

BIOREMEDIATION PILOT STUDY REPORT

WORK ASSIGNMENT D004440-4

CHEM CORE SITE CITY OF BUFFALO (C)

SITE NO. 9-15-176 ERIE COUNTY, NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Alexander B. Grannis, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation

77 Goodell Street Buffalo, New York 14203

BIOREMEDIATION PILOT STUDY REPORT CHEM-CORE SITE

SITE #9-15-176

BUFFALO, NEW YORK

PREPARED FOR:

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D004440-4

FINAL

PREPARED BY:

URS CORPORATION, INC.

77 GOODELL STREET

BUFFALO, NEW YORK 14203

FEBRUARY 2009

TABLE OF CONTENTS

			Page No.
1.0	INTR	RODUCTION	1-1
	1.1	Site Description	1-1
	1.2	Background	
	1.3	Objectives	1-2
2.0	DESI	IGN	2-1
	2.1	Bioremediation Products	2-1
	2.2	Field Program	2-2
		2.2.1 Injection Well Locations	2-2
		2.2.2 Well Construction	2-2
		2.2.3 Well Development	2-3
	2.3	Injection Rate and Methods	2-3
	2.4	Groundwater Flow in the Pilot Study Area	2-4
	2.5	Sampling and Monitoring	2-5
	2.6	Geology and Hydrogeology	2-5
		2.6.1 Site Geology	2-6
		2.6.2 Site Hydrogeology	2-7
		2.6.3 Hydraulic Conductivity Testing – Pilot Test	2-9
	2.7	Groundwater Sampling	2-9
	2.8	Chain of Custody and Shipping	2-10
	2.9	Field Documentation	2-11
3.0	GRO	UNDWATER SAMPLING RESULTS	3-1
	3.1	Baseline	3-1
	3.2	Post-Injection Results and Discussion	3-1
4.0	CON	CLUSIONS	4-1
REFI	ERENCI	ES	R-1

TABLES (Following Sections)

Table 2-1	Monitoring/Sampling Schedule
Table 3-1	Summary of Groundwater Analytical Results
Table 3-2	Summary of Chlorinated Hydrocarbon Sampling Results
Table 3-3	Summary of Geochemical Indicator Parameter Results
	FIGURES (Following Tables)
Figure 1-1	Site Location Map
Figure 2-1	Potentiometric Surface of Shallow Bedrock Aquifer – September 10, 2004
Figure 2-2	Potentiometric Surface of Shallow Bedrock Aquifer – December 6, 2004
Figure 2-3	Groundwater Potentiometric Surface Comparison
Figure 3-1	Groundwater Contaminants Above SCGs (Baseline, April 2005)
Figure 3-2	Groundwater Geochemical Indicator Parameters (Baseline, April 2005)
Figure 3-3	Groundwater Contaminants Above SCGs (September 2005)
Figure 3-4	Groundwater Contaminants Above SCGs (December 2005)
Figure 3-5	Groundwater Contaminants Above SCGs (April 2006)
Figure 3-6	Groundwater Contaminants Above SCGs (September 2006)
Figure 3-7	Groundwater Geochemical Indicator Parameters (September 2005)
Figure 3-8	Groundwater Geochemical Indicator Parameters (December 2005)
Figure 3-9	Groundwater Geochemical Indicator Parameters (April 2006)
Figure 3-10	Groundwater Geochemical Indicator Parameters (September 2006)
	APPENDICES
Appendix A	Monitoring Well Construction Logs
Appendix B	Well Development Logs
Appendix C	Purge Logs
Appendix D	Validation Summary Tables
Appendix E	Analytical Data Trends For Chlorinated Hydrocarbons and Geochemical Indicator Parameters

1.0 INTRODUCTION

This report has been prepared to present the results of the In-Situ Bioremediation Pilot Study conducted as part of the remedial design at the Chem Core site as required under Subtask 3.1 of Work Assignment D003825-61. The report describes the means and methods that were used to implement the bioremediation pilot study at an off-site location south of the source area and presents results of the monitoring.

1.1 <u>Site Description</u>

The Chem-Core site is located at 1382 Niagara Street in the City of Buffalo, Erie County, New York (Figure 1-1). The site was occupied by a two-story 39,000 square foot industrial building on approximately 0.5 acres that was demolished in 2006 as part remedial activities. The site is situated on an historically industrial corridor in close proximity to residential neighborhoods to the east and adjacent to a rail corridor to the west with both the Interstate I-190 highway and the Black Rock Canal (which leads from Lake Erie to the Niagara River) farther to the west.

1.2 Background

The Record of Decision (ROD) for the Chem Core site includes the following elements to address groundwater remediation:

- 1. Install and operate a groundwater pump and treat system on site.
- 2. Evaluate results from the on-site pump and treat system after five years and determine if additional measures (e.g. bioremediation) are necessary to achieve the remediation goal.
- 3. Implement a bioremediation pilot study off site to use as a basis for full-scale implementation of bioremediation at the five year point of remediation, if necessary.

This report presents the results of the bioremediation pilot study.

1.3 Objectives

An approximately 1-year pilot study was implemented to satisfy the following objectives:

- Evaluate the impact of in-situ bioremediation using EOSTM on concentrations of chlorinated hydrocarbons in groundwater south of the site.
- Develop a basis for full-scale design with regard to the quantity and frequency of injection of EOSTM into the groundwater.

2.0 DESIGN

2.1 <u>Bioremediation Products</u>

The bioremediation product chosen for this pilot study acts as a hydrogen donor in biological reactions and stimulates anabolic biological activity that leads to reductive dechlorination of chlorinated aliphatic hydrocarbons. For the pilot study, chlorinated hydrocarbons of primary concern include vinyl chloride (VC), cis 1,2-dichloroethene (cDCE), trans 1,2- dichloroethene (tDCE), trichloroethene (TCE), and tetrachlorethene (PCE). URS considered initially two bioremediation products for the bioremediation pilot test at the Chem Core site. These products are:

- Hydrogen Release Compound (HRCTM) manufactured by Regenesis Bioremediation Products.
- Edible Oil Substrate (EOSTM) manufactured by EOS Remediation, Inc.

Although experience using these products in fractured bedrock is believed to be limited, both products have been successfully used for chlorinated hydrocarbon remediation in groundwater. URS performed an analysis of the two products and in URS' opinion, EOSTM was determined to be more suitable for the pilot study for the following reasons:

- EOSTM has a lower viscosity than HRCTM and may spread more completely into bedrock fractures and joints since a lower viscosity means it can move more readily in the bedrock aquifer.
- EOSTM is a slower release compound than HRCTM. A slow release compound is more appropriate for the site because of the relatively flat gradient and lower concentrations in the downgradient area.
- EOSTM is blended with vitamin B12, which provides micronutrients for enhancing bioremediation.

• HRCTM has to be heated before injection.

EOSTM was chosen for the pilot study.

2.2 Field Program

2.2.1 Injection Well Locations

EOSTM was applied using 24 injection wells constructed in a nominal 4,000 square foot area, which is over two hundred feet south of the site (Figure 1-1). This area was chosen because it is easily accessible (no buildings restrict access) and because total chlorinated hydrocarbon concentrations in area monitoring wells are relatively high (1-2 parts per million - ppm), but not as high as the source area. In the source area, total chlorinated hydrocarbon concentrations are in the range of 10-50 ppm. Source area concentrations are expected to decrease as a result of implementing pump and treat technology at the source, and it is anticipated that they will be comparable to the present downgradient pilot study concentrations in the future.

2.2.2 Well Construction

Injection wells were installed generally in a grid pattern using spacing of approximately 15 feet. Each injection well was installed to depth of approximately 40 feet (20 feet into the saturated zone.) Construction specifications were as follows:

- 4-inch diameter steel casing installed approximately 2-3 feet into bedrock.
- 3 %-inch diameter open rock hole from the base of the casing to a depth of 40 feet.
- Annular backfill consisting of cement/bentonite grout.
- Flush-mount protective curb box with locking cover and concrete apron.

Prior to drilling, each proposed injection well location was cleared to avoid underground utilities and structures. Commercial utility locating services, public utilities, and the City of Buffalo was contacted to provide subsurface utility information. Well construction logs are provided in Appendix A. All drilling equipment was steam cleaned prior to use at the site and prior to demobilization from the site. Downhole equipment, such as drive points and rods, was also cleaned between well and injection locations. A geologist provided oversight during the drilling and well construction activities. The field geologist logged each borehole and documented the as-built well details on well construction log sheets. Each injection well was surveyed by URS. The survey included northing, easting and elevations of ground and top of well casing.

2.2.3 Well Development

All new injection wells were developed by pumping until the discharge water was relatively free of sediment and measured water quality parameters stabilized. Measurements of pH, conductivity, and temperature were taken from the pump discharge at the following frequency:

- Initial discharge
- Every static well water volume

The static water level was measured in each well prior to and at the conclusion of development. Well development logs are included in Appendix B.

2.3 Injection Rate and Methods

EOSTM was injected over a one-week period that took place between May 25 and May 30, 2005. EOSTM concentrate, in the amount of 844 pounds (110 gallons), was used for the pilot study. Prior to injection, the concentrate was mixed with water on site. The dilute solution was prepared and applied to the saturated zone using a pressurized injection system that included a motorized mixing hopper, hydraulic pump, and pneumatic packer assembly that isolated each of

three injection zones in each well. Approximately 1.5 gallons of concentrated EOSTM diluted in 50 gallons of water was injected into each of three equal intervals (zones) in each well. EOSTM was mixed on site at a ratio of 33.3 gallons of water to 1 gallon of EOSTM concentrate using a gas-powered cement mixer. Five hundred milliliters of Vitamin B12 supplement, supplied by the manufacturer, was added to each 55-gallon drum of EOSTM concentrate. In addition, sodium sulfite was added as an oxygen scavenger to prevent the introduction of oxygen into the EOSTM mixture during injection. The dilute solution was prepared and applied to the saturated zone using a direct pressurized injection system with a hydraulic pump (with a minimum pressure rating of 1,500 pounds per square inch - psi), and pneumatic packer assembly. The solution was injected under pressure in three successive increments of approximately 6 to 7 feet, starting from the bottom of each open rock intake. The packers isolated each bedrock interval. The quantity of water injected into each increment represents about one half the pore volume in a section of bedrock 15 feet in diameter (the distance between wells) and 7 feet high.

2.4 Groundwater Flow in the Pilot Study Area

Groundwater elevations were measured and potentiometric surfaces were plotted during Phase I and Phase II of the Remedial Investigation (1999 - 2002) and during the Remedial Design Investigation. These data showed the following:

- The potentiometric surface at the Chem-Core site and in and around the pilot study area is relatively flat.
- Groundwater beneath the Chem-Core site generally moves westward toward the Black Rock Canal.
- There is a southward component of flow from the Chem-Core site toward the pilot study area.
- During the Remedial Design Investigation, flow from the pilot study area was north to northeast, toward the site. This flow direction is attributed to influence of a pump test that was being performed on site during the Remedial Design Investigation.

The water level data from the Remedial Design Investigation was used to calculate the gradient, which is an input parameter to calculate the amount of bioremediation product required for the pilot test. Even though the gradient may be a temporary condition caused by pumping, it is believed this data provides a conservative estimate for bioremediation product use. Groundwater levels were monitored during the pilot test.

2.5 **Sampling and Monitoring**

Eight wells were sampled during five sampling events as part of the pilot test. These wells included MW-8S, MW-8D, MW-12, MW-16, MW-18, MW-19, IW-A2, and IW-A5. Sampling schedule is summarized in Table 2-1. Sampling events included an initial a baseline event, and four quarterly events during the approximately one-year pilot study period. Sampling events took place on April 28, 2005 (baseline), September 22, 2005 (first event after injection), December 28, 2005 (second event after injection), April 11, 2006 (third event after injection), and September 29, 2006 (fourth event after injection). Table 2-1 summarizes the analytical and sampling schedule.

2.6 Geology and Hydrogeology

The site is situated in the Erie-Ontario Lowlands physiographic province of New York State (Broughton, et al. 1966). The province is characterized by low plains with little relief. Glacial deposition and shoreline deposits have modified the topography. Erie County was buried by glacial ice during the Wisconsin glaciation, which ended approximately 10,000 years ago. During the glaciations and subsequent retreats, glacial ice eroded soil material and bedrock material which were ultimately redeposited as a mixture of unconsolidated sediments. In the northern part of the County, glacial lake waters were much broader than present day Lake Erie. The sediments deposited in the proglacial Lake Erie basin are lacustrine silts and clays (USDA-SCS, 1986). The overburden deposits in the region have been mapped as lake silts and clays (Muller, 1977). The thickness of the overburden at the site varies in thickness from approximately 11.5 feet to 20 feet. Beneath the overburden deposits, the bedrock consist of the

Silurian age Akron Dolostone. The rocks strike east-west and dip gently to the south at approximately 1 degree or 40 to 50 feet per mile.

2.6.1 Site Geology

The stratigraphic sequence in the vicinity of the pilot study area includes from the surface down: fill; stratified clayey silt/silty clay; and bedrock. The overburden was determined to be approximately 19 to 22.5 feet thick based upon drilling information. The surficial deposits have been mapped as lacustrine silts and clays. A thin veneer of fill was encountered at most drilling locations, which was described as heterogeneous mixture of sand, gravel, concrete, bricks, cinders and slag. At the site, fill thickness ranged from 1 to 8 feet and fill was thickest beneath the building. Off site, fill was thickest near the Erie Canal at MW-10 (i.e., 17 feet). Silty clay and clayey silt was encountered beneath the fill. The thickness ranged from approximately 9 feet in MW-03 to 17.5 feet in MW-01. The clayey silt and silty clay unit was stratified and/or laminated and contained silt and fine sand partings where distinct wet seams occurred. In a few instances, seams containing saturated mixtures of sand and gravel were encountered, typically immediately above the bedrock. Bedrock was encountered beneath the silts and clays.

Bedrock was encountered at depths ranging from 12.8 feet in MW-03 to 30 feet in MW-10, and averaged approximately 20 feet in the pilot study area. Bedrock was identified as dolostone with argillaceous partings. It was characterized as light gray, thin to medium bedded, fine to medium grained dolomite. It also contained thin beds of dark gray, medium hard, thinly bedded shale. The upper several feet of bedrock has been mapped as the Akron Dolostone (Buehler and Tesmer 1963). Although difficult to discern, the contact with the underlying Bertie Formation appears to be 15 to 20 feet below ground surface. The upper portions of the Bertie Formation consist of dark gray shale and dolostone beds of variable thickness. Bedrock surface elevation ranges from a high at MW-03 of 585.83 feet amsl to a low of 552.87 feet amsl at MW-10. Bedrock surface slopes steeply toward the Black Rock Canal from MW-03.

2.6.2 <u>Site Hydrogeology</u>

The primary hydrogeologic unit identified beneath the site is the unconfined water-table aquifer present in the Akron Dolostone and Bertie Formation. However, groundwater is present in the overburden and is found in the coarser sand and sandy silt partings and seams within the silty clay/clayey silt deposits. The extent and quantity of the overburden water is limited, but the overburden immediately above bedrock was wet at several boring locations. The water in the overburden is perched above the water levels measured in the bedrock. Groundwater in the bedrock flows through primarily secondary porosity features in the rock including faults, joints, solution cavities and bedding planes. Both the Akron Dolostone and Bertie Formation have little primary porosity so groundwater flow is controlled by the distribution of fractures within the rock.

During the RI, confining sediments in the form of a wedge of lacustrine silts and clays draping over the sloping bedrock surface were observed in the vicinity of MW-10. Because the Black Rock Canal bottoms into bedrock, there is a hydraulic connection between groundwater and the canal. Monitoring well MW-09 is constructed as a water table monitor in soft sediments adjacent to the Black Rock Canal. Based upon the water level data, the water level surface in MW-09 is not substantially different than MW-10. The lacustrine silt and clay wedge draped over the bedrock along the I-190 corridor likely impedes groundwater flow toward the Black Rock Canal, however, a gentle horizontal hydraulic gradient exists towards the Black Rock Canal.

Figures 3-1 and 3-2 depict the potentiometric surface of the shallow bedrock aquifer on September 10, 2004 and December 6, 2004. Figure 3-3 depicts a potentiometric surface comparison of the bedrock aquifer in the pilot study area. The bedrock wells at the site monitor the lower Akron Dolostone and upper Bertie Formation rock units. Figure 3-1 depicts the potentiometric surface at the site is nearly flat at approximately 573 feet amsl. There is a slight gradient from the site toward the canal. On the south side of the Garrett Leather Corp. building the groundwater gradient is toward the north and west. The northerly component of groundwater flow may have been induced as part of the 72-hour pumping test. Figure 3-2 depicts the potentiometric surface at the site as nearly flat. There is a westward component to the gradient

from the site toward the canal. South of the Garrett Leather Corp. building, the gradient is toward the north, but only slightly and less than that measured on September 10, 2004. Near MW-12, the gradient is nearly flat.

During the RI, wide ranges of hydraulic conductivities were estimated from slug tests. This is indicative of the aquifer's heterogeneity and the anisotropic nature of the fractured bedrock. The hydraulic conductivities ranged from negligible (i.e., estimated to be less than 10^{-6} cm/second in several wells) to 5.7×10^{-3} cm/second in MW-4S.

During the RDI, hydraulic conductivities of the newly installed bedrock monitoring wells and the extraction well (i.e., EX-01) were estimated by conducting slug tests. Tests were performed by inserting (falling head test) or removing (rising head test) a stainless steel slug of known volume and recording the rate of recovery of the water level in the well. Recovery data was gathered with an In-Situ down-hole data logger. The slug test data was analyzed using the methods of Bouwer and Rice (1976) and/or Bouwer (1989). Because the method of analyses assumes that the aquifer is a porous media, the values obtained by the methods should be considered as relative order of magnitude estimates. Results were consistent with those observed during the RI. The hydraulic conductivities range from 3.7 E-2 cm/second in well EX-01 to 2.2 E –4 cm/second in well MW-17. Likewise, the well transmissivities ranged from 2,535 square feet per day (ft²/d) in well EX-01 to 14 ft²/d in well MW-17. The analysis of the aguifer test performed on EX-01 indicates the transmissivity of the water-bearing zone at the Chem Core site ranges from 60 to 260 square feet per day (ft²/d). Storativity of the aquifer is estimated to range from 0.013 to 0.0060. Ranges are given because the aquifer responses observed did not fit any single coherent aquifer model. Two possible models were used to estimate the aquifer transmissivity. One model assumes the aquifer is limited by a no-flow barrier along the Black Rock Canal, possibly formed by the retaining walls and/or low permeability fill materials located along the canal. The other model assumes there is a high transmissivity zone near EX-01 caused by a high degree of local fracturing in the vicinity of the well.

2.6.3 Hydraulic Conductivity Testing – Pilot Test

Slug tests were performed in all 24 injection wells using a Hermit Data Logger, pressure transducer, and stainless-steel slugs. Both falling head (slug-in) and rising head (slug-out) tests were performed. The tests consisted of inserting or removing the slug from the well and monitoring the recovery of the water level in the well to static conditions. Hydraulic conductivities ranged from 1.29 E-4 cm/second to 8.82 E –5 cm/second. Table 2-2 summarizes the results. Results were similar to those calculated as part of previous investigations. These calculations were made using the methods of Bouwer and Rice (1976) and Bouwer (1989). The field crew conducted the slug tests using the procedures outlined in the work plan.

2.7 <u>Groundwater Sampling</u>

Groundwater samples were collected from eight wells (i.e., MW-08S, MW-08D, MW-12, MW-16, MW-18, MW-19, IW-A2, and IW-A5) for each of the five sampling events and were analyzed for Target Compound List (TCL) volatiles, chloride, sulfate, total iron, dissolved iron, total organic carbon (TOC), alkalinity, ferric iron, and methane, ethane, and ethene. Indicator parameters including pH, temperature, dissolved oxygen, redox potential, ferrous iron, and conductivity were measured in the field.

The static groundwater level was measured at each monitoring well prior to purging and sample collection. An electronic water level indicator was used to measure the depth to the water surface, from the top of the well riser pipe, to the nearest 0.01-foot. Groundwater samples were collected using low-flow purging and sampling procedures. Water was purged from each well using a low-flow peristaltic pump operated at a discharge rate of less than one (1) liter per minute. The purging rate was maintained at a rate sufficient to prevent drawdown in excess of ten percent of the standing water column. Dedicated new discharge and intake tubing was used for each well. The tubing inlet was set at the midpoint of the well screen. Purging continued until the water quality parameters have stabilized, determined by the following criteria:

• $pH \pm 0.10 SU$

• Specific conductivity \pm 3% of full scale

• Temperature $\pm 0.2^{\circ}$ C

Water quality parameter readings were recorded on low-flow purging and sampling procedures. Once purging was complete, groundwater samples were collected using the peristaltic pump. Groundwater samples were analyzed for the parameters listed in Table 2-1. Purge logs are provided in Appendix C.

2.8 Chain of Custody and Shipping

Chain of Custody (COC) procedures were used to ensure the custody and integrity of the samples from the time of sampling and continuing through transport, sample receipt, preparation, analysis, storage, reporting, and sample disposal. Records concerning the custody and condition of the samples were maintained in the field and laboratory records. Information on the custody, transfer, and shipping of samples was recorded on COC forms that were initiated in the field by the sampler. Each COC form included the following information:

- Project Number
- Site name
- Name of sampler(s)
- Unique sample identification
- Date and time of sample collection
- Sample type
- Preservative used
- Analytical requirements
- Method of shipment

• Custody transfer signatures and the dates and times of sample transfer from the field to the transporter and to the laboratory.

Samples collected in the field were transported in coolers to the laboratory as expeditiously as possible. The samples were packed with ice or freezer packs to maintain a temperature of 4° C.

2.9 Field Documentation

Field activities were documented using field notebooks, photographs, and standard field forms. Field notebooks serve as the primary record of activities at the site. Field notebooks were bound with consecutively numbered pages. All entries into the notebook contained a variety of information including: dates, times, weather, personnel at the site and affiliations, equipment being used, level of personnel protective equipment, instrument calibration, drilling information, sampling/measurement data, and any other relevant information.

3.0 GROUNDWATER SAMPLING RESULTS

Groundwater samples were collected from six monitoring wells (i.e., MW-08S, MW-08D, MW-12, MW-16, MW-18, and MW-19) and two injection wells (i.e., IW-A2 and IW-A5) for each of the five sampling events and were analyzed for Target Compound list (TCL) volatiles, nitrate/nitrite, Total Kjeldahl Nitrogen, ammonia, chloride, sulfate, total iron, dissolved iron, total organic carbon, alkalinity, ferric iron, ferrous iron, and methane, ethane, and ethene. Water indicator parameters including pH, temperature, dissolved oxygen, redox potential, and conductivity were measured in the field. Table 3-1 summarizes the analytical results and these data and results are discussed below. Complete data validation summary tables can be found in Appendix D.

3.1 Baseline

Baseline sampling took place on April 5, 2005. The primary contaminants detected in the bedrock groundwater are chlorinated VOCs. Detected VOCs included cDCE, PCE, TCE, VC, and tDCE. MW-16 reported the highest total chlorinated VOCs at 1,530 ug/L and MW-18 reported the lowest total chlorinated VOCs at 55 ug/L. MW-16 is situated near the western edge of the injection area and MW-18 is situated along the southern and downgradient edge of the injection area. Figure 3-1 depicts the VOCs detected at concentrations above New York State groundwater criteria in the wells. Figure 3-2 depicts the wet chemistry parameter results in the wells.

3.2 Post-Injection Results and Discussion

Figures 3-3 through 3-6 depict the VOCs detected at concentrations above New York State groundwater criteria in the wells for the four sampling events. Figures 3-7 through 3-10 depict the wet chemistry parameters for each of the sampling events. Table 3-2 summarizes the chlorinated hydrocarbon sampling results and Table 3-3 summarizes the geochemical indicator parameters. Appendix E provides a summary of the analytical data trends for PCE, TCE, cis- and trans-DCE, VC, ethane, methane, and key geochemical indicator parameters.

In IW-A2, an in-field well, concentrations of PCE and TCE decreased to below detection limits (bdl) within 120 days of treatment and a significant increase in cis-1,2-dichloroethene/trans-1,2-dichloroethene (cDCE/tDCE), and VC was observed. After 220 days, concentrations of PCE and TCE remained bdl and concentrations of cDCE/tDCE and VC decreased by over 99 and 97 percent, respectively. After 317 days, concentrations of PCE and TCE remained below detection limits and concentrations of cDCE/tDCE and VC continued to decline to levels below or near the NYS groundwater quality standards. After 485 days, PCE and TCE remained below NYS standards, and concentrations of cDCE/tDCE and VC increased slightly. Favorable geochemical conditions were observed after injection through approximately 317 days. Between the third and fourth sampling events, sulfate concentrations rebounded, TOC concentrations decreased, and oxidation-reduction potential (ORP) increased indicating that the carbon source was depleted and reducing conditions were less favorable for conversion to cDCE/tDCE and VC.

In IW-A5, an in-field well, concentrations of PCE and TCE decreased over 99 percent within 120 days of treatment and a significant increase in cDCE/tDCE and VC was observed. After 220 days, concentrations of PCE and TCE increased slightly but remained at levels near the NYS groundwater standard, and concentrations of cDCE/tDCE and VC decreased by over 85 and 48 percent, respectively. After 317 days, concentrations of PCE and TCE remained below detection limits and concentrations of cDCE/tDCE and VC declined further. After 485 days, concentrations of PCE and TCE remained below NYS standards, and cDCE/tDCE and VC concentrations continued to decline. Favorable geochemical conditions were observed after injection through the first sampling event and sulfate concentrations and ORP fluctuated, possibly indicating dilution by groundwater flux. Between the third and fourth sampling events, sulfate concentrations rebounded, TOC concentrations decreased, and ORP increased indicating that the carbon source was depleted and reducing conditions were less favorable for reduction of cDCE/tDCE and VC.

In MW-16, an in-field well, concentrations of PCE and TCE decreased substantially after treatment and remained low throughout the pilot study. Concentrations of cDCE/tDCE and VC initially increased after treatment, and then generally decreased, although there was a slight increase between 317 and 485 days. Sulfate concentrations initially decreased and then gradually

increased throughout the monitoring period. Ferrous iron initially increased before decreasing and fluctuating throughout the monitoring period. TOC remained in the formation throughout the 317 day period before declining to near the baseline levels after 485 days. ORP initially decreased substantially and increased and stabilized. Methane concentrations increased throughout the monitoring period.

In MW-12, an in-field well, concentrations of PCE and TCE decreased by approximately 90 percent within 120 days of treatment and concentrations of cDCE/tDCE and VC increased. Concentrations of PCE and TCE fluctuated between 220 and 485 days. Concentrations of cDCE/tDCE and VC also fluctuated during this period indicating that there was probably some hydraulic effect since this well is on the edge of the injection well array. Geochemical indicator parameters indicated that the carbon source was inconsistent, although sulfate concentrations were initially depleted before gradually increasing. These results may have been influenced by groundwater flux.

In downgradient wells MW-8S and MW-8D, monitoring results were similar to those in in-field well IW-A5 (Appendix E).

In downgradient well MW-19, PCE and TCE concentrations decreased to below detection limits within 120 days of treatment and an increase in cDCE, tDCE, and VC was observed. After 220 days, very low concentrations of PCE and TCE were reported but below NYS standards, and levels of cDCE/tDCE and VC decreased. Residual low levels of cDCE/tDCE and VC were observed after the third and fourth sampling events. Geochemical indicators in MW-19 fluctuated throughout the sampling events.

Results in the upgradient area (MW-18) indicated relatively stable concentrations of PCE, TCE, and VC, and an order of magnitude increase in cDCE and tDCE, coupled with relatively stable geochemical indicators.

4.0 CONCLUSIONS

Results of this pilot study indicate that a single EOSTM injection event induced strongly reducing conditions and generally sustained favorable geochemical conditions for anaerobic reductive dechlorination to occur in fractured bedrock within the pilot area for about one year. The EOSTM injection event was successful in degrading PCE and TCE, as well as their daughter products, in the test area. The monitoring results indicate that the reducing conditions accelerated degradation of PCE, TCE, and their daughter products to ethene or other innocuous end products while sufficient substrate was present. The injection also positively impacted water quality in downgradient wells located approximately 45 feet away from the injection array. However, within the injection area and between the third and fourth sampling events (i.e., 317 days and 485 days after treatment), sulfate concentrations rebounded, TOC concentrations decreased, and ORP increased indicating that the carbon source was depleted and conditions were less favorable for reduction of cDCE/tDCE and VC, which resulted in production of cDCE/tDCE above baseline values and NYS groundwater standards. The injection also positively impacted water quality in downgradient wells located approximately 45 feet away from the injection array.

Based upon these results, the New York State Department of Environmental Conservation is now implementing full-scale design of EOSTM in the source area and adjacent off-site areas. Three infiltration galleries were constructed on top of the bedrock surface during remedial activities, which will be used to help distribute EOSTM into the bedrock aquifer. Additional injection wells may be constructed in the future. In-situ bioremediation will be used in combination with the pump and treat groundwater extraction system to accelerate remediation of the bedrock groundwater aquifer. Routine monitoring of groundwater contaminants and indicator parameters are an integral component of the full-scale design.

REFERENCES

- Broughton, J.G., et al. 1966. *Geology of New York: A Short Account*. New York State Museum and Science Service Educational Leaflet No. 20. Albany, NY.
- Buehler, Edward J. and Tesmer, Irving, H., 1963. *Geology of Erie County, New York*. Buffalo Society of Natural Sciences Bulletin, Volume 21, Number 3.
- Muller, E.H., 1977. Quaternary Geology of New York, Niagara Sheet. New York State Museum and Science Service Map and Chart Series Number 28.
- Parsons Corporation, August 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Environmental Security Technology Certification Program.
- Solutions-IES, May 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Emulsified Oil.
- United States Environmental Protection Agency, September 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, USEPA. EPA/600/R-98/128.

TABLES

TABLE 2-1

MONITORING/SAMPLING SCHEDULE CHEM CORE SITE (ID# 9-15-176), BUFFALO, NY BIOREMEDIATION PILOT STUDY

					QA/QC Sa	mples		
Parameter	Method Number/ References ¹	Number of Samplers per Event	Number of Events	MS/MSD/MD	Field Duplicates	Equipment Rinse Blanks	Trip Blanks	Total No. of Samples
TCL Volatiles	OLM04.2	8	5	5/5/0	0	5	5	60
Nitrate/Nitrite	9056	8	5	5/5/0	0	0	0	50
Total Kjeldahl Nitrogen	351.3	8	5	5/5/0	0	0	0	50
Ammonia	SM4500_NH3	8	5	5/5/0	0	0	0	50
Chloride	9056	8	5	5/5/0	0	0	0	50
Sulfate	9056	8	5	5/5/0	0	0	0	50
Total Iron	ILM04.1	8	5	5/0/5	0	0	0	50
Dissolved Iron	ILM04.1	8	5	5/0/5	0	0	0	50
TOC	415	8	5	0/0/0	0	0	0	40
Alkalinity	310	8	5	0/0/0	0	0	0	40
Ferric Iron (Fe ⁺³)	calculation*	8	5	0/0/0	0	0	0	40
Ferrous Iron (Fe ⁺²)	field	8	5	0/0/0	0	0	0	40
Methane, ethane, ethene	RSK-175	8	5	5/5/0	0	0	0	50
pH	Field	8	5	0/0/0	0	0	0	40
Temperature	Field	8	5	0/0/0	0	0	0	40
Dissolved Oxygen	Field	8	5	0/0/0	0	0	0	40
Redox Potential	Field	8	5	0/0/0	0	0	0	40
Conductivity	Field	8	5	0/0/0	0	0	0	40

^{*}Determined via field testing.

Notes:

1) NYSDEC Analytical Services Protocol, June 2000

Field – Field Personnel will perform Analysis TCL – Target Compound List MS/MSD/MD – Matrix Spike/Matrix Spike Duplicate/Matrix Duplicate

TABLE 2-2
May 2005 Chem Core Slug Tests
Summary of Hydraulic Conductivity Results - Pilot Study

Well		Hyd	draulic Cond	uctivity [cm/s	sec]	
ID	Test #1	Test #2	Test #3	Test #4	N(*)	Mean (**)
IWA-1	3.23E-04	3.18E-04			2	3.21E-04
IWA-2	2.30E-04	3.92E-04			2	3.11E-04
IWA-3	1.41E-04	1.47E-04			2	1.44E-04
IWA-4	8.38E-05	3.23E-05			2	5.81E-05
IWA-5	1.76E-04	1.92E-04			2	1.84E-04
IWA-6	2.24E-04	2.93E-04	2.49E-04	5.19E-04	4	3.21E-04
IWB-1	2.50E-04	2.51E-04			2	2.50E-04
IWB-2	2.46E-05	4.74E-05			2	3.60E-05
IWB-3	1.15E-04	1.44E-04			2	1.29E-04
IWB-4	1.24E-04	1.37E-04			2	1.30E-04
IWB-5	6.93E-05	6.82E-05			2	6.87E-05
IWB-6	8.42E-05	2.09E-04			2	1.47E-04
IWC-1	4.05E-05	4.19E-05			2	4.12E-05
IWC-2	7.17E-05	9.12E-05			2	8.14E-05
IWC-3	3.84E-05	3.71E-05			2	3.78E-05
IWC-4	9.87E-05	1.87E-04			2	1.43E-04
IWC-5	1.61E-05	1.34E-05			2	1.48E-05
IWC-6	1.86E-05	5.01E-06			2	1.18E-05
IWD-1	1.31E-04	1.43E-04	3.39E-04	3.69E-04	2	2.46E-04
IWD-2	5.03E-05	5.82E-05			2	5.43E-05
IWD-3	1.40E-04	1.47E-04			2	1.43E-04
IWD-4	1.35E-04	2.36E-05			2	7.93E-05
IWD-5	9.15E-05	8.49E-05			2	8.82E-05
IWD-6	2.49E-05	2.82E-05			2	2.66E-05
MW-19	1.03E-03	6.00E-04			2	8.16E-04

(*) - number of valid tests

(**) - geometric mean

Location II)		IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	•	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	-				
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6					
Acetone	UG/L	50			16		3 J
Benzene	UG/L	1					
Bromodichloromethane	UG/L	50					
Chlorobenzene	UG/L	5					
Chloroethane	UG/L	5					
Chloroform	UG/L	7					
Chloromethane	UG/L	5					1 J
cis-1,2-Dichloroethene	UG/L	5	150	2,200 D	16	3 J	10
Cyclohexane	UG/L	50				1 J	
Ethylbenzene	UG/L	5					
Methyl tert-butyl ether	UG/L	10					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5	560				
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5		21 J		1 J	
Trichloroethene	UG/L	5	65				1 J
Vinyl chloride	UG/L	2		490	13	4 J	5 J

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	-	-	-	
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300		27,500	18,300	28,000	14,600
Total Metals			· · · · ·				
Iron	UG/L	300	137	27,000	23,400	29,800	24,400
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2		0.905	0.178	0.130	0.42
Chloride	MG/L	250	43.9	33.2	35.1	53.6	31
рН	S.U.	6.5-8.5	6.99	8.3	7.51	6.71	6.6
Nitrate-Nitrogen	MG/L	10	NA	NA	.NA	NA	
Nitrate-Nitrite	MG/L	10	0.430			· · · · · · · · · · · · · · · · · · ·	NA
Sulfate (as SO4)	MG/L	250	213	19.7 J	40.3	35.2	90
Total Alkalinity	MG/L	-	344	478	465	639	450
Total Kjeldahl Nitrogen	MG/L	-	3.22	1.20	1.41	0.536	0.83
Total Organic Carbon (TOC)	MG/L	-	10.1	86.7	84.7 J	128	11
Ferrous Iron	MG/L	-		19	16.1	19.40	12.1
Temperature	DEG C	-	12.20	13.06	13.0	13.84	12.7
Specific Conductance	UMHOS	-	1,180	876	1,150	810	1,260
Dissolved Oxygen	MG/L	-	2.55	0.77	1.07		
Oxidation Reduction Potential	mV	•	72	-470	-461	-445	-202
Turbidity	NTU	-	25	39	31	44	47
Dissolved Gases							
Ethane	UG/L	-			26 DJ	32 J	
Ethene	UG/L	-		18	44	5 J	2.4 J

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location I	D		IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample II			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix					Groundwater	Groundwater	Groundwater
Depth Interva		-	•	-	-	•	
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Methane	UG/L	-		250 D	720 D	1,800 J	9,800 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-	•	
Date Sampled	i		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6					
Acetone	UG/L	50		10 J	14 J		
Benzene	UG/L	1					
Bromodichloromethane	UG/L	50					
Chlorobenzene	UG/L	5	· · · · · · · · · · · · · · · · · · ·				
Chloroethane	UG/L	5					
Chloroform	UG/L	7					
Chloromethane	UG/L	5					
cis-1,2-Dichloroethene	UG/L	5	66	910 D	120	25	26
Cyclohexane	UG/L	50					
Ethylbenzene	UG/L	5					
Methyl tert-butyl ether	UG/L	10					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5	230		9 J		1 J
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5	2 J	8 J	9,1	5 J	2 J
Trichloroethene	UG/L	5	27		3 J	-	0.9 J
Vinyl chloride	UG/L	2		110	58	24	12

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID		-	IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)	-	•	-	-	•	•
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300		17,900	400	2,940	1,760
Total Metals							
Iron	UG/L	300		18,000	1,600	3,780	3,210
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2		0.534	0.107	0.136	0.26
Chloride	MG/L	250	67.1	21.3	18.4	31.7	20
рН	S.U.	6.5-8.5	6.87	8.33	7.46	6.7	6.5
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.036 J
Nitrate-Nitrite	MG/L	10	1.03				NA
Sulfate (as SO4)	MG/L	250	181	8.85 J	80.0	32.9	80
Total Alkalinity	MG/L	-	344	474	450	640	450
Total Kjeldahl Nitrogen	MG/L	-	2.55	0.693	2.96	0.686	0.78
Total Organic Carbon (TOC)	MG/L	-	21.2	84.1	48.7 J	57.8	4.7
Ferrous Iron	MG/L	-	0.01	16.3	1.02	2.31	2.7
Temperature	DEG C	-	12.00	11.96	12.9	13.69	12.4
Specific Conductance	UMHOS	-	1,180	773	1,050	730	990
Dissolved Oxygen	MG/L	-	2.76	0.69	1.07		
Oxidation Reduction Potential	mV	-	39	-459	-373	-380	-253
Turbidity	NTU	-	24	47	24	32	32
Dissolved Gases							
Ethane	UG/L	-			8	14 J	
Ethene	UG/L	-		8	21	4 J	6.0

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location	ID		IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample I	D		IW-A5 Groundwater	IW-A5 Groundwater -	IW-A5 Groundwater -	IW-A5 Groundwater -	IW-A5 Groundwater
Matrix	·						
Depth Interv	al (ft)		•				
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Methane	UG/L	-		260 D	510 D	1,600 J	10,000 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location I			MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample II)		MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interva			•	•	<u>-</u>	•	-
Date Samp	led		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5		5 J		16	2 J
1,1-Dichloroethane	UG/L	5	3 J	35	55	93	23
1,2-Dichlorobenzene	UG/L	3			···		
1,2-Dichloroethane	UG/L	0.6				\bigcirc 2 J	
Acetone	UG/L	50		9 J	5 J		
Benzene	UG/L	1					5 J
Bromodichloromethane	UG/L	50					
Chlorobenzene	UG/L	5					
Chloroethane	UG/L	5					2 J
Chloroform	UG/L	7					
Chloromethane	UG/L	5		-			
cis-1,2-Dichloroethene	UG/L	5	110		2 J		7 J
Cyclohexane	UG/L	50				1 J	
Ethylbenzene	UG/L	5			0.9 J		
Methyl tert-butyl ether	UG/L	10					
Methylene chloride	UG/L	5				1 J	
Tetrachloroethene	UG/L	5	310				
Toluene	UG/L	5				-	
trans-1,2-Dichloroethene	UG/L	5			2 J	3 J	0.7 J
Trichloroethene	UG/L	5	31				
Vinyl chloride	UG/L	2	7 J	1 J	8 J	35	18

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID)		MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample ID			MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300		721			71.4 B
Total Metals			**************************************				
Iron	UG/L	300		871	138	200	93.4 B
Miscellaneouş Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.325	1.45	1.23	1.92	0.97
Chloride	MG/L	250	268	404	371 D	452	260
рН	S.U.	6.5-8.5	6.9	7.91	7.62	7.48	6.6
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	
Nitrate-Nitrite	MG/L	10	0.255		0.270		NA
Sulfate (as SO4)	MG/L	250	220	258 J	171	$\bigcirc 374 \bigcirc$	74
Total Alkalinity	MG/L	-	283	337	346	239	400
Total Kjeldahl Nitrogen	MG/L	-	2.36	1.26	1.76	2.03	1.9
Total Organic Carbon (TOC)	MG/L	-	9.34	36.6	32.1 J	4.81 B	3.6
Ferrous Iron	MG/L	-	0.02	0.86	0.36	0.01	0.7
Temperature	DEG C	-	11,4	15.00	14.2	13.21	14.4
Specific Conductance	UMHOS	-	1,820	1,930	2,040	2,110	1,760
Dissolved Oxygen	MG/L	-	1.94	1.97	1.21		
Oxidation Reduction Potential	mV	-	-194	-354	-312	-276	-211
Turbidity	NTU	-	28	9	11	7	1
Dissolved Gases							
Ethane	UG/L	-			13	1 J	
Ethene	UG/L	-		42	13	15 J	25

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID Sample ID Matrix Depth Interval (ft) Date Sampled			MW-08D MW-8D Groundwater - 04/28/05	MW-08D MW-8D Groundwater - 09/22/05	MW-08D MW-8D Groundwater - 12/28/05	MW-08D MW-8D Groundwater - 04/11/06	MW-08D MW-8D Groundwater - 09/29/06								
								Parameter	Units	Criteria*					
								Dissolved Gases							
								Methane	UG/L	-	20 D	240 D	420 D	250 J	5,500 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-08S MW-8S Groundwater - 04/28/05	MW-08S MW-8S Groundwater - 09/22/05	MW-08S MW-8S Groundwater - 12/28/05	MW-08S MW-8S Groundwater - 04/11/06	MW-08S MW-8S Groundwater - 09/29/06								
Sample ID Matrix Depth Interval (ft) Date Sampled															
								Parameter	Units	Criteria*					
								Volatiles							
								1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5													
1,2-Dichlorobenzene	UG/L	3													
1,2-Dichloroethane	UG/L	0.6													
Acetone	UG/L	50		7 J											
Benzene	UG/L	1													
Bromodichloromethane	UG/L	50													
Chlorobenzene	UG/L	5													
Chloroethane	UG/L	5													
Chloroform	UG/L	7													
Chloromethane	UG/L	5				· · · · · · · · · · · · · · · · · · ·	· · · · · ·								
cis-1,2-Dichloroethene	UG/L	5	94	260 D	6 J	4 J	3 J								
Cyclohexane	UG/L	50													
Ethylbenzene	UG/L	5					-								
Methyl tert-butyl ether	UG/L	10				-	· · · · · · · · · · · · · · · · · · ·								
Methylene chloride	UG/L	5				1 J									
Tetrachloroethene	UG/L	5	130	2 J		2 J	2 J								
Toluene	UG/L	5		_*											
trans-1,2-Dichloroethene	UG/L	5	2 J	2 J											
Trichloroethene	UG/L	5	21	1 J	1 J	1.0 J	0.7 J								
Vinyl chloride	UG/L	2	3 J	47	10										

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-08S	MW-08S	MW-08S	MW-08S	MW-08S								
Sample ID Matrix Depth Interval (ft) Date Sampled			MW-8S	MW-8S	MW-8S	MW-8S	MW-8S								
			Groundwater - 04/28/05	Groundwater - 09/22/05	Groundwater - 12/28/05	Groundwater - 04/11/06	Groundwater - 09/29/06								
								Parameter	Units	Criteria*					
								Filtered Metals							
Iron	UG/L	300		783	120	82.1	145								
Total Metals															
Iron	UG/L	300	910	1,690	1,770	5,690	8,240								
Miscellaneous Parameters															
Ammonia, Nitrogen (As N)	MG/L	2		0.203			0.047 J								
Chloride	MG/L	250	75.6	100	99.6	135	130								
рН	S.U.	6.5-8.5	7.05	7.93	7.59	7.55	6.6								
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.032 J								
Nitrate-Nitrite	MG/L	10	0.450	0.0750			NA								
Sulfate (as SO4)	MG/L	250	306	134 J	186	355	350								
Total Alkalinity	MG/L	-	298	315	323	241	250								
Total Kjeldahl Nitrogen	MG/L	-	2.77	0.197 B	1.06		0.58								
Total Organic Carbon (TOC)	MG/L	-	6.80	12.6	5.65 J	5.66	3.5								
Ferrous Iron	MG/L	<u>-</u>	0.05	0.82	0.18										
Temperature	DEG C	-	10.5	15.35	14.6	12.22	15.6								
Specific Conductance	UMHOS	-	1,350	961	1,320	887	1,710								
Dissolved Oxygen	MG/L	-	3.69	1.11	2.45	2.03									
Oxidation Reduction Potential	mV	-	71	-269	-84	-7	20								
Turbidity	NTU	-	41	15	6	11	4								
Dissolved Gases															
Ethane	UG/L	-			0.2 J		6.8								
Ethene	UG/L	-		0.8 J	3										

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
Sample ID			MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
Matrix			Groundwater	Groundwater	oundwater Groundwater Groundwater		Groundwater
Depth Interval	ft)		•	•	•		
Date Sample	Date Sampled		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Methane	UG/L			13	6		21

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

D - Result reported from a secondary dilution analysis.

Location ID			MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID			MW-12	MW-12	MW-12	MW-12	MW-12
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	•	
Date Sampled	Date Sampled		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6					
Acetone	UG/L	50				65 J	
Benzene	UG/L	1					
Bromodichloromethane	UG/L	50					
Chlorobenzene	UG/L	5					
Chloroethane	UG/L	5					
Chloroform	UG/L	7					
Chloromethane	UG/L	5					
cis-1,2-Dichloroethene	UG/L	5	280	1,300	1,500 D	1,500	290
Cyclohexane	UG/L	50					
Ethylbenzene	UG/L	5					
Methyl tert-butyl ether	UG/L	10					
Methylene chloride	UG/L	5		\bigcap 7 J			
Tetrachloroethene	UG/L	5	750	35 J	990	16 J	1,300
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5	62		(13 J		
Trichloroethene	UG/L	5	120	12 J	200	15 J	140 J
Vinyl chloride	UG/L	2		20 J	100	370	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID			MW-12	MW-12	MW-12	MW-12	MW-12
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	-	-	•	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300		3,270	1,230	847	173
Total Metals							<u> </u>
Iron	UG/L	300	786	20,300	3,000	5,240	788
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2		0.998	0.281	-	0.047 J
Chloride	MG/L	250	51.4	18.4	14.3	32.7	10
рН	S.U.	6.5-8.5	6.87	7.68	7.52	7.36	6.5
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.68
Nitrate-Nitrite	MG/L	10	0.580		0.215		NA
Sulfate (as SO4)	MG/L	250	122	12.7 J	32.4	22.5	37
Total Alkalinity	MG/L	-	351	450	365	440	320
Total Kjeldahl Nitrogen	MG/L	-	4.76	0.866	0.415	0.246 B	0.099 J
Total Organic Carbon (TOC)	MG/L	-	3.08 B	70.6	21.6 J	18.7	1.9
Ferrous Iron	MG/L	-	0.03	3.19	7.9	0.62	0.15
Temperature	DEG C	-	11.90	13.14	13.0	14.03	12.6
Specific Conductance	UMHOS	-	969	714	845	536	605
Dissolved Oxygen	MG/L	-	4.80	11.63	0.95		0.24
Oxidation Reduction Potential	mV	-	68	-331	-307	-326	-155
Turbidity	NTU	-	27	19	15	32	11
Dissolved Gases							
Ethane	UG/L	-			10	11 J	
Ethene	UG/L	-		1 J	17	19 J	5.2

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

D - Result reported from a secondary dilution analysis.

Location ID			MW-12	MW-12	MW-12	MW-12	MW-12
Sample l	D		MW-12	MW-12	MW-12	MW-12	MW-12
Matrix	_		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interv	al (ft)		-	•	•		-
Date Samp	led		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases					<u> </u>		
Methane	UG/L	-	10	20	120 D	550 J	360 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval			-	-	-	-	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichlorobenzene	UG/L	3		\bigcap 7 J			
1,2-Dichloroethane	UG/L	0.6					
Acetone	UG/L	50					
Benzene	UG/L	1					
Bromodichloromethane	UG/L	50		9 J			
Chlorobenzene	UG/L	5		9 J			
Chloroethane	UG/L	5				-	
Chloroform	UG/L	7		(8 J	1 J		
Chloromethane	UG/L	5	<u> </u>				
cis-1,2-Dichloroethene	UG/L	5	390	1,200	230 D	57	190
Cyclohexane	UG/L	50					
Ethylbenzene	UG/L	5					
Methyl tert-butyl ether	UG/L	10		9 J			
Methylene chloride	UG/L	5		13 J			
Tetrachloroethene	UG/L	5	1,000				15
Toluene	UG/L	5		$\overline{)}$		-	
trans-1,2-Dichloroethene	UG/L	5		21 J	6 J	2 J	1 J
Trichloroethene	UG/L	5	140		16		10
Vinyl chloride	UG/L	2		420	52	32	84

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

D - Result reported from a secondary dilution analysis.

Location ID			MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	•	-	-	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300		25,600	7,420	19,700	15,100
Total Metals							
Iron	UG/L	300	672	26,100	17,900	27,500	16,000
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2		0.629	0.179	0.148	0.56
Chloride	MG/L	250	63.6	54.0	37.3	108	35
рН	S.U.	6.5-8.5	6.89	7.6	7.55	7.10	6.4
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	
Nitrate-Nitrite	MG/L	10	0.345	0.685			NA
Sulfate (as SO4)	MG/L	250	108	9.26 J	27.5	38.6	47
Total Alkalinity	MG/L	-	371	460	424	569	420
Total Kjeldahl Nitrogen	MG/L	-	3.08	1.08	0.815	0.434	0.72
Total Organic Carbon (TOC)	MG/L	-	3.43 B	60.4	17.7 J	53.0	5.0
Ferrous Iron	MG/L	-	0.05	16.4	7.4	11	16.1
Temperature	DEG C	•	12.40	12.89	13.4	14.12	12.9
Specific Conductance	UMHOS	-	1,110	853	1,030	777	853
Dissolved Oxygen	MG/L	-	4.50	0.49	1.33		
Oxidation Reduction Potential	mV	-	18	-316	-345	-343	-253
Turbidity	NTU	-	38	43	21	43	1
Dissolved Gases							
Ethane	UG/L	-			10	17 J	
Ethene	UG/L	-		26	31	6 J	13

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID	Location ID		MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	•	-
Date Sample	ł		04/28/05	04/28/05 09/22/05 12/28/05 04/11/06		04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Methane	UG/L	-	8	87 D	500 D	1,100 J	5,800 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)				-	-	•
Date Sampled		04/28/05	12/28/05	04/11/06	09/29/06	04/28/05	
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5				•	
1,2-Dichlorobenzene	UG/L	3					
1,2-Dichloroethane	UG/L	0.6					
Acetone	UG/L	50					
Benzene	UG/L	1					
Bromodichloromethane	UG/L	50					
Chlorobenzene	UG/L	5					
Chloroethane	UG/L	5					
Chloroform	UG/L	7					1 J
Chloromethane	UG/L	5					
cis-1,2-Dichloroethene	UG/L	5	$\bigcirc 38 \bigcirc$	270 D	280	320	120
Cyclohexane	UG/L	50					
Ethylbenzene	UG/L	5					
Methyl tert-butyl ether	UG/L	10					
Methylene chloride	UG/L	5					
Tetrachloroethene	UG/L	5	\bigcirc	5 J	13 J	\bigcirc 33 J	370 D
Toluene	UG/L	5					
trans-1,2-Dichloroethene	UG/L	5	2 J	3 J	3 J		1 J
Trichloroethene	UG/L	5	3 J	3 J	10 J	15 J	37
Vinyl chloride	UG/L	2		10	12 J	16 J	5 J

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	-	-	-	•
Date Sample	d		04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*					
Filtered Metals							
Iron	UG/L	300	58.3 B	2,780	1,220	1,160	
Total Metals							
Iron	UG/L	300	261	2,940	1,460	1,460	
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2		0.207		0.075	
Chloride	MG/L	250	125	30.8	48.8	64	268
рН	S.U.	6.5-8.5	6.89	7.49	7.13	6.5	6.9
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	0.027 J	NA
Nitrate-Nitrite	MG/L	10				NA	0.715
Sulfate (as SO4)	MG/L	250	105	81.6	102	93	137
Total Alkalinity	MG/L	-	353	379	396	360	281
Total Kjeldahl Nitrogen	MG/L	•	2.40	0.726		0.31 J	2.21
Total Organic Carbon (TOC)	MG/L	-	4.06 B	2.97 BJ	3.15 B	1.7	4.00 B
Ferrous Iron	MG/L	-	0.26	0.56	1.27	1.19	
Temperature	DEG C	-	11.70	12.0	13.02	11.5	9.8
Specific Conductance	UMHOS	-	1,220	980	582	924	1,730
Dissolved Oxygen	MG/L	-	2.52	1.80			3.17
Oxidation Reduction Potential	mV	-	-124	-216	-128	-105	-113
Turbidity	NTU	-	15		3	14	2
Dissolved Gases							
Ethane	UG/L	-		0.09 J			
Ethene	UG/L	-		0.5 J			

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID	Location ID			MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	-	-	-	-
Date Sampled			04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*		-		12 100 1	
Dissolved Gases							
Methane	UG/L	-	70 D	24	6 J	94	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

D - Result reported from a secondary dilution analysis.

Location	ID		MW-19	MW-19	MW-19	MW-19
Sample I	D		MW-19	MW-19	MW-19	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interv			•	-	-	-
Date Samp	led		09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				
Volatiles						
1,1,1-Trichloroethane	UG/L	5				
1,1-Dichloroethane	UG/L	5				
1,2-Dichlorobenzene	UG/L	3				
1,2-Dichloroethane	UG/L	0.6				
Acetone	UG/L	50	11 J	8 J		
Benzene	UG/L	1				
Bromodichloromethane	UG/L	50				
Chlorobenzene	UG/L	5				
Chloroethane	UG/L	5				
Chloroform	UG/L	7				
Chloromethane	UG/L	5				
cis-1,2-Dichloroethene	UG/L	5	190		14	49
Cyclohexane	UG/L	50				
Ethylbenzene	UG/L	5				
Methyl tert-butyl ether	UG/L	10				
Methylene chloride	UG/L	5				
Tetrachloroethene	UG/L	5		3 J		$\begin{array}{ c c }\hline & 13 \\ \hline & \end{array}$
Toluene	UG/L	5				
trans-1,2-Dichloroethene	UG/L	5	\bigcirc 6 J			
Trichloroethene	UG/L	5		1 J		3 J
Vinyl chloride	UG/L	2	220			13

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID)	,	MW-19	MW-19	MW-19	MW-19
Sample ID		_	MW-19	MW-19	MW-19	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	•
Date Sample	d		09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				
Filtered Metals						
Iron	UG/L	300	10,100	7,270	11,200	4,680
Total Metals						
Iron	UG/L	300	10,900	8,400	12,000	5,710
Miscellaneous Parameters						
Ammonia, Nitrogen (As N)	MG/L	2	0.414	0.137		0.29
Chloride	MG/L	250	387	332 D	222	85
рН	S.U.	6.5-8.5	8	7.43	6.95	6.4
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	0.31
Nitrate-Nitrite	MG/L	10		0.0700		NA
Sulfate (as SO4)	MG/L	250	9.55 UJ	15.4	17.3	97
Total Alkalinity	MG/L	-	430	417	484	380
Total Kjeldahl Nitrogen	MG/L	-	0.372	0.657	0.172 B	0.77
Total Organic Carbon (TOC)	MG/L	-	53.0	66.8 J	42.2	4.5
Ferrous Iron	MG/L	-	14.1	9.6	10.60	3.0
Temperature	DEG C	-	16.15	13.4	10.32	16.8
Specific Conductance	UMHOS	-	1,550	1,810	853	1,210
Dissolved Oxygen	MG/L	-	0.68	1.36	1.46	
Oxidation Reduction Potential	mV	-	-408	-326	-216	-183
Turbidity	NTU	-	4	24	25	27
Dissolved Gases			1			
Ethane	UG/L	-		31	18 J	
Ethene	UG/L	-	21	22	1 J	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

Location ID			MW-19 MW-19		MW-19	MW-19	
Sample I	MW-19	MW-19	MW-19	MW-19			
Matrix	Groundwater	Groundwater	Groundwater	Groundwater - 09/29/06			
Depth Interv	- 09/22/05	-	-				
Date Sampled			12/28/05		04/11/06		
Parameter	Units	Criteria*					
Dissolved Gases							
Methane	UG/L	-	66 D	570 D	1,400 J	3,100 D	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

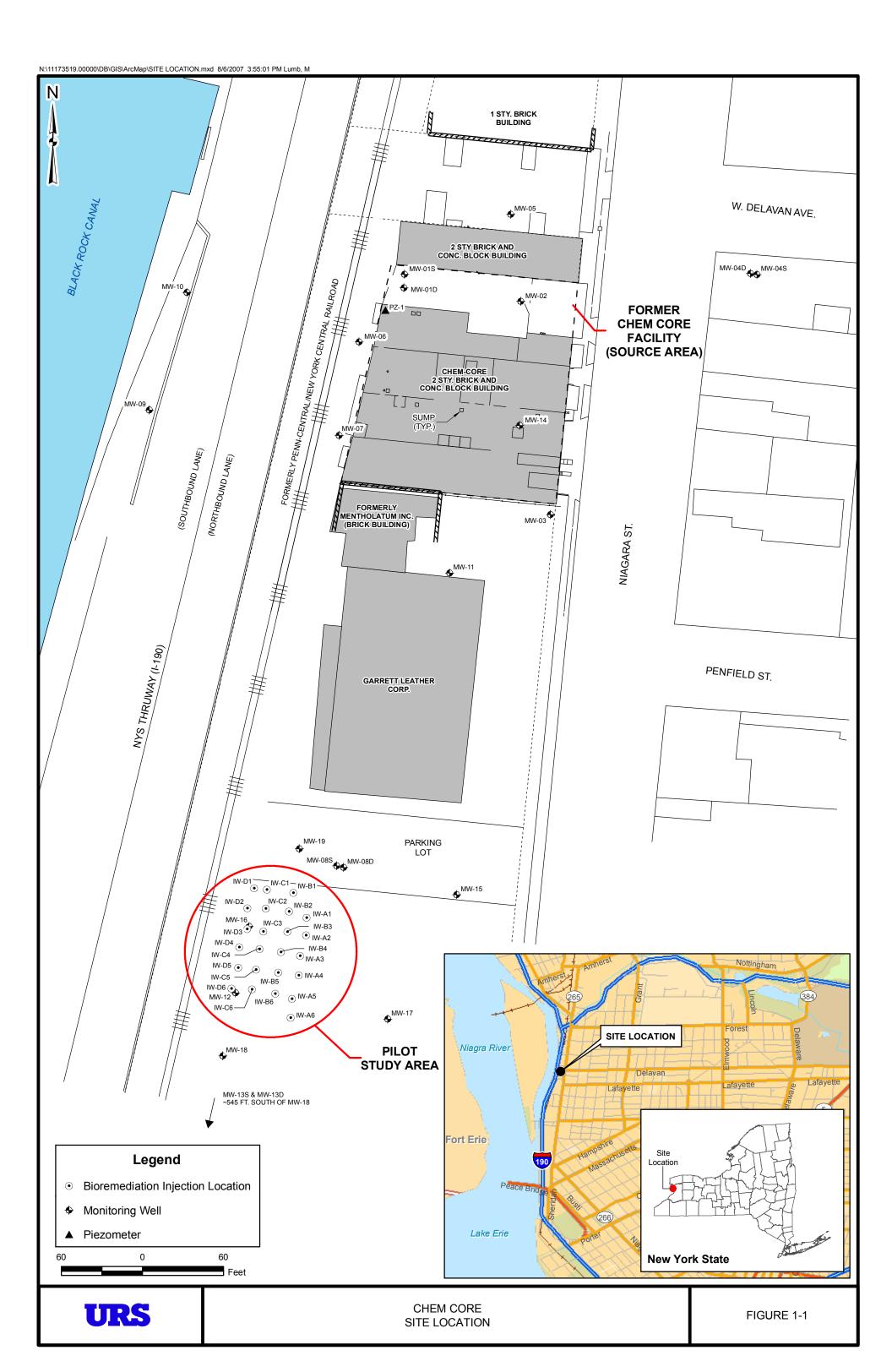
D - Result reported from a secondary dilution analysis.

TABLE 3-2 SUMMARY OF CHLORINATED HYDROCARBON SAMPLING RESULTS CHEM-CORE PILOT STUDY

PCE (ug/L)								
WELL	LOCATION	BASELINE	120 Days	220 Days	317 days	485 Days		
IW-A2	Infield	560	ND	ND	ND	ND		
IW-A5	Infield	230	ND	9	ND	1		
MW-8S	45 feet downgradient	130	2	ND	2	ND		
MW-8D	45 feet downgradient	310	ND	ND	ND	ND		
MW-12	Infield	750	35	990	16	1300		
MW-16	Infield	1000	ND	11	ND	15		
MW-19	45 feet downgradient	370	ND	3	ND	13		
MW-18	30 feet upgradient	12	-	5	13	33		
TCE (ug/L)								
IW-A2	Infield	65	ND	ND	ND	1		
IW-A5	Infield	27	ND	3	ND	0.9		
MW-8S	45 feet downgradient	21	1	1	1	0.7		
MW-8D	45 feet downgradient	31	ND	ND	ND	ND		
MW-12	Infield	120	12	200	15	140		
MW-16	Infield	140	ND	16	ND	10		
MW-19	45 feet downgradient	37	ND	1	ND	3		
MW-18	30 feet upgradient	3	-	3	10	15		
c,t-DCE (ug/L)	c,t-DCE (ug/L)							
IW-A2	Infield	150	2221	22	4	10		
IW-A5	Infield	68	918	129	30	28		
MW-8S	45 feet downgradient	96	3	6	4	3		
MW-8D	45 feet downgradient	110	ND	4	14	7.7		
MW-12	Infield	286	1300	1513	1511	290		
MW-16	Infield	390	1221	236	59	191		
MW-19	45 feet downgradient	121	196	11	14	49		
MW-18	30 feet upgradient	40	-	273	283	320		
VC (ug/L)								
IW-A2	Infield	ND	490	13	4	5		
IW-A5	Infield	ND	110	58	24	12		
MW-8S	45 feet downgradient	3	47	10	ND	ND		
MW-8D	45 feet downgradient	7	1	8	35	18		
MW-12	Infield	ND	20	100	370	ND		
MW-16	Infield	ND	420	52	32	84		
MW-19	45 feet downgradient	5	220	ND	11	13		
MW-18	30 feet upgradient	ND	-	10	12	16		
ETHENE (ug/L)	T	1						
IW-A2	Infield	ND	18	44	5	2.4		
IW-A5	Infield	ND	8	21	4	6		
MW-8S	45 feet downgradient	ND	0.8	3	ND	ND		
MW-8D	45 feet downgradient	ND	42	13	15	25		
MW-12	Infield	ND	1	17	19	5.2		
MW-16	Infield	ND	26	31	6	13		
MW-19	45 feet downgradient	ND	21	22	1	ND		
MW-18	30 feet upgradient	ND	-	0.5	ND	ND		

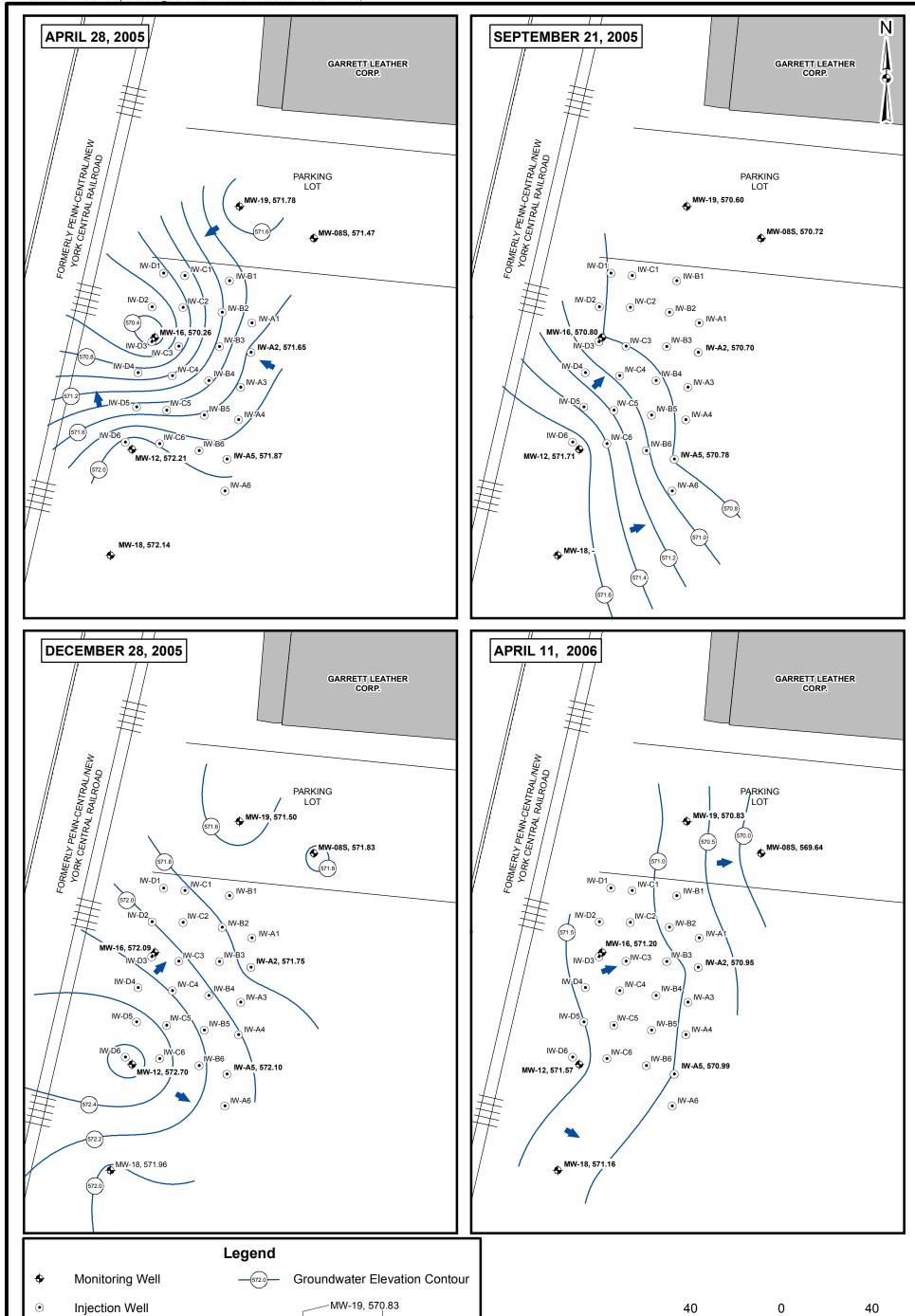
ND - Not Detected

Injection dates occurred 5/25-30/2005

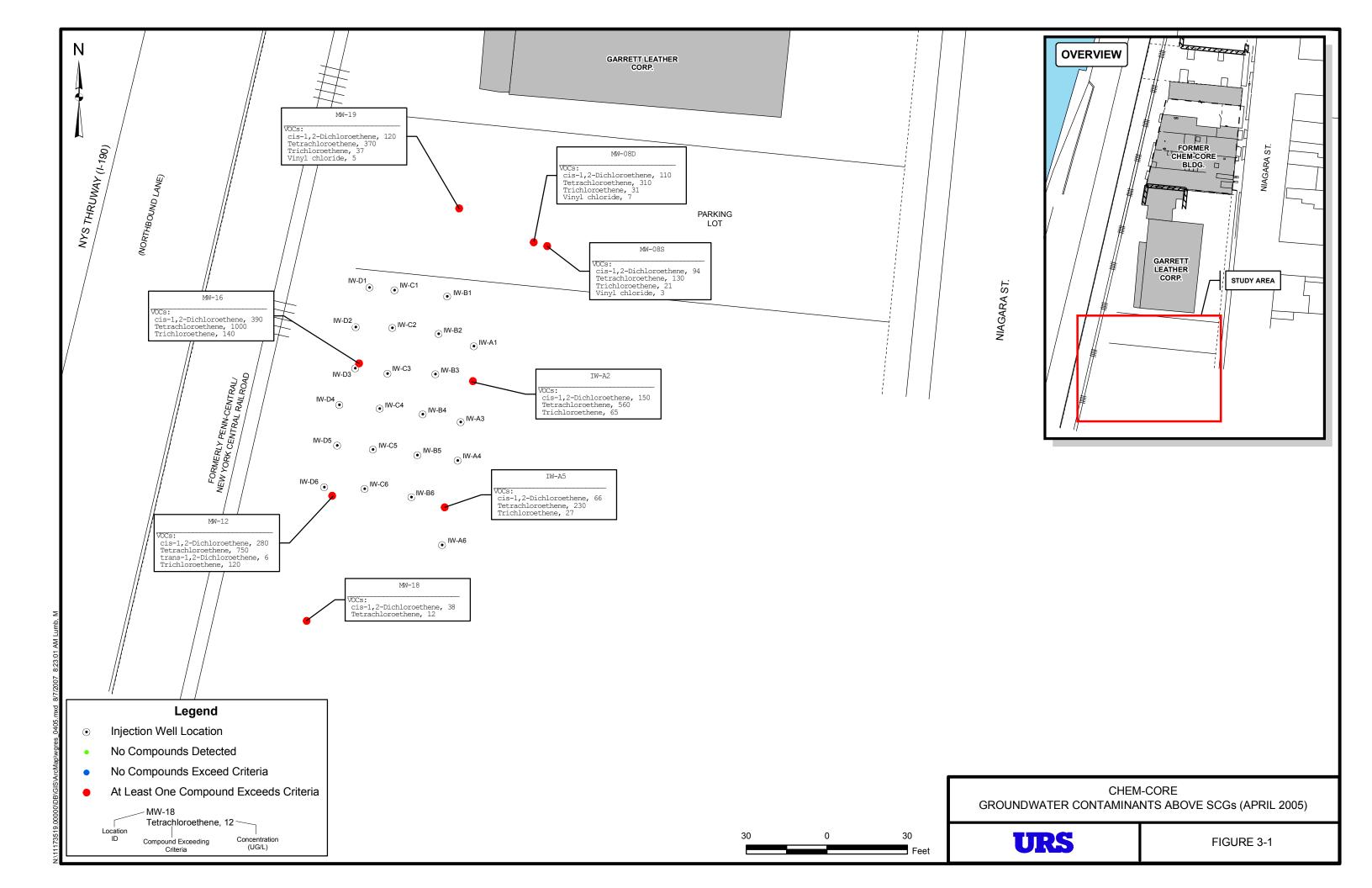

TABLE 3-3 SUMMARY OF GEOCHEMICAL INDICATOR PARAMETERS CHEM-CORE PILOT STUDY

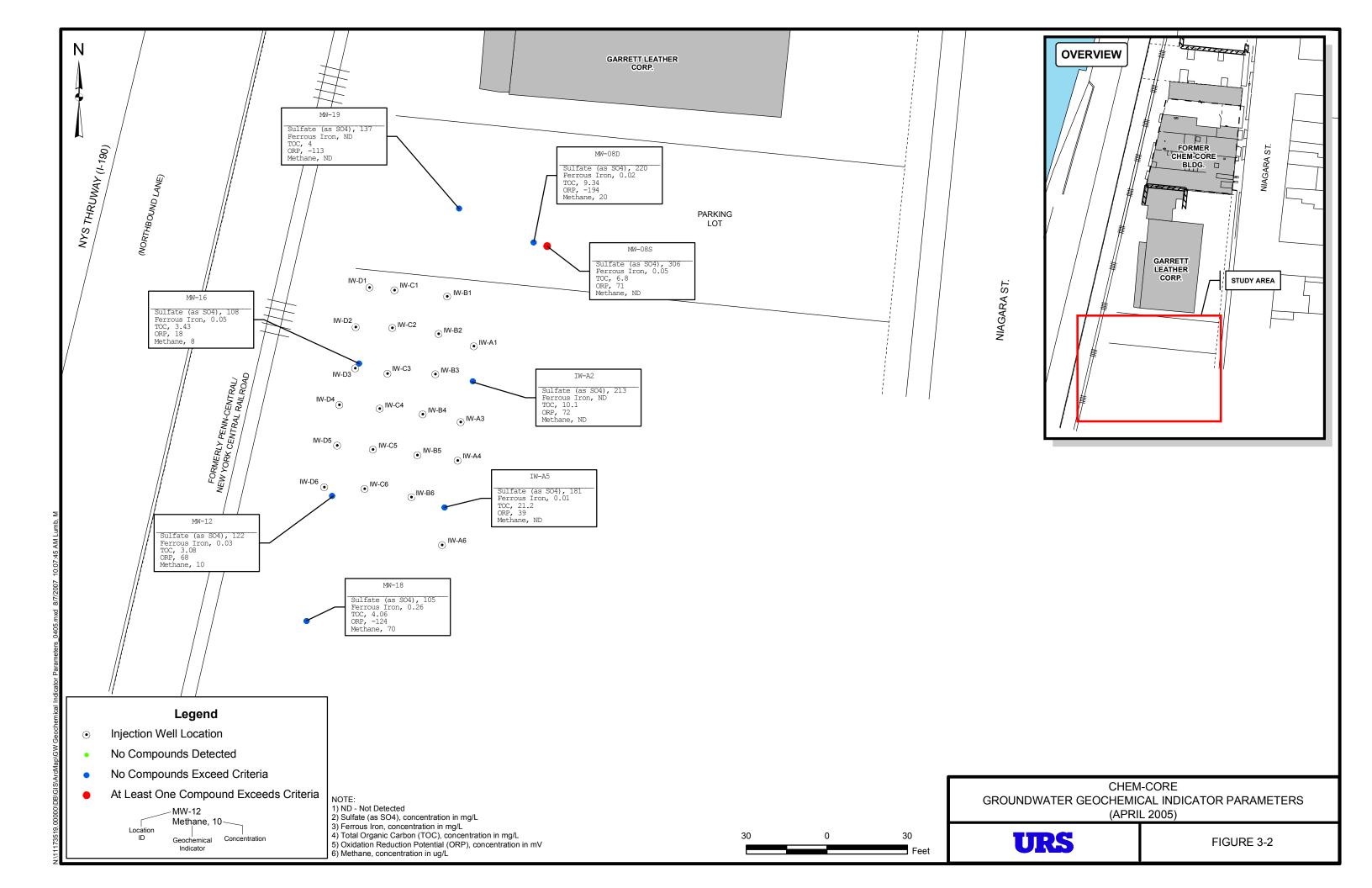
Sulfate (mg/L)								
WELL	LOCATION	BASELINE	120 Days	220 Days	317 days	485 Days		
IW-A2	Infield	213	19.7	40.3	35.2	90		
IW-A5	Infield	181	8.85	80	32.9	80		
MW-8S	45 feet downgradient	306	134	186	355	350		
MW-8D	45 feet downgradient	220	258	171	374	74		
MW-12	Infield	122	12.7	32.4	22.5	37		
MW-16	Infield	108	9.26	27.5	38.6	47		
MW-19	45 feet downgradient	137	9.55	15.4	17.3	97		
MW-18	30 feet upgradient	105	-	81.6	102	93		
Ferrous Iron (mg	/L)							
IW-A2	Infield	ND	19	16.1	19.4	12.1		
IW-A5	Infield	0.01	16.3	1.02	2.31	2.7		
MW-8S	45 feet downgradient	0.05	0.82	0.18	ND	ND		
MW-8D	45 feet downgradient	0.02	0.86	0.36	0.01	0.7		
MW-12	Infield	0.03	3.19	7.9	0.62	0.15		
MW-16	Infield	0.05	16.4	7.4	11	16.1		
MW-19	45 feet downgradient	ND	14.1	9.6	10.6	3		
MW-18	30 feet upgradient	0.26	-	0.56	1.27	1.19		
TOC (mg/L)	TOC (mg/L)							
IW-A2	Infield	10.1	86.7	84.7	128	11		
IW-A5	Infield	21.2	84.1	48.7	57.8	4.7		
MW-8S	45 feet downgradient	6.8	12.6	5.65	5.66	3.5		
MW-8D	45 feet downgradient	9.34	36.6	32.1	4.81	3.6		
MW-12	Infield	3.08	70.6	21.6	18.7	1.9		
MW-16	Infield	3.43	60.4	17.7	53	5		
MW-19	45 feet downgradient	4	53	66.8	42.2	4.5		
MW-18	30 feet upgradient	4.06	-	2.97	3.15	1.7		
ORP (mV)								
IW-A2	Infield	72	-470	-461	-445	-202		
IW-A5	Infield	39	-459	-373	-380	-253		
MW-8S	45 feet downgradient	71	-269	-84	-7	20		
MW-8D	45 feet downgradient	-194	-354	-312	-276	-211		
MW-12	Infield	68	-331	-307	-326	-155		
MW-16	Infield	18	-316	-345	-343	-253		
MW-19	45 feet downgradient	-113	-408	-326	-216	-183		
MW-18	30 feet upgradient	-124	-	-216	-128	-105		
METHANE (ug/L)								
IW-A2	Infield	ND	250	720	1800	9800		
IW-A5	Infield	ND	260	510	1600	10000		
MW-8S	45 feet downgradient	ND	13	6	ND	21		
MW-8D	45 feet downgradient	20	240	420	250	5500		
MW-12	Infield	10	20	120	550	360		
MW-16	Infield	8	87	500	1100	5800		
MW-19	45 feet downgradient	ND	66	570	1400	3100		
MW-18	30 feet upgradient	70	-	24	6	94		

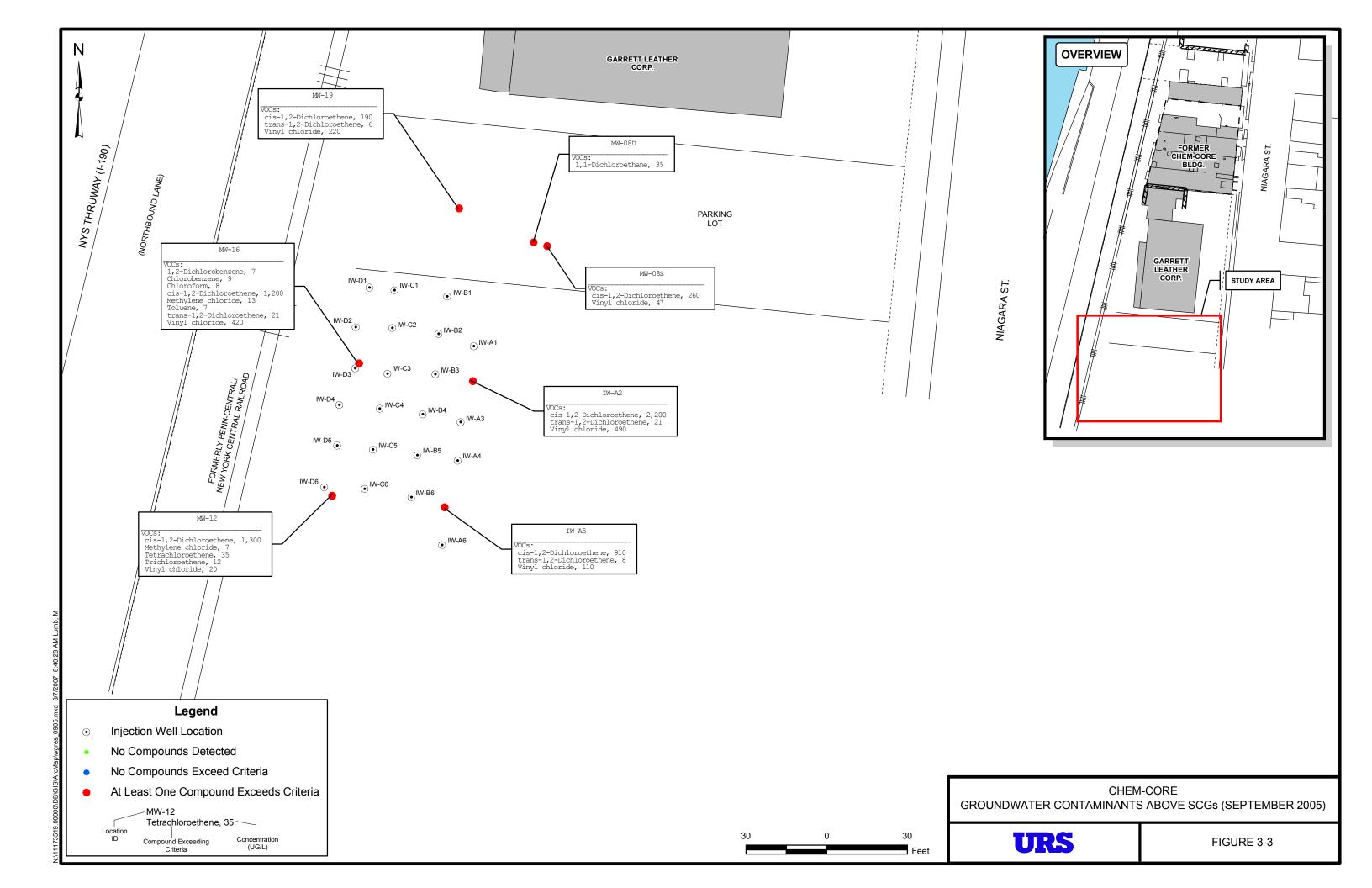
ND - Not Detected

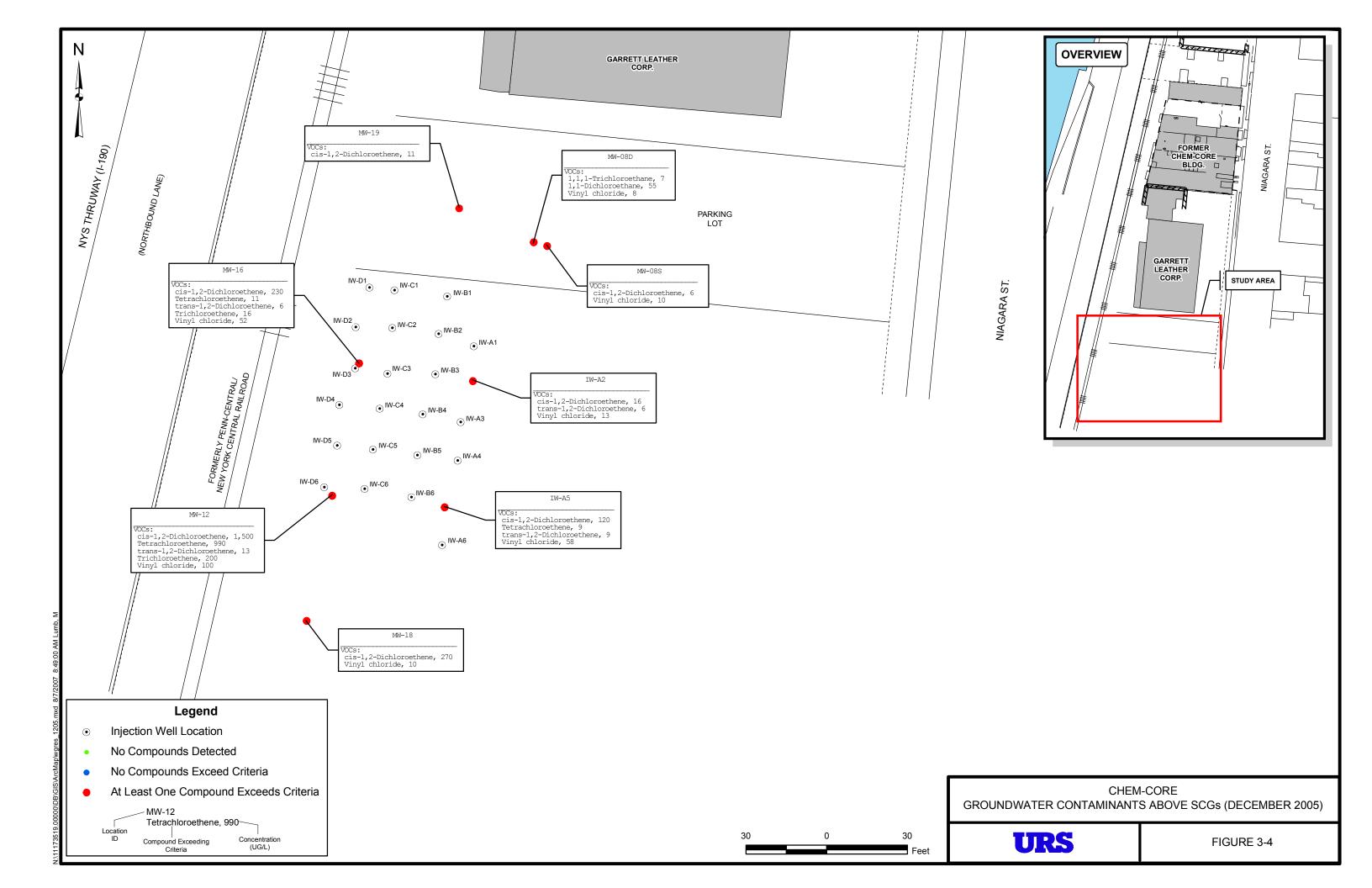

Injection dates occurred 5/25-30/2005

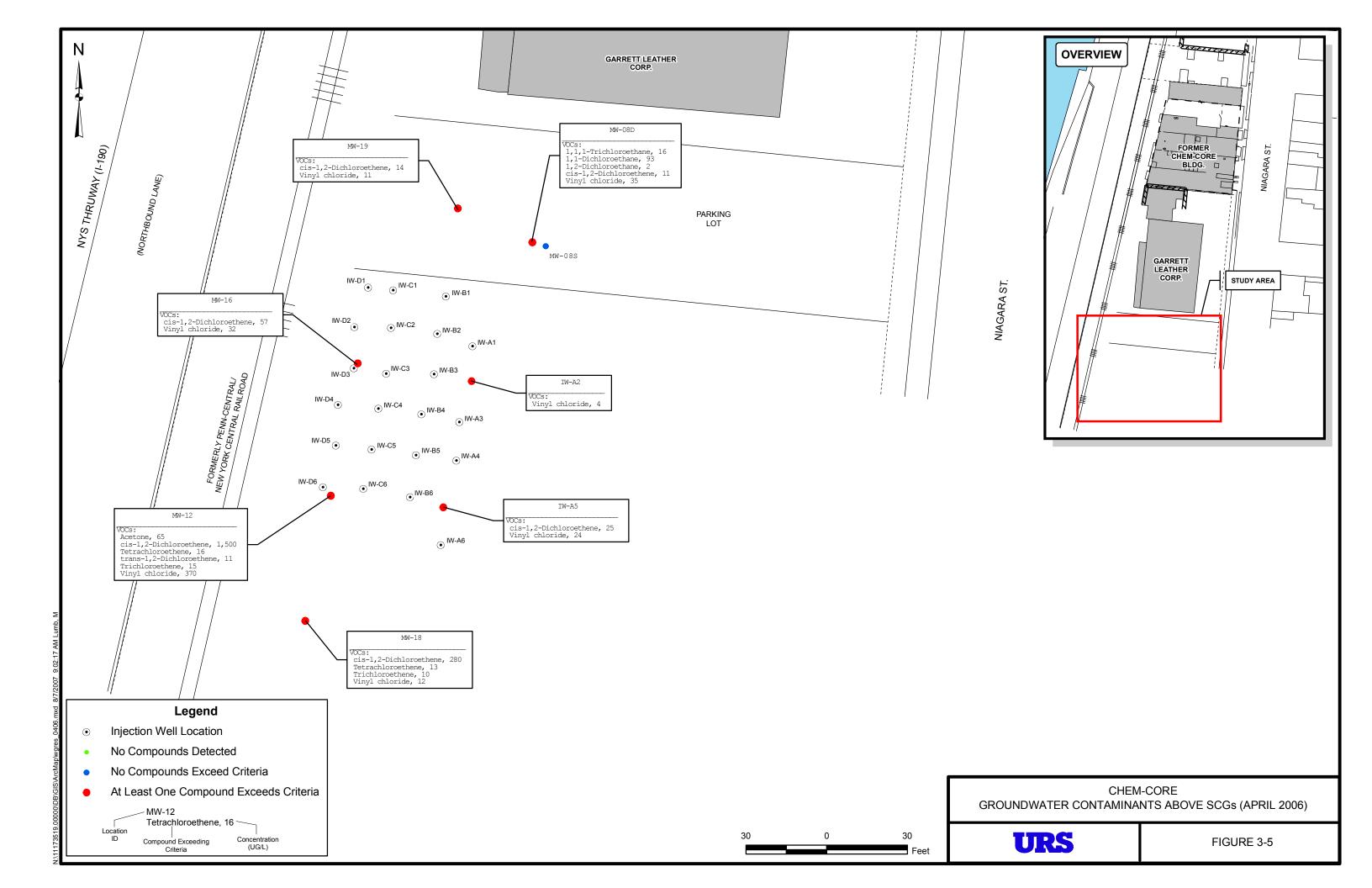
FIGURES

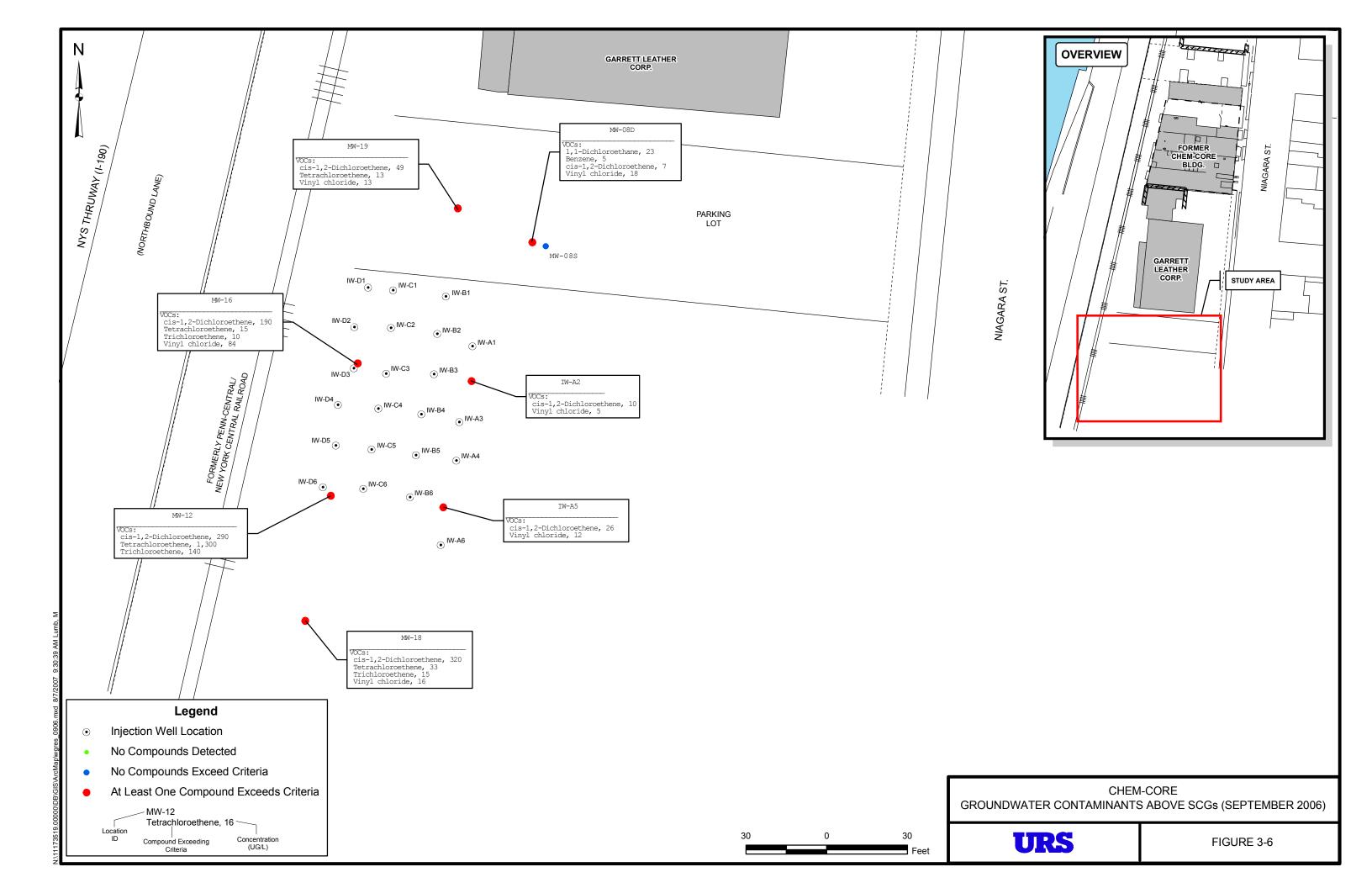

Groundwater Flow Direction

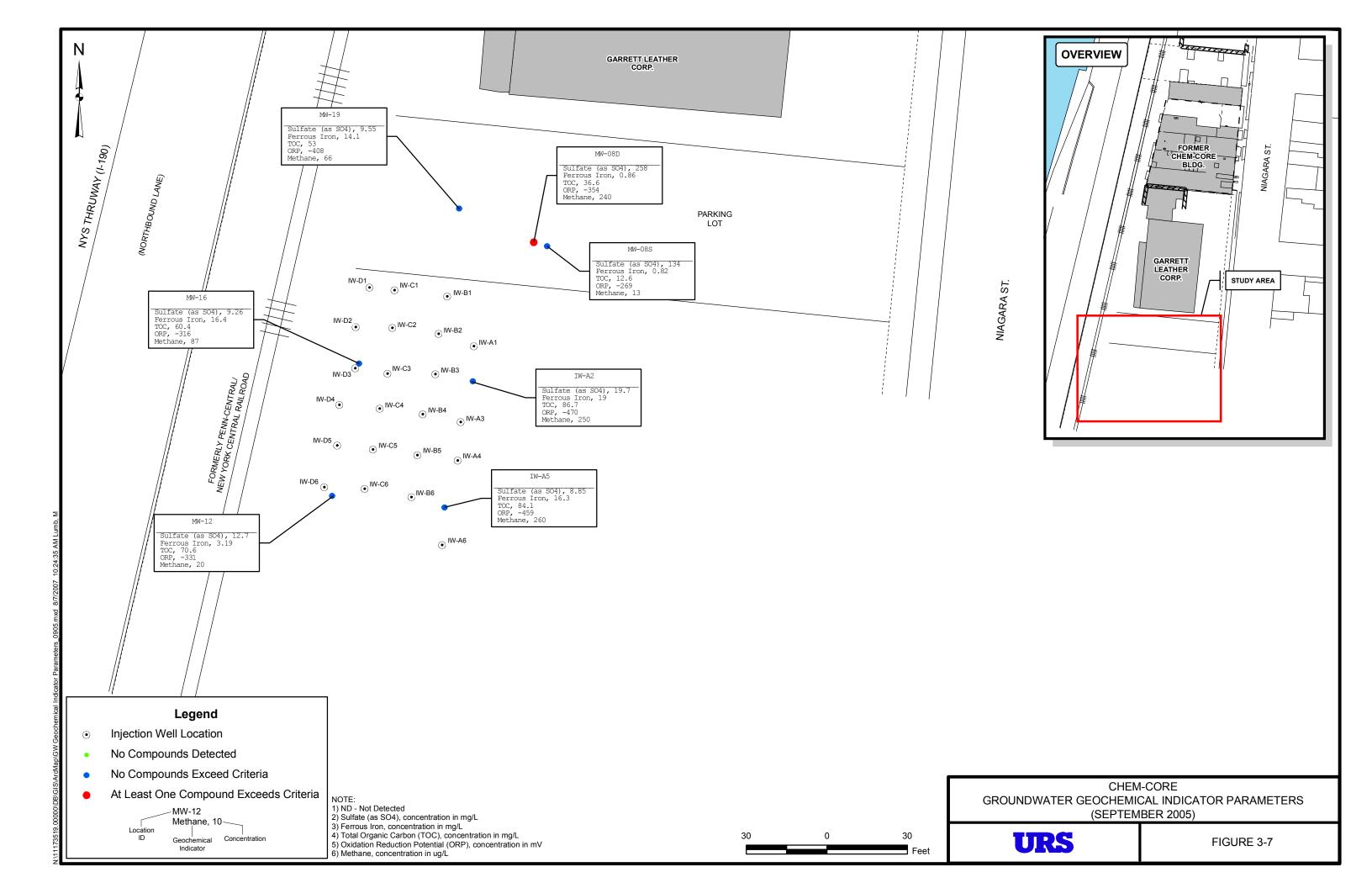

Location

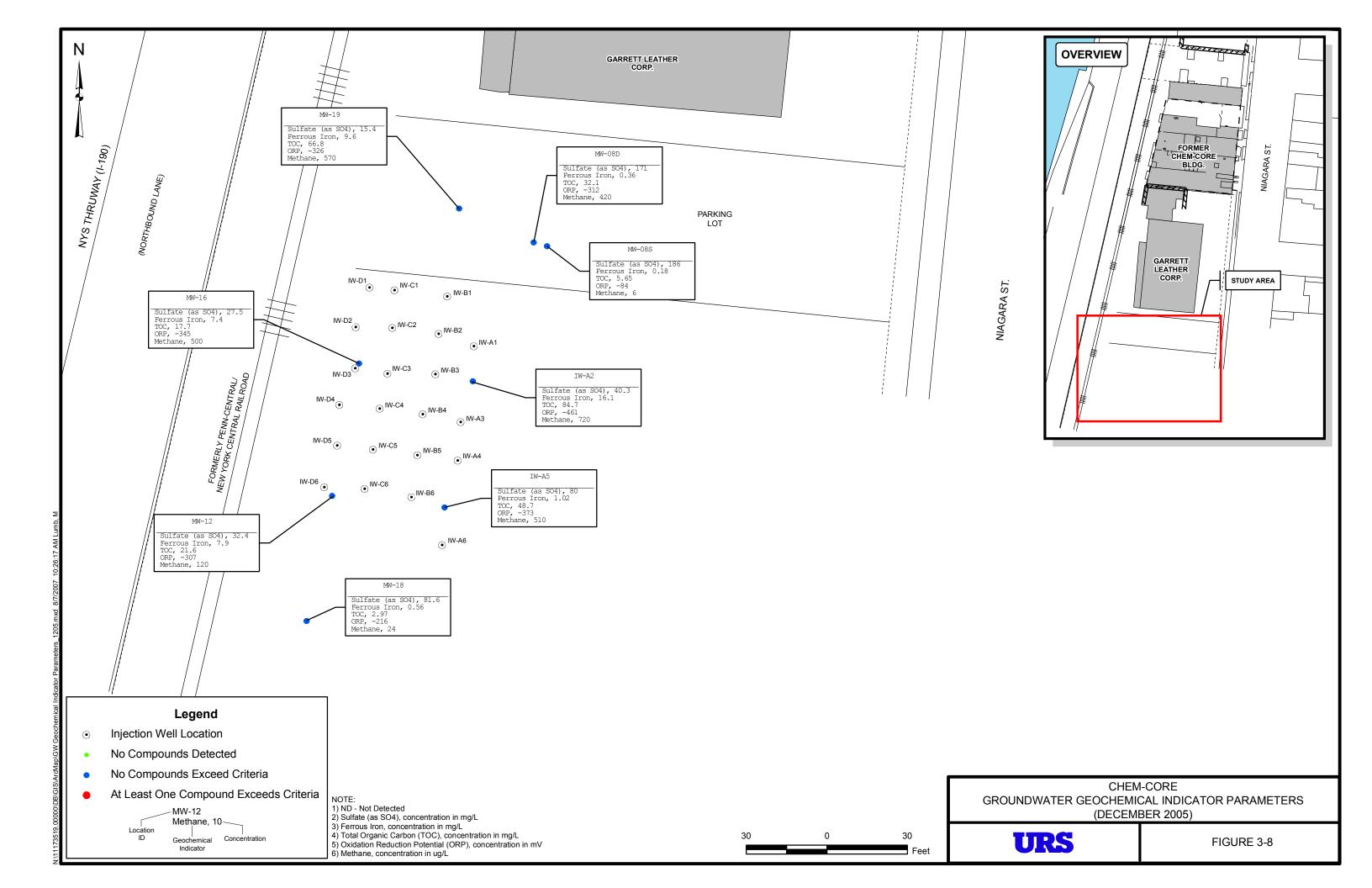

Groundwater

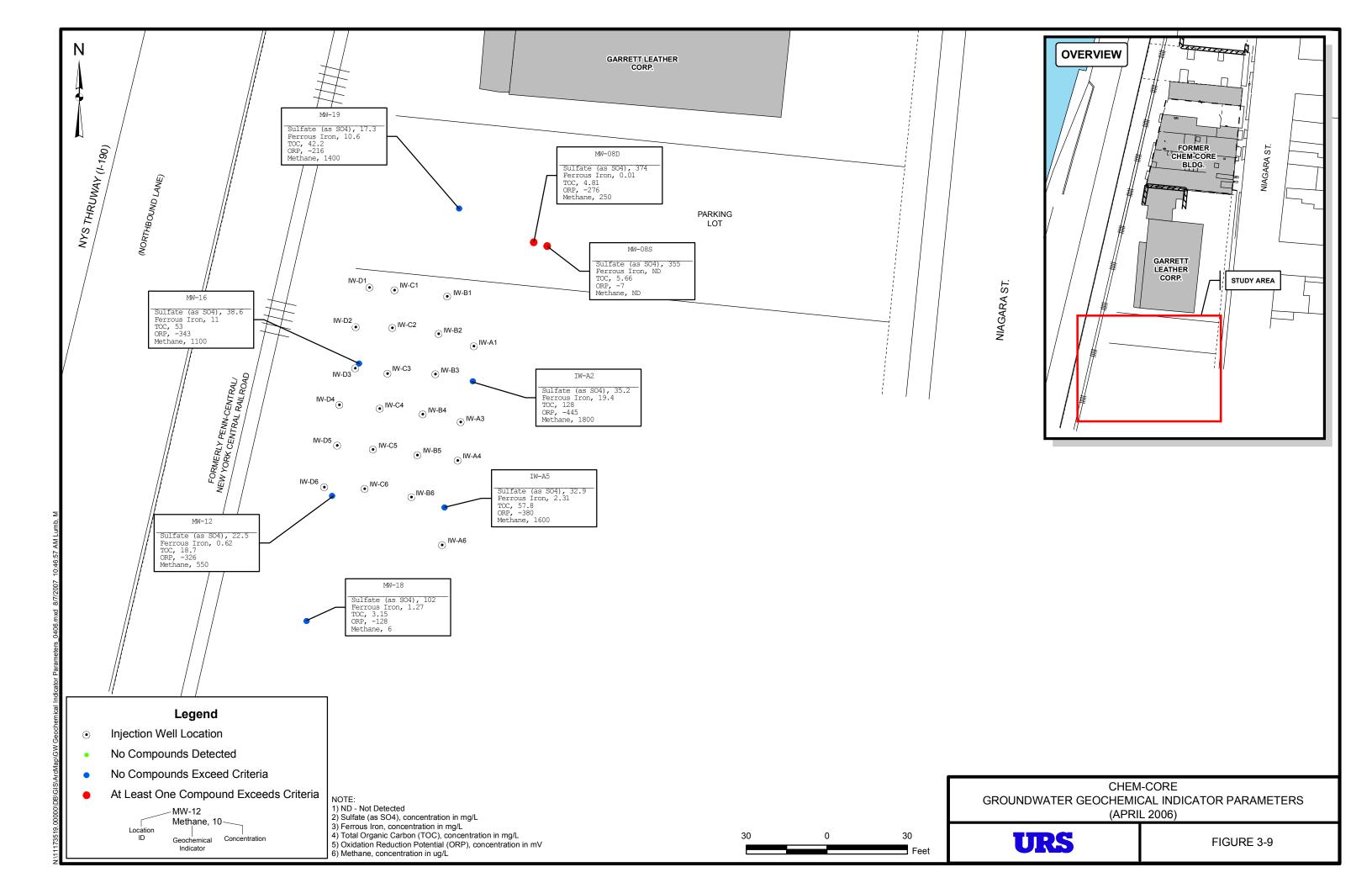

Elevation (ft AMSL)

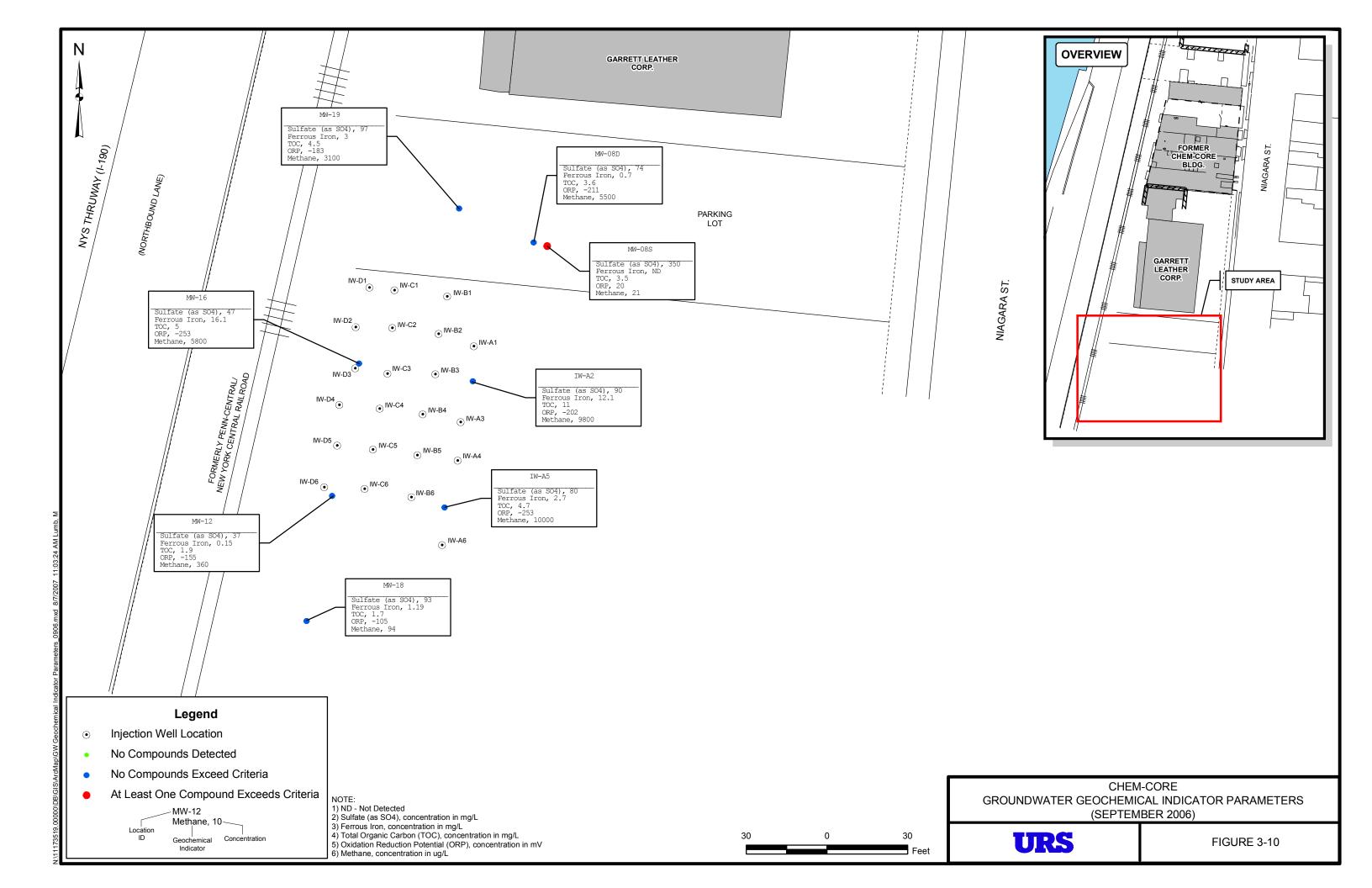

Feet

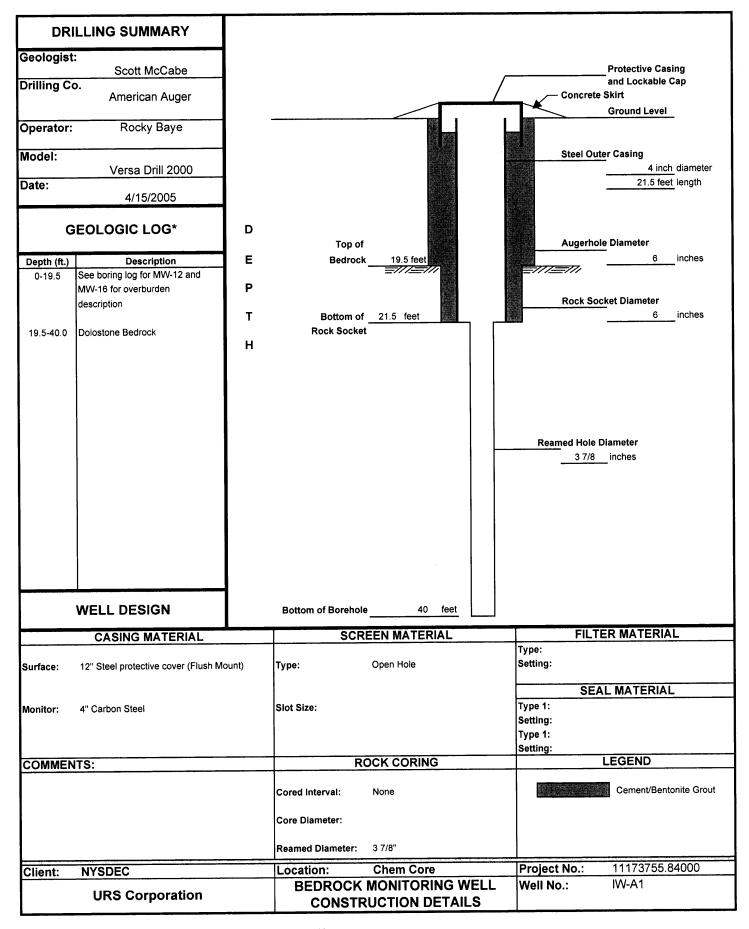


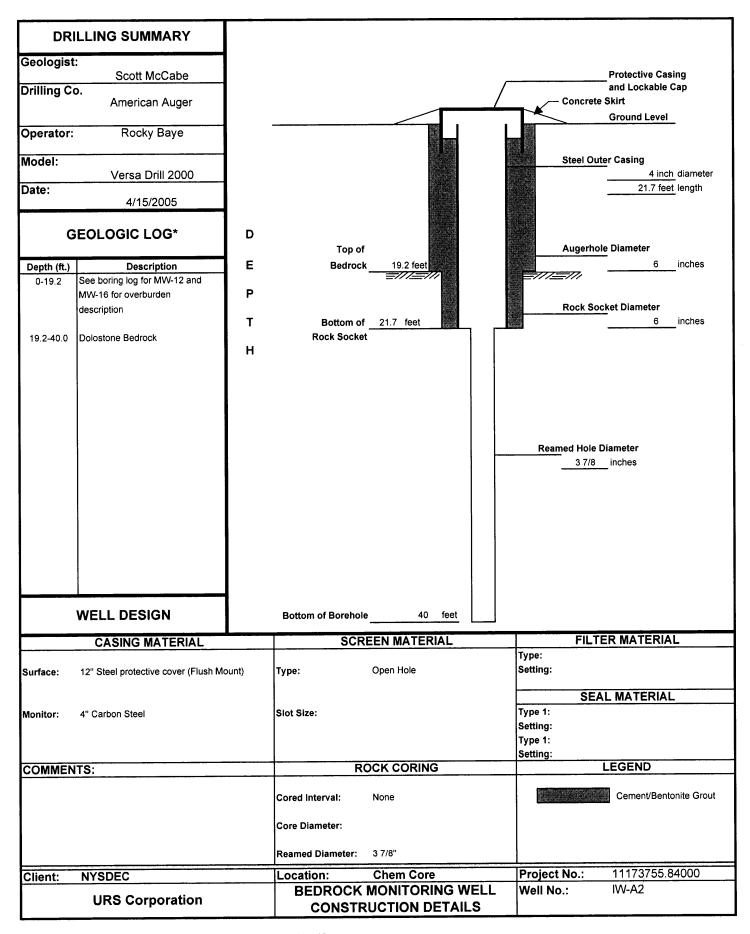


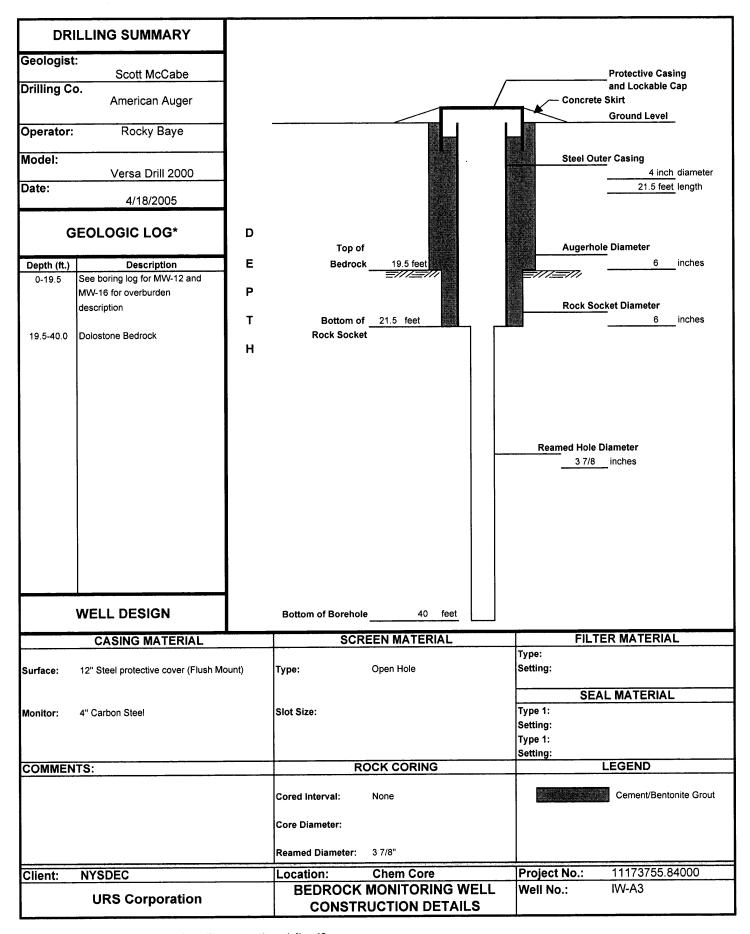


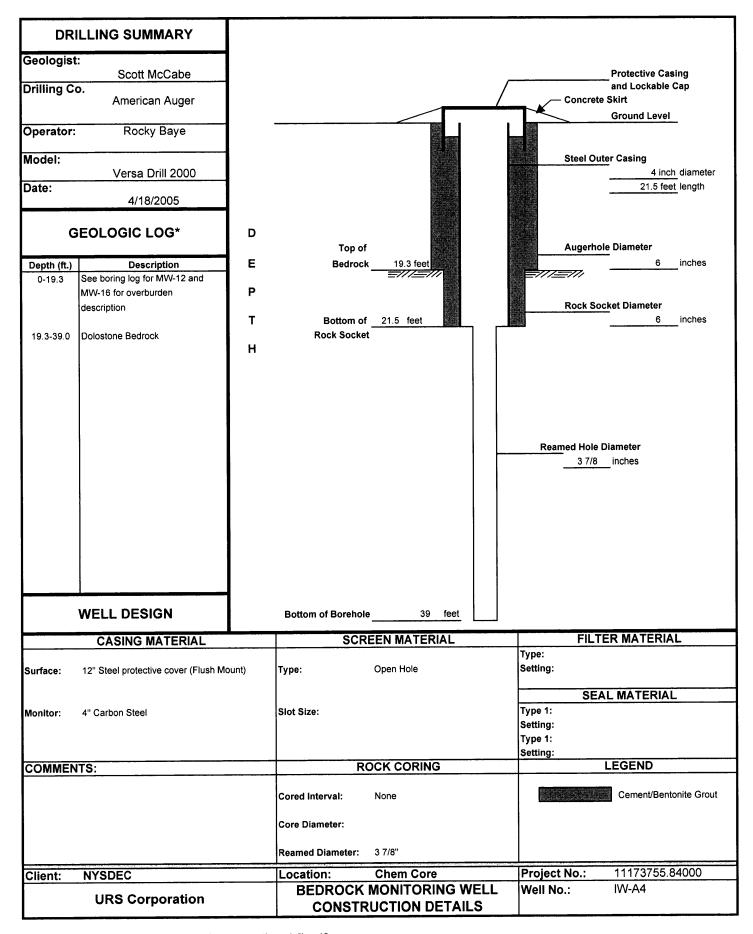




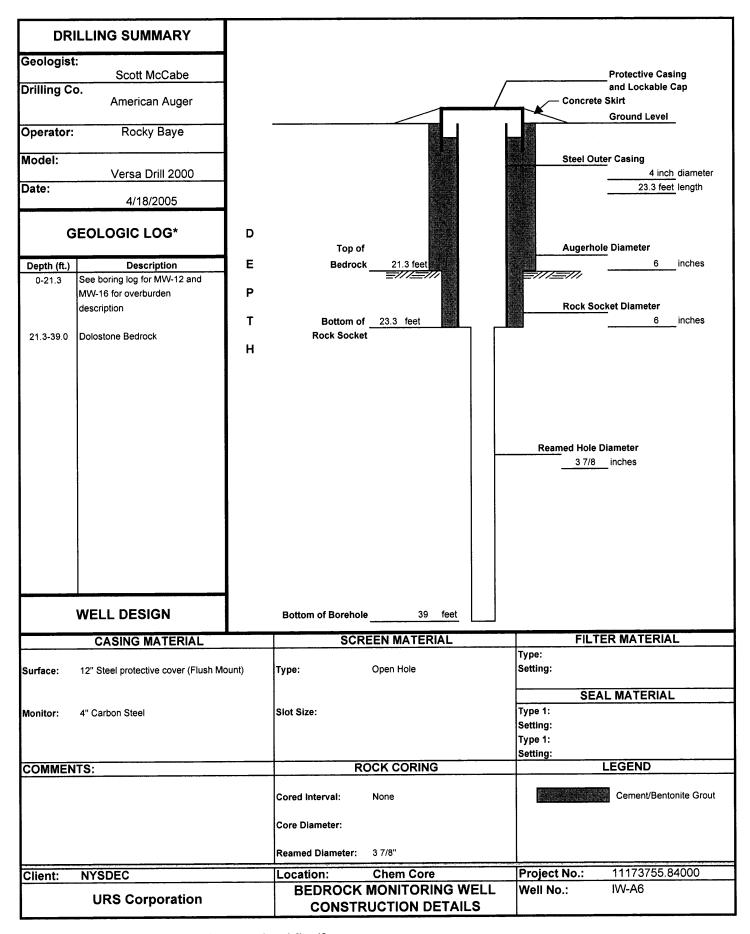


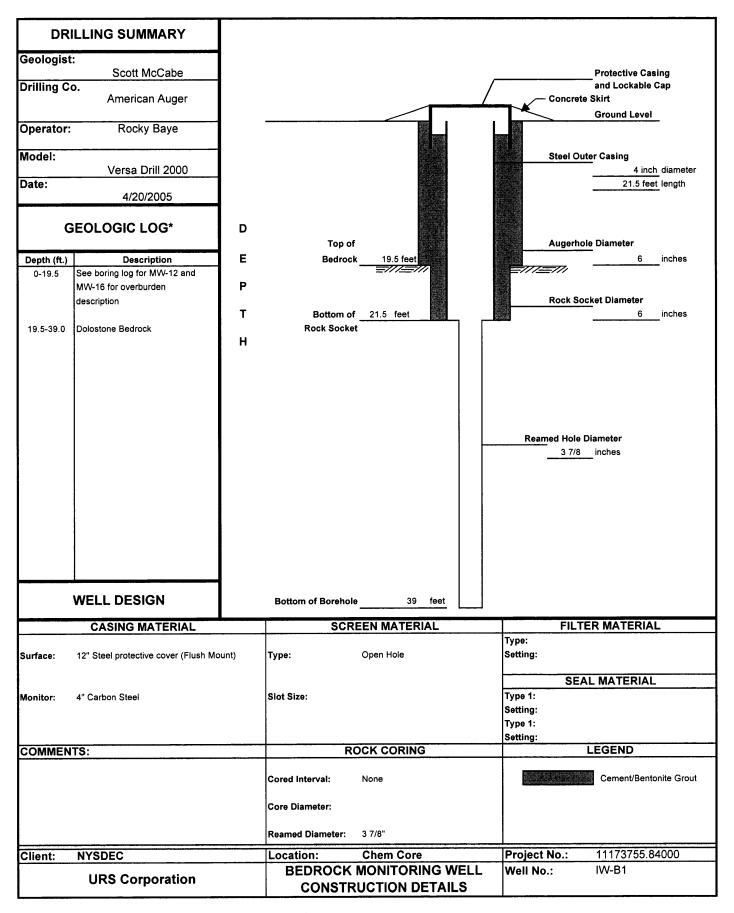


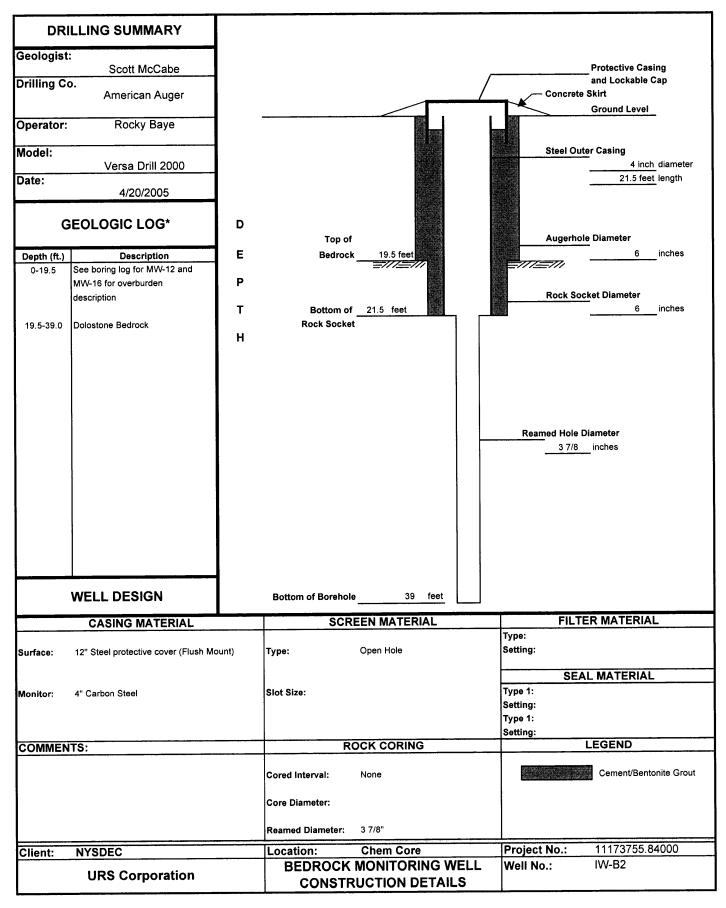

APPENDICES

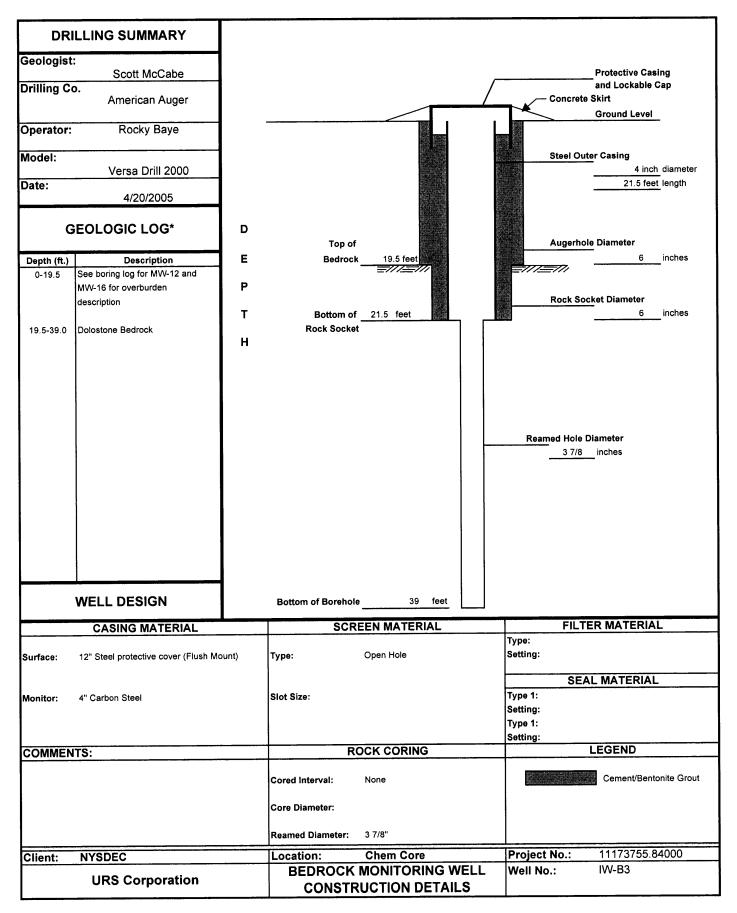

APPENDIX A

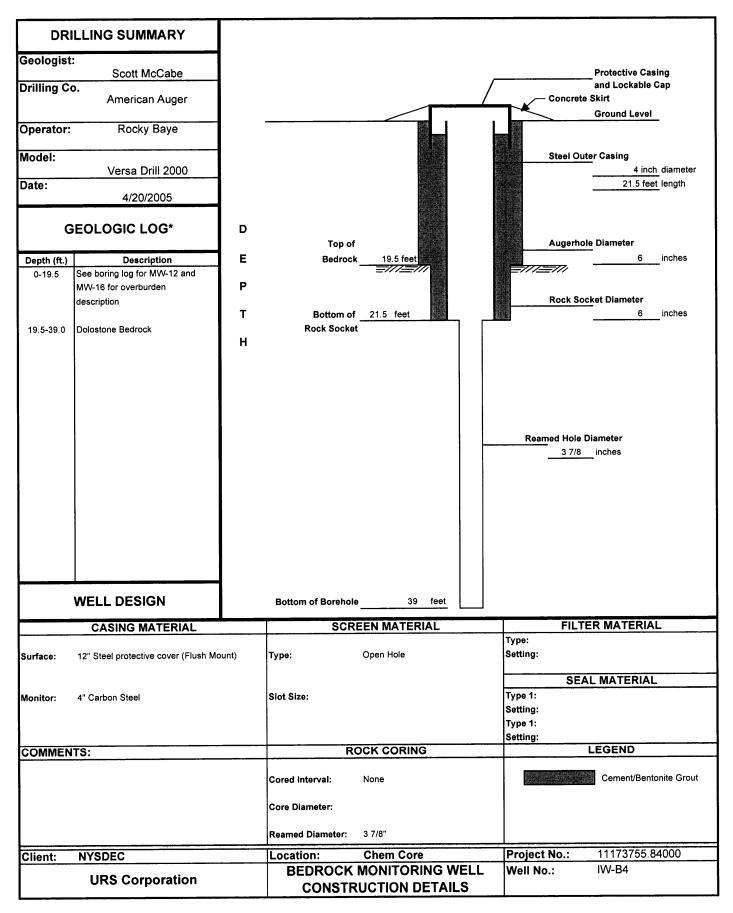

WELL CONSTRUCTION LOGS

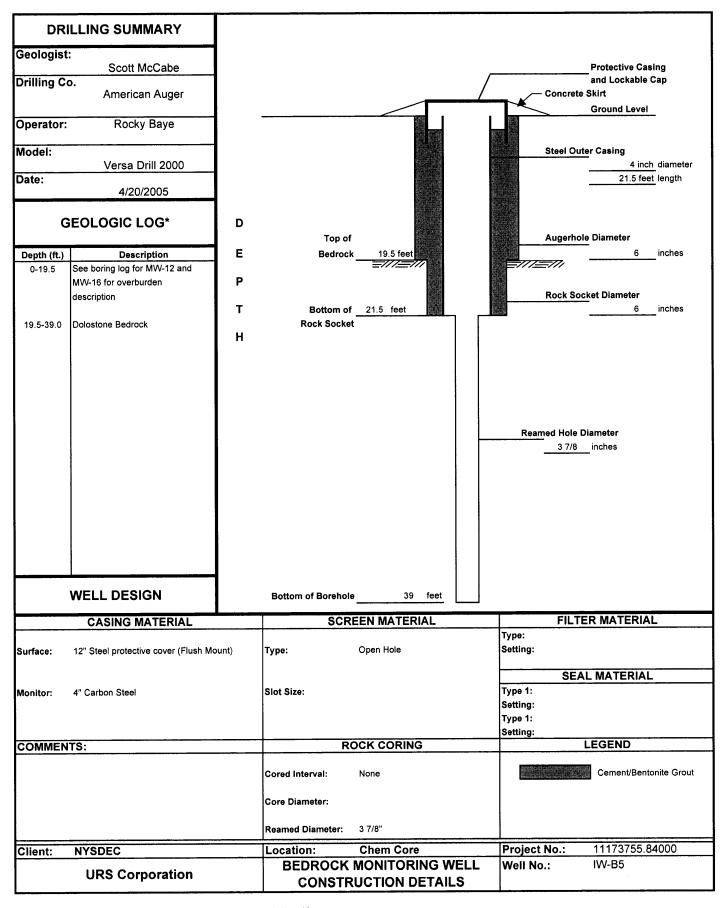


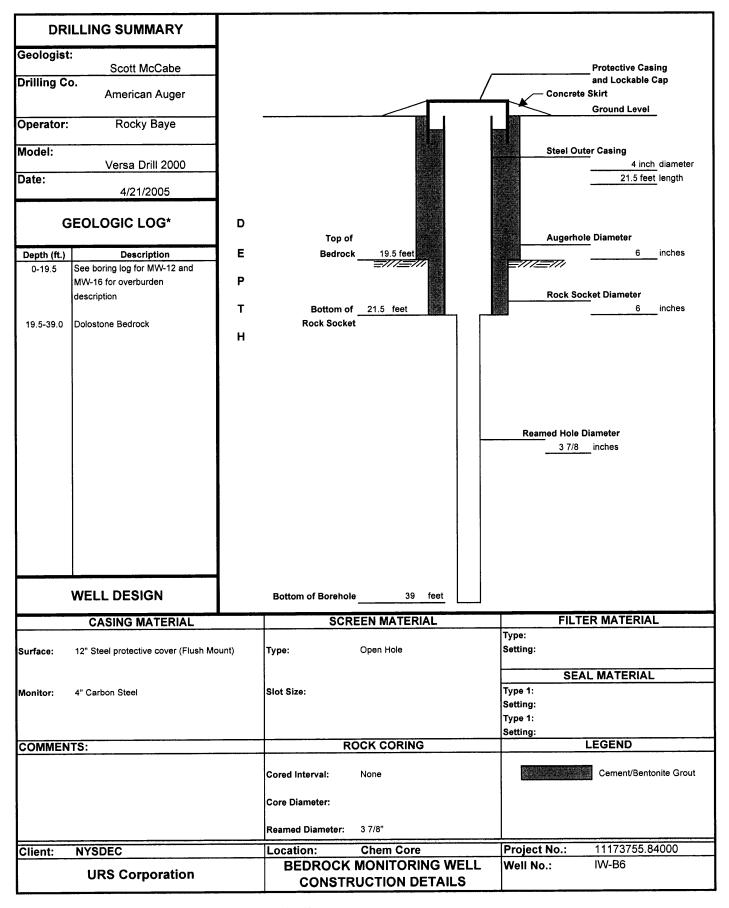


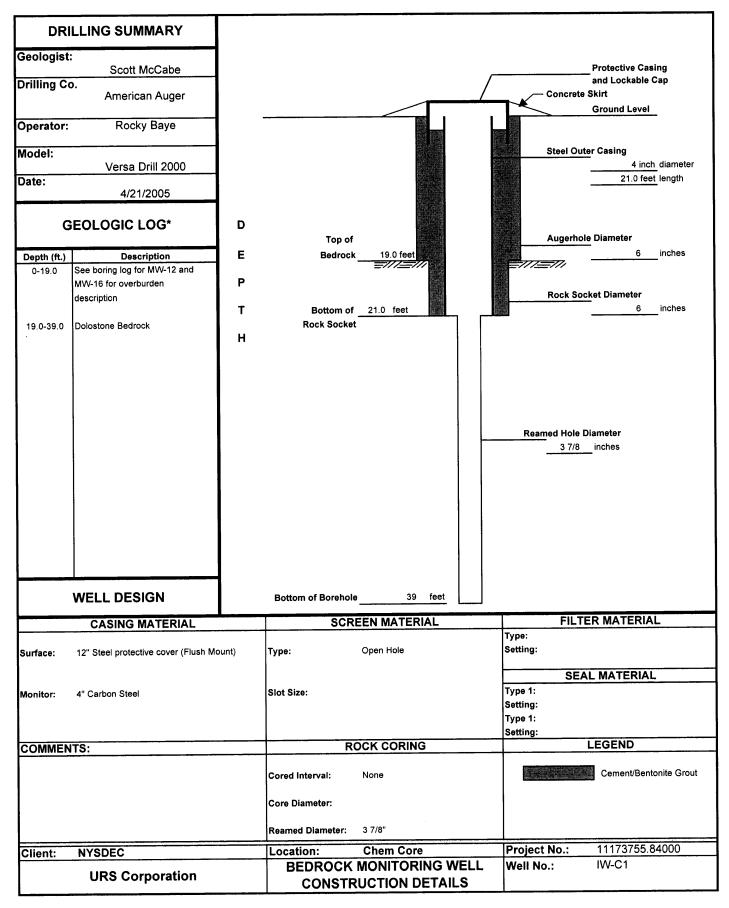


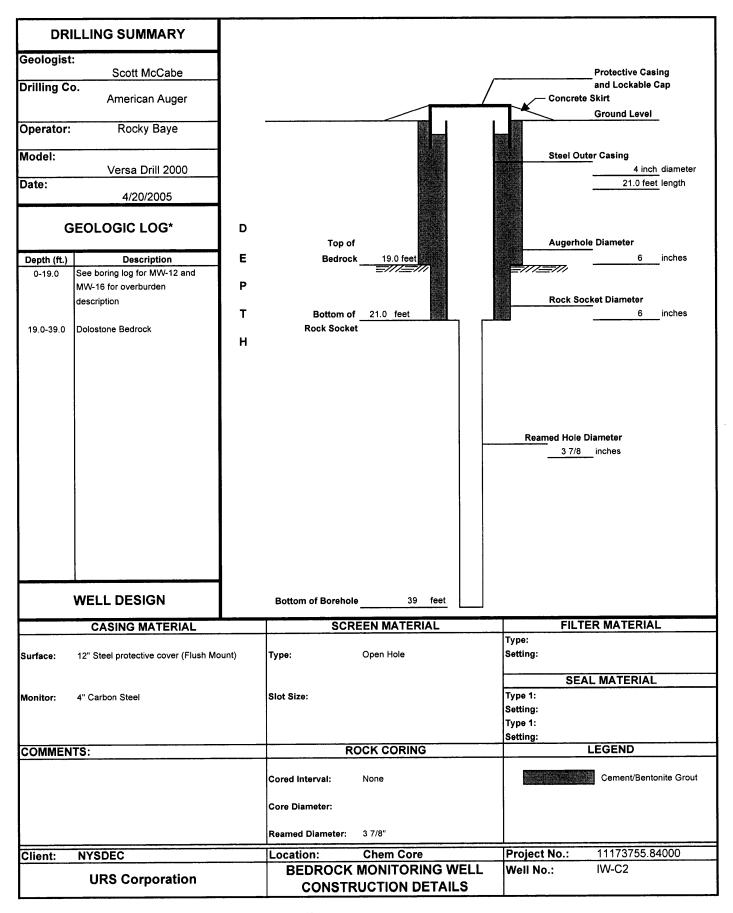


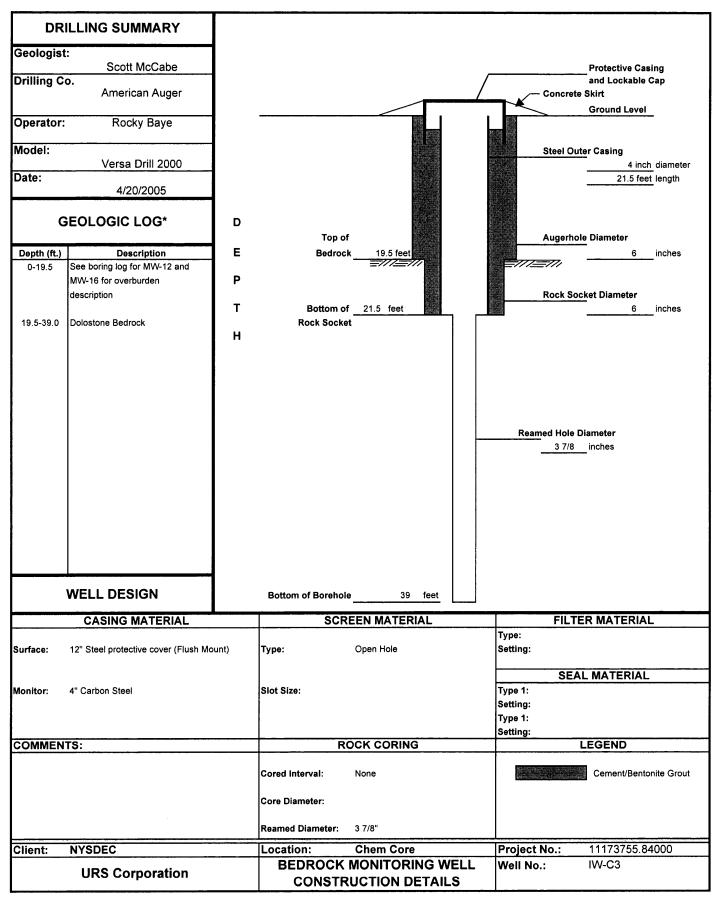


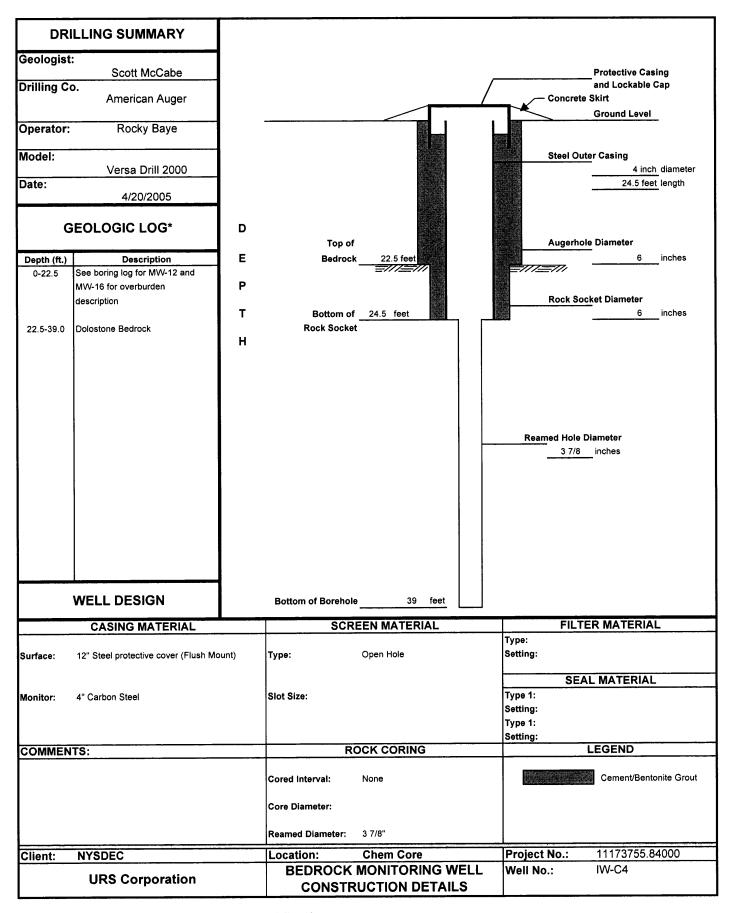


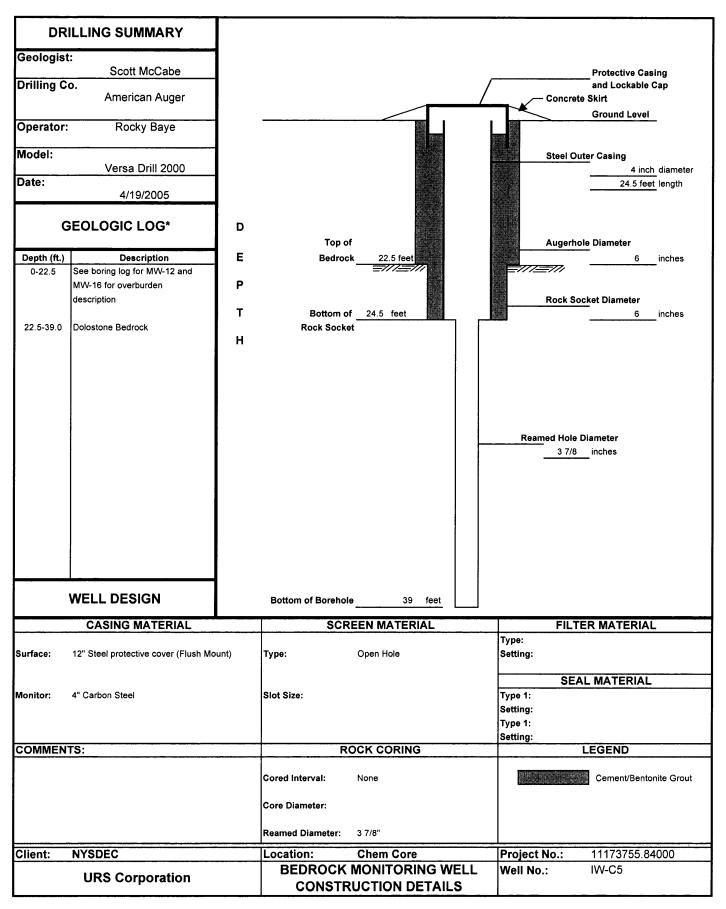


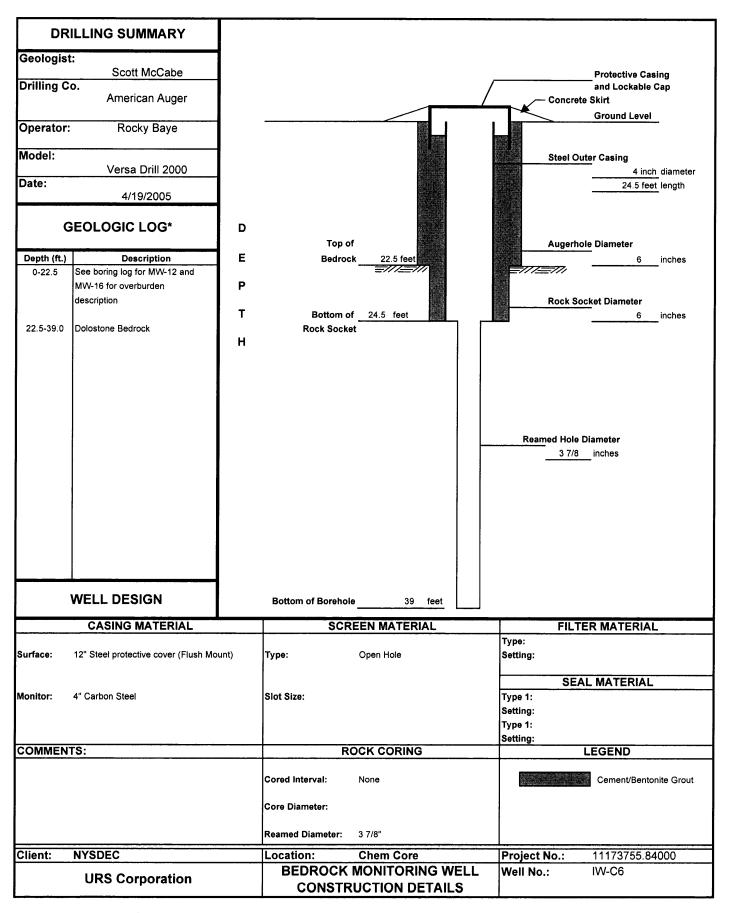


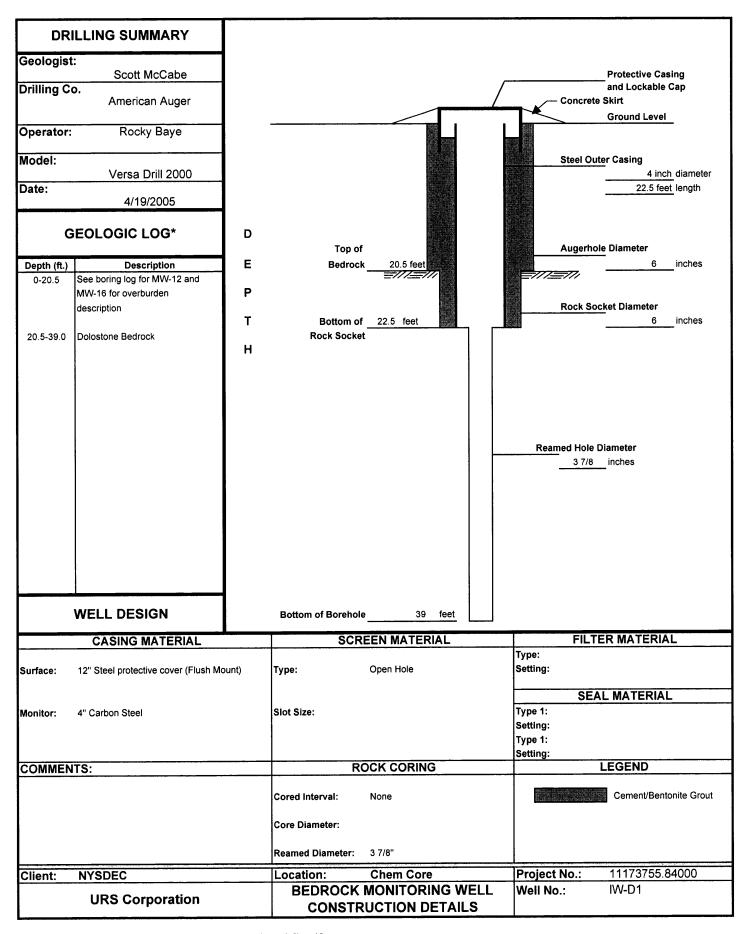


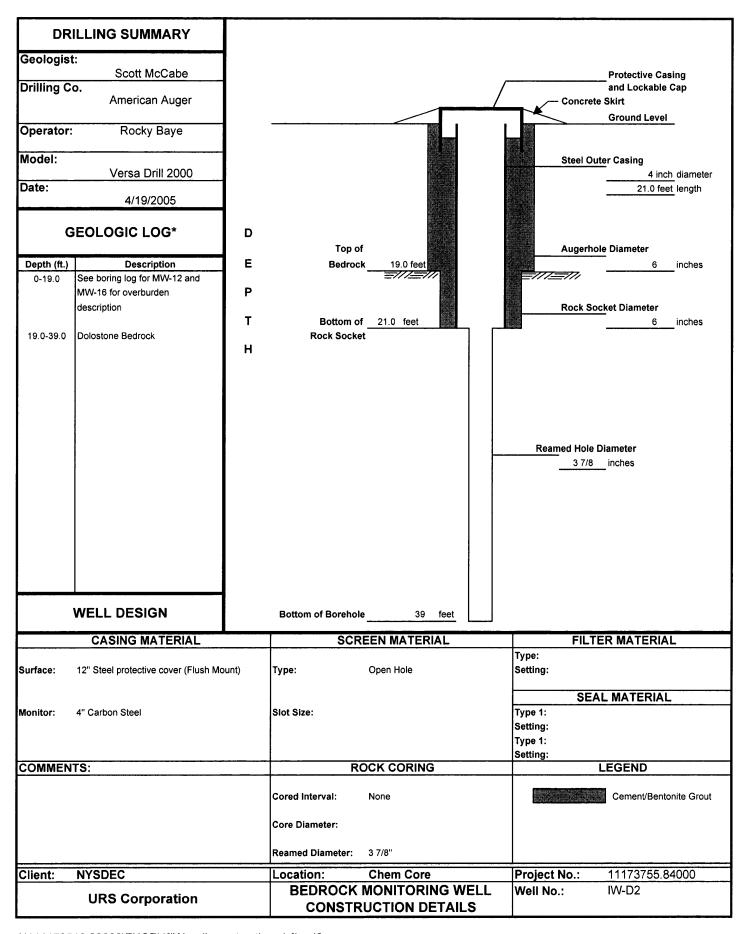


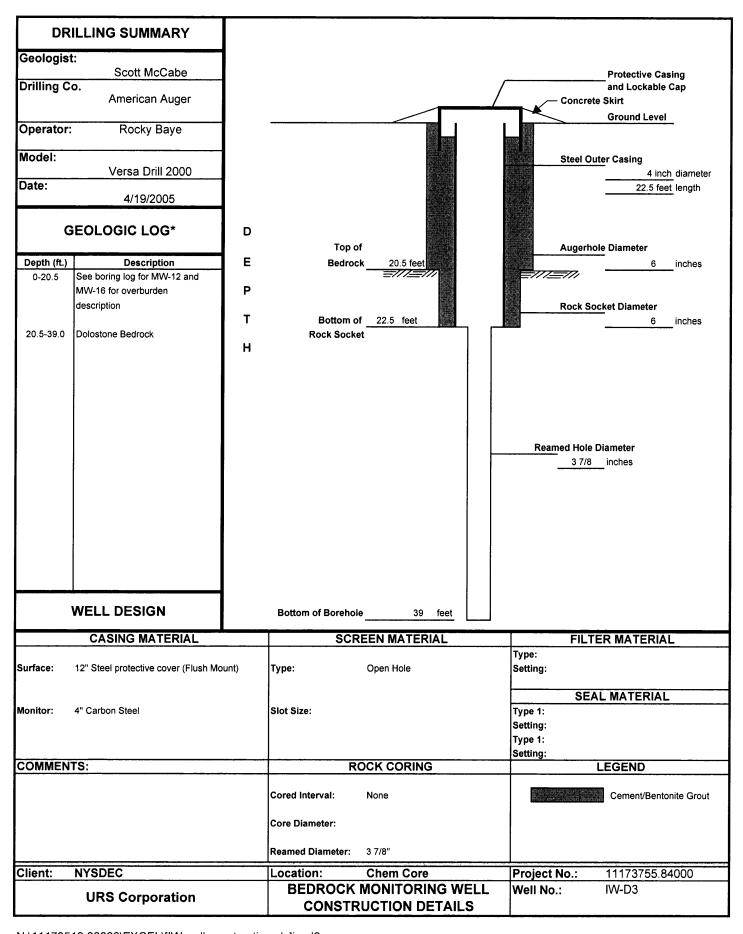


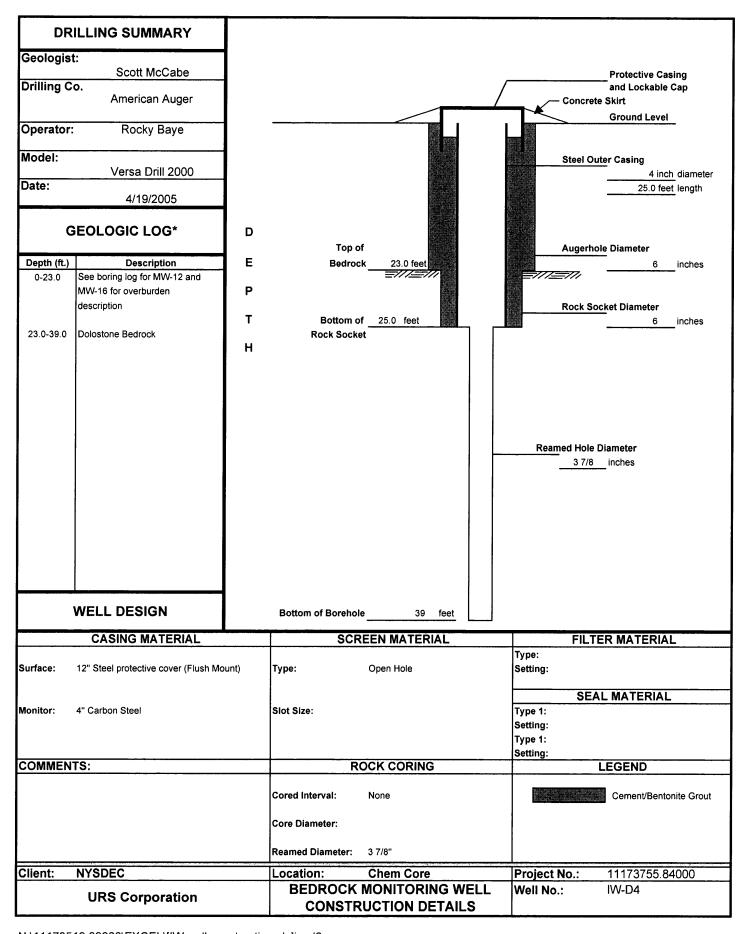


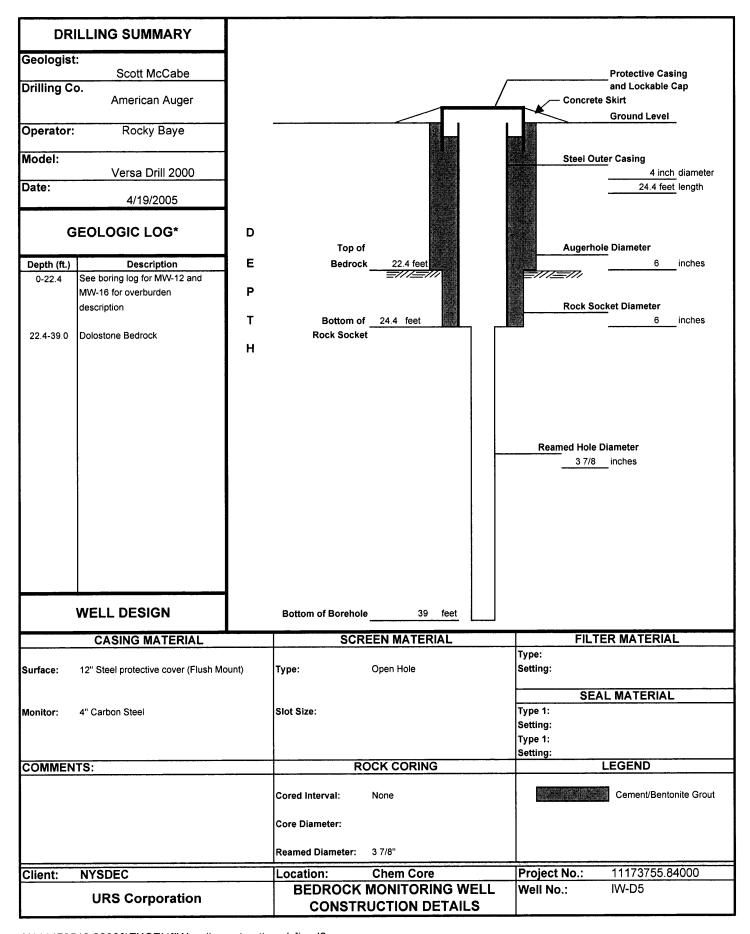


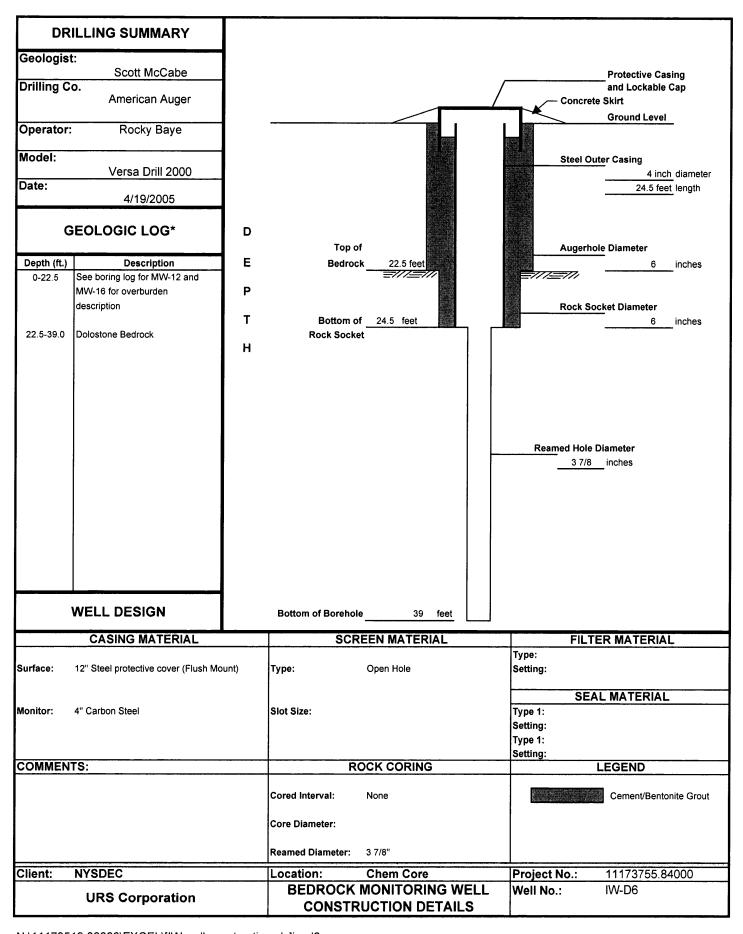


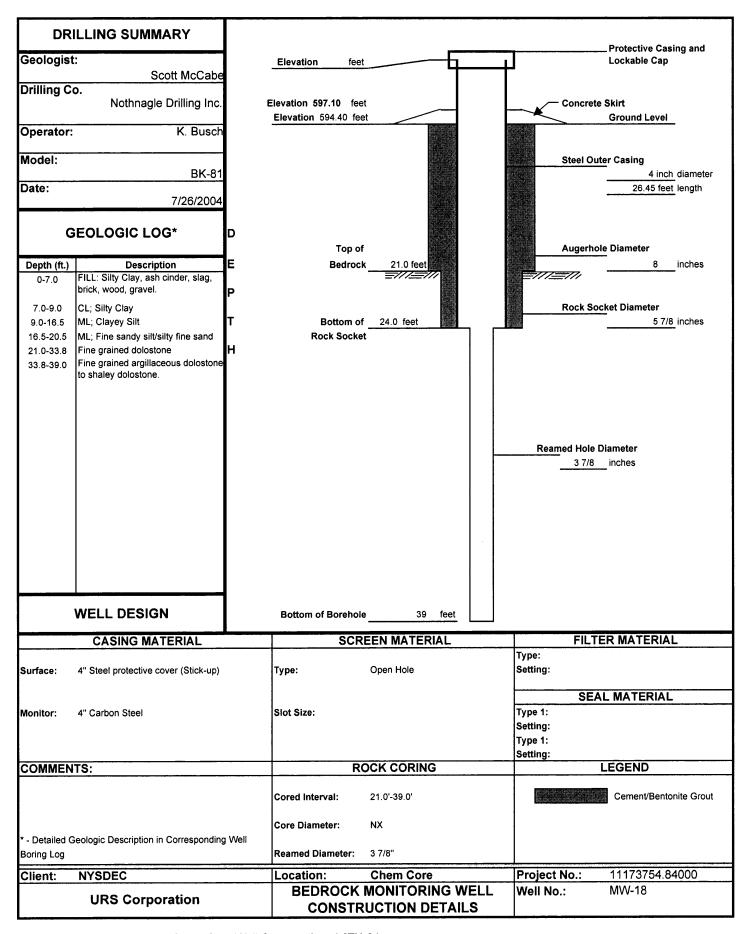


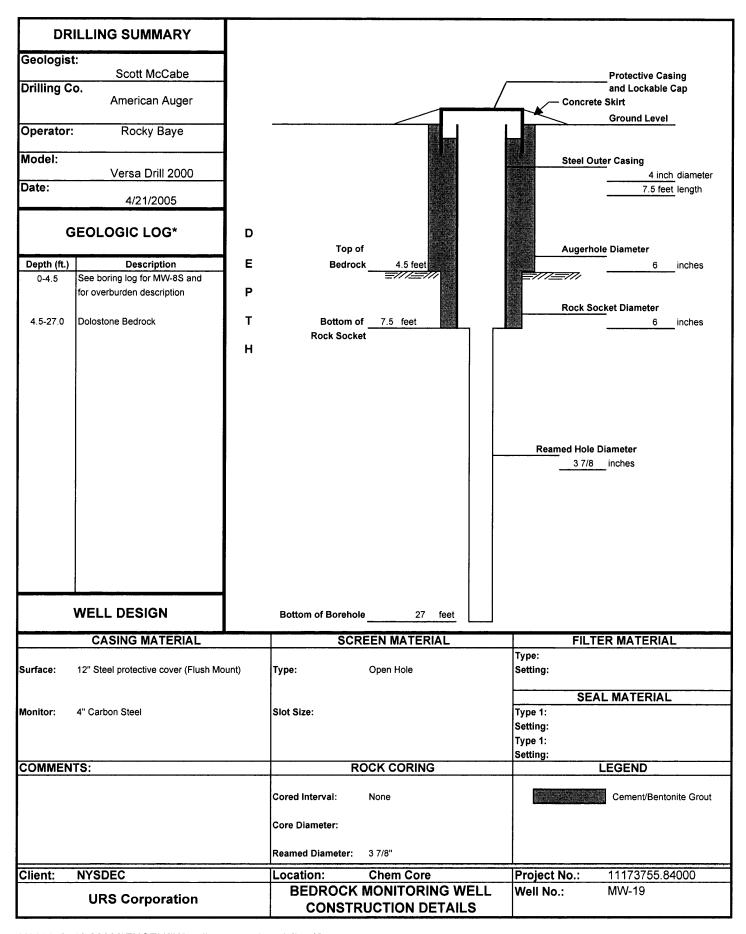












				URS	Co	rporat	ion				WELL BO	RING	LC)G
											BORING NO:	MW-16	3	<u> </u>
PROJE	CT:	Che	n Core	PDI			-				SHEET:	1 of 2		
CLIENT	;	NYS	DEC					······································		·	JOB NO.:	111737	754.8	4000
BORIN	G CONTRA	ACTO	R:	Noth	nagle	Drilling I	1C.				BORING LOCATION:	1	0643	99.70N 1063670.89E
GROUN	IDWATER	:				5	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:		59	7.00
DATE	TIME	LE	VEL	TY	PΕ	TYPE	HSA	SS	NX		DATE STARTED:		07/2	21/04
						DIA.	4.25"	2"	~2"		DATE FINISHED:		07/2	27/04
						WT.		140#			DRILLER:	K. Bus	ch	
						FALL		30"			GEOLOGIST:	S. McC	Cabe	***************************************
						* FIEL	D SCRE	ENING V	A PID (F	PM)	REVIEWED BY:	C. Tay	lor	· · · · · · · · · · · · · · · · · · ·
		SA	MPLE					······	DES	CRIPTIC	N .			DEMA DIZO
DEPTH				BLC	ows	REC%		CONSISTENCY		i i	MATERIAL			REMARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARDNESS		DE	SCRIPTION	uscs	PID	
1	XXXXX			3	3	i	D. Brown	M. Stiff		sphalt ar	nd concrete)		_	Moist
	XXXXI	1	SS	4	3	50.0%	to black		l '	•	ayey Silt, some sand,		0	
	$\times\!\!\times\!\!\times$			4	3					ick, cind				
	XXXXX	2	SS	5	3	50.0%	R. Brown		3.8'-4.0	FILL; S	ilty Clay trace coarse sand		0	
5	5 D Brown Soft 4'-4 5': FILL:								yey Silt trace cinder/ash		_	1		
	XXXXI	3	SS	3	6	75.0%	Black				nder, trace slag.		0	
	$\times\!\!\times\!\!\times\!\!\times$			4	5		R. Brown				lilty Clay, trace wood,			
	⋘⋘	4	SS	5	3	50.0%	, _,,	J	cinder,		, 5.0,, 0.000 11000,		0	
	xxxx		3	2		D. Brown	Soft		•	y Silt, tr. Sand & cinder.				
10		5	SS	3	5	75.0%	Br. Gray				<u> </u>	CL	0	
	1353			2	4		R. Brown	M. Stiff	9-12': CL; Silty Clay tr. f. sand & organics.					
	2885	6	SS	6	8	100.0%	IX. BIOWII	IVI. Guii	f trace coarse sand.				0	
	> > >			4	8			Stiff	12-18': ML; Clayey Silt, trace coarse sand					
	\$\$\$\$	7	SS	11	15	100.0%		Ottill					0	
15	\$ \$ \$ \$			4	9	 			and fine	to medi	um gravel. (SA-SR)			
10		8	SS	10	20	100.0%							0	
	5555			10	17	<u> </u>	Olive Green	V. Stiff		-some f	sand, few wet silty sand	1	_	
	S	9	SS	22	30	100.0%	Brown	v. om		lenses	touria, for motomy ouria	l	0	
	5555			12	29		BIOWII	Hard	18-20.2	5': ML: F	. Sandy Silt, trace clay and	l d		
20		10	SS	28	30	100.0%		Tialu			vel wet seams of f. sand	Ī	0	
	5 5 5 5	11	SS	50/3"	30	100.0%			line to n	ileu. Ora	VCI WCI Scams of I. Sand		0	
	=///= ///	C1	NX	30/3		100.0%	It Brown	Hard	<u> </u>			Broken	٣	Not water loss
			(20.5'-	3	3	70.0%	Lt. Diowii	1 laiu	1		lostone with few black artings (1/16-1/32" thick),	Broken		Trot water 1000
			23.5')		Ů	70.070			L		ost breaks at			
25									•	/parting				125 gallons water loss
20														120 gallorio Water 1000
			NX			NR								
20		C2	(23.5'-	10.0	10.0	NR NR								
30			33.5')			INK						ļ		
					1									
O.E.		СЗ	ЫV	5.0	5.0	100.09/								
35		US	NX	3.0	5.0	100.0%								
			(33.5-38.5')	<u> </u>	<u> </u>	83.0%			L			<u> </u>		l
Comme			<u> </u>			BK-81 rig.		 			DBO IECT NO	11173	75 <i>1</i> 9	4000
ND= NO	t Detected	Abov	e Back	groun	a Lev	eis					PROJECT NO.			7000
411.51		<u> </u>			1000	0	-1-1		7/0" 4-	20.0'	BORING NO.	MW-16	,	····
4" Diam	eter Steel	Casır	ng set @	y 23.5	BGS	, Open roo	ck noie re	amed to 3	აყ.∪ ⁻ .					

				URS	Co	rporati	ion				WELL BO	RING	LO)G
											BORING NO:	MW-16	3	
PROJE	CT:	Che	m Core	PDI							SHEET:	2 of 2		
CLIENT	•	NYS	DEC								JOB NO.:	111737	754.84	4000
BORING	G CONTRA	CTC	R:	Noth	nagle	Drilling In	ıc.				BORING LOCATION:	1	06439	99.70N 1063670.89E
GROUN	IDWATER	:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:		597	7.00
DATE	TIME	LE	VEL	TY	PE	TYPE	HSA	SS	NX		DATE STARTED:		07/2	21/04
						DIA.	4.25"	2"	~2"		DATE FINISHED:		07/2	27/04
						WT.		140#			DRILLER:	K. Bus	ch	
						FALL.		30"			GEOLOGIST:	S. McC	Cabe	
						* FIEL	.D SCRE	ENING VI	A PID (F	PPM)	REVIEWED BY:	C. Tay	lor	
		SA	MPLE	_					DES	CRIPTIC	N			REMARKS
DEPTH				BLC	ows	REC%		CONSISTENCY		ı	MATERIAL			KEWAKKO
FEET	STRATA	NO.	TYPE	PEF	र 6"	RQD%		HARDNESS		DE	SCRIPTION	USCS	PID	
			NX				Dk Gray	M. Hard	ard 35.7'-37.5': Shaley/Argilaceous dolostone.				ND	
		C3	(33.5'-	5.0	5.0	100.0%								
			38.5')			83.0%	Brn		37.5':Do	lostone	containing pyrite.			
40											38.5' BGS			
									Reamed	l to 39' E	GS			
45														
50														
-														
55														
60														
65														
70														
Comme	nts:	Borin	a Adva	nced	w/aF	3K-81 rig.								
	t Detected										PROJECT NO.	111737	754.84	1000
	3 0			<u> </u>							BORING NO.	MW-16		
4" Diam	eter Steel	Casin	g set @	23.5	BGS	, Open roc	k hole re	amed to 3	7/8" to 3	39.0'.				

· · · · · ·				URS	S Co	rporat	ion			WELL BO	RINC) L	OG	
											BORING NO:	MW-1	8	
ROJE	CT:	Che	m Core	PDI							SHEET:	1 of 2		
CLIENT	T:	NYS	DEC						·		JOB NO.:	11173	754.8	34000
BORIN	G CONTRA	ACTO	DR:	Noth	nagle	Drilling I	nc.				BORING LOCATION:			303.98N 1063651.44E
	DWATER						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			94.40
DATE	TIME		VEL	_ .	PE	TYPE	HSA	SS	NX	TOBL	DATE STARTED:			21/04
DAIL	11141		- V L L	<u> </u>		DIA.	4.25"	2"	~2"		DATE STARTED:			
				<u> </u>		WT.	4.25	140#	~2			IC Due		26/04
											DRILLER:	K. Bus		
				<u> </u>		FALL		30"	L		GEOLOGIST:	S. Mc		
	-			L		* FIEI	LD SCRE	ENING V			REVIEWED BY:	C. Tay	ior	
		SA	MPLE						,	CRIPTIC	· · · · · · · · · · · · · · · · · · ·	т	ļ	REMARKS
EPTH					ows	REC%		CONSISTENCY		- 1	MATERIAL			
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD%	COLOR	HARDNESS			SCRIPTION	USCS	PID	
1		1	ss	3	49	50.0%	R. Brown		FILL: Si	ity Clay	to 0.5' then concrete to1'		0	Moist
	$\times\!\!\times\!\!\times$			9	5	00.070	Black	M. Stiff	1-4': FIL	L; Ash,	cinder, slag brick and	1	Ľ	
		2	SS	4	4	75.0%	gry/wh		wood.				0	
	XXXX		55	7	5	7 3.0 76	R. Brown						Ľ	
5 0 5 2 75.00									4-7': FIL	L; Silty (Clay, trace wood, fine			1
	XXXXX	3	SS	4	4	75.0%]		gravel.	•			0	1
								l -				T	1	
	0777	4	SS	15	12	100.0%	R. Brown	Stiff	7-9':CL:	Silty CI	AY, thickly laminated,	CL	0	
	XXXX			6	7			_,	trace fin			"-		†
10	7777	5	SS	9	11	100.0%	R. Brown	Stiff			yey SILT, massive, trace	ML	0	
	>>>>			2	17		IX. BIOWII	V. Stiff	fine grav		yey Silli, massive, trace			1
	5 5 5 5	6	SS	15	12	100.0%		v. Siiii	""				0	
	5555				<u> </u>				-trace fine sand -trace f-m angular to subrounded gravel.				ļ	
	5555	7	SS	12	9	100.0%							0	
	اد م			50/2"	-				-trace f-	m angula	ar to subrounded gravel.			4
15	5555	8	ss	7	12	75.0%		Stiff					0	
	5 5 5 5			14	17		Lt. Brown		L		Fine sand, trace silt.	.		
		9	SS	11	19	100.0%	Lt. Brown	Hard			ine sandy silt/silty fine		٥	moist to very moist
	\$ \$ \$ \$ \$			48	44	100.070			sand, tra	ace angu	ılar-subrounded gravel.	11	Ľ	
	> > > > >	10	ss	10	12	75.0%		V. Stiff				11	0	
20	5555			31	27	7 0.0 70						\perp	ľ	
	5555	11	SS	27	100/6"	50.0%			20.5-21'	Bedroc	k fragments	▼	0	
	=//=///	C1	NX			93.3%	Lt. Brown	Hard	21.0-33.	8': Fine	grained dolomite, most	Broken	ND	Lost 20 gallons
			(21.0'-	2.8	3				breaks a	t styoliti	c contacts, black			
			24.0')			61.7%			carbona	ceous pa	artings. Typ. 2-4".			
25							Lt. Brown							
\neg							to Brown							Lost 15 gallons
												1		2001 To gamono
			NX			95.0%								Von broken 29 0 20 25
20		C2	(24.0'-	9.5	10.0						. Oll			Very broken 28.9-29.35
30			34.0')			71.0%				- approx	6" void at 29.0'			
											grained Argillaceous			
				_4							ey dolomite with some	Broken		Lost 35 gallons
35		C3	NX	5.0	5.0	100.0%	Gray				ray dolostone layers	(6-8")		
			(34.0-39.0')			80.0%			approx 2	:-3 tnick	.	<u> </u>	Ŭ	
omme	nts:	Borin	g Adva	nced v	w/aE	3K-81 rig.								
⊃= No	t Detected	Abov	e Back	groun	d Leve	els					PROJECT NO.	111737	754.8	4000
											BORING NO.	MW-18	}	
Diam	eter Steel (Casin	g set @	24.0	BGS	Open roc	k hole re	amed to 3	7/8" to 3					

			- 1	URS	Co	rporat	ion		· · · · · ·		WELL BO	RING	; LC)G
											BORING NO:	MW-18	3	
PROJE	CT:	Che	m Core	PDI							SHEET:	2 of 2		
CLIENT	•	NYS	DEC								JOB NO.:	111737	754.8	4000
BORING	G CONTRA	ACTO	R:	Noth	nagle	Drilling In	nc.				BORING LOCATION:	1	0643	03.98N 1063651.44E
GROUN	IDWATER	:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:		59	4.40
DATE	TIME	LE	EVEL	TY	/PE	TYPE	HSA	SS	NX		DATE STARTED:	,	07/2	21/04
				<u> </u>		DIA.	4.25"	2"	~2"	-	DATE FINISHED:		07/2	26/04
						WT.		140#			DRILLER:	K. Bus	ch	
						FALL		30"			GEOLOGIST:	S. McC	Cabe	
						* FIEI	D SCRE	ENING VI	A PID (F	PM)	REVIEWED BY:	C. Tay	lor	
		SA	MPLE							CRIPTIO				
DEPTH				BLC	ows	REC%		CONSISTENCY		<u>-</u>	MATERIAL		ĺ	REMARKS
	STRATA	NO.	TYPE		R 6"		4	HARDNESS			SCRIPTION	uscs	PID	
			NX		Ť	1100	0000.		33.8'-39.0': Fine grained Argillaceous			Broken	_	
		С3	(34.0'-	5.0	5.0	100.0%	M to Dk				grained Argillaceous by dolomite with some	BIOKOII	1 1	Very Broken 37.75-38.1'.
			39.0')		0.0	80.0%	Gray				ray dolostone layers			Very Diokert 57.75-56.1.
			'		1 '	00.078	Ciay			2-3" thick				
40	_	 	 	_4							39.0' BGS	┼──┤		
40		i			1			1 1	l .					
			1 /		1				Reamed	d to 39' B	368			
			1 /		1									
			1 !		ĺ '				ĺ					
					'									
45					'									
			1 /	1 1	1 '									
					'									
					'									
					'									
50	ļ				'									
	1				'									
	,				'				ĺ					
			1 /	1 1	1 '									
			1 /	(I	1									
55				ı 1	1									
				. 1	'									
			1 1	ı 1	1 !									
			1 1	ı l	'							1 1		
			1 1	ı 1										
60			1 1	ı 1										
									İ					
			1 1	i	I = I				İ					
				ı İ	1 1				I					
				.										
65				ı J	1 1				I					
				, ,	1 1				I					
				.										
			1	, 1	1 1									
			1)	, 1	1 1									
70			1)	, 1	1 1				l					
Comme						3K-81 rig.								
ND= No	t Detected	Abov	∕e Back	groun	d Lev	els					PROJECT NO.	111737	754.84	4000
											BORING NO.	MW-18	}	
4" Diame	eter Steel	Casin	ıg set @	24.0	BGS	, Open roc	k hole re	amed to 3	7/8" to 3	39.0'.				

APPENDIX B

WELL DEVELOPMENT LOGS

PROJECT TITLE: Chem Co	OJECT NO: 11173755 84000													
PROJECT NO.: 1117375	5.84000													
STAFF: S. Mccabe														
DATE(S): 4/22/05														
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	39	.50	WELL ID. 1"	VOL. (GAL/FT) 0.04					
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT	.)		=	25	.52	2"	0.17					
3. NUMBER OF FEET STAN	IDING WA	TER (#1 -	#2)		=	13	.98	3"	0.38					
4. VOLUME OF WATER/FOOT OF CASING (GAL.) = 0.66 4" 0.66														
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.2 5" 1.04														
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.2 5" 1.04 6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50														
7. VOLUME OF WATER AC	7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 50 8" 2.60													
								V=0.0408 x (CA	OR SING DIAMETER) ²					
		ACCUMULATED VOLUME PURGED (GALLONS)												
PARAMETERS	0	10	20	30	40	50				T				
TYNNIMETERS														
рН	8.97	8.36	7.81	7.55	7.57	7.53								
SPEC. COND. (uS)	820	810	850	920	950	980								
TEMPERATURE (°F)	63.2	62.1	59.3	58.3	56.2	56.5				-				
TURBIDITY (NTU)	951	541	419	100	35	16								
COMMENTS:														
Well developed with subme	ersible pu	mp and d	edicated/	disposat	le HDPE	tubing.								

PROJECT TITLE: Chem Co	ore						WELL NO	.: <u>IW-A2</u>						
PROJECT NO.: 1117375	5.84000	·												
STAFF: S. Mccabe								····						
DATE(S): <u>4/22/05</u>				. <u> </u>										
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)			=	39	.45	WELL ID. 1"	VOL. (GAL/FT) 0.04					
2. WATER LEVEL BELOW 1	TOP OF CA	SING (FT	.)		=	24	.89	2"	0.17					
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - :	#2)		=	14	.56	3"	0.38					
4. VOLUME OF WATER/FO	OT OF CA	SING (GA	L.)		=	0.0	66	4"	0.66					
5. VOLUME OF WATER IN	CASING (G	SAL.)(#3 x	#4)		=	9	.6	5"	1.04					
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50														
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	6	0	8"	2.60					
OR V=0.0408 x (CASING DIAMETER) ² ACCUMULATED VOLUME PURGED (GALLONS)														
PARAMETERS	0	10	20	30	40	50	60							
рН	11.15	9.97	8.84	8.27	8.00	7.78	7.67							
SPEC. COND. (uS)	3800	750	850	950	960	980	990							
TEMPERATURE (°F)	58.7	58.3	57.8	57.6	57.2	55.5	55.3			-				
TURBIDITY (NTU)	>1000	788	307	82	32	29	12							
			_					-						
COMMENTS:									<u> </u>					
Well developed with subme	ersible pui	mp and d	edicated/	disposat	le HDPE	tubing.								

PROJECT TITLE: Chem Co	ore						WELL NO.	: <u>IW-A3</u>					
PROJECT NO.: 1117375	5.84000												
STAFF: S. Mccabe				- "									
DATE(S): 4/22/05				_									
1. TOTAL CASING AND SCI	REEN LEN	IGTH (FT.)			=	39	.60	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT	.)		=	25	.61	2"	0.17				
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - ;	# 2)		=	13	.99	3"	0.38				
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI)		=	0.	66	4"	0.66				
5. VOLUME OF WATER IN 0	1.04												
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.2 5" 1.04 6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50													
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 60 8" 2.60													
								V=0.0408 x (CAS	OR ING DIAMETER) ²				
				A	JME PURG	ED (GALLONS)							
PARAMETERS	0	10	20	30	40	50	60						
pH	12.41	9.97	8.40	7.70	7.71	7.53	7.47						
							0.50						
SPEC. COND. (uS)	1061	750_	870	900	920	930_	950						
TEMPERATURE (°F)	66.9	61.8	59.6	59	57.4	57.2	51.4						
TURBIDITY (NTU)	>1000	>1000	312	115	45	14	9						
COMMENTO			· · · · · · · · · · · · · · · · · · ·			<u></u>							
COMMENTS: Well developed with subme	ersible pu	mp and d	edicated/	disposat	le HDPE	tubing.				ļ			

PROJECT TITLE: Chem C	ore						WELL NO	.:	W-A4					
PROJECT NO.: 1117375	55.84000		· · · · · · · · · · · · · · · · · · ·			·						 		
STAFF: S. Mccabe														
DATE(S): 4/22/05														
									_					
1. TOTAL CASING AND SC	REEN LEN	IGTH (FT.)	ı		=	38	.40		LL ID. 1"	VOL. (GA 0.04				
2. WATER LEVEL BELOW	TOP OF CA	ASING (FT	.)		=	24	.65		2"	0.17	•			
3. NUMBER OF FEET STAN	NDING WA	TER (#1 - ;	#2)		=	13	.75		3"	0.38				
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI	L.)		=	0.	66		4"	0.66	;			
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.1 5" 1.04														
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50														
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 70 8" 2.60 OR														
								V=0.040	8 x (CASI	ING DIAMETE	ER)²			
		ACCUMULATED VOLUME PURGED (GALLONS)												
PARAMETERS	0	10	20	30	40	50	60	70						
рН	12.38	9.57	8.36	7.84	7.70	7.55	7.44	7.40						
SPEC. COND. (uS)	1770	800	900	900	890	920	920_	910			-			
TEMPERATURE (°F)	57.7	57.2	56.6	57.7	57.5	56.4	56.1	57.3						
TURBIDITY (NTU)	>1000	>1000	1000	759	393	130	33	21						
											1			
COMMENTS:					<u> </u>									
Well developed with submo	ersible pu	mp and d	edicated/	disposat	le HDPE	tubing.								

PROJECT TITLE: Chem Co	ore						WELL NO.:	IW-A5						
PROJECT NO.: 1117375	5.84000				· · · · · · · · · · · · · · · · · · ·									
STAFF: S. Mccabe			-,											
DATE(S): 4/26/05									<u> </u>					
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	38	.74	WELL ID. 1"	VOL. (GAL/FT) 0.04					
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		=	23	.95	2"	0.17					
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - ;	# 2)		=	14	.79	3"	0.38					
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI)		=	0.	66	4"	0.66					
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.8 5" 1.04														
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50														
7. VOLUME OF WATER AC	8"	2.60												
	VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 50 8" 2.60 OR V=0.0408 x (CASING DIAMETER) ²													
	ACCUMULATED VOLUME PURGED (GALLONS)													
PARAMETERS	0	10	20	30	40	50				1				
T / W WILL FILL CO														
pH	8.21	7.94	7.30	7.32	7.29	7.27								
SPEC. COND. (uS)	640	1050	1070	1090	1100	1160								
TEMPERATURE (°F)	63.1	56.9	58.9	56.1	56.2	57.3								
TURBIDITY (NTU)	>1000	>1000	326	187	57	47								
COMMENTS: Well developed with subme	ersible pu	mp and d	edicated/	disposab	le HDPE	tubing.								

PROJECT TITLE: Chem Co	ore						WELL NO.:	IW-A6					
PROJECT NO.: 1117375	5.84000												
STAFF: S. Mccabe							 						
DATE(S): <u>4/26/05</u>				 			_						
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	38	.93	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.	.)		=	23	.19	2"	0.17				
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - #	# 2)		=	15	.74	3"	0.38				
4. VOLUME OF WATER/FOOT OF CASING (GAL.) = 0.66 4" 0.66													
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 10.4 5" 1.04													
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50													
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6 1.50 7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 50													
								V=0.0408 x (CASI					
ACCUMULATED VOLUME PURGED (GALLONS)													
PARAMETERS	0	10	20	30	40	50							
рН	8.64	7.56	7.37	7.23	7.21	7.19							
SPEC. COND. (uS)	630	1010	1200	1280	1280	1290							
TEMPERATURE (°F)	62.2	58.9	56.3	56.7	57.1	57.4							
TURBIDITY (NTU)	>1000	>1000	670	200	69	44							
				_									
COMMENTS:				<u> </u>	J		11_		<u> </u>				
Well developed with subme	ersible pu	mp and d	edicated/	disposab	ole HDPE	tubing.							

PROJECT TITLE: Chem Co	ore	-				WELL NO.:	IW-B1							
PROJECT NO.: 1117375	5.84000							·- .						
STAFF: S. Mccabe														
DATE(S): 4/22/05														
1. TOTAL CASING AND SC	REEN LEN	IGTH (FT.)			=	35.47	WELL ID. 1"	VOL. (GAL/FT) 0.04						
2. WATER LEVEL BELOW T	TOP OF CA	ASING (FT	.)		=	26.13	2"	0.17						
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - ;	#2)		=	9.34	3"	0.38						
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI	L.)		0.66	4"	0.66							
4. VOLUME OF WATER/FOOT OF CASING (GAL.) = 0.66 4" 0.66 5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 6.2 5" 1.04														
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 6.2 5" 1.04 6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50														
7. VOLUME OF WATER AC	7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 40 8" 2.60													
OR V=0.0408 x (CASING DIAMETER) ²														
	ACCUMULATED VOLUME PURGED (GALLONS)													
PARAMETERS	0	10	20	30	40									
рН	7.12	7.48	7.42	7.48	7.56									
SPEC. COND. (uS)	1405	1300	1345	1420	1460									
TEMPERATURE (°F)	52.1	52.2	51.65	56.7	57.1									
TURBIDITY (NTU)	>1000	>1000	354	125	35									
	-													
COMMENTS:					<u> </u>			<u> </u>						
Well developed with subme	ersible pu	mp and d	edicated/	disposab	le HDPE	tubing.								

PROJECT TITLE: Chem Co	ore					WELL NO	D.: IW-B2					
PROJECT NO.: 1117375	5.84000						· · · · · · · · · · · · · · · · · · ·					
STAFF: S. Mccabe												
DATE(S): 4/22/05												
	-											
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			= .	38.95	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		= .	26.34	_ 2"	0.17				
3. NUMBER OF FEET STAN	IDING WAT	ΓER (#1 - ;	# 2)		= .	12.61	3"	0.38				
4. VOLUME OF WATER/FO	OT OF CAS	SING (GAI)		= .	0.66	4"	0.66				
5. VOLUME OF WATER IN 0	CASING (G	AL.)(#3 x	#4)		= .	8.3	5"	1.04				
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		= ,	-	- 6"	1.50				
7. VOLUME OF WATER AC	TUALLY RI	EMOVED	(GAL.)		= .	40	8"	2.60				
OR V=0.0408 x (CASING DIAMETER) ²												
				A	CCUMULA	TED VOLUME PUR	GED (GALLONS)					
PARAMETERS	0 1	10	20	30	40							
	7.00				7.24							
	7.26	7.23	7.19	7.25	7.31							
SPEC. COND. (uS)	1105	1200	1283	1350	1400							
TEMPERATURE (°F)	52.9	53.4	53.1	53.7	54.5							
TURBIDITY (NTU)	>1000	695	388	46	21							
	_											
COMPANY									I			
COMMENTS: Well developed with subme	ersible pur	mp and d	edicated/	disposab	le HDPE	tubing.						

PROJECT TITLE: Chem Core						WELL NO.:	IW-B3			
PROJECT NO.: 11173755.84000										
STAFF: S. Mccabe										
DATE(S): 4/26/05										
							·			
1. TOTAL CASING AND SCREEN LENGTH (FT.)					= ,	38.72	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW TOP OF CASING (FT.)					= .	25.69	2"	0.17		
3. NUMBER OF FEET STANDING WATER (#1 - #2)					= .	13.03	3"	0.38		
4. VOLUME OF WATER/FOOT OF CASING (GAL.)					= ,	0.66	4"	0.66		
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)					= ,	8.6	5"	1.04		
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x)					= .	-	6"	1.50		
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)					=	40	8"	2.60		
OR V=0.0408 x (CASING DIAMETER) ²										
		ACCUMULATED VOLUME PURGED (GALLONS)								
PARAMETERS	0	10	20	30	40					
рН	7.62	7.43	7.43	7.37	7.34					
SPEC. COND. (uS)	940	980	1010	1000	1030					
TEMPERATURE (°F)	60.9	57.1	56.8	60	60.3				_	
TURBIDITY (NTU)	>1000	162	13	6	11					
COMMENTS:								<u> </u>	<u> </u>	
Well developed with submersible pump and dedicated/ disposable HDPE tubing.										

PROJECT TITLE: Chem Core WELL NO.: IW-B4													
PROJECT NO.: 1117375	5.84000												
STAFF: S. Mccabe													
DATE(S): 4/26/05													
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	38.71	<u> </u>	WELL ID. 1"	VOL. (G.				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		=	24.70)	2"	0.1	7			
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - i	# 2)		=	14.01	<u> </u>	3"	0.3	8			
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI)	4"	0.6	66							
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.2 5" 1.04													
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50													
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40		8"	2.6 OR	60			
								V=0.0408 x (CAS		ER)²			
		ACCUMULATED VOLUME PURGED (GALLONS)											
PARAMETERS	0	10	20	30	40				T				
рН	8.12	7.44	7.36	7.42	7.39								
SPEC. COND. (uS)	930	940	970	1000	1010								
TEMPERATURE (°F)	65.3	59	56.8	58	57.6								
TURBIDITY (NTU)	>1000	180	8	6	3								
										 			
											<u> </u>		
COMMENTS: Well developed with subme	ersible pui	mp and d	edicated/	disposab	le HDPE	tubing.							

PROJECT TITLE: Chem Core WELL NO.: IW-B5													
PROJECT NO.: 1117375	55.84000												
STAFF: S. Mccabe		<u>-</u>											
DATE(S): 4/26/05													
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)			=	38.85		WELL ID. 1"	VOL. (G/ 0.04				
2. WATER LEVEL BELOW	TOP OF CA	SING (FT	.)		=	23.75		2"	0.1	7	ļ		
3. NUMBER OF FEET STAN	NDING WA	TER (#1 - ;	# 2)		=	15.10		3"	0.38	3			
4. VOLUME OF WATER/FO	OT OF CA	T OF CASING (GAL.) = 4" 0.66											
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 10.0 5" 1.04													
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50													
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40		8"	2.60 OR)			
							V=0.	0408 x (CAS	SING DIAMET	ER)²			
		ACCUMULATED VOLUME PURGED (GALLONS)											
PARAMETERS	0	10	20	30	40								
рН	7.50	7.46	7.45	7.48	7.53								
SPEC. COND. (uS)	920	960	960	960	980								
TEMPERATURE (°F)	59.3	58.8	58.7	58.9	58.4								
TURBIDITY (NTU)	>1000	61	47	11	15								
COMMENTS:	<u> </u>												
Well developed with subm	ersible pui	mp and d	edicated/	disposab	le HDPE	tubing.							

PROJECT TITLE: Chem Core WELL NO.: IW-B6										
PROJECT NO.: 1117375	55.84000									
STAFF: S. Mccabe					·····					
DATE(S): 4/26/05										
1. TOTAL CASING AND SC	REEN LEN	IGTH (FT.)			=	38.55	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW	TOP OF CA	ASING (FT	.)		=	23.84	2"	0.17		
3. NUMBER OF FEET STAN	NDING WA	TER (#1 - ;	# 2)		=	14.71	3"	0.38		
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI	L.)		=	0.66	4"	0.66		
5. VOLUME OF WATER IN	CASING (3AL.)(#3 x	#4)		=	9.7	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		=	-	6"	1.50		
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40	8"	2.60		
							V=0.0408 x (CASI	OR NG DIAMETER) ²		
			_	A	CCUMULA	TED VOLUME PURG	SED (GALLONS)			
PARAMETERS	0	10	20	30	40					
рН	7.58	7.34	7.27	7.26	7.28					
SPEC. COND. (uS)	1040	1020	980	1000	990					
TEMPERATURE (°F)	58.2	57.9	57.7	57.1	56.4					
TURBIDITY (NTU)	>1000	>1000	158	96	20					
				,						
COMMENTS:	<u></u>									
Well developed with submo	ersible pu	mp and d	edicated/	disposab	le HDPE	tubing.				

PROJECT TITLE: Chem Core WELL NO.: IW-C1										
PROJECT NO.: 1117375	5.84000				<u> </u>					
STAFF: S. Mccabe										
DATE(S): 4/22/05							· · · · · · · · · · · · · · · · · · ·			
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)	ı		=	39.10	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		= _	26.25	2"	0.17		
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - ;	#2)		= _	12.85	3"	0.38		
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI	L.)		=	0.66	4"	0.66		
5. VOLUME OF WATER IN (CASING (G	SAL.)(#3 x	#4)		= _	8.5	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		= _	····	6"	1.50		
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		= _	40	8"	2.60 OR		
							V=0.0408 x (CASI			
				A	CCUMULAT	ED VOLUME PURGE	D (GALLONS)			
PARAMETERS	0	10	20	30	40					
Triviale										
pН	7.21	7.20	7.19	7.21	7.25					
SPEC. COND. (uS)	2500	2500	2500	2500	2400					
TEMPERATURE (°F)	54.3	54.1	53.7	53.1	52.9					
TURBIDITY (NTU)	>1000	793	126	24	19					
COMMENTS: Well developed with subme	ersible pui	mp and d	edicated/	disposab	le HDPE t	ubing.				

PROJECT TITLE: Chem Co	PROJECT TITLE: Chem Core WELL NO.: IW-C2											
PROJECT NO.: 1117375	5.84000											
STAFF: S. Mccabe												
DATE(S): 4/22/05												
				.· - ·				*				
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)	•		=_	39.15	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT	.)		= _	25.22	2"	0.17				
3. NUMBER OF FEET STAN	IDING WA	NG WATER (#1 - #2)			= _	13.93	3"	0.38				
4. VOLUME OF WATER/FO	OT OF CA	SING (GA	L.)		= _	0.66	4"	0.66				
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 9.2 5" 1.04												
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50												
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		= _	40	8"	2.60 OR				
							V=0.0408 x (CASI					
				Α(CCUMULAT	ED VOLUME PURGE	(GALLONS)					
					T			1				
PARAMETERS	0	10	20	30	40							
рН	8.61	7.44	7.28	7.22	7.17							
SPEC. COND. (uS)	370	2200	2600	2600	2400							
TEMPERATURE (°F)	54.5	54.9	55.1	54.3	55.2							
TURBIDITY (NTU)	>1000	553	66	21	18							
COMMENTS:												
Well developed with subme	rsible pui	mp and d	edicated/	disposab	le HDPE to	ubing.						
									:			

PROJECT TITLE: Chem Core WELL NO.: IW-C3													
PROJECT NO.: 1117375	55.84000								·····				
STAFF: S. Mccabe													
DATE(S): 4/22/05			 										
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)	,		=	38.90)	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW	TOP OF CA	ASING (FT	.)		=	27.20)	2"	0.17				
3. NUMBER OF FEET STAI	NDING WA	TER (#1 -	#2)		=	11.70)	3"	0.38				
4. VOLUME OF WATER/FOOT OF CASING (GAL.) = 0.66 4" 0.66													
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 7.7 5" 1.04													
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		=			6"	1.50				
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40		8"	2.60 OR				
								V=0.0408 x (CAS					
		ACCUMULATED VOLUME PURGED (GALLONS)											
PARAMETERS	0	10	20	30	40								
рН	7.58	7.60	7.60	7.61	7.68								
SPEC. COND. (uS)	251	840	860	870	880								
TEMPERATURE (°F)	57.3	56.9	55.9	55.4	55.1								
TURBIDITY (NTU)	>1000	954	141	29	23								
COMMENTS: Well developed with subm	ersible pui	mp and d	edicated/	disposak	L	tubing.				<u></u>			

ROJECT TITLE: Chem Core WELL NO.: IW-C4											
5.84000											
·											
							·····				
REEN LEN	GTH (FT.)			= _	38.95	WELL ID. 1"	VOL. (GAL/FT) 0.04				
OP OF CA	SING (FT	.)		= _	26.41	2"	0.17				
EET STANDING WATER (#1 - #2)			ER OF FEET STANDING WATER (#1 - #2)				= _	12.54	3"	0.38	
ER/FOOT OF CASING (GAL.)				= _	0.66	4"	0.66				
CASING (G	AL.)(#3 x	#4)		= _	8.3	5"	1.04				
REMOVE	(GAL.)(#5	x)		= _	-	6"	1.50				
TUALLY RI	EMOVED	(GAL.)		= _	40	8"	2.60				
						V=0.0408 x (CASI					
			AC	CUMULAT	ED VOLUME PURGE	O (GALLONS)					
	10	20	20	40			T	1			
U	10			40							
7.81	7.59	7.44	7.41	7.36							
640	660	840	900	920							
55.7	55.1	55	54.7	54.6							
>1000	587	109	51	36							
				<u></u>							
rsible pur	mp and d	edicated/	disposab	le HDPE t	ubing.						
	DING WAT DIN	0 10 7.81 7.59 640 660 55.7 55.1 >1000 587	DING WATER (#1 - #2) OT OF CASING (GAL.) CASING (GAL.)(#3 x #4) REMOVE (GAL.)(#5 x) FUALLY REMOVED (GAL.) 0	EEN LENGTH (FT.) OP OF CASING (FT.) DING WATER (#1 - #2) OT OF CASING (GAL.) CASING (GAL.)(#3 x #4) REMOVE (GAL.)(#5 x) FUALLY REMOVED (GAL.) ACCO 10 20 30 7.81 7.59 7.44 7.41 640 660 840 900 55.7 55.1 55 54.7 >1000 587 109 51	EEN LENGTH (FT.) =	EREN LENGTH (FT.) = 38.95 OP OF CASING (FT.) = 26.41 DING WATER (#1 - #2) = 12.54 DT OF CASING (GAL.) = 0.66 CASING (GAL.)(#3 x #4) = 8.3 REMOVE (GAL.)(#5 x) = FUALLY REMOVED (GAL.) = 40 ACCUMULATED VOLUME PURGET 0 10 20 30 40	SEEN LENGTH (FT.)	Seen Length (FT.)			

PROJECT TITLE: Chem Core WELL NO.: IW-C5												
PROJECT NO.: 1117375	5.84000											
STAFF: S. Mccabe						*···						
DATE(S): 4/22/05												
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)	•		=	38.78	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		=	25.30	2"	0.17				
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - :	#2)		=	13.48	. 3"	0.38				
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI	L.)		=	0.66	. 4"	0.66				
5. VOLUME OF WATER IN 0	CASING (G											
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		=	-	6"	1.50				
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	30	8"	2.60				
							V=0.0408 x (CAS	OR ING DIAMETER)²				
				AC	CUMULA	ATED VOLUME PUR	GED (GALLONS)					
				· · · · · · · · · · · · · · · · · · ·								
PARAMETERS	0	10	20	30								
рН	7.96	7.89	7.68	7.63								
SPEC. COND. (uS)	330	800	860	880								
TEMPERATURE (°F)	57.6	58	57.5	57.1								
TURBIDITY (NTU)	464	131	36	27								
									<u></u>			
COMMENTS: Well developed with subme	ersible pu	mp and d	edicated/	disposab	le HDPE	tubing.						
, 	•	•										

PROJECT TITLE: Chem Co	PROJECT TITLE: Chem Core WELL NO.: IW-C6											
PROJECT NO.: 1117375	5.84000				<u> </u>							
STAFF: S. Mccabe												
DATE(S): 4/22/05						· · · · · · · · · · · · · · · · · · ·						
	_											
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)			= .	38.60	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW 1	TOP OF CA	ASING (FT.	.)		= .	26.20	2"	0.17				
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - #	¥ 2)		= .	12.40	3"	0.38				
4. VOLUME OF WATER/FO	ME OF WATER/FOOT OF CASING (GAL.) = 0.66 4"											
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4) = 8.2 5" 1.04												
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50												
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.) = 40 8" 2.60 OR												
							V=0.0408 x (CAS					
				A	CCUMULA	TED VOLUME PU	RGED (GALLONS)					
PARAMETERS	0	10	20	30	40							
рН	8.63	9.12	7.92	7.90	7.86				<u> </u>			
SPEC. COND. (uS)	310	330	820	860	890							
TEMPERATURE (°F)	57.9	57.1	57.5 ⁻	57.6	57.8				-			
TURBIDITY (NTU)	>1000	>1000	142	47	23				ļ <u>.</u>			
COMMENTS:				<u> </u>	L	<u> </u>						
Well developed with submo	ersible pu	mp and d	edicated/	disposat	ole HDPE	tubing.						

PROJECT TITLE: Chem Core WELL NO.: IW-D1												
PROJECT NO.: 1117375	5.84000											
STAFF: S. Mccabe				_								
DATE(S): 4/22/05												
1. TOTAL CASING AND SC	REEN LEN	GTH (FT.)			= _	38.78	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		= _	26.40	2"	0.17				
3. NUMBER OF FEET STAN	IDING WAT	ΓER (#1 - i	# 2)		= _	12.38	3"	0.38				
4. VOLUME OF WATER/FO	OT OF CAS	SING (GAI	L.)		= _	0.66	4"	0.66				
5. VOLUME OF WATER IN C	CASING (G	6AL.)(#3 x	#4)		= _	8.2	5"	1.04				
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) = 6" 1.50												
7. VOLUME OF WATER AC	TUALLY RI	EMOVED	(GAL.)		= _	40	8"	2.60 OR				
							V=0.0408 x (CASI					
				Α(CCUMULAT	ED VOLUME PURGE	D (GALLONS)	101				
		ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	0	10	20	30	40							
рН	7.31	7.20	7.25	7.19	7.21							
SPEC. COND. (uS)	1240	3400	3500	3500	3400							
TEMPERATURE (°F)	54.8	55.6	56.1	55.9	55.6							
TURBIDITY (NTU)	>1000	104	56	45	38				-			
				-								
COMMENTS:	<u> </u>			<u>L </u>	LL.			<u> </u>				
Well developed with subme	ersible pur	mp and d	edicated/	disposab	le HDPE to	ubing.						

PROJECT TITLE: Chem Core WELL NO.: IW-D2										
PROJECT NO.: 1117375	5.84000									
STAFF: S. Mccabe										
DATE(S): 4/22/05				_						
1. TOTAL CASING AND SCF	REEN LEN	GTH (FT.)			= -	38.62	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		= .	26.15	2"	0.17		
3. NUMBER OF FEET STAN	DING WAT	TER (#1 - i	# 2)		= -	12.47	3"	0.38		
4. VOLUME OF WATER/FO	OT OF CAS	SING (GAI)		= .	0.66	4"	0.66		
5. VOLUME OF WATER IN 0	CASING (G	SAL.)(#3 x	#4)		= .	8.2	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		= .	<u>-</u>	6"	1.50		
7. VOLUME OF WATER AC	TUALLY RI	EMOVED	(GAL.)		= .	40	8"	2.60		
							V=0.0408 x (CASI	OR NG DIAMETER) ²		
				AC	CCUMULA	TED VOLUME PURGE	D (GALLONS)			
DADAMETERO	0	10	20	30	40				T	
PARAMETERS	U	10		30	40					
рН	7.41	7.39	7.11	7.28	7.19					
SPEC. COND. (uS)	1470	1400	1400	1400	1400					
TEMPERATURE (°F)	53.5	54.2	54.9	54.7	54.3					
TURBIDITY (NTU)	>1000	976	237	77	41					
-										
COMMENTS:							L			
Well developed with subme	ersible pur	mp and d	edicated/	disposab	le HDPE	tubing.				

PROJECT TITLE: Chem Co	ROJECT TITLE: Chem Core WELL NO.: IW-D3											
PROJECT NO.: 1117375	5.84000											
STAFF: S. Mccabe												
DATE(S): 4/22/05												
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			= .	38.90	WELL ID. 1"	VOL. (GAL/FT) 0.04				
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.)		= ,	26.30	2"	0.17				
3. NUMBER OF FEET STAN	IDING WAT	ΓER (#1 - #	# 2)		= .	12.60	3"	0.38				
4. VOLUME OF WATER/FO	OT OF CAS	SING (GAL)		= .	0.66	4"	0.66	1			
5. VOLUME OF WATER IN	CASING (G	SAL.)(#3 x :	#4)		= ,	8.3	5"	1.04				
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		= .		6"	1.50				
7. VOLUME OF WATER AC	TUALLY RI	EMOVED ((GAL.)		= .	40	8"	2.60 OR				
							V=0.0408 x (CASI					
		ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	0	10	20	30	40							
На	9.83	7.76	7.48	7.39	7.34							
SPEC. COND. (uS)	3620	1140	1170	1200	1280							
TEMPERATURE (°F)	55.7	55.3	55.1	55	54.8							
TURBIDITY (NTU)	>1000	920	180	29	23							
												
COMMENTS: Well developed with subme	ersible pui	mp and d	edicated/	disposab	le HDPE	tubing.						

PROJECT TITLE: Chem Co	ore					WELL NO	D.: <u>IW-D4</u>			
PROJECT NO.: 1117375	5.84000									
STAFF: S. Mccabe										
DATE(S): 4/22/05										
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	38.55	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	SING (FT	.)		=	25.31	_ 2"	0.17		
3. NUMBER OF FEET STAN	IDING WA	ΓER (#1 - i	# 2)		=	13.24	_ 3"	0.38		
4. VOLUME OF WATER/FO	OT OF CA	SING (GAI)		=	0.66	- 4"	0.66		
5. VOLUME OF WATER IN (CASING (G	6AL.)(#3 x	#4)	=		8.7	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)	=		-	6"	1.50		
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40	8"	2.60 OR		
		V=0.0408 x (CASING DIAMETER) ²								
				A	CCUMULA	TED VOLUME PUR	GED (GALLONS)			
PARAMETERS	0	10	20	30	40		T			
рН	7.58	7.54	7.32	7.40	7.36					
SPEC. COND. (uS)	950	850	850	900	920					
TEMPERATURE (°F)	55.9	55.3	55.4	55.6	55.1					
TURBIDITY (NTU)	>1000	869	218	68	41					
COMMENTO									<u> </u>	
COMMENTS: Well developed with subme	ersible pui	mp and d	edicated/	disposat	ole HDPE	tubing.				

PROJECT TITLE: Chem Co	ore					WELL NO.:	IW-D5			
PROJECT NO.: 1117375	5.84000									
STAFF: S. Mccabe										
DATE(S): 4/22/05			_							
							_			
1. TOTAL CASING AND SC	REEN LEN	IGTH (FT.)			=	38.80	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT.	.)		=	25.40	2"	0.17		
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - #	# 2)		=	13.40	3"	0.38		
4. VOLUME OF WATER/FO	OT OF CA	SING (GAL)		=	0.66	4"	0.66		
5. VOLUME OF WATER IN 0	CASING (C	SAL.)(#3 x	#4)		=	8.8	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		=	-	6"	1.50		
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		=	40	8"	2.60 OR	 	
		V=0.0408 x (CASING DIAMETER) ²								
1000		ACCUMULATED VOLUME PURGED (GALLONS)								
PARAMETERS	0	10	20	30	40				T	
TANAMETERS										
рН	7.93	7.95	7.55	7.57	7.55					
SPEC. COND. (uS)	360	570	840	870	890					
TEMPERATURE (°F)	59.9	58.3	60.3	58.3	57.7					
TURBIDITY (NTU)	>1000	>1000	111	47	13					
COMMENTS:									<u> </u>	
Well developed with subme	ersible pu	mp and d	edicated/	disposab	le HDPE	tubing.				

PROJECT TITLE: Chem Co	ore					WELL NO.:	IW-D6		 	
PROJECT NO.: 1117375	5.84000									
STAFF: S. Mccabe										
DATE(S): 4/22/05										
1. TOTAL CASING AND SCF	REEN LEN	GTH (FT.)	-		=	39.00	WELL ID. 1"	VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT.	.)		=	25.05	2"	0.17		
3. NUMBER OF FEET STAN	IDING WA	TER (#1 - #	# 2)		= .	13.95	3"	0.38		
4. VOLUME OF WATER/FOO	OT OF CA	SING (GAL)		= .	0.66	4"	0.66		
5. VOLUME OF WATER IN C	CASING (SAL.)(#3 x i	#4)		= .	9.2	5"	1.04		
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	×)		= .	-	6"	1.50		
7. VOLUME OF WATER ACT	TUALLY R	EMOVED (VED (GAL.) = 40			40	8"	2.60		
		OR V=0.0408 x (CASING DIAMETER) ²								
				AC	CCUMULA.	TED VOLUME PURGE	D (GALLONS)			
		40	00		40				1	
PARAMETERS	0	10	20	30	40					
рН	8.86	9.03	7.93	7.79	7.73					
SPEC. COND. (uS)	1170	1190	1210	1220	1250					
TEMPERATURE (°F)	61.1	57.5	61.6	60.6	58.2					
TURBIDITY (NTU)	>1000	>1000	49	10	9					
TORBIDITI (NTO)	7 1000	7 1000	-10							
COMMENTS: Well developed with subme	برم ماطنعت	and d	- dia ata d/	dianasah	In HDDE	tubina				
vveli developed with Subme	ersible pu	mp and de	edicaledi	uisposau	ile HDFE	tubing.				

URS Corporation

PROJECT TITLE: Chem Co	ore		· · · · · · · · · · · · · · · · · · ·				WELL NO	.:	MW-18			
PROJECT NO.: 1117375	5.84000											
STAFF: S. Mccabe												
DATE(S): 10/14/2005												
1. TOTAL CASING AND SCI	REEN LEN	GTH (FT.)			=	39	.10	WELL ID. 1"		VOL. (GAL/FT) 0.04		
2. WATER LEVEL BELOW T	OP OF CA	SING (FT.	.)		= .	13.	.25	2"		0.	17	
3. NUMBER OF FEET STAN	IDING WAT	TER (#1 - #	# 2)		=	25	.85		3"	0.	38	
4. VOLUME OF WATER/FO	OT OF CAS	SING (GAL	. .)		=	0.66			4"	0.	66	
5. VOLUME OF WATER IN 0	CASING (G	SAL.)(#3 x	#4)		=	17.1			5"	1.	04	
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		=		<u>.</u>		6"	1.	50	
7. VOLUME OF WATER AC	TUALLY RI	EMOVED	(GAL.)		=	608			8" 2.60			
		OR V=0.0408 x (CASING DIAMETER) ²										
				A	CCUMULA	TED VOLU	JME PURG	ED (GALL	ONS)			
PARAMETERS	0	5	10	15	20	25	30	35	40	45	50	55
рН	8.03	7.95	7.83	7.48	7.32	7.20	7.16	7.13	7.15	7.11	7.10	7.10
SPEC. COND. (uS)	1200	1300	1300	1300	1200	1200	1100	1100	1100	1100	1100	1100
TEMPERATURE (°F)	54.9	55.6	55.3	54.9	54.5	5.36	53.7	53.8	53.7	53.8	54.1	53.7
TURBIDITY (NTU)	>1000	565	219	176	79	51	43	19	11	6	3	1
											-	
					:	:						
COMMENTS: Well developed with subme												
Well developed performed : Well stick-up protective cas										roller bit.		
, ,	J			·		_			·			

N:\11173519.00000\EXCEL\[september|2005 purge.xis]MW-18 Development

URS Corporation

PROJECT TITLE: Chem Co	ore			WELL	. NO.: <u>MW-18</u>						
PROJECT NO.: 1117375	5.84000										
STAFF: S. Mccabe											
DATE(S): 10/14/2005	 										
1. TOTAL CASING AND SCI	REEN LENGT	ΓΗ (FT.)	=	27.71	WELL ID.	VOL. (GAL/FT) 0.04					
2. WATER LEVEL BELOW T	OP OF CASI	NG (FT.)	=	13.28	2"	0.17					
3. NUMBER OF FEET STAN	IDING WATE	R (#1 - #2)	=	14.43		0.38					
4. VOLUME OF WATER/FO	OT OF CASIN	NG (GAL.)	=	0.66	4"	0.66					
5. VOLUME OF WATER IN (CASING (GAI)(#3 x #4)	=	9.5		1.04					
6. VOLUME OF WATER TO	REMOVE (G	AL.)(#5 x)	=	•	6"	1.50					
7. VOLUME OF WATER AC	TUALLY REM	OVED (GAL.)	=	40	8"	2.60 OR					
					V=0.0408 x (CAS						
		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	60					-					
рН	7.10										
SPEC. COND. (uS)	1100										
TEMPERATURE (°F)	53.9										
TURBIDITY (NTU)	1										
COMPUTA											
COMMENTS: Well developed with subme	rsible pump	and dedicated/	disposable HDP	E tubing.							
Well developed performed well stick-up protective cas											
process can	g			· · · · · · · · · · · · · · · ·	•						

N:\11173519.00000\EXCEL\[septemberl2005 purge.xls]MW-18 Development

PROJECT TITLE: Chem Co	ore					WELL NO.:	MW-19				
PROJECT NO.:1117375	5.84000										
STAFF: S. Mccabe											
DATE(S): 4/26/05					-						
							-1,				
1. TOTAL CASING AND SCI	REEN LEN	IGTH (FT.))		= _	27.71	WELL ID. 1"	VOL. (GAL/FT) 0.04			
2. WATER LEVEL BELOW T	OP OF CA	ASING (FT	T.)		= _	13.28	2"	0.17			
3. NUMBER OF FEET STAN	IDING WA	TER (#1 -	#2)		= _	14.43	3"	0.38			
4. VOLUME OF WATER/FO	OT OF CA	SING (GA	L.)		=	0.66	4"	0.66			
5. VOLUME OF WATER IN 0	CASING (G	SAL.)(#3 x	#4)		= _	9.5	5"	1.04			
6. VOLUME OF WATER TO	REMOVE	(GAL.)(#5	x)		= _	-	6"	1.50			
7. VOLUME OF WATER AC	TUALLY R	EMOVED	(GAL.)		= _	40	8"	2.60			
		V=0.0408 x (CASING DIAMETER) ²									
		ACCUMULATED VOLUME PURGED (GALLONS)									
					I 40 I				<u> </u>		
PARAMETERS	0	10	20	30	40						
рН	7.90	7.58	7.52	7.47	7.52						
SPEC. COND. (uS)	1390	1530	1520	1530	1490						
TEMPERATURE (°F)	59.5	55.9	55.9	55.9	54.7						
TURBIDITY (NTU)	>1000	96	19	6	3						
COMMENTS:								<u> </u>			
Well developed with subme	ersible pui	mp and d	edicated/	disposab	ole HDPE tu	ubing.					

APPENDIX C

PURGE LOGS

Project:		Chem-Core		_ Site: _	Chem	-Core	Well I.D.: _	MW-8S
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	16.55	Depth to Well Bottom:	24.70	Well Diameter:	6"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):			Estimated Purge Volume (liters):	
Sample ID:	MW-08S-WG			Sample Time:	8:	30	QA/QC: _	
								y, sulfate, chloride
Oth	ner Information	Use Hach color	netric meter to	determine Fer	rous Iron con	centration in s	ample. Ferrous	iron = 0.00 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
7:30	6.78	12.16	886	2.12	266	10	1000	16.55
7:35	6.96	12.20	886	2.02	251	6	1000	16.71
7:40	7.14	12.22	886	1.96	234	3	1000	16.83
7:45	7.25	12.23	886	1.93	146	4	1000	16.91
7:50	7.27	12.21	886	1.97	121	5	1000	17.51
7:55	7.36	12.22	886	1.97	114	5	1000	17.73
8:00	7.38	12.20	886	1.95	91	6	1000	17.91
8:05	7.41	12.22	887	1.95	67	4	1000	18.13
8:10	7.48	12.22	887	1.99	53	5	1000	18.25
8:15	7.51	12.15	887	2.03	48	-2	1000	18.31
8:20	7.53	12.26	887	2.01	31	-4	1000	18.47
8:25	7.54	12.23	886	2.00	19	-6	1000	18.53
8:30	7.55	12.22	887	2.03	11	-7	1000	18.66
						-		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

Project:	:: Chem-Core			_ Site: ַ	Chem	-Core	_ Well I.D.: _	MW-8D
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	17.81	Depth to Well Bottom:	44.80	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	66.7		Estimated Purge Volume (liters):	
Sample ID:	MW-08D-WG			Sample Time:	9:	55	QA/QC: _	****
	•							y, sulfate, chloride iron = 0.01 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8:45	7.57	13.44	2240	0.00	87	-153	1000	17.81
8:50	7.47	13.33	2220	0.00	44	-180	1000	18.10
8:55	7.33	13.31	2200	0.00	27	-192	1000	18.11
9:00	7.38	13.28	2180	0.00	22	-202	1000	18.11
9:05	7.45	13.27	2150	0.00	18	-218	1000	18.11
9:10	7.41	13.23	2140	0.00	16	-228	1000	18.12
9:15	7.45	13.22	2130	0.00	14	-240	1000	18.13
9:20	7.45	13.23	2120	0.00	13	-250	1000	18.11
9:25	7.46	13.20	2120	0.00	12	-257	1000	18.11
9:30	7.47	13.19	2110	0.00	11	-267	1000	18.11
9:35	7.46	13.20	2110	0.00	9	-270	1000	18.11
9:40	7.48	13.21	2110	0.00	7	-271	1000	18.11
9:45	7.49	13.21	2110	0.00	6	-274	1000	18.11
9:50	7.49	13.20	2110	0.00	6	-276	1000	18.11
9:55	7.48	13.21	2110	0.00	7	-276	1000	18.11
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi t^2 \text{h}$)

Project:		Chem-Core		_ Site: _	Chem	n-Core	Well I.D.: _	MW-12
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ile submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.14	Depth to Well Bottom:	36.05	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	66.2		Estimated Purge Volume (liters): _	
Sample ID:	MW-12-WG			_Sample Time:	13:	:25	QA/QC: _	
Samp	le Paramaters:	TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Oth	ner Information:	Use Hach color	netric meter to	determine Fer	rous Iron cond	centration in s	ample. Ferrous	iron = 0.62 mg/L
		Ferrous Iron sa	mple was dilut	ted by a factor o	of 2 to get res	ults. Purge wa	ater has strong	nydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:05	7.42	13.73	520	0.00	557	-204	1000	24.14
12:15	7.31	13.83	520	0.00	470	-241	1000	24.75
12:25	7.28	13.89	520	0.00	278	-284	1000	25.45
12:35	7.34	13.94	521	0.00	205	-299	1000	25.71
12:45	7.37	13.96	524	0.00	126	-314	1000	25.86
12:55	7.39	14.07	526	0.00	77	-320	1000	26.13
13:05	7.39	14.04	527	0.00	49	-322	1000	26.41
13:10	7.39	14.05	530	0.00	35	-324	1000	26.50
13:15	7.38	14.11	532	0.00	28	-325	1000	26.51
13:20	7.37	14.07	534	0.00	31	-325	1000	26.53
13:25	7.36	14.03	536	0.00	32	-326	1000	26.55
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:		Chem-Core		Site:_	Chem	-Core	Well I.D.:	MW-16
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water: _	25.40	Depth to Well Bottom:	38.55	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	32.5		Estimated Purge Volume (liters): _	
Sample ID:	MW-16-WG			_Sample Time:	14	:05	QA/QC: _	
Samp	le Paramaters	TCL VOCs, nit	rate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	ı, m/e/e, alkalinit	y, sulfate, chloride
Other Information:Use Hach colometric meter to								
	•							hydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:35	7.57	13.96	783	0.00	599	-316	1000	25.40
13:40	7.40	13.95	754	0.00	321	-321	1000	26.32
13:45	7.30	14.29	753	0.00	137	-325	1000	26.55
13:50	7.25	14.36	754	0.00	176	-326	1000	26.57
13:55	7.16	14.10	759	0.00	95	-333	1000	26.59
14:00	7.14	14.10	756	0.00	62	-335	1000	26.58
14:05	7.12	14.11	761	0.00	50	-340	1000	26.61
14:10	7.10	14.12	777	0.00	43	-343	1000	26.71
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cvl} = \pi r^2 h$)

Project:		Chem-Core		Site:	Chem	-Core	Well I.D.: _	MW-18
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Whal	e submersible _l	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	23.15	Depth to Well Bottom:	39.20	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	39.7		Estimated Purge Volume (liters): _	
Sample ID:				Sample Time:	11:	45	QA/QC: _	
Samp	le Paramaters:]	ΓCL VOCs, nitra	ate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
								iron = 1.27 mg/L
	-							nydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11:05	7.34	13.01	584	0.00	92.4	-133	1000	23.15
11:10	7.26	13.02	584	0.00	75.3	-133	1000	23.20
11:15	7.22	13.01	586	0.00	66.1	-131	1000	23.25
11:20	7.18	13.01	589	0.00	65.3	-130	1000	23.32
11:25	7.17	13.01	589	0.00	49.1	-129	1000	23.35
11:30	7.15	13.03	588	0.00	30	-129	1000	23.37
11:35	7.14	13.03	588	0.00	24	-128	1000	23.41
11:40	7.14	13.01	586	0.00	17	-128	1000	23.44
11:45	7.13	13.03	584	0.00	9	-128	1000	23.45
11:50	7.13	13.02	582	0.00	3	-128	1000	23.47
				_				
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		Chem-Core		_ Site: _	Chem	-Core	_ Well I.D.: _	MW-19
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:		Initial Depth to Water:	13.87	Depth to Well Bottom:	27.84	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):	34.5		Estimated Purge Volume (liters): _	
Sample ID:	MW-19-WG			_Sample Time:	10:	40	QA/QC:	MS/MSD
Samp	Point: Top of Riser to Water: 13.87 Bottom: 27.84 Diameter: 4" Length: Volume in 1 Estimated Well Casing Purge Volume Type: Steel (liters): 34.5 (liters):		y, sulfate, chloride					
Oth	er Information	:Use Hach color	netric meter to	determine Feri	ous Iron cond	centration in s	ample. Ferrous	iron = 10.60mg/L
		Ferrous Iron sa	mnle was dilui	ed by a factor o	f 10 to get re	sulte Durge w	ater has netroles	ım odar and shaan

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:10	7.41	10.26	804	0.63	3.72	-181	1000	13.87
10:15	7.31	10.22	753	0.14	389	-186	1000	13.99
10:20	7.01	10.23	773	2.53	220	-194	1000	14.13
10:25	6.97	10.25	803	1.62	142	-197	1000	14.15
10:30	6.95	10.26	812	1.79	81	-199	1000	14.17
10:35	6.93	10.31	837	1.65	53	-204	1000	14.18
10:40	6.92	10.32	861	1.47	42	-207	1000	14.19
10:45	6.95	10.31	849	1.41	36	-211	1000	14.17
10:50	6.95	10.32	853	1.46	25	-216	1000	14.18
					•			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:		Chem-Core		Site:	Chem	-Core	Well I.D.:	IW-A2
Date:	4/11/06	Sampling	Personnel:	Scott McCabe		· · · · · · · · · · · · · · · · · · ·	Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.90	Depth to Well Bottom:	39.19	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):	35.3		Estimated Purge Volume (liters): _	
Sample ID:	: <u>MW-19-WG</u>			Sample Time:	14:	50	QA/QC: _	
Samp	le Paramaters	TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	, m/e/e, alkalinit	ty, sulfate, chloride
Other Information:Use Hach colometric meter to				determine Fer	rous Iron cond	centration in s	ample. Ferrous	iron = 19.4 mg/L
		Ferrous Iron sa	mple was dilu	ed by a factor o	of 10 to get res	sults. Purge v	vater has strong	hydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:25	7.68	13.75	716	0.00	794	-341	1000	24.90
14:30	7.58	13.82	715	0.00	521	-356	1000	25.23
14:35	7.25	13.85	729	0.00	338	-363	1000	25.71
14:40	6.95	13.85	750	0.00	147	-375	1000	25.97
14:45	6.84	13.88	761	0.00	86	-390	1000	26.13
14:50	6.75	13.85	789	0.00	64	-425	1000	26.37
14:55	6.76	13.81	804	0.00	52	-440	1000	26.41
15:00	6.71	13.84	810	0.00	44	-445	1000	26.48
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cvl}} = \pi r^2 h$)

Project:		Chem-Core		Site:	Chem	n-Core	Well I.D.:	IW-A5
Date:	4/11/06	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.23	Depth to Well Bottom:	38.97	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	36.4		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			_Sample Time:	16:	40	QA/QC: _	
Samp	le Paramaters:	TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, To	DC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Oth	er Information:	Use Hach color	netric meter to	determine Fer	ous Iron cond	centration in s	ample. Ferrous	iron = 2.31 mg/L
		Farrous Iron sa	mnle was dilut	ed by a factor of	of 10 to got ro	culto Durgo v	estar has atrana	budrage autida adar

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
15:15	7.29	13.81	791	0.00	>1000	-360	1000	24.27
15:20	7.25	13.76	772	0.00	852	-367	1000	24.56
15:25	7.09	13.75	754	0.00	521	-371	1000	24.81
15:30	6.87	13.75	745	0.00	246	-371	1000	25.03
15:35	6.76	13.72	745	0.00	81	-371	1000	25.29
15:40	6.72	13.70	739	0.00	63	-374	1000	25.25
15:45	-		<u>-</u>	-	-	_	-	-
15:50		-	-	-	-	-	-	
15:55	6.70	13.69	730	0.00	32	-380	1000	25.36
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:	Chem-Cor	e	Site:_	Chem-Core	Well I.D.: _	MW-8S
Date:	12/28/05Sampli	ing Personnel:	Scott McCabe		Company: _	URS Corporation
Purging/ Sampling Device:	Whale submersit	ole pump	_Tubing Type:_	High Density Polyethyle	Pump/Tubing ene_Inlet_Location:_	~1-2 feet off bottom
Measuring Point:	Initial Depth Top of Riser to Water:	15.62	Depth to Well Bottom:	Well 24.67 Diamete	er: <u>6"</u>	Screen Length:
Casing Type:	Steel	_	Volume in 1 Well Casing (liters):		Estimated Purge Volume (liters): _	
Sample ID:	MW-08S-GW		Sample Time:	8:00	QA/QC: _	
	e Paramaters <u>:TCL VOCs, leading to the leading of the leading to t</u>					

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
7:30	6.60	14.4	1350	8.04	166	-4	1000	15.62
7:35	7.12	14.5	1320	3.30	56	-43	1000	16.13
7:40	7.18	14.6	1320	3.02	43	-49	1000	16.42
7:45	7.31	14.6	1320	2.72	17	-59	1000	17.51
7:50	7.36	14.6	1320	2.64	6	-60	1000	18.32
7:55	7.42	14.6	1320	2.55	9	-68	1000	18.93
8:00	7.46	14.6	1320	2.56	8	-69	1000	19.15
8:05	7.48	14.6	1320	2.54	12	-73	1000	19.62
8:10	7.56	14.6	1320	2.52	16	-75	1000	20.15
8:15	7.56	14.6	1320	2.51	17	-81	1000	_
8:20	7.59	14.6	1320	2.45	6	-84	1000	-
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cvl}} = \pi r^2 h$)

Project:		Chem-Core		Site: _	Chem	-Core	_ Well I.D.: _	MW-8D
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	oump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	18.44	Depth to Well Bottom:	44.75	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	65.0		Estimated Purge Volume (liters): _	
Sample ID:	MW-08D-WG			Sample Time:	9:	35	QA/QC: _	
Samp	le Paramaters	TCL VOCs, nitra	ate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	n, m/e/e, alkalinit	y, sulfate, chloride
Oth	er Information:	Use Hach color	netric meter to	determine Fer	rous Iron cond	centration in s	ample. Ferrous	iron = 0.36 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8:30	7.41	14.1	2110	3.83	126	-192	1000	18.49
8:35	7.42	14.0	2130	2.51	43	-197	1000	18.61
8:40	7.43	14.0	2140	1.86	4	-200	1000	18.95
8:45	7.43	14.0	2140	1.73	8	-204	1000	19.15
8:50	7.45	14.1	2140	1.69	11	-212	1000	19.22
8:55	7.47	14.1	2110	1.51	14	-231	1000	19.25
9:00	7.53	14.2	2070	1.38	15	-248	1000	19.30
9:05	7.54	14.2	2050	1.38	19	-255	1000	19.32
9:10	7.54	14.2	2050	1.36	24	-261	1000	19.35
9:15	7.56	14.2	2050	1.33	22	-281	1000	19.37
9:20	7.58	14.2	2050	1.29	21	-296	1000	19.41
9:25	7.60	14.2	2040	1.25	17	-306	1000	19.44
9:30	7.61	14.2	2040	1.24	15	-308	1000	19.51
9:35	7.62	14.2	2040	1.21	11	-312	1000	-
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

Project:		Chem-Core		Site:_	Chem	-Core	Well I.D.: _	MW-12
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	23.01	Depth to Well Bottom:	36.09	Well Diameter:	6"	Screen Length:
Casing Type:	Sto	eel		Volume in 1 Well Casing (liters):	72.7		Estimated Purge Volume (liters):	
Sample ID:	MW-12-WG			Sample Time:	13:	20	QA/QC: _	
Samp	le Paramaters	TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, T0	DC, total and	dissolved iron	, m/e/e, alkalinity	y, sulfate, chloride
Oth	er Information	Use Hach color	netric meter to	determine Ferr	ous Iron cond	centration in s	ample. Ferrous	iron = 7.9 mg/L
		Ferrous Iron sa	mnle was dilut	ed by a factor o	of 2 to get resu	ilte Durge w	ater has strong h	vdragan aulfida adar

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:00	7.45	12.6	520	3.65	120	-290	1000	23.01
12:05	7.50	12.7	910	2.03	89	-313	1000	23.90
12:10	7.51	12.7	910	1.80	78	-319	1000	23.95
12:15	7.52	12.7	910	1.60	66	-325	1000	24.19
12:20	7.53	12.7	900	1.46	59	-329	1000	24.25
12:25	7.53	12.8	900	1.37	43	-332	1000	24.40
12:30	7.53	12.8	899	1.06	39	-338	1000	24.88
12:35	7.53	12.9	1000	0.88	35	-339	1000	25.01
12:40	7.52	12.9	899	0.85	33	-341	1000	25.45
12:45	7.54	12.9	895	0.86	32	-341	1000	25.91
12:50	7.52	13.0	864	0.80	28	-340	1000	25.89
12:55	7.52	13.0	879	0.85	25	-328	1000	25.91
13:00	7.51	13.0	865	0.90	20	-315	1000	25.95
13:05	7.50	13.0	844	0,93	17	-308	1000	25.99
13:10	7.52	13.0	845	0.95	15	-307	1000	25.91
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:		Whale submersible pump Initial Depth p of Riser to Water: 24.51		_ Site:	Chem	n-Core	Well I.D.: _	MW-16
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wh	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	•	24.51	Depth to Well Bottom:	38.50	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters): _	34.6		Estimated Purge Volume (liters):	
Sample ID:	MW-16-WG			Sample Time:	14:	05	QA/QC:	
Samp	le Paramaters	TCL VOCs, nitra	ate, nitrite, TK	N, ammonia, T(DC, total and	dissolved iron	, m/e/e, alkalinity	/, sulfate, chloride
Oth	er Information	:Use Hach colon	netric meter to	determine Ferr	ous Iron cond	entration in s	ample. Ferrous	iron = 7.40 mg/L
		_						bydrogen sulfide oder

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:30	7.56	13.1	1150	2.46	267	-318	1000	24.51
13:35	7.54	13.2	1140	1.81	35	-336	1000	25.05
13:40	7.53	13.2	1130	1.50	35	-343	1000	25.11
13:45	7.53	13.4	1060	1.36	41	-349	1000	25.20
13:50	7.54	13.4	1040	1.36	30	-342	1000	25.25
13:55	7.55	13.4	1040	1.36	25	-341	1000	25.31
14:00	7.55	13.5	1040	1.35	23	-343	1000	25.34
14:05	7.55	13.4	1030	1.33	21	-345	1000	25.37
					•			
Tolerance:	0.1		3%	10%	10%	+ or - 10		-

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

Project:	T	Chem-Core		Site:	Chem	-Core	Well I.D.:	MW-18
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	oump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	22.35	Depth to Well Bottom:	39.20	Well Diameter:	4"	Screen Length:
Casing Type:	Sto	eel		Volume in 1 Well Casing (liters):	41.6		Estimated Purge Volume (liters):	
Sample ID:	:			Sample Time:	11:	45	QA/QC: _	
Samp	le Paramaters	TCL VOCs, nitra	ate, nitrite, TK	N, ammonia, T	DC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Other Information:Use Hach colometric meter to				determine Fer	rous Iron cond	centration in s	ample. Ferrous	iron = 0.56 mg/L
	•							nvdrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
11:00	7.76	11.6	1010	8.28	44	-213	1000	22.35
11:05	7.54	11.8	990	3.49	40	-215	1000	22.51
11:10	7.50	11.9	970	2.28	31	-218	1000	22.57
11:15	7.51	11.9	980	2.02	5	-216	1000	22.63
11:20	7.50	12.0	980	1.91	3	-214	1000	22.70
11:25	7.50	12.0	980	1.90	1	-214	1000	22.72
11:30	7.49	12.0	980	1.88	0	-214	1000	22.75
11:35	7.48	12.0	980	1.85	0	-215	1000	22.73
11:40	7.49	12.0	980	1.82	0	-215	1000	22.71
11:45	7.49	12.0	980	1.80	0	-216	1000	22.70
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:		Chem-Core		Site:	Chem	n-Core	Well I.D.:	MW-19
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wh	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	13.20	Depth to Well Bottom:	27.90	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):	36.3		Estimated Purge Volume (liters): _	
Sample ID:	MW-19-WG			Sample Time:	10:	40	QA/QC: _	MS/MSD
Samp	le Paramaters	TCL VOCs, nitra	ate, nitrite, TK	N, ammonia, T(OC, total and	dissolved iron	, m/e/e, alkalinity	/, sulfate, chloride
Oth	er Information	Use Hach colon	netric meter to	determine Ferr	ous Iron cond	entration in s	ample. Ferrous	iron = 9.60mg/L
		Ferrous Iron sai	mple was dilut	ed by a factor o	f 10 to get res	sulte Durge wa	ter has natralau	m oder and cheen

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:00	7.65	12.9	1210	5.33	186	-280	1000	13.20
10:05	7.47	13.3	1430	1.78	158	-300	1000	13.41
10:10	7.46	13.3	1450	1.66	97	-304	1000	13.73
10:15	7.44	13.3	1570	1.55	72	-311	1000	13.78
10:20	7.43	13.4	1680	1.47	54	-316	1000	13.91
10:25	7.43	13.4	1770	1.43	48	-319	1000	14.03
10:30	7.43	13.4	1750	1.40	30	-321	1000	14.17
10:35	7.43	13.4	1790	1.38	29	-322	1000	14.15
10:40	7.43	13.4	1810	1.36	24	-326	1000	14.29
					•			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

Project:		Chem-Core		_ Site:	Chem	-Core	Well I.D.: _	IW-A2
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.10	Depth to Well Bottom:	39.36	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):	37.7		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG		-	Sample Time:	14:	50	QA/QC: _	
Samp	le Paramaters	:TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, T	OC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Oth	er Information	:Use Hach color	netric meter to	determine Fer	rous Iron cond	entration in s	ample. Ferrous	iron = 16.1 mg/L
		Ferrous Iron sai	mnle was dilut	ed by a factor of	of 10 to get res	culte Durge v	vater has strong	hydrogen sulfido odor

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:10	7.33	12.5	2360	3.31	356	-377	1000	24.10
14:15	7.35	12.7	1720	1.86	710	-379	1000	24.59
14:20	7.65	12.9	1170	1.15	353	-413	1000	24.78
14:25	7.63	12.9	1150	1.09	327	-425	1000	24.83
14:30	7.53	12.9	1140	1.08	192	-454	1000	24.85
14:35	7.52	13.0	1140	1.08	85	-454	1000	24.87
14:40	7.51	13.0	1140	1.06	48	-461	1000	24.91
14:45	7,51	13.0	1150	1.07	37	-461	1000	24.94
14:50	7.51	13.0	1150	1.07	31	-461	1000	24.99
								_
			· · · · · · · · · · · · · · · · · ·	-				· · · · · · · · · · · · · · · · · · ·
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi \text{r}^2 \text{h}$)

Project:		Chem-Core		_ Site: _	Chem	-Core	Well I.D.: _	IW-A5
Date:	12/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	23.12	Depth to Well Bottom:	38.96	Well Diameter:	4"	Screen Length:
Casing Type:	St	eel		Volume in 1 Well Casing (liters):	39.1		Estimated Purge Volume (liters): _	
Sample ID:	MW-19-WG			Sample Time:	16:	40	QA/QC: _	
Samp	le Paramaters	:TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, T	DC, total and	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Oth	ner Information	:Use Hach color	metric meter to	determine Fer	rous Iron con	centration in s	ample. Ferrous	iron = 1.02 mg/L
		Ferrous Iron sa	mnle was dilu	ted by a factor o	of 10 to get re-	sults Purae v	vater has strong	hydrogen sulfide odor

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
16:00	7.41	12.5	1310	3.01	276	-373	1000	23.12
16:05	7.45	12.6	1250	1.87	200	-378	1000	24.11
16:10	7.47	12.7	1180	1.56	123	-377	1000	24.20
16:15	7.48	12.8	1110	1.35	96	-373	1000	24.20
16:20	7.48	12.9	1070	1.19	47	-370	1000	24.21
16:25	7.47	12.9	1060	1.11	45	-372	1000	24.20
16:30	7.47	12.9	1060	1.10	36	-372	1000	24.20
16:35	7.46	12.9	1050	1.08	30	-372	1000	24.20
16:40	7.46	12.9	1050	1.07	24	-373	1000	24.21
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cvl}} = \pi t^2 \text{h}$)

Project:		Chem-Core		Site:_	Chem	n-Core	_ Well I.D.: _	MW-8S
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Whal	le submersible _l	oump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	16.73	Depth to Well Bottom:	24.51	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	43.3		Estimated Purge Volume (liters): _	
Sample ID: MW-08S-WG				Sample Time:	8:	8:30		
·	_							y, sulfate, chloride iron = 0.82 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
7:45	7.17	14.59	920	9.80	18	-173	1000	
7:50	7.65	14.73	992	1.89	9	-232	1000	
7:55	7.75	14.79	995	1.24	6	-238	1000	
8:00	7.82	14.84	999	1.34	4	-252	1000	
8:05	7.96	14.95	997	1.11	10	-263	1000	
8:10	7.88	15.11	999	0.98	18	-270	1000	
8:15	7.91	15.22	977	0.80	19	-271	1000	
8:20	7.93	15.53	970	0.98	20	-279	1000	
8:25	7.95	15.37	965	1.03	16	-276	1000	
8:30	7.93	15.35	961	1.11	15	-269	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		,,,,,

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{evl}} = \pi r^2 h$)

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-8D
Date:	9/21/05	Sampling	Personnel:	Scott McCabe	:		_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	17.45	Depth to Well Bottom:	44.65	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	67.2		Estimated Purge Volume (liters): _	
Sample ID:	MW-08D-WG			Sample Time:	10:	00	QA/QC: _	
								, sulfate, chloride
Oth	er Information:	Use Hach colon	netric meter to	determine Ferr	ous Iron cond	entration in s	ample. Ferrous	iron = 0.86 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (µmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
8:50	7.88	13.42	1850	2.56	41	-280	1000	
9:00	7.83	13.49	1790	3.89	33	-288	1000	
9:10	7.85	14.03	1840	4.06	22	-289	1000	
9:20	7.83	14.21	1860	4.31	20	-299	1000	
9:30	7.82	14.65	1870	4.57	25	-319	1000	
9:40	7.81	14.71	1890	3.70	32	-334	1000	
9:50	7.85	14.89	1910	2.53	13	-337	1000	
10:00	7.91	15.00	1930	1.97	9	-354	1000	
					·			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	Well I.D.:	MW-12
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ile submersible	oump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.00	Depth to Well Bottom:	36.40	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	69.0		Estimated Purge Volume (liters): _	
Sample ID:	MW-12-WG			Sample Time:	13:	45	QA/QC:	
Sampl	le Paramaters <u>:</u>	TCL VOCs, nitra	ite, nitrite, TKI	N, ammonia, T(DC, total and	dissolved iron	_m/e/e, alkalinity	/, sulfate, chloride
								iron = 3.19 mg/L
		_						vdrogen sulfide odor

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:10	7.54	12.49	911	16.49	>1000	-269	1000	
12:20	7.63	12.41	866	14.50	999	-317	1000	
12:30	7.83	12.49	859	13.27	850	-326	1000	
12:40	7.83	12.51	842	13.08	701	-321	1000	
12:50	7.73	12.58	811	17.19	444	326	1000	
13:00	7.74	12.53	775	15.88	261	-332	1000	
13:10	7.74	12.59	754	15.10	118	-334	1000	
13:20	7.73	12.67	734	14.24	78	-337	1000	
13:30	7.72	13.04	717	13.29	30	-339	1000	-
13:40	7.68	13.14	714	11.63	19	-331	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-12
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ıle submersible _l	oump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.00	Depth to Well Bottom:	36.40	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	69.0		Estimated Purge Volume (liters):	
Sample ID:	MW-12-WG			Sample Time:	13:	45	QA/QC:	
Samp	le Paramaters <u>:</u>	TCL VOCs, nitra	ite, nitrite, TKI	N, ammonia, TC	C, total and	dissolved iron	, m/e/e, alkalinity	, sulfate, chloride
								iron = 3.19 mg/L
								vdrogen sulfide eder

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:10	7.54	12.49	911	16.49	>1000	-269	1000	
12:20	7.63	12.41	866	14.50	999	-317	1000	
12:30	7.83	12.49	859	13.27	850	-326	1000	
12:40	7.83	12.51	842	13.08	701	-321	1000	
12:50	7.73	12.58	811	17.19	444	326	1000	
13:00	7.74	12.53	775	15.88	261	-332	1000	
13:10	7.74	12.59	754	15.10	118	-334	1000	
13:20	7.73	12.67	734	14.24	78	-337	1000	
13:30	7.72	13.04	717	13.29	30	-339	1000	
13:40	7.68	13.14	714	11.63	19	-331	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

and the second second

Project:		Chem-Core		_ Site:	Chem	n-Core	Well I.D.:	MW-16
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	25.80	Depth to Well Bottom:	38.45	Well Diameter:	4"	Screen Length:
Casing Type:	Sto	eel		Volume in 1 Well Casing (liters):	31.3		Estimated Purge Volume (liters):	· ·
Sample ID:	MW-16-WG			Sample Time:	14:	30	QA/QC:	MS/MSD
Sampling Device: Whale submersible pump Tubing Type: High Density Polyethylene Inlet Location: ~1-2 feet off by the submersible pump Tubing Type: High Density Polyethylene Inlet Location: ~1-2 feet off by the submersible pump Measuring Point: Top of Riser to Water: 25.80 Depth to Well Well Screen Bottom: 38.45 Volume in 1 Well Casing Purge Volume Purge Volume (liters): 31.3 Castral ID: MMACANCO				/, sulfate, chloride				
Purging/ Sampling Device: Whale submersible pump Tubing Type: High Density Polyethylene Inlet Location: ~1 Measuring Initial Depth Depth to Well Well Score Point: Top of Riser to Water: 25.80 Bottom: 38.45 Diameter: 4" Le Casing Volume in 1 Estimated Well Casing Purge Volume (liters): 31.3 (liters): Sample ID: MW-16-WG Sample Time: 14:30 QA/QC: Sample Paramaters: TCL VOCs, nitrate, nitrite, TKN, ammonia, TOC, total and dissolved iron, m/e/e, alkalinity, suled to the Information: Use Hach colometric meter to determine Ferrous Iron concentration in sample. Ferrous iron in the colometric meter to determine Ferrous Iron concentration in sample.								
		Ferrous Iron sar	mple was dilut	ed by a factor o	f 10 to get res	sults Purae v	ater has strong	hydrogon culfide eder

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
13:50	7.73	12.52	951	1.92	>100	-227	1000	
13:55	7.75	12.50	956	1.55	>1000	-233	1000	
14:00	7.61	12.99	941	1.21	630	-241	1000	
14:05	7.45	13.01	936	1.19	410	-256	1000	
14:10	7.36	13.00	923	0.73	222	-270	1000	
14:15	7.61	12.94	879	0.48	112	-315	1000	
14:20	7.66	12.91	867	0.37	97	-315	1000	
14:25	7.64	12.87	859	0.41	61	-313	1000	
14:30	7.60	12.89	853	0.49	43	-316	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core	_ Site:	Chen	n-Core	_ Well I.D.: _	MW-18
Date:	9/21/05	Sampling Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ile submersible pump	_ Tubing Type:	High Density	[,] Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	Depth to Well Bottom:		Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel	Volume in 1 Well Casing (liters):	0.0		Estimated Purge Volume (liters):	
Sample ID:	-		_Sample Time:_			QA/QC:	
Sampl	le Paramaters <u>:</u>	Obstruction in well casing at 2	26.12' bgs. Wate	er was not end	countered abo	ve the obstruction	on.
		The lockable cap was broken					

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
								· · · · · · · · · · · · · · · · · · ·
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chen	n-Core	_ Well I.D.: _	MW-19
Date:	9/21/05	Sampling	Personnel:	Scott McCabe	1		_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ıle submersible	pump	Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	14.10	Depth to Well Bottom:	27.76	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	33.8		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			Sample Time:	10:	50	QA/QC:	
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitra	ate, nitrite, TKI	N, ammonia, TO	DC, total and	dissolved iron,	, m/e/e, alkalinity	, sulfate, chloride
Purging/ Sampling Device: Whale submersible pump Tubing Type: High Density Polyethylene Inlet Location: ~1-2 fee Measuring Initial Depth Depth to Well Well Screen Point: Top of Riser to Water: 14.10 Bottom: 27.76 Diameter: 4" Length: Casing Type: Steel Volume in 1 Well Casing Purge Volume (liters): 33.8 (liters):								
	_	_						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
10:15	7.59	16.04	1800	4.12	44	-226	1000	
10:20	7.70	16.03	1780	1.67	26	-280	1000	
10:25	7.73	16.17	1530	0.99	11	-298	1000	
10:30	7.74	16.14	1510	0.90	8	-308	1000	
10:35	7.76	16.13	1510	0.84	6	-320	1000	
10:40	7.84	16.11	1520	0.77	4	-354	1000	·
10:45	7.93	16.13	1530	0.70	4	-395	1000	
10:50	8.00	16.15	1550	0.68	4	-408	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	Well I.D.: _	IW-A2
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling							Pump/Tubing	
Device:	Wha	le submersible _l	oump	Tubing Type:	High Density	Polyethylene	Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	25.15	Depth to Well Bottom:	39.45	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	35.3		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			Sample Time:	15:	30	QA/QC:	
Sampl	e Paramaters <u>:T</u>	CL VOCs, nitra	te, nitrite, TKN	N, ammonia, TC	OC, total and o	dissolved iron,	m/e/e, alkalinity	, sulfate, chloride
								ron = 19.0 mg/L
·	F	errous Iron sam	ple was dilute	ed by a factor o	f 10 to get res	ults. Purge w	ater has strong l	hydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
14:45	8.16	12.28	2340	1.93	684	-362	1000	
14:50	8.23	12.30	1700	1.43	298	-365	1000	
14:55	8.13	13.19	1220	1.91	106	-384	1000	
15:00	7.98	13.21	970	1.94	76	-391	1000	
15:05	8.10	13.05	878	1.71	65	-422	1000	
15:10	8.20	13.09.	877	1.10	58	-456	1000	
15:15	8.25	13.05	874	0.95	43	-463	1000	
15:20	8.30	13.06	876	0.77	39	-470	1000	
	···							
					· · · · · · · · · · · · · · · · · · ·			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	Well I.D.: _	IW-A5
Date:	9/21/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/								
Sampling Device:	Wha	le submersible	pump	Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.44	Depth to Well Bottom:	38.81	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	35.5		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			Sample Time:	16:	25	QA/QC:	
Sample	e Paramaters <u>:T</u>	CL VOCs, nitra	ate, nitrite, TKN	N, ammonia, TC	OC, total and o	dissolved iron,	m/e/e, alkalinity	, sulfate, chloride
Othe	er Information <u>:U</u>	Jse Hach colom	etric meter to	determine Ferr	ous Iron conc	entration in sa	ımple. Ferrous i	ron = 16.3 mg/L
	F	errous Iron san	nple was dilute	ed by a factor o	f 10 to get res	ults. Purge w	ater has strong l	hydrogen sulfide odor.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
15:45	8.07	11.90	1580	3.29	>1000	-361	1000	
15:50	8.08	11.88	1440	1.90	821	-371	1000	
15:55	8.14	11.89	902	1.25	379	-442	1000	
16:00	8.37	11.90	838	1.09	187	-458	1000	
16:05	8.33	11.90	813	0.97	124	-465	1000	
16:10	8.37	11.90	791	0.89	97	-464	1000	*
16:15	8.39	.11.91	784	0.79	72	-463	1000	
16:20	8.35	11.94	778	0.72	53	-461	1000	
16:25	8.33	11.96	773	0.69	47	-459	1000	
					· ·			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-8S
Date:	4/28/05	Sampling	Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	le submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	15.98	Depth to Well Bottom:	24.42	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	46.9		Estimated Purge Volume (liters):	
Sample ID:	MW-08S-WG			Sample Time:	10:	30	QA/QC: _	
Sample	e Paramaters <u>:</u>]	TCL VOCs, nitra	ate, nitrite, TKI	√, ammonia, T	OC, total and o	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
								iron = 0.05 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
9:30	6.43	10.30	1380	9.48	247	158	1000	-
9:35	6.82	10.40	1390	9.04	161	125	1000	
9:40	6.96	10.40	1380	5.16	133	113	1000	
9:45	6.98	10.40	1380	4.25	116	105	1000	
9:50	7.00	10.40	1411	3.97	82	100	1000	
9:55	7.00	10.40	1380	3.93	68	99	1000	-
10:00	7.02	10.50	1380	3.80	54	95	1000	
10:05	7.06	10.50	1380	3.70	46	88	1000	
10:10	7.03	10.50	1370	3.71	45	81	1000	
10:15	7.08	10.60	1360	3.78	43	74	1000	
10:20	7.05	10.50	1350	3.69	41	71	1000	
								:
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-8D
Date:	4/28/05	Sampling	Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	15.50	Depth to Well Bottom:	44.55	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	71.8		Estimated Purge Volume (liters):	
Sample ID:	MW-08D-WG			Sample Time:	12:	30	QA/QC: _	
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitra	ate, nitrite, TKI	√, ammonia, T0	DC, total and o	dissolved iron	, m/e/e, alkalinity	/, sulfate, chloride
								iron = 0.02 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1050	7.25	11.70	3120	7.51	83	-208	1000	
1100	6.98	11.90	3050	2.58	70	-228	1000	
1110	6.93	11.60	2070	2.52	23	-206	1000	
1120	6.92	11.60	1990	2.37	60	-197	1000	
1130	6.91	11.50	1900	2.29	18	-196	1000	
1140	6.91	11.70	1880	2.25	19	-194	1000	
1150	6.91	11.40	1850	2.14	22	-194	1000	
1200	6.91	11.40	1840	2.03	31	-196	1000	
1210	6.91	11.40	1840	1.97	33	-195	1000	
1220	6.91	11.40	1830	1.95	34	-194	1000	
1230	6.90	11.40	1820	1.94	28	-194	1000	
					·			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-12
Date:	4/28/05	Sampling	Personnel:	Scott McCabe)		_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ıle submersible	pump	_Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	23.50	Depth to Well Bottom:	35.90	Well Diameter:	6"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	69.0		Estimated Purge Volume (liters):	
Sample ID:	MW-12-WG			Sample Time:	15:	30	QA/QC: _	
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitra	ate, nitrite, TKI	N, ammonia, To	DC, total and	dissolved iron	, m/e/e, alkalinity	, sulfate, chloride
								iron = 0.03 mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1430	7.16	11.70	791	9.64	538	79	1000	
1440	6.92	11.70	798	6.80	360	79	1000	
1450	6.91	11.70	802	5.80	184	80	1000	
1500	6.92	11.90	982	7.40	76	66	1000	
1510	6.91	11.90	983	6.80	53	67	1000	
1520	6.91	11.90	974	6.40	48	68	1000	
1530	6.89	11.90	972	6.30	46	67	1000	
1540	6.87	11.90	970	5.90	33	69	1000	
1550	6.87	11.90	969	4.80	27	68	1000	
	0.4							
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core	·	_ Site:	Chem	n-Core	Well I.D.:	MW-16
Date:	4/28/05	Sampling	Personnel:	Scott McCabe			_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	26.34	Depth to Well Bottom:	38.50	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	30.1		Estimated Purge Volume (liters): _	
Sample ID:	MW-16-WG			Sample Time:	16:	40	QA/QC: _	
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitr	ate, nitrite, TK	N, ammonia, TO	DC, total and o	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
Oth	er Information <u>:</u>	Use Hach colon	netric meter to	determine Ferr	ous Iron conc	entration in sa	ample. Ferrous	iron = 0.05mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1600	6.99	12.40	1110	5.30	531	32	1000	
1605	6.98	12.40	1130	5.20	125	32	1000	
1610	6.95	12.40	1130	5.10	112	28	1000	
1615	6.91	12.40	1120	5.00	65	23	1000	
1620	6.90	12.40	1120	4.80	50	23	1000	
1625	6.91	12.40	1110	4.80	61	21	1000	
1630	6.90	12.40	1110	4.60	47	20	1000	
1635	6.88	12.40	1110	4.50	40	18	1000	
1640	6.89	12.40	1110	4.50	38	18	1000	
					·			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	MW-18
Date:	4/28/05	Sampling	Personnel:	Scott McCabe	9		_ Company: _	URS Corporation
Purging/ Sampling Device:	Wha	le submersible	oump	_Tubing Type:	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	24.60	Depth to Well Bottom:	41.50	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	el		Volume in 1 Well Casing (liters):	41.8		Estimated Purge Volume (liters):	
Sample ID:	MW-18-WG		-	Sample Time:	14:	15	QA/QC: _	
Sample	e Paramaters <u>:</u>]	TCL VOCs, nitra	ate, nitrite, TKI	N, ammonia, To	DC, total and	dissolved iron	, m/e/e, alkalinity	, sulfate, chloride
							ample. Ferrous	

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1345	6.92	11.80	1270	4.52	321	-120	1000	
1350	6.91	11.80	1270	4.25	129	-125	1000	
1355	6.90	11.80	1270	3.33	91	-133	1000	
1400	6.89	11.70	1240	2.73	48	-131	1000	
1405	6.89	11.80	1230	2.67	26	-127	1000	
1410	6.89	11.70	1230	2.61	19	-125	1000	
1415	6.89	11.70	1220	2.52	15	-124	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site: _	Chem	n-Core	_ Well I.D.:	MW-19
Date:	4/28/05	Sampling	Personnel:	Scott McCabe			_ Company:	URS Corporation
Purging/ Sampling Device:	Wha	ıle submersible _l	oump	_Tubing Type:_l	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	12.92	Depth to Well Bottom:	27.70	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	36.5		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			Sample Time:_	13:	30	QA/QC:	MS and MSD samples
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitra	ite, nitrite, TKI	N, ammonia, TO	C, total and o	dissolved iron	, m/e/e, alkalinit	y, sulfate, chloride
								iron = 0.00mg/L

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1250	6.97	9.80	1740	5.73	2	-79	1000	
1255	6.92	9.80	1740	4.51	1	-95	1000	
1300	6.91	9.80	1740	3.93	1	-102	1000	
1305	6.90	9.80	1730	3.65	1	-105	1000	
1310	6.90	9.80	1720	3.50	2	-108	1000	
1320	6.90	9.80	1730	3.30	2	-111	1000	
1325	6.89	9.80	1730	3.22	2	-112	1000	
1330	6.90	9.80	1730	3.17	2	-113	1000	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	IW-A2	
Date:	4/28/05	Sampling	Personnel:	Scott McCabe	!		_ Company: _	URS Corporation	
Purging/ Sampling Device:	Wha	ale submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:_	~1-2 feet off bottom	<u> </u>
Measuring Point:	Top of Riser	Initial Depth to Water:	24.20	Depth to Well Bottom:	39.45	Well Diameter:	4"	Screen Length:	
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	37.7		Estimated Purge Volume (liters):		
Sample ID:	<u>MW-</u> 19-WG			Sample Time:	17:	20	QA/QC:		
Sampl	le Paramaters <u>:</u>	TCL VOCs, nitr	ate, nitrite, TKI	N, ammonia, TO	DC, total and	dissolved iron	, m/e/e, alkalinity	y, sulfate, chloride	
							ample. Ferrous i		

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1650	7.01	12.20	1190	4.35	74	100	1000	
1655	7.00	12.20	1190	3.43	67	93	1000	
1700	6.99	12.20	1180	2.93	53	81	1000	
1705	6.99	12.20	1180	2.78	49	79	1000	
1710	6.99	12.20	1180	2.70	47	77	1000	
1715	6.99	12.20	1180	2.63	31	73	1000	
1720	6.99	12.20	1180	2.55	25	72	1000	
	<u> </u>							
								-
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Project:		Chem-Core		_ Site:	Chem	n-Core	_ Well I.D.: _	IW-A5
Date:	4/28/05	Sampling	Personnel:	Scott McCabe			Company: _	URS Corporation
Purging/ Sampling Device:	Wha	ıle submersible	pump	_Tubing Type:_	High Density	Polyethylene	Pump/Tubing Inlet Location:	~1-2 feet off bottom
Measuring Point:	Top of Riser	Initial Depth to Water:	23.35	Depth to Well Bottom:	38.70	Well Diameter:	4"	Screen Length:
Casing Type:	Ste	eel		Volume in 1 Well Casing (liters):	37.9		Estimated Purge Volume (liters):	
Sample ID:	MW-19-WG			Sample Time:	18:	00	QA/QC: _	
Sampl	e Paramaters <u>:</u>	TCL VOCs, nitra	ate, nitrite, TKI	N, ammonia, TC	C, total and	dissolved iron	, m/e/e, alkalinity	/, sulfate, chloride
							ample. Ferrous	

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (μmhos)	DISS. O₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1730	6.94	12.20	1180	4.94	187	77	1000	
1735	6.69	12.10	1170	4.03	94	102	1000	
1740	6.90	12.10	1170	3.87	61	79	1000	
1745	6.88	12.00	1180	3.21	38	63	1000	
1750	6.87	12.00	1180	2.89	34	53	1000	
1755	6.87	12.00	1180	2.81	31	44	1000	
1800	6.87	12.00	1180	2.76	24	39	1000	
					·			
Tolerance:	0.1		3%	10%	10%	+ or - 10	****	

APPENDIX D

VALIDATION SUMMARY TABLES

Location ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)	-	•	•	•	-	-
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	42 U	42 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	5	42 U	42 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	42 U	42 U	10 U	10 UJ	10 U
1,1,2-Trichloroethane	UG/L	1	42 U	42 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	42 U	42 U	10 U	10 U	10 U
1,1-Dichloroethene	UG/L	5	42 U	42 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	42 U	42 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	42 U	42 U	10 U	10 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	42 U	42 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	42 U	42 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	0.6	42 U	42 U	10 U	10 U	10 U
1,2-Dichloropropane	UG/L	1	42 U	42 U	10 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	3	42 U	42 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	3	42 U	42 U	10 U	10 U	10 U
2-Butanone	UG/L	50	42 UJ	42 U	10 U	10 U	10 U
2-Hexanone	UG/L	50	42 UJ	42 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	42 UJ	42 U	10 U	10 U	10 U
Acetone	UG/L	50	42 UJ	42 U	16	24 UJ	3 J
Benzene	UG/L	1	42 U	42 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	50	42 U	42 U	10 U	10 U	10 U
Bromoform	UG/L	50	42 U	42 UJ	10 U	10 U	10 U
Bromomethane	UG/L	5	42 U	42 U	10 U	10 UJ	10 U
Carbon disulfide	UG/L	60	42 U	42 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (1			-	•	-	•	-
Date Sampled		,	04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	UG/L	5	42 U	42 U	10 U	10 U	10 U
Chlorobenzene	UG/L	5	42 U	42 U	10 U	10 U	10 U
Chloroethane	UG/L	5	42 U	42 U	10 U	10 U	10 U
Chloroform	UG/L	7	42 U	42 U	10 U	10 U	10 U
Chloromethane	UG/L	5	42 UJ	42 U	10 U	10 U	1 J
cis-1,2-Dichloroethene	UG/L	5	150	2,200 D	$\frac{16}{2}$	3 J	\bigcirc 10
cis-1,3-Dichloropropene	UG/L	0.4	42 U	42 U	10 U	10 U	10 U
Cyclohexane	UG/L	50	42 U	42 U	10 U	1 J	10 U
Dibromochloromethane	UG/L	50	42 U	42 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	42 U	42 U	10 U	10 U	10 U
Ethylbenzene	UG/L	5	42 U	42 U	10 U	10 U	10 U
Isopropylbenzene	UG/L	5	42 U	42 U	10 U	10 U	10 U
Methyl acetate	UG/L	50	42 UJ	42 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	42 U	42 U	10 U	10 U	10 U
Methylcyclohexane	UG/L	50	42 U	42 U	10 U	10 U	10 U
Methylene chloride	UG/L	5	42 U	42 U	10 U	10 U	10 U
Styrene	UG/L	5	42 U	42 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	5	560	42 U	10 U	10 U	10 U
Toluene	UG/L	5	42 U	42 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	42 U	21 J	6 J	1 J	10 U
trans-1,3-Dichloropropene	UG/L	0.4	42 U	42 U	10 U	10 U	10 U
Trichloroethene	UG/L	5	65	42 U	10 U	10 U	1 J
Trichlorofluoromethane	UG/L	5	42 U	42 U	10 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location I	D		IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Sample IE)	***************************************	IW-A2	IW-A2	IW-A2	IW-A2	IW-A2
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interva	l (ft)		-	•	-	-	•
Date Sampl	ed		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	42 U	490	13	4 J	5 J
Xylene (Total)	UG/L	5	42 U	42 U	10 U	10 U	10 U
Filtered Metals							
Iron	UG/L	300	100 U	27,500	18,300	28,000	14,600
Total Metals							
Iron	UG/L	300	137	27,000	23,400	29,800	24,400
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.905	0.178	0.130	0.42
Chloride	MG/L	250	43.9	33.2	35.1	53.6	31
рН	S.U.	6.5-8.5	6.99	8.3	7.51	6.71	6.6
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.05 U
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.430	0.0500 U	0.0500 U	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	213	19.7 J	40.3	35.2	90
Total Alkalinity	MG/L	-	344	478	465	639	450
Total Kjeldahl Nitrogen	MG/L	-	3.22	1.20	1.41	0.536	0.83
Total Organic Carbon (TOC)	MG/L	-	10.1	86.7	84.7 J	128	11
Ferrous Iron	MG/L	-	0 U	19	16.1	19.40	12.1
Temperature	DEG C	-	12.20	13.06	13.0	13.84	12.7
Specific Conductance	UMHOS	-	1,180	876	1,150	810	1,260
Dissolved Oxygen	MG/L	-	2.55	0.77	1.07	0 U	0 U
Oxidation Reduction Potential	mV	-	72	-470	-461	-445	-202
Turbidity	NTU	-	25	39	31	44	47

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2	
Sample ID			IW-A2	IW-A2	IW-A2	IW-A2	IW-A2	
Matrix	•		Groundwater Groundwater Groundwater		Groundwater Groundwater Groundwater		Groundwater	Groundwater
Depth Interval (ft)			•	-	-		
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06	
Parameter	Units	Criteria*						
Dissolved Gases								
Ethane	UG/L	-	2 U	2 U	26 DJ	32 J	4.2 U	
Ethene	UG/L	-	2 U	18	44	5 J	2.4 J	
Methane	UG/L	-	1 Ü	250 D	720 D	1,800 J	9,800 D	

Flags assigned during chemistry validation are shown.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

 $[\]mbox{\bf J}$ - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix	_		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval			•	-	•	-	-
Date Sample	1		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,1,2-Trichloroethane	UG/L	1	20 U	20 U	20 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,1-Dichloroethene	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	20 U	20 U	20 U	10 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	20 U	20 U	20 U	10 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	20 U	20 U	20 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	20 U	20 U	20 U	10 U	10 U
1,2-Dichloroethane	UG/L	0.6	20 U	20 U	20 U	10 U	10 U
1,2-Dichloropropane	UG/L	1	20 U	20 U	20 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	3	20 U	20 U	20 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	3	20 U	20 U	20 U	10 U	10 U
2-Butanone	UG/L	50	20 ÚJ	20 U	20 UJ	10 U	10 U
2-Hexanone	UG/L	50	20 UJ	20 U	20 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	20 UJ	20 U	20 UJ	10 U	10 U
Acetone	UG/L	50	20 UJ	10 J	14 J	12 UJ	10 UJ
Benzene	UG/L	1	20 U	20 U	20 U	10 U	10 U
Bromodichloromethane	UG/L	50	20 U	20 U	20 U	10 U	10 U
Bromoform	UG/L	50	20 U	20 UJ	20 U	10 U	10 U
Bromomethane	UG/L	5	20 U	20 U	20 U	10 UJ	10 U
Carbon disulfide	UG/L	60	20 U	20 U	20 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

 $[\]ensuremath{\mathrm{J}}$ - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID		-	IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	. •	-	-
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*	-				
Volatiles							
Carbon tetrachloride	UG/L	5	20 U	20 U	20 U	10 U	10 U
Chlorobenzene	UG/L	5	20 U	20 U	20 U	10 U	10 U
Chloroethane	UG/L	5	20 U	20 U	20 U	10 U	10 U
Chloroform	UG/L	7	20 U	20 U	20 U	10 U	10 U
Chloromethane	UG/L	5	20 UJ	20 U	20 U	10 UJ	10 U
cis-1,2-Dichloroethene	UG/L	5	66	910 D	$\bigcirc 120 \bigcirc$	\bigcirc 25	\bigcirc 26
cis-1,3-Dichloropropene	UG/L	0.4	20 U	20 U	20 U	10 U	10 U
Cyclohexane	UG/L	50	20 U	20 U	20 U	10 U	10 U
Dibromochloromethane	UG/L	50	20 U	20 U	20 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	20 U	20 U	20 U	10 UJ	10 U
Ethylbenzene	UG/L	5	20 U	20 U	20 U	10 U	10 U
Isopropylbenzene	UG/L	5	20 U	20 U	20 U	10 U	10 U
Methyl acetate	UG/L	50	20 UJ	20 U	20 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	20 U	20 U	20 U	10 U	10 U
Methylcyclohexane	UG/L	50	20 U	20 U	20 U	10 U	10 U
Methylene chloride	UG/L	5	20 U	20 U	20 U	10 U	10 U
Styrene	UG/L	5	20 U	20 U	20 U	10 U	10 U
Tetrachloroethene	UG/L	5	230	20 U	9 J	10 U	1 J
Toluene	UG/L	5	20 U	20 U	20 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	2 J	8.5	9,5	5 J	2 J
trans-1,3-Dichloropropene	UG/L	0.4	20 U	20 U	20 U	10 U	10 U
Trichloroethene	UG/L	5	27	20 U	3 J	10 U	0.9 J
Trichlorofluoromethane	UG/L	5	20 U	20 U	20 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	•	-	-	•
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	20 U	110	58	24	12
Xylene (Total)	UG/L	5	20 U	20 U	20 U	10 U	10 Ü
Filtered Metals						, =	
iron	UG/L	300	100 U	17,900	400	2,940	1,760
Total Metals							
Iron	UG/L	300	100 U	18,000	1,600	3,780	3,210
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.534	0.107	0.136	0.26
Chloride	MG/L	250	67.1	21.3	18.4	31.7	20
pH	S.U.	6.5-8.5	6.87	8.33	7.46	6.7	6.5
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.036 J
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	1.03	0.0500 U	0.0500 U	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	181	8.85 J	80.0	32.9	80
Total Alkalinity	MG/L	-	344	474	450	640	450
Total Kjeldahl Nitrogen	MG/L	-	2.55	0.693	2.96	0.686	0.78
Total Organic Carbon (TOC)	MG/L	-	21.2	84.1	48.7 J	57.8	4.7
Ferrous Iron	MG/L	-	0.01	16.3	1.02	2.31	2.7
Temperature	DEG C	-	12.00	11.96	12.9	13.69	12.4
Specific Conductance	UMHOS	-	1,180	773	1,050	730	990
Dissolved Oxygen	MG/L	-	2.76	0.69	1.07	0 U	0 U
Oxidation Reduction Potential	m∨	-	39	-459	-373	-380	-253
Turbidity	NTU	-	24	47	24	32	32

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Sample ID			IW-A5	IW-A5	IW-A5	IW-A5	IW-A5
Matrix Depth Interval (ft) Date Sampled			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			-	•	•	-	-
			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				-	
Dissolved Gases							
Ethane	UG/L	-	2 U	2 U	8	14 J	4.2 U
Ethene	UG/L	•	2 U	8	21	4 J	6.0
Methane	UG/L	-	1 U	260 D	510 D	1,600 J	10,000 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample ID		·	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (•	<u> </u>	•	-	•
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	25 U	5 J		16	2 J
1,1,2,2-Tetrachloroethane	UG/L	5	25 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	25 U	10 U	10 U	10 UJ	10 U
1,1,2-Trichloroethane	UG/L	1	25 U	10 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	3 J	$\bigcirc 35$	55	93	\bigcirc 23
1,1-Dichloroethene	UG/L	5	25 U	10 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	25 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	25 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	25 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	0.6	25 U	10 U	10 U	\bigcirc 2 J	10 U
1,2-Dichloropropane	UG/L	1	25 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U	10 U
2-Butanone	UG/L	50	25 UJ	10 UJ	10 U	10 U	10 U
2-Hexanone	UG/L	50	25 UJ	10 UJ	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	25 UJ	10 U	10 U	10 U	10 U
Acetone	UG/L	50	25 UJ	9 J	5 J	10 UJ	10 UJ
Benzene	UG/L	1	25 U	10 U	10 U	10 U	\bigcirc 5 J
Bromodichloromethane	UG/L	50	25 U	10 U	10 U	10 U	10 U
Bromoform	UG/L	50	25 U	10 ÜJ	10 U	10 U	10 U
Bromomethane	UG/L	5	25 U	10 U	10 U	10 UJ	10 Ü
Carbon disulfide	UG/L	60	25 U	10 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- $\ensuremath{\mathrm{J}}$ The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample ID			MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval			- 04/28/05	•	•	-	-
Date Sample				09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	UG/L	5	25 U	10 U	10 U	10 U	10 U
Chlorobenzene	UG/L	5	25 U	10 U	10 U	10 U	10 U
Chloroethane	UG/L	5	25 U	10 U	10 U	10 U	2 J
Chloroform	UG/L	7	25 U	10 U	10 U	10 U	10 U
Chloromethane	UG/L	5	25 UJ	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	UG/L	5	\bigcirc	10 U	2 J		7 J
cis-1,3-Dichloropropene	UG/L	0.4	25 U	10 U	10 U	10 U	10 U
Cyclohexane	UG/L	50	25 U	10 U	10 U	1 J	10 U
Dibromochloromethane	UG/L	50	25 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	25 U	10 U	10 U	10 U	10 U
Ethylbenzene	UG/L	5	25 U	10 U	0.9 J	10 U	10 U
Isopropylbenzene	UG/L	5	25 U	10 U	10 U	10 U	10 U
Methyl acetate	UG/L	50	25 UJ	10 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	25 U	10 U	10 U	10 U	10 U
Methylcyclohexane	UG/L	50	25 U	10 U	10 U	10 U	10 U
Methylene chloride	UG/L	5	25 U	10 U	10 U	1 J	10 U
Styrene	UG/L	5	25 U	10 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	5	310	10 U	10 U	10 U	10 U
Toluene	UG/L	5	25 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	25 U	10 U	2 J	3 J	0.7 J
trans-1,3-Dichloropropene	UG/L	0.4	25 U	10 U	10 U	10 U	10 U
Trichloroethene	UG/L	5	31	10 U	10 U	10 U	10 U
Trichlorofluoromethane	UG/L	5	25 U	10 U	10 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

U - The analyte was not detected above the reported quantitation or detection limit.

D - Result reported from a secondary dilution analysis.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID)		MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample ID			MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval			-	•	•	•	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2		1 J	8 J	$\bigcirc 35$	18
Xylene (Total)	UG/L	5	25 U	10 U	10 U	10 U	10 U
Filtered Metals							
Iron	UG/L	300	100 U	721	12.2 U	10.1 U	71.4 B
Total Metals							
Iron	UG/L	300	100 U	871	138	200	93.4 B
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.325	1.45	1.23	1.92	0.97
Chloride	MG/L	250	268	404	371 D	452	260
рН	S.U.	6.5-8.5	6.9	7.91	7.62	7.48	6.6
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.05 U
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.255	0.0500 U	0.270	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	220	258 J	171	$\bigcirc 374 \bigcirc$	74
Total Alkalinity	MG/L	<u>-</u>	283	337	346	239	400
Total Kjeldahl Nitrogen	MG/L	-	2.36	1.26	1.76	2.03	1.9
Total Organic Carbon (TOC)	MG/L	•	9.34	36.6	32.1 J	4.81 B	3.6
Ferrous Iron	MG/L	-	0.02	0.86	0.36	0.01	0.7
Temperature	DEG C	-	11.4	15.00	14.2	13.21	14.4
Specific Conductance	UMHOS	-	1,820	1,930	2,040	2,110	1,760
Dissolved Oxygen	MG/L	-	1.94	1.97	1.21	0 U	0 U
Oxidation Reduction Potential	mV	-	-194	-354	-312	-276	-211
Turbidity	NTU	-	28	9	11	7	1

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location	ID		MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
Sample ID			MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
Matrix Depth Interval (ft) Date Sampled		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
		-	-	•		-	
		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06	
Parameter	Units	Criteria*					
Dissolved Gases							
Ethane	UG/L	- 1	2 U	2 U	13	1 J	4.2 U
Ethene	UG/L	-	2 U	42	13	15 J	25
Methane	UG/L	-	20 D	240 D	420 D	250 J	5,500 D

Flags assigned during chemistry validation are shown.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-08S	MW-08S	MW-08\$	MW-08S	MW-08S
Sample ID			MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	<u> </u>		-	•	•	-	-
Date Sample	d	,	04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*			· - :		
Volatiles							
1,1,1-Trichloroethane	UG/L	5	10 U				
1,1,2,2-Tetrachloroethane	UG/L	5	10 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	10 U	10 U	10 U	10 UJ	10 U
1,1,2-Trichloroethane	UG/L	1	10 Ü	10 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	10 U				
1,1-Dichloroethene	UG/L	5	10 U				
1,2,4-Trichlorobenzene	UG/L	5	10 U				
1,2-Dibromo-3-chloropropane	UG/L	0.04	10 U				
1,2-Dibromoethane	UG/L	6.00E-04	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	10 U				
1,2-Dichloroethane	UG/L	0.6	10 U				
1,2-Dichloropropane	UG/L	1	10 U				
1,3-Dichlorobenzene	UG/L	3	10 U				
1,4-Dichlorobenzene	UG/L	3	10 U				
2-Butanone	UG/L	50	10 UJ	10 U	10 UJ	10 U	10 U
2-Hexanone	UG/L	50	10 UJ	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	10 UJ	10 U	10 UJ	10 U	10 U
Acetone	UG/L	50	10 UJ	7 J	10 U	10 U	10 UJ
Benzene	UG/L	1	10 U				
Bromodichloromethane	UG/L	50	10 U				
Bromoform	UG/L	50	10 U	10 UJ	10 U	10 U	10 U
Bromomethane	UG/L	5	10 U	10 U	10 U	10 UJ	10 U
Carbon disulfide	UG/L	60	10 U				

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
Sample ID	······		MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (•	-	-	-	-
Date Sample			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	UG/L	5	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	UG/L	5	10 U	10 U	10 U	10 U	10 U
Chloroethane	UG/L	5	10 U	10 U	10 U	10 U	10 U
Chloroform	UG/L	7	10 U	10 U	10 U	10 U	10 U
Chloromethane	UG/L	5	10 UJ	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	UG/L	5	94	260 D	6 J	4 J	3 J
cis-1,3-Dichloropropene	UG/L	0.4	10 U	10 U	10 U	10 U	10 U
Cyclohexane	UG/L	50	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	UG/L	50	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	UG/L	5	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	UG/L	5	10 U	10 U	10 U	10 U	10 U
Methyl acetate	UG/L	50	10 UJ	10 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	10 U	10 U	10 U	10 U	10 U
Methylcyclohexane	UG/L	50	10 U	10 U	10 U	10 U	10 U
Methylene chloride	UG/L	5	10 U	10 U	10 U	1 J	10 U
Styrene	UG/L	5	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	5	130	2 J	10 U	2 J	2 J
Toluene	UG/L	5	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	2 J	2 J	10 U	10 U	10 U
trans-1,3-Dichloropropene	UG/L	0.4	10 U	10 U	10 U	10 U	10 U
Trichloroethene	UG/L	5	\bigcirc^{21}	1 J	1 J	1.0 J	0.7 J
Trichlorofluoromethane	UG/L	5	10 U	10 U	10 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

U - The analyte was not detected above the reported quantitation or detection limit.

D - Result reported from a secondary dilution analysis.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
Sample ID			MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	•	-	
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	3J	47	10	10 U	10 U
Xylene (Total)	UG/L	5	10 U				
Filtered Metals							
Iron	UG/L	300	100 U	783	120	82.1	145
Total Metals							
Iron	UG/L	300	910	1,690	1,770	5,690	8,240
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.203	0.100 U	0.100 U	0.047 J
Chloride	MG/L	250	75.6	100	99.6	135	130
pН	S.U.	6.5-8.5	7.05	7.93	7.59	7.55	6.6
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.032 J
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.450	0.0750	0.0500 U	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	306	134 J	186	355	350
Total Alkalinity	MG/L	•	298	315	323	241	250
Total Kjeldahl Nitrogen	MG/L	-	2.77	0.197 B	1.06	0.250 U	0.58
Total Organic Carbon (TOC)	MG/L	-	6.80	12.6	5.65 J	5.66	3.5
Ferrous Iron	MG/L	-	0.05	0.82	0.18	0 U	0 U
Temperature	DEG C	-	10.5	15.35	14.6	12.22	15.6
Specific Conductance	UMHOS	-	1,350	961	1,320	887	1,710
Dissolved Oxygen	MG/L	-	3.69	1.11	2.45	2.03	0 U
Oxidation Reduction Potential	mV	-	71	-269	-84	-7	20
Turbidity	NTU	•	41	15	6	11	4

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID)		MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
Sample ID Matrix Depth Interval (ft)			MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			-	•	-	•	
Date Sampled		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06	
Parameter	Units	Criteria*					
Dissolved Gases							
Ethane	UG/L	- 1	2 U	2 U	0.2 J	1.5 U	6.8
Ethene	UG/L	-	2 U	0.8 J	3	1.5 U	4.2 U
/lethane	UG/L	-	2 U	13	6	1 U	21

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-12	MW-12	MW-12	MW-12	MW-12								
Sample ID Matrix Depth Interval (ft) Date Sampled			MW-12	MW-12	MW-12	MW-12	MW-12								
			Groundwater - 04/28/05	Groundwater - - 09/22/05	Groundwater - - 12/28/05	Groundwater - 04/11/06	Groundwater - 09/29/06								
								Parameter	Units	Criteria*					
								Volatiles							
1,1,1-Trichloroethane	UG/L	5	67 U	67 U	67 U	130 U	200 U								
1,1,2,2-Tetrachloroethane	UG/L	5	67 U	67 U	67 U	130 U	200 U								
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	67 U	67 U	67 U	130 UJ	200 U								
1,1,2-Trichloroethane	UG/L	1	67 U	67 U	67 U	130 U	200 U								
1,1-Dichloroethane	UG/L	5	67 U	67 U	67 U	130 U	200 U								
1,1-Dichloroethene	UG/L	5	67 U	67 U	67 U	130 U	200 U								
1,2,4-Trichlorobenzene	UG/L	5	67 U	67 U	67 U	130 U	200 U								
1,2-Dibromo-3-chloropropane	UG/L	0.04	67 U	67 U	67 U	130 U	200 U								
1,2-Dibromoethane	UG/L	6.00E-04	67 U	67 U	67 U	130 U	200 U								
1,2-Dichlorobenzene	UG/L	3	67 U	67 U	67 U	130 U	200 U								
1,2-Dichloroethane	UG/L	0.6	67 U	67 U	67 U	130 U	200 U								
1,2-Dichloropropane	UG/L	1	67 U	67 U	67 U	130 U	200 U								
1,3-Dichlorobenzene	UG/L	3	67 U	67 U	67 U	130 U	200 U								
1,4-Dichlorobenzene	UG/L	3	67 U	67 U	67 U	130 U	200 U								
2-Butanone	UG/L	50	67 UJ	67 U	67 UJ	130 U	200 U								
2-Hexanone	UG/L	50	67 UJ	67 U	67 U	130 U	200 U								
4-Methyl-2-pentanone	UG/L	50	67 UJ	67 U	67 UJ	130 U	200 U								
Acetone	UG/L	50	67 UJ	67 U	67 U	65 J	200 UJ								
Benzene	UG/L	1	67 U	67 U	67 U	130 U	200 U								
Bromodichloromethane	UG/L	50	67 U	67 U	67 U	130 U	200 U								
Bromoform	UG/L	50	67 U	67 UJ	67 U	130 U	200 U								
Bromomethane	UG/L	5	67 U	67 U	67 U	130 UJ	200 U								
Carbon disulfide	UG/L	60	67 U	67 U	67 U	130 U	200 U								

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID Sample ID Matrix Depth Interval (ft)			MW-12	MW-12	MW-12	MW-12	MW-12
			MW-12	MW-12	MW-12	MW-12 Groundwater	MW-12 Groundwater
			Groundwater	Groundwater	Groundwater		
			•	•	-	•	•
Date Sampled	,		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	UG/L	5	67 U	67 U	67 U	130 U	200 U
Chlorobenzene	UG/L	5	67 U	67 U	67 U	130 U	200 U
Chloroethane	UG/L	5	67 U	67 U	67 U	130 U	200 U
Chloroform	UG/L	7	67 U	67 U	67 U	130 U	200 U
Chloromethane	UG/L	5	67 UJ	67 U	67 U	130 U	200 U
cis-1,2-Dichloroethene	UG/L	5	280	1,300	1,500 D	1,500	290
cis-1,3-Dichloropropene	UG/L	0.4	67 U	67 U	67 U	130 U	200 U
Cyclohexane	UG/L	50	67 U	67 U	67 U	130 U	200 U
Dibromochloromethane	UG/L	50	67 U	67 U	67 U	130 U	200 U
Dichlorodifluoromethane	UG/L	5	67 U	67 U	67 U	130 U	200 U
Ethylbenzene	UG/L	5	67 U	67 U	67 U	130 U	200 U
Isopropylbenzene	UG/L	5	67 U	67 U	67 U	130 U	200 U
Methyl acetate	UG/L	50	67 UJ	67 U	67 U	130 U	200 U
Methyl tert-butyl ether	UG/L	10	67 U	67 U	67 U	130 U	200 U
Methylcyclohexane	UG/L	50	67 U	67 U	67 U	130 U	200 U
Methylene chloride	UG/L	5	67 U	\bigcirc 7 J	67 U	130 U	200 U
Styrene	UG/L	5	67 U	67 U	67 U	130 U	200 U
Tetrachloroethene	UG/L	5	750	35 J	990	16 J	1,300
Toluene	UG/L	5	67 U	67 U	67 U	130 U	200 U
trans-1,2-Dichloroethene	UG/L	5	\bigcirc 6 J	67 U	13 J	11 J	200 U
trans-1,3-Dichloropropene	UG/L	0.4	67 U	67 U	67 U	130 U	200 U
Trichloroethene	UG/L	5	120	12 J	200	15 J	140 J
Trichlorofluoromethane	UG/L	5	67 U	67 U	67 U	130 UJ	200 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID Matrix Depth Interval (ft)			MW-12	MW-12	MW-12	MW-12	MW-12
			Groundwater -	Groundwater -	Groundwater -	Groundwater -	Groundwater -
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	67 U	20 J	100	370	200 U
Xylene (Total)	UG/L	5	67 U	67 U	67 U	130 U	200 U
Filtered Metals							
Iron	UG/L	300	100 U	3,270	1,230	847	173
Total Metals							
Iron	UG/L	300	786	20,300	3,000	5,240	788
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.998	0.281	0.100 U	0.047 J
Chloride	MG/L	250	51.4	18.4	14.3	32.7	10
рН	S.U.	6.5-8.5	6.87	7.68	7.52	7.36	6.5
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.68
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.580	0.0500 U	0.215	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	122	12.7 J	32.4	22.5	37
Total Alkalinity	MG/L	-	351	450	365	440	320
Total Kjeldahl Nitrogen	MG/L	-	4.76	0.866	0.415	0.246 B	0.099 J
Total Organic Carbon (TOC)	MG/L	-	3.08 B	70.6	21.6 J	18.7	1.9
Ferrous Iron	MG/L	-	0.03	3.19	7.9	0.62	0.15
Temperature	DEG C	-	11.90	13.14	13.0	14.03	12.6
Specific Conductance	UMHOS	-	969	714	845	536	605
Dissolved Oxygen	MG/L	•	4.80	11.63	0.95	0 U	0.24
Oxidation Reduction Potential	mV	-	68	-331	-307	-326	-155
Turbidity	NTU	-	27	19	15	32	11

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location II)		MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	_		MW-12	MW-12	MW-12	MW-12	MW-12
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval	(ft)		•	•	-	-	-
Date Sample	ed		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Ethane	UG/L	-	2 U	2 U	10	11 J	4.1 U
Ethene	UG/L		2 U	1 J	17	19 J	5.2
Methane	UG/L	-	10	20	120 D	550 J	360 D

Flags assigned during chemistry validation are shown.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	•	•	•
Date Sampled			04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	83 U	83 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	5	83 U	83 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	83 U	83 U	10 U	10 U	10 U
1,1,2-Trichloroethane	UG/L	1	83 U	83 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	83 U	83 U	10 U	10 U	10 U
1,1-Dichloroethene	UG/L	5	83 U	83 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	83 U	83 U	10 U	10 Ü	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	83 U	83 U	10 U	10 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	83 U	83 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	83 U	\bigcap 7 J	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	0.6	83 U	83 U	10 U	10 U	10 U
1,2-Dichloropropane	UG/L	1	83 U	83 U	10 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	3	83 U	83 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	3	83 U	83 U	10 Ü	10 U	10 U
2-Butanone	UG/L	50	83 UJ	83 U	10 U	10 U	10 U
2-Hexanone	UG/L	50	83 UJ	83 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	83 UJ	83 U	10 U	10 U	10 U
Acetone	UG/L	50	83 UJ	83 U	10 U	10 UJ	10 UJ
Benzene	UG/L	1	83 U	83 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	50	83 U	9 J	10 U	10 U	10 U
Bromoform	UG/L	50	83 U	83 UJ	10 U	10 U	10 U
Bromomethane	UG/L	5	83 U	83 U	10 U	10 UJ	10 U
Carbon disulfide	UG/L	60	83 U	83 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		•	•	•	•	-
Date Sample	1		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	ŲG/L	5	83 U	83 U	10 U	10 U	10 U
Chlorobenzene	UG/L	5	83 U	9 J	10 U	10 U	10 U
Chloroethane	UG/L	5	83 U	83 U	10 U	10 U	10 U
Chloroform	UG/L	7	83 U	8 J	1 J	10 U	10 U
Chloromethane	UG/L	5	83 UJ	83 U	10 U	10 UJ	10 U
cis-1,2-Dichloroethene	UG/L	5	$\bigcirc 390 \bigcirc$	1,200	230 D	\bigcirc 57	190
cis-1,3-Dichloropropene	UG/L	0.4	83 U	83 U	10 U	10 U	10 U
Cyclohexane	UG/L	50	83 U	83 U	10 U	10 U	10 U
Dibromochloromethane	UG/L	50	83 U	83 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	83 U	83 U	10 U	10 UJ	10 U
Ethylbenzene	UG/L	5	83 U	83 U	10 U	10 U	10 U
Isopropylbenzene	UG/L	5	83 U	83 U	10 U	10 U	10 U
Methyl acetate	UG/L	50	83 UJ	83 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	83 U	9 J	10 U	10 U	10 U
Methylcyclohexane	UG/L	50	83 U	83 U	10 U	10 U	10 U
Methylene chloride	UG/L	5	83 U	$\bigcirc 13 J$	10 U	10 U	10 U
Styrene	UG/L	5	83 U	83 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	5	1,000	83 U		10 U	$\bigcirc 15$
Toluene	UG/L	5	83 U	\bigcirc 7 J	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	83 U	21 J	\bigcirc 6 J	2 J	1 J
trans-1,3-Dichloropropene	UG/L	0.4	83 U	83 U	10 U	10 U	10 U
Trichloroethene	UG/L	5	140	83 U	16	10 U	10
Trichlorofluoromethane	UG/L	5	83 U	83 U	10 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID			MW-16	MW-16	MW-16	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	83 U	420	52	32	84
Xylene (Total)	UG/L	5	83 U	83 U	10 U	10 U	10 U
Filtered Metals							
Iron	UG/L	300	100 U	25,600	7,420	19,700	15,100
Total Metals							
Iron	UG/L	300	672	26,100	17,900	27,500	16,000
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.629	0.179	0.148	0.56
Chloride	MG/L	250	63.6	54.0	37.3	108	35
рН	S.U.	6.5-8.5	6.89	7.6	7.55	7.10	6.4
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	NA	0.05 U
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.345	0.685	0.0500 U	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	108	9.26 J	27.5	38.6	47
Total Alkalinity	MG/L	-	371	460	424	569	420
Total Kjeldahl Nitrogen	MG/L	-	3.08	1.08	0.815	0.434	0.72
Total Organic Carbon (TOC)	MG/L	-	3.43 B	60.4	17.7 J	53.0	5.0
Ferrous Iron	MG/L	-	0.05	16.4	7.4	11	16.1
Temperature	DEG C	-	12,40	12.89	13.4	14.12	12.9
Specific Conductance	UMHOS	-	1,110	853	1,030	777	853
Dissolved Oxygen	MG/L	-	4.50	0.49	1.33	0 U	0 U
Oxidation Reduction Potential	mV	-	18	-316	-345	-343	-253
Turbidity	NTU	-	38	43	21	43	1

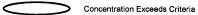
^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.


U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location II)		MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID Matrix Depth Interval (ft)			MW-16	MW-16	MW-16	MW-16	MW-16
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			-	-	-	-	-
Date Sample	∍d		04/28/05	09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*					
Dissolved Gases							
Ethane	UG/L	-	2 U	2 U	10	17 J	4.4 U
Ethene	UG/L	-	2 U	26	31	6 J	13
Methane	UG/L	-	8	87 D	500 D	1,100 J	5,800 D

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	-	-	-	-
Date Sampled			04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	10 U	10 U	20 U	50 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	5	10 U	10 U	20 U	50 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	10 U	10 U	20 UJ	50 U	10 U
1,1,2-Trichloroethane	UG/L	1	10 U	10 U	20 U	50 U	10 U
1,1-Dichloroethane	UG/L	5	10 U	10 U	20 U	50 U	10 U
1,1-Dichloroethene	UG/L	5	10 U	10 U	20 U	50 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	10 U	10 U	20 U	50 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	10 U	10 U	20 U	50 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	10 U	10 U	20 U	50 U	10 U
1,2-Dichlorobenzene	UG/L	3	10 U	10 U	20 U	50 U	10 U
1,2-Dichloroethane	UG/L	0.6	10 U	10 U	20 U	50 U	10 U
1,2-Dichloropropane	UG/L	1	10 U	10 U	20 U	50 U	10 U
1,3-Dichlorobenzene	UG/L	3	10 U	10 U	20 U	50 U	10 U
1,4-Dichlorobenzene	UG/L	3	10 U	10 U	20 U	50 U	10 U
2-Butanone	UG/L	50	10 UJ	10 UJ	20 U	50 U	10 U
2-Hexanone	UG/L	50	10 UJ	10 U	20 U	50 U	10 U
4-Methyl-2-pentanone	UG/L	50	10 UJ	10 UJ	20 U	50 U	10 U
Acetone	UG/L	50	10 UJ	10 U	20 UJ	50 UJ	10 U
Benzene	UG/L	1	10 U	10 U	20 U	50 U	10 U
Bromodichloromethane	UG/L	50	10 U	10 U	20 U	50 U	10 U
Bromonothana	UG/L	50	10 U	10 U	20 U	50 U	10 U
Bromomethane Corbon disulfide	UG/L	5	10 U	10 U	20 UJ	50 U	10 U
Carbon disulfide	UG/L	60	10 U	10 U	20 U	50 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval			0.4/00/05		•	-	•
Date Sample	! 	1	04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*					
Volatiles							
Carbon tetrachloride	UG/L	5	10 U	10 U	20 U	50 U	10 U
Chlorobenzene	UG/L	5	10 U	10 U	20 U	50 U	10 U
Chloroethane	UG/L	5	10 U	10 U	20 U	50 U	10 U
Chloroform	UG/L	7	10 U	10 U	20 U	50 U	1 J
Chloromethane	UG/L	5	10 UJ	10 U	20 U	50 U	10 U
cis-1,2-Dichloroethene	UG/L	5	38	270 D	280	320	120
cis-1,3-Dichloropropene	UG/L	0.4	10 U	10 U	20 U	50 U	10 U
Cyclohexane	UG/L	50	10 U	10 U	20 U	50 U	10 U
Dibromochloromethane	UG/L	50	10 U	10 U	20 U	50 U	10 U
Dichlorodifluoromethane	UG/L	5	10 U	10 U	20 U	50 U	10 U
Ethylbenzene	UG/L	5	10 U	10 U	20 U	50 U	10 U
Isopropylbenzene	UG/L	5	10 U	10 U	20 U	50 U	10 U
Methyl acetate	UG/L	50	10 UJ	10 U	20 U	50 U	10 U
Methyl tert-butyl ether	UG/L	10	10 U	10 U	20 U	50 U	10 U
Methylcyclohexane	UG/L	50	10 U	10 U	20 U	50 U	10 U
Methylene chloride	UG/L	5	10 U	10 U	20 U	50 U	10 U
Styrene	UG/L	5	10 U	10 U	20 U	50 U	10 U
Tetrachloroethene	UG/L	5	$\bigcirc 12 \bigcirc$	5 J	13 J	33 J	370 D
Toluene	UG/L	5	10 U	10 U	20 U	50 U	10 U
trans-1,2-Dichloroethene	UG/L	5	2 J	3 J	3 J	50 U	1 J
trans-1,3-Dichloropropene	UG/L	0.4	10 U	10 U	20 U	50 U	10 U
Trichloroethene	UG/L	5	3 J	3 J	10 J	15 J	$\bigcirc 37$
Trichlorofluoromethane	UG/L	5	10 U	10 U	20 UJ	50 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID	-		MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (_	-	•	-	-	-
Date Sampled	1		04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*					
Volatiles							
Vinyl chloride	UG/L	2	10 U	10	12 J	16 J	5 J
Xylene (Total)	UG/L	5	10 U	10 U	20 U	10 U	10 U
Filtered Metals							
Iron	UG/L	300	58.3 B	2,780	1,220	1,160	100 U
Total Metals							
Iron	UG/L	300	261	2,940	1,460	1,460	100 U
Miscellaneous Parameters							
Ammonia, Nitrogen (As N)	MG/L	2	0.100 U	0.207	0.100 U	0.075	0.100 U
Chloride	MG/L	250	125	30.8	48.8	64	268
рН	S.U.	6.5-8.5	6.89	7.49	7.13	6.5	6.9
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	0.027 J	NA
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	0.05 U	NA
Nitrate-Nitrite	MG/L	10	0.0500 U	0.0500 U	0.0500 U	NA	0.715
Sulfate (as SO4)	MG/L	250	105	81.6	102	93	137
Total Alkalinity	MG/L	-	353	379	396	360	281
Total Kjeldahl Nitrogen	MG/L	-	2.40	0.726	0.250 U	0.31 J	2.21
Total Organic Carbon (TOC)	MG/L	-	4.06 B	2.97 BJ	3.15 B	1.7	4.00 B
Ferrous Iron	MG/L	-	0.26	0.56	1.27	1.19	0 U
Temperature	DEG C	-]	11.70	12.0	13.02	11.5	9.8
Specific Conductance	UMHOS	-	1,220	980	582	924	1,730
Dissolved Oxygen	MG/L	-	2.52	1.80	0 U	0 U	3.17
Oxidation Reduction Potential	mV	-	-124	-216	-128	-105	-113
Turbidity	NTU	<u>-</u>	15	0 U	3	14	2

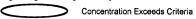
^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

U - The analyte was not detected above the reported quantitation or detection limit.


D - Result reported from a secondary dilution analysis.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-18	MW-18	MW-18	MW-18	MW-19
Sample ID			MW-18	MW-18	MW-18	MW-18	MW-19
Matrix		*	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	-	-	-
Date Sampled			04/28/05	12/28/05	04/11/06	09/29/06	04/28/05
Parameter	Units	Criteria*					
Dissolved Gases				-			
Ethane	UG/L	-	2 U	0.09 J	1.5 UJ	4.2 U	2 U
Ethene	UG/L	-	2 U	0.5 J	1.5 UJ	4.2 U	2 U
Methane	UG/L	-	70 D	24	6 J	94	3 U

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID		-	MW-19	MW-19	MW-19	MW-19
Sample ID			MW-19	MW-19	MW-19	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (-		-	-	•	-
Date Sampled			09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				
Volatiles						
1,1,1-Trichloroethane	UG/L	5	25 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	5	25 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	25 U	10 U	10 UJ	10 U
1,1,2-Trichloroethane	UG/L	1	25 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	5	25 U	10 U	10 U	10 U
1,1-Dichloroethene	UG/L	5	25 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	5	25 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	25 U	10 U	10 U	10 U
1,2-Dibromoethane	UG/L	6.00E-04	25 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	0.6	25 U	10 U	10 U	10 U
1,2-Dichloropropane	UG/L	1	25 U	10 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	3	25 U	10 U	10 U	10 U
2-Butanone	UG/L	50	25 U	10 UJ	10 U	10 U
2-Hexanone	UG/L	50	25 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	50	25 U	10 UJ	10 U	10 U
Acetone	UG/L	50	11 J	8 J	10 UJ	10 UJ
Benzene	UG/L	1	25 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	50	25 U	10 U	10 U	10 U
Bromoform	UG/L	50	25 UJ	10 U	10 U	10 U
Bromomethane	UG/L	5	25 U	10 U	10 UJ	10 U
Carbon disulfide	UG/L	60	25 U	10 U	10 U	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

U - The analyte was not detected above the reported quantitation or detection limit.

D - Result reported from a secondary dilution analysis.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-19	MW-19	MW-19	MW-19
Sample ID			MW-19	MW-19	MW-19	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	•	-
Date Sampled			09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				
Volatiles						
Carbon tetrachloride	UG/L	5	25 U	10 U	10 U	10 U
Chlorobenzene	UG/L	5	25 U	10 U	10 U	10 U
Chloroethane	UG/L	5	25 U	10 U	10 U	10 U
Chloroform	UG/L	7	25 U	10 U	10 U	10 U
Chloromethane	UG/L	5	25 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	UG/L	5	190		\bigcirc	49
cis-1,3-Dichloropropene	UG/L	0.4	25 U	10 U	10 U	10 U
Cyclohexane	UG/L	50	25 U	10 U	10 U	10 U
Dibromochloromethane	UG/L	50	25 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	5	25 U	10 U	10 U	10 U
Ethylbenzene	UG/L	5	25 U	10 U	10 U	10 U
Isopropylbenzene	UG/L	5	25 U	10 U	10 U	10 U
Methyl acetate	UG/L	50	25 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	25 U	10 U	10 U	10 U
Methylcyclohexane	UG/L	50	25 U	10 U	10 U	10 U
Methylene chloride	UG/L	5	25 U	10 U	10 U	10 U
Styrene	UG/L	5	25 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	5	25 U	3 J	10 U	\bigcirc
Toluene	UG/L	5	25 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	5	6 J	10 U	10 U	10 U
trans-1,3-Dichloropropene	UG/L	0.4	25 U	10 U	10 U	10 U
Trichloroethene	UG/L	5	25 U	1 J	10 Ü	3 J
Trichlorofluoromethane	UG/L	5	25 U	10 U	10 UJ	10 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

J - The analyte was positively identified, the quantitation is an estimation.

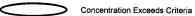
D - Result reported from a secondary dilution analysis.

U - The analyte was not detected above the reported quantitation or detection limit.

UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

Location ID			MW-19	MW-19	MW-19	MW-19
Sample ID	-		MW-19	MW-19	MW-19	MW-19
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (1			•	-	•	
Date Sampled			09/22/05	12/28/05	04/11/06	09/29/06
Parameter	Units	Criteria*				
Volatiles						
Vinyl chloride	UG/L	2	220	10 U		\bigcirc
Xylene (Total)	UG/L	5	25 U	10 U	10 U	10 U
Filtered Metals						
Iron	UG/L	300	10,100	7,270	11,200	4,680
Total Metals						
Iron	UG/L	300	10,900	8,400	12,000	5,710
Miscellaneous Parameters						
Ammonia, Nitrogen (As N)	MG/L	2	0.414	0.137	0.100 U	0.29
Chloride	MG/L	250	387	332 D	222	85
рН	S.U.	6.5-8.5	8	7.43	6.95	6.4
Nitrate-Nitrogen	MG/L	10	NA	NA	NA	0.31
Nitrite-Nitrogen	MG/L	1	NA	NA	NA	0.05 U
Nitrate-Nitrite	MG/L	10	0.0500 U	0.0700	0.0500 U	NA
Sulfate (as SO4)	MG/L	250	9.55 ÜJ	15.4	17.3	97
Total Alkalinity	MG/L	-	430	417	484	380
Total Kjeldahl Nitrogen	MG/L	•	0.372	0.657	0.172 B	0.77
Total Organic Carbon (TOC)	MG/L	-	53.0	66.8 J	42.2	4.5
Ferrous Iron	MG/L	-	14.1	9.6	10.60	3.0
Temperature	DEG C	-	16.15	13.4	10.32	16.8
Specific Conductance	UMHOS	-	1,550	1,810	853	1,210
Dissolved Oxygen	MG/L	-	0.68	1.36	1.46	0 U
Oxidation Reduction Potential	mV	-	-408	-326	-216	-183
Turbidity	NTU	•	4	24	25	27

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.


Flags assigned during chemistry validation are shown.

- J The analyte was positively identified, the quantitation is an estimation.
- D Result reported from a secondary dilution analysis.
- U The analyte was not detected above the reported quantitation or detection limit.
- UJ The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

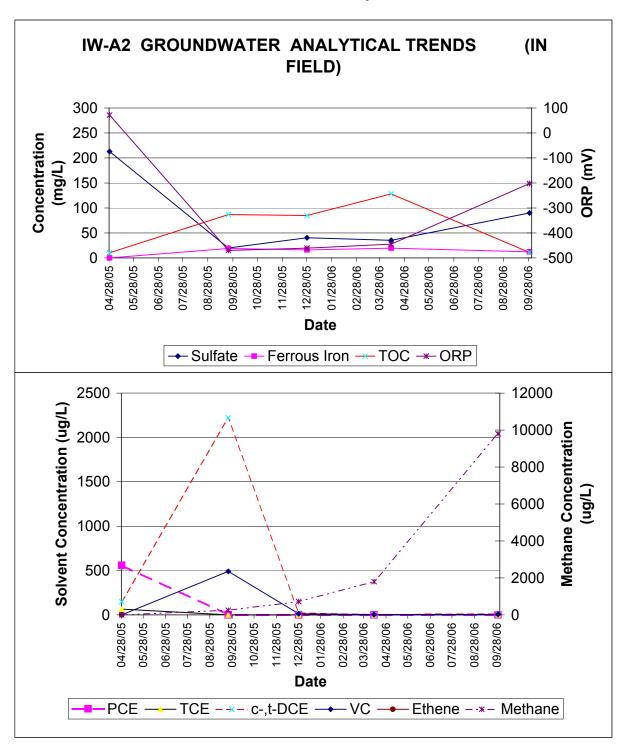
Location ID Sample ID Matrix Depth Interval (ft) Date Sampled			MW-19 MW-19 Groundwater - 09/22/05	MW-19 MW-19 Groundwater - 12/28/05	MW-19 MW-19 Groundwater - 04/11/06	MW-19 MW-19 Groundwater - 09/29/06							
							Parameter	Units	Criteria*			· · · · · · · · · · · · · · · · · · ·	
							Dissolved Gases						
							Ethane	UG/L	-	2 U	31	18 J	4.2 U
							Ethene	UG/L	-	21	22	1 J	4.2 U
Methane	UG/L	-	66 D	570 D	1,400 J	3,100 D							

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA.

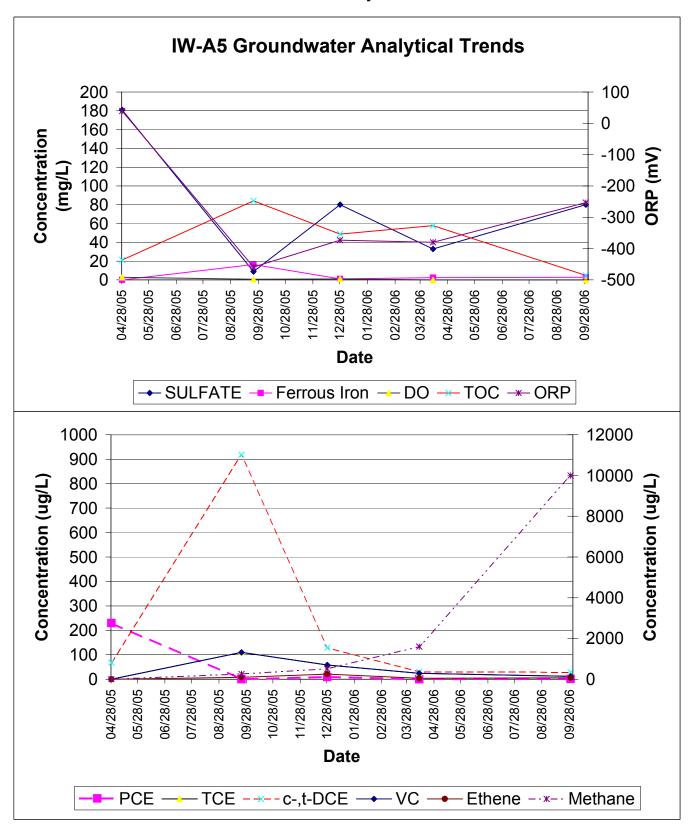
Flags assigned during chemistry validation are shown.

J - The analyte was positively identified, the quantitation is an estimation.

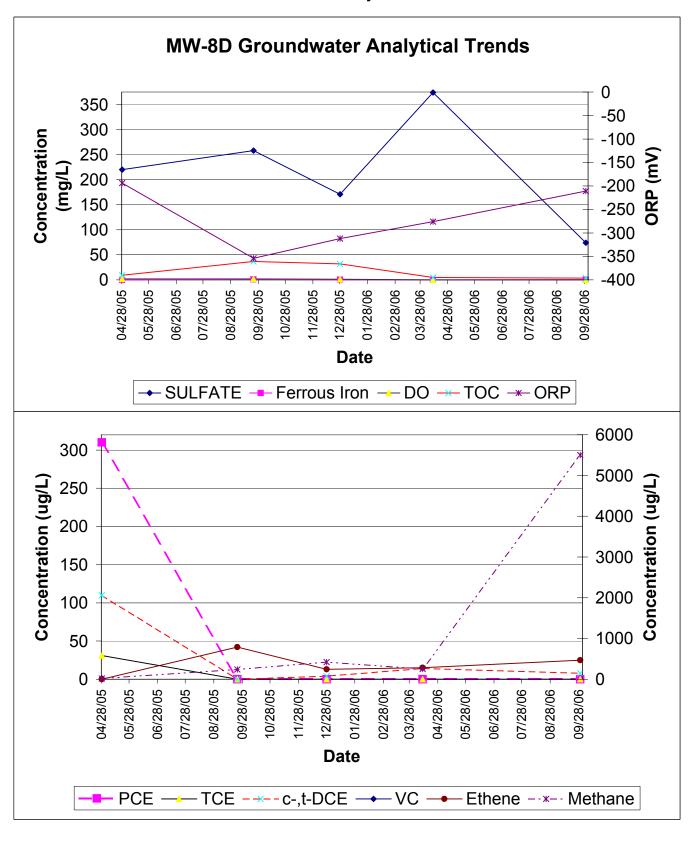
D - Result reported from a secondary dilution analysis.

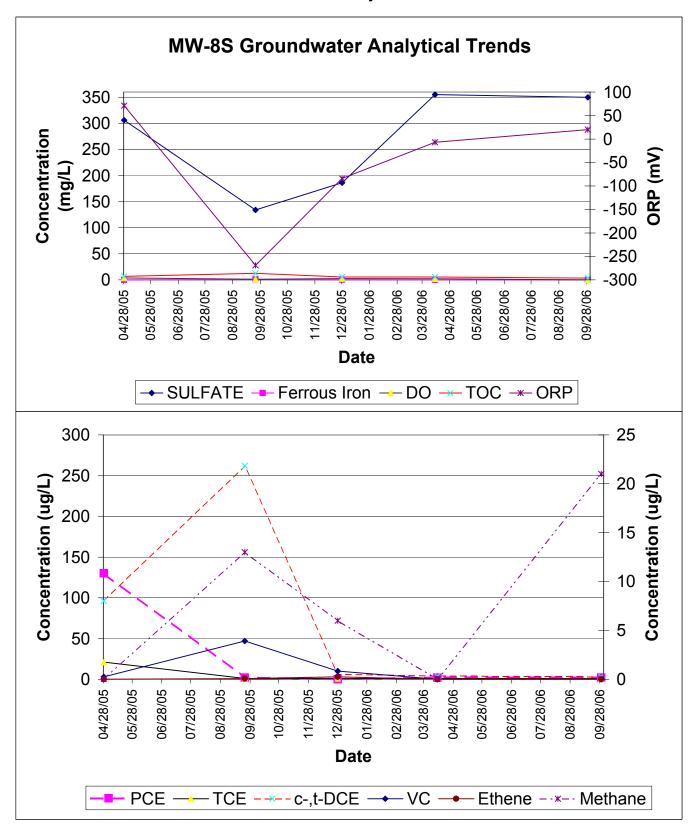

U - The analyte was not detected above the reported quantitation or detection limit.

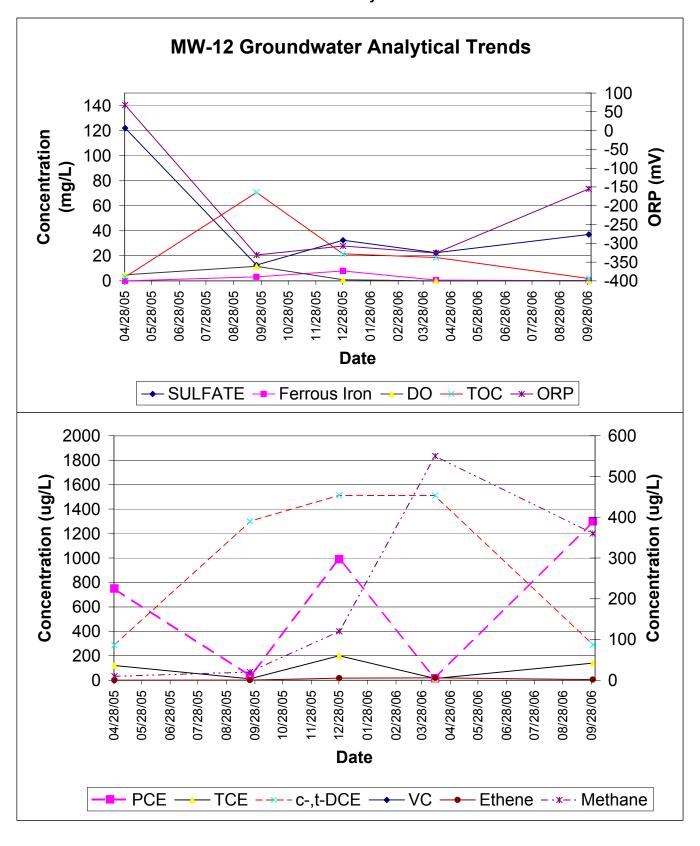
UJ - The analyte was not detected above the reported quantitation or detection limit, which is an estimated value.

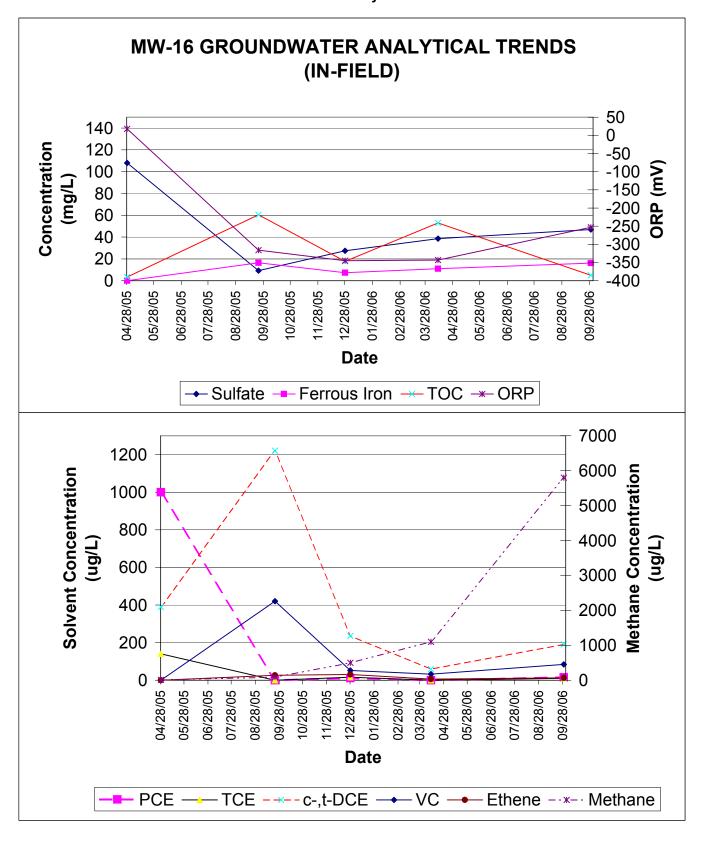

APPENDIX E

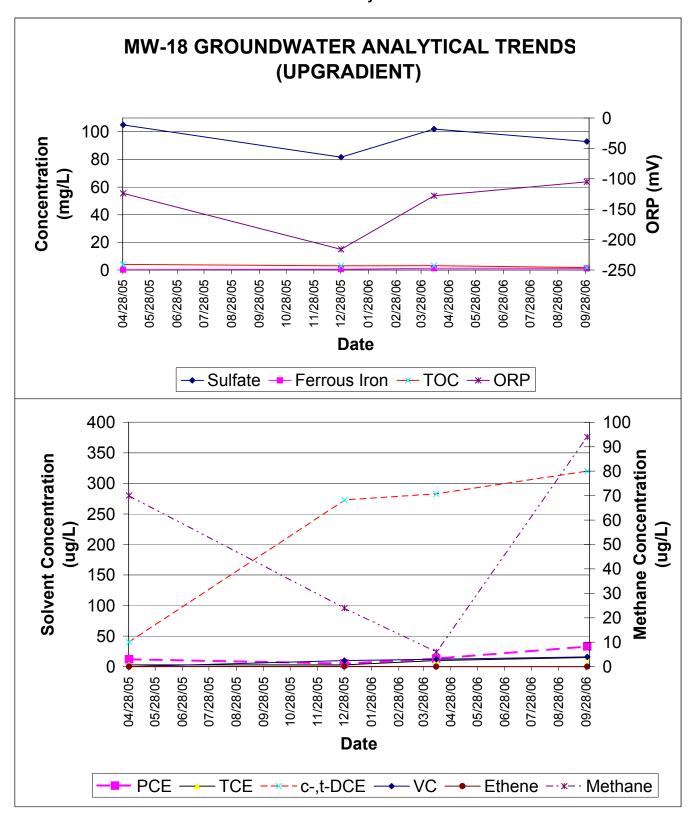
ANALYTICAL DATA TRENDS

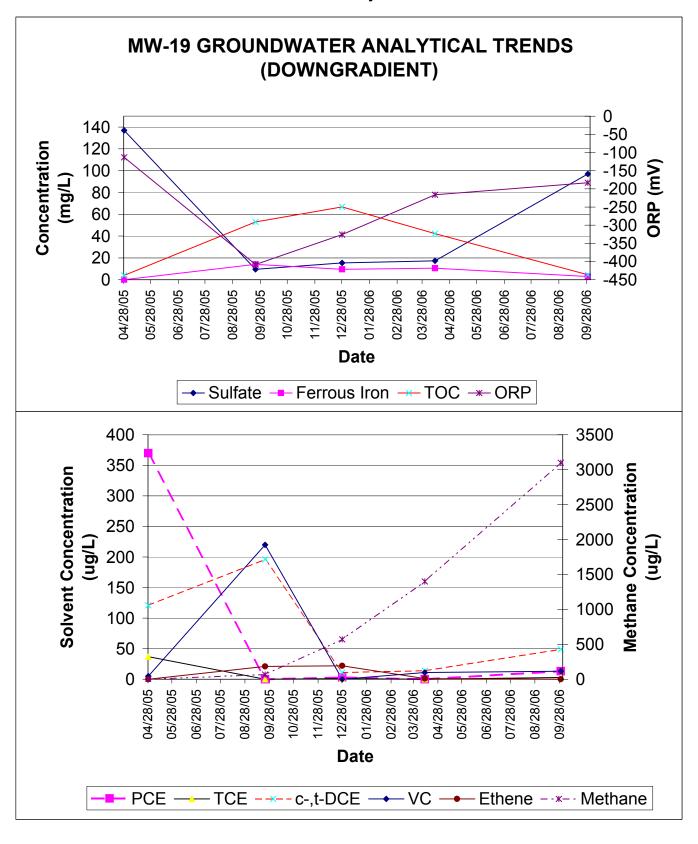

IW-A2
Groundwater Analytical Trends


IW-A5
Groundwater Analytical Trends


MW-8D Groundwater Analytical Trends


MW-8S Groundwater Analytical Trends


MW-12 Groundwater Analytical Trends


MW-16
Groundwater Analytical Trends

MW-18
Groundwater Analytical Trends

MW-19
Groundwater Analytical Trends

