cis-1,2-Dichloroethene	67.5	D	µg/l	50.0	16.4	50		"				х
156-60-5	trans-1,2-Dichloroethene	< 50.0	U, D	µg/l	50.0	18.8	50		"				х
78-87-5	1,2-Dichloropropane	< 50.0	U, D	µg/l	50.0	14.6	50		"				х
10061-01-5	cis-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	18.0	50		"				х
10061-02-6	trans-1,3-Dichloropropene	< 25.0	U, D	µg/l	25.0	17.4	50		"				х
100-41-4	Ethylbenzene	< 50.0	U, D	µg/l	50.0	16.4	50		"				х
591-78-6	2-Hexanone (MBK)	< 100	U, D	µg/l	100	26.4	50		"				х
98-82-8	Isopropylbenzene	< 50.0	U, D	µg/l	50.0	18.0	50		"				х
1634-04-4	Methyl tert-butyl ether	< 50.0	U, D	µg/l	50.0	11.8	50		"				х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 100	U, D	µg/l	100	25.8	50	'n	"	"	"	"	х
75-09-2	Methylene chloride	< 100	U, D	µg/l	100	33.0	50		"				х
100-42-5	Styrene	< 50.0	U, D	µg/l	50.0	20.2	50		"				х
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	U, D	µg/l	25.0	16.5	50		"				х
127-18-4	Tetrachloroethene	2,640	D	µq/l	50.0	28.5	50		"				х
108-88-3	Toluene	< 50.0	U, D	μα/l	50.0	15.0	50	"	"				х
120-82-1	1,2,4-Trichlorobenzene	< 50.0	U, D	μα/l	50.0	18.9	50	"	"				х
71-55-6	1,1,1-Trichloroethane	< 50.0	U. D	ua/l	50.0	25.4	50	"	"				х
79-00-5	1,1,2-Trichloroethane	< 50.0	U. D	ua/l	50.0	16.5	50	"	"				X
79-01-6	Trichloroethene	114	D	μα/l	50.0	24.8	50	"	"				х

Sample Id PW-6	entification			Client F	Project #		<u>Matrix</u>	Colle	ection Date	/Time	<u>Re</u>	ceived	
SC45900-	03			170307	74.0011		Ground Wa	ater 18	-Apr-18 00	:00	19	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	<u>V846 8260</u>	GS1										
75-01-4	Vinyl chloride	< 50.0	U, D	µg/l	50.0	23.6	50	SW846 8260C	24-Apr-18	24-Apr-18	GMA	1805546	i X
1330-20-7	Total Xylenes	< 150	U, D	µg/l	150	150	50		"	"	"	"	Х
110-82-7	Cyclohexane	< 250	U, D	µg/l	250	39.4	50		"	"	"	"	Х
79-20-9	Methyl acetate	< 250	U, D	µg/l	250	32.4	50		"	"	"	"	Х
108-87-2	Methylcyclohexane	< 250	U, D	µg/l	250	37.1	50	"	"		"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %			"	"	"	"	
2037-26-5	Toluene-d8	98			70-13	0 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %			"		"		
1868-53-7	Dibromofluoromethane	100			70-13	0 %		"	"	"	"	"	

Sample Id	entification			Client F	Project #		Matrix	Colle	ection Date	/Time	Ree	reived	
PW-7 SC45900-	04			170307	74.0011		Ground Wa	ater 18	-Apr-18 00	:00	<u>19-</u>	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>	GS1										
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 100	U, D	µg/l	100	53.2	100	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	Х
67-64-1	Acetone	< 1000	U, D	µg/l	1000	80.4	100	u	"	"	"	"	Х
71-43-2	Benzene	< 100	U, D	µg/l	100	28.4	100		"	"			Х
75-27-4	Bromodichloromethane	< 50.0	U, D	µg/l	50.0	41.7	100		"	"	"	"	Х
75-25-2	Bromoform	< 100	U, D	µg/l	100	42.5	100		"	"			Х
74-83-9	Bromomethane	< 200	U, D	µg/l	200	89.6	100		"	"			Х
78-93-3	2-Butanone (MEK)	< 200	U, D	µg/l	200	107	100		"	"			Х
75-15-0	Carbon disulfide	< 200	U, D	µg/l	200	41.2	100		"	"			Х
56-23-5	Carbon tetrachloride	< 100	U, D	µg/l	100	43.7	100		"	"			Х
108-90-7	Chlorobenzene	< 100	U, D	µg/l	100	24.9	100		"				Х
75-00-3	Chloroethane	< 200	U, D	µg/l	200	58.8	100		"				х
67-66-3	Chloroform	< 100	U, D	µg/l	100	32.6	100		"	"	"	"	Х
74-87-3	Chloromethane	< 200	U, D	µg/l	200	36.8	100		"				Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 200	U, D	µg/l	200	86.3	100	u	"	"	"	"	х
124-48-1	Dibromochloromethane	< 50.0	U, D	µg/l	50.0	31.7	100		"	"			х
106-93-4	1,2-Dibromoethane (EDB)	< 50.0	U, D	µg/l	50.0	20.2	100		"	"			Х
95-50-1	1,2-Dichlorobenzene	< 100	U, D	µg/l	100	27.7	100		"				х
541-73-1	1,3-Dichlorobenzene	< 100	U, D	µg/l	100	31.4	100		"				х
106-46-7	1,4-Dichlorobenzene	< 100	U, D	µg/l	100	27.2	100		"				х
75-71-8	Dichlorodifluoromethane (Freon12)	< 200	U, D	µg/l	200	58.4	100	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 100	U, D	µg/l	100	32.3	100		"				х
107-06-2	1,2-Dichloroethane	< 100	U, D	µg/l	100	27.7	100		"				х
75-35-4	1,1-Dichloroethene	< 100	U, D	µg/l	100	69.3	100		"				х
156-59-2	cis-1,2-Dichloroethene	5,880	D	µg/l	100	32.7	100		"				х
156-60-5	trans-1,2-Dichloroethene	< 100	U, D	µg/l	100	37.7	100		"				х
78-87-5	1,2-Dichloropropane	< 100	U, D	µg/l	100	29.2	100		"				х
10061-01-5	cis-1,3-Dichloropropene	< 50.0	U, D	µg/l	50.0	35.9	100		"				х
10061-02-6	trans-1,3-Dichloropropene	< 50.0	U, D	µg/l	50.0	34.7	100		"				х
100-41-4	Ethylbenzene	< 100	U, D	µg/l	100	32.9	100		"				х
591-78-6	2-Hexanone (MBK)	< 200	U, D	µg/l	200	52.8	100		"				х
98-82-8	Isopropylbenzene	< 100	U, D	µg/l	100	36.0	100		"				х
1634-04-4	Methyl tert-butyl ether	< 100	U, D	µg/l	100	23.7	100		"				х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 200	U, D	µg/l	200	51.5	100	"	"	u	"	"	х
75-09-2	Methylene chloride	< 200	U, D	µg/l	200	66.1	100		"				х
100-42-5	Styrene	< 100	U, D	µg/l	100	40.5	100		"				х
79-34-5	1,1,2,2-Tetrachloroethane	< 50.0	U, D	µg/l	50.0	33.0	100		"				х
127-18-4	Tetrachloroethene	2,840	D	µg/l	100	57.0	100	"	"				х
108-88-3	Toluene	< 100	U, D	µg/l	100	29.9	100	"	"		"	"	х
120-82-1	1,2,4-Trichlorobenzene	< 100	U, D	µg/l	100	37.8	100	"	"				х
71-55-6	1,1,1-Trichloroethane	< 100	U, D	µg/l	100	50.9	100	"	"	"		"	х
79-00-5	1,1,2-Trichloroethane	< 100	U, D	µg/l	100	33.0	100	"	"		"	"	х
79-01-6	Trichloroethene	419	D	µg/l	100	49.7	100	"	"		"	"	х

Sample Id PW-7 SC45900-	<u>entification</u> 04			<u>Client F</u> 170307	Project <u>#</u> 74.0011		<u>Matrix</u> Ground Wa	<u>Colle</u> ater 18	ection Date -Apr-18 00	<u>/Time</u> :00	<u>Rec</u> 19	<u>ceived</u> Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	N846 8260	GS1										
75-01-4	Vinyl chloride	375	D	µg/l	100	47.2	100	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	X
1330-20-7	Total Xylenes	< 300	U, D	µg/l	300	300	100		"	"			х
110-82-7	Cyclohexane	< 500	U, D	µg/l	500	78.7	100		"	"			х
79-20-9	Methyl acetate	< 500	U, D	µg/l	500	64.7	100		"	"			х
108-87-2	Methylcyclohexane	< 500	U, D	µg/l	500	74.2	100	"	"			"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	0%			"	"			
2037-26-5	Toluene-d8	98			70-13	0%			"			"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	0%			"		"	"	
1868-53-7	Dibromofluoromethane	101			70-13	0 %		"	"		"	"	

Sample Id	entification			Client F	Project #		Matrix	Colle	ection Date	/Time	Ree	reived	
PW-8 SC45900-	05			170307	74.0011		Ground Wa	ater 18	-Apr-18 00	:00	<u>19-</u>	Apr-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SW	<u>846 8260</u>	GS1										
Prepared	by method SW846 5030 V	Vater MS											
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 10.0	U, D	µg/l	10.0	5.32	10	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	Х
67-64-1	Acetone	< 100	U, D	µg/l	100	8.04	10	"	"	"	"	"	Х
71-43-2	Benzene	< 10.0	U, D	µg/l	10.0	2.84	10		"	"	"		Х
75-27-4	Bromodichloromethane	< 5.00	U, D	µg/l	5.00	4.17	10		"	"	"	"	Х
75-25-2	Bromoform	< 10.0	U, D	µg/l	10.0	4.25	10		"	"	"	"	Х
74-83-9	Bromomethane	< 20.0	U, D	µg/l	20.0	8.96	10		"	"		"	Х
78-93-3	2-Butanone (MEK)	< 20.0	U, D	µg/l	20.0	10.7	10		"	"		"	Х
75-15-0	Carbon disulfide	< 20.0	U, D	µg/l	20.0	4.12	10		"	"		"	Х
56-23-5	Carbon tetrachloride	< 10.0	U, D	µg/l	10.0	4.37	10		"			"	Х
108-90-7	Chlorobenzene	< 10.0	U, D	µg/l	10.0	2.49	10		"			"	Х
75-00-3	Chloroethane	< 20.0	U, D	µg/l	20.0	5.88	10		"	"	"	"	Х
67-66-3	Chloroform	< 10.0	U, D	µg/l	10.0	3.26	10		"	"	"	"	Х
74-87-3	Chloromethane	< 20.0	U, D	µg/l	20.0	3.68	10		"	"		"	х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 20.0	U, D	µg/l	20.0	8.63	10	u	"	"	"	"	х
124-48-1	Dibromochloromethane	< 5.00	U, D	µg/l	5.00	3.17	10		"	"		"	х
106-93-4	1,2-Dibromoethane (EDB)	< 5.00	U, D	µg/l	5.00	2.02	10		"			"	х
95-50-1	1,2-Dichlorobenzene	< 10.0	U, D	µg/l	10.0	2.77	10		"			"	х
541-73-1	1,3-Dichlorobenzene	< 10.0	U, D	µg/l	10.0	3.14	10		"			"	х
106-46-7	1,4-Dichlorobenzene	< 10.0	U, D	µg/l	10.0	2.72	10		"			"	х
75-71-8	Dichlorodifluoromethane (Freon12)	< 20.0	U, D	µg/l	20.0	5.84	10	"	u	"	"	"	х
75-34-3	1,1-Dichloroethane	< 10.0	U, D	µg/l	10.0	3.23	10		"	"		"	х
107-06-2	1,2-Dichloroethane	< 10.0	U, D	µg/l	10.0	2.77	10		"			"	х
75-35-4	1,1-Dichloroethene	< 10.0	U, D	µg/l	10.0	6.93	10		"			"	х
156-59-2	cis-1,2-Dichloroethene	302	D	µg/l	10.0	3.27	10		"	"		"	х
156-60-5	trans-1,2-Dichloroethene	< 10.0	U, D	µg/l	10.0	3.77	10		"			"	х
78-87-5	1,2-Dichloropropane	< 10.0	U, D	µg/l	10.0	2.92	10		"			"	х
10061-01-5	cis-1,3-Dichloropropene	< 5.00	U, D	µg/l	5.00	3.59	10		"				х
10061-02-6	trans-1,3-Dichloropropene	< 5.00	U, D	µg/l	5.00	3.47	10		"	"		"	х
100-41-4	Ethylbenzene	< 10.0	U, D	µg/l	10.0	3.29	10		"			"	х
591-78-6	2-Hexanone (MBK)	< 20.0	U, D	µg/l	20.0	5.28	10		"			"	х
98-82-8	Isopropylbenzene	< 10.0	U, D	µg/l	10.0	3.60	10		"			"	х
1634-04-4	Methyl tert-butyl ether	< 10.0	U, D	µg/l	10.0	2.37	10		"			"	х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 20.0	U, D	µg/l	20.0	5.15	10	"	"	"	"	"	х
75-09-2	Methylene chloride	< 20.0	U, D	µg/l	20.0	6.61	10		"	"		"	х
100-42-5	Styrene	< 10.0	U, D	µg/l	10.0	4.05	10		"	"		"	х
79-34-5	1,1,2,2-Tetrachloroethane	< 5.00	U, D	µg/l	5.00	3.30	10	"	"				х
127-18-4	Tetrachloroethene	76.0	D	µg/l	10.0	5.70	10	"	"				х
108-88-3	Toluene	< 10.0	U, D	µg/l	10.0	2.99	10	"	"			"	х
120-82-1	1,2,4-Trichlorobenzene	< 10.0	U, D	µg/l	10.0	3.78	10	"	"		"	"	х
71-55-6	1,1,1-Trichloroethane	< 10.0	U, D	µg/l	10.0	5.09	10	"	"	"		"	х
79-00-5	1,1,2-Trichloroethane	< 10.0	U, D	µg/l	10.0	3.30	10	"	"	"		"	х
79-01-6	Trichloroethene	5.30	J, D	µg/l	10.0	4.97	10	"	"		"	"	х

Sample Id PW-8	entification			<u>Client F</u>	Project #		<u>Matrix</u> Ground W	<u>Colle</u>	ection Date	/Time	<u>Re</u> /	<u>ceived</u>	
SC45900-	05			170307	4.0011		Ground wa		-Api-18 00	.00	1)-1	Api-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
Volatile Or	ganic Compounds by SV	V846 8260	GS1										
75-01-4	Vinyl chloride	32.3	D	µg/l	10.0	4.72	10	SW846 8260C	23-Apr-18	23-Apr-18	GMA	1805478	X
1330-20-7	Total Xylenes	< 30.0	U, D	µg/l	30.0	30.0	10		"	"	"	"	Х
110-82-7	Cyclohexane	< 50.0	U, D	µg/l	50.0	7.87	10		"	"	"	"	Х
79-20-9	Methyl acetate	< 50.0	U, D	µg/l	50.0	6.47	10		"	"	"	"	Х
108-87-2	Methylcyclohexane	< 50.0	U, D	µg/l	50.0	7.42	10	"	"		"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %			"	"	"	"	
2037-26-5	Toluene-d8	97			70-13	0 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %			"		"		
1868-53-7	Dibromofluoromethane	100			70-13	0 %		"	"	"	"	"	

	South Stan	Jiphink C Allen Jr Varia	Relinquished by: Received b			A 06 18 4	- ~ PW-8 /	x 04 PW-7	03 PW-6	02 PW-5	USquar PW-4 Arilezone	Lab ID: Sample ID: Date:	G= Grab C=Compsite	X]=X2=X3=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil (DW=Drinking Water GW=Groundwater SW=Surface Water WW	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=] 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11=	Telephone #: (716) 684-8060 Project Mgr: Mille Steffan	multiple in the	368 Pledsintriew Dr Incarter NY 14086	Report To: EXE Inc	Spectrum Analytical	eurofins	
	Ulle all all and	in all all all a Consider	y: Date: Time: Temp			Gauda	GEN3 V	C EW 3	6 6W 3	G GW J	6 EW 3 1	Time: T # of # of # of	ype atrix VOA Clear Plasti	Vials er Glass Glass	s s	=Waste Water Containers	VaOH 6=Ascorbic Acid 12=	P.O.No.:Quote #:			Invoice To: F&E, INC	Page of	CHAIN OF CUSTODY RECO	
Gondition upon receipt: Custody Seals: Present A Intact Brok I Ambient Present Refrigerated DI VOA Frozen Soil Jar F		J & E-MAN IO: M STE TTAN & CNE, COM	10°C X EDD format PDF									Cherry Other: CALLA State-specific reporting standards:		chlorin NJ Reduced* NJ Fult*	aated Standard Qvo QC	Analysis MA DEP MCP CAM Report? Ves	List Preservative Code below: QA/QC Reporting Notes: * additional charges may appply	Sampler(s): R. Allen	Location: East Auzra State: N	Site Name: MC CS CM&M	Project No:	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed	RD Rush TAT - Date Needed:	Standard TAT - 7 to 10 business days

Sample shipping address: 11 Almgren Drive · Agawam, MA 01001 · 413-789-9018 · www.EurofinsUS.com/Spectrum

Rev. Nov 2016

<u>Attachment D</u> Summary of Site Utility Costs and Projections January to December 2018

Mr. C's Dry Cleaners Site - Remedial Treatment Utility Costs NYSDEC Work Assignment #10C3074.0011.11 12 Months of System Operation and Maintenance April 2018 Report

Utility Budget:	Electric:	\$25,300.00
	Telephone:	\$540.00
	Gas	\$1,120.00
	Total:	\$26,960.00

Gas and Electric											-	
Utility Provider	Account #	E&E Cost Center	Description		Jan-2018		Feb-2018	Mar-2018		Apr-2018	May-2018	Jun-2018
New York State E&G	1001-0310-422	ENL002220.0001.02TTO	Mr. Cls. Electric Costs	\$	1,314.70	\$	1,124.10	\$ 975.14	\$	1,077.67		
New York State E&G	76-311-11-015900-18	LIN-003223-0001-03110										
National Fuel Gas	5819628-05	EN-003229-0001-03TTO	Mr. C's Natural Gas Costs	\$	81.72	\$	62.46	\$ 65.75	\$	68.44		
			Totals	\$	1,396.42	\$	1,186.56	\$ 1,040.89	\$	1,146.11	\$-	\$-
					Jul-2018		Aug-2018	Sep-2018	0	Oct-2018	Nov-2018	Dec-2018
			Mr. C's Electric Costs									
			Mr. C's Natural Gas Costs									
			Totals	\$	-	\$	-	\$ -	\$	-	\$-	\$-
			Electric - Mr. C's	\$			4,491.61		Not	es:		
			Natural Gas - Mr. C's	\$			278.37				Overbilled natu	ral gas costs - no
	Grand	Total - NYSE&G/Natior	nal Fuel Gas Costs To Date	ate \$ 4,769.98						Estimated Rea	ding	
Telephone											4	

Utility Provider	Phone #	E&E Cost Center	Location Description	Jan-2018	Feb-2018	Mar-2018	Apr-2018	May-2018	Jun-2018
Granite Telecommunications				\$ 41.09	\$ 41.09	\$ 41.09	\$ 41.09		
Account # 01890582	866-874-5500	EN-003229-0001-03TTO	Mr. C's Telephone Costs	Jul-2018	Aug-2018	Sep-2018	Oct-2018	Nov-2018	Dec-2018

Verizon Costs to Date - Mr. C's \$ 164.36

Grand Total All Utilities To Date 4,934.34 \$

Monthly Average Costs

12 Month Estimate	\$ 14,803.02
Average Utility Cost Total	\$ 1,233.59
Mr. C's Telephone	\$ 41.09
Mr. C's Gas	\$ 69.59
Mr. C's Electric	\$ 1,122.90

Budget Remaining:	Electric:	\$20,808.39
	Telephone:	\$375.64
	Gas	\$841.63
	Total:	\$22,025.66

ATTACHMENT D