## ecology and environment engineering and geology, p.c. Environmental Specialists

#### **BUFFALO CORPORATE CENTER**

368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

February 28, 2020

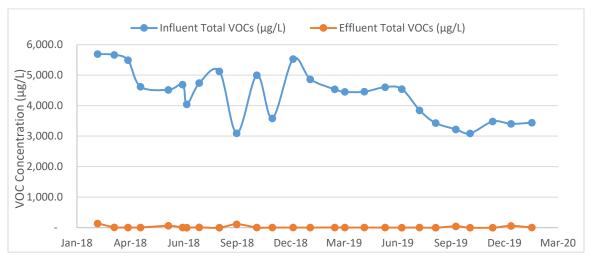
Mr. Payson Long, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 - 7013

Re: Mr. C's Dry Cleaners Site, Contract # D007617, Site # 915157 January 2020 Operations, Maintenance, and Monitoring Report

Dear Mr. Long:

Ecology and Environment Engineering and Geology, P.C. (E&E) is pleased to provide the January 2020 Operations, Maintenance, and Monitoring (OM&M) Report for the Mr. C's Dry Cleaners Site, NYSDEC Site # 915157, located in the Village of East Aurora, New York.

During the January 2020 reporting period, the treatment system was in operation from January 3, 2020 to February 7, 2020. The January monthly OM&M sampling was performed on February 6, 2020, and the results were received from SAI on February 19, 2020 (See <u>Attachment A</u>). A summary of field activities prepared by E&E's subcontractor, IYER Environmental Group, PLLC. (IEG), is provided in <u>Attachment B</u>. The current annual site utility cost information is provided in <u>Attachment C</u>.


In review of the on-site treatment system operations, monitoring and maintenance from IEG for January 2020, E&E offers the following comments and highlights:

#### **Operational Summary:**

- Based on inspection reports prepared by IEG, the remedial treatment system for the period of January 3, 2020 through February 7, 2020, had an approximate operational up-time of 77%, and 92,500 gallons of contaminated groundwater were treated during the reporting period. The treated effluent volumes and operational up-time can be seen in Table 1.
- IEG cleaned the Air Stripper with muriatic acid on January 29, 2020 following the non-compliant effluent results from the December 2019 sampling. Following restart of the system compliance samples were collected on February 6, 2020. Effluent results from this sampling met all requirements of the SPDES Equivalency permit. The effluent results are provided in Table 2.
- The analytical summary results of the February 6, 2020 samples revealed the total volatile organic contaminant concentrations of the influent to be 3,444.0 µg/L and the concentration of total volatile organic contaminants in the effluent was 5.0 µg/L. The summary of influent and effluent contaminant concentrations for the January 2020

sampling are presented in <u>Table 3</u>. <u>Figure 1</u> shows the influent and effluent VOC concentrations during each sampling event in 2018, 2019, and 2020.

• The Mr. C's treatment system, based on the total flows from the uptime operations, removed 2.66 lbs. of targeted contaminants from the groundwater between January 3, 2020 to February 7, 2020. The cleanup effectiveness for January 2020 was approximately 99.85%. The calculations and data for the month are presented in <a href="Table 3">Table 3</a>. The mass of VOCs removed each month throughout 2018, 2019 and 2020 is shown in <a href="Figure 2">Figure 2</a>.



**Figure 1:** Monthly Influent and Effluent VOC concentrations - 2018 - 2020.

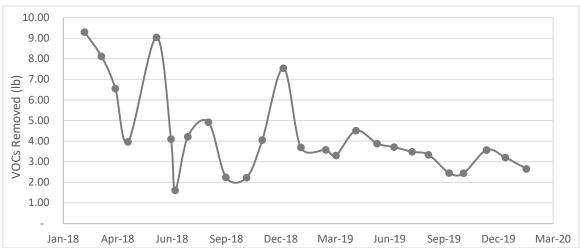


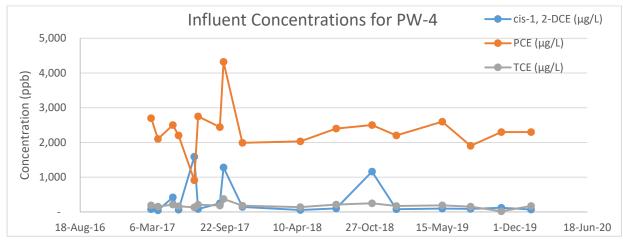
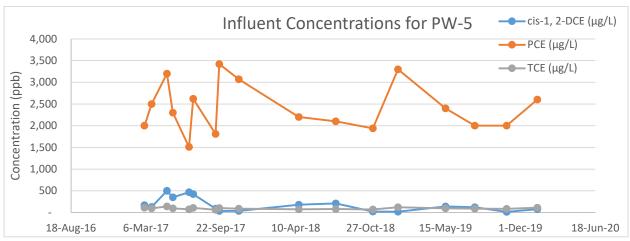
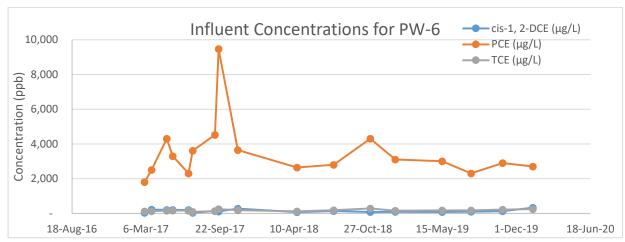

Figure 2: Mass of VOCs removed each month - 2018 - 2020.

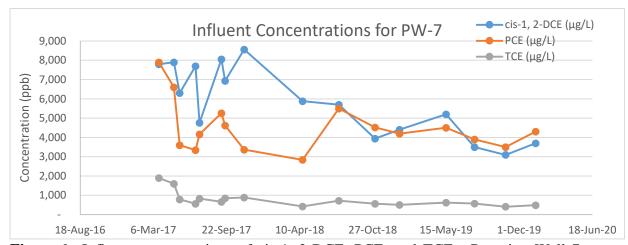
#### **Pumping Well Summary:**

• Pumping wells PW-4, PW-5, PW-6, PW-7, and PW-8 were sampled on February 6, 2020. Results of the pumping well sampling event are provided in <u>Table 4</u> and an excerpt from the analytical data package is provided in Attachment A. Figures 3

<u>through 7</u> show the historical concentrations of cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) throughout 2017 to 2020.

• Individual pumping well sampling will continue to be completed on a quarterly basis to monitor VOC concentrations.



Figure 3: Influent concentrations of cis-1,2-DCE, PCE, and TCE - Pumping Well 4 (PW-4).



**Figure 4:** Influent concentrations of cis-1, 2-DCE, PCE, and TCE - Pumping Well 5 (PW-5).



**Figure 5:** Influent concentrations of cis-1, 2-DCE, PCE, and TCE - Pumping Well 6 (PW-6).



**Figure 6:** Influent concentrations of cis-1, 2-DCE, PCE, and TCE - Pumping Well 7 (PW-7).

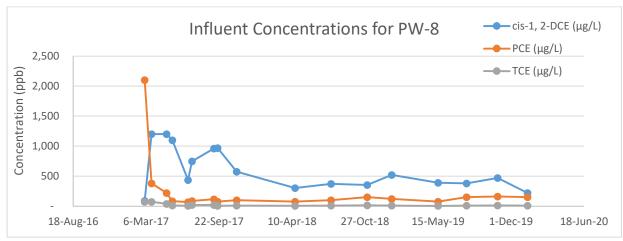



Figure 7: Influent concentrations of cis-1, 2-DCE, PCE, and TCE - Pumping Well 8 (PW-8).

Mr. Payson Long, Project Manager February 28, 2020 Page 5 of 5

If you have questions regarding the January 2020 OM&M report summary, please do not hesitate to contact me at 716-684-8060 or <a href="mailto:asmith@ene.com">asmith@ene.com</a>.

Very Truly Yours,

Ecology and Environment Engineering and Geology, P. C.

Ashlee Smith, P.E. Project Manager

cc: D. Szymanski, Region 9, NYSDEC – Buffalo w/ attachments

## Table 1 Mr. C's Dry Cleaners Site Remediation Site #915157 System Operation and Management

|                                                    |                  | Up-time (Repo      |                        |                           |                         | VOC Removal            |                     |
|----------------------------------------------------|------------------|--------------------|------------------------|---------------------------|-------------------------|------------------------|---------------------|
| Month                                              | Sample Date      | Reporting<br>Hours | Operational<br>Up-time | Treated Effluent (gallon) | Influent VOCs<br>(μg/L) | Effluent<br>VOCs(μg/L) | VOCs Removed (lbs.) |
| (Treatment System Up-time from 9/5/02 to 01/03/20) |                  | 147,266.00         | 91.54%                 | 134,339,311               | NA                      | NA                     | 1,794.68            |
| January 03, 2020 to February 07, 2020              | February 7, 2020 | 672                | 77.14%                 | 92,500                    | 3444.00                 | 5.00                   | 2.66                |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
|                                                    |                  |                    |                        |                           |                         |                        |                     |
| Total in 2020                                      |                  | 672.00             | 77.14%                 | 92,500                    | 3,444.00                | 5.00                   | 2.66                |
| Total from startup                                 |                  | 147,938.00         | 91.46%                 | 134,431,811               | NA                      | NA                     | 1,797.34            |

#### NOTES:

- 1. Up-time based as percentage of total reporting hours.
- 2. Treatment system operated by Iyer Environmental Group from 07/07/2016 to present.
- 3. VOC removal calculations are based on monthly water samples and assumes samples are representative of the entire reporting period.
- 4. VOC removal calculations assume that non-detect values = 0 ug/L.
- 5. Total VOCs summations include estimated "J" values.
- 6. VOC removal calculations are based on effluent totalizer readings.
- 7. "Influent VOCs" and "Effluent VOCs" values given above is the summation of values for individual compounds given in monthly analytical reports.
- 8. Unit conversion: 1 pound = 453.5924 grams, 1 gallon = 3.785 liters
- 9. Formula for the VOC removal calculation:

 $(VOCs_{\textit{Influent}} - VOCs_{\textit{Effluent}})(ug/L) \cdot (1g/10^6 ug) \cdot (1 \textit{lb/453.5924 g}) \cdot (Monthly \textit{process water})(gal) \cdot (3.785 \textit{L/gallon}) \cdot (3.785 \textit$ 

#### Table 2 Mr. C's Dry Cleaners Site Remediation Site #915157

#### **Effluent Discharge Criteria & Analytical Compliance Results**

| Parameter/Analyte                   | Daily Maximum <sup>1</sup> | Units          | February67, 2020<br>Effluent Analytical Values<br>Compliance |
|-------------------------------------|----------------------------|----------------|--------------------------------------------------------------|
| Flow (Average) <sup>2</sup>         | N/A                        | gpd            |                                                              |
| pH                                  | 6.0 - 9.0                  | standard units | 8.38                                                         |
| 1,1 Dichloroethene                  | 10                         | μg/L           | ND(<1.0)                                                     |
| cis-1,2-dichloroethene              | 10                         | μg/L           | ND(<1.0)                                                     |
| Trichloroethene                     | 10                         | μg/L           | ND(<1.0)                                                     |
| Tetrachloroethene                   | 10                         | μg/L           | ND(<1.0)                                                     |
| Vinyl Chloride                      | 10                         | μg/L           | ND(<1.0)                                                     |
| Benzene                             | 5                          | μg/L           | ND(<1.0)                                                     |
| Ethylbenzene                        | 5                          | μg/L           | ND(<1.0)                                                     |
| Methylene Chloride                  | 10                         | μg/L           | ND(<1.0)                                                     |
| 1,1,1 Trichloroethane               | 10                         | μg/L           | ND(<1.0)                                                     |
| Toluene                             | 5                          | μg/L           | ND(<1.0)                                                     |
| Methyl-t-Butyl Ether (MTBE)         | NA                         | ug/L           | ND(<1.0)                                                     |
| o-Xylene <sup>3</sup>               | 5                          | μg/L           | ND(<1.0)                                                     |
| m, p-Xylene <sup>3</sup>            | 10                         | μg/L           | ND(<1.0)                                                     |
| Total Xylenes                       | NA                         | ug/L           | ND(<1.0)                                                     |
| Iron, total <sup>4</sup>            | 600                        | μg/L           | NA <sup>4</sup>                                              |
| Aluminum <sup>4</sup>               | 4,000                      | μg/L           | NA <sup>4</sup>                                              |
| Copper <sup>4</sup>                 | 48                         | μg/L           | NA <sup>4</sup>                                              |
| Lead <sup>4</sup>                   | 11                         | μg/L           | NA <sup>4</sup>                                              |
| Manganese <sup>4</sup>              | 2,000                      | μg/L           | NA <sup>4</sup>                                              |
| Silver <sup>4</sup>                 | 100                        | μg/L           | NA <sup>4</sup>                                              |
| Vanadium <sup>4</sup>               | 28                         | μg/L           | NA <sup>4</sup>                                              |
| Zinc <sup>4</sup>                   | 230                        | μg/L           | NA <sup>4</sup>                                              |
| Total Dissolved Solids <sup>4</sup> | 850                        | mg/L           | NA <sup>4</sup>                                              |
| Total Suspended Solids <sup>4</sup> | 20                         | mg/L           | NA <sup>4</sup>                                              |
| Hardness                            | N/A                        |                | 468                                                          |
| Cyanide, Free <sup>4</sup>          | 10                         | μg/L           | NA <sup>4</sup>                                              |

#### **NOTES:**

- 1. "Daily Maximum" excerpted from Attachment E of Addendum 1 to the Construction Contract Documents dated October 2000
- 2. Average flows based on effluent readings:

#### January 3 - February 7, 2020 = 2,643 gallons per day

- 3. Analytical report did not differentiate between o-Xylene and m, p-Xylene. Total Xylene value reported is given in each line.
- 4. Removed from the required analysis list by NYSDEC Region 9 in February 2005.
- 5. Dark shaded cells indicate that analytical value exceeds the "Daily Maximum."
- 6. "ND" indicates that the compound was not detected and lists the practical quantitation limit in parentheses.
- 7. "NA" indicates that analyses were not performed and data is unavailable.
- 8. "J" indicates an estimated value below the detection limit.
- 9. "B" indicates analyte found in the associated blank.
- 10. "NS" indicates that the parameter analysis was not sampled.

# Table 3 Mr. C's Dry Cleaners Site Remediation NYSDEC Site #915157 January 2020 VOC Analytical Summary

|                                        |                 |   | on the Febru<br>uent Analytic | • , | 0                      |
|----------------------------------------|-----------------|---|-------------------------------|-----|------------------------|
| Compound                               | Influ<br>Concen |   | Efflu<br>Concent              |     | Cleanup<br>Efficiency* |
|                                        | (ug             | - | (ug/                          | L)  | (%)                    |
| Acetone                                | ND(<40)         | U | 5                             |     |                        |
| Benzene                                | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| 2-Butanone                             | ND(<20)         | U | ND(<10)                       | U   | 100.00%                |
| 1,1-Dichloroethene                     | 2               | J | ND(<1.0)                      | U   | 100.00%                |
| cis-1, 2-Dichloroethene                | 1400            |   | ND(<1.0)                      | U   | 100.00%                |
| Chloroform                             | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Chloromethane                          | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Methylene chloride                     | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Methyl tert-butyl ether (MTBE)         | 6.0             |   | ND(<1.0)                      | U   | 100.00%                |
| Methyl acetate                         | ND(<50)         | U | ND(<5.0)                      | U   | NA                     |
| Tetrachloroethene (PCE)                | 1700            |   | ND(<1.0)                      | U   | 100.00%                |
| Toluene                                | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Trichloroethene (TCE)                  | 230             |   | ND(<1.0)                      | U   | 100.00%                |
| Carbon Disulfide                       | ND(<10)         | U | ND(<5.0)                      | U   | NA                     |
| 1,1,2 Trichloro-1,2,2-trifluororethane | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| 2-Hexanone                             | ND(<200)        | U | ND(<10)                       | U   | NA                     |
| 4-Methyl-2-pentanone                   | ND(<200)        | U | ND(<10)                       | U   | NA                     |
| Cyclohexane                            | ND(<10)         | U | ND(<1.0)                      | U   | NA                     |
| trans-1,2-dichloroethene               | 12              |   | ND(<1.0)                      | U   | 100.00%                |
| Chlorobenzene                          | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Methylcyclohexane                      | ND(<10)         | U | ND(<1.0)                      | U   | NA                     |
| Ethylbenzene                           | ND(<2)          | U | ND(<1.0)                      | U   | NA                     |
| Vinyl Chloride                         | 94              |   | ND(<1.0)                      | U   | 100.00%                |
| Total Xylenes                          | ND(<2)          | U | ND(<2.0)                      | U   | NA                     |
| TOTAL:                                 | 3444.0          |   | 5.0                           |     | 99.85%                 |

#### **Notes:**

- 1. The efficiency cleanup values are calculated based on the February 6, 2020 results
- 2. "NA" = Not applicable
- 3. "U" = Compound analyzed, but was not detected. Detection limit in parentheses.
- 4. "DJ" or "J" indicates an estimated value below the practical quantitation limit but above the method detection limit.
- 5. Non-detect values are assumed to be equal to zero for calculation of monthly average concentrations.
- 6. "S" indicates an estimated value and suspected lab contamination.
- 7. "Bold" exceeds the SPDES Equilavency Permit Requirements.

<sup>\*</sup> Contaminants of Concern only

#### **Attachment A**

# Excerpts from the Groundwater Treatment System Analytical Report and Influent Pumping Well Report from

**Spectrum Analytical Laboratories** 

Analytical Data Package Work Order ID: SC57444 Sampled by IEG: February 6, 2020 Report Received: February 19, 2020

Analytical Data Package Work Order ID: SC57271 Sampled by IEG: January 15, 2020

Report Received: January 27, 2020



| V | Final Report   |
|---|----------------|
|   | Revised Report |

Report Date: 19-Feb-20 11:34

#### Laboratory Report SC57444

Ecology and Environment, Inc. 368 Pleasant View Drive Lancaster, NY 14086 Attn: Jose Ramirez Hernandez

Project: Mr. C's - East Aurora, NY

Project #: [none]

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

New York # 11393 USDA # P330-15-00375

Authorized by:

Agnes Huntley Project Manager

agnish Dinel

Eurofins Environment Testing New Englandl holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

#### **Sample Summary**

Work Order: SC57444

**Project:** Mr. C's - East Aurora, NY

**Project Number:** [none]

| <b>Laboratory ID</b> | Client Sample ID | <u>Matrix</u> | <b>Date Sampled</b> | <b>Date Received</b> |
|----------------------|------------------|---------------|---------------------|----------------------|
| SC57444-01           | Influent         | Ground Water  | 06-Feb-20 12:30     | 07-Feb-20 09:30      |
| SC57444-02           | Effluent         | Ground Water  | 06-Feb-20 12:30     | 07-Feb-20 09:30      |
| SC57444-03           | TB HCL           | Trip Blank    | 06-Feb-20 12:30     | 07-Feb-20 09:30      |

19-Feb-20 11:34 Page 2 of 22

#### **CASE NARRATIVE:**

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 2.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

| <u>Sample</u> | Sample Collection | ELLE#   |
|---------------|-------------------|---------|
| SC57444-01    | 02/06/2020 12:30  | 1256130 |
| SC57444-02    | 02/06/2020 12:30  | 1256131 |
| SC57444-03    | 02/06/2020 12:30  | 1256132 |

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

#### SW-846 8260C, GC/MS Volatiles

Sample #s: 1256130, 1256131, 1256132

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

The affected analyte(s) and response(s) are:

Analyte Response (%Drift)

trans-1,4-dichloro-2-butene -41 hexachlorobutadiene -22

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

#### SW-846 8260C

#### Samples:

SC57444-01 Influent

Estimated value

1,1-Dichloroethene

Exceeded calibration range of the instrument

cis-1,2-Dichloroethene Tetrachloroethene

SC57444-01RE01 Influent

Estimated value

Methyl Tertiary Butyl Ether

SC57444-02 Effluent

Estimated value

Acetone

#### **SW-846 8260C**

Samples:

SC57444-03 TB HCL

Estimated value

Acetone

This laboratory report is not valid without an authorized signature on the cover page.

19-Feb-20 11:34 Page 4 of 22

#### **Summary of Hits**

Lab ID: SC57444-01 Client ID: Influent

| Parameter                     | Result | Flag | Reporting Limit     | Units    | Analytical Method |
|-------------------------------|--------|------|---------------------|----------|-------------------|
| Calcium                       | 148    |      | 0.200               | mg/l     | EPA 200.7         |
| Magnesium                     | 23.7   |      | 0.100               | mg/l     | EPA 200.7         |
| Total Hardness as CaCO3       | 467    |      | 0.20                | mg/l     | SM 2340 B         |
| pН                            | 7.42   |      | 1.00                | pH Units | SM4500-H B-11     |
| 1,1-Dichloroethene            | 2      | J.   | 2                   | ug/l     | SW-846 8260C      |
| cis-1,2-Dichloroethene        | 1400   | E.   | 2                   | ug/l     | SW-846 8260C      |
| Methyl Tertiary Butyl Ether   | 6      |      | 2                   | ug/l     | SW-846 8260C      |
| Tetrachloroethene             | 1700   | E.   | 2                   | ug/l     | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 12     |      | 2                   | ug/l     | SW-846 8260C      |
| Trichloroethene               | 230    |      | 2                   | ug/l     | SW-846 8260C      |
| Vinyl Chloride                | 94     |      | 2                   | ug/l     | SW-846 8260C      |
| <b>Lab ID:</b> SC57444-01RE01 |        |      | Client ID: Influent |          |                   |
| Parameter                     | Result | Flag | Reporting Limit     | Units    | Analytical Method |
| cis-1,2-Dichloroethene        | 1200   |      | 20                  | ug/l     | SW-846 8260C      |
| Methyl Tertiary Butyl Ether   | 6      | J.   | 20                  | ug/l     | SW-846 8260C      |
| Tetrachloroethene             | 1700   |      | 20                  | ug/l     | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 100    |      | 20                  | ug/l     | SW-846 8260C      |
| Trichloroethene               | 220    |      | 20                  | ug/l     | SW-846 8260C      |
| Vinyl Chloride                | 75     |      | 20                  | ug/l     | SW-846 8260C      |
| <b>Lab ID:</b> SC57444-02     |        |      | Client ID: Effluent |          |                   |
| Parameter                     | Result | Flag | Reporting Limit     | Units    | Analytical Method |
| Calcium                       | 148    |      | 0.200               | mg/l     | EPA 200.7         |
| Magnesium                     | 23.8   |      | 0.100               | mg/l     | EPA 200.7         |
| Total Hardness as CaCO3       | 468    |      | 0.20                | mg/l     | SM 2340 B         |
| pH                            | 8.38   |      | 1.00                | pH Units | SM4500-H B-11     |
| Acetone                       | 5      | J.   | 20                  | ug/l     | SW-846 8260C      |
| <b>Lab ID:</b> SC57444-03     |        |      | Client ID: TB HCL   |          |                   |
| Parameter                     | Result | Flag | Reporting Limit     | Units    | Analytical Method |
| Acetone                       | 2      | J.   | 20                  | ug/l     | SW-846 8260C      |

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

| Sample Id<br>Influent<br>SC57444 | dentification                            |              |               | Client F    | Project #<br>one] | •      | <u>Matrix</u><br>Ground W |              | ection Date<br>5-Feb-20 12 |                    |         | eceived<br>Feb-20 |       |
|----------------------------------|------------------------------------------|--------------|---------------|-------------|-------------------|--------|---------------------------|--------------|----------------------------|--------------------|---------|-------------------|-------|
| CAS No.                          | Analyte(s)                               | Result       | Flag          | Units       | *RDL              | MDL    | Dilution                  | Method Ref.  | Prepared                   | Analyzed           | Analyst | Batch             | Cert. |
| Subcontra                        | acted Analyses                           |              |               |             |                   |        |                           |              |                            |                    |         |                   |       |
|                                  | acted Analyses                           |              |               |             |                   |        |                           |              |                            |                    |         |                   |       |
| Analysis p                       | erformed by Eurofins Lancast             | er Laborator | ies Environme | ntal - 1067 | 0                 |        |                           |              |                            |                    |         |                   |       |
| 7440-70-2                        | Calcium                                  | 148          |               | mg/l        | 0.200             | 0.0960 | 1                         | EPA 200.7    | 10-Feb-20<br>14:55         | 11-Feb-20<br>07:31 | 10670   | 0410571           | 6     |
| 7439-95-4                        | Magnesium                                | 23.7         |               | mg/l        | 0.100             | 0.0400 | 1                         | "            | "                          | "                  | "       | "                 |       |
|                                  | by method General Prepa                  |              |               |             |                   |        |                           |              |                            |                    |         |                   |       |
|                                  | erformed by Eurofins Lancast             |              | ies Environme |             |                   |        |                           |              |                            |                    |         |                   |       |
| 471-34-1                         | Total Hardness as CaCO3                  | 467          |               | mg/l        | 0.20              | 0.096  | 1                         | SM 2340 B    | 12-Feb-20<br>08:55         | 12-Feb-20<br>08:55 | 10670   | 0430625           | 6     |
|                                  | acted Analyses<br>by method SW-846 50300 | <u>}</u>     |               |             |                   |        |                           |              |                            |                    |         |                   |       |
| Analysis p                       | erformed by Eurofins Lancast             | er Laborator | ies Environme | ntal - 1067 | 0                 |        |                           |              |                            |                    |         |                   |       |
| 630-20-6                         | 1,1,1,2-Tetrachloroethane                | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | SW-846 8260C | 18-Feb-20<br>12:14         | 18-Feb-20<br>12:15 | 10670   | .200491A          | J     |
| 71-55-6                          | 1,1,1-Trichloroethane                    | < 2          |               | ug/l        | 2                 | 0.6    | 2                         | "            | u                          | "                  | "       | "                 |       |
| 79-34-5                          | 1,1,2,2-Tetrachloroethane                | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | n n          | u u                        | "                  | "       | "                 |       |
| 79-00-5                          | 1,1,2-Trichloroethane                    | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 75-34-3                          | 1,1-Dichloroethane                       | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 75-35-4                          | 1,1-Dichloroethene                       | 2            | J.            | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 563-58-6                         | 1,1-Dichloropropene                      | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 87-61-6                          | 1,2,3-Trichlorobenzene                   | < 10         |               | ug/l        | 10                | 0.8    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 96-18-4                          | 1,2,3-Trichloropropane                   | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 120-82-1                         | 1,2,4-Trichlorobenzene                   | < 10         |               | ug/l        | 10                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 95-63-6                          | 1,2,4-Trimethylbenzene                   | < 10         |               | ug/l        | 10                | 2      | 2                         | "            | "                          | "                  | "       | "                 |       |
| 96-12-8                          | 1,2-Dibromo-3-chloroprop ane             | < 10         |               | ug/l        | 10                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 106-93-4                         | 1,2-Dibromoethane                        | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | u                          | "                  | "       | "                 |       |
| 95-50-1                          | 1,2-Dichlorobenzene                      | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 107-06-2                         | 1,2-Dichloroethane                       | < 2          |               | ug/l        | 2                 | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 78-87-5                          | 1,2-Dichloropropane                      | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 108-70-3                         | 1,3,5-Trichlorobenzene                   | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 108-67-8                         | 1,3,5-Trimethylbenzene                   | < 10         |               | ug/l        | 10                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 541-73-1                         | 1,3-Dichlorobenzene                      | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | u u                        | "                  | "       | "                 |       |
| 142-28-9                         | 1,3-Dichloropropane                      | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 106-46-7                         | 1,4-Dichlorobenzene                      | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 123-91-1                         | 1,4-Dioxane                              | < 500        |               | ug/l        | 500               | 58     | 2                         | "            | "                          | "                  | "       | "                 |       |
| 594-20-7                         | 2,2-Dichloropropane                      | < 2          |               | ug/l        | 2                 | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 78-93-3                          | 2-Butanone                               | < 20         |               | ug/l        | 20                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 95-49-8                          | 2-Chlorotoluene                          | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 591-78-6                         | 2-Hexanone                               | < 20         |               | ug/l        | 20                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 106-43-4                         | 4-Chlorotoluene                          | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 108-10-1                         | 4-Methyl-2-pentanone                     | < 20         |               | ug/l        | 20                | 1      | 2                         | "            | "                          | "                  | "       | "                 |       |
| 67-64-1                          | Acetone                                  | < 40         |               | ug/l        | 40                | 1      | 2                         | "            | "                          | "                  | "       | "                 |       |
| 107-13-1                         | Acrylonitrile                            | < 40         |               | ug/l        | 40                | 0.6    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 71-43-2                          | Benzene                                  | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | II .         | "                          | "                  | "       | "                 |       |
| 108-86-1                         | Bromobenzene                             | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 74-97-5                          | Bromochloromethane                       | < 10         |               | ug/l        | 10                | 0.4    | 2                         | "            | "                          | "                  | "       | "                 |       |
| 75-27-4                          | Bromodichloromethane                     | < 2          |               | ug/l        | 2                 | 0.4    | 2                         | "            | "                          | "                  | "       | u                 |       |

Sample Identification

| Influent    | Sample Identification Influent SC57444-01 |               |               | Client Project # [none] |       | <u> </u> |          | lection Date/Time<br>6-Feb-20 12:30 |                    | Received<br>07-Feb-20 |         |          |       |
|-------------|-------------------------------------------|---------------|---------------|-------------------------|-------|----------|----------|-------------------------------------|--------------------|-----------------------|---------|----------|-------|
| CAS No.     | Analyte(s)                                | Result        | Flag          | Units                   | *RDL  | MDL      | Dilution | Method Ref.                         | Prepared           | Analyzed              | Analysi | Batch    | Cert. |
| Subcontra   | cted Analyses                             |               |               |                         |       |          |          |                                     |                    |                       |         |          |       |
| Analysis pe | erformed by Eurofins Lancas               | ster Laborato | ries Environn | ental - 10670           | )     |          |          |                                     |                    |                       |         |          |       |
| Re-analys   | sis of Subcontracted Anal                 | <u>yses</u>   |               |                         |       |          |          |                                     |                    |                       |         |          |       |
| 17060-07-0  | 1,2-Dichloroethane-d4                     | 102           |               |                         | 80-12 | 0 %      |          | SW-846 8260C                        | 18-Feb-20<br>12:36 | -Feb-20 12:           | 10670   | .200491A | ,     |
| 460-00-4    | 4-Bromofluorobenzene                      | 95            |               |                         | 80-12 | 0 %      |          | "                                   | "                  | "                     | "       | "        |       |
| 1868-53-7   | Dibromofluoromethane                      | 100           |               |                         | 80-12 | 0 %      |          | "                                   | "                  | "                     | "       | "        |       |
| 2037-26-5   | Toluene-d8                                | 98            |               |                         | 80-12 | 0 %      |          | "                                   | "                  | "                     | "       |          |       |
|             | cted Analyses<br>by method SM4500-H B-    | <u>11</u>     |               |                         |       |          |          |                                     |                    |                       |         |          |       |
| Analysis pe | erformed by Phoenix Enviro                | nmental Labs, | Inc. * - CT0  | 07                      |       |          |          |                                     |                    |                       |         |          |       |
|             | pH                                        | 7.42          | pН            | pH Units                | 1.00  | 1.00     | 1        | SM4500-H B-11                       | 07-Feb-20<br>21:37 | 07-Feb-20<br>21:37    | 11301   | 517861A  |       |

19-Feb-20 11:34 Page 11 of 22

| Effluent              | Sample Identification Effluent SC57444-02 |                |              | Client P     |       |        | <u>Matrix</u><br>Ground W | · · · · · · · · · · · · · · · · · · · | ection Date<br>5-Feb-20 12 |                    |         | Received<br>07-Feb-20 |       |  |
|-----------------------|-------------------------------------------|----------------|--------------|--------------|-------|--------|---------------------------|---------------------------------------|----------------------------|--------------------|---------|-----------------------|-------|--|
| CAS No.               | Analyte(s)                                | Result         | Flag         | Units        | *RDL  | MDL    | Dilution                  | Method Ref.                           | Prepared                   | Analyzed           | Analysi | Batch                 | Cert. |  |
| Subcontra             | acted Analyses                            |                |              |              |       |        |                           |                                       |                            |                    |         |                       |       |  |
| Subcontra             | acted Analyses                            |                |              |              |       |        |                           |                                       |                            |                    |         |                       |       |  |
| Analysis p            | erformed by Eurofins Lancasi              | ter Laboratori | es Environme | ntal - 10670 | )     |        |                           |                                       |                            |                    |         |                       |       |  |
| 7440-70-2             | Calcium                                   | 148            |              | mg/l         | 0.200 | 0.0960 | 1                         | EPA 200.7                             | 10-Feb-20<br>14:55         | 11-Feb-20<br>07:28 | 10670   | 04105716              | 3     |  |
| 7439-95-4<br>Prepared | Magnesium by method General Prepa         | 23.8<br>ration |              | mg/l         | 0.100 | 0.0400 | 1                         | n                                     | "                          | "                  | "       | "                     |       |  |
|                       | erformed by Eurofins Lancasi              |                | es Environme | ntal - 10670 | ,     |        |                           |                                       |                            |                    |         |                       |       |  |
| 471-34-1              | Total Hardness as CaCO3                   | 468            |              | mg/l         | 0.20  | 0.096  | 1                         | SM 2340 B                             | 12-Feb-20<br>08:55         | 12-Feb-20<br>08:55 | 10670   | 04306256              | 3     |  |
|                       | acted Analyses                            | _              |              |              |       |        |                           |                                       |                            |                    |         |                       |       |  |
|                       | by method SW-846 50300                    | <del></del>    | on Emiliaria | ntal 10670   | 1     |        |                           |                                       |                            |                    |         |                       |       |  |
|                       | erformed by Eurofins Lancasi              |                | es Environme |              |       | 0.0    | 4                         | C/M 046 00000                         | 10 505 00                  | 10 504 00          | 10670   | 200404 *              |       |  |
| 630-20-6              | 1,1,1,2-Tetrachloroethane                 | < 1            |              | ug/l         | 1     | 0.2    | 1                         | SW-846 8260C                          | 18-Feb-20<br>11:52         | 18-Feb-20<br>11:53 | 10670   | .200491A              | •     |  |
| 71-55-6               | 1,1,1-Trichloroethane                     | < 1            |              | ug/l         | 1     | 0.3    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 79-34-5               | 1,1,2,2-Tetrachloroethane                 | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 79-00-5               | 1,1,2-Trichloroethane                     | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 75-34-3               | 1,1-Dichloroethane                        | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 75-35-4               | 1,1-Dichloroethene                        | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 563-58-6              | 1,1-Dichloropropene                       | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 87-61-6               | 1,2,3-Trichlorobenzene                    | < 5            |              | ug/l         | 5     | 0.4    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 96-18-4               | 1,2,3-Trichloropropane                    | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     | "                          |                    | "       |                       |       |  |
| 120-82-1              | 1,2,4-Trichlorobenzene                    | < 5            |              | ug/l         | 5     | 0.3    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 95-63-6               | 1,2,4-Trimethylbenzene                    | < 5            |              | ug/l         | 5     | 1      | 1                         | "                                     | "                          | "                  | "       |                       |       |  |
| 96-12-8               | 1,2-Dibromo-3-chloroprop                  | < 5            |              | ug/l         | 5     | 0.3    | 1                         | n                                     | "                          | "                  | n       | "                     |       |  |
| 106-93-4              | 1,2-Dibromoethane                         | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          |                    | "       |                       |       |  |
| 95-50-1               | 1,2-Dichlorobenzene                       | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     |                            |                    | "       |                       |       |  |
| 107-06-2              | 1,2-Dichloroethane                        | < 1            |              | ug/l         | 1     | 0.3    | 1                         | "                                     | "                          |                    | "       |                       |       |  |
| 78-87-5               | 1,2-Dichloropropane                       | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 108-70-3              | 1,3,5-Trichlorobenzene                    | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     | "                          | "                  | "       |                       |       |  |
| 108-67-8              | 1,3,5-Trimethylbenzene                    | < 5            |              | ug/l         | 5     | 0.3    | 1                         |                                       |                            |                    | "       |                       |       |  |
| 541-73-1              | 1,3-Dichlorobenzene                       | < 5            |              | ug/l         | 5     | 0.2    | 1                         |                                       | "                          |                    | "       |                       |       |  |
| 142-28-9              | 1,3-Dichloropropane                       | < 1            |              | ug/l         | 1     | 0.2    | 1                         |                                       | "                          |                    | "       | "                     |       |  |
| 106-46-7              | 1,4-Dichlorobenzene                       | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     | "                          | "                  | "       |                       |       |  |
| 123-91-1              | 1,4-Dioxane                               | < 250          |              |              | 250   | 29     | 1                         | "                                     |                            |                    | "       |                       |       |  |
| 594-20-7              |                                           |                |              | ug/l         |       |        |                           | ,,                                    |                            |                    |         |                       |       |  |
| 78-93-3               | 2,2-Dichloropropane                       | < 1<br>< 10    |              | ug/l         | 1     | 0.3    | 1                         | "                                     | "                          |                    | "       | "                     |       |  |
|                       | 2-Butanone                                |                |              | ug/l         | 10    | 0.3    | 1                         | "                                     | "                          |                    |         |                       |       |  |
| 95-49-8               | 2-Chlorotoluene                           | < 5            |              | ug/l         | 5     | 0.2    | 1                         |                                       |                            |                    | "       |                       |       |  |
| 591-78-6              | 2-Hexanone                                | < 10           |              | ug/l         | 10    | 0.3    | 1                         | "                                     |                            |                    |         |                       |       |  |
| 106-43-4              | 4-Chlorotoluene                           | < 5            |              | ug/l         | 5     | 0.2    | 1                         |                                       |                            |                    |         |                       |       |  |
| 108-10-1              | 4-Methyl-2-pentanone                      | < 10           |              | ug/l         | 10    | 0.5    | 1                         |                                       |                            |                    |         |                       |       |  |
| 67-64-1               | Acetone                                   | 5              | J.           | ug/l         | 20    | 0.7    | 1                         |                                       |                            |                    |         |                       |       |  |
| 107-13-1              | Acrylonitrile                             | < 20           |              | ug/l         | 20    | 0.3    | 1                         |                                       |                            |                    |         |                       |       |  |
| 71-43-2               | Benzene                                   | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 108-86-1              | Bromobenzene                              | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     | "                          | "                  | "       | "                     |       |  |
| 74-97-5               | Bromochloromethane                        | < 5            |              | ug/l         | 5     | 0.2    | 1                         | "                                     |                            | "                  | "       |                       |       |  |
| 75-27-4               | Bromodichloromethane                      | < 1            |              | ug/l         | 1     | 0.2    | 1                         | "                                     | "                          | "                  |         |                       |       |  |

| Effluent    | ample Identification  Offluent  C57444-02 |                |              | Client F     | Project #<br>one] |     | <u>Matrix</u><br>Ground W |              | ection Date<br>5-Feb-20 12 |                    | Received<br>07-Feb-20 |          |       |
|-------------|-------------------------------------------|----------------|--------------|--------------|-------------------|-----|---------------------------|--------------|----------------------------|--------------------|-----------------------|----------|-------|
| CAS No.     | Analyte(s)                                | Result         | Flag         | Units        | *RDL              | MDL | Dilution                  | Method Ref.  | Prepared                   | Analyzed           | Analyst               | Batch    | Cert. |
| Subcontra   | acted Analyses                            |                |              |              |                   |     |                           |              |                            |                    |                       |          |       |
| Subcontra   | acted Analyses                            |                |              |              |                   |     |                           |              |                            |                    |                       |          |       |
|             | erformed by Eurofins Lancast              | er Laboratorie | es Environme | ental - 1067 | 0                 |     |                           |              |                            |                    |                       |          |       |
| 75-25-2     | Bromoform                                 | < 4            |              | ug/l         | 4                 | 1   | 1                         | SW-846 8260C | 18-Feb-20<br>11:52         | 18-Feb-20<br>11:53 | 10670                 | .200491A | ı     |
| 74-83-9     | Bromomethane                              | < 1            |              | ug/l         | 1                 | 0.3 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 75-15-0     | Carbon Disulfide                          | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 56-23-5     | Carbon Tetrachloride                      | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 108-90-7    | Chlorobenzene                             | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 75-00-3     | Chloroethane                              | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 67-66-3     | Chloroform                                | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 74-87-3     | Chloromethane                             | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 156-59-2    | cis-1,2-Dichloroethene                    | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     |          |       |
| 10061-01-5  | cis-1,3-Dichloropropene                   | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 108-20-3    | di-Isopropyl ether                        | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 124-48-1    | Dibromochloromethane                      | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 74-95-3     | Dibromomethane                            | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 75-71-8     | Dichlorodifluoromethane                   | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 64-17-5     | Ethanol                                   | < 750          |              | ug/l         | 750               | 280 | 1                         | "            | "                          | "                  | "                     |          |       |
| 60-29-7     | Ethyl ether                               | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 637-92-3    | Ethyl t-butyl ether                       | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     |          |       |
| 100-41-4    | Ethylbenzene                              | < 1            |              | ug/l         | 1                 | 0.4 | 1                         | "            | "                          | "                  | "                     |          |       |
| 76-13-1     | Freon 113                                 | < 10           |              | ug/l         | 10                | 0.2 | 1                         | "            | "                          | "                  | "                     |          |       |
| 87-68-3     | Hexachlorobutadiene                       | < 5            |              | ug/l         | 5                 | 2   | 1                         | "            | "                          | "                  | "                     | "        |       |
| 98-82-8     | Isopropylbenzene                          | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     |          |       |
| 179601-23-1 | 1 m+p-Xylene                              | < 5            |              | ug/l         | 5                 | 1   | 1                         | "            | "                          | "                  | "                     |          |       |
| 1634-04-4   | Methyl Tertiary Butyl Ether               | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 75-09-2     | Methylene Chloride                        | < 1            |              | ug/l         | 1                 | 0.3 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 104-51-8    | n-Butylbenzene                            | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 103-65-1    | n-Propylbenzene                           | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  |                       | "        |       |
| 91-20-3     | Naphthalene                               | < 5            |              | ug/l         | 5                 | 1   | 1                         | "            | "                          | "                  | "                     | "        |       |
| 95-47-6     | o-Xylene                                  | < 1            |              | ug/l         | 1                 | 0.4 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 99-87-6     | p-Isopropyltoluene                        | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          |                    | "                     | "        |       |
| 135-98-8    | sec-Butylbenzene                          | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 100-42-5    | Styrene                                   | < 5            |              | ug/l         | 5                 | 0.2 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 994-05-8    | t-Amyl methyl ether                       | < 5            |              | ug/l         | 5                 | 0.8 | 1                         | "            | "                          | "                  | "                     | "        |       |
| 75-65-0     | t-Butyl alcohol                           | < 50           |              | ug/l         | 50                | 12  | 1                         | ıı .         | "                          | "                  | "                     | "        |       |
| 98-06-6     | tert-Butylbenzene                         | < 5            |              | ug/l         | 5                 | 0.3 | 1                         | "            | "                          | "                  |                       | "        |       |
| 127-18-4    | Tetrachloroethene                         | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | ıı           | "                          | "                  | "                     | "        |       |
| 109-99-9    | Tetrahydrofuran                           | < 10           |              | ug/l         | 10                | 0.7 | 1                         | II .         | "                          | "                  | "                     | "        |       |
| 108-88-3    | Toluene                                   | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | II .         | "                          | "                  | "                     | "        |       |
| 156-60-5    | trans-1,2-Dichloroethene                  | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | ıı .         | "                          | "                  | "                     | "        |       |
| 10061-02-6  | trans-1,3-Dichloropropene                 | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | ıı .         | "                          | "                  | "                     | "        |       |
| 110-57-6    | trans-1,4-Dichloro-2-buten                | < 50           |              | ug/l         | 50                | 6   | 1                         | "            | "                          | "                  | "                     | "        |       |
| 79-01-6     | Trichloroethene                           | < 1            |              | ug/l         | 1                 | 0.2 | 1                         |              | "                          | "                  |                       | "        |       |
| 75-69-4     | Trichlorofluoromethane                    | < 1            |              | ug/l         | 1                 | 0.2 | 1                         | "            | "                          | "                  |                       |          |       |
| 75-03-4     | Vinyl Chloride                            | < 1            |              | ug/l         | 1                 | 0.2 | 1                         |              | "                          | "                  | "                     | "        |       |

| Sample Identification  Effluent SC57444-02 |                                        |                | Client Project # [none] |               |       | Matrix<br>Ground Water |          | llection Date/Time<br>06-Feb-20 12:30 |                    | Received<br>07-Feb-20 |         |          |       |
|--------------------------------------------|----------------------------------------|----------------|-------------------------|---------------|-------|------------------------|----------|---------------------------------------|--------------------|-----------------------|---------|----------|-------|
| CAS No.                                    | Analyte(s)                             | Result         | Flag                    | Units         | *RDL  | MDL                    | Dilution | Method Ref.                           | Prepared           | Analyzed              | Analyst | Batch    | Cert. |
| Subcontra                                  | cted Analyses                          |                |                         |               |       |                        |          |                                       |                    |                       |         |          |       |
| Subcontra                                  | icted Analyses                         |                |                         |               |       |                        |          |                                       |                    |                       |         |          |       |
| Analysis pe                                | erformed by Eurofins Lanca             | ster Laborator | ies Environm            | ental - 10670 | )     |                        |          |                                       |                    |                       |         |          |       |
| Surrogate r                                | recoveries:                            |                |                         |               |       |                        |          |                                       |                    |                       |         |          |       |
| 17060-07-0                                 | 1,2-Dichloroethane-d4                  | 102            |                         |               | 80-12 | 20 %                   |          | SW-846 8260C                          | 18-Feb-20<br>11:52 | -Feb-20 11:           | 10670   | .200491A | ,     |
| 460-00-4                                   | 4-Bromofluorobenzene                   | 95             |                         |               | 80-12 | 20 %                   |          | "                                     | "                  | "                     | "       |          |       |
| 1868-53-7                                  | Dibromofluoromethane                   | 100            |                         |               | 80-12 | 20 %                   |          | u u                                   | "                  | "                     | "       | "        |       |
| 2037-26-5                                  | Toluene-d8                             | 98             |                         |               | 80-12 | 20 %                   |          | n .                                   | "                  | "                     | "       | "        |       |
|                                            | cted Analyses<br>by method SM4500-H B- | <u>11</u>      |                         |               |       |                        |          |                                       |                    |                       |         |          |       |
| Analysis pe                                | erformed by Phoenix Enviro             | nmental Labs,  | Inc. * - CT00           | 7             |       |                        |          |                                       |                    |                       |         |          |       |
|                                            | рН                                     | 8.38           | рН                      | pH Units      | 1.00  | 1.00                   | 1        | SM4500-H B-11                         | 07-Feb-20<br>21:37 | 07-Feb-20<br>21:37    | 11301   | 517861A  |       |

19-Feb-20 11:34 Page 14 of 22

#### **Notes and Definitions**

E. Exceeded calibration range of the instrument

J. Estimated value

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

19-Feb-20 11:34 Page 22 of 22

> (5) 444

# Special Handling:

🔀 Standard TAT - 7 to 10 business days

|   |                | 1   |
|---|----------------|-----|
|   | Rush TAT       |     |
|   | TA             |     |
|   | $\neg$         | 10  |
|   | 1              | - 6 |
|   | D              | į.  |
|   | ate            |     |
|   | - Date Needed: |     |
|   | Ö              | 10  |
|   | 0              | 13  |
|   | ed:            | 17  |
|   |                | - 8 |
| 1 |                |     |
| 1 |                | - 8 |

CHAIN OF CUSTODY RECORD

eurofins :

Spectrum Analytical

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Complex disposed after 30 days unless other

| anning charges may apply                                    | 4 2                           |                                                      | ¥                                                                                                                                                                                                                                    |
|-------------------------------------------------------------|-------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QA/QC Reporting Notes:                                      | List Preservative Code below: | 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid<br>11= 12= | F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid<br>7=CH3OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12= 12= |
| , , , , , , , , , , , , , , , , , , ,                       | R. Allen                      | P.O.No.: Quote #:                                    | Project Mgr. Tose Hernandez                                                                                                                                                                                                          |
|                                                             | Sampler(s):                   |                                                      | Telephone #: (716) 684-8060                                                                                                                                                                                                          |
| ora State: NY                                               | Location: East Avrora         |                                                      |                                                                                                                                                                                                                                      |
|                                                             | Site Name: Mr CS OM & M       |                                                      | Lancaster NY 14086                                                                                                                                                                                                                   |
|                                                             | Project No:                   | Invoice To: ESE INC                                  | 1                                                                                                                                                                                                                                    |
| Samples disposed after 50 days unless otherwise instructed. | Samples dispose               |                                                      |                                                                                                                                                                                                                                      |

| Techsol Sevent investory  Techsol Sevent in the period of                                 | Condition upon receipt: Custody Seals: |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| A Received by:  Received by:  Received by:  A SANISO, 9-Denonzed Water 10-H <sub>3</sub> PO <sub>4</sub> 11= 12-  Containers  Containe            | E-mail to:                             |
| A INSTAURANT CHAPTON III III III III III III III III III I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EDD format:                            |
| OH 8-NaHSO <sub>4</sub> 9-Deconized water 10=H <sub>2</sub> PO <sub>4</sub> 11= 12=  No-Soil SI_Sludge A=Indoor/Ambient Air SG=Soil Gas  N1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                      |
| OH 8=NaHSO <sub>4</sub> 9-Deionized Water 10=H <sub>2</sub> PO <sub>4</sub> 111= 12=  Trinking Water GW-Groundwater 'SW-Surface Water WW=Waste Water SO-Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  N1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| OH 8=NaHSO <sub>2</sub> 9=Deionized Water 10=H <sub>2</sub> PO <sub>4</sub> 111= 12=  OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>2</sub> PO <sub>4</sub> 111= 12=  SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  NI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| or Handle of Politics water 10=H3PO4 11= 12= 12= 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  Frinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water SO=Soil Gas  SO=Soil SI=Sludge A=Indoor/Ambient Air SG=Soil Gas  N=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  Prinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water SG=Soil Gas  SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  N1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| OH 8=NaHSO <sub>4</sub> 9=Deionized water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  Trinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water Waste Water SO=Soil Gas  SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  X2= X3=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  Trinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water W=Waste Water W=W=Waste Water W=Waste Water W=W=Waste Water W=W=W=W=W=W=W=W=W=W=W=W=W=W=W=W=W=W=W=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  Frinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water W=Waste W=Waste Water W=Waste Water W=Waste Water W=Waste Water W=Waste W=Waste W=Waste W=Waste W=Waste W=Waste W=Waste W=Waste W=Waste W | _                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>8</sub> PO <sub>4</sub> 11= 12=  Trinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water Water Water SG=Soil Gas  SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  X2= X3= Containers  G=Grab Carbon Grab Containers  Type Matrix # of Clear Glass # of Plastic  # of Plastic  # of Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                      |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12= Containers  Frinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water W=Waste W=Waste Water W=Waste Water W=Waste Water W=Waste Water W=Waste  | 1-1                                    |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12=  **Trinking Water GW=Groundwater 'SW=Surface Water WW=Waste Water Water Water SG=Soil Gas  **SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas  **X3=**  **X3=**  **X3=**  **X3=**  **X4=**  **X4=**  **X5=**  **X5=**  **X6=**  **Containers  **Containers  **X6=**  ** | VC                                     |
| OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> 11= 12= Containers  Frinking Water GW=Groundwater SW=Surface Water WW=Waste Water Containers  SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dnes<br>OC                             |
| iace Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                      |
| 11 =   12 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                               |
| 1]=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 2                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | List Preservative Code below:          |

Ambient Liced

☐ Refrigerated ☐ DI VOA Frozen

☐ Soil Jar Frozen



| V | Final Report   |
|---|----------------|
|   | Revised Report |

Report Date: 27-Jan-20 13:22

### Laboratory Report SC57271

Ecology and Environment, Inc. 368 Pleasant View Drive Lancaster, NY 14086 Attn: Jose Ramirez Hernandez

Project: Mr. C's - East Aurora, NY

Project #: [none]

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

New York # 11393 USDA # P330-15-00375

Authorized by:

Dawn Wojcik Laboratory Director

Jawn & Woscik

Eurofins Environment Testing New Englandl holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 31 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Environment Testing New England.

Eurofins Environment Testing New England is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Environment Testing New England is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.eurofinsus.com/Spectrum for a full listing of our current certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 413-789-9018 with any questions regarding the data contained in this laboratory report.

#### **Sample Summary**

Work Order: SC57271

**Project:** Mr. C's - East Aurora, NY

**Project Number:** [none]

| <b>Laboratory ID</b> | Client Sample ID | <b>Matrix</b> | <b>Date Sampled</b> | <b>Date Received</b> |
|----------------------|------------------|---------------|---------------------|----------------------|
| SC57271-01           | PW-4             | Ground Water  | 15-Jan-20 00:00     | 16-Jan-20 09:20      |
| SC57271-02           | PW-5             | Ground Water  | 15-Jan-20 00:00     | 16-Jan-20 09:20      |
| SC57271-03           | PW-6             | Ground Water  | 15-Jan-20 00:00     | 16-Jan-20 09:20      |
| SC57271-04           | PW-7             | Ground Water  | 15-Jan-20 00:00     | 16-Jan-20 09:20      |
| SC57271-05           | PW-8             | Ground Water  | 15-Jan-20 00:00     | 16-Jan-20 09:20      |

#### **CASE NARRATIVE:**

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.1 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

#### SW-846 8260C, GC/MS Volatiles

#### Sample #s: 1241393

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

The referenced method allows a maximum of 20% of the analytes in the calibration to exceed the 20% Drift continuing calibration verification criteria. The reported concentration in the associated sample(s) is considered to be estimated. Therefore the result for the following analyte(s) is estimated: Vinyl Chloride.

#### Sample #s: 1241390, 1241391, 1241392

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

The affected analyte(s) and response(s) are:

Analyte Response (%Drift)
Dichlorodifluoromethane -38
Chloromethane -30
Bromomethane -33
Chloroethane -29
Trichlorofluoromethane -35

The referenced method allows a maximum of 20% of the analytes in the calibration to exceed the 20% Drift continuing calibration verification criteria. The reported concentration in the associated sample(s) is considered to be estimated. Therefore the result for the following analyte(s) is estimated:

The affected analyte(s) and response(s) are:

Analyte

Response (%Drift)

Vinyl Chloride -30

#### Sample #s: 1241389

A Report Limit Verification (RLV) standard is analyzed to confirm sensitivity of the instrument for samples with non-detect analytes associated with a continuing calibration verification standard exhibiting low response (outside the 20%D criteria). The RLV standard shows adequate sensitivity at or below the reporting limit.

The affected analyte(s) and response(s) are:

Analyte Response (%Drift)
Dichlorodifluoromethane -38
Chloromethane -30
Vinyl Chloride -30
Bromomethane -33
Chloroethane -29
Trichlorofluoromethane -35

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

#### **SW-846 8260C**

Samples:

SC57271-01 PW-4

Estimated value

Acetone

trans-1,2-Dichloroethene

Exceeded calibration range of the instrument

Tetrachloroethene

SC57271-02 *PW-5* 

Estimated value

Acetone

Exceeded calibration range of the instrument

Tetrachloroethene

SC57271-03 PW-6

Estimated value

Methyl Tertiary Butyl Ether trans-1,2-Dichloroethene

Vinyl Chloride

Exceeded calibration range of the instrument

Tetrachloroethene

SC57271-04 PW-7

Estimated value

1,1-Dichloroethene

Exceeded calibration range of the instrument

cis-1,2-Dichloroethene Tetrachloroethene

SC57271-04RE01 PW-7

Estimated value

trans-1,2-Dichloroethene

SC57271-05 PW-8

Estimated value

Acetone

trans-1,2-Dichloroethene

#### **Summary of Hits**

| <b>Lab ID:</b> SC57271-01     |        |      | Client ID: PW-4 |       |                   |
|-------------------------------|--------|------|-----------------|-------|-------------------|
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| Acetone                       | 4      | J.   | 100             | ug/l  | SW-846 8260C      |
| cis-1,2-Dichloroethene        | 69     |      | 5               | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2300   | E.   | 5               | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 2      | J.   | 5               | ug/l  | SW-846 8260C      |
| Trichloroethene               | 170    |      | 5               | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-01RE01 |        |      | Client ID: PW-4 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| cis-1,2-Dichloroethene        | 64     |      | 50              | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2300   |      | 50              | ug/l  | SW-846 8260C      |
| Trichloroethene               | 170    |      | 50              | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-02     |        |      | Client ID: PW-5 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| Acetone                       | 5      | J.   | 100             | ug/l  | SW-846 8260C      |
| cis-1,2-Dichloroethene        | 85     |      | 5               | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2700   | E.   | 5               | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 12     |      | 5               | ug/l  | SW-846 8260C      |
| Trichloroethene               | 120    |      | 5               | ug/l  | SW-846 8260C      |
| Vinyl Chloride                | 6      |      | 5               | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-02RE01 |        |      | Client ID: PW-5 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| cis-1,2-Dichloroethene        | 76     |      | 50              | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2600   |      | 50              | ug/l  | SW-846 8260C      |
| Trichloroethene               | 110    |      | 50              | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-03     |        |      | Client ID: PW-6 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| cis-1,2-Dichloroethene        | 370    |      | 5               | ug/l  | SW-846 8260C      |
| Methyl Tertiary Butyl Ether   | 3      | J.   | 5               | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2700   | E.   | 5               | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 4      | J.   | 5               | ug/l  | SW-846 8260C      |
| Trichloroethene               | 260    |      | 5               | ug/l  | SW-846 8260C      |
| Vinyl Chloride                | 3      | J.   | 5               | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-03RE01 |        |      | Client ID: PW-6 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| cis-1,2-Dichloroethene        | 330    |      | 50              | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 2700   |      | 50              | ug/l  | SW-846 8260C      |
| Trichloroethene               | 250    |      | 50              | ug/l  | SW-846 8260C      |
|                               |        |      |                 |       |                   |

27-Jan-20 13:22 Page 6 of 31

Lab ID: SC57271-04 Client ID: PW-7

| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
|-------------------------------|--------|------|-----------------|-------|-------------------|
| 1,1-Dichloroethene            | 5      | J.   | 10              | ug/l  | SW-846 8260C      |
| cis-1,2-Dichloroethene        | 3900   | E.   | 10              | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 4500   | E.   | 10              | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 36     |      | 10              | ug/l  | SW-846 8260C      |
| Trichloroethene               | 540    |      | 10              | ug/l  | SW-846 8260C      |
| Vinyl Chloride                | 370    |      | 10              | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-04RE01 |        |      | Client ID: PW-7 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| cis-1,2-Dichloroethene        | 3700   |      | 100             | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 4300   |      | 100             | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 26     | J.   | 100             | ug/l  | SW-846 8260C      |
| Trichloroethene               | 490    |      | 100             | ug/l  | SW-846 8260C      |
| Vinyl Chloride                | 360    |      | 100             | ug/l  | SW-846 8260C      |
| <b>Lab ID:</b> SC57271-05     |        |      | Client ID: PW-8 |       |                   |
| Parameter                     | Result | Flag | Reporting Limit | Units | Analytical Method |
| Acetone                       | 0.8    | J.   | 20              | ug/l  | SW-846 8260C      |
| Chloroform                    | 3      |      | 1               | ug/l  | SW-846 8260C      |
| cis-1,2-Dichloroethene        | 220    |      | 1               | ug/l  | SW-846 8260C      |
| Methyl Tertiary Butyl Ether   | 3      |      | 1               | ug/l  | SW-846 8260C      |
| Tetrachloroethene             | 150    |      | 1               | ug/l  | SW-846 8260C      |
| trans-1,2-Dichloroethene      | 0.8    | J.   | 1               | ug/l  | SW-846 8260C      |
| Trichloroethene               | 9      |      | 1               | ug/l  | SW-846 8260C      |
| Vinyl Chloride                | 19     |      | 1               | ug/l  | SW-846 8260C      |
|                               |        |      |                 |       |                   |

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

| PW-4        | lentification                |               |               | Client P      | •            |      | Matrix          |              | ection Date        |                    |         | ceived   |      |
|-------------|------------------------------|---------------|---------------|---------------|--------------|------|-----------------|--------------|--------------------|--------------------|---------|----------|------|
| SC57271-01  |                              | [no           | [none]        |               | Ground Water |      | 15-Jan-20 00:00 |              |                    | Jan-20             |         |          |      |
| CAS No.     | Analyte(s)                   | Result        | Flag          | Units         | *RDL         | MDL  | Dilution        | Method Ref.  | Prepared           | Analyzed           | Analyst | Batch    | Cert |
| Subcontra   | cted Analyses                |               |               |               |              |      |                 |              |                    |                    |         |          |      |
| Subcontra   | acted Analyses               |               |               |               |              |      |                 |              |                    |                    |         |          |      |
| Analysis pe | erformed by Eurofins Lancast | er Laboratori | ies Environme | ental - 10670 | )            |      |                 |              |                    |                    |         |          |      |
| 56-59-2     | cis-1,2-Dichloroethene       | 69            |               | ug/l          | 5            | 1    | 5               | SW-846 8260C | 23-Jan-20<br>23:17 | 23-Jan-20<br>23:18 | 10670   | '200231A | u    |
| 0061-01-5   | cis-1,3-Dichloropropene      | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 08-20-3     | di-Isopropyl ether           | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 24-48-1     | Dibromochloromethane         | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 4-95-3      | Dibromomethane               | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| '5-71-8     | Dichlorodifluoromethane      | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 64-17-5     | Ethanol                      | < 3800        |               | ug/l          | 3800         | 1400 | 5               | "            | "                  | "                  | "       | "        |      |
| 0-29-7      | Ethyl ether                  | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 37-92-3     | Ethyl t-butyl ether          | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 00-41-4     | Ethylbenzene                 | < 5           |               | ug/l          | 5            | 2    | 5               | "            | "                  | "                  | "       | "        |      |
| '6-13-1     | Freon 113                    | < 50          |               | ug/l          | 50           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 37-68-3     | Hexachlorobutadiene          | < 25          |               | ug/l          | 25           | 10   | 5               | "            | "                  | "                  | "       | "        |      |
| 8-82-8      | Isopropylbenzene             | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 79601-23-1  | m+p-Xylene                   | < 25          |               | ug/l          | 25           | 5    | 5               | "            | "                  | "                  | "       | "        |      |
| 634-04-4    | Methyl Tertiary Butyl Ether  | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 75-09-2     | Methylene Chloride           | < 5           |               | ug/l          | 5            | 2    | 5               | "            | "                  | "                  | "       | "        |      |
| 04-51-8     | n-Butylbenzene               | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 03-65-1     | n-Propylbenzene              | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 1-20-3      | Naphthalene                  | < 25          |               | ug/l          | 25           | 5    | 5               | "            | "                  | "                  | "       | "        |      |
| 5-47-6      | o-Xylene                     | < 5           |               | ug/l          | 5            | 2    | 5               | "            | "                  | "                  | "       | "        |      |
| 9-87-6      | p-Isopropyltoluene           | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 35-98-8     | sec-Butylbenzene             | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 00-42-5     | Styrene                      | < 25          |               | ug/l          | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 94-05-8     | t-Amyl methyl ether          | < 25          |               | ug/l          | 25           | 4    | 5               | "            | "                  | "                  | "       | "        |      |
| 75-65-0     | t-Butyl alcohol              | < 250         |               | ug/l          | 250          | 60   | 5               | "            | "                  | "                  | "       | "        |      |
| 8-06-6      | tert-Butylbenzene            | < 25          |               | ug/l          | 25           | 2    | 5               | "            | "                  | "                  | "       | "        |      |
| 27-18-4     | Tetrachloroethene            | 2,300         | E.            | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 09-99-9     | Tetrahydrofuran              | < 50          |               | ug/l          | 50           | 4    | 5               | "            | "                  | "                  | "       | "        |      |
| 08-88-3     | Toluene                      | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 56-60-5     | trans-1,2-Dichloroethene     | 2             | J.            | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 0061-02-6   | trans-1,3-Dichloropropene    | < 5           |               | ug/l          | 5            | 1    | 5               |              | "                  | "                  | "       | "        |      |
| 10-57-6     | trans-1,4-Dichloro-2-buten e | < 250         |               | ug/l          | 250          | 30   | 5               | "            | "                  | "                  | "       | "        |      |
| 9-01-6      | Trichloroethene              | 170           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 75-69-4     | Trichlorofluoromethane       | < 5           |               | ug/l          | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 75-01-4     | Vinyl Chloride               | < 5           |               | ug/l          | 5            | 1    | 5               | u u          | "                  | "                  | "       | "        |      |
| Surrogate r | recoveries:                  |               |               |               |              |      |                 |              |                    |                    |         |          |      |
| 7060-07-0   | 1,2-Dichloroethane-d4        | 99            |               |               | 80-12        | 0 %  |                 | u u          | "                  | "                  | "       | "        |      |
| 160-00-4    | 4-Bromofluorobenzene         | 90            |               |               | 80-12        | 0 %  |                 | "            | "                  | "                  | "       | "        |      |
| 868-53-7    | Dibromofluoromethane         | 96            |               |               | 80-12        | 0 %  |                 | "            | "                  | "                  | "       | "        |      |
| 2037-26-5   | Toluene-d8                   | 93            |               |               | 80-12        | 0 %  |                 | "            | "                  | "                  | "       | "        |      |
|             |                              |               |               |               |              |      |                 |              |                    |                    |         |          |      |

| <u> </u>              | <u>dentification</u>         |              |               | Client P     | -            |      | Matrix          |              | ection Date        |                    |         | ceived   |      |
|-----------------------|------------------------------|--------------|---------------|--------------|--------------|------|-----------------|--------------|--------------------|--------------------|---------|----------|------|
| SC57271-02            |                              | [none]       |               |              | Ground Water |      | 15-Jan-20 00:00 |              |                    | 16-Jan-20          |         |          |      |
| CAS No.               | Analyte(s)                   | Result       | Flag          | Units        | *RDL         | MDL  | Dilution        | Method Ref.  | Prepared           | Analyzed           | Analyst | Batch    | Cert |
| Subcontra             | acted Analyses               |              |               |              |              |      |                 |              |                    |                    |         |          |      |
| Subcontra             | acted Analyses               |              |               |              |              |      |                 |              |                    |                    |         |          |      |
| Analysis pe           | erformed by Eurofins Lancast | er Laborator | ies Environme | ental - 1067 | 9            |      |                 |              |                    |                    |         |          |      |
| 156-59-2              | cis-1,2-Dichloroethene       | 85           |               | ug/l         | 5            | 1    | 5               | SW-846 8260C | 24-Jan-20<br>00:01 | 24-Jan-20<br>00:02 | 10670   | '200231A | ,    |
| 10061-01-5            | cis-1,3-Dichloropropene      | < 5          |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 108-20-3              | di-Isopropyl ether           | < 5          |               | ug/l         | 5            | 1    | 5               | m .          | "                  | "                  | "       | "        |      |
| 124-48-1              | Dibromochloromethane         | < 5          |               | ug/l         | 5            | 1    | 5               | m .          | "                  | "                  | "       | "        |      |
| 74-95-3               | Dibromomethane               | < 5          |               | ug/l         | 5            | 1    | 5               | m .          | "                  | "                  | "       | "        |      |
| 75-71-8               | Dichlorodifluoromethane      | < 5          |               | ug/l         | 5            | 1    | 5               | m .          | "                  | "                  | "       | "        |      |
| 64-17-5               | Ethanol                      | < 3800       |               | ug/l         | 3800         | 1400 | 5               | "            | "                  | "                  | "       | "        |      |
| 60-29-7               | Ethyl ether                  | < 25         |               | ug/l         | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 637-92-3              | Ethyl t-butyl ether          | < 5          |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 100-41-4              | Ethylbenzene                 | < 5          |               | ug/l         | 5            | 2    | 5               | "            | "                  | "                  | "       |          |      |
| 76-13-1               | Freon 113                    | < 50         |               | ug/l         | 50           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 37-68-3               | Hexachlorobutadiene          | < 25         |               | ug/l         | 25           | 10   | 5               | "            | "                  | "                  | "       | "        |      |
| 98-82-8               | Isopropylbenzene             | < 25         |               | ug/l         | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 179601-23-1           | m+p-Xylene                   | < 25         |               | ug/l         | 25           | 5    | 5               | "            | "                  | "                  | "       | "        |      |
| 1634-04-4             | Methyl Tertiary Butyl Ether  | < 5          |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 75-09-2               | Methylene Chloride           | < 5          |               | ug/l         | 5            | 2    | 5               | "            | "                  | "                  | "       |          |      |
| 104-51-8              | n-Butylbenzene               | < 25         |               | ug/l         | 25           | 1    | 5               | "            | "                  | "                  | "       |          |      |
| 103-65-1              | n-Propylbenzene              | < 25         |               | ug/l         | 25           | 1    | 5               | "            | "                  | "                  |         |          |      |
| 91-20-3               | Naphthalene                  | < 25         |               | ug/l         | 25           | 5    | 5               | "            |                    | "                  |         |          |      |
| 95-47-6               | o-Xylene                     | < 5          |               | ug/l         | 5            | 2    | 5               | "            | "                  | "                  |         | "        |      |
| 99-87-6               | p-Isopropyltoluene           | < 25         |               | ug/l         | 25           | 1    | 5               | "            |                    | "                  |         |          |      |
| 135-98-8              | sec-Butylbenzene             | < 25         |               | ug/l         | 25           | 1    | 5               | "            |                    | "                  |         |          |      |
| 100-42-5              | Styrene                      | < 25         |               | ug/l         | 25           | 1    | 5               | "            | "                  | "                  | "       | "        |      |
| 994-05-8              | t-Amyl methyl ether          | < 25         |               | ug/l         | 25           | 4    | 5               | "            |                    | "                  | "       |          |      |
| 75-65-0               | t-Butyl alcohol              | < 250        |               | ug/l         | 250          | 60   | 5               | "            |                    | "                  | "       |          |      |
| 98-06-6               | tert-Butylbenzene            | < 25         |               | ug/l         | 25           | 2    | 5               | "            | "                  | "                  | "       |          |      |
| 127-18-4              | Tetrachloroethene            | 2,700        | E.            | ug/l         | 5            | 1    | 5               | "            | "                  | "                  |         |          |      |
| 109-99-9              | Tetrahydrofuran              | < 50         |               | ug/l         | 50           | 4    | 5               | "            | "                  | "                  | "       |          |      |
| 108-88-3              | Toluene                      | < 5          |               | ug/l         | 5            | 1    | 5               | "            |                    | "                  |         |          |      |
| 156-60-5              | trans-1,2-Dichloroethene     | 12           |               | ug/l         | 5            | 1    | 5               | "            |                    | "                  |         |          |      |
| 10061-02-6            | trans-1,3-Dichloropropene    | < 5          |               | ug/l         | 5            | 1    | 5               | "            |                    | "                  |         |          |      |
| 110-57-6              | trans-1,4-Dichloro-2-buten   | < 250        |               | ug/l         | 250          | 30   | 5               | "            | "                  | "                  | "       | "        |      |
| 79-01-6               | Trichloroethene              | 120          |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  |         | "        |      |
| 75-69-4               | Trichlorofluoromethane       | < 5          |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  |         | "        |      |
| 75-01-4               | Vinyl Chloride               | 6            |               | ug/l         | 5            | 1    | 5               | "            | "                  | "                  |         | "        |      |
|                       | recoveries:                  |              |               |              |              |      |                 |              |                    |                    |         |          |      |
| 17060-07-0            | 1,2-Dichloroethane-d4        | 101          |               |              | 80-12        | 0 %  |                 | II .         | "                  | "                  | "       | "        |      |
| 460-00-4              | 4-Bromofluorobenzene         | 90           |               |              | 80-12        | 0 %  |                 | "            | "                  | "                  | "       | "        |      |
| 1868-53-7             | Dibromofluoromethane         | 98           |               |              | 80-12        | 0 %  |                 | n .          | "                  | "                  | "       | "        |      |
| 2037-26-5             | Toluene-d8                   | 93           |               |              | 80-12        | 0 %  |                 | ıı           | "                  | "                  | "       | "        |      |
| <del>Re-an</del> alys | sis of Subcontracted Analys  |              |               |              |              |      |                 |              |                    |                    |         |          |      |
|                       | by method SW-846 5030C       |              |               |              |              |      |                 |              |                    |                    |         |          |      |

80-120 %

2037-26-5

Toluene-d8

94

| Sample Id   | lentification                                        |               |               | Client P      | roject# |      | Matrix      | Colle        | ection Date                 | /Time              | Re      | ceived   |       |
|-------------|------------------------------------------------------|---------------|---------------|---------------|---------|------|-------------|--------------|-----------------------------|--------------------|---------|----------|-------|
| PW-6        |                                                      |               |               | [no           | •       |      | Ground W    |              | 5-Jan-20 00                 |                    |         | Jan-20   |       |
| SC57271-    | -03                                                  |               |               | [0            |         |      | Oloulla III |              | - <b>va</b> n <b>2</b> 0 00 | .00                | 10      | vun 20   |       |
| CAS No.     | Analyte(s)                                           | Result        | Flag          | Units         | *RDL    | MDL  | Dilution    | Method Ref.  | Prepared                    | Analyzed           | Analyst | Batch    | Cert. |
| Subcontra   | cted Analyses                                        |               |               |               |         |      |             |              |                             |                    |         |          |       |
| Subcontra   | acted Analyses                                       |               |               |               |         |      |             |              |                             |                    |         |          |       |
| Analysis pe | erformed by Eurofins Lancast                         | er Laboratori | ies Environme | ental - 10670 | )       |      |             |              |                             |                    |         |          |       |
| 156-59-2    | cis-1,2-Dichloroethene                               | 370           |               | ug/l          | 5       | 1    | 5           | SW-846 8260C | 24-Jan-20<br>00:45          | 24-Jan-20<br>00:46 | 10670   | '200231A | J     |
| 10061-01-5  | cis-1,3-Dichloropropene                              | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 108-20-3    | di-Isopropyl ether                                   | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 124-48-1    | Dibromochloromethane                                 | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 74-95-3     | Dibromomethane                                       | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 75-71-8     | Dichlorodifluoromethane                              | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 64-17-5     | Ethanol                                              | < 3800        |               | ug/l          | 3800    | 1400 | 5           | "            | "                           | "                  | "       | "        |       |
| 60-29-7     | Ethyl ether                                          | < 25          |               | ug/l          | 25      | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 637-92-3    | Ethyl t-butyl ether                                  | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 100-41-4    | Ethylbenzene                                         | < 5           |               | ug/l          | 5       | 2    | 5           | "            | "                           | "                  | "       | "        |       |
| 76-13-1     | Freon 113                                            | < 50          |               | ug/l          | 50      | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 87-68-3     | Hexachlorobutadiene                                  | < 25          |               | ug/l          | 25      | 10   | 5           | "            | "                           | "                  | "       | "        |       |
| 98-82-8     | Isopropylbenzene                                     | < 25          |               | ug/l          | 25      | 1    | 5           | "            | "                           |                    | "       |          |       |
| 179601-23-1 | m+p-Xylene                                           | < 25          |               | ug/l          | 25      | 5    | 5           | "            | "                           |                    | "       |          |       |
| 1634-04-4   | Methyl Tertiary Butyl Ether                          | 3             | J.            | ug/l          | 5       | 1    | 5           |              | u u                         | "                  | "       | "        |       |
| 75-09-2     | Methylene Chloride                                   | < 5           |               | ug/l          | 5       | 2    | 5           |              | "                           | "                  | "       | "        |       |
| 104-51-8    | n-Butylbenzene                                       | < 25          |               | ug/l          | 25      | 1    | 5           |              | u u                         | "                  | "       | "        |       |
| 103-65-1    | n-Propylbenzene                                      | < 25          |               | ug/l          | 25      | 1    | 5           | "            | "                           |                    | "       |          |       |
| 91-20-3     | Naphthalene                                          | < 25          |               | ug/l          | 25      | 5    | 5           | "            | u                           | u                  | "       | "        |       |
| 95-47-6     | o-Xylene                                             | < 5           |               | ug/l          | 5       | 2    | 5           | "            | "                           |                    | "       |          |       |
| 99-87-6     | p-Isopropyltoluene                                   | < 25          |               | ug/l          | 25      | 1    | 5           |              | u u                         | "                  | "       | "        |       |
| 135-98-8    | sec-Butylbenzene                                     | < 25          |               | ug/l          | 25      | 1    | 5           |              | u u                         | "                  | "       | "        |       |
| 100-42-5    | Styrene                                              | < 25          |               | ug/l          | 25      | 1    | 5           |              | u u                         | "                  | "       | "        |       |
| 994-05-8    | t-Amyl methyl ether                                  | < 25          |               | ug/l          | 25      | 4    | 5           |              | u u                         | "                  | "       | "        |       |
| 75-65-0     | t-Butyl alcohol                                      | < 250         |               | ug/l          | 250     | 60   | 5           | "            | "                           |                    | "       |          |       |
| 98-06-6     | tert-Butylbenzene                                    | < 25          |               | ug/l          | 25      | 2    | 5           |              | u u                         | "                  | "       | "        |       |
| 127-18-4    | Tetrachloroethene                                    | 2,700         | E.            | ug/l          | 5       | 1    | 5           | "            | "                           |                    | "       |          |       |
| 109-99-9    | Tetrahydrofuran                                      | < 50          |               | ug/l          | 50      | 4    | 5           | "            | "                           |                    | "       |          |       |
| 108-88-3    | Toluene                                              | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           |                    | "       |          |       |
| 156-60-5    | trans-1,2-Dichloroethene                             | 4             | J.            | ug/l          | 5       | 1    | 5           | "            | "                           |                    | "       |          |       |
| 10061-02-6  | trans-1,3-Dichloropropene                            | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           |                    | "       |          |       |
| 110-57-6    | trans-1,4-Dichloro-2-buten e                         | < 250         |               | ug/l          | 250     | 30   | 5           | "            | н                           | "                  | "       | "        |       |
| 79-01-6     | Trichloroethene                                      | 260           |               | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| 75-69-4     | Trichlorofluoromethane                               | < 5           |               | ug/l          | 5       | 1    | 5           | "            | "                           |                    | "       |          |       |
| 75-01-4     | Vinyl Chloride                                       | 3             | J.            | ug/l          | 5       | 1    | 5           | "            | "                           | "                  | "       | "        |       |
| Surrogate i | recoveries:                                          |               |               |               |         |      |             |              |                             |                    |         |          |       |
| 17060-07-0  | 1,2-Dichloroethane-d4                                | 100           |               |               | 80-12   | 0 %  |             | "            | "                           | "                  | "       | "        |       |
| 460-00-4    | 4-Bromofluorobenzene                                 | 88            |               |               | 80-12   | 0 %  |             | "            | "                           | "                  | "       | "        |       |
| 1868-53-7   | Dibromofluoromethane                                 | 99            |               |               | 80-12   | 0 %  |             | "            | "                           | "                  | "       | "        |       |
| 2037-26-5   | Toluene-d8                                           | 92            |               |               | 80-12   | 0 %  |             | "            | "                           | "                  | "       | "        |       |
|             | sis of Subcontracted Analy<br>by method SW-846 50300 |               |               |               |         |      |             |              |                             |                    |         |          |       |

| PW-7        | entification                    |               |               | Client Pr     | -     |      | Matrix<br>Ground W |              | ection Date<br>5-Jan-20 00 |                    |         | ceived<br>Jan-20 |     |
|-------------|---------------------------------|---------------|---------------|---------------|-------|------|--------------------|--------------|----------------------------|--------------------|---------|------------------|-----|
| SC57271-    | 04                              |               |               | [IIOI         |       |      | Ground W           | ater 13      | - <b>Ju</b> ii-20 00       | .00                | 10-     | Jan-20           |     |
| CAS No.     | Analyte(s)                      | Result        | Flag          | Units         | *RDL  | MDL  | Dilution           | Method Ref.  | Prepared                   | Analyzed           | Analyst | Batch            | Cei |
| ubcontra    | cted Analyses                   |               |               |               |       |      |                    |              |                            |                    |         |                  |     |
| Subcontra   | icted Analyses                  |               |               |               |       |      |                    |              |                            |                    |         |                  |     |
| Analysis pe | erformed by Eurofins Lancast    | er Laboratori | ies Environme | ental - 10670 |       |      |                    |              |                            |                    |         |                  |     |
| 156-59-2    | cis-1,2-Dichloroethene          | 3,900         | E.            | ug/l          | 10    | 2    | 10                 | SW-846 8260C | 24-Jan-20<br>01:29         | 24-Jan-20<br>01:30 | 10670   | '200231A         | ı   |
| 0061-01-5   | cis-1,3-Dichloropropene         | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 08-20-3     | di-Isopropyl ether              | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 24-48-1     | Dibromochloromethane            | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          |                    | "       |                  |     |
| 4-95-3      | Dibromomethane                  | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          |                    | "       |                  |     |
| 5-71-8      | Dichlorodifluoromethane         | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 4-17-5      | Ethanol                         | < 7500        |               | ug/l          | 7500  | 2800 | 10                 | "            | "                          | "                  |         | "                |     |
| 0-29-7      | Ethyl ether                     | < 50          |               | ug/l          | 50    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 37-92-3     | Ethyl t-butyl ether             | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 00-41-4     | Ethylbenzene                    | < 10          |               | ug/l          | 10    | 4    | 10                 | "            | "                          |                    |         |                  |     |
| 6-13-1      | Freon 113                       | < 100         |               | ug/l          | 100   | 2    | 10                 | "            | u u                        | "                  |         |                  |     |
| 7-68-3      | Hexachlorobutadiene             | < 50          |               | ug/l          | 50    | 20   | 10                 |              | "                          | "                  |         | "                |     |
| 8-82-8      | Isopropylbenzene                | < 50          |               | ug/l          | 50    | 2    | 10                 |              | "                          | "                  |         |                  |     |
| 79601-23-1  |                                 | < 50          |               | ug/l          | 50    | 10   | 10                 | "            | "                          | "                  | "       | "                |     |
| 634-04-4    | Methyl Tertiary Butyl Ether     | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       |                  |     |
| 5-09-2      | Methylene Chloride              | < 10          |               | ug/l          | 10    | 3    | 10                 | "            |                            | "                  |         |                  |     |
| 04-51-8     | n-Butylbenzene                  | < 50          |               | ug/l          | 50    | 2    | 10                 | "            |                            | "                  |         |                  |     |
| 03-65-1     | n-Propylbenzene                 | < 50          |               | ug/l          | 50    | 2    | 10                 |              |                            | "                  | "       |                  |     |
| 1-20-3      | Naphthalene                     | < 50          |               | ug/l          | 50    | 10   | 10                 | "            | "                          |                    |         |                  |     |
| 5-47-6      | o-Xylene                        | < 10          |               | ug/l          | 10    | 4    | 10                 | "            | "                          |                    |         |                  |     |
| 9-87-6      | p-Isopropyltoluene              | < 50          |               | ug/l          | 50    | 2    | 10                 | "            | "                          |                    |         |                  |     |
| 35-98-8     | sec-Butylbenzene                | < 50          |               |               | 50    | 2    | 10                 | ,,           |                            | "                  |         |                  |     |
| 00-42-5     | •                               |               |               | ug/l          |       |      |                    | "            |                            |                    |         |                  |     |
| 94-05-8     | Styrene                         | < 50          |               | ug/l          | 50    | 2    | 10                 | "            |                            |                    | ,,      |                  |     |
|             | t-Amyl methyl ether             | < 50          |               | ug/l          | 50    | 8    | 10                 |              |                            |                    |         |                  |     |
| 5-65-0      | t-Butyl alcohol                 | < 500         |               | ug/l          | 500   | 120  | 10                 |              |                            |                    |         |                  |     |
| 8-06-6      | tert-Butylbenzene               | < 50          | _             | ug/l          | 50    | 3    | 10                 |              |                            |                    |         | "                |     |
| 27-18-4     | Tetrachloroethene               | 4,500         | E.            | ug/l          | 10    | 2    | 10                 |              |                            |                    |         |                  |     |
| 09-99-9     | Tetrahydrofuran                 | < 100         |               | ug/l          | 100   | 7    | 10                 |              |                            |                    |         |                  |     |
| 08-88-3     | Toluene                         | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          |                    |         |                  |     |
| 56-60-5     | trans-1,2-Dichloroethene        | 36            |               | ug/l          | 10    | 2    | 10                 |              | "                          | "                  | "       | "                |     |
| 0061-02-6   | trans-1,3-Dichloropropene       | < 10          |               | ug/l          | 10    | 2    | 10                 |              | "                          | "                  | "       | "                |     |
| 10-57-6     | trans-1,4-Dichloro-2-buten<br>e | < 500         |               | ug/l          | 500   | 60   | 10                 | "            | "                          | "                  | "       | "                |     |
| 9-01-6      | Trichloroethene                 | 540           |               | ug/l          | 10    | 2    | 10                 | u            | "                          |                    | "       | "                |     |
| 75-69-4     | Trichlorofluoromethane          | < 10          |               | ug/l          | 10    | 2    | 10                 | "            | "                          | "                  | "       | "                |     |
| 5-01-4      | Vinyl Chloride                  | 370           |               | ug/l          | 10    | 2    | 10                 | "            | "                          | ıı                 | "       | "                |     |
| urrogate r  | ecoveries:                      |               |               |               |       |      |                    |              |                            |                    |         |                  |     |
| 7060-07-0   | 1,2-Dichloroethane-d4           | 100           |               |               | 80-12 | 0 %  |                    | "            | "                          | "                  | "       | "                |     |
| 60-00-4     | 4-Bromofluorobenzene            | 89            |               |               | 80-12 | 0 %  |                    | "            | "                          | "                  | "       | "                |     |
| 868-53-7    | Dibromofluoromethane            | 100           |               |               | 80-12 | 0 %  |                    | "            | "                          | "                  | "       | "                |     |
| 037-26-5    | Toluene-d8                      | 93            |               |               | 80-12 | 0 %  |                    | "            |                            |                    |         | "                |     |

#### **Notes and Definitions**

E. Exceeded calibration range of the instrument

J. Estimated value

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

27-Jan-20 13:22 Page 31 of 31

|   | U | 1 |
|---|---|---|
|   | ( | • |
|   | U | 1 |
|   | _ | J |
|   | 2 | ک |
|   | - | J |
| * |   |   |
|   | T |   |
| 4 | _ | > |

Standard TAT - 7 to 10 business days

Special Handling:

# ה

| Spectrum Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page of                | All TATs subject to laboratory approval  Min. 24-hr notification needed for rushes  Samples disposed after 30 days unless otherwise instructed. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Report To: ESE Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Invoice To: FRE pro    | Project No:                                                                                                                                     |
| Lancaster NY 14086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | Site Name: MT CS OM & M                                                                                                                         |
| and the second s |                        | Location: East Autors State: NY                                                                                                                 |
| Telephone #: (716) 684-8060 Project Mgr. Jose Hermin dez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P.O No.: Quote #:      | Sampler(s): R, Allen, D. Iyer                                                                                                                   |
| F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S=NaOH 6=Ascorbic Acid | List Preservative Code below: QA/QC Reporting Notes:                                                                                            |
| /=CH3OH o-NaH3O4 y-Delonized water 10-H3FO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                   | 1.00       | 00/0              | -               | 1              | WIN                    | CALX                                                                                                                                                                           |                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|------------|-------------------|-----------------|----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Corecction Factor | (2)        | -                 | •               | Ma             | Shi                    | 100                                                                                                                                                                            |                                   |
| Ramirez Hernandez E, ene. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E-mail to: TRamire            | Observed X        |            |                   |                 |                | Fellex                 | - Allen J-                                                                                                                                                                     | Jan Jan                           |
| The state of the s | EDD format: PD                | Temp °C           | Time:      | Date:             |                 | by:            | Received by:           | Relinquished by:                                                                                                                                                               | Relinqu                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                   |            |                   |                 | 9              |                        |                                                                                                                                                                                |                                   |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                   | 100        |                   |                 |                |                        |                                                                                                                                                                                |                                   |
| cop er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                             |                   |            |                   |                 |                |                        |                                                                                                                                                                                |                                   |
| - Swallest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                   |            |                   |                 |                |                        |                                                                                                                                                                                |                                   |
| Do not send                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                   |            |                   |                 |                |                        |                                                                                                                                                                                | .M                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | <                 |            | W                 | G GW            |                | 4                      | PW-00                                                                                                                                                                          | -35                               |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | <                 |            | W                 | G GW            | 0              | >                      | PW-7                                                                                                                                                                           | -04                               |
| another Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | <                 |            | W                 | 6 EW            |                |                        | PW-6                                                                                                                                                                           | હ્યુ                              |
| - Please send                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | <                 |            | W                 | C CW            |                | `                      | PW - ST                                                                                                                                                                        | -01                               |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | <                 |            | W                 | C Qu            |                | 1/15/2020              | PW-A                                                                                                                                                                           | 5-57271-01                        |
| Che State-specific reporting standards:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                   |            | -                 | -               | Time:          | Date:                  | Sample ID:                                                                                                                                                                     | Lab ID:                           |
| ∏ier II*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | V                 | Clear      |                   | ype             |                | C=Compsite             | G= Grab                                                                                                                                                                        | G=                                |
| ASP A* ASP B*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                             | 00                | Glass      | Vials<br>er Glass |                 |                | X3=                    | X2=                                                                                                                                                                            | X]=                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 25                |            | S                 |                 | Gas            | nbient Air SG=Soil Gas | SL=Sludge A=Indoor/Ambient Air                                                                                                                                                 | O=Oil SO=Soil                     |
| MA DEP MCP CAM Report? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis                      |                   | Containers | C                 |                 | ww=Waste Water | SW=Surface Water WW    | GW=Groundwater SW=                                                                                                                                                             | <b>DW</b> =Drinking Water         |
| auunonai viiaiges may apppiy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 2                 |            |                   |                 |                |                        |                                                                                                                                                                                |                                   |
| QA/QC Reporting Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | List Preservative Code below: | List Pr           |            |                   | 6=Ascorbic Acid | 5=NaOH 6=A:    | 4=HNO <sub>3</sub>     | F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>7=CH3OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> | F=Field Filtered 1 7=CH3OH 8=NaHS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                          |                   | Zuore in   |                   |                 | 1.00100.       |                        | 7036                                                                                                                                                                           | Project Mgr.                      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                   | hioto ti   |                   |                 | DO NO.         | 700000                 |                                                                                                                                                                                |                                   |

Ambient VIced

☐ Refrigerated ☐ DI VOA Frozen ☐ Soil Jar Frozen

# Attachment B IEG Summary of Field Activities

January 2020

#### **NYSDEC Site #9-15-157**

#### **OM&M: SITE INSPECTION FORM**

| DATE:   | 6-Jan-2            | 20                  | ACTIVITIES:           | Site Inspec  | tion                |                  |                  |                |                    |
|---------|--------------------|---------------------|-----------------------|--------------|---------------------|------------------|------------------|----------------|--------------------|
| INSPECT | TION PERSONNEL     | .: R. Allen         |                       | OTHER PERS   | SONNEL:             |                  |                  |                |                    |
| WEATHE  | R CONDITIONS:      | Cloudy, cool        |                       |              |                     | OUTSIDE          | TEMPERATU        | JRE (° F):     | 34                 |
| ARE WE  | LL PUMPS OPERA     | ATING IN AUTO:      | YES:                  | NO:          | √                   | If "NO", pro     | vide explanati   | on below       |                    |
| -       | RW-1, PW-2 and F   | W-3 are manually se | et to OFF position;   | PW-4 through | PW-8 are on AUT     | 0                |                  |                |                    |
| -       |                    | PRO                 | VIDE WATER LEV        | EL READINGS  | ON CONTROL PA       | NEL              |                  |                |                    |
| RW-1    | on:                | OFF:                | <b>14</b> ft          | PW-5         | ON:                 | OFF:             | √                | 5 ft           |                    |
| PW-2    | ON:                | OFF: √              | 11 ft                 | PW-6         | ON:                 | OFF:             | <u>√</u>         | 6 ft           |                    |
| PW-3    | on:                | OFF:                | 12 ft                 | PW-7         | ON:                 | OFF:             | <b>√</b>         | 7ft            |                    |
| PW-4    | ON:                | off: √              | 6 ft                  | PW-8         | ON:                 | OFF:             | <b>√</b>         | 4ft            |                    |
|         |                    | ALIZATION TANK: _   | ft                    | Last         | Alarm D/T/Condition | n: 11/1/2019     | Air Stripper Lov | w Pressure     |                    |
|         | NOTES:             |                     |                       |              |                     |                  |                  |                |                    |
| INFLU   | ENT FLOW RATE:     | 0                   | gpm                   | INFLUENT T   | OTALIZER READING    | : <u>1885811</u> | 0                | ga             | allons             |
| SE(     | OUESTERING AGE     | ENT DRUM LEVEL:     | 18 inches             | (v 1 :       | 7=) AMOUNT OF       | AGENT DEM        | TAINING:         | 31             | allons             |
|         |                    | GENT FEED RATE: _   |                       | (*           |                     | IG PUMP PRE      |                  | p:             |                    |
|         | BAG FILTER PRE     | ESSURES:            | Top<br>LEFT: <b>0</b> | Bottom psi   | i RIGHT:            |                  | Top E            | Bottom<br>O ps | si                 |
| INFLU   | ENT FEED PUMP      | IN USE: #1_         | √ #2                  | :<br>!       | INFLUENT PUMP F     | PRESSURE:        | 7                | p:             | <br>si             |
| AIR S   | TRIPPER BLOWE      | :R IN USE: #1       | √ #2                  | <br>!        | AIR STRIPPER F      | PRESSURE:        | 17               | in             | . H <sub>2</sub> O |
| AIR STR | IPPER DIFFEREN     | TIAL PRESSURE:      | broken                |              | DISCHARGE F         | _                |                  | in             | . H₂O              |
|         | TEMP: 1500<br>81.4 | fpm X 1.4 = _<br>°F | 2100                  | _CFM S       | AIR<br>SPARGER LEFT | 5.4              | RIGHT            | 3.0 c          | FM                 |
| EFFLU   | ENT PUMP IN USE:   | #1                  | #2 <u></u>            | EFFLU        | ENT FEED PUMP F     | PRESSURE:        | 4                | ps             | si                 |
| EFFL    | UENT FLOW RATE:    | 84gpm               | EFFLUENT              | TOTALIZER R  | EADING: 8           | 35,905,14        | <b>1</b> 5       | 68640 ga       | allons             |
| ARE I   | BUILDING HEATERS   | S IN USE? YES:      | √ NO:                 | <br>:        |                     | INSIDE           | TEMPERATU        | JRE (° F):     | 60                 |
| IS SUI  | MP PUMP IN USE:    | YES:                | NO:                   | ARE ANY      | LEAKS PRESENT       | ? YES:_          |                  | NO:            | V                  |
| WATER   | LEVEL IN SUMP:     | 6.5in.              | TREATMENT E           | BUILDING CLE | AN & ORGANIZED?     | ? YES:_          | <u> </u>         | NO:            |                    |

# NYSDEC Site #90150157 SITE INSPECTION FORM

6-Jan-20 **SAMPLES COLLECTED?** NO: Sample ID Time of Sampling pH Turbidity Temp. Sp. Cond. AIR STRIPPER INFLUENT: AIR STRIPPER EFFLUENT: IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS: ? NO: WERE MANHOLES INSPECTED? YES: WERE ELECTRICAL BOXES INSPECTED? YES: NO: IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES? If yes, provide manhole/electric box ID and description of any corrective measures below: RW-1 inner ring is corroded. Most of the MWs and UEs are covered with snow or ice. **SUBSLAB SYSTEMS** TREATMENT ROOM MANOMETER: 1.3 in. WC west east **NOTES:** cfm = 0.05 x fpm (3" PVC)(Fan Inlet) FLOW (fpm): CONDENSATE 1.0 gallon FLOW (cfm): DRAINED Yes VACUUM GAUGE (in WC) OTHER LOCATIONS NO\_\_\_\_ VOLUME: ---- gallon 586 Building SVE CONDENSATE drained: INCLUDE REMARKS & DESCRIBE ANY OTHER SYSTEM MAINTENANCE PERFORMED ON MR. C's SITE Remarks: 586 Building SVE System is OFF for freezing temperatures. Other Actions: Poured remainder of old Redux solution drum into present drum. Rinsed out old drum. **AGWAY** Site is empty of materials and has been graded and graveled. Remarks:

#### **NYSDEC Site #9-15-157**

#### **OM&M: SITE INSPECTION FORM**

| DATE:   | 17-Jan-20                    |                    | ACTIVITIES:      | Site Inspec    | tion                 |                    |                  |                      |
|---------|------------------------------|--------------------|------------------|----------------|----------------------|--------------------|------------------|----------------------|
| INSPEC  | TION PERSONNEL:              | R. Allen           |                  | OTHER PERS     | SONNEL:              |                    |                  |                      |
| WEATHE  | R CONDITIONS: Cle            | ear, cold          |                  |                |                      | OUTSIDE TEM        | PERATURE (° F):  | 15                   |
| ARE WE  | LL PUMPS OPERATIN            | IG IN AUTO:        | YES:             | NO:            |                      | If "NO", provide e | xplanation below | ı                    |
|         | RW-1, PW-2 and PW-3          | 3 are manually set | to OFF position; | ; PW-4 through | PW-8 are on AUTO     | )                  |                  |                      |
|         |                              | PRO\               | VIDE WATER LEV   | EL READINGS    | ON CONTROL PAN       | <b>IE</b> L        |                  |                      |
| RW-1    | on:                          | OFF:               | 14 ft            | PW-5           | ON:                  | off: √             | 5                | _ft                  |
| PW-2    | ON:                          | <b>off</b> :       | 11 ft            | PW-6           | ON:                  | off: <u>√</u>      | 5                | _ft                  |
| PW-3    | on:                          | OFF:               | 12 ft            | PW-7           | ON:                  | off: <u>√</u>      | 5                | _ft                  |
| PW-4    | ON:                          | off:               | <b>3</b> ft      | PW-8           | ON:                  | off:√              | 3                | _ft                  |
|         | EQUALIZ                      | ZATION TANK:       | 3ft              | Last           | Alarm D/T/Condition: | 1/12/2020 Air Str  | ipper Hi Level   |                      |
|         | NOTES:                       |                    |                  |                |                      |                    |                  |                      |
| INFLU   | ENT FLOW RATE:               | 0                  | gpm              | INFLUENT T     | OTALIZER READING:    | 18916013           |                  | gallons              |
| SEC     | QUESTERING AGENT             | DRUM LEVEL:        | 15 inches        | (x 1.7         | 7=) AMOUNT OF        | AGENT REMAININ     | ıg: 26           | gallons              |
|         | EQUESTERING AGEN             |                    | ml/min           | •              | •                    | G PUMP PRESSUF     |                  | _psi                 |
|         |                              |                    | Тор              | Bottom         |                      | Тор                |                  |                      |
|         | BAG FILTER PRESSU            | URES:              | LEFT: 0          | psi            | i RIGHT:             | 8                  | 0                | _psi                 |
| INFLU   | IENT FEED PUMP IN U          | JSE: #1            | #2               | 2              | INFLUENT PUMP P      | RESSURE:           | 7                | _psi                 |
| AIR S   | STRIPPER BLOWER IN           | <i>I USE:</i> #1   | #2               | 2              | AIR STRIPPER P       | RESSURE:           | 19               | in. H <sub>2</sub> O |
| AIR STR | IPPER DIFFERENTIAL           | . PRESSURE:        | broken           | _in. H₂O       | DISCHARGE PI         | RESSURE:           | 3.4              | _in. H₂O             |
|         | FLOW: 1400 fp<br>TEMP: 80 °F | ·                  | 1960             | _CFM S         | AIR<br>SPARGER LEFT  | 5.3 RIGH           | т 3.0            | _CFM                 |
| EFFLU   | IENT PUMP IN USE:            | #1                 | #2√              | EFFLU          | ENT FEED PUMP P      | RESSURE:           | 4                | psi                  |
| EFFL    | UENT FLOW RATE:              | 85 gpm             | EFFLUENT         | TOTALIZER R    | EADING: 8            | 5,944,887          | 608280           | gallons              |
| ARE I   | BUILDING HEATERS IN          | USE? YES:          |                  | :              |                      | INSIDE TEM         | PERATURE (° F):  | 55                   |
| IS SU   | MP PUMP IN USE:              | YES:               | NO:              | _ ARE ANY      | LEAKS PRESENT?       | YES:               | NO               | : <u>\</u>           |
| WATER   | R LEVEL IN SUMP:             | 6.0 in.            | TREATMENT E      | BUILDING CLE   | AN & ORGANIZED?      | YES:               | NO               | :                    |

## **NYSDEC Site #90150157** SITE INSPECTION FORM

17-Jan-20 **SAMPLES COLLECTED?** NO: Well Samples taken Jan 15 Sample ID Time of Sampling pH Turbidity Temp. Sp. Cond. AIR STRIPPER INFLUENT: AIR STRIPPER EFFLUENT: IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS: ? WERE MANHOLES INSPECTED? YES: NO: WERE ELECTRICAL BOXES INSPECTED? YES: NO: IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES? If yes, provide manhole/electric box ID and description of any corrective measures below: RW-1 inner ring is corroded. **SUBSLAB SYSTEMS** TREATMENT ROOM MANOMETER: 1.3 in. WC west east **NOTES:** cfm = 0.05 x fpm (3" PVC)980 (Fan Inlet) FLOW (fpm): 540 CONDENSATE 0.5 gallon FLOW (cfm): 49 DRAINED Yes VACUUM GAUGE (in WC) OTHER LOCATIONS 586 Building SVE CONDENSATE drained: INCLUDE REMARKS & DESCRIBE ANY OTHER SYSTEM MAINTENANCE PERFORMED ON MR. C's SITE Remarks: 586 Building SVE System is OFF for freezing temperatures. Other Actions: Jan 13 - Air Stripper Control Panel: Low Air Pressure alarm. - AutoDialer Alarm Code 03. Reset - OK **AGWAY** Site is empty of materials and has been graded and graveled.

Remarks:

#### **NYSDEC Site #9-15-157**

#### **OM&M: SITE INSPECTION FORM**

| DATE:   | 31-Jan-                | ·20                                  | ACTIVITIES:         | Site Inspec   | tion                |              |                |             |                 |
|---------|------------------------|--------------------------------------|---------------------|---------------|---------------------|--------------|----------------|-------------|-----------------|
| INSPEC  | TION PERSONNEL         | .: R. Allen                          |                     | OTHER PER     | SONNEL:             |              |                |             |                 |
| WEATHE  | R CONDITIONS:          | Cloudy, cold                         |                     |               |                     | OUTSIDI      | E TEMPERA      | TURE (° F): | 30              |
| ARE WE  | LL PUMPS OPER          | ATING IN AUTO:                       | YES:                | NO:           | $\sqrt{}$           | If "NO", pro | vide explan    | ation below |                 |
|         | RW-1, PW-2 and F       | PW-3 are manually se                 | et to OFF position; | ; PW-4 throug | n PW-8 are on AUTO  | )            |                |             |                 |
|         |                        | PRO                                  | VIDE WATER LEV      | EL READINGS   | ON CONTROL PAI      | NEL          |                |             |                 |
| RW-1    | on:  √                 | OFF:                                 | 14 ft               | PW-5          | ON:                 | OFF:         | √              | 6           | _ft             |
| PW-2    | ON:                    | off: √                               | 11 ft               | PW-6          | ON:                 | OFF:         | √              | 7           | ft              |
| PW-3    | on:                    | OFF:                                 | 12 ft               | PW-7          | ON:                 | OFF:         | √              | 3           | ft              |
| PW-4    | ON:                    | <b>OFF</b> :  √                      | <b>4</b> ft         | PW-8          | ON:                 | OFF:         | √ <u> </u>     | 3           | ft              |
|         | EQU                    | ALIZATION TANK: _                    | 3ft                 | Last          | Alarm D/T/Condition | : 1/12/2020  | Air Stripper I | Hi Level    |                 |
|         | NOTES:                 |                                      |                     |               |                     |              |                |             |                 |
| INFLU   | ENT FLOW RATE          | . 7                                  | gpm                 | INFLUENT 1    | OTALIZER READING    | : 1895285    | 5              |             | gallons         |
|         | OUESTERING AGE         |                                      | 11 inches           | (× 1          | 7=) AMOUNT OF       | ACENT DEA    | AAINING.       | 10          |                 |
|         |                        | ENT DRUM LEVEL: _<br>GENT FEED RATE: |                     | (X 1.         | •                   | IG PUMP PRE  |                |             | _gallons<br>psi |
|         |                        |                                      | Top                 | Bottom        |                     |              | Top            | Bottom      |                 |
|         | BAG FILTER PR          | ESSURES:                             | LEFT: 0             | <b>0</b> ps   | i RIGHT:            |              | 8              | 0           | _psi            |
| INFLU   | ENT FEED PUMP          | IN USE: #1_                          | √ #2                | ?             | INFLUENT PUMP F     | PRESSURE:    | 7              | ,           | psi             |
| AIR S   | TRIPPER BLOWE          | :R IN USE: #1                        | √ #2                | <br>!         | AIR STRIPPER F      | PRESSURE:    | 0.3 (8         | 3.31)       | in. H₂O         |
| AIR STR | IPPER DIFFEREN         | TIAL PRESSURE:                       | broken              |               | DISCHARGE F         | _            | _              | _           | in. H₂O         |
|         | FLOW: 1500<br>TEMP: 80 | _ fpm X 1.4 = _<br>^F                | 2100                | _CFM          | AIR<br>SPARGER LEFT | 7.0          | RIGHT          | 3.2         | CFM             |
| EFFLU   | ENT PUMP IN USE:       | #1                                   | #2 <u></u>          | EFFLU         | IENT FEED PUMP F    | PRESSURE:    | 4              | ı           | psi             |
| EFFL    | UENT FLOW RATE:        | 80 gpm                               | EFFLUENT            | TOTALIZER R   | READING: 8          | 5,969,79     | 2              | 633180      | gallons         |
| ARE     | BUILDING HEATER        | S IN USE? YES:                       | √ NO:               | :             |                     | INSIDI       | E TEMPERA      | TURE (° F): | 60              |
| IS SU   | MP PUMP IN USE:        | YES:                                 | NO:                 | ARE ANY       | LEAKS PRESENT?      | YES:         | $\sqrt{}$      | NO:         |                 |
| WATER   | LEVEL IN SUMP:         | in.                                  | TREATMENT E         | BUILDING CLE  | AN & ORGANIZED?     | YES:         | <u>√</u>       | NO:         |                 |

## **NYSDEC Site #90150157** SITE INSPECTION FORM

31-Jan-20 **SAMPLES COLLECTED?** Sample ID Time of Sampling pH Turbidity Temp. Sp. Cond. AIR STRIPPER INFLUENT: AIR STRIPPER EFFLUENT: IS THERE EVIDENCE OF TAMPERING/VANDALISM OF WELLS: ? YES: √\_\_\_ NO: WERE MANHOLES INSPECTED? WERE ELECTRICAL BOXES INSPECTED? YES: NO: IS WATER PRESENT IN ANY MANHOLES OR ELECTRICAL BOXES? If yes, provide manhole/electric box ID and description of any corrective measures below: RW-1 inner ring is corroded. Most of the MWs and UEs are covered with snow or ice. **SUBSLAB SYSTEMS** TREATMENT ROOM MANOMETER: 1.3 in. WC west east **NOTES:** cfm = 0.05 x fpm (3" PVC)(Fan Inlet) FLOW (fpm): CONDENSATE ----- gallon FLOW (cfm): DRAINED No VACUUM GAUGE (in WC) OTHER LOCATIONS NO\_\_\_\_ VOLUME: ----\_ gallon 586 Building SVE CONDENSATE drained: INCLUDE REMARKS & DESCRIBE ANY OTHER SYSTEM MAINTENANCE PERFORMED ON MR. C's SITE **Remarks:** 586 Building SVE System is OFF for freezing temperatures. Moisture observed on southwest corners of Air Stripper. Other Actions: Cleaned Air Stripper with Muriatic Acid, power sprayer and vacuum. **AGWAY** Site is empty of materials and has been graded and graveled.

Remarks:

# Attachment C Summary of Site Utility Costs and Projections January to December 2020

#### Mr. C's Dry Cleaners Site - Remedial Treatment Utility Costs NYSDEC Work Assignment #1703074.0011.11 12 Months of System Operation and Maintenance January 2020 Report

| Utility Budget: | Electric:  | \$25,300.00 |
|-----------------|------------|-------------|
|                 | Telephone: | \$540.00    |
|                 | Gas        | \$1,120.00  |
|                 | Total:     | \$26,960.00 |

#### Gas and Electric

| Utility Provider   | Account #           | E&E Cost Center      | Description               | Jan-2019     | Feb-2019 | Mar-2019 | Apr-2019 | May-2019 | Jun-2019 |
|--------------------|---------------------|----------------------|---------------------------|--------------|----------|----------|----------|----------|----------|
| New York State E&G | 1001-0310-422       | EN-003229-0001-03TTO | Mr. C's Electric Costs    |              |          |          |          |          |          |
| New York State E&G | 76-311-11-015900-18 |                      | IVII. US Electric Costs   |              |          |          |          |          |          |
| National Fuel Gas  | 7160295 10          | EN-003229-0001-03TTO | Mr. C's Natural Gas Costs | \$<br>285.23 |          |          |          |          |          |
|                    |                     |                      | Totals                    | \$<br>285.23 | \$ -     | \$ -     | \$ -     | \$ -     | \$ -     |
|                    |                     |                      |                           | Jul-2019     | Aug-2019 | Sep-2019 | Oct-2019 | Nov-2019 | Dec-2019 |
|                    |                     |                      | Mr. C's Electric Costs    |              |          |          |          |          |          |
|                    |                     |                      |                           |              |          |          |          |          |          |
|                    |                     |                      | Mr. C's Natural Gas Costs |              |          |          |          |          |          |
|                    |                     |                      | Totals                    | \$           | s -      | \$ -     | \$ -     | \$ -     | s -      |

Electric - Mr. C's \$

Notes:

Natural Gas - Mr. C's \$

285.23

Overbilled natural gas costs - no charges

Grand Total - NYSE&G/National Fuel Gas Costs To Date \$ 285.23

**Estimated Reading** 

#### Telephone

| Utility Provider           | Phone #      | E&E Cost Center      | Location Description    | Jan-2019 | Feb-2019 | Mar-2019 | Apr-2019 | May-2019 | Jun-2019 |
|----------------------------|--------------|----------------------|-------------------------|----------|----------|----------|----------|----------|----------|
| Granite Telecommunications |              |                      |                         |          |          |          |          |          |          |
| Account # 01890582         | 866-874-5500 | EN-003229-0001-03TTO | Mr. C's Telephone Costs | Jul-2019 | Aug-2019 | Sep-2019 | Oct-2019 | Nov-2019 | Dec-2019 |
|                            |              |                      |                         |          |          |          |          |          |          |

Verizon Costs to Date - Mr. C's \$

Grand Total All Utilities To Date \$ 285.23

#### **Monthly Average Costs**

| Mr. C's Electric           | N/A            |
|----------------------------|----------------|
| Mr. C's Gas                | \$<br>285.23   |
| Mr. C's Telephone          | N/A            |
| Average Utility Cost Total | \$<br>285.23   |
| 12 Month Estimate          | \$<br>3,422.76 |

| Budget Remaining: | Electric:  | \$25,300.00 |
|-------------------|------------|-------------|
|                   | Telephone: | \$540.00    |
|                   | Gas        | \$834.77    |
|                   | Total:     | \$26,674.77 |