

9 April 2013

Mr. David Gardner New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, NY 12233-7017

RE: Remedial Investigation (First Phase) Letter Report Contract/WA No: D007624-10 Site/Spill No/Pin: Lackawanna Incinerator Site, Lackawanna, New York (915206)

Dear Mr. Gardner:

This letter presents the key findings of the remedial investigation (RI) activities conducted to date at the Lackawanna Incinerator site (915206) located in the City of Lackawanna, New York (Figure 1). EA Engineering, P.C. and its affiliate EA Science and Technology (EA) are conducting a Remedial Investigation/Feasibility Study (RI/FS) as per the New York State Department of Environmental Conservation (NYSDEC) RI/FS Scope of Work (NYSDEC 2012)¹ and Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (NYSDEC 2010)². A site-specific Work Plan (EA 2012)³ was developed based on the NYSDEC RI/FS Scope of Work, which in conjunction with EA's Generic Field Activities Plan (FAP) (EA 2011)⁴ provides the basis for conducting the RI field activities at the site.

INTRODUCTION

This letter report summarizes the RI (First Phase) activities completed to date and proposes supplemental field investigations to be conducted during the RI (Second Phase), as needed to meet the objectives of the RI. Following completion of the remaining RI activities, a RI Report will be prepared to present the data obtained during both RI phases, demonstrate the nature and extent of site-related constituents, evaluate the fate and transport of site-related constituents, and provide a refined conceptual site model that will serve as the framework for the FS.

An overview of the site background is included below, followed by a description of field activities, a summary of investigation results, and recommendations.

¹ NYSDEC. 2012. Work Assignment Issuance/Notice to Proceed. 14 June.

² NYSDEC. 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May.

³ EA. 2012. Work Plan, Lackawanna Incinerator Site (915206), Lackawanna, New York. October.

⁴ EA. 2011. Generic Field Activities Plan NYSDEC Standby Contract D007624. April.

SITE BACKGROUND

The Lackawanna Incinerator site is listed as a Class "2" site in the State Registry of Inactive Hazardous Waste Sites (State Superfund), meaning that the site represents a significant threat to public health or the environment, and that action is required. The property is situated on an approximately 1.57-acre city-owned parcel, located along South Park Avenue in the City of Lackawanna, Erie County, New York (Figure 2). The site includes two brick multi-story buildings and associated chimneys that housed municipal solid waste incinerators: the southern building and the northern building. The property is bounded to the west by Veterans' Stadium, to the south by the Department of Public Works, to the east by a vacant lot owned by Baker Hall Victory Services, and to the north by a paved walking path open to the public that runs along the southern bank of Smokes Creek (north branch). Numerous single-family residential properties are located south and southwest of the site, while Holy Cross Cemetery is located to north of Smokes Creek.

Operations at the site began in 1927 at the building in the southeastern portion of the site (southern incinerator). In 1950, operations shifted to a newly constructed (northern) incinerator, which was built into the face of a ramp for dump truck traffic. Ramp materials initially included incinerator ash-contaminated soil and steel foundry slag. Over time the ramp was widened to the east and west through the addition of street sweepings and discarded refractory brick from the incinerator chimneys obtained from routine repair and maintenance activities. Operation of the northern incinerator ceased in 1980. The incinerators were primarily used to burn municipal trash, although some medical waste from Our Lady of Victory Hospital was intermittently burned.

The current primary use of the site is for materials staging, and an equipment and vehicle storage area for the City Department of Public Works, with the adjacent Office of Sanitation housed across Reddon Street to the south. The City of Lackawanna Department of Buildings and Codes condemned the southern incinerator in 2012, due in part to brick failure on the building and incinerator stack. The first floor of the northern incinerator is used by the City Animal Control Officer for the temporary caging of animals. The second floor contains the intact incinerator equipment for two incinerator trains, in addition to some automotive parts and scrap metal. The third floor currently contains truck parts and automotive repair tools. Various chemicals and cleaners are stored throughout the northern building.

ENVIRONMENTAL SETTING

Elevations of the site range from approximately 590 to 615 ft above mean sea level (AMSL) (Figure 3), with elevations of the ramp ranging from about 593 to 615 ft AMSL. The natural grade at the site, prior to ramp construction, would have been generally level with elevations ranging from about 590 to 593 ft AMSL. The nearest surface water feature is Smokes Creek, which is adjacent to the northern boundary of the site. Smokes Creek is channelized near the site and flows west approximately 2.7 mi downstream to Lake Erie.

Surface water drainage at the site flows radially from the elevated fill ramp to drainage ditches and two stormwater catch basins, which drain northward into Smokes Creek. Stormwater from the catch basins appears to be associated with two outfall pipes along Smokes Creek. A third outfall was observed along Smokes Creek, to the north of the adjacent Baker Hall property. Historically, the incinerators were quenched with water after a batch-combustion took place. The associated wastewater reportedly ran into a drain system, potentially entering the storm sewer network and eventually Smokes Creek.

The site geology is characterized as fill material underlain by glaciolacustrine deposits of finegrained silt and clay. Fill materials, ranging in thickness from not present to greater than 20 ft, consisted of reworked silty clay intermixed with varying amounts of slag and gravel, as well as trace amounts of glass, cinders, brick, and ash. Shale bedrock is anticipated to be present at approximately 50 ft below ground surface (bgs) (Malcolm Pirnie, 2005)⁵.

Shallow groundwater flow at the site is generally to the north toward Smokes Creek. The local water table exists within the overburden from 586 to 589 ft AMSL (6–10 ft bgs, excluding the area of the fill mound). In the ramp area, groundwater may be present in perched zones and would be anticipated to flow radially (Malcolm Pirnie, 2005)⁵.

PREVIOUS INVESTIGATIONS

In April 2005, Malcolm Pirnie conducted an investigation intended to serve as the initial step of a Site Investigation/Remedial Alternatives Report⁵, in accordance with the EPA Brownfields Assessment Program. Specifically, the purpose of this field sampling was to determine the level of overall chemical contamination and environmental conditions at the site. As shown on Figure 4 and described in the work plan, a total of three sediment samples, three incinerator ash samples from the basement of the southern incinerator building, and seven subsurface soil/fill samples were collected to characterize the physical and chemical conditions of the materials at the site. Three shallow groundwater monitoring wells (MW-01, MW-02, and MW-03) were also installed and sampled. Building assessment activities included 14 lead-based paint and 15 asbestos sampling locations within the former incinerator buildings. The investigation results indicated the presence of high levels of heavy metals in the incinerator ash, elevated metals and polycyclic aromatic hydrocarbons (PAHs) in soil/fill at the site, a limited area of potentially site-related metals impacts to sediment at a stormwater outfall, and the presence of asbestos-containing building materials.

REMEDIAL INVESTIGATION FIELD ACTIVITIES

This section summarizes the RI field activities completed to date. The field sampling procedures and protocols, number of environmental samples to be collected from each media, as well as the quality assurance/quality control procedures, were specified in the site-specific Quality Assurance Project Plan (QAPP) Addendum (EA 2012)¹. Field investigation activities and

⁵ Malcolm Pirnie, Inc. 2005. Draft Site Investigation/Remedial Alternatives Report, Former Incinerator Site, Lackawanna, New York, November 2005.

sampling procedures were conducted in a manner consistent with EA Generic Health and Safety Plan (HASP) (EA 2006a)⁶ and FAP (EA 2011)⁴ developed for Work Authorizations conducted under Standby Contract D007624, and the associated site-specific Addenda.

The following RI field activities were completed from October to November 2012:

- Pre-investigation field activities including utility clearance through Dig Safely New York, a geophysical evaluation by NOVA Geophysical Services (NOVA), and base mapping by a NYS-licensed surveyor from Popli Design Group (Popli)
- Collection of nine sediment samples and two stormwater samples
- Collection of 16 surface soil samples
- Completion of 13 direct-push and 8 hollow-stem auger soil borings by GeoLogic NY, Inc.
- Collection of 99 soil samples
- Installation and collection of groundwater samples from seven monitoring wells
- Site survey to obtain coordinates of sampling locations.

Table 1 summarizes the field sampling and laboratory analyses performed to date. Following receipt of laboratory results, data validation and a determination of usability was conducted by an independent third-party (Data Validation Services). Field activities, including evaluation of indoor air and potential soil vapor intrusion, were completed during the week of March 10, 2013. A second groundwater sampling event is scheduled for March-April 2013.

Subsurface Investigation

A total of 13 direct-push soil borings (SB-05 through SB-10, and SB-12 through SB-18) were advanced to depths of 8–28 ft bgs from October 25 to 26, 2012 using a track-mounted Geoprobe[®] (Figure 5). One additional soil boring (SB-11) was installed on November 16, 2012 during the hollow-stem auger drilling program. A total of seven monitoring well boreholes (MW-02A, MW-03A, and MW-04 to MW-08) were installed to depths of 27–30 ft bgs from October 29 to November 6, 2012 using 4.25-in. inner diameter hollow-stem augers. Subsurface boring logs are provided as Attachment A.

Monitoring wells were installed at each of the seven monitoring well borings (Figure 5). Each 2in. diameter monitoring well was constructed with a 10-ft long, 0.01-in. slot well screen and the appropriate length of schedule 40 polyvinyl chloride flush-joint casing to ground surface.

⁶ EA. 2006a. Generic Health and Safety Plan for Work Assignments. June.

Monitoring wells were completed with an at-grade curb box or above-grade protective casing, dependent on their site location. A cement pad was installed to channel surface water away from the well. Well construction details are summarized in Table 2.

Development of each newly installed monitoring well was performed from November 7 to 8, 2012 using surging and pumping techniques. Due to the fine-grained nature of the subsurface materials, development was considered complete when the groundwater temperature, conductivity, and pH in the well stabilized and a turbidity of less than 50 nephelometric turbidity units was achieved, or until no further improvement was noted.

EVALUATION OF ENVIRONMENTAL MEDIA

EA obtained on-site surface and subsurface samples, groundwater, sediment, and storm sewer outfall samples as summarized in Table 1.

Samples were placed in appropriate sample containers, sealed, packed on ice, and submitted under standard chain of custody to Chemtech Consulting Group or Hampton-Clarke Veritech, both Environmental Laboratory Approval Program-certified laboratories, for chemical analysis. The samples were labeled, handled, and packaged following the procedures described in the Generic QAPP (EA 2006b)⁷ and QAPP Addendum (EA 2012)¹. Quality assurance/quality control samples were collected at the frequency detailed in the Generic QAPP, QAPP Addendum, and Table 1 of the QAPP Addendum.

Surface and Subsurface Soil Sampling

Sixteen surface soil samples (SS-01, SS-02, and SS-05 through SS-18) were collected throughout the on-site and adjacent off-site areas (Figure 5). Soil samples SS-03 and SS-04 were reserved for the Second Phase RI, to be conducted in March-April 2013. Fourteen of these samples (SS-05 through SS-18) were co-located with direct-push soil boring sampling locations (SB-05 through SB-18) and collected prior to drilling. Three sampling locations were in the stadium field west of the site (SS-05 through SS-07), 3 were on the property east of the site (SS-08, SS-09, and SS-10), and 12 locations were on-site (SS-01, SS-02, and SS-11 through SS-18).

Subsurface soil samples were collected at 21 locations (SB-05 to SB-18 and MW-02A, MW-03A, and MW-04 to MW-08) (Figure 5). Subsurface soil samples were continuously collected for laboratory analysis, generally in 2-ft intervals, to the extent practicable. Sampling intervals were adjusted to accommodate observed sample variation (for example, where more than one geological material existed), or to target the most contaminated portion of the interval based upon photoionization detector readings and/or visual and olfactory evidence.

Surface and subsurface soil samples were submitted Chemtech Consulting Group or Hampton Clarke Veritech as follows:

⁷ EA. 2006b. Generic Quality Assurance Project Plan for Work Assignments. Revised October.

- 16 surface soil samples submitted for analysis of the full list of constituents (target compound list [TCL] semivolatile organic compounds (SVOCs) by U.S. Environmental Protection Agency (EPA) Method 8270C, TCL volatile organic compounds (VOCs) by EPA Method 8260B, target analyte list (TAL) metals and mercury by EPA Method 6010B/7470A/7471A, TCL pesticides by EPA Method 8081A, TCL polychlorinated biphenyls (PCBs) by EPA Method 8082, and cyanide by EPA Method 9010B) in accordance with the NYSDEC Analytical Services Protocol (ASP).
- 99 subsurface soil samples submitted for analysis of TAL metals and mercury by EPA Method 6010B / 7470A / 7471A and TCL SVOCs by EPA Method 8270C
- 20 subsurface soil samples submitted for analysis of TCL VOCs by EPA Method 8260B, TCL pesticides by EPA Method 8081A, TCL PCBs by EPA Method 8082, and cyanide by EPA Method 9010B.

Groundwater Sampling

Groundwater samples were collected from the seven on-site monitoring wells from November 28 to 29, 2012 (Figure 5) using low-flow sampling techniques. Due to the fine-grained nature of formation and monitoring well construction, turbidity did not drop below the 50 nephelometric turbidity unit goal at wells MW-04, MW-06, and MW-08. Groundwater samples from these locations were filtered in the lab.

Following purging, groundwater samples were collected from each monitoring well and samples were submitted to Chemtech for analysis of TCL VOCs by EPA Method 8260B, TCL SVOCs by EPA Method 8270C, TAL metals and mercury by EPA Method 6010B/7470A/7471A, pesticides by EPA Method 8081A, TCL PCBs by EPA Method 8082, cyanide by EPA method 9010B, and the following monitored natural attenuation parameters:

- Biological oxygen demand by Method SM5210B
- Chemical oxygen demand by Method 5220D
- Alkalinity by Method SM2320B
- Chloride, nitrate, nitrite, and sulfate by EPA Method 300
- Sulfide by Method SM4500.

Sediment Sampling

A total of nine sediment samples were collected on October 18, 2012 (Figure 5), with two sediment samples (SD-03A and SD-04) collected at stormwater outfalls leading to Smokes Creek, six samples collected from three transect sampling locations within Smokes Creek (SD-05A/B, SD-06A/B, and SD-07A/B), and one sample collected from within the floodplain of Smokes Creek (SD-06FP). One additional sediment sample (SD-03) was collected from a third outfall located near the northeast corner of the site on October 26, 2012.

Sediment samples were submitted to Chemtech for laboratory analysis of TAL metals and mercury by EPA Method 6010B/7470A/7471A, TCL VOCs by EPA Method 8260B, TCL SVOCs by EPA Method 8270C, TCL pesticides by EPA Method 8081A, TCL PCBs by EPA Method 8082, and total organic carbon by Lloyd Kahn Method in accordance with the NYSDEC ASP.

Stormwater Outfall Samples

Two stormwater outfall samples (SW-03 and SW-04) were collected from stormwater outfalls leading from the site to Smokes Creek on November 7, 2012 and were co-located with sediment samples SD-03 and SD-04 (Figure 5). Stormwater outfall samples were submitted to Chemtech for analysis for TAL metals and mercury by EPA Method 6010B/7470A/7471A, TCL VOCs by EPA Method 8260B, TCL SVOCs by EPA Method 8270C, TCL pesticides by EPA Method 8081A, TCL PCBs by EPA Method 8082 in accordance with the NYSDEC ASP.

SITE SURVEY

Surface soil sample locations, soil boring locations, monitoring well locations, and sediment and storm sewer outfall sampling locations were surveyed on November 7-8, 2012 in order to complete the site survey and expand upon the initial base map and survey activities.

DATA VALIDATION / DETERMINATION OF USABILITY

Upon receipt of the analytical laboratory reports, EA submitted the data to Data Validation Services, which verified the qualitative and quantitative reliability of the data as the laboratory provided it and then performed a detailed quality assurance review. Based upon the results of the data review, Data Validation Services prepared detailed Data Usability Summary Reports / data validation summary reports. Data Usability Summary Reports will be submitted to NYSDEC as part of the RI report.

GEOLOGY / HYDROGEOLOGY RESULTS

Site Geology

Geological information of the subsurface at the Lackawanna Incinerator site was gathered from the installation of soil and monitoring well borings. Geologic cross sections were constructed across the site to illustrate the subsurface conditions and the amount of fill material located at the site. Cross section baselines are presented in Figure 6. Cross section A-A' (Figure 7) illustrates a cross section from south to north in the eastern portion of the site, including up the ramp leading to the northern incinerator. Cross section B-B' (Figure 8) cuts the site from the southwestern edge (soil boring SB-07) to the northeastern edge (soil boring SB-08).

Fill material was generally present at grade across the site with varying depths, with historic fill materials associated with the former incinerator operations located primarily in the ramp area. No fill was present in borings SB-05 and SB-06, to the west of the site, SB-09 and SB-10 to the east of the site, and in SB-14 along the northeastern boundary of the site. Fill at the majority of the site ranged from 1- to 4-ft thick. In the ramp area, historic fill thickness ranged from approximately 14 ft (SB-11) to 23 ft (SB-13). Fill in the northern portion of the site (north of the northern incinerator) ranged from 4.5-to 6-ft thick. Fill material consisted of a mix of sand, gravel, silt, clay, glass, ash, cinders, wood, brick, coal, and metal fragments. The fill material was typically dense and ranged from dry to moist. A fill contour map was prepared to illustrate the interpreted fill thickness and native soil surface, based upon the known depths observed soil boring and monitoring well locations throughout the site (Figure 9). The cross sections demonstrate a similar pattern as to the distribution of fill material at the site, with the thickest fill underlying the ramp leading up to the northern incinerator, and a fill thickness of 1–6 ft underlying the remainder of the site.

Glaciolacustrine deposits were encountered in soil and monitoring well borings completed during the RI. This layer consisted primarily of reddish brown to gray laminated silt, clay, silty clay, and clayey silt of moderate to high plasticity. Consistency of the unit decreased from hard/stiff to soft with depth due to an increase in moisture content with depth. Horizontal and vertical laminations and fractures were observed in the glaciolacustrine deposits, and iron staining was observed along fractures in soil retrieved at MW-02A. Lenses containing varying amounts of fine to very fine sand were encountered in some borings (i.e., SB-06, SB-07, and SB-10), but were not consistent throughout the site. Till was encountered in monitoring well boring MW-08 at 25–27 ft bgs. Bedrock was not observed in any of the borings installed as part of this RI.

Site Hydrogeology

Seven monitoring wells were installed across the site during the RI. Groundwater measurements made at these monitoring wells were used to determine local groundwater flow. Groundwater level measurements collected are provided in Table 3. An interpreted groundwater contour map illustrating the direction of groundwater flow for the November 2012 gauging event is shown in

Figure 10. The groundwater flow direction as based on the groundwater elevations in monitoring wells installed as part of this RI was generally to the northeast to north, toward Smokes Creek.

The geologic cross sections show the gauged depths to groundwater within the monitoring wells, as well as the saturated zones encountered during soil boring and monitoring well installation.

No monitoring wells were installed in the ramp area leading to the northern incinerator. However, saturated soil was encountered at SB-11 at a depth of approximately 10 ft bgs. Saturated soil was encountered in monitoring well borings and SB-18, located off the ramp area, at a depth of 15 ft bgs (MW-08) to 25 ft bgs (MW-05). The elevated saturated zone at SB-11 may indicate a localized zone of perched water in the ramp area. Groundwater flows generally northward to Smokes Creek, with some localized variation.

ANALYTICAL RESULTS

Surface / Subsurface Soil / Fill Analytical Results

Analytical results for surface and subsurface soil samples within the Lackawanna Incinerator site were compared to the NYSDEC Part 375 Restricted Residential and Industrial soil cleanup objectives (SCOs). Results for soil samples collected from adjacent properties (i.e., Baker Hall property to the east and Veterans' Stadium to the west) were also compared to the more stringent Unrestricted Use SCOs. The following sections summarize exceedances detected in surface and subsurface soil samples.

Volatile Organic Compounds

Acetone and methylene chloride were detected above their respective Unrestricted Use SCOs, with acetone detected above the Unrestricted Use SCO of 0.05 mg/kg in soil from MW-06 and SB-11, and methylene chloride detected above the Unrestricted Use SCO of 0.05 mg/kg in the duplicate sample collected from MW-06. Both MW-06 and SB-11 are located within the Lackawanna Incinerator property boundary. VOCs were not detected at concentrations exceeding Restricted Residential or Industrial SCOs in any of the surface and subsurface soil samples collected. Table 4 provides a summary of VOCs detected in surface and subsurface soil.

Semivolatile Organic Compounds

Several SVOCs were detected at concentrations above their respective Unrestricted Use, Restricted Residential, and/or Industrial SCOs in surface and/or subsurface soil samples, specifically, the PAHs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, 2-methylphenol, and phenol. Table 5 provides a summary of SVOCs detected in surface and subsurface soil, while Table 6 includes a summary of SVOC exceedances in surface and subsurface soil.

One SVOC, benzo(a)pyrene, was detected above the Industrial SCO of 1.1 mg/kg in soil from one surface soil location (SS-09 at 1.9 J mg/kg). Four additional SVOCs (benzo(a)anthracene, benzo(b)fluoranthene , dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected above the Restricted Residential SCOs at two surface soil sampling locations: SS-08 and SS-09 (located on the adjoining property east of the site; Figure 6). One SVOC, benzo(a)pyrene was detected above the Industrial SCO, and three additional SVOCs (benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene) were detected above the Restricted Residential SCOs at three soil boring locations (SB-09, SB-13, SB-18) and two monitoring well borings (MW-03A and MW-05). Chrysene was also detected above the Restricted Residential SCO at SB-09. Borings SB-09 and MW-05 are located on the adjoining property to the east of the site, SB-13 is located on-site in the ramp area, and SB-18 and MW-03A are located on-site west of the ramp (Figure 6).

Chrysene was detected above the respective Unrestricted Use SCO of 1 mg/kg at MW-05, located on the adjoining property to the east. Additional SVOCs exceeding the Unrestricted Use SCOs were detected at locations within the Lackawanna Incinerator property, including chrysene at MW-03A (west of ramp) and 2-methylphenol and phenol at SB-13 (on ramp).

No SVOCs were detected above SCOs in any of the other surface or subsurface soil samples collected.

Pesticides and Polychlorinated Biphenyls Results

Pesticides, including p,p'-dichlorodiphenyldichloroethylene (DDE), p,p'-dichlorodiphenyldichloroethane (DDD), and p-p'-dichlorodiphenyltrichloroethane (DDT), were detected at concentrations exceeding their respective Unrestricted Use SCOs of 0.0033 mg/kg in off-site surface and/or subsurface soil samples with detections in surface soil at SS-08 and SS-09, located on the property east of the site, and subsurface soil at MW-08, along Smokes Creek northwest of the site. In addition, p,p'-DDE, p,p'-DDD, and p-p'-DDT were detected above Unrestricted Use SCOs in on-site surface and/or subsurface soils at SS-11, MW-02A, and MW-07. Pesticides exceeding associated SCOs are included in Table 6, and detections below SCOs are included in Table 7. No other pesticides were detected in surface or subsurface soil above SCOs.

No PCBs were detected in surface or subsurface soil above Unrestricted Use, Restricted Residential, or Industrial SCOs. Table 7 provides a summary of PCBs detected in surface and subsurface soil samples.

Inorganic Constituent Results

Several inorganic constituents including arsenic, barium, cadmium, chromium, copper, cyanide, lead, mercury, manganese, nickel, selenium, silver, and zinc were detected above their respective Unrestrictive Use, Restricted Residential, and/or Industrial SCOs in surface and/or subsurface soil samples. Table 8 provides a summary of inorganic constituents detected in surface and

subsurface soil, while Table 9 provides a summary of inorganic exceedances in surface and subsurface soil. Figures 11 and 12 illustrate arsenic and lead results in surface and subsurface soil in plan-view, while Figures 13 and 14 illustrate metals exceedances on cross sections A-A' and B-B'.

Five metals (cadmium, chromium, copper, lead, and manganese) were detected in surface soil samples at concentrations exceeding the Restricted Residential SCOs, with exceedances of one or more metals detected at six locations, including SS-08, SS-09, SS-10, SS-11, SS-12, and SS-14 (Figure 11). Surface soil sampling locations SS-08, SS-09, and SS-10 are located on the property east of the site. Sampling locations SS-11 and SS-12 are located in the on-site ramp area, while sampling location SS-14 is located in the northeastern corner of the site. Arsenic and/or lead were detected above their associated Industrial SCOs at five soil boring locations (SB-08, SB-11, SB-13, SB-16, and SB-18) and three monitoring well borings (MW-02A, MW-05, and MW-08) (Figures 12 through 14). Soil boring SB-08 and monitoring well boring MW-08 is located on the property east of the site. The remaining borings are located within the Lackawanna Incinerator property, with SB-11 and SB-13 in the ramp area, SB-16 and SB-18 west of the ramp, and MW-02A in the northeastern corner of the site.

Eight inorganic constituents (arsenic, barium, cadmium, copper, cyanide, lead, manganese, and nickel) were detected in subsurface soil samples at concentrations exceeding the Restricted Residential SCOs, with exceedances of one or more metals detected at six soil boring locations (SB-08, SB-11, SB-12, SB-13, SB-16, and SB-18) and four monitoring well boring locations (MW-02A, MW-05, MW-07, and MW-08) (Figures 12 through 14). Cyanide was also detected at MW-06 above the Restricted Residential SCO of 27 mg/kg. Soil boring SB-08 and monitoring well boring MW-05 are located on the property east of the site, while monitoring well boring locations are within the Lackawanna Incinerator property boundary with SB-11, SB-12, and SB-13 in the ramp area; SB-16, SB-18, MW-02A in the north central portion of the site. In general, subsurface soil inorganic concentrations were more elevated in the ramp area where historic fill is present. Although the ash was generally mixed in with soil and/or other fill materials, the analytical data suggest that the ash-impacted fill was placed in alternating layers with other fill materials (i.e., in periodic intervals).

Additional metals were detected above their respective Unrestricted Use SCOs at all off-site surface and subsurface soil sampling locations. Based on analytical results of samples collected at the adjacent stadium field to the west, elevated metals concentrations were detected above Unrestricted Use SCOs in surface soils at SS-05 (lead), SS-06 (lead and zinc), and SS-07 (chromium); and in subsurface soils at SB-05 and SB-06 (nickel only), SB-06 (lead, mercury, and zinc in shallow soil to a depth of 2 ft bgs and nickel only in deeper soil), and along Smokes Creek at MW-08 (multiple metals including copper, chromium, mercury, nickel, silver, and zinc to a depth of 4 ft bgs). Multiple metals were detected at concentrations exceeding Unrestricted Use SCOs only in surface soils collected from the adjacent property to the east: SS-08, SS-09,

and SS-10, including arsenic, barium, cadmium, chromium, copper, mercury, nickel, selenium, and zinc. Metals were also detected above Unrestricted Use SCOs in subsurface soils collected from the property east of the site at SB-08 (arsenic, chromium, copper, lead, nickel, silver, and zinc in shallow soil to a depth of 4 ft bgs, lead to 6 ft bgs, and nickel to 8 ft bgs), SB-09 (lead, mercury, and zinc in shallow soil to a depth of 2 ft bgs, and nickel only in deeper soils to 8 ft bgs), SB-10 (nickel only to a depth of 8 ft bgs), and MW-05 (chromium, nickel, silver, and zinc in shallow soil to 2 ft bgs, zinc to 3 ft bgs, and nickel to 6 ft bgs).

Nickel was detected above the Unrestricted Use SCO at depth both across the Lackawanna Incinerator Site and in borings installed on adjacent properties, with a concentration ranging primarily from 30 to 50 mg/kg. In areas with elevated nickel concentrations above 50 mg/kg, additional metals were detected exceeding SCOs. Therefore, it appears that the background concentration for nickel is approximately 30–50 mg/kg, and areas where only nickel was detected below 50 mg/kg do not appear to be impacted by site-specific contaminants.

Sediment Analytical Results

Low concentrations of VOCs and SVOCs were detected in sediment, as reported in Tables 10 and 11. Total organic carbon (TOC) values in sediment were lowest at SD-05B (16,000 J mg/kg), located on the north bank of Smokes Creek, and highest in sediment collected from the storm sewer outfall location SD-03A (56,000 J mg/kg). In the remaining sampling locations, TOC values ranged from 22,000 J mg/kg to 27,000 J mg/kg. A summary of TOC results is provided in Table 12.

A complete summary of VOC and SVOC results and a comparison to sediment criteria will be provided in the RI report. Sediment criteria to be used for evaluating the sediment sample analytical data set for non-polar organic contaminants will be developed from the NYSDEC *Technical Guidance for Screening Contaminated Sediments* (NYSDEC, 1999a)⁸. The guidance document presents concentration values for several levels of protection. When evaluating detected analytes, benthic aquatic life chronic toxicity values will be used where applicable and human health bioaccumulation values will be used when chronic toxicity values are not available. The guidance values will be calculated as a function of the TOC content of the sediment being evaluated. The TOC concentration will be utilized to calculate an average organic carbon concentration, and a lower confidence limit concentration value. EA will select the appropriate concentration value as the percent TOC for the derivation of the sediment criteria via equilibrium partitioning methodology.

Inorganic analytical results for sediment samples were compared to the Lowest Effect Levels (LEL) and Severe Effect Levels (SEL), as described in the NYSDEC 1999 Division of Fish,

⁸ NYSDEC. 1999a. Technical Guidance for Screening Contaminated Sediments.

Wildlife, and Marine Resources Technical Guidance for Screening Contaminated Sediments⁹. The following section summarizes the sediment inorganic sampling results.

Two metals were detected in sediment sample SD-03 at concentrations exceeding the SEL. Lead was detected at a concentration of 138 mg/kg, exceeding the SEL of 110, while zinc was detected at an estimated concentration of 298 J mg/kg, exceeding the SEL of 270 mg/kg (Figure 15).

Seven metals were detected in sediment samples at concentrations exceeding the associated LELs including arsenic (LEL of 6.0 mg/kg), cadmium (LEL of 0.6 mg/kg), copper (LEL of 16.0 mg/kg), lead (LEL of 31.0 mg/kg), manganese (LEL of 460 mg/kg), nickel (LEL of 16 mg/kg), and zinc (LEL of 120 mg/kg). Exceedances of LELs for two or more metals were detected at all sediment sampling locations, as summarized in Table 13.

PCBs and pesticides were not detected in any of the sediment samples analyzed.

Stormwater Outfall Analytical Results

Analytical results for stormwater outfall samples were compared to the NYSDEC Class C surface water standards and guidance values (6 NYCRR Part 703.5 Water Quality Regulations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended). The following section summarizes exceedances detected in stormwater samples.

No organic compounds were detected in the water samples collected from the stormwater outfalls (Table 14). Several inorganic constituents were detected, including aluminum, antimony, barium, calcium, copper, cyanide, iron, magnesium, manganese, potassium, selenium, sodium, and zinc. Total cyanide was detected above the both the Class C Aquatic (Acute) Standard of 22 μ g/L and Class C Aquatic (Chronic) standard of 5.2 μ g/L at SW-04 (32 μ g/L), and above the Aquatic (Chronic) Standard at SW-03 (8.0 μ g/L) (Figure 16). Selenium was detected above the Class C Aquatic (Chronic) Standard of 4.6 μ g/L at SW-03 (6.98 μ g/L). Table 14 summarizes inorganics detected in stormwater outfall samples.

Groundwater Analytical Results

Analytical results for groundwater samples were compared to the NYSDEC Class GA groundwater standards and guidance values (6 NYCRR Part 703.5 Water Quality Regulations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended). The following section summarizes exceedances detected in groundwater.

Acetone was detected at monitoring wells MW-04 and MW-06 above the Class GA criteria of 50 micrograms per liter (μ g/L), with acetone detected at a concentration of 63 μ g/L at MW-04 and

⁹ NYSDEC. 1999b. Division of Fish, Wildlife, and Marine Resources Technical Guidance for Screening Contaminated Sediments.

 $68 \ \mu g/L$ at MW-06. The VOC *cis*-1,2-dichloroethene was detected below the standard (5 $\mu g/L$) at MW-04 and MW-06. No other organic compounds were detected in groundwater samples.

Seven metals were detected above the NYSDEC Class GA criteria, including antimony (greater than 3 μ g/L), chromium (greater than 50 μ g/L), iron (greater than 300 μ g/L), lead (25 μ g/L), magnesium (greater than 35,000 μ g/L), manganese (greater than 300 μ g/L), and sodium (greater than 20,000 μ g/L) (Table 15). One or more metals exceeding the Class GA standards were detected in each monitoring well location, as summarized in Table 16. These results will be further evaluated following the second groundwater sampling event.

PREVIOUSLY SCOPED RI FIELD ACTIVITIES

EA will conduct the following previously scoped RI activities in the March-April 2013 timeframe:

- *Evaluation of Indoor Air and Potential Vapor Intrusion*—Collecting indoor air samples at two locations within the northern incinerator building, sub-slab vapor samples at two locations beneath the northern incinerator building, and one ambient air sample (upwind of the northern incinerator) for analysis of VOCs. This evaluation was included as a First Phase RI activity, but was conducted on March 11–12, 2013 to be within the winter heating season.
- *Groundwater Evaluation*—Conducting a Second Phase RI groundwater sampling event at each monitoring well location to confirm the results of the First Phase RI sampling event and evaluate potential seasonal variability. Groundwater samples will be analyzed for TCL VOCs, TCL SVOCs, TAL inorganics, and monitored natural attenuation parameters.
- *Surface Soil Evaluation*—The remaining surface soil samples (reserved sampling numbers SS-03 and SS-04) will be collected to further delineate surface soil impacts at the adjoining property west of the site.

PROPOSED SECOND PHASE RI FIELD ACTIVITIES

Additional sampling is needed to determine the lateral extent of site-related impacts, based on exceedances observed at the adjoining Veterans' Stadium (to the west) and Baker Hall (to the east) properties and along Smokes Creek (to the north/northwest of the site). A brief discussion of these inorganic and SVOC exceedances is provided below, followed by specific recommendations to address these site characterization data gaps. As discussed, additional sampling is recommended to evaluate background concentrations of PAHs and metals in surface soil. It is also recommended that a limited number of on-site soil/fill samples be collected from the ramp area for waste characterization (e.g., toxicity characteristic leaching procedure [TCLP] metals).

Baker Hall Property

At the Baker Hall property to the east of the site, SVOCs and/or metals exceeded the Industrial, Residential, and/or Unrestricted Use SCOs at six locations including: three surface soil sampling locations (SS-08 and SS-09 for SVOCs and metals; and SS-10 for metals only) and three soil boring locations:

- SB-08: 0–4 ft bgs for multiple metals exceeding multiple standards, and 4–6 ft bgs for lead exceeding the Unrestricted Use SCO.
- SB-09: 0–2 ft bgs for SVOCs exceeding Restricted Residential SCOs and metals (lead, mercury, and zinc) exceeding Unrestricted Use SCOs.
- MW-05: 0–2 ft bgs for SVOCs and multiple metals exceeding multiple standards, 2–3 ft bgs for lead and zinc exceeding multiple standards.

Nickel was also detected above the Unrestricted Use SCO at several of the above locations as well as at SB-10 from 4 to 8 ft bgs; however, these concentrations were within the interpreted background concentration (30 to 50 mg/kg).

Based on the detections of SVOCs and metals above SCOs, further delineation of surface soil is needed east and south of the previous sampling locations on the Baker Hall property (Figure 17). The vertical extent of site-related constituents in soil borings appears to extend from 2 to 6 ft bgs, with depth increasing northward from SB-09 (2 ft bgs) to SB-08 (6 ft bgs). Therefore, further delineation of subsurface soil is needed east of SB-09, MW-05, and SB-08.

Lackawanna Veterans' Stadium Property

At the Lackawanna Veterans' Stadium property to the west of the site, metals were detected above the Unrestricted Use SCOs at three surface soil sampling locations including SS-05 (lead only), SS-06 (lead and zinc), and SS-07 (chromium). Metals exceeded the Industrial, Residential, and/or Unrestricted Use SCOs at soil boring SB-07 (0–2 ft bgs for lead, mercury, and zinc).

Based on the detections of metals above SCOs in surface soils, further lateral delineation of metals in surface soil is needed to the west and south of the sampling locations on the Lackawanna Veterans' Stadium property (Figure 17). As site-related metals were detected in shallow subsurface soil at SB-07 (0-2 ft bgs), additional delineation of metals is needed to the west and south of this location.

Mr. David Gardner NYSDEC 9 April 2013 Page 16

Smokes Creek Area

At one location MW-08, along Smokes Creek northwest of the site, metals in subsurface soils exceeded the Industrial and/or Residential SCOs (MW-08 at 0–2 ft bgs and 2–4 ft bgs). Therefore, additional delineation of metals is needed at this location (Figure 17).

Sediment samples collected within the Smokes Creek channel do not appear to be impacted by site-specific contaminants, as concentrations of metals exceeding LELs are similar at the upstream location (SD-05A/B), midstream location immediately downgradient from the site (SD-06A/B), and downstream location (SD-07A/B). However, metals concentrations in floodplain sediment samples collected from the outfall locations SD-03, SD-04, and SD-06FP were elevated above those detected in samples collected from within the stream channel with cadmium, copper, lead, zinc, and manganese (SD-06FP only) concentrations exceeding the respective SEL and/or LEL. Due to the elevated metals detections in the outfall and floodplain sediment samples, additional sampling is recommended to delineate metals concentrations in sediment adjacent to the outfall / floodplain sampling locations (Figure 18).

Stormwater outfall samples appear to be impacted by site-specific inorganic constituents including total cyanide and selenium. As the outfalls discharge into the floodplain area and surface water samples were not collected from Smokes Creek during the First Phase RI, additional surface water sampling is recommended to determine if the creek has been impacted by site-specific inorganic constituents (Figure 18).

RECOMMENDATIONS

Accordingly, EA recommends the following additional sampling activities (Table 1):

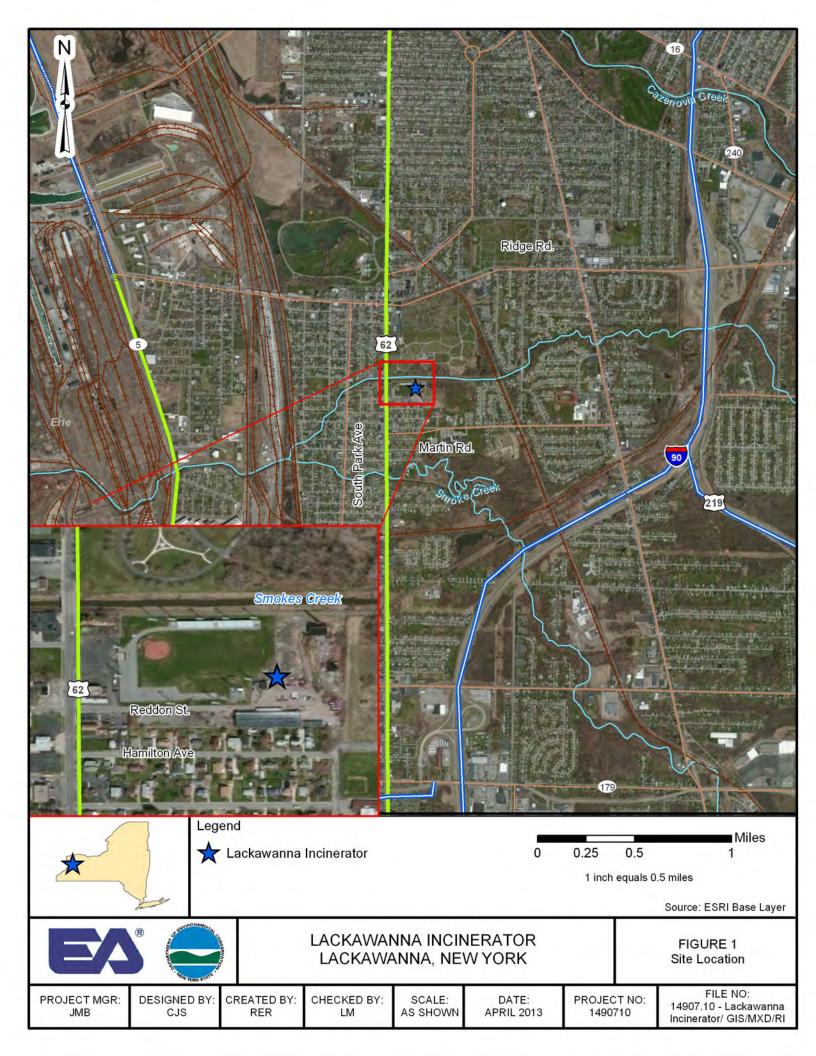
- Baker Hall property (surface and subsurface soil)—Collect six additional surface soil samples to delineate the lateral extent of SVOCs and metals exceedances east of SS-08, SS-09, and SS-10. Complete four additional shallow soil borings to 8 ft bgs (or the top of silt and clay, whichever is encountered first) in the northern portion of the Baker Hall property to delineate the lateral and vertical extent of metals in subsurface soil north of SB-08 and east of SB-08, MW-05, and SB-09.
- Lackawanna Veterans' Stadium property (surface and subsurface soil)—Collect four additional surface soil samples to delineate the lateral extent of metals exceedances west of SS-05, SS-06, and SS-07. Complete three additional shallow soil borings up to 4 ft bgs to delineate the lateral and vertical extent of metals in subsurface soil west of MW-08 (along Smokes Creek) and SB-07.
- Smokes Creek area (sediment)—Collect three additional floodplain sediment samples in the area between SD-03 and SD-04, and near SD-07A to delineate metals exceedances.

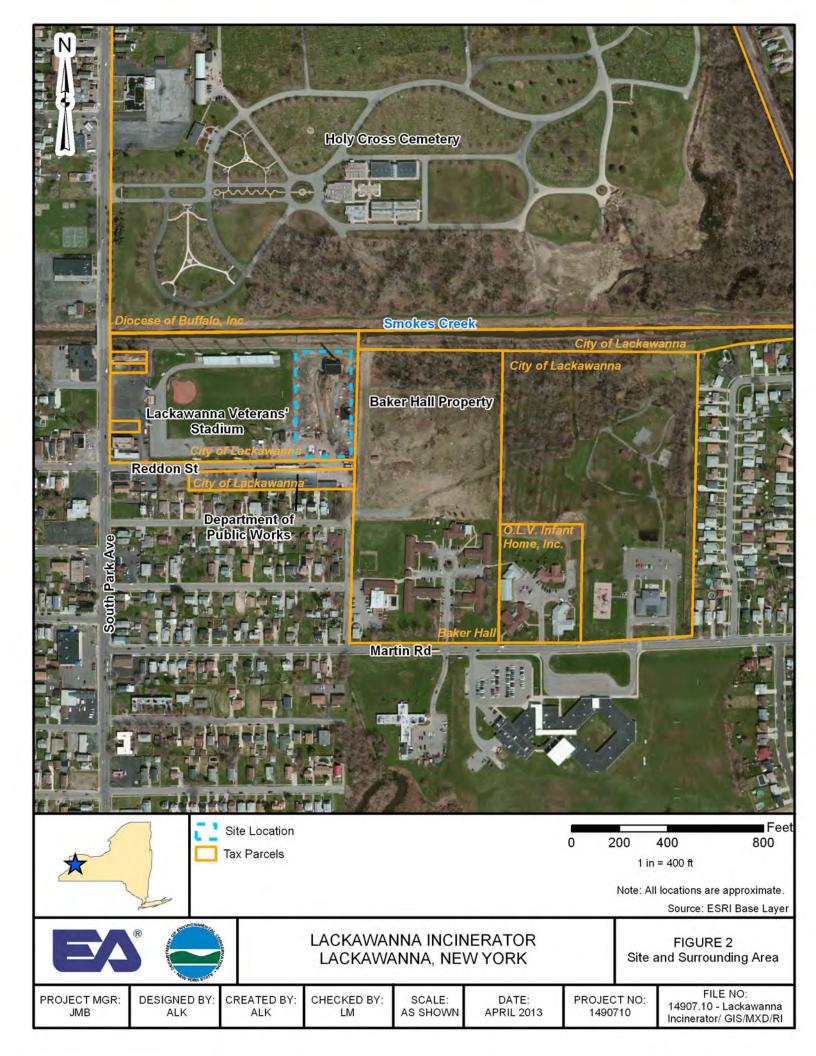
- Smokes Creek (surface water and sediment)—Collect five surface water samples to determine if the creek has been impacted by site-specific inorganic constituents. Proposed surface water sampling locations include one upstream background sample, two samples immediately downstream from stormwater outfall locations SW-03 and SW-04, respectively; one sample centrally located (midstream) between outfall locations SW-03 and SW-03 and SW-04, and one sample downstream from the site. In addition, two sediment samples will be co-located with the midstream and downstream surface water sampling locations.
- Background areas (surface soil)—Collect up to six additional surface soil samples at the Veterans' Stadium property and/or in the park east of the Baker Hall property to further evaluate background PAHs and metals soil concentrations.
- On-site ramp area (subsurface soil/fill)—Collect up to four additional subsurface soil/fill samples near the previous soil boring SB-13, where elevated metals concentrations were observed. Samples to be collected from one soil boring installed to 8 ft bgs analyzed for waste characterization purposes.

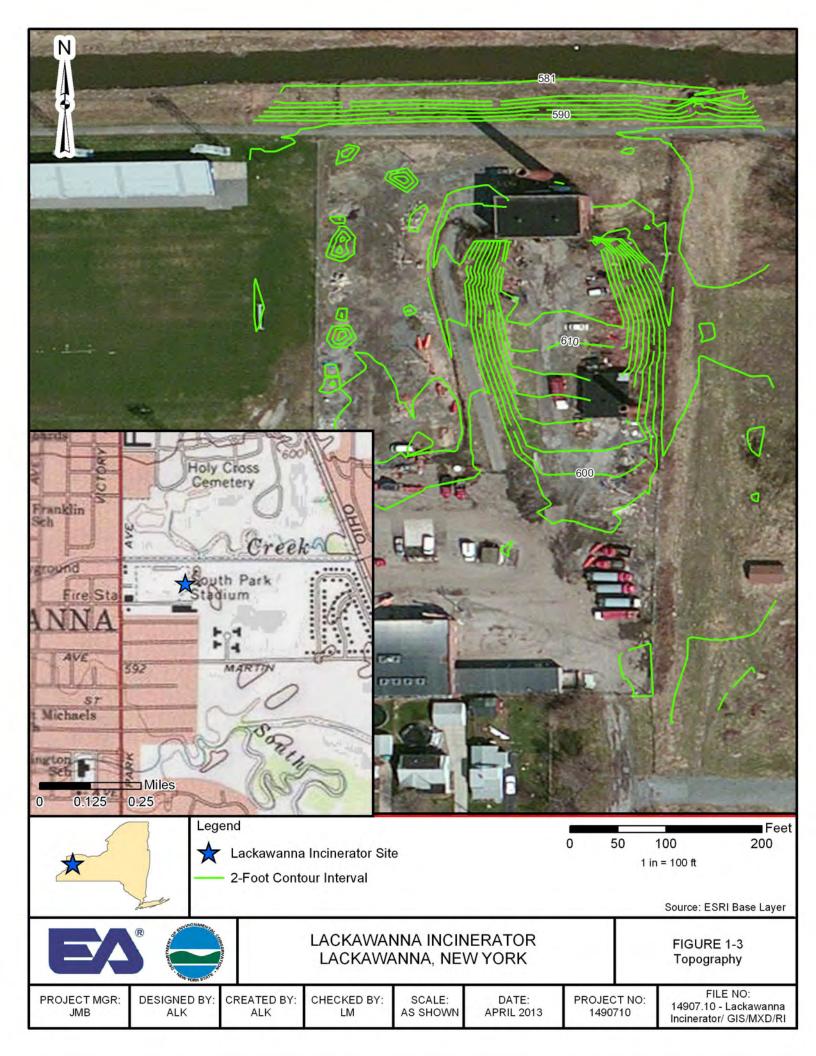
SCHEDULE

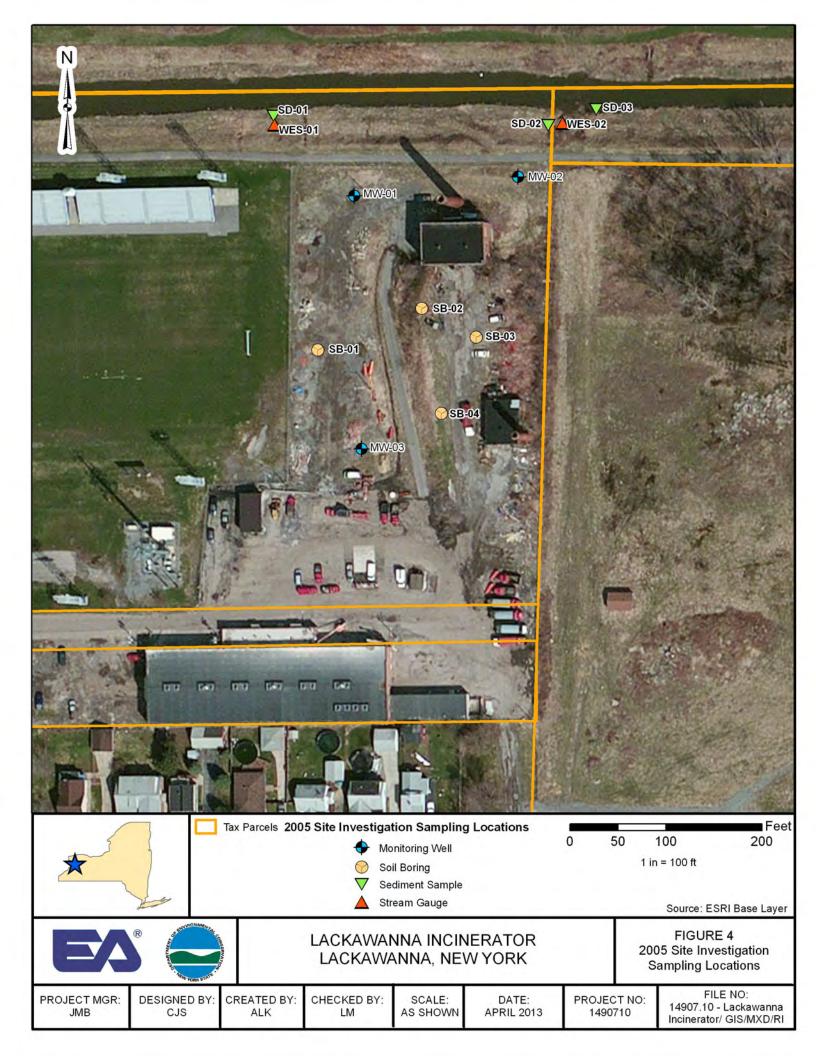
The additional RI field activities began on March 11, 2013 with indoor air and sub-slab soil vapor sampling. The Second Phase RI field activities, including a second groundwater sampling event, additional surface and subsurface soil samples for delineation of potential site-related impacts to adjacent properties and surface water and sediment samples from Smokes Creek are planned for the March–April 2013 timeframe.

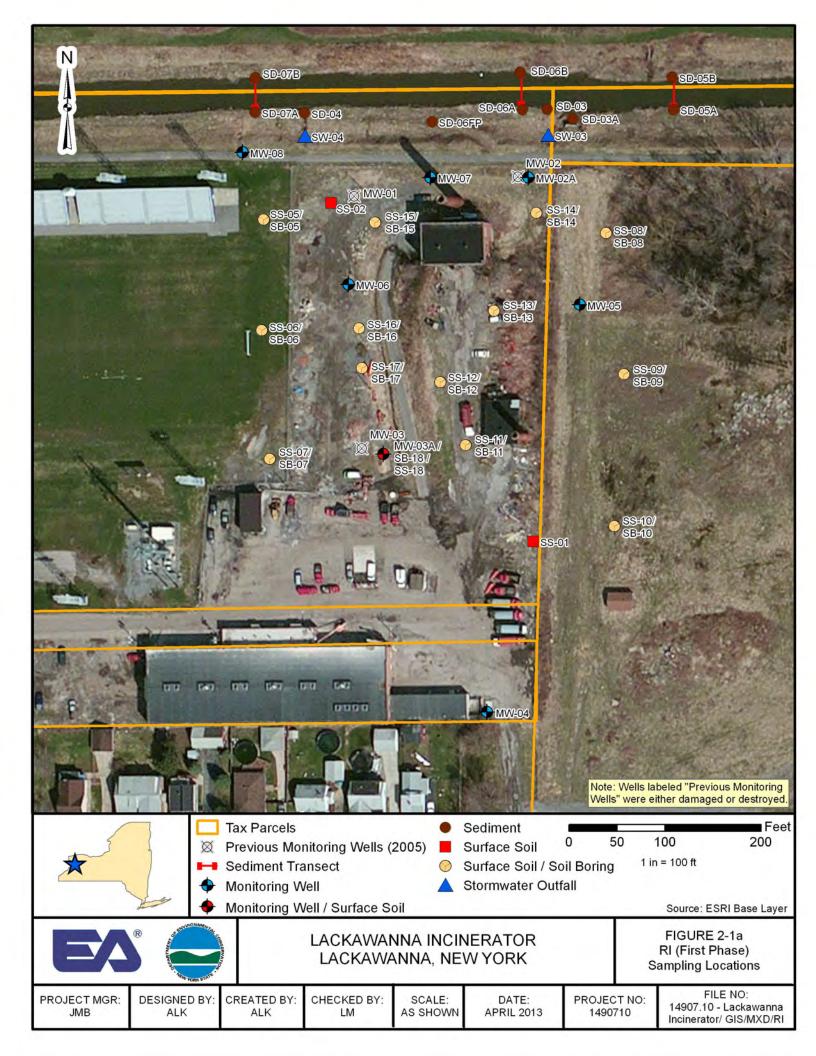
Following completion of the additional field investigation activities and associated laboratory analysis and data validation, EA will complete a Draft RI Report with the findings of the full RI investigation, qualitative human health exposure assessment, and fish and wildlife impact analysis and submit to NYSDEC for review and comment.

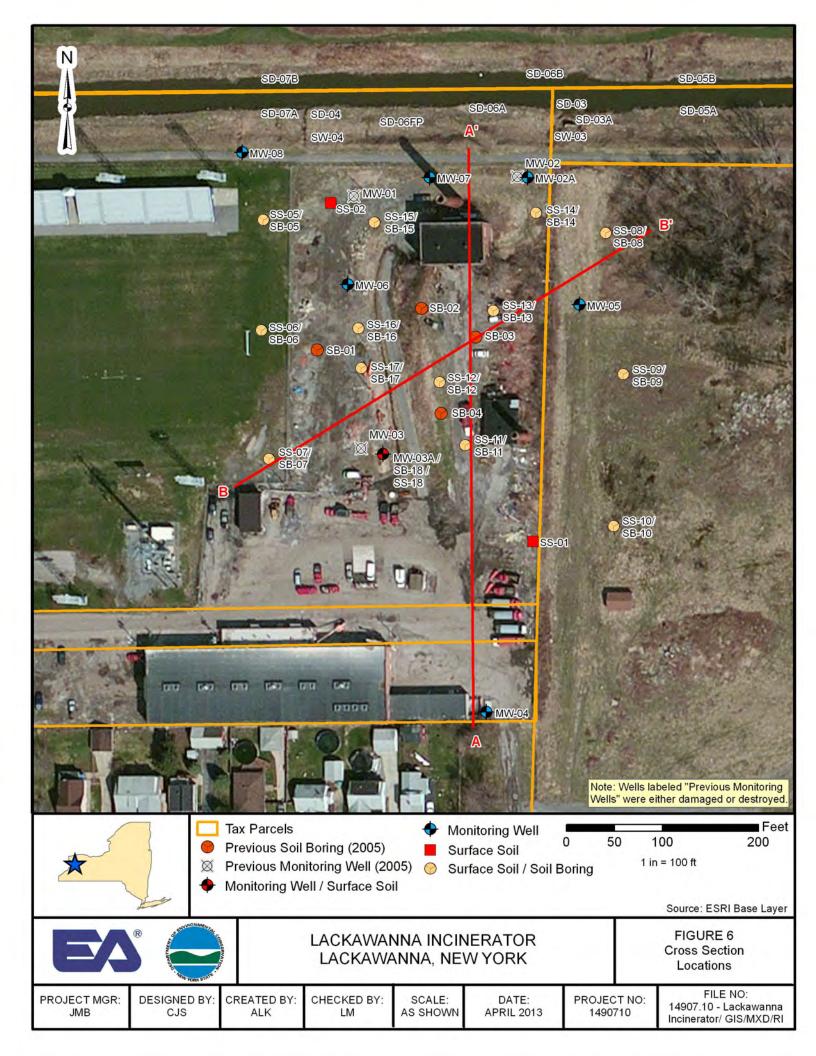

If you have any questions, please do not hesitate to contact me at (315) 431-4610, extension 111.

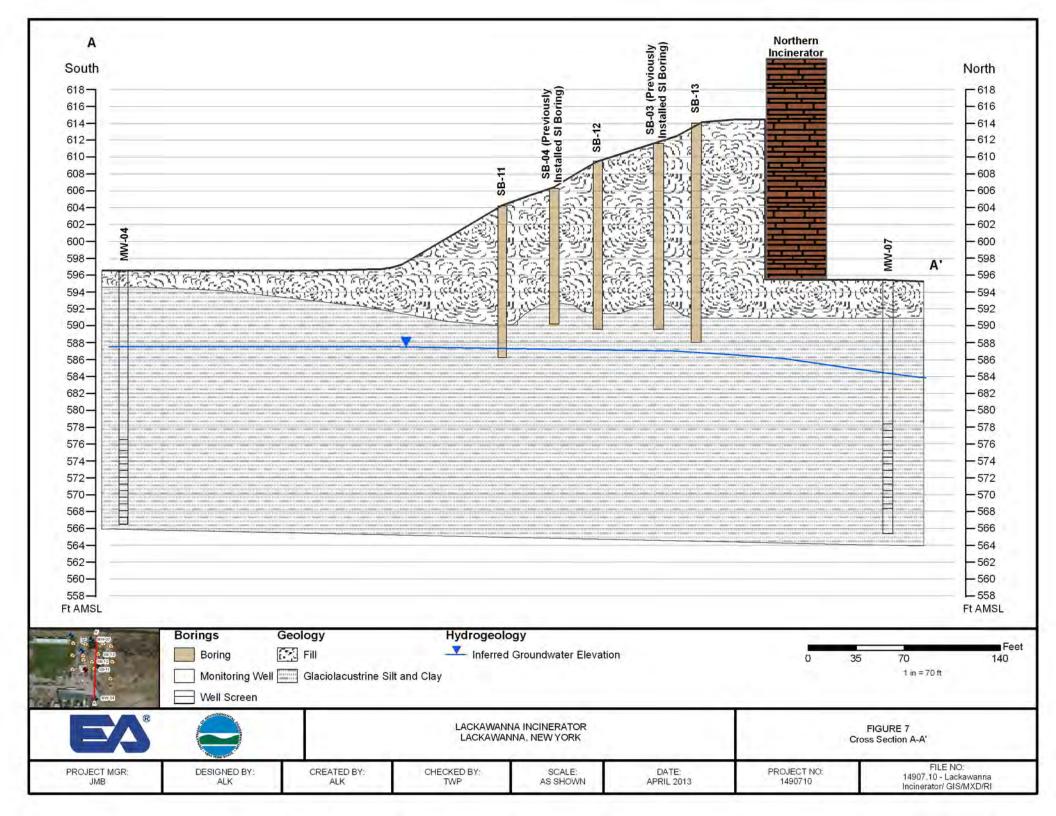

Sincerely yours,

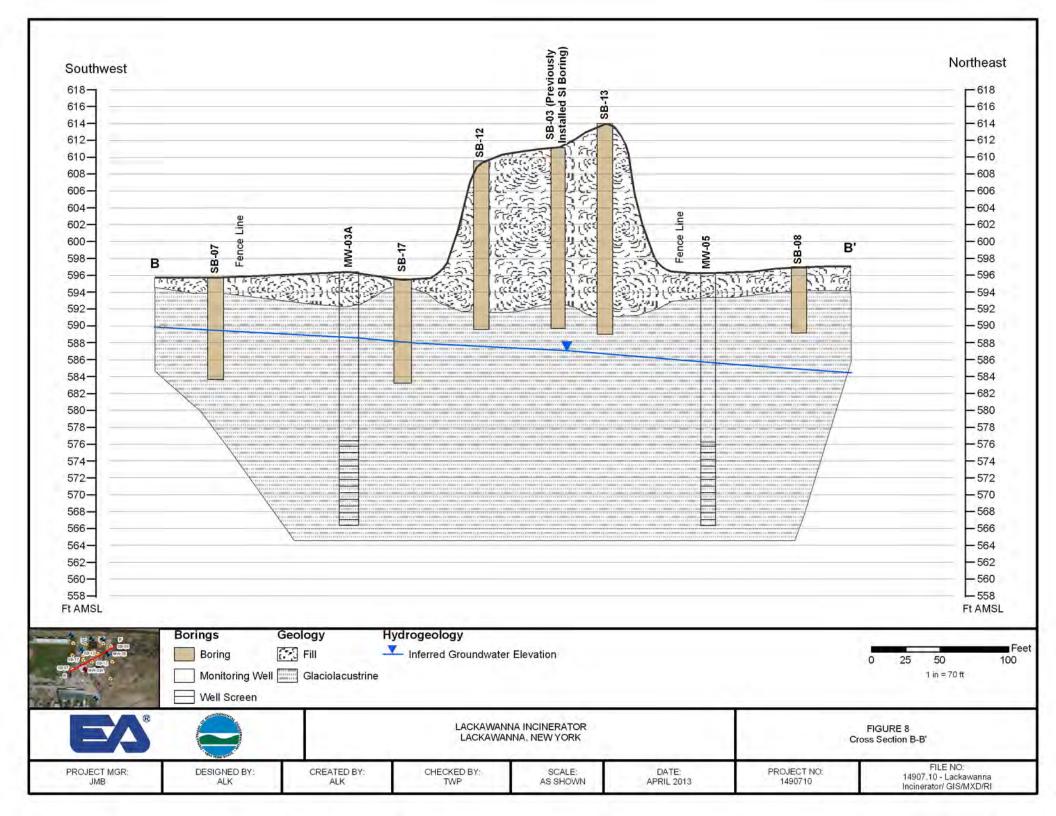

EA SCIENCE AND TECHNOLOGY

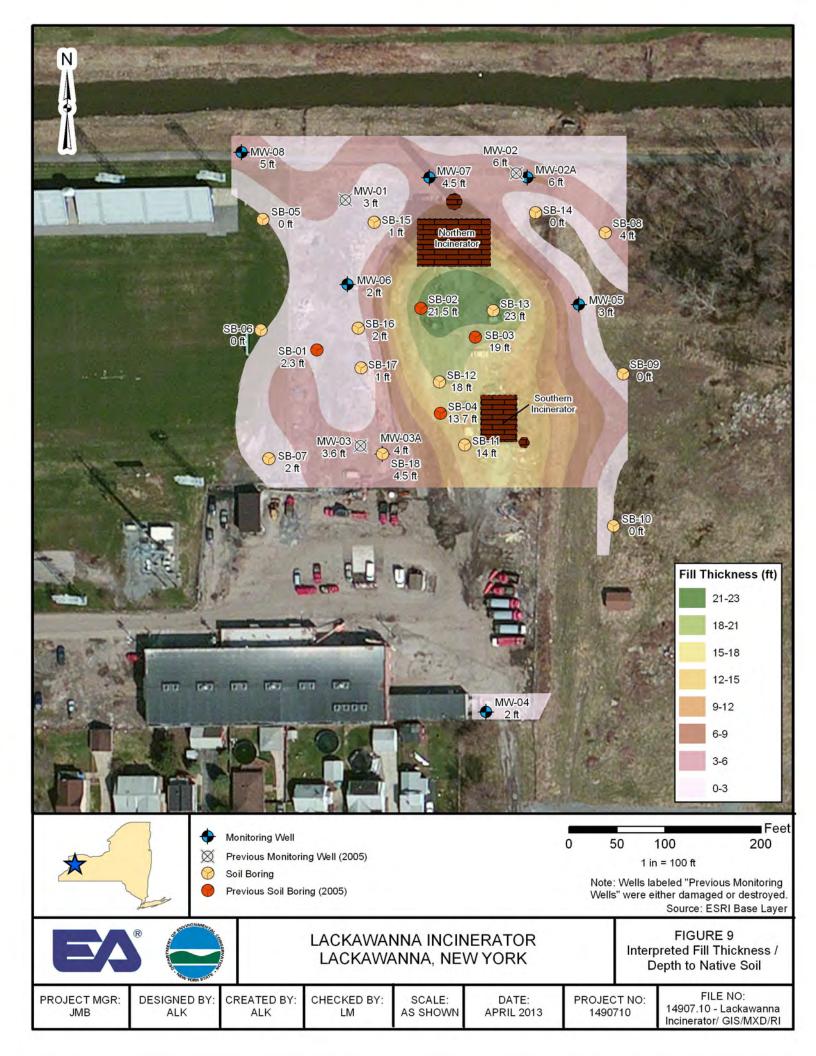

Lynette B.Mokry

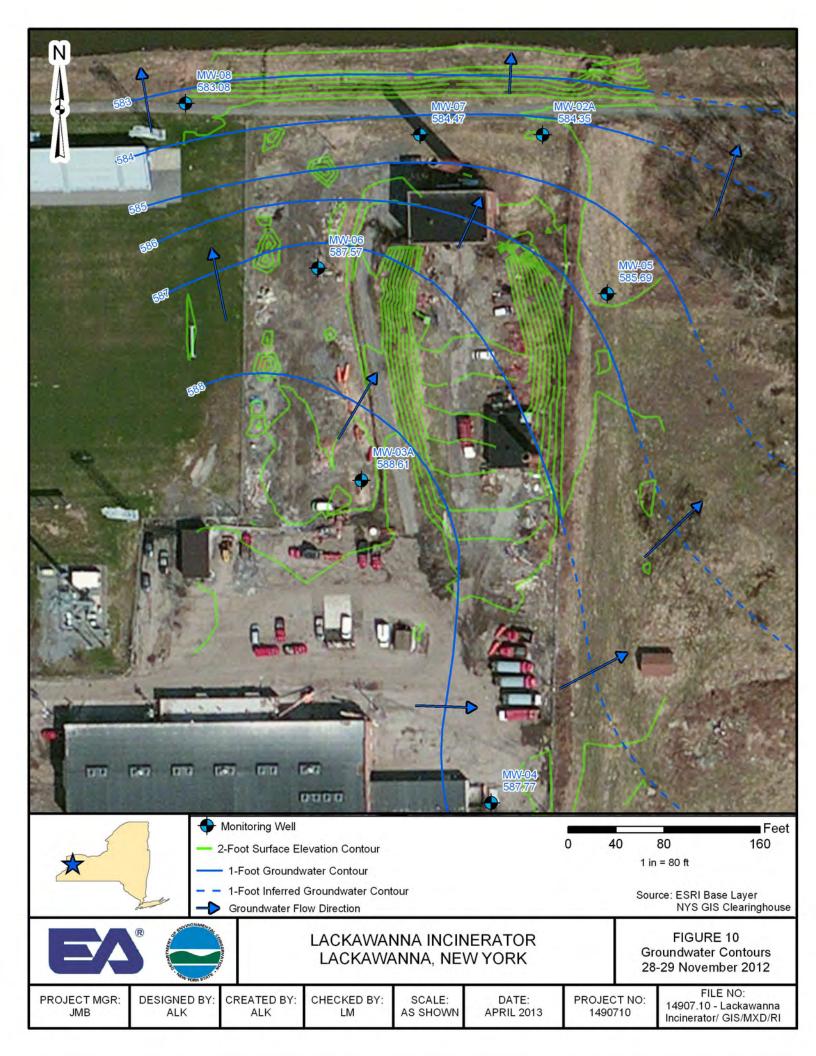

Lynette B. Mokry, CHMM Task Manager

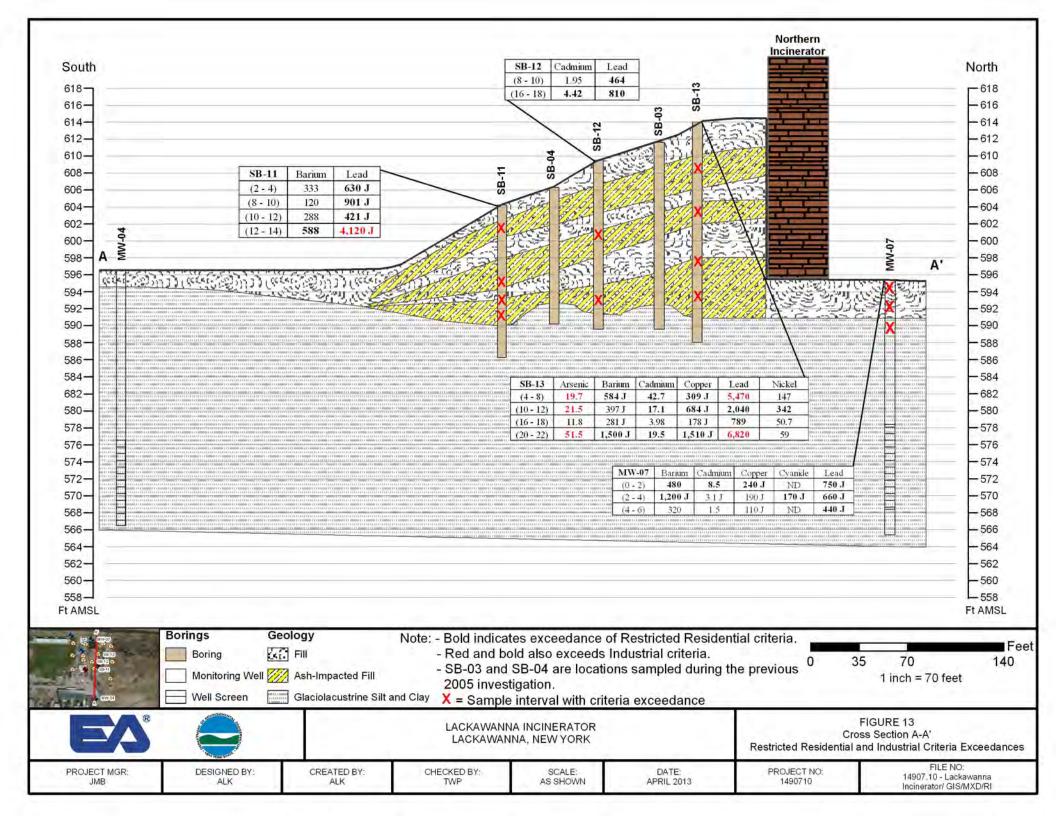


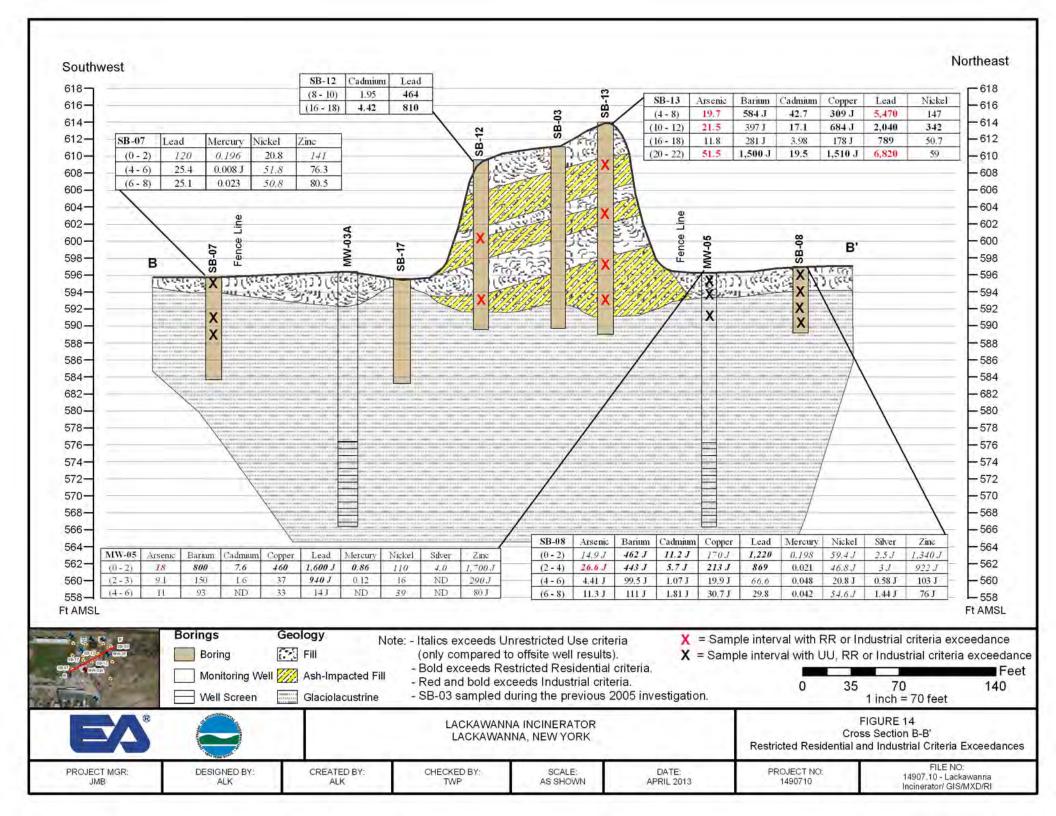




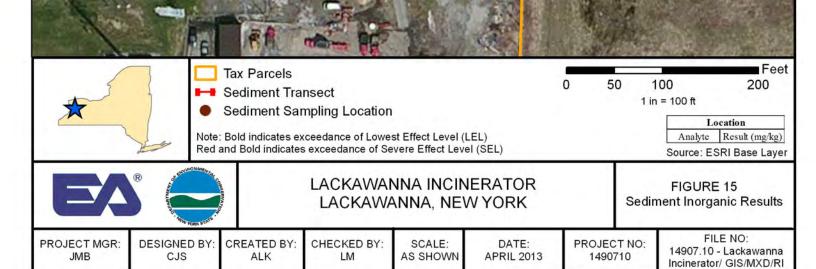


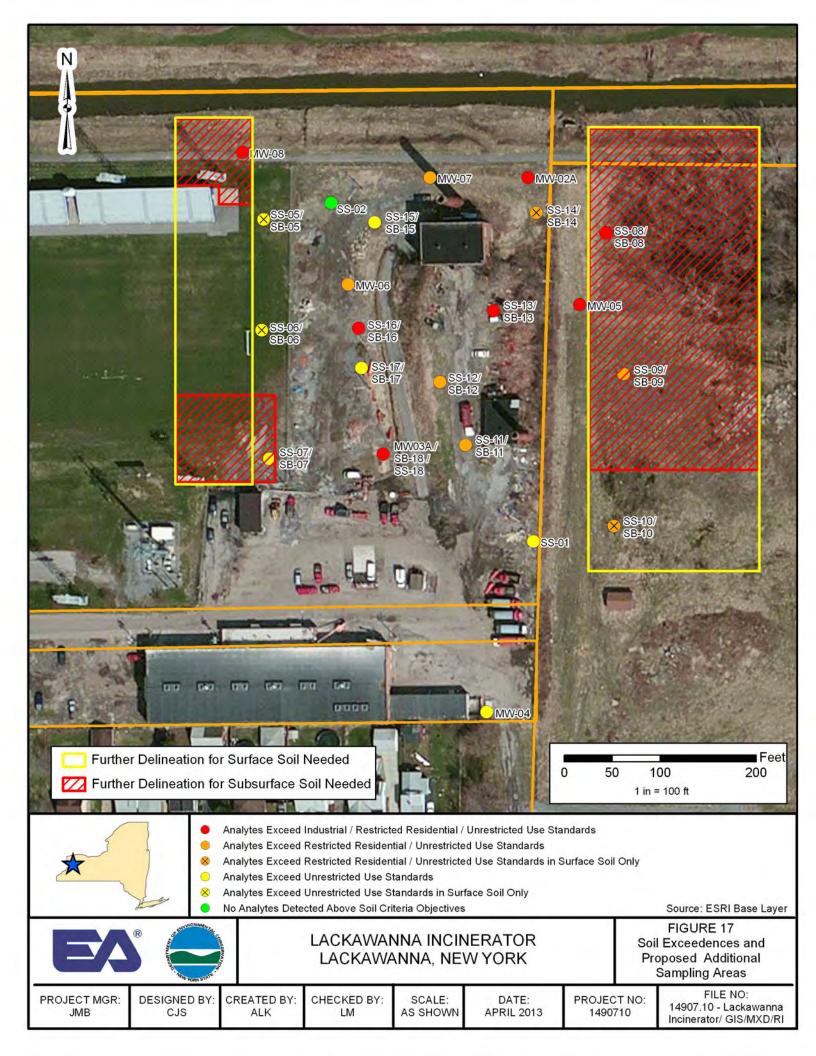


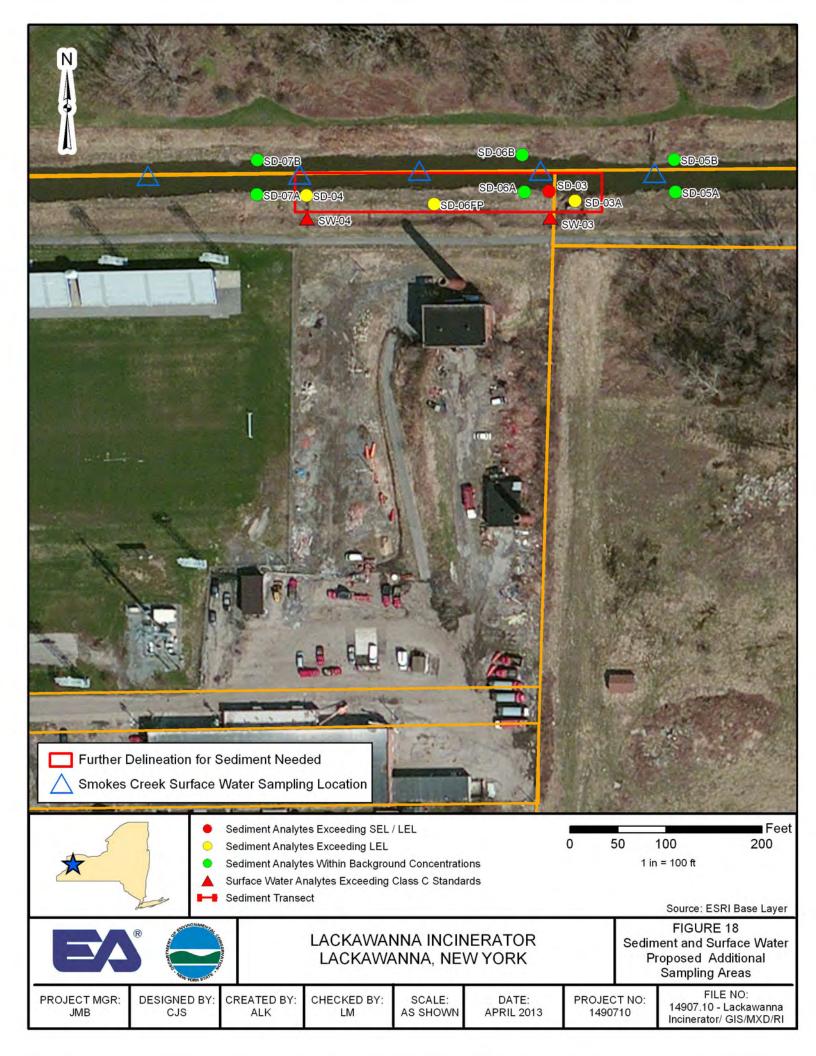




N			all they a					
	*	SS-15 A (0 - 2)	Arsenic Lead 3.1 52.7 J					
1	ALL PL			Per	The state		A CONTRACTOR	Cal.
and the second	A Company of the	-			and the second second	- alegary		
inging	in the second			-	- interest	C TEOT		STATES
SS-02 Arsenic 0 - 2) 5.52	c Lead 28.5 J		- Joseph -		A State of the sta	and the	and the	
-	200	The loss	1	MW-02	THE REAL PROPERTY OF	SS-		Lead
SS-05 Arsenic		MW-01	0	and the second	-	(0 -		2,330 J
0 - 2) 2.86	69.8 J					AND AN	The State	
SS-16 Arsenic	c Lead		10 por -			SS-		Lead
0 - 2) 6.77	58.6 J		C (Bars			(0 -		2,180 J
2	aller settion		1 1 3	and a star			S SAN	
S-06 Arsenic				A A	-	CC CC		
0 - 2) 7.14	65.2 J				and the Mary	SS- (0 -		Lead 146 J
S-17 Arsenic	c Lead	12517 10		C THE A		1 decion	2) 7.51	140.5
0 - 2) 8.33	88.9 J			- AL		SS-		Lead
		D PAR		18 50	to particular	(0 -		965 J
		MW	403	10 - 20	a the second	SS-	12 Arsenic	Lead
		0		Contraction of the second		(0 -		169 J
SS-07 Arsenic		Alles		15 - A.A.	A DECEMBER OF	ALCONTRACT OF	and the second	19195
0 - 2) 1.79	54.9 J	24	and a second second	EN MAN	ALL SULT	SS-		Lead
SS-18 Arsenic	c Lead	0		2/12/20		(0 -		401 J
0 - 2) 7.42	66.4 J	and the second	and the second				in the second	and the state
AL PORTA	DE AL	68		A Internet		SS-1	10 Arsenic	Lead
The second			ANDER PERIOD	100		(0 -		Lead 595 J
North Contraction			- at	H	A Starting	No mar	2) June	10-1
Page 1			and the second			SS-	01 Arsenic	Lead
1			6 - Car	1		(0 -		88.7 J
P	100 DO 00		a	MVV-04		and the second	15	and the second
					A A F SI	A HAN	The ball	FLEAD
Fr					1 and			in one of
-	-	Tax Parcels		Sedimen	nt			Fe
2			oring Wells (2005)			0		140
4	5	Monitoring Well		O Surface	Soil / Soil Boring		1 inch = 120 f	
	/ • 1	Monitoring Well	/ Surface Soil		ater Outfall		ation Arsenic	
1	Note:		exceedance of Re also exceeds Indu		lential criteria.		mple Result epth (mg/kg)	The second se
	R Jorennannar 2			han to the second	ERATOR		FIGURE 1	1
	PORK FORM	- 47AB-		ANNA, NEV			urface Soil Re Arsenic and L	
PROJECT MGR:	DESIGNED BY:	CREATED BY:	CHECKED BY:	SCALE:	DATE:	PROJECT NO:	FILE	
			LM	AS SHOWN	APRIL 2013	1490710	14907.10 - La	ackawanna


	_					-	-	-	_				1000	-
	SB-15	Arsenic	Lead	MW-07	Arsenic	Lead	MW-02A	Arsenic	Lead	SB-14	Arsen		Contraction of the	
	(0 - 2) (2 - 4)	6.43 12.4	99.7 27.9	(0-2) (2-4)	15 14	750 J 660 J	(0-1) (2-3)	24 28	2,300 J 1,500 J	(0 - 2) (2 - 4)	7.65.		100	N
	(4 - 6)	9.95	21.8	(4 - 6)	15	440 J	(6 - 7)	13	19 J	(4 - 6)	8.98		1.	
	(6 - 8)	10.8	23.1	(6 - 8)	11	15 J	(8 - 10)	14	16 J	(6 - 8)	4.75.			
-	(8 - 10)	5.6	21.2	X	and the second		1.	100	Cone N	(8 - 10)	7.5 J			
MW-08	Arsenic	Lead	1.14	1-1			100	1	1. 200 1	(10 - 12)	7.83	J 23.3	Salar I	6
(0 - 2)	18	320 J		1.1	1.0		- 1	THE R	1			GD 00		1000
(2 - 4)	80	790 J	1	1-1		Same -	-			-	100	SB-08 (0 - 2)	Arsenic 14.9 J	Lead 1,220
(6 - 8)	6.7	13 J		1	-1.4	10000	- mark	TA T	1	- JI	Sea.	(2 - 4)	26.6 J	869
SB-05	Arsenic	Lead			1		•	and the second		1.0	201	(4 - 6)	4.41 J	66.6
(0 - 2)	7.32	53.7		-							-	(6 - 8)	11.3 J	29.8
(2 - 4)	5.63	11.3 J	2	5	1 = 7	1 .	The set				1	MW-05	Arsenic	Lead
(4-6) (6-8)	9.46 9.72	24.2 20.9	1 - The	and the second s	Jendo	- A	-	$\langle \dot{A} \rangle$	10.0	1. A.	K.	(0 - 2)	18	1,600 J
A REAL PROPERTY AND	-72-	-	1 V	H C P	1-	1 m	MW-0	2	and the same			(2 - 3)	9.1 8.8	940 J 29 J
MW-06 (0 - 2)	Arsenic 10	Lead 200 J		MV	V-01		1		1000	1 .	343	(4 - 6)	11	14 J
(0-2) (2-4)	10	18 J					- Marine	d	4.05		1	SB-13	Arsenic	Lead
(4 - 6)	10	16 J		× 1				-	de la	. St.		(0 - 4)	4.48	47.8
SB-16	Arsenic	Lead	-		. 10	100		AND DE	GREET-	2/		(4 - 8)	19.7	5,470
(0 - 2)	3.03 J	54.7	-	140	10.10	Nº T	an 200	2.10	1000	A Part	10.00	(8 - 10)	9.06	43.9
(2 - 4)	3.76 J	96.4	(R=	- the		14	52-E	1.	1	at the	and the	(10 - 12) (12 - 14)	21.5 10.2	2,040 35.5
(4-6)	9.3 J 24.2 J	25	1	-	2	1	SAL C		P. Alt	0 m 0	2	(12 - 14) (16 - 18)	11.8	789
(6 - 8)	5.21	26.7 20.7	T.	2 - Paris	\sim	A STATE	2000	1	Service Service	all all	WORK R	(20 - 22)	51.5	6,820
(10 - 12)	12.6	23	1	- 128		1 5:	-			14	1 51	(23 - 25)	6.23	20.3
(12 - 14)	8.46	23.5		2 21	P	1 0	1 1	230			and a	SB-09	Arsenic	Lead
(14 - 16)	6.03	12.8		· 19	1	1. 200	1		1.1243	1.1	1 m	(0-2)	8.1	218
SB-06	Arsenic	Lead		-	1	P. C.		al al	the state	. Ac	- 72	(2-4)	11.8 6.08 J	21.5 19.7
(0 - 2)	5.78	24.3	M		MW-03		R	-	1 Anton		100	(6 - 8)	5.36 J	19.3
(2-4) (4-6)	4.58 9.03	21.1 20.1	15	2 /1	100		120	10.	1	Mar .	100	SB-12	Arsenic	Lead
(6 - 8)	11.5	23.1	80	A	to		1.1	A.S. Co	N	11	199	(8 - 10)	8.13 J	464
SB-07	Arsenic	Lead	(Land)	121	-	BOD R		G. A.	10	Kel:		(12 - 14)	10.5 J	51.9
(0 - 2)	6.43	120		44	1	64 C	Fell I		8	1 to	de l	(14 - 16) (16 - 18)	11.5 J	25.4 810
(2 - 4)	8.14	22.9	19/	- 1			O Uma			1000	2	(10 - 18) (18 - 20)	9.48 J 10.4 J	112
(4-6) (6-8)	9.99 7.78	25.4 25.1	115	2 P	E_	T.M.	1000		1 March	1 Alexander	2	SB-12A	Arsenic	Lead
		the second se	6.			- St 1.1	10	5	1 Tore	来自选为	~	(0 - 2)	6.57 J	66.7 J
SB-17 (0 - 2)	Arsenic 7.1	Lead 133	O STREE	1		die i	100		S Inc	1 Sin	1	SB-10	Arsenic	Lead
(2-4)	2.97 J	11.7			1 -	N-			SB-11	Arsenic	Lead	(0 - 2)	4.22	12.6
(4 - 6)	11.7 J	31.3	-/			1 ~	-	111	(0 - 2)		26.7 J	(2 - 4)	6.25	11.5
(6 - 8)	9.81 J	26	_/_		1000	2 has	100	1	(2 - 4)		530 J	(4 - 6)	8.66	17.8
(8 - 10) (10 - 12)	6.59 J 7.93 J	27.6	BO 173	1.40 GEU	Data .		TIC	1	(4 - 6)		246 J	(6 - 8)	8.28	19.8
(10 - 12) MW-03A		Lead	CD 10	Arrest	Land	1 march	M	N+04	(6 - 8)		266 J 201 J	25-5	the second	wart f
(0 - 2)	ND	76 J	SB-18 (0 - 2)		Lead 81.1 J	MW-04	Arsenic	Lead	(8 - 10)		421 J	ti i dize	Mar -	States -
(4 - 6)	9.5	9.8 J	(2 - 4)		41.5	(0 - 2)	15	130 J	(12 - 14)		120 J	3 4 5 4	18	10-1-1
SUSP	-	1	(8 - 10) 11.7 J	20.5	(2 - 4)	6.0	9.7 J	(14 - 16)		25.3 J	C Stra		50 7
631			(10 - 12	2) 7.08 J	22.1	(4-6)	12	19 J	(16 - 18)	9.07 J	23.6 J	1. 1. 1. 1. 1.	33	tor the
	1	-	Та	x Parcels			Se	diment						Feet
	2	2		evious Mor	nitoring V	Vells (2005		face Soil				0 30	60	120
4	~	1		onitoring W				face Soil	/ Soil Borin	ng		1 incl	h = 120 fe	et
		1		onitoring W		ace Soil	🔺 Sto	rmwater	Outfall	61 B			Arsenic	Lead
	2	J-a		old indicate			Restricted	Residenti	al criteria.			Sample	Result	Result
2		de	and the second	ed and bol								Depth	(mg/kg)	(mg/kg)
a second second second		® s	ENVIRONMENTAL		1.4.4				ATOD			FIG	URE 12	
1			ORISERU				NNA IN						ring Res	
6		and a state	and the second se		LA	ACKAW	ANNA,	NEVVY	URK				c and Le	
	_		NORK STATE	1			-	_		_		_		
PROJEC	A CONTRACT OF	DESIGN		REATED B	Y: CHE	CKED BY:	SCAL		DATE:		JECT N	0: 1400	FILE N 7.10 - Lac	
JM	в	C.	JS	ALK	1	LM	AS SHO	VVN A	APRIL 2013	14	90710			S/MXD/RI
					_		-							




SD-07	SD-07B SD-06FP		SD-06B			SD-03			SD-05B		
Cadmium	0.36	Cadmium	0.9	Cadmium	0.23	103	Cadmium	1.88		Cadmium	0.41
Copper	25.6 J	Copper	43.8 J	Copper	28.3 J	PA.	Copper	45	v	Copper	26.9 J
Lead	20	Lead	97.1	Lead	20.3		Lead	138	27	Lead	18.9
Manganese	286 J	Manganese	557 J	Manganese	406 J	0-1	Manganese	133		Manganese	381 J
Nickel	22.6	Nickel	36.5	Nickel	30.2		Nickel	20 J		Nickel	28.1
Zinc	92.3 J	Zinc	198 J	Zinc	91.4 J		Zinc	298 J		Zinc	78.5 J

SD-07B										CD-00D		1.22	SD-05B	and the second second	-
00			4	SD-07/	A SD-04	A B B B		SD SD-06FP	-03A	SD-08	SD-03A		SD-05A		State State
-	SD-07A Cadmium 0.39						SD-06A			SD-03A			SD-0	5A	
11			Cadmium	0.37		Cadmium	0.24	1	Cadmium	0.83		Cadmium	0.26		
	Copper	23.8 J		Copper	33.3. J	1	Copper	27.2 J	5	Copper	41.9 J	32	Copper	26.7 J	1
	Lead	23		Lead	53.8	5	Lead	19.5	No.	Lead	65.3	-	Lead	19.2	
	Manganese	324 J		Manganese	798 J	6	Manganese	390 J	H	Manganese	236 J		Manganese	381 J	10
	Nickel	22.8		Nickel	23.9	20	Nickel	29.1		Nickel	17.7	G	Nickel	29.4	- >
	Zinc	107 J		Zinc	235 J		Zinc	88.2 J		Zinc	238 J		Zinc	84.8 J	
		10 m 10 m			DE ST	40	CALLER OF	E MORAL COM	1	WE STATE STATE	COMPANY STATE		THE REAL PROPERTY.	45.5 V	

N SW-04 SW-04	W403
SW-04 Cyanide, Total 32.0 Selenium 3.09 JN	SW-03 Cyanide, Total 8.0 Selenium 6.98
	Feet
Tax Parcels Tax Parcels Stormwater Outfall Note: Bold indicates exceedance of NYSDEC Class C surface water criteria	0 50 100 200 1 in = 100 ft <u>Location</u> Analyte Result (µg/L)
LACKAWANNA INCINERATOR LACKAWANNA, NEW YORK	FIGURE 16 Stormwater Outfall Inorganic Results
PROJECT MGR: JMBDESIGNED BY: CJSCREATED BY: ALKCHECKED BY: LMSCALE: AS SHOWNDATE: APRIL 2013	PROJECT NO: FILE NO: 1490710 14907.10 - Lackawanna Incinerator/ GIS/MXD/RI

TABLE 1 REMEDIAL INVESTIGATION ANALYTICAL PROGRAM

			I	FIRST PHA	SE					
	Sample Matrix	TCL VOC	TCL SVOC	TCL PCB	TCL Pesticides	TAL Metals	Cyanide	Air VOC	TOC	MNA
			SURFA	CE SOIL S.	AMPLING					
No. of Samples		16	16	16	16	16	16			
Field Duplicate	Surface Soil	1	1	1	1	1	1			
Trip Blank/Rinse Blank	Surface Soff	3	2	2	2	2	2			
MS/MSD		2	2	2	2	2	2			
Total No. of Analyses		22	21	21	21	21	21			
			SEDIN	IENT SAM	PLING ^(a)					
No. of Samples		9	9	9	9	9	9		9	
Field Duplicate	Sediment	1	1	1	1	1	1		1	
Trip Blank/Rinse Blank	Seament	1	1	1	1	1	1			
MS/MSD		2	2	2	2	2	2			
Total No. of Analyses		13	12	12	12	12	12		10	
	SUBSURFACI	E SOIL – D	IRECT PU	ISH / HOLI	LOW-STEM	AUGER SC	DIL BORING	S		
No. of Samples		20	99	20	20	99	20			
Field Duplicate	Subsurface Soil	1	6	1	1	6	1			
Trip Blank/Rinse Blank										
MS/MSD		2	12	2	2	12	2			
Total No. of Analyses (a) Storm/surface water collec		23	118	23	23	118	23			
VOC = Vola SVOC = Sem $PCB = Poly$ $TAL = Targ$ $TOC = Tota$ $MNA = Mor$ $ = No s$ $MS/MSD = Matt$ $TCL VOC by U.S. Torganochlorine pest$ $(Lloyd Kahn Method)$ $(SM2320B); chlorid Laboratory quality of the second sec$	et Compound List. title Organic Compound. ivolatile Organic Compour chlorinated Biphenyls et Analyte List. l Organic Compound itored Natural Attenuation ample taken. rix Spike/Matrix Spike Dup Environmental Protection A icides by EPA Method 808 d for solids; SM5310 for w le, nitrate, nitrite and sulfat control samples collected a l equipment. Trip Blanks –	olicate Agency (EPA) 1 A, cyanide b rater); Air VO e (EPA Metho t a rate of 1 pe	y EPA Metho Cs by TO-15; od 300), sulfic er 20 samples,	od 9010B, TAI MNA: Biolo le (SM4500); I per matrix. F	L metals by EPA gical Oxygen Do hardness by SM2 Rinse blanks are	Method 6010 emand (SM52) 2340. collected one p	B and mercury b 10B); Chemical (y EPA Metho Dxygen Dema	d 7470A/7471 nd (5220D); a	A; TOC lkalinity

TABLE 1 REMEDIAL INVESTIGATION ANALYTICAL PROGRAM

FIRST PHASE (CONTINUED)																				
		TCL	TCL	TCL	TCL	TAL		Air												
	Sample Matrix	VOC	SVOC	PCB	Pesticides	Metals	Cyanide	VOC	TOC	MNA										
			GROUNI	OWATER S	SAMPLING															
No. of Samples 7																				
Field Duplicate	Groundwater	1	1	1	1	1	1		1	1										
Trip Blank/Rinse Blank	Gloundwater	2	1	1	1	1	1													
MS/MSD		2	2	2	2	2	2													
Total No. of Analyses 12 11 </td																				
		STORM V	WATER / S	URFACE	WATER SAN	APLING ^(a)														
No. of Samples		2	2	2	2	2	2			2										
Field Duplicate	Watar	1	1	1	1	1	1			1										
Trip Blank/Rinse Blank	Water	2	1	1	1	1	1			1										
MS/MSD		2	2	2	2	2	2			2										
Total No. of Analyses		7	6	6	6	6	6			7										
			SUBSL	AB / INDO	OR AIR ^(b)															
No. of Samples								2/3												
Field Duplicate	Soil Vapor Sub-							1 / 1												
Trip Blank/Rinse Blank slab / Indoor Air																				
MS/MSD																				
Total No. of Analyses								3 / 4												
(b) Air samples collected dur	ing the winter heating se	ason.								(b) Air samples collected during the winter heating season.										

TABLE 1 REMEDIAL INVESTIGATION ANALYTICAL PROGRAM

	PROPOSED SECOND PHASE ^(c) TCL TCL TCL TAL TCLP													
	Sample Matrix	TCL VOC	TCL SVOC	TCL PCB	TCL Pesticides	TAL Metals	Cyanide	TCLP Metals	TOC	MNA				
	SURFACE SOIL SAMPLING													
No. of Samples 12 16														
Field Duplicate Surface Soil 1 1														
Trip Blank/Rinse Blank Sufface Soff 1 1 <														
MS/MSD 2 2														
Total No. of Analyses 16 20														
			SEDI	MENT SAN	APLING									
No. of Samples						5	5		5					
Field Duplicate	Sediment					1	1		1					
Trip Blank/Rinse Blank	Seament					1	1							
MS/MSD						2	2							
Total No. of Analyses						9	9		6					
		SU	JBSURFA	CE SOIL -	DIRECT PU	SH								
No. of Samples			16			22								
Field Duplicate	Subsurface Soil		1			2								
Trip Blank/Rinse Blank	Subsultace Soll		1			2								
MS/MSD			2			4								
Total No. of Analyses			20			30								
(c) Second phase sample qua	ntities are estimated, with	the exceptio	n of groundv	vater samples	•									

TABLE 1 REMEDIAL INVESTIGATION ANALYTICAL PROGRAM

PROPOSED SECOND PHASE (CONTINUED) ^(c)													
	Sample Matrix	TCL VOC	TCL SVOC	TCL PCB	TCL Pesticides	TAL Metals	Cyanide	TCLP Metals	TOC	MNA			
		WAS	TE CHAR	ACTERIZA	ATION SAM	PLING							
No. of Samples 4													
Field Duplicate	Subsurface Soil												
Trip Blank/Rinse Blank	Subsuitace Soli												
MS/MSD													
Total No. of Analyses 4													
			GROUN	DWATER	SAMPLING								
No. of Samples		7	7			7	7		7	7			
Field Duplicate	Groundwater	1	1			1	1		1	1			
Trip Blank/Rinse Blank	Groundwater	3	1			1	1						
MS/MSD		2	2			2	2						
Total No. of Analyses		13	11			11	11		8	8			
			SURFACE	E WATER S	SAMPLING ^{(*}	d)							
No. of Samples						5	5			5			
Field Duplicate	Water					1	1			1			
Trip Blank/Rinse Blank	Water					1	1						
MS/MSD						2	2						
Total No. of Analyses													
(c) Second phase sample quantities are estimated, with the exception of groundwater samples. (d) Surface water samples to be collected from Smokes Creek and will also be analyzed for hardness.													

TABLE 2 WELL CONSTRUCTION DETAILS

						Ground	Elevation	Well	Total	Screen	
					Well	Surface	Top of	Diameter	Depth	Midpoint	Screened Interval
Well ID	Well Type	Installation Date	Easting	Northing	Completion	Elevation	casing	(in.)	(ft bgs)	(ft bgs)	(ft bgs)
MW-01	Destroyed	7-Apr-05			Flush	595.48	597.53	2	22.00	17.00	11.0 - 21.0
MW-02	Decommissioned	7-Apr-05			Stick-up	595.70	598.03	2	25.00	20.00	14.0 - 24.0
MW-02A	Overburden - PVC	29-Oct-12	1084753.7	1027450.4	Stick-up	595.70	598.19	2	29.60	24.60	19.60 - 29.60
MW-03	Destroyed	7-Apr-05			Flush	596.35	596.03	2	31.00	26.00	20.0 - 30.0
MW-03A	Overburden - PVC	31-Oct-12	1084602.8	1027162.3	Flush	596.40	596.14	2	29.92	24.92	19.92 - 29.92
MW-04	Overburden - PVC	5-Nov-12	1084710.8	1026893.5	Flush	596.45	596.22	2	29.64	24.64	19.64 - 29.64
MW-05	Overburden - PVC	2-Nov-12	1084807.6	1027317.9	Flush	596.33	596.03	2	30.02	25.02	20.02 - 30.02
MW-06	Overburden - PVC	1-Nov-12	1084566.4	1027339.1	Flush	595.07	594.80	2	29.45	24.45	19.45 - 29.45
MW-07	Overburden - PVC	5-Nov-12	1084651.7	1027450.3	Flush	595.41	595.15	2	27.14	22.14	17.14 - 27.14
MW-08	Overburden - PVC	6-Nov-12	1084456.2	1027476.6	Flush	593.56	593.42	2	23.06	18.06	13.06 - 23.06
NOTE: bgs	= Below ground surface										
	= Unknown										
PVC	= Polyvinyl chloride										
North	ing and Easting coordinates ar	e in New York State F	Plane Coordinate	System, Wester	n Zone, NAD 83	(CORS 96) Dat	um				

Vertical values are referenced to the North American Vertical Datum of 1988 (NAVD 88)

All values are in feet.

EA Engineering, P.C. and Its Affiliate EA Science and Technology EA Project No. 14907.10 Version: FINAL Table 3, Page 1 April 2013

	Elevation TIC	Depth to Wat	ter (ft TIC) Well	Groundwater Ele	evation (ft AMSL)							
Well ID	(ft AMSL)	11/7-8/2012 ^(a)	11/28-29/2012 ^(b)	11/7-8/2012 ^(a)	11/28-29/2012 ^(b)							
MW-02A	598.19	14.44	13.84	583.75	584.35							
MW-03A	596.14	6.21	7.53	589.93	588.61							
MW-04	596.22	24.66	8.45	571.56	587.77							
MW-05	596.03											
MW-06	594.80	7.39	7.23	587.41	587.57							
MW-07	595.15	11.22	10.68	583.93	584.47							
MW-08	593.42	10.92	10.34	582.50	583.08							
(a) November 7-	8, 2012 measureme	nts made prior to d	evelopment.									
(b) November 28	8-29, 2012 measurer	ments made prior to	o groundwater samplin	ng.								
NOTE: ID												
TIC	= Top of inner we	ell casing										
AMSL	AMSL = Above mean sea level											

TABLE 3 GROUNDWATER ELEVATIONS

Location	NYSDEC P	ART 375	MW-02A	MW-06	MW-06	MW-07	MW-07	MW-08	MW-08
Sample ID	Soil Cleanup (Objectives ^(a)	MW-02A (2-3)	MW-06 (0-2)	MW-06 (0-2) DUP	MW-07(2-4)	MW-07(2-4) DUP	MW-08(0-2)	MW-08(0-2) DUP
Lab ID	Restricted -		AC69070-002	AC69070-009	AC69070-012	AC69114-007	AC69114-016	AC69114-011	AC69114-013
Sample Date	Residential	Industrial	10/29/12	10/31/12	10/31/12	11/05/12	11/05/12	11/06/12	11/06/12
Acetone	100	1,000	0.012 U	0.300	0.190	0.014 UJ	0.012 U	0.012 U	0.012 U
Benzene	4.8	89	0.001 U	0.001 U	0.001 U	0.001 UJ	0.001 U	0.001 U	0.001 U
2-Butanone	100	1,000	0.002 U	0.033 J	0.002 UJ	0.003 UJ	0.002 U	0.002 U	0.002 U
Carbon disulfide			0.002 U	0.003	0.002 U	0.003 UJ	0.002 U	0.002 U	0.002 U
Ethylbenzene	41	780	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Methyl cyclohexane		1,000	0.002 U	0.002 U	0.002 U	0.003 UJ	0.002 U	0.002 U	0.002 U
Methylene chloride	100	1,000	0.003	0.044	0.050	0.003 UJ	0.002 U	0.002 U	0.002 U
Styrene			0.002 U	0.002 U	0.002 U	0.003 U	0.002 U	0.002 U	0.002 U
Tetrachloroethene	19	300	0.002 U	0.002 U	0.002 U	0.003 U	0.002 U	0.002 U	0.002 U
Toluene	100	1,000	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylene, o	100	1,000	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes, m+p	100	1,000	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Xylenes, Total	100	1,000	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U

(a) NYSDEC DER. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006. Restricted Residential and Industrial Soil Cleanup Objectives.

NOTE: ID = Identification

NYSDEC = New York State Department of Environmental Conservation

--- = Not analyzed

U = Not detected; the associated number is the reporting limit.

J = Estimated concentration.

Table includes only those volatile organic compounds detected in one or more samples.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Method 8260. Data Validation completed by Data Validation Services.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Location	-1		SB-05	SB-05	SB-06	SB-08	SB-09	SB-09	SB-10
Sample ID	Soil Cleanup Objectives ^(a)		SB-05(2-4)	SB-05(2-4) DUP	SB-06(2-4)	SB-08(2-4)	SB-09(0-2)	SB-09(2-4)	SB-10(0-2)
Lab ID			D4714-10	D4714-15	D4714-06	D4715-04	D4714-20	D4714-21	D4714-16
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12
Acetone	100	1,000	0.030 U	0.030 U	0.029 U	0.029 U	0.035 U	0.030 U	0.030 U
Benzene	4.8	89	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U
2-Butanone	100	1,000	0.030 U	0.030 U	0.029 U	0.029 U	0.035 U	0.030 U	0.030 U
Carbon disulfide			0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U
Ethylbenzene	41	780	0.006 U	0.002 J	0.006 U	0.006 U	0.002 J	0.006 U	0.006 U
Methyl cyclohexane		1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U
Methylene chloride	100	1,000	0.006 U	0.007 U	0.011 U	0.006 U	0.021 U	0.028 U	0.013 U
Styrene			0.006 U	0.006 U	0.006 U	0.006 U	0.007 UJ	0.006 U	0.006 U
Tetrachloroethene	19	300	0.006 U	0.006 U	0.006 U	0.006 U	0.013 J	0.005 J	0.006 U
Toluene	100	1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U
Xylene, o	100	1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.002 J	0.006 U	0.006 U
Xylenes, m+p	100	1,000	0.012 U	0.002 J	0.012 U	0.012 U	0.003 J	0.012 U	0.012 U
Xylenes, Total	100	1,000							

·					1			1			
Location	NYSDEC P	ART 375	SB-11	SB-11	SB-12	SB-12	SB-13	SB-13	SB-13	SB-14	SB-14
Sample ID	Soil Cleanup	Objectives ^(a)	SB-11(4-6)	SB-11(4-6) DUP	SB-12A(0-2)	SB-12A(0-2) DUP	SB13(0-4)	SB13(20-22)	SB13(8-10)	SB14(0-2)	SB14(0-2) DUP
Lab ID	Restricted -		D4759-03	D4759-06	D4715-14	D4715-17	D4685-01	D4685-09RE	D4685-05	D4690-01	D4685-11
Sample Date	Residential	Industrial	11/06/12	11/06/12	10/26/12	10/26/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Acetone	100	1,000	0.110	0.120	0.028 U	0.030 U	0.029 U	0.032 U	0.029 U	0.029 U	0.031 U
Benzene	4.8	89	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.002 J	0.006 U	0.006 U	0.006 U
2-Butanone	100	1,000	0.020 J	0.025 J	0.028 U	0.030 U	0.029 U	0.032 U	0.029 U	0.029 U	0.031 U
Carbon disulfide			0.002 J	0.003 J	0.006 U	0.006 U	0.006 U	0.007	0.006 U	0.006 U	0.006 U
Ethylbenzene	41	780	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 UJ	0.006 U	0.006 U	0.006 U
Methyl cyclohexane		1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.003 J	0.006 U	0.006 U	0.006 U
Methylene chloride	100	1,000	0.006 U	0.006 U	0.012 U	0.028 U	0.010 U	0.009 U	0.006 U	0.006 U	0.006 U
Styrene			0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 UJ	0.006 U	0.006 U	0.006 U
Tetrachloroethene	19	300	0.006 U	0.006 U	0.006 U	0.006 U	0.001 J	0.006 UJ	0.007	0.006 U	0.006 U
Toluene	100	1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.002 J	0.006 U	0.006 U	0.006 U
Xylene, o	100	1,000	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 UJ	0.006 U	0.006 U	0.006 U
Xylenes, m+p	100	1,000	0.013 U	0.011 U	0.011 U	0.012 U	0.001 J	0.013 UJ	0.011 U	0.012 U	0.012 U
Xylenes, Total	100	1,000									

Location	NYSDEC P	PART 375	SB-15	SB-17	SB-18	SB-18	SS-01	SS-02	SS-05	SS-06	SS-07	SS-08
Sample ID	Soil Cleanup Objectives ^(a)		SB15(0-2)	SB17(2-4)	SB-18(0-2)	SB-18(0-2) DUP	SS-01	SS-02	SS-05	SS-06	SS-07	SS-08
Lab ID	Restricted -		D4685-16	D4690-13	D4715-07	D4715-13	D4664-01	D4664-02	D4664-03	D4664-04	D4664-05	D4664-06
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/26/12	10/26/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Acetone	100	1,000	0.032 U	0.031 U	0.030 U	0.030 NJ	0.030 U	0.030 U	0.029 U	0.031 U	0.030 U	0.032 U
Benzene	4.8	89	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
2-Butanone	100	1,000	0.032 U	0.031 U	0.030 U	0.036 U	0.030 U	0.030 U	0.029 U	0.031 U	0.030 U	0.032 U
Carbon disulfide			0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Ethylbenzene	41	780	0.006 U	0.006 U	0.006 U	0.002 J	0.006 U					
Methyl cyclohexane		1,000	0.006 U	0.006 U	0.006 U	0.007 UJ	0.006 U					
Methylene chloride	100	1,000	0.006 U	0.006 U	0.007 U	0.066 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Styrene			0.006 U	0.006 U	0.006 UJ	0.010 J	0.006 U					
Tetrachloroethene	19	300	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Toluene	100	1,000	0.006 U	0.006 U	0.006 U	0.002 J	0.006 U					
Xylene, o	100	1,000	0.006 U	0.006 U	0.006 U	0.007 UJ	0.006 U					
Xylenes, m+p	100	1,000	0.013 U	0.012 U	0.012 U	0.014 UJ	0.012 U	0.013 U				
Xylenes, Total	100 1,000											
NOTE: N = Tenta	tively identified cons	tituent.										

Location	NYSDEC I	PART 375	SS-09	SS-10	SS-11	SS-12	SS-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Sample ID	Soil Cleanup Objectives ^(a)		SS-09	SS-10	SS-11	SS-12	SS-12 DUP	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Lab ID	Restricted -		D4664-07	D4664-08	D4664-09	D4664-10	D4664-19	D4664-11	D4664-12	D4664-15	D4664-16	D4664-17	D4664-18
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Acetone	100	1,000	0.038 U	0.034 U	0.032 U	0.029 U	0.029 U	0.030 U	0.032 U	0.029 U	0.030 U	0.030 U	0.024 J
Benzene	4.8	89	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
2-Butanone	100	1,000	0.038 U	0.034 U	0.032 U	0.029 U	0.029 U	0.030 U	0.032 U	0.029 U	0.030 U	0.030 U	0.031 U
Carbon disulfide			0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Ethylbenzene	41	780	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Methyl cyclohexane		1,000	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Methylene chloride	100	1,000	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Styrene			0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Tetrachloroethene	19	300	0.007 J	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Toluene	100	1,000	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Xylene, o	100	1,000	0.008 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U	0.006 U	0.006 U	0.006 U	0.006 U
Xylenes, m+p	100	1,000	0.015 U	0.014 U	0.013 U	0.011 U	0.012 U	0.012 U	0.013 U	0.011 U	0.012 U	0.012 U	0.012 U
Xylenes, Total	100	1,000											

Location	NYSDEC F	PART 375		MW	V-02A		MW	-03A
Sample ID	Soil Cleanup	Objectives ^(a)	915206-MW-02A (0-1)	915206-MW-02A (2-3)	915206-MW-02A (6-7)	915206-MW-02A (8-10)	915206-MW-03A (0-2)	915206-MW-03A (4-6)
Lab ID	Restricted -		AC69070-001	AC69070-002	AC69070-003	AC69070-004	AC69070-007	AC69070-008
Sample Date	Residential	Industrial	10/29/12	10/29/12	10/29/12	10/29/12	10/31/12	10/31/12
Acenaphthene	100	1,000	0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Anthracene	100	1,000	0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Benzaldehyde			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Benzo(a)anthracene	1	11	0.039 U	0.210	0.040 U	0.040 U	1.0	0.044 U
Benzo(a)pyrene	1	1.1	0.039 U	0.230	0.040 U	0.040 U	1.1	0.044 U
Benzo(b)fluoranthene	1	11	0.039 U	0.290	0.040 U	0.040 U	1.7	0.044 U
Benzo(g,h,i)perylene	100	1,000	0.039 U	0.310	0.040 U	0.040 U	1.1	0.044 U
Benzo(k)fluoranthene	3.9	110	0.039 U	0.160 U	0.040 U	0.040 U	0.600	0.044 U
bis(2-Ethylhexyl)phthalate			0.039 U	0.580	0.040 U	0.040 U	0.590	0.044 U
Butylbenzylphthalate			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Carbazole			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Chrysene	3.9	110	0.039 U	0.230	0.040 U	0.040 U	1.1	0.044 U
Dibenzo(a,h)anthracene	0.33	1.1	0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Dibenzofuran	59	1,000	0.010 U	0.041 U	0.010 U	0.010 U	0.095 U	0.011 U
Dimethylphthalate			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Di-n-butylphthalate			0.019 U	0.082 U	0.020 U	0.020 U	0.190 U	0.022 U
Fluoranthene	100	1,000	0.039 U	0.230	0.040 U	0.040 U	1.7	0.044 U
Fluorene	100	1,000	0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.039 U	0.190	0.040 U	0.040 U	0.8	0.044 U
2-Methylnaphthalene			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
2-Methylphenol	100	1,000	0.010 U	0.041 U	0.010 U	0.010 U	0.095 U	0.011 U
3&4-Methylphenol	100	1,000	0.010 U	0.041 U	0.010 U	0.010 U	0.095 U	0.011 U
Naphthalene	100	1,000	0.010 U	0.041 U	0.010 U	0.010 U	0.095 U	0.011 U
N-Nitrosodiphenylamine			0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Pentachlorophenol	6.7	55	0.190 U	0.810 U	0.200 U	0.200 U	1.9 U	0.220 U
Phenanthrene	100	1,000	0.039 U	0.170	0.040 U	0.040 U	0.820	0.044 U
Phenol	100	1,000	0.039 U	0.160 U	0.040 U	0.040 U	0.380 U	0.044 U
Pyrene	100	1,000	0.039 U	0.290	0.040 U	0.040 U	1.7	0.044 U
Phenanthrene Phenol Pyrene (a) NYSDEC DER. 6 NYCRR Part 37 NOTE: ID = Identification NYSDEC = New York State D U = Not detected; the a N = Tentatively identifi J = Estimated concent Analytical data results obtained	100 100 100 '5 Environmental 'epartment of Environmental 'ssociated number ed constituent. ration. by Chemtech Cord	1,000 1,000 Remediation Pro ironmental Cons is the reporting	0.039 U 0.039 U 0.039 U ograms. December 2006. Rest servation limit.	0.170 0.160 U 0.290 ricted Residential and IndustRI	0.040 U 0.040 U 0.040 U al Soil Cleanup Objective.	0.040 U 0.040 U 0.040 U	0.820 0.380 U	0.044 U 0.044 U

Table includes only those semivolatile organic compounds detected in one or more samples.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Bolded values indicate exceedance of NYSDEC Part 375 Restricted Residential Soil Cleanup Objectives.

Bolded and shaded values indicate exceedance of NYSDEC Part 375 Industrial Soil Cleanup Objectives.

EA Project No. 14907.10 "Version: HKP CN Table 5, Page 1 "Crtkn2013

Location	NYSDEC PART 375 Soil Cleanup Objectives ^(a)			MW-04			MV	V-05	
Sample ID	Soil Cleanup Objectives ^(a)		915206-MW-04(0-2)	915206-MW-04(2-4)	915206-MW-04(4-6)	915206-MW-05 (0-2)	915206-MW-05 (2-3)	915206-MW-05 (3-4)	915206-MW-05 (4-6)
Lab ID	Restricted -		AC69114-001	AC69114-002	AC69114-003	AC69070-015	AC69070-016	AC69070-017	AC69070-018
Sample Date	Residential	Industrial	11/02/12	11/02/12	11/02/12	11/01/12	11/01/12	11/01/12	11/01/12
Acenaphthene	100	1,000	0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Anthracene	100	1,000	0.049 U	0.043 U	0.041 U	0.240	0.042 U	0.039 U	0.040 U
Benzaldehyde			0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Benzo(a)anthracene	1	11	0.160	0.043 U	0.041 U	1.0	0.094	0.039 U	0.040 U
Benzo(a)pyrene	1	1.1	0.130	0.043 U	0.041 U	1.1	0.086	0.039 U	0.040 U
Benzo(b)fluoranthene	1	11	0.210	0.043 U	0.041 U	1.6	0.140	0.039 U	0.040 U
Benzo(g,h,i)perylene	100	1,000	0.150	0.043 U	0.041 U	0.980	0.085	0.039 U	0.040 U
Benzo(k)fluoranthene	3.9	110	0.079	0.043 U	0.041 U	0.460	0.053	0.039 U	0.040 U
bis(2-Ethylhexyl)phthalate			0.400	0.043 U	0.088	0.310	0.069	0.039 U	0.046
Butylbenzylphthalate			0.049 U	0.043 U	0.041 U	4.1	0.042 U	0.039 U	0.040 U
Carbazole			0.049 U	0.043 U	0.041 U	0.094	0.011 U	0.039 U	0.040 U
Chrysene	3.9	110	0.180	0.043 U	0.041 U	1.1	0.110	0.039 U	0.040 U
Dibenzo(a,h)anthracene	0.33	1.1	0.049 U	0.043 U	0.041 U	0.240	0.042 U	0.039 U	0.040 U
Dibenzofuran	59	1,000	0.036 NJ	0.011 U	0.010 U	0.021 U	0.011 U	0.010 U	0.010 U
Dimethylphthalate			0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Di-n-butylphthalate			0.025 U	0.022 U	0.021 U	0.150	0.042 U	0.020 U	0.020 U
Fluoranthene	100	1,000	0.230	0.043 U	0.041 U	2.0	0.150	0.039 U	0.040 U
Fluorene	100	1,000	0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.110	0.043 U	0.041 U	0.8	0.081	0.039 U	0.040 U
2-Methylnaphthalene			0.110	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
2-Methylphenol	100	1,000	0.012 U	0.011 U	0.010 U	0.021 U	0.011 U	0.010 U	0.010 U
3&4-Methylphenol	100	1,000	0.012 U	0.011 U	0.010 U	0.021 U	0.011 U	0.010 U	0.010 U
Naphthalene	100	1,000	0.074	0.011 U	0.010 U	0.043	0.011 U	0.010 U	0.010 U
N-Nitrosodiphenylamine			0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Pentachlorophenol	6.7	55	0.250 U	0.220 U	0.210 U	0.430 U	0.071 U	0.200 U	0.200 U
Phenanthrene	100	1,000	0.180	0.043 U	0.041 U	1.1	0.084	0.039 U	0.040 U
Phenol	100	1,000	0.049 U	0.043 U	0.041 U	0.085 U	0.042 U	0.039 U	0.040 U
Pyrene	100	1,000	0.240	0.043 U	0.041 U	2.0	0.160	0.039 U	0.040 U

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 2 "'Cr tkn2013

Location	NYSDEC P	PART 375		MW-0	6				MW-07		
Sample ID	Soil Cleanup	Objectives ^(a)	915206-MW-06 (0-2)	915206-MW-06 (0-2)-DUP	915206-MW-06 (2-4)	915206-MW-06 (4-6)	915206-MW-07(0-2)	915206-MW-07(2-4)	915206-MW-07 (2-4) DUP	915206-MW-07(4-6)	915206-MW-07(6-8)
Lab ID	Restricted -		AC69070-009	AC69070-012	AC69070-013	AC69070-014	AC69114-006	AC69114-007	AC69114-016	AC69114-009	AC69114-010
Sample Date	Residential	Industrial	10/31/12	10/31/12	10/31/12	10/31/12	11/05/12	11/05/12	11/05/12	11/05/12	11/05/12
Acenaphthene	100	1,000	0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Anthracene	100	1,000	0.120 U	0.240 U	0.041 U	0.250 U	0.130	0.046 U	0.041 U	0.043 U	0.040 U
Benzaldehyde			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Benzo(a)anthracene	1	11	0.250	0.360	0.041 U	0.310	0.480	0.046 U	0.048	0.050	0.040 U
Benzo(a)pyrene	1	1.1	0.230	0.350	0.041 U	0.300	0.350	0.046 U	0.042	0.043 U	0.040 U
Benzo(b)fluoranthene	1	11	0.370	0.510	0.041 U	0.460	0.490	0.060	0.059	0.054	0.040 U
Benzo(g,h,i)perylene	100	1,000	0.190	0.340	0.041 U	0.320	0.250	0.047	0.049	0.046	0.040 U
Benzo(k)fluoranthene	3.9	110	0.120 U	0.240 U	0.041 U	0.250 U	0.180	0.046 U	0.041 U	0.043 U	0.040 U
bis(2-Ethylhexyl)phthalate			0.120 U	0.240 U	0.069	0.730	0.440	0.530 J	0.200 J	0.370	0.073
Butylbenzylphthalate			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Carbazole			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Chrysene	3.9	110	0.280	0.400	0.041 U	0.330	0.420	0.046 U	0.049	0.047	0.040 U
Dibenzo(a,h)anthracene	0.33	1.1	0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Dibenzofuran	59	1,000	0.030 U	0.060 U	0.010 U	0.062 U	0.030 U	0.012 U	0.010 U	0.011 U	0.010 U
Dimethylphthalate			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Di-n-butylphthalate			0.061 U	0.120 U	0.021 U	0.120 U	0.110	0.038	0.038	0.025	0.020 U
Fluoranthene	100	1,000	0.430	0.600	0.041 U	0.520	0.770	0.053	0.060	0.098	0.040 U
Fluorene	100	1,000	0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.170	0.240	0.041 U	0.290	0.220	0.046 U	0.046	0.043 U	0.040 U
2-Methylnaphthalene			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
2-Methylphenol	100	1,000	0.030 U	0.060 U	0.010 U	0.062 U	0.030 U	0.012 U	0.010 U	0.011 U	0.010 U
3&4-Methylphenol	100	1,000	0.030 U	0.060 U	0.010 U	0.062 U	0.030 U	0.012 U	0.010 U	0.011 U	0.010 U
Naphthalene	100	1,000	0.030 U	0.060 U	0.010 U	0.062 U	0.030 U	0.012 U	0.010 U	0.011 U	0.010 U
N-Nitrosodiphenylamine			0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Pentachlorophenol	6.7	55	0.600 UJ	1.2 U	0.210 U	1.2 U	0.610 U	0.230 U	0.200 U	0.220 U	0.200 U
Phenanthrene	100	1,000	0.220	0.420	0.041 U	0.250 U	0.610	0.046 U	0.046	0.081	0.040 U
Phenol	100	1,000	0.120 U	0.240 U	0.041 U	0.250 U	0.120 U	0.046 U	0.041 U	0.043 U	0.040 U
Pyrene	100	1,000	0.420	0.620	0.041 U	0.530	0.820	0.066	0.077	0.096	0.040 U

Location	NYSDEC I	PART 375		MW-08			SB-05					
Sample ID	Soil Cleanup	Objectives ^(a)	915206-MW-08(0-2)	915206-MW-08 (0-2)-DUP	915206-MW-08(2-4)	915206-MW-08(6-8)	915206-SB-05(0-2)	915206-SB-05(2-4)	915206-SB-05 (2-4)-DUP	915206-SB-05(4-6)	915206-SB-05(6-8)	
Lab ID	Restricted -		AC69114-011	AC69114-013	AC69114-014	AC69114-015	D4714-09	D4714-10	D4714-15	D4714-13	D4714-14	
Sample Date	Residential	Industrial	11/06/12	11/06/12	11/06/12	11/06/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	
Acenaphthene	100	1,000	0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Anthracene	100	1,000	0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzaldehyde			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzo(a)anthracene	1	11	0.042 U	0.077	0.120	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzo(a)pyrene	1	1.1	0.042 U	0.073	0.100	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzo(b)fluoranthene	1	11	0.052	0.110	0.140	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzo(g,h,i)perylene	100	1,000	0.042	0.078	0.088	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Benzo(k)fluoranthene	3.9	110	0.042 U	0.041 U	0.058	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
bis(2-Ethylhexyl)phthalate			0.091 J	0.220 J	0.380	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Butylbenzylphthalate			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Carbazole			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Chrysene	3.9	110	0.042 UJ	0.084 J	0.120	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Dibenzo(a,h)anthracene	0.33	1.1	0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Dibenzofuran	59	1,000	0.010 U	0.010 U	0.010 U	0.010 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Dimethylphthalate			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.397 U	0.214 J	0.402 U	
Di-n-butylphthalate			0.021 U	0.020 U	0.025	0.020 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Fluoranthene	100	1,000	0.056	0.110	0.200	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Fluorene	100	1,000	0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Indeno(1,2,3-cd)pyrene	0.5	11	0.042 U	0.065	0.076	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
2-Methylnaphthalene			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
2-Methylphenol	100	1,000	0.010 U	0.010 U	0.010 U	0.010 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
3&4-Methylphenol	100	1,000	0.010 U	0.010 U	0.010 U	0.010 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Naphthalene	100	1,000	0.010 U	0.010 U	0.010 U	0.010 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
N-Nitrosodiphenylamine			0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Pentachlorophenol	6.7	55	0.210 U	0.200 U	0.210 U	0.200 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Phenanthrene	100	1,000	0.042 U	0.051	0.140	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Phenol	100	1,000	0.042 U	0.041 U	0.041 U	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	
Pyrene	100	1,000	0.068	0.130	0.210	0.040 U	8.2 U	0.390 U	0.400 U	0.400 U	0.400 U	

Location	NYSDEC	CPART 375		SB	-06		SB-07				
Sample ID	Soil Cleanu	p Objectives ^(a)	915206-SB-06(0-2)	915206-SB-06(2-4)	915206-SB-06(4-6)	915206-SB-06(6-8)	915206-SB-07(0-2)	915206-SB-07(2-4)	915206-SB-07(4-6)	915206-SB-07(6-8)	
Lab ID	Restricted -		D4714-05	D4714-06	D4714-07	D4714-08	D4714-01	D4714-02	D4714-03	D4714-04	
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	
Acenaphthene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Anthracene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Benzaldehyde			0.470	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Benzo(a)anthracene	1	11	0.420 U	0.380 U	0.400 U	0.400 U	0.170 J	0.410 U	0.410 U	0.400 U	
Benzo(a)pyrene	1	1.1	0.420 U	0.380 U	0.400 U	0.400 U	0.160 J	0.410 U	0.410 U	0.400 U	
Benzo(b)fluoranthene	1	11	0.420 U	0.380 U	0.400 U	0.400 U	0.250 J	0.410 U	0.410 U	0.400 U	
Benzo(g,h,i)perylene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Benzo(k)fluoranthene	3.9	110	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
bis(2-Ethylhexyl)phthalate			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Butylbenzylphthalate			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Carbazole			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Chrysene	3.9	110	0.420 U	0.380 U	0.400 U	0.400 U	0.190 J	0.410 U	0.410 U	0.400 U	
Dibenzo(a,h)anthracene	0.33	1.1	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Dibenzofuran	59	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Dimethylphthalate			0.192 J	0.383 U	0.228 J	0.397 U	0.180 J	0.197 J	0.199 J	0.397 U	
Di-n-butylphthalate			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Fluoranthene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.300 J	0.410 U	0.410 U	0.400 U	
Fluorene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Indeno(1,2,3-cd)pyrene	0.5	11	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
2-Methylnaphthalene			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
2-Methylphenol	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
3&4-Methylphenol	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Naphthalene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
N-Nitrosodiphenylamine			0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Pentachlorophenol	6.7	55	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Phenanthrene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Phenol	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.400 U	0.410 U	0.410 U	0.400 U	
Pyrene	100	1,000	0.420 U	0.380 U	0.400 U	0.400 U	0.240 J	0.410 U	0.410 U	0.400 U	

EA Project No. 14907.10 "Version: HRP CN Table 5, Page 5 "Crtkn2013

Location	NYSDEC	PART 375		SB	8-08			SB-09				
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB-08(0-2)	915206-SB-08(2-4)	915206-SB-08(4-6)	915206-SB-08(6-8)	915206-SB-09(0-2)	915206-SB-09(2-4)	915206-SB-09(4-6)	915206-SB-09(6-8)		
Lab ID	Restricted -		D4715-03	D4715-04	D4715-05	D4715-06	D4714-20	D4714-21	D4715-01	D4715-02		
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12		
Acenaphthene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Anthracene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	3.1	0.390 U	0.390 U	0.390 U		
Benzaldehyde			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Benzo(a)anthracene	1	11	2.1 U	0.390 U	0.400 U	0.410 U	7.0	0.390 U	0.390 U	0.390 U		
Benzo(a)pyrene	1	1.1	2.1 U	0.390 U	0.400 U	0.410 U	7.3 J	0.390 U	0.390 U	0.390 U		
Benzo(b)fluoranthene	1	11	2.1 U	0.390 U	0.400 U	0.410 U	8.5 J	0.390 U	0.390 U	0.390 U		
Benzo(g,h,i)perylene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	4.6 J	0.390 U	0.390 U	0.390 U		
Benzo(k)fluoranthene	3.9	110	2.1 U	0.390 U	0.400 U	0.410 U	3.2 J	0.390 U	0.390 U	0.390 U		
bis(2-Ethylhexyl)phthalate			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Butylbenzylphthalate			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Carbazole			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Chrysene	3.9	110	2.1 U	0.390 U	0.400 U	0.410 U	7.1	0.390 U	0.390 U	0.390 U		
Dibenzo(a,h)anthracene	0.33	1.1	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Dibenzofuran	59	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Dimethylphthalate			2.1 U	0.387 U	0.396 U	0.407 U	2.3 U	0.391 U	0.159 J	0.392 U		
Di-n-butylphthalate			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Fluoranthene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	19	0.390 U	0.390 U	0.390 U		
Fluorene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Indeno(1,2,3-cd)pyrene	0.5	11	2.1 U	0.390 U	0.400 U	0.410 U	4.3	0.390 U	0.390 U	0.390 U		
2-Methylnaphthalene			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
2-Methylphenol	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
3&4-Methylphenol	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Naphthalene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
N-Nitrosodiphenylamine			2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Pentachlorophenol	6.7	55	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Phenanthrene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	12	0.390 U	0.390 U	0.390 U		
Phenol	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	2.3 U	0.390 U	0.390 U	0.390 U		
Pyrene	100	1,000	2.1 U	0.390 U	0.400 U	0.410 U	15	0.390 U	0.390 U	0.390 U		

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 6 "'Cr tkn2013

Location	NYSDEC	PART 375		SB	-10				SB-11		
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB-10(0-2)	915206-SB-10(2-4)	915206-SB-10(4-6)	915206-SB-10(6-8)	915206-SB-11(0-2)	915206-SB-11(2-4)	915206-SB-11(4-6)	915206-SB-11 (4-6)-DUP	915206-SB-11(6-8)
Lab ID	Restricted -		D4714-16	D4714-17	D4714-18	D4714-19	D4759-01	D4759-02	D4759-03	D4759-06	D4759-07
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12
Acenaphthene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Anthracene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Benzaldehyde			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Benzo(a)anthracene	1	11	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.230 J
Benzo(a)pyrene	1	1.1	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.230 J
Benzo(b)fluoranthene	1	11	0.400 U	0.380 U	0.410 U	0.400 U	0.230 J	0.200 J	0.420 U	0.380 U	0.310 J
Benzo(g,h,i)perylene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Benzo(k)fluoranthene	3.9	110	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
bis(2-Ethylhexyl)phthalate			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.180 J
Butylbenzylphthalate			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Carbazole			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Chrysene	3.9	110	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.180 J	0.420 U	0.380 U	0.270 J
Dibenzo(a,h)anthracene	0.33	1.1	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Dibenzofuran	59	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Dimethylphthalate			0.397 U	0.383 U	0.411 U	0.402 U	0.412	0.495	0.534	0.512	0.439
Di-n-butylphthalate			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Fluoranthene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.170 J	0.350 J	0.420 U	0.380 U	0.430
Fluorene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
2-Methylnaphthalene			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
2-Methylphenol	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
3&4-Methylphenol	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Naphthalene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
N-Nitrosodiphenylamine			0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Pentachlorophenol	6.7	55	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Phenanthrene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.210 J	0.420 U	0.380 U	0.280 J
Phenol	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.390 U	0.420 U	0.380 U	0.390 U
Pyrene	100	1,000	0.400 U	0.380 U	0.410 U	0.400 U	0.380 U	0.300 J	0.420 U	0.380 U	0.340 J

Location	NYSDEC F	PART 375			SB-11		
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB-11(8-10)	915206-SB-11(10-12)	915206-SB-11(12-14)	915206-SB-11(14-16)	915206-SB-11(16-18)
Lab ID	Restricted -		D4759-08	D4759-09	D4759-10	D4759-11	D4759-12
Sample Date	Residential	Industrial	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12
Acenaphthene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Anthracene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzaldehyde			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzo(a)anthracene	1	11	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzo(a)pyrene	1	1.1	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzo(b)fluoranthene	1	11	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzo(g,h,i)perylene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Benzo(k)fluoranthene	3.9	110	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
bis(2-Ethylhexyl)phthalate			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Butylbenzylphthalate			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Carbazole			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Chrysene	3.9	110	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Dibenzo(a,h)anthracene	0.33	1.1	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Dibenzofuran	59	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Dimethylphthalate			0.385 J	0.426	0.481	0.455	0.200 J
Di-n-butylphthalate			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Fluoranthene	100	1,000	0.400 U	0.170 J	0.440 U	0.400 U	0.390 U
Fluorene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
2-Methylnaphthalene			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
2-Methylphenol	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
3&4-Methylphenol	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Naphthalene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
N-Nitrosodiphenylamine			0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Pentachlorophenol	6.7	55	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Phenanthrene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Phenol	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U
Pyrene	100	1,000	0.400 U	0.400 U	0.440 U	0.400 U	0.390 U

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 8 "Crtkn2013

TABLE 5 SOIL	SEMIVOLATILE ORGANIC COMPOUND	RESULTS

Location	NYSDEC P	PART 375				SB-12			
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB-12A(0-2)	915206-SB-12A (0-2)-DUP	915206-SB12(8-10)	915206-SB12(12-14)	915206-SB12(14-16)	915206-SB12(16-18)	915206-SB12(18-20)
Lab ID	Restricted -		D4715-14	D4715-17	D4690-18	D4690-19	D4690-20	D4690-21	D4690-22
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Acenaphthene	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Anthracene	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Benzaldehyde			0.430	0.280 J	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Benzo(a)anthracene	1	11	0.330 J	0.240 J	0.400 U	0.410 U	0.400 U	0.510	0.410 U
Benzo(a)pyrene	1	1.1	0.330 J	0.250 J	0.400 U	0.410 U	0.400 U	0.490 J	0.410 U
Benzo(b)fluoranthene	1	11	0.470	0.330 J	0.400 U	0.410 U	0.190 J	0.660 J	0.410 U
Benzo(g,h,i)perylene	100	1,000	0.250 J	0.200 J	0.400 U	0.410 U	0.400 U	0.340 J	0.410 U
Benzo(k)fluoranthene	3.9	110	0.160 J	0.400 U	0.400 U	0.410 U	0.400 U	0.250 J	0.410 U
bis(2-Ethylhexyl)phthalate			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Butylbenzylphthalate			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Carbazole			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Chrysene	3.9	110	0.360 J	0.250 J	0.400 U	0.410 U	0.400 U	0.560	0.410 U
Dibenzo(a,h)anthracene	0.33	1.1	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Dibenzofuran	59	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Dimethylphthalate			0.370 U	0.400 U	0.691	0.347 J	0.467	0.448	0.399 J
Di-n-butylphthalate			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Fluoranthene	100	1,000	0.61	0.51	0.400 U	0.410 U	0.210 J	1.0 J	0.410 U
Fluorene	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.240 J	0.180 J	0.400 U	0.410 U	0.400 U	0.320 J	0.410 U
2-Methylnaphthalene			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
2-Methylphenol	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
3&4-Methylphenol	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Naphthalene	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
N-Nitrosodiphenylamine			0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Pentachlorophenol	6.7	55	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Phenanthrene	100	1,000	0.340 J	0.300 J	0.400 U	0.410 U	0.400 U	0.550	0.410 U
Phenol	100	1,000	0.370 U	0.400 U	0.400 U	0.410 U	0.400 U	0.410 U	0.410 U
Pyrene	100	1,000	0.470	0.390 J	0.400 U	0.410 U	0.170 J	0.840	0.410 U
NOTE: = Not Analyzed									

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 9 "Crtkn2013

Location	NYSDEC	PART 375				SB-13			
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB13(0-4)	915206-SB13(8-10)	915206-SB13(10-12)	915206-SB13(12-14)	915206-SB13(16-18)	915206-SB13(20-22)	915206-SB13(23-25)
Lab ID	Restricted -		D4685-01	D4685-05	D4685-06	D4685-07	D4685-08	D4685-09	D4685-10
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Acenaphthene	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Anthracene	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.460 J	0.390 U
Benzaldehyde			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Benzo(a)anthracene	1	11	0.190 J	0.380 U	0.360 U	0.400 U	0.400 U	1.0 J	0.390 U
Benzo(a)pyrene	1	1.1	0.220 J	0.380 U	0.360 U	0.400 U	0.400 U	1.1 J	0.390 U
Benzo(b)fluoranthene	1	11	0.250 J	0.380 U	0.360 U	0.400 U	0.400 U	1.3 J	0.390 U
Benzo(g,h,i)perylene	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.660 J	0.390 U
Benzo(k)fluoranthene	3.9	110	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.500 J	0.390 U
bis(2-Ethylhexyl)phthalate			0.380 U	0.380 U	0.320 J	0.820	0.400 U	0.220 J	0.390 U
Butylbenzylphthalate			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Carbazole			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.250 J	0.390 U
Chrysene	3.9	110	0.200 J	0.380 U	0.360 U	0.400 U	0.400 U	0.990 J	0.390 U
Dibenzo(a,h)anthracene	0.33	1.1	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.240 J	0.390 U
Dibenzofuran	59	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Dimethylphthalate			0.698	0.559	0.488	0.703	0.567	0.597	0.438
Di-n-butylphthalate			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Fluoranthene	100	1,000	0.290 J	0.380 U	0.210 J	0.400 U	0.400 U	2.0	0.390 U
Fluorene	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.58	0.390 U
2-Methylnaphthalene			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
2-Methylphenol	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	1.2 J	0.390 U
3&4-Methylphenol	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.210 NJ	0.390 U
Naphthalene	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
N-Nitrosodiphenylamine			0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.190 J	0.390 U
Pentachlorophenol	6.7	55	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	0.420 U	0.390 U
Phenanthrene	100	1,000	0.380 U	0.380 U	0.150 J	0.400 U	0.400 U	1.3	0.390 U
Phenol	100	1,000	0.380 U	0.380 U	0.360 U	0.400 U	0.400 U	7.0 D	0.390 U
Pyrene	100	1,000	0.250 J	0.380 U	0.150 J	0.400 U	0.400 U	1.4	0.390 U

EA Project No. 14907.10 "Version: HRP CN Table 5, Page 10 "Cr tkn2013

TABLE 5 SOIL	SEMIVOLATILE	ORGANIC	COMPOUND	RESULTS

Location	NYSDEC P	PART 375				SB-14			
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB14(0-2)	915206-SB-14 (0-2)-DUP	915206-SB14(2-4)	915206-SB14(4-6)	915206-SB14(6-8)	915206-SB14(8-10)	915206-SB14(10-12)
Lab ID	Restricted -		D4690-01	D4685-11	D4690-04	D4690-05	D4690-06	D4690-07	D4690-08
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Acenaphthene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Anthracene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzaldehyde			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzo(a)anthracene	1	11	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzo(a)pyrene	1	1.1	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzo(b)fluoranthene	1	11	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzo(g,h,i)perylene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Benzo(k)fluoranthene	3.9	110	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
bis(2-Ethylhexyl)phthalate			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Butylbenzylphthalate			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Carbazole			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Chrysene	3.9	110	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Dibenzo(a,h)anthracene	0.33	1.1	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Dibenzofuran	59	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Dimethylphthalate			0.441	0.588	0.523	0.580	0.588	0.700	0.423
Di-n-butylphthalate			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Fluoranthene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Fluorene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
2-Methylnaphthalene			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
2-Methylphenol	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
3&4-Methylphenol	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Naphthalene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
N-Nitrosodiphenylamine			0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Pentachlorophenol	6.7	55	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Phenanthrene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Phenol	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U
Pyrene	100	1,000	0.380 U	0.410 U	0.400 U	0.400 U	0.400 U	0.410 U	0.420 U

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 11 "Crtkn2013

Location	NYSDEC	PART 375		SB-15							
Sample ID	Soil Cleanu	o Objectives ^(a)	915206-SB15(0-2)	915206-SB15(2-4)	915206-SB15(4-6)	915206-SB15(6-8)	915206-SB15(8-10)				
Lab ID	Restricted -		D4685-16	D4685-17	D4685-18	D4685-19	D4685-20				
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12				
Acenaphthene	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Anthracene	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Benzaldehyde			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Benzo(a)anthracene	1	11	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Benzo(a)pyrene	1	1.1	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Benzo(b)fluoranthene	1	11	0.210 J	0.400 U	0.400 U	0.390 U	0.390 U				
Benzo(g,h,i)perylene	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Benzo(k)fluoranthene	3.9	110	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
bis(2-Ethylhexyl)phthalate			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Butylbenzylphthalate			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Carbazole			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Chrysene	3.9	110	0.190 J	0.400 U	0.400 U	0.390 U	0.390 U				
Dibenzo(a,h)anthracene	0.33	1.1	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Dibenzofuran	59	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Dimethylphthalate			0.675	0.688	0.574	0.610	0.507				
Di-n-butylphthalate			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Fluoranthene	100	1,000	0.380 J	0.400 U	0.400 U	0.390 U	0.390 U				
Fluorene	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Indeno(1,2,3-cd)pyrene	0.5	11	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
2-Methylnaphthalene			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
2-Methylphenol	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
3&4-Methylphenol	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Naphthalene	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
N-Nitrosodiphenylamine			0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Pentachlorophenol	6.7	55	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Phenanthrene	100	1,000	0.200 J	0.400 U	0.400 U	0.390 U	0.390 U				
Phenol	100	1,000	0.420 U	0.400 U	0.400 U	0.390 U	0.390 U				
Pyrene	100	1,000	0.260 J	0.400 U	0.400 U	0.390 U	0.390 U				

EA Project No. 14907.10 "Version: HRP CN Table 5, Page 12 "Cr tkn2013

Location	NYSDEC P	PART 375					SB-16			
Sample ID	Soil Cleanup (Objectives ^(a)	915206-SB16(0-2)	915206-SB16(2-4)	915206-SB16(4-6)	915206-SB16(6-8)	915206-SB16(8-10)	915206-SB16(10-12)	915206-SB16(12-14)	915206-SB16(14-16)
Lab ID	Restricted -		D4690-09	D4690-10	D4690-11	D4690-12	D4685-12	D4685-13	D4685-14	D4685-15
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Acenaphthene	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Anthracene	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzaldehyde			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzo(a)anthracene	1	11	0.450	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzo(a)pyrene	1	1.1	0.460 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzo(b)fluoranthene	1	11	0.590 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzo(g,h,i)perylene	100	1,000	0.300 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Benzo(k)fluoranthene	3.9	110	0.200 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
bis(2-Ethylhexyl)phthalate			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Butylbenzylphthalate			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Carbazole			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Chrysene	3.9	110	0.510	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Dibenzo(a,h)anthracene	0.33	1.1	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Dibenzofuran	59	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Dimethylphthalate			0.448	0.470	0.743	0.636	0.765	0.623	0.711	0.571
Di-n-butylphthalate			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Fluoranthene	100	1,000	1.0 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Fluorene	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Indeno(1,2,3-cd)pyrene	0.5	11	0.260 J	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
2-Methylnaphthalene			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
2-Methylphenol	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
3&4-Methylphenol	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Naphthalene	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
N-Nitrosodiphenylamine			0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Pentachlorophenol	6.7	55	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Phenanthrene	100	1,000	0.760	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Phenol	100	1,000	0.370 U	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U
Pyrene	100	1,000	0.920	0.380 U	0.420 U	0.390 U	0.420 U	0.390 U	0.390 U	0.390 U

EA Project No. 14907.10 "Version: HRP CN Table 5, Page 13 "Cr tkn2013

Location	NYSDEC P	ART 375	SB-17								
Sample ID	Soil Cleanup (Objectives ^(a)	915206-SB17(0-2)	915206-SB17(2-4)	915206-SB17(4-6)	915206-SB17(6-8)	915206-SB17(8-10)	915206-SB17(10-12)			
Lab ID	Restricted -		D4685-21	D4690-13	D4690-14	D4690-15	D4690-16	D4690-17			
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12			
Acenaphthene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Anthracene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzaldehyde			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzo(a)anthracene	1	11	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzo(a)pyrene	1	1.1	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzo(b)fluoranthene	1	11	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzo(g,h,i)perylene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Benzo(k)fluoranthene	3.9	110	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
bis(2-Ethylhexyl)phthalate			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Butylbenzylphthalate			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Carbazole			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Chrysene	3.9	110	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Dibenzo(a,h)anthracene	0.33	1.1	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Dibenzofuran	59	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Dimethylphthalate			0.546	0.656	0.416	0.414	0.503	0.760			
Di-n-butylphthalate			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Fluoranthene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Fluorene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Indeno(1,2,3-cd)pyrene	0.5	11	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
2-Methylnaphthalene			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
2-Methylphenol	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
3&4-Methylphenol	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Naphthalene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
N-Nitrosodiphenylamine			0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Pentachlorophenol	6.7	55	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Phenanthrene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Phenol	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			
Pyrene	100	1,000	0.370 U	0.410 U	0.410 U	0.400 U	0.400 U	0.390 U			

EA Project No. 14907.10 "Version: HIP CN Table 5, Page 14 "Cr tkn2013

Location	NYSDEC F	PART 375			SB-18			SS-01	SS-02
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SB-18(0-2)	915206-SB-18 (0-2)-DUP	915206-SB-18(2-4)	915206-SB-18(8-10)	915206-SB-18(10-12)	915206-SS-01	915206-SS-02
Lab ID	Restricted -		D4715-07	D4715-13	D4715-10	D4715-11	D4715-12	D4664-01	D4664-02
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/24/12	10/24/12
Acenaphthene	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Anthracene	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Benzaldehyde			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Benzo(a)anthracene	1	11	4 U	0.470 U	1.2 J	0.390 U	0.390 U	4 U	0.390 U
Benzo(a)pyrene	1	1.1	4 U	0.470 U	1.2 J	0.390 U	0.390 U	4 U	0.390 U
Benzo(b)fluoranthene	1	11	1.6 J	0.470 UJ	1.6 J	0.390 U	0.390 U	4 U	0.390 U
Benzo(g,h,i)perylene	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.170 J
Benzo(k)fluoranthene	3.9	110	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
bis(2-Ethylhexyl)phthalate			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Butylbenzylphthalate			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Carbazole			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Chrysene	3.9	110	4 U	0.470 U	1.2 J	0.390 U	0.390 U	4 U	0.390 U
Dibenzo(a,h)anthracene	0.33	1.1	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Dibenzofuran	59	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Dimethylphthalate			4 U	0.277 J	2 U	0.387 U	0.391 U	4 U	0.489
Di-n-butylphthalate			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Fluoranthene	100	1,000	2.3 J	0.470 UJ	2.5	0.390 U	0.390 U	4 U	0.390 U
Fluorene	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Indeno(1,2,3-cd)pyrene	0.5	11	4 U	0.470 U	0.820 J	0.390 U	0.390 U	4 U	0.390 U
2-Methylnaphthalene			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
2-Methylphenol	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
3&4-Methylphenol	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Naphthalene	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
N-Nitrosodiphenylamine			4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Pentachlorophenol	6.7	55	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Phenanthrene	100	1,000	4 U	0.470 U	1.2 J	0.390 U	0.390 U	4 U	0.390 U
Phenol	100	1,000	4 U	0.470 U	2 U	0.390 U	0.390 U	4 U	0.390 U
Pyrene	100	1,000	1.7 J	0.470 UJ	1.7 J	0.390 U	0.390 U	4 U	0.390 U

EA Project No. 14907.10 'Version: HRP CN Table 5, Page 15 April 2013

Location	NYSDEC	PART 375	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SS-05	915206-SS-06	915206-SS-07	915206-SS-08	915206-SS-09	915206-SS-10	915206-SS-11
Lab ID	Restricted -		D4664-03	D4664-04	D4664-05	D4664-06	D4664-07	D4664-08	D4664-09
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Acenaphthene	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.240 J	0.460 U	4.2 U
Anthracene	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.610	0.290 J	4.2 U
Benzaldehyde			7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Benzo(a)anthracene	1	11	7.7 U	0.190 J	7.8 U	0.510	1.9	0.730	4.2 U
Benzo(a)pyrene	1	1.1	7.7 U	0.410 U	7.8 U	0.600 J	1.9 J	0.640 J	4.2 U
Benzo(b)fluoranthene	1	11	7.7 U	0.230 J	7.8 U	0.810 J	2.7 J	0.810 J	4.2 U
Benzo(g,h,i)perylene	100	1,000	7.7 U	0.410 U	7.8 U	0.730 J	0.880 J	0.380 J	4.2 U
Benzo(k)fluoranthene	3.9	110	7.7 U	0.410 U	7.8 U	0.340 J	1.1 J	0.340 J	4.2 U
bis(2-Ethylhexyl)phthalate			7.7 U	0.410 U	7.8 U	0.420 U	0.240 J	0.460 U	4.2 U
Butylbenzylphthalate			7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Carbazole			7.7 U	0.410 U	7.8 U	0.420 U	0.350 J	0.460 U	4.2 U
Chrysene	3.9	110	7.7 U	0.200 J	7.8 U	0.550	2.0	0.740	4.2 U
Dibenzo(a,h)anthracene	0.33	1.1	7.7 U	0.410 U	7.8 U	0.380 J	0.240 J	0.460 U	4.2 U
Dibenzofuran	59	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.250 J	0.460 U	4.2 U
Dimethylphthalate			7.7 U	0.618	7.8 U	0.544	0.872	0.799	4.2 U
Di-n-butylphthalate			7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	2.5	4.2 U
Fluoranthene	100	1,000	7.7 U	0.400 J	7.8 U	1.2	4.1 D	1.6	4.2 U
Fluorene	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.260 J	0.460 U	4.2 U
Indeno(1,2,3-cd)pyrene	0.5	11	7.7 U	0.410 U	7.8 U	0.58	0.76	0.340 J	4.2 U
2-Methylnaphthalene			7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
2-Methylphenol	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
3&4-Methylphenol	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Naphthalene	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.550	0.460 U	4.2 U
N-Nitrosodiphenylamine			7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Pentachlorophenol	6.7	55	7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Phenanthrene	100	1,000	7.7 U	0.250 J	7.8 U	0.740	2.8	1.2	4.2 U
Phenol	100	1,000	7.7 U	0.410 U	7.8 U	0.420 U	0.500 U	0.460 U	4.2 U
Pyrene	100	1,000	7.7 U	0.310 J	7.8 U	0.960	3.5	1.2	4.2 U

EA Project No. 14907.10 Version: FINAL Table 5, Page 16 April 2013

Location			SS-12		SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Sample ID	Soil Cleanup	Objectives ^(a)	915206-SS-12	915206-SS-12-DUP	915206-SS-13	915206-SS-14	915206-SS-15	915206-SS-16	915206-SS-17	915206-SS-18
Lab ID	Restricted -		D4664-10	D4664-19	D4664-11	D4664-12	D4664-15	D4664-16	D4664-17	D4664-18
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Acenaphthene	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Anthracene	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Benzaldehyde			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Benzo(a)anthracene	1	11	3.8 U	3.8 U	3.9 U	0.190 J	19 U	2 U	7.9 U	0.410 U
Benzo(a)pyrene	1	1.1	3.8 U	3.8 U	3.9 U	0.220 J	19 U	2 U	7.9 U	0.410 U
Benzo(b)fluoranthene	1	11	3.8 U	3.8 U	3.9 U	0.300 J	19 U	2 U	7.9 U	0.410 U
Benzo(g,h,i)perylene	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Benzo(k)fluoranthene	3.9	110	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
bis(2-Ethylhexyl)phthalate			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Butylbenzylphthalate			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Carbazole			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Chrysene	3.9	110	3.8 U	3.8 U	3.9 U	0.240 J	19 U	2 U	7.9 U	0.410 U
Dibenzo(a,h)anthracene	0.33	1.1	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Dibenzofuran	59	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Dimethylphthalate			3.8 U	3.8 U	3.9 U	0.753	19 U	2 U	7.9 U	0.515
Di-n-butylphthalate			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Fluoranthene	100	1,000	3.8 U	3.8 U	3.9 U	0.540	19 U	2 U	7.9 U	0.410 U
Fluorene	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Indeno(1,2,3-cd)pyrene	0.5	11	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
2-Methylnaphthalene			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
2-Methylphenol	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
3&4-Methylphenol	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Naphthalene	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
N-Nitrosodiphenylamine			3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Pentachlorophenol	6.7	55	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Phenanthrene	100	1,000	3.8 U	3.8 U	3.9 U	0.260 J	19 U	2 U	7.9 U	0.410 U
Phenol	100	1,000	3.8 U	3.8 U	3.9 U	0.430 U	19 U	2 U	7.9 U	0.410 U
Pyrene	100	1,000	3.8 U	3.8 U	3.9 U	0.400 J	19 U	2 U	7.9 U	0.410 U

EA Project No. 14907.10 Version: FINAL Table 5, Page 17 April 2013

TABLE 6 ORGANIC COMPOUND EXCEEDANCES IN SOIL

	NY	SDEC PART 3	75									
SampleID	Soil (Cleanup Objecti	ves ^(a)	MW-02A (2-3)	MW-03A (0-2)	MW-05 (0-2)	MW-06 (0-2)	MW-06 (0-2) DUP	MW-07(2-4)	MW-07(2-4) DUP	MW-08(0-2)	
Lab ID	Unrestricted	Restricted -		AC69070-002	AC69070-007	AC69070-015	AC69070-009	AC69070-012	AC69114-007	AC69114-016	AC69114-011	
Sample Date	Use	Residential	Industrial	10/29/12	10/31/12	11/01/12	10/31/12	10/31/12	11/05/12	11/05/12	11/06/12	
				VO	LATILE ORGAN	IC COMPOUN	DS					
Acetone	0.05	100	500				0.30	0.19				
Methylene chloride	0.05	100	1,000					0.05				
				SEMI	VOLATILE ORG	ANIC COMPOU	UNDS					
Benzo(a)anthracene	1	1	11		1.0	1.0						
Benzo(a)pyrene	1	1	1.1		1.1	1.1						
Benzo(b)fluoranthene	1	1	11		1.7	1.6						
Benzo(k)fluoranthene	0.8											
Chrysene	1	3.9	110		1.1	1.1						
Dibenzo(a,h)anthracene	0.33	0.33	1.1									
Indeno(1,2,3-cd)pyrene	0.5	0.5	11		0.8	0.8						
2-Methylphenol	0.33	100	1,000									
Phenol	0.33	100	1,000									
					PESTIC	IDES						
p,p'-DDD	0.0033	13	180						0.006	0.010		
p,p'-DDE	0.0033	8.9	120	0.007							0.016	
p,p'-DDT	0.033	7.9	94								0.012 NJ	

EA Project No. 14907.10 Version: FINAL Table 6, Page 1 April 2013

TABLE 6 ORGANIC COMPOUND EXCEEDANCES IN SOIL

	NY	YSDEC PART 3	75										
SampleID	Soil (Cleanup Objecti	ves ^(a)	MW-08(0-2) DUP	SB-09(0-2)	SB-11(4-6)	SB-11(4-6) DUP	SB13(20-22)	SB-18(0-2)	SB-18(2-4)	SS-08	SS-09	SS-11
Lab ID	Unrestricted	Restricted -		AC69114-013	D4714-20	D4759-03	D4759-06	D4685-09	D4715-07	D4715-10	D4664-06	D4664-07	D4664-09
Sample Date	Use	Residential	Industrial	11/06/12	10/26/12	11/06/12	11/06/12	10/25/12	10/26/12	10/26/12	10/24/12	10/24/12	10/24/12
				VOL	ATILE ORG	GANIC COM	POUNDS						
Acetone	0.05	100	500			0.11	0.12						
Methylene chloride	0.05	100	1,000										
				SEMIV	OLATILE O	RGANIC CO	OMPOUNDS						
Benzo(a)anthracene	1	1	11		7.0			1.0 J		1.2 J		1.9	
Benzo(a)pyrene	1	1	1.1		7.3 J			1.1 J		1.2 J		1.9 J	
Benzo(b)fluoranthene	1	1	11		8.5 J			1.3 J	1.6 J	1.6 J		2.7 J	
Benzo(k)fluoranthene	0.8												
Chrysene	1	3.9	110		7.1								
Dibenzo(a,h)anthracene	0.33	0.33	1.1								0.380 J		
Indeno(1,2,3-cd)pyrene	0.5	0.5	11		4.3			0.58		0.820 J	0.58	0.76	
2-Methylphenol	0.33	100	1,000					1.2 J					
Phenol	0.33	100	1,000					7.0 D					
					PES	TICIDES							
p,p'-DDD	0.0033	180											
p,p'-DDE	0.0033	8.9	120	0.019							0.004	0.004	
p,p'-DDT	0.0033 8.9 120 0.033 7.9 94			0.014 NJ							0.010 J	0.040 J	0.004 J

Location	NYSDEC PA	ART 375	MW-02A	MW-04	Ν	AW-06	Ν	4W-07
Sample ID	Soil Cleanup C	Objectives ^(a)	MW-02A (2-3)	MW-04(2-4)	MW-06 (0-2)	MW-06 (0-2) DUP	MW-07(2-4)	MW-07(2-4) DUP
Lab ID	Restricted -		AC69070-002	AC69114-002	69114-002 AC69070-009 AC69070-012		AC69114-007	AC69114-016
Sample Date	Residential	Industrial	10/29/12	11/02/12	10/31/12	10/31/12	11/05/12	11/05/12
Chlordane	4.2	47	0.038 J	0.032 U	0.030 U	0.060 U	0.035 U	0.030 U
Chlordane, alpha-	4.2	47						
Chlordane, beta-								
p,p'-DDD	13	180	0.008 U	0.003 U	0.003 U	0.006 U	0.006	0.010
p,p'-DDE	8.9	120	0.007	0.003 U	0.003 U	0.006 U	0.004 U	0.003 U
p,p'-DDT	7.9	94	0.003 U	0.003 U	0.003 U	0.006 U	0.004 U	0.003 U
Aroclor (Total)	1	25	0.079 J	0.110 UJ	0.030 U	0.056 J	0.035 U	0.030 U
Aroclor-1254			0.079 J	0.110 UJ	0.030 U	0.030 U	0.035 U	0.030 U
Aroclor-1260			0.030 U	0.032 U	0.030 U	0.030 U	0.035 U	0.030 U

(a) NYSDEC DER. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006. Restricted Residential and Industrial Soil Cleanup Objective.

NOTE: ID = Identification

NYSDEC = New York State Department of Environmental Conservation

J = Estimated concentration.

- --- = Not analyzed
- U = Not detected; the associated number is the reporting limit.
- DDD = Dichlorodiphenyldichloroethane

DDE = Dichlorodiphenyldichloroethylene

DDT = Dichlorodiphenyltrichloroethane

Analytical data results obtained by Chemtech Consulting Group or Hampton Clark Veritech using SW-846 Methods 8081/8082. Data Validation completed by

Data Validation Services.

Table includes only those pesticides/polychlorinated biphenyls detected in one or more sample.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Location	NYSDEC P	ART 375	MW-08	MW-08	SB-05	SB-05	SB-06	SB-08
Sample ID	Soil Cleanup (Objectives ^(a)	MW-08(0-2)	MW-08(0-2) DUP	SB-05(2-4)	SB-05(2-4) DUP	SB-06(2-4)	SB-08(2-4)
Lab ID	Restricted -		AC69114-011	AC69114-013	D4714-10	D4714-15	D4714-06	D4715-04
Sample Date			11/06/12	11/06/12	10/26/12	10/26/12	10/26/12	10/26/12
Chlordane	4.2	47	0.031 U	0.030 U				
Chlordane, alpha-	4.2 47				0.002 U	0.002 U	0.002 U	0.002 U
Chlordane, beta-					0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDD	13	180	0.003 U	0.003 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDE	8.9	120	0.016	0.019	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDT	7.9	94	0.012 NJ	0.014 NJ	0.002 U	0.002 U	0.002 U	0.002 UJ
Aroclor (Total)	1	25	0.054 UJ	0.066 UJ				
Aroclor-1254				0.066 UJ	0.020 U	0.020 U	0.020 U	0.020 U
Aroclor-1260			0.031 U	0.030 U	0.020 U	0.020 U	0.020 U	0.020 U
NOTE: N = Ter	ntatively identified c	onstituent.						

Location	NYSDEC PART 375		SB-09	SB-09	SB-10	SB-11	SB-12	SB-12
Sample ID	Soil Cleanup	Objectives ^(a)	SB-09(0-2)	SB-09(2-4)	SB-10(0-2)	SB-11(4-6)	SB-12A(0-2)	SB-12A(0-2) DUP
Lab ID	Restricted -		D4714-20	D4714-21	D4714-16	D4759-03	D4715-14	D4715-17
Sample Date	Residential Industrial		10/26/12	10/26/12	10/26/12	11/06/12	10/26/12	10/26/12
Chlordane	4.2	47						
Chlordane, alpha-	4.2	47	0.002 U	0.002 U	0.002 U	0.002 UJ	0.002 U	0.002 U
Chlordane, beta-			0.002 U	0.002 U	0.002 U	0.002 UJ	0.002 U	0.002 U
p,p'-DDD	13	180	0.002 U	0.002 U	0.002 U	0.002 UJ	0.002 U	0.002 U
p,p'-DDE	8.9	120	0.002 U	0.002 U	0.002 U	0.002 UJ	0.002 U	0.002 U
p,p'-DDT	7.9	94	0.002 U	0.002 U	0.002 U	0.002 UJ	0.002 UJ	0.002 UJ
Aroclor (Total)	1 25							
Aroclor-1254			0.068 J	0.020 U	0.020 U	0.021 UJ	0.024 J	0.020 U
Aroclor-1260			0.024 U	0.020 U	0.020 U	0.021 UJ	0.019 U	0.020 U

TABLE 7	SOIL P	OLYCHL	ORINATED	BIPHENY	LS AND	PESTICIDES	RESULTS	

Location	NYSDEC PART 375		SB-13	SB-13	SB-13	SB-14	SB-14	SB-15	SB-17
Sample ID	Soil Cleanup Objectives ^(a)		SB13(0-4)	SB13(8-10)	SB13(20-22)	SB14(0-2)	SB14(0-2) DUP	SB15(0-2)	SB17(2-4)
Lab ID	Restricted -		D4685-01	D4685-05	D4685-09	D4690-01	D4685-11	D4685-16	D4690-13
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Chlordane	4.2	47							
Chlordane, alpha-	4.2	47	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Chlordane, beta-			0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDD	13	180	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDE	8.9	120	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDT	7.9	94	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Aroclor (Total)	1	25							
Aroclor-1254			0.020 U	0.020 U	0.022 U	0.020 U	0.021 U	0.022 U	0.021 U
Aroclor-1260			0.020 U	0.020 U	0.022 U	0.020 U	0.021 U	0.022 U	0.021 U

Location	NYSDEC PART 375		SB-18	SB-18	SS-01	SS-02	SS-05	SS-06	SS-07
Sample ID	Soil Cleanup Objectives ^(a)		SB-18(0-2)	SB-18(0-2) DUP	SS-01	SS-02	SS-05	SS-06	SS-07
Lab ID	Restricted -		D4715-07	D4715-13	D4664-01	D4664-02	D4664-03	D4664-04	D4664-05
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Chlordane	4.2	47							
Chlordane, alpha-	4.2	47	0.002 U	0.002 U	0.005	0.011	0.002 U	0.002 U	0.002 U
Chlordane, beta-			0.002 U	0.002 U	0.003	0.007	0.002 U	0.002 U	0.002 U
p,p'-DDD	13	180	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDE	8.9	120	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDT	7.9	94	0.002 UJ	0.002 UJ	0.002 U				
Aroclor (Total)	1	25							
Aroclor-1254			0.020 U	0.024 U	0.021 U	0.020 U	0.016 J	0.021 UJ	0.020 UJ
Aroclor-1260			0.020 U	0.024 U	0.021 U	0.020 U	0.020 UJ	0.021 UJ	0.020 UJ

Location	NYSDEC PART 375		SS-08	SS-09	SS-10	SS-11	SS-12	SS-12
Sample ID	Soil Cleanup Objectives ^(a)		SS-08	SS-09	SS-10	SS-11	SS-12	SS-12 DUP
Lab ID	Restricted -		D4664-06	D4664-07	D4664-08	D4664-09	D4664-10	D4664-19
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Chlordane	4.2	47						
Chlordane, alpha-	4.2	47	0.002 U	0.003 U	0.002 U	0.002 U	0.002 U	0.002 U
Chlordane, beta-			0.002 U	0.003 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDD	13	180	0.002 U	0.003 U	0.002 U	0.002 U	0.002 U	0.002 U
p,p'-DDE	8.9	120	0.004	0.004	0.002 U	0.002	0.002 U	0.002 U
p,p'-DDT	7.9	94	0.010 J	0.040 J	0.002 U	0.004 J	0.002 U	0.002 U
Aroclor (Total)	1	25						
Aroclor-1254			0.028 J	0.055 J	0.016 J	0.026 J	0.020 J	0.020 J
Aroclor-1260			0.022 UJ	0.026 U	0.024 UJ	0.021 UJ	0.020 UJ	0.020 UJ

Location	NYSDEC PART 375		SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Sample ID	Soil Cleanup Objectives ^(a)		SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Lab ID	Restricted -		D4664-11	D4664-12	D4664-15	D4664-16	D4664-17	D4664-18
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Chlordane	4.2	47						
Chlordane, alpha-	4.2	47	0.002 U					
Chlordane, beta-			0.002 U					
p,p'-DDD	13	180	0.002 U					
p,p'-DDE	8.9	120	0.002 U					
p,p'-DDT	7.9	94	0.002 U					
Aroclor (Total)	1	25						
Aroclor-1254			0.023 J	0.022 UJ	0.015 J	0.021 UJ	0.020 UJ	0.021 UJ
Aroclor-1260			0.020 UJ	0.037 J	0.020 U	0.021 UJ	0.020 UJ	0.021 UJ

Location	NYSDEC I	PART 375		MW	-02A		MW	-03A
Sample ID	Soil Cleanup	Objectives ^(a)	MW-02A (0-1)	MW-02A (2-3)	MW-02A (6-7)	MW-02A (8-10)	MW-03A (0-2)	MW-03A (4-6)
Lab ID	Restricted -		AC69070-001	AC69070-002	AC69070-003	AC69070-004	AC69070-007	AC69070-008
Sample Date	Residential	Industrial	10/29/12	10/29/12	10/29/12	10/29/12	10/31/12	10/31/12
Arsenic	16	16	24	28	13	14	4.5 U	9.5
Barium	400	10,000	430	900	99	76	70	50
Beryllium	72	2,700	0.700 U	0.730 U	0.720 U	0.710 U	0.890	0.800 U
Cadmium	4.3	60	6.5	6.6	0.720 U	0.710 U	0.7200	0.800 U
Copper	270	10,000	360	650	33	30	45	26
Chromium	180	6,800	67	130	19	18	52	12
Cyanide, Total	27	10,000		66				
Lead	400	3,900	2,300 J	1,500 J	19 J	16 J	76 J	9.8 J
Manganese	2,000	10,000	1,300 J	1,600 J	700 J	450 J	1,000 J	470 J
Mercury	0.81	5.7	0.270	1.0	0.100 U	0.099 U	0.095 U	0.110 U
Nickel	310	10,000	85	130	37	32	11	21
Selenium	180	6,800	2.1 U	2.2 U	2.2 U	2.1 U	2.0 U	2.4 U
Silver	180	6,800	26	1.8 U	1.8 U	1.8 U	3.4 U	2.0 U
Zinc	10,000	10,000	1,900 J	2,900 J	82 J	77 J	170 J	62 J

(a) NYSDEC DER. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006. Restricted Residential and Industrial Soil Cleanup Objective.

NOTE: ID = Identification

NYS DEC = New York State Department of Environmental Conservation

m g/kg = Milligrams per kilogram

--- = Not analyzed

D = Result obtained from a dilution.

- J =Estimated concentration.
- N = Tentatively identified constituent.

U = Not detected; the associated number is the reporting limit.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Methods 6000/7000. Data Validation completed by Data Validation Services.

Table includes only those inorganics for which the indicated soil cleanup objectives are defined.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Bolded values indicate exceedance of NYSDEC Part 375 Restricted Residential Soil Cleanup Objectives.

Bolded and shaded values indicate exceedance of NYSDEC Part 375 Industrial Soil Cleanup Objectives.

TABLE 8 INORGANIC CONSTITUENTS IN SC	NL
--------------------------------------	----

Location	NYSDEC	PART 375		MW-04			MW	/-05	
Sample ID	Soil Cleanup	Objectives ^(a)	MW-04(0-2)	MW-04(2-4)	MW-04(4-6)	MW-05 (0-2)	MW-05 (2-3)	MW-05 (3-4)	MW-05 (4-6)
Lab ID	Restricted -		AC69114-001	AC69114-002	AC69114-003	AC69070-015	AC69070-016	AC69070-017	AC69070-018
Sample Date	Residential	Industrial	11/02/12	11/02/12	11/02/12	11/01/12	11/01/12	11/01/12	11/01/12
Arsenic	16	16	15	6.0	12	18	9.1	8.8	11
Barium	400	10,000	92	68	83	800	150	66	93
Beryllium	72	2,700	0.880 U	0.780 U	0.740 U	0.770 U	0.760 U	0.710 U	0.710 U
Cadmium	4.3	60	1.10	0.780 U	0.740 U	7.6	1.6	0.710 U	0.710 U
Copper	270	10,000	28 J	21 J	33 J	460	37	25	33
Chromium	180	6,800	9.7 J	12 J	19 J	55	18	13	20
Cyanide, Total	27	10,000		0.310 UJ					
Lead	400	3,900	130 J	9.7 J	19 J	1,600 J	940 J	29 J	14 J
Manganese	2,000	10,000	140 J	270 J	860 J	750 J	360 J	410 J	700 J
Mercury	0.81	5.7	0.120 U	0.110 U	0.100 U	0.86	0.120	0.098 U	0.099 U
Nickel	310	10,000	11 J	17 J	37 J	110	16	20	39
Selenium	180	6,800	2.6 U	2.3 U	2.2 U	2.3 U	2.3 U	2.1 U	2.1 U
Silver	180	6,800	5.1 J	3.1 J	4.6 J	4.0	1.9 U	1.8 U	1.8 U
Zinc	10,000	10,000	170	54	78	1,700 J	290 J	69 J	80 J

EA Engineering, P.C. and its Affiliate EA Science and Technology

Location	NYSDEC	PART 375		MW-0)6				MW-07		
Sample ID	Soil Cleanup	Objectives ^(a)	MW-06 (0-2)	MW-06 (0-2) DUP	MW-06 (2-4)	MW-06 (4-6)	MW-07(0-2)	MW-07(2-4)	MW-07(2-4) DUP	MW-07(4-6)	MW-07(6-8)
Lab ID	Restricted -		AC69070-009	AC69070-012	AC69070-013	AC69070-014	AC69114-006	AC69114-007	AC69114-016	AC69114-009	AC69114-010
Sample Date	Residential	Industrial	10/31/12	10/31/12	10/31/12	10/31/12	11/05/12	11/05/12	11/05/12	11/05/12	11/05/12
Arsenic	16	16	10	6.1	14	10	15	14	12	15	11
Barium	400	10,000	87	78	110	110	480	1,200 J	390 J	320	93
Beryllium	72	2,700	0.720 U	1.1	0.740 U	0.740 U	0.730 U	0.830 U	0.730 U	0.780 U	0.720 U
Cadmium	4.3	60	1.4	0.830	0.740 U	0.740 U	8.5	3.1 J	1.4 J	1.5	0.720 U
Copper	270	10,000	37	25	31	32	240 J	190 J	250 J	110 J	30 J
Chromium	180	6,800	20	15	22	22	53 J	46 J	73 J	28 J	18 J
Cyanide, Total	27	10,000	150 J	8.5 J				170 J	90 J		
Lead	400	3,900	200 J	86 J	18 J	16 J	750 J	660 J	820 J	440 J	15 J
Manganese	2,000	10,000	680 J	510 J	580 J	700 J	950 J	360 J	430 J	360 J	470 J
Mercury	0.81	5.7	0.100 U	0.099 U	0.100 U	0.100 U	0.240	0.310	0.230	0.270	0.100 U
Nickel	310	10,000	25	14	37	39	65 J	32 J	40 J	32 J	31 J
Selenium	180	6,800	2.2 U	2.1 U	2.2 U	2.2 U	2.2 U	2.5 U	2.2 U	2.3 U	2.2 U
Silver	180	6,800	1.8 U	1.8 U	1.9 U	1.9 U	6.8 J	6.3 J	1.8 UJ	1.9 U	1.8 U
Zinc	10,000	10,000	220 J	150 J	88 J	87 J	1,300	1,300 J	760 J	530	74

Location	NYSDEC	PART 375		MW-0)8				SB-05		
Sample ID	Soil Cleanup	Objectives ^(a)	MW-08(0-2)	MW-08(0-2) DUP	MW-08(2-4)	MW-08(6-8)	SB-05(0-2)	SB-05(0-2) DUP	SB-05(2-4)	SB-05(4-6)	SB-05(6-8)
Lab ID	Restricted -		AC69114-011	AC69114-013	AC69114-014	AC69114-015	D4714-09	D4714-15	D4714-10	D4714-13	D4714-14
Sample Date	Residential	Industrial	11/06/12	11/06/12	11/06/12	11/06/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12
Arsenic	16	16	18	11	80	6.70	7.32	8.37	5.63	9.46	9.72
Barium	400	10,000	250	210	8,800	71.0	93.0	94.7	58.5	75.2	70.8
Beryllium	72	2,700	0.750 U	0.730 U	0.740 U	0.720 U	0.280	0.220	0.100 J	0.120 J	0.120 J
Cadmium	4.3	60	1.9	1.5	5.50	0.720 U	0.900	0.870	0.490 J	0.550	0.870
Copper	270	10,000	130 J	770 J	410 J	29.0 J	25.7 J	24.1 J	12.9 J	26.1 J	28.7 J
Chromium	180	6,800	26 J	24 J	74 J	18 J	11	17.4	10.5	13.4	14.3
Cyanide, Total	27	10,000	100 J	110 J				0.193 J	0.095 J		
Lead	400	3,900	320 J	290 J	790 J	13.0 J	53.7	22.0	11.3 J	24.2	20.9
Manganese	2,000	10,000	620 J	500 J	1,000 J	360 J	299 J	309 J	396 J	524 J	357 J
Mercury	0.81	5.7	0.180	0.160	0.390	0.100 U	0.017	0.024	0.040	0.018	0.016
Nickel	310	10,000	36 J	35 J	92 J	28.0 J	18.6	46.3	16.3 J	44.4	40.8
Selenium	180	6,800	2.2 U	2.2 U	2.2 U	2.2 U	0.560 U	0.340 J	0.500 U	0.330 J	0.510 U
Silver	180	6,800	3.2 J	1.8 U	1.9 U	1.8 U	0.270 J	1.09	0.250 UJ	0.980	0.890
Zinc	10,000	10,000	440	450	2,700	73.0	78.1	86.0	29.1 J	76.3	80.1

Location	NYSDEC	PART 375		SB	-06		SB-07				
Sample ID	Soil Cleanup	Objectives ^(a)	SB-06(0-2)	SB-06(2-4)	SB-06(4-6)	SB-06(6-8)	SB-07(0-2)	SB-07(2-4)	SB-07(4-6)	SB-07(6-8)	
Lab ID	Restricted -		D4714-05	D4714-06	D4714-07	D4714-08	D4714-01	D4714-02	D4714-03	D4714-04	
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	
Arsenic	16	16	5.78	4.58	9.03	11.5	6.43	8.14	9.99	7.78	
Barium	400	10,000	67.8	31.7	60.8	60.6	65.0	87.9	93.1	91.0	
Beryllium	72	2,700	0.22	0.140 J	0.130 J	0.130 J	0.110 J	0.080 J	0.190	0.160	
Cadmium	4.3	60	0.910	0.480	0.970	1.18	1.52	0.730	1.14	0.930	
Copper	270	10,000	17.5 J	13.3 J	26.5 J	29.5 J	29.7 J	17.6 J	28.3 J	28.8 J	
Chromium	180	6,800	12.9	7.32	11.7	13.8	13.1	7.57	15.7	13.7	
Cyanide, Total	27	10,000		0.590							
Lead	400	3,900	24.3	21.1	20.1	23.1	120	22.9	25.4	25.1	
Manganese	2,000	10,000	248 J	240 J	519 J	277 J	722 J	1,260 J	676 J	623 J	
Mercury	0.81	5.7	0.046	0.040	0.017	0.016	0.196	0.050	0.008 J	0.023	
Nickel	310	10,000	30.8	14.8	38.7	40.0	20.8	13.4	51.8	50.8	
Selenium	180	6,800	0.430 J	0.250 J	0.490 U	0.520 U	0.330 J	0.930	0.520 U	0.520 U	
Silver	180	6,800	0.610	0.210 J	0.290	0.640	0.180 J	0.280	0.660	0.490	
Zinc	10,000	10,000	78.0	42.0	65.4	78.1	141	51.2	76.3	80.5	

Location	NYSDEC	PART 375		SB	-08			SB	-09	
Sample ID	Soil Cleanup	Objectives ^(a)	SB-08(0-2)	SB-08(2-4)	SB-08(4-6)	SB-08(6-8)	SB-09(0-2)	SB-09(2-4)	SB-09(4-6)	SB-09(6-8)
Lab ID	Restricted -		D4715-03	D4715-04	D4715-05	D4715-06	D4714-20	D4714-21	D4715-01	D4715-02
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12
Arsenic	16	16	14.9 J	26.6 J	4.41 J	11.3 J	8.10	11.8	6.08 J	5.36 J
Barium	400	10,000	462 J	443 J	99.5 J	111 J	110	57.2	75.8 J	65.7 J
Beryllium	72	2,700	0.170 UJ	0.150 UJ	0.240 J	0.250 J	0.150 J	0.180	0.230 J	0.210 J
Cadmium	4.3	60	11.2 J	5.70 J	1.07 J	1.81 J	1.94	0.780	0.970 J	0.920 J
Copper	270	10,000	170 J	213 J	19.9 J	30.7 J	18.3 J	26.9 J	23.8 J	24.9 J
Chromium	180	6,800	40.1 J	29.4 J	12.3 J	15.7 J	11.4	10.2	15.5 J	14.9 J
Cyanide, Total	27	10,000		0.572						
Lead	400	3,900	1,220	869	66.6	29.8	218	21.5	19.7	19.3
Manganese	2,000	10,000	690 J	519 J	142 J	1,030 J	437 J	334 J	240 J	205 J
Mercury	0.81	5.7	0.198	0.021	0.048	0.042	0.442	0.104	0.019	0.016
Nickel	310	10,000	59.4 J	46.8 J	20.8 J	54.6 J	19.1	29.2	38.1 J	34.9 J
Selenium	180	6,800	0.600 J	0.250 J	0.500 J	1.02 J	0.600	0.390 J	0.220 J	0.500 UJ
Silver	180	6,800	2.50 J	3.00 J	0.580 J	1.44 J	0.570	0.750	0.940 J	0.640 J
Zinc	10,000	10,000	1,340 J	922 J	103 J	76 J	187	57.7	76.1 J	70.1 J

Location	NYSDEC	PART 375		SB	-10			SB-11	
Sample ID	Soil Cleanup	Objectives ^(a)	SB-10(0-2)	SB-10(2-4)	SB-10(4-6)	SB-10(6-8)	SB-11(0-2)	SB-11(2-4)	SB-11(4-6)
Lab ID	Restricted -		D4714-16	D4714-17	D4714-18	D4714-19	D4759-01	D4759-02	D4759-03
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	11/06/12	11/06/12	11/06/12
Arsenic	16	16	4.22	6.25	8.66	8.28	8.85 J	7.54 J	8.49 J
Barium	400	10,000	64.0	29.7	68.6	45.1	96.4	333	109
Beryllium	72	2,700	0.110 J	0.160 U	0.060 J	0.110 J	0.390	0.380	0.150 JN
Cadmium	4.3	60	0.380	0.410	0.600	0.830	0.780	2.57	0.760
Copper	270	10,000	13.9 J	21.5 J	24.8 J	26.1 J	16.9 J	58.3 J	64.0 J
Chromium	180	6,800	9.05	5.63	11.9	13	17.9 J	18 J	17.8 J
Cyanide, Total	27	10,000	0.186 J						0.152 J
Lead	400	3,900	12.6	11.5	17.8	19.8	26.7 J	630 J	246 J
Manganese	2,000	10,000	195 J	483 J	247 J	343 J	313 J	462 J	529 J
Mercury	0.81	5.7	0.021	0.015	0.022	0.017	0.041	0.142	0.067 J
Nickel	310	10,000	20.6	22.8	33.2	40.4	38.4 J	38.2 J	30.7 J
Selenium	180	6,800	0.270 J	0.520 U	0.520 U	0.510 U	0.910 J	1.71 J	1.13 J
Silver	180	6,800	0.620	0.230 J	0.710	0.690	1.47 J	2.41 J	1.55 J
Zinc	10,000	10,000	48.2	47.4	73.0	72.4	74.7	666	137

TABLE 8	INORGANIC	CONSTITUENTS IN SOIL	

Location	NYSDEC P	PART 375				SB-11			
Sample ID	Soil Cleanup	Objectives ^(a)	SB-11(4-6) DUP	SB-11(6-8)	SB-11(8-10)	SB-11(10-12)	SB-11(12-14)	SB-11(14-16)	SB-11(16-18)
Lab ID	Restricted -		D4759-06	D4759-07	D4759-08	D4759-09	D4759-10	D4759-11	D4759-12
Sample Date	Residential	Industrial	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12
Arsenic	16	16	5.23 J	6.10 J	8.27 J	11.3 J	14.4 J	7.23 J	9.07 J
Barium	400	10,000	120	195	120	288	588	74.6	72.6
Beryllium	72	2,700	0.350	0.350	0.350	0.140 JN	0.170	0.260	0.310
Cadmium	4.3	60	0.650	1.97	1.13	1.55	3.73	0.470	0.680
Copper	270	10,000	20.1 J	38.4 J	24.7 J	107 J	139 J	23.6 J	21.7 J
Chromium	180	6,800	15 J	63.2 J	18.5 J	26 J	36.1 J	16.8 J	18.1 J
Cyanide, Total	27	10,000	0.096 J						
Lead	400	3,900	70.8 J	266 J	901 J	421 J	4,120 J	25.3 J	23.6 J
Manganese	2,000	10,000	352 J	1,440 J	393 J	425 J	561 J	412 J	236 J
Mercury	0.81	5.7	0.034 J	0.102	0.098	0.144	0.031	0.018	0.018
Nickel	310	10,000	31.1 J	34.6 J	41.1 J	38.6 J	41.3 J	47.8 J	39.0 J
Selenium	180	6,800	0.910 J	2.83 J	1.01 J	0.930 J	1.50 J	0.660 J	0.740 J
Silver	180	6,800	1.12 J	2.37 J	1.70 J	1.96 J	3.35 J	1.37 J	1.41 J
Zinc	10,000	10,000	126	371	153	465	4,040 D	79.7	81.2

|--|

Location	NYSDEC	PART 375				SB-12			
Sample ID	Soil Cleanup	Objectives ^(a)	SB-12A(0-2)	SB-12A(0-2) DUP	SB12(8-10)	SB12(12-14)	SB12(14-16)	SB12(16-18)	SB12(18-20)
Lab ID	Restricted -		D4715-14	D4715-17	D4690-18	D4690-19	D4690-20	D4690-21	D4690-22
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	16	16	6.57 J	5.36 J	8.13 J	10.5 J	11.5 J	9.48 J	10.4 J
Barium	400	10,000	73.5 J	81.9 J	173 J	101 J	73.0 J	145 J	113 J
Beryllium	72	2,700	0.290 J	0.150 UJ	0.300 J	0.350 J	0.340 J	0.400 J	0.300 J
Cadmium	4.3	60	0.660 J	2.90 J	1.95	1.68	1.45	4.42	1.73
Copper	270	10,000	20.7 J	48.8 J	63.5 J	30.2 J	23.8 J	67.2 J	27.8 J
Chromium	180	6,800	49.1 J	148 J	17 J	16.9 J	15.2 J	134 J	16.7 J
Cyanide, Total	27	10,000	0.342	0.471					
Lead	400	3,900	66.7 J	191 J	464	51.9	25.4	810	112
Manganese	2,000	10,000	1,020 J	2,080 J	419 J	418 J	359 J	1,380 J	534 J
Mercury	0.81	5.7	0.130	0.112	0.124	0.016	0.151	0.131	0.023
Nickel	310	10,000	22.3 J	27.3 J	35.8	44.2	43.9	36.3	43.4
Selenium	180	6,800	1.16 J	1.84 J	0.780	0.860	0.880	1.86	0.800
Silver	180	6,800	0.870 J	0.740 J	1.65	1.59	1.75	2.39	1.63
Zinc	10,000	10,000	111 J	293 J	364	112	81.8	583	132

12

TABLE 8	INORGANIC CONSTITUENTS IN SOIL	

Location							SB-13			
Sample ID	Soil Cleanup	Objectives ^(a)	SB13(0-4)	SB13(4-8)	SB13(8-10)	SB13(10-12)	SB13(12-14)	SB13(16-18)	SB13(20-22)	SB13(23-25)
Lab ID	Restricted -		D4685-01	D4685-04	D4685-05	D4685-06	D4685-07	D4685-08	D4685-09	D4685-10
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	16	16	4.48	19.7	9.06	21.5	10.2	11.8	51.5	6.23
Barium	400	10,000	53.3 J	584 J	106 J	397 J	88.3 J	281 J	1,500 J	76.3 J
Beryllium	72	2,700	0.630	0.210	0.280	0.110 J	0.340	0.280	0.510	0.270
Cadmium	4.3	60	0.820	42.7	1.33	17.1	1.62	3.98	19.5	0.970
Copper	270	10,000	13.8 J	309 J	32.2 J	684 J	28.6 J	178 J	1,510 J	21.0 J
Chromium	180	6,800	8.58 J	89.9 J	13.1 J	50.4 J	13.6 J	19.7 J	67.1 J	13.8 J
Cyanide, Total	27	10,000	0.285 J		0.197 J				0.711	
Lead	400	3,900	47.8	5,470	43.9	2,040	35.5	789	6,820	20.3
Manganese	2,000	10,000	482 J	1,170 J	334 J	776 J	403 J	381 J	643 J	323 J
Mercury	0.81	5.7	0.066	0.096	0.027	0.032	0.021	0.607 D	0.090	0.011 J
Nickel	310	10,000	16.4	147	41.8	342	50.2	50.7	59.0	38.3
Selenium	180	6,800	0.580	0.470 U	1.11	0.440 U	0.850	0.730	0.530 U	0.840
Silver	180	6,800	0.540	0.240 U	2.09	1.58	1.65	2.47	6.21	1.47
Zinc	10,000	10,000	139	1,760	149	1,990	142	794	4,910 D	77.9

Location	NYSDEC	PART 375				SB-14						SB-15		
Sample ID	Soil Cleanup	Objectives ^(a)	SB14(0-2)	SB14(0-2) DUP	SB14(2-4)	SB14(4-6)	SB14(6-8)	SB14(8-10)	SB14(10-12)	SB15(0-2)	SB15(2-4)	SB15(4-6)	SB15(6-8)	SB15(8-10)
Lab ID	Restricted -		D4690-01	D4685-11	D4690-04	D4690-05	D4690-06	D4690-07	D4690-08	D4685-16	D4685-17	D4685-18	D4685-19	D4685-20
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	16	16	7.65 J	11.2	8.11 J	8.98 J	4.75 J	7.50 J	7.83 J	6.43	12.4	9.95	10.8	5.60
Barium	400	10,000	50.7 J	91.7 J	29.7 J	72.3 J	50.9 J	80.5 J	73.0 J	91.2 J	99.8 J	76.5 J	72.9 J	50.2 J
Beryllium	72	2,700	0.200 J	0.470	0.130 J	0.380 J	0.340 J	0.350 J	0.360 J	0.360	0.390	0.320	0.280	0.310
Cadmium	4.3	60	0.740 J	1.43 J	0.840	1.29	1.03	1.20	1.34	2.16	1.32	1.27	1.45	0.970
Copper	270	10,000	25.2 J	25.8 J	20.7 J	22.4 J	27.1 J	23.0 J	23.2 J	26.6 J	24.4 J	22.7 J	21.1 J	21.0 J
Chromium	180	6,800	9.1 J	17.5 J	7.97 J	15.4 J	15.9 J	16.2 J	15.9 J	15.7 J	15.8 J	14.5 J	13.4 J	13.1 J
Cyanide, Total	27	10,000	0.292 U	0.307 U						0.545				
Lead	400	3,900	34.1	31.3	42.3	22.9	19.8	23.3	23.3	99.7	27.9	21.8	23.1	21.2
Manganese	2,000	10,000	390 J	471 J	213 J	199 J	232 J	385 J	381 J	268 J	639 J	421 J	355 J	229 J
Mercury	0.81	5.7	0.026	0.034	0.013	0.013	0.015	0.014	0.013	0.704 D	0.016	0.013	0.014	0.017
Nickel	310	10,000	33.7	52.2	24.8	40.9	41.9	44.8	44.3	30.3	48.2	44.6	45.2	35.8
Selenium	180	6,800	1.02	1.14	0.380 JN	0.590	2.43	0.890	0.810	1.08	1.20	0.750	0.730	0.830
Silver	180	6,800	1.64	2.06	1.05	1.47	1.48	1.70	1.42	1.50	2.03	1.51	1.58	1.35
Zinc	10,000	10,000	601 J	91.4 J	255	85.3	84.3	97.2	92.1	467	86.3	82.7	77.8	70.9

Location	NYSDEC	PART 375					SB-16			
Sample ID	Soil Cleanup	Objectives ^(a)	SB16(0-2)	SB16(2-4)	SB16(4-6)	SB16(6-8)	SB16(8-10)	SB16(10-12)	SB16(12-14)	SB16(14-16)
Lab ID	Restricted -		D4690-09	D4690-10	D4690-11	D4690-12	D4685-12	D4685-13	D4685-14	D4685-15
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	16	16	3.03 J	3.76 J	9.3 J	24.2 J	5.21	12.6	8.46	6.03
Barium	400	10,000	66.1 J	262 J	92.1 J	94.6 J	66.4 J	56.2 J	72.7 J	21.3 J
Beryllium	72	2,700	1.38 J	2.24 J	0.470 J	0.310 J	0.330	0.270	0.300	0.130 J
Cadmium	4.3	60	0.900	2.39	1.14	1.78	1.00	1.14	1.37	0.690
Copper	270	10,000	9.22 J	6.59 J	23.3 J	25.2 J	24.0 J	19.6 J	23.2 J	16.5 J
Chromium	180	6,800	5.87 J	8.39 J	16.6 J	15.6 J	14.3 J	12.2 J	15.2 J	6.98 J
Cyanide, Total	27	10,000								
Lead	400	3,900	54.7	96.4	25.0	26.7	20.7	23.0	23.5	12.8
Manganese	2,000	10,000	569 J	1,490 J	370 J	821 J	207 J	236 J	379 J	278 J
Mercury	0.81	5.7	0.061	0.012	0.019	0.013	0.014	0.014	0.014	0.013
Nickel	310	10,000	9.84	13.3	42.8	73.5	35.5	38.6	45.6	22.6
Selenium	180	6,800	1.03	2.79	0.87	1.16	0.610	0.79	1.02	0.360 J
Silver	180	6,800	0.430	1.18	1.72	1.79	1.37	1.63	1.68	0.720
Zinc	10,000	10,000	96.9	263	84.7	95.9	74.8	72.7	85.7	45.7

Location	NYSDEC	PART 375			S	SB-17		
Sample ID	Soil Cleanup	Objectives ^(a)	SB17(0-2)	SB17(2-4)	SB17(4-6)	SB17(6-8)	SB17(8-10)	SB17(10-12)
Lab ID	Restricted -		D4685-21	D4690-13	D4690-14	D4690-15	D4690-16	D4690-17
Sample Date	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	16	16	7.10	2.97 J	11.7 J	9.81 J	6.59 J	7.93 J
Barium	400	10,000	71.7 J	52.6 J	98.7 J	87.8 J	87.3 J	56.8 J
Beryllium	72	2,700	0.600	0.250 J	0.450 J	0.340 J	0.380 J	0.340 J
Cadmium	4.3	60	2.25	0.170	1.65	1.63	0.790	1.28
Copper	270	10,000	25.6 J	4.47 J	26.7 J	23.7 J	21.1 J	22.4 J
Chromium	180	6,800	18.7 J	6.85 J	16.9 J	14.8 J	15.3 J	13.8 J
Cyanide, Total	27	10,000		0.136 J				
Lead	400	3,900	133	11.7	31.3	26.0	27.6	22.5
Manganese	2,000	10,000	561 J	69.8 J	455 J	665 J	240 J	212 J
Mercury	0.81	5.7	0.025	0.052	0.015	0.014	0.014	0.015
Nickel	310	10,000	31.8	5.17	55.0	53.7	50.0	39.4
Selenium	180	6,800	1.32	0.560	1.21	0.890	0.560 JN	0.550
Silver	180	6,800	1.48	0.300	2.06	1.50	1.02	1.29
Zinc	10,000	10,000	245	20.8	89.8	80.0	83.6	74.8

Location	NYSDEC	PART 375			SB-18			SS-01	SS-02	SS-05	SS-06	SS-07	SS-08
Sample ID	Soil Cleanup	Objectives ^(a)	SB-18(0-2)	SB-18(0-2) DUP	SB-18(2-4)	SB-18(8-10)	SB-18(10-12)	SS-01	SS-02	SS-05	SS-06	SS-07	SS-08
Lab ID	Restricted -		D4715-07	D4715-13	D4715-10	D4715-11	D4715-12	D4664-01	D4664-02	D4664-03	D4664-04	D4664-05	D4664-06
Sample Date	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Arsenic	16	16	3.39 J	41.1 J	1.51 J	11.7 J	7.08 J	4.79	5.52	2.86	7.14	1.79	14.5
Barium	400	10,000	65.9 J	50.4 J	98.5 J	68.0 J	65.5 J	138 J	24.4 J	59.6 J	50.5 J	79.4 J	217 J
Beryllium	72	2,700	1.54 J	0.440 J	3.04 J	0.150 J	0.140 J	1.81	0.200	0.900	0.170	1.22	0.200
Cadmium	4.3	60	1.33 J	2.17 J	0.930 J	0.970 J	1.24 J	1.53 J	0.400 J	0.590 J	0.690 J	0.690 J	6.27 J
Copper	270	10,000	23.1 J	45.0 J	11.0 J	25.8 J	26.8 J	25.2 J	13.2 J	9.75 J	21.2 J	11.5 J	166 J
Chromium	180	6,800	16.9 J	21.6 J	6.23 J	13.9 J	13.3 J	26.9 J	8.32 J	5.67 J	23.9 J	40.5 J	32.9 J
Cyanide, Total	27	10,000	0.273 J	0.175 J				0.151 J	0.298 U	0.290 U	0.314 U	2.10	0.153 J
Lead	400	3,900	81.1 J	84.2	41.5	20.5	22.1	88.7 J	28.5 J	69.8 J	65.2 J	54.9 J	2,180 J
Manganese	2,000	10,000	615 J	417 J	854 J	233 J	361 J	1,610 J	163 J	585 J	385 J	1,410 J	552 J
Mercury	0.81	5.7	0.079 J	0.223 J	0.011 J	0.017	0.016	0.046 J	0.075 J	0.028 J	0.069 J	0.022 J	0.228 J
Nickel	310	10,000	11.9 J	12.7 J	5.59 J	34.5 J	38.7 J	17.2 J	14.6 J	8.64 J	15.7 J	7.40 J	56.5 J
Selenium	180	6,800	1.53 J	0.510 J	1.81 J	0.280 J	0.370 J	5.25	2.21	1.86	1.99	3.73	7.59
Silver	180	6,800	0.880 J	0.290 J	0.320 J	0.870 J	0.760 J	0.200 J	0.250 UJ	0.250 UJ	0.290 UJ	0.260 UJ	0.660 J
Zinc	10,000	10,000	183 J	118 J	223 J	71.6 J	67.0 J	312	67.9	97.5	135	68.9	886

Location	NYSDE	C PART 375	SS-09	SS-10	SS-11	SS	5-12	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Sample ID	Soil Cleanu	up Objectives ^(a)	SS-09	SS-10	SS-11	SS-12	SS-12 DUP	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18
Lab ID	Restricted -		D4664-07	D4664-08	D4664-09	D4664-10	D4664-19	D4664-11	D4664-12	D4664-15	D4664-16	D4664-17	D4664-18
Sample Date	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Arsenic	16	16	13.1	9.39	7.41	2.72	1.65	4.31	12.6	3.10	6.77	8.33	7.42
Barium	400	10,000	398 J	214 J	201 J	158 J	100 J	146 J	399 J	54.5 J	80.6 J	72.4 J	56.4 J
Beryllium	72	2,700	0.290	0.490	1.32	0.190	0.140 U	0.900	0.080 J	0.970	0.740	1.33	0.270
Cadmium	4.3	60	6.87 J	3.10 J	2.78 J	4.73 J	6.15 J	2.83 J	22.0 J	0.920 J	0.690 J	0.960 J	0.650 J
Copper	270	10,000	115 J	91.9 J	80.4 J	63.0 J	35.5 J	51.0 J	406 J	15.3 J	20.3 J	27.5 J	20.0 J
Chromium	180	6,800	35.7 J	18.8 J	26.1 J	513 J	506 J	49.6 J	60.5 J	10.4 J	10.2 J	12.4 J	10.8 J
Cyanide, Total	27	10,000	0.803	0.078 J	0.658	0.060 J	0.139 J	0.099 J	0.091 J	0.064 J	0.305 U	0.067 J	0.043 J
Lead	400	3,900	965 J	595 J	401 J	169 J	168 J	146 J	2,330 J	52.7 J	58.6 J	88.9 J	66.4 J
Manganese	2,000	10,000	786 J	456 J	993 J	4,190 J	3,080 J	1,430 J	1,180 J	628 J	538 J	625 J	355 J
Mercury	0.81	5.7	0.695 J	0.263 J	0.326 J	0.041 J	0.031 J	0.048 J	0.261 J	0.030 J	0.078 J	0.036 J	0.070 J
Nickel	310	10,000	63.4 J	20.4 J	28.3 J	40.8 J	40.3 J	42.3 J	80.6 J	11.8 J	21.2 J	15.4 J	23.7 J
Selenium	180	6,800	8.55	4.00	6.38	13.3	15.2	6.93	14.8	2.21	3.42	2.81	3.04
Silver	180	6,800	0.560 J	0.290 UJ	0.710 J	0.230 UJ	0.720 J	0.240 UJ	0.280 UJ	0.240 UJ	0.250 UJ	0.250 UJ	0.260 UJ
Zinc	10,000	10,000	1,090	541	711	188	210	368	1,840	93.0	117	149	107

Location	NY	SDEC PART	375		MW	-02A		MW-03A	MW	/-04
Sample ID	Soil	Cleanup Objec	tives ^(a)	MW-02A (0-1)	MW-02A (2-3)	MW-02A (6-7)	MW-02A (8-10)	MW-03A (0-2)	MW-04(0-2)	MW-04(2-4)
Lab ID	Unrestricted	Restricted -		AC69070-001	AC69070-002	AC69070-003	AC69070-004	AC69070-007	AC69114-001	AC69114-002
Sample Date	Use	Residential	Industrial	10/29/12	10/29/12	10/29/12	10/29/12	10/31/12	11/02/12	11/02/12
Arsenic	13	16	16	24	28	13	14		15	
Barium	350	400	10,000	430	900					
Cadmium	2.5	4.3	60	6.5	6.6					
Chromium	30	180	6,800	67	130			52		
Copper	50	270	10,000	360	650					
Cyanide, Total	27	27	10,000		66					
Lead	63	400	3,900	2,300 J	1,500 J			76 J	130 J	
Manganese	1,600	2,000	10,000		1,600 J					
Mercury	0.18	0.81	5.7	0.27	1.0					
Nickel	30	310	10,000	85	130	37	32			
Selenium	3.9	180	6,800							
Silver	2	180	6,800	26					5.1 J	3.1 J
Zinc	109	10,000	10,000	1,900 J	2,900 J			170 J	170	

(a) NYSDEC DER. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006. Soil Cleanup Objectives.

NOTE: ID = Identification

NYSDEC = New York State Department of Environmental Conservation

J = Estimated concentration.

--- = Not detected above criteria.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Methods 6000/7000. Data Validation completed by Data Validation Services.

Table includes exceedances only for those inorganics detected at or above criteria in one or more sample.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Bolded values indicate exceedance of NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives.

Shaded values indicate exceedance of NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives.

Italicized values indicate exceedance of NYSDEC Part 375 Industrial Soil Cleanup Objectives.

Location	N	YSDEC PART 3	75	MW-04		MW-05			MW-06	
Sample ID	Soil	Cleanup Objecti	ves ^(a)	MW-04(4-6)	MW-05 (0-2)	MW-05 (2-3)	MW-05 (4-6)	MW-06 (0-2)	MW-06 (0-2) DUP	MW-06 (2-4)
Lab ID	Unrestricted	Restricted -		AC69114-003	AC69070-015	AC69070-016	AC69070-018	AC69070-009	AC69070-012	AC69070-013
Sample Date	Use	Residential	Industrial	11/02/12	11/01/12	11/01/12	11/01/12	10/31/12	10/31/12	10/31/12
Arsenic	13	16	16		18					14
Barium	350	400	10,000		800					
Cadmium	2.5	4.3	60		7.6					
Chromium	30	180	6,800		55					
Copper	50	270	10,000		460					
Cyanide, Total	27	27	10,000					150 J		
Lead	63	400	3,900		1,600 J	940 J		200 J	86 J	
Manganese	1,600	2,000	10,000							
Mercury	0.18	0.81	5.7		0.86					
Nickel	30	310	10,000	37 J	110		39			37
Selenium	3.9	180	6,800							
Silver	2	180	6,800	4.6 J	4.0					
Zinc	109	10,000	10,000		1,700 J	290 J		220 J	150 J	

Location	N	YSDEC PART 3	75	MW-06			MW-07			MW-08
Sample ID	Soil	Cleanup Objecti	ves ^(a)	MW-06 (4-6)	MW-07(0-2)	MW-07(2-4)	MW-07(2-4) DUP	MW-07(4-6)	MW-07(6-8)	MW-08(0-2)
Lab ID	Unrestricted	Restricted -		AC69070-014	AC69114-006	AC69114-007	AC69114-016	AC69114-009	AC69114-010	AC69114-011
Sample Date	Use	Residential	Industrial	10/31/12	11/05/12	11/05/12	11/05/12	11/05/12	11/05/12	11/06/12
Arsenic	13	16	16			14		15		18
Barium	350	400	10,000		480	1,200 J	390 J			
Cadmium	2.5	4.3	60		8.5	3.1 J				
Chromium	30	180	6,800		53 J	46 J	73 J			
Copper	50	270	10,000		240 J	190 J	250 J	110 J		130 J
Cyanide, Total	27	27	10,000			170 J	90 J			100 J
Lead	63	400	3,900		750 J	660 J	820 J	440 J		320 J
Manganese	1,600	2,000	10,000							
Mercury	0.18	0.81	5.7		0.24	0.31	0.23	0.27		0.18
Nickel	30	310	10,000	39	65 J	32 J	40 J	32 J	31 J	36 J
Selenium	3.9	180	6,800							
Silver	2	180	6,800		6.8 J	6.3 J				3.2 J
Zinc	109	10,000	10,000		1,300	1,300 J	760 J	530		440

Location	N	YSDEC PART 3	75	MW-0)8		SB-05			SB-06	
Sample ID	Soil	Cleanup Objecti	ves ^(a)	MW-08(0-2) DUP	MW-08(2-4)	SB-05(4-6)	SB-05(6-8)	SB-05(6-8) DUP	SB-06(0-2)	SB-06(4-6)	SB-06(6-8)
Lab ID	Unrestricted	Restricted -		AC69114-013	AC69114-014	D4714-13	D4714-14	D4714-15	D4714-05	D4714-07	D4714-08
Sample Date	Use	Residential	Industrial	11/06/12	11/06/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12
Arsenic	13	16	16		80						
Barium	350	400	10,000		8,800						
Cadmium	2.5	4.3	60		5.5						
Chromium	30	180	6,800		74 J						
Copper	50	270	10,000	770 J	410 J						
Cyanide, Total	27	27	10,000	110 J							
Lead	63	400	3,900	290 J	790 J						
Manganese	1,600	2,000	10,000								
Mercury	0.18	0.81	5.7		0.39						
Nickel	30	310	10,000	35 J	92 J	44.4	40.8	46.3	30.8	38.7	40
Selenium	3.9	180	6,800								
Silver	2	180	6,800								
Zinc	109	10,000	10,000	450	2,700						

Location	NY	SDEC PART	375		SB-07			SB	-08		SB	3-09
Sample ID	Soil C	leanup Objec	tives ^(a)	SB-07(0-2)	SB-07(4-6)	SB-07(6-8)	SB-08(0-2)	SB-08(2-4)	SB-08(4-6)	SB-08(6-8)	SB-09(0-2)	SB-09(4-6)
Lab ID	Unrestricted	Restricted -		D4714-01	D4714-03	D4714-04	D4715-03	D4715-04	D4715-05	D4715-06	D4714-20	D4715-01
Sample Date	Use	Residential	Industrial	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12
Arsenic	13	16	16				14.9 J	26.6 J				
Barium	350	400	10,000				462 J	443 J				
Cadmium	2.5	4.3	60				11.2 J	5.7 J				
Chromium	30	180	6,800				40.1 J					
Copper	50	270	10,000				170 J	213 J				
Cyanide, Total	27	27	10,000									
Lead	63	400	3,900	120			1,220	869	66.6		218	
Manganese	1,600	2,000	10,000									
Mercury	0.18	0.81	5.7	0.196			0.198				0.442	
Nickel	30	310	10,000		51.8	50.8	59.4 J	46.8 J		54.6 J		38.1 J
Selenium	3.9	180	6,800									
Silver	2	180	6,800				2.5 J	3.0 J				
Zinc	109	10,000	10,000	141			1,340 J	922 J			187	

Location	NYS	SDEC PART	375	SB-09	SB	-10			SB-11		
Sample ID	Soil Cl	leanup Object	ives ^(a)	SB-09(6-8)	SB-10(4-6)	SB-10(6-8)	SB-11(0-2)	SB-11(2-4)	SB-11(4-6)	SB-11(4-6) DUP	SB-11(6-8)
Lab ID		Restricted -		D4715-02	D4714-18	D4714-19	D4759-01	D4759-02	D4759-03	D4759-06	D4759-07
Sample Date	Use	Residential	Industrial	10/26/12	10/26/12	10/26/12	11/06/12	11/06/12	11/06/12	11/06/12	11/06/12
Arsenic	13	16	16								
Barium	350	400	10,000								
Cadmium	2.5	4.3	60					2.57			
Chromium	30	180	6,800								63.2 J
Copper	50	270	10,000					58.3 J	64 J		
Cyanide, Total	27	27	10,000								
Lead	63	400	3,900					630 J	246 J	70.8 J	266 J
Manganese	1,600	2,000	10,000								
Mercury	0.18	0.81	5.7								
Nickel	30	310	10,000	34.9 J	33.2	40.4	38.4 J	38.2 J	30.7 J	31.1 J	34.6 J
Selenium	3.9	180	6,800								
Silver	2	180	6,800					2.41 J			2.37 J
Zinc	109	10,000	10,000					666	137	126	371

TABLE 9 INORGANIC EXCEEDANCES IN SOIL

Location	NYS	DEC PART	375		SE	3- 11			SB-12	
Sample ID	Soil Cl	eanup Object	ives ^(a)	SB-11(8-10)	SB-11(10-12)	SB-11(12-14)	SB-11(16-18)	SB-12A(0-2)	SB-12A(0-2) DUP	SB12(8-10)
Lab ID	Unrestricted	Restricted -		D4759-08	D4759-09	D4759-10	D4759-12	D4715-14	D4715-17	D4690-18
Sample Date	Use	Residential	Industrial	11/06/12	11/06/12	11/06/12	11/06/12	10/26/12	10/26/12	10/25/12
Arsenic	13	16	16			14.4 J				
Barium	350	400	10,000			588				
Cadmium	2.5	4.3	60			3.73			2.9 J	
Chromium	30	180	6,800			36.1 J		49.1 J	148 J	
Copper	50	270	10,000		107 J	139 J				63.5 J
Cyanide, Total	27	27	10,000							
Lead	63	400	3,900	901 J	421 J	4,120 J		66.7 J	191 J	464
Manganese	1,600	2,000	10,000						2,080 J	
Mercury	0.18	0.81	5.7							
Nickel	30	310	10,000	41.1 J	38.6 J	41.3 J	39 J			35.8
Selenium	3.9	180	6,800							
Silver	2	180	6,800			3.35 J				
Zinc	109	10,000	10,000	153	465	4,040 D		111 J	293 J	364

TABLE 9 INORGANIC EXCEEDANCES IN SOIL

Location	NY	SDEC PART	375		SB	-12			S	B-13	
Sample ID		leanup Object		SB12(12-14)	SB12(14-16)	SB12(16-18)	SB12(18-20)	SB13(0-4)	SB13(4-8)	-	SB13(10-12)
<u>.</u>		A -		D4690-19	D4690-20	D4690-21	D4690-22	D4685-01	D4685-04	D4685-05	D4685-06
Sample Date	Use	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	13	16	16						19.7		21.5
Barium	350	400	10,000						584 J		397 J
Cadmium	2.5	4.3	60			4.42			42.7		17.1
Chromium	30	180	6,800			134 J			89.9 J		50.4 J
Copper	50	270	10,000			67.2 J			309 J		684 J
Cyanide, Total	27	27	10,000								
Lead	63	400	3,900			810	112		5,470		2,040
Manganese	1,600	2,000	10,000								
Mercury	0.18	0.81	5.7								
Nickel	30	310	10,000	44.2	43.9	36.3	43.4		147	41.8	342
Selenium	3.9	180	6,800								
Silver	2	180	6,800			2.39				2.09	
Zinc	109	10,000	10,000	112		583	132	139	1,760	149	1,990

TABLE 9 INORGANIC EXCEEDANCES IN SOIL

I.E.

Location	NY	NYSDEC PART 375 Soil Cleanup Objectives ^(a)			SB	-13			SB-14		
Sample ID	Soil C	Cleanup Object	ives ^(a)	SB13(12-14)	SB13(16-18)	SB13(20-22)	SB13(23-25)	SB14(0-2)	SB14(0-2) DUP	SB14(2-4)	SB14(4-6)
Lab ID	Unrestricted	Restricted -		D4685-07	D4685-08	D4685-09	D4685-10	D4690-01	D4685-11	D4690-04	D4690-05
Sample Date	Use	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	13	16	16			51.5					
Barium	350	400	10,000			1,500 J					
Cadmium	2.5	4.3	60		3.98	19.5					
Chromium	30	180	6,800			67.1 J					
Copper	50	270	10,000		178 J	1,510 J					
Cyanide, Total	27	27	10,000								
Lead	63	400	3,900		789	6,820					
Manganese	1,600	2,000	10,000								
Mercury	0.18	0.81	5.7		0.607 D						
Nickel	30	310	10,000	50.2	50.7	59.0	38.3	33.7	52.2		40.9
Selenium	3.9	180	6,800								
Silver	2	180	6,800		2.47	6.21			2.06		
Zinc	109	10,000	10,000	142	794	4,910 D		601 J		255	

F

Location	NYSI	DEC PART 3	375		SB-14				SB-15			SB-16
Sample ID	Soil Cle	eanup Objecti	ives ^(a)	SB14(6-8)	SB14(8-10)	SB14(10-12)	SB15(0-2)	SB15(2-4)	SB15(4-6)	SB15(6-8)	SB15(8-10)	SB16(2-4)
Lab ID	Unrestricted	Restricted -		D4690-06	D4690-07	D4690-08	D4685-16	D4685-17	D4685-18	D4685-19	D4685-20	D4690-10
Sample Date	Use	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12
Arsenic	13	16	16									
Barium	350	400	10,000									
Cadmium	2.5	4.3	60									
Chromium	30	180	6,800									
Copper	50	270	10,000									
Cyanide, Total	27	27	10,000									
Lead	63	400	3,900				99. 7					96.4
Manganese	1,600	2,000	10,000									
Mercury	0.18	0.81	5.7				0.704 D					
Nickel	30	310	10,000	41.9	44.8	44.3	30.3	48.2	44.6	45.2	35.8	
Selenium	3.9	180	6,800									
Silver	2	180	6,800					2.03				
Zinc	109	10,000	10,000				467					263

THE

Location	NYS	NYSDEC PART 375			SB-16						SB-17			
Sample ID	Soil Cle	eanup Object	ives ^(a)	SB16(4-6)	SB16(6-8)	SB16(8-10)	SB16(10-12)	SB16(12-14)	SB17(0-2)	SB17(4-6)	SB17(6-8)	SB17(8-10)		
Lab ID	Unrestricted	Restricted -		D4690-11	D4690-12	D4685-12	D4685-13	D4685-14	D4685-21	D4690-14	D4690-15	D4690-16		
Sample Date	Use	Residential	Industrial	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12	10/25/12		
Arsenic	13	16	16		24.2 J									
Barium	350	400	10,000											
Cadmium	2.5	4.3	60											
Chromium	30	180	6,800											
Copper	50	270	10,000											
Cyanide, Total	27	27	10,000											
Lead	63	400	3,900						133					
Manganese	1,600	2,000	10,000											
Mercury	0.18	0.81	5.7											
Nickel	30	310	10,000	42.8	73.5	35.5	38.6	45.6	31.8	55.0	53.7	50.0		
Selenium	3.9	180	6,800											
Silver	2	180	6,800							2.06				
Zinc	109	10,000	10,000						245					

Location	NYS	SDEC PART 3	375	SB-17			SB-18			Surfac	e Soil
Sample ID	Soil C	leanup Objecti	ives ^(a)	SB17(10-12)	SB-18(0-2)	SB-18(0-2) DUP	SB-18(2-4)	SB-18(8-10)	SB-18(10-12)	SS-01	SS-05
Lab ID	Unrestricted	Restricted -		D4690-17	D4715-07	D4715-13	D4715-10	D4715-11	D4715-12	D4664-01	D4664-03
Sample Date	Use	Residential	Industrial	10/25/12	10/26/12	10/26/12	10/26/12	10/26/12	10/26/12	10/24/12	10/24/12
Arsenic	13	16	16			41.1 J					
Barium	350	400	10,000								
Cadmium	2.5	4.3	60								
Chromium	30	180	6,800								
Copper	50	270	10,000								
Cyanide, Total	27	27	10,000								
Lead	63	400	3,900		81.1 J	84.2				88.7 J	69.8 J
Manganese	1,600	2,000	10,000							1,610 J	
Mercury	0.18	0.81	5.7			0.223 J					
Nickel	30	310	10,000	39.4				34.5 J	38.7 J		
Selenium	3.9	180	6,800							5.25	
Silver	2	180	6,800								
Zinc	109	10,000	10,000		183 J	118 J	223 J			312	

E -

Location	NYS	NYSDEC PART 375 Soil Cleanup Objectives ^(a)						Surfa	ace Soil			-	
Sample ID	Soil Cle	eanup Objectiv	ves ^(a)	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-12 DUP	SS-13	SS-14
Lab ID	Unrestricted	Restricted -		D4664-04	D4664-05	D4664-06	D4664-07	D4664-08	D4664-09	D4664-10	D4664-19	D4664-11	D4664-12
Sample Date	Use	Residential	Industrial	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12	10/24/12
Arsenic	13	16	16			14.5	13.1						
Barium	350	400	10,000				398 J						399 J
Cadmium	2.5	4.3	60			6.27 J	6.87 J	3.1 J	2.78 J	4.73 J	6.15 J	2.83 J	22 J
Chromium	30	180	6,800		40.5 J	32.9 J	35.7 J			513 J	506 J	49.6 J	60.5 J
Copper	50	270	10,000			166 J	115 J	91.9 J	80.4 J	63 J		51 J	406 J
Cyanide, Total	27	27	10,000										
Lead	63	400	3,900	65.2 J		2,180 J	965 J	595 J	401 J	169 J	168 J	146 J	2,330 J
Manganese	1,600	2,000	10,000							4,190 J	3,080 J		
Mercury	0.18	0.81	5.7			0.228 J	0.695 J	0.263 J	0.326 J				0.261 J
Nickel	30	310	10,000			56.5 J	63.4 J			40.8 J	40.3 J	42.3 J	80.6 J
Selenium	3.9	180	6,800			7.59	8.55	4.0	6.38	13.3	15.2	6.93	14.8
Silver	2	180	6,800										
Zinc	109	10,000	10,000	135		886	1,090	541	711	188	210	368	1,840

Location	NYS	SDEC PART 37	75		Surface Soil	
Sample ID	Soil Cl	leanup Objectiv	ves ^(a)	SS-16	SS-17	SS-18
Lab ID	Unrestricted	Restricted -		D4664-16	D4664-17	D4664-18
Sample Date	Use	Residential	Industrial	10/24/12	10/24/12	10/24/12
Arsenic	13	16	16			
Barium	350	400	10,000			
Cadmium	2.5	4.3	60			
Chromium	30	180	6,800			
Copper	50	270	10,000			
Cyanide, Total	27	27	10,000			
Lead	63	400	3,900		88.9 J	66.4 J
Manganese	1,600	2,000	10,000			
Mercury	0.18	0.81	5.7			
Nickel	30	310	10,000			
Selenium	3.9	180	6,800			
Silver	2	180	6,800			
Zinc	109	10,000	10,000	117	149	

TABLE 10 SEDIMENT VOLATILE ORGANIC COMPOUND RESULTS

Location	SD-03	SD-03A	SD-04	SD-05A	SD-05B	SD-06A	SD-06B	SD-06FP	SD-07A	SD-07B	SD-07B				
Sample ID	915206-SD-03	915206-SD-03A	915206-SD-04	915206-SD-05A	915206-SD-05B	915206-SD-06A	915206-SD-06B	915206-SD-06FP	915206-SD-07A	915206-SD-07B	915206-SD-07B DUP				
Lab ID	D4715-18	D4608-07	D4608-08	D4608-01	D4608-02	D4608-03	D4608-04	D4608-09	D4608-05	D4608-06	D4608-13				
Sample Date	10/26/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12				
Acetone															
2-Butanone															
Tetrachloroethene															
Toluene	0.008 U	0.003 J	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.007 U	0.007 U	0.009 U	0.009 U				
	ification letected: the associa	ated number is the rep	porting limit.												
	nated concentration.	-													
Analytical data results obtained by Chemtech Consulting Group using SW-846 Method 8260. Data Validation completed by Data Validation Services.															
Table includes only those constituents that were detected in one or more sample.															
All concentrations	s reported in milligr	ams per kilogram (m	g/kg) equivalent to	parts per million (pp	m).										

EA Project No. 14907.10 Version: FINAL Table 10, Page 1 April 2013

TABLE 11 SEDIMENT SEMIVOLATILE ORGANIC COMPOUND RESULTS

Location	SD-03	SD-03A	SD-04	SD-05A	SD-05B	SD-06A	SD-06B	SD-06FP	SD-07A	SD-07B	SD-07B
Sample ID	915206-SD-03	915206-SD-03A	915206-SD-04	915206-SD-05A	915206-SD-05B	915206-SD-06A	915206-SD-06B	915206-SD-06FP	915206-SD-07A	915206-SD-07B	915206-SD-07B DUP
Lab ID	D4715-18	D4608-07	D4608-08	D4608-01	D4608-02	D4608-03	D4608-04	D4608-09	D4608-05	D4608-06	D4608-13
Sample Date	10/26/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12
Anthracene	0.510 U	0.370 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Benzo(a)anthracene	0.510 U	0.870	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Benzo(a)pyrene	0.510 U	0.840 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Benzo(b)fluoranthene	0.510 U	1.2 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.190 J	0.490 U	0.590 U	0.580 U
Benzo(g,h,i)perylene	0.510 U	0.600 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Benzo(k)fluoranthene	0.510 U	0.440 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Anthracene	0.510 U	0.200 J	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Chrysene	0.510 U	1.0	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Dimethylphthalate	0.510 U	0.469 J	0.596	0.590	0.498 J	0.464 J	0.618	0.488	0.332 J	0.546 J	0.682
Fluoranthene	0.420 J	2.6	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.240 J	0.490 U	0.590 U	0.580 U
Indeno(1,2,3-cd)pyrene	0.510 U	0.540	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Phenanthrene	0.260 J	1.9	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.460 U	0.490 U	0.590 U	0.580 U
Pyrene	0.290 J	2.1	0.550 U	0.510 U	0.520 U	0.490 U	0.550 U	0.210 J	0.490 U	0.590 U	0.580 U
NOTE: ID = Identificati	on										

TE: ID - Identification

> = Not detected; the associated number is the reporting limit. U

J = Estimated concentration.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Methods 8270. Data Validation completed by Data Validation Services.

Table includes only those constituents that were detected in one or more sample.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

EA Project No. 14907.10 Version: FINAL Table 11, Page 1 April 2013 EA Engineering, P.C. and Its Affiliate EA Science and Technology

TABLE 12 SEDIMENT SAMPLE TOTAL ORGANIC CARBON RESULTS

Location	SD-03	SD-03A	SD-04	SD-05A	SD-05B	SD-06A	SD-06B	SD-06FP	SD-07A	SD-07B	SD-07B			
Sample ID	SD-03	SD-03A	SD-04	SD-05A	SD-05B	SD-06A	SD-06B	SD-06FP	SD-07A	SD-07B	SD-07BDUP			
Lab ID	D4715-18DL	D4608-07DL	D4608-08DL	D4608-01DL	D4608-02DL	D4608-03DL	D4608-04DL	D4608-09DL	D4608-05DL	D4608-06DL	D4608-13DL			
Sample Date	10/26/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12			
TOC (mg/kg)														
TOC m g/kg J Anal	·	ilogram ntration. ptained by Chemtee	ch Consulting Group alent to parts per mi											

Location NYSDEC Technical Guidance SD-03 SD-03A SD-04 SD-05A SD-05B SD-06A SD-06B SD-06FP 915206-SD-03 915206-SD-03A Sediment Criteria^(a) 915206-SD-04 915206-SD-05A 915206-SD-05B 915206-SD-06A 915206-SD-06B Sample II 915206-SD-06FP 915 Lab ID Lowest Effect D4715-18 D4608-07 D4608-08 D4608-01 D4608-02 D4608-03 D4608-04 D4608-09 Severe Effect Sample Date 10/26/12 10/18/12 10/18/12 10/18/12 10/18/12 10/18/12 10/18/12 10/18/12 Level Level 5,700 J 4,680 6,380 8,050 8,000 8,210 8,570 8,810 Aluminum ------2.0 25.0 1.64 UJ 1.58 UJ 1.77 UJ 1.68 UJ 1.65 UJ 1.68 UJ 1.78 UJ 1.43 UJ Antimony Arsenic 6.0 33.0 4.67 J 3.96 5.2 6.23 6.29 6.46 6.74 6.53 46.6 J 60.4 J 65.4 J 55.2 J 51 J 56.7 J 59.8 J 91.2 J Barium -------Beryllium 0.140 J 0.310 0.260 0.250 0.270 0.260 0.260 0.310 -------1.88 J 0.830 0.370 0.260 0.410 0.240 0.230 0.900 Cadmium 0.6 9.0 41,200 J 32.000 J 25.400 J 23,500 J 25.900 J 27,400 J 17,900 J Calcium 13,100 J ------Chromium 26.0 110 14.2 J 22.8 J 12.9 J 13 J 13 J 13.3 J 13.9 J 16.4 J Cobalt 6.46 4.95 7.99 10.1 10 10.3 10.7 11.3 -------45 J 41.9 J 33.3 J 26.7 J 27.2 J 28.3 J 110 26.9 J 43.8 J 16.0 Copper 0.227 J 0.419 U 0.383 U 0.397 U 0.375 U Cyanide, Total ------0.089 J 0.420 U 0.052 J 13,400 J 14,800 J 21,100 J 23,500 J 21,700 J 24,300 J 25,400 J 26,500 J ------Iron 31.0 138 65.3 53.8 19.5 20.3 97.1 Lead 110 19.2 18.9 Magnesium 3,340 J 4,500 J 8.090 J 7.920 J 7,310 J 8.080 J 8.540 J 5,580 J ------Manganese 460 1.100 133 J 326 J 798 J 381 J 381 J 390 J 406 J 557 J 0.15 1.3 0.046 0.026 0.027 0.018 0.021 0.019 0.022 0.060 Mercury Nickel 50.0 20 J 17.7 23.9 28.4 28.1 29.1 30.2 36.5 16.0 Potassium ----608 J 564 J 878 J 1,160 J 1,070 J 1,210 J 1,260 J 1,050 J ---2.58 3.48 0.440 J 3.5 3.41 3.01 3.68 4.14 Selenium ------0.500 0.330 U 1.0 2.2 0.380 J 0.210 J 0.270 J 0.340 0.360 J 0.550 Silver 280 J 298 J 1,920 J 165 J 153 J 169 J 177 J 44.7 J Sodium ------0.550 J 0.730 J 1.53 1.5 1.13 J 1.45 1.46 1.89 Thallium ------10.5 J 14.4 14.5 14.6 15.3 Vanadium 10.8 15 14.6 ------120 270 298 J 238 J 235 J 84.8 J 78.5 J 88.2 J 91.4 J 198 J Zinc

TABLE 13 SEDIMENT INORGANIC CONSTITUENT RESULTS

(a) NYSDEC. 1999. Division of Fish, Wildlife and Marine Resources. Technical Guidance for Screening Contaminated Sediments. January.

NOTE: ID = Identification

NYSDEC = New York State Department of Environmental Conservation

= Not analyzed

J = Estimated concentration.

U = Not detected; the associated number is the reporting limit.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Methods 6000/7000. Data Validation completed by Data Validation Services.

All concentrations reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm).

Bolded values indicate exceedance of NYSDEC Lowest Effect Levels (LEL).

Bolded and shaded values indicate exceedance of NYSDEC Severe Effect Levels (SEL).

SD-07A	SD-07B	SD-07B
5206-SD-07A	915206-SD-07B	915206-SD-07B DUP
D4608-05	D4608-06	D4608-13
10/18/12	10/18/12	10/18/12
6,300	6,390	5,990
1.51 UJ	1.95 UJ	1.84 UJ
4.72	3.65	3.85
51 J	54.7 J	58 J
0.240	0.270	0.230
0.390	0.360	0.270
22,600 J	24,200 J	26,700 J
11.5 J	12.1 J	10.8 J
8.03	7.49	7.73
23.9 J	25.6 J	24.6 J
0.372 U	0.445 U	0.437 U
17,400 J	15,800 J	17,100 J
23	20	22
5,580 J	4,280 J	4,520 J
324 J	286 J	273 J
0.039	0.029	0.025
22.8	22.6	22.5
844 J	697 J	754 J
2.62	2.46	2.63
0.110 J	0.390 U	0.270 J
208 J	167 J	142 J
0.780 J	0.850 J	0.640 J
11.8	12.1	11.3
107 J	92.3 J	98.8 J

TABLE 14 SURFACE WATER INORGANIC CONSTITUENT RESULTS

SampleID	NYSDEC	SW-03	SW-04	SW-04 DUP					
Lab ID	Class C	D4759-14	D4759-13	D4759-15					
Sample Date	Criteria	11/07/12	11/07/12	11/07/12					
Aluminum	100	27.3	13.7 J	8.55 J					
Antimony		7.4 JN	4.59 JN	6.34 JN					
Barium		81.5	164	170					
Cadmium	SW-03 = 107.26 SW-04 = 141.73 SW-04 DUP = 141.24	0.270 J	1.5 U	1.5 U					
Calcium		147,000	213,000	217,000					
Copper	SW-03 = 188.37 SW-04 = 254.26 SW-04 DUP = 253.31	7.9	1.34 J	1.4 J					
Cyanide, Total	5.2	8.0	32.0						
Iron		62.4	2,290	2,380					
Magnesium		29,200	34,800	35,300					
Manganese		8.5	1,910	1,850					
Potassium		18,100 J	8,020 J	8,350 J					
Selenium	4.6	6.98	3.09 JN	4.2 JN					
Sodium		410,000 J	1,420,000 J	4,770,000 J					
Zinc	SW-03 = 192.99 SW-04 = 259.33 SW-04 DUP = 258.38	23.5	91.3	89.9					
Hardness, ppm		487	690	687					
(a) 6 NYCRR Part 703.5	Class C Surface water Quality Regulations, as presented in the Division of W	ater Technical and Operation	ational Guidance Series 1.1.1	, 1998, as amended.					
NOTE: ID = Iden	tification								
NYSDEC = New	v York State Department of Environmental Conservation								
J = Esti	mated concentration.								
= Not	= Not available.								
N = Ten	N = Tentatively identified.								
ppm = Par	ppm = Parts per million								
U = The									
Table includes o	nly those constituents that were detected in one or more samples.								
Analytical data	results obtained by Chemtech Consulting Group using SW-846 Method Series	s 6000/7000 and EPA Me	thod 300.						
Data Validation	completed by Data Validation Services.								
All concentration	ns reported in micrograms per liter (µg/L) equivalent to parts per billion (ppb).							

Bolded values indicate exceedance of Class C surface water standards or guidance values.

TABLE 15 GROUNDWATER VOLATILE ORGANIC COMPOUND RESULTS

Sample ID	NYSDEC Class	MW-02A	MW-03A	MW-04	MW-05	MW-06	MW-07	MW-08	MW-08 DUP
Lab ID	GA Criteria	D4968-11	D4968-01	D4968-02	D4968-12	D4968-03	D4968-04	D4968-13	D4968-14
Sample Date	$(\mu g/L)^{(a)}$	11/29/12	11/28/12	11/28/12	11/29/12	11/28/12	11/28/12	11/29/12	11/29/12
Acetone	50 G	7.6	5 U	63	5 U	68	5 U	36 J	21 J
cis-1,2-Dichloroethene	5	1 U	1 U	0.590 J	1 U	0.550 J	1 U	1 U	1 U
(a) 6 NYCRR Part 703.5 Clas	(a) 6 NYCRR Part 703.5 Class GA Groundwater Quality Regulations, as presented in the Division of WaterTechnical and Operational Guidance Series 1.1.1, 1998, as amended.								amended.
NOTE: ID = Identifica	NOTE: ID = Identification								
NYSDEC = New York State Department of Environmental Conservation									
$\mu g/L = Micrograms per liter$									
G = Guidance value.									
U = The constituent was not detected. The associated value is the detection limit.									
J = Estimated concentration.									
Analytical data results obtained by Chemtech Consulting Group using SW-846 Method 8260. Data Validation completed by Data Validation Services.									
Table includes only those volatile organic compounds detected in one or more sample.									
All concentrations reported in µg/L equivalent to parts per billion (ppb).									
Bolded values indicate exceedance of Class GA groundwater standards or guidance values.									

Sample ID	NYSDEC	MW-02A	MW-03A	MW-04	MW-05	MW-06	MW-07	MW-08	MW-08 DUP
Lab ID		D4968-11	D4968-01	D4968-02	D4968-12	D4968-03	D4968-04	D4968-13	D4968-14
Sample Date	Criteria ^(a)	11/29/12	11/28/12	11/28/12	11/29/12	11/28/12	11/28/12	11/29/12	11/29/12
				INORGAN	NICS				
Aluminum		2,650 J	193 J	7,040 J	145 J	8,100 J	8,220 J	866 J	592 J
Antimony	3	5.48 J	6.08 J	4.56 J	4.84 J	12.5 UJ	12.5 UJ	5.62 J	5.5 J
Arsenic	25	9.3 J	12.3 J	6.9 J	8.4 J	13.6 J	12.3 J	2.9 J	2.5 J
Barium	1,000	248	250	145	177	255	290	279	284
Beryllium	3 G	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ	0.420 J	1.5 UJ	1.5 UJ
Cadmium	5	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ	0.290 J	1.5 UJ	1.5 UJ
Calcium		59,500	92,300	74,800	46,900	76,000	123,000	90,700	93,700
Chromium	50	64.6 U	24.2 U	293 J	10 J	69.9 U	175 U	7.68 J	2.38 J
Cobalt		3.33 J	7.5 U	9.02	7.5 U	5.78 J	7.72	7.5 U	7.5 U
Copper	200	15.7 UJ	5.58 UJ	23.2 UJ	5.46 J	15.6 UJ	27.7 UJ	2.66 J	1.62 J
Cyanide, Total	200	3.0 J	3.0 J	4.0 J	4.0 J	4.0 J	3.0 J	3.0 J	5 U
Iron	300	4,200	993 U	12,300	196	12,100	15,000	949	728
Lead	25	4.94 J	3 UJ	7.26 J	3 UJ	7.08 J	30.5 J	3 UJ	3 UJ
Magnesium	35,000 G	30,600	53,000	36,100	27,800	37,600	43,500	52,200	53,200
Manganese	300	147 J	342 J	364 J	50 J	283 J	338 J	65.8 J	66.3 J
Mercury	0.7	0.200 UJ	0.200 UJ	0.200 UJ	0.200 UJ	0.200 UJ	0.109 J	0.200 UJ	0.200 UJ
Nickel	100	43.6 U	20.7 U	195	6.8 J	52.2 U	123	5.89 J	2.49 J
Potassium		2,490 J	7,090 J	6,130 J	2,190 J	4,820 J	4,940 J	2,810 J	2,740 J
Sodium	20,000	30,800	214,000	27,400 J	32,000	48,800	35,300	29,600	30,500
Vanadium		5.48 J	10 UJ	13.5 J	10 UJ	15 J	16.6 J	10 UJ	10 UJ
				MISCELLA	NEOUS				
Alkalinity, Total (as CaCO3)		380,000	410,000	380,000	360,000	460,000	360,000	400,000	400,000
Chloride	250,000	26,000 D	410,000 D	48,000 D	8,300	29,000 D	110,000 D	78,000 D	77,000 D
Demand, Biochemical Oxygen		2,000 U	17,000	41,000	14,000	6,500	34,000	19,000	22,000
Demand, Chemical Oxygen		5,370	10,400	6,380	9,390	33,500	18,400	5,000 U	5,000 U
Nitrogen, Nitrate (as N) ^(b)	10,000	100 U	100 U	100 U	353	318	288	100 U	100 U
Nitrite	1,000	150 U	150 U	150 U	150 U	150 U	150 U	150 U	150 U
Sulfate	250,000	18,000	34,000	120,000 D	15,000	25,000	22,000	47,000	45,000
Sulfide	50 G	1,000 U	1,000 U	1,120	1,280	1,120	1,000 U	1,440	1,280

TABLE 16 GROUNDWATER INORGANIC RESULTS

(a) 6 NYCRR Part 703.5 Class GA Groundwater Quality Regulations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended.

(b) Criterion applies to the sum of nitrate/nitrite.

NOTE: ID = Identification

NYSDEC = New York State Department of Environmental Conservation

--- =

J

U

Estimated concentration.

- = The constituent was not detected. The associated value is the detection limit.
- G = Guidance Value
- D = Result obtained from a dilution run.

Table includes only those inorganic constituents that were detected in one or more samples.

Analytical data results obtained by Chemtech Consulting Group using SW-846 Method Series 6000/7000 and EPA Method 300. Data Validation completed by Data Validation Services.

All concentrations reported in micrograms per liter (µg/L) equivalent to parts per billion (ppb).

Bolded values indicate exceedance of Class GA groundwater standards or guidance values.

ATTACHMENT A

SUBSURFACE BORING LOGS

		®				Job. No.	Client:	NYSDEC			Loc	ation:
		EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Inci	nerator Site	Lackaw	vanna, NY
-		EA Scien	ce and 🛛	Fechnolog	5y	Drilling Metho	od: Geoprobe	Direct-Push				ng Number: B-05
		LOG OF SOIL B				Sampling Met	hod: Sterilize	ed acetate sleev	ves			1 of 1
Coordinate		orthing 1027406.486		1084478.181								
Surface Ele			595.0408		-							illing
-	ow Surface:	. <u> </u>	N/A		-	Water Level:					Start	Finish
Reference			595.0408		-	Time:					DATE: 10-26-12	DATE: 10-26-12
	Description	·	Surface Ele			Date:					TIME: 08:15	TIME: 08:27
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface		Athletic Field (Gr				
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in Feet	Log		Weather: Femperature:	Sunny, 5-10 mph	S			
(140-10)				0	OL	0.0': Topsoil: Dark			and tr Organi	Matter medium	stiff moist	
			0.0		OL	0.2' - 4.0': Light Bro			-			
			3.3	1								
	4/4		0.0									
			3.9	2								
				3								
			2.0									
			2.3	4	OH	4.0' - 8.0': Reddish	Brown, CLAY, tr.	. Silt, tr. Organic N	latter, hard, m	oist.		
			5.7	5								
	4/4		4.8	6								
			4.7	7								
				8					EOB @ 8.) ft bas		
				0					EOD @ 0.	J-it bgs		
				9								
				10								
				11								
				12								
				13								
				14								
				15								
				16								
				17								
				17								
				18								
					┣───							
				19								
				20								
				21								
				22								
				23								
				24								
				<u>_4</u>								
				25		-						
				26								
				27								
				28								
				29								
		Logged by:		Robert Pete	erson				Date:	10-26-12		
		Drilling Contract		GeoLogic N				-	Driller:	Dave Lyons		-
		8		_cologic i	/			-				-

-		R EA Engin					Project:	NYSDEC Lackawanna	Former Incin	erator Site	Lack	ocation: awanna, NY
		EA Scien	ice and T	Fechnolog	5y	Drilling Meth	od: Geoprobe	Direct-Push			Soil Bo	r ing Number: SB-06
Coordinate		LOG OF SOIL B orthing 1027291.353		1084476.187		Sampling Met	hod: Sterilize	ed acetate slee	ves		She	et 1 of 1
Surface Ele			595.6351	10011101101	_]	Drilling
-	ow Surface:		N/A		-	Water Level:					Start	Finish
Reference	Elevation: Description:		595.6351 Surface Ele	evation	-	Time:					DATE: 10-26-12 TIME: 07:52	DATE: 10-26-12 TIME: 08:00
Blow	_			Depth		Date: Surface	e Conditions:	Athletic Field (G	rass, Topsoil)		11WE: 07:52	11ME: 08:00
Counts	Ft. Driven/ Ft. Recvrd	Boring Diagram	PID (ppm)	in	USCS Log		Weather:	Sunny, 5-10 mph				
(140-lb)		0		Feet 0	OL	0.0': Topsoil: Dark	Femperature:		and tr Organic	Matter medium	stiff moist	
			0.8		OL	0.2' - 2.0': Light Bro				,		
			1.1	1								
	4/4		2.7	2	SM	2.0' - 2.5': Light Bro						
			0.6	3	OL	2.5' - 4.0': Light Bro	own, SILT and CL	AY, tr. Organic M.	fatter, hard, mois	st.		
			0.6	4	ОН	4.0' - 8.0': Reddish	Brown CLAY so	me Silt tr Organ	ic Matter hard r	noist		
			1.5	5			,,	.,				
	4/4		1.4	6		1						
			1.3			 						
			0.6	7		1						
				8					EOB @ 8.0-	ft bgs		
				9								
				10								
				11		-						
				12								
				13								
				14								
				45								
				15								
				16		-						
				17								
				18								
				19								
						1						
				20		1						
				21		1						
				22		<u> </u>						
				23								
						1						
				24		1						
				25		-						
				26								
				27								
						1						
				28		<u> </u>						
				29								
		Logged by:	1	Robert Pete	erson	•			Date:	10-26-12		
		Drilling Contract		GeoLogic N				-		Dave Lyons		_

		R				Job. No.	Client:	NYSDEC			Loc	ation:
		EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Incin	erator Site	Lackaw	anna, NY
-		EA Scien	ce and 🛛	Fechnolog	5y	Drilling Meth	od: Geoprobe	Direct-Push				n g Number: 3-07
		LOG OF SOIL B				Sampling Met	hod: Sterilize	d acetate sleev	ves			1 of 1
Coordinate		orthing 1027157.138		1084484.459								
Surface Ele			595.65									lling
-	ow Surface:		N/A			Water Level:					Start	Finish
Reference			595.65		-	Time:					DATE: 10-26-12	DATE: 10-26-12
	Description		Surface Ele			Date:					TIME: 07:25	TIME: 07:36
Blow Counts	Ft. Driven/	Boring	PID	Depth in	USCS	Surface		Athletic Field (Gi Sunny, 5-10 mph				
(140-lb)	Ft. Recvrd	Diagram	(ppm)	Feet	Log	-	Temperature:		5			
(110 10)				0	OL	0.0': Topsoil: Dark			and, tr. Organic	Matter, soft, moi	st.	
			0.0			0.2' - 2.0': Fill: Blac						
			1.4	1								
	4/4			2	SM	2.0' - 4.0': Brown, S	II T and f SAND	hard moist				
			0.9	2	5141	2.0 - 1 .0 . Drown, c	all and it of live,	, nara, moist.				
			0.0	3								
			0.0	4	СН	4.0' - 8.0': Light Bro	own, CLAY, tr. Sil	t, hard, moist.				
			0.0	5								
	4/4		0.0									
	-, -		0.0	6								
				7								
			0.0	-								
			0.0	8		8.0' - 12.0': Gray, C	LAY, tr. Silt, hard	, moist.				
				9								
			0.0	9								
	4/4		0.0	10								
			0.0									
			0.0	11								
				12					EOB @ 12.0	-ft bgs		
										0		
				13								
				14								
				15								
				16								
				10								
				17								
				10								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				26								
				27								
				27								
				28								
				20								
				29								
		Logged by:	1	Robert Pete	rson	1			Date:	10-26-12		
		Drilling Contract	or:	GeoLogic N	۱۲, Inc.				Driner:	Dave Lyons		

		R				Job. No.	Client:	NYSDEC			Loc	ation:
-		EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Inci	nerator Site	Lackaw	vanna, NY
-		EA Scien			5y	Drilling Meth					Soil Bori	ng Number: B-08
		LOG OF SOIL B	ORING			Sampling Met	hod: Sterilize	d acetate sleev	ves			1 of 1
Coordinate		orthing 1027392.75		1084834.944								
Surface Ele			597.12		-							illing
	ow Surface:		N/A			Water Level:					Start	Finish
Reference			597.12		-	Time:					DATE: 10-26-12	DATE: 10-26-12
Reference	Description		Surface Ele			Date:					TIME: 09:40	TIME: 09:47
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts	Ft. Recvrd	Diagram	(ppm)	in	Log			Sunny, 5-10 mph	S			
(140-lb)				Feet 0		0.0' - 4.0': Fill: Dar	Femperature:		lt dur			
			0.1			0.0 - 4.0 . Fill. Dar	k brown, cinders	, Glass, Glavel, so	n, ary.			
	4/4		2.4	1								
	,		3.1	2	OL	4.0' - 6.0': Brownisl	h Gray, SILT and	CLAY, tr. Organic	Matter, hard, 1	noist.		
			1.2	3								
			0.2	4								
			0.7	5								
	4/4		1.1	6	СН	6.0' - 8.0': Gray, CL	AY, hard, moist.					
			1.4	7								
				8					EOB @ 8.0	-ft bgs		
				9								
				10								
				11								
				12								
				13								
				14								
				15								
				16								
				17								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				26								
				27								
				28								
				29								
		Logged by:		Robert Pete	rson				Date:	10-26-12		
		Drilling Contract		GeoLogic N					Driller:	Dave Lyons		-

		R				Job. No.	Client:	NYSDEC			Loc	ation:
-		🔰 🛛 EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Incir	erator Site	Lackaw	anna, NY
-		EA Scien			5y	Drilling Meth						ng Number: 3-09
		LOG OF SOIL BO	ORING			Sampling Met	hod: Sterilize	d acetate sleev	ves			1 of 1
Coordinate		orthing 1027245.623	Easting:	1084853.389								
Surface Ele			595.6		•					1	Dr	illing
	ow Surface:		N/A			Water Level:					Start	Finish
Reference			595.6			Time:					DATE: 10-26-12	DATE: 10-26-12
Reference	Description		Surface Ele			Date:					TIME: 09:20	TIME: 09:30
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in	Log			Sunny, 5-10 mph	S			
(140-10)				Feet 0	SP	0.0': Topsoil: Dark	Femperature:		Organia Matta	modium stiff n	adat	
			4.7	0	OL	0.0'. Topson: Dark 0.2' - 4.0': Brown, S				, meann sun, n	ioist.	
			2.6	1				0	,			
	4/4		2.0									
	,		2.4	2								
				3								
			1.2									
			1.0	4	OH	4.0' - 8.0': Brown, C	CLAY, tr. Silt, tr. C	Organic Matter, m	edium plasticity	, hard, moist.		
			2.3	5								
	4/4		0.3	6								
			0.5	_								
			1.6	7								
				8					EOB @ 8.0	ft bgs		
				9								
				10								
				11								
				12								
				13								
				14								
				15								
				16								
				17								
				17								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				26								
				27								
				28								
				29								
		Logged by:		Robert Pete	rson				Date:	10-26-12		<u>.</u>
		Drilling Contract	or:	GeoLogic N	IY, Inc.				Driller:	Dave Lyons		

		R				Job. No.	Client:	NYSDEC			Loc	ation:
-		🔰 🛛 EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Inci	nerator Site	Lackaw	anna, NY
-		EA Scien			5y	Drilling Meth						ng Number:
		LOG OF SOIL BO	ORING			Sampling Met	hod: Sterilize	d acetate sleev	/es			3-10
Coordinate		orthing 1027087.154	Easting:	1084843.415								1 of 1
Surface Ele	evation:		595.68								Dr	illing
Casing Bel	ow Surface:		N/A			Water Level:					Start	Finish
Reference			595.68			Time:					DATE: 10-26-12	DATE: 10-26-12
Reference	Description	:	Surface Ele	evation		Date:					TIME: 09:00	TIME: 09:10
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts	Ft. Recvrd	Diagram	(ppm)	in	Log			Sunny, 5-10 mph	S			
(140-lb)		. 8 .	u1 /	Feet			Femperature:					
			0.0	0	SP OL	0.0': Topsoil: Dark 0.2' - 4.0': Light Bro					noist.	
			2.2	1								
	4/4		1.8	2								
				3								
			1.5									
			0.1	4	OH	4.0' - 6.0': Light Bro	own, CLAY and S	ILT, tr. f. Sand, ha	rd, dry.			
			0.3	5								
	4/4		1.4	6		6.0' - 8.0': Gray, CL	AY, moderate pla	asticity, hard, moi	st.			
			1.3	7								
				8					EOB @ 8.	0-ft bgs		
				0								
				9								
				10								
				11								
				12								
				13								
				14								
				15								
				16								
				17								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				26								
				27								
				28								
				20								
				29								
		Logged by:		Robert Pete	rson				Date:	10-26-12		
		Drilling Contract	or:	GeoLogic N	IY, Inc.				Driller:	Dave Lyons		

		R				Job. No.	Client:	NYSDEC			Loc	ation:
-		EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Former Incin	erator Site	Lackav	vanna, NY
_		EA Scien	ce and 🛛	Fechnolog	_S y	Drilling Metho	od: 4.5" Hollo	w Stem Auger				ng Number:
		LOG OF SOIL BO	ORING			Sampling Met	hod: 55 / ma	cro Cores				B-11 1 of 1
Coordinate		orthing 1027171.742	Easting:	1084688.557								-
Surface Ele			604.21		-					1		illing
	ow Surface:		N/A		-	Water Level:					Start	Finish
Reference			604.21		-	Time:					DATE: 11-16-12	DATE: 11-16-12
	Description		Surface Ele			Date:	0.11.1				TIME: 14:40	TIME: 1650
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in Feet	Log	-	Weather: Temperature:					
12				0		0.0'-1.5': Fill: CLAY			GRAVEL, glass,	slag, wood: hard	: moist	
23	2/1.5		1.1							<i>.</i>	-	
14	2/ 1.5			1								
18 21				2		2.0'-2.5': Fill: Browr	CLAY and SILT	some fine SAND	trace CRAVEI	trace glass trac	e slag: hard: moist	
19	2 (2		3.7	2		2.5'-4.0': Fill: Black;				-	-	
31	2/2			3							-	
24												
5			11.1	4		4.0'-6.0': Fill: Gray;	CLAY and SILT, s	some tine SAND, t	race GRAVEL,	trace glass, trace	slag, brick; hard; moist	
7	2/2			5	<u> </u>							
10												
10 10			10.5	6		6.0'-8.0': Fill: Browr	n; CLAY and SILT	, trace glass, trace	slag, trace meta	l fragments; har	l; moist	
9	2/2			7								
9												
6			10.8	8		8.0'-9.0': Fill: Browr	n; CLAY and SILT	, trace glass, trace	slag, trace meta	l fragments; haro	l; moist	
2 8	2/2			9		9.0'-10.0': Fill: loose	alag and graval	aturated Unable	to comple no c	adimant		
21				9		9.0-10.0 . Fill. 100se	siag and graver, s	saturateu. Unable	to sample, no s	eument		
15			6.2	10		10.0'-12.0': Fill: Blac	k; CLAY and SIL	T, some fine SANI), coal, slag, gla	ss; stiff; saturated	1	
14	2/2		0.2									
20 16				11								
10			E 1	12		12.0'-13.5': Fill: Blac	k; CLAY and SIL	T, some fine SANI	D, coal, slag, gla	ss; stiff; saturated	1	
6	2/1.5		5.1									
5 18	,			13								
6				14		14.0'-15.8': Light br	own; SILT and CI	AY; hard; moist;	moderate plasti	city		
9	2/1.8		0.0			0			*			
16	_/ 1.0			15								
24 25				16		16.0'-18.0: Light bro	own: SILT and CL	AY: hard: moist: r	noderate plastic	itv		
28	2/2		0.0				,	,,	· · · · · · · · · · · · · · · · · · ·			
33	2/2			17								
40				18		End of hole at 18 ft	has					
				10		Linu of hole ut to h						
				19								
				20								
				20								
				21								
				22								
				22								
				23								
				24								
				25								
				26								
				27								
				28								
				20								
				29								
		Logged by:		Robert Pete	erson				Date:	11-16-12		
		Drilling Contracto		GeoLogic N					Driller:	Dave Lyons		-
		-0 -511114CK		Jeen Dogie N	. . , шс.							-

		R				Job. No.	Client:	NYSDEC			Lo	ocation:
		EA Engin					,	Lackawanna	Former Inc	cinerator Site		wanna, NY
		EA Scien	ce and '	Technolo	gy	Drilling Metho	d: Geoprobe	e Direct-Push				ing Number: SB-12
		LOG OF SOIL B	ORING			Sampling Meth	od: Sterilize	ed acetate slee	ves			
Coordinate		orthing 1027237.4	Easting:	1084662.13		1 0					Sheet	: 1 of 1
Surface Ele	evation:		609.54		-						D	rilling
Casing Bel	low Surface	: <u> </u>	N/A		-	Water Level:					Start	Finish
Reference			609.54		-	Time:					DATE: 10-25-12	DATE: 10-25-12
	Description		Surface El			Date:	Conditioner				TIME: 15:20	TIME: 15:45
Blow Counts	Ft. Driven/	Boring	PID	Depth in	USCS	Surface (Conditions: Weather:	Grass, Topsoli Sunny, 10-15 mp	hS			
(140-lb)	Ft. Recvrd	Diagram	(ppm)	Feet	Log	Te	mperature:					
			0.0	0		0.0'-2.0': Brown (fill); GRAVEL, soi	ne medium SAN	D, trace glass			
				1								
	4/2		0.1									
	-/ -			2		2.0'-4.0': No recover	у					
				3								
				4		4.0' - 8.0': No recove	ry					
				5								
	4/0			6								
				7								
			3.2	8		8.0'-10.0': Brown (fil	l); GRAVEL, so	me medium SAN	D, trace glas	5		
			3.2						-			
			0.0	9								
	4/2			10		10.0'-12.0': No recov	ery					
				11								
				11								
			0.0	12		12.0'-16.0': Brown; C	CLAY, some SIL	Т				
				13								
	4/4		0.0									
	-/ -		0.0	14								
			0.0	15								
			0.0	44		4 C 01 4 D 01 101 1 1 1/21	1) 1 CD 1 UT	64NF5				
			0.0	16		16.0'-18.0': Black (fill	I); ash GKAVEI	., coarse SAND; r	noist			
			0.0	17								
	4/4			18		18.0'-20.0': Reddish	brown: CLAY,	trace SILT: moist:	soft			
			0.0									
-			0.0	19								
				20								
				21								
				22								
				~~								
				23								
				24								
				25								
				26								
				27								
				-								
				28								
				29								
		r 1,							D /	10.05.15		
		Logged by: Drilling Contract		Robert Pete					Date:	<u>10-25-12</u>		_
		Drilling Contract	or:	GeoLogic N	Y, Inc.				Driller:	Dave Lyons		_

-		R EA Engi	neering,	P.C.		Job. No. 1490710	Client: Project:	NYSDEC Lackawanna	a Former Incine	rator Site		ocation: awanna, NY
-				Fechnolog	,y	Drilling Meth		Direct-Push			Soil Bo	ring Number:
		LOG OF SOIL B	ORING			Sampling Met	hod: Sterilize	d acetate slee	eves			SB-13
Coordinate		orthing 1027311.769		1084718.061		Sumpling met	inou. Stermize	u uccute sie	eves		Shee	et 1 of 1
Surface El	evation:		613.95		•						I	Drilling
-	low Surface:		N/A			Water Level:					Start	Finish
	Elevation: Description:		613.95 Surface Ele			Time:					DATE: 10-25-12 TIME: 14:00	DATE: 10-25-12 TIME: 15:00
Blow	Description.		Oundee En	Depth		Date: Surface	e Conditions:	Gravel debris			11WE: 14:00	11ME: 15:00
Counts	Ft. Driven/ Ft. Recvrd	Boring Diagram	PID (ppm)	in	USCS Log		Weather:					
(140-lb)	Turneentu	Diagrain	(ppin)	Feet	LUg		Temperature:					
			19.5	0		0.0'-1.0': Brown; G	RAVEL and SAN	D, some SILT, as	sh (fill); dry			
	4/1			1		1.0'-2.0': No recove	ry					
				2		2.0'-2.5': Black; Ash	, GRAVEL, some	medium SAND	(fill): drv			
	4/0.5		0.7			, .			() -)			
	1/ 0.0			3								
				4		4.0' - 6.0': Brown; fi	ll (ash, slag, medi	um SAND, trace	e GRAVEL)			
	4/2			5								
	·			5								
				6		6.0'-8.0': Brown; fil	l (ash, slag, mediu	m SAND, trace	GRAVEL)			
				7								
	4/4					0.0.110.01 7		CRAINS -	1 1			
				8		8.0-'12.0': Tan; SILT	l', trace CLAY, tra	ce GRAVEL; dry	r; hard			
				9								
				10								
				10								
				11								
				12								
				13								
				15								
				14								
				15								
				14		16 01 18 01 Devil 1-	CLAV	UT CDA	VEI			
			0.0	16		10.0 - 10.0 . Dark Di	own, CLAT and a	JIL1, SOINE GRA	VEL, trace glass; mo	JISC		
				17								
	4/2			18		18.0'-20.0': No reco	very					
							-					
				19								
			0.0	20		20'-22': Fill; black; 1	nedium to coarse	SAND and GRA	AVEL, some glass			
				21								
	4/2		9.1			<u> </u>						
				22								
				23		23.0'-25.0': Gray; C	LAY, trace SILT; l	nard; moist				
				24								
				25				_				
	4/2			26								
				27								
				27								
				28								
	·			29								
						1						
		Logged by:		Robert Pete	rson				Date:	10-25-12		
		Drilling Contract	tor:	GeoLogic N	IY, Inc.				Driller:]	Dave Lyons	;	

d		® EA Engii	neering,	P.C.		Job. No. 1490710	Client: Project:	NYSDEC Lackawanna	a Former Inci	nerator Site		ocation: awanna, NY
_		EA Scien	ice and T	Fechnolog	<u>sy</u>	Drilling Meth	od: Geoprobe	Direct-Push				ring Number:
		LOG OF SOIL B	ORING			Sampling Met	hod: Sterilize	ed acetate slee	eves			SB-14
Coordinat		orthing 1027413.597	Easting:	1084762.285								et 1 of 1
Surface El			594.22		_	X47 / X 1						Drilling
	low Surface: Elevation:		N/A 594.22		-	Water Level: Time:					Start DATE: 10-25-12	Finish DATE: 10-25-12
	Description:		Surface El		-	Date:					TIME: 13:05	TIME: 13:25
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surfac	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in Feet	Log	,	Weather: Temperature:					
			0.9	0		0.0'-3.0': Reddish b	<u> </u>		ganics; soft; dry			
				1								
	4/4		1.6			ļ						
			1.1	2								
			0.3	3		3.0'-4.0': Brown; CI	AYEY SILT, trace	e organics; hard;	dry			
			0.0	4		4.0' - 7.0': Brown; 0	CLAYEY SILT, tra	ce organics; hard	d; dry			
				5								
	4/4		0.6			1						
	1		0.2	6								
			0.0	7		7.0'-8.0': Grayish b	rown; SILT and C	LAY; moderate j	plasticity; moist;	hard		
			0.0	8		8.0-'12.0': Gray; CL	AY; very plastic;	soft; moist				
				9								
	4/4		0.0									
	-		0.0	10		-						
			0.0	11								
				12								
	-			13								
	-			14		-						
	-			15		-						
				16								
				17								
				18								
				19								
				20		1						
				21								
]		 			1						
	1			22								
				23								
				24								
				25								
	1		 			1						
				26								
				27								
				28								
				29								
						1						
		Logged by:		Robert Pete				-	Date:	10-25-12		
		Drilling Contract	tor:	GeoLogic N	JY, Inc.			-	Driller:	Dave Lyons	3	

-		® EA Engir	neering,	P.C.		Job. No. 1490710		NYSDEC Lackawanna	Former Inci	inerator Site		ocation: awanna, NY
-				Fechnolog	5y	Drilling Meth	od: Geoprobe	Direct-Push				ring Number:
		LOG OF SOIL B	ORING			Sampling Met	hod: Sterilize	d acetate slee	eves			SB-15
Coordinate		orthing 1027403.713		1084594.065		1 0						et 1 of 1
Surface Ele			594.98						1	1		Drilling
Casing Bel Reference	low Surface: Flevation:		N/A 594.98			Water Level: Time:					Start DATE: 10-25-12	Finish DATE: 10-25-12
	Description:		Surface El			Date:					TIME: 11:45	TIME: 12:00
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surfac	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in Feet	Log		Weather: Temperature:	2				
()			1.0	0		0.0'-1.0': Brown; m			'EL; Dry; fill			
				1		1.0'-2.0': Dark brow	n: CLAY, some S	ILT, trace SAND	, trace organics	: moist		
	4/2		2.8						,			
	,		x	2		2.0'-4.0': No recove	ry					
			x	3								
			1.2	4		4.0' - 8.0': Brown; 0	CLAYEY SILT; ha	rd; moist				
				5								
	4/4		5.4									
	,		6.3	6								
			3.6	7								
			0.0	8		8.0'-11.0': Brown; 0	CLAYEY SILT; ha	rd; moist				
				9								
	4/4		0.0									
	,		0.0	10								
			0.0	11		11.0'-12.0': Gray; C	LAYEY SILT; har	l; moist				
				12								
				13								
				14								
				15								
				16								
				17								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				26								
				27								
				28								
				29								
				29								
		Logged by:		Robert Pete	rson				Date:	10-25-12		
		Drilling Contract	tor:	GeoLogic N	IY, Inc.				Driller:	Dave Lyons	3	<u> </u>

ai -		R EA Engir	neering.	P.C.		Job. No. 1490710		NYSDEC Lackawanna	Former Inci	nerator Site		ocation: awanna, NY
-	У <u>А</u>			Fechnolog	y	Drilling Meth	,					ring Number:
				-	-			1 1				SB-16
Coordinate		LOG OF SOIL B orthing 1027293.294		1084577.359		Sampling Met	hod: Sterilize	ed acetate slee	eves		Shee	et 1 of 1
Surface Ele	evation:		595.53								Ι	Drilling
-	ow Surface:		N/A			Water Level:					Start	Finish
	Elevation:		595.53			Time:					DATE: 10-25-12	DATE: 10-25-12
	Description:		Surface Ele	Depth		Date:	e Conditions:	Care (harranii			TIME: 10:50	TIME: 11:10
Blow Counts	Ft. Driven/ Ft. Recvrd	Boring	PID	in	USCS	Suitac	Weather:	-				
(140-lb)	ri. Kecviu	Diagram	(ppm)	Feet	Log		Femperature:					
			0.0	0		0.0'-2.0': Dark brow	wn; fine to mediu	m SAND, trace S	ILT, trace GRAV	VEL (fill); moist		
			5.6	1								
	4/4			2		2.0'-4.0': Reddish b	rown: SILTY CLA	Y trace organics	: moist: modera	te plasticity		
			3.9	2		2.0 1.0 . Reddioir 0.		r) duce organico	, moist, modere	iie plusiteity		
			3.4	3								
			0.2	4		4.0' - 8.0': Reddish	brown; SILTY CL	AY, trace organi	cs; moist; mode	rate plasticity		
			2.4	5								
	4/4		1.0	6								
			0.0	7								
				8		8.0'-10.0': Reddish	brown; SILTY CL	AY, trace organi	cs; moist; mode	rate plasticity		
			0.0	9								
	4/4		0.0									
	-/ -		0.0	10		10.0'-12.0': Gray; C	LAYEY SILT; moo	derate plasticity;	hard; moist			
			0.0	11								
			0.0	12		10.0'-16.0': Gray; C	LAYEY SILT; moo	derate plasticity;	hard; moist			
			0.0	13								
	4/4		0.0	14								
			0.0	15								
				16		End of hole at 16' b	egs					
				17								
				18								
				19								
				20								
						 						
				21								
				22								
				23								
				24								
				25								
				26								
				27								
						I						
				28								
				29								
		Logged by:	I	Robert Pete	rson				Date:	10-25-12		
		Drilling Contract		GeoLogic N				-	Driller:	Dave Lyons	3	_

		R				Job. No.						
-		🔰 🛛 EA Engin	eering,	P.C.		1490710	Project:	Lackawanna	Lackaw	vanna, NY		
-		EA Scien			5y	Drilling Meth					Soil Bori	ng Number: B-16
		LOG OF SOIL B				Sampling Met	hod: Sterilize	ed acetate sleev	ves			1 of 1
Coordinate		orthing 1027251.878		1084580.335								
Surface Ele		. <u> </u>	595.53		•					1	Dr	illing
	ow Surface:	. <u> </u>	N/A		•	Water Level:					Start	Finish
Reference			595.53			Time:					DATE: 10-25-12	DATE: 10-25-12
Reference	Description		Surface Ele			Date:					TIME: 10:10	TIME: 10:25
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in	Log			Sunny, 10-15 mpl	h south			
(140-10)				Feet 0		0.0'-1.0': Dark brow	Temperature:		(fill), moist			
			0.0	0		0.0-1.0. Dark brow	wii, SAIND and Si	L1, Hate GRAVEI	. (IIII), IIIOISt			
			0.5	1		1.0'-4.0': Reddish b	rown; CLAY, trac	e SILT; moist				
	4/4		9.6	2								
				3								
			4.5									
			0.8	4		4.0' - 8.0': Reddish	brown; CLAY, tra	ace SILT; moist				
			0.9	5								
	4/4		0.3	6								
			0.7	7								
			10.1	8		8.0'-12.0': Reddish	brown; CLAY, tra	ace SILT; moist				
			13.6									
	4/4		10.3	9								
	4/4		4.8	10								
			3.7	11								
				12		End of hole at 12' b	egs					
				13								
				14								
				15								
				16								
				10								
				17								
				18								
				19								
				20								
				21								
				22								
				23								
				24								
				25								
				25								
				27								
				28								
				29								
		Logged by:		Robert Pete	rson				Date:	10-25-12		_
		Drilling Contract	or:	GeoLogic N	IY, Inc.				Driller:	Dave Lyons		_

ai -		R EA Engin	neering.	P.C.		Job. No. 1490710		NYSDEC Lackawanna	a Former Incine	rator Site		ocation: wanna, NY
_	Y A	EA Scien			sy	Drilling Meth	,			utor blic	Soil Bo	ring Number:
		LOG OF SOIL B	ORING			Sampling Met	hod: Sterilize	d acetate slee	eves			SB-16
Coordinat	es: No	orthing 1027162.282		1084602.833		10						t 1 of 1
Surface El			596.4		_	X47 4 X 1						Drilling
-	low Surface: Elevation:		N/A 596.4		-	Water Level: Time:					Start DATE: 10-26-12	Finish DATE: 10-26-12
	Description:		Surface Ele		-	Date:					TIME: 10:05	TIME: 10:20
Blow	Ft. Driven/	Boring	PID	Depth	USCS	Surface	e Conditions:					
Counts (140-lb)	Ft. Recvrd	Diagram	(ppm)	in Feet	Log	-	Weather: Temperature:	Sunny, 10-15 m 75F	ph south			
			2.2	0					L, some glass; hard;	moist (fill)		
			3.4	1								
	4/3			2								
			1.7	3		3.0'-4.0': No recove						
			x	3								
			x	4		4.0' - 4.5': Black; Cl 4.5'-8.0': No recove		e GRAVEL, som	e glass; hard; wet (f	ill)		
			x	5								
	4/0.5		x	6								
				7								
			x	8		8.0'-12.0': Gray; CI	AV trace organic	a handi hiah pla	obicity			
			0.0			8.0 - 12.0 : Gray; CI	A 1, trace organic	s; naro; nign pia	isticity			
			0.0	9								
	4/4		0.0	10								
			0.0	11								
			0.0	12		12.0'-16.0': Gray; C	LAY, trace organi	ics; hard; high p	lasticity			
	4/4			13								
	1/ 1			14								
				15								
				16		16.0'-20.0': Gray; C	LAY, trace organi	ics; hard; high p	lasticity			
				17								
	4/4			18								
				19								
				20		20.0'-24.0': Gray; C	LAY, trace organi	ics; hard; high p	lasticity; wet/satura	ited		
				21								
	4/4			22								
				23								
				24		24.0'-28.0': Gray; C	LAY, trace organi	ics; hard; high p	lasticity; wet/satura	ited		
				25								
	4/4			26								
				27								
				28		End of hole at 28' b	05					
						Lind of hole at 28° b	5'					
				29								
		Logged by:		Robert Pete	erson	•			Date: <u>1</u>	0-26-12		
		Drilling Contract		GeoLogic N					Driller: I	Dave Lyons	;	

		R						Job. No. Client: NYSDEC 1490710 Project: Lackawanna Former Incinerator S					Site Lackawanna, NY			
				-	neering,				-			erator Site				
			EA S	Scien	ce and [Fechnolog	5y	Drilling Meth	od: 4.25" holl	ow stem auge	r			ing Number:		
		LOG	OF S	OIL B	ORING			Sampling Me	thod: 3" diam	eter split spoo	n			W-02A		
Coordinate	es: N	orthing				1084753.743		1 0					Sheet	1 of 1		
Surface Ele	evation:				595.7								D	rilling		
Casing Bel	low Surface:	:			565.7			Water Level:					Start	Finish		
Reference					598.19			Time:					DATE: 10-29-12	DATE: 10-29-12		
Reference	Description	:			TOC			Date:					TIME: 10:50	TIME: 16:00		
Blow Counts	Ft. Driven/	I	Boring	3	PID	Depth in	USCS	Surfac	e Conditions: Weather:	Grass / topsoil Overcast, rain						
(140-1b)	Ft. Recvrd	E	Diagra	m	(ppm)	Feet	Log		Temperature:							
					1.6	0		0.0': Topsoil: dark	brown; fine SAN	D and GRAVEL,	trace organics; w	et				
	2/1				1.0	1		0.0'-2.0': Fill: dark	brown to black; ci	nders, glass, SILT	, ash, GRAVEL;	moist				
						1										
					2.6	2		2.0'-3.0': Fill: dark	brown to black; ci	nders, glass, SILT	, ash, GRAVEL;	moist				
	2/1					3										
						3										
					1.9	4		4.0'-4.3': Fill: dark	brown to black; ci	nders, glass, SILT	, ash, GRAVEL;	moist				
	2/0.3					5										
						5										
					2.2	6		6.0'-7.0': Reddish t	prown; CLAY, son	ne SILT; stiff; mois	st; iron stained fr	actures				
	2/1					7										
						,										
					0.7	8		8.0'-10.0': Reddish	brown; CLAY, so	me SILT; stiff; mo	ist; iron stained i	fractures				
	2/2					9										
					0.0	10		10.0'-12.0': Gray; C	LAY, some SILT;	stiff; moist; iron s	tained fractures					
	2/2					11										
					0.0	12		12.0'-14.0': Gray; C	LAY, some SILT;	stiff; moist; iron s	tained fractures;	wet				
	2/2					13										
									r-16.0°: Gray; CLAY, some SILT; stiff; moist; iron stained fractures; wet							
					0.0	14		14.0'-16.0': Gray; C	'LAY, some SILT;	stiff; moist; iron s	tained fractures;	wet				
	2/2					15										
						16		16 0' 12 0'ı C rayı C	.0'-12.0'; Gray; CLAY, some SILT; stiff; moist; iron stained fractures; wet							
	2/2				0.0	10		10.0 -12.0 . Glay, C	LAT, Some SILT,	sun, moist, non s	taineu fractures,	wet				
	2/2					17										
						18										
	2/2				0.0	10										
	2/2					19										
						20		20.0'-22.0': Gray; C	LAY, some SILT;	stiff; moist; iron s	tained fractures;	saturated				
	2/2				0.0											
	-/ -					21										
					0.0	22		22.0'-24.0': Gray; 0	CLAY, some SILT;	stiff; moist; iron s	stained fractures	; saturated				
	2/2				0.0											
						23										
	l				0.0	24		24.0'-26.0': Gray; (CLAY, some SILT;	stiff; moist; iron s	stained fractures	wet				
	2/2		_		0.0	05										
	1					25										
					0.0	26		26.0'-28.0': Gray; (CLAY, some SILT;	stiff; moist; iron s	stained fractures	; wet				
	2/2					27										
						21										
			_		0.0	28		28.0'-30.0': Gray; (CLAY, some SILT;	stiff; moist; iron s	stained fractures	wet	-			
┣────	2/2					29										
	<u> </u>							End of hole at 30' l	bgs							
	Mentit					struction Info	ormation						allation Informat			
	Monitorir Bottom of				2 30	in ft bgs					-	l Vapor Point: om of Tubing:	N/A N/A	ft ft		
	Stick Up	or Fl	ush N	lount:	St	ick up					Тор	of Sand Pack:	N/A	ft		
			en Int		20	To	30 20	ft bgs ft bgs			Top of B	entonite Seal:	N/A	ft		
	Sa	nd Pa	ser Int ick Int		18	То То	30	ft bgs ft bgs								
Bentonite Seal: 15 To 18								ft bgs								
Grout Interval: 0 To 15							15	ft bgs								
		Logg	ed by:			Robert Pete	rson				Date:	10-29-12				
		Drilli	ng Co	ntract	or:	GeoLogic N	Y, Inc.				Driller:	Dave Lyons				

		R						Job. No. Client: NYSDEC Location 1490710 Project: Lackawanna Former Incinerator Site Lackawanna					cation:		
				igineer					-			erator Site			
) I	EA Sc	ience a	and T	echnolog	<u>sy</u>	Drilling Meth	od: 4.25" Hol	low stem auge	er			ng Number:	
		LOG)F SOI	IL BORI	ING			Sampling Met	hod: 3" diam	eter split spoo	n			W-03A	
Coordinate	es: N	orthing 1				1084602.833		1 0		1 1			Sheet	1 of 1	
Surface Ele	evation:		_		596.4								Di	rilling	
_	low Surface:	:	_		566.4			Water Level:					Start	Finish	
Reference	Elevation: Description			TOC	596.14			Time:					DATE: 10-31-12	DATE: 10-31-12 TIME: 1030	
	Description			100	-	Depth		Date:	e Conditions:	Cravel / tensoil			TIME: 0820	1 IME: 1030	
Blow Counts	Ft. Driven/		oring		PID _	in	USCS	Surrace	Weather:						
(140-lb)	Ft. Recvrd	Di	agram	œ	opm)	Feet	Log		Temperature:						
					0.0	0		0.0'-2.0': Fill: Black	;; GRAVEL, slag,	and SILTY CLAY,	trace organic m	atter; stiff; moisl	t		
	2/2				0.1	1									
					0.1										
					ŀ	2		2.0'-4.0': Large piec	e of slag stuck in	split spoon. No r	ecovery				
-	2/0					3									
				-		4		4.0'-5.0': Brown-gra	w SILT trace CL	AV: stiff: wat					
	2/2				0.0	4		4.0-5.0. biown-gia	iy, SiL1, trace CL	A1, suit, wet					
	2/2				0.0	5		5.0'-6.0': Brown-gra	ay; CLAY, some S	iILT; moderate pla	sticity; wet				
						6									
					-	7									
						8									
				-		9									
					-	,									
					-	10		10.0'-12.0': Gray; C	LAY and SILT; ha	ard; moist					
	2/2					11									
					-	12									
-						13									
						14									
					-										
					-	15		5.0°-17.0': Gray; CLAY, some SILT; moderate plasticity; hard; moist; laminations							
	2/2					16									
						47									
					-	17									
						18									
						19									
		_													
					-	20		20.0'-22.0': Gray; C	LAY, trace SILT;	moderate plasticit	y; soft; wet - sati	urated			
-	2/2					21									
						22									
	1														
					Ţ	23									
						24									
					[25.0';27.0': Gray; C	TAV birb -1'	rity: soft: cat'	4				
	2/2				ŀ	25		23.0 ;27.0": Gray; C	.LA1; iign piasti	ary; son; saturate					
	2/2					26									
┣────┥				-		27									
					[
					ŀ	28		28.0'-30.0': Gray; C	LAY; high plastic	ity; soft; saturated	1				
	1					29									
			mitori	no Wall	Cone	truction Inf	ormation	End of hole at 30' b	ogs		Soil Van	or Point Inct	allation Informati	on	
	Monitorir				2	in	uu01					l Vapor Point:	N/A	ft	
	Bottom of	Monito	ring W	/ell:	30 Cti	ft bgs					Botte	om of Tubing:	N/A	ft	
	Stick Uj		sh Moı n Inter		20 Stic	ck up To	30	ft bgs			-	of Sand Pack: Sentonite Seal:	N/A N/A	ft ft	
		Rise	r Inter	val:	0	То	20	ft bgs			1		,	-	
	Sa	and Pacl Bente	k Inter onite S		19 16	To To		ft bgs ft bgs							
			it Inter		0	То		ft bgs							
		Logged	i by:		1	Robert Pete	rson				Date:	10-31-12			
		Drilling		ractor:	-	GeoLogic N						Dave Lyons		_	

		R						· ·					Lo	cation:		
					eering,			1490710 Project: Lackawanna Former Incinerator S Drilling Method: 4.25" Hollow stem auger				tor Site		wanna, NY		
-			EA S	Scien	ce and [Fechnolog	5y	Drilling Meth	od: 4.25" Hol	low stem auge	r			ing Number:		
		LOG	OF SO	OIL B	ORING			Sampling Me	hod: 3" diam	eter split spoo	n			1W-04		
Coordinate	es: N	orthing				1084710.752		1 8					Sheet	1 of 1		
Surface Ele	evation:				596.45								D	rilling		
Casing Bel	ow Surface:				566.45			Water Level:					Start	Finish		
Reference					596.22			Time:					DATE: 11-2-12	DATE: 11-5-12		
	Description	:			TOC			Date:	~				TIME: 1200	TIME: 1035		
Blow Counts	Ft. Driven/	1	Boring	3	PID	Depth in	USCS	Surface	e Conditions: Weather:	-						
(140-lb)	Ft. Recvrd	D	liagra	m	(ppm)	Feet	Log	,	Temperature:							
						0		0'-0.5': Asphalt (1"								
16 17	2/2					1		0.5'-2.0': Fill: Black	; cinders, slag, bri	ck, GRAVEL, med	lium SAND; wet; so	ft				
6					1.5	1										
4					1	2		2.0'-4.0': Light brow	wn; SILT, some fir	ne SAND; mediun	ı; wet					
8 9	2/2					3										
8					0.5	5										
2					0.0	4		4.0'-6.0': Light brow	wn-gray; SILT, tra	ce CLAY, trace or	ganics; stiff; moist; ł	norizontal la	minations			
3	2/2					5										
6						5										
						6										
						7										
-						8										
						9										
5 5					0.0	10		10.0'-12.0': Gray; S	ILT and CLAY; st	iff; moist; laminat	ons					
17	2/2					11										
10						12										
						12										
						13										
						14										
3					0.0	15		15.0'-17.0': Gray; S	I-17.0': Gray; SILT and CLAY; stiff; moist; laminations							
5	2/2					16										
6						15										
						17										
						18										
						19										
1 4					0.0	20		20.0'-22.0': Gray; S	ILT and CLAY; st	iff; moist; laminat	ions; saturated; soft					
2	2/2					21										
2																
						22										
						23										
						24										
						-7										
3					0.0	25		25.0';27.0': Gray; S	ILT and CLAY; st	iff; moist; laminat	ions; saturated; soft					
3	2/2					26										
3																
						27										
2					0.0	28		28.0'-30.0': Gray; S	ILT and CLAY; st	iff; moist; laminat	ions; saturated; soft					
3	2/2					29										
2						29		End of hole at 30' l	ogs							
						truction Inf	ormation						allation Informat			
	Monitorir Bottom of				2 30	in ft bgs					Depth of Soil Va Bottom	of Tubing:	N/A N/A	ft ft		
	Stick Up	or Fl	ush M	lount:		ick up						Sand Pack:	N/A N/A	ft		
				erval:	20	To T-	30	ft bgs ft bgs			Top of Bent	onite Seal:	N/A	ft		
	Sa	Ris and Pa		erval: erval:	0 18	To To		ft bgs ft bgs								
		Ben	ntonite	e Seal:	15	То	18	ft bgs								
Grout Interval: 0 To 15								ft bgs								
		Logge	ed by:			Robert Pete	rson				Date: <u>1</u> 1-	5-12				
		Drilli	ng Co	ntract	or:	GeoLogic N	IY, Inc.				Driller: Da	ve Lyons				

		R						Job. No. Client: NYSDEC 1490710 Project: Lackawanna Former Incinerator Site					Location: Lackawanna, NY	
					eering,				,			erator Site		
			EA S	Scien	ce and '	Technolog	<u>sy</u>	Drilling Meth	od: 4.25" Hol	low stem auge	er			ng Number:
		LOG	OF S	OIL B	ORING			Sampling Me	hod: 3" diam	eter split spoo	n			W-05
Coordinate	es: N	orthing				1084807.567		1 0		1 1			Sheet	1 of 1
Surface Ele	evation:				596.33								Dr	illing
Casing Bel	low Surface:				566.33			Water Level:					Start	Finish
Reference					596.03			Time:					DATE: 11-1-12	DATE: 11-2-12
	Description	:			TOC			Date:					TIME: 1415	TIME: 0900
Blow Counts	Ft. Driven/	1	Boring	3	PID	Depth in	USCS	Surface	e Conditions: Weather:	Grass / topsoil Overcast / rain				
(140-lb)	Ft. Recvrd	D	Diagra	m	(ppm)	Feet	Log	,	Temperature:					
5					3.2	0		0'-1.5': Light brown	n; SILT and CLAY	, some organics,	race glass and s	lag		
6	2/2					1								
8					x	1		1.5'-2.0': Fill: Dark	brown; glass, slag	z, wood, CLAY ar	d SILT, GRAVE	L; hard; moist		
7					1.3	2		2.0'-3.0': Fill: Dark	brown; glass, slaş	g, wood, CLAY ar	d SILT, GRAVE	L; hard; moist		
7	2/2					3		3.0'-4.0': Light brow	um SILT trace CI	AV trace organic	e stiff moist			
12					1.5	5		5.0 -4.0 . Light bio	wii, 5illi, trace ci	.A1, trace organic	s, stin, moist			
5					1.0	4		4.0'-6.0': Light brow	wn; SILT, trace CI	AY, trace organic	s; stiff; moist; la	minations; oxidi	zed	
6 8	2/2					5								
11						-								
						6								
						7								
						8								
						9								
-						10		1001100 0 0			1 1 1 1	1		
5 7	a (a				0.0	10		10.0'-12.0': Gray; S	ILT and CLAY; ve	ertical lamination	s; hard; moderat	e plasticity; mois	st	
9	2/2					11								
11						12								
						13								
						14								
3					0.0	15		15.0'-17.0': Gray; S	ILT and CLAY; ve	ertical lamination	s; hard; moderat	e plasticity; mois	st	
5	2/2					16								
6						17								
						17								
						18								
						19								
10 5					0.0	20		20.0'-22.0': Gray; S	ILT and CLAY; ve	ertical lamination	s; hard; moderat	e plasticity; mois	st	
6	2/2					21								
10														
	1					22								
						23								
						24								
W0H W0H]				0.0	25		25.0';27.0': Gray; S	ILT and CLAY; n	noderate plasticity	; saturated; soft			
W0H W0H	2/2					26								
2														
						27								
W0H					0.0	28								
W0H W0H	2/2					29								
1	1					29		End of hole at 30' l	ogs					
						struction Inf	ormation		-				allation Informati	
	Monitorir Bottom of				2 30	in ft bgs						l Vapor Point: om of Tubing:		ft ft
Stick Up or Flush Mount: Stick up												of Sand Pack:	N/A	ft
Screen Interval: 20 To 30 Riser Interval: 0 To 20								ft bgs			Top of I	Bentonite Seal:	N/A	ft
Sand Pack Interval: 17 To 30								ft bgs ft bgs						
Bentonite Seal: 14 To 17 f							17	ft bgs						
Grout Interval: 0 To 14							14	ft bgs						
		Logg	ed by:			Robert Pete	rson				Date:	11-1-12		_
		Drilli	ng Co	ntract	or:	GeoLogic N	IY, Inc.				Driller:	Dave Lyons		

-		R						Job. No.	Client:	NYSDEC			Lo	cation:			
	$\nabla \wedge$			-	eering,			1490710	Project:	Lackawanna		erator Site		wanna, NY			
-			EA S	scien	ce and	Fechnolog	sу	Drilling Meth	od: 4.25" Hol	low stem auge	r			i ng Number: IW-06			
		LOG	OF SC	DIL B	ORING			Sampling Me	hod: 3" diam	eter split spoo	n						
Coordinate	es: N	orthing	10273	39.096	Easting:	1084566.429							Sheet	1 of 1			
Surface Ele					595.07								Dı	rilling			
_	low Surface:				565.07			Water Level:					Start	Finish			
Reference	Elevation: Description		•		594.8 TOC			Time:					DATE: 10-31-12 TIME: 1600	DATE: 11-1-12 TIME: 0900			
Blow	D totilp ilon					Depth		Date: Surface	e Conditions:	Gravel			11112.1000	111111.0500			
Counts	Ft. Driven/ Ft. Recvrd		Boring Diagrai		PID (ppm)	in	USCS Log			Overcast / rain							
(140-lb)			'lugiu		(PP)	Feet	105		Temperature:			1					
11 10					5.5	0		0 =2.0 . FIII. DIACK, V	CEAT and SILT, S	lag, GRAVEL, orរ្	anic matter, nai	u, moist					
10	2/2				6.9	1											
8						2		2.0'-4.0': Brown-gr	av: SILT and CLA	Y, trace organic n	natter: hard: moi	st					
11	2/2				4				,,	,							
12 12	-/ -				3.9	3											
2						4		4.0'-6.0': Brown-gr	ay; SILT and CLA	Y, trace organic n	natter; hard; moi	st					
3	2/2					-											
6 7						5											
8						6		6.0'-8.0': Brown-gr	ay; SILT and CLA	Y, trace organic n	natter; hard; moi	st; laminated					
11 15	2/2					7											
22																	
						8											
						9											
6						10		10.0'-11.0': Brown-	grav: SII T and CI	AV trace organic	matter hard n	oiet: laminated					
7	2/2					10		10.0 -11.0 . DIOWIP	gray, sier and er	211, trace organic	matter, nard, n	loist, ianimateu					
9 12	2/2					11		11.0'-12.0': Gray; C	LAY, some SILT;	hard; moist							
12						12											
						13											
						15											
						14											
3						15		15.0'-17.0': Gray; C	LAY, some SILT;	hard; moist							
4 7	2/2					16											
8						10											
						17											
						18											
						19											
1 W0H						20		20.0'-22.0': Gray; C	LAY; soft; satural	ted; high plasticity	T						
1	2/2					21											
1						22											
						23											
						24											
W0H						25		25.0';27.0': Gray; C	LAY; soft: satura	ted; high plasticit	v						
W0H	2/2							.,	, ,	, o r							
W0H W0H	2/2					26											
						27											
2						28		28.0'-30.0': Gray; C	I AY: soft: satural	ted: high plasticity	r						
3	2/1									,							
12 15	-/ 1					29		End of hole at 30' l	0gs								
	I	N	Aonito	ring V	Vell Cons	struction Inf	ormation		0"		Soil Vap	or Point Inst	allation Informati	on			
	Monitorir Bottom of				2 30	in ft bgs						l Vapor Point: om of Tubing:		ft ft			
	Stick Up					ick up						of Sand Pack:	N/A N/A	ft			
Screen Interval: 20 To 30 Riser Interval: 0 To 20								ft bgs ft bgs			Top of I	Bentonite Seal:	N/A	ft			
Sand Pack Interval: 17 To 30 ft							30	ft bgs ft bgs									
			ntonite		14 0	То		ft bgs ft bgs									
							14	ft bgs									
			ed by:			Robert Pete						10-31-12		-			
1		Drilli	ng Co	ntract	or:	GeoLogic N	Y, Inc.				Driller:	Dave Lyons					

		R					Job. No.	Client:	NYSDEC		Lo	cation:			
		E	EA Engi	neering,	P.C.		1490710 Project: Lackawanna Former Incinerator Drilling Method: 4.25" Hollow stem auger								
_	~ _ `	E	A Scie	nce and '	Technolog	sy	Drilling Meth	od: 4.25" Hol	low stem auge	r	Soil Bori	ing Number:			
											M	IW-07			
C 1 1				BORING			Sampling Me	thod: 3" diam	eter split spoo	n	Sheet	1 of 1			
Coordinate		orthing 1	027450.33		1084651.689										
Surface Ele				595.4103 568.41032			Mater Terral					rilling			
_	ow Surface						Water Level:				Start DATE: 11-5-12	Finish DATE: 11-5-12			
Reference	Description			595.15 TOC			Time:				TIME: 1425	TIME: 1800			
	Description		-		Depth		Date:	e Conditions:	Cross / Topsoil		11WIL: 1420	TIME. 1000			
Blow Counts	Ft. Driven/		oring	PID	in	USCS	Surrac	Weather:	-						
(140-lb)	Ft. Recvrd	Dia	ngram	(ppm)	Feet	Log		Temperature:							
4				0.0	0		0'-1.5': Topsoil: Gr	ass, organic matte	r						
9 14	2/1.5														
8				1.2	1		1.5': Fill: Glass, bri	ck, slag, SILT and	CLAY; soft; mois	t					
2				0.9	2		2.0'-3.0": Fill: Glass								
2	2/1			0.9											
5 7	,			3.8	3										
2				<u> </u>	4		4.0'-4.5': Fill: Glass	, brick, slag, SILT	and CLAY; soft; n	noist					
2	2/1			2.5			4.5'-5.0': Gray; SIL								
3	-/ 1			0.0	5										
3				 	6		6.0'-7.5': Light bro	wn: SILT. some C	AY: hard: moist						
2	2/1.5			0.0				,, some C	.,						
5	2/ 1.3				7						·				
8					8										
					8										
					9										
2					10										
3	2/2			0.0	10										
3	2/2				11										
4					12										
					13										
-					14		-								
2 2				0.0	15		15.0'-17.0': Gray; C	LAY and SILT; ha	rd; moist; modera	ate plasticity					
1	2/2				16										
2		_													
					17										
					18										
					19										
W0H				0.0	20		20.0'-22.0': Gray; C	LAY, some SILT;	soft; saturated; hig	gh plasticity					
1	2/2			0.0											
1 2					21										
					22										
				I											
					23										
					24										
1					05		25 01.27 01. 0 0	TAV some CIT T	eoft: estimat-1.1.	gh plasticity; auger drilling be	ame hard at 27				
1	0.40			0.0	25		20.0 ,27.0 . Giay; C		,, suturateu, Illş	5. Pastery, auger urnning ber	and furth at 27				
1	2/2				26										
2					07										
					27										
14				0.0	28										
21 23	2/1	Î			29										
31					29		End of hole at 30' l	bgs							
		Mc	onitoring	Well Cons	struction Inf	ormation				Soil Vapor Point Ins	stallation Informati	on			
	Monitoria				in					Depth of Soil Vapor Poin		ft			
	Bottom of Stick U		ring wei sh Mouni		ft bgs ick up					Bottom of Tubing Top of Sand Pac		ft ft			
	2.100	Screer	n Interval	17	То	27	ft bgs			Top of Bentonite Sea		ft			
	-		r Interva	-	То		ft bgs				·				
	Si		k Interval onite Seal	-	То То	27 15	ft bgs ft bgs								
			t Interval	-	То		ft bgs								
		Logged	bv:		Robert Pete	reon				Date: 11-5-12					
			g Contrac	tor:	GeoLogic N					Driller: Dave Lyon	e	-			
1		~	- contract		GEULUGIC N	1, IIC.				Dave Lyon	0				

		R					Job. No. Client: NYSDEC 1490710 Project: Lackawanna Former Incinerator Site					Location: Lackawanna, NY			
				eering,				-			erator Site				
		EA S	bcienc	e and I	Fechnolog	sу	Drilling Meth	od: 4.25" Hol	low stem auge	er			ing Number:		
		LOG OF SC	DIL BO	RING			Sampling Me	hod: 3" diam	eter split spoo	n			1W-08		
Coordinate	es: N	orthing 10274			1084456.249		I O					Sheet	1 of 1		
Surface Ele	evation:			593.561								D	rilling		
Casing Bel	ow Surface:	-	ļ	571.56096			Water Level:					Start	Finish		
Reference		-		593.42			Time:					DATE: 11-6-12	DATE: 11-6-12		
Reference	Description	:	Т	roc			Date:					TIME: 1000	TIME:		
Blow Counts	Ft. Driven/	Boring	5	PID	Depth in	USCS	Surface	Conditions:	Grass / Topsoil Mostly cloudy						
(140-1b)	Ft. Recvrd	Diagrar	n	(ppm)	Feet	Log		Temperature:							
3				6.7	0		0'-0.2': Topsoil: Da	rk brown; fine SA	ND and SILT, tra	ce organic matte	r; soft; moist				
5	2/1.5		-	0.7	1		0.2'-1.5': Fill: Brow	n; glass, brick, wo	od, SILT and CLA	AY; loose; moist					
6 7					1										
5				1	2		2.0'-3.0': Fill: Brow	n; glass, brick, me	tal fragments; loc	se; moist					
3	2/1		-		3										
1					5										
1			-	0.0	4		4.0'-4.3': Fill: Brow	n; glass, brick, me	tal fragments; loc	se; moist					
W0H W0H	2/0.3		-		5										
1					5										
4				0.0	6		6.0'-8.0': Brown; SI	LT/CLAY; hard;	moist						
14 19	2/2		-		7										
31															
					8										
					9										
2			-		10		10.01.12.01. Стать С	I AV J CII T. h.							
2	2 (2				10		10.0'-12.0': Gray; C	LAY and SIL1; ha	ira; moist; moderi	ate plasticity					
2	2/2		-		11										
2			-		12										
					13										
			-		14										
			-		45										
1 1	a (a				15		15.0'-17.0': Gray; C	0'-17.0': Gray; CLAY and SILT; hard; soft; saturated; high plasticity							
2	2/2		-		16										
1			-		17										
			L												
					18										
			-		19										
MOL			-		20		20.01.22.01.0	LAN LOUT 1	1 0 1 1	11.1.1.1.1.1.1.	1 .11. 1	1 1 (22) ((11))			
W0H W0H	2 (2				20		20.0'-22.0': Gray; C	LAY and SIL1; ha	ird; soft; saturated	i; nign plasticity;	drilling became	e nard at 22' (till)			
2	2/2		-		21										
3					22										
			ſ		23										
			⊦		24										
			L				2E 01-27 01 2711 CT	AV and OH T	Generation :	CRAUE					
25 17	2.15				25		25.0';27.0': Till: CL	n 1 and SIL1, som	ie ime SAIND, trac	.e GRAVEL					
27	2/2		F		26										
36			┝		27										
			ſ		28										
			⊦		29										
							End of hole at 27' l	ogs		0.111	D ! . T	11			
	Monitorir	Monito 1g Well Dian		ell Cons 2	struction Info in	ormation					or Point Inst Vapor Point:	allation Informat N/A	ion ft		
	Bottom of	Monitoring	Well:	22	ft bgs						om of Tubing:	N/A	ft		
	Stick Uj	or Flush M			ick up	~~	ft bac			-	of Sand Pack:	N/A	ft		
		Screen Inte Riser Inte		12 0	То То	22 12	ft bgs ft bgs			1 op of B	entonite Seal:	N/A	ft		
Sand Pack Interval: 10 To 22							ft bgs								
							ft bgs ft bgs								
			_				- 0-								
		Logged by:			Robert Pete					-	11-6-12		-		
1		Drilling Cor	ntractor	r:	GeoLogic N	Y, Inc.				Driller:	Dave Lyons				