MARCH 1997 GROUNDWATER SAMPLING AND ANALYTICAL TESTING EVENT

Commercial Property 210 French Road Cheektowaga, New York

Prepared For:

CMS Associates 210 French Road Cheektowaga, New York 14227

Prepared By:

Hazard Evaluations, Inc. 3836 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

MARCH 1997 GROUNDWATER SAMPLING AND ANALYTICAL TESTING EVENT

Commercial Property 210 French Road Cheektowaga, New York

Prepared For:

CMS Associates 210 French Road Cheektowaga, New York 14227

Prepared By:

Hazard Evaluations, Inc. 3836 North Buffalo Road Orchard Park, New York 14127 (716) 667-3130

1.0 INTRODUCTION

1.1 General

Hazard Evaluations, Inc. (HEI) was engaged and authorized by Mr. Robert E. Mariacher, representing CMS Associates (CMS), to complete the March, 1997 groundwater sampling and analytical testing event completed at the commercial property located at 210 French Road (Subject Site), Cheektowaga, New York. Please refer to Figure 1 in Appendix A for the Site Location Plan and Figure 2 for the Site Plan. It should be noted that this submittal is being completed as part of the approved Administrative Order on Consent, Index No. B9-0501-96-10, between the New York State Department of Environmental Conservation (NYSDEC) and CMS.

1.2 Purpose and Scope

HEI completed the March, 1997 quarterly groundwater sampling and analytical testing event on the subject site. The purpose of this quarterly event was to measure groundwater levels in existing groundwater monitoring wells, use the data collected to develop a groundwater level contour map for the subject site and determine concentrations of volatile organic compounds (VOCs) in the groundwater collected from the monitoring wells previously installed on the subject site. To accomplish these purposes, HEI completed the following scope of services:

- o Measured groundwater levels in the eight (8) existing monitoring wells previously installed on the subject site;
- Collected representative groundwater samples from seven (7) selected sampling locations (MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8) in accordance with NYSDEC and USEPA protocols;
- o Analyzed the groundwater samples collected for volatile organic compounds (VOCs) by USEPA Test Methods 8010/8020;
- Evaluated the collected data;
- o Prepared a groundwater potentiometric contour elevation map, and;
- o Summarized the data collected into this report.

The opinions rendered in this report are based solely on the above scope of services. Limitations to this report are presented in Appendix B.

2.0 **GROUNDWATER MONITORING**

2.1 Groundwater Levels

Static groundwater levels were measured in the eight (8) existing monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8) on March 18 and 20, 1997 (Refer to Figure 3 presented in Appendix A for the monitoring well locations). The groundwater level measurements were made using an electric water level indicator manufactured by Solinst, Inc. with both audible (beep) and visual (light) signals. The decontaminated probe on the water level meter was lowered into the well riser pipe until the probe contacted the groundwater surface. The depth of the water below the top of the well riser pipe was measured to the nearest hundredth of a foot. HEI determined the relative well riser pipe elevations for the eight (8) monitoring wells through optical survey procedures utilizing the foundation on the northwest corner of the building at 210 French Road as a benchmark (assumed elevation of 100.0 feet). HEI also estimated top of bedrock elevations at each monitoring well location by reviewing the top of rock depth reported on the test boring log and converting the depth to a relative elevation. It should be noted that test boring logs/well installation details for MW-4, MW-5, and MW-6 were not provided to HEI. Groundwater level measurements are summarized in Tables 1, 2, 3, 4, and 5 presented on the following pages. Top of bedrock elevations are summarized in Table 6, presented on the following pages.

It should be noted that the monitoring wells were installed at the subject site to measure the groundwater levels near the bedrock surface; however, it should be noted that the interpretation of groundwater data to determine flow direction is often difficult in bedrock monitoring wells. Groundwater flow in a limestone bedrock is generally controlled by the pattern and frequency of horizontal bedding planes and vertical joints that transmit the groundwater. It is not uncommon to have a bedrock monitoring well that will produce little or no water and another in the same formation that will produce many gallons per minute.

Based on the most recent groundwater elevation data measured on March 18 and 20, 1997, it appears that the localized groundwater near the bedrock surface has mounded in the area of the former underground storage tank (UST) pit. This area, which was excavated during the UST removal, appears to be acting as a groundwater recharge area through the enhanced percolation of surface water runoff, snow melt and direct precipitation into the more permeable pit backfill materials. The mounding effect, which was observed following a period of increased early Spring rainfall, reflects the impacts of both a plastic liner (assumed to be permeable and present simply to identify the limits of backfilling) and the much less permeable bedrock. Based on the local topography and geology, HEI expects that the regional groundwater flow beneath the area of the subject site appears to be in a north/northwest direction toward Slate Bottom

STATIC GROUNDWATER LEVELS MEASURED ON OCTOBER 9, 1996 CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

					i
WELL	GROUND SURFACE	REFERENCE POINT	GROUNDWATER	GROUNDWATER	
DESIGNATION	ELEVATION (ft)	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)	
MW-1	97.45	97.28	2.90	94.38	5.07
MW-2	98.46	98.14	2.43	95.71	2.7
MW-3	97.85	97.54	2.73	94.81	3.04
MW-4	96.86	96.44	2.33	94.11	2.75
MW-5	95.17	94.90	5.39	89.51	56
MW-6	95.40	98.04	8.34	89.70	5.7
MW-7	98.37	100.38	12.83	87.55	10.5
8-WM	98.68	98.44	6.14	92.30	6 9

NOTES:

- 1. A relative benchmark was established on the foundation of the northwest corner of the building at 210 French Road. Assume elevation of 100.00 feet.
 - 2. Groundwater depth was measured from the top of the PVC well riser casing (reference point)

STATIC GROUNDWATER LEVELS MEASURED ON OCTOBER 21, 1996 CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

1					1
WELL	GROUND SURFACE	REFERENCE POINT	GROUNDWATER	GROUNDWATER	
DESIGNATION	ELEVATION (ft)	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)	
MW-1	97.45	97.28	3.33	93.95	
MW-2	98.46	98.14	1.96	96.18	7.28
MW-3	97.85	97.54	2.96	94.58	
MW-4	96.86	96.44	19.03	77.41	19,48
MW-5	95.17	94.90	5.04	89.86	
MW-6	95.40	98.04	11.47	86.57	
MW-7	98.37	100.38	10.65	89.73	2.04
MW-8	98.68	98.44	8.14	90.30	

NOTES: 1. A relative benchmark was established on the foundation of the northwest corner of the building at 210 French Road. Assume elevation of 100.00 feet.

2. Groundwater depth was measured from the top of the PVC well riser casing (reference point)

STATIC GROUNDWATER LEVELS MEASURED ON OCTOBER 31, 1996 CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

1					i
WELL	GROUND SURFACE	REFERENCE POINT	GROUNDWATER	GROUNDWATER	
DESIGNATION	ELEVATION (ft)	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)	j
MW-1	97.45	97.28	3.14	94.14	
MW-2	98.46	98.14	2.05	96.09	2.37
MW-3	97.85	97.54	2.91	94.63	
MW-4	96.86	96.44	17.66	78.78	12.0
MW-5	95.17	94.90	5.02	89.88	
MW-6	95.40	98.04	9.85	88.19	
MW-7	98.37	100.38	11.59	88.79	9.57
MW-8	98.68	98.44	7.21	91.23	

- NOTES: 1. A relative benchmark was established on the foundation of the northwest corner of the building at 210 French Road. Assume elevation of 100.00 feet.
 - 2. Groundwater depth was measured from the top of the PVC well riser casing (reference point)

STATIC GROUNDWATER LEVELS MEASURED ON MARCH 18, 1997 CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

	,		·		Í
WELL	GROUND SURFACE	REFERENCE POINT	GROUNDWATER	GROUNDWATER	
DESIGNATION	ELEVATION (ft)	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)	
MW-1	97.45	97.28	3.30	93.98	
MW-2	98.46	98.14	3.69	94.45	4 /. o
MW-3	97.85	97.54	1.63	95.91	
MW-4	96.86	96.44	6.37	90.07	67
MW-5	95.17	94.90	4.67	90.23	
MW-6	95.40	98.04	∖ 8.90	89.14	
MW-7	98.37	100.38	8.61	91.77	€.6
MW-8	98.68	98.44	6.17	92.27	

NOTES:

- 1. A releative benchmark was established on the foundation of the northwest corner of the building at 210 French Road. Assume elevation of 100.00 feet.
- 2. Groundwater depth was measured from the top of the PVC well riser casing (reference point)

STATIC GROUNDWATER LEVELS MEASURED ON MARCH 20, 1997 CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

1					3
WELL	GROUND SURFACE	REFERENCE POINT	GROUNDWATER	GROUNDWATER	
DESIGNATION	ELEVATION (ft)	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)	ļ
MW-1	97.45	97.28	1.82	95.46	
MW-2	98.46	98.14	4.20	93.94	4.52
MW-3	97.85	97.54	1.65	95.89	
MW-4	96.86	96.44	6.29	90.15	2.71
MW-5	95.17	94.90	4.72	90.18	
MW-6	95.40	98.04	8.73	89.31	
MW-7	98.37	100.38	8.51	91.87	6.5
MW-8	98.68	98.44	5.81	92.63	

NOTES:

- 1. A relative benchmark was established on the foundation of the northwest corner of the building at 210 French Road. Assume elevation of 100,00 feet.
 - 2. Groundwater depth was measured from the top of the PVC well riser casing (reference point)

TABLE 6

SUMMARY OF TOP OF BEDROCK ELEVATIONS CMS FACILITY, 210 FRENCH ROAD CHEEKTOWAGA, NEW YORK

WELL	GROUND SURFACE	DEPTH TO BEDROCK	TOP OF BEDROCK
DESIGNATION	ELEVATION (ft)	MEASUREMENT (ft)	ELEVATION (ft)
MW-1	97.45	4.20	93.25
MW-2	98.46	5.00	93.46
MW-3	97.85	4.40	93.45
MW-4	96.86	*	*
MW-5	95.17		*
MW-6	95.40	*	*
MW-7	98.37	4.90	93.47
MW-8	98.68	6.40	92.28

NOTES: 1. A relative benchmark was established on the foundation of the northwest corner of of the building at 210 French Road. Assume elevation of 100.00 feet.

* No test boring logs/well installation details available.

Creek located approximately 2,000 feet north of the site. Refer to Figure 4 presented in Appendix A for the generalized groundwater potentiometric contour map.

2.2 Groundwater Sampling

On-site monitoring wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8 were purged on March 20 and 21, 1997 in general accordance with NYSDEC protocols. The purpose of the well purging was both to maintain the specific capacity of the well and the natural permeability of the rock formation adjacent to the well and to remove clay/silt and other fines from the well by evacuating either a minimum of three well volumes or to complete dryness several times.

A plastic sheet was placed on the area immediately around each monitoring well to minimize outside contamination. The water level and effective well depth was measured for each monitoring well. These data were then used to calculate the volume of water present in each well. A dedicated polyethylene bailer was used to remove water from each monitoring well. Each well was purged repeatedly and the water was emptied into a 5-gallon calibrated pail to measure the volume evacuated. General groundwater parameters (pH, temperature and appearance) were recorded several times during purging to determine if the groundwater was representative of the water bearing zone before a groundwater sample was collected. All monitoring wells were evacuated until at least three (3) well volumes were removed, with dryness generally occurring two (2) to four (4) times. The evacuated water from the less contaminated wells (MW-4, MW-5, MW-6, MW-7 and MW-8) was poured on the ground surface away from the monitoring wells. The evacuated water from the more contaminated wells (MW-2 and MW-3) was poured into a sink inside the building on the subject site for discharge to the public sewer system.

HEI collected representative groundwater samples for analytical testing from monitoring wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8 following development. It should be noted that a "blind" field duplicate sample was collected from monitoring well MW-6. A "rinse" blank consisting of distilled water that had been used to "rinse-out" a new precleaned polyethylene bailer was also collected. The field duplicate and rinse blank are both part of HEI's in-house field sampling quality control program. Groundwater samples were collected by slowly lowering a new precleaned disposable polyethylene bailer with a dedicated rope into the water column. The bailer was then carefully retrieved and the water was gently poured from the bailer into four (4) 40-milliliter glass vials (40-mil. VOAs) preserved with hydrochloric acid. The vials were visually inspected to ensure that no air bubbles were present in the sample containers after the sample was collected. The samples were properly labeled and shipped in a cooler (approximately 4 °C) under Chain-of-custody to the laboratory for analysis.

It should be noted that Mr. David Locey, representing the NYSDEC, was present during sampling activities completed on March 20, 1997 to make field observations and "split" groundwater samples for analysis by the NYSDEC. Mr. Locey collected "split" groundwater samples from monitoring wells: MW-5 (six 40-mil. VOAs), MW-7 (two 40-mil. VOAs), and MW-8 (two 40-mil. VOAs).

3.0 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were obtained from monitoring wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8 on March 20 and 21, 1997. Each groundwater sample collected was analyzed for volatile organic compounds by USEPA Test Methods 8010/8020. A summary of the chemical compounds detected in each monitoring well is provided on Figure 5 (Appendix A) and in Table 7. The concentrations reported for the March, 1997 sampling event are compared to the June, 1996 and the October, 1996 sampling events and to the Class GA Groundwater Quality Standards established by the NYSDEC. Refer to Appendix C for detailed analytical test results.

TABLE 7

MONITORING WELL #2

	NYSDEC Class GA Ground	June 1996 (E&E)*	October 1996 (Upstate)**	March 1997 (Upstate)**	USEPA
COMPOUND	Water Standard	ug/l	ug/l	ug/l	Test Method
1,1-Dichloroethane	5	2600	31000	19000	8010
cis-1,2-Dichloroethene	***	1900	3600	BDL	8010
Chloroform	5	1200	BDL	BDL	8010
1,1,1-Trichloroethane	5	84000	82000	84000	8010
Trichloroethene	5	3300	BDL	BDL	8010
Tetrachloroethene	5	11000	14000	14000	8010
1,1,2,2-Tetrachloroethane	5	1700	BDL	BDL	8010
			`.		
Toluene	5	290	BDL	230	8020
Ethylbenzene	5	80	BDL	. 81	8020
Total Xylenes	5	600	BDL	550	8020

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

MONITORING WELL #3

	NYSDEC Class GA Ground	June 1996 (E&E)*	October 1996 (Upstate)**	March 1997 (Upstate)**	USEPA
COMPOUND	Water Standard	ug/l	ug/l	ug/l	Test Method
1,1-Dichloroethane	5	22000	26000	10000	8010
cis-1,2-Dichloroethene	***	3000	6700	1900	8010
Chloroform	5	570	BDL	BDL	8010
1,1,1-Trichloroethane	5	22000	23000	16000	8010
Trichloroethene	5	BDL	BDL	1100	8010
Tetrachloroethene	5	1600	BDL	BDL	8010
			`,		
Toluene	5	70	BDL	46	8020
Ethylbenzene	5	17	BDL	, 16	8020
Total Xylenes	5	130	BDL	72	8020

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

MONITORING WELL #4

COMPOUND	NYSDEC Class GA Ground Water Standard	June 1996 (E&E)* ug/l	October 1996 (Upstate)** ug/l	March 1997 (Upstate)** ug/l	USEPA Test Method
1,1-Dichloroethane	5	2.5	BDL	BDL	8010
Benzene	0.7	39	110	. 120	8020
Toluene	5	160	240	230	8020
Ethylbenzene	5	20	23	21	8020
Total Xylenes	5	220	247	229	8020

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

MONITORING WELL #5

COMPOUND	NYSDEC Class GA Ground Water Standard	June 1996 (E&E)* ug/l	October 1996 (Upstate)** ug/l	March 1997 (Upstate)** ug/l	USEPA Test Method
				1,2 Dichoiles mix	41
1,1-Dichloroethane	5	2000	3000	3500	80103/508
cis-1,2-Dichloroethene	***	960	1200	1300	8010 18001
1,1,1-Trichloroethane	5	120	BDL	BDL	8010 Z 2008
Trichloroethene	5	BDL	BDL	270	8010 4m £
Tetrachloroethene	5	260	240	BDL	8010 27
Vinyl Chloride	2	320	790	730	8010 775€
1,1-Dichloroethene	5	59	BDL	BDL TRAMENTON AND ONLY OF THE	8010 120 45 25
Toluene	5	4	BDL	BDL	8020 75
Benzene	0.7	1.8	BDL	BDL	8020 35
Total Xylenes	5	2.4	BDL	BDL	8020 ⁵
				Granding :	15

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

MONITORING WELL #6

	NYSDEC	June 1996	October 1996	March 1997	
	Class GA Ground	(E&E)*	(Upstate)**	(Upstate)**	USEPA
COMPOUND	Water Standard	ug/l	ug/l	ug/l	Test Method
1,1-Dichloroethane	5	27	31	28	8010
cis-1,2-Dichloroethene	***	76	60	24	8010
Chloroform	5	2.5	BDL	BDL	8010
Trichloroethene	5	9.9	6	3	8010
Tetrachloroethene	5	5.2	BDL	BDL	8010
Vinly Chloride	2	9.7	BDL	BDL	8010
Benzene	0.7	ND	10	8	8020
Toluene	5	4.3	34		8020
ì					
Ethylbenzene	5	1.3	11	2	8020
Total Xylenes	5	11	125	34	8020

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

BDL - Below Detection Limits

ND - Non-detect

ug/l - Parts Per Billion

MONITORING WELL #7

COMPOUND	NYSDEC Class GA Ground Water Standard	October 1996 (Upstate)** ug/l	March 1997 (Upstate)** ug/l	USEPA Test Method
1,1-Dichloroethane	5	1500 BDL	1900 100	8010 Z/00 8010 /50

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

MONITORING WELL#8

COMPOUND	NYSDEC Class GA Ground Water Standard	October 1996 (Upstate)** ug/l	March 1997 (Upstate)** ug/l	USEPA Test Method
1,1-Dichloroethane	5	120	34	8010 33-
cis-1,2-Dichloroethene	***	110	30	. 8010 27 1
Trichloroethene	. 5	9	8	8010 85
Vinly Chloride	2	10	BDL	8010 1/2

BDL - Below Detection Limits

^{* -} Ecology & Environment, Inc.

^{** -} Upstate Laboratories, Inc.

^{*** -} no standard

ug/l - Parts Per Billion

4.0 **SUMMARY AND CONCLUSIONS**

This quarterly groundwater sampling and analytical testing event was completed for CMS Associates on the subject property located at 210 French Road, Cheektowaga, New York. Data obtained by others and data collected by HEI were relied upon for the completion of this report. These data include previous studies completed at the site, subsurface explorations and analytical testing of groundwater samples. The conclusions presented below are subject to the limitations identified in this report and Appendix B. Based on the scope of work and information made available to HEI, the relevant observations and findings are summarized below:

- Based on the recent groundwater level measurements taken in the monitoring wells installed at the site, it appears that there is a groundwater "mound" in the area of the former UST. This area appears to be a recharge area resulting from the rapid percolation of surface runoff, snowmelt and direct precipitation into the permeable subsurface backfill materials. It has been reported that the UST pit was excavated into bedrock, and that after the tank removal, the pit was lined with plastic sheeting before backfilling to surrounding grade. This plastic was apparently placed to identify the limits of backfilling, and therefore, HEI has assumed that this sheeting is permeable. The backfill material is more permeable than the surrounding bedrock, and therefore, the pit will retain the groundwater until it slowly percolates radially from the pit (refer to Figure 3 presented in Appendix A) into the surrounding, less permeable, bedrock causing the groundwater to "mound" in the former UST pit area. This effect would explain the minor contaminant levels detected in crossgradient and upgradient wells MW-4 and MW-8, respectively.
- o Based on the results of the analytical testing completed on the groundwater samples collected from the monitoring wells installed at the site, it was determined that the highest concentrations of chemical compounds detected on-site are in the general area of the former UST. Concentrations of detected compounds decrease significantly in the groundwater samples collected from monitoring wells located near the property boundaries. This indicates that although migration of the contaminants has occurred, the migration has been limited.
- O Concentrations of chemical compounds detected during the June, 1996, October, 1996, and the March, 1997 sampling events for each monitoring well have remained generally consistent with only minor fluctuations in the concentrations detected.
- O Detection limits achieved in the October, 1996 sampling event were generally higher than those reached in both the June, 1996 and the March, 1997 sampling events. As a result, the actual concentrations of the

chemical compounds recorded as below detection limits (BDL) in October, 1996 may have remained the same but were not reported due to the higher detection limits. Comparison of the June, 1996 and March, 1997 analytical results appear to be very similar.

 Concentrations of chemical compounds detected in the groundwater beneath the subject site are above the NYSDEC Class GA groundwater standards.

This quarterly groundwater sampling/analytical testing event was to determine the general groundwater flow direction across the site and the concentrations of volatile organic compounds (VOCs) in the groundwater samples collected from monitoring wells previously installed on the subject site. In general, HEI has determined that the contaminant levels detected in the groundwater samples obtained from the on-site monitoring wells during the March, 1997 sampling event are similar to contaminant levels detected during previous sampling events. The updated groundwater potentiometric contour elevation map presents the interruption that groundwater flow is in a radial pattern away from the former UST pit area.

5.0 RECOMMENDATIONS

Following the completion of this quarterly groundwater sampling event and the evaluation of available data and information, as presented above in this report, HEI has formulated several recommendations which are presented to the NYSDEC for consideration. These are as follows:

- O With respect to the higher groundwater elevations and the elevated contaminant levels detected in the monitoring wells immediately around the former tank pit (MW-1, MW-2 and MW-3), HEI recommends that a low permeability surface (e.g., asphalt parking area) be installed over the former tank location to limit the infiltration of surface water into the former UST pit area. This "cap" should effectively decrease the groundwater flow gradient from the former UST pit area to the surrounding bedrock. By decreasing the groundwater flow gradient, the groundwater flow rate through the bedrock will decrease and reduce the migration of minor contaminants toward the property boundaries.
- After the installation of this "cap", HEI recommends continuing the groundwater monitoring program (i.e., sampling, analysis and water level measurement) on a quarterly basis to determine seasonal fluctuations in groundwater levels and contaminant concentrations. These data will be used to assist in the development an interim remedial program. The groundwater monitoring activities should include the following wells: MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8. The groundwater samples collected should be analyzed for volatile organic compounds by USEPA Methods 8010/8020.

Appendix A Figures

CMS ASSOCIATES 210 FRENCH ROAD, CHEEKTOWAGA, N.Y. MONITORING WELL LOCATION PLAN

FIGURE 3

HAZARD EVALUATIONS CMS ASSOCIATES
210 FRENCH ROAD, CHEEKTOWAGA, N.Y.

GROUNDWATER GRADIENT PLAN (MARCH 18, 1997)

Appendix B

Limitations

APPENDIX B

LIMITATIONS

- 1. Hazard Evaluations, Inc. (HEI), completed this Phase II Environmental Evaluation in accordance with generally accepted current practices of other consultants undertaking similar studies. HEI observed that degree of care and skill generally exercised by other consultants under similar circumstances and conditions. HEI's findings and conclusions must be considered not as scientific certainties but as probabilities based on our professional judgment concerning the significance of the limited data gathered during the course of the investigation. Specifically, HEI does not and cannot represent that the site contains no hazardous material, petroleum products, or other latent conditions beyond that observed by HEI during this Environmental Evaluation.
- 2. The observations described in this report were made under conditions stated therein. The conclusions presented in the report were based solely upon the services described therein and not tasks and procedures beyond the scope of described services or the time and budgetary constraints imposed by the client.
- 3. In preparing this report, HEI has relied on certain information provided by other consultants the State, County and Town officials and other parties referenced herein and on information contained in the files of state and local agencies made available to HEI at the time of the study.
- 4. Observations were made of the subject site and on adjacent sites as indicated within the report. Where access to portions of the site or the structures on adjacent sites were limited or unavailable, HEI renders no opinion as to the presence of hazardous materials or to the presence of indirect evidence relating to hazardous materials in that portion of the site or adjacent structures.
- 5. Unless otherwise specified in the report, HEI did not perform testing or analyses to determine the presence or concentrations of hazardous chemical compounds, petroleum products, asbestos or radon.
- 6. No specific attempt was made to check on the compliance of present or past owners or operators of the site with Federal, State, or Local laws and regulations, environmental or otherwise.

- 7. The generalized subsurface profiles described on the test boring logs and in the report text are intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples. Actual soil and rock transition are probably more gradual. For specific information, refer to the test boring logs.
- 8. Groundwater level measurements have been made in the explorations and monitoring wells at the times and under conditions stated. It should be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature and other factors occurring from the time measurements were made.
- It should be noted that fluctuations in the concentrations of chemical compounds may occur due to variations in groundwater levels due to changes in rainfall, temperature and other factors occurring at the time samples were collected.
- 10. This report has been prepared for the exclusive use of CMS Associates and designated agents for the specific application to the subject property in accordance with generally accepted engineering practice. No other warranty, expressed or implied, is made. The environmental concerns noted in this report, if any, are applicable to the current identified proposed usage of the property.

Appendix C Analytical Report

Upstate Laboratories inc.

Shipping: 5034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209 _

Mailing: Box 289 • Syracuse, NY 13205

Albany (518) 459-3134 Bingnamion (607) 724-0478 Buffalc (716) 649-2533 Rochester (716) 436-9070 New Jersey (201) 703-1324

April 3, 1997

Mr. Todd J. Overhoff Hazard Evaluations, Inc. 3836 N. Buffalo Rd.

Orchard Park, NY 14127

Re: Analysis Report #08097133 - 08810/CMS Associates

Dear Mr. Overhoff:

Please find enclosed the results for your samples which were picked up by ULI personnel on March 21, 1997.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

anthoug J. Siega

Anthony J. Scala

Director

AJS/lw

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

NY Lab ID 10170 NJ Lab ID 73750 PA Lab ID 68375

DATE: 04/03/97

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES MW-2 1250H 03/20/97 G

I I.D.: 08097135	Matrix: Water		·	- -	
ARAMETERS	RESULTS	DATE ANAL.	KEY	FIL	
EPA Method 8010					
Dichlorodifluoromethane	<5000ug/l	03/31/97	05	VA2	
Chloromethane	<5000ug/1	03/31/97	05	VA2	
Vinyl Chloride	<5000ug/1 <5000ug/1	03/31/97	05	VA2	
Bromomethane	<5000ug/1	03/31/97	05	VA2	
Chloroethane	<5000ug/1	03/31/97	05	VA2	
Trichlorofluoromethane	<5000ug/1	03/31/97	05	VA2	
	<5000ug/1 <5000ug/1	03/31/97	05	VA2	
1,1-Dichloroethene	_ ·	· · · · · · · · · · · · · · · · · · ·	05	VA2	
Methylene Chloride	<25,000ug/l	03/31/97	05 05	VAZ VA2	
cis-1,2-Dichloroethene	<5000ug/1	03/31/97	05 05	VA2	
trans-1,2-Dichloroethene	<5000ug/l	03/31/97	05		
1,1-Dichloroethane	19,000ug/1	03/31/97	0.5	VA2 VA2	
Chloroform	<5000ug/1	03/31/97	05		
1,1,1-Trichloroethane	84,000ug/l	03/31/97	٥.	VA2	
Carbon Tetrachloride	<5000ug/1	03/31/97	05	VA2	
1,2-Dichloroethane	<5000ug/l	03/31/97	05	VA2	
Trichloroethene	<5000ug/l	03/31/97	05	VA2	
1,2-Dichloropropane	<5000ug/l	03/31/97	05	VA2	
Bromodichloromethane	<5000ug/1	03/31/97	05	VA2	
2-Chloroethylvinylether	<5000ug/l	03/31/97	05	VA2	
cis-1,3-Dichloropropene	<5000ug/l	03/31/97	05	VA2	
trans-1,3-Dichloropropene	<5000ug/l	03/31/97	05	VA2	
1,1,2-Trichloroethane	<5000ug/l	03/31/97	05	VA2	
Tetrachloroethene	14,000ug/l	03/31/97		VA2	
Dibromochloromethane	<5000ug/l	03/31/97	05	VA2	
Bromoform	<5000ug/l	03/31/97	05	VA2	
1,1,2,2-Tetrachloroethane	<5000ug/l	03/31/97	05	VA2	
Chlorobenzene	<5000ug/l	03/31/97	05	VA2	
1,2-Dichlorobenzene	<5000ug/l	03/31/97	05	VA2	
1,3-Dichlorobenzene	<5000ug/l	03/31/97	05	VA2	
1,4-Dichlorobenzene	<5000ug/l	03/31/97	05	VA2	
EPA Method 8020					
	.7.0/7	02/27/27	٥٣	VA2	
Benzene	<10ug/l	03/27/97	05	VA2	
Toluene	230ug/1	03/27/97		VA2	
Ethylbenzene	81ug/l	03/27/97		VA2	
m-Xylene and p-Xylene	230ug/1	03/27/97		VA2	
o-Xylene	320ug/1	03/27/97	. 05	VAZ VA2	
Chlorobenzene	<10ug/l	03/27/97	05	VA2	

DATE: 04/03/97

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES MW-2 1250H 03/20/97 G

UI	ΙI	I.	D.	. :	0.8	309	97:	L3!	5						1	1at	tri	x	: 1	Nat	ces	r

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<10ug/l	03/27/97	05	VA2794
1,3-Dichlorobenzene	<10ug/l	03/27/97	05	VA2794
1,4-Dichlorobenzene	<1000ug/l	03/27/97	05	VA2794

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES MW-3 1215H 03/20/97 G

by: Client	MW-3 1213A 03/20/9/ G			
ULI I.D.: 08097136	Matrix: Water			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
EPA Method 8010				
Dichlorodifluoromethane	<1000ug/l	03/31/97	05	VA2789
Chloromethane	<1000ug/l	03/31/97	05	VA2789
Vinyl Chloride	<1000ug/l	03/31/97	05	VA2789
Bromomethane	<1000ug/l	03/31/97	05	VA2789
Chloroethane	<1000ug/l	03/31/97	05	VA2789
Trichlorofluoromethane	<1000ug/l	03/31/97	05	VA2789
1,1-Dichloroethene	<1000ug/l	03/31/97	05	VA2789
Methylene Chloride	<5000ug/l	03/31/97	05	VA2789
cis-1,2-Dichloroethene	1900ug/1	03/31/97		VA2789
trans-1,2-Dichloroethene	<1000ug/l	03/31/97	05	VA2789
1,1-Dichloroethane	10,000ug/l	03/31/97		VA2789
Chloroform	<1000ug/l	03/31/97	05	VA2789
1,1,1-Trichloroethane	16,000ug/l	03/31/97		VA2789
Carbon Tetrachloride	<1000ug/l	03/31/97	05	VA2789
1,2-Dichloroethane	<1000ug/l	03/31/97	05	VA2789
Trichloroethene	1100ug/l	03/31/97		VA2789
1,2-Dichloropropane	<1000ug/l	03/31/97	05	VA2789
Bromodichloromethane	<1000ug/l	03/31/97	05	VA2789
2-Chloroethylvinylether	<1000ug/l	03/31/97	05	VA2789
cis-1,3-Dichloropropene	<1000ug/l	03/31/97	05	VA2789
trans-1,3-Dichloropropene	<1000ug/l	03/31/97	05	VA2789
1,1,2-Trichloroethane	<1000ug/l	03/31/97	05	VA2789
Tetrachloroethene	<1000ug/l	03/31/97	05	VA2789
Dibromochloromethane	<1000ug/l	03/31/97	05	VA2789
Bromoform	<1000ug/l	03/31/97	05	VA2789
1,1,2,2-Tetrachloroethane	<1000ug/l	03/31/97	05	VA2789
Chlorobenzene	<1000ug/l	03/31/97	05	VA2789
1,2-Dichlorobenzene	<1000ug/l	03/31/97	05	VA2789
1,3-Dichlorobenzene	<1000ug/l	03/31/97	05	VA2789
1,4-Dichlorobenzene	<1000ug/1	03/31/97	05	VA2789
EPA Method 8020				
				*** 0501
Benzene	<10ug/1	03/27/97	0.5	VA2794
Toluene	46ug/1	03/27/97		VA2794
Ethylbenzene	16ug/1	03/27/97		VA2794
m-Xylene and p-Xylene	33ug/1	03/27/97		VA2794
o-Xylene	39ug/1	03/27/97		VA2794
Chlorobenzene	<10ug/l	03/27/97	05	VA2794

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC. 08810/CMS ASSOCIATES

Sampled by: Client

APPROVAL:

Lab I.D.: 10170

08810/CMS ASSOCIATES MW-3 1215H 03/20/97 G

ULI I.D.: 08097136 Matrix: Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<10ug/l	03/27/97	05	VA2794
1,3-Dichlorobenzene	<10ug/l	03/27/97	05	VA2794
1,4-Dichlorobenzene	<10ug/l	03/27/97	05	VA2794

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL: QS _ QC: \ww _ _ _ Lab I.D.: 10170

08810/CMS ASSOCIATES MW-4 1400H 03/21/97 G

LI I.D.: 08397014	Matrix: Water			
ARAMETERS	RESULTS	DATE ANAL.	KEY	FILE
EPA Method 8010				
Dichlorodifluoromethane	<10ug/l	04/01/97	05	VA28
Chloromethane	<10ug/l	04/01/97	05	VA28
Vinyl Chloride	<10ug/l	04/01/97	05	VA28
Bromomethane	<10ug/l	04/01/97	05	VA28
Chloroethane	<10ug/1	04/01/97	05	VA28
Trichlorofluoromethane	<10ug/l	04/01/97	05	VA28
1,1-Dichloroethene	<10ug/l	04/01/97	05	VA28
Methylene Chloride	<50ug/l	04/01/97	05	VA28
cis-1,2-Dichloroethene	<10ug/l	04/01/97	05	VA28
trans-1,2-Dichloroethene	<10ug/l	04/01/97	05	VA2
1,1-Dichloroethane	<10ug/1	04/01/97	05	VA2
Chloroform	<10ug/1	04/01/97	05	VA2
1,1,1-Trichloroethane	<10ug/l	04/01/97	05	VA2
Carbon Tetrachloride	<10ug/l	04/01/97	05	VA2
1,2-Dichloroethane	<10ug/l	04/01/97	05	VA2
Trichloroethene	<10ug/l	04/01/97	05	VA2
1,2-Dichloropropane	<10ug/l	04/01/97	05	VA2
Bromodichloromethane	<10ug/l	04/01/97	05	VA2
2-Chloroethylvinylether	<10ug/l	04/01/97	05	VA2
cis-1,3-Dichloropropene	<10ug/l	04/01/97	05	VA2
trans-1,3-Dichloropropene	<10ug/l	04/01/97	05	VA2
1,1,2-Trichloroethane	<10ug/l	04/01/97	05	VA2
Tetrachloroethene	<10ug/l	04/01/97	05	VA2
Dibromochloromethane	<10ug/l	04/01/97	05	VA2
Bromoform	<10ug/l	04/01/97	05	VA2
1,1,2,2-Tetrachloroethane	<10ug/l	04/01/97	05	VA2
Chlorobenzene	<10ug/l	04/01/97	05	VA2
1,2-Dichlorobenzene	<10ug/1	04/01/97	05	VA2
1,3-Dichlorobenzene	<10ug/1	04/01/97	05	VA2
1,4-Dichlorobenzene	<10ug/1	04/01/97	05	VA2
EPA Method 8020				
Benzene	120ug/1	04/01/97		VA2
Toluene	230ug/l	04/01/97		VA2
Ethylbenzene	21ug/l	04/01/97		VA2
m-Xylene and p-Xylene	160ug/1	04/01/97		VA2
o-Xylene	69ug/l	04/01/97		VA28
Chlorobenzene	<10ug/l	04/01/97	05	VA28

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC. Sampled by: Client

APPROVAL: Q___

08810/CMS ASSOCIATES

MW-4 1400H 03/21/97 G

ULI I.D.:	08397014	Matrix:	Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<10ug/l	04/01/97	05	VA2804
1,3-Dichlorobenzene	<10ug/l	04/01/97	05	VA2804
1,4-Dichlorobenzene	<10ug/l	04/01/97	05	VA2804

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES MW-5 0955H 03/20/97 G

LI I.D.: 08097137	Matrix: Water			
ARAMETERS	RESULTS	DATE ANAL.	KEY	FILE;
	FF			
EPA Method 8010				
Dichlorodifluoromethane	<200ug/l	04/01/97	05	VA28
Chloromethane	<200ug/l	04/01/97	05	VA28
Vinyl Chloride	730ug/l	04/01/97		VA28
Bromomethane	<200ug/l	04/01/97	05	VA28
Chloroethane	<200ug/l	04/01/97	05	VA28
Trichlorofluoromethane	<200ug/l	04/01/97	05	VA28
1,1-Dichloroethene	<200ug/l	04/01/97	05	VA28
Methylene Chloride	<1000ug/1	04/01/97	05	VA28
cis-1,2-Dichloroethene	1300ug/l	04/01/97		VA28
trans-1,2-Dichloroethene	<200ug/l	04/01/97	05	VA28
1,1-Dichloroethane	3500ug/l	04/01/97		VA28
Chloroform	<200ug/l	04/01/97	05	VA28
1,1,1-Trichloroethane	<200ug/l	04/01/97	05	VA28
Carbon Tetrachloride	<200ug/l	04/01/97	05	VA28
1,2-Dichloroethane	<200ug/l	04/01/97	05	VA28
Trichloroethene	270ug/l	04/01/97		VA28
1,2-Dichloropropane	<200ug/l	04/01/97	05	VA28
Bromodichloromethane	<200ug/l	04/01/97	05	VA28
2-Chloroethylvinylether	<200ug/l	04/01/97	05	VA28
cis-1,3-Dichloropropene	<200ug/l	04/01/97	05	VA28
trans-1,3-Dichloropropene	<200ug/l	04/01/97	05	VA28
1,1,2-Trichloroethane	<200ug/1	04/01/97	05	VA28
Tetrachloroethene	<200ug/l	04/01/97	05	VA28
Dibromochloromethane	<200ug/l	04/01/97	05	VA28
Bromoform	<200ug/l	04/01/97	05	VA28
1,1,2,2-Tetrachloroethane	<200ug/1	04/01/97	05	VA28
Chlorobenzene	<200ug/1	04/01/97	05	VA28
1,2-Dichlorobenzene	<200ug/1	04/01/97	05	VA28
1,3-Dichlorobenzene	<200ug/1	04/01/97	05	VA28
1,4-Dichlorobenzene	<200ug/l	04/01/97	05	VA28
EPA Method 8020				
,	•			
Benzene	<100ug/1	03/31/97	05	VA27
Toluene	<100ug/l	03/31/97	05	VA27
Ethylbenzene	<100ug/1	03/31/97	05	VA27
m-Xylene and p-Xylene	<100ug/1	03/31/97	05	VA27
o-Xylene	<100ug/1	03/31/97	05	VA27
Chlorobenzene	<100ug/l	03/31/97	05	VA27

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC. 08810/CMS ASSOCIATES

Sampled by: Client

APPROVAL:

QC:

Lab I.D.: 10170

MW-5 0955H 03/20/97 G

						_	_	_		_	 	_	 	 	 	_		_		_				 	
τ]L]	I	.D	. :	0.8	309	973	L3'	7							1	1at	ri	x	: 1	٧at	ei	:		

RESULTS	DATE	ANAL.	KEY	FIL

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#	
1,2-Dichlorobenzene	<100ug/l	03/31/97	05	VA2789	
1,3-Dichlorobenzene	<100ug/l	03/31/97	05	VA2789	
1,4-Dichlorobenzene	<100ug/l	03/31/97	05	VA2789	

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC. Sampled by: Client

08810/CMS ASSOCIATES MW-6 1435H 03/21/97 G

APPROVAL: 05_ QC: ww _ _ _

Lab I.D.: 10170

LĪ Ī.D.: 08397015	Matrix: Wate:	•		
ARAMETERS	RESULTS	DATE ANAL.	KEY	FILE

EPA Method 8010				
Dichlorodifluoromethane	<1ug/1	04/01/97		VA28
Chloromethane	<1ug/1	04/01/97		VA2
Vinyl Chloride	<1ug/l	04/01/97		VA2
Bromomethane	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
Chloroethane	<1ug/l	04/01/97		VA2
Trichlorofluoromethane	<1ug/l	04/01/97		VA2
1,1-Dichloroethene	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
Methylene Chloride	<5ug/l	04/01/97		VA2
cis-1,2-Dichloroethene	24ug/1	04/01/97		VA2
trans-1,2-Dichloroethene	<1ug/l	04/01/97		VA2
1,1-Dichloroethane	28ug/l	04/01/97		VA2
Chloroform	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
1,1,1-Trichloroethane	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
Carbon Tetrachloride	<1ug/l	04/01/97		VA2
1,2-Dichloroethane	<1ug/l	04/01/97		VA2
Trichloroethene	3ug/1	04/01/97		VA2
1,2-Dichloropropane	<1ug/l	04/01/97		VA2
Bromodichloromethane	<1ug/1	04/01/97		VA2
2-Chloroethylvinylether	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
cis-1,3-Dichloropropene	<1ug/l	04/01/97		VA2
trans-1,3-Dichloropropene	<1ug/l	04/01/97		VA2
1,1,2-Trichloroethane	<1ug/1	04/01/97		VA2
Tetrachloroethene	<1ug/l	04/01/97		VA2
Dibromochloromethane	<luq 1<="" td=""><td>04/01/97</td><td></td><td>VA2</td></luq>	04/01/97		VA2
Bromoform	<1ug/l	04/01/97		VA2
1,1,2,2-Tetrachloroethane	<1ug/l	04/01/97		VA2
Chlorobenzene	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2
1,2-Dichlorobenzene	<1ug/l	04/01/97		VA2
1,3-Dichlorobenzene	<1ug/1	04/01/97		VA2
1,4-Dichlorobenzene	<1ug/l	04/01/97		VA2
EPA Method 8020				
Benzene	8ug/1	04/01/97		VA2
Toluene	lug/l	04/01/97		VA2
Ethylbenzene	` 2ug/1	04/01/97		VA2
m-Xylene and p-Xylene	23ug/l	04/01/97		VA2
o-Xylene	llug/l	04/01/97		VA2
Chlorobenzene	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2</td></lug>	04/01/97		VA2

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL: QJS_ QC: LUCL___

Lab I.D.: 10170

08810/CMS ASSOCIATES MW-6 1435H 03/21/97 G

ULI I.D.: 08397	015	Matrix:	Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
	**** *** *** *** *** ***			
1,2-Dichlorobenzene	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2804</td></lug>	04/01/97		VA2804
1,3-Dichlorobenzene	<1ug/1	04/01/97		VA2804
1,4-Dichlorobenzene	<lug l<="" td=""><td>04/01/97</td><td></td><td>VA2804</td></lug>	04/01/97		VA2804

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:

QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES MW-7 1425H 03/20/97 G

LI I.D.: 08097138	.D.: 08097138 Matrix: Water				
ARAMETERS	RESULTS	DATE ANAL.	KEY	FILE	
EPA Method 8010					
Dichlorodifluoromethane	<100ug/l	04/01/97	05	VA28	
Chloromethane	<100ug/l	04/01/97	05	VA28	
Vinyl Chloride	<100ug/l	04/01/97	05	VA28	
Bromomethane	<100ug/l	04/01/97	05	VA28	
Chloroethane	<100ug/l	04/01/97	05	VA28	
Trichlorofluoromethane	<100ug/l	04/01/97	05	VA28	
1,1-Dichloroethene	<100ug/l	04/01/97	05	VA28	
Methylene Chloride	<500ug/l	04/01/97	05	VA28	
cis-1,2-Dichloroethene	<100ug/l	04/01/97	05	VA28	
trans-1,2-Dichloroethene	<100ug/l	04/01/97	05	VA28	
1,1-Dichloroethane	1900ug/l	04/01/97		VA28	
Chloroform	<100ug/l	04/01/97	05	VA28	
1,1,1-Trichloroethane	<100ug/l	04/01/97	05	VA28	
Carbon Tetrachloride	<100ug/l	04/01/97	05	VA28	
1,2-Dichloroethane	100ug/l	04/01/97		VA28	
Trichloroethene	<100ug/l	04/01/97	05	VA28	
1,2-Dichloropropane	<100ug/l	04/01/97	05	VA28	
Bromodichloromethane	<100ug/l	04/01/97	05	VA28	
2-Chloroethylvinylether	<100ug/l	04/01/97	05	VA28	
cis-1,3-Dichloropropene	<100ug/l	04/01/97	05	VA28	
trans-1,3-Dichloropropene	<100ug/l	04/01/97	05	VA28	
1,1,2-Trichloroethane	<100ug/l	04/01/97	05	VA28	
Tetrachloroethene	<100ug/l	04/01/97	05	VA28	
Dibromochloromethane	<100ug/l	04/01/97	05	VA28	
Bromoform	<100ug/l	04/01/97	05	VA28	
1,1,2,2-Tetrachloroethane	<100ug/l	04/01/97	05	VA28	
Chlorobenzene	<100ug/l	04/01/97	05	VA28	
1,2-Dichlorobenzene	<100ug/l	04/01/97	05	VA28	
1,3-Dichlorobenzene	<100ug/l	04/01/97	05	VA28	
1,4-Dichlorobenzene	<100ug/l	04/01/97	05	VA28	
EPA Method 8020					
Benzene	<50ug/l	03/31/97	05	VA27	
Toluene	<50ug/l	03/31/97	05	VA27	
Ethylbenzene	\ <50ug/l	03/31/97	05	VA27	
m-Xylene and p-Xylene	<50ug/l	03/31/97	05	VA27	
o-Xylene	<50ug/l	03/31/97	05	VA27	
Chlorobenzene	<50ug/l	03/31/97	05	VA27	

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

08810/CMS ASSOCIATES

MW-7 1425H 03/20/97 G

ULI I.D.: 08097138 Matrix: Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
	**** **** **** **** ****			
1,2-Dichlorobenzene	<50ug/l	03/31/97	05	VA2789
1,3-Dichlorobenzene	<50ug/l	03/31/97	05	VA2789
1,4-Dichlorobenzene	<50ug/l	03/31/97	05	VA2789

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

08810/CMS ASSOCIATES MW-8 1225H 03/20/97 G

y: Client	MW-8 1225H 03/20/97 G	;		
JLI I.D.: 08097139	Matrix: Water			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
EPA Method 8010				
Dichlorodifluoromethane	<2ug/l	04/01/97	05	VA280
Chloromethane	<2ug/l	04/01/97	05	VA280
Vinyl Chloride	<2ug/l	04/01/97	05	VA280
Bromomethane	<2ug/l	04/01/97	05	VA280
Chloroethane	<2ug/l	04/01/97	05	VA280
Trichlorofluoromethane	<2ug/l	04/01/97	05	VA280
1,1-Dichloroethene	<2ug/l	04/01/97	05	VA280
Methylene Chloride	<10ug/l	04/01/97	05	VA280
cis-1,2-Dichloroethene	30ug/l	04/01/97		VA280
trans-1,2-Dichloroethene	<2ug/l	04/01/97	05	VA280
1,1-Dichloroethane	34ug/l	04/01/97		VA280
Chloroform	<2ug/1	04/01/97	05	VA280
1,1,1-Trichloroethane	<2ug/l	04/01/97	05	VA280
Carbon Tetrachloride	<2ug/1	04/01/97	05	VA280
1,2-Dichloroethane	<2ug/l	04/01/97	05	VA280
Trichloroethene	8ug/1	04/01/97		VA280
1,2-Dichloropropane	<2ug/l	04/01/97	05	VA280
Bromodichloromethane	<2ug/1	04/01/97	05	VA28
2-Chloroethylvinylether	<2ug/1	04/01/97	05	VA28
cis-1,3-Dichloropropene	<2ug/l	04/01/97	05	VA28
trans-1,3-Dichloropropene	<2ug/l	04/01/97	05	VA28
1,1,2-Trichloroethane	<2ug/l	04/01/97	05	VA28
Tetrachloroethene	<2ug/l	04/01/97	05	VA28
Dibromochloromethane	<2ug/1	04/01/97	05	VA28
Bromoform	<2ug/l	04/01/97	05	VA28
1,1,2,2-Tetrachloroethane	<2ug/l	04/01/97	05	VA280
Chlorobenzene	<2ug/l	04/01/97	05	VA28
1,2-Dichlorobenzene	<2ug/l	04/01/97	05	VA28
1,3-Dichlorobenzene	<2ug/1	04/01/97	0.5	VA28
1,4-Dichlorobenzene	<2ug/1	04/01/97	05	VA28
EPA Method 8020				
Benzene	<2ug/1	04/01/97	05	VA280
Toluene	<2ug/1 <2ug/1	04/01/97	05	VA28
Ethylbenzene	<2ug/1	04/01/97	05	VA28
m-Xylene and p-Xylene	<2ug/1 <2ug/1	04/01/97	05	VA28
o-Xylene	<2ug/1 <2ug/1	04/01/97	05	VA280
Chlorobenzene	<2ug/1 <2ug/1	04/01/97	05	VA280

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

1,4-Dichlorobenzene

Sampled by: Client

APPROVAL:

Lab I.D.: 10170

04/01/97

05

VA2804

08810/CMS ASSOCIATES

<2ug/l

MW-8 1225H 03/20/97 G

ULI I.D.: 08097139	Matrix: Water			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<2ug/1	04/01/97	05	VA2804
1.3-Dichlorobenzene	<2ug/1	04/01/97	05	VA2804

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:

08810/CMS ASSOCIATES

FIELD DUPLICATE 1505H 03/21/97 G

ULI I.D.: 08397016	Matrix: Wate:	r		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE
EPA Method 8010				
Dichlorodifluoromethane	<1ug/1	03/31/97		VA27
Chloromethane	<1ug/l	03/31/97		VA2
Vinyl Chloride	<1ug/1	03/31/97		VA2
Bromomethane	<1ug/1	03/31/97		VA2
Chloroethane	<1ug/1	03/31/97		VA2
Trichlorofluoromethane	<1uq/1	03/31/97		VA2
1,1-Dichloroethene	<1ug/l	03/31/97		VA2
Methylene Chloride	<5ug/l	03/31/97		VA2
cis-1,2-Dichloroethene	25ug/l	03/31/97		VA2
trans-1,2-Dichloroethene	<1ug/l	03/31/97		VA2
1,1-Dichloroethane	28ug/1	03/31/97		VA2
Chloroform	<1ug/l	03/31/97		VA2
1,1,1-Trichloroethane	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
Carbon Tetrachloride	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
1,2-Dichloroethane	<1ug/l	03/31/97		VA2
Trichloroethene	3ug/1	03/31/97		VA2
1,2-Dichloropropane	<1ug/1	03/31/97		VA2
Bromodichloromethane	<1ug/1	03/31/97		VA2
2-Chloroethylvinylether	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
cis-1,3-Dichloropropene	<1ug/l	03/31/97		VA2
trans-1,3-Dichloropropene	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
1,1,2-Trichloroethane	<1ug/l	03/31/97		VA2
Tetrachloroethene	<1ug/l	03/31/97		VA2
Dibromochloromethane	<1ug/l	03/31/97		VA2
Bromoform	<1ug/l	03/31/97		VA2
1,1,2,2-Tetrachloroethane	<1ug/1	03/31/97		VA2
Chlorobenzene	<1ug/l	03/31/97		VA2
1,2-Dichlorobenzene	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
1,3-Dichlorobenzene	<1ug/l	03/31/97		VA2
1,4-Dichlorobenzene	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2
EPA Method 8020				
Benzene	10ug/1	03/31/97		VA2
Toluene	lug/l	03/31/97		VA2
Ethylbenzene	` 2ug/1	03/31/97		VA2
m-Xylene and p-Xylene	24ug/l	03/31/97		VA2
o-Xylene	llug/l	03/31/97		VA2
Chlorobenzene	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2</td></lug>	03/31/97		VA2

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL: QS QC: QD Lab I.D.: 10170

08810/CMS ASSOCIATES

FIELD DUPLICATE 1505H 03/21/97 G

---- ULI I.D.: 08397016 Matrix: Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<1ug/1	03/31/97		VA2789
1,3-Dichlorobenzene	<lug l<="" td=""><td>03/31/97</td><td></td><td>VA2789</td></lug>	03/31/97		VA2789
1,4-Dichlorobenzene	<1ug/1	03/31/97		VA2789

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL: (1)5_ QC:(1)(1) _ _ _ Lab I.D.: 10170

08810/CMS ASSOCIATES

TRIP BLANK 0825H 03/20/97 G

	ULI I.D.: 08097133	Matrix: Wate:	r		
;	PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
	EPA Method 8010				
-	Dichlorodifluoromethane	<1ug/l	03/27/97		VA2794
	Chloromethane	<1ug/1	03/27/97		VA2794
	Vinyl Chloride	<1ug/1	03/27/97		VA2794
	Bromomethane	<lug 1<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	Chloroethane	<1ug/1	03/27/97		VA2794
	Trichlorofluoromethane	<1ug/1	03/27/97		VA2794
	1,1-Dichloroethene	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	Methylene Chloride	<5ug/1	03/27/97		VA2794
	cis-1,2-Dichloroethene	<1ug/1	03/27/97		VA2794
	trans-1,2-Dichloroethene	<1ug/l	03/27/97		VA2794
	1,1-Dichloroethane	<1ug/l	03/27/97		VA2794
	Chloroform	2ug/1	03/27/97		VA2794
	1,1,1-Trichloroethane	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	Carbon Tetrachloride	<1ug/1	03/27/97		VA2794
	1,2-Dichloroethane	<1ug/1	03/27/97		VA2794
	Trichloroethene	<1ug/l	03/27/97		VA2794
	1,2-Dichloropropane	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	Bromodichloromethane	1ug/1	03/27/97		VA2794
	2-Chloroethylvinylether	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	cis-1,3-Dichloropropene	<1ug/l	03/27/97		VA2794
	trans-1,3-Dichloropropene	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	1,1,2-Trichloroethane	<1ug/l	03/27/97		VA2794
	Tetrachloroethene	<luq 1<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></luq>	03/27/97		VA2794
	Dibromochloromethane	<1ug/l	03/27/97		VA2794
	Bromoform	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
	1,1,2,2-Tetrachloroethane	<1ug/l	03/27/97		VA2794
	Chlorobenzene	<1ug/l	03/27/97		VA2794
	1,2-Dichlorobenzene	<1ug/l	03/27/97		VA2794
	1,3-Dichlorobenzene	<1ug/l	03/27/97		VA2794
	1,4-Dichlorobenzene	<1ug/1	03/27/97		VA2794
	EPA Method 8020				
	Benzene	<1ug/l	03/27/97		VA2794
	Toluene	<lug 1="" <="" li=""></lug>	03/27/97		VA2794
	Ethylbenzene	<lug 1<="" li=""></lug>	03/27/97		VA2794
	m-Xylene and p-Xylene	<1ug/1	03/27/97		VA2794
	o-Xylene	<1ug/1	03/27/97		VA2794
	Chlorobenzene	<1ug/1 <1ug/l	03/27/97		VA2794

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:

Lab I.D.: 10170

08810/CMS ASSOCIATES

TRIP BLANK 0825H 03/20/97 G

ULI I.D.:	08097133	Matrix:	Water

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<1ug/l	03/27/97		VA2794
1,3-Dichlorobenzene	<lug l<="" td=""><td>03/27/97</td><td></td><td>VA2794</td></lug>	03/27/97		VA2794
1.4-Dichlorobenzene	<1ug/1	03/27/97		VA2794

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

APPROVAL:

08810/CMS ASSOCIATES

RINSE BLANK 0830H 03/20/97 G

ULI I.D.: 08097134	Matrix: Wate	r		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
	* * * * * * * * *			
EPA Method 8010				
Dichlorodifluoromethane	<1ug/l	03/28/97		VA2794
Chloromethane	<1ug/l	03/28/97		VA2794
Vinyl Chloride	<1ug/l	03/28/97		VA279
Bromomethane	<1ug/l	03/28/97		VA279
Chloroethane	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
Trichlorofluoromethane	<lug 1<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
1,1-Dichloroethene	<1ug/1	03/28/97		VA279
Methylene Chloride	<5ug/l	03/28/97		VA279
cis-1,2-Dichloroethene	<1ug/1	03/28/97		VA279
trans-1,2-Dichloroethene	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
1,1-Dichloroethane	<lug 1<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
Chloroform	lug/1	03/28/97		VA279
1,1,1-Trichloroethane	<lug 1<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
Carbon Tetrachloride	<lug 1<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
1,2-Dichloroethane	<lug 1="" <="" li=""></lug>	03/28/97		VA279
Trichloroethene	<lug 1="" <="" li=""></lug>	03/28/97		VA279
1,2-Dichloropropane	<lug 1="" <="" li=""></lug>	03/28/97		VA279
Bromodichloromethane	lug/l	03/28/97		VA279
2-Chloroethylvinylether	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
		03/28/97		VA279
cis-1,3-Dichloropropene	<1ug/l	03/28/97		VA279
trans-1,3-Dichloropropene	<lug l<="" td=""><td></td><td></td><td>VA279</td></lug>			VA279
1,1,2-Trichloroethane	<1ug/l	03/28/97		VA279
Tetrachloroethene	<1ug/1	03/28/97		VA279
Dibromochloromethane	<lug l<="" td=""><td>03/28/97</td><td></td><td></td></lug>	03/28/97		
Bromoform	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
1,1,2,2-Tetrachloroethane	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
Chlorobenzene	<1ug/l	03/28/97		VA279
1,2-Dichlorobenzene	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
1,3-Dichlorobenzene	<1ug/1	03/28/97		VA279
1,4-Dichlorobenzene	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
EPA Method 8020				
Benzene	<1ug/1	03/28/97		VA279
Toluene	<1ug/l	03/28/97		VA279
Ethylbenzene	\ <lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
m-Xylene and p-Xylene	<1ug/l	03/28/97		VA279
o-Xylene	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA279</td></lug>	03/28/97		VA279
Chlorobenzene	<1ug/1	03/28/97		VA279

Upstate Laboratories, Inc.

Analysis Results

Report Number: 08097133

Client I.D.: HAZARD EVALUATIONS, INC.

Sampled by: Client

08810/CMS ASSOCIATES

RINSE BLANK 0830H 03/20/97 G

ULI I.D.: 08097134	Matrix: Water			····· ····
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
1,2-Dichlorobenzene	<1ug/l	03/28/97		VA2794
1,3-Dichlorobenzene	<lug l<="" td=""><td>03/28/97</td><td></td><td>VA2794</td></lug>	03/28/97		VA2794
1,4-Dichlorobenzene	<lug 1<="" td=""><td>03/28/97</td><td></td><td>VA2794</td></lug>	03/28/97		VA2794

KEY PAGE

- 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
- 2 MATRIX INTERFERENCE
- 3 PRESENT IN BLANK
- 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE
- 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS
- 6 BLANK CORRECTED
- 7 HEAD SPACE PRESENT IN SAMPLE
- 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE OUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
- 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID
- 10 ADL (AVERAGE DETECTION LIMITS)
- 11 PQL (PRACTICAL QUANTITATION LIMITS)
- 12 SAMPLE ANALYZED OVER HOLDING TIME
- 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE
- 14 SAMPLED BY ULI
- 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR
- 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS
- 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
- 18 DEPENDING UPON THE INTENDED USE OF THIS TEST RESULT, CONFIRMATION BY GC/MS OR DUAL COLUMN CHROMATOGRAPHY MAY BE REQUIRED
- 19 CALCULATION BASED ON DRY WEIGHT
- 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS
- 21 UG/KG AS REC.D / UG/KG DRY WT
- 22 MG/KG AS REC.D / MG/KG DRY WT
- 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS
- 24 SAMPLE DILUTED/BLANK CORRECTED
- 25 ND (NON-DETECTED)
- 26 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS/BLANK CORRECTED
- 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE
- 28 POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE PQL
- 29 ANALYZED BY METHOD OF STANDARD ADDITIONS
- 30 METHOD PERFORMANCE STUDY HAS NOT BEEN COMPLETED/ND(NON-DETECTED)
- 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT
- 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED
- 33 NON-POTABLE WATER SOURCE
- 34 THE QUALITY CONTROL RESULTS FOR THIS ANALYSIS INDICATE A POSITIVE BIAS OF 1-5 MG/L. THE POSITIVE BIAS FALLS BELOW THE PUBLISHED EPA REGULATORY DETECTION LIMIT OF 5 MG/L BUT ABOVE 1 MG/L.
- 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES
- 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
- 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
- 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS) PER DAY OF CL2
- 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY
- 40 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS) PER DAY LAS
- 41 RESULTS ARE REPORTED ON AN AS REC.D BASIS
- 42 THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL TCLP VALUE
- 43 METAL BY CONCENTRATION PROCEDURE
- 44 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY

ps e ba tor , f :.

6034 Corporate Drive E. Syracuse New York 13057 (315) 437 0255 Fax 437 1209

Chain Of Custody Record

(313) 437 0200	r-ax 4.	37 1209																
Client:			Project Name	. ^		No.	*******									Ĭ	A I WEK	
HATMIN LYPILLIPATENS! I	nii i	088	10/0	MS 11:	SCHATTS	of											Admarke	
	Phone #		ity/state) Addr		el	Con-											M ()Remarke-	
Ionn J Overagre		_ LIPE	AZIRWININ	<u> </u>	7.1	tain-											1/2/9/	.
Sample ID	Date	Time	Matrix	Grab or	ULI Internal Use Only	ers								ĺ			917	
7 2 08				Comp.			1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	1 /100	_
FIELD DUPLICATE SO	3-20-97		WATER	-nan		X										- 2	AL LIERE KEEP	
TRIP BLANK		8:25m		<u> </u>	08097/93												THE DETECTION LI	MIT
RINGE BLANK		8:30 nm			134	(4)	******										AS LOW AS ILL	
MW 2		12:50 mg			135	(4)					_ <	31K	W:	Ca	C.C.		POSSIBLE	
Mw3		12:1564			136	(2)					٠,	Lui		i i		00	100	-
- MW - 32						X						100 1 5.07 1		15.45-2	Y_1_2V	UI Car	1 IS CATICAL.	
MN G		9:55 am			137	(4)												1
wor to all						X												-
		2:25(M	4		138												***************************************	-
MM J	2 20 00		\ (. ~.	(, 00									-	\dashv				-
inw 8	3-20-97	12:15 PM	WATER	750VB	139													-
						l l							-					_
			·	**************************************		l							_					_
													L					
parameter and method			sample bottle:	type	size pres.	Sampl						~				Nam	e of Courier (if used)	
UEIA BOID				BARSS		10		_	7. [Y	SEVI V	MY.	۲						
2) FIA 8020				CLASS	108's 4°C.HO	Compa	any: ሴን ጋ	ΛAΔ	Fu	20.00	\ ~ ?	nd.	\mathcal{T}	a				
3)											1.							-
4)						Reling	uishe ~ ()				A	Date 3~ 2.		lime		Rece	eived by: (Signature)	
5)	· · · · · · · · · · · · · · · · · · ·					1/5	PX	W.		e/is			- 1				VI 10 The	
6)												M?					pr (1 3/21	<u>[</u> [77
7)		······································				Relinq	uishe	d by:	: (Sig	natur	θ)	Date	, T	rime		Recé	lived by: (Signature)	
3)			•			11	1-	1/2	<i>?</i> -			1/21/4	ار	2_{p}^{ν}				
9) 10)						Relinqu	dich.		/Sic			_/_		<u>/</u>		Doo!	d for Lab by a /Olassature N	-
Note: The numbered columns above c	cross reference v	vith the number	red columns in th	e upper righ	t hand corner	ricind	JIOII	a oy.	. taig	ııalul		Date		7me 405	- 1	nec (d for Lab by: (Signature)	
												3/ai/ar	<u> </u>	109		C	Kinney	

Syracuse

Rochester

Buffalo

Albany

Binghamton

Fair Lawn (NJ)

Deserte Aubenst			an incidence of the first fields	holds over throughly	httythintoreconni	Andrew Services	acatoross.	- Control of the Cont	tentalatini	panopaga Lauranga	posterior				- Andread	germaletonyste	pre-	American ************************************
6034 Corporate Drive E. Syrac (315) 437 0255	use New Yo	rk 13057 37 1209	GRE	Lin'	of c	Just	. 00	Ľ y	F		gw	T. C	L					1/7
Cliant:	- TUN TO		Project Name	·			No.	T							Г	<u> </u>	T	1
HARAMI Lymurryons, Isc. 18810 CMS College Contact: Phone # Location (city/state) Additional Contact Co					-1 ssacmres								.					
							Con-						l					Remarks
TODO I CHECKTELATER							tain-		:									
Sample ID	Date	Time	Matrix	Grab or	ULI Intern	nal Use Only	ers	\mathcal{U}	2)	3/	4	E)	6)	71	0)	0)	10)	
MWA	3/21/97	2:00 PM	Waren	Comp.		7014			2)	3)	4)	5)	6)	7)	8)	9)	10)	
WWW	3/21/97	1		Canas	0839	15	1.34	/	1									
FIRE DUPLICATE	3/2//1		Musu			10(3		/	1						<u> </u>			
TAKTO TRAFFICALE	2111101	"1" C21 KWI	MILLIA.	Conn		, _ (a	7.71.7		/_								<u> </u>	* KEED DETECTION
																		LIMMS AS LOW AS
							-	-										PUSSIBLE
																		LOTZIBIC
												-						
							1											
			The second secon															

to the same of the																		
parameter and method	İ		sample bottle:	type	size	pres.	Samp	led b	ll y:(Pri	l int)	$\frac{N}{1}$		1				Nam	ne of Courier (if used)
1) EPA 8010				CINS	tome you	40,110	()	1 and 1. Outrost								·		
2) FYA 8020				CLASK	to revor	4 CINO	Comp	Company:										
3)					10 mg - 104	A CTIC	HAZAMO EJMUMTONO, LIC.											Α
4)							Relinquished by: (Signature) Date									2	Rece	eived by: (Signature)
5)							1	M	NF)	N.		1 L\ _/			43	("	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
6)							Relinguished by: (Signature) Date / Ti											A XVV
7) 8) ·							Treilliguistibu ty. Isignature: 1946						124	1/6	Time	7.04	nece	el∑ed/by: (Signature)
9)		·····					A A	7 H	$X_{<}$			- 41	v	17 4	!!	100		
10)							Relinquished by: (Signature) Date Ti					Time		Rec'	d for Lab by: (Signature)			
Note: The numbered columns above cross reference with the numbered columns in th					it hand corr	ner.						3	/a4/a	} -1	130	0	(Kenney
. Syracuse	Roc	chester	Buffalo	$\overline{)}$	Albany		Bing	ghan	nton						(N.	<i>I)</i>		