

engineering and constructing a better tomorrow

June 6, 2011

Mr. Eugene Melnyk, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Vapor Intrusion Investigation Report

Former Buffalo Color Corporation Site - Areas ABCE

Former Hospital Building (Area B)

Buffalo, New York

Order on Consent and Administrative Settlement #B9-0802-09-02

Mactec Project No. 3410090701

Dear Mr. Melnyk,

Mactec Engineering and Consulting, Inc. (Mactec) has prepared this Vapor Intrusion Investigation Report (VI Report) on behalf of our client, South Buffalo Development LLC (SBD), to document the completion of vapor intrusion sampling at the former "Hospital" building (Building 121) in Area B of the Former Buffalo Color Corporation (BCC) Site. The work was performed pursuant to the referenced Consent Order between the New York State Department of Environmental Conservation (NYSDEC) and Honeywell International, Inc. (Honeywell).

SITE DESCRIPTION & BACKGROUND

The former BCC Site is located on the south side of the City of Buffalo, Erie County, New York, in an area of heavy industrial development that dates to the mid-1800s. The former BCC Site consists of four distinct areas (Areas A, B, C, and E).

Area B (Figure 1) is approximately 5.5 acres in size and is located to the north of Area A. Area B is fenced and is accessible by vehicle via a gated entrance along Lee Street. Area B is bounded by a rail spur and Area C to the north, Lee Street to the east, South Park Avenue to the south, and railroad tracks to the west. The western portion of Area B (approximately 2.5 acres) is owned and controlled by SBD. The eastern portion of Area B includes the former BCC office building (100 Lee Street address), the former "Hospital" building (Building 121), several smaller buildings, and surrounding asphalt parking area which totals approximately three acres and is owned by another party. The former "Hospital" building is a single story structure with no basement. The building is currently vacant with some evidence of use for

storage. All building utilities but electric have been shut off; therefore, the building was unheated at the time of the investigation.

In 2009, Honeywell and NYSDEC executed a Consent Order that required the completion of VI studies for several structures that will remain on the former BCC Site, including the former "Hospital" building and the 100 Lee Street office building located on Area B. In February 2009, Mactec issued a Scope of Work document for the VI sampling effort which was submitted to and accepted by NYSDEC. VI sampling was completed by Mactec for the 100 Lee Street building in March 2010, and a letter report that documented the results was prepared by Mactec and issued to NYSDEC in November 2010.

This letter report has been prepared to document the completion of VI sampling activities completed in January 2011 for the former "Hospital" building.

SCOPE OF WORK

The VI investigation was completed for the former "Hospital" building in accordance with the February 2009 Scope of Work document and subsequent Pre-Design Investigation (PDI) Work Plan (Mactec, August 2009). The procedures used for sample collection and analyses are described below.

- One sub-slab soil vapor sample, one indoor air sample, and one outdoor (ambient) air sample were collected at the former Hospital building. The sample locations are shown on Figure 1. The VI samples were collected via the following procedure:
 - 1. The ambient air at each sample location was screened prior to sample collection with a photoionization detector (PID) and an Indoor Air Quality Questionnaire and Building Inventory Form was completed. A copy of the completed form is provided as Attachment A.
 - 2. A hole was drilled through the floor slab at each of the chosen sub-slab locations and a section of ¼-inch Teflon tubing was inserted into the hole, making sure that the tubing did not touch the bottom of the hole. The annular space around the tubing was sealed to the concrete floor with modeling clay to approximately ½ inch below the surface, and bees wax was poured into the remaining void of the hole to seal it to grade. One tubing volume was purged with a 60 cc syringe prior to connecting a SUMMA canister to the tubing for collection of the sub slab air samples.
 - 3. SUMMA canisters were set up directly next to each of the sub-slab SUMMA canister locations. An outdoor ambient air SUMMA canister was set up in the courtyard east of the former Hospital building.

- 4. Once all SUMMA canisters were set up, the valves on all canisters were opened at roughly the same time at each building. The valves were left open for the 8-hour sample collection time.
- 5. Mactec personnel checked the sample flow valves periodically during the 8-hour time frame to ensure that proper vacuum existed over the duration of the sample collection interval.
- 6. After the 8-hour sampling period had elapsed, Mactec retrieved the canisters and sealed the holes in the floor with a fast drying concrete patch (i.e. QuickcreteTM);
- The SUMMA canister samples were labeled and hand-delivered with chain-of-custody documents to TestAmerica's Amherst NY laboratory. TestAmerica shipped the samples to the TestAmerica laboratory in Burlington, VT (a NYSDOH ELAP certified laboratory), where they were analyzed for volatile organic compounds (VOCs) by USEPA TO-15 analysis.
- Mactec evaluated and validated the laboratory data consistent with NY guidance and policy.

The results of the investigation are provided below.

RESULTS

Upon receipt of the laboratory analysis results, a data validation summary report (DVSR) was completed by a Mactec Project Chemist. Based on the outcome of the data review and validation process, the data was deemed usable as presented in this report. The DVSR is included as Attachment B. The validated analytical results are summarized in Table 3 of the DVSR. A complete copy of the laboratory report is provided as Attachment C.

As shown in Table 3 of the DVSR (Appendix B), various VOCs were detected in the one sub-slab soil vapor sample (BLDG121-SS-1), one indoor air sample (BLDG121-IA-1), and one outdoor (ambient) air sample (BLDG121-OA-1) at the former "Hospital" building. Mactec has evaluated the results in accordance with the latest version of the New York State Department of Health (NYSDOH) document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006). Based on this evaluation, the following conclusions are presented:

• None of the four chlorinated compounds addressed in Section 3.4 of the NYSDOH soil vapor intrusion guidance document (carbon tetrachloride, tetrachloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in the subslab and indoor air VI samples collected at the former "Hospital" building at concentrations that exceeded the NYSDOH monitoring or mitigation levels as presented in Matrices 1 and 2. Therefore, no further action is required at this time. If the

building is to be renovated and used for human occupancy in the future, the building owner may choose to reevaluate the VI pathway at that time.

CONCLUSIONS

Based on these findings, no further investigation of the VI pathway is necessary at the former "Hospital" building.

We trust that this report satisfies the requirements of NYSDEC. Please contact Mr. Richard Galloway of Honeywell at (973) 455-4640 or Mr. John Scrabis of Mactec at (412) 279-6661 should you have any questions or require additional information.

John M. Scrabis

Sr. Principal Engineer

Sincerely,

Mactec Engineering and Consulting, Inc.

Jason Trentini Project Scientist

JT:JMS

w/atts

cc:

R. Galloway (Honeywell)

T. Perkins (Honeywell)

T. Burton

P:\PROJECTS\South Buffalo Development\3410090701\FINAL DELIVERABLES\VI Sampling - Hospital Bldg & Armor Electric (Jan 2011)\Hospital BLDG 121_Draft Buffalo Color - JAN2011 VI Report.docx

FIGURE

ATTACHMENT A

INDOOR AIR QUALITY QUESTIONNAIRE & BUILDING INVENTORY FORM

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

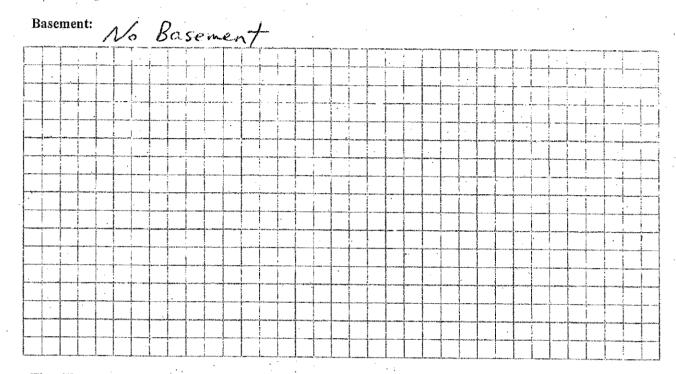
This form must be completed for each residence involved in indoor air testing.

Preparer's Name Jason Trentini	Date/Time Prepared
Preparer's Affiliation MACTEC	Phone No
Purpose of Investigation 501/ Vapor /	ntrasion
1. OCCUPANT:	
Interviewed: Y(N)	
Last Name: First Name	•
Address:	
County:	
Home Phone: Office Phone:	· · · · · · · · · · · · · · · · · · ·
Number of Occupants/persons at this location	Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occur	upant)
Interviewed: Y(N)	
Last Name: First Name:	· .
Address:	· · · · · · · · · · · · · · · · · · ·
County:	
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	The state of the s
Residential School Comm Industrial Church Other:	nercial/Multi-use

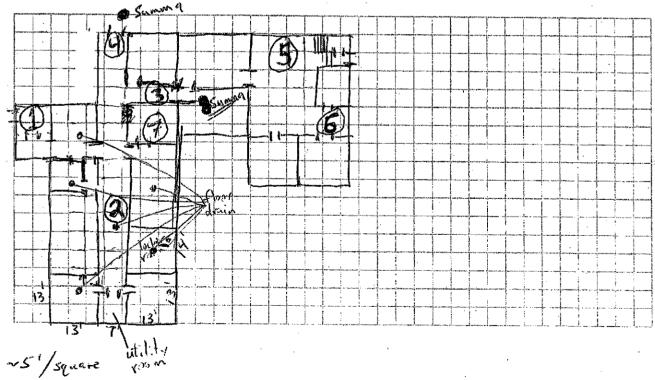
5.	BASEMENT A	AND	CONSTRUCTION	CHARACTERISTICS (Circle all that apply

a. Above grade construction	on: wood frame	concrete	stone (brick		
b. Basement type:	full	crawlspace (slab	other		
cBasement-floor:	concrete	dirt	stone	other 1/1		
_d_Basement-floor:	uncovered	covered	covered with	NA_	<u>.</u>	
e. Concrete floor:	unsealed	sealed	sealed with _	covered w	2/4/e :	Nolace
f. Foundation walls:	poured	block	stone	other	. <i>t</i> 	7
g. Foundation walls:	unsealed	sealed	sealed with			
h: The basement is:	wet	damp	dry	moldy .		
i. The basement-is:	finished	unfinished	partially finish	hed		
j. Sump present?	$\mathcal{P}_{\mathrm{Y/N}}$					
k. Water in sump?	Y/N Inot applicable					
Basement/Lowest level depth	below grade:	_(feet)	•			
dentify potential soil vapor e	ntry points and approx	rimate size (e a	oraoke utility	norte draine)	•	•
drains nappear to	n rooms o hallwa be abando	y wed, sho	weldviring	in locker,	00.2	
6. HEATING, VENTING an						
Type of heating system(s) used	d in this building: (eirc	ele all that apply	– note primai	y) Not in	opera	ition
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiatio Wood stove	Hot wa	ater baseboard	_		
The primary type of fuel used	is:					
Natural Gas	1					
Electric Wood	Fuel Oil Propane Coal	Kerose Solar	ene			V
	Propane Coal		ene Om			
Wood	Propane Coal	Solar	òп	Other	44	

Are there air distribution ducts present?

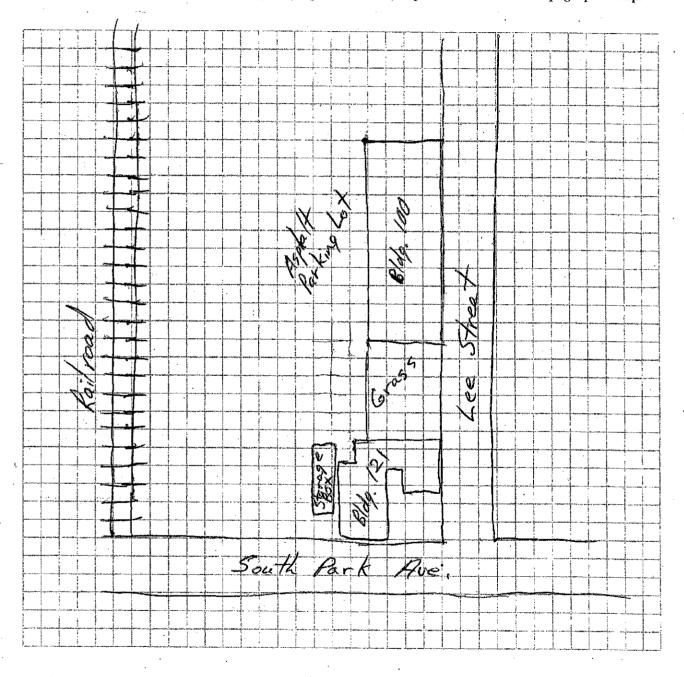

i. Have cosmetic products been used recently?

Describe the supply here is a cold air re liagram.	and cold air return eturn and the tightne	ductwork, and ss of duct joint	its condition v s. Indicate the	vhere visible, inclue locations on the	iding whether floor plan
				•	
			· , <u> </u>		,
		¢			-
	. *** :				
. OCCUPANCY				•	
s basement/lowest l	level occupied? P	ull-time (Occasionally	Seldom A	lmost Never
<u>_evel</u> Gen	eral Use of Each Flo	or (e.g., famil	vroom, bedroo	om, laundry, work	shop, storage)
lasement		·		1	÷,
st Floor 5	orage				
nd Floor	,-		:		
rd-Floor					
th Floor				· .	
					:
. FACTORS THA	T MAY INFLUENC	CE INDOOR A	IR QUALITY	•	
a. Is there an atta	ched garage?			Y (N)	
b. Does the garag	e have a separate he	ating unit?		Y/N/(NA)	
	-powered machines o arage (e.g., lawnmow			Y/N/NA) Please specify	•
d. Has the building	ng ever had a fire?			Y(N) When?_	P
e. Is a kerosene o	r unvented gas space	e heater presen	t?	Y/N Where?_	
f. Is there a work	shop or hobby/craft	area?	Y/N	Where & Type?	
g. Is there smokin	ng in the building?		Y /(N)	How frequently?	
h. Have cleaning	products been used	recently?	YN	When & Type?	
			- C		


	5
	j. Has painting/staining been done in the last 6 months? Y (N) Where & When?
	k. Is there new carpet, drapes or other textiles? Y (N) Where & When?
	I. Have air fresheners been used recently? YN When & Type?
	m. Is there a kitchen exhaust fan? Y/N If yes, where vented?
	n. Is there a bathroom exhaust fan? Y(N) If yes, where vented?
	o. Is there a clothes dryer? Y(N) If yes, is it vented outside? Y/N
	p. Has there been a pesticide application? YN When & Type?
·	Are there odors in the building? If yes, please describe: "musty"
	Do any of the building occupants use solvents at work? Y/N (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist
	If yes, what types of solvents are used?
	If yes, are their clothes washed at work? Y(N)
	Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)
	Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service
	Is there a radon mitigation system for the building/structure? Y/N Date of Installation: Duknown
•	9. WATER AND SEWAGE Water Supply: Public Water Drilled Well Driven Well Dug Well Other:
	Water Supply: Public Water Drilled Well Driven Well Dug Well Other: Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other:
	Countries Dig went Culti.
	10. RELOCATION INFORMATION (for oil spill residential emergency)
	a. Provide reasons why relocation is recommended:
	M. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
	g/Responsibility for costs associated with reimbursement explained? Y/N
	d. Relocation package provided and explained to residents? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Min, Rose 2000

List specific products found in the residence that have the potential to affect indoor air quality.

Bldg, 121

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
1	Eluocopolydol Shingline MuHi	4x Sgals,	VO	Fluoropsly dol	0:0	
2	Surtace Cleaner	G'x 1901 1X	U0/U	CAS# 916-45-9	00	
2	Floor Finish	1901.	U	(ASH 63744683, 111900, 4010779	0.0	
2	Bart Chain Lubricant	1 × 1 701	U	100% Virgin 01	0.0	,
2	Non-Detergent	1x 1gt.	· U	Motor O' (1511-76-2), (75-2		
2	3M Trouble Shooter Cleaner	X 2102. can	U	(^1514(7732-18-5),(111-76-2),(75-2 (141 3-13-5),(74-98-6),(68131-40-8	10.0	
2_	Brillo Pads	pads	VO		0.0	
2	Steinless Steel Betco Cleaner (Polish	' * 1 <i>7ozcan.</i>	\mathcal{U}	White Mineral Cit, Petroi Cas, Citrus Teipenes, Polydimethyl siloxane dichloro-5-triazmetrione	0.0	
2	Comet Disinfection) Cleanser W Chbrinol	1 x 2102 cm	\mathcal{U}	dickloro-s-triazinetrione	00	
3	CLR	12802.	U	see MSDS-not on container	0.0	
4	KARNAK Huminum Asphalt Seal,	3× 56a .	\mathcal{U}	Unable to Rend - See MSDS	0.0	
.5	Coronado LAlkyd Traffic Paint	Sad.	U	See MSDS CUSH 14807-466, 81317-45-3, Alkyd Resin 1344-37-2,	0.0	
5	MS glass dearer	1 & 150ZEE	\mathcal{U}	3032-32-4 3ee 4505 - Not Listed	20	
5	Harvey Heat	2x 1gal.	U	Antifreeze	0.0	
5	Tire Scalent-Sline	1891.	Ü	See MSDS - Not listed	0.0	
6	Coverie Metal Cont. labeled Apotono Rustoleum	4x Visal.	U	Actone	2.1	
6		1x Igal,	U	Paint Enamel - Cil Basar	0,0	
6	Kleen Strip	4x 1 gal.	()	Paint Thinner - Mineral Spirits	0.0	
7	Arnold Engine Oil	1'x	Ū	Engine Cil-no other listings	0,0	

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Minikae 2000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
F	Lysol Disinfection		in U	Alkyl, Ethanol, Direthyl Benzyl Ammonium Sacc.	0.0 haringte	
7	Sheet-Rock Joint Compound	1× Igal	VO.			
7	Biozide Disinfection	-1 K 1602	U	2-Phrnyhphenol, 4 Tart Amyl Ethanol	okano(i O.O.	
7	Biozide Disinfectoria ABCO: Handa Massigne Lanotresh Lotion	1× 20 2	\mathcal{U}	Not Listed	0,0	
				,		
-						
	·					
•						

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

ATTACHMENT B DATA VALIDATION SUMMARY REPORT

DATA VALIDATION SUMMARY REPORT JANUARY 2011 AIR SAMPLING - FORMER HOSPITAL BLDG. 121 HONEYWELL – BUFFALO COLOR BUFFALO, NEW YORK

1.0 INTRODUCTION

Sub-slab vapor and indoor air samples were collected at the Buffalo Color site on January 26, 2011. Samples were analyzed by TestAmerica in South Burlington, Vermont. A listing of samples included in this investigation is presented in Table 1. Samples were analyzed using the following methods:

- Volatile Organic Compounds (VOCs) in Ambient Air by EPA Method TO-15
- VOCs in Ambient Air, Low Concentration by EPA Method TO-15 LL

A subset of samples including BLDG121-OA-1 and BLDG121-IA-1 were analyzed by the low concentration method to obtain lower detection limits.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A data quality validation was completed by the project chemist using NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Quality control (QC) limits for the TO-15 analysis specified in the USEPA Region II guidelines (USEPA, 2006) were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), internal standard performance, data transcription, electronic data reporting, sample calculations, and data qualification.

A summary of data qualification actions is presented on Table 2. Final sample results are presented on Table 3. The following qualifiers are used in the final data presentation.

U = target analyte is not detected at the reporting limit

J = concentration is estimated

UJ = target analyte is not detected at the reporting limit and is estimated

With the exception of the items discussed below, results are interpreted to be usable as reported by the laboratory.

2.0 VOLATILE ORGANIC COMPOUNDS

Continuing Calibration

The continuing calibration associated with a subset of samples had percent differences outside the QC limit of 30 percent for vinyl chloride (49), 1,3-butadiene (34), and methylene chloride (50). Vinyl chloride, 1,3-butadiene, and methylene chloride were not detected in associated samples BLDG121-OA-1 and BLDG121-IA-1 and reporting limits were qualified as estimated (UJ).

Laboratory Control Sample

The LCS associated with a subset of samples had a percent recovery greater than upper QC limit of 130 percent for n-hexane (131), which may indicate a high bias. Detections of n-hexane in associated samples BLDG121-OA and BLDG121-IA-1 were qualified as estimated (J).

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

U.S. Environmental Protection Agency (USEPA), 2006. "Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; USEPA Region II; HW-31; Revision #4; October 2006.

Project chemist: Bradley B. LaForest, NRCC-EAC

Date: March 15, 2011

Reviewed by: Chris Ricardi, NRCC-EAC

Date: March 16, 2011

TABLE 1
SAMPLE SUMMARY
DATA VALIDATION SUMMARY REPORT
JANUARY 2011 AIR SAMPLING
HONEYWELL – BUFFALO COLOR
BUFFALO, NEW YORK

SDG	Field Sample ID	Lab Sample ID	Sample Purpose	Date Sampled	Method
200-3569	BLDG121-OA-1	200-3569-6	REG	1/26/2011	TO-15
200-3569	BLDG121-IA-1	200-3569-7	REG	1/26/2011	TO-15
200-3569	BLDG121-SS-1	200-3569-8	REG	1/26/2011	TO-15

TABLE 2 - SUMMARY OF VALIDAITON ACTIONS DATA VALIDATION SUMMARY REPORT JANUARY 2011 AIR SAMPLING HONEYWELL — BUFFALO COLOR BUFFALO, NEW YORK

		Sample				Lab	Validation	Reason
Field Sample ID	Lab Sample ID	Purpose	Parameter Name	Lab Result	Lab Result Lab Units Qualifier	Qualifier	Qualifier	Codes
BLDG121-0A-1	200-3569-6	REG	1,3-Butadiene	0.18	0.18 ug/m3	* 0	n)	CCV
BLDG121-IA-1	200-3569-7	REG	1,3-Butadiene	0.18	0.18 ug/m3	*	G	200
BLDG121-0A-1	200-3569-6	REG	Methylene Chloride	2.8	2.8 ug/m3	* ^ O	n)	CC
BLDG121-IA-1	200-3569-7	REG	Methylene Chloride	2.8	2.8 ug/m3	* v N	U)	SC CC
BLDG121-0A-1	200-3569-6	REG	n-Hexane	0.85	0.85 ug/m3	*		LCSH
BLDG121-IA-1	200-3569-7	REG	n-Hexane	0.99	.99 ug/m3	*		LCSH
BLDG121-0A-1	200-3569-6	REG	Vinyl chloride	0.2	0.2 ug/m3	* 0	UJ	CC
BLDG121-IA-1	200-3569-7	REG	Vinyl chloride	0.2	0.2 ug/m3	* ``	M	200

Notes:

U = not detected

J = estimated

CCV = continuing calibration outside limit

LCSH = high recovery in lab control sample

TABLE 3 - FINAL RESULTS	DATA VALIDATION SUMMARY REPORT	JANUARY 2011 AIR SAMPLING	HONEYWELL – BUFFALO COLOR	BUFFALO, NEW YORK
-------------------------	--------------------------------	---------------------------	---------------------------	-------------------

BLDG121-5S-1 QC	1/27/2011	7	OTT	1.4 U	1.1 U	0.81 U	0.79 U	1.5 U	0.81 U	0.79 U	0.92 U	1.4 U	5.7	0.44 U	0.93 U	1.6 U	1.9	N	1.3 U	0.87 U	2.1 U	0.78 U	1.3 U	1.3 U	0.98 U	0.79 U	0.91 U	6.8	1.7 U	3.6	3.5	21		0.72 U	1.7 U	23
BLDG121-0A-1 QC	1/27/2011		0.22 0	0.27 U	0.22 U	0.16 U	0.16 U	0.31 U	0.32 U	0.16 U	0.37 U	0.28 U	0.39 U	0.18 UJ	0.35	0.25 U	0.2 U	0.86	0.27 U	0.35 U	0.41 U	0.31 U	0.42	0.21 U	0.2 U	0.16 U	0.18 U	0.19	0.34 U	7.6	0.25		0.65	0.14 U	2.8 UJ	0.37
BLDG121-IA-1 QC	1/27/2011	:		0.27 U	0.22 U	0.16 U	0.16 U	0.31 U	0.32 U	0.16 U	0.37 U	0.28 U	0.53	0.18 UJ	0.4	0.25 U	0.74	0.85	0.27 U	0.35 U	0.41 U	0.31 U	0.51	0.21 U	0.2 U	0.16 U	0.18 U	0.22	0.34 U	2.7	0.36		1.2	0.14 U	2.8 UJ	0.59
Field Sample ID Location	Sample Date	Parameter Name	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dibromoethane	1,2-Dichloroethane	1,2-Dichloroethene, Total	1,2-Dichloropropane	1,2-Dichlorotetrafluoroethane	1,3,5-Trimethylbenzene	1,3-Butadiene	2,2,4-Trimethylpentane	3-Chloropropene	4-Ethyltoluene	Benzene	Bromodichloromethane	Bromoethene(Vinyl Bromide)	Bromoform	Bromomethane	Carbon tetrachloride	Chloroethane	Chloroform	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cyclohexane	Dibromochloromethane	Dichlorodifluoromethane	Ethylbenzene	m,p-Xylene	m-Xylene & p-Xylene	Methyl tert-butyl ether	Methylene Chloride	n-Heptane
		Method	T015	T015	T015	T015	T015	T015	T015	T015	T015	T015	T015	T015	T015	T015	TO15	T015	T015	T015	T015	T015	T015	T015	T015	T0.15	TO15	T015	TO15	TO15	T015	TO15	TO15	T015	TO15	T015
		Units	ug/m3	ng/m3	ng/m3	ug/m3	ng/m3	ug/m3	ug/m3	ug/m3	ng/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ng/m3	ug/m3	ug/m3	ng/m3	ng/m3	ng/m3	ug/m3	ug/m3	ng/m3	ug/m3	ng/m3	ug/m3	ng/m3	ug/m3	ng/m3	ng/m3	ng/m3

BLDG121-SS-1 QC 1/27/2011	700	7.4	15	0.79 U	0.91 U	c	1.2	0.51 U	27	9	
BLDG121-0A-1 QC 1/27/2011	U.85.0	0.25 0.27 U	1.3	0.16 U	0.18 U	0.34	1.5	0.2 UJ			6:0
BLDG121-IA-1 QC 1/27/2011	f 66:0	0.52 0.46	1.6	0.16 U	0.18 U	0.5	2.1	0.2 UJ			1.7
Field Sample ID Location Sample Date	Parameter Name n-Hexane	o-Xylene Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	Xylene (total)	Xylene, o-	Xylenes, Total
	Method TO15	T015 T015	T015	T015	TO15	T015	T015	TO15	T015	T015	T015
	Units ug/m3	ug/m3 ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ng/m3	ng/m3	ug/m3	ng/m3

J = estimated value U = undetected

Notes:

ATTACHMENT C LABORATORY REPORT

ANALYTICAL REPORT

Job Number: 200-3569-1 SDG Number: 200-3569

Job Description: Buffalo Color

For:

MACTEC Engineering and Consulting Inc 700 North Bell Avenue, Suite 200 Carnegie, PA 15106

Attention: John Scrabis

Approved for release Don C Dawicki Project Manager II 2/14/2011 3:53 PM

Don C Dawicki
Project Manager II
don.dawicki@testamericainc.com
02/14/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

EXECUTIVE SUMMARY - Detections

Client: MACTEC Engineering and Consulting Inc

Job Number: 200-3569-1 Sdg Number: 200-3569

Lab Sample ID	Result / Qualifier	Reporting Limit	Units	Method
200-3569-6 BLDG121-OA-1				
Dichlorodifluoromethane	0.52	0.040	ppb v/v	TO15 LL
Dichlorodifluoromethane	2.6	0.20	ug/m3	TO15 LL
Trichlorofluoromethane	0.26	0.040	ppb v/v	TO15 LL
Trichlorofluoromethane	1.5	0.22	ug/m3	TO15 LL
n-Hexane	0.24 *	0.080	ppb v/v	TO15 LL
n-Hexane	0.85 *	0.28	ug/m3	TO15 LL
Cyclohexane	0.054	0.040	ppb v/v	TO15 LL
Cyclohexane	0.19	0.14	ug/m3	TO15 LL
Carbon tetrachloride	0.066	0.040	ppb v/v	TO15 LL
Carbon tetrachloride	0.42	0.25	ug/m3	TO15 LL
2,2,4-Trimethylpentane	0.075	0.040	ppb v/v	TO15 LL
2,2,4-Trimethylpentane	0.35	0.19	ug/m3	TO15 LL
Benzene	0.27	0.040	ppb v/v	TO15 LL
Benzene	0.86	0.13	ug/m3	TO15 LL
n-Heptane	0.091	0.040	ppb v/v	TO15 LL
n-Heptane	0.37	0.16	ug/m3	TO15 LL
Trichloroethene	0.062	0.040	ppb v/v	TO15 LL
Trichloroethene	0.34	0.21	ug/m3	TO15 LL
Toluene	0.33	0.040	ppb v/v	TO15 LL
Toluene	1.3	0.15	ug/m3	TO15 LL
Ethylbenzene	0.058	0.040	ppb v/v	TO15 LL
Ethylbenzene	0.25	0.17	ug/m3	TO15 LL
o-Xylene	0.057	0.040	ppb v/v	TO15 LL
o-Xylene	0.25	0.17	ug/m3	TO15 LL
m-Xylene & p-Xylene	0.15	0.080	ppb v/v	TO15 LL
m-Xylene & p-Xylene	0.65	0.35	ug/m3	TO15 LL
Xylenes, Total	0.21	0.040	ppb v/v	TO15 LL
Xylenes, Total	0.90	0.17	ug/m3	TO15 LL

EXECUTIVE SUMMARY - Detections

Client: MACTEC Engineering and Consulting Inc

Job Number: 200-3569-1 Sdg Number: 200-3569

Lab Sample ID	Result / Qualifier	Reporting Limit	Units	Method
200-3569-7 BLDG121-IA-1				
Dichlorodifluoromethane	0.55	0.040	ppb v/v	TO15 LL
Dichlorodifluoromethane	2.7	0.20	ug/m3	TO15 LL
Trichlorofluoromethane	0.37	0.040	ppb v/v	TO15 LL
Trichlorofluoromethane	2.1	0.22	ug/m3	TO15 LL
n-Hexane	0.28 *	0.080	ppb v/v	TO15 LL
n-Hexane	0.99 *	0.28	ug/m3	TO15 LL
Cyclohexane	0.064	0.040	ppb v/v	TO15 LL
Cyclohexane	0.22	0.14	ug/m3	TO15 LL
Carbon tetrachloride	0.081	0.040	ppb v/v	TO15 LL
Carbon tetrachloride	0.51	0.25	ug/m3	TO15 LL
2,2,4-Trimethylpentane	0.086	0.040	ppb v/v	TO15 LL
2,2,4-Trimethylpentane	0.40	0.19	ug/m3	TO15 LL
Benzene	0.27	0.040	ppb v/v	TO15 LL
Benzene	0.85	0.13	ug/m3	TO15 LL
n-Heptane	0.15	0.040	ppb v/v	TO15 LL
n-Heptane	0.59	0.16	ug/m3	TO15 LL
Trichloroethene	0.093	0.040	ppb v/v	TO15 LL
Trichloroethene	0.50	0.21	ug/m3	TO15 LL
Toluene	0.43	0.040	ppb v/v	TO15 LL
Toluene	1.6	0.15	ug/m3	TO15 LL
Tetrachloroethene	0.068	0.040	ppb v/v	TO15 LL
Tetrachloroethene	0.46	0.27	ug/m3	TO15 LL
Ethylbenzene	0.084	0.040	ppb v/v	TO15 LL
Ethylbenzene	0.36	0.17	ug/m3	TO15 LL
o-Xylene	0.12	0.040	ppb v/v	TO15 LL
o-Xylene	0.52	0.17	ug/m3	TO15 LL
4-Ethyltoluene	0.15	0.040	ppb v/v	TO15 LL
4-Ethyltoluene	0.74	0.20	ug/m3	TO15 LL
1,3,5-Trimethylbenzene	0.11	0.080	ppb v/v	TO15 LL
1,3,5-Trimethylbenzene	0.53	0.39	ug/m3	TO15 LL
m-Xylene & p-Xylene	0.27	0.080	ppb v/v	TO15 LL
m-Xylene & p-Xylene	1.2	0.35	ug/m3	TO15 LL
Xylenes, Total	0.39	0.040	ppb v/v	TO15 LL
Xylenes, Total	1.7	0.17	ug/m3	TO15 LL

EXECUTIVE SUMMARY - Detections

Client: MACTEC Engineering and Consulting Inc

Job Number: 200-3569-1 Sdg Number: 200-3569

Lab Sample ID	Result / Qualifier	Reporting Limit	Units	Method
200-3569-8 BLDG121-SS-1				
Dichlorodifluoromethane	0.72	0.50	ppb v/v	TO-15
Dichlorodifluoromethane	3.6	2.5	ug/m3	TO-15
Trichlorofluoromethane	0.22	0.20	ppb v/v	TO-15
Trichlorofluoromethane	1.2	1.1	ug/m3	TO-15
n-Hexane	5.7	0.20	ppb v/v	TO-15
n-Hexane	20	0.70	ug/m3	TO-15
Cyclohexane	2.0	0.20	ppb v/v	TO-15
Cyclohexane	6.8	0.69	ug/m3	TO-15
Benzene	1.6	0.20	ppb v/v	TO-15
Benzene	5.0	0.64	ug/m3	TO-15
n-Heptane	5.5	0.20	ppb v/v	TO-15
n-Heptane	23	0.82	ug/m3	TO-15
Trichloroethene	0.55	0.20	ppb v/v	TO-15
Trichloroethene	3.0	1.1	ug/m3	TO-15
Toluene	4.1	0.20	ppb v/v	TO-15
Toluene	15	0.75	ug/m3	TO-15
Tetrachloroethene	1.1	0.20	ppb v/v	TO-15
Tetrachloroethene	7.4	1.4	ug/m3	TO-15
Ethylbenzene	0.80	0.20	ppb v/v	TO-15
Ethylbenzene	3.5	0.87	ug/m3	TO-15
m,p-Xylene	4.9	0.50	ppb v/v	TO-15
m,p-Xylene	21	2.2	ug/m3	TO-15
Xylene, o-	1.4	0.20	ppb v/v	TO-15
Xylene, o-	6.0	0.87	ug/m3	TO-15
Xylene (total)	6.3	0.20	ppb v/v	TO-15
Xylene (total)	27	0.87	ug/m3	TO-15
4-Ethyltoluene	0.39	0.20	ppb v/v	TO-15
4-Ethyltoluene	1.9	0.98	ug/m3	TO-15
1,3,5-Trimethylbenzene	1.2	0.20	ppb v/v	TO-15
1,3,5-Trimethylbenzene	5.7	0.98	ug/m3	TO-15

METHOD SUMMARY

Client: MACTEC Engineering and Consulting Inc

Job Number: 200-3569-1 Sdg Number: 200-3569

Description	Lab Location	Method	Preparation Method
Matrix: Air			
Volatile Organic Compounds in Ambient Air Collection via Summa Canister	TAL BUR TAL BUR	EPA TO-15	Summa Canister
Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)	TAL BUR	EPA TO15 LL	
Collection via Summa Canister	TAL BUR		Summa Canister

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1

Sdg Number: 200-3569

Method	Analyst	Analyst ID
EPA TO-15	Valjevac, Sanel	SV
EPA TO15 LL	Desjardins, William R	WRD

2.5

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1 Sdg Number: 200-3569

Client Sample ID: BLDG121-SS-1

Lab Sample ID: 200-3569-8 Date Sampled: 01/26/2011 1630

Client Matrix: Air Date Received: 01/27/2011 1000

TO-15 Volatile Organic Compounds in Ambient Air

Method:	TO-15	Analysis Batch: 200-12887	Instrument ID:	B.i
Preparation:	Summa Canister		Lab File ID:	bjwz016.d
Dilution:	1.0		Initial Weight/Volume:	200 mL
Date Analyzed:	01/28/2011 2321		Final Weight/Volume:	200 mL
Date Prepared:	01/28/2011 2321		Injection Volume:	200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	0.72		0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20
Vinyl chloride	0.20	U	0.20
1,3-Butadiene	0.20	U	0.20
Bromomethane	0.20	U	0.20
Chloroethane	0.50	U	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20
Trichlorofluoromethane	0.22		0.20
1,1-Dichloroethene	0.20	U	0.20
3-Chloropropene	0.50	U	0.50
Methylene Chloride	0.50	U	0.50
Methyl tert-butyl ether	0.20	U	0.20
trans-1,2-Dichloroethene	0.20	U	0.20
n-Hexane	5.7		0.20
1,1-Dichloroethane	0.20	U	0.20
cis-1,2-Dichloroethene	0.20	U	0.20
1,2-Dichloroethene, Total	0.20	Ü	0.20
Chloroform	0.20	U	0.20
1,1,1-Trichloroethane	0.20	U	0.20
Cyclohexane	2.0		0.20
Carbon tetrachloride	0.20	U	0.20
2,2,4-Trimethylpentane	0.20	U	0.20
Benzene	1.6		0.20
1,2-Dichloroethane	0.20	U	0.20
n-Heptane	5.5		0.20
Trichloroethene	0.55		0.20
1,2-Dichloropropane	0.20	U	0.20
Bromodichloromethane	0.20	U	0.20
cis-1,3-Dichloropropene	0.20	U	0.20
Toluene	4.1		0.20
trans-1,3-Dichloropropene	0.20	U	0.20
1,1,2-Trichloroethane	0.20	U	0.20
Tetrachloroethene	1.1		0.20
Dibromochloromethane	0.20	U	0.20
1,2-Dibromoethane	0.20	U	0.20
Ethylbenzene	0.80		0.20
m,p-Xylene	4.9		0.50
Xylene, o-	1.4		0.20
Xylene (total)	6.3		0.20
Bromoform	0.20	U	0.20
1,1,2,2-Tetrachloroethane	0.20	Ü	0.20
4-Ethyltoluene	0.39	-	0.20
1,3,5-Trimethylbenzene	1.2		0.20
Analyte	Result (ug/m3)	Qualifier	RL
niaiyte	r toduit (ug/iiid)	Qualifici	0.5

3.6

Dichlorodifluoromethane

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1

Sdg Number: 200-3569

Client Sample ID: BLDG121-SS-1

Lab Sample ID: 200-3569-8 Date Sampled: 01/26/2011 1630 Client Matrix: Air

Date Received: 01/27/2011 1000

TO-15 Volatile Organic Compounds in Ambient Air

Method: TO-15 Analysis Batch: 200-12887 Instrument ID: B.i Preparation: Summa Canister Lab File ID: bjwz016.d Dilution: Initial Weight/Volume: 200 mL Date Analyzed: 01/28/2011 2321 Final Weight/Volume: 200 mL 01/28/2011 2321 Date Prepared: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
1,2-Dichlorotetrafluoroethane	1.4	U	1.4
Vinyl chloride	0.51	U	0.51
1,3-Butadiene	0.44	U	0.44
Bromomethane	0.78	U	0.78
Chloroethane	1.3	U	1.3
Bromoethene(Vinyl Bromide)	0.87	U	0.87
Trichlorofluoromethane	1.2		1.1
1,1-Dichloroethene	0.79	U	0.79
3-Chloropropene	1.6	U	1.6
Methylene Chloride	1.7	U	1.7
Methyl tert-butyl ether	0.72	U	0.72
trans-1,2-Dichloroethene	0.79	U	0.79
n-Hexane	20		0.70
1,1-Dichloroethane	0.81	U	0.81
cis-1,2-Dichloroethene	0.79	U	0.79
1,2-Dichloroethene, Total	0.79	U	0.79
Chloroform	0.98	U	0.98
1,1,1-Trichloroethane	1.1	U	1.1
Cyclohexane	6.8		0.69
Carbon tetrachloride	1.3	U	1.3
2,2,4-Trimethylpentane	0.93	U	0.93
Benzene	5.0		0.64
1,2-Dichloroethane	0.81	U	0.81
n-Heptane	23		0.82
Trichloroethene	3.0		1.1
1,2-Dichloropropane	0.92	U	0.92
Bromodichloromethane	1.3	U	1.3
cis-1,3-Dichloropropene	0.91	U	0.91
Toluene	15		0.75
trans-1,3-Dichloropropene	0.91	U	0.91
1,1,2-Trichloroethane	1.1	U	1.1
Tetrachloroethene	7.4		1.4
Dibromochloromethane	1.7	U	1.7
1,2-Dibromoethane	1.5	U	1.5
Ethylbenzene	3.5		0.87
m,p-Xylene	21		2.2
Xylene, o-	6.0		0.87
Xylene (total)	27		0.87
Bromoform	2.1	U	2.1
1,1,2,2-Tetrachloroethane	1.4	U	1.4
4-Ethyltoluene	1.9		0.98
1,3,5-Trimethylbenzene	5.7		0.98

eehba007.d

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1 Sdg Number: 200-3569

Client Sample ID: BLDG121-OA-1

Lab Sample ID: 200-3569-6 Date Sampled: 01/26/2011 1620

Client Matrix: Air Date Received: 01/27/2011 1000

TO15 LL Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Method: TO15 LL Analysis Batch: 200-13601 Instrument ID: E.i

Preparation: Summa Canister Lab File ID:

Dilution:

Initial Weight/Volume: 125 mL 02/10/2011 1934 Date Analyzed: Final Weight/Volume: 500 mL 02/10/2011 1934 Date Prepared: Injection Volume: 500 mL

0.52 0.040 0.080 0.080 0.080	U * U * U *	0.040 0.040 0.080
0.080 0.080 0.080	U *	
0.080 0.080		0.080
0.080	11*	
	O .	0.080
0.000	U	0.080
0.080	U	0.080
0.080	U	0.080
0.26		0.040
0.040	U	0.040
0.080	U	0.080
0.80	U ^ *	0.80
0.040	U	0.040
0.040	U	0.040
0.24	*	0.080
0.040	U	0.040
0.054		0.040
0.066		0.040
0.075		0.040
0.27		0.040
0.080	U	0.080
0.091		0.040
0.062		0.040
0.080	U	0.080
0.040	U	0.040
0.040	U	0.040
0.33		0.040
0.040	U	0.040
0.058		0.040
0.057		0.040
0.040	U	0.040
0.040	U	0.040
0.040	U	0.040
0.080	U	0.080
0.040	U	0.040
0.15		0.080
0.21		0.040
Result (ug/m3)	Qualifier	RL
	0.26 0.040 0.080 0.80 0.040 0.040 0.040 0.24 0.040 0.040 0.040 0.040 0.054 0.066 0.075 0.27 0.080 0.091 0.062 0.080 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.058 0.057 0.040	0.080 U 0.26 0.040 U 0.080 U 0.80 U 0.80 U 0.40 U 0.040 U 0.040 U 0.24 * 0.040 U 0.040 U 0.040 U 0.054 U 0.066 U 0.075 U 0.080 U 0.091 U 0.080 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.058 U 0.040 U 0.055 U 0.040 U 0.055 U 0.040 U 0.040 U 0.040 U 0.040 U 0.055 U 0.040 U 0.040 U 0.055 U 0.040 U 0.040 U 0.055 U 0.040 U 0.055 U 0.057 U 0.058 U 0.058 U 0.059

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1

Sdg Number: 200-3569

0.27

0.18

0.15

0.18

0.22

0.27

0.34

0.31

0.17

0.17

0.41

0.27

0.20

0.39

0.16

0.35

0.17

Client Sample ID: BLDG121-OA-1

TO15 LL

Method:

Lab Sample ID: 200-3569-6 Date Sampled: 01/26/2011 1620 Client Matrix: Air Date Received: 01/27/2011 1000

TO15 LL Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Instrument ID:

Analysis Batch: 200-13601

Metriou.	1013 LL	Analysis Balcii. 200-1300 i	msuument ib.	⊑.1
Preparation:	Summa Canister		Lab File ID:	eehba007.d
Dilution:	4.0		Initial Weight/Volume:	125 mL
Date Analyzed:	02/10/2011 1934		Final Weight/Volume:	500 mL
Date Prepared:	02/10/2011 1934		Injection Volume:	500 mL
Analyte		Result (ug/m3)	Qualifier	RL
1,2-Dichlorotetraflu	uoroethane	0.28	U *	0.28
Vinyl chloride		0.20	U *	0.20
1,3-Butadiene		0.18	U *	0.18
Bromomethane		0.31	U	0.31
Chloroethane		0.21	U	0.21
Bromoethene(Viny	yl Bromide)	0.35	U	0.35
Trichlorofluoromet	hane	1.5		0.22
1,1-Dichloroethene	e	0.16	U	0.16
3-Chloropropene		0.25	U	0.25
Methylene Chlorid	e	2.8	U ^ *	2.8
Methyl tert-butyl et	ther	0.14	U	0.14
trans-1,2-Dichloro	ethene	0.16	U	0.16
n-Hexane		0.85	*	0.28
1,1-Dichloroethane	e	0.16	U	0.16
cis-1,2-Dichloroeth	nene	0.16	U	0.16
Chloroform		0.20	U	0.20
1,1,1-Trichloroetha	ane	0.22	U	0.22
Cyclohexane		0.19		0.14
Carbon tetrachlorie	de	0.42		0.25
2,2,4-Trimethylper	ntane	0.35		0.19
Benzene		0.86		0.13
1,2-Dichloroethane	e	0.32	U	0.32
n-Heptane		0.37		0.16
Trichloroethene		0.34		0.21
1,2-Dichloropropa	ne	0.37	U	0.37

0.27

0.18

1.3

0.18

0.22

0.27

0.34

0.31

0.25

0.25

0.41

0.27

0.20

0.39

0.16

0.65

0.90

U

U

U

U

U

U

U

U

U

U

U

U

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Dibromochloromethane

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

1,2-Dichloroethene, Total

Tetrachloroethene

1,2-Dibromoethane

Ethylbenzene

4-Ethyltoluene

Xylenes, Total

o-Xylene

Bromoform

Toluene

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1

Sdg Number: 200-3569

Client Sample ID: BLDG121-IA-1

Lab Sample ID: 200-3569-7 Date Sampled: 01/26/2011 1625 Client Matrix: Air Date Received: 01/27/2011 1000

TO15 LL Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	TO15 LL Summa Canister 4.0 02/10/2011 2029 02/10/2011 2029	Analysis Batch: 200-13601	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	E.i eehba008.d 125 mL 500 mL 500 mL
Analyte		Result (ppb v/v)	Qualifier	RL
Dichlorodifluorome	thane	0.55		0.040
1,2-Dichlorotetraflu	ioroethane	0.040	U *	0.040
Vinyl chloride		0.080	U *	0.080
1,3-Butadiene		0.080	U *	0.080
Bromomethane		0.080	U	0.080
Chloroethane		0.080	U	0.080
Bromoethene(Viny	l Bromide)	0.080	U	0.080
Trichlorofluorometh	nane	0.37		0.040
1,1-Dichloroethene	•	0.040	U	0.040
3-Chloropropene		0.080	U	0.080
Methylene Chloride	е	0.80	U ^ *	0.80
Methyl tert-butyl et	her	0.040	U	0.040
trans-1,2-Dichloroe	ethene	0.040	U	0.040
n-Hexane		0.28	*	0.080
1,1-Dichloroethane	•	0.040	U	0.040
cis-1,2-Dichloroeth	ene	0.040	U	0.040
Chloroform		0.040	U	0.040
1,1,1-Trichloroetha	ine	0.040	U	0.040
Cyclohexane		0.064		0.040
Carbon tetrachlorio	le	0.081		0.040
2,2,4-Trimethylpen	tane	0.086		0.040
Benzene		0.27		0.040
1,2-Dichloroethane)	0.080	U	0.080
n-Heptane		0.15		0.040
Trichloroethene		0.093		0.040
1,2-Dichloropropar	ne	0.080	U	0.080
Bromodichloromet	hane	0.040	U	0.040
cis-1,3-Dichloropro	pene	0.040	U	0.040
Toluene		0.43		0.040
trans-1,3-Dichlorop	propene	0.040	U	0.040
1,1,2-Trichloroetha	ine	0.040	U	0.040
Tetrachloroethene		0.068		0.040
Dibromochloromet	hane	0.040	U	0.040
1,2-Dibromoethane	9	0.040	U	0.040
Ethylbenzene		0.084		0.040
o-Xylene		0.12		0.040
Bromoform		0.040	U	0.040
1,1,2,2-Tetrachloro	ethane	0.040	U	0.040
4-Ethyltoluene		0.15		0.040
1,3,5-Trimethylben	zene	0.11		0.080
1,2-Dichloroethene	e, Total	0.040	U	0.040
m-Xylene & p-Xyle	ne	0.27		0.080
Xylenes, Total		0.39		0.040
Analyta		Deput (ug/m2)	Qualifier	DI

Qualifier

RL

0.20

Result (ug/m3)

2.7

Dichlorodifluoromethane

Analyte

Client: MACTEC Engineering and Consulting Inc Job Number: 200-3569-1

Sdg Number: 200-3569

E.i

eehba008.d

0.17

0.17

0.41

0.27

0.20

0.39

0.16

0.35

0.17

Client Sample ID: BLDG121-IA-1

TO15 LL

Summa Canister

Method:

Preparation:

Lab Sample ID: 200-3569-7 Date Sampled: 01/26/2011 1625 Client Matrix: Air Date Received: 01/27/2011 1000

TO15 LL Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Instrument ID:

Lab File ID:

Analysis Batch: 200-13601

i reparation.	Sullina Canistei		Lab i ile ib.	eenbaooo.u
Dilution:	4.0		Initial Weight/Volume:	125 mL
Date Analyzed:	02/10/2011 2029		Final Weight/Volume:	500 mL
Date Prepared:	02/10/2011 2029		Injection Volume:	500 mL
Analyte		Result (ug/m3)	Qualifier	RL
1,2-Dichlorotetrafl	uoroethane	0.28	U *	0.28
Vinyl chloride		0.20	U *	0.20
1,3-Butadiene		0.18	U *	0.18
Bromomethane		0.31	U	0.31
Chloroethane		0.21	U	0.21
Bromoethene(Viny	yl Bromide)	0.35	U	0.35
Trichlorofluoromet	thane	2.1		0.22
1,1-Dichloroethen	e	0.16	U	0.16
3-Chloropropene		0.25	U	0.25
Methylene Chlorid	le	2.8	U ^ *	2.8
Methyl tert-butyl e	ther	0.14	U	0.14
trans-1,2-Dichloro	ethene	0.16	U	0.16
n-Hexane		0.99	*	0.28
1,1-Dichloroethan	е	0.16	U	0.16
cis-1,2-Dichloroetl	hene	0.16	U	0.16
Chloroform		0.20	U	0.20
1,1,1-Trichloroeth	ane	0.22	U	0.22
Cyclohexane		0.22		0.14
Carbon tetrachlori	de	0.51		0.25
2,2,4-Trimethylper	ntane	0.40		0.19
Benzene		0.85		0.13
1,2-Dichloroethan	e	0.32	U	0.32
n-Heptane		0.59		0.16
Trichloroethene		0.50		0.21
1,2-Dichloropropa	ne	0.37	U	0.37
Bromodichlorome	thane	0.27	U	0.27
cis-1,3-Dichloropre	opene	0.18	U	0.18
Toluene		1.6		0.15
trans-1,3-Dichloro	propene	0.18	U	0.18
1,1,2-Trichloroeth	ane	0.22	U	0.22
Tetrachloroethene		0.46		0.27
Dibromochlorome	thane	0.34	U	0.34
1,2-Dibromoethan	e	0.31	U	0.31
-u u		0.00		0.47

U

U

U

0.36

0.52

0.41

0.27

0.74

0.53

0.16

1.2

1.7

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

1,2-Dichloroethene, Total

Ethylbenzene

o-Xylene

Bromoform

4-Ethyltoluene

Xylenes, Total