ecology and environment engineering and geology, p.c.

BUFFALO CORPORATE CENTER 368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

January 21, 2019

Mr. Payson Long, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 - 7013

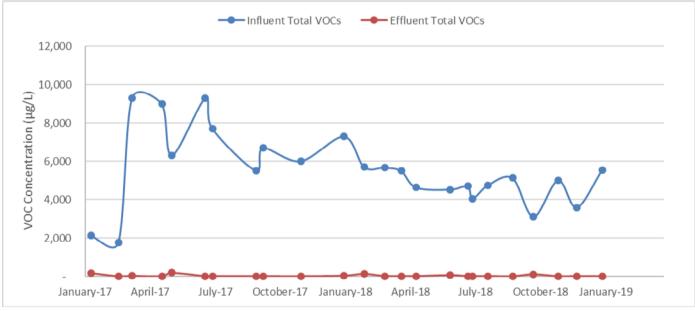
Re: Mr. C's Dry Cleaners Site, Contract # D007617, Site # 915157 December 2018 Operations, Maintenance, and Monitoring Report

Dear Mr. Long:

Ecology and Environment Engineering and Geology, P.C. (E&E) is pleased to provide the December 2018 Operations, Maintenance, and Monitoring (OM&M) Report for the Mr. C's Dry Cleaners Site, NYSDEC Site # 915157, located in the Village of East Aurora, New York.

During the December 2018 reporting period, the treatment system was in operation from November 28, 2018 to January 2, 2019. The December monthly OM&M sampling was performed on January 2, 2019, and the results were received from SAI on January 10, 2019 (See <u>Attachment A</u>). A summary of field activities prepared by E&E's subcontractor, IYER Environmental Group, PLLC. (IEG), is provided in <u>Attachment B</u>. The current annual site utility cost information is provided in <u>Attachment C</u>.

In response to the 2017 Periodic Review Report, it was requested that testing of the groundwater from the pumping wells in operation be performed on a quarterly schedule. The next round of quarterly testing of the pumping wells shall occur in January 2019.


In review of the on-site treatment system operations, monitoring and maintenance from IEG for December 2018, E&E offers the following comments and highlights:

Operational Summary:

- Based on inspection reports prepared by IEG, the remedial treatment system for the period of November 28, 2018 through January 2, 2019, had an approximate operational up-time of 100%, and 163,544 gallons of contaminated groundwater was treated during the reporting period. The treated effluent volumes and operational up-time can be seen in <u>Table 1</u>.
- The compliance samples from January 2, 2019 had discharge effluent concentrations for cis-1,2-dichloroethene, methyl tert-butyl ether, trichloroethene, tetrachloroethene, and vinyl chloride below the daily SPDES Equivalency permit requirements of $10 \mu g/L$ for each contaminant. All other requirements of the SPDES Equivalency permit were also met. The effluent results for January 2, 2019 are provided in <u>Table 2</u>.

Mr. Payson Long, Project Manager January 21, 2019 Page 2 of 3

- The analytical summary results of the January 2, 2019 samples revealed the total volatile organic contaminant concentrations of the influent to be $5,529.90 \mu g/L$ and the concentration of total volatile organic contaminants in the effluent was $4.50 \mu g/L$. The summary of influent and effluent contaminant concentrations for the December 2018 sampling are presented in <u>Table 3</u>. Acetone was detected in the effluent sample, but not the influent sample. It is suspected that this is due to lab contamination. <u>Figure 1</u> shows the influent and effluent VOC concentrations during each sampling event in 2017 and 2018.
- The Mr. C's treatment system, based on the total flows from the uptime operations, removed 7.54 lbs. of targeted contaminants from the groundwater between November 28, 2018 to January 2, 2019. The cleanup effectiveness for December 2018 was approximately 99. 92%. The calculations and data for the month are presented in <u>Table 3</u>. The mass of VOCs removed each month throughout 2017 and 2018 is shown in <u>Figure 2</u>.

Figure 1: Monthly Influent and Effluent VOC concentrations - 2017 and 2018.

Mr. Payson Long, Project Manager January 21, 2019 Page 3 of 3



Figure 2: Mass of VOCs removed each month - 2017 and 2018.

If you have questions regarding the December 2018 OM&M report summary, please do not hesitate to contact me at 716-684-8060.

Very Truly Yours, Ecology and Environment Engineering and Geology, P. C.

lite Smith

Ashlee Smith Project Manager

cc: D. Szymanski, Region 9, NYSDEC – Buffalo w/ attachments
D. Iyer, IEG w/ attachments
M. Mooney, E&E Buffalo w/ attachments
CTF - 10C3074.0011.11

<u>Attachment A</u> Excerpts from the Groundwater Treatment System Analytical Report from Spectrum Analytical Laboratories

Analytical Data Package Work Order ID: SC52919 Sampled by IEG: January 2, 2019 Report Received: January 10, 2019

Eurofins Spectrum Analytical, Inc.

T | 413-789-9018 F | 413-789-4076 www.EurofinsUS.com/Spectrum

Page 1 of 23

Can E Wojcik

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 23 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Final ReportRevised Report

Report Date: 10-Jan-19 15:54

Laboratory Report SC52919

Ecology and Environment, Inc. 368 Pleasant View Drive Lancaster, NY 14086 Attn: Mary Kate Mooney

🛟 eurofins

ithin the report has been reviewed for accuracy and checked against the quality con

Authorized by:

Dawn Wojcik

Laboratory Director

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Project: Mr. C's - East Aurora, NY Project #: [none]

Sample Summary

Work Order:	SC52919
Project:	Mr. C's - East Aurora, NY

Project Number: [none]

<u>Laboratory ID</u> <u>Client Sample ID</u>

SC52919-01 SC52919-02 SC52919-03

Influent Effluent HCl TB <u>Matrix</u> Ground Water Ground Water

Trip Blank

Date Sampled 02-Jan-19 13:00 02-Jan-19 13:00 02-Jan-19 13:00

Date Received

03-Jan-19 10:17 03-Jan-19 10:17 03-Jan-19 10:17

Summary of Hits

Lab ID: SC52919-01			Client ID: Influent		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hardness (CaCO3)	509		0.1	mg/L	E200.7
Methyl t-butyl ether (MTBE)	9.9	J.	20	ug/L	SW8260C
trans-1,2-Dichloroethene	10	J.	20	ug/L	SW8260C
Trichloroethene	300		20	ug/L	SW8260C
Vinyl chloride	210		20	ug/L	SW8260C
Lab ID: SC52919-01RE1			Client ID: Influent		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
cis-1,2-Dichloroethene	2700		200	ug/L	SW8260C
Tetrachloroethene	2300		200	ug/L	SW8260C
Lab ID: SC52919-02			Client ID: Effluent		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hardness (CaCO3)	512		0.1	mg/L	E200.7
Acetone	4.5	S	2.5	ug/L	SW8260C
Lab ID: SC52919-03			Client ID: HCl TB		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Bromomethane	0.29	J.	1.0	ug/L	SW8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Influent	C52919-01			<u>Client Pr</u> [nor	-		<u>Matrix</u> Ground Wa		lection Date 2-Jan-19 13		<u>Received</u> 03-Jan-19		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	hemistry Parameters												
	рН	7.08	рН	pH Units			1	ASTM D 1293-99B	03-Jan-19 12:00	03-Jan-19 18:37	BD	1900017	
Subcontra	cted Analyses												
Analysis pe	erformed by Phoenix Environ	mental Labs,	Inc. * - CT00)7									
	Hardness (CaCO3)	509		mg/L	0.1		1	E200.7	02-Jan-19 13:00	04-Jan-19 13:17	11301	'[none]'	
	<u>icted Analyses</u> by method SW8260C												
Analysis pe	erformed by Phoenix Environ	mental Labs,	Inc. * - CT00)7									
71-55-6	1,1,1-Trichloroethane	< 20		ug/L	20	5.0	20	SW8260C	"	04-Jan-19 14:31	11301	462312A	
79-34-5	1,1,2,2-Tetrachloroethane	< 20		ug/L	20	5.0	20	"	"	"	"		
79-00-5	1,1,2-Trichloroethane	< 20		ug/L	20	5.0	20	"	"	"	"		
75-34-3	1,1-Dichloroethane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 20		ug/L	20	5.0	20	"	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 20		ug/L	20	5.0	20	"	"	"	"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 20		ug/L	20	10	20	"	"	"	"	"	
106-93-4	1,2-Dibromoethane	< 20		ug/L	20	5.0	20	"	"	"	"		
95-50-1	1,2-Dichlorobenzene	< 20		ug/L	20	5.0	20	"	"	"	"		
107-06-2	1,2-Dichloroethane	< 12		ug/L	12	5.0	20	"	"	"	"		
78-87-5	1,2-Dichloropropane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 20		ug/L	20	5.0	20	"	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 20		ug/L	20	5.0	20	"	"	"	"		
591-78-6	2-Hexanone	< 50		ug/L	50	50	20	"	"	"	"		
108-10-1	4-Methyl-2-pentanone	< 50		ug/L	50	50	20	"	"	"	"		
67-64-1	Acetone	< 50		ug/L	50	50	20	"	"	"	"		
71-43-2	Benzene	< 14		ug/L	14	5.0	20	"	"	"	"		
75-27-4	Bromodichloromethane	< 20		ug/L	20	5.0	20	"	"	"	"		
75-25-2	Bromoform	< 20		ug/L	20	5.0	20	"	"	"	"	"	
74-83-9	Bromomethane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
75-15-0	Carbon Disulfide	< 20		ug/L	20	5.0	20	"	"	"	"		
56-23-5	Carbon tetrachloride	< 20		ug/L	20	5.0	20	"	"	"	"		
108-90-7	Chlorobenzene	< 20		ug/L	20	5.0	20	"	"	"	"		
75-00-3	Chloroethane	< 20		ug/L	20	5.0	20	"	"	"	"		
67-66-3	Chloroform	< 20		ug/L	20	5.0	20	"	"	"	"	"	
74-87-3	Chloromethane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
10061-01-5	cis-1,3-Dichloropropene	< 8.0		ug/L	8.0	5.0	20	"	"	"	"	"	
110-82-7	Cyclohexane	< 20		ug/L	20	10	20	"	"	"	"	"	
124-48-1	Dibromochloromethane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
75-71-8	Dichlorodifluoromethane	< 20		ug/L	20	5.0	20	"	"	"	"	"	
100-41-4	Ethylbenzene	< 20		ug/L	20	5.0	20	"	"	"	"	"	
98-82-8	Isopropylbenzene	< 20		ug/L	20	5.0	20		"	"			
78-93-3	Methyl ethyl ketone	< 50		ug/L	50	50	20		"	"			
1634-04-4	Methyl t-butyl ether (MTBE)	9.9	J.	ug/L	20	5.0	20	"			"	"	
79-20-9	Methylacetate	< 100		ug/L	100	50	20	"	"	"	"	"	
108-87-2	Methylcyclohexane	< 20		ug/L	20	10	20	"	"	"	"	"	

Sample Id Influent SC52919-	lentification -01		<u>Client Project #</u> [none]			<u>Matrix</u> Ground Wa		ection Date 2-Jan-19 13			eceived Jan-19		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Environi	mental Labs,	Inc. * - CT007	7									
75-09-2	Methylene chloride	< 60		ug/L	60	20	20	SW8260C	02-Jan-19 13:00	04-Jan-19 14:31	11301	462312A	
100-42-5	Styrene	< 20		ug/L	20	5.0	20	"	"	"	"		
108-88-3	Toluene	< 20		ug/L	20	5.0	20	"	"	"	"		
1330-20-7	Total Xylenes	< 20		ug/L	20	20	20	"	"	"	"		
156-60-5	trans-1,2-Dichloroethene	10	J.	ug/L	20	5.0	20	"	"	"	"		
10061-02-6	trans-1,3-Dichloropropene	< 8.0		ug/L	8.0	5.0	20	"	"	"	"		
79-01-6	Trichloroethene	300		ug/L	20	5.0	20	"	"	"	"		
76-13-1	Trichlorotrifluoroethane	< 20		ug/L	20	5.0	20	"	"	"	"		
75-01-4	Vinyl chloride	210		ug/L	20	5.0	20	n	n		"	"	
Surrogate i	recoveries:												
2199-69-1	% 1,2-dichlorobenzene-d4	101			70-13	80 %		"	"	"	"		
460-00-4	% Bromofluorobenzene	96			70-13	80 %		"	"	"	"		
1868-53-7	% Dibromofluoromethane	101			70-13	80 %		"	"	"	"		
2037-26-5	% Toluene-d8	99			70-13	80 %		"	"	"	"		
	sis of Subcontracted Analys	<u>ses</u>											
156-59-2	cis-1,2-Dichloroethene	2,700		ug/L	200	50	200	SW8260C	02-Jan-19 13:00	04-Jan-19 14:07	11301	462312A	
127-18-4	Tetrachloroethene	2,300		ug/L	200	50	200	"	"		"	"	
Surrogate i	recoveries:												
2199-69-1	% 1,2-dichlorobenzene-d4	101			70-13	80 %		"	"	"	"		
460-00-4	% Bromofluorobenzene	97			70-13	80 %		"	"	"	"	"	
1868-53-7	% Dibromofluoromethane	105			70-13	80 %		"	"	"	"	"	
2037-26-5	% Toluene-d8	98			70-13	80 %		"		"	"	"	

	ample Identification iffluent C52919-02 IAS No. Anglyta(c) Result Flag			Client Project <u>#</u> [none] C			MatrixCollection Date/TimeGround Water02-Jan-19 13:00			<u>Received</u> 03-Jan-19			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General Cl	hemistry Parameters												
	рН	8.26	рН	pH Units			1	ASTM D 1293-99B	03-Jan-19 12:00	03-Jan-19 18:37	BD	1900017	
Subcontra	cted Analyses												
Analysis pe	erformed by Phoenix Environ	mental Labs, .	Inc. * - CT00	07									
	Hardness (CaCO3)	512		mg/L	0.1		1	E200.7	02-Jan-19 13:00	04-Jan-19 13:17	11301	'[none]'	
	acted Analyses by method SW8260C												
Analysis pe	erformed by Phoenix Environ	mental Labs,	Inc. * - CT00	97									
71-55-6	1,1,1-Trichloroethane	< 1.0		ug/L	1.0	0.25	1	SW8260C	u	03-Jan-19 19:44	11301	462106A	
79-34-5	1,1,2,2-Tetrachloroethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
79-00-5	1,1,2-Trichloroethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
75-34-3	1,1-Dichloroethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
75-35-4	1,1-Dichloroethene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
120-82-1	1,2,4-Trichlorobenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 1.0		ug/L	1.0	0.50	1	"	"	"	"	"	
106-93-4	1,2-Dibromoethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
95-50-1	1,2-Dichlorobenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
107-06-2	1,2-Dichloroethane	< 0.60		ug/L	0.60	0.25	1	"	"	"	"		
78-87-5	1,2-Dichloropropane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
541-73-1	1,3-Dichlorobenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
106-46-7	1,4-Dichlorobenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
591-78-6	2-Hexanone	< 2.5		ug/L	2.5	2.5	1	"	"	"	"		
108-10-1	4-Methyl-2-pentanone	< 2.5		ug/L	2.5	2.5	1	"	"	"	"		
67-64-1	Acetone	4.5	S	ug/L	2.5	2.5	1	"	"	"	"		
71-43-2	Benzene	< 0.70		ug/L	0.70	0.25	1	"	"	"	"		
75-27-4	Bromodichloromethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
75-25-2	Bromoform	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
74-83-9	Bromomethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
75-15-0	Carbon Disulfide	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
56-23-5	Carbon tetrachloride	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
108-90-7	Chlorobenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
75-00-3	Chloroethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
67-66-3	Chloroform	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
74-87-3	Chloromethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
156-59-2	cis-1,2-Dichloroethene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
10061-01-5	cis-1,3-Dichloropropene	< 0.40		ug/L	0.40	0.25	1	"	"	"	"		
110-82-7	Cyclohexane	< 1.0		ug/L	1.0	0.50	1	"	"	"	"	"	
124-48-1	Dibromochloromethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"	"	
75-71-8	Dichlorodifluoromethane	< 1.0		ug/L	1.0	0.25	1	"	"	"	"	"	
100-41-4	Ethylbenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"	"	
98-82-8	Isopropylbenzene	< 1.0		ug/L	1.0	0.25	1	"	"	"	"	"	
78-93-3	Methyl ethyl ketone	< 2.5		ug/L	2.5	2.5	1	"	"	"	"	"	
1634-04-4	Methyl t-butyl ether (MTBE)	< 1.0		ug/L	1.0	0.25	1	"	"	"	"		
79-20-9	Methylacetate	< 5.0		ug/L	5.0	2.5	1	"	"	"	"	"	

Sample Id Effluent SC52919-	lentification 02		<u>Client Project #</u> [none]		<u>Matrix</u> Ground Water		Collection Date/Time 02-Jan-19 13:00			<u>ceived</u> Jan-19		
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses											
Subcontra	acted Analyses											
Analysis pe	erformed by Phoenix Environ	nental Labs, Inc. * - CT	007									
108-87-2	Methylcyclohexane	< 1.0	ug/L	1.0	0.50	1	SW8260C	02-Jan-19 13:00	03-Jan-19 19:44	11301	462106A	
75-09-2	Methylene chloride	< 3.0	ug/L	3.0	1.0	1	"	"	"	"		
100-42-5	Styrene	< 1.0	ug/L	1.0	0.25	1	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 1.0	ug/L	1.0	0.25	1		"	"	"		
108-88-3	Toluene	< 1.0	ug/L	1.0	0.25	1		"	"	"		
1330-20-7	Total Xylenes	< 1.0	ug/L	1.0	1.0	1	"	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 1.0	ug/L	1.0	0.25	1	"	"	"	"		
10061-02-6	trans-1,3-Dichloropropene	< 0.40	ug/L	0.40	0.25	1	"	"	"	"		
79-01-6	Trichloroethene	< 1.0	ug/L	1.0	0.25	1	"	"	"	"		
76-13-1	Trichlorotrifluoroethane	< 1.0	ug/L	1.0	0.25	1	"	"	"	"		
75-01-4	Vinyl chloride	< 1.0	ug/L	1.0	0.25	1	"	"	"	"	"	
Surrogate r	recoveries:											
2199-69-1	% 1,2-dichlorobenzene-d4	109		70-13	80 %		"	"	"	"		
460-00-4	% Bromofluorobenzene	88		70-13	80 %		"	"	"	"	"	
1868-53-7	% Dibromofluoromethane	109		70-13	80 %		"	"	"	"		
2037-26-5	% Toluene-d8	91		70-13	80 %		"		"	"	"	

Lardina Hardina V	Time: Temp °C	9 <i>10</i> 7	Date:	ed by:	Q	C Allen Jr	
Condition upon receipt: Custody Seals: $Present$ Custody Seals: $Prese$		9 1 U	Date:	ed by:	A	E	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9 / 0 T	Date:	ed by:	and a	E	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9		Date:	ed by:	0	21	O T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Date:	ed by:	A REAL PROPERTY AND A REAL		Prefriend (
ASP B* WI Reduced* NJ Fully WI Reduced* NJ Fully Check if chlorin WI Reduced* NJ Fully Check if chlorin Check if chlorin Check if chlorin State-specific reporting stand Check if chlorin State-specific reporting stand State-specific					Received by:	Relinquished by:	Relinqu
ASP B* NU Reduced* NU Reduced							
ASP B* Check if chlorin WASP A* WI Reduced* WI Reduce							
ASP A* ASP B* Check if chlori WI Reduced* NJ Fully Check if chlori State-specific reporting stand Check if chlori MI Fully Check if chlori Ther IV Check if chlori State-specific reporting stand Check if check if c		and the second se					
Asp A* Wasp A* Windowski field Windowski field Window			6 W 2	*	K	HCL TB	8.7
Check if chlori WI Reduced* NI Ful* Check if chlori Check if chlori Ther II* State-specific reporting standard Check if chlori Ther II* State-specific reporting standard Kitt Sawp			6 GW 3			EFFLUENT	L L
Check if chlori WASP A* UN Reduced* UN Reduced* UN Reduced* UN Reduced* UN Reduced* UN Reduced* UN Full* UN Reduced* UN Reduced* UN Reduced* UN Reduced* UN Full* Ther IV* State-specific reporting standard State-specific reporting standard	 <	*	6 GW			EFFLUENT	1
ASP A* NI Reduced* NI Reduced			GEW			SEFLUENT	-02
Check if chlori			6 6W 3			MFLUENT	E
Check if chlori			6 GW			NELVENT	
Check if chlori	- <		666	9 1:00 P	bloc/2/1	INFLUENT	10-19-125
ck if chlori NJ Reduced*	# of	# of	Ma	Time:	Date:	Sample ID:	Lab ID:
hlorin Xasp A*	Plasti	Clear	ype atrix VOA	site	C=Compsite	Grab	G=
n	c H	er Glass Glass	Vials	X3=	X	X2=	X1=
ated Standard No QC		S		SG=Soil Gas		SL=Sludge A=Indoor/Ambient Air	0=0il S0=Soil
Analysis MA DEP MCP CAM Report? Ves No		Containers		WW=Waste Water	SW=Surface Water	GW=Groundwater SW=S	DW =Drinking Water
	-						
List Preservative Code below: * additional observations in the second s	\ -		6=Ascorbic Acid	5=NaOH 6=, 11=	4=HNO ₃	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ SO ₄ 9=Deionized Water 10=H ₃ PO ₄	F=Field Filtered 1=Ni 7=CH3OH 8=NaHSO ₄
R: Allen		Quote #:		P.O No.:	1	te	Project Mgr.
Sampler(s) Least Autora State: NY					090	694-8	Telenhone #:
Site Name: Mr CS OM&M					980 DC	pleasantiew aster NY 14	1368
Project No:		Inc	DAD	Invoice To:		8	111
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.		of	Page		Analytical	Spectrum Analytical	
RD Rush TAT - 7 to 10 business days	Y RECO	STOD	CHAIN OF CUSTODY RECORD	CHAI		ins	: eurofins
Special Handling:							

観想

<u>Attachment B</u> IEG Summary of Field Activities December 2018

12/05/2018
12/10/2018
12/24/2018
12/31/2018

DATE:	ATE: 5-Dec-18 ACTIVITIES						S: Site Inspection							
INSPEC	TION PER	SONNEL	:	R. Allen			OTHER	PERSON	INEL:					
WEATH	ER CONDI	TIONS:	Cloudy, c	cold						0	UTSIDI	E TEMPE	RATURE (° F): 30
ARE WE			ATING IN AL		YES:		NC		N		O", pro	vide expl	anation belo	w
	<u>RW-1, PW</u>	/-2 and P	W-3 are ma	nually set	t to OFF p	osition	; PW-4 thr	ough PV	V-8 are in A	Αυτο				
				PRO\	VIDE WAT	ER LEV	EL READ	INGS ON		L PANEL				
RW-1	ON:		OFF:		14_f	t	PW-	5	ON:		OFF:		7	ft
PW-2	ON:		OFF:		11_f	t	PW-	6	ON:		OFF:		5	ft
PW-3	ON:		OFF:		12 ft	t	PW-	7	ON:		OFF:		7	ft
PW-4	ON:		OFF:		4 _ft	t	PW-	8	ON:		OFF:		4	ft
		EQU	ALIZATION	TANK:	4 _ft	t		Last Ala	rm D/T/Cond	dition: <u>9/21/</u>	/2018	Air Stripp	er Low Pressu	ire
	NOTES:													
INFLU	JENT FLO	N RATE:		20	g	Ipm	INFLUE	NT TOT	ALIZER REA	DING: 167	6170	1		gallons
														
SE	QUESTER	ING AGE	ENT DRUM L	EVEL:	<u>16</u> ii	nches		(x 1.7=)	AMOUN	IT OF AGEN	NT REN	AINING:	27	gallons
s	SEQUESTE	RING AG	GENT FEED	RATE:	n	nl/min			MET	ERING PUI	MP PRI	ESSURE:		psi
						Тор	Bottom					Тор	Bottom	
	BAG FIL		SSURES:		LEFT:	0	0	_psi	RIG	HT:		8	0	psi
INFLU	UENT FEE	D PUMP	IN USE:	#1		#2	2	INF	LUENT PU	IMP PRESS	URE:		7	_psi
AIR	STRIPPER	BLOWE	R IN USE:	#1		#2	2 2	 A	AIR STRIPP	PER PRESS	URE:		21	in. H ₂ O
			TIAL PRESS					_		GE PRESS	-			— in. H₂O
	FLOW :						CFM		AIR		-		2.8	CFM
AIF	R TEMP:	87.7	°F											
EFFLU	UENT PUMP	P IN USE:	#1_		#2		El	FLUEN	T FEED PU	IMP PRESS	URE:		4	psi
EFFL	LUENT FLO	W RATE:	86	gpm	EFF	LUENT	TOTALIZ	ER REAL	DING:	84,49	3,85	6	157350	gallons
ARE	BUILDING	HEATERS	S IN USE?	YES:		NO	:				INSID	E TEMPE	RATURE (° F): <u>65</u>
ıs su	IMP PUMP	IN USE:	YES:		NO:		ARE	ANY LE	AKS PRES	ENT?	YES:		N	D:√
WATE	R LEVEL II	N SUMP:	6.0	in.	TREAT	MENT E	BUILDING	CLEAN	& ORGANI	ZED?	YES:		N	D:

								5-Dec-18
SAMPLES COLLECTED? YES:	NO:	 Time of Samp	ling	рН	Turbidity	Temp.	Sp. Cond.	
AIR STRIPPER INFLUENT:							_	
AIR STRIPPER EFFLUENT:								_
								_
IS THERE EVIDENCE OF TAMP	PERING/VANDAL	ISM OF WELLS: ?	YES:		NO:	\checkmark		
	WERE MANHO	LES INSPECTED?	YES:		NO:			
WERE E	ELECTRICAL BO	XES INSPECTED?	YES:		NO:			
IS WATER PRESENT IN ANY MAN	HOLES OR ELE	CTRICAL BOXES?	YES:		NO:			
lf yes, provide i	manhole/electric b	ox ID and descriptio	n of any corre	ctive meas	ures below:			
RW-1 inner ring is corroded.								
		SUBSLAB S	YSTEMS					
		TREATMENT						
MANOMETER: <u>1.4</u> in.		west	east	NOTES:	cfm = 0.05	x fpm (3" F	VC)	
(Fan Inlet)		N (fpm):						
		W (cfm):						
DRAINED Yes VA	CUUM GAUGE (i	OTHER LOCA						
586 Building SVE CONDENS	SATE drained: Y		VOLUME:	2.0	gallon			
INCLUDE REMARKS	& DESCRIBE AN	VY OTHER SYSTEM	1 MAINTENA	NCE PERI	ORMED ON	MR. C's S	SITE	
Remarks:								
Other Actions: Turned ON electric hea	ter near sump b	Ωχ						
Changed Bag Filters.	tor near early							
		Doom						
Shoveled snow in from	It of Treatment	Room.						
		AGWA	Y					
Remarks: Site is empty of materia	lls and has been	graded and grave	led.					
Other Actions:								

DATE:	10	-Dec-	18		ACT	VITIES:	Site Ins	spection	า					
INSPEC	TION PERS	SONNEL	.:	R. Allen			OTHER	PERSON	INEL:					
WEATH		FIONS:	Cloudy, c	old							OUTSID	E TEMPE	RATURE (° F,): <u>30</u>
				170:	YES:		NC	 . 1		IF "N				
			A <i>TING IN AL</i> PW-3 are ma			nocition			V 9 ara in		۷O [°] , pro	ovide expl	anation below	N
	<u>KW-1, FW</u>	-z anu r	w-5 are ma	inually se		position	, r vv- 4 un	oughrv		AUTO				<u> </u>
				PRO		TER LEV	EL READ		CONTRO	L PANEL				
RW-1	ON:		OFF:		14	ft	PW-	5	ON:		OFF:		3	_ft
PW-2	ON:		OFF:		10	ft	PW-	6	ON:		OFF:		5	_ft
PW-3	ON:	\checkmark	OFF:		12	ft	PW-	7	ON:		OFF:		7	_ft
PW-4	ON:		OFF:		6	ft	PW-	8	ON:		OFF:		6	_ft
		EQU	ALIZATION	TANK:	3	ft		Last Ala	rm D/T/Con	dition: <u>9/2</u>	1/2018	Air Stripp	er Low Pressu	re
	NOTES:													
INFLU	JENT FLOV	V RATE:		21	!	gpm	INFLUE	NT TOT	LIZER REA	ading: <u>16</u>	79427	'6		gallons
[40									
SE	QUESTERI	NG AGE	ENT DRUM L	.EVEL:	12	inches		(x 1.7=)	AMOUN	NT OF AGE	ENT REI	MAINING:	21	gallons
s	EQUESTE	RING AC	GENT FEED	RATE:		ml/min			MET	TERING PL	JMP PR	ESSURE:		_psi
					LEET.	тор О	Bottom			ч лт .		тор 6	Bottom 0	noi
 			ESSURES:					_psi		GHT:				_psi
INFLU	JENT FEEL	D PUMP	IN USE:	#1		#2	2	INF	LUENT PU	JMP PRES	SURE:		7	_psi
AIRS	STRIPPER	BLOWE	R IN USE:	 #1			2 		IR STRIPI	PER PRES	SURE:		22	in. H ₂ O
			TIAL PRESS					_			-		9.7	 in. H₂O
	FLOW :						_		AIR		-		2.6	 CFM
AIR	R TEMP:	86.3												
EFFLU	JENT PUMP	IN USE:	#1	\checkmark	#2		E	FFLUEN	T FEED PU	JMP PRES	SURE:		4	psi
EFFL	UENT FLO	N RATE:	88	gpm	EF	FLUENT	TOTALIZ	ER REAL	DING:	84,5	16,34	9	179840	gallons
ARE	BUILDING F	IEATER:	S IN USE?	YES:		NO		 			INSID	E TEMPE	RATURE (° F,): <u>64</u>
ıs su	IMP PUMP	IN USE:	YES:		NO:		ARE	ANY LE	AKS PRES	SENT?	YES:		NC	o:√
WATER	R LEVEL IN	I SUMP:	7.0	in.	TREA	TMENT E	BUILDING	CLEAN	& ORGAN	IZED?	YES:		NC):

	<u>10-Dec-18</u>
SAMPLES COLLECTED? YES: NO: $ \sqrt$ Sample ID Time of S.	ampling pH Turbidity Temp. Sp. Cond.
AIR STRIPPER INFLUENT:	
AIR STRIPPER EFFLUENT:	
IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS	S:? YES: NO: √
WERE MANHOLES INSPECTE	ED? YES: $$ NO:
WERE ELECTRICAL BOXES INSPECTE	ED? YES: $$ NO:
IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXE	ES? YES: NO: √
If yes, provide manhole/electric box ID and descr	iption of any corrective measures below:
RW-1 inner ring is corroded. Most of te MWs and UEs are covered with ice	
SUBSLAE	3 SYSTEMS
	ENT ROOM
MANOMETER: <u>1.4</u> in. WC wes	
(Fan Inlet) FLOW (fpm): 110 CONDENSATE 1.5 gallon FLOW (cfm): 55	
DRAINED Yes VACUUM GAUGE (in WC)	
	OCATIONS
586 Building SVE CONDENSATE drained: YES	VOLUME: 2.0 gallon
┝	
INCLUDE REMARKS & DESCRIBE ANY OTHER SYS	TEM MAINTENANCE PERFORMED ON MR. C's SITE
Remarks:	
Other Actions: Turned on Oil Electric Heater near Jesco Pump.	
Property Optics installed landscape lighting on 586 Bu	ilding. One of the lights is above the overhead door of the
Treatment Room.	
AGN	ναγ

Remarks: Site is empty of materials and has been graded and graveled.

Other Actions:

DATE:	2	4-Dec	-18		ACTIVI	TIES:	Site Ins	spection	n					
INSPEC	TION PEF	SONNEL		R. Allen			OTHER	PERSON	INEL:					
WEATH	ER COND	ITIONS:	Cloudy, s	snow, co	ool					0	UTSID	E TEMPE	RATURE (° F): <u>33</u>
			ATING IN AL		YES:			 . 1	 J)" nro	wide evol	anation belo	
			PW-3 are ma		-	sition			v V-8 are in <i>l</i>		, pro	wide expi		w
	NW-1, F		w-5 are ma	inually se		5111011	, r w-4 un	oughrv		4010				<u> </u>
				PRO	VIDE WATE	R LEV	/EL READ			L PANEL				
RW-1	ON:		OFF:		14 ft		PW-	5	ON:		OFF:		7	ft
PW-2	ON:		OFF:		10 ft		PW-	6	ON:		OFF:		6	ft
PW-3	ON:		OFF:		12 ft		PW-	7	ON:		OFF:		4	ft
PW-4	ON:		OFF:		6 _ft		PW-	8	ON:		OFF:		4	ft
		EQU	ALIZATION	TANK:	4 ft			Last Ala	rm D/T/Con	dition: <u>9/21/</u>	2018	Air Stripp	er Low Pressu	ıre
	NOTES:													
 														
INFLU	JENT FLO	WRATE	:	10	gp	m	INFLUE	NT TOT	ALIZER REA	ading: 168	8228	8		gallons
SE	QUESTEF	RING AGI	ENT DRUM L	.EVEL:	<u>29</u> inc	hes		(x 1.7=)	AMOUN	IT OF AGEN	IT REN	MAINING:	49	gallons
S	EQUESTI	ERING A	GENT FEED	RATE:	ml	/min			MET	ERING PUN	MP PRI	ESSURE:		_psi
[Тор	Bottom					Тор	Bottom	
	BAG FIL		ESSURES:			0	0	_psi	RIG	HI: 		8	0	psi
INFLU	JENT FEE	D PUMP	IN USE:	#1		#2	2	INF	LUENT PU	IMP PRESS	URE:		7	psi
AIRS	STRIPPE	RBLOWE	R IN USE:	#1		#:	2		AIR STRIPP	PER PRESS	URE:		21	in. H₂O
			TIAL PRESS							GE PRESS	-			in. H₂O
	FLOW :				1925		_		AIR	LEFT 5	-			CFM
AIR	R TEMP:	79	°F				- 							_
EFFLU	JENT PUM	P IN USE:	#1_	\checkmark	#2		E	FFLUEN	T FEED PU	IMP PRESS	URE:		4	psi
EFFL	UENT FLC	OW RATE:	86	gpm	EFFL	UENT	TOTALIZ	ER REAL	DING:	84,57	75,62	7	239120	gallons
ARE	BUILDING	HEATER	S IN USE?	YES:	√	NO	:	 			INSID	E TEMPE	RATURE (° F): <u>60</u>
ıs su	IMP PUMF	P IN USE:	YES:		NO:		ARE	ANY LE	AKS PRES	ENT?	YES:		N	D:√
WATER	R LEVEL I	N SUMP:	7.0	n.	TREATN	IENT I	BUILDING	CLEAN	& ORGANI	ZED?	YES:		N	D:

24	-Dec-18
SAMPLES COLLECTED? YES: NO: $$ Sample ID Time of Sampling pH Turbidity Temp. Sp. Cond.	
AIR STRIPPER INFLUENT:	
AIR STRIPPER EFFLUENT:	
IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS: ? YES: NO: $$	
WERE MANHOLES INSPECTED? YES: $$ NO:	
WERE ELECTRICAL BOXES INSPECTED? YES: $$ NO:	
IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES? YES: NO:	
If yes, provide manhole/electric box ID and description of any corrective measures below:	
RW-1 inner ring is corroded.	
SUBSLAB SYSTEMS	
MANOMETER: 1.3 in. WC west east NOTES: cfm = 0.05 x fpm (3" PVC)	
(Fan Inlet) FLOW (fpm):	
CONDENSATE 2.0 gallon FLOW (cfm):	
DRAINED Yes VACUUM GAUGE (in WC)	
OTHER LOCATIONS	
586 Building SVE CONDENSATE drained: YES VOLUME: 2.0 gallon	
┢╶────────────────────────────────────	
INCLUDE REMARKS & DESCRIBE ANY OTHER SYSTEM MAINTENANCE PERFORMED ON MR. C's SITE	
Remarks:	
Other Actions: Shoveled snow in front of Treatment Room doors.	
Drained Air Stripper Discharge Pressure Gauge line.	
AGWAY	
Remarks: Site is empty of materials and has been graded and graveled.	

DATE:	31-0	Dec-18			ACTIVI	TIES:	Site Ins	spectio	n					
INSPEC	TION PERSO	NNEL:	R	. Allen			OTHER	PERSON	INEL:	-				
WEATH		NS: <u>Clo</u>	oudy, co								OUTSID	E TEMPE	RATURE (° F)	: <u>40</u>
ARE WE	ELL PUMPS C	PERATIN	G IN AU	TO:	YES:		NC): 1	\checkmark	lf	"NO", pro	ovide expl	anation below	v
	RW-1, PW-2	and PW-3	are mar	ually set	to OFF po	sition	; PW-4 thr	ough PV	V-8 are in A	AUTO				
				PROV	IDE WATE									
RW-1	ON:		OFF:		<u>14</u> ft		PW-		ON:				6	_ft
PW-2	ON:		OFF:		10 ft		PW-	6	ON:		OFF:		7	ft
PW-3	ON:		OFF:		12_ft		PW-	7	ON:		OFF:		6	_ft
PW-4	ON:		OFF:		<u>3</u> ft		PW-	8	ON:		OFF:		3	_ft
		EQUALIZ	ATION	ANK:	4 _ft			Last Ala	rm D/T/Con	ndition: 9/	/21/2018	Air Stripp	er Low Pressu	re
	NOTES:													
				22	gp	 m			ALIZER REA		692678			gallons
					gp									
SE	QUESTERING	G AGENT L	ORUM LI	EVEL:	24 inc	hes		(x 1.7=)	AMOUN	NT OF AG	GENT REI	MAINING:	41	gallons
s	EQUESTERIN	NG AGENT	FEED F	RATE:	ml	/min			MET	TERING P	PUMP PRI	ESSURE:		_psi
						Тор	Bottom					Тор	Bottom	
L	BAG FILTEI	R PRESSU	IRES:		LEFT:	0	0	_psi	RIG	GHT:		8	0	_psi
INFLU	JENT FEED P	UMP IN US	SE:	#1		#2	2		LUENT PL	JMP PRE	SSURE:		7	_psi
AIRS	STRIPPER BL	OWER IN	USE:	#1		#2	2		AIR STRIP	PER PRE	SSURE:		25	in. H ₂ O
AIR STR	RIPPER DIFFE	RENTIAL	PRESS	JRE:	broke				DISCHAF		-		9.8	in. H₂O
	FLOW : 13 R TEMP: 6		m X	1.4 =	1820		_CFM	SPA	AIR RGER	LEFT	5.8	RIGHT	2.4	_CFM
EFFLU	JENT PUMP IN	USE:	#1		#2		El	FLUEN	T FEED PL	JMP PRE	SSURE:		4	_psi
EFFL	UENT FLOW F	RATE:	<mark>84</mark> g	pm	EFFL	UENT	TOTALIZ	ER REAI	DING:	84,	606,75	9	270150	gallons
ARE	BUILDING HE	ATERS IN U	JSE?	YES:	√	NO	 :				INSID	E TEMPE	RATURE (° F)	: <u>61</u>
ıs su	IMP PUMP IN	USE:	YES:		NO:		ARE	ANY LE	AKS PRES	SENT?	YES:		NC	:√
WATER	R LEVEL IN S	UMP: 6	6 .0 ir	ı.	TREATM	IENT E	BUILDING	CLEAN	& ORGAN	IZED?	YES:		NC):

									31	-Dec-18			
SAMPLES COLLECTED?	YES:		NO:		Sampled on J	an 1, 201	9						
			Sample ID	Time of Samp	ling	рН	Turbidity	Temp.	Sp. Cond.				
AIR STRIPPER INFL	UENT:		INF	1:00 pm	-	8.2		10.5	2218				
AIR STRIPPER EFFL	.UENT:		EFF	1:00 pm	-	9.3		11.6	2332				
IS THERE EVIDENC	E OF T		NG/VANDALIS	SM OF WELLS: ?	YES:		NO:						
		WE	RE MANHOL	ES INSPECTED?	YES:		–						
	WEF	RE ELEC	TRICAL BOX	ES INSPECTED?	YES:		 NO:						
IS WATER PRESENT II	IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES? YES: $$ NO:												
lf y	If yes, provide manhole/electric box ID and description of any corrective measures below:												
RW-1 inner ring is corroded.													
SUBSLAB SYSTEMS													
TREATMENT ROOM MANOMETER: 1.3 in. WC west east NOTES: cfm = 0.05 x fpm (3" PVC)													
(Fan Inlet)		-		(fpm):									
CONDENSATE DRAINED	1.0 Yes		FLOW M GAUGE (in	(cfm): WC)									
DRAINED	163	VACOU		OTHER LOCA	TIONS								
586 Building SVE	COND	ENSATE	E drained: YE		VOLUME:	2.0	gallon						
	REMAR	RKS & D	ESCRIBE AN	Y OTHER SYSTEM	I MAINTENAN	NCE PER	FORMED ON	MR. C's S	SITE				
Remarks:													
Other Actions: Respond to				•					03.				
Swept up sp	ruce co	nes and	I needles fron	n Library Parking	Lot near well	groups F	PW-6 and PV	V-7.					
	AGWAY												
Remarks: Site is empty	/ of mat	erials ar	nd has been g	graded and gravel	ed.								

Other Actions:

<u>Attachment C</u> Summary of Site Utility Costs and Projections January to December 2018

Mr. C's Dry Cleaners Site - Remedial Treatment Utility Costs NYSDEC Work Assignment #10C3074.0011.11 12 Months of System Operation and Maintenance December 2018 Report

Utility Budget:	Electric:	\$25,
	Telephone:	\$
	Gas	\$1 ,
	Total:	\$26,

Gas and Electric

Utility Provider	Account #	E&E Cost Center	Description	Jan-2018	Feb-2018	N	lar-2018		Apr-2018	Ν	lay-2018		Jun-2018	
New York State E&G	1001-0310-422	EN-003229-0001-03TTO	Mr. C's Electric Costs	\$ 1,314.70	\$ 1,124.10	\$	975.14	\$	1,077.67	\$	1,378.14	\$	1,207.50	
New York State E&G	76-311-11-015900-18	EN-003229-0001-03110	MILES Electric Costs											
National Fuel Gas	7160295 10	EN-003229-0001-03TTO	Mr. C's Natural Gas Costs	\$ 81.72	\$ 62.46	\$	65.75	\$	68.44	\$	38.16	\$	65.63	
			Totals	\$ 1,396.42	\$ 1,186.56	\$	1,040.89	\$	1,146.11	\$	1,416.30	\$	1,273.13	
				Jul-2018	Aug-2018	S	ep-2018	(Oct-2018	١	lov-2018	1	Dec-2018	
			Mr. C's Electric Costs	\$ 1,154.72	\$ 1,269.42	\$	1,449.31	\$	925.36	\$	1,101.35	\$	1,422.75	
			Mr. C's Natural Gas Costs	\$ 111.83	\$ 21.25	\$	-	\$	20.19	\$	63.75		-	
			Totals	\$ 1,266.55	\$ 1,290.67	\$	1,449.31	\$	945.55	\$	1,165.10	\$	1,422.75	
			Electric - Mr. C's	\$ 	 14,400.16			Not	es:					
			Natural Gas - Mr. C's	\$	599.18					Ove	erbilled natura	al ga	s costs - no ch	aı
	Grand	Total - NYSE&G/Natio	nal Fuel Gas Costs To Date	\$	14,999.34					Est	imated Read	ling		

Telephone

Utility Provider	Phone #	E&E Cost Center	Location Description	J	Jan-2018		Feb-2018	Ν	lar-2018	Α	pr-2018	M	ay-2018	Jun-2018	
Granite Telecommunications				\$	41.09	\$	41.09	\$	41.09	\$	41.09	\$	41.09	\$	41.09
Account # 01890582	866-874-5500	EN-003229-0001-03TTO	Mr. C's Telephone Costs		Jul-2018		Aug-2018		ep-2018	Oct-2018		Nov-2018		Dec-2018	
	-			\$	41.09	\$	41.09	\$	41.09	\$	41.09	\$	41.09	\$	41.09

Verizon Costs to Date - Mr. C's \$

Grand Total All Utilities To Date 15,492.42 \$

Monthly Average Costs

Mr. C's Electric	\$ 1,200.01
Mr. C's Gas	\$ 54.47
Mr. C's Telephone	\$ 41.09
Average Utility Cost Total	\$ 1,295.57
12 Month Estimate	\$ 15,546.89

Budget Remaining:	Electric:	\$10,899.84
	Telephone:	\$46.92
	Gas	\$520.82
	Total:	\$11,467.58

493.08

ATTACHMENT C

,300.00 \$540.00

,120.00 6,960.00

harges