915165

Doster

APR 1 7 1995

NYSDEC-REG. 9 FOIL REL__UNREL

SUPPLEMENTAL SOIL SAMPLING PROGRAM

Vibratech, Inc. Buffalo, New York

Printed on

4/95

APR 1 3 1995

CRA

CONESTOGA-ROVERS & ASSOCIATES

2055 Niagara Falls Boulevard, Suite Three Niagara Falls, New York 14304 (716) 297-6150 Fax: (716) 297-2265

April 13, 1995

Reference No. 5927

Mr. Ralph Yorio VIBRATECH, INC. 537 E. Delavan Avenue Buffalo, NY 14211

Dear Mr. Yorio:

Re: Supplemental Soil Sampling Program and Work Plan for Soil Remediation

Conestoga-Rovers & Associates (CRA) is pleased to submit the attached report presenting the results of the Supplemental Soil Sampling Program at Vibratech's Buffalo, New York Facility. Although some relatively low level concentrations of volatile organic compounds (VOCs) in soil were measured, there are no findings which indicate the scope of the planned soil remediation effort should be substantially expanded. However, as described in the attached report, some localized soil remediation near one of the soil borings located near the aboveground storage tanks (ASTs) should be considered in the preparation of the soil remediation work plan.

CRA recommends the use of ex situ soil vapor extraction to remediate VOC contaminated soil within the railroad spur area of the southern portion of the property. A preliminary outline for the Remediation Work Plan is included for your review. If you have any questions or comments concerning this outline or the attached report, please contact the undersigned. We appreciate the opportunity to provide these services to Vibratech.

Yours truly,

CONESTOGA-ROVERS & ASSOCIATES

Kelly R. McIntosh, P.E., P.HGW.

KRM/js/9

Encl.

WORK PLAN OUTLINE

1 1	TA TITLE	\sim T \sim T	TORY	A
1.0	INTER	()!)!	17 "1"	
1.0	INTR	$\mathcal{O}\mathcal{D}$	ノしょ	\mathbf{O}

2.0	Ī٨	IC)RK	PΤ	Δ	N	Ī
∠.∪	71	\cdot	1/1/	1 1	$\boldsymbol{\Box}$	т.	4

- 2.1 PRE-EXCAVATION CONFIRMATORY SAMPLES
- 2.2 EXCAVATION OF VOC CONTAMINATED SOILS
- 2.3 SVE PILE CONSTRUCTION
- 2.4 SVE EQUIPMENT
- 2.5 SVE SYSTEM OPERATION
- 2.6 SYSTEM MONITORING
- 2.7 SOIL PILE CONFIRMATORY SAMPLING
- 2.7.1 Treatment Cell Closure and Soil Disposition
- 2.8 DECONTAMINATION
- 2.8.1 Large Equipment
- 2.8.2 Soil Sampling Equipment
- 2.9 HANDLING OF GENERATED WASTE MATERIALS
- 2.10 PROJECT SCHEDULE

SUPPLEMENTAL SOIL SAMPLING PROGRAM

Vibratech, Inc. Buffalo, New York

APRIL 1995

REF. NO. 5927 (3)
This report is printed on recycled paper.

CONESTOGA-ROVERS & ASSOCIATES

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
2.0	WORK PERFORMED	2
3.0	RESULTS	3
4.0	RECOMMENDATIONS	4

LIST OF FIGURES (Following Report)

FIGURE 1.1 SITE PLAN/AREA OF CONCERN

FIGURE 2.1 SOIL BORING LOCATION PLAN

LIST OF TABLES (Following Report)

TABLE 2.1 SAMPLE COLLECTION SUMMARY

TABLE 3.1 ANALYTICAL RESULTS SUMMARY

LIST OF APPENDICES

APPENDIX A SOIL BORING LOGS

APPENDIX B ANALYTICAL DATA QUALITY ASSESSMENT AND VALIDATION

1.0 INTRODUCTION

Vibratech, Inc. (Vibratech) owns and operates a facility (Site) at 537 East Delavan Avenue in Buffalo, New York, which manufactures vibration dampers and rotary shock absorbers for the trucking and railroad industries.

In anticipation of the sale of the property, Vibratech retained Conestoga-Rovers & Associates (CRA) to conduct environmental investigations of the Site. Based on the results of these investigations, CRA delineated an area on the south side of the property where elevated concentrations of volatile organic compounds (VOCs) were measured in soil samples. This area of soil contamination is shown on Figure 1.1. VOC migration from soil has resulted in some localized detections of VOCs in groundwater.

Based on these findings, Vibratech has retained CRA to prepare a Work Plan for remediation of the soil VOC contamination. Prior to preparation of the Work Plan, CRA recommended additional soil sampling in the southern portion of the Site to improve the delineation of the area of soil to be remediated. This report presents the findings of this additional soil sampling.

2.0 WORK PERFORMED

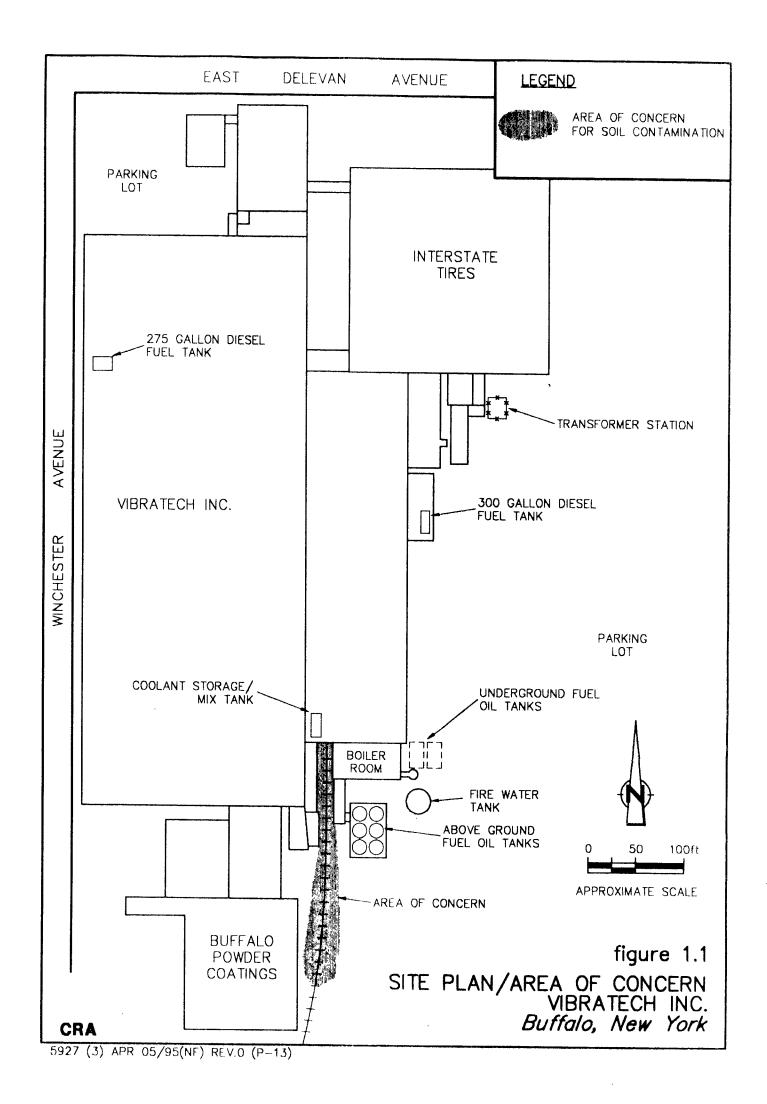
Seven soil borings were advanced to refusal (bedrock) at the locations shown on Figure 2.1. Buffalo Drilling Company of Buffalo, New York, provided drilling services under the supervision of a qualified CRA geologist. Prior to drilling, and between drilling locations, the drilling and sampling equipment was cleaned in accordance with the protocols presented in the Supplemental Investigation Report (CRA, June 1994).

The soil samples were obtained using a 2-inch or 3-inch diameter split spoon sampler. Samples were placed immediately into the sample jars provided by the laboratory. After several minutes of equilibration time, measurements of VOC concentrations in the headspace were obtained using a photoionization detector (PID). From each boring, the sample with the highest PID measurement was submitted for chemical analyses. In a few cases, where the recovered sample volumes were low, soil from two split spoon samples was combined into a single sample jar for the headspace measurement and chemical analyses. Table 2.1 presents a summary of samples submitted for chemical analyses.

Samples were analyzed for Target Compound List (TCL) VOCs by General Testing Corporation (GTC). Samples were analyzed by Method 8260, referenced from "Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, 1986.

3.0 RESULTS

Appendix A presents soil boring logs, including the results of the PID headspace analyses. Appendix B presents the results of the chemical analyses and the Data Validation Report prepared by CRA.


Table 3.1 presents a summary of the analytical results. Acetone was detected in six of the seven borings at concentrations ranging from 0.27 milligrams per kilogram (mg/kg) to 3.2 mg/kg. VOCs other than acetone were detected in three of the seven borings. BH2-95, located adjacent to the southeast corner of the aboveground fuel oil tanks, contained 12 mg/kg of cis-1,2-dichloroethene, 1.4 mg/kg of trichloroethene, and 2.0 mg/kg of total xylene. 1,1-Dichloroethane was measured at 1.5 mg/kg in the sample from BH7-95, located approximately 35 feet south of BH2-95. In BH6-95, 1,1-dichloroethane and 2-butanone were detected at estimated concentrations below 0.1 mg/kg.

No other VOCs were detected in any soil boring.

4.0 **RECOMMENDATIONS**

The levels of VOCs measured in the soil borings do not warrant a major expansion of the planned remedial activities. However, it may be appropriate and efficient to conduct some limited localized remediation of soil in the immediate vicinity of BH2-95 at the same time the soil from the area delineated on Figure 1.1 is remediated. Provisions for this additional remedial effort should be included in the Work Plan for the soil remediation.

FIGURES

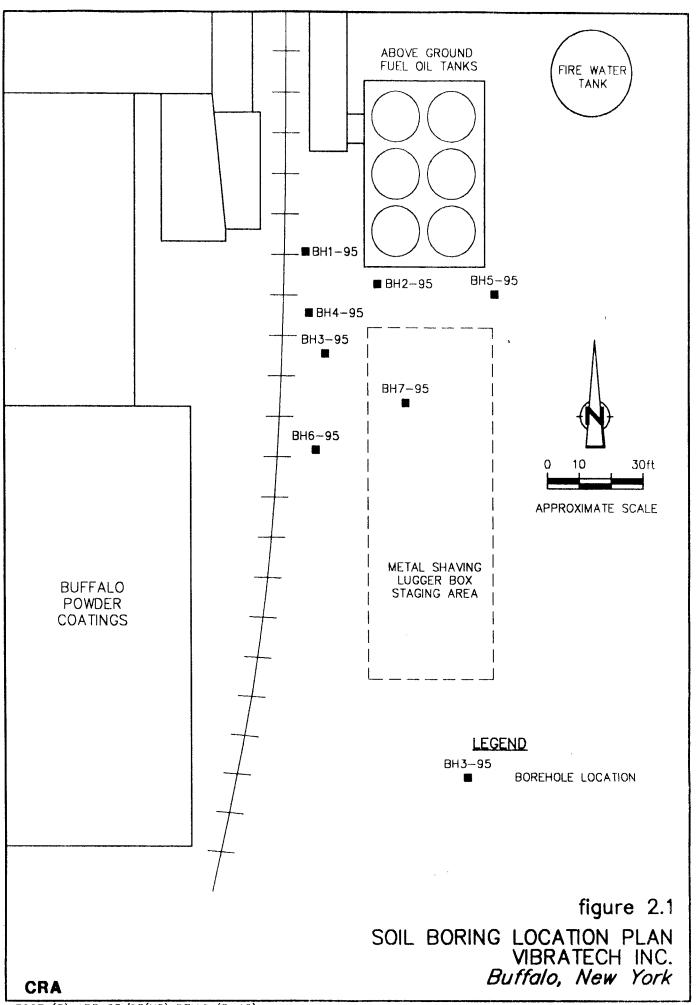


TABLE 2.1 SAMPLE IDENTIFICATION KEY SUPPLEMENTAL SOIL SAMPLING PROGRAM VIBRATECH INC. **BUFFALO, NEW YORK MARCH 1995**

Sample Identification	Sample Source	Time	Date	Matrix	Interval Sampled (feet)	Headspace (ppm)	Analyses	Comments
S-5927-001	BH3-95	1045	03/02/95	Soil	1.5-4.3	10-20	TCL VOCs	
S-5927-002	BH1-95	1200	03/02/95	Soil	0.5-4.4	0.0	TCL VOCs	
S-5927-003	BH2-95	1215	03/02/95	Soil	1.0-3.9	75-120	TCL VOCs	
S-5927-004	BH4-95	1315	03/02/95	Soil	0.5-2.0	22	TCL VOCs	
S-5927-005	BH5-95	1415	03/02/95	Soil	1.5-2.2	27	TCL VOCs	
S-5927-006	BH5-95	1415	03/02/95	Soil	1.5-2.2	27	TCL VOCs	Duplicate sample of S-5927-005
5-5927-007	BH6-95	1500	03/02/95	Soil	1.0-2.7	5	TCL VOCs	MS/MSD
S-5927-008	BH7-95	1530	03/02/95	Soil	1.0-3.0	6	TCL VOCs	

Notes:

MS Matrix Spike

MSD Matrix Spike Duplicate
VOCs Volatile Organic Compounds
TCL Target Compound List

. TCL

TABLE 3.1

ANALYTICAL RESULTS SUMMARY SUPPLEMENTAL SOIL SAMPLING PROGRAM VIBRATECH, INC. BUFFALO, NEW YORK MARCH 1995

	Soil Boring ID: Sample ID: Sample Date:	BH1-95 S-5927-002 03/02/95	BH2-95 S-5927-003 03/02/95	BH3-95 S-5927-001 03/02/95	BH4-95 S-5927-004 03/02/95	BH5-95 S-5927-005 03/02/95	BH5-95 S-5927-006 03/02/95 (Dup. of S-5927-005)	BH6-95 S-5927-007 03/02/95	BH7-95 S-5927-008 03/02/95
	TCL Volatiles (ug/kg)		T.						
	Chloromethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Bromomethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Vinyl chloride	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Chloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Methylene Chloride	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
_	Acetone	2000	1500 U	2600	3200	280	270	2100 J	1600
	Carbon disulfide	61 U	1500 U	60 U	60 U	12 U	12 U	12 UJ	60 U
	1,1-Dichloroethene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
<u>~</u> .	1,1-Dichloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	12 J	1500
	trans-1,2 Dichloroethene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
٠.	cis-1,2-Dichloroethene	30 U	12000	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Chloroform	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
×.	2-Butanone	61 U	1500 U	60 U	60 U	12 U	12 U	59 J	60 U
	1,2-Dichloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	1,1,1-Trichloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Carbon tetrachloride	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Bromodichloromethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	1,2-Dichloropropane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	trans-1,3-Dichloropropene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
`	Trichloroethene	30 U	1400	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Dibromochloromethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	1,1,2-Trichloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Benzene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	cis-1,3-Dichloropropene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Bromoform	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	4-Methyl-2-pentanone	61 U	1500 U	60 U	60 U	12 U	12 U	12 UJ	60 U
	2-Hexanone	61 U	1500 U	60 U	60 U	12 U	12 U	12 UJ	60 U
	Tetrachloroethene	30 U	750 U	30 U	30 U	6.1 U	. 6.0 U	6.0 UJ	30 U
	1,1,2,2-Tetrachloroethane	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Toluene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Chlorobenzene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Ethylbenzene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
	Styrene	30 U	750 U	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1	Xylene (total)	30 U	2000	30 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U

Notes:

Dup. Field Duplicate

J Associated value is estimated.

TCL Target Compound List

Non-detect at associated value.

APPENDIX A

STRATIGRAPHIC AND INSTRUMENTATION LOGS

(WL-01) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927 -

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH1-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 M" HSA

CRA SUPERVISOR: G. GILL

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
t. BGS	STATISTICAL PLOS DECORAL VIOLE CONTRACTOR	ft. BGS	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm)
·2.5	- Augered without sampling through 0.5ft of concrete SM/SW-SAND (FILL), some silt, little to some gravel, fine to medium grained, gray and brown,	50	CUTTINGS	155	X	31	0
	moist ML-SILT (NATIVE), little fine sand, some bedrock fragments, brown, moist	-3.00 -4.40	8" Ø BOREHOLE	255	X	113	0
5.0	- auger refusal on apparent bedrock END OF HOLE @ 4.4ft BGS		,				
-7.5							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
02.0							

TES: MEASURING POINT ELEVATIONS MAY CHANGE. REFER TO CURRENT ELEVATION TABLE WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\Pi\$

(WL-02) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927 _

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH2-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 14" HSA CRA SUPERVISOR: G. GILL

EPTH	TO THE PRINCIPLE OF CODINION C DEMARKS	ELEV.	MONITOR		MPLE		
. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft. BGS	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm)
2.5	- Augered without sampling through Ift of concrete SM-SAND (FILL), some gravel, fine to medium grained, black, moist, strong fuel oil odor	-1.00 -2.10	CUTTINGS	ISS	X	. 13	120.0
2.3	ML-SILT (NATIVE), trace fine sand, some bedrock fragments	-3.90	8" Ø BOREHOLE	255		-	76.0
5.0	- auger refusal on apparent bedrock END OF HOLE @ 3.9ft BGS		•				
7.5							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-22.3							
-25.0							
-27.5							
-30.0							

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE REFER TO CURRENT ELEVATION TABLE WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\P\$

(WL-03) Page 1 of 1

PROJECT NAME: VIBRATECH PROJECT NUMBER: 5927

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH3-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 14" HSA

CRA SUPERVISOR: G. GILL

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. BGS	MONITOR		SA	AMPLE	
11. 865		11. 865	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm)
-2.5	 Augered without sampling through 1.5ft of concrete and concrete fill SM-SAND (FILL), some silt, little gravel, fine to medium grained, dark brown and black, moist 	-1.50	CUTTINGS 8" Ø	ISS	X	['] 8	٥.0'
-5.0	ML/SM-SILT (NATIVE), some fine sand, little gravel, gray, moist to wet - auger refusal on apparent bedrock	-3.70 -4.30	BOREHOLE	255		-	20.0
 7.5	END OF HOLE @ 4.3ft BGS						
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
– 22.5							
-25.0							l
-27.5							
-30.0	·						
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE → EFER TO CURRENT ELEVATION TABLE
WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\P\$

(WL-04) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH4-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 14" HSA

CRA SUPERVISOR: G. GILL

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
t. BGS	STIATIONAL VIOLENCE VIEW AND	ft. BGS	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm
	- Augered without sampling through 0.5ft of concrete SM/SW-SAND (FILL), some silt, some crushed	~.50 -2.00	CUTTINGS	155	X	22	22.3
2.5	stone, fine to medium grained, black and brown, moist SM-SAND (FILL?), little to some silt, fine to	-3.50	8" Ø BOREHOLE	255		-	0
5.0	medium grained, brown, moist - auger refusal on apparent bedrock END OF HOLE @ 3.5ft BGS		,				
7.5							
-10.0							
12.5							
15.0							
-17.5							
-20.0	-						
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

(WL-05) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH5-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 14" HSA

CRA SUPERVISOR: G. GILL

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
ft. BGS		ft. BGS	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm)
-2.5 -5.0	- Augered without sampling through lft of concrete GM-GRAVEL (FILL), # 1 crushed stone, gray ML/SM-SILT, little fine sand, little gravel, red brown and black staining, moist - no staining below 2.2ft BGS - auger refusal on apparent bedrock	-1.00 -1.50	8" Ø BOREHOLE	1SS 2SS	X	34	27 O O
7.5	END OF HOLE @ 3.8ft BGS		·				
-10.0							
-15.0 -17.5							
-20.0	·						
-22.5							
-25.0 -27.5							
-30.0							
-32.5							

(WL-06) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927 -

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH6-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 14" HSA

CRA SUPERVISOR: G. GILL

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	AMPLE	
t. BGS	STIATIONALING BESSILL FLOW & NEWATING	ft. BGS	INSTALLATION	NUMBER	STATE	'N' VALUE	HNu (ppm
2.5	- Augered without sampling through lft of concrete ML/SW-SILT (FILL), some fine sand, some clay, little gravel, red brown and brown, moist, trace black staining ML/SW-SILT (NATIVE), some fine sand, some gravel, brown and gray, moist	-1.00 -2.70	CUTTINGS 8" Ø BOREHOLE	1SS 2SS	X	31	5.0
5.0	- auger refusal on apparent bedrock END OF HOLE @ 4.6ft BGS	-4.00	,				
7.5							
10.0							
12.5							
15.0							
17.5							
-20.0			•				
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
						1	

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE. REFER TO CURRENT ELEVATION TABLE
WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\Pi\$

(WL-07) Page 1 of 1

PROJECT NAME: VIBRATECH

PROJECT NUMBER: 5927 -

CLIENT:

LOCATION: BUFFALO, NY

HOLE DESIGNATION: BH7-95

DATE COMPLETED: MARCH 2, 1995

DRILLING METHOD: 4 %" HSA

CRA SUPERVISOR: G. GILL

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
t. BGS	STRATIGNAPHIC DESCRIPTION & REMARKS	ft. BGS	INSTALLATION	NUMBER	STATE	N' VALUE	HNu (ppm)
-2.5	- Augered without sampling through lft of concrete SM-SAND (FILL), some silt, some gravel, fine to medium grained, gray and black stained, moist, slight fuel oil odor ML/SM-SILT (NATIVE), little fine sand, little	-1.00 -3.00	CUTTINGS 8" Ø BOREHOLE	155	X	!9	6.0
-5.0	clay, trace gravel, red-brown, moist END OF HOLE @ 4.5ft BGS	-4.50					
-7.5							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0		TO THE PROPERTY OF THE PROPERT					
_32.5							

STATIC WATER LEVEL T WATER FOUND T

APPENDIX B

ANALYTICAL DATA QUALITY ASSESSMENT AND VALIDATION

MEMO

TO: Kelly McIntosh REFERENCE NO: 5927

FROM: Darla Clark/Paul McMahon/ms/4 DATE: March 31, 1995

RE: Analytical Data Quality Assessment and Validation

Loading Dock/Lugger Storage Area Borehole Sampling

Vibratech Site, Buffalo, New York

March 1995

The following details an assessment and validation of analytical results reported by General Testing Corporation (GTC) for environmental samples collected in March 1995 from the Vibratech Site (Site). The soil samples collected were submitted for Target Compound List (TCL) volatile organic compounds (VOCs) as follows:

Parameter	Matrix	Investigative Samples	Field Duplicates	MS/MSD	Total	
TCL VOCs	Soil	7	1	1/1	10	

Notes:

MS/MSD - Matrix Spike/Matrix Spike Duplicate.

Samples were analyzed by Method 8260, referenced from "Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, 1986.

For sample identification and location, a sample identification key is presented in Table 1. A summary of the analytical results is presented in Table 2. Evaluation of the data was based on information obtained from finished data sheets, blank data, and recovery data from MS/MSD and surrogates. Quality Assurance/Quality Control (QA/QC) criteria by which these data have been assessed are referenced from the SW-846 method of analysis and the "National Functional Guidelines for Organic Data Review" (February 1994), both prepared by the United States Environmental Protection Agency (USEPA). The data validation reference will be referred to as the "Guidelines" hereafter.

ANALYTICAL ASSESSMENT AND VALIDATION

All samples were properly shipped and stored at 4°C (±2°C). All analyses were performed within the SW-846 recommended holding time of 14 days.

Surrogate compounds were added to all samples, blanks, and QC samples. All recoveries were acceptable, with the exception of 4-Bromofluorobenzene in sample

S-5927-007. The recovery was greater than 10 percent but less than the lower acceptance limit. Per the "Guidelines", associated sample results were qualified as estimated in Table 3.

Laboratory method blank analyses yielded non-detect results for all compounds, indicating that contamination was not a factor in this study.

MS/MSD analysis was performed on sample S-5927-007. All percent recoveries (%R) and relative percent differences (RPDs) were within the required control limits, indicating that good analytical accuracy and precision were achieved.

FIELD QA/QC RESULTS

One trip blank was submitted for VOC analysis. All compounds yielded non-detect results.

One field duplicate was collected for this project, as noted in Table 1. All data were comparable, indicating good sampling and analytical precision.

CONCLUSION

The data reported by GTC is acceptable for use with the qualifications noted herein.

TABLE 1 SAMPLE IDENTIFICATION KEY LOADING DOCK/LUGGER STORAGE AREA BOREHOLE SAMPLING VIBRATECH INC. **BUFFALO, NEW YORK MARCH 1995**

Sample				Interval			
Source	Time	Date	Matrix	Sampled	Headspace	Analyses	Comments
				(feet)	(ppm)		
BH3-95	1045	03/02/95	Soil	1.5-4.3	10-20	TCL VOCs	
BH1-95	1200	03/02/95	Soil	0.5-4.4	0.0	TCL VOCs	
BH2-95	1215	03/02/95	Soil	1.0-3.9	75-120	TCL VOCs	
BH4-95	1315	03/02/95	Soil	0.5-2.0	22	TCL VOCs	
BH5-95	1415	03/02/95	Soil	1.5-2.2	27	TCL VOCs	
BH5-95	1415	03/02/95	Soil	1.5-2.2	27	TCL VOCs	Duplicate sample of S-5927-005
BH6-95	1500	03/02/95	Soil	1.0-2.7	5	TCL VOCs	MS/MSD
BH7-95	1530	03/02/95	Soil	1.0-3.0	6	TCL VOCs	
	BH3-95 BH1-95 BH2-95 BH4-95 BH5-95 BH6-95	Source Time BH3-95 1045 BH1-95 1200 BH2-95 1215 BH4-95 1315 BH5-95 1415 BH6-95 1500	Source Time Date BH3-95 1045 03/02/95 BH1-95 1200 03/02/95 BH2-95 1215 03/02/95 BH4-95 1315 03/02/95 BH5-95 1415 03/02/95 BH5-95 1415 03/02/95 BH6-95 1500 03/02/95	Source Time Date Matrix BH3-95 1045 03/02/95 Soil BH1-95 1200 03/02/95 Soil BH2-95 1215 03/02/95 Soil BH4-95 1315 03/02/95 Soil BH5-95 1415 03/02/95 Soil BH5-95 1415 03/02/95 Soil BH6-95 1500 03/02/95 Soil	Source Time Date Matrix Sampled (feet) BH3-95 1045 03/02/95 Soil 1.5-4.3 BH1-95 1200 03/02/95 Soil 0.5-4.4 BH2-95 1215 03/02/95 Soil 1.0-3.9 BH4-95 1315 03/02/95 Soil 0.5-2.0 BH5-95 1415 03/02/95 Soil 1.5-2.2 BH5-95 1415 03/02/95 Soil 1.5-2.2 BH6-95 1500 03/02/95 Soil 1.0-2.7	Source Time Date Matrix Sampled (feet) Headspace (ppm) BH3-95 1045 03/02/95 Soil 1.5-4.3 10-20 BH1-95 1200 03/02/95 Soil 0.5-4.4 0.0 BH2-95 1215 03/02/95 Soil 1.0-3.9 75-120 BH4-95 1315 03/02/95 Soil 0.5-2.0 22 BH5-95 1415 03/02/95 Soil 1.5-2.2 27 BH6-95 1500 03/02/95 Soil 1.0-2.7 5	Source Time Date Matrix Sampled (feet) Headspace (ppm) Analyses BH3-95 1045 03/02/95 Soil 1.5-4.3 10-20 TCL VOCs BH1-95 1200 03/02/95 Soil 0.5-4.4 0.0 TCL VOCs BH2-95 1215 03/02/95 Soil 1.0-3.9 75-120 TCL VOCs BH4-95 1315 03/02/95 Soil 0.5-2.0 22 TCL VOCs BH5-95 1415 03/02/95 Soil 1.5-2.2 27 TCL VOCs BH6-95 1500 03/02/95 Soil 1.0-2.7 5 TCL VOCs

Notes:

MS Matrix Spike

MSD Matrix Spike Duplicate
VOCs Volatile Organic Compounds
TCL Target Compound List

TABLE 2

ANALYTICAL RESULTS SUMMARY LOADING DOCK/LUGGER STORAGE AREA BOREHOLE SAMPLING VIBRATECH INC. BUFFALO, NEW YORK MARCH 1995

	Sample ID: Sample Date:	S-5927-001 03/02/95	S-5927-002 03/02/95	S-5927-003 03/02/95	S-5927- 004 03/02/95	S-5927-005 03/02/95	S-5927-006 03/02/95 (Dup. of S-5927-005)	S-592 7-007 03/02/95	S-5927-008 03/02/95
TCL Volatiles (ug/kg)								
Chloromethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Bromomethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Vinyl chloride		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Chloroethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Methylene Chloride		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Acetone		2600	2000	1500 U	3200	280	270	2100 J	1600
Carbon disulfide		60 U	61 U	1500 U	60 U	12 U	12 U	12 UJ	60 U
1,1-Dichloroethene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1,1-Dichloroethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	12 J	1500
trans-1,2 Dichloroeth	ene	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
cis-1,2-Dichloroethen	e	30 U	30 U	12000	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Chloroform		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
2-Butanone		60 U	61 U	1500 U	60 U	12 U	12 U	59 J	60 U
1,2-Dichloroethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1,1,1-Trichloroethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Carbon tetrachloride		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Bromodichlorometha	ne	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1,2-Dichloropropane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
trans-1,3-Dichloropro	pene	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Trichloroethene	•	30 U	30 U	1400	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Dibromochlorometha	ine	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1,1,2-Trichloroethane		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Benzene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
cis-1,3-Dichloroprope	ene	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Bromoform		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
4-Methyl-2-pentanon	e	60 U	61 U	1500 U	60 U	12 U	12 U	12 UJ	60 U
2-Hexanone		60 U	61 U	1500 U	60 U	12 U	12 U	12 UJ	60 U
Tetrachloroethene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
1,1,2,2-Tetrachloroeth	nane	30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Toluene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Chlorobenzene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Ethylbenzene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Styrene		30 U	30 U	750 U	30 U	6.1 U	6.0 U	6.0 UJ	30 U
Xylene (total)		30 U	30 U	2000	30 U	6.1 U	6.0 U	6.0 UJ	30 U

Notes:

TCL Target Compound List

U Non-detect at associated value.

J Associated value is estimated.

Dup. Field Duplicate

TABLE 3

QUALIFIED ANALYTICAL RESULTS DUE TO OUTLYING SURROGATE RECOVERIES LOADING DOCK/LUGGER STORAGE AREA BOREHOLE SAMPLING VIBRATECH, INC. BUFFALO, NEW YORK MARCH 1995

Parameter	Sample ID	Surrogate Surr ID Compound Rec (per		Control Limits	Associated Compounds	Sample Results (µg/kg)	Qualifier
TCL Volatiles	S-5927-007	4-Bromofluorobenzene	64	74-121	Chloromethane	6.0 U	J
					Bromomethane	6.0 U	j
					Vinyl chloride	6.0 U	J
					Chloroethane	6.0 U	J
					Methylene Chloride	6.0 U	J
•					Acetone	2100	J
					Carbon disulfide	12 U	J
					1,1-Dichloroethene	6.0 U	J
					1,1-Dichloroethane	12	J
					trans-1,2 Dichloroethene	6.0 U	J
					cis-1,2-Dichloroethene	6.0 U	J
					Chloroform	6.0 U	J
					2-Butanone	59	J
					1,2-Dichloroethane	6.0 U	J
					1,1,1-Trichloroethane	6.0 U	J
					Carbon tetrachloride	6.0 U	J
					Bromodichloromethane	6.0 U	J
					1,2-Dichloropropane	6.0 U	J
					trans-1,3-Dichloropropene	6.0 U	J
					Trichloroethene	6.0 U	J
					Dibromochloromethane	6.0 U	J
					1,1,2-Trichloroethane	6.0 U	J
					Benzene	6.0 U	J
					cis-1,3-Dichloropropene	6.0 U	J
					Bromoform	6.0 U	J
					4-Methyl-2-pentanone	12 U	J
					2-Hexanone	12 U	J
					Tetrachloroethene	6.0 U	J
					1,1,2,2-Tetrachloroethane	6.0 U	J
					Toluene	6.0 U	J
	-				Chlorobenzene	6.0 U	J
					Ethylbenzene	6.0 U	J
				`	Styrene	6.0 U	J
					Xylene (total)	6.0 U	J

Notes:

U Non-detect at associated value.

J Associated value is estimated.

TCL Target Compound List