

Contract Drilling and Testing

Contract Drilling and Testing

1951-1 Hamburg Turnpike Buffalo, NY 14218

55 Oliver Street Cohoes, New York 12047

P.O. Box 416 • 208 Le Fevre Road Stockertown, PA 18083 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (518) 238-1145 Fax: (518) 238-1249

Phone: (610) 746-2670 Fax: (610) 746-2669

TOLL FREE: 1-800-821-5911

ENVIRONMENTAL INVESTIGATION ABC Paving Yard 4397 Seneca Street West Seneca, New York

Prepared for

ABCS 2544 Clinton Street Buffalo, New York

Project No. D-787

June, 1996

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	OBJECTIVES AND SCOPE
3.0	SUBSURFACE EXPLORATION23.1 General23.2 Procedures33.3 Subsurface Conditions4
4.0	FIELD TESTING AND RESULTS
5.0	ANALYTICAL TESTING & RESULTS 6 5.1 Soil Sampling 6 5.2 Groundwater Sampling 8 5.3 Groundwater levels and flow direction 13
6.0	CONCLUSIONS

APPENDIX A - DRAWINGS

APPENDIX B - SUBSURFACE LOGS

APPENDIX C - MONITORING WELL COMPLETION REPORTS

APPENDIX D - MONITORING WELL DEVELOPMENT AND SAMPLING DATA

APPENDIX E - ANALYTICAL TEST RESULTS

ENVIRONMENTAL INVESTIGATION ABC PAVING YARD 4397 SENECA STREET WEST SENECA, NEW YORK

1.0 <u>INTRODUCTION</u>

SJB Services Inc. was requested and authorized by Mr. Joseph Laraiso of ABCS, to complete an Environmental Investigation on a parcel of land located at 4397 Seneca Street, Town of West Seneca, County of Erie, New York. The site is currently utilized as the office, maintenance shop, and storage yard for ABC Paving Inc..

Based on information presented to SJB Services Inc. prior to performing this investigation, the site has previously been utilized as a depository for waste byproducts from coal gas manufacturing. Several test pit trenches have been completed by others at the site in an attempt to define the limits of the waste materials.

2.0 OBJECTIVES AND SCOPE

The objective of this investigation is to address the environmental concerns defined by National Fuel Gas Distribution Corporation (National Fuel Gas) and ABCS in the previously completed test pit trenches at the site. This project was completed in accordance with our proposal dated January 31, 1996 and authorized by Mr. Joseph Laraiso, representing ABCS. This environmental investigation included the following tasks:

- 1. Initial site meeting with representative of National Fuel Gas Distribution Corporation (National Fuel Gas) to discuss scope of work and test boring location selection.
- 2. Planning of a subsurface exploration and analytical test program.

- 3. On site inspection of the drilling of eight (8) test borings, and subsequent installation of four (4) groundwater monitoring wells,
- 4. Measure organic vapor concentrations and collection of representative soil samples during the subsurface exploration phase of the project.
- 5. Development of installed wells and collection of four (4) groundwater samples.
- 6. Engage the services of a New York State Department of Health (NYSDOH) certified analytical testing laboratory to analyze soil and groundwater samples collected from the site; and,
- 7. Evaluate the data collected, and prepare this report.

3.0 SUBSURFACE EXPLORATION

3.1 GENERAL

SJB Services Inc. advanced eight (8) test borings including installation of four (4) monitoring wells at the site (Refer to Drawing No. 1 in Appendix A). The test borings and well installations were completed on May 8 th and 9 th, 1996.

The test borings were advanced to evaluate the general subsurface conditions at the site and the presence of potential contamination in the waste fills, native soils and ground water beneath the site. The test borings and monitoring wells were located in the field by representatives from SJB Services Inc. and National Fuel Gas Company based on (1) surface topography at the site and (2) previous test pit trenches excavated at the site. One (1) monitoring well location (MW-1) was assumed to be 'upgradient" of the subject site, and three locations (MW-2, MW-3 and MW-4) were assumed to be 'downgradient' of the subject site.

In addition, four (4) test borings (B-A, B-B, B-C, and B-D) were advanced for the purpose of characterizing the fills present on site, and for obtaining a representative composite sample for analytical testing.

3.2 PROCEDURES

SJB Services Inc. used both a trailer-mounted Central Mine Equipment CME-45C and a track mounted all terrain vehicle (ATV) CME-75 rotary drill rigs to advance the test borings. The test borings were advanced using 4-1/4 inch inside diameter (I.D.) hollow stem augers equipped with a center plug to prevent soil from entering the augers during drilling. Disturbed soil samples from the boring locations were recovered by driving a 24-inch long by 2-inch outside diameter (O.D.) split-spoon sampler into the soil below the bottom of the augers utilizing a 140-pound hammer freely falling 30-inches, in accordance with ASTM D-1586. The number of blows required to drive the split spoon sampler for the second and third six-inch intervals is the Standard Penetration Test (SPT) N-value and this value is recorded on the appropriate space on the boring log. Representative soils samples were stored in 8-ounce glass jars with screw-on lids denoting boring number, sample number, sample interval and blow counts. Split spoon soil sampling was done continuously from existing ground surface to the bottom of the test boring.

An SJB Services Inc. Geologist monitored the subsurface explorations in the field and prepared boring logs based on visual observations of the recovered soil samples. The soil samples were generally described using ASTM D-2488 for identification of soils. Features such

ABC Paving Yard 4397 Seneca Street

as relative density or consistency (obtained from the SPT), color, grain size, moisture, etc. were recorded on the boring logs. Boring logs are presented in Appendix "B" of this report.

Groundwater monitoring wells were installed at four (4) of the test boring locations (MW-1, MW-2, MW-3 and MW-4) upon completion of drilling and sampling. The wells consist of two-inch (2") I.D. schedule 40 polyvinyl chloride (PVC) threaded riser pipe with machine slotted (0.010-inch slot size) screens and were constructed within the hollow stem augers at the completion of drilling. The annular space between the borehole wall and the well screen was backfilled with Morie "0" filter sand. Bentonite chips were used to construct the well seal above the filter sand, and cement/bentonite grout was placed above the seal. A four-inch (4") lockable galvanized protective casing was installed with a two-foot by two-foot square (2' X 2') surface pad at grade. Monitoring well completion reports are included in Appendix "C" of this report.

All down hole equipment such as augers, drill rods, and split spoon samplers were steam cleaned/ pressure washed prior to arrival on site. Additionally, all equipment was steam cleaned/ pressure washed between test borings and prior to leaving the site. All decontamination water and drill cuttings were collected in 55-gallon drums and stored on-site.

3.3 SUBSURFACE CONDITIONS

SJB Services Inc. evaluated and interpreted the subsurface conditions at the subject site based on the eight (8) widely spaced test borings completed during this study. Variation from the inferred soil characterization and ground water observations should be expected. The

subsurface logs should be referred to for a specific description of the subsurface conditions at each boring location. The following description of the subsurface condition is general in nature.

Test Borings B-A, B-B, B-C, B-D and MW-1 encountered miscellaneous fill materials consisting of silts, slag, lime and concrete to depths of approximately 9-feet to 11-feet below grade. Natural soils, consisting of clayey silts and fine to coarse sands, were encountered underlying the fills. Auger refusal on Shale bedrock was encountered at 15-feet below grade in boring location MW-1.

Test Borings MW-2. MW-3 and MW-4 encountered indigenous silts overlying interbedded alluvial sands and gravel soils. Refusal on Shale bedrock was encountered at depths ranging from 8-feet to 10-feet below grade.

4.0 FIELD TESTING AND RESULTS

In conjunction with the field exploration program, field measurements were taken by SJB Services Inc. to evaluate the presence and/or organic vapor concentrations in the air. Test procedures and results for the field measurements are discussed below.

Organic vapor monitoring was done during the test boring program and compared to background measurements to indicate potentially hazardous substances below the ground surface. Organic vapor measurements were taken at the top of hollow stem augers with the augers set at various depths during drilling, on soil samples as they were removed from the split-spoon sampler and in the sample jar headspace after the soil samples were placed in the sample jar.

Organic vapor measurements were obtained using a photoionization detector (PID). The PID used to measure total organic vapors was an Hnu Model PI 101 manufactured by Hnu Systems, Inc., with a 10.2 eV ultraviolet light source. The PID was calibrated with factory standard reference gas daily prior to use.

Ambient background organic vapor measurements were taken upwind of each borehole location prior to drilling to establish site conditions. The range of these "background" readings during the monitoring period (June 8 th and 9 th , 1996) were 0.0 to 2.0 parts per million (ppm). The PID readings obtained during the drilling and sampling ranged from "background" to slightly above "background" (2 ppm) in test boring MW-1. The PID readings obtained are a quantitative measurement utilized for general reference and are affected by sample moisture and temperature. PID measurements taken on the recovered soil samples are presented on the subsurface boring logs enclosed in Appendix B.

5.0 ANALYTICAL TESTING AND RESULTS

5.1 Soil Sampling

Representative fill/soil samples were collected from test borings B-A, B-B, B-C and B-D during the subsurface exploration program. Two (2) site soils composite samples (designated S-1 and S-2) were produced from the recovered split spoon samples. Sample S-1 (outside fence) was composed of the recovered samples of borings B-A and B-B, and Sample S-2 (inside fence) was composed of the recovered samples from borings B-C and B-D. The soil sample was composited in a precleaned stainless steel mixing bowl from the entire depth of the test boring.

The composite samples then were placed into individual precleaned 125 ml. glass jars supplied by the analytical laboratory. SJB Services notes that the composite samples were "split" with Mr. Christopher Cej of National Fuel Gas for independent analytical testing. The soil samples were then placed in an ice cooler at approximately 4-degrees C for shipment to Columbia Analytical Services (CAS) in Amherst, New York. CAS is a New York State Department of Health (NYSDOH) certified analytical testing laboratory. The soil samples collected from test borings were analyzed for pH, total Cyanide, and Total Petroleum Hydrocarbons (TPH - test method 310-13).

Analytical test results on the composite soil samples S-1 and S-2 indicated high pH (alkaline) and elevated concentrations of cyanide and petroleum hydrocarbons. The results are summarized in Table 1 of this report.

			ANALYTIC	TABLE 1 CAL TEST RES OSITE FILL/SOI	ULT SUMMA	Na jakutu e R Y Ster	
•••	SAMPLE ID	pH (s.u.)	TOTAL CYANIDE (PPM)	N- DODECANE (PPB)	FUEL OIL #2 (DIESEL) (PPB)	GASOLINE (PPB)	KEROSENE (PPB)
	S-1	12.1	286	10,000	N.D.	N.D.	N.D.
Y diese	S-2	12.0	678	N.D.	330,000	N.D.	N.D.

NOTE: N.D. - Not detected in sample at practical limits

The current New York State Department of Environmental Conservation action levels for total Cyanide in soils range from 250 PPM to approximately 800 PPM. Cleanup objective levels are site specific based on soils composition, pH, and form of Cyanide present at the site.

5.2 Groundwater Sampling

The monitoring wells installed by SJB Services Inc. were developed and purged prior to sampling. Development and purging was completed on May 8th, 9th, and 10th 1996. A Polyvinyl Chloride (PVC) bailer was used to develop, purge and sample the wells. The bailer was decontaminated between locations using an Alconox wash, followed by a steam cleaning/pressure wash rinse. Monitoring well development and sampling field data sheets are included in Appendix 'D' of this report.

Ground water samples were obtained by carefully lowering a bailer equipped with a bottom filling check valve into the well, and allowing it to fill. The bailer was slowly withdrawn, and the contents emptied into appropriate precleaned sample containers provided by the analytical laboratory. Where required, the groundwater samples were preserved with the materials provided by the analytical laboratory. The samples were then placed in an ice cooler at approximately 4-degrees C and delivered to Columbia Analytical Services for testing. The samples were tested for the Target Compound List (TCL) of Metals, Volatile and Semi-volatile Organics, Pesticides and Polychlorinated Biphenyls (PCB's).

The levels of the compounds detected were compared to the New York State Department of Environmental Conservation (NYSDEC) Class AA Fresh Surface Water Quality Standards dated September 1, 1991. Several Metals, Volatile and Semi-Volatile compounds were detected at elevated concentrations. The following tables briefly summarize the reported data.

	ANALYTICAL TEST RESULT	S							
	MONITORING WELL MW - 1								
ANALYTE	LEVEL DETECTED (PPB)	NYSDEC STANDARD							
		(PPB)							
Aluminum	14,300	100							
Chromium	25.5	11							
Cyanide	145	100							
Iron	41,600	300							
Manganese	2,090	300							
Acetone	39	N.S.							
Bis (2-Ethylhexyl) Phthalate	7.2	50							
PESTICIDES	None Detecte	d in Sample							
PCB's	None Detecte	d in Sample							

	ANALYTICAL TEST RESULTS	5
	MONITORING WELL MW-2	
ANAYLTE	LEVEL DETECTED (PPB)	NYSDEC STANDARD
		(PPB)
Aluminum	64,800	100
Chromium	108	11
Cyanide	92.5	100
Cobalt	62.9	5
Iron	125,000	300
Magnesium	56,500	35,000
Manganese	1,290	300
Selenium	23.3	10
Sodium	25,900	20,000
Vanadium	99.6	14
Zinc	343	300
VOLATILES	NONE DETECTE	D IN SAMPLE
SEMI-VOLATILES	NONE DETECTE	D IN SAMPLE
PESTICIDES	NONE DETECTE	D IN SAMPLE
PCB'S	NONE DETECTE	D IN SAMPLE

	ANALYTICAL TEST RESULTS	S
	MONITORING WELL MW-3	
ANALYTE	LEVEL DETECTED (PPB)	NYSDEC STANDARDS
		(PPB)
Aluminum	8,200	100
Chromium	13.8	11
Cyanide	22.9	100
Iron	11,900	300
Sodium	32,600	20,000
Acetone	79	N.S.
2-Butanone (MEK)	18	N.S.
Bis(2-Ethylhexyl)	28	50
Phthalate		
PESTICIDES	NONE DETECTE	ED IN SAMPLE
PCB'S	NONE DETECTE	ED IN SAMPLE

NOTE: N.S. indicates no published standard

1	ANALYTICAL TEST RESULTS	S
	MONITORING WELL MW-4	
ANALYTE	LEVEL DETECTED (PPB)	NYSDEC STANDARDS
		(PPB)
Aluminum	108,000	100
Arsenic	54	50
Chromium	181	11
Cobalt	91	5
Cyanide	None Detected	100
Iron	205,000	300
Magnesium	1,790	300
Sodium	103,000	20,000
Vanadium	159	14
Zinc	544	300
VOLATILES	NONE DETECTE	ED IN SAMPLE
SEMI-VOLATILES	NONE DETECTE	ED IN SAMPLE
PESTICIDES	NONE DETECTE	ED IN SAMPLE
PCB'S	NONE DETECTE	ED IN SAMPLE

5.3 Ground water levels and flow direction

Upon completion of installation of the four (4) monitoring wells at the site, SJB Services established surface and top of riser elevations at the well locations. Standard leveling procedures with a David White optical level/transit were used to determine elevations. The benchmark utilized was the rim of a sanitary manhole designated Manhole #9 on the site survey provided to SJB Services. This benchmark has an established elevation of 644.3'. The elevations are summarized in the following table.

	TAB	LE 2							
MONITORING WELL ELEVATION DATA									
MONITORING	GROUND	TOP OF	GROUNDWATER						
WELL	SURFACE	RISER	ELEVATION						
	ELEVATION	ELEVATION	(MAY 8,9 1996)						
MW - 1	649.9	652.5	644.3						
MW - 2	63 7 .7	640.3	632.4						
MW - 3	638.0	640.4	631.8						
MW - 4	639.3	641.8	636.6						

Based on the limited groundwater elevation data obtained, it appears that groundwater flow is in a due south direction towards Cazenovia Creek.

6.0 <u>CONCLUSIONS</u>

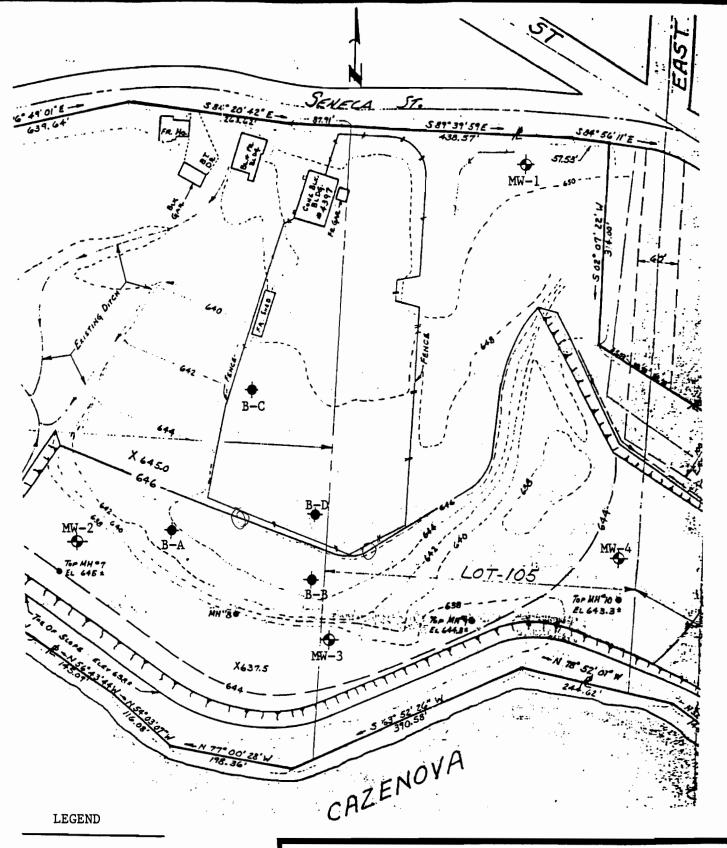
Based on the data collected from the test borings, monitoring well installation and limited groundwater sampling program at the site, it appears that the groundwater beneath the subject site and due south of the site has been slightly impacted by the presence of the onsite fills. Elevated levels of Cyanide were detected in Monitoring Wells MW-1, MW-2 and MW-3, however, these levels are below the NYSDEC Standards for remediation. Also, elevated concentrations of other metals were noted in the groundwater samples. Sampling and analysis of the wells will be required in the future to determine if contaminant levels are increasing or decreasing.

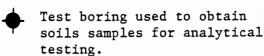
Additionally, we note that Monitoring Well MW-3 is immediately south of the sanitary sewer traversing the site in a east to west direction. The granular pipe bedding in the sewer trench may be diverting some of the groundwater flow (and potentially any contamination) off the subject site. Additional investigations may be required to determine extent, if any, of offsite migration in this manner.

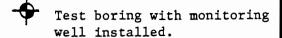
We trust that this report presented herein satisfies your current requirements. Should you have any questions or comments, please do not hesitate to contact our office. We have appreciated the opportunity to work with you on this project.

Respectfully submitted,

SJB SERVICES INC.

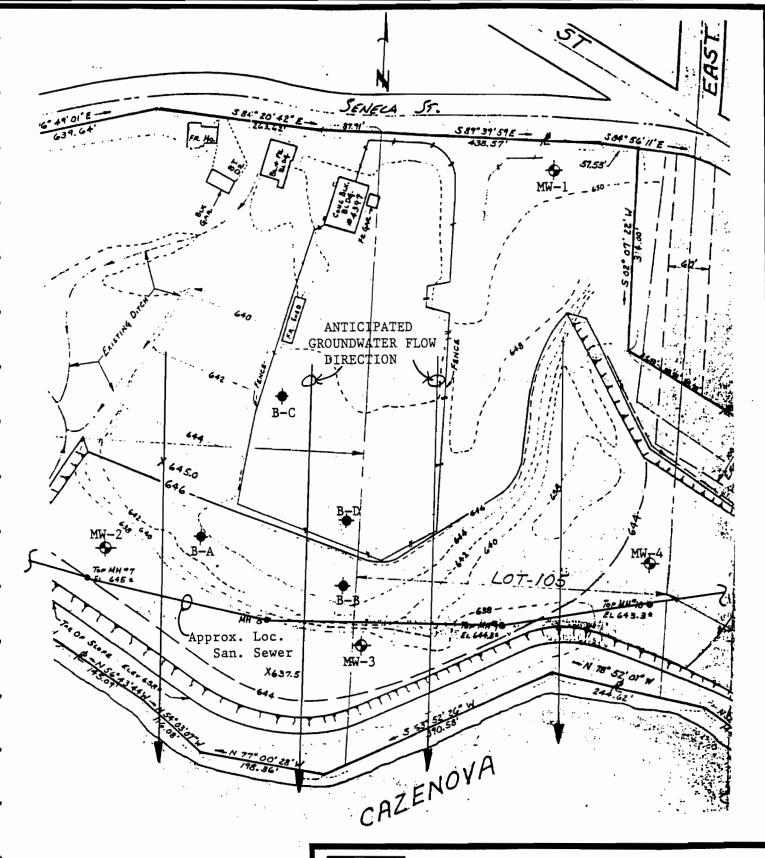

Frank R. Minnolera Jr.


Staff Geologist


Stanley J. Blas

President

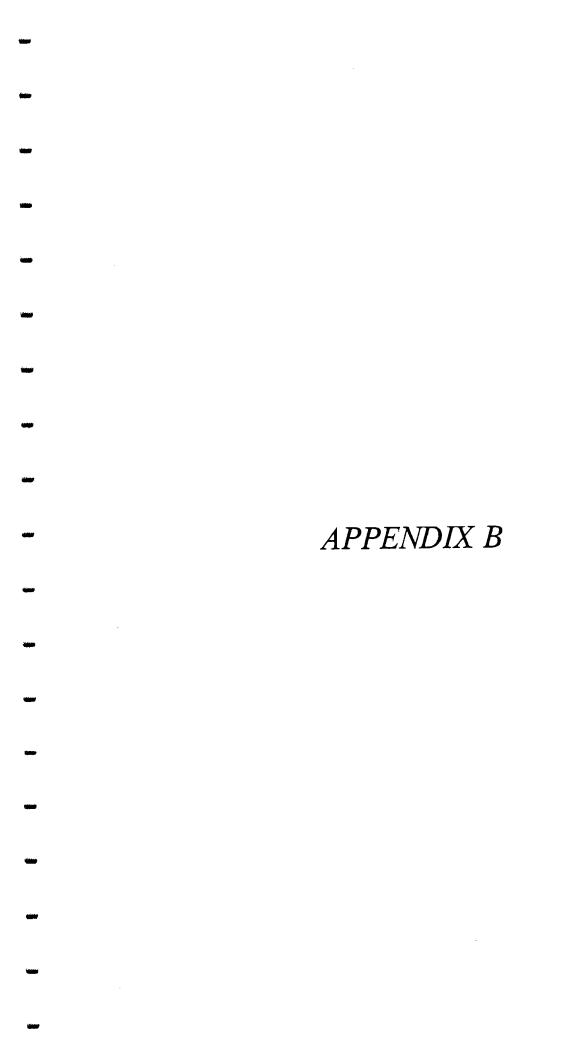
APPENDIX A



SJB Services, Inc. SUBSURFACE INVESTIGATION PLAN

Test Boring and Monitoring Well Installations ABC Yard, 4397 Seneca Street, West Seneca N.Y.

DR. BY:	SCALE: Reduced	PROJ. NO.: D-787
CK'D BY:FRM	DATE: 6/96	DRWG NO.: 1


MONITORING	GROUND	TOP OF	GROUNDWATER
WELL	SURFACE	RISER	ELEVATION
	ELEVATION	ELEVATION	(MAY 8,9 1996)
MW - 1	649.9	652.5	644.3
₩W - 2	637.7	640.3	632.4
MW-3	638.0	640.4	631.8
MW -4	ഞാ	641.8	636.6

SJB Services, Inc. SUBSURFACE INVESTIGATION PLAN

Anticipated Groundwater Flow Direction ABC Yard, 4397 Seneca St., West Seneca

DR. BY:	SCALE: Reduced	PROJ. NO.: D-787
ĆK'D BY:FRM	DATE: 6/96	DRWG NO.: 2

DATE:

STARTED FINISHED 5/2/96 5/2/96 SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-1 SURF. ELEV 649.9

G.W. DEPTH See Notes

SHEET 1 OF 1

PROJ. NO.: D-787

PROJECT: ABC Yard

LOCATION: 4397 Seneca Street

PTH										SMPL	BLOWS ON SAMPLE			£Α	PID	SOIL OR ROCK	NOTES
т.		NO.	0/6	6/12	12/18	N	(ppm)	CLASSIFICATION									
I	7	1	2	5				White and Brn. SILT and Lime (moist, FILL)	PID Reading Obtained								
٦	/ [5	6		10	BKG	, ,	Utilizing an Hnu Model								
		2	2	2				White LIME (moist, FILL)	PI-101, Photoionization								
٦	/ [2	2		4	BKG	,	Detector and are								
5 <u> </u>		3	2	4				Black, Brn. and White SILT, tr. sand, tr. lime,	Expressed in Parts-Per								
³ –	/ [5	6		9	BKG	tr. wood (moist, FILL)	Million (PPM)								
7	7	4	21	12				Brn. and Black SLAG, tr. lime (wet, FILL)									
_	/ [9	6		21	1-2	, , , , , , , , , , , , , , , , , , , ,	BKG=0-1 PPM								
		5	3	3				Brn. and Black Clayey SILT, little f-c Sand									
٦	/ [5	5		8	BKG	(moist, FILL)									
ہے ہ	7	6	2	3													
	/		4	4		7	BKG										
_	7	7	4	12				Gray-Black Weathered SHALE Rock (moist)									
_		-	50/0			-	BKG	,									
5	Ī																
-	Ī																
٦	Ī																
7	Ī							Boring Complete at 15.0'	Free Standing Water								
	Ī								Recorded at 5.5' at								
20 _	Ī								Boring Completion								
	Ī						l										
									2" PVC Groundwater								
	j								Monitoring Well Installed								
	Ī								at Boring Completion								
25	Ī		i														
.5		-							Refer to Installation								
٦	ľ								Log for Details								
						·											
_																	
-																	
							,										
5 _																	
					·												

N = NO. BLOWS TO DRIVE 2" SPOON 12" WITH A 140 LB. PIN WT. FALLING 30" PER BLOW CLASSIFICATION:

DRILLER: A. Koske DRILL RIG TYPE: 75 Nodwell VISUAL BY GEOLOGIST

DATE:

STARTED FINISHED 5/3/96 5/3/96

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-2 SURF. ELEV 637.7

G.W. DEPTH See Notes

SHEET ____1 OF __1

PROJ. NO.: D=787

PROJECT: ABC Yard

Yard . LOCATION: 4397 Seneca Street

РТН		SMPL	BLO	LOWS ON SAMPLER			PID	SOIL OR ROCK	NOTES
г.		NO.	0/6	6/12	12/18	N	(ppm)	CLASSIFICATION	
	7	1	woh	/1.0				Brn. SILT, trlittle fine SAND, tr. roots (moist, loose, ML)	PID Reading Obtained
	/[1	2		1	BKG		Utilizing an Hnu Model
	7	2	1	2				Becomes orange-brn, contains numerous f-c	PI-101, Photoionization
٦	/ [1	2		3	BKG	Sand Seams (moist-wet)	Detector and are
_		3	1	1				Carra Coarra (Marco May	Expressed in Parts-Per
5 🗕	/		3	7		4	BKG		Million (PPM)
-		4	5	3			Ditta		
	/ †			50/0).4		BKG	Gray SHALE Rock (moist)	BKG=0-1 PPM
۰ ــ									
								Boring Complete at 8:0'	No Free Standing Water
									Encountered at Boring
									Completion
5 _									2" PVC Groundwater
Ĭ									Monitoring Well Installed
									at Boring Completion
T									at 20111g completion
									Refer to Installation
\dashv								•	Log for Details
° –				_					Log for Details
-									
	-								woh=weight of hammer
\dashv	-								and rods
\dashv	-								
5 🗕	-								
4	-								
_	Ļ								
_									
_									
_ ہ									
		Ī							
5 🗌									
٦									
\neg									
_	-								
o 🛁	!								

Ν	=	NO.	BLOWS	TO	DRIVE	2"	SPOON 1	2°	WITH A	140	LB.	PIN	WT.	FALLING	30"	PER	BLOW	CLASSIFICATION:

DRILLER: A. Koske _____ DRI

DRILL RIG TYPE: 75 Nodwell

VISUAL BY GEOLOGIST

DATE: STARTED FINISHED PROJ. NO.: D-787

5/3/96

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-3 SURF. ELEV 638.0

G.W. DEPTH See Notes

5/3/96 SHEET ____1 OF __1

LOCATION: 4397 Seneca Street PROJECT: ABC Yard

тн	SMPL	BLO	BLOWS ON SAMPLER				SOIL OR ROCK	NOTES
	NO.	0/6	6/12		N	PID (ppm)		
	1						Brn. SILT, tr. sand, tr. clay (moist, loose, ML)	PID Reading Obtained
-/		3	2		4	BKG	, ,	Utilizing an Hnu Model
	2	+	3			Ditto	Contains little f-c Sand	PI~101, Photoionization
//	<u> </u>	_			_	DICC	Contains little 1—C band	Detector and are
/		4	6		8	BKG	Don't a ODANET and the Oracle Bible Oils force	
5 🛶 /	<u>3</u>		10				Brn. f-c GRAVEL and f-c Sand, little Silt (wet,	Expressed in Parts – Per
\perp	*	10				BKG	firm, GW-GM)	Million (PPM)
	4	40	50/0).4	REF			
							Gray SHALE Rock (moist)	BKG=0-1 PPM
٥٦								
-							Boring Complete at 8.0'	No Free Standing Water
\neg				-				Encountered at Boring
								Completion
-								Completion
_		-						2" PVC Groundwater
5								
_					<u> </u>			Monitoring Well Installed
								at Boring Completion
								Refer to Installation
.0								Log for Details
								woh=weight of hammer
-								and rods
\dashv								and rods
		-						
5		 	<u> </u>		 		•	
_	ļ							
۰								
_								
5 🗕								
\dashv								

N = NO. BLOWS TO DRIVE 2" SPOON 12" WITH A 140 LB. PIN WT. FALLING 30" PER BLOW CLASSIFICATION:

DRILL RIG TYPE : 75 Nodwell VISUAL BY GEOLOGIST DRILLER: A. Koske

DATE: SJB SERVICES, INC. HOLE NO. MW-4 STARTED 5/3/96 SUBSURFACE LOG **FINISHED** SURF. ELEV 639.3 5/3/96 1_OF__1 G.W. DEPTH See Notes SHEET PROJECT: ABC Yard LOCATION: 4397 Seneca Street PROJ. NO.: D-787 PID SOIL OR ROCK DEPTH BLOWS ON SAMPLER **NOTES** SMPL CLASSIFICATION 0/6 6/12 12/18 N (ppm) NO. 1 woh/1.0 Brn. SILT, tr. sand, tr. roots, tr. clay (moist, loose, ML) PID Reading Obtained 2 BKG 2 2 Utilizing an Hnu Model 2 2 PI-101, Photoionization 1 3 5 BKG Brn. f-c SAND, tr-little Silt, tr. gravel (wet, loose, SW) Detector and are 2 Expressed in Parts-Per-3 woh 1 İ 2 1 3 BKG Million (PPM) 4 4 2 20 50/0.1 24 BKG BKG=0-1 PPM Gray SHALE Rock (moist) woh=weight of hammer and rods Boring Complete with Auger Refusal at 10.0' No Free Standing Water Encountered at Boring Completion 2" PVC Groundwater Monitoring Well Installed at Boring Completion Refer to Installation Log for Details

N = NO. BLOWS TO DRIVE 2* SPOON 12* WITH A 140 LB. PIN WT. FALLING 30* PER BLOW CLASSIFICATION:

DRILLER: A. Koske

DRILL RIG TYPE: 75 Nodwell

VISUAL BY GEOLOGIST

DATE:

STARTED FINISHED 5/3/96 5/3/96 SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-A SURF. ELEV N/A

G.W. DEPTH See Notes

SHEET ____1 OF __1

PROJECT: ABC Yard

LOCATION: 4397 Seneca Street

PROJ. NO.: D-787

РТН	SMPL	81	LOWS ON SAMPLER			PID	SOIL OR ROCK	NOTES
r.	NO.	0/8	6/12	12/18	N	(ppm)	CLASSIFICATION	
/	1	9	8				Black SILT, little f-c Sand, tr. brick, tr. slag	PID Reading Obtained
7/		5	7		13	BKG	(moist, FILL)	Utilizing an Hnu Model
17	/ 2	8	7				Black SLAG and Cinders (moist, FILL)	Pi-101, Photoionization
7/		13	10		20	BKG	• • • •	Detector and are
5/	/ 3	14	$\overline{}$					Expressed in Parts-Per-
° - /		9		1	21	BKG		Million (PPM)
	4	11	6					,
7/		6	5	-	12	BKG		BKG=0-1 PPM
	/ 5							2112 5 111111
_ /		1	2		3	BKG	Black-Brn. Clayey SILT, little f-c Sand, tr. slag	-
0 _/_	/ ε				Ť	2.10	(moist, FILL)	
-/	ļ	1	2		3	BKG	Olive-Brn. and Gray Clayey SILT, tr. roots (moist,	
-/-		+	_			2.10	soft, ML)	
\dashv								
_		-					Boring Complete at 12.0'	No Free Standing Water
15 🗕							Desired and Indiana	Encountered at Boring
-		-						Completion
-		-						Completion
-	-	<u> </u>						
-	-	-					•	
20 🗕	_	1	! ! 					
-	-							
_		-						
_								
-								
5 🗕		<u> </u>						
_								
		1						
_				<u> </u>				
o _								
.5 _								
\neg								
\dashv								
\dashv			-					

N = NO. BLOWS TO DRIVE 2° SPOON 12" WITH A 140 LB. PIN WT. FALLING 30° PER BLOW CLASSIFICATION:

DRILL RIG TYPE: 75 Nodwell VISUAL BY GEOLOGIST DRILLER: A. Koske

DATE: SJB SERVICES, INC. STARTED 5/3/96 HOLE NO. B-B SUBSURFACE LOG FINISHED 5/3/96 SURF. ELEV N/A G.W. DEPTH See Notes <u>_1</u> OF <u>__1</u> SHEET PROJECT: ABC Yard LOCATION: 4397 Seneca Street PROJ. NO.: D-787 PID SOIL OR ROCK NOTES BLOWS ON SAMPLER DEPTH SMPL 6/12 12/18 (ppm) CLASSIFICATION NO. Brn. f-c SAND, little-some Silt, tr. slag (moist, FILL) 6 19 27 BKG 21 2 10 8 REF BKG 50/0.4 3 23 50/0.4 REF BKG Gray CONCRETE Fragments (moist, FILL) Million (PPM) 4 1 1 White LIME (wet, FILL) 4 2 BKG 1 5 4 4 Brn. f-c SAND, little Silt, tr. gravel (wet, loose, SW) 7 BKG 3 2 to 8.0' 2 7 (firm) 6 15 BKG 8 10 Boring Complete at 14.0' Completion

PID Reading Obtained Utilizing an Hnu Model PI-101, Photoionization Detector and are Expressed in Parts-Per-BKG=0-1 PPM Poor Recovery Sample #2 Auger Through Concrete Topsoil Encountered at 9.5'. No Free Standing Water Encountered at Boring N = NO. BLOWS TO DRIVE 2" SPOON 12" WITH A 140 LB. PIN WT. FALLING 30" PER BLOW CLASSIFICATION: DRILLER: A. Koske DRILL RIG TYPE: 75 Nodwell VISUAL BY GEOLOGIST METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

DATE:

STARTED FINISHED 5/3/96 5/3/96 SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-C SLIRF. ELEV N/A

G.W. DEPTH See Notes

SHEET ____1 OF __1

PROJECT: ABC Yard

LOCATION: 4397 Seneca Street

	SMPL	BLO	ows on	SAMPL	£R.	PID	SOIL OR ROCK	NOTES
	NO.	0/6	6/12	12/18		(ppm)		
1/	1	8	5			Ì	BrnBlack SILT and Cinders, tr. slag (moist, FILL)	PID Reading Obtained
_/		2	3		7	BKG		Utilizing an Hnu Model
	2	2	3				Contains tr. wood fragments	PI-101, Photoionization
-/		7	4		10	BKG		Detector and are
1	3		2			D. KG		Expressed in Parts-Per
7/		2	1		4	BKG	White LIME (moist, FILL)	Million (PPM)
/	4	1	1			D. CC	TTIME ENTE (MOISE, TEE)	
\dashv /	4	1	1	_		BKG		BKG=0-1 PPM
- <u>/</u>	, -				-	bka	Contains occasional Slag Seams	BRG=0- 111 W
- /		woh			_	BKC	Contains occasional Stay Seams	wah-waight of hamma
/		1	2	i	1	BKG		woh=weight of hammer
/	6		4		_	Dicc		and rods
1		5	3		9	BKG	OF B OF OUT	
/ إ	7	4	5				Olive-Brn. Clayey SILT, tr. sand (moist, ML)	
/		5	7		10	BKG		_
_ /	8	5	7				Brn. f-c SAND, little f-c Gravel, trlittle Silt	
$\bot\!$		9	5		16	BKG	(wet, firm, SW)	
							Boring Complete at 16.0'	Borehole Grouted to Gra
								at Completion
_								
_								
_								
٦					_			
_						i		
-								
\dashv								į
\dashv								
-			i					
_			<u> </u>	l		İ		
-								
-	ļ							
4								
_		l						
_								
7								l l

N = NO. BLOWS TO DRIVE 2" SPOON 12" WITH A 140 LB. PIN WT. FALLING 30" PER BLOW CLASSIFICATION:

VISUAL BY GEOLOGIST DRILL RIG TYPE : CME 45C DRILLER: R. Steiner

DATE:

STARTED FINISHED 5/3/96 5/3/96

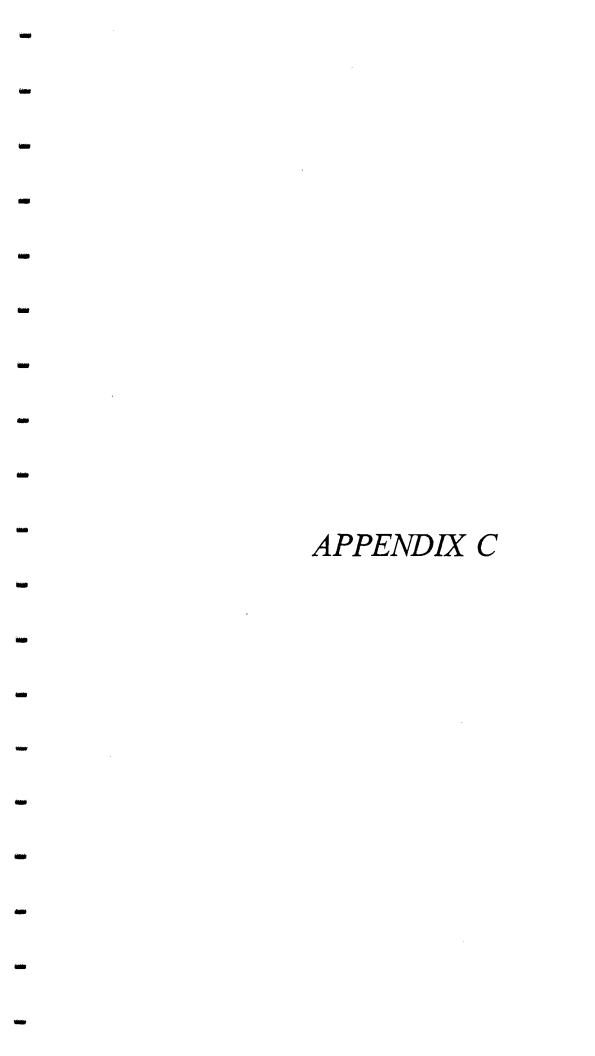
SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-D SURF. ELEV N/A

G.W. DEPTH See Notes

SHEET ____1 OF __1

ABC Yard LOCATION: 4397 Seneca Street


PROJ. NO.: D-787

PROJECT:

тн		SMPL	BLC	ws on	SAMPL	ER.	PID	SOIL OR ROCK	NOTES
.		NO.	0/6	6/12	12/18	N	(ppm)	CLASSIFICATION	
	7	1	8	3				Brn. and White SILT, little f-c Sand, tr. slag	PID Reading Obtained
_/	/ [5	7		8	BKG	tr. lime (moist, FILL)	Utilizing an Hnu Model
	1	2	21	30				Black SLAG and Cinders, tr. lime (moist, FILL)	PI-101, Photoionization
_/	/		30	50		60	BKG		Detector and are
	7	3	27	26					Expressed in Parts-Per-
'	⊺ /		27	18		53	BKG		Million (PPM)
	1	4	13	7					
_/	/ [6	12		13	BKG		BKG=0-1 PPM
	1	5	2	1				(wet)	
۷.	/ [2	3		3	BKG		Poor Recovery Sample #
ر آ	/	6	2	1					
7/	/		1	2		2	BKG		
	1	7	1	woh	/1.5			Brn. Clayey SILT, tr. sand (moist, ML)	woh=weight of hammer
7/	/					woh	BKG		and rods
5 <u> </u>	7	8	woh	1					
° – /	/ [2	2		3	BKG	BrnGray f-c SAND, tr. silt (wet)	
7									
	Ī								
	Ī				-			Boring Complete at 16.0'	Borehole Grouted to Gra
٥	Ì								at Completion
	Ī								
_	ı					i			
_	ı								
٦	r								
5 _	Ī								
, –	Ī								
7	İ								
7									
٦	-								
	i					ļ			
	Ī					İ			
_									
5 _									

N = NO. BLOWS TO DRIVE 2" SPOON 12" WITH A 140 LB. PIN WT. FALLING 30" PER BLOW CLASSIFICATION:

DRILLER: R. Steiner DRILL RIG TYPE : CME-45C VISUAL BY GEOLOGIST

Elevations/Top of Surface Casing: Stick-Up/Top of Surface Casing: Elevation/Top of Riser Pipe: Type of Surface Seal: Concrete Pad 1.D. of Surface Casing: Type of Backfill: Borehole Diameter: 1.D. of Riser Pipe: Type of Riser Pipe: 1.D. of Riser Pipe: Type of Backfill: Borehole Diameter: 1.D. of Riser Pipe: 2" Type of Riser Pipe: Type of Riser Pipe: Depth of Seal: Depth of Seal: Depth of Seal: Depth of Seal: Depth of Seal: Depth of Seal: Depth Top of Screen: Type of Screen: Type of Screen: Type of Screen: Type of Screen: Type of Sand Pack: Depth Bottom of Screen: Depth Bottom of Sand Pack: Type of Backfill Below Observation Well: Morie 0 Filter Sand Elevation/Depth of Hole: Elevation/Depth of Hole: 15.0¹			
Type of Surface Casing: Lockable Galavanized Type of Backfill: Cement/Bentonite Grout Borehole Diameter: ± 8" I.D. of Riser Pipe: 2" Type of Riser Pipe: PVC - Flush Joint Threaded Depth of Seal: 4.0' Type of Sand Pack: 7.0' Depth Top of Screen: 9.9' Type of Screen: PVC - Flush Joint Threaded Slot Size x Length:010 x 5.0' I.D. of Screen: 2" Type of Sand Pack: Morie 0 Filter Sand Depth Bottom of Screen: 14.9' Depth Bottom of Sand Pack: 15.0' Type of Backfill Below Observation Well: Morie 0 Filter Sand	ELEV.	Stick-Up/Top of Surface Casing: Elevation/Top of Riser Pipe: Stick-Up/Top of Riser Pipe: Type of Surface Seal:	652.5
Elevation/Depth of Hole:15.0 '		Type of Surface Casing: Lockable Galavani Type of Backfill: Cement/Bentonite Grout Borehole Diameter: ± 8" I.D. of Riser Pipe: 2" Type of Riser Pipe: PVC - Flush Joint Thr Depth of Seal: Bentonite Chips Depth of Sand Pack: Depth Top of Screen: Type of Screen: PVC - Flush Joint Thre Slot Size x Length: .010 x 5.0' I.D. of Screen: 2" Type of Sand Pack: Morie 0 Filter Sand Depth Bottom of Screen: Depth Bottom of Sand Pack: Type of Backfill Below Observation Well:	7.0' 9.9' eaded
		Elevation/Depth of Hole:	15.0'

Well Number: MW - 2 Drilling Method: ASTM D1586 using HSA Project: ABC Yard Geologist: F. Minnolera Project Number: D-787 Driller: A. Koske Installation Date(s): __5/3/96_ Elevations/Top of Surface Casing: Stick-Up/Top of Surface Casing: GROUND 640.3 Elevation/Top of Riser Pipe: ELEV. Stick-Up/Top of Riser Pipe: Type of Surface Seal: Concrete Pad I.D. of Surface Casing: _ Type of Surface Casing: Lockable Galavanized Type of Backfill: Cement/Bentonite Grout Borehole Diameter: _ I.D. of Riser Pipe: ___ Type of Riser Pipe: PVC - Flush Joint Threaded 1.0' Depth of Seal: Type of Seal: Bentonite Chips 3.0' Depth of Sand Pack: 3.91 Depth Top of Screen: Type of Screen: PVC - Flush Joint Threaded Slot Size x Length: _____010 x 4.0 ' I.D. of Screen: _ Type of Sand Pack: Morie 0 Filter Sand

Depth Bottom of Screen:

Depth Bottom of Sand Pack:

Type of Backfill Below Observation Well:

Morie 0 Filter Sand

Elevation/Depth of Hole:

8.0'

Well Number: _ Drilling Method: ASTM D1586 using HSA Project: ABC Yard Geologist: F. Minnolera Project Number: D-787 Driller: A. Koske Installation Date(s): 5/3/96 Elevations/Top of Surface Casing: Stick-Up/Top of Surface Casing: GROUND 640.4 Elevation/Top of Riser Pipe: Stick-Up/Top of Riser Pipe: Type of Surface Seal: Concrete Pad I.D. of Surface Casing: _ Type of Surface Casing: Lockable Galavanized Type of Backfill: Cement/Bentonite Grout Borehole Diameter: _ I.D. of Riser Pipe: __ Type of Riser Pipe: PVC - Flush Joint Threaded 1.0' Depth of Seal: Type of Seal: Bentonite Chips 3.0' Depth of Sand Pack: 3.9' Depth Top of Screen: Type of Screen: PVC - Flush Joint Threaded Slot Size x Length: ____.010 x 4.0' I.D. of Screen: _ Type of Sand Pack: Morie 0 Filter Sand 7.9' Depth Bottom of Screen: 8.0' Depth Bottom of Sand Pack: Type of Backfill Below Observation Well: __ Morie O Filter Sand 8.0' Elevation/Depth of Hole:

	SB
E	ERVICES, INC.

10.0'

Well Number: __ Drilling Method: ASTM D1586 using HSA Project: ABC Yard Geologist: F. Minnolera Project Number: D-787 Driller: A. Koske Installation Date(s): ___ Elevations/Top of Surface Casing: Stick-Up/Top of Surface Casing: GROUND 641.8 Elevation/Top of Riser Pipe: Stick-Up/Top of Riser Pipe: Type of Surface Seal: Concrete Pad I.D. of Surface Casing: _ Type of Surface Casing: Lockable Galavanized Type of Backfill: Cement/Bentonite Grout Borehole Diameter: _ I.D. of Riser Pipe: __ Type of Riser Pipe: PVC - Flush Joint Threaded 1.0' Depth of Seal: Type of Seal: Bentonite Chips 3.0' Depth of Sand Pack: 5.0' Depth Top of Screen: Type of Screen: PVC - Flush Joint Threaded Slot Size x Length: ____010 x 5.0 I.D. of Screen: _ Type of Sand Pack: Morie 0 Filter Sand 10.0' Depth Bottom of Screen: 10.0' Depth Bottom of Sand Pack: Type of Backfill Below Observation Well: _ Morie O Filter Sand

Elevation/Depth of Hole:

•	
•	
•	
•	
•	APPENDIX D
•	
•	
•	
•	

Contract Drilling and Testing

1951-1 Hamburg Turnpike	Phone:	(716) 821-5911
Buffalo, NY 14218	Fax:	(716) 821-0163
55 Oliver Street	Phone:	(518) 238-1145
Cohoes, New York 12047	Fax:	(518) 238-1249
P.O. Box 416 • 208 Le Fevre Road	Phone:	(610) 746-2670
Stockertown, PA 18083	Fax:	(610) 746-2669

TOLL FREE: 1-800-821-5911

WELL DEVELOPMENT SUMMARY PAGE

PROJECT:ABC Yard (Seneca Street) PROJECT NUMBER:D-787	
FIELD MEASUREMENTS (To Top of PVC Riser)	
INITIAL WATER LEVEL (FT):8.08 BOTTOM OF WELL (FT):17.47 WATER COLUMN (FT):9.41 DIAMETER OF RISER (IN):2.0 CONVERSION FACTOR (GALS/FT):0.17 SINGLE WELL VOLUME (GALS):1.59 METHOD OF DEVELOPMENT:Bailer DEVELOPMENT STARTED:1120	TIME: <u>1115</u>
DEVELOPMENT COMPLETED: 1255 FINAL WATER LEVEL (FT): 8.65 TOTAL VOLUME PRODUCED (GALS): 20 Gallons	TIME:

GROUND WATER MEASUREMENTS

DATE	TIME	COND	TEMP	Ph	COMMENTS
5/8/96	1230	1382	60.4	10.56	8 Gallons
	1238	1740	58.8	11.72	12 Gallons
	1247	1880	57.0	11.7	16 Gallons
	1255	1870	56.9	12.28	20 Gallons

SIGNATURES: _____

Contract Drilling and Testing

1951-1 Hamburg Turnpike	Phone: (716) 821-5911
Buffalo, NY 14218	Fax: (716) 821-0163
55 Oliver Street	Phone: (518) 238-1145
Cohoes, New York 12047	Fax: (518) 238-1249
P.O. Box 416 • 208 Le Fevre Road	Phone: (610) 746-2670
Stockertown, PA 18083	Fax: (610) 746-2669

TOLL FREE: 1-800-821-5911

WELL DEVELOPMENT SUMMARY PAGE

PROJECT: ABC Yard (Seneca St	reet)		<u></u>				
PROJECT NUMBER:D-787	DATE: _	5/8/96	_				
WELL NUMBER: MW-2							
PERSONNEL: F. Minnolera			_				

FIELD MEASUREMENTS (To Top of PVC Riser)

INITIAL WATER LEVEL (FT):7.94 BOTTOM OF WELL (FT):10.44 WATER COLUMN (FT):2.5 DIAMETER OF RISER (IN):2.0 CONVERSION FACTOR (GALS/FT):0.17 SINGLE WELL VOLUME (GALS):0.43 METHOD OF DEVELOPMENT:Bailer DEVELOPMENT STARTED:1445	TIME: <u>1445</u>
DEVELOPMENT COMPLETED: 1505 FINAL WATER LEVEL (FT): 7.97 TOTAL VOLUME PRODUCED (GALS): 10 Gallons	TIME:

GROUND WATER MEASUREMENTS

DATE	TIME	COND	TEMP	Ph	COMMENTS
5/8/96	1450	615	54.6	9.36	2.5 Gallons
	1455	604	52.8	8.73	5.0 Gallons
	1500	590	52.3	8.47	7.5 Gallons
	1505	588	50.8	8.34	10.0 Gallons
	_				*

SIGNATURES:

Contract Drilling and Testing

1951-1 Hamburg Turnpik	ke	Phone:	(716) 821-5911
Buffalo, NY 14218		Fax:	(716) 821-0163
55 Oliver Street	7	Phone:	(518) 238-1145
Cohoes, New York 1204		Fax:	(518) 238-1249
P.O. Box 416 • 208 Le Fe	vre Road	Phone:	(610) 746-2670
Stockertown, PA 18083		Fax:	(610) 746-2669

TOLL FREE: 1-800-821-5911

WELL DEVELOPMENT SUMMARY PAGE

PROJECT: ABC Yard (Seneca Street) PROJECT NUMBER: D-787 DATE: 5/8/96 WELL NUMBER: MW-3 PERSONNEL: F. Minnolera	
FIELD MEASUREMENTS (To top of PVC Riser)	
INITIAL WATER LEVEL (FT): 8.64	TIME: 1420
BOTTOM OF WELL (FT): 10.36	
WATER COLUMN (FT):1.72	
DIAMETER OF RISER (IN): 2.0	
CONVERSION FACTOR (GALS/FT):	
SINGLE WELL VOLUME (GALS):	
METHOD OF DEVELOPMENT: Bailer	
DEVELOPMENT STARTED: 1420	
DEVELOPMENT COMPLETED: 1450	
FINAL WATER LEVEL (FT):	TIME:
TOTAL VOLUME PRODUCED (GALS): 1 Gallon	

GROUND WATER MEASUREMENTS

DATE	TIME	COND	TEMP	Ph	COMMENTS
5/8/96	1430	801	54.8	9.67	l Gallon
					Dry After Three (3) Well Volumes
					(l Gallon)

SIGNATURES:	

Contract Drilling and Testing

1951-1 Hamburg Turnpike	Phone: (716) 821-5911
Buffalo, NY 14218	Fax: (716) 821-0163
55 Oliver Street	Phone: (518) 238-1145
Cohoes, New York 12047	Fax: (518) 238-1249
P.O. Box 416 • 208 Le Fevre Road	Phone: (610) 746-2670
Stockertown, PA 18083	Fax: (610) 746-2669

TOLL FREE: 1-800-821-5911

WELL DEVELOPMENT SUMMARY PAGE

PROJECT: _ ABC Yard (Seneca Stre	et)
PROJECT NUMBER:D-787	DATE: <u>5/8/96</u>
WELL NUMBER: MW-4	_
PERSONNEL:F. Minnolera	

FIELD MEASUREMENTS

INITIAL WATER LEVEL (FT):5.21	TIME: 1310
BOTTOM OF WELL (FT): 12.36	
WATER COLUMN (FT): 7.15	
DIAMETER OF RISER (IN): 2.0	
CONVERSION FACTOR (GALS/FT):	
SINGLE WELL VOLUME (GALS):	
METHOD OF DEVELOPMENT: Bailer	
DEVELOPMENT STARTED: 1310	
DEVELOPMENT COMPLETED:1340	
FINAL WATER LEVEL (FT): 5.25	TIME: <u>1340</u>
TOTAL VOLUME PRODUCED (GALS): 24 Gallons	

GROUND WATER MEASUREMENTS

DATE	TIME	COND	TEMP	Ph	COMMENTS
5/8/96	1330	986	56.9	11.26	1' Sediment in well - bail 12 Gals.
	1340	803	54.5	9.59	18 Gallons
	1350	830	54.9	9.55	24 Gallons

SIGNATURES:

	·								
	PROJECT: ABC YARD (Seneca Street) PROJECT NUMBER: D-787 PERSONNEL: F. Minnolera DATE: 5/9/96								
- -									
	WELL NO: MW-1 INITIAL WATER LEVEL(FT) 8.14 BOTTOM OF WELL(FT): 17.47 WATER COLUMN(FT): 9.33 RISER DIAMETER(IN): 2.0 WELL VOLUME(GALS): 1.58 Gal METHOD OF PURGING: Bailer					CONVERSION FACTOR(GALS/FT): 0.17 THREE WELL VOLUMES(GALS): 4.75			
•	PURGED WATER FIELD PARAMETERS								
-	VOLUME PURGED (GALS)	pH (SU)	CONDUC		TEMP (°C)	COMMENTS			
.	2 Ga <u>llons</u>	8.89	1220		52.0				
•	5 Gallons	8.96	1040		48.3_				
	10 Gallons	1180		47.9	See Remarks				
•	TOTAL GALLONS	PURGED:	20.0			WATER LEVEL(FT): 8.56			
			SA	MPLING	FIELD PARAN	METERS			
•	SAMPLING WATE		8.56			TIME: 1010	-		
•	pH (SU)	CONDUC (UMHOS			EMP (°C)	COMMENTS			
	12.65	1390		47.	7				
				SAMPLI	NG CONTAIN	IERS			
•	CONTAINER T	YPE/S17E	ANAI	YSIS RE	OUIRED	PRESERVATION			
	CONTAINENT	11 2/0122			<u> </u>		_		
							\dashv		
							1		
,			_				\dashv		
,							\dashv		
,	REMARKS 15 Ga				vity 1300,				
	20 Ga	allons pH 1	2.65, C	onducti	vity 1390,	Temp. 47.7			
	CARRY 570						,		
	SAMPLERS:								

PROJECT: ABC Y PROJECT NUMBER PERSONNEL: F. DATE: 5/9/96	R: D-787	ca Street)		
WELL NO: MW-2 INITIAL WATER LEVEL(FT) 8.03 BOTTOM OF WELL(FT): 10.44 WATER COLUMN(FT): 2.41 RISER DIAMETER(IN): 2.0 WELL VOLUME(GALS): 0.40 Gal METHOD OF PURGING: Bailer					CONVERSION FACTOR(GALS/FT): 0.17 THREE WELL VOLUMES(GALS): 1.22
		PURGE	D WATE	ER FIELD PAF	RAMETERS'
VOLUME PURGED (GALS)	pH (SU)	CONDUCT		TEMP (°C)	COMMENTS
4 Gallons	10.45	618		46.8	
8 Gallons	10.46	577		46.4	
TOTAL GALLONS	PURGED: 8	<u>Gallons</u>			WATER LEVEL(FT): 8.07
		SA	MPLING	FIELD PARAM	METERS
SAMPLING WATE					TIME: 1030
pH (SU)	CONDUC (UMHOS		TEMP (°C)		COMMENTS
10.46	577		46	5.4	
			SAMPLI	NG CONTAIN	JERS
CONTAINER T	YPE/SIZE	ANAL	YSIS RE	QUIRED	PRESERVATION
			·····		
REMARKS			_		
			_	<u> </u>	
SAMPLERS:					<u></u>

PR PE	PROJECT: ABC Yard (Seneca Street) PROJECT NUMBER: D-787 PERSONNEL: F. Minnolera DATE: 5/9/96						
WELL NO: MW-3 INITIAL WATER LEVEL(FT) 9.40 BOTTOM OF WELL(FT): 10.36 WATER COLUMN(FT): 0.94 RISER DIAMETER(IN): 2.0 WELL VOLUME(GALS): 0.15 METHOD OF PURGING: Bailer				-		TIME: 1300 CONVERSION FACTOR(GALS/FT): 0.17 THREE WELL VOLUMES(GALS): 0.45	
·			PURG	ED WATE	R FIELD PAI	RAMETERS.	
,	VOLUME PURGED (GALS)	pH (SU)	CONDUC		TEMP (°C)	COMMENTS	
	l.O Gallon					Dry at 1305	
' <u> </u>	l.2 Gallons					Dry at 1400	
TOTAL GALLONS PURGED: 1.2						WATER LEVEL(FT):	
<u> </u>			SA	MPLING	FIELD PARAI	METERS	
	AMPLING WATE				5/10/96	TIME: 1400	
	pH (SU)	CONDUC		TEMP (°C)		COMMENTS	
						None obtained - used complete well volume for Sample	
				SAMPLI	NG CONTAIN	NERS	
	CONTAINER T	YPE/SIZE	ANAL	YSIS RE	QUIRED	PRESERVATION	
	<u> </u>				_		
	,				;		
REM	ARKS						
SAM	IPLERS:						

ı.								
	PROJECT: ABC Yard (Seneca Street) PROJECT NUMBER: D-787 PERSONNEL: F. Minnolera DATE: 5/9/96							
L								
	WELL NO: MW-4 INITIAL WATER LEVEL(FT) 5.36 BOTTOM OF WELL(FT): 12.36 WATER COLUMN(FT): 7.0 RISER DIAMETER(IN): 2.0 WELL VOLUME(GALS): 1.19 METHOD OF PURGING: Bailer					CONVERSION FACTOR(GALS/FT): 0.17 THREE WELL VOLUMES(GALS): 3.5		
,			PURG	D WATE	R FIELD PAR	RAMETERS'		
,	VOLUME PURGED (GALS)	pH (SU)	CONDUC		TEMP (°C)	COMMENTS		
	4 Gallons	9.51	1240		53.5			
'∥	8 Gallons	9.44	845	_	51.2			
	12 Gallons	9.07	834		51.6			
·	TOTAL GALLONS	PURGED:	12.0			WATER LEVEL(FT): 5.59		
			SA	MPLING	FIELD PARA	METERS		
	SAMPLING WATE METHOD OF SAM					TIME: 1552		
	pH (SU)	CONDUC		TEMP (°C)		COMMENTS		
	9.07	834		51.	6			
				SAMPLI	NG CONTAIN	IERS		
	CONTAINER TYPE/SIZE		ANAL	ANALYSIS REQUIRED		PRESERVATION		
F	REMARKS							
-					<u> </u>			
\$	SAMPLERS:							

APPENDIX E

A FULL SERVICE ENVIRONMENTAL LABORATORY

May 29, 1996

Mr. Frank Minnolera
SJB Services, Inc.
1951 Hamburg Turnpike
Box 5793-1

Buffalo, NY 14218

PROJECT: ABC YARD

Submission #:9605000181

Dear Mr. Minnolera

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 634-0454.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Kathy Wager

Project Chemist

Enc.

This package has been reviewed by Columbia Analytical Services' OA Department/Laboratory Director prior to report submittal.

Effective 10/30/95

CAS LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- Indicates an estimated value. For further explanation see case narrative / cover letter.
- This flag is used when the analyte is found in the associated blank as well as in the sample.
- This flag identifies compounds whose concentrations exceed the calibration range.
- This flag indicates that a TIC is a suspected aldol-condensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch - Inorganic analysis only)
- * Duplicate analysis not within control limits. (Flag the entire batch - Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
- D Spike diluted out.
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CAS Lab ID # for State Certifications

NY ID # in Rochester: 10145 NY ID # in Hackensack: 10801 NJ ID # in Rochester: 73331 NJ ID # in Hackensack: 02317

NY ID # in Massachusetts: M-NY032

Reported: 05/29/96

SJB Services, Inc.

Project Reference: ABC YARD

Client Sample ID : S-1

■ Date Sampled : 05/07/96

Order #: 77435

Sample Matrix: SOIL/SEDIMENT

Date Received: 05/07/96 **Submission #:** 9605000181

ANALYTE	PQL	RESULT	DRY WT. UNITS	DATE ANALYZED	ANALYTICAL DILUTION
FOTAL CYANIDE	1.00	286	UG/G	05/22/96	10.0
MIPH		12.1		05/08/96	NA
PERCENT SOLIDS	1.0	81.2	%	05/09/96	1.0

METHOD 310.13 TPH Reported: 05/29/96

SJB Services, Inc.

Project Reference: ABC YARD

Client Sample ID : S-1

Date Sampled: 05/07/96 Order #: 77435 Sample Matrix:SDate Received: 05/07/96 Submission #: 9605000181 Percent Solid: Order #: 77435 Sample Matrix:SOIL/SEDIMENT

***	ANALYTE	PQL	RESULT	UNITS
****	DATE EXTRACTED : 05/09/96 DATE ANALYZED : 05/15/96 ANALYTICAL DILUTION: 1.0			Dry Weight
ian	AS N-DODECANE FUEL OIL #2/DIESEL FUEL GASOLINE KEROSENE	2000 2000 2000 2000	10000 2500 U 2500 U 2500 U	UG/KG UG/KG UG/KG UG/KG

Reported: 05/29/96

SJB Services, Inc.

Project Reference: ABC YARD

Client Sample ID : S-2

___ Date Sampled : 05/07/96

Order #: 77436

Sample Matrix: SOIL/SEDIMENT

Date Received: 05/07/96 Submission #: 9605000181

ANALYTE	PQL	RESULT	DRY WT. UNITS	DATE ANALYZED	ANALYTICAL DILUTION
TOTAL CYANIDE	1.00	678	UG/G	05/22/96	30.0
™ PH		12.0		05/08/96	NA
PERCENT SOLIDS	1.0	71.2	%	05/09/96	1.0

METHOD 310.13 TPH Reported: 05/29/96

SJB Services, Inc.

Project Reference: ABC YARD

Client Sample ID : S-2

Date Sampled: 05/07/96 Order #: 77436 Sample Matrix:SOIL/SEDIMENT

Date Received: 05/07/96 Submission #: 9605000181 Percent Solid: 71.2

	ANALYTE	PQL	RESULT	UNITS
	DATE EXTRACTED : 05/09/96 DATE ANALYZED : 05/15/96 ANALYTICAL DILUTION: 1.0			Dry Weight
-	AS N-DODECANE FUEL OIL #2/DIESEL FUEL GASOLINE KEROSENE	2000 2000 2000 2000	2800 U 330000 2800 U 2800 U	UG/KG UG/KG UG/KG UG/KG

METHOD 310.13 TPH Reported: 05/29/96

Project Reference: Client Sample ID : METHOD BLANK

,	Date Sampled : Date Received:	Order #: Submission #:		Sample Matrix: SOIL/SEDIMENT Percent Solid: 100.0		
	ANALYTE		PQL	RESULT	UNITS	

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/09/96 DATE ANALYZED : 05/15/96 ANALYTICAL DILUTION: 1.0			Dry Weight
AS N-DODECANE FUEL OIL #2/DIESEL FUEL GASOLINE KEROSENE	2000 2000 2000 2000	2000 U 2000 U 2000 U 2000 U	UG/KG UG/KG UG/KG UG/KG

1

Affillated With CAS, Kelso, WA (see below for other offices) 710 Exchange Street, Rochester, New York 14608 GENERAL TESTING COHPORATION (716) 454-3760 • FAX (716) 454-1245

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM DATE. (800) 695-7222

716-634-0454 FAX 716-634-9019 SAMPLE RECEIPT: Submission No. Shipping Via: Temperaturer Shipping #: 435 LAWRENCE BELL DR. AMHERST, NY 14221 ପ-୩/ REQUESTED INVOICE INFORMATION: METALS, DISSOLVED (LIST BELOW) METALS, TOTAL (LIST BELOW) □ Special List ANALYSIS WASTE CHARACTERIZATION P0. TCLP | METALS | H/P Stared 85 TRINITY PLACE 201-488-5242 MACKENSACK, NJ 07601 FAX 201-488-6386 S'AOV'S LIST 8270 SVOR'S
TOTAL TCLP BN Only REPORT REQUIREMENTS 5. NY ASP/CLP Deliverables STAR'S LIST 8021 VOA'S

"TOTAL "TCLP 1. Routine Report 2. Routine Rep. w/CASE Deliverables Level IV Validatable Package 6. Site spedflc QC. 0808 🗆 809 🗆 4. N.J. Reduced 3. EPA Level III SPECIAL INSTRUCTIONS/COMMENTS: PESTICIDES/PCB's ☐ AE Only Narrative C09/109 🗆 0208/0108 🗆 GC VOA's A07S8 □ □ 625 GCMS SVOA'S 0928 🗆 TURNAROUND REQUIREMENTS Provide Verbal Preliminary Results GCMS VOA's Provide FAX Preliminary Results Standard (10-15 working days) 5 day N b ģ NUMBER OF CONTAINERS ___ 48 hr. Requested Report Date SAMPLE 2017 50,0 ORGANICS: METALS: 24 hr. 35435 25456 LAB I.D. ack Bissell 3558 Date/Time</7/196 0935 RECEIVED BY: ECEIVED BY: F. MINNOLERA 0930 TIME 0930 SARWIESS FAX (87/gc 2/1/26 DATE 4BC 1/2RD Date/TIMe 555 185-128 PROJECT MANAGER/CONTACT_ PENCE 0935 Date/Time 18/9/6 10:30 1250K Seraviles RELINQUISHED BY: SAMPLER'S SIGNATURE_ RELINGUISHED BY: SAMPLE I.D. COMPANY/ADDRESS. Date/Time 5/7/92 PROJECT NAME 1 S TEL (

,			
-			
	3		
*			
inanci.			
_			
-			
_			
_			
Mana			
_			

A FULL SERVICE ENVIRONMENTAL LABORATORY

June 3, 1996

Mr. Frank Minnolera
SJB Services, Inc.
1951 Hamburg Turnpike
Box 5793-1

Buffalo, NY 14218

PROJECT: ABC YARD

Submission #:9605000254

Dear Mr. Minnolera

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 634-0454.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Kathy Wager

Project Chemist

Enc.

This package has been reviewed by Columbia Analytical Services OA Department/Laboratory Director prior to report submittal.

Effective 10/30/95

CAS LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch Inorganic analysis only)
- * Duplicate analysis not within control limits.

 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
- D Spike diluted out.
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CAS Lab ID # for State Certifications

NY ID # in Rochester: 10145

NJ ID # in Rochester: 73331

NY ID # in Hackensack: 10801

NJ ID # in Hackensack: 02317

NY ID # in Massachusetts: M-NY032

CASE NARRATIVE

COMPANY: SJB Services, Inc.
ABC Yard
SUBMISSION #: 9605000254

SJB water samples were collected on 5/09/96 and received by CAS on 5/13/96 in good condition at a cooler temperature of 3.1 C.

INORGANIC ANALYSIS

Four water samples were analyzed for TAL metals using SW-846 methods 6010/7470 and for Total Cyanide using SW-846 method 9010.

No analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Four water samples were analyzed for the Target Compound (TCL) List of Volatiles by SW-846 method 8260.

All Tuning criteria for BFB were within limits.

The initial calibration criteria were met for all analytes.

All continuing calibration check (CCC) criteria were met.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

The Laboratory Blank was free of contamination.

The required holding time of 14 days was met for all samples.

No analytical or QC problems were encountered.

SJB 9605000254 - page 2

SEMIVOLATILE ORGANICS

Four water samples were analyzed for TCL Semivolatile organics using SW-846 method 8270.

All Tuning criteria for DFTPP were met.

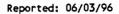
The initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within QC limits except for Terpheny-d14 on samples MW-2 and MW-4. These analyses were repeated and the recoveries were confirmed. These surrogate recoveries were flagged with an "*".

All samples were extracted and analyzed within the specified holding times.

No other analytical or QC problems were encountered.

PESTICIDE/PCB ANALYSIS


Four water samples were analyzed for Target Compound List of Pesticides/PCBs by SW-846 method 8080.

All initial and continuing calibration criteria were met.

The surrogate standard recoveries for samples MW-2 and MW-4 were outside of QC limits and have been flagged with an "*". All other surrogate recoveries were within QC limits.

The Laboratory Blanks were free from contamination.

No other analytical or QC problems were encountered.

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID : MW-1

Date Sampled : 05/09/96

Order #: 78476 Submission #: 9605000254 Sample Matrix: WATER

Date Received: 05/13/96

TOTAL CYANIDE

DATE ANALYTICAL PQL RESULT UNITS ANALYZED DILUTION **ANALYTE** METALS 0.100 14.3 1.0 ALUMINUM MG/L 05/20/96 0.0100 0.0100 U 1.0 **ANT I MONY** MG/L 05/29/96 ARSENIC 0.0100 0.0100 U MG/L 05/20/96 1.0 BARIUM 0.0200 0.124 MG/L 05/20/96 1.0 0.00500 0.00500 U 1.0 BERYLLIUM MG/L 05/20/96 CADMIUM 0.00500 0.00500 U 1.0 MG/L 05/20/96 0.500 1.0 CALCIUM 366 MG/L 05/20/96 0.0255 CHROMIUM 0.0100 MG/L 05/20/96 1.0 COBALT 0.0500 0.0500 U MG/L 05/20/96 1.0 0.0200 0.0276 1.0 COPPER MG/L 05/20/96 0.100 41.6 05/20/96 1.0 IRON MG/L 0.00777 LEAD 0.00500 MG/L 05/21/96 1.0 MAGNESIUM 0.500 19.1 MG/L 05/20/96 1.0 MANGANESE 0.0100 2.09 MG/L 05/20/96 1.0 0.000300 0.000300 U 1.0 MERCURY MG/L 05/22/96 NICKEL 0.0400 0.0400 U MG/L 05/20/96 1.0 1.00 38.8 **POTASSIUM** MG/L 05/20/96 1.0 0.00500 0.0116 MG/L 05/20/96 1.0 SELENIUM 0.0100 0.0100 U SILVER MG/L 05/20/96 1.0 0.500 93.0 1.0 SODIUM MG/L 05/20/96 **THALLIUM** 0.0100 0.0100 U MG/L 05/20/96 1.0 0.0500 0.0500 U 1.0 VANADIUM MG/L 05/20/96 ZINC 0.0100 0.0942 MG/L 05/20/96 1.0 WET CHEMISTRY

0.145

MG/L

05/22/96

1.0

0.0100

VOLATILE ORGANICSMETHOD 8260 TCL
Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-1

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 05/21/96		<u>-</u> -		
ANALYTICAL DILUTION: 1.	0			
ACETONE		10	39	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES Q	C LIMITS			
4-BROMOFLUOROBENZENE (8	6 - 115)		102	8
FOLUENE-D8 (8	•		99	8
DIBROMOFLUOROMETHANE (8	•		101	ક

EXTRACTABLE ORGANICS
METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

■ Project Reference: ABC YARD

Client Sample ID : MW-1

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			
DATE ANALYZED : 05/28/96			
- ANALYTICAL DILUTION: 1.1			
ACENAPHTHENE	5.0	5.3 U	UG/L
ACENAPHTHYLENE	5.0	5.3 U	UG/L
ANTHRACENE	5.0	5.3 U	UG/L
BENZO (A) ANTHRACENE	5.0	5.3 U	UG/L
BENZO (A) PYRENE	5.0	5.3 U	UG/L
BENZO (B) FLUORANTHENE	5.0	5.3 U	UG/L
BENZO(G,H,I) PERYLENE	5.0	5.3 U	UG/L
BENZO (K) FLUORANTHENE	5.0	5.3 U	UG/L
BENZYL ALCOHOL	5.0	5.3 U	UG/L
BUTYL BENZYL PHTHALATE	5.0	5.3 U	UG/L
DI-N-BUTYLPHTHALATE	5.0	5.3 U	UG/L
CARBAZOLE	5.0	5.3 U	UG/L
INDENO(1,2,3-CD) PYRENE	5.0	5.3 U	UG/L
4-CHLOROANILINE	5.0	5.3 U	UG/L
BIS(-2-CHLOROETHOXY)METHANE	5.0	5.3 U	UG/L
BIS(2-CHLOROETHYL)ETHER	5.0	5.3 U	UG/L
2-CHLORONAPHTHALENE	5.0	5.3 U	UG/L
2-CHLOROPHENOL	10	11 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	5.0	5.3 Ŭ	UG/L
CHRYSENE	5.0	5.3 Ŭ	UG/L
DIBENZO(A, H) ANTHRACENE	5.0	5.3 Ŭ	UG/L
DIBENZOFURAN	5.0	5.3 U	UG/L
-1,3-DICHLOROBENZENE	5.0	5.3 Ŭ	UG/L
1,2-DICHLOROBENZENE	5.0	5.3 Ŭ	UG/L
1,4-DICHLOROBENZENE	5.0	5.3 Ŭ	UG/L
_3,3'-DICHLOROBENZIDINE	5.0	5.3 Ŭ	UG/L
2,4-DICHLOROPHENOL	10	11 U	UG/L
DIETHYLPHTHALATE	5.0	5.3 Ŭ	UG/L
DIMETHYL PHTHALATE	5.0	5.3 U	UG/L
2,4-DIMETHYLPHENOL	10	11 U	UG/L
2,4-DINITROPHENOL	20	21 U	UG/L
2,4-DINITROTOLUENE	5.0	5.3 Ŭ	UG/L
-2,6-DINITROTOLUENE	5.0	5.3 Ŭ	UG/L
BIS(2-ETHYLHEXYL) PHTHALATE	5.0	7.2	UG/L
FLUORANTHENE	5.0	5.3 U	UG/L
FLUORENE	5.0	5.3 U	UG/L
HEXACHLOROBENZENE	5.0	5.3 U	UG/L
	5.0	5.3 U	UG/L
HEXACHLOROBUTADIENE	5.0	5.3 U	UG/L
HEXACHLOROCYCLOPENTADIENE	5.0	5.3 U	UG/L
"HEXACHLOROETHANE			•
ISOPHORONE	5.0	5.3 U	UG/L
2-METHYLNAPHTHALENE	10	11 U	UG/L

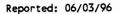
METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-1

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96 DATE ANALYZED : 05/28/96 ANALYTICAL DILUTION: 1.1			
1.1 1,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 1,2,4-TRICHLOROBENZENE 2,4,6-TRICHLOROPHENOL	20 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	21 U 11 U 11 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U 5.3 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
2,4,5-TRICHLOROPHENOL SURROGATE RECOVERIES QC	10 LIMITS	11 U	UG/L
TERPHENYL-d14 (33 NITROBENZENE-d5 (35 PHENOL-d6 (10 2-FLUOROBIPHENYL (43 2-FLUOROPHENOL (21 -2,4,6-TRIBROMOPHENOL (10	- 141) - 114) - 94) - 116) - 110) - 123)	57 77 71 74 64 78	०० ०० ०० ०० ००


METHOD 8080

Reported: 06/03/96

SJB Services, Inc.

■ Project Reference: ABC YARD Client Sample ID : MW-1

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			-
DATE ANALYZED : 05/23/96			
ANALYTICAL DILUTION: 1.1			
ALDRIN	0.050	0.055 U	UG/L
ALPHA-BHC	0.050	0.055 U	UG/L
BETA-BHC	0.050	0.055 U	UG/L
DELTA-BHC	0.050	0.055 U	UG/L
GAMMA-BHC (LINDANE)	0.050	0.055 U	UG/L
ALPHA-CHLORDANE	0.050	0.055 U	UG/L
GAMMA-CHLORDANE	0.050	0.055 U	UG/L
4,4'-DDD	0.050	0.055 U	UG/L
4,4'-DDE	0.050	0.055 U	UG/L
4,4'-DDT	0.10	0.11 U	UG/L
DIELDRIN	0.050	0.055 U	UG/L
ALPHA-ENDOSULFAN	0.050	0.055 U	UG/L
BETA-ENDOSULFAN	0.10	0.11 U	UG/L
ENDOSULFAN SULFATE	0.10	0.11 U	UG/L
ENDRIN	0.050	0.055 U	UG/L
ENDRIN ALDEHYDE	0.10	0.11 U	UG/L
ENDRIN KETONE	0.10	0.11 U	UG/L
HEPTACHLOR	0.050	0.055 U	UG/L
HEPTACHLOR EPOXIDE	0.050	0.055 U	UG/L
METHOXYCHLOR	0.20	0.22 U	UG/L
PCB 1016	0.50	0.55 U	UG/L
PCB 1221	0.50	0.55 U	UG/L
PCB 1232	0.50	0.55 U	UG/L
PCB 1242	0.50	0.55 U	UG/L
PCB 1248	0.50	0.55 U	UG/L
PCB 1254	0.50	0.55 U	UG/L
PCB 1260	0.50	0.55 U	UG/L
TOXAPHENE	1.0	1.1 U	UG/L
SURROGATE RECOVERIES QC LI	MITS		
DIBUTYLCHLORENDATE (DBC) (24 -	154)	66	*
	154) 150)	66 91	

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID : MW-2

Date Sampled: 05/09/96

Order #: 78477

0.0100

0.0925

MG/L

05/22/96

1.0

Sample Matrix: WATER

TOTAL CYANIDE

Date Received: 05/13/96	Submission	#: 9605000254	-			
ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
METALS	0.100	64.8	MG/L	05/20/96	1.0	
ALUMINUM	0.0100	0.0100 U	MG/L	05/29/96	1.0	
ANTIMONY		0.0343	MG/L	05/29/96	1.0	
ARSENIC	0.0100 0.0200	0.242	MG/L	05/20/96	1.0	
BARIUM					1.0	
BERYLLIUM	0.00500	0.00500 U	MG/L	05/20/96		
CADMIUM	0.00500	0.00500 U	MG/L	05/20/96	1.0	
CALCIUM	0.500	177	MG/L	05/20/96	1.0	
CHROMIUM	0.0100	0.108	MG/L	05/20/96	1.0	
COBALT	0.0500	0.0629	MG/L	05/20/96	1.0	
COPPER	0.0200	0.110	MG/L	05/20/96	1.0	
IRON	0.100	125	MG/L	05/20/96	1.0	
LEAD	0.00500	0.0307	MG/L	05/21/96	1.0	
MAGNESIUM	0.500	56.5	MG/L	05/20/96	1.0	
MANGANESE	0.0100	1.29	MG/L	05/20/96	1.0	
MERCURY	0.000300	0.000300 U	MG/L	05/22/96	1.0	
NICKEL	0.0400	0.176	MG/L	05/20/96	1.0	
POTASSIUM	1.00	21.0	MG/L	05/20/96	1.0	
SELENIUM	0.00500	0.0233	MG/L	05/20/96	1.0	
SILVER	0.0100	0.0100 U	MG/L	05/20/96	1.0	
SODIUM	0.500	25.9	MG/L	05/20/96	1.0	
THALLIUM	0.0100	0.0100 U	MG/L	05/20/96	1.0	
VANADIUM	0.0500	0.0996	MG/L	05/20/96	1.0	
ZINC	0.0100	0.343	MG/L	05/20/96	1.0	
WET CHEMISTRY						

VOLATILE ORGANICS METHOD 8260 TCL Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-2

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 05/21/96			
ANALYTICAL DILUTION: 1.0			
•			
ACETONE	10	10 U	UG/L
3ENZENE	5.0	5.0 U	UG/L
3ROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
POLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (86	- 115)	103	*
•	- 110)	100	*
DIBROMOFLUOROMETHANE (86	- 118)	101	*

EXTRACTABLE ORGANICS
METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

- Project Reference: ABC YARD Client Sample ID: MW-2

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			
DATE ANALYZED : 05/28/96			
ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	5.0	5.0 U	UG/L
_\CENAPHTHYLENE	5.0	5.0 U	UG/L
ANTHRACENE	5.0	5.0 U	UG/L
BENZO (A) ANTHRACENE	5.0	5.0 U	UG/L
BENZO (A) PYRENE	5.0	5.0 U	UG/L
BENZO (B) FLUORANTHENE	5.0	5.0 U	UG/L
BENZO (G, H, I) PERYLENE	5.0	5.0 U	UG/L
BENZO (K) FLUORANTHENE	5.0	5.0 U	UG/L
_3ENZYL ALCOHOL	5.0	5.0 U	UG/L
BUTYL BENZYL PHTHALATE	5.0	5.0 U	UG/L
DI-N-BUTYLPHTHALATE	5.0	5.0 U	UG/L
CARBAZOLE	5.0	5.0 U	UG/L
INDENO(1,2,3-CD)PYRENE	5.0	5.0 U	UG/L
4-CHLOROANILINE	5.0	5.0 U	UG/L
3IS(-2-CHLOROETHOXY)METHANE	5.0	5.0 U	UG/L
BIS(2-CHLOROETHYL) ETHER	5.0	5.0 U	UG/L
2-CHLORONAPHTHALENE	5.0	5.0 U	UG/L
2-CHLOROPHENOL	10	10 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	5.0	5.0 U	UG/L
CHRYSENE	5.0	5.0 U	UG/L
DIBENZO (A, H) ANTHRACENE	5.0	5.0 U	UG/L
DIBENZOFURAN	5.0	5.0 U	UG/L
1,3-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,4-DICHLOROBENZENE	5.0	5.0 U	UG/L
3,3'-DICHLOROBENZIDINE	5.0	5.0 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	5.0	5.0 U	UG/L
DIMETHYL PHTHALATE	5.0	5.0 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L
2,4-DINITROPHENOL	20	20 U	UG/L
2,4-DINITROTOLUENE	5.0	5.0 U	UG/L
-2,6-DINITROTOLUENE	5.0	5.0 U	UG/L
BIS(2-ETHYLHEXYL) PHTHALATE	5.0	5.0 Ŭ	UG/L
FLUORANTHENE	5.0	5.0 Ŭ	UG/L
	5.0	5.0 U	UG/L
HEXACHLOROBENZENE	5.0	5.0 U	UG/L
YEXACHLOROBUTADIENE	5.0	5.0 U	UG/L
HEXACHLOROCYCLOPENTADIENE	5.0	5.0 U	UG/L
HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	5.0	5.0 U	UG/L
ISOPHORONE	5.0	5.0 U	UG/L
	10	10 U	UG/L
2-METHYLNAPHTHALENE	10	10 0	0 0 / 11

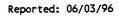
EXTRACTABLE ORGANICS METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-2

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96 DATE ANALYZED : 05/28/96 ANALYTICAL DILUTION: 1.0			
1,6-DINITRO-2-METHYLPHENOL 1-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 1,2,4-TRICHLOROBENZENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	20 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	20 U 10 U 10 U 10 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC LIMITS	S		
TERPHENYL-d14 (33 - 14: NITROBENZENE-d5 (35 - 11: PHENOL-d6 (10 - 94: 2-FLUOROBIPHENYL (43 - 11: 2-FLUOROPHENOL (21 - 11: 2,4,6-TRIBROMOPHENOL (10 - 12:	4)) 6) 0)	23 * 74 70 62 62 72	०० ०० ०० ०० ००


METHOD 8080

Reported: 06/03/96

SJB Services, Inc.

- Project Reference: ABC YARD Client Sample ID: MW-2

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96 DATE ANALYZED : 05/23/96 ANALYTICAL DILUTION: 1	.1		
LDRIN LPHA-BHC BETA-BHC CELTA-BHC RAMMA-BHC (LINDANE) LPHA-CHLORDANE	0.050 0.050 0.050 0.050 0.050	0.055 U 0.055 U 0.055 U 0.055 U 0.055 U 0.055 U	UG/L UG/L UG/L UG/L UG/L
JAMMA-CHLORDANE ,4'-DDD ,4'-DDE ,4'-DDT DIELDRIN LPHA-ENDOSULFAN	0.050 0.050 0.050 0.10 0.050 0.050	0.055 U 0.055 U 0.11 U 0.055 U 0.055 U	UG/L UG/L UG/L UG/L UG/L UG/L
3ETA-ENDOSULFAN ENDOSULFAN SULFATE NDRIN NDRIN ALDEHYDE ENDRIN KETONE	0.10 0.10 0.050 0.10 0.10	0.11 U 0.11 U 0.055 U 0.11 U 0.11 U	UG/L UG/L UG/L UG/L UG/L
[EPTACHLOR LEPTACHLOR EPOXIDE METHOXYCHLOR PCB 1016 PCB 1221	0.050 0.050 0.20 0.50 0.50	0.055 U 0.055 U 0.22 U 0.55 U 0.55 U	UG/L UG/L UG/L UG/L UG/L
PCB 1232 PCB 1242 PCB 1248 PCB 1254	0.50 0.50 0.50 0.50	0.55 U 0.55 U 0.55 U 0.55 U	UG/L UG/L UG/L UG/L
PCB 1260 POXAPHENE SURROGATE RECOVERIES	0.50 1.0 QC LIMITS	0.55 U 1.1 U	UG/L UG/L
	24 - 154) 60 - 150)	16 * 30 *	ક સ્ટ

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID : MW-3

Date Sampled: 05/10/96

Order #: 78478

Sample Matrix: WATER

Date Received: 05/13/96

Submission #: 9605000254

ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
METALS						
ALUMINUM	0.100	8.20	MG/L	05/20/96	1.0	
ANTIMONY	0.0100	0.0100 U	MG/L	05/29/96	1.0	
ARSENIC	0.0100	0.0100 U	MG/L	05/20/96	1.0	
BARIUM	0.0200	0.149	MG/L	05/20/96	1.0	
BERYLLIUM	0.00500	0.00500 U	MG/L	05/20/96	1.0	
CADMIUM	0.00500	0.00500 U	MG/L	05/20/96	1.0	
CALCIUM	0.500	132	MG/L	05/20/96	1.0	
CHROMIUM	0.0100	0.0138	MG/L	05/20/96	1.0	
COBALT	0.0500	0.0500 U	MG/L	05/20/96	1.0	
COPPER	0.0200	0.0200 U	MG/L	05/20/96	1.0	
IRON	0.100	11.9	MG/L	05/20/96	1.0	
LEAD	0.00500	0.00500 U	MG/L	05/21/96	1.0	
MAGNESIUM	0.500	23.4	MG/L	05/20/96	1.0	
MANGANESE	0.0100	0.245	MG/L	05/20/96	1.0	
MERCURY	0.000300	0.000300 U	MG/L	05/22/96	1.0	
NICKEL	0.0400	0.0400 U	MG/L	05/20/96	1.0	
POTASSIUM	1.00	29.6	MG/L	05/20/96	1.0	
SELENIUM	0.00500	0.00893	MG/L	05/20/96	1.0	
SILVER	0.0100	0.0100 U	MG/L	05/20/96	1.0	
SODIUM	0.500	32.6	MG/L	05/20/96	1.0	
THALLIUM	0.0100	0.0100 U	MG/L	05/20/96	1.0	
VANADIUM	0.0500	0.0500 U	MG/L	05/20/96	1.0	
ZINC	0.0100	0.0558	MG/L	05/20/96	1.0	
WET CHEMISTRY						
TOTAL CYANIDE	0.0100	0.0229	MG/L	05/22/96	1.0	

VOLATILE ORGANICS METHOD 8260 TCL Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-3

ANALYTE		PQL		RESULT	UNITS
DATE ANALYZED : 05/21/96					
ANALYTICAL DILUTION: 1.0					
•			,		
ACETONE		10	600	79	UG/L
3ENZENE		5.0		5.0 U	UG/L
_3ROMODICHLOROMETHANE		5.0		5.0 U	UG/L
BROMOFORM		5.0		5.0 U	UG/L
BROMOMETHANE		5.0		5.0 U	UG/L
2-BUTANONE (MEK)		10	1)	18	UG/L
CARBON DISULFIDE		10		10 U	UG/L
CARBON TETRACHLORIDE		5.0		5.0 U	UG/L
CHLOROBENZENE		5.0		5.0 U	UG/L
CHLOROETHANE		5.0		5.0 U	UG/L
CHLOROFORM		5.0		5.0 U	UG/L
CHLOROMETHANE		5.0		5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0		5.0 U	UG/L
1,1-DICHLOROETHANE		5.0		5.0 U	UG/L
1,2-DICHLOROETHANE		5.0		5.0 U	UG/L
1,1-DICHLOROETHENE		5.0		5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0		5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0		5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0		5.0 Ŭ	UG/L
CIS-1,3-DICHLOROPROPENE		5.0		5.0 Ŭ	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0		5.0 U	UG/L
ETHYLBENZENE		5.0		5.0 U	UG/L
2-HEXANONE		10		10 U	UG/L
METHYLENE CHLORIDE		5.0	-	5.0 Ŭ	UG/L
4-METHYL-2-PENTANONE (MIBK)		10		10 U	UG/L
STYRENE (MIDR)		5.0		5.0 Ŭ	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0		5.0 Ŭ	UG/L
TETRACHLOROETHENE		5.0		5.0 U	UG/L
TOLUENE		5.0		5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0		5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0		5.0 U	UG/L
TRICHLOROETHENE		5.0		5.0 U	UG/L
VINYL CHLORIDE		5.0		5.0 U	UG/L
O-XYLENE		5.0		5.0 U	UG/L
M+P-XYLENE		5.0		5.0 U	UG/L
MTF-XILENE		5.0		3.0 0	00/1
SURROGATE RECOVERIES QC	LIMITS				
4-BROMOFLUOROBENZENE (86	- 115)			103	*
TOLUENE-D8 (88	- 110)			100	8
DIBROMOFLUOROMETHANE (86	•			100	*

METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

■ Project Reference: ABC YARD Client Sample ID : MW-3

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			
DATE ANALYZED : 05/28/96		.10	
ANALYTICAL DILUTION: 1.1	<i>~</i>	ref l	
\CENAPHTHENE	5.0	5.7 U	UG/L
ACENAPHTHYLENE	5.0	5.7 U	UG/L
NTHRACENE	5.0	5.7 U	UG/L
BENZO (A) ANTHRACENE	5.0	5.7 U	UG/L
BENZO (A) PYRENE	5.0	5.7 U	UG/L
SENZO (B) FLUORANTHENE	5.0	5.7 U	UG/L
3ENZO(G,H,I)PERYLENE	5.0	5.7 Ŭ	UG/L
BENZO (K) FLUORANTHENE	5.0	5.7 U	UG/L
_3ENZYL ALCOHOL	5.0	5.7 U	UG/L
SUTYL BENZYL PHTHALATE	5.0	5.7 U	UG/L
DI-N-BUTYLPHTHALATE	5.0	5.7 U	UG/L
CARBAZOLE	5.0	5.7 U	UG/L
INDENO(1,2,3-CD) PYRENE	5.0	5.7 Ŭ	UG/L
4-CHLOROANILINE	5.0	5.7 U	UG/L
3IS(-2-CHLOROETHOXY)METHANE	5.0	5.7 U	UG/L
_3IS(2-CHLOROETHYL)ETHER	5.0	5.7 U	UG/L
2-CHLORONAPHTHALENE	5.0	5.7 U	UG/L
2-CHLOROPHENOL	10	11 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	5.0	5.7 U	UG/L
CHRYSENE	5.0	5.7 U	UG/L
OIBENZO(A,H)ANTHRACENE	5.0	5.7 U	UG/L
OIBENZOFURAN	5.0	5.7 U	UG/L
-1,3-DICHLOROBENZENE	5.0	5.7 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.7 U	UG/L
1,4-DICHLOROBENZENE	5.0	5.7 U	UG/L
_3,3'-DICHLOROBENZIDINE	5.0	5.7 U	UG/L
2,4-DICHLOROPHENOL	10	11 U	UG/L
DIETHYLPHTHALATE	5.0	5.7 U	UG/L
DIMETHYL PHTHALATE	5.0	5.7 U	UG/L
2,4-DIMETHYLPHENOL	10	11 U	ŪG/L
2,4-DINITROPHENOL	20	23 U	ŪG/L
2,4-DINITROTOLUENE	5.0	5.7 U	UG/L
-2,6-DINITROTOLUENE	5.0	5.7 U	UG/L
BIS(2-ETHYLHEXYL) PHTHALATE	5.0	5 28	UG/L
FLUORANTHENE	5.0	5.7 U	UG/L
FLUORENE	5.0	5.7 U	UG/L
HEXACHLOROBENZENE	5.0	5.7 U	UG/L
HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE	5.0	5.7 U	UG/L
			UG/L
HEXACHLOROCYCLOPENTADIENE	5.0	5.7 Ŭ	•
HEXACHLOROETHANE	5.0	5.7 U	UG/L
ISOPHORONE	5.0	5.7 Ŭ	UG/L
2-METHYLNAPHTHALENE	10	11 U	UG/L

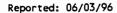
METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

■ Project Reference: ABC YARD Client Sample ID : MW-3

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 05/16,				
DATE ANALYZED : 05/28/				
ANALYTICAL DILUTION:	1.1			
1,6-DINITRO-2-METHYLPHENOL		20	23 U	UG/L
-CHLORO-3-METHYLPHENOL		10	11 U	UG/L
2-METHYLPHENOL		10	11 U	UG/L
4-METHYLPHENOL		10	11 U	UG/L
IAPHTHALENE		5.0	5.7 Ŭ	UG/L
™ -NITROANILINE		5.0	5.7 U	UG/L
3-NITROANILINE		5.0	5.7 U	UG/L
I-NITROANILINE		5.0	5.7 U	UG/L
IITROBENZENE		5.0	5.7 U	UG/L
2-NITROPHENOL		10	11 U	UG/L
1-NITROPHENOL		20	23 U	UG/L
1-NITROSODIMETHYLAMINE		5.0	5.7 U	UG/L
"N-NITROSODIPHENYLAMINE		5.0	5.7 U	UG/L
DI-N-OCTYL PHTHALATE		5.0	5.7 U	UG/L
PENTACHLOROPHENOL		20	23 U	UG/L
HENANTHRENE		5.0	5.7 U	UG/L
PHENOL		10	11 U	UG/L
1-BROMOPHENYL-PHENYLETHER		5.0	5.7 U	UG/L
-CHLOROPHENYL-PHENYLETHER		5.0	5.7 U	UG/L
N-NITROSO-DI-N-PROPYLAMINE		5.0	5.7 U	UG/L
PYRENE		5.0	5.7 U	UG/L
1,2,4-TRICHLOROBENZENE		5.0	5.7 U	UG/L
<pre>,4,6-TRICHLOROPHENOL</pre>		10	11 U	UG/L
2,4,5-TRICHLOROPHENOL		10	11 U	UG/L
SURROGATE RECOVERIES	QC LIMITS			
TERPHENYL-d14	(33 - 141)		44	*
IITROBENZENE-d5	(35 - 114)		76	8
PHENOL-d6	(10 - 94)		75	8
2-FLUOROBIPHENYL	(43 - 116)		76	8
?-FLUOROPHENOL	(21 - 110)		68	8
<pre>,4,6-TRIBROMOPHENOL</pre>	(10 - 123)		84	*


METHOD 8080

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD
Client Sample ID : MW-3

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96 DATE ANALYZED : 05/23/96 ANALYTICAL DILUTION:	1.3		
ANALITICAL DILOTION.	1.5		
ALDRIN	0.050	0.065 U	UG/L
_\LPHA-BHC	0.050	0.065 U	UG/L
BETA-BHC	0.050	0.065 U	UG/L
DELTA-BHC	0.050	0.065 U	UG/L
GAMMA-BHC (LINDANE)	0.050	0.065 U	UG/L
ALPHA-CHLORDANE	0.050	0.065 U	UG/L
GAMMA-CHLORDANE	0.050	0.065 U	UG/L
1,4'-DDD	0.050	0.065 U	UG/L
4'-DDE	0.050	0.065 U	UG/L
4,4'-DDT	0.10	0.13 U	UG/L
DIELDRIN	0.050	0.065 U	UG/L
ALPHA-ENDOSULFAN	0.050	0.065 U	UG/L
BETA-ENDOSULFAN	0.10	0.13 U	UG/L
ENDOSULFAN SULFATE	0.10	0.13 U	UG/L
ENDRIN	0.050	0.065 U	UG/L
ENDRIN ALDEHYDE	0.10	0.13 U	UG/L
ENDRIN KETONE	0.10	0.13 U	UG/L
IEPTACHLOR	0.050	0.065 U	UG/L
	0.050	0.065 U	UG/L
METHOXYCHLOR	0.20	0.26 U	UG/L
PCB 1016	0.50	0.65 U	UG/L
PCB 1221	0.50	0.65 U	UG/L
PCB 1232	0.50	0.65 U	UG/L
PCB 1242	0.50	0.65 U	UG/L
PCB 1248	0.50	0.65 U	UG/L
⊶°CB 1254	0.50	0.65 U	UG/L
PCB 1260	0.50	0.65 U	UG/L
COXAPHENE	1.0	1.3 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
)IBUTYLCHLORENDATE (DBC)	(24 - 154)	72	*
	(60 - 150)	92	ž

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID : MW-4

Date Sampled: 05/09/96

Order #: 78479 Submission #: 9605000254 Sample Matrix: WATER

ANALYTICAL

DILUTION

Date Received: 05/13/96

gw std DATE ANALYTE PQL RESULT UNITS **ANALYZED** mg/R NV 0.100 108 MG/L

VOLATILE ORGANICS
METHOD 8260 TCL

Sinc Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-4

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 05/21/96				
ANALYTICAL DILUTION:	1.0			
ACETONE		10	10 U	UG/L
BENZENE		5.0	5.0 U	UG/L
3ROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
-CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
)IBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
L,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
L,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
-1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
COLUENE		5.0	5.0 U	UG/L
_L,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
/INYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS			
1-BROMOFLUOROBENZENE	(86 - 115)		109	*
COLUENE-D8	(88 - 110) (86 - 118)		102 102	ફ ફ

EXTRACTABLE ORGANICS METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-4

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			
DATE ANALYZED : 05/28/96			
ANALYTICAL DILUTION: 1.0			
CENAPHTHENE	5.0	5.2 U	UG/L
CENAPHTHYLENE	5.0	5.2 U	UG/L
ANTHRACENE	5.0	5.2 U	UG/L
BENZO (A) ANTHRACENE	5.0	5.2 U	UG/L
ENZO (A) PYRENE	5.0	5.2 U	UG/L
SENZO (B) FLUORANTHENE	5.0	5.2 U	UG/L
BENZO (G, H, I) PERYLENE	5.0	5.2 U	UG/L
BENZO (K) FLUORANTHENE	5.0	5.2 U	UG/L
JENZYL ALCOHOL	5.0	5.2 U	UG/L
BUTYL BENZYL PHTHALATE	5.0	5.2 U	UG/L
DI-N-BUTYLPHTHALATE	5.0	5.2 U	UG/L
ARBAZOLE	5.0	5.2 U	UG/L
INDENO(1,2,3-CD)PYRENE	5.0	5.2 U	UG/L
4-CHLOROANILINE	5.0	5.2 U	UG/L
3IS (-2-CHLOROETHOXY) METHANE	5.0	5.2 U	UG/L
⇒IS (2-CHLOROETHYL) ETHER	5.0	5.2 U	UG/L
2-CHLORONAPHTHALENE	5.0	5.2 U	UG/L
?-CHLOROPHENOL	10	10 U	UG/L
,2'-OXYBIS(1-CHLOROPROPANE)	5.0	5.2 U	UG/L
CHRYSENE	5.0	5.2 U	UG/L
DIBENZO(A,H)ANTHRACENE	5.0	5.2 U	UG/L
)IBENZOFURAN	5.0	5.2 U	UG/L
1,3-DICHLOROBENZENE	5.0	5.2 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.2 U	UG/L
.,4-DICHLOROBENZENE	5.0	5.2 U	UG/L
J, 3'-DICHLOROBENZIDINE	5.0	5.2 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	5.0	5.2 U	UG/L
)IMETHYL PHTHALATE	5.0	5.2 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L
2,4-DINITROPHENOL	20	21 U	UG/L
!,4-DINITROTOLUENE	5.0	5.2 Ŭ	UG/L
#,6-DINITROTOLUENE	5.0	5.2 U	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	5.0	5.2 U	UG/L
LUORANTHENE	5.0	5.2 U	UG/L
_'LUORENE	5.0	5.2 U	UG/L
HEXACHLOROBENZENE	5.0	5.2 U	UG/L
HEXACHLOROBUTADIENE	5.0	5.2 U	UG/L
IEXACHLOROCYCLOPENTADIENE	5.0	5.2 U	UG/L
MEXACHLOROETHANE	5.0	5.2 U	UG/L
ISOPHORONE	5.0	5.2 U	UG/L
			•
:-METHYLNAPHTHALENE	10	10 U	UG/L

METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-4

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/9	6			
DATE ANALYZED : 05/28/9				
ANALYTICAL DILUTION:	1.0			
1,6-DINITRO-2-METHYLPHENOL		20	21 U	UG/L
→ -CHLORO-3-METHYLPHENOL		10	10 U	UG/L
2-METHYLPHENOL		10	10 U	UG/L
1-METHYLPHENOL		10	10 U	UG/L
IAPHTHALENE		5.0	5.2 U	UG/L
2-NITROANILINE		5.0	5.2 U	UG/L
3-NITROANILINE		5.0	5.2 U	UG/L
1-NITROANILINE		5.0	5.2 U	UG/L
-NITROBENZENE		5.0	5.2 U	UG/L
2-NITROPHENOL		10	10 U	UG/L
1-NITROPHENOL		20	21 U	UG/L
_i-nitrosodimethylamine		5.0	5.2 U	UG/L
N-NITROSODIPHENYLAMINE		5.0	5.2 U	UG/L
DI-N-OCTYL PHTHALATE		5.0	5.2 U	UG/L
PENTACHLOROPHENOL		20	21 U	UG/L
PHENANTHRENE		5.0	5.2 U	UG/L
PHENOL		10	10 U	UG/L
1-BROMOPHENYL-PHENYLETHER		5.0	5.2 U	UG/L
		5.0	5.2 U	UG/L
N-NITROSO-DI-N-PROPYLAMINE		5.0	5.2 U	UG/L
PYRENE		5.0	5.2 U	UG/L
L,2,4-TRICHLOROBENZENE		5.0	5.2 U	UG/L
2,4,6-TRICHLOROPHENOL		10	10 U	UG/L
2,4,5-TRICHLOROPHENOL		10	10 U	UG/L
SURROGATE RECOVERIES	QC LIMITS			
CERPHENYL-d14	(33 - 141)		31 *	8
_JITROBENZENE-d5	(35 - 114)		76	*
PHENOL-d6	(10 - 94)		72	용
?-FLUOROBIPHENYL	(43 - 116)		66	8
?-FLUOROPHENOL	(21 - 110)		64	*
2,4,6-TRIBROMOPHENOL	(10 - 123)		73	%

METHOD 8080

Reported: 06/03/96

SJB Services, Inc.

Project Reference: ABC YARD Client Sample ID: MW-4

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96			
DATE ANALYZED : 05/23/96			
ANALYTICAL DILUTION: 1.1	L		
LDRIN	0.050	0.055 U	UG/L
"LPHA-BHC	0.050	0.055 U	UG/L
3ETA-BHC	0.050	0.055 U	UG/L
DELTA-BHC	0.050	0.055 U	UG/L
;AMMA-BHC (LINDANE)	0.050	0.055 U	UG/L
ALPHA-CHLORDANE	0.050	0.055 U	UG/L
GAMMA-CHLORDANE	0.050	0.055 U	UG/L
.,4'-DDD	0.050	0.055 U	UG/L
4'-DDE	0.050	0.055 U	UG/L
1,4'-DDT	0.10	0.11 U	UG/L
DIELDRIN	0.050	0.055 U	UG/L
LPHA-ENDOSULFAN	0.050	0.055 U	UG/L
3ETA-ENDOSULFAN	0.10	0.11 U	UG/L
ENDOSULFAN SULFATE	0.10	0.11 U	UG/L
INDRIN	0.050	0.055 U	UG/L
ENDRIN ALDEHYDE	0.10	0.11 U	UG/L
ENDRIN KETONE	0.10	0.11 U	UG/L
IEPTACHLOR	0.050	0.055 U	UG/L
JEPTACHLOR EPOXIDE	0.050	0.055 U	UG/L
METHOXYCHLOR	0.20	0.22 U	UG/L
PCB 1016	0.50	0.55 U	UG/L
CB 1221	0.50	0.55 U	UG/L
PCB 1232	0.50	0.55 U	UG/L
PCB 1242	0.50	0.55 U	UG/L
CB 1248	0.50	0.55 U	UG/L
PCB 1254	0.50	0.55 U	UG/L
PCB 1260	0.50	0.55 U	UG/L
!OXAPHENE	1.0	1.1 U	UG/L
SURROGATE RECOVERIES QC	CLIMITS		
>IBUTYLCHLORENDATE (DBC) (24	1 - 154)	22 *	*
TETRACHLORO-META-XYLENE (TCMX) (60		37 *	*

VOLATILE ORGANICS
METHOD 8260 TCL

Reported: 06/03/96

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled :ate Received:	Order Submission		80688		VATER 8625	
ANALYTE			-	PQL	RESULT	UNITS
DATE ANALYZED : 0	<u></u> 5/21/96					
ANALYTICAL DILUTION:	1.0					
_ACETONE				10	10 U	UG/L
BENZENE				5.0	5.0 U	UG/L
BROMODICHLOROMETHANE				5.0	5.0 U	UG/L
3ROMOFORM				5.0	5.0 U	UG/L
BROMOMETHANE				5.0	5.0 U	UG/L
2-BUTANONE (MEK)				10	10 U	UG/L
CARBON DISULFIDE				10	10 U	UG/L
CARBON TETRACHLORIDE				5.0	5.0 U	UG/L
CHLOROBENZENE				5.0	5.0 U	UG/L
CHLOROETHANE				5.0	5.0 U	UG/L
CHLOROFORM				5.0	5.0 U	UG/L
CHLOROMETHANE				5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE				5.0	5.0 U	UG/L
1,1-DICHLOROETHANE				5.0	5.0 Ŭ	UG/L
1,2-DICHLOROETHANE				5.0	5.0 Ŭ	UG/L
1,1-DICHLOROETHENE				5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE				5.0	5.0 U	UG/L
_TRANS-1,2-DICHLOROETHENE				5.0	5.0 Ŭ	UG/L
1,2-DICHLOROPROPANE				5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE				5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPEN	E			5.0	5.0 U	UG/L
ETHYLBENZENE				5.0	5.0 U	UG/L
2-HEXANONE				10	10 U	UG/L
METHYLENE CHLORIDE				5.0	5.0 U	UG/L
-4-METHYL-2-PENTANONE (MI	BK)			10	10 U	UG/L
STYRENE				5.0	5.0 Ŭ	UG/L
1,1,2,2-TETRACHLOROETHAN	E			5.0	5.0 U	UG/L
TETRACHLOROETHENE				5.0	5.0 U	UG/L
TOLUENE				5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE				5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE				5.0	5.0 U	UG/L
TRICHLOROETHENE				5.0	5.0 U	UG/L
VINYL CHLORIDE				5.0	5.0 U	UG/L
O-XYLENE				5.0	5.0 U	UG/L
M+P-XYLENE				5.0	5.0 Ŭ	UG/L
SURROGATE RECOVERIES	QC	LI	MITS			
4-BROMOFLUOROBENZENE	(86	_	115)		102	*
TOLUENE-D8	(88)	_	110)		101	8
DIBROMOFLUOROMETHANE	(86	_	118)		99	*

METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled: Order Date Received: Submission	 80583	Sample Matrix: WAS	
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 05/16/96 DATE ANALYZED : 05/28/96			
ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	5.0	5.0 U	UG/L
ACENAPHTHEME	5.0	5.0 U	UG/L
ANTHRACENE	5.0	5.0 U	UG/L
BENZO (A) ANTHRACENE	5.0	5.0 U	UG/L
BENZO (A) PYRENE	5.0	5.0 U	UG/L
BENZO (B) FLUORANTHENE	5.0	5.0 U	UG/L
BENZO (G, H, I) PERYLENE	5.0	5.0 U	UG/L
BENZO (K) FLUORANTHENE	5.0	5.0 U	UG/L
BENZYL ALCOHOL	5.0	5.0 U	UG/L
BUTYL BENZYL PHTHALATE	5.0	5.0 U	UG/L
DI-N-BUTYLPHTHALATE	5.0	5.0 U	UG/L
CARBAZOLE	5.0	5.0 U	UG/L
INDENO(1,2,3-CD) PYRENE	5.0	5.0 U	UG/L
4-CHLOROANILINE	5.0	5.0 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	5.0	5.0 Ŭ	UG/L
BIS (2-CHLOROETHYL) ETHER	5.0	5.0 Ŭ	UG/L
=2-CHLORONAPHTHALENE	5.0	5.0 Ŭ	UG/L
2-CHLOROPHENOL	10	10 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	5.0	5.0 Ŭ	UG/L
CHRYSENE	5.0	5.0 U	UG/L
DIBENZO(A, H) ANTHRACENE	5.0	5.0 U	UG/L
DIBENZOFURAN	5.0	5.0 U	UG/L
1,3-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,4-DICHLOROBENZENE	5.0	5.0 Ŭ	UG/L
3,3'-DICHLOROBENZIDINE	5.0	5.0 U	UG/L
-2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	5.0	5.0 U	UG/L
DIMETHYL PHTHALATE	5.0	5.0 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L
2,4-DINITROPHENOL	20	20 U	UG/L
2,4-DINITROTOLUENE	5.0	5.0 U	UG/L
2,6-DINITROTOLUENE	5.0	5.0 U	UG/L
■BIS(2-ETHYLHEXYL)PHTHALATE	5.0	5.0 U	UG/L
FLUORANTHENE	5.0	5.0 U	UG/L
FLUORENE	5.0	5.0 U	UG/L
HEXACHLOROBENZENE	5.0	5.0 U	UG/L
HEXACHLOROBUTADIENE	5.0	5.0 U	UG/L
HEXACHLOROCYCLOPENTADIENE	5.0	5.0 U	UG/L
HEXACHLOROETHANE	5.0	5.0 U	UG/L
ISOPHORONE	5.0	5.0 Ŭ	UG/L
2-METHYLNAPHTHALENE	10	10 U	UG/L
4,6-DINITRO-2-METHYLPHENOL	20	20 U	UG/L
			·

EXTRACTABLE ORGANICS METHOD 8270 SEMIVOLATILES

Reported: 06/03/96

Project Reference:

Client Sample ID : METHOD BLANK

)ate Sampled : _)ate Received:	Orde: Submissio		80583	Sample Matrix: Analytical Run	
ANALYTE			PQL	RESULT	UNITS
DATE EXTRACTED :	05/16/96				
DATE ANALYZED :	05/28/96				
ANALYTICAL DILUTION:	1.	0			
				40.77	*** /**
1-CHLORO-3-METHYLPHENO	DL		10	10 U	UG/L
-METHYLPHENOL			10	10 U	UG/L
-METHYLPHENOL			_10	10 U	UG/L
IAPHTHALENE			5.0	5.0 U	UG/L
?-NITROANILINE			5.0	5.0 U	UG/L
3-NITROANILINE			5.0	5.0 U	UG/L
-NITROANILINE			5.0	5.0 U	UG/L
VITROBENZENE			5.0	5.0 U	UG/L
?-NITROPHENOL			10	10 U	UG/L
I-NITROPHENOL	-		20	20 U	UG/L
1-NITROSODIMETHYLAMINI			5.0	5.0 U	UG/L
Y-NITROSODIPHENYLAMINI	5		5.0	5.0 U	UG/L
)I-N-OCTYL PHTHALATE			5.0 20	5.0 U	UG/L
PENTACHLOROPHENOL			5.0	20 U 5.0 U	UG/L
PHENANTHRENE PHENOL			10	10 U	UG/L UG/L
-HENOL 	משעה		5.0	5.0 U	UG/L
4-CHLOROPHENYL-PHENYL			5.0	5.0 U	UG/L
1-NITROSO-DI-N-PROPYLA			5.0	5.0 U	UG/L
PYRENE	MILLE		5.0	5.0 U	UG/L
1,2,4-TRICHLOROBENZENI	7		5.0	5.0 U	UG/L
?,4,6-TRICHLOROPHENOL			10	10 U	UG/L
2,4,5-TRICHLOROPHENOL			10	10 U	UG/L
= 1,4,5-IRICHEOROFHENOE			10	10 0	00/1
SURROGATE RECOVERIES	Q	C LI	MITS		
	(3:	3 -	141)	73	8
NITROBENZENE-d5	(3		114)	73 71	ે
PHENOL-d6	(1)		94)	67	8
?-FLUOROBIPHENYL	(4:		116)	67	*
2-FLUOROPHENOL	(2)		110)	59	*
2,4,6-TRIBROMOPHENOL	(1)		123)	76	8

METHOD 8080

Reported: 06/03/96

Project Reference:

Client Sample ID : METHOD BLANK

)ate Sampled: Order #: 80101 Sample Matrix: WATER Submission #: Analytical Run: 8527)ate Received: ANALYTE PQL RESULT UNITS 05/16/96 - DATE EXTRACTED DATE ANALYZED : 05/23/96 1.0 ANALYTICAL DILUTION: 0.050 0.050 U UG/L ALDRIN 0.050 0.050 U UG/L \LPHA-BHC 0.050 0.050 U UG/L 3ETA-BHC 0.050 U DELTA-BHC 0.050 UG/L GAMMA-BHC (LINDANE) 0.050 U UG/L 0.050 ALPHA-CHLORDANE 0.050 0.050 U UG/L 0.050 0.050 U UG/L **■**GAMMA-CHLORDANE 0.050 U 4,4'-DDD 0.050 UG/L 1,4'-DDE 0.050 0.050 U UG/L _1,4'-DDT 0.10 0.10 U UG/L 0.050 0.050 U UG/L DIELDRIN UG/L 0.050 0.050 U ALPHA-ENDOSULFAN UG/L 3ETA-ENDOSULFAN 0.10 0.10 U ENDOSULFAN SULFATE 0.10 U UG/L 0.10 0.050 0.050 U UG/L ENDRIN 0.10 U UG/L 0.10 ENDRIN ALDEHYDE 0.10 U UG/L -ENDRIN KETONE 0.10 0.050 U UG/L 0.050 HEPTACHLOR UG/L HEPTACHLOR EPOXIDE 0.050 0.050 U 0.20 0.20 U UG/L **IETHOXYCHLOR** 0.50 U UG/L PCB 1016 0.50 0.50 0.50 U UG/L PCB 1221 PCB 1232 0.50 0.50 U UG/L **™**CB 1242 0.50 0.50 U UG/L 0.50 U UG/L 0.50 PCB 1248 0.50 0.50 U UG/L PCB 1254 UG/L 0.50 0.50 U _?CB 1260 1.0 U UG/L **FOXAPHENE** 1.0 QC LIMITS SURROGATE RECOVERIES 100 옿 DIBUTYLCHLORENDATE (DBC) (24 -154) 91 FETRACHLORO-META-XYLENE (TCMX) (60 -150)

-			

488			
مندن			

diam.			
(CART)			

•••			

<u>-</u>			
Walter			
Walter			
•			
4444			
-			