

Site Investigation Report

Former Gastown MGP Site, 126 East Niagara Street, City of Tonawanda, Erie County, New York Registry Number 915171

New York State Department of Environmental Conservation **Division of Environmental Remediation** 270 Michigan Ave Buffalo, New York 14203-2999

> Glenn M. May, CPG Engineering Geologist I

TABLE OF CONTENTS

SECT	SECTION		
1.0	EXECUTIVE SUMMARY	1	
2.0	INTRODUCTION	7	
3.0	SITE HISTORY AND BACKGROUND		
	3.1 Site Description		
	3.2 Site History	9	
4.0	STUDY OBJECTIVES AND SCOPE OF WORK	. 12	
	4.1 Objectives		
	4.2 Scope of Work		
	4.2.1 Soil Boring Program		
	4.2.2 Monitoring Wells		
	4.2.3Water Level Measurements4.2.4Sump Sampling		
	4.2.4 Sump Sampling		
	4.2.6 Mapping		
- 0			
5.0	GEOLOGY AND HYDROGEOLOGY		
	5.1 Regional Geology		
	5.1.1Surficial Geology5.1.2Bedrock Geology		
	5.2 Site Geology		
	5.2.1 Fill		
	5.2.2 Upper Silty Clay Deposit		
	5.2.3 Recent Alluvium Deposit		
	5.2.4 Sand and Gravel Deposit		
	5.2.5 Lower Silty Clay Deposit		
	5.3 Regional Hydrogeology		
	5.4 Site Hydrogeology		
	5.5 Groundwater Extraction System Efficiency	22	
6.0	INVESTIGATION RESULTS	24	
	6.1 NAPL Delineation		
	6.2 Subsurface Soil		
	6.3 Groundwater		
	6.4 Sump Water	31	
7.0	DISCUSSIONS AND CONCLUSIONS	. 33	
	7.1 Discussion		
	7.2 Conclusion	35	
8.0	RECOMMENDATIONS		
9.0	REFERENCES		

LIST OF FIGURES (Following Report)

- Figure 1-1 Site Location Map
- Figure 1-2 Gastown MGP Site Map
- Figure 1-3 Groundwater/NAPL Extraction and Treatment System
- Figure 4-1 Soil Boring Location Map
- Figure 4-2 Sample Location Map
- Figure 4-3 Monitoring Well Location Map
- Figure 5-1 Shallow Zone Hydrograph for the Site Investigation
- Figure 5-2 Intermediate Zone Hydrograph for the Site Investigation
- Figure 5-3 Extraction Well Hydrograph for the Site Investigation
- Figure 5-4 Shallow and Intermediate Zone Hydrograph for the Site Investigation
- Figure 5-5 Shallow Zone Hydrograph Prior to the Site Investigation
- Figure 5-6 Historical Shallow Zone Hydrograph for Wells Not Hydraulically Connected to the Recent Alluvium Deposit
- Figure 5-7 Intermediate Zone Hydrograph Prior to the Site Investigation
- Figure 5-8 Extraction Well Hydrograph Prior to the Site Investigation
- Figure 5-9 Shallow and Intermediate Zone Hydrograph Prior to the Site Investigation
- Figure 5-10 Groundwater Contour Map for June 14, 1996
- Figure 5-11 Groundwater Contour Map for July 13, 1998
- Figure 5-12 Groundwater Contour Map for November 23, 1998
- Figure 5-13 Groundwater Contour Map for July 13, 2000
- Figure 6-1 DNAPL Plume Location Map

LIST OF TABLES (Following Report)

Table 5-1	Stratigraphic Sequence of Western New York
Table 5-2	Groundwater Elevations in Shallow and Intermediate Zone Wells
Table 6-1	Summary of NAPL Presence and Underlying Confining Layer Data
Table 6-2	Summary of Subsurface Soil Analytical Results from Samples Collected Outside the NAPL Plume
Table 6-3	Summary of Subsurface Soil Analytical Results from Samples Collected Within the NAPL Plume
Table 6-4	Summary of Groundwater Analytical Results from Shallow Depth Wells
Table 6-5	Summary of Groundwater Analytical Results from Intermediate Depth Wells
Table 6-6	Summary of Water Analytical Results from the Primary Sump of the Gastown Sportsmen's Club

APPENDICES

Appendix A	Stratigraphic Logs and V	Well Construction Diagrams
------------	--------------------------	----------------------------

- Appendix B Well Development and Purge Logs
- Appendix C Soil Boring and Monitoring Well Summary Tables

1.0 EXECUTIVE SUMMARY

The Former Gastown Manufactured Gas Plant (MGP) Site is located at 126 East Niagara Street in the City of Tonawanda, Erie County, New York. The total area of the Site is approximately 3.5 acres, and is bordered by railroad tracks to the west and south, Carney Street to the east, and East Niagara Street and Tonawanda Creek to the north (Figures 1-1 and 1-2). The property was formerly operated as a manufactured gas plant, but is now rented to several local industries. Adjacent property to the east is owned by the Niagara Frontier Transportation Authority (NFTA), which leases a portion of the property to the Gastown Sportsmen's Club (located further east) for parking (Figure 1-2). Residential property is located west of the site across the railroad tracks, while backyards of residential properties along Carney Street abut the Gastown Sportsmen's Club property. The topography of the site is relatively flat-lying with a gradual northerly downward slope toward Tonawanda Creek.

In response to the presence of non aqueous phase liquids (NAPL) in the basement sumps of the Gastown Sportsmen's Club, the Department's Hazardous Waste Remediation Unit designed and installed a groundwater/NAPL extraction and treatment system to capture NAPL and contaminated groundwater before they enter the clubhouse sumps. This system began operation in September 1998 and has operated continuously since that time. The general layout of the system is shown in Figure 1-3.

Beginning December 1999 the Department implemented a Site Investigation to fully evaluate the effectiveness of the groundwater/NAPL extraction and treatment system, and to determine the areal extent to which NAPL and contaminated groundwater has migrated under the Gastown Sportsman's Club toward nearby residences on East Niagara and Carney streets. Field activities for this investigation were completed in September 2000.

The stratigraphy of the Former Gastown MGP Site, with increasing depth, includes the following: miscellaneous fill, an upper silty clay deposit, an alluvium deposit, a sand and gravel deposit and a lower silty clay deposit. Fill material at the Site consists predominantly of crushed stone, various colored ash, coal, coke, slag and brick. The NAPL underlying the Site is contained within the alluvium deposit, and is prevented from migrating further downward by the lower silty clay deposit.

A total of fourteen (14) monitoring wells have been installed throughout the Former Gastown MGP Site and monitor both the upper silty clay (shallow zone) and recent alluvium (intermediate zone) deposits. The latter deposit is the principal aquifer underlying the Site. Water levels in all on-site monitoring wells were measured eleven (11) times between December 13, 1999 and September 14, 2000, while Tonawanda Creek water levels were measured 9 times during this period. These data were utilized to further evaluate groundwater flow patterns across the Site to fully evaluate the effectiveness of the groundwater extraction system.

The water level data obtained from the Site were utilized to construct hydrographs for both the shallow and intermediate zone wells. These hydrographs show a cyclical pattern of high and low water levels: high during periods of high rainfall and snowmelt; low during drier months when the groundwater extraction system is operating at peak efficiency. The hydrographs also reveal that water levels in on-site monitoring wells do not fluctuate in response to changing water levels in Tonawanda Creek, indicating that the creek is not hydraulically connected to the recent alluvium deposit.

The water level data obtained from the Site were also utilized to construct groundwater contour maps. These maps reveal that even prior to the installation of the groundwater extraction system, groundwater flowed toward the Gastown Sportsmen's Club. This flow pattern suggests that the club's basement drain system (sumps and floor drains) acts as a significant groundwater sink. Operation of the groundwater extraction system alters this flow pattern by producing an elliptical cone of depression around the extraction well that extends to the eastern property line of the Gastown Sportsmen's Club. Hydrographs for the Site show that groundwater extraction affects water levels in all on-site wells that screen the recent alluvium deposit, indicating that the influence of the extraction system is larger areally than the cone of depression delineated by the groundwater contour maps. These data, therefore, suggest that the groundwater extraction system collects contaminated groundwater from throughout the Site, and when operating at peak efficiency, prevents this groundwater from migrating off-site.

NAPL was encountered in fifteen (15) borings completed at the Site, and where encountered, ranged in thickness from 3.0 to 15.0 feet. NAPL thickness is greatest near the former manufactured gas plant, and thins to the east under the NFTA and Gastown Sportsmen's Club properties. NAPL thickness also appears to thin near the edges of the plume. The NAPL plume associated with the Former Gastown MGP Site forms a general "L" shape; the short leg being located between the former manufactured gas plant and the coal bins with the long leg extending eastward under the NFTA and Gastown Sportsmen's Club properties (Figure 6-1). While this investigation did not fully delineate the downgradient extent of the plume, the presence of NAPL in small, isolated pockets in two borings along the eastern property line of the Gastown Sportsmen's Club suggests that the plume edge is located near these borings. During the Site Investigation, nineteen (19) subsurface soil samples were collected and submitted to a lab for chemical analysis. Eight of these samples were collected from borings outside the NAPL plume to verify that visually "clean" was also analytically "clean." As a screening tool, these results were compared to the soil cleanup objectives of NYSDEC Technical and Administrative Guidance Memoranda (TAGM) No. 4046. Although a few contaminants were detected in these samples, only benzene in one boring was detected at a concentration that exceeded the TAGM 4046 soil cleanup objectives. The remaining subsurface soil samples were collected from borings within the NAPL plume to evaluate further the nature and extent of contamination associated with the plume. Significant volatile contamination was detected in these samples, with the concentrations of fourteen VOCs exceeding the TAGM 4046 soil cleanup objectives or the TCLP alternative guidance values of Stars Memo #1.

NAPL was encountered at a shallow depth (5.0'-8.0' bgs) in boring SB-29, with eight VOCs detected at concentrations that exceeded the TAGM 4046 soil cleanup objectives or the TCLP alternative guidance values. The source of this NAPL is likely the club's former sump discharge line that ruptured and was replaced by the Department's Spill Unit in March 1998. Groundwater samples collected from two shallow wells installed along the discharge line to monitor residual contamination indicate that groundwater is contaminated with benzene, toluene, xylenes, phenol, pentachlorophenol, naphthalene, endrin and iron at concentrations that exceeded the Department's Class GA groundwater standards or guidance values. The groundwater data, combined with the soil results from boring SB-29, indicate that residual contamination remains along some portions of the replaced sump discharge line, and that additional remediation may be necessary.

One sample of the lower silty clay deposit underlying the NAPL plume was collected and analyzed to evaluate the effectiveness of this deposit as a confining layer. While a few contaminants were detected in this sample, only benzene was detected at a concentration that exceeded the TAGM 4046 soil cleanup objectives. These results suggest that the lower silty clay deposit is an effective barrier against the further downward migration of NAPL and related contaminants. The thickness of this deposit under the Site, however, is unknown.

Petroleum contamination unrelated to the NAPL plume was encountered in boring SB-39. This contamination does not have a coal tar odor and is an LNAPL, floating on top of the water table. A monitoring well (MW-39) installed in this boring was contaminated with benzene, vinyl chloride, dichloroethene, fluorene, phenanthrene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene,

benzo(a)pyrene, dieldrin, endrin, arsenic, iron, lead, manganese, zinc and cyanide at concentrations that exceeded the Department's Class GA groundwater standards or guidance values. While the soil sample from this boring did not contain petroleum products, petroleum products were detected in the well at a concentration of $120,000 \mu g/l$. While the source of this petroleum contamination is unknown, a concrete pier located near this boring could have been a cradle for an aboveground storage tank. Additional borings will be required in this area to determine the areal extent of this contamination.

In total, twelve groundwater samples were collected during the Site Investigation and submitted to a lab for chemical analysis. Six of these samples were collected from wells installed within the NAPL plume, three were collected from wells installed outside the plume, two were collected from wells along the replaced sump discharge line (results previously discussed) and the last sample was collected from MW-39 (results discussed in the previous paragraph). The samples collected from wells installed within the NAPL plume were extensively contaminated with both volatile and semivolatile compounds. Fifteen VOCs were detected in these wells, with the concentrations of twelve exceeding the Department's Class GA groundwater standards or guidance values. Seventeen PAH's were also detected in these samples with the concentrations of fourteen exceeding the Department's Class GA groundwater standards or guidance values.

Phenolic compounds and PCBs were not detected in any wells installed within the NAPL plume, while pesticides (heptachlor) were only detected in one well. This pesticide, however, was detected at a concentration that exceeded the Department's Class GA groundwater standard. Arsenic, iron, lead, manganese, zinc and cyanide were also detected in these wells at concentrations that exceeded the Department's Class GA groundwater standards or guidance values.

An evaluation of the analytical results for the three wells installed outside the NAPL plume reveals much lower contaminant concentrations than in the six plume wells. Although thirteen VOCs were detected in the wells installed outside the plume, twelve of these detections were documented in well MW-1I, which is located close to the NAPL plume. Seven of these VOCs were detected at concentrations that exceeded the Department's Class GA groundwater standards or guidance values. Five PAH's were also detected in these samples with only the concentrations of naphthalene and acenaphthene exceeding the Department's Class GA groundwater standards.

Five phenolic compounds were detected in wells installed outside the NAPL plume, with all five detections documented in one well. Of these compounds, phenol, pentachlorophenol, 2-nitrophenol and 4-

nitrophenol were detected at concentrations that exceeded the Department's Class GA groundwater standards. Trichlorobenzene, dichlorobenzene and dinitrotoluene were also detected in this well at concentrations that exceeded the Department's Class GA groundwater standards. PCBs were not detected in any of these samples, while pesticides (endrin) were detected in two wells. The concentration of endrin in both wells, however, exceeded the Department's Class GA groundwater standard for this compound.

Arsenic, iron, lead, manganese and zinc were detected in each well installed outside the NAPL plume, with the concentration of each metal exceeding the Department's Class GA groundwater standard or guidance value. Cyanide was also detected in all three wells, with the concentration in two wells exceeding the Department's Class GA groundwater standard for this compound.

One water sample from the primary sump of the Gastown Sportsmen's Club was collected for chemical analysis during the Site Investigation and submitted to a lab for chemical analysis. This sample was collected to further evaluate the effectiveness of the groundwater/NAPL extraction and treatment system by determining if contaminant concentrations in the clubhouse sump had decreased since the startup of the system in September 1998.

Prior to startup of the groundwater/NAPL extraction and treatment system, fifteen VOCs were detected in water from the club's primary sump, with the concentrations of all fifteen contaminants exceeding the Department's Class GA groundwater standards or guidance values. An evaluation of the analytical results for the sump water collected during the Site Investigation (15 months after system startup) indicates that although fourteen VOCs were detected, the concentrations of these contaminants are approximately one order of magnitude lower than the concentrations documented prior to system startup. Only eight of these compounds were detected at concentrations that exceeded the Department's Class GA groundwater standards or guidance values.

Five phenolic compounds were detected in the sump water prior to system startup, with the concentrations of phenol and pentachlorophenol exceeding the Department's Class GA groundwater standards. Four phenolic compounds were detected in the post-startup sump water, with only the concentration of phenol exceeding the Department's Class GA groundwater standards.

Prior to system startup, nineteen PAH's were detected in the club's primary sump water, with the concentrations of thirteen exceeding the Department's Class GA groundwater standards or guidance values.

Only seven PAH's were detected in the post-startup sump water, with none of the concentrations exceeding groundwater standards or guidance values. PCBs and pesticides were not detected in the post-startup sump water. Prior to system startup, however, heptachlor epoxide, DDD and chlordane had been detected, with the concentration of DDD having exceeded the Department's Class GA groundwater standard for this compound.

Arsenic, iron, manganese, zinc and cyanide were detected in the sump water prior to system startup, with the concentrations of iron, manganese and cyanide exceeding the Department's Class GA groundwater standards. While iron, manganese, zinc and cyanide were detected in the post startup sump water, only the concentration of iron exceeded the Department's Class GA groundwater standards.

Finally, recommendations for additional investigative activities to be completed during the Remedial Investigation are presented.

2.0 INTRODUCTION

The Former Gastown MGP Site, located at 126 East Niagara Street (Figures 1-1 and 1-2) in the City of Tonawanda, Erie County, New York, occupies a total area of approximately 3.5 acres. The property was formerly operated as a manufactured gas plant, but is now rented to several local industries. The Site is listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State (Registry) as site number 915171. The Site has been designated a Class 2 site, indicating that the Site presents a significant threat to human health and/or the environment.

In response to the presence of non aqueous phase liquids (NAPL) in the basement sumps of the nearby Gastown Sportsmen's Club, and the related odors in the basement of the clubhouse, the Department's Hazardous Waste Remediation Unit designed and installed a groundwater/NAPL extraction and treatment system to capture NAPL and contaminated groundwater before they enter the clubhouse sumps. This system began operation on September 2, 1998 and has operated continuously since that time. Operation and maintenance of this system is completed by a Department contractor from funds allocated in the Emergency Spill Response Program. The general layout of the system is shown in Figure 1-3.

While installation of the groundwater/NAPL extraction and treatment system has drastically reduced the exposure potential to members of the Gastown Sportsmen's Club, a long term remedial solution for the Site is required. As a result, the Division of Environmental Remediation (DER) began a Site Investigation in December 1999, in part, to evaluate the effectiveness of the groundwater/NAPL extraction and treatment system, and to determine the areal extent to which NAPL and contaminated groundwater has migrated under the Gastown Sportsman's Club toward nearby residences on East Niagara and Carney Streets. Field activities for this investigation were completed in September 2000. This report summarizes the findings of the Site Investigation. The remaining sections of this report are organized as follows:

- Section 3.0, Site History and Background: This section discusses the history of the Site, and briefly describes the remedial and investigative actions undertaken by the Department's Spill and Remediation Units.
- Section 4.0, Study Objectives and Scope of Work: This section describes the objectives of the Site Investigation and the activities that were completed during the study.
- Section 5.0, Geology and Hydrogeology: This section describes regional and Site geology

and hydrogeology. The characteristics, areal extent and hydrogeologic properties of the strata are discussed. Also discussed is the effect of the groundwater extraction system on local groundwater flow, which is a measure of system effectiveness.

- Section 6.0, Investigation Results: This section describes the findings of the Site Investigation, including a summary of analytical results obtained from various environmental media (i.e., soil and water). Section 6.0 also evaluates the areal extent of NAPL and contaminated groundwater underlying the Site.
- Section 7.0, Discussions and Conclusions: This section summarizes the findings of the Site Investigation as they relate to the objectives presented in Section 4.0. Conclusions drawn from the study are also discussed.
- Section 8.0, Recommendations: This section discusses the Department's recommendations for future Site activities, including additional investigative activities that would be required to complete a Remedial Investigation.
- Section 9.0, References: This section contains a list of references utilized or cited in the report.

3.0 SITE HISTORY AND BACKGROUND

3.1 Site Description

The approximately 3.5 acre Former Gastown MGP Site is located at 126 East Niagara Street in the City of Tonawanda, Erie County, New York (Figures 1-1 and 1-2). The Site is bordered by railroad tracks to the west and south, Carney Street to the east, and East Niagara Street and Tonawanda Creek to the north (Figure 1-2). The property was formerly operated as a manufactured gas plant, but is now rented to several local industries.

Adjacent property to the east is owned by the Niagara Frontier Transportation Authority (NFTA), which leases a portion of the property to the Gastown Sportsmen's Club (located further east) for parking (Figure 1-2). An AT&T fiber optic underground cable (Figure 1-2) is located within this parking lot approximately 25 feet west of the club. Residential property is located west of the Site across the railroad tracks, while backyards of residential properties along Carney Street abut the Gastown Sportsmen's Club property.

The topography of the Former Gastown Manufactured Gas Plant Site is relatively flat-lying with a gradual northerly downward slope toward Tonawanda Creek. South of the Gastown Sportsmen's Club parking lot, however, is the berm of a former railroad bed that rises approximately 8.5 feet above the general topography of the Site.

3.2 Site History

The Former Gastown MGP Site was formerly operated as a manufactured gas plant under the ownership of the Tonawanda Gas Light Company; the Niagara Light, Heat & Power Company; the Republic Light, Heat & Power Company; and the Iroquois Gas Corporation. This property was purchased from Iroquois by Mr. Wilbert Holler in 1964, incorporated into the Holler and Schenk Building Company in 1968, and transferred to Mr. Jack Holler in 1986 under corporate dissolution. The property is currently utilized by Mr. Holler as rental income, and houses several local industries.

In March 1993 the Department's Spill Unit responded to a spill complaint at the Gastown Sportsmen's Club where an unknown petroleum product was entering the basement sumps of the clubhouse. Spill Unit investigations revealed that the material found in the sumps was likely coal tars related to the former coal gas manufacturing operations. Remedial and investigative actions completed by the Spill Unit include the following:

- Records search revealing the former Site use and owners/operators;
- Sampling of NAPL and water from the basement sumps of the Gastown Sportsmen's Club for chemical analysis;
- Completion of test pits/trenches to facilitate sampling of contaminated soil and groundwater;
- Completion of a push probe investigation and groundwater sampling to determine groundwater flow direction, the magnitude of groundwater contamination, and the areal extent of NAPL in the subsurface environment;
- Removal and disposal of contaminated soils where coal tars had surfaced in the club's parking lot due to blockage of the club's sump discharge line;
- Replacement of the sump discharge line (Figure 1-3) following the removal action; and
- Construction of a temporary shroud around the club's basement sump and installation of a fan to vent potentially hazardous organic vapors.

A sample of NAPL from the club's basement sumps was collected on February 12, 1998 and submitted for TCLP analysis. The result of this analysis revealed that the NAPL was a characteristic hazardous waste for benzene (D018). Based upon this finding, the Site was referred to the Hazardous Waste Remediation Unit in March 1998 for follow-up action.

Following an initial inspection of the Site, the Hazardous Waste Remediation Unit contacted the NYS DOH to express its concern over potential health impacts from contamination within the Gastown Sportsmen's Club. The NYS DOH subsequently conducted an indoor air evaluation of the clubhouse on April 13, 1998 and found elevated levels (2-4 times above background) of volatile organics in the basement (sump and game rooms). Since this was not a residential property, an evacuation or restricted use was not imposed. The NYS DOH assessment confirmed, however, that volatile organics existed in the clubhouse at levels of concern relative to public health. Based upon verbal discussions with the NYS DOH, which were subsequently expressed in writing, timely action to mitigate exposures was determined to be necessary.

The Hazardous Waste Remediation Unit subsequently designed and installed a groundwater/NAPL extraction and treatment system to capture NAPL and contaminated groundwater before they enter the clubhouse sumps. The general layout of this system is shown in Figure 1-3, which consists of a single 10" diameter extraction well and conveyance system that transports contaminated groundwater and NAPL to the treatment system. Treated water is discharged directly to Tonawanda Creek and must meet applicable discharge limits as specified by the Department's Division of Water. This system began operation on September 2, 1998 and has operated continuously since that time. Operation and maintenance of this system is completed by a Department contractor from funds allocated in the Emergency Response Program.

4.0 STUDY OBJECTIVES AND SCOPE OF WORK

4.1 Objectives

Although the groundwater/NAPL extraction and treatment system has effectively mitigated the threat to members of the Gastown Sportsmen's Club from the presence of NAPL and contaminated groundwater in the clubhouse sumps, the total effectiveness of the extraction system is unknown. As a result, it is not known if contaminated groundwater is migrating off-site to adjacent residences along East Niagara and Carney Streets. In addition, it is not known to what extent NAPL has migrated under the club. The data required to make these determinations were obtained during the Site Investigation. The specific objectives of the Site Investigation were to:

- fully evaluate the effectiveness of the groundwater/NAPL extraction and treatment system;
- determine the extent to which NAPL has migrated under the Gastown Sportsmen's Club toward nearby properties; and
- determine the extent to which contaminated groundwater has migrated from the Site.

These objectives were evaluated through an examination of water level data, visual observation of soil samples, and the analysis of water samples obtained from monitoring wells and the Gastown Sportsmen's Club primary basement sump. Subsurface soil samples were sent to a lab for chemical analysis to confirm the visual observations.

4.2 Scope of Work

To meet the study objectives, the following activities were completed during the Site Investigation: (1) a soil boring program, (2) monitoring well installation, (3) water level measurements, (4) collection of environmental samples for chemical analysis, and (5) preparation of a Site map. These activities are briefly described in the following sections. All field work was conducted in level D personal protective equipment, while air monitoring for organic vapors was completed during intrusive activities by DEC personnel utilizing Department owned equipment. The direct push vehicle and sampling equipment were deconed prior to the implementation of field activities, with the sampling equipment decontaminated between samples.

4.2.1 Soil Boring Program

To determine the areal extent of NAPL underlying the NFTA and Gastown Sportsmen's Club

properties, thirteen (13) soil borings (SB-27 thru SB-39) were completed utilizing the direct push technique. The locations of these borings are shown on Figure 4-1, with the boring logs and stratigraphic summaries included as Appendices A and C, respectively. Continuous macro core samples were collected through the overburden soils until a reddish brown silty clay confining layer was encountered. Discrete samples (Figure 4-2) were collected based upon visual observations and/or air monitoring results of the macro core samples and submitted to a contract laboratory for chemical analysis. Ground surface elevation at each boring location was subsequently surveyed by DEC personnel utilizing Department owned equipment.

4.2.2 Monitoring Wells

Five (5) soil borings (SB-27, SB-34, SB-35, SB-36 and SB-39) were converted into monitoring wells to expand the existing monitoring well network. The locations of these wells are shown on Figure 4-3. The wells are constructed of 1" diameter threaded/flush joint Schedule 80 PVC screen and riser with appropriate sand pack, bentonite seal and grout. Each well was completed by installing a limited access, flush-mounted curb box. Well construction diagrams are included in Appendix A, while specific details concerning well construction are summarized in Table C-2. Following construction, the wells were developed in accordance with standard DEC well development protocols by DEC personnel utilizing Department owned equipment. Well development and purging logs are included in Appendix B. Once development was complete, samples were collected from each well and submitted to a contract laboratory for chemical analysis. These data were utilized to determine if contaminated groundwater is migrating from the Site to adjacent properties. Monitoring well elevations were subsequently surveyed by DEC personnel utilizing Department owned equipment.

4.2.3 Water Level Measurements

Water levels in all on-site monitoring wells were measured eleven (11) times between December 13, 1999 and September 14, 2000. Water level measurements for Tonawanda Creek were also obtained during the Site Investigation. These data were utilized to further evaluate groundwater flow patterns across the Site to fully evaluate the effectiveness of the groundwater extraction system.

4.2.4 Sump Sampling

One water sample from the primary sump of the Gastown Sportsmen's Club was collected for chemical analysis during the Site Investigation. This sample was collected to determine if contaminant concentrations in the clubhouse sumps had decreased since the startup of the groundwater/NAPL extraction and treatment system in September 1998.

4.2.5 Sampling and Sample Analysis

With the exception of the macro core samples described in Section 4.2.1, all sampling was completed by DEC staff utilizing Department owned equipment. Sample analysis was completed by Severn Trent Laboratories, Inc. in Amherst, New York, a DEC contract laboratory. Specific conductance, pH, Eh, temperature and turbidity of water samples were measured in the field at the time of sample collection. These values are included on the purge logs in Appendix B.

4.2.6 Mapping

A map of the Former Gastown MGP Site was prepared by Department personnel using the AutoCAD LT 97 Software Program. The area mapped included the entire site boundaries; adjacent impacted properties; site buildings; the Gastown Sportsmen's Club; Tonawanda Creek in the vicinity of the Site; all soil boring and monitoring well locations (new and historical); and the locations of all samples collected as part of the Site Investigation.

5.0 GEOLOGY AND HYDROGEOLOGY

Site Investigation activities were undertaken, in part, to fully evaluate the effectiveness of the groundwater/NAPL extraction and treatment system. To complete such an evaluation, the characteristics, areal extent and hydrogeologic properties of the strata underlying the Former Gastown MGP Site must first be determined. Such an evaluation is important as these attributes of the geologic strata govern the occurrence and flow of groundwater and NAPL across the Site. These attributes, however, also govern the potential for contaminant migration from the Site, and dictate the rate and extent of this migration. As a result, a detailed evaluation of the geology and hydrogeology of the Former Gastown MGP Site is essential. Before completing such a detailed evaluation, however, it is important to first describe the regional geologic history of the western New York area as a general knowledge of this history is critical to a complete understanding of the complex interrelationships between the various geologic strata and their hydrogeologic properties.

5.1 Regional Geology

5.1.1 Surficial Geology

Geologic evidence suggests that at least four major glacial episodes covered parts of North America during the Pleistocene Epoch (Buehler and Tesmer, 1963). In western New York, however, there is evidence of only two such episodes. The last glacial event in the area, the Wisconsin, eroded and modified the earlier glacial deposits to such an extent that little evidence of their existence remains. These glacial events also resulted in the widening of preexisting valleys and basins, and led to the development of the present day drainage system in western New York (La Sala, 1968).

A complex sequence of proglacial lakes that formed during the final retreat of the Wisconsin ice sheet inundated an extensive area of western New York. This succession originated in the Erie-Huron Basin prior to 14,000 years ago as the ice sheet retreated from the basin. Further retreat produced Lake Arkona about 13,600 years ago (Hough, 1958); a readvance of the ice sheet followed about 13,000 years ago and resulted in a water level increase to the Lake Whittlesey stage. A series of advances and retreats over the next 300 years produced, from latest to earliest, lakes Warren, Wayne, Lowest Warren, Grassmere, Lundy and Tonawanda, the last forming about 9,800 years ago (Calkins and Brett, 1978) and having an outlet in the Lockport area. To the north, Lake Iroquois occupied the Ontario Basin at this time. This lake sequence was responsible for the deposition of stratified lacustrine clays, silts, sands and gravels that now cover much of western New York. The Pleistocene Epoch presented a variety of environments that resulted in the deposition of several types of unconsolidated deposits. In the Tonawanda area these deposits include the following (Malcolm Pirnie, 1987; Recra Environmental, 1990; URS, 1992; Woodward-Clyde, 1993; Conestoga Rovers & Associates, 1997; Weston, 1998):

- Glacial till consisting of a non-sorted, non-stratified mixture of sand, silt, clay, gravel and rock fragments deposited directly from glacial ice;
- Glaciolacustrine deposits consisting primarily of silt, sand and clay deposited in lakes that formed during melting and retreat of the ice sheets;
- Glaciofluvial deposits consisting of sand and gravel deposited either by glacial meltwater streams or by the reworking of till and other glacial deposits along the shore of former glacial lakes; and
- Alluvial deposits consisting of silt, sand and gravel deposited by streams during comparatively recent geologic time. An alluvial deposit is the principal deposit encountered at the Former Gastown MGP Site.

La Sala (1968) reports that glacial till is the most widespread deposit in the Erie-Niagara Basin, ranging in thickness from 2 to 200 feet. Lacustrine clay is also widespread, reaching thicknesses of 300 feet in some valleys within the basin (La Sala, 1968). In the Tonawanda area, the combined thickness of glacial till and lacustrine clay ranges considerably, from approximately 45 feet at the nearby Columbus McKinnon Corporation (Malcolm Pirnie, 1991) to more than 95 feet at the Town of Tonawanda Landfill (Malcolm Pirnie, 1995). The thickness of these deposits at the Former Gastown MGP Site is unknown, but is expected to be similar to that at Columbus McKinnon, which is located approximately 1,800 feet to the south on Fillmore Avenue near Fremont Street (Figure 1-1).

5.1.2 Bedrock Geology

The bedrock underlying western New York is characterized as a thick sequence of shales, sandstones, limestones and dolostones deposited in ancient seas during the Silurian and Devonian Periods (Buehler and Tesmer, 1963). This stratigraphic sequence is summarized in Table 5-1. Bedrock bedding generally strikes in an east-west direction, approximately paralleling the Niagara and Onondaga Escarpments, and dips to the

south at approximately 30 to 40 feet per mile (Johnson, 1964; La Sala, 1968; Yager and Kappel, 1987). Erosion and weathering, however, have produced local variations in the bedrock surface configuration (Snyder Engineering, 1987).

The uppermost bedrock formation underlying the Former Gastown MGP Site is the Camillus Shale Formation of the Salina Group, which was deposited in a shallow sea environment during the Late Silurian Period (Rickard and Fisher, 1970). This formation extends across northern Erie County in an east-west trending belt approximately 6 to 8 miles wide (Conestoga-Rovers & Associates, 1997). Exposures of this formation are rare because of the low relief of the outcrop area and the mantle of glacial deposits. This formation was not encountered during any drilling activities conducted at the Site.

5.2 Site Geology

The stratigraphy of the Former Gastown MGP Site has been evaluated by examining the stratigraphic logs obtained from twenty-six (26) soil borings completed by Environmental Products & Services, Inc. in June 1996, five (5) soil borings completed by Maxim Technologies in June 1998 as a prelude to the installation of the groundwater/NAPL extraction and treatment system, and thirteen (13) soil borings completed during the Site Investigation in December 1999. The locations of these borings are shown on Figure 4-1. Stratigraphic logs are included as Appendix A, while a stratigraphic summary is contained in Appendix C.

5.2.1 *Fill*

Fill material overlies the native deposits throughout most of the Former Gastown MGP Site; 31 of 42 soil borings encountering some type of fill material (Table C-1). Fill material consists predominantly of crushed stone, cinders, various colored ash, coal, coke, slag and brick, and ranges in thickness from 0.4 to 6.5 feet (Table C-1). The greatest fill thickness was encountered in the area of the former railroad berm (e.g., borings SB-18, SB-28, SB-30 and SB-38) and near the main building of the former manufactured gas plant (e.g., borings SB-20, SB-21, SB-25 ans SB-39).

5.2.2 Upper Silty Clay Deposit

A moderately thick silty clay deposit is encountered throughout the Site; only at soil boring location SB-33 was this deposit not encountered. This deposit underlies either the miscellaneous fill or a thin topsoil layer where fill is absent. The upper silty clay deposit is generally gray in color, but is extensively mottled yellow, brown, orange and black. The thickness of this deposit ranges from 2.2 to 14.5 feet (Table C-1).

5.2.3 Recent Alluvium Deposit

A relatively thick recent alluvium deposit underlies the entire Former Gastown MGP Site and is the primary aquifer encountered. This deposit directly underlies the upper silty clay deposit, and consists predominantly of fine grained, gray sand interbedded with thin layers of gray clay and silty clay. The thickness of this deposit is quite variable, ranging from 3.5 to 19.8 feet (Table C-1). The NAPL underlying the Site is found in this deposit.

5.2.4 Sand and Gravel Deposit

A relatively thin sand and gravel deposit directly underlies the recent alluvium deposit and was encountered in 21 of 26 deep borings completed at the Site (Table C-1). The thickness of this deposit is relatively constant, ranging from 0.2 to 1.0 feet (Table C-1). NAPL is also found in this deposit.

5.2.5 Lower Silty Clay Deposit

A lower silty clay deposit underlies either the sand and gravel deposit or the recent alluvium deposit where the sand and gravel deposit is absent. This glaciolacustrine deposit is encountered throughout the Tonawanda area and consists predominantly of reddish brown to brown, soft to very soft, saturated, highly plastic, silty clay. Laminations (varves) are common throughout the glaciolacustrine deposit, indicating that it was deposited in a glacial lake environment. Silt lenses, fine sand lenses, and distinct layers of subangular to subrounded gravel and pebbles (drop stones) are also observed within this deposit. This deposit acts as a confining layer that prevents the further downward migration of contaminated groundwater and NAPL. The thickness of the glaciolacustrine deposit under the Former Gastown MGP Site is unknown as borings have not completely penetrated this deposit.

5.3 Regional Hydrogeology

Many site investigations and hydrogeologic studies have been completed in the Tonawanda area, and indicate that there are three principal hydrogeologic zones described as follows:

- The upper Camillus Shale bedrock, which can be characterized as a confined aquifer;
- A glaciolacustrine deposit, which can be characterized as an aquitard, confining groundwater from the underlying Camillus Shale; and
- Shallow alluvium, glaciofluvial and fill deposits, which can be characterized as either

unconfined (water table) or perched aquifers.

Of these zones, the principal aquifers include sands and gravels of the recent alluvium and glaciofluvial deposits, and upper bedrock of the Camillus Shale Formation. In the Tonawanda area, unconfined groundwater is encountered largely within the glaciofluvial, alluvium and fill deposits. Where these deposits overlie the glaciolacustrine deposit, perched groundwater conditions occur. Well yields from these deposits in the Tonawanda area are generally unknown, although wells installed in highly permeable outwash deposits in the Tonawanda Creek valley have yielded 1,000 to 1,400 gallons per minute (gpm) (La Sala, 1968).

The glaciolacustrine deposit separates the water table and/or perched aquifer from the confined upper bedrock aquifer. The hydraulic conductivity of this deposit is extremely low, typically ranging from 10^{-6} to 10^{-8} cm/s. The glaciolacustrine deposit, therefore, can be considered an aquitard, preventing the vertical movement of shallow groundwater to the underlying Camillus Shale. Horizontal groundwater flow within this deposit is also severely limited. In fact, the glaciolacustrine deposit is generally not water bearing, yielding only small quantities of water, which is primarily interstitial pore water that is tightly bound to the soil particles. This deposit, however, often contains thin seams and stringers of silt and sand that can allow limited horizontal groundwater flow. If areally extensive, these seams and stringers can be utilized as a source of water (La Sala, 1968).

La Sala (1968) reports that the Camillus Shale is "by far the most productive bedrock aquifer" in the Erie-Niagara Basin, with individual well yields ranging from 300 to 1,200 gpm. The production well at the Dunlop Tire Corporation yields 600 to 900 gpm (Pyanowski, 1990), although yields of 1,800 gpm were observed during a 1995 DEC study of the area.

5.4 Site Hydrogeology

The hydrogeology of the Former Gastown MGP Site has been evaluated by examining both historical hydrogeologic data and hydrogeologic data obtained during the Site Investigation. These data suggest that the recent alluvium deposit is the principal aquifer underlying the Site, although some groundwater is present within the upper silty clay deposit. As described above, the glaciolacustrine deposit (lower silty clay deposit) acts as an aquitard, restricting the downward movement of contaminated groundwater and NAPL to the deeper water bearing zones (i.e., the Camillus Shale bedrock).

Five (5) overburden monitoring wells were installed during the Site Investigation to supplement the

existing monitoring well network (Figure 4-3; Table C-2). These wells are screened entirely within the recent alluvium deposit, with the exception of monitoring well MW-39, which was installed at a shallower depth to monitor petroleum contamination encountered during the investigation. This contamination is different from that associated with the former manufactured gas plant, and appears to be related to an aboveground storage tank that was formerly located in the area. Construction diagrams for all wells installed on Site are provided in Appendix A, while monitoring well specifications are given in Appendix C.

A total of fourteen (14) monitoring wells have been installed throughout the Former Gastown MGP Site (Figure 4-3; Table C-2): three (3) of these wells monitor the upper silty clay deposit (shallow zone), three (3) wells monitor both the upper silty clay deposit and upper portion of the recent alluvium deposit (shallow zone), and eight (8) wells monitor the recent alluvium deposit (intermediate zone). Water levels in all on-site monitoring wells were measured eleven (11) times between December 13, 1999 and September 14, 2000, while Tonawanda Creek water levels were measured 9 times during this period (Table 5-2). These data were utilized to further evaluate groundwater flow patterns across the Site to fully evaluate the effectiveness of the groundwater extraction system. Water levels in on-site wells have now been measured 55 times since June 14, 1996, while Tonawanda Creek water levels have now been measured 46 times since July 13, 1998 (Table 5-2).

The water level data obtained during the Site Investigation were utilized to construct hydrographs for both the shallow and intermediate zone wells (Figures 5-1 thru 5-4). These hydrographs reveal that water levels fluctuated substantially throughout the year, but fluctuated in response to the groundwater extraction system (compare Figure 5-4 to Figure 5-3). The water level fluctuations in the extraction well (Figure 5-3) result from the discharge of the Gastown Sportsmen's Club sumps into the well. While the groundwater extraction system has generally been able to handle this excess water in the past (Figure 5-8), the higher than average rainfall earlier this year, the concomitant higher than average discharge from the club's sumps, and biofouling of the well screen and pumps have significantly reduced the groundwater extraction system's ability to lower Site groundwater elevations.

The water level fluctuations in monitoring wells MW-1S and MW-3S mirror the response of the other shallow zone wells, but at a significantly lower amplitude (Figure 5-1). Since these wells only screen the upper silty clay deposit (Table C-2), the low amplitude response suggests that these wells are not connected hydraulically to the underlying recent alluvium deposit. While the exact nature of the mirrored response is unknown, it could be related to either pressure changes in the hydrogeologic system due to groundwater

extraction or to drying/rewetting of the upper silty clay deposit as water levels fluctuate in the underlying recent alluvium deposit.

Monitoring well MW-2S also screens the upper silty clay deposit, but exhibits water level fluctuations that are similar to the shallow zone wells that partially screen the recent alluvium deposit (Figure 5-1). This response suggests that well MW-2S is connected hydraulically to the recent alluvium deposit. The historical hydrograph for this well (Figure 5-6), however, shows variations in response over time: relatively high amplitude, short duration fluctuations during 1998 followed by relatively low amplitude, long duration fluctuations during 1999 and 2000. As a result of these different responses, the true relationship between this well and the recent alluvium deposit is uncertain.

Due to the problems associated with the higher than average precipitation this year, the hydrographs shown in Figures 5-1 thru 5-4 do not accurately represent the influence of the groundwater extraction system. As a result, hydrographs for both the shallow and intermediate zone wells have been constructed from historical water level data (Figures 5-5 thru 5-9). These hydrographs show a cyclical pattern of high and low water levels: high during periods of high rainfall and snowmelt; low during drier months when the groundwater extraction system is operating at peak efficiency. The hydrographs also reveal that water levels in on-site monitoring wells do not fluctuate in response to changing water levels in Tonawanda Creek (Figures 5-1 thru 5-3 and Figures 5-5 thru 5-8). This indicates that Tonawanda Creek is not hydraulically connected to the recent alluvium deposit.

The similarity in water level fluctuations between the shallow and intermediate zone wells (compare Figure 5-4 with Figure 5-9) suggests that the shallow zone wells (with the exception of wells MW-1S, MW-2S and MW-3S as discussed above) are hydraulically connected to the recent alluvium deposit. These data, therefore, can be combined and utilized to generate groundwater contour maps for the Site. Water levels from Tonawanda Creek were not included in these contours since the creek is not hydraulically connected to the recent alluvium deposit.

Figures 5-10 and 5-11 illustrate the groundwater flow pattern across the Former Gastown MGP Site prior to the installation of the groundwater extraction system. While different well data were utilized to generate these contours, both figures indicate that under steady state conditions, groundwater flows toward the Gastown Sportsmen's Club. This flow pattern suggests that the club's basement drain system (sumps and floor drains) acts as a significant groundwater sink.

Figure 5-12 illustrates the groundwater flow pattern across the Former Gastown MGP Site on November 23, 1998, almost 3 months after startup of the groundwater extraction system. This figure indicates that groundwater extraction alters the steady state groundwater flow pattern by producing a cone of depression around the extraction well. The magnitude and extent of this drawdown, however, can not be determined from this figure due to the absence of wells east and south of the clubhouse. Using water level data from the wells installed during the Site Investigation, a groundwater contour map for July 13, 2000 was generated (Figure 5-13). This figure indicates that groundwater extraction produces an elliptical cone of depression around the extraction well that extends from well MW-13 to the eastern property line of the Gastown Sportsmen's Club (wells MW-34 and MW-35). Hydrographs for the Site indicate that groundwater extraction also affects water levels as far west as well MW-39 (Figure 5-1) and as far north as well MW-23 (Figure 5-2 and 5-7).

In situ hydraulic conductivity testing has only been conducted on monitoring well MW-1I, which completely screens the recent alluvium deposit. This test was completed by utilizing bail down test methods, with the field data evaluated by the solution developed by Bouwer and Rice (1976). The hydraulic conductivity obtained from this test was 1.2×10^{-4} cm/sec. This value is comparable to those obtained at the nearby Columbus McKinnon Corporation Site, where hydraulic conductivities of the recent alluvium deposit range from 1.4×10^{-3} to 4.0×10^{-4} cm/sec (Malcolm Pirnie, 1991).

5.5 Groundwater Extraction System Efficiency

Water level data obtained from on-site wells prior to implementation of the Site Investigation indicated that the groundwater extraction system substantially lowered groundwater elevations from steady state conditions. These data, however, were not sufficient to determine the magnitude and extent of this drawdown due to the absence of wells east and south of the clubhouse. As a result, one objective of the Site Investigation was to fully evaluate the effectiveness of the groundwater extraction system. To accomplish this objective, five additional monitoring wells were installed during the investigation to supplement the existing monitoring well network. Water levels in all on-site wells were subsequently measured eleven (11) times between December 13, 1999 and September 14, 2000. These data were then utilized to construct hydrographs (Figures 5-1 thru 5-4) and a groundwater contour map (Figure 5-13), which were evaluated to determine the effectiveness of the groundwater extraction system.

Figure 5-13 illustrates the groundwater flow pattern across the Former Gastown MGP Site on July 13, 2000. As discussed above, this figure indicates that groundwater extraction produces an elliptical cone

of depression around the extraction well that extends from well MW-13 to the eastern property line of the Gastown Sportsmen's Club (wells MW-34 and MW-35). This drawdown is substantial, and is produced by groundwater extraction rates that range from 0.19 to 1.79 gallons per minute (gpm). These low extraction rates, however, are consistent with the moderate hydraulic conductivities of the recent alluvium deposit.

Hydrographs for the Site indicate that groundwater extraction affects water levels in all on-site wells that screen the recent alluvium deposit, indicating that the influence of the extraction system is larger areally than the cone of depression delineated in Figure 5-13. As a result, water level data for the Site suggest that the groundwater extraction system collects contaminated groundwater from the entire Site.

While the groundwater extraction system is capable of collecting contaminated groundwater from the entire Site, the hydrographs (Figures 5-1 thru 5-9) indicate that the system does not always operate at peak efficiency. A major reason for this decrease in efficiency is the discharge of the club's basement sumps into the extraction well. The system was designed this way to direct contaminated sump water through the treatment system prior to discharge. In the past the groundwater extraction system has generally been able to handle this excess water (Figure 5-8), however, the greater discharge from the club's sumps this year due to increased rainfall has significantly reduced the system's ability to keep up with this additional discharge. In fact, at times this year this increased discharge has caused contaminated groundwater to spill out of the vault onto the ground surface.

To alleviate future spill-over events from the existing vault, and to increase system efficiency, a secondary vault and pump was installed at the Site in October 2000. The club's sump discharge was redirected to this vault, and is pumped directly to the treatment system. To fully evaluate the effect of this modification on the efficiency of the groundwater extraction system, water level measurements in on-site wells will be required over time, with the data utilized to construct hydrographs and groundwater contour maps.

6.0 INVESTIGATION RESULTS

A brief description of the activities completed during the Site Investigation at the Former Gastown MGP Site was presented in Section 4.0. In this section, a detailed evaluation of the observations made during the Site Investigation and the analytical results obtained from the field activities is presented. Analytical results are summarized by environmental media, and include subsurface soil, groundwater and the Gastown Sportsmen's Club sump water.

6.1 NAPL Delineation

One objective of the Site Investigation was to determine the extent to which NAPL has migrated under the Gastown Sportsmen's Club toward nearby properties on Carney Street. To accomplish this objective, thirteen (13) soil borings were completed during the Site Investigation, with the subsurface soil samples examined for the presence of NAPL. Because the NAPL underlying the Site is black in color and has a distinctive coal tar-like odor, visual observation combined with volatile screening with a PID was utilized to evaluate NAPL presence. The information obtained during this study, combined with historical soil boring data, was then utilized to determine the areal extent of NAPL underlying the NFTA and Gastown Sportsmen's Club properties. The borings completed during the Site Investigation are designated SB-27 thru SB-39 inclusive (Figure 4-1), and except for boring SB-33, were completed to the lower silty clay deposit. The stratigraphic logs for all borings completed at the Site are given in Appendix A and summarized in Table C-1.

A review of all stratigraphic logs available for the Site (13 new and 26 historical) indicates that NAPL was encountered in fifteen (15), and where encountered, ranged in thickness from 3.0 to 15.0 feet (Table 6-1). It is important to note, however, that the thickness of NAPL in four of these borings (SB-15, SB-21, SB-22 and SB-34) is estimated because the depth to the underlying confining layer could not be positively identified from the boring logs. For these borings, the depth to the confining layer was estimated from nearby borings, and is thought to be accurate to ± 1 foot. A comparison of NAPL thickness to Figure 4-1 indicates that NAPL thickness is greatest near the former Gastown MGP plant (e.g., borings SB-21, SB-22 and SB-23) and thins to the east under the NFTA (e.g., borings SB-15, SB-16 and SB-17) and Gastown Sportsmen's Club (e.g., borings SB-34 and SB-35) properties. NAPL thickness also appears to thin near the edges of the plume (e.g., borings SB-25, SB-13 and SB-29).

The underlying confining layer in 10 of the 15 borings is the reddish brown silty clay of the lower silty clay deposit. In the other five borings the NAPL appears confined by the sand and gravel deposit. It

is not obvious from visual observations of this deposit, however, why NAPL in these areas did not migrate through the deposit to the underlying lower silty clay deposit.

The data from Table 6-1 was utilized to construct Figure 6-1, a map showing the location of the NAPL plume associated with the Former Gastown MGP Site. This plume forms a general "L" shape; the short leg being located between the former manufactured gas plant and the coal bins with the long leg extending eastward under the NFTA and Gastown Sportsmen's Club properties. While this investigation did not fully delineate the eastern boundary of the NAPL plume, the presence of NAPL in small, isolated pockets in borings SB-34 and SB-35 suggests that the plume edge is located near these borings.

6.2 Subsurface Soil

During the Site Investigation, nineteen (19) subsurface soil samples were collected and submitted to Severn Trent Laboratories for chemical analysis. All samples were analyzed for Target Compound List (TCL) volatiles, except for the samples collected from soil boring SB-39, which were also analyzed for TCL semivolatiles, Target Analyte List (TAL) metals and/or petroleum products. The samples selected for analysis were determined in the field based upon visual observation and screening for volatile organic vapors using a PID meter. Figure 4-2 shows the boring locations from which samples were collected, while Tables 6-2 and 6-3 summarize the analytical results.

Because the NAPL underlying the Former Gastown MGP Site is denser than water (DNAPL), it has migrated through the recent alluvium deposit and pooled on top of either the sand and gravel or lower silty clay deposit (confining layer). As a result, subsurface samples from borings completed outside the NAPL plume were collected from soils immediately above the lower silty clay deposit as these soils had the greatest potential of being contaminated. The exception to this was the sample collected from boring SB-33, which was collected from a depth of 8.0-10.0 feet below ground surface (bgs). This sample was collected from a shallower depth to determine if soil contamination (or NAPL) was present along the portion of the club's sump discharge line that was not replaced by the Department's Spill Unit in March 1998.

Table 6-2 summarizes the analytical results for the eight subsurface soil samples collected from borings outside the NAPL plume. These samples were submitted for analysis to verify that visually "clean" was also analytically "clean." As a screening tool these results were compared to the soil cleanup objectives of NYSDEC Technical and Administrative Guidance Memoranda (TAGM) No. 4046. Although a few contaminants were detected in these samples, only benzene in boring SB-28 (23.6'-23.9' bgs) was detected

at a concentration that exceeded the TAGM 4046 soil cleanup objectives (Table 6-2). Toluene, ethylbenzene and xylenes were also detected in this sample. A review of the boring log for this location (Appendix A) indicates that this sample exhibited a NAPL odor and had a PID reading of 13.8 ppm. The second sample collected from this boring (20.0'-23.6' bgs) contained benzene, toluene, dichloroethene and vinyl chloride at concentrations below the TAGM 4046 soil cleanup objectives (Table 6-2). This sample did not exhibit any odors or PID readings. The presence of contamination in this boring suggests that it is close to the NAPL plume (Figure 6-1).

An evaluation of the results from boring SB-33 indicates the presence of only benzene and ethylbenzene at concentrations below the TAGM 4046 soil cleanup objectives (Table 6-2). In addition, no NAPL was observed in this boring. These data indicate that remediation is not required along this portion of the club's sump discharge line.

Table 6-3 summarizes the analytical results for eleven subsurface soil samples collected from borings within the NAPL plume. These samples were submitted for analysis to evaluate further the nature and extent of contamination associated with the plume. In general, significant volatile contamination was detected in the ten samples submitted for VOC analysis by method 8260. Contaminant concentrations that exceeded the TAGM 4046 soil cleanup objectives include benzene (6 samples), toluene (6 samples), ethylbenzene (5 samples), xylenes (7 samples), 2-butanone (3 samples) and naphthalene (6 samples). Two of these samples were also submitted for VOC analysis by method 8021, with the concentration of eight contaminants exceeding the TAGM 4046 soil cleanup objectives or the TCLP alternative guidance values of Stars Memo #1. A more detailed evaluation of these results follows.

Two samples from boring SB-29 were submitted for analysis as NAPL was observed in two separate zones in the subsurface environment. The source of the NAPL observed from 5.0'-8.0' bgs is the club's former sump discharge line that ruptured and was replaced by the Department's Spill Unit. During this project a large quantity of contaminated soil and NAPL was excavated. Eight VOCs were detected in this sample at concentrations that exceeded the TAGM 4046 soil cleanup objectives or the TCLP alternative guidance values (Table 6-3). Benzene, toluene and ethylbenzene were also detected in this sample. The presence of NAPL and contaminated soil in this boring suggests that additional remediation is necessary along this portion of the club's sump discharge line.

The NAPL observed from 19.5'-19.8' bgs is part of the NAPL plume underlying the Site. Five VOCs

were detected in this sample at concentrations that significantly exceeded the TAGM 4046 soil cleanup objectives (Table 6-3). Styrene was also detected in this sample at a concentration of $130,000 \,\mu g/kg$, but no soil cleanup objective is available for this compound.

The samples collected from boring SB-31 evaluate three separate zones within the NAPL plume. The sample from 15.8'-16.0' bgs exhibited a coal tar odor and had a slight (1.2 ppm) PID reading, but did not contain any NAPL. Although a few contaminants were detected in this sample (Table 6-3), their concentrations were below the TAGM 4046 soil cleanup objectives. The sample from 23.4'-24.0' bgs contained NAPL and exhibited a PID reading of 1,330 ppm. This sample contained benzene, toluene, and xylenes at concentrations well above the TAGM 4046 soil cleanup objectives (Table 6-3). Ethylbenzene and styrene were also detected in this sample. The sample from 24.3'-26.0' bgs was collected from the lower silty clay deposit to evaluate the effectiveness of this deposit as a confining layer. While a few contaminants were detected in this sample, only benzene was detected at a concentration that exceeded the TAGM 4046 soil cleanup objectives (Table 6-3). These results suggest that the lower silty clay deposit is an effective barrier against the further downward migration of NAPL and related contaminants.

Two samples from borings SB-34 and SB-35 were submitted to the lab for chemical analysis. These borings are located along the eastern boundary of the Gastown Sportsmen's Club property and the downgradient edge of the NAPL plume (Figure 6-1). The shallow sample from each boring was collected from a narrow zone that marked the first occurrence of NAPL in these borings (see boring logs in Appendix A). The deeper samples were each composited over a $\pm 3'$ interval that contained NAPL.

Both samples from boring SB-34 contained benzene, ethylbenzene, toluene, xylenes and naphthalene at concentrations that exceeded the TAGM 4046 soil cleanup objectives (Table 6-3). Styrene was also detected in both samples, while the deeper sample contained 2-butanone at a concentration that exceeded the TAGM 4046 soil cleanup objective (Table 6-3). The results from boring SB-35 are similar, with the exception that benzene was not detected in the shallow sample (although the detection limit was quite high). Styrene was again detected in both samples, while the deeper sample contained 2-butanone at a concentration that exceeded the TAGM 4046 soil cleanup objective (Table 6-3). It is interesting to note that the shallow sample from each boring contained higher contaminant concentrations than the deeper samples by about one order of magnitude (Table 6-3).

While boring SB-39 did not encounter the NAPL plume, analytical results from the two samples

collected from this boring are included in Table 6-3 because contamination was encountered in these samples. The first sample collected from this boring (1.1'-4.0' bgs) was a tan ash with brown and green mottling (see boring log in Appendix A), and was analyzed for TCL semivolatiles and TAL metals. Although the ash did not contain any semivolatile compounds, it did contain numerous metals at various concentrations (Table 6-3). Only the concentrations of mercury and zinc, however, exceeded the TAGM 4046 soil cleanup objectives. This sample also contained manganese at a significant concentration (657,000 μ g/kg). The TAGM 4046 soil cleanup objective for manganese is the site background concentration. Since background samples were not collected during the Site Investigation this concentration is unknown.

The second sample collected from boring SB-39 (6.4'-9.0' bgs) was collected from a zone containing petroleum contamination that is distinct from the NAPL associated with the former manufactured gas plant. The petroleum contamination does not have a coal tar odor and is an LNAPL, floating on top of the water table. Nine VOCs were detected in this sample at concentrations that exceeded the TAGM 4046 soil cleanup objectives or the TCLP alternative guidance values (Table 6-3). Ten semivolatile compounds (primarily PAH's) were also detected in this sample; however, the concentrations of these contaminants did not exceed the TAGM 4046 soil cleanup objectives (Table 6-3). In addition to TCL volatile and semivolatile analysis, this sample was also analyzed for petroleum products by DOH method 313.13. No petroleum products were identified in this sample. While the source of the petroleum contamination in boring SB-39 is unknown, a concrete pier located near this boring could have been a cradle for an aboveground storage tank. Additional borings will be required in this area to determine the areal extent of this petroleum contamination.

The analytical results presented in Tables 6-2 and 6-3 show significant differences in contaminant concentrations between samples collected outside the NAPL plume and those collected from within the plume. This difference indicates that visual observation, combined with volatile screening with a PID, is effective in delineating the NAPL plume.

6.3 Groundwater

Five groundwater monitoring wells (Figure 4-3) were installed during the Site Investigation, in part, to further evaluate groundwater contamination at the Site. Twelve groundwater samples were collected during the Site Investigation and submitted to Severn Trent Laboratories for chemical analysis. Analyses included TCL volatiles, TCL semivolatiles, PCBs, pesticides and TAL metals. Because the monitoring wells at the Former Gastown MGP Site monitor both the shallow and intermediate hydrogeologic zones, analytical results are summarized by zone (Tables 6-4 and 6-5). For comparison purposes, these tables include all

contaminants historically detected at the Site. The well development and purge logs are included as Appendix B.

As discussed in Section 5.4, monitoring wells MW-2S and MW-3S are not hydraulically connected to the recent alluvium deposit. These wells were installed to monitor residual contamination following remediation of the Gastown Sportsmen's Club sump discharge line by the Department's Spill Unit in March 1998. The analytical results for these wells (Table 6-4) indicate the presence of groundwater contamination, but at significantly lower concentrations than wells that monitor the intermediate hydrogeologic zone (Table 6-5). Contaminants detected at concentrations that exceed the Department's Class GA groundwater standards or guidance values include benzene (both wells), toluene (MW-2S), xylenes (MW-2S), phenol (both wells), pentachlorophenol (MW-3S), naphthalene (MW-2S), endrin (MW-3S) and iron (MW-3S). These data, combined with the soil results from boring SB-29, indicate that residual contamination remains along some portions of the replaced sump discharge line.

During the Site Investigation, monitoring well MW-39 was installed in the shallow zone to monitor petroleum contamination encountered during the investigation. Individual contaminants detected in this well that exceeded the Department's Class GA groundwater standards or guidance values include benzene, vinyl chloride, dichloroethene, fluorene, phenanthrene, pyrene, benzo(a)anthracene, chrysene, benzo(b)-fluoranthene, benzo(a)pyrene, dieldrin, endrin, arsenic, iron, lead, manganese, zinc and cyanide. Cyanide was detected at a concentration of 18,300 μ g/l, well above the 200 μ g/l Class GA groundwater standard for this compound. While the soil sample from this boring did not contain petroleum products (see Section 6.2), petroleum products were detected in this well at a concentration of 120,000 μ g/l (Table 6-4).

The remaining nine wells monitor all or part of the recent alluvium deposit (see Section 5.4), with six of these wells (MW-13, MW-17, MW-23, MW-2I, MW-34 and MW-35) installed within the NAPL plume (Figures 4-3 and 6-1). The organic analyses of groundwater samples collected from these wells reveal the presence of both volatile and semivolatile compounds (Tables 6-4 and 6-5). Fifteen VOCs were detected in these wells, with the concentrations of benzene (5 samples), toluene (5 samples), ethylbenzene (4 samples), xylenes (5 samples), isopropylbenzene (1 sample), trimethylbenzenes (5 samples), butylbenzenes (5 samples), naphthalene (4 samples), MTBE (1 sample), vinyl chloride (1 sample), styrene (4 samples) and dichloroethene (1 sample) exceeding the Department's Class GA groundwater standards or guidance values. These VOCs are similar to those detected in the subsurface soil samples collected from within the NAPL plume (compare with Table 6-3).

Seventeen PAH's were detected in the groundwater samples collected from wells within the NAPL plume with the concentrations of fourteen exceeding the Department's Class GA groundwater standards or guidance values (Tables 6-4 and 6-5). Groundwater exceedances were documented for naphthalene (5 samples), acenaphthene (3 samples), fluorene (3 samples), phenanthrene (4 samples), anthracene (3 samples), fluoranthene (3 samples), pyrene (5 samples), benzo(a)anthracene (5 samples), chrysene (5 samples), benzo(b)fluoranthene (5 samples), benzo(k)fluoranthene (4 samples), benzo(a)pyrene (5 samples), indeno(1,2,3-cd)pyrene (3 samples) and benzo(g,h,i)perylene (1 sample). Phenolic compounds and PCBs were not detected in any of these wells, while heptachlor (MW-2I) was the only pesticide detected. The concentration of this contaminant, however, exceeded the Department's Class GA groundwater standard for this compound (Table 6-5).

Although a number of inorganic compounds were detected in the groundwater samples, only the concentrations of arsenic, iron, lead, manganese and zinc are reported in Tables 6-4 and 6-5. Each of these compounds were detected in wells installed within the NAPL plume at concentrations that exceeded the Department's Class GA groundwater standards or guidance values. Groundwater exceedances include arsenic (5 samples), iron (6 samples), lead (4 samples), manganese (6 samples) and zinc (3 samples). Cyanide was also detected in five of the six wells installed within the NAPL plume, with the concentration in three wells exceeding the Department's Class GA groundwater standard for this compound (Tables 6-4 and 6-5).

An evaluation of the analytical results for the three wells installed outside the NAPL plume (MW-27, MW-36 and MW-11) reveals much lower contaminant concentrations than in wells within the plume (Table 6-5). Although thirteen VOCs were detected in these wells, twelve of these detections were documented in well MW-11, which is located close to the NAPL plume (Figures 4-3 and 6-1). In contrast, wells MW-27 and MW-36 each contained only two VOCs (Table 6-5). Groundwater exceedances were documented for benzene (2 samples), toluene (2 samples), ethylbenzene (1 sample), xylenes (1 sample), n-butylbenzene (1 sample), vinyl chloride (1 sample) and dichloroethene (1 sample). No groundwater exceedances were documented for well MW-36.

Five phenolic compounds were detected in the groundwater samples collected from wells outside the NAPL plume with all five detections documented in well MW-27 (Table 6-5). Of these compounds, phenol, pentachlorophenol, 2-nitrophenol and 4-nitrophenol were detected at concentrations that exceeded the Department's Class GA groundwater standards. Trichlorobenzene, dichlorobenzene and dinitrotoluene were also detected in this well (Table 6-5), with all three compounds detected at concentrations that exceeded the

Department's Class GA groundwater standards.

Five PAH's were detected in the groundwater samples collected from wells outside the NAPL plume with only the concentrations of naphthalene (MW-1I) and acenaphthene (MW-27) exceeding the Department's Class GA groundwater standards or guidance values (Table 6-5). Naphthalene was the only PAH detected in well MW-36. PCBs were not detected in any of these wells, while endrin in wells MW-27 and MW-36 was the only pesticide detected. The concentration of endrin in both wells, however, exceeded the Department's Class GA groundwater standard for this compound (Table 6-5).

Arsenic, iron, lead, manganese and zinc were detected in each well installed outside the NAPL plume (Table 6-5), with the concentration of each metal in wells MW-27 and MW-36 exceeding the Department's Class GA groundwater standard or guidance value. Only the concentrations of iron and manganese in well MW-11 exceeded the groundwater standards. Cyanide was also detected in all three wells, with the concentration in wells MW-11 and MW-36 exceeding the Department's Class GA groundwater standard for this compound (Table 6-5).

Like the soil analytical results presented in Section 6.2, the groundwater analytical results (Tables 6-4 and 6-5) show significant differences in contaminant concentrations between samples collected outside the NAPL plume and those collected from within the plume.

6.4 Sump Water

One water sample from the primary sump of the Gastown Sportsmen's Club was collected for chemical analysis during the Site Investigation and submitted to Severn Trent Laboratories for chemical analysis. Analyses included TCL volatiles, TCL semivolatiles, PCBs, pesticides and TAL metals. This sample was collected to further evaluate the effectiveness of the groundwater/NAPL extraction and treatment system by determining if contaminant concentrations in the clubhouse sump had decreased since the startup of the system in September 1998. Analytical results from this and previous sampling events are summarized in Table 6-6.

Prior to startup of the groundwater/NAPL extraction and treatment system, fifteen VOCs were detected in water from the club's primary sump (Table 6-6), with the concentrations of all fifteen contaminants exceeding the Department's Class GA groundwater standards or guidance values. These contaminants are similar to those detected in the subsurface soil and groundwater samples. An evaluation

of the analytical results for the sump water collected during the Site Investigation (15 months after system startup) indicates that although fourteen VOCs were detected, the concentrations of these contaminants are approximately one order of magnitude lower than the concentrations documented prior to system startup. Only eight of these compounds were detected at concentrations that exceeded the Department's Class GA groundwater standards or guidance values, and include benzene, toluene, ethylbenzene, xylenes, n-butylbenzene, trimethylbenzene and styrene (Table 6-6).

Five phenolic compounds were detected in the sump water prior to system startup, with the concentrations of phenol and pentachlorophenol having exceeded the Department's Class GA groundwater standards (Tables 6-6). Four phenolic compounds were detected in the post-startup sump water, with only the concentration of phenol exceeding the Department's Class GA groundwater standards (Table 6-6). Pentachlorophenol was not detected in this sample.

Prior to system startup, nineteen PAH's were detected in the club's primary sump water, with the concentration of thirteen of these contaminants exceeding the Department's Class GA groundwater standards or guidance values (Tables 6-6). There are no groundwater standards or guidance values for the other six PAH's detected. Only seven PAH's were detected in the post-startup sump water, with none of the concentrations exceeding groundwater standards or guidance values (Tables 6-6). PCBs and pesticides were not detected in the post-startup sump water. Prior to system startup, however, heptachlor epoxide, DDD and chlordane had been detected (Table 6-6), with the concentration of DDD having exceeded the Department's Class GA groundwater standard for this compound.

Arsenic, iron, manganese, zinc and cyanide were detected in the sump water prior to system startup, with the concentrations of iron, manganese and cyanide exceeding the Department's Class GA groundwater standards (Table 6-6). While iron, manganese, zinc and cyanide were still detected in the post startup sump water, only the concentration of iron exceeded the Department's Class GA groundwater standards (Table 6-6).

7.0 DISCUSSIONS AND CONCLUSIONS

7.1 Discussion

The principle objectives of the Site Investigation were to (1) fully evaluate the effectiveness of the groundwater/NAPL extraction and treatment system; (2) determine the extent to which NAPL has migrated under the Gastown Sportsmen's Club toward nearby properties; and (3) determine the extent to which contaminated groundwater has migrated from the Site. These objectives were evaluated through an examination of water level data, visual observation of soil samples, and the analysis of water samples obtained from monitoring wells and the Gastown Sportsmen's Club primary basement sump. Subsurface soil samples were sent to a lab for chemical analysis to confirm the visual observations.

The effectiveness of the groundwater/NAPL extraction and treatment system was evaluated through an examination of water level data from on-site monitoring wells and a review of analytical data from a water sample collected from the primary sump of the Gastown Sportsmen's Club. The water level data obtained from the Site were utilized to construct hydrographs for both the shallow and intermediate zone wells. These hydrographs show a cyclical pattern of high and low water levels: high during periods of high rainfall and snowmelt; low during drier months when the groundwater extraction system is operating at peak efficiency. The hydrographs also reveal that water levels in on-site monitoring wells do not fluctuate in response to changing water levels in Tonawanda Creek, indicating that the creek is not hydraulically connected to the recent alluvium deposit.

Water level data were also utilized to construct groundwater contour maps. These maps reveal that even prior to the installation of the groundwater extraction system, groundwater flowed toward the Gastown Sportsmen's Club. This flow pattern suggests that the club's basement drain system (sumps and floor drains) acts as a significant groundwater sink. Operation of the groundwater extraction system alters this flow pattern by producing an elliptical cone of depression around the extraction well that extends to the eastern property line of the Gastown Sportsmen's Club. Drawdown is substantial, and is produced by groundwater extraction rates that range from 0.19 to 1.79 gallons per minute (gpm). Hydrographs for the Site show that groundwater extraction affects water levels in all on-site wells that screen the recent alluvium deposit, indicating that the influence of the extraction system is larger areally than the cone of depression delineated by the groundwater contour maps. These data, therefore, suggest that the groundwater extraction system collects contaminated groundwater from throughout the Site, and when operating at peak efficiency, prevents this groundwater from migrating offsite. Installation of a secondary vault in October 2000 to better manage the club's basement sump discharge is expected to increase system efficiency while preventing future spill-over events of

contaminated groundwater to the ground surface.

The analytical results from the club's primary basement sump also confirm that the groundwater extraction system is operating effectively. While this water is still contaminated, the concentrations of individual contaminants have decreased by approximately one order of magnitude since operation of the system began. Furthermore, prior to system startup, fifteen VOCs, two phenolic compounds, thirteen PAH's, three pesticides, two inorganic compounds and cyanide were detected in the sump water at concentrations that exceeded the Department's Class GA groundwater standards or guidance values. The post-startup sump water, however, contained only eight VOCs, one phenolic compound, seven PAH's and one inorganic compound at concentrations that exceeded the groundwater standards or guidance values. This decrease in both contaminant concentrations and the number of contaminants exceeding groundwater standards or guidance values indicates that the groundwater extraction and treatment system has dramatically reduced the exposure potential to members of the Gastown Sportsmen's Club.

The second objective of the Site Investigation was to determine the extent to which NAPL has migrated under the Gastown Sportsmen's Club toward nearby properties on Carney Street. To accomplish this objective, thirteen (13) soil borings were completed during the Site Investigation, with the subsurface soil samples examined for the presence of NAPL. This information, combined with that obtained from historical borings completed at the Site, indicate that the NAPL plume associated with the Former Gastown MGP Site forms a general "L" shape; the short leg being located between the former manufactured gas plant and the coal bins with the long leg extending eastward under the NFTA and Gastown Sportsmen's Club properties. While this investigation did not fully delineate the downgradient extent of the plume, the presence of NAPL in small, isolated pockets in two borings along the eastern property line of the Gastown Sportsmen's Club suggests that the plume edge is located near these borings.

The last objective of the Site Investigation was to determine the extent to which contaminated groundwater has migrated from the Former Gastown MGP Site. To accomplish this objective, five groundwater monitoring wells were installed during the investigation to expand the existing monitoring well network. Twelve groundwater samples were collected during the Site Investigation and submitted to a lab for chemical analysis. These results indicate that groundwater from wells installed within the NAPL plume is significantly more contaminated than groundwater from wells installed outside the plume. Groundwater contamination also extends under the NFTA and Gastown Sportsmen's Club properties, being documented in two wells installed along the eastern boundary of the latter property. As discussed above, however, water

level data suggest that the groundwater extraction system, when operating at peak efficiency, prevents contaminated groundwater from migrating offsite.

7.2 Conclusion

The Site Investigation completed at the Former Gastown MGP Site revealed that NAPL extends under the NFTA and Gastown Sportsmen's Club properties. While this investigation did not fully delineate the downgradient extent of the plume, the presence of NAPL in small, isolated pockets in two borings along the eastern boundary of the club's property suggests that the plume edge is located near these borings. Groundwater samples collected from the wells installed in these borings is extensively contaminated. Water level data for the Site, however, suggest that the groundwater extraction system collects contaminated groundwater from throughout the Site, further suggesting that off-site migration of contaminated groundwater is not occurring.

8.0 **RECOMMENDATIONS**

A Remedial Investigation/Feasibility Study (RI/FS) is required at the Former Gastown MGP Site to fully delineate the nature and extent of contamination associated with the Site (RI) and to select a long term remedial action (FS). The field investigations completed to date, including the Site Investigation discussed in this report, should constitute a significant portion of the RI as these investigations have delineated the nature and extent of contamination under the NFTA and Gastown Sportsmen's Club properties. As a result, the primary focus of the RI should be on the Holler property, where the areal extent of the NAPL plume has not been delineated. The nature and extent of both subsurface soil and groundwater contamination associated with this property should also be evaluated. During the Site Investigation several issues were identified that also require further investigation. These issues, and the investigative activities required, are discussed in the following paragraphs.

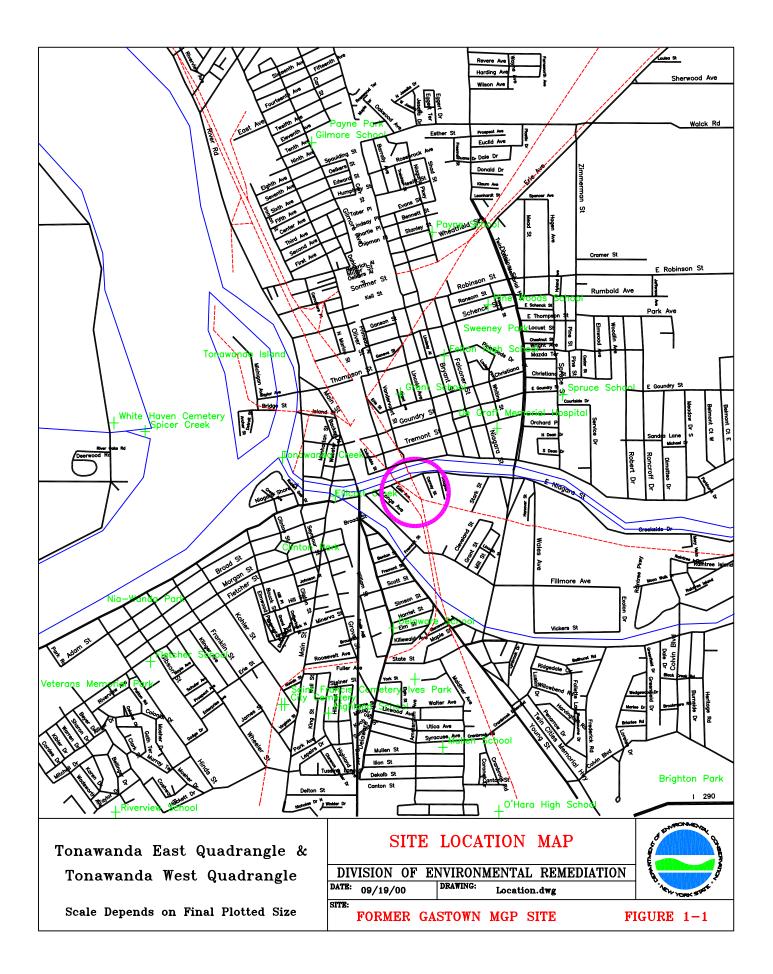
In an attempt to alleviate future spill-over events from the primary vault, and to increase system efficiency, a secondary vault and pump was installed at the Site in October 2000. The club's sump discharge, which originally discharged to the extraction well, was redirected to this vault and is pumped directly to the treatment system. To fully evaluate the effect of this modification on the efficiency of the groundwater extraction system, water level measurements in on-site wells will be required over time, with the data utilized to construct hydrographs and groundwater contour maps. To ensure that members of the Gastown Sportsmen's Club remain adequately protected, water samples from the club's basement sumps should also be collected over time.

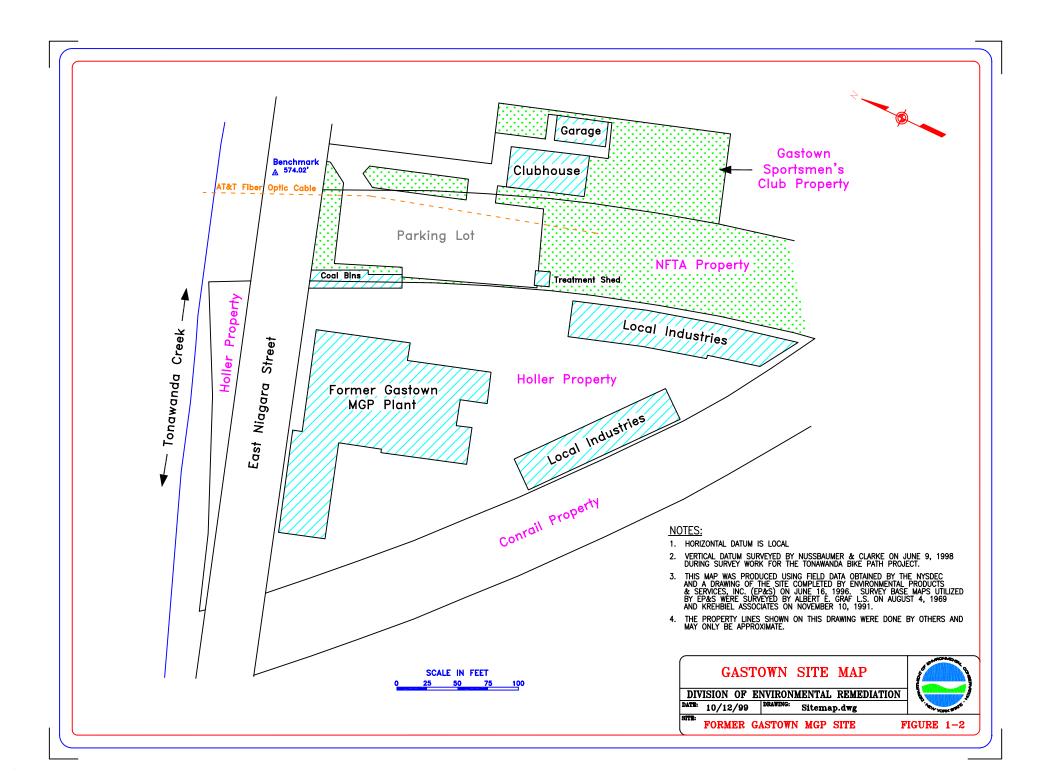
The Site Investigation determined that residual contamination remains along the replaced sump discharge line. To determine the areal extent of this contamination, additional shallow soil borings should be completed, especially around soil boring SB-29 where NAPL was encountered. Monitoring wells MW-2S and MW-3S should also be sampled periodically to evaluate trends in groundwater contaminant concentrations.

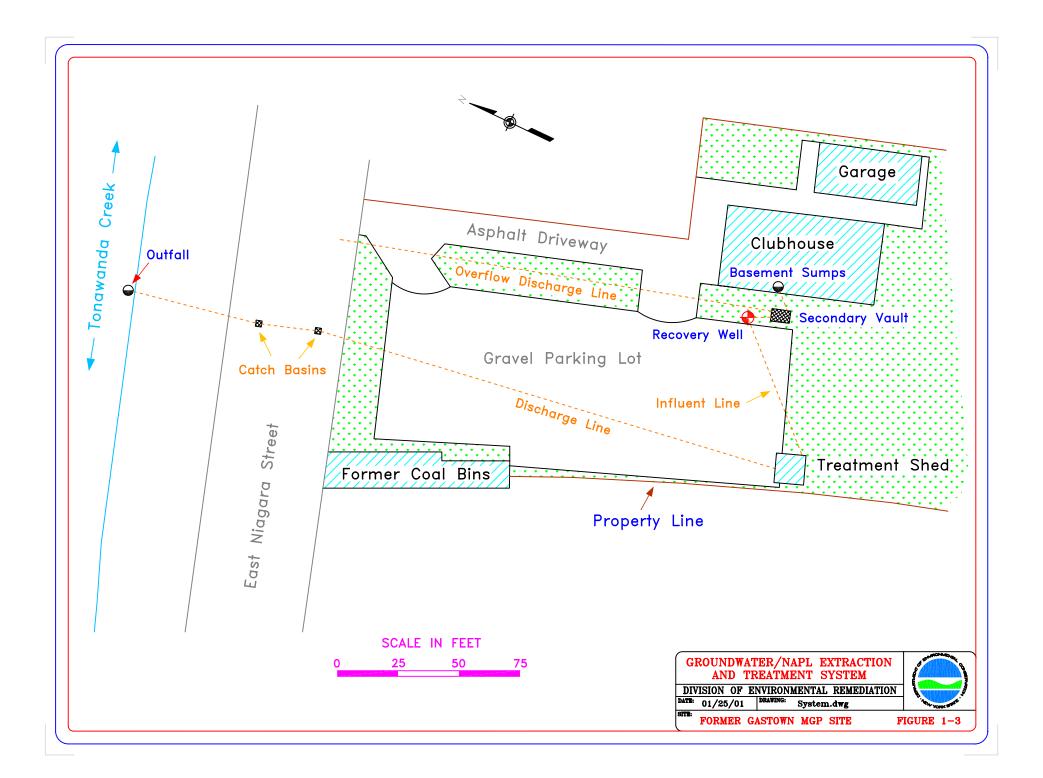
The Site Investigation also identified petroleum contamination in soil boring SB-39 that may be related to a former aboveground storage tank. Additional shallow soil borings should be completed in this area of the Site to determine the areal extent of contamination.

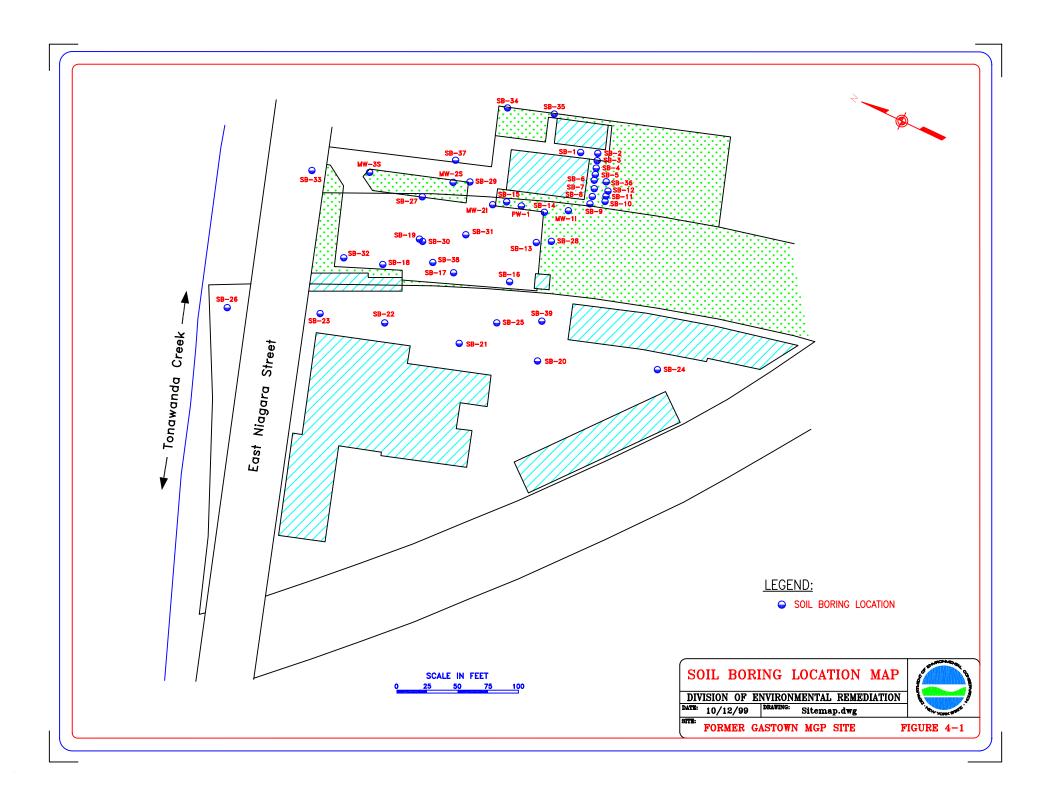
While the lower silty clay deposit has prevented the further downward migration of contaminated groundwater and NAPL, the thickness of this deposit under the Former Gastown MGP Site is unknown. This

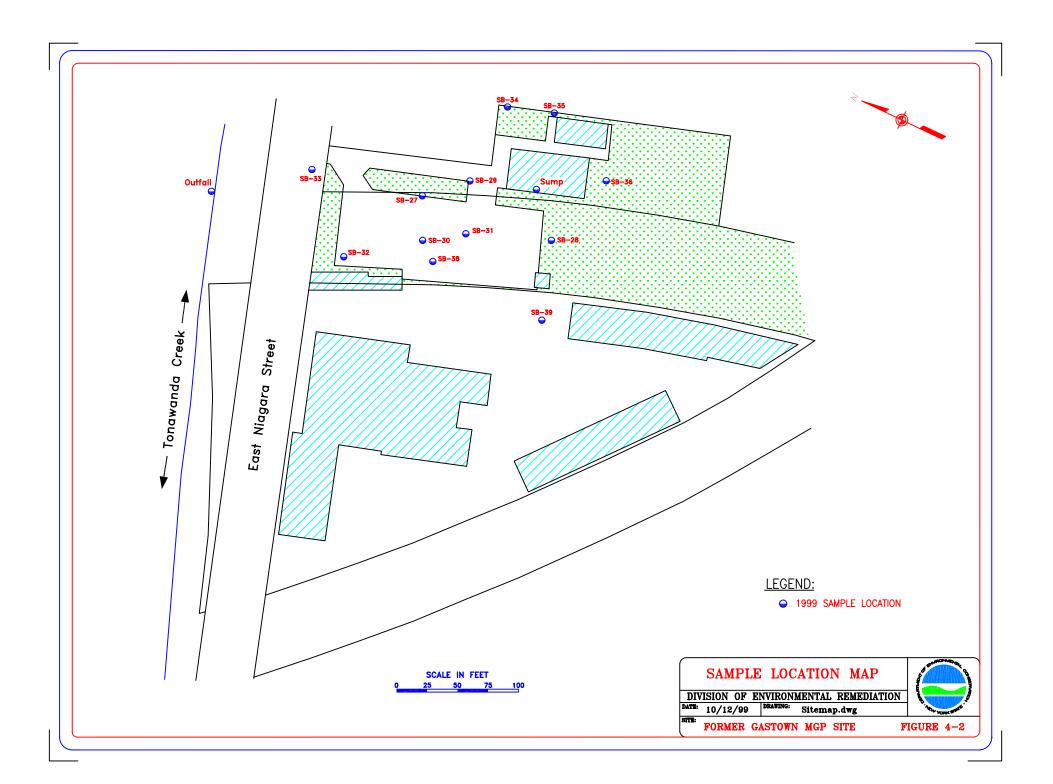
information is critical as the thickness of this deposit, along with its integrity, determines the effectiveness of the unit as a confining layer. If this deposit is thin or fractured, NAPL could migrate through it to deeper, more permeable deposits. During the RI, therefore, at least one soil boring should be completed to refusal to determine the thickness of the lower silty clay deposit, and to identify other stratigraphic units underlying the Site.

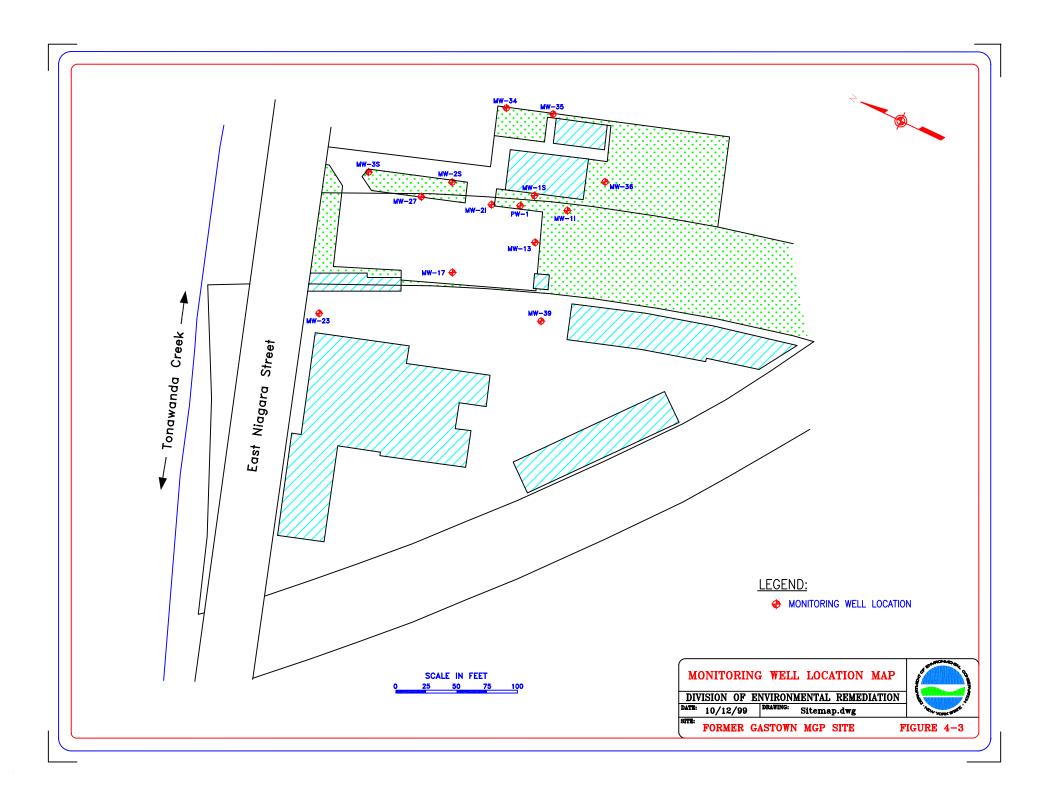

9.0 **REFERENCES**


- Bouwer, H. and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, v. 12, no. 3, p. 423-428.
- Brett, C.E., Tepper, D.H., Goodman, W.M., LoDuca, S.T., and Eckert, B.Y, 1995, Revised Stratigraphy and Correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York: U.S. Geological Survey Bulletin 2086, 66p.
- Buehler, E.J., and Tesmer, I.H., 1963, Geology of Erie County, New York: Buffalo Society of Natural Sciences Bulletin, v. 21, no. 3, 118p.
- Calkins, P.E., and Brett, C.E., 1978, Ancestral Niagara River Drainage: Stratigraphic and Paleontologic Setting: Geological Society of America Bulletin, v. 89, p. 1140-1154.
- Conestoga Rovers & Associates, 1997, RCRA Facility Investigation and Remedial Investigation Report, Spaulding Composites Company, Tonawanda, New York: Conestoga Rovers & Associates, Niagara Falls, New York.
- Hough, J., 1958, Geology of the Great Lakes: Illinois University Press, Urbana, Illinois, 313p.
- Johnson, R.H., 1964, Ground Water in the Niagara Falls Area, New York: State of New York Water Resources Commission Bulletin GW 53, 93p.
- La Sala, A.M., Jr., 1968, Ground-Water Resources of the Erie-Niagara Basin, New York: Water Resources Commission, Basin Planning Report ENB-3, New York State Conservation Department, Albany, New York, 114p.
- Malcolm Pirnie, 1987, C.R. Huntley Flyash Landfill Hydrogeologic Investigation: Malcolm Pirnie, Inc., Liverpool, New York.
- Malcolm Pirnie, 1991, Remedial Investigation Report for the Columbus McKinnon Site: Malcolm Pirnie, Inc., Buffalo, New York.
- Malcolm Pirnie, 1995, Landfill Closure Investigation, Town of Tonawanda Landfill, Tonawanda, New York: Malcolm Pirnie, Buffalo, New York.
- NYSDEC, 1992, Petroleum-Contaminated Soil Guidance Policy: New York State Department of Environmental Conservation, Division of Spills Management Spill Technology and Remediation Series (STARS) Memo #1, Albany, New York, 26.
- NYSDEC, 1995, Determination of Soil Cleanup Objectives and Cleanup Levels: New York State Department of Environmental Conservation, Division of Environmental Remediation Technical and Administrative Guidance Memorandum # HWR-95-4046, Albany, New York, 9p.
- NYSDEC, 1998, Ambient Water Quality Standards and Guidance values and Groundwater Effluent Limitations: New York State Department of Environmental Conservation, Division of Water Technical and Operational Series (1.1.1), Albany, New York, 130p.


Pyanowski, D., 1990, Memorandum to File, dated June 14, 1990: Dunlop Tire Corporation, Buffalo,


New York.


- Recra Environmental, 1990, Phase II Investigation, Roblin Steel Site, Site No. 915056: Recra Environmental, Inc., Amherst, New York.
- Rickard, L.V. and Fisher, D.W., 1970, Geologic Map of New York State, Niagara Sheet: New York State Museum and Science Service, Map and Chart Series No. 15.
- Snyder Engineering, 1987, Support Documentation for an Application to Construct and Operate Cell Number Three at the SKW Alloys, Inc. Witmer Road Solid Waste Management Facility: Snyder Engineering, Grand Island, New York.
- URS, 1992, Report of Field Investigation and Data Analysis, Inactive Disposal Sites, No's 915018A,B,C: URS Consultants, Inc., Buffalo, New York.
- Weston, 1998, Report on the Site Assessment and Risk Characterization Study, 3M Facility, Tonawanda, New York: Roy F. Weston, Inc., West Chester, Pennsylvania.
- Woodward-Clyde, 1993, Phase II Investigation Report, DuPont Yerkes Plant, Site No. 915019: Woodward-Clyde Consultants, North Tonawanda, New York.
- Yager, R.M., and Kappel, W.M., 1987, Characterization of Fractures in the Lockport Dolomite, Niagara County, New York, in Khanbilvardi, R.M., and Fillos, J., (eds.), Pollution, Risk Assessment and Remediation in Groundwater Systems: Washington, D.C., Scientific Publications Co., p. 149-195.



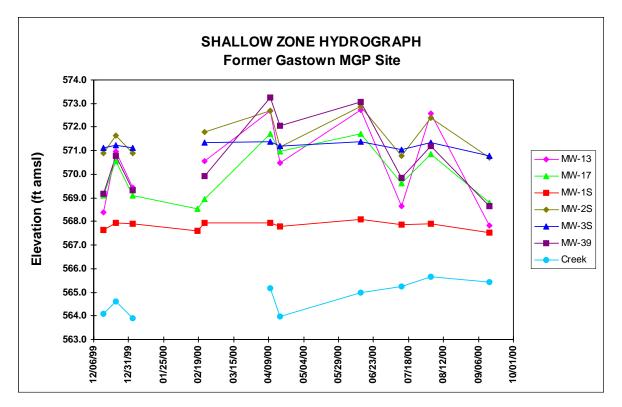


Figure 5-1. Shallow zone hydrograph for data obtained during the Site Investigation.

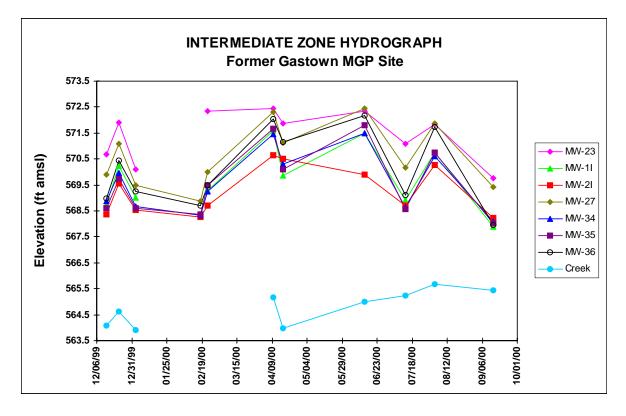


Figure 5-2. Intermediate zone hydrograph for data obtained during the Site investigation.

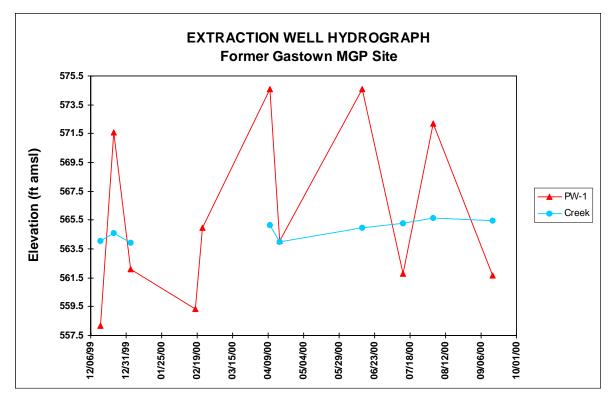


Figure 5-3. Extraction well hydrograph for data obtained during the Site Investigation. High water levels are caused by discharge of the club's sumps into the extraction well.

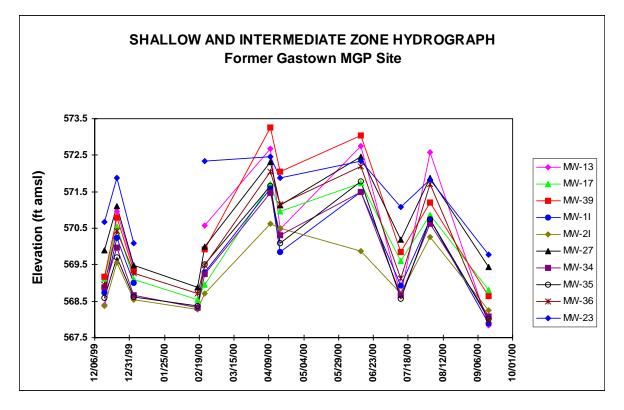


Figure 5-4. Shallow and intermediate zone hydrograph for data obtained during the Site Investigation. Data from wells MW-1S, MW-2S and MW-3S have been omitted (see text for explanation).

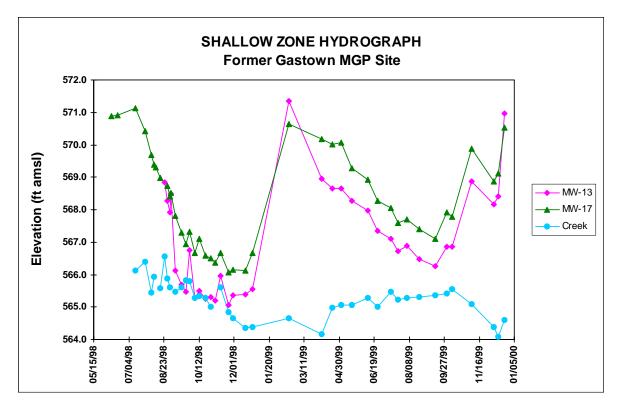


Figure 5-5. Shallow zone hydrograph for data obtained prior to the Site Investigation.

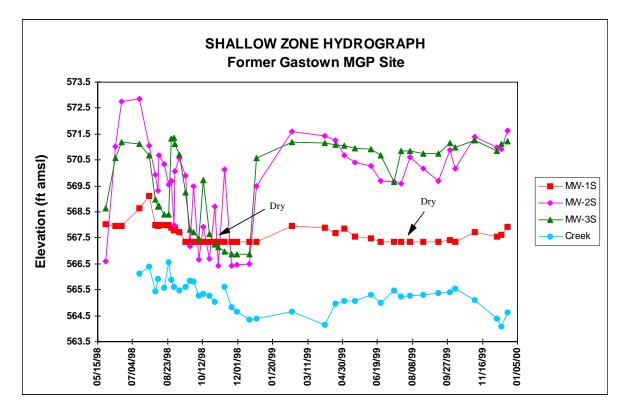


Figure 5-6. Historical shallow zone hydrograph for wells not hydraulically connected to the recent alluvium deposit. See text for further explanation.

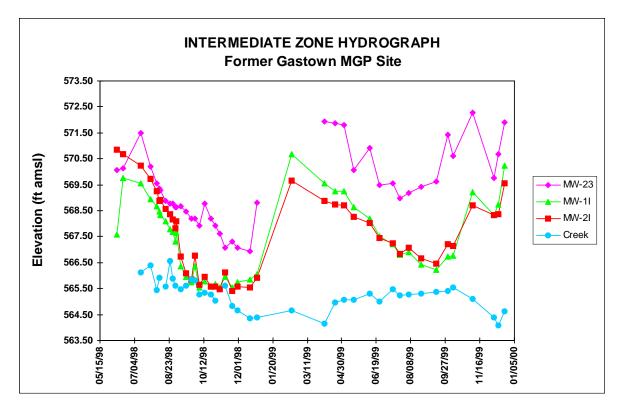


Figure 5-7. Intermediate zone hydrograph for data obtained prior to the Site Investigation.

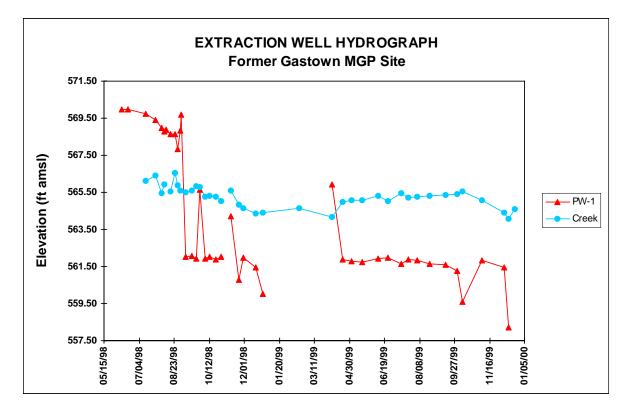
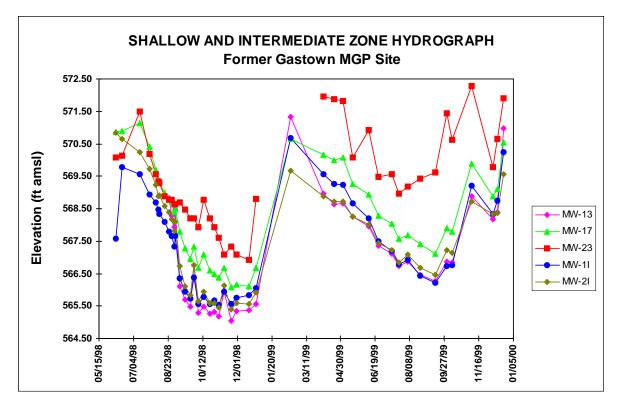
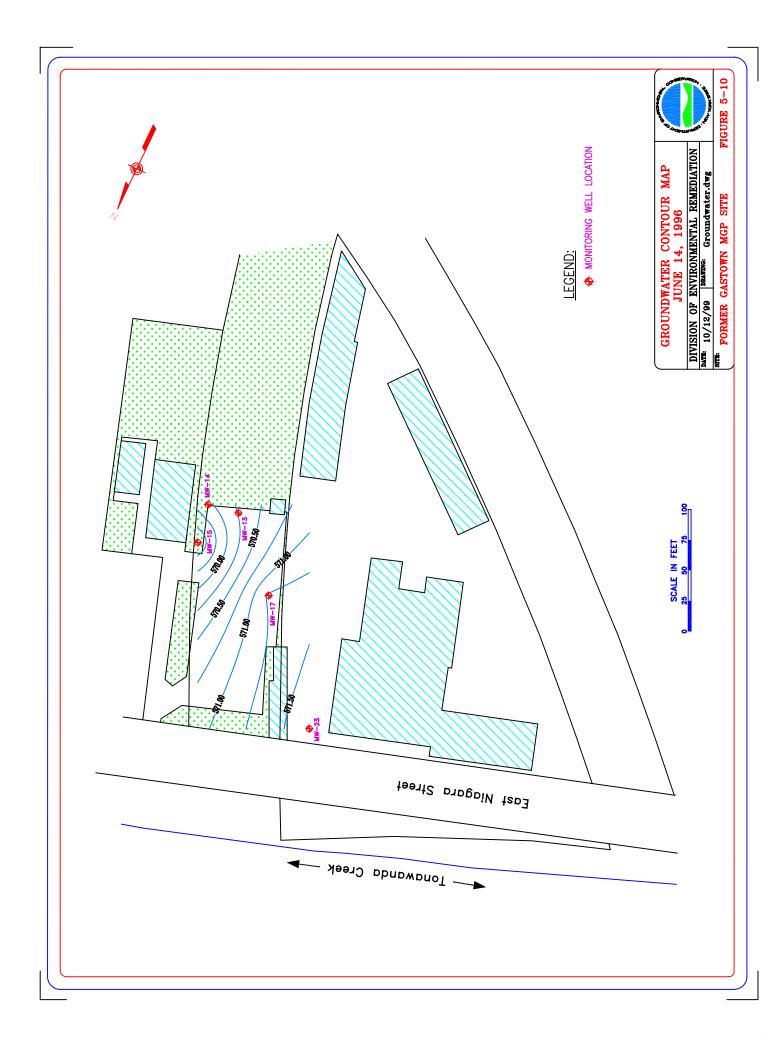
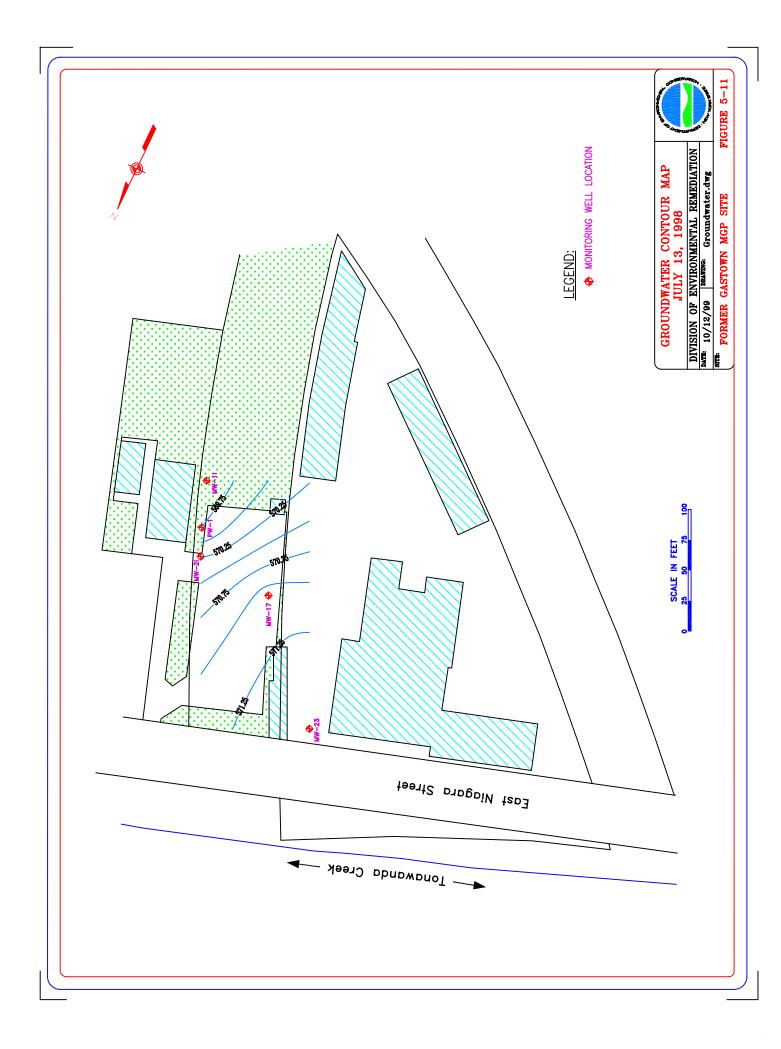
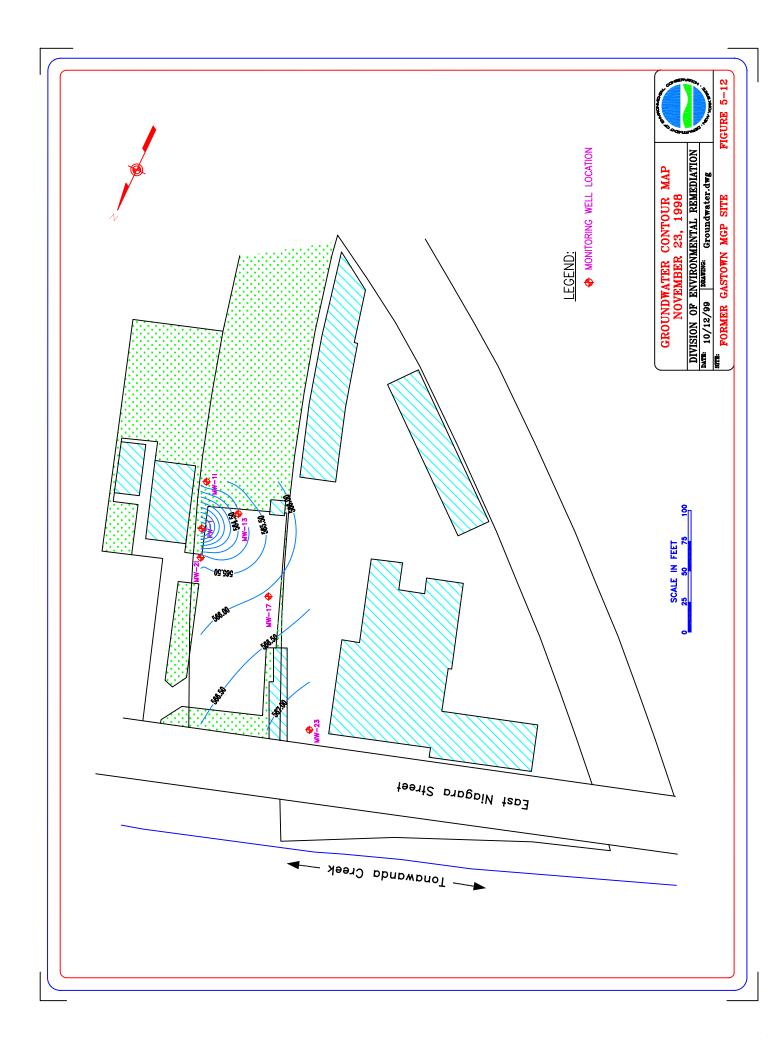
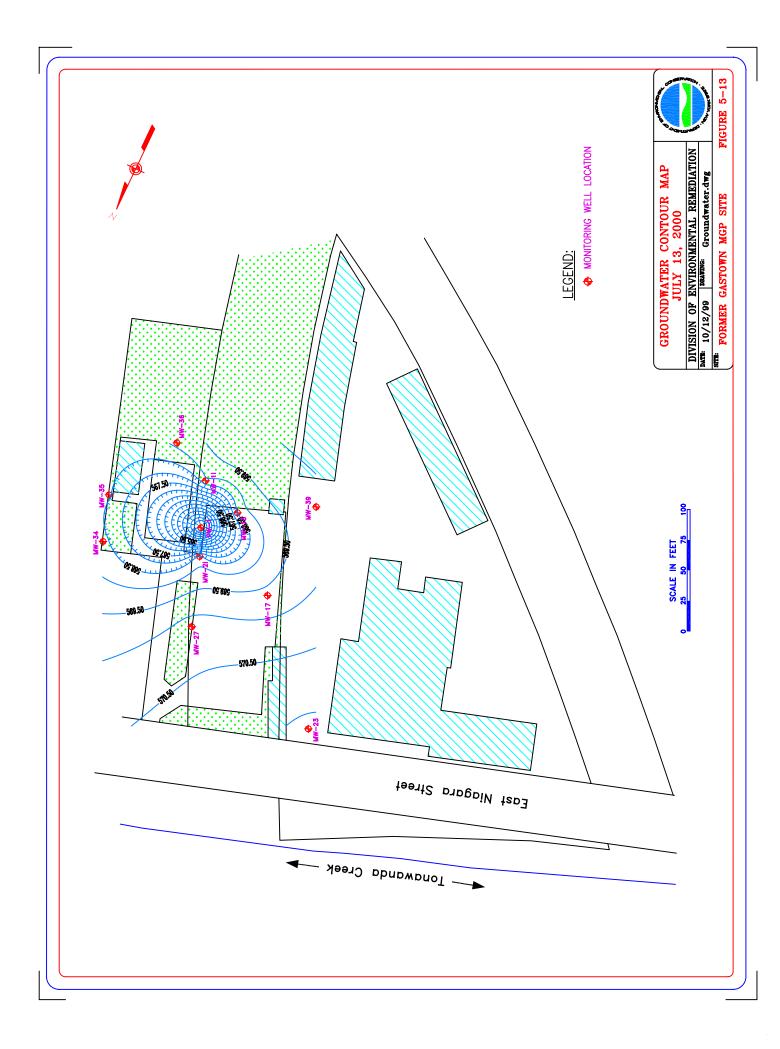
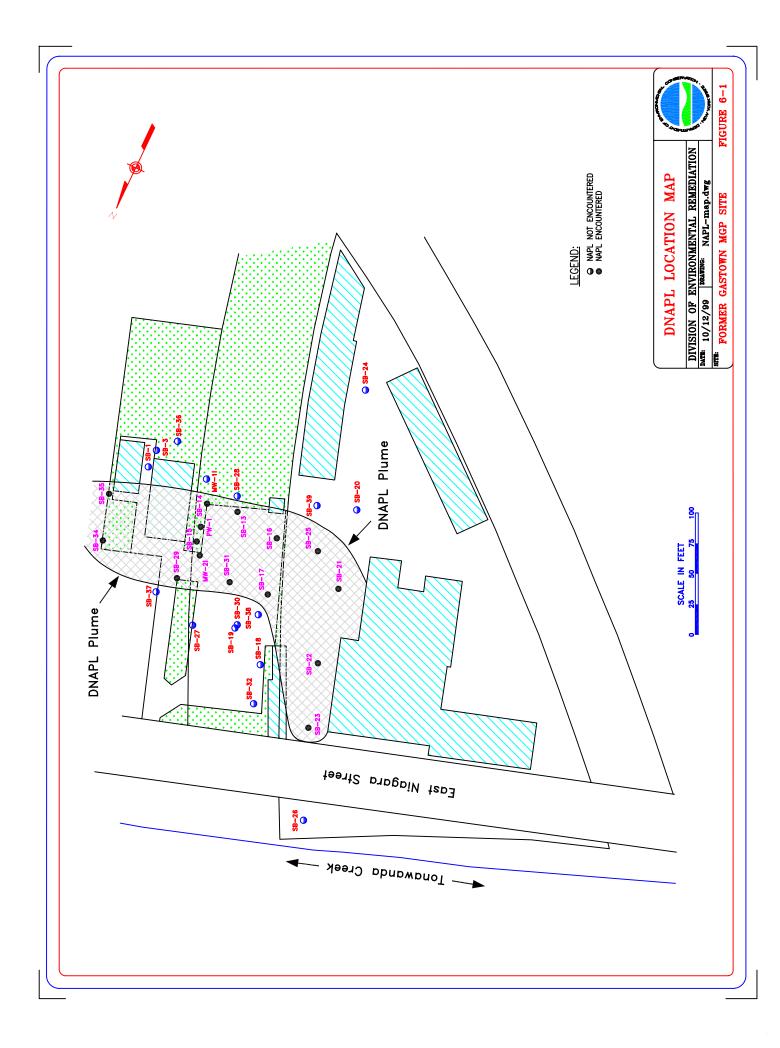


Figure 5-8. Extraction well hydrograph for data obtained prior to the Site Investigation. High water levels are caused by discharge of the club's sumps into the extraction well.


Figure 5-9. Shallow and intermediate zone hydrograph for data obtained prior to the Site Investigation.

Stratigr		Table 5-1.e of the Western New York ATesmer (1963) and Brett et	
Epoch	Group	Formation	Member
		Moscow Shale	Windom Shale Kashong Shale
	Hamilton	Ludlowville Formation	Tichenor Limestone Wanakah Shale Ledyard Shale Centerfield Limestone
Middle Devonian		Skaneateles Formation	Levanna Shale Stafford Limestone
		Marcellus Shale	Oatka Creek Shale
		Onondaga Limestone	Seneca Limestone Morehouse Limestone Nedrow Limestone Clarence Limestone Edgecliff Limestone
		Akron Dolostone	
Late Silurian	Salina	Bertie Dolostone	Williamsville Dolostone Scajaquada Dolostone Falkirk Dolostone Oatka Dolostone
		Camillus Shale Syracuse Formation Vernon Shale	
		Guelph Dolostone Eramosa Dolostone	
	Lockport	Goat Island Dolostone	Vinemount Dolostone Ancaster Dolostone Niagara Falls Dolostone
		Gasport Limestone	Pekin Dolostone Gothic Hill Limestone
Middle Silurian		Decew Dolostone	
		Rochester Shale	Burleigh Hill Shale Lewiston Shale
	Clinton	Irondequoit Limestone Rockway Dolostone Williamson Shale Merritton Limestone	
		Reynales Limestone	Hickory Corners Limestone
		Neahga Shale	
Early Silurian	Medina	Kodak Sandstone Cambria Shale Thorold Sandstone Grimsby Formation Devils Hole Shale Power Glen Shale Whirlpool Sandstone	
Late Ordivician	Richmond	Queenston Shale Oswego Sandstone	

	Grou	oundwater at t	Elevation he Forme All water	T ns in Shalle er Gastown levels and	Table 5-2. low and Ir n Manufa d elevatior	Table 5-2.ndwater Elevations in Shallow and Intermediate Zone Wells Installedat the Former Gastown Manufactured Gas Plant Site.(All water levels and elevations measured in feet)	e Zone W s Plant Si d in feet)	ells Install te.	led		
lleM	Top of	06/14/96	96/	05/27/98	86//	86/60/90	86/	86/81/90	86/8	07/13/98	86,
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-13 **	576.29	6.01	570.28								
MW-14 **	575.55	5.59	569.96								
MW-17	576.86	5.58	571.28			5.98	570.88	5.96	570.90	5.73	571.13
MW-1S	576.84			8.81	568.03	8.87	567.97	8.88	567.96	8.21	568.63
MW-2S	574.77			8.16 *	566.61	3.74	571.03	2.01	572.76	1.91	572.86
MW-3S	574.55			5.90 *	568.65	3.98	570.57	3.36	571.19	3.44	571.11
				Interm	Intermediate Zone Wells	Wells					
MW-15 **	575.38	6.11	569.27								
MW-23	576.61	4.96	571.65			6.53	570.08	6.49	570.12	5.13	571.48
MW-1I	575.43					7.85	567.58	5.66	569.77	5.87	569.56
MW-2I	575.08					4.25	570.83	4.42	570.66	4.84	570.24
PW-1	577.47					7.51	569.96	7.47	570.00	7.72	569.75
				Ton	Tonawanda Creek	eek					
East Guard Rail	567.67									1.54	566.13
West Guard Rail	567.71									1.58	566.13
* Water level 1 screen prior 1998.	Water level measured in a perforated PVC pipe and/or well screen prior to replacement by a monitoring well June 2-5, 1998.	perforated P it by a monite	rforated PVC pipe and/or wel y a monitoring well June 2-5,	id/or well une 2-5,	** tho	Well believed to have be the Department's Spill U the sump discharge line.	o have beer t's Spill Un arge line.	ı destroyed o it during Mi	during exca arch and A _l	Well believed to have been destroyed during excavation activities by the Department's Spill Unit during March and April, 1998 to replace the sump discharge line.	ies by replace

	Grou	oundwater at 1 (Elevation he Forme All water	Table 5-2 (Continued). Indwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	Table 5-2 (Continued). n Shallow and Interme sastown Manufactured els and elevations mea	nued). (termediat ctured Gas is measure	e Zone W s Plant Sit d in feet)	ells Install e.	ed		
Ilean	Top of	07/27/98	//98	08/02/98	86/	86/60/80	/98	08/11/98 **	8 **	08/18/98 ++	++ 8
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-17	576.86	6.45	570.41	7.17	569.69	7.46	569.40	7.55	569.31	7.87	568.99
MW-1S	576.84	7.72 *	569.12	8.86 +	567.98	8.87	567.97	8.84	568.00	8.86	567.98
MW-2S	574.77	3.73	571.04	4.85	569.92	5.44	569.33	4.11	570.66	4.42	570.35
MW-3S	574.55	3.88	570.67	5.56	568.99	5.86	568.69	5.80	568.75	6.14	568.41
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	6.42	570.19	7.06	569.55	7.26	569.35	7.33	569.28	7.72	568.89
MW-1I	575.43	6.50	568.93	6.75	568.68	6.97	568.46	7.09	568.34	7.35	568.08
MW-2I	575.08	5.35	569.73	5.84	569.24	6.19	568.89	6.17	568.91	6.51	568.57
PW-1	577.47	8.08	569.39	8.48	568.99	8.68	568.79	8.61	568.86	8.84	568.63
				Ton	Tonawanda Creek	eek					
East Guard Rail	567.67	1.30	566.37	2.22	565.45	1.45	566.22	NM	NA	2.09	565.58
West Guard Rail	567.71	1.31	566.40	2.26	565.45	1.79	565.92	NM	NA	2.14	565.57
* Water from sur is likely leaking + No water obser NA Not Applicable.	Water from sump disposal pit is flowing tov is likely leaking into the well . NAPL obser No water observed flowing toward MW-IS. Not Applicable.	pit is flowin ell . NAPL o toward MW	it is flowing toward MW-1S and . NAPL observed on probe. ward MW-1S.	W-1S and probe.	** It Au ++ It NM No	It rained late morning on August 10, 1998 and early morning on August 11, 1998. It rained during the night and morning on August 18, 1998. Not Measured.	orning on . 8. g the night	August 10, 1 and morning	998 and eau g on Augus	rly morning t 18, 1998.	uo

	Grou		• Elevation the Forme (All water	Table 5 ns in Shalk er Gastowr levels and	Table 5-2 (Continued) n Shallow and Interm sastown Manufacture els and elevations me	Table 5-2 (Continued). ndwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	e Zone W s Plant Si d in feet)	ells Install te.	led		
Well	Top of	08/24/98	/98	08/28/98	86/	09/01/98	/98	86/20/60	2/98	86/60/60	86/0
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	/ells					
MW-13 **	576.09	7.26	568.83	7.82	568.27	8.16	567.93	7.61	568.48	9.98	566.11
MW-17	576.86	NM	NA	8.13	568.73	8.46	568.40	8.35	568.51	9.06	567.80
MW-1S	576.84	8.85	567.99	8.95	567.89	9.05	567.79	8.96	567.88	9.11	567.73
MW-2S	574.77	5.21	569.56	5.09	569.68	6.78	567.99	4.72	570.05	4.21	570.56
MW-3S	574.55	6.15	568.40	3.21 *	571.34	3.20 *	571.35	3.43	571.12	3.83	570.72
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	7.84	568.77	7.85	568.76	7.97	568.64	7.97	568.64	7.93	568.68
MW-11	575.43	7.65	567.78	7.76	567.67	8.11	567.32	7 <i>.</i> 77	567.66	9.07	566.36
MW-2I	575.08	6.70	568.38	6.91	568.17	7.27	567.81	6.98	568.10	8.35	566.73
PW-1	577.47	8.83 +	568.64	6.75 ++	567.83	5.76	568.82	4.89 ●	569.69	12.55	562.03
				Ton	Tonawanda Creek	eek					
East Guard Rail	567.67	1.11	566.56	1.77	565.90	2.06	565.61	MN	NA	2.19	565.48
West Guard Rail	567.71	1.15	566.56	1.82	565.89	2.11	565.60	MN	NA	2.23	565.48
NA Not Applicable. NM Not Measured. + Submersible pu being discharge * Water level affe pump through 1	Not Applicable. Not Measured. Submersible pump being utilized to pump out sump wat being discharged to the well. Water level affected by discharge from the submersible pump through the existing sump discharge pipe.	tilized to pump out su ll. charge from the subn sump discharge pipe.	ized to pump out sump water arge from the submersible mp discharge pipe.	ıp water sible	** W ** W • ++ P • Su aff	Well found during excavation activities when installing the ground- water extraction and treatment system. PVC riser cut shorter during installation of the groundwater extraction and treatment system. New elevation is 574.58 feet amsl. Submersible pump removed from well to install pumps. Water levels affected by sump discharge.	ring excava on and treat shorter dur treatment imp remov op discharg	tion activitie tment systen ing installati system. New ed from well e.	es when inst n. ion of the g v elevation i l to install p	alling the gr roundwater s 574.58 feet umps. Watt	ound- amsl. er levels

	Grou	oundwater at 1 (Elevatior the Forme All water	Table 5-2 (Continued). ter Elevations in Shallow and Intermediate Zone Well at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	Table 5-2 (Continued). n Shallow and Interme sastown Manufactured els and elevations mea	nued). (termediat ctured Ga is measure	e Zone W s Plant Si ed in feet)	Table 5-2 (Continued). indwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	ed		
Well	Top of	09/11/98	//98	09/24/98	/98	09/29/98 *	* 86	10/06/98	/98	10/13/98	/98
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	ells					
MW-13	576.09	10.40	565.69	10.61	565.48	9.33	566.76	10.80	565.29	10.60	565.49
MW-17	576.86	9.58	567.28	9.92	566.94	9.53	567.33	10.19	566.67	9.77	567.09
MW-1S	576.84	Dry	NA	Dry	NA	Dry	NA	Dry	NA	Dry	NA
MW-2S	574.77	4.87	569.90	7.61	567.16	5.28	569.49	8.10	566.67	6.86	567.91
MW-3S	574.55	5.31	569.24	6.72	567.83	6.83	567.72	7.08	567.47	4.82	569.73
				Interm	Intermediate Zone Wells	Wells					
MW-23	576.61	8.14	568.47	8.42	568.19	8.41	568.20	8.69	567.92	7.84	568.77
MW-11	575.43	9.48	565.95	9.70	565.73	9.06	566.37	9.88	565.55	9.66	565.77
MW-2I	575.08	8.98	566.10	9.25	565.83	8.32	566.76	9.44	565.64	9.13	565.95
PW-1	574.58	12.51	562.07	12.65	561.93	8.93	565.65	12.66	561.92	12.57	562.01
				Ton	Tonawanda Creek	eek					
East Guard Rail	567.67	2.07	565.60	1.85	565.82	1.86	565.81	2.39	565.28	2.38	565.29
West Guard Rail	567.71	2.11	565.60	1.88	565.83	1.91	565.80	2.43	565.28	2.38	565.33
NA Not Applicable. NM Not Measured.	ble. ed.				* Sy lev	System was shut dov level measurements.	ut down for nents.	approximat	ely 24 hour	System was shut down for approximately 24 hours at the time of water level measurements.	of water

	Grou		• Elevatior the Forme (All water	Table 5 is in Shalle r Gastowr levels and	Table 5-2 (Continued) n Shallow and Interme sastown Manufacture els and elevations mea	Table 5-2 (Continued). ndwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	e Zone W s Plant Si d in feet)	ells Install te.	led		
Well	Top of	10/22/98	/98	10/29/98	/98	11/04/98 *	98 *	11/12/98	86/3	11/23/98	/98
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-13	576.09	10.84	565.25	10.78	565.31	10.90	565.19	10.14	565.95	11.04	565.05
MW-17	576.86	10.27	566.59	10.37	566.49	10.48	566.38	10.19	566.67	10.78	566.08
MW-1S	576.84	Dry	NA	Dry	NA	Dry	NA	Dry	NA	Dry	NA
MW-2S	574.77	8.08	566.69	6.07	568.70	Dry	NA	4.64	570.13	Dry	NA
MW-3S	574.55	6.89	567.66	7.32	567.23	7.42	567.13	7.57	566.98	7.68	566.87
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	8.41	568.20	8.68	567.93	9.00	567.61	9.53	567.08	9.29	567.32
MW-11	575.43	9.87	565.56	9.77	565.66	68.6	565.54	9.48	565.95	9.88	565.55
MW-2I	575.08	9.49	565.59	9.49	565.59	9.62	565.46	8.95	566.13	9.68	565.40
PW-1	574.58	12.71	561.87	12.57	562.01	NM	NA	10.36	564.22	13.8 **	560.78
				Ton	Tonawanda Creek	eek					
East Guard Rail	567.67	2.39	565.28	2.65	565.02	NM	NA	2.08	565.59	3.37 +	565.00
West Guard Rail	567.71	2.43	565.28	NM	NA	MN	NA	2.10	565.61	3.38 +	564.84
NA Not Applicable. NM Not Measured. ** Bubbler was foil fixing the bubble fixing the bubble feet below TOR feet below TOR	Not Applicable. Not Measured. Bubbler was found to be inoperational. Water level prior to fixing the bubbler was 16.66 feet below TOR and rose to 13.8 feet below TOR within 15 minutes of fixing the bubbler. Left site before water returned to normal pumping levels.	toperational. 66 feet below minutes of fiy to normal pu	perational. Water level prior to feet below TOR and rose to 13.8 nutes of fixing the bubbler. Lef normal pumping levels.	el prior to ose to 13.8 obler. Left Is.	* Wate durin + Tona levels Club west	Water levels measured from November 2, 1998 to November 5, 1998 during well development. Tonawanda Creek water levels have receded past the guard rails. Water levels measured from the east and west ends of the Gastown Sportsmen's Club dock. Estimated elevations are 568.37 and 568.22 for the east and west ends of the dock, respectively.	sured from opment. k water lev rom the eas nated elevat lock, respec	November 2 els have recc at and west e ions are 568 tively.	2, 1998 to N eded past th ands of the (3.37 and 568	ovember 5, J te guard raik Sastown Spo 22 for the e	1998 s. Water rtsmen's ast and

	Grou	oundwater at tl	Elevatior he Forme All water	Table 5 is in Shall or Gastown levels and	Table 5-2 (Continued). n Shallow and Interme sastown Manufactured els and elevations mea	Table 5-2 (Continued). Indwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	e Zone W s Plant Si d in feet)	ells Install te.	ed		
Well	Top of	11/30/98	/98	12/18/98	86/	12/28/98	86/:	02/17/99 *	* 66,	04/05/99	66/9
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	/ells					
MW-13	576.09	10.74	565.35	10.71	565.38	10.53	565.56	4.75	571.34	7.13	568.96
MW-17	576.86	10.71	566.15	10.75	566.11	10.19	566.67	6.22	570.64	6.69	570.17
MW-1S	576.84	Dry	NA	Dry	NA	Dry	NA	8.90	567.94	8.94	567.90
MW-2S	574.77	8.31	566.46	8.29	566.48	5.27	569.50	3.18	571.59	3.34	571.43
MW-3S	574.55	7.68	566.87	7.68	566.87	3.96	570.59	3.36	571.19	3.39	571.16
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	9.53	567.08	9.69	566.92	7.82	568.79	NM	NA	4.66	571.95
MW-1I	575.43	9.68	565.75	9.59	565.84	9.38	566.05	4.74	570.69	5.87	569.56
MW-2I	575.08	9.50	565.58	9.53	565.55	9.17	565.91	5.42	569.66	6.21	568.87
PW-1	574.58	12.61	561.97	13.11	561.47	14.56	560.02	NM **	NA	8.65 **	565.93
				Toni	Tonawanda Creek	eek					
East End Dock	568.37	3.58	564.79	3.91	564.46	3.86	564.51	3.84	564.53	4.34	564.03
West End Dock	568.22	3.56	564.66	3.87	564.35	3.83	564.39	3.56	564.66	4.07	564.15
NA Not Applicable. NM Not Measured. ** Water level arti Gastown Sports	Not Applicable. Not Measured. Water level artificially elevat Gastown Sportsmen's Club.		ed by sump discharge from the	from the	* Sy lev	System was shut down for approximately 3 hours at the time of water level measurements to replace the activated carbon.	ut down foi nents to rep	: approxima lace the acti	tely 3 hours ivated carbo	at the time on.	of water

	Grou	oundwater at 1 (Elevatior he Forme All water	Table 5-2 (Continued). Indwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	Table 5-2 (Continued). n Shallow and Interme Sastown Manufactured els and elevations mea	nued). termediat ctured Ga is measure	e Zone W s Plant Si ed in feet)	ells Install te.	ed		
Well	Top of	04/20/99	66/	05/03/99	66/	66/81/20	66/8	06/10/90	66/	06/54/90	66/
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-13	576.09	7.45	568.64	7.44	568.65	7.83	568.26	8.13	567.96	8.74	567.35
MW-17	576.86	6.85	570.01	6.78	570.08	7.59	569.27	7.93	568.93	8.59	568.27
MW-1S	576.84	9.15	567.69	8.98	567.86	9.30	567.54	9.36	567.48	Dry	NA
MW-2S	574.77	3.53	571.24	4.09	570.68	4.38	570.39	4.49	570.28	5.09	569.68
MW-3S	574.55	3.46	571.09	3.51	571.04	3.61	570.94	3.65	570.90	3.89	570.66
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	4.74	571.87	4.80	571.81	6.54	570.07	5.70	570.91	7.13	569.48
MW-1I	575.43	6.17	569.26	6.19	569.24	6.78	568.65	7.22	568.21	7.93	567.50
MW-2I	575.08	6.35	568.73	6.37	568.71	6.82	568.26	7.06	568.02	7.64	567.44
PW-1	574.58	12.72	561.86	12.81	561.77	12.83	561.75	12.66	561.92	12.62	561.96
				Ton	Tonawanda Creek	eek					
East End Dock	568.37	3.53	564.84	3.43	564.94	3.44	564.93	3.22	565.15	3.37	565.00
West End Dock	568.22	3.25	564.97	3.15	565.07	3.16	565.06	2.93	565.29	3.21	565.01
NA Not Applicable. NM Not Measured.	ole. d.										

	Grou	oundwater at 1	Elevation The Forme All water	Table 5-2 (Continued).Indwater Elevations in Shallow and Intermediate Zone Wells Installedat the Former Gastown Manufactured Gas Plant Site.(All water levels and elevations measured in feet)	Table 5-2 (Continued). n Shallow and Interme sastown Manufactured cels and elevations mea	nued). itermediat ctured Ga is measure	e Zone W s Plant Sit d in feet)	ells Install te.	eq		
Well	Top of	07/13/99	66/8	01/23/99	66/	8/5/99 *	* 6	8/23/99	66,	9/14/99	66,
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-13	576.09	8.99	567.10	9.36	566.73	9.21	566.88	9.62	566.47	9.82	566.27
MW-17	576.86	8.81	568.05	9.28	567.58	9.17	567.69	9.45	567.41	9.75	567.11
MW-1S	576.84	Dry	NA	Dry	NA	Dry	NA	Dry	NA	Dry	NA
MW-2S	574.77	5.13	569.64	5.18	569.59	4.17	570.60	4.59	570.18	5.07	569.70
MW-3S	574.55	4.88	569.67	3.69	570.86	3.69	570.86	3.79	570.76	3.82	570.73
				Interm	Intermediate Zone Wells	Wells					
MW-23	576.61	7.04	569.57	7.65	568.96	7.43	569.18	7.19	569.42	6.99	569.62
MW-1I	575.43	8.23	567.20	8.64	566.79	8.52	566.91	9.01	566.42	9.21	566.22
MW-2I	575.08	7.85	567.23	8.25	566.83	8.00	567.08	8.41	566.67	8.63	566.45
PW-1	574.58	12.96	561.62	12.69	561.89	12.73	561.85	12.96	561.62	13.00	561.58
				Ton	Tonawanda Creek	eek					
East End Dock	568.37	2.92	565.45	3.14	565.23	3.07	565.30	3.09	565.28	3.00	565.37
West End Dock	568.22	2.76	565.46	2.99	565.23	2.94	565.28	2.92	565.30	2.86	565.36
NA Not Applicable. NM Not Measured.	ole. d.				* TP	Thunderstorms on July 31 and August 3, 1999 dropped 1 inch of rain. The July 31 storm knocked out power to the treatment shed.	s on July 31 orm knocke	and August d out power	t 3, 1999 dr to the treat	opped 1 inch tment shed.	ı of rain.

	Gr	Table 5-2 (Continued). Groundwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	· Elevation the Forme All water	Table 5-2 (Continued).ter Elevations in Shallow and Intermediate Zone Wellat the Former Gastown Manufactured Gas Plant Site.(All water levels and elevations measured in feet)	Table 5-2 (Continued) n Shallow and Interm Bastown Manufacture els and elevations me	nued). ttermediat ctured Ga is measure	e Zone W s Plant Si ed in feet)	'ells Install te.	led		
II	Top of	10/1/99	66/	10/8/99	66,	11/5/99	66/	12/7/99	66/	12/13/99	66/8
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	'ells					
MW-13	576.09	9.23	566.86	9.24	566.85	7.22	568.87	7.92	568.17	7.69	568.40
MW-17	576.86	8.95	567.91	9.07	567.79	6.97	569.89	7.98	568.88	7.75	569.11
MW-1S	576.84	9.43	567.41	Dry	NA	9.12	567.72	9.29	567.55	9.21	567.63
MW-2S	574.77	3.89	570.88	4.59	570.18	3.38	571.39	3.80	570.97	3.87	570.90
MW-3S	574.55	3.39	571.16	3.55	571.00	3.31	571.24	3.69	570.86	3.43	571.12
MW-39	576.85									7.69	569.16
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	5.18	571.43	5.99	570.62	4.34	572.27	6.84	569.77	5.95	570.66
MW-11	575.43	8.70	566.73	8.66	566.77	6.22	569.21	7.09	568.34	6.69	568.74
MW-2I	575.08	7.86	567.22	7.95	567.13	6.36	568.72	6.74	568.34	6.72	568.36
PW-1	574.58	13.30 +	561.28	15.00 +	559.58	12.77	561.81	13.11	561.47	16.38	558.20
MW-27	575.17									5.27	569.90
MW-34	574.56									5.69	568.87
MW-35	574.31									5.71	568.60
MW-36	574.13									5.17	568.96
				Ton	Tonawanda Creek	eek					
East End Dock	568.37	2.95	565.42	2.81	565.56	3.28	565.09	3.97	564.40	4.30	564.07
West End Dock	568.22	2.80	565.42	2.67	565.55	3.13	565.09	3.83	564.39	4.15	564.07
NA Not Applicable. NM Not Measured.	ble. ed.				+ NA	NAPL observed on end of probe.	d on end of	probe.			

	Grou	oundwater at t	: Elevation the Forme (All water	Table 5-2 (Continued). ndwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	Table 5-2 (Continued) n Shallow and Interm Sastown Manufacture els and elevations me	nued). termediat ctured Ga s measure	e Zone W s Plant Si ed in feet)	ells Install te.	led		
Well	Top of	12/22/99 *	99 *	1/3/00	00	2/18/00	00/	2/23/00	/00	4/10/00	00
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	ells					
MW-13	576.09	5.12	570.97	6.66	569.43	$^{++}$ NN	NA	5.52	570.57	3.41	572.68
MW-17	576.86	6.32	570.54	7.77	569.09	8.32	568.54	7.92	568.94	5.15	571.71
MW-1S	576.84	8.91	567.93	8.92	567.92	9.25	567.59	8.90	567.94	8.91	567.93
MW-2S	574.77	3.14	571.63	3.88	570.89	NM	NA	2.99	571.78	2.09	572.68
MW-3S	574.55	3.33	571.22	3.43	571.12	NM	NA	3.22	571.33	3.16	571.39
MW-39	576.85	6.06	570.79	7.51	569.34	$^{++}$ NN	NA	6.94	569.91	3.60	573.25
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	4.72	571.89	6.51	570.10	NM ++	NA	4.28	572.33	4.16	572.45
MW-11	575.43	5.20	570.23	6.42	569.01	$^{++}$ NN	NA	6.15	569.28	3.84	571.59
MW-2I	575.08	5.52	569.56	6.53	568.55	6.81	568.27	6.36	568.72	4.45	570.63
PW-1	574.58	3.01	571.57	12.48	562.10	15.27	559.31	9.60	564.98	_o MN	NA
MW-27	575.17	4.07	571.10	5.69	569.48	6.29	568.88	5.19	569.98	2.86	572.31
MW-34	574.56	4.60	569.96	5.90	568.66	6.23	568.33	5.32	569.24	3.10	571.46
MW-35	574.31	4.60	569.71	5.70	568.61	5.94	568.37	4.81	569.50	2.66	571.65
MW-36	574.13	3.70	570.43	4.87	569.26	5.41	568.72	4.64	569.49	2.08	572.05
				Ton	Tonawanda Creek	ek					
East End Dock	568.37	3.81	564.56	4.45	563.92	Frozen	NA	Frozen	NA	3.06	565.31
West End Dock	568.22	3.61	564.61	4.32	563.90	Frozen	NA	Frozen	NA	3.04	565.18
NA Not Applicable. NM Not Measured. O Water bubbling	Not Applicable. Not Measured. Water bubbling out of manway onto ground surface.	1way onto gr	ound surfac	e.	* Pu ++ Co	Pump malfunctioned on Dece Could not locate under snow.	tioned on I te under sn	ecember 19 ow.	, 1999 causi	Pump malfunctioned on December 19, 1999 causing system shut down. Could not locate under snow.	ut down.

	Grou	oundwater at t	· Elevation the Forme (All water	Table 5-2 (Continued). ndwater Elevations in Shallow and Intermediate Zone Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All water levels and elevations measured in feet)	Table 5-2 (Continued) n Shallow and Interm Pastown Manufacture els and elevations me	nued). (termediat ctured Ga is measure	e Zone W s Plant Si ed in feet)	ells Install te.	led		
IleM	Top of	4/17/00	00,	6/14/00	00,	7/13/00	/00	8/3/00	• 0	9/14/00	00
Designation	Riser Elevation	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.	Depth to Water	Elev.
				Shall	Shallow Zone Wells	ells					
MW-13	576.09	5.62	570.47	3.35	572.74	7.44	568.65	3.50	572.59	8.25	567.84
MW-17	576.86	5.90	570.96	5.13	571.73	7.25	569.61	6.00	570.86	8.05	568.81
MW-1S	576.84	9.04	567.80	8.77	568.07	8.99	567.85	8.94	567.90	9.32	567.52
MW-2S	574.77	3.63	571.14	1.90	572.87	4.00	570.77	2.39	572.38	4.07	570.70
MW-3S	574.55	3.37	571.18	3.16	571.39	3.50	571.05	3.21	571.34	3.78	570.77
MW-39	576.85	4.81	572.04	3.80	573.05	7.01	569.84	5.66	571.19	8.21	568.64
				Interme	Intermediate Zone Wells	Wells					
MW-23	576.61	4.73	571.88	4.26	572.35	5.52	571.09	4.78	571.83	6.84	569.77
MW-11	575.43	5.58	569.85	3.94	571.49	6.51	568.92	4.69	570.74	7.54	567.89
MW-2I	575.08	4.58	570.50	5.20 **	569.88	6.36	568.72	4.81	570.27	6.84 **	568.24
PW-1	574.58	10.52	564.06	0 MN	NA	12.80	561.78	2.40	572.18	12.90	561.68
MW-27	575.17	4.05	571.12	2.71	572.46	4.99	570.18	3.30	571.87	5.74	569.43
MW-34	574.56	4.25	570.31	3.08	571.48	5.91	568.65	3.94	570.62	6.47	568.09
MW-35	574.31	4.21	570.10	2.52	571.79	5.75	568.56	3.57	570.74	6.30	568.01
MW-36	574.13	2.97	571.16	1.94	572.19	5.02	569.11	2.41	571.72	6.17	567.96
				Ton	Tonawanda Creek	eek					
East End Dock	568.37	4.32 *	564.05	3.24	565.13	2.99	565.38	2.57	565.80	2.78 *	565.59
West End Dock	568.22	4.25 *	563.97	3.22	565.00	2.97	565.25	2.55	565.67	2.77 *	565.45
NANot Applicable.NMNot Measured.*Creek very wav	Not Applicable. Not Measured. Creek very wavy due to wind		- difficult to measure.		** LN • Wi • Mi	LNAPL in well. Water above riser in manway. Major rainstorm on August 1 :	l. iser in man rm on Augu	way. st 1 and 2, 2	000 - 0.59"	LNAPL in well. Water above riser in manway. Major rainstorm on August 1 and 2, 2000 - 0.59" total rainfall.	

Summ	•	oleted at t	he Form	Table nd Underly er Gastow and elevati	ying Confi n Manufa	ctured G	as Plant	from borings Site.
		Guard		NAPL		Und	erlying Co	nfining Layer
Boring Number	Total Depth	Ground Surface Elevation	Depth	Surface Elevation	Thickness	Depth	Surface Elevatio n	Deposit
SB-1	20.0	574.45				20.0	554.45	Sand & Gravel
SB-2	12.0	574.45 *						
SB-3	21.0	574.44				20.0	554.44	Lower Silty Clay
SB-4	12.0	574.45 *						
SB-5	12.0	574.30 *						
SB-6	8.0	574.30 *						
SB-7	8.0	574.30 *						
SB-8	8.0	574.30 *						
SB-9	8.0	574.75 *						
SB-10	8.0	574.30 *						
SB-11	8.0	574.30 *						
SB-12	8.0	574.30 *						
SB-13	22.0	576.39	19.0	557.39	3.0	22.0	554.39	Sand & Gravel
SB-14	24.0	575.58	19.5	556.08	3.0	22.5	553.08	Sand & Gravel
SB-15	20.0	575.41	15.0	560.41	7.0	22.0 +	553.41	
SB-16	24.0	576.89	16.0	560.89	7.0	23.0	553.89	Lower Silty Clay
SB-17	24.0	577.08	16.0	561.08	6.0	22.0	555.08	Lower Silty Clay
SB-18	24.0	575.85				22.5	553.35	Lower Silty Clay
SB-19	24.0	576.02				23.2	552.82	Lower Silty Clay
SB-20	24.0	576.49				23.4	553.09	Lower Silty Clay
SB-21	12.0	577.54	8.0	569.54	15.0	23.0 +	554.54	
SB-22	20.0	577.33	11.0	566.33	11.0	22.0 +	555.33	
SB-23	24.0	576.85	7.2	569.65	14.0	21.2	555.65	Lower Silty Clay
SB-24	24.0	576.43				24.0	552.43	Lower Silty Clay
SB-25	23.2	577.60	18.9	558.70	4.3	23.2	554.40	Lower Silty Clay
SB-26	20.0	574.21				19.7	554.51	Lower Silty Clay
MW-2S	9.0	575.32			Stratigraphie	c log not av	vailable	
MW-3S	8.5	574.91			Stratigraphic	c log not av	vailable	
MW-1I	26.0	575.85				22.0	553.85	Lower Silty Clay
MW-2I	26.0	575.47	16.4	559.07	5.6	22.0	553.47	Lower Silty Clay
PW-1	30.0	575.50	16.9	558.60	5.1	22.0	553.50	Sand & Gravel
SB-27	28.0	575.27						
SB-28	24.0	577.93				23.9	554.03	Lower Silty Clay

Summ	•	oleted at t	esence ai he Form	nd Underly er Gastow	Continued) ying Confi n Manufa ons measu	ning Lay ctured G	as Plant	from borings Site.
		Ground		NAPL		Und	erlying Co	nfining Layer
Boring NumberTotal DepthGround Surface ElevationSurface ElevationSurface ElevationSurface ElevationDepthSurface ElevationDepth								
SB-29	24.0	575.20	16.0	559.20	3.8	19.8	555.40	Sand & Gravel
SB-30	32.0	576.13						
SB-31	26.0	576.21	19.8	556.41	4.5	24.3	551.91	Lower Silty Clay
SB-32	28.0	575.32				23.8	551.52	Lower Silty Clay
SB-33	16.0	574.03						
SB-34	20.0	574.72	15.8	558.92	4.2	20.0 +	554.72	
SB-35	20.0	574.52	14.5	560.02	4.8	19.3	555.22	Sand & Gravel
SB-35 20.0 574.52 14.5 560.02 4.8 19.3 555.22 Sand & Gravel SB-36 20.0 574.28 1 18.8 555.48 Lower Silty Clay								
SB-36 20.0 574.28 18.8 555.48 Lower Silty Clay SB-37 20.0 574.69 23.7 553.11 Lower Silty Clay SB-38 24.0 576.81 23.7 553.11 Lower Silty Clay								
SB-38 24.0 576.81 23.7 553.11 Lower Silty Clay								
		ace elevatio ited from no			by surveyed	borehole	locations.	

Su	mmary of Sub	surface Soil A	er Gastown N nalytical Rest	Table 6-2. Ianufactured G ilts from Sample lepths in feet be	es Collected C		APL Plume.		
Parameter	Soil + Cleanup Objectives	SB-27 20.0'-24.0' 12/7/99	SB-28 20.0'-23.6' 12/7/99	SB-28 23.6'-23.9' 12/7/99	SB-30 20.0'-24.0' 12/6/99	SB-32 20.0'-23.8' 12/6/99	SB-33 8.0'-12.0' 12/7/99	SB-36 16.0'-18.3' 12/8/99	SB-38 20.0'-22.7' 12/9/99
			Volatile O	rganic Compou	nds				
Carbon Disulfide	2,700	6.0	4 J	4 J	ND (6)	2 J	ND (7)	ND (6)	4 J
Benzene	60	ND (6)	9.0	340 E (22 J)	ND (6)	2 J	5 J	2 J	8.0
Toluene	1,500	ND (6)	1 J	7.0	ND (6)	ND (6)	ND (7)	ND (6)	ND (6)
Ethylbenzene	5,500	ND (6)	ND (6)	450 E (67.0)	ND (6)	ND (6)	2 J	ND (6)	ND (6)
Total Xylenes	1,200	ND (6)	ND (6)	51.0 (12 J)	ND (6)	ND (6)	ND (7)	ND (6)	ND (6)
tert-Butylbenzene	100*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	5	"	"	"	"	"	"	"	"
n-Propylbenzene	14	"	"	"	"	"	"	"	"
1,2,4-Trimethylbenzene	13	"	"	"	"	"	"	"	"
1,3,5-Trimethylbenzene	3.3	"	"	"	"	"	"	"	"
sec-Butylbenzene	25	"	"	"	"	"	"	"	"
p-Isopropyltoluene	11	"	"	"	"	"	"	"	"
n-Butylbenzene	18	"	"	"	"	"	"	"	"
1,2-Dichloroethene (total)	300	ND (6)	140.0	ND (5)	ND (6)	ND (6)	ND (7)	ND (6)	7.0
Vinyl Chloride	200	ND (12)	30.0	ND (10)	ND (12)	ND (12)	ND (14)	ND (12)	ND (12)
2-Butanone	300	ND (12)	ND (12)	ND (10)	ND (12)	ND (12)	ND (14)	ND (12)	ND (12)
Styrene	NS	ND (6)	ND (6)	ND (5)	ND (6)	ND (6)	ND (7)	ND (6)	ND (6)
Thiophene (TIC)	NS								
Naphthalene (TIC)	13,000				280 J	98 J			170 J
Total Volatile TICs	NS	44 J	40 J	199 J (106 J)	288 J	108 J	29 J		180 J

	Table 6-2 (Continued). Former Gastown Manufactured Gas Plant Site. Summary of Subsurface Soil Analytical Results from Samples Collected Outside the NAPL Plume. (All results in µg/kg. All depths in feet below ground surface)
+	NYSDEC TAGM 4046: Determination of Soil Cleanup Objectives and Cleanup Levels; December 20, 2000 addendum.
*	TCLP alternative guidance values from Stars Memo #1: Petroleum-Contaminated Soil Guidance Policy.
NS	No standard.
ND	Indicates that the compound was not detected at the method detection limit specified in parentheses.
J	Estimated concentration that is less than the sample quantitation limit but greater than zero.
Ε	Estimated concentration that exceeds the calibration range of the GC/MS instrument.
(2.8)	Results of duplicate analysis.

Shaded values equal or exceed soil cleanup guidance values (ARARs).

Summary of S	Subsurface Soi	T rmer Gastown M l Analytical Resu s in µg/kg. All de	lts from Samples	Collected Within		16.
Parameter	Soil + Cleanup Objectives	SB-29 5.0'-8.0' 12/8/99	SB-29 19.5'-19.8' 12/8/99	SB-31 15.8'-16.0' 12/6/99	SB-31 23.4'-24.0' 12/6/99	SB-31 24.3'-26.0' 12/6/99
		Volatile Or	ganic Compound	ls		
Carbon Disulfide	2,700	N/A	15 J	15.0	ND (650)	5 J
Benzene	60	34.0	49,000	34.0	8,300	900.0
Toluene	1,500	470.0 (720.0)	100,000	1 J	17,000 B	290 E (69.0)
Ethylbenzene	5,500	1,800 (3,600)	40,000	ND (6)	3,000	870.0
Total Xylenes	1,200	2,540 (11,300)	92,000	2 J	13,000	840 E (140.0)
tert-Butylbenzene	100*	67.0 (9,600)	N/A	N/A	N/A	N/A
Isopropylbenzene	5	23.0	"	"	"	"
n-Propylbenzene	14	78.0 (14,000)	"	"	"	"
1,2,4-Trimethylbenzene	13	15,000	"	"	"	"
1,3,5-Trimethylbenzene	3.3	510.0 (4,600)	"	"	"	"
sec-Butylbenzene	25	ND (2.4)	"	"	"	"
p-Isopropyltoluene	11	210.0 (3,600)	"	"	"	"
n-Butylbenzene	18	ND (6)	"	"	"	"
1,2-Dichloroethene (total)	300	N/A	ND (28)	ND (6)	ND (650)	ND (6)
Vinyl Chloride	200	"	ND (57)	ND (12)	ND (1300)	ND (13)
2-Butanone	300	"	ND (57)	ND (12)	ND (1300)	ND (13)
Styrene	NS	"	130,000	ND (6)	16,000	110.0 (46.0)
Thiophene (TIC)	NS					33 J
Naphthalene (TIC)	13,000	140,000	960,000 J			
Total Volatile TICs	NS	N/A	55,600 J (1,397,000 J)	740 J	138,000 J	1,353 J (1,075 J)

Summary	of Subsurface S	Table 6 Former Gastown M Soil Analytical Resu ults in µg/kg. All d	lts from Samples	Collected Withi		lume.	
Parameter	Soil + Cleanup Objectives	SB-34 15.8'-16.0' 12/8/99	SB-34 16.0'-19.2' 12/8/99	SB-35 15.6-16.0' 12/8/99	SB-35 16.0'-19.3' 12/8/99	SB-39 1.1'-4.0' 12/9/99	SB-39 6.4'-9.0' 12/9/99
		Volatile O	rganic Compound	ds			
Carbon Disulfide	2,700	ND (3900)	17 J	ND (75,000)	35.0	N/A	ND (750)
Benzene	60	69,000 (56,000)	2,200	ND (75,000)	100.0	"	ND (12)
Toluene	1,500	94,000 (80,000)	1,000 (6,400)	340,000	22,000	"	ND (12)
Ethylbenzene	5,500	36,000 (31,000)	7,600	270,000	23,000	"	1,100
Total Xylenes	1,200	89,000 (75,000)	2,800 (11,000)	480,000	30,000	"	1,020
tert-Butylbenzene	100*	N/A	N/A	N/A	N/A	"	2,600
Isopropylbenzene	5	"	"	"	"	"	1,400
n-Propylbenzene	14	"	"	"	"	"	720.0
1,2,4-Trimethylbenzene	13	"	"	"	"	11	2,400
1,3,5-Trimethylbenzene	3.3	"	"	"	"	"	2,200
sec-Butylbenzene	25	"	"	"	"	"	4,500
p-Isopropyltoluene	11	"	"	"	"	"	2,100
n-Butylbenzene	18	"	"	"	11	"	3,400
1,2-Dichloroethene (total)	300	ND (3900)	ND (28)	ND (75,000)	ND (27)	"	ND (750)
Vinyl Chloride	200	ND (7900)	ND (57)	ND (150,000)	ND (54)	"	ND (1500)
2-Butanone	300	ND (7900)	1,500	ND (150,000)	1,700 J	"	1,200 J
Styrene	NS	110,000 (91,000)	14,000	470,000	28,000	"	ND (750)
Thiophene (TIC)	NS					"	
Naphthalene (TIC)	13,000	820,000 J (680,000 J)	150,000 J	5,400,000 J	280,000 J	"	7,700 ●
Total Volatile TICs	NS	1,435,000 J (1,069,000 J)	17,800 J (240,500 J)	9,230,000 J	55,400 J (443,400 J)	"	48,300 J

Summa	ry of Subsurface So	ormer Gastown oil Analytical R	le 6-3 (Continue n Manufactured cesults from Sar Il depths in feet	l Gas Plant Site nples Collected	Within the NA	PL Plume.	
Parameter	Soil + Cleanup Objectives	SB-34 15.8'-16.0' 12/8/99	SB-34 16.0'-19.2' 12/8/99	SB-35 15.6-16.0' 12/8/99	SB-35 16.0'-19.3' 12/8/99	SB-39 1.1'-4.0' 12/9/99	SB-39 6.4'-9.0' 12/9/99
		Semi-	Volatile Compo	ounds			
2-Methylnaphthalene	36,400	N/A	N/A	N/A	N/A	ND (1300)	3,800
Dibenzofuran	6,200	"	"	"	"	ND (1300)	1,900
Fluorene	50,000	"	"	"	"	ND (1300)	1,600
Phenanthrene	50,000	"	"	"	"	ND (1300)	5,200
Anthracene	50,000	11	"	"	"	ND (1300)	570.0
Fluoranthene	50,000	11	"	"	"	ND (1300)	1,600
Pyrene	50,000	11	"	"	"	ND (1300)	2,400
Benzo(a)anthracene	224	11	"	"	"	ND (1300)	680.0
Chrysene	400	11	"	"	"	ND (1300)	600.0
Benzo(b)fluoranthene	1,100	11	"	"	"	ND (1300)	650.0
			Inorganics				
Arsenic	7,500	N/A	N/A	N/A	N/A	3,500	N/A
Chromium	10,000	//	"	"	"	4,600	"
Cobalt	30,000	//	"	"	"	1,200	"
Lead	500,000	"	"	"	"	14,200	"
Manganese	SB	//	"	"	"	657,000	"
Mercury	100	//	"	"	"	910.0	"
Nickel	13,000	"	"	"	"	1,700	"
Vanadium	150,000	"	"	"	"	6,500	"
Zinc	20,000	"	"	"	"	39,400	"

Table 6-3 (Continued).

Former Gastown Manufactured Gas Plant Site.

Summary of Subsurface Soil Analytical Results from Samples Collected Within the NAPL Plume.

(All results in µg/kg. All depths in feet below ground surface)

+ * NYSDEC TAGM 4046: Determination of Soil Cleanup Objectives and Cleanup Levels; December 20, 2000 addendum.

TCLP alternative guidance values from Stars Memo #1: Petroleum-Contaminated Soil Guidance Policy.

NS No standard.

ND Indicates that the compound was not detected at the method detection limit specified in parentheses.

Estimated concentration that is less than the sample quantitation limit but greater than zero. J

Ε Estimated concentration that exceeds the calibration range of the GC/MS instrument.

B Analyte detected in the associated blank as well as in the sample.

Results of duplicate analysis. (2.8)

Results from 8021 analysis (not a tentatively identified compound). • Shaded values equal or exceed soil cleanup guidance values (ARARs).

Summary of (Table 6-4. Summary of Groundwater Analytical Results from Shallow Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in µg/l unless otherwise specified)	Tabl alytical Result astown Manu lts in μg/l unle	Table 6-4. water Analytical Results from Shallow Depth V Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	Depth Wells] ant Site. ecified)	Installed at the	
Parameter	Groundwater Standards +	MW-13; 12/14/99	MW-17; 12/15/99	MW-2S; 12/14/99	MW-3S; 12/13/99	MW-39; 12/15/99
	1	/olatile Organ	Volatile Organic Compounds			
Benzene	1	52.0 (32.0)	210.0 (200.0)	37.0 (40.0)	4.4 (4 J)	4.8 (11 J)
Toluene	5	0.77 (6 J)	420.0 (330.0)	35.0 (27.0)	ND (0.2) (3 J)	0.31
Ethylbenzene	5	1.1	250.0 (100.0)	3 J (4.7)	0.38	1.0
Xylene-O	5	0.67	270.0	11.0	ND (0.2)	0.35
Xylene-M&P	5	0.4	480.0	7.5	ND (0.2)	0.63
Isopropylbenzene	5	ND (0.2)	ND (6.4)	ND (0.2)	ND (0.2)	1.5
n-Propylbenzene	5	ND (0.4)	ND (6.4)	ND (0.4)	ND (0.4)	ND (0.4)
1,3,5-Trimethylbenzene	5	ND (1)	42.0	0.36 J	ND (1)	0.28 J
1,2,4-Trimethylbenzene	5	0.68	ND (6.4)	0.53	ND (0.2)	0.93 (0.82)
p-Isopropyltoluene	5	ND (1)	ND (6.4)	ND (1)	ND (1)	0.86 J
n-Butylbenzene	5	ND (0.4)	1,100	ND (0.4)	ND (0.4)	1.8 (1.3)
sec-Butylbenzene	5	ND (0.4)	ND (3.2)	ND (0.4)	ND (0.4)	2.1
Naphthalene	10G		2,400			3.7
MTBE	10G	13.0		ND (5)	ND (5)	
Vinyl Chloride	2	37.0	ND (20)	ND 10)	ND (10)	24.0
Styrene	5	ND (10)	230.0	3 J	ND (10)	ND (20)
Chloromethane	NS	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)
1,2-Dichloroethene (total)	5	45.0	ND (20)	ND (10)	ND (10)	14 J
Chloroform	7	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)
1,2-Dichloroethane	0.6	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)
2-Butanone	50G	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)
1,2-Dichloropropane	1	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)
Chlorobenzene	5	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)

Summary of (Table 6-4 (Continued).Summary of Groundwater Analytical Results from Shallow Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in µg/l unless otherwise specified)	Table 6-4 (Continued) lytical Results from Sha astown Manufactured G ts in µg/l unless otherwis	Table 6-4 (Continued). water Analytical Results from Shallow Depth V Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	Depth Wells I lant Site. ecified)	nstalled at the	
Parameter	Groundwater Standards +	MW-13; 12/14/99	MW-17; 12/15/99	MW-2S; 12/14/99	MW-3S; 12/13/99	MW-39; 12/15/99
	Semi	i-Volatile Com	Semi-Volatile Compounds - Phenols	ols		
Phenol	1	ND (49)	ND (10)	1 J	2 J	ND (50)
2-Methylphenol	NS	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
4-Methylphenol	NS	ND (49)	1 J	ND (9)	ND (10)	ND (50)
2-Nitrophenol	1	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
4-Nitrophenol	1	ND (120)	ND (26)	ND (24)	ND (25)	ND (120)
2,4-Dimethylphenol	50G	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Pentachlorophenol	1	ND (120)	ND (26)	ND (24)	3 J	ND (120)
4-Chloro-3-Methylphenol	NS	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
	Sen	ni-Volatile Cor	Semi-Volatile Compounds - PAHs	Is		
Naphthalene	10G	ND (49)	1,100	13.0	2 J	ND (50)
2-Methylnaphthalene	NS	11 J	80.0 (88 J)	ND (9)	ND (10)	71.0 (70 J)
Acenaphthylene	NS	30 J	100 J	ND (9)	ND (10)	8 J
Acenaphthene	20G	ND (49)	19.0	ND (9)	ND (10)	9 J
Dibenzofuran	NS	ND (49)	4 J	ND (9)	ND (10)	40 J (46 J)
Fluorene	50G	10 J	22.0	ND (9)	ND (10)	89.0 (100 J)
Phenanthrene	50G	48 J	30.0 (33 J)	(6) UN	ND (10)	85.0 (86 J)
Anthracene	50G	25 J	5 J	(6) UN	ND (10)	ND (50)
Carbazole	NS					
Fluoranthene	50G	35 J	5 J	(6) UN	ND (10)	42 J (48 J)
Pyrene	50G	64.0	8 J	(6) UN	2 J	36 J (51 J)
Benzo(a)anthracene	0.002G	17 J	ND (10)	ND (9)	ND (10)	13 J
Chrysene	0.002G	18 J	ND (10)	ND (9)	ND (10)	9 J

Summary of (Table 6-4 (Continued).Summary of Groundwater Analytical Results from Shallow Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in µg/l unless otherwise specified)	Table 6-4 (Continued). water Analytical Results from Shallow Depth V Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	continued). s from Shallow actured Gas P ss otherwise sp	Depth Wells I. lant Site. ecified)	nstalled at the	
Parameter	Groundwater Standards +	MW-13; 12/14/99	MW-17; 12/15/99	MW-2S; 12/14/99	MW-3S; 12/13/99	MW-39; 12/15/99
	Semi-Vol ⁵	Semi-Volatile Compounds - PAHs (continued)	ds - PAHs (co	ntinued)		
Benzo(b)fluoranthene	0.002G	16 J	ND (10)	ND (9)	ND (10)	15 J
Benzo(k)fluoranthene	0.002G	4 J	ND (10)	ND (9)	ND (10)	ND (50)
Benzo(a)pyrene	ND	19 J	ND (10)	ND (9)	ND (10)	1 I
Indeno(1,2,3-cd)pyrene	0.002G	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Dibenz(a,h)anthracene	NS	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Benzo(g,h,i)perylene	NS	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
	Semi-Volatile	Semi-Volatile Compounds - Miscellaneous Compounds	Miscellaneous	Compounds		
1,2,4-Trichlorobenzene	5	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Hexachlorobutadiene	0.5	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Dimethylphthalate	50G	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
2,6-Dinotrotoluene	5	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
2,4-Dinitrotoluene	5	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Di-n-butylphthalate	SN	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
Bis(2-ethylhexyl)phthalate	5	ND (49)	ND (10)	ND (9)	ND (10)	ND (50)
		Pesticides	ides			
Heptachlor Epoxide	0.03	ND (0.05)	ND (0.5)	ND (0.05)	ND (0.05)	ND (0.05)
Dieldrin	0.004	ND (0.1)	ND (1.1)	ND (0.09)	ND (0.09)	0.1
Endrin	ND	ND (0.1)	ND (1.1)	ND (0.09)	0.055 BJ	0.088 J
Endosulfan II	NS	ND (0.1)	ND (1.1)	ND (0.09)	ND (0.09)	0.058 J
4,4'-DDD	0.3	ND (0.1)	ND (1.1)	ND (0.09)	ND (0.09)	ND (0.1)
Methoxychlor	35	ND (0.5)	ND (5.4)	ND (0.5)	ND (0.5)	0.036 J
Chlordane	0.05	ND (0.05)	ND (0.5)	ND (0.05)	ND (0.05)	ND (0.05)

Summary of	Table 6-4 (Continued). Summary of Groundwater Analytical Results from Shallow Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	Table 6-4 (Continued) alytical Results from Sha astown Manufactured G lts in μg/l unless otherwis	Table 6-4 (Continued). water Analytical Results from Shallow Depth V Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	Depth Wells Ir ant Site. scified)	istalled at the	
Parameter	Groundwater Standards +	MW-13; 12/14/99	MW-17; 12/15/99	MW-2S; 12/14/99	MW-3S; 12/13/99	MW-39; 12/15/99
		Inorganic Compounds	ompounds			
Arsenic	25	179 E	473 E	ND (3.5)	ND (3.5)	284 E
Iron	300	464,000 E	2,010,000	287 E	6,740 E	843,000
Lead	25	ND (3)	708 E	ND (3)	22.3	655 E
Manganese	300	6,220 E	33100 E	4.7 E	123 E	22,500 E
Zinc	2000G	1,410 E	2510 E	16.0 E	50.2 E	2,110 E
	Misc	cellaneous Deto	Miscellaneous Detected Compounds	ds		
Cyanide	200	167.0	2,800	21.0	19.0	18,300
Hexadecanoic acid	NS	46 J				
Indene	NS		300 J (360 J)			
Biphenyl	5		12 J			
Petroleum Products	NS					120,000
 NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998; April 2000 amendment. G Guidance value. NS No standard. ND Indicates that the compound was not detected at the method detection limit specified in parentheses. J Estimated concentration that is less than the sample quantitation limit but greater than zero. E Estimated concentration that exceeds the calibration range of the GC/MS instrument. B Compound detected in both the sample and blank (organics) or Concentration greater than or equal to the instrument detection limit, but less than the contract required detection limit (inorganics). (2.8) Results of duplicate analysis. 	Water Quality Sta mpound was not c ation that is less th ation that exceeds in both the sampl a limit, but less tha analysis.	ndards and G detected at the an the sample the calibration le and blank (o an the contract lwater standar	uidance Values, method detecti quantitation lin rrange of the G rganics) or Con t required detec ds or guidance	June 1998; Ap on limit specifi nit but greater C/MS instrum centration gre tion limit (inor values (ARAR	ril 2000 amend ed in parenthes than zero. ent. ater than or eq ganics).	lment. ses. ual to the

	Table 6-5.Summary of Groundwater Analytical Results from Intermediate Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site.(All results in µg/l unless otherwise specified)	ndwater An Former (All re	Tabl alytical Results Gastown Manu sults in µg/l unl	Table 6-5. tter Analytical Results from Intermediate Deptl Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	e Depth Well nt Site. :ified)	s Installed at the		
Parameter	Groundwater Standards +	MW-23; 12/15/99	MW-1I; 12/16/99	MW-2I; 12/16/99	MW-27; 12/14/99	MW-34; 12/15/99	MW-35; 12/15/99	MW-36; 12/15/99
		-	Volatile Organ	Volatile Organic Compounds				
Benzene	1	0.43	540.0 (530.0)	12,000 (7,500)	1.2 (2 J)	11,000 (16,000)	140.0 (190.0)	ND (0.2)
Toluene	5	1.3	6.5 E	5,200 (1,800)	7 J	1,100(2,800)	1,400 (1,600)	0.22
Ethylbenzene	5	2.8	9.0 (8 J)	440.0 (370.0)	ND (0.2)	1,300 (3,200)	$1,100\ (1,000)$	ND (0.2)
Xylene-O	5	7.5	6.1	420.0	ND (0.2)	830.0 (460.0)	460.0	ND (0.2)
Xylene-M&P	5	13.0	2.9 E	750.0	ND (0.2)	1,200 (540.0)	880.0	ND (0.32)
Isopropylbenzene	5	0.74	0.33	6.3	ND (0.2)	ND (8)	ND (32)	ND (0.2)
n-Propylbenzene	5	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	ND (8)	ND (32)	ND (0.4)
1,3,5-Trimethylbenzene	5	4.1	0.46 J	26.0	ND (1)	80.0	ND (32)	ND (1)
1,2,4-Trimethylbenzene	5	13.0	2.8 (4.1)	440.0	ND (0.2)	940.0 (550.0)	800.0	ND (0.2)
p-Isopropyltoluene	5	ND (1)	ND (1)	ND (1)	ND (1)	ND (8)	ND (32)	ND (1)
n-Butylbenzene	5	35.0	20.0	3,700	ND (0.4)	5,700	4,000	ND (0.4)
sec-Butylbenzene	5	5.3	ND (0.4)	120 E	ND (0.4)	ND (4)	ND (16)	ND (0.4)
Naphthalene	10G	63.0				9,600	9,800	4.0
MTBE	10G		11.0	0.89 J	ND (5)			
Vinyl Chloride	2	ND (200)	52.0	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
Styrene	5	ND (200)	ND (50)	1,400 (410)	ND (10)	2,300 (1,800)	900.0 (1,200)	ND (10)
Chloromethane	NS	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
1,2-Dichloroethene (total)	5	ND (200)	89.0	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
Chloroform	7	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
1,2-Dichloroethane	0.6	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
2-Butanone	50G	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
1,2-Dichloropropane	1	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)
Chlorobenzene	5	ND (200)	ND (50)	ND (200)	ND (10)	ND (400)	ND (50)	ND (10)

Sur	Table 6-5 (Continued).Summary of Groundwater Analytical Results from Intermediate Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in µg/l unless otherwise specified)	lwater Analy Former G (All resu	Table 6-5 tical Results astown Man Its in µg/l un	Table 6-5 (Continued). tter Analytical Results from Intermediate Deptl Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	iate Depth W Plant Site. pecified)	ells Installed at tl	pe	
Parameter	Groundwater Standards +	MW-23; 12/15/99	MW-1I; 12/16/99	MW-2I; 12/16/99	MW-27; 12/14/99	MW-34; 12/15/99	MW-35; 12/15/99	MW-36; 12/15/99
		Sem	i-Volatile Co	Semi-Volatile Compounds - Phenols	nols			
Phenol	1	ND (100)	ND (48)	ND (94)	21.0	ND (200)	ND (210)	ND (13)
2-Methylphenol	NS	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
4-Methylphenol	NS	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
2-Nitrophenol	1	ND (100)	ND (48)	ND (94)	24 J	ND (200)	ND (210)	ND (13)
4-Nitrophenol	1	ND (260)	ND (120)	ND (240)	38.0	ND (500)	ND (520)	ND (32)
2,4-Dimethylphenol	50G	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
Pentachlorophenol	1	ND (260)	ND (120)	ND (240)	36.0	ND (500)	ND (520)	ND (32)
4-Chloro-3-Methylphenol	NS	ND (100)	ND (48)	ND (94)	46.0	ND (200)	ND (210)	ND (13)
		Ser	ni-Volatile C	Semi-Volatile Compounds - PAHs	Hs			
Naphthalene	10G	250.0	170.0	3,000	ND (10)	7,300	9,700	4 J
2-Methylnaphthalene	NS	22 J	8 J	ſ LL	ND (10)	710.0 (780 J)	970.0 (1,100 J)	ND (13)
Acenaphthylene	NS	120.0	15 J	180.0 (170 J)	ND (10)	820.0 (830 J)	1,000 (1,100 J)	ND (13)
Acenaphthene	20G	23 J	ND (48)	ND (94)	23.0	54 J	63 J	ND (13)
Dibenzofuran	NS	34 J	ND (48)	ND (94)	ND (10)	55 J	54 J	ND (13)
Fluorene	50G	58 J	ND (48)	33 J	ND (10)	370.0 (320 J)	400.0 (360 J)	ND (13)
Phenanthrene	50G	170.0	ND (48)	76 J	ND (10)	1,000 (1,200 J)	1,000 (1,400 J)	ND (13)
Anthracene	50G	69 J	ND (48)	13 J	ND (10)	310.0 (270 J)	270.0 (250 J)	ND (13)
Carbazole	NS							
Fluoranthene	50G	180.0	ND (48)	33 J	ND (10)	480.0 (480 J)	460.0 (480 J)	ND (13)
Pyrene	50G	210.0	ND (48)	54 J	24.0	740.0 (900 J)	660.0 (940 J)	ND (13)
Benzo(a)anthracene	0.002G	77 J	ND (48)	19 J	ND (10)	210.0	200 J	ND (13)
Chrysene	0.002G	71 J	ND (48)	17 J	ND (10)	180 J	160 J	ND (13)

Sun	Table 6-5 (Continued). Summary of Groundwater Analytical Results from Intermediate Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	water Analytic Former Gas (All results	Table 6-5 (Continued). tter Analytical Results from Intermediate Deptl Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	ntinued). m Intermediat tured Gas Pla otherwise spe	e Depth Wells nt Site. Sified)	Installed at th	8	
Parameter	Groundwater Standards +	MW-23; 12/15/99	MW-1I; 12/16/99	MW-2I; 12/16/99	MW-27; 12/14/99	MW-34; 12/15/99	MW-35; 12/15/99	MW-36; 12/15/99
		Semi-Volat	Semi-Volatile Compounds	s - PAHs (continued)	inued)			
Benzo(b)fluoranthene	0.002G	96 J	ND (48)	21 J	ND (10)	140 J	150 J	ND (13)
Benzo(k)fluoranthene	0.002G	34 J	ND (48)	ND (94)	ND (10)	40 J	45 J	ND (13)
Benzo(a)pyrene	ND	110.0	ND (48)	22 J	ND (10)	200.0	220.0	ND (13)
Indeno(1,2,3-cd)pyrene	0.002G	42 J	ND (48)	ND (94)	ND (10)	51 J	57 J	ND (13)
Dibenz(a,h)anthracene	NS	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
Benzo(g,h,i)perylene	NS	45 J	ND (48)	ND (94)	ND (10)	f 69	75 J	ND (13)
		emi-Volatile C	Semi-Volatile Compounds - Miscellaneous Compounds	liscellaneous C	ompounds			
1,2,4-Trichlorobenzene	5	ND (100)	ND (48)	ND (94)	16.0	ND (200)	ND (210)	ND (13)
Hexachlorobutadiene	0.5	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
Dimethylphthalate	50G	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
2,6-Dinotrotoluene	5	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
2,4-Dinitrotoluene	5	ND (100)	ND (48)	ND (94)	23.0	ND (200)	ND (210)	ND (13)
Di-n-butylphthalate	NS	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
Bis(2-ethylhexyl)phthalate	5	ND (100)	ND (48)	ND (94)	ND (10)	ND (200)	ND (210)	ND (13)
			Pesticides	les				
Heptachlor Epoxide	0.03	ND (0.5)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.55)	ND (0.07)
Heptachlor	0.04	ND (0.5)	ND (0.05)	0.054	ND (0.05)	ND (0.5)	ND (0.55)	ND (0.07)
Dieldrin	0.004	ND (1)	ND (0.09)	ND (0.1)	ND (0.09)	ND (1)	ND (1.1)	ND (0.1)
Endrin	ND	ND (1)	ND (0.09)	ND (0.1)	0.079 BJ	ND (1)	ND (1.1)	0.09 J
Endosulfan II	NS	ND (1)	ND (0.09)	ND (0.1)	ND (0.09)	ND (1)	ND (1.1)	ND (0.1)
4,4'-DDD	0.3	ND (1)	ND (0.09)	ND (0.1)	ND (0.09)	ND (1)	ND (1.1)	ND (0.1)
Methoxychlor	35	ND (5.2)	ND (0.5)	ND (0.5)	ND (0.5)	ND (5)	ND (5.5)	ND (0.7)
Chlordane	0.05	ND (0.5)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.55)	ND (0.07)

Sui	Table 6-5 (Continued). Summary of Groundwater Analytical Results from Intermediate Depth Wells Installed at the Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	lwater Analyt Former Ga (All resul	Table 6-5 (Continued). tter Analytical Results from Intermediate Deptl Former Gastown Manufactured Gas Plant Site. (All results in μg/l unless otherwise specified)	Continued). rom Intermed factured Gas ss otherwise s	liate Depth We Plant Site. specified)	lls Installed at the		
Parameter	Groundwater Standards +	MW-23; 12/15/99	MW-1I; 12/16/99	MW-2I; 12/16/99	MW-27; 12/14/99	MW-34; 12/15/99	MW-35; 12/15/99	MW-36; 12/15/99
			Inorganic Compounds	Compounds				
Arsenic	25	233 E	14.6 E	3.5 BE	692 E	171 E	149 E	275 E
Iron	300	1,190,000	37,800 E	9,320	1,630,000 E	443,000	438,000	846,000
Lead	25	524 E	15.5 E	3.6 E	682.0	548 E	218 E	342 E
Manganese	300	8,720 E	1,010 E	2,170 E	30,300 E	8,550 E	19,200 E	16,400 E
Zinc	2000G	2,760 E	103 E	33.0 E	2,800 E	2,400 E	1,200 E	2,090 E
		Misc	Miscellaneous Detected Compounds	ected Compo	unds			
Cyanide	200	14,500	344.0	101.0	128.0	280.0		370.0
Indene	NS	160 J		1,600 J		2,200 J (2,400 J)	2,300 J	
Biphenyl	5					110 J	160 J	
Cis-1,3-dichloropropene	0.4			L 99				
Dibenzothiophene	NS						67 J	
N-nitrosodimethylamine	50G			32 J				
1,4-Dichlorobenzene	3				16.0			
N-Nitroso-di-n-propylamine	NS				24.0			
 NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998; April 2000 amendment. G Guidance value. NS No standard. ND Indicates that the compound was not detected at the method detection limit specified in parentheses. J Estimated concentration that is less than the sample quantitation limit but greater than zero. E Estimated concentration that exceeds the calibration range of the GC/MS instrument. B Compound detected in both the sample and blank (organics) or Concentration greater than or equal to the instrument detection limit, but less than the contract required detection limit (inorganics). (2.8) Results of duplicate analysis. Shaded values equal or exceed groundwater standards or guidance values (ARARs). 	ater Quality Stand pound was not def on that is less than on that exceeds th both the sample i required detection alysis.	ndards and Guidance Values, June 1998; Apri letected at the method detection limit specified an the sample quantitation limit but greater th the calibration range of the GC/MS instrumen e and blank (organics) or Concentration great on limit (inorganics). water standards or guidance values (ARARs).	dance Values, nethod detecti uantitation li ange of the G ganics) or Coi nics).	, June 1998; A ion limit speci mit but greate C/MS instru ncentration g values (ARA	ndards and Guidance Values, June 1998; April 2000 amendme detected at the method detection limit specified in parentheses. an the sample quantitation limit but greater than zero. the calibration range of the GC/MS instrument. le and blank (organics) or Concentration greater than or equal on limit (inorganics). Iwater standards or guidance values (ARARs).	adment. eses. qual to the instrum	rent detection	limit, but

Summary of Water A1		Former Results fro (All r	Table 6-6. Former Gastown Manufactured Gas Plant Site. sults from the Primary Sump in the Basement o (All results in µg/l unless otherwise noted)	Table 6-6. Aanufactured G nary Sump in th g/I unless otherv	as Plant Site. le Basement o vise noted)	f the Gastow	Table 6-6. Former Gastown Manufactured Gas Plant Site. (All results from the Primary Sump in the Basement of the Gastown Sportsman's Club. (All results in µg/l unless otherwise noted)	Jub.
	Ground- +				Date Sampled	pled		
rarameter	water Standards	3/8/93	6/8/95	11/6/95	4/13/98	4/23/98 *	4/24/98 **	12/16/99
			Volatile Organic Compounds	anic Compou	spur			
Benzene	1		10,500	6,200	4,535	3,964	12,000	350.0 (1,600)
Toluene	5		1,390	1,200	1,767	1,117	5,200 (4,900)	580.0 (130.0)
Ethylbenzene	5		120.0	250.0	ND (100)	ND (5)	460.0 (450 J)	94.0 (100.0)
Xylene-O	5		493.0	330.0	298.9	ND (5)	1 000 (1 300)	58.0 (9.3)
Xylene-M&P	5		97.6 J	560.0	613.1	ND (10)	(UUC(1) UUC)	95.0 (11.0)
Isopropylbenzene	5		ND (240)	ND (200)	ND (100)	1,552		0.54
n-Propylbenzene	5		ND (280)	ND (200)	ND (100)	1,507		0.43
1,3,5-Trimethylbenzene	5		ND (160)	ND (200)	126.2	24.2		4.3
1,2,4-Trimethylbenzene	5		ND (210)	240.0	267.6	89.5		45.0 (6.0)
p-Isopropyltoluene	5		ND (190)	ND (200)	222.9	209.0		3.7
n-Butylbenzene	5		ND (320)	ND (200)	499.1	1,120		320.0 (130.0)
sec-Butylbenzene	5		ND (650)	ND (200)	306.4	168.0		ND (0.4)
Naphthalene	10G		6,070	ND (200)	672.1	156.0		
MTBE	10G		ND (1000)	ND (200)	ND (1000)	202.0		ND (5)
Vinyl Chloride	2						ND (100)	1 J
Styrene	5						2,000 (1,900)	130.0 (100.0)
Chloromethane	NS						ND (100)	ND (10)
1,2-Dichloroethene (total)	5						ND (100)	1 J
Chloroform	7						ND (100)	ND (10)
1,2-Dichloroethane	0.6						ND (100)	ND (10)
2-Butanone	50G						ND (100)	ND (10)
1,2-Dichloropropane	1						ND (100)	ND (10)
Chlorobenzene	5						ND (100)	ND (10)

Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. Summary of Water Analytical Results from the Primary Sump in the Basement of the Gastown Sportsman's Club. (All results in µg/l unless otherwise noted)	Fo nalytical Resu	T rmer Gasto Its from the (All results	Table 6-6 (Continued) town Manufactured G te Primary Sump in th is in µg/l unless otherw	Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. sults from the Primary Sump in the Basement o (All results in µg/l unless otherwise noted)	Plant Site. asement of 1 noted)	the Gastown	Sportsman's	Club.
ŗ	Ground- +							
Parameter	Water Standards	3/8/93	6/8/95	11/6/95	4/13/98	4/23/98 *	4/24/98 **	12/16/99
		Semi-V ₀	latile Comp	Semi-Volatile Compounds - Phenols	nols			
Phenol	1	11.0					ND (50)	L 9
2-Methylphenol	NS	ND (10)					13 J	9 J
4-Methylphenol	NS	15.0					20 J	4 J
2-Nitrophenol	1	ND (10)					ND (50)	ND (10)
4-Nitrophenol	1	ND (10)					ND (120)	ND (24)
2,4-Dimethylphenol	50G	33.0					33 J	9 J
Pentachlorophenol	1	16.0					19 J	ND (24)
4-Chloro-3-Methylphenol	NS	ND (10)					ND (50)	ND (10)
		Semi-V	olatile Com	Semi-Volatile Compounds - PAHs	Hs			
Naphthalene	10G	190.0			34.0		9,300	9 J
2-Methylnaphthalene	NS	98.0				546.0	2,200 BJ	5 J
Acenaphthylene	NS	130.0			214.0	570.0	3,800 J	15.0
Acenaphthene	20G	25.0			37.0	ND (10)	330.0	1 J
Dibenzofuran	NS	21.0					290.0	ND (10)
Fluorene	50G	98.0			56.0	168.0	1,600 J	3 J
Phenanthrene	50G	120.0			73.0	619.0	5,700.0	2 J
Anthracene	50G	52.0			16.0	614.0	1,500 J	ND (10)
Carbazole	NS						88.0	
Fluoranthene	50G	61.0			10 J	162.0	2,500 J	ND (10)
Pyrene	50G	70.0			8 J	271.0	3,800 J	1 J
Benzo(a)anthracene	0.002G	26.0			ND (10)	ND (10)	940 J	ND (10)
Chrysene	0.002G	22.0			ND (10)	ND (10)	720 J	ND (10)

Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. Summary of Water Analytical Results from the Primary Sump in the Basement of the Gastown Sportsman's Club. (All results in µg/l unless otherwise noted)	Fo .nalytical Resu	T ormer Gasto Its from the (All results	Table 6-6 (Continued) Iown Manufactured G e Primary Sump in th is in µg/l unless otherv	Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. sults from the Primary Sump in the Basement o (All results in µg/l unless otherwise noted)	Plant Site. asement of noted)	the Gastown	Sportsman's	Club.
F	Ground- +							
rarameter	w ater Standards	3/8/93	6/8/95	11/6/95	4/13/98	4/23/98 *	4/24/98 **	12/16/99
	S	emi-Volatile	compound	Semi-Volatile Compounds - PAHs (continued)	ontinued)			
Benzo(b)fluoranthene	0.002G	17.0			ND (10)	ND (10)	1,100 E	ND (10)
Benzo(k)fluoranthene	0.002G	ND (10)			ND (10)	127.0	510 E	ND (10)
Benzo(a)pyrene	ND	24.0			ND (10)	ND (10)	800 J	ND (10)
Indeno(1,2,3-cd)pyrene	0.002G	10.0			ND (10)	ND (10)	280.0	ND (10)
Dibenz(a,h)anthracene	NS	ND (10)			ND (10)	ND (10)	55.0	ND (10)
Benzo(g,h,i)perylene	NS	12.0			ND (10)	ND (10)	250.0	ND (10)
	Semi-	Volatile Cor	N - spunodu	Semi-Volatile Compounds - Miscellaneous Compounds	s Compound	ds		
1,2,4-Trichlorobenzene	5	ND (10)					ND (50)	ND (10)
Hexachlorobutadiene	0.5	ND (10)					ND (50)	ND (10)
Dimethylphthalate	50G	ND (10)					ND (50)	ND (10)
2,6-Dinotrotoluene	5	ND (10)					ND (50)	ND (10)
2,4-Dinitrotoluene	5	ND (10)					ND (50)	ND (10)
Di-n-butylphthalate	NS	ND (10)					ND (50)	ND (10)
Bis(2-ethylhexyl)phthalate	5	19.0					ND (50)	ND (10)
			Pesticides	des				
Heptachlor Epoxide	0.03						0.023 J	ND (0.05)
Dieldrin	0.004						ND (0.5)	ND (0.09)
Endrin	ND						ND (0.5)	ND (0.09)
Endosulfan II	NS						ND (0.5)	ND (0.09)
4,4'-DDD	0.3						90.09 JP	ND (0.09)
Methoxychlor	35						ND (2.5)	ND (0.5)
Chlordane	0.05						0.017 JP	ND (0.05)

Summary of Wate	r Analytical Re	Former G ^g esults from (All resu	Table 6-6 (ustown Man the Primary ults in µg/l u	Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. sults from the Primary Sump in the Basement o (All results in µg/l unless otherwise noted)	as Plant Sit e Basement rise noted)	e. of the Gasto	Table 6-6 (Continued). Former Gastown Manufactured Gas Plant Site. Summary of Water Analytical Results from the Primary Sump in the Basement of the Gastown Sportsman's Club. (All results in µg/l unless otherwise noted)	ub.
£	Ground- +							
Farameter	w ater Standards	3/8/93	6/8/95	11/6/95	4/13/98	4/23/98 *	4/24/98 **	12/16/99
			Inorganic	Inorganic Compounds	10			
Arsenic	25						3.4 B	ND (3.5)
Iron	300						1,690	455.0
Lead	25						ND (2.6)	ND (3)
Manganese	300						863.0	108 E
Zinc	2000G						29.0	15.9 BE
		Misc	ellaneous De	Miscellaneous Detected Parameters	meters			
Cyanide	200						200.0	50.0
Indene	NS						1,400 J (4,000 J)	120 J
Biphenyl	5						580 J	
Benzyl Alcohol	NS							7 J
 NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998; April 2000 amendment. Guidance value. No standard. No standard. Nis No standard. Indicates that the compound was not detected at the method detection limit specified in parentheses. J Estimated concentration that is less than the sample quantitation limit but greater than zero. E Estimated concentration that exceeds the calibration range of the GC/MS instrument. B Compound detected in both the sample and blank (organics) or Concentration greater than or equal to the instrument detection limit, but less than the contract required detection limit (inorganics). (2.8) Results of duplicate analysis. P There is a >25% difference between the analytical results between the two GC columns. The lower value is reported. ** Kanti Technologies, Inc. ** Recra Labnet. 	Vater Quality S mpound was no tion that is less tion that esceed in both the sam ess than the con analysis. erence betweer Inc. or exceed grou	standards a ot detected a ds the calib nple and bla ntract requi the analyti ndwater an	nd Guidanc at the metho mple quanti ration range unk (organic red detectio ical results h ical results h	e Values, Ju dd detection itation limit of the GCA s) or Concer n limit (inor between the between the	ne 1998; A ₁ limit specifi but greater MS instrum atration gre ganics). two GC coli two GC coli	er Quality Standards and Guidance Values, June 1998; April 2000 amendment. ound was not detected at the method detection limit specified in parentheses. I that is less than the sample quantitation limit but greater than zero. I that exceeds the calibration range of the GC/MS instrument. Noth the sample and blank (organics) or Concentration greater than or equal to th than the contract required detection limit (inorganics). I ysis. Ince between the analytical results between the two GC columns. The lower value exceed groundwater and/or surface water standards or guidance values (ARARs).	ndment. neses. equal to the instrun wer value is report. (ARARs).	aent ed.

APPENDIX A

STRATIGRAPHIC LOGS AND WELL CONSTRUCTION DIAGRAMS

1996 Boring Logs, Environmental Products & Services

		'ONMEN 'S & SERVI			Subsurfa	ice Log	Hole No.	.:1	Date Sta	rted:	06/03/96
							Sheet	1of 1	Date Fin		06/03/9
Clier		NYSDE(stown Sp		-	Method of	Investigatio	on:Direct pu	sh method, Geopi	robe tooling, 2-ir	ich diamete	er, 4-foot lo ng soil
Locati			nda <u>, N</u> .Y.				probe.				
		: B1113	<u>nua, N. T.</u>		L	Drilling Co	o	Environmental Pr	aduato 8 Soni	Alacth	
		D. Ellsw	orth			Driller:	U L	R. Varno			legrees F, light rain
		T. Burme				Drill Rig:		Concord 9			logicos i , ignicitari
Depth			Sample						Field		Groundwater
(ft.)			Blows		Recovery			nple	Analytic	ai Well	and Other
0_	No.	Depth (ft.)	/6*	N			Desc	ription	Reading	s Detail	
	S1	0-4			3.0	0.0'-0.5' TOP					NO ODOR OBSERVED IN
			1			0.5'-4.0' Tan t trace sand.	io light brown, a	moist, silty CLAY,			SAMPLES 0-19.8
				<u> </u>			ark gray, silty C	LAY, some black			
						coal.			ļ		
_	S 2	4-8			3.5	4.0'-4.4' Medi	um gray CLAY	vn, firm to soft, moist to			
5 -				<u>.</u>		very moist, si		in, unit to solt, moist a	·		
						-					
				<u> </u>							
						7 8'-10 3' Mer	lium valiow/bro	wn, fine to medium SA			
						Becomes me	dium gray, fine	SAND (10.3' -15.4').			SAMPLES WET AT
	<u>S3</u>	8-12			<u>4.</u> 0	-					8.0'
10 -		L									
į											
ſ						1			ļ		
ŀ					· · · · · · · · · · · · · · · · · · ·	-					
ŀ	<u>\$4</u>	12-16			4.0	4					
45											
15 -						15 # 15 5 14	idium gray, sar				
ŀ							ay, fine to med				1
ļ	<u>\$5</u>	16-20	·		3.5				1		19.8'-20' FAINT PETROLEUM
											ODOR
-						1			1		REFUSAL ON
20 🕂						19.8'-20' Rour	ided GRAVEL.				GRAVEL @ 20'
											20' = BOTTOM OF BORING
Γ						1					BORING
┝						1					
Ļ				<u> </u>							
Ĺ											
ſ]					
					· · · · · ·	1					
┝											
Ļ											
]						`				
ſ					••••••••••••••••••••••••••••••••••••••					1	
┝											
L											
Sample	Тур	es:							Backfill We	ll Kev	
		S=Split S									
		R= Rock	Core:						Cement		Native Fili
	1	N = ASTM	D1586						Sand		Bentonite

		ronment s & SERVI			Subsurfa	ce Log	Hole No.	2	Date Starte	ed:	06/03/96
							Sheet	1of 1	Date Finish	ed:	06/03/96
Clier		NYSDEC			Method of	Investigatio		h method, Geoprobe	tooling, 2-inch dia	meter, 4-i	ioot long soil
		stown Spo					probe.				
Locati		Tonawai : B1113	nda, N.Y.		<u> </u>			nvironmental Prod		Marth	~
Projec			orth			Drilling Co Driller:	D.: E	nvironmental Prod R. Varno	Iucts & Services		ar: degrees F, light
		T. Burme				Drill Rig:		Concord 920	10	rain	Jegreco I , igin
Depth	Ē		Sample						Field		Groundwater
(ft.)			Blows		Recovery	1		nple	Analytical	Well	and Other
0_	No.	Depth (ft.)	/6	"N"	(ft.)		Desci	iption	Readings	Details	
	S1	0-4			2.3	0.0-1.0 TOP					NO ODOR OBSERVED IN
						1.0'-4.0' Yello CLAY,	w/brown and g	ay, stiff, slightly moist			SAMPLES 0'-12'
				+							
						-					
				 		40700-0	es to sandy CL				
5 _	<u>\$2</u>	4-8			3.7		es to sancy CL	nı.			
						1					
						7.0°-10.3° Yell	ow/brown, loos	e, clayey, fine SAND.			
				· · · ·		-					
	\$3	8-12		 	4.0	4					SAMPLES WET AT 8.0'
10 -											
						10.3'-11.5' Ye	ilow/brown, fim	a, silty CLAY.			
						11 5-12 0' Ma	dium gray, fine	SAND			
			· · · ·			().J=12,U IVR	raiain gray, ine	SAND.			12' = BOTTOM OF
	· · · · · -								·		BORING
				Ļ							
15 -											
						1					
						1					
						-					
				ļ		-					
20 -											
 7]					
						4					
					<u> </u>	4					i
						1					
				1		1					
-					· ····	1					
						4					
						ļ	N				
										-	
ſ				·		1					
Some!		I			I	I		· · · · ·			
Sample	етур	es: S=Split S	boon.	2"					Backfill Well	rtey	
		R= Rock							Cement		Native Fill
	1	N = ASTN							Sand		Bentonite
										-	

		ronmen S & SERVI			Subsurfa	ace Loa	Hole No.:3	3	Date Starte	ed:	06/03/96
			,				Sheet	1of 1	Date Finish	ned:	06/10/96
Clie		NYSDEC		•	Method of	Investigatio	R	n method, Geoprob			
		stown Spo		Club			probe.				
Locat			nda, N.Y.			1				· · · · ·	
		: B1113				Drilling Co	o.: Env	vironmental Produ	cts & Services	Weath	
Proj. I	-	D. Ellswo T. Burme				Driller.		R. Varno	^		iegrees F, light
Depth	· · · · · · ·	L. Durrne	Sample			Drill Rig:	-	Concord 920		rain	Groundwater
(ft.)	<u> </u>	1	Blows	T	Recovery	1	Sam	ple	Field Analytical	Well	and Other
0	No.	Depth (ft.)		"N"	(ft.)		Descri	ption	Readings	Details	Observations
	S1	0-4			4.0	0.0'-2.0' Dark	brown TOP SC	DIL.			
				1		2.0'-4.0' Yello	ow/brown, mottle	ed, silty CLAY.			
						4					
				_			i				
5 _	S2	4-8			3,3		IGHTE YOROW/DION	m, sandy CLAY.			
											0000 410 0155
							ay, sandy CLAY	Grades to			ODOR AND SHEEN OBSERVED IN
						yellow/brown	at 10.0'.				SAMPLES 6.0'-8.5'
				<u> </u>		-					
	S 3	8-12			4.0						
40				İ							
10 -						1					
						-					
						11.5'-16.0' Me	edium gray/brov	vn, firm, silty SAND.			
	S4	12-16		<u> </u>	4.0	1					
15 –						4					
						 16.0°-17.7° Ye	ellow/brown, wei	, loose, very fine SAND			
	<u> </u>	16-20			4.0	4		,,,			
			<u> </u>			17.7'-18.5' Da	ark gray, mediur	n SAND.			
						18.5'-19.4' De	ark gray/brown C	LAY.			
						19.4'-20.0' SA	AND and GRAV	FI.			
20 -						_	d/brown, soft C				
											21' = BOTTOM OF
ĺ]					BORING
ľ						1					
ŀ						4					
		· · · ·				4					
					·	ļ					
ţ						1	٠,				
ŀ						1					
ŀ	<u> </u>										
[····			
Sampie	е Тур	es:							Backfill Well	Key	
		S=Split S R= Rock	poon: Core:	2"					Cement		Native Fill
	1	N = ASTM	D1586						Sand		Bentonite

.

		onmeni S & SERVIO			Subsurfa	ce Log	Hole No.:4	Date Starte	ed:	06/03/96
							Sheet 1of 1	Date Finist	ned:	06/03/96
Clie		NYSDEC		.	Method of	Investigatio	n:Direct push method, Geo	probe tooling, 2-ir	nch diam	neter, 4-foot long
Least		stown Spo		CIUD			soil probe.			
Locat	· · · ·	Tonawar B1113	10a, N.T.		<u> </u>	Drilling Co	.: Environmental Pro	ducto 9. Consisso	14/2 -41	
Proj. I		D. Ellswo	orth			Driller:	R, Varno		Weath	er. degrees F, light
Geolo	_	T. Burme				Drill Rig:	Concord 92		rain	regrees r, ngnt
Depth			Sample					Field		Groundwater
(ft.) 0	No.	Depth (ft.)	Biows /6"	"N"	Recovery (ft.)		Sample Description	Analytical Readings	Well Details	and Other Observations
	S1	0-4			3.8	0.0'-1.8' TOP	SOIL, trace coal.	MICROTIP PID AFFECTED		
I					· · · · · · · · · · · · · · · · · · ·	1.8'-4.4' Yellow	w/brown, firm, slightly moist, silty CLA	Y. BY RAIN		
						-				
5 –	S 2	4-8			3.4	4.4'-5.5' Sandy	CLAY.			
						5.5'-9.3' Mediu clayey, fine SA	m gray/brown, mottled, loose, ND.			FAINT PETROLEUM
						-				ODOR OBSERVED IN SAMPLES 6.0' - 6.5'
	S 3	8-12			4.0	4				SAMPLES WET AT 6.5
						9.3'-10.1' Yelk	w/brown, firm, silty CLAY.			
10 -						 10.1'-11.3' Yeli	low, medium SAND.			
							y, medium SAND.			
							·			
						-				12' = BOTTOM OF BORING
						-				
15 -						-				
						-				
			_							
20 -						İ				
-									3	
ŀ										
ļ			· · · · · · · · · · · · · · · · · · ·							
L										
ŀ	•		-							
ŀ							٠,			
ŀ										
ŀ										
Sample				Ì				Destation		
Saubi		S=Split S		2"				Backfill Well	ney	
		R= Rock	Core:					Cement		Netive Fill
	1	I = ASTM	D1586					Sand		Bentonite

	1

		onment S & SERVI		Ī	Subsurfa	ce Log	Hole No.:5	Date Starte	ed:	06/03/96
							Sheet 1of 1	Date Finish		06/03/96
Clie		NYSDEC			Method of	investigatio	n:Direct push method, Geopro	be tooling, 2-in	nch dian	neter, 4-foot long
Locat	ion:	town Spor Tonawar		lub			soil probe.			
		: B1113	.			Drilling Co		ts & Services	Weath	
Proj. I		D. Eilswo T. Burme				Driller:	R. Varno			degrees F, light
Depth		1. Duillie	Sample			Drill Rig:	Concord 9200		rain	
(ft.)			Blows	1	Recovery	-	Sample	Field Analytical	Well	Groundwater and Other
0	No.	Depth (ft.)	/6"	-11-	(ff.)		Description	Readings	Details	
	S1	0-4			4.0	0.0'-2.0' TOP	SOIL, trace coal .	MICROTIP PID AFFECTED BY		NO ODOR OBSERVED IN SAMPLES 0.0' - 12.0'
			· · · · · · · · ·	<u> </u>		2.0'-8.0' Light	gray/brown to yellow/brown to red/brown,	RAIN		SAMPLES 0.0 - 12.0
						firm to soft, sil	ty CLAY.			
5 -	<u>S2</u>	4-8			3.6	-				
						-				
						8 (7-9 5' Valler	where with CLAY with the second of			SAMPLES WET AT 6.5'
	_\$3	8-12		<u> </u>	4.0	sand.	w/red, silty CLAY with loose, very fine			
10 -							w/brown, mottled, silty CLAY.			
						11.0°-12.0' Me	dium gray/brown, fine SAND.			
										12' = BOTTOM OF BORING
15 -										
					•					
-										
ļ										
20 -										
ŀ										
F										
									r I	
F									- 	
F							••			
F										
Sample				<u>l</u>				Backfill Well	Key	
		S=Split Sj R= Rock (poon: Core:	_2"				Cement		Native Fill
	N	I = ASTM	D1586					Sand		Bentonite

-										_	
		onment S & SERVI			Subsurfa	ce Log	Hole No	.:6	Date Starte	d:	06/03/96
						Ŭ	Sheet	1of 1	Date Finish	ed:	06/03/96
Cliei	Ga	NYSDE(stown Spo	ortsmen's		Method of	Investigatio	probe.	h method, Geoprobe to			long soil
Locat	· · · · · · · · · · · · · · · · · · ·	Tonawa	nda, N.Y.			· · · · · · · · · · · · · · · · · · ·				, 	<u></u>
-		: B1113				Drilling C	o.: E	nvironmental Prod	ucts & Services	Weathe	
		D. Ellswe T. Burme				Driller:		R. Varno	~~	65-70 c rain	legrees F, light
Depth		T. Durne	Sample			Drill Rig:		Concord 920	·····		Groundwater
(ft.)			Blows		Recovery	-		mple	Field Analytical	Well	and Other
0_	No.	Depth (ft.)	/6"	"N"	<u>(ft.)</u>		Desc	ription	Readings	Details	Observations
	\$1	0-4		<u> </u>	2.5	-	SOIL, trace co		MICROTIP PID AFFECTED BY		
		 				1.5'-6.5' Tan, silty CLAY,	yellow/brown,	mottled, firm to soft,	RAIN		
			·			4					
5 -	S2	4-8		<u> </u>	4.0						
						4					PETROLEUM ODOR
						6.5'-8.0' Grad	es to medium ;	gray,			AND SHEEN OBSERVED AT 6.7
											8' = BOTTOM OF BORING
10 -											
			<u> </u>								
15 -						-					
						-					
						-					
20 -						-					
						1					
-											
ŀ											
											
							•,			ĺ	
Sample	е Тур			L I		<u> </u>			Backfill Well	 Key	
		S=Split S R= Rock							Cement		Native Fill
	I	N = ASTM							Sand		Bentonite

.

·

• .

Client: NYSDEC Gastown Sportsmen's Club Method of Investigation: Direct push method, Geoprobe tooling, 2-inch diameter, 4-foot probe. Location: Tonawanda, N.Y.	06/03/96		Date Started	Hole No. : 7	ace Log	Subsurfa					
Gastown Sportsmen's Club Location: Tonawanda, N.Y. Project No: B1113 Project No: B1113 Depth Sample Diffing Co: Environmental Products & Services Drifting Co: Environmental Products & Services Depth Sample Diffing Co: Concord 9200 Depth Sample O No. Depth Recovery S1 O-4 3.4 OC-2.0" TOP SOL. Analytical Weil Readings Details S1 O-4 3.4 OC-2.0" TOP SOL. Analytical Weil Arrect Deb Arrect Deb S1 O-4 S2 4.8 4.0 O-4.0 5 S2 4.8 4.0 Colstored S1 Grades to sandy CLAY.	06/03/96	~~~				1					
Project No.: B1113 Drilling Co.: Environmental Products & Services Weather: Proj. Mgr. D. Elsworth Drill Rig: Concord 9200 65-70 de Depth Sample Field Analytical Weather: (ft.) No. Depth (ft.) //5" Nr (ft.) Sample Field Analytical Weather: 0 No. Depth (ft.) //5" Nr (ft.) 0.0"-2.0" TOP SOIL MicRomP PID 2.0"-8.0" Yeallow/brown and gray, firm to soft, slightly Micro and gray, firm to soft, slightly Micro and gray, firm to soft, slightly Micro and gray, firm to soft, slightly Micro and gray, firm to soft, slightly Pre And and and and and gray, firm to soft, slightly Pre And and and and and and gray, firm to soft, slightly Pre And and and and and and and gray, firm to soft, slightly Pre And and and and and and and and and and a	long soil	neter, 4-fo	ng, 2-inch dian	probe.	Investigation	Method of I	lub	smen's Cl	town Sport	Gast	
Image: constraint of the second se	grees F, light rai	1	& Services	R. Varno	Driller:	· · · · ·		rth ier	B1113 D. Ellswo	t No.: /gr: gist:	Projec Proj. N Geolo
S1 0.4 3.4 0.0-2.0° TOP SOL. MICROTP PID AFFECTED BY RAIN MICROTP PID AFFECTED BY RAIN 5 52 4.8 4.0 6.0-8.0° Grades to sandy CLAY. 6.0-8.0° Grades to sandy CLAY. 10	Groundwater and Other	1	Analytical		-	_		Błows			(fL)
5 52 4.8 4.0 6.0°-5.0° Grades to sandy CLAY. 6.0°-5.0° Grades to sandy CLAY. 10 1 10 1 10 1 10 1 10 1 11 1 12 1 13 1	Observations		MICROTIP PID	······	0.0'-2.0' TOP	1		/6_			
0 0 <td></td> <td></td> <td></td> <td>w/brown and gray, firm to soft, slightly AY.</td> <td>2.0°-6.0' Yello moist, silty Cl.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				w/brown and gray, firm to soft, slightly AY.	2.0°-6.0' Yello moist, silty Cl.						
						4.0			4-8	\$2	5 _
	ETROLEUM ODOR ND SHEEN BSERVED AT 6.8			s to sandy CLAY.	6.0'-8.0' Gradi						
15	" = BOTTOM OF SORING										10 -
20			r T								15 -
20											
					-						20 -
		-									
											-
· · ·				٠,							-
						······					
Sample Types: Backfill Well Key		.ey	Backfill Well K	1							Sample
S=Split Spoon: 2" Cement R= Rock Core:	Native Fill Bentonite		Cement				2"	Core:	R= Rock (

-		· · · · · · · · · · · · · · · · · · ·								
		onmen s & SERVIO			Subsurfa	ice Log	Hole No. : 8	Date Starte	j :	06/03/96
							Sheet 1of 1	Date Finish	ed;	06/03/96
Clier		NYSDEC			Method of I	nvestigation	Direct push method, Geoprob	e tooling, 2-inch	diamete	r, 4-foot long
	Gas	town Spor			ł		soil probe.	•		
Locati			nda, N.Y.		<u> </u>					
-		B1113				Drilling Co.	Environmental Product	s & Services	Weathe	er:
Proj. I	-	D. Ellswo				Driller:	R. Varno		65-70	degrees F,
Geolo		T. Burme				Drill Rig:	Concord 9200		light rai	T
Depth		r	Sample	.	1	4	Comple	Field		Groundwater
(ft.)			Blows		Recovery		Sample Description	Analytical	Well	and Other
0 -	No.	Depth (ft.)	/6"	"N"	(ft.)		Description	Readings	Details	Observations
	S1	0-4			4.0	0.0-2.0 TOP	SOIL.	MICROTIP PID AFFECTED BY		NO ODOR OR SHEEN OBSERVED
	Ì							RAIN		0.0'-8.0'
1						2.0'-6.0' Tan,	yellow/brown, silty CLAY.			
ł	<u> </u>			ļ		_				
					\$ 					
_	S2	4-8			3.4					
5 _		+0				4				
					<u> </u>					1
1						some black bl	green with tan interbeds, silty CLAY, a			
					1					
										1
1						-				8' = BOTTOM OF BORING
10 -										
]				
		-				4				
				ļ						
					-	1				
15 -						1				
									ļ	
l t										
									, I	
20 -									-	
1		T				I				
					·					
I										
									1	1
							``			
	ļ									
Ī	·									
Sample								Backfill Well H	(ey	
		S=Split Sp	poon:	2"				Cement		Native Fill
		R= Rock (ore:							
	1	N = ASTM	D1586					Sand		Bentonite

...

1.25

		ronmen			Cuberrat.		Hole No			Date Starte	ط	08/00/00
PR	DUCT	S & SERVI	CES, INC.		Subsurfa	ice Log	Sheet	10f 1		ate Starte		06/03/96 06/03/96
Cli	ent:	NYSDEC	2		Method of	Investigatio		sh method, Geoprol				
	tion:		tsmen's C nda, N.Y.	lub		-	probe.			,		
Proj.	Mgr:	: B1113 D. Ellswe T. Burme				Drilling Co Driller: Drill Rig:	o.: E	nvironmental Pro R. Varno Concord 9	D	Services	Weathe 65-70 light ra	degrees F,
Dept	h	····	Sample			Dim tig.			200	Field	- G	Groundwater
(ft_) 0	No.	Depth (ft.)	Blows /6*	"N"	Recovery (ft.)			mple pription		Analytical Readings	Well Details	and Other Observations
	<u>\$1</u>	0-4			4.0	0.0'-2.8' TOP	SOIL.			CROTIP PID		NO ODOR OR SHEEN OBSERVED
Í						2.8'-8.0' Tan,	vellow/brown	mottled, silty CLAY.				0.0 - 0.0
ŧ.							-	· · · · · · · · · · · · · · · · · · ·				
5.	\$2	4-8			3.6							
						-						
												8' = BOTTOM OF
10 ·												BORING
										- - - - - -		
15 -												
15 -												
										Ì		
20 -												
					<u> </u>					1		
										1		
							••					
Sampl	е Туре	es:							Bac	kfill Well H	(ev	
		S=Split Sj R= Rock (ooon: Core:	2"	<u> </u>					ement	vey	Native Fill
		I = ASTM								land		Bentonite

PRO		/ironme s & servi			Subsurfa	ice Log	Hole No.: 10		Date Starte	d:	06/03/96
							Sheet	1of 1	Date Finish		06/03/96
Clier		NYSDEC		51	Method of	Investigation	1: Direct push	method, Geopi	obe tooling, 2-i	nch diar	meter, 4-foot long
Locat		town Spoi Tonawai	nda, N.Y.	סטוג			soil probe.				
		B1113				Drilling Co	Enviro	nmental Produ	rts & Services	Weath	
Proj. N		D. Ellswo	orth			Driller:		R. Varno		1	degrees F,
		T. Burm				Drill Rig:		Concord 920	0	light ra	
Depth	İ		Sample	· · · · ·		4	Comul		Field		Groundwater
(ft.) 0 _	No,	Depth (ft.)	Blows /6"	<u>"N"</u>	Recovery (ft.)		Sample Descriptio		Analytical Readings	Well Details	and Other Observations
	S1	0-4			3.5	0.0'-2.2' TOP	SOIL.		MICROTIP PID AFFECTED BY RAIN		NO ODOR OR SHEEN OBSERVED
						2.2'-4.0' Tan, CLAY.	yellow/brown, firm,	slightly moist, silty			
·			_				gray, yellow/brown,				
5 -	S2	4-8		<u> </u>	3.0		gray, yanom brown,				
						-					
											2 - DOTTOM OF
10 -											8' = BOTTOM OF BORING
]					
ļ											
-											i
15 -											
ł											
-											
ļ											
ļ											
20 4											
ſ											
F		· · · · · · · · · · · · · · · · · · ·									
F	\rightarrow										
-						۰.				ĺ	
ŀ											
ample		es: S=Split S	000n.	2"					Backfill Well M	(ey	
		R= Rock C							Cement		Native Fill
	N	I = ASTM	D1586				[Sand		Bentonite

PR	En DDUCT	Vironm	ental CES, INC.		Subsurfa	ace Log	Hole No.: 11	11.1 <u>i</u> 1	Date Starte		06/03/96
		NYSDE(rtsmen's (Method of	Investigation	Sheet 1of 1: Direct push method, G soil probe.	ieoprobe t	Date Finish ooling, 2-inch	ed: i diamete	06/03/96 er, 4-foot long
Proje Proj. Geol	Mgr: ogist:	.: B1113 D. Ellswe			<u> </u>	Drilling Co Driller: Drill Rig:	.: Environmental P R. Va Concord	imo	Services	Weathe 65-70 de light rain	egrees F,
Dept (ft.) 0			Sample Blows /6*		Recovery		Sample Description		Field Analytical	Well	Groundwater and Other
0	S1	Depth (ft.) 0-4	/6	"N"	(ft.) 	0.0-2.0 TOP		ļ	Readings MICROTIP PID AFFECTED BY RAIN	Details	Observations NO ODOR OR SHEEN OBSERVED 0.0' - 8.0'
						2.0'-8.0' Yellov Grades to med	w/brown, mottled, silty CLAY. dium gray at 4.0'.				
5	S2	4-8			1.2						
											8' = BOTTOM OF
10 ·											BORING
15 -											
								-			
20 -											
		·								1	
			· · · · · ·						ł		
						• •				1	
Sampl								R	ackfill Well K	ev	
		S=Split Sj R= Rock C	ore:						Cement		Native Fill
	ł	N = ASTM	D1586				1 1		Sand		Bentonite

	Env	vironme	ntal	T			1	<u> </u>	<u> </u>		
PRO		S & SERVI		Ì	Subsurfa	ce Log	Hoie No	.: 12	Date Star	ted:	06/03/96
			<u> </u>				Sheet	1of 1	Date Finis		06/03/96
Clie		NYSDEC town Sport		Jub	Method of	Investigati	on: Direct ;	oush method, Ge	oprobe tooling, 2	l-inch dia	meter, 4-foot long
Locat							soil pro	ide.			
		: B1113			1	Drilling C	F	nvironmental Pro	ducts & Services	Weath	or:
		D. Eliswo	orth			Driller:		R. Varno			legrees F,
Geole	ogist:	T. Burme	eier			Drill Rig:		Concord 9		light rai	n
Depth		r	Samp	e					Field		Groundwater
(ft.) 0_	No.	Depth (ft.)	Blows /6*	<u>-N-</u>	Recovery (ft.)			mple cription	Analytica Readings		and Other Observations
	<u>S1</u>	0-4			3.6	0.0'-2.2' TOP	SOIL.		MICROTIP P AFFECTED BY RAIN		NO ODOR OR SHEEN OBSERVED 0.0' - 8.0'
		<u> </u>	•			2.2'-8.0' Tan,	yellow/brown,	mottled, silty CLAY.			0.0 - 0.0
						1					
5 _	_\$2	4-8			3.7	-					
							·····				
											8' = BOTTOM OF BORING
10 -											
			<u> </u>								
15 -											
20 -											
ŀ											
						٠,					
F											
Sampi	 e Typ								Backfill Wel		
		S=Split S R= Rock (_2"					Cement		Native Fill
		I = ASTM							Sand		Bentonite

		ironme Is & Serv			Subsurfa	ce Log	Hole No.:13 Sheet	1of 1	Date Starte Date Finish		06/04/ 06/04/
Clier .ocati	Gast	NYSDEC own Spor Tonawar	tsmen's C	Club	Method of	Investigatio	1	method, Geopre	••••		
Projec Proj. N	t No.: /igr:	B1113 D. Ellswa	orth			Drilling Co Driller:	o.: Enviro	nmental Produc R. Varno			er. degrees F,
	gist:	T. Burme				Drill Rig:		Concord 9200		cloudy	
Depth (ft.)			Sample	e	B	-	Sample	2	Field		Groundwate
0	No.	Depth (ft.)	Biows /6"	"N"	Recovery (ft.)		Descripti		Analytical Readings	Well Details	and Other Observation
	S 1	0-4			3.2	0.0'-1.8' Crus	ihed limestone GR	AVEL and CLAY, FIL	-L.		
						1.8'-4.2' Media	um grav/green and v	eliow/brown CLAY,			
						trace slightly r	noist sand,	, ,			
5 _	S2	4-8			2.2	4.2'-11.0' Tar	n, yellow/brown, sit	IY CLAY.			
5 –						1.					
						-					
						-					SAMPLES WET
ŀ	<u>_</u> S3	8-12			4.0	-					AT 8.0'
10 +						-					PETROLEUM ODOR AND SHE
ļ							<i></i>				OBSERVED IN SAMPLES
ļ						11.U-14.U M	edium brown, fine i	o medium SAND.			8.0' - 10.0'
·	S4	12-16			4.0						
5 🕂						14.0'-16.0' Gi some fine bla	rades to gray, fine t ck particles (unkno	o very fine SAND, wn).			
						1					
	S5	16-20			4.0	16.0'-19.0' Me SAND.	dium yellow/brown,	loose, medium			
ſ						1			1		
ľ		1				1					Hydrocarbon odor 18.0'
						19.0°-20.0° Gr	ades to medium g	ray, firm, fine SAND.			Free oily substand 19.0' - 22.0'
• +					20	20.0'-22.0' Gr	ades to medium S	AND.			19.0 • 22.0
ŀ	S6	20 -22			2.0	1					
ŀ						22 0' Refueat	on black, rounded	GRAVEL			
ł						EE.U Keiusai	UII DIACA, IUGIIUGU	GRAVEL.			22' = BOTTOM OF BORING
ŀ						ł				-	
┝					<u> </u>	-					
Ļ							`				
							x				
ample	е Тур								Backfill Well	Key	
		S=Split S R= Rock	poon: Care:	2"	<u> </u>			a Lines	Cement		Native Fill
			D1586								Bentonite

PRO		ironme TS & SERV		2.	Subsurfa	ace Log	Hole No.:14	Date Starte	ed:	(
							Sheet 1of 1	Date Finish		
Clier Locati	Gast	NYSDEC town Sport Tonawan	smen's C	lub	Method of	Investigatio	n: Direct push method, Geo soil probe.l	probe tooling, 2-i	nch dian	neter, 4-foo
		B1113			1	Drilling Co	.: Environmental Prod	ucts & Services	Weathe	er:
		D. Eliswo	rth			Driller:	R. Varno		ł	rees F, clo
		T. Burmei				Drill Rig:	Concord 92	00		
Depth			Sampl	е				Field		Ground
(ft.) 0_	No.	Depth (ft.)	Blows /6"	"N"	Recovery		Sample Description	Analytical Readings	Well Details	and C Observ
	S1	0-4			3.3	0.0'-0.5' GRAV 0.5'-4.0' Medin	/EL_FILL. um yellow/brown, sitty CLAY.			
						-				
5 –	S2	4-8			3.2	4.0'-10.0' Tan. CLAY.	, yellow/brown, mottled, sandy, silty			
			·							
	S 3	8-12			4.0	-				
10 -						10.0'-15.0' Yel medium SANI	low/brown, loose, fine to D.			SAMPLES V
	S4	12-16			4.0					
15 -						15.0'-16.0' Me	dium gray, fine, clayey SAND.			
	S5	16-20			4.0		ny, loose, wet, fine SAND. Grades to firm, medium to fine SAND 7.			
										Free oily su
20 -	S 6	20 -22			4.0					19.5' - 22.5
ļ							k gray GRAVEL.			Strong petro
						22.7'-24.0' Rec	Idish brown, soft CLAY.			odor in grav
										24' = BOTT BORING
Sample	e Typ	es:				[Backfill Well	Kev	. <u>.</u>
·		S=Split S R= Rock	poon: Core:	2"				Cement		Nativ

.

٠

PR		VIFONME		-	Subsurfa	ce Log	Hole No.:			Starte		06/04/9
			<u> </u>				Sheet	1of 1		Finish		06/04/9
Clier Locati	Gast	NYSDEC own Sport Tonawar	tsmen's C	lub	Method of	Investigation	n: Direct pusł probe.	n method, Geoprot	be tooling, 2-ii	nch dia	meter, 4-i	foot long soil
		B1113			·	Drilling Co	.: En	vironmental Pro	ducts & Ser	vices	Weathe	er:
Proj. N	/gr:	D. Eilswo	orth			Driller:		R. Varno	•		65 deg	rees F, cloudy
Geolo		T. Burme	ier			Drill Rig:		Concord 9	200			
Depth			Sample	e		4	Sam		Fi	əld		Groundwater
(ft.) 0 _	No.	Depth (ft.)	Blows /6*	"N"	Recovery (ft.)		Descri	•		iytical dings	Well Details	and Other Observations
	S 1	0-4			4.0	0.0'-2.0' Crush	ed GRAVEL a	KICLAY FILL.				
	<u> </u>						ım yellow/brow	a, mottled, sitty CLAY	<i>.</i>			
						some sand.						
5 _	S2	4-8		-	4.0							
						-						
	S 3	8-12		 	4.0	8.0'-10.0' Yelk silty CLAY.	w/brown, loose	to firm, sandy,				SAMPLES WET AT 7.0
10 -												
		·				7	dium yellow/bn	own, sandy, silty CLA	Y.			
·	S 4	12-16		•	4.0	11.5-13.5 MB	idium gray, fine	SAND.				
		12-10			4.0	13.5'-15.0' Gra	iy/brown CLAY.					
15 -						15.0'-19.0' Med yellow/brown a	dium/gray, med	lium SAND. Grades to	D			Free oily substance
	S5	16-20			4.0		. 10.0 .					15.0' - 20.0'
20 -						19.0'-20.0' Mec	lium gray, silty	SAND.				
						-						20' = BOTTOM OF BORING
						-						
									2			
										·		
Sampl	е Тур	es: S=Split S	poon:	2"					Backfil	i Well	Key	
		R= Rock	Core:	<u>_</u>					Cerne	mt		Native Fill
	1	N = ASTM							Sand	I		Bentonite

PR		VITORIME TS & SERVIC			Subsurfa	ace Log	Hole No.:16		Date Started	l:	06/05/9
							Sheet	1of 1	Date Finishe	d:	06/05/9
Clien	Gast	NYSDEC town Sport Tonawan	smen's C	lub	Method of I	nvestigation:	Direct push met probe.	hod, Geoprobe t	ooling, 2-inch	diamet	er, 4-foot long so
rojec	t No.:	B1113	· · ·		<u> </u>	Drilling Co.:	Environm	nental Products	& Services	Weathe	er.
^p roj. N	lgr:	D. Eliswori	th			Driller:		R. Varno		55 de	egrees F, cloudy
Geolog	gist	T. Burmeie	er			Drill Rig:	(Concord 9200		and w	indy
)epth			Sample		 .	4			Field		Groundwater
(ft.) 0	No.	Depth (ft.)	Blows /6*	"N"	Recovery (ft.)		Sample Description		Analytical Readings	Well Detai l s	and Other Observations
	S1	0-4			3.3	0.0'-3.0' Crush	ed, fine GRAVEL FILI	L.	MICROTIP PID BACKGROUND AT 6.0 PPM		
						3.0'-4.0' Green	/gray CLAY with black	patches.			
5 _	<u>\$2</u>	4-8			0.0	-					
						-					
	53	8-12			3.4	8.0'-9.0' Green	/gray CLAY.		14.4 ppm		
10 -						9.0'-12.0' Yella medium SAND	w/brown, firm to loose).	, fine to	79		
									7.8 ppm		Moderate Hydrocarbon Odor and Sheen at
	<u>54</u>	12-16			3.4	12.0'-16.0' Gra interbeds.	en/gray, fine SAND, oo	ccasional clay			8.0-9.0
5 -											
	S 5	16-20			3.7	16.0'-19.5' Gre Grades to firm	en/gray, loose, mediur at 17.0', clay interbeds	n to fine SAND. 5. thin black zones.	8.0 ppm		Free oily substance 16.0' - 23.0'
-							• •				
0 -						19.5'-23.0' Loo	se, wet, fine to silty SA	ND.			
-	<u>56</u>	20 -24			3.0				20-55 ppm		
ŀ											
				-		23.0-24.0 Red	dish brown, soft, plasti	IC CLAY.			24' = BOTTOM OF
											BORING
ŀ											
F		· ·									
ample	Туре								Backfill Well K	ev	
		S=Split Spo R= Rock C	oon:	2"					Cement		Native Fill
	١	N = ASTM [01586						Sand		Bentonite

		-					<u> </u>			
PR		VIRONME STS & SERV		.	Subsurfa	ce Log	Hole No.:17	Date Starte	ed:	06/05/96
						•	Sheet 1of 1	Date Finish	ned:	06/05/96
Clier	nt	NYSDEC	;		Method of	Investigatio	n:Direct push method, Geoprob	e tooling, 2-inch	diameter	, 4-foot long soil
ļ	Gas	town Spor	tsmen's C	Club		_	probe.			
Locati	on:	Tonawar	ida, N.Y.							
Projec	t No.	: B1113				Drilling Co	D.: Environmental Production	cts & Services	Weathe	er:
Proj. I	vlgr:	D. Ellswo	orth			Driller:	R. Varno			rees F, cloudy
Geolo	gist:	T. Burme	ier			Drill Rig:	Concord 920	<u> </u>	and wi	
Depth	L		Sampl	e			Sample	Field		Groundwater
(ft.)			Blows		Recovery			Analytical		and Other
0_	No.	Depth (ft.)	/6"	"N"	(ft.)		Description	Readings	Details	Observations
	S1	0-4			3.4	0.0'-0.5' GRA	VEL FILL. e to green GRANULAR MATERIAL.			
				1		1	-			
i					+	-				
				L						
1						3.) -4.2 Lign	t brown to yellow/brown, silty CLAY.			
					4.0	4.2'-8.0' Black	k to dark gray/gr een SiLT.			
5 –	S2	4-8			4.0	-				
						1				3
						8 0'-9 2' Medi	um gray, sitty CLAY.			
	\$3	8-12			4.0	0.0-3.2 1100				
					9.2'-11.0' Bla	ck to dark gray/green, silty CLAY.				
10 -				1	1					
						11 0.19 5 6	ay/green to yellow/brown, mottled,			SAMPLES WET
						fine SAND.	aygroon to yellowellown, monted,	1		WATER AT 10.5'
	S4	12-16			4.0					
		12-10		<u> </u>	4.0	40 51 46 67 7.				
						13.5+16.0 20	one of tan, loose, fine SAND.			
15 -										
						16.0°-19.5" No	on-cohesive.			Free oily substance
	S5	16-20			4.0	-				16.0 - 22.0
								15 ppm		
						19.5°-20.0° M	edium brown CLAY.			
20 -		· · · · · · · · · · · · · · · · · · ·		<u> </u>			ose, fine SAND.			
	S 6	20 -22			3.0					
	<u>-</u>				1	1				
		<u> </u>			<u> </u>	22.0-24.0 Re	addish brown, soft CLAY, some			
							liameter pebbles.			
				1	1				Foundation	24' = BOTTOM OF
		<u> </u>				-				BORING
					<u> </u>					
				1						
					1	1				
		<u> </u>			<u> </u>	4				
		<u> </u>		I	<u> </u>	- I			J	L
Samp	e Ty	Des:		~"				Backfill Wel	кеу	
		S-Split &	Spoon: Core:					Cement		Native Fill
							- Telenstan	Sand		Bentonite
		N = ASTN	1 D1586							

PRO		VIFONME TS & SERV			Subsurfa	ce Log	Hole No.:18		Date Starte		06/05/96
						<u>.</u>	Sheet	1of 1	Date Finish		06/05/96
Clier Locati	Gas	NYSDEC town Sport Tonawan	tsmen's C	lub	Method of	Investigatio	n:Direct push method probe.	d, Geoprobe t	ooling, 2-inch	diameter	r, 4-foot long soil
		: B1113	ua, 14. L.		1	Drilling Co	Fovironme	ntal Products	& Services	Weathe	er:
		D. Ellswo	orth			Driller:		R. Varno			grees F, cloudy
-	_	T. Burme				Drill Rig:	Co	ncord 9200		and w	rindy
Depth			Sampl	e					Field		Groundwater
(ft.) 0	No.	Depth (ft.)	Blows /6*	"N"	Recovery (ft.)		Sample Description		Analytical Readings	Well Details	and Other Observations
	S1	0-4			3.2	0.0" -2.2" Crus	shed GRAVEL FILL.	·			NO ODOR DETECTED 0.0'-24.0'
						2.2" - 3.0" CLA	IY FILL.				
						3.0" -3.5" CO/ 3.5" - 5.0" Gri	NL. sen/gray CLAY, some woo	d.			
5 _	_S2	4-8			4.0						
						-	ow/brown, crumbly SILT, n				
						6.2' - 9.0' Gre gray/black.	en/gray, silty CLAY, grade	s to dark			
	53	8-12		_	4.0						
						9.0° - 11.0° Lij	ght green/gray mottled, den	ise CLAY.			
10 -					1						
						11.0 - 12.0 ነ	ellow/brown CLAY,				
	S4	12-16			0.5	12.0' -17.5' M	edium gray, loose, fine SAI	ND.			
	07	12-10			0.5						
		····			1	4					
15 -						4					
	<u>S5</u>	16-20			3.0						
						17.5° - 20.0' M	edium gray/brown, soft CL	AY.			
						-					
20 -						20.0' -21.5' M	edium gray/brown SAND.				
	S6	20 - 24			4.0						
							AND and subrounded GR	AVEL.			
		1				22.5' - 24.0' R	eddish brown, soft CLAY.				
						<u> </u>	· · - · · · · · · · · · · · · · · · · ·				24' = BOTTOM OF BORING
						-					
						-					
						-					
Sampl	e Typ	Des:							Backfill Well	Key	
		S=Split S	Spoon:						Cement		Native Fill
		R= Rock						11117133111111	Sand		Bentonite
		N = ASTM	1 D1586								

. .

PR		vironme			Subsurfa	ce Log	Hole No.:1		Date Starte		06/05/96
							Sheet	1of 1	Date Finish		06/05/96
Clier		NYSDEC town Sport		lub	Method of	Investigatio	Direct push probe.	n method, Geoprob	e tooling, 2-inch	diameter	r, 4-foot long soil
Locati		Tonawan					p. 000.				
		: B1113	·		<u> </u>	Drilling Co	o.: Env	rironmental Produ	cts & Services	Weathe	er:
Proj. I			orth			Driller:		R. Varno			grees F, cloudy
Geolo	gist:	T. Burme	ier			Drill Rig:		Concord 920	0	and w	rindy
Depth		· · ·	Sampl	e		_	0		Field		Groundwater
(ft.)			Blows		Recovery		Sam Descrij		Analytical Readings	Well Details	and Other Observations
0_	<u>No.</u> S1	Depth (ft.)	/6*	"N"		0.0' -3.0' GR/			Readings		NO ODOR
:		0-4			3.3	-					DETECTED 0.0-24.0
						}					
						3.0° -4.0' Tan,	, silty CLAY.				
						4.0° - 8.0° Blac	ck, organic, claye	y SILT, partly crumbly a	nd		
5 _	S2	4-8			4.0	granular. Gra		an and yellow/brown,			
			· · · · ·	ļ							
						-					
				<u> </u>		8.0" - 10.0" Lig	ht gray/green, si	Ity CLAY.			
	<u>S3</u>	8-12	·		3.4	-					
10 -											
10							ottled, fine to me Gray/green CLA				
							Fine to Medium S				
						12.0° - 15.5° G	irav/brown. Joose	, wet, fine SAND.			
	_S4	12-16			4.0	-		,,			
				ĺ							
15 -						15 5 - 16 0 0	iray/brown, silty (
					+). Grades to silty			
	S5	16-20			2.0	at 18.5' - 20.0'					
				ļ							
			• • • • • • • • • • • • • • • • • • • •								
20 –						-					
	S 6	20 -24		ŀ	4.0						
						22.5' - 23.2' G	Gray, angular to m	ounded GRAVEL.			
						-	leddish brown, so				
						23.2 - 24.0 K	courisit provisi, se				:
											24' = BOTTOM OF BORING
						1					
		1-				4					
						-					
Sampl	e Tvr	es:		•					Backfill Weil	Kev	
	- • 78	S=Split S	poon:	2"	•					Allin	
		R= Rock	Core:						Cement		Native Fill
		N = ASTN	D1586						Sand		Bentonite

PR		/ironme TS & SERV			Subsurfa	ce Log	Hole No.: Sheet	:20 1of 1	Date Started		06/06/9 06/06/9
Clier Locati	Gast	NYSDEC own Sport Tonawan	smen's Cl	ub	Method of I	nvestigation:		h method, Geoprobe to			
		B1113				Drilling Co.	E FI	nvironmental Produ	cts & Services	Weathe	аланан айталан br>Экспектериятан айталан а
Proj. N		D. Eliswoi	rth			Driller:	-	T. Osier			-80 degrees F,
Geolo	-	T. Burmei				Drill Rig:		Concord 9200	1		nny
Depth			Sample	>					Field		Groundwater
(ft.) 0	No.	Depth (ft.)	Blows /6*	"N"	Recovery (ft.)			nple ription	Analytical Readings	Weil Details	and Other Observations
	S1	0-4			2.3	0.0'-1.1' GRAV	ÆL FILL.				NO ODOR
				· · · · · · · · · · · · · · · · · · ·		1.1'-4.5' COAL black SILT FI		NULATED MATERIAL,			0.0° - 24.0°
5 _	S2	4-8			3.5	4.5'-6.0' Yellov	v/brown, mott	ied, dense CLAY.			
						-	•	w/brown, mottled, soft, , thin, fine SAND layers.			
	<u>S3</u>	8-12			4.0	8.0'-9.4' Tan, y	ellow/brown,	silty CLAY.			
10 -						9.4'-12.0' Yello	w/brown, sof	t to dense, sitty SAND.			
					4.0	12.0'-13,4' Yell	ow/brown, loo	ose, wet, fine SAND.			
	S4	12-16				13.4'-16.0' Mec sand.	dium gray/bro	wn, silty CLAY with fine			5
15 -						•					
	<u>55</u>	16-20			4.0	16.0'-19.1' Yell	ow/brown, loo	ose, fine SAND.			
						19.1'-19.9' Gra		dy SILT. VEL. 2° in diameter.			
.0 –	S 6	20 -24			4.0	20.0'-23.2' Med					
						23.2'-23.4' GR 23.4'-24.0' Red	AVEL and SA Idish brown C	ND. LAY.			
											24" = BOTTOM OF BORING
ample	е Туре	es:	<u></u>						Backfill Well K	ey	<u> </u>
		S=Split Sp R= Rock (000n:	2"							Native Fill
		R= Rock (Core:						Cement		
		N = ASTM							Sand		Bentonite

······

.

PR		VIRONMO		;.	Subsurfa	ce Log	Hole No.:21		Date Started		06/06/96
0					Beath			o <u>f 1</u>	Date Finishe		06/06/96
Clien	Gast	NYSDEC town Sport Tonawar	tsmen's C	lub	Method of li	nvestigation:	Direct push method, G probe.	eoprobe to	ooling, 2-inch	diamete	r, 4-foot long soil
		B1113			<u> </u>	Drilling Co.	Environmenta	Products	& Services	Weathe	 F.
Proj. N		D. Ellswo	rth			Driller:	T. O				30 degrees F,
Geolo	gist:	T. Burme				Drill Rig:	Conco	rd 9200		sunny	
Depth		r	Sampie)	·	4	Comple		Field		Groundwater
(ft.) 0	No.	Depth (ft.)	Blows	"N"	Recovery (fl.)		Sample Description		Analytical Readings	Well Details	and Other Observations
	\$1	0-4			2.6	0.0'-5.8' CIND	ERS, FILL.		MICROTIP PID		
					2.0						
						-					
					·····	-		:			
5 -	S2	4-8			2.3			-			
						5.8'-8.0' Black	. soft SILT.				HYDROCARBON
											ODOR OBSERVED AT 5.8'- 8.0'
						1					
						8.0'-11.0' Blac	k PEBBLY MATERIAL.				SATURATED WITH
	_\$3	8-12			3.6				20.0-30.0 ppm		OILY SUBSTANCE
10 -											AT 8.0 TO 12.0
						11.0'-12.0' Tar	i, soft SILT.				
					ļ	1					12' = BOTTOM OF BORING
15 –											
						-					
20 -											
		-				1					
						ł		1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -			
						1					
						1					
				<u> </u>							
Sample								I	Backfill Well H	(ev	
	.,	S=Split Split poon:	<u>2"</u>					-	,		
		R= Rock	Core:						Cement		Native Fill
	I	N = ASTM	D1586						Sand		Bentonite

PR		VIRONME TS & SERV			Subsurfa	ce Log	Hole No. Sheet	:22 1of 1	Date Starte		06/06/96
Clie	nt:	NYSDEC		I_	Method of	Investigatio		sh method, Geoprob	Date Finish		
		town Spor		Club		moongane	probe.	an meanod, Geopher	e tooking, zanon	Giannota	, - loot ong oo
Locat		Tonawar	<u>ida, N.Y.</u>		<u> </u>	<u>.</u>					
		: B1113				Drilling Co	p.: Er	vironmental Produ	icts & Services	Weath	
		D. Ellswo T. Burme				Driller:		T. Osier	~	1	80 degrees F,
Depth	1	I. Buime	Sampl	•		Drill Rig:		Concord 920		sunny	Groundwater
(fL)	"		Blows		Recovery		Sar	nple	Field Analytical	Weli	and Other
0	No.	Depth (ft.)	/6"	-14-	(ft.)		Desci	ription	Readings	Details	
	<u>S1</u>	0-4		_	3.0		VEL, CINDERS MATERIAL, FIL	, BRICK, and tan L.			
	<u> </u>					2.0'-4.0' Tan.	sandy, silty CL	AY.			
		4-8	<u> </u>	<u> </u>	1.6		lium gray/greer	ı to yeliow/brown, mottled	.		HYDROCARBON ODOR OBSERVED AT
5 -	02				1.0	_ silty CLAY.					4.0° to 11.0°
						-					
	\$3	8-12			4.0						
10 -						-					
				 		_					SATURATED WITH
	S4					12.0°-13.0' Fir	he, sandy GRA	ÆL.			OILY SUBSTANCE AT 11.0' TO 20.0'
	34	12-16			3.5	13.0'-14.0' Gr	ay to yellow/bro	wn, soft CLAY.			
15 -						14.0'-16.0' Me	idium gray/gree	m, fine, clayey SAND.			
	S5	16-20			2.8	16.0'-17.0' Me	dium gray/brov	vn, semi-firm SILT.			
						17.0°-20.0° Me	dium gray/brov	m, sandy CLAY.			
20 -							·				20' = BOTTOM OF BORING
						-					
						-					
						-					
						-					
Samp	le Typ		D007.	-					Backfill Well	Key	
		S=Split S R= Rock	Core:						Cement		Netive Fill
		N ≖ ASTM	D1586						Sand		Bentonite

PR		VIRONMO IS & SERVIC			Subsurfa	ace Log	Hole No.:23 Sheet 1of 1	Date Starte Date Finish	_,	06/07/s 06/07/s
Clier _ocati	Gas	NYSDEC town Spor Tonawa			Method of I	nvestigation:	Direct push method, Geoprobe tool probe.			
Projec Proj. N Geolo	Agr:	B1113 D. Eliswo T. Burmei	rth		±	Drilling Co.: Driller:	T. Osier	s & Services		5 degrees F,
	yısı.	I. Durme				Drill Rig:	Concord 9200	1	Cloudy a	and rainy
Depth (ft.) 0	No.	Depth (ft.)	Sample Blows /6*	"N"	Recovery (fl.)		Sample Description	Field Analytical Readings	Well Details	Groundwater and Other Observations
• -	S1	0_4			1.4	0.0'-4.0' Crush FILL.	ed GRAVEL, BRICK, and tan silty CLAY	I Treadulige		COSEIVAUUNS
_	S 2	4-8			3.2	4.0'-8.0' Light i	prown, siłty CLAY. k or gray/green at 7.2°.			
5 _		4-0					ĸ or gray/green at /2 ,			
	\$3	8-12			0.0					SATURATED WIT OILY SUBSTANCE AT 7.2" TO 24.0"
10 -										
	S4	12-16			4.0	12.0'-15.5' Yell	ow/brown, soft, silty CLAY.			
						•				
15 -	S5	16-20				15.5'-20.0' Med wet at 16.0'. Gr	lium gray/brown, fine SAND. Becomes ades to silty SAND at 18.0'.			
		10-20			4.0					
20 -						20.0'-20.8' Gray	//green, very soft, silty CLAY.	:		
	S6	20 -24			4.0	1	nse SAND and rounded GRAVEL. dish brown, very soft CLAY.			
					·					
										24' * BOTTOM OF BORING
ample	э Туре	s: S=Split Sp		<u>~</u>		L		Backfill Well ł	(ey	
		R= Rock (N = ASTM	Core:	<u> </u>				Cement Sand		Native Fill Bentonite

PR		IFONME		c.	Subsurfa	ice Log	Hole No.:24	Date Started		06/07/9
Clien	<u> </u>	NP/0050					Sheet 1of 1	Date Finishe		06/07/9
	Gast	NYSDEC		lub	Method of	nvestigation:	Direct push method, Geoprobe tool probe.	ing, 2-inch diame	ter, 4-foc	ot long soil
		Tonawan B1113	da, N.Y.			D-111 D-				
Proj. N		D. Ellswor	th			Drilling Co.: Driller:	Environmental Produc T. Osier	ts & Services	Weath	er. 75 degrees F,
Geolo		T. Burmei				Drill Rig:	Concord 9200			and rainy
Depth			Sample	e			00110010 0200	Field	0.000)	Groundwater
(ft.)		1	Blows	1	Recovery	-	Sample	Analytical	Well	and Other
0	No.	Depth (ft.)	/6"	71	(ft.)		Description	Readings	Details	Observations
	S1	0-4		[4.0	0.0'-2.0' Black	CINDERS, GRAVEL, CLAY and SAND.	MICROTIP PID AFFECTED BY		
					ļ			RAIN		
						Grades to med	green to yellow/brown, mottled CLAY. lium brown with gravel at 4.0'. w/brown at 7.0'.			
						-				FAINT HYDROCARBON
5 _	<u>\$2</u>	4-8			4.0	-				ODOR OBSERVED
						1				
ĺ						semi-firm SILT	w/brown and gray, . Increasing percent of			
	<u>S3</u>	8-12			3.0	fine sand at 8.0) -12.0'.			
10 -						-				
						-				
ŀ	S4	12-16			3.0	12.0'-16.0' Gra	y and yellow/brown, firm to soft,			
ļ		12-10			3.0	fine SAND, trac	æ coarse sang.			
15 -								-		
ļ						16.0'-20.0' Grav	y/brown to specided.			
-	S5	16-20			4.0	fine to medium				
-]				
20 +	S6	20 -24			1.0	20.0'-24.0' Fine	to medium SAND.			
-										
F					<u></u>	24.0' Reddish	Drown CLAY.			
-										24' = BOTTOM OF BORING
ļ										
F										
ample	Туре	L s:		I		[Backfill Well K] ev	
		S=Split Sp R= Rock C	oon:	2"				Cement		Native Fill
		I = ASTM								Bentonite

•

PR		vironme TS & SERV		.	Subsurfa	ice Log	Hole No.	:25	Date Started	d:	06/10/9
							Sheet	1of 1	Date Finishe	ed:	06/10/9
Clier		NYSDEC			Method of	nvestigation:		sh method, Geoprobe	tooling, 2-inch dian	neter, 4-f	oot long soil
		town Sport		ub			probe.				-
Locati Projec		Tonawan B1113	ida, N.Y.		<u> </u>					,	
Proj. N		D. Ellswor	rth			Drilling Co.	: E	nvironmental Prod	ucts & Services	Weath	
Geolo	-	T. Burmei				Driller: Drill Rig:		T. Osier		75 deg	rees F, overcast
Depth			Sample					Concord 920		ļ	0
(fL)			Blows	ř –	Recovery	-	Sa	npie	Field Analytical	Well	Groundwater and Other
0	No.	Depth (ft.)	<i>1</i> 6*	*N*	(ft.)		Desc	ription	Readings	Details	Observations
	S1	0-4			3.0	0.0'-4.0' Tan, g	granular FILL	· · · · · · · · · · · · · · · · · · ·	MICROTIP PID		Coscivations
					3.0	4					
					<u> </u>	-					
_ 1	S 2				<u> </u>	4.0'-5.5' Mediu	m brown to b	lack, granular FILL.			FAINT HYDROCARBON
5 -	- 32	4-8			3.1	-			54.0 ppm		ODOR OBSERVED
		<u> </u>				5.5'-12.0' Gray	green, slight	y mottled,			7.0 10 23.2
						firm to soft (at Grades to light	o.u), saty CL t pink to vello	AY. w/brown, mottled.			
						1			20.0 ppm		
j						-					
		8-12			2.7	4					
10 -											
(
ſ											
ŀ						12 0°-15 2' Yell	ow/brown ve	y fine to fine SAND.	Í		
_	<u>S4</u>	12-16			4.0			y mo to mile or the.			
		i									
15 -						15.2'-16.0' Gray	v/brown.siltv	sandy CLAY			
ŀ								vn, loose, wet, very fine			
F	<u>\$5</u>	16-20			3.0	to fine SAND.	ium grayiorov	are, rouse, wer, very line			
				Í							
ſ											
F		·			• <u>.</u>	18.9'-20.0' Fine	SAND.				SATURATED WITH
:o +						00 // 00 // Ei	4- 1 4- P 6				OILY SUBSTANCE AT 18.9' TO 23.2'
	S6	20 - 24			3.2	20.0'-23.0' Fine	to Medium S	and.			
Γ											
ŀ											
-			· · ·			23.0'-23.2' Rour	nded GRAVE	.			
						23.2'-24.0' Red		AY on the tip of the		Summing 1	23.2" = BOTTOM OF
[T					sampler.					BORING
·											
⊢											
Ļ										Í	
ļ				ļ							
Γ											
F				<u></u>							
<u> </u>											
mpie	Туре	s: S=Split Spo	oon:	2"					Backfill Well Ke	ey	
	I	R= Rock C	ore:	<u> </u>					Cement		Native Fill
									Sand		Bentonite
			00010								

PR		vironme TS & SERV		c.	Subsurfa	ce Loa	Hole No.:26	Date Starte	ed:	06/10/9
				•	•••••		Sheet 1of 1	Date Finish	ed:	06/10/9
Clier	Gast	NYSDEC town Spor Tonawar	tsmen's C	Club	Method of	Investigatio	n:Direct push method, Geoprobe probe.			r, 4-foot long soil
		: B1113				Drilling Co	Environmental Product	& Services	Weath	
Proj. I		D. Ellswo	orth			Driller:	T. Osier	s a del vides		rees F, overcast
-	-	T. Burme				Drill Rig:	Concord 9200			
Depth			Samp	le				Field		Groundwater
(ft.)			Blows	1	Recovery	-	Sample	Analytical	Well	and Other
0	No.	Depth (ft.)	/6*	"N"	(ft.)		Description	Readings	Details	Observations
	S1			1		0.0'-1.5' Media	Im brown TOP SOIL.			NO HYDROCARBO
		0-4		·	3,1	-				ODOR AT
						1.5'-4.5' Mediu	im brown SILT and tan granular material.			0.0' - 20.0'
				1		-				
					 	-				
5	S2	4-8		ļ	4.0		im brown to yellow/brown SILT.			
						Sieuss (0 680	dy SiLT at 7.0'.			
				1	<u> </u>	-				
	S 3	8-12			4.0	8.0'-16.0' Med	ium gray/brown, sitty CLAY, some plant			
					4.0	at 12.0'.	ay merses min read ingriend			
10 -						4				
						-				
	<u>\$4</u>	12-16			4.0	4				
					1					
					1	1				
15 -						4				
						16 (r-17 8' Do	k gray/brown, very soft CLAY and SAND.			
	\$5	16-20			4.0	10.0-17.0 Da	k gray/brown, very son CLAT and SAND.			
						17 8' 40 E' Dev		ļ		
						fragments.	k gray/brown SILT, numerous fossil			
						- 19.5'-19.7' GR	AV(E)			
20 -							Idish brown, soft CLAY.			
										20.0' = BOTTOM OF
						-				BORING
					ļ <u>.</u>			ļ		
					1					
ł						4				
ļ				-	<u> </u>	4				
]				
4				1	<u> </u>	1				
			···- <u>-</u>			4				
						j				
Ī]				
F						4				
				L						
ampl	е Тур							Backfill Well	Key	
		S=Split S		2"				Cement		Native Fill
		R= Rock	Core:					-		
	I	N = ASTN	1 D1586					Sand		Bentonite

1998 Boring Logs, New York State Department of Environmental Conservation

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project Name:Former Gastown MGP SiteHole Designation:MW-1ISite Number:915171Date Completed:6/4/98Location:Tonawanda, New YorkDrilling Company:Maximum TechnologiesLogged By:Glenn M. MayDrilling Method:4¼" Hollow Stem AugersTotal Depth:26.0 feetSampling Method:Split Spoon									
Depth			Elevation		1	mple			
(ft bgs)	Stratigraphic Description & Remarks (f		(ft amsl)	N U M B	C O U N	N V	H N U		
	Ground Surface	Ground Surface			N T	A L U E			
0.0	0.0'-0.3': Brown topsoil with many roo content. Dry. Poor recovery.	tlets and high clay		1	6 8	14	0.0		
	0.3'-2.0': Brown silty clay with large roc pieces of coke and coal, some cinders. and brown varves. Dry. FILL MATER	Silty clay has red	575.55		6 18				
2.0	2.0'-4.0': Yellow brown silty clay with la and gray mottling. Dry. Poor recovery	0	573.85	2	15 5 9 5	14	0.0		
4.0	4.0'-4.7': Yellow brown silty clay w mottling, few black blebs. Dry to mois		3	14	20	0.0			
	4.7'-6.0': Yellow brown, fine grained sar orange mottling, some black blebs. Fe NATIVE.	571.15		9 11 12					
6.0	6.0'-8.0': Sample same as above. Become bgs. There are no black blebs within the iron red blebs are prevalent. This dep gray, fine grained sand at 7.25' bgs v mottling and red blebs. Saturated. NA		4	8 7 5 4	12	0.0			
8.0	8.0'-10.0': Interbedded zones of gray, (seams 0.2' to 0.5' thick) and thin seams (silty clay. Orange mottling throughout, v staining. Black blebs observed within the Saturated. NATIVE.	(0.1' to 0.2') of gray which appears to be		5	4 5 5 7	10	0.6		
10.0	10.0'-12.0': Sample same as above wit seams - only two about 0.02' thick were mottling throughout sample. Saturated.	observed. Orange		6	6 7 7 5	14	1.2		
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tab	le				
	Grain Size 🔘 W	Vater Found ∇	Sta	tic L	evel	▼			

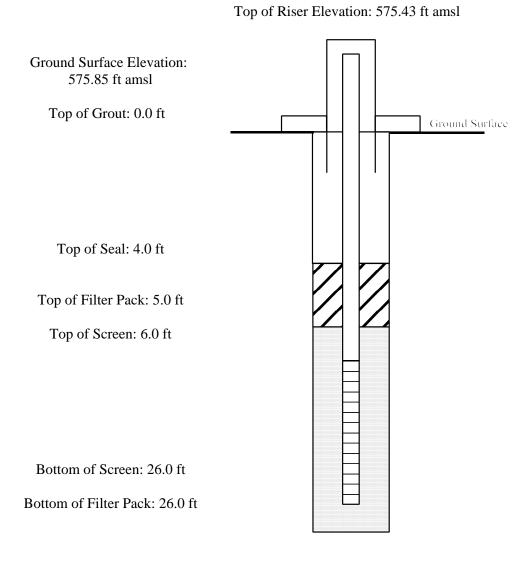
NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project N Site Num Location: Logged B Total Dep	ame: Former Gastown MGP Site ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	MW-11 6/4/98 7: Maximu 4 ¹ /4" Ho	llow		•			
Depth	Stratigraphic Description &	Remarks	Elevation	N	Sai c	mple	н		
(ft bgs)			(ft amsl)	U M B	O U N	V A	N U		
	Ground Surface		575.85	E R	Т	L U E			
12.0	12.0'-14.0': Medium gray, very fine gra mottling. Only one silty clay seam (0.0 Saturated. NATIVE.			7	1 2 2 3	4	0.0		
14.0	14.0'-16.0': No recovery.			8	7 5 4 6	9	NA		
16.0	16.0'-18.0': Medium gray, very fine grained sand with no mottling or silty clay seams. Some sand grains near bottom of sample are dark gray. Saturated. NATIVE.			9	3 4 5 8	9	0.0		
18.0	18.0'-20.0': Interbedded zones of medium to dark gray, fine grained sand and brownish gray clay. Clay seams are 0.2' to 0.25' thick. Saturated. NATIVE.			10	5 1 2 3	3	0.0		
20.0	20.0'-21.1': Sample same as above with fragments approximately 0.1' in diam NATIVE.	-	Sample sent to lab	11	1 1 13 8	14	16.2		
	21.1'-22.0': Gravel with a few shells. Sat	turated. NATIVE.	554.75						
22.0	22.0'-24.0': Reddish brown silty clay plastic. Few pebbles observed at 22.6 NATIVE.		553.85; Sample sent to lab	12	1 1 1 1	2	45.8		
	Augered to 26.0' bgs without sampling.								
	BOH=26.0' bgs.								
Notes:	Measuring Point Elevations May C Grain Size W	hange: Refer to Currate for the constant ∇		Tabl		<u> </u>			

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project Name:Former Gastown MGP SiteHole Designation:MW-2ISite Number:915171Date Completed:6/4/98Location:Tonawanda, New YorkDrilling Company:Maximum TechnologieLogged By:Glenn M. MayDrilling Method:4¼" Hollow Stem AugTotal Depth:26.0 feetSampling Method:Split Spoon						•			
Depth	Stratigraphic Description & Remarks		Elevation	N	Sar c	nple	н		
(ft bgs)	Stratigraphic Description &	Keinai ks	(ft amsl)	U M B	O U N	V A	N U		
	Ground Surface		575.47	E R	T	L U E			
0.0	0.0'-2.0': Crushed stone and asphalt from rock fragment in bottom of spoon. Dr FILL MATERIAL.	• •	575.47	1	22 10 8 7	18	2.5		
2.0	2.0'-4.0': No recovery.			2	4 3 6 7	9	NA		
4.0	 4.0'-4.4': Yellow brown silty clay with mottling. Rootlets. Dry to moist. NAT 4.4'-6.0': Yellow brown, fine grained so orange mottling. Rootlets. Saturated. 	571.07	3	6 5 6 6	11	12.2			
6.0	6.0'-8.0': Gray, fine grained sand with mottling. Few black blebs and some iron 0.2' thick clay seam observed at 7.6 NATIVE.		4	4 4 3 3	7	28.8			
8.0	8.0'-10.0': Sample same as above with a One 0.2' thick clay seam observed in Orange mottling and black blebs in this clay is brown with dark gray or black NATIVE.	middle of sample. seam. Sand below		5	2 2 9 9	11	34.4		
10.0	10.0'-12.0': Sample same as above (I Strong petroleum odor. Saturated. NA	•	Sample sent to lab	6	5 7 6 6	13	27.3		
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	le	1	I		
	\sim	Vater Found ∇			evel	▼			

Project Na Site Numbe Location: Logged By Total Dept	er: 915171 Tonawanda, New York r: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	MW-2I 6/4/98				
		4¼" Hol	low	echno Stem			
Depth	Strandrannie Deserintion X7 Romarks		Elevation	N	Sar c	nple	н
(ft bgs)			(ft amsl)	U M B	O U N	V A	N U
	Ground Surface		575.47	E R	Т	L U E	
	12.0'-13.3': Yellow brown, fine grained sand. A clay seam 0.1' thick at 13.3' bgs. Extensive orange staining observed immediately above this clay seam. Saturated. NATIVE.			7	2 3 5 5	8	67.4
	13.3'-14.0': Medium to dark gray sand Few small clay seams. Saturated. NAT	Ū.					
14.0	14.0'-16.0': Sample same as above (below observed but no sheen. Saturated. NAT			8	5 3 3 4	6	48.4
	16.0'-18.0': Interbedded zones of dark g gray clay. NAPL observed at 16.4' bg remainder of sample. Saturated. NATI	gs and throughout	Sample sent to lab	9	4 4 7 7	11	3531
	18.0'-20.0': Sample same as above wit containing NAPL. Both sand and clay se thick. Saturated. NATIVE.			10	1 2 1 3	3	438
	20.0'-21.0': Sample same as above with NATIVE.	NAPL. Saturated.		11	wor wor	9	346
	21.0'-22.0': Reddish brown clay contain thick gravel seam at 21.75' bgs. Trace seam. Saturated. NATIVE.	0	554.47		9 2		
	22.0'-24.0': Reddish brown to brown, silt below 23.0' bgs, very plastic. No N NATIVE.	• •		12	wor wor wor wor	0	121
	Augered to 26.0' bgs without sampling.						
	BOH=26.0' bgs.						
Notes:	Measuring Point Elevations May C Grain Size W	Change: Refer to Curr ater Found _▽			evel	•	

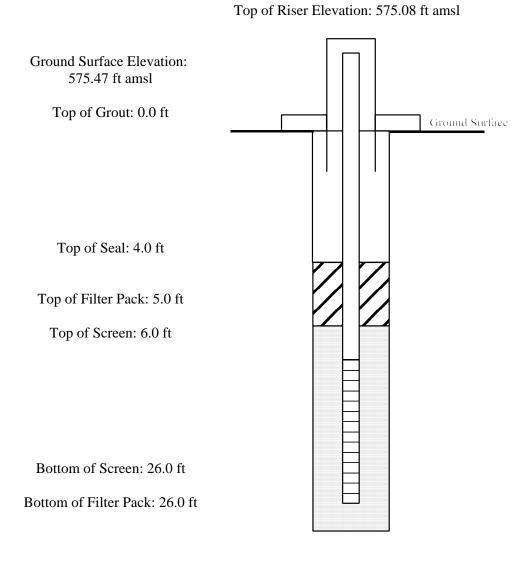
NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project Name:Former Gastown MGP SiteHole Designation:PW-1Site Number:915171Date Completed:6/3/98Location:Tonawanda, New YorkDrilling Company:Maximum TechLogged By:Glenn M. MayDrilling Method:4¼" Hollow StTotal Depth:30.0 feetSampling Method:Split Spoon									
Depth (ft bgs)			Elevation (ft amsl)	N U		mple N	H N		
	Ground Surface			M B E R	U N T	V A L U E	U		
0.0	0.0'-2.0': Mottled clay and brown, fine some rootlets and few small pebbles. Pie near bottom of sample. Moist. FILL M	eces of coal or coke	575.50	1	1 3 6 13	9	1.0		
2.0	2.0'-4.0': No recovery.			2	5 4 4 5	8	NA		
4.0	4.0'-4.75': Yellow brown silty clay with mottling. Moist. NATIVE.4.75'-6.0': Yellow brown, very fine grained sand with mottling. Moist. NATIVE.		570.75	3	8 6 7 7	13	9.7		
6.0	6.0'-8.0': Yellow brown, very fine grai gray and brown mottling. Trace silt and Moist. NATIVE.			4	4 4 3 3	7	10.2		
8.0	8.0'-8.25': Sample same as above.8.25'-10.0': Interbedded zones of dark (0.1') seams of gray clay. Moist. NAT			5	3 3 4 8	7	20.7		
10.0	10.0'-12.0': Sample same as above wi grained sand. A thin (0.02') black sea sample. Moist to saturated. NATIVE.		Sample sent to lab	6	5 4 5 4	9	23.7		
12.0	12.0'-14.0': Dark gray, fine grained sand mottling to 13.0' bgs. Few pebbles obse Saturated. NATIVE.			7	3 6 4 8	10	14.4		
Notes:	Measuring Point Elevations May C	-							
	Grain Size 🕖 🦷 W	Vater Found ∇	Sta	tic L	evel				

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project N Site Num Location: Logged B Total Dep	mber:915171Date Completed:6/3/98n:Tonawanda, New YorkDrilling Company:MaximusBy:Glenn M. MayDrilling Method:4¼" Holsepth:30.0 feetSampling Method:Split Spc		llow	Stem	Aug	ers			
Depth (ft bgs)	Stratigraphic Description &	Stratigraphic Description & Remarks		N U M	C C U	nple N V	H N U		
	Ground Surface		575.50	B E R	N T	A L U E			
14.0	14.0'-16.0': Sample same as above with	out mottling.		8	7 10 9 9	19	7.3		
16.0	16.0'-18.0': Sample same as above. NAPL observed at 16.9' bgs and throughout remainder of sample. The NAPL is black with a petroleum odor. Saturated. NATIVE.			9	6 4 3 6	7	325		
18.0	18.0'-20.0': Interbedded zones of dark sand and dark gray clay. Sand seams (0.04') of NAPL perched on the clay NATIVE.	Sample sent to lab	10	wor 2 1 1	3	680			
20.0	20.0'-22.0': Sample same as above with the sand seams. Gravel of various s sample. One clam shell observed in NATIVE.		11	wor wor 8 16	8	672			
22.0	22.0'-23.0': Dark gray, course grained Sheen observed throughout sample. Few Saturated. NATIVE.		553.50	12	4 2 2 2	4	152		
	23.0'-24.0': Reddish brown silty clay wi No NAPL. Saturated. NATIVE.	th traces of gravel.	552.50						
24.0	24.0'-26.0': Reddish brown silty clay wit plastic. No gravel, sheen or NAPL ob NATIVE.			13	2 4 1 1	5	64.9		
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tab	le		<u> </u>		
	Grain Size 🕖 🦷 W	Vater Found ∇	Sta	tic L	evel				

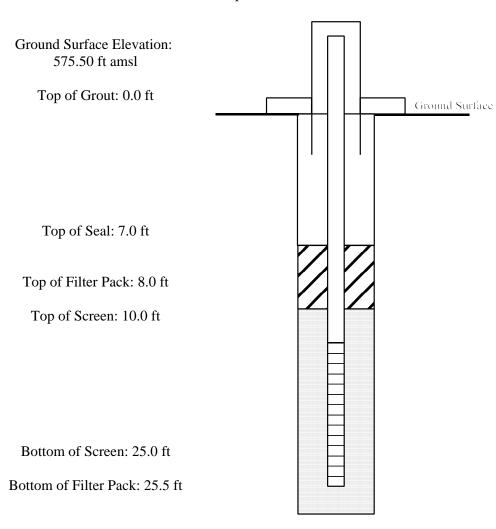

NY	NYSDEC - Region 9 - Division of Environmental Remediation								
	Stratigraphic I	Log (Overbur	den)						
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	6/3/98 7: Maximu 4 ¹ / ₄ " Hol	low					
Depth			Elevation			nple	1		
(ft bgs)	Stratigraphic Description &	Remarks	(ft amsl)	N U M	C O U	N V	H N U		
	Ground Surface		575.50	B E R	N T	A L U E			
26.0	26.0'-28.0': Sample same as above.			14	1	2	73.8		
					1 1 1				
28.0	28.0'-30.0': Sample same as above.			15	1	2	80.4		
	BOH=30' bgs.				1 1 1				
Notes:	Measuring Point Elevations May C	Change: Refer to Curr	rent Elevation	Tabl	e		L		
	\sim	vater Found ∇			evel				

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Project N Site Num Location: Logged B Total Dep	ame:Former Gastown MGP Siteber:915171Tonawanda, New Yorky:Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	MW-2S 6/5/98 : Maximu 4 ¹ /4" Hol							
Depth (ft bgs)	epth Stratigraphic Description & Remarks		Elevation (ft amsl)	N U M	C O U	nple N V	H N U			
	Ground Surface		575.32	B E R	N T	A L U E				
	Boring augered to depth - not logged.									
	BOH=9' bgs.									
Notes:	Measuring Point Elevations May C	-								
	Grain Size 🔵 W	Vater Found ∇	Stat	ic L	evel					

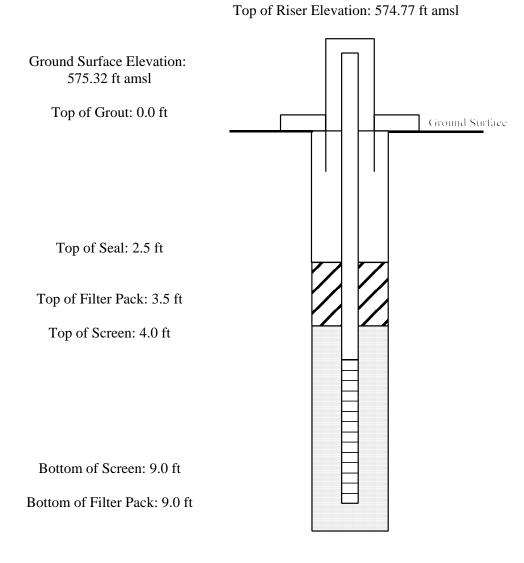
NYSDEC - Region 9 - Division of Environmental Remediation									
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	MW-3S 6/5/98 : Maximu 4 ¹ /4" Hol							
Depth (ft bgs)	Stratigraphic Description &	8.5 feet Sampling Method: Stratigraphic Description & Remarks]		N U M	C O U	nple N V	H N U		
	Ground Surface		574.91	B E R	N T	A L U E			
	Boring augered to depth - not logged.								
	BOH=8.5' bgs.								
Notes:	Measuring Point Elevations May C	Change: Refer to Curr	ent Elevation	Tabl	e				
	Grain Size 🔘 🛛 W	Vater Found ∇	Stat	tic L	evel	▼			



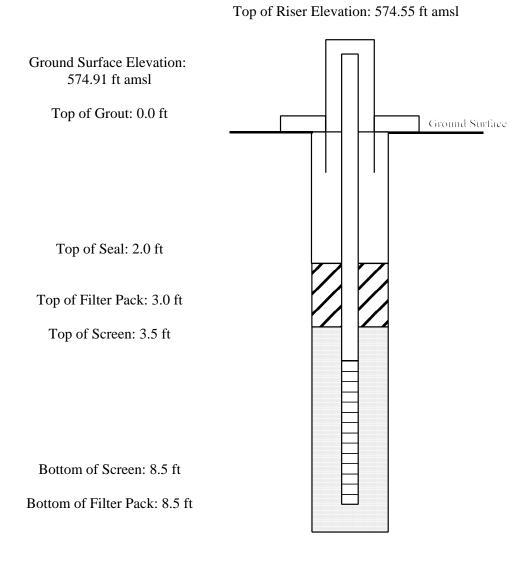
Project Name:	Former Gastown MGP Site	Hole Designation:	MW-1I
Site Number:	915171	Date Completed:	6/4/98
Location:	Tonawanda, New York	Drilling Company:	Maxim Technologies
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	2 inch	Casing Diameter:	Not Applicable
Screen Length:	20 feet	Total Depth:	26.0 feet



Project Name:	Former Gastown MGP Site	Hole Designation:	MW-2I
Site Number:	915171	Date Completed:	6/4/98
Location:	Tonawanda, New York	Drilling Company:	Maxim Technologies
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	2 inch	Casing Diameter:	Not Applicable
Screen Length:	20 feet	Total Depth:	26.0 feet


Project Name:	Former Gastown MGP Site	Hole Designation:	PW-1
Site Number:	915171	Date Completed:	6/3/98
Location:	Tonawanda, New York	Drilling Company:	Maxim Technologies
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	2 inch	Casing Diameter:	Not Applicable
Screen Length:	15 feet	Total Depth:	30.0 feet

Top of Riser Elevation: 574.58 ft amsl



Project Name:	Former Gastown MGP Site	Hole Designation:	MW-2S
Site Number:	915171	Date Completed:	6/5/98
Location:	Tonawanda, New York	Drilling Company:	Maxim Technologies
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	2 inch	Casing Diameter:	Not Applicable
Screen Length:	5 feet	Total Depth:	9.0 feet

Project Name:	Former Gastown MGP Site	Hole Designation:	MW-3S
Site Number:	915171	Date Completed:	6/5/98
Location:	Tonawanda, New York	Drilling Company:	Maxim Technologies
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	2 inch	Casing Diameter:	Not Applicable
Screen Length:	5 feet	Total Depth:	8.5 feet

1999 Boring Logs, New York State Department of Environmental Conservation

NYSDEC - Region 9 - Division of Environmental Remediation								
Stratigraphic Log (Overburden)Project Name:Former Gastown MGP SiteHole Designation:SB-27Site Number:915171Date Completed:12/7/99Location:Tonawanda, New YorkDrilling Company:Advanced CleanupLogged By:Glenn M. MayDrilling Method:Direct PushTotal Depth:28.0 feetSampling Method:Macro Core							ch.	
Depth			Elevation		1	nple	1	
(ft bgs)	Stratigraphic Description &	Remarks	(ft amsl)	N U M B	C O U N	N V A	H N U	
	Ground Surface		575.27	E R	T	A L U E		
0.0	0.0'-1.0': Crushed stone from parking lo	ot.	575.27	1			0.0	
	1.0'-4.0': Fine grained sand with some s rock fragments. Moist. FILL MATER							
4.0	4.0'-4.4': Sample same as above.			2			0.0	
	4.4'-8.0': Gray silty clay with orange mot near top of sample. Few thin, saturated clay is cohesive and slightly plastic. M	sand seams. Silty	570.87					
8.0	8.0'-11.3': Sample same as above. A gra at 8.8' bgs. Saturated. NATIVE.	avel seam 0.1' thick		3			0.0	
	11.3'-12.0': Gray, fine grained sand, no p NATIVE.	pebbles. Saturated.	563.97					
12.0	12.0'-16.0': Gray brown, fine to med grading to dark gray, fine to medium gra contains a few orange mottled, silty clay thick. Saturated. NATIVE.	ained sand. Sample		4			0.0	
16.0	16.0'-20.0': Sample same as above with c clay seams 0.4' thick. Saturated. NAT	.		5			0.0	
20.0	20.0'-24.0': Sample same as above with a Saturated. NATIVE.	no silty clay seams.	Sample sent to lab	6			0.0	
24.0	24.0'-28.0': No recovery. Reddish observed on outside of sampler. NATI	brown silty clay VE.		7			0.0	
	BOH=28.0' bgs.							
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tab	le			
	Grain Size W	Vater Found ∇	Sta	tic L	evel	▼		

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Site Num Location: Logged B	Project Name:Former Gastown MGP SiteHole Designation:SSite Number:915171Date Completed:12						ch.		
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	C O U	nple N V	H N U		
	Ground Surface		577.93	B E R	N T	A L U E			
0.0	0.0'-0.6': Brown topsoil with rootlets.	Moist.		1			0.0		
	0.6'-0.9': Reworked brown silty clay pebbles. Moist. FILL MATERIAL.	with many small	577.33						
	0.9'-1.6': Brown, fine to medium grain rock and coke fragments, and some we moist. FILL MATERIAL.								
	1.6'-4.0': Reddish brown silty clay with some ash, and many rock fragments. I MATERIAL.								
4.0	4.0'-4.8': Sample same as above.			2			0.0		
	4.8'-5.0': Slag, coal and coke mixed wit Moist. FILL MATERIAL.	h brown silty clay.							
	5.0'-7.2': Gray silty clay mottled brown throughout remainder of zone. Dry to a	1 0	572.93						
	7.2'-8.0': Yellow brown, fine grained orange mottling. Moist. NATIVE.	sand with silt and	570.73						
8.0	8.0'-12.0': Interbedded zones of gray, fin gray silty clay with extensive orange mottling. Clay seams are moist, whi saturated. NATIVE.	and yellow brown		3			0.0		
12.0	12.0'-15.0': Sample same as above.			4			0.1		
	15.0'-16.0': Medium gray, fine to med Saturated. NATIVE.	lium grained sand.							
Notasi	Measuring Point Elevations May C	Thange Defor to Cur	rant Flavation	Tabi					
Notes:	\sim	Vater Found ∇			evel	▼			

NY	NYSDEC - Region 9 - Division of Environmental Remediation								
	Stratigraphic I	og (Overbur	den)						
Site Number:915171DatLocation:Tonawanda, New YorkDritLogged By:Glenn M. MayDrit		Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/7/99 Advance Direct P	ush	eanuț	o Tec	h.		
Depth			Elevation			nple			
(ft bgs)	Stratigraphic Description &	Remarks	(ft amsl)	N U M	C O U	N V	H N U		
	Ground Surface	577.93	B E R	N T	A L U E				
16.0	16.0'-20.0': Interbedded zones of med medium grained sand and silty clay. S only 0.05' thick. Saturated. NATIVE.			5			0.0		
20.0	20.0'-23.6': Sample same as above.		Sample sent to lab	6			0.0		
	23.6'-23.9': Gravel of various sizes. N. but no sheen or NAPL observed. NAT		554.43; Sample sent to lab				13.8		
	23.9'-24.0': Reddish brown silty clay. Sa	turated. NATIVE.	554.03				0.0		
	BOH=24.0' bgs.								
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	e				
	Grain Size 🔵 🦷 W	ater Found ∇	Stat	ic L	evel				

NYSDEC - Region 9 - Division of Environmental Remediation									
Stratigraphic Log (Overburden)Project Name:Former Gastown MGP SiteHole Designation:SB-29Site Number:915171Date Completed:12/8/99Location:Tonawanda, New YorkDrilling Company:AdvancedLogged By:Glenn M. MayDrilling Method:Direct PuslTotal Depth:24.0 feetSampling Method:Macro Cor							ch.		
Depth (ft bgs)	Stratigraphic Description & Remarks			N U	Sar c	nple N	H N		
(20 ~ 8~)	Ground Surface		(ft amsl) 575.20	M B E R	U N T	V A L U	U		
0.0	0.0'-0.2': Asphalt.		575.20	1		E	0.0		
	0.2'-2.0': Reworked, yellow brown and a clay with rocks, brick, black ash, and mottling. Dry. FILL MATERIAL.	orange and black							
	2.0'-4.0': Gray silty clay with orange and few pebbles. Cohesive and dense. Dry		573.20						
4.0	4.0'-5.0': Gray silty clay with orange mottling. Cohesive, dense and slight NAPL. Dry to moist. NATIVE.			2			18.0		
	5.0'-8.0': Yellow brown, very fine grai some clay, and orange and gray mottling Dry. NATIVE.		570.20; Sample sent to lab						
8.0	8.0'-12.0': Interbedded zones of yellow b sand and gray silty clay. Sand seams be to medium grained with depth. Sheen of sample but no NAPL observed. NATIV	come gray and fine bserved throughout		3			4.3		
12.0	12.0'-16.0': Sample same as above. Nobserved in sand but a sheen was observed in sand but a sheen was observed in sample at bottom of sample. Sa	rved in a 0.3' thick		4			0.0		
16.0	16.0'-19.8': Gray, medium grained sand pockets of NAPL observed throughout s 0.3' of sample contains NAPL. Saturate	ample. The bottom	Bottom 0.3' sent to lab	5			5.3		
	19.8'-20.0': Gravel mixed with gray NATIVE.	sand. Saturated.	555.40						
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	e	I			
	Grain Size 🔘 🦷 W	Vater Found ∇	Sta	tic L	evel	▼			

NY	NYSDEC - Region 9 - Division of Environmental Remediation									
	Stratigraphic I	Log (Overbur	den)							
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/8/99 Advance Direct P	ush	eanuj	o Tec	h.			
Depth			Elevation		Sar	nple				
(ft bgs)	Stratigraphic Description &	(ft amsl)	N U M B	C O U N	N V A	H N U				
	Ground Surface		575.20	E R	T	L U E				
20.0	20.0'-24.0': Sample appears to be fall-in shoe suggestive of gravel zone. Reddis observed on outside of sampler. NATT BOH=24.0' bgs.	sh brown silty clay		6			NM			
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	e					
	Grain Size 🔵 🦷 W	Vater Found ∇	Stat	tic L	evel					

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Site Num Location: Logged B	Project Name:Former Gastown MGP SiteHole Designation:SB-30Site Number:915171Date Completed:12/6/99Location:Tonawanda, New YorkDrilling Company:Advanced CleanuLogged By:Glenn M. MayDrilling Method:Direct PushTotal Depth:32.0 feetSampling Method:Macro Core					p Teo	ch.		
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	C O U	mple N v	H N U		
	Ground Surface		576.13	B E R	N T	A L U E			
0.0	0.0'-0.6': Crushed stone from parking lo	ot.	576.13	1			0.0		
	0.6'-1.8': Black ash containing coal and MATERIAL.	slag. Moist. FILL							
	1.8'-4.0': Light brown silty clay with bl pebbles and a few pieces of coal. Woo end of sample. Dry to moist. FILL MA	od (railroad tie?) at							
4.0	4.0'-4.7': Sample same as above (1.8'-4	.0' bgs).		2			0.0		
	4.7'-5.0': Ash containing large pieces of MATERIAL.	coal. Moist. FILL							
	5.0'-6.0': Gray clay with orange and blac pieces near top of sample. Moist. FIL	0							
	6.0'-6.5': Wood.								
	6.5'-8.0': Gray clayey silt with orange Moist. NATIVE.	mottling. Layered.	569.63						
8.0	8.0'-11.5': Sample same as above with clayey than others. Moist. NATIVE.	a some zones more		3			0.0		
	11.5'-12.0': Very fine grained sand wit Dry. NATIVE.	th orange mottling.	564.63						
12.0	12.0'-16.0': Interbedded zones of gray, and gray clay. Clay seams are mois saturated. NATIVE.			4			0.0		
16.0	16.0'-20.0': Sample appears to be fall-in	n. Poor recovery.		5			0.0		
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tab	le	<u> </u>	<u> </u>		
	\sim	Vater Found ∇		tic L		▼			

NY	NYSDEC - Region 9 - Division of Environmental Remediation								
	Stratigraphic I	Log (Overbur	den)						
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/6/99 Advance Direct P	ush	eanuj	o Tec	h.		
Depth			Elevation			nple			
(ft bgs)	Stratigraphic Description & Remarks		(ft amsl)	N U M	C O U	N V	H N U		
	Ground Surface		576.13	B E R	N T	A L U E			
20.0	20.0'-24.0': Gray clay. Saturated. NATIVE.	Poor recovery.	Sample sent to lab	6			0.0		
24.0	24.0'-28.0': Brownish gray to gray clay. is reddish brown to gray clay with round Saturated. Poor recovery. NATIVE.	*		7			0.0		
28.0	28.0'-32.0': Reddish brown silty clay rounded pebbles and many larger, roun rock fragments. Very dense. Dry. NA	ded to subrounded		8			NM		
	BOH=32.0' bgs.								
Notes	Measuring Point Elevations May (Shange: Refer to Cur	rent Elevation	Tabl	6				
Notes:	Measuring Point Elevations May C	-				-			
	Grain Size 🕖 W	Vater Found $\underline{\nabla}$	Stat	lic L	evel	<u> </u>			

NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)									
Site Num Location: Logged B	Project Name:Former Gastown MGP SiteHole Designation:SB-31Site Number:915171Date Completed:12/6/99								
Depth	th					nple			
(ft bgs)	Stratigraphic Description &	Remarks	(ft amsl)	N U M	C O U	N V	H N U		
	Ground Surface		576.21	B E R	N T	A L U E			
0.0	0.0'-0.8': Crushed stone from parking lo	ot.	576.21	1			0.0		
	0.8'-2.0': Reworked yellow brown, fine some silt and clay, and many large, su near bottom of sample. Dry. FILL MA	ubrounded pebbles							
	2.0'-4.0': Yellow brown clayey silt wit black mottling, some rootlets and a f (carry down?). Moist. NATIVE?		574.21						
4.0	4.0'-6.4': Yellow brown clayey silt with r and black mottling near top of sample. more gray with depth and contains orang NATIVE.	Silty clay becomes		2			0.0		
	6.4'-8.0': Gray, fine grained sand with si mottling. Moist. NATIVE.	ilt, clay and orange	569.81						
8.0	8.0'-12.0': Interbedded zones of gray, fir orange mottled, gray silty clay. The sa grained at bottom of sample. Saturated	nd become coarser		3			0.0		
12.0	12.0'-15.1': Gray, medium grained sand mottling. Grades into brown sand wit depth. Saturated. NATIVE.	•		4			0.0		
	15.1'-15.8': Gray, fine grained sand with Saturated. NATIVE.	h some clay seams.							
	15.8'-16.0': Medium gray, medium grain tar odor. Saturated. NATIVE.	ned sand with a coal	Sample sent to lab				1.2		
16.0	16.0'-20.0': Gray, medium grained sand and rock fragments. Bottom of sampl contains NAPL. Saturated. NATIVE.			5			0.0		
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tab	le				
	Grain Size 🔘 W	Vater Found ∇	Sta	tic L	evel	▼			

NY	SDEC - Region 9 - Division	of Environm	ental Ren	ned	iati	on			
	Stratigraphic I	Log (Overbure	den)						
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/6/99 Advance Direct P	/99 anced Cleanup Tec ct Push					
Depth		D	Elevation			nple			
(ft bgs)	Stratigraphic Description &	Remarks	(ft amsl)	N U M	C O U	N V	H N U		
	Ground Surface		576.21	B E R	N T	A L U E			
20.0	20.0'-23.4': Gray, medium grained sand throughout sample but only a trace of Saturated. NATIVE.			6			30.0		
	23.4'-24.0': Gravel mixed with sand. S observed. Saturated. NATIVE.	taining and NAPL	552.81; Sample sent to lab				1330		
24.0	24.0'-24.3': Sample same as above.			7			19.8		
	24.3'-26.0': Reddish brown clay with gray mottling. Very plastic. Saturate saturated, more dense and contains more of sample. NATIVE.BOH=26.0' bgs.	ed. Becomes less e pebbles at bottom	551.91; Sample sent to lab						
Notes:	Measuring Point Elevations May C	Change: Refer to Curr	rent Elevation	Tabl	le				
	Grain Size W	Vater Found ∇	Sta	tic L	evel				

NY	SDEC - Region 9 - Division Stratigraphic I			ned	iati	on			
Site Num Location: Logged B									
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl) Sample N C N U O N				H N U		
	Ground Surface		575.32 B N A E T L R U E						
0.0	0.0'-0.4': Crushed stone from parking l	ot.	575.32	1			0.0		
	0.4'-1.3': Black ash with coal and rock FILL MATERIAL.	fragments. Moist.							
	1.3'-1.7': Yellow brown clayey silt wit gray mottling. Moist. NATIVE.	h rusty brown and	574.02						
	1.7'-4.0': Gray silty clay with black r pebbles. Moist. NATIVE.	nottling and some							
4.0	4.0'-7.3': Interbedded zones of fine grat clay with orange mottling. Moist. NA'	•	571.32	2			0.0		
	7.3'-8.0': Gray clay with rusty brow mottling. Saturated. NATIVE.	n and dark gray							
8.0	8.0'-10.0': Sample same as above.			3			0.0		
	10.0'-10.6': Dark brown clayey silt with Dry. NATIVE.	th shell fragments.							
	10.6'-12.0': Gray clay with some dark brown mottling near top of sample. Sign NATIVE.								
12.0	12.0'-16.0': Gray, fine grained sand with wood. Saturated. NATIVE.	some clay, silt and		4			0.0		
16.0	16.0'-20.0': Interbedded zones of gray, and gray clay with a few shells. Satura			5			0.0		
Nete	Manusing Debut El. († 1947)	There are Defended C							
Notes:	Measuring Point Elevations May C Grain Size W	Thange: Refer to Curl Vater Found ∇			le evel				

NYSDEC - Region 9 - Division of Environmental Remediation											
	Stratigraphic I	og (Overbur	den)								
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/6/99 Advance Direct P	12/6/99 Advanced Cleanup Tecl Direct Push Macro Core							
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	C O U	nple N V	H N U				
	Ground Surface		575.32	B E R	N T	A L U E					
20.0	20.0'-23.8': Yellow brown clay. Saturat NATIVE. 23.8'-24.0': Reddish brown and gray		Sample sent to lab 551.52	6			0.0				
24.0	NATIVE. 24.0'-28.0': Difficult to log due to poor brown silty clay observed on outside of s BOH=28.0' bgs.			7			0.0				
Notes:	Measuring Point Elevations May C	-									
	Grain Size 🕖 🦷 W	Tater Found ∇	Stat	tic L	evel						

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)											
Site Num Location: Logged B	Project Name:Former Gastown MGP SiteHole Designation:SB-33ite Number:915171Date Completed:12/7/99											
Depth (ft bgs)	Stratigraphic Description & Remarks			N U	H N							
	Ground Surface		574.03	M B E R	U N T	V A L U E	U					
0.0	0.0'-0.4': Brown topsoil with rootlets a Moist.	nd rock fragments.		1			0.0					
	0.4'-0.8': Yellow brown, fine grained s coke fragments. Moist. FILL MATER		573.63									
	0.8'-4.0': Gray brown, fine grained mottling. Moist. NATIVE.	sand with orange	573.23									
4.0	4.0'-7.8': Sample same as above with Becomes more gray and less mottled w NATIVE.			2			0.0					
	7.8'-8.0': Black clay with shells. Moist	NATIVE.										
8.0	8.0'-12.0': Sample same as above for first grades into a plastic, very cohesive, gree orange mottling. Bottom of sample bee and contains shells. Moist. NATIVE.	nish gray clay with	Sample sent to lab	3			0.1					
12.0	12.0'-16.0': Gray, fine grained sand wit Saturated. NATIVE.	h gray clay seams.		4			0.0					
	BOH=16.0' bgs.											
Notes:	Measuring Point Elevations May C Grain Size W	Change: Refer to Cur Vater Found ∇			le evel	▼						

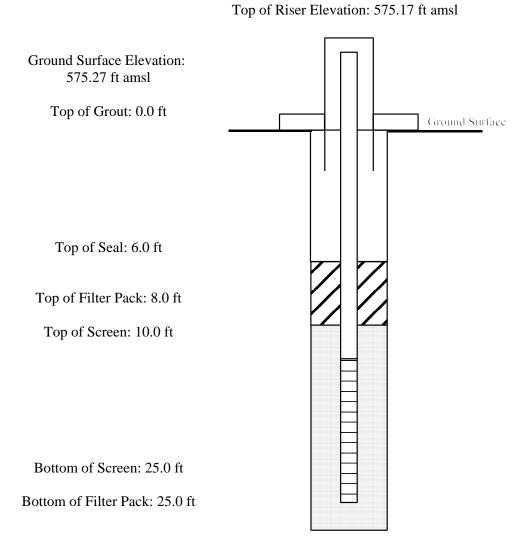
NY	SDEC - Region 9 - Division			ned	iati	on	
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	SB-34 12/8/99 7: Advance Direct P	ush	eanup	o Tec	h.
Depth (ft bgs)	Stratigraphic Description &	Remarks	ElevationSample(ft amsl)NCU0				
(11 050)	Ground Surface		574.72	M B E R	U N T	V A L U	N U
0.0	0.0'-1.0': Black topsoil with brown mott and some coal. Moist.	ling, roots, rootlets		1		E	0.0
	1.0'-4.0': Gray silty clay with extensive of some rootlets. Dry to Moist. NATIVE	e	573.72				
4.0	4.0'-5.5': Sample same as above.			2			0.0
	5.5'-8.0': Gray, fine grained sand with mottling, some silt and clay, and a few Saturated. NATIVE.	-					
8.0	8.0'-11.6': Interbedded zones of gray grained sand and gray silty clay with mottling. Saturated. NATIVE.			3			0.0
	11.6'-12.0': Sample same as above but in color and unmottled.	more medium gray					
12.0	12.0'-16.0': Gray, fine grained sand wi contains rusty orange mottling. NAPL 0.2' of sample. Saturated. NATIVE.		Bottom 0.2' sent to lab	4			194
16.0	16.0'-19.2': Sample same as above. throughout sample with small pockets of NATIVE.	Sheen observed FNAPL. Saturated.	Sample sent to lab	5			183
	19.2'-20.0': Gravel of various sizes win NAPL. Saturated. NATIVE.	ith only a trace of	555.52				30.7
	BOH=20.0' bgs.						
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	e		
	Grain Size 🔘 🦷 W	Vater Found ∇	Sta	tic L	evel		

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)										
	gged By: Glenn M. May Drilling Method: Direct Push										
Depth	Stratigraphic Degenintian &	Domonica	Elevation	N	Sar c	nple	н				
(ft bgs)	Stratigraphic Description &	Kemarks	(ft amsl)	U M B	O U N	V A	N U				
	Ground Surface		574.52	E R	T	L U E					
0.0	0.0'-0.9': Topsoil with rootlets. Glass an of sample. Moist. FILL MATERIAL.	nd coal near bottom		1			0.0				
	0.9'-3.5': Gray silty clay with extensive mottling. Moist. NATIVE.	e orange and black	573.62								
	3.5'-4.0': Yellow brown, very fine grain and silt. Saturated. NATIVE.	ned sand with clay	571.02								
4.0	4.0'-8.0': Interbedded zones of yellow grained sand and thin (0.1') seams of g orange mottling. Sand seams become g contain orange mottling. Saturated. Na	ray silty clay with ray with depth and		2			0.0				
8.0	8.0'-11.1': Sample same as above.			3			0.0				
	11.1'-12.0': Dark gray sand without me NATIVE.	ottling. Saturated.									
12.0	12.0'-16.0': Sample same as above with throughout. Trace of NAPL at 14.5' by 0.4' of sample saturated with NAPL. Sa	gs with the bottom	Bottom 0.4' sent to lab	4			38.4				
16.0	16.0'-19.3': Sample same as above wit throughout. Saturated. NATIVE.	h NAPL observed	Sample sent to lab	5			321				
	19.3'-20.0': Gravel of various sizes, co Saturated. NATIVE.	ompact, no NAPL.	555.22								
	BOH=20.0' bgs.										
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	e						
	\sim	Tater Found ∇			evel						

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)										
Project N Site Num Location: Logged B Total Dep	Jame:Former Gastown MGP Siteber:915171:Tonawanda, New York:Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	SB-36 12/8/99 7: Advance Direct P	ush	eanuj	o Tec	ch.				
Depth	Studionarkie Description &	Domonika	Elevation								
(ft bgs)	Stratigraphic Description &	Kemarks	(ft amsl)	N U M B	C O U N	N V A	H N U				
	Ground Surface		574.28	E R	T	L U E					
0.0	0.0'-0.3': Topsoil with rootlets. Moist.			1			0.0				
	0.3'-2.0': Dark brown subsoil with ora pebbles and some rootlets. Moist. NA'										
	2.0'-4.0': Gray silty clay with extensiv Dry to moist. NATIVE.	e orange mottling.	572.28								
4.0	4.0'-4.4': Sample same as above.			2			0.0				
	4.4'-8.0': Interbedded zones of gray, fin gray silty clay with extensive orange m Sand saturated; silty clay moist. NATI	ottling throughout.	569.88								
8.0	8.0'-11.2': Gray, fine grained sand with mottling. Saturated. NATIVE.	h extensive orange		3			0.0				
	11.2'-12.0': Dark gray, fine grained sand Saturated. NATIVE.	d without mottling.									
12.0	12.0'-16.0': Sample same as above.			4			0.0				
16.0	16.0'-18.3': Brown, medium to coar Saturated. NATIVE.	rse grained sand.	Sample sent to lab	5			0.0				
	18.3'-18.8': Gravel of various sizes, an NATIVE.	ngular. Saturated.	555.98								
	18.8'-20.0': Reddish brown silty clay. cohesive. Saturated. NATIVE.	Very plastic and	555.48								
	BOH=20.0' bgs.										
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	le	1					
	Grain Size 🔘 🦷 W	Vater Found ∇	Stat	tic L	evel	▼					

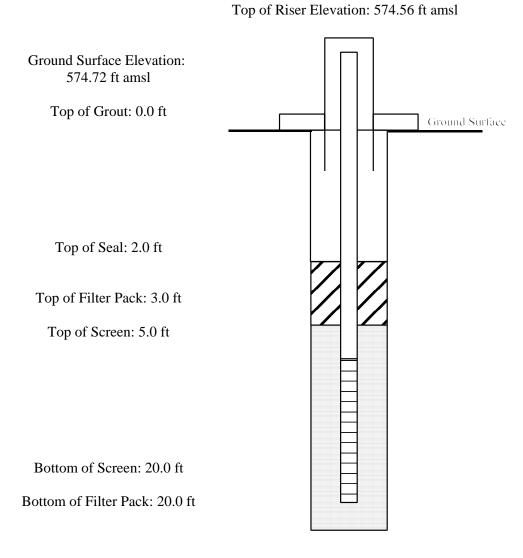
NY	SDEC - Region 9 - Division Stratigraphic I			ned	iati	on				
Site Num Location: Logged B	Logged By:Glenn M. MayDrilling Method:Direct PushTotal Depth:20.0 feetSampling Method:Macro Core									
Depth	Stratigraphic Description &	Remarks	Elevation	N	С	nple	н			
(ft bgs)			(ft amsl)	U M B E	O U N T	V A L	N U			
	Ground Surface		574.69	R		U E				
0.0	0.0'-0.7': Crushed stone from parking lo	ot.	574.69	1			0.0			
	0.7'-2.0': Reworked black silty clay we rocks fragments of various sizes. Dry. 1	•								
	2.0'-4.0': Gray silty clay with orange mottling, few rock fragments and som NATIVE.		572.69							
4.0	4.0'-7.6': Sample same as above wi mottling, although some white and b observed. Moist. NATIVE.	•		2			0.0			
	7.6'-8.0': Gray, fine grained sand with mottling. Saturated. NATIVE.	n extensive orange	567.09							
8.0	8.0'-12.0': Interbedded zones of gray, fir thin (0.1') seams of gray silty clay with mottling that decreases with depth. Sat	h extensive orange		3			0.0			
12.0	12.0'-14.8': Sample same as above wir seams. Saturated. NATIVE.	th fewer silty clay		4			0.0			
	14.8'-15.8': Interbedded zones of dark sand and dark gray silty clay. The si approximately 0.4' thick. Saturated. N	lty clay seams are								
	15.8'-16.0': Gray gravel of various NATIVE.	sizes. Saturated.	558.89							
16.0	16.0'-20.0': No recovery. Reddish observed on shoe of sampler. NATIVE			5			NM			
	BOH=20.0' bgs.									
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	le					
	Grain Size 🔘 🛛 🛛 W	Vater Found ∇	Sta	tic L	evel	▼				

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)										
Project N Site Num Location: Logged B Total Dep	ame:Former Gastown MGP Siteber:915171Tonawanda, New Yorky:Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/9/99 Advanced Cleanup Tech. Direct Push								
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	Sar c o U	nple N v	H N U				
	Ground Surface		576.81	B E R	N T	A L U E					
0.0	0.0'-0.6': Crushed stone from parking lo	ot.	576.81	1			0.0				
	0.6'-1.0': Brown sand with many rock fr sizes. Dry. FILL MATERIAL.	agments of various									
	1.0'-1.4': Black ash with slag and coke FILL MATERIAL.	e fragments. Dry.									
	1.4'-1.8': Light brown, fine grained s MATERIAL.	and. Dry. FILL									
	1.8'-4.0': Yellow brown silty clay with many rock fragments, and a few piece FILL MATERIAL.										
4.0	4.0'-4.6': Brown, fine grained sand with rock fragments. Dry. FILL MATERIA	5		2			0.0				
	4.6'-5.2': Interbedded zones of brown to grained sand and silty clay with orange n NATIVE.	•									
	5.2'-8.0': Gray silty clay with extensive mottling. Cohesive and compact. Mois		571.61								
8.0	8.0'-9.2': Sample same as above. Mottl depth. Saturated. NATIVE.	ling decreases with		3			0.0				
	9.2'-12.0': Interbedded zones of gray, fir silty clay. Sand seams contain a high c moist, not saturated. NATIVE.	-	567.61								
12.0	12.0'-14.9': Dark gray silty clay w Saturated. NATIVE.	ith gravel seams.		4			0.0				
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	le	1	I				
	Grain Size 🔘 🦷 W	Vater Found $\underline{\nabla}$	Sta	tic L	evel	▼					

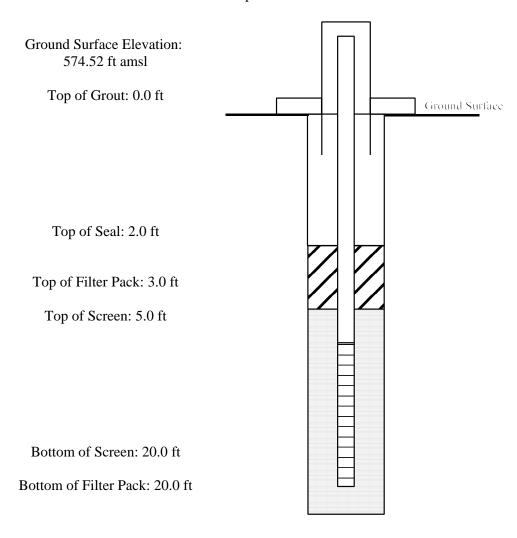

NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)										
Project N Site Num Location: Logged B Total Dep	ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	12/9/99 y: Advance Direct P	ush	eanuj	р Тес	ch.				
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	nple N V	H N U						
	Ground Surface		576.81	B E R	N T	A L U E					
12.0	14.9'-15.8': Medium gray silty clay wit Cohesive and very plastic. Moist. NA 15.8'-16.0': Gray sand. Saturated. NA	TIVE.		4			0.0				
16.0	16.0'-20.0': Interbedded zones of gray, and thin (0.1') seams of silty clay. Bo more reddish brown in color. Saturated	ottom of sample is		5			0.0				
20.0	20.0'-22.7': Sample same as above (regrained sand). Saturated. NATIVE.	eddish brown, fine	Sample sent to lab	6			0.2				
	22.7'-23.7': Gravel of various sizes. saturated. NATIVE.	Moist but not	554.11				4.1				
	23.7'-24.0': Reddish brown silty clay. Sa	aturated. NATIVE.	553.11								
	BOH=24.0' bgs.										
Notes:	Measuring Point Elevations May C	-									
	Grain Size 🕖 🦷 W	Vater Found ∇	Sta	tic L	evel						

NY	SDEC - Region 9 - Division Stratigraphic I			ned	iati	on			
Site Num Location: Logged B	Project Name:Former Gastown MGP SiteHole Designation:SB-39Site Number:915171Date Completed:12/9/99Jocation:Tonawanda, New YorkDrilling Company:Advanced Cleanup Tech.Jogged By:Glenn M. MayDrilling Method:Direct PushSotal Depth:24.0 feetSampling Method:Macro Core								
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	C O U	nple N H N V U			
	Ground Surface		577.09	B E R	N T	A L U E			
0.0	0.0'-0.8': Crushed stone from parking lo	ot.	577.09	1		NM			
	0.8'-1.0': Brown silty clay with many roc MATERIAL.	ek fragments. FILL							
	1.0'-1.1': Black ash with small brick to FILL MATERIAL.	fragments. Moist.							
	1.1'-4.0': Tan ash with brown and green Saturated (bottom of sample). FILL M	•	Sample sent to lab			0.0			
4.0	4.0'-4.2': Tan ash same as above.			2		0.0			
	4.2'-8.0': Gray silty clay with black m except for a zone from 5.4' to 6.4' bgs orange. Petroleum contamination obse sand seam observed from 7.1' to 7.4' petroleum odor. A sand seam was also of sample. Moist. NATIVE.	which is mottled rved at 6.4' bgs. A bgs with a strong	572.89; Sample sent to lab (6.4'-9.0')			11.5			
8.0	8.0'-11.6': Interbedded zones of gray grained sand and thin (0.1') seams of Extensive black mottling and a strong 9.0' bgs. Sheen observed throughout so NATIVE.	of gray silty clay. petroleum odor to	569.09	3		40.0 2.9*			
	11.6'-12.0': Gray sand with brown mo NATIVE.	ottling. Saturated.							
12.0	12.0'-15.0': Sample same as above.			4		3.6			
	15.0'-16.0': Gray, medium grained NATIVE.	sand. Saturated.							
	* soils below petroleum contamination	zone.							
Notes:	Measuring Point Elevations May C	Change: Refer to Cur	rent Elevation	Tabl	le				
	Grain Size W	Vater Found ∇	Sta	tic L	evel	▼			

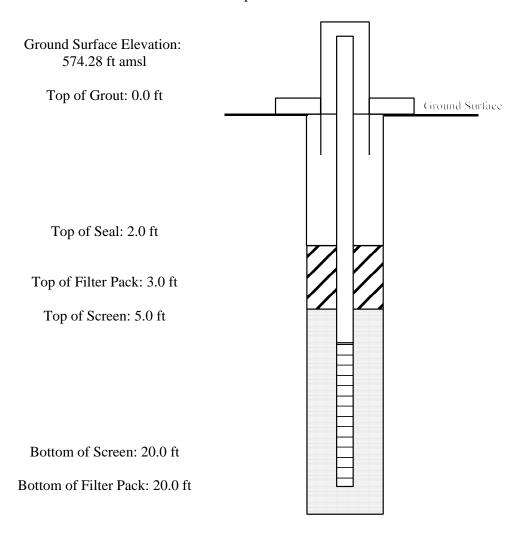
NY	NYSDEC - Region 9 - Division of Environmental Remediation Stratigraphic Log (Overburden)										
Project N Site Num Location: Logged B Total Dep	ame: Former Gastown MGP Site ber: 915171 Tonawanda, New York y: Glenn M. May	Hole Designation: Date Completed: Drilling Company Drilling Method: Sampling Method	SB-39 12/9/99 Advance Direct P								
Depth (ft bgs)	Stratigraphic Description &	Remarks	Elevation (ft amsl)	N U M	C O U	mple N v	H N U				
	Ground Surface		577.09	B E R	N T	A L U E					
16.0	16.0'-20.0': Sample same as above.			5			3.8				
20.0	 20.0'-23.1': Sample same as above. 23.1'-24.0': Gravel of various sizes. Sat 24.0': Reddish brown, silty clay obs sampler. NATIVE. 		553.99 553.09	6			NM				
	BOH=24.0' bgs.										
Notes:	Measuring Point Elevations May C Grain Size W	Change: Refer to Currer Found ∇			le evel	•					



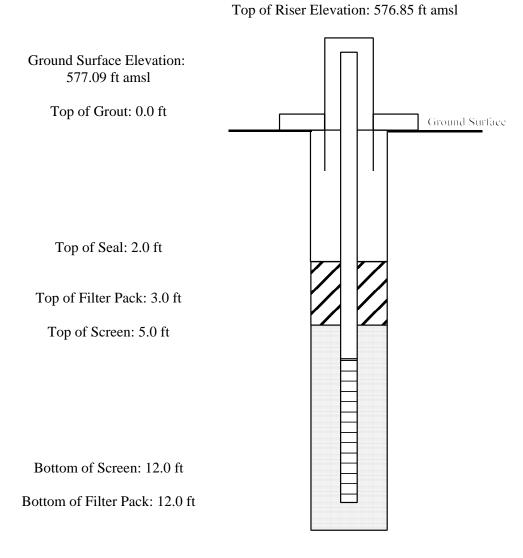
Project Name:	Former Gastown MGP Site 915171	Hole Designation:	MW-27
Site Number:		Date Completed:	12/7/99
Location:	Tonawanda, New York	Drilling Company:	Advanced Cleanup Tech.
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	1 inch	Casing Diameter:	Not Applicable
Screen Length:	15 feet	Total Depth:	25.0 feet



Project Name:	Former Gastown MGP Site 915171	Hole Designation:	MW-34
Site Number:		Date Completed:	12/8/99
Location:	Tonawanda, New York	Drilling Company:	Advanced Cleanup Tech.
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	1 inch	Casing Diameter:	Not Applicable
Screen Length:	15 feet	Total Depth:	20.0 feet


Project Name:	Former Gastown MGP Site 915171	Hole Designation:	MW-35
Site Number:		Date Completed:	12/8/99
Location:	Tonawanda, New York	Drilling Company:	Advanced Cleanup Tech.
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	1 inch	Casing Diameter:	Not Applicable
Screen Length:	15 feet	Total Depth:	20.0 feet

Top of Riser Elevation: 574.31 ft amsl


Project Name:	Former Gastown MGP Site 915171	Hole Designation:	MW-36
Site Number:		Date Completed:	12/8/99
Location:	Tonawanda, New York	Drilling Company:	Advanced Cleanup Tech.
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	1 inch	Casing Diameter:	Not Applicable
Screen Length:	15 feet	Total Depth:	20.0 feet

Top of Riser Elevation: 574.13 ft amsl

Project Name:	Former Gastown MGP Site 915171	Hole Designation:	MW-39
Site Number:		Date Completed:	12/9/99
Location:	Tonawanda, New York	Drilling Company:	Advanced Cleanup Tech.
Screen Type:	PVC	Casing Type:	Not Applicable
Screen Diameter:	1 inch	Casing Diameter:	Not Applicable
Screen Length:	7 feet	Total Depth:	12.0 feet

APPENDIX B

WELL DEVELOPMENT AND PURGE LOGS

SITE NAME: F	Former Gastown Man	afactured Gas Plant Si	te	SITE NUMBER: 915171						
SAMPLER: C	Glenn M. May									
PURGE DATE: I	December 14, 1999	START PURGE:	1210		END PU	URGE: 1217				
SAMPLE DATE: I	December 14, 1999				SAMPLE	E TIME: 1	245			
WELL NUMBER:	MW-13					WELL ID.	VOL. (GAL/FT)			
1. TOTAL CASING	AND SCREEN LEN	IGTH (FT):		14.10		1" 2"	0.041 0.163			
2. CASING INTERI	NAL DIAMETER (IN	I):		_1.0		3"	0.367			
3. WATER LEVEL	BELOW TOP OF CA	ASING (FT):		_7.69		4" 5"	0.653 1.020			
4. VOLUME OF W	ATER IN CASING (GAL):		_0.26		6"	1.469			
#1 - #3 x #	2 (Gal/Ft)					8"	2.611			
N	VOLUME OF 3 CASI	NGS:		_0.78	GAL					
		ACC	CUMULATE	ED VOLUN	ME PURGI	ED (GALLONS)				
PARAMETERS	0.0									
pН	7.19									
CONDUCTIVITY (umhos) 884									
TURBIDITY (NTU)	>1000									
TEMPERATURE (⁰	F) 8.7									
Eh	-22.2									
TIME	1211									
COMMENTS: 12/14/99: Initial purge water was very turbid - reddish brown in color. No sheen or odors observed. Purged dry after 0.5 gallons. Well recovered sufficiently, however, to collect entire suite of samples.										

SITE NAME: Former G	Gastown Man	ufactured G	as Plant Sit	te	SITE NUMBER: 915171					
SAMPLER: Glenn M	. May									
PURGE DATE: December	er 15, 1999	START	PURGE:	0805		END PU	URGE: 0825			
SAMPLE DATE: December	er 15, 1999					SAMPLE	E TIME: (0845		
WELL NUMBER:	MW-17						WELL ID.	VOL. (C		
1. TOTAL CASING AND S	CREEN LEN	GTH (FT):			_17.78		1" 2"		0.041 0.163	
2. CASING INTERNAL DI	AMETER (IN	J):			1.0		3"		0.367	
				4"		0.653				
3. WATER LEVEL BELOW		7.75		5"		1.020				
4. VOLUME OF WATER I	0.41		6"		1.469					
#1 - #3 x #2 (Gal/H	t)						8"		2.611	
VOLUM	E OF 3 CASI	NGS:			1.23	GAL				
			ACC	CUMULAT	ED VOLUI	ME PURGI	ED (GALLON	JS)		
PARAMETERS	0.0	0.5	1.0	1.5	2.0					
рН	6.77	6.86	6.83	6.86	6.87					
CONDUCTIVITY (µmhos)	2000	2190	2000	2000	2000					
TURBIDITY (NTU)	>1000	>1000	>1000	>1000	>1000					
TEMPERATURE (^o F)	8.3	9.5	9.8	9.5	9.3					
Eh	0.2	-4.8	-3.5	-5.0	-5.4					
TIME	0805	0807	0813	0817	0825					
	COMMENTS:									

SITE NAME: Fo	ormer Gastown Man	ufactured G	as Plant Sit	te	SITE NUMBER: 915171					
SAMPLER: GI	enn M. May									
PURGE DATE: De	ecember 14, 1999	START I	PURGE:	0943		END PU	END PURGE: 1003			
SAMPLE DATE: De	ecember 14, 1999					SAMPLI	E TIME: 10	30		
WELL NUMBER:	MW-2S						WELL ID.	VOL. (GAL/FT)		
1. TOTAL CASING	AND SCREEN LEN	GTH (FT):			8.32		1" 2"	0.041 0.163		
2. CASING INTERN	AL DIAMETER (IN	J):	2.0		3"	0.367				
3. WATER LEVEL E	BELOW TOP OF CA	ASING (FT	3.87		4" 5"	0.653 1.020				
4. VOLUME OF WA	TER IN CASING (GAL):	0.73	_0.736"						
#1 - #3 x #2	(Gal/Ft)						8"	2.611		
V	OLUME OF 3 CASI	NGS:			2.19	GAL				
			ACC	CUMULAT	ED VOLU	ME PURGI	ED (GALLONS)		
PARAMETERS	0.0	2.0	4.0	6.0	Sample					
pН	11.56	11.52	11.53	11.51	11.58					
CONDUCTIVITY (µ1	mhos) 819	834	840	844	867					
TURBIDITY (NTU)	> 200	45.9	48.6	48.2	14.0					
TEMPERATURE (^o F) 9.6	10.5	10.2	9.8	9.1					
Eh	-249	-248	-248	-247	-249					
TIME	0945	0950	0957	1003	1037					
COMMENTS: Field parameters measured following sample collection. 12/14/99: Initial purge water was very turbid - gray in color with fine sand particles. No sheen or odor observed. The turbidity cleared considerably by 2 gallons.										

SITE NUMBER: SITE NAME: Former Gastown Manufactured Gas Plant Site 915171 SAMPLER: Glenn M. May December 13, 1999 START PURGE: 1415 END PURGE: 1505 PURGE DATE: SAMPLE DATE: December 13, 1999 SAMPLE TIME: 1530 WELL ID. WELL NUMBER: _____MW-3S_ VOL. (GAL/FT) 0.041 1" 1. TOTAL CASING AND SCREEN LENGTH (FT): 7.81 2" 0.163 2. CASING INTERNAL DIAMETER (IN): _2.0_ 3" 0.367 4" 0.653 3. WATER LEVEL BELOW TOP OF CASING (FT): 3.43 1.020 5" 4. VOLUME OF WATER IN CASING (GAL): 0.71 1.469 6" #1 - #3 x #2 (Gal/Ft) 8" 2.611 VOLUME OF 3 CASINGS: 2.13____ _GAL ACCUMULATED VOLUME PURGED (GALLONS) 0.0 1.0 2.0 3.0 4.0 6.0 8.0 12.0 17.0 Sample PARAMETERS pН 7.39 7.65 7.67 7.75 7.75 7.83 7.92 8.08 8.05 8.87 CONDUCTIVITY (µmhos) 1069 1007 1000 1001 1004 1036 1045 1064 1082 1055 TURBIDITY (NTU) > 200 > 200 > 200 > 200 > 200 > 200 > 200 > 200 99.4 NM TEMPERATURE (⁰F) 7.7 8.0 7.8 7.6 7.6 7.4 7.5 7.0 8.0 6.3 -33.4 -45.3 -46.8 -50.4 -107.9 Eh -50.7 -54.1 -58.6 -67.9 -65.7 TIME 1415 1420 1425 1429 1433 1441 1445 1455 1505 1540 COMMENTS: NM Not Measured. Field parameters measured following sample collection. Initial purge water was cloudy. No sheen or odor observed. Bailed dry after 17 gallons. Sheen observed in purge bucket following 12/13/99: purging.

SITE NAME: Former Ga	stown Manu	factured G	as Plant Sit	e	SITE NUMBER: 915171					
DEVELOPER: C	Blenn M. Ma	ay								
DEVELOPMENT DATE:	December 15	5, 1999								
START DEVELOPMENT: 1	615			END DE	VELOPM	ENT: 1	635			
WELL NUMBER:	_MW-39_						WELL ID.	VOL. (GAL/FT)		
1. TOTAL CASING AND SC	REEN LEN	GTH (FT):			11.45		1" 2"	0.041 0.163		
2. CASING INTERNAL DIA	METER (IN	[):			_1.0		3"	0.367		
3. WATER LEVEL BELOW):		_7.69		4" 5"	0.653 1.020				
4. VOLUME OF WATER IN			_0.15		6"	1.469				
#1 - #3 x #2 (Gal/Ft)							8"	2.611		
VOLUME	OF 10 CAS	INGS:			_1.50	GAL.				
			ACC	UMULATI	ED VOLU	ME PURG	ED (GALLONS)			
PARAMETERS	0.0	1.0	Sample							
pН	7.63	7.67	7.51							
CONDUCTIVITY (µmhos)	3070	3040	2000							
TURBIDITY (NTU)	>1000	>1000	>1000							
TEMPERATURE (°C)	11.6	12.0	12.0							
Eh	-45.0	-47.3	-38.5							
TIME	1620	1625	1647							
COMMENTS: Field parameters measured following sample collection. 12/15/99: Initial purge water was very turbid - dark gray in color. A sheen and strong petroleum odor observed. Purged a total of 1.5 gallons. 12/15/99: Well sampled at 1640 following completion of development.										

SITE NAME: Forme	r Gastown Man	ufactured G	as Plant Si	te	SITE NUMBER: 915171						
SAMPLER: Glenn	M. May										
PURGE DATE: Decem	ber 15, 1999	START	PURGE:	1500		END PU	D PURGE: 1540				
SAMPLE DATE: Decem	ber 15, 1999					SAMPLE	E TIME: 15	45			
WELL NUMBER:	MW-23_						WELL ID.	VOL. (GAL/FT)			
1. TOTAL CASING AND	SCREEN LEN	IGTH (FT)	:		_14.03		1" 2"	0.041 0.163			
2. CASING INTERNAL	DIAMETER (IN	4):	1.0		3"	0.367					
			5.05		4"	0.653					
3. WATER LEVEL BELC	DW TOP OF CA	ASING (FT):		5.95		5"	1.020			
4. VOLUME OF WATER	IN CASING (GAL):	0.33		6"	1.469					
#1 - #3 x #2 (Ga	/Ft)						8"	2.611			
VOLU	ME OF 3 CAS	INGS:			1.00	GAL					
			ACC	CUMULAT	ED VOLUI	ME PURGI	ED (GALLONS)				
PARAMETERS	0.0	1.0	1.5	2.0	3.0	Sample					
pH	7.18	7.29	7.36	7.26	7.22	7.24					
CONDUCTIVITY (µmhos	8) 810	839	833	821	797	802					
TURBIDITY (NTU)	>1000	>1000	>1000	>1000	>1000	>1000					
TEMPERATURE (^o F)	10.9	10.7	10.2	10.0	10.4	9.6					
Eh	-21.6	-27.5	-30.6	-25.2	-23.8	-24.7					
TIME	1500	1510	1516	1525	1540	1553					
12/15/99: Initial purge v	COMMENTS: Field parameters measured following sample collection.										

SITE NAME: Fo	ormer Gastow	n Manı	afactured G	as Plant Sit	æ	SITE NU	IUMBER: 915171				
SAMPLER: G	lenn M. May										
PURGE DATE: D	ecember 16, 1	999	START I	PURGE:	1250		END PU	JRGE: 1332			
SAMPLE DATE: D	ecember 16, 1	999					SAMPLE	E TIME:	1340		
WELL NUMBER:	M	W-1I						WELL ID.		VOL. (GAL	/FT)
1. TOTAL CASING	AND SCREE	NIFN	GTH (FT)·			21.61		1"		0.04	1
1. TOTAL CASING	AND SCREE		0111 (11).		<u> </u>	_21.01		2"		0.16	3
2. CASING INTERN	2.0		3"		0.36	7					
			4"		0.65	3					
3. WATER LEVEL I	BELOW TOP	OF CA	ASING (FT)):		6.69		5"		1.02	0
4. VOLUME OF WA	ATER IN CAS	ING (O	GAL):			2.43		6" 1.469			9
#1 - #3 x #2	2 (Gal/Ft)							8"		2.61	1
V	OLUME OF 3	3 CASI	NGS:			7.29	GAL				
				ACC	UMULAT	ed volui	ME PURGE	ED (GALLON	NS)		
PARAMETERS		1.0	4.0	8.0	12.0	15.0	Sample				
pН	e	5.77	6.82	6.87	6.89	6.93	6.89				
CONDUCTIVITY (µ	mhos) 1	932	1932	1941	1940	1922	1940				
TURBIDITY (NTU)		157	> 200	>1000	>1000	>1000	>1000				
TEMPERATURE (^o F	F) 1	1.0	11.4	11.6	11.8	11.5	11.0				
Eh	-(0.04	-2.9	-5.6	-6.6	-9.0	-6.4				
TIME	1	255	1303	1313	1323	1332	1347				
12/16/99: Initial pu	COMMENTS: Field parameters measured following sample collection.										

SITE NAME:	Former Gast	own Manu	afactured G	as Plant Sit	te	SITE NUMBER: 915171					
SAMPLER:	Glenn M. Ma	ay					-				
PURGE DATE:	December 16	6, 1999	START I	PURGE:	1045		END PU	RGE:	RGE: 1133		
SAMPLE DATE:	December 16	6, 1999					SAMPLI	E TIME:	1145		
WELL NUMBER:_		_MW-2I						WELL ID.		VOL. (GAL/FT)	
								1"		0.04	41
1. TOTAL CASING	G AND SCR	EEN LEN	GTH (FT):			_24.00 *		2"		0.1	63
2. CASING INTER	2.0		3"		0.3	67					
			4"		0.6	53					
3. WATER LEVEI	L BELOW TO	OP OF CA	SING (FT)):		6.72		5"		1.02	20
4. VOLUME OF W	VATER IN C	ASING (C	GAL):			2.82		6" 1.469			69
#1 - #3 x :	#2 (Gal/Ft)							8"		2.611	
	VOLUME C	OF 3 CASI	NGS:			8.46	GAL				
				ACC	UMULAT	ED VOLUI	ME PURG	ED (GALLON	VS)		
PARAMETERS		1.0	3.0	6.0	9.0	12.0	15.0	Sample			
рН		6.67	6.68	6.67	6.73	6.77	6.78	6.83			
CONDUCTIVITY	(µmhos)	2080	2000	2000	2000	2000	2000	2000			
TURBIDITY (NTU	J)	> 200	> 200	> 200	> 200	> 200	> 200	111.1			
TEMPERATURE (^o F)	11.3	12.1	12.5	12.5	12.5	12.5	11.8			
Eh		5.1	4.1	5.4	1.6	-0.3	-0.7	-3.6			
TIME		1047	1055	1100	1110	1122	1133	1150			
COMMENTS: Field p	COMMENTS: * The total well depth measurement from the May 4, 1999 sampling event was utilized due to the historical presence of DNAPL in the well. Field parameters measured following sample collection.										
12/16/99: Initial	purge water v	was clear b	out became	reddish bro	own in colo			odor noticed by ved throughou			llons the

SITE NAME: Former Gastown Manufactured Gas Plant Site SITE NUMBER: 915171 **DEVELOPER:** Glenn M. May DEVELOPMENT DATE: December 14, 1999 START DEVELOPMENT: 1053 END DEVELOPMENT: 1117 WELL NUMBER:_____MW-27___ WELL ID. VOL. (GAL/FT) 0.041 1" 1. TOTAL CASING AND SCREEN LENGTH (FT): _17.12____ 2" 0.163 2. CASING INTERNAL DIAMETER (IN): _1.0_____ 3" 0.367 4" 0.653 3. WATER LEVEL BELOW TOP OF CASING (FT): 5.27 1.020 5" 4. VOLUME OF WATER IN CASING (GAL): 0.49 1.469 6" #1 - #3 x #2 (Gal/Ft) 8" 2.611 VOLUME OF 10 CASINGS: _4.90____GAL. ACCUMULATED VOLUME PURGED (GALLONS) 7.0 0.0 1.0 3.0 5.0 Sample PARAMETERS 7.02 6.94 6.96 6.89 6.91 pН 6.98 CONDUCTIVITY (µmhos) 1886 1843 2060 2140 2070 2060 TURBIDITY (NTU) >1000 >1000 >200 >1000 >1000 >1000 TEMPERATURE (°C) 9.0 11.2 10.9 10.7 11.3 10.3 -10.0 -7.2 Eh -11.1 -12.8 -8.8 -6.2 1111 TIME 1053 1057 1105 1117 1145 COMMENTS: Field parameters measured following sample collection. Initial purge water was very turbid - brown in color. No sheen or odors observed. Water was very turbid throughout purging. 12/14/99: 12/14/99: Well sampled at 1145 following completion of development.

SITE NAME: Former Ga	stown Manı	ıfactured G	as Plant Sit	te	SITE NU	MBER:	915171		
DEVELOPER: C	lenn M. Ma	ay							
DEVELOPMENT DATE: D	December 15	5, 1999							
START DEVELOPMENT: 1	325			END DE	VELOPME	ENT: 1	400		
WELL NUMBER:	_MW-34_						WELL ID.	VOL. (GA	L/FT)
1. TOTAL CASING AND SC	REEN LEN	GTH (FT):			_18.80		1" 2"		041 163
2. CASING INTERNAL DIA	METER (IN	I):			1.0		3"	0	367
3. WATER LEVEL BELOW	TOP OF CA	SING (FT)):		_5.69		4" 5"		653 020
4. VOLUME OF WATER IN	CASING (O	GAL):			0.54		6"	1.4	469
#1 - #3 x #2 (Gal/Ft)							8"	2.0	611
VOLUME	OF 10 CAS	SINGS:			5.40	GAL.			
			ACC	CUMULAT	ED VOLUI	ME PURG	ED (GALLON	S)	
PARAMETERS	0.0	1.0	3.0	6.0	9.0				
рН	6.91	6.87	6.89	6.92	6.97				
CONDUCTIVITY (µmhos)	2000	2000	2000	2000	2000				
TURBIDITY (NTU)	>1000	>1000	>1000	>1000	>1000				
TEMPERATURE (^o C)	11.5	11.7	11.4	11.5	11.5				
Eh	-7.2	-5.5	-6.2	-8.1	-10.4				
TIME	1333	1340	1343	1353	1400				
COMMENTS: 12/15/99: Initial purge water of NAPL increase				olor. Slight	coal tar odo	or observed.	NAPL observ	ed by 1 gallon. Th	e quantity
12/15/99: Well sampled at 1	405 followi	ng complet	ion of deve	elopment.					

SITE NAME: Former Gas	stown Manu	ıfactured G	as Plant Sit	ie -	SITE NUMBER:	915171	
DEVELOPER: G	lenn M. M	ay					
DEVELOPMENT DATE: D	ecember 1	5, 1999					
START DEVELOPMENT: 1	150			END DE	VELOPMENT: 1	230	
WELL NUMBER:	_MW-35_					WELL ID.	VOL. (GAL/FT)
					12 50	1"	0.041
1. TOTAL CASING AND SCI	KEEN LEN	GTH (FT):			_13.70	2"	0.163
2. CASING INTERNAL DIAN	METER (IN	I):			1.0	3"	0.367
						4"	0.653
3. WATER LEVEL BELOW 1	FOP OF CA	SING (FT)):		5.71	5"	1.020
					0.22		
4. VOLUME OF WATER IN	CASING (C	JAL):			0.33	6"	1.469
#1 - #3 x #2 (Gal/Ft)						8"	2.611
VOLUME	OF 10 CAS	SINGS:			GAL.		
	1						
		1	ACC	UMULAT	ED VOLUME PURG	ED (GALLONS)	
PARAMETERS	0.0	1.0	3.0	6.0			
рН	7.28	7.22	7.20	7.25			
CONDUCTIVITY (µmhos)	714	522	724	772			
TURBIDITY (NTU)	>1000	>1000	>1000	>1000			
TEMPERATURE (°C)	10.4	11.3	10.8	11.1			
Eh	-27.0	-24.2	-22.6	-25.1			
TIME	1153	1202	1211	1230			
COMMENTS:							
12/15/99: Initial purge water with continued pur		ırbid - brow	n in color.	A sheen, co	oal tar odor and NAPL	observed. The qua	ntity of NAPL increased
12/15/99: Well sampled at 1	240 followi	ng complet	ion of deve	lopment.			

SITE NAME: Former Gastown Manufactured Gas Plant Site SITE NUMBER: 915171 **DEVELOPER:** Glenn M. May DEVELOPMENT DATE: December 15, 1999 START DEVELOPMENT: 1000 END DEVELOPMENT: 1100 WELL NUMBER: _____MW-36_ WELL ID. VOL. (GAL/FT) 0.041 1" 1. TOTAL CASING AND SCREEN LENGTH (FT): _13.18____ 2" 0.163 2. CASING INTERNAL DIAMETER (IN): _1.0_____ 3" 0.367 4" 0.653 3. WATER LEVEL BELOW TOP OF CASING (FT): 5.17 1.020 5" 4. VOLUME OF WATER IN CASING (GAL): 0.33 1.469 6" #1 - #3 x #2 (Gal/Ft) 8" 2.611 VOLUME OF 10 CASINGS: _3.30____GAL. ACCUMULATED VOLUME PURGED (GALLONS) 0.75 3.0 0.0 1.5 2.0 4.0 5.0 Sample PARAMETERS 7.31 7.25 7.08 7.05 6.96 pН 7.52 6.96 6.91 CONDUCTIVITY (µmhos) 472 499 680 767 861 857 865 1108 TURBIDITY (NTU) >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000 TEMPERATURE (°C) 10.3 11.2 11.2 11.3 11.2 11.8 11.2 11.1 -10.2 Eh -28.1 -38.7 -25.3 -15.9 -14.6 -9.8 -7.3 1012 1017 1025 TIME 1000 1005 1050 1100 1110 COMMENTS: Field parameters measured following sample collection. Initial purge water was very turbid - brown in color. No sheen or odors observed. 12/15/99: 12/15/99: Well sampled at 1105 following completion of development.

SITE NAME: Former Ga	istown Manu	ufactured G	as Plant Site	9	SITE NU	MBER:	915171			
SAMPLER: Glenn M.	May									
PURGE DATE: N/A		START I	PURGE: N	I/A		END PU	RGE:	N/A		
SAMPLE DATE: December	16, 1999					SAMPLE	E TIME:	1020		
WELL NUMBER:To	nawanda C	reek					WELL II).	VOL. (GAI	_/FT)
1 TOTAL CASING AND SC							1"		0.0	41
1. TOTAL CASING AND SC	KEEN LEN	GIH (FI):					2"		0.1	63
2. CASING INTERNAL DIA	METER (IN	I):					3"		0.3	67
							4"		0.6	53
3. WATER LEVEL BELOW	TOP OF CA	ASING (FT)):				5"		1.0	20
4. VOLUME OF WATER IN	CASING (O	GAL):					6"		1.4	69
#1 - #3 x #2 (Gal/Ft)	1						8"		2.6	11
VOLUME	OF 3 CASI	NGS:				GAL				
			ACCI	JMULAT	ED VOLU	ME PURGI	ED (GALL	ONS)		
PARAMETERS	Sample									
рН	7.23									
CONDUCTIVITY (µmhos)	930									
TURBIDITY (NTU)	34.1									
TEMPERATURE (^o F)	4.4									
Eh	-23.6									
TIME	1025									
COMMENTS: Field para 12/16/99: Sample collected			ving sample astown Spor			was very c	elear. No sl	neen or oc	lors observed	

SITE NAME: Former	Gastown Manu	afactured G	as Plant Site	9	SITE NU	MBER:	915171			
SAMPLER: Glenn I	M. May									
PURGE DATE: N/A		START F	PURGE: N	I/A		END PU	RGE:	N/A		
SAMPLE DATE: Decem	ber 16, 1999					SAMPLI	E TIME:	0940		
WELL NUMBER:	Outfall to Cre	ek	_				WELL II	D.	VOL. (GAI	_/FT)
1. TOTAL CASING AND	SCDEEN I EN						1"		0.0	41
1. TOTAL CASING AND	SCREEN LEN	01H (F1).					2"		0.1	63
2. CASING INTERNAL I	DIAMETER (IN	I):					3"		0.3	67
							4"		0.6	53
3. WATER LEVEL BELC	W TOP OF CA	SING (FT)):				5"		1.0	20
4. VOLUME OF WATER	IN CASING (0	GAL):					6"		1.4	69
#1 - #3 x #2 (Gal	/Ft)						8"		2.6	11
VOLU	ME OF 3 CASI	NGS:				GAL				
			ACCU	JMULATI	ED VOLUN	ME PURGI	ED (GALL	ONS)		
PARAMETERS	Sample									
pH	7.40									
CONDUCTIVITY (µmhos) 631									
TURBIDITY (NTU)	97.9									
TEMPERATURE (^o F)	3.3									
Eh	-33.7									
TIME	0947									
_	arameters meas					s very clea	r. No shee	n or odors	observed.	

SITE NAME: For	ner Gastown Manu	afactured Gas Plant Site	e	SITE NU	MBER:	915171			
SAMPLER: Glei	nn M. May								
PURGE DATE: N/A		START PURGE: N	J/A		END PU	RGE:	N/A		
SAMPLE DATE: Dec	ember 16, 1999				SAMPL	E TIME:	1415		
WELL NUMBER:	Primary Sum	p				WELL ID).	VOL. (GAL	/FT)
1. TOTAL CASING A	ND SCREEN LEN	GTH (FT):				1" 2"		0.04 0.16	
2. CASING INTERNA	L DIAMETER (IN	I):				3"		0.36	57
3. WATER LEVEL BE	LOW TOP OF CA	ASING (FT):				4"		0.65	_
4. VOLUME OF WAT						5" 6"		1.02 1.46	-
#1 - #3 x #2 (0		JAL).				8"		2.61	
	LUME OF 3 CASI	NGS:			GAL	0		2.01	
		ACCU	UMULATE	ED VOLUN	ME PURG	ED (GALLO	DNS)		
PARAMETERS	Sample								
pH	7.14								
CONDUCTIVITY (µml	nos) 1082								
TURBIDITY (NTU)	5.2								
TEMPERATURE (^o F)	14.1								
Eh	-20.0								
TIME	1425								
12/16/99: Sample col	-	sured following sample mary sump of the Gasto ved.		men's Clul	b. Water w	as very clea	r with a s	light NAPL o	odor, but

APPENDIX C

SOIL BORING AND MONITORING WELL SUMMARY TABLES

								Tahle C-1	. C-1.								
	Str	atigrap	ohic Sumr	nary of	f Borings :	and Monit All Dept	toring hs and	nitoring Wells Completed at the Former G epths and Elevations are Measured in Feet.	npleted a ns are Me	t the F asured	ormer Gå l in Feet.	astown M	anufac	Stratigraphic Summary of Borings and Monitoring Wells Completed at the Former Gastown Manufactured Gas Plant Site. All Depths and Elevations are Measured in Feet.	Plant Sit	e.	
Well or	Data	Totol	Ground	Mi	Miscellaneous Fill **	Fill **	n	Upper Silty Clay	Clay	A	Alluvial Deposit	posit		Gravel Deposit	sit	Lower 3	Lower Silty Clay
Boring Number	Completed	Depth	Surface Elevation	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation
SB-1	6/3/96	20.0	574.45				0.5	573.95	7.3	7.8	566.65	12.0	19.8	554.65			
SB-2	6/3/96	12.0	574.45 *				1.0	573.45	6.0	7.0	567.45						
SB-3	6/3/96	21.0	574.44				2.0	572.44	9.5	11.5	562.94	7.9	19.4	555.04	0.6	20.0	554.44
SB-4	6/3/96	12.0	574.45 *	0.3	574.15	1.5	1.8	572.65	3.7	5.5	568.95						
SB-5	6/3/96	12.0	574.30 *	0.3	574.00	1.7	2.0	572.30	9.0	11.0	563.30						
SB-6	6/3/96	8.0	574.30 *	0.3	574.00	1.2	1.5	572.80									
SB-7	6/3/96	8.0	574.30 *				2.0	572.30									
SB-8	6/3/96	8.0	574.30 *				2.0	572.30									
SB-9	6/3/96	8.0	574.75 *				2.8	571.95									
SB-10	6/3/96	8.0	574.30 *				2.2	572.10									
SB-11	6/3/96	8.0	574.30 *				2.0	572.30									
SB-12	6/3/96	8.0	574.30 *				2.2	572.10									
SB-13	6/4/96	22.0	576.39	0.0	576.39	1.8	1.8	574.59	9.2	11.0	565.39	11.0	22.0	554.39			
SB-14	6/4/96	24.0	575.58	0.0	575.58	0.5	0.5	575.08	9.5	10.0	565.58	12.5	22.5	553.08	0.2	22.7	552.88
SB-15	6/4/96	20.0	575.41	0.0	575.41	2.0	2.0	573.41	8.0	10.0	565.41						
SB-16	6/2/96	24.0	576.89	0.0	576.89	3.0	3.0	573.89	6.0	9.0	567.89	14.0				23.0	553.89
SB-17	6/2/96	24.0	577.08	0.0	577.08	3.1	3.1	573.98	7.9	11.0	566.08	11.0				22.0	555.08
SB-18	6/2/96	24.0	575.85	0.0	575.85	5.0	5.0	570.85	7.0	12.0	563.85	9.5	21.5	554.35	1.0	22.5	553.35
SB-19	6/2/96	24.0	576.02	0.0	576.02	3.0	3.0	573.02	7.0	10.0	566.02	12.5	22.5	553.52	0.7	23.2	552.82
SB-20	6/6/96	24.0	576.49	0.0	576.49	4.5	4.5	571.99	4.9	9.4	567.09	13.8	23.2	553.29	0.2	23.4	553.09
SB-21	6/6/96	12.0	577.54	0.0	577.54	5.8	5.8	571.74									
SB-22	6/6/96	20.0	577.33	0.0	577.33	2.0	2.0	575.33	10.0	12.0	565.33						
SB-23	6/1/96	24.0	576.85	0.0	576.85	4.0	4.0	572.85	11.5	15.5	561.35	5.3	20.8	556.05	0.4	21.2	555.65
SB-24	6/1/96	24.0	576.43	0.0	576.43	2.0	2.0	574.43	10.0	12.0	564.43	12.0				24.0	552.43
SB-25	6/10/96	23.2	577.60	0.0	577.60	5.5	5.5	572.10	6.5	12.0	565.60	11.0	23.0	554.60	0.2	23.2	554.40

	Str	atigrap	hic Sumn	nary of	(Borings	Table C-1 (continued). Stratigraphic Summary of Borings and Monitoring Wells Completed at the Former Gastown Manufactured Gas Plant Site. All Depths and Elevations are Measured in Feet.	T toring ths and	Table C-1 (continued). Ind Monitoring Wells Completed at the Former G All Depths and Elevations are Measured in Feet.	(continue mpleted a ns are Mt	d). it the Fe sasured	ormer G ₈ in Feet.	istown M	anufact	tured Gas	: Plant Sit	చ	
Well or	$\mathbf{D}_{\mathbf{c}^{4,0}}$	Totol	Ground	Mi	Miscellaneous Fill **	Fill **	D	Upper Silty Clay	Clay	F	Alluvial Deposit	posit		Gravel Deposit	osit	Lower S	Lower Silty Clay
Boring Number	Completed	Depth	Surface Elevation	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation	Thickness	Depth	Surface Elevation
SB-26	6/10/96	20.0	574.21				1.5	572.71	14.5	16.0	558.21	3.5	19.5	554.71	0.2	19.7	554.51
MW-2S	6/2/98	9.0	575.32					A		ic log is 1	not availabl	stratigraphic log is not available for this boring	ring				
MW-3S	6/2/98	8.5	574.91					A		ic log is 1	not availabl	stratigraphic log is not available for this boring	ring				
MW-11	6/4/98	26.0	575.85	0.3	575.55	1.7	2.0	573.85	2.7	4.7	571.15	16.4	21.1	554.75	0.9	22.0	553.85
MW-2I	6/4/98	26.0	575.47	0.0	575.47					4.4	571.07	16.6				21.0	554.47
PW-1	6/3/98	30.0	575.50	0.0	575.50					4.8	570.75	17.3	22.0	553.50	1.0	23.0	552.50
SB-27	12/7/99	28.0	575.27	0.0	575.27	4.4	4.4	570.87	6.9	11.3	563.97						
SB-28	12/7/99	24.0	577.93	0.6	577.33	4.4	5.0	572.93	2.2	7.2	570.73	16.4	23.6	554.33	0.3	23.9	554.03
SB-29	12/8/99	24.0	575.20	0.0	575.20	2.0	2.0	573.20	3.0	5.0	570.20	14.8	19.8	555.40			
SB-30	12/6/99	32.0	576.13	0.0	576.13	6.5	6.5	569.63	5.0	11.5	564.63						
SB-31	12/6/99	26.0	576.21	0.0	576.21	2.0	2.0	574.21	4.4	6.4	569.81	17.0	23.4	552.81	0.9	24.3	551.91
SB-32	12/6/99	28.0	575.32	0.0	575.32	1.3	1.3	574.02	2.7	4.0	571.32	19.8				23.8	551.52
SB-33	12/7/99	16.0	574.03	0.4	573.63	0.4				0.8	573.23						
SB-34	12/8/99	20.0	574.72	0.3	574.42	0.7	1.0	573.72					19.2	555.52			
SB-35	12/8/99	20.0	574.52	0.3	574.22	0.6	0.9	573.62	2.6	3.5	571.02	15.8	19.3	555.22			
SB-36	12/8/99	20.0	574.28				2.0	572.28	2.4	4.4	569.88	13.9	18.3	555.98	0.5	18.8	555.48
SB-37	12/9/99	20.0	574.69	0.0	574.69	2.0	2.0	572.69	5.6	7.6	567.09	8.2	15.8	558.89			
SB-38	12/9/99	24.0	576.81	0.0	576.81	5.2	5.2	571.61	4.0	9.2	567.61	13.5	22.7	554.11	1.0	23.7	553.11
SB-39	12/9/99	24.0	577.09	0.0	577.09	4.2	4.2	572.89	3.8	8.0	569.09	15.1	23.1	553.99	0.9	24.0	553.09
* Gro ** Mis • Tor	Ground surface elevation estimated from nearby surveyed borehole locations. Miscellaneous fill includes the crushed stone of the parking lots but does not include topsoil. Topsoil thickness estimated at 0.3 feet when a specific thickness is not given.	elevation Il include s estimat	a estimated s the crush ed at 0.3 fee	from ne ed stone et when	arby survey of the park a specific th	/ed_borehok ang lots but nickness is n	ole locations out does not i s not given.	ns. t include to	psoil.								
					T		D										

	Monitoring	Well Instrum	nentation Summ	Table C-2. lary for Monitoring	Wells Installed	Table C-2. Monitoring Well Instrumentation Summary for Monitoring Wells Installed at the Former Gastown MGP Site.	wn MGP Site.
Well Designation	Ground Surface Elevation (ft. AMSL)	Top of Riser Elevation (ft. AMSL)	Sandpack Interval (ft. BGS)	Sandpack Interval (ft. AMSL)	Well Screen Interval (ft. BGS)	Well Screen Interval (ft. AMSL)	Primary Geologic Unit(s) Screened
				Shallow Zone Wells	'ells		
MW-13	576.39	576.09	5.0 to 16.0	571.39 to 560.39	6.0 to 16.0	570.39 to 560.39	Upper Silty Clay; Alluvial
MW-17	577.08	576.86	6.0 to 17.0	571.08 to 560.08	7.0 to 17.0	570.08 to 560.08	Upper Silty Clay; Alluvial
MW-1S	575.39	576.84	N/A	N/A	0.0 to 9.5	575.39 to 565.89	Upper Silty Clay
MW-2S	575.32	574.77	3.5 to 9.0	571.82 to 566.32	4.0 to 9.0	571.32 to 566.32	Upper Silty Clay
MW-3S	574.91	574.55	3.0 to 8.5	571.91 to 566.41	3.5 to 8.5	571.41 to 566.41	Upper Silty Clay
MW-39	577.09	576.85	3.0 to 12.0	574.09 to 565.09	5.0 to 12.0	572.09 to 565.09	Upper Silty Clay; Alluvial
				Intermediate Zone Wells	Wells		
MW-23	576.85	576.61	13.0 to 24.0	563.85 to 552.85	14.0 to 24.0	562.85 to 552.85	Alluvial Deposit
MW-11	575.85	575.43	5.0 to 26.0	570.85 to 549.85	6.0 to 26.0	569.85 to 549.85	Alluvial Deposit
MW-2I	575.47	575.08	5.0 to 26.0	570.47 to 549.47	6.0 to 26.0	569.47 to 549.47	Alluvial Deposit
PW-1	575.50	574.58	8.0 to 25.5	567.50 to 550.00	10.0 to 25.0	565.50 to 550.50	Alluvial Deposit
MW-27	575.27	575.17	8.0 to 25.0	567.27 to 550.27	10.0 to 25.0	565.27 to 550.27	Alluvial Deposit
MW-34	574.72	574.56	3.0 to 20.0	571.72 to 554.72	5.0 to 20.0	569.72 to 554.72	Alluvial Deposit
MW-35	574.52	574.31	3.0 to 20.0	571.52 to 554.52	5.0 to 20.0	569.52 to 554.52	Alluvial Deposit
MW-36	574.28	574.13	3.0 to 20.0	571.28 to 554.28	5.0 to 20.0	569.28 to 554.28	Alluvial Deposit
Ft. AMSL Ft. BGS N/A	Feet Above Mean Sea Level. Feet Below Ground Surface. Not Applicable.	n Sea Level. ind Surface.					